Bug Summary

File:build-llvm/tools/clang/include/clang/AST/Attrs.inc
Warning:line 6268, column 5
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SemaDeclObjC.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -mrelocation-model pic -pic-level 2 -mthread-model posix -relaxed-aliasing -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-8/lib/clang/8.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-8~svn345461/build-llvm/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-8~svn345461/tools/clang/include -I /build/llvm-toolchain-snapshot-8~svn345461/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-8~svn345461/build-llvm/include -I /build/llvm-toolchain-snapshot-8~svn345461/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/include/clang/8.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-8/lib/clang/8.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-8~svn345461/build-llvm/tools/clang/lib/Sema -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -fobjc-runtime=gcc -fno-common -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2018-10-27-211344-32123-1 -x c++ /build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaDeclObjC.cpp -faddrsig

/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaDeclObjC.cpp

1//===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements semantic analysis for Objective C declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "TypeLocBuilder.h"
15#include "clang/AST/ASTConsumer.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/ASTMutationListener.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ExprObjC.h"
21#include "clang/AST/RecursiveASTVisitor.h"
22#include "clang/Basic/SourceManager.h"
23#include "clang/Sema/DeclSpec.h"
24#include "clang/Sema/Lookup.h"
25#include "clang/Sema/Scope.h"
26#include "clang/Sema/ScopeInfo.h"
27#include "clang/Sema/SemaInternal.h"
28#include "llvm/ADT/DenseMap.h"
29#include "llvm/ADT/DenseSet.h"
30
31using namespace clang;
32
33/// Check whether the given method, which must be in the 'init'
34/// family, is a valid member of that family.
35///
36/// \param receiverTypeIfCall - if null, check this as if declaring it;
37/// if non-null, check this as if making a call to it with the given
38/// receiver type
39///
40/// \return true to indicate that there was an error and appropriate
41/// actions were taken
42bool Sema::checkInitMethod(ObjCMethodDecl *method,
43 QualType receiverTypeIfCall) {
44 if (method->isInvalidDecl()) return true;
45
46 // This castAs is safe: methods that don't return an object
47 // pointer won't be inferred as inits and will reject an explicit
48 // objc_method_family(init).
49
50 // We ignore protocols here. Should we? What about Class?
51
52 const ObjCObjectType *result =
53 method->getReturnType()->castAs<ObjCObjectPointerType>()->getObjectType();
54
55 if (result->isObjCId()) {
56 return false;
57 } else if (result->isObjCClass()) {
58 // fall through: always an error
59 } else {
60 ObjCInterfaceDecl *resultClass = result->getInterface();
61 assert(resultClass && "unexpected object type!")((resultClass && "unexpected object type!") ? static_cast
<void> (0) : __assert_fail ("resultClass && \"unexpected object type!\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 61, __PRETTY_FUNCTION__))
;
62
63 // It's okay for the result type to still be a forward declaration
64 // if we're checking an interface declaration.
65 if (!resultClass->hasDefinition()) {
66 if (receiverTypeIfCall.isNull() &&
67 !isa<ObjCImplementationDecl>(method->getDeclContext()))
68 return false;
69
70 // Otherwise, we try to compare class types.
71 } else {
72 // If this method was declared in a protocol, we can't check
73 // anything unless we have a receiver type that's an interface.
74 const ObjCInterfaceDecl *receiverClass = nullptr;
75 if (isa<ObjCProtocolDecl>(method->getDeclContext())) {
76 if (receiverTypeIfCall.isNull())
77 return false;
78
79 receiverClass = receiverTypeIfCall->castAs<ObjCObjectPointerType>()
80 ->getInterfaceDecl();
81
82 // This can be null for calls to e.g. id<Foo>.
83 if (!receiverClass) return false;
84 } else {
85 receiverClass = method->getClassInterface();
86 assert(receiverClass && "method not associated with a class!")((receiverClass && "method not associated with a class!"
) ? static_cast<void> (0) : __assert_fail ("receiverClass && \"method not associated with a class!\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 86, __PRETTY_FUNCTION__))
;
87 }
88
89 // If either class is a subclass of the other, it's fine.
90 if (receiverClass->isSuperClassOf(resultClass) ||
91 resultClass->isSuperClassOf(receiverClass))
92 return false;
93 }
94 }
95
96 SourceLocation loc = method->getLocation();
97
98 // If we're in a system header, and this is not a call, just make
99 // the method unusable.
100 if (receiverTypeIfCall.isNull() && getSourceManager().isInSystemHeader(loc)) {
101 method->addAttr(UnavailableAttr::CreateImplicit(Context, "",
102 UnavailableAttr::IR_ARCInitReturnsUnrelated, loc));
103 return true;
104 }
105
106 // Otherwise, it's an error.
107 Diag(loc, diag::err_arc_init_method_unrelated_result_type);
108 method->setInvalidDecl();
109 return true;
110}
111
112/// Issue a warning if the parameter of the overridden method is non-escaping
113/// but the parameter of the overriding method is not.
114static bool diagnoseNoescape(const ParmVarDecl *NewD, const ParmVarDecl *OldD,
115 Sema &S) {
116 if (OldD->hasAttr<NoEscapeAttr>() && !NewD->hasAttr<NoEscapeAttr>()) {
117 S.Diag(NewD->getLocation(), diag::warn_overriding_method_missing_noescape);
118 S.Diag(OldD->getLocation(), diag::note_overridden_marked_noescape);
119 return false;
120 }
121
122 return true;
123}
124
125/// Produce additional diagnostics if a category conforms to a protocol that
126/// defines a method taking a non-escaping parameter.
127static void diagnoseNoescape(const ParmVarDecl *NewD, const ParmVarDecl *OldD,
128 const ObjCCategoryDecl *CD,
129 const ObjCProtocolDecl *PD, Sema &S) {
130 if (!diagnoseNoescape(NewD, OldD, S))
131 S.Diag(CD->getLocation(), diag::note_cat_conform_to_noescape_prot)
132 << CD->IsClassExtension() << PD
133 << cast<ObjCMethodDecl>(NewD->getDeclContext());
134}
135
136void Sema::CheckObjCMethodOverride(ObjCMethodDecl *NewMethod,
137 const ObjCMethodDecl *Overridden) {
138 if (Overridden->hasRelatedResultType() &&
139 !NewMethod->hasRelatedResultType()) {
140 // This can only happen when the method follows a naming convention that
141 // implies a related result type, and the original (overridden) method has
142 // a suitable return type, but the new (overriding) method does not have
143 // a suitable return type.
144 QualType ResultType = NewMethod->getReturnType();
145 SourceRange ResultTypeRange = NewMethod->getReturnTypeSourceRange();
146
147 // Figure out which class this method is part of, if any.
148 ObjCInterfaceDecl *CurrentClass
149 = dyn_cast<ObjCInterfaceDecl>(NewMethod->getDeclContext());
150 if (!CurrentClass) {
151 DeclContext *DC = NewMethod->getDeclContext();
152 if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(DC))
153 CurrentClass = Cat->getClassInterface();
154 else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(DC))
155 CurrentClass = Impl->getClassInterface();
156 else if (ObjCCategoryImplDecl *CatImpl
157 = dyn_cast<ObjCCategoryImplDecl>(DC))
158 CurrentClass = CatImpl->getClassInterface();
159 }
160
161 if (CurrentClass) {
162 Diag(NewMethod->getLocation(),
163 diag::warn_related_result_type_compatibility_class)
164 << Context.getObjCInterfaceType(CurrentClass)
165 << ResultType
166 << ResultTypeRange;
167 } else {
168 Diag(NewMethod->getLocation(),
169 diag::warn_related_result_type_compatibility_protocol)
170 << ResultType
171 << ResultTypeRange;
172 }
173
174 if (ObjCMethodFamily Family = Overridden->getMethodFamily())
175 Diag(Overridden->getLocation(),
176 diag::note_related_result_type_family)
177 << /*overridden method*/ 0
178 << Family;
179 else
180 Diag(Overridden->getLocation(),
181 diag::note_related_result_type_overridden);
182 }
183
184 if ((NewMethod->hasAttr<NSReturnsRetainedAttr>() !=
185 Overridden->hasAttr<NSReturnsRetainedAttr>())) {
186 Diag(NewMethod->getLocation(),
187 getLangOpts().ObjCAutoRefCount
188 ? diag::err_nsreturns_retained_attribute_mismatch
189 : diag::warn_nsreturns_retained_attribute_mismatch)
190 << 1;
191 Diag(Overridden->getLocation(), diag::note_previous_decl) << "method";
192 }
193 if ((NewMethod->hasAttr<NSReturnsNotRetainedAttr>() !=
194 Overridden->hasAttr<NSReturnsNotRetainedAttr>())) {
195 Diag(NewMethod->getLocation(),
196 getLangOpts().ObjCAutoRefCount
197 ? diag::err_nsreturns_retained_attribute_mismatch
198 : diag::warn_nsreturns_retained_attribute_mismatch)
199 << 0;
200 Diag(Overridden->getLocation(), diag::note_previous_decl) << "method";
201 }
202
203 ObjCMethodDecl::param_const_iterator oi = Overridden->param_begin(),
204 oe = Overridden->param_end();
205 for (ObjCMethodDecl::param_iterator ni = NewMethod->param_begin(),
206 ne = NewMethod->param_end();
207 ni != ne && oi != oe; ++ni, ++oi) {
208 const ParmVarDecl *oldDecl = (*oi);
209 ParmVarDecl *newDecl = (*ni);
210 if (newDecl->hasAttr<NSConsumedAttr>() !=
211 oldDecl->hasAttr<NSConsumedAttr>()) {
212 Diag(newDecl->getLocation(),
213 getLangOpts().ObjCAutoRefCount
214 ? diag::err_nsconsumed_attribute_mismatch
215 : diag::warn_nsconsumed_attribute_mismatch);
216 Diag(oldDecl->getLocation(), diag::note_previous_decl) << "parameter";
217 }
218
219 diagnoseNoescape(newDecl, oldDecl, *this);
220 }
221}
222
223/// Check a method declaration for compatibility with the Objective-C
224/// ARC conventions.
225bool Sema::CheckARCMethodDecl(ObjCMethodDecl *method) {
226 ObjCMethodFamily family = method->getMethodFamily();
227 switch (family) {
228 case OMF_None:
229 case OMF_finalize:
230 case OMF_retain:
231 case OMF_release:
232 case OMF_autorelease:
233 case OMF_retainCount:
234 case OMF_self:
235 case OMF_initialize:
236 case OMF_performSelector:
237 return false;
238
239 case OMF_dealloc:
240 if (!Context.hasSameType(method->getReturnType(), Context.VoidTy)) {
241 SourceRange ResultTypeRange = method->getReturnTypeSourceRange();
242 if (ResultTypeRange.isInvalid())
243 Diag(method->getLocation(), diag::err_dealloc_bad_result_type)
244 << method->getReturnType()
245 << FixItHint::CreateInsertion(method->getSelectorLoc(0), "(void)");
246 else
247 Diag(method->getLocation(), diag::err_dealloc_bad_result_type)
248 << method->getReturnType()
249 << FixItHint::CreateReplacement(ResultTypeRange, "void");
250 return true;
251 }
252 return false;
253
254 case OMF_init:
255 // If the method doesn't obey the init rules, don't bother annotating it.
256 if (checkInitMethod(method, QualType()))
257 return true;
258
259 method->addAttr(NSConsumesSelfAttr::CreateImplicit(Context));
260
261 // Don't add a second copy of this attribute, but otherwise don't
262 // let it be suppressed.
263 if (method->hasAttr<NSReturnsRetainedAttr>())
264 return false;
265 break;
266
267 case OMF_alloc:
268 case OMF_copy:
269 case OMF_mutableCopy:
270 case OMF_new:
271 if (method->hasAttr<NSReturnsRetainedAttr>() ||
272 method->hasAttr<NSReturnsNotRetainedAttr>() ||
273 method->hasAttr<NSReturnsAutoreleasedAttr>())
274 return false;
275 break;
276 }
277
278 method->addAttr(NSReturnsRetainedAttr::CreateImplicit(Context));
279 return false;
280}
281
282static void DiagnoseObjCImplementedDeprecations(Sema &S, const NamedDecl *ND,
283 SourceLocation ImplLoc) {
284 if (!ND)
285 return;
286 bool IsCategory = false;
287 StringRef RealizedPlatform;
288 AvailabilityResult Availability = ND->getAvailability(
289 /*Message=*/nullptr, /*EnclosingVersion=*/VersionTuple(),
290 &RealizedPlatform);
291 if (Availability != AR_Deprecated) {
292 if (isa<ObjCMethodDecl>(ND)) {
293 if (Availability != AR_Unavailable)
294 return;
295 if (RealizedPlatform.empty())
296 RealizedPlatform = S.Context.getTargetInfo().getPlatformName();
297 // Warn about implementing unavailable methods, unless the unavailable
298 // is for an app extension.
299 if (RealizedPlatform.endswith("_app_extension"))
300 return;
301 S.Diag(ImplLoc, diag::warn_unavailable_def);
302 S.Diag(ND->getLocation(), diag::note_method_declared_at)
303 << ND->getDeclName();
304 return;
305 }
306 if (const auto *CD = dyn_cast<ObjCCategoryDecl>(ND)) {
307 if (!CD->getClassInterface()->isDeprecated())
308 return;
309 ND = CD->getClassInterface();
310 IsCategory = true;
311 } else
312 return;
313 }
314 S.Diag(ImplLoc, diag::warn_deprecated_def)
315 << (isa<ObjCMethodDecl>(ND)
316 ? /*Method*/ 0
317 : isa<ObjCCategoryDecl>(ND) || IsCategory ? /*Category*/ 2
318 : /*Class*/ 1);
319 if (isa<ObjCMethodDecl>(ND))
320 S.Diag(ND->getLocation(), diag::note_method_declared_at)
321 << ND->getDeclName();
322 else
323 S.Diag(ND->getLocation(), diag::note_previous_decl)
324 << (isa<ObjCCategoryDecl>(ND) ? "category" : "class");
325}
326
327/// AddAnyMethodToGlobalPool - Add any method, instance or factory to global
328/// pool.
329void Sema::AddAnyMethodToGlobalPool(Decl *D) {
330 ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
331
332 // If we don't have a valid method decl, simply return.
333 if (!MDecl)
334 return;
335 if (MDecl->isInstanceMethod())
336 AddInstanceMethodToGlobalPool(MDecl, true);
337 else
338 AddFactoryMethodToGlobalPool(MDecl, true);
339}
340
341/// HasExplicitOwnershipAttr - returns true when pointer to ObjC pointer
342/// has explicit ownership attribute; false otherwise.
343static bool
344HasExplicitOwnershipAttr(Sema &S, ParmVarDecl *Param) {
345 QualType T = Param->getType();
346
347 if (const PointerType *PT = T->getAs<PointerType>()) {
348 T = PT->getPointeeType();
349 } else if (const ReferenceType *RT = T->getAs<ReferenceType>()) {
350 T = RT->getPointeeType();
351 } else {
352 return true;
353 }
354
355 // If we have a lifetime qualifier, but it's local, we must have
356 // inferred it. So, it is implicit.
357 return !T.getLocalQualifiers().hasObjCLifetime();
358}
359
360/// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible
361/// and user declared, in the method definition's AST.
362void Sema::ActOnStartOfObjCMethodDef(Scope *FnBodyScope, Decl *D) {
363 assert((getCurMethodDecl() == nullptr) && "Methodparsing confused")(((getCurMethodDecl() == nullptr) && "Methodparsing confused"
) ? static_cast<void> (0) : __assert_fail ("(getCurMethodDecl() == nullptr) && \"Methodparsing confused\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 363, __PRETTY_FUNCTION__))
;
364 ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
365
366 // If we don't have a valid method decl, simply return.
367 if (!MDecl)
368 return;
369
370 QualType ResultType = MDecl->getReturnType();
371 if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
372 !MDecl->isInvalidDecl() &&
373 RequireCompleteType(MDecl->getLocation(), ResultType,
374 diag::err_func_def_incomplete_result))
375 MDecl->setInvalidDecl();
376
377 // Allow all of Sema to see that we are entering a method definition.
378 PushDeclContext(FnBodyScope, MDecl);
379 PushFunctionScope();
380
381 // Create Decl objects for each parameter, entrring them in the scope for
382 // binding to their use.
383
384 // Insert the invisible arguments, self and _cmd!
385 MDecl->createImplicitParams(Context, MDecl->getClassInterface());
386
387 PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope);
388 PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope);
389
390 // The ObjC parser requires parameter names so there's no need to check.
391 CheckParmsForFunctionDef(MDecl->parameters(),
392 /*CheckParameterNames=*/false);
393
394 // Introduce all of the other parameters into this scope.
395 for (auto *Param : MDecl->parameters()) {
396 if (!Param->isInvalidDecl() &&
397 getLangOpts().ObjCAutoRefCount &&
398 !HasExplicitOwnershipAttr(*this, Param))
399 Diag(Param->getLocation(), diag::warn_arc_strong_pointer_objc_pointer) <<
400 Param->getType();
401
402 if (Param->getIdentifier())
403 PushOnScopeChains(Param, FnBodyScope);
404 }
405
406 // In ARC, disallow definition of retain/release/autorelease/retainCount
407 if (getLangOpts().ObjCAutoRefCount) {
408 switch (MDecl->getMethodFamily()) {
409 case OMF_retain:
410 case OMF_retainCount:
411 case OMF_release:
412 case OMF_autorelease:
413 Diag(MDecl->getLocation(), diag::err_arc_illegal_method_def)
414 << 0 << MDecl->getSelector();
415 break;
416
417 case OMF_None:
418 case OMF_dealloc:
419 case OMF_finalize:
420 case OMF_alloc:
421 case OMF_init:
422 case OMF_mutableCopy:
423 case OMF_copy:
424 case OMF_new:
425 case OMF_self:
426 case OMF_initialize:
427 case OMF_performSelector:
428 break;
429 }
430 }
431
432 // Warn on deprecated methods under -Wdeprecated-implementations,
433 // and prepare for warning on missing super calls.
434 if (ObjCInterfaceDecl *IC = MDecl->getClassInterface()) {
435 ObjCMethodDecl *IMD =
436 IC->lookupMethod(MDecl->getSelector(), MDecl->isInstanceMethod());
437
438 if (IMD) {
439 ObjCImplDecl *ImplDeclOfMethodDef =
440 dyn_cast<ObjCImplDecl>(MDecl->getDeclContext());
441 ObjCContainerDecl *ContDeclOfMethodDecl =
442 dyn_cast<ObjCContainerDecl>(IMD->getDeclContext());
443 ObjCImplDecl *ImplDeclOfMethodDecl = nullptr;
444 if (ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(ContDeclOfMethodDecl))
445 ImplDeclOfMethodDecl = OID->getImplementation();
446 else if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(ContDeclOfMethodDecl)) {
447 if (CD->IsClassExtension()) {
448 if (ObjCInterfaceDecl *OID = CD->getClassInterface())
449 ImplDeclOfMethodDecl = OID->getImplementation();
450 } else
451 ImplDeclOfMethodDecl = CD->getImplementation();
452 }
453 // No need to issue deprecated warning if deprecated mehod in class/category
454 // is being implemented in its own implementation (no overriding is involved).
455 if (!ImplDeclOfMethodDecl || ImplDeclOfMethodDecl != ImplDeclOfMethodDef)
456 DiagnoseObjCImplementedDeprecations(*this, IMD, MDecl->getLocation());
457 }
458
459 if (MDecl->getMethodFamily() == OMF_init) {
460 if (MDecl->isDesignatedInitializerForTheInterface()) {
461 getCurFunction()->ObjCIsDesignatedInit = true;
462 getCurFunction()->ObjCWarnForNoDesignatedInitChain =
463 IC->getSuperClass() != nullptr;
464 } else if (IC->hasDesignatedInitializers()) {
465 getCurFunction()->ObjCIsSecondaryInit = true;
466 getCurFunction()->ObjCWarnForNoInitDelegation = true;
467 }
468 }
469
470 // If this is "dealloc" or "finalize", set some bit here.
471 // Then in ActOnSuperMessage() (SemaExprObjC), set it back to false.
472 // Finally, in ActOnFinishFunctionBody() (SemaDecl), warn if flag is set.
473 // Only do this if the current class actually has a superclass.
474 if (const ObjCInterfaceDecl *SuperClass = IC->getSuperClass()) {
475 ObjCMethodFamily Family = MDecl->getMethodFamily();
476 if (Family == OMF_dealloc) {
477 if (!(getLangOpts().ObjCAutoRefCount ||
478 getLangOpts().getGC() == LangOptions::GCOnly))
479 getCurFunction()->ObjCShouldCallSuper = true;
480
481 } else if (Family == OMF_finalize) {
482 if (Context.getLangOpts().getGC() != LangOptions::NonGC)
483 getCurFunction()->ObjCShouldCallSuper = true;
484
485 } else {
486 const ObjCMethodDecl *SuperMethod =
487 SuperClass->lookupMethod(MDecl->getSelector(),
488 MDecl->isInstanceMethod());
489 getCurFunction()->ObjCShouldCallSuper =
490 (SuperMethod && SuperMethod->hasAttr<ObjCRequiresSuperAttr>());
491 }
492 }
493 }
494}
495
496namespace {
497
498// Callback to only accept typo corrections that are Objective-C classes.
499// If an ObjCInterfaceDecl* is given to the constructor, then the validation
500// function will reject corrections to that class.
501class ObjCInterfaceValidatorCCC : public CorrectionCandidateCallback {
502 public:
503 ObjCInterfaceValidatorCCC() : CurrentIDecl(nullptr) {}
504 explicit ObjCInterfaceValidatorCCC(ObjCInterfaceDecl *IDecl)
505 : CurrentIDecl(IDecl) {}
506
507 bool ValidateCandidate(const TypoCorrection &candidate) override {
508 ObjCInterfaceDecl *ID = candidate.getCorrectionDeclAs<ObjCInterfaceDecl>();
509 return ID && !declaresSameEntity(ID, CurrentIDecl);
510 }
511
512 private:
513 ObjCInterfaceDecl *CurrentIDecl;
514};
515
516} // end anonymous namespace
517
518static void diagnoseUseOfProtocols(Sema &TheSema,
519 ObjCContainerDecl *CD,
520 ObjCProtocolDecl *const *ProtoRefs,
521 unsigned NumProtoRefs,
522 const SourceLocation *ProtoLocs) {
523 assert(ProtoRefs)((ProtoRefs) ? static_cast<void> (0) : __assert_fail ("ProtoRefs"
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 523, __PRETTY_FUNCTION__))
;
524 // Diagnose availability in the context of the ObjC container.
525 Sema::ContextRAII SavedContext(TheSema, CD);
526 for (unsigned i = 0; i < NumProtoRefs; ++i) {
527 (void)TheSema.DiagnoseUseOfDecl(ProtoRefs[i], ProtoLocs[i],
528 /*UnknownObjCClass=*/nullptr,
529 /*ObjCPropertyAccess=*/false,
530 /*AvoidPartialAvailabilityChecks=*/true);
531 }
532}
533
534void Sema::
535ActOnSuperClassOfClassInterface(Scope *S,
536 SourceLocation AtInterfaceLoc,
537 ObjCInterfaceDecl *IDecl,
538 IdentifierInfo *ClassName,
539 SourceLocation ClassLoc,
540 IdentifierInfo *SuperName,
541 SourceLocation SuperLoc,
542 ArrayRef<ParsedType> SuperTypeArgs,
543 SourceRange SuperTypeArgsRange) {
544 // Check if a different kind of symbol declared in this scope.
545 NamedDecl *PrevDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
546 LookupOrdinaryName);
547
548 if (!PrevDecl) {
549 // Try to correct for a typo in the superclass name without correcting
550 // to the class we're defining.
551 if (TypoCorrection Corrected = CorrectTypo(
552 DeclarationNameInfo(SuperName, SuperLoc),
553 LookupOrdinaryName, TUScope,
554 nullptr, llvm::make_unique<ObjCInterfaceValidatorCCC>(IDecl),
555 CTK_ErrorRecovery)) {
556 diagnoseTypo(Corrected, PDiag(diag::err_undef_superclass_suggest)
557 << SuperName << ClassName);
558 PrevDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>();
559 }
560 }
561
562 if (declaresSameEntity(PrevDecl, IDecl)) {
563 Diag(SuperLoc, diag::err_recursive_superclass)
564 << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
565 IDecl->setEndOfDefinitionLoc(ClassLoc);
566 } else {
567 ObjCInterfaceDecl *SuperClassDecl =
568 dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
569 QualType SuperClassType;
570
571 // Diagnose classes that inherit from deprecated classes.
572 if (SuperClassDecl) {
573 (void)DiagnoseUseOfDecl(SuperClassDecl, SuperLoc);
574 SuperClassType = Context.getObjCInterfaceType(SuperClassDecl);
575 }
576
577 if (PrevDecl && !SuperClassDecl) {
578 // The previous declaration was not a class decl. Check if we have a
579 // typedef. If we do, get the underlying class type.
580 if (const TypedefNameDecl *TDecl =
581 dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
582 QualType T = TDecl->getUnderlyingType();
583 if (T->isObjCObjectType()) {
584 if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) {
585 SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(IDecl);
586 SuperClassType = Context.getTypeDeclType(TDecl);
587
588 // This handles the following case:
589 // @interface NewI @end
590 // typedef NewI DeprI __attribute__((deprecated("blah")))
591 // @interface SI : DeprI /* warn here */ @end
592 (void)DiagnoseUseOfDecl(const_cast<TypedefNameDecl*>(TDecl), SuperLoc);
593 }
594 }
595 }
596
597 // This handles the following case:
598 //
599 // typedef int SuperClass;
600 // @interface MyClass : SuperClass {} @end
601 //
602 if (!SuperClassDecl) {
603 Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName;
604 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
605 }
606 }
607
608 if (!dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
609 if (!SuperClassDecl)
610 Diag(SuperLoc, diag::err_undef_superclass)
611 << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
612 else if (RequireCompleteType(SuperLoc,
613 SuperClassType,
614 diag::err_forward_superclass,
615 SuperClassDecl->getDeclName(),
616 ClassName,
617 SourceRange(AtInterfaceLoc, ClassLoc))) {
618 SuperClassDecl = nullptr;
619 SuperClassType = QualType();
620 }
621 }
622
623 if (SuperClassType.isNull()) {
624 assert(!SuperClassDecl && "Failed to set SuperClassType?")((!SuperClassDecl && "Failed to set SuperClassType?")
? static_cast<void> (0) : __assert_fail ("!SuperClassDecl && \"Failed to set SuperClassType?\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 624, __PRETTY_FUNCTION__))
;
625 return;
626 }
627
628 // Handle type arguments on the superclass.
629 TypeSourceInfo *SuperClassTInfo = nullptr;
630 if (!SuperTypeArgs.empty()) {
631 TypeResult fullSuperClassType = actOnObjCTypeArgsAndProtocolQualifiers(
632 S,
633 SuperLoc,
634 CreateParsedType(SuperClassType,
635 nullptr),
636 SuperTypeArgsRange.getBegin(),
637 SuperTypeArgs,
638 SuperTypeArgsRange.getEnd(),
639 SourceLocation(),
640 { },
641 { },
642 SourceLocation());
643 if (!fullSuperClassType.isUsable())
644 return;
645
646 SuperClassType = GetTypeFromParser(fullSuperClassType.get(),
647 &SuperClassTInfo);
648 }
649
650 if (!SuperClassTInfo) {
651 SuperClassTInfo = Context.getTrivialTypeSourceInfo(SuperClassType,
652 SuperLoc);
653 }
654
655 IDecl->setSuperClass(SuperClassTInfo);
656 IDecl->setEndOfDefinitionLoc(SuperClassTInfo->getTypeLoc().getEndLoc());
657 }
658}
659
660DeclResult Sema::actOnObjCTypeParam(Scope *S,
661 ObjCTypeParamVariance variance,
662 SourceLocation varianceLoc,
663 unsigned index,
664 IdentifierInfo *paramName,
665 SourceLocation paramLoc,
666 SourceLocation colonLoc,
667 ParsedType parsedTypeBound) {
668 // If there was an explicitly-provided type bound, check it.
669 TypeSourceInfo *typeBoundInfo = nullptr;
670 if (parsedTypeBound) {
671 // The type bound can be any Objective-C pointer type.
672 QualType typeBound = GetTypeFromParser(parsedTypeBound, &typeBoundInfo);
673 if (typeBound->isObjCObjectPointerType()) {
674 // okay
675 } else if (typeBound->isObjCObjectType()) {
676 // The user forgot the * on an Objective-C pointer type, e.g.,
677 // "T : NSView".
678 SourceLocation starLoc = getLocForEndOfToken(
679 typeBoundInfo->getTypeLoc().getEndLoc());
680 Diag(typeBoundInfo->getTypeLoc().getBeginLoc(),
681 diag::err_objc_type_param_bound_missing_pointer)
682 << typeBound << paramName
683 << FixItHint::CreateInsertion(starLoc, " *");
684
685 // Create a new type location builder so we can update the type
686 // location information we have.
687 TypeLocBuilder builder;
688 builder.pushFullCopy(typeBoundInfo->getTypeLoc());
689
690 // Create the Objective-C pointer type.
691 typeBound = Context.getObjCObjectPointerType(typeBound);
692 ObjCObjectPointerTypeLoc newT
693 = builder.push<ObjCObjectPointerTypeLoc>(typeBound);
694 newT.setStarLoc(starLoc);
695
696 // Form the new type source information.
697 typeBoundInfo = builder.getTypeSourceInfo(Context, typeBound);
698 } else {
699 // Not a valid type bound.
700 Diag(typeBoundInfo->getTypeLoc().getBeginLoc(),
701 diag::err_objc_type_param_bound_nonobject)
702 << typeBound << paramName;
703
704 // Forget the bound; we'll default to id later.
705 typeBoundInfo = nullptr;
706 }
707
708 // Type bounds cannot have qualifiers (even indirectly) or explicit
709 // nullability.
710 if (typeBoundInfo) {
711 QualType typeBound = typeBoundInfo->getType();
712 TypeLoc qual = typeBoundInfo->getTypeLoc().findExplicitQualifierLoc();
713 if (qual || typeBound.hasQualifiers()) {
714 bool diagnosed = false;
715 SourceRange rangeToRemove;
716 if (qual) {
717 if (auto attr = qual.getAs<AttributedTypeLoc>()) {
718 rangeToRemove = attr.getLocalSourceRange();
719 if (attr.getTypePtr()->getImmediateNullability()) {
720 Diag(attr.getBeginLoc(),
721 diag::err_objc_type_param_bound_explicit_nullability)
722 << paramName << typeBound
723 << FixItHint::CreateRemoval(rangeToRemove);
724 diagnosed = true;
725 }
726 }
727 }
728
729 if (!diagnosed) {
730 Diag(qual ? qual.getBeginLoc()
731 : typeBoundInfo->getTypeLoc().getBeginLoc(),
732 diag::err_objc_type_param_bound_qualified)
733 << paramName << typeBound
734 << typeBound.getQualifiers().getAsString()
735 << FixItHint::CreateRemoval(rangeToRemove);
736 }
737
738 // If the type bound has qualifiers other than CVR, we need to strip
739 // them or we'll probably assert later when trying to apply new
740 // qualifiers.
741 Qualifiers quals = typeBound.getQualifiers();
742 quals.removeCVRQualifiers();
743 if (!quals.empty()) {
744 typeBoundInfo =
745 Context.getTrivialTypeSourceInfo(typeBound.getUnqualifiedType());
746 }
747 }
748 }
749 }
750
751 // If there was no explicit type bound (or we removed it due to an error),
752 // use 'id' instead.
753 if (!typeBoundInfo) {
754 colonLoc = SourceLocation();
755 typeBoundInfo = Context.getTrivialTypeSourceInfo(Context.getObjCIdType());
756 }
757
758 // Create the type parameter.
759 return ObjCTypeParamDecl::Create(Context, CurContext, variance, varianceLoc,
760 index, paramLoc, paramName, colonLoc,
761 typeBoundInfo);
762}
763
764ObjCTypeParamList *Sema::actOnObjCTypeParamList(Scope *S,
765 SourceLocation lAngleLoc,
766 ArrayRef<Decl *> typeParamsIn,
767 SourceLocation rAngleLoc) {
768 // We know that the array only contains Objective-C type parameters.
769 ArrayRef<ObjCTypeParamDecl *>
770 typeParams(
771 reinterpret_cast<ObjCTypeParamDecl * const *>(typeParamsIn.data()),
772 typeParamsIn.size());
773
774 // Diagnose redeclarations of type parameters.
775 // We do this now because Objective-C type parameters aren't pushed into
776 // scope until later (after the instance variable block), but we want the
777 // diagnostics to occur right after we parse the type parameter list.
