Bug Summary

File:build-llvm/tools/clang/include/clang/AST/Attrs.inc
Warning:line 6798, column 5
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SemaDeclObjC.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -relaxed-aliasing -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-9/lib/clang/9.0.0 -D CLANG_VENDOR="Debian " -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include -I /build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-9~svn362543/build-llvm/include -I /build/llvm-toolchain-snapshot-9~svn362543/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/include/clang/9.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-9/lib/clang/9.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/lib/Sema -fdebug-prefix-map=/build/llvm-toolchain-snapshot-9~svn362543=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fobjc-runtime=gcc -fno-common -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2019-06-05-060531-1271-1 -x c++ /build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDeclObjC.cpp -faddrsig

/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDeclObjC.cpp

1//===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements semantic analysis for Objective C declarations.
10//
11//===----------------------------------------------------------------------===//
12
13#include "TypeLocBuilder.h"
14#include "clang/AST/ASTConsumer.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/ASTMutationListener.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/Expr.h"
19#include "clang/AST/ExprObjC.h"
20#include "clang/AST/RecursiveASTVisitor.h"
21#include "clang/Basic/SourceManager.h"
22#include "clang/Sema/DeclSpec.h"
23#include "clang/Sema/Lookup.h"
24#include "clang/Sema/Scope.h"
25#include "clang/Sema/ScopeInfo.h"
26#include "clang/Sema/SemaInternal.h"
27#include "llvm/ADT/DenseMap.h"
28#include "llvm/ADT/DenseSet.h"
29
30using namespace clang;
31
32/// Check whether the given method, which must be in the 'init'
33/// family, is a valid member of that family.
34///
35/// \param receiverTypeIfCall - if null, check this as if declaring it;
36/// if non-null, check this as if making a call to it with the given
37/// receiver type
38///
39/// \return true to indicate that there was an error and appropriate
40/// actions were taken
41bool Sema::checkInitMethod(ObjCMethodDecl *method,
42 QualType receiverTypeIfCall) {
43 if (method->isInvalidDecl()) return true;
44
45 // This castAs is safe: methods that don't return an object
46 // pointer won't be inferred as inits and will reject an explicit
47 // objc_method_family(init).
48
49 // We ignore protocols here. Should we? What about Class?
50
51 const ObjCObjectType *result =
52 method->getReturnType()->castAs<ObjCObjectPointerType>()->getObjectType();
53
54 if (result->isObjCId()) {
55 return false;
56 } else if (result->isObjCClass()) {
57 // fall through: always an error
58 } else {
59 ObjCInterfaceDecl *resultClass = result->getInterface();
60 assert(resultClass && "unexpected object type!")((resultClass && "unexpected object type!") ? static_cast
<void> (0) : __assert_fail ("resultClass && \"unexpected object type!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 60, __PRETTY_FUNCTION__))
;
61
62 // It's okay for the result type to still be a forward declaration
63 // if we're checking an interface declaration.
64 if (!resultClass->hasDefinition()) {
65 if (receiverTypeIfCall.isNull() &&
66 !isa<ObjCImplementationDecl>(method->getDeclContext()))
67 return false;
68
69 // Otherwise, we try to compare class types.
70 } else {
71 // If this method was declared in a protocol, we can't check
72 // anything unless we have a receiver type that's an interface.
73 const ObjCInterfaceDecl *receiverClass = nullptr;
74 if (isa<ObjCProtocolDecl>(method->getDeclContext())) {
75 if (receiverTypeIfCall.isNull())
76 return false;
77
78 receiverClass = receiverTypeIfCall->castAs<ObjCObjectPointerType>()
79 ->getInterfaceDecl();
80
81 // This can be null for calls to e.g. id<Foo>.
82 if (!receiverClass) return false;
83 } else {
84 receiverClass = method->getClassInterface();
85 assert(receiverClass && "method not associated with a class!")((receiverClass && "method not associated with a class!"
) ? static_cast<void> (0) : __assert_fail ("receiverClass && \"method not associated with a class!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 85, __PRETTY_FUNCTION__))
;
86 }
87
88 // If either class is a subclass of the other, it's fine.
89 if (receiverClass->isSuperClassOf(resultClass) ||
90 resultClass->isSuperClassOf(receiverClass))
91 return false;
92 }
93 }
94
95 SourceLocation loc = method->getLocation();
96
97 // If we're in a system header, and this is not a call, just make
98 // the method unusable.
99 if (receiverTypeIfCall.isNull() && getSourceManager().isInSystemHeader(loc)) {
100 method->addAttr(UnavailableAttr::CreateImplicit(Context, "",
101 UnavailableAttr::IR_ARCInitReturnsUnrelated, loc));
102 return true;
103 }
104
105 // Otherwise, it's an error.
106 Diag(loc, diag::err_arc_init_method_unrelated_result_type);
107 method->setInvalidDecl();
108 return true;
109}
110
111/// Issue a warning if the parameter of the overridden method is non-escaping
112/// but the parameter of the overriding method is not.
113static bool diagnoseNoescape(const ParmVarDecl *NewD, const ParmVarDecl *OldD,
114 Sema &S) {
115 if (OldD->hasAttr<NoEscapeAttr>() && !NewD->hasAttr<NoEscapeAttr>()) {
116 S.Diag(NewD->getLocation(), diag::warn_overriding_method_missing_noescape);
117 S.Diag(OldD->getLocation(), diag::note_overridden_marked_noescape);
118 return false;
119 }
120
121 return true;
122}
123
124/// Produce additional diagnostics if a category conforms to a protocol that
125/// defines a method taking a non-escaping parameter.
126static void diagnoseNoescape(const ParmVarDecl *NewD, const ParmVarDecl *OldD,
127 const ObjCCategoryDecl *CD,
128 const ObjCProtocolDecl *PD, Sema &S) {
129 if (!diagnoseNoescape(NewD, OldD, S))
130 S.Diag(CD->getLocation(), diag::note_cat_conform_to_noescape_prot)
131 << CD->IsClassExtension() << PD
132 << cast<ObjCMethodDecl>(NewD->getDeclContext());
133}
134
135void Sema::CheckObjCMethodOverride(ObjCMethodDecl *NewMethod,
136 const ObjCMethodDecl *Overridden) {
137 if (Overridden->hasRelatedResultType() &&
138 !NewMethod->hasRelatedResultType()) {
139 // This can only happen when the method follows a naming convention that
140 // implies a related result type, and the original (overridden) method has
141 // a suitable return type, but the new (overriding) method does not have
142 // a suitable return type.
143 QualType ResultType = NewMethod->getReturnType();
144 SourceRange ResultTypeRange = NewMethod->getReturnTypeSourceRange();
145
146 // Figure out which class this method is part of, if any.
147 ObjCInterfaceDecl *CurrentClass
148 = dyn_cast<ObjCInterfaceDecl>(NewMethod->getDeclContext());
149 if (!CurrentClass) {
150 DeclContext *DC = NewMethod->getDeclContext();
151 if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(DC))
152 CurrentClass = Cat->getClassInterface();
153 else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(DC))
154 CurrentClass = Impl->getClassInterface();
155 else if (ObjCCategoryImplDecl *CatImpl
156 = dyn_cast<ObjCCategoryImplDecl>(DC))
157 CurrentClass = CatImpl->getClassInterface();
158 }
159
160 if (CurrentClass) {
161 Diag(NewMethod->getLocation(),
162 diag::warn_related_result_type_compatibility_class)
163 << Context.getObjCInterfaceType(CurrentClass)
164 << ResultType
165 << ResultTypeRange;
166 } else {
167 Diag(NewMethod->getLocation(),
168 diag::warn_related_result_type_compatibility_protocol)
169 << ResultType
170 << ResultTypeRange;
171 }
172
173 if (ObjCMethodFamily Family = Overridden->getMethodFamily())
174 Diag(Overridden->getLocation(),
175 diag::note_related_result_type_family)
176 << /*overridden method*/ 0
177 << Family;
178 else
179 Diag(Overridden->getLocation(),
180 diag::note_related_result_type_overridden);
181 }
182
183 if ((NewMethod->hasAttr<NSReturnsRetainedAttr>() !=
184 Overridden->hasAttr<NSReturnsRetainedAttr>())) {
185 Diag(NewMethod->getLocation(),
186 getLangOpts().ObjCAutoRefCount
187 ? diag::err_nsreturns_retained_attribute_mismatch
188 : diag::warn_nsreturns_retained_attribute_mismatch)
189 << 1;
190 Diag(Overridden->getLocation(), diag::note_previous_decl) << "method";
191 }
192 if ((NewMethod->hasAttr<NSReturnsNotRetainedAttr>() !=
193 Overridden->hasAttr<NSReturnsNotRetainedAttr>())) {
194 Diag(NewMethod->getLocation(),
195 getLangOpts().ObjCAutoRefCount
196 ? diag::err_nsreturns_retained_attribute_mismatch
197 : diag::warn_nsreturns_retained_attribute_mismatch)
198 << 0;
199 Diag(Overridden->getLocation(), diag::note_previous_decl) << "method";
200 }
201
202 ObjCMethodDecl::param_const_iterator oi = Overridden->param_begin(),
203 oe = Overridden->param_end();
204 for (ObjCMethodDecl::param_iterator ni = NewMethod->param_begin(),
205 ne = NewMethod->param_end();
206 ni != ne && oi != oe; ++ni, ++oi) {
207 const ParmVarDecl *oldDecl = (*oi);
208 ParmVarDecl *newDecl = (*ni);
209 if (newDecl->hasAttr<NSConsumedAttr>() !=
210 oldDecl->hasAttr<NSConsumedAttr>()) {
211 Diag(newDecl->getLocation(),
212 getLangOpts().ObjCAutoRefCount
213 ? diag::err_nsconsumed_attribute_mismatch
214 : diag::warn_nsconsumed_attribute_mismatch);
215 Diag(oldDecl->getLocation(), diag::note_previous_decl) << "parameter";
216 }
217
218 diagnoseNoescape(newDecl, oldDecl, *this);
219 }
220}
221
222/// Check a method declaration for compatibility with the Objective-C
223/// ARC conventions.
224bool Sema::CheckARCMethodDecl(ObjCMethodDecl *method) {
225 ObjCMethodFamily family = method->getMethodFamily();
226 switch (family) {
227 case OMF_None:
228 case OMF_finalize:
229 case OMF_retain:
230 case OMF_release:
231 case OMF_autorelease:
232 case OMF_retainCount:
233 case OMF_self:
234 case OMF_initialize:
235 case OMF_performSelector:
236 return false;
237
238 case OMF_dealloc:
239 if (!Context.hasSameType(method->getReturnType(), Context.VoidTy)) {
240 SourceRange ResultTypeRange = method->getReturnTypeSourceRange();
241 if (ResultTypeRange.isInvalid())
242 Diag(method->getLocation(), diag::err_dealloc_bad_result_type)
243 << method->getReturnType()
244 << FixItHint::CreateInsertion(method->getSelectorLoc(0), "(void)");
245 else
246 Diag(method->getLocation(), diag::err_dealloc_bad_result_type)
247 << method->getReturnType()
248 << FixItHint::CreateReplacement(ResultTypeRange, "void");
249 return true;
250 }
251 return false;
252
253 case OMF_init:
254 // If the method doesn't obey the init rules, don't bother annotating it.
255 if (checkInitMethod(method, QualType()))
256 return true;
257
258 method->addAttr(NSConsumesSelfAttr::CreateImplicit(Context));
259
260 // Don't add a second copy of this attribute, but otherwise don't
261 // let it be suppressed.
262 if (method->hasAttr<NSReturnsRetainedAttr>())
263 return false;
264 break;
265
266 case OMF_alloc:
267 case OMF_copy:
268 case OMF_mutableCopy:
269 case OMF_new:
270 if (method->hasAttr<NSReturnsRetainedAttr>() ||
271 method->hasAttr<NSReturnsNotRetainedAttr>() ||
272 method->hasAttr<NSReturnsAutoreleasedAttr>())
273 return false;
274 break;
275 }
276
277 method->addAttr(NSReturnsRetainedAttr::CreateImplicit(Context));
278 return false;
279}
280
281static void DiagnoseObjCImplementedDeprecations(Sema &S, const NamedDecl *ND,
282 SourceLocation ImplLoc) {
283 if (!ND)
284 return;
285 bool IsCategory = false;
286 StringRef RealizedPlatform;
287 AvailabilityResult Availability = ND->getAvailability(
288 /*Message=*/nullptr, /*EnclosingVersion=*/VersionTuple(),
289 &RealizedPlatform);
290 if (Availability != AR_Deprecated) {
291 if (isa<ObjCMethodDecl>(ND)) {
292 if (Availability != AR_Unavailable)
293 return;
294 if (RealizedPlatform.empty())
295 RealizedPlatform = S.Context.getTargetInfo().getPlatformName();
296 // Warn about implementing unavailable methods, unless the unavailable
297 // is for an app extension.
298 if (RealizedPlatform.endswith("_app_extension"))
299 return;
300 S.Diag(ImplLoc, diag::warn_unavailable_def);
301 S.Diag(ND->getLocation(), diag::note_method_declared_at)
302 << ND->getDeclName();
303 return;
304 }
305 if (const auto *CD = dyn_cast<ObjCCategoryDecl>(ND)) {
306 if (!CD->getClassInterface()->isDeprecated())
307 return;
308 ND = CD->getClassInterface();
309 IsCategory = true;
310 } else
311 return;
312 }
313 S.Diag(ImplLoc, diag::warn_deprecated_def)
314 << (isa<ObjCMethodDecl>(ND)
315 ? /*Method*/ 0
316 : isa<ObjCCategoryDecl>(ND) || IsCategory ? /*Category*/ 2
317 : /*Class*/ 1);
318 if (isa<ObjCMethodDecl>(ND))
319 S.Diag(ND->getLocation(), diag::note_method_declared_at)
320 << ND->getDeclName();
321 else
322 S.Diag(ND->getLocation(), diag::note_previous_decl)
323 << (isa<ObjCCategoryDecl>(ND) ? "category" : "class");
324}
325
326/// AddAnyMethodToGlobalPool - Add any method, instance or factory to global
327/// pool.
328void Sema::AddAnyMethodToGlobalPool(Decl *D) {
329 ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
330
331 // If we don't have a valid method decl, simply return.
332 if (!MDecl)
333 return;
334 if (MDecl->isInstanceMethod())
335 AddInstanceMethodToGlobalPool(MDecl, true);
336 else
337 AddFactoryMethodToGlobalPool(MDecl, true);
338}
339
340/// HasExplicitOwnershipAttr - returns true when pointer to ObjC pointer
341/// has explicit ownership attribute; false otherwise.
342static bool
343HasExplicitOwnershipAttr(Sema &S, ParmVarDecl *Param) {
344 QualType T = Param->getType();
345
346 if (const PointerType *PT = T->getAs<PointerType>()) {
347 T = PT->getPointeeType();
348 } else if (const ReferenceType *RT = T->getAs<ReferenceType>()) {
349 T = RT->getPointeeType();
350 } else {
351 return true;
352 }
353
354 // If we have a lifetime qualifier, but it's local, we must have
355 // inferred it. So, it is implicit.
356 return !T.getLocalQualifiers().hasObjCLifetime();
357}
358
359/// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible
360/// and user declared, in the method definition's AST.
361void Sema::ActOnStartOfObjCMethodDef(Scope *FnBodyScope, Decl *D) {
362 ImplicitlyRetainedSelfLocs.clear();
363 assert((getCurMethodDecl() == nullptr) && "Methodparsing confused")(((getCurMethodDecl() == nullptr) && "Methodparsing confused"
) ? static_cast<void> (0) : __assert_fail ("(getCurMethodDecl() == nullptr) && \"Methodparsing confused\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 363, __PRETTY_FUNCTION__))
;
364 ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
365
366 PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
367
368 // If we don't have a valid method decl, simply return.
369 if (!MDecl)
370 return;
371
372 QualType ResultType = MDecl->getReturnType();
373 if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
374 !MDecl->isInvalidDecl() &&
375 RequireCompleteType(MDecl->getLocation(), ResultType,
376 diag::err_func_def_incomplete_result))
377 MDecl->setInvalidDecl();
378
379 // Allow all of Sema to see that we are entering a method definition.
380 PushDeclContext(FnBodyScope, MDecl);
381 PushFunctionScope();
382
383 // Create Decl objects for each parameter, entrring them in the scope for
384 // binding to their use.
385
386 // Insert the invisible arguments, self and _cmd!
387 MDecl->createImplicitParams(Context, MDecl->getClassInterface());
388
389 PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope);
390 PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope);
391
392 // The ObjC parser requires parameter names so there's no need to check.
393 CheckParmsForFunctionDef(MDecl->parameters(),
394 /*CheckParameterNames=*/false);
395
396 // Introduce all of the other parameters into this scope.
397 for (auto *Param : MDecl->parameters()) {
398 if (!Param->isInvalidDecl() &&
399 getLangOpts().ObjCAutoRefCount &&
400 !HasExplicitOwnershipAttr(*this, Param))
401 Diag(Param->getLocation(), diag::warn_arc_strong_pointer_objc_pointer) <<
402 Param->getType();
403
404 if (Param->getIdentifier())
405 PushOnScopeChains(Param, FnBodyScope);
406 }
407
408 // In ARC, disallow definition of retain/release/autorelease/retainCount
409 if (getLangOpts().ObjCAutoRefCount) {
410 switch (MDecl->getMethodFamily()) {
411 case OMF_retain:
412 case OMF_retainCount:
413 case OMF_release:
414 case OMF_autorelease:
415 Diag(MDecl->getLocation(), diag::err_arc_illegal_method_def)
416 << 0 << MDecl->getSelector();
417 break;
418
419 case OMF_None:
420 case OMF_dealloc:
421 case OMF_finalize:
422 case OMF_alloc:
423 case OMF_init:
424 case OMF_mutableCopy:
425 case OMF_copy:
426 case OMF_new:
427 case OMF_self:
428 case OMF_initialize:
429 case OMF_performSelector:
430 break;
431 }
432 }
433
434 // Warn on deprecated methods under -Wdeprecated-implementations,
435 // and prepare for warning on missing super calls.
436 if (ObjCInterfaceDecl *IC = MDecl->getClassInterface()) {
437 ObjCMethodDecl *IMD =
438 IC->lookupMethod(MDecl->getSelector(), MDecl->isInstanceMethod());
439
440 if (IMD) {
441 ObjCImplDecl *ImplDeclOfMethodDef =
442 dyn_cast<ObjCImplDecl>(MDecl->getDeclContext());
443 ObjCContainerDecl *ContDeclOfMethodDecl =
444 dyn_cast<ObjCContainerDecl>(IMD->getDeclContext());
445 ObjCImplDecl *ImplDeclOfMethodDecl = nullptr;
446 if (ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(ContDeclOfMethodDecl))
447 ImplDeclOfMethodDecl = OID->getImplementation();
448 else if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(ContDeclOfMethodDecl)) {
449 if (CD->IsClassExtension()) {
450 if (ObjCInterfaceDecl *OID = CD->getClassInterface())
451 ImplDeclOfMethodDecl = OID->getImplementation();
452 } else
453 ImplDeclOfMethodDecl = CD->getImplementation();
454 }
455 // No need to issue deprecated warning if deprecated mehod in class/category
456 // is being implemented in its own implementation (no overriding is involved).
457 if (!ImplDeclOfMethodDecl || ImplDeclOfMethodDecl != ImplDeclOfMethodDef)
458 DiagnoseObjCImplementedDeprecations(*this, IMD, MDecl->getLocation());
459 }
460
461 if (MDecl->getMethodFamily() == OMF_init) {
462 if (MDecl->isDesignatedInitializerForTheInterface()) {
463 getCurFunction()->ObjCIsDesignatedInit = true;
464 getCurFunction()->ObjCWarnForNoDesignatedInitChain =
465 IC->getSuperClass() != nullptr;
466 } else if (IC->hasDesignatedInitializers()) {
467 getCurFunction()->ObjCIsSecondaryInit = true;
468 getCurFunction()->ObjCWarnForNoInitDelegation = true;
469 }
470 }
471
472 // If this is "dealloc" or "finalize", set some bit here.
473 // Then in ActOnSuperMessage() (SemaExprObjC), set it back to false.
474 // Finally, in ActOnFinishFunctionBody() (SemaDecl), warn if flag is set.
475 // Only do this if the current class actually has a superclass.
476 if (const ObjCInterfaceDecl *SuperClass = IC->getSuperClass()) {
477 ObjCMethodFamily Family = MDecl->getMethodFamily();
478 if (Family == OMF_dealloc) {
479 if (!(getLangOpts().ObjCAutoRefCount ||
480 getLangOpts().getGC() == LangOptions::GCOnly))
481 getCurFunction()->ObjCShouldCallSuper = true;
482
483 } else if (Family == OMF_finalize) {
484 if (Context.getLangOpts().getGC() != LangOptions::NonGC)
485 getCurFunction()->ObjCShouldCallSuper = true;
486
487 } else {
488 const ObjCMethodDecl *SuperMethod =
489 SuperClass->lookupMethod(MDecl->getSelector(),
490 MDecl->isInstanceMethod());
491 getCurFunction()->ObjCShouldCallSuper =
492 (SuperMethod && SuperMethod->hasAttr<ObjCRequiresSuperAttr>());
493 }
494 }
495 }
496}
497
498namespace {
499
500// Callback to only accept typo corrections that are Objective-C classes.
501// If an ObjCInterfaceDecl* is given to the constructor, then the validation
502// function will reject corrections to that class.
503class ObjCInterfaceValidatorCCC final : public CorrectionCandidateCallback {
504 public:
505 ObjCInterfaceValidatorCCC() : CurrentIDecl(nullptr) {}
506 explicit ObjCInterfaceValidatorCCC(ObjCInterfaceDecl *IDecl)
507 : CurrentIDecl(IDecl) {}
508
509 bool ValidateCandidate(const TypoCorrection &candidate) override {
510 ObjCInterfaceDecl *ID = candidate.getCorrectionDeclAs<ObjCInterfaceDecl>();
511 return ID && !declaresSameEntity(ID, CurrentIDecl);
512 }
513
514 std::unique_ptr<CorrectionCandidateCallback> clone() override {
515 return llvm::make_unique<ObjCInterfaceValidatorCCC>(*this);
516 }
517
518 private:
519 ObjCInterfaceDecl *CurrentIDecl;
520};
521
522} // end anonymous namespace
523
524static void diagnoseUseOfProtocols(Sema &TheSema,
525 ObjCContainerDecl *CD,
526 ObjCProtocolDecl *const *ProtoRefs,
527 unsigned NumProtoRefs,
528 const SourceLocation *ProtoLocs) {
529 assert(ProtoRefs)((ProtoRefs) ? static_cast<void> (0) : __assert_fail ("ProtoRefs"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 529, __PRETTY_FUNCTION__))
;
530 // Diagnose availability in the context of the ObjC container.
531 Sema::ContextRAII SavedContext(TheSema, CD);
532 for (unsigned i = 0; i < NumProtoRefs; ++i) {
533 (void)TheSema.DiagnoseUseOfDecl(ProtoRefs[i], ProtoLocs[i],
534 /*UnknownObjCClass=*/nullptr,
535 /*ObjCPropertyAccess=*/false,
536 /*AvoidPartialAvailabilityChecks=*/true);
537 }
538}
539
540void Sema::
541ActOnSuperClassOfClassInterface(Scope *S,
542 SourceLocation AtInterfaceLoc,
543 ObjCInterfaceDecl *IDecl,
544 IdentifierInfo *ClassName,
545 SourceLocation ClassLoc,
546 IdentifierInfo *SuperName,
547 SourceLocation SuperLoc,
548 ArrayRef<ParsedType> SuperTypeArgs,
549 SourceRange SuperTypeArgsRange) {
550 // Check if a different kind of symbol declared in this scope.
551 NamedDecl *PrevDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
552 LookupOrdinaryName);
553
554 if (!PrevDecl) {
555 // Try to correct for a typo in the superclass name without correcting
556 // to the class we're defining.
557 ObjCInterfaceValidatorCCC CCC(IDecl);
558 if (TypoCorrection Corrected = CorrectTypo(
559 DeclarationNameInfo(SuperName, SuperLoc), LookupOrdinaryName,
560 TUScope, nullptr, CCC, CTK_ErrorRecovery)) {
561 diagnoseTypo(Corrected, PDiag(diag::err_undef_superclass_suggest)
562 << SuperName << ClassName);
563 PrevDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>();
564 }
565 }
566
567 if (declaresSameEntity(PrevDecl, IDecl)) {
568 Diag(SuperLoc, diag::err_recursive_superclass)
569 << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
570 IDecl->setEndOfDefinitionLoc(ClassLoc);
571 } else {
572 ObjCInterfaceDecl *SuperClassDecl =
573 dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
574 QualType SuperClassType;
575
576 // Diagnose classes that inherit from deprecated classes.
577 if (SuperClassDecl) {
578 (void)DiagnoseUseOfDecl(SuperClassDecl, SuperLoc);
579 SuperClassType = Context.getObjCInterfaceType(SuperClassDecl);
580 }
581
582 if (PrevDecl && !SuperClassDecl) {
583 // The previous declaration was not a class decl. Check if we have a
584 // typedef. If we do, get the underlying class type.
585 if (const TypedefNameDecl *TDecl =
586 dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
587 QualType T = TDecl->getUnderlyingType();
588 if (T->isObjCObjectType()) {
589 if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) {
590 SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(IDecl);
591 SuperClassType = Context.getTypeDeclType(TDecl);
592
593 // This handles the following case:
594 // @interface NewI @end
595 // typedef NewI DeprI __attribute__((deprecated("blah")))
596 // @interface SI : DeprI /* warn here */ @end
597 (void)DiagnoseUseOfDecl(const_cast<TypedefNameDecl*>(TDecl), SuperLoc);
598 }
599 }
600 }
601
602 // This handles the following case:
603 //
604 // typedef int SuperClass;
605 // @interface MyClass : SuperClass {} @end
606 //
607 if (!SuperClassDecl) {
608 Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName;
609 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
610 }
611 }
612
613 if (!dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
614 if (!SuperClassDecl)
615 Diag(SuperLoc, diag::err_undef_superclass)
616 << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
617 else if (RequireCompleteType(SuperLoc,
618 SuperClassType,
619 diag::err_forward_superclass,
620 SuperClassDecl->getDeclName(),
621 ClassName,
622 SourceRange(AtInterfaceLoc, ClassLoc))) {
623 SuperClassDecl = nullptr;
624 SuperClassType = QualType();
625 }
626 }
627
628 if (SuperClassType.isNull()) {
629 assert(!SuperClassDecl && "Failed to set SuperClassType?")((!SuperClassDecl && "Failed to set SuperClassType?")
? static_cast<void> (0) : __assert_fail ("!SuperClassDecl && \"Failed to set SuperClassType?\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 629, __PRETTY_FUNCTION__))
;
630 return;
631 }
632
633 // Handle type arguments on the superclass.
634 TypeSourceInfo *SuperClassTInfo = nullptr;
635 if (!SuperTypeArgs.empty()) {
636 TypeResult fullSuperClassType = actOnObjCTypeArgsAndProtocolQualifiers(
637 S,
638 SuperLoc,
639 CreateParsedType(SuperClassType,
640 nullptr),
641 SuperTypeArgsRange.getBegin(),
642 SuperTypeArgs,
643 SuperTypeArgsRange.getEnd(),
644 SourceLocation(),
645 { },
646 { },
647 SourceLocation());
648 if (!fullSuperClassType.isUsable())
649 return;
650
651 SuperClassType = GetTypeFromParser(fullSuperClassType.get(),
652 &SuperClassTInfo);
653 }
654
655 if (!SuperClassTInfo) {
656 SuperClassTInfo = Context.getTrivialTypeSourceInfo(SuperClassType,
657 SuperLoc);
658 }
659
660 IDecl->setSuperClass(SuperClassTInfo);
661 IDecl->setEndOfDefinitionLoc(SuperClassTInfo->getTypeLoc().getEndLoc());
662 }
663}
664
665DeclResult Sema::actOnObjCTypeParam(Scope *S,
666 ObjCTypeParamVariance variance,
667 SourceLocation varianceLoc,
668 unsigned index,
669 IdentifierInfo *paramName,
670 SourceLocation paramLoc,
671 SourceLocation colonLoc,
672 ParsedType parsedTypeBound) {
673 // If there was an explicitly-provided type bound, check it.
674 TypeSourceInfo *typeBoundInfo = nullptr;
675 if (parsedTypeBound) {
676 // The type bound can be any Objective-C pointer type.
677 QualType typeBound = GetTypeFromParser(parsedTypeBound, &typeBoundInfo);
678 if (typeBound->isObjCObjectPointerType()) {
679 // okay
680 } else if (typeBound->isObjCObjectType()) {
681 // The user forgot the * on an Objective-C pointer type, e.g.,
682 // "T : NSView".
683 SourceLocation starLoc = getLocForEndOfToken(
684 typeBoundInfo->getTypeLoc().getEndLoc());
685 Diag(typeBoundInfo->getTypeLoc().getBeginLoc(),
686 diag::err_objc_type_param_bound_missing_pointer)
687 << typeBound << paramName
688 << FixItHint::CreateInsertion(starLoc, " *");
689
690 // Create a new type location builder so we can update the type
691 // location information we have.
692 TypeLocBuilder builder;
693 builder.pushFullCopy(typeBoundInfo->getTypeLoc());
694
695 // Create the Objective-C pointer type.
696 typeBound = Context.getObjCObjectPointerType(typeBound);
697 ObjCObjectPointerTypeLoc newT
698 = builder.push<ObjCObjectPointerTypeLoc>(typeBound);
699 newT.setStarLoc(starLoc);
700
701 // Form the new type source information.
702 typeBoundInfo = builder.getTypeSourceInfo(Context, typeBound);
703 } else {
704 // Not a valid type bound.
705 Diag(typeBoundInfo->getTypeLoc().getBeginLoc(),
706 diag::err_objc_type_param_bound_nonobject)
707 << typeBound << paramName;
708
709 // Forget the bound; we'll default to id later.
710 typeBoundInfo = nullptr;
711 }
712
713 // Type bounds cannot have qualifiers (even indirectly) or explicit
714 // nullability.
715 if (typeBoundInfo) {
716 QualType typeBound = typeBoundInfo->getType();
717 TypeLoc qual = typeBoundInfo->getTypeLoc().findExplicitQualifierLoc();
718 if (qual || typeBound.hasQualifiers()) {
719 bool diagnosed = false;
720 SourceRange rangeToRemove;
721 if (qual) {
722 if (auto attr = qual.getAs<AttributedTypeLoc>()) {
723 rangeToRemove = attr.getLocalSourceRange();
724 if (attr.getTypePtr()->getImmediateNullability()) {
725 Diag(attr.getBeginLoc(),
726 diag::err_objc_type_param_bound_explicit_nullability)
727 << paramName << typeBound
728 << FixItHint::CreateRemoval(rangeToRemove);
729 diagnosed = true;
730 }
731 }
732 }
733
734 if (!diagnosed) {
735 Diag(qual ? qual.getBeginLoc()
736 : typeBoundInfo->getTypeLoc().getBeginLoc(),
737 diag::err_objc_type_param_bound_qualified)
738 << paramName << typeBound
739 << typeBound.getQualifiers().getAsString()
740 << FixItHint::CreateRemoval(rangeToRemove);
741 }
742
743 // If the type bound has qualifiers other than CVR, we need to strip
744 // them or we'll probably assert later when trying to apply new
745 // qualifiers.
746 Qualifiers quals = typeBound.getQualifiers();
747 quals.removeCVRQualifiers();
748 if (!quals.empty()) {
749 typeBoundInfo =
750 Context.getTrivialTypeSourceInfo(typeBound.getUnqualifiedType());
751 }
752 }
753 }
754 }
755
756 // If there was no explicit type bound (or we removed it due to an error),
757 // use 'id' instead.
758 if (!typeBoundInfo) {
759 colonLoc = SourceLocation();
760 typeBoundInfo = Context.getTrivialTypeSourceInfo(Context.getObjCIdType());
761 }
762
763 // Create the type parameter.
764 return ObjCTypeParamDecl::Create(Context, CurContext, variance, varianceLoc,
765 index, paramLoc, paramName, colonLoc,
766 typeBoundInfo);
767}
768
769ObjCTypeParamList *Sema::actOnObjCTypeParamList(Scope *S,
770 SourceLocation lAngleLoc,
771 ArrayRef<Decl *> typeParamsIn,
772 SourceLocation rAngleLoc) {
773 // We know that the array only contains Objective-C type parameters.
774 ArrayRef<ObjCTypeParamDecl *>
775 typeParams(
776 reinterpret_cast<ObjCTypeParamDecl * const *>(typeParamsIn.data()),
777 typeParamsIn.size());
778
779 // Diagnose redeclarations of type parameters.
780 // We do this now because Objective-C type parameters aren't pushed into
781 // scope until later (after the instance variable block), but we want the
782 // diagnostics to occur right after we parse the type parameter list.
