Bug Summary

File:build-llvm/tools/clang/include/clang/AST/Attrs.inc
Warning:line 4718, column 5
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SemaDeclObjC.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-eagerly-assume -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -mrelocation-model pic -pic-level 2 -mthread-model posix -relaxed-aliasing -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-7/lib/clang/7.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-7~svn338205/build-llvm/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-7~svn338205/tools/clang/include -I /build/llvm-toolchain-snapshot-7~svn338205/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-7~svn338205/build-llvm/include -I /build/llvm-toolchain-snapshot-7~svn338205/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/8/../../../../include/c++/8 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/8/../../../../include/x86_64-linux-gnu/c++/8 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/8/../../../../include/x86_64-linux-gnu/c++/8 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/8/../../../../include/c++/8/backward -internal-isystem /usr/include/clang/7.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-7/lib/clang/7.0.0/include -internal-externc-isystem /usr/lib/gcc/x86_64-linux-gnu/8/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-7~svn338205/build-llvm/tools/clang/lib/Sema -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -fobjc-runtime=gcc -fno-common -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2018-07-29-043837-17923-1 -x c++ /build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclObjC.cpp -faddrsig

/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclObjC.cpp

1//===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements semantic analysis for Objective C declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "TypeLocBuilder.h"
15#include "clang/AST/ASTConsumer.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/ASTMutationListener.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ExprObjC.h"
21#include "clang/AST/RecursiveASTVisitor.h"
22#include "clang/Basic/SourceManager.h"
23#include "clang/Sema/DeclSpec.h"
24#include "clang/Sema/Lookup.h"
25#include "clang/Sema/Scope.h"
26#include "clang/Sema/ScopeInfo.h"
27#include "clang/Sema/SemaInternal.h"
28#include "llvm/ADT/DenseMap.h"
29#include "llvm/ADT/DenseSet.h"
30
31using namespace clang;
32
33/// Check whether the given method, which must be in the 'init'
34/// family, is a valid member of that family.
35///
36/// \param receiverTypeIfCall - if null, check this as if declaring it;
37/// if non-null, check this as if making a call to it with the given
38/// receiver type
39///
40/// \return true to indicate that there was an error and appropriate
41/// actions were taken
42bool Sema::checkInitMethod(ObjCMethodDecl *method,
43 QualType receiverTypeIfCall) {
44 if (method->isInvalidDecl()) return true;
45
46 // This castAs is safe: methods that don't return an object
47 // pointer won't be inferred as inits and will reject an explicit
48 // objc_method_family(init).
49
50 // We ignore protocols here. Should we? What about Class?
51
52 const ObjCObjectType *result =
53 method->getReturnType()->castAs<ObjCObjectPointerType>()->getObjectType();
54
55 if (result->isObjCId()) {
56 return false;
57 } else if (result->isObjCClass()) {
58 // fall through: always an error
59 } else {
60 ObjCInterfaceDecl *resultClass = result->getInterface();
61 assert(resultClass && "unexpected object type!")(static_cast <bool> (resultClass && "unexpected object type!"
) ? void (0) : __assert_fail ("resultClass && \"unexpected object type!\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 61, __extension__ __PRETTY_FUNCTION__))
;
62
63 // It's okay for the result type to still be a forward declaration
64 // if we're checking an interface declaration.
65 if (!resultClass->hasDefinition()) {
66 if (receiverTypeIfCall.isNull() &&
67 !isa<ObjCImplementationDecl>(method->getDeclContext()))
68 return false;
69
70 // Otherwise, we try to compare class types.
71 } else {
72 // If this method was declared in a protocol, we can't check
73 // anything unless we have a receiver type that's an interface.
74 const ObjCInterfaceDecl *receiverClass = nullptr;
75 if (isa<ObjCProtocolDecl>(method->getDeclContext())) {
76 if (receiverTypeIfCall.isNull())
77 return false;
78
79 receiverClass = receiverTypeIfCall->castAs<ObjCObjectPointerType>()
80 ->getInterfaceDecl();
81
82 // This can be null for calls to e.g. id<Foo>.
83 if (!receiverClass) return false;
84 } else {
85 receiverClass = method->getClassInterface();
86 assert(receiverClass && "method not associated with a class!")(static_cast <bool> (receiverClass && "method not associated with a class!"
) ? void (0) : __assert_fail ("receiverClass && \"method not associated with a class!\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 86, __extension__ __PRETTY_FUNCTION__))
;
87 }
88
89 // If either class is a subclass of the other, it's fine.
90 if (receiverClass->isSuperClassOf(resultClass) ||
91 resultClass->isSuperClassOf(receiverClass))
92 return false;
93 }
94 }
95
96 SourceLocation loc = method->getLocation();
97
98 // If we're in a system header, and this is not a call, just make
99 // the method unusable.
100 if (receiverTypeIfCall.isNull() && getSourceManager().isInSystemHeader(loc)) {
101 method->addAttr(UnavailableAttr::CreateImplicit(Context, "",
102 UnavailableAttr::IR_ARCInitReturnsUnrelated, loc));
103 return true;
104 }
105
106 // Otherwise, it's an error.
107 Diag(loc, diag::err_arc_init_method_unrelated_result_type);
108 method->setInvalidDecl();
109 return true;
110}
111
112/// Issue a warning if the parameter of the overridden method is non-escaping
113/// but the parameter of the overriding method is not.
114static bool diagnoseNoescape(const ParmVarDecl *NewD, const ParmVarDecl *OldD,
115 Sema &S) {
116 if (OldD->hasAttr<NoEscapeAttr>() && !NewD->hasAttr<NoEscapeAttr>()) {
117 S.Diag(NewD->getLocation(), diag::warn_overriding_method_missing_noescape);
118 S.Diag(OldD->getLocation(), diag::note_overridden_marked_noescape);
119 return false;
120 }
121
122 return true;
123}
124
125/// Produce additional diagnostics if a category conforms to a protocol that
126/// defines a method taking a non-escaping parameter.
127static void diagnoseNoescape(const ParmVarDecl *NewD, const ParmVarDecl *OldD,
128 const ObjCCategoryDecl *CD,
129 const ObjCProtocolDecl *PD, Sema &S) {
130 if (!diagnoseNoescape(NewD, OldD, S))
131 S.Diag(CD->getLocation(), diag::note_cat_conform_to_noescape_prot)
132 << CD->IsClassExtension() << PD
133 << cast<ObjCMethodDecl>(NewD->getDeclContext());
134}
135
136void Sema::CheckObjCMethodOverride(ObjCMethodDecl *NewMethod,
137 const ObjCMethodDecl *Overridden) {
138 if (Overridden->hasRelatedResultType() &&
139 !NewMethod->hasRelatedResultType()) {
140 // This can only happen when the method follows a naming convention that
141 // implies a related result type, and the original (overridden) method has
142 // a suitable return type, but the new (overriding) method does not have
143 // a suitable return type.
144 QualType ResultType = NewMethod->getReturnType();
145 SourceRange ResultTypeRange = NewMethod->getReturnTypeSourceRange();
146
147 // Figure out which class this method is part of, if any.
148 ObjCInterfaceDecl *CurrentClass
149 = dyn_cast<ObjCInterfaceDecl>(NewMethod->getDeclContext());
150 if (!CurrentClass) {
151 DeclContext *DC = NewMethod->getDeclContext();
152 if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(DC))
153 CurrentClass = Cat->getClassInterface();
154 else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(DC))
155 CurrentClass = Impl->getClassInterface();
156 else if (ObjCCategoryImplDecl *CatImpl
157 = dyn_cast<ObjCCategoryImplDecl>(DC))
158 CurrentClass = CatImpl->getClassInterface();
159 }
160
161 if (CurrentClass) {
162 Diag(NewMethod->getLocation(),
163 diag::warn_related_result_type_compatibility_class)
164 << Context.getObjCInterfaceType(CurrentClass)
165 << ResultType
166 << ResultTypeRange;
167 } else {
168 Diag(NewMethod->getLocation(),
169 diag::warn_related_result_type_compatibility_protocol)
170 << ResultType
171 << ResultTypeRange;
172 }
173
174 if (ObjCMethodFamily Family = Overridden->getMethodFamily())
175 Diag(Overridden->getLocation(),
176 diag::note_related_result_type_family)
177 << /*overridden method*/ 0
178 << Family;
179 else
180 Diag(Overridden->getLocation(),
181 diag::note_related_result_type_overridden);
182 }
183
184 if ((NewMethod->hasAttr<NSReturnsRetainedAttr>() !=
185 Overridden->hasAttr<NSReturnsRetainedAttr>())) {
186 Diag(NewMethod->getLocation(),
187 getLangOpts().ObjCAutoRefCount
188 ? diag::err_nsreturns_retained_attribute_mismatch
189 : diag::warn_nsreturns_retained_attribute_mismatch)
190 << 1;
191 Diag(Overridden->getLocation(), diag::note_previous_decl) << "method";
192 }
193 if ((NewMethod->hasAttr<NSReturnsNotRetainedAttr>() !=
194 Overridden->hasAttr<NSReturnsNotRetainedAttr>())) {
195 Diag(NewMethod->getLocation(),
196 getLangOpts().ObjCAutoRefCount
197 ? diag::err_nsreturns_retained_attribute_mismatch
198 : diag::warn_nsreturns_retained_attribute_mismatch)
199 << 0;
200 Diag(Overridden->getLocation(), diag::note_previous_decl) << "method";
201 }
202
203 ObjCMethodDecl::param_const_iterator oi = Overridden->param_begin(),
204 oe = Overridden->param_end();
205 for (ObjCMethodDecl::param_iterator ni = NewMethod->param_begin(),
206 ne = NewMethod->param_end();
207 ni != ne && oi != oe; ++ni, ++oi) {
208 const ParmVarDecl *oldDecl = (*oi);
209 ParmVarDecl *newDecl = (*ni);
210 if (newDecl->hasAttr<NSConsumedAttr>() !=
211 oldDecl->hasAttr<NSConsumedAttr>()) {
212 Diag(newDecl->getLocation(),
213 getLangOpts().ObjCAutoRefCount
214 ? diag::err_nsconsumed_attribute_mismatch
215 : diag::warn_nsconsumed_attribute_mismatch);
216 Diag(oldDecl->getLocation(), diag::note_previous_decl) << "parameter";
217 }
218
219 diagnoseNoescape(newDecl, oldDecl, *this);
220 }
221}
222
223/// Check a method declaration for compatibility with the Objective-C
224/// ARC conventions.
225bool Sema::CheckARCMethodDecl(ObjCMethodDecl *method) {
226 ObjCMethodFamily family = method->getMethodFamily();
227 switch (family) {
21
Control jumps to 'case OMF_new:' at line 270
228 case OMF_None:
229 case OMF_finalize:
230 case OMF_retain:
231 case OMF_release:
232 case OMF_autorelease:
233 case OMF_retainCount:
234 case OMF_self:
235 case OMF_initialize:
236 case OMF_performSelector:
237 return false;
238
239 case OMF_dealloc:
240 if (!Context.hasSameType(method->getReturnType(), Context.VoidTy)) {
241 SourceRange ResultTypeRange = method->getReturnTypeSourceRange();
242 if (ResultTypeRange.isInvalid())
243 Diag(method->getLocation(), diag::err_dealloc_bad_result_type)
244 << method->getReturnType()
245 << FixItHint::CreateInsertion(method->getSelectorLoc(0), "(void)");
246 else
247 Diag(method->getLocation(), diag::err_dealloc_bad_result_type)
248 << method->getReturnType()
249 << FixItHint::CreateReplacement(ResultTypeRange, "void");
250 return true;
251 }
252 return false;
253
254 case OMF_init:
255 // If the method doesn't obey the init rules, don't bother annotating it.
256 if (checkInitMethod(method, QualType()))
257 return true;
258
259 method->addAttr(NSConsumesSelfAttr::CreateImplicit(Context));
260
261 // Don't add a second copy of this attribute, but otherwise don't
262 // let it be suppressed.
263 if (method->hasAttr<NSReturnsRetainedAttr>())
264 return false;
265 break;
266
267 case OMF_alloc:
268 case OMF_copy:
269 case OMF_mutableCopy:
270 case OMF_new:
271 if (method->hasAttr<NSReturnsRetainedAttr>() ||
22
Taking false branch
272 method->hasAttr<NSReturnsNotRetainedAttr>() ||
273 method->hasAttr<NSReturnsAutoreleasedAttr>())
274 return false;
275 break;
23
Execution continues on line 278
276 }
277
278 method->addAttr(NSReturnsRetainedAttr::CreateImplicit(Context));
24
Calling 'NSReturnsRetainedAttr::CreateImplicit'
279 return false;
280}
281
282static void DiagnoseObjCImplementedDeprecations(Sema &S, const NamedDecl *ND,
283 SourceLocation ImplLoc) {
284 if (!ND)
285 return;
286 bool IsCategory = false;
287 StringRef RealizedPlatform;
288 AvailabilityResult Availability = ND->getAvailability(
289 /*Message=*/nullptr, /*EnclosingVersion=*/VersionTuple(),
290 &RealizedPlatform);
291 if (Availability != AR_Deprecated) {
292 if (isa<ObjCMethodDecl>(ND)) {
293 if (Availability != AR_Unavailable)
294 return;
295 if (RealizedPlatform.empty())
296 RealizedPlatform = S.Context.getTargetInfo().getPlatformName();
297 // Warn about implementing unavailable methods, unless the unavailable
298 // is for an app extension.
299 if (RealizedPlatform.endswith("_app_extension"))
300 return;
301 S.Diag(ImplLoc, diag::warn_unavailable_def);
302 S.Diag(ND->getLocation(), diag::note_method_declared_at)
303 << ND->getDeclName();
304 return;
305 }
306 if (const auto *CD = dyn_cast<ObjCCategoryDecl>(ND)) {
307 if (!CD->getClassInterface()->isDeprecated())
308 return;
309 ND = CD->getClassInterface();
310 IsCategory = true;
311 } else
312 return;
313 }
314 S.Diag(ImplLoc, diag::warn_deprecated_def)
315 << (isa<ObjCMethodDecl>(ND)
316 ? /*Method*/ 0
317 : isa<ObjCCategoryDecl>(ND) || IsCategory ? /*Category*/ 2
318 : /*Class*/ 1);
319 if (isa<ObjCMethodDecl>(ND))
320 S.Diag(ND->getLocation(), diag::note_method_declared_at)
321 << ND->getDeclName();
322 else
323 S.Diag(ND->getLocation(), diag::note_previous_decl)
324 << (isa<ObjCCategoryDecl>(ND) ? "category" : "class");
325}
326
327/// AddAnyMethodToGlobalPool - Add any method, instance or factory to global
328/// pool.
329void Sema::AddAnyMethodToGlobalPool(Decl *D) {
330 ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
331
332 // If we don't have a valid method decl, simply return.
333 if (!MDecl)
334 return;
335 if (MDecl->isInstanceMethod())
336 AddInstanceMethodToGlobalPool(MDecl, true);
337 else
338 AddFactoryMethodToGlobalPool(MDecl, true);
339}
340
341/// HasExplicitOwnershipAttr - returns true when pointer to ObjC pointer
342/// has explicit ownership attribute; false otherwise.
343static bool
344HasExplicitOwnershipAttr(Sema &S, ParmVarDecl *Param) {
345 QualType T = Param->getType();
346
347 if (const PointerType *PT = T->getAs<PointerType>()) {
348 T = PT->getPointeeType();
349 } else if (const ReferenceType *RT = T->getAs<ReferenceType>()) {
350 T = RT->getPointeeType();
351 } else {
352 return true;
353 }
354
355 // If we have a lifetime qualifier, but it's local, we must have
356 // inferred it. So, it is implicit.
357 return !T.getLocalQualifiers().hasObjCLifetime();
358}
359
360/// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible
361/// and user declared, in the method definition's AST.
362void Sema::ActOnStartOfObjCMethodDef(Scope *FnBodyScope, Decl *D) {
363 assert((getCurMethodDecl() == nullptr) && "Methodparsing confused")(static_cast <bool> ((getCurMethodDecl() == nullptr) &&
"Methodparsing confused") ? void (0) : __assert_fail ("(getCurMethodDecl() == nullptr) && \"Methodparsing confused\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 363, __extension__ __PRETTY_FUNCTION__))
;
364 ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
365
366 // If we don't have a valid method decl, simply return.
367 if (!MDecl)
368 return;
369
370 QualType ResultType = MDecl->getReturnType();
371 if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
372 !MDecl->isInvalidDecl() &&
373 RequireCompleteType(MDecl->getLocation(), ResultType,
374 diag::err_func_def_incomplete_result))
375 MDecl->setInvalidDecl();
376
377 // Allow all of Sema to see that we are entering a method definition.
378 PushDeclContext(FnBodyScope, MDecl);
379 PushFunctionScope();
380
381 // Create Decl objects for each parameter, entrring them in the scope for
382 // binding to their use.
383
384 // Insert the invisible arguments, self and _cmd!
385 MDecl->createImplicitParams(Context, MDecl->getClassInterface());
386
387 PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope);
388 PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope);
389
390 // The ObjC parser requires parameter names so there's no need to check.
391 CheckParmsForFunctionDef(MDecl->parameters(),
392 /*CheckParameterNames=*/false);
393
394 // Introduce all of the other parameters into this scope.
395 for (auto *Param : MDecl->parameters()) {
396 if (!Param->isInvalidDecl() &&
397 getLangOpts().ObjCAutoRefCount &&
398 !HasExplicitOwnershipAttr(*this, Param))
399 Diag(Param->getLocation(), diag::warn_arc_strong_pointer_objc_pointer) <<
400 Param->getType();
401
402 if (Param->getIdentifier())
403 PushOnScopeChains(Param, FnBodyScope);
404 }
405
406 // In ARC, disallow definition of retain/release/autorelease/retainCount
407 if (getLangOpts().ObjCAutoRefCount) {
408 switch (MDecl->getMethodFamily()) {
409 case OMF_retain:
410 case OMF_retainCount:
411 case OMF_release:
412 case OMF_autorelease:
413 Diag(MDecl->getLocation(), diag::err_arc_illegal_method_def)
414 << 0 << MDecl->getSelector();
415 break;
416
417 case OMF_None:
418 case OMF_dealloc:
419 case OMF_finalize:
420 case OMF_alloc:
421 case OMF_init:
422 case OMF_mutableCopy:
423 case OMF_copy:
424 case OMF_new:
425 case OMF_self:
426 case OMF_initialize:
427 case OMF_performSelector:
428 break;
429 }
430 }
431
432 // Warn on deprecated methods under -Wdeprecated-implementations,
433 // and prepare for warning on missing super calls.