778 llvm::SmallDenseMap<IdentifierInfo *, ObjCTypeParamDecl *> knownParams;
779 for (auto typeParam : typeParams) {
780 auto known = knownParams.find(typeParam->getIdentifier());
781 if (known != knownParams.end()) {
782 Diag(typeParam->getLocation(), diag::err_objc_type_param_redecl)
783 << typeParam->getIdentifier()
784 << SourceRange(known->second->getLocation());
785
786 typeParam->setInvalidDecl();
787 } else {
788 knownParams.insert(std::make_pair(typeParam->getIdentifier(), typeParam));
789
790 // Push the type parameter into scope.
791 PushOnScopeChains(typeParam, S, /*AddToContext=*/false);
792 }
793 }
794
795 // Create the parameter list.
796 return ObjCTypeParamList::create(Context, lAngleLoc, typeParams, rAngleLoc);
797}
798
799void Sema::popObjCTypeParamList(Scope *S, ObjCTypeParamList *typeParamList) {
800 for (auto typeParam : *typeParamList) {
801 if (!typeParam->isInvalidDecl()) {
802 S->RemoveDecl(typeParam);
803 IdResolver.RemoveDecl(typeParam);
804 }
805 }
806}
807
808namespace {
809 /// The context in which an Objective-C type parameter list occurs, for use
810 /// in diagnostics.
811 enum class TypeParamListContext {
812 ForwardDeclaration,
813 Definition,
814 Category,
815 Extension
816 };
817} // end anonymous namespace
818
819/// Check consistency between two Objective-C type parameter lists, e.g.,
820/// between a category/extension and an \@interface or between an \@class and an
821/// \@interface.
822static bool checkTypeParamListConsistency(Sema &S,
823 ObjCTypeParamList *prevTypeParams,
824 ObjCTypeParamList *newTypeParams,
825 TypeParamListContext newContext) {
826 // If the sizes don't match, complain about that.
827 if (prevTypeParams->size() != newTypeParams->size()) {
828 SourceLocation diagLoc;
829 if (newTypeParams->size() > prevTypeParams->size()) {
830 diagLoc = newTypeParams->begin()[prevTypeParams->size()]->getLocation();
831 } else {
832 diagLoc = S.getLocForEndOfToken(newTypeParams->back()->getEndLoc());
833 }
834
835 S.Diag(diagLoc, diag::err_objc_type_param_arity_mismatch)
836 << static_cast<unsigned>(newContext)
837 << (newTypeParams->size() > prevTypeParams->size())
838 << prevTypeParams->size()
839 << newTypeParams->size();
840
841 return true;
842 }
843
844 // Match up the type parameters.
845 for (unsigned i = 0, n = prevTypeParams->size(); i != n; ++i) {
846 ObjCTypeParamDecl *prevTypeParam = prevTypeParams->begin()[i];
847 ObjCTypeParamDecl *newTypeParam = newTypeParams->begin()[i];
848
849 // Check for consistency of the variance.
850 if (newTypeParam->getVariance() != prevTypeParam->getVariance()) {
851 if (newTypeParam->getVariance() == ObjCTypeParamVariance::Invariant &&
852 newContext != TypeParamListContext::Definition) {
853 // When the new type parameter is invariant and is not part
854 // of the definition, just propagate the variance.
855 newTypeParam->setVariance(prevTypeParam->getVariance());
856 } else if (prevTypeParam->getVariance()
857 == ObjCTypeParamVariance::Invariant &&
858 !(isa<ObjCInterfaceDecl>(prevTypeParam->getDeclContext()) &&
859 cast<ObjCInterfaceDecl>(prevTypeParam->getDeclContext())
860 ->getDefinition() == prevTypeParam->getDeclContext())) {
861 // When the old parameter is invariant and was not part of the
862 // definition, just ignore the difference because it doesn't
863 // matter.
864 } else {
865 {
866 // Diagnose the conflict and update the second declaration.
867 SourceLocation diagLoc = newTypeParam->getVarianceLoc();
868 if (diagLoc.isInvalid())
869 diagLoc = newTypeParam->getBeginLoc();
870
871 auto diag = S.Diag(diagLoc,
872 diag::err_objc_type_param_variance_conflict)
873 << static_cast<unsigned>(newTypeParam->getVariance())
874 << newTypeParam->getDeclName()
875 << static_cast<unsigned>(prevTypeParam->getVariance())
876 << prevTypeParam->getDeclName();
877 switch (prevTypeParam->getVariance()) {
878 case ObjCTypeParamVariance::Invariant:
879 diag << FixItHint::CreateRemoval(newTypeParam->getVarianceLoc());
880 break;
881
882 case ObjCTypeParamVariance::Covariant:
883 case ObjCTypeParamVariance::Contravariant: {
884 StringRef newVarianceStr
885 = prevTypeParam->getVariance() == ObjCTypeParamVariance::Covariant
886 ? "__covariant"
887 : "__contravariant";
888 if (newTypeParam->getVariance()
889 == ObjCTypeParamVariance::Invariant) {
890 diag << FixItHint::CreateInsertion(newTypeParam->getBeginLoc(),
891 (newVarianceStr + " ").str());
892 } else {
893 diag << FixItHint::CreateReplacement(newTypeParam->getVarianceLoc(),
894 newVarianceStr);
895 }
896 }
897 }
898 }
899
900 S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
901 << prevTypeParam->getDeclName();
902
903 // Override the variance.
904 newTypeParam->setVariance(prevTypeParam->getVariance());
905 }
906 }
907
908 // If the bound types match, there's nothing to do.
909 if (S.Context.hasSameType(prevTypeParam->getUnderlyingType(),
910 newTypeParam->getUnderlyingType()))
911 continue;
912
913 // If the new type parameter's bound was explicit, complain about it being
914 // different from the original.
915 if (newTypeParam->hasExplicitBound()) {
916 SourceRange newBoundRange = newTypeParam->getTypeSourceInfo()
917 ->getTypeLoc().getSourceRange();
918 S.Diag(newBoundRange.getBegin(), diag::err_objc_type_param_bound_conflict)
919 << newTypeParam->getUnderlyingType()
920 << newTypeParam->getDeclName()
921 << prevTypeParam->hasExplicitBound()
922 << prevTypeParam->getUnderlyingType()
923 << (newTypeParam->getDeclName() == prevTypeParam->getDeclName())
924 << prevTypeParam->getDeclName()
925 << FixItHint::CreateReplacement(
926 newBoundRange,
927 prevTypeParam->getUnderlyingType().getAsString(
928 S.Context.getPrintingPolicy()));
929
930 S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
931 << prevTypeParam->getDeclName();
932
933 // Override the new type parameter's bound type with the previous type,
934 // so that it's consistent.
935 newTypeParam->setTypeSourceInfo(
936 S.Context.getTrivialTypeSourceInfo(prevTypeParam->getUnderlyingType()));
937 continue;
938 }
939
940 // The new type parameter got the implicit bound of 'id'. That's okay for
941 // categories and extensions (overwrite it later), but not for forward
942 // declarations and @interfaces, because those must be standalone.
943 if (newContext == TypeParamListContext::ForwardDeclaration ||
944 newContext == TypeParamListContext::Definition) {
945 // Diagnose this problem for forward declarations and definitions.
946 SourceLocation insertionLoc
947 = S.getLocForEndOfToken(newTypeParam->getLocation());
948 std::string newCode
949 = " : " + prevTypeParam->getUnderlyingType().getAsString(
950 S.Context.getPrintingPolicy());
951 S.Diag(newTypeParam->getLocation(),
952 diag::err_objc_type_param_bound_missing)
953 << prevTypeParam->getUnderlyingType()
954 << newTypeParam->getDeclName()
955 << (newContext == TypeParamListContext::ForwardDeclaration)
956 << FixItHint::CreateInsertion(insertionLoc, newCode);
957
958 S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
959 << prevTypeParam->getDeclName();
960 }
961
962 // Update the new type parameter's bound to match the previous one.
963 newTypeParam->setTypeSourceInfo(
964 S.Context.getTrivialTypeSourceInfo(prevTypeParam->getUnderlyingType()));
965 }
966
967 return false;
968}
969
970Decl *Sema::ActOnStartClassInterface(
971 Scope *S, SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName,
972 SourceLocation ClassLoc, ObjCTypeParamList *typeParamList,
973 IdentifierInfo *SuperName, SourceLocation SuperLoc,
974 ArrayRef<ParsedType> SuperTypeArgs, SourceRange SuperTypeArgsRange,
975 Decl *const *ProtoRefs, unsigned NumProtoRefs,
976 const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
977 const ParsedAttributesView &AttrList) {
978 assert(ClassName && "Missing class identifier")((ClassName && "Missing class identifier") ? static_cast
<void> (0) : __assert_fail ("ClassName && \"Missing class identifier\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 978, __PRETTY_FUNCTION__))
;
979
980 // Check for another declaration kind with the same name.
981 NamedDecl *PrevDecl =
982 LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName,
983 forRedeclarationInCurContext());
984
985 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
986 Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
987 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
988 }
989
990 // Create a declaration to describe this @interface.
991 ObjCInterfaceDecl* PrevIDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
992
993 if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) {
994 // A previous decl with a different name is because of
995 // @compatibility_alias, for example:
996 // \code
997 // @class NewImage;
998 // @compatibility_alias OldImage NewImage;
999 // \endcode
1000 // A lookup for 'OldImage' will return the 'NewImage' decl.
1001 //
1002 // In such a case use the real declaration name, instead of the alias one,
1003 // otherwise we will break IdentifierResolver and redecls-chain invariants.
1004 // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl
1005 // has been aliased.
1006 ClassName = PrevIDecl->getIdentifier();
1007 }
1008
1009 // If there was a forward declaration with type parameters, check
1010 // for consistency.
1011 if (PrevIDecl) {
1012 if (ObjCTypeParamList *prevTypeParamList = PrevIDecl->getTypeParamList()) {
1013 if (typeParamList) {
1014 // Both have type parameter lists; check for consistency.
1015 if (checkTypeParamListConsistency(*this, prevTypeParamList,
1016 typeParamList,
1017 TypeParamListContext::Definition)) {
1018 typeParamList = nullptr;
1019 }
1020 } else {
1021 Diag(ClassLoc, diag::err_objc_parameterized_forward_class_first)
1022 << ClassName;
1023 Diag(prevTypeParamList->getLAngleLoc(), diag::note_previous_decl)
1024 << ClassName;
1025
1026 // Clone the type parameter list.
1027 SmallVector<ObjCTypeParamDecl *, 4> clonedTypeParams;
1028 for (auto typeParam : *prevTypeParamList) {
1029 clonedTypeParams.push_back(
1030 ObjCTypeParamDecl::Create(
1031 Context,
1032 CurContext,
1033 typeParam->getVariance(),
1034 SourceLocation(),
1035 typeParam->getIndex(),
1036 SourceLocation(),
1037 typeParam->getIdentifier(),
1038 SourceLocation(),
1039 Context.getTrivialTypeSourceInfo(typeParam->getUnderlyingType())));
1040 }
1041
1042 typeParamList = ObjCTypeParamList::create(Context,
1043 SourceLocation(),
1044 clonedTypeParams,
1045 SourceLocation());
1046 }
1047 }
1048 }
1049
1050 ObjCInterfaceDecl *IDecl
1051 = ObjCInterfaceDecl::Create(Context, CurContext, AtInterfaceLoc, ClassName,
1052 typeParamList, PrevIDecl, ClassLoc);
1053 if (PrevIDecl) {
1054 // Class already seen. Was it a definition?
1055 if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
1056 Diag(AtInterfaceLoc, diag::err_duplicate_class_def)
1057 << PrevIDecl->getDeclName();
1058 Diag(Def->getLocation(), diag::note_previous_definition);
1059 IDecl->setInvalidDecl();
1060 }
1061 }
1062
1063 ProcessDeclAttributeList(TUScope, IDecl, AttrList);
1064 AddPragmaAttributes(TUScope, IDecl);
1065 PushOnScopeChains(IDecl, TUScope);
1066
1067 // Start the definition of this class. If we're in a redefinition case, there
1068 // may already be a definition, so we'll end up adding to it.
1069 if (!IDecl->hasDefinition())
1070 IDecl->startDefinition();
1071
1072 if (SuperName) {
1073 // Diagnose availability in the context of the @interface.
1074 ContextRAII SavedContext(*this, IDecl);
1075
1076 ActOnSuperClassOfClassInterface(S, AtInterfaceLoc, IDecl,
1077 ClassName, ClassLoc,
1078 SuperName, SuperLoc, SuperTypeArgs,
1079 SuperTypeArgsRange);
1080 } else { // we have a root class.
1081 IDecl->setEndOfDefinitionLoc(ClassLoc);
1082 }
1083
1084 // Check then save referenced protocols.
1085 if (NumProtoRefs) {
1086 diagnoseUseOfProtocols(*this, IDecl, (ObjCProtocolDecl*const*)ProtoRefs,
1087 NumProtoRefs, ProtoLocs);
1088 IDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
1089 ProtoLocs, Context);
1090 IDecl->setEndOfDefinitionLoc(EndProtoLoc);
1091 }
1092
1093 CheckObjCDeclScope(IDecl);
1094 return ActOnObjCContainerStartDefinition(IDecl);
1095}
1096
1097/// ActOnTypedefedProtocols - this action finds protocol list as part of the
1098/// typedef'ed use for a qualified super class and adds them to the list
1099/// of the protocols.
1100void Sema::ActOnTypedefedProtocols(SmallVectorImpl<Decl *> &ProtocolRefs,
1101 SmallVectorImpl<SourceLocation> &ProtocolLocs,
1102 IdentifierInfo *SuperName,
1103 SourceLocation SuperLoc) {
1104 if (!SuperName)
1105 return;
1106 NamedDecl* IDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
1107 LookupOrdinaryName);
1108 if (!IDecl)
1109 return;
1110
1111 if (const TypedefNameDecl *TDecl = dyn_cast_or_null<TypedefNameDecl>(IDecl)) {
1112 QualType T = TDecl->getUnderlyingType();
1113 if (T->isObjCObjectType())
1114 if (const ObjCObjectType *OPT = T->getAs<ObjCObjectType>()) {
1115 ProtocolRefs.append(OPT->qual_begin(), OPT->qual_end());
1116 // FIXME: Consider whether this should be an invalid loc since the loc
1117 // is not actually pointing to a protocol name reference but to the
1118 // typedef reference. Note that the base class name loc is also pointing
1119 // at the typedef.
1120 ProtocolLocs.append(OPT->getNumProtocols(), SuperLoc);
1121 }
1122 }
1123}
1124
1125/// ActOnCompatibilityAlias - this action is called after complete parsing of
1126/// a \@compatibility_alias declaration. It sets up the alias relationships.
1127Decl *Sema::ActOnCompatibilityAlias(SourceLocation AtLoc,
1128 IdentifierInfo *AliasName,
1129 SourceLocation AliasLocation,
1130 IdentifierInfo *ClassName,
1131 SourceLocation ClassLocation) {
1132 // Look for previous declaration of alias name
1133 NamedDecl *ADecl =
1134 LookupSingleName(TUScope, AliasName, AliasLocation, LookupOrdinaryName,
1135 forRedeclarationInCurContext());
1136 if (ADecl) {
1137 Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName;
1138 Diag(ADecl->getLocation(), diag::note_previous_declaration);
1139 return nullptr;
1140 }
1141 // Check for class declaration
1142 NamedDecl *CDeclU =
1143 LookupSingleName(TUScope, ClassName, ClassLocation, LookupOrdinaryName,
1144 forRedeclarationInCurContext());
1145 if (const TypedefNameDecl *TDecl =
1146 dyn_cast_or_null<TypedefNameDecl>(CDeclU)) {
1147 QualType T = TDecl->getUnderlyingType();
1148 if (T->isObjCObjectType()) {
1149 if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) {
1150 ClassName = IDecl->getIdentifier();
1151 CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
1152 LookupOrdinaryName,
1153 forRedeclarationInCurContext());
1154 }
1155 }
1156 }
1157 ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(CDeclU);
1158 if (!CDecl) {
1159 Diag(ClassLocation, diag::warn_undef_interface) << ClassName;
1160 if (CDeclU)
1161 Diag(CDeclU->getLocation(), diag::note_previous_declaration);
1162 return nullptr;
1163 }
1164
1165 // Everything checked out, instantiate a new alias declaration AST.
1166 ObjCCompatibleAliasDecl *AliasDecl =
1167 ObjCCompatibleAliasDecl::Create(Context, CurContext, AtLoc, AliasName, CDecl);
1168
1169 if (!CheckObjCDeclScope(AliasDecl))
1170 PushOnScopeChains(AliasDecl, TUScope);
1171
1172 return AliasDecl;
1173}
1174
1175bool Sema::CheckForwardProtocolDeclarationForCircularDependency(
1176 IdentifierInfo *PName,
1177 SourceLocation &Ploc, SourceLocation PrevLoc,
1178 const ObjCList<ObjCProtocolDecl> &PList) {
1179
1180 bool res = false;
1181 for (ObjCList<ObjCProtocolDecl>::iterator I = PList.begin(),
1182 E = PList.end(); I != E; ++I) {
1183 if (ObjCProtocolDecl *PDecl = LookupProtocol((*I)->getIdentifier(),
1184 Ploc)) {
1185 if (PDecl->getIdentifier() == PName) {
1186 Diag(Ploc, diag::err_protocol_has_circular_dependency);
1187 Diag(PrevLoc, diag::note_previous_definition);
1188 res = true;
1189 }
1190
1191 if (!PDecl->hasDefinition())
1192 continue;
1193
1194 if (CheckForwardProtocolDeclarationForCircularDependency(PName, Ploc,
1195 PDecl->getLocation(), PDecl->getReferencedProtocols()))
1196 res = true;
1197 }
1198 }
1199 return res;
1200}
1201
1202Decl *Sema::ActOnStartProtocolInterface(
1203 SourceLocation AtProtoInterfaceLoc, IdentifierInfo *ProtocolName,
1204 SourceLocation ProtocolLoc, Decl *const *ProtoRefs, unsigned NumProtoRefs,
1205 const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
1206 const ParsedAttributesView &AttrList) {
1207 bool err = false;
1208 // FIXME: Deal with AttrList.
1209 assert(ProtocolName && "Missing protocol identifier")((ProtocolName && "Missing protocol identifier") ? static_cast
<void> (0) : __assert_fail ("ProtocolName && \"Missing protocol identifier\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 1209, __PRETTY_FUNCTION__))
;
1210 ObjCProtocolDecl *PrevDecl = LookupProtocol(ProtocolName, ProtocolLoc,
1211 forRedeclarationInCurContext());
1212 ObjCProtocolDecl *PDecl = nullptr;
1213 if (ObjCProtocolDecl *Def = PrevDecl? PrevDecl->getDefinition() : nullptr) {
1214 // If we already have a definition, complain.
1215 Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName;
1216 Diag(Def->getLocation(), diag::note_previous_definition);
1217
1218 // Create a new protocol that is completely distinct from previous
1219 // declarations, and do not make this protocol available for name lookup.
1220 // That way, we'll end up completely ignoring the duplicate.
1221 // FIXME: Can we turn this into an error?
1222 PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
1223 ProtocolLoc, AtProtoInterfaceLoc,
1224 /*PrevDecl=*/nullptr);
1225
1226 // If we are using modules, add the decl to the context in order to
1227 // serialize something meaningful.
1228 if (getLangOpts().Modules)
1229 PushOnScopeChains(PDecl, TUScope);
1230 PDecl->startDefinition();
1231 } else {
1232 if (PrevDecl) {
1233 // Check for circular dependencies among protocol declarations. This can
1234 // only happen if this protocol was forward-declared.
1235 ObjCList<ObjCProtocolDecl> PList;
1236 PList.set((ObjCProtocolDecl *const*)ProtoRefs, NumProtoRefs, Context);
1237 err = CheckForwardProtocolDeclarationForCircularDependency(
1238 ProtocolName, ProtocolLoc, PrevDecl->getLocation(), PList);
1239 }
1240
1241 // Create the new declaration.
1242 PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
1243 ProtocolLoc, AtProtoInterfaceLoc,
1244 /*PrevDecl=*/PrevDecl);
1245
1246 PushOnScopeChains(PDecl, TUScope);
1247 PDecl->startDefinition();
1248 }
1249
1250 ProcessDeclAttributeList(TUScope, PDecl, AttrList);
1251 AddPragmaAttributes(TUScope, PDecl);
1252
1253 // Merge attributes from previous declarations.
1254 if (PrevDecl)
1255 mergeDeclAttributes(PDecl, PrevDecl);
1256
1257 if (!err && NumProtoRefs ) {
1258 /// Check then save referenced protocols.
1259 diagnoseUseOfProtocols(*this, PDecl, (ObjCProtocolDecl*const*)ProtoRefs,
1260 NumProtoRefs, ProtoLocs);
1261 PDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
1262 ProtoLocs, Context);
1263 }
1264
1265 CheckObjCDeclScope(PDecl);
1266 return ActOnObjCContainerStartDefinition(PDecl);
1267}
1268
1269static bool NestedProtocolHasNoDefinition(ObjCProtocolDecl *PDecl,
1270 ObjCProtocolDecl *&UndefinedProtocol) {
1271 if (!PDecl->hasDefinition() || PDecl->getDefinition()->isHidden()) {
1272 UndefinedProtocol = PDecl;
1273 return true;
1274 }
1275
1276 for (auto *PI : PDecl->protocols())
1277 if (NestedProtocolHasNoDefinition(PI, UndefinedProtocol)) {
1278 UndefinedProtocol = PI;
1279 return true;
1280 }
1281 return false;
1282}
1283
1284/// FindProtocolDeclaration - This routine looks up protocols and
1285/// issues an error if they are not declared. It returns list of
1286/// protocol declarations in its 'Protocols' argument.
1287void
1288Sema::FindProtocolDeclaration(bool WarnOnDeclarations, bool ForObjCContainer,
1289 ArrayRef<IdentifierLocPair> ProtocolId,
1290 SmallVectorImpl<Decl *> &Protocols) {
1291 for (const IdentifierLocPair &Pair : ProtocolId) {
1292 ObjCProtocolDecl *PDecl = LookupProtocol(Pair.first, Pair.second);
1293 if (!PDecl) {
1294 TypoCorrection Corrected = CorrectTypo(
1295 DeclarationNameInfo(Pair.first, Pair.second),
1296 LookupObjCProtocolName, TUScope, nullptr,
1297 llvm::make_unique<DeclFilterCCC<ObjCProtocolDecl>>(),
1298 CTK_ErrorRecovery);
1299 if ((PDecl = Corrected.getCorrectionDeclAs<ObjCProtocolDecl>()))
1300 diagnoseTypo(Corrected, PDiag(diag::err_undeclared_protocol_suggest)
1301 << Pair.first);
1302 }
1303
1304 if (!PDecl) {
1305 Diag(Pair.second, diag::err_undeclared_protocol) << Pair.first;
1306 continue;
1307 }
1308 // If this is a forward protocol declaration, get its definition.
1309 if (!PDecl->isThisDeclarationADefinition() && PDecl->getDefinition())
1310 PDecl = PDecl->getDefinition();
1311
1312 // For an objc container, delay protocol reference checking until after we
1313 // can set the objc decl as the availability context, otherwise check now.
1314 if (!ForObjCContainer) {
1315 (void)DiagnoseUseOfDecl(PDecl, Pair.second);
1316 }
1317
1318 // If this is a forward declaration and we are supposed to warn in this
1319 // case, do it.
1320 // FIXME: Recover nicely in the hidden case.
1321 ObjCProtocolDecl *UndefinedProtocol;
1322
1323 if (WarnOnDeclarations &&
1324 NestedProtocolHasNoDefinition(PDecl, UndefinedProtocol)) {
1325 Diag(Pair.second, diag::warn_undef_protocolref) << Pair.first;
1326 Diag(UndefinedProtocol->getLocation(), diag::note_protocol_decl_undefined)
1327 << UndefinedProtocol;
1328 }
1329 Protocols.push_back(PDecl);
1330 }
1331}
1332
1333namespace {
1334// Callback to only accept typo corrections that are either
1335// Objective-C protocols or valid Objective-C type arguments.
1336class ObjCTypeArgOrProtocolValidatorCCC : public CorrectionCandidateCallback {
1337 ASTContext &Context;
1338 Sema::LookupNameKind LookupKind;
1339 public:
1340 ObjCTypeArgOrProtocolValidatorCCC(ASTContext &context,
1341 Sema::LookupNameKind lookupKind)
1342 : Context(context), LookupKind(lookupKind) { }
1343
1344 bool ValidateCandidate(const TypoCorrection &candidate) override {
1345 // If we're allowed to find protocols and we have a protocol, accept it.
1346 if (LookupKind != Sema::LookupOrdinaryName) {
1347 if (candidate.getCorrectionDeclAs<ObjCProtocolDecl>())
1348 return true;
1349 }
1350
1351 // If we're allowed to find type names and we have one, accept it.
1352 if (LookupKind != Sema::LookupObjCProtocolName) {
1353 // If we have a type declaration, we might accept this result.
1354 if (auto typeDecl = candidate.getCorrectionDeclAs<TypeDecl>()) {
1355 // If we found a tag declaration outside of C++, skip it. This
1356 // can happy because we look for any name when there is no
1357 // bias to protocol or type names.
1358 if (isa<RecordDecl>(typeDecl) && !Context.getLangOpts().CPlusPlus)
1359 return false;
1360
1361 // Make sure the type is something we would accept as a type
1362 // argument.
1363 auto type = Context.getTypeDeclType(typeDecl);
1364 if (type->isObjCObjectPointerType() ||
1365 type->isBlockPointerType() ||
1366 type->isDependentType() ||
1367 type->isObjCObjectType())
1368 return true;
1369
1370 return false;
1371 }
1372
1373 // If we have an Objective-C class type, accept it; there will
1374 // be another fix to add the '*'.
1375 if (candidate.getCorrectionDeclAs<ObjCInterfaceDecl>())
1376 return true;
1377
1378 return false;
1379 }
1380
1381 return false;
1382 }
1383};
1384} // end anonymous namespace
1385
1386void Sema::DiagnoseTypeArgsAndProtocols(IdentifierInfo *ProtocolId,
1387 SourceLocation ProtocolLoc,
1388 IdentifierInfo *TypeArgId,
1389 SourceLocation TypeArgLoc,
1390 bool SelectProtocolFirst) {
1391 Diag(TypeArgLoc, diag::err_objc_type_args_and_protocols)
1392 << SelectProtocolFirst << TypeArgId << ProtocolId
1393 << SourceRange(ProtocolLoc);
1394}
1395
1396void Sema::actOnObjCTypeArgsOrProtocolQualifiers(
1397 Scope *S,
1398 ParsedType baseType,
1399 SourceLocation lAngleLoc,
1400 ArrayRef<IdentifierInfo *> identifiers,
1401 ArrayRef<SourceLocation> identifierLocs,
1402 SourceLocation rAngleLoc,
1403 SourceLocation &typeArgsLAngleLoc,
1404 SmallVectorImpl<ParsedType> &typeArgs,
1405 SourceLocation &typeArgsRAngleLoc,
1406 SourceLocation &protocolLAngleLoc,
1407 SmallVectorImpl<Decl *> &protocols,
1408 SourceLocation &protocolRAngleLoc,
1409 bool warnOnIncompleteProtocols) {
1410 // Local function that updates the declaration specifiers with
1411 // protocol information.
1412 unsigned numProtocolsResolved = 0;
1413 auto resolvedAsProtocols = [&] {
1414 assert(numProtocolsResolved == identifiers.size() && "Unresolved protocols")((numProtocolsResolved == identifiers.size() && "Unresolved protocols"
) ? static_cast<void> (0) : __assert_fail ("numProtocolsResolved == identifiers.size() && \"Unresolved protocols\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 1414, __PRETTY_FUNCTION__))
;
1415
1416 // Determine whether the base type is a parameterized class, in
1417 // which case we want to warn about typos such as
1418 // "NSArray<NSObject>" (that should be NSArray<NSObject *>).
1419 ObjCInterfaceDecl *baseClass = nullptr;
1420 QualType base = GetTypeFromParser(baseType, nullptr);
1421 bool allAreTypeNames = false;
1422 SourceLocation firstClassNameLoc;
1423 if (!base.isNull()) {
1424 if (const auto *objcObjectType = base->getAs<ObjCObjectType>()) {
1425 baseClass = objcObjectType->getInterface();
1426 if (baseClass) {
1427 if (auto typeParams = baseClass->getTypeParamList()) {
1428 if (typeParams->size() == numProtocolsResolved) {
1429 // Note that we should be looking for type names, too.
1430 allAreTypeNames = true;
1431 }
1432 }
1433 }
1434 }
1435 }
1436
1437 for (unsigned i = 0, n = protocols.size(); i != n; ++i) {
1438 ObjCProtocolDecl *&proto
1439 = reinterpret_cast<ObjCProtocolDecl *&>(protocols[i]);
1440 // For an objc container, delay protocol reference checking until after we
1441 // can set the objc decl as the availability context, otherwise check now.
1442 if (!warnOnIncompleteProtocols) {
1443 (void)DiagnoseUseOfDecl(proto, identifierLocs[i]);
1444 }
1445
1446 // If this is a forward protocol declaration, get its definition.
1447 if (!proto->isThisDeclarationADefinition() && proto->getDefinition())
1448 proto = proto->getDefinition();
1449
1450 // If this is a forward declaration and we are supposed to warn in this
1451 // case, do it.
1452 // FIXME: Recover nicely in the hidden case.
1453 ObjCProtocolDecl *forwardDecl = nullptr;
1454 if (warnOnIncompleteProtocols &&
1455 NestedProtocolHasNoDefinition(proto, forwardDecl)) {
1456 Diag(identifierLocs[i], diag::warn_undef_protocolref)
1457 << proto->getDeclName();
1458 Diag(forwardDecl->getLocation(), diag::note_protocol_decl_undefined)
1459 << forwardDecl;
1460 }
1461
1462 // If everything this far has been a type name (and we care
1463 // about such things), check whether this name refers to a type
1464 // as well.
1465 if (allAreTypeNames) {
1466 if (auto *decl = LookupSingleName(S, identifiers[i], identifierLocs[i],
1467 LookupOrdinaryName)) {
1468 if (isa<ObjCInterfaceDecl>(decl)) {
1469 if (firstClassNameLoc.isInvalid())
1470 firstClassNameLoc = identifierLocs[i];
1471 } else if (!isa<TypeDecl>(decl)) {
1472 // Not a type.
1473 allAreTypeNames = false;
1474 }
1475 } else {
1476 allAreTypeNames = false;
1477 }
1478 }
1479 }
1480
1481 // All of the protocols listed also have type names, and at least
1482 // one is an Objective-C class name. Check whether all of the
1483 // protocol conformances are declared by the base class itself, in
1484 // which case we warn.
1485 if (allAreTypeNames && firstClassNameLoc.isValid()) {
1486 llvm::SmallPtrSet<ObjCProtocolDecl*, 8> knownProtocols;
1487 Context.CollectInheritedProtocols(baseClass, knownProtocols);
1488 bool allProtocolsDeclared = true;
1489 for (auto proto : protocols) {
1490 if (knownProtocols.count(static_cast<ObjCProtocolDecl *>(proto)) == 0) {
1491 allProtocolsDeclared = false;
1492 break;
1493 }
1494 }
1495
1496 if (allProtocolsDeclared) {
1497 Diag(firstClassNameLoc, diag::warn_objc_redundant_qualified_class_type)
1498 << baseClass->getDeclName() << SourceRange(lAngleLoc, rAngleLoc)
1499 << FixItHint::CreateInsertion(getLocForEndOfToken(firstClassNameLoc),
1500 " *");
1501 }
1502 }
1503
1504 protocolLAngleLoc = lAngleLoc;
1505 protocolRAngleLoc = rAngleLoc;
1506 assert(protocols.size() == identifierLocs.size())((protocols.size() == identifierLocs.size()) ? static_cast<
void> (0) : __assert_fail ("protocols.size() == identifierLocs.size()"
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 1506, __PRETTY_FUNCTION__))
;
1507 };
1508
1509 // Attempt to resolve all of the identifiers as protocols.
1510 for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1511 ObjCProtocolDecl *proto = LookupProtocol(identifiers[i], identifierLocs[i]);
1512 protocols.push_back(proto);
1513 if (proto)
1514 ++numProtocolsResolved;
1515 }
1516
1517 // If all of the names were protocols, these were protocol qualifiers.
1518 if (numProtocolsResolved == identifiers.size())
1519 return resolvedAsProtocols();
1520
1521 // Attempt to resolve all of the identifiers as type names or
1522 // Objective-C class names. The latter is technically ill-formed,
1523 // but is probably something like \c NSArray<NSView *> missing the
1524 // \c*.
1525 typedef llvm::PointerUnion<TypeDecl *, ObjCInterfaceDecl *> TypeOrClassDecl;
1526 SmallVector<TypeOrClassDecl, 4> typeDecls;
1527 unsigned numTypeDeclsResolved = 0;
1528 for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1529 NamedDecl *decl = LookupSingleName(S, identifiers[i], identifierLocs[i],
1530 LookupOrdinaryName);
1531 if (!decl) {
1532 typeDecls.push_back(TypeOrClassDecl());
1533 continue;
1534 }
1535
1536 if (auto typeDecl = dyn_cast<TypeDecl>(decl)) {
1537 typeDecls.push_back(typeDecl);
1538 ++numTypeDeclsResolved;
1539 continue;
1540 }
1541
1542 if (auto objcClass = dyn_cast<ObjCInterfaceDecl>(decl)) {
1543 typeDecls.push_back(objcClass);
1544 ++numTypeDeclsResolved;
1545 continue;
1546 }
1547
1548 typeDecls.push_back(TypeOrClassDecl());
1549 }
1550
1551 AttributeFactory attrFactory;
1552
1553 // Local function that forms a reference to the given type or
1554 // Objective-C class declaration.
