Bug Summary

File:build-llvm/tools/clang/include/clang/AST/Attrs.inc
Warning:line 4646, column 5
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SemaDeclObjC.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-eagerly-assume -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -mrelocation-model pic -pic-level 2 -mthread-model posix -relaxed-aliasing -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-7/lib/clang/7.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-7~svn338205/build-llvm/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-7~svn338205/tools/clang/include -I /build/llvm-toolchain-snapshot-7~svn338205/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-7~svn338205/build-llvm/include -I /build/llvm-toolchain-snapshot-7~svn338205/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/8/../../../../include/c++/8 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/8/../../../../include/x86_64-linux-gnu/c++/8 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/8/../../../../include/x86_64-linux-gnu/c++/8 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/8/../../../../include/c++/8/backward -internal-isystem /usr/include/clang/7.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-7/lib/clang/7.0.0/include -internal-externc-isystem /usr/lib/gcc/x86_64-linux-gnu/8/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-7~svn338205/build-llvm/tools/clang/lib/Sema -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -fobjc-runtime=gcc -fno-common -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2018-07-29-043837-17923-1 -x c++ /build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclObjC.cpp -faddrsig

/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclObjC.cpp

1//===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements semantic analysis for Objective C declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "TypeLocBuilder.h"
15#include "clang/AST/ASTConsumer.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/ASTMutationListener.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ExprObjC.h"
21#include "clang/AST/RecursiveASTVisitor.h"
22#include "clang/Basic/SourceManager.h"
23#include "clang/Sema/DeclSpec.h"
24#include "clang/Sema/Lookup.h"
25#include "clang/Sema/Scope.h"
26#include "clang/Sema/ScopeInfo.h"
27#include "clang/Sema/SemaInternal.h"
28#include "llvm/ADT/DenseMap.h"
29#include "llvm/ADT/DenseSet.h"
30
31using namespace clang;
32
33/// Check whether the given method, which must be in the 'init'
34/// family, is a valid member of that family.
35///
36/// \param receiverTypeIfCall - if null, check this as if declaring it;
37/// if non-null, check this as if making a call to it with the given
38/// receiver type
39///
40/// \return true to indicate that there was an error and appropriate
41/// actions were taken
42bool Sema::checkInitMethod(ObjCMethodDecl *method,
43 QualType receiverTypeIfCall) {
44 if (method->isInvalidDecl()) return true;
45
46 // This castAs is safe: methods that don't return an object
47 // pointer won't be inferred as inits and will reject an explicit
48 // objc_method_family(init).
49
50 // We ignore protocols here. Should we? What about Class?
51
52 const ObjCObjectType *result =
53 method->getReturnType()->castAs<ObjCObjectPointerType>()->getObjectType();
54
55 if (result->isObjCId()) {
56 return false;
57 } else if (result->isObjCClass()) {
58 // fall through: always an error
59 } else {
60 ObjCInterfaceDecl *resultClass = result->getInterface();
61 assert(resultClass && "unexpected object type!")(static_cast <bool> (resultClass && "unexpected object type!"
) ? void (0) : __assert_fail ("resultClass && \"unexpected object type!\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 61, __extension__ __PRETTY_FUNCTION__))
;
62
63 // It's okay for the result type to still be a forward declaration
64 // if we're checking an interface declaration.
65 if (!resultClass->hasDefinition()) {
66 if (receiverTypeIfCall.isNull() &&
67 !isa<ObjCImplementationDecl>(method->getDeclContext()))
68 return false;
69
70 // Otherwise, we try to compare class types.
71 } else {
72 // If this method was declared in a protocol, we can't check
73 // anything unless we have a receiver type that's an interface.
74 const ObjCInterfaceDecl *receiverClass = nullptr;
75 if (isa<ObjCProtocolDecl>(method->getDeclContext())) {
76 if (receiverTypeIfCall.isNull())
77 return false;
78
79 receiverClass = receiverTypeIfCall->castAs<ObjCObjectPointerType>()
80 ->getInterfaceDecl();
81
82 // This can be null for calls to e.g. id<Foo>.
83 if (!receiverClass) return false;
84 } else {
85 receiverClass = method->getClassInterface();
86 assert(receiverClass && "method not associated with a class!")(static_cast <bool> (receiverClass && "method not associated with a class!"
) ? void (0) : __assert_fail ("receiverClass && \"method not associated with a class!\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 86, __extension__ __PRETTY_FUNCTION__))
;
87 }
88
89 // If either class is a subclass of the other, it's fine.
90 if (receiverClass->isSuperClassOf(resultClass) ||
91 resultClass->isSuperClassOf(receiverClass))
92 return false;
93 }
94 }
95
96 SourceLocation loc = method->getLocation();
97
98 // If we're in a system header, and this is not a call, just make
99 // the method unusable.
100 if (receiverTypeIfCall.isNull() && getSourceManager().isInSystemHeader(loc)) {
101 method->addAttr(UnavailableAttr::CreateImplicit(Context, "",
102 UnavailableAttr::IR_ARCInitReturnsUnrelated, loc));
103 return true;
104 }
105
106 // Otherwise, it's an error.
107 Diag(loc, diag::err_arc_init_method_unrelated_result_type);
108 method->setInvalidDecl();
109 return true;
110}
111
112/// Issue a warning if the parameter of the overridden method is non-escaping
113/// but the parameter of the overriding method is not.
114static bool diagnoseNoescape(const ParmVarDecl *NewD, const ParmVarDecl *OldD,
115 Sema &S) {
116 if (OldD->hasAttr<NoEscapeAttr>() && !NewD->hasAttr<NoEscapeAttr>()) {
117 S.Diag(NewD->getLocation(), diag::warn_overriding_method_missing_noescape);
118 S.Diag(OldD->getLocation(), diag::note_overridden_marked_noescape);
119 return false;
120 }
121
122 return true;
123}
124
125/// Produce additional diagnostics if a category conforms to a protocol that
126/// defines a method taking a non-escaping parameter.
127static void diagnoseNoescape(const ParmVarDecl *NewD, const ParmVarDecl *OldD,
128 const ObjCCategoryDecl *CD,
129 const ObjCProtocolDecl *PD, Sema &S) {
130 if (!diagnoseNoescape(NewD, OldD, S))
131 S.Diag(CD->getLocation(), diag::note_cat_conform_to_noescape_prot)
132 << CD->IsClassExtension() << PD
133 << cast<ObjCMethodDecl>(NewD->getDeclContext());
134}
135
136void Sema::CheckObjCMethodOverride(ObjCMethodDecl *NewMethod,
137 const ObjCMethodDecl *Overridden) {
138 if (Overridden->hasRelatedResultType() &&
139 !NewMethod->hasRelatedResultType()) {
140 // This can only happen when the method follows a naming convention that
141 // implies a related result type, and the original (overridden) method has
142 // a suitable return type, but the new (overriding) method does not have
143 // a suitable return type.
144 QualType ResultType = NewMethod->getReturnType();
145 SourceRange ResultTypeRange = NewMethod->getReturnTypeSourceRange();
146
147 // Figure out which class this method is part of, if any.
148 ObjCInterfaceDecl *CurrentClass
149 = dyn_cast<ObjCInterfaceDecl>(NewMethod->getDeclContext());
150 if (!CurrentClass) {
151 DeclContext *DC = NewMethod->getDeclContext();
152 if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(DC))
153 CurrentClass = Cat->getClassInterface();
154 else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(DC))
155 CurrentClass = Impl->getClassInterface();
156 else if (ObjCCategoryImplDecl *CatImpl
157 = dyn_cast<ObjCCategoryImplDecl>(DC))
158 CurrentClass = CatImpl->getClassInterface();
159 }
160
161 if (CurrentClass) {
162 Diag(NewMethod->getLocation(),
163 diag::warn_related_result_type_compatibility_class)
164 << Context.getObjCInterfaceType(CurrentClass)
165 << ResultType
166 << ResultTypeRange;
167 } else {
168 Diag(NewMethod->getLocation(),
169 diag::warn_related_result_type_compatibility_protocol)
170 << ResultType
171 << ResultTypeRange;
172 }
173
174 if (ObjCMethodFamily Family = Overridden->getMethodFamily())
175 Diag(Overridden->getLocation(),
176 diag::note_related_result_type_family)
177 << /*overridden method*/ 0
178 << Family;
179 else
180 Diag(Overridden->getLocation(),
181 diag::note_related_result_type_overridden);
182 }
183
184 if ((NewMethod->hasAttr<NSReturnsRetainedAttr>() !=
185 Overridden->hasAttr<NSReturnsRetainedAttr>())) {
186 Diag(NewMethod->getLocation(),
187 getLangOpts().ObjCAutoRefCount
188 ? diag::err_nsreturns_retained_attribute_mismatch
189 : diag::warn_nsreturns_retained_attribute_mismatch)
190 << 1;
191 Diag(Overridden->getLocation(), diag::note_previous_decl) << "method";
192 }
193 if ((NewMethod->hasAttr<NSReturnsNotRetainedAttr>() !=
194 Overridden->hasAttr<NSReturnsNotRetainedAttr>())) {
195 Diag(NewMethod->getLocation(),
196 getLangOpts().ObjCAutoRefCount
197 ? diag::err_nsreturns_retained_attribute_mismatch
198 : diag::warn_nsreturns_retained_attribute_mismatch)
199 << 0;
200 Diag(Overridden->getLocation(), diag::note_previous_decl) << "method";
201 }
202
203 ObjCMethodDecl::param_const_iterator oi = Overridden->param_begin(),
204 oe = Overridden->param_end();
205 for (ObjCMethodDecl::param_iterator ni = NewMethod->param_begin(),
206 ne = NewMethod->param_end();
207 ni != ne && oi != oe; ++ni, ++oi) {
208 const ParmVarDecl *oldDecl = (*oi);
209 ParmVarDecl *newDecl = (*ni);
210 if (newDecl->hasAttr<NSConsumedAttr>() !=
211 oldDecl->hasAttr<NSConsumedAttr>()) {
212 Diag(newDecl->getLocation(),
213 getLangOpts().ObjCAutoRefCount
214 ? diag::err_nsconsumed_attribute_mismatch
215 : diag::warn_nsconsumed_attribute_mismatch);
216 Diag(oldDecl->getLocation(), diag::note_previous_decl) << "parameter";
217 }
218
219 diagnoseNoescape(newDecl, oldDecl, *this);
220 }
221}
222
223/// Check a method declaration for compatibility with the Objective-C
224/// ARC conventions.
225bool Sema::CheckARCMethodDecl(ObjCMethodDecl *method) {
226 ObjCMethodFamily family = method->getMethodFamily();
227 switch (family) {
21
Control jumps to 'case OMF_init:' at line 254
228 case OMF_None:
229 case OMF_finalize:
230 case OMF_retain:
231 case OMF_release:
232 case OMF_autorelease:
233 case OMF_retainCount:
234 case OMF_self:
235 case OMF_initialize:
236 case OMF_performSelector:
237 return false;
238
239 case OMF_dealloc:
240 if (!Context.hasSameType(method->getReturnType(), Context.VoidTy)) {
241 SourceRange ResultTypeRange = method->getReturnTypeSourceRange();
242 if (ResultTypeRange.isInvalid())
243 Diag(method->getLocation(), diag::err_dealloc_bad_result_type)
244 << method->getReturnType()
245 << FixItHint::CreateInsertion(method->getSelectorLoc(0), "(void)");
246 else
247 Diag(method->getLocation(), diag::err_dealloc_bad_result_type)
248 << method->getReturnType()
249 << FixItHint::CreateReplacement(ResultTypeRange, "void");
250 return true;
251 }
252 return false;
253
254 case OMF_init:
255 // If the method doesn't obey the init rules, don't bother annotating it.
256 if (checkInitMethod(method, QualType()))
22
Taking false branch
257 return true;
258
259 method->addAttr(NSConsumesSelfAttr::CreateImplicit(Context));
23
Calling 'NSConsumesSelfAttr::CreateImplicit'
260
261 // Don't add a second copy of this attribute, but otherwise don't
262 // let it be suppressed.
263 if (method->hasAttr<NSReturnsRetainedAttr>())
264 return false;
265 break;
266
267 case OMF_alloc:
268 case OMF_copy:
269 case OMF_mutableCopy:
270 case OMF_new:
271 if (method->hasAttr<NSReturnsRetainedAttr>() ||
272 method->hasAttr<NSReturnsNotRetainedAttr>() ||
273 method->hasAttr<NSReturnsAutoreleasedAttr>())
274 return false;
275 break;
276 }
277
278 method->addAttr(NSReturnsRetainedAttr::CreateImplicit(Context));
279 return false;
280}
281
282static void DiagnoseObjCImplementedDeprecations(Sema &S, const NamedDecl *ND,
283 SourceLocation ImplLoc) {
284 if (!ND)
285 return;
286 bool IsCategory = false;
287 StringRef RealizedPlatform;
288 AvailabilityResult Availability = ND->getAvailability(
289 /*Message=*/nullptr, /*EnclosingVersion=*/VersionTuple(),
290 &RealizedPlatform);
291 if (Availability != AR_Deprecated) {
292 if (isa<ObjCMethodDecl>(ND)) {
293 if (Availability != AR_Unavailable)
294 return;
295 if (RealizedPlatform.empty())
296 RealizedPlatform = S.Context.getTargetInfo().getPlatformName();
297 // Warn about implementing unavailable methods, unless the unavailable
298 // is for an app extension.
299 if (RealizedPlatform.endswith("_app_extension"))
300 return;
301 S.Diag(ImplLoc, diag::warn_unavailable_def);
302 S.Diag(ND->getLocation(), diag::note_method_declared_at)
303 << ND->getDeclName();
304 return;
305 }
306 if (const auto *CD = dyn_cast<ObjCCategoryDecl>(ND)) {
307 if (!CD->getClassInterface()->isDeprecated())
308 return;
309 ND = CD->getClassInterface();
310 IsCategory = true;
311 } else
312 return;
313 }
314 S.Diag(ImplLoc, diag::warn_deprecated_def)
315 << (isa<ObjCMethodDecl>(ND)
316 ? /*Method*/ 0
317 : isa<ObjCCategoryDecl>(ND) || IsCategory ? /*Category*/ 2
318 : /*Class*/ 1);
319 if (isa<ObjCMethodDecl>(ND))
320 S.Diag(ND->getLocation(), diag::note_method_declared_at)
321 << ND->getDeclName();
322 else
323 S.Diag(ND->getLocation(), diag::note_previous_decl)
324 << (isa<ObjCCategoryDecl>(ND) ? "category" : "class");
325}
326
327/// AddAnyMethodToGlobalPool - Add any method, instance or factory to global
328/// pool.
329void Sema::AddAnyMethodToGlobalPool(Decl *D) {
330 ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
331
332 // If we don't have a valid method decl, simply return.
333 if (!MDecl)
334 return;
335 if (MDecl->isInstanceMethod())
336 AddInstanceMethodToGlobalPool(MDecl, true);
337 else
338 AddFactoryMethodToGlobalPool(MDecl, true);
339}
340
341/// HasExplicitOwnershipAttr - returns true when pointer to ObjC pointer
342/// has explicit ownership attribute; false otherwise.
343static bool
344HasExplicitOwnershipAttr(Sema &S, ParmVarDecl *Param) {
345 QualType T = Param->getType();
346
347 if (const PointerType *PT = T->getAs<PointerType>()) {
348 T = PT->getPointeeType();
349 } else if (const ReferenceType *RT = T->getAs<ReferenceType>()) {
350 T = RT->getPointeeType();
351 } else {
352 return true;
353 }
354
355 // If we have a lifetime qualifier, but it's local, we must have
356 // inferred it. So, it is implicit.
357 return !T.getLocalQualifiers().hasObjCLifetime();
358}
359
360/// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible
361/// and user declared, in the method definition's AST.
362void Sema::ActOnStartOfObjCMethodDef(Scope *FnBodyScope, Decl *D) {
363 assert((getCurMethodDecl() == nullptr) && "Methodparsing confused")(static_cast <bool> ((getCurMethodDecl() == nullptr) &&
"Methodparsing confused") ? void (0) : __assert_fail ("(getCurMethodDecl() == nullptr) && \"Methodparsing confused\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 363, __extension__ __PRETTY_FUNCTION__))
;
364 ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
365
366 // If we don't have a valid method decl, simply return.
367 if (!MDecl)
368 return;
369
370 QualType ResultType = MDecl->getReturnType();
371 if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
372 !MDecl->isInvalidDecl() &&
373 RequireCompleteType(MDecl->getLocation(), ResultType,
374 diag::err_func_def_incomplete_result))
375 MDecl->setInvalidDecl();
376
377 // Allow all of Sema to see that we are entering a method definition.
378 PushDeclContext(FnBodyScope, MDecl);
379 PushFunctionScope();
380
381 // Create Decl objects for each parameter, entrring them in the scope for
382 // binding to their use.
383
384 // Insert the invisible arguments, self and _cmd!
385 MDecl->createImplicitParams(Context, MDecl->getClassInterface());
386
387 PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope);
388 PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope);
389
390 // The ObjC parser requires parameter names so there's no need to check.
391 CheckParmsForFunctionDef(MDecl->parameters(),
392 /*CheckParameterNames=*/false);
393
394 // Introduce all of the other parameters into this scope.
395 for (auto *Param : MDecl->parameters()) {
396 if (!Param->isInvalidDecl() &&
397 getLangOpts().ObjCAutoRefCount &&
398 !HasExplicitOwnershipAttr(*this, Param))
399 Diag(Param->getLocation(), diag::warn_arc_strong_pointer_objc_pointer) <<
400 Param->getType();
401
402 if (Param->getIdentifier())
403 PushOnScopeChains(Param, FnBodyScope);
404 }
405
406 // In ARC, disallow definition of retain/release/autorelease/retainCount
407 if (getLangOpts().ObjCAutoRefCount) {
408 switch (MDecl->getMethodFamily()) {
409 case OMF_retain:
410 case OMF_retainCount:
411 case OMF_release:
412 case OMF_autorelease:
413 Diag(MDecl->getLocation(), diag::err_arc_illegal_method_def)
414 << 0 << MDecl->getSelector();
415 break;
416
417 case OMF_None:
418 case OMF_dealloc:
419 case OMF_finalize:
420 case OMF_alloc:
421 case OMF_init:
422 case OMF_mutableCopy:
423 case OMF_copy:
424 case OMF_new:
425 case OMF_self:
426 case OMF_initialize:
427 case OMF_performSelector:
428 break;
429 }
430 }
431
432 // Warn on deprecated methods under -Wdeprecated-implementations,
433 // and prepare for warning on missing super calls.
434 if (ObjCInterfaceDecl *IC = MDecl->getClassInterface()) {
435 ObjCMethodDecl *IMD =
436 IC->lookupMethod(MDecl->getSelector(), MDecl->isInstanceMethod());
437
438 if (IMD) {
439 ObjCImplDecl *ImplDeclOfMethodDef =
440 dyn_cast<ObjCImplDecl>(MDecl->getDeclContext());
441 ObjCContainerDecl *ContDeclOfMethodDecl =
442 dyn_cast<ObjCContainerDecl>(IMD->getDeclContext());
443 ObjCImplDecl *ImplDeclOfMethodDecl = nullptr;
444 if (ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(ContDeclOfMethodDecl))
445 ImplDeclOfMethodDecl = OID->getImplementation();
446 else if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(ContDeclOfMethodDecl)) {
447 if (CD->IsClassExtension()) {
448 if (ObjCInterfaceDecl *OID = CD->getClassInterface())
449 ImplDeclOfMethodDecl = OID->getImplementation();
450 } else
451 ImplDeclOfMethodDecl = CD->getImplementation();
452 }
453 // No need to issue deprecated warning if deprecated mehod in class/category
454 // is being implemented in its own implementation (no overriding is involved).
455 if (!ImplDeclOfMethodDecl || ImplDeclOfMethodDecl != ImplDeclOfMethodDef)
456 DiagnoseObjCImplementedDeprecations(*this, IMD, MDecl->getLocation());
457 }
458
459 if (MDecl->getMethodFamily() == OMF_init) {
460 if (MDecl->isDesignatedInitializerForTheInterface()) {
461 getCurFunction()->ObjCIsDesignatedInit = true;
462 getCurFunction()->ObjCWarnForNoDesignatedInitChain =
463 IC->getSuperClass() != nullptr;
464 } else if (IC->hasDesignatedInitializers()) {
465 getCurFunction()->ObjCIsSecondaryInit = true;
466 getCurFunction()->ObjCWarnForNoInitDelegation = true;
467 }
468 }
469
470 // If this is "dealloc" or "finalize", set some bit here.
471 // Then in ActOnSuperMessage() (SemaExprObjC), set it back to false.
472 // Finally, in ActOnFinishFunctionBody() (SemaDecl), warn if flag is set.
473 // Only do this if the current class actually has a superclass.
474 if (const ObjCInterfaceDecl *SuperClass = IC->getSuperClass()) {
475 ObjCMethodFamily Family = MDecl->getMethodFamily();
476 if (Family == OMF_dealloc) {
477 if (!(getLangOpts().ObjCAutoRefCount ||
478 getLangOpts().getGC() == LangOptions::GCOnly))
479 getCurFunction()->ObjCShouldCallSuper = true;
480
481 } else if (Family == OMF_finalize) {
482 if (Context.getLangOpts().getGC() != LangOptions::NonGC)
483 getCurFunction()->ObjCShouldCallSuper = true;
484
485 } else {
486 const ObjCMethodDecl *SuperMethod =
487 SuperClass->lookupMethod(MDecl->getSelector(),
488 MDecl->isInstanceMethod());
489 getCurFunction()->ObjCShouldCallSuper =
490 (SuperMethod && SuperMethod->hasAttr<ObjCRequiresSuperAttr>());
491 }
492 }
493 }
494}
495
496namespace {
497
498// Callback to only accept typo corrections that are Objective-C classes.
499// If an ObjCInterfaceDecl* is given to the constructor, then the validation
500// function will reject corrections to that class.
501class ObjCInterfaceValidatorCCC : public CorrectionCandidateCallback {
502 public:
503 ObjCInterfaceValidatorCCC() : CurrentIDecl(nullptr) {}
504 explicit ObjCInterfaceValidatorCCC(ObjCInterfaceDecl *IDecl)
505 : CurrentIDecl(IDecl) {}
506
507 bool ValidateCandidate(const TypoCorrection &candidate) override {
508 ObjCInterfaceDecl *ID = candidate.getCorrectionDeclAs<ObjCInterfaceDecl>();
509 return ID && !declaresSameEntity(ID, CurrentIDecl);
510 }
511
512 private:
513 ObjCInterfaceDecl *CurrentIDecl;
514};
515
516} // end anonymous namespace
517
518static void diagnoseUseOfProtocols(Sema &TheSema,
519 ObjCContainerDecl *CD,
520 ObjCProtocolDecl *const *ProtoRefs,
521 unsigned NumProtoRefs,
522 const SourceLocation *ProtoLocs) {
523 assert(ProtoRefs)(static_cast <bool> (ProtoRefs) ? void (0) : __assert_fail
("ProtoRefs", "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 523, __extension__ __PRETTY_FUNCTION__))
;
524 // Diagnose availability in the context of the ObjC container.
525 Sema::ContextRAII SavedContext(TheSema, CD);
526 for (unsigned i = 0; i < NumProtoRefs; ++i) {
527 (void)TheSema.DiagnoseUseOfDecl(ProtoRefs[i], ProtoLocs[i],
528 /*UnknownObjCClass=*/nullptr,
529 /*ObjCPropertyAccess=*/false,
530 /*AvoidPartialAvailabilityChecks=*/true);
531 }
532}
533
534void Sema::
535ActOnSuperClassOfClassInterface(Scope *S,
536 SourceLocation AtInterfaceLoc,
537 ObjCInterfaceDecl *IDecl,
538 IdentifierInfo *ClassName,
539 SourceLocation ClassLoc,
540 IdentifierInfo *SuperName,
541 SourceLocation SuperLoc,
542 ArrayRef<ParsedType> SuperTypeArgs,
543 SourceRange SuperTypeArgsRange) {
544 // Check if a different kind of symbol declared in this scope.
545 NamedDecl *PrevDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
546 LookupOrdinaryName);
547
548 if (!PrevDecl) {
549 // Try to correct for a typo in the superclass name without correcting
550 // to the class we're defining.
551 if (TypoCorrection Corrected = CorrectTypo(
552 DeclarationNameInfo(SuperName, SuperLoc),
553 LookupOrdinaryName, TUScope,
554 nullptr, llvm::make_unique<ObjCInterfaceValidatorCCC>(IDecl),
555 CTK_ErrorRecovery)) {
556 diagnoseTypo(Corrected, PDiag(diag::err_undef_superclass_suggest)
557 << SuperName << ClassName);
558 PrevDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>();
559 }
560 }
561
562 if (declaresSameEntity(PrevDecl, IDecl)) {
563 Diag(SuperLoc, diag::err_recursive_superclass)
564 << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
565 IDecl->setEndOfDefinitionLoc(ClassLoc);
566 } else {
567 ObjCInterfaceDecl *SuperClassDecl =
568 dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
569 QualType SuperClassType;
570
571 // Diagnose classes that inherit from deprecated classes.
572 if (SuperClassDecl) {
573 (void)DiagnoseUseOfDecl(SuperClassDecl, SuperLoc);
574 SuperClassType = Context.getObjCInterfaceType(SuperClassDecl);
575 }
576
577 if (PrevDecl && !SuperClassDecl) {
578 // The previous declaration was not a class decl. Check if we have a
579 // typedef. If we do, get the underlying class type.
580 if (const TypedefNameDecl *TDecl =
581 dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
582 QualType T = TDecl->getUnderlyingType();
583 if (T->isObjCObjectType()) {
584 if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) {
585 SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(IDecl);
586 SuperClassType = Context.getTypeDeclType(TDecl);
587
588 // This handles the following case:
589 // @interface NewI @end
590 // typedef NewI DeprI __attribute__((deprecated("blah")))
591 // @interface SI : DeprI /* warn here */ @end
592 (void)DiagnoseUseOfDecl(const_cast<TypedefNameDecl*>(TDecl), SuperLoc);
593 }
594 }
595 }
596
597 // This handles the following case:
598 //
599 // typedef int SuperClass;
600 // @interface MyClass : SuperClass {} @end
601 //
602 if (!SuperClassDecl) {
603 Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName;
604 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
605 }
606 }
607
608 if (!dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
609 if (!SuperClassDecl)
610 Diag(SuperLoc, diag::err_undef_superclass)
611 << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
612 else if (RequireCompleteType(SuperLoc,
613 SuperClassType,
614 diag::err_forward_superclass,
615 SuperClassDecl->getDeclName(),
616 ClassName,
617 SourceRange(AtInterfaceLoc, ClassLoc))) {
618 SuperClassDecl = nullptr;
619 SuperClassType = QualType();
620 }
621 }
622
623 if (SuperClassType.isNull()) {
624 assert(!SuperClassDecl && "Failed to set SuperClassType?")(static_cast <bool> (!SuperClassDecl && "Failed to set SuperClassType?"
) ? void (0) : __assert_fail ("!SuperClassDecl && \"Failed to set SuperClassType?\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 624, __extension__ __PRETTY_FUNCTION__))
;
625 return;
626 }
627
628 // Handle type arguments on the superclass.
629 TypeSourceInfo *SuperClassTInfo = nullptr;
630 if (!SuperTypeArgs.empty()) {
631 TypeResult fullSuperClassType = actOnObjCTypeArgsAndProtocolQualifiers(
632 S,
633 SuperLoc,
634 CreateParsedType(SuperClassType,
635 nullptr),
636 SuperTypeArgsRange.getBegin(),
637 SuperTypeArgs,
638 SuperTypeArgsRange.getEnd(),
639 SourceLocation(),
640 { },
641 { },
642 SourceLocation());
643 if (!fullSuperClassType.isUsable())
644 return;
645
646 SuperClassType = GetTypeFromParser(fullSuperClassType.get(),
647 &SuperClassTInfo);
648 }
649
650 if (!SuperClassTInfo) {
651 SuperClassTInfo = Context.getTrivialTypeSourceInfo(SuperClassType,
652 SuperLoc);
653 }
654
655 IDecl->setSuperClass(SuperClassTInfo);
656 IDecl->setEndOfDefinitionLoc(SuperClassTInfo->getTypeLoc().getLocEnd());
657 }
658}
659
660DeclResult Sema::actOnObjCTypeParam(Scope *S,
661 ObjCTypeParamVariance variance,
662 SourceLocation varianceLoc,
663 unsigned index,
664 IdentifierInfo *paramName,
665 SourceLocation paramLoc,
666 SourceLocation colonLoc,
667 ParsedType parsedTypeBound) {
668 // If there was an explicitly-provided type bound, check it.
669 TypeSourceInfo *typeBoundInfo = nullptr;
670 if (parsedTypeBound) {
671 // The type bound can be any Objective-C pointer type.
672 QualType typeBound = GetTypeFromParser(parsedTypeBound, &typeBoundInfo);
673 if (typeBound->isObjCObjectPointerType()) {
674 // okay
675 } else if (typeBound->isObjCObjectType()) {
676 // The user forgot the * on an Objective-C pointer type, e.g.,
677 // "T : NSView".
678 SourceLocation starLoc = getLocForEndOfToken(
679 typeBoundInfo->getTypeLoc().getEndLoc());
680 Diag(typeBoundInfo->getTypeLoc().getBeginLoc(),
681 diag::err_objc_type_param_bound_missing_pointer)
682 << typeBound << paramName
683 << FixItHint::CreateInsertion(starLoc, " *");
684
685 // Create a new type location builder so we can update the type
686 // location information we have.
687 TypeLocBuilder builder;
688 builder.pushFullCopy(typeBoundInfo->getTypeLoc());
689
690 // Create the Objective-C pointer type.
691 typeBound = Context.getObjCObjectPointerType(typeBound);
692 ObjCObjectPointerTypeLoc newT
693 = builder.push<ObjCObjectPointerTypeLoc>(typeBound);
694 newT.setStarLoc(starLoc);
695
696 // Form the new type source information.
697 typeBoundInfo = builder.getTypeSourceInfo(Context, typeBound);
698 } else {
699 // Not a valid type bound.
700 Diag(typeBoundInfo->getTypeLoc().getBeginLoc(),
701 diag::err_objc_type_param_bound_nonobject)
702 << typeBound << paramName;
703
704 // Forget the bound; we'll default to id later.
705 typeBoundInfo = nullptr;
706 }
707
708 // Type bounds cannot have qualifiers (even indirectly) or explicit
709 // nullability.
710 if (typeBoundInfo) {
711 QualType typeBound = typeBoundInfo->getType();
712 TypeLoc qual = typeBoundInfo->getTypeLoc().findExplicitQualifierLoc();
713 if (qual || typeBound.hasQualifiers()) {
714 bool diagnosed = false;
715 SourceRange rangeToRemove;
716 if (qual) {
717 if (auto attr = qual.getAs<AttributedTypeLoc>()) {
718 rangeToRemove = attr.getLocalSourceRange();
719 if (attr.getTypePtr()->getImmediateNullability()) {
720 Diag(attr.getLocStart(),
721 diag::err_objc_type_param_bound_explicit_nullability)
722 << paramName << typeBound
723 << FixItHint::CreateRemoval(rangeToRemove);
724 diagnosed = true;
725 }
726 }
727 }
728
729 if (!diagnosed) {
730 Diag(qual ? qual.getLocStart()
731 : typeBoundInfo->getTypeLoc().getLocStart(),
732 diag::err_objc_type_param_bound_qualified)
733 << paramName << typeBound << typeBound.getQualifiers().getAsString()
734 << FixItHint::CreateRemoval(rangeToRemove);
735 }
736
737 // If the type bound has qualifiers other than CVR, we need to strip
738 // them or we'll probably assert later when trying to apply new
739 // qualifiers.
740 Qualifiers quals = typeBound.getQualifiers();
741 quals.removeCVRQualifiers();
742 if (!quals.empty()) {
743 typeBoundInfo =
744 Context.getTrivialTypeSourceInfo(typeBound.getUnqualifiedType());
745 }
746 }
747 }
748 }
749
750 // If there was no explicit type bound (or we removed it due to an error),
751 // use 'id' instead.
752 if (!typeBoundInfo) {
753 colonLoc = SourceLocation();
754 typeBoundInfo = Context.getTrivialTypeSourceInfo(Context.getObjCIdType());
755 }
756
757 // Create the type parameter.
758 return ObjCTypeParamDecl::Create(Context, CurContext, variance, varianceLoc,
759 index, paramLoc, paramName, colonLoc,
760 typeBoundInfo);
761}
762
763ObjCTypeParamList *Sema::actOnObjCTypeParamList(Scope *S,
764 SourceLocation lAngleLoc,
765 ArrayRef<Decl *> typeParamsIn,
766 SourceLocation rAngleLoc) {
767 // We know that the array only contains Objective-C type parameters.
768 ArrayRef<ObjCTypeParamDecl *>
769 typeParams(
770 reinterpret_cast<ObjCTypeParamDecl * const *>(typeParamsIn.data()),
771 typeParamsIn.size());
772
773 // Diagnose redeclarations of type parameters.