434 if (ObjCInterfaceDecl *IC = MDecl->getClassInterface()) {
435 ObjCMethodDecl *IMD =
436 IC->lookupMethod(MDecl->getSelector(), MDecl->isInstanceMethod());
437
438 if (IMD) {
439 ObjCImplDecl *ImplDeclOfMethodDef =
440 dyn_cast<ObjCImplDecl>(MDecl->getDeclContext());
441 ObjCContainerDecl *ContDeclOfMethodDecl =
442 dyn_cast<ObjCContainerDecl>(IMD->getDeclContext());
443 ObjCImplDecl *ImplDeclOfMethodDecl = nullptr;
444 if (ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(ContDeclOfMethodDecl))
445 ImplDeclOfMethodDecl = OID->getImplementation();
446 else if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(ContDeclOfMethodDecl)) {
447 if (CD->IsClassExtension()) {
448 if (ObjCInterfaceDecl *OID = CD->getClassInterface())
449 ImplDeclOfMethodDecl = OID->getImplementation();
450 } else
451 ImplDeclOfMethodDecl = CD->getImplementation();
452 }
453 // No need to issue deprecated warning if deprecated mehod in class/category
454 // is being implemented in its own implementation (no overriding is involved).
455 if (!ImplDeclOfMethodDecl || ImplDeclOfMethodDecl != ImplDeclOfMethodDef)
456 DiagnoseObjCImplementedDeprecations(*this, IMD, MDecl->getLocation());
457 }
458
459 if (MDecl->getMethodFamily() == OMF_init) {
460 if (MDecl->isDesignatedInitializerForTheInterface()) {
461 getCurFunction()->ObjCIsDesignatedInit = true;
462 getCurFunction()->ObjCWarnForNoDesignatedInitChain =
463 IC->getSuperClass() != nullptr;
464 } else if (IC->hasDesignatedInitializers()) {
465 getCurFunction()->ObjCIsSecondaryInit = true;
466 getCurFunction()->ObjCWarnForNoInitDelegation = true;
467 }
468 }
469
470 // If this is "dealloc" or "finalize", set some bit here.
471 // Then in ActOnSuperMessage() (SemaExprObjC), set it back to false.
472 // Finally, in ActOnFinishFunctionBody() (SemaDecl), warn if flag is set.
473 // Only do this if the current class actually has a superclass.
474 if (const ObjCInterfaceDecl *SuperClass = IC->getSuperClass()) {
475 ObjCMethodFamily Family = MDecl->getMethodFamily();
476 if (Family == OMF_dealloc) {
477 if (!(getLangOpts().ObjCAutoRefCount ||
478 getLangOpts().getGC() == LangOptions::GCOnly))
479 getCurFunction()->ObjCShouldCallSuper = true;
480
481 } else if (Family == OMF_finalize) {
482 if (Context.getLangOpts().getGC() != LangOptions::NonGC)
483 getCurFunction()->ObjCShouldCallSuper = true;
484
485 } else {
486 const ObjCMethodDecl *SuperMethod =
487 SuperClass->lookupMethod(MDecl->getSelector(),
488 MDecl->isInstanceMethod());
489 getCurFunction()->ObjCShouldCallSuper =
490 (SuperMethod && SuperMethod->hasAttr<ObjCRequiresSuperAttr>());
491 }
492 }
493 }
494}
495
496namespace {
497
498// Callback to only accept typo corrections that are Objective-C classes.
499// If an ObjCInterfaceDecl* is given to the constructor, then the validation
500// function will reject corrections to that class.
501class ObjCInterfaceValidatorCCC : public CorrectionCandidateCallback {
502 public:
503 ObjCInterfaceValidatorCCC() : CurrentIDecl(nullptr) {}
504 explicit ObjCInterfaceValidatorCCC(ObjCInterfaceDecl *IDecl)
505 : CurrentIDecl(IDecl) {}
506
507 bool ValidateCandidate(const TypoCorrection &candidate) override {
508 ObjCInterfaceDecl *ID = candidate.getCorrectionDeclAs<ObjCInterfaceDecl>();
509 return ID && !declaresSameEntity(ID, CurrentIDecl);
510 }
511
512 private:
513 ObjCInterfaceDecl *CurrentIDecl;
514};
515
516} // end anonymous namespace
517
518static void diagnoseUseOfProtocols(Sema &TheSema,
519 ObjCContainerDecl *CD,
520 ObjCProtocolDecl *const *ProtoRefs,
521 unsigned NumProtoRefs,
522 const SourceLocation *ProtoLocs) {
523 assert(ProtoRefs)(static_cast <bool> (ProtoRefs) ? void (0) : __assert_fail
("ProtoRefs", "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 523, __extension__ __PRETTY_FUNCTION__))
;
524 // Diagnose availability in the context of the ObjC container.
525 Sema::ContextRAII SavedContext(TheSema, CD);
526 for (unsigned i = 0; i < NumProtoRefs; ++i) {
527 (void)TheSema.DiagnoseUseOfDecl(ProtoRefs[i], ProtoLocs[i],
528 /*UnknownObjCClass=*/nullptr,
529 /*ObjCPropertyAccess=*/false,
530 /*AvoidPartialAvailabilityChecks=*/true);
531 }
532}
533
534void Sema::
535ActOnSuperClassOfClassInterface(Scope *S,
536 SourceLocation AtInterfaceLoc,
537 ObjCInterfaceDecl *IDecl,
538 IdentifierInfo *ClassName,
539 SourceLocation ClassLoc,
540 IdentifierInfo *SuperName,
541 SourceLocation SuperLoc,
542 ArrayRef<ParsedType> SuperTypeArgs,
543 SourceRange SuperTypeArgsRange) {
544 // Check if a different kind of symbol declared in this scope.
545 NamedDecl *PrevDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
546 LookupOrdinaryName);
547
548 if (!PrevDecl) {
549 // Try to correct for a typo in the superclass name without correcting
550 // to the class we're defining.
551 if (TypoCorrection Corrected = CorrectTypo(
552 DeclarationNameInfo(SuperName, SuperLoc),
553 LookupOrdinaryName, TUScope,
554 nullptr, llvm::make_unique<ObjCInterfaceValidatorCCC>(IDecl),
555 CTK_ErrorRecovery)) {
556 diagnoseTypo(Corrected, PDiag(diag::err_undef_superclass_suggest)
557 << SuperName << ClassName);
558 PrevDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>();
559 }
560 }
561
562 if (declaresSameEntity(PrevDecl, IDecl)) {
563 Diag(SuperLoc, diag::err_recursive_superclass)
564 << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
565 IDecl->setEndOfDefinitionLoc(ClassLoc);
566 } else {
567 ObjCInterfaceDecl *SuperClassDecl =
568 dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
569 QualType SuperClassType;
570
571 // Diagnose classes that inherit from deprecated classes.
572 if (SuperClassDecl) {
573 (void)DiagnoseUseOfDecl(SuperClassDecl, SuperLoc);
574 SuperClassType = Context.getObjCInterfaceType(SuperClassDecl);
575 }
576
577 if (PrevDecl && !SuperClassDecl) {
578 // The previous declaration was not a class decl. Check if we have a
579 // typedef. If we do, get the underlying class type.
580 if (const TypedefNameDecl *TDecl =
581 dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
582 QualType T = TDecl->getUnderlyingType();
583 if (T->isObjCObjectType()) {
584 if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) {
585 SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(IDecl);
586 SuperClassType = Context.getTypeDeclType(TDecl);
587
588 // This handles the following case:
589 // @interface NewI @end
590 // typedef NewI DeprI __attribute__((deprecated("blah")))
591 // @interface SI : DeprI /* warn here */ @end
592 (void)DiagnoseUseOfDecl(const_cast<TypedefNameDecl*>(TDecl), SuperLoc);
593 }
594 }
595 }
596
597 // This handles the following case:
598 //
599 // typedef int SuperClass;
600 // @interface MyClass : SuperClass {} @end
601 //
602 if (!SuperClassDecl) {
603 Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName;
604 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
605 }
606 }
607
608 if (!dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
609 if (!SuperClassDecl)
610 Diag(SuperLoc, diag::err_undef_superclass)
611 << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
612 else if (RequireCompleteType(SuperLoc,
613 SuperClassType,
614 diag::err_forward_superclass,
615 SuperClassDecl->getDeclName(),
616 ClassName,
617 SourceRange(AtInterfaceLoc, ClassLoc))) {
618 SuperClassDecl = nullptr;
619 SuperClassType = QualType();
620 }
621 }
622
623 if (SuperClassType.isNull()) {
624 assert(!SuperClassDecl && "Failed to set SuperClassType?")(static_cast <bool> (!SuperClassDecl && "Failed to set SuperClassType?"
) ? void (0) : __assert_fail ("!SuperClassDecl && \"Failed to set SuperClassType?\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 624, __extension__ __PRETTY_FUNCTION__))
;
625 return;
626 }
627
628 // Handle type arguments on the superclass.
629 TypeSourceInfo *SuperClassTInfo = nullptr;
630 if (!SuperTypeArgs.empty()) {
631 TypeResult fullSuperClassType = actOnObjCTypeArgsAndProtocolQualifiers(
632 S,
633 SuperLoc,
634 CreateParsedType(SuperClassType,
635 nullptr),
636 SuperTypeArgsRange.getBegin(),
637 SuperTypeArgs,
638 SuperTypeArgsRange.getEnd(),
639 SourceLocation(),
640 { },
641 { },
642 SourceLocation());
643 if (!fullSuperClassType.isUsable())
644 return;
645
646 SuperClassType = GetTypeFromParser(fullSuperClassType.get(),
647 &SuperClassTInfo);
648 }
649
650 if (!SuperClassTInfo) {
651 SuperClassTInfo = Context.getTrivialTypeSourceInfo(SuperClassType,
652 SuperLoc);
653 }
654
655 IDecl->setSuperClass(SuperClassTInfo);
656 IDecl->setEndOfDefinitionLoc(SuperClassTInfo->getTypeLoc().getLocEnd());
657 }
658}
659
660DeclResult Sema::actOnObjCTypeParam(Scope *S,
661 ObjCTypeParamVariance variance,
662 SourceLocation varianceLoc,
663 unsigned index,
664 IdentifierInfo *paramName,
665 SourceLocation paramLoc,
666 SourceLocation colonLoc,
667 ParsedType parsedTypeBound) {
668 // If there was an explicitly-provided type bound, check it.
669 TypeSourceInfo *typeBoundInfo = nullptr;
670 if (parsedTypeBound) {
671 // The type bound can be any Objective-C pointer type.
672 QualType typeBound = GetTypeFromParser(parsedTypeBound, &typeBoundInfo);
673 if (typeBound->isObjCObjectPointerType()) {
674 // okay
675 } else if (typeBound->isObjCObjectType()) {
676 // The user forgot the * on an Objective-C pointer type, e.g.,
677 // "T : NSView".
678 SourceLocation starLoc = getLocForEndOfToken(
679 typeBoundInfo->getTypeLoc().getEndLoc());
680 Diag(typeBoundInfo->getTypeLoc().getBeginLoc(),
681 diag::err_objc_type_param_bound_missing_pointer)
682 << typeBound << paramName
683 << FixItHint::CreateInsertion(starLoc, " *");
684
685 // Create a new type location builder so we can update the type
686 // location information we have.
687 TypeLocBuilder builder;
688 builder.pushFullCopy(typeBoundInfo->getTypeLoc());
689
690 // Create the Objective-C pointer type.
691 typeBound = Context.getObjCObjectPointerType(typeBound);
692 ObjCObjectPointerTypeLoc newT
693 = builder.push<ObjCObjectPointerTypeLoc>(typeBound);
694 newT.setStarLoc(starLoc);
695
696 // Form the new type source information.
697 typeBoundInfo = builder.getTypeSourceInfo(Context, typeBound);
698 } else {
699 // Not a valid type bound.
700 Diag(typeBoundInfo->getTypeLoc().getBeginLoc(),
701 diag::err_objc_type_param_bound_nonobject)
702 << typeBound << paramName;
703
704 // Forget the bound; we'll default to id later.
705 typeBoundInfo = nullptr;
706 }
707
708 // Type bounds cannot have qualifiers (even indirectly) or explicit
709 // nullability.
710 if (typeBoundInfo) {
711 QualType typeBound = typeBoundInfo->getType();
712 TypeLoc qual = typeBoundInfo->getTypeLoc().findExplicitQualifierLoc();
713 if (qual || typeBound.hasQualifiers()) {
714 bool diagnosed = false;
715 SourceRange rangeToRemove;
716 if (qual) {
717 if (auto attr = qual.getAs<AttributedTypeLoc>()) {
718 rangeToRemove = attr.getLocalSourceRange();
719 if (attr.getTypePtr()->getImmediateNullability()) {
720 Diag(attr.getLocStart(),
721 diag::err_objc_type_param_bound_explicit_nullability)
722 << paramName << typeBound
723 << FixItHint::CreateRemoval(rangeToRemove);
724 diagnosed = true;
725 }
726 }
727 }
728
729 if (!diagnosed) {
730 Diag(qual ? qual.getLocStart()
731 : typeBoundInfo->getTypeLoc().getLocStart(),
732 diag::err_objc_type_param_bound_qualified)
733 << paramName << typeBound << typeBound.getQualifiers().getAsString()
734 << FixItHint::CreateRemoval(rangeToRemove);
735 }
736
737 // If the type bound has qualifiers other than CVR, we need to strip
738 // them or we'll probably assert later when trying to apply new
739 // qualifiers.
740 Qualifiers quals = typeBound.getQualifiers();
741 quals.removeCVRQualifiers();
742 if (!quals.empty()) {
743 typeBoundInfo =
744 Context.getTrivialTypeSourceInfo(typeBound.getUnqualifiedType());
745 }
746 }
747 }
748 }
749
750 // If there was no explicit type bound (or we removed it due to an error),
751 // use 'id' instead.
752 if (!typeBoundInfo) {
753 colonLoc = SourceLocation();
754 typeBoundInfo = Context.getTrivialTypeSourceInfo(Context.getObjCIdType());
755 }
756
757 // Create the type parameter.
758 return ObjCTypeParamDecl::Create(Context, CurContext, variance, varianceLoc,
759 index, paramLoc, paramName, colonLoc,
760 typeBoundInfo);
761}
762
763ObjCTypeParamList *Sema::actOnObjCTypeParamList(Scope *S,
764 SourceLocation lAngleLoc,
765 ArrayRef<Decl *> typeParamsIn,
766 SourceLocation rAngleLoc) {
767 // We know that the array only contains Objective-C type parameters.
768 ArrayRef<ObjCTypeParamDecl *>
769 typeParams(
770 reinterpret_cast<ObjCTypeParamDecl * const *>(typeParamsIn.data()),
771 typeParamsIn.size());
772
773 // Diagnose redeclarations of type parameters.
774 // We do this now because Objective-C type parameters aren't pushed into
775 // scope until later (after the instance variable block), but we want the
776 // diagnostics to occur right after we parse the type parameter list.
777 llvm::SmallDenseMap<IdentifierInfo *, ObjCTypeParamDecl *> knownParams;
778 for (auto typeParam : typeParams) {
779 auto known = knownParams.find(typeParam->getIdentifier());
780 if (known != knownParams.end()) {
781 Diag(typeParam->getLocation(), diag::err_objc_type_param_redecl)
782 << typeParam->getIdentifier()
783 << SourceRange(known->second->getLocation());
784
785 typeParam->setInvalidDecl();
786 } else {
787 knownParams.insert(std::make_pair(typeParam->getIdentifier(), typeParam));
788
789 // Push the type parameter into scope.
790 PushOnScopeChains(typeParam, S, /*AddToContext=*/false);
791 }
792 }
793
794 // Create the parameter list.
795 return ObjCTypeParamList::create(Context, lAngleLoc, typeParams, rAngleLoc);
796}
797
798void Sema::popObjCTypeParamList(Scope *S, ObjCTypeParamList *typeParamList) {
799 for (auto typeParam : *typeParamList) {
800 if (!typeParam->isInvalidDecl()) {
801 S->RemoveDecl(typeParam);
802 IdResolver.RemoveDecl(typeParam);
803 }
804 }
805}
806
807namespace {
808 /// The context in which an Objective-C type parameter list occurs, for use
809 /// in diagnostics.
810 enum class TypeParamListContext {
811 ForwardDeclaration,
812 Definition,
813 Category,
814 Extension
815 };
816} // end anonymous namespace
817
818/// Check consistency between two Objective-C type parameter lists, e.g.,
819/// between a category/extension and an \@interface or between an \@class and an
820/// \@interface.
821static bool checkTypeParamListConsistency(Sema &S,
822 ObjCTypeParamList *prevTypeParams,
823 ObjCTypeParamList *newTypeParams,
824 TypeParamListContext newContext) {
825 // If the sizes don't match, complain about that.
826 if (prevTypeParams->size() != newTypeParams->size()) {
827 SourceLocation diagLoc;
828 if (newTypeParams->size() > prevTypeParams->size()) {
829 diagLoc = newTypeParams->begin()[prevTypeParams->size()]->getLocation();
830 } else {
831 diagLoc = S.getLocForEndOfToken(newTypeParams->back()->getLocEnd());
832 }
833
834 S.Diag(diagLoc, diag::err_objc_type_param_arity_mismatch)
835 << static_cast<unsigned>(newContext)
836 << (newTypeParams->size() > prevTypeParams->size())
837 << prevTypeParams->size()
838 << newTypeParams->size();
839
840 return true;
841 }
842
843 // Match up the type parameters.
844 for (unsigned i = 0, n = prevTypeParams->size(); i != n; ++i) {
845 ObjCTypeParamDecl *prevTypeParam = prevTypeParams->begin()[i];
846 ObjCTypeParamDecl *newTypeParam = newTypeParams->begin()[i];
847
848 // Check for consistency of the variance.
849 if (newTypeParam->getVariance() != prevTypeParam->getVariance()) {
850 if (newTypeParam->getVariance() == ObjCTypeParamVariance::Invariant &&
851 newContext != TypeParamListContext::Definition) {
852 // When the new type parameter is invariant and is not part
853 // of the definition, just propagate the variance.
854 newTypeParam->setVariance(prevTypeParam->getVariance());
855 } else if (prevTypeParam->getVariance()
856 == ObjCTypeParamVariance::Invariant &&
857 !(isa<ObjCInterfaceDecl>(prevTypeParam->getDeclContext()) &&
858 cast<ObjCInterfaceDecl>(prevTypeParam->getDeclContext())
859 ->getDefinition() == prevTypeParam->getDeclContext())) {
860 // When the old parameter is invariant and was not part of the
861 // definition, just ignore the difference because it doesn't
862 // matter.
863 } else {
864 {
865 // Diagnose the conflict and update the second declaration.