1555 auto resolveTypeReference = [&](TypeOrClassDecl typeDecl, SourceLocation loc)
1556 -> TypeResult {
1557 // Form declaration specifiers. They simply refer to the type.
1558 DeclSpec DS(attrFactory);
1559 const char* prevSpec; // unused
1560 unsigned diagID; // unused
1561 QualType type;
1562 if (auto *actualTypeDecl = typeDecl.dyn_cast<TypeDecl *>())
1563 type = Context.getTypeDeclType(actualTypeDecl);
1564 else
1565 type = Context.getObjCInterfaceType(typeDecl.get<ObjCInterfaceDecl *>());
1566 TypeSourceInfo *parsedTSInfo = Context.getTrivialTypeSourceInfo(type, loc);
1567 ParsedType parsedType = CreateParsedType(type, parsedTSInfo);
1568 DS.SetTypeSpecType(DeclSpec::TST_typename, loc, prevSpec, diagID,
1569 parsedType, Context.getPrintingPolicy());
1570 // Use the identifier location for the type source range.
1571 DS.SetRangeStart(loc);
1572 DS.SetRangeEnd(loc);
1573
1574 // Form the declarator.
1575 Declarator D(DS, DeclaratorContext::TypeNameContext);
1576
1577 // If we have a typedef of an Objective-C class type that is missing a '*',
1578 // add the '*'.
1579 if (type->getAs<ObjCInterfaceType>()) {
1580 SourceLocation starLoc = getLocForEndOfToken(loc);
1581 D.AddTypeInfo(DeclaratorChunk::getPointer(/*typeQuals=*/0, starLoc,
1582 SourceLocation(),
1583 SourceLocation(),
1584 SourceLocation(),
1585 SourceLocation(),
1586 SourceLocation()),
1587 starLoc);
1588
1589 // Diagnose the missing '*'.
1590 Diag(loc, diag::err_objc_type_arg_missing_star)
1591 << type
1592 << FixItHint::CreateInsertion(starLoc, " *");
1593 }
1594
1595 // Convert this to a type.
1596 return ActOnTypeName(S, D);
1597 };
1598
1599 // Local function that updates the declaration specifiers with
1600 // type argument information.
1601 auto resolvedAsTypeDecls = [&] {
1602 // We did not resolve these as protocols.
1603 protocols.clear();
1604
1605 assert(numTypeDeclsResolved == identifiers.size() && "Unresolved type decl")((numTypeDeclsResolved == identifiers.size() && "Unresolved type decl"
) ? static_cast<void> (0) : __assert_fail ("numTypeDeclsResolved == identifiers.size() && \"Unresolved type decl\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 1605, __PRETTY_FUNCTION__))
;
1606 // Map type declarations to type arguments.
1607 for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1608 // Map type reference to a type.
1609 TypeResult type = resolveTypeReference(typeDecls[i], identifierLocs[i]);
1610 if (!type.isUsable()) {
1611 typeArgs.clear();
1612 return;
1613 }
1614
1615 typeArgs.push_back(type.get());
1616 }
1617
1618 typeArgsLAngleLoc = lAngleLoc;
1619 typeArgsRAngleLoc = rAngleLoc;
1620 };
1621
1622 // If all of the identifiers can be resolved as type names or
1623 // Objective-C class names, we have type arguments.
1624 if (numTypeDeclsResolved == identifiers.size())
1625 return resolvedAsTypeDecls();
1626
1627 // Error recovery: some names weren't found, or we have a mix of
1628 // type and protocol names. Go resolve all of the unresolved names
1629 // and complain if we can't find a consistent answer.
1630 LookupNameKind lookupKind = LookupAnyName;
1631 for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1632 // If we already have a protocol or type. Check whether it is the
1633 // right thing.
1634 if (protocols[i] || typeDecls[i]) {
1635 // If we haven't figured out whether we want types or protocols
1636 // yet, try to figure it out from this name.
1637 if (lookupKind == LookupAnyName) {
1638 // If this name refers to both a protocol and a type (e.g., \c
1639 // NSObject), don't conclude anything yet.
1640 if (protocols[i] && typeDecls[i])
1641 continue;
1642
1643 // Otherwise, let this name decide whether we'll be correcting
1644 // toward types or protocols.
1645 lookupKind = protocols[i] ? LookupObjCProtocolName
1646 : LookupOrdinaryName;
1647 continue;
1648 }
1649
1650 // If we want protocols and we have a protocol, there's nothing
1651 // more to do.
1652 if (lookupKind == LookupObjCProtocolName && protocols[i])
1653 continue;
1654
1655 // If we want types and we have a type declaration, there's
1656 // nothing more to do.
1657 if (lookupKind == LookupOrdinaryName && typeDecls[i])
1658 continue;
1659
1660 // We have a conflict: some names refer to protocols and others
1661 // refer to types.
1662 DiagnoseTypeArgsAndProtocols(identifiers[0], identifierLocs[0],
1663 identifiers[i], identifierLocs[i],
1664 protocols[i] != nullptr);
1665
1666 protocols.clear();
1667 typeArgs.clear();
1668 return;
1669 }
1670
1671 // Perform typo correction on the name.
1672 TypoCorrection corrected = CorrectTypo(
1673 DeclarationNameInfo(identifiers[i], identifierLocs[i]), lookupKind, S,
1674 nullptr,
1675 llvm::make_unique<ObjCTypeArgOrProtocolValidatorCCC>(Context,
1676 lookupKind),
1677 CTK_ErrorRecovery);
1678 if (corrected) {
1679 // Did we find a protocol?
1680 if (auto proto = corrected.getCorrectionDeclAs<ObjCProtocolDecl>()) {
1681 diagnoseTypo(corrected,
1682 PDiag(diag::err_undeclared_protocol_suggest)
1683 << identifiers[i]);
1684 lookupKind = LookupObjCProtocolName;
1685 protocols[i] = proto;
1686 ++numProtocolsResolved;
1687 continue;
1688 }
1689
1690 // Did we find a type?
1691 if (auto typeDecl = corrected.getCorrectionDeclAs<TypeDecl>()) {
1692 diagnoseTypo(corrected,
1693 PDiag(diag::err_unknown_typename_suggest)
1694 << identifiers[i]);
1695 lookupKind = LookupOrdinaryName;
1696 typeDecls[i] = typeDecl;
1697 ++numTypeDeclsResolved;
1698 continue;
1699 }
1700
1701 // Did we find an Objective-C class?
1702 if (auto objcClass = corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) {
1703 diagnoseTypo(corrected,
1704 PDiag(diag::err_unknown_type_or_class_name_suggest)
1705 << identifiers[i] << true);
1706 lookupKind = LookupOrdinaryName;
1707 typeDecls[i] = objcClass;
1708 ++numTypeDeclsResolved;
1709 continue;
1710 }
1711 }
1712
1713 // We couldn't find anything.
1714 Diag(identifierLocs[i],
1715 (lookupKind == LookupAnyName ? diag::err_objc_type_arg_missing
1716 : lookupKind == LookupObjCProtocolName ? diag::err_undeclared_protocol
1717 : diag::err_unknown_typename))
1718 << identifiers[i];
1719 protocols.clear();
1720 typeArgs.clear();
1721 return;
1722 }
1723
1724 // If all of the names were (corrected to) protocols, these were
1725 // protocol qualifiers.
1726 if (numProtocolsResolved == identifiers.size())
1727 return resolvedAsProtocols();
1728
1729 // Otherwise, all of the names were (corrected to) types.
1730 assert(numTypeDeclsResolved == identifiers.size() && "Not all types?")((numTypeDeclsResolved == identifiers.size() && "Not all types?"
) ? static_cast<void> (0) : __assert_fail ("numTypeDeclsResolved == identifiers.size() && \"Not all types?\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 1730, __PRETTY_FUNCTION__))
;
1731 return resolvedAsTypeDecls();
1732}
1733
1734/// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of
1735/// a class method in its extension.
1736///
1737void Sema::DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT,
1738 ObjCInterfaceDecl *ID) {
1739 if (!ID)
1740 return; // Possibly due to previous error
1741
1742 llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap;
1743 for (auto *MD : ID->methods())
1744 MethodMap[MD->getSelector()] = MD;
1745
1746 if (MethodMap.empty())
1747 return;
1748 for (const auto *Method : CAT->methods()) {
1749 const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()];
1750 if (PrevMethod &&
1751 (PrevMethod->isInstanceMethod() == Method->isInstanceMethod()) &&
1752 !MatchTwoMethodDeclarations(Method, PrevMethod)) {
1753 Diag(Method->getLocation(), diag::err_duplicate_method_decl)
1754 << Method->getDeclName();
1755 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
1756 }
1757 }
1758}
1759
1760/// ActOnForwardProtocolDeclaration - Handle \@protocol foo;
1761Sema::DeclGroupPtrTy
1762Sema::ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc,
1763 ArrayRef<IdentifierLocPair> IdentList,
1764 const ParsedAttributesView &attrList) {
1765 SmallVector<Decl *, 8> DeclsInGroup;
1766 for (const IdentifierLocPair &IdentPair : IdentList) {
1767 IdentifierInfo *Ident = IdentPair.first;
1768 ObjCProtocolDecl *PrevDecl = LookupProtocol(Ident, IdentPair.second,
1769 forRedeclarationInCurContext());
1770 ObjCProtocolDecl *PDecl
1771 = ObjCProtocolDecl::Create(Context, CurContext, Ident,
1772 IdentPair.second, AtProtocolLoc,
1773 PrevDecl);
1774
1775 PushOnScopeChains(PDecl, TUScope);
1776 CheckObjCDeclScope(PDecl);
1777
1778 ProcessDeclAttributeList(TUScope, PDecl, attrList);
1779 AddPragmaAttributes(TUScope, PDecl);
1780
1781 if (PrevDecl)
1782 mergeDeclAttributes(PDecl, PrevDecl);
1783
1784 DeclsInGroup.push_back(PDecl);
1785 }
1786
1787 return BuildDeclaratorGroup(DeclsInGroup);
1788}
1789
1790Decl *Sema::ActOnStartCategoryInterface(
1791 SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName,
1792 SourceLocation ClassLoc, ObjCTypeParamList *typeParamList,
1793 IdentifierInfo *CategoryName, SourceLocation CategoryLoc,
1794 Decl *const *ProtoRefs, unsigned NumProtoRefs,
1795 const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
1796 const ParsedAttributesView &AttrList) {
1797 ObjCCategoryDecl *CDecl;
1798 ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
1799
1800 /// Check that class of this category is already completely declared.
1801
1802 if (!IDecl
1803 || RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
1804 diag::err_category_forward_interface,
1805 CategoryName == nullptr)) {
1806 // Create an invalid ObjCCategoryDecl to serve as context for
1807 // the enclosing method declarations. We mark the decl invalid
1808 // to make it clear that this isn't a valid AST.
1809 CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
1810 ClassLoc, CategoryLoc, CategoryName,
1811 IDecl, typeParamList);
1812 CDecl->setInvalidDecl();
1813 CurContext->addDecl(CDecl);
1814
1815 if (!IDecl)
1816 Diag(ClassLoc, diag::err_undef_interface) << ClassName;
1817 return ActOnObjCContainerStartDefinition(CDecl);
1818 }
1819
1820 if (!CategoryName && IDecl->getImplementation()) {
1821 Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName;
1822 Diag(IDecl->getImplementation()->getLocation(),
1823 diag::note_implementation_declared);
1824 }
1825
1826 if (CategoryName) {
1827 /// Check for duplicate interface declaration for this category
1828 if (ObjCCategoryDecl *Previous
1829 = IDecl->FindCategoryDeclaration(CategoryName)) {
1830 // Class extensions can be declared multiple times, categories cannot.
1831 Diag(CategoryLoc, diag::warn_dup_category_def)
1832 << ClassName << CategoryName;
1833 Diag(Previous->getLocation(), diag::note_previous_definition);
1834 }
1835 }
1836
1837 // If we have a type parameter list, check it.
1838 if (typeParamList) {
1839 if (auto prevTypeParamList = IDecl->getTypeParamList()) {
1840 if (checkTypeParamListConsistency(*this, prevTypeParamList, typeParamList,
1841 CategoryName
1842 ? TypeParamListContext::Category
1843 : TypeParamListContext::Extension))
1844 typeParamList = nullptr;
1845 } else {
1846 Diag(typeParamList->getLAngleLoc(),
1847 diag::err_objc_parameterized_category_nonclass)
1848 << (CategoryName != nullptr)
1849 << ClassName
1850 << typeParamList->getSourceRange();
1851
1852 typeParamList = nullptr;
1853 }
1854 }
1855
1856 CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
1857 ClassLoc, CategoryLoc, CategoryName, IDecl,
1858 typeParamList);
1859 // FIXME: PushOnScopeChains?
1860 CurContext->addDecl(CDecl);
1861
1862 // Process the attributes before looking at protocols to ensure that the
1863 // availability attribute is attached to the category to provide availability
1864 // checking for protocol uses.
1865 ProcessDeclAttributeList(TUScope, CDecl, AttrList);
1866 AddPragmaAttributes(TUScope, CDecl);
1867
1868 if (NumProtoRefs) {
1869 diagnoseUseOfProtocols(*this, CDecl, (ObjCProtocolDecl*const*)ProtoRefs,
1870 NumProtoRefs, ProtoLocs);
1871 CDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
1872 ProtoLocs, Context);
1873 // Protocols in the class extension belong to the class.
1874 if (CDecl->IsClassExtension())
1875 IDecl->mergeClassExtensionProtocolList((ObjCProtocolDecl*const*)ProtoRefs,
1876 NumProtoRefs, Context);
1877 }
1878
1879 CheckObjCDeclScope(CDecl);
1880 return ActOnObjCContainerStartDefinition(CDecl);
1881}
1882
1883/// ActOnStartCategoryImplementation - Perform semantic checks on the
1884/// category implementation declaration and build an ObjCCategoryImplDecl
1885/// object.
1886Decl *Sema::ActOnStartCategoryImplementation(
1887 SourceLocation AtCatImplLoc,
1888 IdentifierInfo *ClassName, SourceLocation ClassLoc,
1889 IdentifierInfo *CatName, SourceLocation CatLoc) {
1890 ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
1891 ObjCCategoryDecl *CatIDecl = nullptr;
1892 if (IDecl && IDecl->hasDefinition()) {
1893 CatIDecl = IDecl->FindCategoryDeclaration(CatName);
1894 if (!CatIDecl) {
1895 // Category @implementation with no corresponding @interface.
1896 // Create and install one.
1897 CatIDecl = ObjCCategoryDecl::Create(Context, CurContext, AtCatImplLoc,
1898 ClassLoc, CatLoc,
1899 CatName, IDecl,
1900 /*typeParamList=*/nullptr);
1901 CatIDecl->setImplicit();
1902 }
1903 }
1904
1905 ObjCCategoryImplDecl *CDecl =
1906 ObjCCategoryImplDecl::Create(Context, CurContext, CatName, IDecl,
1907 ClassLoc, AtCatImplLoc, CatLoc);
1908 /// Check that class of this category is already completely declared.
1909 if (!IDecl) {
1910 Diag(ClassLoc, diag::err_undef_interface) << ClassName;
1911 CDecl->setInvalidDecl();
1912 } else if (RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
1913 diag::err_undef_interface)) {
1914 CDecl->setInvalidDecl();
1915 }
1916
1917 // FIXME: PushOnScopeChains?
1918 CurContext->addDecl(CDecl);
1919
1920 // If the interface has the objc_runtime_visible attribute, we
1921 // cannot implement a category for it.
1922 if (IDecl && IDecl->hasAttr<ObjCRuntimeVisibleAttr>()) {
1923 Diag(ClassLoc, diag::err_objc_runtime_visible_category)
1924 << IDecl->getDeclName();
1925 }
1926
1927 /// Check that CatName, category name, is not used in another implementation.
1928 if (CatIDecl) {
1929 if (CatIDecl->getImplementation()) {
1930 Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName
1931 << CatName;
1932 Diag(CatIDecl->getImplementation()->getLocation(),
1933 diag::note_previous_definition);
1934 CDecl->setInvalidDecl();
1935 } else {
1936 CatIDecl->setImplementation(CDecl);
1937 // Warn on implementating category of deprecated class under
1938 // -Wdeprecated-implementations flag.
1939 DiagnoseObjCImplementedDeprecations(*this, CatIDecl,
1940 CDecl->getLocation());
1941 }
1942 }
1943
1944 CheckObjCDeclScope(CDecl);
1945 return ActOnObjCContainerStartDefinition(CDecl);
1946}
1947
1948Decl *Sema::ActOnStartClassImplementation(
1949 SourceLocation AtClassImplLoc,
1950 IdentifierInfo *ClassName, SourceLocation ClassLoc,
1951 IdentifierInfo *SuperClassname,
1952 SourceLocation SuperClassLoc) {
1953 ObjCInterfaceDecl *IDecl = nullptr;
1954 // Check for another declaration kind with the same name.
1955 NamedDecl *PrevDecl
1956 = LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName,
1957 forRedeclarationInCurContext());
1958 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
1959 Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
1960 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1961 } else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl))) {
1962 // FIXME: This will produce an error if the definition of the interface has
1963 // been imported from a module but is not visible.
1964 RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
1965 diag::warn_undef_interface);
1966 } else {
1967 // We did not find anything with the name ClassName; try to correct for
1968 // typos in the class name.
1969 TypoCorrection Corrected = CorrectTypo(
1970 DeclarationNameInfo(ClassName, ClassLoc), LookupOrdinaryName, TUScope,
1971 nullptr, llvm::make_unique<ObjCInterfaceValidatorCCC>(), CTK_NonError);
1972 if (Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) {
1973 // Suggest the (potentially) correct interface name. Don't provide a
1974 // code-modification hint or use the typo name for recovery, because
1975 // this is just a warning. The program may actually be correct.
1976 diagnoseTypo(Corrected,
1977 PDiag(diag::warn_undef_interface_suggest) << ClassName,
1978 /*ErrorRecovery*/false);
1979 } else {
1980 Diag(ClassLoc, diag::warn_undef_interface) << ClassName;
1981 }
1982 }
1983
1984 // Check that super class name is valid class name
1985 ObjCInterfaceDecl *SDecl = nullptr;
1986 if (SuperClassname) {
1987 // Check if a different kind of symbol declared in this scope.
1988 PrevDecl = LookupSingleName(TUScope, SuperClassname, SuperClassLoc,
1989 LookupOrdinaryName);
1990 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
1991 Diag(SuperClassLoc, diag::err_redefinition_different_kind)
1992 << SuperClassname;
1993 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1994 } else {
1995 SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
1996 if (SDecl && !SDecl->hasDefinition())
1997 SDecl = nullptr;
1998 if (!SDecl)
1999 Diag(SuperClassLoc, diag::err_undef_superclass)
2000 << SuperClassname << ClassName;
2001 else if (IDecl && !declaresSameEntity(IDecl->getSuperClass(), SDecl)) {
2002 // This implementation and its interface do not have the same
2003 // super class.
2004 Diag(SuperClassLoc, diag::err_conflicting_super_class)
2005 << SDecl->getDeclName();
2006 Diag(SDecl->getLocation(), diag::note_previous_definition);
2007 }
2008 }
2009 }
2010
2011 if (!IDecl) {
2012 // Legacy case of @implementation with no corresponding @interface.
2013 // Build, chain & install the interface decl into the identifier.
2014
2015 // FIXME: Do we support attributes on the @implementation? If so we should
2016 // copy them over.
2017 IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassImplLoc,
2018 ClassName, /*typeParamList=*/nullptr,
2019 /*PrevDecl=*/nullptr, ClassLoc,
2020 true);
2021 AddPragmaAttributes(TUScope, IDecl);
2022 IDecl->startDefinition();
2023 if (SDecl) {
2024 IDecl->setSuperClass(Context.getTrivialTypeSourceInfo(
2025 Context.getObjCInterfaceType(SDecl),
2026 SuperClassLoc));
2027 IDecl->setEndOfDefinitionLoc(SuperClassLoc);
2028 } else {
2029 IDecl->setEndOfDefinitionLoc(ClassLoc);
2030 }
2031
2032 PushOnScopeChains(IDecl, TUScope);
2033 } else {
2034 // Mark the interface as being completed, even if it was just as
2035 // @class ....;
2036 // declaration; the user cannot reopen it.
2037 if (!IDecl->hasDefinition())
2038 IDecl->startDefinition();
2039 }
2040
2041 ObjCImplementationDecl* IMPDecl =
2042 ObjCImplementationDecl::Create(Context, CurContext, IDecl, SDecl,
2043 ClassLoc, AtClassImplLoc, SuperClassLoc);
2044
2045 if (CheckObjCDeclScope(IMPDecl))
2046 return ActOnObjCContainerStartDefinition(IMPDecl);
2047
2048 // Check that there is no duplicate implementation of this class.
2049 if (IDecl->getImplementation()) {
2050 // FIXME: Don't leak everything!
2051 Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName;
2052 Diag(IDecl->getImplementation()->getLocation(),
2053 diag::note_previous_definition);
2054 IMPDecl->setInvalidDecl();
2055 } else { // add it to the list.
2056 IDecl->setImplementation(IMPDecl);
2057 PushOnScopeChains(IMPDecl, TUScope);
2058 // Warn on implementating deprecated class under
2059 // -Wdeprecated-implementations flag.
2060 DiagnoseObjCImplementedDeprecations(*this, IDecl, IMPDecl->getLocation());
2061 }
2062
2063 // If the superclass has the objc_runtime_visible attribute, we
2064 // cannot implement a subclass of it.
2065 if (IDecl->getSuperClass() &&
2066 IDecl->getSuperClass()->hasAttr<ObjCRuntimeVisibleAttr>()) {
2067 Diag(ClassLoc, diag::err_objc_runtime_visible_subclass)
2068 << IDecl->getDeclName()
2069 << IDecl->getSuperClass()->getDeclName();
2070 }
2071
2072 return ActOnObjCContainerStartDefinition(IMPDecl);
2073}
2074
2075Sema::DeclGroupPtrTy
2076Sema::ActOnFinishObjCImplementation(Decl *ObjCImpDecl, ArrayRef<Decl *> Decls) {
2077 SmallVector<Decl *, 64> DeclsInGroup;
2078 DeclsInGroup.reserve(Decls.size() + 1);
2079
2080 for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
2081 Decl *Dcl = Decls[i];
2082 if (!Dcl)
2083 continue;
2084 if (Dcl->getDeclContext()->isFileContext())
2085 Dcl->setTopLevelDeclInObjCContainer();
2086 DeclsInGroup.push_back(Dcl);
2087 }
2088
2089 DeclsInGroup.push_back(ObjCImpDecl);
2090
2091 return BuildDeclaratorGroup(DeclsInGroup);
2092}
2093
2094void Sema::CheckImplementationIvars(ObjCImplementationDecl *ImpDecl,
2095 ObjCIvarDecl **ivars, unsigned numIvars,
2096 SourceLocation RBrace) {
2097 assert(ImpDecl && "missing implementation decl")((ImpDecl && "missing implementation decl") ? static_cast
<void> (0) : __assert_fail ("ImpDecl && \"missing implementation decl\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 2097, __PRETTY_FUNCTION__))
;
2098 ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface();
2099 if (!IDecl)
2100 return;
2101 /// Check case of non-existing \@interface decl.
2102 /// (legacy objective-c \@implementation decl without an \@interface decl).
2103 /// Add implementations's ivar to the synthesize class's ivar list.
2104 if (IDecl->isImplicitInterfaceDecl()) {
2105 IDecl->setEndOfDefinitionLoc(RBrace);
2106 // Add ivar's to class's DeclContext.
2107 for (unsigned i = 0, e = numIvars; i != e; ++i) {
2108 ivars[i]->setLexicalDeclContext(ImpDecl);
2109 IDecl->makeDeclVisibleInContext(ivars[i]);
2110 ImpDecl->addDecl(ivars[i]);
2111 }
2112
2113 return;
2114 }
2115 // If implementation has empty ivar list, just return.
2116 if (numIvars == 0)
2117 return;
2118
2119 assert(ivars && "missing @implementation ivars")((ivars && "missing @implementation ivars") ? static_cast
<void> (0) : __assert_fail ("ivars && \"missing @implementation ivars\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 2119, __PRETTY_FUNCTION__))
;
2120 if (LangOpts.ObjCRuntime.isNonFragile()) {
2121 if (ImpDecl->getSuperClass())
2122 Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use);
2123 for (unsigned i = 0; i < numIvars; i++) {
2124 ObjCIvarDecl* ImplIvar = ivars[i];
2125 if (const ObjCIvarDecl *ClsIvar =
2126 IDecl->getIvarDecl(ImplIvar->getIdentifier())) {
2127 Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
2128 Diag(ClsIvar->getLocation(), diag::note_previous_definition);
2129 continue;
2130 }
2131 // Check class extensions (unnamed categories) for duplicate ivars.
2132 for (const auto *CDecl : IDecl->visible_extensions()) {
2133 if (const ObjCIvarDecl *ClsExtIvar =
2134 CDecl->getIvarDecl(ImplIvar->getIdentifier())) {
2135 Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
2136 Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
2137 continue;
2138 }
2139 }
2140 // Instance ivar to Implementation's DeclContext.
2141 ImplIvar->setLexicalDeclContext(ImpDecl);
2142 IDecl->makeDeclVisibleInContext(ImplIvar);
2143 ImpDecl->addDecl(ImplIvar);
2144 }
2145 return;
2146 }
2147 // Check interface's Ivar list against those in the implementation.
2148 // names and types must match.
2149 //
2150 unsigned j = 0;
2151 ObjCInterfaceDecl::ivar_iterator
2152 IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end();
2153 for (; numIvars > 0 && IVI != IVE; ++IVI) {
2154 ObjCIvarDecl* ImplIvar = ivars[j++];
2155 ObjCIvarDecl* ClsIvar = *IVI;
2156 assert (ImplIvar && "missing implementation ivar")((ImplIvar && "missing implementation ivar") ? static_cast
<void> (0) : __assert_fail ("ImplIvar && \"missing implementation ivar\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 2156, __PRETTY_FUNCTION__))
;
2157 assert (ClsIvar && "missing class ivar")((ClsIvar && "missing class ivar") ? static_cast<void
> (0) : __assert_fail ("ClsIvar && \"missing class ivar\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 2157, __PRETTY_FUNCTION__))
;
2158
2159 // First, make sure the types match.
2160 if (!Context.hasSameType(ImplIvar->getType(), ClsIvar->getType())) {
2161 Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type)
2162 << ImplIvar->getIdentifier()
2163 << ImplIvar->getType() << ClsIvar->getType();
2164 Diag(ClsIvar->getLocation(), diag::note_previous_definition);
2165 } else if (ImplIvar->isBitField() && ClsIvar->isBitField() &&
2166 ImplIvar->getBitWidthValue(Context) !=
2167 ClsIvar->getBitWidthValue(Context)) {
2168 Diag(ImplIvar->getBitWidth()->getBeginLoc(),
2169 diag::err_conflicting_ivar_bitwidth)
2170 << ImplIvar->getIdentifier();
2171 Diag(ClsIvar->getBitWidth()->getBeginLoc(),
2172 diag::note_previous_definition);
2173 }
2174 // Make sure the names are identical.
2175 if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) {
2176 Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name)
2177 << ImplIvar->getIdentifier() << ClsIvar->getIdentifier();
2178 Diag(ClsIvar->getLocation(), diag::note_previous_definition);
2179 }
2180 --numIvars;
2181 }
2182
2183 if (numIvars > 0)
2184 Diag(ivars[j]->getLocation(), diag::err_inconsistent_ivar_count);
2185 else if (IVI != IVE)
2186 Diag(IVI->getLocation(), diag::err_inconsistent_ivar_count);
2187}
2188
2189static void WarnUndefinedMethod(Sema &S, SourceLocation ImpLoc,
2190 ObjCMethodDecl *method,
2191 bool &IncompleteImpl,
2192 unsigned DiagID,
2193 NamedDecl *NeededFor = nullptr) {
2194 // No point warning no definition of method which is 'unavailable'.
2195 if (method->getAvailability() == AR_Unavailable)
2196 return;
2197
2198 // FIXME: For now ignore 'IncompleteImpl'.
2199 // Previously we grouped all unimplemented methods under a single
2200 // warning, but some users strongly voiced that they would prefer
2201 // separate warnings. We will give that approach a try, as that
2202 // matches what we do with protocols.
2203 {
2204 const Sema::SemaDiagnosticBuilder &B = S.Diag(ImpLoc, DiagID);
2205 B << method;
2206 if (NeededFor)
2207 B << NeededFor;
2208 }
2209
2210 // Issue a note to the original declaration.
2211 SourceLocation MethodLoc = method->getBeginLoc();
2212 if (MethodLoc.isValid())
2213 S.Diag(MethodLoc, diag::note_method_declared_at) << method;
2214}
2215
2216/// Determines if type B can be substituted for type A. Returns true if we can
2217/// guarantee that anything that the user will do to an object of type A can
2218/// also be done to an object of type B. This is trivially true if the two
2219/// types are the same, or if B is a subclass of A. It becomes more complex
2220/// in cases where protocols are involved.
2221///
2222/// Object types in Objective-C describe the minimum requirements for an
2223/// object, rather than providing a complete description of a type. For
2224/// example, if A is a subclass of B, then B* may refer to an instance of A.
2225/// The principle of substitutability means that we may use an instance of A
2226/// anywhere that we may use an instance of B - it will implement all of the
2227/// ivars of B and all of the methods of B.
2228///
2229/// This substitutability is important when type checking methods, because
2230/// the implementation may have stricter type definitions than the interface.
2231/// The interface specifies minimum requirements, but the implementation may
2232/// have more accurate ones. For example, a method may privately accept
2233/// instances of B, but only publish that it accepts instances of A. Any
2234/// object passed to it will be type checked against B, and so will implicitly
2235/// by a valid A*. Similarly, a method may return a subclass of the class that
2236/// it is declared as returning.
2237///
2238/// This is most important when considering subclassing. A method in a
2239/// subclass must accept any object as an argument that its superclass's
2240/// implementation accepts. It may, however, accept a more general type
2241/// without breaking substitutability (i.e. you can still use the subclass
2242/// anywhere that you can use the superclass, but not vice versa). The
2243/// converse requirement applies to return types: the return type for a
2244/// subclass method must be a valid object of the kind that the superclass
2245/// advertises, but it may be specified more accurately. This avoids the need
2246/// for explicit down-casting by callers.
2247///
2248/// Note: This is a stricter requirement than for assignment.
2249static bool isObjCTypeSubstitutable(ASTContext &Context,
2250 const ObjCObjectPointerType *A,
2251 const ObjCObjectPointerType *B,
2252 bool rejectId) {
2253 // Reject a protocol-unqualified id.
2254 if (rejectId && B->isObjCIdType()) return false;
2255
2256 // If B is a qualified id, then A must also be a qualified id and it must
2257 // implement all of the protocols in B. It may not be a qualified class.
2258 // For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a
2259 // stricter definition so it is not substitutable for id<A>.
2260 if (B->isObjCQualifiedIdType()) {
2261 return A->isObjCQualifiedIdType() &&
2262 Context.ObjCQualifiedIdTypesAreCompatible(QualType(A, 0),
2263 QualType(B,0),
2264 false);
2265 }
2266
2267 /*
2268 // id is a special type that bypasses type checking completely. We want a
2269 // warning when it is used in one place but not another.
2270 if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false;
2271
2272
2273 // If B is a qualified id, then A must also be a qualified id (which it isn't
2274 // if we've got this far)
2275 if (B->isObjCQualifiedIdType()) return false;
2276 */
2277
2278 // Now we know that A and B are (potentially-qualified) class types. The
2279 // normal rules for assignment apply.
2280 return Context.canAssignObjCInterfaces(A, B);
2281}
2282
2283static SourceRange getTypeRange(TypeSourceInfo *TSI) {
2284 return (TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange());
2285}
2286
2287/// Determine whether two set of Objective-C declaration qualifiers conflict.