774 // We do this now because Objective-C type parameters aren't pushed into
775 // scope until later (after the instance variable block), but we want the
776 // diagnostics to occur right after we parse the type parameter list.
777 llvm::SmallDenseMap<IdentifierInfo *, ObjCTypeParamDecl *> knownParams;
778 for (auto typeParam : typeParams) {
779 auto known = knownParams.find(typeParam->getIdentifier());
780 if (known != knownParams.end()) {
781 Diag(typeParam->getLocation(), diag::err_objc_type_param_redecl)
782 << typeParam->getIdentifier()
783 << SourceRange(known->second->getLocation());
784
785 typeParam->setInvalidDecl();
786 } else {
787 knownParams.insert(std::make_pair(typeParam->getIdentifier(), typeParam));
788
789 // Push the type parameter into scope.
790 PushOnScopeChains(typeParam, S, /*AddToContext=*/false);
791 }
792 }
793
794 // Create the parameter list.
795 return ObjCTypeParamList::create(Context, lAngleLoc, typeParams, rAngleLoc);
796}
797
798void Sema::popObjCTypeParamList(Scope *S, ObjCTypeParamList *typeParamList) {
799 for (auto typeParam : *typeParamList) {
800 if (!typeParam->isInvalidDecl()) {
801 S->RemoveDecl(typeParam);
802 IdResolver.RemoveDecl(typeParam);
803 }
804 }
805}
806
807namespace {
808 /// The context in which an Objective-C type parameter list occurs, for use
809 /// in diagnostics.
810 enum class TypeParamListContext {
811 ForwardDeclaration,
812 Definition,
813 Category,
814 Extension
815 };
816} // end anonymous namespace
817
818/// Check consistency between two Objective-C type parameter lists, e.g.,
819/// between a category/extension and an \@interface or between an \@class and an
820/// \@interface.
821static bool checkTypeParamListConsistency(Sema &S,
822 ObjCTypeParamList *prevTypeParams,
823 ObjCTypeParamList *newTypeParams,
824 TypeParamListContext newContext) {
825 // If the sizes don't match, complain about that.
826 if (prevTypeParams->size() != newTypeParams->size()) {
827 SourceLocation diagLoc;
828 if (newTypeParams->size() > prevTypeParams->size()) {
829 diagLoc = newTypeParams->begin()[prevTypeParams->size()]->getLocation();
830 } else {
831 diagLoc = S.getLocForEndOfToken(newTypeParams->back()->getLocEnd());
832 }
833
834 S.Diag(diagLoc, diag::err_objc_type_param_arity_mismatch)
835 << static_cast<unsigned>(newContext)
836 << (newTypeParams->size() > prevTypeParams->size())
837 << prevTypeParams->size()
838 << newTypeParams->size();
839
840 return true;
841 }
842
843 // Match up the type parameters.
844 for (unsigned i = 0, n = prevTypeParams->size(); i != n; ++i) {
845 ObjCTypeParamDecl *prevTypeParam = prevTypeParams->begin()[i];
846 ObjCTypeParamDecl *newTypeParam = newTypeParams->begin()[i];
847
848 // Check for consistency of the variance.
849 if (newTypeParam->getVariance() != prevTypeParam->getVariance()) {
850 if (newTypeParam->getVariance() == ObjCTypeParamVariance::Invariant &&
851 newContext != TypeParamListContext::Definition) {
852 // When the new type parameter is invariant and is not part
853 // of the definition, just propagate the variance.
854 newTypeParam->setVariance(prevTypeParam->getVariance());
855 } else if (prevTypeParam->getVariance()
856 == ObjCTypeParamVariance::Invariant &&
857 !(isa<ObjCInterfaceDecl>(prevTypeParam->getDeclContext()) &&
858 cast<ObjCInterfaceDecl>(prevTypeParam->getDeclContext())
859 ->getDefinition() == prevTypeParam->getDeclContext())) {
860 // When the old parameter is invariant and was not part of the
861 // definition, just ignore the difference because it doesn't
862 // matter.
863 } else {
864 {
865 // Diagnose the conflict and update the second declaration.
866 SourceLocation diagLoc = newTypeParam->getVarianceLoc();
867 if (diagLoc.isInvalid())
868 diagLoc = newTypeParam->getLocStart();
869
870 auto diag = S.Diag(diagLoc,
871 diag::err_objc_type_param_variance_conflict)
872 << static_cast<unsigned>(newTypeParam->getVariance())
873 << newTypeParam->getDeclName()
874 << static_cast<unsigned>(prevTypeParam->getVariance())
875 << prevTypeParam->getDeclName();
876 switch (prevTypeParam->getVariance()) {
877 case ObjCTypeParamVariance::Invariant:
878 diag << FixItHint::CreateRemoval(newTypeParam->getVarianceLoc());
879 break;
880
881 case ObjCTypeParamVariance::Covariant:
882 case ObjCTypeParamVariance::Contravariant: {
883 StringRef newVarianceStr
884 = prevTypeParam->getVariance() == ObjCTypeParamVariance::Covariant
885 ? "__covariant"
886 : "__contravariant";
887 if (newTypeParam->getVariance()
888 == ObjCTypeParamVariance::Invariant) {
889 diag << FixItHint::CreateInsertion(newTypeParam->getLocStart(),
890 (newVarianceStr + " ").str());
891 } else {
892 diag << FixItHint::CreateReplacement(newTypeParam->getVarianceLoc(),
893 newVarianceStr);
894 }
895 }
896 }
897 }
898
899 S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
900 << prevTypeParam->getDeclName();
901
902 // Override the variance.
903 newTypeParam->setVariance(prevTypeParam->getVariance());
904 }
905 }
906
907 // If the bound types match, there's nothing to do.
908 if (S.Context.hasSameType(prevTypeParam->getUnderlyingType(),
909 newTypeParam->getUnderlyingType()))
910 continue;
911
912 // If the new type parameter's bound was explicit, complain about it being
913 // different from the original.
914 if (newTypeParam->hasExplicitBound()) {
915 SourceRange newBoundRange = newTypeParam->getTypeSourceInfo()
916 ->getTypeLoc().getSourceRange();
917 S.Diag(newBoundRange.getBegin(), diag::err_objc_type_param_bound_conflict)
918 << newTypeParam->getUnderlyingType()
919 << newTypeParam->getDeclName()
920 << prevTypeParam->hasExplicitBound()
921 << prevTypeParam->getUnderlyingType()
922 << (newTypeParam->getDeclName() == prevTypeParam->getDeclName())
923 << prevTypeParam->getDeclName()
924 << FixItHint::CreateReplacement(
925 newBoundRange,
926 prevTypeParam->getUnderlyingType().getAsString(
927 S.Context.getPrintingPolicy()));
928
929 S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
930 << prevTypeParam->getDeclName();
931
932 // Override the new type parameter's bound type with the previous type,
933 // so that it's consistent.
934 newTypeParam->setTypeSourceInfo(
935 S.Context.getTrivialTypeSourceInfo(prevTypeParam->getUnderlyingType()));
936 continue;
937 }
938
939 // The new type parameter got the implicit bound of 'id'. That's okay for
940 // categories and extensions (overwrite it later), but not for forward
941 // declarations and @interfaces, because those must be standalone.
942 if (newContext == TypeParamListContext::ForwardDeclaration ||
943 newContext == TypeParamListContext::Definition) {
944 // Diagnose this problem for forward declarations and definitions.
945 SourceLocation insertionLoc
946 = S.getLocForEndOfToken(newTypeParam->getLocation());
947 std::string newCode
948 = " : " + prevTypeParam->getUnderlyingType().getAsString(
949 S.Context.getPrintingPolicy());
950 S.Diag(newTypeParam->getLocation(),
951 diag::err_objc_type_param_bound_missing)
952 << prevTypeParam->getUnderlyingType()
953 << newTypeParam->getDeclName()
954 << (newContext == TypeParamListContext::ForwardDeclaration)
955 << FixItHint::CreateInsertion(insertionLoc, newCode);
956
957 S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
958 << prevTypeParam->getDeclName();
959 }
960
961 // Update the new type parameter's bound to match the previous one.
962 newTypeParam->setTypeSourceInfo(
963 S.Context.getTrivialTypeSourceInfo(prevTypeParam->getUnderlyingType()));
964 }
965
966 return false;
967}
968
969Decl *Sema::ActOnStartClassInterface(
970 Scope *S, SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName,
971 SourceLocation ClassLoc, ObjCTypeParamList *typeParamList,
972 IdentifierInfo *SuperName, SourceLocation SuperLoc,
973 ArrayRef<ParsedType> SuperTypeArgs, SourceRange SuperTypeArgsRange,
974 Decl *const *ProtoRefs, unsigned NumProtoRefs,
975 const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
976 const ParsedAttributesView &AttrList) {
977 assert(ClassName && "Missing class identifier")(static_cast <bool> (ClassName && "Missing class identifier"
) ? void (0) : __assert_fail ("ClassName && \"Missing class identifier\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 977, __extension__ __PRETTY_FUNCTION__))
;
978
979 // Check for another declaration kind with the same name.
980 NamedDecl *PrevDecl =
981 LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName,
982 forRedeclarationInCurContext());
983
984 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
985 Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
986 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
987 }
988
989 // Create a declaration to describe this @interface.
990 ObjCInterfaceDecl* PrevIDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
991
992 if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) {
993 // A previous decl with a different name is because of
994 // @compatibility_alias, for example:
995 // \code
996 // @class NewImage;
997 // @compatibility_alias OldImage NewImage;
998 // \endcode
999 // A lookup for 'OldImage' will return the 'NewImage' decl.
1000 //
1001 // In such a case use the real declaration name, instead of the alias one,
1002 // otherwise we will break IdentifierResolver and redecls-chain invariants.
1003 // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl
1004 // has been aliased.
1005 ClassName = PrevIDecl->getIdentifier();
1006 }
1007
1008 // If there was a forward declaration with type parameters, check
1009 // for consistency.
1010 if (PrevIDecl) {
1011 if (ObjCTypeParamList *prevTypeParamList = PrevIDecl->getTypeParamList()) {
1012 if (typeParamList) {
1013 // Both have type parameter lists; check for consistency.
1014 if (checkTypeParamListConsistency(*this, prevTypeParamList,
1015 typeParamList,
1016 TypeParamListContext::Definition)) {
1017 typeParamList = nullptr;
1018 }
1019 } else {
1020 Diag(ClassLoc, diag::err_objc_parameterized_forward_class_first)
1021 << ClassName;
1022 Diag(prevTypeParamList->getLAngleLoc(), diag::note_previous_decl)
1023 << ClassName;
1024
1025 // Clone the type parameter list.
1026 SmallVector<ObjCTypeParamDecl *, 4> clonedTypeParams;
1027 for (auto typeParam : *prevTypeParamList) {
1028 clonedTypeParams.push_back(
1029 ObjCTypeParamDecl::Create(
1030 Context,
1031 CurContext,
1032 typeParam->getVariance(),
1033 SourceLocation(),
1034 typeParam->getIndex(),
1035 SourceLocation(),
1036 typeParam->getIdentifier(),
1037 SourceLocation(),
1038 Context.getTrivialTypeSourceInfo(typeParam->getUnderlyingType())));
1039 }
1040
1041 typeParamList = ObjCTypeParamList::create(Context,
1042 SourceLocation(),
1043 clonedTypeParams,
1044 SourceLocation());
1045 }
1046 }
1047 }
1048
1049 ObjCInterfaceDecl *IDecl
1050 = ObjCInterfaceDecl::Create(Context, CurContext, AtInterfaceLoc, ClassName,
1051 typeParamList, PrevIDecl, ClassLoc);
1052 if (PrevIDecl) {
1053 // Class already seen. Was it a definition?
1054 if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
1055 Diag(AtInterfaceLoc, diag::err_duplicate_class_def)
1056 << PrevIDecl->getDeclName();
1057 Diag(Def->getLocation(), diag::note_previous_definition);
1058 IDecl->setInvalidDecl();
1059 }
1060 }
1061
1062 ProcessDeclAttributeList(TUScope, IDecl, AttrList);
1063 AddPragmaAttributes(TUScope, IDecl);
1064 PushOnScopeChains(IDecl, TUScope);
1065
1066 // Start the definition of this class. If we're in a redefinition case, there
1067 // may already be a definition, so we'll end up adding to it.
1068 if (!IDecl->hasDefinition())
1069 IDecl->startDefinition();
1070
1071 if (SuperName) {
1072 // Diagnose availability in the context of the @interface.
1073 ContextRAII SavedContext(*this, IDecl);
1074
1075 ActOnSuperClassOfClassInterface(S, AtInterfaceLoc, IDecl,
1076 ClassName, ClassLoc,
1077 SuperName, SuperLoc, SuperTypeArgs,
1078 SuperTypeArgsRange);
1079 } else { // we have a root class.
1080 IDecl->setEndOfDefinitionLoc(ClassLoc);
1081 }
1082
1083 // Check then save referenced protocols.
1084 if (NumProtoRefs) {
1085 diagnoseUseOfProtocols(*this, IDecl, (ObjCProtocolDecl*const*)ProtoRefs,
1086 NumProtoRefs, ProtoLocs);
1087 IDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
1088 ProtoLocs, Context);
1089 IDecl->setEndOfDefinitionLoc(EndProtoLoc);
1090 }
1091
1092 CheckObjCDeclScope(IDecl);
1093 return ActOnObjCContainerStartDefinition(IDecl);
1094}
1095
1096/// ActOnTypedefedProtocols - this action finds protocol list as part of the
1097/// typedef'ed use for a qualified super class and adds them to the list
1098/// of the protocols.
1099void Sema::ActOnTypedefedProtocols(SmallVectorImpl<Decl *> &ProtocolRefs,
1100 SmallVectorImpl<SourceLocation> &ProtocolLocs,
1101 IdentifierInfo *SuperName,
1102 SourceLocation SuperLoc) {
1103 if (!SuperName)
1104 return;
1105 NamedDecl* IDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
1106 LookupOrdinaryName);
1107 if (!IDecl)
1108 return;
1109
1110 if (const TypedefNameDecl *TDecl = dyn_cast_or_null<TypedefNameDecl>(IDecl)) {
1111 QualType T = TDecl->getUnderlyingType();
1112 if (T->isObjCObjectType())
1113 if (const ObjCObjectType *OPT = T->getAs<ObjCObjectType>()) {
1114 ProtocolRefs.append(OPT->qual_begin(), OPT->qual_end());
1115 // FIXME: Consider whether this should be an invalid loc since the loc
1116 // is not actually pointing to a protocol name reference but to the
1117 // typedef reference. Note that the base class name loc is also pointing
1118 // at the typedef.
1119 ProtocolLocs.append(OPT->getNumProtocols(), SuperLoc);
1120 }
1121 }
1122}
1123
1124/// ActOnCompatibilityAlias - this action is called after complete parsing of
1125/// a \@compatibility_alias declaration. It sets up the alias relationships.
1126Decl *Sema::ActOnCompatibilityAlias(SourceLocation AtLoc,
1127 IdentifierInfo *AliasName,
1128 SourceLocation AliasLocation,
1129 IdentifierInfo *ClassName,
1130 SourceLocation ClassLocation) {
1131 // Look for previous declaration of alias name
1132 NamedDecl *ADecl =
1133 LookupSingleName(TUScope, AliasName, AliasLocation, LookupOrdinaryName,
1134 forRedeclarationInCurContext());
1135 if (ADecl) {
1136 Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName;
1137 Diag(ADecl->getLocation(), diag::note_previous_declaration);
1138 return nullptr;
1139 }
1140 // Check for class declaration
1141 NamedDecl *CDeclU =
1142 LookupSingleName(TUScope, ClassName, ClassLocation, LookupOrdinaryName,
1143 forRedeclarationInCurContext());
1144 if (const TypedefNameDecl *TDecl =
1145 dyn_cast_or_null<TypedefNameDecl>(CDeclU)) {
1146 QualType T = TDecl->getUnderlyingType();
1147 if (T->isObjCObjectType()) {
1148 if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) {
1149 ClassName = IDecl->getIdentifier();
1150 CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
1151 LookupOrdinaryName,
1152 forRedeclarationInCurContext());
1153 }
1154 }
1155 }
1156 ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(CDeclU);
1157 if (!CDecl) {
1158 Diag(ClassLocation, diag::warn_undef_interface) << ClassName;
1159 if (CDeclU)
1160 Diag(CDeclU->getLocation(), diag::note_previous_declaration);
1161 return nullptr;
1162 }
1163
1164 // Everything checked out, instantiate a new alias declaration AST.
1165 ObjCCompatibleAliasDecl *AliasDecl =
1166 ObjCCompatibleAliasDecl::Create(Context, CurContext, AtLoc, AliasName, CDecl);
1167
1168 if (!CheckObjCDeclScope(AliasDecl))
1169 PushOnScopeChains(AliasDecl, TUScope);
1170
1171 return AliasDecl;
1172}
1173
1174bool Sema::CheckForwardProtocolDeclarationForCircularDependency(
1175 IdentifierInfo *PName,
1176 SourceLocation &Ploc, SourceLocation PrevLoc,
1177 const ObjCList<ObjCProtocolDecl> &PList) {
1178
1179 bool res = false;
1180 for (ObjCList<ObjCProtocolDecl>::iterator I = PList.begin(),
1181 E = PList.end(); I != E; ++I) {
1182 if (ObjCProtocolDecl *PDecl = LookupProtocol((*I)->getIdentifier(),
1183 Ploc)) {
1184 if (PDecl->getIdentifier() == PName) {
1185 Diag(Ploc, diag::err_protocol_has_circular_dependency);
1186 Diag(PrevLoc, diag::note_previous_definition);
1187 res = true;
1188 }
1189
1190 if (!PDecl->hasDefinition())
1191 continue;
1192
1193 if (CheckForwardProtocolDeclarationForCircularDependency(PName, Ploc,
1194 PDecl->getLocation(), PDecl->getReferencedProtocols()))
1195 res = true;
1196 }
1197 }
1198 return res;
1199}
1200
1201Decl *Sema::ActOnStartProtocolInterface(
1202 SourceLocation AtProtoInterfaceLoc, IdentifierInfo *ProtocolName,
1203 SourceLocation ProtocolLoc, Decl *const *ProtoRefs, unsigned NumProtoRefs,
1204 const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
1205 const ParsedAttributesView &AttrList) {
1206 bool err = false;
1207 // FIXME: Deal with AttrList.
1208 assert(ProtocolName && "Missing protocol identifier")(static_cast <bool> (ProtocolName && "Missing protocol identifier"
) ? void (0) : __assert_fail ("ProtocolName && \"Missing protocol identifier\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 1208, __extension__ __PRETTY_FUNCTION__))
;
1209 ObjCProtocolDecl *PrevDecl = LookupProtocol(ProtocolName, ProtocolLoc,
1210 forRedeclarationInCurContext());
1211 ObjCProtocolDecl *PDecl = nullptr;
1212 if (ObjCProtocolDecl *Def = PrevDecl? PrevDecl->getDefinition() : nullptr) {
1213 // If we already have a definition, complain.
1214 Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName;
1215 Diag(Def->getLocation(), diag::note_previous_definition);
1216
1217 // Create a new protocol that is completely distinct from previous
1218 // declarations, and do not make this protocol available for name lookup.
1219 // That way, we'll end up completely ignoring the duplicate.
1220 // FIXME: Can we turn this into an error?
1221 PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
1222 ProtocolLoc, AtProtoInterfaceLoc,
1223 /*PrevDecl=*/nullptr);
1224
1225 // If we are using modules, add the decl to the context in order to
1226 // serialize something meaningful.
1227 if (getLangOpts().Modules)
1228 PushOnScopeChains(PDecl, TUScope);
1229 PDecl->startDefinition();
1230 } else {
1231 if (PrevDecl) {
1232 // Check for circular dependencies among protocol declarations. This can
1233 // only happen if this protocol was forward-declared.
1234 ObjCList<ObjCProtocolDecl> PList;
1235 PList.set((ObjCProtocolDecl *const*)ProtoRefs, NumProtoRefs, Context);
1236 err = CheckForwardProtocolDeclarationForCircularDependency(
1237 ProtocolName, ProtocolLoc, PrevDecl->getLocation(), PList);
1238 }
1239
1240 // Create the new declaration.
1241 PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
1242 ProtocolLoc, AtProtoInterfaceLoc,
1243 /*PrevDecl=*/PrevDecl);
1244
1245 PushOnScopeChains(PDecl, TUScope);
1246 PDecl->startDefinition();
1247 }
1248
1249 ProcessDeclAttributeList(TUScope, PDecl, AttrList);
1250 AddPragmaAttributes(TUScope, PDecl);
1251
1252 // Merge attributes from previous declarations.
1253 if (PrevDecl)
1254 mergeDeclAttributes(PDecl, PrevDecl);
1255
1256 if (!err && NumProtoRefs ) {
1257 /// Check then save referenced protocols.
1258 diagnoseUseOfProtocols(*this, PDecl, (ObjCProtocolDecl*const*)ProtoRefs,
1259 NumProtoRefs, ProtoLocs);
1260 PDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
1261 ProtoLocs, Context);
1262 }
1263
1264 CheckObjCDeclScope(PDecl);
1265 return ActOnObjCContainerStartDefinition(PDecl);
1266}
1267
1268static bool NestedProtocolHasNoDefinition(ObjCProtocolDecl *PDecl,
1269 ObjCProtocolDecl *&UndefinedProtocol) {
1270 if (!PDecl->hasDefinition() || PDecl->getDefinition()->isHidden()) {
1271 UndefinedProtocol = PDecl;
1272 return true;
1273 }
1274
1275 for (auto *PI : PDecl->protocols())
1276 if (NestedProtocolHasNoDefinition(PI, UndefinedProtocol)) {
1277 UndefinedProtocol = PI;
1278 return true;
1279 }
1280 return false;
1281}
1282
1283/// FindProtocolDeclaration - This routine looks up protocols and
1284/// issues an error if they are not declared. It returns list of
1285/// protocol declarations in its 'Protocols' argument.
1286void
1287Sema::FindProtocolDeclaration(bool WarnOnDeclarations, bool ForObjCContainer,
1288 ArrayRef<IdentifierLocPair> ProtocolId,
1289 SmallVectorImpl<Decl *> &Protocols) {
1290 for (const IdentifierLocPair &Pair : ProtocolId) {
1291 ObjCProtocolDecl *PDecl = LookupProtocol(Pair.first, Pair.second);
1292 if (!PDecl) {
1293 TypoCorrection Corrected = CorrectTypo(
1294 DeclarationNameInfo(Pair.first, Pair.second),
1295 LookupObjCProtocolName, TUScope, nullptr,
1296 llvm::make_unique<DeclFilterCCC<ObjCProtocolDecl>>(),
1297 CTK_ErrorRecovery);
1298 if ((PDecl = Corrected.getCorrectionDeclAs<ObjCProtocolDecl>()))
1299 diagnoseTypo(Corrected, PDiag(diag::err_undeclared_protocol_suggest)
1300 << Pair.first);
1301 }
1302
1303 if (!PDecl) {
1304 Diag(Pair.second, diag::err_undeclared_protocol) << Pair.first;
1305 continue;
1306 }
1307 // If this is a forward protocol declaration, get its definition.
1308 if (!PDecl->isThisDeclarationADefinition() && PDecl->getDefinition())
1309 PDecl = PDecl->getDefinition();
1310
1311 // For an objc container, delay protocol reference checking until after we
1312 // can set the objc decl as the availability context, otherwise check now.
1313 if (!ForObjCContainer) {
1314 (void)DiagnoseUseOfDecl(PDecl, Pair.second);
1315 }
1316
1317 // If this is a forward declaration and we are supposed to warn in this
1318 // case, do it.
1319 // FIXME: Recover nicely in the hidden case.
1320 ObjCProtocolDecl *UndefinedProtocol;
1321
1322 if (WarnOnDeclarations &&
1323 NestedProtocolHasNoDefinition(PDecl, UndefinedProtocol)) {
1324 Diag(Pair.second, diag::warn_undef_protocolref) << Pair.first;
1325 Diag(UndefinedProtocol->getLocation(), diag::note_protocol_decl_undefined)
1326 << UndefinedProtocol;
1327 }
1328 Protocols.push_back(PDecl);
1329 }
1330}
1331
1332namespace {
1333// Callback to only accept typo corrections that are either
1334// Objective-C protocols or valid Objective-C type arguments.
1335class ObjCTypeArgOrProtocolValidatorCCC : public CorrectionCandidateCallback {
1336 ASTContext &Context;
1337 Sema::LookupNameKind LookupKind;
1338 public:
1339 ObjCTypeArgOrProtocolValidatorCCC(ASTContext &context,
1340 Sema::LookupNameKind lookupKind)
1341 : Context(context), LookupKind(lookupKind) { }
1342
1343 bool ValidateCandidate(const TypoCorrection &candidate) override {
1344 // If we're allowed to find protocols and we have a protocol, accept it.
1345 if (LookupKind != Sema::LookupOrdinaryName) {
1346 if (candidate.getCorrectionDeclAs<ObjCProtocolDecl>())
1347 return true;
1348 }
1349
1350 // If we're allowed to find type names and we have one, accept it.
1351 if (LookupKind != Sema::LookupObjCProtocolName) {
1352 // If we have a type declaration, we might accept this result.
1353 if (auto typeDecl = candidate.getCorrectionDeclAs<TypeDecl>()) {
1354 // If we found a tag declaration outside of C++, skip it. This
1355 // can happy because we look for any name when there is no
1356 // bias to protocol or type names.
1357 if (isa<RecordDecl>(typeDecl) && !Context.getLangOpts().CPlusPlus)
1358 return false;
1359
1360 // Make sure the type is something we would accept as a type
1361 // argument.
1362 auto type = Context.getTypeDeclType(typeDecl);
1363 if (type->isObjCObjectPointerType() ||
1364 type->isBlockPointerType() ||
1365 type->isDependentType() ||
1366 type->isObjCObjectType())
1367 return true;
1368
1369 return false;
1370 }
1371
1372 // If we have an Objective-C class type, accept it; there will
1373 // be another fix to add the '*'.
1374 if (candidate.getCorrectionDeclAs<ObjCInterfaceDecl>())
1375 return true;
1376
1377 return false;
1378 }
1379
1380 return false;
1381 }
1382};
1383} // end anonymous namespace
1384
1385void Sema::DiagnoseTypeArgsAndProtocols(IdentifierInfo *ProtocolId,
1386 SourceLocation ProtocolLoc,
1387 IdentifierInfo *TypeArgId,
1388 SourceLocation TypeArgLoc,
1389 bool SelectProtocolFirst) {
1390 Diag(TypeArgLoc, diag::err_objc_type_args_and_protocols)
1391 << SelectProtocolFirst << TypeArgId << ProtocolId
1392 << SourceRange(ProtocolLoc);
1393}
1394
1395void Sema::actOnObjCTypeArgsOrProtocolQualifiers(
1396 Scope *S,
1397 ParsedType baseType,
1398 SourceLocation lAngleLoc,
1399 ArrayRef<IdentifierInfo *> identifiers,
1400 ArrayRef<SourceLocation> identifierLocs,
1401 SourceLocation rAngleLoc,
1402 SourceLocation &typeArgsLAngleLoc,
1403 SmallVectorImpl<ParsedType> &typeArgs,
1404 SourceLocation &typeArgsRAngleLoc,
1405 SourceLocation &protocolLAngleLoc,
1406 SmallVectorImpl<Decl *> &protocols,
1407 SourceLocation &protocolRAngleLoc,
1408 bool warnOnIncompleteProtocols) {
1409 // Local function that updates the declaration specifiers with
1410 // protocol information.
1411 unsigned numProtocolsResolved = 0;
1412 auto resolvedAsProtocols = [&] {
1413 assert(numProtocolsResolved == identifiers.size() && "Unresolved protocols")(static_cast <bool> (numProtocolsResolved == identifiers
.size() && "Unresolved protocols") ? void (0) : __assert_fail
("numProtocolsResolved == identifiers.size() && \"Unresolved protocols\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 1413, __extension__ __PRETTY_FUNCTION__))
;
1414
1415 // Determine whether the base type is a parameterized class, in
1416 // which case we want to warn about typos such as
1417 // "NSArray<NSObject>" (that should be NSArray<NSObject *>).
1418 ObjCInterfaceDecl *baseClass = nullptr;
1419 QualType base = GetTypeFromParser(baseType, nullptr);
1420 bool allAreTypeNames = false;
1421 SourceLocation firstClassNameLoc;
1422 if (!base.isNull()) {
1423 if (const auto *objcObjectType = base->getAs<ObjCObjectType>()) {
1424 baseClass = objcObjectType->getInterface();
1425 if (baseClass) {
1426 if (auto typeParams = baseClass->getTypeParamList()) {
1427 if (typeParams->size() == numProtocolsResolved) {
1428 // Note that we should be looking for type names, too.
1429 allAreTypeNames = true;
1430 }
1431 }
1432 }
1433 }
1434 }
1435
1436 for (unsigned i = 0, n = protocols.size(); i != n; ++i) {
1437 ObjCProtocolDecl *&proto
1438 = reinterpret_cast<ObjCProtocolDecl *&>(protocols[i]);
1439 // For an objc container, delay protocol reference checking until after we
1440 // can set the objc decl as the availability context, otherwise check now.
1441 if (!warnOnIncompleteProtocols) {
1442 (void)DiagnoseUseOfDecl(proto, identifierLocs[i]);
1443 }
1444
1445 // If this is a forward protocol declaration, get its definition.
1446 if (!proto->isThisDeclarationADefinition() && proto->getDefinition())
1447 proto = proto->getDefinition();
1448
1449 // If this is a forward declaration and we are supposed to warn in this
1450 // case, do it.
1451 // FIXME: Recover nicely in the hidden case.
1452 ObjCProtocolDecl *forwardDecl = nullptr;
1453 if (warnOnIncompleteProtocols &&
1454 NestedProtocolHasNoDefinition(proto, forwardDecl)) {
1455 Diag(identifierLocs[i], diag::warn_undef_protocolref)
1456 << proto->getDeclName();
1457 Diag(forwardDecl->getLocation(), diag::note_protocol_decl_undefined)
1458 << forwardDecl;
1459 }
1460
1461 // If everything this far has been a type name (and we care
1462 // about such things), check whether this name refers to a type
1463 // as well.
1464 if (allAreTypeNames) {
1465 if (auto *decl = LookupSingleName(S, identifiers[i], identifierLocs[i],
1466 LookupOrdinaryName)) {
1467 if (isa<ObjCInterfaceDecl>(decl)) {
1468 if (firstClassNameLoc.isInvalid())
1469 firstClassNameLoc = identifierLocs[i];
1470 } else if (!isa<TypeDecl>(decl)) {
1471 // Not a type.
1472 allAreTypeNames = false;
1473 }
1474 } else {
1475 allAreTypeNames = false;
1476 }
1477 }
1478 }
1479
1480 // All of the protocols listed also have type names, and at least
1481 // one is an Objective-C class name. Check whether all of the
1482 // protocol conformances are declared by the base class itself, in
1483 // which case we warn.
1484 if (allAreTypeNames && firstClassNameLoc.isValid()) {
1485 llvm::SmallPtrSet<ObjCProtocolDecl*, 8> knownProtocols;
1486 Context.CollectInheritedProtocols(baseClass, knownProtocols);
1487 bool allProtocolsDeclared = true;
1488 for (auto proto : protocols) {
1489 if (knownProtocols.count(static_cast<ObjCProtocolDecl *>(proto)) == 0) {
1490 allProtocolsDeclared = false;
1491 break;
1492 }
1493 }
1494
1495 if (allProtocolsDeclared) {
1496 Diag(firstClassNameLoc, diag::warn_objc_redundant_qualified_class_type)
1497 << baseClass->getDeclName() << SourceRange(lAngleLoc, rAngleLoc)
1498 << FixItHint::CreateInsertion(getLocForEndOfToken(firstClassNameLoc),
1499 " *");
1500 }
1501 }
1502
1503 protocolLAngleLoc = lAngleLoc;
1504 protocolRAngleLoc = rAngleLoc;
1505 assert(protocols.size() == identifierLocs.size())(static_cast <bool> (protocols.size() == identifierLocs
.size()) ? void (0) : __assert_fail ("protocols.size() == identifierLocs.size()"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 1505, __extension__ __PRETTY_FUNCTION__))
;
1506 };
1507
1508 // Attempt to resolve all of the identifiers as protocols.
1509 for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1510 ObjCProtocolDecl *proto = LookupProtocol(identifiers[i], identifierLocs[i]);
1511 protocols.push_back(proto);
1512 if (proto)
1513 ++numProtocolsResolved;
1514 }
1515
1516 // If all of the names were protocols, these were protocol qualifiers.
1517 if (numProtocolsResolved == identifiers.size())
1518 return resolvedAsProtocols();
1519
1520 // Attempt to resolve all of the identifiers as type names or
1521 // Objective-C class names. The latter is technically ill-formed,
1522 // but is probably something like \c NSArray<NSView *> missing the
1523 // \c*.