866 SourceLocation diagLoc = newTypeParam->getVarianceLoc();
867 if (diagLoc.isInvalid())
868 diagLoc = newTypeParam->getLocStart();
869
870 auto diag = S.Diag(diagLoc,
871 diag::err_objc_type_param_variance_conflict)
872 << static_cast<unsigned>(newTypeParam->getVariance())
873 << newTypeParam->getDeclName()
874 << static_cast<unsigned>(prevTypeParam->getVariance())
875 << prevTypeParam->getDeclName();
876 switch (prevTypeParam->getVariance()) {
877 case ObjCTypeParamVariance::Invariant:
878 diag << FixItHint::CreateRemoval(newTypeParam->getVarianceLoc());
879 break;
880
881 case ObjCTypeParamVariance::Covariant:
882 case ObjCTypeParamVariance::Contravariant: {
883 StringRef newVarianceStr
884 = prevTypeParam->getVariance() == ObjCTypeParamVariance::Covariant
885 ? "__covariant"
886 : "__contravariant";
887 if (newTypeParam->getVariance()
888 == ObjCTypeParamVariance::Invariant) {
889 diag << FixItHint::CreateInsertion(newTypeParam->getLocStart(),
890 (newVarianceStr + " ").str());
891 } else {
892 diag << FixItHint::CreateReplacement(newTypeParam->getVarianceLoc(),
893 newVarianceStr);
894 }
895 }
896 }
897 }
898
899 S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
900 << prevTypeParam->getDeclName();
901
902 // Override the variance.
903 newTypeParam->setVariance(prevTypeParam->getVariance());
904 }
905 }
906
907 // If the bound types match, there's nothing to do.
908 if (S.Context.hasSameType(prevTypeParam->getUnderlyingType(),
909 newTypeParam->getUnderlyingType()))
910 continue;
911
912 // If the new type parameter's bound was explicit, complain about it being
913 // different from the original.
914 if (newTypeParam->hasExplicitBound()) {
915 SourceRange newBoundRange = newTypeParam->getTypeSourceInfo()
916 ->getTypeLoc().getSourceRange();
917 S.Diag(newBoundRange.getBegin(), diag::err_objc_type_param_bound_conflict)
918 << newTypeParam->getUnderlyingType()
919 << newTypeParam->getDeclName()
920 << prevTypeParam->hasExplicitBound()
921 << prevTypeParam->getUnderlyingType()
922 << (newTypeParam->getDeclName() == prevTypeParam->getDeclName())
923 << prevTypeParam->getDeclName()
924 << FixItHint::CreateReplacement(
925 newBoundRange,
926 prevTypeParam->getUnderlyingType().getAsString(
927 S.Context.getPrintingPolicy()));
928
929 S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
930 << prevTypeParam->getDeclName();
931
932 // Override the new type parameter's bound type with the previous type,
933 // so that it's consistent.
934 newTypeParam->setTypeSourceInfo(
935 S.Context.getTrivialTypeSourceInfo(prevTypeParam->getUnderlyingType()));
936 continue;
937 }
938
939 // The new type parameter got the implicit bound of 'id'. That's okay for
940 // categories and extensions (overwrite it later), but not for forward
941 // declarations and @interfaces, because those must be standalone.
942 if (newContext == TypeParamListContext::ForwardDeclaration ||
943 newContext == TypeParamListContext::Definition) {
944 // Diagnose this problem for forward declarations and definitions.
945 SourceLocation insertionLoc
946 = S.getLocForEndOfToken(newTypeParam->getLocation());
947 std::string newCode
948 = " : " + prevTypeParam->getUnderlyingType().getAsString(
949 S.Context.getPrintingPolicy());
950 S.Diag(newTypeParam->getLocation(),
951 diag::err_objc_type_param_bound_missing)
952 << prevTypeParam->getUnderlyingType()
953 << newTypeParam->getDeclName()
954 << (newContext == TypeParamListContext::ForwardDeclaration)
955 << FixItHint::CreateInsertion(insertionLoc, newCode);
956
957 S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
958 << prevTypeParam->getDeclName();
959 }
960
961 // Update the new type parameter's bound to match the previous one.
962 newTypeParam->setTypeSourceInfo(
963 S.Context.getTrivialTypeSourceInfo(prevTypeParam->getUnderlyingType()));
964 }
965
966 return false;
967}
968
969Decl *Sema::ActOnStartClassInterface(
970 Scope *S, SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName,
971 SourceLocation ClassLoc, ObjCTypeParamList *typeParamList,
972 IdentifierInfo *SuperName, SourceLocation SuperLoc,
973 ArrayRef<ParsedType> SuperTypeArgs, SourceRange SuperTypeArgsRange,
974 Decl *const *ProtoRefs, unsigned NumProtoRefs,
975 const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
976 const ParsedAttributesView &AttrList) {
977 assert(ClassName && "Missing class identifier")(static_cast <bool> (ClassName && "Missing class identifier"
) ? void (0) : __assert_fail ("ClassName && \"Missing class identifier\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 977, __extension__ __PRETTY_FUNCTION__))
;
978
979 // Check for another declaration kind with the same name.
980 NamedDecl *PrevDecl =
981 LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName,
982 forRedeclarationInCurContext());
983
984 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
985 Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
986 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
987 }
988
989 // Create a declaration to describe this @interface.
990 ObjCInterfaceDecl* PrevIDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
991
992 if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) {
993 // A previous decl with a different name is because of
994 // @compatibility_alias, for example:
995 // \code
996 // @class NewImage;
997 // @compatibility_alias OldImage NewImage;
998 // \endcode
999 // A lookup for 'OldImage' will return the 'NewImage' decl.
1000 //
1001 // In such a case use the real declaration name, instead of the alias one,
1002 // otherwise we will break IdentifierResolver and redecls-chain invariants.
1003 // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl
1004 // has been aliased.
1005 ClassName = PrevIDecl->getIdentifier();
1006 }
1007
1008 // If there was a forward declaration with type parameters, check
1009 // for consistency.
1010 if (PrevIDecl) {
1011 if (ObjCTypeParamList *prevTypeParamList = PrevIDecl->getTypeParamList()) {
1012 if (typeParamList) {
1013 // Both have type parameter lists; check for consistency.
1014 if (checkTypeParamListConsistency(*this, prevTypeParamList,
1015 typeParamList,
1016 TypeParamListContext::Definition)) {
1017 typeParamList = nullptr;
1018 }
1019 } else {
1020 Diag(ClassLoc, diag::err_objc_parameterized_forward_class_first)
1021 << ClassName;
1022 Diag(prevTypeParamList->getLAngleLoc(), diag::note_previous_decl)
1023 << ClassName;
1024
1025 // Clone the type parameter list.
1026 SmallVector<ObjCTypeParamDecl *, 4> clonedTypeParams;
1027 for (auto typeParam : *prevTypeParamList) {
1028 clonedTypeParams.push_back(
1029 ObjCTypeParamDecl::Create(
1030 Context,
1031 CurContext,
1032 typeParam->getVariance(),
1033 SourceLocation(),
1034 typeParam->getIndex(),
1035 SourceLocation(),
1036 typeParam->getIdentifier(),
1037 SourceLocation(),
1038 Context.getTrivialTypeSourceInfo(typeParam->getUnderlyingType())));
1039 }
1040
1041 typeParamList = ObjCTypeParamList::create(Context,
1042 SourceLocation(),
1043 clonedTypeParams,
1044 SourceLocation());
1045 }
1046 }
1047 }
1048
1049 ObjCInterfaceDecl *IDecl
1050 = ObjCInterfaceDecl::Create(Context, CurContext, AtInterfaceLoc, ClassName,
1051 typeParamList, PrevIDecl, ClassLoc);
1052 if (PrevIDecl) {
1053 // Class already seen. Was it a definition?
1054 if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
1055 Diag(AtInterfaceLoc, diag::err_duplicate_class_def)
1056 << PrevIDecl->getDeclName();
1057 Diag(Def->getLocation(), diag::note_previous_definition);
1058 IDecl->setInvalidDecl();
1059 }
1060 }
1061
1062 ProcessDeclAttributeList(TUScope, IDecl, AttrList);
1063 AddPragmaAttributes(TUScope, IDecl);
1064 PushOnScopeChains(IDecl, TUScope);
1065
1066 // Start the definition of this class. If we're in a redefinition case, there
1067 // may already be a definition, so we'll end up adding to it.
1068 if (!IDecl->hasDefinition())
1069 IDecl->startDefinition();
1070
1071 if (SuperName) {
1072 // Diagnose availability in the context of the @interface.
1073 ContextRAII SavedContext(*this, IDecl);
1074
1075 ActOnSuperClassOfClassInterface(S, AtInterfaceLoc, IDecl,
1076 ClassName, ClassLoc,
1077 SuperName, SuperLoc, SuperTypeArgs,
1078 SuperTypeArgsRange);
1079 } else { // we have a root class.
1080 IDecl->setEndOfDefinitionLoc(ClassLoc);
1081 }
1082
1083 // Check then save referenced protocols.
1084 if (NumProtoRefs) {
1085 diagnoseUseOfProtocols(*this, IDecl, (ObjCProtocolDecl*const*)ProtoRefs,
1086 NumProtoRefs, ProtoLocs);
1087 IDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
1088 ProtoLocs, Context);
1089 IDecl->setEndOfDefinitionLoc(EndProtoLoc);
1090 }
1091
1092 CheckObjCDeclScope(IDecl);
1093 return ActOnObjCContainerStartDefinition(IDecl);
1094}
1095
1096/// ActOnTypedefedProtocols - this action finds protocol list as part of the
1097/// typedef'ed use for a qualified super class and adds them to the list
1098/// of the protocols.
1099void Sema::ActOnTypedefedProtocols(SmallVectorImpl<Decl *> &ProtocolRefs,
1100 SmallVectorImpl<SourceLocation> &ProtocolLocs,
1101 IdentifierInfo *SuperName,
1102 SourceLocation SuperLoc) {
1103 if (!SuperName)
1104 return;
1105 NamedDecl* IDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
1106 LookupOrdinaryName);
1107 if (!IDecl)
1108 return;
1109
1110 if (const TypedefNameDecl *TDecl = dyn_cast_or_null<TypedefNameDecl>(IDecl)) {
1111 QualType T = TDecl->getUnderlyingType();
1112 if (T->isObjCObjectType())
1113 if (const ObjCObjectType *OPT = T->getAs<ObjCObjectType>()) {
1114 ProtocolRefs.append(OPT->qual_begin(), OPT->qual_end());
1115 // FIXME: Consider whether this should be an invalid loc since the loc
1116 // is not actually pointing to a protocol name reference but to the
1117 // typedef reference. Note that the base class name loc is also pointing
1118 // at the typedef.
1119 ProtocolLocs.append(OPT->getNumProtocols(), SuperLoc);
1120 }
1121 }
1122}
1123
1124/// ActOnCompatibilityAlias - this action is called after complete parsing of
1125/// a \@compatibility_alias declaration. It sets up the alias relationships.
1126Decl *Sema::ActOnCompatibilityAlias(SourceLocation AtLoc,
1127 IdentifierInfo *AliasName,
1128 SourceLocation AliasLocation,
1129 IdentifierInfo *ClassName,
1130 SourceLocation ClassLocation) {
1131 // Look for previous declaration of alias name
1132 NamedDecl *ADecl =
1133 LookupSingleName(TUScope, AliasName, AliasLocation, LookupOrdinaryName,
1134 forRedeclarationInCurContext());
1135 if (ADecl) {
1136 Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName;
1137 Diag(ADecl->getLocation(), diag::note_previous_declaration);
1138 return nullptr;
1139 }
1140 // Check for class declaration
1141 NamedDecl *CDeclU =
1142 LookupSingleName(TUScope, ClassName, ClassLocation, LookupOrdinaryName,
1143 forRedeclarationInCurContext());
1144 if (const TypedefNameDecl *TDecl =
1145 dyn_cast_or_null<TypedefNameDecl>(CDeclU)) {
1146 QualType T = TDecl->getUnderlyingType();
1147 if (T->isObjCObjectType()) {
1148 if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) {
1149 ClassName = IDecl->getIdentifier();
1150 CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
1151 LookupOrdinaryName,
1152 forRedeclarationInCurContext());
1153 }
1154 }
1155 }
1156 ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(CDeclU);
1157 if (!CDecl) {
1158 Diag(ClassLocation, diag::warn_undef_interface) << ClassName;
1159 if (CDeclU)
1160 Diag(CDeclU->getLocation(), diag::note_previous_declaration);
1161 return nullptr;
1162 }
1163
1164 // Everything checked out, instantiate a new alias declaration AST.
1165 ObjCCompatibleAliasDecl *AliasDecl =
1166 ObjCCompatibleAliasDecl::Create(Context, CurContext, AtLoc, AliasName, CDecl);
1167
1168 if (!CheckObjCDeclScope(AliasDecl))
1169 PushOnScopeChains(AliasDecl, TUScope);
1170
1171 return AliasDecl;
1172}
1173
1174bool Sema::CheckForwardProtocolDeclarationForCircularDependency(
1175 IdentifierInfo *PName,
1176 SourceLocation &Ploc, SourceLocation PrevLoc,
1177 const ObjCList<ObjCProtocolDecl> &PList) {
1178
1179 bool res = false;
1180 for (ObjCList<ObjCProtocolDecl>::iterator I = PList.begin(),
1181 E = PList.end(); I != E; ++I) {
1182 if (ObjCProtocolDecl *PDecl = LookupProtocol((*I)->getIdentifier(),
1183 Ploc)) {
1184 if (PDecl->getIdentifier() == PName) {
1185 Diag(Ploc, diag::err_protocol_has_circular_dependency);
1186 Diag(PrevLoc, diag::note_previous_definition);
1187 res = true;
1188 }
1189
1190 if (!PDecl->hasDefinition())
1191 continue;
1192
1193 if (CheckForwardProtocolDeclarationForCircularDependency(PName, Ploc,
1194 PDecl->getLocation(), PDecl->getReferencedProtocols()))
1195 res = true;
1196 }
1197 }
1198 return res;
1199}
1200
1201Decl *Sema::ActOnStartProtocolInterface(
1202 SourceLocation AtProtoInterfaceLoc, IdentifierInfo *ProtocolName,
1203 SourceLocation ProtocolLoc, Decl *const *ProtoRefs, unsigned NumProtoRefs,
1204 const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
1205 const ParsedAttributesView &AttrList) {
1206 bool err = false;
1207 // FIXME: Deal with AttrList.
1208 assert(ProtocolName && "Missing protocol identifier")(static_cast <bool> (ProtocolName && "Missing protocol identifier"
) ? void (0) : __assert_fail ("ProtocolName && \"Missing protocol identifier\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 1208, __extension__ __PRETTY_FUNCTION__))
;
1209 ObjCProtocolDecl *PrevDecl = LookupProtocol(ProtocolName, ProtocolLoc,
1210 forRedeclarationInCurContext());
1211 ObjCProtocolDecl *PDecl = nullptr;
1212 if (ObjCProtocolDecl *Def = PrevDecl? PrevDecl->getDefinition() : nullptr) {
1213 // If we already have a definition, complain.
1214 Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName;
1215 Diag(Def->getLocation(), diag::note_previous_definition);
1216
1217 // Create a new protocol that is completely distinct from previous
1218 // declarations, and do not make this protocol available for name lookup.
1219 // That way, we'll end up completely ignoring the duplicate.
1220 // FIXME: Can we turn this into an error?
1221 PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
1222 ProtocolLoc, AtProtoInterfaceLoc,
1223 /*PrevDecl=*/nullptr);
1224
1225 // If we are using modules, add the decl to the context in order to
1226 // serialize something meaningful.
1227 if (getLangOpts().Modules)
1228 PushOnScopeChains(PDecl, TUScope);
1229 PDecl->startDefinition();
1230 } else {
1231 if (PrevDecl) {
1232 // Check for circular dependencies among protocol declarations. This can
1233 // only happen if this protocol was forward-declared.
1234 ObjCList<ObjCProtocolDecl> PList;
1235 PList.set((ObjCProtocolDecl *const*)ProtoRefs, NumProtoRefs, Context);
1236 err = CheckForwardProtocolDeclarationForCircularDependency(
1237 ProtocolName, ProtocolLoc, PrevDecl->getLocation(), PList);
1238 }
1239
1240 // Create the new declaration.
1241 PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
1242 ProtocolLoc, AtProtoInterfaceLoc,
1243 /*PrevDecl=*/PrevDecl);
1244
1245 PushOnScopeChains(PDecl, TUScope);
1246 PDecl->startDefinition();
1247 }
1248
1249 ProcessDeclAttributeList(TUScope, PDecl, AttrList);
1250 AddPragmaAttributes(TUScope, PDecl);
1251
1252 // Merge attributes from previous declarations.
1253 if (PrevDecl)
1254 mergeDeclAttributes(PDecl, PrevDecl);
1255
1256 if (!err && NumProtoRefs ) {
1257 /// Check then save referenced protocols.
1258 diagnoseUseOfProtocols(*this, PDecl, (ObjCProtocolDecl*const*)ProtoRefs,
1259 NumProtoRefs, ProtoLocs);
1260 PDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
1261 ProtoLocs, Context);
1262 }
1263
1264 CheckObjCDeclScope(PDecl);
1265 return ActOnObjCContainerStartDefinition(PDecl);
1266}
1267
1268static bool NestedProtocolHasNoDefinition(ObjCProtocolDecl *PDecl,
1269 ObjCProtocolDecl *&UndefinedProtocol) {
1270 if (!PDecl->hasDefinition() || PDecl->getDefinition()->isHidden()) {
1271 UndefinedProtocol = PDecl;
1272 return true;
1273 }
1274
1275 for (auto *PI : PDecl->protocols())
1276 if (NestedProtocolHasNoDefinition(PI, UndefinedProtocol)) {
1277 UndefinedProtocol = PI;
1278 return true;
1279 }
1280 return false;
1281}
1282
1283/// FindProtocolDeclaration - This routine looks up protocols and
1284/// issues an error if they are not declared. It returns list of
1285/// protocol declarations in its 'Protocols' argument.
1286void
1287Sema::FindProtocolDeclaration(bool WarnOnDeclarations, bool ForObjCContainer,
1288 ArrayRef<IdentifierLocPair> ProtocolId,
1289 SmallVectorImpl<Decl *> &Protocols) {
1290 for (const IdentifierLocPair &Pair : ProtocolId) {
1291 ObjCProtocolDecl *PDecl = LookupProtocol(Pair.first, Pair.second);
1292 if (!PDecl) {
1293 TypoCorrection Corrected = CorrectTypo(
1294 DeclarationNameInfo(Pair.first, Pair.second),
1295 LookupObjCProtocolName, TUScope, nullptr,
1296 llvm::make_unique<DeclFilterCCC<ObjCProtocolDecl>>(),
1297 CTK_ErrorRecovery);
1298 if ((PDecl = Corrected.getCorrectionDeclAs<ObjCProtocolDecl>()))
1299 diagnoseTypo(Corrected, PDiag(diag::err_undeclared_protocol_suggest)
1300 << Pair.first);
1301 }
1302
1303 if (!PDecl) {
1304 Diag(Pair.second, diag::err_undeclared_protocol) << Pair.first;
1305 continue;
1306 }
1307 // If this is a forward protocol declaration, get its definition.