783 llvm::SmallDenseMap<IdentifierInfo *, ObjCTypeParamDecl *> knownParams;
784 for (auto typeParam : typeParams) {
785 auto known = knownParams.find(typeParam->getIdentifier());
786 if (known != knownParams.end()) {
787 Diag(typeParam->getLocation(), diag::err_objc_type_param_redecl)
788 << typeParam->getIdentifier()
789 << SourceRange(known->second->getLocation());
790
791 typeParam->setInvalidDecl();
792 } else {
793 knownParams.insert(std::make_pair(typeParam->getIdentifier(), typeParam));
794
795 // Push the type parameter into scope.
796 PushOnScopeChains(typeParam, S, /*AddToContext=*/false);
797 }
798 }
799
800 // Create the parameter list.
801 return ObjCTypeParamList::create(Context, lAngleLoc, typeParams, rAngleLoc);
802}
803
804void Sema::popObjCTypeParamList(Scope *S, ObjCTypeParamList *typeParamList) {
805 for (auto typeParam : *typeParamList) {
806 if (!typeParam->isInvalidDecl()) {
807 S->RemoveDecl(typeParam);
808 IdResolver.RemoveDecl(typeParam);
809 }
810 }
811}
812
813namespace {
814 /// The context in which an Objective-C type parameter list occurs, for use
815 /// in diagnostics.
816 enum class TypeParamListContext {
817 ForwardDeclaration,
818 Definition,
819 Category,
820 Extension
821 };
822} // end anonymous namespace
823
824/// Check consistency between two Objective-C type parameter lists, e.g.,
825/// between a category/extension and an \@interface or between an \@class and an
826/// \@interface.
827static bool checkTypeParamListConsistency(Sema &S,
828 ObjCTypeParamList *prevTypeParams,
829 ObjCTypeParamList *newTypeParams,
830 TypeParamListContext newContext) {
831 // If the sizes don't match, complain about that.
832 if (prevTypeParams->size() != newTypeParams->size()) {
833 SourceLocation diagLoc;
834 if (newTypeParams->size() > prevTypeParams->size()) {
835 diagLoc = newTypeParams->begin()[prevTypeParams->size()]->getLocation();
836 } else {
837 diagLoc = S.getLocForEndOfToken(newTypeParams->back()->getEndLoc());
838 }
839
840 S.Diag(diagLoc, diag::err_objc_type_param_arity_mismatch)
841 << static_cast<unsigned>(newContext)
842 << (newTypeParams->size() > prevTypeParams->size())
843 << prevTypeParams->size()
844 << newTypeParams->size();
845
846 return true;
847 }
848
849 // Match up the type parameters.
850 for (unsigned i = 0, n = prevTypeParams->size(); i != n; ++i) {
851 ObjCTypeParamDecl *prevTypeParam = prevTypeParams->begin()[i];
852 ObjCTypeParamDecl *newTypeParam = newTypeParams->begin()[i];
853
854 // Check for consistency of the variance.
855 if (newTypeParam->getVariance() != prevTypeParam->getVariance()) {
856 if (newTypeParam->getVariance() == ObjCTypeParamVariance::Invariant &&
857 newContext != TypeParamListContext::Definition) {
858 // When the new type parameter is invariant and is not part
859 // of the definition, just propagate the variance.
860 newTypeParam->setVariance(prevTypeParam->getVariance());
861 } else if (prevTypeParam->getVariance()
862 == ObjCTypeParamVariance::Invariant &&
863 !(isa<ObjCInterfaceDecl>(prevTypeParam->getDeclContext()) &&
864 cast<ObjCInterfaceDecl>(prevTypeParam->getDeclContext())
865 ->getDefinition() == prevTypeParam->getDeclContext())) {
866 // When the old parameter is invariant and was not part of the
867 // definition, just ignore the difference because it doesn't
868 // matter.
869 } else {
870 {
871 // Diagnose the conflict and update the second declaration.
872 SourceLocation diagLoc = newTypeParam->getVarianceLoc();
873 if (diagLoc.isInvalid())
874 diagLoc = newTypeParam->getBeginLoc();
875
876 auto diag = S.Diag(diagLoc,
877 diag::err_objc_type_param_variance_conflict)
878 << static_cast<unsigned>(newTypeParam->getVariance())
879 << newTypeParam->getDeclName()
880 << static_cast<unsigned>(prevTypeParam->getVariance())
881 << prevTypeParam->getDeclName();
882 switch (prevTypeParam->getVariance()) {
883 case ObjCTypeParamVariance::Invariant:
884 diag << FixItHint::CreateRemoval(newTypeParam->getVarianceLoc());
885 break;
886
887 case ObjCTypeParamVariance::Covariant:
888 case ObjCTypeParamVariance::Contravariant: {
889 StringRef newVarianceStr
890 = prevTypeParam->getVariance() == ObjCTypeParamVariance::Covariant
891 ? "__covariant"
892 : "__contravariant";
893 if (newTypeParam->getVariance()
894 == ObjCTypeParamVariance::Invariant) {
895 diag << FixItHint::CreateInsertion(newTypeParam->getBeginLoc(),
896 (newVarianceStr + " ").str());
897 } else {
898 diag << FixItHint::CreateReplacement(newTypeParam->getVarianceLoc(),
899 newVarianceStr);
900 }
901 }
902 }
903 }
904
905 S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
906 << prevTypeParam->getDeclName();
907
908 // Override the variance.
909 newTypeParam->setVariance(prevTypeParam->getVariance());
910 }
911 }
912
913 // If the bound types match, there's nothing to do.
914 if (S.Context.hasSameType(prevTypeParam->getUnderlyingType(),
915 newTypeParam->getUnderlyingType()))
916 continue;
917
918 // If the new type parameter's bound was explicit, complain about it being
919 // different from the original.
920 if (newTypeParam->hasExplicitBound()) {
921 SourceRange newBoundRange = newTypeParam->getTypeSourceInfo()
922 ->getTypeLoc().getSourceRange();
923 S.Diag(newBoundRange.getBegin(), diag::err_objc_type_param_bound_conflict)
924 << newTypeParam->getUnderlyingType()
925 << newTypeParam->getDeclName()
926 << prevTypeParam->hasExplicitBound()
927 << prevTypeParam->getUnderlyingType()
928 << (newTypeParam->getDeclName() == prevTypeParam->getDeclName())
929 << prevTypeParam->getDeclName()
930 << FixItHint::CreateReplacement(
931 newBoundRange,
932 prevTypeParam->getUnderlyingType().getAsString(
933 S.Context.getPrintingPolicy()));
934
935 S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
936 << prevTypeParam->getDeclName();
937
938 // Override the new type parameter's bound type with the previous type,
939 // so that it's consistent.
940 newTypeParam->setTypeSourceInfo(
941 S.Context.getTrivialTypeSourceInfo(prevTypeParam->getUnderlyingType()));
942 continue;
943 }
944
945 // The new type parameter got the implicit bound of 'id'. That's okay for
946 // categories and extensions (overwrite it later), but not for forward
947 // declarations and @interfaces, because those must be standalone.
948 if (newContext == TypeParamListContext::ForwardDeclaration ||
949 newContext == TypeParamListContext::Definition) {
950 // Diagnose this problem for forward declarations and definitions.
951 SourceLocation insertionLoc
952 = S.getLocForEndOfToken(newTypeParam->getLocation());
953 std::string newCode
954 = " : " + prevTypeParam->getUnderlyingType().getAsString(
955 S.Context.getPrintingPolicy());
956 S.Diag(newTypeParam->getLocation(),
957 diag::err_objc_type_param_bound_missing)
958 << prevTypeParam->getUnderlyingType()
959 << newTypeParam->getDeclName()
960 << (newContext == TypeParamListContext::ForwardDeclaration)
961 << FixItHint::CreateInsertion(insertionLoc, newCode);
962
963 S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
964 << prevTypeParam->getDeclName();
965 }
966
967 // Update the new type parameter's bound to match the previous one.
968 newTypeParam->setTypeSourceInfo(
969 S.Context.getTrivialTypeSourceInfo(prevTypeParam->getUnderlyingType()));
970 }
971
972 return false;
973}
974
975Decl *Sema::ActOnStartClassInterface(
976 Scope *S, SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName,
977 SourceLocation ClassLoc, ObjCTypeParamList *typeParamList,
978 IdentifierInfo *SuperName, SourceLocation SuperLoc,
979 ArrayRef<ParsedType> SuperTypeArgs, SourceRange SuperTypeArgsRange,
980 Decl *const *ProtoRefs, unsigned NumProtoRefs,
981 const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
982 const ParsedAttributesView &AttrList) {
983 assert(ClassName && "Missing class identifier")((ClassName && "Missing class identifier") ? static_cast
<void> (0) : __assert_fail ("ClassName && \"Missing class identifier\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 983, __PRETTY_FUNCTION__))
;
984
985 // Check for another declaration kind with the same name.
986 NamedDecl *PrevDecl =
987 LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName,
988 forRedeclarationInCurContext());
989
990 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
991 Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
992 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
993 }
994
995 // Create a declaration to describe this @interface.
996 ObjCInterfaceDecl* PrevIDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
997
998 if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) {
999 // A previous decl with a different name is because of
1000 // @compatibility_alias, for example:
1001 // \code
1002 // @class NewImage;
1003 // @compatibility_alias OldImage NewImage;
1004 // \endcode
1005 // A lookup for 'OldImage' will return the 'NewImage' decl.
1006 //
1007 // In such a case use the real declaration name, instead of the alias one,
1008 // otherwise we will break IdentifierResolver and redecls-chain invariants.
1009 // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl
1010 // has been aliased.
1011 ClassName = PrevIDecl->getIdentifier();
1012 }
1013
1014 // If there was a forward declaration with type parameters, check
1015 // for consistency.
1016 if (PrevIDecl) {
1017 if (ObjCTypeParamList *prevTypeParamList = PrevIDecl->getTypeParamList()) {
1018 if (typeParamList) {
1019 // Both have type parameter lists; check for consistency.
1020 if (checkTypeParamListConsistency(*this, prevTypeParamList,
1021 typeParamList,
1022 TypeParamListContext::Definition)) {
1023 typeParamList = nullptr;
1024 }
1025 } else {
1026 Diag(ClassLoc, diag::err_objc_parameterized_forward_class_first)
1027 << ClassName;
1028 Diag(prevTypeParamList->getLAngleLoc(), diag::note_previous_decl)
1029 << ClassName;
1030
1031 // Clone the type parameter list.
1032 SmallVector<ObjCTypeParamDecl *, 4> clonedTypeParams;
1033 for (auto typeParam : *prevTypeParamList) {
1034 clonedTypeParams.push_back(
1035 ObjCTypeParamDecl::Create(
1036 Context,
1037 CurContext,
1038 typeParam->getVariance(),
1039 SourceLocation(),
1040 typeParam->getIndex(),
1041 SourceLocation(),
1042 typeParam->getIdentifier(),
1043 SourceLocation(),
1044 Context.getTrivialTypeSourceInfo(typeParam->getUnderlyingType())));
1045 }
1046
1047 typeParamList = ObjCTypeParamList::create(Context,
1048 SourceLocation(),
1049 clonedTypeParams,
1050 SourceLocation());
1051 }
1052 }
1053 }
1054
1055 ObjCInterfaceDecl *IDecl
1056 = ObjCInterfaceDecl::Create(Context, CurContext, AtInterfaceLoc, ClassName,
1057 typeParamList, PrevIDecl, ClassLoc);
1058 if (PrevIDecl) {
1059 // Class already seen. Was it a definition?
1060 if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
1061 Diag(AtInterfaceLoc, diag::err_duplicate_class_def)
1062 << PrevIDecl->getDeclName();
1063 Diag(Def->getLocation(), diag::note_previous_definition);
1064 IDecl->setInvalidDecl();
1065 }
1066 }
1067
1068 ProcessDeclAttributeList(TUScope, IDecl, AttrList);
1069 AddPragmaAttributes(TUScope, IDecl);
1070 PushOnScopeChains(IDecl, TUScope);
1071
1072 // Start the definition of this class. If we're in a redefinition case, there
1073 // may already be a definition, so we'll end up adding to it.
1074 if (!IDecl->hasDefinition())
1075 IDecl->startDefinition();
1076
1077 if (SuperName) {
1078 // Diagnose availability in the context of the @interface.
1079 ContextRAII SavedContext(*this, IDecl);
1080
1081 ActOnSuperClassOfClassInterface(S, AtInterfaceLoc, IDecl,
1082 ClassName, ClassLoc,
1083 SuperName, SuperLoc, SuperTypeArgs,
1084 SuperTypeArgsRange);
1085 } else { // we have a root class.
1086 IDecl->setEndOfDefinitionLoc(ClassLoc);
1087 }
1088
1089 // Check then save referenced protocols.
1090 if (NumProtoRefs) {
1091 diagnoseUseOfProtocols(*this, IDecl, (ObjCProtocolDecl*const*)ProtoRefs,
1092 NumProtoRefs, ProtoLocs);
1093 IDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
1094 ProtoLocs, Context);
1095 IDecl->setEndOfDefinitionLoc(EndProtoLoc);
1096 }
1097
1098 CheckObjCDeclScope(IDecl);
1099 return ActOnObjCContainerStartDefinition(IDecl);
1100}
1101
1102/// ActOnTypedefedProtocols - this action finds protocol list as part of the
1103/// typedef'ed use for a qualified super class and adds them to the list
1104/// of the protocols.
1105void Sema::ActOnTypedefedProtocols(SmallVectorImpl<Decl *> &ProtocolRefs,
1106 SmallVectorImpl<SourceLocation> &ProtocolLocs,
1107 IdentifierInfo *SuperName,
1108 SourceLocation SuperLoc) {
1109 if (!SuperName)
1110 return;
1111 NamedDecl* IDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
1112 LookupOrdinaryName);
1113 if (!IDecl)
1114 return;
1115
1116 if (const TypedefNameDecl *TDecl = dyn_cast_or_null<TypedefNameDecl>(IDecl)) {
1117 QualType T = TDecl->getUnderlyingType();
1118 if (T->isObjCObjectType())
1119 if (const ObjCObjectType *OPT = T->getAs<ObjCObjectType>()) {
1120 ProtocolRefs.append(OPT->qual_begin(), OPT->qual_end());
1121 // FIXME: Consider whether this should be an invalid loc since the loc
1122 // is not actually pointing to a protocol name reference but to the
1123 // typedef reference. Note that the base class name loc is also pointing
1124 // at the typedef.
1125 ProtocolLocs.append(OPT->getNumProtocols(), SuperLoc);
1126 }
1127 }
1128}
1129
1130/// ActOnCompatibilityAlias - this action is called after complete parsing of
1131/// a \@compatibility_alias declaration. It sets up the alias relationships.
1132Decl *Sema::ActOnCompatibilityAlias(SourceLocation AtLoc,
1133 IdentifierInfo *AliasName,
1134 SourceLocation AliasLocation,
1135 IdentifierInfo *ClassName,
1136 SourceLocation ClassLocation) {
1137 // Look for previous declaration of alias name
1138 NamedDecl *ADecl =
1139 LookupSingleName(TUScope, AliasName, AliasLocation, LookupOrdinaryName,
1140 forRedeclarationInCurContext());
1141 if (ADecl) {
1142 Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName;
1143 Diag(ADecl->getLocation(), diag::note_previous_declaration);
1144 return nullptr;
1145 }
1146 // Check for class declaration
1147 NamedDecl *CDeclU =
1148 LookupSingleName(TUScope, ClassName, ClassLocation, LookupOrdinaryName,
1149 forRedeclarationInCurContext());
1150 if (const TypedefNameDecl *TDecl =
1151 dyn_cast_or_null<TypedefNameDecl>(CDeclU)) {
1152 QualType T = TDecl->getUnderlyingType();
1153 if (T->isObjCObjectType()) {
1154 if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) {
1155 ClassName = IDecl->getIdentifier();
1156 CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
1157 LookupOrdinaryName,
1158 forRedeclarationInCurContext());
1159 }
1160 }
1161 }
1162 ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(CDeclU);
1163 if (!CDecl) {
1164 Diag(ClassLocation, diag::warn_undef_interface) << ClassName;
1165 if (CDeclU)
1166 Diag(CDeclU->getLocation(), diag::note_previous_declaration);
1167 return nullptr;
1168 }
1169
1170 // Everything checked out, instantiate a new alias declaration AST.
1171 ObjCCompatibleAliasDecl *AliasDecl =
1172 ObjCCompatibleAliasDecl::Create(Context, CurContext, AtLoc, AliasName, CDecl);
1173
1174 if (!CheckObjCDeclScope(AliasDecl))
1175 PushOnScopeChains(AliasDecl, TUScope);
1176
1177 return AliasDecl;
1178}
1179
1180bool Sema::CheckForwardProtocolDeclarationForCircularDependency(
1181 IdentifierInfo *PName,
1182 SourceLocation &Ploc, SourceLocation PrevLoc,
1183 const ObjCList<ObjCProtocolDecl> &PList) {
1184
1185 bool res = false;
1186 for (ObjCList<ObjCProtocolDecl>::iterator I = PList.begin(),
1187 E = PList.end(); I != E; ++I) {
1188 if (ObjCProtocolDecl *PDecl = LookupProtocol((*I)->getIdentifier(),
1189 Ploc)) {
1190 if (PDecl->getIdentifier() == PName) {
1191 Diag(Ploc, diag::err_protocol_has_circular_dependency);
1192 Diag(PrevLoc, diag::note_previous_definition);
1193 res = true;
1194 }
1195
1196 if (!PDecl->hasDefinition())
1197 continue;
1198
1199 if (CheckForwardProtocolDeclarationForCircularDependency(PName, Ploc,
1200 PDecl->getLocation(), PDecl->getReferencedProtocols()))
1201 res = true;
1202 }
1203 }
1204 return res;
1205}
1206
1207Decl *Sema::ActOnStartProtocolInterface(
1208 SourceLocation AtProtoInterfaceLoc, IdentifierInfo *ProtocolName,
1209 SourceLocation ProtocolLoc, Decl *const *ProtoRefs, unsigned NumProtoRefs,
1210 const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
1211 const ParsedAttributesView &AttrList) {
1212 bool err = false;
1213 // FIXME: Deal with AttrList.
1214 assert(ProtocolName && "Missing protocol identifier")((ProtocolName && "Missing protocol identifier") ? static_cast
<void> (0) : __assert_fail ("ProtocolName && \"Missing protocol identifier\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 1214, __PRETTY_FUNCTION__))
;
1215 ObjCProtocolDecl *PrevDecl = LookupProtocol(ProtocolName, ProtocolLoc,
1216 forRedeclarationInCurContext());
1217 ObjCProtocolDecl *PDecl = nullptr;
1218 if (ObjCProtocolDecl *Def = PrevDecl? PrevDecl->getDefinition() : nullptr) {
1219 // If we already have a definition, complain.
1220 Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName;
1221 Diag(Def->getLocation(), diag::note_previous_definition);
1222
1223 // Create a new protocol that is completely distinct from previous
1224 // declarations, and do not make this protocol available for name lookup.
1225 // That way, we'll end up completely ignoring the duplicate.
1226 // FIXME: Can we turn this into an error?
1227 PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
1228 ProtocolLoc, AtProtoInterfaceLoc,
1229 /*PrevDecl=*/nullptr);
1230
1231 // If we are using modules, add the decl to the context in order to
1232 // serialize something meaningful.
1233 if (getLangOpts().Modules)
1234 PushOnScopeChains(PDecl, TUScope);
1235 PDecl->startDefinition();
1236 } else {
1237 if (PrevDecl) {
1238 // Check for circular dependencies among protocol declarations. This can
1239 // only happen if this protocol was forward-declared.
1240 ObjCList<ObjCProtocolDecl> PList;
1241 PList.set((ObjCProtocolDecl *const*)ProtoRefs, NumProtoRefs, Context);
1242 err = CheckForwardProtocolDeclarationForCircularDependency(
1243 ProtocolName, ProtocolLoc, PrevDecl->getLocation(), PList);
1244 }
1245
1246 // Create the new declaration.
1247 PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
1248 ProtocolLoc, AtProtoInterfaceLoc,
1249 /*PrevDecl=*/PrevDecl);
1250
1251 PushOnScopeChains(PDecl, TUScope);
1252 PDecl->startDefinition();
1253 }
1254
1255 ProcessDeclAttributeList(TUScope, PDecl, AttrList);
1256 AddPragmaAttributes(TUScope, PDecl);
1257
1258 // Merge attributes from previous declarations.
1259 if (PrevDecl)
1260 mergeDeclAttributes(PDecl, PrevDecl);
1261
1262 if (!err && NumProtoRefs ) {
1263 /// Check then save referenced protocols.
1264 diagnoseUseOfProtocols(*this, PDecl, (ObjCProtocolDecl*const*)ProtoRefs,
1265 NumProtoRefs, ProtoLocs);
1266 PDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
1267 ProtoLocs, Context);
1268 }
1269
1270 CheckObjCDeclScope(PDecl);
1271 return ActOnObjCContainerStartDefinition(PDecl);
1272}
1273
1274static bool NestedProtocolHasNoDefinition(ObjCProtocolDecl *PDecl,
1275 ObjCProtocolDecl *&UndefinedProtocol) {
1276 if (!PDecl->hasDefinition() || PDecl->getDefinition()->isHidden()) {
1277 UndefinedProtocol = PDecl;
1278 return true;
1279 }
1280
1281 for (auto *PI : PDecl->protocols())
1282 if (NestedProtocolHasNoDefinition(PI, UndefinedProtocol)) {
1283 UndefinedProtocol = PI;
1284 return true;
1285 }
1286 return false;
1287}
1288
1289/// FindProtocolDeclaration - This routine looks up protocols and
1290/// issues an error if they are not declared. It returns list of
1291/// protocol declarations in its 'Protocols' argument.
1292void
1293Sema::FindProtocolDeclaration(bool WarnOnDeclarations, bool ForObjCContainer,
1294 ArrayRef<IdentifierLocPair> ProtocolId,
1295 SmallVectorImpl<Decl *> &Protocols) {
1296 for (const IdentifierLocPair &Pair : ProtocolId) {
1297 ObjCProtocolDecl *PDecl = LookupProtocol(Pair.first, Pair.second);
1298 if (!PDecl) {
1299 DeclFilterCCC<ObjCProtocolDecl> CCC{};
1300 TypoCorrection Corrected = CorrectTypo(
1301 DeclarationNameInfo(Pair.first, Pair.second), LookupObjCProtocolName,
1302 TUScope, nullptr, CCC, CTK_ErrorRecovery);
1303 if ((PDecl = Corrected.getCorrectionDeclAs<ObjCProtocolDecl>()))
1304 diagnoseTypo(Corrected, PDiag(diag::err_undeclared_protocol_suggest)
1305 << Pair.first);
1306 }
1307
1308 if (!PDecl) {
1309 Diag(Pair.second, diag::err_undeclared_protocol) << Pair.first;
1310 continue;
1311 }
1312 // If this is a forward protocol declaration, get its definition.
1313 if (!PDecl->isThisDeclarationADefinition() && PDecl->getDefinition())
1314 PDecl = PDecl->getDefinition();
1315
1316 // For an objc container, delay protocol reference checking until after we
1317 // can set the objc decl as the availability context, otherwise check now.
1318 if (!ForObjCContainer) {
1319 (void)DiagnoseUseOfDecl(PDecl, Pair.second);
1320 }
1321
1322 // If this is a forward declaration and we are supposed to warn in this
1323 // case, do it.
1324 // FIXME: Recover nicely in the hidden case.
1325 ObjCProtocolDecl *UndefinedProtocol;
1326
1327 if (WarnOnDeclarations &&
1328 NestedProtocolHasNoDefinition(PDecl, UndefinedProtocol)) {
1329 Diag(Pair.second, diag::warn_undef_protocolref) << Pair.first;
1330 Diag(UndefinedProtocol->getLocation(), diag::note_protocol_decl_undefined)
1331 << UndefinedProtocol;
1332 }
1333 Protocols.push_back(PDecl);
1334 }
1335}
1336
1337namespace {
1338// Callback to only accept typo corrections that are either
1339// Objective-C protocols or valid Objective-C type arguments.
1340class ObjCTypeArgOrProtocolValidatorCCC final
1341 : public CorrectionCandidateCallback {
1342 ASTContext &Context;
1343 Sema::LookupNameKind LookupKind;
1344 public:
1345 ObjCTypeArgOrProtocolValidatorCCC(ASTContext &context,
1346 Sema::LookupNameKind lookupKind)
1347 : Context(context), LookupKind(lookupKind) { }
1348
1349 bool ValidateCandidate(const TypoCorrection &candidate) override {
1350 // If we're allowed to find protocols and we have a protocol, accept it.
1351 if (LookupKind != Sema::LookupOrdinaryName) {
1352 if (candidate.getCorrectionDeclAs<ObjCProtocolDecl>())
1353 return true;
1354 }
1355
1356 // If we're allowed to find type names and we have one, accept it.
1357 if (LookupKind != Sema::LookupObjCProtocolName) {
1358 // If we have a type declaration, we might accept this result.
1359 if (auto typeDecl = candidate.getCorrectionDeclAs<TypeDecl>()) {
1360 // If we found a tag declaration outside of C++, skip it. This
1361 // can happy because we look for any name when there is no
1362 // bias to protocol or type names.
1363 if (isa<RecordDecl>(typeDecl) && !Context.getLangOpts().CPlusPlus)
1364 return false;
1365
1366 // Make sure the type is something we would accept as a type
1367 // argument.
1368 auto type = Context.getTypeDeclType(typeDecl);
1369 if (type->isObjCObjectPointerType() ||
1370 type->isBlockPointerType() ||
1371 type->isDependentType() ||
1372 type->isObjCObjectType())
1373 return true;
1374
1375 return false;
1376 }
1377
1378 // If we have an Objective-C class type, accept it; there will
1379 // be another fix to add the '*'.
1380 if (candidate.getCorrectionDeclAs<ObjCInterfaceDecl>())
1381 return true;
1382
1383 return false;
1384 }
1385
1386 return false;
1387 }
1388
1389 std::unique_ptr<CorrectionCandidateCallback> clone() override {
1390 return llvm::make_unique<ObjCTypeArgOrProtocolValidatorCCC>(*this);
1391 }
1392};
1393} // end anonymous namespace
1394
1395void Sema::DiagnoseTypeArgsAndProtocols(IdentifierInfo *ProtocolId,
1396 SourceLocation ProtocolLoc,
1397 IdentifierInfo *TypeArgId,
1398 SourceLocation TypeArgLoc,
1399 bool SelectProtocolFirst) {
1400 Diag(TypeArgLoc, diag::err_objc_type_args_and_protocols)
1401 << SelectProtocolFirst << TypeArgId << ProtocolId
1402 << SourceRange(ProtocolLoc);
1403}
1404
1405void Sema::actOnObjCTypeArgsOrProtocolQualifiers(
1406 Scope *S,
1407 ParsedType baseType,
1408 SourceLocation lAngleLoc,
1409 ArrayRef<IdentifierInfo *> identifiers,
1410 ArrayRef<SourceLocation> identifierLocs,
1411 SourceLocation rAngleLoc,
1412 SourceLocation &typeArgsLAngleLoc,
1413 SmallVectorImpl<ParsedType> &typeArgs,
1414 SourceLocation &typeArgsRAngleLoc,
1415 SourceLocation &protocolLAngleLoc,
1416 SmallVectorImpl<Decl *> &protocols,
1417 SourceLocation &protocolRAngleLoc,
1418 bool warnOnIncompleteProtocols) {
1419 // Local function that updates the declaration specifiers with
1420 // protocol information.
1421 unsigned numProtocolsResolved = 0;
1422 auto resolvedAsProtocols = [&] {
1423 assert(numProtocolsResolved == identifiers.size() && "Unresolved protocols")((numProtocolsResolved == identifiers.size() && "Unresolved protocols"
) ? static_cast<void> (0) : __assert_fail ("numProtocolsResolved == identifiers.size() && \"Unresolved protocols\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 1423, __PRETTY_FUNCTION__))
;
1424
1425 // Determine whether the base type is a parameterized class, in
1426 // which case we want to warn about typos such as
1427 // "NSArray<NSObject>" (that should be NSArray<NSObject *>).
1428 ObjCInterfaceDecl *baseClass = nullptr;
1429 QualType base = GetTypeFromParser(baseType, nullptr);
1430 bool allAreTypeNames = false;
1431 SourceLocation firstClassNameLoc;
1432 if (!base.isNull()) {
1433 if (const auto *objcObjectType = base->getAs<ObjCObjectType>()) {
1434 baseClass = objcObjectType->getInterface();
1435 if (baseClass) {
1436 if (auto typeParams = baseClass->getTypeParamList()) {
1437 if (typeParams->size() == numProtocolsResolved) {
1438 // Note that we should be looking for type names, too.
1439 allAreTypeNames = true;
1440 }
1441 }
1442 }
1443 }
1444 }
1445
1446 for (unsigned i = 0, n = protocols.size(); i != n; ++i) {
1447 ObjCProtocolDecl *&proto
1448 = reinterpret_cast<ObjCProtocolDecl *&>(protocols[i]);
1449 // For an objc container, delay protocol reference checking until after we
1450 // can set the objc decl as the availability context, otherwise check now.
1451 if (!warnOnIncompleteProtocols) {
1452 (void)DiagnoseUseOfDecl(proto, identifierLocs[i]);
1453 }
1454
1455 // If this is a forward protocol declaration, get its definition.
1456 if (!proto->isThisDeclarationADefinition() && proto->getDefinition())
1457 proto = proto->getDefinition();
1458
1459 // If this is a forward declaration and we are supposed to warn in this
1460 // case, do it.
1461 // FIXME: Recover nicely in the hidden case.
1462 ObjCProtocolDecl *forwardDecl = nullptr;
1463 if (warnOnIncompleteProtocols &&
1464 NestedProtocolHasNoDefinition(proto, forwardDecl)) {
1465 Diag(identifierLocs[i], diag::warn_undef_protocolref)
1466 << proto->getDeclName();
1467 Diag(forwardDecl->getLocation(), diag::note_protocol_decl_undefined)
1468 << forwardDecl;
1469 }
1470
1471 // If everything this far has been a type name (and we care
1472 // about such things), check whether this name refers to a type
1473 // as well.
1474 if (allAreTypeNames) {
1475 if (auto *decl = LookupSingleName(S, identifiers[i], identifierLocs[i],
1476 LookupOrdinaryName)) {
1477 if (isa<ObjCInterfaceDecl>(decl)) {
1478 if (firstClassNameLoc.isInvalid())
1479 firstClassNameLoc = identifierLocs[i];
1480 } else if (!isa<TypeDecl>(decl)) {
1481 // Not a type.
1482 allAreTypeNames = false;
1483 }
1484 } else {
1485 allAreTypeNames = false;
1486 }
1487 }
1488 }
1489
1490 // All of the protocols listed also have type names, and at least
1491 // one is an Objective-C class name. Check whether all of the
1492 // protocol conformances are declared by the base class itself, in
1493 // which case we warn.
1494 if (allAreTypeNames && firstClassNameLoc.isValid()) {
1495 llvm::SmallPtrSet<ObjCProtocolDecl*, 8> knownProtocols;
1496 Context.CollectInheritedProtocols(baseClass, knownProtocols);
1497 bool allProtocolsDeclared = true;
1498 for (auto proto : protocols) {
1499 if (knownProtocols.count(static_cast<ObjCProtocolDecl *>(proto)) == 0) {
1500 allProtocolsDeclared = false;
1501 break;
1502 }
1503 }
1504
1505 if (allProtocolsDeclared) {
1506 Diag(firstClassNameLoc, diag::warn_objc_redundant_qualified_class_type)
1507 << baseClass->getDeclName() << SourceRange(lAngleLoc, rAngleLoc)
1508 << FixItHint::CreateInsertion(getLocForEndOfToken(firstClassNameLoc),
1509 " *");
1510 }
1511 }
1512
1513 protocolLAngleLoc = lAngleLoc;
1514 protocolRAngleLoc = rAngleLoc;
1515 assert(protocols.size() == identifierLocs.size())((protocols.size() == identifierLocs.size()) ? static_cast<
void> (0) : __assert_fail ("protocols.size() == identifierLocs.size()"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 1515, __PRETTY_FUNCTION__))
;
1516 };
1517
1518 // Attempt to resolve all of the identifiers as protocols.
1519 for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1520 ObjCProtocolDecl *proto = LookupProtocol(identifiers[i], identifierLocs[i]);
1521 protocols.push_back(proto);
1522 if (proto)
1523 ++numProtocolsResolved;
1524 }
1525
1526 // If all of the names were protocols, these were protocol qualifiers.
1527 if (numProtocolsResolved == identifiers.size())
1528 return resolvedAsProtocols();
1529
1530 // Attempt to resolve all of the identifiers as type names or
1531 // Objective-C class names. The latter is technically ill-formed,
1532 // but is probably something like \c NSArray<NSView *> missing the
1533 // \c*.