1524 typedef llvm::PointerUnion<TypeDecl *, ObjCInterfaceDecl *> TypeOrClassDecl;
1525 SmallVector<TypeOrClassDecl, 4> typeDecls;
1526 unsigned numTypeDeclsResolved = 0;
1527 for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1528 NamedDecl *decl = LookupSingleName(S, identifiers[i], identifierLocs[i],
1529 LookupOrdinaryName);
1530 if (!decl) {
1531 typeDecls.push_back(TypeOrClassDecl());
1532 continue;
1533 }
1534
1535 if (auto typeDecl = dyn_cast<TypeDecl>(decl)) {
1536 typeDecls.push_back(typeDecl);
1537 ++numTypeDeclsResolved;
1538 continue;
1539 }
1540
1541 if (auto objcClass = dyn_cast<ObjCInterfaceDecl>(decl)) {
1542 typeDecls.push_back(objcClass);
1543 ++numTypeDeclsResolved;
1544 continue;
1545 }
1546
1547 typeDecls.push_back(TypeOrClassDecl());
1548 }
1549
1550 AttributeFactory attrFactory;
1551
1552 // Local function that forms a reference to the given type or
1553 // Objective-C class declaration.
1554 auto resolveTypeReference = [&](TypeOrClassDecl typeDecl, SourceLocation loc)
1555 -> TypeResult {
1556 // Form declaration specifiers. They simply refer to the type.
1557 DeclSpec DS(attrFactory);
1558 const char* prevSpec; // unused
1559 unsigned diagID; // unused
1560 QualType type;
1561 if (auto *actualTypeDecl = typeDecl.dyn_cast<TypeDecl *>())
1562 type = Context.getTypeDeclType(actualTypeDecl);
1563 else
1564 type = Context.getObjCInterfaceType(typeDecl.get<ObjCInterfaceDecl *>());
1565 TypeSourceInfo *parsedTSInfo = Context.getTrivialTypeSourceInfo(type, loc);
1566 ParsedType parsedType = CreateParsedType(type, parsedTSInfo);
1567 DS.SetTypeSpecType(DeclSpec::TST_typename, loc, prevSpec, diagID,
1568 parsedType, Context.getPrintingPolicy());
1569 // Use the identifier location for the type source range.
1570 DS.SetRangeStart(loc);
1571 DS.SetRangeEnd(loc);
1572
1573 // Form the declarator.
1574 Declarator D(DS, DeclaratorContext::TypeNameContext);
1575
1576 // If we have a typedef of an Objective-C class type that is missing a '*',
1577 // add the '*'.
1578 if (type->getAs<ObjCInterfaceType>()) {
1579 SourceLocation starLoc = getLocForEndOfToken(loc);
1580 D.AddTypeInfo(DeclaratorChunk::getPointer(/*typeQuals=*/0, starLoc,
1581 SourceLocation(),
1582 SourceLocation(),
1583 SourceLocation(),
1584 SourceLocation(),
1585 SourceLocation()),
1586 starLoc);
1587
1588 // Diagnose the missing '*'.
1589 Diag(loc, diag::err_objc_type_arg_missing_star)
1590 << type
1591 << FixItHint::CreateInsertion(starLoc, " *");
1592 }
1593
1594 // Convert this to a type.
1595 return ActOnTypeName(S, D);
1596 };
1597
1598 // Local function that updates the declaration specifiers with
1599 // type argument information.
1600 auto resolvedAsTypeDecls = [&] {
1601 // We did not resolve these as protocols.
1602 protocols.clear();
1603
1604 assert(numTypeDeclsResolved == identifiers.size() && "Unresolved type decl")(static_cast <bool> (numTypeDeclsResolved == identifiers
.size() && "Unresolved type decl") ? void (0) : __assert_fail
("numTypeDeclsResolved == identifiers.size() && \"Unresolved type decl\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 1604, __extension__ __PRETTY_FUNCTION__))
;
1605 // Map type declarations to type arguments.
1606 for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1607 // Map type reference to a type.
1608 TypeResult type = resolveTypeReference(typeDecls[i], identifierLocs[i]);
1609 if (!type.isUsable()) {
1610 typeArgs.clear();
1611 return;
1612 }
1613
1614 typeArgs.push_back(type.get());
1615 }
1616
1617 typeArgsLAngleLoc = lAngleLoc;
1618 typeArgsRAngleLoc = rAngleLoc;
1619 };
1620
1621 // If all of the identifiers can be resolved as type names or
1622 // Objective-C class names, we have type arguments.
1623 if (numTypeDeclsResolved == identifiers.size())
1624 return resolvedAsTypeDecls();
1625
1626 // Error recovery: some names weren't found, or we have a mix of
1627 // type and protocol names. Go resolve all of the unresolved names
1628 // and complain if we can't find a consistent answer.
1629 LookupNameKind lookupKind = LookupAnyName;
1630 for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1631 // If we already have a protocol or type. Check whether it is the
1632 // right thing.
1633 if (protocols[i] || typeDecls[i]) {
1634 // If we haven't figured out whether we want types or protocols
1635 // yet, try to figure it out from this name.
1636 if (lookupKind == LookupAnyName) {
1637 // If this name refers to both a protocol and a type (e.g., \c
1638 // NSObject), don't conclude anything yet.
1639 if (protocols[i] && typeDecls[i])
1640 continue;
1641
1642 // Otherwise, let this name decide whether we'll be correcting
1643 // toward types or protocols.
1644 lookupKind = protocols[i] ? LookupObjCProtocolName
1645 : LookupOrdinaryName;
1646 continue;
1647 }
1648
1649 // If we want protocols and we have a protocol, there's nothing
1650 // more to do.
1651 if (lookupKind == LookupObjCProtocolName && protocols[i])
1652 continue;
1653
1654 // If we want types and we have a type declaration, there's
1655 // nothing more to do.
1656 if (lookupKind == LookupOrdinaryName && typeDecls[i])
1657 continue;
1658
1659 // We have a conflict: some names refer to protocols and others
1660 // refer to types.
1661 DiagnoseTypeArgsAndProtocols(identifiers[0], identifierLocs[0],
1662 identifiers[i], identifierLocs[i],
1663 protocols[i] != nullptr);
1664
1665 protocols.clear();
1666 typeArgs.clear();
1667 return;
1668 }
1669
1670 // Perform typo correction on the name.
1671 TypoCorrection corrected = CorrectTypo(
1672 DeclarationNameInfo(identifiers[i], identifierLocs[i]), lookupKind, S,
1673 nullptr,
1674 llvm::make_unique<ObjCTypeArgOrProtocolValidatorCCC>(Context,
1675 lookupKind),
1676 CTK_ErrorRecovery);
1677 if (corrected) {
1678 // Did we find a protocol?
1679 if (auto proto = corrected.getCorrectionDeclAs<ObjCProtocolDecl>()) {
1680 diagnoseTypo(corrected,
1681 PDiag(diag::err_undeclared_protocol_suggest)
1682 << identifiers[i]);
1683 lookupKind = LookupObjCProtocolName;
1684 protocols[i] = proto;
1685 ++numProtocolsResolved;
1686 continue;
1687 }
1688
1689 // Did we find a type?
1690 if (auto typeDecl = corrected.getCorrectionDeclAs<TypeDecl>()) {
1691 diagnoseTypo(corrected,
1692 PDiag(diag::err_unknown_typename_suggest)
1693 << identifiers[i]);
1694 lookupKind = LookupOrdinaryName;
1695 typeDecls[i] = typeDecl;
1696 ++numTypeDeclsResolved;
1697 continue;
1698 }
1699
1700 // Did we find an Objective-C class?
1701 if (auto objcClass = corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) {
1702 diagnoseTypo(corrected,
1703 PDiag(diag::err_unknown_type_or_class_name_suggest)
1704 << identifiers[i] << true);
1705 lookupKind = LookupOrdinaryName;
1706 typeDecls[i] = objcClass;
1707 ++numTypeDeclsResolved;
1708 continue;
1709 }
1710 }
1711
1712 // We couldn't find anything.
1713 Diag(identifierLocs[i],
1714 (lookupKind == LookupAnyName ? diag::err_objc_type_arg_missing
1715 : lookupKind == LookupObjCProtocolName ? diag::err_undeclared_protocol
1716 : diag::err_unknown_typename))
1717 << identifiers[i];
1718 protocols.clear();
1719 typeArgs.clear();
1720 return;
1721 }
1722
1723 // If all of the names were (corrected to) protocols, these were
1724 // protocol qualifiers.
1725 if (numProtocolsResolved == identifiers.size())
1726 return resolvedAsProtocols();
1727
1728 // Otherwise, all of the names were (corrected to) types.
1729 assert(numTypeDeclsResolved == identifiers.size() && "Not all types?")(static_cast <bool> (numTypeDeclsResolved == identifiers
.size() && "Not all types?") ? void (0) : __assert_fail
("numTypeDeclsResolved == identifiers.size() && \"Not all types?\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 1729, __extension__ __PRETTY_FUNCTION__))
;
1730 return resolvedAsTypeDecls();
1731}
1732
1733/// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of
1734/// a class method in its extension.
1735///
1736void Sema::DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT,
1737 ObjCInterfaceDecl *ID) {
1738 if (!ID)
1739 return; // Possibly due to previous error
1740
1741 llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap;
1742 for (auto *MD : ID->methods())
1743 MethodMap[MD->getSelector()] = MD;
1744
1745 if (MethodMap.empty())
1746 return;
1747 for (const auto *Method : CAT->methods()) {
1748 const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()];
1749 if (PrevMethod &&
1750 (PrevMethod->isInstanceMethod() == Method->isInstanceMethod()) &&
1751 !MatchTwoMethodDeclarations(Method, PrevMethod)) {
1752 Diag(Method->getLocation(), diag::err_duplicate_method_decl)
1753 << Method->getDeclName();
1754 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
1755 }
1756 }
1757}
1758
1759/// ActOnForwardProtocolDeclaration - Handle \@protocol foo;
1760Sema::DeclGroupPtrTy
1761Sema::ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc,
1762 ArrayRef<IdentifierLocPair> IdentList,
1763 const ParsedAttributesView &attrList) {
1764 SmallVector<Decl *, 8> DeclsInGroup;
1765 for (const IdentifierLocPair &IdentPair : IdentList) {
1766 IdentifierInfo *Ident = IdentPair.first;
1767 ObjCProtocolDecl *PrevDecl = LookupProtocol(Ident, IdentPair.second,
1768 forRedeclarationInCurContext());
1769 ObjCProtocolDecl *PDecl
1770 = ObjCProtocolDecl::Create(Context, CurContext, Ident,
1771 IdentPair.second, AtProtocolLoc,
1772 PrevDecl);
1773
1774 PushOnScopeChains(PDecl, TUScope);
1775 CheckObjCDeclScope(PDecl);
1776
1777 ProcessDeclAttributeList(TUScope, PDecl, attrList);
1778 AddPragmaAttributes(TUScope, PDecl);
1779
1780 if (PrevDecl)
1781 mergeDeclAttributes(PDecl, PrevDecl);
1782
1783 DeclsInGroup.push_back(PDecl);
1784 }
1785
1786 return BuildDeclaratorGroup(DeclsInGroup);
1787}
1788
1789Decl *Sema::ActOnStartCategoryInterface(
1790 SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName,
1791 SourceLocation ClassLoc, ObjCTypeParamList *typeParamList,
1792 IdentifierInfo *CategoryName, SourceLocation CategoryLoc,
1793 Decl *const *ProtoRefs, unsigned NumProtoRefs,
1794 const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
1795 const ParsedAttributesView &AttrList) {
1796 ObjCCategoryDecl *CDecl;
1797 ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
1798
1799 /// Check that class of this category is already completely declared.
1800
1801 if (!IDecl
1802 || RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
1803 diag::err_category_forward_interface,
1804 CategoryName == nullptr)) {
1805 // Create an invalid ObjCCategoryDecl to serve as context for
1806 // the enclosing method declarations. We mark the decl invalid
1807 // to make it clear that this isn't a valid AST.
1808 CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
1809 ClassLoc, CategoryLoc, CategoryName,
1810 IDecl, typeParamList);
1811 CDecl->setInvalidDecl();
1812 CurContext->addDecl(CDecl);
1813
1814 if (!IDecl)
1815 Diag(ClassLoc, diag::err_undef_interface) << ClassName;
1816 return ActOnObjCContainerStartDefinition(CDecl);
1817 }
1818
1819 if (!CategoryName && IDecl->getImplementation()) {
1820 Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName;
1821 Diag(IDecl->getImplementation()->getLocation(),
1822 diag::note_implementation_declared);
1823 }
1824
1825 if (CategoryName) {
1826 /// Check for duplicate interface declaration for this category
1827 if (ObjCCategoryDecl *Previous
1828 = IDecl->FindCategoryDeclaration(CategoryName)) {
1829 // Class extensions can be declared multiple times, categories cannot.
1830 Diag(CategoryLoc, diag::warn_dup_category_def)
1831 << ClassName << CategoryName;
1832 Diag(Previous->getLocation(), diag::note_previous_definition);
1833 }
1834 }
1835
1836 // If we have a type parameter list, check it.
1837 if (typeParamList) {
1838 if (auto prevTypeParamList = IDecl->getTypeParamList()) {
1839 if (checkTypeParamListConsistency(*this, prevTypeParamList, typeParamList,
1840 CategoryName
1841 ? TypeParamListContext::Category
1842 : TypeParamListContext::Extension))
1843 typeParamList = nullptr;
1844 } else {
1845 Diag(typeParamList->getLAngleLoc(),
1846 diag::err_objc_parameterized_category_nonclass)
1847 << (CategoryName != nullptr)
1848 << ClassName
1849 << typeParamList->getSourceRange();
1850
1851 typeParamList = nullptr;
1852 }
1853 }
1854
1855 CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
1856 ClassLoc, CategoryLoc, CategoryName, IDecl,
1857 typeParamList);
1858 // FIXME: PushOnScopeChains?
1859 CurContext->addDecl(CDecl);
1860
1861 // Process the attributes before looking at protocols to ensure that the
1862 // availability attribute is attached to the category to provide availability
1863 // checking for protocol uses.
1864 ProcessDeclAttributeList(TUScope, CDecl, AttrList);
1865 AddPragmaAttributes(TUScope, CDecl);
1866
1867 if (NumProtoRefs) {
1868 diagnoseUseOfProtocols(*this, CDecl, (ObjCProtocolDecl*const*)ProtoRefs,
1869 NumProtoRefs, ProtoLocs);
1870 CDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
1871 ProtoLocs, Context);
1872 // Protocols in the class extension belong to the class.
1873 if (CDecl->IsClassExtension())
1874 IDecl->mergeClassExtensionProtocolList((ObjCProtocolDecl*const*)ProtoRefs,
1875 NumProtoRefs, Context);
1876 }
1877
1878 CheckObjCDeclScope(CDecl);
1879 return ActOnObjCContainerStartDefinition(CDecl);
1880}
1881
1882/// ActOnStartCategoryImplementation - Perform semantic checks on the
1883/// category implementation declaration and build an ObjCCategoryImplDecl
1884/// object.
1885Decl *Sema::ActOnStartCategoryImplementation(
1886 SourceLocation AtCatImplLoc,
1887 IdentifierInfo *ClassName, SourceLocation ClassLoc,
1888 IdentifierInfo *CatName, SourceLocation CatLoc) {
1889 ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
1890 ObjCCategoryDecl *CatIDecl = nullptr;
1891 if (IDecl && IDecl->hasDefinition()) {
1892 CatIDecl = IDecl->FindCategoryDeclaration(CatName);
1893 if (!CatIDecl) {
1894 // Category @implementation with no corresponding @interface.
1895 // Create and install one.
1896 CatIDecl = ObjCCategoryDecl::Create(Context, CurContext, AtCatImplLoc,
1897 ClassLoc, CatLoc,
1898 CatName, IDecl,
1899 /*typeParamList=*/nullptr);
1900 CatIDecl->setImplicit();
1901 }
1902 }
1903
1904 ObjCCategoryImplDecl *CDecl =
1905 ObjCCategoryImplDecl::Create(Context, CurContext, CatName, IDecl,
1906 ClassLoc, AtCatImplLoc, CatLoc);
1907 /// Check that class of this category is already completely declared.
1908 if (!IDecl) {
1909 Diag(ClassLoc, diag::err_undef_interface) << ClassName;
1910 CDecl->setInvalidDecl();
1911 } else if (RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
1912 diag::err_undef_interface)) {
1913 CDecl->setInvalidDecl();
1914 }
1915
1916 // FIXME: PushOnScopeChains?
1917 CurContext->addDecl(CDecl);
1918
1919 // If the interface has the objc_runtime_visible attribute, we
1920 // cannot implement a category for it.
1921 if (IDecl && IDecl->hasAttr<ObjCRuntimeVisibleAttr>()) {
1922 Diag(ClassLoc, diag::err_objc_runtime_visible_category)
1923 << IDecl->getDeclName();
1924 }
1925
1926 /// Check that CatName, category name, is not used in another implementation.
1927 if (CatIDecl) {
1928 if (CatIDecl->getImplementation()) {
1929 Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName
1930 << CatName;
1931 Diag(CatIDecl->getImplementation()->getLocation(),
1932 diag::note_previous_definition);
1933 CDecl->setInvalidDecl();
1934 } else {
1935 CatIDecl->setImplementation(CDecl);
1936 // Warn on implementating category of deprecated class under
1937 // -Wdeprecated-implementations flag.
1938 DiagnoseObjCImplementedDeprecations(*this, CatIDecl,
1939 CDecl->getLocation());
1940 }
1941 }
1942
1943 CheckObjCDeclScope(CDecl);
1944 return ActOnObjCContainerStartDefinition(CDecl);
1945}
1946
1947Decl *Sema::ActOnStartClassImplementation(
1948 SourceLocation AtClassImplLoc,
1949 IdentifierInfo *ClassName, SourceLocation ClassLoc,
1950 IdentifierInfo *SuperClassname,
1951 SourceLocation SuperClassLoc) {
1952 ObjCInterfaceDecl *IDecl = nullptr;
1953 // Check for another declaration kind with the same name.
1954 NamedDecl *PrevDecl
1955 = LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName,
1956 forRedeclarationInCurContext());
1957 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
1958 Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
1959 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1960 } else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl))) {
1961 // FIXME: This will produce an error if the definition of the interface has
1962 // been imported from a module but is not visible.
1963 RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
1964 diag::warn_undef_interface);
1965 } else {
1966 // We did not find anything with the name ClassName; try to correct for
1967 // typos in the class name.
1968 TypoCorrection Corrected = CorrectTypo(
1969 DeclarationNameInfo(ClassName, ClassLoc), LookupOrdinaryName, TUScope,
1970 nullptr, llvm::make_unique<ObjCInterfaceValidatorCCC>(), CTK_NonError);
1971 if (Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) {
1972 // Suggest the (potentially) correct interface name. Don't provide a
1973 // code-modification hint or use the typo name for recovery, because
1974 // this is just a warning. The program may actually be correct.
1975 diagnoseTypo(Corrected,
1976 PDiag(diag::warn_undef_interface_suggest) << ClassName,
1977 /*ErrorRecovery*/false);
1978 } else {
1979 Diag(ClassLoc, diag::warn_undef_interface) << ClassName;
1980 }
1981 }
1982
1983 // Check that super class name is valid class name
1984 ObjCInterfaceDecl *SDecl = nullptr;
1985 if (SuperClassname) {
1986 // Check if a different kind of symbol declared in this scope.
1987 PrevDecl = LookupSingleName(TUScope, SuperClassname, SuperClassLoc,
1988 LookupOrdinaryName);
1989 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
1990 Diag(SuperClassLoc, diag::err_redefinition_different_kind)
1991 << SuperClassname;
1992 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1993 } else {
1994 SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
1995 if (SDecl && !SDecl->hasDefinition())
1996 SDecl = nullptr;
1997 if (!SDecl)
1998 Diag(SuperClassLoc, diag::err_undef_superclass)
1999 << SuperClassname << ClassName;
2000 else if (IDecl && !declaresSameEntity(IDecl->getSuperClass(), SDecl)) {
2001 // This implementation and its interface do not have the same
2002 // super class.
2003 Diag(SuperClassLoc, diag::err_conflicting_super_class)
2004 << SDecl->getDeclName();
2005 Diag(SDecl->getLocation(), diag::note_previous_definition);
2006 }
2007 }
2008 }
2009
2010 if (!IDecl) {
2011 // Legacy case of @implementation with no corresponding @interface.
2012 // Build, chain & install the interface decl into the identifier.
2013
2014 // FIXME: Do we support attributes on the @implementation? If so we should
2015 // copy them over.
2016 IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassImplLoc,
2017 ClassName, /*typeParamList=*/nullptr,
2018 /*PrevDecl=*/nullptr, ClassLoc,
2019 true);
2020 AddPragmaAttributes(TUScope, IDecl);
2021 IDecl->startDefinition();
2022 if (SDecl) {
2023 IDecl->setSuperClass(Context.getTrivialTypeSourceInfo(
2024 Context.getObjCInterfaceType(SDecl),
2025 SuperClassLoc));
2026 IDecl->setEndOfDefinitionLoc(SuperClassLoc);
2027 } else {
2028 IDecl->setEndOfDefinitionLoc(ClassLoc);
2029 }
2030
2031 PushOnScopeChains(IDecl, TUScope);
2032 } else {
2033 // Mark the interface as being completed, even if it was just as
2034 // @class ....;
2035 // declaration; the user cannot reopen it.
2036 if (!IDecl->hasDefinition())
2037 IDecl->startDefinition();
2038 }
2039
2040 ObjCImplementationDecl* IMPDecl =
2041 ObjCImplementationDecl::Create(Context, CurContext, IDecl, SDecl,
2042 ClassLoc, AtClassImplLoc, SuperClassLoc);
2043
2044 if (CheckObjCDeclScope(IMPDecl))
2045 return ActOnObjCContainerStartDefinition(IMPDecl);
2046
2047 // Check that there is no duplicate implementation of this class.
2048 if (IDecl->getImplementation()) {
2049 // FIXME: Don't leak everything!
2050 Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName;
2051 Diag(IDecl->getImplementation()->getLocation(),
2052 diag::note_previous_definition);
2053 IMPDecl->setInvalidDecl();
2054 } else { // add it to the list.
2055 IDecl->setImplementation(IMPDecl);
2056 PushOnScopeChains(IMPDecl, TUScope);
2057 // Warn on implementating deprecated class under
2058 // -Wdeprecated-implementations flag.
2059 DiagnoseObjCImplementedDeprecations(*this, IDecl, IMPDecl->getLocation());
2060 }
2061
2062 // If the superclass has the objc_runtime_visible attribute, we
2063 // cannot implement a subclass of it.
2064 if (IDecl->getSuperClass() &&
2065 IDecl->getSuperClass()->hasAttr<ObjCRuntimeVisibleAttr>()) {
2066 Diag(ClassLoc, diag::err_objc_runtime_visible_subclass)
2067 << IDecl->getDeclName()
2068 << IDecl->getSuperClass()->getDeclName();
2069 }
2070
2071 return ActOnObjCContainerStartDefinition(IMPDecl);
2072}
2073
2074Sema::DeclGroupPtrTy
2075Sema::ActOnFinishObjCImplementation(Decl *ObjCImpDecl, ArrayRef<Decl *> Decls) {
2076 SmallVector<Decl *, 64> DeclsInGroup;
2077 DeclsInGroup.reserve(Decls.size() + 1);
2078
2079 for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
2080 Decl *Dcl = Decls[i];
2081 if (!Dcl)
2082 continue;
2083 if (Dcl->getDeclContext()->isFileContext())
2084 Dcl->setTopLevelDeclInObjCContainer();
2085 DeclsInGroup.push_back(Dcl);
2086 }
2087
2088 DeclsInGroup.push_back(ObjCImpDecl);
2089
2090 return BuildDeclaratorGroup(DeclsInGroup);
2091}
2092
2093void Sema::CheckImplementationIvars(ObjCImplementationDecl *ImpDecl,
2094 ObjCIvarDecl **ivars, unsigned numIvars,
2095 SourceLocation RBrace) {
2096 assert(ImpDecl && "missing implementation decl")(static_cast <bool> (ImpDecl && "missing implementation decl"
) ? void (0) : __assert_fail ("ImpDecl && \"missing implementation decl\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 2096, __extension__ __PRETTY_FUNCTION__))
;
2097 ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface();
2098 if (!IDecl)
2099 return;
2100 /// Check case of non-existing \@interface decl.
2101 /// (legacy objective-c \@implementation decl without an \@interface decl).
2102 /// Add implementations's ivar to the synthesize class's ivar list.
2103 if (IDecl->isImplicitInterfaceDecl()) {
2104 IDecl->setEndOfDefinitionLoc(RBrace);
2105 // Add ivar's to class's DeclContext.
2106 for (unsigned i = 0, e = numIvars; i != e; ++i) {
2107 ivars[i]->setLexicalDeclContext(ImpDecl);
2108 IDecl->makeDeclVisibleInContext(ivars[i]);
2109 ImpDecl->addDecl(ivars[i]);
2110 }
2111
2112 return;
2113 }
2114 // If implementation has empty ivar list, just return.
2115 if (numIvars == 0)
2116 return;
2117
2118 assert(ivars && "missing @implementation ivars")(static_cast <bool> (ivars && "missing @implementation ivars"
) ? void (0) : __assert_fail ("ivars && \"missing @implementation ivars\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 2118, __extension__ __PRETTY_FUNCTION__))
;
2119 if (LangOpts.ObjCRuntime.isNonFragile()) {
2120 if (ImpDecl->getSuperClass())
2121 Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use);
2122 for (unsigned i = 0; i < numIvars; i++) {
2123 ObjCIvarDecl* ImplIvar = ivars[i];
2124 if (const ObjCIvarDecl *ClsIvar =
2125 IDecl->getIvarDecl(ImplIvar->getIdentifier())) {
2126 Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
2127 Diag(ClsIvar->getLocation(), diag::note_previous_definition);
2128 continue;
2129 }
2130 // Check class extensions (unnamed categories) for duplicate ivars.
2131 for (const auto *CDecl : IDecl->visible_extensions()) {
2132 if (const ObjCIvarDecl *ClsExtIvar =
2133 CDecl->getIvarDecl(ImplIvar->getIdentifier())) {
2134 Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
2135 Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
2136 continue;
2137 }
2138 }
2139 // Instance ivar to Implementation's DeclContext.
2140 ImplIvar->setLexicalDeclContext(ImpDecl);
2141 IDecl->makeDeclVisibleInContext(ImplIvar);
2142 ImpDecl->addDecl(ImplIvar);
2143 }
2144 return;
2145 }
2146 // Check interface's Ivar list against those in the implementation.
2147 // names and types must match.
2148 //
2149 unsigned j = 0;
2150 ObjCInterfaceDecl::ivar_iterator
2151 IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end();
2152 for (; numIvars > 0 && IVI != IVE; ++IVI) {
2153 ObjCIvarDecl* ImplIvar = ivars[j++];
2154 ObjCIvarDecl* ClsIvar = *IVI;
2155 assert (ImplIvar && "missing implementation ivar")(static_cast <bool> (ImplIvar && "missing implementation ivar"
) ? void (0) : __assert_fail ("ImplIvar && \"missing implementation ivar\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 2155, __extension__ __PRETTY_FUNCTION__))
;
2156 assert (ClsIvar && "missing class ivar")(static_cast <bool> (ClsIvar && "missing class ivar"
) ? void (0) : __assert_fail ("ClsIvar && \"missing class ivar\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 2156, __extension__ __PRETTY_FUNCTION__))
;
2157
2158 // First, make sure the types match.
2159 if (!Context.hasSameType(ImplIvar->getType(), ClsIvar->getType())) {
2160 Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type)
2161 << ImplIvar->getIdentifier()
2162 << ImplIvar->getType() << ClsIvar->getType();
2163 Diag(ClsIvar->getLocation(), diag::note_previous_definition);
2164 } else if (ImplIvar->isBitField() && ClsIvar->isBitField() &&
2165 ImplIvar->getBitWidthValue(Context) !=
2166 ClsIvar->getBitWidthValue(Context)) {
2167 Diag(ImplIvar->getBitWidth()->getLocStart(),
2168 diag::err_conflicting_ivar_bitwidth) << ImplIvar->getIdentifier();
2169 Diag(ClsIvar->getBitWidth()->getLocStart(),
2170 diag::note_previous_definition);
2171 }
2172 // Make sure the names are identical.
2173 if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) {
2174 Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name)
2175 << ImplIvar->getIdentifier() << ClsIvar->getIdentifier();
2176 Diag(ClsIvar->getLocation(), diag::note_previous_definition);
2177 }
2178 --numIvars;
2179 }
2180
2181 if (numIvars > 0)
2182 Diag(ivars[j]->getLocation(), diag::err_inconsistent_ivar_count);
2183 else if (IVI != IVE)
2184 Diag(IVI->getLocation(), diag::err_inconsistent_ivar_count);
2185}
2186
2187static void WarnUndefinedMethod(Sema &S, SourceLocation ImpLoc,
2188 ObjCMethodDecl *method,
2189 bool &IncompleteImpl,
2190 unsigned DiagID,
2191 NamedDecl *NeededFor = nullptr) {
2192 // No point warning no definition of method which is 'unavailable'.
2193 if (method->getAvailability() == AR_Unavailable)
2194 return;
2195
2196 // FIXME: For now ignore 'IncompleteImpl'.
2197 // Previously we grouped all unimplemented methods under a single
2198 // warning, but some users strongly voiced that they would prefer
2199 // separate warnings. We will give that approach a try, as that
2200 // matches what we do with protocols.
2201 {
2202 const Sema::SemaDiagnosticBuilder &B = S.Diag(ImpLoc, DiagID);
2203 B << method;
2204 if (NeededFor)
2205 B << NeededFor;
2206 }
2207
2208 // Issue a note to the original declaration.
2209 SourceLocation MethodLoc = method->getLocStart();
2210 if (MethodLoc.isValid())
2211 S.Diag(MethodLoc, diag::note_method_declared_at) << method;
2212}
2213
2214/// Determines if type B can be substituted for type A. Returns true if we can
2215/// guarantee that anything that the user will do to an object of type A can
2216/// also be done to an object of type B. This is trivially true if the two
2217/// types are the same, or if B is a subclass of A. It becomes more complex
2218/// in cases where protocols are involved.
2219///
2220/// Object types in Objective-C describe the minimum requirements for an
2221/// object, rather than providing a complete description of a type. For
2222/// example, if A is a subclass of B, then B* may refer to an instance of A.
2223/// The principle of substitutability means that we may use an instance of A
2224/// anywhere that we may use an instance of B - it will implement all of the
2225/// ivars of B and all of the methods of B.
2226///
2227/// This substitutability is important when type checking methods, because
2228/// the implementation may have stricter type definitions than the interface.
2229/// The interface specifies minimum requirements, but the implementation may
2230/// have more accurate ones. For example, a method may privately accept
2231/// instances of B, but only publish that it accepts instances of A. Any
2232/// object passed to it will be type checked against B, and so will implicitly
2233/// by a valid A*. Similarly, a method may return a subclass of the class that
2234/// it is declared as returning.
2235///
2236/// This is most important when considering subclassing. A method in a
2237/// subclass must accept any object as an argument that its superclass's
2238/// implementation accepts. It may, however, accept a more general type
2239/// without breaking substitutability (i.e. you can still use the subclass
2240/// anywhere that you can use the superclass, but not vice versa). The
2241/// converse requirement applies to return types: the return type for a
2242/// subclass method must be a valid object of the kind that the superclass
2243/// advertises, but it may be specified more accurately. This avoids the need
2244/// for explicit down-casting by callers.
2245///
2246/// Note: This is a stricter requirement than for assignment.
2247static bool isObjCTypeSubstitutable(ASTContext &Context,
2248 const ObjCObjectPointerType *A,
2249 const ObjCObjectPointerType *B,
2250 bool rejectId) {
2251 // Reject a protocol-unqualified id.
2252 if (rejectId && B->isObjCIdType()) return false;
2253
2254 // If B is a qualified id, then A must also be a qualified id and it must
2255 // implement all of the protocols in B. It may not be a qualified class.
2256 // For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a
2257 // stricter definition so it is not substitutable for id<A>.
2258 if (B->isObjCQualifiedIdType()) {
2259 return A->isObjCQualifiedIdType() &&
2260 Context.ObjCQualifiedIdTypesAreCompatible(QualType(A, 0),
2261 QualType(B,0),
2262 false);
2263 }
2264
2265 /*
2266 // id is a special type that bypasses type checking completely. We want a
2267 // warning when it is used in one place but not another.
2268 if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false;
2269
2270
2271 // If B is a qualified id, then A must also be a qualified id (which it isn't
2272 // if we've got this far)
2273 if (B->isObjCQualifiedIdType()) return false;
2274 */
2275
2276 // Now we know that A and B are (potentially-qualified) class types. The
2277 // normal rules for assignment apply.
2278 return Context.canAssignObjCInterfaces(A, B);
2279}
2280
2281static SourceRange getTypeRange(TypeSourceInfo *TSI) {
2282 return (TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange());
2283}
2284
2285/// Determine whether two set of Objective-C declaration qualifiers conflict.
