Bug Summary

File:build-llvm/tools/clang/include/clang/AST/Attrs.inc
Warning:line 6798, column 5
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SemaDeclObjC.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -relaxed-aliasing -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-9/lib/clang/9.0.0 -D CLANG_VENDOR="Debian " -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include -I /build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-9~svn362543/build-llvm/include -I /build/llvm-toolchain-snapshot-9~svn362543/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/include/clang/9.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-9/lib/clang/9.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/lib/Sema -fdebug-prefix-map=/build/llvm-toolchain-snapshot-9~svn362543=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fobjc-runtime=gcc -fno-common -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2019-06-05-060531-1271-1 -x c++ /build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDeclObjC.cpp -faddrsig

/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDeclObjC.cpp

1//===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements semantic analysis for Objective C declarations.
10//
11//===----------------------------------------------------------------------===//
12
13#include "TypeLocBuilder.h"
14#include "clang/AST/ASTConsumer.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/ASTMutationListener.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/Expr.h"
19#include "clang/AST/ExprObjC.h"
20#include "clang/AST/RecursiveASTVisitor.h"
21#include "clang/Basic/SourceManager.h"
22#include "clang/Sema/DeclSpec.h"
23#include "clang/Sema/Lookup.h"
24#include "clang/Sema/Scope.h"
25#include "clang/Sema/ScopeInfo.h"
26#include "clang/Sema/SemaInternal.h"
27#include "llvm/ADT/DenseMap.h"
28#include "llvm/ADT/DenseSet.h"
29
30using namespace clang;
31
32/// Check whether the given method, which must be in the 'init'
33/// family, is a valid member of that family.
34///
35/// \param receiverTypeIfCall - if null, check this as if declaring it;
36/// if non-null, check this as if making a call to it with the given
37/// receiver type
38///
39/// \return true to indicate that there was an error and appropriate
40/// actions were taken
41bool Sema::checkInitMethod(ObjCMethodDecl *method,
42 QualType receiverTypeIfCall) {
43 if (method->isInvalidDecl()) return true;
44
45 // This castAs is safe: methods that don't return an object
46 // pointer won't be inferred as inits and will reject an explicit
47 // objc_method_family(init).
48
49 // We ignore protocols here. Should we? What about Class?
50
51 const ObjCObjectType *result =
52 method->getReturnType()->castAs<ObjCObjectPointerType>()->getObjectType();
53
54 if (result->isObjCId()) {
55 return false;
56 } else if (result->isObjCClass()) {
57 // fall through: always an error
58 } else {
59 ObjCInterfaceDecl *resultClass = result->getInterface();
60 assert(resultClass && "unexpected object type!")((resultClass && "unexpected object type!") ? static_cast
<void> (0) : __assert_fail ("resultClass && \"unexpected object type!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 60, __PRETTY_FUNCTION__))
;
61
62 // It's okay for the result type to still be a forward declaration
63 // if we're checking an interface declaration.
64 if (!resultClass->hasDefinition()) {
65 if (receiverTypeIfCall.isNull() &&
66 !isa<ObjCImplementationDecl>(method->getDeclContext()))
67 return false;
68
69 // Otherwise, we try to compare class types.
70 } else {
71 // If this method was declared in a protocol, we can't check
72 // anything unless we have a receiver type that's an interface.
73 const ObjCInterfaceDecl *receiverClass = nullptr;
74 if (isa<ObjCProtocolDecl>(method->getDeclContext())) {
75 if (receiverTypeIfCall.isNull())
76 return false;
77
78 receiverClass = receiverTypeIfCall->castAs<ObjCObjectPointerType>()
79 ->getInterfaceDecl();
80
81 // This can be null for calls to e.g. id<Foo>.
82 if (!receiverClass) return false;
83 } else {
84 receiverClass = method->getClassInterface();
85 assert(receiverClass && "method not associated with a class!")((receiverClass && "method not associated with a class!"
) ? static_cast<void> (0) : __assert_fail ("receiverClass && \"method not associated with a class!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 85, __PRETTY_FUNCTION__))
;
86 }
87
88 // If either class is a subclass of the other, it's fine.
89 if (receiverClass->isSuperClassOf(resultClass) ||
90 resultClass->isSuperClassOf(receiverClass))
91 return false;
92 }
93 }
94
95 SourceLocation loc = method->getLocation();
96
97 // If we're in a system header, and this is not a call, just make
98 // the method unusable.
99 if (receiverTypeIfCall.isNull() && getSourceManager().isInSystemHeader(loc)) {
100 method->addAttr(UnavailableAttr::CreateImplicit(Context, "",
101 UnavailableAttr::IR_ARCInitReturnsUnrelated, loc));
102 return true;
103 }
104
105 // Otherwise, it's an error.
106 Diag(loc, diag::err_arc_init_method_unrelated_result_type);
107 method->setInvalidDecl();
108 return true;
109}
110
111/// Issue a warning if the parameter of the overridden method is non-escaping
112/// but the parameter of the overriding method is not.
113static bool diagnoseNoescape(const ParmVarDecl *NewD, const ParmVarDecl *OldD,
114 Sema &S) {
115 if (OldD->hasAttr<NoEscapeAttr>() && !NewD->hasAttr<NoEscapeAttr>()) {
116 S.Diag(NewD->getLocation(), diag::warn_overriding_method_missing_noescape);
117 S.Diag(OldD->getLocation(), diag::note_overridden_marked_noescape);
118 return false;
119 }
120
121 return true;
122}
123
124/// Produce additional diagnostics if a category conforms to a protocol that
125/// defines a method taking a non-escaping parameter.
126static void diagnoseNoescape(const ParmVarDecl *NewD, const ParmVarDecl *OldD,
127 const ObjCCategoryDecl *CD,
128 const ObjCProtocolDecl *PD, Sema &S) {
129 if (!diagnoseNoescape(NewD, OldD, S))
130 S.Diag(CD->getLocation(), diag::note_cat_conform_to_noescape_prot)
131 << CD->IsClassExtension() << PD
132 << cast<ObjCMethodDecl>(NewD->getDeclContext());
133}
134
135void Sema::CheckObjCMethodOverride(ObjCMethodDecl *NewMethod,
136 const ObjCMethodDecl *Overridden) {
137 if (Overridden->hasRelatedResultType() &&
138 !NewMethod->hasRelatedResultType()) {
139 // This can only happen when the method follows a naming convention that
140 // implies a related result type, and the original (overridden) method has
141 // a suitable return type, but the new (overriding) method does not have
142 // a suitable return type.
143 QualType ResultType = NewMethod->getReturnType();
144 SourceRange ResultTypeRange = NewMethod->getReturnTypeSourceRange();
145
146 // Figure out which class this method is part of, if any.
147 ObjCInterfaceDecl *CurrentClass
148 = dyn_cast<ObjCInterfaceDecl>(NewMethod->getDeclContext());
149 if (!CurrentClass) {
150 DeclContext *DC = NewMethod->getDeclContext();
151 if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(DC))
152 CurrentClass = Cat->getClassInterface();
153 else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(DC))
154 CurrentClass = Impl->getClassInterface();
155 else if (ObjCCategoryImplDecl *CatImpl
156 = dyn_cast<ObjCCategoryImplDecl>(DC))
157 CurrentClass = CatImpl->getClassInterface();
158 }
159
160 if (CurrentClass) {
161 Diag(NewMethod->getLocation(),
162 diag::warn_related_result_type_compatibility_class)
163 << Context.getObjCInterfaceType(CurrentClass)
164 << ResultType
165 << ResultTypeRange;
166 } else {
167 Diag(NewMethod->getLocation(),
168 diag::warn_related_result_type_compatibility_protocol)
169 << ResultType
170 << ResultTypeRange;
171 }
172
173 if (ObjCMethodFamily Family = Overridden->getMethodFamily())
174 Diag(Overridden->getLocation(),
175 diag::note_related_result_type_family)
176 << /*overridden method*/ 0
177 << Family;
178 else
179 Diag(Overridden->getLocation(),
180 diag::note_related_result_type_overridden);
181 }
182
183 if ((NewMethod->hasAttr<NSReturnsRetainedAttr>() !=
184 Overridden->hasAttr<NSReturnsRetainedAttr>())) {
185 Diag(NewMethod->getLocation(),
186 getLangOpts().ObjCAutoRefCount
187 ? diag::err_nsreturns_retained_attribute_mismatch
188 : diag::warn_nsreturns_retained_attribute_mismatch)
189 << 1;
190 Diag(Overridden->getLocation(), diag::note_previous_decl) << "method";
191 }
192 if ((NewMethod->hasAttr<NSReturnsNotRetainedAttr>() !=
193 Overridden->hasAttr<NSReturnsNotRetainedAttr>())) {
194 Diag(NewMethod->getLocation(),
195 getLangOpts().ObjCAutoRefCount
196 ? diag::err_nsreturns_retained_attribute_mismatch
197 : diag::warn_nsreturns_retained_attribute_mismatch)
198 << 0;
199 Diag(Overridden->getLocation(), diag::note_previous_decl) << "method";
200 }
201
202 ObjCMethodDecl::param_const_iterator oi = Overridden->param_begin(),
203 oe = Overridden->param_end();
204 for (ObjCMethodDecl::param_iterator ni = NewMethod->param_begin(),
205 ne = NewMethod->param_end();
206 ni != ne && oi != oe; ++ni, ++oi) {
207 const ParmVarDecl *oldDecl = (*oi);
208 ParmVarDecl *newDecl = (*ni);
209 if (newDecl->hasAttr<NSConsumedAttr>() !=
210 oldDecl->hasAttr<NSConsumedAttr>()) {
211 Diag(newDecl->getLocation(),
212 getLangOpts().ObjCAutoRefCount
213 ? diag::err_nsconsumed_attribute_mismatch
214 : diag::warn_nsconsumed_attribute_mismatch);
215 Diag(oldDecl->getLocation(), diag::note_previous_decl) << "parameter";
216 }
217
218 diagnoseNoescape(newDecl, oldDecl, *this);
219 }
220}
221
222/// Check a method declaration for compatibility with the Objective-C
223/// ARC conventions.
224bool Sema::CheckARCMethodDecl(ObjCMethodDecl *method) {
225 ObjCMethodFamily family = method->getMethodFamily();
226 switch (family) {
227 case OMF_None:
228 case OMF_finalize:
229 case OMF_retain:
230 case OMF_release:
231 case OMF_autorelease:
232 case OMF_retainCount:
233 case OMF_self:
234 case OMF_initialize:
235 case OMF_performSelector:
236 return false;
237
238 case OMF_dealloc:
239 if (!Context.hasSameType(method->getReturnType(), Context.VoidTy)) {
240 SourceRange ResultTypeRange = method->getReturnTypeSourceRange();
241 if (ResultTypeRange.isInvalid())
242 Diag(method->getLocation(), diag::err_dealloc_bad_result_type)
243 << method->getReturnType()
244 << FixItHint::CreateInsertion(method->getSelectorLoc(0), "(void)");
245 else
246 Diag(method->getLocation(), diag::err_dealloc_bad_result_type)
247 << method->getReturnType()
248 << FixItHint::CreateReplacement(ResultTypeRange, "void");
249 return true;
250 }
251 return false;
252
253 case OMF_init:
254 // If the method doesn't obey the init rules, don't bother annotating it.
255 if (checkInitMethod(method, QualType()))
256 return true;
257
258 method->addAttr(NSConsumesSelfAttr::CreateImplicit(Context));
259
260 // Don't add a second copy of this attribute, but otherwise don't
261 // let it be suppressed.
262 if (method->hasAttr<NSReturnsRetainedAttr>())
263 return false;
264 break;
265
266 case OMF_alloc:
267 case OMF_copy:
268 case OMF_mutableCopy:
269 case OMF_new:
270 if (method->hasAttr<NSReturnsRetainedAttr>() ||
271 method->hasAttr<NSReturnsNotRetainedAttr>() ||
272 method->hasAttr<NSReturnsAutoreleasedAttr>())
273 return false;
274 break;
275 }
276
277 method->addAttr(NSReturnsRetainedAttr::CreateImplicit(Context));
278 return false;
279}
280
281static void DiagnoseObjCImplementedDeprecations(Sema &S, const NamedDecl *ND,
282 SourceLocation ImplLoc) {
283 if (!ND)
284 return;
285 bool IsCategory = false;
286 StringRef RealizedPlatform;
287 AvailabilityResult Availability = ND->getAvailability(
288 /*Message=*/nullptr, /*EnclosingVersion=*/VersionTuple(),
289 &RealizedPlatform);
290 if (Availability != AR_Deprecated) {
291 if (isa<ObjCMethodDecl>(ND)) {
292 if (Availability != AR_Unavailable)
293 return;
294 if (RealizedPlatform.empty())
295 RealizedPlatform = S.Context.getTargetInfo().getPlatformName();
296 // Warn about implementing unavailable methods, unless the unavailable
297 // is for an app extension.
298 if (RealizedPlatform.endswith("_app_extension"))
299 return;
300 S.Diag(ImplLoc, diag::warn_unavailable_def);
301 S.Diag(ND->getLocation(), diag::note_method_declared_at)
302 << ND->getDeclName();
303 return;
304 }
305 if (const auto *CD = dyn_cast<ObjCCategoryDecl>(ND)) {
306 if (!CD->getClassInterface()->isDeprecated())
307 return;
308 ND = CD->getClassInterface();
309 IsCategory = true;
310 } else
311 return;
312 }
313 S.Diag(ImplLoc, diag::warn_deprecated_def)
314 << (isa<ObjCMethodDecl>(ND)
315 ? /*Method*/ 0
316 : isa<ObjCCategoryDecl>(ND) || IsCategory ? /*Category*/ 2
317 : /*Class*/ 1);
318 if (isa<ObjCMethodDecl>(ND))
319 S.Diag(ND->getLocation(), diag::note_method_declared_at)
320 << ND->getDeclName();
321 else
322 S.Diag(ND->getLocation(), diag::note_previous_decl)
323 << (isa<ObjCCategoryDecl>(ND) ? "category" : "class");
324}
325
326/// AddAnyMethodToGlobalPool - Add any method, instance or factory to global
327/// pool.
328void Sema::AddAnyMethodToGlobalPool(Decl *D) {
329 ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
330
331 // If we don't have a valid method decl, simply return.
332 if (!MDecl)
333 return;
334 if (MDecl->isInstanceMethod())
335 AddInstanceMethodToGlobalPool(MDecl, true);
336 else
337 AddFactoryMethodToGlobalPool(MDecl, true);
338}
339
340/// HasExplicitOwnershipAttr - returns true when pointer to ObjC pointer
341/// has explicit ownership attribute; false otherwise.
342static bool
343HasExplicitOwnershipAttr(Sema &S, ParmVarDecl *Param) {
344 QualType T = Param->getType();
345
346 if (const PointerType *PT = T->getAs<PointerType>()) {
347 T = PT->getPointeeType();
348 } else if (const ReferenceType *RT = T->getAs<ReferenceType>()) {
349 T = RT->getPointeeType();
350 } else {
351 return true;
352 }
353
354 // If we have a lifetime qualifier, but it's local, we must have
355 // inferred it. So, it is implicit.
356 return !T.getLocalQualifiers().hasObjCLifetime();
357}
358
359/// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible
360/// and user declared, in the method definition's AST.
361void Sema::ActOnStartOfObjCMethodDef(Scope *FnBodyScope, Decl *D) {
362 ImplicitlyRetainedSelfLocs.clear();
363 assert((getCurMethodDecl() == nullptr) && "Methodparsing confused")(((getCurMethodDecl() == nullptr) && "Methodparsing confused"
) ? static_cast<void> (0) : __assert_fail ("(getCurMethodDecl() == nullptr) && \"Methodparsing confused\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 363, __PRETTY_FUNCTION__))
;
364 ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
365
366 PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
367
368 // If we don't have a valid method decl, simply return.
369 if (!MDecl)
370 return;
371
372 QualType ResultType = MDecl->getReturnType();
373 if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
374 !MDecl->isInvalidDecl() &&
375 RequireCompleteType(MDecl->getLocation(), ResultType,
376 diag::err_func_def_incomplete_result))
377 MDecl->setInvalidDecl();
378
379 // Allow all of Sema to see that we are entering a method definition.
380 PushDeclContext(FnBodyScope, MDecl);
381 PushFunctionScope();
382
383 // Create Decl objects for each parameter, entrring them in the scope for
384 // binding to their use.
385
386 // Insert the invisible arguments, self and _cmd!
387 MDecl->createImplicitParams(Context, MDecl->getClassInterface());
388
389 PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope);
390 PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope);
391
392 // The ObjC parser requires parameter names so there's no need to check.
393 CheckParmsForFunctionDef(MDecl->parameters(),
394 /*CheckParameterNames=*/false);
395
396 // Introduce all of the other parameters into this scope.
397 for (auto *Param : MDecl->parameters()) {
398 if (!Param->isInvalidDecl() &&
399 getLangOpts().ObjCAutoRefCount &&
400 !HasExplicitOwnershipAttr(*this, Param))
401 Diag(Param->getLocation(), diag::warn_arc_strong_pointer_objc_pointer) <<
402 Param->getType();
403
404 if (Param->getIdentifier())
405 PushOnScopeChains(Param, FnBodyScope);
406 }
407
408 // In ARC, disallow definition of retain/release/autorelease/retainCount
409 if (getLangOpts().ObjCAutoRefCount) {
410 switch (MDecl->getMethodFamily()) {
411 case OMF_retain:
412 case OMF_retainCount:
413 case OMF_release:
414 case OMF_autorelease:
415 Diag(MDecl->getLocation(), diag::err_arc_illegal_method_def)
416 << 0 << MDecl->getSelector();
417 break;
418
419 case OMF_None:
420 case OMF_dealloc:
421 case OMF_finalize:
422 case OMF_alloc:
423 case OMF_init:
424 case OMF_mutableCopy:
425 case OMF_copy:
426 case OMF_new:
427 case OMF_self:
428 case OMF_initialize:
429 case OMF_performSelector:
430 break;
431 }
432 }
433
434 // Warn on deprecated methods under -Wdeprecated-implementations,
435 // and prepare for warning on missing super calls.
436 if (ObjCInterfaceDecl *IC = MDecl->getClassInterface()) {
437 ObjCMethodDecl *IMD =
438 IC->lookupMethod(MDecl->getSelector(), MDecl->isInstanceMethod());
439
440 if (IMD) {
441 ObjCImplDecl *ImplDeclOfMethodDef =
442 dyn_cast<ObjCImplDecl>(MDecl->getDeclContext());
443 ObjCContainerDecl *ContDeclOfMethodDecl =
444 dyn_cast<ObjCContainerDecl>(IMD->getDeclContext());
445 ObjCImplDecl *ImplDeclOfMethodDecl = nullptr;
446 if (ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(ContDeclOfMethodDecl))
447 ImplDeclOfMethodDecl = OID->getImplementation();
448 else if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(ContDeclOfMethodDecl)) {
449 if (CD->IsClassExtension()) {
450 if (ObjCInterfaceDecl *OID = CD->getClassInterface())
451 ImplDeclOfMethodDecl = OID->getImplementation();
452 } else
453 ImplDeclOfMethodDecl = CD->getImplementation();
454 }
455 // No need to issue deprecated warning if deprecated mehod in class/category
456 // is being implemented in its own implementation (no overriding is involved).
457 if (!ImplDeclOfMethodDecl || ImplDeclOfMethodDecl != ImplDeclOfMethodDef)
458 DiagnoseObjCImplementedDeprecations(*this, IMD, MDecl->getLocation());
459 }
460
461 if (MDecl->getMethodFamily() == OMF_init) {
462 if (MDecl->isDesignatedInitializerForTheInterface()) {
463 getCurFunction()->ObjCIsDesignatedInit = true;
464 getCurFunction()->ObjCWarnForNoDesignatedInitChain =
465 IC->getSuperClass() != nullptr;
466 } else if (IC->hasDesignatedInitializers()) {
467 getCurFunction()->ObjCIsSecondaryInit = true;
468 getCurFunction()->ObjCWarnForNoInitDelegation = true;
469 }
470 }
471
472 // If this is "dealloc" or "finalize", set some bit here.
473 // Then in ActOnSuperMessage() (SemaExprObjC), set it back to false.
474 // Finally, in ActOnFinishFunctionBody() (SemaDecl), warn if flag is set.
475 // Only do this if the current class actually has a superclass.
476 if (const ObjCInterfaceDecl *SuperClass = IC->getSuperClass()) {
477 ObjCMethodFamily Family = MDecl->getMethodFamily();
478 if (Family == OMF_dealloc) {
479 if (!(getLangOpts().ObjCAutoRefCount ||
480 getLangOpts().getGC() == LangOptions::GCOnly))
481 getCurFunction()->ObjCShouldCallSuper = true;
482
483 } else if (Family == OMF_finalize) {
484 if (Context.getLangOpts().getGC() != LangOptions::NonGC)
485 getCurFunction()->ObjCShouldCallSuper = true;
486
487 } else {
488 const ObjCMethodDecl *SuperMethod =
489 SuperClass->lookupMethod(MDecl->getSelector(),
490 MDecl->isInstanceMethod());
491 getCurFunction()->ObjCShouldCallSuper =
492 (SuperMethod && SuperMethod->hasAttr<ObjCRequiresSuperAttr>());
493 }
494 }
495 }
496}
497
498namespace {
499
500// Callback to only accept typo corrections that are Objective-C classes.
501// If an ObjCInterfaceDecl* is given to the constructor, then the validation
502// function will reject corrections to that class.
503class ObjCInterfaceValidatorCCC final : public CorrectionCandidateCallback {
504 public:
505 ObjCInterfaceValidatorCCC() : CurrentIDecl(nullptr) {}
506 explicit ObjCInterfaceValidatorCCC(ObjCInterfaceDecl *IDecl)
507 : CurrentIDecl(IDecl) {}
508
509 bool ValidateCandidate(const TypoCorrection &candidate) override {
510 ObjCInterfaceDecl *ID = candidate.getCorrectionDeclAs<ObjCInterfaceDecl>();
511 return ID && !declaresSameEntity(ID, CurrentIDecl);
512 }
513
514 std::unique_ptr<CorrectionCandidateCallback> clone() override {
515 return llvm::make_unique<ObjCInterfaceValidatorCCC>(*this);
516 }
517
518 private:
519 ObjCInterfaceDecl *CurrentIDecl;
520};
521
522} // end anonymous namespace
523
524static void diagnoseUseOfProtocols(Sema &TheSema,
525 ObjCContainerDecl *CD,
526 ObjCProtocolDecl *const *ProtoRefs,
527 unsigned NumProtoRefs,
528 const SourceLocation *ProtoLocs) {
529 assert(ProtoRefs)((ProtoRefs) ? static_cast<void> (0) : __assert_fail ("ProtoRefs"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 529, __PRETTY_FUNCTION__))
;
530 // Diagnose availability in the context of the ObjC container.
531 Sema::ContextRAII SavedContext(TheSema, CD);
532 for (unsigned i = 0; i < NumProtoRefs; ++i) {
533 (void)TheSema.DiagnoseUseOfDecl(ProtoRefs[i], ProtoLocs[i],
534 /*UnknownObjCClass=*/nullptr,
535 /*ObjCPropertyAccess=*/false,
536 /*AvoidPartialAvailabilityChecks=*/true);
537 }
538}
539
540void Sema::
541ActOnSuperClassOfClassInterface(Scope *S,
542 SourceLocation AtInterfaceLoc,
543 ObjCInterfaceDecl *IDecl,
544 IdentifierInfo *ClassName,
545 SourceLocation ClassLoc,
546 IdentifierInfo *SuperName,
547 SourceLocation SuperLoc,
548 ArrayRef<ParsedType> SuperTypeArgs,
549 SourceRange SuperTypeArgsRange) {
550 // Check if a different kind of symbol declared in this scope.
551 NamedDecl *PrevDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
552 LookupOrdinaryName);
553
554 if (!PrevDecl) {
555 // Try to correct for a typo in the superclass name without correcting
556 // to the class we're defining.
557 ObjCInterfaceValidatorCCC CCC(IDecl);
558 if (TypoCorrection Corrected = CorrectTypo(
559 DeclarationNameInfo(SuperName, SuperLoc), LookupOrdinaryName,
560 TUScope, nullptr, CCC, CTK_ErrorRecovery)) {
561 diagnoseTypo(Corrected, PDiag(diag::err_undef_superclass_suggest)
562 << SuperName << ClassName);
563 PrevDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>();
564 }
565 }
566
567 if (declaresSameEntity(PrevDecl, IDecl)) {
568 Diag(SuperLoc, diag::err_recursive_superclass)
569 << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
570 IDecl->setEndOfDefinitionLoc(ClassLoc);
571 } else {
572 ObjCInterfaceDecl *SuperClassDecl =
573 dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
574 QualType SuperClassType;
575
576 // Diagnose classes that inherit from deprecated classes.
577 if (SuperClassDecl) {
578 (void)DiagnoseUseOfDecl(SuperClassDecl, SuperLoc);
579 SuperClassType = Context.getObjCInterfaceType(SuperClassDecl);
580 }
581
582 if (PrevDecl && !SuperClassDecl) {
583 // The previous declaration was not a class decl. Check if we have a
584 // typedef. If we do, get the underlying class type.
585 if (const TypedefNameDecl *TDecl =
586 dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
587 QualType T = TDecl->getUnderlyingType();
588 if (T->isObjCObjectType()) {
589 if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) {
590 SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(IDecl);
591 SuperClassType = Context.getTypeDeclType(TDecl);
592
593 // This handles the following case:
594 // @interface NewI @end
595 // typedef NewI DeprI __attribute__((deprecated("blah")))
596 // @interface SI : DeprI /* warn here */ @end
597 (void)DiagnoseUseOfDecl(const_cast<TypedefNameDecl*>(TDecl), SuperLoc);
598 }
599 }
600 }
601
602 // This handles the following case:
603 //
604 // typedef int SuperClass;
605 // @interface MyClass : SuperClass {} @end
606 //
607 if (!SuperClassDecl) {
608 Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName;
609 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
610 }
611 }
612
613 if (!dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
614 if (!SuperClassDecl)
615 Diag(SuperLoc, diag::err_undef_superclass)
616 << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
617 else if (RequireCompleteType(SuperLoc,
618 SuperClassType,
619 diag::err_forward_superclass,
620 SuperClassDecl->getDeclName(),
621 ClassName,
622 SourceRange(AtInterfaceLoc, ClassLoc))) {
623 SuperClassDecl = nullptr;
624 SuperClassType = QualType();
625 }
626 }
627
628 if (SuperClassType.isNull()) {
629 assert(!SuperClassDecl && "Failed to set SuperClassType?")((!SuperClassDecl && "Failed to set SuperClassType?")
? static_cast<void> (0) : __assert_fail ("!SuperClassDecl && \"Failed to set SuperClassType?\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 629, __PRETTY_FUNCTION__))
;
630 return;
631 }
632
633 // Handle type arguments on the superclass.
634 TypeSourceInfo *SuperClassTInfo = nullptr;
635 if (!SuperTypeArgs.empty()) {
636 TypeResult fullSuperClassType = actOnObjCTypeArgsAndProtocolQualifiers(
637 S,
638 SuperLoc,
639 CreateParsedType(SuperClassType,
640 nullptr),
641 SuperTypeArgsRange.getBegin(),
642 SuperTypeArgs,
643 SuperTypeArgsRange.getEnd(),
644 SourceLocation(),
645 { },
646 { },
647 SourceLocation());
648 if (!fullSuperClassType.isUsable())
649 return;
650
651 SuperClassType = GetTypeFromParser(fullSuperClassType.get(),
652 &SuperClassTInfo);
653 }
654
655 if (!SuperClassTInfo) {
656 SuperClassTInfo = Context.getTrivialTypeSourceInfo(SuperClassType,
657 SuperLoc);
658 }
659
660 IDecl->setSuperClass(SuperClassTInfo);
661 IDecl->setEndOfDefinitionLoc(SuperClassTInfo->getTypeLoc().getEndLoc());
662 }
663}
664
665DeclResult Sema::actOnObjCTypeParam(Scope *S,
666 ObjCTypeParamVariance variance,
667 SourceLocation varianceLoc,
668 unsigned index,
669 IdentifierInfo *paramName,
670 SourceLocation paramLoc,
671 SourceLocation colonLoc,
672 ParsedType parsedTypeBound) {
673 // If there was an explicitly-provided type bound, check it.
674 TypeSourceInfo *typeBoundInfo = nullptr;
675 if (parsedTypeBound) {
676 // The type bound can be any Objective-C pointer type.
677 QualType typeBound = GetTypeFromParser(parsedTypeBound, &typeBoundInfo);
678 if (typeBound->isObjCObjectPointerType()) {
679 // okay
680 } else if (typeBound->isObjCObjectType()) {
681 // The user forgot the * on an Objective-C pointer type, e.g.,
682 // "T : NSView".
683 SourceLocation starLoc = getLocForEndOfToken(
684 typeBoundInfo->getTypeLoc().getEndLoc());
685 Diag(typeBoundInfo->getTypeLoc().getBeginLoc(),
686 diag::err_objc_type_param_bound_missing_pointer)
687 << typeBound << paramName
688 << FixItHint::CreateInsertion(starLoc, " *");
689
690 // Create a new type location builder so we can update the type
691 // location information we have.
692 TypeLocBuilder builder;
693 builder.pushFullCopy(typeBoundInfo->getTypeLoc());
694
695 // Create the Objective-C pointer type.
696 typeBound = Context.getObjCObjectPointerType(typeBound);
697 ObjCObjectPointerTypeLoc newT
698 = builder.push<ObjCObjectPointerTypeLoc>(typeBound);
699 newT.setStarLoc(starLoc);
700
701 // Form the new type source information.
702 typeBoundInfo = builder.getTypeSourceInfo(Context, typeBound);
703 } else {
704 // Not a valid type bound.
705 Diag(typeBoundInfo->getTypeLoc().getBeginLoc(),
706 diag::err_objc_type_param_bound_nonobject)
707 << typeBound << paramName;
708
709 // Forget the bound; we'll default to id later.
710 typeBoundInfo = nullptr;
711 }
712
713 // Type bounds cannot have qualifiers (even indirectly) or explicit
714 // nullability.
715 if (typeBoundInfo) {
716 QualType typeBound = typeBoundInfo->getType();
717 TypeLoc qual = typeBoundInfo->getTypeLoc().findExplicitQualifierLoc();
718 if (qual || typeBound.hasQualifiers()) {
719 bool diagnosed = false;
720 SourceRange rangeToRemove;
721 if (qual) {
722 if (auto attr = qual.getAs<AttributedTypeLoc>()) {
723 rangeToRemove = attr.getLocalSourceRange();
724 if (attr.getTypePtr()->getImmediateNullability()) {
725 Diag(attr.getBeginLoc(),
726 diag::err_objc_type_param_bound_explicit_nullability)
727 << paramName << typeBound
728 << FixItHint::CreateRemoval(rangeToRemove);
729 diagnosed = true;
730 }
731 }
732 }
733
734 if (!diagnosed) {
735 Diag(qual ? qual.getBeginLoc()
736 : typeBoundInfo->getTypeLoc().getBeginLoc(),
737 diag::err_objc_type_param_bound_qualified)
738 << paramName << typeBound
739 << typeBound.getQualifiers().getAsString()
740 << FixItHint::CreateRemoval(rangeToRemove);
741 }
742
743 // If the type bound has qualifiers other than CVR, we need to strip
744 // them or we'll probably assert later when trying to apply new
745 // qualifiers.
746 Qualifiers quals = typeBound.getQualifiers();
747 quals.removeCVRQualifiers();
748 if (!quals.empty()) {
749 typeBoundInfo =
750 Context.getTrivialTypeSourceInfo(typeBound.getUnqualifiedType());
751 }
752 }
753 }
754 }
755
756 // If there was no explicit type bound (or we removed it due to an error),
757 // use 'id' instead.
758 if (!typeBoundInfo) {
759 colonLoc = SourceLocation();
760 typeBoundInfo = Context.getTrivialTypeSourceInfo(Context.getObjCIdType());
761 }
762
763 // Create the type parameter.
764 return ObjCTypeParamDecl::Create(Context, CurContext, variance, varianceLoc,
765 index, paramLoc, paramName, colonLoc,
766 typeBoundInfo);
767}
768
769ObjCTypeParamList *Sema::actOnObjCTypeParamList(Scope *S,
770 SourceLocation lAngleLoc,
771 ArrayRef<Decl *> typeParamsIn,
772 SourceLocation rAngleLoc) {
773 // We know that the array only contains Objective-C type parameters.
774 ArrayRef<ObjCTypeParamDecl *>
775 typeParams(
776 reinterpret_cast<ObjCTypeParamDecl * const *>(typeParamsIn.data()),
777 typeParamsIn.size());
778
779 // Diagnose redeclarations of type parameters.
780 // We do this now because Objective-C type parameters aren't pushed into
781 // scope until later (after the instance variable block), but we want the
782 // diagnostics to occur right after we parse the type parameter list.
783 llvm::SmallDenseMap<IdentifierInfo *, ObjCTypeParamDecl *> knownParams;
784 for (auto typeParam : typeParams) {
785 auto known = knownParams.find(typeParam->getIdentifier());
786 if (known != knownParams.end()) {
787 Diag(typeParam->getLocation(), diag::err_objc_type_param_redecl)
788 << typeParam->getIdentifier()
789 << SourceRange(known->second->getLocation());
790
791 typeParam->setInvalidDecl();
792 } else {
793 knownParams.insert(std::make_pair(typeParam->getIdentifier(), typeParam));
794
795 // Push the type parameter into scope.
796 PushOnScopeChains(typeParam, S, /*AddToContext=*/false);
797 }
798 }
799
800 // Create the parameter list.
801 return ObjCTypeParamList::create(Context, lAngleLoc, typeParams, rAngleLoc);
802}
803
804void Sema::popObjCTypeParamList(Scope *S, ObjCTypeParamList *typeParamList) {
805 for (auto typeParam : *typeParamList) {
806 if (!typeParam->isInvalidDecl()) {
807 S->RemoveDecl(typeParam);
808 IdResolver.RemoveDecl(typeParam);
809 }
810 }
811}
812
813namespace {
814 /// The context in which an Objective-C type parameter list occurs, for use
815 /// in diagnostics.
816 enum class TypeParamListContext {
817 ForwardDeclaration,
818 Definition,
819 Category,
820 Extension
821 };
822} // end anonymous namespace
823
824/// Check consistency between two Objective-C type parameter lists, e.g.,
825/// between a category/extension and an \@interface or between an \@class and an
826/// \@interface.
827static bool checkTypeParamListConsistency(Sema &S,
828 ObjCTypeParamList *prevTypeParams,
829 ObjCTypeParamList *newTypeParams,
830 TypeParamListContext newContext) {
831 // If the sizes don't match, complain about that.
832 if (prevTypeParams->size() != newTypeParams->size()) {
833 SourceLocation diagLoc;
834 if (newTypeParams->size() > prevTypeParams->size()) {
835 diagLoc = newTypeParams->begin()[prevTypeParams->size()]->getLocation();
836 } else {
837 diagLoc = S.getLocForEndOfToken(newTypeParams->back()->getEndLoc());
838 }
839
840 S.Diag(diagLoc, diag::err_objc_type_param_arity_mismatch)
841 << static_cast<unsigned>(newContext)
842 << (newTypeParams->size() > prevTypeParams->size())
843 << prevTypeParams->size()
844 << newTypeParams->size();
845
846 return true;
847 }
848
849 // Match up the type parameters.
850 for (unsigned i = 0, n = prevTypeParams->size(); i != n; ++i) {
851 ObjCTypeParamDecl *prevTypeParam = prevTypeParams->begin()[i];
852 ObjCTypeParamDecl *newTypeParam = newTypeParams->begin()[i];
853
854 // Check for consistency of the variance.
855 if (newTypeParam->getVariance() != prevTypeParam->getVariance()) {
856 if (newTypeParam->getVariance() == ObjCTypeParamVariance::Invariant &&
857 newContext != TypeParamListContext::Definition) {
858 // When the new type parameter is invariant and is not part
859 // of the definition, just propagate the variance.
860 newTypeParam->setVariance(prevTypeParam->getVariance());
861 } else if (prevTypeParam->getVariance()
862 == ObjCTypeParamVariance::Invariant &&
863 !(isa<ObjCInterfaceDecl>(prevTypeParam->getDeclContext()) &&
864 cast<ObjCInterfaceDecl>(prevTypeParam->getDeclContext())
865 ->getDefinition() == prevTypeParam->getDeclContext())) {
866 // When the old parameter is invariant and was not part of the
867 // definition, just ignore the difference because it doesn't
868 // matter.
869 } else {
870 {
871 // Diagnose the conflict and update the second declaration.
872 SourceLocation diagLoc = newTypeParam->getVarianceLoc();
873 if (diagLoc.isInvalid())
874 diagLoc = newTypeParam->getBeginLoc();
875
876 auto diag = S.Diag(diagLoc,
877 diag::err_objc_type_param_variance_conflict)
878 << static_cast<unsigned>(newTypeParam->getVariance())
879 << newTypeParam->getDeclName()
880 << static_cast<unsigned>(prevTypeParam->getVariance())
881 << prevTypeParam->getDeclName();
882 switch (prevTypeParam->getVariance()) {
883 case ObjCTypeParamVariance::Invariant:
884 diag << FixItHint::CreateRemoval(newTypeParam->getVarianceLoc());
885 break;
886
887 case ObjCTypeParamVariance::Covariant:
888 case ObjCTypeParamVariance::Contravariant: {
889 StringRef newVarianceStr
890 = prevTypeParam->getVariance() == ObjCTypeParamVariance::Covariant
891 ? "__covariant"
892 : "__contravariant";
893 if (newTypeParam->getVariance()
894 == ObjCTypeParamVariance::Invariant) {
895 diag << FixItHint::CreateInsertion(newTypeParam->getBeginLoc(),
896 (newVarianceStr + " ").str());
897 } else {
898 diag << FixItHint::CreateReplacement(newTypeParam->getVarianceLoc(),
899 newVarianceStr);
900 }
901 }
902 }
903 }
904
905 S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
906 << prevTypeParam->getDeclName();
907
908 // Override the variance.
909 newTypeParam->setVariance(prevTypeParam->getVariance());
910 }
911 }
912
913 // If the bound types match, there's nothing to do.
914 if (S.Context.hasSameType(prevTypeParam->getUnderlyingType(),
915 newTypeParam->getUnderlyingType()))
916 continue;
917
918 // If the new type parameter's bound was explicit, complain about it being
919 // different from the original.
920 if (newTypeParam->hasExplicitBound()) {
921 SourceRange newBoundRange = newTypeParam->getTypeSourceInfo()
922 ->getTypeLoc().getSourceRange();
923 S.Diag(newBoundRange.getBegin(), diag::err_objc_type_param_bound_conflict)
924 << newTypeParam->getUnderlyingType()
925 << newTypeParam->getDeclName()
926 << prevTypeParam->hasExplicitBound()
927 << prevTypeParam->getUnderlyingType()
928 << (newTypeParam->getDeclName() == prevTypeParam->getDeclName())
929 << prevTypeParam->getDeclName()
930 << FixItHint::CreateReplacement(
931 newBoundRange,
932 prevTypeParam->getUnderlyingType().getAsString(
933 S.Context.getPrintingPolicy()));
934
935 S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
936 << prevTypeParam->getDeclName();
937
938 // Override the new type parameter's bound type with the previous type,
939 // so that it's consistent.
940 newTypeParam->setTypeSourceInfo(
941 S.Context.getTrivialTypeSourceInfo(prevTypeParam->getUnderlyingType()));
942 continue;
943 }
944
945 // The new type parameter got the implicit bound of 'id'. That's okay for
946 // categories and extensions (overwrite it later), but not for forward
947 // declarations and @interfaces, because those must be standalone.
948 if (newContext == TypeParamListContext::ForwardDeclaration ||
949 newContext == TypeParamListContext::Definition) {
950 // Diagnose this problem for forward declarations and definitions.
951 SourceLocation insertionLoc
952 = S.getLocForEndOfToken(newTypeParam->getLocation());
953 std::string newCode
954 = " : " + prevTypeParam->getUnderlyingType().getAsString(
955 S.Context.getPrintingPolicy());
956 S.Diag(newTypeParam->getLocation(),
957 diag::err_objc_type_param_bound_missing)
958 << prevTypeParam->getUnderlyingType()
959 << newTypeParam->getDeclName()
960 << (newContext == TypeParamListContext::ForwardDeclaration)
961 << FixItHint::CreateInsertion(insertionLoc, newCode);
962
963 S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
964 << prevTypeParam->getDeclName();
965 }
966
967 // Update the new type parameter's bound to match the previous one.
968 newTypeParam->setTypeSourceInfo(
969 S.Context.getTrivialTypeSourceInfo(prevTypeParam->getUnderlyingType()));
970 }
971
972 return false;
973}
974
975Decl *Sema::ActOnStartClassInterface(
976 Scope *S, SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName,
977 SourceLocation ClassLoc, ObjCTypeParamList *typeParamList,
978 IdentifierInfo *SuperName, SourceLocation SuperLoc,
979 ArrayRef<ParsedType> SuperTypeArgs, SourceRange SuperTypeArgsRange,
980 Decl *const *ProtoRefs, unsigned NumProtoRefs,
981 const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
982 const ParsedAttributesView &AttrList) {
983 assert(ClassName && "Missing class identifier")((ClassName && "Missing class identifier") ? static_cast
<void> (0) : __assert_fail ("ClassName && \"Missing class identifier\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 983, __PRETTY_FUNCTION__))
;
984
985 // Check for another declaration kind with the same name.
986 NamedDecl *PrevDecl =
987 LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName,
988 forRedeclarationInCurContext());
989
990 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
991 Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
992 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
993 }
994
995 // Create a declaration to describe this @interface.
996 ObjCInterfaceDecl* PrevIDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
997
998 if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) {
999 // A previous decl with a different name is because of
1000 // @compatibility_alias, for example:
1001 // \code
1002 // @class NewImage;
1003 // @compatibility_alias OldImage NewImage;
1004 // \endcode
1005 // A lookup for 'OldImage' will return the 'NewImage' decl.
1006 //
1007 // In such a case use the real declaration name, instead of the alias one,
1008 // otherwise we will break IdentifierResolver and redecls-chain invariants.
1009 // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl
1010 // has been aliased.
1011 ClassName = PrevIDecl->getIdentifier();
1012 }
1013
1014 // If there was a forward declaration with type parameters, check
1015 // for consistency.
1016 if (PrevIDecl) {
1017 if (ObjCTypeParamList *prevTypeParamList = PrevIDecl->getTypeParamList()) {
1018 if (typeParamList) {
1019 // Both have type parameter lists; check for consistency.
1020 if (checkTypeParamListConsistency(*this, prevTypeParamList,
1021 typeParamList,
1022 TypeParamListContext::Definition)) {
1023 typeParamList = nullptr;
1024 }
1025 } else {
1026 Diag(ClassLoc, diag::err_objc_parameterized_forward_class_first)
1027 << ClassName;
1028 Diag(prevTypeParamList->getLAngleLoc(), diag::note_previous_decl)
1029 << ClassName;
1030
1031 // Clone the type parameter list.
1032 SmallVector<ObjCTypeParamDecl *, 4> clonedTypeParams;
1033 for (auto typeParam : *prevTypeParamList) {
1034 clonedTypeParams.push_back(
1035 ObjCTypeParamDecl::Create(
1036 Context,
1037 CurContext,
1038 typeParam->getVariance(),
1039 SourceLocation(),
1040 typeParam->getIndex(),
1041 SourceLocation(),
1042 typeParam->getIdentifier(),
1043 SourceLocation(),
1044 Context.getTrivialTypeSourceInfo(typeParam->getUnderlyingType())));
1045 }
1046
1047 typeParamList = ObjCTypeParamList::create(Context,
1048 SourceLocation(),
1049 clonedTypeParams,
1050 SourceLocation());
1051 }
1052 }
1053 }
1054
1055 ObjCInterfaceDecl *IDecl
1056 = ObjCInterfaceDecl::Create(Context, CurContext, AtInterfaceLoc, ClassName,
1057 typeParamList, PrevIDecl, ClassLoc);
1058 if (PrevIDecl) {
1059 // Class already seen. Was it a definition?
1060 if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
1061 Diag(AtInterfaceLoc, diag::err_duplicate_class_def)
1062 << PrevIDecl->getDeclName();
1063 Diag(Def->getLocation(), diag::note_previous_definition);
1064 IDecl->setInvalidDecl();
1065 }
1066 }
1067
1068 ProcessDeclAttributeList(TUScope, IDecl, AttrList);
1069 AddPragmaAttributes(TUScope, IDecl);
1070 PushOnScopeChains(IDecl, TUScope);
1071
1072 // Start the definition of this class. If we're in a redefinition case, there
1073 // may already be a definition, so we'll end up adding to it.
1074 if (!IDecl->hasDefinition())
1075 IDecl->startDefinition();
1076
1077 if (SuperName) {
1078 // Diagnose availability in the context of the @interface.
1079 ContextRAII SavedContext(*this, IDecl);
1080
1081 ActOnSuperClassOfClassInterface(S, AtInterfaceLoc, IDecl,
1082 ClassName, ClassLoc,
1083 SuperName, SuperLoc, SuperTypeArgs,
1084 SuperTypeArgsRange);
1085 } else { // we have a root class.
1086 IDecl->setEndOfDefinitionLoc(ClassLoc);
1087 }
1088
1089 // Check then save referenced protocols.
1090 if (NumProtoRefs) {
1091 diagnoseUseOfProtocols(*this, IDecl, (ObjCProtocolDecl*const*)ProtoRefs,
1092 NumProtoRefs, ProtoLocs);
1093 IDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
1094 ProtoLocs, Context);
1095 IDecl->setEndOfDefinitionLoc(EndProtoLoc);
1096 }
1097
1098 CheckObjCDeclScope(IDecl);
1099 return ActOnObjCContainerStartDefinition(IDecl);
1100}
1101
1102/// ActOnTypedefedProtocols - this action finds protocol list as part of the
1103/// typedef'ed use for a qualified super class and adds them to the list
1104/// of the protocols.
1105void Sema::ActOnTypedefedProtocols(SmallVectorImpl<Decl *> &ProtocolRefs,
1106 SmallVectorImpl<SourceLocation> &ProtocolLocs,
1107 IdentifierInfo *SuperName,
1108 SourceLocation SuperLoc) {
1109 if (!SuperName)
1110 return;
1111 NamedDecl* IDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
1112 LookupOrdinaryName);
1113 if (!IDecl)
1114 return;
1115
1116 if (const TypedefNameDecl *TDecl = dyn_cast_or_null<TypedefNameDecl>(IDecl)) {
1117 QualType T = TDecl->getUnderlyingType();
1118 if (T->isObjCObjectType())
1119 if (const ObjCObjectType *OPT = T->getAs<ObjCObjectType>()) {
1120 ProtocolRefs.append(OPT->qual_begin(), OPT->qual_end());
1121 // FIXME: Consider whether this should be an invalid loc since the loc
1122 // is not actually pointing to a protocol name reference but to the
1123 // typedef reference. Note that the base class name loc is also pointing
1124 // at the typedef.
1125 ProtocolLocs.append(OPT->getNumProtocols(), SuperLoc);
1126 }
1127 }
1128}
1129
1130/// ActOnCompatibilityAlias - this action is called after complete parsing of
1131/// a \@compatibility_alias declaration. It sets up the alias relationships.
1132Decl *Sema::ActOnCompatibilityAlias(SourceLocation AtLoc,
1133 IdentifierInfo *AliasName,
1134 SourceLocation AliasLocation,
1135 IdentifierInfo *ClassName,
1136 SourceLocation ClassLocation) {
1137 // Look for previous declaration of alias name
1138 NamedDecl *ADecl =
1139 LookupSingleName(TUScope, AliasName, AliasLocation, LookupOrdinaryName,
1140 forRedeclarationInCurContext());
1141 if (ADecl) {
1142 Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName;
1143 Diag(ADecl->getLocation(), diag::note_previous_declaration);
1144 return nullptr;
1145 }
1146 // Check for class declaration
1147 NamedDecl *CDeclU =
1148 LookupSingleName(TUScope, ClassName, ClassLocation, LookupOrdinaryName,
1149 forRedeclarationInCurContext());
1150 if (const TypedefNameDecl *TDecl =
1151 dyn_cast_or_null<TypedefNameDecl>(CDeclU)) {
1152 QualType T = TDecl->getUnderlyingType();
1153 if (T->isObjCObjectType()) {
1154 if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) {
1155 ClassName = IDecl->getIdentifier();
1156 CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
1157 LookupOrdinaryName,
1158 forRedeclarationInCurContext());
1159 }
1160 }
1161 }
1162 ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(CDeclU);
1163 if (!CDecl) {
1164 Diag(ClassLocation, diag::warn_undef_interface) << ClassName;
1165 if (CDeclU)
1166 Diag(CDeclU->getLocation(), diag::note_previous_declaration);
1167 return nullptr;
1168 }
1169
1170 // Everything checked out, instantiate a new alias declaration AST.
1171 ObjCCompatibleAliasDecl *AliasDecl =
1172 ObjCCompatibleAliasDecl::Create(Context, CurContext, AtLoc, AliasName, CDecl);
1173
1174 if (!CheckObjCDeclScope(AliasDecl))
1175 PushOnScopeChains(AliasDecl, TUScope);
1176
1177 return AliasDecl;
1178}
1179
1180bool Sema::CheckForwardProtocolDeclarationForCircularDependency(
1181 IdentifierInfo *PName,
1182 SourceLocation &Ploc, SourceLocation PrevLoc,
1183 const ObjCList<ObjCProtocolDecl> &PList) {
1184
1185 bool res = false;
1186 for (ObjCList<ObjCProtocolDecl>::iterator I = PList.begin(),
1187 E = PList.end(); I != E; ++I) {
1188 if (ObjCProtocolDecl *PDecl = LookupProtocol((*I)->getIdentifier(),
1189 Ploc)) {
1190 if (PDecl->getIdentifier() == PName) {
1191 Diag(Ploc, diag::err_protocol_has_circular_dependency);
1192 Diag(PrevLoc, diag::note_previous_definition);
1193 res = true;
1194 }
1195
1196 if (!PDecl->hasDefinition())
1197 continue;
1198
1199 if (CheckForwardProtocolDeclarationForCircularDependency(PName, Ploc,
1200 PDecl->getLocation(), PDecl->getReferencedProtocols()))
1201 res = true;
1202 }
1203 }
1204 return res;
1205}
1206
1207Decl *Sema::ActOnStartProtocolInterface(
1208 SourceLocation AtProtoInterfaceLoc, IdentifierInfo *ProtocolName,
1209 SourceLocation ProtocolLoc, Decl *const *ProtoRefs, unsigned NumProtoRefs,
1210 const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
1211 const ParsedAttributesView &AttrList) {
1212 bool err = false;
1213 // FIXME: Deal with AttrList.
1214 assert(ProtocolName && "Missing protocol identifier")((ProtocolName && "Missing protocol identifier") ? static_cast
<void> (0) : __assert_fail ("ProtocolName && \"Missing protocol identifier\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 1214, __PRETTY_FUNCTION__))
;
1215 ObjCProtocolDecl *PrevDecl = LookupProtocol(ProtocolName, ProtocolLoc,
1216 forRedeclarationInCurContext());
1217 ObjCProtocolDecl *PDecl = nullptr;
1218 if (ObjCProtocolDecl *Def = PrevDecl? PrevDecl->getDefinition() : nullptr) {
1219 // If we already have a definition, complain.
1220 Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName;
1221 Diag(Def->getLocation(), diag::note_previous_definition);
1222
1223 // Create a new protocol that is completely distinct from previous
1224 // declarations, and do not make this protocol available for name lookup.
1225 // That way, we'll end up completely ignoring the duplicate.
1226 // FIXME: Can we turn this into an error?
1227 PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
1228 ProtocolLoc, AtProtoInterfaceLoc,
1229 /*PrevDecl=*/nullptr);
1230
1231 // If we are using modules, add the decl to the context in order to
1232 // serialize something meaningful.
1233 if (getLangOpts().Modules)
1234 PushOnScopeChains(PDecl, TUScope);
1235 PDecl->startDefinition();
1236 } else {
1237 if (PrevDecl) {
1238 // Check for circular dependencies among protocol declarations. This can
1239 // only happen if this protocol was forward-declared.
1240 ObjCList<ObjCProtocolDecl> PList;
1241 PList.set((ObjCProtocolDecl *const*)ProtoRefs, NumProtoRefs, Context);
1242 err = CheckForwardProtocolDeclarationForCircularDependency(
1243 ProtocolName, ProtocolLoc, PrevDecl->getLocation(), PList);
1244 }
1245
1246 // Create the new declaration.
1247 PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
1248 ProtocolLoc, AtProtoInterfaceLoc,
1249 /*PrevDecl=*/PrevDecl);
1250
1251 PushOnScopeChains(PDecl, TUScope);
1252 PDecl->startDefinition();
1253 }
1254
1255 ProcessDeclAttributeList(TUScope, PDecl, AttrList);
1256 AddPragmaAttributes(TUScope, PDecl);
1257
1258 // Merge attributes from previous declarations.
1259 if (PrevDecl)
1260 mergeDeclAttributes(PDecl, PrevDecl);
1261
1262 if (!err && NumProtoRefs ) {
1263 /// Check then save referenced protocols.
1264 diagnoseUseOfProtocols(*this, PDecl, (ObjCProtocolDecl*const*)ProtoRefs,
1265 NumProtoRefs, ProtoLocs);
1266 PDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
1267 ProtoLocs, Context);
1268 }
1269
1270 CheckObjCDeclScope(PDecl);
1271 return ActOnObjCContainerStartDefinition(PDecl);
1272}
1273
1274static bool NestedProtocolHasNoDefinition(ObjCProtocolDecl *PDecl,
1275 ObjCProtocolDecl *&UndefinedProtocol) {
1276 if (!PDecl->hasDefinition() || PDecl->getDefinition()->isHidden()) {
1277 UndefinedProtocol = PDecl;
1278 return true;
1279 }
1280
1281 for (auto *PI : PDecl->protocols())
1282 if (NestedProtocolHasNoDefinition(PI, UndefinedProtocol)) {
1283 UndefinedProtocol = PI;
1284 return true;
1285 }
1286 return false;
1287}
1288
1289/// FindProtocolDeclaration - This routine looks up protocols and
1290/// issues an error if they are not declared. It returns list of
1291/// protocol declarations in its 'Protocols' argument.
1292void
1293Sema::FindProtocolDeclaration(bool WarnOnDeclarations, bool ForObjCContainer,
1294 ArrayRef<IdentifierLocPair> ProtocolId,
1295 SmallVectorImpl<Decl *> &Protocols) {
1296 for (const IdentifierLocPair &Pair : ProtocolId) {
1297 ObjCProtocolDecl *PDecl = LookupProtocol(Pair.first, Pair.second);
1298 if (!PDecl) {
1299 DeclFilterCCC<ObjCProtocolDecl> CCC{};
1300 TypoCorrection Corrected = CorrectTypo(
1301 DeclarationNameInfo(Pair.first, Pair.second), LookupObjCProtocolName,
1302 TUScope, nullptr, CCC, CTK_ErrorRecovery);
1303 if ((PDecl = Corrected.getCorrectionDeclAs<ObjCProtocolDecl>()))
1304 diagnoseTypo(Corrected, PDiag(diag::err_undeclared_protocol_suggest)
1305 << Pair.first);
1306 }
1307
1308 if (!PDecl) {
1309 Diag(Pair.second, diag::err_undeclared_protocol) << Pair.first;
1310 continue;
1311 }
1312 // If this is a forward protocol declaration, get its definition.
1313 if (!PDecl->isThisDeclarationADefinition() && PDecl->getDefinition())
1314 PDecl = PDecl->getDefinition();
1315
1316 // For an objc container, delay protocol reference checking until after we
1317 // can set the objc decl as the availability context, otherwise check now.
1318 if (!ForObjCContainer) {
1319 (void)DiagnoseUseOfDecl(PDecl, Pair.second);
1320 }
1321
1322 // If this is a forward declaration and we are supposed to warn in this
1323 // case, do it.
1324 // FIXME: Recover nicely in the hidden case.
1325 ObjCProtocolDecl *UndefinedProtocol;
1326
1327 if (WarnOnDeclarations &&
1328 NestedProtocolHasNoDefinition(PDecl, UndefinedProtocol)) {
1329 Diag(Pair.second, diag::warn_undef_protocolref) << Pair.first;
1330 Diag(UndefinedProtocol->getLocation(), diag::note_protocol_decl_undefined)
1331 << UndefinedProtocol;
1332 }
1333 Protocols.push_back(PDecl);
1334 }
1335}
1336
1337namespace {
1338// Callback to only accept typo corrections that are either
1339// Objective-C protocols or valid Objective-C type arguments.
1340class ObjCTypeArgOrProtocolValidatorCCC final
1341 : public CorrectionCandidateCallback {
1342 ASTContext &Context;
1343 Sema::LookupNameKind LookupKind;
1344 public:
1345 ObjCTypeArgOrProtocolValidatorCCC(ASTContext &context,
1346 Sema::LookupNameKind lookupKind)
1347 : Context(context), LookupKind(lookupKind) { }
1348
1349 bool ValidateCandidate(const TypoCorrection &candidate) override {
1350 // If we're allowed to find protocols and we have a protocol, accept it.
1351 if (LookupKind != Sema::LookupOrdinaryName) {
1352 if (candidate.getCorrectionDeclAs<ObjCProtocolDecl>())
1353 return true;
1354 }
1355
1356 // If we're allowed to find type names and we have one, accept it.
1357 if (LookupKind != Sema::LookupObjCProtocolName) {
1358 // If we have a type declaration, we might accept this result.
1359 if (auto typeDecl = candidate.getCorrectionDeclAs<TypeDecl>()) {
1360 // If we found a tag declaration outside of C++, skip it. This
1361 // can happy because we look for any name when there is no
1362 // bias to protocol or type names.
1363 if (isa<RecordDecl>(typeDecl) && !Context.getLangOpts().CPlusPlus)
1364 return false;
1365
1366 // Make sure the type is something we would accept as a type
1367 // argument.
1368 auto type = Context.getTypeDeclType(typeDecl);
1369 if (type->isObjCObjectPointerType() ||
1370 type->isBlockPointerType() ||
1371 type->isDependentType() ||
1372 type->isObjCObjectType())
1373 return true;
1374
1375 return false;
1376 }
1377
1378 // If we have an Objective-C class type, accept it; there will
1379 // be another fix to add the '*'.
1380 if (candidate.getCorrectionDeclAs<ObjCInterfaceDecl>())
1381 return true;
1382
1383 return false;
1384 }
1385
1386 return false;
1387 }
1388
1389 std::unique_ptr<CorrectionCandidateCallback> clone() override {
1390 return llvm::make_unique<ObjCTypeArgOrProtocolValidatorCCC>(*this);
1391 }
1392};
1393} // end anonymous namespace
1394
1395void Sema::DiagnoseTypeArgsAndProtocols(IdentifierInfo *ProtocolId,
1396 SourceLocation ProtocolLoc,
1397 IdentifierInfo *TypeArgId,
1398 SourceLocation TypeArgLoc,
1399 bool SelectProtocolFirst) {
1400 Diag(TypeArgLoc, diag::err_objc_type_args_and_protocols)
1401 << SelectProtocolFirst << TypeArgId << ProtocolId
1402 << SourceRange(ProtocolLoc);
1403}
1404
1405void Sema::actOnObjCTypeArgsOrProtocolQualifiers(
1406 Scope *S,
1407 ParsedType baseType,
1408 SourceLocation lAngleLoc,
1409 ArrayRef<IdentifierInfo *> identifiers,
1410 ArrayRef<SourceLocation> identifierLocs,
1411 SourceLocation rAngleLoc,
1412 SourceLocation &typeArgsLAngleLoc,
1413 SmallVectorImpl<ParsedType> &typeArgs,
1414 SourceLocation &typeArgsRAngleLoc,
1415 SourceLocation &protocolLAngleLoc,
1416 SmallVectorImpl<Decl *> &protocols,
1417 SourceLocation &protocolRAngleLoc,
1418 bool warnOnIncompleteProtocols) {
1419 // Local function that updates the declaration specifiers with
1420 // protocol information.
1421 unsigned numProtocolsResolved = 0;
1422 auto resolvedAsProtocols = [&] {
1423 assert(numProtocolsResolved == identifiers.size() && "Unresolved protocols")((numProtocolsResolved == identifiers.size() && "Unresolved protocols"
) ? static_cast<void> (0) : __assert_fail ("numProtocolsResolved == identifiers.size() && \"Unresolved protocols\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 1423, __PRETTY_FUNCTION__))
;
1424
1425 // Determine whether the base type is a parameterized class, in
1426 // which case we want to warn about typos such as
1427 // "NSArray<NSObject>" (that should be NSArray<NSObject *>).
1428 ObjCInterfaceDecl *baseClass = nullptr;
1429 QualType base = GetTypeFromParser(baseType, nullptr);
1430 bool allAreTypeNames = false;
1431 SourceLocation firstClassNameLoc;
1432 if (!base.isNull()) {
1433 if (const auto *objcObjectType = base->getAs<ObjCObjectType>()) {
1434 baseClass = objcObjectType->getInterface();
1435 if (baseClass) {
1436 if (auto typeParams = baseClass->getTypeParamList()) {
1437 if (typeParams->size() == numProtocolsResolved) {
1438 // Note that we should be looking for type names, too.
1439 allAreTypeNames = true;
1440 }
1441 }
1442 }
1443 }
1444 }
1445
1446 for (unsigned i = 0, n = protocols.size(); i != n; ++i) {
1447 ObjCProtocolDecl *&proto
1448 = reinterpret_cast<ObjCProtocolDecl *&>(protocols[i]);
1449 // For an objc container, delay protocol reference checking until after we
1450 // can set the objc decl as the availability context, otherwise check now.
1451 if (!warnOnIncompleteProtocols) {
1452 (void)DiagnoseUseOfDecl(proto, identifierLocs[i]);
1453 }
1454
1455 // If this is a forward protocol declaration, get its definition.
1456 if (!proto->isThisDeclarationADefinition() && proto->getDefinition())
1457 proto = proto->getDefinition();
1458
1459 // If this is a forward declaration and we are supposed to warn in this
1460 // case, do it.
1461 // FIXME: Recover nicely in the hidden case.
1462 ObjCProtocolDecl *forwardDecl = nullptr;
1463 if (warnOnIncompleteProtocols &&
1464 NestedProtocolHasNoDefinition(proto, forwardDecl)) {
1465 Diag(identifierLocs[i], diag::warn_undef_protocolref)
1466 << proto->getDeclName();
1467 Diag(forwardDecl->getLocation(), diag::note_protocol_decl_undefined)
1468 << forwardDecl;
1469 }
1470
1471 // If everything this far has been a type name (and we care
1472 // about such things), check whether this name refers to a type
1473 // as well.
1474 if (allAreTypeNames) {
1475 if (auto *decl = LookupSingleName(S, identifiers[i], identifierLocs[i],
1476 LookupOrdinaryName)) {
1477 if (isa<ObjCInterfaceDecl>(decl)) {
1478 if (firstClassNameLoc.isInvalid())
1479 firstClassNameLoc = identifierLocs[i];
1480 } else if (!isa<TypeDecl>(decl)) {
1481 // Not a type.
1482 allAreTypeNames = false;
1483 }
1484 } else {
1485 allAreTypeNames = false;
1486 }
1487 }
1488 }
1489
1490 // All of the protocols listed also have type names, and at least
1491 // one is an Objective-C class name. Check whether all of the
1492 // protocol conformances are declared by the base class itself, in
1493 // which case we warn.
1494 if (allAreTypeNames && firstClassNameLoc.isValid()) {
1495 llvm::SmallPtrSet<ObjCProtocolDecl*, 8> knownProtocols;
1496 Context.CollectInheritedProtocols(baseClass, knownProtocols);
1497 bool allProtocolsDeclared = true;
1498 for (auto proto : protocols) {
1499 if (knownProtocols.count(static_cast<ObjCProtocolDecl *>(proto)) == 0) {
1500 allProtocolsDeclared = false;
1501 break;
1502 }
1503 }
1504
1505 if (allProtocolsDeclared) {
1506 Diag(firstClassNameLoc, diag::warn_objc_redundant_qualified_class_type)
1507 << baseClass->getDeclName() << SourceRange(lAngleLoc, rAngleLoc)
1508 << FixItHint::CreateInsertion(getLocForEndOfToken(firstClassNameLoc),
1509 " *");
1510 }
1511 }
1512
1513 protocolLAngleLoc = lAngleLoc;
1514 protocolRAngleLoc = rAngleLoc;
1515 assert(protocols.size() == identifierLocs.size())((protocols.size() == identifierLocs.size()) ? static_cast<
void> (0) : __assert_fail ("protocols.size() == identifierLocs.size()"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 1515, __PRETTY_FUNCTION__))
;
1516 };
1517
1518 // Attempt to resolve all of the identifiers as protocols.
1519 for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1520 ObjCProtocolDecl *proto = LookupProtocol(identifiers[i], identifierLocs[i]);
1521 protocols.push_back(proto);
1522 if (proto)
1523 ++numProtocolsResolved;
1524 }
1525
1526 // If all of the names were protocols, these were protocol qualifiers.
1527 if (numProtocolsResolved == identifiers.size())
1528 return resolvedAsProtocols();
1529
1530 // Attempt to resolve all of the identifiers as type names or
1531 // Objective-C class names. The latter is technically ill-formed,
1532 // but is probably something like \c NSArray<NSView *> missing the
1533 // \c*.
1534 typedef llvm::PointerUnion<TypeDecl *, ObjCInterfaceDecl *> TypeOrClassDecl;
1535 SmallVector<TypeOrClassDecl, 4> typeDecls;
1536 unsigned numTypeDeclsResolved = 0;
1537 for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1538 NamedDecl *decl = LookupSingleName(S, identifiers[i], identifierLocs[i],
1539 LookupOrdinaryName);
1540 if (!decl) {
1541 typeDecls.push_back(TypeOrClassDecl());
1542 continue;
1543 }
1544
1545 if (auto typeDecl = dyn_cast<TypeDecl>(decl)) {
1546 typeDecls.push_back(typeDecl);
1547 ++numTypeDeclsResolved;
1548 continue;
1549 }
1550
1551 if (auto objcClass = dyn_cast<ObjCInterfaceDecl>(decl)) {
1552 typeDecls.push_back(objcClass);
1553 ++numTypeDeclsResolved;
1554 continue;
1555 }
1556
1557 typeDecls.push_back(TypeOrClassDecl());
1558 }
1559
1560 AttributeFactory attrFactory;
1561
1562 // Local function that forms a reference to the given type or
1563 // Objective-C class declaration.
1564 auto resolveTypeReference = [&](TypeOrClassDecl typeDecl, SourceLocation loc)
1565 -> TypeResult {
1566 // Form declaration specifiers. They simply refer to the type.
1567 DeclSpec DS(attrFactory);
1568 const char* prevSpec; // unused
1569 unsigned diagID; // unused
1570 QualType type;
1571 if (auto *actualTypeDecl = typeDecl.dyn_cast<TypeDecl *>())
1572 type = Context.getTypeDeclType(actualTypeDecl);
1573 else
1574 type = Context.getObjCInterfaceType(typeDecl.get<ObjCInterfaceDecl *>());
1575 TypeSourceInfo *parsedTSInfo = Context.getTrivialTypeSourceInfo(type, loc);
1576 ParsedType parsedType = CreateParsedType(type, parsedTSInfo);
1577 DS.SetTypeSpecType(DeclSpec::TST_typename, loc, prevSpec, diagID,
1578 parsedType, Context.getPrintingPolicy());
1579 // Use the identifier location for the type source range.
1580 DS.SetRangeStart(loc);
1581 DS.SetRangeEnd(loc);
1582
1583 // Form the declarator.
1584 Declarator D(DS, DeclaratorContext::TypeNameContext);
1585
1586 // If we have a typedef of an Objective-C class type that is missing a '*',
1587 // add the '*'.
1588 if (type->getAs<ObjCInterfaceType>()) {
1589 SourceLocation starLoc = getLocForEndOfToken(loc);
1590 D.AddTypeInfo(DeclaratorChunk::getPointer(/*typeQuals=*/0, starLoc,
1591 SourceLocation(),
1592 SourceLocation(),
1593 SourceLocation(),
1594 SourceLocation(),
1595 SourceLocation()),
1596 starLoc);
1597
1598 // Diagnose the missing '*'.
1599 Diag(loc, diag::err_objc_type_arg_missing_star)
1600 << type
1601 << FixItHint::CreateInsertion(starLoc, " *");
1602 }
1603
1604 // Convert this to a type.
1605 return ActOnTypeName(S, D);
1606 };
1607
1608 // Local function that updates the declaration specifiers with
1609 // type argument information.
1610 auto resolvedAsTypeDecls = [&] {
1611 // We did not resolve these as protocols.
1612 protocols.clear();
1613
1614 assert(numTypeDeclsResolved == identifiers.size() && "Unresolved type decl")((numTypeDeclsResolved == identifiers.size() && "Unresolved type decl"
) ? static_cast<void> (0) : __assert_fail ("numTypeDeclsResolved == identifiers.size() && \"Unresolved type decl\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 1614, __PRETTY_FUNCTION__))
;
1615 // Map type declarations to type arguments.
1616 for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1617 // Map type reference to a type.
1618 TypeResult type = resolveTypeReference(typeDecls[i], identifierLocs[i]);
1619 if (!type.isUsable()) {
1620 typeArgs.clear();
1621 return;
1622 }
1623
1624 typeArgs.push_back(type.get());
1625 }
1626
1627 typeArgsLAngleLoc = lAngleLoc;
1628 typeArgsRAngleLoc = rAngleLoc;
1629 };
1630
1631 // If all of the identifiers can be resolved as type names or
1632 // Objective-C class names, we have type arguments.
1633 if (numTypeDeclsResolved == identifiers.size())
1634 return resolvedAsTypeDecls();
1635
1636 // Error recovery: some names weren't found, or we have a mix of
1637 // type and protocol names. Go resolve all of the unresolved names
1638 // and complain if we can't find a consistent answer.
1639 LookupNameKind lookupKind = LookupAnyName;
1640 for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1641 // If we already have a protocol or type. Check whether it is the
1642 // right thing.
1643 if (protocols[i] || typeDecls[i]) {
1644 // If we haven't figured out whether we want types or protocols
1645 // yet, try to figure it out from this name.
1646 if (lookupKind == LookupAnyName) {
1647 // If this name refers to both a protocol and a type (e.g., \c
1648 // NSObject), don't conclude anything yet.
1649 if (protocols[i] && typeDecls[i])
1650 continue;
1651
1652 // Otherwise, let this name decide whether we'll be correcting
1653 // toward types or protocols.
1654 lookupKind = protocols[i] ? LookupObjCProtocolName
1655 : LookupOrdinaryName;
1656 continue;
1657 }
1658
1659 // If we want protocols and we have a protocol, there's nothing
1660 // more to do.
1661 if (lookupKind == LookupObjCProtocolName && protocols[i])
1662 continue;
1663
1664 // If we want types and we have a type declaration, there's
1665 // nothing more to do.
1666 if (lookupKind == LookupOrdinaryName && typeDecls[i])
1667 continue;
1668
1669 // We have a conflict: some names refer to protocols and others
1670 // refer to types.
1671 DiagnoseTypeArgsAndProtocols(identifiers[0], identifierLocs[0],
1672 identifiers[i], identifierLocs[i],
1673 protocols[i] != nullptr);
1674
1675 protocols.clear();
1676 typeArgs.clear();
1677 return;
1678 }
1679
1680 // Perform typo correction on the name.
1681 ObjCTypeArgOrProtocolValidatorCCC CCC(Context, lookupKind);
1682 TypoCorrection corrected =
1683 CorrectTypo(DeclarationNameInfo(identifiers[i], identifierLocs[i]),
1684 lookupKind, S, nullptr, CCC, CTK_ErrorRecovery);
1685 if (corrected) {
1686 // Did we find a protocol?
1687 if (auto proto = corrected.getCorrectionDeclAs<ObjCProtocolDecl>()) {
1688 diagnoseTypo(corrected,
1689 PDiag(diag::err_undeclared_protocol_suggest)
1690 << identifiers[i]);
1691 lookupKind = LookupObjCProtocolName;
1692 protocols[i] = proto;
1693 ++numProtocolsResolved;
1694 continue;
1695 }
1696
1697 // Did we find a type?
1698 if (auto typeDecl = corrected.getCorrectionDeclAs<TypeDecl>()) {
1699 diagnoseTypo(corrected,
1700 PDiag(diag::err_unknown_typename_suggest)
1701 << identifiers[i]);
1702 lookupKind = LookupOrdinaryName;
1703 typeDecls[i] = typeDecl;
1704 ++numTypeDeclsResolved;
1705 continue;
1706 }
1707
1708 // Did we find an Objective-C class?
1709 if (auto objcClass = corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) {
1710 diagnoseTypo(corrected,
1711 PDiag(diag::err_unknown_type_or_class_name_suggest)
1712 << identifiers[i] << true);
1713 lookupKind = LookupOrdinaryName;
1714 typeDecls[i] = objcClass;
1715 ++numTypeDeclsResolved;
1716 continue;
1717 }
1718 }
1719
1720 // We couldn't find anything.
1721 Diag(identifierLocs[i],
1722 (lookupKind == LookupAnyName ? diag::err_objc_type_arg_missing
1723 : lookupKind == LookupObjCProtocolName ? diag::err_undeclared_protocol
1724 : diag::err_unknown_typename))
1725 << identifiers[i];
1726 protocols.clear();
1727 typeArgs.clear();
1728 return;
1729 }
1730
1731 // If all of the names were (corrected to) protocols, these were
1732 // protocol qualifiers.
1733 if (numProtocolsResolved == identifiers.size())
1734 return resolvedAsProtocols();
1735
1736 // Otherwise, all of the names were (corrected to) types.
1737 assert(numTypeDeclsResolved == identifiers.size() && "Not all types?")((numTypeDeclsResolved == identifiers.size() && "Not all types?"
) ? static_cast<void> (0) : __assert_fail ("numTypeDeclsResolved == identifiers.size() && \"Not all types?\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 1737, __PRETTY_FUNCTION__))
;
1738 return resolvedAsTypeDecls();
1739}
1740
1741/// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of
1742/// a class method in its extension.
1743///
1744void Sema::DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT,
1745 ObjCInterfaceDecl *ID) {
1746 if (!ID)
1747 return; // Possibly due to previous error
1748
1749 llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap;
1750 for (auto *MD : ID->methods())
1751 MethodMap[MD->getSelector()] = MD;
1752
1753 if (MethodMap.empty())
1754 return;
1755 for (const auto *Method : CAT->methods()) {
1756 const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()];
1757 if (PrevMethod &&
1758 (PrevMethod->isInstanceMethod() == Method->isInstanceMethod()) &&
1759 !MatchTwoMethodDeclarations(Method, PrevMethod)) {
1760 Diag(Method->getLocation(), diag::err_duplicate_method_decl)
1761 << Method->getDeclName();
1762 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
1763 }
1764 }
1765}
1766
1767/// ActOnForwardProtocolDeclaration - Handle \@protocol foo;
1768Sema::DeclGroupPtrTy
1769Sema::ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc,
1770 ArrayRef<IdentifierLocPair> IdentList,
1771 const ParsedAttributesView &attrList) {
1772 SmallVector<Decl *, 8> DeclsInGroup;
1773 for (const IdentifierLocPair &IdentPair : IdentList) {
1774 IdentifierInfo *Ident = IdentPair.first;
1775 ObjCProtocolDecl *PrevDecl = LookupProtocol(Ident, IdentPair.second,
1776 forRedeclarationInCurContext());
1777 ObjCProtocolDecl *PDecl
1778 = ObjCProtocolDecl::Create(Context, CurContext, Ident,
1779 IdentPair.second, AtProtocolLoc,
1780 PrevDecl);
1781
1782 PushOnScopeChains(PDecl, TUScope);
1783 CheckObjCDeclScope(PDecl);
1784
1785 ProcessDeclAttributeList(TUScope, PDecl, attrList);
1786 AddPragmaAttributes(TUScope, PDecl);
1787
1788 if (PrevDecl)
1789 mergeDeclAttributes(PDecl, PrevDecl);
1790
1791 DeclsInGroup.push_back(PDecl);
1792 }
1793
1794 return BuildDeclaratorGroup(DeclsInGroup);
1795}
1796
1797Decl *Sema::ActOnStartCategoryInterface(
1798 SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName,
1799 SourceLocation ClassLoc, ObjCTypeParamList *typeParamList,
1800 IdentifierInfo *CategoryName, SourceLocation CategoryLoc,
1801 Decl *const *ProtoRefs, unsigned NumProtoRefs,
1802 const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
1803 const ParsedAttributesView &AttrList) {
1804 ObjCCategoryDecl *CDecl;
1805 ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
1806
1807 /// Check that class of this category is already completely declared.