1308 if (!PDecl->isThisDeclarationADefinition() && PDecl->getDefinition())
1309 PDecl = PDecl->getDefinition();
1310
1311 // For an objc container, delay protocol reference checking until after we
1312 // can set the objc decl as the availability context, otherwise check now.
1313 if (!ForObjCContainer) {
1314 (void)DiagnoseUseOfDecl(PDecl, Pair.second);
1315 }
1316
1317 // If this is a forward declaration and we are supposed to warn in this
1318 // case, do it.
1319 // FIXME: Recover nicely in the hidden case.
1320 ObjCProtocolDecl *UndefinedProtocol;
1321
1322 if (WarnOnDeclarations &&
1323 NestedProtocolHasNoDefinition(PDecl, UndefinedProtocol)) {
1324 Diag(Pair.second, diag::warn_undef_protocolref) << Pair.first;
1325 Diag(UndefinedProtocol->getLocation(), diag::note_protocol_decl_undefined)
1326 << UndefinedProtocol;
1327 }
1328 Protocols.push_back(PDecl);
1329 }
1330}
1331
1332namespace {
1333// Callback to only accept typo corrections that are either
1334// Objective-C protocols or valid Objective-C type arguments.
1335class ObjCTypeArgOrProtocolValidatorCCC : public CorrectionCandidateCallback {
1336 ASTContext &Context;
1337 Sema::LookupNameKind LookupKind;
1338 public:
1339 ObjCTypeArgOrProtocolValidatorCCC(ASTContext &context,
1340 Sema::LookupNameKind lookupKind)
1341 : Context(context), LookupKind(lookupKind) { }
1342
1343 bool ValidateCandidate(const TypoCorrection &candidate) override {
1344 // If we're allowed to find protocols and we have a protocol, accept it.
1345 if (LookupKind != Sema::LookupOrdinaryName) {
1346 if (candidate.getCorrectionDeclAs<ObjCProtocolDecl>())
1347 return true;
1348 }
1349
1350 // If we're allowed to find type names and we have one, accept it.
1351 if (LookupKind != Sema::LookupObjCProtocolName) {
1352 // If we have a type declaration, we might accept this result.
1353 if (auto typeDecl = candidate.getCorrectionDeclAs<TypeDecl>()) {
1354 // If we found a tag declaration outside of C++, skip it. This
1355 // can happy because we look for any name when there is no
1356 // bias to protocol or type names.
1357 if (isa<RecordDecl>(typeDecl) && !Context.getLangOpts().CPlusPlus)
1358 return false;
1359
1360 // Make sure the type is something we would accept as a type
1361 // argument.
1362 auto type = Context.getTypeDeclType(typeDecl);
1363 if (type->isObjCObjectPointerType() ||
1364 type->isBlockPointerType() ||
1365 type->isDependentType() ||
1366 type->isObjCObjectType())
1367 return true;
1368
1369 return false;
1370 }
1371
1372 // If we have an Objective-C class type, accept it; there will
1373 // be another fix to add the '*'.
1374 if (candidate.getCorrectionDeclAs<ObjCInterfaceDecl>())
1375 return true;
1376
1377 return false;
1378 }
1379
1380 return false;
1381 }
1382};
1383} // end anonymous namespace
1384
1385void Sema::DiagnoseTypeArgsAndProtocols(IdentifierInfo *ProtocolId,
1386 SourceLocation ProtocolLoc,
1387 IdentifierInfo *TypeArgId,
1388 SourceLocation TypeArgLoc,
1389 bool SelectProtocolFirst) {
1390 Diag(TypeArgLoc, diag::err_objc_type_args_and_protocols)
1391 << SelectProtocolFirst << TypeArgId << ProtocolId
1392 << SourceRange(ProtocolLoc);
1393}
1394
1395void Sema::actOnObjCTypeArgsOrProtocolQualifiers(
1396 Scope *S,
1397 ParsedType baseType,
1398 SourceLocation lAngleLoc,
1399 ArrayRef<IdentifierInfo *> identifiers,
1400 ArrayRef<SourceLocation> identifierLocs,
1401 SourceLocation rAngleLoc,
1402 SourceLocation &typeArgsLAngleLoc,
1403 SmallVectorImpl<ParsedType> &typeArgs,
1404 SourceLocation &typeArgsRAngleLoc,
1405 SourceLocation &protocolLAngleLoc,
1406 SmallVectorImpl<Decl *> &protocols,
1407 SourceLocation &protocolRAngleLoc,
1408 bool warnOnIncompleteProtocols) {
1409 // Local function that updates the declaration specifiers with
1410 // protocol information.
1411 unsigned numProtocolsResolved = 0;
1412 auto resolvedAsProtocols = [&] {
1413 assert(numProtocolsResolved == identifiers.size() && "Unresolved protocols")(static_cast <bool> (numProtocolsResolved == identifiers
.size() && "Unresolved protocols") ? void (0) : __assert_fail
("numProtocolsResolved == identifiers.size() && \"Unresolved protocols\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 1413, __extension__ __PRETTY_FUNCTION__))
;
1414
1415 // Determine whether the base type is a parameterized class, in
1416 // which case we want to warn about typos such as
1417 // "NSArray<NSObject>" (that should be NSArray<NSObject *>).
1418 ObjCInterfaceDecl *baseClass = nullptr;
1419 QualType base = GetTypeFromParser(baseType, nullptr);
1420 bool allAreTypeNames = false;
1421 SourceLocation firstClassNameLoc;
1422 if (!base.isNull()) {
1423 if (const auto *objcObjectType = base->getAs<ObjCObjectType>()) {
1424 baseClass = objcObjectType->getInterface();
1425 if (baseClass) {
1426 if (auto typeParams = baseClass->getTypeParamList()) {
1427 if (typeParams->size() == numProtocolsResolved) {
1428 // Note that we should be looking for type names, too.
1429 allAreTypeNames = true;
1430 }
1431 }
1432 }
1433 }
1434 }
1435
1436 for (unsigned i = 0, n = protocols.size(); i != n; ++i) {
1437 ObjCProtocolDecl *&proto
1438 = reinterpret_cast<ObjCProtocolDecl *&>(protocols[i]);
1439 // For an objc container, delay protocol reference checking until after we
1440 // can set the objc decl as the availability context, otherwise check now.
1441 if (!warnOnIncompleteProtocols) {
1442 (void)DiagnoseUseOfDecl(proto, identifierLocs[i]);
1443 }
1444
1445 // If this is a forward protocol declaration, get its definition.
1446 if (!proto->isThisDeclarationADefinition() && proto->getDefinition())
1447 proto = proto->getDefinition();
1448
1449 // If this is a forward declaration and we are supposed to warn in this
1450 // case, do it.
1451 // FIXME: Recover nicely in the hidden case.
1452 ObjCProtocolDecl *forwardDecl = nullptr;
1453 if (warnOnIncompleteProtocols &&
1454 NestedProtocolHasNoDefinition(proto, forwardDecl)) {
1455 Diag(identifierLocs[i], diag::warn_undef_protocolref)
1456 << proto->getDeclName();
1457 Diag(forwardDecl->getLocation(), diag::note_protocol_decl_undefined)
1458 << forwardDecl;
1459 }
1460
1461 // If everything this far has been a type name (and we care
1462 // about such things), check whether this name refers to a type
1463 // as well.
1464 if (allAreTypeNames) {
1465 if (auto *decl = LookupSingleName(S, identifiers[i], identifierLocs[i],
1466 LookupOrdinaryName)) {
1467 if (isa<ObjCInterfaceDecl>(decl)) {
1468 if (firstClassNameLoc.isInvalid())
1469 firstClassNameLoc = identifierLocs[i];
1470 } else if (!isa<TypeDecl>(decl)) {
1471 // Not a type.
1472 allAreTypeNames = false;
1473 }
1474 } else {
1475 allAreTypeNames = false;
1476 }
1477 }
1478 }
1479
1480 // All of the protocols listed also have type names, and at least
1481 // one is an Objective-C class name. Check whether all of the
1482 // protocol conformances are declared by the base class itself, in
1483 // which case we warn.
1484 if (allAreTypeNames && firstClassNameLoc.isValid()) {
1485 llvm::SmallPtrSet<ObjCProtocolDecl*, 8> knownProtocols;
1486 Context.CollectInheritedProtocols(baseClass, knownProtocols);
1487 bool allProtocolsDeclared = true;
1488 for (auto proto : protocols) {
1489 if (knownProtocols.count(static_cast<ObjCProtocolDecl *>(proto)) == 0) {
1490 allProtocolsDeclared = false;
1491 break;
1492 }
1493 }
1494
1495 if (allProtocolsDeclared) {
1496 Diag(firstClassNameLoc, diag::warn_objc_redundant_qualified_class_type)
1497 << baseClass->getDeclName() << SourceRange(lAngleLoc, rAngleLoc)
1498 << FixItHint::CreateInsertion(getLocForEndOfToken(firstClassNameLoc),
1499 " *");
1500 }
1501 }
1502
1503 protocolLAngleLoc = lAngleLoc;
1504 protocolRAngleLoc = rAngleLoc;
1505 assert(protocols.size() == identifierLocs.size())(static_cast <bool> (protocols.size() == identifierLocs
.size()) ? void (0) : __assert_fail ("protocols.size() == identifierLocs.size()"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 1505, __extension__ __PRETTY_FUNCTION__))
;
1506 };
1507
1508 // Attempt to resolve all of the identifiers as protocols.
1509 for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1510 ObjCProtocolDecl *proto = LookupProtocol(identifiers[i], identifierLocs[i]);
1511 protocols.push_back(proto);
1512 if (proto)
1513 ++numProtocolsResolved;
1514 }
1515
1516 // If all of the names were protocols, these were protocol qualifiers.
1517 if (numProtocolsResolved == identifiers.size())
1518 return resolvedAsProtocols();
1519
1520 // Attempt to resolve all of the identifiers as type names or
1521 // Objective-C class names. The latter is technically ill-formed,
1522 // but is probably something like \c NSArray<NSView *> missing the
1523 // \c*.
1524 typedef llvm::PointerUnion<TypeDecl *, ObjCInterfaceDecl *> TypeOrClassDecl;
1525 SmallVector<TypeOrClassDecl, 4> typeDecls;
1526 unsigned numTypeDeclsResolved = 0;
1527 for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1528 NamedDecl *decl = LookupSingleName(S, identifiers[i], identifierLocs[i],
1529 LookupOrdinaryName);
1530 if (!decl) {
1531 typeDecls.push_back(TypeOrClassDecl());
1532 continue;
1533 }
1534
1535 if (auto typeDecl = dyn_cast<TypeDecl>(decl)) {
1536 typeDecls.push_back(typeDecl);
1537 ++numTypeDeclsResolved;
1538 continue;
1539 }
1540
1541 if (auto objcClass = dyn_cast<ObjCInterfaceDecl>(decl)) {
1542 typeDecls.push_back(objcClass);
1543 ++numTypeDeclsResolved;
1544 continue;
1545 }
1546
1547 typeDecls.push_back(TypeOrClassDecl());
1548 }
1549
1550 AttributeFactory attrFactory;
1551
1552 // Local function that forms a reference to the given type or
1553 // Objective-C class declaration.
1554 auto resolveTypeReference = [&](TypeOrClassDecl typeDecl, SourceLocation loc)
1555 -> TypeResult {
1556 // Form declaration specifiers. They simply refer to the type.
1557 DeclSpec DS(attrFactory);
1558 const char* prevSpec; // unused
1559 unsigned diagID; // unused
1560 QualType type;
1561 if (auto *actualTypeDecl = typeDecl.dyn_cast<TypeDecl *>())
1562 type = Context.getTypeDeclType(actualTypeDecl);
1563 else
1564 type = Context.getObjCInterfaceType(typeDecl.get<ObjCInterfaceDecl *>());
1565 TypeSourceInfo *parsedTSInfo = Context.getTrivialTypeSourceInfo(type, loc);
1566 ParsedType parsedType = CreateParsedType(type, parsedTSInfo);
1567 DS.SetTypeSpecType(DeclSpec::TST_typename, loc, prevSpec, diagID,
1568 parsedType, Context.getPrintingPolicy());
1569 // Use the identifier location for the type source range.
1570 DS.SetRangeStart(loc);
1571 DS.SetRangeEnd(loc);
1572
1573 // Form the declarator.
1574 Declarator D(DS, DeclaratorContext::TypeNameContext);
1575
1576 // If we have a typedef of an Objective-C class type that is missing a '*',
1577 // add the '*'.
1578 if (type->getAs<ObjCInterfaceType>()) {
1579 SourceLocation starLoc = getLocForEndOfToken(loc);
1580 D.AddTypeInfo(DeclaratorChunk::getPointer(/*typeQuals=*/0, starLoc,
1581 SourceLocation(),
1582 SourceLocation(),
1583 SourceLocation(),
1584 SourceLocation(),
1585 SourceLocation()),
1586 starLoc);
1587
1588 // Diagnose the missing '*'.
1589 Diag(loc, diag::err_objc_type_arg_missing_star)
1590 << type
1591 << FixItHint::CreateInsertion(starLoc, " *");
1592 }
1593
1594 // Convert this to a type.
1595 return ActOnTypeName(S, D);
1596 };
1597
1598 // Local function that updates the declaration specifiers with
1599 // type argument information.
1600 auto resolvedAsTypeDecls = [&] {
1601 // We did not resolve these as protocols.
1602 protocols.clear();
1603
1604 assert(numTypeDeclsResolved == identifiers.size() && "Unresolved type decl")(static_cast <bool> (numTypeDeclsResolved == identifiers
.size() && "Unresolved type decl") ? void (0) : __assert_fail
("numTypeDeclsResolved == identifiers.size() && \"Unresolved type decl\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 1604, __extension__ __PRETTY_FUNCTION__))
;
1605 // Map type declarations to type arguments.
1606 for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1607 // Map type reference to a type.
1608 TypeResult type = resolveTypeReference(typeDecls[i], identifierLocs[i]);
1609 if (!type.isUsable()) {
1610 typeArgs.clear();
1611 return;
1612 }
1613
1614 typeArgs.push_back(type.get());
1615 }
1616
1617 typeArgsLAngleLoc = lAngleLoc;
1618 typeArgsRAngleLoc = rAngleLoc;
1619 };
1620
1621 // If all of the identifiers can be resolved as type names or
1622 // Objective-C class names, we have type arguments.
1623 if (numTypeDeclsResolved == identifiers.size())
1624 return resolvedAsTypeDecls();
1625
1626 // Error recovery: some names weren't found, or we have a mix of
1627 // type and protocol names. Go resolve all of the unresolved names
1628 // and complain if we can't find a consistent answer.
1629 LookupNameKind lookupKind = LookupAnyName;
1630 for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1631 // If we already have a protocol or type. Check whether it is the
1632 // right thing.
1633 if (protocols[i] || typeDecls[i]) {
1634 // If we haven't figured out whether we want types or protocols
1635 // yet, try to figure it out from this name.
1636 if (lookupKind == LookupAnyName) {
1637 // If this name refers to both a protocol and a type (e.g., \c
1638 // NSObject), don't conclude anything yet.
1639 if (protocols[i] && typeDecls[i])
1640 continue;
1641
1642 // Otherwise, let this name decide whether we'll be correcting
1643 // toward types or protocols.
1644 lookupKind = protocols[i] ? LookupObjCProtocolName
1645 : LookupOrdinaryName;
1646 continue;
1647 }
1648
1649 // If we want protocols and we have a protocol, there's nothing
1650 // more to do.
1651 if (lookupKind == LookupObjCProtocolName && protocols[i])
1652 continue;
1653
1654 // If we want types and we have a type declaration, there's
1655 // nothing more to do.
1656 if (lookupKind == LookupOrdinaryName && typeDecls[i])
1657 continue;
1658
1659 // We have a conflict: some names refer to protocols and others
1660 // refer to types.
1661 DiagnoseTypeArgsAndProtocols(identifiers[0], identifierLocs[0],
1662 identifiers[i], identifierLocs[i],
1663 protocols[i] != nullptr);
1664
1665 protocols.clear();
1666 typeArgs.clear();
1667 return;
1668 }
1669
1670 // Perform typo correction on the name.
1671 TypoCorrection corrected = CorrectTypo(
1672 DeclarationNameInfo(identifiers[i], identifierLocs[i]), lookupKind, S,
1673 nullptr,
1674 llvm::make_unique<ObjCTypeArgOrProtocolValidatorCCC>(Context,
1675 lookupKind),
1676 CTK_ErrorRecovery);
1677 if (corrected) {
1678 // Did we find a protocol?
1679 if (auto proto = corrected.getCorrectionDeclAs<ObjCProtocolDecl>()) {
1680 diagnoseTypo(corrected,
1681 PDiag(diag::err_undeclared_protocol_suggest)
1682 << identifiers[i]);
1683 lookupKind = LookupObjCProtocolName;
1684 protocols[i] = proto;
1685 ++numProtocolsResolved;
1686 continue;
1687 }
1688
1689 // Did we find a type?
1690 if (auto typeDecl = corrected.getCorrectionDeclAs<TypeDecl>()) {
1691 diagnoseTypo(corrected,
1692 PDiag(diag::err_unknown_typename_suggest)
1693 << identifiers[i]);
1694 lookupKind = LookupOrdinaryName;
1695 typeDecls[i] = typeDecl;
1696 ++numTypeDeclsResolved;
1697 continue;
1698 }
1699
1700 // Did we find an Objective-C class?
1701 if (auto objcClass = corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) {
1702 diagnoseTypo(corrected,
1703 PDiag(diag::err_unknown_type_or_class_name_suggest)
1704 << identifiers[i] << true);
1705 lookupKind = LookupOrdinaryName;
1706 typeDecls[i] = objcClass;
1707 ++numTypeDeclsResolved;
1708 continue;
1709 }
1710 }
1711
1712 // We couldn't find anything.
1713 Diag(identifierLocs[i],
1714 (lookupKind == LookupAnyName ? diag::err_objc_type_arg_missing
1715 : lookupKind == LookupObjCProtocolName ? diag::err_undeclared_protocol
1716 : diag::err_unknown_typename))
1717 << identifiers[i];
1718 protocols.clear();
1719 typeArgs.clear();
1720 return;
1721 }
1722
1723 // If all of the names were (corrected to) protocols, these were
1724 // protocol qualifiers.
1725 if (numProtocolsResolved == identifiers.size())
1726 return resolvedAsProtocols();
1727
1728 // Otherwise, all of the names were (corrected to) types.
1729 assert(numTypeDeclsResolved == identifiers.size() && "Not all types?")(static_cast <bool> (numTypeDeclsResolved == identifiers
.size() && "Not all types?") ? void (0) : __assert_fail
("numTypeDeclsResolved == identifiers.size() && \"Not all types?\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 1729, __extension__ __PRETTY_FUNCTION__))
;
1730 return resolvedAsTypeDecls();
1731}
1732
1733/// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of
1734/// a class method in its extension.