2286static bool objcModifiersConflict(Decl::ObjCDeclQualifier x,
2287 Decl::ObjCDeclQualifier y) {
2288 return (x & ~Decl::OBJC_TQ_CSNullability) !=
2289 (y & ~Decl::OBJC_TQ_CSNullability);
2290}
2291
2292static bool CheckMethodOverrideReturn(Sema &S,
2293 ObjCMethodDecl *MethodImpl,
2294 ObjCMethodDecl *MethodDecl,
2295 bool IsProtocolMethodDecl,
2296 bool IsOverridingMode,
2297 bool Warn) {
2298 if (IsProtocolMethodDecl &&
2299 objcModifiersConflict(MethodDecl->getObjCDeclQualifier(),
2300 MethodImpl->getObjCDeclQualifier())) {
2301 if (Warn) {
2302 S.Diag(MethodImpl->getLocation(),
2303 (IsOverridingMode
2304 ? diag::warn_conflicting_overriding_ret_type_modifiers
2305 : diag::warn_conflicting_ret_type_modifiers))
2306 << MethodImpl->getDeclName()
2307 << MethodImpl->getReturnTypeSourceRange();
2308 S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration)
2309 << MethodDecl->getReturnTypeSourceRange();
2310 }
2311 else
2312 return false;
2313 }
2314 if (Warn && IsOverridingMode &&
2315 !isa<ObjCImplementationDecl>(MethodImpl->getDeclContext()) &&
2316 !S.Context.hasSameNullabilityTypeQualifier(MethodImpl->getReturnType(),
2317 MethodDecl->getReturnType(),
2318 false)) {
2319 auto nullabilityMethodImpl =
2320 *MethodImpl->getReturnType()->getNullability(S.Context);
2321 auto nullabilityMethodDecl =
2322 *MethodDecl->getReturnType()->getNullability(S.Context);
2323 S.Diag(MethodImpl->getLocation(),
2324 diag::warn_conflicting_nullability_attr_overriding_ret_types)
2325 << DiagNullabilityKind(
2326 nullabilityMethodImpl,
2327 ((MethodImpl->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2328 != 0))
2329 << DiagNullabilityKind(
2330 nullabilityMethodDecl,
2331 ((MethodDecl->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2332 != 0));
2333 S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
2334 }
2335
2336 if (S.Context.hasSameUnqualifiedType(MethodImpl->getReturnType(),
2337 MethodDecl->getReturnType()))
2338 return true;
2339 if (!Warn)
2340 return false;
2341
2342 unsigned DiagID =
2343 IsOverridingMode ? diag::warn_conflicting_overriding_ret_types
2344 : diag::warn_conflicting_ret_types;
2345
2346 // Mismatches between ObjC pointers go into a different warning
2347 // category, and sometimes they're even completely whitelisted.
2348 if (const ObjCObjectPointerType *ImplPtrTy =
2349 MethodImpl->getReturnType()->getAs<ObjCObjectPointerType>()) {
2350 if (const ObjCObjectPointerType *IfacePtrTy =
2351 MethodDecl->getReturnType()->getAs<ObjCObjectPointerType>()) {
2352 // Allow non-matching return types as long as they don't violate
2353 // the principle of substitutability. Specifically, we permit
2354 // return types that are subclasses of the declared return type,
2355 // or that are more-qualified versions of the declared type.
2356 if (isObjCTypeSubstitutable(S.Context, IfacePtrTy, ImplPtrTy, false))
2357 return false;
2358
2359 DiagID =
2360 IsOverridingMode ? diag::warn_non_covariant_overriding_ret_types
2361 : diag::warn_non_covariant_ret_types;
2362 }
2363 }
2364
2365 S.Diag(MethodImpl->getLocation(), DiagID)
2366 << MethodImpl->getDeclName() << MethodDecl->getReturnType()
2367 << MethodImpl->getReturnType()
2368 << MethodImpl->getReturnTypeSourceRange();
2369 S.Diag(MethodDecl->getLocation(), IsOverridingMode
2370 ? diag::note_previous_declaration
2371 : diag::note_previous_definition)
2372 << MethodDecl->getReturnTypeSourceRange();
2373 return false;
2374}
2375
2376static bool CheckMethodOverrideParam(Sema &S,
2377 ObjCMethodDecl *MethodImpl,
2378 ObjCMethodDecl *MethodDecl,
2379 ParmVarDecl *ImplVar,
2380 ParmVarDecl *IfaceVar,
2381 bool IsProtocolMethodDecl,
2382 bool IsOverridingMode,
2383 bool Warn) {
2384 if (IsProtocolMethodDecl &&
2385 objcModifiersConflict(ImplVar->getObjCDeclQualifier(),
2386 IfaceVar->getObjCDeclQualifier())) {
2387 if (Warn) {
2388 if (IsOverridingMode)
2389 S.Diag(ImplVar->getLocation(),
2390 diag::warn_conflicting_overriding_param_modifiers)
2391 << getTypeRange(ImplVar->getTypeSourceInfo())
2392 << MethodImpl->getDeclName();
2393 else S.Diag(ImplVar->getLocation(),
2394 diag::warn_conflicting_param_modifiers)
2395 << getTypeRange(ImplVar->getTypeSourceInfo())
2396 << MethodImpl->getDeclName();
2397 S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration)
2398 << getTypeRange(IfaceVar->getTypeSourceInfo());
2399 }
2400 else
2401 return false;
2402 }
2403
2404 QualType ImplTy = ImplVar->getType();
2405 QualType IfaceTy = IfaceVar->getType();
2406 if (Warn && IsOverridingMode &&
2407 !isa<ObjCImplementationDecl>(MethodImpl->getDeclContext()) &&
2408 !S.Context.hasSameNullabilityTypeQualifier(ImplTy, IfaceTy, true)) {
2409 S.Diag(ImplVar->getLocation(),
2410 diag::warn_conflicting_nullability_attr_overriding_param_types)
2411 << DiagNullabilityKind(
2412 *ImplTy->getNullability(S.Context),
2413 ((ImplVar->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2414 != 0))
2415 << DiagNullabilityKind(
2416 *IfaceTy->getNullability(S.Context),
2417 ((IfaceVar->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2418 != 0));
2419 S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration);
2420 }
2421 if (S.Context.hasSameUnqualifiedType(ImplTy, IfaceTy))
2422 return true;
2423
2424 if (!Warn)
2425 return false;
2426 unsigned DiagID =
2427 IsOverridingMode ? diag::warn_conflicting_overriding_param_types
2428 : diag::warn_conflicting_param_types;
2429
2430 // Mismatches between ObjC pointers go into a different warning
2431 // category, and sometimes they're even completely whitelisted.
2432 if (const ObjCObjectPointerType *ImplPtrTy =
2433 ImplTy->getAs<ObjCObjectPointerType>()) {
2434 if (const ObjCObjectPointerType *IfacePtrTy =
2435 IfaceTy->getAs<ObjCObjectPointerType>()) {
2436 // Allow non-matching argument types as long as they don't
2437 // violate the principle of substitutability. Specifically, the
2438 // implementation must accept any objects that the superclass
2439 // accepts, however it may also accept others.
2440 if (isObjCTypeSubstitutable(S.Context, ImplPtrTy, IfacePtrTy, true))
2441 return false;
2442
2443 DiagID =
2444 IsOverridingMode ? diag::warn_non_contravariant_overriding_param_types
2445 : diag::warn_non_contravariant_param_types;
2446 }
2447 }
2448
2449 S.Diag(ImplVar->getLocation(), DiagID)
2450 << getTypeRange(ImplVar->getTypeSourceInfo())
2451 << MethodImpl->getDeclName() << IfaceTy << ImplTy;
2452 S.Diag(IfaceVar->getLocation(),
2453 (IsOverridingMode ? diag::note_previous_declaration
2454 : diag::note_previous_definition))
2455 << getTypeRange(IfaceVar->getTypeSourceInfo());
2456 return false;
2457}
2458
2459/// In ARC, check whether the conventional meanings of the two methods
2460/// match. If they don't, it's a hard error.
2461static bool checkMethodFamilyMismatch(Sema &S, ObjCMethodDecl *impl,
2462 ObjCMethodDecl *decl) {
2463 ObjCMethodFamily implFamily = impl->getMethodFamily();
2464 ObjCMethodFamily declFamily = decl->getMethodFamily();
2465 if (implFamily == declFamily) return false;
2466
2467 // Since conventions are sorted by selector, the only possibility is
2468 // that the types differ enough to cause one selector or the other
2469 // to fall out of the family.
2470 assert(implFamily == OMF_None || declFamily == OMF_None)(static_cast <bool> (implFamily == OMF_None || declFamily
== OMF_None) ? void (0) : __assert_fail ("implFamily == OMF_None || declFamily == OMF_None"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 2470, __extension__ __PRETTY_FUNCTION__))
;
2471
2472 // No further diagnostics required on invalid declarations.
2473 if (impl->isInvalidDecl() || decl->isInvalidDecl()) return true;
2474
2475 const ObjCMethodDecl *unmatched = impl;
2476 ObjCMethodFamily family = declFamily;
2477 unsigned errorID = diag::err_arc_lost_method_convention;
2478 unsigned noteID = diag::note_arc_lost_method_convention;
2479 if (declFamily == OMF_None) {
2480 unmatched = decl;
2481 family = implFamily;
2482 errorID = diag::err_arc_gained_method_convention;
2483 noteID = diag::note_arc_gained_method_convention;
2484 }
2485
2486 // Indexes into a %select clause in the diagnostic.
2487 enum FamilySelector {
2488 F_alloc, F_copy, F_mutableCopy = F_copy, F_init, F_new
2489 };
2490 FamilySelector familySelector = FamilySelector();
2491
2492 switch (family) {
2493 case OMF_None: llvm_unreachable("logic error, no method convention")::llvm::llvm_unreachable_internal("logic error, no method convention"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 2493)
;
2494 case OMF_retain:
2495 case OMF_release:
2496 case OMF_autorelease:
2497 case OMF_dealloc:
2498 case OMF_finalize:
2499 case OMF_retainCount:
2500 case OMF_self:
2501 case OMF_initialize:
2502 case OMF_performSelector:
2503 // Mismatches for these methods don't change ownership
2504 // conventions, so we don't care.
2505 return false;
2506
2507 case OMF_init: familySelector = F_init; break;
2508 case OMF_alloc: familySelector = F_alloc; break;
2509 case OMF_copy: familySelector = F_copy; break;
2510 case OMF_mutableCopy: familySelector = F_mutableCopy; break;
2511 case OMF_new: familySelector = F_new; break;
2512 }
2513
2514 enum ReasonSelector { R_NonObjectReturn, R_UnrelatedReturn };
2515 ReasonSelector reasonSelector;
2516
2517 // The only reason these methods don't fall within their families is
2518 // due to unusual result types.
2519 if (unmatched->getReturnType()->isObjCObjectPointerType()) {
2520 reasonSelector = R_UnrelatedReturn;
2521 } else {
2522 reasonSelector = R_NonObjectReturn;
2523 }
2524
2525 S.Diag(impl->getLocation(), errorID) << int(familySelector) << int(reasonSelector);
2526 S.Diag(decl->getLocation(), noteID) << int(familySelector) << int(reasonSelector);
2527
2528 return true;
2529}
2530
2531void Sema::WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethodDecl,
2532 ObjCMethodDecl *MethodDecl,
2533 bool IsProtocolMethodDecl) {
2534 if (getLangOpts().ObjCAutoRefCount &&
2535 checkMethodFamilyMismatch(*this, ImpMethodDecl, MethodDecl))
2536 return;
2537
2538 CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
2539 IsProtocolMethodDecl, false,
2540 true);
2541
2542 for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
2543 IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
2544 EF = MethodDecl->param_end();
2545 IM != EM && IF != EF; ++IM, ++IF) {
2546 CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, *IM, *IF,
2547 IsProtocolMethodDecl, false, true);
2548 }
2549
2550 if (ImpMethodDecl->isVariadic() != MethodDecl->isVariadic()) {
2551 Diag(ImpMethodDecl->getLocation(),
2552 diag::warn_conflicting_variadic);
2553 Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
2554 }
2555}
2556
2557void Sema::CheckConflictingOverridingMethod(ObjCMethodDecl *Method,
2558 ObjCMethodDecl *Overridden,
2559 bool IsProtocolMethodDecl) {
2560
2561 CheckMethodOverrideReturn(*this, Method, Overridden,
2562 IsProtocolMethodDecl, true,
2563 true);
2564
2565 for (ObjCMethodDecl::param_iterator IM = Method->param_begin(),
2566 IF = Overridden->param_begin(), EM = Method->param_end(),
2567 EF = Overridden->param_end();
2568 IM != EM && IF != EF; ++IM, ++IF) {
2569 CheckMethodOverrideParam(*this, Method, Overridden, *IM, *IF,
2570 IsProtocolMethodDecl, true, true);
2571 }
2572
2573 if (Method->isVariadic() != Overridden->isVariadic()) {
2574 Diag(Method->getLocation(),
2575 diag::warn_conflicting_overriding_variadic);
2576 Diag(Overridden->getLocation(), diag::note_previous_declaration);
2577 }
2578}
2579
2580/// WarnExactTypedMethods - This routine issues a warning if method
2581/// implementation declaration matches exactly that of its declaration.
2582void Sema::WarnExactTypedMethods(ObjCMethodDecl *ImpMethodDecl,
2583 ObjCMethodDecl *MethodDecl,
2584 bool IsProtocolMethodDecl) {
2585 // don't issue warning when protocol method is optional because primary
2586 // class is not required to implement it and it is safe for protocol
2587 // to implement it.
2588 if (MethodDecl->getImplementationControl() == ObjCMethodDecl::Optional)
2589 return;
2590 // don't issue warning when primary class's method is
2591 // depecated/unavailable.
2592 if (MethodDecl->hasAttr<UnavailableAttr>() ||
2593 MethodDecl->hasAttr<DeprecatedAttr>())
2594 return;
2595
2596 bool match = CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
2597 IsProtocolMethodDecl, false, false);
2598 if (match)
2599 for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
2600 IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
2601 EF = MethodDecl->param_end();
2602 IM != EM && IF != EF; ++IM, ++IF) {
2603 match = CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl,
2604 *IM, *IF,
2605 IsProtocolMethodDecl, false, false);
2606 if (!match)
2607 break;
2608 }
2609 if (match)
2610 match = (ImpMethodDecl->isVariadic() == MethodDecl->isVariadic());
2611 if (match)
2612 match = !(MethodDecl->isClassMethod() &&
2613 MethodDecl->getSelector() == GetNullarySelector("load", Context));
2614
2615 if (match) {
2616 Diag(ImpMethodDecl->getLocation(),
2617 diag::warn_category_method_impl_match);
2618 Diag(MethodDecl->getLocation(), diag::note_method_declared_at)
2619 << MethodDecl->getDeclName();
2620 }
2621}
2622
2623/// FIXME: Type hierarchies in Objective-C can be deep. We could most likely
2624/// improve the efficiency of selector lookups and type checking by associating
2625/// with each protocol / interface / category the flattened instance tables. If
2626/// we used an immutable set to keep the table then it wouldn't add significant
2627/// memory cost and it would be handy for lookups.
2628
2629typedef llvm::DenseSet<IdentifierInfo*> ProtocolNameSet;
2630typedef std::unique_ptr<ProtocolNameSet> LazyProtocolNameSet;
2631
2632static void findProtocolsWithExplicitImpls(const ObjCProtocolDecl *PDecl,
2633 ProtocolNameSet &PNS) {
2634 if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>())
2635 PNS.insert(PDecl->getIdentifier());
2636 for (const auto *PI : PDecl->protocols())
2637 findProtocolsWithExplicitImpls(PI, PNS);
2638}
2639
2640/// Recursively populates a set with all conformed protocols in a class
2641/// hierarchy that have the 'objc_protocol_requires_explicit_implementation'
2642/// attribute.
2643static void findProtocolsWithExplicitImpls(const ObjCInterfaceDecl *Super,
2644 ProtocolNameSet &PNS) {
2645 if (!Super)
2646 return;
2647
2648 for (const auto *I : Super->all_referenced_protocols())
2649 findProtocolsWithExplicitImpls(I, PNS);
2650
2651 findProtocolsWithExplicitImpls(Super->getSuperClass(), PNS);
2652}
2653
2654/// CheckProtocolMethodDefs - This routine checks unimplemented methods
2655/// Declared in protocol, and those referenced by it.
2656static void CheckProtocolMethodDefs(Sema &S,
2657 SourceLocation ImpLoc,
2658 ObjCProtocolDecl *PDecl,
2659 bool& IncompleteImpl,
2660 const Sema::SelectorSet &InsMap,
2661 const Sema::SelectorSet &ClsMap,
2662 ObjCContainerDecl *CDecl,
2663 LazyProtocolNameSet &ProtocolsExplictImpl) {
2664 ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl);
2665 ObjCInterfaceDecl *IDecl = C ? C->getClassInterface()
2666 : dyn_cast<ObjCInterfaceDecl>(CDecl);
2667 assert (IDecl && "CheckProtocolMethodDefs - IDecl is null")(static_cast <bool> (IDecl && "CheckProtocolMethodDefs - IDecl is null"
) ? void (0) : __assert_fail ("IDecl && \"CheckProtocolMethodDefs - IDecl is null\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 2667, __extension__ __PRETTY_FUNCTION__))
;
2668
2669 ObjCInterfaceDecl *Super = IDecl->getSuperClass();
2670 ObjCInterfaceDecl *NSIDecl = nullptr;
2671
2672 // If this protocol is marked 'objc_protocol_requires_explicit_implementation'
2673 // then we should check if any class in the super class hierarchy also
2674 // conforms to this protocol, either directly or via protocol inheritance.
2675 // If so, we can skip checking this protocol completely because we
2676 // know that a parent class already satisfies this protocol.
2677 //
2678 // Note: we could generalize this logic for all protocols, and merely
2679 // add the limit on looking at the super class chain for just
2680 // specially marked protocols. This may be a good optimization. This
2681 // change is restricted to 'objc_protocol_requires_explicit_implementation'
2682 // protocols for now for controlled evaluation.
2683 if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>()) {
2684 if (!ProtocolsExplictImpl) {
2685 ProtocolsExplictImpl.reset(new ProtocolNameSet);
2686 findProtocolsWithExplicitImpls(Super, *ProtocolsExplictImpl);
2687 }
2688 if (ProtocolsExplictImpl->find(PDecl->getIdentifier()) !=
2689 ProtocolsExplictImpl->end())
2690 return;
2691
2692 // If no super class conforms to the protocol, we should not search
2693 // for methods in the super class to implicitly satisfy the protocol.
2694 Super = nullptr;
2695 }
2696
2697 if (S.getLangOpts().ObjCRuntime.isNeXTFamily()) {
2698 // check to see if class implements forwardInvocation method and objects
2699 // of this class are derived from 'NSProxy' so that to forward requests
2700 // from one object to another.
2701 // Under such conditions, which means that every method possible is
2702 // implemented in the class, we should not issue "Method definition not
2703 // found" warnings.
2704 // FIXME: Use a general GetUnarySelector method for this.
2705 IdentifierInfo* II = &S.Context.Idents.get("forwardInvocation");
2706 Selector fISelector = S.Context.Selectors.getSelector(1, &II);
2707 if (InsMap.count(fISelector))
2708 // Is IDecl derived from 'NSProxy'? If so, no instance methods
2709 // need be implemented in the implementation.
2710 NSIDecl = IDecl->lookupInheritedClass(&S.Context.Idents.get("NSProxy"));
2711 }
2712
2713 // If this is a forward protocol declaration, get its definition.
2714 if (!PDecl->isThisDeclarationADefinition() &&
2715 PDecl->getDefinition())
2716 PDecl = PDecl->getDefinition();
2717
2718 // If a method lookup fails locally we still need to look and see if
2719 // the method was implemented by a base class or an inherited
2720 // protocol. This lookup is slow, but occurs rarely in correct code
2721 // and otherwise would terminate in a warning.
2722
2723 // check unimplemented instance methods.
2724 if (!NSIDecl)
2725 for (auto *method : PDecl->instance_methods()) {
2726 if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
2727 !method->isPropertyAccessor() &&
2728 !InsMap.count(method->getSelector()) &&
2729 (!Super || !Super->lookupMethod(method->getSelector(),
2730 true /* instance */,
2731 false /* shallowCategory */,
2732 true /* followsSuper */,
2733 nullptr /* category */))) {
2734 // If a method is not implemented in the category implementation but
2735 // has been declared in its primary class, superclass,
2736 // or in one of their protocols, no need to issue the warning.
2737 // This is because method will be implemented in the primary class
2738 // or one of its super class implementation.
2739
2740 // Ugly, but necessary. Method declared in protocol might have
2741 // have been synthesized due to a property declared in the class which
2742 // uses the protocol.
2743 if (ObjCMethodDecl *MethodInClass =
2744 IDecl->lookupMethod(method->getSelector(),
2745 true /* instance */,
2746 true /* shallowCategoryLookup */,
2747 false /* followSuper */))
2748 if (C || MethodInClass->isPropertyAccessor())
2749 continue;
2750 unsigned DIAG = diag::warn_unimplemented_protocol_method;
2751 if (!S.Diags.isIgnored(DIAG, ImpLoc)) {
2752 WarnUndefinedMethod(S, ImpLoc, method, IncompleteImpl, DIAG,
2753 PDecl);
2754 }
2755 }
2756 }
2757 // check unimplemented class methods
2758 for (auto *method : PDecl->class_methods()) {
2759 if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
2760 !ClsMap.count(method->getSelector()) &&
2761 (!Super || !Super->lookupMethod(method->getSelector(),
2762 false /* class method */,
2763 false /* shallowCategoryLookup */,
2764 true /* followSuper */,
2765 nullptr /* category */))) {
2766 // See above comment for instance method lookups.
2767 if (C && IDecl->lookupMethod(method->getSelector(),
2768 false /* class */,
2769 true /* shallowCategoryLookup */,
2770 false /* followSuper */))
2771 continue;
2772
2773 unsigned DIAG = diag::warn_unimplemented_protocol_method;
2774 if (!S.Diags.isIgnored(DIAG, ImpLoc)) {
2775 WarnUndefinedMethod(S, ImpLoc, method, IncompleteImpl, DIAG, PDecl);
2776 }
2777 }
2778 }
2779 // Check on this protocols's referenced protocols, recursively.
2780 for (auto *PI : PDecl->protocols())
2781 CheckProtocolMethodDefs(S, ImpLoc, PI, IncompleteImpl, InsMap, ClsMap,
2782 CDecl, ProtocolsExplictImpl);
2783}
2784
2785/// MatchAllMethodDeclarations - Check methods declared in interface
2786/// or protocol against those declared in their implementations.
2787///
2788void Sema::MatchAllMethodDeclarations(const SelectorSet &InsMap,
2789 const SelectorSet &ClsMap,
2790 SelectorSet &InsMapSeen,
2791 SelectorSet &ClsMapSeen,
2792 ObjCImplDecl* IMPDecl,
2793 ObjCContainerDecl* CDecl,
2794 bool &IncompleteImpl,
2795 bool ImmediateClass,
2796 bool WarnCategoryMethodImpl) {
2797 // Check and see if instance methods in class interface have been
2798 // implemented in the implementation class. If so, their types match.
2799 for (auto *I : CDecl->instance_methods()) {
2800 if (!InsMapSeen.insert(I->getSelector()).second)
2801 continue;
2802 if (!I->isPropertyAccessor() &&
2803 !InsMap.count(I->getSelector())) {
2804 if (ImmediateClass)
2805 WarnUndefinedMethod(*this, IMPDecl->getLocation(), I, IncompleteImpl,
2806 diag::warn_undef_method_impl);
2807 continue;
2808 } else {
2809 ObjCMethodDecl *ImpMethodDecl =
2810 IMPDecl->getInstanceMethod(I->getSelector());
2811 assert(CDecl->getInstanceMethod(I->getSelector(), true/*AllowHidden*/) &&(static_cast <bool> (CDecl->getInstanceMethod(I->
getSelector(), true ) && "Expected to find the method through lookup as well"
) ? void (0) : __assert_fail ("CDecl->getInstanceMethod(I->getSelector(), true ) && \"Expected to find the method through lookup as well\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 2812, __extension__ __PRETTY_FUNCTION__))
2812 "Expected to find the method through lookup as well")(static_cast <bool> (CDecl->getInstanceMethod(I->
getSelector(), true ) && "Expected to find the method through lookup as well"
) ? void (0) : __assert_fail ("CDecl->getInstanceMethod(I->getSelector(), true ) && \"Expected to find the method through lookup as well\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 2812, __extension__ __PRETTY_FUNCTION__))
;
2813 // ImpMethodDecl may be null as in a @dynamic property.
2814 if (ImpMethodDecl) {
2815 if (!WarnCategoryMethodImpl)
2816 WarnConflictingTypedMethods(ImpMethodDecl, I,
2817 isa<ObjCProtocolDecl>(CDecl));
2818 else if (!I->isPropertyAccessor())
2819 WarnExactTypedMethods(ImpMethodDecl, I, isa<ObjCProtocolDecl>(CDecl));
2820 }
2821 }
2822 }
2823
2824 // Check and see if class methods in class interface have been
2825 // implemented in the implementation class. If so, their types match.
2826 for (auto *I : CDecl->class_methods()) {
2827 if (!ClsMapSeen.insert(I->getSelector()).second)
2828 continue;
2829 if (!I->isPropertyAccessor() &&
2830 !ClsMap.count(I->getSelector())) {
2831 if (ImmediateClass)
2832 WarnUndefinedMethod(*this, IMPDecl->getLocation(), I, IncompleteImpl,
2833 diag::warn_undef_method_impl);
2834 } else {
2835 ObjCMethodDecl *ImpMethodDecl =
2836 IMPDecl->getClassMethod(I->getSelector());
2837 assert(CDecl->getClassMethod(I->getSelector(), true/*AllowHidden*/) &&(static_cast <bool> (CDecl->getClassMethod(I->getSelector
(), true ) && "Expected to find the method through lookup as well"
) ? void (0) : __assert_fail ("CDecl->getClassMethod(I->getSelector(), true ) && \"Expected to find the method through lookup as well\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 2838, __extension__ __PRETTY_FUNCTION__))
2838 "Expected to find the method through lookup as well")(static_cast <bool> (CDecl->getClassMethod(I->getSelector
(), true ) && "Expected to find the method through lookup as well"
) ? void (0) : __assert_fail ("CDecl->getClassMethod(I->getSelector(), true ) && \"Expected to find the method through lookup as well\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 2838, __extension__ __PRETTY_FUNCTION__))
;
2839 // ImpMethodDecl may be null as in a @dynamic property.
2840 if (ImpMethodDecl) {
2841 if (!WarnCategoryMethodImpl)
2842 WarnConflictingTypedMethods(ImpMethodDecl, I,
2843 isa<ObjCProtocolDecl>(CDecl));
2844 else if (!I->isPropertyAccessor())
2845 WarnExactTypedMethods(ImpMethodDecl, I, isa<ObjCProtocolDecl>(CDecl));
2846 }
2847 }
2848 }
2849
2850 if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl> (CDecl)) {
2851 // Also, check for methods declared in protocols inherited by
2852 // this protocol.
2853 for (auto *PI : PD->protocols())
2854 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2855 IMPDecl, PI, IncompleteImpl, false,
2856 WarnCategoryMethodImpl);
2857 }
2858
2859 if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
2860 // when checking that methods in implementation match their declaration,
2861 // i.e. when WarnCategoryMethodImpl is false, check declarations in class
2862 // extension; as well as those in categories.
2863 if (!WarnCategoryMethodImpl) {
2864 for (auto *Cat : I->visible_categories())
2865 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2866 IMPDecl, Cat, IncompleteImpl,
2867 ImmediateClass && Cat->IsClassExtension(),
2868 WarnCategoryMethodImpl);
2869 } else {
2870 // Also methods in class extensions need be looked at next.
2871 for (auto *Ext : I->visible_extensions())
2872 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2873 IMPDecl, Ext, IncompleteImpl, false,
2874 WarnCategoryMethodImpl);
2875 }
2876
2877 // Check for any implementation of a methods declared in protocol.
2878 for (auto *PI : I->all_referenced_protocols())
2879 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2880 IMPDecl, PI, IncompleteImpl, false,
2881 WarnCategoryMethodImpl);
2882
2883 // FIXME. For now, we are not checking for extact match of methods
2884 // in category implementation and its primary class's super class.
2885 if (!WarnCategoryMethodImpl && I->getSuperClass())
2886 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2887 IMPDecl,
2888 I->getSuperClass(), IncompleteImpl, false);
2889 }
2890}
2891
2892/// CheckCategoryVsClassMethodMatches - Checks that methods implemented in
2893/// category matches with those implemented in its primary class and
2894/// warns each time an exact match is found.
2895void Sema::CheckCategoryVsClassMethodMatches(
2896 ObjCCategoryImplDecl *CatIMPDecl) {
2897 // Get category's primary class.
2898 ObjCCategoryDecl *CatDecl = CatIMPDecl->getCategoryDecl();
2899 if (!CatDecl)
2900 return;
2901 ObjCInterfaceDecl *IDecl = CatDecl->getClassInterface();
2902 if (!IDecl)
2903 return;
2904 ObjCInterfaceDecl *SuperIDecl = IDecl->getSuperClass();
2905 SelectorSet InsMap, ClsMap;
2906
2907 for (const auto *I : CatIMPDecl->instance_methods()) {
2908 Selector Sel = I->getSelector();
2909 // When checking for methods implemented in the category, skip over
2910 // those declared in category class's super class. This is because
2911 // the super class must implement the method.
2912 if (SuperIDecl && SuperIDecl->lookupMethod(Sel, true))
2913 continue;
2914 InsMap.insert(Sel);
2915 }
2916
2917 for (const auto *I : CatIMPDecl->class_methods()) {
2918 Selector Sel = I->getSelector();
2919 if (SuperIDecl && SuperIDecl->lookupMethod(Sel, false))
2920 continue;
2921 ClsMap.insert(Sel);
2922 }
2923 if (InsMap.empty() && ClsMap.empty())
2924 return;
2925
2926 SelectorSet InsMapSeen, ClsMapSeen;
2927 bool IncompleteImpl = false;
2928 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2929 CatIMPDecl, IDecl,
2930 IncompleteImpl, false,
2931 true /*WarnCategoryMethodImpl*/);
2932}
2933
2934void Sema::ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl,
2935 ObjCContainerDecl* CDecl,
2936 bool IncompleteImpl) {
2937 SelectorSet InsMap;
2938 // Check and see if instance methods in class interface have been
2939 // implemented in the implementation class.
2940 for (const auto *I : IMPDecl->instance_methods())
2941 InsMap.insert(I->getSelector());
2942
2943 // Add the selectors for getters/setters of @dynamic properties.
2944 for (const auto *PImpl : IMPDecl->property_impls()) {
2945 // We only care about @dynamic implementations.
2946 if (PImpl->getPropertyImplementation() != ObjCPropertyImplDecl::Dynamic)
2947 continue;
2948
2949 const auto *P = PImpl->getPropertyDecl();
2950 if (!P) continue;
2951
2952 InsMap.insert(P->getGetterName());
2953 if (!P->getSetterName().isNull())
2954 InsMap.insert(P->getSetterName());
2955 }
2956
2957 // Check and see if properties declared in the interface have either 1)
2958 // an implementation or 2) there is a @synthesize/@dynamic implementation
2959 // of the property in the @implementation.
2960 if (const ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
2961 bool SynthesizeProperties = LangOpts.ObjCDefaultSynthProperties &&
2962 LangOpts.ObjCRuntime.isNonFragile() &&
2963 !IDecl->isObjCRequiresPropertyDefs();
2964 DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, SynthesizeProperties);
2965 }
2966
2967 // Diagnose null-resettable synthesized setters.
2968 diagnoseNullResettableSynthesizedSetters(IMPDecl);
2969
2970 SelectorSet ClsMap;
2971 for (const auto *I : IMPDecl->class_methods())
2972 ClsMap.insert(I->getSelector());
2973
2974 // Check for type conflict of methods declared in a class/protocol and
2975 // its implementation; if any.
2976 SelectorSet InsMapSeen, ClsMapSeen;
2977 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2978 IMPDecl, CDecl,
2979 IncompleteImpl, true);
2980
2981 // check all methods implemented in category against those declared
2982 // in its primary class.
2983 if (ObjCCategoryImplDecl *CatDecl =
2984 dyn_cast<ObjCCategoryImplDecl>(IMPDecl))
2985 CheckCategoryVsClassMethodMatches(CatDecl);
2986
2987 // Check the protocol list for unimplemented methods in the @implementation
2988 // class.
2989 // Check and see if class methods in class interface have been
2990 // implemented in the implementation class.
2991
2992 LazyProtocolNameSet ExplicitImplProtocols;
2993
2994 if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
2995 for (auto *PI : I->all_referenced_protocols())
2996 CheckProtocolMethodDefs(*this, IMPDecl->getLocation(), PI, IncompleteImpl,
2997 InsMap, ClsMap, I, ExplicitImplProtocols);
2998 } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) {
2999 // For extended class, unimplemented methods in its protocols will
3000 // be reported in the primary class.