1808
1809 if (!IDecl
1810 || RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
1811 diag::err_category_forward_interface,
1812 CategoryName == nullptr)) {
1813 // Create an invalid ObjCCategoryDecl to serve as context for
1814 // the enclosing method declarations. We mark the decl invalid
1815 // to make it clear that this isn't a valid AST.
1816 CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
1817 ClassLoc, CategoryLoc, CategoryName,
1818 IDecl, typeParamList);
1819 CDecl->setInvalidDecl();
1820 CurContext->addDecl(CDecl);
1821
1822 if (!IDecl)
1823 Diag(ClassLoc, diag::err_undef_interface) << ClassName;
1824 return ActOnObjCContainerStartDefinition(CDecl);
1825 }
1826
1827 if (!CategoryName && IDecl->getImplementation()) {
1828 Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName;
1829 Diag(IDecl->getImplementation()->getLocation(),
1830 diag::note_implementation_declared);
1831 }
1832
1833 if (CategoryName) {
1834 /// Check for duplicate interface declaration for this category
1835 if (ObjCCategoryDecl *Previous
1836 = IDecl->FindCategoryDeclaration(CategoryName)) {
1837 // Class extensions can be declared multiple times, categories cannot.
1838 Diag(CategoryLoc, diag::warn_dup_category_def)
1839 << ClassName << CategoryName;
1840 Diag(Previous->getLocation(), diag::note_previous_definition);
1841 }
1842 }
1843
1844 // If we have a type parameter list, check it.
1845 if (typeParamList) {
1846 if (auto prevTypeParamList = IDecl->getTypeParamList()) {
1847 if (checkTypeParamListConsistency(*this, prevTypeParamList, typeParamList,
1848 CategoryName
1849 ? TypeParamListContext::Category
1850 : TypeParamListContext::Extension))
1851 typeParamList = nullptr;
1852 } else {
1853 Diag(typeParamList->getLAngleLoc(),
1854 diag::err_objc_parameterized_category_nonclass)
1855 << (CategoryName != nullptr)
1856 << ClassName
1857 << typeParamList->getSourceRange();
1858
1859 typeParamList = nullptr;
1860 }
1861 }
1862
1863 CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
1864 ClassLoc, CategoryLoc, CategoryName, IDecl,
1865 typeParamList);
1866 // FIXME: PushOnScopeChains?
1867 CurContext->addDecl(CDecl);
1868
1869 // Process the attributes before looking at protocols to ensure that the
1870 // availability attribute is attached to the category to provide availability
1871 // checking for protocol uses.
1872 ProcessDeclAttributeList(TUScope, CDecl, AttrList);
1873 AddPragmaAttributes(TUScope, CDecl);
1874
1875 if (NumProtoRefs) {
1876 diagnoseUseOfProtocols(*this, CDecl, (ObjCProtocolDecl*const*)ProtoRefs,
1877 NumProtoRefs, ProtoLocs);
1878 CDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
1879 ProtoLocs, Context);
1880 // Protocols in the class extension belong to the class.
1881 if (CDecl->IsClassExtension())
1882 IDecl->mergeClassExtensionProtocolList((ObjCProtocolDecl*const*)ProtoRefs,
1883 NumProtoRefs, Context);
1884 }
1885
1886 CheckObjCDeclScope(CDecl);
1887 return ActOnObjCContainerStartDefinition(CDecl);
1888}
1889
1890/// ActOnStartCategoryImplementation - Perform semantic checks on the
1891/// category implementation declaration and build an ObjCCategoryImplDecl
1892/// object.
1893Decl *Sema::ActOnStartCategoryImplementation(
1894 SourceLocation AtCatImplLoc,
1895 IdentifierInfo *ClassName, SourceLocation ClassLoc,
1896 IdentifierInfo *CatName, SourceLocation CatLoc,
1897 const ParsedAttributesView &Attrs) {
1898 ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
1899 ObjCCategoryDecl *CatIDecl = nullptr;
1900 if (IDecl && IDecl->hasDefinition()) {
1901 CatIDecl = IDecl->FindCategoryDeclaration(CatName);
1902 if (!CatIDecl) {
1903 // Category @implementation with no corresponding @interface.
1904 // Create and install one.
1905 CatIDecl = ObjCCategoryDecl::Create(Context, CurContext, AtCatImplLoc,
1906 ClassLoc, CatLoc,
1907 CatName, IDecl,
1908 /*typeParamList=*/nullptr);
1909 CatIDecl->setImplicit();
1910 }
1911 }
1912
1913 ObjCCategoryImplDecl *CDecl =
1914 ObjCCategoryImplDecl::Create(Context, CurContext, CatName, IDecl,
1915 ClassLoc, AtCatImplLoc, CatLoc);
1916 /// Check that class of this category is already completely declared.
1917 if (!IDecl) {
1918 Diag(ClassLoc, diag::err_undef_interface) << ClassName;
1919 CDecl->setInvalidDecl();
1920 } else if (RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
1921 diag::err_undef_interface)) {
1922 CDecl->setInvalidDecl();
1923 }
1924
1925 ProcessDeclAttributeList(TUScope, CDecl, Attrs);
1926 AddPragmaAttributes(TUScope, CDecl);
1927
1928 // FIXME: PushOnScopeChains?
1929 CurContext->addDecl(CDecl);
1930
1931 // If the interface has the objc_runtime_visible attribute, we
1932 // cannot implement a category for it.
1933 if (IDecl && IDecl->hasAttr<ObjCRuntimeVisibleAttr>()) {
1934 Diag(ClassLoc, diag::err_objc_runtime_visible_category)
1935 << IDecl->getDeclName();
1936 }
1937
1938 /// Check that CatName, category name, is not used in another implementation.
1939 if (CatIDecl) {
1940 if (CatIDecl->getImplementation()) {
1941 Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName
1942 << CatName;
1943 Diag(CatIDecl->getImplementation()->getLocation(),
1944 diag::note_previous_definition);
1945 CDecl->setInvalidDecl();
1946 } else {
1947 CatIDecl->setImplementation(CDecl);
1948 // Warn on implementating category of deprecated class under
1949 // -Wdeprecated-implementations flag.
1950 DiagnoseObjCImplementedDeprecations(*this, CatIDecl,
1951 CDecl->getLocation());
1952 }
1953 }
1954
1955 CheckObjCDeclScope(CDecl);
1956 return ActOnObjCContainerStartDefinition(CDecl);
1957}
1958
1959Decl *Sema::ActOnStartClassImplementation(
1960 SourceLocation AtClassImplLoc,
1961 IdentifierInfo *ClassName, SourceLocation ClassLoc,
1962 IdentifierInfo *SuperClassname,
1963 SourceLocation SuperClassLoc,
1964 const ParsedAttributesView &Attrs) {
1965 ObjCInterfaceDecl *IDecl = nullptr;
1966 // Check for another declaration kind with the same name.
1967 NamedDecl *PrevDecl
1968 = LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName,
1969 forRedeclarationInCurContext());
1970 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
1971 Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
1972 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1973 } else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl))) {
1974 // FIXME: This will produce an error if the definition of the interface has
1975 // been imported from a module but is not visible.
1976 RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
1977 diag::warn_undef_interface);
1978 } else {
1979 // We did not find anything with the name ClassName; try to correct for
1980 // typos in the class name.
1981 ObjCInterfaceValidatorCCC CCC{};
1982 TypoCorrection Corrected =
1983 CorrectTypo(DeclarationNameInfo(ClassName, ClassLoc),
1984 LookupOrdinaryName, TUScope, nullptr, CCC, CTK_NonError);
1985 if (Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) {
1986 // Suggest the (potentially) correct interface name. Don't provide a
1987 // code-modification hint or use the typo name for recovery, because
1988 // this is just a warning. The program may actually be correct.
1989 diagnoseTypo(Corrected,
1990 PDiag(diag::warn_undef_interface_suggest) << ClassName,
1991 /*ErrorRecovery*/false);
1992 } else {
1993 Diag(ClassLoc, diag::warn_undef_interface) << ClassName;
1994 }
1995 }
1996
1997 // Check that super class name is valid class name
1998 ObjCInterfaceDecl *SDecl = nullptr;
1999 if (SuperClassname) {
2000 // Check if a different kind of symbol declared in this scope.
2001 PrevDecl = LookupSingleName(TUScope, SuperClassname, SuperClassLoc,
2002 LookupOrdinaryName);
2003 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
2004 Diag(SuperClassLoc, diag::err_redefinition_different_kind)
2005 << SuperClassname;
2006 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2007 } else {
2008 SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
2009 if (SDecl && !SDecl->hasDefinition())
2010 SDecl = nullptr;
2011 if (!SDecl)
2012 Diag(SuperClassLoc, diag::err_undef_superclass)
2013 << SuperClassname << ClassName;
2014 else if (IDecl && !declaresSameEntity(IDecl->getSuperClass(), SDecl)) {
2015 // This implementation and its interface do not have the same
2016 // super class.
2017 Diag(SuperClassLoc, diag::err_conflicting_super_class)
2018 << SDecl->getDeclName();
2019 Diag(SDecl->getLocation(), diag::note_previous_definition);
2020 }
2021 }
2022 }
2023
2024 if (!IDecl) {
2025 // Legacy case of @implementation with no corresponding @interface.
2026 // Build, chain & install the interface decl into the identifier.
2027
2028 // FIXME: Do we support attributes on the @implementation? If so we should
2029 // copy them over.
2030 IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassImplLoc,
2031 ClassName, /*typeParamList=*/nullptr,
2032 /*PrevDecl=*/nullptr, ClassLoc,
2033 true);
2034 AddPragmaAttributes(TUScope, IDecl);
2035 IDecl->startDefinition();
2036 if (SDecl) {
2037 IDecl->setSuperClass(Context.getTrivialTypeSourceInfo(
2038 Context.getObjCInterfaceType(SDecl),
2039 SuperClassLoc));
2040 IDecl->setEndOfDefinitionLoc(SuperClassLoc);
2041 } else {
2042 IDecl->setEndOfDefinitionLoc(ClassLoc);
2043 }
2044
2045 PushOnScopeChains(IDecl, TUScope);
2046 } else {
2047 // Mark the interface as being completed, even if it was just as
2048 // @class ....;
2049 // declaration; the user cannot reopen it.
2050 if (!IDecl->hasDefinition())
2051 IDecl->startDefinition();
2052 }
2053
2054 ObjCImplementationDecl* IMPDecl =
2055 ObjCImplementationDecl::Create(Context, CurContext, IDecl, SDecl,
2056 ClassLoc, AtClassImplLoc, SuperClassLoc);
2057
2058 ProcessDeclAttributeList(TUScope, IMPDecl, Attrs);
2059 AddPragmaAttributes(TUScope, IMPDecl);
2060
2061 if (CheckObjCDeclScope(IMPDecl))
2062 return ActOnObjCContainerStartDefinition(IMPDecl);
2063
2064 // Check that there is no duplicate implementation of this class.
2065 if (IDecl->getImplementation()) {
2066 // FIXME: Don't leak everything!
2067 Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName;
2068 Diag(IDecl->getImplementation()->getLocation(),
2069 diag::note_previous_definition);
2070 IMPDecl->setInvalidDecl();
2071 } else { // add it to the list.
2072 IDecl->setImplementation(IMPDecl);
2073 PushOnScopeChains(IMPDecl, TUScope);
2074 // Warn on implementating deprecated class under
2075 // -Wdeprecated-implementations flag.
2076 DiagnoseObjCImplementedDeprecations(*this, IDecl, IMPDecl->getLocation());
2077 }
2078
2079 // If the superclass has the objc_runtime_visible attribute, we
2080 // cannot implement a subclass of it.
2081 if (IDecl->getSuperClass() &&
2082 IDecl->getSuperClass()->hasAttr<ObjCRuntimeVisibleAttr>()) {
2083 Diag(ClassLoc, diag::err_objc_runtime_visible_subclass)
2084 << IDecl->getDeclName()
2085 << IDecl->getSuperClass()->getDeclName();
2086 }
2087
2088 return ActOnObjCContainerStartDefinition(IMPDecl);
2089}
2090
2091Sema::DeclGroupPtrTy
2092Sema::ActOnFinishObjCImplementation(Decl *ObjCImpDecl, ArrayRef<Decl *> Decls) {
2093 SmallVector<Decl *, 64> DeclsInGroup;
2094 DeclsInGroup.reserve(Decls.size() + 1);
2095
2096 for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
2097 Decl *Dcl = Decls[i];
2098 if (!Dcl)
2099 continue;
2100 if (Dcl->getDeclContext()->isFileContext())
2101 Dcl->setTopLevelDeclInObjCContainer();
2102 DeclsInGroup.push_back(Dcl);
2103 }
2104
2105 DeclsInGroup.push_back(ObjCImpDecl);
2106
2107 return BuildDeclaratorGroup(DeclsInGroup);
2108}
2109
2110void Sema::CheckImplementationIvars(ObjCImplementationDecl *ImpDecl,
2111 ObjCIvarDecl **ivars, unsigned numIvars,
2112 SourceLocation RBrace) {
2113 assert(ImpDecl && "missing implementation decl")((ImpDecl && "missing implementation decl") ? static_cast
<void> (0) : __assert_fail ("ImpDecl && \"missing implementation decl\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 2113, __PRETTY_FUNCTION__))
;
2114 ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface();
2115 if (!IDecl)
2116 return;
2117 /// Check case of non-existing \@interface decl.
2118 /// (legacy objective-c \@implementation decl without an \@interface decl).
2119 /// Add implementations's ivar to the synthesize class's ivar list.
2120 if (IDecl->isImplicitInterfaceDecl()) {
2121 IDecl->setEndOfDefinitionLoc(RBrace);
2122 // Add ivar's to class's DeclContext.
2123 for (unsigned i = 0, e = numIvars; i != e; ++i) {
2124 ivars[i]->setLexicalDeclContext(ImpDecl);
2125 IDecl->makeDeclVisibleInContext(ivars[i]);
2126 ImpDecl->addDecl(ivars[i]);
2127 }
2128
2129 return;
2130 }
2131 // If implementation has empty ivar list, just return.
2132 if (numIvars == 0)
2133 return;
2134
2135 assert(ivars && "missing @implementation ivars")((ivars && "missing @implementation ivars") ? static_cast
<void> (0) : __assert_fail ("ivars && \"missing @implementation ivars\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 2135, __PRETTY_FUNCTION__))
;
2136 if (LangOpts.ObjCRuntime.isNonFragile()) {
2137 if (ImpDecl->getSuperClass())
2138 Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use);
2139 for (unsigned i = 0; i < numIvars; i++) {
2140 ObjCIvarDecl* ImplIvar = ivars[i];
2141 if (const ObjCIvarDecl *ClsIvar =
2142 IDecl->getIvarDecl(ImplIvar->getIdentifier())) {
2143 Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
2144 Diag(ClsIvar->getLocation(), diag::note_previous_definition);
2145 continue;
2146 }
2147 // Check class extensions (unnamed categories) for duplicate ivars.
2148 for (const auto *CDecl : IDecl->visible_extensions()) {
2149 if (const ObjCIvarDecl *ClsExtIvar =
2150 CDecl->getIvarDecl(ImplIvar->getIdentifier())) {
2151 Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
2152 Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
2153 continue;
2154 }
2155 }
2156 // Instance ivar to Implementation's DeclContext.
2157 ImplIvar->setLexicalDeclContext(ImpDecl);
2158 IDecl->makeDeclVisibleInContext(ImplIvar);
2159 ImpDecl->addDecl(ImplIvar);
2160 }
2161 return;
2162 }
2163 // Check interface's Ivar list against those in the implementation.
2164 // names and types must match.
2165 //
2166 unsigned j = 0;
2167 ObjCInterfaceDecl::ivar_iterator
2168 IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end();
2169 for (; numIvars > 0 && IVI != IVE; ++IVI) {
2170 ObjCIvarDecl* ImplIvar = ivars[j++];
2171 ObjCIvarDecl* ClsIvar = *IVI;
2172 assert (ImplIvar && "missing implementation ivar")((ImplIvar && "missing implementation ivar") ? static_cast
<void> (0) : __assert_fail ("ImplIvar && \"missing implementation ivar\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 2172, __PRETTY_FUNCTION__))
;
2173 assert (ClsIvar && "missing class ivar")((ClsIvar && "missing class ivar") ? static_cast<void
> (0) : __assert_fail ("ClsIvar && \"missing class ivar\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 2173, __PRETTY_FUNCTION__))
;
2174
2175 // First, make sure the types match.
2176 if (!Context.hasSameType(ImplIvar->getType(), ClsIvar->getType())) {
2177 Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type)
2178 << ImplIvar->getIdentifier()
2179 << ImplIvar->getType() << ClsIvar->getType();
2180 Diag(ClsIvar->getLocation(), diag::note_previous_definition);
2181 } else if (ImplIvar->isBitField() && ClsIvar->isBitField() &&
2182 ImplIvar->getBitWidthValue(Context) !=
2183 ClsIvar->getBitWidthValue(Context)) {
2184 Diag(ImplIvar->getBitWidth()->getBeginLoc(),
2185 diag::err_conflicting_ivar_bitwidth)
2186 << ImplIvar->getIdentifier();
2187 Diag(ClsIvar->getBitWidth()->getBeginLoc(),
2188 diag::note_previous_definition);
2189 }
2190 // Make sure the names are identical.
2191 if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) {
2192 Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name)
2193 << ImplIvar->getIdentifier() << ClsIvar->getIdentifier();
2194 Diag(ClsIvar->getLocation(), diag::note_previous_definition);
2195 }
2196 --numIvars;
2197 }
2198
2199 if (numIvars > 0)
2200 Diag(ivars[j]->getLocation(), diag::err_inconsistent_ivar_count);
2201 else if (IVI != IVE)
2202 Diag(IVI->getLocation(), diag::err_inconsistent_ivar_count);
2203}
2204
2205static void WarnUndefinedMethod(Sema &S, SourceLocation ImpLoc,
2206 ObjCMethodDecl *method,
2207 bool &IncompleteImpl,
2208 unsigned DiagID,
2209 NamedDecl *NeededFor = nullptr) {
2210 // No point warning no definition of method which is 'unavailable'.
2211 if (method->getAvailability() == AR_Unavailable)
2212 return;
2213
2214 // FIXME: For now ignore 'IncompleteImpl'.
2215 // Previously we grouped all unimplemented methods under a single
2216 // warning, but some users strongly voiced that they would prefer
2217 // separate warnings. We will give that approach a try, as that
2218 // matches what we do with protocols.
2219 {
2220 const Sema::SemaDiagnosticBuilder &B = S.Diag(ImpLoc, DiagID);
2221 B << method;
2222 if (NeededFor)
2223 B << NeededFor;
2224 }
2225
2226 // Issue a note to the original declaration.
2227 SourceLocation MethodLoc = method->getBeginLoc();
2228 if (MethodLoc.isValid())
2229 S.Diag(MethodLoc, diag::note_method_declared_at) << method;
2230}
2231
2232/// Determines if type B can be substituted for type A. Returns true if we can
2233/// guarantee that anything that the user will do to an object of type A can
2234/// also be done to an object of type B. This is trivially true if the two
2235/// types are the same, or if B is a subclass of A. It becomes more complex
2236/// in cases where protocols are involved.
2237///
2238/// Object types in Objective-C describe the minimum requirements for an
2239/// object, rather than providing a complete description of a type. For
2240/// example, if A is a subclass of B, then B* may refer to an instance of A.
2241/// The principle of substitutability means that we may use an instance of A
2242/// anywhere that we may use an instance of B - it will implement all of the
2243/// ivars of B and all of the methods of B.
2244///
2245/// This substitutability is important when type checking methods, because
2246/// the implementation may have stricter type definitions than the interface.
2247/// The interface specifies minimum requirements, but the implementation may
2248/// have more accurate ones. For example, a method may privately accept
2249/// instances of B, but only publish that it accepts instances of A. Any
2250/// object passed to it will be type checked against B, and so will implicitly
2251/// by a valid A*. Similarly, a method may return a subclass of the class that
2252/// it is declared as returning.
2253///
2254/// This is most important when considering subclassing. A method in a
2255/// subclass must accept any object as an argument that its superclass's
2256/// implementation accepts. It may, however, accept a more general type
2257/// without breaking substitutability (i.e. you can still use the subclass
2258/// anywhere that you can use the superclass, but not vice versa). The
2259/// converse requirement applies to return types: the return type for a
2260/// subclass method must be a valid object of the kind that the superclass
2261/// advertises, but it may be specified more accurately. This avoids the need
2262/// for explicit down-casting by callers.
2263///
2264/// Note: This is a stricter requirement than for assignment.
2265static bool isObjCTypeSubstitutable(ASTContext &Context,
2266 const ObjCObjectPointerType *A,
2267 const ObjCObjectPointerType *B,
2268 bool rejectId) {
2269 // Reject a protocol-unqualified id.
2270 if (rejectId && B->isObjCIdType()) return false;
2271
2272 // If B is a qualified id, then A must also be a qualified id and it must
2273 // implement all of the protocols in B. It may not be a qualified class.
2274 // For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a
2275 // stricter definition so it is not substitutable for id<A>.
2276 if (B->isObjCQualifiedIdType()) {
2277 return A->isObjCQualifiedIdType() &&
2278 Context.ObjCQualifiedIdTypesAreCompatible(QualType(A, 0),
2279 QualType(B,0),
2280 false);
2281 }
2282
2283 /*
2284 // id is a special type that bypasses type checking completely. We want a
2285 // warning when it is used in one place but not another.
2286 if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false;
2287
2288
2289 // If B is a qualified id, then A must also be a qualified id (which it isn't
2290 // if we've got this far)
2291 if (B->isObjCQualifiedIdType()) return false;
2292 */
2293
2294 // Now we know that A and B are (potentially-qualified) class types. The
2295 // normal rules for assignment apply.
2296 return Context.canAssignObjCInterfaces(A, B);
2297}
2298
2299static SourceRange getTypeRange(TypeSourceInfo *TSI) {
2300 return (TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange());
2301}
2302
2303/// Determine whether two set of Objective-C declaration qualifiers conflict.
2304static bool objcModifiersConflict(Decl::ObjCDeclQualifier x,
2305 Decl::ObjCDeclQualifier y) {
2306 return (x & ~Decl::OBJC_TQ_CSNullability) !=
2307 (y & ~Decl::OBJC_TQ_CSNullability);
2308}
2309
2310static bool CheckMethodOverrideReturn(Sema &S,
2311 ObjCMethodDecl *MethodImpl,
2312 ObjCMethodDecl *MethodDecl,
2313 bool IsProtocolMethodDecl,
2314 bool IsOverridingMode,
2315 bool Warn) {
2316 if (IsProtocolMethodDecl &&
2317 objcModifiersConflict(MethodDecl->getObjCDeclQualifier(),
2318 MethodImpl->getObjCDeclQualifier())) {
2319 if (Warn) {
2320 S.Diag(MethodImpl->getLocation(),
2321 (IsOverridingMode
2322 ? diag::warn_conflicting_overriding_ret_type_modifiers
2323 : diag::warn_conflicting_ret_type_modifiers))
2324 << MethodImpl->getDeclName()
2325 << MethodImpl->getReturnTypeSourceRange();
2326 S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration)
2327 << MethodDecl->getReturnTypeSourceRange();
2328 }
2329 else
2330 return false;
2331 }
2332 if (Warn && IsOverridingMode &&
2333 !isa<ObjCImplementationDecl>(MethodImpl->getDeclContext()) &&
2334 !S.Context.hasSameNullabilityTypeQualifier(MethodImpl->getReturnType(),
2335 MethodDecl->getReturnType(),
2336 false)) {
2337 auto nullabilityMethodImpl =
2338 *MethodImpl->getReturnType()->getNullability(S.Context);
2339 auto nullabilityMethodDecl =
2340 *MethodDecl->getReturnType()->getNullability(S.Context);
2341 S.Diag(MethodImpl->getLocation(),
2342 diag::warn_conflicting_nullability_attr_overriding_ret_types)
2343 << DiagNullabilityKind(
2344 nullabilityMethodImpl,
2345 ((MethodImpl->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2346 != 0))
2347 << DiagNullabilityKind(
2348 nullabilityMethodDecl,
2349 ((MethodDecl->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2350 != 0));
2351 S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
2352 }
2353
2354 if (S.Context.hasSameUnqualifiedType(MethodImpl->getReturnType(),
2355 MethodDecl->getReturnType()))
2356 return true;
2357 if (!Warn)
2358 return false;
2359
2360 unsigned DiagID =
2361 IsOverridingMode ? diag::warn_conflicting_overriding_ret_types
2362 : diag::warn_conflicting_ret_types;
2363
2364 // Mismatches between ObjC pointers go into a different warning
2365 // category, and sometimes they're even completely whitelisted.
2366 if (const ObjCObjectPointerType *ImplPtrTy =
2367 MethodImpl->getReturnType()->getAs<ObjCObjectPointerType>()) {
2368 if (const ObjCObjectPointerType *IfacePtrTy =
2369 MethodDecl->getReturnType()->getAs<ObjCObjectPointerType>()) {
2370 // Allow non-matching return types as long as they don't violate
2371 // the principle of substitutability. Specifically, we permit
2372 // return types that are subclasses of the declared return type,
2373 // or that are more-qualified versions of the declared type.
2374 if (isObjCTypeSubstitutable(S.Context, IfacePtrTy, ImplPtrTy, false))
2375 return false;
2376
2377 DiagID =
2378 IsOverridingMode ? diag::warn_non_covariant_overriding_ret_types
2379 : diag::warn_non_covariant_ret_types;
2380 }
2381 }
2382
2383 S.Diag(MethodImpl->getLocation(), DiagID)
2384 << MethodImpl->getDeclName() << MethodDecl->getReturnType()
2385 << MethodImpl->getReturnType()
2386 << MethodImpl->getReturnTypeSourceRange();
2387 S.Diag(MethodDecl->getLocation(), IsOverridingMode
2388 ? diag::note_previous_declaration
2389 : diag::note_previous_definition)
2390 << MethodDecl->getReturnTypeSourceRange();
2391 return false;
2392}
2393
2394static bool CheckMethodOverrideParam(Sema &S,
2395 ObjCMethodDecl *MethodImpl,
2396 ObjCMethodDecl *MethodDecl,
2397 ParmVarDecl *ImplVar,
2398 ParmVarDecl *IfaceVar,
2399 bool IsProtocolMethodDecl,
2400 bool IsOverridingMode,
2401 bool Warn) {
2402 if (IsProtocolMethodDecl &&
2403 objcModifiersConflict(ImplVar->getObjCDeclQualifier(),
2404 IfaceVar->getObjCDeclQualifier())) {
2405 if (Warn) {
2406 if (IsOverridingMode)
2407 S.Diag(ImplVar->getLocation(),
2408 diag::warn_conflicting_overriding_param_modifiers)
2409 << getTypeRange(ImplVar->getTypeSourceInfo())
2410 << MethodImpl->getDeclName();
2411 else S.Diag(ImplVar->getLocation(),
2412 diag::warn_conflicting_param_modifiers)
2413 << getTypeRange(ImplVar->getTypeSourceInfo())
2414 << MethodImpl->getDeclName();
2415 S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration)
2416 << getTypeRange(IfaceVar->getTypeSourceInfo());
2417 }
2418 else
2419 return false;
2420 }
2421
2422 QualType ImplTy = ImplVar->getType();
2423 QualType IfaceTy = IfaceVar->getType();
2424 if (Warn && IsOverridingMode &&
2425 !isa<ObjCImplementationDecl>(MethodImpl->getDeclContext()) &&
2426 !S.Context.hasSameNullabilityTypeQualifier(ImplTy, IfaceTy, true)) {
2427 S.Diag(ImplVar->getLocation(),
2428 diag::warn_conflicting_nullability_attr_overriding_param_types)
2429 << DiagNullabilityKind(
2430 *ImplTy->getNullability(S.Context),
2431 ((ImplVar->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2432 != 0))
2433 << DiagNullabilityKind(
2434 *IfaceTy->getNullability(S.Context),
2435 ((IfaceVar->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2436 != 0));
2437 S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration);
2438 }
2439 if (S.Context.hasSameUnqualifiedType(ImplTy, IfaceTy))
2440 return true;
2441
2442 if (!Warn)
2443 return false;
2444 unsigned DiagID =
2445 IsOverridingMode ? diag::warn_conflicting_overriding_param_types
2446 : diag::warn_conflicting_param_types;
2447
2448 // Mismatches between ObjC pointers go into a different warning
2449 // category, and sometimes they're even completely whitelisted.
2450 if (const ObjCObjectPointerType *ImplPtrTy =
2451 ImplTy->getAs<ObjCObjectPointerType>()) {
2452 if (const ObjCObjectPointerType *IfacePtrTy =
2453 IfaceTy->getAs<ObjCObjectPointerType>()) {
2454 // Allow non-matching argument types as long as they don't
2455 // violate the principle of substitutability. Specifically, the
2456 // implementation must accept any objects that the superclass
2457 // accepts, however it may also accept others.
2458 if (isObjCTypeSubstitutable(S.Context, ImplPtrTy, IfacePtrTy, true))
2459 return false;
2460
2461 DiagID =
2462 IsOverridingMode ? diag::warn_non_contravariant_overriding_param_types
2463 : diag::warn_non_contravariant_param_types;
2464 }
2465 }
2466
2467 S.Diag(ImplVar->getLocation(), DiagID)
2468 << getTypeRange(ImplVar->getTypeSourceInfo())
2469 << MethodImpl->getDeclName() << IfaceTy << ImplTy;
2470 S.Diag(IfaceVar->getLocation(),
2471 (IsOverridingMode ? diag::note_previous_declaration
2472 : diag::note_previous_definition))
2473 << getTypeRange(IfaceVar->getTypeSourceInfo());
2474 return false;
2475}
2476
2477/// In ARC, check whether the conventional meanings of the two methods
2478/// match. If they don't, it's a hard error.
2479static bool checkMethodFamilyMismatch(Sema &S, ObjCMethodDecl *impl,
2480 ObjCMethodDecl *decl) {
2481 ObjCMethodFamily implFamily = impl->getMethodFamily();
2482 ObjCMethodFamily declFamily = decl->getMethodFamily();
2483 if (implFamily == declFamily) return false;
2484
2485 // Since conventions are sorted by selector, the only possibility is
2486 // that the types differ enough to cause one selector or the other
2487 // to fall out of the family.
2488 assert(implFamily == OMF_None || declFamily == OMF_None)((implFamily == OMF_None || declFamily == OMF_None) ? static_cast
<void> (0) : __assert_fail ("implFamily == OMF_None || declFamily == OMF_None"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 2488, __PRETTY_FUNCTION__))
;
2489
2490 // No further diagnostics required on invalid declarations.
2491 if (impl->isInvalidDecl() || decl->isInvalidDecl()) return true;
2492
2493 const ObjCMethodDecl *unmatched = impl;
2494 ObjCMethodFamily family = declFamily;
2495 unsigned errorID = diag::err_arc_lost_method_convention;
2496 unsigned noteID = diag::note_arc_lost_method_convention;
2497 if (declFamily == OMF_None) {
2498 unmatched = decl;
2499 family = implFamily;
2500 errorID = diag::err_arc_gained_method_convention;
2501 noteID = diag::note_arc_gained_method_convention;
2502 }
2503
2504 // Indexes into a %select clause in the diagnostic.
2505 enum FamilySelector {
2506 F_alloc, F_copy, F_mutableCopy = F_copy, F_init, F_new
2507 };
2508 FamilySelector familySelector = FamilySelector();
2509
2510 switch (family) {
2511 case OMF_None: llvm_unreachable("logic error, no method convention")::llvm::llvm_unreachable_internal("logic error, no method convention"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 2511)
;
2512 case OMF_retain:
2513 case OMF_release:
2514 case OMF_autorelease:
2515 case OMF_dealloc:
2516 case OMF_finalize:
2517 case OMF_retainCount:
2518 case OMF_self:
2519 case OMF_initialize:
2520 case OMF_performSelector:
2521 // Mismatches for these methods don't change ownership
2522 // conventions, so we don't care.
2523 return false;
2524
2525 case OMF_init: familySelector = F_init; break;
2526 case OMF_alloc: familySelector = F_alloc; break;
2527 case OMF_copy: familySelector = F_copy; break;
2528 case OMF_mutableCopy: familySelector = F_mutableCopy; break;
2529 case OMF_new: familySelector = F_new; break;
2530 }
2531
2532 enum ReasonSelector { R_NonObjectReturn, R_UnrelatedReturn };
2533 ReasonSelector reasonSelector;
2534
2535 // The only reason these methods don't fall within their families is
2536 // due to unusual result types.
2537 if (unmatched->getReturnType()->isObjCObjectPointerType()) {
2538 reasonSelector = R_UnrelatedReturn;
2539 } else {
2540 reasonSelector = R_NonObjectReturn;
2541 }
2542
2543 S.Diag(impl->getLocation(), errorID) << int(familySelector) << int(reasonSelector);
2544 S.Diag(decl->getLocation(), noteID) << int(familySelector) << int(reasonSelector);
2545
2546 return true;
2547}
2548
2549void Sema::WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethodDecl,
2550 ObjCMethodDecl *MethodDecl,
2551 bool IsProtocolMethodDecl) {
2552 if (getLangOpts().ObjCAutoRefCount &&
2553 checkMethodFamilyMismatch(*this, ImpMethodDecl, MethodDecl))
2554 return;
2555
2556 CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
2557 IsProtocolMethodDecl, false,
2558 true);
2559
2560 for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
2561 IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
2562 EF = MethodDecl->param_end();
2563 IM != EM && IF != EF; ++IM, ++IF) {
2564 CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, *IM, *IF,
2565 IsProtocolMethodDecl, false, true);
2566 }
2567
2568 if (ImpMethodDecl->isVariadic() != MethodDecl->isVariadic()) {
2569 Diag(ImpMethodDecl->getLocation(),
2570 diag::warn_conflicting_variadic);
2571 Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
2572 }
2573}
2574
2575void Sema::CheckConflictingOverridingMethod(ObjCMethodDecl *Method,
2576 ObjCMethodDecl *Overridden,
2577 bool IsProtocolMethodDecl) {
2578
2579 CheckMethodOverrideReturn(*this, Method, Overridden,
2580 IsProtocolMethodDecl, true,
2581 true);
2582
2583 for (ObjCMethodDecl::param_iterator IM = Method->param_begin(),
2584 IF = Overridden->param_begin(), EM = Method->param_end(),
2585 EF = Overridden->param_end();
2586 IM != EM && IF != EF; ++IM, ++IF) {
2587 CheckMethodOverrideParam(*this, Method, Overridden, *IM, *IF,
2588 IsProtocolMethodDecl, true, true);
2589 }
2590
2591 if (Method->isVariadic() != Overridden->isVariadic()) {
2592 Diag(Method->getLocation(),
2593 diag::warn_conflicting_overriding_variadic);
2594 Diag(Overridden->getLocation(), diag::note_previous_declaration);
2595 }
2596}
2597
2598/// WarnExactTypedMethods - This routine issues a warning if method
2599/// implementation declaration matches exactly that of its declaration.
2600void Sema::WarnExactTypedMethods(ObjCMethodDecl *ImpMethodDecl,
2601 ObjCMethodDecl *MethodDecl,
2602 bool IsProtocolMethodDecl) {
2603 // don't issue warning when protocol method is optional because primary
2604 // class is not required to implement it and it is safe for protocol
2605 // to implement it.
2606 if (MethodDecl->getImplementationControl() == ObjCMethodDecl::Optional)
2607 return;
2608 // don't issue warning when primary class's method is
2609 // depecated/unavailable.
2610 if (MethodDecl->hasAttr<UnavailableAttr>() ||
2611 MethodDecl->hasAttr<DeprecatedAttr>())
2612 return;
2613
2614 bool match = CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
2615 IsProtocolMethodDecl, false, false);
2616 if (match)
2617 for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
2618 IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
2619 EF = MethodDecl->param_end();
2620 IM != EM && IF != EF; ++IM, ++IF) {
2621 match = CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl,
2622 *IM, *IF,
2623 IsProtocolMethodDecl, false, false);
2624 if (!match)
2625 break;
2626 }
2627 if (match)
2628 match = (ImpMethodDecl->isVariadic() == MethodDecl->isVariadic());
2629 if (match)
2630 match = !(MethodDecl->isClassMethod() &&
2631 MethodDecl->getSelector() == GetNullarySelector("load", Context));
2632
2633 if (match) {
2634 Diag(ImpMethodDecl->getLocation(),
2635 diag::warn_category_method_impl_match);
2636 Diag(MethodDecl->getLocation(), diag::note_method_declared_at)
2637 << MethodDecl->getDeclName();
2638 }
2639}
2640
2641/// FIXME: Type hierarchies in Objective-C can be deep. We could most likely
2642/// improve the efficiency of selector lookups and type checking by associating
2643/// with each protocol / interface / category the flattened instance tables. If
2644/// we used an immutable set to keep the table then it wouldn't add significant
2645/// memory cost and it would be handy for lookups.
2646
2647typedef llvm::DenseSet<IdentifierInfo*> ProtocolNameSet;
2648typedef std::unique_ptr<ProtocolNameSet> LazyProtocolNameSet;
2649
2650static void findProtocolsWithExplicitImpls(const ObjCProtocolDecl *PDecl,
2651 ProtocolNameSet &PNS) {
2652 if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>())
2653 PNS.insert(PDecl->getIdentifier());
2654 for (const auto *PI : PDecl->protocols())
2655 findProtocolsWithExplicitImpls(PI, PNS);
2656}
2657
2658/// Recursively populates a set with all conformed protocols in a class
2659/// hierarchy that have the 'objc_protocol_requires_explicit_implementation'
2660/// attribute.
2661static void findProtocolsWithExplicitImpls(const ObjCInterfaceDecl *Super,
2662 ProtocolNameSet &PNS) {
2663 if (!Super)
2664 return;
2665
2666 for (const auto *I : Super->all_referenced_protocols())
2667 findProtocolsWithExplicitImpls(I, PNS);
2668
2669 findProtocolsWithExplicitImpls(Super->getSuperClass(), PNS);
2670}
2671
2672/// CheckProtocolMethodDefs - This routine checks unimplemented methods
2673/// Declared in protocol, and those referenced by it.
2674static void CheckProtocolMethodDefs(Sema &S,
2675 SourceLocation ImpLoc,
2676 ObjCProtocolDecl *PDecl,
2677 bool& IncompleteImpl,
2678 const Sema::SelectorSet &InsMap,
2679 const Sema::SelectorSet &ClsMap,
2680 ObjCContainerDecl *CDecl,
2681 LazyProtocolNameSet &ProtocolsExplictImpl) {
2682 ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl);
2683 ObjCInterfaceDecl *IDecl = C ? C->getClassInterface()
2684 : dyn_cast<ObjCInterfaceDecl>(CDecl);
2685 assert (IDecl && "CheckProtocolMethodDefs - IDecl is null")((IDecl && "CheckProtocolMethodDefs - IDecl is null")
? static_cast<void> (0) : __assert_fail ("IDecl && \"CheckProtocolMethodDefs - IDecl is null\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 2685, __PRETTY_FUNCTION__))
;
2686
2687 ObjCInterfaceDecl *Super = IDecl->getSuperClass();
2688 ObjCInterfaceDecl *NSIDecl = nullptr;
2689
2690 // If this protocol is marked 'objc_protocol_requires_explicit_implementation'
2691 // then we should check if any class in the super class hierarchy also
2692 // conforms to this protocol, either directly or via protocol inheritance.
2693 // If so, we can skip checking this protocol completely because we
2694 // know that a parent class already satisfies this protocol.
2695 //
2696 // Note: we could generalize this logic for all protocols, and merely
2697 // add the limit on looking at the super class chain for just
2698 // specially marked protocols. This may be a good optimization. This
2699 // change is restricted to 'objc_protocol_requires_explicit_implementation'
2700 // protocols for now for controlled evaluation.
2701 if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>()) {
2702 if (!ProtocolsExplictImpl) {
2703 ProtocolsExplictImpl.reset(new ProtocolNameSet);
2704 findProtocolsWithExplicitImpls(Super, *ProtocolsExplictImpl);
2705 }
2706 if (ProtocolsExplictImpl->find(PDecl->getIdentifier()) !=
2707 ProtocolsExplictImpl->end())
2708 return;
2709
2710 // If no super class conforms to the protocol, we should not search
2711 // for methods in the super class to implicitly satisfy the protocol.
2712 Super = nullptr;
2713 }
2714
2715 if (S.getLangOpts().ObjCRuntime.isNeXTFamily()) {
2716 // check to see if class implements forwardInvocation method and objects
2717 // of this class are derived from 'NSProxy' so that to forward requests
2718 // from one object to another.
2719 // Under such conditions, which means that every method possible is
2720 // implemented in the class, we should not issue "Method definition not
2721 // found" warnings.
2722 // FIXME: Use a general GetUnarySelector method for this.
2723 IdentifierInfo* II = &S.Context.Idents.get("forwardInvocation");
2724 Selector fISelector = S.Context.Selectors.getSelector(1, &II);
2725 if (InsMap.count(fISelector))
2726 // Is IDecl derived from 'NSProxy'? If so, no instance methods
2727 // need be implemented in the implementation.
2728 NSIDecl = IDecl->lookupInheritedClass(&S.Context.Idents.get("NSProxy"));
2729 }
2730
2731 // If this is a forward protocol declaration, get its definition.
2732 if (!PDecl->isThisDeclarationADefinition() &&
2733 PDecl->getDefinition())
2734 PDecl = PDecl->getDefinition();
2735
2736 // If a method lookup fails locally we still need to look and see if
2737 // the method was implemented by a base class or an inherited
2738 // protocol. This lookup is slow, but occurs rarely in correct code
2739 // and otherwise would terminate in a warning.
2740
2741 // check unimplemented instance methods.
2742 if (!NSIDecl)
2743 for (auto *method : PDecl->instance_methods()) {
2744 if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
2745 !method->isPropertyAccessor() &&
2746 !InsMap.count(method->getSelector()) &&
2747 (!Super || !Super->lookupMethod(method->getSelector(),
2748 true /* instance */,
2749 false /* shallowCategory */,
2750 true /* followsSuper */,
2751 nullptr /* category */))) {
2752 // If a method is not implemented in the category implementation but
2753 // has been declared in its primary class, superclass,
2754 // or in one of their protocols, no need to issue the warning.
2755 // This is because method will be implemented in the primary class
2756 // or one of its super class implementation.
2757
2758 // Ugly, but necessary. Method declared in protocol might have
2759 // have been synthesized due to a property declared in the class which
2760 // uses the protocol.
2761 if (ObjCMethodDecl *MethodInClass =
2762 IDecl->lookupMethod(method->getSelector(),
2763 true /* instance */,
2764 true /* shallowCategoryLookup */,
2765 false /* followSuper */))
2766 if (C || MethodInClass->isPropertyAccessor())
2767 continue;
2768 unsigned DIAG = diag::warn_unimplemented_protocol_method;
2769 if (!S.Diags.isIgnored(DIAG, ImpLoc)) {
2770 WarnUndefinedMethod(S, ImpLoc, method, IncompleteImpl, DIAG,
2771 PDecl);
2772 }
2773 }
2774 }
2775 // check unimplemented class methods
2776 for (auto *method : PDecl->class_methods()) {
2777 if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
2778 !ClsMap.count(method->getSelector()) &&
2779 (!Super || !Super->lookupMethod(method->getSelector(),
2780 false /* class method */,
2781 false /* shallowCategoryLookup */,
2782 true /* followSuper */,
2783 nullptr /* category */))) {
2784 // See above comment for instance method lookups.
2785 if (C && IDecl->lookupMethod(method->getSelector(),
2786 false /* class */,
2787 true /* shallowCategoryLookup */,
2788 false /* followSuper */))
2789 continue;
2790
2791 unsigned DIAG = diag::warn_unimplemented_protocol_method;
2792 if (!S.Diags.isIgnored(DIAG, ImpLoc)) {
2793 WarnUndefinedMethod(S, ImpLoc, method, IncompleteImpl, DIAG, PDecl);
2794 }
2795 }
2796 }
2797 // Check on this protocols's referenced protocols, recursively.
2798 for (auto *PI : PDecl->protocols())
2799 CheckProtocolMethodDefs(S, ImpLoc, PI, IncompleteImpl, InsMap, ClsMap,
2800 CDecl, ProtocolsExplictImpl);
2801}
2802
2803/// MatchAllMethodDeclarations - Check methods declared in interface
2804/// or protocol against those declared in their implementations.
2805///
2806void Sema::MatchAllMethodDeclarations(const SelectorSet &InsMap,
2807 const SelectorSet &ClsMap,
2808 SelectorSet &InsMapSeen,
2809 SelectorSet &ClsMapSeen,
2810 ObjCImplDecl* IMPDecl,
2811 ObjCContainerDecl* CDecl,
2812 bool &IncompleteImpl,
2813 bool ImmediateClass,
2814 bool WarnCategoryMethodImpl) {
2815 // Check and see if instance methods in class interface have been
2816 // implemented in the implementation class. If so, their types match.
2817 for (auto *I : CDecl->instance_methods()) {
2818 if (!InsMapSeen.insert(I->getSelector()).second)
2819 continue;
2820 if (!I->isPropertyAccessor() &&
2821 !InsMap.count(I->getSelector())) {
2822 if (ImmediateClass)
2823 WarnUndefinedMethod(*this, IMPDecl->getLocation(), I, IncompleteImpl,
2824 diag::warn_undef_method_impl);
2825 continue;
2826 } else {
2827 ObjCMethodDecl *ImpMethodDecl =
2828 IMPDecl->getInstanceMethod(I->getSelector());
2829 assert(CDecl->getInstanceMethod(I->getSelector(), true/*AllowHidden*/) &&((CDecl->getInstanceMethod(I->getSelector(), true ) &&
"Expected to find the method through lookup as well") ? static_cast
<void> (0) : __assert_fail ("CDecl->getInstanceMethod(I->getSelector(), true ) && \"Expected to find the method through lookup as well\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 2830, __PRETTY_FUNCTION__))
2830 "Expected to find the method through lookup as well")((CDecl->getInstanceMethod(I->getSelector(), true ) &&
"Expected to find the method through lookup as well") ? static_cast
<void> (0) : __assert_fail ("CDecl->getInstanceMethod(I->getSelector(), true ) && \"Expected to find the method through lookup as well\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 2830, __PRETTY_FUNCTION__))
;
2831 // ImpMethodDecl may be null as in a @dynamic property.
2832 if (ImpMethodDecl) {
2833 if (!WarnCategoryMethodImpl)
2834 WarnConflictingTypedMethods(ImpMethodDecl, I,
2835 isa<ObjCProtocolDecl>(CDecl));
2836 else if (!I->isPropertyAccessor())
2837 WarnExactTypedMethods(ImpMethodDecl, I, isa<ObjCProtocolDecl>(CDecl));
2838 }
2839 }
2840 }
2841
2842 // Check and see if class methods in class interface have been
2843 // implemented in the implementation class. If so, their types match.
2844 for (auto *I : CDecl->class_methods()) {
2845 if (!ClsMapSeen.insert(I->getSelector()).second)
2846 continue;
2847 if (!I->isPropertyAccessor() &&
2848 !ClsMap.count(I->getSelector())) {
2849 if (ImmediateClass)
2850 WarnUndefinedMethod(*this, IMPDecl->getLocation(), I, IncompleteImpl,
2851 diag::warn_undef_method_impl);
2852 } else {
2853 ObjCMethodDecl *ImpMethodDecl =
2854 IMPDecl->getClassMethod(I->getSelector());
2855 assert(CDecl->getClassMethod(I->getSelector(), true/*AllowHidden*/) &&((CDecl->getClassMethod(I->getSelector(), true ) &&
"Expected to find the method through lookup as well") ? static_cast
<void> (0) : __assert_fail ("CDecl->getClassMethod(I->getSelector(), true ) && \"Expected to find the method through lookup as well\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 2856, __PRETTY_FUNCTION__))
2856 "Expected to find the method through lookup as well")((CDecl->getClassMethod(I->getSelector(), true ) &&
"Expected to find the method through lookup as well") ? static_cast
<void> (0) : __assert_fail ("CDecl->getClassMethod(I->getSelector(), true ) && \"Expected to find the method through lookup as well\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 2856, __PRETTY_FUNCTION__))
;
2857 // ImpMethodDecl may be null as in a @dynamic property.
2858 if (ImpMethodDecl) {
2859 if (!WarnCategoryMethodImpl)
2860 WarnConflictingTypedMethods(ImpMethodDecl, I,
2861 isa<ObjCProtocolDecl>(CDecl));
2862 else if (!I->isPropertyAccessor())
2863 WarnExactTypedMethods(ImpMethodDecl, I, isa<ObjCProtocolDecl>(CDecl));
2864 }
2865 }
2866 }
2867
2868 if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl> (CDecl)) {
2869 // Also, check for methods declared in protocols inherited by
2870 // this protocol.
2871 for (auto *PI : PD->protocols())
2872 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2873 IMPDecl, PI, IncompleteImpl, false,
2874 WarnCategoryMethodImpl);
2875 }
2876
2877 if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
2878 // when checking that methods in implementation match their declaration,
2879 // i.e. when WarnCategoryMethodImpl is false, check declarations in class
2880 // extension; as well as those in categories.
2881 if (!WarnCategoryMethodImpl) {
2882 for (auto *Cat : I->visible_categories())
2883 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2884 IMPDecl, Cat, IncompleteImpl,
2885 ImmediateClass && Cat->IsClassExtension(),
2886 WarnCategoryMethodImpl);
2887 } else {
2888 // Also methods in class extensions need be looked at next.
2889 for (auto *Ext : I->visible_extensions())
2890 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2891 IMPDecl, Ext, IncompleteImpl, false,
2892 WarnCategoryMethodImpl);
2893 }
2894
2895 // Check for any implementation of a methods declared in protocol.
2896 for (auto *PI : I->all_referenced_protocols())
2897 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2898 IMPDecl, PI, IncompleteImpl, false,
2899 WarnCategoryMethodImpl);
2900
2901 // FIXME. For now, we are not checking for exact match of methods
2902 // in category implementation and its primary class's super class.
2903 if (!WarnCategoryMethodImpl && I->getSuperClass())
2904 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2905 IMPDecl,
2906 I->getSuperClass(), IncompleteImpl, false);
2907 }
2908}
2909
2910/// CheckCategoryVsClassMethodMatches - Checks that methods implemented in
2911/// category matches with those implemented in its primary class and
2912/// warns each time an exact match is found.
2913void Sema::CheckCategoryVsClassMethodMatches(
2914 ObjCCategoryImplDecl *CatIMPDecl) {
2915 // Get category's primary class.
2916 ObjCCategoryDecl *CatDecl = CatIMPDecl->getCategoryDecl();
2917 if (!CatDecl)
2918 return;
2919 ObjCInterfaceDecl *IDecl = CatDecl->getClassInterface();
2920 if (!IDecl)
2921 return;
2922 ObjCInterfaceDecl *SuperIDecl = IDecl->getSuperClass();
2923 SelectorSet InsMap, ClsMap;
2924
2925 for (const auto *I : CatIMPDecl->instance_methods()) {
2926 Selector Sel = I->getSelector();
2927 // When checking for methods implemented in the category, skip over
2928 // those declared in category class's super class. This is because
2929 // the super class must implement the method.
2930 if (SuperIDecl && SuperIDecl->lookupMethod(Sel, true))
2931 continue;
2932 InsMap.insert(Sel);
2933 }
2934
2935 for (const auto *I : CatIMPDecl->class_methods()) {
2936 Selector Sel = I->getSelector();
2937 if (SuperIDecl && SuperIDecl->lookupMethod(Sel, false))
2938 continue;
2939 ClsMap.insert(Sel);
2940 }
2941 if (InsMap.empty() && ClsMap.empty())
2942 return;
2943
2944 SelectorSet InsMapSeen, ClsMapSeen;
2945 bool IncompleteImpl = false;
2946 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2947 CatIMPDecl, IDecl,
2948 IncompleteImpl, false,
2949 true /*WarnCategoryMethodImpl*/);
2950}
2951
2952void Sema::ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl,
2953 ObjCContainerDecl* CDecl,
2954 bool IncompleteImpl) {
2955 SelectorSet InsMap;
2956 // Check and see if instance methods in class interface have been
2957 // implemented in the implementation class.
2958 for (const auto *I : IMPDecl->instance_methods())
2959 InsMap.insert(I->getSelector());
2960
2961 // Add the selectors for getters/setters of @dynamic properties.
2962 for (const auto *PImpl : IMPDecl->property_impls()) {
2963 // We only care about @dynamic implementations.
2964 if (PImpl->getPropertyImplementation() != ObjCPropertyImplDecl::Dynamic)
2965 continue;
2966
2967 const auto *P = PImpl->getPropertyDecl();
2968 if (!P) continue;
2969
2970 InsMap.insert(P->getGetterName());
2971 if (!P->getSetterName().isNull())
2972 InsMap.insert(P->getSetterName());
2973 }
2974
2975 // Check and see if properties declared in the interface have either 1)
2976 // an implementation or 2) there is a @synthesize/@dynamic implementation
2977 // of the property in the @implementation.
2978 if (const ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
2979 bool SynthesizeProperties = LangOpts.ObjCDefaultSynthProperties &&
2980 LangOpts.ObjCRuntime.isNonFragile() &&
2981 !IDecl->isObjCRequiresPropertyDefs();
2982 DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, SynthesizeProperties);
2983 }
2984
2985 // Diagnose null-resettable synthesized setters.
2986 diagnoseNullResettableSynthesizedSetters(IMPDecl);
2987
2988 SelectorSet ClsMap;
2989 for (const auto *I : IMPDecl->class_methods())
2990 ClsMap.insert(I->getSelector());
2991
2992 // Check for type conflict of methods declared in a class/protocol and
2993 // its implementation; if any.
2994 SelectorSet InsMapSeen, ClsMapSeen;
2995 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2996 IMPDecl, CDecl,
2997 IncompleteImpl, true);
2998
2999 // check all methods implemented in category against those declared
3000 // in its primary class.
3001 if (ObjCCategoryImplDecl *CatDecl =
3002 dyn_cast<ObjCCategoryImplDecl>(IMPDecl))
3003 CheckCategoryVsClassMethodMatches(CatDecl);
3004
3005 // Check the protocol list for unimplemented methods in the @implementation
3006 // class.
3007 // Check and see if class methods in class interface have been
3008 // implemented in the implementation class.
3009
3010 LazyProtocolNameSet ExplicitImplProtocols;
3011
3012 if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
3013 for (auto *PI : I->all_referenced_protocols())
3014 CheckProtocolMethodDefs(*this, IMPDecl->getLocation(), PI, IncompleteImpl,
3015 InsMap, ClsMap, I, ExplicitImplProtocols);
3016 } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) {
3017 // For extended class, unimplemented methods in its protocols will
3018 // be reported in the primary class.
3019 if (!C->IsClassExtension()) {
3020 for (auto *P : C->protocols())
3021 CheckProtocolMethodDefs(*this, IMPDecl->getLocation(), P,
3022 IncompleteImpl, InsMap, ClsMap, CDecl,
3023 ExplicitImplProtocols);
3024 DiagnoseUnimplementedProperties(S, IMPDecl, CDecl,
3025 /*SynthesizeProperties=*/false);
3026 }
3027 } else
3028 llvm_unreachable("invalid ObjCContainerDecl type.")::llvm::llvm_unreachable_internal("invalid ObjCContainerDecl type."
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 3028)
;
3029}
3030
3031Sema::DeclGroupPtrTy
3032Sema::ActOnForwardClassDeclaration(SourceLocation AtClassLoc,
3033 IdentifierInfo **IdentList,
3034 SourceLocation *IdentLocs,
3035 ArrayRef<ObjCTypeParamList *> TypeParamLists,
3036 unsigned NumElts) {
3037 SmallVector<Decl *, 8> DeclsInGroup;
3038 for (unsigned i = 0; i != NumElts; ++i) {
3039 // Check for another declaration kind with the same name.
3040 NamedDecl *PrevDecl
3041 = LookupSingleName(TUScope, IdentList[i], IdentLocs[i],
3042 LookupOrdinaryName, forRedeclarationInCurContext());
3043 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
3044 // GCC apparently allows the following idiom:
3045 //
3046 // typedef NSObject < XCElementTogglerP > XCElementToggler;
3047 // @class XCElementToggler;
3048 //
3049 // Here we have chosen to ignore the forward class declaration
3050 // with a warning. Since this is the implied behavior.
3051 TypedefNameDecl *TDD = dyn_cast<TypedefNameDecl>(PrevDecl);
3052 if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) {
3053 Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i];
3054 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3055 } else {
3056 // a forward class declaration matching a typedef name of a class refers
3057 // to the underlying class. Just ignore the forward class with a warning
3058 // as this will force the intended behavior which is to lookup the
3059 // typedef name.
3060 if (isa<ObjCObjectType>(TDD->getUnderlyingType())) {
3061 Diag(AtClassLoc, diag::warn_forward_class_redefinition)
3062 << IdentList[i];
3063 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3064 continue;
3065 }
3066 }
3067 }
3068
3069 // Create a declaration to describe this forward declaration.
3070 ObjCInterfaceDecl *PrevIDecl
3071 = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
3072
3073 IdentifierInfo *ClassName = IdentList[i];
3074 if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) {
3075 // A previous decl with a different name is because of
3076 // @compatibility_alias, for example:
3077 // \code
3078 // @class NewImage;
3079 // @compatibility_alias OldImage NewImage;
3080 // \endcode
3081 // A lookup for 'OldImage' will return the 'NewImage' decl.
3082 //
3083 // In such a case use the real declaration name, instead of the alias one,
3084 // otherwise we will break IdentifierResolver and redecls-chain invariants.
3085 // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl
3086 // has been aliased.
3087 ClassName = PrevIDecl->getIdentifier();
3088 }
3089
3090 // If this forward declaration has type parameters, compare them with the
3091 // type parameters of the previous declaration.
3092 ObjCTypeParamList *TypeParams = TypeParamLists[i];
3093 if (PrevIDecl && TypeParams) {
3094 if (ObjCTypeParamList *PrevTypeParams = PrevIDecl->getTypeParamList()) {
3095 // Check for consistency with the previous declaration.
3096 if (checkTypeParamListConsistency(
3097 *this, PrevTypeParams, TypeParams,
3098 TypeParamListContext::ForwardDeclaration)) {
3099 TypeParams = nullptr;
3100 }
3101 } else if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
3102 // The @interface does not have type parameters. Complain.
3103 Diag(IdentLocs[i], diag::err_objc_parameterized_forward_class)
3104 << ClassName
3105 << TypeParams->getSourceRange();
3106 Diag(Def->getLocation(), diag::note_defined_here)
3107 << ClassName;
3108
3109 TypeParams = nullptr;
3110 }
3111 }
3112
3113 ObjCInterfaceDecl *IDecl
3114 = ObjCInterfaceDecl::Create(Context, CurContext, AtClassLoc,
3115 ClassName, TypeParams, PrevIDecl,
3116 IdentLocs[i]);
3117 IDecl->setAtEndRange(IdentLocs[i]);
3118
3119 PushOnScopeChains(IDecl, TUScope);
3120 CheckObjCDeclScope(IDecl);
3121 DeclsInGroup.push_back(IDecl);
3122 }
3123
3124 return BuildDeclaratorGroup(DeclsInGroup);
3125}
3126
3127static bool tryMatchRecordTypes(ASTContext &Context,
3128 Sema::MethodMatchStrategy strategy,
3129 const Type *left, const Type *right);
3130
3131static bool matchTypes(ASTContext &Context, Sema::MethodMatchStrategy strategy,
3132 QualType leftQT, QualType rightQT) {
3133 const Type *left =
3134 Context.getCanonicalType(leftQT).getUnqualifiedType().getTypePtr();
3135 const Type *right =
3136 Context.getCanonicalType(rightQT).getUnqualifiedType().getTypePtr();
3137
3138 if (left == right) return true;
3139
3140 // If we're doing a strict match, the types have to match exactly.
3141 if (strategy == Sema::MMS_strict) return false;
3142
3143 if (left->isIncompleteType() || right->isIncompleteType()) return false;
3144
3145 // Otherwise, use this absurdly complicated algorithm to try to
3146 // validate the basic, low-level compatibility of the two types.
3147
3148 // As a minimum, require the sizes and alignments to match.
3149 TypeInfo LeftTI = Context.getTypeInfo(left);
3150 TypeInfo RightTI = Context.getTypeInfo(right);
3151 if (LeftTI.Width != RightTI.Width)
3152 return false;
3153
3154 if (LeftTI.Align != RightTI.Align)
3155 return false;
3156
3157 // Consider all the kinds of non-dependent canonical types:
3158 // - functions and arrays aren't possible as return and parameter types
3159
3160 // - vector types of equal size can be arbitrarily mixed
3161 if (isa<VectorType>(left)) return isa<VectorType>(right);
3162 if (isa<VectorType>(right)) return false;
3163
3164 // - references should only match references of identical type
3165 // - structs, unions, and Objective-C objects must match more-or-less
3166 // exactly
3167 // - everything else should be a scalar
3168 if (!left->isScalarType() || !right->isScalarType())
3169 return tryMatchRecordTypes(Context, strategy, left, right);
3170
3171 // Make scalars agree in kind, except count bools as chars, and group
3172 // all non-member pointers together.
3173 Type::ScalarTypeKind leftSK = left->getScalarTypeKind();
3174 Type::ScalarTypeKind rightSK = right->getScalarTypeKind();
3175 if (leftSK == Type::STK_Bool) leftSK = Type::STK_Integral;
3176 if (rightSK == Type::STK_Bool) rightSK = Type::STK_Integral;
3177 if (leftSK == Type::STK_CPointer || leftSK == Type::STK_BlockPointer)
3178 leftSK = Type::STK_ObjCObjectPointer;
3179 if (rightSK == Type::STK_CPointer || rightSK == Type::STK_BlockPointer)
3180 rightSK = Type::STK_ObjCObjectPointer;
3181
3182 // Note that data member pointers and function member pointers don't
3183 // intermix because of the size differences.
3184
3185 return (leftSK == rightSK);
3186}
3187
3188static bool tryMatchRecordTypes(ASTContext &Context,
3189 Sema::MethodMatchStrategy strategy,
3190 const Type *lt, const Type *rt) {
3191 assert(lt && rt && lt != rt)((lt && rt && lt != rt) ? static_cast<void
> (0) : __assert_fail ("lt && rt && lt != rt"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 3191, __PRETTY_FUNCTION__))
;
3192
3193 if (!isa<RecordType>(lt) || !isa<RecordType>(rt)) return false;
3194 RecordDecl *left = cast<RecordType>(lt)->getDecl();
3195 RecordDecl *right = cast<RecordType>(rt)->getDecl();
3196
3197 // Require union-hood to match.
3198 if (left->isUnion() != right->isUnion()) return false;
3199
3200 // Require an exact match if either is non-POD.
3201 if ((isa<CXXRecordDecl>(left) && !cast<CXXRecordDecl>(left)->isPOD()) ||
3202 (isa<CXXRecordDecl>(right) && !cast<CXXRecordDecl>(right)->isPOD()))
3203 return false;
3204
3205 // Require size and alignment to match.
3206 TypeInfo LeftTI = Context.getTypeInfo(lt);
3207 TypeInfo RightTI = Context.getTypeInfo(rt);
3208 if (LeftTI.Width != RightTI.Width)
3209 return false;
3210
3211 if (LeftTI.Align != RightTI.Align)
3212 return false;
3213
3214 // Require fields to match.
3215 RecordDecl::field_iterator li = left->field_begin(), le = left->field_end();
3216 RecordDecl::field_iterator ri = right->field_begin(), re = right->field_end();
3217 for (; li != le && ri != re; ++li, ++ri) {
3218 if (!matchTypes(Context, strategy, li->getType(), ri->getType()))
3219 return false;
3220 }
3221 return (li == le && ri == re);
3222}
3223
3224/// MatchTwoMethodDeclarations - Checks that two methods have matching type and
3225/// returns true, or false, accordingly.
3226/// TODO: Handle protocol list; such as id<p1,p2> in type comparisons
3227bool Sema::MatchTwoMethodDeclarations(const ObjCMethodDecl *left,
3228 const ObjCMethodDecl *right,
3229 MethodMatchStrategy strategy) {
3230 if (!matchTypes(Context, strategy, left->getReturnType(),
3231 right->getReturnType()))
3232 return false;
3233
3234 // If either is hidden, it is not considered to match.
3235 if (left->isHidden() || right->isHidden())
3236 return false;
3237
3238 if (getLangOpts().ObjCAutoRefCount &&
3239 (left->hasAttr<NSReturnsRetainedAttr>()
3240 != right->hasAttr<NSReturnsRetainedAttr>() ||
3241 left->hasAttr<NSConsumesSelfAttr>()
3242 != right->hasAttr<NSConsumesSelfAttr>()))
3243 return false;
3244
3245 ObjCMethodDecl::param_const_iterator
3246 li = left->param_begin(), le = left->param_end(), ri = right->param_begin(),
3247 re = right->param_end();
3248
3249 for (; li != le && ri != re; ++li, ++ri) {
3250 assert(ri != right->param_end() && "Param mismatch")((ri != right->param_end() && "Param mismatch") ? static_cast
<void> (0) : __assert_fail ("ri != right->param_end() && \"Param mismatch\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 3250, __PRETTY_FUNCTION__))
;
3251 const ParmVarDecl *lparm = *li, *rparm = *ri;
3252
3253 if (!matchTypes(Context, strategy, lparm->getType(), rparm->getType()))
3254 return false;
3255
3256 if (getLangOpts().ObjCAutoRefCount &&
3257 lparm->hasAttr<NSConsumedAttr>() != rparm->hasAttr<NSConsumedAttr>())
3258 return false;
3259 }
3260 return true;
3261}
3262
3263static bool isMethodContextSameForKindofLookup(ObjCMethodDecl *Method,
3264 ObjCMethodDecl *MethodInList) {
3265 auto *MethodProtocol = dyn_cast<ObjCProtocolDecl>(Method->getDeclContext());
3266 auto *MethodInListProtocol =
3267 dyn_cast<ObjCProtocolDecl>(MethodInList->getDeclContext());
3268 // If this method belongs to a protocol but the method in list does not, or
3269 // vice versa, we say the context is not the same.
3270 if ((MethodProtocol && !MethodInListProtocol) ||
3271 (!MethodProtocol && MethodInListProtocol))
3272 return false;
3273
3274 if (MethodProtocol && MethodInListProtocol)
3275 return true;
3276
3277 ObjCInterfaceDecl *MethodInterface = Method->getClassInterface();
3278 ObjCInterfaceDecl *MethodInListInterface =
3279 MethodInList->getClassInterface();
3280 return MethodInterface == MethodInListInterface;
3281}
3282
3283void Sema::addMethodToGlobalList(ObjCMethodList *List,
3284 ObjCMethodDecl *Method) {
3285 // Record at the head of the list whether there were 0, 1, or >= 2 methods
3286 // inside categories.
3287 if (ObjCCategoryDecl *CD =
3288 dyn_cast<ObjCCategoryDecl>(Method->getDeclContext()))
3289 if (!CD->IsClassExtension() && List->getBits() < 2)
3290 List->setBits(List->getBits() + 1);
3291
3292 // If the list is empty, make it a singleton list.
3293 if (List->getMethod() == nullptr) {
3294 List->setMethod(Method);
3295 List->setNext(nullptr);
3296 return;
3297 }
3298
3299 // We've seen a method with this name, see if we have already seen this type
3300 // signature.
3301 ObjCMethodList *Previous = List;
3302 ObjCMethodList *ListWithSameDeclaration = nullptr;
3303 for (; List; Previous = List, List = List->getNext()) {
3304 // If we are building a module, keep all of the methods.
3305 if (getLangOpts().isCompilingModule())
3306 continue;
3307
3308 bool SameDeclaration = MatchTwoMethodDeclarations(Method,
3309 List->getMethod());
3310 // Looking for method with a type bound requires the correct context exists.
3311 // We need to insert a method into the list if the context is different.
3312 // If the method's declaration matches the list
3313 // a> the method belongs to a different context: we need to insert it, in
3314 // order to emit the availability message, we need to prioritize over
3315 // availability among the methods with the same declaration.
3316 // b> the method belongs to the same context: there is no need to insert a
3317 // new entry.
3318 // If the method's declaration does not match the list, we insert it to the
3319 // end.
3320 if (!SameDeclaration ||
3321 !isMethodContextSameForKindofLookup(Method, List->getMethod())) {
3322 // Even if two method types do not match, we would like to say
3323 // there is more than one declaration so unavailability/deprecated
3324 // warning is not too noisy.
3325 if (!Method->isDefined())
3326 List->setHasMoreThanOneDecl(true);
3327
3328 // For methods with the same declaration, the one that is deprecated
3329 // should be put in the front for better diagnostics.
3330 if (Method->isDeprecated() && SameDeclaration &&
3331 !ListWithSameDeclaration && !List->getMethod()->isDeprecated())
3332 ListWithSameDeclaration = List;
3333
3334 if (Method->isUnavailable() && SameDeclaration &&
3335 !ListWithSameDeclaration &&
3336 List->getMethod()->getAvailability() < AR_Deprecated)
3337 ListWithSameDeclaration = List;
3338 continue;
3339 }
3340
3341 ObjCMethodDecl *PrevObjCMethod = List->getMethod();
3342
3343 // Propagate the 'defined' bit.
3344 if (Method->isDefined())
3345 PrevObjCMethod->setDefined(true);
3346 else {
3347 // Objective-C doesn't allow an @interface for a class after its
3348 // @implementation. So if Method is not defined and there already is
3349 // an entry for this type signature, Method has to be for a different
3350 // class than PrevObjCMethod.
3351 List->setHasMoreThanOneDecl(true);
3352 }
3353
3354 // If a method is deprecated, push it in the global pool.
3355 // This is used for better diagnostics.
3356 if (Method->isDeprecated()) {
3357 if (!PrevObjCMethod->isDeprecated())
3358 List->setMethod(Method);
3359 }
3360 // If the new method is unavailable, push it into global pool
3361 // unless previous one is deprecated.
3362 if (Method->isUnavailable()) {
3363 if (PrevObjCMethod->getAvailability() < AR_Deprecated)
3364 List->setMethod(Method);
3365 }
3366
3367 return;
3368 }
3369
3370 // We have a new signature for an existing method - add it.
3371 // This is extremely rare. Only 1% of Cocoa selectors are "overloaded".
3372 ObjCMethodList *Mem = BumpAlloc.Allocate<ObjCMethodList>();
3373
3374 // We insert it right before ListWithSameDeclaration.
3375 if (ListWithSameDeclaration) {
3376 auto *List = new (Mem) ObjCMethodList(*ListWithSameDeclaration);
3377 // FIXME: should we clear the other bits in ListWithSameDeclaration?
3378 ListWithSameDeclaration->setMethod(Method);
3379 ListWithSameDeclaration->setNext(List);
3380 return;
3381 }
3382
3383 Previous->setNext(new (Mem) ObjCMethodList(Method));
3384}
3385
3386/// Read the contents of the method pool for a given selector from
3387/// external storage.
3388void Sema::ReadMethodPool(Selector Sel) {
3389 assert(ExternalSource && "We need an external AST source")((ExternalSource && "We need an external AST source")
? static_cast<void> (0) : __assert_fail ("ExternalSource && \"We need an external AST source\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 3389, __PRETTY_FUNCTION__))
;
3390 ExternalSource->ReadMethodPool(Sel);
3391}
3392
3393void Sema::updateOutOfDateSelector(Selector Sel) {
3394 if (!ExternalSource)
3395 return;
3396 ExternalSource->updateOutOfDateSelector(Sel);
3397}
3398
3399void Sema::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl,
3400 bool instance) {
3401 // Ignore methods of invalid containers.
3402 if (cast<Decl>(Method->getDeclContext())->isInvalidDecl())
3403 return;
3404
3405 if (ExternalSource)
3406 ReadMethodPool(Method->getSelector());
3407
3408 GlobalMethodPool::iterator Pos = MethodPool.find(Method->getSelector());
3409 if (Pos == MethodPool.end())
3410 Pos = MethodPool.insert(std::make_pair(Method->getSelector(),
3411 GlobalMethods())).first;
3412
3413 Method->setDefined(impl);
3414
3415 ObjCMethodList &Entry = instance ? Pos->second.first : Pos->second.second;
3416 addMethodToGlobalList(&Entry, Method);
3417}
3418
3419/// Determines if this is an "acceptable" loose mismatch in the global
3420/// method pool. This exists mostly as a hack to get around certain
3421/// global mismatches which we can't afford to make warnings / errors.
3422/// Really, what we want is a way to take a method out of the global
3423/// method pool.
3424static bool isAcceptableMethodMismatch(ObjCMethodDecl *chosen,
3425 ObjCMethodDecl *other) {
3426 if (!chosen->isInstanceMethod())
3427 return false;
3428
3429 Selector sel = chosen->getSelector();
3430 if (!sel.isUnarySelector() || sel.getNameForSlot(0) != "length")
3431 return false;
3432
3433 // Don't complain about mismatches for -length if the method we
3434 // chose has an integral result type.
3435 return (chosen->getReturnType()->isIntegerType());
3436}
3437
3438/// Return true if the given method is wthin the type bound.
3439static bool FilterMethodsByTypeBound(ObjCMethodDecl *Method,
3440 const ObjCObjectType *TypeBound) {
3441 if (!TypeBound)
3442 return true;
3443
3444 if (TypeBound->isObjCId())
3445 // FIXME: should we handle the case of bounding to id<A, B> differently?
3446 return true;
3447
3448 auto *BoundInterface = TypeBound->getInterface();
3449 assert(BoundInterface && "unexpected object type!")((BoundInterface && "unexpected object type!") ? static_cast
<void> (0) : __assert_fail ("BoundInterface && \"unexpected object type!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 3449, __PRETTY_FUNCTION__))
;
3450
3451 // Check if the Method belongs to a protocol. We should allow any method
3452 // defined in any protocol, because any subclass could adopt the protocol.
3453 auto *MethodProtocol = dyn_cast<ObjCProtocolDecl>(Method->getDeclContext());
3454 if (MethodProtocol) {
3455 return true;
3456 }
3457
3458 // If the Method belongs to a class, check if it belongs to the class
3459 // hierarchy of the class bound.
3460 if (ObjCInterfaceDecl *MethodInterface = Method->getClassInterface()) {
3461 // We allow methods declared within classes that are part of the hierarchy
3462 // of the class bound (superclass of, subclass of, or the same as the class
3463 // bound).
3464 return MethodInterface == BoundInterface ||
3465 MethodInterface->isSuperClassOf(BoundInterface) ||
3466 BoundInterface->isSuperClassOf(MethodInterface);
3467 }
3468 llvm_unreachable("unknown method context")::llvm::llvm_unreachable_internal("unknown method context", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 3468)
;
3469}
3470
3471/// We first select the type of the method: Instance or Factory, then collect
3472/// all methods with that type.
3473bool Sema::CollectMultipleMethodsInGlobalPool(
3474 Selector Sel, SmallVectorImpl<ObjCMethodDecl *> &Methods,
3475 bool InstanceFirst, bool CheckTheOther,
3476 const ObjCObjectType *TypeBound) {
3477 if (ExternalSource)
3478 ReadMethodPool(Sel);
3479
3480 GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3481 if (Pos == MethodPool.end())
3482 return false;
3483
3484 // Gather the non-hidden methods.
3485 ObjCMethodList &MethList = InstanceFirst ? Pos->second.first :
3486 Pos->second.second;
3487 for (ObjCMethodList *M = &MethList; M; M = M->getNext())
3488 if (M->getMethod() && !M->getMethod()->isHidden()) {
3489 if (FilterMethodsByTypeBound(M->getMethod(), TypeBound))
3490 Methods.push_back(M->getMethod());
3491 }
3492
3493 // Return if we find any method with the desired kind.
3494 if (!Methods.empty())
3495 return Methods.size() > 1;
3496
3497 if (!CheckTheOther)
3498 return false;
3499
3500 // Gather the other kind.
3501 ObjCMethodList &MethList2 = InstanceFirst ? Pos->second.second :
3502 Pos->second.first;
3503 for (ObjCMethodList *M = &MethList2; M; M = M->getNext())
3504 if (M->getMethod() && !M->getMethod()->isHidden()) {
3505 if (FilterMethodsByTypeBound(M->getMethod(), TypeBound))
3506 Methods.push_back(M->getMethod());
3507 }
3508
3509 return Methods.size() > 1;
3510}
3511
3512bool Sema::AreMultipleMethodsInGlobalPool(
3513 Selector Sel, ObjCMethodDecl *BestMethod, SourceRange R,
3514 bool receiverIdOrClass, SmallVectorImpl<ObjCMethodDecl *> &Methods) {
3515 // Diagnose finding more than one method in global pool.