1534 typedef llvm::PointerUnion<TypeDecl *, ObjCInterfaceDecl *> TypeOrClassDecl;
1535 SmallVector<TypeOrClassDecl, 4> typeDecls;
1536 unsigned numTypeDeclsResolved = 0;
1537 for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1538 NamedDecl *decl = LookupSingleName(S, identifiers[i], identifierLocs[i],
1539 LookupOrdinaryName);
1540 if (!decl) {
1541 typeDecls.push_back(TypeOrClassDecl());
1542 continue;
1543 }
1544
1545 if (auto typeDecl = dyn_cast<TypeDecl>(decl)) {
1546 typeDecls.push_back(typeDecl);
1547 ++numTypeDeclsResolved;
1548 continue;
1549 }
1550
1551 if (auto objcClass = dyn_cast<ObjCInterfaceDecl>(decl)) {
1552 typeDecls.push_back(objcClass);
1553 ++numTypeDeclsResolved;
1554 continue;
1555 }
1556
1557 typeDecls.push_back(TypeOrClassDecl());
1558 }
1559
1560 AttributeFactory attrFactory;
1561
1562 // Local function that forms a reference to the given type or
1563 // Objective-C class declaration.
1564 auto resolveTypeReference = [&](TypeOrClassDecl typeDecl, SourceLocation loc)
1565 -> TypeResult {
1566 // Form declaration specifiers. They simply refer to the type.
1567 DeclSpec DS(attrFactory);
1568 const char* prevSpec; // unused
1569 unsigned diagID; // unused
1570 QualType type;
1571 if (auto *actualTypeDecl = typeDecl.dyn_cast<TypeDecl *>())
1572 type = Context.getTypeDeclType(actualTypeDecl);
1573 else
1574 type = Context.getObjCInterfaceType(typeDecl.get<ObjCInterfaceDecl *>());
1575 TypeSourceInfo *parsedTSInfo = Context.getTrivialTypeSourceInfo(type, loc);
1576 ParsedType parsedType = CreateParsedType(type, parsedTSInfo);
1577 DS.SetTypeSpecType(DeclSpec::TST_typename, loc, prevSpec, diagID,
1578 parsedType, Context.getPrintingPolicy());
1579 // Use the identifier location for the type source range.
1580 DS.SetRangeStart(loc);
1581 DS.SetRangeEnd(loc);
1582
1583 // Form the declarator.
1584 Declarator D(DS, DeclaratorContext::TypeNameContext);
1585
1586 // If we have a typedef of an Objective-C class type that is missing a '*',
1587 // add the '*'.
1588 if (type->getAs<ObjCInterfaceType>()) {
1589 SourceLocation starLoc = getLocForEndOfToken(loc);
1590 D.AddTypeInfo(DeclaratorChunk::getPointer(/*typeQuals=*/0, starLoc,
1591 SourceLocation(),
1592 SourceLocation(),
1593 SourceLocation(),
1594 SourceLocation(),
1595 SourceLocation()),
1596 starLoc);
1597
1598 // Diagnose the missing '*'.
1599 Diag(loc, diag::err_objc_type_arg_missing_star)
1600 << type
1601 << FixItHint::CreateInsertion(starLoc, " *");
1602 }
1603
1604 // Convert this to a type.
1605 return ActOnTypeName(S, D);
1606 };
1607
1608 // Local function that updates the declaration specifiers with
1609 // type argument information.
1610 auto resolvedAsTypeDecls = [&] {
1611 // We did not resolve these as protocols.
1612 protocols.clear();
1613
1614 assert(numTypeDeclsResolved == identifiers.size() && "Unresolved type decl")((numTypeDeclsResolved == identifiers.size() && "Unresolved type decl"
) ? static_cast<void> (0) : __assert_fail ("numTypeDeclsResolved == identifiers.size() && \"Unresolved type decl\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 1614, __PRETTY_FUNCTION__))
;
1615 // Map type declarations to type arguments.
1616 for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1617 // Map type reference to a type.
1618 TypeResult type = resolveTypeReference(typeDecls[i], identifierLocs[i]);
1619 if (!type.isUsable()) {
1620 typeArgs.clear();
1621 return;
1622 }
1623
1624 typeArgs.push_back(type.get());
1625 }
1626
1627 typeArgsLAngleLoc = lAngleLoc;
1628 typeArgsRAngleLoc = rAngleLoc;
1629 };
1630
1631 // If all of the identifiers can be resolved as type names or
1632 // Objective-C class names, we have type arguments.
1633 if (numTypeDeclsResolved == identifiers.size())
1634 return resolvedAsTypeDecls();
1635
1636 // Error recovery: some names weren't found, or we have a mix of
1637 // type and protocol names. Go resolve all of the unresolved names
1638 // and complain if we can't find a consistent answer.
1639 LookupNameKind lookupKind = LookupAnyName;
1640 for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1641 // If we already have a protocol or type. Check whether it is the
1642 // right thing.
1643 if (protocols[i] || typeDecls[i]) {
1644 // If we haven't figured out whether we want types or protocols
1645 // yet, try to figure it out from this name.
1646 if (lookupKind == LookupAnyName) {
1647 // If this name refers to both a protocol and a type (e.g., \c
1648 // NSObject), don't conclude anything yet.
1649 if (protocols[i] && typeDecls[i])
1650 continue;
1651
1652 // Otherwise, let this name decide whether we'll be correcting
1653 // toward types or protocols.
1654 lookupKind = protocols[i] ? LookupObjCProtocolName
1655 : LookupOrdinaryName;
1656 continue;
1657 }
1658
1659 // If we want protocols and we have a protocol, there's nothing
1660 // more to do.
1661 if (lookupKind == LookupObjCProtocolName && protocols[i])
1662 continue;
1663
1664 // If we want types and we have a type declaration, there's
1665 // nothing more to do.
1666 if (lookupKind == LookupOrdinaryName && typeDecls[i])
1667 continue;
1668
1669 // We have a conflict: some names refer to protocols and others
1670 // refer to types.
1671 DiagnoseTypeArgsAndProtocols(identifiers[0], identifierLocs[0],
1672 identifiers[i], identifierLocs[i],
1673 protocols[i] != nullptr);
1674
1675 protocols.clear();
1676 typeArgs.clear();
1677 return;
1678 }
1679
1680 // Perform typo correction on the name.
1681 ObjCTypeArgOrProtocolValidatorCCC CCC(Context, lookupKind);
1682 TypoCorrection corrected =
1683 CorrectTypo(DeclarationNameInfo(identifiers[i], identifierLocs[i]),
1684 lookupKind, S, nullptr, CCC, CTK_ErrorRecovery);
1685 if (corrected) {
1686 // Did we find a protocol?
1687 if (auto proto = corrected.getCorrectionDeclAs<ObjCProtocolDecl>()) {
1688 diagnoseTypo(corrected,
1689 PDiag(diag::err_undeclared_protocol_suggest)
1690 << identifiers[i]);
1691 lookupKind = LookupObjCProtocolName;
1692 protocols[i] = proto;
1693 ++numProtocolsResolved;
1694 continue;
1695 }
1696
1697 // Did we find a type?
1698 if (auto typeDecl = corrected.getCorrectionDeclAs<TypeDecl>()) {
1699 diagnoseTypo(corrected,
1700 PDiag(diag::err_unknown_typename_suggest)
1701 << identifiers[i]);
1702 lookupKind = LookupOrdinaryName;
1703 typeDecls[i] = typeDecl;
1704 ++numTypeDeclsResolved;
1705 continue;
1706 }
1707
1708 // Did we find an Objective-C class?
1709 if (auto objcClass = corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) {
1710 diagnoseTypo(corrected,
1711 PDiag(diag::err_unknown_type_or_class_name_suggest)
1712 << identifiers[i] << true);
1713 lookupKind = LookupOrdinaryName;
1714 typeDecls[i] = objcClass;
1715 ++numTypeDeclsResolved;
1716 continue;
1717 }
1718 }
1719
1720 // We couldn't find anything.
1721 Diag(identifierLocs[i],
1722 (lookupKind == LookupAnyName ? diag::err_objc_type_arg_missing
1723 : lookupKind == LookupObjCProtocolName ? diag::err_undeclared_protocol
1724 : diag::err_unknown_typename))
1725 << identifiers[i];
1726 protocols.clear();
1727 typeArgs.clear();
1728 return;
1729 }
1730
1731 // If all of the names were (corrected to) protocols, these were
1732 // protocol qualifiers.
1733 if (numProtocolsResolved == identifiers.size())
1734 return resolvedAsProtocols();
1735
1736 // Otherwise, all of the names were (corrected to) types.
1737 assert(numTypeDeclsResolved == identifiers.size() && "Not all types?")((numTypeDeclsResolved == identifiers.size() && "Not all types?"
) ? static_cast<void> (0) : __assert_fail ("numTypeDeclsResolved == identifiers.size() && \"Not all types?\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 1737, __PRETTY_FUNCTION__))
;
1738 return resolvedAsTypeDecls();
1739}
1740
1741/// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of
1742/// a class method in its extension.
1743///
1744void Sema::DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT,
1745 ObjCInterfaceDecl *ID) {
1746 if (!ID)
1747 return; // Possibly due to previous error
1748
1749 llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap;
1750 for (auto *MD : ID->methods())
1751 MethodMap[MD->getSelector()] = MD;
1752
1753 if (MethodMap.empty())
1754 return;
1755 for (const auto *Method : CAT->methods()) {
1756 const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()];
1757 if (PrevMethod &&
1758 (PrevMethod->isInstanceMethod() == Method->isInstanceMethod()) &&
1759 !MatchTwoMethodDeclarations(Method, PrevMethod)) {
1760 Diag(Method->getLocation(), diag::err_duplicate_method_decl)
1761 << Method->getDeclName();
1762 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
1763 }
1764 }
1765}
1766
1767/// ActOnForwardProtocolDeclaration - Handle \@protocol foo;
1768Sema::DeclGroupPtrTy
1769Sema::ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc,
1770 ArrayRef<IdentifierLocPair> IdentList,
1771 const ParsedAttributesView &attrList) {
1772 SmallVector<Decl *, 8> DeclsInGroup;
1773 for (const IdentifierLocPair &IdentPair : IdentList) {
1774 IdentifierInfo *Ident = IdentPair.first;
1775 ObjCProtocolDecl *PrevDecl = LookupProtocol(Ident, IdentPair.second,
1776 forRedeclarationInCurContext());
1777 ObjCProtocolDecl *PDecl
1778 = ObjCProtocolDecl::Create(Context, CurContext, Ident,
1779 IdentPair.second, AtProtocolLoc,
1780 PrevDecl);
1781
1782 PushOnScopeChains(PDecl, TUScope);
1783 CheckObjCDeclScope(PDecl);
1784
1785 ProcessDeclAttributeList(TUScope, PDecl, attrList);
1786 AddPragmaAttributes(TUScope, PDecl);
1787
1788 if (PrevDecl)
1789 mergeDeclAttributes(PDecl, PrevDecl);
1790
1791 DeclsInGroup.push_back(PDecl);
1792 }
1793
1794 return BuildDeclaratorGroup(DeclsInGroup);
1795}
1796
1797Decl *Sema::ActOnStartCategoryInterface(
1798 SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName,
1799 SourceLocation ClassLoc, ObjCTypeParamList *typeParamList,
1800 IdentifierInfo *CategoryName, SourceLocation CategoryLoc,
1801 Decl *const *ProtoRefs, unsigned NumProtoRefs,
1802 const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
1803 const ParsedAttributesView &AttrList) {
1804 ObjCCategoryDecl *CDecl;
1805 ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
1806
1807 /// Check that class of this category is already completely declared.
1808
1809 if (!IDecl
1810 || RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
1811 diag::err_category_forward_interface,
1812 CategoryName == nullptr)) {
1813 // Create an invalid ObjCCategoryDecl to serve as context for
1814 // the enclosing method declarations. We mark the decl invalid
1815 // to make it clear that this isn't a valid AST.
1816 CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
1817 ClassLoc, CategoryLoc, CategoryName,
1818 IDecl, typeParamList);
1819 CDecl->setInvalidDecl();
1820 CurContext->addDecl(CDecl);
1821
1822 if (!IDecl)
1823 Diag(ClassLoc, diag::err_undef_interface) << ClassName;
1824 return ActOnObjCContainerStartDefinition(CDecl);
1825 }
1826
1827 if (!CategoryName && IDecl->getImplementation()) {
1828 Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName;
1829 Diag(IDecl->getImplementation()->getLocation(),
1830 diag::note_implementation_declared);
1831 }
1832
1833 if (CategoryName) {
1834 /// Check for duplicate interface declaration for this category
1835 if (ObjCCategoryDecl *Previous
1836 = IDecl->FindCategoryDeclaration(CategoryName)) {
1837 // Class extensions can be declared multiple times, categories cannot.
1838 Diag(CategoryLoc, diag::warn_dup_category_def)
1839 << ClassName << CategoryName;
1840 Diag(Previous->getLocation(), diag::note_previous_definition);
1841 }
1842 }
1843
1844 // If we have a type parameter list, check it.
1845 if (typeParamList) {
1846 if (auto prevTypeParamList = IDecl->getTypeParamList()) {
1847 if (checkTypeParamListConsistency(*this, prevTypeParamList, typeParamList,
1848 CategoryName
1849 ? TypeParamListContext::Category
1850 : TypeParamListContext::Extension))
1851 typeParamList = nullptr;
1852 } else {
1853 Diag(typeParamList->getLAngleLoc(),
1854 diag::err_objc_parameterized_category_nonclass)
1855 << (CategoryName != nullptr)
1856 << ClassName
1857 << typeParamList->getSourceRange();
1858
1859 typeParamList = nullptr;
1860 }
1861 }
1862
1863 CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
1864 ClassLoc, CategoryLoc, CategoryName, IDecl,
1865 typeParamList);
1866 // FIXME: PushOnScopeChains?
1867 CurContext->addDecl(CDecl);
1868
1869 // Process the attributes before looking at protocols to ensure that the
1870 // availability attribute is attached to the category to provide availability
1871 // checking for protocol uses.
1872 ProcessDeclAttributeList(TUScope, CDecl, AttrList);
1873 AddPragmaAttributes(TUScope, CDecl);
1874
1875 if (NumProtoRefs) {
1876 diagnoseUseOfProtocols(*this, CDecl, (ObjCProtocolDecl*const*)ProtoRefs,
1877 NumProtoRefs, ProtoLocs);
1878 CDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
1879 ProtoLocs, Context);
1880 // Protocols in the class extension belong to the class.
1881 if (CDecl->IsClassExtension())
1882 IDecl->mergeClassExtensionProtocolList((ObjCProtocolDecl*const*)ProtoRefs,
1883 NumProtoRefs, Context);
1884 }
1885
1886 CheckObjCDeclScope(CDecl);
1887 return ActOnObjCContainerStartDefinition(CDecl);
1888}
1889
1890/// ActOnStartCategoryImplementation - Perform semantic checks on the
1891/// category implementation declaration and build an ObjCCategoryImplDecl
1892/// object.
1893Decl *Sema::ActOnStartCategoryImplementation(
1894 SourceLocation AtCatImplLoc,
1895 IdentifierInfo *ClassName, SourceLocation ClassLoc,
1896 IdentifierInfo *CatName, SourceLocation CatLoc,
1897 const ParsedAttributesView &Attrs) {
1898 ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
1899 ObjCCategoryDecl *CatIDecl = nullptr;
1900 if (IDecl && IDecl->hasDefinition()) {
1901 CatIDecl = IDecl->FindCategoryDeclaration(CatName);
1902 if (!CatIDecl) {
1903 // Category @implementation with no corresponding @interface.
1904 // Create and install one.
1905 CatIDecl = ObjCCategoryDecl::Create(Context, CurContext, AtCatImplLoc,
1906 ClassLoc, CatLoc,
1907 CatName, IDecl,
1908 /*typeParamList=*/nullptr);
1909 CatIDecl->setImplicit();
1910 }
1911 }
1912
1913 ObjCCategoryImplDecl *CDecl =
1914 ObjCCategoryImplDecl::Create(Context, CurContext, CatName, IDecl,
1915 ClassLoc, AtCatImplLoc, CatLoc);
1916 /// Check that class of this category is already completely declared.
1917 if (!IDecl) {
1918 Diag(ClassLoc, diag::err_undef_interface) << ClassName;
1919 CDecl->setInvalidDecl();
1920 } else if (RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
1921 diag::err_undef_interface)) {
1922 CDecl->setInvalidDecl();
1923 }
1924
1925 ProcessDeclAttributeList(TUScope, CDecl, Attrs);
1926 AddPragmaAttributes(TUScope, CDecl);
1927
1928 // FIXME: PushOnScopeChains?
1929 CurContext->addDecl(CDecl);
1930
1931 // If the interface has the objc_runtime_visible attribute, we
1932 // cannot implement a category for it.
1933 if (IDecl && IDecl->hasAttr<ObjCRuntimeVisibleAttr>()) {
1934 Diag(ClassLoc, diag::err_objc_runtime_visible_category)
1935 << IDecl->getDeclName();
1936 }
1937
1938 /// Check that CatName, category name, is not used in another implementation.
1939 if (CatIDecl) {
1940 if (CatIDecl->getImplementation()) {
1941 Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName
1942 << CatName;
1943 Diag(CatIDecl->getImplementation()->getLocation(),
1944 diag::note_previous_definition);
1945 CDecl->setInvalidDecl();
1946 } else {
1947 CatIDecl->setImplementation(CDecl);
1948 // Warn on implementating category of deprecated class under
1949 // -Wdeprecated-implementations flag.
1950 DiagnoseObjCImplementedDeprecations(*this, CatIDecl,
1951 CDecl->getLocation());
1952 }
1953 }
1954
1955 CheckObjCDeclScope(CDecl);
1956 return ActOnObjCContainerStartDefinition(CDecl);
1957}
1958
1959Decl *Sema::ActOnStartClassImplementation(
1960 SourceLocation AtClassImplLoc,
1961 IdentifierInfo *ClassName, SourceLocation ClassLoc,
1962 IdentifierInfo *SuperClassname,
1963 SourceLocation SuperClassLoc,
1964 const ParsedAttributesView &Attrs) {
1965 ObjCInterfaceDecl *IDecl = nullptr;
1966 // Check for another declaration kind with the same name.
1967 NamedDecl *PrevDecl
1968 = LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName,
1969 forRedeclarationInCurContext());
1970 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
1971 Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
1972 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1973 } else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl))) {
1974 // FIXME: This will produce an error if the definition of the interface has
1975 // been imported from a module but is not visible.
1976 RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
1977 diag::warn_undef_interface);
1978 } else {
1979 // We did not find anything with the name ClassName; try to correct for
1980 // typos in the class name.
1981 ObjCInterfaceValidatorCCC CCC{};
1982 TypoCorrection Corrected =
1983 CorrectTypo(DeclarationNameInfo(ClassName, ClassLoc),
1984 LookupOrdinaryName, TUScope, nullptr, CCC, CTK_NonError);
1985 if (Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) {
1986 // Suggest the (potentially) correct interface name. Don't provide a
1987 // code-modification hint or use the typo name for recovery, because
1988 // this is just a warning. The program may actually be correct.
1989 diagnoseTypo(Corrected,
1990 PDiag(diag::warn_undef_interface_suggest) << ClassName,
1991 /*ErrorRecovery*/false);
1992 } else {
1993 Diag(ClassLoc, diag::warn_undef_interface) << ClassName;
1994 }
1995 }
1996
1997 // Check that super class name is valid class name
1998 ObjCInterfaceDecl *SDecl = nullptr;
1999 if (SuperClassname) {
2000 // Check if a different kind of symbol declared in this scope.
2001 PrevDecl = LookupSingleName(TUScope, SuperClassname, SuperClassLoc,
2002 LookupOrdinaryName);
2003 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
2004 Diag(SuperClassLoc, diag::err_redefinition_different_kind)
2005 << SuperClassname;
2006 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2007 } else {
2008 SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
2009 if (SDecl && !SDecl->hasDefinition())
2010 SDecl = nullptr;
2011 if (!SDecl)
2012 Diag(SuperClassLoc, diag::err_undef_superclass)
2013 << SuperClassname << ClassName;
2014 else if (IDecl && !declaresSameEntity(IDecl->getSuperClass(), SDecl)) {
2015 // This implementation and its interface do not have the same
2016 // super class.
2017 Diag(SuperClassLoc, diag::err_conflicting_super_class)
2018 << SDecl->getDeclName();
2019 Diag(SDecl->getLocation(), diag::note_previous_definition);
2020 }
2021 }
2022 }
2023
2024 if (!IDecl) {
2025 // Legacy case of @implementation with no corresponding @interface.
2026 // Build, chain & install the interface decl into the identifier.
2027
2028 // FIXME: Do we support attributes on the @implementation? If so we should
2029 // copy them over.
2030 IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassImplLoc,
2031 ClassName, /*typeParamList=*/nullptr,
2032 /*PrevDecl=*/nullptr, ClassLoc,
2033 true);
2034 AddPragmaAttributes(TUScope, IDecl);
2035 IDecl->startDefinition();
2036 if (SDecl) {
2037 IDecl->setSuperClass(Context.getTrivialTypeSourceInfo(
2038 Context.getObjCInterfaceType(SDecl),
2039 SuperClassLoc));
2040 IDecl->setEndOfDefinitionLoc(SuperClassLoc);
2041 } else {
2042 IDecl->setEndOfDefinitionLoc(ClassLoc);
2043 }
2044
2045 PushOnScopeChains(IDecl, TUScope);
2046 } else {
2047 // Mark the interface as being completed, even if it was just as
2048 // @class ....;
2049 // declaration; the user cannot reopen it.
2050 if (!IDecl->hasDefinition())
2051 IDecl->startDefinition();
2052 }
2053
2054 ObjCImplementationDecl* IMPDecl =
2055 ObjCImplementationDecl::Create(Context, CurContext, IDecl, SDecl,
2056 ClassLoc, AtClassImplLoc, SuperClassLoc);
2057
2058 ProcessDeclAttributeList(TUScope, IMPDecl, Attrs);
2059 AddPragmaAttributes(TUScope, IMPDecl);
2060
2061 if (CheckObjCDeclScope(IMPDecl))
2062 return ActOnObjCContainerStartDefinition(IMPDecl);
2063
2064 // Check that there is no duplicate implementation of this class.
2065 if (IDecl->getImplementation()) {
2066 // FIXME: Don't leak everything!
2067 Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName;
2068 Diag(IDecl->getImplementation()->getLocation(),
2069 diag::note_previous_definition);
2070 IMPDecl->setInvalidDecl();
2071 } else { // add it to the list.
2072 IDecl->setImplementation(IMPDecl);
2073 PushOnScopeChains(IMPDecl, TUScope);
2074 // Warn on implementating deprecated class under
2075 // -Wdeprecated-implementations flag.
2076 DiagnoseObjCImplementedDeprecations(*this, IDecl, IMPDecl->getLocation());
2077 }
2078
2079 // If the superclass has the objc_runtime_visible attribute, we
2080 // cannot implement a subclass of it.
2081 if (IDecl->getSuperClass() &&
2082 IDecl->getSuperClass()->hasAttr<ObjCRuntimeVisibleAttr>()) {
2083 Diag(ClassLoc, diag::err_objc_runtime_visible_subclass)
2084 << IDecl->getDeclName()
2085 << IDecl->getSuperClass()->getDeclName();
2086 }
2087
2088 return ActOnObjCContainerStartDefinition(IMPDecl);
2089}
2090
2091Sema::DeclGroupPtrTy
2092Sema::ActOnFinishObjCImplementation(Decl *ObjCImpDecl, ArrayRef<Decl *> Decls) {
2093 SmallVector<Decl *, 64> DeclsInGroup;
2094 DeclsInGroup.reserve(Decls.size() + 1);
2095
2096 for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
2097 Decl *Dcl = Decls[i];
2098 if (!Dcl)
2099 continue;
2100 if (Dcl->getDeclContext()->isFileContext())
2101 Dcl->setTopLevelDeclInObjCContainer();
2102 DeclsInGroup.push_back(Dcl);
2103 }
2104
2105 DeclsInGroup.push_back(ObjCImpDecl);
2106
2107 return BuildDeclaratorGroup(DeclsInGroup);
2108}
2109
2110void Sema::CheckImplementationIvars(ObjCImplementationDecl *ImpDecl,
2111 ObjCIvarDecl **ivars, unsigned numIvars,
2112 SourceLocation RBrace) {
2113 assert(ImpDecl && "missing implementation decl")((ImpDecl && "missing implementation decl") ? static_cast
<void> (0) : __assert_fail ("ImpDecl && \"missing implementation decl\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 2113, __PRETTY_FUNCTION__))
;
2114 ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface();
2115 if (!IDecl)
2116 return;
2117 /// Check case of non-existing \@interface decl.
2118 /// (legacy objective-c \@implementation decl without an \@interface decl).
2119 /// Add implementations's ivar to the synthesize class's ivar list.
2120 if (IDecl->isImplicitInterfaceDecl()) {
2121 IDecl->setEndOfDefinitionLoc(RBrace);
2122 // Add ivar's to class's DeclContext.
2123 for (unsigned i = 0, e = numIvars; i != e; ++i) {
2124 ivars[i]->setLexicalDeclContext(ImpDecl);
2125 IDecl->makeDeclVisibleInContext(ivars[i]);
2126 ImpDecl->addDecl(ivars[i]);
2127 }
2128
2129 return;
2130 }
2131 // If implementation has empty ivar list, just return.
2132 if (numIvars == 0)
2133 return;
2134
2135 assert(ivars && "missing @implementation ivars")((ivars && "missing @implementation ivars") ? static_cast
<void> (0) : __assert_fail ("ivars && \"missing @implementation ivars\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 2135, __PRETTY_FUNCTION__))
;
2136 if (LangOpts.ObjCRuntime.isNonFragile()) {
2137 if (ImpDecl->getSuperClass())
2138 Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use);
2139 for (unsigned i = 0; i < numIvars; i++) {
2140 ObjCIvarDecl* ImplIvar = ivars[i];
2141 if (const ObjCIvarDecl *ClsIvar =
2142 IDecl->getIvarDecl(ImplIvar->getIdentifier())) {
2143 Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
2144 Diag(ClsIvar->getLocation(), diag::note_previous_definition);
2145 continue;
2146 }
2147 // Check class extensions (unnamed categories) for duplicate ivars.
2148 for (const auto *CDecl : IDecl->visible_extensions()) {
2149 if (const ObjCIvarDecl *ClsExtIvar =
2150 CDecl->getIvarDecl(ImplIvar->getIdentifier())) {
2151 Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
2152 Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
2153 continue;
2154 }
2155 }
2156 // Instance ivar to Implementation's DeclContext.
2157 ImplIvar->setLexicalDeclContext(ImpDecl);
2158 IDecl->makeDeclVisibleInContext(ImplIvar);
2159 ImpDecl->addDecl(ImplIvar);
2160 }
2161 return;
2162 }
2163 // Check interface's Ivar list against those in the implementation.
2164 // names and types must match.
2165 //
2166 unsigned j = 0;
2167 ObjCInterfaceDecl::ivar_iterator
2168 IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end();
2169 for (; numIvars > 0 && IVI != IVE; ++IVI) {
2170 ObjCIvarDecl* ImplIvar = ivars[j++];
2171 ObjCIvarDecl* ClsIvar = *IVI;
2172 assert (ImplIvar && "missing implementation ivar")((ImplIvar && "missing implementation ivar") ? static_cast
<void> (0) : __assert_fail ("ImplIvar && \"missing implementation ivar\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 2172, __PRETTY_FUNCTION__))
;
2173 assert (ClsIvar && "missing class ivar")((ClsIvar && "missing class ivar") ? static_cast<void
> (0) : __assert_fail ("ClsIvar && \"missing class ivar\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 2173, __PRETTY_FUNCTION__))
;
2174
2175 // First, make sure the types match.
2176 if (!Context.hasSameType(ImplIvar->getType(), ClsIvar->getType())) {
2177 Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type)
2178 << ImplIvar->getIdentifier()
2179 << ImplIvar->getType() << ClsIvar->getType();
2180 Diag(ClsIvar->getLocation(), diag::note_previous_definition);
2181 } else if (ImplIvar->isBitField() && ClsIvar->isBitField() &&
2182 ImplIvar->getBitWidthValue(Context) !=
2183 ClsIvar->getBitWidthValue(Context)) {
2184 Diag(ImplIvar->getBitWidth()->getBeginLoc(),
2185 diag::err_conflicting_ivar_bitwidth)
2186 << ImplIvar->getIdentifier();
2187 Diag(ClsIvar->getBitWidth()->getBeginLoc(),
2188 diag::note_previous_definition);
2189 }
2190 // Make sure the names are identical.
2191 if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) {
2192 Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name)
2193 << ImplIvar->getIdentifier() << ClsIvar->getIdentifier();
2194 Diag(ClsIvar->getLocation(), diag::note_previous_definition);
2195 }
2196 --numIvars;
2197 }
2198
2199 if (numIvars > 0)
2200 Diag(ivars[j]->getLocation(), diag::err_inconsistent_ivar_count);
2201 else if (IVI != IVE)
2202 Diag(IVI->getLocation(), diag::err_inconsistent_ivar_count);
2203}
2204
2205static void WarnUndefinedMethod(Sema &S, SourceLocation ImpLoc,
2206 ObjCMethodDecl *method,
2207 bool &IncompleteImpl,
2208 unsigned DiagID,
2209 NamedDecl *NeededFor = nullptr) {
2210 // No point warning no definition of method which is 'unavailable'.
2211 if (method->getAvailability() == AR_Unavailable)
2212 return;
2213
2214 // FIXME: For now ignore 'IncompleteImpl'.
2215 // Previously we grouped all unimplemented methods under a single
2216 // warning, but some users strongly voiced that they would prefer
2217 // separate warnings. We will give that approach a try, as that
2218 // matches what we do with protocols.
2219 {
2220 const Sema::SemaDiagnosticBuilder &B = S.Diag(ImpLoc, DiagID);
2221 B << method;
2222 if (NeededFor)
2223 B << NeededFor;
2224 }
2225
2226 // Issue a note to the original declaration.
2227 SourceLocation MethodLoc = method->getBeginLoc();
2228 if (MethodLoc.isValid())
2229 S.Diag(MethodLoc, diag::note_method_declared_at) << method;
2230}
2231
2232/// Determines if type B can be substituted for type A. Returns true if we can
2233/// guarantee that anything that the user will do to an object of type A can
2234/// also be done to an object of type B. This is trivially true if the two
2235/// types are the same, or if B is a subclass of A. It becomes more complex
2236/// in cases where protocols are involved.
2237///
2238/// Object types in Objective-C describe the minimum requirements for an
2239/// object, rather than providing a complete description of a type. For
2240/// example, if A is a subclass of B, then B* may refer to an instance of A.
2241/// The principle of substitutability means that we may use an instance of A
2242/// anywhere that we may use an instance of B - it will implement all of the
2243/// ivars of B and all of the methods of B.
2244///
2245/// This substitutability is important when type checking methods, because
2246/// the implementation may have stricter type definitions than the interface.
2247/// The interface specifies minimum requirements, but the implementation may
2248/// have more accurate ones. For example, a method may privately accept
2249/// instances of B, but only publish that it accepts instances of A. Any
2250/// object passed to it will be type checked against B, and so will implicitly
2251/// by a valid A*. Similarly, a method may return a subclass of the class that
2252/// it is declared as returning.
2253///
2254/// This is most important when considering subclassing. A method in a
2255/// subclass must accept any object as an argument that its superclass's
2256/// implementation accepts. It may, however, accept a more general type
2257/// without breaking substitutability (i.e. you can still use the subclass
2258/// anywhere that you can use the superclass, but not vice versa). The
2259/// converse requirement applies to return types: the return type for a
2260/// subclass method must be a valid object of the kind that the superclass
2261/// advertises, but it may be specified more accurately. This avoids the need
2262/// for explicit down-casting by callers.
2263///
2264/// Note: This is a stricter requirement than for assignment.
2265static bool isObjCTypeSubstitutable(ASTContext &Context,
2266 const ObjCObjectPointerType *A,
2267 const ObjCObjectPointerType *B,
2268 bool rejectId) {
2269 // Reject a protocol-unqualified id.
2270 if (rejectId && B->isObjCIdType()) return false;
2271
2272 // If B is a qualified id, then A must also be a qualified id and it must
2273 // implement all of the protocols in B. It may not be a qualified class.
2274 // For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a
2275 // stricter definition so it is not substitutable for id<A>.
2276 if (B->isObjCQualifiedIdType()) {
2277 return A->isObjCQualifiedIdType() &&
2278 Context.ObjCQualifiedIdTypesAreCompatible(QualType(A, 0),
2279 QualType(B,0),
2280 false);
2281 }
2282
2283 /*
2284 // id is a special type that bypasses type checking completely. We want a
2285 // warning when it is used in one place but not another.