3001 if (!C->IsClassExtension()) {
3002 for (auto *P : C->protocols())
3003 CheckProtocolMethodDefs(*this, IMPDecl->getLocation(), P,
3004 IncompleteImpl, InsMap, ClsMap, CDecl,
3005 ExplicitImplProtocols);
3006 DiagnoseUnimplementedProperties(S, IMPDecl, CDecl,
3007 /*SynthesizeProperties=*/false);
3008 }
3009 } else
3010 llvm_unreachable("invalid ObjCContainerDecl type.")::llvm::llvm_unreachable_internal("invalid ObjCContainerDecl type."
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 3010)
;
3011}
3012
3013Sema::DeclGroupPtrTy
3014Sema::ActOnForwardClassDeclaration(SourceLocation AtClassLoc,
3015 IdentifierInfo **IdentList,
3016 SourceLocation *IdentLocs,
3017 ArrayRef<ObjCTypeParamList *> TypeParamLists,
3018 unsigned NumElts) {
3019 SmallVector<Decl *, 8> DeclsInGroup;
3020 for (unsigned i = 0; i != NumElts; ++i) {
3021 // Check for another declaration kind with the same name.
3022 NamedDecl *PrevDecl
3023 = LookupSingleName(TUScope, IdentList[i], IdentLocs[i],
3024 LookupOrdinaryName, forRedeclarationInCurContext());
3025 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
3026 // GCC apparently allows the following idiom:
3027 //
3028 // typedef NSObject < XCElementTogglerP > XCElementToggler;
3029 // @class XCElementToggler;
3030 //
3031 // Here we have chosen to ignore the forward class declaration
3032 // with a warning. Since this is the implied behavior.
3033 TypedefNameDecl *TDD = dyn_cast<TypedefNameDecl>(PrevDecl);
3034 if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) {
3035 Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i];
3036 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3037 } else {
3038 // a forward class declaration matching a typedef name of a class refers
3039 // to the underlying class. Just ignore the forward class with a warning
3040 // as this will force the intended behavior which is to lookup the
3041 // typedef name.
3042 if (isa<ObjCObjectType>(TDD->getUnderlyingType())) {
3043 Diag(AtClassLoc, diag::warn_forward_class_redefinition)
3044 << IdentList[i];
3045 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3046 continue;
3047 }
3048 }
3049 }
3050
3051 // Create a declaration to describe this forward declaration.
3052 ObjCInterfaceDecl *PrevIDecl
3053 = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
3054
3055 IdentifierInfo *ClassName = IdentList[i];
3056 if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) {
3057 // A previous decl with a different name is because of
3058 // @compatibility_alias, for example:
3059 // \code
3060 // @class NewImage;
3061 // @compatibility_alias OldImage NewImage;
3062 // \endcode
3063 // A lookup for 'OldImage' will return the 'NewImage' decl.
3064 //
3065 // In such a case use the real declaration name, instead of the alias one,
3066 // otherwise we will break IdentifierResolver and redecls-chain invariants.
3067 // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl
3068 // has been aliased.
3069 ClassName = PrevIDecl->getIdentifier();
3070 }
3071
3072 // If this forward declaration has type parameters, compare them with the
3073 // type parameters of the previous declaration.
3074 ObjCTypeParamList *TypeParams = TypeParamLists[i];
3075 if (PrevIDecl && TypeParams) {
3076 if (ObjCTypeParamList *PrevTypeParams = PrevIDecl->getTypeParamList()) {
3077 // Check for consistency with the previous declaration.
3078 if (checkTypeParamListConsistency(
3079 *this, PrevTypeParams, TypeParams,
3080 TypeParamListContext::ForwardDeclaration)) {
3081 TypeParams = nullptr;
3082 }
3083 } else if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
3084 // The @interface does not have type parameters. Complain.
3085 Diag(IdentLocs[i], diag::err_objc_parameterized_forward_class)
3086 << ClassName
3087 << TypeParams->getSourceRange();
3088 Diag(Def->getLocation(), diag::note_defined_here)
3089 << ClassName;
3090
3091 TypeParams = nullptr;
3092 }
3093 }
3094
3095 ObjCInterfaceDecl *IDecl
3096 = ObjCInterfaceDecl::Create(Context, CurContext, AtClassLoc,
3097 ClassName, TypeParams, PrevIDecl,
3098 IdentLocs[i]);
3099 IDecl->setAtEndRange(IdentLocs[i]);
3100
3101 PushOnScopeChains(IDecl, TUScope);
3102 CheckObjCDeclScope(IDecl);
3103 DeclsInGroup.push_back(IDecl);
3104 }
3105
3106 return BuildDeclaratorGroup(DeclsInGroup);
3107}
3108
3109static bool tryMatchRecordTypes(ASTContext &Context,
3110 Sema::MethodMatchStrategy strategy,
3111 const Type *left, const Type *right);
3112
3113static bool matchTypes(ASTContext &Context, Sema::MethodMatchStrategy strategy,
3114 QualType leftQT, QualType rightQT) {
3115 const Type *left =
3116 Context.getCanonicalType(leftQT).getUnqualifiedType().getTypePtr();
3117 const Type *right =
3118 Context.getCanonicalType(rightQT).getUnqualifiedType().getTypePtr();
3119
3120 if (left == right) return true;
3121
3122 // If we're doing a strict match, the types have to match exactly.
3123 if (strategy == Sema::MMS_strict) return false;
3124
3125 if (left->isIncompleteType() || right->isIncompleteType()) return false;
3126
3127 // Otherwise, use this absurdly complicated algorithm to try to
3128 // validate the basic, low-level compatibility of the two types.
3129
3130 // As a minimum, require the sizes and alignments to match.
3131 TypeInfo LeftTI = Context.getTypeInfo(left);
3132 TypeInfo RightTI = Context.getTypeInfo(right);
3133 if (LeftTI.Width != RightTI.Width)
3134 return false;
3135
3136 if (LeftTI.Align != RightTI.Align)
3137 return false;
3138
3139 // Consider all the kinds of non-dependent canonical types:
3140 // - functions and arrays aren't possible as return and parameter types
3141
3142 // - vector types of equal size can be arbitrarily mixed
3143 if (isa<VectorType>(left)) return isa<VectorType>(right);
3144 if (isa<VectorType>(right)) return false;
3145
3146 // - references should only match references of identical type
3147 // - structs, unions, and Objective-C objects must match more-or-less
3148 // exactly
3149 // - everything else should be a scalar
3150 if (!left->isScalarType() || !right->isScalarType())
3151 return tryMatchRecordTypes(Context, strategy, left, right);
3152
3153 // Make scalars agree in kind, except count bools as chars, and group
3154 // all non-member pointers together.
3155 Type::ScalarTypeKind leftSK = left->getScalarTypeKind();
3156 Type::ScalarTypeKind rightSK = right->getScalarTypeKind();
3157 if (leftSK == Type::STK_Bool) leftSK = Type::STK_Integral;
3158 if (rightSK == Type::STK_Bool) rightSK = Type::STK_Integral;
3159 if (leftSK == Type::STK_CPointer || leftSK == Type::STK_BlockPointer)
3160 leftSK = Type::STK_ObjCObjectPointer;
3161 if (rightSK == Type::STK_CPointer || rightSK == Type::STK_BlockPointer)
3162 rightSK = Type::STK_ObjCObjectPointer;
3163
3164 // Note that data member pointers and function member pointers don't
3165 // intermix because of the size differences.
3166
3167 return (leftSK == rightSK);
3168}
3169
3170static bool tryMatchRecordTypes(ASTContext &Context,
3171 Sema::MethodMatchStrategy strategy,
3172 const Type *lt, const Type *rt) {
3173 assert(lt && rt && lt != rt)(static_cast <bool> (lt && rt && lt != rt
) ? void (0) : __assert_fail ("lt && rt && lt != rt"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 3173, __extension__ __PRETTY_FUNCTION__))
;
3174
3175 if (!isa<RecordType>(lt) || !isa<RecordType>(rt)) return false;
3176 RecordDecl *left = cast<RecordType>(lt)->getDecl();
3177 RecordDecl *right = cast<RecordType>(rt)->getDecl();
3178
3179 // Require union-hood to match.
3180 if (left->isUnion() != right->isUnion()) return false;
3181
3182 // Require an exact match if either is non-POD.
3183 if ((isa<CXXRecordDecl>(left) && !cast<CXXRecordDecl>(left)->isPOD()) ||
3184 (isa<CXXRecordDecl>(right) && !cast<CXXRecordDecl>(right)->isPOD()))
3185 return false;
3186
3187 // Require size and alignment to match.
3188 TypeInfo LeftTI = Context.getTypeInfo(lt);
3189 TypeInfo RightTI = Context.getTypeInfo(rt);
3190 if (LeftTI.Width != RightTI.Width)
3191 return false;
3192
3193 if (LeftTI.Align != RightTI.Align)
3194 return false;
3195
3196 // Require fields to match.
3197 RecordDecl::field_iterator li = left->field_begin(), le = left->field_end();
3198 RecordDecl::field_iterator ri = right->field_begin(), re = right->field_end();
3199 for (; li != le && ri != re; ++li, ++ri) {
3200 if (!matchTypes(Context, strategy, li->getType(), ri->getType()))
3201 return false;
3202 }
3203 return (li == le && ri == re);
3204}
3205
3206/// MatchTwoMethodDeclarations - Checks that two methods have matching type and
3207/// returns true, or false, accordingly.
3208/// TODO: Handle protocol list; such as id<p1,p2> in type comparisons
3209bool Sema::MatchTwoMethodDeclarations(const ObjCMethodDecl *left,
3210 const ObjCMethodDecl *right,
3211 MethodMatchStrategy strategy) {
3212 if (!matchTypes(Context, strategy, left->getReturnType(),
3213 right->getReturnType()))
3214 return false;
3215
3216 // If either is hidden, it is not considered to match.
3217 if (left->isHidden() || right->isHidden())
3218 return false;
3219
3220 if (getLangOpts().ObjCAutoRefCount &&
3221 (left->hasAttr<NSReturnsRetainedAttr>()
3222 != right->hasAttr<NSReturnsRetainedAttr>() ||
3223 left->hasAttr<NSConsumesSelfAttr>()
3224 != right->hasAttr<NSConsumesSelfAttr>()))
3225 return false;
3226
3227 ObjCMethodDecl::param_const_iterator
3228 li = left->param_begin(), le = left->param_end(), ri = right->param_begin(),
3229 re = right->param_end();
3230
3231 for (; li != le && ri != re; ++li, ++ri) {
3232 assert(ri != right->param_end() && "Param mismatch")(static_cast <bool> (ri != right->param_end() &&
"Param mismatch") ? void (0) : __assert_fail ("ri != right->param_end() && \"Param mismatch\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 3232, __extension__ __PRETTY_FUNCTION__))
;
3233 const ParmVarDecl *lparm = *li, *rparm = *ri;
3234
3235 if (!matchTypes(Context, strategy, lparm->getType(), rparm->getType()))
3236 return false;
3237
3238 if (getLangOpts().ObjCAutoRefCount &&
3239 lparm->hasAttr<NSConsumedAttr>() != rparm->hasAttr<NSConsumedAttr>())
3240 return false;
3241 }
3242 return true;
3243}
3244
3245static bool isMethodContextSameForKindofLookup(ObjCMethodDecl *Method,
3246 ObjCMethodDecl *MethodInList) {
3247 auto *MethodProtocol = dyn_cast<ObjCProtocolDecl>(Method->getDeclContext());
3248 auto *MethodInListProtocol =
3249 dyn_cast<ObjCProtocolDecl>(MethodInList->getDeclContext());
3250 // If this method belongs to a protocol but the method in list does not, or
3251 // vice versa, we say the context is not the same.
3252 if ((MethodProtocol && !MethodInListProtocol) ||
3253 (!MethodProtocol && MethodInListProtocol))
3254 return false;
3255
3256 if (MethodProtocol && MethodInListProtocol)
3257 return true;
3258
3259 ObjCInterfaceDecl *MethodInterface = Method->getClassInterface();
3260 ObjCInterfaceDecl *MethodInListInterface =
3261 MethodInList->getClassInterface();
3262 return MethodInterface == MethodInListInterface;
3263}
3264
3265void Sema::addMethodToGlobalList(ObjCMethodList *List,
3266 ObjCMethodDecl *Method) {
3267 // Record at the head of the list whether there were 0, 1, or >= 2 methods
3268 // inside categories.
3269 if (ObjCCategoryDecl *CD =
3270 dyn_cast<ObjCCategoryDecl>(Method->getDeclContext()))
3271 if (!CD->IsClassExtension() && List->getBits() < 2)
3272 List->setBits(List->getBits() + 1);
3273
3274 // If the list is empty, make it a singleton list.
3275 if (List->getMethod() == nullptr) {
3276 List->setMethod(Method);
3277 List->setNext(nullptr);
3278 return;
3279 }
3280
3281 // We've seen a method with this name, see if we have already seen this type
3282 // signature.
3283 ObjCMethodList *Previous = List;
3284 ObjCMethodList *ListWithSameDeclaration = nullptr;
3285 for (; List; Previous = List, List = List->getNext()) {
3286 // If we are building a module, keep all of the methods.
3287 if (getLangOpts().isCompilingModule())
3288 continue;
3289
3290 bool SameDeclaration = MatchTwoMethodDeclarations(Method,
3291 List->getMethod());
3292 // Looking for method with a type bound requires the correct context exists.
3293 // We need to insert a method into the list if the context is different.
3294 // If the method's declaration matches the list
3295 // a> the method belongs to a different context: we need to insert it, in
3296 // order to emit the availability message, we need to prioritize over
3297 // availability among the methods with the same declaration.
3298 // b> the method belongs to the same context: there is no need to insert a
3299 // new entry.
3300 // If the method's declaration does not match the list, we insert it to the
3301 // end.
3302 if (!SameDeclaration ||
3303 !isMethodContextSameForKindofLookup(Method, List->getMethod())) {
3304 // Even if two method types do not match, we would like to say
3305 // there is more than one declaration so unavailability/deprecated
3306 // warning is not too noisy.
3307 if (!Method->isDefined())
3308 List->setHasMoreThanOneDecl(true);
3309
3310 // For methods with the same declaration, the one that is deprecated
3311 // should be put in the front for better diagnostics.
3312 if (Method->isDeprecated() && SameDeclaration &&
3313 !ListWithSameDeclaration && !List->getMethod()->isDeprecated())
3314 ListWithSameDeclaration = List;
3315
3316 if (Method->isUnavailable() && SameDeclaration &&
3317 !ListWithSameDeclaration &&
3318 List->getMethod()->getAvailability() < AR_Deprecated)
3319 ListWithSameDeclaration = List;
3320 continue;
3321 }
3322
3323 ObjCMethodDecl *PrevObjCMethod = List->getMethod();
3324
3325 // Propagate the 'defined' bit.
3326 if (Method->isDefined())
3327 PrevObjCMethod->setDefined(true);
3328 else {
3329 // Objective-C doesn't allow an @interface for a class after its
3330 // @implementation. So if Method is not defined and there already is
3331 // an entry for this type signature, Method has to be for a different
3332 // class than PrevObjCMethod.
3333 List->setHasMoreThanOneDecl(true);
3334 }
3335
3336 // If a method is deprecated, push it in the global pool.
3337 // This is used for better diagnostics.
3338 if (Method->isDeprecated()) {
3339 if (!PrevObjCMethod->isDeprecated())
3340 List->setMethod(Method);
3341 }
3342 // If the new method is unavailable, push it into global pool
3343 // unless previous one is deprecated.
3344 if (Method->isUnavailable()) {
3345 if (PrevObjCMethod->getAvailability() < AR_Deprecated)
3346 List->setMethod(Method);
3347 }
3348
3349 return;
3350 }
3351
3352 // We have a new signature for an existing method - add it.
3353 // This is extremely rare. Only 1% of Cocoa selectors are "overloaded".
3354 ObjCMethodList *Mem = BumpAlloc.Allocate<ObjCMethodList>();
3355
3356 // We insert it right before ListWithSameDeclaration.
3357 if (ListWithSameDeclaration) {
3358 auto *List = new (Mem) ObjCMethodList(*ListWithSameDeclaration);
3359 // FIXME: should we clear the other bits in ListWithSameDeclaration?
3360 ListWithSameDeclaration->setMethod(Method);
3361 ListWithSameDeclaration->setNext(List);
3362 return;
3363 }
3364
3365 Previous->setNext(new (Mem) ObjCMethodList(Method));
3366}
3367
3368/// Read the contents of the method pool for a given selector from
3369/// external storage.
3370void Sema::ReadMethodPool(Selector Sel) {
3371 assert(ExternalSource && "We need an external AST source")(static_cast <bool> (ExternalSource && "We need an external AST source"
) ? void (0) : __assert_fail ("ExternalSource && \"We need an external AST source\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 3371, __extension__ __PRETTY_FUNCTION__))
;
3372 ExternalSource->ReadMethodPool(Sel);
3373}
3374
3375void Sema::updateOutOfDateSelector(Selector Sel) {
3376 if (!ExternalSource)
3377 return;
3378 ExternalSource->updateOutOfDateSelector(Sel);
3379}
3380
3381void Sema::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl,
3382 bool instance) {
3383 // Ignore methods of invalid containers.
3384 if (cast<Decl>(Method->getDeclContext())->isInvalidDecl())
3385 return;
3386
3387 if (ExternalSource)
3388 ReadMethodPool(Method->getSelector());
3389
3390 GlobalMethodPool::iterator Pos = MethodPool.find(Method->getSelector());
3391 if (Pos == MethodPool.end())
3392 Pos = MethodPool.insert(std::make_pair(Method->getSelector(),
3393 GlobalMethods())).first;
3394
3395 Method->setDefined(impl);
3396
3397 ObjCMethodList &Entry = instance ? Pos->second.first : Pos->second.second;
3398 addMethodToGlobalList(&Entry, Method);
3399}
3400
3401/// Determines if this is an "acceptable" loose mismatch in the global
3402/// method pool. This exists mostly as a hack to get around certain
3403/// global mismatches which we can't afford to make warnings / errors.
3404/// Really, what we want is a way to take a method out of the global
3405/// method pool.
3406static bool isAcceptableMethodMismatch(ObjCMethodDecl *chosen,
3407 ObjCMethodDecl *other) {
3408 if (!chosen->isInstanceMethod())
3409 return false;
3410
3411 Selector sel = chosen->getSelector();
3412 if (!sel.isUnarySelector() || sel.getNameForSlot(0) != "length")
3413 return false;
3414
3415 // Don't complain about mismatches for -length if the method we
3416 // chose has an integral result type.
3417 return (chosen->getReturnType()->isIntegerType());
3418}
3419
3420/// Return true if the given method is wthin the type bound.
3421static bool FilterMethodsByTypeBound(ObjCMethodDecl *Method,
3422 const ObjCObjectType *TypeBound) {
3423 if (!TypeBound)
3424 return true;
3425
3426 if (TypeBound->isObjCId())
3427 // FIXME: should we handle the case of bounding to id<A, B> differently?
3428 return true;
3429
3430 auto *BoundInterface = TypeBound->getInterface();
3431 assert(BoundInterface && "unexpected object type!")(static_cast <bool> (BoundInterface && "unexpected object type!"
) ? void (0) : __assert_fail ("BoundInterface && \"unexpected object type!\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 3431, __extension__ __PRETTY_FUNCTION__))
;
3432
3433 // Check if the Method belongs to a protocol. We should allow any method
3434 // defined in any protocol, because any subclass could adopt the protocol.
3435 auto *MethodProtocol = dyn_cast<ObjCProtocolDecl>(Method->getDeclContext());
3436 if (MethodProtocol) {
3437 return true;
3438 }
3439
3440 // If the Method belongs to a class, check if it belongs to the class
3441 // hierarchy of the class bound.
3442 if (ObjCInterfaceDecl *MethodInterface = Method->getClassInterface()) {
3443 // We allow methods declared within classes that are part of the hierarchy
3444 // of the class bound (superclass of, subclass of, or the same as the class
3445 // bound).
3446 return MethodInterface == BoundInterface ||
3447 MethodInterface->isSuperClassOf(BoundInterface) ||
3448 BoundInterface->isSuperClassOf(MethodInterface);
3449 }
3450 llvm_unreachable("unknown method context")::llvm::llvm_unreachable_internal("unknown method context", "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 3450)
;
3451}
3452
3453/// We first select the type of the method: Instance or Factory, then collect
3454/// all methods with that type.
3455bool Sema::CollectMultipleMethodsInGlobalPool(
3456 Selector Sel, SmallVectorImpl<ObjCMethodDecl *> &Methods,
3457 bool InstanceFirst, bool CheckTheOther,
3458 const ObjCObjectType *TypeBound) {
3459 if (ExternalSource)
3460 ReadMethodPool(Sel);
3461
3462 GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3463 if (Pos == MethodPool.end())
3464 return false;
3465
3466 // Gather the non-hidden methods.
3467 ObjCMethodList &MethList = InstanceFirst ? Pos->second.first :
3468 Pos->second.second;
3469 for (ObjCMethodList *M = &MethList; M; M = M->getNext())
3470 if (M->getMethod() && !M->getMethod()->isHidden()) {
3471 if (FilterMethodsByTypeBound(M->getMethod(), TypeBound))
3472 Methods.push_back(M->getMethod());
3473 }
3474
3475 // Return if we find any method with the desired kind.
3476 if (!Methods.empty())
3477 return Methods.size() > 1;
3478
3479 if (!CheckTheOther)
3480 return false;
3481
3482 // Gather the other kind.
3483 ObjCMethodList &MethList2 = InstanceFirst ? Pos->second.second :
3484 Pos->second.first;
3485 for (ObjCMethodList *M = &MethList2; M; M = M->getNext())
3486 if (M->getMethod() && !M->getMethod()->isHidden()) {
3487 if (FilterMethodsByTypeBound(M->getMethod(), TypeBound))
3488 Methods.push_back(M->getMethod());
3489 }
3490
3491 return Methods.size() > 1;
3492}
3493
3494bool Sema::AreMultipleMethodsInGlobalPool(
3495 Selector Sel, ObjCMethodDecl *BestMethod, SourceRange R,
3496 bool receiverIdOrClass, SmallVectorImpl<ObjCMethodDecl *> &Methods) {
3497 // Diagnose finding more than one method in global pool.
3498 SmallVector<ObjCMethodDecl *, 4> FilteredMethods;
3499 FilteredMethods.push_back(BestMethod);
3500
3501 for (auto *M : Methods)
3502 if (M != BestMethod && !M->hasAttr<UnavailableAttr>())
3503 FilteredMethods.push_back(M);
3504
3505 if (FilteredMethods.size() > 1)
3506 DiagnoseMultipleMethodInGlobalPool(FilteredMethods, Sel, R,
3507 receiverIdOrClass);
3508
3509 GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3510 // Test for no method in the pool which should not trigger any warning by
3511 // caller.
3512 if (Pos == MethodPool.end())
3513 return true;
3514 ObjCMethodList &MethList =
3515 BestMethod->isInstanceMethod() ? Pos->second.first : Pos->second.second;
3516 return MethList.hasMoreThanOneDecl();
3517}
3518
3519ObjCMethodDecl *Sema::LookupMethodInGlobalPool(Selector Sel, SourceRange R,
3520 bool receiverIdOrClass,
3521 bool instance) {
3522 if (ExternalSource)
3523 ReadMethodPool(Sel);
3524
3525 GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3526 if (Pos == MethodPool.end())
3527 return nullptr;
3528
3529 // Gather the non-hidden methods.
3530 ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second;
3531 SmallVector<ObjCMethodDecl *, 4> Methods;
3532 for (ObjCMethodList *M = &MethList; M; M = M->getNext()) {
3533 if (M->getMethod() && !M->getMethod()->isHidden())
3534 return M->getMethod();
3535 }
3536 return nullptr;
3537}
3538
3539void Sema::DiagnoseMultipleMethodInGlobalPool(SmallVectorImpl<ObjCMethodDecl*> &Methods,
3540 Selector Sel, SourceRange R,
3541 bool receiverIdOrClass) {
3542 // We found multiple methods, so we may have to complain.
3543 bool issueDiagnostic = false, issueError = false;
3544
3545 // We support a warning which complains about *any* difference in
3546 // method signature.
3547 bool strictSelectorMatch =
3548 receiverIdOrClass &&
3549 !Diags.isIgnored(diag::warn_strict_multiple_method_decl, R.getBegin());
3550 if (strictSelectorMatch) {
3551 for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3552 if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_strict)) {
3553 issueDiagnostic = true;
3554 break;
3555 }
3556 }
3557 }
3558
3559 // If we didn't see any strict differences, we won't see any loose
3560 // differences. In ARC, however, we also need to check for loose
3561 // mismatches, because most of them are errors.
3562 if (!strictSelectorMatch ||
3563 (issueDiagnostic && getLangOpts().ObjCAutoRefCount))
3564 for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3565 // This checks if the methods differ in type mismatch.
3566 if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_loose) &&
3567 !isAcceptableMethodMismatch(Methods[0], Methods[I])) {
3568 issueDiagnostic = true;
3569 if (getLangOpts().ObjCAutoRefCount)
3570 issueError = true;
3571 break;
3572 }
3573 }
3574
3575 if (issueDiagnostic) {
3576 if (issueError)
3577 Diag(R.getBegin(), diag::err_arc_multiple_method_decl) << Sel << R;
3578 else if (strictSelectorMatch)
3579 Diag(R.getBegin(), diag::warn_strict_multiple_method_decl) << Sel << R;
3580 else
3581 Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R;
3582
3583 Diag(Methods[0]->getLocStart(),
3584 issueError ? diag::note_possibility : diag::note_using)
3585 << Methods[0]->getSourceRange();
3586 for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3587 Diag(Methods[I]->getLocStart(), diag::note_also_found)
3588 << Methods[I]->getSourceRange();
3589 }
3590 }
3591}
3592
3593ObjCMethodDecl *Sema::LookupImplementedMethodInGlobalPool(Selector Sel) {
3594 GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3595 if (Pos == MethodPool.end())
3596 return nullptr;
3597
3598 GlobalMethods &Methods = Pos->second;
3599 for (const ObjCMethodList *Method = &Methods.first; Method;
3600 Method = Method->getNext())
3601 if (Method->getMethod() &&
3602 (Method->getMethod()->isDefined() ||
3603 Method->getMethod()->isPropertyAccessor()))
3604 return Method->getMethod();
3605
3606 for (const ObjCMethodList *Method = &Methods.second; Method;
3607 Method = Method->getNext())
3608 if (Method->getMethod() &&
3609 (Method->getMethod()->isDefined() ||
3610 Method->getMethod()->isPropertyAccessor()))
3611 return Method->getMethod();
3612 return nullptr;
3613}
3614
3615static void
3616HelperSelectorsForTypoCorrection(
3617 SmallVectorImpl<const ObjCMethodDecl *> &BestMethod,
3618 StringRef Typo, const ObjCMethodDecl * Method) {
3619 const unsigned MaxEditDistance = 1;
3620 unsigned BestEditDistance = MaxEditDistance + 1;
3621 std::string MethodName = Method->getSelector().getAsString();
3622
3623 unsigned MinPossibleEditDistance = abs((int)MethodName.size() - (int)Typo.size());
3624 if (MinPossibleEditDistance > 0 &&
3625 Typo.size() / MinPossibleEditDistance < 1)
3626 return;
3627 unsigned EditDistance = Typo.edit_distance(MethodName, true, MaxEditDistance);
3628 if (EditDistance > MaxEditDistance)
3629 return;
3630 if (EditDistance == BestEditDistance)
3631 BestMethod.push_back(Method);
3632 else if (EditDistance < BestEditDistance) {
3633 BestMethod.clear();
3634 BestMethod.push_back(Method);
3635 }
3636}
3637
3638static bool HelperIsMethodInObjCType(Sema &S, Selector Sel,
3639 QualType ObjectType) {
3640 if (ObjectType.isNull())
3641 return true;
3642 if (S.LookupMethodInObjectType(Sel, ObjectType, true/*Instance method*/))
3643 return true;
3644 return S.LookupMethodInObjectType(Sel, ObjectType, false/*Class method*/) !=
3645 nullptr;
3646}
3647
3648const ObjCMethodDecl *
3649Sema::SelectorsForTypoCorrection(Selector Sel,
3650 QualType ObjectType) {
3651 unsigned NumArgs = Sel.getNumArgs();
3652 SmallVector<const ObjCMethodDecl *, 8> Methods;
3653 bool ObjectIsId = true, ObjectIsClass = true;
3654 if (ObjectType.isNull())
3655 ObjectIsId = ObjectIsClass = false;
3656 else if (!ObjectType->isObjCObjectPointerType())
3657 return nullptr;
3658 else if (const ObjCObjectPointerType *ObjCPtr =
3659 ObjectType->getAsObjCInterfacePointerType()) {
3660 ObjectType = QualType(ObjCPtr->getInterfaceType(), 0);
3661 ObjectIsId = ObjectIsClass = false;
3662 }
3663 else if (ObjectType->isObjCIdType() || ObjectType->isObjCQualifiedIdType())
3664 ObjectIsClass = false;
3665 else if (ObjectType->isObjCClassType() || ObjectType->isObjCQualifiedClassType())
3666 ObjectIsId = false;
3667 else
3668 return nullptr;
3669
3670 for (GlobalMethodPool::iterator b = MethodPool.begin(),
3671 e = MethodPool.end(); b != e; b++) {
3672 // instance methods
3673 for (ObjCMethodList *M = &b->second.first; M; M=M->getNext())
3674 if (M->getMethod() &&
3675 (M->getMethod()->getSelector().getNumArgs() == NumArgs) &&
3676 (M->getMethod()->getSelector() != Sel)) {
3677 if (ObjectIsId)
3678 Methods.push_back(M->getMethod());
3679 else if (!ObjectIsClass &&
3680 HelperIsMethodInObjCType(*this, M->getMethod()->getSelector(),
3681 ObjectType))
3682 Methods.push_back(M->getMethod());
3683 }
3684 // class methods
3685 for (ObjCMethodList *M = &b->second.second; M; M=M->getNext())
3686 if (M->getMethod() &&
3687 (M->getMethod()->getSelector().getNumArgs() == NumArgs) &&
3688 (M->getMethod()->getSelector() != Sel)) {
3689 if (ObjectIsClass)
3690 Methods.push_back(M->getMethod());
3691 else if (!ObjectIsId &&
3692 HelperIsMethodInObjCType(*this, M->getMethod()->getSelector(),
3693 ObjectType))
3694 Methods.push_back(M->getMethod());
3695 }
3696 }
3697
3698 SmallVector<const ObjCMethodDecl *, 8> SelectedMethods;
3699 for (unsigned i = 0, e = Methods.size(); i < e; i++) {
3700 HelperSelectorsForTypoCorrection(SelectedMethods,
3701 Sel.getAsString(), Methods[i]);
3702 }
3703 return (SelectedMethods.size() == 1) ? SelectedMethods[0] : nullptr;
3704}
3705
3706/// DiagnoseDuplicateIvars -
3707/// Check for duplicate ivars in the entire class at the start of
3708/// \@implementation. This becomes necesssary because class extension can
3709/// add ivars to a class in random order which will not be known until
3710/// class's \@implementation is seen.
3711void Sema::DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID,
3712 ObjCInterfaceDecl *SID) {
3713 for (auto *Ivar : ID->ivars()) {
3714 if (Ivar->isInvalidDecl())
3715 continue;
3716 if (IdentifierInfo *II = Ivar->getIdentifier()) {
3717 ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(II);
3718 if (prevIvar) {
3719 Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
3720 Diag(prevIvar->getLocation(), diag::note_previous_declaration);
3721 Ivar->setInvalidDecl();
3722 }
3723 }
3724 }
3725}
3726
3727/// Diagnose attempts to define ARC-__weak ivars when __weak is disabled.
3728static void DiagnoseWeakIvars(Sema &S, ObjCImplementationDecl *ID) {
3729 if (S.getLangOpts().ObjCWeak) return;
3730
3731 for (auto ivar = ID->getClassInterface()->all_declared_ivar_begin();
3732 ivar; ivar = ivar->getNextIvar()) {
3733 if (ivar->isInvalidDecl()) continue;
3734 if (ivar->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
3735 if (S.getLangOpts().ObjCWeakRuntime) {
3736 S.Diag(ivar->getLocation(), diag::err_arc_weak_disabled);
3737 } else {
3738 S.Diag(ivar->getLocation(), diag::err_arc_weak_no_runtime);
3739 }
3740 }
3741 }
3742}
3743
3744/// Diagnose attempts to use flexible array member with retainable object type.