3516 SmallVector<ObjCMethodDecl *, 4> FilteredMethods;
3517 FilteredMethods.push_back(BestMethod);
3518
3519 for (auto *M : Methods)
3520 if (M != BestMethod && !M->hasAttr<UnavailableAttr>())
3521 FilteredMethods.push_back(M);
3522
3523 if (FilteredMethods.size() > 1)
3524 DiagnoseMultipleMethodInGlobalPool(FilteredMethods, Sel, R,
3525 receiverIdOrClass);
3526
3527 GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3528 // Test for no method in the pool which should not trigger any warning by
3529 // caller.
3530 if (Pos == MethodPool.end())
3531 return true;
3532 ObjCMethodList &MethList =
3533 BestMethod->isInstanceMethod() ? Pos->second.first : Pos->second.second;
3534 return MethList.hasMoreThanOneDecl();
3535}
3536
3537ObjCMethodDecl *Sema::LookupMethodInGlobalPool(Selector Sel, SourceRange R,
3538 bool receiverIdOrClass,
3539 bool instance) {
3540 if (ExternalSource)
3541 ReadMethodPool(Sel);
3542
3543 GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3544 if (Pos == MethodPool.end())
3545 return nullptr;
3546
3547 // Gather the non-hidden methods.
3548 ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second;
3549 SmallVector<ObjCMethodDecl *, 4> Methods;
3550 for (ObjCMethodList *M = &MethList; M; M = M->getNext()) {
3551 if (M->getMethod() && !M->getMethod()->isHidden())
3552 return M->getMethod();
3553 }
3554 return nullptr;
3555}
3556
3557void Sema::DiagnoseMultipleMethodInGlobalPool(SmallVectorImpl<ObjCMethodDecl*> &Methods,
3558 Selector Sel, SourceRange R,
3559 bool receiverIdOrClass) {
3560 // We found multiple methods, so we may have to complain.
3561 bool issueDiagnostic = false, issueError = false;
3562
3563 // We support a warning which complains about *any* difference in
3564 // method signature.
3565 bool strictSelectorMatch =
3566 receiverIdOrClass &&
3567 !Diags.isIgnored(diag::warn_strict_multiple_method_decl, R.getBegin());
3568 if (strictSelectorMatch) {
3569 for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3570 if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_strict)) {
3571 issueDiagnostic = true;
3572 break;
3573 }
3574 }
3575 }
3576
3577 // If we didn't see any strict differences, we won't see any loose
3578 // differences. In ARC, however, we also need to check for loose
3579 // mismatches, because most of them are errors.
3580 if (!strictSelectorMatch ||
3581 (issueDiagnostic && getLangOpts().ObjCAutoRefCount))
3582 for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3583 // This checks if the methods differ in type mismatch.
3584 if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_loose) &&
3585 !isAcceptableMethodMismatch(Methods[0], Methods[I])) {
3586 issueDiagnostic = true;
3587 if (getLangOpts().ObjCAutoRefCount)
3588 issueError = true;
3589 break;
3590 }
3591 }
3592
3593 if (issueDiagnostic) {
3594 if (issueError)
3595 Diag(R.getBegin(), diag::err_arc_multiple_method_decl) << Sel << R;
3596 else if (strictSelectorMatch)
3597 Diag(R.getBegin(), diag::warn_strict_multiple_method_decl) << Sel << R;
3598 else
3599 Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R;
3600
3601 Diag(Methods[0]->getBeginLoc(),
3602 issueError ? diag::note_possibility : diag::note_using)
3603 << Methods[0]->getSourceRange();
3604 for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3605 Diag(Methods[I]->getBeginLoc(), diag::note_also_found)
3606 << Methods[I]->getSourceRange();
3607 }
3608 }
3609}
3610
3611ObjCMethodDecl *Sema::LookupImplementedMethodInGlobalPool(Selector Sel) {
3612 GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3613 if (Pos == MethodPool.end())
3614 return nullptr;
3615
3616 GlobalMethods &Methods = Pos->second;
3617 for (const ObjCMethodList *Method = &Methods.first; Method;
3618 Method = Method->getNext())
3619 if (Method->getMethod() &&
3620 (Method->getMethod()->isDefined() ||
3621 Method->getMethod()->isPropertyAccessor()))
3622 return Method->getMethod();
3623
3624 for (const ObjCMethodList *Method = &Methods.second; Method;
3625 Method = Method->getNext())
3626 if (Method->getMethod() &&
3627 (Method->getMethod()->isDefined() ||
3628 Method->getMethod()->isPropertyAccessor()))
3629 return Method->getMethod();
3630 return nullptr;
3631}
3632
3633static void
3634HelperSelectorsForTypoCorrection(
3635 SmallVectorImpl<const ObjCMethodDecl *> &BestMethod,
3636 StringRef Typo, const ObjCMethodDecl * Method) {
3637 const unsigned MaxEditDistance = 1;
3638 unsigned BestEditDistance = MaxEditDistance + 1;
3639 std::string MethodName = Method->getSelector().getAsString();
3640
3641 unsigned MinPossibleEditDistance = abs((int)MethodName.size() - (int)Typo.size());
3642 if (MinPossibleEditDistance > 0 &&
3643 Typo.size() / MinPossibleEditDistance < 1)
3644 return;
3645 unsigned EditDistance = Typo.edit_distance(MethodName, true, MaxEditDistance);
3646 if (EditDistance > MaxEditDistance)
3647 return;
3648 if (EditDistance == BestEditDistance)
3649 BestMethod.push_back(Method);
3650 else if (EditDistance < BestEditDistance) {
3651 BestMethod.clear();
3652 BestMethod.push_back(Method);
3653 }
3654}
3655
3656static bool HelperIsMethodInObjCType(Sema &S, Selector Sel,
3657 QualType ObjectType) {
3658 if (ObjectType.isNull())
3659 return true;
3660 if (S.LookupMethodInObjectType(Sel, ObjectType, true/*Instance method*/))
3661 return true;
3662 return S.LookupMethodInObjectType(Sel, ObjectType, false/*Class method*/) !=
3663 nullptr;
3664}
3665
3666const ObjCMethodDecl *
3667Sema::SelectorsForTypoCorrection(Selector Sel,
3668 QualType ObjectType) {
3669 unsigned NumArgs = Sel.getNumArgs();
3670 SmallVector<const ObjCMethodDecl *, 8> Methods;
3671 bool ObjectIsId = true, ObjectIsClass = true;
3672 if (ObjectType.isNull())
3673 ObjectIsId = ObjectIsClass = false;
3674 else if (!ObjectType->isObjCObjectPointerType())
3675 return nullptr;
3676 else if (const ObjCObjectPointerType *ObjCPtr =
3677 ObjectType->getAsObjCInterfacePointerType()) {
3678 ObjectType = QualType(ObjCPtr->getInterfaceType(), 0);
3679 ObjectIsId = ObjectIsClass = false;
3680 }
3681 else if (ObjectType->isObjCIdType() || ObjectType->isObjCQualifiedIdType())
3682 ObjectIsClass = false;
3683 else if (ObjectType->isObjCClassType() || ObjectType->isObjCQualifiedClassType())
3684 ObjectIsId = false;
3685 else
3686 return nullptr;
3687
3688 for (GlobalMethodPool::iterator b = MethodPool.begin(),
3689 e = MethodPool.end(); b != e; b++) {
3690 // instance methods
3691 for (ObjCMethodList *M = &b->second.first; M; M=M->getNext())
3692 if (M->getMethod() &&
3693 (M->getMethod()->getSelector().getNumArgs() == NumArgs) &&
3694 (M->getMethod()->getSelector() != Sel)) {
3695 if (ObjectIsId)
3696 Methods.push_back(M->getMethod());
3697 else if (!ObjectIsClass &&
3698 HelperIsMethodInObjCType(*this, M->getMethod()->getSelector(),
3699 ObjectType))
3700 Methods.push_back(M->getMethod());
3701 }
3702 // class methods
3703 for (ObjCMethodList *M = &b->second.second; M; M=M->getNext())
3704 if (M->getMethod() &&
3705 (M->getMethod()->getSelector().getNumArgs() == NumArgs) &&
3706 (M->getMethod()->getSelector() != Sel)) {
3707 if (ObjectIsClass)
3708 Methods.push_back(M->getMethod());
3709 else if (!ObjectIsId &&
3710 HelperIsMethodInObjCType(*this, M->getMethod()->getSelector(),
3711 ObjectType))
3712 Methods.push_back(M->getMethod());
3713 }
3714 }
3715
3716 SmallVector<const ObjCMethodDecl *, 8> SelectedMethods;
3717 for (unsigned i = 0, e = Methods.size(); i < e; i++) {
3718 HelperSelectorsForTypoCorrection(SelectedMethods,
3719 Sel.getAsString(), Methods[i]);
3720 }
3721 return (SelectedMethods.size() == 1) ? SelectedMethods[0] : nullptr;
3722}
3723
3724/// DiagnoseDuplicateIvars -
3725/// Check for duplicate ivars in the entire class at the start of
3726/// \@implementation. This becomes necesssary because class extension can
3727/// add ivars to a class in random order which will not be known until
3728/// class's \@implementation is seen.
3729void Sema::DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID,
3730 ObjCInterfaceDecl *SID) {
3731 for (auto *Ivar : ID->ivars()) {
3732 if (Ivar->isInvalidDecl())
3733 continue;
3734 if (IdentifierInfo *II = Ivar->getIdentifier()) {
3735 ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(II);
3736 if (prevIvar) {
3737 Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
3738 Diag(prevIvar->getLocation(), diag::note_previous_declaration);
3739 Ivar->setInvalidDecl();
3740 }
3741 }
3742 }
3743}
3744
3745/// Diagnose attempts to define ARC-__weak ivars when __weak is disabled.
3746static void DiagnoseWeakIvars(Sema &S, ObjCImplementationDecl *ID) {
3747 if (S.getLangOpts().ObjCWeak) return;
3748
3749 for (auto ivar = ID->getClassInterface()->all_declared_ivar_begin();
3750 ivar; ivar = ivar->getNextIvar()) {
3751 if (ivar->isInvalidDecl()) continue;
3752 if (ivar->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
3753 if (S.getLangOpts().ObjCWeakRuntime) {
3754 S.Diag(ivar->getLocation(), diag::err_arc_weak_disabled);
3755 } else {
3756 S.Diag(ivar->getLocation(), diag::err_arc_weak_no_runtime);
3757 }
3758 }
3759 }
3760}
3761
3762/// Diagnose attempts to use flexible array member with retainable object type.
3763static void DiagnoseRetainableFlexibleArrayMember(Sema &S,
3764 ObjCInterfaceDecl *ID) {
3765 if (!S.getLangOpts().ObjCAutoRefCount)
3766 return;
3767
3768 for (auto ivar = ID->all_declared_ivar_begin(); ivar;
3769 ivar = ivar->getNextIvar()) {
3770 if (ivar->isInvalidDecl())
3771 continue;
3772 QualType IvarTy = ivar->getType();
3773 if (IvarTy->isIncompleteArrayType() &&
3774 (IvarTy.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) &&
3775 IvarTy->isObjCLifetimeType()) {
3776 S.Diag(ivar->getLocation(), diag::err_flexible_array_arc_retainable);
3777 ivar->setInvalidDecl();
3778 }
3779 }
3780}
3781
3782Sema::ObjCContainerKind Sema::getObjCContainerKind() const {
3783 switch (CurContext->getDeclKind()) {
3784 case Decl::ObjCInterface:
3785 return Sema::OCK_Interface;
3786 case Decl::ObjCProtocol:
3787 return Sema::OCK_Protocol;
3788 case Decl::ObjCCategory:
3789 if (cast<ObjCCategoryDecl>(CurContext)->IsClassExtension())
3790 return Sema::OCK_ClassExtension;
3791 return Sema::OCK_Category;
3792 case Decl::ObjCImplementation:
3793 return Sema::OCK_Implementation;
3794 case Decl::ObjCCategoryImpl:
3795 return Sema::OCK_CategoryImplementation;
3796
3797 default:
3798 return Sema::OCK_None;
3799 }
3800}
3801
3802static bool IsVariableSizedType(QualType T) {
3803 if (T->isIncompleteArrayType())
3804 return true;
3805 const auto *RecordTy = T->getAs<RecordType>();
3806 return (RecordTy && RecordTy->getDecl()->hasFlexibleArrayMember());
3807}
3808
3809static void DiagnoseVariableSizedIvars(Sema &S, ObjCContainerDecl *OCD) {
3810 ObjCInterfaceDecl *IntfDecl = nullptr;
3811 ObjCInterfaceDecl::ivar_range Ivars = llvm::make_range(
3812 ObjCInterfaceDecl::ivar_iterator(), ObjCInterfaceDecl::ivar_iterator());
3813 if ((IntfDecl = dyn_cast<ObjCInterfaceDecl>(OCD))) {
3814 Ivars = IntfDecl->ivars();
3815 } else if (auto *ImplDecl = dyn_cast<ObjCImplementationDecl>(OCD)) {
3816 IntfDecl = ImplDecl->getClassInterface();
3817 Ivars = ImplDecl->ivars();
3818 } else if (auto *CategoryDecl = dyn_cast<ObjCCategoryDecl>(OCD)) {
3819 if (CategoryDecl->IsClassExtension()) {
3820 IntfDecl = CategoryDecl->getClassInterface();
3821 Ivars = CategoryDecl->ivars();
3822 }
3823 }
3824
3825 // Check if variable sized ivar is in interface and visible to subclasses.
3826 if (!isa<ObjCInterfaceDecl>(OCD)) {
3827 for (auto ivar : Ivars) {
3828 if (!ivar->isInvalidDecl() && IsVariableSizedType(ivar->getType())) {
3829 S.Diag(ivar->getLocation(), diag::warn_variable_sized_ivar_visibility)
3830 << ivar->getDeclName() << ivar->getType();
3831 }
3832 }
3833 }
3834
3835 // Subsequent checks require interface decl.
3836 if (!IntfDecl)
3837 return;
3838
3839 // Check if variable sized ivar is followed by another ivar.
3840 for (ObjCIvarDecl *ivar = IntfDecl->all_declared_ivar_begin(); ivar;
3841 ivar = ivar->getNextIvar()) {
3842 if (ivar->isInvalidDecl() || !ivar->getNextIvar())
3843 continue;
3844 QualType IvarTy = ivar->getType();
3845 bool IsInvalidIvar = false;
3846 if (IvarTy->isIncompleteArrayType()) {
3847 S.Diag(ivar->getLocation(), diag::err_flexible_array_not_at_end)
3848 << ivar->getDeclName() << IvarTy
3849 << TTK_Class; // Use "class" for Obj-C.
3850 IsInvalidIvar = true;
3851 } else if (const RecordType *RecordTy = IvarTy->getAs<RecordType>()) {
3852 if (RecordTy->getDecl()->hasFlexibleArrayMember()) {
3853 S.Diag(ivar->getLocation(),
3854 diag::err_objc_variable_sized_type_not_at_end)
3855 << ivar->getDeclName() << IvarTy;
3856 IsInvalidIvar = true;
3857 }
3858 }
3859 if (IsInvalidIvar) {
3860 S.Diag(ivar->getNextIvar()->getLocation(),
3861 diag::note_next_ivar_declaration)
3862 << ivar->getNextIvar()->getSynthesize();
3863 ivar->setInvalidDecl();
3864 }
3865 }
3866
3867 // Check if ObjC container adds ivars after variable sized ivar in superclass.
3868 // Perform the check only if OCD is the first container to declare ivars to
3869 // avoid multiple warnings for the same ivar.
3870 ObjCIvarDecl *FirstIvar =
3871 (Ivars.begin() == Ivars.end()) ? nullptr : *Ivars.begin();
3872 if (FirstIvar && (FirstIvar == IntfDecl->all_declared_ivar_begin())) {
3873 const ObjCInterfaceDecl *SuperClass = IntfDecl->getSuperClass();
3874 while (SuperClass && SuperClass->ivar_empty())
3875 SuperClass = SuperClass->getSuperClass();
3876 if (SuperClass) {
3877 auto IvarIter = SuperClass->ivar_begin();
3878 std::advance(IvarIter, SuperClass->ivar_size() - 1);
3879 const ObjCIvarDecl *LastIvar = *IvarIter;
3880 if (IsVariableSizedType(LastIvar->getType())) {
3881 S.Diag(FirstIvar->getLocation(),
3882 diag::warn_superclass_variable_sized_type_not_at_end)
3883 << FirstIvar->getDeclName() << LastIvar->getDeclName()
3884 << LastIvar->getType() << SuperClass->getDeclName();
3885 S.Diag(LastIvar->getLocation(), diag::note_entity_declared_at)
3886 << LastIvar->getDeclName();
3887 }
3888 }
3889 }
3890}
3891
3892// Note: For class/category implementations, allMethods is always null.
3893Decl *Sema::ActOnAtEnd(Scope *S, SourceRange AtEnd, ArrayRef<Decl *> allMethods,
3894 ArrayRef<DeclGroupPtrTy> allTUVars) {
3895 if (getObjCContainerKind() == Sema::OCK_None)
3896 return nullptr;
3897
3898 assert(AtEnd.isValid() && "Invalid location for '@end'")((AtEnd.isValid() && "Invalid location for '@end'") ?
static_cast<void> (0) : __assert_fail ("AtEnd.isValid() && \"Invalid location for '@end'\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 3898, __PRETTY_FUNCTION__))
;
3899
3900 auto *OCD = cast<ObjCContainerDecl>(CurContext);
3901 Decl *ClassDecl = OCD;
3902
3903 bool isInterfaceDeclKind =
3904 isa<ObjCInterfaceDecl>(ClassDecl) || isa<ObjCCategoryDecl>(ClassDecl)
3905 || isa<ObjCProtocolDecl>(ClassDecl);
3906 bool checkIdenticalMethods = isa<ObjCImplementationDecl>(ClassDecl);
3907
3908 // FIXME: Remove these and use the ObjCContainerDecl/DeclContext.
3909 llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap;
3910 llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap;
3911
3912 for (unsigned i = 0, e = allMethods.size(); i != e; i++ ) {
3913 ObjCMethodDecl *Method =
3914 cast_or_null<ObjCMethodDecl>(allMethods[i]);
3915
3916 if (!Method) continue; // Already issued a diagnostic.
3917 if (Method->isInstanceMethod()) {
3918 /// Check for instance method of the same name with incompatible types
3919 const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()];
3920 bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
3921 : false;
3922 if ((isInterfaceDeclKind && PrevMethod && !match)
3923 || (checkIdenticalMethods && match)) {
3924 Diag(Method->getLocation(), diag::err_duplicate_method_decl)
3925 << Method->getDeclName();
3926 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
3927 Method->setInvalidDecl();
3928 } else {
3929 if (PrevMethod) {
3930 Method->setAsRedeclaration(PrevMethod);
3931 if (!Context.getSourceManager().isInSystemHeader(
3932 Method->getLocation()))
3933 Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
3934 << Method->getDeclName();
3935 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
3936 }
3937 InsMap[Method->getSelector()] = Method;
3938 /// The following allows us to typecheck messages to "id".
3939 AddInstanceMethodToGlobalPool(Method);
3940 }
3941 } else {
3942 /// Check for class method of the same name with incompatible types
3943 const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()];
3944 bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
3945 : false;
3946 if ((isInterfaceDeclKind && PrevMethod && !match)
3947 || (checkIdenticalMethods && match)) {
3948 Diag(Method->getLocation(), diag::err_duplicate_method_decl)
3949 << Method->getDeclName();
3950 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
3951 Method->setInvalidDecl();
3952 } else {
3953 if (PrevMethod) {
3954 Method->setAsRedeclaration(PrevMethod);
3955 if (!Context.getSourceManager().isInSystemHeader(
3956 Method->getLocation()))
3957 Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
3958 << Method->getDeclName();
3959 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
3960 }
3961 ClsMap[Method->getSelector()] = Method;
3962 AddFactoryMethodToGlobalPool(Method);
3963 }
3964 }
3965 }
3966 if (isa<ObjCInterfaceDecl>(ClassDecl)) {
3967 // Nothing to do here.
3968 } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(ClassDecl)) {
3969 // Categories are used to extend the class by declaring new methods.
3970 // By the same token, they are also used to add new properties. No
3971 // need to compare the added property to those in the class.
3972
3973 if (C->IsClassExtension()) {
3974 ObjCInterfaceDecl *CCPrimary = C->getClassInterface();
3975 DiagnoseClassExtensionDupMethods(C, CCPrimary);
3976 }
3977 }
3978 if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(ClassDecl)) {
3979 if (CDecl->getIdentifier())
3980 // ProcessPropertyDecl is responsible for diagnosing conflicts with any
3981 // user-defined setter/getter. It also synthesizes setter/getter methods
3982 // and adds them to the DeclContext and global method pools.
3983 for (auto *I : CDecl->properties())
3984 ProcessPropertyDecl(I);
3985 CDecl->setAtEndRange(AtEnd);
3986 }
3987 if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(ClassDecl)) {
3988 IC->setAtEndRange(AtEnd);
3989 if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) {
3990 // Any property declared in a class extension might have user
3991 // declared setter or getter in current class extension or one
3992 // of the other class extensions. Mark them as synthesized as
3993 // property will be synthesized when property with same name is
3994 // seen in the @implementation.
3995 for (const auto *Ext : IDecl->visible_extensions()) {
3996 for (const auto *Property : Ext->instance_properties()) {
3997 // Skip over properties declared @dynamic
3998 if (const ObjCPropertyImplDecl *PIDecl
3999 = IC->FindPropertyImplDecl(Property->getIdentifier(),
4000 Property->getQueryKind()))
4001 if (PIDecl->getPropertyImplementation()
4002 == ObjCPropertyImplDecl::Dynamic)
4003 continue;
4004
4005 for (const auto *Ext : IDecl->visible_extensions()) {
4006 if (ObjCMethodDecl *GetterMethod
4007 = Ext->getInstanceMethod(Property->getGetterName()))
4008 GetterMethod->setPropertyAccessor(true);
4009 if (!Property->isReadOnly())
4010 if (ObjCMethodDecl *SetterMethod
4011 = Ext->getInstanceMethod(Property->getSetterName()))
4012 SetterMethod->setPropertyAccessor(true);
4013 }
4014 }
4015 }
4016 ImplMethodsVsClassMethods(S, IC, IDecl);
4017 AtomicPropertySetterGetterRules(IC, IDecl);
4018 DiagnoseOwningPropertyGetterSynthesis(IC);
4019 DiagnoseUnusedBackingIvarInAccessor(S, IC);
4020 if (IDecl->hasDesignatedInitializers())
4021 DiagnoseMissingDesignatedInitOverrides(IC, IDecl);
4022 DiagnoseWeakIvars(*this, IC);
4023 DiagnoseRetainableFlexibleArrayMember(*this, IDecl);
4024
4025 bool HasRootClassAttr = IDecl->hasAttr<ObjCRootClassAttr>();
4026 if (IDecl->getSuperClass() == nullptr) {
4027 // This class has no superclass, so check that it has been marked with
4028 // __attribute((objc_root_class)).
4029 if (!HasRootClassAttr) {
4030 SourceLocation DeclLoc(IDecl->getLocation());
4031 SourceLocation SuperClassLoc(getLocForEndOfToken(DeclLoc));
4032 Diag(DeclLoc, diag::warn_objc_root_class_missing)
4033 << IDecl->getIdentifier();
4034 // See if NSObject is in the current scope, and if it is, suggest
4035 // adding " : NSObject " to the class declaration.
4036 NamedDecl *IF = LookupSingleName(TUScope,
4037 NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject),
4038 DeclLoc, LookupOrdinaryName);
4039 ObjCInterfaceDecl *NSObjectDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF);
4040 if (NSObjectDecl && NSObjectDecl->getDefinition()) {
4041 Diag(SuperClassLoc, diag::note_objc_needs_superclass)
4042 << FixItHint::CreateInsertion(SuperClassLoc, " : NSObject ");
4043 } else {
4044 Diag(SuperClassLoc, diag::note_objc_needs_superclass);
4045 }
4046 }
4047 } else if (HasRootClassAttr) {
4048 // Complain that only root classes may have this attribute.
4049 Diag(IDecl->getLocation(), diag::err_objc_root_class_subclass);
4050 }
4051
4052 if (const ObjCInterfaceDecl *Super = IDecl->getSuperClass()) {
4053 // An interface can subclass another interface with a
4054 // objc_subclassing_restricted attribute when it has that attribute as
4055 // well (because of interfaces imported from Swift). Therefore we have
4056 // to check if we can subclass in the implementation as well.
4057 if (IDecl->hasAttr<ObjCSubclassingRestrictedAttr>() &&
4058 Super->hasAttr<ObjCSubclassingRestrictedAttr>()) {
4059 Diag(IC->getLocation(), diag::err_restricted_superclass_mismatch);
4060 Diag(Super->getLocation(), diag::note_class_declared);
4061 }
4062 }
4063
4064 if (IDecl->hasAttr<ObjCClassStubAttr>())
4065 Diag(IC->getLocation(), diag::err_implementation_of_class_stub);
4066
4067 if (LangOpts.ObjCRuntime.isNonFragile()) {
4068 while (IDecl->getSuperClass()) {
4069 DiagnoseDuplicateIvars(IDecl, IDecl->getSuperClass());
4070 IDecl = IDecl->getSuperClass();
4071 }
4072 }
4073 }
4074 SetIvarInitializers(IC);
4075 } else if (ObjCCategoryImplDecl* CatImplClass =
4076 dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) {
4077 CatImplClass->setAtEndRange(AtEnd);
4078
4079 // Find category interface decl and then check that all methods declared
4080 // in this interface are implemented in the category @implementation.
4081 if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) {
4082 if (ObjCCategoryDecl *Cat
4083 = IDecl->FindCategoryDeclaration(CatImplClass->getIdentifier())) {
4084 ImplMethodsVsClassMethods(S, CatImplClass, Cat);
4085 }
4086 }
4087 } else if (const auto *IntfDecl = dyn_cast<ObjCInterfaceDecl>(ClassDecl)) {
4088 if (const ObjCInterfaceDecl *Super = IntfDecl->getSuperClass()) {
4089 if (!IntfDecl->hasAttr<ObjCSubclassingRestrictedAttr>() &&
4090 Super->hasAttr<ObjCSubclassingRestrictedAttr>()) {
4091 Diag(IntfDecl->getLocation(), diag::err_restricted_superclass_mismatch);
4092 Diag(Super->getLocation(), diag::note_class_declared);
4093 }
4094 }
4095
4096 if (IntfDecl->hasAttr<ObjCClassStubAttr>() &&
4097 !IntfDecl->hasAttr<ObjCSubclassingRestrictedAttr>())
4098 Diag(IntfDecl->getLocation(), diag::err_class_stub_subclassing_mismatch);
4099 }
4100 DiagnoseVariableSizedIvars(*this, OCD);
4101 if (isInterfaceDeclKind) {
4102 // Reject invalid vardecls.
4103 for (unsigned i = 0, e = allTUVars.size(); i != e; i++) {
4104 DeclGroupRef DG = allTUVars[i].get();
4105 for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
4106 if (VarDecl *VDecl = dyn_cast<VarDecl>(*I)) {
4107 if (!VDecl->hasExternalStorage())
4108 Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass);
4109 }
4110 }
4111 }
4112 ActOnObjCContainerFinishDefinition();
4113
4114 for (unsigned i = 0, e = allTUVars.size(); i != e; i++) {
4115 DeclGroupRef DG = allTUVars[i].get();
4116 for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
4117 (*I)->setTopLevelDeclInObjCContainer();
4118 Consumer.HandleTopLevelDeclInObjCContainer(DG);
4119 }
4120
4121 ActOnDocumentableDecl(ClassDecl);
4122 return ClassDecl;
4123}
4124
4125/// CvtQTToAstBitMask - utility routine to produce an AST bitmask for
4126/// objective-c's type qualifier from the parser version of the same info.
4127static Decl::ObjCDeclQualifier
4128CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal) {
4129 return (Decl::ObjCDeclQualifier) (unsigned) PQTVal;
4130}
4131
4132/// Check whether the declared result type of the given Objective-C
4133/// method declaration is compatible with the method's class.
4134///
4135static Sema::ResultTypeCompatibilityKind
4136CheckRelatedResultTypeCompatibility(Sema &S, ObjCMethodDecl *Method,
4137 ObjCInterfaceDecl *CurrentClass) {
4138 QualType ResultType = Method->getReturnType();
4139
4140 // If an Objective-C method inherits its related result type, then its
4141 // declared result type must be compatible with its own class type. The
4142 // declared result type is compatible if:
4143 if (const ObjCObjectPointerType *ResultObjectType
4144 = ResultType->getAs<ObjCObjectPointerType>()) {
4145 // - it is id or qualified id, or
4146 if (ResultObjectType->isObjCIdType() ||
4147 ResultObjectType->isObjCQualifiedIdType())
4148 return Sema::RTC_Compatible;
4149
4150 if (CurrentClass) {
4151 if (ObjCInterfaceDecl *ResultClass
4152 = ResultObjectType->getInterfaceDecl()) {
4153 // - it is the same as the method's class type, or
4154 if (declaresSameEntity(CurrentClass, ResultClass))
4155 return Sema::RTC_Compatible;
4156
4157 // - it is a superclass of the method's class type
4158 if (ResultClass->isSuperClassOf(CurrentClass))
4159 return Sema::RTC_Compatible;
4160 }
4161 } else {
4162 // Any Objective-C pointer type might be acceptable for a protocol
4163 // method; we just don't know.
4164 return Sema::RTC_Unknown;
4165 }
4166 }
4167
4168 return Sema::RTC_Incompatible;
4169}
4170
4171namespace {
4172/// A helper class for searching for methods which a particular method
4173/// overrides.
4174class OverrideSearch {
4175public:
4176 const ObjCMethodDecl *Method;
4177 llvm::SmallSetVector<ObjCMethodDecl*, 4> Overridden;
4178 bool Recursive;
4179
4180public:
4181 OverrideSearch(Sema &S, const ObjCMethodDecl *method) : Method(method) {
4182 Selector selector = method->getSelector();
4183
4184 // Bypass this search if we've never seen an instance/class method
4185 // with this selector before.
4186 Sema::GlobalMethodPool::iterator it = S.MethodPool.find(selector);
4187 if (it == S.MethodPool.end()) {
4188 if (!S.getExternalSource()) return;
4189 S.ReadMethodPool(selector);
4190
4191 it = S.MethodPool.find(selector);
4192 if (it == S.MethodPool.end())
4193 return;
4194 }
4195 const ObjCMethodList &list =
4196 method->isInstanceMethod() ? it->second.first : it->second.second;
4197 if (!list.getMethod()) return;
4198
4199 const ObjCContainerDecl *container
4200 = cast<ObjCContainerDecl>(method->getDeclContext());
4201
4202 // Prevent the search from reaching this container again. This is
4203 // important with categories, which override methods from the
4204 // interface and each other.
4205 if (const ObjCCategoryDecl *Category =
4206 dyn_cast<ObjCCategoryDecl>(container)) {
4207 searchFromContainer(container);
4208 if (const ObjCInterfaceDecl *Interface = Category->getClassInterface())
4209 searchFromContainer(Interface);
4210 } else {
4211 searchFromContainer(container);
4212 }
4213 }
4214
4215 typedef decltype(Overridden)::iterator iterator;
4216 iterator begin() const { return Overridden.begin(); }
4217 iterator end() const { return Overridden.end(); }
4218
4219private:
4220 void searchFromContainer(const ObjCContainerDecl *container) {
4221 if (container->isInvalidDecl()) return;
4222
4223 switch (container->getDeclKind()) {
4224#define OBJCCONTAINER(type, base) \
4225 case Decl::type: \
4226 searchFrom(cast<type##Decl>(container)); \
4227 break;
4228#define ABSTRACT_DECL(expansion)
4229#define DECL(type, base) \
4230 case Decl::type:
4231#include "clang/AST/DeclNodes.inc"
4232 llvm_unreachable("not an ObjC container!")::llvm::llvm_unreachable_internal("not an ObjC container!", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 4232)
;
4233 }
4234 }
4235
4236 void searchFrom(const ObjCProtocolDecl *protocol) {
4237 if (!protocol->hasDefinition())
4238 return;
4239
4240 // A method in a protocol declaration overrides declarations from
4241 // referenced ("parent") protocols.
4242 search(protocol->getReferencedProtocols());
4243 }
4244
4245 void searchFrom(const ObjCCategoryDecl *category) {
4246 // A method in a category declaration overrides declarations from
4247 // the main class and from protocols the category references.
4248 // The main class is handled in the constructor.
4249 search(category->getReferencedProtocols());
4250 }
4251
4252 void searchFrom(const ObjCCategoryImplDecl *impl) {
4253 // A method in a category definition that has a category
4254 // declaration overrides declarations from the category
4255 // declaration.
4256 if (ObjCCategoryDecl *category = impl->getCategoryDecl()) {
4257 search(category);
4258 if (ObjCInterfaceDecl *Interface = category->getClassInterface())
4259 search(Interface);
4260
4261 // Otherwise it overrides declarations from the class.
4262 } else if (const auto *Interface = impl->getClassInterface()) {
4263 search(Interface);
4264 }
4265 }
4266
4267 void searchFrom(const ObjCInterfaceDecl *iface) {
4268 // A method in a class declaration overrides declarations from
4269 if (!iface->hasDefinition())
4270 return;
4271
4272 // - categories,
4273 for (auto *Cat : iface->known_categories())
4274 search(Cat);
4275
4276 // - the super class, and
4277 if (ObjCInterfaceDecl *super = iface->getSuperClass())
4278 search(super);
4279
4280 // - any referenced protocols.
4281 search(iface->getReferencedProtocols());
4282 }
4283
4284 void searchFrom(const ObjCImplementationDecl *impl) {
4285 // A method in a class implementation overrides declarations from
4286 // the class interface.
4287 if (const auto *Interface = impl->getClassInterface())
4288 search(Interface);
4289 }
4290
4291 void search(const ObjCProtocolList &protocols) {
4292 for (const auto *Proto : protocols)
4293 search(Proto);
4294 }
4295
4296 void search(const ObjCContainerDecl *container) {
4297 // Check for a method in this container which matches this selector.
4298 ObjCMethodDecl *meth = container->getMethod(Method->getSelector(),
4299 Method->isInstanceMethod(),
4300 /*AllowHidden=*/true);
4301
4302 // If we find one, record it and bail out.
4303 if (meth) {
4304 Overridden.insert(meth);
4305 return;
4306 }
4307
4308 // Otherwise, search for methods that a hypothetical method here
4309 // would have overridden.
4310
4311 // Note that we're now in a recursive case.
4312 Recursive = true;
4313
4314 searchFromContainer(container);
4315 }
4316};
4317} // end anonymous namespace
4318
4319void Sema::CheckObjCMethodOverrides(ObjCMethodDecl *ObjCMethod,
4320 ObjCInterfaceDecl *CurrentClass,
4321 ResultTypeCompatibilityKind RTC) {
4322 if (!ObjCMethod)
4323 return;
4324 // Search for overridden methods and merge information down from them.
4325 OverrideSearch overrides(*this, ObjCMethod);
4326 // Keep track if the method overrides any method in the class's base classes,
4327 // its protocols, or its categories' protocols; we will keep that info
4328 // in the ObjCMethodDecl.
4329 // For this info, a method in an implementation is not considered as
4330 // overriding the same method in the interface or its categories.
4331 bool hasOverriddenMethodsInBaseOrProtocol = false;
4332 for (ObjCMethodDecl *overridden : overrides) {
4333 if (!hasOverriddenMethodsInBaseOrProtocol) {
4334 if (isa<ObjCProtocolDecl>(overridden->getDeclContext()) ||
4335 CurrentClass != overridden->getClassInterface() ||
4336 overridden->isOverriding()) {
4337 hasOverriddenMethodsInBaseOrProtocol = true;
4338
4339 } else if (isa<ObjCImplDecl>(ObjCMethod->getDeclContext())) {
4340 // OverrideSearch will return as "overridden" the same method in the
4341 // interface. For hasOverriddenMethodsInBaseOrProtocol, we need to
4342 // check whether a category of a base class introduced a method with the
4343 // same selector, after the interface method declaration.
4344 // To avoid unnecessary lookups in the majority of cases, we use the
4345 // extra info bits in GlobalMethodPool to check whether there were any
4346 // category methods with this selector.
4347 GlobalMethodPool::iterator It =
4348 MethodPool.find(ObjCMethod->getSelector());
4349 if (It != MethodPool.end()) {
4350 ObjCMethodList &List =
4351 ObjCMethod->isInstanceMethod()? It->second.first: It->second.second;
4352 unsigned CategCount = List.getBits();
4353 if (CategCount > 0) {
4354 // If the method is in a category we'll do lookup if there were at
4355 // least 2 category methods recorded, otherwise only one will do.
4356 if (CategCount > 1 ||
4357 !isa<ObjCCategoryImplDecl>(overridden->getDeclContext())) {
4358 OverrideSearch overrides(*this, overridden);
4359 for (ObjCMethodDecl *SuperOverridden : overrides) {
4360 if (isa<ObjCProtocolDecl>(SuperOverridden->getDeclContext()) ||
4361 CurrentClass != SuperOverridden->getClassInterface()) {
4362 hasOverriddenMethodsInBaseOrProtocol = true;
4363 overridden->setOverriding(true);
4364 break;
4365 }
4366 }
4367 }
4368 }
4369 }
4370 }
4371 }
4372
4373 // Propagate down the 'related result type' bit from overridden methods.
4374 if (RTC != Sema::RTC_Incompatible && overridden->hasRelatedResultType())
4375 ObjCMethod->setRelatedResultType();
4376
4377 // Then merge the declarations.
4378 mergeObjCMethodDecls(ObjCMethod, overridden);
4379
4380 if (ObjCMethod->isImplicit() && overridden->isImplicit())
4381 continue; // Conflicting properties are detected elsewhere.
4382
4383 // Check for overriding methods
4384 if (isa<ObjCInterfaceDecl>(ObjCMethod->getDeclContext()) ||
4385 isa<ObjCImplementationDecl>(ObjCMethod->getDeclContext()))
4386 CheckConflictingOverridingMethod(ObjCMethod, overridden,
4387 isa<ObjCProtocolDecl>(overridden->getDeclContext()));
4388
4389 if (CurrentClass && overridden->getDeclContext() != CurrentClass &&
4390 isa<ObjCInterfaceDecl>(overridden->getDeclContext()) &&
4391 !overridden->isImplicit() /* not meant for properties */) {
4392 ObjCMethodDecl::param_iterator ParamI = ObjCMethod->param_begin(),
4393 E = ObjCMethod->param_end();
4394 ObjCMethodDecl::param_iterator PrevI = overridden->param_begin(),
4395 PrevE = overridden->param_end();
4396 for (; ParamI != E && PrevI != PrevE; ++ParamI, ++PrevI) {
4397 assert(PrevI != overridden->param_end() && "Param mismatch")((PrevI != overridden->param_end() && "Param mismatch"
) ? static_cast<void> (0) : __assert_fail ("PrevI != overridden->param_end() && \"Param mismatch\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 4397, __PRETTY_FUNCTION__))
;
4398 QualType T1 = Context.getCanonicalType((*ParamI)->getType());
4399 QualType T2 = Context.getCanonicalType((*PrevI)->getType());
4400 // If type of argument of method in this class does not match its
4401 // respective argument type in the super class method, issue warning;
4402 if (!Context.typesAreCompatible(T1, T2)) {
4403 Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super)
4404 << T1 << T2;
4405 Diag(overridden->getLocation(), diag::note_previous_declaration);
4406 break;
4407 }
4408 }
4409 }
4410 }
4411
4412 ObjCMethod->setOverriding(hasOverriddenMethodsInBaseOrProtocol);
4413}
4414
4415/// Merge type nullability from for a redeclaration of the same entity,
4416/// producing the updated type of the redeclared entity.
4417static QualType mergeTypeNullabilityForRedecl(Sema &S, SourceLocation loc,
4418 QualType type,
4419 bool usesCSKeyword,
4420 SourceLocation prevLoc,
4421 QualType prevType,
4422 bool prevUsesCSKeyword) {
4423 // Determine the nullability of both types.
4424 auto nullability = type->getNullability(S.Context);
4425 auto prevNullability = prevType->getNullability(S.Context);
4426
4427 // Easy case: both have nullability.
4428 if (nullability.hasValue() == prevNullability.hasValue()) {
4429 // Neither has nullability; continue.
4430 if (!nullability)
4431 return type;
4432
4433 // The nullabilities are equivalent; do nothing.
4434 if (*nullability == *prevNullability)
4435 return type;
4436
4437 // Complain about mismatched nullability.
4438 S.Diag(loc, diag::err_nullability_conflicting)
4439 << DiagNullabilityKind(*nullability, usesCSKeyword)
4440 << DiagNullabilityKind(*prevNullability, prevUsesCSKeyword);
4441 return type;
4442 }
4443
4444 // If it's the redeclaration that has nullability, don't change anything.
4445 if (nullability)
4446 return type;
4447
4448 // Otherwise, provide the result with the same nullability.
4449 return S.Context.getAttributedType(
4450 AttributedType::getNullabilityAttrKind(*prevNullability),
4451 type, type);
4452}
4453
4454/// Merge information from the declaration of a method in the \@interface
4455/// (or a category/extension) into the corresponding method in the
4456/// @implementation (for a class or category).
4457static void mergeInterfaceMethodToImpl(Sema &S,
4458 ObjCMethodDecl *method,
4459 ObjCMethodDecl *prevMethod) {
4460 // Merge the objc_requires_super attribute.
4461 if (prevMethod->hasAttr<ObjCRequiresSuperAttr>() &&
17
Taking true branch
4462 !method->hasAttr<ObjCRequiresSuperAttr>()) {
4463 // merge the attribute into implementation.
4464 method->addAttr(
4465 ObjCRequiresSuperAttr::CreateImplicit(S.Context,
18
Calling 'ObjCRequiresSuperAttr::CreateImplicit'
4466 method->getLocation()));
4467 }
4468
4469 // Merge nullability of the result type.
4470 QualType newReturnType
4471 = mergeTypeNullabilityForRedecl(
4472 S, method->getReturnTypeSourceRange().getBegin(),
4473 method->getReturnType(),
4474 method->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability,
4475 prevMethod->getReturnTypeSourceRange().getBegin(),
4476 prevMethod->getReturnType(),
4477 prevMethod->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability);
4478 method->setReturnType(newReturnType);
4479
4480 // Handle each of the parameters.
4481 unsigned numParams = method->param_size();
4482 unsigned numPrevParams = prevMethod->param_size();
4483 for (unsigned i = 0, n = std::min(numParams, numPrevParams); i != n; ++i) {
4484 ParmVarDecl *param = method->param_begin()[i];
4485 ParmVarDecl *prevParam = prevMethod->param_begin()[i];
4486
4487 // Merge nullability.
4488 QualType newParamType
4489 = mergeTypeNullabilityForRedecl(
4490 S, param->getLocation(), param->getType(),
4491 param->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability,
4492 prevParam->getLocation(), prevParam->getType(),
4493 prevParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability);
4494 param->setType(newParamType);
4495 }
4496}
4497
4498/// Verify that the method parameters/return value have types that are supported
4499/// by the x86 target.
4500static void checkObjCMethodX86VectorTypes(Sema &SemaRef,
4501 const ObjCMethodDecl *Method) {
4502 assert(SemaRef.getASTContext().getTargetInfo().getTriple().getArch() ==((SemaRef.getASTContext().getTargetInfo().getTriple().getArch
() == llvm::Triple::x86 && "x86-specific check invoked for a different target"
) ? static_cast<void> (0) : __assert_fail ("SemaRef.getASTContext().getTargetInfo().getTriple().getArch() == llvm::Triple::x86 && \"x86-specific check invoked for a different target\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 4504, __PRETTY_FUNCTION__))
4503 llvm::Triple::x86 &&((SemaRef.getASTContext().getTargetInfo().getTriple().getArch
() == llvm::Triple::x86 && "x86-specific check invoked for a different target"
) ? static_cast<void> (0) : __assert_fail ("SemaRef.getASTContext().getTargetInfo().getTriple().getArch() == llvm::Triple::x86 && \"x86-specific check invoked for a different target\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 4504, __PRETTY_FUNCTION__))
4504 "x86-specific check invoked for a different target")((SemaRef.getASTContext().getTargetInfo().getTriple().getArch
() == llvm::Triple::x86 && "x86-specific check invoked for a different target"
) ? static_cast<void> (0) : __assert_fail ("SemaRef.getASTContext().getTargetInfo().getTriple().getArch() == llvm::Triple::x86 && \"x86-specific check invoked for a different target\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 4504, __PRETTY_FUNCTION__))
;
4505 SourceLocation Loc;
4506 QualType T;
4507 for (const ParmVarDecl *P : Method->parameters()) {
4508 if (P->getType()->isVectorType()) {
4509 Loc = P->getBeginLoc();
4510 T = P->getType();
4511 break;
4512 }
4513 }
4514 if (Loc.isInvalid()) {
4515 if (Method->getReturnType()->isVectorType()) {
4516 Loc = Method->getReturnTypeSourceRange().getBegin();
4517 T = Method->getReturnType();
4518 } else
4519 return;
4520 }
4521
4522 // Vector parameters/return values are not supported by objc_msgSend on x86 in
4523 // iOS < 9 and macOS < 10.11.
4524 const auto &Triple = SemaRef.getASTContext().getTargetInfo().getTriple();
4525 VersionTuple AcceptedInVersion;
4526 if (Triple.getOS() == llvm::Triple::IOS)
4527 AcceptedInVersion = VersionTuple(/*Major=*/9);
4528 else if (Triple.isMacOSX())
4529 AcceptedInVersion = VersionTuple(/*Major=*/10, /*Minor=*/11);
4530 else
4531 return;
4532 if (SemaRef.getASTContext().getTargetInfo().getPlatformMinVersion() >=
4533 AcceptedInVersion)
4534 return;
4535 SemaRef.Diag(Loc, diag::err_objc_method_unsupported_param_ret_type)
4536 << T << (Method->getReturnType()->isVectorType() ? /*return value*/ 1
4537 : /*parameter*/ 0)
4538 << (Triple.isMacOSX() ? "macOS 10.11" : "iOS 9");
4539}
4540
4541Decl *Sema::ActOnMethodDeclaration(
4542 Scope *S, SourceLocation MethodLoc, SourceLocation EndLoc,
4543 tok::TokenKind MethodType, ObjCDeclSpec &ReturnQT, ParsedType ReturnType,
4544 ArrayRef<SourceLocation> SelectorLocs, Selector Sel,
4545 // optional arguments. The number of types/arguments is obtained
4546 // from the Sel.getNumArgs().
4547 ObjCArgInfo *ArgInfo, DeclaratorChunk::ParamInfo *CParamInfo,
4548 unsigned CNumArgs, // c-style args
4549 const ParsedAttributesView &AttrList, tok::ObjCKeywordKind MethodDeclKind,
4550 bool isVariadic, bool MethodDefinition) {
4551 // Make sure we can establish a context for the method.
4552 if (!CurContext->isObjCContainer()) {
1
Taking false branch
4553 Diag(MethodLoc, diag::err_missing_method_context);
4554 return nullptr;
4555 }
4556 Decl *ClassDecl = cast<ObjCContainerDecl>(CurContext);
4557 QualType resultDeclType;
4558
4559 bool HasRelatedResultType = false;
4560 TypeSourceInfo *ReturnTInfo = nullptr;
4561 if (ReturnType) {
2
Taking false branch
4562 resultDeclType = GetTypeFromParser(ReturnType, &ReturnTInfo);
4563
4564 if (CheckFunctionReturnType(resultDeclType, MethodLoc))
4565 return nullptr;
4566
4567 QualType bareResultType = resultDeclType;
4568 (void)AttributedType::stripOuterNullability(bareResultType);
4569 HasRelatedResultType = (bareResultType == Context.getObjCInstanceType());
4570 } else { // get the type for "id".
4571 resultDeclType = Context.getObjCIdType();
4572 Diag(MethodLoc, diag::warn_missing_method_return_type)
4573 << FixItHint::CreateInsertion(SelectorLocs.front(), "(id)");
4574 }
4575
4576 ObjCMethodDecl *ObjCMethod = ObjCMethodDecl::Create(
4577 Context, MethodLoc, EndLoc, Sel, resultDeclType, ReturnTInfo, CurContext,
4578 MethodType == tok::minus, isVariadic,
3
Assuming 'MethodType' is not equal to minus
4579 /*isPropertyAccessor=*/false,
4580 /*isImplicitlyDeclared=*/false, /*isDefined=*/false,
4581 MethodDeclKind == tok::objc_optional ? ObjCMethodDecl::Optional
4
Assuming 'MethodDeclKind' is not equal to objc_optional
5
'?' condition is false
4582 : ObjCMethodDecl::Required,
4583 HasRelatedResultType);
4584
4585 SmallVector<ParmVarDecl*, 16> Params;
4586
4587 for (unsigned i = 0, e = Sel.getNumArgs(); i != e; ++i) {
6
Assuming 'i' is equal to 'e'
7
Loop condition is false. Execution continues on line 4640
4588 QualType ArgType;
4589 TypeSourceInfo *DI;
4590
4591 if (!ArgInfo[i].Type) {
4592 ArgType = Context.getObjCIdType();
4593 DI = nullptr;
4594 } else {
4595 ArgType = GetTypeFromParser(ArgInfo[i].Type, &DI);
4596 }
4597
4598 LookupResult R(*this, ArgInfo[i].Name, ArgInfo[i].NameLoc,
4599 LookupOrdinaryName, forRedeclarationInCurContext());
4600 LookupName(R, S);
4601 if (R.isSingleResult()) {
4602 NamedDecl *PrevDecl = R.getFoundDecl();
4603 if (S->isDeclScope(PrevDecl)) {
4604 Diag(ArgInfo[i].NameLoc,
4605 (MethodDefinition ? diag::warn_method_param_redefinition
4606 : diag::warn_method_param_declaration))
4607 << ArgInfo[i].Name;
4608 Diag(PrevDecl->getLocation(),
4609 diag::note_previous_declaration);
4610 }
4611 }
4612
4613 SourceLocation StartLoc = DI
4614 ? DI->getTypeLoc().getBeginLoc()
4615 : ArgInfo[i].NameLoc;
4616
4617 ParmVarDecl* Param = CheckParameter(ObjCMethod, StartLoc,
4618 ArgInfo[i].NameLoc, ArgInfo[i].Name,
4619 ArgType, DI, SC_None);
4620
4621 Param->setObjCMethodScopeInfo(i);
4622
4623 Param->setObjCDeclQualifier(
4624 CvtQTToAstBitMask(ArgInfo[i].DeclSpec.getObjCDeclQualifier()));
4625
4626 // Apply the attributes to the parameter.
4627 ProcessDeclAttributeList(TUScope, Param, ArgInfo[i].ArgAttrs);
4628 AddPragmaAttributes(TUScope, Param);
4629
4630 if (Param->hasAttr<BlocksAttr>()) {
4631 Diag(Param->getLocation(), diag::err_block_on_nonlocal);
4632 Param->setInvalidDecl();
4633 }
4634 S->AddDecl(Param);
4635 IdResolver.AddDecl(Param);
4636
4637 Params.push_back(Param);
4638 }
4639
4640 for (unsigned i = 0, e = CNumArgs; i != e; ++i) {
8
Assuming 'i' is equal to 'e'
9
Loop condition is false. Execution continues on line 4653
4641 ParmVarDecl *Param = cast<ParmVarDecl>(CParamInfo[i].Param);
4642 QualType ArgType = Param->getType();
4643 if (ArgType.isNull())
4644 ArgType = Context.getObjCIdType();
4645 else
4646 // Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
4647 ArgType = Context.getAdjustedParameterType(ArgType);
4648
4649 Param->setDeclContext(ObjCMethod);
4650 Params.push_back(Param);
4651 }
4652
4653 ObjCMethod->setMethodParams(Context, Params, SelectorLocs);
4654 ObjCMethod->setObjCDeclQualifier(
4655 CvtQTToAstBitMask(ReturnQT.getObjCDeclQualifier()));
4656
4657 ProcessDeclAttributeList(TUScope, ObjCMethod, AttrList);
4658 AddPragmaAttributes(TUScope, ObjCMethod);
4659
4660 // Add the method now.
4661 const ObjCMethodDecl *PrevMethod = nullptr;
4662 if (ObjCImplDecl *ImpDecl = dyn_cast<ObjCImplDecl>(ClassDecl)) {
10
Taking true branch
4663 if (MethodType == tok::minus) {
11
Taking false branch
4664 PrevMethod = ImpDecl->getInstanceMethod(Sel);
4665 ImpDecl->addInstanceMethod(ObjCMethod);
4666 } else {
4667 PrevMethod = ImpDecl->getClassMethod(Sel);
4668 ImpDecl->addClassMethod(ObjCMethod);
4669 }
4670
4671 // Merge information from the @interface declaration into the
4672 // @implementation.
4673 if (ObjCInterfaceDecl *IDecl = ImpDecl->getClassInterface()) {
12
Assuming 'IDecl' is non-null
13
Taking true branch
4674 if (auto *IMD = IDecl->lookupMethod(ObjCMethod->getSelector(),
14
Assuming 'IMD' is non-null
15
Taking true branch
4675 ObjCMethod->isInstanceMethod())) {
4676 mergeInterfaceMethodToImpl(*this, ObjCMethod, IMD);
16
Calling 'mergeInterfaceMethodToImpl'
4677
4678 // Warn about defining -dealloc in a category.
4679 if (isa<ObjCCategoryImplDecl>(ImpDecl) && IMD->isOverriding() &&
4680 ObjCMethod->getSelector().getMethodFamily() == OMF_dealloc) {
4681 Diag(ObjCMethod->getLocation(), diag::warn_dealloc_in_category)
4682 << ObjCMethod->getDeclName();
4683 }
4684 }
4685
4686 // Warn if a method declared in a protocol to which a category or
4687 // extension conforms is non-escaping and the implementation's method is
4688 // escaping.
4689 for (auto *C : IDecl->visible_categories())
4690 for (auto &P : C->protocols())
4691 if (auto *IMD = P->lookupMethod(ObjCMethod->getSelector(),
4692 ObjCMethod->isInstanceMethod())) {
4693 assert(ObjCMethod->parameters().size() ==((ObjCMethod->parameters().size() == IMD->parameters().
size() && "Methods have different number of parameters"
) ? static_cast<void> (0) : __assert_fail ("ObjCMethod->parameters().size() == IMD->parameters().size() && \"Methods have different number of parameters\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 4695, __PRETTY_FUNCTION__))
4694 IMD->parameters().size() &&((ObjCMethod->parameters().size() == IMD->parameters().
size() && "Methods have different number of parameters"
) ? static_cast<void> (0) : __assert_fail ("ObjCMethod->parameters().size() == IMD->parameters().size() && \"Methods have different number of parameters\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 4695, __PRETTY_FUNCTION__))
4695 "Methods have different number of parameters")((ObjCMethod->parameters().size() == IMD->parameters().
size() && "Methods have different number of parameters"
) ? static_cast<void> (0) : __assert_fail ("ObjCMethod->parameters().size() == IMD->parameters().size() && \"Methods have different number of parameters\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 4695, __PRETTY_FUNCTION__))
;
4696 auto OI = IMD->param_begin(), OE = IMD->param_end();
4697 auto NI = ObjCMethod->param_begin();
4698 for (; OI != OE; ++OI, ++NI)
4699 diagnoseNoescape(*NI, *OI, C, P, *this);
4700 }
4701 }
4702 } else {
4703 cast<DeclContext>(ClassDecl)->addDecl(ObjCMethod);
4704 }
4705
4706 if (PrevMethod) {
4707 // You can never have two method definitions with the same name.
4708 Diag(ObjCMethod->getLocation(), diag::err_duplicate_method_decl)
4709 << ObjCMethod->getDeclName();
4710 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
4711 ObjCMethod->setInvalidDecl();
4712 return ObjCMethod;
4713 }
4714
4715 // If this Objective-C method does not have a related result type, but we
4716 // are allowed to infer related result types, try to do so based on the
4717 // method family.
4718 ObjCInterfaceDecl *CurrentClass = dyn_cast<ObjCInterfaceDecl>(ClassDecl);
4719 if (!CurrentClass) {
4720 if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(ClassDecl))
4721 CurrentClass = Cat->getClassInterface();
4722 else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(ClassDecl))
4723 CurrentClass = Impl->getClassInterface();
4724 else if (ObjCCategoryImplDecl *CatImpl
4725 = dyn_cast<ObjCCategoryImplDecl>(ClassDecl))
4726 CurrentClass = CatImpl->getClassInterface();
4727 }
4728
4729 ResultTypeCompatibilityKind RTC
4730 = CheckRelatedResultTypeCompatibility(*this, ObjCMethod, CurrentClass);
4731
4732 CheckObjCMethodOverrides(ObjCMethod, CurrentClass, RTC);
4733
4734 bool ARCError = false;
4735 if (getLangOpts().ObjCAutoRefCount)
4736 ARCError = CheckARCMethodDecl(ObjCMethod);
4737
4738 // Infer the related result type when possible.
4739 if (!ARCError && RTC == Sema::RTC_Compatible &&
4740 !ObjCMethod->hasRelatedResultType() &&
4741 LangOpts.ObjCInferRelatedResultType) {
4742 bool InferRelatedResultType = false;
4743 switch (ObjCMethod->getMethodFamily()) {
4744 case OMF_None:
4745 case OMF_copy:
4746 case OMF_dealloc:
4747 case OMF_finalize:
4748 case OMF_mutableCopy:
4749 case OMF_release:
4750 case OMF_retainCount:
4751 case OMF_initialize:
4752 case OMF_performSelector:
4753 break;
4754
4755 case OMF_alloc:
4756 case OMF_new:
4757 InferRelatedResultType = ObjCMethod->isClassMethod();
4758 break;
4759
4760 case OMF_init:
4761 case OMF_autorelease:
4762 case OMF_retain:
4763 case OMF_self:
4764 InferRelatedResultType = ObjCMethod->isInstanceMethod();
4765 break;
4766 }
4767
4768 if (InferRelatedResultType &&
4769 !ObjCMethod->getReturnType()->isObjCIndependentClassType())
4770 ObjCMethod->setRelatedResultType();
4771 }
4772
4773 if (MethodDefinition &&
4774 Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
4775 checkObjCMethodX86VectorTypes(*this, ObjCMethod);
4776
4777 // + load method cannot have availability attributes. It get called on
4778 // startup, so it has to have the availability of the deployment target.
4779 if (const auto *attr = ObjCMethod->getAttr<AvailabilityAttr>()) {
4780 if (ObjCMethod->isClassMethod() &&
4781 ObjCMethod->getSelector().getAsString() == "load") {
4782 Diag(attr->getLocation(), diag::warn_availability_on_static_initializer)
4783 << 0;
4784 ObjCMethod->dropAttr<AvailabilityAttr>();
4785 }
4786 }
4787
4788 ActOnDocumentableDecl(ObjCMethod);
4789
4790 return ObjCMethod;
4791}
4792
4793bool Sema::CheckObjCDeclScope(Decl *D) {
4794 // Following is also an error. But it is caused by a missing @end
4795 // and diagnostic is issued elsewhere.
4796 if (isa<ObjCContainerDecl>(CurContext->getRedeclContext()))
4797 return false;
4798
4799 // If we switched context to translation unit while we are still lexically in
4800 // an objc container, it means the parser missed emitting an error.
4801 if (isa<TranslationUnitDecl>(getCurLexicalContext()->getRedeclContext()))
4802 return false;
4803
4804 Diag(D->getLocation(), diag::err_objc_decls_may_only_appear_in_global_scope);
4805 D->setInvalidDecl();
4806
4807 return true;
4808}
4809
4810/// Called whenever \@defs(ClassName) is encountered in the source. Inserts the
4811/// instance variables of ClassName into Decls.
4812void Sema::ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart,
4813 IdentifierInfo *ClassName,
4814 SmallVectorImpl<Decl*> &Decls) {
4815 // Check that ClassName is a valid class
4816 ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName, DeclStart);
4817 if (!Class) {
4818 Diag(DeclStart, diag::err_undef_interface) << ClassName;
4819 return;
4820 }
4821 if (LangOpts.ObjCRuntime.isNonFragile()) {
4822 Diag(DeclStart, diag::err_atdef_nonfragile_interface);
4823 return;
4824 }
4825
4826 // Collect the instance variables
4827 SmallVector<const ObjCIvarDecl*, 32> Ivars;
4828 Context.DeepCollectObjCIvars(Class, true, Ivars);
4829 // For each ivar, create a fresh ObjCAtDefsFieldDecl.
4830 for (unsigned i = 0; i < Ivars.size(); i++) {
4831 const FieldDecl* ID = Ivars[i];
4832 RecordDecl *Record = dyn_cast<RecordDecl>(TagD);
4833 Decl *FD = ObjCAtDefsFieldDecl::Create(Context, Record,
4834 /*FIXME: StartL=*/ID->getLocation(),
4835 ID->getLocation(),
4836 ID->getIdentifier(), ID->getType(),
4837 ID->getBitWidth());
4838 Decls.push_back(FD);
4839 }
4840
4841 // Introduce all of these fields into the appropriate scope.
4842 for (SmallVectorImpl<Decl*>::iterator D = Decls.begin();
4843 D != Decls.end(); ++D) {
4844 FieldDecl *FD = cast<FieldDecl>(*D);
4845 if (getLangOpts().CPlusPlus)
4846 PushOnScopeChains(FD, S);
4847 else if (RecordDecl *Record = dyn_cast<RecordDecl>(TagD))
4848 Record->addDecl(FD);
4849 }
4850}
4851
4852/// Build a type-check a new Objective-C exception variable declaration.
4853VarDecl *Sema::BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType T,
4854 SourceLocation StartLoc,
4855 SourceLocation IdLoc,
4856 IdentifierInfo *Id,
4857 bool Invalid) {
4858 // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
4859 // duration shall not be qualified by an address-space qualifier."
4860 // Since all parameters have automatic store duration, they can not have
4861 // an address space.
4862 if (T.getAddressSpace() != LangAS::Default) {
4863 Diag(IdLoc, diag::err_arg_with_address_space);
4864 Invalid = true;
4865 }
4866
4867 // An @catch parameter must be an unqualified object pointer type;
4868 // FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"?
4869 if (Invalid) {
4870 // Don't do any further checking.
4871 } else if (T->isDependentType()) {
4872 // Okay: we don't know what this type will instantiate to.
4873 } else if (T->isObjCQualifiedIdType()) {
4874 Invalid = true;
4875 Diag(IdLoc, diag::err_illegal_qualifiers_on_catch_parm);
4876 } else if (T->isObjCIdType()) {
4877 // Okay: we don't know what this type will instantiate to.
4878 } else if (!T->isObjCObjectPointerType()) {
4879 Invalid = true;
4880 Diag(IdLoc, diag::err_catch_param_not_objc_type);
4881 } else if (!T->getAs<ObjCObjectPointerType>()->getInterfaceType()) {
4882 Invalid = true;
4883 Diag(IdLoc, diag::err_catch_param_not_objc_type);
4884 }
4885
4886 VarDecl *New = VarDecl::Create(Context, CurContext, StartLoc, IdLoc, Id,
4887 T, TInfo, SC_None);
4888 New->setExceptionVariable(true);
4889
4890 // In ARC, infer 'retaining' for variables of retainable type.
4891 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(New))
4892 Invalid = true;
4893
4894 if (Invalid)
4895 New->setInvalidDecl();
4896 return New;
4897}
4898
4899Decl *Sema::ActOnObjCExceptionDecl(Scope *S, Declarator &D) {
4900 const DeclSpec &DS = D.getDeclSpec();
4901
4902 // We allow the "register" storage class on exception variables because
4903 // GCC did, but we drop it completely. Any other storage class is an error.
4904 if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
4905 Diag(DS.getStorageClassSpecLoc(), diag::warn_register_objc_catch_parm)
4906 << FixItHint::CreateRemoval(SourceRange(DS.getStorageClassSpecLoc()));
4907 } else if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) {
4908 Diag(DS.getStorageClassSpecLoc(), diag::err_storage_spec_on_catch_parm)
4909 << DeclSpec::getSpecifierName(SCS);
4910 }
4911 if (DS.isInlineSpecified())
4912 Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function)
4913 << getLangOpts().CPlusPlus17;
4914 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
4915 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
4916 diag::err_invalid_thread)
4917 << DeclSpec::getSpecifierName(TSCS);
4918 D.getMutableDeclSpec().ClearStorageClassSpecs();
4919
4920 DiagnoseFunctionSpecifiers(D.getDeclSpec());
4921
4922 // Check that there are no default arguments inside the type of this
4923 // exception object (C++ only).
4924 if (getLangOpts().CPlusPlus)
4925 CheckExtraCXXDefaultArguments(D);
4926
4927 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
4928 QualType ExceptionType = TInfo->getType();
4929
4930 VarDecl *New = BuildObjCExceptionDecl(TInfo, ExceptionType,
4931 D.getSourceRange().getBegin(),
4932 D.getIdentifierLoc(),
4933 D.getIdentifier(),
4934 D.isInvalidType());
4935
4936 // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
4937 if (D.getCXXScopeSpec().isSet()) {
4938 Diag(D.getIdentifierLoc(), diag::err_qualified_objc_catch_parm)
4939 << D.getCXXScopeSpec().getRange();
4940 New->setInvalidDecl();
4941 }
4942
4943 // Add the parameter declaration into this scope.
4944 S->AddDecl(New);
4945 if (D.getIdentifier())
4946 IdResolver.AddDecl(New);
4947
4948 ProcessDeclAttributes(S, New, D);
4949
4950 if (New->hasAttr<BlocksAttr>())
4951 Diag(New->getLocation(), diag::err_block_on_nonlocal);
4952 return New;
4953}
4954
4955/// CollectIvarsToConstructOrDestruct - Collect those ivars which require
4956/// initialization.
4957void Sema::CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI,
4958 SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
4959 for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv;
4960 Iv= Iv->getNextIvar()) {
4961 QualType QT = Context.getBaseElementType(Iv->getType());
4962 if (QT->isRecordType())
4963 Ivars.push_back(Iv);
4964 }
4965}
4966
4967void Sema::DiagnoseUseOfUnimplementedSelectors() {
4968 // Load referenced selectors from the external source.
4969 if (ExternalSource) {
4970 SmallVector<std::pair<Selector, SourceLocation>, 4> Sels;
4971 ExternalSource->ReadReferencedSelectors(Sels);
4972 for (unsigned I = 0, N = Sels.size(); I != N; ++I)
4973 ReferencedSelectors[Sels[I].first] = Sels[I].second;
4974 }
4975
4976 // Warning will be issued only when selector table is
4977 // generated (which means there is at lease one implementation
4978 // in the TU). This is to match gcc's behavior.
4979 if (ReferencedSelectors.empty() ||
4980 !Context.AnyObjCImplementation())
4981 return;
4982 for (auto &SelectorAndLocation : ReferencedSelectors) {
4983 Selector Sel = SelectorAndLocation.first;
4984 SourceLocation Loc = SelectorAndLocation.second;
4985 if (!LookupImplementedMethodInGlobalPool(Sel))
4986 Diag(Loc, diag::warn_unimplemented_selector) << Sel;
4987 }
4988}
4989
4990ObjCIvarDecl *
4991Sema::GetIvarBackingPropertyAccessor(const ObjCMethodDecl *Method,
4992 const ObjCPropertyDecl *&PDecl) const {
4993 if (Method->isClassMethod())
4994 return nullptr;
4995 const ObjCInterfaceDecl *IDecl = Method->getClassInterface();
4996 if (!IDecl)
4997 return nullptr;
4998 Method = IDecl->lookupMethod(Method->getSelector(), /*isInstance=*/true,
4999 /*shallowCategoryLookup=*/false,
5000 /*followSuper=*/false);
5001 if (!Method || !Method->isPropertyAccessor())
5002 return nullptr;
5003 if ((PDecl = Method->findPropertyDecl()))
5004 if (ObjCIvarDecl *IV = PDecl->getPropertyIvarDecl()) {
5005 // property backing ivar must belong to property's class
5006 // or be a private ivar in class's implementation.
5007 // FIXME. fix the const-ness issue.
5008 IV = const_cast<ObjCInterfaceDecl *>(IDecl)->lookupInstanceVariable(
5009 IV->getIdentifier());
5010 return IV;
5011 }
5012 return nullptr;
5013}
5014
5015namespace {
5016 /// Used by Sema::DiagnoseUnusedBackingIvarInAccessor to check if a property
5017 /// accessor references the backing ivar.
5018 class UnusedBackingIvarChecker :
5019 public RecursiveASTVisitor<UnusedBackingIvarChecker> {
5020 public:
5021 Sema &S;
5022 const ObjCMethodDecl *Method;
5023 const ObjCIvarDecl *IvarD;
5024 bool AccessedIvar;
5025 bool InvokedSelfMethod;
5026
5027 UnusedBackingIvarChecker(Sema &S, const ObjCMethodDecl *Method,
5028 const ObjCIvarDecl *IvarD)
5029 : S(S), Method(Method), IvarD(IvarD),
5030 AccessedIvar(false), InvokedSelfMethod(false) {
5031 assert(IvarD)((IvarD) ? static_cast<void> (0) : __assert_fail ("IvarD"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 5031, __PRETTY_FUNCTION__))
;
5032 }
5033
5034 bool VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
5035 if (E->getDecl() == IvarD) {
5036 AccessedIvar = true;
5037 return false;
5038 }
5039 return true;
5040 }
5041
5042 bool VisitObjCMessageExpr(ObjCMessageExpr *E) {
5043 if (E->getReceiverKind() == ObjCMessageExpr::Instance &&
5044 S.isSelfExpr(E->getInstanceReceiver(), Method)) {
5045 InvokedSelfMethod = true;
5046 }
5047 return true;
5048 }
5049 };
5050} // end anonymous namespace
5051
5052void Sema::DiagnoseUnusedBackingIvarInAccessor(Scope *S,
5053 const ObjCImplementationDecl *ImplD) {
5054 if (S->hasUnrecoverableErrorOccurred())
5055 return;
5056
5057 for (const auto *CurMethod : ImplD->instance_methods()) {
5058 unsigned DIAG = diag::warn_unused_property_backing_ivar;
5059 SourceLocation Loc = CurMethod->getLocation();
5060 if (Diags.isIgnored(DIAG, Loc))
5061 continue;
5062
5063 const ObjCPropertyDecl *PDecl;
5064 const ObjCIvarDecl *IV = GetIvarBackingPropertyAccessor(CurMethod, PDecl);
5065 if (!IV)
5066 continue;
5067
5068 UnusedBackingIvarChecker Checker(*this, CurMethod, IV);
5069 Checker.TraverseStmt(CurMethod->getBody());
5070 if (Checker.AccessedIvar)
5071 continue;
5072
5073 // Do not issue this warning if backing ivar is used somewhere and accessor
5074 // implementation makes a self call. This is to prevent false positive in
5075 // cases where the ivar is accessed by another method that the accessor
5076 // delegates to.