1735///
1736void Sema::DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT,
1737 ObjCInterfaceDecl *ID) {
1738 if (!ID)
1739 return; // Possibly due to previous error
1740
1741 llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap;
1742 for (auto *MD : ID->methods())
1743 MethodMap[MD->getSelector()] = MD;
1744
1745 if (MethodMap.empty())
1746 return;
1747 for (const auto *Method : CAT->methods()) {
1748 const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()];
1749 if (PrevMethod &&
1750 (PrevMethod->isInstanceMethod() == Method->isInstanceMethod()) &&
1751 !MatchTwoMethodDeclarations(Method, PrevMethod)) {
1752 Diag(Method->getLocation(), diag::err_duplicate_method_decl)
1753 << Method->getDeclName();
1754 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
1755 }
1756 }
1757}
1758
1759/// ActOnForwardProtocolDeclaration - Handle \@protocol foo;
1760Sema::DeclGroupPtrTy
1761Sema::ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc,
1762 ArrayRef<IdentifierLocPair> IdentList,
1763 const ParsedAttributesView &attrList) {
1764 SmallVector<Decl *, 8> DeclsInGroup;
1765 for (const IdentifierLocPair &IdentPair : IdentList) {
1766 IdentifierInfo *Ident = IdentPair.first;
1767 ObjCProtocolDecl *PrevDecl = LookupProtocol(Ident, IdentPair.second,
1768 forRedeclarationInCurContext());
1769 ObjCProtocolDecl *PDecl
1770 = ObjCProtocolDecl::Create(Context, CurContext, Ident,
1771 IdentPair.second, AtProtocolLoc,
1772 PrevDecl);
1773
1774 PushOnScopeChains(PDecl, TUScope);
1775 CheckObjCDeclScope(PDecl);
1776
1777 ProcessDeclAttributeList(TUScope, PDecl, attrList);
1778 AddPragmaAttributes(TUScope, PDecl);
1779
1780 if (PrevDecl)
1781 mergeDeclAttributes(PDecl, PrevDecl);
1782
1783 DeclsInGroup.push_back(PDecl);
1784 }
1785
1786 return BuildDeclaratorGroup(DeclsInGroup);
1787}
1788
1789Decl *Sema::ActOnStartCategoryInterface(
1790 SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName,
1791 SourceLocation ClassLoc, ObjCTypeParamList *typeParamList,
1792 IdentifierInfo *CategoryName, SourceLocation CategoryLoc,
1793 Decl *const *ProtoRefs, unsigned NumProtoRefs,
1794 const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
1795 const ParsedAttributesView &AttrList) {
1796 ObjCCategoryDecl *CDecl;
1797 ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
1798
1799 /// Check that class of this category is already completely declared.
1800
1801 if (!IDecl
1802 || RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
1803 diag::err_category_forward_interface,
1804 CategoryName == nullptr)) {
1805 // Create an invalid ObjCCategoryDecl to serve as context for
1806 // the enclosing method declarations. We mark the decl invalid
1807 // to make it clear that this isn't a valid AST.
1808 CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
1809 ClassLoc, CategoryLoc, CategoryName,
1810 IDecl, typeParamList);
1811 CDecl->setInvalidDecl();
1812 CurContext->addDecl(CDecl);
1813
1814 if (!IDecl)
1815 Diag(ClassLoc, diag::err_undef_interface) << ClassName;
1816 return ActOnObjCContainerStartDefinition(CDecl);
1817 }
1818
1819 if (!CategoryName && IDecl->getImplementation()) {
1820 Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName;
1821 Diag(IDecl->getImplementation()->getLocation(),
1822 diag::note_implementation_declared);
1823 }
1824
1825 if (CategoryName) {
1826 /// Check for duplicate interface declaration for this category
1827 if (ObjCCategoryDecl *Previous
1828 = IDecl->FindCategoryDeclaration(CategoryName)) {
1829 // Class extensions can be declared multiple times, categories cannot.
1830 Diag(CategoryLoc, diag::warn_dup_category_def)
1831 << ClassName << CategoryName;
1832 Diag(Previous->getLocation(), diag::note_previous_definition);
1833 }
1834 }
1835
1836 // If we have a type parameter list, check it.
1837 if (typeParamList) {
1838 if (auto prevTypeParamList = IDecl->getTypeParamList()) {
1839 if (checkTypeParamListConsistency(*this, prevTypeParamList, typeParamList,
1840 CategoryName
1841 ? TypeParamListContext::Category
1842 : TypeParamListContext::Extension))
1843 typeParamList = nullptr;
1844 } else {
1845 Diag(typeParamList->getLAngleLoc(),
1846 diag::err_objc_parameterized_category_nonclass)
1847 << (CategoryName != nullptr)
1848 << ClassName
1849 << typeParamList->getSourceRange();
1850
1851 typeParamList = nullptr;
1852 }
1853 }
1854
1855 CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
1856 ClassLoc, CategoryLoc, CategoryName, IDecl,
1857 typeParamList);
1858 // FIXME: PushOnScopeChains?
1859 CurContext->addDecl(CDecl);
1860
1861 // Process the attributes before looking at protocols to ensure that the
1862 // availability attribute is attached to the category to provide availability
1863 // checking for protocol uses.
1864 ProcessDeclAttributeList(TUScope, CDecl, AttrList);
1865 AddPragmaAttributes(TUScope, CDecl);
1866
1867 if (NumProtoRefs) {
1868 diagnoseUseOfProtocols(*this, CDecl, (ObjCProtocolDecl*const*)ProtoRefs,
1869 NumProtoRefs, ProtoLocs);
1870 CDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
1871 ProtoLocs, Context);
1872 // Protocols in the class extension belong to the class.
1873 if (CDecl->IsClassExtension())
1874 IDecl->mergeClassExtensionProtocolList((ObjCProtocolDecl*const*)ProtoRefs,
1875 NumProtoRefs, Context);
1876 }
1877
1878 CheckObjCDeclScope(CDecl);
1879 return ActOnObjCContainerStartDefinition(CDecl);
1880}
1881
1882/// ActOnStartCategoryImplementation - Perform semantic checks on the
1883/// category implementation declaration and build an ObjCCategoryImplDecl
1884/// object.
1885Decl *Sema::ActOnStartCategoryImplementation(
1886 SourceLocation AtCatImplLoc,
1887 IdentifierInfo *ClassName, SourceLocation ClassLoc,
1888 IdentifierInfo *CatName, SourceLocation CatLoc) {
1889 ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
1890 ObjCCategoryDecl *CatIDecl = nullptr;
1891 if (IDecl && IDecl->hasDefinition()) {
1892 CatIDecl = IDecl->FindCategoryDeclaration(CatName);
1893 if (!CatIDecl) {
1894 // Category @implementation with no corresponding @interface.
1895 // Create and install one.
1896 CatIDecl = ObjCCategoryDecl::Create(Context, CurContext, AtCatImplLoc,
1897 ClassLoc, CatLoc,
1898 CatName, IDecl,
1899 /*typeParamList=*/nullptr);
1900 CatIDecl->setImplicit();
1901 }
1902 }
1903
1904 ObjCCategoryImplDecl *CDecl =
1905 ObjCCategoryImplDecl::Create(Context, CurContext, CatName, IDecl,
1906 ClassLoc, AtCatImplLoc, CatLoc);
1907 /// Check that class of this category is already completely declared.
1908 if (!IDecl) {
1909 Diag(ClassLoc, diag::err_undef_interface) << ClassName;
1910 CDecl->setInvalidDecl();
1911 } else if (RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
1912 diag::err_undef_interface)) {
1913 CDecl->setInvalidDecl();
1914 }
1915
1916 // FIXME: PushOnScopeChains?
1917 CurContext->addDecl(CDecl);
1918
1919 // If the interface has the objc_runtime_visible attribute, we
1920 // cannot implement a category for it.
1921 if (IDecl && IDecl->hasAttr<ObjCRuntimeVisibleAttr>()) {
1922 Diag(ClassLoc, diag::err_objc_runtime_visible_category)
1923 << IDecl->getDeclName();
1924 }
1925
1926 /// Check that CatName, category name, is not used in another implementation.
1927 if (CatIDecl) {
1928 if (CatIDecl->getImplementation()) {
1929 Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName
1930 << CatName;
1931 Diag(CatIDecl->getImplementation()->getLocation(),
1932 diag::note_previous_definition);
1933 CDecl->setInvalidDecl();
1934 } else {
1935 CatIDecl->setImplementation(CDecl);
1936 // Warn on implementating category of deprecated class under
1937 // -Wdeprecated-implementations flag.
1938 DiagnoseObjCImplementedDeprecations(*this, CatIDecl,
1939 CDecl->getLocation());
1940 }
1941 }
1942
1943 CheckObjCDeclScope(CDecl);
1944 return ActOnObjCContainerStartDefinition(CDecl);
1945}
1946
1947Decl *Sema::ActOnStartClassImplementation(
1948 SourceLocation AtClassImplLoc,
1949 IdentifierInfo *ClassName, SourceLocation ClassLoc,
1950 IdentifierInfo *SuperClassname,
1951 SourceLocation SuperClassLoc) {
1952 ObjCInterfaceDecl *IDecl = nullptr;
1953 // Check for another declaration kind with the same name.
1954 NamedDecl *PrevDecl
1955 = LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName,
1956 forRedeclarationInCurContext());
1957 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
1958 Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
1959 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1960 } else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl))) {
1961 // FIXME: This will produce an error if the definition of the interface has
1962 // been imported from a module but is not visible.
1963 RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
1964 diag::warn_undef_interface);
1965 } else {
1966 // We did not find anything with the name ClassName; try to correct for
1967 // typos in the class name.
1968 TypoCorrection Corrected = CorrectTypo(
1969 DeclarationNameInfo(ClassName, ClassLoc), LookupOrdinaryName, TUScope,
1970 nullptr, llvm::make_unique<ObjCInterfaceValidatorCCC>(), CTK_NonError);
1971 if (Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) {
1972 // Suggest the (potentially) correct interface name. Don't provide a
1973 // code-modification hint or use the typo name for recovery, because
1974 // this is just a warning. The program may actually be correct.
1975 diagnoseTypo(Corrected,
1976 PDiag(diag::warn_undef_interface_suggest) << ClassName,
1977 /*ErrorRecovery*/false);
1978 } else {
1979 Diag(ClassLoc, diag::warn_undef_interface) << ClassName;
1980 }
1981 }
1982
1983 // Check that super class name is valid class name
1984 ObjCInterfaceDecl *SDecl = nullptr;
1985 if (SuperClassname) {
1986 // Check if a different kind of symbol declared in this scope.
1987 PrevDecl = LookupSingleName(TUScope, SuperClassname, SuperClassLoc,
1988 LookupOrdinaryName);
1989 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
1990 Diag(SuperClassLoc, diag::err_redefinition_different_kind)
1991 << SuperClassname;
1992 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1993 } else {
1994 SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
1995 if (SDecl && !SDecl->hasDefinition())
1996 SDecl = nullptr;
1997 if (!SDecl)
1998 Diag(SuperClassLoc, diag::err_undef_superclass)
1999 << SuperClassname << ClassName;
2000 else if (IDecl && !declaresSameEntity(IDecl->getSuperClass(), SDecl)) {
2001 // This implementation and its interface do not have the same
2002 // super class.
2003 Diag(SuperClassLoc, diag::err_conflicting_super_class)
2004 << SDecl->getDeclName();
2005 Diag(SDecl->getLocation(), diag::note_previous_definition);
2006 }
2007 }
2008 }
2009
2010 if (!IDecl) {
2011 // Legacy case of @implementation with no corresponding @interface.
2012 // Build, chain & install the interface decl into the identifier.
2013
2014 // FIXME: Do we support attributes on the @implementation? If so we should
2015 // copy them over.
2016 IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassImplLoc,
2017 ClassName, /*typeParamList=*/nullptr,
2018 /*PrevDecl=*/nullptr, ClassLoc,
2019 true);
2020 AddPragmaAttributes(TUScope, IDecl);
2021 IDecl->startDefinition();
2022 if (SDecl) {
2023 IDecl->setSuperClass(Context.getTrivialTypeSourceInfo(
2024 Context.getObjCInterfaceType(SDecl),
2025 SuperClassLoc));
2026 IDecl->setEndOfDefinitionLoc(SuperClassLoc);
2027 } else {
2028 IDecl->setEndOfDefinitionLoc(ClassLoc);
2029 }
2030
2031 PushOnScopeChains(IDecl, TUScope);
2032 } else {
2033 // Mark the interface as being completed, even if it was just as
2034 // @class ....;
2035 // declaration; the user cannot reopen it.
2036 if (!IDecl->hasDefinition())
2037 IDecl->startDefinition();
2038 }
2039
2040 ObjCImplementationDecl* IMPDecl =
2041 ObjCImplementationDecl::Create(Context, CurContext, IDecl, SDecl,
2042 ClassLoc, AtClassImplLoc, SuperClassLoc);
2043
2044 if (CheckObjCDeclScope(IMPDecl))
2045 return ActOnObjCContainerStartDefinition(IMPDecl);
2046
2047 // Check that there is no duplicate implementation of this class.
2048 if (IDecl->getImplementation()) {
2049 // FIXME: Don't leak everything!
2050 Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName;
2051 Diag(IDecl->getImplementation()->getLocation(),
2052 diag::note_previous_definition);
2053 IMPDecl->setInvalidDecl();
2054 } else { // add it to the list.
2055 IDecl->setImplementation(IMPDecl);
2056 PushOnScopeChains(IMPDecl, TUScope);
2057 // Warn on implementating deprecated class under
2058 // -Wdeprecated-implementations flag.
2059 DiagnoseObjCImplementedDeprecations(*this, IDecl, IMPDecl->getLocation());
2060 }
2061
2062 // If the superclass has the objc_runtime_visible attribute, we
2063 // cannot implement a subclass of it.
2064 if (IDecl->getSuperClass() &&
2065 IDecl->getSuperClass()->hasAttr<ObjCRuntimeVisibleAttr>()) {
2066 Diag(ClassLoc, diag::err_objc_runtime_visible_subclass)
2067 << IDecl->getDeclName()
2068 << IDecl->getSuperClass()->getDeclName();
2069 }
2070
2071 return ActOnObjCContainerStartDefinition(IMPDecl);
2072}
2073
2074Sema::DeclGroupPtrTy
2075Sema::ActOnFinishObjCImplementation(Decl *ObjCImpDecl, ArrayRef<Decl *> Decls) {
2076 SmallVector<Decl *, 64> DeclsInGroup;
2077 DeclsInGroup.reserve(Decls.size() + 1);
2078
2079 for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
2080 Decl *Dcl = Decls[i];
2081 if (!Dcl)
2082 continue;
2083 if (Dcl->getDeclContext()->isFileContext())
2084 Dcl->setTopLevelDeclInObjCContainer();
2085 DeclsInGroup.push_back(Dcl);
2086 }
2087
2088 DeclsInGroup.push_back(ObjCImpDecl);
2089
2090 return BuildDeclaratorGroup(DeclsInGroup);
2091}
2092
2093void Sema::CheckImplementationIvars(ObjCImplementationDecl *ImpDecl,
2094 ObjCIvarDecl **ivars, unsigned numIvars,
2095 SourceLocation RBrace) {
2096 assert(ImpDecl && "missing implementation decl")(static_cast <bool> (ImpDecl && "missing implementation decl"
) ? void (0) : __assert_fail ("ImpDecl && \"missing implementation decl\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 2096, __extension__ __PRETTY_FUNCTION__))
;
2097 ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface();
2098 if (!IDecl)
2099 return;
2100 /// Check case of non-existing \@interface decl.
2101 /// (legacy objective-c \@implementation decl without an \@interface decl).
2102 /// Add implementations's ivar to the synthesize class's ivar list.
2103 if (IDecl->isImplicitInterfaceDecl()) {
2104 IDecl->setEndOfDefinitionLoc(RBrace);
2105 // Add ivar's to class's DeclContext.
2106 for (unsigned i = 0, e = numIvars; i != e; ++i) {
2107 ivars[i]->setLexicalDeclContext(ImpDecl);
2108 IDecl->makeDeclVisibleInContext(ivars[i]);
2109 ImpDecl->addDecl(ivars[i]);
2110 }
2111
2112 return;
2113 }
2114 // If implementation has empty ivar list, just return.
2115 if (numIvars == 0)
2116 return;
2117
2118 assert(ivars && "missing @implementation ivars")(static_cast <bool> (ivars && "missing @implementation ivars"
) ? void (0) : __assert_fail ("ivars && \"missing @implementation ivars\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 2118, __extension__ __PRETTY_FUNCTION__))
;
2119 if (LangOpts.ObjCRuntime.isNonFragile()) {
2120 if (ImpDecl->getSuperClass())
2121 Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use);
2122 for (unsigned i = 0; i < numIvars; i++) {
2123 ObjCIvarDecl* ImplIvar = ivars[i];
2124 if (const ObjCIvarDecl *ClsIvar =
2125 IDecl->getIvarDecl(ImplIvar->getIdentifier())) {
2126 Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
2127 Diag(ClsIvar->getLocation(), diag::note_previous_definition);
2128 continue;
2129 }
2130 // Check class extensions (unnamed categories) for duplicate ivars.
2131 for (const auto *CDecl : IDecl->visible_extensions()) {
2132 if (const ObjCIvarDecl *ClsExtIvar =
2133 CDecl->getIvarDecl(ImplIvar->getIdentifier())) {
2134 Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
2135 Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
2136 continue;
2137 }
2138 }
2139 // Instance ivar to Implementation's DeclContext.
2140 ImplIvar->setLexicalDeclContext(ImpDecl);
2141 IDecl->makeDeclVisibleInContext(ImplIvar);
2142 ImpDecl->addDecl(ImplIvar);
2143 }
2144 return;
2145 }
2146 // Check interface's Ivar list against those in the implementation.
2147 // names and types must match.
2148 //
2149 unsigned j = 0;
2150 ObjCInterfaceDecl::ivar_iterator
2151 IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end();
2152 for (; numIvars > 0 && IVI != IVE; ++IVI) {
2153 ObjCIvarDecl* ImplIvar = ivars[j++];
2154 ObjCIvarDecl* ClsIvar = *IVI;
2155 assert (ImplIvar && "missing implementation ivar")(static_cast <bool> (ImplIvar && "missing implementation ivar"
) ? void (0) : __assert_fail ("ImplIvar && \"missing implementation ivar\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 2155, __extension__ __PRETTY_FUNCTION__))
;
2156 assert (ClsIvar && "missing class ivar")(static_cast <bool> (ClsIvar && "missing class ivar"
) ? void (0) : __assert_fail ("ClsIvar && \"missing class ivar\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 2156, __extension__ __PRETTY_FUNCTION__))
;
2157
2158 // First, make sure the types match.