3745static void DiagnoseRetainableFlexibleArrayMember(Sema &S,
3746 ObjCInterfaceDecl *ID) {
3747 if (!S.getLangOpts().ObjCAutoRefCount)
3748 return;
3749
3750 for (auto ivar = ID->all_declared_ivar_begin(); ivar;
3751 ivar = ivar->getNextIvar()) {
3752 if (ivar->isInvalidDecl())
3753 continue;
3754 QualType IvarTy = ivar->getType();
3755 if (IvarTy->isIncompleteArrayType() &&
3756 (IvarTy.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) &&
3757 IvarTy->isObjCLifetimeType()) {
3758 S.Diag(ivar->getLocation(), diag::err_flexible_array_arc_retainable);
3759 ivar->setInvalidDecl();
3760 }
3761 }
3762}
3763
3764Sema::ObjCContainerKind Sema::getObjCContainerKind() const {
3765 switch (CurContext->getDeclKind()) {
3766 case Decl::ObjCInterface:
3767 return Sema::OCK_Interface;
3768 case Decl::ObjCProtocol:
3769 return Sema::OCK_Protocol;
3770 case Decl::ObjCCategory:
3771 if (cast<ObjCCategoryDecl>(CurContext)->IsClassExtension())
3772 return Sema::OCK_ClassExtension;
3773 return Sema::OCK_Category;
3774 case Decl::ObjCImplementation:
3775 return Sema::OCK_Implementation;
3776 case Decl::ObjCCategoryImpl:
3777 return Sema::OCK_CategoryImplementation;
3778
3779 default:
3780 return Sema::OCK_None;
3781 }
3782}
3783
3784static bool IsVariableSizedType(QualType T) {
3785 if (T->isIncompleteArrayType())
3786 return true;
3787 const auto *RecordTy = T->getAs<RecordType>();
3788 return (RecordTy && RecordTy->getDecl()->hasFlexibleArrayMember());
3789}
3790
3791static void DiagnoseVariableSizedIvars(Sema &S, ObjCContainerDecl *OCD) {
3792 ObjCInterfaceDecl *IntfDecl = nullptr;
3793 ObjCInterfaceDecl::ivar_range Ivars = llvm::make_range(
3794 ObjCInterfaceDecl::ivar_iterator(), ObjCInterfaceDecl::ivar_iterator());
3795 if ((IntfDecl = dyn_cast<ObjCInterfaceDecl>(OCD))) {
3796 Ivars = IntfDecl->ivars();
3797 } else if (auto *ImplDecl = dyn_cast<ObjCImplementationDecl>(OCD)) {
3798 IntfDecl = ImplDecl->getClassInterface();
3799 Ivars = ImplDecl->ivars();
3800 } else if (auto *CategoryDecl = dyn_cast<ObjCCategoryDecl>(OCD)) {
3801 if (CategoryDecl->IsClassExtension()) {
3802 IntfDecl = CategoryDecl->getClassInterface();
3803 Ivars = CategoryDecl->ivars();
3804 }
3805 }
3806
3807 // Check if variable sized ivar is in interface and visible to subclasses.
3808 if (!isa<ObjCInterfaceDecl>(OCD)) {
3809 for (auto ivar : Ivars) {
3810 if (!ivar->isInvalidDecl() && IsVariableSizedType(ivar->getType())) {
3811 S.Diag(ivar->getLocation(), diag::warn_variable_sized_ivar_visibility)
3812 << ivar->getDeclName() << ivar->getType();
3813 }
3814 }
3815 }
3816
3817 // Subsequent checks require interface decl.
3818 if (!IntfDecl)
3819 return;
3820
3821 // Check if variable sized ivar is followed by another ivar.
3822 for (ObjCIvarDecl *ivar = IntfDecl->all_declared_ivar_begin(); ivar;
3823 ivar = ivar->getNextIvar()) {
3824 if (ivar->isInvalidDecl() || !ivar->getNextIvar())
3825 continue;
3826 QualType IvarTy = ivar->getType();
3827 bool IsInvalidIvar = false;
3828 if (IvarTy->isIncompleteArrayType()) {
3829 S.Diag(ivar->getLocation(), diag::err_flexible_array_not_at_end)
3830 << ivar->getDeclName() << IvarTy
3831 << TTK_Class; // Use "class" for Obj-C.
3832 IsInvalidIvar = true;
3833 } else if (const RecordType *RecordTy = IvarTy->getAs<RecordType>()) {
3834 if (RecordTy->getDecl()->hasFlexibleArrayMember()) {
3835 S.Diag(ivar->getLocation(),
3836 diag::err_objc_variable_sized_type_not_at_end)
3837 << ivar->getDeclName() << IvarTy;
3838 IsInvalidIvar = true;
3839 }
3840 }
3841 if (IsInvalidIvar) {
3842 S.Diag(ivar->getNextIvar()->getLocation(),
3843 diag::note_next_ivar_declaration)
3844 << ivar->getNextIvar()->getSynthesize();
3845 ivar->setInvalidDecl();
3846 }
3847 }
3848
3849 // Check if ObjC container adds ivars after variable sized ivar in superclass.
3850 // Perform the check only if OCD is the first container to declare ivars to
3851 // avoid multiple warnings for the same ivar.
3852 ObjCIvarDecl *FirstIvar =
3853 (Ivars.begin() == Ivars.end()) ? nullptr : *Ivars.begin();
3854 if (FirstIvar && (FirstIvar == IntfDecl->all_declared_ivar_begin())) {
3855 const ObjCInterfaceDecl *SuperClass = IntfDecl->getSuperClass();
3856 while (SuperClass && SuperClass->ivar_empty())
3857 SuperClass = SuperClass->getSuperClass();
3858 if (SuperClass) {
3859 auto IvarIter = SuperClass->ivar_begin();
3860 std::advance(IvarIter, SuperClass->ivar_size() - 1);
3861 const ObjCIvarDecl *LastIvar = *IvarIter;
3862 if (IsVariableSizedType(LastIvar->getType())) {
3863 S.Diag(FirstIvar->getLocation(),
3864 diag::warn_superclass_variable_sized_type_not_at_end)
3865 << FirstIvar->getDeclName() << LastIvar->getDeclName()
3866 << LastIvar->getType() << SuperClass->getDeclName();
3867 S.Diag(LastIvar->getLocation(), diag::note_entity_declared_at)
3868 << LastIvar->getDeclName();
3869 }
3870 }
3871 }
3872}
3873
3874// Note: For class/category implementations, allMethods is always null.
3875Decl *Sema::ActOnAtEnd(Scope *S, SourceRange AtEnd, ArrayRef<Decl *> allMethods,
3876 ArrayRef<DeclGroupPtrTy> allTUVars) {
3877 if (getObjCContainerKind() == Sema::OCK_None)
3878 return nullptr;
3879
3880 assert(AtEnd.isValid() && "Invalid location for '@end'")(static_cast <bool> (AtEnd.isValid() && "Invalid location for '@end'"
) ? void (0) : __assert_fail ("AtEnd.isValid() && \"Invalid location for '@end'\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 3880, __extension__ __PRETTY_FUNCTION__))
;
3881
3882 auto *OCD = cast<ObjCContainerDecl>(CurContext);
3883 Decl *ClassDecl = OCD;
3884
3885 bool isInterfaceDeclKind =
3886 isa<ObjCInterfaceDecl>(ClassDecl) || isa<ObjCCategoryDecl>(ClassDecl)
3887 || isa<ObjCProtocolDecl>(ClassDecl);
3888 bool checkIdenticalMethods = isa<ObjCImplementationDecl>(ClassDecl);
3889
3890 // FIXME: Remove these and use the ObjCContainerDecl/DeclContext.
3891 llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap;
3892 llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap;
3893
3894 for (unsigned i = 0, e = allMethods.size(); i != e; i++ ) {
3895 ObjCMethodDecl *Method =
3896 cast_or_null<ObjCMethodDecl>(allMethods[i]);
3897
3898 if (!Method) continue; // Already issued a diagnostic.
3899 if (Method->isInstanceMethod()) {
3900 /// Check for instance method of the same name with incompatible types
3901 const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()];
3902 bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
3903 : false;
3904 if ((isInterfaceDeclKind && PrevMethod && !match)
3905 || (checkIdenticalMethods && match)) {
3906 Diag(Method->getLocation(), diag::err_duplicate_method_decl)
3907 << Method->getDeclName();
3908 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
3909 Method->setInvalidDecl();
3910 } else {
3911 if (PrevMethod) {
3912 Method->setAsRedeclaration(PrevMethod);
3913 if (!Context.getSourceManager().isInSystemHeader(
3914 Method->getLocation()))
3915 Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
3916 << Method->getDeclName();
3917 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
3918 }
3919 InsMap[Method->getSelector()] = Method;
3920 /// The following allows us to typecheck messages to "id".
3921 AddInstanceMethodToGlobalPool(Method);
3922 }
3923 } else {
3924 /// Check for class method of the same name with incompatible types
3925 const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()];
3926 bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
3927 : false;
3928 if ((isInterfaceDeclKind && PrevMethod && !match)
3929 || (checkIdenticalMethods && match)) {
3930 Diag(Method->getLocation(), diag::err_duplicate_method_decl)
3931 << Method->getDeclName();
3932 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
3933 Method->setInvalidDecl();
3934 } else {
3935 if (PrevMethod) {
3936 Method->setAsRedeclaration(PrevMethod);
3937 if (!Context.getSourceManager().isInSystemHeader(
3938 Method->getLocation()))
3939 Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
3940 << Method->getDeclName();
3941 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
3942 }
3943 ClsMap[Method->getSelector()] = Method;
3944 AddFactoryMethodToGlobalPool(Method);
3945 }
3946 }
3947 }
3948 if (isa<ObjCInterfaceDecl>(ClassDecl)) {
3949 // Nothing to do here.
3950 } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(ClassDecl)) {
3951 // Categories are used to extend the class by declaring new methods.
3952 // By the same token, they are also used to add new properties. No
3953 // need to compare the added property to those in the class.
3954
3955 if (C->IsClassExtension()) {
3956 ObjCInterfaceDecl *CCPrimary = C->getClassInterface();
3957 DiagnoseClassExtensionDupMethods(C, CCPrimary);
3958 }
3959 }
3960 if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(ClassDecl)) {
3961 if (CDecl->getIdentifier())
3962 // ProcessPropertyDecl is responsible for diagnosing conflicts with any
3963 // user-defined setter/getter. It also synthesizes setter/getter methods
3964 // and adds them to the DeclContext and global method pools.
3965 for (auto *I : CDecl->properties())
3966 ProcessPropertyDecl(I);
3967 CDecl->setAtEndRange(AtEnd);
3968 }
3969 if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(ClassDecl)) {
3970 IC->setAtEndRange(AtEnd);
3971 if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) {
3972 // Any property declared in a class extension might have user
3973 // declared setter or getter in current class extension or one
3974 // of the other class extensions. Mark them as synthesized as
3975 // property will be synthesized when property with same name is
3976 // seen in the @implementation.
3977 for (const auto *Ext : IDecl->visible_extensions()) {
3978 for (const auto *Property : Ext->instance_properties()) {
3979 // Skip over properties declared @dynamic
3980 if (const ObjCPropertyImplDecl *PIDecl
3981 = IC->FindPropertyImplDecl(Property->getIdentifier(),
3982 Property->getQueryKind()))
3983 if (PIDecl->getPropertyImplementation()
3984 == ObjCPropertyImplDecl::Dynamic)
3985 continue;
3986
3987 for (const auto *Ext : IDecl->visible_extensions()) {
3988 if (ObjCMethodDecl *GetterMethod
3989 = Ext->getInstanceMethod(Property->getGetterName()))
3990 GetterMethod->setPropertyAccessor(true);
3991 if (!Property->isReadOnly())
3992 if (ObjCMethodDecl *SetterMethod
3993 = Ext->getInstanceMethod(Property->getSetterName()))
3994 SetterMethod->setPropertyAccessor(true);
3995 }
3996 }
3997 }
3998 ImplMethodsVsClassMethods(S, IC, IDecl);
3999 AtomicPropertySetterGetterRules(IC, IDecl);
4000 DiagnoseOwningPropertyGetterSynthesis(IC);
4001 DiagnoseUnusedBackingIvarInAccessor(S, IC);
4002 if (IDecl->hasDesignatedInitializers())
4003 DiagnoseMissingDesignatedInitOverrides(IC, IDecl);
4004 DiagnoseWeakIvars(*this, IC);
4005 DiagnoseRetainableFlexibleArrayMember(*this, IDecl);
4006
4007 bool HasRootClassAttr = IDecl->hasAttr<ObjCRootClassAttr>();
4008 if (IDecl->getSuperClass() == nullptr) {
4009 // This class has no superclass, so check that it has been marked with
4010 // __attribute((objc_root_class)).
4011 if (!HasRootClassAttr) {
4012 SourceLocation DeclLoc(IDecl->getLocation());
4013 SourceLocation SuperClassLoc(getLocForEndOfToken(DeclLoc));
4014 Diag(DeclLoc, diag::warn_objc_root_class_missing)
4015 << IDecl->getIdentifier();
4016 // See if NSObject is in the current scope, and if it is, suggest
4017 // adding " : NSObject " to the class declaration.
4018 NamedDecl *IF = LookupSingleName(TUScope,
4019 NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject),
4020 DeclLoc, LookupOrdinaryName);
4021 ObjCInterfaceDecl *NSObjectDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF);
4022 if (NSObjectDecl && NSObjectDecl->getDefinition()) {
4023 Diag(SuperClassLoc, diag::note_objc_needs_superclass)
4024 << FixItHint::CreateInsertion(SuperClassLoc, " : NSObject ");
4025 } else {
4026 Diag(SuperClassLoc, diag::note_objc_needs_superclass);
4027 }
4028 }
4029 } else if (HasRootClassAttr) {
4030 // Complain that only root classes may have this attribute.
4031 Diag(IDecl->getLocation(), diag::err_objc_root_class_subclass);
4032 }
4033
4034 if (const ObjCInterfaceDecl *Super = IDecl->getSuperClass()) {
4035 // An interface can subclass another interface with a
4036 // objc_subclassing_restricted attribute when it has that attribute as
4037 // well (because of interfaces imported from Swift). Therefore we have
4038 // to check if we can subclass in the implementation as well.
4039 if (IDecl->hasAttr<ObjCSubclassingRestrictedAttr>() &&
4040 Super->hasAttr<ObjCSubclassingRestrictedAttr>()) {
4041 Diag(IC->getLocation(), diag::err_restricted_superclass_mismatch);
4042 Diag(Super->getLocation(), diag::note_class_declared);
4043 }
4044 }
4045
4046 if (LangOpts.ObjCRuntime.isNonFragile()) {
4047 while (IDecl->getSuperClass()) {
4048 DiagnoseDuplicateIvars(IDecl, IDecl->getSuperClass());
4049 IDecl = IDecl->getSuperClass();
4050 }
4051 }
4052 }
4053 SetIvarInitializers(IC);
4054 } else if (ObjCCategoryImplDecl* CatImplClass =
4055 dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) {
4056 CatImplClass->setAtEndRange(AtEnd);
4057
4058 // Find category interface decl and then check that all methods declared
4059 // in this interface are implemented in the category @implementation.
4060 if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) {
4061 if (ObjCCategoryDecl *Cat
4062 = IDecl->FindCategoryDeclaration(CatImplClass->getIdentifier())) {
4063 ImplMethodsVsClassMethods(S, CatImplClass, Cat);
4064 }
4065 }
4066 } else if (const auto *IntfDecl = dyn_cast<ObjCInterfaceDecl>(ClassDecl)) {
4067 if (const ObjCInterfaceDecl *Super = IntfDecl->getSuperClass()) {
4068 if (!IntfDecl->hasAttr<ObjCSubclassingRestrictedAttr>() &&
4069 Super->hasAttr<ObjCSubclassingRestrictedAttr>()) {
4070 Diag(IntfDecl->getLocation(), diag::err_restricted_superclass_mismatch);
4071 Diag(Super->getLocation(), diag::note_class_declared);
4072 }
4073 }
4074 }
4075 DiagnoseVariableSizedIvars(*this, OCD);
4076 if (isInterfaceDeclKind) {
4077 // Reject invalid vardecls.
4078 for (unsigned i = 0, e = allTUVars.size(); i != e; i++) {
4079 DeclGroupRef DG = allTUVars[i].get();
4080 for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
4081 if (VarDecl *VDecl = dyn_cast<VarDecl>(*I)) {
4082 if (!VDecl->hasExternalStorage())
4083 Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass);
4084 }
4085 }
4086 }
4087 ActOnObjCContainerFinishDefinition();
4088
4089 for (unsigned i = 0, e = allTUVars.size(); i != e; i++) {
4090 DeclGroupRef DG = allTUVars[i].get();
4091 for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
4092 (*I)->setTopLevelDeclInObjCContainer();
4093 Consumer.HandleTopLevelDeclInObjCContainer(DG);
4094 }
4095
4096 ActOnDocumentableDecl(ClassDecl);
4097 return ClassDecl;
4098}
4099
4100/// CvtQTToAstBitMask - utility routine to produce an AST bitmask for
4101/// objective-c's type qualifier from the parser version of the same info.
4102static Decl::ObjCDeclQualifier
4103CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal) {
4104 return (Decl::ObjCDeclQualifier) (unsigned) PQTVal;
4105}
4106
4107/// Check whether the declared result type of the given Objective-C
4108/// method declaration is compatible with the method's class.
4109///
4110static Sema::ResultTypeCompatibilityKind
4111CheckRelatedResultTypeCompatibility(Sema &S, ObjCMethodDecl *Method,
4112 ObjCInterfaceDecl *CurrentClass) {
4113 QualType ResultType = Method->getReturnType();
4114
4115 // If an Objective-C method inherits its related result type, then its
4116 // declared result type must be compatible with its own class type. The
4117 // declared result type is compatible if:
4118 if (const ObjCObjectPointerType *ResultObjectType
4119 = ResultType->getAs<ObjCObjectPointerType>()) {
4120 // - it is id or qualified id, or
4121 if (ResultObjectType->isObjCIdType() ||
4122 ResultObjectType->isObjCQualifiedIdType())
4123 return Sema::RTC_Compatible;
4124
4125 if (CurrentClass) {
4126 if (ObjCInterfaceDecl *ResultClass
4127 = ResultObjectType->getInterfaceDecl()) {
4128 // - it is the same as the method's class type, or
4129 if (declaresSameEntity(CurrentClass, ResultClass))
4130 return Sema::RTC_Compatible;
4131
4132 // - it is a superclass of the method's class type
4133 if (ResultClass->isSuperClassOf(CurrentClass))
4134 return Sema::RTC_Compatible;
4135 }
4136 } else {
4137 // Any Objective-C pointer type might be acceptable for a protocol
4138 // method; we just don't know.
4139 return Sema::RTC_Unknown;
4140 }
4141 }
4142
4143 return Sema::RTC_Incompatible;
4144}
4145
4146namespace {
4147/// A helper class for searching for methods which a particular method
4148/// overrides.
4149class OverrideSearch {
4150public:
4151 Sema &S;
4152 ObjCMethodDecl *Method;
4153 llvm::SmallSetVector<ObjCMethodDecl*, 4> Overridden;
4154 bool Recursive;
4155
4156public:
4157 OverrideSearch(Sema &S, ObjCMethodDecl *method) : S(S), Method(method) {
4158 Selector selector = method->getSelector();
4159
4160 // Bypass this search if we've never seen an instance/class method
4161 // with this selector before.
4162 Sema::GlobalMethodPool::iterator it = S.MethodPool.find(selector);
4163 if (it == S.MethodPool.end()) {
4164 if (!S.getExternalSource()) return;
4165 S.ReadMethodPool(selector);
4166
4167 it = S.MethodPool.find(selector);
4168 if (it == S.MethodPool.end())
4169 return;
4170 }
4171 ObjCMethodList &list =
4172 method->isInstanceMethod() ? it->second.first : it->second.second;
4173 if (!list.getMethod()) return;
4174
4175 ObjCContainerDecl *container
4176 = cast<ObjCContainerDecl>(method->getDeclContext());
4177
4178 // Prevent the search from reaching this container again. This is
4179 // important with categories, which override methods from the
4180 // interface and each other.
4181 if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(container)) {
4182 searchFromContainer(container);
4183 if (ObjCInterfaceDecl *Interface = Category->getClassInterface())
4184 searchFromContainer(Interface);
4185 } else {
4186 searchFromContainer(container);
4187 }
4188 }
4189
4190 typedef decltype(Overridden)::iterator iterator;
4191 iterator begin() const { return Overridden.begin(); }
4192 iterator end() const { return Overridden.end(); }
4193
4194private:
4195 void searchFromContainer(ObjCContainerDecl *container) {
4196 if (container->isInvalidDecl()) return;
4197
4198 switch (container->getDeclKind()) {
4199#define OBJCCONTAINER(type, base) \
4200 case Decl::type: \
4201 searchFrom(cast<type##Decl>(container)); \
4202 break;
4203#define ABSTRACT_DECL(expansion)
4204#define DECL(type, base) \
4205 case Decl::type:
4206#include "clang/AST/DeclNodes.inc"
4207 llvm_unreachable("not an ObjC container!")::llvm::llvm_unreachable_internal("not an ObjC container!", "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 4207)
;
4208 }
4209 }
4210
4211 void searchFrom(ObjCProtocolDecl *protocol) {
4212 if (!protocol->hasDefinition())
4213 return;
4214
4215 // A method in a protocol declaration overrides declarations from
4216 // referenced ("parent") protocols.
4217 search(protocol->getReferencedProtocols());
4218 }
4219
4220 void searchFrom(ObjCCategoryDecl *category) {
4221 // A method in a category declaration overrides declarations from
4222 // the main class and from protocols the category references.
4223 // The main class is handled in the constructor.
4224 search(category->getReferencedProtocols());
4225 }
4226
4227 void searchFrom(ObjCCategoryImplDecl *impl) {
4228 // A method in a category definition that has a category
4229 // declaration overrides declarations from the category
4230 // declaration.
4231 if (ObjCCategoryDecl *category = impl->getCategoryDecl()) {
4232 search(category);
4233 if (ObjCInterfaceDecl *Interface = category->getClassInterface())
4234 search(Interface);
4235
4236 // Otherwise it overrides declarations from the class.
4237 } else if (ObjCInterfaceDecl *Interface = impl->getClassInterface()) {
4238 search(Interface);
4239 }
4240 }
4241
4242 void searchFrom(ObjCInterfaceDecl *iface) {
4243 // A method in a class declaration overrides declarations from
4244 if (!iface->hasDefinition())
4245 return;
4246
4247 // - categories,
4248 for (auto *Cat : iface->known_categories())
4249 search(Cat);
4250
4251 // - the super class, and
4252 if (ObjCInterfaceDecl *super = iface->getSuperClass())
4253 search(super);
4254
4255 // - any referenced protocols.
4256 search(iface->getReferencedProtocols());
4257 }
4258
4259 void searchFrom(ObjCImplementationDecl *impl) {
4260 // A method in a class implementation overrides declarations from
4261 // the class interface.
4262 if (ObjCInterfaceDecl *Interface = impl->getClassInterface())
4263 search(Interface);
4264 }
4265
4266 void search(const ObjCProtocolList &protocols) {
4267 for (ObjCProtocolList::iterator i = protocols.begin(), e = protocols.end();
4268 i != e; ++i)
4269 search(*i);
4270 }
4271
4272 void search(ObjCContainerDecl *container) {
4273 // Check for a method in this container which matches this selector.
4274 ObjCMethodDecl *meth = container->getMethod(Method->getSelector(),
4275 Method->isInstanceMethod(),
4276 /*AllowHidden=*/true);
4277
4278 // If we find one, record it and bail out.
4279 if (meth) {
4280 Overridden.insert(meth);
4281 return;
4282 }
4283
4284 // Otherwise, search for methods that a hypothetical method here
4285 // would have overridden.
4286
4287 // Note that we're now in a recursive case.
4288 Recursive = true;
4289
4290 searchFromContainer(container);
4291 }
4292};
4293} // end anonymous namespace
4294
4295void Sema::CheckObjCMethodOverrides(ObjCMethodDecl *ObjCMethod,
4296 ObjCInterfaceDecl *CurrentClass,
4297 ResultTypeCompatibilityKind RTC) {
4298 // Search for overridden methods and merge information down from them.
4299 OverrideSearch overrides(*this, ObjCMethod);
4300 // Keep track if the method overrides any method in the class's base classes,
4301 // its protocols, or its categories' protocols; we will keep that info
4302 // in the ObjCMethodDecl.
4303 // For this info, a method in an implementation is not considered as
4304 // overriding the same method in the interface or its categories.
4305 bool hasOverriddenMethodsInBaseOrProtocol = false;
4306 for (OverrideSearch::iterator
4307 i = overrides.begin(), e = overrides.end(); i != e; ++i) {
4308 ObjCMethodDecl *overridden = *i;
4309
4310 if (!hasOverriddenMethodsInBaseOrProtocol) {
4311 if (isa<ObjCProtocolDecl>(overridden->getDeclContext()) ||
4312 CurrentClass != overridden->getClassInterface() ||
4313 overridden->isOverriding()) {
4314 hasOverriddenMethodsInBaseOrProtocol = true;
4315
4316 } else if (isa<ObjCImplDecl>(ObjCMethod->getDeclContext())) {
4317 // OverrideSearch will return as "overridden" the same method in the
4318 // interface. For hasOverriddenMethodsInBaseOrProtocol, we need to
4319 // check whether a category of a base class introduced a method with the
4320 // same selector, after the interface method declaration.
4321 // To avoid unnecessary lookups in the majority of cases, we use the
4322 // extra info bits in GlobalMethodPool to check whether there were any
4323 // category methods with this selector.
4324 GlobalMethodPool::iterator It =
4325 MethodPool.find(ObjCMethod->getSelector());
4326 if (It != MethodPool.end()) {
4327 ObjCMethodList &List =
4328 ObjCMethod->isInstanceMethod()? It->second.first: It->second.second;
4329 unsigned CategCount = List.getBits();
4330 if (CategCount > 0) {
4331 // If the method is in a category we'll do lookup if there were at
4332 // least 2 category methods recorded, otherwise only one will do.
4333 if (CategCount > 1 ||
4334 !isa<ObjCCategoryImplDecl>(overridden->getDeclContext())) {
4335 OverrideSearch overrides(*this, overridden);
4336 for (OverrideSearch::iterator
4337 OI= overrides.begin(), OE= overrides.end(); OI!=OE; ++OI) {
4338 ObjCMethodDecl *SuperOverridden = *OI;
4339 if (isa<ObjCProtocolDecl>(SuperOverridden->getDeclContext()) ||
4340 CurrentClass != SuperOverridden->getClassInterface()) {
4341 hasOverriddenMethodsInBaseOrProtocol = true;
4342 overridden->setOverriding(true);
4343 break;
4344 }
4345 }
4346 }
4347 }
4348 }
4349 }
4350 }
4351
4352 // Propagate down the 'related result type' bit from overridden methods.
4353 if (RTC != Sema::RTC_Incompatible && overridden->hasRelatedResultType())
4354 ObjCMethod->SetRelatedResultType();
4355
4356 // Then merge the declarations.
4357 mergeObjCMethodDecls(ObjCMethod, overridden);
4358
4359 if (ObjCMethod->isImplicit() && overridden->isImplicit())
4360 continue; // Conflicting properties are detected elsewhere.
4361
4362 // Check for overriding methods
4363 if (isa<ObjCInterfaceDecl>(ObjCMethod->getDeclContext()) ||
4364 isa<ObjCImplementationDecl>(ObjCMethod->getDeclContext()))
4365 CheckConflictingOverridingMethod(ObjCMethod, overridden,
4366 isa<ObjCProtocolDecl>(overridden->getDeclContext()));
4367
4368 if (CurrentClass && overridden->getDeclContext() != CurrentClass &&
4369 isa<ObjCInterfaceDecl>(overridden->getDeclContext()) &&
4370 !overridden->isImplicit() /* not meant for properties */) {
4371 ObjCMethodDecl::param_iterator ParamI = ObjCMethod->param_begin(),
4372 E = ObjCMethod->param_end();
4373 ObjCMethodDecl::param_iterator PrevI = overridden->param_begin(),
4374 PrevE = overridden->param_end();
4375 for (; ParamI != E && PrevI != PrevE; ++ParamI, ++PrevI) {
4376 assert(PrevI != overridden->param_end() && "Param mismatch")(static_cast <bool> (PrevI != overridden->param_end(
) && "Param mismatch") ? void (0) : __assert_fail ("PrevI != overridden->param_end() && \"Param mismatch\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 4376, __extension__ __PRETTY_FUNCTION__))
;
4377 QualType T1 = Context.getCanonicalType((*ParamI)->getType());
4378 QualType T2 = Context.getCanonicalType((*PrevI)->getType());
4379 // If type of argument of method in this class does not match its
4380 // respective argument type in the super class method, issue warning;
4381 if (!Context.typesAreCompatible(T1, T2)) {
4382 Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super)
4383 << T1 << T2;
4384 Diag(overridden->getLocation(), diag::note_previous_declaration);
4385 break;
4386 }
4387 }
4388 }
4389 }
4390
4391 ObjCMethod->setOverriding(hasOverriddenMethodsInBaseOrProtocol);
4392}
4393
4394/// Merge type nullability from for a redeclaration of the same entity,
4395/// producing the updated type of the redeclared entity.
4396static QualType mergeTypeNullabilityForRedecl(Sema &S, SourceLocation loc,
4397 QualType type,
4398 bool usesCSKeyword,
4399 SourceLocation prevLoc,
4400 QualType prevType,
4401 bool prevUsesCSKeyword) {
4402 // Determine the nullability of both types.
4403 auto nullability = type->getNullability(S.Context);
4404 auto prevNullability = prevType->getNullability(S.Context);
4405
4406 // Easy case: both have nullability.
4407 if (nullability.hasValue() == prevNullability.hasValue()) {
4408 // Neither has nullability; continue.
4409 if (!nullability)
4410 return type;
4411
4412 // The nullabilities are equivalent; do nothing.
4413 if (*nullability == *prevNullability)
4414 return type;
4415
4416 // Complain about mismatched nullability.
4417 S.Diag(loc, diag::err_nullability_conflicting)
4418 << DiagNullabilityKind(*nullability, usesCSKeyword)
4419 << DiagNullabilityKind(*prevNullability, prevUsesCSKeyword);
4420 return type;
4421 }
4422
4423 // If it's the redeclaration that has nullability, don't change anything.
4424 if (nullability)
4425 return type;
4426
4427 // Otherwise, provide the result with the same nullability.
4428 return S.Context.getAttributedType(
4429 AttributedType::getNullabilityAttrKind(*prevNullability),
4430 type, type);
4431}
4432
4433/// Merge information from the declaration of a method in the \@interface
4434/// (or a category/extension) into the corresponding method in the
4435/// @implementation (for a class or category).
4436static void mergeInterfaceMethodToImpl(Sema &S,
4437 ObjCMethodDecl *method,
4438 ObjCMethodDecl *prevMethod) {
4439 // Merge the objc_requires_super attribute.
4440 if (prevMethod->hasAttr<ObjCRequiresSuperAttr>() &&
4441 !method->hasAttr<ObjCRequiresSuperAttr>()) {
4442 // merge the attribute into implementation.
4443 method->addAttr(
4444 ObjCRequiresSuperAttr::CreateImplicit(S.Context,
4445 method->getLocation()));
4446 }
4447
4448 // Merge nullability of the result type.
4449 QualType newReturnType
4450 = mergeTypeNullabilityForRedecl(
4451 S, method->getReturnTypeSourceRange().getBegin(),
4452 method->getReturnType(),
4453 method->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability,
4454 prevMethod->getReturnTypeSourceRange().getBegin(),
4455 prevMethod->getReturnType(),
4456 prevMethod->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability);
4457 method->setReturnType(newReturnType);
4458
4459 // Handle each of the parameters.
4460 unsigned numParams = method->param_size();
4461 unsigned numPrevParams = prevMethod->param_size();
4462 for (unsigned i = 0, n = std::min(numParams, numPrevParams); i != n; ++i) {
4463 ParmVarDecl *param = method->param_begin()[i];
4464 ParmVarDecl *prevParam = prevMethod->param_begin()[i];
4465
4466 // Merge nullability.
4467 QualType newParamType
4468 = mergeTypeNullabilityForRedecl(
4469 S, param->getLocation(), param->getType(),
4470 param->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability,
4471 prevParam->getLocation(), prevParam->getType(),
4472 prevParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability);
4473 param->setType(newParamType);
4474 }
4475}
4476
4477/// Verify that the method parameters/return value have types that are supported
4478/// by the x86 target.