5077 if (!IV->isReferenced() || !Checker.InvokedSelfMethod) {
5078 Diag(Loc, DIAG) << IV;
5079 Diag(PDecl->getLocation(), diag::note_property_declare);
5080 }
5081 }
5082}

/build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/include/clang/AST/Attrs.inc

1/*===- TableGen'erated file -------------------------------------*- C++ -*-===*\
2|* *|
3|* Attribute classes' definitions *|
4|* *|
5|* Automatically generated file, do not edit! *|
6|* *|
7\*===----------------------------------------------------------------------===*/
8
9#ifndef LLVM_CLANG_ATTR_CLASSES_INC
10#define LLVM_CLANG_ATTR_CLASSES_INC
11
12class AArch64VectorPcsAttr : public InheritableAttr {
13public:
14 static AArch64VectorPcsAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
15 auto *A = new (Ctx) AArch64VectorPcsAttr(Loc, Ctx, 0);
16 A->setImplicit(true);
17 return A;
18 }
19
20 AArch64VectorPcsAttr(SourceRange R, ASTContext &Ctx
21 , unsigned SI
22 )
23 : InheritableAttr(attr::AArch64VectorPcs, R, SI, false, false)
24 {
25 }
26
27 AArch64VectorPcsAttr *clone(ASTContext &C) const;
28 void printPretty(raw_ostream &OS,
29 const PrintingPolicy &Policy) const;
30 const char *getSpelling() const;
31
32
33 static bool classof(const Attr *A) { return A->getKind() == attr::AArch64VectorPcs; }
34};
35
36class AMDGPUFlatWorkGroupSizeAttr : public InheritableAttr {
37Expr * min;
38
39Expr * max;
40
41public:
42 static AMDGPUFlatWorkGroupSizeAttr *CreateImplicit(ASTContext &Ctx, Expr * Min, Expr * Max, SourceRange Loc = SourceRange()) {
43 auto *A = new (Ctx) AMDGPUFlatWorkGroupSizeAttr(Loc, Ctx, Min, Max, 0);
44 A->setImplicit(true);
45 return A;
46 }
47
48 AMDGPUFlatWorkGroupSizeAttr(SourceRange R, ASTContext &Ctx
49 , Expr * Min
50 , Expr * Max
51 , unsigned SI
52 )
53 : InheritableAttr(attr::AMDGPUFlatWorkGroupSize, R, SI, false, false)
54 , min(Min)
55 , max(Max)
56 {
57 }
58
59 AMDGPUFlatWorkGroupSizeAttr *clone(ASTContext &C) const;
60 void printPretty(raw_ostream &OS,
61 const PrintingPolicy &Policy) const;
62 const char *getSpelling() const;
63 Expr * getMin() const {
64 return min;
65 }
66
67 Expr * getMax() const {
68 return max;
69 }
70
71
72
73 static bool classof(const Attr *A) { return A->getKind() == attr::AMDGPUFlatWorkGroupSize; }
74};
75
76class AMDGPUNumSGPRAttr : public InheritableAttr {
77unsigned numSGPR;
78
79public:
80 static AMDGPUNumSGPRAttr *CreateImplicit(ASTContext &Ctx, unsigned NumSGPR, SourceRange Loc = SourceRange()) {
81 auto *A = new (Ctx) AMDGPUNumSGPRAttr(Loc, Ctx, NumSGPR, 0);
82 A->setImplicit(true);
83 return A;
84 }
85
86 AMDGPUNumSGPRAttr(SourceRange R, ASTContext &Ctx
87 , unsigned NumSGPR
88 , unsigned SI
89 )
90 : InheritableAttr(attr::AMDGPUNumSGPR, R, SI, false, false)
91 , numSGPR(NumSGPR)
92 {
93 }
94
95 AMDGPUNumSGPRAttr *clone(ASTContext &C) const;
96 void printPretty(raw_ostream &OS,
97 const PrintingPolicy &Policy) const;
98 const char *getSpelling() const;
99 unsigned getNumSGPR() const {
100 return numSGPR;
101 }
102
103
104
105 static bool classof(const Attr *A) { return A->getKind() == attr::AMDGPUNumSGPR; }
106};
107
108class AMDGPUNumVGPRAttr : public InheritableAttr {
109unsigned numVGPR;
110
111public:
112 static AMDGPUNumVGPRAttr *CreateImplicit(ASTContext &Ctx, unsigned NumVGPR, SourceRange Loc = SourceRange()) {
113 auto *A = new (Ctx) AMDGPUNumVGPRAttr(Loc, Ctx, NumVGPR, 0);
114 A->setImplicit(true);
115 return A;
116 }
117
118 AMDGPUNumVGPRAttr(SourceRange R, ASTContext &Ctx
119 , unsigned NumVGPR
120 , unsigned SI
121 )
122 : InheritableAttr(attr::AMDGPUNumVGPR, R, SI, false, false)
123 , numVGPR(NumVGPR)
124 {
125 }
126
127 AMDGPUNumVGPRAttr *clone(ASTContext &C) const;
128 void printPretty(raw_ostream &OS,
129 const PrintingPolicy &Policy) const;
130 const char *getSpelling() const;
131 unsigned getNumVGPR() const {
132 return numVGPR;
133 }
134
135
136
137 static bool classof(const Attr *A) { return A->getKind() == attr::AMDGPUNumVGPR; }
138};
139
140class AMDGPUWavesPerEUAttr : public InheritableAttr {
141Expr * min;
142
143Expr * max;
144
145public:
146 static AMDGPUWavesPerEUAttr *CreateImplicit(ASTContext &Ctx, Expr * Min, Expr * Max, SourceRange Loc = SourceRange()) {
147 auto *A = new (Ctx) AMDGPUWavesPerEUAttr(Loc, Ctx, Min, Max, 0);
148 A->setImplicit(true);
149 return A;
150 }
151
152 AMDGPUWavesPerEUAttr(SourceRange R, ASTContext &Ctx
153 , Expr * Min
154 , Expr * Max
155 , unsigned SI
156 )
157 : InheritableAttr(attr::AMDGPUWavesPerEU, R, SI, false, false)
158 , min(Min)
159 , max(Max)
160 {
161 }
162
163 AMDGPUWavesPerEUAttr(SourceRange R, ASTContext &Ctx
164 , Expr * Min
165 , unsigned SI
166 )
167 : InheritableAttr(attr::AMDGPUWavesPerEU, R, SI, false, false)
168 , min(Min)
169 , max()
170 {
171 }
172
173 AMDGPUWavesPerEUAttr *clone(ASTContext &C) const;
174 void printPretty(raw_ostream &OS,
175 const PrintingPolicy &Policy) const;
176 const char *getSpelling() const;
177 Expr * getMin() const {
178 return min;
179 }
180
181 Expr * getMax() const {
182 return max;
183 }
184
185
186
187 static bool classof(const Attr *A) { return A->getKind() == attr::AMDGPUWavesPerEU; }
188};
189
190class ARMInterruptAttr : public InheritableAttr {
191public:
192 enum InterruptType {
193 IRQ,
194 FIQ,
195 SWI,
196 ABORT,
197 UNDEF,
198 Generic
199 };
200private:
201 InterruptType interrupt;
202
203public:
204 static ARMInterruptAttr *CreateImplicit(ASTContext &Ctx, InterruptType Interrupt, SourceRange Loc = SourceRange()) {
205 auto *A = new (Ctx) ARMInterruptAttr(Loc, Ctx, Interrupt, 0);
206 A->setImplicit(true);
207 return A;
208 }
209
210 ARMInterruptAttr(SourceRange R, ASTContext &Ctx
211 , InterruptType Interrupt
212 , unsigned SI
213 )
214 : InheritableAttr(attr::ARMInterrupt, R, SI, false, false)
215 , interrupt(Interrupt)
216 {
217 }
218
219 ARMInterruptAttr(SourceRange R, ASTContext &Ctx
220 , unsigned SI
221 )
222 : InheritableAttr(attr::ARMInterrupt, R, SI, false, false)
223 , interrupt(InterruptType(0))
224 {
225 }
226
227 ARMInterruptAttr *clone(ASTContext &C) const;
228 void printPretty(raw_ostream &OS,
229 const PrintingPolicy &Policy) const;
230 const char *getSpelling() const;
231 InterruptType getInterrupt() const {
232 return interrupt;
233 }
234
235 static bool ConvertStrToInterruptType(StringRef Val, InterruptType &Out) {
236 Optional<InterruptType> R = llvm::StringSwitch<Optional<InterruptType>>(Val)
237 .Case("IRQ", ARMInterruptAttr::IRQ)
238 .Case("FIQ", ARMInterruptAttr::FIQ)
239 .Case("SWI", ARMInterruptAttr::SWI)
240 .Case("ABORT", ARMInterruptAttr::ABORT)
241 .Case("UNDEF", ARMInterruptAttr::UNDEF)
242 .Case("", ARMInterruptAttr::Generic)
243 .Default(Optional<InterruptType>());
244 if (R) {
245 Out = *R;
246 return true;
247 }
248 return false;
249 }
250
251 static const char *ConvertInterruptTypeToStr(InterruptType Val) {
252 switch(Val) {
253 case ARMInterruptAttr::IRQ: return "IRQ";
254 case ARMInterruptAttr::FIQ: return "FIQ";
255 case ARMInterruptAttr::SWI: return "SWI";
256 case ARMInterruptAttr::ABORT: return "ABORT";
257 case ARMInterruptAttr::UNDEF: return "UNDEF";
258 case ARMInterruptAttr::Generic: return "";
259 }
260 llvm_unreachable("No enumerator with that value")::llvm::llvm_unreachable_internal("No enumerator with that value"
, "/build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 260)
;
261 }
262
263
264 static bool classof(const Attr *A) { return A->getKind() == attr::ARMInterrupt; }
265};
266
267class AVRInterruptAttr : public InheritableAttr {
268public:
269 static AVRInterruptAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
270 auto *A = new (Ctx) AVRInterruptAttr(Loc, Ctx, 0);
271 A->setImplicit(true);
272 return A;
273 }
274
275 AVRInterruptAttr(SourceRange R, ASTContext &Ctx
276 , unsigned SI
277 )
278 : InheritableAttr(attr::AVRInterrupt, R, SI, false, false)
279 {
280 }
281
282 AVRInterruptAttr *clone(ASTContext &C) const;
283 void printPretty(raw_ostream &OS,
284 const PrintingPolicy &Policy) const;
285 const char *getSpelling() const;
286
287
288 static bool classof(const Attr *A) { return A->getKind() == attr::AVRInterrupt; }
289};
290
291class AVRSignalAttr : public InheritableAttr {
292public:
293 static AVRSignalAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
294 auto *A = new (Ctx) AVRSignalAttr(Loc, Ctx, 0);
295 A->setImplicit(true);
296 return A;
297 }
298
299 AVRSignalAttr(SourceRange R, ASTContext &Ctx
300 , unsigned SI
301 )
302 : InheritableAttr(attr::AVRSignal, R, SI, false, false)
303 {
304 }
305
306 AVRSignalAttr *clone(ASTContext &C) const;
307 void printPretty(raw_ostream &OS,
308 const PrintingPolicy &Policy) const;
309 const char *getSpelling() const;
310
311
312 static bool classof(const Attr *A) { return A->getKind() == attr::AVRSignal; }
313};
314
315class AbiTagAttr : public Attr {
316 unsigned tags_Size;
317 StringRef *tags_;
318
319public:
320 static AbiTagAttr *CreateImplicit(ASTContext &Ctx, StringRef *Tags, unsigned TagsSize, SourceRange Loc = SourceRange()) {
321 auto *A = new (Ctx) AbiTagAttr(Loc, Ctx, Tags, TagsSize, 0);
322 A->setImplicit(true);
323 return A;
324 }
325
326 AbiTagAttr(SourceRange R, ASTContext &Ctx
327 , StringRef *Tags, unsigned TagsSize
328 , unsigned SI
329 )
330 : Attr(attr::AbiTag, R, SI, false)
331 , tags_Size(TagsSize), tags_(new (Ctx, 16) StringRef[tags_Size])
332 {
333 for (size_t I = 0, E = tags_Size; I != E;
334 ++I) {
335 StringRef Ref = Tags[I];
336 if (!Ref.empty()) {
337 char *Mem = new (Ctx, 1) char[Ref.size()];
338 std::memcpy(Mem, Ref.data(), Ref.size());
339 tags_[I] = StringRef(Mem, Ref.size());
340 }
341 }
342 }
343
344 AbiTagAttr(SourceRange R, ASTContext &Ctx
345 , unsigned SI
346 )
347 : Attr(attr::AbiTag, R, SI, false)
348 , tags_Size(0), tags_(nullptr)
349 {
350 }
351
352 AbiTagAttr *clone(ASTContext &C) const;
353 void printPretty(raw_ostream &OS,
354 const PrintingPolicy &Policy) const;
355 const char *getSpelling() const;
356 typedef StringRef* tags_iterator;
357 tags_iterator tags_begin() const { return tags_; }
358 tags_iterator tags_end() const { return tags_ + tags_Size; }
359 unsigned tags_size() const { return tags_Size; }
360 llvm::iterator_range<tags_iterator> tags() const { return llvm::make_range(tags_begin(), tags_end()); }
361
362
363
364
365 static bool classof(const Attr *A) { return A->getKind() == attr::AbiTag; }
366};
367
368class AcquireCapabilityAttr : public InheritableAttr {
369 unsigned args_Size;
370 Expr * *args_;
371
372public:
373 enum Spelling {
374 GNU_acquire_capability = 0,
375 CXX11_clang_acquire_capability = 1,
376 GNU_acquire_shared_capability = 2,
377 CXX11_clang_acquire_shared_capability = 3,
378 GNU_exclusive_lock_function = 4,
379 GNU_shared_lock_function = 5
380 };
381
382 static AcquireCapabilityAttr *CreateImplicit(ASTContext &Ctx, Spelling S, Expr * *Args, unsigned ArgsSize, SourceRange Loc = SourceRange()) {
383 auto *A = new (Ctx) AcquireCapabilityAttr(Loc, Ctx, Args, ArgsSize, S);
384 A->setImplicit(true);
385 return A;
386 }
387
388 AcquireCapabilityAttr(SourceRange R, ASTContext &Ctx
389 , Expr * *Args, unsigned ArgsSize
390 , unsigned SI
391 )
392 : InheritableAttr(attr::AcquireCapability, R, SI, true, true)
393 , args_Size(ArgsSize), args_(new (Ctx, 16) Expr *[args_Size])
394 {
395 std::copy(Args, Args + args_Size, args_);
396 }
397
398 AcquireCapabilityAttr(SourceRange R, ASTContext &Ctx
399 , unsigned SI
400 )
401 : InheritableAttr(attr::AcquireCapability, R, SI, true, true)
402 , args_Size(0), args_(nullptr)
403 {
404 }
405
406 AcquireCapabilityAttr *clone(ASTContext &C) const;
407 void printPretty(raw_ostream &OS,
408 const PrintingPolicy &Policy) const;
409 const char *getSpelling() const;
410 Spelling getSemanticSpelling() const {
411 switch (SpellingListIndex) {
412 default: llvm_unreachable("Unknown spelling list index")::llvm::llvm_unreachable_internal("Unknown spelling list index"
, "/build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 412)
;
413 case 0: return GNU_acquire_capability;
414 case 1: return CXX11_clang_acquire_capability;
415 case 2: return GNU_acquire_shared_capability;
416 case 3: return CXX11_clang_acquire_shared_capability;
417 case 4: return GNU_exclusive_lock_function;
418 case 5: return GNU_shared_lock_function;
419 }
420 }
421 bool isShared() const { return SpellingListIndex == 2 ||
422 SpellingListIndex == 3 ||
423 SpellingListIndex == 5; }
424 typedef Expr ** args_iterator;
425 args_iterator args_begin() const { return args_; }
426 args_iterator args_end() const { return args_ + args_Size; }
427 unsigned args_size() const { return args_Size; }
428 llvm::iterator_range<args_iterator> args() const { return llvm::make_range(args_begin(), args_end()); }
429
430
431
432
433 static bool classof(const Attr *A) { return A->getKind() == attr::AcquireCapability; }
434};
435
436class AcquiredAfterAttr : public InheritableAttr {
437 unsigned args_Size;
438 Expr * *args_;
439
440public:
441 static AcquiredAfterAttr *CreateImplicit(ASTContext &Ctx, Expr * *Args, unsigned ArgsSize, SourceRange Loc = SourceRange()) {
442 auto *A = new (Ctx) AcquiredAfterAttr(Loc, Ctx, Args, ArgsSize, 0);
443 A->setImplicit(true);
444 return A;
445 }
446
447 AcquiredAfterAttr(SourceRange R, ASTContext &Ctx
448 , Expr * *Args, unsigned ArgsSize
449 , unsigned SI
450 )
451 : InheritableAttr(attr::AcquiredAfter, R, SI, true, true)
452 , args_Size(ArgsSize), args_(new (Ctx, 16) Expr *[args_Size])
453 {
454 std::copy(Args, Args + args_Size, args_);
455 }
456
457 AcquiredAfterAttr(SourceRange R, ASTContext &Ctx
458 , unsigned SI
459 )
460 : InheritableAttr(attr::AcquiredAfter, R, SI, true, true)
461 , args_Size(0), args_(nullptr)
462 {
463 }
464
465 AcquiredAfterAttr *clone(ASTContext &C) const;
466 void printPretty(raw_ostream &OS,
467 const PrintingPolicy &Policy) const;
468 const char *getSpelling() const;
469 typedef Expr ** args_iterator;
470 args_iterator args_begin() const { return args_; }
471 args_iterator args_end() const { return args_ + args_Size; }
472 unsigned args_size() const { return args_Size; }
473 llvm::iterator_range<args_iterator> args() const { return llvm::make_range(args_begin(), args_end()); }
474
475
476
477
478 static bool classof(const Attr *A) { return A->getKind() == attr::AcquiredAfter; }
479};
480
481class AcquiredBeforeAttr : public InheritableAttr {
482 unsigned args_Size;
483 Expr * *args_;
484
485public:
486 static AcquiredBeforeAttr *CreateImplicit(ASTContext &Ctx, Expr * *Args, unsigned ArgsSize, SourceRange Loc = SourceRange()) {
487 auto *A = new (Ctx) AcquiredBeforeAttr(Loc, Ctx, Args, ArgsSize, 0);
488 A->setImplicit(true);
489 return A;
490 }
491
492 AcquiredBeforeAttr(SourceRange R, ASTContext &Ctx
493 , Expr * *Args, unsigned ArgsSize
494 , unsigned SI
495 )
496 : InheritableAttr(attr::AcquiredBefore, R, SI, true, true)
497 , args_Size(ArgsSize), args_(new (Ctx, 16) Expr *[args_Size])
498 {
499 std::copy(Args, Args + args_Size, args_);
500 }
501
502 AcquiredBeforeAttr(SourceRange R, ASTContext &Ctx
503 , unsigned SI
504 )
505 : InheritableAttr(attr::AcquiredBefore, R, SI, true, true)
506 , args_Size(0), args_(nullptr)
507 {
508 }
509
510 AcquiredBeforeAttr *clone(ASTContext &C) const;
511 void printPretty(raw_ostream &OS,
512 const PrintingPolicy &Policy) const;
513 const char *getSpelling() const;
514 typedef Expr ** args_iterator;
515 args_iterator args_begin() const { return args_; }
516 args_iterator args_end() const { return args_ + args_Size; }
517 unsigned args_size() const { return args_Size; }
518 llvm::iterator_range<args_iterator> args() const { return llvm::make_range(args_begin(), args_end()); }
519
520
521
522
523 static bool classof(const Attr *A) { return A->getKind() == attr::AcquiredBefore; }
524};
525
526class AddressSpaceAttr : public TypeAttr {
527int addressSpace;
528
529public:
530 static AddressSpaceAttr *CreateImplicit(ASTContext &Ctx, int AddressSpace, SourceRange Loc = SourceRange()) {
531 auto *A = new (Ctx) AddressSpaceAttr(Loc, Ctx, AddressSpace, 0);
532 A->setImplicit(true);
533 return A;
534 }
535
536 AddressSpaceAttr(SourceRange R, ASTContext &Ctx
537 , int AddressSpace
538 , unsigned SI
539 )
540 : TypeAttr(attr::AddressSpace, R, SI, false)
541 , addressSpace(AddressSpace)
542 {
543 }
544
545 AddressSpaceAttr *clone(ASTContext &C) const;
546 void printPretty(raw_ostream &OS,
547 const PrintingPolicy &Policy) const;
548 const char *getSpelling() const;
549 int getAddressSpace() const {
550 return addressSpace;
551 }
552
553
554
555 static bool classof(const Attr *A) { return A->getKind() == attr::AddressSpace; }
556};
557
558class AliasAttr : public Attr {
559unsigned aliaseeLength;
560char *aliasee;
561
562public:
563 static AliasAttr *CreateImplicit(ASTContext &Ctx, llvm::StringRef Aliasee, SourceRange Loc = SourceRange()) {
564 auto *A = new (Ctx) AliasAttr(Loc, Ctx, Aliasee, 0);
565 A->setImplicit(true);
566 return A;
567 }
568
569 AliasAttr(SourceRange R, ASTContext &Ctx
570 , llvm::StringRef Aliasee
571 , unsigned SI
572 )
573 : Attr(attr::Alias, R, SI, false)
574 , aliaseeLength(Aliasee.size()),aliasee(new (Ctx, 1) char[aliaseeLength])
575 {
576 if (!Aliasee.empty())
577 std::memcpy(aliasee, Aliasee.data(), aliaseeLength);
578 }
579
580 AliasAttr *clone(ASTContext &C) const;
581 void printPretty(raw_ostream &OS,
582 const PrintingPolicy &Policy) const;
583 const char *getSpelling() const;
584 llvm::StringRef getAliasee() const {
585 return llvm::StringRef(aliasee, aliaseeLength);
586 }
587 unsigned getAliaseeLength() const {
588 return aliaseeLength;
589 }
590 void setAliasee(ASTContext &C, llvm::StringRef S) {
591 aliaseeLength = S.size();
592 this->aliasee = new (C, 1) char [aliaseeLength];
593 if (!S.empty())
594 std::memcpy(this->aliasee, S.data(), aliaseeLength);
595 }
596
597
598
599 static bool classof(const Attr *A) { return A->getKind() == attr::Alias; }
600};
601
602class AlignMac68kAttr : public InheritableAttr {
603public:
604 static AlignMac68kAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
605 auto *A = new (Ctx) AlignMac68kAttr(Loc, Ctx, 0);
606 A->setImplicit(true);
607 return A;
608 }
609
610 AlignMac68kAttr(SourceRange R, ASTContext &Ctx
611 , unsigned SI
612 )
613 : InheritableAttr(attr::AlignMac68k, R, SI, false, false)
614 {
615 }
616
617 AlignMac68kAttr *clone(ASTContext &C) const;
618 void printPretty(raw_ostream &OS,
619 const PrintingPolicy &Policy) const;
620 const char *getSpelling() const;
621
622
623 static bool classof(const Attr *A) { return A->getKind() == attr::AlignMac68k; }
624};
625
626class AlignValueAttr : public Attr {
627Expr * alignment;
628
629public:
630 static AlignValueAttr *CreateImplicit(ASTContext &Ctx, Expr * Alignment, SourceRange Loc = SourceRange()) {
631 auto *A = new (Ctx) AlignValueAttr(Loc, Ctx, Alignment, 0);
632 A->setImplicit(true);
633 return A;
634 }
635
636 AlignValueAttr(SourceRange R, ASTContext &Ctx
637 , Expr * Alignment
638 , unsigned SI
639 )
640 : Attr(attr::AlignValue, R, SI, false)
641 , alignment(Alignment)
642 {
643 }
644
645 AlignValueAttr *clone(ASTContext &C) const;
646 void printPretty(raw_ostream &OS,
647 const PrintingPolicy &Policy) const;
648 const char *getSpelling() const;
649 Expr * getAlignment() const {
650 return alignment;
651 }
652
653
654
655 static bool classof(const Attr *A) { return A->getKind() == attr::AlignValue; }
656};
657
658class AlignedAttr : public InheritableAttr {
659bool isalignmentExpr;
660union {
661Expr *alignmentExpr;
662TypeSourceInfo *alignmentType;
663};
664
665public:
666 enum Spelling {
667 GNU_aligned = 0,
668 CXX11_gnu_aligned = 1,
669 Declspec_align = 2,
670 Keyword_alignas = 3,
671 Keyword_Alignas = 4
672 };
673
674 static AlignedAttr *CreateImplicit(ASTContext &Ctx, Spelling S, bool IsAlignmentExpr, void *Alignment, SourceRange Loc = SourceRange()) {
675 auto *A = new (Ctx) AlignedAttr(Loc, Ctx, IsAlignmentExpr, Alignment, S);
676 A->setImplicit(true);
677 return A;
678 }
679
680 AlignedAttr(SourceRange R, ASTContext &Ctx
681 , bool IsAlignmentExpr, void *Alignment
682 , unsigned SI
683 )
684 : InheritableAttr(attr::Aligned, R, SI, false, false)
685 , isalignmentExpr(IsAlignmentExpr)
686 {
687 if (isalignmentExpr)
688 alignmentExpr = reinterpret_cast<Expr *>(Alignment);
689 else
690 alignmentType = reinterpret_cast<TypeSourceInfo *>(Alignment);
691 }
692
693 AlignedAttr(SourceRange R, ASTContext &Ctx
694 , unsigned SI
695 )
696 : InheritableAttr(attr::Aligned, R, SI, false, false)
697 , isalignmentExpr(false)
698 {
699 }
700
701 AlignedAttr *clone(ASTContext &C) const;
702 void printPretty(raw_ostream &OS,
703 const PrintingPolicy &Policy) const;
704 const char *getSpelling() const;
705 Spelling getSemanticSpelling() const {
706 switch (SpellingListIndex) {
707 default: llvm_unreachable("Unknown spelling list index")::llvm::llvm_unreachable_internal("Unknown spelling list index"
, "/build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 707)
;
708 case 0: return GNU_aligned;
709 case 1: return CXX11_gnu_aligned;
710 case 2: return Declspec_align;
711 case 3: return Keyword_alignas;
712 case 4: return Keyword_Alignas;
713 }
714 }
715 bool isGNU() const { return SpellingListIndex == 0 ||
716 SpellingListIndex == 1; }
717 bool isC11() const { return SpellingListIndex == 4; }
718 bool isAlignas() const { return SpellingListIndex == 3 ||
719 SpellingListIndex == 4; }
720 bool isDeclspec() const { return SpellingListIndex == 2; }
721 bool isAlignmentDependent() const;
722 unsigned getAlignment(ASTContext &Ctx) const;
723 bool isAlignmentExpr() const {
724 return isalignmentExpr;
725 }
726 Expr *getAlignmentExpr() const {
727 assert(isalignmentExpr)((isalignmentExpr) ? static_cast<void> (0) : __assert_fail
("isalignmentExpr", "/build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 727, __PRETTY_FUNCTION__))
;
728 return alignmentExpr;
729 }
730 TypeSourceInfo *getAlignmentType() const {
731 assert(!isalignmentExpr)((!isalignmentExpr) ? static_cast<void> (0) : __assert_fail
("!isalignmentExpr", "/build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 731, __PRETTY_FUNCTION__))
;
732 return alignmentType;
733 }
734
735
736
737 static bool classof(const Attr *A) { return A->getKind() == attr::Aligned; }
738};
739
740class AllocAlignAttr : public InheritableAttr {
741ParamIdx paramIndex;
742
743public:
744 static AllocAlignAttr *CreateImplicit(ASTContext &Ctx, ParamIdx ParamIndex, SourceRange Loc = SourceRange()) {
745 auto *A = new (Ctx) AllocAlignAttr(Loc, Ctx, ParamIndex, 0);
746 A->setImplicit(true);
747 return A;
748 }
749
750 AllocAlignAttr(SourceRange R, ASTContext &Ctx
751 , ParamIdx ParamIndex
752 , unsigned SI
753 )
754 : InheritableAttr(attr::AllocAlign, R, SI, false, false)
755 , paramIndex(ParamIndex)
756 {
757 }
758
759 AllocAlignAttr *clone(ASTContext &C) const;
760 void printPretty(raw_ostream &OS,
761 const PrintingPolicy &Policy) const;
762 const char *getSpelling() const;
763 ParamIdx getParamIndex() const {
764 return paramIndex;
765 }
766
767
768
769 static bool classof(const Attr *A) { return A->getKind() == attr::AllocAlign; }
770};
771
772class AllocSizeAttr : public InheritableAttr {
773ParamIdx elemSizeParam;
774
775ParamIdx numElemsParam;
776
777public:
778 static AllocSizeAttr *CreateImplicit(ASTContext &Ctx, ParamIdx ElemSizeParam, ParamIdx NumElemsParam, SourceRange Loc = SourceRange()) {
779 auto *A = new (Ctx) AllocSizeAttr(Loc, Ctx, ElemSizeParam, NumElemsParam, 0);
780 A->setImplicit(true);
781 return A;
782 }
783
784 AllocSizeAttr(SourceRange R, ASTContext &Ctx
785 , ParamIdx ElemSizeParam
786 , ParamIdx NumElemsParam
787 , unsigned SI
788 )
789 : InheritableAttr(attr::AllocSize, R, SI, false, false)
790 , elemSizeParam(ElemSizeParam)
791 , numElemsParam(NumElemsParam)
792 {
793 }
794
795 AllocSizeAttr(SourceRange R, ASTContext &Ctx
796 , ParamIdx ElemSizeParam
797 , unsigned SI
798 )
799 : InheritableAttr(attr::AllocSize, R, SI, false, false)
800 , elemSizeParam(ElemSizeParam)
801 , numElemsParam()
802 {
803 }
804
805 AllocSizeAttr *clone(ASTContext &C) const;
806 void printPretty(raw_ostream &OS,
807 const PrintingPolicy &Policy) const;
808 const char *getSpelling() const;
809 ParamIdx getElemSizeParam() const {
810 return elemSizeParam;
811 }
812
813 ParamIdx getNumElemsParam() const {
814 return numElemsParam;
815 }
816
817
818
819 static bool classof(const Attr *A) { return A->getKind() == attr::AllocSize; }
820};
821
822class AlwaysDestroyAttr : public InheritableAttr {
823public:
824 static AlwaysDestroyAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
825 auto *A = new (Ctx) AlwaysDestroyAttr(Loc, Ctx, 0);
826 A->setImplicit(true);
827 return A;
828 }
829
830 AlwaysDestroyAttr(SourceRange R, ASTContext &Ctx
831 , unsigned SI
832 )
833 : InheritableAttr(attr::AlwaysDestroy, R, SI, false, false)
834 {
835 }
836
837 AlwaysDestroyAttr *clone(ASTContext &C) const;
838 void printPretty(raw_ostream &OS,
839 const PrintingPolicy &Policy) const;
840 const char *getSpelling() const;
841
842
843 static bool classof(const Attr *A) { return A->getKind() == attr::AlwaysDestroy; }
844};
845
846class AlwaysInlineAttr : public InheritableAttr {
847public:
848 enum Spelling {
849 GNU_always_inline = 0,
850 CXX11_gnu_always_inline = 1,
851 Keyword_forceinline = 2
852 };
853
854 static AlwaysInlineAttr *CreateImplicit(ASTContext &Ctx, Spelling S, SourceRange Loc = SourceRange()) {
855 auto *A = new (Ctx) AlwaysInlineAttr(Loc, Ctx, S);
856 A->setImplicit(true);
857 return A;
858 }
859
860 AlwaysInlineAttr(SourceRange R, ASTContext &Ctx
861 , unsigned SI
862 )
863 : InheritableAttr(attr::AlwaysInline, R, SI, false, false)
864 {
865 }
866
867 AlwaysInlineAttr *clone(ASTContext &C) const;
868 void printPretty(raw_ostream &OS,
869 const PrintingPolicy &Policy) const;
870 const char *getSpelling() const;
871 Spelling getSemanticSpelling() const {
872 switch (SpellingListIndex) {
873 default: llvm_unreachable("Unknown spelling list index")::llvm::llvm_unreachable_internal("Unknown spelling list index"
, "/build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 873)
;
874 case 0: return GNU_always_inline;
875 case 1: return CXX11_gnu_always_inline;
876 case 2: return Keyword_forceinline;
877 }
878 }
879
880
881 static bool classof(const Attr *A) { return A->getKind() == attr::AlwaysInline; }
882};
883
884class AnalyzerNoReturnAttr : public InheritableAttr {
885public:
886 static AnalyzerNoReturnAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
887 auto *A = new (Ctx) AnalyzerNoReturnAttr(Loc, Ctx, 0);
888 A->setImplicit(true);
889 return A;
890 }
891
892 AnalyzerNoReturnAttr(SourceRange R, ASTContext &Ctx
893 , unsigned SI
894 )
895 : InheritableAttr(attr::AnalyzerNoReturn, R, SI, false, false)
896 {
897 }
898
899 AnalyzerNoReturnAttr *clone(ASTContext &C) const;
900 void printPretty(raw_ostream &OS,
901 const PrintingPolicy &Policy) const;
902 const char *getSpelling() const;
903
904
905 static bool classof(const Attr *A) { return A->getKind() == attr::AnalyzerNoReturn; }
906};
907
908class AnnotateAttr : public InheritableParamAttr {
909unsigned annotationLength;
910char *annotation;
911
912public:
913 static AnnotateAttr *CreateImplicit(ASTContext &Ctx, llvm::StringRef Annotation, SourceRange Loc = SourceRange()) {
914 auto *A = new (Ctx) AnnotateAttr(Loc, Ctx, Annotation, 0);
915 A->setImplicit(true);
916 return A;
917 }
918
919 AnnotateAttr(SourceRange R, ASTContext &Ctx
920 , llvm::StringRef Annotation
921 , unsigned SI
922 )
923 : InheritableParamAttr(attr::Annotate, R, SI, false, false)
924 , annotationLength(Annotation.size()),annotation(new (Ctx, 1) char[annotationLength])
925 {
926 if (!Annotation.empty())
927 std::memcpy(annotation, Annotation.data(), annotationLength);
928 }
929
930 AnnotateAttr *clone(ASTContext &C) const;
931 void printPretty(raw_ostream &OS,
932 const PrintingPolicy &Policy) const;
933 const char *getSpelling() const;
934 llvm::StringRef getAnnotation() const {
935 return llvm::StringRef(annotation, annotationLength);
936 }
937 unsigned getAnnotationLength() const {
938 return annotationLength;
939 }
940 void setAnnotation(ASTContext &C, llvm::StringRef S) {
941 annotationLength = S.size();
942 this->annotation = new (C, 1) char [annotationLength];
943 if (!S.empty())
944 std::memcpy(this->annotation, S.data(), annotationLength);
945 }
946
947
948
949 static bool classof(const Attr *A) { return A->getKind() == attr::Annotate; }
950};
951
952class AnyX86InterruptAttr : public InheritableAttr {
953public:
954 static AnyX86InterruptAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
955 auto *A = new (Ctx) AnyX86InterruptAttr(Loc, Ctx, 0);
956 A->setImplicit(true);
957 return A;
958 }
959
960 AnyX86InterruptAttr(SourceRange R, ASTContext &Ctx
961 , unsigned SI
962 )
963 : InheritableAttr(attr::AnyX86Interrupt, R, SI, false, false)
964 {
965 }
966
967 AnyX86InterruptAttr *clone(ASTContext &C) const;
968 void printPretty(raw_ostream &OS,
969 const PrintingPolicy &Policy) const;
970 const char *getSpelling() const;
971
972
973 static bool classof(const Attr *A) { return A->getKind() == attr::AnyX86Interrupt; }
974};
975
976class AnyX86NoCallerSavedRegistersAttr : public InheritableAttr {
977public:
978 static AnyX86NoCallerSavedRegistersAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
979 auto *A = new (Ctx) AnyX86NoCallerSavedRegistersAttr(Loc, Ctx, 0);
980 A->setImplicit(true);
981 return A;
982 }
983
984 AnyX86NoCallerSavedRegistersAttr(SourceRange R, ASTContext &Ctx
985 , unsigned SI
986 )
987 : InheritableAttr(attr::AnyX86NoCallerSavedRegisters, R, SI, false, false)
988 {
989 }
990
991 AnyX86NoCallerSavedRegistersAttr *clone(ASTContext &C) const;
992 void printPretty(raw_ostream &OS,
993 const PrintingPolicy &Policy) const;
994 const char *getSpelling() const;
995
996
997 static bool classof(const Attr *A) { return A->getKind() == attr::AnyX86NoCallerSavedRegisters; }
998};
999
1000class AnyX86NoCfCheckAttr : public InheritableAttr {
1001public:
1002 static AnyX86NoCfCheckAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
1003 auto *A = new (Ctx) AnyX86NoCfCheckAttr(Loc, Ctx, 0);
1004 A->setImplicit(true);
1005 return A;
1006 }
1007
1008 AnyX86NoCfCheckAttr(SourceRange R, ASTContext &Ctx
1009 , unsigned SI
1010 )
1011 : InheritableAttr(attr::AnyX86NoCfCheck, R, SI, false, false)
1012 {
1013 }
1014
1015 AnyX86NoCfCheckAttr *clone(ASTContext &C) const;
1016 void printPretty(raw_ostream &OS,
1017 const PrintingPolicy &Policy) const;
1018 const char *getSpelling() const;
1019
1020
1021 static bool classof(const Attr *A) { return A->getKind() == attr::AnyX86NoCfCheck; }
1022};
1023
1024class ArcWeakrefUnavailableAttr : public InheritableAttr {
1025public:
1026 static ArcWeakrefUnavailableAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
1027 auto *A = new (Ctx) ArcWeakrefUnavailableAttr(Loc, Ctx, 0);
1028 A->setImplicit(true);
1029 return A;
1030 }
1031
1032 ArcWeakrefUnavailableAttr(SourceRange R, ASTContext &Ctx
1033 , unsigned SI
1034 )
1035 : InheritableAttr(attr::ArcWeakrefUnavailable, R, SI, false, false)
1036 {
1037 }
1038
1039 ArcWeakrefUnavailableAttr *clone(ASTContext &C) const;
1040 void printPretty(raw_ostream &OS,
1041 const PrintingPolicy &Policy) const;
1042 const char *getSpelling() const;
1043
1044
1045 static bool classof(const Attr *A) { return A->getKind() == attr::ArcWeakrefUnavailable; }
1046};
1047
1048class ArgumentWithTypeTagAttr : public InheritableAttr {
1049IdentifierInfo * argumentKind;
1050
1051ParamIdx argumentIdx;
1052
1053ParamIdx typeTagIdx;
1054
1055bool isPointer;
1056
1057public:
1058 enum Spelling {
1059 GNU_argument_with_type_tag = 0,
1060 CXX11_clang_argument_with_type_tag = 1,
1061 C2x_clang_argument_with_type_tag = 2,
1062 GNU_pointer_with_type_tag = 3,
1063 CXX11_clang_pointer_with_type_tag = 4,
1064 C2x_clang_pointer_with_type_tag = 5
1065 };
1066
1067 static ArgumentWithTypeTagAttr *CreateImplicit(ASTContext &Ctx, Spelling S, IdentifierInfo * ArgumentKind, ParamIdx ArgumentIdx, ParamIdx TypeTagIdx, bool IsPointer, SourceRange Loc = SourceRange()) {
1068 auto *A = new (Ctx) ArgumentWithTypeTagAttr(Loc, Ctx, ArgumentKind, ArgumentIdx, TypeTagIdx, IsPointer, S);
1069 A->setImplicit(true);
1070 return A;
1071 }
1072
1073 static ArgumentWithTypeTagAttr *CreateImplicit(ASTContext &Ctx, Spelling S, IdentifierInfo * ArgumentKind, ParamIdx ArgumentIdx, ParamIdx TypeTagIdx, SourceRange Loc = SourceRange()) {
1074 auto *A = new (Ctx) ArgumentWithTypeTagAttr(Loc, Ctx, ArgumentKind, ArgumentIdx, TypeTagIdx, S);
1075 A->setImplicit(true);
1076 return A;
1077 }
1078
1079 ArgumentWithTypeTagAttr(SourceRange R, ASTContext &Ctx
1080 , IdentifierInfo * ArgumentKind
1081 , ParamIdx ArgumentIdx
1082 , ParamIdx TypeTagIdx
1083 , bool IsPointer
1084 , unsigned SI
1085 )
1086 : InheritableAttr(attr::ArgumentWithTypeTag, R, SI, false, false)
1087 , argumentKind(ArgumentKind)
1088 , argumentIdx(ArgumentIdx)
1089 , typeTagIdx(TypeTagIdx)
1090 , isPointer(IsPointer)
1091 {
1092 }
1093
1094 ArgumentWithTypeTagAttr(SourceRange R, ASTContext &Ctx
1095 , IdentifierInfo * ArgumentKind
1096 , ParamIdx ArgumentIdx
1097 , ParamIdx TypeTagIdx
1098 , unsigned SI
1099 )
1100 : InheritableAttr(attr::ArgumentWithTypeTag, R, SI, false, false)
1101 , argumentKind(ArgumentKind)
1102 , argumentIdx(ArgumentIdx)
1103 , typeTagIdx(TypeTagIdx)
1104 , isPointer()
1105 {
1106 }
1107
1108 ArgumentWithTypeTagAttr *clone(ASTContext &C) const;
1109 void printPretty(raw_ostream &OS,
1110 const PrintingPolicy &Policy) const;
1111 const char *getSpelling() const;
1112 Spelling getSemanticSpelling() const {
1113 switch (SpellingListIndex) {
1114 default: llvm_unreachable("Unknown spelling list index")::llvm::llvm_unreachable_internal("Unknown spelling list index"
, "/build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 1114)
;
1115 case 0: return GNU_argument_with_type_tag;
1116 case 1: return CXX11_clang_argument_with_type_tag;
1117 case 2: return C2x_clang_argument_with_type_tag;
1118 case 3: return GNU_pointer_with_type_tag;
1119 case 4: return CXX11_clang_pointer_with_type_tag;
1120 case 5: return C2x_clang_pointer_with_type_tag;
1121 }
1122 }
1123 IdentifierInfo * getArgumentKind() const {
1124 return argumentKind;
1125 }
1126
1127 ParamIdx getArgumentIdx() const {
1128 return argumentIdx;
1129 }
1130
1131 ParamIdx getTypeTagIdx() const {
1132 return typeTagIdx;
1133 }
1134
1135 bool getIsPointer() const {
1136 return isPointer;
1137 }
1138
1139
1140
1141 static bool classof(const Attr *A) { return A->getKind() == attr::ArgumentWithTypeTag; }
1142};
1143
1144class ArtificialAttr : public InheritableAttr {
1145public:
1146 static ArtificialAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
1147 auto *A = new (Ctx) ArtificialAttr(Loc, Ctx, 0);
1148 A->setImplicit(true);
1149 return A;
1150 }
1151
1152 ArtificialAttr(SourceRange R, ASTContext &Ctx
1153 , unsigned SI
1154 )
1155 : InheritableAttr(attr::Artificial, R, SI, false, false)
1156 {
1157 }
1158
1159 ArtificialAttr *clone(ASTContext &C) const;
1160 void printPretty(raw_ostream &OS,
1161 const PrintingPolicy &Policy) const;
1162 const char *getSpelling() const;
1163
1164
1165 static bool classof(const Attr *A) { return A->getKind() == attr::Artificial; }
1166};
1167
1168class AsmLabelAttr : public InheritableAttr {
1169unsigned labelLength;
1170char *label;
1171
1172public:
1173 static AsmLabelAttr *CreateImplicit(ASTContext &Ctx, llvm::StringRef Label, SourceRange Loc = SourceRange()) {
1174 auto *A = new (Ctx) AsmLabelAttr(Loc, Ctx, Label, 0);
1175 A->setImplicit(true);
1176 return A;
1177 }
1178
1179 AsmLabelAttr(SourceRange R, ASTContext &Ctx
1180 , llvm::StringRef Label
1181 , unsigned SI
1182 )
1183 : InheritableAttr(attr::AsmLabel, R, SI, false, false)
1184 , labelLength(Label.size()),label(new (Ctx, 1) char[labelLength])
1185 {
1186 if (!Label.empty())
1187 std::memcpy(label, Label.data(), labelLength);
1188 }
1189
1190 AsmLabelAttr *clone(ASTContext &C) const;
1191 void printPretty(raw_ostream &OS,
1192 const PrintingPolicy &Policy) const;
1193 const char *getSpelling() const;
1194 llvm::StringRef getLabel() const {
1195 return llvm::StringRef(label, labelLength);
1196 }
1197 unsigned getLabelLength() const {
1198 return labelLength;
1199 }
1200 void setLabel(ASTContext &C, llvm::StringRef S) {
1201 labelLength = S.size();
1202 this->label = new (C, 1) char [labelLength];
1203 if (!S.empty())
1204 std::memcpy(this->label, S.data(), labelLength);
1205 }
1206
1207
1208
1209 static bool classof(const Attr *A) { return A->getKind() == attr::AsmLabel; }
1210};
1211
1212class AssertCapabilityAttr : public InheritableAttr {
1213 unsigned args_Size;
1214 Expr * *args_;
1215
1216public:
1217 enum Spelling {
1218 GNU_assert_capability = 0,
1219 CXX11_clang_assert_capability = 1,
1220 GNU_assert_shared_capability = 2,
1221 CXX11_clang_assert_shared_capability = 3
1222 };
1223
1224 static AssertCapabilityAttr *CreateImplicit(ASTContext &Ctx, Spelling S, Expr * *Args, unsigned ArgsSize, SourceRange Loc = SourceRange()) {
1225 auto *A = new (Ctx) AssertCapabilityAttr(Loc, Ctx, Args, ArgsSize, S);
1226 A->setImplicit(true);
1227 return A;
1228 }
1229
1230 AssertCapabilityAttr(SourceRange R, ASTContext &Ctx
1231 , Expr * *Args, unsigned ArgsSize
1232 , unsigned SI
1233 )
1234 : InheritableAttr(attr::AssertCapability, R, SI, true, true)
1235 , args_Size(ArgsSize), args_(new (Ctx, 16) Expr *[args_Size])
1236 {
1237 std::copy(Args, Args + args_Size, args_);
1238 }
1239
1240 AssertCapabilityAttr(SourceRange R, ASTContext &Ctx
1241 , unsigned SI
1242 )
1243 : InheritableAttr(attr::AssertCapability, R, SI, true, true)
1244 , args_Size(0), args_(nullptr)
1245 {
1246 }
1247
1248 AssertCapabilityAttr *clone(ASTContext &C) const;
1249 void printPretty(raw_ostream &OS,
1250 const PrintingPolicy &Policy) const;
1251 const char *getSpelling() const;
1252 Spelling getSemanticSpelling() const {
1253 switch (SpellingListIndex) {
1254 default: llvm_unreachable("Unknown spelling list index")::llvm::llvm_unreachable_internal("Unknown spelling list index"
, "/build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 1254)
;
1255 case 0: return GNU_assert_capability;
1256 case 1: return CXX11_clang_assert_capability;
1257 case 2: return GNU_assert_shared_capability;
1258 case 3: return CXX11_clang_assert_shared_capability;
1259 }
1260 }
1261 bool isShared() const { return SpellingListIndex == 2 ||
1262 SpellingListIndex == 3; }
1263 typedef Expr ** args_iterator;
1264 args_iterator args_begin() const { return args_; }
1265 args_iterator args_end() const { return args_ + args_Size; }
1266 unsigned args_size() const { return args_Size; }
1267 llvm::iterator_range<args_iterator> args() const { return llvm::make_range(args_begin(), args_end()); }
1268
1269
1270
1271
1272 static bool classof(const Attr *A) { return A->getKind() == attr::AssertCapability; }
1273};
1274
1275class AssertExclusiveLockAttr : public InheritableAttr {
1276 unsigned args_Size;
1277 Expr * *args_;
1278
1279public:
1280 static AssertExclusiveLockAttr *CreateImplicit(ASTContext &Ctx, Expr * *Args, unsigned ArgsSize, SourceRange Loc = SourceRange()) {
1281 auto *A = new (Ctx) AssertExclusiveLockAttr(Loc, Ctx, Args, ArgsSize, 0);
1282 A->setImplicit(true);
1283 return A;
1284 }
1285
1286 AssertExclusiveLockAttr(SourceRange R, ASTContext &Ctx
1287 , Expr * *Args, unsigned ArgsSize
1288 , unsigned SI
1289 )
1290 : InheritableAttr(attr::AssertExclusiveLock, R, SI, true, true)
1291 , args_Size(ArgsSize), args_(new (Ctx, 16) Expr *[args_Size])
1292 {
1293 std::copy(Args, Args + args_Size, args_);
1294 }
1295
1296 AssertExclusiveLockAttr(SourceRange R, ASTContext &Ctx
1297 , unsigned SI
1298 )
1299 : InheritableAttr(attr::AssertExclusiveLock, R, SI, true, true)
1300 , args_Size(0), args_(nullptr)
1301 {
1302 }
1303
1304 AssertExclusiveLockAttr *clone(ASTContext &C) const;
1305 void printPretty(raw_ostream &OS,
1306 const PrintingPolicy &Policy) const;
1307 const char *getSpelling() const;
1308 typedef Expr ** args_iterator;
1309 args_iterator args_begin() const { return args_; }
1310 args_iterator args_end() const { return args_ + args_Size; }
1311 unsigned args_size() const { return args_Size; }
1312 llvm::iterator_range<args_iterator> args() const { return llvm::make_range(args_begin(), args_end()); }
1313
1314
1315
1316
1317 static bool classof(const Attr *A) { return A->getKind() == attr::AssertExclusiveLock; }
1318};
1319
1320class AssertSharedLockAttr : public InheritableAttr {
1321 unsigned args_Size;
1322 Expr * *args_;
1323
1324public:
1325 static AssertSharedLockAttr *CreateImplicit(ASTContext &Ctx, Expr * *Args, unsigned ArgsSize, SourceRange Loc = SourceRange()) {
1326 auto *A = new (Ctx) AssertSharedLockAttr(Loc, Ctx, Args, ArgsSize, 0);
1327 A->setImplicit(true);
1328 return A;
1329 }
1330
1331 AssertSharedLockAttr(SourceRange R, ASTContext &Ctx
1332 , Expr * *Args, unsigned ArgsSize
1333 , unsigned SI
1334 )
1335 : InheritableAttr(attr::AssertSharedLock, R, SI, true, true)
1336 , args_Size(ArgsSize), args_(new (Ctx, 16) Expr *[args_Size])
1337 {
1338 std::copy(Args, Args + args_Size, args_);
1339 }
1340
1341 AssertSharedLockAttr(SourceRange R, ASTContext &Ctx
1342 , unsigned SI
1343 )
1344 : InheritableAttr(attr::AssertSharedLock, R, SI, true, true)
1345 , args_Size(0), args_(nullptr)
1346 {
1347 }
1348
1349 AssertSharedLockAttr *clone(ASTContext &C) const;
1350 void printPretty(raw_ostream &OS,
1351 const PrintingPolicy &Policy) const;
1352 const char *getSpelling() const;
1353 typedef Expr ** args_iterator;
1354 args_iterator args_begin() const { return args_; }
1355 args_iterator args_end() const { return args_ + args_Size; }
1356 unsigned args_size() const { return args_Size; }
1357 llvm::iterator_range<args_iterator> args() const { return llvm::make_range(args_begin(), args_end()); }
1358
1359
1360
1361
1362 static bool classof(const Attr *A) { return A->getKind() == attr::AssertSharedLock; }
1363};
1364
1365class AssumeAlignedAttr : public InheritableAttr {
1366Expr * alignment;
1367
1368Expr * offset;
1369
1370public:
1371 static AssumeAlignedAttr *CreateImplicit(ASTContext &Ctx, Expr * Alignment, Expr * Offset, SourceRange Loc = SourceRange()) {
1372 auto *A = new (Ctx) AssumeAlignedAttr(Loc, Ctx, Alignment, Offset, 0);
1373 A->setImplicit(true);
1374 return A;
1375 }
1376
1377 AssumeAlignedAttr(SourceRange R, ASTContext &Ctx
1378 , Expr * Alignment
1379 , Expr * Offset
1380 , unsigned SI
1381 )
1382 : InheritableAttr(attr::AssumeAligned, R, SI, false, false)
1383 , alignment(Alignment)
1384 , offset(Offset)
1385 {
1386 }
1387
1388 AssumeAlignedAttr(SourceRange R, ASTContext &Ctx
1389 , Expr * Alignment
1390 , unsigned SI
1391 )
1392 : InheritableAttr(attr::AssumeAligned, R, SI, false, false)
1393 , alignment(Alignment)
1394 , offset()
1395 {
1396 }
1397
1398 AssumeAlignedAttr *clone(ASTContext &C) const;
1399 void printPretty(raw_ostream &OS,
1400 const PrintingPolicy &Policy) const;
1401 const char *getSpelling() const;
1402 Expr * getAlignment() const {
1403 return alignment;
1404 }
1405
1406 Expr * getOffset() const {
1407 return offset;
1408 }
1409
1410
1411
1412 static bool classof(const Attr *A) { return A->getKind() == attr::AssumeAligned; }
1413};
1414
1415class AvailabilityAttr : public InheritableAttr {
1416IdentifierInfo * platform;
1417
1418VersionTuple introduced;
1419
1420
1421VersionTuple deprecated;
1422
1423
1424VersionTuple obsoleted;
1425
1426
1427bool unavailable;
1428
1429unsigned messageLength;
1430char *message;
1431
1432bool strict;
1433
1434unsigned replacementLength;
1435char *replacement;
1436
1437int priority;
1438
1439public:
1440 static AvailabilityAttr *CreateImplicit(ASTContext &Ctx, IdentifierInfo * Platform, VersionTuple Introduced, VersionTuple Deprecated, VersionTuple Obsoleted, bool Unavailable, llvm::StringRef Message, bool Strict, llvm::StringRef Replacement, int Priority, SourceRange Loc = SourceRange()) {
1441 auto *A = new (Ctx) AvailabilityAttr(Loc, Ctx, Platform, Introduced, Deprecated, Obsoleted, Unavailable, Message, Strict, Replacement, Priority, 0);
1442 A->setImplicit(true);
1443 return A;
1444 }
1445
1446 AvailabilityAttr(SourceRange R, ASTContext &Ctx
1447 , IdentifierInfo * Platform
1448 , VersionTuple Introduced
1449 , VersionTuple Deprecated
1450 , VersionTuple Obsoleted
1451 , bool Unavailable
1452 , llvm::StringRef Message
1453 , bool Strict
1454 , llvm::StringRef Replacement
1455 , int Priority
1456 , unsigned SI
1457 )
1458 : InheritableAttr(attr::Availability, R, SI, false, true)
1459 , platform(Platform)
1460 , introduced(Introduced)
1461 , deprecated(Deprecated)
1462 , obsoleted(Obsoleted)
1463 , unavailable(Unavailable)
1464 , messageLength(Message.size()),message(new (Ctx, 1) char[messageLength])
1465 , strict(Strict)
1466 , replacementLength(Replacement.size()),replacement(new (Ctx, 1) char[replacementLength])
1467 , priority(Priority)
1468 {
1469 if (!Message.empty())
1470 std::memcpy(message, Message.data(), messageLength);
1471 if (!Replacement.empty())
1472 std::memcpy(replacement, Replacement.data(), replacementLength);
1473 }
1474
1475 AvailabilityAttr *clone(ASTContext &C) const;
1476 void printPretty(raw_ostream &OS,
1477 const PrintingPolicy &Policy) const;
1478 const char *getSpelling() const;
1479 IdentifierInfo * getPlatform() const {
1480 return platform;
1481 }
1482
1483 VersionTuple getIntroduced() const {
1484 return introduced;
1485 }
1486 void setIntroduced(ASTContext &C, VersionTuple V) {
1487 introduced = V;
1488 }
1489
1490 VersionTuple getDeprecated() const {
1491 return deprecated;
1492 }
1493 void setDeprecated(ASTContext &C, VersionTuple V) {
1494 deprecated = V;
1495 }
1496
1497 VersionTuple getObsoleted() const {
1498 return obsoleted;
1499 }
1500 void setObsoleted(ASTContext &C, VersionTuple V) {
1501 obsoleted = V;
1502 }
1503
1504 bool getUnavailable() const {
1505 return unavailable;
1506 }
1507
1508 llvm::StringRef getMessage() const {
1509 return llvm::StringRef(message, messageLength);
1510 }
1511 unsigned getMessageLength() const {
1512 return messageLength;
1513 }
1514 void setMessage(ASTContext &C, llvm::StringRef S) {
1515 messageLength = S.size();
1516 this->message = new (C, 1) char [messageLength];
1517 if (!S.empty())
1518 std::memcpy(this->message, S.data(), messageLength);
1519 }
1520
1521 bool getStrict() const {
1522 return strict;
1523 }
1524
1525 llvm::StringRef getReplacement() const {
1526 return llvm::StringRef(replacement, replacementLength);
1527 }
1528 unsigned getReplacementLength() const {
1529 return replacementLength;
1530 }
1531 void setReplacement(ASTContext &C, llvm::StringRef S) {
1532 replacementLength = S.size();
1533 this->replacement = new (C, 1) char [replacementLength];
1534 if (!S.empty())
1535 std::memcpy(this->replacement, S.data(), replacementLength);
1536 }
1537
1538 int getPriority() const {
1539 return priority;
1540 }
1541
1542static llvm::StringRef getPrettyPlatformName(llvm::StringRef Platform) {
1543 return llvm::StringSwitch<llvm::StringRef>(Platform)
1544 .Case("android", "Android")
1545 .Case("ios", "iOS")
1546 .Case("macos", "macOS")
1547 .Case("tvos", "tvOS")
1548 .Case("watchos", "watchOS")
1549 .Case("ios_app_extension", "iOS (App Extension)")
1550 .Case("macos_app_extension", "macOS (App Extension)")
1551 .Case("tvos_app_extension", "tvOS (App Extension)")
1552 .Case("watchos_app_extension", "watchOS (App Extension)")
1553 .Case("swift", "Swift")
1554 .Default(llvm::StringRef());
1555}
1556static llvm::StringRef getPlatformNameSourceSpelling(llvm::StringRef Platform) {
1557 return llvm::StringSwitch<llvm::StringRef>(Platform)
1558 .Case("ios", "iOS")
1559 .Case("macos", "macOS")
1560 .Case("tvos", "tvOS")
1561 .Case("watchos", "watchOS")
1562 .Case("ios_app_extension", "iOSApplicationExtension")
1563 .Case("macos_app_extension", "macOSApplicationExtension")
1564 .Case("tvos_app_extension", "tvOSApplicationExtension")
1565 .Case("watchos_app_extension", "watchOSApplicationExtension")
1566 .Default(Platform);
1567}
1568static llvm::StringRef canonicalizePlatformName(llvm::StringRef Platform) {
1569 return llvm::StringSwitch<llvm::StringRef>(Platform)
1570 .Case("iOS", "ios")
1571 .Case("macOS", "macos")
1572 .Case("tvOS", "tvos")
1573 .Case("watchOS", "watchos")
1574 .Case("iOSApplicationExtension", "ios_app_extension")
1575 .Case("macOSApplicationExtension", "macos_app_extension")
1576 .Case("tvOSApplicationExtension", "tvos_app_extension")
1577 .Case("watchOSApplicationExtension", "watchos_app_extension")
1578 .Default(Platform);
1579}
1580
1581 static bool classof(const Attr *A) { return A->getKind() == attr::Availability; }
1582};
1583
1584class BlocksAttr : public InheritableAttr {
1585public:
1586 enum BlockType {
1587 ByRef
1588 };
1589private:
1590 BlockType type;
1591
1592public:
1593 static BlocksAttr *CreateImplicit(ASTContext &Ctx, BlockType Type, SourceRange Loc = SourceRange()) {
1594 auto *A = new (Ctx) BlocksAttr(Loc, Ctx, Type, 0);
1595 A->setImplicit(true);
1596 return A;
1597 }
1598
1599 BlocksAttr(SourceRange R, ASTContext &Ctx
1600 , BlockType Type
1601 , unsigned SI
1602 )
1603 : InheritableAttr(attr::Blocks, R, SI, false, false)
1604 , type(Type)
1605 {
1606 }
1607
1608 BlocksAttr *clone(ASTContext &C) const;
1609 void printPretty(raw_ostream &OS,
1610 const PrintingPolicy &Policy) const;
1611 const char *getSpelling() const;
1612 BlockType getType() const {
1613 return type;
1614 }
1615
1616 static bool ConvertStrToBlockType(StringRef Val, BlockType &Out) {
1617 Optional<BlockType> R = llvm::StringSwitch<Optional<BlockType>>(Val)
1618 .Case("byref", BlocksAttr::ByRef)
1619 .Default(Optional<BlockType>());
1620 if (R) {
1621 Out = *R;
1622 return true;
1623 }
1624 return false;
1625 }
1626
1627 static const char *ConvertBlockTypeToStr(BlockType Val) {
1628 switch(Val) {
1629 case BlocksAttr::ByRef: return "byref";
1630 }
1631 llvm_unreachable("No enumerator with that value")::llvm::llvm_unreachable_internal("No enumerator with that value"
, "/build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 1631)
;
1632 }
1633
1634
1635 static bool classof(const Attr *A) { return A->getKind() == attr::Blocks; }
1636};
1637
1638class C11NoReturnAttr : public InheritableAttr {
1639public:
1640 static C11NoReturnAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
1641 auto *A = new (Ctx) C11NoReturnAttr(Loc, Ctx, 0);
1642 A->setImplicit(true);
1643 return A;
1644 }
1645
1646 C11NoReturnAttr(SourceRange R, ASTContext &Ctx
1647 , unsigned SI
1648 )
1649 : InheritableAttr(attr::C11NoReturn, R, SI, false, false)
1650 {
1651 }
1652
1653 C11NoReturnAttr *clone(ASTContext &C) const;
1654 void printPretty(raw_ostream &OS,
1655 const PrintingPolicy &Policy) const;
1656 const char *getSpelling() const;
1657
1658
1659 static bool classof(const Attr *A) { return A->getKind() == attr::C11NoReturn; }
1660};
1661
1662class CDeclAttr : public InheritableAttr {
1663public:
1664 static CDeclAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
1665 auto *A = new (Ctx) CDeclAttr(Loc, Ctx, 0);
1666 A->setImplicit(true);
1667 return A;
1668 }
1669
1670 CDeclAttr(SourceRange R, ASTContext &Ctx
1671 , unsigned SI
1672 )
1673 : InheritableAttr(attr::CDecl, R, SI, false, false)
1674 {
1675 }
1676
1677 CDeclAttr *clone(ASTContext &C) const;
1678 void printPretty(raw_ostream &OS,
1679 const PrintingPolicy &Policy) const;
1680 const char *getSpelling() const;
1681
1682
1683 static bool classof(const Attr *A) { return A->getKind() == attr::CDecl; }
1684};
1685
1686class CFAuditedTransferAttr : public InheritableAttr {
1687public:
1688 static CFAuditedTransferAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
1689 auto *A = new (Ctx) CFAuditedTransferAttr(Loc, Ctx, 0);
1690 A->setImplicit(true);
1691 return A;
1692 }
1693
1694 CFAuditedTransferAttr(SourceRange R, ASTContext &Ctx
1695 , unsigned SI
1696 )
1697 : InheritableAttr(attr::CFAuditedTransfer, R, SI, false, false)
1698 {
1699 }
1700
1701 CFAuditedTransferAttr *clone(ASTContext &C) const;
1702 void printPretty(raw_ostream &OS,
1703 const PrintingPolicy &Policy) const;
1704 const char *getSpelling() const;
1705
1706
1707 static bool classof(const Attr *A) { return A->getKind() == attr::CFAuditedTransfer; }
1708};
1709
1710class CFConsumedAttr : public InheritableParamAttr {
1711public:
1712 static CFConsumedAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
1713 auto *A = new (Ctx) CFConsumedAttr(Loc, Ctx, 0);
1714 A->setImplicit(true);
1715 return A;
1716 }
1717
1718 CFConsumedAttr(SourceRange R, ASTContext &Ctx
1719 , unsigned SI
1720 )
1721 : InheritableParamAttr(attr::CFConsumed, R, SI, false, false)
1722 {
1723 }
1724
1725 CFConsumedAttr *clone(ASTContext &C) const;
1726 void printPretty(raw_ostream &OS,
1727 const PrintingPolicy &Policy) const;
1728 const char *getSpelling() const;
1729
1730
1731 static bool classof(const Attr *A) { return A->getKind() == attr::CFConsumed; }
1732};
1733
1734class CFReturnsNotRetainedAttr : public InheritableAttr {
1735public:
1736 static CFReturnsNotRetainedAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
1737 auto *A = new (Ctx) CFReturnsNotRetainedAttr(Loc, Ctx, 0);
1738 A->setImplicit(true);
1739 return A;
1740 }
1741
1742 CFReturnsNotRetainedAttr(SourceRange R, ASTContext &Ctx
1743 , unsigned SI
1744 )
1745 : InheritableAttr(attr::CFReturnsNotRetained, R, SI, false, false)
1746 {
1747 }
1748
1749 CFReturnsNotRetainedAttr *clone(ASTContext &C) const;
1750 void printPretty(raw_ostream &OS,
1751 const PrintingPolicy &Policy) const;
1752 const char *getSpelling() const;
1753
1754
1755 static bool classof(const Attr *A) { return A->getKind() == attr::CFReturnsNotRetained; }
1756};
1757
1758class CFReturnsRetainedAttr : public InheritableAttr {
1759public:
1760 static CFReturnsRetainedAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
1761 auto *A = new (Ctx) CFReturnsRetainedAttr(Loc, Ctx, 0);
1762 A->setImplicit(true);
1763 return A;
1764 }
1765
1766 CFReturnsRetainedAttr(SourceRange R, ASTContext &Ctx
1767 , unsigned SI
1768 )
1769 : InheritableAttr(attr::CFReturnsRetained, R, SI, false, false)
1770 {
1771 }
1772
1773 CFReturnsRetainedAttr *clone(ASTContext &C) const;
1774 void printPretty(raw_ostream &OS,
1775 const PrintingPolicy &Policy) const;
1776 const char *getSpelling() const;
1777
1778
1779 static bool classof(const Attr *A) { return A->getKind() == attr::CFReturnsRetained; }
1780};
1781
1782class CFUnknownTransferAttr : public InheritableAttr {
1783public:
1784 static CFUnknownTransferAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
1785 auto *A = new (Ctx) CFUnknownTransferAttr(Loc, Ctx, 0);
1786 A->setImplicit(true);
1787 return A;
1788 }
1789
1790 CFUnknownTransferAttr(SourceRange R, ASTContext &Ctx
1791 , unsigned SI
1792 )
1793 : InheritableAttr(attr::CFUnknownTransfer, R, SI, false, false)
1794 {
1795 }
1796
1797 CFUnknownTransferAttr *clone(ASTContext &C) const;
1798 void printPretty(raw_ostream &OS,
1799 const PrintingPolicy &Policy) const;
1800 const char *getSpelling() const;
1801
1802
1803 static bool classof(const Attr *A) { return A->getKind() == attr::CFUnknownTransfer; }
1804};
1805
1806class CPUDispatchAttr : public InheritableAttr {
1807 unsigned cpus_Size;
1808 IdentifierInfo * *cpus_;
1809
1810public:
1811 static CPUDispatchAttr *CreateImplicit(ASTContext &Ctx, IdentifierInfo * *Cpus, unsigned CpusSize, SourceRange Loc = SourceRange()) {
1812 auto *A = new (Ctx) CPUDispatchAttr(Loc, Ctx, Cpus, CpusSize, 0);
1813 A->setImplicit(true);
1814 return A;
1815 }
1816
1817 CPUDispatchAttr(SourceRange R, ASTContext &Ctx
1818 , IdentifierInfo * *Cpus, unsigned CpusSize
1819 , unsigned SI
1820 )
1821 : InheritableAttr(attr::CPUDispatch, R, SI, false, false)
1822 , cpus_Size(CpusSize), cpus_(new (Ctx, 16) IdentifierInfo *[cpus_Size])
1823 {
1824 std::copy(Cpus, Cpus + cpus_Size, cpus_);
1825 }
1826
1827 CPUDispatchAttr(SourceRange R, ASTContext &Ctx
1828 , unsigned SI
1829 )
1830 : InheritableAttr(attr::CPUDispatch, R, SI, false, false)
1831 , cpus_Size(0), cpus_(nullptr)
1832 {
1833 }
1834
1835 CPUDispatchAttr *clone(ASTContext &C) const;
1836 void printPretty(raw_ostream &OS,
1837 const PrintingPolicy &Policy) const;
1838 const char *getSpelling() const;
1839 typedef IdentifierInfo ** cpus_iterator;
1840 cpus_iterator cpus_begin() const { return cpus_; }
1841 cpus_iterator cpus_end() const { return cpus_ + cpus_Size; }
1842 unsigned cpus_size() const { return cpus_Size; }
1843 llvm::iterator_range<cpus_iterator> cpus() const { return llvm::make_range(cpus_begin(), cpus_end()); }
1844
1845
1846
1847
1848 static bool classof(const Attr *A) { return A->getKind() == attr::CPUDispatch; }
1849};
1850
1851class CPUSpecificAttr : public InheritableAttr {
1852 unsigned cpus_Size;
1853 IdentifierInfo * *cpus_;
1854
1855public:
1856 static CPUSpecificAttr *CreateImplicit(ASTContext &Ctx, IdentifierInfo * *Cpus, unsigned CpusSize, SourceRange Loc = SourceRange()) {
1857 auto *A = new (Ctx) CPUSpecificAttr(Loc, Ctx, Cpus, CpusSize, 0);
1858 A->setImplicit(true);
1859 return A;
1860 }
1861
1862 CPUSpecificAttr(SourceRange R, ASTContext &Ctx
1863 , IdentifierInfo * *Cpus, unsigned CpusSize
1864 , unsigned SI
1865 )
1866 : InheritableAttr(attr::CPUSpecific, R, SI, false, false)
1867 , cpus_Size(CpusSize), cpus_(new (Ctx, 16) IdentifierInfo *[cpus_Size])
1868 {
1869 std::copy(Cpus, Cpus + cpus_Size, cpus_);
1870 }
1871
1872 CPUSpecificAttr(SourceRange R, ASTContext &Ctx
1873 , unsigned SI
1874 )
1875 : InheritableAttr(attr::CPUSpecific, R, SI, false, false)
1876 , cpus_Size(0), cpus_(nullptr)
1877 {
1878 }
1879
1880 CPUSpecificAttr *clone(ASTContext &C) const;
1881 void printPretty(raw_ostream &OS,
1882 const PrintingPolicy &Policy) const;
1883 const char *getSpelling() const;
1884 typedef IdentifierInfo ** cpus_iterator;
1885 cpus_iterator cpus_begin() const { return cpus_; }
1886 cpus_iterator cpus_end() const { return cpus_ + cpus_Size; }
1887 unsigned cpus_size() const { return cpus_Size; }
1888 llvm::iterator_range<cpus_iterator> cpus() const { return llvm::make_range(cpus_begin(), cpus_end()); }
1889
1890
1891
1892 IdentifierInfo *getCPUName(unsigned Index) const {
1893 return *(cpus_begin() + Index);
1894 }
1895
1896
1897 static bool classof(const Attr *A) { return A->getKind() == attr::CPUSpecific; }
1898};
1899
1900class CUDAConstantAttr : public InheritableAttr {
1901public:
1902 static CUDAConstantAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
1903 auto *A = new (Ctx) CUDAConstantAttr(Loc, Ctx, 0);
1904 A->setImplicit(true);
1905 return A;
1906 }
1907
1908 CUDAConstantAttr(SourceRange R, ASTContext &Ctx
1909 , unsigned SI
1910 )
1911 : InheritableAttr(attr::CUDAConstant, R, SI, false, false)
1912 {
1913 }
1914
1915 CUDAConstantAttr *clone(ASTContext &C) const;
1916 void printPretty(raw_ostream &OS,
1917 const PrintingPolicy &Policy) const;
1918 const char *getSpelling() const;
1919
1920
1921 static bool classof(const Attr *A) { return A->getKind() == attr::CUDAConstant; }
1922};
1923
1924class CUDADeviceAttr : public InheritableAttr {
1925public:
1926 static CUDADeviceAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
1927 auto *A = new (Ctx) CUDADeviceAttr(Loc, Ctx, 0);
1928 A->setImplicit(true);
1929 return A;
1930 }
1931
1932 CUDADeviceAttr(SourceRange R, ASTContext &Ctx
1933 , unsigned SI
1934 )
1935 : InheritableAttr(attr::CUDADevice, R, SI, false, false)
1936 {
1937 }
1938
1939 CUDADeviceAttr *clone(ASTContext &C) const;
1940 void printPretty(raw_ostream &OS,
1941 const PrintingPolicy &Policy) const;
1942 const char *getSpelling() const;
1943
1944
1945 static bool classof(const Attr *A) { return A->getKind() == attr::CUDADevice; }
1946};
1947
1948class CUDAGlobalAttr : public InheritableAttr {
1949public:
1950 static CUDAGlobalAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
1951 auto *A = new (Ctx) CUDAGlobalAttr(Loc, Ctx, 0);
1952 A->setImplicit(true);
1953 return A;
1954 }
1955
1956 CUDAGlobalAttr(SourceRange R, ASTContext &Ctx
1957 , unsigned SI
1958 )
1959 : InheritableAttr(attr::CUDAGlobal, R, SI, false, false)
1960 {
1961 }
1962
1963 CUDAGlobalAttr *clone(ASTContext &C) const;
1964 void printPretty(raw_ostream &OS,
1965 const PrintingPolicy &Policy) const;
1966 const char *getSpelling() const;
1967
1968
1969 static bool classof(const Attr *A) { return A->getKind() == attr::CUDAGlobal; }
1970};
1971
1972class CUDAHostAttr : public InheritableAttr {
1973public:
1974 static CUDAHostAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
1975 auto *A = new (Ctx) CUDAHostAttr(Loc, Ctx, 0);
1976 A->setImplicit(true);
1977 return A;
1978 }
1979
1980 CUDAHostAttr(SourceRange R, ASTContext &Ctx
1981 , unsigned SI
1982 )
1983 : InheritableAttr(attr::CUDAHost, R, SI, false, false)
1984 {
1985 }
1986
1987 CUDAHostAttr *clone(ASTContext &C) const;
1988 void printPretty(raw_ostream &OS,
1989 const PrintingPolicy &Policy) const;
1990 const char *getSpelling() const;
1991
1992
1993 static bool classof(const Attr *A) { return A->getKind() == attr::CUDAHost; }
1994};
1995
1996class CUDAInvalidTargetAttr : public InheritableAttr {
1997public:
1998 static CUDAInvalidTargetAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
1999 auto *A = new (Ctx) CUDAInvalidTargetAttr(Loc, Ctx, 0);
2000 A->setImplicit(true);
2001 return A;
2002 }
2003
2004 CUDAInvalidTargetAttr(SourceRange R, ASTContext &Ctx
2005 , unsigned SI
2006 )
2007 : InheritableAttr(attr::CUDAInvalidTarget, R, SI, false, false)
2008 {
2009 }
2010
2011 CUDAInvalidTargetAttr *clone(ASTContext &C) const;
2012 void printPretty(raw_ostream &OS,
2013 const PrintingPolicy &Policy) const;
2014 const char *getSpelling() const;
2015
2016
2017 static bool classof(const Attr *A) { return A->getKind() == attr::CUDAInvalidTarget; }
2018};
2019
2020class CUDALaunchBoundsAttr : public InheritableAttr {
2021Expr * maxThreads;
2022
2023Expr * minBlocks;
2024
2025public:
2026 static CUDALaunchBoundsAttr *CreateImplicit(ASTContext &Ctx, Expr * MaxThreads, Expr * MinBlocks, SourceRange Loc = SourceRange()) {
2027 auto *A = new (Ctx) CUDALaunchBoundsAttr(Loc, Ctx, MaxThreads, MinBlocks, 0);
2028 A->setImplicit(true);
2029 return A;
2030 }
2031
2032 CUDALaunchBoundsAttr(SourceRange R, ASTContext &Ctx
2033 , Expr * MaxThreads
2034 , Expr * MinBlocks
2035 , unsigned SI
2036 )
2037 : InheritableAttr(attr::CUDALaunchBounds, R, SI, false, false)
2038 , maxThreads(MaxThreads)
2039 , minBlocks(MinBlocks)
2040 {
2041 }
2042
2043 CUDALaunchBoundsAttr(SourceRange R, ASTContext &Ctx
2044 , Expr * MaxThreads
2045 , unsigned SI
2046 )
2047 : InheritableAttr(attr::CUDALaunchBounds, R, SI, false, false)
2048 , maxThreads(MaxThreads)
2049 , minBlocks()
2050 {
2051 }
2052
2053 CUDALaunchBoundsAttr *clone(ASTContext &C) const;
2054 void printPretty(raw_ostream &OS,
2055 const PrintingPolicy &Policy) const;
2056 const char *getSpelling() const;
2057 Expr * getMaxThreads() const {
2058 return maxThreads;
2059 }
2060
2061 Expr * getMinBlocks() const {
2062 return minBlocks;
2063 }
2064
2065
2066
2067 static bool classof(const Attr *A) { return A->getKind() == attr::CUDALaunchBounds; }
2068};
2069
2070class CUDASharedAttr : public InheritableAttr {
2071public:
2072 static CUDASharedAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
2073 auto *A = new (Ctx) CUDASharedAttr(Loc, Ctx, 0);
2074 A->setImplicit(true);
2075 return A;
2076 }
2077
2078 CUDASharedAttr(SourceRange R, ASTContext &Ctx
2079 , unsigned SI
2080 )
2081 : InheritableAttr(attr::CUDAShared, R, SI, false, false)
2082 {
2083 }
2084
2085 CUDASharedAttr *clone(ASTContext &C) const;
2086 void printPretty(raw_ostream &OS,
2087 const PrintingPolicy &Policy) const;
2088 const char *getSpelling() const;
2089
2090
2091 static bool classof(const Attr *A) { return A->getKind() == attr::CUDAShared; }
2092};
2093
2094class CXX11NoReturnAttr : public InheritableAttr {
2095public:
2096 static CXX11NoReturnAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
2097 auto *A = new (Ctx) CXX11NoReturnAttr(Loc, Ctx, 0);
2098 A->setImplicit(true);
2099 return A;
2100 }
2101
2102 CXX11NoReturnAttr(SourceRange R, ASTContext &Ctx
2103 , unsigned SI
2104 )
2105 : InheritableAttr(attr::CXX11NoReturn, R, SI, false, false)
2106 {
2107 }
2108
2109 CXX11NoReturnAttr *clone(ASTContext &C) const;
2110 void printPretty(raw_ostream &OS,
2111 const PrintingPolicy &Policy) const;
2112 const char *getSpelling() const;
2113
2114
2115 static bool classof(const Attr *A) { return A->getKind() == attr::CXX11NoReturn; }
2116};
2117
2118class CallableWhenAttr : public InheritableAttr {
2119public:
2120 enum ConsumedState {
2121 Unknown,
2122 Consumed,
2123 Unconsumed
2124 };
2125private:
2126 unsigned callableStates_Size;
2127 ConsumedState *callableStates_;
2128
2129public:
2130 static CallableWhenAttr *CreateImplicit(ASTContext &Ctx, ConsumedState *CallableStates, unsigned CallableStatesSize, SourceRange Loc = SourceRange()) {
2131 auto *A = new (Ctx) CallableWhenAttr(Loc, Ctx, CallableStates, CallableStatesSize, 0);
2132 A->setImplicit(true);
2133 return A;
2134 }
2135
2136 CallableWhenAttr(SourceRange R, ASTContext &Ctx
2137 , ConsumedState *CallableStates, unsigned CallableStatesSize
2138 , unsigned SI
2139 )
2140 : InheritableAttr(attr::CallableWhen, R, SI, false, false)
2141 , callableStates_Size(CallableStatesSize), callableStates_(new (Ctx, 16) ConsumedState[callableStates_Size])
2142 {
2143 std::copy(CallableStates, CallableStates + callableStates_Size, callableStates_);
2144 }
2145
2146 CallableWhenAttr(SourceRange R, ASTContext &Ctx
2147 , unsigned SI
2148 )
2149 : InheritableAttr(attr::CallableWhen, R, SI, false, false)