2286 if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false;
2287
2288
2289 // If B is a qualified id, then A must also be a qualified id (which it isn't
2290 // if we've got this far)
2291 if (B->isObjCQualifiedIdType()) return false;
2292 */
2293
2294 // Now we know that A and B are (potentially-qualified) class types. The
2295 // normal rules for assignment apply.
2296 return Context.canAssignObjCInterfaces(A, B);
2297}
2298
2299static SourceRange getTypeRange(TypeSourceInfo *TSI) {
2300 return (TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange());
2301}
2302
2303/// Determine whether two set of Objective-C declaration qualifiers conflict.
2304static bool objcModifiersConflict(Decl::ObjCDeclQualifier x,
2305 Decl::ObjCDeclQualifier y) {
2306 return (x & ~Decl::OBJC_TQ_CSNullability) !=
2307 (y & ~Decl::OBJC_TQ_CSNullability);
2308}
2309
2310static bool CheckMethodOverrideReturn(Sema &S,
2311 ObjCMethodDecl *MethodImpl,
2312 ObjCMethodDecl *MethodDecl,
2313 bool IsProtocolMethodDecl,
2314 bool IsOverridingMode,
2315 bool Warn) {
2316 if (IsProtocolMethodDecl &&
2317 objcModifiersConflict(MethodDecl->getObjCDeclQualifier(),
2318 MethodImpl->getObjCDeclQualifier())) {
2319 if (Warn) {
2320 S.Diag(MethodImpl->getLocation(),
2321 (IsOverridingMode
2322 ? diag::warn_conflicting_overriding_ret_type_modifiers
2323 : diag::warn_conflicting_ret_type_modifiers))
2324 << MethodImpl->getDeclName()
2325 << MethodImpl->getReturnTypeSourceRange();
2326 S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration)
2327 << MethodDecl->getReturnTypeSourceRange();
2328 }
2329 else
2330 return false;
2331 }
2332 if (Warn && IsOverridingMode &&
2333 !isa<ObjCImplementationDecl>(MethodImpl->getDeclContext()) &&
2334 !S.Context.hasSameNullabilityTypeQualifier(MethodImpl->getReturnType(),
2335 MethodDecl->getReturnType(),
2336 false)) {
2337 auto nullabilityMethodImpl =
2338 *MethodImpl->getReturnType()->getNullability(S.Context);
2339 auto nullabilityMethodDecl =
2340 *MethodDecl->getReturnType()->getNullability(S.Context);
2341 S.Diag(MethodImpl->getLocation(),
2342 diag::warn_conflicting_nullability_attr_overriding_ret_types)
2343 << DiagNullabilityKind(
2344 nullabilityMethodImpl,
2345 ((MethodImpl->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2346 != 0))
2347 << DiagNullabilityKind(
2348 nullabilityMethodDecl,
2349 ((MethodDecl->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2350 != 0));
2351 S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
2352 }
2353
2354 if (S.Context.hasSameUnqualifiedType(MethodImpl->getReturnType(),
2355 MethodDecl->getReturnType()))
2356 return true;
2357 if (!Warn)
2358 return false;
2359
2360 unsigned DiagID =
2361 IsOverridingMode ? diag::warn_conflicting_overriding_ret_types
2362 : diag::warn_conflicting_ret_types;
2363
2364 // Mismatches between ObjC pointers go into a different warning
2365 // category, and sometimes they're even completely whitelisted.
2366 if (const ObjCObjectPointerType *ImplPtrTy =
2367 MethodImpl->getReturnType()->getAs<ObjCObjectPointerType>()) {
2368 if (const ObjCObjectPointerType *IfacePtrTy =
2369 MethodDecl->getReturnType()->getAs<ObjCObjectPointerType>()) {
2370 // Allow non-matching return types as long as they don't violate
2371 // the principle of substitutability. Specifically, we permit
2372 // return types that are subclasses of the declared return type,
2373 // or that are more-qualified versions of the declared type.
2374 if (isObjCTypeSubstitutable(S.Context, IfacePtrTy, ImplPtrTy, false))
2375 return false;
2376
2377 DiagID =
2378 IsOverridingMode ? diag::warn_non_covariant_overriding_ret_types
2379 : diag::warn_non_covariant_ret_types;
2380 }
2381 }
2382
2383 S.Diag(MethodImpl->getLocation(), DiagID)
2384 << MethodImpl->getDeclName() << MethodDecl->getReturnType()
2385 << MethodImpl->getReturnType()
2386 << MethodImpl->getReturnTypeSourceRange();
2387 S.Diag(MethodDecl->getLocation(), IsOverridingMode
2388 ? diag::note_previous_declaration
2389 : diag::note_previous_definition)
2390 << MethodDecl->getReturnTypeSourceRange();
2391 return false;
2392}
2393
2394static bool CheckMethodOverrideParam(Sema &S,
2395 ObjCMethodDecl *MethodImpl,
2396 ObjCMethodDecl *MethodDecl,
2397 ParmVarDecl *ImplVar,
2398 ParmVarDecl *IfaceVar,
2399 bool IsProtocolMethodDecl,
2400 bool IsOverridingMode,
2401 bool Warn) {
2402 if (IsProtocolMethodDecl &&
2403 objcModifiersConflict(ImplVar->getObjCDeclQualifier(),
2404 IfaceVar->getObjCDeclQualifier())) {
2405 if (Warn) {
2406 if (IsOverridingMode)
2407 S.Diag(ImplVar->getLocation(),
2408 diag::warn_conflicting_overriding_param_modifiers)
2409 << getTypeRange(ImplVar->getTypeSourceInfo())
2410 << MethodImpl->getDeclName();
2411 else S.Diag(ImplVar->getLocation(),
2412 diag::warn_conflicting_param_modifiers)
2413 << getTypeRange(ImplVar->getTypeSourceInfo())
2414 << MethodImpl->getDeclName();
2415 S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration)
2416 << getTypeRange(IfaceVar->getTypeSourceInfo());
2417 }
2418 else
2419 return false;
2420 }
2421
2422 QualType ImplTy = ImplVar->getType();
2423 QualType IfaceTy = IfaceVar->getType();
2424 if (Warn && IsOverridingMode &&
2425 !isa<ObjCImplementationDecl>(MethodImpl->getDeclContext()) &&
2426 !S.Context.hasSameNullabilityTypeQualifier(ImplTy, IfaceTy, true)) {
2427 S.Diag(ImplVar->getLocation(),
2428 diag::warn_conflicting_nullability_attr_overriding_param_types)
2429 << DiagNullabilityKind(
2430 *ImplTy->getNullability(S.Context),
2431 ((ImplVar->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2432 != 0))
2433 << DiagNullabilityKind(
2434 *IfaceTy->getNullability(S.Context),
2435 ((IfaceVar->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2436 != 0));
2437 S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration);
2438 }
2439 if (S.Context.hasSameUnqualifiedType(ImplTy, IfaceTy))
2440 return true;
2441
2442 if (!Warn)
2443 return false;
2444 unsigned DiagID =
2445 IsOverridingMode ? diag::warn_conflicting_overriding_param_types
2446 : diag::warn_conflicting_param_types;
2447
2448 // Mismatches between ObjC pointers go into a different warning
2449 // category, and sometimes they're even completely whitelisted.
2450 if (const ObjCObjectPointerType *ImplPtrTy =
2451 ImplTy->getAs<ObjCObjectPointerType>()) {
2452 if (const ObjCObjectPointerType *IfacePtrTy =
2453 IfaceTy->getAs<ObjCObjectPointerType>()) {
2454 // Allow non-matching argument types as long as they don't
2455 // violate the principle of substitutability. Specifically, the
2456 // implementation must accept any objects that the superclass
2457 // accepts, however it may also accept others.
2458 if (isObjCTypeSubstitutable(S.Context, ImplPtrTy, IfacePtrTy, true))
2459 return false;
2460
2461 DiagID =
2462 IsOverridingMode ? diag::warn_non_contravariant_overriding_param_types
2463 : diag::warn_non_contravariant_param_types;
2464 }
2465 }
2466
2467 S.Diag(ImplVar->getLocation(), DiagID)
2468 << getTypeRange(ImplVar->getTypeSourceInfo())
2469 << MethodImpl->getDeclName() << IfaceTy << ImplTy;
2470 S.Diag(IfaceVar->getLocation(),
2471 (IsOverridingMode ? diag::note_previous_declaration
2472 : diag::note_previous_definition))
2473 << getTypeRange(IfaceVar->getTypeSourceInfo());
2474 return false;
2475}
2476
2477/// In ARC, check whether the conventional meanings of the two methods
2478/// match. If they don't, it's a hard error.
2479static bool checkMethodFamilyMismatch(Sema &S, ObjCMethodDecl *impl,
2480 ObjCMethodDecl *decl) {
2481 ObjCMethodFamily implFamily = impl->getMethodFamily();
2482 ObjCMethodFamily declFamily = decl->getMethodFamily();
2483 if (implFamily == declFamily) return false;
2484
2485 // Since conventions are sorted by selector, the only possibility is
2486 // that the types differ enough to cause one selector or the other
2487 // to fall out of the family.
2488 assert(implFamily == OMF_None || declFamily == OMF_None)((implFamily == OMF_None || declFamily == OMF_None) ? static_cast
<void> (0) : __assert_fail ("implFamily == OMF_None || declFamily == OMF_None"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 2488, __PRETTY_FUNCTION__))
;
2489
2490 // No further diagnostics required on invalid declarations.
2491 if (impl->isInvalidDecl() || decl->isInvalidDecl()) return true;
2492
2493 const ObjCMethodDecl *unmatched = impl;
2494 ObjCMethodFamily family = declFamily;
2495 unsigned errorID = diag::err_arc_lost_method_convention;
2496 unsigned noteID = diag::note_arc_lost_method_convention;
2497 if (declFamily == OMF_None) {
2498 unmatched = decl;
2499 family = implFamily;
2500 errorID = diag::err_arc_gained_method_convention;
2501 noteID = diag::note_arc_gained_method_convention;
2502 }
2503
2504 // Indexes into a %select clause in the diagnostic.
2505 enum FamilySelector {
2506 F_alloc, F_copy, F_mutableCopy = F_copy, F_init, F_new
2507 };
2508 FamilySelector familySelector = FamilySelector();
2509
2510 switch (family) {
2511 case OMF_None: llvm_unreachable("logic error, no method convention")::llvm::llvm_unreachable_internal("logic error, no method convention"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 2511)
;
2512 case OMF_retain:
2513 case OMF_release:
2514 case OMF_autorelease:
2515 case OMF_dealloc:
2516 case OMF_finalize:
2517 case OMF_retainCount:
2518 case OMF_self:
2519 case OMF_initialize:
2520 case OMF_performSelector:
2521 // Mismatches for these methods don't change ownership
2522 // conventions, so we don't care.
2523 return false;
2524
2525 case OMF_init: familySelector = F_init; break;
2526 case OMF_alloc: familySelector = F_alloc; break;
2527 case OMF_copy: familySelector = F_copy; break;
2528 case OMF_mutableCopy: familySelector = F_mutableCopy; break;
2529 case OMF_new: familySelector = F_new; break;
2530 }
2531
2532 enum ReasonSelector { R_NonObjectReturn, R_UnrelatedReturn };
2533 ReasonSelector reasonSelector;
2534
2535 // The only reason these methods don't fall within their families is
2536 // due to unusual result types.
2537 if (unmatched->getReturnType()->isObjCObjectPointerType()) {
2538 reasonSelector = R_UnrelatedReturn;
2539 } else {
2540 reasonSelector = R_NonObjectReturn;
2541 }
2542
2543 S.Diag(impl->getLocation(), errorID) << int(familySelector) << int(reasonSelector);
2544 S.Diag(decl->getLocation(), noteID) << int(familySelector) << int(reasonSelector);
2545
2546 return true;
2547}
2548
2549void Sema::WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethodDecl,
2550 ObjCMethodDecl *MethodDecl,
2551 bool IsProtocolMethodDecl) {
2552 if (getLangOpts().ObjCAutoRefCount &&
2553 checkMethodFamilyMismatch(*this, ImpMethodDecl, MethodDecl))
2554 return;
2555
2556 CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
2557 IsProtocolMethodDecl, false,
2558 true);
2559
2560 for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
2561 IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
2562 EF = MethodDecl->param_end();
2563 IM != EM && IF != EF; ++IM, ++IF) {
2564 CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, *IM, *IF,
2565 IsProtocolMethodDecl, false, true);
2566 }
2567
2568 if (ImpMethodDecl->isVariadic() != MethodDecl->isVariadic()) {
2569 Diag(ImpMethodDecl->getLocation(),
2570 diag::warn_conflicting_variadic);
2571 Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
2572 }
2573}
2574
2575void Sema::CheckConflictingOverridingMethod(ObjCMethodDecl *Method,
2576 ObjCMethodDecl *Overridden,
2577 bool IsProtocolMethodDecl) {
2578
2579 CheckMethodOverrideReturn(*this, Method, Overridden,
2580 IsProtocolMethodDecl, true,
2581 true);
2582
2583 for (ObjCMethodDecl::param_iterator IM = Method->param_begin(),
2584 IF = Overridden->param_begin(), EM = Method->param_end(),
2585 EF = Overridden->param_end();
2586 IM != EM && IF != EF; ++IM, ++IF) {
2587 CheckMethodOverrideParam(*this, Method, Overridden, *IM, *IF,
2588 IsProtocolMethodDecl, true, true);
2589 }
2590
2591 if (Method->isVariadic() != Overridden->isVariadic()) {
2592 Diag(Method->getLocation(),
2593 diag::warn_conflicting_overriding_variadic);
2594 Diag(Overridden->getLocation(), diag::note_previous_declaration);
2595 }
2596}
2597
2598/// WarnExactTypedMethods - This routine issues a warning if method
2599/// implementation declaration matches exactly that of its declaration.
2600void Sema::WarnExactTypedMethods(ObjCMethodDecl *ImpMethodDecl,
2601 ObjCMethodDecl *MethodDecl,
2602 bool IsProtocolMethodDecl) {
2603 // don't issue warning when protocol method is optional because primary
2604 // class is not required to implement it and it is safe for protocol
2605 // to implement it.
2606 if (MethodDecl->getImplementationControl() == ObjCMethodDecl::Optional)
2607 return;
2608 // don't issue warning when primary class's method is
2609 // depecated/unavailable.
2610 if (MethodDecl->hasAttr<UnavailableAttr>() ||
2611 MethodDecl->hasAttr<DeprecatedAttr>())
2612 return;
2613
2614 bool match = CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
2615 IsProtocolMethodDecl, false, false);
2616 if (match)
2617 for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
2618 IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
2619 EF = MethodDecl->param_end();
2620 IM != EM && IF != EF; ++IM, ++IF) {
2621 match = CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl,
2622 *IM, *IF,
2623 IsProtocolMethodDecl, false, false);
2624 if (!match)
2625 break;
2626 }
2627 if (match)
2628 match = (ImpMethodDecl->isVariadic() == MethodDecl->isVariadic());
2629 if (match)
2630 match = !(MethodDecl->isClassMethod() &&
2631 MethodDecl->getSelector() == GetNullarySelector("load", Context));
2632
2633 if (match) {
2634 Diag(ImpMethodDecl->getLocation(),
2635 diag::warn_category_method_impl_match);
2636 Diag(MethodDecl->getLocation(), diag::note_method_declared_at)
2637 << MethodDecl->getDeclName();
2638 }
2639}
2640
2641/// FIXME: Type hierarchies in Objective-C can be deep. We could most likely
2642/// improve the efficiency of selector lookups and type checking by associating
2643/// with each protocol / interface / category the flattened instance tables. If
2644/// we used an immutable set to keep the table then it wouldn't add significant
2645/// memory cost and it would be handy for lookups.
2646
2647typedef llvm::DenseSet<IdentifierInfo*> ProtocolNameSet;
2648typedef std::unique_ptr<ProtocolNameSet> LazyProtocolNameSet;
2649
2650static void findProtocolsWithExplicitImpls(const ObjCProtocolDecl *PDecl,
2651 ProtocolNameSet &PNS) {
2652 if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>())
2653 PNS.insert(PDecl->getIdentifier());
2654 for (const auto *PI : PDecl->protocols())
2655 findProtocolsWithExplicitImpls(PI, PNS);
2656}
2657
2658/// Recursively populates a set with all conformed protocols in a class
2659/// hierarchy that have the 'objc_protocol_requires_explicit_implementation'
2660/// attribute.
2661static void findProtocolsWithExplicitImpls(const ObjCInterfaceDecl *Super,
2662 ProtocolNameSet &PNS) {
2663 if (!Super)
2664 return;
2665
2666 for (const auto *I : Super->all_referenced_protocols())
2667 findProtocolsWithExplicitImpls(I, PNS);
2668
2669 findProtocolsWithExplicitImpls(Super->getSuperClass(), PNS);
2670}
2671
2672/// CheckProtocolMethodDefs - This routine checks unimplemented methods
2673/// Declared in protocol, and those referenced by it.
2674static void CheckProtocolMethodDefs(Sema &S,
2675 SourceLocation ImpLoc,
2676 ObjCProtocolDecl *PDecl,
2677 bool& IncompleteImpl,
2678 const Sema::SelectorSet &InsMap,
2679 const Sema::SelectorSet &ClsMap,
2680 ObjCContainerDecl *CDecl,
2681 LazyProtocolNameSet &ProtocolsExplictImpl) {
2682 ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl);
2683 ObjCInterfaceDecl *IDecl = C ? C->getClassInterface()
2684 : dyn_cast<ObjCInterfaceDecl>(CDecl);
2685 assert (IDecl && "CheckProtocolMethodDefs - IDecl is null")((IDecl && "CheckProtocolMethodDefs - IDecl is null")
? static_cast<void> (0) : __assert_fail ("IDecl && \"CheckProtocolMethodDefs - IDecl is null\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 2685, __PRETTY_FUNCTION__))
;
2686
2687 ObjCInterfaceDecl *Super = IDecl->getSuperClass();
2688 ObjCInterfaceDecl *NSIDecl = nullptr;
2689
2690 // If this protocol is marked 'objc_protocol_requires_explicit_implementation'
2691 // then we should check if any class in the super class hierarchy also
2692 // conforms to this protocol, either directly or via protocol inheritance.
2693 // If so, we can skip checking this protocol completely because we
2694 // know that a parent class already satisfies this protocol.
2695 //
2696 // Note: we could generalize this logic for all protocols, and merely
2697 // add the limit on looking at the super class chain for just
2698 // specially marked protocols. This may be a good optimization. This
2699 // change is restricted to 'objc_protocol_requires_explicit_implementation'
2700 // protocols for now for controlled evaluation.
2701 if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>()) {
2702 if (!ProtocolsExplictImpl) {
2703 ProtocolsExplictImpl.reset(new ProtocolNameSet);
2704 findProtocolsWithExplicitImpls(Super, *ProtocolsExplictImpl);
2705 }
2706 if (ProtocolsExplictImpl->find(PDecl->getIdentifier()) !=
2707 ProtocolsExplictImpl->end())
2708 return;
2709
2710 // If no super class conforms to the protocol, we should not search
2711 // for methods in the super class to implicitly satisfy the protocol.
2712 Super = nullptr;
2713 }
2714
2715 if (S.getLangOpts().ObjCRuntime.isNeXTFamily()) {
2716 // check to see if class implements forwardInvocation method and objects
2717 // of this class are derived from 'NSProxy' so that to forward requests
2718 // from one object to another.
2719 // Under such conditions, which means that every method possible is
2720 // implemented in the class, we should not issue "Method definition not
2721 // found" warnings.
2722 // FIXME: Use a general GetUnarySelector method for this.
2723 IdentifierInfo* II = &S.Context.Idents.get("forwardInvocation");
2724 Selector fISelector = S.Context.Selectors.getSelector(1, &II);
2725 if (InsMap.count(fISelector))
2726 // Is IDecl derived from 'NSProxy'? If so, no instance methods
2727 // need be implemented in the implementation.
2728 NSIDecl = IDecl->lookupInheritedClass(&S.Context.Idents.get("NSProxy"));
2729 }
2730
2731 // If this is a forward protocol declaration, get its definition.
2732 if (!PDecl->isThisDeclarationADefinition() &&
2733 PDecl->getDefinition())
2734 PDecl = PDecl->getDefinition();
2735
2736 // If a method lookup fails locally we still need to look and see if
2737 // the method was implemented by a base class or an inherited
2738 // protocol. This lookup is slow, but occurs rarely in correct code
2739 // and otherwise would terminate in a warning.
2740
2741 // check unimplemented instance methods.
2742 if (!NSIDecl)
2743 for (auto *method : PDecl->instance_methods()) {
2744 if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
2745 !method->isPropertyAccessor() &&
2746 !InsMap.count(method->getSelector()) &&
2747 (!Super || !Super->lookupMethod(method->getSelector(),
2748 true /* instance */,
2749 false /* shallowCategory */,
2750 true /* followsSuper */,
2751 nullptr /* category */))) {
2752 // If a method is not implemented in the category implementation but
2753 // has been declared in its primary class, superclass,
2754 // or in one of their protocols, no need to issue the warning.
2755 // This is because method will be implemented in the primary class
2756 // or one of its super class implementation.
2757
2758 // Ugly, but necessary. Method declared in protocol might have
2759 // have been synthesized due to a property declared in the class which
2760 // uses the protocol.
2761 if (ObjCMethodDecl *MethodInClass =
2762 IDecl->lookupMethod(method->getSelector(),
2763 true /* instance */,
2764 true /* shallowCategoryLookup */,
2765 false /* followSuper */))
2766 if (C || MethodInClass->isPropertyAccessor())
2767 continue;
2768 unsigned DIAG = diag::warn_unimplemented_protocol_method;
2769 if (!S.Diags.isIgnored(DIAG, ImpLoc)) {
2770 WarnUndefinedMethod(S, ImpLoc, method, IncompleteImpl, DIAG,
2771 PDecl);
2772 }
2773 }
2774 }
2775 // check unimplemented class methods
2776 for (auto *method : PDecl->class_methods()) {
2777 if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
2778 !ClsMap.count(method->getSelector()) &&
2779 (!Super || !Super->lookupMethod(method->getSelector(),
2780 false /* class method */,
2781 false /* shallowCategoryLookup */,
2782 true /* followSuper */,
2783 nullptr /* category */))) {
2784 // See above comment for instance method lookups.
2785 if (C && IDecl->lookupMethod(method->getSelector(),
2786 false /* class */,
2787 true /* shallowCategoryLookup */,
2788 false /* followSuper */))
2789 continue;
2790
2791 unsigned DIAG = diag::warn_unimplemented_protocol_method;
2792 if (!S.Diags.isIgnored(DIAG, ImpLoc)) {
2793 WarnUndefinedMethod(S, ImpLoc, method, IncompleteImpl, DIAG, PDecl);
2794 }
2795 }
2796 }
2797 // Check on this protocols's referenced protocols, recursively.
2798 for (auto *PI : PDecl->protocols())
2799 CheckProtocolMethodDefs(S, ImpLoc, PI, IncompleteImpl, InsMap, ClsMap,
2800 CDecl, ProtocolsExplictImpl);
2801}
2802
2803/// MatchAllMethodDeclarations - Check methods declared in interface
2804/// or protocol against those declared in their implementations.
2805///
2806void Sema::MatchAllMethodDeclarations(const SelectorSet &InsMap,
2807 const SelectorSet &ClsMap,
2808 SelectorSet &InsMapSeen,
2809 SelectorSet &ClsMapSeen,
2810 ObjCImplDecl* IMPDecl,
2811 ObjCContainerDecl* CDecl,
2812 bool &IncompleteImpl,
2813 bool ImmediateClass,
2814 bool WarnCategoryMethodImpl) {
2815 // Check and see if instance methods in class interface have been
2816 // implemented in the implementation class. If so, their types match.
2817 for (auto *I : CDecl->instance_methods()) {
2818 if (!InsMapSeen.insert(I->getSelector()).second)
2819 continue;
2820 if (!I->isPropertyAccessor() &&
2821 !InsMap.count(I->getSelector())) {
2822 if (ImmediateClass)
2823 WarnUndefinedMethod(*this, IMPDecl->getLocation(), I, IncompleteImpl,
2824 diag::warn_undef_method_impl);
2825 continue;
2826 } else {
2827 ObjCMethodDecl *ImpMethodDecl =
2828 IMPDecl->getInstanceMethod(I->getSelector());
2829 assert(CDecl->getInstanceMethod(I->getSelector(), true/*AllowHidden*/) &&((CDecl->getInstanceMethod(I->getSelector(), true ) &&
"Expected to find the method through lookup as well") ? static_cast
<void> (0) : __assert_fail ("CDecl->getInstanceMethod(I->getSelector(), true ) && \"Expected to find the method through lookup as well\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 2830, __PRETTY_FUNCTION__))
2830 "Expected to find the method through lookup as well")((CDecl->getInstanceMethod(I->getSelector(), true ) &&
"Expected to find the method through lookup as well") ? static_cast
<void> (0) : __assert_fail ("CDecl->getInstanceMethod(I->getSelector(), true ) && \"Expected to find the method through lookup as well\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 2830, __PRETTY_FUNCTION__))
;
2831 // ImpMethodDecl may be null as in a @dynamic property.
2832 if (ImpMethodDecl) {
2833 if (!WarnCategoryMethodImpl)
2834 WarnConflictingTypedMethods(ImpMethodDecl, I,
2835 isa<ObjCProtocolDecl>(CDecl));
2836 else if (!I->isPropertyAccessor())
2837 WarnExactTypedMethods(ImpMethodDecl, I, isa<ObjCProtocolDecl>(CDecl));
2838 }
2839 }
2840 }
2841
2842 // Check and see if class methods in class interface have been
2843 // implemented in the implementation class. If so, their types match.
2844 for (auto *I : CDecl->class_methods()) {
2845 if (!ClsMapSeen.insert(I->getSelector()).second)
2846 continue;
2847 if (!I->isPropertyAccessor() &&
2848 !ClsMap.count(I->getSelector())) {
2849 if (ImmediateClass)
2850 WarnUndefinedMethod(*this, IMPDecl->getLocation(), I, IncompleteImpl,
2851 diag::warn_undef_method_impl);
2852 } else {
2853 ObjCMethodDecl *ImpMethodDecl =
2854 IMPDecl->getClassMethod(I->getSelector());
2855 assert(CDecl->getClassMethod(I->getSelector(), true/*AllowHidden*/) &&((CDecl->getClassMethod(I->getSelector(), true ) &&
"Expected to find the method through lookup as well") ? static_cast
<void> (0) : __assert_fail ("CDecl->getClassMethod(I->getSelector(), true ) && \"Expected to find the method through lookup as well\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 2856, __PRETTY_FUNCTION__))
2856 "Expected to find the method through lookup as well")((CDecl->getClassMethod(I->getSelector(), true ) &&
"Expected to find the method through lookup as well") ? static_cast
<void> (0) : __assert_fail ("CDecl->getClassMethod(I->getSelector(), true ) && \"Expected to find the method through lookup as well\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 2856, __PRETTY_FUNCTION__))
;
2857 // ImpMethodDecl may be null as in a @dynamic property.
2858 if (ImpMethodDecl) {
2859 if (!WarnCategoryMethodImpl)
2860 WarnConflictingTypedMethods(ImpMethodDecl, I,
2861 isa<ObjCProtocolDecl>(CDecl));
2862 else if (!I->isPropertyAccessor())
2863 WarnExactTypedMethods(ImpMethodDecl, I, isa<ObjCProtocolDecl>(CDecl));
2864 }
2865 }
2866 }
2867
2868 if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl> (CDecl)) {
2869 // Also, check for methods declared in protocols inherited by
2870 // this protocol.
2871 for (auto *PI : PD->protocols())
2872 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2873 IMPDecl, PI, IncompleteImpl, false,
2874 WarnCategoryMethodImpl);
2875 }
2876
2877 if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
2878 // when checking that methods in implementation match their declaration,
2879 // i.e. when WarnCategoryMethodImpl is false, check declarations in class
2880 // extension; as well as those in categories.
2881 if (!WarnCategoryMethodImpl) {
2882 for (auto *Cat : I->visible_categories())
2883 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2884 IMPDecl, Cat, IncompleteImpl,
2885 ImmediateClass && Cat->IsClassExtension(),
2886 WarnCategoryMethodImpl);
2887 } else {
2888 // Also methods in class extensions need be looked at next.
2889 for (auto *Ext : I->visible_extensions())
2890 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2891 IMPDecl, Ext, IncompleteImpl, false,
2892 WarnCategoryMethodImpl);
2893 }
2894
2895 // Check for any implementation of a methods declared in protocol.
2896 for (auto *PI : I->all_referenced_protocols())
2897 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2898 IMPDecl, PI, IncompleteImpl, false,
2899 WarnCategoryMethodImpl);
2900
2901 // FIXME. For now, we are not checking for exact match of methods
2902 // in category implementation and its primary class's super class.
2903 if (!WarnCategoryMethodImpl && I->getSuperClass())
2904 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2905 IMPDecl,
2906 I->getSuperClass(), IncompleteImpl, false);
2907 }
2908}
2909
2910/// CheckCategoryVsClassMethodMatches - Checks that methods implemented in
2911/// category matches with those implemented in its primary class and
2912/// warns each time an exact match is found.
2913void Sema::CheckCategoryVsClassMethodMatches(
2914 ObjCCategoryImplDecl *CatIMPDecl) {
2915 // Get category's primary class.
2916 ObjCCategoryDecl *CatDecl = CatIMPDecl->getCategoryDecl();
2917 if (!CatDecl)
2918 return;
2919 ObjCInterfaceDecl *IDecl = CatDecl->getClassInterface();
2920 if (!IDecl)
2921 return;
2922 ObjCInterfaceDecl *SuperIDecl = IDecl->getSuperClass();
2923 SelectorSet InsMap, ClsMap;
2924
2925 for (const auto *I : CatIMPDecl->instance_methods()) {
2926 Selector Sel = I->getSelector();
2927 // When checking for methods implemented in the category, skip over
2928 // those declared in category class's super class. This is because
2929 // the super class must implement the method.
2930 if (SuperIDecl && SuperIDecl->lookupMethod(Sel, true))
2931 continue;
2932 InsMap.insert(Sel);
2933 }
2934
2935 for (const auto *I : CatIMPDecl->class_methods()) {
2936 Selector Sel = I->getSelector();
2937 if (SuperIDecl && SuperIDecl->lookupMethod(Sel, false))
2938 continue;
2939 ClsMap.insert(Sel);
2940 }
2941 if (InsMap.empty() && ClsMap.empty())
2942 return;
2943
2944 SelectorSet InsMapSeen, ClsMapSeen;
2945 bool IncompleteImpl = false;
2946 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2947 CatIMPDecl, IDecl,
2948 IncompleteImpl, false,
2949 true /*WarnCategoryMethodImpl*/);
2950}
2951
2952void Sema::ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl,
2953 ObjCContainerDecl* CDecl,
2954 bool IncompleteImpl) {
2955 SelectorSet InsMap;
2956 // Check and see if instance methods in class interface have been
2957 // implemented in the implementation class.
2958 for (const auto *I : IMPDecl->instance_methods())
2959 InsMap.insert(I->getSelector());
2960
2961 // Add the selectors for getters/setters of @dynamic properties.
2962 for (const auto *PImpl : IMPDecl->property_impls()) {
2963 // We only care about @dynamic implementations.
2964 if (PImpl->getPropertyImplementation() != ObjCPropertyImplDecl::Dynamic)
2965 continue;
2966
2967 const auto *P = PImpl->getPropertyDecl();
2968 if (!P) continue;
2969
2970 InsMap.insert(P->getGetterName());
2971 if (!P->getSetterName().isNull())
2972 InsMap.insert(P->getSetterName());
2973 }
2974
2975 // Check and see if properties declared in the interface have either 1)
2976 // an implementation or 2) there is a @synthesize/@dynamic implementation
2977 // of the property in the @implementation.
2978 if (const ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
2979 bool SynthesizeProperties = LangOpts.ObjCDefaultSynthProperties &&
2980 LangOpts.ObjCRuntime.isNonFragile() &&
2981 !IDecl->isObjCRequiresPropertyDefs();
2982 DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, SynthesizeProperties);
2983 }
2984
2985 // Diagnose null-resettable synthesized setters.
2986 diagnoseNullResettableSynthesizedSetters(IMPDecl);
2987
2988 SelectorSet ClsMap;
2989 for (const auto *I : IMPDecl->class_methods())
2990 ClsMap.insert(I->getSelector());
2991
2992 // Check for type conflict of methods declared in a class/protocol and
2993 // its implementation; if any.
2994 SelectorSet InsMapSeen, ClsMapSeen;
2995 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2996 IMPDecl, CDecl,
2997 IncompleteImpl, true);
2998
2999 // check all methods implemented in category against those declared
3000 // in its primary class.
3001 if (ObjCCategoryImplDecl *CatDecl =
3002 dyn_cast<ObjCCategoryImplDecl>(IMPDecl))
3003 CheckCategoryVsClassMethodMatches(CatDecl);
3004
3005 // Check the protocol list for unimplemented methods in the @implementation
3006 // class.