4479static void checkObjCMethodX86VectorTypes(Sema &SemaRef,
4480 const ObjCMethodDecl *Method) {
4481 assert(SemaRef.getASTContext().getTargetInfo().getTriple().getArch() ==(static_cast <bool> (SemaRef.getASTContext().getTargetInfo
().getTriple().getArch() == llvm::Triple::x86 && "x86-specific check invoked for a different target"
) ? void (0) : __assert_fail ("SemaRef.getASTContext().getTargetInfo().getTriple().getArch() == llvm::Triple::x86 && \"x86-specific check invoked for a different target\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 4483, __extension__ __PRETTY_FUNCTION__))
4482 llvm::Triple::x86 &&(static_cast <bool> (SemaRef.getASTContext().getTargetInfo
().getTriple().getArch() == llvm::Triple::x86 && "x86-specific check invoked for a different target"
) ? void (0) : __assert_fail ("SemaRef.getASTContext().getTargetInfo().getTriple().getArch() == llvm::Triple::x86 && \"x86-specific check invoked for a different target\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 4483, __extension__ __PRETTY_FUNCTION__))
4483 "x86-specific check invoked for a different target")(static_cast <bool> (SemaRef.getASTContext().getTargetInfo
().getTriple().getArch() == llvm::Triple::x86 && "x86-specific check invoked for a different target"
) ? void (0) : __assert_fail ("SemaRef.getASTContext().getTargetInfo().getTriple().getArch() == llvm::Triple::x86 && \"x86-specific check invoked for a different target\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 4483, __extension__ __PRETTY_FUNCTION__))
;
4484 SourceLocation Loc;
4485 QualType T;
4486 for (const ParmVarDecl *P : Method->parameters()) {
4487 if (P->getType()->isVectorType()) {
4488 Loc = P->getLocStart();
4489 T = P->getType();
4490 break;
4491 }
4492 }
4493 if (Loc.isInvalid()) {
4494 if (Method->getReturnType()->isVectorType()) {
4495 Loc = Method->getReturnTypeSourceRange().getBegin();
4496 T = Method->getReturnType();
4497 } else
4498 return;
4499 }
4500
4501 // Vector parameters/return values are not supported by objc_msgSend on x86 in
4502 // iOS < 9 and macOS < 10.11.
4503 const auto &Triple = SemaRef.getASTContext().getTargetInfo().getTriple();
4504 VersionTuple AcceptedInVersion;
4505 if (Triple.getOS() == llvm::Triple::IOS)
4506 AcceptedInVersion = VersionTuple(/*Major=*/9);
4507 else if (Triple.isMacOSX())
4508 AcceptedInVersion = VersionTuple(/*Major=*/10, /*Minor=*/11);
4509 else
4510 return;
4511 if (SemaRef.getASTContext().getTargetInfo().getPlatformMinVersion() >=
4512 AcceptedInVersion)
4513 return;
4514 SemaRef.Diag(Loc, diag::err_objc_method_unsupported_param_ret_type)
4515 << T << (Method->getReturnType()->isVectorType() ? /*return value*/ 1
4516 : /*parameter*/ 0)
4517 << (Triple.isMacOSX() ? "macOS 10.11" : "iOS 9");
4518}
4519
4520Decl *Sema::ActOnMethodDeclaration(
4521 Scope *S, SourceLocation MethodLoc, SourceLocation EndLoc,
4522 tok::TokenKind MethodType, ObjCDeclSpec &ReturnQT, ParsedType ReturnType,
4523 ArrayRef<SourceLocation> SelectorLocs, Selector Sel,
4524 // optional arguments. The number of types/arguments is obtained
4525 // from the Sel.getNumArgs().
4526 ObjCArgInfo *ArgInfo, DeclaratorChunk::ParamInfo *CParamInfo,
4527 unsigned CNumArgs, // c-style args
4528 const ParsedAttributesView &AttrList, tok::ObjCKeywordKind MethodDeclKind,
4529 bool isVariadic, bool MethodDefinition) {
4530 // Make sure we can establish a context for the method.
4531 if (!CurContext->isObjCContainer()) {
1
Taking false branch
4532 Diag(MethodLoc, diag::err_missing_method_context);
4533 return nullptr;
4534 }
4535 Decl *ClassDecl = cast<ObjCContainerDecl>(CurContext);
4536 QualType resultDeclType;
4537
4538 bool HasRelatedResultType = false;
4539 TypeSourceInfo *ReturnTInfo = nullptr;
4540 if (ReturnType) {
2
Taking true branch
4541 resultDeclType = GetTypeFromParser(ReturnType, &ReturnTInfo);
4542
4543 if (CheckFunctionReturnType(resultDeclType, MethodLoc))
3
Assuming the condition is false
4
Taking false branch
4544 return nullptr;
4545
4546 QualType bareResultType = resultDeclType;
4547 (void)AttributedType::stripOuterNullability(bareResultType);
4548 HasRelatedResultType = (bareResultType == Context.getObjCInstanceType());
4549 } else { // get the type for "id".
4550 resultDeclType = Context.getObjCIdType();
4551 Diag(MethodLoc, diag::warn_missing_method_return_type)
4552 << FixItHint::CreateInsertion(SelectorLocs.front(), "(id)");
4553 }
4554
4555 ObjCMethodDecl *ObjCMethod = ObjCMethodDecl::Create(
4556 Context, MethodLoc, EndLoc, Sel, resultDeclType, ReturnTInfo, CurContext,
4557 MethodType == tok::minus, isVariadic,
5
Assuming 'MethodType' is not equal to minus
4558 /*isPropertyAccessor=*/false,
4559 /*isImplicitlyDeclared=*/false, /*isDefined=*/false,
4560 MethodDeclKind == tok::objc_optional ? ObjCMethodDecl::Optional
6
Assuming 'MethodDeclKind' is not equal to objc_optional
7
'?' condition is false
4561 : ObjCMethodDecl::Required,
4562 HasRelatedResultType);
4563
4564 SmallVector<ParmVarDecl*, 16> Params;
4565
4566 for (unsigned i = 0, e = Sel.getNumArgs(); i != e; ++i) {
8
Assuming 'i' is equal to 'e'
9
Loop condition is false. Execution continues on line 4619
4567 QualType ArgType;
4568 TypeSourceInfo *DI;
4569
4570 if (!ArgInfo[i].Type) {
4571 ArgType = Context.getObjCIdType();
4572 DI = nullptr;
4573 } else {
4574 ArgType = GetTypeFromParser(ArgInfo[i].Type, &DI);
4575 }
4576
4577 LookupResult R(*this, ArgInfo[i].Name, ArgInfo[i].NameLoc,
4578 LookupOrdinaryName, forRedeclarationInCurContext());
4579 LookupName(R, S);
4580 if (R.isSingleResult()) {
4581 NamedDecl *PrevDecl = R.getFoundDecl();
4582 if (S->isDeclScope(PrevDecl)) {
4583 Diag(ArgInfo[i].NameLoc,
4584 (MethodDefinition ? diag::warn_method_param_redefinition
4585 : diag::warn_method_param_declaration))
4586 << ArgInfo[i].Name;
4587 Diag(PrevDecl->getLocation(),
4588 diag::note_previous_declaration);
4589 }
4590 }
4591
4592 SourceLocation StartLoc = DI
4593 ? DI->getTypeLoc().getBeginLoc()
4594 : ArgInfo[i].NameLoc;
4595
4596 ParmVarDecl* Param = CheckParameter(ObjCMethod, StartLoc,
4597 ArgInfo[i].NameLoc, ArgInfo[i].Name,
4598 ArgType, DI, SC_None);
4599
4600 Param->setObjCMethodScopeInfo(i);
4601
4602 Param->setObjCDeclQualifier(
4603 CvtQTToAstBitMask(ArgInfo[i].DeclSpec.getObjCDeclQualifier()));
4604
4605 // Apply the attributes to the parameter.
4606 ProcessDeclAttributeList(TUScope, Param, ArgInfo[i].ArgAttrs);
4607 AddPragmaAttributes(TUScope, Param);
4608
4609 if (Param->hasAttr<BlocksAttr>()) {
4610 Diag(Param->getLocation(), diag::err_block_on_nonlocal);
4611 Param->setInvalidDecl();
4612 }
4613 S->AddDecl(Param);
4614 IdResolver.AddDecl(Param);
4615
4616 Params.push_back(Param);
4617 }
4618
4619 for (unsigned i = 0, e = CNumArgs; i != e; ++i) {
10
Assuming 'i' is equal to 'e'
11
Loop condition is false. Execution continues on line 4632
4620 ParmVarDecl *Param = cast<ParmVarDecl>(CParamInfo[i].Param);
4621 QualType ArgType = Param->getType();
4622 if (ArgType.isNull())
4623 ArgType = Context.getObjCIdType();
4624 else
4625 // Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
4626 ArgType = Context.getAdjustedParameterType(ArgType);
4627
4628 Param->setDeclContext(ObjCMethod);
4629 Params.push_back(Param);
4630 }
4631
4632 ObjCMethod->setMethodParams(Context, Params, SelectorLocs);
4633 ObjCMethod->setObjCDeclQualifier(
4634 CvtQTToAstBitMask(ReturnQT.getObjCDeclQualifier()));
4635
4636 ProcessDeclAttributeList(TUScope, ObjCMethod, AttrList);
4637 AddPragmaAttributes(TUScope, ObjCMethod);
4638
4639 // Add the method now.
4640 const ObjCMethodDecl *PrevMethod = nullptr;
4641 if (ObjCImplDecl *ImpDecl = dyn_cast<ObjCImplDecl>(ClassDecl)) {
12
Taking false branch
4642 if (MethodType == tok::minus) {
4643 PrevMethod = ImpDecl->getInstanceMethod(Sel);
4644 ImpDecl->addInstanceMethod(ObjCMethod);
4645 } else {
4646 PrevMethod = ImpDecl->getClassMethod(Sel);
4647 ImpDecl->addClassMethod(ObjCMethod);
4648 }
4649
4650 // Merge information from the @interface declaration into the
4651 // @implementation.
4652 if (ObjCInterfaceDecl *IDecl = ImpDecl->getClassInterface()) {
4653 if (auto *IMD = IDecl->lookupMethod(ObjCMethod->getSelector(),
4654 ObjCMethod->isInstanceMethod())) {
4655 mergeInterfaceMethodToImpl(*this, ObjCMethod, IMD);
4656
4657 // Warn about defining -dealloc in a category.
4658 if (isa<ObjCCategoryImplDecl>(ImpDecl) && IMD->isOverriding() &&
4659 ObjCMethod->getSelector().getMethodFamily() == OMF_dealloc) {
4660 Diag(ObjCMethod->getLocation(), diag::warn_dealloc_in_category)
4661 << ObjCMethod->getDeclName();
4662 }
4663 }
4664
4665 // Warn if a method declared in a protocol to which a category or
4666 // extension conforms is non-escaping and the implementation's method is
4667 // escaping.
4668 for (auto *C : IDecl->visible_categories())
4669 for (auto &P : C->protocols())
4670 if (auto *IMD = P->lookupMethod(ObjCMethod->getSelector(),
4671 ObjCMethod->isInstanceMethod())) {
4672 assert(ObjCMethod->parameters().size() ==(static_cast <bool> (ObjCMethod->parameters().size()
== IMD->parameters().size() && "Methods have different number of parameters"
) ? void (0) : __assert_fail ("ObjCMethod->parameters().size() == IMD->parameters().size() && \"Methods have different number of parameters\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 4674, __extension__ __PRETTY_FUNCTION__))
4673 IMD->parameters().size() &&(static_cast <bool> (ObjCMethod->parameters().size()
== IMD->parameters().size() && "Methods have different number of parameters"
) ? void (0) : __assert_fail ("ObjCMethod->parameters().size() == IMD->parameters().size() && \"Methods have different number of parameters\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 4674, __extension__ __PRETTY_FUNCTION__))
4674 "Methods have different number of parameters")(static_cast <bool> (ObjCMethod->parameters().size()
== IMD->parameters().size() && "Methods have different number of parameters"
) ? void (0) : __assert_fail ("ObjCMethod->parameters().size() == IMD->parameters().size() && \"Methods have different number of parameters\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 4674, __extension__ __PRETTY_FUNCTION__))
;
4675 auto OI = IMD->param_begin(), OE = IMD->param_end();
4676 auto NI = ObjCMethod->param_begin();
4677 for (; OI != OE; ++OI, ++NI)
4678 diagnoseNoescape(*NI, *OI, C, P, *this);
4679 }
4680 }
4681 } else {
4682 cast<DeclContext>(ClassDecl)->addDecl(ObjCMethod);
4683 }
4684
4685 if (PrevMethod) {
13
Taking false branch
4686 // You can never have two method definitions with the same name.
4687 Diag(ObjCMethod->getLocation(), diag::err_duplicate_method_decl)
4688 << ObjCMethod->getDeclName();
4689 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
4690 ObjCMethod->setInvalidDecl();
4691 return ObjCMethod;
4692 }
4693
4694 // If this Objective-C method does not have a related result type, but we
4695 // are allowed to infer related result types, try to do so based on the
4696 // method family.
4697 ObjCInterfaceDecl *CurrentClass = dyn_cast<ObjCInterfaceDecl>(ClassDecl);
4698 if (!CurrentClass) {
14
Taking true branch
4699 if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(ClassDecl))
15
Taking false branch
4700 CurrentClass = Cat->getClassInterface();
4701 else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(ClassDecl))
16
Taking false branch
4702 CurrentClass = Impl->getClassInterface();
4703 else if (ObjCCategoryImplDecl *CatImpl
17
Taking false branch
4704 = dyn_cast<ObjCCategoryImplDecl>(ClassDecl))
4705 CurrentClass = CatImpl->getClassInterface();
4706 }
4707
4708 ResultTypeCompatibilityKind RTC
4709 = CheckRelatedResultTypeCompatibility(*this, ObjCMethod, CurrentClass);
4710
4711 CheckObjCMethodOverrides(ObjCMethod, CurrentClass, RTC);
4712
4713 bool ARCError = false;
4714 if (getLangOpts().ObjCAutoRefCount)
18
Assuming the condition is true
19
Taking true branch
4715 ARCError = CheckARCMethodDecl(ObjCMethod);
20
Calling 'Sema::CheckARCMethodDecl'
4716
4717 // Infer the related result type when possible.
4718 if (!ARCError && RTC == Sema::RTC_Compatible &&
4719 !ObjCMethod->hasRelatedResultType() &&
4720 LangOpts.ObjCInferRelatedResultType) {
4721 bool InferRelatedResultType = false;
4722 switch (ObjCMethod->getMethodFamily()) {
4723 case OMF_None:
4724 case OMF_copy:
4725 case OMF_dealloc:
4726 case OMF_finalize:
4727 case OMF_mutableCopy:
4728 case OMF_release:
4729 case OMF_retainCount:
4730 case OMF_initialize:
4731 case OMF_performSelector:
4732 break;
4733
4734 case OMF_alloc:
4735 case OMF_new:
4736 InferRelatedResultType = ObjCMethod->isClassMethod();
4737 break;
4738
4739 case OMF_init:
4740 case OMF_autorelease:
4741 case OMF_retain:
4742 case OMF_self:
4743 InferRelatedResultType = ObjCMethod->isInstanceMethod();
4744 break;
4745 }
4746
4747 if (InferRelatedResultType &&
4748 !ObjCMethod->getReturnType()->isObjCIndependentClassType())
4749 ObjCMethod->SetRelatedResultType();
4750 }
4751
4752 if (MethodDefinition &&
4753 Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
4754 checkObjCMethodX86VectorTypes(*this, ObjCMethod);
4755
4756 // + load method cannot have availability attributes. It get called on
4757 // startup, so it has to have the availability of the deployment target.
4758 if (const auto *attr = ObjCMethod->getAttr<AvailabilityAttr>()) {
4759 if (ObjCMethod->isClassMethod() &&
4760 ObjCMethod->getSelector().getAsString() == "load") {
4761 Diag(attr->getLocation(), diag::warn_availability_on_static_initializer)
4762 << 0;
4763 ObjCMethod->dropAttr<AvailabilityAttr>();
4764 }
4765 }
4766
4767 ActOnDocumentableDecl(ObjCMethod);
4768
4769 return ObjCMethod;
4770}
4771
4772bool Sema::CheckObjCDeclScope(Decl *D) {
4773 // Following is also an error. But it is caused by a missing @end
4774 // and diagnostic is issued elsewhere.
4775 if (isa<ObjCContainerDecl>(CurContext->getRedeclContext()))
4776 return false;
4777
4778 // If we switched context to translation unit while we are still lexically in
4779 // an objc container, it means the parser missed emitting an error.
4780 if (isa<TranslationUnitDecl>(getCurLexicalContext()->getRedeclContext()))
4781 return false;
4782
4783 Diag(D->getLocation(), diag::err_objc_decls_may_only_appear_in_global_scope);
4784 D->setInvalidDecl();
4785
4786 return true;
4787}
4788
4789/// Called whenever \@defs(ClassName) is encountered in the source. Inserts the
4790/// instance variables of ClassName into Decls.
4791void Sema::ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart,
4792 IdentifierInfo *ClassName,
4793 SmallVectorImpl<Decl*> &Decls) {
4794 // Check that ClassName is a valid class
4795 ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName, DeclStart);
4796 if (!Class) {
4797 Diag(DeclStart, diag::err_undef_interface) << ClassName;
4798 return;
4799 }
4800 if (LangOpts.ObjCRuntime.isNonFragile()) {
4801 Diag(DeclStart, diag::err_atdef_nonfragile_interface);
4802 return;
4803 }
4804
4805 // Collect the instance variables
4806 SmallVector<const ObjCIvarDecl*, 32> Ivars;
4807 Context.DeepCollectObjCIvars(Class, true, Ivars);
4808 // For each ivar, create a fresh ObjCAtDefsFieldDecl.
4809 for (unsigned i = 0; i < Ivars.size(); i++) {
4810 const FieldDecl* ID = Ivars[i];
4811 RecordDecl *Record = dyn_cast<RecordDecl>(TagD);
4812 Decl *FD = ObjCAtDefsFieldDecl::Create(Context, Record,
4813 /*FIXME: StartL=*/ID->getLocation(),
4814 ID->getLocation(),
4815 ID->getIdentifier(), ID->getType(),
4816 ID->getBitWidth());
4817 Decls.push_back(FD);
4818 }
4819
4820 // Introduce all of these fields into the appropriate scope.
4821 for (SmallVectorImpl<Decl*>::iterator D = Decls.begin();
4822 D != Decls.end(); ++D) {
4823 FieldDecl *FD = cast<FieldDecl>(*D);
4824 if (getLangOpts().CPlusPlus)
4825 PushOnScopeChains(FD, S);
4826 else if (RecordDecl *Record = dyn_cast<RecordDecl>(TagD))
4827 Record->addDecl(FD);
4828 }
4829}
4830
4831/// Build a type-check a new Objective-C exception variable declaration.
4832VarDecl *Sema::BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType T,
4833 SourceLocation StartLoc,
4834 SourceLocation IdLoc,
4835 IdentifierInfo *Id,
4836 bool Invalid) {
4837 // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
4838 // duration shall not be qualified by an address-space qualifier."
4839 // Since all parameters have automatic store duration, they can not have
4840 // an address space.
4841 if (T.getAddressSpace() != LangAS::Default) {
4842 Diag(IdLoc, diag::err_arg_with_address_space);
4843 Invalid = true;
4844 }
4845
4846 // An @catch parameter must be an unqualified object pointer type;
4847 // FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"?
4848 if (Invalid) {
4849 // Don't do any further checking.
4850 } else if (T->isDependentType()) {
4851 // Okay: we don't know what this type will instantiate to.
4852 } else if (T->isObjCQualifiedIdType()) {
4853 Invalid = true;
4854 Diag(IdLoc, diag::err_illegal_qualifiers_on_catch_parm);
4855 } else if (T->isObjCIdType()) {
4856 // Okay: we don't know what this type will instantiate to.
4857 } else if (!T->isObjCObjectPointerType()) {
4858 Invalid = true;
4859 Diag(IdLoc, diag::err_catch_param_not_objc_type);
4860 } else if (!T->getAs<ObjCObjectPointerType>()->getInterfaceType()) {
4861 Invalid = true;
4862 Diag(IdLoc, diag::err_catch_param_not_objc_type);
4863 }
4864
4865 VarDecl *New = VarDecl::Create(Context, CurContext, StartLoc, IdLoc, Id,
4866 T, TInfo, SC_None);
4867 New->setExceptionVariable(true);
4868
4869 // In ARC, infer 'retaining' for variables of retainable type.
4870 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(New))
4871 Invalid = true;
4872
4873 if (Invalid)
4874 New->setInvalidDecl();
4875 return New;
4876}
4877
4878Decl *Sema::ActOnObjCExceptionDecl(Scope *S, Declarator &D) {
4879 const DeclSpec &DS = D.getDeclSpec();
4880
4881 // We allow the "register" storage class on exception variables because
4882 // GCC did, but we drop it completely. Any other storage class is an error.
4883 if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
4884 Diag(DS.getStorageClassSpecLoc(), diag::warn_register_objc_catch_parm)
4885 << FixItHint::CreateRemoval(SourceRange(DS.getStorageClassSpecLoc()));
4886 } else if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) {
4887 Diag(DS.getStorageClassSpecLoc(), diag::err_storage_spec_on_catch_parm)
4888 << DeclSpec::getSpecifierName(SCS);
4889 }
4890 if (DS.isInlineSpecified())
4891 Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function)
4892 << getLangOpts().CPlusPlus17;
4893 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
4894 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
4895 diag::err_invalid_thread)
4896 << DeclSpec::getSpecifierName(TSCS);
4897 D.getMutableDeclSpec().ClearStorageClassSpecs();
4898
4899 DiagnoseFunctionSpecifiers(D.getDeclSpec());
4900
4901 // Check that there are no default arguments inside the type of this
4902 // exception object (C++ only).
4903 if (getLangOpts().CPlusPlus)
4904 CheckExtraCXXDefaultArguments(D);
4905
4906 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
4907 QualType ExceptionType = TInfo->getType();
4908
4909 VarDecl *New = BuildObjCExceptionDecl(TInfo, ExceptionType,
4910 D.getSourceRange().getBegin(),
4911 D.getIdentifierLoc(),
4912 D.getIdentifier(),
4913 D.isInvalidType());
4914
4915 // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
4916 if (D.getCXXScopeSpec().isSet()) {
4917 Diag(D.getIdentifierLoc(), diag::err_qualified_objc_catch_parm)
4918 << D.getCXXScopeSpec().getRange();
4919 New->setInvalidDecl();
4920 }
4921
4922 // Add the parameter declaration into this scope.
4923 S->AddDecl(New);
4924 if (D.getIdentifier())
4925 IdResolver.AddDecl(New);
4926
4927 ProcessDeclAttributes(S, New, D);
4928
4929 if (New->hasAttr<BlocksAttr>())
4930 Diag(New->getLocation(), diag::err_block_on_nonlocal);
4931 return New;
4932}
4933
4934/// CollectIvarsToConstructOrDestruct - Collect those ivars which require
4935/// initialization.
4936void Sema::CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI,
4937 SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
4938 for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv;
4939 Iv= Iv->getNextIvar()) {
4940 QualType QT = Context.getBaseElementType(Iv->getType());
4941 if (QT->isRecordType())
4942 Ivars.push_back(Iv);
4943 }
4944}
4945
4946void Sema::DiagnoseUseOfUnimplementedSelectors() {
4947 // Load referenced selectors from the external source.
4948 if (ExternalSource) {
4949 SmallVector<std::pair<Selector, SourceLocation>, 4> Sels;
4950 ExternalSource->ReadReferencedSelectors(Sels);
4951 for (unsigned I = 0, N = Sels.size(); I != N; ++I)
4952 ReferencedSelectors[Sels[I].first] = Sels[I].second;
4953 }
4954
4955 // Warning will be issued only when selector table is
4956 // generated (which means there is at lease one implementation
4957 // in the TU). This is to match gcc's behavior.
4958 if (ReferencedSelectors.empty() ||
4959 !Context.AnyObjCImplementation())
4960 return;
4961 for (auto &SelectorAndLocation : ReferencedSelectors) {
4962 Selector Sel = SelectorAndLocation.first;
4963 SourceLocation Loc = SelectorAndLocation.second;
4964 if (!LookupImplementedMethodInGlobalPool(Sel))
4965 Diag(Loc, diag::warn_unimplemented_selector) << Sel;
4966 }
4967}
4968
4969ObjCIvarDecl *
4970Sema::GetIvarBackingPropertyAccessor(const ObjCMethodDecl *Method,
4971 const ObjCPropertyDecl *&PDecl) const {
4972 if (Method->isClassMethod())
4973 return nullptr;
4974 const ObjCInterfaceDecl *IDecl = Method->getClassInterface();
4975 if (!IDecl)
4976 return nullptr;
4977 Method = IDecl->lookupMethod(Method->getSelector(), /*isInstance=*/true,
4978 /*shallowCategoryLookup=*/false,
4979 /*followSuper=*/false);
4980 if (!Method || !Method->isPropertyAccessor())
4981 return nullptr;
4982 if ((PDecl = Method->findPropertyDecl()))
4983 if (ObjCIvarDecl *IV = PDecl->getPropertyIvarDecl()) {
4984 // property backing ivar must belong to property's class
4985 // or be a private ivar in class's implementation.
4986 // FIXME. fix the const-ness issue.
4987 IV = const_cast<ObjCInterfaceDecl *>(IDecl)->lookupInstanceVariable(
4988 IV->getIdentifier());
4989 return IV;
4990 }
4991 return nullptr;
4992}
4993
4994namespace {
4995 /// Used by Sema::DiagnoseUnusedBackingIvarInAccessor to check if a property
4996 /// accessor references the backing ivar.
4997 class UnusedBackingIvarChecker :
4998 public RecursiveASTVisitor<UnusedBackingIvarChecker> {
4999 public:
5000 Sema &S;
5001 const ObjCMethodDecl *Method;
5002 const ObjCIvarDecl *IvarD;
5003 bool AccessedIvar;
5004 bool InvokedSelfMethod;
5005
5006 UnusedBackingIvarChecker(Sema &S, const ObjCMethodDecl *Method,
5007 const ObjCIvarDecl *IvarD)
5008 : S(S), Method(Method), IvarD(IvarD),
5009 AccessedIvar(false), InvokedSelfMethod(false) {
5010 assert(IvarD)(static_cast <bool> (IvarD) ? void (0) : __assert_fail (
"IvarD", "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 5010, __extension__ __PRETTY_FUNCTION__))
;
5011 }
5012
5013 bool VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
5014 if (E->getDecl() == IvarD) {
5015 AccessedIvar = true;
5016 return false;
5017 }
5018 return true;
5019 }
5020
5021 bool VisitObjCMessageExpr(ObjCMessageExpr *E) {
5022 if (E->getReceiverKind() == ObjCMessageExpr::Instance &&
5023 S.isSelfExpr(E->getInstanceReceiver(), Method)) {
5024 InvokedSelfMethod = true;
5025 }
5026 return true;
5027 }
5028 };
5029} // end anonymous namespace
5030
5031void Sema::DiagnoseUnusedBackingIvarInAccessor(Scope *S,
5032 const ObjCImplementationDecl *ImplD) {
5033 if (S->hasUnrecoverableErrorOccurred())
5034 return;
5035
5036 for (const auto *CurMethod : ImplD->instance_methods()) {
5037 unsigned DIAG = diag::warn_unused_property_backing_ivar;
5038 SourceLocation Loc = CurMethod->getLocation();
5039 if (Diags.isIgnored(DIAG, Loc))
5040 continue;
5041
5042 const ObjCPropertyDecl *PDecl;
5043 const ObjCIvarDecl *IV = GetIvarBackingPropertyAccessor(CurMethod, PDecl);
5044 if (!IV)
5045 continue;
5046
5047 UnusedBackingIvarChecker Checker(*this, CurMethod, IV);
5048 Checker.TraverseStmt(CurMethod->getBody());
5049 if (Checker.AccessedIvar)
5050 continue;
5051
5052 // Do not issue this warning if backing ivar is used somewhere and accessor
5053 // implementation makes a self call. This is to prevent false positive in
5054 // cases where the ivar is accessed by another method that the accessor
5055 // delegates to.