2288static bool objcModifiersConflict(Decl::ObjCDeclQualifier x,
2289 Decl::ObjCDeclQualifier y) {
2290 return (x & ~Decl::OBJC_TQ_CSNullability) !=
2291 (y & ~Decl::OBJC_TQ_CSNullability);
2292}
2293
2294static bool CheckMethodOverrideReturn(Sema &S,
2295 ObjCMethodDecl *MethodImpl,
2296 ObjCMethodDecl *MethodDecl,
2297 bool IsProtocolMethodDecl,
2298 bool IsOverridingMode,
2299 bool Warn) {
2300 if (IsProtocolMethodDecl &&
2301 objcModifiersConflict(MethodDecl->getObjCDeclQualifier(),
2302 MethodImpl->getObjCDeclQualifier())) {
2303 if (Warn) {
2304 S.Diag(MethodImpl->getLocation(),
2305 (IsOverridingMode
2306 ? diag::warn_conflicting_overriding_ret_type_modifiers
2307 : diag::warn_conflicting_ret_type_modifiers))
2308 << MethodImpl->getDeclName()
2309 << MethodImpl->getReturnTypeSourceRange();
2310 S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration)
2311 << MethodDecl->getReturnTypeSourceRange();
2312 }
2313 else
2314 return false;
2315 }
2316 if (Warn && IsOverridingMode &&
2317 !isa<ObjCImplementationDecl>(MethodImpl->getDeclContext()) &&
2318 !S.Context.hasSameNullabilityTypeQualifier(MethodImpl->getReturnType(),
2319 MethodDecl->getReturnType(),
2320 false)) {
2321 auto nullabilityMethodImpl =
2322 *MethodImpl->getReturnType()->getNullability(S.Context);
2323 auto nullabilityMethodDecl =
2324 *MethodDecl->getReturnType()->getNullability(S.Context);
2325 S.Diag(MethodImpl->getLocation(),
2326 diag::warn_conflicting_nullability_attr_overriding_ret_types)
2327 << DiagNullabilityKind(
2328 nullabilityMethodImpl,
2329 ((MethodImpl->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2330 != 0))
2331 << DiagNullabilityKind(
2332 nullabilityMethodDecl,
2333 ((MethodDecl->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2334 != 0));
2335 S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
2336 }
2337
2338 if (S.Context.hasSameUnqualifiedType(MethodImpl->getReturnType(),
2339 MethodDecl->getReturnType()))
2340 return true;
2341 if (!Warn)
2342 return false;
2343
2344 unsigned DiagID =
2345 IsOverridingMode ? diag::warn_conflicting_overriding_ret_types
2346 : diag::warn_conflicting_ret_types;
2347
2348 // Mismatches between ObjC pointers go into a different warning
2349 // category, and sometimes they're even completely whitelisted.
2350 if (const ObjCObjectPointerType *ImplPtrTy =
2351 MethodImpl->getReturnType()->getAs<ObjCObjectPointerType>()) {
2352 if (const ObjCObjectPointerType *IfacePtrTy =
2353 MethodDecl->getReturnType()->getAs<ObjCObjectPointerType>()) {
2354 // Allow non-matching return types as long as they don't violate
2355 // the principle of substitutability. Specifically, we permit
2356 // return types that are subclasses of the declared return type,
2357 // or that are more-qualified versions of the declared type.
2358 if (isObjCTypeSubstitutable(S.Context, IfacePtrTy, ImplPtrTy, false))
2359 return false;
2360
2361 DiagID =
2362 IsOverridingMode ? diag::warn_non_covariant_overriding_ret_types
2363 : diag::warn_non_covariant_ret_types;
2364 }
2365 }
2366
2367 S.Diag(MethodImpl->getLocation(), DiagID)
2368 << MethodImpl->getDeclName() << MethodDecl->getReturnType()
2369 << MethodImpl->getReturnType()
2370 << MethodImpl->getReturnTypeSourceRange();
2371 S.Diag(MethodDecl->getLocation(), IsOverridingMode
2372 ? diag::note_previous_declaration
2373 : diag::note_previous_definition)
2374 << MethodDecl->getReturnTypeSourceRange();
2375 return false;
2376}
2377
2378static bool CheckMethodOverrideParam(Sema &S,
2379 ObjCMethodDecl *MethodImpl,
2380 ObjCMethodDecl *MethodDecl,
2381 ParmVarDecl *ImplVar,
2382 ParmVarDecl *IfaceVar,
2383 bool IsProtocolMethodDecl,
2384 bool IsOverridingMode,
2385 bool Warn) {
2386 if (IsProtocolMethodDecl &&
2387 objcModifiersConflict(ImplVar->getObjCDeclQualifier(),
2388 IfaceVar->getObjCDeclQualifier())) {
2389 if (Warn) {
2390 if (IsOverridingMode)
2391 S.Diag(ImplVar->getLocation(),
2392 diag::warn_conflicting_overriding_param_modifiers)
2393 << getTypeRange(ImplVar->getTypeSourceInfo())
2394 << MethodImpl->getDeclName();
2395 else S.Diag(ImplVar->getLocation(),
2396 diag::warn_conflicting_param_modifiers)
2397 << getTypeRange(ImplVar->getTypeSourceInfo())
2398 << MethodImpl->getDeclName();
2399 S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration)
2400 << getTypeRange(IfaceVar->getTypeSourceInfo());
2401 }
2402 else
2403 return false;
2404 }
2405
2406 QualType ImplTy = ImplVar->getType();
2407 QualType IfaceTy = IfaceVar->getType();
2408 if (Warn && IsOverridingMode &&
2409 !isa<ObjCImplementationDecl>(MethodImpl->getDeclContext()) &&
2410 !S.Context.hasSameNullabilityTypeQualifier(ImplTy, IfaceTy, true)) {
2411 S.Diag(ImplVar->getLocation(),
2412 diag::warn_conflicting_nullability_attr_overriding_param_types)
2413 << DiagNullabilityKind(
2414 *ImplTy->getNullability(S.Context),
2415 ((ImplVar->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2416 != 0))
2417 << DiagNullabilityKind(
2418 *IfaceTy->getNullability(S.Context),
2419 ((IfaceVar->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2420 != 0));
2421 S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration);
2422 }
2423 if (S.Context.hasSameUnqualifiedType(ImplTy, IfaceTy))
2424 return true;
2425
2426 if (!Warn)
2427 return false;
2428 unsigned DiagID =
2429 IsOverridingMode ? diag::warn_conflicting_overriding_param_types
2430 : diag::warn_conflicting_param_types;
2431
2432 // Mismatches between ObjC pointers go into a different warning
2433 // category, and sometimes they're even completely whitelisted.
2434 if (const ObjCObjectPointerType *ImplPtrTy =
2435 ImplTy->getAs<ObjCObjectPointerType>()) {
2436 if (const ObjCObjectPointerType *IfacePtrTy =
2437 IfaceTy->getAs<ObjCObjectPointerType>()) {
2438 // Allow non-matching argument types as long as they don't
2439 // violate the principle of substitutability. Specifically, the
2440 // implementation must accept any objects that the superclass
2441 // accepts, however it may also accept others.
2442 if (isObjCTypeSubstitutable(S.Context, ImplPtrTy, IfacePtrTy, true))
2443 return false;
2444
2445 DiagID =
2446 IsOverridingMode ? diag::warn_non_contravariant_overriding_param_types
2447 : diag::warn_non_contravariant_param_types;
2448 }
2449 }
2450
2451 S.Diag(ImplVar->getLocation(), DiagID)
2452 << getTypeRange(ImplVar->getTypeSourceInfo())
2453 << MethodImpl->getDeclName() << IfaceTy << ImplTy;
2454 S.Diag(IfaceVar->getLocation(),
2455 (IsOverridingMode ? diag::note_previous_declaration
2456 : diag::note_previous_definition))
2457 << getTypeRange(IfaceVar->getTypeSourceInfo());
2458 return false;
2459}
2460
2461/// In ARC, check whether the conventional meanings of the two methods
2462/// match. If they don't, it's a hard error.
2463static bool checkMethodFamilyMismatch(Sema &S, ObjCMethodDecl *impl,
2464 ObjCMethodDecl *decl) {
2465 ObjCMethodFamily implFamily = impl->getMethodFamily();
2466 ObjCMethodFamily declFamily = decl->getMethodFamily();
2467 if (implFamily == declFamily) return false;
2468
2469 // Since conventions are sorted by selector, the only possibility is
2470 // that the types differ enough to cause one selector or the other
2471 // to fall out of the family.
2472 assert(implFamily == OMF_None || declFamily == OMF_None)((implFamily == OMF_None || declFamily == OMF_None) ? static_cast
<void> (0) : __assert_fail ("implFamily == OMF_None || declFamily == OMF_None"
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 2472, __PRETTY_FUNCTION__))
;
2473
2474 // No further diagnostics required on invalid declarations.
2475 if (impl->isInvalidDecl() || decl->isInvalidDecl()) return true;
2476
2477 const ObjCMethodDecl *unmatched = impl;
2478 ObjCMethodFamily family = declFamily;
2479 unsigned errorID = diag::err_arc_lost_method_convention;
2480 unsigned noteID = diag::note_arc_lost_method_convention;
2481 if (declFamily == OMF_None) {
2482 unmatched = decl;
2483 family = implFamily;
2484 errorID = diag::err_arc_gained_method_convention;
2485 noteID = diag::note_arc_gained_method_convention;
2486 }
2487
2488 // Indexes into a %select clause in the diagnostic.
2489 enum FamilySelector {
2490 F_alloc, F_copy, F_mutableCopy = F_copy, F_init, F_new
2491 };
2492 FamilySelector familySelector = FamilySelector();
2493
2494 switch (family) {
2495 case OMF_None: llvm_unreachable("logic error, no method convention")::llvm::llvm_unreachable_internal("logic error, no method convention"
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 2495)
;
2496 case OMF_retain:
2497 case OMF_release:
2498 case OMF_autorelease:
2499 case OMF_dealloc:
2500 case OMF_finalize:
2501 case OMF_retainCount:
2502 case OMF_self:
2503 case OMF_initialize:
2504 case OMF_performSelector:
2505 // Mismatches for these methods don't change ownership
2506 // conventions, so we don't care.
2507 return false;
2508
2509 case OMF_init: familySelector = F_init; break;
2510 case OMF_alloc: familySelector = F_alloc; break;
2511 case OMF_copy: familySelector = F_copy; break;
2512 case OMF_mutableCopy: familySelector = F_mutableCopy; break;
2513 case OMF_new: familySelector = F_new; break;
2514 }
2515
2516 enum ReasonSelector { R_NonObjectReturn, R_UnrelatedReturn };
2517 ReasonSelector reasonSelector;
2518
2519 // The only reason these methods don't fall within their families is
2520 // due to unusual result types.
2521 if (unmatched->getReturnType()->isObjCObjectPointerType()) {
2522 reasonSelector = R_UnrelatedReturn;
2523 } else {
2524 reasonSelector = R_NonObjectReturn;
2525 }
2526
2527 S.Diag(impl->getLocation(), errorID) << int(familySelector) << int(reasonSelector);
2528 S.Diag(decl->getLocation(), noteID) << int(familySelector) << int(reasonSelector);
2529
2530 return true;
2531}
2532
2533void Sema::WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethodDecl,
2534 ObjCMethodDecl *MethodDecl,
2535 bool IsProtocolMethodDecl) {
2536 if (getLangOpts().ObjCAutoRefCount &&
2537 checkMethodFamilyMismatch(*this, ImpMethodDecl, MethodDecl))
2538 return;
2539
2540 CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
2541 IsProtocolMethodDecl, false,
2542 true);
2543
2544 for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
2545 IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
2546 EF = MethodDecl->param_end();
2547 IM != EM && IF != EF; ++IM, ++IF) {
2548 CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, *IM, *IF,
2549 IsProtocolMethodDecl, false, true);
2550 }
2551
2552 if (ImpMethodDecl->isVariadic() != MethodDecl->isVariadic()) {
2553 Diag(ImpMethodDecl->getLocation(),
2554 diag::warn_conflicting_variadic);
2555 Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
2556 }
2557}
2558
2559void Sema::CheckConflictingOverridingMethod(ObjCMethodDecl *Method,
2560 ObjCMethodDecl *Overridden,
2561 bool IsProtocolMethodDecl) {
2562
2563 CheckMethodOverrideReturn(*this, Method, Overridden,
2564 IsProtocolMethodDecl, true,
2565 true);
2566
2567 for (ObjCMethodDecl::param_iterator IM = Method->param_begin(),
2568 IF = Overridden->param_begin(), EM = Method->param_end(),
2569 EF = Overridden->param_end();
2570 IM != EM && IF != EF; ++IM, ++IF) {
2571 CheckMethodOverrideParam(*this, Method, Overridden, *IM, *IF,
2572 IsProtocolMethodDecl, true, true);
2573 }
2574
2575 if (Method->isVariadic() != Overridden->isVariadic()) {
2576 Diag(Method->getLocation(),
2577 diag::warn_conflicting_overriding_variadic);
2578 Diag(Overridden->getLocation(), diag::note_previous_declaration);
2579 }
2580}
2581
2582/// WarnExactTypedMethods - This routine issues a warning if method
2583/// implementation declaration matches exactly that of its declaration.
2584void Sema::WarnExactTypedMethods(ObjCMethodDecl *ImpMethodDecl,
2585 ObjCMethodDecl *MethodDecl,
2586 bool IsProtocolMethodDecl) {
2587 // don't issue warning when protocol method is optional because primary
2588 // class is not required to implement it and it is safe for protocol
2589 // to implement it.
2590 if (MethodDecl->getImplementationControl() == ObjCMethodDecl::Optional)
2591 return;
2592 // don't issue warning when primary class's method is
2593 // depecated/unavailable.
2594 if (MethodDecl->hasAttr<UnavailableAttr>() ||
2595 MethodDecl->hasAttr<DeprecatedAttr>())
2596 return;
2597
2598 bool match = CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
2599 IsProtocolMethodDecl, false, false);
2600 if (match)
2601 for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
2602 IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
2603 EF = MethodDecl->param_end();
2604 IM != EM && IF != EF; ++IM, ++IF) {
2605 match = CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl,
2606 *IM, *IF,
2607 IsProtocolMethodDecl, false, false);
2608 if (!match)
2609 break;
2610 }
2611 if (match)
2612 match = (ImpMethodDecl->isVariadic() == MethodDecl->isVariadic());
2613 if (match)
2614 match = !(MethodDecl->isClassMethod() &&
2615 MethodDecl->getSelector() == GetNullarySelector("load", Context));
2616
2617 if (match) {
2618 Diag(ImpMethodDecl->getLocation(),
2619 diag::warn_category_method_impl_match);
2620 Diag(MethodDecl->getLocation(), diag::note_method_declared_at)
2621 << MethodDecl->getDeclName();
2622 }
2623}
2624
2625/// FIXME: Type hierarchies in Objective-C can be deep. We could most likely
2626/// improve the efficiency of selector lookups and type checking by associating
2627/// with each protocol / interface / category the flattened instance tables. If
2628/// we used an immutable set to keep the table then it wouldn't add significant
2629/// memory cost and it would be handy for lookups.
2630
2631typedef llvm::DenseSet<IdentifierInfo*> ProtocolNameSet;
2632typedef std::unique_ptr<ProtocolNameSet> LazyProtocolNameSet;
2633
2634static void findProtocolsWithExplicitImpls(const ObjCProtocolDecl *PDecl,
2635 ProtocolNameSet &PNS) {
2636 if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>())
2637 PNS.insert(PDecl->getIdentifier());
2638 for (const auto *PI : PDecl->protocols())
2639 findProtocolsWithExplicitImpls(PI, PNS);
2640}
2641
2642/// Recursively populates a set with all conformed protocols in a class
2643/// hierarchy that have the 'objc_protocol_requires_explicit_implementation'
2644/// attribute.
2645static void findProtocolsWithExplicitImpls(const ObjCInterfaceDecl *Super,
2646 ProtocolNameSet &PNS) {
2647 if (!Super)
2648 return;
2649
2650 for (const auto *I : Super->all_referenced_protocols())
2651 findProtocolsWithExplicitImpls(I, PNS);
2652
2653 findProtocolsWithExplicitImpls(Super->getSuperClass(), PNS);
2654}
2655
2656/// CheckProtocolMethodDefs - This routine checks unimplemented methods
2657/// Declared in protocol, and those referenced by it.
2658static void CheckProtocolMethodDefs(Sema &S,
2659 SourceLocation ImpLoc,
2660 ObjCProtocolDecl *PDecl,
2661 bool& IncompleteImpl,
2662 const Sema::SelectorSet &InsMap,
2663 const Sema::SelectorSet &ClsMap,
2664 ObjCContainerDecl *CDecl,
2665 LazyProtocolNameSet &ProtocolsExplictImpl) {
2666 ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl);
2667 ObjCInterfaceDecl *IDecl = C ? C->getClassInterface()
2668 : dyn_cast<ObjCInterfaceDecl>(CDecl);
2669 assert (IDecl && "CheckProtocolMethodDefs - IDecl is null")((IDecl && "CheckProtocolMethodDefs - IDecl is null")
? static_cast<void> (0) : __assert_fail ("IDecl && \"CheckProtocolMethodDefs - IDecl is null\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 2669, __PRETTY_FUNCTION__))
;
2670
2671 ObjCInterfaceDecl *Super = IDecl->getSuperClass();
2672 ObjCInterfaceDecl *NSIDecl = nullptr;
2673
2674 // If this protocol is marked 'objc_protocol_requires_explicit_implementation'
2675 // then we should check if any class in the super class hierarchy also
2676 // conforms to this protocol, either directly or via protocol inheritance.
2677 // If so, we can skip checking this protocol completely because we
2678 // know that a parent class already satisfies this protocol.
2679 //
2680 // Note: we could generalize this logic for all protocols, and merely
2681 // add the limit on looking at the super class chain for just
2682 // specially marked protocols. This may be a good optimization. This
2683 // change is restricted to 'objc_protocol_requires_explicit_implementation'
2684 // protocols for now for controlled evaluation.
2685 if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>()) {
2686 if (!ProtocolsExplictImpl) {
2687 ProtocolsExplictImpl.reset(new ProtocolNameSet);
2688 findProtocolsWithExplicitImpls(Super, *ProtocolsExplictImpl);
2689 }
2690 if (ProtocolsExplictImpl->find(PDecl->getIdentifier()) !=
2691 ProtocolsExplictImpl->end())
2692 return;
2693
2694 // If no super class conforms to the protocol, we should not search
2695 // for methods in the super class to implicitly satisfy the protocol.
2696 Super = nullptr;
2697 }
2698
2699 if (S.getLangOpts().ObjCRuntime.isNeXTFamily()) {
2700 // check to see if class implements forwardInvocation method and objects
2701 // of this class are derived from 'NSProxy' so that to forward requests
2702 // from one object to another.
2703 // Under such conditions, which means that every method possible is
2704 // implemented in the class, we should not issue "Method definition not
2705 // found" warnings.
2706 // FIXME: Use a general GetUnarySelector method for this.
2707 IdentifierInfo* II = &S.Context.Idents.get("forwardInvocation");
2708 Selector fISelector = S.Context.Selectors.getSelector(1, &II);
2709 if (InsMap.count(fISelector))
2710 // Is IDecl derived from 'NSProxy'? If so, no instance methods
2711 // need be implemented in the implementation.
2712 NSIDecl = IDecl->lookupInheritedClass(&S.Context.Idents.get("NSProxy"));
2713 }
2714
2715 // If this is a forward protocol declaration, get its definition.
2716 if (!PDecl->isThisDeclarationADefinition() &&
2717 PDecl->getDefinition())
2718 PDecl = PDecl->getDefinition();
2719
2720 // If a method lookup fails locally we still need to look and see if
2721 // the method was implemented by a base class or an inherited
2722 // protocol. This lookup is slow, but occurs rarely in correct code
2723 // and otherwise would terminate in a warning.
2724
2725 // check unimplemented instance methods.
2726 if (!NSIDecl)
2727 for (auto *method : PDecl->instance_methods()) {
2728 if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
2729 !method->isPropertyAccessor() &&
2730 !InsMap.count(method->getSelector()) &&
2731 (!Super || !Super->lookupMethod(method->getSelector(),
2732 true /* instance */,
2733 false /* shallowCategory */,
2734 true /* followsSuper */,
2735 nullptr /* category */))) {
2736 // If a method is not implemented in the category implementation but
2737 // has been declared in its primary class, superclass,
2738 // or in one of their protocols, no need to issue the warning.
2739 // This is because method will be implemented in the primary class
2740 // or one of its super class implementation.
2741
2742 // Ugly, but necessary. Method declared in protocol might have
2743 // have been synthesized due to a property declared in the class which
2744 // uses the protocol.
2745 if (ObjCMethodDecl *MethodInClass =
2746 IDecl->lookupMethod(method->getSelector(),
2747 true /* instance */,
2748 true /* shallowCategoryLookup */,
2749 false /* followSuper */))
2750 if (C || MethodInClass->isPropertyAccessor())
2751 continue;
2752 unsigned DIAG = diag::warn_unimplemented_protocol_method;
2753 if (!S.Diags.isIgnored(DIAG, ImpLoc)) {
2754 WarnUndefinedMethod(S, ImpLoc, method, IncompleteImpl, DIAG,
2755 PDecl);
2756 }
2757 }
2758 }
2759 // check unimplemented class methods
2760 for (auto *method : PDecl->class_methods()) {
2761 if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
2762 !ClsMap.count(method->getSelector()) &&
2763 (!Super || !Super->lookupMethod(method->getSelector(),
2764 false /* class method */,
2765 false /* shallowCategoryLookup */,
2766 true /* followSuper */,
2767 nullptr /* category */))) {
2768 // See above comment for instance method lookups.
2769 if (C && IDecl->lookupMethod(method->getSelector(),
2770 false /* class */,
2771 true /* shallowCategoryLookup */,
2772 false /* followSuper */))
2773 continue;
2774
2775 unsigned DIAG = diag::warn_unimplemented_protocol_method;
2776 if (!S.Diags.isIgnored(DIAG, ImpLoc)) {
2777 WarnUndefinedMethod(S, ImpLoc, method, IncompleteImpl, DIAG, PDecl);
2778 }
2779 }
2780 }
2781 // Check on this protocols's referenced protocols, recursively.
2782 for (auto *PI : PDecl->protocols())
2783 CheckProtocolMethodDefs(S, ImpLoc, PI, IncompleteImpl, InsMap, ClsMap,
2784 CDecl, ProtocolsExplictImpl);
2785}
2786
2787/// MatchAllMethodDeclarations - Check methods declared in interface
2788/// or protocol against those declared in their implementations.
2789///
2790void Sema::MatchAllMethodDeclarations(const SelectorSet &InsMap,
2791 const SelectorSet &ClsMap,
2792 SelectorSet &InsMapSeen,
2793 SelectorSet &ClsMapSeen,
2794 ObjCImplDecl* IMPDecl,
2795 ObjCContainerDecl* CDecl,
2796 bool &IncompleteImpl,
2797 bool ImmediateClass,
2798 bool WarnCategoryMethodImpl) {
2799 // Check and see if instance methods in class interface have been
2800 // implemented in the implementation class. If so, their types match.
2801 for (auto *I : CDecl->instance_methods()) {
2802 if (!InsMapSeen.insert(I->getSelector()).second)
2803 continue;
2804 if (!I->isPropertyAccessor() &&
2805 !InsMap.count(I->getSelector())) {
2806 if (ImmediateClass)
2807 WarnUndefinedMethod(*this, IMPDecl->getLocation(), I, IncompleteImpl,
2808 diag::warn_undef_method_impl);
2809 continue;
2810 } else {
2811 ObjCMethodDecl *ImpMethodDecl =
2812 IMPDecl->getInstanceMethod(I->getSelector());
2813 assert(CDecl->getInstanceMethod(I->getSelector(), true/*AllowHidden*/) &&((CDecl->getInstanceMethod(I->getSelector(), true ) &&
"Expected to find the method through lookup as well") ? static_cast
<void> (0) : __assert_fail ("CDecl->getInstanceMethod(I->getSelector(), true ) && \"Expected to find the method through lookup as well\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 2814, __PRETTY_FUNCTION__))
2814 "Expected to find the method through lookup as well")((CDecl->getInstanceMethod(I->getSelector(), true ) &&
"Expected to find the method through lookup as well") ? static_cast
<void> (0) : __assert_fail ("CDecl->getInstanceMethod(I->getSelector(), true ) && \"Expected to find the method through lookup as well\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 2814, __PRETTY_FUNCTION__))
;
2815 // ImpMethodDecl may be null as in a @dynamic property.
2816 if (ImpMethodDecl) {
2817 if (!WarnCategoryMethodImpl)
2818 WarnConflictingTypedMethods(ImpMethodDecl, I,
2819 isa<ObjCProtocolDecl>(CDecl));
2820 else if (!I->isPropertyAccessor())
2821 WarnExactTypedMethods(ImpMethodDecl, I, isa<ObjCProtocolDecl>(CDecl));
2822 }
2823 }
2824 }
2825
2826 // Check and see if class methods in class interface have been
2827 // implemented in the implementation class. If so, their types match.
2828 for (auto *I : CDecl->class_methods()) {
2829 if (!ClsMapSeen.insert(I->getSelector()).second)
2830 continue;
2831 if (!I->isPropertyAccessor() &&
2832 !ClsMap.count(I->getSelector())) {
2833 if (ImmediateClass)
2834 WarnUndefinedMethod(*this, IMPDecl->getLocation(), I, IncompleteImpl,
2835 diag::warn_undef_method_impl);
2836 } else {
2837 ObjCMethodDecl *ImpMethodDecl =
2838 IMPDecl->getClassMethod(I->getSelector());
2839 assert(CDecl->getClassMethod(I->getSelector(), true/*AllowHidden*/) &&((CDecl->getClassMethod(I->getSelector(), true ) &&
"Expected to find the method through lookup as well") ? static_cast
<void> (0) : __assert_fail ("CDecl->getClassMethod(I->getSelector(), true ) && \"Expected to find the method through lookup as well\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 2840, __PRETTY_FUNCTION__))
2840 "Expected to find the method through lookup as well")((CDecl->getClassMethod(I->getSelector(), true ) &&
"Expected to find the method through lookup as well") ? static_cast
<void> (0) : __assert_fail ("CDecl->getClassMethod(I->getSelector(), true ) && \"Expected to find the method through lookup as well\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 2840, __PRETTY_FUNCTION__))
;
2841 // ImpMethodDecl may be null as in a @dynamic property.
2842 if (ImpMethodDecl) {
2843 if (!WarnCategoryMethodImpl)
2844 WarnConflictingTypedMethods(ImpMethodDecl, I,
2845 isa<ObjCProtocolDecl>(CDecl));
2846 else if (!I->isPropertyAccessor())
2847 WarnExactTypedMethods(ImpMethodDecl, I, isa<ObjCProtocolDecl>(CDecl));
2848 }
2849 }
2850 }
2851
2852 if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl> (CDecl)) {
2853 // Also, check for methods declared in protocols inherited by
2854 // this protocol.
2855 for (auto *PI : PD->protocols())
2856 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2857 IMPDecl, PI, IncompleteImpl, false,
2858 WarnCategoryMethodImpl);
2859 }
2860
2861 if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
2862 // when checking that methods in implementation match their declaration,
2863 // i.e. when WarnCategoryMethodImpl is false, check declarations in class
2864 // extension; as well as those in categories.
2865 if (!WarnCategoryMethodImpl) {
2866 for (auto *Cat : I->visible_categories())
2867 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2868 IMPDecl, Cat, IncompleteImpl,
2869 ImmediateClass && Cat->IsClassExtension(),
2870 WarnCategoryMethodImpl);
2871 } else {
2872 // Also methods in class extensions need be looked at next.
2873 for (auto *Ext : I->visible_extensions())
2874 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2875 IMPDecl, Ext, IncompleteImpl, false,
2876 WarnCategoryMethodImpl);
2877 }
2878
2879 // Check for any implementation of a methods declared in protocol.
2880 for (auto *PI : I->all_referenced_protocols())
2881 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2882 IMPDecl, PI, IncompleteImpl, false,
2883 WarnCategoryMethodImpl);
2884
2885 // FIXME. For now, we are not checking for extact match of methods
2886 // in category implementation and its primary class's super class.
2887 if (!WarnCategoryMethodImpl && I->getSuperClass())
2888 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2889 IMPDecl,
2890 I->getSuperClass(), IncompleteImpl, false);
2891 }
2892}
2893
2894/// CheckCategoryVsClassMethodMatches - Checks that methods implemented in
2895/// category matches with those implemented in its primary class and
2896/// warns each time an exact match is found.
2897void Sema::CheckCategoryVsClassMethodMatches(
2898 ObjCCategoryImplDecl *CatIMPDecl) {
2899 // Get category's primary class.
2900 ObjCCategoryDecl *CatDecl = CatIMPDecl->getCategoryDecl();
2901 if (!CatDecl)
2902 return;
2903 ObjCInterfaceDecl *IDecl = CatDecl->getClassInterface();
2904 if (!IDecl)
2905 return;
2906 ObjCInterfaceDecl *SuperIDecl = IDecl->getSuperClass();
2907 SelectorSet InsMap, ClsMap;
2908
2909 for (const auto *I : CatIMPDecl->instance_methods()) {
2910 Selector Sel = I->getSelector();
2911 // When checking for methods implemented in the category, skip over
2912 // those declared in category class's super class. This is because
2913 // the super class must implement the method.
2914 if (SuperIDecl && SuperIDecl->lookupMethod(Sel, true))
2915 continue;
2916 InsMap.insert(Sel);
2917 }
2918
2919 for (const auto *I : CatIMPDecl->class_methods()) {
2920 Selector Sel = I->getSelector();
2921 if (SuperIDecl && SuperIDecl->lookupMethod(Sel, false))
2922 continue;
2923 ClsMap.insert(Sel);
2924 }
2925 if (InsMap.empty() && ClsMap.empty())
2926 return;
2927
2928 SelectorSet InsMapSeen, ClsMapSeen;
2929 bool IncompleteImpl = false;
2930 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2931 CatIMPDecl, IDecl,
2932 IncompleteImpl, false,
2933 true /*WarnCategoryMethodImpl*/);
2934}
2935
2936void Sema::ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl,
2937 ObjCContainerDecl* CDecl,
2938 bool IncompleteImpl) {
2939 SelectorSet InsMap;
2940 // Check and see if instance methods in class interface have been
2941 // implemented in the implementation class.
2942 for (const auto *I : IMPDecl->instance_methods())
2943 InsMap.insert(I->getSelector());
2944
2945 // Add the selectors for getters/setters of @dynamic properties.
2946 for (const auto *PImpl : IMPDecl->property_impls()) {
2947 // We only care about @dynamic implementations.
2948 if (PImpl->getPropertyImplementation() != ObjCPropertyImplDecl::Dynamic)
2949 continue;
2950
2951 const auto *P = PImpl->getPropertyDecl();
2952 if (!P) continue;
2953
2954 InsMap.insert(P->getGetterName());
2955 if (!P->getSetterName().isNull())
2956 InsMap.insert(P->getSetterName());
2957 }
2958
2959 // Check and see if properties declared in the interface have either 1)
2960 // an implementation or 2) there is a @synthesize/@dynamic implementation
2961 // of the property in the @implementation.
2962 if (const ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
2963 bool SynthesizeProperties = LangOpts.ObjCDefaultSynthProperties &&
2964 LangOpts.ObjCRuntime.isNonFragile() &&
2965 !IDecl->isObjCRequiresPropertyDefs();
2966 DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, SynthesizeProperties);
2967 }
2968
2969 // Diagnose null-resettable synthesized setters.
2970 diagnoseNullResettableSynthesizedSetters(IMPDecl);
2971
2972 SelectorSet ClsMap;
2973 for (const auto *I : IMPDecl->class_methods())
2974 ClsMap.insert(I->getSelector());
2975
2976 // Check for type conflict of methods declared in a class/protocol and
2977 // its implementation; if any.
2978 SelectorSet InsMapSeen, ClsMapSeen;
2979 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2980 IMPDecl, CDecl,
2981 IncompleteImpl, true);
2982
2983 // check all methods implemented in category against those declared
2984 // in its primary class.
2985 if (ObjCCategoryImplDecl *CatDecl =
2986 dyn_cast<ObjCCategoryImplDecl>(IMPDecl))
2987 CheckCategoryVsClassMethodMatches(CatDecl);
2988
2989 // Check the protocol list for unimplemented methods in the @implementation
2990 // class.
2991 // Check and see if class methods in class interface have been
2992 // implemented in the implementation class.
2993
2994 LazyProtocolNameSet ExplicitImplProtocols;
2995
2996 if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
2997 for (auto *PI : I->all_referenced_protocols())
2998 CheckProtocolMethodDefs(*this, IMPDecl->getLocation(), PI, IncompleteImpl,
2999 InsMap, ClsMap, I, ExplicitImplProtocols);
3000 } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) {
3001 // For extended class, unimplemented methods in its protocols will
3002 // be reported in the primary class.
3003 if (!C->IsClassExtension()) {
3004 for (auto *P : C->protocols())
3005 CheckProtocolMethodDefs(*this, IMPDecl->getLocation(), P,
3006 IncompleteImpl, InsMap, ClsMap, CDecl,
3007 ExplicitImplProtocols);
3008 DiagnoseUnimplementedProperties(S, IMPDecl, CDecl,
3009 /*SynthesizeProperties=*/false);
3010 }
3011 } else
3012 llvm_unreachable("invalid ObjCContainerDecl type.")::llvm::llvm_unreachable_internal("invalid ObjCContainerDecl type."