2150 , callableStates_Size(0), callableStates_(nullptr)
2151 {
2152 }
2153
2154 CallableWhenAttr *clone(ASTContext &C) const;
2155 void printPretty(raw_ostream &OS,
2156 const PrintingPolicy &Policy) const;
2157 const char *getSpelling() const;
2158 typedef ConsumedState* callableStates_iterator;
2159 callableStates_iterator callableStates_begin() const { return callableStates_; }
2160 callableStates_iterator callableStates_end() const { return callableStates_ + callableStates_Size; }
2161 unsigned callableStates_size() const { return callableStates_Size; }
2162 llvm::iterator_range<callableStates_iterator> callableStates() const { return llvm::make_range(callableStates_begin(), callableStates_end()); }
2163
2164
2165 static bool ConvertStrToConsumedState(StringRef Val, ConsumedState &Out) {
2166 Optional<ConsumedState> R = llvm::StringSwitch<Optional<ConsumedState>>(Val)
2167 .Case("unknown", CallableWhenAttr::Unknown)
2168 .Case("consumed", CallableWhenAttr::Consumed)
2169 .Case("unconsumed", CallableWhenAttr::Unconsumed)
2170 .Default(Optional<ConsumedState>());
2171 if (R) {
2172 Out = *R;
2173 return true;
2174 }
2175 return false;
2176 }
2177
2178 static const char *ConvertConsumedStateToStr(ConsumedState Val) {
2179 switch(Val) {
2180 case CallableWhenAttr::Unknown: return "unknown";
2181 case CallableWhenAttr::Consumed: return "consumed";
2182 case CallableWhenAttr::Unconsumed: return "unconsumed";
2183 }
2184 llvm_unreachable("No enumerator with that value")::llvm::llvm_unreachable_internal("No enumerator with that value"
, "/build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 2184)
;
2185 }
2186
2187
2188 static bool classof(const Attr *A) { return A->getKind() == attr::CallableWhen; }
2189};
2190
2191class CallbackAttr : public InheritableAttr {
2192 unsigned encoding_Size;
2193 int *encoding_;
2194
2195public:
2196 static CallbackAttr *CreateImplicit(ASTContext &Ctx, int *Encoding, unsigned EncodingSize, SourceRange Loc = SourceRange()) {
2197 auto *A = new (Ctx) CallbackAttr(Loc, Ctx, Encoding, EncodingSize, 0);
2198 A->setImplicit(true);
2199 return A;
2200 }
2201
2202 CallbackAttr(SourceRange R, ASTContext &Ctx
2203 , int *Encoding, unsigned EncodingSize
2204 , unsigned SI
2205 )
2206 : InheritableAttr(attr::Callback, R, SI, false, false)
2207 , encoding_Size(EncodingSize), encoding_(new (Ctx, 16) int[encoding_Size])
2208 {
2209 std::copy(Encoding, Encoding + encoding_Size, encoding_);
2210 }
2211
2212 CallbackAttr(SourceRange R, ASTContext &Ctx
2213 , unsigned SI
2214 )
2215 : InheritableAttr(attr::Callback, R, SI, false, false)
2216 , encoding_Size(0), encoding_(nullptr)
2217 {
2218 }
2219
2220 CallbackAttr *clone(ASTContext &C) const;
2221 void printPretty(raw_ostream &OS,
2222 const PrintingPolicy &Policy) const;
2223 const char *getSpelling() const;
2224 typedef int* encoding_iterator;
2225 encoding_iterator encoding_begin() const { return encoding_; }
2226 encoding_iterator encoding_end() const { return encoding_ + encoding_Size; }
2227 unsigned encoding_size() const { return encoding_Size; }
2228 llvm::iterator_range<encoding_iterator> encoding() const { return llvm::make_range(encoding_begin(), encoding_end()); }
2229
2230
2231
2232
2233 static bool classof(const Attr *A) { return A->getKind() == attr::Callback; }
2234};
2235
2236class CapabilityAttr : public InheritableAttr {
2237unsigned nameLength;
2238char *name;
2239
2240public:
2241 enum Spelling {
2242 GNU_capability = 0,
2243 CXX11_clang_capability = 1,
2244 GNU_shared_capability = 2,
2245 CXX11_clang_shared_capability = 3
2246 };
2247
2248 static CapabilityAttr *CreateImplicit(ASTContext &Ctx, Spelling S, llvm::StringRef Name, SourceRange Loc = SourceRange()) {
2249 auto *A = new (Ctx) CapabilityAttr(Loc, Ctx, Name, S);
2250 A->setImplicit(true);
2251 return A;
2252 }
2253
2254 CapabilityAttr(SourceRange R, ASTContext &Ctx
2255 , llvm::StringRef Name
2256 , unsigned SI
2257 )
2258 : InheritableAttr(attr::Capability, R, SI, false, false)
2259 , nameLength(Name.size()),name(new (Ctx, 1) char[nameLength])
2260 {
2261 if (!Name.empty())
2262 std::memcpy(name, Name.data(), nameLength);
2263 }
2264
2265 CapabilityAttr *clone(ASTContext &C) const;
2266 void printPretty(raw_ostream &OS,
2267 const PrintingPolicy &Policy) const;
2268 const char *getSpelling() const;
2269 Spelling getSemanticSpelling() const {
2270 switch (SpellingListIndex) {
2271 default: llvm_unreachable("Unknown spelling list index")::llvm::llvm_unreachable_internal("Unknown spelling list index"
, "/build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 2271)
;
2272 case 0: return GNU_capability;
2273 case 1: return CXX11_clang_capability;
2274 case 2: return GNU_shared_capability;
2275 case 3: return CXX11_clang_shared_capability;
2276 }
2277 }
2278 bool isShared() const { return SpellingListIndex == 2 ||
2279 SpellingListIndex == 3; }
2280 llvm::StringRef getName() const {
2281 return llvm::StringRef(name, nameLength);
2282 }
2283 unsigned getNameLength() const {
2284 return nameLength;
2285 }
2286 void setName(ASTContext &C, llvm::StringRef S) {
2287 nameLength = S.size();
2288 this->name = new (C, 1) char [nameLength];
2289 if (!S.empty())
2290 std::memcpy(this->name, S.data(), nameLength);
2291 }
2292
2293
2294 bool isMutex() const { return getName().equals_lower("mutex"); }
2295 bool isRole() const { return getName().equals_lower("role"); }
2296
2297
2298 static bool classof(const Attr *A) { return A->getKind() == attr::Capability; }
2299};
2300
2301class CapturedRecordAttr : public InheritableAttr {
2302public:
2303 static CapturedRecordAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
2304 auto *A = new (Ctx) CapturedRecordAttr(Loc, Ctx, 0);
2305 A->setImplicit(true);
2306 return A;
2307 }
2308
2309 CapturedRecordAttr(SourceRange R, ASTContext &Ctx
2310 , unsigned SI
2311 )
2312 : InheritableAttr(attr::CapturedRecord, R, SI, false, false)
2313 {
2314 }
2315
2316 CapturedRecordAttr *clone(ASTContext &C) const;
2317 void printPretty(raw_ostream &OS,
2318 const PrintingPolicy &Policy) const;
2319 const char *getSpelling() const;
2320
2321
2322 static bool classof(const Attr *A) { return A->getKind() == attr::CapturedRecord; }
2323};
2324
2325class CarriesDependencyAttr : public InheritableParamAttr {
2326public:
2327 static CarriesDependencyAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
2328 auto *A = new (Ctx) CarriesDependencyAttr(Loc, Ctx, 0);
2329 A->setImplicit(true);
2330 return A;
2331 }
2332
2333 CarriesDependencyAttr(SourceRange R, ASTContext &Ctx
2334 , unsigned SI
2335 )
2336 : InheritableParamAttr(attr::CarriesDependency, R, SI, false, false)
2337 {
2338 }
2339
2340 CarriesDependencyAttr *clone(ASTContext &C) const;
2341 void printPretty(raw_ostream &OS,
2342 const PrintingPolicy &Policy) const;
2343 const char *getSpelling() const;
2344
2345
2346 static bool classof(const Attr *A) { return A->getKind() == attr::CarriesDependency; }
2347};
2348
2349class CleanupAttr : public InheritableAttr {
2350FunctionDecl * functionDecl;
2351
2352public:
2353 static CleanupAttr *CreateImplicit(ASTContext &Ctx, FunctionDecl * FunctionDecl, SourceRange Loc = SourceRange()) {
2354 auto *A = new (Ctx) CleanupAttr(Loc, Ctx, FunctionDecl, 0);
2355 A->setImplicit(true);
2356 return A;
2357 }
2358
2359 CleanupAttr(SourceRange R, ASTContext &Ctx
2360 , FunctionDecl * FunctionDecl
2361 , unsigned SI
2362 )
2363 : InheritableAttr(attr::Cleanup, R, SI, false, false)
2364 , functionDecl(FunctionDecl)
2365 {
2366 }
2367
2368 CleanupAttr *clone(ASTContext &C) const;
2369 void printPretty(raw_ostream &OS,
2370 const PrintingPolicy &Policy) const;
2371 const char *getSpelling() const;
2372 FunctionDecl * getFunctionDecl() const {
2373 return functionDecl;
2374 }
2375
2376
2377
2378 static bool classof(const Attr *A) { return A->getKind() == attr::Cleanup; }
2379};
2380
2381class CodeSegAttr : public InheritableAttr {
2382unsigned nameLength;
2383char *name;
2384
2385public:
2386 static CodeSegAttr *CreateImplicit(ASTContext &Ctx, llvm::StringRef Name, SourceRange Loc = SourceRange()) {
2387 auto *A = new (Ctx) CodeSegAttr(Loc, Ctx, Name, 0);
2388 A->setImplicit(true);
2389 return A;
2390 }
2391
2392 CodeSegAttr(SourceRange R, ASTContext &Ctx
2393 , llvm::StringRef Name
2394 , unsigned SI
2395 )
2396 : InheritableAttr(attr::CodeSeg, R, SI, false, false)
2397 , nameLength(Name.size()),name(new (Ctx, 1) char[nameLength])
2398 {
2399 if (!Name.empty())
2400 std::memcpy(name, Name.data(), nameLength);
2401 }
2402
2403 CodeSegAttr *clone(ASTContext &C) const;
2404 void printPretty(raw_ostream &OS,
2405 const PrintingPolicy &Policy) const;
2406 const char *getSpelling() const;
2407 llvm::StringRef getName() const {
2408 return llvm::StringRef(name, nameLength);
2409 }
2410 unsigned getNameLength() const {
2411 return nameLength;
2412 }
2413 void setName(ASTContext &C, llvm::StringRef S) {
2414 nameLength = S.size();
2415 this->name = new (C, 1) char [nameLength];
2416 if (!S.empty())
2417 std::memcpy(this->name, S.data(), nameLength);
2418 }
2419
2420
2421
2422 static bool classof(const Attr *A) { return A->getKind() == attr::CodeSeg; }
2423};
2424
2425class ColdAttr : public InheritableAttr {
2426public:
2427 static ColdAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
2428 auto *A = new (Ctx) ColdAttr(Loc, Ctx, 0);
2429 A->setImplicit(true);
2430 return A;
2431 }
2432
2433 ColdAttr(SourceRange R, ASTContext &Ctx
2434 , unsigned SI
2435 )
2436 : InheritableAttr(attr::Cold, R, SI, false, false)
2437 {
2438 }
2439
2440 ColdAttr *clone(ASTContext &C) const;
2441 void printPretty(raw_ostream &OS,
2442 const PrintingPolicy &Policy) const;
2443 const char *getSpelling() const;
2444
2445
2446 static bool classof(const Attr *A) { return A->getKind() == attr::Cold; }
2447};
2448
2449class CommonAttr : public InheritableAttr {
2450public:
2451 static CommonAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
2452 auto *A = new (Ctx) CommonAttr(Loc, Ctx, 0);
2453 A->setImplicit(true);
2454 return A;
2455 }
2456
2457 CommonAttr(SourceRange R, ASTContext &Ctx
2458 , unsigned SI
2459 )
2460 : InheritableAttr(attr::Common, R, SI, false, false)
2461 {
2462 }
2463
2464 CommonAttr *clone(ASTContext &C) const;
2465 void printPretty(raw_ostream &OS,
2466 const PrintingPolicy &Policy) const;
2467 const char *getSpelling() const;
2468
2469
2470 static bool classof(const Attr *A) { return A->getKind() == attr::Common; }
2471};
2472
2473class ConstAttr : public InheritableAttr {
2474public:
2475 static ConstAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
2476 auto *A = new (Ctx) ConstAttr(Loc, Ctx, 0);
2477 A->setImplicit(true);
2478 return A;
2479 }
2480
2481 ConstAttr(SourceRange R, ASTContext &Ctx
2482 , unsigned SI
2483 )
2484 : InheritableAttr(attr::Const, R, SI, false, false)
2485 {
2486 }
2487
2488 ConstAttr *clone(ASTContext &C) const;
2489 void printPretty(raw_ostream &OS,
2490 const PrintingPolicy &Policy) const;
2491 const char *getSpelling() const;
2492
2493
2494 static bool classof(const Attr *A) { return A->getKind() == attr::Const; }
2495};
2496
2497class ConstructorAttr : public InheritableAttr {
2498int priority;
2499
2500public:
2501 static ConstructorAttr *CreateImplicit(ASTContext &Ctx, int Priority, SourceRange Loc = SourceRange()) {
2502 auto *A = new (Ctx) ConstructorAttr(Loc, Ctx, Priority, 0);
2503 A->setImplicit(true);
2504 return A;
2505 }
2506
2507 ConstructorAttr(SourceRange R, ASTContext &Ctx
2508 , int Priority
2509 , unsigned SI
2510 )
2511 : InheritableAttr(attr::Constructor, R, SI, false, false)
2512 , priority(Priority)
2513 {
2514 }
2515
2516 ConstructorAttr(SourceRange R, ASTContext &Ctx
2517 , unsigned SI
2518 )
2519 : InheritableAttr(attr::Constructor, R, SI, false, false)
2520 , priority()
2521 {
2522 }
2523
2524 ConstructorAttr *clone(ASTContext &C) const;
2525 void printPretty(raw_ostream &OS,
2526 const PrintingPolicy &Policy) const;
2527 const char *getSpelling() const;
2528 int getPriority() const {
2529 return priority;
2530 }
2531
2532 static const int DefaultPriority = 65535;
2533
2534
2535
2536 static bool classof(const Attr *A) { return A->getKind() == attr::Constructor; }
2537};
2538
2539class ConsumableAttr : public InheritableAttr {
2540public:
2541 enum ConsumedState {
2542 Unknown,
2543 Consumed,
2544 Unconsumed
2545 };
2546private:
2547 ConsumedState defaultState;
2548
2549public:
2550 static ConsumableAttr *CreateImplicit(ASTContext &Ctx, ConsumedState DefaultState, SourceRange Loc = SourceRange()) {
2551 auto *A = new (Ctx) ConsumableAttr(Loc, Ctx, DefaultState, 0);
2552 A->setImplicit(true);
2553 return A;
2554 }
2555
2556 ConsumableAttr(SourceRange R, ASTContext &Ctx
2557 , ConsumedState DefaultState
2558 , unsigned SI
2559 )
2560 : InheritableAttr(attr::Consumable, R, SI, false, false)
2561 , defaultState(DefaultState)
2562 {
2563 }
2564
2565 ConsumableAttr *clone(ASTContext &C) const;
2566 void printPretty(raw_ostream &OS,
2567 const PrintingPolicy &Policy) const;
2568 const char *getSpelling() const;
2569 ConsumedState getDefaultState() const {
2570 return defaultState;
2571 }
2572
2573 static bool ConvertStrToConsumedState(StringRef Val, ConsumedState &Out) {
2574 Optional<ConsumedState> R = llvm::StringSwitch<Optional<ConsumedState>>(Val)
2575 .Case("unknown", ConsumableAttr::Unknown)
2576 .Case("consumed", ConsumableAttr::Consumed)
2577 .Case("unconsumed", ConsumableAttr::Unconsumed)
2578 .Default(Optional<ConsumedState>());
2579 if (R) {
2580 Out = *R;
2581 return true;
2582 }
2583 return false;
2584 }
2585
2586 static const char *ConvertConsumedStateToStr(ConsumedState Val) {
2587 switch(Val) {
2588 case ConsumableAttr::Unknown: return "unknown";
2589 case ConsumableAttr::Consumed: return "consumed";
2590 case ConsumableAttr::Unconsumed: return "unconsumed";
2591 }
2592 llvm_unreachable("No enumerator with that value")::llvm::llvm_unreachable_internal("No enumerator with that value"
, "/build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 2592)
;
2593 }
2594
2595
2596 static bool classof(const Attr *A) { return A->getKind() == attr::Consumable; }
2597};
2598
2599class ConsumableAutoCastAttr : public InheritableAttr {
2600public:
2601 static ConsumableAutoCastAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
2602 auto *A = new (Ctx) ConsumableAutoCastAttr(Loc, Ctx, 0);
2603 A->setImplicit(true);
2604 return A;
2605 }
2606
2607 ConsumableAutoCastAttr(SourceRange R, ASTContext &Ctx
2608 , unsigned SI
2609 )
2610 : InheritableAttr(attr::ConsumableAutoCast, R, SI, false, false)
2611 {
2612 }
2613
2614 ConsumableAutoCastAttr *clone(ASTContext &C) const;
2615 void printPretty(raw_ostream &OS,
2616 const PrintingPolicy &Policy) const;
2617 const char *getSpelling() const;
2618
2619
2620 static bool classof(const Attr *A) { return A->getKind() == attr::ConsumableAutoCast; }
2621};
2622
2623class ConsumableSetOnReadAttr : public InheritableAttr {
2624public:
2625 static ConsumableSetOnReadAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
2626 auto *A = new (Ctx) ConsumableSetOnReadAttr(Loc, Ctx, 0);
2627 A->setImplicit(true);
2628 return A;
2629 }
2630
2631 ConsumableSetOnReadAttr(SourceRange R, ASTContext &Ctx
2632 , unsigned SI
2633 )
2634 : InheritableAttr(attr::ConsumableSetOnRead, R, SI, false, false)
2635 {
2636 }
2637
2638 ConsumableSetOnReadAttr *clone(ASTContext &C) const;
2639 void printPretty(raw_ostream &OS,
2640 const PrintingPolicy &Policy) const;
2641 const char *getSpelling() const;
2642
2643
2644 static bool classof(const Attr *A) { return A->getKind() == attr::ConsumableSetOnRead; }
2645};
2646
2647class ConvergentAttr : public InheritableAttr {
2648public:
2649 static ConvergentAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
2650 auto *A = new (Ctx) ConvergentAttr(Loc, Ctx, 0);
2651 A->setImplicit(true);
2652 return A;
2653 }
2654
2655 ConvergentAttr(SourceRange R, ASTContext &Ctx
2656 , unsigned SI
2657 )
2658 : InheritableAttr(attr::Convergent, R, SI, false, false)
2659 {
2660 }
2661
2662 ConvergentAttr *clone(ASTContext &C) const;
2663 void printPretty(raw_ostream &OS,
2664 const PrintingPolicy &Policy) const;
2665 const char *getSpelling() const;
2666
2667
2668 static bool classof(const Attr *A) { return A->getKind() == attr::Convergent; }
2669};
2670
2671class DLLExportAttr : public InheritableAttr {
2672public:
2673 static DLLExportAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
2674 auto *A = new (Ctx) DLLExportAttr(Loc, Ctx, 0);
2675 A->setImplicit(true);
2676 return A;
2677 }
2678
2679 DLLExportAttr(SourceRange R, ASTContext &Ctx
2680 , unsigned SI
2681 )
2682 : InheritableAttr(attr::DLLExport, R, SI, false, false)
2683 {
2684 }
2685
2686 DLLExportAttr *clone(ASTContext &C) const;
2687 void printPretty(raw_ostream &OS,
2688 const PrintingPolicy &Policy) const;
2689 const char *getSpelling() const;
2690
2691
2692 static bool classof(const Attr *A) { return A->getKind() == attr::DLLExport; }
2693};
2694
2695class DLLExportStaticLocalAttr : public InheritableAttr {
2696public:
2697 static DLLExportStaticLocalAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
2698 auto *A = new (Ctx) DLLExportStaticLocalAttr(Loc, Ctx, 0);
2699 A->setImplicit(true);
2700 return A;
2701 }
2702
2703 DLLExportStaticLocalAttr(SourceRange R, ASTContext &Ctx
2704 , unsigned SI
2705 )
2706 : InheritableAttr(attr::DLLExportStaticLocal, R, SI, false, false)
2707 {
2708 }
2709
2710 DLLExportStaticLocalAttr *clone(ASTContext &C) const;
2711 void printPretty(raw_ostream &OS,
2712 const PrintingPolicy &Policy) const;
2713 const char *getSpelling() const;
2714
2715
2716 static bool classof(const Attr *A) { return A->getKind() == attr::DLLExportStaticLocal; }
2717};
2718
2719class DLLImportAttr : public InheritableAttr {
2720public:
2721 static DLLImportAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
2722 auto *A = new (Ctx) DLLImportAttr(Loc, Ctx, 0);
2723 A->setImplicit(true);
2724 return A;
2725 }
2726
2727 DLLImportAttr(SourceRange R, ASTContext &Ctx
2728 , unsigned SI
2729 )
2730 : InheritableAttr(attr::DLLImport, R, SI, false, false)
2731 {
2732 }
2733
2734 DLLImportAttr *clone(ASTContext &C) const;
2735 void printPretty(raw_ostream &OS,
2736 const PrintingPolicy &Policy) const;
2737 const char *getSpelling() const;
2738
2739private:
2740 bool PropagatedToBaseTemplate = false;
2741
2742public:
2743 void setPropagatedToBaseTemplate() { PropagatedToBaseTemplate = true; }
2744 bool wasPropagatedToBaseTemplate() { return PropagatedToBaseTemplate; }
2745
2746
2747 static bool classof(const Attr *A) { return A->getKind() == attr::DLLImport; }
2748};
2749
2750class DLLImportStaticLocalAttr : public InheritableAttr {
2751public:
2752 static DLLImportStaticLocalAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
2753 auto *A = new (Ctx) DLLImportStaticLocalAttr(Loc, Ctx, 0);
2754 A->setImplicit(true);
2755 return A;
2756 }
2757
2758 DLLImportStaticLocalAttr(SourceRange R, ASTContext &Ctx
2759 , unsigned SI
2760 )
2761 : InheritableAttr(attr::DLLImportStaticLocal, R, SI, false, false)
2762 {
2763 }
2764
2765 DLLImportStaticLocalAttr *clone(ASTContext &C) const;
2766 void printPretty(raw_ostream &OS,
2767 const PrintingPolicy &Policy) const;
2768 const char *getSpelling() const;
2769
2770
2771 static bool classof(const Attr *A) { return A->getKind() == attr::DLLImportStaticLocal; }
2772};
2773
2774class DeprecatedAttr : public InheritableAttr {
2775unsigned messageLength;
2776char *message;
2777
2778unsigned replacementLength;
2779char *replacement;
2780
2781public:
2782 static DeprecatedAttr *CreateImplicit(ASTContext &Ctx, llvm::StringRef Message, llvm::StringRef Replacement, SourceRange Loc = SourceRange()) {
2783 auto *A = new (Ctx) DeprecatedAttr(Loc, Ctx, Message, Replacement, 0);
2784 A->setImplicit(true);
2785 return A;
2786 }
2787
2788 DeprecatedAttr(SourceRange R, ASTContext &Ctx
2789 , llvm::StringRef Message
2790 , llvm::StringRef Replacement
2791 , unsigned SI
2792 )
2793 : InheritableAttr(attr::Deprecated, R, SI, false, false)
2794 , messageLength(Message.size()),message(new (Ctx, 1) char[messageLength])
2795 , replacementLength(Replacement.size()),replacement(new (Ctx, 1) char[replacementLength])
2796 {
2797 if (!Message.empty())
2798 std::memcpy(message, Message.data(), messageLength);
2799 if (!Replacement.empty())
2800 std::memcpy(replacement, Replacement.data(), replacementLength);
2801 }
2802
2803 DeprecatedAttr(SourceRange R, ASTContext &Ctx
2804 , unsigned SI
2805 )
2806 : InheritableAttr(attr::Deprecated, R, SI, false, false)
2807 , messageLength(0),message(nullptr)
2808 , replacementLength(0),replacement(nullptr)
2809 {
2810 }
2811
2812 DeprecatedAttr *clone(ASTContext &C) const;
2813 void printPretty(raw_ostream &OS,
2814 const PrintingPolicy &Policy) const;
2815 const char *getSpelling() const;
2816 llvm::StringRef getMessage() const {
2817 return llvm::StringRef(message, messageLength);
2818 }
2819 unsigned getMessageLength() const {
2820 return messageLength;
2821 }
2822 void setMessage(ASTContext &C, llvm::StringRef S) {
2823 messageLength = S.size();
2824 this->message = new (C, 1) char [messageLength];
2825 if (!S.empty())
2826 std::memcpy(this->message, S.data(), messageLength);
2827 }
2828
2829 llvm::StringRef getReplacement() const {
2830 return llvm::StringRef(replacement, replacementLength);
2831 }
2832 unsigned getReplacementLength() const {
2833 return replacementLength;
2834 }
2835 void setReplacement(ASTContext &C, llvm::StringRef S) {
2836 replacementLength = S.size();
2837 this->replacement = new (C, 1) char [replacementLength];
2838 if (!S.empty())
2839 std::memcpy(this->replacement, S.data(), replacementLength);
2840 }
2841
2842
2843
2844 static bool classof(const Attr *A) { return A->getKind() == attr::Deprecated; }
2845};
2846
2847class DestructorAttr : public InheritableAttr {
2848int priority;
2849
2850public:
2851 static DestructorAttr *CreateImplicit(ASTContext &Ctx, int Priority, SourceRange Loc = SourceRange()) {
2852 auto *A = new (Ctx) DestructorAttr(Loc, Ctx, Priority, 0);
2853 A->setImplicit(true);
2854 return A;
2855 }
2856
2857 DestructorAttr(SourceRange R, ASTContext &Ctx
2858 , int Priority
2859 , unsigned SI
2860 )
2861 : InheritableAttr(attr::Destructor, R, SI, false, false)
2862 , priority(Priority)
2863 {
2864 }
2865
2866 DestructorAttr(SourceRange R, ASTContext &Ctx
2867 , unsigned SI
2868 )
2869 : InheritableAttr(attr::Destructor, R, SI, false, false)
2870 , priority()
2871 {
2872 }
2873
2874 DestructorAttr *clone(ASTContext &C) const;
2875 void printPretty(raw_ostream &OS,
2876 const PrintingPolicy &Policy) const;
2877 const char *getSpelling() const;
2878 int getPriority() const {
2879 return priority;
2880 }
2881
2882 static const int DefaultPriority = 65535;
2883
2884
2885
2886 static bool classof(const Attr *A) { return A->getKind() == attr::Destructor; }
2887};
2888
2889class DiagnoseIfAttr : public InheritableAttr {
2890Expr * cond;
2891
2892unsigned messageLength;
2893char *message;
2894
2895public:
2896 enum DiagnosticType {
2897 DT_Error,
2898 DT_Warning
2899 };
2900private:
2901 DiagnosticType diagnosticType;
2902
2903bool argDependent;
2904
2905NamedDecl * parent;
2906
2907public:
2908 static DiagnoseIfAttr *CreateImplicit(ASTContext &Ctx, Expr * Cond, llvm::StringRef Message, DiagnosticType DiagnosticType, bool ArgDependent, NamedDecl * Parent, SourceRange Loc = SourceRange()) {
2909 auto *A = new (Ctx) DiagnoseIfAttr(Loc, Ctx, Cond, Message, DiagnosticType, ArgDependent, Parent, 0);
2910 A->setImplicit(true);
2911 return A;
2912 }
2913
2914 static DiagnoseIfAttr *CreateImplicit(ASTContext &Ctx, Expr * Cond, llvm::StringRef Message, DiagnosticType DiagnosticType, SourceRange Loc = SourceRange()) {
2915 auto *A = new (Ctx) DiagnoseIfAttr(Loc, Ctx, Cond, Message, DiagnosticType, 0);
2916 A->setImplicit(true);
2917 return A;
2918 }
2919
2920 DiagnoseIfAttr(SourceRange R, ASTContext &Ctx
2921 , Expr * Cond
2922 , llvm::StringRef Message
2923 , DiagnosticType DiagnosticType
2924 , bool ArgDependent
2925 , NamedDecl * Parent
2926 , unsigned SI
2927 )
2928 : InheritableAttr(attr::DiagnoseIf, R, SI, true, true)
2929 , cond(Cond)
2930 , messageLength(Message.size()),message(new (Ctx, 1) char[messageLength])
2931 , diagnosticType(DiagnosticType)
2932 , argDependent(ArgDependent)
2933 , parent(Parent)
2934 {
2935 if (!Message.empty())
2936 std::memcpy(message, Message.data(), messageLength);
2937 }
2938
2939 DiagnoseIfAttr(SourceRange R, ASTContext &Ctx
2940 , Expr * Cond
2941 , llvm::StringRef Message
2942 , DiagnosticType DiagnosticType
2943 , unsigned SI
2944 )
2945 : InheritableAttr(attr::DiagnoseIf, R, SI, true, true)
2946 , cond(Cond)
2947 , messageLength(Message.size()),message(new (Ctx, 1) char[messageLength])
2948 , diagnosticType(DiagnosticType)
2949 , argDependent()
2950 , parent()
2951 {
2952 if (!Message.empty())
2953 std::memcpy(message, Message.data(), messageLength);
2954 }
2955
2956 DiagnoseIfAttr *clone(ASTContext &C) const;
2957 void printPretty(raw_ostream &OS,
2958 const PrintingPolicy &Policy) const;
2959 const char *getSpelling() const;
2960 Expr * getCond() const {
2961 return cond;
2962 }
2963
2964 llvm::StringRef getMessage() const {
2965 return llvm::StringRef(message, messageLength);
2966 }
2967 unsigned getMessageLength() const {
2968 return messageLength;
2969 }
2970 void setMessage(ASTContext &C, llvm::StringRef S) {
2971 messageLength = S.size();
2972 this->message = new (C, 1) char [messageLength];
2973 if (!S.empty())
2974 std::memcpy(this->message, S.data(), messageLength);
2975 }
2976
2977 DiagnosticType getDiagnosticType() const {
2978 return diagnosticType;
2979 }
2980
2981 static bool ConvertStrToDiagnosticType(StringRef Val, DiagnosticType &Out) {
2982 Optional<DiagnosticType> R = llvm::StringSwitch<Optional<DiagnosticType>>(Val)
2983 .Case("error", DiagnoseIfAttr::DT_Error)
2984 .Case("warning", DiagnoseIfAttr::DT_Warning)
2985 .Default(Optional<DiagnosticType>());
2986 if (R) {
2987 Out = *R;
2988 return true;
2989 }
2990 return false;
2991 }
2992
2993 static const char *ConvertDiagnosticTypeToStr(DiagnosticType Val) {
2994 switch(Val) {
2995 case DiagnoseIfAttr::DT_Error: return "error";
2996 case DiagnoseIfAttr::DT_Warning: return "warning";
2997 }
2998 llvm_unreachable("No enumerator with that value")::llvm::llvm_unreachable_internal("No enumerator with that value"
, "/build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 2998)
;
2999 }
3000 bool getArgDependent() const {
3001 return argDependent;
3002 }
3003
3004 NamedDecl * getParent() const {
3005 return parent;
3006 }
3007
3008
3009 bool isError() const { return diagnosticType == DT_Error; }
3010 bool isWarning() const { return diagnosticType == DT_Warning; }
3011
3012
3013 static bool classof(const Attr *A) { return A->getKind() == attr::DiagnoseIf; }
3014};
3015
3016class DisableTailCallsAttr : public InheritableAttr {
3017public:
3018 static DisableTailCallsAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
3019 auto *A = new (Ctx) DisableTailCallsAttr(Loc, Ctx, 0);
3020 A->setImplicit(true);
3021 return A;
3022 }
3023
3024 DisableTailCallsAttr(SourceRange R, ASTContext &Ctx
3025 , unsigned SI
3026 )
3027 : InheritableAttr(attr::DisableTailCalls, R, SI, false, false)
3028 {
3029 }
3030
3031 DisableTailCallsAttr *clone(ASTContext &C) const;
3032 void printPretty(raw_ostream &OS,
3033 const PrintingPolicy &Policy) const;
3034 const char *getSpelling() const;
3035
3036
3037 static bool classof(const Attr *A) { return A->getKind() == attr::DisableTailCalls; }
3038};
3039
3040class EmptyBasesAttr : public InheritableAttr {
3041public:
3042 static EmptyBasesAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
3043 auto *A = new (Ctx) EmptyBasesAttr(Loc, Ctx, 0);
3044 A->setImplicit(true);
3045 return A;
3046 }
3047
3048 EmptyBasesAttr(SourceRange R, ASTContext &Ctx
3049 , unsigned SI
3050 )
3051 : InheritableAttr(attr::EmptyBases, R, SI, false, false)
3052 {
3053 }
3054
3055 EmptyBasesAttr *clone(ASTContext &C) const;
3056 void printPretty(raw_ostream &OS,
3057 const PrintingPolicy &Policy) const;
3058 const char *getSpelling() const;
3059
3060
3061 static bool classof(const Attr *A) { return A->getKind() == attr::EmptyBases; }
3062};
3063
3064class EnableIfAttr : public InheritableAttr {
3065Expr * cond;
3066
3067unsigned messageLength;
3068char *message;
3069
3070public:
3071 static EnableIfAttr *CreateImplicit(ASTContext &Ctx, Expr * Cond, llvm::StringRef Message, SourceRange Loc = SourceRange()) {
3072 auto *A = new (Ctx) EnableIfAttr(Loc, Ctx, Cond, Message, 0);
3073 A->setImplicit(true);
3074 return A;
3075 }
3076
3077 EnableIfAttr(SourceRange R, ASTContext &Ctx
3078 , Expr * Cond
3079 , llvm::StringRef Message
3080 , unsigned SI
3081 )
3082 : InheritableAttr(attr::EnableIf, R, SI, false, false)
3083 , cond(Cond)
3084 , messageLength(Message.size()),message(new (Ctx, 1) char[messageLength])
3085 {
3086 if (!Message.empty())
3087 std::memcpy(message, Message.data(), messageLength);
3088 }
3089
3090 EnableIfAttr *clone(ASTContext &C) const;
3091 void printPretty(raw_ostream &OS,
3092 const PrintingPolicy &Policy) const;
3093 const char *getSpelling() const;
3094 Expr * getCond() const {
3095 return cond;
3096 }
3097
3098 llvm::StringRef getMessage() const {
3099 return llvm::StringRef(message, messageLength);
3100 }
3101 unsigned getMessageLength() const {
3102 return messageLength;
3103 }
3104 void setMessage(ASTContext &C, llvm::StringRef S) {
3105 messageLength = S.size();
3106 this->message = new (C, 1) char [messageLength];
3107 if (!S.empty())
3108 std::memcpy(this->message, S.data(), messageLength);
3109 }
3110
3111
3112
3113 static bool classof(const Attr *A) { return A->getKind() == attr::EnableIf; }
3114};
3115
3116class EnumExtensibilityAttr : public InheritableAttr {
3117public:
3118 enum Kind {
3119 Closed,
3120 Open
3121 };
3122private:
3123 Kind extensibility;
3124
3125public:
3126 static EnumExtensibilityAttr *CreateImplicit(ASTContext &Ctx, Kind Extensibility, SourceRange Loc = SourceRange()) {
3127 auto *A = new (Ctx) EnumExtensibilityAttr(Loc, Ctx, Extensibility, 0);
3128 A->setImplicit(true);
3129 return A;
3130 }
3131
3132 EnumExtensibilityAttr(SourceRange R, ASTContext &Ctx
3133 , Kind Extensibility
3134 , unsigned SI
3135 )
3136 : InheritableAttr(attr::EnumExtensibility, R, SI, false, false)
3137 , extensibility(Extensibility)
3138 {
3139 }
3140
3141 EnumExtensibilityAttr *clone(ASTContext &C) const;
3142 void printPretty(raw_ostream &OS,
3143 const PrintingPolicy &Policy) const;
3144 const char *getSpelling() const;
3145 Kind getExtensibility() const {
3146 return extensibility;
3147 }
3148
3149 static bool ConvertStrToKind(StringRef Val, Kind &Out) {
3150 Optional<Kind> R = llvm::StringSwitch<Optional<Kind>>(Val)
3151 .Case("closed", EnumExtensibilityAttr::Closed)
3152 .Case("open", EnumExtensibilityAttr::Open)
3153 .Default(Optional<Kind>());
3154 if (R) {
3155 Out = *R;
3156 return true;
3157 }
3158 return false;
3159 }
3160
3161 static const char *ConvertKindToStr(Kind Val) {
3162 switch(Val) {
3163 case EnumExtensibilityAttr::Closed: return "closed";
3164 case EnumExtensibilityAttr::Open: return "open";
3165 }
3166 llvm_unreachable("No enumerator with that value")::llvm::llvm_unreachable_internal("No enumerator with that value"
, "/build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 3166)
;
3167 }
3168
3169
3170 static bool classof(const Attr *A) { return A->getKind() == attr::EnumExtensibility; }
3171};
3172
3173class ExcludeFromExplicitInstantiationAttr : public InheritableAttr {
3174public:
3175 static ExcludeFromExplicitInstantiationAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
3176 auto *A = new (Ctx) ExcludeFromExplicitInstantiationAttr(Loc, Ctx, 0);
3177 A->setImplicit(true);
3178 return A;
3179 }
3180
3181 ExcludeFromExplicitInstantiationAttr(SourceRange R, ASTContext &Ctx
3182 , unsigned SI
3183 )
3184 : InheritableAttr(attr::ExcludeFromExplicitInstantiation, R, SI, false, false)
3185 {
3186 }
3187
3188 ExcludeFromExplicitInstantiationAttr *clone(ASTContext &C) const;
3189 void printPretty(raw_ostream &OS,
3190 const PrintingPolicy &Policy) const;
3191 const char *getSpelling() const;
3192
3193
3194 static bool classof(const Attr *A) { return A->getKind() == attr::ExcludeFromExplicitInstantiation; }
3195};
3196
3197class ExclusiveTrylockFunctionAttr : public InheritableAttr {
3198Expr * successValue;
3199
3200 unsigned args_Size;
3201 Expr * *args_;
3202
3203public:
3204 static ExclusiveTrylockFunctionAttr *CreateImplicit(ASTContext &Ctx, Expr * SuccessValue, Expr * *Args, unsigned ArgsSize, SourceRange Loc = SourceRange()) {
3205 auto *A = new (Ctx) ExclusiveTrylockFunctionAttr(Loc, Ctx, SuccessValue, Args, ArgsSize, 0);
3206 A->setImplicit(true);
3207 return A;
3208 }
3209
3210 ExclusiveTrylockFunctionAttr(SourceRange R, ASTContext &Ctx
3211 , Expr * SuccessValue
3212 , Expr * *Args, unsigned ArgsSize
3213 , unsigned SI
3214 )
3215 : InheritableAttr(attr::ExclusiveTrylockFunction, R, SI, true, true)
3216 , successValue(SuccessValue)
3217 , args_Size(ArgsSize), args_(new (Ctx, 16) Expr *[args_Size])
3218 {
3219 std::copy(Args, Args + args_Size, args_);
3220 }
3221
3222 ExclusiveTrylockFunctionAttr(SourceRange R, ASTContext &Ctx
3223 , Expr * SuccessValue
3224 , unsigned SI
3225 )
3226 : InheritableAttr(attr::ExclusiveTrylockFunction, R, SI, true, true)
3227 , successValue(SuccessValue)
3228 , args_Size(0), args_(nullptr)
3229 {
3230 }
3231
3232 ExclusiveTrylockFunctionAttr *clone(ASTContext &C) const;
3233 void printPretty(raw_ostream &OS,
3234 const PrintingPolicy &Policy) const;
3235 const char *getSpelling() const;
3236 Expr * getSuccessValue() const {
3237 return successValue;
3238 }
3239
3240 typedef Expr ** args_iterator;
3241 args_iterator args_begin() const { return args_; }
3242 args_iterator args_end() const { return args_ + args_Size; }
3243 unsigned args_size() const { return args_Size; }
3244 llvm::iterator_range<args_iterator> args() const { return llvm::make_range(args_begin(), args_end()); }
3245
3246
3247
3248
3249 static bool classof(const Attr *A) { return A->getKind() == attr::ExclusiveTrylockFunction; }
3250};
3251
3252class ExternalSourceSymbolAttr : public InheritableAttr {
3253unsigned languageLength;
3254char *language;
3255
3256unsigned definedInLength;
3257char *definedIn;
3258
3259bool generatedDeclaration;
3260
3261public:
3262 static ExternalSourceSymbolAttr *CreateImplicit(ASTContext &Ctx, llvm::StringRef Language, llvm::StringRef DefinedIn, bool GeneratedDeclaration, SourceRange Loc = SourceRange()) {
3263 auto *A = new (Ctx) ExternalSourceSymbolAttr(Loc, Ctx, Language, DefinedIn, GeneratedDeclaration, 0);
3264 A->setImplicit(true);
3265 return A;
3266 }
3267
3268 ExternalSourceSymbolAttr(SourceRange R, ASTContext &Ctx
3269 , llvm::StringRef Language
3270 , llvm::StringRef DefinedIn
3271 , bool GeneratedDeclaration
3272 , unsigned SI
3273 )
3274 : InheritableAttr(attr::ExternalSourceSymbol, R, SI, false, false)
3275 , languageLength(Language.size()),language(new (Ctx, 1) char[languageLength])
3276 , definedInLength(DefinedIn.size()),definedIn(new (Ctx, 1) char[definedInLength])
3277 , generatedDeclaration(GeneratedDeclaration)
3278 {
3279 if (!Language.empty())
3280 std::memcpy(language, Language.data(), languageLength);
3281 if (!DefinedIn.empty())
3282 std::memcpy(definedIn, DefinedIn.data(), definedInLength);
3283 }
3284
3285 ExternalSourceSymbolAttr(SourceRange R, ASTContext &Ctx
3286 , unsigned SI
3287 )
3288 : InheritableAttr(attr::ExternalSourceSymbol, R, SI, false, false)
3289 , languageLength(0),language(nullptr)
3290 , definedInLength(0),definedIn(nullptr)
3291 , generatedDeclaration()
3292 {
3293 }
3294
3295 ExternalSourceSymbolAttr *clone(ASTContext &C) const;
3296 void printPretty(raw_ostream &OS,
3297 const PrintingPolicy &Policy) const;
3298 const char *getSpelling() const;
3299 llvm::StringRef getLanguage() const {
3300 return llvm::StringRef(language, languageLength);
3301 }
3302 unsigned getLanguageLength() const {
3303 return languageLength;
3304 }
3305 void setLanguage(ASTContext &C, llvm::StringRef S) {
3306 languageLength = S.size();
3307 this->language = new (C, 1) char [languageLength];
3308 if (!S.empty())
3309 std::memcpy(this->language, S.data(), languageLength);
3310 }
3311
3312 llvm::StringRef getDefinedIn() const {
3313 return llvm::StringRef(definedIn, definedInLength);
3314 }
3315 unsigned getDefinedInLength() const {
3316 return definedInLength;
3317 }
3318 void setDefinedIn(ASTContext &C, llvm::StringRef S) {
3319 definedInLength = S.size();
3320 this->definedIn = new (C, 1) char [definedInLength];
3321 if (!S.empty())
3322 std::memcpy(this->definedIn, S.data(), definedInLength);
3323 }
3324
3325 bool getGeneratedDeclaration() const {
3326 return generatedDeclaration;
3327 }
3328
3329
3330
3331 static bool classof(const Attr *A) { return A->getKind() == attr::ExternalSourceSymbol; }
3332};
3333
3334class FallThroughAttr : public StmtAttr {
3335public:
3336 static FallThroughAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
3337 auto *A = new (Ctx) FallThroughAttr(Loc, Ctx, 0);
3338 A->setImplicit(true);
3339 return A;
3340 }
3341
3342 FallThroughAttr(SourceRange R, ASTContext &Ctx
3343 , unsigned SI
3344 )
3345 : StmtAttr(attr::FallThrough, R, SI, false)
3346 {
3347 }
3348
3349 FallThroughAttr *clone(ASTContext &C) const;
3350 void printPretty(raw_ostream &OS,
3351 const PrintingPolicy &Policy) const;
3352 const char *getSpelling() const;
3353
3354
3355 static bool classof(const Attr *A) { return A->getKind() == attr::FallThrough; }
3356};
3357
3358class FastCallAttr : public InheritableAttr {
3359public:
3360 static FastCallAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
3361 auto *A = new (Ctx) FastCallAttr(Loc, Ctx, 0);
3362 A->setImplicit(true);
3363 return A;
3364 }
3365
3366 FastCallAttr(SourceRange R, ASTContext &Ctx
3367 , unsigned SI
3368 )
3369 : InheritableAttr(attr::FastCall, R, SI, false, false)
3370 {
3371 }
3372
3373 FastCallAttr *clone(ASTContext &C) const;
3374 void printPretty(raw_ostream &OS,
3375 const PrintingPolicy &Policy) const;
3376 const char *getSpelling() const;
3377
3378
3379 static bool classof(const Attr *A) { return A->getKind() == attr::FastCall; }
3380};
3381
3382class FinalAttr : public InheritableAttr {
3383public:
3384 enum Spelling {
3385 Keyword_final = 0,
3386 Keyword_sealed = 1
3387 };
3388
3389 static FinalAttr *CreateImplicit(ASTContext &Ctx, Spelling S, SourceRange Loc = SourceRange()) {
3390 auto *A = new (Ctx) FinalAttr(Loc, Ctx, S);
3391 A->setImplicit(true);
3392 return A;
3393 }
3394
3395 FinalAttr(SourceRange R, ASTContext &Ctx
3396 , unsigned SI
3397 )
3398 : InheritableAttr(attr::Final, R, SI, false, false)
3399 {
3400 }
3401
3402 FinalAttr *clone(ASTContext &C) const;
3403 void printPretty(raw_ostream &OS,
3404 const PrintingPolicy &Policy) const;
3405 const char *getSpelling() const;
3406 Spelling getSemanticSpelling() const {
3407 switch (SpellingListIndex) {
3408 default: llvm_unreachable("Unknown spelling list index")::llvm::llvm_unreachable_internal("Unknown spelling list index"
, "/build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 3408)
;
3409 case 0: return Keyword_final;
3410 case 1: return Keyword_sealed;
3411 }
3412 }
3413 bool isSpelledAsSealed() const { return SpellingListIndex == 1; }
3414
3415
3416 static bool classof(const Attr *A) { return A->getKind() == attr::Final; }
3417};
3418
3419class FlagEnumAttr : public InheritableAttr {
3420public:
3421 static FlagEnumAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
3422 auto *A = new (Ctx) FlagEnumAttr(Loc, Ctx, 0);
3423 A->setImplicit(true);
3424 return A;
3425 }
3426
3427 FlagEnumAttr(SourceRange R, ASTContext &Ctx
3428 , unsigned SI
3429 )
3430 : InheritableAttr(attr::FlagEnum, R, SI, false, false)
3431 {
3432 }
3433
3434 FlagEnumAttr *clone(ASTContext &C) const;
3435 void printPretty(raw_ostream &OS,
3436 const PrintingPolicy &Policy) const;
3437 const char *getSpelling() const;
3438
3439
3440 static bool classof(const Attr *A) { return A->getKind() == attr::FlagEnum; }
3441};
3442
3443class FlattenAttr : public InheritableAttr {
3444public:
3445 static FlattenAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
3446 auto *A = new (Ctx) FlattenAttr(Loc, Ctx, 0);
3447 A->setImplicit(true);
3448 return A;
3449 }
3450
3451 FlattenAttr(SourceRange R, ASTContext &Ctx
3452 , unsigned SI
3453 )
3454 : InheritableAttr(attr::Flatten, R, SI, false, false)
3455 {
3456 }
3457
3458 FlattenAttr *clone(ASTContext &C) const;
3459 void printPretty(raw_ostream &OS,
3460 const PrintingPolicy &Policy) const;
3461 const char *getSpelling() const;
3462
3463
3464 static bool classof(const Attr *A) { return A->getKind() == attr::Flatten; }
3465};
3466
3467class FormatAttr : public InheritableAttr {
3468IdentifierInfo * type;
3469
3470int formatIdx;
3471
3472int firstArg;
3473
3474public:
3475 static FormatAttr *CreateImplicit(ASTContext &Ctx, IdentifierInfo * Type, int FormatIdx, int FirstArg, SourceRange Loc = SourceRange()) {
3476 auto *A = new (Ctx) FormatAttr(Loc, Ctx, Type, FormatIdx, FirstArg, 0);
3477 A->setImplicit(true);
3478 return A;
3479 }
3480
3481 FormatAttr(SourceRange R, ASTContext &Ctx
3482 , IdentifierInfo * Type
3483 , int FormatIdx
3484 , int FirstArg
3485 , unsigned SI
3486 )
3487 : InheritableAttr(attr::Format, R, SI, false, false)
3488 , type(Type)
3489 , formatIdx(FormatIdx)
3490 , firstArg(FirstArg)
3491 {
3492 }
3493
3494 FormatAttr *clone(ASTContext &C) const;
3495 void printPretty(raw_ostream &OS,
3496 const PrintingPolicy &Policy) const;
3497 const char *getSpelling() const;
3498 IdentifierInfo * getType() const {
3499 return type;
3500 }
3501
3502 int getFormatIdx() const {
3503 return formatIdx;
3504 }
3505
3506 int getFirstArg() const {
3507 return firstArg;
3508 }
3509
3510
3511
3512 static bool classof(const Attr *A) { return A->getKind() == attr::Format; }
3513};
3514
3515class FormatArgAttr : public InheritableAttr {
3516ParamIdx formatIdx;
3517
3518public:
3519 static FormatArgAttr *CreateImplicit(ASTContext &Ctx, ParamIdx FormatIdx, SourceRange Loc = SourceRange()) {
3520 auto *A = new (Ctx) FormatArgAttr(Loc, Ctx, FormatIdx, 0);
3521 A->setImplicit(true);
3522 return A;
3523 }
3524
3525 FormatArgAttr(SourceRange R, ASTContext &Ctx
3526 , ParamIdx FormatIdx
3527 , unsigned SI
3528 )
3529 : InheritableAttr(attr::FormatArg, R, SI, false, false)
3530 , formatIdx(FormatIdx)
3531 {
3532 }
3533
3534 FormatArgAttr *clone(ASTContext &C) const;
3535 void printPretty(raw_ostream &OS,
3536 const PrintingPolicy &Policy) const;
3537 const char *getSpelling() const;
3538 ParamIdx getFormatIdx() const {
3539 return formatIdx;
3540 }
3541
3542
3543
3544 static bool classof(const Attr *A) { return A->getKind() == attr::FormatArg; }
3545};
3546
3547class GNUInlineAttr : public InheritableAttr {
3548public:
3549 static GNUInlineAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
3550 auto *A = new (Ctx) GNUInlineAttr(Loc, Ctx, 0);
3551 A->setImplicit(true);
3552 return A;
3553 }
3554
3555 GNUInlineAttr(SourceRange R, ASTContext &Ctx
3556 , unsigned SI
3557 )
3558 : InheritableAttr(attr::GNUInline, R, SI, false, false)
3559 {
3560 }
3561
3562 GNUInlineAttr *clone(ASTContext &C) const;
3563 void printPretty(raw_ostream &OS,
3564 const PrintingPolicy &Policy) const;
3565 const char *getSpelling() const;
3566
3567
3568 static bool classof(const Attr *A) { return A->getKind() == attr::GNUInline; }
3569};
3570
3571class GuardedByAttr : public InheritableAttr {
3572Expr * arg;
3573
3574public:
3575 static GuardedByAttr *CreateImplicit(ASTContext &Ctx, Expr * Arg, SourceRange Loc = SourceRange()) {
3576 auto *A = new (Ctx) GuardedByAttr(Loc, Ctx, Arg, 0);
3577 A->setImplicit(true);
3578 return A;
3579 }
3580
3581 GuardedByAttr(SourceRange R, ASTContext &Ctx
3582 , Expr * Arg
3583 , unsigned SI
3584 )
3585 : InheritableAttr(attr::GuardedBy, R, SI, true, true)
3586 , arg(Arg)
3587 {
3588 }
3589
3590 GuardedByAttr *clone(ASTContext &C) const;
3591 void printPretty(raw_ostream &OS,
3592 const PrintingPolicy &Policy) const;
3593 const char *getSpelling() const;
3594 Expr * getArg() const {
3595 return arg;
3596 }
3597
3598
3599
3600 static bool classof(const Attr *A) { return A->getKind() == attr::GuardedBy; }
3601};
3602
3603class GuardedVarAttr : public InheritableAttr {
3604public:
3605 static GuardedVarAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
3606 auto *A = new (Ctx) GuardedVarAttr(Loc, Ctx, 0);
3607 A->setImplicit(true);
3608 return A;
3609 }
3610
3611 GuardedVarAttr(SourceRange R, ASTContext &Ctx
3612 , unsigned SI
3613 )
3614 : InheritableAttr(attr::GuardedVar, R, SI, false, false)
3615 {
3616 }
3617
3618 GuardedVarAttr *clone(ASTContext &C) const;
3619 void printPretty(raw_ostream &OS,
3620 const PrintingPolicy &Policy) const;
3621 const char *getSpelling() const;
3622
3623
3624 static bool classof(const Attr *A) { return A->getKind() == attr::GuardedVar; }
3625};
3626
3627class HotAttr : public InheritableAttr {
3628public:
3629 static HotAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
3630 auto *A = new (Ctx) HotAttr(Loc, Ctx, 0);
3631 A->setImplicit(true);
3632 return A;
3633 }
3634
3635 HotAttr(SourceRange R, ASTContext &Ctx
3636 , unsigned SI
3637 )
3638 : InheritableAttr(attr::Hot, R, SI, false, false)
3639 {
3640 }
3641
3642 HotAttr *clone(ASTContext &C) const;
3643 void printPretty(raw_ostream &OS,
3644 const PrintingPolicy &Policy) const;
3645 const char *getSpelling() const;
3646
3647
3648 static bool classof(const Attr *A) { return A->getKind() == attr::Hot; }
3649};
3650
3651class IBActionAttr : public InheritableAttr {
3652public:
3653 static IBActionAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
3654 auto *A = new (Ctx) IBActionAttr(Loc, Ctx, 0);
3655 A->setImplicit(true);
3656 return A;
3657 }
3658
3659 IBActionAttr(SourceRange R, ASTContext &Ctx
3660 , unsigned SI
3661 )
3662 : InheritableAttr(attr::IBAction, R, SI, false, false)
3663 {
3664 }
3665
3666 IBActionAttr *clone(ASTContext &C) const;
3667 void printPretty(raw_ostream &OS,
3668 const PrintingPolicy &Policy) const;
3669 const char *getSpelling() const;
3670
3671
3672 static bool classof(const Attr *A) { return A->getKind() == attr::IBAction; }
3673};
3674
3675class IBOutletAttr : public InheritableAttr {
3676public:
3677 static IBOutletAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
3678 auto *A = new (Ctx) IBOutletAttr(Loc, Ctx, 0);
3679 A->setImplicit(true);
3680 return A;
3681 }
3682
3683 IBOutletAttr(SourceRange R, ASTContext &Ctx
3684 , unsigned SI
3685 )
3686 : InheritableAttr(attr::IBOutlet, R, SI, false, false)
3687 {
3688 }
3689
3690 IBOutletAttr *clone(ASTContext &C) const;
3691 void printPretty(raw_ostream &OS,
3692 const PrintingPolicy &Policy) const;
3693 const char *getSpelling() const;
3694
3695
3696 static bool classof(const Attr *A) { return A->getKind() == attr::IBOutlet; }
3697};
3698
3699class IBOutletCollectionAttr : public InheritableAttr {
3700TypeSourceInfo * interface_;
3701
3702public:
3703 static IBOutletCollectionAttr *CreateImplicit(ASTContext &Ctx, TypeSourceInfo * Interface, SourceRange Loc = SourceRange()) {
3704 auto *A = new (Ctx) IBOutletCollectionAttr(Loc, Ctx, Interface, 0);
3705 A->setImplicit(true);
3706 return A;
3707 }
3708
3709 IBOutletCollectionAttr(SourceRange R, ASTContext &Ctx
3710 , TypeSourceInfo * Interface
3711 , unsigned SI
3712 )
3713 : InheritableAttr(attr::IBOutletCollection, R, SI, false, false)
3714 , interface_(Interface)
3715 {
3716 }
3717
3718 IBOutletCollectionAttr(SourceRange R, ASTContext &Ctx
3719 , unsigned SI
3720 )
3721 : InheritableAttr(attr::IBOutletCollection, R, SI, false, false)
3722 , interface_()
3723 {
3724 }
3725
3726 IBOutletCollectionAttr *clone(ASTContext &C) const;
3727 void printPretty(raw_ostream &OS,
3728 const PrintingPolicy &Policy) const;
3729 const char *getSpelling() const;
3730 QualType getInterface() const {
3731 return interface_->getType();
3732 } TypeSourceInfo * getInterfaceLoc() const {
3733 return interface_;
3734 }
3735
3736
3737
3738 static bool classof(const Attr *A) { return A->getKind() == attr::IBOutletCollection; }
3739};
3740
3741class IFuncAttr : public Attr {
3742unsigned resolverLength;
3743char *resolver;
3744
3745public:
3746 static IFuncAttr *CreateImplicit(ASTContext &Ctx, llvm::StringRef Resolver, SourceRange Loc = SourceRange()) {
3747 auto *A = new (Ctx) IFuncAttr(Loc, Ctx, Resolver, 0);
3748 A->setImplicit(true);
3749 return A;
3750 }
3751
3752 IFuncAttr(SourceRange R, ASTContext &Ctx
3753 , llvm::StringRef Resolver
3754 , unsigned SI
3755 )
3756 : Attr(attr::IFunc, R, SI, false)
3757 , resolverLength(Resolver.size()),resolver(new (Ctx, 1) char[resolverLength])
3758 {
3759 if (!Resolver.empty())
3760 std::memcpy(resolver, Resolver.data(), resolverLength);
3761 }
3762
3763 IFuncAttr *clone(ASTContext &C) const;
3764 void printPretty(raw_ostream &OS,
3765 const PrintingPolicy &Policy) const;
3766 const char *getSpelling() const;
3767 llvm::StringRef getResolver() const {
3768 return llvm::StringRef(resolver, resolverLength);
3769 }
3770 unsigned getResolverLength() const {
3771 return resolverLength;
3772 }
3773 void setResolver(ASTContext &C, llvm::StringRef S) {
3774 resolverLength = S.size();
3775 this->resolver = new (C, 1) char [resolverLength];
3776 if (!S.empty())
3777 std::memcpy(this->resolver, S.data(), resolverLength);
3778 }
3779
3780
3781
3782 static bool classof(const Attr *A) { return A->getKind() == attr::IFunc; }
3783};
3784
3785class InitPriorityAttr : public InheritableAttr {
3786unsigned priority;
3787
3788public:
3789 static InitPriorityAttr *CreateImplicit(ASTContext &Ctx, unsigned Priority, SourceRange Loc = SourceRange()) {
3790 auto *A = new (Ctx) InitPriorityAttr(Loc, Ctx, Priority, 0);
3791 A->setImplicit(true);
3792 return A;
3793 }
3794
3795 InitPriorityAttr(SourceRange R, ASTContext &Ctx
3796 , unsigned Priority
3797 , unsigned SI
3798 )
3799 : InheritableAttr(attr::InitPriority, R, SI, false, false)
3800 , priority(Priority)
3801 {
3802 }
3803
3804 InitPriorityAttr *clone(ASTContext &C) const;
3805 void printPretty(raw_ostream &OS,
3806 const PrintingPolicy &Policy) const;
3807 const char *getSpelling() const;
3808 unsigned getPriority() const {
3809 return priority;
3810 }
3811
3812
3813
3814 static bool classof(const Attr *A) { return A->getKind() == attr::InitPriority; }
3815};
3816
3817class InitSegAttr : public Attr {
3818unsigned sectionLength;
3819char *section;
3820
3821public:
3822 static InitSegAttr *CreateImplicit(ASTContext &Ctx, llvm::StringRef Section, SourceRange Loc = SourceRange()) {
3823 auto *A = new (Ctx) InitSegAttr(Loc, Ctx, Section, 0);
3824 A->setImplicit(true);
3825 return A;
3826 }
3827
3828 InitSegAttr(SourceRange R, ASTContext &Ctx
3829 , llvm::StringRef Section
3830 , unsigned SI
3831 )
3832 : Attr(attr::InitSeg, R, SI, false)
3833 , sectionLength(Section.size()),section(new (Ctx, 1) char[sectionLength])
3834 {
3835 if (!Section.empty())
3836 std::memcpy(section, Section.data(), sectionLength);
3837 }
3838
3839 InitSegAttr *clone(ASTContext &C) const;
3840 void printPretty(raw_ostream &OS,
3841 const PrintingPolicy &Policy) const;
3842 const char *getSpelling() const;
3843 llvm::StringRef getSection() const {
3844 return llvm::StringRef(section, sectionLength);
3845 }
3846 unsigned getSectionLength() const {
3847 return sectionLength;
3848 }
3849 void setSection(ASTContext &C, llvm::StringRef S) {
3850 sectionLength = S.size();
3851 this->section = new (C, 1) char [sectionLength];
3852 if (!S.empty())
3853 std::memcpy(this->section, S.data(), sectionLength);
3854 }
3855
3856
3857 void printPrettyPragma(raw_ostream &OS, const PrintingPolicy &Policy) const {
3858 OS << " (" << getSection() << ')';
3859 }
3860
3861
3862 static bool classof(const Attr *A) { return A->getKind() == attr::InitSeg; }
3863};
3864
3865class IntelOclBiccAttr : public InheritableAttr {
3866public:
3867 static IntelOclBiccAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
3868 auto *A = new (Ctx) IntelOclBiccAttr(Loc, Ctx, 0);
3869 A->setImplicit(true);
3870 return A;
3871 }
3872
3873 IntelOclBiccAttr(SourceRange R, ASTContext &Ctx
3874 , unsigned SI
3875 )
3876 : InheritableAttr(attr::IntelOclBicc, R, SI, false, false)
3877 {
3878 }
3879
3880 IntelOclBiccAttr *clone(ASTContext &C) const;
3881 void printPretty(raw_ostream &OS,
3882 const PrintingPolicy &Policy) const;
3883 const char *getSpelling() const;
3884
3885
3886 static bool classof(const Attr *A) { return A->getKind() == attr::IntelOclBicc; }
3887};
3888
3889class InternalLinkageAttr : public InheritableAttr {
3890public:
3891 static InternalLinkageAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
3892 auto *A = new (Ctx) InternalLinkageAttr(Loc, Ctx, 0);
3893 A->setImplicit(true);
3894 return A;
3895 }
3896
3897 InternalLinkageAttr(SourceRange R, ASTContext &Ctx
3898 , unsigned SI
3899 )
3900 : InheritableAttr(attr::InternalLinkage, R, SI, false, false)
3901 {
3902 }
3903
3904 InternalLinkageAttr *clone(ASTContext &C) const;
3905 void printPretty(raw_ostream &OS,
3906 const PrintingPolicy &Policy) const;
3907 const char *getSpelling() const;
3908
3909
3910 static bool classof(const Attr *A) { return A->getKind() == attr::InternalLinkage; }
3911};
3912
3913class LTOVisibilityPublicAttr : public InheritableAttr {
3914public:
3915 static LTOVisibilityPublicAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
3916 auto *A = new (Ctx) LTOVisibilityPublicAttr(Loc, Ctx, 0);
3917 A->setImplicit(true);
3918 return A;
3919 }
3920
3921 LTOVisibilityPublicAttr(SourceRange R, ASTContext &Ctx
3922 , unsigned SI
3923 )
3924 : InheritableAttr(attr::LTOVisibilityPublic, R, SI, false, false)
3925 {
3926 }
3927
3928 LTOVisibilityPublicAttr *clone(ASTContext &C) const;
3929 void printPretty(raw_ostream &OS,
3930 const PrintingPolicy &Policy) const;
3931 const char *getSpelling() const;
3932
3933
3934 static bool classof(const Attr *A) { return A->getKind() == attr::LTOVisibilityPublic; }
3935};
3936
3937class LayoutVersionAttr : public InheritableAttr {
3938unsigned version;
3939
3940public:
3941 static LayoutVersionAttr *CreateImplicit(ASTContext &Ctx, unsigned Version, SourceRange Loc = SourceRange()) {
3942 auto *A = new (Ctx) LayoutVersionAttr(Loc, Ctx, Version, 0);
3943 A->setImplicit(true);
3944 return A;
3945 }
3946
3947 LayoutVersionAttr(SourceRange R, ASTContext &Ctx
3948 , unsigned Version
3949 , unsigned SI
3950 )
3951 : InheritableAttr(attr::LayoutVersion, R, SI, false, false)
3952 , version(Version)
3953 {
3954 }
3955
3956 LayoutVersionAttr *clone(ASTContext &C) const;
3957 void printPretty(raw_ostream &OS,
3958 const PrintingPolicy &Policy) const;
3959 const char *getSpelling() const;
3960 unsigned getVersion() const {
3961 return version;
3962 }
3963
3964
3965
3966 static bool classof(const Attr *A) { return A->getKind() == attr::LayoutVersion; }
3967};
3968
3969class LifetimeBoundAttr : public InheritableAttr {
3970public:
3971 static LifetimeBoundAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
3972 auto *A = new (Ctx) LifetimeBoundAttr(Loc, Ctx, 0);
3973 A->setImplicit(true);
3974 return A;
3975 }
3976
3977 LifetimeBoundAttr(SourceRange R, ASTContext &Ctx
3978 , unsigned SI
3979 )
3980 : InheritableAttr(attr::LifetimeBound, R, SI, false, false)
3981 {
3982 }
3983
3984 LifetimeBoundAttr *clone(ASTContext &C) const;
3985 void printPretty(raw_ostream &OS,
3986 const PrintingPolicy &Policy) const;
3987 const char *getSpelling() const;
3988
3989
3990 static bool classof(const Attr *A) { return A->getKind() == attr::LifetimeBound; }
3991};
3992
3993class LockReturnedAttr : public InheritableAttr {
3994Expr * arg;
3995
3996public:
3997 static LockReturnedAttr *CreateImplicit(ASTContext &Ctx, Expr * Arg, SourceRange Loc = SourceRange()) {
3998 auto *A = new (Ctx) LockReturnedAttr(Loc, Ctx, Arg, 0);
3999 A->setImplicit(true);
4000 return A;
4001 }
4002
4003 LockReturnedAttr(SourceRange R, ASTContext &Ctx
4004 , Expr * Arg
4005 , unsigned SI
4006 )
4007 : InheritableAttr(attr::LockReturned, R, SI, true, false)
4008 , arg(Arg)
4009 {
4010 }
4011
4012 LockReturnedAttr *clone(ASTContext &C) const;
4013 void printPretty(raw_ostream &OS,
4014 const PrintingPolicy &Policy) const;
4015 const char *getSpelling() const;
4016 Expr * getArg() const {
4017 return arg;
4018 }
4019
4020
4021
4022 static bool classof(const Attr *A) { return A->getKind() == attr::LockReturned; }
4023};
4024
4025class LocksExcludedAttr : public InheritableAttr {
4026 unsigned args_Size;
4027 Expr * *args_;
4028
4029public:
4030 static LocksExcludedAttr *CreateImplicit(ASTContext &Ctx, Expr * *Args, unsigned ArgsSize, SourceRange Loc = SourceRange()) {
4031 auto *A = new (Ctx) LocksExcludedAttr(Loc, Ctx, Args, ArgsSize, 0);
4032 A->setImplicit(true);
4033 return A;
4034 }
4035
4036 LocksExcludedAttr(SourceRange R, ASTContext &Ctx
4037 , Expr * *Args, unsigned ArgsSize
4038 , unsigned SI
4039 )
4040 : InheritableAttr(attr::LocksExcluded, R, SI, true, true)
4041 , args_Size(ArgsSize), args_(new (Ctx, 16) Expr *[args_Size])
4042 {
4043 std::copy(Args, Args + args_Size, args_);
4044 }
4045
4046 LocksExcludedAttr(SourceRange R, ASTContext &Ctx
4047 , unsigned SI
4048 )
4049 : InheritableAttr(attr::LocksExcluded, R, SI, true, true)
4050 , args_Size(0), args_(nullptr)
4051 {
4052 }
4053
4054 LocksExcludedAttr *clone(ASTContext &C) const;
4055 void printPretty(raw_ostream &OS,
4056 const PrintingPolicy &Policy) const;
4057 const char *getSpelling() const;
4058 typedef Expr ** args_iterator;
4059 args_iterator args_begin() const { return args_; }
4060 args_iterator args_end() const { return args_ + args_Size; }
4061 unsigned args_size() const { return args_Size; }
4062 llvm::iterator_range<args_iterator> args() const { return llvm::make_range(args_begin(), args_end()); }
4063
4064
4065
4066
4067 static bool classof(const Attr *A) { return A->getKind() == attr::LocksExcluded; }
4068};
4069
4070class LoopHintAttr : public Attr {
4071public:
4072 enum OptionType {
4073 Vectorize,
4074 VectorizeWidth,
4075 Interleave,
4076 InterleaveCount,
4077 Unroll,
4078 UnrollCount,
4079 UnrollAndJam,
4080 UnrollAndJamCount,
4081 PipelineDisabled,
4082 PipelineInitiationInterval,
4083 Distribute
4084 };
4085private:
4086 OptionType option;
4087
4088public:
4089 enum LoopHintState {
4090 Enable,
4091 Disable,
4092 Numeric,
4093 AssumeSafety,
4094 Full
4095 };
4096private:
4097 LoopHintState state;
4098
4099Expr * value;
4100
4101public:
4102 enum Spelling {
4103 Pragma_clang_loop = 0,
4104 Pragma_unroll = 1,
4105 Pragma_nounroll = 2,
4106 Pragma_unroll_and_jam = 3,
4107 Pragma_nounroll_and_jam = 4
4108 };
4109
4110 static LoopHintAttr *CreateImplicit(ASTContext &Ctx, Spelling S, OptionType Option, LoopHintState State, Expr * Value, SourceRange Loc = SourceRange()) {
4111 auto *A = new (Ctx) LoopHintAttr(Loc, Ctx, Option, State, Value, S);
4112 A->setImplicit(true);
4113 return A;
4114 }
4115
4116 LoopHintAttr(SourceRange R, ASTContext &Ctx
4117 , OptionType Option
4118 , LoopHintState State
4119 , Expr * Value
4120 , unsigned SI
4121 )
4122 : Attr(attr::LoopHint, R, SI, false)
4123 , option(Option)
4124 , state(State)
4125 , value(Value)
4126 {
4127 }
4128
4129 LoopHintAttr *clone(ASTContext &C) const;
4130 void printPretty(raw_ostream &OS,
4131 const PrintingPolicy &Policy) const;
4132 const char *getSpelling() const;
4133 Spelling getSemanticSpelling() const {
4134 switch (SpellingListIndex) {
4135 default: llvm_unreachable("Unknown spelling list index")::llvm::llvm_unreachable_internal("Unknown spelling list index"
, "/build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 4135)
;
4136 case 0: return Pragma_clang_loop;
4137 case 1: return Pragma_unroll;
4138 case 2: return Pragma_nounroll;
4139 case 3: return Pragma_unroll_and_jam;
4140 case 4: return Pragma_nounroll_and_jam;
4141 }
4142 }
4143 OptionType getOption() const {
4144 return option;
4145 }
4146
4147 static bool ConvertStrToOptionType(StringRef Val, OptionType &Out) {
4148 Optional<OptionType> R = llvm::StringSwitch<Optional<OptionType>>(Val)
4149 .Case("vectorize", LoopHintAttr::Vectorize)
4150 .Case("vectorize_width", LoopHintAttr::VectorizeWidth)
4151 .Case("interleave", LoopHintAttr::Interleave)
4152 .Case("interleave_count", LoopHintAttr::InterleaveCount)
4153 .Case("unroll", LoopHintAttr::Unroll)
4154 .Case("unroll_count", LoopHintAttr::UnrollCount)
4155 .Case("unroll_and_jam", LoopHintAttr::UnrollAndJam)
4156 .Case("unroll_and_jam_count", LoopHintAttr::UnrollAndJamCount)
4157 .Case("pipeline", LoopHintAttr::PipelineDisabled)
4158 .Case("pipeline_initiation_interval", LoopHintAttr::PipelineInitiationInterval)
4159 .Case("distribute", LoopHintAttr::Distribute)
4160 .Default(Optional<OptionType>());
4161 if (R) {
4162 Out = *R;
4163 return true;
4164 }
4165 return false;
4166 }
4167
4168 static const char *ConvertOptionTypeToStr(OptionType Val) {
4169 switch(Val) {
4170 case LoopHintAttr::Vectorize: return "vectorize";
4171 case LoopHintAttr::VectorizeWidth: return "vectorize_width";
4172 case LoopHintAttr::Interleave: return "interleave";
4173 case LoopHintAttr::InterleaveCount: return "interleave_count";
4174 case LoopHintAttr::Unroll: return "unroll";
4175 case LoopHintAttr::UnrollCount: return "unroll_count";
4176 case LoopHintAttr::UnrollAndJam: return "unroll_and_jam";
4177 case LoopHintAttr::UnrollAndJamCount: return "unroll_and_jam_count";
4178 case LoopHintAttr::PipelineDisabled: return "pipeline";
4179 case LoopHintAttr::PipelineInitiationInterval: return "pipeline_initiation_interval";
4180 case LoopHintAttr::Distribute: return "distribute";
4181 }
4182 llvm_unreachable("No enumerator with that value")::llvm::llvm_unreachable_internal("No enumerator with that value"
, "/build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 4182)
;
4183 }
4184 LoopHintState getState() const {
4185 return state;
4186 }
4187
4188 static bool ConvertStrToLoopHintState(StringRef Val, LoopHintState &Out) {
4189 Optional<LoopHintState> R = llvm::StringSwitch<Optional<LoopHintState>>(Val)
4190 .Case("enable", LoopHintAttr::Enable)
4191 .Case("disable", LoopHintAttr::Disable)
4192 .Case("numeric", LoopHintAttr::Numeric)
4193 .Case("assume_safety", LoopHintAttr::AssumeSafety)
4194 .Case("full", LoopHintAttr::Full)
4195 .Default(Optional<LoopHintState>());
4196 if (R) {
4197 Out = *R;
4198 return true;
4199 }
4200 return false;
4201 }
4202
4203 static const char *ConvertLoopHintStateToStr(LoopHintState Val) {
4204 switch(Val) {
4205 case LoopHintAttr::Enable: return "enable";
4206 case LoopHintAttr::Disable: return "disable";
4207 case LoopHintAttr::Numeric: return "numeric";
4208 case LoopHintAttr::AssumeSafety: return "assume_safety";
4209 case LoopHintAttr::Full: return "full";
4210 }
4211 llvm_unreachable("No enumerator with that value")::llvm::llvm_unreachable_internal("No enumerator with that value"
, "/build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 4211)
;
4212 }
4213 Expr * getValue() const {
4214 return value;
4215 }
4216
4217
4218 static const char *getOptionName(int Option) {
4219 switch(Option) {
4220 case Vectorize: return "vectorize";
4221 case VectorizeWidth: return "vectorize_width";
4222 case Interleave: return "interleave";
4223 case InterleaveCount: return "interleave_count";
4224 case Unroll: return "unroll";
4225 case UnrollCount: return "unroll_count";
4226 case UnrollAndJam: return "unroll_and_jam";
4227 case UnrollAndJamCount: return "unroll_and_jam_count";
4228 case PipelineDisabled: return "pipeline";
4229 case PipelineInitiationInterval: return "pipeline_initiation_interval";
4230 case Distribute: return "distribute";
4231 }
4232 llvm_unreachable("Unhandled LoopHint option.")::llvm::llvm_unreachable_internal("Unhandled LoopHint option."
, "/build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 4232)
;
4233 }
4234
4235 void printPrettyPragma(raw_ostream &OS, const PrintingPolicy &Policy) const {
4236 unsigned SpellingIndex = getSpellingListIndex();
4237 // For "#pragma unroll" and "#pragma nounroll" the string "unroll" or
4238 // "nounroll" is already emitted as the pragma name.
4239 if (SpellingIndex == Pragma_nounroll || SpellingIndex == Pragma_nounroll_and_jam)
4240 return;
4241 else if (SpellingIndex == Pragma_unroll || SpellingIndex == Pragma_unroll_and_jam) {
4242 OS << ' ' << getValueString(Policy);
4243 return;
4244 }
4245
4246 assert(SpellingIndex == Pragma_clang_loop && "Unexpected spelling")((SpellingIndex == Pragma_clang_loop && "Unexpected spelling"
) ? static_cast<void> (0) : __assert_fail ("SpellingIndex == Pragma_clang_loop && \"Unexpected spelling\""
, "/build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 4246, __PRETTY_FUNCTION__))
;
4247 OS << ' ' << getOptionName(option) << getValueString(Policy);
4248 }
4249
4250 // Return a string containing the loop hint argument including the
4251 // enclosing parentheses.
4252 std::string getValueString(const PrintingPolicy &Policy) const {
4253 std::string ValueName;
4254 llvm::raw_string_ostream OS(ValueName);
4255 OS << "(";
4256 if (state == Numeric)
4257 value->printPretty(OS, nullptr, Policy);
4258 else if (state == Enable)
4259 OS << "enable";
4260 else if (state == Full)
4261 OS << "full";
4262 else if (state == AssumeSafety)
4263 OS << "assume_safety";
4264 else
4265 OS << "disable";
4266 OS << ")";
4267 return OS.str();
4268 }
4269
4270 // Return a string suitable for identifying this attribute in diagnostics.