3007 // Check and see if class methods in class interface have been
3008 // implemented in the implementation class.
3009
3010 LazyProtocolNameSet ExplicitImplProtocols;
3011
3012 if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
3013 for (auto *PI : I->all_referenced_protocols())
3014 CheckProtocolMethodDefs(*this, IMPDecl->getLocation(), PI, IncompleteImpl,
3015 InsMap, ClsMap, I, ExplicitImplProtocols);
3016 } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) {
3017 // For extended class, unimplemented methods in its protocols will
3018 // be reported in the primary class.
3019 if (!C->IsClassExtension()) {
3020 for (auto *P : C->protocols())
3021 CheckProtocolMethodDefs(*this, IMPDecl->getLocation(), P,
3022 IncompleteImpl, InsMap, ClsMap, CDecl,
3023 ExplicitImplProtocols);
3024 DiagnoseUnimplementedProperties(S, IMPDecl, CDecl,
3025 /*SynthesizeProperties=*/false);
3026 }
3027 } else
3028 llvm_unreachable("invalid ObjCContainerDecl type.")::llvm::llvm_unreachable_internal("invalid ObjCContainerDecl type."
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 3028)
;
3029}
3030
3031Sema::DeclGroupPtrTy
3032Sema::ActOnForwardClassDeclaration(SourceLocation AtClassLoc,
3033 IdentifierInfo **IdentList,
3034 SourceLocation *IdentLocs,
3035 ArrayRef<ObjCTypeParamList *> TypeParamLists,
3036 unsigned NumElts) {
3037 SmallVector<Decl *, 8> DeclsInGroup;
3038 for (unsigned i = 0; i != NumElts; ++i) {
3039 // Check for another declaration kind with the same name.
3040 NamedDecl *PrevDecl
3041 = LookupSingleName(TUScope, IdentList[i], IdentLocs[i],
3042 LookupOrdinaryName, forRedeclarationInCurContext());
3043 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
3044 // GCC apparently allows the following idiom:
3045 //
3046 // typedef NSObject < XCElementTogglerP > XCElementToggler;
3047 // @class XCElementToggler;
3048 //
3049 // Here we have chosen to ignore the forward class declaration
3050 // with a warning. Since this is the implied behavior.
3051 TypedefNameDecl *TDD = dyn_cast<TypedefNameDecl>(PrevDecl);
3052 if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) {
3053 Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i];
3054 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3055 } else {
3056 // a forward class declaration matching a typedef name of a class refers
3057 // to the underlying class. Just ignore the forward class with a warning
3058 // as this will force the intended behavior which is to lookup the
3059 // typedef name.
3060 if (isa<ObjCObjectType>(TDD->getUnderlyingType())) {
3061 Diag(AtClassLoc, diag::warn_forward_class_redefinition)
3062 << IdentList[i];
3063 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3064 continue;
3065 }
3066 }
3067 }
3068
3069 // Create a declaration to describe this forward declaration.
3070 ObjCInterfaceDecl *PrevIDecl
3071 = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
3072
3073 IdentifierInfo *ClassName = IdentList[i];
3074 if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) {
3075 // A previous decl with a different name is because of
3076 // @compatibility_alias, for example:
3077 // \code
3078 // @class NewImage;
3079 // @compatibility_alias OldImage NewImage;
3080 // \endcode
3081 // A lookup for 'OldImage' will return the 'NewImage' decl.
3082 //
3083 // In such a case use the real declaration name, instead of the alias one,
3084 // otherwise we will break IdentifierResolver and redecls-chain invariants.
3085 // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl
3086 // has been aliased.
3087 ClassName = PrevIDecl->getIdentifier();
3088 }
3089
3090 // If this forward declaration has type parameters, compare them with the
3091 // type parameters of the previous declaration.
3092 ObjCTypeParamList *TypeParams = TypeParamLists[i];
3093 if (PrevIDecl && TypeParams) {
3094 if (ObjCTypeParamList *PrevTypeParams = PrevIDecl->getTypeParamList()) {
3095 // Check for consistency with the previous declaration.
3096 if (checkTypeParamListConsistency(
3097 *this, PrevTypeParams, TypeParams,
3098 TypeParamListContext::ForwardDeclaration)) {
3099 TypeParams = nullptr;
3100 }
3101 } else if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
3102 // The @interface does not have type parameters. Complain.
3103 Diag(IdentLocs[i], diag::err_objc_parameterized_forward_class)
3104 << ClassName
3105 << TypeParams->getSourceRange();
3106 Diag(Def->getLocation(), diag::note_defined_here)
3107 << ClassName;
3108
3109 TypeParams = nullptr;
3110 }
3111 }
3112
3113 ObjCInterfaceDecl *IDecl
3114 = ObjCInterfaceDecl::Create(Context, CurContext, AtClassLoc,
3115 ClassName, TypeParams, PrevIDecl,
3116 IdentLocs[i]);
3117 IDecl->setAtEndRange(IdentLocs[i]);
3118
3119 PushOnScopeChains(IDecl, TUScope);
3120 CheckObjCDeclScope(IDecl);
3121 DeclsInGroup.push_back(IDecl);
3122 }
3123
3124 return BuildDeclaratorGroup(DeclsInGroup);
3125}
3126
3127static bool tryMatchRecordTypes(ASTContext &Context,
3128 Sema::MethodMatchStrategy strategy,
3129 const Type *left, const Type *right);
3130
3131static bool matchTypes(ASTContext &Context, Sema::MethodMatchStrategy strategy,
3132 QualType leftQT, QualType rightQT) {
3133 const Type *left =
3134 Context.getCanonicalType(leftQT).getUnqualifiedType().getTypePtr();
3135 const Type *right =
3136 Context.getCanonicalType(rightQT).getUnqualifiedType().getTypePtr();
3137
3138 if (left == right) return true;
3139
3140 // If we're doing a strict match, the types have to match exactly.
3141 if (strategy == Sema::MMS_strict) return false;
3142
3143 if (left->isIncompleteType() || right->isIncompleteType()) return false;
3144
3145 // Otherwise, use this absurdly complicated algorithm to try to
3146 // validate the basic, low-level compatibility of the two types.
3147
3148 // As a minimum, require the sizes and alignments to match.
3149 TypeInfo LeftTI = Context.getTypeInfo(left);
3150 TypeInfo RightTI = Context.getTypeInfo(right);
3151 if (LeftTI.Width != RightTI.Width)
3152 return false;
3153
3154 if (LeftTI.Align != RightTI.Align)
3155 return false;
3156
3157 // Consider all the kinds of non-dependent canonical types:
3158 // - functions and arrays aren't possible as return and parameter types
3159
3160 // - vector types of equal size can be arbitrarily mixed
3161 if (isa<VectorType>(left)) return isa<VectorType>(right);
3162 if (isa<VectorType>(right)) return false;
3163
3164 // - references should only match references of identical type
3165 // - structs, unions, and Objective-C objects must match more-or-less
3166 // exactly
3167 // - everything else should be a scalar
3168 if (!left->isScalarType() || !right->isScalarType())
3169 return tryMatchRecordTypes(Context, strategy, left, right);
3170
3171 // Make scalars agree in kind, except count bools as chars, and group
3172 // all non-member pointers together.
3173 Type::ScalarTypeKind leftSK = left->getScalarTypeKind();
3174 Type::ScalarTypeKind rightSK = right->getScalarTypeKind();
3175 if (leftSK == Type::STK_Bool) leftSK = Type::STK_Integral;
3176 if (rightSK == Type::STK_Bool) rightSK = Type::STK_Integral;
3177 if (leftSK == Type::STK_CPointer || leftSK == Type::STK_BlockPointer)
3178 leftSK = Type::STK_ObjCObjectPointer;
3179 if (rightSK == Type::STK_CPointer || rightSK == Type::STK_BlockPointer)
3180 rightSK = Type::STK_ObjCObjectPointer;
3181
3182 // Note that data member pointers and function member pointers don't
3183 // intermix because of the size differences.
3184
3185 return (leftSK == rightSK);
3186}
3187
3188static bool tryMatchRecordTypes(ASTContext &Context,
3189 Sema::MethodMatchStrategy strategy,
3190 const Type *lt, const Type *rt) {
3191 assert(lt && rt && lt != rt)((lt && rt && lt != rt) ? static_cast<void
> (0) : __assert_fail ("lt && rt && lt != rt"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 3191, __PRETTY_FUNCTION__))
;
3192
3193 if (!isa<RecordType>(lt) || !isa<RecordType>(rt)) return false;
3194 RecordDecl *left = cast<RecordType>(lt)->getDecl();
3195 RecordDecl *right = cast<RecordType>(rt)->getDecl();
3196
3197 // Require union-hood to match.
3198 if (left->isUnion() != right->isUnion()) return false;
3199
3200 // Require an exact match if either is non-POD.
3201 if ((isa<CXXRecordDecl>(left) && !cast<CXXRecordDecl>(left)->isPOD()) ||
3202 (isa<CXXRecordDecl>(right) && !cast<CXXRecordDecl>(right)->isPOD()))
3203 return false;
3204
3205 // Require size and alignment to match.
3206 TypeInfo LeftTI = Context.getTypeInfo(lt);
3207 TypeInfo RightTI = Context.getTypeInfo(rt);
3208 if (LeftTI.Width != RightTI.Width)
3209 return false;
3210
3211 if (LeftTI.Align != RightTI.Align)
3212 return false;
3213
3214 // Require fields to match.
3215 RecordDecl::field_iterator li = left->field_begin(), le = left->field_end();
3216 RecordDecl::field_iterator ri = right->field_begin(), re = right->field_end();
3217 for (; li != le && ri != re; ++li, ++ri) {
3218 if (!matchTypes(Context, strategy, li->getType(), ri->getType()))
3219 return false;
3220 }
3221 return (li == le && ri == re);
3222}
3223
3224/// MatchTwoMethodDeclarations - Checks that two methods have matching type and
3225/// returns true, or false, accordingly.
3226/// TODO: Handle protocol list; such as id<p1,p2> in type comparisons
3227bool Sema::MatchTwoMethodDeclarations(const ObjCMethodDecl *left,
3228 const ObjCMethodDecl *right,
3229 MethodMatchStrategy strategy) {
3230 if (!matchTypes(Context, strategy, left->getReturnType(),
3231 right->getReturnType()))
3232 return false;
3233
3234 // If either is hidden, it is not considered to match.
3235 if (left->isHidden() || right->isHidden())
3236 return false;
3237
3238 if (getLangOpts().ObjCAutoRefCount &&
3239 (left->hasAttr<NSReturnsRetainedAttr>()
3240 != right->hasAttr<NSReturnsRetainedAttr>() ||
3241 left->hasAttr<NSConsumesSelfAttr>()
3242 != right->hasAttr<NSConsumesSelfAttr>()))
3243 return false;
3244
3245 ObjCMethodDecl::param_const_iterator
3246 li = left->param_begin(), le = left->param_end(), ri = right->param_begin(),
3247 re = right->param_end();
3248
3249 for (; li != le && ri != re; ++li, ++ri) {
3250 assert(ri != right->param_end() && "Param mismatch")((ri != right->param_end() && "Param mismatch") ? static_cast
<void> (0) : __assert_fail ("ri != right->param_end() && \"Param mismatch\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 3250, __PRETTY_FUNCTION__))
;
3251 const ParmVarDecl *lparm = *li, *rparm = *ri;
3252
3253 if (!matchTypes(Context, strategy, lparm->getType(), rparm->getType()))
3254 return false;
3255
3256 if (getLangOpts().ObjCAutoRefCount &&
3257 lparm->hasAttr<NSConsumedAttr>() != rparm->hasAttr<NSConsumedAttr>())
3258 return false;
3259 }
3260 return true;
3261}
3262
3263static bool isMethodContextSameForKindofLookup(ObjCMethodDecl *Method,
3264 ObjCMethodDecl *MethodInList) {
3265 auto *MethodProtocol = dyn_cast<ObjCProtocolDecl>(Method->getDeclContext());
3266 auto *MethodInListProtocol =
3267 dyn_cast<ObjCProtocolDecl>(MethodInList->getDeclContext());
3268 // If this method belongs to a protocol but the method in list does not, or
3269 // vice versa, we say the context is not the same.
3270 if ((MethodProtocol && !MethodInListProtocol) ||
3271 (!MethodProtocol && MethodInListProtocol))
3272 return false;
3273
3274 if (MethodProtocol && MethodInListProtocol)
3275 return true;
3276
3277 ObjCInterfaceDecl *MethodInterface = Method->getClassInterface();
3278 ObjCInterfaceDecl *MethodInListInterface =
3279 MethodInList->getClassInterface();
3280 return MethodInterface == MethodInListInterface;
3281}
3282
3283void Sema::addMethodToGlobalList(ObjCMethodList *List,
3284 ObjCMethodDecl *Method) {
3285 // Record at the head of the list whether there were 0, 1, or >= 2 methods
3286 // inside categories.
3287 if (ObjCCategoryDecl *CD =
3288 dyn_cast<ObjCCategoryDecl>(Method->getDeclContext()))
3289 if (!CD->IsClassExtension() && List->getBits() < 2)
3290 List->setBits(List->getBits() + 1);
3291
3292 // If the list is empty, make it a singleton list.
3293 if (List->getMethod() == nullptr) {
3294 List->setMethod(Method);
3295 List->setNext(nullptr);
3296 return;
3297 }
3298
3299 // We've seen a method with this name, see if we have already seen this type
3300 // signature.
3301 ObjCMethodList *Previous = List;
3302 ObjCMethodList *ListWithSameDeclaration = nullptr;
3303 for (; List; Previous = List, List = List->getNext()) {
3304 // If we are building a module, keep all of the methods.
3305 if (getLangOpts().isCompilingModule())
3306 continue;
3307
3308 bool SameDeclaration = MatchTwoMethodDeclarations(Method,
3309 List->getMethod());
3310 // Looking for method with a type bound requires the correct context exists.
3311 // We need to insert a method into the list if the context is different.
3312 // If the method's declaration matches the list
3313 // a> the method belongs to a different context: we need to insert it, in
3314 // order to emit the availability message, we need to prioritize over
3315 // availability among the methods with the same declaration.
3316 // b> the method belongs to the same context: there is no need to insert a
3317 // new entry.
3318 // If the method's declaration does not match the list, we insert it to the
3319 // end.
3320 if (!SameDeclaration ||
3321 !isMethodContextSameForKindofLookup(Method, List->getMethod())) {
3322 // Even if two method types do not match, we would like to say
3323 // there is more than one declaration so unavailability/deprecated
3324 // warning is not too noisy.
3325 if (!Method->isDefined())
3326 List->setHasMoreThanOneDecl(true);
3327
3328 // For methods with the same declaration, the one that is deprecated
3329 // should be put in the front for better diagnostics.
3330 if (Method->isDeprecated() && SameDeclaration &&
3331 !ListWithSameDeclaration && !List->getMethod()->isDeprecated())
3332 ListWithSameDeclaration = List;
3333
3334 if (Method->isUnavailable() && SameDeclaration &&
3335 !ListWithSameDeclaration &&
3336 List->getMethod()->getAvailability() < AR_Deprecated)
3337 ListWithSameDeclaration = List;
3338 continue;
3339 }
3340
3341 ObjCMethodDecl *PrevObjCMethod = List->getMethod();
3342
3343 // Propagate the 'defined' bit.
3344 if (Method->isDefined())
3345 PrevObjCMethod->setDefined(true);
3346 else {
3347 // Objective-C doesn't allow an @interface for a class after its
3348 // @implementation. So if Method is not defined and there already is
3349 // an entry for this type signature, Method has to be for a different
3350 // class than PrevObjCMethod.
3351 List->setHasMoreThanOneDecl(true);
3352 }
3353
3354 // If a method is deprecated, push it in the global pool.
3355 // This is used for better diagnostics.
3356 if (Method->isDeprecated()) {
3357 if (!PrevObjCMethod->isDeprecated())
3358 List->setMethod(Method);
3359 }
3360 // If the new method is unavailable, push it into global pool
3361 // unless previous one is deprecated.
3362 if (Method->isUnavailable()) {
3363 if (PrevObjCMethod->getAvailability() < AR_Deprecated)
3364 List->setMethod(Method);
3365 }
3366
3367 return;
3368 }
3369
3370 // We have a new signature for an existing method - add it.
3371 // This is extremely rare. Only 1% of Cocoa selectors are "overloaded".
3372 ObjCMethodList *Mem = BumpAlloc.Allocate<ObjCMethodList>();
3373
3374 // We insert it right before ListWithSameDeclaration.
3375 if (ListWithSameDeclaration) {
3376 auto *List = new (Mem) ObjCMethodList(*ListWithSameDeclaration);
3377 // FIXME: should we clear the other bits in ListWithSameDeclaration?
3378 ListWithSameDeclaration->setMethod(Method);
3379 ListWithSameDeclaration->setNext(List);
3380 return;
3381 }
3382
3383 Previous->setNext(new (Mem) ObjCMethodList(Method));
3384}
3385
3386/// Read the contents of the method pool for a given selector from
3387/// external storage.
3388void Sema::ReadMethodPool(Selector Sel) {
3389 assert(ExternalSource && "We need an external AST source")((ExternalSource && "We need an external AST source")
? static_cast<void> (0) : __assert_fail ("ExternalSource && \"We need an external AST source\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 3389, __PRETTY_FUNCTION__))
;
3390 ExternalSource->ReadMethodPool(Sel);
3391}
3392
3393void Sema::updateOutOfDateSelector(Selector Sel) {
3394 if (!ExternalSource)
3395 return;
3396 ExternalSource->updateOutOfDateSelector(Sel);
3397}
3398
3399void Sema::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl,
3400 bool instance) {
3401 // Ignore methods of invalid containers.
3402 if (cast<Decl>(Method->getDeclContext())->isInvalidDecl())
3403 return;
3404
3405 if (ExternalSource)
3406 ReadMethodPool(Method->getSelector());
3407
3408 GlobalMethodPool::iterator Pos = MethodPool.find(Method->getSelector());
3409 if (Pos == MethodPool.end())
3410 Pos = MethodPool.insert(std::make_pair(Method->getSelector(),
3411 GlobalMethods())).first;
3412
3413 Method->setDefined(impl);
3414
3415 ObjCMethodList &Entry = instance ? Pos->second.first : Pos->second.second;
3416 addMethodToGlobalList(&Entry, Method);
3417}
3418
3419/// Determines if this is an "acceptable" loose mismatch in the global
3420/// method pool. This exists mostly as a hack to get around certain
3421/// global mismatches which we can't afford to make warnings / errors.
3422/// Really, what we want is a way to take a method out of the global
3423/// method pool.
3424static bool isAcceptableMethodMismatch(ObjCMethodDecl *chosen,
3425 ObjCMethodDecl *other) {
3426 if (!chosen->isInstanceMethod())
3427 return false;
3428
3429 Selector sel = chosen->getSelector();
3430 if (!sel.isUnarySelector() || sel.getNameForSlot(0) != "length")
3431 return false;
3432
3433 // Don't complain about mismatches for -length if the method we
3434 // chose has an integral result type.
3435 return (chosen->getReturnType()->isIntegerType());
3436}
3437
3438/// Return true if the given method is wthin the type bound.
3439static bool FilterMethodsByTypeBound(ObjCMethodDecl *Method,
3440 const ObjCObjectType *TypeBound) {
3441 if (!TypeBound)
3442 return true;
3443
3444 if (TypeBound->isObjCId())
3445 // FIXME: should we handle the case of bounding to id<A, B> differently?
3446 return true;
3447
3448 auto *BoundInterface = TypeBound->getInterface();
3449 assert(BoundInterface && "unexpected object type!")((BoundInterface && "unexpected object type!") ? static_cast
<void> (0) : __assert_fail ("BoundInterface && \"unexpected object type!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 3449, __PRETTY_FUNCTION__))
;
3450
3451 // Check if the Method belongs to a protocol. We should allow any method
3452 // defined in any protocol, because any subclass could adopt the protocol.
3453 auto *MethodProtocol = dyn_cast<ObjCProtocolDecl>(Method->getDeclContext());
3454 if (MethodProtocol) {
3455 return true;
3456 }
3457
3458 // If the Method belongs to a class, check if it belongs to the class
3459 // hierarchy of the class bound.
3460 if (ObjCInterfaceDecl *MethodInterface = Method->getClassInterface()) {
3461 // We allow methods declared within classes that are part of the hierarchy
3462 // of the class bound (superclass of, subclass of, or the same as the class
3463 // bound).
3464 return MethodInterface == BoundInterface ||
3465 MethodInterface->isSuperClassOf(BoundInterface) ||
3466 BoundInterface->isSuperClassOf(MethodInterface);
3467 }
3468 llvm_unreachable("unknown method context")::llvm::llvm_unreachable_internal("unknown method context", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 3468)
;
3469}
3470
3471/// We first select the type of the method: Instance or Factory, then collect
3472/// all methods with that type.
3473bool Sema::CollectMultipleMethodsInGlobalPool(
3474 Selector Sel, SmallVectorImpl<ObjCMethodDecl *> &Methods,
3475 bool InstanceFirst, bool CheckTheOther,
3476 const ObjCObjectType *TypeBound) {
3477 if (ExternalSource)
3478 ReadMethodPool(Sel);
3479
3480 GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3481 if (Pos == MethodPool.end())
3482 return false;
3483
3484 // Gather the non-hidden methods.
3485 ObjCMethodList &MethList = InstanceFirst ? Pos->second.first :
3486 Pos->second.second;
3487 for (ObjCMethodList *M = &MethList; M; M = M->getNext())
3488 if (M->getMethod() && !M->getMethod()->isHidden()) {
3489 if (FilterMethodsByTypeBound(M->getMethod(), TypeBound))
3490 Methods.push_back(M->getMethod());
3491 }
3492
3493 // Return if we find any method with the desired kind.
3494 if (!Methods.empty())
3495 return Methods.size() > 1;
3496
3497 if (!CheckTheOther)
3498 return false;
3499
3500 // Gather the other kind.
3501 ObjCMethodList &MethList2 = InstanceFirst ? Pos->second.second :
3502 Pos->second.first;
3503 for (ObjCMethodList *M = &MethList2; M; M = M->getNext())
3504 if (M->getMethod() && !M->getMethod()->isHidden()) {
3505 if (FilterMethodsByTypeBound(M->getMethod(), TypeBound))
3506 Methods.push_back(M->getMethod());
3507 }
3508
3509 return Methods.size() > 1;
3510}
3511
3512bool Sema::AreMultipleMethodsInGlobalPool(
3513 Selector Sel, ObjCMethodDecl *BestMethod, SourceRange R,
3514 bool receiverIdOrClass, SmallVectorImpl<ObjCMethodDecl *> &Methods) {
3515 // Diagnose finding more than one method in global pool.
3516 SmallVector<ObjCMethodDecl *, 4> FilteredMethods;
3517 FilteredMethods.push_back(BestMethod);
3518
3519 for (auto *M : Methods)
3520 if (M != BestMethod && !M->hasAttr<UnavailableAttr>())
3521 FilteredMethods.push_back(M);
3522
3523 if (FilteredMethods.size() > 1)
3524 DiagnoseMultipleMethodInGlobalPool(FilteredMethods, Sel, R,
3525 receiverIdOrClass);
3526
3527 GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3528 // Test for no method in the pool which should not trigger any warning by
3529 // caller.
3530 if (Pos == MethodPool.end())
3531 return true;
3532 ObjCMethodList &MethList =
3533 BestMethod->isInstanceMethod() ? Pos->second.first : Pos->second.second;
3534 return MethList.hasMoreThanOneDecl();
3535}
3536
3537ObjCMethodDecl *Sema::LookupMethodInGlobalPool(Selector Sel, SourceRange R,
3538 bool receiverIdOrClass,
3539 bool instance) {
3540 if (ExternalSource)
3541 ReadMethodPool(Sel);
3542
3543 GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3544 if (Pos == MethodPool.end())
3545 return nullptr;
3546
3547 // Gather the non-hidden methods.
3548 ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second;
3549 SmallVector<ObjCMethodDecl *, 4> Methods;
3550 for (ObjCMethodList *M = &MethList; M; M = M->getNext()) {
3551 if (M->getMethod() && !M->getMethod()->isHidden())
3552 return M->getMethod();
3553 }
3554 return nullptr;
3555}
3556
3557void Sema::DiagnoseMultipleMethodInGlobalPool(SmallVectorImpl<ObjCMethodDecl*> &Methods,
3558 Selector Sel, SourceRange R,
3559 bool receiverIdOrClass) {
3560 // We found multiple methods, so we may have to complain.
3561 bool issueDiagnostic = false, issueError = false;
3562
3563 // We support a warning which complains about *any* difference in
3564 // method signature.
3565 bool strictSelectorMatch =
3566 receiverIdOrClass &&
3567 !Diags.isIgnored(diag::warn_strict_multiple_method_decl, R.getBegin());
3568 if (strictSelectorMatch) {
3569 for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3570 if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_strict)) {
3571 issueDiagnostic = true;
3572 break;
3573 }
3574 }
3575 }
3576
3577 // If we didn't see any strict differences, we won't see any loose
3578 // differences. In ARC, however, we also need to check for loose
3579 // mismatches, because most of them are errors.
3580 if (!strictSelectorMatch ||
3581 (issueDiagnostic && getLangOpts().ObjCAutoRefCount))
3582 for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3583 // This checks if the methods differ in type mismatch.
3584 if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_loose) &&
3585 !isAcceptableMethodMismatch(Methods[0], Methods[I])) {
3586 issueDiagnostic = true;
3587 if (getLangOpts().ObjCAutoRefCount)
3588 issueError = true;
3589 break;
3590 }
3591 }
3592
3593 if (issueDiagnostic) {
3594 if (issueError)
3595 Diag(R.getBegin(), diag::err_arc_multiple_method_decl) << Sel << R;
3596 else if (strictSelectorMatch)
3597 Diag(R.getBegin(), diag::warn_strict_multiple_method_decl) << Sel << R;
3598 else
3599 Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R;
3600
3601 Diag(Methods[0]->getBeginLoc(),
3602 issueError ? diag::note_possibility : diag::note_using)
3603 << Methods[0]->getSourceRange();
3604 for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3605 Diag(Methods[I]->getBeginLoc(), diag::note_also_found)
3606 << Methods[I]->getSourceRange();
3607 }
3608 }
3609}
3610
3611ObjCMethodDecl *Sema::LookupImplementedMethodInGlobalPool(Selector Sel) {
3612 GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3613 if (Pos == MethodPool.end())
3614 return nullptr;
3615
3616 GlobalMethods &Methods = Pos->second;
3617 for (const ObjCMethodList *Method = &Methods.first; Method;
3618 Method = Method->getNext())
3619 if (Method->getMethod() &&
3620 (Method->getMethod()->isDefined() ||
3621 Method->getMethod()->isPropertyAccessor()))
3622 return Method->getMethod();
3623
3624 for (const ObjCMethodList *Method = &Methods.second; Method;
3625 Method = Method->getNext())
3626 if (Method->getMethod() &&
3627 (Method->getMethod()->isDefined() ||
3628 Method->getMethod()->isPropertyAccessor()))
3629 return Method->getMethod();
3630 return nullptr;
3631}
3632
3633static void
3634HelperSelectorsForTypoCorrection(
3635 SmallVectorImpl<const ObjCMethodDecl *> &BestMethod,
3636 StringRef Typo, const ObjCMethodDecl * Method) {
3637 const unsigned MaxEditDistance = 1;
3638 unsigned BestEditDistance = MaxEditDistance + 1;
3639 std::string MethodName = Method->getSelector().getAsString();
3640
3641 unsigned MinPossibleEditDistance = abs((int)MethodName.size() - (int)Typo.size());
3642 if (MinPossibleEditDistance > 0 &&
3643 Typo.size() / MinPossibleEditDistance < 1)
3644 return;
3645 unsigned EditDistance = Typo.edit_distance(MethodName, true, MaxEditDistance);
3646 if (EditDistance > MaxEditDistance)
3647 return;
3648 if (EditDistance == BestEditDistance)
3649 BestMethod.push_back(Method);
3650 else if (EditDistance < BestEditDistance) {
3651 BestMethod.clear();
3652 BestMethod.push_back(Method);
3653 }
3654}
3655
3656static bool HelperIsMethodInObjCType(Sema &S, Selector Sel,
3657 QualType ObjectType) {
3658 if (ObjectType.isNull())
3659 return true;
3660 if (S.LookupMethodInObjectType(Sel, ObjectType, true/*Instance method*/))
3661 return true;
3662 return S.LookupMethodInObjectType(Sel, ObjectType, false/*Class method*/) !=
3663 nullptr;
3664}
3665
3666const ObjCMethodDecl *
3667Sema::SelectorsForTypoCorrection(Selector Sel,
3668 QualType ObjectType) {
3669 unsigned NumArgs = Sel.getNumArgs();
3670 SmallVector<const ObjCMethodDecl *, 8> Methods;
3671 bool ObjectIsId = true, ObjectIsClass = true;
3672 if (ObjectType.isNull())
3673 ObjectIsId = ObjectIsClass = false;
3674 else if (!ObjectType->isObjCObjectPointerType())
3675 return nullptr;
3676 else if (const ObjCObjectPointerType *ObjCPtr =
3677 ObjectType->getAsObjCInterfacePointerType()) {
3678 ObjectType = QualType(ObjCPtr->getInterfaceType(), 0);
3679 ObjectIsId = ObjectIsClass = false;
3680 }
3681 else if (ObjectType->isObjCIdType() || ObjectType->isObjCQualifiedIdType())
3682 ObjectIsClass = false;
3683 else if (ObjectType->isObjCClassType() || ObjectType->isObjCQualifiedClassType())
3684 ObjectIsId = false;
3685 else
3686 return nullptr;
3687
3688 for (GlobalMethodPool::iterator b = MethodPool.begin(),
3689 e = MethodPool.end(); b != e; b++) {
3690 // instance methods
3691 for (ObjCMethodList *M = &b->second.first; M; M=M->getNext())
3692 if (M->getMethod() &&
3693 (M->getMethod()->getSelector().getNumArgs() == NumArgs) &&
3694 (M->getMethod()->getSelector() != Sel)) {
3695 if (ObjectIsId)
3696 Methods.push_back(M->getMethod());
3697 else if (!ObjectIsClass &&
3698 HelperIsMethodInObjCType(*this, M->getMethod()->getSelector(),
3699 ObjectType))
3700 Methods.push_back(M->getMethod());
3701 }
3702 // class methods
3703 for (ObjCMethodList *M = &b->second.second; M; M=M->getNext())
3704 if (M->getMethod() &&
3705 (M->getMethod()->getSelector().getNumArgs() == NumArgs) &&
3706 (M->getMethod()->getSelector() != Sel)) {
3707 if (ObjectIsClass)
3708 Methods.push_back(M->getMethod());
3709 else if (!ObjectIsId &&
3710 HelperIsMethodInObjCType(*this, M->getMethod()->getSelector(),
3711 ObjectType))
3712 Methods.push_back(M->getMethod());
3713 }
3714 }
3715
3716 SmallVector<const ObjCMethodDecl *, 8> SelectedMethods;
3717 for (unsigned i = 0, e = Methods.size(); i < e; i++) {
3718 HelperSelectorsForTypoCorrection(SelectedMethods,
3719 Sel.getAsString(), Methods[i]);
3720 }
3721 return (SelectedMethods.size() == 1) ? SelectedMethods[0] : nullptr;
3722}
3723
3724/// DiagnoseDuplicateIvars -
3725/// Check for duplicate ivars in the entire class at the start of
3726/// \@implementation. This becomes necesssary because class extension can
3727/// add ivars to a class in random order which will not be known until
3728/// class's \@implementation is seen.
3729void Sema::DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID,
3730 ObjCInterfaceDecl *SID) {
3731 for (auto *Ivar : ID->ivars()) {
3732 if (Ivar->isInvalidDecl())
3733 continue;
3734 if (IdentifierInfo *II = Ivar->getIdentifier()) {
3735 ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(II);
3736 if (prevIvar) {
3737 Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
3738 Diag(prevIvar->getLocation(), diag::note_previous_declaration);
3739 Ivar->setInvalidDecl();
3740 }
3741 }
3742 }
3743}
3744
3745/// Diagnose attempts to define ARC-__weak ivars when __weak is disabled.
3746static void DiagnoseWeakIvars(Sema &S, ObjCImplementationDecl *ID) {
3747 if (S.getLangOpts().ObjCWeak) return;
3748
3749 for (auto ivar = ID->getClassInterface()->all_declared_ivar_begin();
3750 ivar; ivar = ivar->getNextIvar()) {
3751 if (ivar->isInvalidDecl()) continue;
3752 if (ivar->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
3753 if (S.getLangOpts().ObjCWeakRuntime) {
3754 S.Diag(ivar->getLocation(), diag::err_arc_weak_disabled);
3755 } else {
3756 S.Diag(ivar->getLocation(), diag::err_arc_weak_no_runtime);
3757 }
3758 }
3759 }
3760}
3761
3762/// Diagnose attempts to use flexible array member with retainable object type.