2159 if (!Context.hasSameType(ImplIvar->getType(), ClsIvar->getType())) {
2160 Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type)
2161 << ImplIvar->getIdentifier()
2162 << ImplIvar->getType() << ClsIvar->getType();
2163 Diag(ClsIvar->getLocation(), diag::note_previous_definition);
2164 } else if (ImplIvar->isBitField() && ClsIvar->isBitField() &&
2165 ImplIvar->getBitWidthValue(Context) !=
2166 ClsIvar->getBitWidthValue(Context)) {
2167 Diag(ImplIvar->getBitWidth()->getLocStart(),
2168 diag::err_conflicting_ivar_bitwidth) << ImplIvar->getIdentifier();
2169 Diag(ClsIvar->getBitWidth()->getLocStart(),
2170 diag::note_previous_definition);
2171 }
2172 // Make sure the names are identical.
2173 if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) {
2174 Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name)
2175 << ImplIvar->getIdentifier() << ClsIvar->getIdentifier();
2176 Diag(ClsIvar->getLocation(), diag::note_previous_definition);
2177 }
2178 --numIvars;
2179 }
2180
2181 if (numIvars > 0)
2182 Diag(ivars[j]->getLocation(), diag::err_inconsistent_ivar_count);
2183 else if (IVI != IVE)
2184 Diag(IVI->getLocation(), diag::err_inconsistent_ivar_count);
2185}
2186
2187static void WarnUndefinedMethod(Sema &S, SourceLocation ImpLoc,
2188 ObjCMethodDecl *method,
2189 bool &IncompleteImpl,
2190 unsigned DiagID,
2191 NamedDecl *NeededFor = nullptr) {
2192 // No point warning no definition of method which is 'unavailable'.
2193 if (method->getAvailability() == AR_Unavailable)
2194 return;
2195
2196 // FIXME: For now ignore 'IncompleteImpl'.
2197 // Previously we grouped all unimplemented methods under a single
2198 // warning, but some users strongly voiced that they would prefer
2199 // separate warnings. We will give that approach a try, as that
2200 // matches what we do with protocols.
2201 {
2202 const Sema::SemaDiagnosticBuilder &B = S.Diag(ImpLoc, DiagID);
2203 B << method;
2204 if (NeededFor)
2205 B << NeededFor;
2206 }
2207
2208 // Issue a note to the original declaration.
2209 SourceLocation MethodLoc = method->getLocStart();
2210 if (MethodLoc.isValid())
2211 S.Diag(MethodLoc, diag::note_method_declared_at) << method;
2212}
2213
2214/// Determines if type B can be substituted for type A. Returns true if we can
2215/// guarantee that anything that the user will do to an object of type A can
2216/// also be done to an object of type B. This is trivially true if the two
2217/// types are the same, or if B is a subclass of A. It becomes more complex
2218/// in cases where protocols are involved.
2219///
2220/// Object types in Objective-C describe the minimum requirements for an
2221/// object, rather than providing a complete description of a type. For
2222/// example, if A is a subclass of B, then B* may refer to an instance of A.
2223/// The principle of substitutability means that we may use an instance of A
2224/// anywhere that we may use an instance of B - it will implement all of the
2225/// ivars of B and all of the methods of B.
2226///
2227/// This substitutability is important when type checking methods, because
2228/// the implementation may have stricter type definitions than the interface.
2229/// The interface specifies minimum requirements, but the implementation may
2230/// have more accurate ones. For example, a method may privately accept
2231/// instances of B, but only publish that it accepts instances of A. Any
2232/// object passed to it will be type checked against B, and so will implicitly
2233/// by a valid A*. Similarly, a method may return a subclass of the class that
2234/// it is declared as returning.
2235///
2236/// This is most important when considering subclassing. A method in a
2237/// subclass must accept any object as an argument that its superclass's
2238/// implementation accepts. It may, however, accept a more general type
2239/// without breaking substitutability (i.e. you can still use the subclass
2240/// anywhere that you can use the superclass, but not vice versa). The
2241/// converse requirement applies to return types: the return type for a
2242/// subclass method must be a valid object of the kind that the superclass
2243/// advertises, but it may be specified more accurately. This avoids the need
2244/// for explicit down-casting by callers.
2245///
2246/// Note: This is a stricter requirement than for assignment.
2247static bool isObjCTypeSubstitutable(ASTContext &Context,
2248 const ObjCObjectPointerType *A,
2249 const ObjCObjectPointerType *B,
2250 bool rejectId) {
2251 // Reject a protocol-unqualified id.
2252 if (rejectId && B->isObjCIdType()) return false;
2253
2254 // If B is a qualified id, then A must also be a qualified id and it must
2255 // implement all of the protocols in B. It may not be a qualified class.
2256 // For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a
2257 // stricter definition so it is not substitutable for id<A>.
2258 if (B->isObjCQualifiedIdType()) {
2259 return A->isObjCQualifiedIdType() &&
2260 Context.ObjCQualifiedIdTypesAreCompatible(QualType(A, 0),
2261 QualType(B,0),
2262 false);
2263 }
2264
2265 /*
2266 // id is a special type that bypasses type checking completely. We want a
2267 // warning when it is used in one place but not another.
2268 if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false;
2269
2270
2271 // If B is a qualified id, then A must also be a qualified id (which it isn't
2272 // if we've got this far)
2273 if (B->isObjCQualifiedIdType()) return false;
2274 */
2275
2276 // Now we know that A and B are (potentially-qualified) class types. The
2277 // normal rules for assignment apply.
2278 return Context.canAssignObjCInterfaces(A, B);
2279}
2280
2281static SourceRange getTypeRange(TypeSourceInfo *TSI) {
2282 return (TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange());
2283}
2284
2285/// Determine whether two set of Objective-C declaration qualifiers conflict.
2286static bool objcModifiersConflict(Decl::ObjCDeclQualifier x,
2287 Decl::ObjCDeclQualifier y) {
2288 return (x & ~Decl::OBJC_TQ_CSNullability) !=
2289 (y & ~Decl::OBJC_TQ_CSNullability);
2290}
2291
2292static bool CheckMethodOverrideReturn(Sema &S,
2293 ObjCMethodDecl *MethodImpl,
2294 ObjCMethodDecl *MethodDecl,
2295 bool IsProtocolMethodDecl,
2296 bool IsOverridingMode,
2297 bool Warn) {
2298 if (IsProtocolMethodDecl &&
2299 objcModifiersConflict(MethodDecl->getObjCDeclQualifier(),
2300 MethodImpl->getObjCDeclQualifier())) {
2301 if (Warn) {
2302 S.Diag(MethodImpl->getLocation(),
2303 (IsOverridingMode
2304 ? diag::warn_conflicting_overriding_ret_type_modifiers
2305 : diag::warn_conflicting_ret_type_modifiers))
2306 << MethodImpl->getDeclName()
2307 << MethodImpl->getReturnTypeSourceRange();
2308 S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration)
2309 << MethodDecl->getReturnTypeSourceRange();
2310 }
2311 else
2312 return false;
2313 }
2314 if (Warn && IsOverridingMode &&
2315 !isa<ObjCImplementationDecl>(MethodImpl->getDeclContext()) &&
2316 !S.Context.hasSameNullabilityTypeQualifier(MethodImpl->getReturnType(),
2317 MethodDecl->getReturnType(),
2318 false)) {
2319 auto nullabilityMethodImpl =
2320 *MethodImpl->getReturnType()->getNullability(S.Context);
2321 auto nullabilityMethodDecl =
2322 *MethodDecl->getReturnType()->getNullability(S.Context);
2323 S.Diag(MethodImpl->getLocation(),
2324 diag::warn_conflicting_nullability_attr_overriding_ret_types)
2325 << DiagNullabilityKind(
2326 nullabilityMethodImpl,
2327 ((MethodImpl->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2328 != 0))
2329 << DiagNullabilityKind(
2330 nullabilityMethodDecl,
2331 ((MethodDecl->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2332 != 0));
2333 S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
2334 }
2335
2336 if (S.Context.hasSameUnqualifiedType(MethodImpl->getReturnType(),
2337 MethodDecl->getReturnType()))
2338 return true;
2339 if (!Warn)
2340 return false;
2341
2342 unsigned DiagID =
2343 IsOverridingMode ? diag::warn_conflicting_overriding_ret_types
2344 : diag::warn_conflicting_ret_types;
2345
2346 // Mismatches between ObjC pointers go into a different warning
2347 // category, and sometimes they're even completely whitelisted.
2348 if (const ObjCObjectPointerType *ImplPtrTy =
2349 MethodImpl->getReturnType()->getAs<ObjCObjectPointerType>()) {
2350 if (const ObjCObjectPointerType *IfacePtrTy =
2351 MethodDecl->getReturnType()->getAs<ObjCObjectPointerType>()) {
2352 // Allow non-matching return types as long as they don't violate
2353 // the principle of substitutability. Specifically, we permit
2354 // return types that are subclasses of the declared return type,
2355 // or that are more-qualified versions of the declared type.
2356 if (isObjCTypeSubstitutable(S.Context, IfacePtrTy, ImplPtrTy, false))
2357 return false;
2358
2359 DiagID =
2360 IsOverridingMode ? diag::warn_non_covariant_overriding_ret_types
2361 : diag::warn_non_covariant_ret_types;
2362 }
2363 }
2364
2365 S.Diag(MethodImpl->getLocation(), DiagID)
2366 << MethodImpl->getDeclName() << MethodDecl->getReturnType()
2367 << MethodImpl->getReturnType()
2368 << MethodImpl->getReturnTypeSourceRange();
2369 S.Diag(MethodDecl->getLocation(), IsOverridingMode
2370 ? diag::note_previous_declaration
2371 : diag::note_previous_definition)
2372 << MethodDecl->getReturnTypeSourceRange();
2373 return false;
2374}
2375
2376static bool CheckMethodOverrideParam(Sema &S,
2377 ObjCMethodDecl *MethodImpl,
2378 ObjCMethodDecl *MethodDecl,
2379 ParmVarDecl *ImplVar,
2380 ParmVarDecl *IfaceVar,
2381 bool IsProtocolMethodDecl,
2382 bool IsOverridingMode,
2383 bool Warn) {
2384 if (IsProtocolMethodDecl &&
2385 objcModifiersConflict(ImplVar->getObjCDeclQualifier(),
2386 IfaceVar->getObjCDeclQualifier())) {
2387 if (Warn) {
2388 if (IsOverridingMode)
2389 S.Diag(ImplVar->getLocation(),
2390 diag::warn_conflicting_overriding_param_modifiers)
2391 << getTypeRange(ImplVar->getTypeSourceInfo())
2392 << MethodImpl->getDeclName();
2393 else S.Diag(ImplVar->getLocation(),
2394 diag::warn_conflicting_param_modifiers)
2395 << getTypeRange(ImplVar->getTypeSourceInfo())
2396 << MethodImpl->getDeclName();
2397 S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration)
2398 << getTypeRange(IfaceVar->getTypeSourceInfo());
2399 }
2400 else
2401 return false;
2402 }
2403
2404 QualType ImplTy = ImplVar->getType();
2405 QualType IfaceTy = IfaceVar->getType();
2406 if (Warn && IsOverridingMode &&
2407 !isa<ObjCImplementationDecl>(MethodImpl->getDeclContext()) &&
2408 !S.Context.hasSameNullabilityTypeQualifier(ImplTy, IfaceTy, true)) {
2409 S.Diag(ImplVar->getLocation(),
2410 diag::warn_conflicting_nullability_attr_overriding_param_types)
2411 << DiagNullabilityKind(
2412 *ImplTy->getNullability(S.Context),
2413 ((ImplVar->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2414 != 0))
2415 << DiagNullabilityKind(
2416 *IfaceTy->getNullability(S.Context),
2417 ((IfaceVar->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2418 != 0));
2419 S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration);
2420 }
2421 if (S.Context.hasSameUnqualifiedType(ImplTy, IfaceTy))
2422 return true;
2423
2424 if (!Warn)
2425 return false;
2426 unsigned DiagID =
2427 IsOverridingMode ? diag::warn_conflicting_overriding_param_types
2428 : diag::warn_conflicting_param_types;
2429
2430 // Mismatches between ObjC pointers go into a different warning
2431 // category, and sometimes they're even completely whitelisted.
2432 if (const ObjCObjectPointerType *ImplPtrTy =
2433 ImplTy->getAs<ObjCObjectPointerType>()) {
2434 if (const ObjCObjectPointerType *IfacePtrTy =
2435 IfaceTy->getAs<ObjCObjectPointerType>()) {
2436 // Allow non-matching argument types as long as they don't
2437 // violate the principle of substitutability. Specifically, the
2438 // implementation must accept any objects that the superclass
2439 // accepts, however it may also accept others.
2440 if (isObjCTypeSubstitutable(S.Context, ImplPtrTy, IfacePtrTy, true))
2441 return false;
2442
2443 DiagID =
2444 IsOverridingMode ? diag::warn_non_contravariant_overriding_param_types
2445 : diag::warn_non_contravariant_param_types;
2446 }
2447 }
2448
2449 S.Diag(ImplVar->getLocation(), DiagID)
2450 << getTypeRange(ImplVar->getTypeSourceInfo())
2451 << MethodImpl->getDeclName() << IfaceTy << ImplTy;
2452 S.Diag(IfaceVar->getLocation(),
2453 (IsOverridingMode ? diag::note_previous_declaration
2454 : diag::note_previous_definition))
2455 << getTypeRange(IfaceVar->getTypeSourceInfo());
2456 return false;
2457}
2458
2459/// In ARC, check whether the conventional meanings of the two methods
2460/// match. If they don't, it's a hard error.
2461static bool checkMethodFamilyMismatch(Sema &S, ObjCMethodDecl *impl,
2462 ObjCMethodDecl *decl) {
2463 ObjCMethodFamily implFamily = impl->getMethodFamily();
2464 ObjCMethodFamily declFamily = decl->getMethodFamily();
2465 if (implFamily == declFamily) return false;
2466
2467 // Since conventions are sorted by selector, the only possibility is
2468 // that the types differ enough to cause one selector or the other
2469 // to fall out of the family.
2470 assert(implFamily == OMF_None || declFamily == OMF_None)(static_cast <bool> (implFamily == OMF_None || declFamily
== OMF_None) ? void (0) : __assert_fail ("implFamily == OMF_None || declFamily == OMF_None"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 2470, __extension__ __PRETTY_FUNCTION__))
;
2471
2472 // No further diagnostics required on invalid declarations.
2473 if (impl->isInvalidDecl() || decl->isInvalidDecl()) return true;
2474
2475 const ObjCMethodDecl *unmatched = impl;
2476 ObjCMethodFamily family = declFamily;
2477 unsigned errorID = diag::err_arc_lost_method_convention;
2478 unsigned noteID = diag::note_arc_lost_method_convention;
2479 if (declFamily == OMF_None) {
2480 unmatched = decl;
2481 family = implFamily;
2482 errorID = diag::err_arc_gained_method_convention;
2483 noteID = diag::note_arc_gained_method_convention;
2484 }
2485
2486 // Indexes into a %select clause in the diagnostic.
2487 enum FamilySelector {
2488 F_alloc, F_copy, F_mutableCopy = F_copy, F_init, F_new
2489 };
2490 FamilySelector familySelector = FamilySelector();
2491
2492 switch (family) {
2493 case OMF_None: llvm_unreachable("logic error, no method convention")::llvm::llvm_unreachable_internal("logic error, no method convention"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 2493)
;
2494 case OMF_retain:
2495 case OMF_release:
2496 case OMF_autorelease:
2497 case OMF_dealloc:
2498 case OMF_finalize:
2499 case OMF_retainCount:
2500 case OMF_self:
2501 case OMF_initialize:
2502 case OMF_performSelector:
2503 // Mismatches for these methods don't change ownership
2504 // conventions, so we don't care.
2505 return false;
2506
2507 case OMF_init: familySelector = F_init; break;
2508 case OMF_alloc: familySelector = F_alloc; break;
2509 case OMF_copy: familySelector = F_copy; break;
2510 case OMF_mutableCopy: familySelector = F_mutableCopy; break;
2511 case OMF_new: familySelector = F_new; break;
2512 }
2513
2514 enum ReasonSelector { R_NonObjectReturn, R_UnrelatedReturn };
2515 ReasonSelector reasonSelector;
2516
2517 // The only reason these methods don't fall within their families is
2518 // due to unusual result types.
2519 if (unmatched->getReturnType()->isObjCObjectPointerType()) {
2520 reasonSelector = R_UnrelatedReturn;
2521 } else {
2522 reasonSelector = R_NonObjectReturn;
2523 }
2524
2525 S.Diag(impl->getLocation(), errorID) << int(familySelector) << int(reasonSelector);
2526 S.Diag(decl->getLocation(), noteID) << int(familySelector) << int(reasonSelector);
2527
2528 return true;
2529}
2530
2531void Sema::WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethodDecl,
2532 ObjCMethodDecl *MethodDecl,
2533 bool IsProtocolMethodDecl) {
2534 if (getLangOpts().ObjCAutoRefCount &&
2535 checkMethodFamilyMismatch(*this, ImpMethodDecl, MethodDecl))
2536 return;
2537
2538 CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
2539 IsProtocolMethodDecl, false,
2540 true);
2541
2542 for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
2543 IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
2544 EF = MethodDecl->param_end();
2545 IM != EM && IF != EF; ++IM, ++IF) {
2546 CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, *IM, *IF,
2547 IsProtocolMethodDecl, false, true);
2548 }
2549
2550 if (ImpMethodDecl->isVariadic() != MethodDecl->isVariadic()) {
2551 Diag(ImpMethodDecl->getLocation(),
2552 diag::warn_conflicting_variadic);
2553 Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
2554 }
2555}
2556
2557void Sema::CheckConflictingOverridingMethod(ObjCMethodDecl *Method,
2558 ObjCMethodDecl *Overridden,
2559 bool IsProtocolMethodDecl) {
2560
2561 CheckMethodOverrideReturn(*this, Method, Overridden,
2562 IsProtocolMethodDecl, true,
2563 true);
2564
2565 for (ObjCMethodDecl::param_iterator IM = Method->param_begin(),
2566 IF = Overridden->param_begin(), EM = Method->param_end(),
2567 EF = Overridden->param_end();
2568 IM != EM && IF != EF; ++IM, ++IF) {
2569 CheckMethodOverrideParam(*this, Method, Overridden, *IM, *IF,
2570 IsProtocolMethodDecl, true, true);
2571 }
2572
2573 if (Method->isVariadic() != Overridden->isVariadic()) {
2574 Diag(Method->getLocation(),
2575 diag::warn_conflicting_overriding_variadic);
2576 Diag(Overridden->getLocation(), diag::note_previous_declaration);
2577 }
2578}
2579
2580/// WarnExactTypedMethods - This routine issues a warning if method
2581/// implementation declaration matches exactly that of its declaration.