4271 std::string getDiagnosticName(const PrintingPolicy &Policy) const {
4272 unsigned SpellingIndex = getSpellingListIndex();
4273 if (SpellingIndex == Pragma_nounroll)
4274 return "#pragma nounroll";
4275 else if (SpellingIndex == Pragma_unroll)
4276 return "#pragma unroll" + (option == UnrollCount ? getValueString(Policy) : "");
4277 else if (SpellingIndex == Pragma_nounroll_and_jam)
4278 return "#pragma nounroll_and_jam";
4279 else if (SpellingIndex == Pragma_unroll_and_jam)
4280 return "#pragma unroll_and_jam" +
4281 (option == UnrollAndJamCount ? getValueString(Policy) : "");
4282
4283 assert(SpellingIndex == Pragma_clang_loop && "Unexpected spelling")((SpellingIndex == Pragma_clang_loop && "Unexpected spelling"
) ? static_cast<void> (0) : __assert_fail ("SpellingIndex == Pragma_clang_loop && \"Unexpected spelling\""
, "/build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 4283, __PRETTY_FUNCTION__))
;
4284 return getOptionName(option) + getValueString(Policy);
4285 }
4286
4287
4288 static bool classof(const Attr *A) { return A->getKind() == attr::LoopHint; }
4289};
4290
4291class MIGServerRoutineAttr : public InheritableAttr {
4292public:
4293 static MIGServerRoutineAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
4294 auto *A = new (Ctx) MIGServerRoutineAttr(Loc, Ctx, 0);
4295 A->setImplicit(true);
4296 return A;
4297 }
4298
4299 MIGServerRoutineAttr(SourceRange R, ASTContext &Ctx
4300 , unsigned SI
4301 )
4302 : InheritableAttr(attr::MIGServerRoutine, R, SI, false, false)
4303 {
4304 }
4305
4306 MIGServerRoutineAttr *clone(ASTContext &C) const;
4307 void printPretty(raw_ostream &OS,
4308 const PrintingPolicy &Policy) const;
4309 const char *getSpelling() const;
4310
4311
4312 static bool classof(const Attr *A) { return A->getKind() == attr::MIGServerRoutine; }
4313};
4314
4315class MSABIAttr : public InheritableAttr {
4316public:
4317 static MSABIAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
4318 auto *A = new (Ctx) MSABIAttr(Loc, Ctx, 0);
4319 A->setImplicit(true);
4320 return A;
4321 }
4322
4323 MSABIAttr(SourceRange R, ASTContext &Ctx
4324 , unsigned SI
4325 )
4326 : InheritableAttr(attr::MSABI, R, SI, false, false)
4327 {
4328 }
4329
4330 MSABIAttr *clone(ASTContext &C) const;
4331 void printPretty(raw_ostream &OS,
4332 const PrintingPolicy &Policy) const;
4333 const char *getSpelling() const;
4334
4335
4336 static bool classof(const Attr *A) { return A->getKind() == attr::MSABI; }
4337};
4338
4339class MSAllocatorAttr : public InheritableAttr {
4340public:
4341 static MSAllocatorAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
4342 auto *A = new (Ctx) MSAllocatorAttr(Loc, Ctx, 0);
4343 A->setImplicit(true);
4344 return A;
4345 }
4346
4347 MSAllocatorAttr(SourceRange R, ASTContext &Ctx
4348 , unsigned SI
4349 )
4350 : InheritableAttr(attr::MSAllocator, R, SI, false, false)
4351 {
4352 }
4353
4354 MSAllocatorAttr *clone(ASTContext &C) const;
4355 void printPretty(raw_ostream &OS,
4356 const PrintingPolicy &Policy) const;
4357 const char *getSpelling() const;
4358
4359
4360 static bool classof(const Attr *A) { return A->getKind() == attr::MSAllocator; }
4361};
4362
4363class MSInheritanceAttr : public InheritableAttr {
4364bool bestCase;
4365
4366public:
4367 enum Spelling {
4368 Keyword_single_inheritance = 0,
4369 Keyword_multiple_inheritance = 1,
4370 Keyword_virtual_inheritance = 2,
4371 Keyword_unspecified_inheritance = 3
4372 };
4373
4374 static MSInheritanceAttr *CreateImplicit(ASTContext &Ctx, Spelling S, bool BestCase, SourceRange Loc = SourceRange()) {
4375 auto *A = new (Ctx) MSInheritanceAttr(Loc, Ctx, BestCase, S);
4376 A->setImplicit(true);
4377 return A;
4378 }
4379
4380 static MSInheritanceAttr *CreateImplicit(ASTContext &Ctx, Spelling S, SourceRange Loc = SourceRange()) {
4381 auto *A = new (Ctx) MSInheritanceAttr(Loc, Ctx, S);
4382 A->setImplicit(true);
4383 return A;
4384 }
4385
4386 MSInheritanceAttr(SourceRange R, ASTContext &Ctx
4387 , bool BestCase
4388 , unsigned SI
4389 )
4390 : InheritableAttr(attr::MSInheritance, R, SI, false, false)
4391 , bestCase(BestCase)
4392 {
4393 }
4394
4395 MSInheritanceAttr(SourceRange R, ASTContext &Ctx
4396 , unsigned SI
4397 )
4398 : InheritableAttr(attr::MSInheritance, R, SI, false, false)
4399 , bestCase()
4400 {
4401 }
4402
4403 MSInheritanceAttr *clone(ASTContext &C) const;
4404 void printPretty(raw_ostream &OS,
4405 const PrintingPolicy &Policy) const;
4406 const char *getSpelling() const;
4407 Spelling getSemanticSpelling() const {
4408 switch (SpellingListIndex) {
4409 default: llvm_unreachable("Unknown spelling list index")::llvm::llvm_unreachable_internal("Unknown spelling list index"
, "/build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 4409)
;
4410 case 0: return Keyword_single_inheritance;
4411 case 1: return Keyword_multiple_inheritance;
4412 case 2: return Keyword_virtual_inheritance;
4413 case 3: return Keyword_unspecified_inheritance;
4414 }
4415 }
4416 bool getBestCase() const {
4417 return bestCase;
4418 }
4419
4420 static const bool DefaultBestCase = true;
4421
4422
4423 static bool hasVBPtrOffsetField(Spelling Inheritance) {
4424 return Inheritance == Keyword_unspecified_inheritance;
4425 }
4426
4427 // Only member pointers to functions need a this adjustment, since it can be
4428 // combined with the field offset for data pointers.
4429 static bool hasNVOffsetField(bool IsMemberFunction, Spelling Inheritance) {
4430 return IsMemberFunction && Inheritance >= Keyword_multiple_inheritance;
4431 }
4432
4433 static bool hasVBTableOffsetField(Spelling Inheritance) {
4434 return Inheritance >= Keyword_virtual_inheritance;
4435 }
4436
4437 static bool hasOnlyOneField(bool IsMemberFunction,
4438 Spelling Inheritance) {
4439 if (IsMemberFunction)
4440 return Inheritance <= Keyword_single_inheritance;
4441 return Inheritance <= Keyword_multiple_inheritance;
4442 }
4443
4444
4445 static bool classof(const Attr *A) { return A->getKind() == attr::MSInheritance; }
4446};
4447
4448class MSNoVTableAttr : public InheritableAttr {
4449public:
4450 static MSNoVTableAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
4451 auto *A = new (Ctx) MSNoVTableAttr(Loc, Ctx, 0);
4452 A->setImplicit(true);
4453 return A;
4454 }
4455
4456 MSNoVTableAttr(SourceRange R, ASTContext &Ctx
4457 , unsigned SI
4458 )
4459 : InheritableAttr(attr::MSNoVTable, R, SI, false, false)
4460 {
4461 }
4462
4463 MSNoVTableAttr *clone(ASTContext &C) const;
4464 void printPretty(raw_ostream &OS,
4465 const PrintingPolicy &Policy) const;
4466 const char *getSpelling() const;
4467
4468
4469 static bool classof(const Attr *A) { return A->getKind() == attr::MSNoVTable; }
4470};
4471
4472class MSP430InterruptAttr : public InheritableAttr {
4473unsigned number;
4474
4475public:
4476 static MSP430InterruptAttr *CreateImplicit(ASTContext &Ctx, unsigned Number, SourceRange Loc = SourceRange()) {
4477 auto *A = new (Ctx) MSP430InterruptAttr(Loc, Ctx, Number, 0);
4478 A->setImplicit(true);
4479 return A;
4480 }
4481
4482 MSP430InterruptAttr(SourceRange R, ASTContext &Ctx
4483 , unsigned Number
4484 , unsigned SI
4485 )
4486 : InheritableAttr(attr::MSP430Interrupt, R, SI, false, false)
4487 , number(Number)
4488 {
4489 }
4490
4491 MSP430InterruptAttr *clone(ASTContext &C) const;
4492 void printPretty(raw_ostream &OS,
4493 const PrintingPolicy &Policy) const;
4494 const char *getSpelling() const;
4495 unsigned getNumber() const {
4496 return number;
4497 }
4498
4499
4500
4501 static bool classof(const Attr *A) { return A->getKind() == attr::MSP430Interrupt; }
4502};
4503
4504class MSStructAttr : public InheritableAttr {
4505public:
4506 static MSStructAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
4507 auto *A = new (Ctx) MSStructAttr(Loc, Ctx, 0);
4508 A->setImplicit(true);
4509 return A;
4510 }
4511
4512 MSStructAttr(SourceRange R, ASTContext &Ctx
4513 , unsigned SI
4514 )
4515 : InheritableAttr(attr::MSStruct, R, SI, false, false)
4516 {
4517 }
4518
4519 MSStructAttr *clone(ASTContext &C) const;
4520 void printPretty(raw_ostream &OS,
4521 const PrintingPolicy &Policy) const;
4522 const char *getSpelling() const;
4523
4524
4525 static bool classof(const Attr *A) { return A->getKind() == attr::MSStruct; }
4526};
4527
4528class MSVtorDispAttr : public InheritableAttr {
4529unsigned vdm;
4530
4531public:
4532 static MSVtorDispAttr *CreateImplicit(ASTContext &Ctx, unsigned Vdm, SourceRange Loc = SourceRange()) {
4533 auto *A = new (Ctx) MSVtorDispAttr(Loc, Ctx, Vdm, 0);
4534 A->setImplicit(true);
4535 return A;
4536 }
4537
4538 MSVtorDispAttr(SourceRange R, ASTContext &Ctx
4539 , unsigned Vdm
4540 , unsigned SI
4541 )
4542 : InheritableAttr(attr::MSVtorDisp, R, SI, false, false)
4543 , vdm(Vdm)
4544 {
4545 }
4546
4547 MSVtorDispAttr *clone(ASTContext &C) const;
4548 void printPretty(raw_ostream &OS,
4549 const PrintingPolicy &Policy) const;
4550 const char *getSpelling() const;
4551 unsigned getVdm() const {
4552 return vdm;
4553 }
4554
4555
4556 enum Mode {
4557 Never,
4558 ForVBaseOverride,
4559 ForVFTable
4560 };
4561
4562 Mode getVtorDispMode() const { return Mode(vdm); }
4563
4564
4565 static bool classof(const Attr *A) { return A->getKind() == attr::MSVtorDisp; }
4566};
4567
4568class MaxFieldAlignmentAttr : public InheritableAttr {
4569unsigned alignment;
4570
4571public:
4572 static MaxFieldAlignmentAttr *CreateImplicit(ASTContext &Ctx, unsigned Alignment, SourceRange Loc = SourceRange()) {
4573 auto *A = new (Ctx) MaxFieldAlignmentAttr(Loc, Ctx, Alignment, 0);
4574 A->setImplicit(true);
4575 return A;
4576 }
4577
4578 MaxFieldAlignmentAttr(SourceRange R, ASTContext &Ctx
4579 , unsigned Alignment
4580 , unsigned SI
4581 )
4582 : InheritableAttr(attr::MaxFieldAlignment, R, SI, false, false)
4583 , alignment(Alignment)
4584 {
4585 }
4586
4587 MaxFieldAlignmentAttr *clone(ASTContext &C) const;
4588 void printPretty(raw_ostream &OS,
4589 const PrintingPolicy &Policy) const;
4590 const char *getSpelling() const;
4591 unsigned getAlignment() const {
4592 return alignment;
4593 }
4594
4595
4596
4597 static bool classof(const Attr *A) { return A->getKind() == attr::MaxFieldAlignment; }
4598};
4599
4600class MayAliasAttr : public InheritableAttr {
4601public:
4602 static MayAliasAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
4603 auto *A = new (Ctx) MayAliasAttr(Loc, Ctx, 0);
4604 A->setImplicit(true);
4605 return A;
4606 }
4607
4608 MayAliasAttr(SourceRange R, ASTContext &Ctx
4609 , unsigned SI
4610 )
4611 : InheritableAttr(attr::MayAlias, R, SI, false, false)
4612 {
4613 }
4614
4615 MayAliasAttr *clone(ASTContext &C) const;
4616 void printPretty(raw_ostream &OS,
4617 const PrintingPolicy &Policy) const;
4618 const char *getSpelling() const;
4619
4620
4621 static bool classof(const Attr *A) { return A->getKind() == attr::MayAlias; }
4622};
4623
4624class MicroMipsAttr : public InheritableAttr {
4625public:
4626 static MicroMipsAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
4627 auto *A = new (Ctx) MicroMipsAttr(Loc, Ctx, 0);
4628 A->setImplicit(true);
4629 return A;
4630 }
4631
4632 MicroMipsAttr(SourceRange R, ASTContext &Ctx
4633 , unsigned SI
4634 )
4635 : InheritableAttr(attr::MicroMips, R, SI, false, false)
4636 {
4637 }
4638
4639 MicroMipsAttr *clone(ASTContext &C) const;
4640 void printPretty(raw_ostream &OS,
4641 const PrintingPolicy &Policy) const;
4642 const char *getSpelling() const;
4643
4644
4645 static bool classof(const Attr *A) { return A->getKind() == attr::MicroMips; }
4646};
4647
4648class MinSizeAttr : public InheritableAttr {
4649public:
4650 static MinSizeAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
4651 auto *A = new (Ctx) MinSizeAttr(Loc, Ctx, 0);
4652 A->setImplicit(true);
4653 return A;
4654 }
4655
4656 MinSizeAttr(SourceRange R, ASTContext &Ctx
4657 , unsigned SI
4658 )
4659 : InheritableAttr(attr::MinSize, R, SI, false, false)
4660 {
4661 }
4662
4663 MinSizeAttr *clone(ASTContext &C) const;
4664 void printPretty(raw_ostream &OS,
4665 const PrintingPolicy &Policy) const;
4666 const char *getSpelling() const;
4667
4668
4669 static bool classof(const Attr *A) { return A->getKind() == attr::MinSize; }
4670};
4671
4672class MinVectorWidthAttr : public InheritableAttr {
4673unsigned vectorWidth;
4674
4675public:
4676 static MinVectorWidthAttr *CreateImplicit(ASTContext &Ctx, unsigned VectorWidth, SourceRange Loc = SourceRange()) {
4677 auto *A = new (Ctx) MinVectorWidthAttr(Loc, Ctx, VectorWidth, 0);
4678 A->setImplicit(true);
4679 return A;
4680 }
4681
4682 MinVectorWidthAttr(SourceRange R, ASTContext &Ctx
4683 , unsigned VectorWidth
4684 , unsigned SI
4685 )
4686 : InheritableAttr(attr::MinVectorWidth, R, SI, false, false)
4687 , vectorWidth(VectorWidth)
4688 {
4689 }
4690
4691 MinVectorWidthAttr *clone(ASTContext &C) const;
4692 void printPretty(raw_ostream &OS,
4693 const PrintingPolicy &Policy) const;
4694 const char *getSpelling() const;
4695 unsigned getVectorWidth() const {
4696 return vectorWidth;
4697 }
4698
4699
4700
4701 static bool classof(const Attr *A) { return A->getKind() == attr::MinVectorWidth; }
4702};
4703
4704class Mips16Attr : public InheritableAttr {
4705public:
4706 static Mips16Attr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
4707 auto *A = new (Ctx) Mips16Attr(Loc, Ctx, 0);
4708 A->setImplicit(true);
4709 return A;
4710 }
4711
4712 Mips16Attr(SourceRange R, ASTContext &Ctx
4713 , unsigned SI
4714 )
4715 : InheritableAttr(attr::Mips16, R, SI, false, false)
4716 {
4717 }
4718
4719 Mips16Attr *clone(ASTContext &C) const;
4720 void printPretty(raw_ostream &OS,
4721 const PrintingPolicy &Policy) const;
4722 const char *getSpelling() const;
4723
4724
4725 static bool classof(const Attr *A) { return A->getKind() == attr::Mips16; }
4726};
4727
4728class MipsInterruptAttr : public InheritableAttr {
4729public:
4730 enum InterruptType {
4731 sw0,
4732 sw1,
4733 hw0,
4734 hw1,
4735 hw2,
4736 hw3,
4737 hw4,
4738 hw5,
4739 eic
4740 };
4741private:
4742 InterruptType interrupt;
4743
4744public:
4745 static MipsInterruptAttr *CreateImplicit(ASTContext &Ctx, InterruptType Interrupt, SourceRange Loc = SourceRange()) {
4746 auto *A = new (Ctx) MipsInterruptAttr(Loc, Ctx, Interrupt, 0);
4747 A->setImplicit(true);
4748 return A;
4749 }
4750
4751 MipsInterruptAttr(SourceRange R, ASTContext &Ctx
4752 , InterruptType Interrupt
4753 , unsigned SI
4754 )
4755 : InheritableAttr(attr::MipsInterrupt, R, SI, false, false)
4756 , interrupt(Interrupt)
4757 {
4758 }
4759
4760 MipsInterruptAttr *clone(ASTContext &C) const;
4761 void printPretty(raw_ostream &OS,
4762 const PrintingPolicy &Policy) const;
4763 const char *getSpelling() const;
4764 InterruptType getInterrupt() const {
4765 return interrupt;
4766 }
4767
4768 static bool ConvertStrToInterruptType(StringRef Val, InterruptType &Out) {
4769 Optional<InterruptType> R = llvm::StringSwitch<Optional<InterruptType>>(Val)
4770 .Case("vector=sw0", MipsInterruptAttr::sw0)
4771 .Case("vector=sw1", MipsInterruptAttr::sw1)
4772 .Case("vector=hw0", MipsInterruptAttr::hw0)
4773 .Case("vector=hw1", MipsInterruptAttr::hw1)
4774 .Case("vector=hw2", MipsInterruptAttr::hw2)
4775 .Case("vector=hw3", MipsInterruptAttr::hw3)
4776 .Case("vector=hw4", MipsInterruptAttr::hw4)
4777 .Case("vector=hw5", MipsInterruptAttr::hw5)
4778 .Case("eic", MipsInterruptAttr::eic)
4779 .Case("", MipsInterruptAttr::eic)
4780 .Default(Optional<InterruptType>());
4781 if (R) {
4782 Out = *R;
4783 return true;
4784 }
4785 return false;
4786 }
4787
4788 static const char *ConvertInterruptTypeToStr(InterruptType Val) {
4789 switch(Val) {
4790 case MipsInterruptAttr::sw0: return "vector=sw0";
4791 case MipsInterruptAttr::sw1: return "vector=sw1";
4792 case MipsInterruptAttr::hw0: return "vector=hw0";
4793 case MipsInterruptAttr::hw1: return "vector=hw1";
4794 case MipsInterruptAttr::hw2: return "vector=hw2";
4795 case MipsInterruptAttr::hw3: return "vector=hw3";
4796 case MipsInterruptAttr::hw4: return "vector=hw4";
4797 case MipsInterruptAttr::hw5: return "vector=hw5";
4798 case MipsInterruptAttr::eic: return "eic";
4799 }
4800 llvm_unreachable("No enumerator with that value")::llvm::llvm_unreachable_internal("No enumerator with that value"
, "/build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 4800)
;
4801 }
4802
4803
4804 static bool classof(const Attr *A) { return A->getKind() == attr::MipsInterrupt; }
4805};
4806
4807class MipsLongCallAttr : public InheritableAttr {
4808public:
4809 enum Spelling {
4810 GNU_long_call = 0,
4811 CXX11_gnu_long_call = 1,
4812 GNU_far = 2,
4813 CXX11_gnu_far = 3
4814 };
4815
4816 static MipsLongCallAttr *CreateImplicit(ASTContext &Ctx, Spelling S, SourceRange Loc = SourceRange()) {
4817 auto *A = new (Ctx) MipsLongCallAttr(Loc, Ctx, S);
4818 A->setImplicit(true);
4819 return A;
4820 }
4821
4822 MipsLongCallAttr(SourceRange R, ASTContext &Ctx
4823 , unsigned SI
4824 )
4825 : InheritableAttr(attr::MipsLongCall, R, SI, false, false)
4826 {
4827 }
4828
4829 MipsLongCallAttr *clone(ASTContext &C) const;
4830 void printPretty(raw_ostream &OS,
4831 const PrintingPolicy &Policy) const;
4832 const char *getSpelling() const;
4833 Spelling getSemanticSpelling() const {
4834 switch (SpellingListIndex) {
4835 default: llvm_unreachable("Unknown spelling list index")::llvm::llvm_unreachable_internal("Unknown spelling list index"
, "/build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 4835)
;
4836 case 0: return GNU_long_call;
4837 case 1: return CXX11_gnu_long_call;
4838 case 2: return GNU_far;
4839 case 3: return CXX11_gnu_far;
4840 }
4841 }
4842
4843
4844 static bool classof(const Attr *A) { return A->getKind() == attr::MipsLongCall; }
4845};
4846
4847class MipsShortCallAttr : public InheritableAttr {
4848public:
4849 enum Spelling {
4850 GNU_short_call = 0,
4851 CXX11_gnu_short_call = 1,
4852 GNU_near = 2,
4853 CXX11_gnu_near = 3
4854 };
4855
4856 static MipsShortCallAttr *CreateImplicit(ASTContext &Ctx, Spelling S, SourceRange Loc = SourceRange()) {
4857 auto *A = new (Ctx) MipsShortCallAttr(Loc, Ctx, S);
4858 A->setImplicit(true);
4859 return A;
4860 }
4861
4862 MipsShortCallAttr(SourceRange R, ASTContext &Ctx
4863 , unsigned SI
4864 )
4865 : InheritableAttr(attr::MipsShortCall, R, SI, false, false)
4866 {
4867 }
4868
4869 MipsShortCallAttr *clone(ASTContext &C) const;
4870 void printPretty(raw_ostream &OS,
4871 const PrintingPolicy &Policy) const;
4872 const char *getSpelling() const;
4873 Spelling getSemanticSpelling() const {
4874 switch (SpellingListIndex) {
4875 default: llvm_unreachable("Unknown spelling list index")::llvm::llvm_unreachable_internal("Unknown spelling list index"
, "/build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 4875)
;
4876 case 0: return GNU_short_call;
4877 case 1: return CXX11_gnu_short_call;
4878 case 2: return GNU_near;
4879 case 3: return CXX11_gnu_near;
4880 }
4881 }
4882
4883
4884 static bool classof(const Attr *A) { return A->getKind() == attr::MipsShortCall; }
4885};
4886
4887class ModeAttr : public Attr {
4888IdentifierInfo * mode;
4889
4890public:
4891 static ModeAttr *CreateImplicit(ASTContext &Ctx, IdentifierInfo * Mode, SourceRange Loc = SourceRange()) {
4892 auto *A = new (Ctx) ModeAttr(Loc, Ctx, Mode, 0);
4893 A->setImplicit(true);
4894 return A;
4895 }
4896
4897 ModeAttr(SourceRange R, ASTContext &Ctx
4898 , IdentifierInfo * Mode
4899 , unsigned SI
4900 )
4901 : Attr(attr::Mode, R, SI, false)
4902 , mode(Mode)
4903 {
4904 }
4905
4906 ModeAttr *clone(ASTContext &C) const;
4907 void printPretty(raw_ostream &OS,
4908 const PrintingPolicy &Policy) const;
4909 const char *getSpelling() const;
4910 IdentifierInfo * getMode() const {
4911 return mode;
4912 }
4913
4914
4915
4916 static bool classof(const Attr *A) { return A->getKind() == attr::Mode; }
4917};
4918
4919class NSConsumedAttr : public InheritableParamAttr {
4920public:
4921 static NSConsumedAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
4922 auto *A = new (Ctx) NSConsumedAttr(Loc, Ctx, 0);
4923 A->setImplicit(true);
4924 return A;
4925 }
4926
4927 NSConsumedAttr(SourceRange R, ASTContext &Ctx
4928 , unsigned SI
4929 )
4930 : InheritableParamAttr(attr::NSConsumed, R, SI, false, false)
4931 {
4932 }
4933
4934 NSConsumedAttr *clone(ASTContext &C) const;
4935 void printPretty(raw_ostream &OS,
4936 const PrintingPolicy &Policy) const;
4937 const char *getSpelling() const;
4938
4939
4940 static bool classof(const Attr *A) { return A->getKind() == attr::NSConsumed; }
4941};
4942
4943class NSConsumesSelfAttr : public InheritableAttr {
4944public:
4945 static NSConsumesSelfAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
4946 auto *A = new (Ctx) NSConsumesSelfAttr(Loc, Ctx, 0);
4947 A->setImplicit(true);
4948 return A;
4949 }
4950
4951 NSConsumesSelfAttr(SourceRange R, ASTContext &Ctx
4952 , unsigned SI
4953 )
4954 : InheritableAttr(attr::NSConsumesSelf, R, SI, false, false)
4955 {
4956 }
4957
4958 NSConsumesSelfAttr *clone(ASTContext &C) const;
4959 void printPretty(raw_ostream &OS,
4960 const PrintingPolicy &Policy) const;
4961 const char *getSpelling() const;
4962
4963
4964 static bool classof(const Attr *A) { return A->getKind() == attr::NSConsumesSelf; }
4965};
4966
4967class NSReturnsAutoreleasedAttr : public InheritableAttr {
4968public:
4969 static NSReturnsAutoreleasedAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
4970 auto *A = new (Ctx) NSReturnsAutoreleasedAttr(Loc, Ctx, 0);
4971 A->setImplicit(true);
4972 return A;
4973 }
4974
4975 NSReturnsAutoreleasedAttr(SourceRange R, ASTContext &Ctx
4976 , unsigned SI
4977 )
4978 : InheritableAttr(attr::NSReturnsAutoreleased, R, SI, false, false)
4979 {
4980 }
4981
4982 NSReturnsAutoreleasedAttr *clone(ASTContext &C) const;
4983 void printPretty(raw_ostream &OS,
4984 const PrintingPolicy &Policy) const;
4985 const char *getSpelling() const;
4986
4987
4988 static bool classof(const Attr *A) { return A->getKind() == attr::NSReturnsAutoreleased; }
4989};
4990
4991class NSReturnsNotRetainedAttr : public InheritableAttr {
4992public:
4993 static NSReturnsNotRetainedAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
4994 auto *A = new (Ctx) NSReturnsNotRetainedAttr(Loc, Ctx, 0);
4995 A->setImplicit(true);
4996 return A;
4997 }
4998
4999 NSReturnsNotRetainedAttr(SourceRange R, ASTContext &Ctx
5000 , unsigned SI
5001 )
5002 : InheritableAttr(attr::NSReturnsNotRetained, R, SI, false, false)
5003 {
5004 }
5005
5006 NSReturnsNotRetainedAttr *clone(ASTContext &C) const;
5007 void printPretty(raw_ostream &OS,
5008 const PrintingPolicy &Policy) const;
5009 const char *getSpelling() const;
5010
5011
5012 static bool classof(const Attr *A) { return A->getKind() == attr::NSReturnsNotRetained; }
5013};
5014
5015class NSReturnsRetainedAttr : public InheritableAttr {
5016public:
5017 static NSReturnsRetainedAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
5018 auto *A = new (Ctx) NSReturnsRetainedAttr(Loc, Ctx, 0);
5019 A->setImplicit(true);
5020 return A;
5021 }
5022
5023 NSReturnsRetainedAttr(SourceRange R, ASTContext &Ctx
5024 , unsigned SI
5025 )
5026 : InheritableAttr(attr::NSReturnsRetained, R, SI, false, false)
5027 {
5028 }
5029
5030 NSReturnsRetainedAttr *clone(ASTContext &C) const;
5031 void printPretty(raw_ostream &OS,
5032 const PrintingPolicy &Policy) const;
5033 const char *getSpelling() const;
5034
5035
5036 static bool classof(const Attr *A) { return A->getKind() == attr::NSReturnsRetained; }
5037};
5038
5039class NakedAttr : public InheritableAttr {
5040public:
5041 static NakedAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
5042 auto *A = new (Ctx) NakedAttr(Loc, Ctx, 0);
5043 A->setImplicit(true);
5044 return A;
5045 }
5046
5047 NakedAttr(SourceRange R, ASTContext &Ctx
5048 , unsigned SI
5049 )
5050 : InheritableAttr(attr::Naked, R, SI, false, false)
5051 {
5052 }
5053
5054 NakedAttr *clone(ASTContext &C) const;
5055 void printPretty(raw_ostream &OS,
5056 const PrintingPolicy &Policy) const;
5057 const char *getSpelling() const;
5058
5059
5060 static bool classof(const Attr *A) { return A->getKind() == attr::Naked; }
5061};
5062
5063class NoAliasAttr : public InheritableAttr {
5064public:
5065 static NoAliasAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
5066 auto *A = new (Ctx) NoAliasAttr(Loc, Ctx, 0);
5067 A->setImplicit(true);
5068 return A;
5069 }
5070
5071 NoAliasAttr(SourceRange R, ASTContext &Ctx
5072 , unsigned SI
5073 )
5074 : InheritableAttr(attr::NoAlias, R, SI, false, false)
5075 {
5076 }
5077
5078 NoAliasAttr *clone(ASTContext &C) const;
5079 void printPretty(raw_ostream &OS,
5080 const PrintingPolicy &Policy) const;
5081 const char *getSpelling() const;
5082
5083
5084 static bool classof(const Attr *A) { return A->getKind() == attr::NoAlias; }
5085};
5086
5087class NoCommonAttr : public InheritableAttr {
5088public:
5089 static NoCommonAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
5090 auto *A = new (Ctx) NoCommonAttr(Loc, Ctx, 0);
5091 A->setImplicit(true);
5092 return A;
5093 }
5094
5095 NoCommonAttr(SourceRange R, ASTContext &Ctx
5096 , unsigned SI
5097 )
5098 : InheritableAttr(attr::NoCommon, R, SI, false, false)
5099 {
5100 }
5101
5102 NoCommonAttr *clone(ASTContext &C) const;
5103 void printPretty(raw_ostream &OS,
5104 const PrintingPolicy &Policy) const;
5105 const char *getSpelling() const;
5106
5107
5108 static bool classof(const Attr *A) { return A->getKind() == attr::NoCommon; }
5109};
5110
5111class NoDebugAttr : public InheritableAttr {
5112public:
5113 static NoDebugAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
5114 auto *A = new (Ctx) NoDebugAttr(Loc, Ctx, 0);
5115 A->setImplicit(true);
5116 return A;
5117 }
5118
5119 NoDebugAttr(SourceRange R, ASTContext &Ctx
5120 , unsigned SI
5121 )
5122 : InheritableAttr(attr::NoDebug, R, SI, false, false)
5123 {
5124 }
5125
5126 NoDebugAttr *clone(ASTContext &C) const;
5127 void printPretty(raw_ostream &OS,
5128 const PrintingPolicy &Policy) const;
5129 const char *getSpelling() const;
5130
5131
5132 static bool classof(const Attr *A) { return A->getKind() == attr::NoDebug; }
5133};
5134
5135class NoDerefAttr : public TypeAttr {
5136public:
5137 static NoDerefAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
5138 auto *A = new (Ctx) NoDerefAttr(Loc, Ctx, 0);
5139 A->setImplicit(true);
5140 return A;
5141 }
5142
5143 NoDerefAttr(SourceRange R, ASTContext &Ctx
5144 , unsigned SI
5145 )
5146 : TypeAttr(attr::NoDeref, R, SI, false)
5147 {
5148 }
5149
5150 NoDerefAttr *clone(ASTContext &C) const;
5151 void printPretty(raw_ostream &OS,
5152 const PrintingPolicy &Policy) const;
5153 const char *getSpelling() const;
5154
5155
5156 static bool classof(const Attr *A) { return A->getKind() == attr::NoDeref; }
5157};
5158
5159class NoDestroyAttr : public InheritableAttr {
5160public:
5161 static NoDestroyAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
5162 auto *A = new (Ctx) NoDestroyAttr(Loc, Ctx, 0);
5163 A->setImplicit(true);
5164 return A;
5165 }
5166
5167 NoDestroyAttr(SourceRange R, ASTContext &Ctx
5168 , unsigned SI
5169 )
5170 : InheritableAttr(attr::NoDestroy, R, SI, false, false)
5171 {
5172 }
5173
5174 NoDestroyAttr *clone(ASTContext &C) const;
5175 void printPretty(raw_ostream &OS,
5176 const PrintingPolicy &Policy) const;
5177 const char *getSpelling() const;
5178
5179
5180 static bool classof(const Attr *A) { return A->getKind() == attr::NoDestroy; }
5181};
5182
5183class NoDuplicateAttr : public InheritableAttr {
5184public:
5185 static NoDuplicateAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
5186 auto *A = new (Ctx) NoDuplicateAttr(Loc, Ctx, 0);
5187 A->setImplicit(true);
5188 return A;
5189 }
5190
5191 NoDuplicateAttr(SourceRange R, ASTContext &Ctx
5192 , unsigned SI
5193 )
5194 : InheritableAttr(attr::NoDuplicate, R, SI, false, false)
5195 {
5196 }
5197
5198 NoDuplicateAttr *clone(ASTContext &C) const;
5199 void printPretty(raw_ostream &OS,
5200 const PrintingPolicy &Policy) const;
5201 const char *getSpelling() const;
5202
5203
5204 static bool classof(const Attr *A) { return A->getKind() == attr::NoDuplicate; }
5205};
5206
5207class NoEscapeAttr : public Attr {
5208public:
5209 static NoEscapeAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
5210 auto *A = new (Ctx) NoEscapeAttr(Loc, Ctx, 0);
5211 A->setImplicit(true);
5212 return A;
5213 }
5214
5215 NoEscapeAttr(SourceRange R, ASTContext &Ctx
5216 , unsigned SI
5217 )
5218 : Attr(attr::NoEscape, R, SI, false)
5219 {
5220 }
5221
5222 NoEscapeAttr *clone(ASTContext &C) const;
5223 void printPretty(raw_ostream &OS,
5224 const PrintingPolicy &Policy) const;
5225 const char *getSpelling() const;
5226
5227
5228 static bool classof(const Attr *A) { return A->getKind() == attr::NoEscape; }
5229};
5230
5231class NoInlineAttr : public InheritableAttr {
5232public:
5233 static NoInlineAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
5234 auto *A = new (Ctx) NoInlineAttr(Loc, Ctx, 0);
5235 A->setImplicit(true);
5236 return A;
5237 }
5238
5239 NoInlineAttr(SourceRange R, ASTContext &Ctx
5240 , unsigned SI
5241 )
5242 : InheritableAttr(attr::NoInline, R, SI, false, false)
5243 {
5244 }
5245
5246 NoInlineAttr *clone(ASTContext &C) const;
5247 void printPretty(raw_ostream &OS,
5248 const PrintingPolicy &Policy) const;
5249 const char *getSpelling() const;
5250
5251
5252 static bool classof(const Attr *A) { return A->getKind() == attr::NoInline; }
5253};
5254
5255class NoInstrumentFunctionAttr : public InheritableAttr {
5256public:
5257 static NoInstrumentFunctionAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
5258 auto *A = new (Ctx) NoInstrumentFunctionAttr(Loc, Ctx, 0);
5259 A->setImplicit(true);
5260 return A;
5261 }
5262
5263 NoInstrumentFunctionAttr(SourceRange R, ASTContext &Ctx
5264 , unsigned SI
5265 )
5266 : InheritableAttr(attr::NoInstrumentFunction, R, SI, false, false)
5267 {
5268 }
5269
5270 NoInstrumentFunctionAttr *clone(ASTContext &C) const;
5271 void printPretty(raw_ostream &OS,
5272 const PrintingPolicy &Policy) const;
5273 const char *getSpelling() const;
5274
5275
5276 static bool classof(const Attr *A) { return A->getKind() == attr::NoInstrumentFunction; }
5277};
5278
5279class NoMicroMipsAttr : public InheritableAttr {
5280public:
5281 static NoMicroMipsAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
5282 auto *A = new (Ctx) NoMicroMipsAttr(Loc, Ctx, 0);
5283 A->setImplicit(true);
5284 return A;
5285 }
5286
5287 NoMicroMipsAttr(SourceRange R, ASTContext &Ctx
5288 , unsigned SI
5289 )
5290 : InheritableAttr(attr::NoMicroMips, R, SI, false, false)
5291 {
5292 }
5293
5294 NoMicroMipsAttr *clone(ASTContext &C) const;
5295 void printPretty(raw_ostream &OS,
5296 const PrintingPolicy &Policy) const;
5297 const char *getSpelling() const;
5298
5299
5300 static bool classof(const Attr *A) { return A->getKind() == attr::NoMicroMips; }
5301};
5302
5303class NoMips16Attr : public InheritableAttr {
5304public:
5305 static NoMips16Attr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
5306 auto *A = new (Ctx) NoMips16Attr(Loc, Ctx, 0);
5307 A->setImplicit(true);
5308 return A;
5309 }
5310
5311 NoMips16Attr(SourceRange R, ASTContext &Ctx
5312 , unsigned SI
5313 )
5314 : InheritableAttr(attr::NoMips16, R, SI, false, false)
5315 {
5316 }
5317
5318 NoMips16Attr *clone(ASTContext &C) const;
5319 void printPretty(raw_ostream &OS,
5320 const PrintingPolicy &Policy) const;
5321 const char *getSpelling() const;
5322
5323
5324 static bool classof(const Attr *A) { return A->getKind() == attr::NoMips16; }
5325};
5326
5327class NoReturnAttr : public InheritableAttr {
5328public:
5329 static NoReturnAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
5330 auto *A = new (Ctx) NoReturnAttr(Loc, Ctx, 0);
5331 A->setImplicit(true);
5332 return A;
5333 }
5334
5335 NoReturnAttr(SourceRange R, ASTContext &Ctx
5336 , unsigned SI
5337 )
5338 : InheritableAttr(attr::NoReturn, R, SI, false, false)
5339 {
5340 }
5341
5342 NoReturnAttr *clone(ASTContext &C) const;
5343 void printPretty(raw_ostream &OS,
5344 const PrintingPolicy &Policy) const;
5345 const char *getSpelling() const;
5346
5347
5348 static bool classof(const Attr *A) { return A->getKind() == attr::NoReturn; }
5349};
5350
5351class NoSanitizeAttr : public InheritableAttr {
5352 unsigned sanitizers_Size;
5353 StringRef *sanitizers_;
5354
5355public:
5356 static NoSanitizeAttr *CreateImplicit(ASTContext &Ctx, StringRef *Sanitizers, unsigned SanitizersSize, SourceRange Loc = SourceRange()) {
5357 auto *A = new (Ctx) NoSanitizeAttr(Loc, Ctx, Sanitizers, SanitizersSize, 0);
5358 A->setImplicit(true);
5359 return A;
5360 }
5361
5362 NoSanitizeAttr(SourceRange R, ASTContext &Ctx
5363 , StringRef *Sanitizers, unsigned SanitizersSize
5364 , unsigned SI
5365 )
5366 : InheritableAttr(attr::NoSanitize, R, SI, false, false)
5367 , sanitizers_Size(SanitizersSize), sanitizers_(new (Ctx, 16) StringRef[sanitizers_Size])
5368 {
5369 for (size_t I = 0, E = sanitizers_Size; I != E;
5370 ++I) {
5371 StringRef Ref = Sanitizers[I];
5372 if (!Ref.empty()) {
5373 char *Mem = new (Ctx, 1) char[Ref.size()];
5374 std::memcpy(Mem, Ref.data(), Ref.size());
5375 sanitizers_[I] = StringRef(Mem, Ref.size());
5376 }
5377 }
5378 }
5379
5380 NoSanitizeAttr(SourceRange R, ASTContext &Ctx
5381 , unsigned SI
5382 )
5383 : InheritableAttr(attr::NoSanitize, R, SI, false, false)
5384 , sanitizers_Size(0), sanitizers_(nullptr)
5385 {
5386 }
5387
5388 NoSanitizeAttr *clone(ASTContext &C) const;
5389 void printPretty(raw_ostream &OS,
5390 const PrintingPolicy &Policy) const;
5391 const char *getSpelling() const;
5392 typedef StringRef* sanitizers_iterator;
5393 sanitizers_iterator sanitizers_begin() const { return sanitizers_; }
5394 sanitizers_iterator sanitizers_end() const { return sanitizers_ + sanitizers_Size; }
5395 unsigned sanitizers_size() const { return sanitizers_Size; }
5396 llvm::iterator_range<sanitizers_iterator> sanitizers() const { return llvm::make_range(sanitizers_begin(), sanitizers_end()); }
5397
5398
5399
5400 SanitizerMask getMask() const {
5401 SanitizerMask Mask;
5402 for (auto SanitizerName : sanitizers()) {
5403 SanitizerMask ParsedMask =
5404 parseSanitizerValue(SanitizerName, /*AllowGroups=*/true);
5405 Mask |= expandSanitizerGroups(ParsedMask);
5406 }
5407 return Mask;
5408 }
5409
5410
5411 static bool classof(const Attr *A) { return A->getKind() == attr::NoSanitize; }
5412};
5413
5414class NoSpeculativeLoadHardeningAttr : public InheritableAttr {
5415public:
5416 static NoSpeculativeLoadHardeningAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
5417 auto *A = new (Ctx) NoSpeculativeLoadHardeningAttr(Loc, Ctx, 0);
5418 A->setImplicit(true);
5419 return A;
5420 }
5421
5422 NoSpeculativeLoadHardeningAttr(SourceRange R, ASTContext &Ctx
5423 , unsigned SI
5424 )
5425 : InheritableAttr(attr::NoSpeculativeLoadHardening, R, SI, false, false)
5426 {
5427 }
5428
5429 NoSpeculativeLoadHardeningAttr *clone(ASTContext &C) const;
5430 void printPretty(raw_ostream &OS,
5431 const PrintingPolicy &Policy) const;
5432 const char *getSpelling() const;
5433
5434
5435 static bool classof(const Attr *A) { return A->getKind() == attr::NoSpeculativeLoadHardening; }
5436};
5437
5438class NoSplitStackAttr : public InheritableAttr {
5439public:
5440 static NoSplitStackAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
5441 auto *A = new (Ctx) NoSplitStackAttr(Loc, Ctx, 0);
5442 A->setImplicit(true);
5443 return A;
5444 }
5445
5446 NoSplitStackAttr(SourceRange R, ASTContext &Ctx
5447 , unsigned SI
5448 )
5449 : InheritableAttr(attr::NoSplitStack, R, SI, false, false)
5450 {
5451 }
5452
5453 NoSplitStackAttr *clone(ASTContext &C) const;
5454 void printPretty(raw_ostream &OS,
5455 const PrintingPolicy &Policy) const;
5456 const char *getSpelling() const;
5457
5458
5459 static bool classof(const Attr *A) { return A->getKind() == attr::NoSplitStack; }
5460};
5461
5462class NoStackProtectorAttr : public InheritableAttr {
5463public:
5464 static NoStackProtectorAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
5465 auto *A = new (Ctx) NoStackProtectorAttr(Loc, Ctx, 0);
5466 A->setImplicit(true);
5467 return A;
5468 }
5469
5470 NoStackProtectorAttr(SourceRange R, ASTContext &Ctx
5471 , unsigned SI
5472 )
5473 : InheritableAttr(attr::NoStackProtector, R, SI, false, false)
5474 {
5475 }
5476
5477 NoStackProtectorAttr *clone(ASTContext &C) const;
5478 void printPretty(raw_ostream &OS,
5479 const PrintingPolicy &Policy) const;
5480 const char *getSpelling() const;
5481
5482
5483 static bool classof(const Attr *A) { return A->getKind() == attr::NoStackProtector; }
5484};
5485
5486class NoThreadSafetyAnalysisAttr : public InheritableAttr {
5487public:
5488 static NoThreadSafetyAnalysisAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
5489 auto *A = new (Ctx) NoThreadSafetyAnalysisAttr(Loc, Ctx, 0);
5490 A->setImplicit(true);
5491 return A;
5492 }
5493
5494 NoThreadSafetyAnalysisAttr(SourceRange R, ASTContext &Ctx
5495 , unsigned SI
5496 )
5497 : InheritableAttr(attr::NoThreadSafetyAnalysis, R, SI, false, false)
5498 {
5499 }
5500
5501 NoThreadSafetyAnalysisAttr *clone(ASTContext &C) const;
5502 void printPretty(raw_ostream &OS,
5503 const PrintingPolicy &Policy) const;
5504 const char *getSpelling() const;
5505
5506
5507 static bool classof(const Attr *A) { return A->getKind() == attr::NoThreadSafetyAnalysis; }
5508};
5509
5510class NoThrowAttr : public InheritableAttr {
5511public:
5512 static NoThrowAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
5513 auto *A = new (Ctx) NoThrowAttr(Loc, Ctx, 0);
5514 A->setImplicit(true);
5515 return A;
5516 }
5517
5518 NoThrowAttr(SourceRange R, ASTContext &Ctx
5519 , unsigned SI
5520 )
5521 : InheritableAttr(attr::NoThrow, R, SI, false, false)
5522 {
5523 }
5524
5525 NoThrowAttr *clone(ASTContext &C) const;
5526 void printPretty(raw_ostream &OS,
5527 const PrintingPolicy &Policy) const;
5528 const char *getSpelling() const;
5529
5530
5531 static bool classof(const Attr *A) { return A->getKind() == attr::NoThrow; }
5532};
5533
5534class NonNullAttr : public InheritableParamAttr {
5535 unsigned args_Size;
5536 ParamIdx *args_;
5537
5538public:
5539 static NonNullAttr *CreateImplicit(ASTContext &Ctx, ParamIdx *Args, unsigned ArgsSize, SourceRange Loc = SourceRange()) {
5540 auto *A = new (Ctx) NonNullAttr(Loc, Ctx, Args, ArgsSize, 0);
5541 A->setImplicit(true);
5542 return A;
5543 }
5544
5545 NonNullAttr(SourceRange R, ASTContext &Ctx
5546 , ParamIdx *Args, unsigned ArgsSize
5547 , unsigned SI
5548 )
5549 : InheritableParamAttr(attr::NonNull, R, SI, false, true)
5550 , args_Size(ArgsSize), args_(new (Ctx, 16) ParamIdx[args_Size])
5551 {
5552 std::copy(Args, Args + args_Size, args_);
5553 }
5554
5555 NonNullAttr(SourceRange R, ASTContext &Ctx
5556 , unsigned SI
5557 )
5558 : InheritableParamAttr(attr::NonNull, R, SI, false, true)
5559 , args_Size(0), args_(nullptr)
5560 {
5561 }
5562
5563 NonNullAttr *clone(ASTContext &C) const;
5564 void printPretty(raw_ostream &OS,
5565 const PrintingPolicy &Policy) const;
5566 const char *getSpelling() const;
5567 typedef ParamIdx* args_iterator;
5568 args_iterator args_begin() const { return args_; }
5569 args_iterator args_end() const { return args_ + args_Size; }
5570 unsigned args_size() const { return args_Size; }
5571 llvm::iterator_range<args_iterator> args() const { return llvm::make_range(args_begin(), args_end()); }
5572
5573
5574
5575 bool isNonNull(unsigned IdxAST) const {
5576 if (!args_size())
5577 return true;
5578 return args_end() != std::find_if(
5579 args_begin(), args_end(),
5580 [=](const ParamIdx &Idx) { return Idx.getASTIndex() == IdxAST; });
5581 }
5582
5583
5584 static bool classof(const Attr *A) { return A->getKind() == attr::NonNull; }
5585};
5586
5587class NotTailCalledAttr : public InheritableAttr {
5588public:
5589 static NotTailCalledAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
5590 auto *A = new (Ctx) NotTailCalledAttr(Loc, Ctx, 0);
5591 A->setImplicit(true);
5592 return A;
5593 }
5594
5595 NotTailCalledAttr(SourceRange R, ASTContext &Ctx
5596 , unsigned SI
5597 )
5598 : InheritableAttr(attr::NotTailCalled, R, SI, false, false)
5599 {
5600 }
5601
5602 NotTailCalledAttr *clone(ASTContext &C) const;
5603 void printPretty(raw_ostream &OS,
5604 const PrintingPolicy &Policy) const;
5605 const char *getSpelling() const;
5606
5607
5608 static bool classof(const Attr *A) { return A->getKind() == attr::NotTailCalled; }
5609};
5610
5611class OMPAllocateDeclAttr : public InheritableAttr {
5612public:
5613 enum AllocatorTypeTy {
5614 OMPDefaultMemAlloc,
5615 OMPLargeCapMemAlloc,
5616 OMPConstMemAlloc,
5617 OMPHighBWMemAlloc,
5618 OMPLowLatMemAlloc,
5619 OMPCGroupMemAlloc,
5620 OMPPTeamMemAlloc,
5621 OMPThreadMemAlloc,
5622 OMPUserDefinedMemAlloc
5623 };
5624private:
5625 AllocatorTypeTy allocatorType;
5626
5627Expr * allocator;
5628
5629public:
5630 static OMPAllocateDeclAttr *CreateImplicit(ASTContext &Ctx, AllocatorTypeTy AllocatorType, Expr * Allocator, SourceRange Loc = SourceRange()) {
5631 auto *A = new (Ctx) OMPAllocateDeclAttr(Loc, Ctx, AllocatorType, Allocator, 0);
5632 A->setImplicit(true);
5633 return A;
5634 }
5635
5636 OMPAllocateDeclAttr(SourceRange R, ASTContext &Ctx
5637 , AllocatorTypeTy AllocatorType
5638 , Expr * Allocator
5639 , unsigned SI
5640 )
5641 : InheritableAttr(attr::OMPAllocateDecl, R, SI, false, false)
5642 , allocatorType(AllocatorType)
5643 , allocator(Allocator)
5644 {
5645 }
5646
5647 OMPAllocateDeclAttr *clone(ASTContext &C) const;
5648 void printPretty(raw_ostream &OS,
5649 const PrintingPolicy &Policy) const;
5650 const char *getSpelling() const;
5651 AllocatorTypeTy getAllocatorType() const {
5652 return allocatorType;
5653 }
5654
5655 static bool ConvertStrToAllocatorTypeTy(StringRef Val, AllocatorTypeTy &Out) {
5656 Optional<AllocatorTypeTy> R = llvm::StringSwitch<Optional<AllocatorTypeTy>>(Val)
5657 .Case("omp_default_mem_alloc", OMPAllocateDeclAttr::OMPDefaultMemAlloc)
5658 .Case("omp_large_cap_mem_alloc", OMPAllocateDeclAttr::OMPLargeCapMemAlloc)
5659 .Case("omp_const_mem_alloc", OMPAllocateDeclAttr::OMPConstMemAlloc)
5660 .Case("omp_high_bw_mem_alloc", OMPAllocateDeclAttr::OMPHighBWMemAlloc)
5661 .Case("omp_low_lat_mem_alloc", OMPAllocateDeclAttr::OMPLowLatMemAlloc)
5662 .Case("omp_cgroup_mem_alloc", OMPAllocateDeclAttr::OMPCGroupMemAlloc)
5663 .Case("omp_pteam_mem_alloc", OMPAllocateDeclAttr::OMPPTeamMemAlloc)
5664 .Case("omp_thread_mem_alloc", OMPAllocateDeclAttr::OMPThreadMemAlloc)
5665 .Case("", OMPAllocateDeclAttr::OMPUserDefinedMemAlloc)
5666 .Default(Optional<AllocatorTypeTy>());
5667 if (R) {
5668 Out = *R;
5669 return true;
5670 }
5671 return false;
5672 }
5673
5674 static const char *ConvertAllocatorTypeTyToStr(AllocatorTypeTy Val) {
5675 switch(Val) {
5676 case OMPAllocateDeclAttr::OMPDefaultMemAlloc: return "omp_default_mem_alloc";
5677 case OMPAllocateDeclAttr::OMPLargeCapMemAlloc: return "omp_large_cap_mem_alloc";
5678 case OMPAllocateDeclAttr::OMPConstMemAlloc: return "omp_const_mem_alloc";
5679 case OMPAllocateDeclAttr::OMPHighBWMemAlloc: return "omp_high_bw_mem_alloc";
5680 case OMPAllocateDeclAttr::OMPLowLatMemAlloc: return "omp_low_lat_mem_alloc";
5681 case OMPAllocateDeclAttr::OMPCGroupMemAlloc: return "omp_cgroup_mem_alloc";
5682 case OMPAllocateDeclAttr::OMPPTeamMemAlloc: return "omp_pteam_mem_alloc";
5683 case OMPAllocateDeclAttr::OMPThreadMemAlloc: return "omp_thread_mem_alloc";
5684 case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc: return "";
5685 }
5686 llvm_unreachable("No enumerator with that value")::llvm::llvm_unreachable_internal("No enumerator with that value"
, "/build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 5686)
;
5687 }
5688 Expr * getAllocator() const {
5689 return allocator;
5690 }
5691
5692
5693
5694 static bool classof(const Attr *A) { return A->getKind() == attr::OMPAllocateDecl; }
5695};
5696
5697class OMPCaptureKindAttr : public Attr {
5698unsigned captureKind;
5699
5700public:
5701 static OMPCaptureKindAttr *CreateImplicit(ASTContext &Ctx, unsigned CaptureKind, SourceRange Loc = SourceRange()) {
5702 auto *A = new (Ctx) OMPCaptureKindAttr(Loc, Ctx, CaptureKind, 0);
5703 A->setImplicit(true);
5704 return A;
5705 }
5706
5707 OMPCaptureKindAttr(SourceRange R, ASTContext &Ctx
5708 , unsigned CaptureKind
5709 , unsigned SI
5710 )
5711 : Attr(attr::OMPCaptureKind, R, SI, false)
5712 , captureKind(CaptureKind)
5713 {
5714 }
5715
5716 OMPCaptureKindAttr *clone(ASTContext &C) const;
5717 void printPretty(raw_ostream &OS,
5718 const PrintingPolicy &Policy) const;
5719 const char *getSpelling() const;
5720 unsigned getCaptureKind() const {
5721 return captureKind;
5722 }
5723
5724
5725
5726 static bool classof(const Attr *A) { return A->getKind() == attr::OMPCaptureKind; }
5727};
5728
5729class OMPCaptureNoInitAttr : public InheritableAttr {
5730public:
5731 static OMPCaptureNoInitAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
5732 auto *A = new (Ctx) OMPCaptureNoInitAttr(Loc, Ctx, 0);
5733 A->setImplicit(true);
5734 return A;
5735 }
5736
5737 OMPCaptureNoInitAttr(SourceRange R, ASTContext &Ctx
5738 , unsigned SI
5739 )
5740 : InheritableAttr(attr::OMPCaptureNoInit, R, SI, false, false)
5741 {
5742 }
5743
5744 OMPCaptureNoInitAttr *clone(ASTContext &C) const;
5745 void printPretty(raw_ostream &OS,
5746 const PrintingPolicy &Policy) const;
5747 const char *getSpelling() const;
5748
5749
5750 static bool classof(const Attr *A) { return A->getKind() == attr::OMPCaptureNoInit; }
5751};
5752
5753class OMPDeclareSimdDeclAttr : public Attr {
5754public:
5755 enum BranchStateTy {
5756 BS_Undefined,
5757 BS_Inbranch,
5758 BS_Notinbranch
5759 };
5760private:
5761 BranchStateTy branchState;
5762
5763Expr * simdlen;
5764
5765 unsigned uniforms_Size;
5766 Expr * *uniforms_;
5767
5768 unsigned aligneds_Size;
5769 Expr * *aligneds_;
5770
5771 unsigned alignments_Size;
5772 Expr * *alignments_;
5773
5774 unsigned linears_Size;
5775 Expr * *linears_;
5776
5777 unsigned modifiers_Size;
5778 unsigned *modifiers_;
5779
5780 unsigned steps_Size;
5781 Expr * *steps_;
5782
5783public:
5784 static OMPDeclareSimdDeclAttr *CreateImplicit(ASTContext &Ctx, BranchStateTy BranchState, Expr * Simdlen, Expr * *Uniforms, unsigned UniformsSize, Expr * *Aligneds, unsigned AlignedsSize, Expr * *Alignments, unsigned AlignmentsSize, Expr * *Linears, unsigned LinearsSize, unsigned *Modifiers, unsigned ModifiersSize, Expr * *Steps, unsigned StepsSize, SourceRange Loc = SourceRange()) {
5785 auto *A = new (Ctx) OMPDeclareSimdDeclAttr(Loc, Ctx, BranchState, Simdlen, Uniforms, UniformsSize, Aligneds, AlignedsSize, Alignments, AlignmentsSize, Linears, LinearsSize, Modifiers, ModifiersSize, Steps, StepsSize, 0);
5786 A->setImplicit(true);
5787 return A;
5788 }
5789
5790 OMPDeclareSimdDeclAttr(SourceRange R, ASTContext &Ctx
5791 , BranchStateTy BranchState
5792 , Expr * Simdlen
5793 , Expr * *Uniforms, unsigned UniformsSize
5794 , Expr * *Aligneds, unsigned AlignedsSize
5795 , Expr * *Alignments, unsigned AlignmentsSize
5796 , Expr * *Linears, unsigned LinearsSize
5797 , unsigned *Modifiers, unsigned ModifiersSize
5798 , Expr * *Steps, unsigned StepsSize
5799 , unsigned SI
5800 )
5801 : Attr(attr::OMPDeclareSimdDecl, R, SI, false)
5802 , branchState(BranchState)
5803 , simdlen(Simdlen)
5804 , uniforms_Size(UniformsSize), uniforms_(new (Ctx, 16) Expr *[uniforms_Size])
5805 , aligneds_Size(AlignedsSize), aligneds_(new (Ctx, 16) Expr *[aligneds_Size])
5806 , alignments_Size(AlignmentsSize), alignments_(new (Ctx, 16) Expr *[alignments_Size])
5807 , linears_Size(LinearsSize), linears_(new (Ctx, 16) Expr *[linears_Size])
5808 , modifiers_Size(ModifiersSize), modifiers_(new (Ctx, 16) unsigned[modifiers_Size])
5809 , steps_Size(StepsSize), steps_(new (Ctx, 16) Expr *[steps_Size])
5810 {
5811 std::copy(Uniforms, Uniforms + uniforms_Size, uniforms_);
5812 std::copy(Aligneds, Aligneds + aligneds_Size, aligneds_);
5813 std::copy(Alignments, Alignments + alignments_Size, alignments_);
5814 std::copy(Linears, Linears + linears_Size, linears_);
5815 std::copy(Modifiers, Modifiers + modifiers_Size, modifiers_);
5816 std::copy(Steps, Steps + steps_Size, steps_);
5817 }
5818
5819 OMPDeclareSimdDeclAttr(SourceRange R, ASTContext &Ctx
5820 , BranchStateTy BranchState
5821 , Expr * Simdlen
5822 , unsigned SI
5823 )
5824 : Attr(attr::OMPDeclareSimdDecl, R, SI, false)
5825 , branchState(BranchState)
5826 , simdlen(Simdlen)
5827 , uniforms_Size(0), uniforms_(nullptr)
5828 , aligneds_Size(0), aligneds_(nullptr)
5829 , alignments_Size(0), alignments_(nullptr)
5830 , linears_Size(0), linears_(nullptr)
5831 , modifiers_Size(0), modifiers_(nullptr)
5832 , steps_Size(0), steps_(nullptr)
5833 {
5834 }
5835
5836 OMPDeclareSimdDeclAttr *clone(ASTContext &C) const;
5837 void printPretty(raw_ostream &OS,
5838 const PrintingPolicy &Policy) const;
5839 const char *getSpelling() const;
5840 BranchStateTy getBranchState() const {
5841 return branchState;
5842 }
5843
5844 static bool ConvertStrToBranchStateTy(StringRef Val, BranchStateTy &Out) {
5845 Optional<BranchStateTy> R = llvm::StringSwitch<Optional<BranchStateTy>>(Val)
5846 .Case("", OMPDeclareSimdDeclAttr::BS_Undefined)
5847 .Case("inbranch", OMPDeclareSimdDeclAttr::BS_Inbranch)
5848 .Case("notinbranch", OMPDeclareSimdDeclAttr::BS_Notinbranch)
5849 .Default(Optional<BranchStateTy>());
5850 if (R) {
5851 Out = *R;
5852 return true;
5853 }
5854 return false;
5855 }
5856
5857 static const char *ConvertBranchStateTyToStr(BranchStateTy Val) {
5858 switch(Val) {
5859 case OMPDeclareSimdDeclAttr::BS_Undefined: return "";
5860 case OMPDeclareSimdDeclAttr::BS_Inbranch: return "inbranch";
5861 case OMPDeclareSimdDeclAttr::BS_Notinbranch: return "notinbranch";
5862 }
5863 llvm_unreachable("No enumerator with that value")::llvm::llvm_unreachable_internal("No enumerator with that value"
, "/build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 5863)
;
5864 }
5865 Expr * getSimdlen() const {
5866 return simdlen;
5867 }
5868
5869 typedef Expr ** uniforms_iterator;
5870 uniforms_iterator uniforms_begin() const { return uniforms_; }
5871 uniforms_iterator uniforms_end() const { return uniforms_ + uniforms_Size; }
5872 unsigned uniforms_size() const { return uniforms_Size; }
5873 llvm::iterator_range<uniforms_iterator> uniforms() const { return llvm::make_range(uniforms_begin(), uniforms_end()); }
5874
5875
5876 typedef Expr ** aligneds_iterator;
5877 aligneds_iterator aligneds_begin() const { return aligneds_; }
5878 aligneds_iterator aligneds_end() const { return aligneds_ + aligneds_Size; }
5879 unsigned aligneds_size() const { return aligneds_Size; }
5880 llvm::iterator_range<aligneds_iterator> aligneds() const { return llvm::make_range(aligneds_begin(), aligneds_end()); }
5881
5882
5883 typedef Expr ** alignments_iterator;
5884 alignments_iterator alignments_begin() const { return alignments_; }
5885 alignments_iterator alignments_end() const { return alignments_ + alignments_Size; }
5886 unsigned alignments_size() const { return alignments_Size; }
5887 llvm::iterator_range<alignments_iterator> alignments() const { return llvm::make_range(alignments_begin(), alignments_end()); }
5888
5889
5890 typedef Expr ** linears_iterator;
5891 linears_iterator linears_begin() const { return linears_; }
5892 linears_iterator linears_end() const { return linears_ + linears_Size; }
5893 unsigned linears_size() const { return linears_Size; }
5894 llvm::iterator_range<linears_iterator> linears() const { return llvm::make_range(linears_begin(), linears_end()); }
5895
5896
5897 typedef unsigned* modifiers_iterator;
5898 modifiers_iterator modifiers_begin() const { return modifiers_; }
5899 modifiers_iterator modifiers_end() const { return modifiers_ + modifiers_Size; }
5900 unsigned modifiers_size() const { return modifiers_Size; }
5901 llvm::iterator_range<modifiers_iterator> modifiers() const { return llvm::make_range(modifiers_begin(), modifiers_end()); }
5902
5903
5904 typedef Expr ** steps_iterator;
5905 steps_iterator steps_begin() const { return steps_; }
5906 steps_iterator steps_end() const { return steps_ + steps_Size; }
5907 unsigned steps_size() const { return steps_Size; }
5908 llvm::iterator_range<steps_iterator> steps() const { return llvm::make_range(steps_begin(), steps_end()); }
5909
5910
5911
5912 void printPrettyPragma(raw_ostream & OS, const PrintingPolicy &Policy)
5913 const {
5914 if (getBranchState() != BS_Undefined)
5915 OS << ' ' << ConvertBranchStateTyToStr(getBranchState());
5916 if (auto *E = getSimdlen()) {
5917 OS << " simdlen(";
5918 E->printPretty(OS, nullptr, Policy);
5919 OS << ")";
5920 }
5921 if (uniforms_size() > 0) {
5922 OS << " uniform";
5923 StringRef Sep = "(";
5924 for (auto *E : uniforms()) {
5925 OS << Sep;
5926 E->printPretty(OS, nullptr, Policy);
5927 Sep = ", ";
5928 }
5929 OS << ")";
5930 }
5931 alignments_iterator NI = alignments_begin();
5932 for (auto *E : aligneds()) {
5933 OS << " aligned(";
5934 E->printPretty(OS, nullptr, Policy);
5935 if (*NI) {
5936 OS << ": ";
5937 (*NI)->printPretty(OS, nullptr, Policy);
5938 }
5939 OS << ")";
5940 ++NI;
5941 }
5942 steps_iterator I = steps_begin();
5943 modifiers_iterator MI = modifiers_begin();
5944 for (auto *E : linears()) {
5945 OS << " linear(";
5946 if (*MI != OMPC_LINEAR_unknown)
5947 OS << getOpenMPSimpleClauseTypeName(OMPC_linear, *MI) << "(";
5948 E->printPretty(OS, nullptr, Policy);
5949 if (*MI != OMPC_LINEAR_unknown)
5950 OS << ")";
5951 if (*I) {
5952 OS << ": ";
5953 (*I)->printPretty(OS, nullptr, Policy);
5954 }
5955 OS << ")";
5956 ++I;
5957 ++MI;
5958 }
5959 }
5960
5961
5962 static bool classof(const Attr *A) { return A->getKind() == attr::OMPDeclareSimdDecl; }
5963};
5964
5965class OMPDeclareTargetDeclAttr : public InheritableAttr {
5966public:
5967 enum MapTypeTy {
5968 MT_To,
5969 MT_Link
5970 };
5971private:
5972 MapTypeTy mapType;
5973
5974public:
5975 static OMPDeclareTargetDeclAttr *CreateImplicit(ASTContext &Ctx, MapTypeTy MapType, SourceRange Loc = SourceRange()) {
5976 auto *A = new (Ctx) OMPDeclareTargetDeclAttr(Loc, Ctx, MapType, 0);
5977 A->setImplicit(true);
5978 return A;
5979 }
5980
5981 OMPDeclareTargetDeclAttr(SourceRange R, ASTContext &Ctx
5982 , MapTypeTy MapType
5983 , unsigned SI
5984 )
5985 : InheritableAttr(attr::OMPDeclareTargetDecl, R, SI, false, false)
5986 , mapType(MapType)
5987 {
5988 }
5989
5990 OMPDeclareTargetDeclAttr *clone(ASTContext &C) const;
5991 void printPretty(raw_ostream &OS,
5992 const PrintingPolicy &Policy) const;
5993 const char *getSpelling() const;
5994 MapTypeTy getMapType() const {
5995 return mapType;
5996 }
5997
5998 static bool ConvertStrToMapTypeTy(StringRef Val, MapTypeTy &Out) {
5999 Optional<MapTypeTy> R = llvm::StringSwitch<Optional<MapTypeTy>>(Val)
6000 .Case("to", OMPDeclareTargetDeclAttr::MT_To)
6001 .Case("link", OMPDeclareTargetDeclAttr::MT_Link)
6002 .Default(Optional<MapTypeTy>());
6003 if (R) {
6004 Out = *R;
6005 return true;
6006 }
6007 return false;
6008 }
6009
6010 static const char *ConvertMapTypeTyToStr(MapTypeTy Val) {
6011 switch(Val) {
6012 case OMPDeclareTargetDeclAttr::MT_To: return "to";
6013 case OMPDeclareTargetDeclAttr::MT_Link: return "link";
6014 }
6015 llvm_unreachable("No enumerator with that value")::llvm::llvm_unreachable_internal("No enumerator with that value"
, "/build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 6015)
;
6016 }
6017
6018 void printPrettyPragma(raw_ostream &OS, const PrintingPolicy &Policy) const {
6019 // Use fake syntax because it is for testing and debugging purpose only.