3763static void DiagnoseRetainableFlexibleArrayMember(Sema &S,
3764 ObjCInterfaceDecl *ID) {
3765 if (!S.getLangOpts().ObjCAutoRefCount)
3766 return;
3767
3768 for (auto ivar = ID->all_declared_ivar_begin(); ivar;
3769 ivar = ivar->getNextIvar()) {
3770 if (ivar->isInvalidDecl())
3771 continue;
3772 QualType IvarTy = ivar->getType();
3773 if (IvarTy->isIncompleteArrayType() &&
3774 (IvarTy.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) &&
3775 IvarTy->isObjCLifetimeType()) {
3776 S.Diag(ivar->getLocation(), diag::err_flexible_array_arc_retainable);
3777 ivar->setInvalidDecl();
3778 }
3779 }
3780}
3781
3782Sema::ObjCContainerKind Sema::getObjCContainerKind() const {
3783 switch (CurContext->getDeclKind()) {
3784 case Decl::ObjCInterface:
3785 return Sema::OCK_Interface;
3786 case Decl::ObjCProtocol:
3787 return Sema::OCK_Protocol;
3788 case Decl::ObjCCategory:
3789 if (cast<ObjCCategoryDecl>(CurContext)->IsClassExtension())
3790 return Sema::OCK_ClassExtension;
3791 return Sema::OCK_Category;
3792 case Decl::ObjCImplementation:
3793 return Sema::OCK_Implementation;
3794 case Decl::ObjCCategoryImpl:
3795 return Sema::OCK_CategoryImplementation;
3796
3797 default:
3798 return Sema::OCK_None;
3799 }
3800}
3801
3802static bool IsVariableSizedType(QualType T) {
3803 if (T->isIncompleteArrayType())
3804 return true;
3805 const auto *RecordTy = T->getAs<RecordType>();
3806 return (RecordTy && RecordTy->getDecl()->hasFlexibleArrayMember());
3807}
3808
3809static void DiagnoseVariableSizedIvars(Sema &S, ObjCContainerDecl *OCD) {
3810 ObjCInterfaceDecl *IntfDecl = nullptr;
3811 ObjCInterfaceDecl::ivar_range Ivars = llvm::make_range(
3812 ObjCInterfaceDecl::ivar_iterator(), ObjCInterfaceDecl::ivar_iterator());
3813 if ((IntfDecl = dyn_cast<ObjCInterfaceDecl>(OCD))) {
3814 Ivars = IntfDecl->ivars();
3815 } else if (auto *ImplDecl = dyn_cast<ObjCImplementationDecl>(OCD)) {
3816 IntfDecl = ImplDecl->getClassInterface();
3817 Ivars = ImplDecl->ivars();
3818 } else if (auto *CategoryDecl = dyn_cast<ObjCCategoryDecl>(OCD)) {
3819 if (CategoryDecl->IsClassExtension()) {
3820 IntfDecl = CategoryDecl->getClassInterface();
3821 Ivars = CategoryDecl->ivars();
3822 }
3823 }
3824
3825 // Check if variable sized ivar is in interface and visible to subclasses.
3826 if (!isa<ObjCInterfaceDecl>(OCD)) {
3827 for (auto ivar : Ivars) {
3828 if (!ivar->isInvalidDecl() && IsVariableSizedType(ivar->getType())) {
3829 S.Diag(ivar->getLocation(), diag::warn_variable_sized_ivar_visibility)
3830 << ivar->getDeclName() << ivar->getType();
3831 }
3832 }
3833 }
3834
3835 // Subsequent checks require interface decl.
3836 if (!IntfDecl)
3837 return;
3838
3839 // Check if variable sized ivar is followed by another ivar.
3840 for (ObjCIvarDecl *ivar = IntfDecl->all_declared_ivar_begin(); ivar;
3841 ivar = ivar->getNextIvar()) {
3842 if (ivar->isInvalidDecl() || !ivar->getNextIvar())
3843 continue;
3844 QualType IvarTy = ivar->getType();
3845 bool IsInvalidIvar = false;
3846 if (IvarTy->isIncompleteArrayType()) {
3847 S.Diag(ivar->getLocation(), diag::err_flexible_array_not_at_end)
3848 << ivar->getDeclName() << IvarTy
3849 << TTK_Class; // Use "class" for Obj-C.
3850 IsInvalidIvar = true;
3851 } else if (const RecordType *RecordTy = IvarTy->getAs<RecordType>()) {
3852 if (RecordTy->getDecl()->hasFlexibleArrayMember()) {
3853 S.Diag(ivar->getLocation(),
3854 diag::err_objc_variable_sized_type_not_at_end)
3855 << ivar->getDeclName() << IvarTy;
3856 IsInvalidIvar = true;
3857 }
3858 }
3859 if (IsInvalidIvar) {
3860 S.Diag(ivar->getNextIvar()->getLocation(),
3861 diag::note_next_ivar_declaration)
3862 << ivar->getNextIvar()->getSynthesize();
3863 ivar->setInvalidDecl();
3864 }
3865 }
3866
3867 // Check if ObjC container adds ivars after variable sized ivar in superclass.
3868 // Perform the check only if OCD is the first container to declare ivars to
3869 // avoid multiple warnings for the same ivar.
3870 ObjCIvarDecl *FirstIvar =
3871 (Ivars.begin() == Ivars.end()) ? nullptr : *Ivars.begin();
3872 if (FirstIvar && (FirstIvar == IntfDecl->all_declared_ivar_begin())) {
3873 const ObjCInterfaceDecl *SuperClass = IntfDecl->getSuperClass();
3874 while (SuperClass && SuperClass->ivar_empty())
3875 SuperClass = SuperClass->getSuperClass();
3876 if (SuperClass) {
3877 auto IvarIter = SuperClass->ivar_begin();
3878 std::advance(IvarIter, SuperClass->ivar_size() - 1);
3879 const ObjCIvarDecl *LastIvar = *IvarIter;
3880 if (IsVariableSizedType(LastIvar->getType())) {
3881 S.Diag(FirstIvar->getLocation(),
3882 diag::warn_superclass_variable_sized_type_not_at_end)
3883 << FirstIvar->getDeclName() << LastIvar->getDeclName()
3884 << LastIvar->getType() << SuperClass->getDeclName();
3885 S.Diag(LastIvar->getLocation(), diag::note_entity_declared_at)
3886 << LastIvar->getDeclName();
3887 }
3888 }
3889 }
3890}
3891
3892// Note: For class/category implementations, allMethods is always null.
3893Decl *Sema::ActOnAtEnd(Scope *S, SourceRange AtEnd, ArrayRef<Decl *> allMethods,
3894 ArrayRef<DeclGroupPtrTy> allTUVars) {
3895 if (getObjCContainerKind() == Sema::OCK_None)
3896 return nullptr;
3897
3898 assert(AtEnd.isValid() && "Invalid location for '@end'")((AtEnd.isValid() && "Invalid location for '@end'") ?
static_cast<void> (0) : __assert_fail ("AtEnd.isValid() && \"Invalid location for '@end'\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 3898, __PRETTY_FUNCTION__))
;
3899
3900 auto *OCD = cast<ObjCContainerDecl>(CurContext);
3901 Decl *ClassDecl = OCD;
3902
3903 bool isInterfaceDeclKind =
3904 isa<ObjCInterfaceDecl>(ClassDecl) || isa<ObjCCategoryDecl>(ClassDecl)
3905 || isa<ObjCProtocolDecl>(ClassDecl);
3906 bool checkIdenticalMethods = isa<ObjCImplementationDecl>(ClassDecl);
3907
3908 // FIXME: Remove these and use the ObjCContainerDecl/DeclContext.
3909 llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap;
3910 llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap;
3911
3912 for (unsigned i = 0, e = allMethods.size(); i != e; i++ ) {
3913 ObjCMethodDecl *Method =
3914 cast_or_null<ObjCMethodDecl>(allMethods[i]);
3915
3916 if (!Method) continue; // Already issued a diagnostic.
3917 if (Method->isInstanceMethod()) {
3918 /// Check for instance method of the same name with incompatible types
3919 const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()];
3920 bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
3921 : false;
3922 if ((isInterfaceDeclKind && PrevMethod && !match)
3923 || (checkIdenticalMethods && match)) {
3924 Diag(Method->getLocation(), diag::err_duplicate_method_decl)
3925 << Method->getDeclName();
3926 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
3927 Method->setInvalidDecl();
3928 } else {
3929 if (PrevMethod) {
3930 Method->setAsRedeclaration(PrevMethod);
3931 if (!Context.getSourceManager().isInSystemHeader(
3932 Method->getLocation()))
3933 Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
3934 << Method->getDeclName();
3935 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
3936 }
3937 InsMap[Method->getSelector()] = Method;
3938 /// The following allows us to typecheck messages to "id".
3939 AddInstanceMethodToGlobalPool(Method);
3940 }
3941 } else {
3942 /// Check for class method of the same name with incompatible types
3943 const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()];
3944 bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
3945 : false;
3946 if ((isInterfaceDeclKind && PrevMethod && !match)
3947 || (checkIdenticalMethods && match)) {
3948 Diag(Method->getLocation(), diag::err_duplicate_method_decl)
3949 << Method->getDeclName();
3950 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
3951 Method->setInvalidDecl();
3952 } else {
3953 if (PrevMethod) {
3954 Method->setAsRedeclaration(PrevMethod);
3955 if (!Context.getSourceManager().isInSystemHeader(
3956 Method->getLocation()))
3957 Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
3958 << Method->getDeclName();
3959 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
3960 }
3961 ClsMap[Method->getSelector()] = Method;
3962 AddFactoryMethodToGlobalPool(Method);
3963 }
3964 }
3965 }
3966 if (isa<ObjCInterfaceDecl>(ClassDecl)) {
3967 // Nothing to do here.
3968 } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(ClassDecl)) {
3969 // Categories are used to extend the class by declaring new methods.
3970 // By the same token, they are also used to add new properties. No
3971 // need to compare the added property to those in the class.
3972
3973 if (C->IsClassExtension()) {
3974 ObjCInterfaceDecl *CCPrimary = C->getClassInterface();
3975 DiagnoseClassExtensionDupMethods(C, CCPrimary);
3976 }
3977 }
3978 if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(ClassDecl)) {
3979 if (CDecl->getIdentifier())
3980 // ProcessPropertyDecl is responsible for diagnosing conflicts with any
3981 // user-defined setter/getter. It also synthesizes setter/getter methods
3982 // and adds them to the DeclContext and global method pools.
3983 for (auto *I : CDecl->properties())
3984 ProcessPropertyDecl(I);
3985 CDecl->setAtEndRange(AtEnd);
3986 }
3987 if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(ClassDecl)) {
3988 IC->setAtEndRange(AtEnd);
3989 if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) {
3990 // Any property declared in a class extension might have user
3991 // declared setter or getter in current class extension or one
3992 // of the other class extensions. Mark them as synthesized as
3993 // property will be synthesized when property with same name is
3994 // seen in the @implementation.
3995 for (const auto *Ext : IDecl->visible_extensions()) {
3996 for (const auto *Property : Ext->instance_properties()) {
3997 // Skip over properties declared @dynamic
3998 if (const ObjCPropertyImplDecl *PIDecl
3999 = IC->FindPropertyImplDecl(Property->getIdentifier(),
4000 Property->getQueryKind()))
4001 if (PIDecl->getPropertyImplementation()
4002 == ObjCPropertyImplDecl::Dynamic)
4003 continue;
4004
4005 for (const auto *Ext : IDecl->visible_extensions()) {
4006 if (ObjCMethodDecl *GetterMethod
4007 = Ext->getInstanceMethod(Property->getGetterName()))
4008 GetterMethod->setPropertyAccessor(true);
4009 if (!Property->isReadOnly())
4010 if (ObjCMethodDecl *SetterMethod
4011 = Ext->getInstanceMethod(Property->getSetterName()))
4012 SetterMethod->setPropertyAccessor(true);
4013 }
4014 }
4015 }
4016 ImplMethodsVsClassMethods(S, IC, IDecl);
4017 AtomicPropertySetterGetterRules(IC, IDecl);
4018 DiagnoseOwningPropertyGetterSynthesis(IC);
4019 DiagnoseUnusedBackingIvarInAccessor(S, IC);
4020 if (IDecl->hasDesignatedInitializers())
4021 DiagnoseMissingDesignatedInitOverrides(IC, IDecl);
4022 DiagnoseWeakIvars(*this, IC);
4023 DiagnoseRetainableFlexibleArrayMember(*this, IDecl);
4024
4025 bool HasRootClassAttr = IDecl->hasAttr<ObjCRootClassAttr>();
4026 if (IDecl->getSuperClass() == nullptr) {
4027 // This class has no superclass, so check that it has been marked with
4028 // __attribute((objc_root_class)).
4029 if (!HasRootClassAttr) {
4030 SourceLocation DeclLoc(IDecl->getLocation());
4031 SourceLocation SuperClassLoc(getLocForEndOfToken(DeclLoc));
4032 Diag(DeclLoc, diag::warn_objc_root_class_missing)
4033 << IDecl->getIdentifier();
4034 // See if NSObject is in the current scope, and if it is, suggest
4035 // adding " : NSObject " to the class declaration.
4036 NamedDecl *IF = LookupSingleName(TUScope,
4037 NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject),
4038 DeclLoc, LookupOrdinaryName);
4039 ObjCInterfaceDecl *NSObjectDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF);
4040 if (NSObjectDecl && NSObjectDecl->getDefinition()) {
4041 Diag(SuperClassLoc, diag::note_objc_needs_superclass)
4042 << FixItHint::CreateInsertion(SuperClassLoc, " : NSObject ");
4043 } else {
4044 Diag(SuperClassLoc, diag::note_objc_needs_superclass);
4045 }
4046 }
4047 } else if (HasRootClassAttr) {
4048 // Complain that only root classes may have this attribute.
4049 Diag(IDecl->getLocation(), diag::err_objc_root_class_subclass);
4050 }
4051
4052 if (const ObjCInterfaceDecl *Super = IDecl->getSuperClass()) {
4053 // An interface can subclass another interface with a
4054 // objc_subclassing_restricted attribute when it has that attribute as
4055 // well (because of interfaces imported from Swift). Therefore we have
4056 // to check if we can subclass in the implementation as well.
4057 if (IDecl->hasAttr<ObjCSubclassingRestrictedAttr>() &&
4058 Super->hasAttr<ObjCSubclassingRestrictedAttr>()) {
4059 Diag(IC->getLocation(), diag::err_restricted_superclass_mismatch);
4060 Diag(Super->getLocation(), diag::note_class_declared);
4061 }
4062 }
4063
4064 if (IDecl->hasAttr<ObjCClassStubAttr>())
4065 Diag(IC->getLocation(), diag::err_implementation_of_class_stub);
4066
4067 if (LangOpts.ObjCRuntime.isNonFragile()) {
4068 while (IDecl->getSuperClass()) {
4069 DiagnoseDuplicateIvars(IDecl, IDecl->getSuperClass());
4070 IDecl = IDecl->getSuperClass();
4071 }
4072 }
4073 }
4074 SetIvarInitializers(IC);
4075 } else if (ObjCCategoryImplDecl* CatImplClass =
4076 dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) {
4077 CatImplClass->setAtEndRange(AtEnd);
4078
4079 // Find category interface decl and then check that all methods declared
4080 // in this interface are implemented in the category @implementation.
4081 if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) {
4082 if (ObjCCategoryDecl *Cat
4083 = IDecl->FindCategoryDeclaration(CatImplClass->getIdentifier())) {
4084 ImplMethodsVsClassMethods(S, CatImplClass, Cat);
4085 }
4086 }
4087 } else if (const auto *IntfDecl = dyn_cast<ObjCInterfaceDecl>(ClassDecl)) {
4088 if (const ObjCInterfaceDecl *Super = IntfDecl->getSuperClass()) {
4089 if (!IntfDecl->hasAttr<ObjCSubclassingRestrictedAttr>() &&
4090 Super->hasAttr<ObjCSubclassingRestrictedAttr>()) {
4091 Diag(IntfDecl->getLocation(), diag::err_restricted_superclass_mismatch);
4092 Diag(Super->getLocation(), diag::note_class_declared);
4093 }
4094 }
4095
4096 if (IntfDecl->hasAttr<ObjCClassStubAttr>() &&
4097 !IntfDecl->hasAttr<ObjCSubclassingRestrictedAttr>())
4098 Diag(IntfDecl->getLocation(), diag::err_class_stub_subclassing_mismatch);
4099 }
4100 DiagnoseVariableSizedIvars(*this, OCD);
4101 if (isInterfaceDeclKind) {
4102 // Reject invalid vardecls.
4103 for (unsigned i = 0, e = allTUVars.size(); i != e; i++) {
4104 DeclGroupRef DG = allTUVars[i].get();
4105 for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
4106 if (VarDecl *VDecl = dyn_cast<VarDecl>(*I)) {
4107 if (!VDecl->hasExternalStorage())
4108 Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass);
4109 }
4110 }
4111 }
4112 ActOnObjCContainerFinishDefinition();
4113
4114 for (unsigned i = 0, e = allTUVars.size(); i != e; i++) {
4115 DeclGroupRef DG = allTUVars[i].get();
4116 for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
4117 (*I)->setTopLevelDeclInObjCContainer();
4118 Consumer.HandleTopLevelDeclInObjCContainer(DG);
4119 }
4120
4121 ActOnDocumentableDecl(ClassDecl);
4122 return ClassDecl;
4123}
4124
4125/// CvtQTToAstBitMask - utility routine to produce an AST bitmask for
4126/// objective-c's type qualifier from the parser version of the same info.
4127static Decl::ObjCDeclQualifier
4128CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal) {
4129 return (Decl::ObjCDeclQualifier) (unsigned) PQTVal;
4130}
4131
4132/// Check whether the declared result type of the given Objective-C
4133/// method declaration is compatible with the method's class.
4134///
4135static Sema::ResultTypeCompatibilityKind
4136CheckRelatedResultTypeCompatibility(Sema &S, ObjCMethodDecl *Method,
4137 ObjCInterfaceDecl *CurrentClass) {
4138 QualType ResultType = Method->getReturnType();
4139
4140 // If an Objective-C method inherits its related result type, then its
4141 // declared result type must be compatible with its own class type. The
4142 // declared result type is compatible if:
4143 if (const ObjCObjectPointerType *ResultObjectType
4144 = ResultType->getAs<ObjCObjectPointerType>()) {
4145 // - it is id or qualified id, or
4146 if (ResultObjectType->isObjCIdType() ||
4147 ResultObjectType->isObjCQualifiedIdType())
4148 return Sema::RTC_Compatible;
4149
4150 if (CurrentClass) {
4151 if (ObjCInterfaceDecl *ResultClass
4152 = ResultObjectType->getInterfaceDecl()) {
4153 // - it is the same as the method's class type, or
4154 if (declaresSameEntity(CurrentClass, ResultClass))
4155 return Sema::RTC_Compatible;
4156
4157 // - it is a superclass of the method's class type
4158 if (ResultClass->isSuperClassOf(CurrentClass))
4159 return Sema::RTC_Compatible;
4160 }
4161 } else {
4162 // Any Objective-C pointer type might be acceptable for a protocol
4163 // method; we just don't know.
4164 return Sema::RTC_Unknown;
4165 }
4166 }
4167
4168 return Sema::RTC_Incompatible;
4169}
4170
4171namespace {
4172/// A helper class for searching for methods which a particular method
4173/// overrides.
4174class OverrideSearch {
4175public:
4176 const ObjCMethodDecl *Method;
4177 llvm::SmallSetVector<ObjCMethodDecl*, 4> Overridden;
4178 bool Recursive;
4179
4180public:
4181 OverrideSearch(Sema &S, const ObjCMethodDecl *method) : Method(method) {
4182 Selector selector = method->getSelector();
4183
4184 // Bypass this search if we've never seen an instance/class method
4185 // with this selector before.
4186 Sema::GlobalMethodPool::iterator it = S.MethodPool.find(selector);
4187 if (it == S.MethodPool.end()) {
4188 if (!S.getExternalSource()) return;
4189 S.ReadMethodPool(selector);
4190
4191 it = S.MethodPool.find(selector);
4192 if (it == S.MethodPool.end())
4193 return;
4194 }
4195 const ObjCMethodList &list =
4196 method->isInstanceMethod() ? it->second.first : it->second.second;
4197 if (!list.getMethod()) return;
4198
4199 const ObjCContainerDecl *container
4200 = cast<ObjCContainerDecl>(method->getDeclContext());
4201
4202 // Prevent the search from reaching this container again. This is
4203 // important with categories, which override methods from the
4204 // interface and each other.
4205 if (const ObjCCategoryDecl *Category =
4206 dyn_cast<ObjCCategoryDecl>(container)) {
4207 searchFromContainer(container);
4208 if (const ObjCInterfaceDecl *Interface = Category->getClassInterface())
4209 searchFromContainer(Interface);
4210 } else {
4211 searchFromContainer(container);
4212 }
4213 }
4214
4215 typedef decltype(Overridden)::iterator iterator;
4216 iterator begin() const { return Overridden.begin(); }
4217 iterator end() const { return Overridden.end(); }
4218
4219private:
4220 void searchFromContainer(const ObjCContainerDecl *container) {
4221 if (container->isInvalidDecl()) return;
4222
4223 switch (container->getDeclKind()) {
4224#define OBJCCONTAINER(type, base) \
4225 case Decl::type: \
4226 searchFrom(cast<type##Decl>(container)); \
4227 break;
4228#define ABSTRACT_DECL(expansion)
4229#define DECL(type, base) \
4230 case Decl::type:
4231#include "clang/AST/DeclNodes.inc"
4232 llvm_unreachable("not an ObjC container!")::llvm::llvm_unreachable_internal("not an ObjC container!", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 4232)
;
4233 }
4234 }
4235
4236 void searchFrom(const ObjCProtocolDecl *protocol) {
4237 if (!protocol->hasDefinition())
4238 return;
4239
4240 // A method in a protocol declaration overrides declarations from
4241 // referenced ("parent") protocols.
4242 search(protocol->getReferencedProtocols());
4243 }
4244
4245 void searchFrom(const ObjCCategoryDecl *category) {
4246 // A method in a category declaration overrides declarations from
4247 // the main class and from protocols the category references.
4248 // The main class is handled in the constructor.
4249 search(category->getReferencedProtocols());
4250 }
4251
4252 void searchFrom(const ObjCCategoryImplDecl *impl) {
4253 // A method in a category definition that has a category
4254 // declaration overrides declarations from the category
4255 // declaration.
4256 if (ObjCCategoryDecl *category = impl->getCategoryDecl()) {
4257 search(category);
4258 if (ObjCInterfaceDecl *Interface = category->getClassInterface())
4259 search(Interface);
4260
4261 // Otherwise it overrides declarations from the class.
4262 } else if (const auto *Interface = impl->getClassInterface()) {
4263 search(Interface);
4264 }
4265 }
4266
4267 void searchFrom(const ObjCInterfaceDecl *iface) {
4268 // A method in a class declaration overrides declarations from
4269 if (!iface->hasDefinition())
4270 return;
4271
4272 // - categories,
4273 for (auto *Cat : iface->known_categories())
4274 search(Cat);
4275
4276 // - the super class, and
4277 if (ObjCInterfaceDecl *super = iface->getSuperClass())
4278 search(super);
4279
4280 // - any referenced protocols.
4281 search(iface->getReferencedProtocols());
4282 }
4283
4284 void searchFrom(const ObjCImplementationDecl *impl) {
4285 // A method in a class implementation overrides declarations from
4286 // the class interface.
4287 if (const auto *Interface = impl->getClassInterface())
4288 search(Interface);
4289 }
4290
4291 void search(const ObjCProtocolList &protocols) {
4292 for (const auto *Proto : protocols)
4293 search(Proto);
4294 }
4295
4296 void search(const ObjCContainerDecl *container) {
4297 // Check for a method in this container which matches this selector.
4298 ObjCMethodDecl *meth = container->getMethod(Method->getSelector(),
4299 Method->isInstanceMethod(),
4300 /*AllowHidden=*/true);
4301
4302 // If we find one, record it and bail out.
4303 if (meth) {
4304 Overridden.insert(meth);
4305 return;
4306 }
4307
4308 // Otherwise, search for methods that a hypothetical method here
4309 // would have overridden.
4310
4311 // Note that we're now in a recursive case.
4312 Recursive = true;
4313
4314 searchFromContainer(container);
4315 }
4316};
4317} // end anonymous namespace
4318
4319void Sema::CheckObjCMethodOverrides(ObjCMethodDecl *ObjCMethod,
4320 ObjCInterfaceDecl *CurrentClass,
4321 ResultTypeCompatibilityKind RTC) {
4322 if (!ObjCMethod)
4323 return;
4324 // Search for overridden methods and merge information down from them.
4325 OverrideSearch overrides(*this, ObjCMethod);
4326 // Keep track if the method overrides any method in the class's base classes,
4327 // its protocols, or its categories' protocols; we will keep that info
4328 // in the ObjCMethodDecl.
4329 // For this info, a method in an implementation is not considered as
4330 // overriding the same method in the interface or its categories.
4331 bool hasOverriddenMethodsInBaseOrProtocol = false;
4332 for (ObjCMethodDecl *overridden : overrides) {
4333 if (!hasOverriddenMethodsInBaseOrProtocol) {
4334 if (isa<ObjCProtocolDecl>(overridden->getDeclContext()) ||
4335 CurrentClass != overridden->getClassInterface() ||
4336 overridden->isOverriding()) {
4337 hasOverriddenMethodsInBaseOrProtocol = true;
4338
4339 } else if (isa<ObjCImplDecl>(ObjCMethod->getDeclContext())) {
4340 // OverrideSearch will return as "overridden" the same method in the
4341 // interface. For hasOverriddenMethodsInBaseOrProtocol, we need to
4342 // check whether a category of a base class introduced a method with the
4343 // same selector, after the interface method declaration.
4344 // To avoid unnecessary lookups in the majority of cases, we use the
4345 // extra info bits in GlobalMethodPool to check whether there were any
4346 // category methods with this selector.
4347 GlobalMethodPool::iterator It =
4348 MethodPool.find(ObjCMethod->getSelector());
4349 if (It != MethodPool.end()) {
4350 ObjCMethodList &List =
4351 ObjCMethod->isInstanceMethod()? It->second.first: It->second.second;
4352 unsigned CategCount = List.getBits();
4353 if (CategCount > 0) {
4354 // If the method is in a category we'll do lookup if there were at
4355 // least 2 category methods recorded, otherwise only one will do.
4356 if (CategCount > 1 ||
4357 !isa<ObjCCategoryImplDecl>(overridden->getDeclContext())) {
4358 OverrideSearch overrides(*this, overridden);
4359 for (ObjCMethodDecl *SuperOverridden : overrides) {
4360 if (isa<ObjCProtocolDecl>(SuperOverridden->getDeclContext()) ||
4361 CurrentClass != SuperOverridden->getClassInterface()) {
4362 hasOverriddenMethodsInBaseOrProtocol = true;
4363 overridden->setOverriding(true);
4364 break;
4365 }
4366 }
4367 }
4368 }
4369 }
4370 }
4371 }
4372
4373 // Propagate down the 'related result type' bit from overridden methods.
4374 if (RTC != Sema::RTC_Incompatible && overridden->hasRelatedResultType())
4375 ObjCMethod->setRelatedResultType();
4376
4377 // Then merge the declarations.
4378 mergeObjCMethodDecls(ObjCMethod, overridden);
4379
4380 if (ObjCMethod->isImplicit() && overridden->isImplicit())
4381 continue; // Conflicting properties are detected elsewhere.
4382
4383 // Check for overriding methods
4384 if (isa<ObjCInterfaceDecl>(ObjCMethod->getDeclContext()) ||
4385 isa<ObjCImplementationDecl>(ObjCMethod->getDeclContext()))
4386 CheckConflictingOverridingMethod(ObjCMethod, overridden,
4387 isa<ObjCProtocolDecl>(overridden->getDeclContext()));
4388
4389 if (CurrentClass && overridden->getDeclContext() != CurrentClass &&
4390 isa<ObjCInterfaceDecl>(overridden->getDeclContext()) &&
4391 !overridden->isImplicit() /* not meant for properties */) {
4392 ObjCMethodDecl::param_iterator ParamI = ObjCMethod->param_begin(),
4393 E = ObjCMethod->param_end();
4394 ObjCMethodDecl::param_iterator PrevI = overridden->param_begin(),
4395 PrevE = overridden->param_end();
4396 for (; ParamI != E && PrevI != PrevE; ++ParamI, ++PrevI) {
4397 assert(PrevI != overridden->param_end() && "Param mismatch")((PrevI != overridden->param_end() && "Param mismatch"
) ? static_cast<void> (0) : __assert_fail ("PrevI != overridden->param_end() && \"Param mismatch\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 4397, __PRETTY_FUNCTION__))
;
4398 QualType T1 = Context.getCanonicalType((*ParamI)->getType());
4399 QualType T2 = Context.getCanonicalType((*PrevI)->getType());
4400 // If type of argument of method in this class does not match its
4401 // respective argument type in the super class method, issue warning;
4402 if (!Context.typesAreCompatible(T1, T2)) {
4403 Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super)
4404 << T1 << T2;
4405 Diag(overridden->getLocation(), diag::note_previous_declaration);
4406 break;
4407 }
4408 }
4409 }
4410 }
4411
4412 ObjCMethod->setOverriding(hasOverriddenMethodsInBaseOrProtocol);
4413}
4414
4415/// Merge type nullability from for a redeclaration of the same entity,
4416/// producing the updated type of the redeclared entity.
4417static QualType mergeTypeNullabilityForRedecl(Sema &S, SourceLocation loc,
4418 QualType type,
4419 bool usesCSKeyword,
4420 SourceLocation prevLoc,
4421 QualType prevType,
4422 bool prevUsesCSKeyword) {
4423 // Determine the nullability of both types.
4424 auto nullability = type->getNullability(S.Context);
4425 auto prevNullability = prevType->getNullability(S.Context);
4426
4427 // Easy case: both have nullability.
4428 if (nullability.hasValue() == prevNullability.hasValue()) {
4429 // Neither has nullability; continue.
4430 if (!nullability)
4431 return type;
4432
4433 // The nullabilities are equivalent; do nothing.
4434 if (*nullability == *prevNullability)
4435 return type;
4436
4437 // Complain about mismatched nullability.
4438 S.Diag(loc, diag::err_nullability_conflicting)
4439 << DiagNullabilityKind(*nullability, usesCSKeyword)
4440 << DiagNullabilityKind(*prevNullability, prevUsesCSKeyword);
4441 return type;
4442 }
4443
4444 // If it's the redeclaration that has nullability, don't change anything.
4445 if (nullability)
4446 return type;
4447
4448 // Otherwise, provide the result with the same nullability.
4449 return S.Context.getAttributedType(
4450 AttributedType::getNullabilityAttrKind(*prevNullability),
4451 type, type);
4452}
4453
4454/// Merge information from the declaration of a method in the \@interface
4455/// (or a category/extension) into the corresponding method in the
4456/// @implementation (for a class or category).
4457static void mergeInterfaceMethodToImpl(Sema &S,
4458 ObjCMethodDecl *method,
4459 ObjCMethodDecl *prevMethod) {
4460 // Merge the objc_requires_super attribute.
4461 if (prevMethod->hasAttr<ObjCRequiresSuperAttr>() &&
17
Taking true branch
4462 !method->hasAttr<ObjCRequiresSuperAttr>()) {
4463 // merge the attribute into implementation.
4464 method->addAttr(
4465 ObjCRequiresSuperAttr::CreateImplicit(S.Context,
18
Calling 'ObjCRequiresSuperAttr::CreateImplicit'
4466 method->getLocation()));
4467 }
4468
4469 // Merge nullability of the result type.
4470 QualType newReturnType
4471 = mergeTypeNullabilityForRedecl(
4472 S, method->getReturnTypeSourceRange().getBegin(),
4473 method->getReturnType(),
4474 method->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability,
4475 prevMethod->getReturnTypeSourceRange().getBegin(),
4476 prevMethod->getReturnType(),
4477 prevMethod->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability);
4478 method->setReturnType(newReturnType);
4479
4480 // Handle each of the parameters.
4481 unsigned numParams = method->param_size();
4482 unsigned numPrevParams = prevMethod->param_size();
4483 for (unsigned i = 0, n = std::min(numParams, numPrevParams); i != n; ++i) {
4484 ParmVarDecl *param = method->param_begin()[i];
4485 ParmVarDecl *prevParam = prevMethod->param_begin()[i];
4486
4487 // Merge nullability.
4488 QualType newParamType
4489 = mergeTypeNullabilityForRedecl(
4490 S, param->getLocation(), param->getType(),
4491 param->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability,
4492 prevParam->getLocation(), prevParam->getType(),
4493 prevParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability);
4494 param->setType(newParamType);
4495 }
4496}
4497
4498/// Verify that the method parameters/return value have types that are supported
4499/// by the x86 target.