2582void Sema::WarnExactTypedMethods(ObjCMethodDecl *ImpMethodDecl,
2583 ObjCMethodDecl *MethodDecl,
2584 bool IsProtocolMethodDecl) {
2585 // don't issue warning when protocol method is optional because primary
2586 // class is not required to implement it and it is safe for protocol
2587 // to implement it.
2588 if (MethodDecl->getImplementationControl() == ObjCMethodDecl::Optional)
2589 return;
2590 // don't issue warning when primary class's method is
2591 // depecated/unavailable.
2592 if (MethodDecl->hasAttr<UnavailableAttr>() ||
2593 MethodDecl->hasAttr<DeprecatedAttr>())
2594 return;
2595
2596 bool match = CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
2597 IsProtocolMethodDecl, false, false);
2598 if (match)
2599 for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
2600 IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
2601 EF = MethodDecl->param_end();
2602 IM != EM && IF != EF; ++IM, ++IF) {
2603 match = CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl,
2604 *IM, *IF,
2605 IsProtocolMethodDecl, false, false);
2606 if (!match)
2607 break;
2608 }
2609 if (match)
2610 match = (ImpMethodDecl->isVariadic() == MethodDecl->isVariadic());
2611 if (match)
2612 match = !(MethodDecl->isClassMethod() &&
2613 MethodDecl->getSelector() == GetNullarySelector("load", Context));
2614
2615 if (match) {
2616 Diag(ImpMethodDecl->getLocation(),
2617 diag::warn_category_method_impl_match);
2618 Diag(MethodDecl->getLocation(), diag::note_method_declared_at)
2619 << MethodDecl->getDeclName();
2620 }
2621}
2622
2623/// FIXME: Type hierarchies in Objective-C can be deep. We could most likely
2624/// improve the efficiency of selector lookups and type checking by associating
2625/// with each protocol / interface / category the flattened instance tables. If
2626/// we used an immutable set to keep the table then it wouldn't add significant
2627/// memory cost and it would be handy for lookups.
2628
2629typedef llvm::DenseSet<IdentifierInfo*> ProtocolNameSet;
2630typedef std::unique_ptr<ProtocolNameSet> LazyProtocolNameSet;
2631
2632static void findProtocolsWithExplicitImpls(const ObjCProtocolDecl *PDecl,
2633 ProtocolNameSet &PNS) {
2634 if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>())
2635 PNS.insert(PDecl->getIdentifier());
2636 for (const auto *PI : PDecl->protocols())
2637 findProtocolsWithExplicitImpls(PI, PNS);
2638}
2639
2640/// Recursively populates a set with all conformed protocols in a class
2641/// hierarchy that have the 'objc_protocol_requires_explicit_implementation'
2642/// attribute.
2643static void findProtocolsWithExplicitImpls(const ObjCInterfaceDecl *Super,
2644 ProtocolNameSet &PNS) {
2645 if (!Super)
2646 return;
2647
2648 for (const auto *I : Super->all_referenced_protocols())
2649 findProtocolsWithExplicitImpls(I, PNS);
2650
2651 findProtocolsWithExplicitImpls(Super->getSuperClass(), PNS);
2652}
2653
2654/// CheckProtocolMethodDefs - This routine checks unimplemented methods
2655/// Declared in protocol, and those referenced by it.
2656static void CheckProtocolMethodDefs(Sema &S,
2657 SourceLocation ImpLoc,
2658 ObjCProtocolDecl *PDecl,
2659 bool& IncompleteImpl,
2660 const Sema::SelectorSet &InsMap,
2661 const Sema::SelectorSet &ClsMap,
2662 ObjCContainerDecl *CDecl,
2663 LazyProtocolNameSet &ProtocolsExplictImpl) {
2664 ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl);
2665 ObjCInterfaceDecl *IDecl = C ? C->getClassInterface()
2666 : dyn_cast<ObjCInterfaceDecl>(CDecl);
2667 assert (IDecl && "CheckProtocolMethodDefs - IDecl is null")(static_cast <bool> (IDecl && "CheckProtocolMethodDefs - IDecl is null"
) ? void (0) : __assert_fail ("IDecl && \"CheckProtocolMethodDefs - IDecl is null\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 2667, __extension__ __PRETTY_FUNCTION__))
;
2668
2669 ObjCInterfaceDecl *Super = IDecl->getSuperClass();
2670 ObjCInterfaceDecl *NSIDecl = nullptr;
2671
2672 // If this protocol is marked 'objc_protocol_requires_explicit_implementation'
2673 // then we should check if any class in the super class hierarchy also
2674 // conforms to this protocol, either directly or via protocol inheritance.
2675 // If so, we can skip checking this protocol completely because we
2676 // know that a parent class already satisfies this protocol.
2677 //
2678 // Note: we could generalize this logic for all protocols, and merely
2679 // add the limit on looking at the super class chain for just
2680 // specially marked protocols. This may be a good optimization. This
2681 // change is restricted to 'objc_protocol_requires_explicit_implementation'
2682 // protocols for now for controlled evaluation.
2683 if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>()) {
2684 if (!ProtocolsExplictImpl) {
2685 ProtocolsExplictImpl.reset(new ProtocolNameSet);
2686 findProtocolsWithExplicitImpls(Super, *ProtocolsExplictImpl);
2687 }
2688 if (ProtocolsExplictImpl->find(PDecl->getIdentifier()) !=
2689 ProtocolsExplictImpl->end())
2690 return;
2691
2692 // If no super class conforms to the protocol, we should not search
2693 // for methods in the super class to implicitly satisfy the protocol.
2694 Super = nullptr;
2695 }
2696
2697 if (S.getLangOpts().ObjCRuntime.isNeXTFamily()) {
2698 // check to see if class implements forwardInvocation method and objects
2699 // of this class are derived from 'NSProxy' so that to forward requests
2700 // from one object to another.
2701 // Under such conditions, which means that every method possible is
2702 // implemented in the class, we should not issue "Method definition not
2703 // found" warnings.
2704 // FIXME: Use a general GetUnarySelector method for this.
2705 IdentifierInfo* II = &S.Context.Idents.get("forwardInvocation");
2706 Selector fISelector = S.Context.Selectors.getSelector(1, &II);
2707 if (InsMap.count(fISelector))
2708 // Is IDecl derived from 'NSProxy'? If so, no instance methods
2709 // need be implemented in the implementation.
2710 NSIDecl = IDecl->lookupInheritedClass(&S.Context.Idents.get("NSProxy"));
2711 }
2712
2713 // If this is a forward protocol declaration, get its definition.
2714 if (!PDecl->isThisDeclarationADefinition() &&
2715 PDecl->getDefinition())
2716 PDecl = PDecl->getDefinition();
2717
2718 // If a method lookup fails locally we still need to look and see if
2719 // the method was implemented by a base class or an inherited
2720 // protocol. This lookup is slow, but occurs rarely in correct code
2721 // and otherwise would terminate in a warning.
2722
2723 // check unimplemented instance methods.
2724 if (!NSIDecl)
2725 for (auto *method : PDecl->instance_methods()) {
2726 if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
2727 !method->isPropertyAccessor() &&
2728 !InsMap.count(method->getSelector()) &&
2729 (!Super || !Super->lookupMethod(method->getSelector(),
2730 true /* instance */,
2731 false /* shallowCategory */,
2732 true /* followsSuper */,
2733 nullptr /* category */))) {
2734 // If a method is not implemented in the category implementation but
2735 // has been declared in its primary class, superclass,
2736 // or in one of their protocols, no need to issue the warning.
2737 // This is because method will be implemented in the primary class
2738 // or one of its super class implementation.
2739
2740 // Ugly, but necessary. Method declared in protocol might have
2741 // have been synthesized due to a property declared in the class which
2742 // uses the protocol.
2743 if (ObjCMethodDecl *MethodInClass =
2744 IDecl->lookupMethod(method->getSelector(),
2745 true /* instance */,
2746 true /* shallowCategoryLookup */,
2747 false /* followSuper */))
2748 if (C || MethodInClass->isPropertyAccessor())
2749 continue;
2750 unsigned DIAG = diag::warn_unimplemented_protocol_method;
2751 if (!S.Diags.isIgnored(DIAG, ImpLoc)) {
2752 WarnUndefinedMethod(S, ImpLoc, method, IncompleteImpl, DIAG,
2753 PDecl);
2754 }
2755 }
2756 }
2757 // check unimplemented class methods
2758 for (auto *method : PDecl->class_methods()) {
2759 if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
2760 !ClsMap.count(method->getSelector()) &&
2761 (!Super || !Super->lookupMethod(method->getSelector(),
2762 false /* class method */,
2763 false /* shallowCategoryLookup */,
2764 true /* followSuper */,
2765 nullptr /* category */))) {
2766 // See above comment for instance method lookups.
2767 if (C && IDecl->lookupMethod(method->getSelector(),
2768 false /* class */,
2769 true /* shallowCategoryLookup */,
2770 false /* followSuper */))
2771 continue;
2772
2773 unsigned DIAG = diag::warn_unimplemented_protocol_method;
2774 if (!S.Diags.isIgnored(DIAG, ImpLoc)) {
2775 WarnUndefinedMethod(S, ImpLoc, method, IncompleteImpl, DIAG, PDecl);
2776 }
2777 }
2778 }
2779 // Check on this protocols's referenced protocols, recursively.
2780 for (auto *PI : PDecl->protocols())
2781 CheckProtocolMethodDefs(S, ImpLoc, PI, IncompleteImpl, InsMap, ClsMap,
2782 CDecl, ProtocolsExplictImpl);
2783}
2784
2785/// MatchAllMethodDeclarations - Check methods declared in interface
2786/// or protocol against those declared in their implementations.
2787///
2788void Sema::MatchAllMethodDeclarations(const SelectorSet &InsMap,
2789 const SelectorSet &ClsMap,
2790 SelectorSet &InsMapSeen,
2791 SelectorSet &ClsMapSeen,
2792 ObjCImplDecl* IMPDecl,
2793 ObjCContainerDecl* CDecl,
2794 bool &IncompleteImpl,
2795 bool ImmediateClass,
2796 bool WarnCategoryMethodImpl) {
2797 // Check and see if instance methods in class interface have been
2798 // implemented in the implementation class. If so, their types match.
2799 for (auto *I : CDecl->instance_methods()) {
2800 if (!InsMapSeen.insert(I->getSelector()).second)
2801 continue;
2802 if (!I->isPropertyAccessor() &&
2803 !InsMap.count(I->getSelector())) {
2804 if (ImmediateClass)
2805 WarnUndefinedMethod(*this, IMPDecl->getLocation(), I, IncompleteImpl,
2806 diag::warn_undef_method_impl);
2807 continue;
2808 } else {
2809 ObjCMethodDecl *ImpMethodDecl =
2810 IMPDecl->getInstanceMethod(I->getSelector());
2811 assert(CDecl->getInstanceMethod(I->getSelector(), true/*AllowHidden*/) &&(static_cast <bool> (CDecl->getInstanceMethod(I->
getSelector(), true ) && "Expected to find the method through lookup as well"
) ? void (0) : __assert_fail ("CDecl->getInstanceMethod(I->getSelector(), true ) && \"Expected to find the method through lookup as well\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 2812, __extension__ __PRETTY_FUNCTION__))
2812 "Expected to find the method through lookup as well")(static_cast <bool> (CDecl->getInstanceMethod(I->
getSelector(), true ) && "Expected to find the method through lookup as well"
) ? void (0) : __assert_fail ("CDecl->getInstanceMethod(I->getSelector(), true ) && \"Expected to find the method through lookup as well\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 2812, __extension__ __PRETTY_FUNCTION__))
;
2813 // ImpMethodDecl may be null as in a @dynamic property.
2814 if (ImpMethodDecl) {
2815 if (!WarnCategoryMethodImpl)
2816 WarnConflictingTypedMethods(ImpMethodDecl, I,
2817 isa<ObjCProtocolDecl>(CDecl));
2818 else if (!I->isPropertyAccessor())
2819 WarnExactTypedMethods(ImpMethodDecl, I, isa<ObjCProtocolDecl>(CDecl));
2820 }
2821 }
2822 }
2823
2824 // Check and see if class methods in class interface have been
2825 // implemented in the implementation class. If so, their types match.
2826 for (auto *I : CDecl->class_methods()) {
2827 if (!ClsMapSeen.insert(I->getSelector()).second)
2828 continue;
2829 if (!I->isPropertyAccessor() &&
2830 !ClsMap.count(I->getSelector())) {
2831 if (ImmediateClass)
2832 WarnUndefinedMethod(*this, IMPDecl->getLocation(), I, IncompleteImpl,
2833 diag::warn_undef_method_impl);
2834 } else {
2835 ObjCMethodDecl *ImpMethodDecl =
2836 IMPDecl->getClassMethod(I->getSelector());
2837 assert(CDecl->getClassMethod(I->getSelector(), true/*AllowHidden*/) &&(static_cast <bool> (CDecl->getClassMethod(I->getSelector
(), true ) && "Expected to find the method through lookup as well"
) ? void (0) : __assert_fail ("CDecl->getClassMethod(I->getSelector(), true ) && \"Expected to find the method through lookup as well\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 2838, __extension__ __PRETTY_FUNCTION__))
2838 "Expected to find the method through lookup as well")(static_cast <bool> (CDecl->getClassMethod(I->getSelector
(), true ) && "Expected to find the method through lookup as well"
) ? void (0) : __assert_fail ("CDecl->getClassMethod(I->getSelector(), true ) && \"Expected to find the method through lookup as well\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 2838, __extension__ __PRETTY_FUNCTION__))
;
2839 // ImpMethodDecl may be null as in a @dynamic property.
2840 if (ImpMethodDecl) {
2841 if (!WarnCategoryMethodImpl)
2842 WarnConflictingTypedMethods(ImpMethodDecl, I,
2843 isa<ObjCProtocolDecl>(CDecl));
2844 else if (!I->isPropertyAccessor())
2845 WarnExactTypedMethods(ImpMethodDecl, I, isa<ObjCProtocolDecl>(CDecl));
2846 }
2847 }
2848 }
2849
2850 if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl> (CDecl)) {
2851 // Also, check for methods declared in protocols inherited by
2852 // this protocol.
2853 for (auto *PI : PD->protocols())
2854 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2855 IMPDecl, PI, IncompleteImpl, false,
2856 WarnCategoryMethodImpl);
2857 }
2858
2859 if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
2860 // when checking that methods in implementation match their declaration,
2861 // i.e. when WarnCategoryMethodImpl is false, check declarations in class
2862 // extension; as well as those in categories.
2863 if (!WarnCategoryMethodImpl) {
2864 for (auto *Cat : I->visible_categories())
2865 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2866 IMPDecl, Cat, IncompleteImpl,
2867 ImmediateClass && Cat->IsClassExtension(),
2868 WarnCategoryMethodImpl);
2869 } else {
2870 // Also methods in class extensions need be looked at next.
2871 for (auto *Ext : I->visible_extensions())
2872 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2873 IMPDecl, Ext, IncompleteImpl, false,
2874 WarnCategoryMethodImpl);
2875 }
2876
2877 // Check for any implementation of a methods declared in protocol.
2878 for (auto *PI : I->all_referenced_protocols())
2879 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2880 IMPDecl, PI, IncompleteImpl, false,
2881 WarnCategoryMethodImpl);
2882
2883 // FIXME. For now, we are not checking for extact match of methods
2884 // in category implementation and its primary class's super class.
2885 if (!WarnCategoryMethodImpl && I->getSuperClass())
2886 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2887 IMPDecl,
2888 I->getSuperClass(), IncompleteImpl, false);
2889 }
2890}
2891
2892/// CheckCategoryVsClassMethodMatches - Checks that methods implemented in
2893/// category matches with those implemented in its primary class and
2894/// warns each time an exact match is found.
2895void Sema::CheckCategoryVsClassMethodMatches(
2896 ObjCCategoryImplDecl *CatIMPDecl) {
2897 // Get category's primary class.
2898 ObjCCategoryDecl *CatDecl = CatIMPDecl->getCategoryDecl();
2899 if (!CatDecl)
2900 return;
2901 ObjCInterfaceDecl *IDecl = CatDecl->getClassInterface();
2902 if (!IDecl)
2903 return;
2904 ObjCInterfaceDecl *SuperIDecl = IDecl->getSuperClass();
2905 SelectorSet InsMap, ClsMap;
2906
2907 for (const auto *I : CatIMPDecl->instance_methods()) {
2908 Selector Sel = I->getSelector();
2909 // When checking for methods implemented in the category, skip over
2910 // those declared in category class's super class. This is because
2911 // the super class must implement the method.
2912 if (SuperIDecl && SuperIDecl->lookupMethod(Sel, true))
2913 continue;
2914 InsMap.insert(Sel);
2915 }
2916
2917 for (const auto *I : CatIMPDecl->class_methods()) {
2918 Selector Sel = I->getSelector();
2919 if (SuperIDecl && SuperIDecl->lookupMethod(Sel, false))
2920 continue;
2921 ClsMap.insert(Sel);
2922 }
2923 if (InsMap.empty() && ClsMap.empty())
2924 return;
2925
2926 SelectorSet InsMapSeen, ClsMapSeen;
2927 bool IncompleteImpl = false;
2928 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2929 CatIMPDecl, IDecl,
2930 IncompleteImpl, false,
2931 true /*WarnCategoryMethodImpl*/);
2932}
2933
2934void Sema::ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl,
2935 ObjCContainerDecl* CDecl,
2936 bool IncompleteImpl) {
2937 SelectorSet InsMap;
2938 // Check and see if instance methods in class interface have been
2939 // implemented in the implementation class.
2940 for (const auto *I : IMPDecl->instance_methods())
2941 InsMap.insert(I->getSelector());
2942
2943 // Add the selectors for getters/setters of @dynamic properties.
2944 for (const auto *PImpl : IMPDecl->property_impls()) {
2945 // We only care about @dynamic implementations.
2946 if (PImpl->getPropertyImplementation() != ObjCPropertyImplDecl::Dynamic)
2947 continue;
2948
2949 const auto *P = PImpl->getPropertyDecl();
2950 if (!P) continue;
2951
2952 InsMap.insert(P->getGetterName());
2953 if (!P->getSetterName().isNull())
2954 InsMap.insert(P->getSetterName());
2955 }
2956
2957 // Check and see if properties declared in the interface have either 1)
2958 // an implementation or 2) there is a @synthesize/@dynamic implementation
2959 // of the property in the @implementation.
2960 if (const ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
2961 bool SynthesizeProperties = LangOpts.ObjCDefaultSynthProperties &&
2962 LangOpts.ObjCRuntime.isNonFragile() &&
2963 !IDecl->isObjCRequiresPropertyDefs();
2964 DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, SynthesizeProperties);
2965 }
2966
2967 // Diagnose null-resettable synthesized setters.
2968 diagnoseNullResettableSynthesizedSetters(IMPDecl);
2969
2970 SelectorSet ClsMap;
2971 for (const auto *I : IMPDecl->class_methods())
2972 ClsMap.insert(I->getSelector());
2973
2974 // Check for type conflict of methods declared in a class/protocol and
2975 // its implementation; if any.