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 3012)
;
3013}
3014
3015Sema::DeclGroupPtrTy
3016Sema::ActOnForwardClassDeclaration(SourceLocation AtClassLoc,
3017 IdentifierInfo **IdentList,
3018 SourceLocation *IdentLocs,
3019 ArrayRef<ObjCTypeParamList *> TypeParamLists,
3020 unsigned NumElts) {
3021 SmallVector<Decl *, 8> DeclsInGroup;
3022 for (unsigned i = 0; i != NumElts; ++i) {
3023 // Check for another declaration kind with the same name.
3024 NamedDecl *PrevDecl
3025 = LookupSingleName(TUScope, IdentList[i], IdentLocs[i],
3026 LookupOrdinaryName, forRedeclarationInCurContext());
3027 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
3028 // GCC apparently allows the following idiom:
3029 //
3030 // typedef NSObject < XCElementTogglerP > XCElementToggler;
3031 // @class XCElementToggler;
3032 //
3033 // Here we have chosen to ignore the forward class declaration
3034 // with a warning. Since this is the implied behavior.
3035 TypedefNameDecl *TDD = dyn_cast<TypedefNameDecl>(PrevDecl);
3036 if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) {
3037 Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i];
3038 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3039 } else {
3040 // a forward class declaration matching a typedef name of a class refers
3041 // to the underlying class. Just ignore the forward class with a warning
3042 // as this will force the intended behavior which is to lookup the
3043 // typedef name.
3044 if (isa<ObjCObjectType>(TDD->getUnderlyingType())) {
3045 Diag(AtClassLoc, diag::warn_forward_class_redefinition)
3046 << IdentList[i];
3047 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3048 continue;
3049 }
3050 }
3051 }
3052
3053 // Create a declaration to describe this forward declaration.
3054 ObjCInterfaceDecl *PrevIDecl
3055 = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
3056
3057 IdentifierInfo *ClassName = IdentList[i];
3058 if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) {
3059 // A previous decl with a different name is because of
3060 // @compatibility_alias, for example:
3061 // \code
3062 // @class NewImage;
3063 // @compatibility_alias OldImage NewImage;
3064 // \endcode
3065 // A lookup for 'OldImage' will return the 'NewImage' decl.
3066 //
3067 // In such a case use the real declaration name, instead of the alias one,
3068 // otherwise we will break IdentifierResolver and redecls-chain invariants.
3069 // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl
3070 // has been aliased.
3071 ClassName = PrevIDecl->getIdentifier();
3072 }
3073
3074 // If this forward declaration has type parameters, compare them with the
3075 // type parameters of the previous declaration.
3076 ObjCTypeParamList *TypeParams = TypeParamLists[i];
3077 if (PrevIDecl && TypeParams) {
3078 if (ObjCTypeParamList *PrevTypeParams = PrevIDecl->getTypeParamList()) {
3079 // Check for consistency with the previous declaration.
3080 if (checkTypeParamListConsistency(
3081 *this, PrevTypeParams, TypeParams,
3082 TypeParamListContext::ForwardDeclaration)) {
3083 TypeParams = nullptr;
3084 }
3085 } else if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
3086 // The @interface does not have type parameters. Complain.
3087 Diag(IdentLocs[i], diag::err_objc_parameterized_forward_class)
3088 << ClassName
3089 << TypeParams->getSourceRange();
3090 Diag(Def->getLocation(), diag::note_defined_here)
3091 << ClassName;
3092
3093 TypeParams = nullptr;
3094 }
3095 }
3096
3097 ObjCInterfaceDecl *IDecl
3098 = ObjCInterfaceDecl::Create(Context, CurContext, AtClassLoc,
3099 ClassName, TypeParams, PrevIDecl,
3100 IdentLocs[i]);
3101 IDecl->setAtEndRange(IdentLocs[i]);
3102
3103 PushOnScopeChains(IDecl, TUScope);
3104 CheckObjCDeclScope(IDecl);
3105 DeclsInGroup.push_back(IDecl);
3106 }
3107
3108 return BuildDeclaratorGroup(DeclsInGroup);
3109}
3110
3111static bool tryMatchRecordTypes(ASTContext &Context,
3112 Sema::MethodMatchStrategy strategy,
3113 const Type *left, const Type *right);
3114
3115static bool matchTypes(ASTContext &Context, Sema::MethodMatchStrategy strategy,
3116 QualType leftQT, QualType rightQT) {
3117 const Type *left =
3118 Context.getCanonicalType(leftQT).getUnqualifiedType().getTypePtr();
3119 const Type *right =
3120 Context.getCanonicalType(rightQT).getUnqualifiedType().getTypePtr();
3121
3122 if (left == right) return true;
3123
3124 // If we're doing a strict match, the types have to match exactly.
3125 if (strategy == Sema::MMS_strict) return false;
3126
3127 if (left->isIncompleteType() || right->isIncompleteType()) return false;
3128
3129 // Otherwise, use this absurdly complicated algorithm to try to
3130 // validate the basic, low-level compatibility of the two types.
3131
3132 // As a minimum, require the sizes and alignments to match.
3133 TypeInfo LeftTI = Context.getTypeInfo(left);
3134 TypeInfo RightTI = Context.getTypeInfo(right);
3135 if (LeftTI.Width != RightTI.Width)
3136 return false;
3137
3138 if (LeftTI.Align != RightTI.Align)
3139 return false;
3140
3141 // Consider all the kinds of non-dependent canonical types:
3142 // - functions and arrays aren't possible as return and parameter types
3143
3144 // - vector types of equal size can be arbitrarily mixed
3145 if (isa<VectorType>(left)) return isa<VectorType>(right);
3146 if (isa<VectorType>(right)) return false;
3147
3148 // - references should only match references of identical type
3149 // - structs, unions, and Objective-C objects must match more-or-less
3150 // exactly
3151 // - everything else should be a scalar
3152 if (!left->isScalarType() || !right->isScalarType())
3153 return tryMatchRecordTypes(Context, strategy, left, right);
3154
3155 // Make scalars agree in kind, except count bools as chars, and group
3156 // all non-member pointers together.
3157 Type::ScalarTypeKind leftSK = left->getScalarTypeKind();
3158 Type::ScalarTypeKind rightSK = right->getScalarTypeKind();
3159 if (leftSK == Type::STK_Bool) leftSK = Type::STK_Integral;
3160 if (rightSK == Type::STK_Bool) rightSK = Type::STK_Integral;
3161 if (leftSK == Type::STK_CPointer || leftSK == Type::STK_BlockPointer)
3162 leftSK = Type::STK_ObjCObjectPointer;
3163 if (rightSK == Type::STK_CPointer || rightSK == Type::STK_BlockPointer)
3164 rightSK = Type::STK_ObjCObjectPointer;
3165
3166 // Note that data member pointers and function member pointers don't
3167 // intermix because of the size differences.
3168
3169 return (leftSK == rightSK);
3170}
3171
3172static bool tryMatchRecordTypes(ASTContext &Context,
3173 Sema::MethodMatchStrategy strategy,
3174 const Type *lt, const Type *rt) {
3175 assert(lt && rt && lt != rt)((lt && rt && lt != rt) ? static_cast<void
> (0) : __assert_fail ("lt && rt && lt != rt"
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 3175, __PRETTY_FUNCTION__))
;
3176
3177 if (!isa<RecordType>(lt) || !isa<RecordType>(rt)) return false;
3178 RecordDecl *left = cast<RecordType>(lt)->getDecl();
3179 RecordDecl *right = cast<RecordType>(rt)->getDecl();
3180
3181 // Require union-hood to match.
3182 if (left->isUnion() != right->isUnion()) return false;
3183
3184 // Require an exact match if either is non-POD.
3185 if ((isa<CXXRecordDecl>(left) && !cast<CXXRecordDecl>(left)->isPOD()) ||
3186 (isa<CXXRecordDecl>(right) && !cast<CXXRecordDecl>(right)->isPOD()))
3187 return false;
3188
3189 // Require size and alignment to match.
3190 TypeInfo LeftTI = Context.getTypeInfo(lt);
3191 TypeInfo RightTI = Context.getTypeInfo(rt);
3192 if (LeftTI.Width != RightTI.Width)
3193 return false;
3194
3195 if (LeftTI.Align != RightTI.Align)
3196 return false;
3197
3198 // Require fields to match.
3199 RecordDecl::field_iterator li = left->field_begin(), le = left->field_end();
3200 RecordDecl::field_iterator ri = right->field_begin(), re = right->field_end();
3201 for (; li != le && ri != re; ++li, ++ri) {
3202 if (!matchTypes(Context, strategy, li->getType(), ri->getType()))
3203 return false;
3204 }
3205 return (li == le && ri == re);
3206}
3207
3208/// MatchTwoMethodDeclarations - Checks that two methods have matching type and
3209/// returns true, or false, accordingly.
3210/// TODO: Handle protocol list; such as id<p1,p2> in type comparisons
3211bool Sema::MatchTwoMethodDeclarations(const ObjCMethodDecl *left,
3212 const ObjCMethodDecl *right,
3213 MethodMatchStrategy strategy) {
3214 if (!matchTypes(Context, strategy, left->getReturnType(),
3215 right->getReturnType()))
3216 return false;
3217
3218 // If either is hidden, it is not considered to match.
3219 if (left->isHidden() || right->isHidden())
3220 return false;
3221
3222 if (getLangOpts().ObjCAutoRefCount &&
3223 (left->hasAttr<NSReturnsRetainedAttr>()
3224 != right->hasAttr<NSReturnsRetainedAttr>() ||
3225 left->hasAttr<NSConsumesSelfAttr>()
3226 != right->hasAttr<NSConsumesSelfAttr>()))
3227 return false;
3228
3229 ObjCMethodDecl::param_const_iterator
3230 li = left->param_begin(), le = left->param_end(), ri = right->param_begin(),
3231 re = right->param_end();
3232
3233 for (; li != le && ri != re; ++li, ++ri) {
3234 assert(ri != right->param_end() && "Param mismatch")((ri != right->param_end() && "Param mismatch") ? static_cast
<void> (0) : __assert_fail ("ri != right->param_end() && \"Param mismatch\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 3234, __PRETTY_FUNCTION__))
;
3235 const ParmVarDecl *lparm = *li, *rparm = *ri;
3236
3237 if (!matchTypes(Context, strategy, lparm->getType(), rparm->getType()))
3238 return false;
3239
3240 if (getLangOpts().ObjCAutoRefCount &&
3241 lparm->hasAttr<NSConsumedAttr>() != rparm->hasAttr<NSConsumedAttr>())
3242 return false;
3243 }
3244 return true;
3245}
3246
3247static bool isMethodContextSameForKindofLookup(ObjCMethodDecl *Method,
3248 ObjCMethodDecl *MethodInList) {
3249 auto *MethodProtocol = dyn_cast<ObjCProtocolDecl>(Method->getDeclContext());
3250 auto *MethodInListProtocol =
3251 dyn_cast<ObjCProtocolDecl>(MethodInList->getDeclContext());
3252 // If this method belongs to a protocol but the method in list does not, or
3253 // vice versa, we say the context is not the same.
3254 if ((MethodProtocol && !MethodInListProtocol) ||
3255 (!MethodProtocol && MethodInListProtocol))
3256 return false;
3257
3258 if (MethodProtocol && MethodInListProtocol)
3259 return true;
3260
3261 ObjCInterfaceDecl *MethodInterface = Method->getClassInterface();
3262 ObjCInterfaceDecl *MethodInListInterface =
3263 MethodInList->getClassInterface();
3264 return MethodInterface == MethodInListInterface;
3265}
3266
3267void Sema::addMethodToGlobalList(ObjCMethodList *List,
3268 ObjCMethodDecl *Method) {
3269 // Record at the head of the list whether there were 0, 1, or >= 2 methods
3270 // inside categories.
3271 if (ObjCCategoryDecl *CD =
3272 dyn_cast<ObjCCategoryDecl>(Method->getDeclContext()))
3273 if (!CD->IsClassExtension() && List->getBits() < 2)
3274 List->setBits(List->getBits() + 1);
3275
3276 // If the list is empty, make it a singleton list.
3277 if (List->getMethod() == nullptr) {
3278 List->setMethod(Method);
3279 List->setNext(nullptr);
3280 return;
3281 }
3282
3283 // We've seen a method with this name, see if we have already seen this type
3284 // signature.
3285 ObjCMethodList *Previous = List;
3286 ObjCMethodList *ListWithSameDeclaration = nullptr;
3287 for (; List; Previous = List, List = List->getNext()) {
3288 // If we are building a module, keep all of the methods.
3289 if (getLangOpts().isCompilingModule())
3290 continue;
3291
3292 bool SameDeclaration = MatchTwoMethodDeclarations(Method,
3293 List->getMethod());
3294 // Looking for method with a type bound requires the correct context exists.
3295 // We need to insert a method into the list if the context is different.
3296 // If the method's declaration matches the list
3297 // a> the method belongs to a different context: we need to insert it, in
3298 // order to emit the availability message, we need to prioritize over
3299 // availability among the methods with the same declaration.
3300 // b> the method belongs to the same context: there is no need to insert a
3301 // new entry.
3302 // If the method's declaration does not match the list, we insert it to the
3303 // end.
3304 if (!SameDeclaration ||
3305 !isMethodContextSameForKindofLookup(Method, List->getMethod())) {
3306 // Even if two method types do not match, we would like to say
3307 // there is more than one declaration so unavailability/deprecated
3308 // warning is not too noisy.
3309 if (!Method->isDefined())
3310 List->setHasMoreThanOneDecl(true);
3311
3312 // For methods with the same declaration, the one that is deprecated
3313 // should be put in the front for better diagnostics.
3314 if (Method->isDeprecated() && SameDeclaration &&
3315 !ListWithSameDeclaration && !List->getMethod()->isDeprecated())
3316 ListWithSameDeclaration = List;
3317
3318 if (Method->isUnavailable() && SameDeclaration &&
3319 !ListWithSameDeclaration &&
3320 List->getMethod()->getAvailability() < AR_Deprecated)
3321 ListWithSameDeclaration = List;
3322 continue;
3323 }
3324
3325 ObjCMethodDecl *PrevObjCMethod = List->getMethod();
3326
3327 // Propagate the 'defined' bit.
3328 if (Method->isDefined())
3329 PrevObjCMethod->setDefined(true);
3330 else {
3331 // Objective-C doesn't allow an @interface for a class after its
3332 // @implementation. So if Method is not defined and there already is
3333 // an entry for this type signature, Method has to be for a different
3334 // class than PrevObjCMethod.
3335 List->setHasMoreThanOneDecl(true);
3336 }
3337
3338 // If a method is deprecated, push it in the global pool.
3339 // This is used for better diagnostics.
3340 if (Method->isDeprecated()) {
3341 if (!PrevObjCMethod->isDeprecated())
3342 List->setMethod(Method);
3343 }
3344 // If the new method is unavailable, push it into global pool
3345 // unless previous one is deprecated.
3346 if (Method->isUnavailable()) {
3347 if (PrevObjCMethod->getAvailability() < AR_Deprecated)
3348 List->setMethod(Method);
3349 }
3350
3351 return;
3352 }
3353
3354 // We have a new signature for an existing method - add it.
3355 // This is extremely rare. Only 1% of Cocoa selectors are "overloaded".
3356 ObjCMethodList *Mem = BumpAlloc.Allocate<ObjCMethodList>();
3357
3358 // We insert it right before ListWithSameDeclaration.
3359 if (ListWithSameDeclaration) {
3360 auto *List = new (Mem) ObjCMethodList(*ListWithSameDeclaration);
3361 // FIXME: should we clear the other bits in ListWithSameDeclaration?
3362 ListWithSameDeclaration->setMethod(Method);
3363 ListWithSameDeclaration->setNext(List);
3364 return;
3365 }
3366
3367 Previous->setNext(new (Mem) ObjCMethodList(Method));
3368}
3369
3370/// Read the contents of the method pool for a given selector from
3371/// external storage.
3372void Sema::ReadMethodPool(Selector Sel) {
3373 assert(ExternalSource && "We need an external AST source")((ExternalSource && "We need an external AST source")
? static_cast<void> (0) : __assert_fail ("ExternalSource && \"We need an external AST source\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 3373, __PRETTY_FUNCTION__))
;
3374 ExternalSource->ReadMethodPool(Sel);
3375}
3376
3377void Sema::updateOutOfDateSelector(Selector Sel) {
3378 if (!ExternalSource)
3379 return;
3380 ExternalSource->updateOutOfDateSelector(Sel);
3381}
3382
3383void Sema::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl,
3384 bool instance) {
3385 // Ignore methods of invalid containers.
3386 if (cast<Decl>(Method->getDeclContext())->isInvalidDecl())
3387 return;
3388
3389 if (ExternalSource)
3390 ReadMethodPool(Method->getSelector());
3391
3392 GlobalMethodPool::iterator Pos = MethodPool.find(Method->getSelector());
3393 if (Pos == MethodPool.end())
3394 Pos = MethodPool.insert(std::make_pair(Method->getSelector(),
3395 GlobalMethods())).first;
3396
3397 Method->setDefined(impl);
3398
3399 ObjCMethodList &Entry = instance ? Pos->second.first : Pos->second.second;
3400 addMethodToGlobalList(&Entry, Method);
3401}
3402
3403/// Determines if this is an "acceptable" loose mismatch in the global
3404/// method pool. This exists mostly as a hack to get around certain
3405/// global mismatches which we can't afford to make warnings / errors.
3406/// Really, what we want is a way to take a method out of the global
3407/// method pool.
3408static bool isAcceptableMethodMismatch(ObjCMethodDecl *chosen,
3409 ObjCMethodDecl *other) {
3410 if (!chosen->isInstanceMethod())
3411 return false;
3412
3413 Selector sel = chosen->getSelector();
3414 if (!sel.isUnarySelector() || sel.getNameForSlot(0) != "length")
3415 return false;
3416
3417 // Don't complain about mismatches for -length if the method we
3418 // chose has an integral result type.
3419 return (chosen->getReturnType()->isIntegerType());
3420}
3421
3422/// Return true if the given method is wthin the type bound.
3423static bool FilterMethodsByTypeBound(ObjCMethodDecl *Method,
3424 const ObjCObjectType *TypeBound) {
3425 if (!TypeBound)
3426 return true;
3427
3428 if (TypeBound->isObjCId())
3429 // FIXME: should we handle the case of bounding to id<A, B> differently?
3430 return true;
3431
3432 auto *BoundInterface = TypeBound->getInterface();
3433 assert(BoundInterface && "unexpected object type!")((BoundInterface && "unexpected object type!") ? static_cast
<void> (0) : __assert_fail ("BoundInterface && \"unexpected object type!\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 3433, __PRETTY_FUNCTION__))
;
3434
3435 // Check if the Method belongs to a protocol. We should allow any method
3436 // defined in any protocol, because any subclass could adopt the protocol.
3437 auto *MethodProtocol = dyn_cast<ObjCProtocolDecl>(Method->getDeclContext());
3438 if (MethodProtocol) {
3439 return true;
3440 }
3441
3442 // If the Method belongs to a class, check if it belongs to the class
3443 // hierarchy of the class bound.
3444 if (ObjCInterfaceDecl *MethodInterface = Method->getClassInterface()) {
3445 // We allow methods declared within classes that are part of the hierarchy
3446 // of the class bound (superclass of, subclass of, or the same as the class
3447 // bound).
3448 return MethodInterface == BoundInterface ||
3449 MethodInterface->isSuperClassOf(BoundInterface) ||
3450 BoundInterface->isSuperClassOf(MethodInterface);
3451 }
3452 llvm_unreachable("unknown method context")::llvm::llvm_unreachable_internal("unknown method context", "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 3452)
;
3453}
3454
3455/// We first select the type of the method: Instance or Factory, then collect
3456/// all methods with that type.
3457bool Sema::CollectMultipleMethodsInGlobalPool(
3458 Selector Sel, SmallVectorImpl<ObjCMethodDecl *> &Methods,
3459 bool InstanceFirst, bool CheckTheOther,
3460 const ObjCObjectType *TypeBound) {
3461 if (ExternalSource)
3462 ReadMethodPool(Sel);
3463
3464 GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3465 if (Pos == MethodPool.end())
3466 return false;
3467
3468 // Gather the non-hidden methods.
3469 ObjCMethodList &MethList = InstanceFirst ? Pos->second.first :
3470 Pos->second.second;
3471 for (ObjCMethodList *M = &MethList; M; M = M->getNext())
3472 if (M->getMethod() && !M->getMethod()->isHidden()) {
3473 if (FilterMethodsByTypeBound(M->getMethod(), TypeBound))
3474 Methods.push_back(M->getMethod());
3475 }
3476
3477 // Return if we find any method with the desired kind.
3478 if (!Methods.empty())
3479 return Methods.size() > 1;
3480
3481 if (!CheckTheOther)
3482 return false;
3483
3484 // Gather the other kind.
3485 ObjCMethodList &MethList2 = InstanceFirst ? Pos->second.second :
3486 Pos->second.first;
3487 for (ObjCMethodList *M = &MethList2; M; M = M->getNext())
3488 if (M->getMethod() && !M->getMethod()->isHidden()) {
3489 if (FilterMethodsByTypeBound(M->getMethod(), TypeBound))
3490 Methods.push_back(M->getMethod());
3491 }
3492
3493 return Methods.size() > 1;
3494}
3495
3496bool Sema::AreMultipleMethodsInGlobalPool(
3497 Selector Sel, ObjCMethodDecl *BestMethod, SourceRange R,
3498 bool receiverIdOrClass, SmallVectorImpl<ObjCMethodDecl *> &Methods) {
3499 // Diagnose finding more than one method in global pool.
3500 SmallVector<ObjCMethodDecl *, 4> FilteredMethods;
3501 FilteredMethods.push_back(BestMethod);
3502
3503 for (auto *M : Methods)
3504 if (M != BestMethod && !M->hasAttr<UnavailableAttr>())
3505 FilteredMethods.push_back(M);
3506
3507 if (FilteredMethods.size() > 1)
3508 DiagnoseMultipleMethodInGlobalPool(FilteredMethods, Sel, R,
3509 receiverIdOrClass);
3510
3511 GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3512 // Test for no method in the pool which should not trigger any warning by
3513 // caller.
3514 if (Pos == MethodPool.end())
3515 return true;
3516 ObjCMethodList &MethList =
3517 BestMethod->isInstanceMethod() ? Pos->second.first : Pos->second.second;
3518 return MethList.hasMoreThanOneDecl();
3519}
3520
3521ObjCMethodDecl *Sema::LookupMethodInGlobalPool(Selector Sel, SourceRange R,
3522 bool receiverIdOrClass,
3523 bool instance) {
3524 if (ExternalSource)
3525 ReadMethodPool(Sel);
3526
3527 GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3528 if (Pos == MethodPool.end())
3529 return nullptr;
3530
3531 // Gather the non-hidden methods.
3532 ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second;
3533 SmallVector<ObjCMethodDecl *, 4> Methods;
3534 for (ObjCMethodList *M = &MethList; M; M = M->getNext()) {
3535 if (M->getMethod() && !M->getMethod()->isHidden())
3536 return M->getMethod();
3537 }
3538 return nullptr;
3539}
3540
3541void Sema::DiagnoseMultipleMethodInGlobalPool(SmallVectorImpl<ObjCMethodDecl*> &Methods,
3542 Selector Sel, SourceRange R,
3543 bool receiverIdOrClass) {
3544 // We found multiple methods, so we may have to complain.
3545 bool issueDiagnostic = false, issueError = false;
3546
3547 // We support a warning which complains about *any* difference in
3548 // method signature.
3549 bool strictSelectorMatch =
3550 receiverIdOrClass &&
3551 !Diags.isIgnored(diag::warn_strict_multiple_method_decl, R.getBegin());
3552 if (strictSelectorMatch) {
3553 for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3554 if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_strict)) {
3555 issueDiagnostic = true;
3556 break;
3557 }
3558 }
3559 }
3560
3561 // If we didn't see any strict differences, we won't see any loose
3562 // differences. In ARC, however, we also need to check for loose
3563 // mismatches, because most of them are errors.
3564 if (!strictSelectorMatch ||
3565 (issueDiagnostic && getLangOpts().ObjCAutoRefCount))
3566 for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3567 // This checks if the methods differ in type mismatch.
3568 if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_loose) &&
3569 !isAcceptableMethodMismatch(Methods[0], Methods[I])) {
3570 issueDiagnostic = true;
3571 if (getLangOpts().ObjCAutoRefCount)
3572 issueError = true;
3573 break;
3574 }
3575 }
3576
3577 if (issueDiagnostic) {
3578 if (issueError)
3579 Diag(R.getBegin(), diag::err_arc_multiple_method_decl) << Sel << R;
3580 else if (strictSelectorMatch)
3581 Diag(R.getBegin(), diag::warn_strict_multiple_method_decl) << Sel << R;
3582 else
3583 Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R;
3584
3585 Diag(Methods[0]->getBeginLoc(),
3586 issueError ? diag::note_possibility : diag::note_using)
3587 << Methods[0]->getSourceRange();
3588 for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3589 Diag(Methods[I]->getBeginLoc(), diag::note_also_found)
3590 << Methods[I]->getSourceRange();
3591 }
3592 }
3593}
3594
3595ObjCMethodDecl *Sema::LookupImplementedMethodInGlobalPool(Selector Sel) {
3596 GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3597 if (Pos == MethodPool.end())
3598 return nullptr;
3599
3600 GlobalMethods &Methods = Pos->second;
3601 for (const ObjCMethodList *Method = &Methods.first; Method;
3602 Method = Method->getNext())
3603 if (Method->getMethod() &&
3604 (Method->getMethod()->isDefined() ||
3605 Method->getMethod()->isPropertyAccessor()))
3606 return Method->getMethod();
3607
3608 for (const ObjCMethodList *Method = &Methods.second; Method;
3609 Method = Method->getNext())
3610 if (Method->getMethod() &&
3611 (Method->getMethod()->isDefined() ||
3612 Method->getMethod()->isPropertyAccessor()))
3613 return Method->getMethod();
3614 return nullptr;
3615}
3616
3617static void
3618HelperSelectorsForTypoCorrection(
3619 SmallVectorImpl<const ObjCMethodDecl *> &BestMethod,
3620 StringRef Typo, const ObjCMethodDecl * Method) {
3621 const unsigned MaxEditDistance = 1;
3622 unsigned BestEditDistance = MaxEditDistance + 1;
3623 std::string MethodName = Method->getSelector().getAsString();
3624
3625 unsigned MinPossibleEditDistance = abs((int)MethodName.size() - (int)Typo.size());
3626 if (MinPossibleEditDistance > 0 &&
3627 Typo.size() / MinPossibleEditDistance < 1)
3628 return;
3629 unsigned EditDistance = Typo.edit_distance(MethodName, true, MaxEditDistance);
3630 if (EditDistance > MaxEditDistance)
3631 return;
3632 if (EditDistance == BestEditDistance)
3633 BestMethod.push_back(Method);
3634 else if (EditDistance < BestEditDistance) {
3635 BestMethod.clear();
3636 BestMethod.push_back(Method);
3637 }
3638}
3639
3640static bool HelperIsMethodInObjCType(Sema &S, Selector Sel,
3641 QualType ObjectType) {
3642 if (ObjectType.isNull())
3643 return true;
3644 if (S.LookupMethodInObjectType(Sel, ObjectType, true/*Instance method*/))
3645 return true;
3646 return S.LookupMethodInObjectType(Sel, ObjectType, false/*Class method*/) !=
3647 nullptr;
3648}
3649
3650const ObjCMethodDecl *
3651Sema::SelectorsForTypoCorrection(Selector Sel,
3652 QualType ObjectType) {
3653 unsigned NumArgs = Sel.getNumArgs();
3654 SmallVector<const ObjCMethodDecl *, 8> Methods;
3655 bool ObjectIsId = true, ObjectIsClass = true;
3656 if (ObjectType.isNull())
3657 ObjectIsId = ObjectIsClass = false;
3658 else if (!ObjectType->isObjCObjectPointerType())
3659 return nullptr;
3660 else if (const ObjCObjectPointerType *ObjCPtr =
3661 ObjectType->getAsObjCInterfacePointerType()) {
3662 ObjectType = QualType(ObjCPtr->getInterfaceType(), 0);
3663 ObjectIsId = ObjectIsClass = false;
3664 }
3665 else if (ObjectType->isObjCIdType() || ObjectType->isObjCQualifiedIdType())
3666 ObjectIsClass = false;
3667 else if (ObjectType->isObjCClassType() || ObjectType->isObjCQualifiedClassType())
3668 ObjectIsId = false;
3669 else
3670 return nullptr;
3671
3672 for (GlobalMethodPool::iterator b = MethodPool.begin(),
3673 e = MethodPool.end(); b != e; b++) {
3674 // instance methods
3675 for (ObjCMethodList *M = &b->second.first; M; M=M->getNext())
3676 if (M->getMethod() &&
3677 (M->getMethod()->getSelector().getNumArgs() == NumArgs) &&
3678 (M->getMethod()->getSelector() != Sel)) {
3679 if (ObjectIsId)
3680 Methods.push_back(M->getMethod());
3681 else if (!ObjectIsClass &&
3682 HelperIsMethodInObjCType(*this, M->getMethod()->getSelector(),
3683 ObjectType))
3684 Methods.push_back(M->getMethod());
3685 }
3686 // class methods
3687 for (ObjCMethodList *M = &b->second.second; M; M=M->getNext())
3688 if (M->getMethod() &&
3689 (M->getMethod()->getSelector().getNumArgs() == NumArgs) &&
3690 (M->getMethod()->getSelector() != Sel)) {
3691 if (ObjectIsClass)
3692 Methods.push_back(M->getMethod());
3693 else if (!ObjectIsId &&
3694 HelperIsMethodInObjCType(*this, M->getMethod()->getSelector(),
3695 ObjectType))
3696 Methods.push_back(M->getMethod());
3697 }
3698 }
3699
3700 SmallVector<const ObjCMethodDecl *, 8> SelectedMethods;
3701 for (unsigned i = 0, e = Methods.size(); i < e; i++) {
3702 HelperSelectorsForTypoCorrection(SelectedMethods,
3703 Sel.getAsString(), Methods[i]);
3704 }
3705 return (SelectedMethods.size() == 1) ? SelectedMethods[0] : nullptr;
3706}
3707
3708/// DiagnoseDuplicateIvars -
3709/// Check for duplicate ivars in the entire class at the start of
3710/// \@implementation. This becomes necesssary because class extension can
3711/// add ivars to a class in random order which will not be known until
3712/// class's \@implementation is seen.
3713void Sema::DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID,
3714 ObjCInterfaceDecl *SID) {
3715 for (auto *Ivar : ID->ivars()) {
3716 if (Ivar->isInvalidDecl())
3717 continue;
3718 if (IdentifierInfo *II = Ivar->getIdentifier()) {
3719 ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(II);
3720 if (prevIvar) {
3721 Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
3722 Diag(prevIvar->getLocation(), diag::note_previous_declaration);
3723 Ivar->setInvalidDecl();
3724 }
3725 }
3726 }
3727}
3728
3729/// Diagnose attempts to define ARC-__weak ivars when __weak is disabled.
3730static void DiagnoseWeakIvars(Sema &S, ObjCImplementationDecl *ID) {
3731 if (S.getLangOpts().ObjCWeak) return;
3732
3733 for (auto ivar = ID->getClassInterface()->all_declared_ivar_begin();
3734 ivar; ivar = ivar->getNextIvar()) {
3735 if (ivar->isInvalidDecl()) continue;
3736 if (ivar->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
3737 if (S.getLangOpts().ObjCWeakRuntime) {
3738 S.Diag(ivar->getLocation(), diag::err_arc_weak_disabled);
3739 } else {
3740 S.Diag(ivar->getLocation(), diag::err_arc_weak_no_runtime);
3741 }
3742 }
3743 }
3744}
3745
3746/// Diagnose attempts to use flexible array member with retainable object type.