4500static void checkObjCMethodX86VectorTypes(Sema &SemaRef,
4501 const ObjCMethodDecl *Method) {
4502 assert(SemaRef.getASTContext().getTargetInfo().getTriple().getArch() ==((SemaRef.getASTContext().getTargetInfo().getTriple().getArch
() == llvm::Triple::x86 && "x86-specific check invoked for a different target"
) ? static_cast<void> (0) : __assert_fail ("SemaRef.getASTContext().getTargetInfo().getTriple().getArch() == llvm::Triple::x86 && \"x86-specific check invoked for a different target\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 4504, __PRETTY_FUNCTION__))
4503 llvm::Triple::x86 &&((SemaRef.getASTContext().getTargetInfo().getTriple().getArch
() == llvm::Triple::x86 && "x86-specific check invoked for a different target"
) ? static_cast<void> (0) : __assert_fail ("SemaRef.getASTContext().getTargetInfo().getTriple().getArch() == llvm::Triple::x86 && \"x86-specific check invoked for a different target\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 4504, __PRETTY_FUNCTION__))
4504 "x86-specific check invoked for a different target")((SemaRef.getASTContext().getTargetInfo().getTriple().getArch
() == llvm::Triple::x86 && "x86-specific check invoked for a different target"
) ? static_cast<void> (0) : __assert_fail ("SemaRef.getASTContext().getTargetInfo().getTriple().getArch() == llvm::Triple::x86 && \"x86-specific check invoked for a different target\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 4504, __PRETTY_FUNCTION__))
;
4505 SourceLocation Loc;
4506 QualType T;
4507 for (const ParmVarDecl *P : Method->parameters()) {
4508 if (P->getType()->isVectorType()) {
4509 Loc = P->getBeginLoc();
4510 T = P->getType();
4511 break;
4512 }
4513 }
4514 if (Loc.isInvalid()) {
4515 if (Method->getReturnType()->isVectorType()) {
4516 Loc = Method->getReturnTypeSourceRange().getBegin();
4517 T = Method->getReturnType();
4518 } else
4519 return;
4520 }
4521
4522 // Vector parameters/return values are not supported by objc_msgSend on x86 in
4523 // iOS < 9 and macOS < 10.11.
4524 const auto &Triple = SemaRef.getASTContext().getTargetInfo().getTriple();
4525 VersionTuple AcceptedInVersion;
4526 if (Triple.getOS() == llvm::Triple::IOS)
4527 AcceptedInVersion = VersionTuple(/*Major=*/9);
4528 else if (Triple.isMacOSX())
4529 AcceptedInVersion = VersionTuple(/*Major=*/10, /*Minor=*/11);
4530 else
4531 return;
4532 if (SemaRef.getASTContext().getTargetInfo().getPlatformMinVersion() >=
4533 AcceptedInVersion)
4534 return;
4535 SemaRef.Diag(Loc, diag::err_objc_method_unsupported_param_ret_type)
4536 << T << (Method->getReturnType()->isVectorType() ? /*return value*/ 1
4537 : /*parameter*/ 0)
4538 << (Triple.isMacOSX() ? "macOS 10.11" : "iOS 9");
4539}
4540
4541Decl *Sema::ActOnMethodDeclaration(
4542 Scope *S, SourceLocation MethodLoc, SourceLocation EndLoc,
4543 tok::TokenKind MethodType, ObjCDeclSpec &ReturnQT, ParsedType ReturnType,
4544 ArrayRef<SourceLocation> SelectorLocs, Selector Sel,
4545 // optional arguments. The number of types/arguments is obtained
4546 // from the Sel.getNumArgs().
4547 ObjCArgInfo *ArgInfo, DeclaratorChunk::ParamInfo *CParamInfo,
4548 unsigned CNumArgs, // c-style args
4549 const ParsedAttributesView &AttrList, tok::ObjCKeywordKind MethodDeclKind,
4550 bool isVariadic, bool MethodDefinition) {
4551 // Make sure we can establish a context for the method.
4552 if (!CurContext->isObjCContainer()) {
1
Taking false branch
4553 Diag(MethodLoc, diag::err_missing_method_context);
4554 return nullptr;
4555 }
4556 Decl *ClassDecl = cast<ObjCContainerDecl>(CurContext);
4557 QualType resultDeclType;
4558
4559 bool HasRelatedResultType = false;
4560 TypeSourceInfo *ReturnTInfo = nullptr;
4561 if (ReturnType) {
2
Taking false branch
4562 resultDeclType = GetTypeFromParser(ReturnType, &ReturnTInfo);
4563
4564 if (CheckFunctionReturnType(resultDeclType, MethodLoc))
4565 return nullptr;
4566
4567 QualType bareResultType = resultDeclType;
4568 (void)AttributedType::stripOuterNullability(bareResultType);
4569 HasRelatedResultType = (bareResultType == Context.getObjCInstanceType());
4570 } else { // get the type for "id".
4571 resultDeclType = Context.getObjCIdType();
4572 Diag(MethodLoc, diag::warn_missing_method_return_type)
4573 << FixItHint::CreateInsertion(SelectorLocs.front(), "(id)");
4574 }
4575
4576 ObjCMethodDecl *ObjCMethod = ObjCMethodDecl::Create(
4577 Context, MethodLoc, EndLoc, Sel, resultDeclType, ReturnTInfo, CurContext,
4578 MethodType == tok::minus, isVariadic,
3
Assuming 'MethodType' is not equal to minus
4579 /*isPropertyAccessor=*/false,
4580 /*isImplicitlyDeclared=*/false, /*isDefined=*/false,
4581 MethodDeclKind == tok::objc_optional ? ObjCMethodDecl::Optional
4
Assuming 'MethodDeclKind' is not equal to objc_optional
5
'?' condition is false
4582 : ObjCMethodDecl::Required,
4583 HasRelatedResultType);
4584
4585 SmallVector<ParmVarDecl*, 16> Params;
4586
4587 for (unsigned i = 0, e = Sel.getNumArgs(); i != e; ++i) {
6
Assuming 'i' is equal to 'e'
7
Loop condition is false. Execution continues on line 4640
4588 QualType ArgType;
4589 TypeSourceInfo *DI;
4590
4591 if (!ArgInfo[i].Type) {
4592 ArgType = Context.getObjCIdType();
4593 DI = nullptr;
4594 } else {
4595 ArgType = GetTypeFromParser(ArgInfo[i].Type, &DI);
4596 }
4597
4598 LookupResult R(*this, ArgInfo[i].Name, ArgInfo[i].NameLoc,
4599 LookupOrdinaryName, forRedeclarationInCurContext());
4600 LookupName(R, S);
4601 if (R.isSingleResult()) {
4602 NamedDecl *PrevDecl = R.getFoundDecl();
4603 if (S->isDeclScope(PrevDecl)) {
4604 Diag(ArgInfo[i].NameLoc,
4605 (MethodDefinition ? diag::warn_method_param_redefinition
4606 : diag::warn_method_param_declaration))
4607 << ArgInfo[i].Name;
4608 Diag(PrevDecl->getLocation(),
4609 diag::note_previous_declaration);
4610 }
4611 }
4612
4613 SourceLocation StartLoc = DI
4614 ? DI->getTypeLoc().getBeginLoc()
4615 : ArgInfo[i].NameLoc;
4616
4617 ParmVarDecl* Param = CheckParameter(ObjCMethod, StartLoc,
4618 ArgInfo[i].NameLoc, ArgInfo[i].Name,
4619 ArgType, DI, SC_None);
4620
4621 Param->setObjCMethodScopeInfo(i);
4622
4623 Param->setObjCDeclQualifier(
4624 CvtQTToAstBitMask(ArgInfo[i].DeclSpec.getObjCDeclQualifier()));
4625
4626 // Apply the attributes to the parameter.
4627 ProcessDeclAttributeList(TUScope, Param, ArgInfo[i].ArgAttrs);
4628 AddPragmaAttributes(TUScope, Param);
4629
4630 if (Param->hasAttr<BlocksAttr>()) {
4631 Diag(Param->getLocation(), diag::err_block_on_nonlocal);
4632 Param->setInvalidDecl();
4633 }
4634 S->AddDecl(Param);
4635 IdResolver.AddDecl(Param);
4636
4637 Params.push_back(Param);
4638 }
4639
4640 for (unsigned i = 0, e = CNumArgs; i != e; ++i) {
8
Assuming 'i' is equal to 'e'
9
Loop condition is false. Execution continues on line 4653
4641 ParmVarDecl *Param = cast<ParmVarDecl>(CParamInfo[i].Param);
4642 QualType ArgType = Param->getType();
4643 if (ArgType.isNull())
4644 ArgType = Context.getObjCIdType();
4645 else
4646 // Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
4647 ArgType = Context.getAdjustedParameterType(ArgType);
4648
4649 Param->setDeclContext(ObjCMethod);
4650 Params.push_back(Param);
4651 }
4652
4653 ObjCMethod->setMethodParams(Context, Params, SelectorLocs);
4654 ObjCMethod->setObjCDeclQualifier(
4655 CvtQTToAstBitMask(ReturnQT.getObjCDeclQualifier()));
4656
4657 ProcessDeclAttributeList(TUScope, ObjCMethod, AttrList);
4658 AddPragmaAttributes(TUScope, ObjCMethod);
4659
4660 // Add the method now.
4661 const ObjCMethodDecl *PrevMethod = nullptr;
4662 if (ObjCImplDecl *ImpDecl = dyn_cast<ObjCImplDecl>(ClassDecl)) {
10
Taking true branch
4663 if (MethodType == tok::minus) {
11
Taking false branch
4664 PrevMethod = ImpDecl->getInstanceMethod(Sel);
4665 ImpDecl->addInstanceMethod(ObjCMethod);
4666 } else {
4667 PrevMethod = ImpDecl->getClassMethod(Sel);
4668 ImpDecl->addClassMethod(ObjCMethod);
4669 }
4670
4671 // Merge information from the @interface declaration into the
4672 // @implementation.
4673 if (ObjCInterfaceDecl *IDecl = ImpDecl->getClassInterface()) {
12
Assuming 'IDecl' is non-null
13
Taking true branch
4674 if (auto *IMD = IDecl->lookupMethod(ObjCMethod->getSelector(),
14
Assuming 'IMD' is non-null
15
Taking true branch
4675 ObjCMethod->isInstanceMethod())) {
4676 mergeInterfaceMethodToImpl(*this, ObjCMethod, IMD);
16
Calling 'mergeInterfaceMethodToImpl'
4677
4678 // Warn about defining -dealloc in a category.
4679 if (isa<ObjCCategoryImplDecl>(ImpDecl) && IMD->isOverriding() &&
4680 ObjCMethod->getSelector().getMethodFamily() == OMF_dealloc) {
4681 Diag(ObjCMethod->getLocation(), diag::warn_dealloc_in_category)
4682 << ObjCMethod->getDeclName();
4683 }
4684 }
4685
4686 // Warn if a method declared in a protocol to which a category or
4687 // extension conforms is non-escaping and the implementation's method is
4688 // escaping.
4689 for (auto *C : IDecl->visible_categories())
4690 for (auto &P : C->protocols())
4691 if (auto *IMD = P->lookupMethod(ObjCMethod->getSelector(),
4692 ObjCMethod->isInstanceMethod())) {
4693 assert(ObjCMethod->parameters().size() ==((ObjCMethod->parameters().size() == IMD->parameters().
size() && "Methods have different number of parameters"
) ? static_cast<void> (0) : __assert_fail ("ObjCMethod->parameters().size() == IMD->parameters().size() && \"Methods have different number of parameters\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 4695, __PRETTY_FUNCTION__))
4694 IMD->parameters().size() &&((ObjCMethod->parameters().size() == IMD->parameters().
size() && "Methods have different number of parameters"
) ? static_cast<void> (0) : __assert_fail ("ObjCMethod->parameters().size() == IMD->parameters().size() && \"Methods have different number of parameters\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 4695, __PRETTY_FUNCTION__))
4695 "Methods have different number of parameters")((ObjCMethod->parameters().size() == IMD->parameters().
size() && "Methods have different number of parameters"
) ? static_cast<void> (0) : __assert_fail ("ObjCMethod->parameters().size() == IMD->parameters().size() && \"Methods have different number of parameters\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 4695, __PRETTY_FUNCTION__))
;
4696 auto OI = IMD->param_begin(), OE = IMD->param_end();
4697 auto NI = ObjCMethod->param_begin();
4698 for (; OI != OE; ++OI, ++NI)
4699 diagnoseNoescape(*NI, *OI, C, P, *this);
4700 }
4701 }
4702 } else {
4703 cast<DeclContext>(ClassDecl)->addDecl(ObjCMethod);
4704 }
4705
4706 if (PrevMethod) {
4707 // You can never have two method definitions with the same name.
4708 Diag(ObjCMethod->getLocation(), diag::err_duplicate_method_decl)
4709 << ObjCMethod->getDeclName();
4710 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
4711 ObjCMethod->setInvalidDecl();
4712 return ObjCMethod;
4713 }
4714
4715 // If this Objective-C method does not have a related result type, but we
4716 // are allowed to infer related result types, try to do so based on the
4717 // method family.
4718 ObjCInterfaceDecl *CurrentClass = dyn_cast<ObjCInterfaceDecl>(ClassDecl);
4719 if (!CurrentClass) {
4720 if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(ClassDecl))
4721 CurrentClass = Cat->getClassInterface();
4722 else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(ClassDecl))
4723 CurrentClass = Impl->getClassInterface();
4724 else if (ObjCCategoryImplDecl *CatImpl
4725 = dyn_cast<ObjCCategoryImplDecl>(ClassDecl))
4726 CurrentClass = CatImpl->getClassInterface();
4727 }
4728
4729 ResultTypeCompatibilityKind RTC
4730 = CheckRelatedResultTypeCompatibility(*this, ObjCMethod, CurrentClass);
4731
4732 CheckObjCMethodOverrides(ObjCMethod, CurrentClass, RTC);
4733
4734 bool ARCError = false;
4735 if (getLangOpts().ObjCAutoRefCount)
4736 ARCError = CheckARCMethodDecl(ObjCMethod);
4737
4738 // Infer the related result type when possible.
4739 if (!ARCError && RTC == Sema::RTC_Compatible &&
4740 !ObjCMethod->hasRelatedResultType() &&
4741 LangOpts.ObjCInferRelatedResultType) {
4742 bool InferRelatedResultType = false;
4743 switch (ObjCMethod->getMethodFamily()) {
4744 case OMF_None:
4745 case OMF_copy:
4746 case OMF_dealloc:
4747 case OMF_finalize:
4748 case OMF_mutableCopy:
4749 case OMF_release:
4750 case OMF_retainCount:
4751 case OMF_initialize:
4752 case OMF_performSelector:
4753 break;
4754
4755 case OMF_alloc:
4756 case OMF_new:
4757 InferRelatedResultType = ObjCMethod->isClassMethod();
4758 break;
4759
4760 case OMF_init:
4761 case OMF_autorelease:
4762 case OMF_retain:
4763 case OMF_self:
4764 InferRelatedResultType = ObjCMethod->isInstanceMethod();
4765 break;
4766 }
4767
4768 if (InferRelatedResultType &&
4769 !ObjCMethod->getReturnType()->isObjCIndependentClassType())
4770 ObjCMethod->setRelatedResultType();
4771 }
4772
4773 if (MethodDefinition &&
4774 Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
4775 checkObjCMethodX86VectorTypes(*this, ObjCMethod);
4776
4777 // + load method cannot have availability attributes. It get called on
4778 // startup, so it has to have the availability of the deployment target.
4779 if (const auto *attr = ObjCMethod->getAttr<AvailabilityAttr>()) {
4780 if (ObjCMethod->isClassMethod() &&
4781 ObjCMethod->getSelector().getAsString() == "load") {
4782 Diag(attr->getLocation(), diag::warn_availability_on_static_initializer)
4783 << 0;
4784 ObjCMethod->dropAttr<AvailabilityAttr>();
4785 }
4786 }
4787
4788 ActOnDocumentableDecl(ObjCMethod);
4789
4790 return ObjCMethod;
4791}
4792
4793bool Sema::CheckObjCDeclScope(Decl *D) {
4794 // Following is also an error. But it is caused by a missing @end
4795 // and diagnostic is issued elsewhere.
4796 if (isa<ObjCContainerDecl>(CurContext->getRedeclContext()))
4797 return false;
4798
4799 // If we switched context to translation unit while we are still lexically in
4800 // an objc container, it means the parser missed emitting an error.
4801 if (isa<TranslationUnitDecl>(getCurLexicalContext()->getRedeclContext()))
4802 return false;
4803
4804 Diag(D->getLocation(), diag::err_objc_decls_may_only_appear_in_global_scope);
4805 D->setInvalidDecl();
4806
4807 return true;
4808}
4809
4810/// Called whenever \@defs(ClassName) is encountered in the source. Inserts the
4811/// instance variables of ClassName into Decls.
4812void Sema::ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart,
4813 IdentifierInfo *ClassName,
4814 SmallVectorImpl<Decl*> &Decls) {
4815 // Check that ClassName is a valid class
4816 ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName, DeclStart);
4817 if (!Class) {
4818 Diag(DeclStart, diag::err_undef_interface) << ClassName;
4819 return;
4820 }
4821 if (LangOpts.ObjCRuntime.isNonFragile()) {
4822 Diag(DeclStart, diag::err_atdef_nonfragile_interface);
4823 return;
4824 }
4825
4826 // Collect the instance variables
4827 SmallVector<const ObjCIvarDecl*, 32> Ivars;
4828 Context.DeepCollectObjCIvars(Class, true, Ivars);
4829 // For each ivar, create a fresh ObjCAtDefsFieldDecl.
4830 for (unsigned i = 0; i < Ivars.size(); i++) {
4831 const FieldDecl* ID = Ivars[i];
4832 RecordDecl *Record = dyn_cast<RecordDecl>(TagD);
4833 Decl *FD = ObjCAtDefsFieldDecl::Create(Context, Record,
4834 /*FIXME: StartL=*/ID->getLocation(),
4835 ID->getLocation(),
4836 ID->getIdentifier(), ID->getType(),
4837 ID->getBitWidth());
4838 Decls.push_back(FD);
4839 }
4840
4841 // Introduce all of these fields into the appropriate scope.
4842 for (SmallVectorImpl<Decl*>::iterator D = Decls.begin();
4843 D != Decls.end(); ++D) {
4844 FieldDecl *FD = cast<FieldDecl>(*D);
4845 if (getLangOpts().CPlusPlus)
4846 PushOnScopeChains(FD, S);
4847 else if (RecordDecl *Record = dyn_cast<RecordDecl>(TagD))
4848 Record->addDecl(FD);
4849 }
4850}
4851
4852/// Build a type-check a new Objective-C exception variable declaration.
4853VarDecl *Sema::BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType T,
4854 SourceLocation StartLoc,
4855 SourceLocation IdLoc,
4856 IdentifierInfo *Id,
4857 bool Invalid) {
4858 // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
4859 // duration shall not be qualified by an address-space qualifier."
4860 // Since all parameters have automatic store duration, they can not have
4861 // an address space.
4862 if (T.getAddressSpace() != LangAS::Default) {
4863 Diag(IdLoc, diag::err_arg_with_address_space);
4864 Invalid = true;
4865 }
4866
4867 // An @catch parameter must be an unqualified object pointer type;
4868 // FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"?
4869 if (Invalid) {
4870 // Don't do any further checking.
4871 } else if (T->isDependentType()) {
4872 // Okay: we don't know what this type will instantiate to.
4873 } else if (T->isObjCQualifiedIdType()) {
4874 Invalid = true;
4875 Diag(IdLoc, diag::err_illegal_qualifiers_on_catch_parm);
4876 } else if (T->isObjCIdType()) {
4877 // Okay: we don't know what this type will instantiate to.
4878 } else if (!T->isObjCObjectPointerType()) {
4879 Invalid = true;
4880 Diag(IdLoc, diag::err_catch_param_not_objc_type);
4881 } else if (!T->getAs<ObjCObjectPointerType>()->getInterfaceType()) {
4882 Invalid = true;
4883 Diag(IdLoc, diag::err_catch_param_not_objc_type);
4884 }
4885
4886 VarDecl *New = VarDecl::Create(Context, CurContext, StartLoc, IdLoc, Id,
4887 T, TInfo, SC_None);
4888 New->setExceptionVariable(true);
4889
4890 // In ARC, infer 'retaining' for variables of retainable type.
4891 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(New))
4892 Invalid = true;
4893
4894 if (Invalid)
4895 New->setInvalidDecl();
4896 return New;
4897}
4898
4899Decl *Sema::ActOnObjCExceptionDecl(Scope *S, Declarator &D) {
4900 const DeclSpec &DS = D.getDeclSpec();
4901
4902 // We allow the "register" storage class on exception variables because
4903 // GCC did, but we drop it completely. Any other storage class is an error.
4904 if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
4905 Diag(DS.getStorageClassSpecLoc(), diag::warn_register_objc_catch_parm)
4906 << FixItHint::CreateRemoval(SourceRange(DS.getStorageClassSpecLoc()));
4907 } else if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) {
4908 Diag(DS.getStorageClassSpecLoc(), diag::err_storage_spec_on_catch_parm)
4909 << DeclSpec::getSpecifierName(SCS);
4910 }
4911 if (DS.isInlineSpecified())
4912 Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function)
4913 << getLangOpts().CPlusPlus17;
4914 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
4915 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
4916 diag::err_invalid_thread)
4917 << DeclSpec::getSpecifierName(TSCS);
4918 D.getMutableDeclSpec().ClearStorageClassSpecs();
4919
4920 DiagnoseFunctionSpecifiers(D.getDeclSpec());
4921
4922 // Check that there are no default arguments inside the type of this
4923 // exception object (C++ only).
4924 if (getLangOpts().CPlusPlus)
4925 CheckExtraCXXDefaultArguments(D);
4926
4927 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
4928 QualType ExceptionType = TInfo->getType();
4929
4930 VarDecl *New = BuildObjCExceptionDecl(TInfo, ExceptionType,
4931 D.getSourceRange().getBegin(),
4932 D.getIdentifierLoc(),
4933 D.getIdentifier(),
4934 D.isInvalidType());
4935
4936 // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
4937 if (D.getCXXScopeSpec().isSet()) {
4938 Diag(D.getIdentifierLoc(), diag::err_qualified_objc_catch_parm)
4939 << D.getCXXScopeSpec().getRange();
4940 New->setInvalidDecl();
4941 }
4942
4943 // Add the parameter declaration into this scope.
4944 S->AddDecl(New);
4945 if (D.getIdentifier())
4946 IdResolver.AddDecl(New);
4947
4948 ProcessDeclAttributes(S, New, D);
4949
4950 if (New->hasAttr<BlocksAttr>())
4951 Diag(New->getLocation(), diag::err_block_on_nonlocal);
4952 return New;
4953}
4954
4955/// CollectIvarsToConstructOrDestruct - Collect those ivars which require
4956/// initialization.
4957void Sema::CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI,
4958 SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
4959 for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv;
4960 Iv= Iv->getNextIvar()) {
4961 QualType QT = Context.getBaseElementType(Iv->getType());
4962 if (QT->isRecordType())
4963 Ivars.push_back(Iv);
4964 }
4965}
4966
4967void Sema::DiagnoseUseOfUnimplementedSelectors() {
4968 // Load referenced selectors from the external source.
4969 if (ExternalSource) {
4970 SmallVector<std::pair<Selector, SourceLocation>, 4> Sels;
4971 ExternalSource->ReadReferencedSelectors(Sels);
4972 for (unsigned I = 0, N = Sels.size(); I != N; ++I)
4973 ReferencedSelectors[Sels[I].first] = Sels[I].second;
4974 }
4975
4976 // Warning will be issued only when selector table is
4977 // generated (which means there is at lease one implementation
4978 // in the TU). This is to match gcc's behavior.
4979 if (ReferencedSelectors.empty() ||
4980 !Context.AnyObjCImplementation())
4981 return;
4982 for (auto &SelectorAndLocation : ReferencedSelectors) {
4983 Selector Sel = SelectorAndLocation.first;
4984 SourceLocation Loc = SelectorAndLocation.second;
4985 if (!LookupImplementedMethodInGlobalPool(Sel))
4986 Diag(Loc, diag::warn_unimplemented_selector) << Sel;
4987 }
4988}
4989
4990ObjCIvarDecl *
4991Sema::GetIvarBackingPropertyAccessor(const ObjCMethodDecl *Method,
4992 const ObjCPropertyDecl *&PDecl) const {
4993 if (Method->isClassMethod())
4994 return nullptr;
4995 const ObjCInterfaceDecl *IDecl = Method->getClassInterface();
4996 if (!IDecl)
4997 return nullptr;
4998 Method = IDecl->lookupMethod(Method->getSelector(), /*isInstance=*/true,
4999 /*shallowCategoryLookup=*/false,
5000 /*followSuper=*/false);
5001 if (!Method || !Method->isPropertyAccessor())
5002 return nullptr;
5003 if ((PDecl = Method->findPropertyDecl()))
5004 if (ObjCIvarDecl *IV = PDecl->getPropertyIvarDecl()) {
5005 // property backing ivar must belong to property's class
5006 // or be a private ivar in class's implementation.
5007 // FIXME. fix the const-ness issue.
5008 IV = const_cast<ObjCInterfaceDecl *>(IDecl)->lookupInstanceVariable(
5009 IV->getIdentifier());
5010 return IV;
5011 }
5012 return nullptr;
5013}
5014
5015namespace {
5016 /// Used by Sema::DiagnoseUnusedBackingIvarInAccessor to check if a property
5017 /// accessor references the backing ivar.
5018 class UnusedBackingIvarChecker :
5019 public RecursiveASTVisitor<UnusedBackingIvarChecker> {
5020 public:
5021 Sema &S;
5022 const ObjCMethodDecl *Method;
5023 const ObjCIvarDecl *IvarD;
5024 bool AccessedIvar;
5025 bool InvokedSelfMethod;
5026
5027 UnusedBackingIvarChecker(Sema &S, const ObjCMethodDecl *Method,
5028 const ObjCIvarDecl *IvarD)
5029 : S(S), Method(Method), IvarD(IvarD),
5030 AccessedIvar(false), InvokedSelfMethod(false) {
5031 assert(IvarD)((IvarD) ? static_cast<void> (0) : __assert_fail ("IvarD"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 5031, __PRETTY_FUNCTION__))
;
5032 }
5033
5034 bool VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
5035 if (E->getDecl() == IvarD) {
5036 AccessedIvar = true;
5037 return false;
5038 }
5039 return true;
5040 }
5041
5042 bool VisitObjCMessageExpr(ObjCMessageExpr *E) {
5043 if (E->getReceiverKind() == ObjCMessageExpr::Instance &&
5044 S.isSelfExpr(E->getInstanceReceiver(), Method)) {
5045 InvokedSelfMethod = true;
5046 }
5047 return true;
5048 }
5049 };
5050} // end anonymous namespace
5051
5052void Sema::DiagnoseUnusedBackingIvarInAccessor(Scope *S,
5053 const ObjCImplementationDecl *ImplD) {
5054 if (S->hasUnrecoverableErrorOccurred())
5055 return;
5056
5057 for (const auto *CurMethod : ImplD->instance_methods()) {
5058 unsigned DIAG = diag::warn_unused_property_backing_ivar;
5059 SourceLocation Loc = CurMethod->getLocation();
5060 if (Diags.isIgnored(DIAG, Loc))
5061 continue;
5062
5063 const ObjCPropertyDecl *PDecl;
5064 const ObjCIvarDecl *IV = GetIvarBackingPropertyAccessor(CurMethod, PDecl);
5065 if (!IV)
5066 continue;
5067
5068 UnusedBackingIvarChecker Checker(*this, CurMethod, IV);
5069 Checker.TraverseStmt(CurMethod->getBody());
5070 if (Checker.AccessedIvar)
5071 continue;
5072
5073 // Do not issue this warning if backing ivar is used somewhere and accessor
5074 // implementation makes a self call. This is to prevent false positive in
5075 // cases where the ivar is accessed by another method that the accessor
5076 // delegates to.