6020 if (getMapType() != MT_To)
6021 OS << ' ' << ConvertMapTypeTyToStr(getMapType());
6022 }
6023 static llvm::Optional<MapTypeTy>
6024 isDeclareTargetDeclaration(const ValueDecl *VD) {
6025 if (!VD->hasAttrs())
6026 return llvm::None;
6027 if (const auto *Attr = VD->getAttr<OMPDeclareTargetDeclAttr>())
6028 return Attr->getMapType();
6029
6030 return llvm::None;
6031 }
6032
6033
6034 static bool classof(const Attr *A) { return A->getKind() == attr::OMPDeclareTargetDecl; }
6035};
6036
6037class OMPReferencedVarAttr : public Attr {
6038Expr * ref;
6039
6040public:
6041 static OMPReferencedVarAttr *CreateImplicit(ASTContext &Ctx, Expr * Ref, SourceRange Loc = SourceRange()) {
6042 auto *A = new (Ctx) OMPReferencedVarAttr(Loc, Ctx, Ref, 0);
6043 A->setImplicit(true);
6044 return A;
6045 }
6046
6047 OMPReferencedVarAttr(SourceRange R, ASTContext &Ctx
6048 , Expr * Ref
6049 , unsigned SI
6050 )
6051 : Attr(attr::OMPReferencedVar, R, SI, false)
6052 , ref(Ref)
6053 {
6054 }
6055
6056 OMPReferencedVarAttr *clone(ASTContext &C) const;
6057 void printPretty(raw_ostream &OS,
6058 const PrintingPolicy &Policy) const;
6059 const char *getSpelling() const;
6060 Expr * getRef() const {
6061 return ref;
6062 }
6063
6064
6065
6066 static bool classof(const Attr *A) { return A->getKind() == attr::OMPReferencedVar; }
6067};
6068
6069class OMPThreadPrivateDeclAttr : public InheritableAttr {
6070public:
6071 static OMPThreadPrivateDeclAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
6072 auto *A = new (Ctx) OMPThreadPrivateDeclAttr(Loc, Ctx, 0);
6073 A->setImplicit(true);
6074 return A;
6075 }
6076
6077 OMPThreadPrivateDeclAttr(SourceRange R, ASTContext &Ctx
6078 , unsigned SI
6079 )
6080 : InheritableAttr(attr::OMPThreadPrivateDecl, R, SI, false, false)
6081 {
6082 }
6083
6084 OMPThreadPrivateDeclAttr *clone(ASTContext &C) const;
6085 void printPretty(raw_ostream &OS,
6086 const PrintingPolicy &Policy) const;
6087 const char *getSpelling() const;
6088
6089
6090 static bool classof(const Attr *A) { return A->getKind() == attr::OMPThreadPrivateDecl; }
6091};
6092
6093class OSConsumedAttr : public InheritableParamAttr {
6094public:
6095 static OSConsumedAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
6096 auto *A = new (Ctx) OSConsumedAttr(Loc, Ctx, 0);
6097 A->setImplicit(true);
6098 return A;
6099 }
6100
6101 OSConsumedAttr(SourceRange R, ASTContext &Ctx
6102 , unsigned SI
6103 )
6104 : InheritableParamAttr(attr::OSConsumed, R, SI, false, false)
6105 {
6106 }
6107
6108 OSConsumedAttr *clone(ASTContext &C) const;
6109 void printPretty(raw_ostream &OS,
6110 const PrintingPolicy &Policy) const;
6111 const char *getSpelling() const;
6112
6113
6114 static bool classof(const Attr *A) { return A->getKind() == attr::OSConsumed; }
6115};
6116
6117class OSConsumesThisAttr : public InheritableAttr {
6118public:
6119 static OSConsumesThisAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
6120 auto *A = new (Ctx) OSConsumesThisAttr(Loc, Ctx, 0);
6121 A->setImplicit(true);
6122 return A;
6123 }
6124
6125 OSConsumesThisAttr(SourceRange R, ASTContext &Ctx
6126 , unsigned SI
6127 )
6128 : InheritableAttr(attr::OSConsumesThis, R, SI, false, false)
6129 {
6130 }
6131
6132 OSConsumesThisAttr *clone(ASTContext &C) const;
6133 void printPretty(raw_ostream &OS,
6134 const PrintingPolicy &Policy) const;
6135 const char *getSpelling() const;
6136
6137
6138 static bool classof(const Attr *A) { return A->getKind() == attr::OSConsumesThis; }
6139};
6140
6141class OSReturnsNotRetainedAttr : public InheritableAttr {
6142public:
6143 static OSReturnsNotRetainedAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
6144 auto *A = new (Ctx) OSReturnsNotRetainedAttr(Loc, Ctx, 0);
6145 A->setImplicit(true);
6146 return A;
6147 }
6148
6149 OSReturnsNotRetainedAttr(SourceRange R, ASTContext &Ctx
6150 , unsigned SI
6151 )
6152 : InheritableAttr(attr::OSReturnsNotRetained, R, SI, false, false)
6153 {
6154 }
6155
6156 OSReturnsNotRetainedAttr *clone(ASTContext &C) const;
6157 void printPretty(raw_ostream &OS,
6158 const PrintingPolicy &Policy) const;
6159 const char *getSpelling() const;
6160
6161
6162 static bool classof(const Attr *A) { return A->getKind() == attr::OSReturnsNotRetained; }
6163};
6164
6165class OSReturnsRetainedAttr : public InheritableAttr {
6166public:
6167 static OSReturnsRetainedAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
6168 auto *A = new (Ctx) OSReturnsRetainedAttr(Loc, Ctx, 0);
6169 A->setImplicit(true);
6170 return A;
6171 }
6172
6173 OSReturnsRetainedAttr(SourceRange R, ASTContext &Ctx
6174 , unsigned SI
6175 )
6176 : InheritableAttr(attr::OSReturnsRetained, R, SI, false, false)
6177 {
6178 }
6179
6180 OSReturnsRetainedAttr *clone(ASTContext &C) const;
6181 void printPretty(raw_ostream &OS,
6182 const PrintingPolicy &Policy) const;
6183 const char *getSpelling() const;
6184
6185
6186 static bool classof(const Attr *A) { return A->getKind() == attr::OSReturnsRetained; }
6187};
6188
6189class OSReturnsRetainedOnNonZeroAttr : public InheritableAttr {
6190public:
6191 static OSReturnsRetainedOnNonZeroAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
6192 auto *A = new (Ctx) OSReturnsRetainedOnNonZeroAttr(Loc, Ctx, 0);
6193 A->setImplicit(true);
6194 return A;
6195 }
6196
6197 OSReturnsRetainedOnNonZeroAttr(SourceRange R, ASTContext &Ctx
6198 , unsigned SI
6199 )
6200 : InheritableAttr(attr::OSReturnsRetainedOnNonZero, R, SI, false, false)
6201 {
6202 }
6203
6204 OSReturnsRetainedOnNonZeroAttr *clone(ASTContext &C) const;
6205 void printPretty(raw_ostream &OS,
6206 const PrintingPolicy &Policy) const;
6207 const char *getSpelling() const;
6208
6209
6210 static bool classof(const Attr *A) { return A->getKind() == attr::OSReturnsRetainedOnNonZero; }
6211};
6212
6213class OSReturnsRetainedOnZeroAttr : public InheritableAttr {
6214public:
6215 static OSReturnsRetainedOnZeroAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
6216 auto *A = new (Ctx) OSReturnsRetainedOnZeroAttr(Loc, Ctx, 0);
6217 A->setImplicit(true);
6218 return A;
6219 }
6220
6221 OSReturnsRetainedOnZeroAttr(SourceRange R, ASTContext &Ctx
6222 , unsigned SI
6223 )
6224 : InheritableAttr(attr::OSReturnsRetainedOnZero, R, SI, false, false)
6225 {
6226 }
6227
6228 OSReturnsRetainedOnZeroAttr *clone(ASTContext &C) const;
6229 void printPretty(raw_ostream &OS,
6230 const PrintingPolicy &Policy) const;
6231 const char *getSpelling() const;
6232
6233
6234 static bool classof(const Attr *A) { return A->getKind() == attr::OSReturnsRetainedOnZero; }
6235};
6236
6237class ObjCBoxableAttr : public Attr {
6238public:
6239 static ObjCBoxableAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
6240 auto *A = new (Ctx) ObjCBoxableAttr(Loc, Ctx, 0);
6241 A->setImplicit(true);
6242 return A;
6243 }
6244
6245 ObjCBoxableAttr(SourceRange R, ASTContext &Ctx
6246 , unsigned SI
6247 )
6248 : Attr(attr::ObjCBoxable, R, SI, false)
6249 {
6250 }
6251
6252 ObjCBoxableAttr *clone(ASTContext &C) const;
6253 void printPretty(raw_ostream &OS,
6254 const PrintingPolicy &Policy) const;
6255 const char *getSpelling() const;
6256
6257
6258 static bool classof(const Attr *A) { return A->getKind() == attr::ObjCBoxable; }
6259};
6260
6261class ObjCBridgeAttr : public InheritableAttr {
6262IdentifierInfo * bridgedType;
6263
6264public:
6265 static ObjCBridgeAttr *CreateImplicit(ASTContext &Ctx, IdentifierInfo * BridgedType, SourceRange Loc = SourceRange()) {
6266 auto *A = new (Ctx) ObjCBridgeAttr(Loc, Ctx, BridgedType, 0);
6267 A->setImplicit(true);
6268 return A;
6269 }
6270
6271 ObjCBridgeAttr(SourceRange R, ASTContext &Ctx
6272 , IdentifierInfo * BridgedType
6273 , unsigned SI
6274 )
6275 : InheritableAttr(attr::ObjCBridge, R, SI, false, false)
6276 , bridgedType(BridgedType)
6277 {
6278 }
6279
6280 ObjCBridgeAttr *clone(ASTContext &C) const;
6281 void printPretty(raw_ostream &OS,
6282 const PrintingPolicy &Policy) const;
6283 const char *getSpelling() const;
6284 IdentifierInfo * getBridgedType() const {
6285 return bridgedType;
6286 }
6287
6288
6289
6290 static bool classof(const Attr *A) { return A->getKind() == attr::ObjCBridge; }
6291};
6292
6293class ObjCBridgeMutableAttr : public InheritableAttr {
6294IdentifierInfo * bridgedType;
6295
6296public:
6297 static ObjCBridgeMutableAttr *CreateImplicit(ASTContext &Ctx, IdentifierInfo * BridgedType, SourceRange Loc = SourceRange()) {
6298 auto *A = new (Ctx) ObjCBridgeMutableAttr(Loc, Ctx, BridgedType, 0);
6299 A->setImplicit(true);
6300 return A;
6301 }
6302
6303 ObjCBridgeMutableAttr(SourceRange R, ASTContext &Ctx
6304 , IdentifierInfo * BridgedType
6305 , unsigned SI
6306 )
6307 : InheritableAttr(attr::ObjCBridgeMutable, R, SI, false, false)
6308 , bridgedType(BridgedType)
6309 {
6310 }
6311
6312 ObjCBridgeMutableAttr *clone(ASTContext &C) const;
6313 void printPretty(raw_ostream &OS,
6314 const PrintingPolicy &Policy) const;
6315 const char *getSpelling() const;
6316 IdentifierInfo * getBridgedType() const {
6317 return bridgedType;
6318 }
6319
6320
6321
6322 static bool classof(const Attr *A) { return A->getKind() == attr::ObjCBridgeMutable; }
6323};
6324
6325class ObjCBridgeRelatedAttr : public InheritableAttr {
6326IdentifierInfo * relatedClass;
6327
6328IdentifierInfo * classMethod;
6329
6330IdentifierInfo * instanceMethod;
6331
6332public:
6333 static ObjCBridgeRelatedAttr *CreateImplicit(ASTContext &Ctx, IdentifierInfo * RelatedClass, IdentifierInfo * ClassMethod, IdentifierInfo * InstanceMethod, SourceRange Loc = SourceRange()) {
6334 auto *A = new (Ctx) ObjCBridgeRelatedAttr(Loc, Ctx, RelatedClass, ClassMethod, InstanceMethod, 0);
6335 A->setImplicit(true);
6336 return A;
6337 }
6338
6339 ObjCBridgeRelatedAttr(SourceRange R, ASTContext &Ctx
6340 , IdentifierInfo * RelatedClass
6341 , IdentifierInfo * ClassMethod
6342 , IdentifierInfo * InstanceMethod
6343 , unsigned SI
6344 )
6345 : InheritableAttr(attr::ObjCBridgeRelated, R, SI, false, false)
6346 , relatedClass(RelatedClass)
6347 , classMethod(ClassMethod)
6348 , instanceMethod(InstanceMethod)
6349 {
6350 }
6351
6352 ObjCBridgeRelatedAttr *clone(ASTContext &C) const;
6353 void printPretty(raw_ostream &OS,
6354 const PrintingPolicy &Policy) const;
6355 const char *getSpelling() const;
6356 IdentifierInfo * getRelatedClass() const {
6357 return relatedClass;
6358 }
6359
6360 IdentifierInfo * getClassMethod() const {
6361 return classMethod;
6362 }
6363
6364 IdentifierInfo * getInstanceMethod() const {
6365 return instanceMethod;
6366 }
6367
6368
6369
6370 static bool classof(const Attr *A) { return A->getKind() == attr::ObjCBridgeRelated; }
6371};
6372
6373class ObjCClassStubAttr : public Attr {
6374public:
6375 static ObjCClassStubAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
6376 auto *A = new (Ctx) ObjCClassStubAttr(Loc, Ctx, 0);
6377 A->setImplicit(true);
6378 return A;
6379 }
6380
6381 ObjCClassStubAttr(SourceRange R, ASTContext &Ctx
6382 , unsigned SI
6383 )
6384 : Attr(attr::ObjCClassStub, R, SI, false)
6385 {
6386 }
6387
6388 ObjCClassStubAttr *clone(ASTContext &C) const;
6389 void printPretty(raw_ostream &OS,
6390 const PrintingPolicy &Policy) const;
6391 const char *getSpelling() const;
6392
6393
6394 static bool classof(const Attr *A) { return A->getKind() == attr::ObjCClassStub; }
6395};
6396
6397class ObjCDesignatedInitializerAttr : public Attr {
6398public:
6399 static ObjCDesignatedInitializerAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
6400 auto *A = new (Ctx) ObjCDesignatedInitializerAttr(Loc, Ctx, 0);
6401 A->setImplicit(true);
6402 return A;
6403 }
6404
6405 ObjCDesignatedInitializerAttr(SourceRange R, ASTContext &Ctx
6406 , unsigned SI
6407 )
6408 : Attr(attr::ObjCDesignatedInitializer, R, SI, false)
6409 {
6410 }
6411
6412 ObjCDesignatedInitializerAttr *clone(ASTContext &C) const;
6413 void printPretty(raw_ostream &OS,
6414 const PrintingPolicy &Policy) const;
6415 const char *getSpelling() const;
6416
6417
6418 static bool classof(const Attr *A) { return A->getKind() == attr::ObjCDesignatedInitializer; }
6419};
6420
6421class ObjCExceptionAttr : public InheritableAttr {
6422public:
6423 static ObjCExceptionAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
6424 auto *A = new (Ctx) ObjCExceptionAttr(Loc, Ctx, 0);
6425 A->setImplicit(true);
6426 return A;
6427 }
6428
6429 ObjCExceptionAttr(SourceRange R, ASTContext &Ctx
6430 , unsigned SI
6431 )
6432 : InheritableAttr(attr::ObjCException, R, SI, false, false)
6433 {
6434 }
6435
6436 ObjCExceptionAttr *clone(ASTContext &C) const;
6437 void printPretty(raw_ostream &OS,
6438 const PrintingPolicy &Policy) const;
6439 const char *getSpelling() const;
6440
6441
6442 static bool classof(const Attr *A) { return A->getKind() == attr::ObjCException; }
6443};
6444
6445class ObjCExplicitProtocolImplAttr : public InheritableAttr {
6446public:
6447 static ObjCExplicitProtocolImplAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
6448 auto *A = new (Ctx) ObjCExplicitProtocolImplAttr(Loc, Ctx, 0);
6449 A->setImplicit(true);
6450 return A;
6451 }
6452
6453 ObjCExplicitProtocolImplAttr(SourceRange R, ASTContext &Ctx
6454 , unsigned SI
6455 )
6456 : InheritableAttr(attr::ObjCExplicitProtocolImpl, R, SI, false, false)
6457 {
6458 }
6459
6460 ObjCExplicitProtocolImplAttr *clone(ASTContext &C) const;
6461 void printPretty(raw_ostream &OS,
6462 const PrintingPolicy &Policy) const;
6463 const char *getSpelling() const;
6464
6465
6466 static bool classof(const Attr *A) { return A->getKind() == attr::ObjCExplicitProtocolImpl; }
6467};
6468
6469class ObjCExternallyRetainedAttr : public InheritableAttr {
6470public:
6471 static ObjCExternallyRetainedAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
6472 auto *A = new (Ctx) ObjCExternallyRetainedAttr(Loc, Ctx, 0);
6473 A->setImplicit(true);
6474 return A;
6475 }
6476
6477 ObjCExternallyRetainedAttr(SourceRange R, ASTContext &Ctx
6478 , unsigned SI
6479 )
6480 : InheritableAttr(attr::ObjCExternallyRetained, R, SI, false, false)
6481 {
6482 }
6483
6484 ObjCExternallyRetainedAttr *clone(ASTContext &C) const;
6485 void printPretty(raw_ostream &OS,
6486 const PrintingPolicy &Policy) const;
6487 const char *getSpelling() const;
6488
6489
6490 static bool classof(const Attr *A) { return A->getKind() == attr::ObjCExternallyRetained; }
6491};
6492
6493class ObjCGCAttr : public TypeAttr {
6494IdentifierInfo * kind;
6495
6496public:
6497 static ObjCGCAttr *CreateImplicit(ASTContext &Ctx, IdentifierInfo * Kind, SourceRange Loc = SourceRange()) {
6498 auto *A = new (Ctx) ObjCGCAttr(Loc, Ctx, Kind, 0);
6499 A->setImplicit(true);
6500 return A;
6501 }
6502
6503 ObjCGCAttr(SourceRange R, ASTContext &Ctx
6504 , IdentifierInfo * Kind
6505 , unsigned SI
6506 )
6507 : TypeAttr(attr::ObjCGC, R, SI, false)
6508 , kind(Kind)
6509 {
6510 }
6511
6512 ObjCGCAttr *clone(ASTContext &C) const;
6513 void printPretty(raw_ostream &OS,
6514 const PrintingPolicy &Policy) const;
6515 const char *getSpelling() const;
6516 IdentifierInfo * getKind() const {
6517 return kind;
6518 }
6519
6520
6521
6522 static bool classof(const Attr *A) { return A->getKind() == attr::ObjCGC; }
6523};
6524
6525class ObjCIndependentClassAttr : public InheritableAttr {
6526public:
6527 static ObjCIndependentClassAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
6528 auto *A = new (Ctx) ObjCIndependentClassAttr(Loc, Ctx, 0);
6529 A->setImplicit(true);
6530 return A;
6531 }
6532
6533 ObjCIndependentClassAttr(SourceRange R, ASTContext &Ctx
6534 , unsigned SI
6535 )
6536 : InheritableAttr(attr::ObjCIndependentClass, R, SI, false, false)
6537 {
6538 }
6539
6540 ObjCIndependentClassAttr *clone(ASTContext &C) const;
6541 void printPretty(raw_ostream &OS,
6542 const PrintingPolicy &Policy) const;
6543 const char *getSpelling() const;
6544
6545
6546 static bool classof(const Attr *A) { return A->getKind() == attr::ObjCIndependentClass; }
6547};
6548
6549class ObjCInertUnsafeUnretainedAttr : public TypeAttr {
6550public:
6551 static ObjCInertUnsafeUnretainedAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
6552 auto *A = new (Ctx) ObjCInertUnsafeUnretainedAttr(Loc, Ctx, 0);
6553 A->setImplicit(true);
6554 return A;
6555 }
6556
6557 ObjCInertUnsafeUnretainedAttr(SourceRange R, ASTContext &Ctx
6558 , unsigned SI
6559 )
6560 : TypeAttr(attr::ObjCInertUnsafeUnretained, R, SI, false)
6561 {
6562 }
6563
6564 ObjCInertUnsafeUnretainedAttr *clone(ASTContext &C) const;
6565 void printPretty(raw_ostream &OS,
6566 const PrintingPolicy &Policy) const;
6567 const char *getSpelling() const;
6568
6569
6570 static bool classof(const Attr *A) { return A->getKind() == attr::ObjCInertUnsafeUnretained; }
6571};
6572
6573class ObjCKindOfAttr : public TypeAttr {
6574public:
6575 static ObjCKindOfAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
6576 auto *A = new (Ctx) ObjCKindOfAttr(Loc, Ctx, 0);
6577 A->setImplicit(true);
6578 return A;
6579 }
6580
6581 ObjCKindOfAttr(SourceRange R, ASTContext &Ctx
6582 , unsigned SI
6583 )
6584 : TypeAttr(attr::ObjCKindOf, R, SI, false)
6585 {
6586 }
6587
6588 ObjCKindOfAttr *clone(ASTContext &C) const;
6589 void printPretty(raw_ostream &OS,
6590 const PrintingPolicy &Policy) const;
6591 const char *getSpelling() const;
6592
6593
6594 static bool classof(const Attr *A) { return A->getKind() == attr::ObjCKindOf; }
6595};
6596
6597class ObjCMethodFamilyAttr : public InheritableAttr {
6598public:
6599 enum FamilyKind {
6600 OMF_None,
6601 OMF_alloc,
6602 OMF_copy,
6603 OMF_init,
6604 OMF_mutableCopy,
6605 OMF_new
6606 };
6607private:
6608 FamilyKind family;
6609
6610public:
6611 static ObjCMethodFamilyAttr *CreateImplicit(ASTContext &Ctx, FamilyKind Family, SourceRange Loc = SourceRange()) {
6612 auto *A = new (Ctx) ObjCMethodFamilyAttr(Loc, Ctx, Family, 0);
6613 A->setImplicit(true);
6614 return A;
6615 }
6616
6617 ObjCMethodFamilyAttr(SourceRange R, ASTContext &Ctx
6618 , FamilyKind Family
6619 , unsigned SI
6620 )
6621 : InheritableAttr(attr::ObjCMethodFamily, R, SI, false, false)
6622 , family(Family)
6623 {
6624 }
6625
6626 ObjCMethodFamilyAttr *clone(ASTContext &C) const;
6627 void printPretty(raw_ostream &OS,
6628 const PrintingPolicy &Policy) const;
6629 const char *getSpelling() const;
6630 FamilyKind getFamily() const {
6631 return family;
6632 }
6633
6634 static bool ConvertStrToFamilyKind(StringRef Val, FamilyKind &Out) {
6635 Optional<FamilyKind> R = llvm::StringSwitch<Optional<FamilyKind>>(Val)
6636 .Case("none", ObjCMethodFamilyAttr::OMF_None)
6637 .Case("alloc", ObjCMethodFamilyAttr::OMF_alloc)
6638 .Case("copy", ObjCMethodFamilyAttr::OMF_copy)
6639 .Case("init", ObjCMethodFamilyAttr::OMF_init)
6640 .Case("mutableCopy", ObjCMethodFamilyAttr::OMF_mutableCopy)
6641 .Case("new", ObjCMethodFamilyAttr::OMF_new)
6642 .Default(Optional<FamilyKind>());
6643 if (R) {
6644 Out = *R;
6645 return true;
6646 }
6647 return false;
6648 }
6649
6650 static const char *ConvertFamilyKindToStr(FamilyKind Val) {
6651 switch(Val) {
6652 case ObjCMethodFamilyAttr::OMF_None: return "none";
6653 case ObjCMethodFamilyAttr::OMF_alloc: return "alloc";
6654 case ObjCMethodFamilyAttr::OMF_copy: return "copy";
6655 case ObjCMethodFamilyAttr::OMF_init: return "init";
6656 case ObjCMethodFamilyAttr::OMF_mutableCopy: return "mutableCopy";
6657 case ObjCMethodFamilyAttr::OMF_new: return "new";
6658 }
6659 llvm_unreachable("No enumerator with that value")::llvm::llvm_unreachable_internal("No enumerator with that value"
, "/build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 6659)
;
6660 }
6661
6662
6663 static bool classof(const Attr *A) { return A->getKind() == attr::ObjCMethodFamily; }
6664};
6665
6666class ObjCNSObjectAttr : public InheritableAttr {
6667public:
6668 static ObjCNSObjectAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
6669 auto *A = new (Ctx) ObjCNSObjectAttr(Loc, Ctx, 0);
6670 A->setImplicit(true);
6671 return A;
6672 }
6673
6674 ObjCNSObjectAttr(SourceRange R, ASTContext &Ctx
6675 , unsigned SI
6676 )
6677 : InheritableAttr(attr::ObjCNSObject, R, SI, false, false)
6678 {
6679 }
6680
6681 ObjCNSObjectAttr *clone(ASTContext &C) const;
6682 void printPretty(raw_ostream &OS,
6683 const PrintingPolicy &Policy) const;
6684 const char *getSpelling() const;
6685
6686
6687 static bool classof(const Attr *A) { return A->getKind() == attr::ObjCNSObject; }
6688};
6689
6690class ObjCNonLazyClassAttr : public Attr {
6691public:
6692 static ObjCNonLazyClassAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
6693 auto *A = new (Ctx) ObjCNonLazyClassAttr(Loc, Ctx, 0);
6694 A->setImplicit(true);
6695 return A;
6696 }
6697
6698 ObjCNonLazyClassAttr(SourceRange R, ASTContext &Ctx
6699 , unsigned SI
6700 )
6701 : Attr(attr::ObjCNonLazyClass, R, SI, false)
6702 {
6703 }
6704
6705 ObjCNonLazyClassAttr *clone(ASTContext &C) const;
6706 void printPretty(raw_ostream &OS,
6707 const PrintingPolicy &Policy) const;
6708 const char *getSpelling() const;
6709
6710
6711 static bool classof(const Attr *A) { return A->getKind() == attr::ObjCNonLazyClass; }
6712};
6713
6714class ObjCOwnershipAttr : public InheritableAttr {
6715IdentifierInfo * kind;
6716
6717public:
6718 static ObjCOwnershipAttr *CreateImplicit(ASTContext &Ctx, IdentifierInfo * Kind, SourceRange Loc = SourceRange()) {
6719 auto *A = new (Ctx) ObjCOwnershipAttr(Loc, Ctx, Kind, 0);
6720 A->setImplicit(true);
6721 return A;
6722 }
6723
6724 ObjCOwnershipAttr(SourceRange R, ASTContext &Ctx
6725 , IdentifierInfo * Kind
6726 , unsigned SI
6727 )
6728 : InheritableAttr(attr::ObjCOwnership, R, SI, false, false)
6729 , kind(Kind)
6730 {
6731 }
6732
6733 ObjCOwnershipAttr *clone(ASTContext &C) const;
6734 void printPretty(raw_ostream &OS,
6735 const PrintingPolicy &Policy) const;
6736 const char *getSpelling() const;
6737 IdentifierInfo * getKind() const {
6738 return kind;
6739 }
6740
6741
6742
6743 static bool classof(const Attr *A) { return A->getKind() == attr::ObjCOwnership; }
6744};
6745
6746class ObjCPreciseLifetimeAttr : public InheritableAttr {
6747public:
6748 static ObjCPreciseLifetimeAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
6749 auto *A = new (Ctx) ObjCPreciseLifetimeAttr(Loc, Ctx, 0);
6750 A->setImplicit(true);
6751 return A;
6752 }
6753
6754 ObjCPreciseLifetimeAttr(SourceRange R, ASTContext &Ctx
6755 , unsigned SI
6756 )
6757 : InheritableAttr(attr::ObjCPreciseLifetime, R, SI, false, false)
6758 {
6759 }
6760
6761 ObjCPreciseLifetimeAttr *clone(ASTContext &C) const;
6762 void printPretty(raw_ostream &OS,
6763 const PrintingPolicy &Policy) const;
6764 const char *getSpelling() const;
6765
6766
6767 static bool classof(const Attr *A) { return A->getKind() == attr::ObjCPreciseLifetime; }
6768};
6769
6770class ObjCRequiresPropertyDefsAttr : public InheritableAttr {
6771public:
6772 static ObjCRequiresPropertyDefsAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
6773 auto *A = new (Ctx) ObjCRequiresPropertyDefsAttr(Loc, Ctx, 0);
6774 A->setImplicit(true);
6775 return A;
6776 }
6777
6778 ObjCRequiresPropertyDefsAttr(SourceRange R, ASTContext &Ctx
6779 , unsigned SI
6780 )
6781 : InheritableAttr(attr::ObjCRequiresPropertyDefs, R, SI, false, false)
6782 {
6783 }
6784
6785 ObjCRequiresPropertyDefsAttr *clone(ASTContext &C) const;
6786 void printPretty(raw_ostream &OS,
6787 const PrintingPolicy &Policy) const;
6788 const char *getSpelling() const;
6789
6790
6791 static bool classof(const Attr *A) { return A->getKind() == attr::ObjCRequiresPropertyDefs; }
6792};
6793
6794class ObjCRequiresSuperAttr : public InheritableAttr {
6795public:
6796 static ObjCRequiresSuperAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
6797 auto *A = new (Ctx) ObjCRequiresSuperAttr(Loc, Ctx, 0);
19
'A' initialized to a null pointer value
6798 A->setImplicit(true);
20
Called C++ object pointer is null
6799 return A;
6800 }
6801
6802 ObjCRequiresSuperAttr(SourceRange R, ASTContext &Ctx
6803 , unsigned SI
6804 )
6805 : InheritableAttr(attr::ObjCRequiresSuper, R, SI, false, false)
6806 {
6807 }
6808
6809 ObjCRequiresSuperAttr *clone(ASTContext &C) const;
6810 void printPretty(raw_ostream &OS,
6811 const PrintingPolicy &Policy) const;
6812 const char *getSpelling() const;
6813
6814
6815 static bool classof(const Attr *A) { return A->getKind() == attr::ObjCRequiresSuper; }
6816};
6817
6818class ObjCReturnsInnerPointerAttr : public InheritableAttr {
6819public:
6820 static ObjCReturnsInnerPointerAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
6821 auto *A = new (Ctx) ObjCReturnsInnerPointerAttr(Loc, Ctx, 0);
6822 A->setImplicit(true);
6823 return A;
6824 }
6825
6826 ObjCReturnsInnerPointerAttr(SourceRange R, ASTContext &Ctx
6827 , unsigned SI
6828 )
6829 : InheritableAttr(attr::ObjCReturnsInnerPointer, R, SI, false, false)
6830 {
6831 }
6832
6833 ObjCReturnsInnerPointerAttr *clone(ASTContext &C) const;
6834 void printPretty(raw_ostream &OS,
6835 const PrintingPolicy &Policy) const;
6836 const char *getSpelling() const;
6837
6838
6839 static bool classof(const Attr *A) { return A->getKind() == attr::ObjCReturnsInnerPointer; }
6840};
6841
6842class ObjCRootClassAttr : public InheritableAttr {
6843public:
6844 static ObjCRootClassAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
6845 auto *A = new (Ctx) ObjCRootClassAttr(Loc, Ctx, 0);
6846 A->setImplicit(true);
6847 return A;
6848 }
6849
6850 ObjCRootClassAttr(SourceRange R, ASTContext &Ctx
6851 , unsigned SI
6852 )
6853 : InheritableAttr(attr::ObjCRootClass, R, SI, false, false)
6854 {
6855 }
6856
6857 ObjCRootClassAttr *clone(ASTContext &C) const;
6858 void printPretty(raw_ostream &OS,
6859 const PrintingPolicy &Policy) const;
6860 const char *getSpelling() const;
6861
6862
6863 static bool classof(const Attr *A) { return A->getKind() == attr::ObjCRootClass; }
6864};
6865
6866class ObjCRuntimeNameAttr : public Attr {
6867unsigned metadataNameLength;
6868char *metadataName;
6869
6870public:
6871 static ObjCRuntimeNameAttr *CreateImplicit(ASTContext &Ctx, llvm::StringRef MetadataName, SourceRange Loc = SourceRange()) {
6872 auto *A = new (Ctx) ObjCRuntimeNameAttr(Loc, Ctx, MetadataName, 0);
6873 A->setImplicit(true);
6874 return A;
6875 }
6876
6877 ObjCRuntimeNameAttr(SourceRange R, ASTContext &Ctx
6878 , llvm::StringRef MetadataName
6879 , unsigned SI
6880 )
6881 : Attr(attr::ObjCRuntimeName, R, SI, false)
6882 , metadataNameLength(MetadataName.size()),metadataName(new (Ctx, 1) char[metadataNameLength])
6883 {
6884 if (!MetadataName.empty())
6885 std::memcpy(metadataName, MetadataName.data(), metadataNameLength);
6886 }
6887
6888 ObjCRuntimeNameAttr *clone(ASTContext &C) const;
6889 void printPretty(raw_ostream &OS,
6890 const PrintingPolicy &Policy) const;
6891 const char *getSpelling() const;
6892 llvm::StringRef getMetadataName() const {
6893 return llvm::StringRef(metadataName, metadataNameLength);
6894 }
6895 unsigned getMetadataNameLength() const {
6896 return metadataNameLength;
6897 }
6898 void setMetadataName(ASTContext &C, llvm::StringRef S) {
6899 metadataNameLength = S.size();
6900 this->metadataName = new (C, 1) char [metadataNameLength];
6901 if (!S.empty())
6902 std::memcpy(this->metadataName, S.data(), metadataNameLength);
6903 }
6904
6905
6906
6907 static bool classof(const Attr *A) { return A->getKind() == attr::ObjCRuntimeName; }
6908};
6909
6910class ObjCRuntimeVisibleAttr : public Attr {
6911public:
6912 static ObjCRuntimeVisibleAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
6913 auto *A = new (Ctx) ObjCRuntimeVisibleAttr(Loc, Ctx, 0);
6914 A->setImplicit(true);
6915 return A;
6916 }
6917
6918 ObjCRuntimeVisibleAttr(SourceRange R, ASTContext &Ctx
6919 , unsigned SI
6920 )
6921 : Attr(attr::ObjCRuntimeVisible, R, SI, false)
6922 {
6923 }
6924
6925 ObjCRuntimeVisibleAttr *clone(ASTContext &C) const;
6926 void printPretty(raw_ostream &OS,
6927 const PrintingPolicy &Policy) const;
6928 const char *getSpelling() const;
6929
6930
6931 static bool classof(const Attr *A) { return A->getKind() == attr::ObjCRuntimeVisible; }
6932};
6933
6934class ObjCSubclassingRestrictedAttr : public InheritableAttr {
6935public:
6936 static ObjCSubclassingRestrictedAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
6937 auto *A = new (Ctx) ObjCSubclassingRestrictedAttr(Loc, Ctx, 0);
6938 A->setImplicit(true);
6939 return A;
6940 }
6941
6942 ObjCSubclassingRestrictedAttr(SourceRange R, ASTContext &Ctx
6943 , unsigned SI
6944 )
6945 : InheritableAttr(attr::ObjCSubclassingRestricted, R, SI, false, false)
6946 {
6947 }
6948
6949 ObjCSubclassingRestrictedAttr *clone(ASTContext &C) const;
6950 void printPretty(raw_ostream &OS,
6951 const PrintingPolicy &Policy) const;
6952 const char *getSpelling() const;
6953
6954
6955 static bool classof(const Attr *A) { return A->getKind() == attr::ObjCSubclassingRestricted; }
6956};
6957
6958class OpenCLAccessAttr : public Attr {
6959public:
6960 enum Spelling {
6961 Keyword_read_only = 0,
6962 Keyword_write_only = 2,
6963 Keyword_read_write = 4
6964 };
6965
6966 static OpenCLAccessAttr *CreateImplicit(ASTContext &Ctx, Spelling S, SourceRange Loc = SourceRange()) {
6967 auto *A = new (Ctx) OpenCLAccessAttr(Loc, Ctx, S);
6968 A->setImplicit(true);
6969 return A;
6970 }
6971
6972 OpenCLAccessAttr(SourceRange R, ASTContext &Ctx
6973 , unsigned SI
6974 )
6975 : Attr(attr::OpenCLAccess, R, SI, false)
6976 {
6977 }
6978
6979 OpenCLAccessAttr *clone(ASTContext &C) const;
6980 void printPretty(raw_ostream &OS,
6981 const PrintingPolicy &Policy) const;
6982 const char *getSpelling() const;
6983 Spelling getSemanticSpelling() const {
6984 switch (SpellingListIndex) {
6985 default: llvm_unreachable("Unknown spelling list index")::llvm::llvm_unreachable_internal("Unknown spelling list index"
, "/build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 6985)
;
6986 case 0: return Keyword_read_only;
6987 case 1: return Keyword_read_only;
6988 case 2: return Keyword_write_only;
6989 case 3: return Keyword_write_only;
6990 case 4: return Keyword_read_write;
6991 case 5: return Keyword_read_write;
6992 }
6993 }
6994 bool isReadOnly() const { return SpellingListIndex == 0 ||
6995 SpellingListIndex == 1; }
6996 bool isReadWrite() const { return SpellingListIndex == 4 ||
6997 SpellingListIndex == 5; }
6998 bool isWriteOnly() const { return SpellingListIndex == 2 ||
6999 SpellingListIndex == 3; }
7000
7001
7002 static bool classof(const Attr *A) { return A->getKind() == attr::OpenCLAccess; }
7003};
7004
7005class OpenCLConstantAddressSpaceAttr : public TypeAttr {
7006public:
7007 static OpenCLConstantAddressSpaceAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
7008 auto *A = new (Ctx) OpenCLConstantAddressSpaceAttr(Loc, Ctx, 0);
7009 A->setImplicit(true);
7010 return A;
7011 }
7012
7013 OpenCLConstantAddressSpaceAttr(SourceRange R, ASTContext &Ctx
7014 , unsigned SI
7015 )
7016 : TypeAttr(attr::OpenCLConstantAddressSpace, R, SI, false)
7017 {
7018 }
7019
7020 OpenCLConstantAddressSpaceAttr *clone(ASTContext &C) const;
7021 void printPretty(raw_ostream &OS,
7022 const PrintingPolicy &Policy) const;
7023 const char *getSpelling() const;
7024
7025
7026 static bool classof(const Attr *A) { return A->getKind() == attr::OpenCLConstantAddressSpace; }
7027};
7028
7029class OpenCLGenericAddressSpaceAttr : public TypeAttr {
7030public:
7031 static OpenCLGenericAddressSpaceAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
7032 auto *A = new (Ctx) OpenCLGenericAddressSpaceAttr(Loc, Ctx, 0);
7033 A->setImplicit(true);
7034 return A;
7035 }
7036
7037 OpenCLGenericAddressSpaceAttr(SourceRange R, ASTContext &Ctx
7038 , unsigned SI
7039 )
7040 : TypeAttr(attr::OpenCLGenericAddressSpace, R, SI, false)
7041 {
7042 }
7043
7044 OpenCLGenericAddressSpaceAttr *clone(ASTContext &C) const;
7045 void printPretty(raw_ostream &OS,
7046 const PrintingPolicy &Policy) const;
7047 const char *getSpelling() const;
7048
7049
7050 static bool classof(const Attr *A) { return A->getKind() == attr::OpenCLGenericAddressSpace; }
7051};
7052
7053class OpenCLGlobalAddressSpaceAttr : public TypeAttr {
7054public:
7055 static OpenCLGlobalAddressSpaceAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
7056 auto *A = new (Ctx) OpenCLGlobalAddressSpaceAttr(Loc, Ctx, 0);
7057 A->setImplicit(true);
7058 return A;
7059 }
7060
7061 OpenCLGlobalAddressSpaceAttr(SourceRange R, ASTContext &Ctx
7062 , unsigned SI
7063 )
7064 : TypeAttr(attr::OpenCLGlobalAddressSpace, R, SI, false)
7065 {
7066 }
7067
7068 OpenCLGlobalAddressSpaceAttr *clone(ASTContext &C) const;
7069 void printPretty(raw_ostream &OS,
7070 const PrintingPolicy &Policy) const;
7071 const char *getSpelling() const;
7072
7073
7074 static bool classof(const Attr *A) { return A->getKind() == attr::OpenCLGlobalAddressSpace; }
7075};
7076
7077class OpenCLIntelReqdSubGroupSizeAttr : public InheritableAttr {
7078unsigned subGroupSize;
7079
7080public:
7081 static OpenCLIntelReqdSubGroupSizeAttr *CreateImplicit(ASTContext &Ctx, unsigned SubGroupSize, SourceRange Loc = SourceRange()) {
7082 auto *A = new (Ctx) OpenCLIntelReqdSubGroupSizeAttr(Loc, Ctx, SubGroupSize, 0);
7083 A->setImplicit(true);
7084 return A;
7085 }
7086
7087 OpenCLIntelReqdSubGroupSizeAttr(SourceRange R, ASTContext &Ctx
7088 , unsigned SubGroupSize
7089 , unsigned SI
7090 )
7091 : InheritableAttr(attr::OpenCLIntelReqdSubGroupSize, R, SI, false, false)
7092 , subGroupSize(SubGroupSize)
7093 {
7094 }
7095
7096 OpenCLIntelReqdSubGroupSizeAttr *clone(ASTContext &C) const;
7097 void printPretty(raw_ostream &OS,
7098 const PrintingPolicy &Policy) const;
7099 const char *getSpelling() const;
7100 unsigned getSubGroupSize() const {
7101 return subGroupSize;
7102 }
7103
7104
7105
7106 static bool classof(const Attr *A) { return A->getKind() == attr::OpenCLIntelReqdSubGroupSize; }
7107};
7108
7109class OpenCLKernelAttr : public InheritableAttr {
7110public:
7111 static OpenCLKernelAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
7112 auto *A = new (Ctx) OpenCLKernelAttr(Loc, Ctx, 0);
7113 A->setImplicit(true);
7114 return A;
7115 }
7116
7117 OpenCLKernelAttr(SourceRange R, ASTContext &Ctx
7118 , unsigned SI
7119 )
7120 : InheritableAttr(attr::OpenCLKernel, R, SI, false, false)
7121 {
7122 }
7123
7124 OpenCLKernelAttr *clone(ASTContext &C) const;
7125 void printPretty(raw_ostream &OS,
7126 const PrintingPolicy &Policy) const;
7127 const char *getSpelling() const;
7128
7129
7130 static bool classof(const Attr *A) { return A->getKind() == attr::OpenCLKernel; }
7131};
7132
7133class OpenCLLocalAddressSpaceAttr : public TypeAttr {
7134public:
7135 static OpenCLLocalAddressSpaceAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
7136 auto *A = new (Ctx) OpenCLLocalAddressSpaceAttr(Loc, Ctx, 0);
7137 A->setImplicit(true);
7138 return A;
7139 }
7140
7141 OpenCLLocalAddressSpaceAttr(SourceRange R, ASTContext &Ctx
7142 , unsigned SI
7143 )
7144 : TypeAttr(attr::OpenCLLocalAddressSpace, R, SI, false)
7145 {
7146 }
7147
7148 OpenCLLocalAddressSpaceAttr *clone(ASTContext &C) const;
7149 void printPretty(raw_ostream &OS,
7150 const PrintingPolicy &Policy) const;
7151 const char *getSpelling() const;
7152
7153
7154 static bool classof(const Attr *A) { return A->getKind() == attr::OpenCLLocalAddressSpace; }
7155};
7156
7157class OpenCLPrivateAddressSpaceAttr : public TypeAttr {
7158public:
7159 static OpenCLPrivateAddressSpaceAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
7160 auto *A = new (Ctx) OpenCLPrivateAddressSpaceAttr(Loc, Ctx, 0);
7161 A->setImplicit(true);
7162 return A;
7163 }
7164
7165 OpenCLPrivateAddressSpaceAttr(SourceRange R, ASTContext &Ctx
7166 , unsigned SI
7167 )
7168 : TypeAttr(attr::OpenCLPrivateAddressSpace, R, SI, false)
7169 {
7170 }
7171
7172 OpenCLPrivateAddressSpaceAttr *clone(ASTContext &C) const;
7173 void printPretty(raw_ostream &OS,
7174 const PrintingPolicy &Policy) const;
7175 const char *getSpelling() const;
7176
7177
7178 static bool classof(const Attr *A) { return A->getKind() == attr::OpenCLPrivateAddressSpace; }
7179};
7180
7181class OpenCLUnrollHintAttr : public InheritableAttr {
7182unsigned unrollHint;
7183
7184public:
7185 static OpenCLUnrollHintAttr *CreateImplicit(ASTContext &Ctx, unsigned UnrollHint, SourceRange Loc = SourceRange()) {
7186 auto *A = new (Ctx) OpenCLUnrollHintAttr(Loc, Ctx, UnrollHint, 0);
7187 A->setImplicit(true);
7188 return A;
7189 }
7190
7191 OpenCLUnrollHintAttr(SourceRange R, ASTContext &Ctx
7192 , unsigned UnrollHint
7193 , unsigned SI
7194 )
7195 : InheritableAttr(attr::OpenCLUnrollHint, R, SI, false, false)
7196 , unrollHint(UnrollHint)
7197 {
7198 }
7199
7200 OpenCLUnrollHintAttr *clone(ASTContext &C) const;
7201 void printPretty(raw_ostream &OS,
7202 const PrintingPolicy &Policy) const;
7203 const char *getSpelling() const;
7204 unsigned getUnrollHint() const {
7205 return unrollHint;
7206 }
7207
7208
7209
7210 static bool classof(const Attr *A) { return A->getKind() == attr::OpenCLUnrollHint; }
7211};
7212
7213class OptimizeNoneAttr : public InheritableAttr {
7214public:
7215 static OptimizeNoneAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
7216 auto *A = new (Ctx) OptimizeNoneAttr(Loc, Ctx, 0);
7217 A->setImplicit(true);
7218 return A;
7219 }
7220
7221 OptimizeNoneAttr(SourceRange R, ASTContext &Ctx
7222 , unsigned SI
7223 )
7224 : InheritableAttr(attr::OptimizeNone, R, SI, false, false)
7225 {
7226 }
7227
7228 OptimizeNoneAttr *clone(ASTContext &C) const;
7229 void printPretty(raw_ostream &OS,
7230 const PrintingPolicy &Policy) const;
7231 const char *getSpelling() const;
7232
7233
7234 static bool classof(const Attr *A) { return A->getKind() == attr::OptimizeNone; }
7235};
7236
7237class OverloadableAttr : public Attr {
7238public:
7239 static OverloadableAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
7240 auto *A = new (Ctx) OverloadableAttr(Loc, Ctx, 0);
7241 A->setImplicit(true);
7242 return A;
7243 }
7244
7245 OverloadableAttr(SourceRange R, ASTContext &Ctx
7246 , unsigned SI
7247 )
7248 : Attr(attr::Overloadable, R, SI, false)
7249 {
7250 }
7251
7252 OverloadableAttr *clone(ASTContext &C) const;
7253 void printPretty(raw_ostream &OS,
7254 const PrintingPolicy &Policy) const;
7255 const char *getSpelling() const;
7256
7257
7258 static bool classof(const Attr *A) { return A->getKind() == attr::Overloadable; }
7259};
7260
7261class OverrideAttr : public InheritableAttr {
7262public:
7263 static OverrideAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
7264 auto *A = new (Ctx) OverrideAttr(Loc, Ctx, 0);
7265 A->setImplicit(true);
7266 return A;
7267 }
7268
7269 OverrideAttr(SourceRange R, ASTContext &Ctx
7270 , unsigned SI
7271 )
7272 : InheritableAttr(attr::Override, R, SI, false, false)
7273 {
7274 }
7275
7276 OverrideAttr *clone(ASTContext &C) const;
7277 void printPretty(raw_ostream &OS,
7278 const PrintingPolicy &Policy) const;
7279 const char *getSpelling() const;
7280
7281
7282 static bool classof(const Attr *A) { return A->getKind() == attr::Override; }
7283};
7284
7285class OwnershipAttr : public InheritableAttr {
7286IdentifierInfo * module;
7287
7288 unsigned args_Size;
7289 ParamIdx *args_;
7290
7291public:
7292 enum Spelling {
7293 GNU_ownership_holds = 0,
7294 CXX11_clang_ownership_holds = 1,
7295 C2x_clang_ownership_holds = 2,
7296 GNU_ownership_returns = 3,
7297 CXX11_clang_ownership_returns = 4,
7298 C2x_clang_ownership_returns = 5,
7299 GNU_ownership_takes = 6,
7300 CXX11_clang_ownership_takes = 7,
7301 C2x_clang_ownership_takes = 8
7302 };
7303
7304 static OwnershipAttr *CreateImplicit(ASTContext &Ctx, Spelling S, IdentifierInfo * Module, ParamIdx *Args, unsigned ArgsSize, SourceRange Loc = SourceRange()) {
7305 auto *A = new (Ctx) OwnershipAttr(Loc, Ctx, Module, Args, ArgsSize, S);
7306 A->setImplicit(true);
7307 return A;
7308 }
7309
7310 OwnershipAttr(SourceRange R, ASTContext &Ctx
7311 , IdentifierInfo * Module
7312 , ParamIdx *Args, unsigned ArgsSize
7313 , unsigned SI
7314 )
7315 : InheritableAttr(attr::Ownership, R, SI, false, false)
7316 , module(Module)
7317 , args_Size(ArgsSize), args_(new (Ctx, 16) ParamIdx[args_Size])
7318 {
7319 std::copy(Args, Args + args_Size, args_);
7320 }
7321
7322 OwnershipAttr(SourceRange R, ASTContext &Ctx
7323 , IdentifierInfo * Module
7324 , unsigned SI
7325 )
7326 : InheritableAttr(attr::Ownership, R, SI, false, false)
7327 , module(Module)
7328 , args_Size(0), args_(nullptr)
7329 {
7330 }
7331
7332 OwnershipAttr *clone(ASTContext &C) const;
7333 void printPretty(raw_ostream &OS,
7334 const PrintingPolicy &Policy) const;
7335 const char *getSpelling() const;
7336 Spelling getSemanticSpelling() const {
7337 switch (SpellingListIndex) {
7338 default: llvm_unreachable("Unknown spelling list index")::llvm::llvm_unreachable_internal("Unknown spelling list index"
, "/build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 7338)
;
7339 case 0: return GNU_ownership_holds;
7340 case 1: return CXX11_clang_ownership_holds;
7341 case 2: return C2x_clang_ownership_holds;
7342 case 3: return GNU_ownership_returns;
7343 case 4: return CXX11_clang_ownership_returns;
7344 case 5: return C2x_clang_ownership_returns;
7345 case 6: return GNU_ownership_takes;
7346 case 7: return CXX11_clang_ownership_takes;
7347 case 8: return C2x_clang_ownership_takes;
7348 }
7349 }
7350 bool isHolds() const { return SpellingListIndex == 0 ||
7351 SpellingListIndex == 1 ||
7352 SpellingListIndex == 2; }
7353 bool isReturns() const { return SpellingListIndex == 3 ||
7354 SpellingListIndex == 4 ||
7355 SpellingListIndex == 5; }
7356 bool isTakes() const { return SpellingListIndex == 6 ||
7357 SpellingListIndex == 7 ||
7358 SpellingListIndex == 8; }
7359 IdentifierInfo * getModule() const {
7360 return module;
7361 }
7362
7363 typedef ParamIdx* args_iterator;
7364 args_iterator args_begin() const { return args_; }
7365 args_iterator args_end() const { return args_ + args_Size; }
7366 unsigned args_size() const { return args_Size; }
7367 llvm::iterator_range<args_iterator> args() const { return llvm::make_range(args_begin(), args_end()); }
7368
7369
7370
7371 enum OwnershipKind { Holds, Returns, Takes };
7372 OwnershipKind getOwnKind() const {
7373 return isHolds() ? Holds :
7374 isTakes() ? Takes :
7375 Returns;
7376 }
7377
7378
7379 static bool classof(const Attr *A) { return A->getKind() == attr::Ownership; }
7380};
7381
7382class PackedAttr : public InheritableAttr {
7383public:
7384 static PackedAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
7385 auto *A = new (Ctx) PackedAttr(Loc, Ctx, 0);
7386 A->setImplicit(true);
7387 return A;
7388 }
7389
7390 PackedAttr(SourceRange R, ASTContext &Ctx
7391 , unsigned SI
7392 )
7393 : InheritableAttr(attr::Packed, R, SI, false, false)
7394 {
7395 }
7396
7397 PackedAttr *clone(ASTContext &C) const;
7398 void printPretty(raw_ostream &OS,
7399 const PrintingPolicy &Policy) const;
7400 const char *getSpelling() const;
7401
7402
7403 static bool classof(const Attr *A) { return A->getKind() == attr::Packed; }
7404};
7405
7406class ParamTypestateAttr : public InheritableAttr {
7407public:
7408 enum ConsumedState {
7409 Unknown,
7410 Consumed,
7411 Unconsumed
7412 };
7413private:
7414 ConsumedState paramState;
7415
7416public:
7417 static ParamTypestateAttr *CreateImplicit(ASTContext &Ctx, ConsumedState ParamState, SourceRange Loc = SourceRange()) {
7418 auto *A = new (Ctx) ParamTypestateAttr(Loc, Ctx, ParamState, 0);
7419 A->setImplicit(true);
7420 return A;
7421 }
7422
7423 ParamTypestateAttr(SourceRange R, ASTContext &Ctx
7424 , ConsumedState ParamState
7425 , unsigned SI
7426 )
7427 : InheritableAttr(attr::ParamTypestate, R, SI, false, false)
7428 , paramState(ParamState)
7429 {
7430 }
7431
7432 ParamTypestateAttr *clone(ASTContext &C) const;
7433 void printPretty(raw_ostream &OS,
7434 const PrintingPolicy &Policy) const;
7435 const char *getSpelling() const;
7436 ConsumedState getParamState() const {
7437 return paramState;
7438 }
7439
7440 static bool ConvertStrToConsumedState(StringRef Val, ConsumedState &Out) {
7441 Optional<ConsumedState> R = llvm::StringSwitch<Optional<ConsumedState>>(Val)
7442 .Case("unknown", ParamTypestateAttr::Unknown)
7443 .Case("consumed", ParamTypestateAttr::Consumed)
7444 .Case("unconsumed", ParamTypestateAttr::Unconsumed)
7445 .Default(Optional<ConsumedState>());
7446 if (R) {
7447 Out = *R;
7448 return true;
7449 }
7450 return false;
7451 }
7452
7453 static const char *ConvertConsumedStateToStr(ConsumedState Val) {
7454 switch(Val) {
7455 case ParamTypestateAttr::Unknown: return "unknown";
7456 case ParamTypestateAttr::Consumed: return "consumed";
7457 case ParamTypestateAttr::Unconsumed: return "unconsumed";
7458 }
7459 llvm_unreachable("No enumerator with that value")::llvm::llvm_unreachable_internal("No enumerator with that value"
, "/build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 7459)
;
7460 }
7461
7462
7463 static bool classof(const Attr *A) { return A->getKind() == attr::ParamTypestate; }
7464};
7465
7466class PascalAttr : public InheritableAttr {
7467public:
7468 static PascalAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
7469 auto *A = new (Ctx) PascalAttr(Loc, Ctx, 0);
7470 A->setImplicit(true);
7471 return A;
7472 }
7473
7474 PascalAttr(SourceRange R, ASTContext &Ctx
7475 , unsigned SI
7476 )
7477 : InheritableAttr(attr::Pascal, R, SI, false, false)
7478 {
7479 }
7480
7481 PascalAttr *clone(ASTContext &C) const;
7482 void printPretty(raw_ostream &OS,
7483 const PrintingPolicy &Policy) const;
7484 const char *getSpelling() const;
7485
7486
7487 static bool classof(const Attr *A) { return A->getKind() == attr::Pascal; }
7488};
7489
7490class PassObjectSizeAttr : public InheritableParamAttr {
7491int type;
7492
7493public:
7494 enum Spelling {
7495 GNU_pass_object_size = 0,
7496 CXX11_clang_pass_object_size = 1,
7497 C2x_clang_pass_object_size = 2,
7498 GNU_pass_dynamic_object_size = 3,
7499 CXX11_clang_pass_dynamic_object_size = 4,
7500 C2x_clang_pass_dynamic_object_size = 5
7501 };
7502
7503 static PassObjectSizeAttr *CreateImplicit(ASTContext &Ctx, Spelling S, int Type, SourceRange Loc = SourceRange()) {
7504 auto *A = new (Ctx) PassObjectSizeAttr(Loc, Ctx, Type, S);
7505 A->setImplicit(true);
7506 return A;
7507 }
7508
7509 PassObjectSizeAttr(SourceRange R, ASTContext &Ctx
7510 , int Type
7511 , unsigned SI
7512 )
7513 : InheritableParamAttr(attr::PassObjectSize, R, SI, false, false)
7514 , type(Type)
7515 {
7516 }
7517
7518 PassObjectSizeAttr *clone(ASTContext &C) const;
7519 void printPretty(raw_ostream &OS,
7520 const PrintingPolicy &Policy) const;
7521 const char *getSpelling() const;
7522 Spelling getSemanticSpelling() const {
7523 switch (SpellingListIndex) {
7524 default: llvm_unreachable("Unknown spelling list index")::llvm::llvm_unreachable_internal("Unknown spelling list index"
, "/build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 7524)
;
7525 case 0: return GNU_pass_object_size;
7526 case 1: return CXX11_clang_pass_object_size;
7527 case 2: return C2x_clang_pass_object_size;
7528 case 3: return GNU_pass_dynamic_object_size;
7529 case 4: return CXX11_clang_pass_dynamic_object_size;
7530 case 5: return C2x_clang_pass_dynamic_object_size;
7531 }
7532 }
7533 bool isDynamic() const { return SpellingListIndex == 3 ||
7534 SpellingListIndex == 4 ||
7535 SpellingListIndex == 5; }
7536 int getType() const {
7537 return type;
7538 }
7539
7540
7541
7542 static bool classof(const Attr *A) { return A->getKind() == attr::PassObjectSize; }
7543};
7544
7545class PcsAttr : public InheritableAttr {
7546public:
7547 enum PCSType {
7548 AAPCS,
7549 AAPCS_VFP
7550 };
7551private:
7552 PCSType pCS;
7553
7554public:
7555 static PcsAttr *CreateImplicit(ASTContext &Ctx, PCSType PCS, SourceRange Loc = SourceRange()) {
7556 auto *A = new (Ctx) PcsAttr(Loc, Ctx, PCS, 0);
7557 A->setImplicit(true);
7558 return A;
7559 }
7560
7561 PcsAttr(SourceRange R, ASTContext &Ctx
7562 , PCSType PCS
7563 , unsigned SI
7564 )
7565 : InheritableAttr(attr::Pcs, R, SI, false, false)
7566 , pCS(PCS)
7567 {
7568 }
7569
7570 PcsAttr *clone(ASTContext &C) const;
7571 void printPretty(raw_ostream &OS,
7572 const PrintingPolicy &Policy) const;
7573 const char *getSpelling() const;
7574 PCSType getPCS() const {
7575 return pCS;
7576 }
7577
7578 static bool ConvertStrToPCSType(StringRef Val, PCSType &Out) {
7579 Optional<PCSType> R = llvm::StringSwitch<Optional<PCSType>>(Val)
7580 .Case("aapcs", PcsAttr::AAPCS)
7581 .Case("aapcs-vfp", PcsAttr::AAPCS_VFP)
7582 .Default(Optional<PCSType>());
7583 if (R) {
7584 Out = *R;
7585 return true;
7586 }
7587 return false;
7588 }
7589
7590 static const char *ConvertPCSTypeToStr(PCSType Val) {
7591 switch(Val) {
7592 case PcsAttr::AAPCS: return "aapcs";
7593 case PcsAttr::AAPCS_VFP: return "aapcs-vfp";
7594 }
7595 llvm_unreachable("No enumerator with that value")::llvm::llvm_unreachable_internal("No enumerator with that value"
, "/build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 7595)
;
7596 }
7597
7598
7599 static bool classof(const Attr *A) { return A->getKind() == attr::Pcs; }
7600};
7601
7602class PragmaClangBSSSectionAttr : public InheritableAttr {
7603unsigned nameLength;
7604char *name;
7605
7606public:
7607 static PragmaClangBSSSectionAttr *CreateImplicit(ASTContext &Ctx, llvm::StringRef Name, SourceRange Loc = SourceRange()) {
7608 auto *A = new (Ctx) PragmaClangBSSSectionAttr(Loc, Ctx, Name, 0);
7609 A->setImplicit(true);
7610 return A;
7611 }
7612
7613 PragmaClangBSSSectionAttr(SourceRange R, ASTContext &Ctx
7614 , llvm::StringRef Name
7615 , unsigned SI
7616 )
7617 : InheritableAttr(attr::PragmaClangBSSSection, R, SI, false, false)
7618 , nameLength(Name.size()),name(new (Ctx, 1) char[nameLength])
7619 {
7620 if (!Name.empty())
7621 std::memcpy(name, Name.data(), nameLength);
7622 }
7623
7624 PragmaClangBSSSectionAttr *clone(ASTContext &C) const;
7625 void printPretty(raw_ostream &OS,
7626 const PrintingPolicy &Policy) const;
7627 const char *getSpelling() const;
7628 llvm::StringRef getName() const {
7629 return llvm::StringRef(name, nameLength);
7630 }
7631 unsigned getNameLength() const {
7632 return nameLength;
7633 }
7634 void setName(ASTContext &C, llvm::StringRef S) {
7635 nameLength = S.size();
7636 this->name = new (C, 1) char [nameLength];
7637 if (!S.empty())
7638 std::memcpy(this->name, S.data(), nameLength);
7639 }
7640
7641
7642
7643 static bool classof(const Attr *A) { return A->getKind() == attr::PragmaClangBSSSection; }
7644};
7645
7646class PragmaClangDataSectionAttr : public InheritableAttr {
7647unsigned nameLength;
7648char *name;
7649
7650public:
7651 static PragmaClangDataSectionAttr *CreateImplicit(ASTContext &Ctx, llvm::StringRef Name, SourceRange Loc = SourceRange()) {
7652 auto *A = new (Ctx) PragmaClangDataSectionAttr(Loc, Ctx, Name, 0);
7653 A->setImplicit(true);
7654 return A;
7655 }
7656
7657 PragmaClangDataSectionAttr(SourceRange R, ASTContext &Ctx
7658 , llvm::StringRef Name
7659 , unsigned SI
7660 )
7661 : InheritableAttr(attr::PragmaClangDataSection, R, SI, false, false)
7662 , nameLength(Name.size()),name(new (Ctx, 1) char[nameLength])
7663 {
7664 if (!Name.empty())
7665 std::memcpy(name, Name.data(), nameLength);
7666 }
7667
7668 PragmaClangDataSectionAttr *clone(ASTContext &C) const;
7669 void printPretty(raw_ostream &OS,
7670 const PrintingPolicy &Policy) const;
7671 const char *getSpelling() const;
7672 llvm::StringRef getName() const {
7673 return llvm::StringRef(name, nameLength);
7674 }
7675 unsigned getNameLength() const {
7676 return nameLength;
7677 }
7678 void setName(ASTContext &C, llvm::StringRef S) {
7679 nameLength = S.size();
7680 this->name = new (C, 1) char [nameLength];
7681 if (!S.empty())
7682 std::memcpy(this->name, S.data(), nameLength);
7683 }
7684
7685
7686
7687 static bool classof(const Attr *A) { return A->getKind() == attr::PragmaClangDataSection; }
7688};
7689
7690class PragmaClangRodataSectionAttr : public InheritableAttr {
7691unsigned nameLength;
7692char *name;
7693
7694public:
7695 static PragmaClangRodataSectionAttr *CreateImplicit(ASTContext &Ctx, llvm::StringRef Name, SourceRange Loc = SourceRange()) {
7696 auto *A = new (Ctx) PragmaClangRodataSectionAttr(Loc, Ctx, Name, 0);
7697 A->setImplicit(true);
7698 return A;
7699 }
7700
7701 PragmaClangRodataSectionAttr(SourceRange R, ASTContext &Ctx
7702 , llvm::StringRef Name
7703 , unsigned SI
7704 )
7705 : InheritableAttr(attr::PragmaClangRodataSection, R, SI, false, false)
7706 , nameLength(Name.size()),name(new (Ctx, 1) char[nameLength])
7707 {
7708 if (!Name.empty())
7709 std::memcpy(name, Name.data(), nameLength);
7710 }
7711
7712 PragmaClangRodataSectionAttr *clone(ASTContext &C) const;
7713 void printPretty(raw_ostream &OS,
7714 const PrintingPolicy &Policy) const;
7715 const char *getSpelling() const;
7716 llvm::StringRef getName() const {
7717 return llvm::StringRef(name, nameLength);
7718 }
7719 unsigned getNameLength() const {
7720 return nameLength;
7721 }
7722 void setName(ASTContext &C, llvm::StringRef S) {
7723 nameLength = S.size();
7724 this->name = new (C, 1) char [nameLength];
7725 if (!S.empty())
7726 std::memcpy(this->name, S.data(), nameLength);
7727 }
7728
7729
7730
7731 static bool classof(const Attr *A) { return A->getKind() == attr::PragmaClangRodataSection; }
7732};
7733
7734class PragmaClangTextSectionAttr : public InheritableAttr {
7735unsigned nameLength;
7736char *name;
7737
7738public:
7739 static PragmaClangTextSectionAttr *CreateImplicit(ASTContext &Ctx, llvm::StringRef Name, SourceRange Loc = SourceRange()) {
7740 auto *A = new (Ctx) PragmaClangTextSectionAttr(Loc, Ctx, Name, 0);
7741 A->setImplicit(true);
7742 return A;
7743 }
7744
7745 PragmaClangTextSectionAttr(SourceRange R, ASTContext &Ctx
7746 , llvm::StringRef Name
7747 , unsigned SI
7748 )
7749 : InheritableAttr(attr::PragmaClangTextSection, R, SI, false, false)
7750 , nameLength(Name.size()),name(new (Ctx, 1) char[nameLength])
7751 {
7752 if (!Name.empty())
7753 std::memcpy(name, Name.data(), nameLength);
7754 }
7755
7756 PragmaClangTextSectionAttr *clone(ASTContext &C) const;
7757 void printPretty(raw_ostream &OS,
7758 const PrintingPolicy &Policy) const;
7759 const char *getSpelling() const;
7760 llvm::StringRef getName() const {
7761 return llvm::StringRef(name, nameLength);
7762 }
7763 unsigned getNameLength() const {
7764 return nameLength;
7765 }
7766 void setName(ASTContext &C, llvm::StringRef S) {
7767 nameLength = S.size();
7768 this->name = new (C, 1) char [nameLength];
7769 if (!S.empty())
7770 std::memcpy(this->name, S.data(), nameLength);
7771 }
7772
7773
7774
7775 static bool classof(const Attr *A) { return A->getKind() == attr::PragmaClangTextSection; }
7776};
7777
7778class PreserveAllAttr : public InheritableAttr {
7779public:
7780 static PreserveAllAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
7781 auto *A = new (Ctx) PreserveAllAttr(Loc, Ctx, 0);
7782 A->setImplicit(true);
7783 return A;
7784 }
7785
7786 PreserveAllAttr(SourceRange R, ASTContext &Ctx
7787 , unsigned SI
7788 )
7789 : InheritableAttr(attr::PreserveAll, R, SI, false, false)
7790 {
7791 }
7792
7793 PreserveAllAttr *clone(ASTContext &C) const;
7794 void printPretty(raw_ostream &OS,
7795 const PrintingPolicy &Policy) const;
7796 const char *getSpelling() const;
7797
7798
7799 static bool classof(const Attr *A) { return A->getKind() == attr::PreserveAll; }
7800};
7801
7802class PreserveMostAttr : public InheritableAttr {
7803public:
7804 static PreserveMostAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
7805 auto *A = new (Ctx) PreserveMostAttr(Loc, Ctx, 0);
7806 A->setImplicit(true);
7807 return A;
7808 }
7809
7810 PreserveMostAttr(SourceRange R, ASTContext &Ctx
7811 , unsigned SI
7812 )
7813 : InheritableAttr(attr::PreserveMost, R, SI, false, false)
7814 {
7815 }
7816
7817 PreserveMostAttr *clone(ASTContext &C) const;
7818 void printPretty(raw_ostream &OS,
7819 const PrintingPolicy &Policy) const;
7820 const char *getSpelling() const;
7821
7822
7823 static bool classof(const Attr *A) { return A->getKind() == attr::PreserveMost; }
7824};
7825
7826class PtGuardedByAttr : public InheritableAttr {
7827Expr * arg;
7828
7829public:
7830 static PtGuardedByAttr *CreateImplicit(ASTContext &Ctx, Expr * Arg, SourceRange Loc = SourceRange()) {
7831 auto *A = new (Ctx) PtGuardedByAttr(Loc, Ctx, Arg, 0);
7832 A->setImplicit(true);
7833 return A;
7834 }
7835
7836 PtGuardedByAttr(SourceRange R, ASTContext &Ctx
7837 , Expr * Arg
7838 , unsigned SI
7839 )
7840 : InheritableAttr(attr::PtGuardedBy, R, SI, true, true)
7841 , arg(Arg)
7842 {
7843 }
7844
7845 PtGuardedByAttr *clone(ASTContext &C) const;
7846 void printPretty(raw_ostream &OS,
7847 const PrintingPolicy &Policy) const;
7848 const char *getSpelling() const;
7849 Expr * getArg() const {
7850 return arg;
7851 }
7852
7853
7854
7855 static bool classof(const Attr *A) { return A->getKind() == attr::PtGuardedBy; }
7856};
7857
7858class PtGuardedVarAttr : public InheritableAttr {
7859public:
7860 static PtGuardedVarAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
7861 auto *A = new (Ctx) PtGuardedVarAttr(Loc, Ctx, 0);
7862 A->setImplicit(true);
7863 return A;
7864 }
7865
7866 PtGuardedVarAttr(SourceRange R, ASTContext &Ctx
7867 , unsigned SI
7868 )
7869 : InheritableAttr(attr::PtGuardedVar, R, SI, false, false)
7870 {
7871 }
7872
7873 PtGuardedVarAttr *clone(ASTContext &C) const;
7874 void printPretty(raw_ostream &OS,
7875 const PrintingPolicy &Policy) const;
7876 const char *getSpelling() const;
7877
7878
7879 static bool classof(const Attr *A) { return A->getKind() == attr::PtGuardedVar; }
7880};
7881
7882class Ptr32Attr : public TypeAttr {
7883public:
7884 static Ptr32Attr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
7885 auto *A = new (Ctx) Ptr32Attr(Loc, Ctx, 0);
7886 A->setImplicit(true);
7887 return A;
7888 }
7889
7890 Ptr32Attr(SourceRange R, ASTContext &Ctx
7891 , unsigned SI
7892 )
7893 : TypeAttr(attr::Ptr32, R, SI, false)
7894 {
7895 }
7896
7897 Ptr32Attr *clone(ASTContext &C) const;
7898 void printPretty(raw_ostream &OS,
7899 const PrintingPolicy &Policy) const;
7900 const char *getSpelling() const;
7901
7902
7903 static bool classof(const Attr *A) { return A->getKind() == attr::Ptr32; }
7904};
7905
7906class Ptr64Attr : public TypeAttr {
7907public:
7908 static Ptr64Attr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
7909 auto *A = new (Ctx) Ptr64Attr(Loc, Ctx, 0);
7910 A->setImplicit(true);
7911 return A;
7912 }
7913
7914 Ptr64Attr(SourceRange R, ASTContext &Ctx
7915 , unsigned SI
7916 )
7917 : TypeAttr(attr::Ptr64, R, SI, false)
7918 {
7919 }
7920
7921 Ptr64Attr *clone(ASTContext &C) const;
7922 void printPretty(raw_ostream &OS,
7923 const PrintingPolicy &Policy) const;
7924 const char *getSpelling() const;
7925
7926
7927 static bool classof(const Attr *A) { return A->getKind() == attr::Ptr64; }
7928};
7929
7930class PureAttr : public InheritableAttr {
7931public:
7932 static PureAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
7933 auto *A = new (Ctx) PureAttr(Loc, Ctx, 0);
7934 A->setImplicit(true);
7935 return A;
7936 }
7937
7938 PureAttr(SourceRange R, ASTContext &Ctx
7939 , unsigned SI
7940 )
7941 : InheritableAttr(attr::Pure, R, SI, false, false)
7942 {
7943 }
7944
7945 PureAttr *clone(ASTContext &C) const;
7946 void printPretty(raw_ostream &OS,
7947 const PrintingPolicy &Policy) const;
7948 const char *getSpelling() const;
7949
7950
7951 static bool classof(const Attr *A) { return A->getKind() == attr::Pure; }
7952};
7953
7954class RISCVInterruptAttr : public InheritableAttr {
7955public:
7956 enum InterruptType {
7957 user,
7958 supervisor,
7959 machine
7960 };
7961private:
7962 InterruptType interrupt;
7963
7964public:
7965 static RISCVInterruptAttr *CreateImplicit(ASTContext &Ctx, InterruptType Interrupt, SourceRange Loc = SourceRange()) {
7966 auto *A = new (Ctx) RISCVInterruptAttr(Loc, Ctx, Interrupt, 0);
7967 A->setImplicit(true);
7968 return A;
7969 }
7970
7971 RISCVInterruptAttr(SourceRange R, ASTContext &Ctx
7972 , InterruptType Interrupt
7973 , unsigned SI
7974 )
7975 : InheritableAttr(attr::RISCVInterrupt, R, SI, false, false)
7976 , interrupt(Interrupt)
7977 {
7978 }
7979
7980 RISCVInterruptAttr(SourceRange R, ASTContext &Ctx
7981 , unsigned SI
7982 )
7983 : InheritableAttr(attr::RISCVInterrupt, R, SI, false, false)
7984 , interrupt(InterruptType(0))
7985 {
7986 }
7987
7988 RISCVInterruptAttr *clone(ASTContext &C) const;
7989 void printPretty(raw_ostream &OS,
7990 const PrintingPolicy &Policy) const;
7991 const char *getSpelling() const;
7992 InterruptType getInterrupt() const {
7993 return interrupt;
7994 }
7995
7996 static bool ConvertStrToInterruptType(StringRef Val, InterruptType &Out) {
7997 Optional<InterruptType> R = llvm::StringSwitch<Optional<InterruptType>>(Val)
7998 .Case("user", RISCVInterruptAttr::user)
7999 .Case("supervisor", RISCVInterruptAttr::supervisor)
8000 .Case("machine", RISCVInterruptAttr::machine)
8001 .Default(Optional<InterruptType>());
8002 if (R) {
8003 Out = *R;
8004 return true;
8005 }
8006 return false;
8007 }
8008
8009 static const char *ConvertInterruptTypeToStr(InterruptType Val) {
8010 switch(Val) {
8011 case RISCVInterruptAttr::user: return "user";
8012 case RISCVInterruptAttr::supervisor: return "supervisor";
8013 case RISCVInterruptAttr::machine: return "machine";
8014 }
8015 llvm_unreachable("No enumerator with that value")::llvm::llvm_unreachable_internal("No enumerator with that value"
, "/build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 8015)
;
8016 }
8017
8018
8019 static bool classof(const Attr *A) { return A->getKind() == attr::RISCVInterrupt; }
8020};
8021
8022class RegCallAttr : public InheritableAttr {
8023public:
8024 static RegCallAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
8025 auto *A = new (Ctx) RegCallAttr(Loc, Ctx, 0);
8026 A->setImplicit(true);
8027 return A;
8028 }
8029
8030 RegCallAttr(SourceRange R, ASTContext &Ctx
8031 , unsigned SI
8032 )
8033 : InheritableAttr(attr::RegCall, R, SI, false, false)
8034 {
8035 }
8036
8037 RegCallAttr *clone(ASTContext &C) const;
8038 void printPretty(raw_ostream &OS,
8039 const PrintingPolicy &Policy) const;
8040 const char *getSpelling() const;
8041
8042
8043 static bool classof(const Attr *A) { return A->getKind() == attr::RegCall; }
8044};
8045
8046class ReinitializesAttr : public InheritableAttr {
8047public:
8048 static ReinitializesAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
8049 auto *A = new (Ctx) ReinitializesAttr(Loc, Ctx, 0);
8050 A->setImplicit(true);
8051 return A;
8052 }
8053
8054 ReinitializesAttr(SourceRange R, ASTContext &Ctx
8055 , unsigned SI
8056 )
8057 : InheritableAttr(attr::Reinitializes, R, SI, false, false)
8058 {
8059 }
8060
8061 ReinitializesAttr *clone(ASTContext &C) const;
8062 void printPretty(raw_ostream &OS,
8063 const PrintingPolicy &Policy) const;
8064 const char *getSpelling() const;
8065
8066
8067 static bool classof(const Attr *A) { return A->getKind() == attr::Reinitializes; }
8068};
8069
8070class ReleaseCapabilityAttr : public InheritableAttr {
8071 unsigned args_Size;
8072 Expr * *args_;
8073
8074public:
8075 enum Spelling {
8076 GNU_release_capability = 0,
8077 CXX11_clang_release_capability = 1,
8078 GNU_release_shared_capability = 2,
8079 CXX11_clang_release_shared_capability = 3,
8080 GNU_release_generic_capability = 4,
8081 CXX11_clang_release_generic_capability = 5,
8082 GNU_unlock_function = 6,
8083 CXX11_clang_unlock_function = 7
8084 };
8085
8086 static ReleaseCapabilityAttr *CreateImplicit(ASTContext &Ctx, Spelling S, Expr * *Args, unsigned ArgsSize, SourceRange Loc = SourceRange()) {
8087 auto *A = new (Ctx) ReleaseCapabilityAttr(Loc, Ctx, Args, ArgsSize, S);
8088 A->setImplicit(true);
8089 return A;
8090 }
8091
8092 ReleaseCapabilityAttr(SourceRange R, ASTContext &Ctx
8093 , Expr * *Args, unsigned ArgsSize
8094 , unsigned SI
8095 )
8096 : InheritableAttr(attr::ReleaseCapability, R, SI, true, true)
8097 , args_Size(ArgsSize), args_(new (Ctx, 16) Expr *[args_Size])
8098 {
8099 std::copy(Args, Args + args_Size, args_);
8100 }
8101
8102 ReleaseCapabilityAttr(SourceRange R, ASTContext &Ctx
8103 , unsigned SI
8104 )
8105 : InheritableAttr(attr::ReleaseCapability, R, SI, true, true)
8106 , args_Size(0), args_(nullptr)
8107 {
8108 }
8109
8110 ReleaseCapabilityAttr *clone(ASTContext &C) const;
8111 void printPretty(raw_ostream &OS,
8112 const PrintingPolicy &Policy) const;
8113 const char *getSpelling() const;
8114 Spelling getSemanticSpelling() const {
8115 switch (SpellingListIndex) {
8116 default: llvm_unreachable("Unknown spelling list index")::llvm::llvm_unreachable_internal("Unknown spelling list index"
, "/build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 8116)
;
8117 case 0: return GNU_release_capability;
8118 case 1: return CXX11_clang_release_capability;
8119 case 2: return GNU_release_shared_capability;
8120 case 3: return CXX11_clang_release_shared_capability;
8121 case 4: return GNU_release_generic_capability;
8122 case 5: return CXX11_clang_release_generic_capability;
8123 case 6: return GNU_unlock_function;
8124 case 7: return CXX11_clang_unlock_function;
8125 }
8126 }
8127 bool isShared() const { return SpellingListIndex == 2 ||
8128 SpellingListIndex == 3; }
8129 bool isGeneric() const { return SpellingListIndex == 4 ||
8130 SpellingListIndex == 5 ||
8131 SpellingListIndex == 6 ||
8132 SpellingListIndex == 7; }
8133 typedef Expr ** args_iterator;
8134 args_iterator args_begin() const { return args_; }
8135 args_iterator args_end() const { return args_ + args_Size; }
8136 unsigned args_size() const { return args_Size; }
8137 llvm::iterator_range<args_iterator> args() const { return llvm::make_range(args_begin(), args_end()); }
8138
8139
8140
8141
8142 static bool classof(const Attr *A) { return A->getKind() == attr::ReleaseCapability; }
8143};
8144
8145class RenderScriptKernelAttr : public Attr {
8146public:
8147 static RenderScriptKernelAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
8148 auto *A = new (Ctx) RenderScriptKernelAttr(Loc, Ctx, 0);
8149 A->setImplicit(true);
8150 return A;
8151 }
8152
8153 RenderScriptKernelAttr(SourceRange R, ASTContext &Ctx
8154 , unsigned SI
8155 )
8156 : Attr(attr::RenderScriptKernel, R, SI, false)
8157 {
8158 }
8159
8160 RenderScriptKernelAttr *clone(ASTContext &C) const;
8161 void printPretty(raw_ostream &OS,
8162 const PrintingPolicy &Policy) const;
8163 const char *getSpelling() const;
8164
8165
8166 static bool classof(const Attr *A) { return A->getKind() == attr::RenderScriptKernel; }
8167};
8168
8169class ReqdWorkGroupSizeAttr : public InheritableAttr {
8170unsigned xDim;
8171
8172unsigned yDim;
8173
8174unsigned zDim;
8175
8176public:
8177 static ReqdWorkGroupSizeAttr *CreateImplicit(ASTContext &Ctx, unsigned XDim, unsigned YDim, unsigned ZDim, SourceRange Loc = SourceRange()) {
8178 auto *A = new (Ctx) ReqdWorkGroupSizeAttr(Loc, Ctx, XDim, YDim, ZDim, 0);
8179 A->setImplicit(true);
8180 return A;
8181 }
8182
8183 ReqdWorkGroupSizeAttr(SourceRange R, ASTContext &Ctx
8184 , unsigned XDim
8185 , unsigned YDim
8186 , unsigned ZDim
8187 , unsigned SI
8188 )
8189 : InheritableAttr(attr::ReqdWorkGroupSize, R, SI, false, false)
8190 , xDim(XDim)
8191 , yDim(YDim)
8192 , zDim(ZDim)
8193 {
8194 }
8195
8196 ReqdWorkGroupSizeAttr *clone(ASTContext &C) const;
8197 void printPretty(raw_ostream &OS,
8198 const PrintingPolicy &Policy) const;
8199 const char *getSpelling() const;
8200 unsigned getXDim() const {
8201 return xDim;
8202 }
8203
8204 unsigned getYDim() const {
8205 return yDim;
8206 }
8207
8208 unsigned getZDim() const {
8209 return zDim;
8210 }
8211
8212
8213
8214 static bool classof(const Attr *A) { return A->getKind() == attr::ReqdWorkGroupSize; }
8215};
8216
8217class RequireConstantInitAttr : public InheritableAttr {
8218public:
8219 static RequireConstantInitAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