3747static void DiagnoseRetainableFlexibleArrayMember(Sema &S,
3748 ObjCInterfaceDecl *ID) {
3749 if (!S.getLangOpts().ObjCAutoRefCount)
3750 return;
3751
3752 for (auto ivar = ID->all_declared_ivar_begin(); ivar;
3753 ivar = ivar->getNextIvar()) {
3754 if (ivar->isInvalidDecl())
3755 continue;
3756 QualType IvarTy = ivar->getType();
3757 if (IvarTy->isIncompleteArrayType() &&
3758 (IvarTy.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) &&
3759 IvarTy->isObjCLifetimeType()) {
3760 S.Diag(ivar->getLocation(), diag::err_flexible_array_arc_retainable);
3761 ivar->setInvalidDecl();
3762 }
3763 }
3764}
3765
3766Sema::ObjCContainerKind Sema::getObjCContainerKind() const {
3767 switch (CurContext->getDeclKind()) {
3768 case Decl::ObjCInterface:
3769 return Sema::OCK_Interface;
3770 case Decl::ObjCProtocol:
3771 return Sema::OCK_Protocol;
3772 case Decl::ObjCCategory:
3773 if (cast<ObjCCategoryDecl>(CurContext)->IsClassExtension())
3774 return Sema::OCK_ClassExtension;
3775 return Sema::OCK_Category;
3776 case Decl::ObjCImplementation:
3777 return Sema::OCK_Implementation;
3778 case Decl::ObjCCategoryImpl:
3779 return Sema::OCK_CategoryImplementation;
3780
3781 default:
3782 return Sema::OCK_None;
3783 }
3784}
3785
3786static bool IsVariableSizedType(QualType T) {
3787 if (T->isIncompleteArrayType())
3788 return true;
3789 const auto *RecordTy = T->getAs<RecordType>();
3790 return (RecordTy && RecordTy->getDecl()->hasFlexibleArrayMember());
3791}
3792
3793static void DiagnoseVariableSizedIvars(Sema &S, ObjCContainerDecl *OCD) {
3794 ObjCInterfaceDecl *IntfDecl = nullptr;
3795 ObjCInterfaceDecl::ivar_range Ivars = llvm::make_range(
3796 ObjCInterfaceDecl::ivar_iterator(), ObjCInterfaceDecl::ivar_iterator());
3797 if ((IntfDecl = dyn_cast<ObjCInterfaceDecl>(OCD))) {
3798 Ivars = IntfDecl->ivars();
3799 } else if (auto *ImplDecl = dyn_cast<ObjCImplementationDecl>(OCD)) {
3800 IntfDecl = ImplDecl->getClassInterface();
3801 Ivars = ImplDecl->ivars();
3802 } else if (auto *CategoryDecl = dyn_cast<ObjCCategoryDecl>(OCD)) {
3803 if (CategoryDecl->IsClassExtension()) {
3804 IntfDecl = CategoryDecl->getClassInterface();
3805 Ivars = CategoryDecl->ivars();
3806 }
3807 }
3808
3809 // Check if variable sized ivar is in interface and visible to subclasses.
3810 if (!isa<ObjCInterfaceDecl>(OCD)) {
3811 for (auto ivar : Ivars) {
3812 if (!ivar->isInvalidDecl() && IsVariableSizedType(ivar->getType())) {
3813 S.Diag(ivar->getLocation(), diag::warn_variable_sized_ivar_visibility)
3814 << ivar->getDeclName() << ivar->getType();
3815 }
3816 }
3817 }
3818
3819 // Subsequent checks require interface decl.
3820 if (!IntfDecl)
3821 return;
3822
3823 // Check if variable sized ivar is followed by another ivar.
3824 for (ObjCIvarDecl *ivar = IntfDecl->all_declared_ivar_begin(); ivar;
3825 ivar = ivar->getNextIvar()) {
3826 if (ivar->isInvalidDecl() || !ivar->getNextIvar())
3827 continue;
3828 QualType IvarTy = ivar->getType();
3829 bool IsInvalidIvar = false;
3830 if (IvarTy->isIncompleteArrayType()) {
3831 S.Diag(ivar->getLocation(), diag::err_flexible_array_not_at_end)
3832 << ivar->getDeclName() << IvarTy
3833 << TTK_Class; // Use "class" for Obj-C.
3834 IsInvalidIvar = true;
3835 } else if (const RecordType *RecordTy = IvarTy->getAs<RecordType>()) {
3836 if (RecordTy->getDecl()->hasFlexibleArrayMember()) {
3837 S.Diag(ivar->getLocation(),
3838 diag::err_objc_variable_sized_type_not_at_end)
3839 << ivar->getDeclName() << IvarTy;
3840 IsInvalidIvar = true;
3841 }
3842 }
3843 if (IsInvalidIvar) {
3844 S.Diag(ivar->getNextIvar()->getLocation(),
3845 diag::note_next_ivar_declaration)
3846 << ivar->getNextIvar()->getSynthesize();
3847 ivar->setInvalidDecl();
3848 }
3849 }
3850
3851 // Check if ObjC container adds ivars after variable sized ivar in superclass.
3852 // Perform the check only if OCD is the first container to declare ivars to
3853 // avoid multiple warnings for the same ivar.
3854 ObjCIvarDecl *FirstIvar =
3855 (Ivars.begin() == Ivars.end()) ? nullptr : *Ivars.begin();
3856 if (FirstIvar && (FirstIvar == IntfDecl->all_declared_ivar_begin())) {
3857 const ObjCInterfaceDecl *SuperClass = IntfDecl->getSuperClass();
3858 while (SuperClass && SuperClass->ivar_empty())
3859 SuperClass = SuperClass->getSuperClass();
3860 if (SuperClass) {
3861 auto IvarIter = SuperClass->ivar_begin();
3862 std::advance(IvarIter, SuperClass->ivar_size() - 1);
3863 const ObjCIvarDecl *LastIvar = *IvarIter;
3864 if (IsVariableSizedType(LastIvar->getType())) {
3865 S.Diag(FirstIvar->getLocation(),
3866 diag::warn_superclass_variable_sized_type_not_at_end)
3867 << FirstIvar->getDeclName() << LastIvar->getDeclName()
3868 << LastIvar->getType() << SuperClass->getDeclName();
3869 S.Diag(LastIvar->getLocation(), diag::note_entity_declared_at)
3870 << LastIvar->getDeclName();
3871 }
3872 }
3873 }
3874}
3875
3876// Note: For class/category implementations, allMethods is always null.
3877Decl *Sema::ActOnAtEnd(Scope *S, SourceRange AtEnd, ArrayRef<Decl *> allMethods,
3878 ArrayRef<DeclGroupPtrTy> allTUVars) {
3879 if (getObjCContainerKind() == Sema::OCK_None)
3880 return nullptr;
3881
3882 assert(AtEnd.isValid() && "Invalid location for '@end'")((AtEnd.isValid() && "Invalid location for '@end'") ?
static_cast<void> (0) : __assert_fail ("AtEnd.isValid() && \"Invalid location for '@end'\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 3882, __PRETTY_FUNCTION__))
;
3883
3884 auto *OCD = cast<ObjCContainerDecl>(CurContext);
3885 Decl *ClassDecl = OCD;
3886
3887 bool isInterfaceDeclKind =
3888 isa<ObjCInterfaceDecl>(ClassDecl) || isa<ObjCCategoryDecl>(ClassDecl)
3889 || isa<ObjCProtocolDecl>(ClassDecl);
3890 bool checkIdenticalMethods = isa<ObjCImplementationDecl>(ClassDecl);
3891
3892 // FIXME: Remove these and use the ObjCContainerDecl/DeclContext.
3893 llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap;
3894 llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap;
3895
3896 for (unsigned i = 0, e = allMethods.size(); i != e; i++ ) {
3897 ObjCMethodDecl *Method =
3898 cast_or_null<ObjCMethodDecl>(allMethods[i]);
3899
3900 if (!Method) continue; // Already issued a diagnostic.
3901 if (Method->isInstanceMethod()) {
3902 /// Check for instance method of the same name with incompatible types
3903 const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()];
3904 bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
3905 : false;
3906 if ((isInterfaceDeclKind && PrevMethod && !match)
3907 || (checkIdenticalMethods && match)) {
3908 Diag(Method->getLocation(), diag::err_duplicate_method_decl)
3909 << Method->getDeclName();
3910 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
3911 Method->setInvalidDecl();
3912 } else {
3913 if (PrevMethod) {
3914 Method->setAsRedeclaration(PrevMethod);
3915 if (!Context.getSourceManager().isInSystemHeader(
3916 Method->getLocation()))
3917 Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
3918 << Method->getDeclName();
3919 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
3920 }
3921 InsMap[Method->getSelector()] = Method;
3922 /// The following allows us to typecheck messages to "id".
3923 AddInstanceMethodToGlobalPool(Method);
3924 }
3925 } else {
3926 /// Check for class method of the same name with incompatible types
3927 const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()];
3928 bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
3929 : false;
3930 if ((isInterfaceDeclKind && PrevMethod && !match)
3931 || (checkIdenticalMethods && match)) {
3932 Diag(Method->getLocation(), diag::err_duplicate_method_decl)
3933 << Method->getDeclName();
3934 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
3935 Method->setInvalidDecl();
3936 } else {
3937 if (PrevMethod) {
3938 Method->setAsRedeclaration(PrevMethod);
3939 if (!Context.getSourceManager().isInSystemHeader(
3940 Method->getLocation()))
3941 Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
3942 << Method->getDeclName();
3943 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
3944 }
3945 ClsMap[Method->getSelector()] = Method;
3946 AddFactoryMethodToGlobalPool(Method);
3947 }
3948 }
3949 }
3950 if (isa<ObjCInterfaceDecl>(ClassDecl)) {
3951 // Nothing to do here.
3952 } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(ClassDecl)) {
3953 // Categories are used to extend the class by declaring new methods.
3954 // By the same token, they are also used to add new properties. No
3955 // need to compare the added property to those in the class.
3956
3957 if (C->IsClassExtension()) {
3958 ObjCInterfaceDecl *CCPrimary = C->getClassInterface();
3959 DiagnoseClassExtensionDupMethods(C, CCPrimary);
3960 }
3961 }
3962 if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(ClassDecl)) {
3963 if (CDecl->getIdentifier())
3964 // ProcessPropertyDecl is responsible for diagnosing conflicts with any
3965 // user-defined setter/getter. It also synthesizes setter/getter methods
3966 // and adds them to the DeclContext and global method pools.
3967 for (auto *I : CDecl->properties())
3968 ProcessPropertyDecl(I);
3969 CDecl->setAtEndRange(AtEnd);
3970 }
3971 if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(ClassDecl)) {
3972 IC->setAtEndRange(AtEnd);
3973 if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) {
3974 // Any property declared in a class extension might have user
3975 // declared setter or getter in current class extension or one
3976 // of the other class extensions. Mark them as synthesized as
3977 // property will be synthesized when property with same name is
3978 // seen in the @implementation.
3979 for (const auto *Ext : IDecl->visible_extensions()) {
3980 for (const auto *Property : Ext->instance_properties()) {
3981 // Skip over properties declared @dynamic
3982 if (const ObjCPropertyImplDecl *PIDecl
3983 = IC->FindPropertyImplDecl(Property->getIdentifier(),
3984 Property->getQueryKind()))
3985 if (PIDecl->getPropertyImplementation()
3986 == ObjCPropertyImplDecl::Dynamic)
3987 continue;
3988
3989 for (const auto *Ext : IDecl->visible_extensions()) {
3990 if (ObjCMethodDecl *GetterMethod
3991 = Ext->getInstanceMethod(Property->getGetterName()))
3992 GetterMethod->setPropertyAccessor(true);
3993 if (!Property->isReadOnly())
3994 if (ObjCMethodDecl *SetterMethod
3995 = Ext->getInstanceMethod(Property->getSetterName()))
3996 SetterMethod->setPropertyAccessor(true);
3997 }
3998 }
3999 }
4000 ImplMethodsVsClassMethods(S, IC, IDecl);
4001 AtomicPropertySetterGetterRules(IC, IDecl);
4002 DiagnoseOwningPropertyGetterSynthesis(IC);
4003 DiagnoseUnusedBackingIvarInAccessor(S, IC);
4004 if (IDecl->hasDesignatedInitializers())
4005 DiagnoseMissingDesignatedInitOverrides(IC, IDecl);
4006 DiagnoseWeakIvars(*this, IC);
4007 DiagnoseRetainableFlexibleArrayMember(*this, IDecl);
4008
4009 bool HasRootClassAttr = IDecl->hasAttr<ObjCRootClassAttr>();
4010 if (IDecl->getSuperClass() == nullptr) {
4011 // This class has no superclass, so check that it has been marked with
4012 // __attribute((objc_root_class)).
4013 if (!HasRootClassAttr) {
4014 SourceLocation DeclLoc(IDecl->getLocation());
4015 SourceLocation SuperClassLoc(getLocForEndOfToken(DeclLoc));
4016 Diag(DeclLoc, diag::warn_objc_root_class_missing)
4017 << IDecl->getIdentifier();
4018 // See if NSObject is in the current scope, and if it is, suggest
4019 // adding " : NSObject " to the class declaration.
4020 NamedDecl *IF = LookupSingleName(TUScope,
4021 NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject),
4022 DeclLoc, LookupOrdinaryName);
4023 ObjCInterfaceDecl *NSObjectDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF);
4024 if (NSObjectDecl && NSObjectDecl->getDefinition()) {
4025 Diag(SuperClassLoc, diag::note_objc_needs_superclass)
4026 << FixItHint::CreateInsertion(SuperClassLoc, " : NSObject ");
4027 } else {
4028 Diag(SuperClassLoc, diag::note_objc_needs_superclass);
4029 }
4030 }
4031 } else if (HasRootClassAttr) {
4032 // Complain that only root classes may have this attribute.
4033 Diag(IDecl->getLocation(), diag::err_objc_root_class_subclass);
4034 }
4035
4036 if (const ObjCInterfaceDecl *Super = IDecl->getSuperClass()) {
4037 // An interface can subclass another interface with a
4038 // objc_subclassing_restricted attribute when it has that attribute as
4039 // well (because of interfaces imported from Swift). Therefore we have
4040 // to check if we can subclass in the implementation as well.
4041 if (IDecl->hasAttr<ObjCSubclassingRestrictedAttr>() &&
4042 Super->hasAttr<ObjCSubclassingRestrictedAttr>()) {
4043 Diag(IC->getLocation(), diag::err_restricted_superclass_mismatch);
4044 Diag(Super->getLocation(), diag::note_class_declared);
4045 }
4046 }
4047
4048 if (LangOpts.ObjCRuntime.isNonFragile()) {
4049 while (IDecl->getSuperClass()) {
4050 DiagnoseDuplicateIvars(IDecl, IDecl->getSuperClass());
4051 IDecl = IDecl->getSuperClass();
4052 }
4053 }
4054 }
4055 SetIvarInitializers(IC);
4056 } else if (ObjCCategoryImplDecl* CatImplClass =
4057 dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) {
4058 CatImplClass->setAtEndRange(AtEnd);
4059
4060 // Find category interface decl and then check that all methods declared
4061 // in this interface are implemented in the category @implementation.
4062 if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) {
4063 if (ObjCCategoryDecl *Cat
4064 = IDecl->FindCategoryDeclaration(CatImplClass->getIdentifier())) {
4065 ImplMethodsVsClassMethods(S, CatImplClass, Cat);
4066 }
4067 }
4068 } else if (const auto *IntfDecl = dyn_cast<ObjCInterfaceDecl>(ClassDecl)) {
4069 if (const ObjCInterfaceDecl *Super = IntfDecl->getSuperClass()) {
4070 if (!IntfDecl->hasAttr<ObjCSubclassingRestrictedAttr>() &&
4071 Super->hasAttr<ObjCSubclassingRestrictedAttr>()) {
4072 Diag(IntfDecl->getLocation(), diag::err_restricted_superclass_mismatch);
4073 Diag(Super->getLocation(), diag::note_class_declared);
4074 }
4075 }
4076 }
4077 DiagnoseVariableSizedIvars(*this, OCD);
4078 if (isInterfaceDeclKind) {
4079 // Reject invalid vardecls.
4080 for (unsigned i = 0, e = allTUVars.size(); i != e; i++) {
4081 DeclGroupRef DG = allTUVars[i].get();
4082 for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
4083 if (VarDecl *VDecl = dyn_cast<VarDecl>(*I)) {
4084 if (!VDecl->hasExternalStorage())
4085 Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass);
4086 }
4087 }
4088 }
4089 ActOnObjCContainerFinishDefinition();
4090
4091 for (unsigned i = 0, e = allTUVars.size(); i != e; i++) {
4092 DeclGroupRef DG = allTUVars[i].get();
4093 for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
4094 (*I)->setTopLevelDeclInObjCContainer();
4095 Consumer.HandleTopLevelDeclInObjCContainer(DG);
4096 }
4097
4098 ActOnDocumentableDecl(ClassDecl);
4099 return ClassDecl;
4100}
4101
4102/// CvtQTToAstBitMask - utility routine to produce an AST bitmask for
4103/// objective-c's type qualifier from the parser version of the same info.
4104static Decl::ObjCDeclQualifier
4105CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal) {
4106 return (Decl::ObjCDeclQualifier) (unsigned) PQTVal;
4107}
4108
4109/// Check whether the declared result type of the given Objective-C
4110/// method declaration is compatible with the method's class.
4111///
4112static Sema::ResultTypeCompatibilityKind
4113CheckRelatedResultTypeCompatibility(Sema &S, ObjCMethodDecl *Method,
4114 ObjCInterfaceDecl *CurrentClass) {
4115 QualType ResultType = Method->getReturnType();
4116
4117 // If an Objective-C method inherits its related result type, then its
4118 // declared result type must be compatible with its own class type. The
4119 // declared result type is compatible if:
4120 if (const ObjCObjectPointerType *ResultObjectType
4121 = ResultType->getAs<ObjCObjectPointerType>()) {
4122 // - it is id or qualified id, or
4123 if (ResultObjectType->isObjCIdType() ||
4124 ResultObjectType->isObjCQualifiedIdType())
4125 return Sema::RTC_Compatible;
4126
4127 if (CurrentClass) {
4128 if (ObjCInterfaceDecl *ResultClass
4129 = ResultObjectType->getInterfaceDecl()) {
4130 // - it is the same as the method's class type, or
4131 if (declaresSameEntity(CurrentClass, ResultClass))
4132 return Sema::RTC_Compatible;
4133
4134 // - it is a superclass of the method's class type
4135 if (ResultClass->isSuperClassOf(CurrentClass))
4136 return Sema::RTC_Compatible;
4137 }
4138 } else {
4139 // Any Objective-C pointer type might be acceptable for a protocol
4140 // method; we just don't know.
4141 return Sema::RTC_Unknown;
4142 }
4143 }
4144
4145 return Sema::RTC_Incompatible;
4146}
4147
4148namespace {
4149/// A helper class for searching for methods which a particular method
4150/// overrides.
4151class OverrideSearch {
4152public:
4153 Sema &S;
4154 ObjCMethodDecl *Method;
4155 llvm::SmallSetVector<ObjCMethodDecl*, 4> Overridden;
4156 bool Recursive;
4157
4158public:
4159 OverrideSearch(Sema &S, ObjCMethodDecl *method) : S(S), Method(method) {
4160 Selector selector = method->getSelector();
4161
4162 // Bypass this search if we've never seen an instance/class method
4163 // with this selector before.
4164 Sema::GlobalMethodPool::iterator it = S.MethodPool.find(selector);
4165 if (it == S.MethodPool.end()) {
4166 if (!S.getExternalSource()) return;
4167 S.ReadMethodPool(selector);
4168
4169 it = S.MethodPool.find(selector);
4170 if (it == S.MethodPool.end())
4171 return;
4172 }
4173 ObjCMethodList &list =
4174 method->isInstanceMethod() ? it->second.first : it->second.second;
4175 if (!list.getMethod()) return;
4176
4177 ObjCContainerDecl *container
4178 = cast<ObjCContainerDecl>(method->getDeclContext());
4179
4180 // Prevent the search from reaching this container again. This is
4181 // important with categories, which override methods from the
4182 // interface and each other.
4183 if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(container)) {
4184 searchFromContainer(container);
4185 if (ObjCInterfaceDecl *Interface = Category->getClassInterface())
4186 searchFromContainer(Interface);
4187 } else {
4188 searchFromContainer(container);
4189 }
4190 }
4191
4192 typedef decltype(Overridden)::iterator iterator;
4193 iterator begin() const { return Overridden.begin(); }
4194 iterator end() const { return Overridden.end(); }
4195
4196private:
4197 void searchFromContainer(ObjCContainerDecl *container) {
4198 if (container->isInvalidDecl()) return;
4199
4200 switch (container->getDeclKind()) {
4201#define OBJCCONTAINER(type, base) \
4202 case Decl::type: \
4203 searchFrom(cast<type##Decl>(container)); \
4204 break;
4205#define ABSTRACT_DECL(expansion)
4206#define DECL(type, base) \
4207 case Decl::type:
4208#include "clang/AST/DeclNodes.inc"
4209 llvm_unreachable("not an ObjC container!")::llvm::llvm_unreachable_internal("not an ObjC container!", "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 4209)
;
4210 }
4211 }
4212
4213 void searchFrom(ObjCProtocolDecl *protocol) {
4214 if (!protocol->hasDefinition())
4215 return;
4216
4217 // A method in a protocol declaration overrides declarations from
4218 // referenced ("parent") protocols.
4219 search(protocol->getReferencedProtocols());
4220 }
4221
4222 void searchFrom(ObjCCategoryDecl *category) {
4223 // A method in a category declaration overrides declarations from
4224 // the main class and from protocols the category references.
4225 // The main class is handled in the constructor.
4226 search(category->getReferencedProtocols());
4227 }
4228
4229 void searchFrom(ObjCCategoryImplDecl *impl) {
4230 // A method in a category definition that has a category
4231 // declaration overrides declarations from the category
4232 // declaration.
4233 if (ObjCCategoryDecl *category = impl->getCategoryDecl()) {
4234 search(category);
4235 if (ObjCInterfaceDecl *Interface = category->getClassInterface())
4236 search(Interface);
4237
4238 // Otherwise it overrides declarations from the class.
4239 } else if (ObjCInterfaceDecl *Interface = impl->getClassInterface()) {
4240 search(Interface);
4241 }
4242 }
4243
4244 void searchFrom(ObjCInterfaceDecl *iface) {
4245 // A method in a class declaration overrides declarations from
4246 if (!iface->hasDefinition())
4247 return;
4248
4249 // - categories,
4250 for (auto *Cat : iface->known_categories())
4251 search(Cat);
4252
4253 // - the super class, and
4254 if (ObjCInterfaceDecl *super = iface->getSuperClass())
4255 search(super);
4256
4257 // - any referenced protocols.
4258 search(iface->getReferencedProtocols());
4259 }
4260
4261 void searchFrom(ObjCImplementationDecl *impl) {
4262 // A method in a class implementation overrides declarations from
4263 // the class interface.
4264 if (ObjCInterfaceDecl *Interface = impl->getClassInterface())
4265 search(Interface);
4266 }
4267
4268 void search(const ObjCProtocolList &protocols) {
4269 for (ObjCProtocolList::iterator i = protocols.begin(), e = protocols.end();
4270 i != e; ++i)
4271 search(*i);
4272 }
4273
4274 void search(ObjCContainerDecl *container) {
4275 // Check for a method in this container which matches this selector.
4276 ObjCMethodDecl *meth = container->getMethod(Method->getSelector(),
4277 Method->isInstanceMethod(),
4278 /*AllowHidden=*/true);
4279
4280 // If we find one, record it and bail out.
4281 if (meth) {
4282 Overridden.insert(meth);
4283 return;
4284 }
4285
4286 // Otherwise, search for methods that a hypothetical method here
4287 // would have overridden.
4288
4289 // Note that we're now in a recursive case.
4290 Recursive = true;
4291
4292 searchFromContainer(container);
4293 }
4294};
4295} // end anonymous namespace
4296
4297void Sema::CheckObjCMethodOverrides(ObjCMethodDecl *ObjCMethod,
4298 ObjCInterfaceDecl *CurrentClass,
4299 ResultTypeCompatibilityKind RTC) {
4300 // Search for overridden methods and merge information down from them.
4301 OverrideSearch overrides(*this, ObjCMethod);
4302 // Keep track if the method overrides any method in the class's base classes,
4303 // its protocols, or its categories' protocols; we will keep that info
4304 // in the ObjCMethodDecl.
4305 // For this info, a method in an implementation is not considered as
4306 // overriding the same method in the interface or its categories.
4307 bool hasOverriddenMethodsInBaseOrProtocol = false;
4308 for (OverrideSearch::iterator
4309 i = overrides.begin(), e = overrides.end(); i != e; ++i) {
4310 ObjCMethodDecl *overridden = *i;
4311
4312 if (!hasOverriddenMethodsInBaseOrProtocol) {
4313 if (isa<ObjCProtocolDecl>(overridden->getDeclContext()) ||
4314 CurrentClass != overridden->getClassInterface() ||
4315 overridden->isOverriding()) {
4316 hasOverriddenMethodsInBaseOrProtocol = true;
4317
4318 } else if (isa<ObjCImplDecl>(ObjCMethod->getDeclContext())) {
4319 // OverrideSearch will return as "overridden" the same method in the
4320 // interface. For hasOverriddenMethodsInBaseOrProtocol, we need to
4321 // check whether a category of a base class introduced a method with the
4322 // same selector, after the interface method declaration.
4323 // To avoid unnecessary lookups in the majority of cases, we use the
4324 // extra info bits in GlobalMethodPool to check whether there were any
4325 // category methods with this selector.
4326 GlobalMethodPool::iterator It =
4327 MethodPool.find(ObjCMethod->getSelector());
4328 if (It != MethodPool.end()) {
4329 ObjCMethodList &List =
4330 ObjCMethod->isInstanceMethod()? It->second.first: It->second.second;
4331 unsigned CategCount = List.getBits();
4332 if (CategCount > 0) {
4333 // If the method is in a category we'll do lookup if there were at
4334 // least 2 category methods recorded, otherwise only one will do.
4335 if (CategCount > 1 ||
4336 !isa<ObjCCategoryImplDecl>(overridden->getDeclContext())) {
4337 OverrideSearch overrides(*this, overridden);
4338 for (OverrideSearch::iterator
4339 OI= overrides.begin(), OE= overrides.end(); OI!=OE; ++OI) {
4340 ObjCMethodDecl *SuperOverridden = *OI;
4341 if (isa<ObjCProtocolDecl>(SuperOverridden->getDeclContext()) ||
4342 CurrentClass != SuperOverridden->getClassInterface()) {
4343 hasOverriddenMethodsInBaseOrProtocol = true;
4344 overridden->setOverriding(true);
4345 break;
4346 }
4347 }
4348 }
4349 }
4350 }
4351 }
4352 }
4353
4354 // Propagate down the 'related result type' bit from overridden methods.
4355 if (RTC != Sema::RTC_Incompatible && overridden->hasRelatedResultType())
4356 ObjCMethod->setRelatedResultType();
4357
4358 // Then merge the declarations.
4359 mergeObjCMethodDecls(ObjCMethod, overridden);
4360
4361 if (ObjCMethod->isImplicit() && overridden->isImplicit())
4362 continue; // Conflicting properties are detected elsewhere.
4363
4364 // Check for overriding methods
4365 if (isa<ObjCInterfaceDecl>(ObjCMethod->getDeclContext()) ||
4366 isa<ObjCImplementationDecl>(ObjCMethod->getDeclContext()))
4367 CheckConflictingOverridingMethod(ObjCMethod, overridden,
4368 isa<ObjCProtocolDecl>(overridden->getDeclContext()));
4369
4370 if (CurrentClass && overridden->getDeclContext() != CurrentClass &&
4371 isa<ObjCInterfaceDecl>(overridden->getDeclContext()) &&
4372 !overridden->isImplicit() /* not meant for properties */) {
4373 ObjCMethodDecl::param_iterator ParamI = ObjCMethod->param_begin(),
4374 E = ObjCMethod->param_end();
4375 ObjCMethodDecl::param_iterator PrevI = overridden->param_begin(),
4376 PrevE = overridden->param_end();
4377 for (; ParamI != E && PrevI != PrevE; ++ParamI, ++PrevI) {
4378 assert(PrevI != overridden->param_end() && "Param mismatch")((PrevI != overridden->param_end() && "Param mismatch"
) ? static_cast<void> (0) : __assert_fail ("PrevI != overridden->param_end() && \"Param mismatch\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 4378, __PRETTY_FUNCTION__))
;
4379 QualType T1 = Context.getCanonicalType((*ParamI)->getType());
4380 QualType T2 = Context.getCanonicalType((*PrevI)->getType());
4381 // If type of argument of method in this class does not match its
4382 // respective argument type in the super class method, issue warning;
4383 if (!Context.typesAreCompatible(T1, T2)) {
4384 Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super)
4385 << T1 << T2;
4386 Diag(overridden->getLocation(), diag::note_previous_declaration);
4387 break;
4388 }
4389 }
4390 }
4391 }
4392
4393 ObjCMethod->setOverriding(hasOverriddenMethodsInBaseOrProtocol);
4394}
4395
4396/// Merge type nullability from for a redeclaration of the same entity,
4397/// producing the updated type of the redeclared entity.
4398static QualType mergeTypeNullabilityForRedecl(Sema &S, SourceLocation loc,
4399 QualType type,
4400 bool usesCSKeyword,
4401 SourceLocation prevLoc,
4402 QualType prevType,
4403 bool prevUsesCSKeyword) {
4404 // Determine the nullability of both types.
4405 auto nullability = type->getNullability(S.Context);
4406 auto prevNullability = prevType->getNullability(S.Context);
4407
4408 // Easy case: both have nullability.
4409 if (nullability.hasValue() == prevNullability.hasValue()) {
4410 // Neither has nullability; continue.
4411 if (!nullability)
4412 return type;
4413
4414 // The nullabilities are equivalent; do nothing.
4415 if (*nullability == *prevNullability)
4416 return type;
4417
4418 // Complain about mismatched nullability.
4419 S.Diag(loc, diag::err_nullability_conflicting)
4420 << DiagNullabilityKind(*nullability, usesCSKeyword)
4421 << DiagNullabilityKind(*prevNullability, prevUsesCSKeyword);
4422 return type;
4423 }
4424
4425 // If it's the redeclaration that has nullability, don't change anything.
4426 if (nullability)
4427 return type;
4428
4429 // Otherwise, provide the result with the same nullability.
4430 return S.Context.getAttributedType(
4431 AttributedType::getNullabilityAttrKind(*prevNullability),
4432 type, type);
4433}
4434
4435/// Merge information from the declaration of a method in the \@interface
4436/// (or a category/extension) into the corresponding method in the
4437/// @implementation (for a class or category).
4438static void mergeInterfaceMethodToImpl(Sema &S,
4439 ObjCMethodDecl *method,
4440 ObjCMethodDecl *prevMethod) {
4441 // Merge the objc_requires_super attribute.
4442 if (prevMethod->hasAttr<ObjCRequiresSuperAttr>() &&
17
Taking true branch
4443 !method->hasAttr<ObjCRequiresSuperAttr>()) {
4444 // merge the attribute into implementation.
4445 method->addAttr(
4446 ObjCRequiresSuperAttr::CreateImplicit(S.Context,
18
Calling 'ObjCRequiresSuperAttr::CreateImplicit'
4447 method->getLocation()));
4448 }
4449
4450 // Merge nullability of the result type.
4451 QualType newReturnType
4452 = mergeTypeNullabilityForRedecl(
4453 S, method->getReturnTypeSourceRange().getBegin(),
4454 method->getReturnType(),
4455 method->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability,
4456 prevMethod->getReturnTypeSourceRange().getBegin(),
4457 prevMethod->getReturnType(),
4458 prevMethod->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability);
4459 method->setReturnType(newReturnType);
4460
4461 // Handle each of the parameters.
4462 unsigned numParams = method->param_size();
4463 unsigned numPrevParams = prevMethod->param_size();
4464 for (unsigned i = 0, n = std::min(numParams, numPrevParams); i != n; ++i) {
4465 ParmVarDecl *param = method->param_begin()[i];
4466 ParmVarDecl *prevParam = prevMethod->param_begin()[i];
4467
4468 // Merge nullability.
4469 QualType newParamType
4470 = mergeTypeNullabilityForRedecl(
4471 S, param->getLocation(), param->getType(),
4472 param->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability,
4473 prevParam->getLocation(), prevParam->getType(),
4474 prevParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability);
4475 param->setType(newParamType);
4476 }
4477}
4478
4479/// Verify that the method parameters/return value have types that are supported
4480/// by the x86 target.
4481static void checkObjCMethodX86VectorTypes(Sema &SemaRef,
4482 const ObjCMethodDecl *Method) {
4483 assert(SemaRef.getASTContext().getTargetInfo().getTriple().getArch() ==((SemaRef.getASTContext().getTargetInfo().getTriple().getArch
() == llvm::Triple::x86 && "x86-specific check invoked for a different target"
) ? static_cast<void> (0) : __assert_fail ("SemaRef.getASTContext().getTargetInfo().getTriple().getArch() == llvm::Triple::x86 && \"x86-specific check invoked for a different target\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 4485, __PRETTY_FUNCTION__))
4484 llvm::Triple::x86 &&((SemaRef.getASTContext().getTargetInfo().getTriple().getArch
() == llvm::Triple::x86 && "x86-specific check invoked for a different target"
) ? static_cast<void> (0) : __assert_fail ("SemaRef.getASTContext().getTargetInfo().getTriple().getArch() == llvm::Triple::x86 && \"x86-specific check invoked for a different target\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 4485, __PRETTY_FUNCTION__))
4485 "x86-specific check invoked for a different target")((SemaRef.getASTContext().getTargetInfo().getTriple().getArch
() == llvm::Triple::x86 && "x86-specific check invoked for a different target"
) ? static_cast<void> (0) : __assert_fail ("SemaRef.getASTContext().getTargetInfo().getTriple().getArch() == llvm::Triple::x86 && \"x86-specific check invoked for a different target\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 4485, __PRETTY_FUNCTION__))
;
4486 SourceLocation Loc;
4487 QualType T;
4488 for (const ParmVarDecl *P : Method->parameters()) {
4489 if (P->getType()->isVectorType()) {
4490 Loc = P->getBeginLoc();
4491 T = P->getType();
4492 break;
4493 }
4494 }
4495 if (Loc.isInvalid()) {
4496 if (Method->getReturnType()->isVectorType()) {
4497 Loc = Method->getReturnTypeSourceRange().getBegin();
4498 T = Method->getReturnType();
4499 } else
4500 return;
4501 }
4502
4503 // Vector parameters/return values are not supported by objc_msgSend on x86 in
4504 // iOS < 9 and macOS < 10.11.