5056 if (!IV->isReferenced() || !Checker.InvokedSelfMethod) {
5057 Diag(Loc, DIAG) << IV;
5058 Diag(PDecl->getLocation(), diag::note_property_declare);
5059 }
5060 }
5061}

/build/llvm-toolchain-snapshot-7~svn338205/build-llvm/tools/clang/include/clang/AST/Attrs.inc

1/*===- TableGen'erated file -------------------------------------*- C++ -*-===*\
2|* *|
3|* Attribute classes' definitions *|
4|* *|
5|* Automatically generated file, do not edit! *|
6|* *|
7\*===----------------------------------------------------------------------===*/
8
9#ifndef LLVM_CLANG_ATTR_CLASSES_INC
10#define LLVM_CLANG_ATTR_CLASSES_INC
11
12class AMDGPUFlatWorkGroupSizeAttr : public InheritableAttr {
13unsigned min;
14
15unsigned max;
16
17public:
18 static AMDGPUFlatWorkGroupSizeAttr *CreateImplicit(ASTContext &Ctx, unsigned Min, unsigned Max, SourceRange Loc = SourceRange()) {
19 auto *A = new (Ctx) AMDGPUFlatWorkGroupSizeAttr(Loc, Ctx, Min, Max, 0);
20 A->setImplicit(true);
21 return A;
22 }
23
24 AMDGPUFlatWorkGroupSizeAttr(SourceRange R, ASTContext &Ctx
25 , unsigned Min
26 , unsigned Max
27 , unsigned SI
28 )
29 : InheritableAttr(attr::AMDGPUFlatWorkGroupSize, R, SI, false, false)
30 , min(Min)
31 , max(Max)
32 {
33 }
34
35 AMDGPUFlatWorkGroupSizeAttr *clone(ASTContext &C) const;
36 void printPretty(raw_ostream &OS,
37 const PrintingPolicy &Policy) const;
38 const char *getSpelling() const;
39 unsigned getMin() const {
40 return min;
41 }
42
43 unsigned getMax() const {
44 return max;
45 }
46
47
48
49 static bool classof(const Attr *A) { return A->getKind() == attr::AMDGPUFlatWorkGroupSize; }
50};
51
52class AMDGPUNumSGPRAttr : public InheritableAttr {
53unsigned numSGPR;
54
55public:
56 static AMDGPUNumSGPRAttr *CreateImplicit(ASTContext &Ctx, unsigned NumSGPR, SourceRange Loc = SourceRange()) {
57 auto *A = new (Ctx) AMDGPUNumSGPRAttr(Loc, Ctx, NumSGPR, 0);
58 A->setImplicit(true);
59 return A;
60 }
61
62 AMDGPUNumSGPRAttr(SourceRange R, ASTContext &Ctx
63 , unsigned NumSGPR
64 , unsigned SI
65 )
66 : InheritableAttr(attr::AMDGPUNumSGPR, R, SI, false, false)
67 , numSGPR(NumSGPR)
68 {
69 }
70
71 AMDGPUNumSGPRAttr *clone(ASTContext &C) const;
72 void printPretty(raw_ostream &OS,
73 const PrintingPolicy &Policy) const;
74 const char *getSpelling() const;
75 unsigned getNumSGPR() const {
76 return numSGPR;
77 }
78
79
80
81 static bool classof(const Attr *A) { return A->getKind() == attr::AMDGPUNumSGPR; }
82};
83
84class AMDGPUNumVGPRAttr : public InheritableAttr {
85unsigned numVGPR;
86
87public:
88 static AMDGPUNumVGPRAttr *CreateImplicit(ASTContext &Ctx, unsigned NumVGPR, SourceRange Loc = SourceRange()) {
89 auto *A = new (Ctx) AMDGPUNumVGPRAttr(Loc, Ctx, NumVGPR, 0);
90 A->setImplicit(true);
91 return A;
92 }
93
94 AMDGPUNumVGPRAttr(SourceRange R, ASTContext &Ctx
95 , unsigned NumVGPR
96 , unsigned SI
97 )
98 : InheritableAttr(attr::AMDGPUNumVGPR, R, SI, false, false)
99 , numVGPR(NumVGPR)
100 {
101 }
102
103 AMDGPUNumVGPRAttr *clone(ASTContext &C) const;
104 void printPretty(raw_ostream &OS,
105 const PrintingPolicy &Policy) const;
106 const char *getSpelling() const;
107 unsigned getNumVGPR() const {
108 return numVGPR;
109 }
110
111
112
113 static bool classof(const Attr *A) { return A->getKind() == attr::AMDGPUNumVGPR; }
114};
115
116class AMDGPUWavesPerEUAttr : public InheritableAttr {
117unsigned min;
118
119unsigned max;
120
121public:
122 static AMDGPUWavesPerEUAttr *CreateImplicit(ASTContext &Ctx, unsigned Min, unsigned Max, SourceRange Loc = SourceRange()) {
123 auto *A = new (Ctx) AMDGPUWavesPerEUAttr(Loc, Ctx, Min, Max, 0);
124 A->setImplicit(true);
125 return A;
126 }
127
128 AMDGPUWavesPerEUAttr(SourceRange R, ASTContext &Ctx
129 , unsigned Min
130 , unsigned Max
131 , unsigned SI
132 )
133 : InheritableAttr(attr::AMDGPUWavesPerEU, R, SI, false, false)
134 , min(Min)
135 , max(Max)
136 {
137 }
138
139 AMDGPUWavesPerEUAttr(SourceRange R, ASTContext &Ctx
140 , unsigned Min
141 , unsigned SI
142 )
143 : InheritableAttr(attr::AMDGPUWavesPerEU, R, SI, false, false)
144 , min(Min)
145 , max()
146 {
147 }
148
149 AMDGPUWavesPerEUAttr *clone(ASTContext &C) const;
150 void printPretty(raw_ostream &OS,
151 const PrintingPolicy &Policy) const;
152 const char *getSpelling() const;
153 unsigned getMin() const {
154 return min;
155 }
156
157 unsigned getMax() const {
158 return max;
159 }
160
161
162
163 static bool classof(const Attr *A) { return A->getKind() == attr::AMDGPUWavesPerEU; }
164};
165
166class ARMInterruptAttr : public InheritableAttr {
167public:
168 enum InterruptType {
169 IRQ,
170 FIQ,
171 SWI,
172 ABORT,
173 UNDEF,
174 Generic
175 };
176private:
177 InterruptType interrupt;
178
179public:
180 static ARMInterruptAttr *CreateImplicit(ASTContext &Ctx, InterruptType Interrupt, SourceRange Loc = SourceRange()) {
181 auto *A = new (Ctx) ARMInterruptAttr(Loc, Ctx, Interrupt, 0);
182 A->setImplicit(true);
183 return A;
184 }
185
186 ARMInterruptAttr(SourceRange R, ASTContext &Ctx
187 , InterruptType Interrupt
188 , unsigned SI
189 )
190 : InheritableAttr(attr::ARMInterrupt, R, SI, false, false)
191 , interrupt(Interrupt)
192 {
193 }
194
195 ARMInterruptAttr(SourceRange R, ASTContext &Ctx
196 , unsigned SI
197 )
198 : InheritableAttr(attr::ARMInterrupt, R, SI, false, false)
199 , interrupt(InterruptType(0))
200 {
201 }
202
203 ARMInterruptAttr *clone(ASTContext &C) const;
204 void printPretty(raw_ostream &OS,
205 const PrintingPolicy &Policy) const;
206 const char *getSpelling() const;
207 InterruptType getInterrupt() const {
208 return interrupt;
209 }
210
211 static bool ConvertStrToInterruptType(StringRef Val, InterruptType &Out) {
212 Optional<InterruptType> R = llvm::StringSwitch<Optional<InterruptType>>(Val)
213 .Case("IRQ", ARMInterruptAttr::IRQ)
214 .Case("FIQ", ARMInterruptAttr::FIQ)
215 .Case("SWI", ARMInterruptAttr::SWI)
216 .Case("ABORT", ARMInterruptAttr::ABORT)
217 .Case("UNDEF", ARMInterruptAttr::UNDEF)
218 .Case("", ARMInterruptAttr::Generic)
219 .Default(Optional<InterruptType>());
220 if (R) {
221 Out = *R;
222 return true;
223 }
224 return false;
225 }
226
227 static const char *ConvertInterruptTypeToStr(InterruptType Val) {
228 switch(Val) {
229 case ARMInterruptAttr::IRQ: return "IRQ";
230 case ARMInterruptAttr::FIQ: return "FIQ";
231 case ARMInterruptAttr::SWI: return "SWI";
232 case ARMInterruptAttr::ABORT: return "ABORT";
233 case ARMInterruptAttr::UNDEF: return "UNDEF";
234 case ARMInterruptAttr::Generic: return "";
235 }
236 llvm_unreachable("No enumerator with that value")::llvm::llvm_unreachable_internal("No enumerator with that value"
, "/build/llvm-toolchain-snapshot-7~svn338205/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 236)
;
237 }
238
239
240 static bool classof(const Attr *A) { return A->getKind() == attr::ARMInterrupt; }
241};
242
243class AVRInterruptAttr : public InheritableAttr {
244public:
245 static AVRInterruptAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
246 auto *A = new (Ctx) AVRInterruptAttr(Loc, Ctx, 0);
247 A->setImplicit(true);
248 return A;
249 }
250
251 AVRInterruptAttr(SourceRange R, ASTContext &Ctx
252 , unsigned SI
253 )
254 : InheritableAttr(attr::AVRInterrupt, R, SI, false, false)
255 {
256 }
257
258 AVRInterruptAttr *clone(ASTContext &C) const;
259 void printPretty(raw_ostream &OS,
260 const PrintingPolicy &Policy) const;
261 const char *getSpelling() const;
262
263
264 static bool classof(const Attr *A) { return A->getKind() == attr::AVRInterrupt; }
265};
266
267class AVRSignalAttr : public InheritableAttr {
268public:
269 static AVRSignalAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
270 auto *A = new (Ctx) AVRSignalAttr(Loc, Ctx, 0);
271 A->setImplicit(true);
272 return A;
273 }
274
275 AVRSignalAttr(SourceRange R, ASTContext &Ctx
276 , unsigned SI
277 )
278 : InheritableAttr(attr::AVRSignal, R, SI, false, false)
279 {
280 }
281
282 AVRSignalAttr *clone(ASTContext &C) const;
283 void printPretty(raw_ostream &OS,
284 const PrintingPolicy &Policy) const;
285 const char *getSpelling() const;
286
287
288 static bool classof(const Attr *A) { return A->getKind() == attr::AVRSignal; }
289};
290
291class AbiTagAttr : public Attr {
292 unsigned tags_Size;
293 StringRef *tags_;
294
295public:
296 static AbiTagAttr *CreateImplicit(ASTContext &Ctx, StringRef *Tags, unsigned TagsSize, SourceRange Loc = SourceRange()) {
297 auto *A = new (Ctx) AbiTagAttr(Loc, Ctx, Tags, TagsSize, 0);
298 A->setImplicit(true);
299 return A;
300 }
301
302 AbiTagAttr(SourceRange R, ASTContext &Ctx
303 , StringRef *Tags, unsigned TagsSize
304 , unsigned SI
305 )
306 : Attr(attr::AbiTag, R, SI, false)
307 , tags_Size(TagsSize), tags_(new (Ctx, 16) StringRef[tags_Size])
308 {
309 for (size_t I = 0, E = tags_Size; I != E;
310 ++I) {
311 StringRef Ref = Tags[I];
312 if (!Ref.empty()) {
313 char *Mem = new (Ctx, 1) char[Ref.size()];
314 std::memcpy(Mem, Ref.data(), Ref.size());
315 tags_[I] = StringRef(Mem, Ref.size());
316 }
317 }
318 }
319
320 AbiTagAttr(SourceRange R, ASTContext &Ctx
321 , unsigned SI
322 )
323 : Attr(attr::AbiTag, R, SI, false)
324 , tags_Size(0), tags_(nullptr)
325 {
326 }
327
328 AbiTagAttr *clone(ASTContext &C) const;
329 void printPretty(raw_ostream &OS,
330 const PrintingPolicy &Policy) const;
331 const char *getSpelling() const;
332 typedef StringRef* tags_iterator;
333 tags_iterator tags_begin() const { return tags_; }
334 tags_iterator tags_end() const { return tags_ + tags_Size; }
335 unsigned tags_size() const { return tags_Size; }
336 llvm::iterator_range<tags_iterator> tags() const { return llvm::make_range(tags_begin(), tags_end()); }
337
338
339
340
341 static bool classof(const Attr *A) { return A->getKind() == attr::AbiTag; }
342};
343
344class AcquireCapabilityAttr : public InheritableAttr {
345 unsigned args_Size;
346 Expr * *args_;
347
348public:
349 enum Spelling {
350 GNU_acquire_capability = 0,
351 CXX11_clang_acquire_capability = 1,
352 GNU_acquire_shared_capability = 2,
353 CXX11_clang_acquire_shared_capability = 3,
354 GNU_exclusive_lock_function = 4,
355 GNU_shared_lock_function = 5
356 };
357
358 static AcquireCapabilityAttr *CreateImplicit(ASTContext &Ctx, Spelling S, Expr * *Args, unsigned ArgsSize, SourceRange Loc = SourceRange()) {
359 auto *A = new (Ctx) AcquireCapabilityAttr(Loc, Ctx, Args, ArgsSize, S);
360 A->setImplicit(true);
361 return A;
362 }
363
364 AcquireCapabilityAttr(SourceRange R, ASTContext &Ctx
365 , Expr * *Args, unsigned ArgsSize
366 , unsigned SI
367 )
368 : InheritableAttr(attr::AcquireCapability, R, SI, true, true)
369 , args_Size(ArgsSize), args_(new (Ctx, 16) Expr *[args_Size])
370 {
371 std::copy(Args, Args + args_Size, args_);
372 }
373
374 AcquireCapabilityAttr(SourceRange R, ASTContext &Ctx
375 , unsigned SI
376 )
377 : InheritableAttr(attr::AcquireCapability, R, SI, true, true)
378 , args_Size(0), args_(nullptr)
379 {
380 }
381
382 AcquireCapabilityAttr *clone(ASTContext &C) const;
383 void printPretty(raw_ostream &OS,
384 const PrintingPolicy &Policy) const;
385 const char *getSpelling() const;
386 Spelling getSemanticSpelling() const {
387 switch (SpellingListIndex) {
388 default: llvm_unreachable("Unknown spelling list index")::llvm::llvm_unreachable_internal("Unknown spelling list index"
, "/build/llvm-toolchain-snapshot-7~svn338205/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 388)
;
389 case 0: return GNU_acquire_capability;
390 case 1: return CXX11_clang_acquire_capability;
391 case 2: return GNU_acquire_shared_capability;
392 case 3: return CXX11_clang_acquire_shared_capability;
393 case 4: return GNU_exclusive_lock_function;
394 case 5: return GNU_shared_lock_function;
395 }
396 }
397 bool isShared() const { return SpellingListIndex == 2 ||
398 SpellingListIndex == 3 ||
399 SpellingListIndex == 5; }
400 typedef Expr ** args_iterator;
401 args_iterator args_begin() const { return args_; }
402 args_iterator args_end() const { return args_ + args_Size; }
403 unsigned args_size() const { return args_Size; }
404 llvm::iterator_range<args_iterator> args() const { return llvm::make_range(args_begin(), args_end()); }
405
406
407
408
409 static bool classof(const Attr *A) { return A->getKind() == attr::AcquireCapability; }
410};
411
412class AcquiredAfterAttr : public InheritableAttr {
413 unsigned args_Size;
414 Expr * *args_;
415
416public:
417 static AcquiredAfterAttr *CreateImplicit(ASTContext &Ctx, Expr * *Args, unsigned ArgsSize, SourceRange Loc = SourceRange()) {
418 auto *A = new (Ctx) AcquiredAfterAttr(Loc, Ctx, Args, ArgsSize, 0);
419 A->setImplicit(true);
420 return A;
421 }
422
423 AcquiredAfterAttr(SourceRange R, ASTContext &Ctx
424 , Expr * *Args, unsigned ArgsSize
425 , unsigned SI
426 )
427 : InheritableAttr(attr::AcquiredAfter, R, SI, true, true)
428 , args_Size(ArgsSize), args_(new (Ctx, 16) Expr *[args_Size])
429 {
430 std::copy(Args, Args + args_Size, args_);
431 }
432
433 AcquiredAfterAttr(SourceRange R, ASTContext &Ctx
434 , unsigned SI
435 )
436 : InheritableAttr(attr::AcquiredAfter, R, SI, true, true)
437 , args_Size(0), args_(nullptr)
438 {
439 }
440
441 AcquiredAfterAttr *clone(ASTContext &C) const;
442 void printPretty(raw_ostream &OS,
443 const PrintingPolicy &Policy) const;
444 const char *getSpelling() const;
445 typedef Expr ** args_iterator;
446 args_iterator args_begin() const { return args_; }
447 args_iterator args_end() const { return args_ + args_Size; }
448 unsigned args_size() const { return args_Size; }
449 llvm::iterator_range<args_iterator> args() const { return llvm::make_range(args_begin(), args_end()); }
450
451
452
453
454 static bool classof(const Attr *A) { return A->getKind() == attr::AcquiredAfter; }
455};
456
457class AcquiredBeforeAttr : public InheritableAttr {
458 unsigned args_Size;
459 Expr * *args_;
460
461public:
462 static AcquiredBeforeAttr *CreateImplicit(ASTContext &Ctx, Expr * *Args, unsigned ArgsSize, SourceRange Loc = SourceRange()) {
463 auto *A = new (Ctx) AcquiredBeforeAttr(Loc, Ctx, Args, ArgsSize, 0);
464 A->setImplicit(true);
465 return A;
466 }
467
468 AcquiredBeforeAttr(SourceRange R, ASTContext &Ctx
469 , Expr * *Args, unsigned ArgsSize
470 , unsigned SI
471 )
472 : InheritableAttr(attr::AcquiredBefore, R, SI, true, true)
473 , args_Size(ArgsSize), args_(new (Ctx, 16) Expr *[args_Size])
474 {
475 std::copy(Args, Args + args_Size, args_);
476 }
477
478 AcquiredBeforeAttr(SourceRange R, ASTContext &Ctx
479 , unsigned SI
480 )
481 : InheritableAttr(attr::AcquiredBefore, R, SI, true, true)
482 , args_Size(0), args_(nullptr)
483 {
484 }
485
486 AcquiredBeforeAttr *clone(ASTContext &C) const;
487 void printPretty(raw_ostream &OS,
488 const PrintingPolicy &Policy) const;
489 const char *getSpelling() const;
490 typedef Expr ** args_iterator;
491 args_iterator args_begin() const { return args_; }
492 args_iterator args_end() const { return args_ + args_Size; }
493 unsigned args_size() const { return args_Size; }
494 llvm::iterator_range<args_iterator> args() const { return llvm::make_range(args_begin(), args_end()); }
495
496
497
498
499 static bool classof(const Attr *A) { return A->getKind() == attr::AcquiredBefore; }
500};
501
502class AliasAttr : public Attr {
503unsigned aliaseeLength;
504char *aliasee;
505
506public:
507 static AliasAttr *CreateImplicit(ASTContext &Ctx, llvm::StringRef Aliasee, SourceRange Loc = SourceRange()) {
508 auto *A = new (Ctx) AliasAttr(Loc, Ctx, Aliasee, 0);
509 A->setImplicit(true);
510 return A;
511 }
512
513 AliasAttr(SourceRange R, ASTContext &Ctx
514 , llvm::StringRef Aliasee
515 , unsigned SI
516 )
517 : Attr(attr::Alias, R, SI, false)
518 , aliaseeLength(Aliasee.size()),aliasee(new (Ctx, 1) char[aliaseeLength])
519 {
520 if (!Aliasee.empty())
521 std::memcpy(aliasee, Aliasee.data(), aliaseeLength);
522 }
523
524 AliasAttr *clone(ASTContext &C) const;
525 void printPretty(raw_ostream &OS,
526 const PrintingPolicy &Policy) const;
527 const char *getSpelling() const;
528 llvm::StringRef getAliasee() const {
529 return llvm::StringRef(aliasee, aliaseeLength);
530 }
531 unsigned getAliaseeLength() const {
532 return aliaseeLength;
533 }
534 void setAliasee(ASTContext &C, llvm::StringRef S) {
535 aliaseeLength = S.size();
536 this->aliasee = new (C, 1) char [aliaseeLength];
537 if (!S.empty())
538 std::memcpy(this->aliasee, S.data(), aliaseeLength);
539 }
540
541
542
543 static bool classof(const Attr *A) { return A->getKind() == attr::Alias; }
544};
545
546class AlignMac68kAttr : public InheritableAttr {
547public:
548 static AlignMac68kAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
549 auto *A = new (Ctx) AlignMac68kAttr(Loc, Ctx, 0);
550 A->setImplicit(true);
551 return A;
552 }
553
554 AlignMac68kAttr(SourceRange R, ASTContext &Ctx
555 , unsigned SI
556 )
557 : InheritableAttr(attr::AlignMac68k, R, SI, false, false)
558 {
559 }
560
561 AlignMac68kAttr *clone(ASTContext &C) const;
562 void printPretty(raw_ostream &OS,
563 const PrintingPolicy &Policy) const;
564 const char *getSpelling() const;
565
566
567 static bool classof(const Attr *A) { return A->getKind() == attr::AlignMac68k; }
568};
569
570class AlignValueAttr : public Attr {
571Expr * alignment;
572
573public:
574 static AlignValueAttr *CreateImplicit(ASTContext &Ctx, Expr * Alignment, SourceRange Loc = SourceRange()) {
575 auto *A = new (Ctx) AlignValueAttr(Loc, Ctx, Alignment, 0);
576 A->setImplicit(true);
577 return A;
578 }
579
580 AlignValueAttr(SourceRange R, ASTContext &Ctx
581 , Expr * Alignment
582 , unsigned SI
583 )
584 : Attr(attr::AlignValue, R, SI, false)
585 , alignment(Alignment)
586 {
587 }
588
589 AlignValueAttr *clone(ASTContext &C) const;
590 void printPretty(raw_ostream &OS,
591 const PrintingPolicy &Policy) const;
592 const char *getSpelling() const;
593 Expr * getAlignment() const {
594 return alignment;
595 }
596
597
598
599 static bool classof(const Attr *A) { return A->getKind() == attr::AlignValue; }
600};
601
602class AlignedAttr : public InheritableAttr {
603bool isalignmentExpr;
604union {
605Expr *alignmentExpr;
606TypeSourceInfo *alignmentType;
607};
608
609public:
610 enum Spelling {
611 GNU_aligned = 0,
612 CXX11_gnu_aligned = 1,
613 Declspec_align = 2,
614 Keyword_alignas = 3,
615 Keyword_Alignas = 4
616 };
617
618 static AlignedAttr *CreateImplicit(ASTContext &Ctx, Spelling S, bool IsAlignmentExpr, void *Alignment, SourceRange Loc = SourceRange()) {
619 auto *A = new (Ctx) AlignedAttr(Loc, Ctx, IsAlignmentExpr, Alignment, S);
620 A->setImplicit(true);
621 return A;
622 }
623
624 AlignedAttr(SourceRange R, ASTContext &Ctx
625 , bool IsAlignmentExpr, void *Alignment
626 , unsigned SI
627 )
628 : InheritableAttr(attr::Aligned, R, SI, false, false)
629 , isalignmentExpr(IsAlignmentExpr)
630 {
631 if (isalignmentExpr)
632 alignmentExpr = reinterpret_cast<Expr *>(Alignment);
633 else
634 alignmentType = reinterpret_cast<TypeSourceInfo *>(Alignment);
635 }
636
637 AlignedAttr(SourceRange R, ASTContext &Ctx
638 , unsigned SI
639 )
640 : InheritableAttr(attr::Aligned, R, SI, false, false)
641 , isalignmentExpr(false)
642 {
643 }
644
645 AlignedAttr *clone(ASTContext &C) const;
646 void printPretty(raw_ostream &OS,
647 const PrintingPolicy &Policy) const;
648 const char *getSpelling() const;
649 Spelling getSemanticSpelling() const {
650 switch (SpellingListIndex) {
651 default: llvm_unreachable("Unknown spelling list index")::llvm::llvm_unreachable_internal("Unknown spelling list index"
, "/build/llvm-toolchain-snapshot-7~svn338205/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 651)
;
652 case 0: return GNU_aligned;
653 case 1: return CXX11_gnu_aligned;
654 case 2: return Declspec_align;
655 case 3: return Keyword_alignas;
656 case 4: return Keyword_Alignas;
657 }
658 }
659 bool isGNU() const { return SpellingListIndex == 0 ||
660 SpellingListIndex == 1; }
661 bool isC11() const { return SpellingListIndex == 4; }
662 bool isAlignas() const { return SpellingListIndex == 3 ||
663 SpellingListIndex == 4; }
664 bool isDeclspec() const { return SpellingListIndex == 2; }
665 bool isAlignmentDependent() const;
666 unsigned getAlignment(ASTContext &Ctx) const;
667 bool isAlignmentExpr() const {
668 return isalignmentExpr;
669 }
670 Expr *getAlignmentExpr() const {
671 assert(isalignmentExpr)(static_cast <bool> (isalignmentExpr) ? void (0) : __assert_fail
("isalignmentExpr", "/build/llvm-toolchain-snapshot-7~svn338205/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 671, __extension__ __PRETTY_FUNCTION__))
;
672 return alignmentExpr;
673 }
674 TypeSourceInfo *getAlignmentType() const {
675 assert(!isalignmentExpr)(static_cast <bool> (!isalignmentExpr) ? void (0) : __assert_fail
("!isalignmentExpr", "/build/llvm-toolchain-snapshot-7~svn338205/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 675, __extension__ __PRETTY_FUNCTION__))
;
676 return alignmentType;
677 }
678
679
680
681 static bool classof(const Attr *A) { return A->getKind() == attr::Aligned; }
682};
683
684class AllocAlignAttr : public InheritableAttr {
685ParamIdx paramIndex;
686
687public:
688 static AllocAlignAttr *CreateImplicit(ASTContext &Ctx, ParamIdx ParamIndex, SourceRange Loc = SourceRange()) {
689 auto *A = new (Ctx) AllocAlignAttr(Loc, Ctx, ParamIndex, 0);
690 A->setImplicit(true);
691 return A;
692 }
693
694 AllocAlignAttr(SourceRange R, ASTContext &Ctx
695 , ParamIdx ParamIndex
696 , unsigned SI
697 )
698 : InheritableAttr(attr::AllocAlign, R, SI, false, false)
699 , paramIndex(ParamIndex)
700 {
701 }
702
703 AllocAlignAttr *clone(ASTContext &C) const;
704 void printPretty(raw_ostream &OS,
705 const PrintingPolicy &Policy) const;
706 const char *getSpelling() const;
707 ParamIdx getParamIndex() const {
708 return paramIndex;
709 }
710
711
712
713 static bool classof(const Attr *A) { return A->getKind() == attr::AllocAlign; }
714};
715
716class AllocSizeAttr : public InheritableAttr {
717ParamIdx elemSizeParam;
718
719ParamIdx numElemsParam;
720
721public:
722 static AllocSizeAttr *CreateImplicit(ASTContext &Ctx, ParamIdx ElemSizeParam, ParamIdx NumElemsParam, SourceRange Loc = SourceRange()) {
723 auto *A = new (Ctx) AllocSizeAttr(Loc, Ctx, ElemSizeParam, NumElemsParam, 0);
724 A->setImplicit(true);
725 return A;
726 }
727
728 AllocSizeAttr(SourceRange R, ASTContext &Ctx
729 , ParamIdx ElemSizeParam
730 , ParamIdx NumElemsParam
731 , unsigned SI
732 )
733 : InheritableAttr(attr::AllocSize, R, SI, false, false)
734 , elemSizeParam(ElemSizeParam)
735 , numElemsParam(NumElemsParam)
736 {
737 }
738
739 AllocSizeAttr(SourceRange R, ASTContext &Ctx
740 , ParamIdx ElemSizeParam
741 , unsigned SI
742 )
743 : InheritableAttr(attr::AllocSize, R, SI, false, false)
744 , elemSizeParam(ElemSizeParam)
745 , numElemsParam()
746 {
747 }
748
749 AllocSizeAttr *clone(ASTContext &C) const;
750 void printPretty(raw_ostream &OS,
751 const PrintingPolicy &Policy) const;
752 const char *getSpelling() const;
753 ParamIdx getElemSizeParam() const {
754 return elemSizeParam;
755 }
756
757 ParamIdx getNumElemsParam() const {
758 return numElemsParam;
759 }
760
761
762
763 static bool classof(const Attr *A) { return A->getKind() == attr::AllocSize; }
764};
765
766class AlwaysInlineAttr : public InheritableAttr {
767public:
768 enum Spelling {
769 GNU_always_inline = 0,
770 CXX11_gnu_always_inline = 1,
771 Keyword_forceinline = 2
772 };
773
774 static AlwaysInlineAttr *CreateImplicit(ASTContext &Ctx, Spelling S, SourceRange Loc = SourceRange()) {
775 auto *A = new (Ctx) AlwaysInlineAttr(Loc, Ctx, S);
776 A->setImplicit(true);
777 return A;
778 }
779
780 AlwaysInlineAttr(SourceRange R, ASTContext &Ctx
781 , unsigned SI
782 )
783 : InheritableAttr(attr::AlwaysInline, R, SI, false, false)
784 {
785 }
786
787 AlwaysInlineAttr *clone(ASTContext &C) const;
788 void printPretty(raw_ostream &OS,
789 const PrintingPolicy &Policy) const;
790 const char *getSpelling() const;
791 Spelling getSemanticSpelling() const {
792 switch (SpellingListIndex) {
793 default: llvm_unreachable("Unknown spelling list index")::llvm::llvm_unreachable_internal("Unknown spelling list index"
, "/build/llvm-toolchain-snapshot-7~svn338205/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 793)
;
794 case 0: return GNU_always_inline;
795 case 1: return CXX11_gnu_always_inline;
796 case 2: return Keyword_forceinline;
797 }
798 }
799
800
801 static bool classof(const Attr *A) { return A->getKind() == attr::AlwaysInline; }
802};
803
804class AnalyzerNoReturnAttr : public InheritableAttr {
805public:
806 static AnalyzerNoReturnAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
807 auto *A = new (Ctx) AnalyzerNoReturnAttr(Loc, Ctx, 0);
808 A->setImplicit(true);
809 return A;
810 }
811
812 AnalyzerNoReturnAttr(SourceRange R, ASTContext &Ctx
813 , unsigned SI
814 )
815 : InheritableAttr(attr::AnalyzerNoReturn, R, SI, false, false)
816 {
817 }
818
819 AnalyzerNoReturnAttr *clone(ASTContext &C) const;
820 void printPretty(raw_ostream &OS,
821 const PrintingPolicy &Policy) const;
822 const char *getSpelling() const;
823
824
825 static bool classof(const Attr *A) { return A->getKind() == attr::AnalyzerNoReturn; }
826};
827
828class AnnotateAttr : public InheritableParamAttr {
829unsigned annotationLength;
830char *annotation;
831
832public:
833 static AnnotateAttr *CreateImplicit(ASTContext &Ctx, llvm::StringRef Annotation, SourceRange Loc = SourceRange()) {
834 auto *A = new (Ctx) AnnotateAttr(Loc, Ctx, Annotation, 0);
835 A->setImplicit(true);
836 return A;
837 }
838
839 AnnotateAttr(SourceRange R, ASTContext &Ctx
840 , llvm::StringRef Annotation
841 , unsigned SI
842 )
843 : InheritableParamAttr(attr::Annotate, R, SI, false, false)
844 , annotationLength(Annotation.size()),annotation(new (Ctx, 1) char[annotationLength])
845 {
846 if (!Annotation.empty())
847 std::memcpy(annotation, Annotation.data(), annotationLength);
848 }
849
850 AnnotateAttr *clone(ASTContext &C) const;
851 void printPretty(raw_ostream &OS,
852 const PrintingPolicy &Policy) const;
853 const char *getSpelling() const;
854 llvm::StringRef getAnnotation() const {
855 return llvm::StringRef(annotation, annotationLength);
856 }
857 unsigned getAnnotationLength() const {
858 return annotationLength;
859 }
860 void setAnnotation(ASTContext &C, llvm::StringRef S) {
861 annotationLength = S.size();
862 this->annotation = new (C, 1) char [annotationLength];
863 if (!S.empty())
864 std::memcpy(this->annotation, S.data(), annotationLength);
865 }
866
867
868
869 static bool classof(const Attr *A) { return A->getKind() == attr::Annotate; }
870};
871
872class AnyX86InterruptAttr : public InheritableAttr {
873public:
874 static AnyX86InterruptAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
875 auto *A = new (Ctx) AnyX86InterruptAttr(Loc, Ctx, 0);
876 A->setImplicit(true);
877 return A;
878 }
879
880 AnyX86InterruptAttr(SourceRange R, ASTContext &Ctx
881 , unsigned SI
882 )
883 : InheritableAttr(attr::AnyX86Interrupt, R, SI, false, false)
884 {
885 }
886
887 AnyX86InterruptAttr *clone(ASTContext &C) const;
888 void printPretty(raw_ostream &OS,
889 const PrintingPolicy &Policy) const;
890 const char *getSpelling() const;
891
892
893 static bool classof(const Attr *A) { return A->getKind() == attr::AnyX86Interrupt; }
894};
895
896class AnyX86NoCallerSavedRegistersAttr : public InheritableAttr {
897public:
898 static AnyX86NoCallerSavedRegistersAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
899 auto *A = new (Ctx) AnyX86NoCallerSavedRegistersAttr(Loc, Ctx, 0);
900 A->setImplicit(true);
901 return A;
902 }
903
904 AnyX86NoCallerSavedRegistersAttr(SourceRange R, ASTContext &Ctx
905 , unsigned SI
906 )
907 : InheritableAttr(attr::AnyX86NoCallerSavedRegisters, R, SI, false, false)
908 {
909 }
910
911 AnyX86NoCallerSavedRegistersAttr *clone(ASTContext &C) const;
912 void printPretty(raw_ostream &OS,
913 const PrintingPolicy &Policy) const;
914 const char *getSpelling() const;
915
916
917 static bool classof(const Attr *A) { return A->getKind() == attr::AnyX86NoCallerSavedRegisters; }
918};
919
920class AnyX86NoCfCheckAttr : public InheritableAttr {
921public:
922 static AnyX86NoCfCheckAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
923 auto *A = new (Ctx) AnyX86NoCfCheckAttr(Loc, Ctx, 0);
924 A->setImplicit(true);
925 return A;
926 }
927
928 AnyX86NoCfCheckAttr(SourceRange R, ASTContext &Ctx
929 , unsigned SI
930 )
931 : InheritableAttr(attr::AnyX86NoCfCheck, R, SI, false, false)
932 {
933 }
934
935 AnyX86NoCfCheckAttr *clone(ASTContext &C) const;
936 void printPretty(raw_ostream &OS,
937 const PrintingPolicy &Policy) const;
938 const char *getSpelling() const;
939
940
941 static bool classof(const Attr *A) { return A->getKind() == attr::AnyX86NoCfCheck; }
942};
943
944class ArcWeakrefUnavailableAttr : public InheritableAttr {
945public:
946 static ArcWeakrefUnavailableAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
947 auto *A = new (Ctx) ArcWeakrefUnavailableAttr(Loc, Ctx, 0);
948 A->setImplicit(true);
949 return A;
950 }
951
952 ArcWeakrefUnavailableAttr(SourceRange R, ASTContext &Ctx
953 , unsigned SI
954 )
955 : InheritableAttr(attr::ArcWeakrefUnavailable, R, SI, false, false)
956 {
957 }
958
959 ArcWeakrefUnavailableAttr *clone(ASTContext &C) const;
960 void printPretty(raw_ostream &OS,
961 const PrintingPolicy &Policy) const;
962 const char *getSpelling() const;
963
964
965 static bool classof(const Attr *A) { return A->getKind() == attr::ArcWeakrefUnavailable; }
966};
967
968class ArgumentWithTypeTagAttr : public InheritableAttr {
969IdentifierInfo * argumentKind;
970
971ParamIdx argumentIdx;
972
973ParamIdx typeTagIdx;
974
975bool isPointer;
976
977public:
978 enum Spelling {
979 GNU_argument_with_type_tag = 0,
980 CXX11_clang_argument_with_type_tag = 1,
981 C2x_clang_argument_with_type_tag = 2,
982 GNU_pointer_with_type_tag = 3,
983 CXX11_clang_pointer_with_type_tag = 4,
984 C2x_clang_pointer_with_type_tag = 5
985 };
986
987 static ArgumentWithTypeTagAttr *CreateImplicit(ASTContext &Ctx, Spelling S, IdentifierInfo * ArgumentKind, ParamIdx ArgumentIdx, ParamIdx TypeTagIdx, bool IsPointer, SourceRange Loc = SourceRange()) {
988 auto *A = new (Ctx) ArgumentWithTypeTagAttr(Loc, Ctx, ArgumentKind, ArgumentIdx, TypeTagIdx, IsPointer, S);
989 A->setImplicit(true);
990 return A;
991 }
992
993 static ArgumentWithTypeTagAttr *CreateImplicit(ASTContext &Ctx, Spelling S, IdentifierInfo * ArgumentKind, ParamIdx ArgumentIdx, ParamIdx TypeTagIdx, SourceRange Loc = SourceRange()) {
994 auto *A = new (Ctx) ArgumentWithTypeTagAttr(Loc, Ctx, ArgumentKind, ArgumentIdx, TypeTagIdx, S);
995 A->setImplicit(true);
996 return A;
997 }
998
999 ArgumentWithTypeTagAttr(SourceRange R, ASTContext &Ctx
1000 , IdentifierInfo * ArgumentKind
1001 , ParamIdx ArgumentIdx
1002 , ParamIdx TypeTagIdx
1003 , bool IsPointer
1004 , unsigned SI
1005 )
1006 : InheritableAttr(attr::ArgumentWithTypeTag, R, SI, false, false)
1007 , argumentKind(ArgumentKind)
1008 , argumentIdx(ArgumentIdx)
1009 , typeTagIdx(TypeTagIdx)
1010 , isPointer(IsPointer)
1011 {
1012 }
1013
1014 ArgumentWithTypeTagAttr(SourceRange R, ASTContext &Ctx
1015 , IdentifierInfo * ArgumentKind
1016 , ParamIdx ArgumentIdx
1017 , ParamIdx TypeTagIdx
1018 , unsigned SI
1019 )
1020 : InheritableAttr(attr::ArgumentWithTypeTag, R, SI, false, false)
1021 , argumentKind(ArgumentKind)
1022 , argumentIdx(ArgumentIdx)
1023 , typeTagIdx(TypeTagIdx)
1024 , isPointer()
1025 {
1026 }
1027
1028 ArgumentWithTypeTagAttr *clone(ASTContext &C) const;
1029 void printPretty(raw_ostream &OS,
1030 const PrintingPolicy &Policy) const;
1031 const char *getSpelling() const;
1032 Spelli