5077 if (!IV->isReferenced() || !Checker.InvokedSelfMethod) {
5078 Diag(Loc, DIAG) << IV;
5079 Diag(PDecl->getLocation(), diag::note_property_declare);
5080 }
5081 }
5082}

/build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/include/clang/AST/Attrs.inc

1/*===- TableGen'erated file -------------------------------------*- C++ -*-===*\
2|* *|
3|* Attribute classes' definitions *|
4|* *|
5|* Automatically generated file, do not edit! *|
6|* *|
7\*===----------------------------------------------------------------------===*/
8
9#ifndef LLVM_CLANG_ATTR_CLASSES_INC
10#define LLVM_CLANG_ATTR_CLASSES_INC
11
12class AArch64VectorPcsAttr : public InheritableAttr {
13public:
14 static AArch64VectorPcsAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
15 auto *A = new (Ctx) AArch64VectorPcsAttr(Loc, Ctx, 0);
16 A->setImplicit(true);
17 return A;
18 }
19
20 AArch64VectorPcsAttr(SourceRange R, ASTContext &Ctx
21 , unsigned SI
22 )
23 : InheritableAttr(attr::AArch64VectorPcs, R, SI, false, false)
24 {
25 }
26
27 AArch64VectorPcsAttr *clone(ASTContext &C) const;
28 void printPretty(raw_ostream &OS,
29 const PrintingPolicy &Policy) const;
30 const char *getSpelling() const;
31
32
33 static bool classof(const Attr *A) { return A->getKind() == attr::AArch64VectorPcs; }
34};
35
36class AMDGPUFlatWorkGroupSizeAttr : public InheritableAttr {
37Expr * min;
38
39Expr * max;
40
41public:
42 static AMDGPUFlatWorkGroupSizeAttr *CreateImplicit(ASTContext &Ctx, Expr * Min, Expr * Max, SourceRange Loc = SourceRange()) {
43 auto *A = new (Ctx) AMDGPUFlatWorkGroupSizeAttr(Loc, Ctx, Min, Max, 0);
44 A->setImplicit(true);
45 return A;
46 }
47
48 AMDGPUFlatWorkGroupSizeAttr(SourceRange R, ASTContext &Ctx
49 , Expr * Min
50 , Expr * Max
51 , unsigned SI
52 )
53 : InheritableAttr(attr::AMDGPUFlatWorkGroupSize, R, SI, false, false)
54 , min(Min)
55 , max(Max)
56 {
57 }
58
59 AMDGPUFlatWorkGroupSizeAttr *clone(ASTContext &C) const;
60 void printPretty(raw_ostream &OS,
61 const PrintingPolicy &Policy) const;
62 const char *getSpelling() const;
63 Expr * getMin() const {
64 return min;
65 }
66
67 Expr * getMax() const {
68 return max;
69 }
70
71
72
73 static bool classof(const Attr *A) { return A->getKind() == attr::AMDGPUFlatWorkGroupSize; }
74};
75
76class AMDGPUNumSGPRAttr : public InheritableAttr {
77unsigned numSGPR;
78
79public:
80 static AMDGPUNumSGPRAttr *CreateImplicit(ASTContext &Ctx, unsigned NumSGPR, SourceRange Loc = SourceRange()) {
81 auto *A = new (Ctx) AMDGPUNumSGPRAttr(Loc, Ctx, NumSGPR, 0);
82 A->setImplicit(true);
83 return A;
84 }
85
86 AMDGPUNumSGPRAttr(SourceRange R, ASTContext &Ctx
87 , unsigned NumSGPR
88 , unsigned SI
89 )
90 : InheritableAttr(attr::AMDGPUNumSGPR, R, SI, false, false)
91 , numSGPR(NumSGPR)
92 {
93 }
94
95 AMDGPUNumSGPRAttr *clone(ASTContext &C) const;
96 void printPretty(raw_ostream &OS,
97 const PrintingPolicy &Policy) const;
98 const char *getSpelling() const;
99 unsigned getNumSGPR() const {
100 return numSGPR;
101 }
102
103
104
105 static bool classof(const Attr *A) { return A->getKind() == attr::AMDGPUNumSGPR; }
106};
107
108class AMDGPUNumVGPRAttr : public InheritableAttr {
109unsigned numVGPR;
110
111public:
112 static AMDGPUNumVGPRAttr *CreateImplicit(ASTContext &Ctx, unsigned NumVGPR, SourceRange Loc = SourceRange()) {
113 auto *A = new (Ctx) AMDGPUNumVGPRAttr(Loc, Ctx, NumVGPR, 0);
114 A->setImplicit(true);
115 return A;
116 }
117
118 AMDGPUNumVGPRAttr(SourceRange R, ASTContext &Ctx
119 , unsigned NumVGPR
120 , unsigned SI
121 )
122 : InheritableAttr(attr::AMDGPUNumVGPR, R, SI, false, false)
123 , numVGPR(NumVGPR)
124 {
125 }
126
127 AMDGPUNumVGPRAttr *clone(ASTContext &C) const;
128 void printPretty(raw_ostream &OS,
129 const PrintingPolicy &Policy) const;
130 const char *getSpelling() const;
131 unsigned getNumVGPR() const {
132 return numVGPR;
133 }
134
135
136
137 static bool classof(const Attr *A) { return A->getKind() == attr::AMDGPUNumVGPR; }
138};
139
140class AMDGPUWavesPerEUAttr : public InheritableAttr {
141Expr * min;
142
143Expr * max;
144
145public:
146 static AMDGPUWavesPerEUAttr *CreateImplicit(ASTContext &Ctx, Expr * Min, Expr * Max, SourceRange Loc = SourceRange()) {
147 auto *A = new (Ctx) AMDGPUWavesPerEUAttr(Loc, Ctx, Min, Max, 0);
148 A->setImplicit(true);
149 return A;
150 }
151
152 AMDGPUWavesPerEUAttr(SourceRange R, ASTContext &Ctx
153 , Expr * Min
154 , Expr * Max
155 , unsigned SI
156 )
157 : InheritableAttr(attr::AMDGPUWavesPerEU, R, SI, false, false)
158 , min(Min)
159 , max(Max)
160 {
161 }
162
163 AMDGPUWavesPerEUAttr(SourceRange R, ASTContext &Ctx
164 , Expr * Min
165 , unsigned SI
166 )
167 : InheritableAttr(attr::AMDGPUWavesPerEU, R, SI, false, false)
168 , min(Min)
169 , max()
170 {
171 }
172
173 AMDGPUWavesPerEUAttr *clone(ASTContext &C) const;
174 void printPretty(raw_ostream &OS,
175 const PrintingPolicy &Policy) const;
176 const char *getSpelling() const;
177 Expr * getMin() const {
178 return min;
179 }
180
181 Expr * getMax() const {
182 return max;
183 }
184
185
186
187 static bool classof(const Attr *A) { return A->getKind() == attr::AMDGPUWavesPerEU; }
188};
189
190class ARMInterruptAttr : public InheritableAttr {
191public:
192 enum InterruptType {
193 IRQ,
194 FIQ,
195 SWI,
196 ABORT,
197 UNDEF,
198 Generic
199 };
200private:
201 InterruptType interrupt;
202
203public:
204 static ARMInterruptAttr *CreateImplicit(ASTContext &Ctx, InterruptType Interrupt, SourceRange Loc = SourceRange()) {
205 auto *A = new (Ctx) ARMInterruptAttr(Loc, Ctx, Interrupt, 0);
206 A->setImplicit(true);
207 return A;
208 }
209
210 ARMInterruptAttr(SourceRange R, ASTContext &Ctx
211 , InterruptType Interrupt
212 , unsigned SI
213 )
214 : InheritableAttr(attr::ARMInterrupt, R, SI, false, false)
215 , interrupt(Interrupt)
216 {
217 }
218
219 ARMInterruptAttr(SourceRange R, ASTContext &Ctx
220 , unsigned SI
221 )
222 : InheritableAttr(attr::ARMInterrupt, R, SI, false, false)
223 , interrupt(InterruptType(0))
224 {
225 }
226
227 ARMInterruptAttr *clone(ASTContext &C) const;
228 void printPretty(raw_ostream &OS,
229 const PrintingPolicy &Policy) const;
230 const char *getSpelling() const;
231 InterruptType getInterrupt() const {
232 return interrupt;
233 }
234
235 static bool ConvertStrToInterruptType(StringRef Val, InterruptType &Out) {
236 Optional<InterruptType> R = llvm::StringSwitch<Optional<InterruptType>>(Val)
237 .Case("IRQ", ARMInterruptAttr::IRQ)
238 .Case("FIQ", ARMInterruptAttr::FIQ)
239 .Case("SWI", ARMInterruptAttr::SWI)
240 .Case("ABORT", ARMInterruptAttr::ABORT)
241 .Case("UNDEF", ARMInterruptAttr::UNDEF)
242 .Case("", ARMInterruptAttr::Generic)
243 .Default(Optional<InterruptType>());
244 if (R) {
245 Out = *R;
246 return true;
247 }
248 return false;
249 }
250
251 static const char *ConvertInterruptTypeToStr(InterruptType Val) {
252 switch(Val) {
253 case ARMInterruptAttr::IRQ: return "IRQ";
254 case ARMInterruptAttr::FIQ: return "FIQ";
255 case ARMInterruptAttr::SWI: return "SWI";
256 case ARMInterruptAttr::ABORT: return "ABORT";
257 case ARMInterruptAttr::UNDEF: return "UNDEF";
258 case ARMInterruptAttr::Generic: return "";
259 }
260 llvm_unreachable("No enumerator with that value")::llvm::llvm_unreachable_internal("No enumerator with that value"
, "/build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 260)
;
261 }
262
263
264 static bool classof(const Attr *A) { return A->getKind() == attr::ARMInterrupt; }
265};
266
267class AVRInterruptAttr : public InheritableAttr {
268public:
269 static AVRInterruptAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
270 auto *A = new (Ctx) AVRInterruptAttr(Loc, Ctx, 0);
271 A->setImplicit(true);
272 return A;
273 }
274
275 AVRInterruptAttr(SourceRange R, ASTContext &Ctx
276 , unsigned SI
277 )
278 : InheritableAttr(attr::AVRInterrupt, R, SI, false, false)
279 {
280 }
281
282 AVRInterruptAttr *clone(ASTContext &C) const;
283 void printPretty(raw_ostream &OS,
284 const PrintingPolicy &Policy) const;
285 const char *getSpelling() const;
286
287
288 static bool classof(const Attr *A) { return A->getKind() == attr::AVRInterrupt; }
289};
290
291class AVRSignalAttr : public InheritableAttr {
292public:
293 static AVRSignalAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
294 auto *A = new (Ctx) AVRSignalAttr(Loc, Ctx, 0);
295 A->setImplicit(true);
296 return A;
297 }
298
299 AVRSignalAttr(SourceRange R, ASTContext &Ctx
300 , unsigned SI
301 )
302 : InheritableAttr(attr::AVRSignal, R, SI, false, false)
303 {
304 }
305
306 AVRSignalAttr *clone(ASTContext &C) const;
307 void printPretty(raw_ostream &OS,
308 const PrintingPolicy &Policy) const;
309 const char *getSpelling() const;
310
311
312 static bool classof(const Attr *A) { return A->getKind() == attr::AVRSignal; }
313};
314
315class AbiTagAttr : public Attr {
316 unsigned tags_Size;
317 StringRef *tags_;
318
319public:
320 static AbiTagAttr *CreateImplicit(ASTContext &Ctx, StringRef *Tags, unsigned TagsSize, SourceRange Loc = SourceRange()) {
321 auto *A = new (Ctx) AbiTagAttr(Loc, Ctx, Tags, TagsSize, 0);
322 A->setImplicit(true);
323 return A;
324 }
325
326 AbiTagAttr(SourceRange R, ASTContext &Ctx
327 , StringRef *Tags, unsigned TagsSize
328 , unsigned SI
329 )
330 : Attr(attr::AbiTag, R, SI, false)
331 , tags_Size(TagsSize), tags_(new (Ctx, 16) StringRef[tags_Size])
332 {
333 for (size_t I = 0, E = tags_Size; I != E;
334 ++I) {
335 StringRef Ref = Tags[I];
336 if (!Ref.empty()) {
337 char *Mem = new (Ctx, 1) char[Ref.size()];
338 std::memcpy(Mem, Ref.data(), Ref.size());
339 tags_[I] = StringRef(Mem, Ref.size());
340 }
341 }
342 }
343
344 AbiTagAttr(SourceRange R, ASTContext &Ctx
345 , unsigned SI
346 )
347 : Attr(attr::AbiTag, R, SI, false)
348 , tags_Size(0), tags_(nullptr)
349 {
350 }
351
352 AbiTagAttr *clone(ASTContext &C) const;
353 void printPretty(raw_ostream &OS,
354 const PrintingPolicy &Policy) const;
355 const char *getSpelling() const;
356 typedef StringRef* tags_iterator;
357 tags_iterator tags_begin() const { return tags_; }
358 tags_iterator tags_end() const { return tags_ + tags_Size; }
359 unsigned tags_size() const { return tags_Size; }
360 llvm::iterator_range<tags_iterator> tags() const { return llvm::make_range(tags_begin(), tags_end()); }
361
362
363
364
365 static bool classof(const Attr *A) { return A->getKind() == attr::AbiTag; }
366};
367
368class AcquireCapabilityAttr : public InheritableAttr {
369 unsigned args_Size;
370 Expr * *args_;
371
372public:
373 enum Spelling {
374 GNU_acquire_capability = 0,
375 CXX11_clang_acquire_capability = 1,
376 GNU_acquire_shared_capability = 2,
377 CXX11_clang_acquire_shared_capability = 3,
378 GNU_exclusive_lock_function = 4,
379 GNU_shared_lock_function = 5
380 };
381
382 static AcquireCapabilityAttr *CreateImplicit(ASTContext &Ctx, Spelling S, Expr * *Args, unsigned ArgsSize, SourceRange Loc = SourceRange()) {
383 auto *A = new (Ctx) AcquireCapabilityAttr(Loc, Ctx, Args, ArgsSize, S);
384 A->setImplicit(true);
385 return A;
386 }
387
388 AcquireCapabilityAttr(SourceRange R, ASTContext &Ctx
389 , Expr * *Args, unsigned ArgsSize
390 , unsigned SI
391 )
392 : InheritableAttr(attr::AcquireCapability, R, SI, true, true)
393 , args_Size(ArgsSize), args_(new (Ctx, 16) Expr *[args_Size])
394 {
395 std::copy(Args, Args + args_Size, args_);
396 }
397
398 AcquireCapabilityAttr(SourceRange R, ASTContext &Ctx
399 , unsigned SI
400 )
401 : InheritableAttr(attr::AcquireCapability, R, SI, true, true)
402 , args_Size(0), args_(nullptr)
403 {
404 }
405
406 AcquireCapabilityAttr *clone(ASTContext &C) const;
407 void printPretty(raw_ostream &OS,
408 const PrintingPolicy &Policy) const;
409 const char *getSpelling() const;
410 Spelling getSemanticSpelling() const {
411 switch (SpellingListIndex) {
412 default: llvm_unreachable("Unknown spelling list index")::llvm::llvm_unreachable_internal("Unknown spelling list index"
, "/build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 412)
;
413 case 0: return GNU_acquire_capability;
414 case 1: return CXX11_clang_acquire_capability;
415 case 2: return GNU_acquire_shared_capability;
416 case 3: return CXX11_clang_acquire_shared_capability;
417 case 4: return GNU_exclusive_lock_function;
418 case 5: return GNU_shared_lock_function;
419 }
420 }
421 bool isShared() const { return SpellingListIndex == 2 ||
422 SpellingListIndex == 3 ||
423 SpellingListIndex == 5; }
424 typedef Expr ** args_iterator;
425 args_iterator args_begin() const { return args_; }
426 args_iterator args_end() const { return args_ + args_Size; }
427 unsigned args_size() const { return args_Size; }
428 llvm::iterator_range<args_iterator> args() const { return llvm::make_range(args_begin(), args_end()); }
429
430
431
432
433 static bool classof(const Attr *A) { return A->getKind() == attr::AcquireCapability; }
434};
435
436class AcquiredAfterAttr : public InheritableAttr {
437 unsigned args_Size;
438 Expr * *args_;
439
440public:
441 static AcquiredAfterAttr *CreateImplicit(ASTContext &Ctx, Expr * *Args, unsigned ArgsSize, SourceRange Loc = SourceRange()) {
442 auto *A = new (Ctx) AcquiredAfterAttr(Loc, Ctx, Args, ArgsSize, 0);
443 A->setImplicit(true);
444 return A;
445 }
446
447 AcquiredAfterAttr(SourceRange R, ASTContext &Ctx
448 , Expr * *Args, unsigned ArgsSize
449 , unsigned SI
450 )
451 : InheritableAttr(attr::AcquiredAfter, R, SI, true, true)
452 , args_Size(ArgsSize), args_(new (Ctx, 16) Expr *[args_Size])
453 {
454 std::copy(Args, Args + args_Size, args_);
455 }
456
457 AcquiredAfterAttr(SourceRange R, ASTContext &Ctx
458 , unsigned SI
459 )
460 : InheritableAttr(attr::AcquiredAfter, R, SI, true, true)
461 , args_Size(0), args_(nullptr)
462 {
463 }
464
465 AcquiredAfterAttr *clone(ASTContext &C) const;
466 void printPretty(raw_ostream &OS,
467 const PrintingPolicy &Policy) const;
468 const char *getSpelling() const;
469 typedef Expr ** args_iterator;
470 args_iterator args_begin() const { return args_; }
471 args_iterator args_end() const { return args_ + args_Size; }
472 unsigned args_size() const { return args_Size; }
473 llvm::iterator_range<args_iterator> args() const { return llvm::make_range(args_begin(), args_end()); }
474
475
476
477
478 static bool classof(const Attr *A) { return A->getKind() == attr::AcquiredAfter; }
479};
480
481class AcquiredBeforeAttr : public InheritableAttr {
482 unsigned args_Size;
483 Expr * *args_;
484
485public:
486 static AcquiredBeforeAttr *CreateImplicit(ASTContext &Ctx, Expr * *Args, unsigned ArgsSize, SourceRange Loc = SourceRange()) {
487 auto *A = new (Ctx) AcquiredBeforeAttr(Loc, Ctx, Args, ArgsSize, 0);
488 A->setImplicit(true);
489 return A;
490 }
491
492 AcquiredBeforeAttr(SourceRange R, ASTContext &Ctx
493 , Expr * *Args, unsigned ArgsSize
494 , unsigned SI
495 )
496 : InheritableAttr(attr::AcquiredBefore, R, SI, true, true)
497 , args_Size(ArgsSize), args_(new (Ctx, 16) Expr *[args_Size])
498 {
499 std::copy(Args, Args + args_Size, args_);
500 }
501
502 AcquiredBeforeAttr(SourceRange R, ASTContext &Ctx
503 , unsigned SI
504 )
505 : InheritableAttr(attr::AcquiredBefore, R, SI, true, true)
506 , args_Size(0), args_(nullptr)
507 {
508 }
509
510 AcquiredBeforeAttr *clone(ASTContext &C) const;
511 void printPretty(raw_ostream &OS,
512 const PrintingPolicy &Policy) const;
513 const char *getSpelling() const;
514 typedef Expr ** args_iterator;
515 args_iterator args_begin() const { return args_; }
516 args_iterator args_end() const { return args_ + args_Size; }
517 unsigned args_size() const { return args_Size; }
518 llvm::iterator_range<args_iterator> args() const { return llvm::make_range(args_begin(), args_end()); }
519
520
521
522
523 static bool classof(const Attr *A) { return A->getKind() == attr::AcquiredBefore; }
524};
525
526class AddressSpaceAttr : public TypeAttr {
527int addressSpace;
528
529public:
530 static AddressSpaceAttr *CreateImplicit(ASTContext &Ctx, int AddressSpace, SourceRange Loc = SourceRange()) {
531 auto *A = new (Ctx) AddressSpaceAttr(Loc, Ctx, AddressSpace, 0);
532 A->setImplicit(true);
533 return A;
534 }
535
536 AddressSpaceAttr(SourceRange R, ASTContext &Ctx
537 , int AddressSpace
538 , unsigned SI
539 )
540 : TypeAttr(attr::AddressSpace, R, SI, false)
541 , addressSpace(AddressSpace)
542 {
543 }
544
545 AddressSpaceAttr *clone(ASTContext &C) const;
546 void printPretty(raw_ostream &OS,
547 const PrintingPolicy &Policy) const;
548 const char *getSpelling() const;
549 int getAddressSpace() const {
550 return addressSpace;
551 }
552
553
554
555 static bool classof(const Attr *A) { return A->getKind() == attr::AddressSpace; }
556};
557
558class AliasAttr : public Attr {
559unsigned aliaseeLength;
560char *aliasee;
561
562public:
563 static AliasAttr *CreateImplicit(ASTContext &Ctx, llvm::StringRef Aliasee, SourceRange Loc = SourceRange()) {
564 auto *A = new (Ctx) AliasAttr(Loc, Ctx, Aliasee, 0);
565 A->setImplicit(true);
566 return A;
567 }
568
569 AliasAttr(SourceRange R, ASTContext &Ctx
570 , llvm::StringRef Aliasee
571 , unsigned SI
572 )
573 : Attr(attr::Alias, R, SI, false)
574 , aliaseeLength(Aliasee.size()),aliasee(new (Ctx, 1) char[aliaseeLength])
575 {
576 if (!Aliasee.empty())
577 std::memcpy(aliasee, Aliasee.data(), aliaseeLength);
578 }
579
580 AliasAttr *clone(ASTContext &C) const;
581 void printPretty(raw_ostream &OS,
582 const PrintingPolicy &Policy) const;
583 const char *getSpelling() const;
584 llvm::StringRef getAliasee() const {
585 return llvm::StringRef(aliasee, aliaseeLength);
586 }
587 unsigned getAliaseeLength() const {
588 return aliaseeLength;
589 }
590 void setAliasee(ASTContext &C, llvm::StringRef S) {
591 aliaseeLength = S.size();
592 this->aliasee = new (C, 1) char [aliaseeLength];
593 if (!S.empty())
594 std::memcpy(this->aliasee, S.data(), aliaseeLength);
595 }
596
597
598
599 static bool classof(const Attr *A) { return A->getKind() == attr::Alias; }
600};
601
602class AlignMac68kAttr : public InheritableAttr {
603public:
604 static AlignMac68kAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
605 auto *A = new (Ctx) AlignMac68kAttr(Loc, Ctx, 0);
606 A->setImplicit(true);
607 return A;
608 }
609
610 AlignMac68kAttr(SourceRange R, ASTContext &Ctx
611 , unsigned SI
612 )
613 : InheritableAttr(attr::AlignMac68k, R, SI, false, false)
614 {
615 }
616
617 AlignMac68kAttr *clone(ASTContext &C) const;
618 void printPretty(raw_ostream &OS,
619 const PrintingPolicy &Policy) const;
620 const char *getSpelling() const;
621
622
623 static bool classof(const Attr *A) { return A->getKind() == attr::AlignMac68k; }
624};
625
626class AlignValueAttr : public Attr {
627Expr * alignment;
628
629public:
630 static AlignValueAttr *CreateImplicit(ASTContext &Ctx, Expr * Alignment, SourceRange Loc = SourceRange()) {
631 auto *A = new (Ctx) AlignValueAttr(Loc, Ctx, Alignment, 0);
632 A->setImplicit(true);
633 return A;
634 }
635
636 AlignValueAttr(SourceRange R, ASTContext &Ctx
637 , Expr * Alignment
638 , unsigned SI
639 )
640 : Attr(attr::AlignValue, R, SI, false)
641 , alignment(Alignment)
642 {
643 }
644
645 AlignValueAttr *clone(ASTContext &C) const;
646 void printPretty(raw_ostream &OS,
647 const PrintingPolicy &Policy) const;
648 const char *getSpelling() const;
649 Expr * getAlignment() const {
650 return alignment;
651 }
652
653
654
655 static bool classof(const Attr *A) { return A->getKind() == attr::AlignValue; }
656};
657
658class AlignedAttr : public InheritableAttr {
659bool isalignmentExpr;
660union {
661Expr *alignmentExpr;
662TypeSourceInfo *alignmentType;
663};
664
665public:
666 enum Spelling {
667 GNU_aligned = 0,
668 CXX11_gnu_aligned = 1,
669 Declspec_align = 2,
670 Keyword_alignas = 3,
671 Keyword_Alignas = 4
672 };
673
674 static AlignedAttr *CreateImplicit(ASTContext &Ctx, Spelling S, bool IsAlignmentExpr, void *Alignment, SourceRange Loc = SourceRange()) {
675 auto *A = new (Ctx) AlignedAttr(Loc, Ctx, IsAlignmentExpr, Alignment, S);
676 A->setImplicit(true);
677 return A;
678 }
679
680 AlignedAttr(SourceRange R, ASTContext &Ctx
681 , bool IsAlignmentExpr, void *Alignment
682 , unsigned SI
683 )
684 : InheritableAttr(attr::Aligned, R, SI, false, false)
685 , isalignmentExpr(IsAlignmentExpr)
686 {
687 if (isalignmentExpr)
688 alignmentExpr = reinterpret_cast<Expr *>(Alignment);
689 else
690 alignmentType = reinterpret_cast<TypeSourceInfo *>(Alignment);
691 }
692
693 AlignedAttr(SourceRange R, ASTContext &Ctx
694 , unsigned SI
695 )
696 : InheritableAttr(attr::Aligned, R, SI, false, false)
697 , isalignmentExpr(false)
698 {
699 }
700
701 AlignedAttr *clone(ASTContext &C) const;
702 void printPretty(raw_ostream &OS,
703 const PrintingPolicy &Policy) const;
704 const char *getSpelling() const;
705 Spelling getSemanticSpelling() const {
706 switch (SpellingListIndex) {
707 default: llvm_unreachable("Unknown spelling list index")::llvm::llvm_unreachable_internal("Unknown spelling list index"
, "/build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 707)
;
708 case 0: return GNU_aligned;
709 case 1: return CXX11_gnu_aligned;
710 case 2: return Declspec_align;
711 case 3: return Keyword_alignas;
712 case 4: return Keyword_Alignas;
713 }
714 }
715 bool isGNU() const { return SpellingListIndex == 0 ||
716 SpellingListIndex == 1; }
717 bool isC11() const { return SpellingListIndex == 4; }
718 bool isAlignas() const { return SpellingListIndex == 3 ||
719 SpellingListIndex == 4; }
720 bool isDeclspec() const { return SpellingListIndex == 2; }
721 bool isAlignmentDependent() const;
722 unsigned getAlignment(ASTContext &Ctx) const;
723 bool isAlignmentExpr() const {
724 return isalignmentExpr;
725 }
726 Expr *getAlignmentExpr() const {
727 assert(isalignmentExpr)((isalignmentExpr) ? static_cast<void> (0) : __assert_fail
("isalignmentExpr", "/build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 727, __PRETTY_FUNCTION__))
;
728 return alignmentExpr;
729 }
730 TypeSourceInfo *getAlignmentType() const {
731 assert(!isalignmentExpr)((!isalignmentExpr) ? static_cast<void> (0) : __assert_fail
("!isalignmentExpr", "/build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 731, __PRETTY_FUNCTION__))
;
732 return alignmentType;
733 }
734
735
736
737 static bool classof(const Attr *A) { return A->getKind() == attr::Aligned; }
738};
739
740class AllocAlignAttr : public InheritableAttr {
741ParamIdx paramIndex;
742
743public:
744 static AllocAlignAttr *CreateImplicit(ASTContext &Ctx, ParamIdx ParamIndex, SourceRange Loc = SourceRange()) {
745 auto *A = new (Ctx) AllocAlignAttr(Loc, Ctx, ParamIndex, 0);
746 A->setImplicit(true);
747 return A;
748 }
749
750 AllocAlignAttr(SourceRange R, ASTContext &Ctx
751 , ParamIdx ParamIndex
752 , unsigned SI
753 )
754 : InheritableAttr(attr::AllocAlign, R, SI, false, false)
755 , paramIndex(ParamIndex)
756 {
757 }
758
759 AllocAlignAttr *clone(ASTContext &C) const;
760 void printPretty(raw_ostream &OS,
761 const PrintingPolicy &Policy) const;
762 const char *getSpelling() const;
763 ParamIdx getParamIndex() const {
764 return paramIndex;
765 }
766
767
768
769 static bool classof(const Attr *A) { return A->getKind() == attr::AllocAlign; }
770};
771
772class AllocSizeAttr : public InheritableAttr {
773ParamIdx elemSizeParam;
774
775ParamIdx numElemsParam;
776
777public:
778 static AllocSizeAttr *CreateImplicit(ASTContext &Ctx, ParamIdx ElemSizeParam, ParamIdx NumElemsParam, SourceRange Loc = SourceRange()) {
779 auto *A = new (Ctx) AllocSizeAttr(Loc, Ctx, ElemSizeParam, NumElemsParam, 0);
780 A->setImplicit(true);
781 return A;
782 }
783
784 AllocSizeAttr(SourceRange R, ASTContext &Ctx
785 , ParamIdx ElemSizeParam
786 , ParamIdx NumElemsParam
787 , unsigned SI
788 )
789 : InheritableAttr(attr::AllocSize, R, SI, false, false)
790 , elemSizeParam(ElemSizeParam)
791 , numElemsParam(NumElemsParam)
792 {
793 }
794
795 AllocSizeAttr(SourceRange R, ASTContext &Ctx
796 , ParamIdx ElemSizeParam
797 , unsigned SI
798 )
799 : InheritableAttr(attr::AllocSize, R, SI, false, false)
800 , elemSizeParam(ElemSizeParam)
801 , numElemsParam()
802 {
803 }
804
805 AllocSizeAttr *clone(ASTContext &C) const;
806 void printPretty(raw_ostream &OS,
807 const PrintingPolicy &Policy) const;
808 const char *getSpelling() const;
809 ParamIdx getElemSizeParam() const {
810 return elemSizeParam;
811 }
812
813 ParamIdx getNumElemsParam() const {
814 return numElemsParam;
815 }
816
817
818
819 static bool classof(const Attr *A) { return A->getKind() == attr::AllocSize; }
820};
821
822class AlwaysDestroyAttr : public InheritableAttr {
823public:
824 static AlwaysDestroyAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
825 auto *A = new (Ctx) AlwaysDestroyAttr(Loc, Ctx, 0);
826 A->setImplicit(true);
827 return A;
828 }
829
830 AlwaysDestroyAttr(SourceRange R, ASTContext &Ctx
831 , unsigned SI
832 )
833 : InheritableAttr(attr::AlwaysDestroy, R, SI, false, false)
834 {
835 }
836
837 AlwaysDestroyAttr *clone(ASTContext &C) const;
838 void printPretty(raw_ostream &OS,
839 const PrintingPolicy &Policy) const;
840 const char *getSpelling() const;
841
842
843 static bool classof(const Attr *A) { return A->getKind() == attr::AlwaysDestroy; }
844};
845
846class AlwaysInlineAttr : public InheritableAttr {
847public:
848 enum Spelling {
849 GNU_always_inline = 0,
850 CXX11_gnu_always_inline = 1,
851 Keyword_forceinline = 2
852 };
853
854 static AlwaysInlineAttr *CreateImplicit(ASTContext &Ctx, Spelling S, SourceRange Loc = SourceRange()) {
855 auto *A = new (Ctx) AlwaysInlineAttr(Loc, Ctx, S);
856 A->setImplicit(true);
857 return A;
858 }
859
860 AlwaysInlineAttr(SourceRange R, ASTContext &Ctx
861 , unsigned SI
862 )
863 : InheritableAttr(attr::AlwaysInline, R, SI, false, false)
864 {
865 }
866
867 AlwaysInlineAttr *clone(ASTContext &C) const;
868 void printPretty(raw_ostream &OS,
869 const PrintingPolicy &Policy) const;
870 const char *getSpelling() const;
871 Spelling getSemanticSpelling() const {
872 switch (SpellingListIndex) {
873 default: llvm_unreachable("Unknown spelling list index")::llvm::llvm_unreachable_internal("Unknown spelling list index"
, "/build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 873)
;
874 case 0: return GNU_always_inline;
875 case 1: return CXX11_gnu_always_inline;
876 case 2: return Keyword_forceinline;
877 }
878 }
879
880
881 static bool classof(const Attr *A) { return A->getKind() == attr::AlwaysInline; }
882};
883
884class AnalyzerNoReturnAttr : public InheritableAttr {
885public:
886 static AnalyzerNoReturnAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
887 auto *A = new (Ctx) AnalyzerNoReturnAttr(Loc, Ctx, 0);
888 A->setImplicit(true);
889 return A;
890 }
891
892 AnalyzerNoReturnAttr(SourceRange R, ASTContext &Ctx
893 , unsigned SI
894 )
895 : InheritableAttr(attr::AnalyzerNoReturn, R, SI, false, false)
896 {
897 }
898
899 AnalyzerNoReturnAttr *clone(ASTContext &C) const;
900 void printPretty(raw_ostream &OS,
901 const PrintingPolicy &Policy) const;
902 const char *getSpelling() const;
903
904
905 static bool classof(const Attr *A) { return A->getKind() == attr::AnalyzerNoReturn; }
906};
907
908class AnnotateAttr : public InheritableParamAttr {
909unsigned annotationLength;
910char *annotation;
911
912public:
913 static AnnotateAttr *CreateImplicit(ASTContext &Ctx, llvm::StringRef Annotation, SourceRange Loc = SourceRange()) {
914 auto *A = new (Ctx) AnnotateAttr(Loc, Ctx, Annotation, 0);
915 A->setImplicit(true);
916 return A;
917 }
918
919 AnnotateAttr(SourceRange R, ASTContext &Ctx
920 , llvm::StringRef Annotation
921 , unsigned SI
922 )
923 : InheritableParamAttr(attr::Annotate, R, SI, false, false)
924 , annotationLength(Annotation.size()),annotation(new (Ctx, 1) char[annotationLength])
925 {
926 if (!Annotation.empty())
927 std::memcpy(annotation, Annotation.data(), annotationLength);
928 }
929
930 AnnotateAttr *clone(ASTContext &C) const;
931 void printPretty(raw_ostream &OS,
932 const PrintingPolicy &Policy) const;
933 const char *getSpelling() const;
934 llvm::StringRef getAnnotation() const {
935 return llvm::StringRef(annotation, annotationLength);
936 }
937 unsigned getAnnotationLength() const {
938 return annotationLength;
939 }
940 void setAnnotation(ASTContext &C, llvm::StringRef S) {
941 annotationLength = S.size();
942 this->annotation = new (C, 1) char [annotationLength];
943 if (!S.empty())
944 std::memcpy(this->annotation, S.data(), annotationLength);
945 }
946
947
948
949 static bool classof(const Attr *A) { return A->getKind() == attr::Annotate; }
950};
951
952class AnyX86InterruptAttr : public InheritableAttr {
953public:
954 static AnyX86InterruptAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
955 auto *A = new (Ctx) AnyX86InterruptAttr(Loc, Ctx, 0);
956 A->setImplicit(true);
957 return A;
958 }
959
960 AnyX86InterruptAttr(SourceRange R, ASTContext &Ctx
961 , unsigned SI
962 )
963 : InheritableAttr(attr::AnyX86Interrupt, R, SI, false, false)
964 {
965 }
966
967 AnyX86InterruptAttr *clone(ASTContext &C) const;
968 void printPretty(raw_ostream &OS,
969 const PrintingPolicy &Policy) const;
970 const char *getSpelling() const;
971
972
973 static bool classof(const Attr *A) { return A->getKind() == attr::AnyX86Interrupt; }
974};
975
976class AnyX86NoCallerSavedRegistersAttr : public InheritableAttr {
977public:
978 static AnyX86NoCallerSavedRegistersAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
979 auto *A = new (Ctx) AnyX86NoCallerSavedRegistersAttr(Loc, Ctx, 0);
980 A->setImplicit(true);
981 return A;
982 }
983
984 AnyX86NoCallerSavedRegistersAttr(SourceRange R, ASTContext &Ctx
985 , unsigned SI
986 )
987 : InheritableAttr(attr::AnyX86NoCallerSavedRegisters, R, SI, false, false)
988 {
989 }
990
991 AnyX86NoCallerSavedRegistersAttr *clone(ASTContext &C) const;
992 void printPretty(raw_ostream &OS,
993 const PrintingPolicy &Policy) const;
994 const char *getSpelling() const;
995
996
997 static bool classof(const Attr *A) { return A->getKind() == attr::AnyX86NoCallerSavedRegisters; }
998};
999
1000class AnyX86NoCfCheckAttr : public InheritableAttr {
1001public:
1002 static AnyX86NoCfCheckAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
1003 auto *A = new (Ctx) AnyX86NoCfCheckAttr(Loc, Ctx, 0);
1004 A->setImplicit(true);
1005 return A;
1006 }
1007
1008 AnyX86NoCfCheckAttr(SourceRange R, ASTContext &Ctx
1009 , unsigned SI
1010 )
1011 : InheritableAttr(attr::AnyX86NoCfCheck, R, SI, false, false)
1012 {
1013 }
1014
1015 AnyX86NoCfCheckAttr *clone(ASTContext &C) const;
1016 void printPretty(raw_ostream &OS,
1017 const PrintingPolicy &Policy) const;
1018 const char *getSpelling() const;
1019
1020
1021 static bool classof(const Attr *A) { return A->getKind() == attr::AnyX86NoCfCheck; }
1022};
1023
1024class ArcWeakrefUnavailableAttr : public InheritableAttr {
1025public:
1026 static ArcWeakrefUnavailableAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
1027 auto *A = new (Ctx) ArcWeakrefUnavailableAttr(Loc, Ctx, 0);
1028 A->setImplicit(true);