4505 const auto &Triple = SemaRef.getASTContext().getTargetInfo().getTriple();
4506 VersionTuple AcceptedInVersion;
4507 if (Triple.getOS() == llvm::Triple::IOS)
4508 AcceptedInVersion = VersionTuple(/*Major=*/9);
4509 else if (Triple.isMacOSX())
4510 AcceptedInVersion = VersionTuple(/*Major=*/10, /*Minor=*/11);
4511 else
4512 return;
4513 if (SemaRef.getASTContext().getTargetInfo().getPlatformMinVersion() >=
4514 AcceptedInVersion)
4515 return;
4516 SemaRef.Diag(Loc, diag::err_objc_method_unsupported_param_ret_type)
4517 << T << (Method->getReturnType()->isVectorType() ? /*return value*/ 1
4518 : /*parameter*/ 0)
4519 << (Triple.isMacOSX() ? "macOS 10.11" : "iOS 9");
4520}
4521
4522Decl *Sema::ActOnMethodDeclaration(
4523 Scope *S, SourceLocation MethodLoc, SourceLocation EndLoc,
4524 tok::TokenKind MethodType, ObjCDeclSpec &ReturnQT, ParsedType ReturnType,
4525 ArrayRef<SourceLocation> SelectorLocs, Selector Sel,
4526 // optional arguments. The number of types/arguments is obtained
4527 // from the Sel.getNumArgs().
4528 ObjCArgInfo *ArgInfo, DeclaratorChunk::ParamInfo *CParamInfo,
4529 unsigned CNumArgs, // c-style args
4530 const ParsedAttributesView &AttrList, tok::ObjCKeywordKind MethodDeclKind,
4531 bool isVariadic, bool MethodDefinition) {
4532 // Make sure we can establish a context for the method.
4533 if (!CurContext->isObjCContainer()) {
1
Taking false branch
4534 Diag(MethodLoc, diag::err_missing_method_context);
4535 return nullptr;
4536 }
4537 Decl *ClassDecl = cast<ObjCContainerDecl>(CurContext);
4538 QualType resultDeclType;
4539
4540 bool HasRelatedResultType = false;
4541 TypeSourceInfo *ReturnTInfo = nullptr;
4542 if (ReturnType) {
2
Taking false branch
4543 resultDeclType = GetTypeFromParser(ReturnType, &ReturnTInfo);
4544
4545 if (CheckFunctionReturnType(resultDeclType, MethodLoc))
4546 return nullptr;
4547
4548 QualType bareResultType = resultDeclType;
4549 (void)AttributedType::stripOuterNullability(bareResultType);
4550 HasRelatedResultType = (bareResultType == Context.getObjCInstanceType());
4551 } else { // get the type for "id".
4552 resultDeclType = Context.getObjCIdType();
4553 Diag(MethodLoc, diag::warn_missing_method_return_type)
4554 << FixItHint::CreateInsertion(SelectorLocs.front(), "(id)");
4555 }
4556
4557 ObjCMethodDecl *ObjCMethod = ObjCMethodDecl::Create(
4558 Context, MethodLoc, EndLoc, Sel, resultDeclType, ReturnTInfo, CurContext,
4559 MethodType == tok::minus, isVariadic,
3
Assuming 'MethodType' is not equal to minus
4560 /*isPropertyAccessor=*/false,
4561 /*isImplicitlyDeclared=*/false, /*isDefined=*/false,
4562 MethodDeclKind == tok::objc_optional ? ObjCMethodDecl::Optional
4
Assuming 'MethodDeclKind' is not equal to objc_optional
5
'?' condition is false
4563 : ObjCMethodDecl::Required,
4564 HasRelatedResultType);
4565
4566 SmallVector<ParmVarDecl*, 16> Params;
4567
4568 for (unsigned i = 0, e = Sel.getNumArgs(); i != e; ++i) {
6
Assuming 'i' is equal to 'e'
7
Loop condition is false. Execution continues on line 4621
4569 QualType ArgType;
4570 TypeSourceInfo *DI;
4571
4572 if (!ArgInfo[i].Type) {
4573 ArgType = Context.getObjCIdType();
4574 DI = nullptr;
4575 } else {
4576 ArgType = GetTypeFromParser(ArgInfo[i].Type, &DI);
4577 }
4578
4579 LookupResult R(*this, ArgInfo[i].Name, ArgInfo[i].NameLoc,
4580 LookupOrdinaryName, forRedeclarationInCurContext());
4581 LookupName(R, S);
4582 if (R.isSingleResult()) {
4583 NamedDecl *PrevDecl = R.getFoundDecl();
4584 if (S->isDeclScope(PrevDecl)) {
4585 Diag(ArgInfo[i].NameLoc,
4586 (MethodDefinition ? diag::warn_method_param_redefinition
4587 : diag::warn_method_param_declaration))
4588 << ArgInfo[i].Name;
4589 Diag(PrevDecl->getLocation(),
4590 diag::note_previous_declaration);
4591 }
4592 }
4593
4594 SourceLocation StartLoc = DI
4595 ? DI->getTypeLoc().getBeginLoc()
4596 : ArgInfo[i].NameLoc;
4597
4598 ParmVarDecl* Param = CheckParameter(ObjCMethod, StartLoc,
4599 ArgInfo[i].NameLoc, ArgInfo[i].Name,
4600 ArgType, DI, SC_None);
4601
4602 Param->setObjCMethodScopeInfo(i);
4603
4604 Param->setObjCDeclQualifier(
4605 CvtQTToAstBitMask(ArgInfo[i].DeclSpec.getObjCDeclQualifier()));
4606
4607 // Apply the attributes to the parameter.
4608 ProcessDeclAttributeList(TUScope, Param, ArgInfo[i].ArgAttrs);
4609 AddPragmaAttributes(TUScope, Param);
4610
4611 if (Param->hasAttr<BlocksAttr>()) {
4612 Diag(Param->getLocation(), diag::err_block_on_nonlocal);
4613 Param->setInvalidDecl();
4614 }
4615 S->AddDecl(Param);
4616 IdResolver.AddDecl(Param);
4617
4618 Params.push_back(Param);
4619 }
4620
4621 for (unsigned i = 0, e = CNumArgs; i != e; ++i) {
8
Assuming 'i' is equal to 'e'
9
Loop condition is false. Execution continues on line 4634
4622 ParmVarDecl *Param = cast<ParmVarDecl>(CParamInfo[i].Param);
4623 QualType ArgType = Param->getType();
4624 if (ArgType.isNull())
4625 ArgType = Context.getObjCIdType();
4626 else
4627 // Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
4628 ArgType = Context.getAdjustedParameterType(ArgType);
4629
4630 Param->setDeclContext(ObjCMethod);
4631 Params.push_back(Param);
4632 }
4633
4634 ObjCMethod->setMethodParams(Context, Params, SelectorLocs);
4635 ObjCMethod->setObjCDeclQualifier(
4636 CvtQTToAstBitMask(ReturnQT.getObjCDeclQualifier()));
4637
4638 ProcessDeclAttributeList(TUScope, ObjCMethod, AttrList);
4639 AddPragmaAttributes(TUScope, ObjCMethod);
4640
4641 // Add the method now.
4642 const ObjCMethodDecl *PrevMethod = nullptr;
4643 if (ObjCImplDecl *ImpDecl = dyn_cast<ObjCImplDecl>(ClassDecl)) {
10
Taking true branch
4644 if (MethodType == tok::minus) {
11
Taking false branch
4645 PrevMethod = ImpDecl->getInstanceMethod(Sel);
4646 ImpDecl->addInstanceMethod(ObjCMethod);
4647 } else {
4648 PrevMethod = ImpDecl->getClassMethod(Sel);
4649 ImpDecl->addClassMethod(ObjCMethod);
4650 }
4651
4652 // Merge information from the @interface declaration into the
4653 // @implementation.
4654 if (ObjCInterfaceDecl *IDecl = ImpDecl->getClassInterface()) {
12
Assuming 'IDecl' is non-null
13
Taking true branch
4655 if (auto *IMD = IDecl->lookupMethod(ObjCMethod->getSelector(),
14
Assuming 'IMD' is non-null
15
Taking true branch
4656 ObjCMethod->isInstanceMethod())) {
4657 mergeInterfaceMethodToImpl(*this, ObjCMethod, IMD);
16
Calling 'mergeInterfaceMethodToImpl'
4658
4659 // Warn about defining -dealloc in a category.
4660 if (isa<ObjCCategoryImplDecl>(ImpDecl) && IMD->isOverriding() &&
4661 ObjCMethod->getSelector().getMethodFamily() == OMF_dealloc) {
4662 Diag(ObjCMethod->getLocation(), diag::warn_dealloc_in_category)
4663 << ObjCMethod->getDeclName();
4664 }
4665 }
4666
4667 // Warn if a method declared in a protocol to which a category or
4668 // extension conforms is non-escaping and the implementation's method is
4669 // escaping.
4670 for (auto *C : IDecl->visible_categories())
4671 for (auto &P : C->protocols())
4672 if (auto *IMD = P->lookupMethod(ObjCMethod->getSelector(),
4673 ObjCMethod->isInstanceMethod())) {
4674 assert(ObjCMethod->parameters().size() ==((ObjCMethod->parameters().size() == IMD->parameters().
size() && "Methods have different number of parameters"
) ? static_cast<void> (0) : __assert_fail ("ObjCMethod->parameters().size() == IMD->parameters().size() && \"Methods have different number of parameters\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 4676, __PRETTY_FUNCTION__))
4675 IMD->parameters().size() &&((ObjCMethod->parameters().size() == IMD->parameters().
size() && "Methods have different number of parameters"
) ? static_cast<void> (0) : __assert_fail ("ObjCMethod->parameters().size() == IMD->parameters().size() && \"Methods have different number of parameters\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 4676, __PRETTY_FUNCTION__))
4676 "Methods have different number of parameters")((ObjCMethod->parameters().size() == IMD->parameters().
size() && "Methods have different number of parameters"
) ? static_cast<void> (0) : __assert_fail ("ObjCMethod->parameters().size() == IMD->parameters().size() && \"Methods have different number of parameters\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 4676, __PRETTY_FUNCTION__))
;
4677 auto OI = IMD->param_begin(), OE = IMD->param_end();
4678 auto NI = ObjCMethod->param_begin();
4679 for (; OI != OE; ++OI, ++NI)
4680 diagnoseNoescape(*NI, *OI, C, P, *this);
4681 }
4682 }
4683 } else {
4684 cast<DeclContext>(ClassDecl)->addDecl(ObjCMethod);
4685 }
4686
4687 if (PrevMethod) {
4688 // You can never have two method definitions with the same name.
4689 Diag(ObjCMethod->getLocation(), diag::err_duplicate_method_decl)
4690 << ObjCMethod->getDeclName();
4691 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
4692 ObjCMethod->setInvalidDecl();
4693 return ObjCMethod;
4694 }
4695
4696 // If this Objective-C method does not have a related result type, but we
4697 // are allowed to infer related result types, try to do so based on the
4698 // method family.
4699 ObjCInterfaceDecl *CurrentClass = dyn_cast<ObjCInterfaceDecl>(ClassDecl);
4700 if (!CurrentClass) {
4701 if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(ClassDecl))
4702 CurrentClass = Cat->getClassInterface();
4703 else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(ClassDecl))
4704 CurrentClass = Impl->getClassInterface();
4705 else if (ObjCCategoryImplDecl *CatImpl
4706 = dyn_cast<ObjCCategoryImplDecl>(ClassDecl))
4707 CurrentClass = CatImpl->getClassInterface();
4708 }
4709
4710 ResultTypeCompatibilityKind RTC
4711 = CheckRelatedResultTypeCompatibility(*this, ObjCMethod, CurrentClass);
4712
4713 CheckObjCMethodOverrides(ObjCMethod, CurrentClass, RTC);
4714
4715 bool ARCError = false;
4716 if (getLangOpts().ObjCAutoRefCount)
4717 ARCError = CheckARCMethodDecl(ObjCMethod);
4718
4719 // Infer the related result type when possible.
4720 if (!ARCError && RTC == Sema::RTC_Compatible &&
4721 !ObjCMethod->hasRelatedResultType() &&
4722 LangOpts.ObjCInferRelatedResultType) {
4723 bool InferRelatedResultType = false;
4724 switch (ObjCMethod->getMethodFamily()) {
4725 case OMF_None:
4726 case OMF_copy:
4727 case OMF_dealloc:
4728 case OMF_finalize:
4729 case OMF_mutableCopy:
4730 case OMF_release:
4731 case OMF_retainCount:
4732 case OMF_initialize:
4733 case OMF_performSelector:
4734 break;
4735
4736 case OMF_alloc:
4737 case OMF_new:
4738 InferRelatedResultType = ObjCMethod->isClassMethod();
4739 break;
4740
4741 case OMF_init:
4742 case OMF_autorelease:
4743 case OMF_retain:
4744 case OMF_self:
4745 InferRelatedResultType = ObjCMethod->isInstanceMethod();
4746 break;
4747 }
4748
4749 if (InferRelatedResultType &&
4750 !ObjCMethod->getReturnType()->isObjCIndependentClassType())
4751 ObjCMethod->setRelatedResultType();
4752 }
4753
4754 if (MethodDefinition &&
4755 Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
4756 checkObjCMethodX86VectorTypes(*this, ObjCMethod);
4757
4758 // + load method cannot have availability attributes. It get called on
4759 // startup, so it has to have the availability of the deployment target.
4760 if (const auto *attr = ObjCMethod->getAttr<AvailabilityAttr>()) {
4761 if (ObjCMethod->isClassMethod() &&
4762 ObjCMethod->getSelector().getAsString() == "load") {
4763 Diag(attr->getLocation(), diag::warn_availability_on_static_initializer)
4764 << 0;
4765 ObjCMethod->dropAttr<AvailabilityAttr>();
4766 }
4767 }
4768
4769 ActOnDocumentableDecl(ObjCMethod);
4770
4771 return ObjCMethod;
4772}
4773
4774bool Sema::CheckObjCDeclScope(Decl *D) {
4775 // Following is also an error. But it is caused by a missing @end
4776 // and diagnostic is issued elsewhere.
4777 if (isa<ObjCContainerDecl>(CurContext->getRedeclContext()))
4778 return false;
4779
4780 // If we switched context to translation unit while we are still lexically in
4781 // an objc container, it means the parser missed emitting an error.
4782 if (isa<TranslationUnitDecl>(getCurLexicalContext()->getRedeclContext()))
4783 return false;
4784
4785 Diag(D->getLocation(), diag::err_objc_decls_may_only_appear_in_global_scope);
4786 D->setInvalidDecl();
4787
4788 return true;
4789}
4790
4791/// Called whenever \@defs(ClassName) is encountered in the source. Inserts the
4792/// instance variables of ClassName into Decls.
4793void Sema::ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart,
4794 IdentifierInfo *ClassName,
4795 SmallVectorImpl<Decl*> &Decls) {
4796 // Check that ClassName is a valid class
4797 ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName, DeclStart);
4798 if (!Class) {
4799 Diag(DeclStart, diag::err_undef_interface) << ClassName;
4800 return;
4801 }
4802 if (LangOpts.ObjCRuntime.isNonFragile()) {
4803 Diag(DeclStart, diag::err_atdef_nonfragile_interface);
4804 return;
4805 }
4806
4807 // Collect the instance variables
4808 SmallVector<const ObjCIvarDecl*, 32> Ivars;
4809 Context.DeepCollectObjCIvars(Class, true, Ivars);
4810 // For each ivar, create a fresh ObjCAtDefsFieldDecl.
4811 for (unsigned i = 0; i < Ivars.size(); i++) {
4812 const FieldDecl* ID = Ivars[i];
4813 RecordDecl *Record = dyn_cast<RecordDecl>(TagD);
4814 Decl *FD = ObjCAtDefsFieldDecl::Create(Context, Record,
4815 /*FIXME: StartL=*/ID->getLocation(),
4816 ID->getLocation(),
4817 ID->getIdentifier(), ID->getType(),
4818 ID->getBitWidth());
4819 Decls.push_back(FD);
4820 }
4821
4822 // Introduce all of these fields into the appropriate scope.
4823 for (SmallVectorImpl<Decl*>::iterator D = Decls.begin();
4824 D != Decls.end(); ++D) {
4825 FieldDecl *FD = cast<FieldDecl>(*D);
4826 if (getLangOpts().CPlusPlus)
4827 PushOnScopeChains(FD, S);
4828 else if (RecordDecl *Record = dyn_cast<RecordDecl>(TagD))
4829 Record->addDecl(FD);
4830 }
4831}
4832
4833/// Build a type-check a new Objective-C exception variable declaration.
4834VarDecl *Sema::BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType T,
4835 SourceLocation StartLoc,
4836 SourceLocation IdLoc,
4837 IdentifierInfo *Id,
4838 bool Invalid) {
4839 // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
4840 // duration shall not be qualified by an address-space qualifier."
4841 // Since all parameters have automatic store duration, they can not have
4842 // an address space.
4843 if (T.getAddressSpace() != LangAS::Default) {
4844 Diag(IdLoc, diag::err_arg_with_address_space);
4845 Invalid = true;
4846 }
4847
4848 // An @catch parameter must be an unqualified object pointer type;
4849 // FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"?
4850 if (Invalid) {
4851 // Don't do any further checking.
4852 } else if (T->isDependentType()) {
4853 // Okay: we don't know what this type will instantiate to.
4854 } else if (T->isObjCQualifiedIdType()) {
4855 Invalid = true;
4856 Diag(IdLoc, diag::err_illegal_qualifiers_on_catch_parm);
4857 } else if (T->isObjCIdType()) {
4858 // Okay: we don't know what this type will instantiate to.
4859 } else if (!T->isObjCObjectPointerType()) {
4860 Invalid = true;
4861 Diag(IdLoc, diag::err_catch_param_not_objc_type);
4862 } else if (!T->getAs<ObjCObjectPointerType>()->getInterfaceType()) {
4863 Invalid = true;
4864 Diag(IdLoc, diag::err_catch_param_not_objc_type);
4865 }
4866
4867 VarDecl *New = VarDecl::Create(Context, CurContext, StartLoc, IdLoc, Id,
4868 T, TInfo, SC_None);
4869 New->setExceptionVariable(true);
4870
4871 // In ARC, infer 'retaining' for variables of retainable type.
4872 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(New))
4873 Invalid = true;
4874
4875 if (Invalid)
4876 New->setInvalidDecl();
4877 return New;
4878}
4879
4880Decl *Sema::ActOnObjCExceptionDecl(Scope *S, Declarator &D) {
4881 const DeclSpec &DS = D.getDeclSpec();
4882
4883 // We allow the "register" storage class on exception variables because
4884 // GCC did, but we drop it completely. Any other storage class is an error.
4885 if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
4886 Diag(DS.getStorageClassSpecLoc(), diag::warn_register_objc_catch_parm)
4887 << FixItHint::CreateRemoval(SourceRange(DS.getStorageClassSpecLoc()));
4888 } else if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) {
4889 Diag(DS.getStorageClassSpecLoc(), diag::err_storage_spec_on_catch_parm)
4890 << DeclSpec::getSpecifierName(SCS);
4891 }
4892 if (DS.isInlineSpecified())
4893 Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function)
4894 << getLangOpts().CPlusPlus17;
4895 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
4896 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
4897 diag::err_invalid_thread)
4898 << DeclSpec::getSpecifierName(TSCS);
4899 D.getMutableDeclSpec().ClearStorageClassSpecs();
4900
4901 DiagnoseFunctionSpecifiers(D.getDeclSpec());
4902
4903 // Check that there are no default arguments inside the type of this
4904 // exception object (C++ only).
4905 if (getLangOpts().CPlusPlus)
4906 CheckExtraCXXDefaultArguments(D);
4907
4908 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
4909 QualType ExceptionType = TInfo->getType();
4910
4911 VarDecl *New = BuildObjCExceptionDecl(TInfo, ExceptionType,
4912 D.getSourceRange().getBegin(),
4913 D.getIdentifierLoc(),
4914 D.getIdentifier(),
4915 D.isInvalidType());
4916
4917 // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
4918 if (D.getCXXScopeSpec().isSet()) {
4919 Diag(D.getIdentifierLoc(), diag::err_qualified_objc_catch_parm)
4920 << D.getCXXScopeSpec().getRange();
4921 New->setInvalidDecl();
4922 }
4923
4924 // Add the parameter declaration into this scope.
4925 S->AddDecl(New);
4926 if (D.getIdentifier())
4927 IdResolver.AddDecl(New);
4928
4929 ProcessDeclAttributes(S, New, D);
4930
4931 if (New->hasAttr<BlocksAttr>())
4932 Diag(New->getLocation(), diag::err_block_on_nonlocal);
4933 return New;
4934}
4935
4936/// CollectIvarsToConstructOrDestruct - Collect those ivars which require
4937/// initialization.
4938void Sema::CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI,
4939 SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
4940 for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv;
4941 Iv= Iv->getNextIvar()) {
4942 QualType QT = Context.getBaseElementType(Iv->getType());
4943 if (QT->isRecordType())
4944 Ivars.push_back(Iv);
4945 }
4946}
4947
4948void Sema::DiagnoseUseOfUnimplementedSelectors() {
4949 // Load referenced selectors from the external source.
4950 if (ExternalSource) {
4951 SmallVector<std::pair<Selector, SourceLocation>, 4> Sels;
4952 ExternalSource->ReadReferencedSelectors(Sels);
4953 for (unsigned I = 0, N = Sels.size(); I != N; ++I)
4954 ReferencedSelectors[Sels[I].first] = Sels[I].second;
4955 }
4956
4957 // Warning will be issued only when selector table is
4958 // generated (which means there is at lease one implementation
4959 // in the TU). This is to match gcc's behavior.
4960 if (ReferencedSelectors.empty() ||
4961 !Context.AnyObjCImplementation())
4962 return;
4963 for (auto &SelectorAndLocation : ReferencedSelectors) {
4964 Selector Sel = SelectorAndLocation.first;
4965 SourceLocation Loc = SelectorAndLocation.second;
4966 if (!LookupImplementedMethodInGlobalPool(Sel))
4967 Diag(Loc, diag::warn_unimplemented_selector) << Sel;
4968 }
4969}
4970
4971ObjCIvarDecl *
4972Sema::GetIvarBackingPropertyAccessor(const ObjCMethodDecl *Method,
4973 const ObjCPropertyDecl *&PDecl) const {
4974 if (Method->isClassMethod())
4975 return nullptr;
4976 const ObjCInterfaceDecl *IDecl = Method->getClassInterface();
4977 if (!IDecl)
4978 return nullptr;
4979 Method = IDecl->lookupMethod(Method->getSelector(), /*isInstance=*/true,
4980 /*shallowCategoryLookup=*/false,
4981 /*followSuper=*/false);
4982 if (!Method || !Method->isPropertyAccessor())
4983 return nullptr;
4984 if ((PDecl = Method->findPropertyDecl()))
4985 if (ObjCIvarDecl *IV = PDecl->getPropertyIvarDecl()) {
4986 // property backing ivar must belong to property's class
4987 // or be a private ivar in class's implementation.
4988 // FIXME. fix the const-ness issue.
4989 IV = const_cast<ObjCInterfaceDecl *>(IDecl)->lookupInstanceVariable(
4990 IV->getIdentifier());
4991 return IV;
4992 }
4993 return nullptr;
4994}
4995
4996namespace {
4997 /// Used by Sema::DiagnoseUnusedBackingIvarInAccessor to check if a property
4998 /// accessor references the backing ivar.
4999 class UnusedBackingIvarChecker :
5000 public RecursiveASTVisitor<UnusedBackingIvarChecker> {
5001 public:
5002 Sema &S;
5003 const ObjCMethodDecl *Method;
5004 const ObjCIvarDecl *IvarD;
5005 bool AccessedIvar;
5006 bool InvokedSelfMethod;
5007
5008 UnusedBackingIvarChecker(Sema &S, const ObjCMethodDecl *Method,
5009 const ObjCIvarDecl *IvarD)
5010 : S(S), Method(Method), IvarD(IvarD),
5011 AccessedIvar(false), InvokedSelfMethod(false) {
5012 assert(IvarD)((IvarD) ? static_cast<void> (0) : __assert_fail ("IvarD"
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 5012, __PRETTY_FUNCTION__))
;
5013 }
5014
5015 bool VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
5016 if (E->getDecl() == IvarD) {
5017 AccessedIvar = true;
5018 return false;
5019 }
5020 return true;
5021 }
5022
5023 bool VisitObjCMessageExpr(ObjCMessageExpr *E) {
5024 if (E->getReceiverKind() == ObjCMessageExpr::Instance &&
5025 S.isSelfExpr(E->getInstanceReceiver(), Method)) {
5026 InvokedSelfMethod = true;
5027 }
5028 return true;
5029 }
5030 };
5031} // end anonymous namespace
5032
5033void Sema::DiagnoseUnusedBackingIvarInAccessor(Scope *S,
5034 const ObjCImplementationDecl *ImplD) {
5035 if (S->hasUnrecoverableErrorOccurred())
5036 return;
5037
5038 for (const auto *CurMethod : ImplD->instance_methods()) {
5039 unsigned DIAG = diag::warn_unused_property_backing_ivar;
5040 SourceLocation Loc = CurMethod->getLocation();
5041 if (Diags.isIgnored(DIAG, Loc))
5042 continue;
5043
5044 const ObjCPropertyDecl *PDecl;
5045 const ObjCIvarDecl *IV = GetIvarBackingPropertyAccessor(CurMethod, PDecl);
5046 if (!IV)
5047 continue;
5048
5049 UnusedBackingIvarChecker Checker(*this, CurMethod, IV);
5050 Checker.TraverseStmt(CurMethod->getBody());
5051 if (Checker.AccessedIvar)
5052 continue;
5053
5054 // Do not issue this warning if backing ivar is used somewhere and accessor
5055 // implementation makes a self call. This is to prevent false positive in
5056 // cases where the ivar is accessed by another method that the accessor
5057 // delegates to.