8220 auto *A = new (Ctx) RequireConstantInitAttr(Loc, Ctx, 0);
8221 A->setImplicit(true);
8222 return A;
8223 }
8224
8225 RequireConstantInitAttr(SourceRange R, ASTContext &Ctx
8226 , unsigned SI
8227 )
8228 : InheritableAttr(attr::RequireConstantInit, R, SI, false, false)
8229 {
8230 }
8231
8232 RequireConstantInitAttr *clone(ASTContext &C) const;
8233 void printPretty(raw_ostream &OS,
8234 const PrintingPolicy &Policy) const;
8235 const char *getSpelling() const;
8236
8237
8238 static bool classof(const Attr *A) { return A->getKind() == attr::RequireConstantInit; }
8239};
8240
8241class RequiresCapabilityAttr : public InheritableAttr {
8242 unsigned args_Size;
8243 Expr * *args_;
8244
8245public:
8246 enum Spelling {
8247 GNU_requires_capability = 0,
8248 CXX11_clang_requires_capability = 1,
8249 GNU_exclusive_locks_required = 2,
8250 CXX11_clang_exclusive_locks_required = 3,
8251 GNU_requires_shared_capability = 4,
8252 CXX11_clang_requires_shared_capability = 5,
8253 GNU_shared_locks_required = 6,
8254 CXX11_clang_shared_locks_required = 7
8255 };
8256
8257 static RequiresCapabilityAttr *CreateImplicit(ASTContext &Ctx, Spelling S, Expr * *Args, unsigned ArgsSize, SourceRange Loc = SourceRange()) {
8258 auto *A = new (Ctx) RequiresCapabilityAttr(Loc, Ctx, Args, ArgsSize, S);
8259 A->setImplicit(true);
8260 return A;
8261 }
8262
8263 RequiresCapabilityAttr(SourceRange R, ASTContext &Ctx
8264 , Expr * *Args, unsigned ArgsSize
8265 , unsigned SI
8266 )
8267 : InheritableAttr(attr::RequiresCapability, R, SI, true, true)
8268 , args_Size(ArgsSize), args_(new (Ctx, 16) Expr *[args_Size])
8269 {
8270 std::copy(Args, Args + args_Size, args_);
8271 }
8272
8273 RequiresCapabilityAttr(SourceRange R, ASTContext &Ctx
8274 , unsigned SI
8275 )
8276 : InheritableAttr(attr::RequiresCapability, R, SI, true, true)
8277 , args_Size(0), args_(nullptr)
8278 {
8279 }
8280
8281 RequiresCapabilityAttr *clone(ASTContext &C) const;
8282 void printPretty(raw_ostream &OS,
8283 const PrintingPolicy &Policy) const;
8284 const char *getSpelling() const;
8285 Spelling getSemanticSpelling() const {
8286 switch (SpellingListIndex) {
8287 default: llvm_unreachable("Unknown spelling list index")::llvm::llvm_unreachable_internal("Unknown spelling list index"
, "/build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 8287)
;
8288 case 0: return GNU_requires_capability;
8289 case 1: return CXX11_clang_requires_capability;
8290 case 2: return GNU_exclusive_locks_required;
8291 case 3: return CXX11_clang_exclusive_locks_required;
8292 case 4: return GNU_requires_shared_capability;
8293 case 5: return CXX11_clang_requires_shared_capability;
8294 case 6: return GNU_shared_locks_required;
8295 case 7: return CXX11_clang_shared_locks_required;
8296 }
8297 }
8298 bool isShared() const { return SpellingListIndex == 4 ||
8299 SpellingListIndex == 5 ||
8300 SpellingListIndex == 6 ||
8301 SpellingListIndex == 7; }
8302 typedef Expr ** args_iterator;
8303 args_iterator args_begin() const { return args_; }
8304 args_iterator args_end() const { return args_ + args_Size; }
8305 unsigned args_size() const { return args_Size; }
8306 llvm::iterator_range<args_iterator> args() const { return llvm::make_range(args_begin(), args_end()); }
8307
8308
8309
8310
8311 static bool classof(const Attr *A) { return A->getKind() == attr::RequiresCapability; }
8312};
8313
8314class RestrictAttr : public InheritableAttr {
8315public:
8316 enum Spelling {
8317 Declspec_restrict = 0,
8318 GNU_malloc = 1,
8319 CXX11_gnu_malloc = 2
8320 };
8321
8322 static RestrictAttr *CreateImplicit(ASTContext &Ctx, Spelling S, SourceRange Loc = SourceRange()) {
8323 auto *A = new (Ctx) RestrictAttr(Loc, Ctx, S);
8324 A->setImplicit(true);
8325 return A;
8326 }
8327
8328 RestrictAttr(SourceRange R, ASTContext &Ctx
8329 , unsigned SI
8330 )
8331 : InheritableAttr(attr::Restrict, R, SI, false, false)
8332 {
8333 }
8334
8335 RestrictAttr *clone(ASTContext &C) const;
8336 void printPretty(raw_ostream &OS,
8337 const PrintingPolicy &Policy) const;
8338 const char *getSpelling() const;
8339 Spelling getSemanticSpelling() const {
8340 switch (SpellingListIndex) {
8341 default: llvm_unreachable("Unknown spelling list index")::llvm::llvm_unreachable_internal("Unknown spelling list index"
, "/build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 8341)
;
8342 case 0: return Declspec_restrict;
8343 case 1: return GNU_malloc;
8344 case 2: return CXX11_gnu_malloc;
8345 }
8346 }
8347
8348
8349 static bool classof(const Attr *A) { return A->getKind() == attr::Restrict; }
8350};
8351
8352class ReturnTypestateAttr : public InheritableAttr {
8353public:
8354 enum ConsumedState {
8355 Unknown,
8356 Consumed,
8357 Unconsumed
8358 };
8359private:
8360 ConsumedState state;
8361
8362public:
8363 static ReturnTypestateAttr *CreateImplicit(ASTContext &Ctx, ConsumedState State, SourceRange Loc = SourceRange()) {
8364 auto *A = new (Ctx) ReturnTypestateAttr(Loc, Ctx, State, 0);
8365 A->setImplicit(true);
8366 return A;
8367 }
8368
8369 ReturnTypestateAttr(SourceRange R, ASTContext &Ctx
8370 , ConsumedState State
8371 , unsigned SI
8372 )
8373 : InheritableAttr(attr::ReturnTypestate, R, SI, false, false)
8374 , state(State)
8375 {
8376 }
8377
8378 ReturnTypestateAttr *clone(ASTContext &C) const;
8379 void printPretty(raw_ostream &OS,
8380 const PrintingPolicy &Policy) const;
8381 const char *getSpelling() const;
8382 ConsumedState getState() const {
8383 return state;
8384 }
8385
8386 static bool ConvertStrToConsumedState(StringRef Val, ConsumedState &Out) {
8387 Optional<ConsumedState> R = llvm::StringSwitch<Optional<ConsumedState>>(Val)
8388 .Case("unknown", ReturnTypestateAttr::Unknown)
8389 .Case("consumed", ReturnTypestateAttr::Consumed)
8390 .Case("unconsumed", ReturnTypestateAttr::Unconsumed)
8391 .Default(Optional<ConsumedState>());
8392 if (R) {
8393 Out = *R;
8394 return true;
8395 }
8396 return false;
8397 }
8398
8399 static const char *ConvertConsumedStateToStr(ConsumedState Val) {
8400 switch(Val) {
8401 case ReturnTypestateAttr::Unknown: return "unknown";
8402 case ReturnTypestateAttr::Consumed: return "consumed";
8403 case ReturnTypestateAttr::Unconsumed: return "unconsumed";
8404 }
8405 llvm_unreachable("No enumerator with that value")::llvm::llvm_unreachable_internal("No enumerator with that value"
, "/build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 8405)
;
8406 }
8407
8408
8409 static bool classof(const Attr *A) { return A->getKind() == attr::ReturnTypestate; }
8410};
8411
8412class ReturnsNonNullAttr : public InheritableAttr {
8413public:
8414 static ReturnsNonNullAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
8415 auto *A = new (Ctx) ReturnsNonNullAttr(Loc, Ctx, 0);
8416 A->setImplicit(true);
8417 return A;
8418 }
8419
8420 ReturnsNonNullAttr(SourceRange R, ASTContext &Ctx
8421 , unsigned SI
8422 )
8423 : InheritableAttr(attr::ReturnsNonNull, R, SI, false, false)
8424 {
8425 }
8426
8427 ReturnsNonNullAttr *clone(ASTContext &C) const;
8428 void printPretty(raw_ostream &OS,
8429 const PrintingPolicy &Policy) const;
8430 const char *getSpelling() const;
8431
8432
8433 static bool classof(const Attr *A) { return A->getKind() == attr::ReturnsNonNull; }
8434};
8435
8436class ReturnsTwiceAttr : public InheritableAttr {
8437public:
8438 static ReturnsTwiceAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
8439 auto *A = new (Ctx) ReturnsTwiceAttr(Loc, Ctx, 0);
8440 A->setImplicit(true);
8441 return A;
8442 }
8443
8444 ReturnsTwiceAttr(SourceRange R, ASTContext &Ctx
8445 , unsigned SI
8446 )
8447 : InheritableAttr(attr::ReturnsTwice, R, SI, false, false)
8448 {
8449 }
8450
8451 ReturnsTwiceAttr *clone(ASTContext &C) const;
8452 void printPretty(raw_ostream &OS,
8453 const PrintingPolicy &Policy) const;
8454 const char *getSpelling() const;
8455
8456
8457 static bool classof(const Attr *A) { return A->getKind() == attr::ReturnsTwice; }
8458};
8459
8460class SPtrAttr : public TypeAttr {
8461public:
8462 static SPtrAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
8463 auto *A = new (Ctx) SPtrAttr(Loc, Ctx, 0);
8464 A->setImplicit(true);
8465 return A;
8466 }
8467
8468 SPtrAttr(SourceRange R, ASTContext &Ctx
8469 , unsigned SI
8470 )
8471 : TypeAttr(attr::SPtr, R, SI, false)
8472 {
8473 }
8474
8475 SPtrAttr *clone(ASTContext &C) const;
8476 void printPretty(raw_ostream &OS,
8477 const PrintingPolicy &Policy) const;
8478 const char *getSpelling() const;
8479
8480
8481 static bool classof(const Attr *A) { return A->getKind() == attr::SPtr; }
8482};
8483
8484class ScopedLockableAttr : public InheritableAttr {
8485public:
8486 static ScopedLockableAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
8487 auto *A = new (Ctx) ScopedLockableAttr(Loc, Ctx, 0);
8488 A->setImplicit(true);
8489 return A;
8490 }
8491
8492 ScopedLockableAttr(SourceRange R, ASTContext &Ctx
8493 , unsigned SI
8494 )
8495 : InheritableAttr(attr::ScopedLockable, R, SI, false, false)
8496 {
8497 }
8498
8499 ScopedLockableAttr *clone(ASTContext &C) const;
8500 void printPretty(raw_ostream &OS,
8501 const PrintingPolicy &Policy) const;
8502 const char *getSpelling() const;
8503
8504
8505 static bool classof(const Attr *A) { return A->getKind() == attr::ScopedLockable; }
8506};
8507
8508class SectionAttr : public InheritableAttr {
8509unsigned nameLength;
8510char *name;
8511
8512public:
8513 enum Spelling {
8514 GNU_section = 0,
8515 CXX11_gnu_section = 1,
8516 Declspec_allocate = 2
8517 };
8518
8519 static SectionAttr *CreateImplicit(ASTContext &Ctx, Spelling S, llvm::StringRef Name, SourceRange Loc = SourceRange()) {
8520 auto *A = new (Ctx) SectionAttr(Loc, Ctx, Name, S);
8521 A->setImplicit(true);
8522 return A;
8523 }
8524
8525 SectionAttr(SourceRange R, ASTContext &Ctx
8526 , llvm::StringRef Name
8527 , unsigned SI
8528 )
8529 : InheritableAttr(attr::Section, R, SI, false, false)
8530 , nameLength(Name.size()),name(new (Ctx, 1) char[nameLength])
8531 {
8532 if (!Name.empty())
8533 std::memcpy(name, Name.data(), nameLength);
8534 }
8535
8536 SectionAttr *clone(ASTContext &C) const;
8537 void printPretty(raw_ostream &OS,
8538 const PrintingPolicy &Policy) const;
8539 const char *getSpelling() const;
8540 Spelling getSemanticSpelling() const {
8541 switch (SpellingListIndex) {
8542 default: llvm_unreachable("Unknown spelling list index")::llvm::llvm_unreachable_internal("Unknown spelling list index"
, "/build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 8542)
;
8543 case 0: return GNU_section;
8544 case 1: return CXX11_gnu_section;
8545 case 2: return Declspec_allocate;
8546 }
8547 }
8548 llvm::StringRef getName() const {
8549 return llvm::StringRef(name, nameLength);
8550 }
8551 unsigned getNameLength() const {
8552 return nameLength;
8553 }
8554 void setName(ASTContext &C, llvm::StringRef S) {
8555 nameLength = S.size();
8556 this->name = new (C, 1) char [nameLength];
8557 if (!S.empty())
8558 std::memcpy(this->name, S.data(), nameLength);
8559 }
8560
8561
8562
8563 static bool classof(const Attr *A) { return A->getKind() == attr::Section; }
8564};
8565
8566class SelectAnyAttr : public InheritableAttr {
8567public:
8568 static SelectAnyAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
8569 auto *A = new (Ctx) SelectAnyAttr(Loc, Ctx, 0);
8570 A->setImplicit(true);
8571 return A;
8572 }
8573
8574 SelectAnyAttr(SourceRange R, ASTContext &Ctx
8575 , unsigned SI
8576 )
8577 : InheritableAttr(attr::SelectAny, R, SI, false, false)
8578 {
8579 }
8580
8581 SelectAnyAttr *clone(ASTContext &C) const;
8582 void printPretty(raw_ostream &OS,
8583 const PrintingPolicy &Policy) const;
8584 const char *getSpelling() const;
8585
8586
8587 static bool classof(const Attr *A) { return A->getKind() == attr::SelectAny; }
8588};
8589
8590class SentinelAttr : public InheritableAttr {
8591int sentinel;
8592
8593int nullPos;
8594
8595public:
8596 static SentinelAttr *CreateImplicit(ASTContext &Ctx, int Sentinel, int NullPos, SourceRange Loc = SourceRange()) {
8597 auto *A = new (Ctx) SentinelAttr(Loc, Ctx, Sentinel, NullPos, 0);
8598 A->setImplicit(true);
8599 return A;
8600 }
8601
8602 SentinelAttr(SourceRange R, ASTContext &Ctx
8603 , int Sentinel
8604 , int NullPos
8605 , unsigned SI
8606 )
8607 : InheritableAttr(attr::Sentinel, R, SI, false, false)
8608 , sentinel(Sentinel)
8609 , nullPos(NullPos)
8610 {
8611 }
8612
8613 SentinelAttr(SourceRange R, ASTContext &Ctx
8614 , unsigned SI
8615 )
8616 : InheritableAttr(attr::Sentinel, R, SI, false, false)
8617 , sentinel()
8618 , nullPos()
8619 {
8620 }
8621
8622 SentinelAttr *clone(ASTContext &C) const;
8623 void printPretty(raw_ostream &OS,
8624 const PrintingPolicy &Policy) const;
8625 const char *getSpelling() const;
8626 int getSentinel() const {
8627 return sentinel;
8628 }
8629
8630 static const int DefaultSentinel = 0;
8631
8632 int getNullPos() const {
8633 return nullPos;
8634 }
8635
8636 static const int DefaultNullPos = 0;
8637
8638
8639
8640 static bool classof(const Attr *A) { return A->getKind() == attr::Sentinel; }
8641};
8642
8643class SetTypestateAttr : public InheritableAttr {
8644public:
8645 enum ConsumedState {
8646 Unknown,
8647 Consumed,
8648 Unconsumed
8649 };
8650private:
8651 ConsumedState newState;
8652
8653public:
8654 static SetTypestateAttr *CreateImplicit(ASTContext &Ctx, ConsumedState NewState, SourceRange Loc = SourceRange()) {
8655 auto *A = new (Ctx) SetTypestateAttr(Loc, Ctx, NewState, 0);
8656 A->setImplicit(true);
8657 return A;
8658 }
8659
8660 SetTypestateAttr(SourceRange R, ASTContext &Ctx
8661 , ConsumedState NewState
8662 , unsigned SI
8663 )
8664 : InheritableAttr(attr::SetTypestate, R, SI, false, false)
8665 , newState(NewState)
8666 {
8667 }
8668
8669 SetTypestateAttr *clone(ASTContext &C) const;
8670 void printPretty(raw_ostream &OS,
8671 const PrintingPolicy &Policy) const;
8672 const char *getSpelling() const;
8673 ConsumedState getNewState() const {
8674 return newState;
8675 }
8676
8677 static bool ConvertStrToConsumedState(StringRef Val, ConsumedState &Out) {
8678 Optional<ConsumedState> R = llvm::StringSwitch<Optional<ConsumedState>>(Val)
8679 .Case("unknown", SetTypestateAttr::Unknown)
8680 .Case("consumed", SetTypestateAttr::Consumed)
8681 .Case("unconsumed", SetTypestateAttr::Unconsumed)
8682 .Default(Optional<ConsumedState>());
8683 if (R) {
8684 Out = *R;
8685 return true;
8686 }
8687 return false;
8688 }
8689
8690 static const char *ConvertConsumedStateToStr(ConsumedState Val) {
8691 switch(Val) {
8692 case SetTypestateAttr::Unknown: return "unknown";
8693 case SetTypestateAttr::Consumed: return "consumed";
8694 case SetTypestateAttr::Unconsumed: return "unconsumed";
8695 }
8696 llvm_unreachable("No enumerator with that value")::llvm::llvm_unreachable_internal("No enumerator with that value"
, "/build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 8696)
;
8697 }
8698
8699
8700 static bool classof(const Attr *A) { return A->getKind() == attr::SetTypestate; }
8701};
8702
8703class SharedTrylockFunctionAttr : public InheritableAttr {
8704Expr * successValue;
8705
8706 unsigned args_Size;
8707 Expr * *args_;
8708
8709public:
8710 static SharedTrylockFunctionAttr *CreateImplicit(ASTContext &Ctx, Expr * SuccessValue, Expr * *Args, unsigned ArgsSize, SourceRange Loc = SourceRange()) {
8711 auto *A = new (Ctx) SharedTrylockFunctionAttr(Loc, Ctx, SuccessValue, Args, ArgsSize, 0);
8712 A->setImplicit(true);
8713 return A;
8714 }
8715
8716 SharedTrylockFunctionAttr(SourceRange R, ASTContext &Ctx
8717 , Expr * SuccessValue
8718 , Expr * *Args, unsigned ArgsSize
8719 , unsigned SI
8720 )
8721 : InheritableAttr(attr::SharedTrylockFunction, R, SI, true, true)
8722 , successValue(SuccessValue)
8723 , args_Size(ArgsSize), args_(new (Ctx, 16) Expr *[args_Size])
8724 {
8725 std::copy(Args, Args + args_Size, args_);
8726 }
8727
8728 SharedTrylockFunctionAttr(SourceRange R, ASTContext &Ctx
8729 , Expr * SuccessValue
8730 , unsigned SI
8731 )
8732 : InheritableAttr(attr::SharedTrylockFunction, R, SI, true, true)
8733 , successValue(SuccessValue)
8734 , args_Size(0), args_(nullptr)
8735 {
8736 }
8737
8738 SharedTrylockFunctionAttr *clone(ASTContext &C) const;
8739 void printPretty(raw_ostream &OS,
8740 const PrintingPolicy &Policy) const;
8741 const char *getSpelling() const;
8742 Expr * getSuccessValue() const {
8743 return successValue;
8744 }
8745
8746 typedef Expr ** args_iterator;
8747 args_iterator args_begin() const { return args_; }
8748 args_iterator args_end() const { return args_ + args_Size; }
8749 unsigned args_size() const { return args_Size; }
8750 llvm::iterator_range<args_iterator> args() const { return llvm::make_range(args_begin(), args_end()); }
8751
8752
8753
8754
8755 static bool classof(const Attr *A) { return A->getKind() == attr::SharedTrylockFunction; }
8756};
8757
8758class SpeculativeLoadHardeningAttr : public InheritableAttr {
8759public:
8760 static SpeculativeLoadHardeningAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
8761 auto *A = new (Ctx) SpeculativeLoadHardeningAttr(Loc, Ctx, 0);
8762 A->setImplicit(true);
8763 return A;
8764 }
8765
8766 SpeculativeLoadHardeningAttr(SourceRange R, ASTContext &Ctx
8767 , unsigned SI
8768 )
8769 : InheritableAttr(attr::SpeculativeLoadHardening, R, SI, false, false)
8770 {
8771 }
8772
8773 SpeculativeLoadHardeningAttr *clone(ASTContext &C) const;
8774 void printPretty(raw_ostream &OS,
8775 const PrintingPolicy &Policy) const;
8776 const char *getSpelling() const;
8777
8778
8779 static bool classof(const Attr *A) { return A->getKind() == attr::SpeculativeLoadHardening; }
8780};
8781
8782class StdCallAttr : public InheritableAttr {
8783public:
8784 static StdCallAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
8785 auto *A = new (Ctx) StdCallAttr(Loc, Ctx, 0);
8786 A->setImplicit(true);
8787 return A;
8788 }
8789
8790 StdCallAttr(SourceRange R, ASTContext &Ctx
8791 , unsigned SI
8792 )
8793 : InheritableAttr(attr::StdCall, R, SI, false, false)
8794 {
8795 }
8796
8797 StdCallAttr *clone(ASTContext &C) const;
8798 void printPretty(raw_ostream &OS,
8799 const PrintingPolicy &Policy) const;
8800 const char *getSpelling() const;
8801
8802
8803 static bool classof(const Attr *A) { return A->getKind() == attr::StdCall; }
8804};
8805
8806class SuppressAttr : public StmtAttr {
8807 unsigned diagnosticIdentifiers_Size;
8808 StringRef *diagnosticIdentifiers_;
8809
8810public:
8811 static SuppressAttr *CreateImplicit(ASTContext &Ctx, StringRef *DiagnosticIdentifiers, unsigned DiagnosticIdentifiersSize, SourceRange Loc = SourceRange()) {
8812 auto *A = new (Ctx) SuppressAttr(Loc, Ctx, DiagnosticIdentifiers, DiagnosticIdentifiersSize, 0);
8813 A->setImplicit(true);
8814 return A;
8815 }
8816
8817 SuppressAttr(SourceRange R, ASTContext &Ctx
8818 , StringRef *DiagnosticIdentifiers, unsigned DiagnosticIdentifiersSize
8819 , unsigned SI
8820 )
8821 : StmtAttr(attr::Suppress, R, SI, false)
8822 , diagnosticIdentifiers_Size(DiagnosticIdentifiersSize), diagnosticIdentifiers_(new (Ctx, 16) StringRef[diagnosticIdentifiers_Size])
8823 {
8824 for (size_t I = 0, E = diagnosticIdentifiers_Size; I != E;
8825 ++I) {
8826 StringRef Ref = DiagnosticIdentifiers[I];
8827 if (!Ref.empty()) {
8828 char *Mem = new (Ctx, 1) char[Ref.size()];
8829 std::memcpy(Mem, Ref.data(), Ref.size());
8830 diagnosticIdentifiers_[I] = StringRef(Mem, Ref.size());
8831 }
8832 }
8833 }
8834
8835 SuppressAttr(SourceRange R, ASTContext &Ctx
8836 , unsigned SI
8837 )
8838 : StmtAttr(attr::Suppress, R, SI, false)
8839 , diagnosticIdentifiers_Size(0), diagnosticIdentifiers_(nullptr)
8840 {
8841 }
8842
8843 SuppressAttr *clone(ASTContext &C) const;
8844 void printPretty(raw_ostream &OS,
8845 const PrintingPolicy &Policy) const;
8846 const char *getSpelling() const;
8847 typedef StringRef* diagnosticIdentifiers_iterator;
8848 diagnosticIdentifiers_iterator diagnosticIdentifiers_begin() const { return diagnosticIdentifiers_; }
8849 diagnosticIdentifiers_iterator diagnosticIdentifiers_end() const { return diagnosticIdentifiers_ + diagnosticIdentifiers_Size; }
8850 unsigned diagnosticIdentifiers_size() const { return diagnosticIdentifiers_Size; }
8851 llvm::iterator_range<diagnosticIdentifiers_iterator> diagnosticIdentifiers() const { return llvm::make_range(diagnosticIdentifiers_begin(), diagnosticIdentifiers_end()); }
8852
8853
8854
8855
8856 static bool classof(const Attr *A) { return A->getKind() == attr::Suppress; }
8857};
8858
8859class SwiftCallAttr : public InheritableAttr {
8860public:
8861 static SwiftCallAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
8862 auto *A = new (Ctx) SwiftCallAttr(Loc, Ctx, 0);
8863 A->setImplicit(true);
8864 return A;
8865 }
8866
8867 SwiftCallAttr(SourceRange R, ASTContext &Ctx
8868 , unsigned SI
8869 )
8870 : InheritableAttr(attr::SwiftCall, R, SI, false, false)
8871 {
8872 }
8873
8874 SwiftCallAttr *clone(ASTContext &C) const;
8875 void printPretty(raw_ostream &OS,
8876 const PrintingPolicy &Policy) const;
8877 const char *getSpelling() const;
8878
8879
8880 static bool classof(const Attr *A) { return A->getKind() == attr::SwiftCall; }
8881};
8882
8883class SwiftContextAttr : public ParameterABIAttr {
8884public:
8885 static SwiftContextAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
8886 auto *A = new (Ctx) SwiftContextAttr(Loc, Ctx, 0);
8887 A->setImplicit(true);
8888 return A;
8889 }
8890
8891 SwiftContextAttr(SourceRange R, ASTContext &Ctx
8892 , unsigned SI
8893 )
8894 : ParameterABIAttr(attr::SwiftContext, R, SI, false, false)
8895 {
8896 }
8897
8898 SwiftContextAttr *clone(ASTContext &C) const;
8899 void printPretty(raw_ostream &OS,
8900 const PrintingPolicy &Policy) const;
8901 const char *getSpelling() const;
8902
8903
8904 static bool classof(const Attr *A) { return A->getKind() == attr::SwiftContext; }
8905};
8906
8907class SwiftErrorResultAttr : public ParameterABIAttr {
8908public:
8909 static SwiftErrorResultAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
8910 auto *A = new (Ctx) SwiftErrorResultAttr(Loc, Ctx, 0);
8911 A->setImplicit(true);
8912 return A;
8913 }
8914
8915 SwiftErrorResultAttr(SourceRange R, ASTContext &Ctx
8916 , unsigned SI
8917 )
8918 : ParameterABIAttr(attr::SwiftErrorResult, R, SI, false, false)
8919 {
8920 }
8921
8922 SwiftErrorResultAttr *clone(ASTContext &C) const;
8923 void printPretty(raw_ostream &OS,
8924 const PrintingPolicy &Policy) const;
8925 const char *getSpelling() const;
8926
8927
8928 static bool classof(const Attr *A) { return A->getKind() == attr::SwiftErrorResult; }
8929};
8930
8931class SwiftIndirectResultAttr : public ParameterABIAttr {
8932public:
8933 static SwiftIndirectResultAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
8934 auto *A = new (Ctx) SwiftIndirectResultAttr(Loc, Ctx, 0);
8935 A->setImplicit(true);
8936 return A;
8937 }
8938
8939 SwiftIndirectResultAttr(SourceRange R, ASTContext &Ctx
8940 , unsigned SI
8941 )
8942 : ParameterABIAttr(attr::SwiftIndirectResult, R, SI, false, false)
8943 {
8944 }
8945
8946 SwiftIndirectResultAttr *clone(ASTContext &C) const;
8947 void printPretty(raw_ostream &OS,
8948 const PrintingPolicy &Policy) const;
8949 const char *getSpelling() const;
8950
8951
8952 static bool classof(const Attr *A) { return A->getKind() == attr::SwiftIndirectResult; }
8953};
8954
8955class SysVABIAttr : public InheritableAttr {
8956public:
8957 static SysVABIAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
8958 auto *A = new (Ctx) SysVABIAttr(Loc, Ctx, 0);
8959 A->setImplicit(true);
8960 return A;
8961 }
8962
8963 SysVABIAttr(SourceRange R, ASTContext &Ctx
8964 , unsigned SI
8965 )
8966 : InheritableAttr(attr::SysVABI, R, SI, false, false)
8967 {
8968 }
8969
8970 SysVABIAttr *clone(ASTContext &C) const;
8971 void printPretty(raw_ostream &OS,
8972 const PrintingPolicy &Policy) const;
8973 const char *getSpelling() const;
8974
8975
8976 static bool classof(const Attr *A) { return A->getKind() == attr::SysVABI; }
8977};
8978
8979class TLSModelAttr : public InheritableAttr {
8980unsigned modelLength;
8981char *model;
8982
8983public:
8984 static TLSModelAttr *CreateImplicit(ASTContext &Ctx, llvm::StringRef Model, SourceRange Loc = SourceRange()) {
8985 auto *A = new (Ctx) TLSModelAttr(Loc, Ctx, Model, 0);
8986 A->setImplicit(true);
8987 return A;
8988 }
8989
8990 TLSModelAttr(SourceRange R, ASTContext &Ctx
8991 , llvm::StringRef Model
8992 , unsigned SI
8993 )
8994 : InheritableAttr(attr::TLSModel, R, SI, false, false)
8995 , modelLength(Model.size()),model(new (Ctx, 1) char[modelLength])
8996 {
8997 if (!Model.empty())
8998 std::memcpy(model, Model.data(), modelLength);
8999 }
9000
9001 TLSModelAttr *clone(ASTContext &C) const;
9002 void printPretty(raw_ostream &OS,
9003 const PrintingPolicy &Policy) const;
9004 const char *getSpelling() const;
9005 llvm::StringRef getModel() const {
9006 return llvm::StringRef(model, modelLength);
9007 }
9008 unsigned getModelLength() const {
9009 return modelLength;
9010 }
9011 void setModel(ASTContext &C, llvm::StringRef S) {
9012 modelLength = S.size();
9013 this->model = new (C, 1) char [modelLength];
9014 if (!S.empty())
9015 std::memcpy(this->model, S.data(), modelLength);
9016 }
9017
9018
9019
9020 static bool classof(const Attr *A) { return A->getKind() == attr::TLSModel; }
9021};
9022
9023class TargetAttr : public InheritableAttr {
9024unsigned featuresStrLength;
9025char *featuresStr;
9026
9027public:
9028 static TargetAttr *CreateImplicit(ASTContext &Ctx, llvm::StringRef FeaturesStr, SourceRange Loc = SourceRange()) {
9029 auto *A = new (Ctx) TargetAttr(Loc, Ctx, FeaturesStr, 0);
9030 A->setImplicit(true);
9031 return A;
9032 }
9033
9034 TargetAttr(SourceRange R, ASTContext &Ctx
9035 , llvm::StringRef FeaturesStr
9036 , unsigned SI
9037 )
9038 : InheritableAttr(attr::Target, R, SI, false, false)
9039 , featuresStrLength(FeaturesStr.size()),featuresStr(new (Ctx, 1) char[featuresStrLength])
9040 {
9041 if (!FeaturesStr.empty())
9042 std::memcpy(featuresStr, FeaturesStr.data(), featuresStrLength);
9043 }
9044
9045 TargetAttr *clone(ASTContext &C) const;
9046 void printPretty(raw_ostream &OS,
9047 const PrintingPolicy &Policy) const;
9048 const char *getSpelling() const;
9049 llvm::StringRef getFeaturesStr() const {
9050 return llvm::StringRef(featuresStr, featuresStrLength);
9051 }
9052 unsigned getFeaturesStrLength() const {
9053 return featuresStrLength;
9054 }
9055 void setFeaturesStr(ASTContext &C, llvm::StringRef S) {
9056 featuresStrLength = S.size();
9057 this->featuresStr = new (C, 1) char [featuresStrLength];
9058 if (!S.empty())
9059 std::memcpy(this->featuresStr, S.data(), featuresStrLength);
9060 }
9061
9062
9063 struct ParsedTargetAttr {
9064 std::vector<std::string> Features;
9065 StringRef Architecture;
9066 bool DuplicateArchitecture = false;
9067 bool operator ==(const ParsedTargetAttr &Other) const {
9068 return DuplicateArchitecture == Other.DuplicateArchitecture &&
9069 Architecture == Other.Architecture && Features == Other.Features;
9070 }
9071 };
9072 ParsedTargetAttr parse() const {
9073 return parse(getFeaturesStr());
9074 }
9075
9076 StringRef getArchitecture() const {
9077 StringRef Features = getFeaturesStr();
9078 if (Features == "default") return {};
9079
9080 SmallVector<StringRef, 1> AttrFeatures;
9081 Features.split(AttrFeatures, ",");
9082
9083 for (auto &Feature : AttrFeatures) {
9084 Feature = Feature.trim();
9085 if (Feature.startswith("arch="))
9086 return Feature.drop_front(sizeof("arch=") - 1);
9087 }
9088 return "";
9089 }
9090
9091 // Gets the list of features as simple string-refs with no +/- or 'no-'.
9092 // Only adds the items to 'Out' that are additions.
9093 void getAddedFeatures(llvm::SmallVectorImpl<StringRef> &Out) const {
9094 StringRef Features = getFeaturesStr();
9095 if (Features == "default") return;
9096
9097 SmallVector<StringRef, 1> AttrFeatures;
9098 Features.split(AttrFeatures, ",");
9099
9100 for (auto &Feature : AttrFeatures) {
9101 Feature = Feature.trim();
9102
9103 if (!Feature.startswith("no-") && !Feature.startswith("arch=") &&
9104 !Feature.startswith("fpmath=") && !Feature.startswith("tune="))
9105 Out.push_back(Feature);
9106 }
9107 }
9108
9109 template<class Compare>
9110 ParsedTargetAttr parse(Compare cmp) const {
9111 ParsedTargetAttr Attrs = parse();
9112 llvm::sort(std::begin(Attrs.Features), std::end(Attrs.Features), cmp);
9113 return Attrs;
9114 }
9115
9116 bool isDefaultVersion() const { return getFeaturesStr() == "default"; }
9117
9118 static ParsedTargetAttr parse(StringRef Features) {
9119 ParsedTargetAttr Ret;
9120 if (Features == "default") return Ret;
9121 SmallVector<StringRef, 1> AttrFeatures;
9122 Features.split(AttrFeatures, ",");
9123
9124 // Grab the various features and prepend a "+" to turn on the feature to
9125 // the backend and add them to our existing set of features.
9126 for (auto &Feature : AttrFeatures) {
9127 // Go ahead and trim whitespace rather than either erroring or
9128 // accepting it weirdly.
9129 Feature = Feature.trim();
9130
9131 // We don't support cpu tuning this way currently.
9132 // TODO: Support the fpmath option. It will require checking
9133 // overall feature validity for the function with the rest of the
9134 // attributes on the function.
9135 if (Feature.startswith("fpmath=") || Feature.startswith("tune="))
9136 continue;
9137
9138 // While we're here iterating check for a different target cpu.
9139 if (Feature.startswith("arch=")) {
9140 if (!Ret.Architecture.empty())
9141 Ret.DuplicateArchitecture = true;
9142 else
9143 Ret.Architecture = Feature.split("=").second.trim();
9144 } else if (Feature.startswith("no-"))
9145 Ret.Features.push_back("-" + Feature.split("-").second.str());
9146 else
9147 Ret.Features.push_back("+" + Feature.str());
9148 }
9149 return Ret;
9150 }
9151
9152
9153 static bool classof(const Attr *A) { return A->getKind() == attr::Target; }
9154};
9155
9156class TestTypestateAttr : public InheritableAttr {
9157public:
9158 enum ConsumedState {
9159 Consumed,
9160 Unconsumed
9161 };
9162private:
9163 ConsumedState testState;
9164
9165public:
9166 static TestTypestateAttr *CreateImplicit(ASTContext &Ctx, ConsumedState TestState, SourceRange Loc = SourceRange()) {
9167 auto *A = new (Ctx) TestTypestateAttr(Loc, Ctx, TestState, 0);
9168 A->setImplicit(true);
9169 return A;
9170 }
9171
9172 TestTypestateAttr(SourceRange R, ASTContext &Ctx
9173 , ConsumedState TestState
9174 , unsigned SI
9175 )
9176 : InheritableAttr(attr::TestTypestate, R, SI, false, false)
9177 , testState(TestState)
9178 {
9179 }
9180
9181 TestTypestateAttr *clone(ASTContext &C) const;
9182 void printPretty(raw_ostream &OS,
9183 const PrintingPolicy &Policy) const;
9184 const char *getSpelling() const;
9185 ConsumedState getTestState() const {
9186 return testState;
9187 }
9188
9189 static bool ConvertStrToConsumedState(StringRef Val, ConsumedState &Out) {
9190 Optional<ConsumedState> R = llvm::StringSwitch<Optional<ConsumedState>>(Val)
9191 .Case("consumed", TestTypestateAttr::Consumed)
9192 .Case("unconsumed", TestTypestateAttr::Unconsumed)
9193 .Default(Optional<ConsumedState>());
9194 if (R) {
9195 Out = *R;
9196 return true;
9197 }
9198 return false;
9199 }
9200
9201 static const char *ConvertConsumedStateToStr(ConsumedState Val) {
9202 switch(Val) {
9203 case TestTypestateAttr::Consumed: return "consumed";
9204 case TestTypestateAttr::Unconsumed: return "unconsumed";
9205 }
9206 llvm_unreachable("No enumerator with that value")::llvm::llvm_unreachable_internal("No enumerator with that value"
, "/build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 9206)
;
9207 }
9208
9209
9210 static bool classof(const Attr *A) { return A->getKind() == attr::TestTypestate; }
9211};
9212
9213class ThisCallAttr : public InheritableAttr {
9214public:
9215 static ThisCallAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
9216 auto *A = new (Ctx) ThisCallAttr(Loc, Ctx, 0);
9217 A->setImplicit(true);
9218 return A;
9219 }
9220
9221 ThisCallAttr(SourceRange R, ASTContext &Ctx
9222 , unsigned SI
9223 )
9224 : InheritableAttr(attr::ThisCall, R, SI, false, false)
9225 {
9226 }
9227
9228 ThisCallAttr *clone(ASTContext &C) const;
9229 void printPretty(raw_ostream &OS,
9230 const PrintingPolicy &Policy) const;
9231 const char *getSpelling() const;
9232
9233
9234 static bool classof(const Attr *A) { return A->getKind() == attr::ThisCall; }
9235};
9236
9237class ThreadAttr : public Attr {
9238public:
9239 static ThreadAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
9240 auto *A = new (Ctx) ThreadAttr(Loc, Ctx, 0);
9241 A->setImplicit(true);
9242 return A;
9243 }
9244
9245 ThreadAttr(SourceRange R, ASTContext &Ctx
9246 , unsigned SI
9247 )
9248 : Attr(attr::Thread, R, SI, false)
9249 {
9250 }
9251
9252 ThreadAttr *clone(ASTContext &C) const;
9253 void printPretty(raw_ostream &OS,
9254 const PrintingPolicy &Policy) const;
9255 const char *getSpelling() const;
9256
9257
9258 static bool classof(const Attr *A) { return A->getKind() == attr::Thread; }
9259};
9260
9261class TransparentUnionAttr : public InheritableAttr {
9262public:
9263 static TransparentUnionAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
9264 auto *A = new (Ctx) TransparentUnionAttr(Loc, Ctx, 0);
9265 A->setImplicit(true);
9266 return A;
9267 }
9268
9269 TransparentUnionAttr(SourceRange R, ASTContext &Ctx
9270 , unsigned SI
9271 )
9272 : InheritableAttr(attr::TransparentUnion, R, SI, false, false)
9273 {
9274 }
9275
9276 TransparentUnionAttr *clone(ASTContext &C) const;
9277 void printPretty(raw_ostream &OS,
9278 const PrintingPolicy &Policy) const;
9279 const char *getSpelling() const;
9280
9281
9282 static bool classof(const Attr *A) { return A->getKind() == attr::TransparentUnion; }
9283};
9284
9285class TrivialABIAttr : public InheritableAttr {
9286public:
9287 static TrivialABIAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
9288 auto *A = new (Ctx) TrivialABIAttr(Loc, Ctx, 0);
9289 A->setImplicit(true);
9290 return A;
9291 }
9292
9293 TrivialABIAttr(SourceRange R, ASTContext &Ctx
9294 , unsigned SI
9295 )
9296 : InheritableAttr(attr::TrivialABI, R, SI, false, false)
9297 {
9298 }
9299
9300 TrivialABIAttr *clone(ASTContext &C) const;
9301 void printPretty(raw_ostream &OS,
9302 const PrintingPolicy &Policy) const;
9303 const char *getSpelling() const;
9304
9305
9306 static bool classof(const Attr *A) { return A->getKind() == attr::TrivialABI; }
9307};
9308
9309class TryAcquireCapabilityAttr : public InheritableAttr {
9310Expr * successValue;
9311
9312 unsigned args_Size;
9313 Expr * *args_;
9314
9315public:
9316 enum Spelling {
9317 GNU_try_acquire_capability = 0,
9318 CXX11_clang_try_acquire_capability = 1,
9319 GNU_try_acquire_shared_capability = 2,
9320 CXX11_clang_try_acquire_shared_capability = 3
9321 };
9322
9323 static TryAcquireCapabilityAttr *CreateImplicit(ASTContext &Ctx, Spelling S, Expr * SuccessValue, Expr * *Args, unsigned ArgsSize, SourceRange Loc = SourceRange()) {
9324 auto *A = new (Ctx) TryAcquireCapabilityAttr(Loc, Ctx, SuccessValue, Args, ArgsSize, S);
9325 A->setImplicit(true);
9326 return A;
9327 }
9328
9329 TryAcquireCapabilityAttr(SourceRange R, ASTContext &Ctx
9330 , Expr * SuccessValue
9331 , Expr * *Args, unsigned ArgsSize
9332 , unsigned SI
9333 )
9334 : InheritableAttr(attr::TryAcquireCapability, R, SI, true, true)
9335 , successValue(SuccessValue)
9336 , args_Size(ArgsSize), args_(new (Ctx, 16) Expr *[args_Size])
9337 {
9338 std::copy(Args, Args + args_Size, args_);
9339 }
9340
9341 TryAcquireCapabilityAttr(SourceRange R, ASTContext &Ctx
9342 , Expr * SuccessValue
9343 , unsigned SI
9344 )
9345 : InheritableAttr(attr::TryAcquireCapability, R, SI, true, true)
9346 , successValue(SuccessValue)
9347 , args_Size(0), args_(nullptr)
9348 {
9349 }
9350
9351 TryAcquireCapabilityAttr *clone(ASTContext &C) const;
9352 void printPretty(raw_ostream &OS,
9353 const PrintingPolicy &Policy) const;
9354 const char *getSpelling() const;
9355 Spelling getSemanticSpelling() const {
9356 switch (SpellingListIndex) {
9357 default: llvm_unreachable("Unknown spelling list index")::llvm::llvm_unreachable_internal("Unknown spelling list index"
, "/build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 9357)
;
9358 case 0: return GNU_try_acquire_capability;
9359 case 1: return CXX11_clang_try_acquire_capability;
9360 case 2: return GNU_try_acquire_shared_capability;
9361 case 3: return CXX11_clang_try_acquire_shared_capability;
9362 }
9363 }
9364 bool isShared() const { return SpellingListIndex == 2 ||
9365 SpellingListIndex == 3; }
9366 Expr * getSuccessValue() const {
9367 return successValue;
9368 }
9369
9370 typedef Expr ** args_iterator;
9371 args_iterator args_begin() const { return args_; }
9372 args_iterator args_end() const { return args_ + args_Size; }
9373 unsigned args_size() const { return args_Size; }
9374 llvm::iterator_range<args_iterator> args() const { return llvm::make_range(args_begin(), args_end()); }
9375
9376
9377
9378
9379 static bool classof(const Attr *A) { return A->getKind() == attr::TryAcquireCapability; }
9380};
9381
9382class TypeNonNullAttr : public TypeAttr {
9383public:
9384 static TypeNonNullAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
9385 auto *A = new (Ctx) TypeNonNullAttr(Loc, Ctx, 0);
9386 A->setImplicit(true);
9387 return A;
9388 }
9389
9390 TypeNonNullAttr(SourceRange R, ASTContext &Ctx
9391 , unsigned SI
9392 )
9393 : TypeAttr(attr::TypeNonNull, R, SI, false)
9394 {
9395 }
9396
9397 TypeNonNullAttr *clone(ASTContext &C) const;
9398 void printPretty(raw_ostream &OS,
9399 const PrintingPolicy &Policy) const;
9400 const char *getSpelling() const;
9401
9402
9403 static bool classof(const Attr *A) { return A->getKind() == attr::TypeNonNull; }
9404};
9405
9406class TypeNullUnspecifiedAttr : public TypeAttr {
9407public:
9408 static TypeNullUnspecifiedAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
9409 auto *A = new (Ctx) TypeNullUnspecifiedAttr(Loc, Ctx, 0);
9410 A->setImplicit(true);
9411 return A;
9412 }
9413
9414 TypeNullUnspecifiedAttr(SourceRange R, ASTContext &Ctx
9415 , unsigned SI
9416 )
9417 : TypeAttr(attr::TypeNullUnspecified, R, SI, false)
9418 {
9419 }
9420
9421 TypeNullUnspecifiedAttr *clone(ASTContext &C) const;
9422 void printPretty(raw_ostream &OS,
9423 const PrintingPolicy &Policy) const;
9424 const char *getSpelling() const;
9425
9426
9427 static bool classof(const Attr *A) { return A->getKind() == attr::TypeNullUnspecified; }
9428};
9429
9430class TypeNullableAttr : public TypeAttr {
9431public:
9432 static TypeNullableAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
9433 auto *A = new (Ctx) TypeNullableAttr(Loc, Ctx, 0);
9434 A->setImplicit(true);
9435 return A;
9436 }
9437
9438 TypeNullableAttr(SourceRange R, ASTContext &Ctx
9439 , unsigned SI
9440 )
9441 : TypeAttr(attr::TypeNullable, R, SI, false)
9442 {
9443 }
9444
9445 TypeNullableAttr *clone(ASTContext &C) const;
9446 void printPretty(raw_ostream &OS,
9447 const PrintingPolicy &Policy) const;
9448 const char *getSpelling() const;
9449
9450
9451 static bool classof(const Attr *A) { return A->getKind() == attr::TypeNullable; }
9452};
9453
9454class TypeTagForDatatypeAttr : public InheritableAttr {
9455IdentifierInfo * argumentKind;
9456
9457TypeSourceInfo * matchingCType;
9458
9459bool layoutCompatible;
9460
9461bool mustBeNull;
9462
9463public:
9464 static TypeTagForDatatypeAttr *CreateImplicit(ASTContext &Ctx, IdentifierInfo * ArgumentKind, TypeSourceInfo * MatchingCType, bool LayoutCompatible, bool MustBeNull, SourceRange Loc = SourceRange()) {
9465 auto *A = new (Ctx) TypeTagForDatatypeAttr(Loc, Ctx, ArgumentKind, MatchingCType, LayoutCompatible, MustBeNull, 0);
9466 A->setImplicit(true);
9467 return A;
9468 }
9469
9470 TypeTagForDatatypeAttr(SourceRange R, ASTContext &Ctx
9471 , IdentifierInfo * ArgumentKind
9472 , TypeSourceInfo * MatchingCType
9473 , bool LayoutCompatible
9474 , bool MustBeNull
9475 , unsigned SI
9476 )
9477 : InheritableAttr(attr::TypeTagForDatatype, R, SI, false, false)
9478 , argumentKind(ArgumentKind)
9479 , matchingCType(MatchingCType)
9480 , layoutCompatible(LayoutCompatible)
9481 , mustBeNull(MustBeNull)
9482 {
9483 }
9484
9485 TypeTagForDatatypeAttr *clone(ASTContext &C) const;
9486 void printPretty(raw_ostream &OS,
9487 const PrintingPolicy &Policy) const;
9488 const char *getSpelling() const;
9489 IdentifierInfo * getArgumentKind() const {
9490 return argumentKind;
9491 }
9492
9493 QualType getMatchingCType() const {
9494 return matchingCType->getType();
9495 } TypeSourceInfo * getMatchingCTypeLoc() const {
9496 return matchingCType;
9497 }
9498
9499 bool getLayoutCompatible() const {
9500 return layoutCompatible;
9501 }
9502
9503 bool getMustBeNull() const {
9504 return mustBeNull;
9505 }
9506
9507
9508
9509 static bool classof(const Attr *A) { return A->getKind() == attr::TypeTagForDatatype; }
9510};
9511
9512class TypeVisibilityAttr : public InheritableAttr {
9513public:
9514 enum VisibilityType {
9515 Default,
9516 Hidden,
9517 Protected
9518 };
9519private:
9520 VisibilityType visibility;
9521
9522public:
9523 static TypeVisibilityAttr *CreateImplicit(ASTContext &Ctx, VisibilityType Visibility, SourceRange Loc = SourceRange()) {
9524 auto *A = new (Ctx) TypeVisibilityAttr(Loc, Ctx, Visibility, 0);
9525 A->setImplicit(true);
9526 return A;
9527 }
9528
9529 TypeVisibilityAttr(SourceRange R, ASTContext &Ctx
9530 , VisibilityType Visibility
9531 , unsigned SI
9532 )
9533 : InheritableAttr(attr::TypeVisibility, R, SI, false, false)
9534 , visibility(Visibility)
9535 {
9536 }
9537
9538 TypeVisibilityAttr *clone(ASTContext &C) const;
9539 void printPretty(raw_ostream &OS,
9540 const PrintingPolicy &Policy) const;
9541 const char *getSpelling() const;
9542 VisibilityType getVisibility() const {
9543 return visibility;
9544 }
9545
9546 static bool ConvertStrToVisibilityType(StringRef Val, VisibilityType &Out) {
9547 Optional<VisibilityType> R = llvm::StringSwitch<Optional<VisibilityType>>(Val)
9548 .Case("default", TypeVisibilityAttr::Default)
9549 .Case("hidden", TypeVisibilityAttr::Hidden)
9550 .Case("internal", TypeVisibilityAttr::Hidden)
9551 .Case("protected", TypeVisibilityAttr::Protected)
9552 .Default(Optional<VisibilityType>());
9553 if (R) {
9554 Out = *R;
9555 return true;
9556 }
9557 return false;
9558 }
9559
9560 static const char *ConvertVisibilityTypeToStr(VisibilityType Val) {
9561 switch(Val) {
9562 case TypeVisibilityAttr::Default: return "default";
9563 case TypeVisibilityAttr::Hidden: return "hidden";
9564 case TypeVisibilityAttr::Protected: return "protected";
9565 }
9566 llvm_unreachable("No enumerator with that value")::llvm::llvm_unreachable_internal("No enumerator with that value"
, "/build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 9566)
;
9567 }
9568
9569
9570 static bool classof(const Attr *A) { return A->getKind() == attr::TypeVisibility; }
9571};
9572
9573class UPtrAttr : public TypeAttr {
9574public:
9575 static UPtrAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
9576 auto *A = new (Ctx) UPtrAttr(Loc, Ctx, 0);
9577 A->setImplicit(true);
9578 return A;
9579 }
9580
9581 UPtrAttr(SourceRange R, ASTContext &Ctx
9582 , unsigned SI
9583 )
9584 : TypeAttr(attr::UPtr, R, SI, false)
9585 {
9586 }
9587
9588 UPtrAttr *clone(ASTContext &C) const;
9589 void printPretty(raw_ostream &OS,
9590 const PrintingPolicy &Policy) const;
9591 const char *getSpelling() const;
9592
9593
9594 static bool classof(const Attr *A) { return A->getKind() == attr::UPtr; }
9595};
9596
9597class UnavailableAttr : public InheritableAttr {
9598unsigned messageLength;
9599char *message;
9600
9601public:
9602 enum ImplicitReason {
9603 IR_None,
9604 IR_ARCForbiddenType,
9605 IR_ForbiddenWeak,
9606 IR_ARCForbiddenConversion,
9607 IR_ARCInitReturnsUnrelated,
9608 IR_ARCFieldWithOwnership
9609 };
9610private:
9611 ImplicitReason implicitReason;
9612
9613public:
9614 static UnavailableAttr *CreateImplicit(ASTContext &Ctx, llvm::StringRef Message, ImplicitReason ImplicitReason, SourceRange Loc = SourceRange()) {
9615 auto *A = new (Ctx) UnavailableAttr(Loc, Ctx, Message, ImplicitReason, 0);
9616 A->setImplicit(true);
9617 return A;
9618 }
9619
9620 static UnavailableAttr *CreateImplicit(ASTContext &Ctx, llvm::StringRef Message, SourceRange Loc = SourceRange()) {
9621 auto *A = new (Ctx) UnavailableAttr(Loc, Ctx, Message, 0);
9622 A->setImplicit(true);
9623 return A;
9624 }
9625
9626 UnavailableAttr(SourceRange R, ASTContext &Ctx
9627 , llvm::StringRef Message
9628 , ImplicitReason ImplicitReason
9629 , unsigned SI
9630 )
9631 : InheritableAttr(attr::Unavailable, R, SI, false, false)
9632 , messageLength(Message.size()),message(new (Ctx, 1) char[messageLength])
9633 , implicitReason(ImplicitReason)
9634 {
9635 if (!Message.empty())
9636 std::memcpy(message, Message.data(), messageLength);
9637 }
9638
9639 UnavailableAttr(SourceRange R, ASTContext &Ctx
9640 , llvm::StringRef Message
9641 , unsigned SI
9642 )
9643 : InheritableAttr(attr::Unavailable, R, SI, false, false)
9644 , messageLength(Message.size()),message(new (Ctx, 1) char[messageLength])
9645 , implicitReason(ImplicitReason(0))
9646 {
9647 if (!Message.empty())
9648 std::memcpy(message, Message.data(), messageLength);
9649 }
9650
9651 UnavailableAttr(SourceRange R, ASTContext &Ctx
9652 , unsigned SI
9653 )
9654 : InheritableAttr(attr::Unavailable, R, SI, false, false)
9655 , messageLength(0),message(nullptr)
9656 , implicitReason(ImplicitReason(0))
9657 {
9658 }
9659
9660 UnavailableAttr *clone(ASTContext &C) const;
9661 void printPretty(raw_ostream &OS,
9662 const PrintingPolicy &Policy) const;
9663 const char *getSpelling() const;
9664 llvm::StringRef getMessage() const {
9665 return llvm::StringRef(message, messageLength);
9666 }
9667 unsigned getMessageLength() const {
9668 return messageLength;
9669 }
9670 void setMessage(ASTContext &C, llvm::StringRef S) {
9671 messageLength = S.size();
9672 this->message = new (C, 1) char [messageLength];
9673 if (!S.empty())
9674 std::memcpy(this->message, S.data(), messageLength);
9675 }
9676
9677 ImplicitReason getImplicitReason() const {
9678 return implicitReason;
9679 }
9680
9681
9682
9683 static bool classof(const Attr *A) { return A->getKind() == attr::Unavailable; }
9684};
9685
9686class UninitializedAttr : public InheritableAttr {
9687public:
9688 static UninitializedAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
9689 auto *A = new (Ctx) UninitializedAttr(Loc, Ctx, 0);
9690 A->setImplicit(true);
9691 return A;
9692 }
9693
9694 UninitializedAttr(SourceRange R, ASTContext &Ctx
9695 , unsigned SI
9696 )
9697 : InheritableAttr(attr::Uninitialized, R, SI, false, false)
9698 {
9699 }
9700
9701 UninitializedAttr *clone(ASTContext &C) const;
9702 void printPretty(raw_ostream &OS,
9703 const PrintingPolicy &Policy) const;
9704 const char *getSpelling() const;
9705
9706
9707 static bool classof(const Attr *A) { return A->getKind() == attr::Uninitialized; }
9708};
9709
9710class UnusedAttr : public InheritableAttr {
9711public:
9712 enum Spelling {
9713 CXX11_maybe_unused = 0,
9714 GNU_unused = 1,
9715 CXX11_gnu_unused = 2,
9716 C2x_maybe_unused = 3
9717 };
9718
9719 static UnusedAttr *CreateImplicit(ASTContext &Ctx, Spelling S, SourceRange Loc = SourceRange()) {
9720 auto *A = new (Ctx) UnusedAttr(Loc, Ctx, S);
9721 A->setImplicit(true);
9722 return A;
9723 }
9724
9725 UnusedAttr(SourceRange R, ASTContext &Ctx
9726 , unsigned SI
9727 )
9728 : InheritableAttr(attr::Unused, R, SI, false, false)
9729 {
9730 }
9731
9732 UnusedAttr *clone(ASTContext &C) const;
9733 void printPretty(raw_ostream &OS,
9734 const PrintingPolicy &Policy) const;
9735 const char *getSpelling() const;
9736 Spelling getSemanticSpelling() const {
9737 switch (SpellingListIndex) {
9738 default: llvm_unreachable("Unknown spelling list index")::llvm::llvm_unreachable_internal("Unknown spelling list index"
, "/build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 9738)
;
9739 case 0: return CXX11_maybe_unused;
9740 case 1: return GNU_unused;
9741 case 2: return CXX11_gnu_unused;
9742 case 3: return C2x_maybe_unused;
9743 }
9744 }
9745
9746
9747 static bool classof(const Attr *A) { return A->getKind() == attr::Unused; }
9748};
9749
9750class UsedAttr : public InheritableAttr {
9751public:
9752 static UsedAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
9753 auto *A = new (Ctx) UsedAttr(Loc, Ctx, 0);
9754 A->setImplicit(true);
9755 return A;
9756 }
9757
9758 UsedAttr(SourceRange R, ASTContext &Ctx
9759 , unsigned SI
9760 )
9761 : InheritableAttr(attr::Used, R, SI, false, false)
9762 {
9763 }
9764
9765 UsedAttr *clone(ASTContext &C) const;
9766 void printPretty(raw_ostream &OS,
9767 const PrintingPolicy &Policy) const;
9768 const char *getSpelling() const;
9769
9770
9771 static bool classof(const Attr *A) { return A->getKind() == attr::Used; }
9772};
9773
9774class UuidAttr : public InheritableAttr {
9775unsigned guidLength;
9776char *guid;
9777
9778public:
9779 static UuidAttr *CreateImplicit(ASTContext &Ctx, llvm::StringRef Guid, SourceRange Loc = SourceRange()) {
9780 auto *A = new (Ctx) UuidAttr(Loc, Ctx, Guid, 0);
9781 A->setImplicit(true);
9782 return A;
9783 }
9784
9785 UuidAttr(SourceRange R, ASTContext &Ctx
9786 , llvm::StringRef Guid
9787 , unsigned SI
9788 )
9789 : InheritableAttr(attr::Uuid, R, SI, false, false)
9790 , guidLength(Guid.size()),guid(new (Ctx, 1) char[guidLength])
9791 {
9792 if (!Guid.empty())
9793 std::memcpy(guid, Guid.data(), guidLength);
9794 }
9795
9796 UuidAttr *clone(ASTContext &C) const;
9797 void printPretty(raw_ostream &OS,
9798 const PrintingPolicy &Policy) const;
9799 const char *getSpelling() const;
9800 llvm::StringRef getGuid() const {
9801 return llvm::StringRef(guid, guidLength);
9802 }
9803 unsigned getGuidLength() const {
9804 return guidLength;
9805 }
9806 void setGuid(ASTContext &C, llvm::StringRef S) {
9807 guidLength = S.size();
9808 this->guid = new (C, 1) char [guidLength];
9809 if (!S.empty())
9810 std::memcpy(this->guid, S.data(), guidLength);
9811 }
9812
9813
9814
9815 static bool classof(const Attr *A) { return A->getKind() == attr::Uuid; }
9816};
9817
9818class VecReturnAttr : public InheritableAttr {
9819public:
9820 static VecReturnAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
9821 auto *A = new (Ctx) VecReturnAttr(Loc, Ctx, 0);
9822 A->setImplicit(true);
9823 return A;
9824 }
9825
9826 VecReturnAttr(SourceRange R, ASTContext &Ctx
9827 , unsigned SI
9828 )
9829 : InheritableAttr(attr::VecReturn, R, SI, false, false)
9830 {
9831 }
9832
9833 VecReturnAttr *clone(ASTContext &C) const;
9834 void printPretty(raw_ostream &OS,
9835 const PrintingPolicy &Policy) const;
9836 const char *getSpelling() const;
9837
9838
9839 static bool classof(const Attr *A) { return A->getKind() == attr::VecReturn; }
9840};
9841
9842class VecTypeHintAttr : public InheritableAttr {
9843TypeSourceInfo * typeHint;
9844
9845public:
9846 static VecTypeHintAttr *CreateImplicit(ASTContext &Ctx, TypeSourceInfo * TypeHint, SourceRange Loc = SourceRange()) {
9847 auto *A = new (Ctx) VecTypeHintAttr(Loc, Ctx, TypeHint, 0);
9848 A->setImplicit(true);
9849 return A;
9850 }
9851
9852 VecTypeHintAttr(SourceRange R, ASTContext &Ctx
9853 , TypeSourceInfo * TypeHint
9854 , unsigned SI
9855 )
9856 : InheritableAttr(attr::VecTypeHint, R, SI, false, false)
9857 , typeHint(TypeHint)
9858 {
9859 }
9860
9861 VecTypeHintAttr *clone(ASTContext &C) const;
9862 void printPretty(raw_ostream &OS,
9863 const PrintingPolicy &Policy) const;
9864 const char *getSpelling() const;
9865 QualType getTypeHint() const {
9866 return typeHint->getType();
9867 } TypeSourceInfo * getTypeHintLoc() const {
9868 return typeHint;
9869 }
9870
9871
9872
9873 static bool classof(const Attr *A) { return A->getKind() == attr::VecTypeHint; }
9874};
9875
9876class VectorCallAttr : public InheritableAttr {
9877public:
9878 static VectorCallAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
9879 auto *A = new (Ctx) VectorCallAttr(Loc, Ctx, 0);
9880 A->setImplicit(true);
9881 return A;
9882 }
9883
9884 VectorCallAttr(SourceRange R, ASTContext &Ctx
9885 , unsigned SI
9886 )
9887 : InheritableAttr(attr::VectorCall, R, SI, false, false)
9888 {
9889 }
9890
9891 VectorCallAttr *clone(ASTContext &C) const;
9892 void printPretty(raw_ostream &OS,
9893 const PrintingPolicy &Policy) const;
9894 const char *getSpelling() const;
9895
9896
9897 static bool classof(const Attr *A) { return A->getKind() == attr::VectorCall; }
9898};
9899
9900class VisibilityAttr : public InheritableAttr {
9901public:
9902 enum VisibilityType {
9903 Default,
9904 Hidden,
9905 Protected
9906 };
9907private:
9908 VisibilityType visibility;
9909
9910public:
9911 static VisibilityAttr *CreateImplicit(ASTContext &Ctx, VisibilityType Visibility, SourceRange Loc = SourceRange()) {
9912 auto *A = new (Ctx) VisibilityAttr(Loc, Ctx, Visibility, 0);
9913 A->setImplicit(true);
9914 return A;
9915 }
9916
9917 VisibilityAttr(SourceRange R, ASTContext &Ctx
9918 , VisibilityType Visibility
9919 , unsigned SI
9920 )
9921 : InheritableAttr(attr::Visibility, R, SI, false, false)
9922 , visibility(Visibility)
9923 {
9924 }
9925
9926 VisibilityAttr *clone(ASTContext &C) const;
9927 void printPretty(raw_ostream &OS,
9928 const PrintingPolicy &Policy) const;
9929 const char *getSpelling() const;
9930 VisibilityType getVisibility() const {
9931 return visibility;
9932 }
9933
9934 static bool ConvertStrToVisibilityType(StringRef Val, VisibilityType &Out) {
9935 Optional<VisibilityType> R = llvm::StringSwitch<Optional<VisibilityType>>(Val)
9936 .Case("default", VisibilityAttr::Default)
9937 .Case("hidden", VisibilityAttr::Hidden)
9938 .Case("internal", VisibilityAttr::Hidden)
9939 .Case("protected", VisibilityAttr::Protected)
9940 .Default(Optional<VisibilityType>());
9941 if (R) {
9942 Out = *R;
9943 return true;
9944 }
9945 return false;
9946 }
9947
9948 static const char *ConvertVisibilityTypeToStr(VisibilityType Val) {
9949 switch(Val) {
9950 case VisibilityAttr::Default: return "default";
9951 case VisibilityAttr::Hidden: return "hidden";
9952 case VisibilityAttr::Protected: return "protected";
9953 }
9954 llvm_unreachable("No enumerator with that value")::llvm::llvm_unreachable_internal("No enumerator with that value"
, "/build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 9954)
;
9955 }
9956
9957
9958 static bool classof(const Attr *A) { return A->getKind() == attr::Visibility; }
9959};
9960
9961class WarnUnusedAttr : public InheritableAttr {
9962public:
9963 static WarnUnusedAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
9964 auto *A = new (Ctx) WarnUnusedAttr(Loc, Ctx, 0);
9965 A->setImplicit(true);
9966 return A;
9967 }
9968
9969 WarnUnusedAttr(SourceRange R, ASTContext &Ctx
9970 , unsigned SI
9971 )
9972 : InheritableAttr(attr::WarnUnused, R, SI, false, false)
9973 {
9974 }
9975
9976 WarnUnusedAttr *clone(ASTContext &C) const;
9977 void printPretty(raw_ostream &OS,
9978 const PrintingPolicy &Policy) const;
9979 const char *getSpelling() const;
9980
9981
9982 static bool classof(const Attr *A) { return A->getKind() == attr::WarnUnused; }
9983};
9984
9985class WarnUnusedResultAttr : public InheritableAttr {
9986public:
9987 enum Spelling {
9988 CXX11_nodiscard = 0,
9989 C2x_nodiscard = 1,
9990 CXX11_clang_warn_unused_result = 2,
9991 GNU_warn_unused_result = 3,
9992 CXX11_gnu_warn_unused_result = 4
9993 };
9994
9995 static WarnUnusedResultAttr *CreateImplicit(ASTContext &Ctx, Spelling S, SourceRange Loc = SourceRange()) {
9996 auto *A = new (Ctx) WarnUnusedResultAttr(Loc, Ctx, S);
9997 A->setImplicit(true);
9998 return A;
9999 }
10000
10001 WarnUnusedResultAttr(SourceRange R, ASTContext &Ctx
10002 , unsigned SI
10003 )
10004 : InheritableAttr(attr::WarnUnusedResult, R, SI, false, false)
10005 {
10006 }
10007
10008 WarnUnusedResultAttr *clone(ASTContext &C) const;
10009 void printPretty(raw_ostream &OS,
10010 const PrintingPolicy &Policy) const;
10011 const char *getSpelling() const;
10012 Spelling getSemanticSpelling() const {
10013 switch (SpellingListIndex) {
10014 default: llvm_unreachable("Unknown spelling list index")::llvm::llvm_unreachable_internal("Unknown spelling list index"
, "/build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 10014)
;
10015 case 0: return CXX11_nodiscard;
10016 case 1: return C2x_nodiscard;
10017 case 2: return CXX11_clang_warn_unused_result;
10018 case 3: return GNU_warn_unused_result;
10019 case 4: return CXX11_gnu_warn_unused_result;
10020 }
10021 }
10022
10023
10024 static bool classof(const Attr *A) { return A->getKind() == attr::WarnUnusedResult; }
10025};
10026
10027class WeakAttr : public InheritableAttr {
10028public:
10029 static WeakAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
10030 auto *A = new (Ctx) WeakAttr(Loc, Ctx, 0);
10031 A->setImplicit(true);
10032 return A;
10033 }
10034
10035 WeakAttr(SourceRange R, ASTContext &Ctx
10036 , unsigned SI
10037 )
10038 : InheritableAttr(attr::Weak, R, SI, false, false)
10039 {
10040 }
10041
10042 WeakAttr *clone(ASTContext &C) const;
10043 void printPretty(raw_ostream &OS,
10044 const PrintingPolicy &Policy) const;
10045 const char *getSpelling() const;
10046
10047
10048 static bool classof(const Attr *A) { return A->getKind() == attr::Weak; }
10049};
10050
10051class WeakImportAttr : public InheritableAttr {
10052public:
10053 static WeakImportAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
10054 auto *A = new (Ctx) WeakImportAttr(Loc, Ctx, 0);
10055 A->setImplicit(true);
10056 return A;
10057 }
10058
10059 WeakImportAttr(SourceRange R, ASTContext &Ctx
10060 , unsigned SI
10061 )
10062 : InheritableAttr(attr::WeakImport, R, SI, false, false)
10063 {
10064 }
10065
10066 WeakImportAttr *clone(ASTContext &C) const;
10067 void printPretty(raw_ostream &OS,
10068 const PrintingPolicy &Policy) const;
10069 const char *getSpelling() const;
10070
10071
10072 static bool classof(const Attr *A) { return A->getKind() == attr::WeakImport; }
10073};
10074
10075class WeakRefAttr : public InheritableAttr {
10076unsigned aliaseeLength;
10077char *aliasee;
10078
10079public:
10080 static WeakRefAttr *CreateImplicit(ASTContext &Ctx, llvm::StringRef Aliasee, SourceRange Loc = SourceRange()) {
10081 auto *A = new (Ctx) WeakRefAttr(Loc, Ctx, Aliasee, 0);
10082 A->setImplicit(true);
10083 return A;
10084 }
10085
10086 WeakRefAttr(SourceRange R, ASTContext &Ctx
10087 , llvm::StringRef Aliasee
10088 , unsigned SI
10089 )
10090 : InheritableAttr(attr::WeakRef, R, SI, false, false)
10091 , aliaseeLength(Aliasee.size()),aliasee(new (Ctx, 1) char[aliaseeLength])
10092 {
10093 if (!Aliasee.empty())
10094 std::memcpy(aliasee, Aliasee.data(), aliaseeLength);
10095 }
10096
10097 WeakRefAttr(SourceRange R, ASTContext &Ctx
10098 , unsigned SI
10099 )
10100 : InheritableAttr(attr::WeakRef, R, SI, false, false)
10101 , aliaseeLength(0),aliasee(nullptr)
10102 {
10103 }
10104
10105 WeakRefAttr *clone(ASTContext &C) const;
10106 void printPretty(raw_ostream &OS,
10107 const PrintingPolicy &Policy) const;
10108 const char *getSpelling() const;
10109 llvm::StringRef getAliasee() const {
10110 return llvm::StringRef(aliasee, aliaseeLength);
10111 }
10112 unsigned getAliaseeLength() const {
10113 return aliaseeLength;
10114 }
10115 void setAliasee(ASTContext &C, llvm::StringRef S) {
10116 aliaseeLength = S.size();
10117 this->aliasee = new (C, 1) char [aliaseeLength];
10118 if (!S.empty())
10119 std::memcpy(this->aliasee, S.data(), aliaseeLength);
10120 }
10121
10122
10123
10124 static bool classof(const Attr *A) { return A->getKind() == attr::WeakRef; }
10125};
10126
10127class WebAssemblyImportModuleAttr : public InheritableAttr {
10128unsigned importModuleLength;
10129char *importModule;
10130
10131public:
10132 static WebAssemblyImportModuleAttr *CreateImplicit(ASTContext &Ctx, llvm::StringRef ImportModule, SourceRange Loc = SourceRange()) {
10133 auto *A = new (Ctx) WebAssemblyImportModuleAttr(Loc, Ctx, ImportModule, 0);
10134 A->setImplicit(true);
10135 return A;
10136 }
10137
10138 WebAssemblyImportModuleAttr(SourceRange R, ASTContext &Ctx
10139 , llvm::StringRef ImportModule
10140 , unsigned SI
10141 )
10142 : InheritableAttr(attr::WebAssemblyImportModule, R, SI, false, false)
10143 , importModuleLength(ImportModule.size()),importModule(new (Ctx, 1) char[importModuleLength])
10144 {
10145 if (!ImportModule.empty())
10146 std::memcpy(importModule, ImportModule.data(), importModuleLength);
10147 }
10148
10149 WebAssemblyImportModuleAttr *clone(ASTContext &C) const;
10150 void printPretty(raw_ostream &OS,
10151 const PrintingPolicy &Policy) const;
10152 const char *getSpelling() const;
10153 llvm::StringRef getImportModule() const {
10154 return llvm::StringRef(importModule, importModuleLength);
10155 }
10156 unsigned getImportModuleLength() const {
10157 return importModuleLength;
10158 }
10159 void setImportModule(ASTContext &C, llvm::StringRef S) {
10160 importModuleLength = S.size();
10161 this->importModule = new (C, 1) char [importModuleLength];
10162 if (!S.empty())
10163 std::memcpy(this->importModule, S.data(), importModuleLength);
10164 }
10165
10166
10167
10168 static bool classof(const Attr *A) { return A->getKind() == attr::WebAssemblyImportModule; }
10169};
10170
10171class WebAssemblyImportNameAttr : public InheritableAttr {
10172unsigned importNameLength;
10173char *importName;
10174
10175public:
10176 static WebAssemblyImportNameAttr *CreateImplicit(ASTContext &Ctx, llvm::StringRef ImportName, SourceRange Loc = SourceRange()) {
10177 auto *A = new (Ctx) WebAssemblyImportNameAttr(Loc, Ctx, ImportName, 0);
10178 A->setImplicit(true);
10179 return A;
10180 }
10181
10182 WebAssemblyImportNameAttr(SourceRange R, ASTContext &Ctx
10183 , llvm::StringRef ImportName
10184 , unsigned SI
10185 )
10186 : InheritableAttr(attr::WebAssemblyImportName, R, SI, false, false)
10187 , importNameLength(ImportName.size()),importName(new (Ctx, 1) char[importNameLength])
10188 {
10189 if (!ImportName.empty())
10190 std::memcpy(importName, ImportName.data(), importNameLength);
10191 }
10192
10193 WebAssemblyImportNameAttr *clone(ASTContext &C) const;
10194 void printPretty(raw_ostream &OS,
10195 const PrintingPolicy &Policy) const;
10196 const char *getSpelling() const;
10197 llvm::StringRef getImportName() const {
10198 return llvm::StringRef(importName, importNameLength);
10199 }
10200 unsigned getImportNameLength() const {
10201 return importNameLength;
10202 }
10203 void setImportName(ASTContext &C, llvm::StringRef S) {
10204 importNameLength = S.size();
10205 this->importName = new (C, 1) char [importNameLength];
10206 if (!S.empty())
10207 std::memcpy(this->importName, S.data(), importNameLength);
10208 }
10209
10210
10211
10212 static bool classof(const Attr *A) { return A->getKind() == attr::WebAssemblyImportName; }
10213};
10214
10215class WorkGroupSizeHintAttr : public InheritableAttr {
10216unsigned xDim;
10217
10218unsigned yDim;
10219
10220unsigned zDim;
10221
10222public:
10223 static WorkGroupSizeHintAttr *CreateImplicit(ASTContext &Ctx, unsigned XDim, unsigned YDim, unsigned ZDim, SourceRange Loc = SourceRange()) {
10224 auto *A = new (Ctx) WorkGroupSizeHintAttr(Loc, Ctx, XDim, YDim, ZDim, 0);
10225 A->setImplicit(true);
10226 return A;
10227 }
10228
10229 WorkGroupSizeHintAttr(SourceRange R, ASTContext &Ctx
10230 , unsigned XDim
10231 , unsigned YDim
10232 , unsigned ZDim
10233 , unsigned SI
10234 )
10235 : InheritableAttr(attr::WorkGroupSizeHint, R, SI, false, false)
10236 , xDim(XDim)
10237 , yDim(YDim)
10238 , zDim(ZDim)
10239 {
10240 }
10241
10242 WorkGroupSizeHintAttr *clone(ASTContext &C) const;
10243 void printPretty(raw_ostream &OS,
10244 const PrintingPolicy &Policy) const;
10245 const char *getSpelling() const;
10246 unsigned getXDim() const {
10247 return xDim;
10248 }
10249
10250 unsigned getYDim() const {
10251 return yDim;
10252 }
10253
10254 unsigned getZDim() const {
10255 return zDim;
10256 }
10257
10258
10259
10260 static bool classof(const Attr *A) { return A->getKind() == attr::WorkGroupSizeHint; }
10261};
10262
10263class X86ForceAlignArgPointerAttr : public InheritableAttr {
10264public:
10265 static X86ForceAlignArgPointerAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
10266 auto *A = new (Ctx) X86ForceAlignArgPointerAttr(Loc, Ctx, 0);
10267 A->setImplicit(true);
10268 return A;
10269 }
10270
10271 X86ForceAlignArgPointerAttr(SourceRange R, ASTContext &Ctx
10272 , unsigned SI
10273 )
10274 : InheritableAttr(attr::X86ForceAlignArgPointer, R, SI, false, false)
10275 {
10276 }
10277
10278 X86ForceAlignArgPointerAttr *clone(ASTContext &C) const;
10279 void printPretty(raw_ostream &OS,
10280 const PrintingPolicy &Policy) const;
10281 const char *getSpelling() const;
10282
10283
10284 static bool classof(const Attr *A) { return A->getKind() == attr::X86ForceAlignArgPointer; }
10285};
10286
10287class XRayInstrumentAttr : public InheritableAttr {
10288public:
10289 enum Spelling {
10290 GNU_xray_always_instrument = 0,
10291 CXX11_clang_xray_always_instrument = 1,
10292 C2x_clang_xray_always_instrument = 2,
10293 GNU_xray_never_instrument = 3,
10294 CXX11_clang_xray_never_instrument = 4,
10295 C2x_clang_xray_never_instrument = 5
10296 };
10297
10298 static XRayInstrumentAttr *CreateImplicit(ASTContext &Ctx, Spelling S, SourceRange Loc = SourceRange()) {
10299 auto *A = new (Ctx) XRayInstrumentAttr(Loc, Ctx, S);
10300 A->setImplicit(true);
10301 return A;
10302 }
10303
10304 XRayInstrumentAttr(SourceRange R, ASTContext &Ctx
10305 , unsigned SI
10306 )
10307 : InheritableAttr(attr::XRayInstrument, R, SI, false, false)
10308 {
10309 }
10310
10311 XRayInstrumentAttr *clone(ASTContext &C) const;
10312 void printPretty(raw_ostream &OS,
10313 const PrintingPolicy &Policy) const;
10314 const char *getSpelling() const;
10315 Spelling getSemanticSpelling() const {
10316 switch (SpellingListIndex) {
10317 default: llvm_unreachable("Unknown spelling list index")::llvm::llvm_unreachable_internal("Unknown spelling list index"
, "/build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 10317)
;
10318 case 0: return GNU_xray_always_instrument;
10319 case 1: return CXX11_clang_xray_always_instrument;
10320 case 2: return C2x_clang_xray_always_instrument;
10321 case 3: return GNU_xray_never_instrument;
10322 case 4: return CXX11_clang_xray_never_instrument;
10323 case 5: return C2x_clang_xray_never_instrument;
10324 }
10325 }
10326 bool alwaysXRayInstrument() const { return SpellingListIndex == 0 ||
10327 SpellingListIndex == 1 ||
10328 SpellingListIndex == 2; }
10329 bool neverXRayInstrument() const { return SpellingListIndex == 3 ||
10330 SpellingListIndex == 4 ||
10331 SpellingListIndex == 5; }
10332
10333
10334 static bool classof(const Attr *A) { return A->getKind() == attr::XRayInstrument; }
10335};
10336
10337class XRayLogArgsAttr : public InheritableAttr {
10338unsigned argumentCount;
10339
10340public:
10341 static XRayLogArgsAttr *CreateImplicit(ASTContext &Ctx, unsigned ArgumentCount, SourceRange Loc = SourceRange()) {
10342 auto *A = new (Ctx) XRayLogArgsAttr(Loc, Ctx, ArgumentCount, 0);
10343 A->setImplicit(true);
10344 return A;
10345 }
10346
10347 XRayLogArgsAttr(SourceRange R, ASTContext &Ctx
10348 , unsigned ArgumentCount
10349 , unsigned SI
10350 )
10351 : InheritableAttr(attr::XRayLogArgs, R, SI, false, false)
10352 , argumentCount(ArgumentCount)
10353 {
10354 }
10355
10356 XRayLogArgsAttr *clone(ASTContext &C) const;
10357 void printPretty(raw_ostream &OS,
10358 const PrintingPolicy &Policy) const;
10359 const char *getSpelling() const;
10360 unsigned getArgumentCount() const {
10361 return argumentCount;
10362 }
10363
10364
10365
10366 static bool classof(const Attr *A) { return A->getKind() == attr::XRayLogArgs; }
10367};
10368
10369#endif // LLVM_CLANG_ATTR_CLASSES_INC