5058 if (!IV->isReferenced() || !Checker.InvokedSelfMethod) {
5059 Diag(Loc, DIAG) << IV;
5060 Diag(PDecl->getLocation(), diag::note_property_declare);
5061 }
5062 }
5063}

/build/llvm-toolchain-snapshot-8~svn345461/build-llvm/tools/clang/include/clang/AST/Attrs.inc

1/*===- TableGen'erated file -------------------------------------*- C++ -*-===*\
2|* *|
3|* Attribute classes' definitions *|
4|* *|
5|* Automatically generated file, do not edit! *|
6|* *|
7\*===----------------------------------------------------------------------===*/
8
9#ifndef LLVM_CLANG_ATTR_CLASSES_INC
10#define LLVM_CLANG_ATTR_CLASSES_INC
11
12class AMDGPUFlatWorkGroupSizeAttr : public InheritableAttr {
13unsigned min;
14
15unsigned max;
16
17public:
18 static AMDGPUFlatWorkGroupSizeAttr *CreateImplicit(ASTContext &Ctx, unsigned Min, unsigned Max, SourceRange Loc = SourceRange()) {
19 auto *A = new (Ctx) AMDGPUFlatWorkGroupSizeAttr(Loc, Ctx, Min, Max, 0);
20 A->setImplicit(true);
21 return A;
22 }
23
24 AMDGPUFlatWorkGroupSizeAttr(SourceRange R, ASTContext &Ctx
25 , unsigned Min
26 , unsigned Max
27 , unsigned SI
28 )
29 : InheritableAttr(attr::AMDGPUFlatWorkGroupSize, R, SI, false, false)
30 , min(Min)
31 , max(Max)
32 {
33 }
34
35 AMDGPUFlatWorkGroupSizeAttr *clone(ASTContext &C) const;
36 void printPretty(raw_ostream &OS,
37 const PrintingPolicy &Policy) const;
38 const char *getSpelling() const;
39 unsigned getMin() const {
40 return min;
41 }
42
43 unsigned getMax() const {
44 return max;
45 }
46
47
48
49 static bool classof(const Attr *A) { return A->getKind() == attr::AMDGPUFlatWorkGroupSize; }
50};
51
52class AMDGPUNumSGPRAttr : public InheritableAttr {
53unsigned numSGPR;
54
55public:
56 static AMDGPUNumSGPRAttr *CreateImplicit(ASTContext &Ctx, unsigned NumSGPR, SourceRange Loc = SourceRange()) {
57 auto *A = new (Ctx) AMDGPUNumSGPRAttr(Loc, Ctx, NumSGPR, 0);
58 A->setImplicit(true);
59 return A;
60 }
61
62 AMDGPUNumSGPRAttr(SourceRange R, ASTContext &Ctx
63 , unsigned NumSGPR
64 , unsigned SI
65 )
66 : InheritableAttr(attr::AMDGPUNumSGPR, R, SI, false, false)
67 , numSGPR(NumSGPR)
68 {
69 }
70
71 AMDGPUNumSGPRAttr *clone(ASTContext &C) const;
72 void printPretty(raw_ostream &OS,
73 const PrintingPolicy &Policy) const;
74 const char *getSpelling() const;
75 unsigned getNumSGPR() const {
76 return numSGPR;
77 }
78
79
80
81 static bool classof(const Attr *A) { return A->getKind() == attr::AMDGPUNumSGPR; }
82};
83
84class AMDGPUNumVGPRAttr : public InheritableAttr {
85unsigned numVGPR;
86
87public:
88 static AMDGPUNumVGPRAttr *CreateImplicit(ASTContext &Ctx, unsigned NumVGPR, SourceRange Loc = SourceRange()) {
89 auto *A = new (Ctx) AMDGPUNumVGPRAttr(Loc, Ctx, NumVGPR, 0);
90 A->setImplicit(true);
91 return A;
92 }
93
94 AMDGPUNumVGPRAttr(SourceRange R, ASTContext &Ctx
95 , unsigned NumVGPR
96 , unsigned SI
97 )
98 : InheritableAttr(attr::AMDGPUNumVGPR, R, SI, false, false)
99 , numVGPR(NumVGPR)
100 {
101 }
102
103 AMDGPUNumVGPRAttr *clone(ASTContext &C) const;
104 void printPretty(raw_ostream &OS,
105 const PrintingPolicy &Policy) const;
106 const char *getSpelling() const;
107 unsigned getNumVGPR() const {
108 return numVGPR;
109 }
110
111
112
113 static bool classof(const Attr *A) { return A->getKind() == attr::AMDGPUNumVGPR; }
114};
115
116class AMDGPUWavesPerEUAttr : public InheritableAttr {
117unsigned min;
118
119unsigned max;
120
121public:
122 static AMDGPUWavesPerEUAttr *CreateImplicit(ASTContext &Ctx, unsigned Min, unsigned Max, SourceRange Loc = SourceRange()) {
123 auto *A = new (Ctx) AMDGPUWavesPerEUAttr(Loc, Ctx, Min, Max, 0);
124 A->setImplicit(true);
125 return A;
126 }
127
128 AMDGPUWavesPerEUAttr(SourceRange R, ASTContext &Ctx
129 , unsigned Min
130 , unsigned Max
131 , unsigned SI
132 )
133 : InheritableAttr(attr::AMDGPUWavesPerEU, R, SI, false, false)
134 , min(Min)
135 , max(Max)
136 {
137 }
138
139 AMDGPUWavesPerEUAttr(SourceRange R, ASTContext &Ctx
140 , unsigned Min
141 , unsigned SI
142 )
143 : InheritableAttr(attr::AMDGPUWavesPerEU, R, SI, false, false)
144 , min(Min)
145 , max()
146 {
147 }
148
149 AMDGPUWavesPerEUAttr *clone(ASTContext &C) const;
150 void printPretty(raw_ostream &OS,
151 const PrintingPolicy &Policy) const;
152 const char *getSpelling() const;
153 unsigned getMin() const {
154 return min;
155 }
156
157 unsigned getMax() const {
158 return max;
159 }
160
161
162
163 static bool classof(const Attr *A) { return A->getKind() == attr::AMDGPUWavesPerEU; }
164};
165
166class ARMInterruptAttr : public InheritableAttr {
167public:
168 enum InterruptType {
169 IRQ,
170 FIQ,
171 SWI,
172 ABORT,
173 UNDEF,
174 Generic
175 };
176private:
177 InterruptType interrupt;
178
179public:
180 static ARMInterruptAttr *CreateImplicit(ASTContext &Ctx, InterruptType Interrupt, SourceRange Loc = SourceRange()) {
181 auto *A = new (Ctx) ARMInterruptAttr(Loc, Ctx, Interrupt, 0);
182 A->setImplicit(true);
183 return A;
184 }
185
186 ARMInterruptAttr(SourceRange R, ASTContext &Ctx
187 , InterruptType Interrupt
188 , unsigned SI
189 )
190 : InheritableAttr(attr::ARMInterrupt, R, SI, false, false)
191 , interrupt(Interrupt)
192 {
193 }
194
195 ARMInterruptAttr(SourceRange R, ASTContext &Ctx
196 , unsigned SI
197 )
198 : InheritableAttr(attr::ARMInterrupt, R, SI, false, false)
199 , interrupt(InterruptType(0))
200 {
201 }
202
203 ARMInterruptAttr *clone(ASTContext &C) const;
204 void printPretty(raw_ostream &OS,
205 const PrintingPolicy &Policy) const;
206 const char *getSpelling() const;
207 InterruptType getInterrupt() const {
208 return interrupt;
209 }
210
211 static bool ConvertStrToInterruptType(StringRef Val, InterruptType &Out) {
212 Optional<InterruptType> R = llvm::StringSwitch<Optional<InterruptType>>(Val)
213 .Case("IRQ", ARMInterruptAttr::IRQ)
214 .Case("FIQ", ARMInterruptAttr::FIQ)
215 .Case("SWI", ARMInterruptAttr::SWI)
216 .Case("ABORT", ARMInterruptAttr::ABORT)
217 .Case("UNDEF", ARMInterruptAttr::UNDEF)
218 .Case("", ARMInterruptAttr::Generic)
219 .Default(Optional<InterruptType>());
220 if (R) {
221 Out = *R;
222 return true;
223 }
224 return false;
225 }
226
227 static const char *ConvertInterruptTypeToStr(InterruptType Val) {
228 switch(Val) {
229 case ARMInterruptAttr::IRQ: return "IRQ";
230 case ARMInterruptAttr::FIQ: return "FIQ";
231 case ARMInterruptAttr::SWI: return "SWI";
232 case ARMInterruptAttr::ABORT: return "ABORT";
233 case ARMInterruptAttr::UNDEF: return "UNDEF";
234 case ARMInterruptAttr::Generic: return "";
235 }
236 llvm_unreachable("No enumerator with that value")::llvm::llvm_unreachable_internal("No enumerator with that value"
, "/build/llvm-toolchain-snapshot-8~svn345461/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 236)
;
237 }
238
239
240 static bool classof(const Attr *A) { return A->getKind() == attr::ARMInterrupt; }
241};
242
243class AVRInterruptAttr : public InheritableAttr {
244public:
245 static AVRInterruptAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
246 auto *A = new (Ctx) AVRInterruptAttr(Loc, Ctx, 0);
247 A->setImplicit(true);
248 return A;
249 }
250
251 AVRInterruptAttr(SourceRange R, ASTContext &Ctx
252 , unsigned SI
253 )
254 : InheritableAttr(attr::AVRInterrupt, R, SI, false, false)
255 {
256 }
257
258 AVRInterruptAttr *clone(ASTContext &C) const;
259 void printPretty(raw_ostream &OS,
260 const PrintingPolicy &Policy) const;
261 const char *getSpelling() const;
262
263
264 static bool classof(const Attr *A) { return A->getKind() == attr::AVRInterrupt; }
265};
266
267class AVRSignalAttr : public InheritableAttr {
268public:
269 static AVRSignalAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
270 auto *A = new (Ctx) AVRSignalAttr(Loc, Ctx, 0);
271 A->setImplicit(true);
272 return A;
273 }
274
275 AVRSignalAttr(SourceRange R, ASTContext &Ctx
276 , unsigned SI
277 )
278 : InheritableAttr(attr::AVRSignal, R, SI, false, false)
279 {
280 }
281
282 AVRSignalAttr *clone(ASTContext &C) const;
283 void printPretty(raw_ostream &OS,
284 const PrintingPolicy &Policy) const;
285 const char *getSpelling() const;
286
287
288 static bool classof(const Attr *A) { return A->getKind() == attr::AVRSignal; }
289};
290
291class AbiTagAttr : public Attr {
292 unsigned tags_Size;
293 StringRef *tags_;
294
295public:
296 static AbiTagAttr *CreateImplicit(ASTContext &Ctx, StringRef *Tags, unsigned TagsSize, SourceRange Loc = SourceRange()) {
297 auto *A = new (Ctx) AbiTagAttr(Loc, Ctx, Tags, TagsSize, 0);
298 A->setImplicit(true);
299 return A;
300 }
301
302 AbiTagAttr(SourceRange R, ASTContext &Ctx
303 , StringRef *Tags, unsigned TagsSize
304 , unsigned SI
305 )
306 : Attr(attr::AbiTag, R, SI, false)
307 , tags_Size(TagsSize), tags_(new (Ctx, 16) StringRef[tags_Size])
308 {
309 for (size_t I = 0, E = tags_Size; I != E;
310 ++I) {
311 StringRef Ref = Tags[I];
312 if (!Ref.empty()) {
313 char *Mem = new (Ctx, 1) char[Ref.size()];
314 std::memcpy(Mem, Ref.data(), Ref.size());
315 tags_[I] = StringRef(Mem, Ref.size());
316 }
317 }
318 }
319
320 AbiTagAttr(SourceRange R, ASTContext &Ctx
321 , unsigned SI
322 )
323 : Attr(attr::AbiTag, R, SI, false)
324 , tags_Size(0), tags_(nullptr)
325 {
326 }
327
328 AbiTagAttr *clone(ASTContext &C) const;
329 void printPretty(raw_ostream &OS,
330 const PrintingPolicy &Policy) const;
331 const char *getSpelling() const;
332 typedef StringRef* tags_iterator;
333 tags_iterator tags_begin() const { return tags_; }
334 tags_iterator tags_end() const { return tags_ + tags_Size; }
335 unsigned tags_size() const { return tags_Size; }
336 llvm::iterator_range<tags_iterator> tags() const { return llvm::make_range(tags_begin(), tags_end()); }
337
338
339
340
341 static bool classof(const Attr *A) { return A->getKind() == attr::AbiTag; }
342};
343
344class AcquireCapabilityAttr : public InheritableAttr {
345 unsigned args_Size;
346 Expr * *args_;
347
348public:
349 enum Spelling {
350 GNU_acquire_capability = 0,
351 CXX11_clang_acquire_capability = 1,
352 GNU_acquire_shared_capability = 2,
353 CXX11_clang_acquire_shared_capability = 3,
354 GNU_exclusive_lock_function = 4,
355 GNU_shared_lock_function = 5
356 };
357
358 static AcquireCapabilityAttr *CreateImplicit(ASTContext &Ctx, Spelling S, Expr * *Args, unsigned ArgsSize, SourceRange Loc = SourceRange()) {
359 auto *A = new (Ctx) AcquireCapabilityAttr(Loc, Ctx, Args, ArgsSize, S);
360 A->setImplicit(true);
361 return A;
362 }
363
364 AcquireCapabilityAttr(SourceRange R, ASTContext &Ctx
365 , Expr * *Args, unsigned ArgsSize
366 , unsigned SI
367 )
368 : InheritableAttr(attr::AcquireCapability, R, SI, true, true)
369 , args_Size(ArgsSize), args_(new (Ctx, 16) Expr *[args_Size])
370 {
371 std::copy(Args, Args + args_Size, args_);
372 }
373
374 AcquireCapabilityAttr(SourceRange R, ASTContext &Ctx
375 , unsigned SI
376 )
377 : InheritableAttr(attr::AcquireCapability, R, SI, true, true)
378 , args_Size(0), args_(nullptr)
379 {
380 }
381
382 AcquireCapabilityAttr *clone(ASTContext &C) const;
383 void printPretty(raw_ostream &OS,
384 const PrintingPolicy &Policy) const;
385 const char *getSpelling() const;
386 Spelling getSemanticSpelling() const {
387 switch (SpellingListIndex) {
388 default: llvm_unreachable("Unknown spelling list index")::llvm::llvm_unreachable_internal("Unknown spelling list index"
, "/build/llvm-toolchain-snapshot-8~svn345461/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 388)
;
389 case 0: return GNU_acquire_capability;
390 case 1: return CXX11_clang_acquire_capability;
391 case 2: return GNU_acquire_shared_capability;
392 case 3: return CXX11_clang_acquire_shared_capability;
393 case 4: return GNU_exclusive_lock_function;
394 case 5: return GNU_shared_lock_function;
395 }
396 }
397 bool isShared() const { return SpellingListIndex == 2 ||
398 SpellingListIndex == 3 ||
399 SpellingListIndex == 5; }
400 typedef Expr ** args_iterator;
401 args_iterator args_begin() const { return args_; }
402 args_iterator args_end() const { return args_ + args_Size; }
403 unsigned args_size() const { return args_Size; }
404 llvm::iterator_range<args_iterator> args() const { return llvm::make_range(args_begin(), args_end()); }
405
406
407
408
409 static bool classof(const Attr *A) { return A->getKind() == attr::AcquireCapability; }
410};
411
412class AcquiredAfterAttr : public InheritableAttr {
413 unsigned args_Size;
414 Expr * *args_;
415
416public:
417 static AcquiredAfterAttr *CreateImplicit(ASTContext &Ctx, Expr * *Args, unsigned ArgsSize, SourceRange Loc = SourceRange()) {
418 auto *A = new (Ctx) AcquiredAfterAttr(Loc, Ctx, Args, ArgsSize, 0);
419 A->setImplicit(true);
420 return A;
421 }
422
423 AcquiredAfterAttr(SourceRange R, ASTContext &Ctx
424 , Expr * *Args, unsigned ArgsSize
425 , unsigned SI
426 )
427 : InheritableAttr(attr::AcquiredAfter, R, SI, true, true)
428 , args_Size(ArgsSize), args_(new (Ctx, 16) Expr *[args_Size])
429 {
430 std::copy(Args, Args + args_Size, args_);
431 }
432
433 AcquiredAfterAttr(SourceRange R, ASTContext &Ctx
434 , unsigned SI
435 )
436 : InheritableAttr(attr::AcquiredAfter, R, SI, true, true)
437 , args_Size(0), args_(nullptr)
438 {
439 }
440
441 AcquiredAfterAttr *clone(ASTContext &C) const;
442 void printPretty(raw_ostream &OS,
443 const PrintingPolicy &Policy) const;
444 const char *getSpelling() const;
445 typedef Expr ** args_iterator;
446 args_iterator args_begin() const { return args_; }
447 args_iterator args_end() const { return args_ + args_Size; }
448 unsigned args_size() const { return args_Size; }
449 llvm::iterator_range<args_iterator> args() const { return llvm::make_range(args_begin(), args_end()); }
450
451
452
453
454 static bool classof(const Attr *A) { return A->getKind() == attr::AcquiredAfter; }
455};
456
457class AcquiredBeforeAttr : public InheritableAttr {
458 unsigned args_Size;
459 Expr * *args_;
460
461public:
462 static AcquiredBeforeAttr *CreateImplicit(ASTContext &Ctx, Expr * *Args, unsigned ArgsSize, SourceRange Loc = SourceRange()) {
463 auto *A = new (Ctx) AcquiredBeforeAttr(Loc, Ctx, Args, ArgsSize, 0);
464 A->setImplicit(true);
465 return A;
466 }
467
468 AcquiredBeforeAttr(SourceRange R, ASTContext &Ctx
469 , Expr * *Args, unsigned ArgsSize
470 , unsigned SI
471 )
472 : InheritableAttr(attr::AcquiredBefore, R, SI, true, true)
473 , args_Size(ArgsSize), args_(new (Ctx, 16) Expr *[args_Size])
474 {
475 std::copy(Args, Args + args_Size, args_);
476 }
477
478 AcquiredBeforeAttr(SourceRange R, ASTContext &Ctx
479 , unsigned SI
480 )
481 : InheritableAttr(attr::AcquiredBefore, R, SI, true, true)
482 , args_Size(0), args_(nullptr)
483 {
484 }
485
486 AcquiredBeforeAttr *clone(ASTContext &C) const;
487 void printPretty(raw_ostream &OS,
488 const PrintingPolicy &Policy) const;
489 const char *getSpelling() const;
490 typedef Expr ** args_iterator;
491 args_iterator args_begin() const { return args_; }
492 args_iterator args_end() const { return args_ + args_Size; }
493 unsigned args_size() const { return args_Size; }
494 llvm::iterator_range<args_iterator> args() const { return llvm::make_range(args_begin(), args_end()); }
495
496
497
498
499 static bool classof(const Attr *A) { return A->getKind() == attr::AcquiredBefore; }
500};
501
502class AddressSpaceAttr : public TypeAttr {
503int addressSpace;
504
505public:
506 static AddressSpaceAttr *CreateImplicit(ASTContext &Ctx, int AddressSpace, SourceRange Loc = SourceRange()) {
507 auto *A = new (Ctx) AddressSpaceAttr(Loc, Ctx, AddressSpace, 0);
508 A->setImplicit(true);
509 return A;
510 }
511
512 AddressSpaceAttr(SourceRange R, ASTContext &Ctx
513 , int AddressSpace
514 , unsigned SI
515 )
516 : TypeAttr(attr::AddressSpace, R, SI, false)
517 , addressSpace(AddressSpace)
518 {
519 }
520
521 AddressSpaceAttr *clone(ASTContext &C) const;
522 void printPretty(raw_ostream &OS,
523 const PrintingPolicy &Policy) const;
524 const char *getSpelling() const;
525 int getAddressSpace() const {
526 return addressSpace;
527 }
528
529
530
531 static bool classof(const Attr *A) { return A->getKind() == attr::AddressSpace; }
532};
533
534class AliasAttr : public Attr {
535unsigned aliaseeLength;
536char *aliasee;
537
538public:
539 static AliasAttr *CreateImplicit(ASTContext &Ctx, llvm::StringRef Aliasee, SourceRange Loc = SourceRange()) {
540 auto *A = new (Ctx) AliasAttr(Loc, Ctx, Aliasee, 0);
541 A->setImplicit(true);
542 return A;
543 }
544
545 AliasAttr(SourceRange R, ASTContext &Ctx
546 , llvm::StringRef Aliasee
547 , unsigned SI
548 )
549 : Attr(attr::Alias, R, SI, false)
550 , aliaseeLength(Aliasee.size()),aliasee(new (Ctx, 1) char[aliaseeLength])
551 {
552 if (!Aliasee.empty())
553 std::memcpy(aliasee, Aliasee.data(), aliaseeLength);
554 }
555
556 AliasAttr *clone(ASTContext &C) const;
557 void printPretty(raw_ostream &OS,
558 const PrintingPolicy &Policy) const;
559 const char *getSpelling() const;
560 llvm::StringRef getAliasee() const {
561 return llvm::StringRef(aliasee, aliaseeLength);
562 }
563 unsigned getAliaseeLength() const {
564 return aliaseeLength;
565 }
566 void setAliasee(ASTContext &C, llvm::StringRef S) {
567 aliaseeLength = S.size();
568 this->aliasee = new (C, 1) char [aliaseeLength];
569 if (!S.empty())
570 std::memcpy(this->aliasee, S.data(), aliaseeLength);
571 }
572
573
574
575 static bool classof(const Attr *A) { return A->getKind() == attr::Alias; }
576};
577
578class AlignMac68kAttr : public InheritableAttr {
579public:
580 static AlignMac68kAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
581 auto *A = new (Ctx) AlignMac68kAttr(Loc, Ctx, 0);
582 A->setImplicit(true);
583 return A;
584 }
585
586 AlignMac68kAttr(SourceRange R, ASTContext &Ctx
587 , unsigned SI
588 )
589 : InheritableAttr(attr::AlignMac68k, R, SI, false, false)
590 {
591 }
592
593 AlignMac68kAttr *clone(ASTContext &C) const;
594 void printPretty(raw_ostream &OS,
595 const PrintingPolicy &Policy) const;
596 const char *getSpelling() const;
597
598
599 static bool classof(const Attr *A) { return A->getKind() == attr::AlignMac68k; }
600};
601
602class AlignValueAttr : public Attr {
603Expr * alignment;
604
605public:
606 static AlignValueAttr *CreateImplicit(ASTContext &Ctx, Expr * Alignment, SourceRange Loc = SourceRange()) {
607 auto *A = new (Ctx) AlignValueAttr(Loc, Ctx, Alignment, 0);
608 A->setImplicit(true);
609 return A;
610 }
611
612 AlignValueAttr(SourceRange R, ASTContext &Ctx
613 , Expr * Alignment
614 , unsigned SI
615 )
616 : Attr(attr::AlignValue, R, SI, false)
617 , alignment(Alignment)
618 {
619 }
620
621 AlignValueAttr *clone(ASTContext &C) const;
622 void printPretty(raw_ostream &OS,
623 const PrintingPolicy &Policy) const;
624 const char *getSpelling() const;
625 Expr * getAlignment() const {
626 return alignment;
627 }
628
629
630
631 static bool classof(const Attr *A) { return A->getKind() == attr::AlignValue; }
632};
633
634class AlignedAttr : public InheritableAttr {
635bool isalignmentExpr;
636union {
637Expr *alignmentExpr;
638TypeSourceInfo *alignmentType;
639};
640
641public:
642 enum Spelling {
643 GNU_aligned = 0,
644 CXX11_gnu_aligned = 1,
645 Declspec_align = 2,
646 Keyword_alignas = 3,
647 Keyword_Alignas = 4
648 };
649
650 static AlignedAttr *CreateImplicit(ASTContext &Ctx, Spelling S, bool IsAlignmentExpr, void *Alignment, SourceRange Loc = SourceRange()) {
651 auto *A = new (Ctx) AlignedAttr(Loc, Ctx, IsAlignmentExpr, Alignment, S);
652 A->setImplicit(true);
653 return A;
654 }
655
656 AlignedAttr(SourceRange R, ASTContext &Ctx
657 , bool IsAlignmentExpr, void *Alignment
658 , unsigned SI
659 )
660 : InheritableAttr(attr::Aligned, R, SI, false, false)
661 , isalignmentExpr(IsAlignmentExpr)
662 {
663 if (isalignmentExpr)
664 alignmentExpr = reinterpret_cast<Expr *>(Alignment);
665 else
666 alignmentType = reinterpret_cast<TypeSourceInfo *>(Alignment);
667 }
668
669 AlignedAttr(SourceRange R, ASTContext &Ctx
670 , unsigned SI
671 )
672 : InheritableAttr(attr::Aligned, R, SI, false, false)
673 , isalignmentExpr(false)
674 {
675 }
676
677 AlignedAttr *clone(ASTContext &C) const;
678 void printPretty(raw_ostream &OS,
679 const PrintingPolicy &Policy) const;
680 const char *getSpelling() const;
681 Spelling getSemanticSpelling() const {
682 switch (SpellingListIndex) {
683 default: llvm_unreachable("Unknown spelling list index")::llvm::llvm_unreachable_internal("Unknown spelling list index"
, "/build/llvm-toolchain-snapshot-8~svn345461/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 683)
;
684 case 0: return GNU_aligned;
685 case 1: return CXX11_gnu_aligned;
686 case 2: return Declspec_align;
687 case 3: return Keyword_alignas;
688 case 4: return Keyword_Alignas;
689 }
690 }
691 bool isGNU() const { return SpellingListIndex == 0 ||
692 SpellingListIndex == 1; }
693 bool isC11() const { return SpellingListIndex == 4; }
694 bool isAlignas() const { return SpellingListIndex == 3 ||
695 SpellingListIndex == 4; }
696 bool isDeclspec() const { return SpellingListIndex == 2; }
697 bool isAlignmentDependent() const;
698 unsigned getAlignment(ASTContext &Ctx) const;
699 bool isAlignmentExpr() const {
700 return isalignmentExpr;
701 }
702 Expr *getAlignmentExpr() const {
703 assert(isalignmentExpr)((isalignmentExpr) ? static_cast<void> (0) : __assert_fail
("isalignmentExpr", "/build/llvm-toolchain-snapshot-8~svn345461/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 703, __PRETTY_FUNCTION__))
;
704 return alignmentExpr;
705 }
706 TypeSourceInfo *getAlignmentType() const {
707 assert(!isalignmentExpr)((!isalignmentExpr) ? static_cast<void> (0) : __assert_fail
("!isalignmentExpr", "/build/llvm-toolchain-snapshot-8~svn345461/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 707, __PRETTY_FUNCTION__))
;
708 return alignmentType;
709 }
710
711
712
713 static bool classof(const Attr *A) { return A->getKind() == attr::Aligned; }
714};
715
716class AllocAlignAttr : public InheritableAttr {
717ParamIdx paramIndex;
718
719public:
720 static AllocAlignAttr *CreateImplicit(ASTContext &Ctx, ParamIdx ParamIndex, SourceRange Loc = SourceRange()) {
721 auto *A = new (Ctx) AllocAlignAttr(Loc, Ctx, ParamIndex, 0);
722 A->setImplicit(true);
723 return A;
724 }
725
726 AllocAlignAttr(SourceRange R, ASTContext &Ctx
727 , ParamIdx ParamIndex
728 , unsigned SI
729 )
730 : InheritableAttr(attr::AllocAlign, R, SI, false, false)
731 , paramIndex(ParamIndex)
732 {
733 }
734
735 AllocAlignAttr *clone(ASTContext &C) const;
736 void printPretty(raw_ostream &OS,
737 const PrintingPolicy &Policy) const;
738 const char *getSpelling() const;
739 ParamIdx getParamIndex() const {
740 return paramIndex;
741 }
742
743
744
745 static bool classof(const Attr *A) { return A->getKind() == attr::AllocAlign; }
746};
747
748class AllocSizeAttr : public InheritableAttr {
749ParamIdx elemSizeParam;
750
751ParamIdx numElemsParam;
752
753public:
754 static AllocSizeAttr *CreateImplicit(ASTContext &Ctx, ParamIdx ElemSizeParam, ParamIdx NumElemsParam, SourceRange Loc = SourceRange()) {
755 auto *A = new (Ctx) AllocSizeAttr(Loc, Ctx, ElemSizeParam, NumElemsParam, 0);
756 A->setImplicit(true);
757 return A;
758 }
759
760 AllocSizeAttr(SourceRange R, ASTContext &Ctx
761 , ParamIdx ElemSizeParam
762 , ParamIdx NumElemsParam
763 , unsigned SI
764 )
765 : InheritableAttr(attr::AllocSize, R, SI, false, false)
766 , elemSizeParam(ElemSizeParam)
767 , numElemsParam(NumElemsParam)
768 {
769 }
770
771 AllocSizeAttr(SourceRange R, ASTContext &Ctx
772 , ParamIdx ElemSizeParam
773 , unsigned SI
774 )
775 : InheritableAttr(attr::AllocSize, R, SI, false, false)
776 , elemSizeParam(ElemSizeParam)
777 , numElemsParam()
778 {
779 }
780
781 AllocSizeAttr *clone(ASTContext &C) const;
782 void printPretty(raw_ostream &OS,
783 const PrintingPolicy &Policy) const;
784 const char *getSpelling() const;
785 ParamIdx getElemSizeParam() const {
786 return elemSizeParam;
787 }
788
789 ParamIdx getNumElemsParam() const {
790 return numElemsParam;
791 }
792
793
794
795 static bool classof(const Attr *A) { return A->getKind() == attr::AllocSize; }
796};
797
798class AlwaysDestroyAttr : public InheritableAttr {
799public:
800 static AlwaysDestroyAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
801 auto *A = new (Ctx) AlwaysDestroyAttr(Loc, Ctx, 0);
802 A->setImplicit(true);
803 return A;
804 }
805
806 AlwaysDestroyAttr(SourceRange R, ASTContext &Ctx
807 , unsigned SI
808 )
809 : InheritableAttr(attr::AlwaysDestroy, R, SI, false, false)
810 {
811 }
812
813 AlwaysDestroyAttr *clone(ASTContext &C) const;
814 void printPretty(raw_ostream &OS,
815 const PrintingPolicy &Policy) const;
816 const char *getSpelling() const;
817
818
819 static bool classof(const Attr *A) { return A->getKind() == attr::AlwaysDestroy; }
820};
821
822class AlwaysInlineAttr : public InheritableAttr {
823public:
824 enum Spelling {
825 GNU_always_inline = 0,
826 CXX11_gnu_always_inline = 1,
827 Keyword_forceinline = 2
828 };
829
830 static AlwaysInlineAttr *CreateImplicit(ASTContext &Ctx, Spelling S, SourceRange Loc = SourceRange()) {
831 auto *A = new (Ctx) AlwaysInlineAttr(Loc, Ctx, S);
832 A->setImplicit(true);
833 return A;
834 }
835
836 AlwaysInlineAttr(SourceRange R, ASTContext &Ctx
837 , unsigned SI
838 )
839 : InheritableAttr(attr::AlwaysInline, R, SI, false, false)
840 {
841 }
842
843 AlwaysInlineAttr *clone(ASTContext &C) const;
844 void printPretty(raw_ostream &OS,
845 const PrintingPolicy &Policy) const;
846 const char *getSpelling() const;
847 Spelling getSemanticSpelling() const {
848 switch (SpellingListIndex) {
849 default: llvm_unreachable("Unknown spelling list index")::llvm::llvm_unreachable_internal("Unknown spelling list index"
, "/build/llvm-toolchain-snapshot-8~svn345461/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 849)
;
850 case 0: return GNU_always_inline;
851 case 1: return CXX11_gnu_always_inline;
852 case 2: return Keyword_forceinline;
853 }
854 }
855
856
857 static bool classof(const Attr *A) { return A->getKind() == attr::AlwaysInline; }
858};
859
860class AnalyzerNoReturnAttr : public InheritableAttr {
861public:
862 static AnalyzerNoReturnAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
863 auto *A = new (Ctx) AnalyzerNoReturnAttr(Loc, Ctx, 0);
864 A->setImplicit(true);
865 return A;
866 }
867
868 AnalyzerNoReturnAttr(SourceRange R, ASTContext &Ctx
869 , unsigned SI
870 )
871 : InheritableAttr(attr::AnalyzerNoReturn, R, SI, false, false)
872 {
873 }
874
875 AnalyzerNoReturnAttr *clone(ASTContext &C) const;
876 void printPretty(raw_ostream &OS,
877 const PrintingPolicy &Policy) const;
878 const char *getSpelling() const;
879
880
881 static bool classof(const Attr *A) { return A->getKind() == attr::AnalyzerNoReturn; }
882};
883
884class AnnotateAttr : public InheritableParamAttr {
885unsigned annotationLength;
886char *annotation;
887
888public:
889 static AnnotateAttr *CreateImplicit(ASTContext &Ctx, llvm::StringRef Annotation, SourceRange Loc = SourceRange()) {
890 auto *A = new (Ctx) AnnotateAttr(Loc, Ctx, Annotation, 0);
891 A->setImplicit(true);
892 return A;
893 }
894
895 AnnotateAttr(SourceRange R, ASTContext &Ctx
896 , llvm::StringRef Annotation
897 , unsigned SI
898 )
899 : InheritableParamAttr(attr::Annotate, R, SI, false, false)
900 , annotationLength(Annotation.size()),annotation(new (Ctx, 1) char[annotationLength])
901 {
902 if (!Annotation.empty())
903 std::memcpy(annotation, Annotation.data(), annotationLength);
904 }
905
906 AnnotateAttr *clone(ASTContext &C) const;
907 void printPretty(raw_ostream &OS,
908 const PrintingPolicy &Policy) const;
909 const char *getSpelling() const;
910 llvm::StringRef getAnnotation() const {
911 return llvm::StringRef(annotation, annotationLength);
912 }
913 unsigned getAnnotationLength() const {
914 return annotationLength;
915 }
916 void setAnnotation(ASTContext &C, llvm::StringRef S) {
917 annotationLength = S.size();
918 this->annotation = new (C, 1) char [annotationLength];
919 if (!S.empty())
920 std::memcpy(this->annotation, S.data(), annotationLength);
921 }
922
923
924
925 static bool classof(const Attr *A) { return A->getKind() == attr::Annotate; }
926};
927
928class AnyX86InterruptAttr : public InheritableAttr {
929public:
930 static AnyX86InterruptAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
931 auto *A = new (Ctx) AnyX86InterruptAttr(Loc, Ctx, 0);
932 A->setImplicit(true);
933 return A;
934 }
935
936 AnyX86InterruptAttr(SourceRange R, ASTContext &Ctx
937 , unsigned SI
938 )
939 : InheritableAttr(attr::AnyX86Interrupt, R, SI, false, false)
940 {
941 }
942
943 AnyX86InterruptAttr *clone(ASTContext &C) const;
944 void printPretty(raw_ostream &OS,
945 const PrintingPolicy &Policy) const;
946 const char *getSpelling() const;
947
948
949 static bool classof(const Attr *A) { return A->getKind() == attr::AnyX86Interrupt; }
950};
951
952class AnyX86NoCallerSavedRegistersAttr : public InheritableAttr {
953public:
954 static AnyX86NoCallerSavedRegistersAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
955 auto *A = new (Ctx) AnyX86NoCallerSavedRegistersAttr(Loc, Ctx, 0);
956 A->setImplicit(true);
957 return A;
958 }
959
960 AnyX86NoCallerSavedRegistersAttr(SourceRange R, ASTContext &Ctx
961 , unsigned SI
962 )
963 : InheritableAttr(attr::AnyX86NoCallerSavedRegisters, R, SI, false, false)
964 {
965 }
966
967 AnyX86NoCallerSavedRegistersAttr *clone(ASTContext &C) const;
968 void printPretty(raw_ostream &OS,
969 const PrintingPolicy &Policy) const;
970 const char *getSpelling() const;
971
972
973 static bool classof(const Attr *A) { return A->getKind() == attr::AnyX86NoCallerSavedRegisters; }
974};
975
976class AnyX86NoCfCheckAttr : public InheritableAttr {
977public:
978 static AnyX86NoCfCheckAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
979 auto *A = new (Ctx) AnyX86NoCfCheckAttr(Loc, Ctx, 0);
980 A->setImplicit(true);
981 return A;
982 }
983
984 AnyX86NoCfCheckAttr(SourceRange R, ASTContext &Ctx
985 , unsigned SI
986 )
987 : InheritableAttr(attr::AnyX86NoCfCheck, R, SI, false, false)
988 {
989 }
990
991 AnyX86NoCfCheckAttr *clone(ASTContext &C) const;
992 void printPretty(raw_ostream &OS,
993 const PrintingPolicy &Policy) const;
994 const char *getSpelling() const;
995
996
997 static bool classof(const Attr *A) { return A->getKind() == attr::AnyX86NoCfCheck; }
998};
999
1000class ArcWeakrefUnavailableAttr : public InheritableAttr {
1001public:
1002 static ArcWeakrefUnavailableAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
1003 auto *A = new (Ctx) ArcWeakrefUnavailableAttr(Loc, Ctx, 0);
1004 A->setImplicit(true);
1005 return A;
1006 }
1007
1008 ArcWeakrefUnavailableAttr(SourceRange R, ASTContext &Ctx
1009 , unsigned SI
1010 )
1011 : InheritableAttr(attr::ArcWeakrefUnavailable, R, SI, false, false)
1012 {
1013 }
1014
1015 ArcWeakrefUnavailableAttr *clone(ASTContext &C) const;
1016 void printPretty(raw_ostream &OS,
1017 const PrintingPolicy &Policy) const;
1018 const char *getSpelling() const;
1019
1020
1021 static bool classof(const Attr *A) { return A->getKind() == attr::ArcWeakrefUnavailable; }
1022};
1023
1024class ArgumentWithTypeTagAttr : public InheritableAttr {
1025IdentifierInfo * argumentKind;
1026
1027ParamIdx argumentIdx;
1028
1029ParamIdx typeTagIdx;
1030
1031bool isPointer;
1032
1033public:
1034 enum Spelling {
1035 GNU_argument_with_type_tag = 0,
1036 CXX11_clang_argument_with_type_tag = 1,
1037 C2x_clang_argument_with_type_tag = 2,
1038 GNU_pointer_with_type_tag = 3,
1039 CXX11_clang_pointer_with_type_tag = 4,
1040 C2x_clang_pointer_with_type_tag = 5
1041 };
1042
1043 static ArgumentWithTypeTagAttr *CreateImplicit(ASTContext &Ctx, Spelling S, IdentifierInfo * ArgumentKind, ParamIdx ArgumentIdx, ParamIdx TypeTagIdx, bool IsPointer, SourceRange Loc = SourceRange()) {
1044 auto *A = new (Ctx) ArgumentWithTypeTagAttr(Loc, Ctx, ArgumentKind, ArgumentIdx, TypeTagIdx, IsPointer, S);
1045 A->setImplicit(true);
1046 return A;
1047 }
1048
1049 static ArgumentWithTypeTagAttr *CreateImplicit(ASTContext &Ctx, Spelling S, IdentifierInfo * ArgumentKind, ParamIdx ArgumentIdx, ParamIdx TypeTagIdx, SourceRange Loc = SourceRange()) {
1050 auto *A =