2976 SelectorSet InsMapSeen, ClsMapSeen;
2977 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2978 IMPDecl, CDecl,
2979 IncompleteImpl, true);
2980
2981 // check all methods implemented in category against those declared
2982 // in its primary class.
2983 if (ObjCCategoryImplDecl *CatDecl =
2984 dyn_cast<ObjCCategoryImplDecl>(IMPDecl))
2985 CheckCategoryVsClassMethodMatches(CatDecl);
2986
2987 // Check the protocol list for unimplemented methods in the @implementation
2988 // class.
2989 // Check and see if class methods in class interface have been
2990 // implemented in the implementation class.
2991
2992 LazyProtocolNameSet ExplicitImplProtocols;
2993
2994 if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
2995 for (auto *PI : I->all_referenced_protocols())
2996 CheckProtocolMethodDefs(*this, IMPDecl->getLocation(), PI, IncompleteImpl,
2997 InsMap, ClsMap, I, ExplicitImplProtocols);
2998 } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) {
2999 // For extended class, unimplemented methods in its protocols will
3000 // be reported in the primary class.
3001 if (!C->IsClassExtension()) {
3002 for (auto *P : C->protocols())
3003 CheckProtocolMethodDefs(*this, IMPDecl->getLocation(), P,
3004 IncompleteImpl, InsMap, ClsMap, CDecl,
3005 ExplicitImplProtocols);
3006 DiagnoseUnimplementedProperties(S, IMPDecl, CDecl,
3007 /*SynthesizeProperties=*/false);
3008 }
3009 } else
3010 llvm_unreachable("invalid ObjCContainerDecl type.")::llvm::llvm_unreachable_internal("invalid ObjCContainerDecl type."
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 3010)
;
3011}
3012
3013Sema::DeclGroupPtrTy
3014Sema::ActOnForwardClassDeclaration(SourceLocation AtClassLoc,
3015 IdentifierInfo **IdentList,
3016 SourceLocation *IdentLocs,
3017 ArrayRef<ObjCTypeParamList *> TypeParamLists,
3018 unsigned NumElts) {
3019 SmallVector<Decl *, 8> DeclsInGroup;
3020 for (unsigned i = 0; i != NumElts; ++i) {
3021 // Check for another declaration kind with the same name.
3022 NamedDecl *PrevDecl
3023 = LookupSingleName(TUScope, IdentList[i], IdentLocs[i],
3024 LookupOrdinaryName, forRedeclarationInCurContext());
3025 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
3026 // GCC apparently allows the following idiom:
3027 //
3028 // typedef NSObject < XCElementTogglerP > XCElementToggler;
3029 // @class XCElementToggler;
3030 //
3031 // Here we have chosen to ignore the forward class declaration
3032 // with a warning. Since this is the implied behavior.
3033 TypedefNameDecl *TDD = dyn_cast<TypedefNameDecl>(PrevDecl);
3034 if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) {
3035 Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i];
3036 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3037 } else {
3038 // a forward class declaration matching a typedef name of a class refers
3039 // to the underlying class. Just ignore the forward class with a warning
3040 // as this will force the intended behavior which is to lookup the
3041 // typedef name.
3042 if (isa<ObjCObjectType>(TDD->getUnderlyingType())) {
3043 Diag(AtClassLoc, diag::warn_forward_class_redefinition)
3044 << IdentList[i];
3045 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3046 continue;
3047 }
3048 }
3049 }
3050
3051 // Create a declaration to describe this forward declaration.
3052 ObjCInterfaceDecl *PrevIDecl
3053 = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
3054
3055 IdentifierInfo *ClassName = IdentList[i];
3056 if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) {
3057 // A previous decl with a different name is because of
3058 // @compatibility_alias, for example:
3059 // \code
3060 // @class NewImage;
3061 // @compatibility_alias OldImage NewImage;
3062 // \endcode
3063 // A lookup for 'OldImage' will return the 'NewImage' decl.
3064 //
3065 // In such a case use the real declaration name, instead of the alias one,
3066 // otherwise we will break IdentifierResolver and redecls-chain invariants.
3067 // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl
3068 // has been aliased.
3069 ClassName = PrevIDecl->getIdentifier();
3070 }
3071
3072 // If this forward declaration has type parameters, compare them with the
3073 // type parameters of the previous declaration.
3074 ObjCTypeParamList *TypeParams = TypeParamLists[i];
3075 if (PrevIDecl && TypeParams) {
3076 if (ObjCTypeParamList *PrevTypeParams = PrevIDecl->getTypeParamList()) {
3077 // Check for consistency with the previous declaration.
3078 if (checkTypeParamListConsistency(
3079 *this, PrevTypeParams, TypeParams,
3080 TypeParamListContext::ForwardDeclaration)) {
3081 TypeParams = nullptr;
3082 }
3083 } else if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
3084 // The @interface does not have type parameters. Complain.
3085 Diag(IdentLocs[i], diag::err_objc_parameterized_forward_class)
3086 << ClassName
3087 << TypeParams->getSourceRange();
3088 Diag(Def->getLocation(), diag::note_defined_here)
3089 << ClassName;
3090
3091 TypeParams = nullptr;
3092 }
3093 }
3094
3095 ObjCInterfaceDecl *IDecl
3096 = ObjCInterfaceDecl::Create(Context, CurContext, AtClassLoc,
3097 ClassName, TypeParams, PrevIDecl,
3098 IdentLocs[i]);
3099 IDecl->setAtEndRange(IdentLocs[i]);
3100
3101 PushOnScopeChains(IDecl, TUScope);
3102 CheckObjCDeclScope(IDecl);
3103 DeclsInGroup.push_back(IDecl);
3104 }
3105
3106 return BuildDeclaratorGroup(DeclsInGroup);
3107}
3108
3109static bool tryMatchRecordTypes(ASTContext &Context,
3110 Sema::MethodMatchStrategy strategy,
3111 const Type *left, const Type *right);
3112
3113static bool matchTypes(ASTContext &Context, Sema::MethodMatchStrategy strategy,
3114 QualType leftQT, QualType rightQT) {
3115 const Type *left =
3116 Context.getCanonicalType(leftQT).getUnqualifiedType().getTypePtr();
3117 const Type *right =
3118 Context.getCanonicalType(rightQT).getUnqualifiedType().getTypePtr();
3119
3120 if (left == right) return true;
3121
3122 // If we're doing a strict match, the types have to match exactly.
3123 if (strategy == Sema::MMS_strict) return false;
3124
3125 if (left->isIncompleteType() || right->isIncompleteType()) return false;
3126
3127 // Otherwise, use this absurdly complicated algorithm to try to
3128 // validate the basic, low-level compatibility of the two types.
3129
3130 // As a minimum, require the sizes and alignments to match.
3131 TypeInfo LeftTI = Context.getTypeInfo(left);
3132 TypeInfo RightTI = Context.getTypeInfo(right);
3133 if (LeftTI.Width != RightTI.Width)
3134 return false;
3135
3136 if (LeftTI.Align != RightTI.Align)
3137 return false;
3138
3139 // Consider all the kinds of non-dependent canonical types:
3140 // - functions and arrays aren't possible as return and parameter types
3141
3142 // - vector types of equal size can be arbitrarily mixed
3143 if (isa<VectorType>(left)) return isa<VectorType>(right);
3144 if (isa<VectorType>(right)) return false;
3145
3146 // - references should only match references of identical type
3147 // - structs, unions, and Objective-C objects must match more-or-less
3148 // exactly
3149 // - everything else should be a scalar
3150 if (!left->isScalarType() || !right->isScalarType())
3151 return tryMatchRecordTypes(Context, strategy, left, right);
3152
3153 // Make scalars agree in kind, except count bools as chars, and group
3154 // all non-member pointers together.
3155 Type::ScalarTypeKind leftSK = left->getScalarTypeKind();
3156 Type::ScalarTypeKind rightSK = right->getScalarTypeKind();
3157 if (leftSK == Type::STK_Bool) leftSK = Type::STK_Integral;
3158 if (rightSK == Type::STK_Bool) rightSK = Type::STK_Integral;
3159 if (leftSK == Type::STK_CPointer || leftSK == Type::STK_BlockPointer)
3160 leftSK = Type::STK_ObjCObjectPointer;
3161 if (rightSK == Type::STK_CPointer || rightSK == Type::STK_BlockPointer)
3162 rightSK = Type::STK_ObjCObjectPointer;
3163
3164 // Note that data member pointers and function member pointers don't
3165 // intermix because of the size differences.
3166
3167 return (leftSK == rightSK);
3168}
3169
3170static bool tryMatchRecordTypes(ASTContext &Context,
3171 Sema::MethodMatchStrategy strategy,
3172 const Type *lt, const Type *rt) {
3173 assert(lt && rt && lt != rt)(static_cast <bool> (lt && rt && lt != rt
) ? void (0) : __assert_fail ("lt && rt && lt != rt"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 3173, __extension__ __PRETTY_FUNCTION__))
;
3174
3175 if (!isa<RecordType>(lt) || !isa<RecordType>(rt)) return false;
3176 RecordDecl *left = cast<RecordType>(lt)->getDecl();
3177 RecordDecl *right = cast<RecordType>(rt)->getDecl();
3178
3179 // Require union-hood to match.
3180 if (left->isUnion() != right->isUnion()) return false;
3181
3182 // Require an exact match if either is non-POD.
3183 if ((isa<CXXRecordDecl>(left) && !cast<CXXRecordDecl>(left)->isPOD()) ||
3184 (isa<CXXRecordDecl>(right) && !cast<CXXRecordDecl>(right)->isPOD()))
3185 return false;
3186
3187 // Require size and alignment to match.
3188 TypeInfo LeftTI = Context.getTypeInfo(lt);
3189 TypeInfo RightTI = Context.getTypeInfo(rt);
3190 if (LeftTI.Width != RightTI.Width)
3191 return false;
3192
3193 if (LeftTI.Align != RightTI.Align)
3194 return false;
3195
3196 // Require fields to match.
3197 RecordDecl::field_iterator li = left->field_begin(), le = left->field_end();
3198 RecordDecl::field_iterator ri = right->field_begin(), re = right->field_end();
3199 for (; li != le && ri != re; ++li, ++ri) {
3200 if (!matchTypes(Context, strategy, li->getType(), ri->getType()))
3201 return false;
3202 }
3203 return (li == le && ri == re);
3204}
3205
3206/// MatchTwoMethodDeclarations - Checks that two methods have matching type and
3207/// returns true, or false, accordingly.
3208/// TODO: Handle protocol list; such as id<p1,p2> in type comparisons
3209bool Sema::MatchTwoMethodDeclarations(const ObjCMethodDecl *left,
3210 const ObjCMethodDecl *right,
3211 MethodMatchStrategy strategy) {
3212 if (!matchTypes(Context, strategy, left->getReturnType(),
3213 right->getReturnType()))
3214 return false;
3215
3216 // If either is hidden, it is not considered to match.
3217 if (left->isHidden() || right->isHidden())
3218 return false;
3219
3220 if (getLangOpts().ObjCAutoRefCount &&
3221 (left->hasAttr<NSReturnsRetainedAttr>()
3222 != right->hasAttr<NSReturnsRetainedAttr>() ||
3223 left->hasAttr<NSConsumesSelfAttr>()
3224 != right->hasAttr<NSConsumesSelfAttr>()))
3225 return false;
3226
3227 ObjCMethodDecl::param_const_iterator
3228 li = left->param_begin(), le = left->param_end(), ri = right->param_begin(),
3229 re = right->param_end();
3230
3231 for (; li != le && ri != re; ++li, ++ri) {
3232 assert(ri != right->param_end() && "Param mismatch")(static_cast <bool> (ri != right->param_end() &&
"Param mismatch") ? void (0) : __assert_fail ("ri != right->param_end() && \"Param mismatch\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 3232, __extension__ __PRETTY_FUNCTION__))
;
3233 const ParmVarDecl *lparm = *li, *rparm = *ri;
3234
3235 if (!matchTypes(Context, strategy, lparm->getType(), rparm->getType()))
3236 return false;
3237
3238 if (getLangOpts().ObjCAutoRefCount &&
3239 lparm->hasAttr<NSConsumedAttr>() != rparm->hasAttr<NSConsumedAttr>())
3240 return false;
3241 }
3242 return true;
3243}
3244
3245static bool isMethodContextSameForKindofLookup(ObjCMethodDecl *Method,
3246 ObjCMethodDecl *MethodInList) {
3247 auto *MethodProtocol = dyn_cast<ObjCProtocolDecl>(Method->getDeclContext());
3248 auto *MethodInListProtocol =
3249 dyn_cast<ObjCProtocolDecl>(MethodInList->getDeclContext());
3250 // If this method belongs to a protocol but the method in list does not, or
3251 // vice versa, we say the context is not the same.
3252 if ((MethodProtocol && !MethodInListProtocol) ||
3253 (!MethodProtocol && MethodInListProtocol))
3254 return false;
3255
3256 if (MethodProtocol && MethodInListProtocol)
3257 return true;
3258
3259 ObjCInterfaceDecl *MethodInterface = Method->getClassInterface();
3260 ObjCInterfaceDecl *MethodInListInterface =
3261 MethodInList->getClassInterface();
3262 return MethodInterface == MethodInListInterface;
3263}
3264
3265void Sema::addMethodToGlobalList(ObjCMethodList *List,
3266 ObjCMethodDecl *Method) {
3267 // Record at the head of the list whether there were 0, 1, or >= 2 methods
3268 // inside categories.
3269 if (ObjCCategoryDecl *CD =
3270 dyn_cast<ObjCCategoryDecl>(Method->getDeclContext()))
3271 if (!CD->IsClassExtension() && List->getBits() < 2)
3272 List->setBits(List->getBits() + 1);
3273
3274 // If the list is empty, make it a singleton list.
3275 if (List->getMethod() == nullptr) {
3276 List->setMethod(Method);
3277 List->setNext(nullptr);
3278 return;
3279 }
3280
3281 // We've seen a method with this name, see if we have already seen this type
3282 // signature.
3283 ObjCMethodList *Previous = List;
3284 ObjCMethodList *ListWithSameDeclaration = nullptr;
3285 for (; List; Previous = List, List = List->getNext()) {
3286 // If we are building a module, keep all of the methods.
3287 if (getLangOpts().isCompilingModule())
3288 continue;
3289
3290 bool SameDeclaration = MatchTwoMethodDeclarations(Method,
3291 List->getMethod());
3292 // Looking for method with a type bound requires the correct context exists.
3293 // We need to insert a method into the list if the context is different.
3294 // If the method's declaration matches the list
3295 // a> the method belongs to a different context: we need to insert it, in
3296 // order to emit the availability message, we need to prioritize over
3297 // availability among the methods with the same declaration.
3298 // b> the method belongs to the same context: there is no need to insert a
3299 // new entry.
3300 // If the method's declaration does not match the list, we insert it to the
3301 // end.
3302 if (!SameDeclaration ||
3303 !isMethodContextSameForKindofLookup(Method, List->getMethod())) {
3304 // Even if two method types do not match, we would like to say
3305 // there is more than one declaration so unavailability/deprecated
3306 // warning is not too noisy.
3307 if (!Method->isDefined())
3308 List->setHasMoreThanOneDecl(true);
3309
3310 // For methods with the same declaration, the one that is deprecated
3311 // should be put in the front for better diagnostics.
3312 if (Method->isDeprecated() && SameDeclaration &&
3313 !ListWithSameDeclaration && !List->getMethod()->isDeprecated())
3314 ListWithSameDeclaration = List;
3315
3316 if (Method->isUnavailable() && SameDeclaration &&
3317 !ListWithSameDeclaration &&
3318 List->getMethod()->getAvailability() < AR_Deprecated)
3319 ListWithSameDeclaration = List;
3320 continue;
3321 }
3322
3323 ObjCMethodDecl *PrevObjCMethod = List->getMethod();
3324
3325 // Propagate the 'defined' bit.
3326 if (Method->isDefined())
3327 PrevObjCMethod->setDefined(true);
3328 else {
3329 // Objective-C doesn't allow an @interface for a class after its
3330 // @implementation. So if Method is not defined and there already is
3331 // an entry for this type signature, Method has to be for a different
3332 // class than PrevObjCMethod.
3333 List->setHasMoreThanOneDecl(true);
3334 }
3335
3336 // If a method is deprecated, push it in the global pool.
3337 // This is used for better diagnostics.
3338 if (Method->isDeprecated()) {
3339 if (!PrevObjCMethod->isDeprecated())
3340 List->setMethod(Method);
3341 }
3342 // If the new method is unavailable, push it into global pool
3343 // unless previous one is deprecated.
3344 if (Method->isUnavailable()) {
3345 if (PrevObjCMethod->getAvailability() < AR_Deprecated)
3346 List->setMethod(Method);
3347 }
3348
3349 return;
3350 }
3351
3352 // We have a new signature for an existing method - add it.
3353 // This is extremely rare. Only 1% of Cocoa selectors are "overloaded".
3354 ObjCMethodList *Mem = BumpAlloc.Allocate<ObjCMethodList>();
3355
3356 // We insert it right before ListWithSameDeclaration.
3357 if (ListWithSameDeclaration) {
3358 auto *List = new (Mem) ObjCMethodList(*ListWithSameDeclaration);
3359 // FIXME: should we clear the other bits in ListWithSameDeclaration?
3360 ListWithSameDeclaration->setMethod(Method);
3361 ListWithSameDeclaration->setNext(List);
3362 return;
3363 }
3364
3365 Previous->setNext(new (Mem) ObjCMethodList(Method));
3366}
3367
3368/// Read the contents of the method pool for a given selector from
3369/// external storage.
3370void Sema::ReadMethodPool(Selector Sel) {
3371 assert(ExternalSource && "We need an external AST source")(static_cast <bool> (ExternalSource && "We need an external AST source"
) ? void (0) : __assert_fail ("ExternalSource && \"We need an external AST source\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 3371, __extension__ __PRETTY_FUNCTION__))
;
3372 ExternalSource->ReadMethodPool(Sel);
3373}
3374
3375void Sema::updateOutOfDateSelector(Selector Sel) {
3376 if (!ExternalSource)
3377 return;
3378 ExternalSource->updateOutOfDateSelector(Sel);
3379}
3380
3381void Sema::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl,
3382 bool instance) {
3383 // Ignore methods of invalid containers.
3384 if (cast<Decl>(Method->getDeclContext())->isInvalidDecl())
3385 return;
3386
3387 if (ExternalSource)
3388 ReadMethodPool(Method->getSelector());
3389
3390 GlobalMethodPool::iterator Pos = MethodPool.find(Method->getSelector());
3391 if (Pos == MethodPool.end())
3392 Pos = MethodPool.insert(std::make_pair(Method->getSelector(),
3393 GlobalMethods())).first;
3394
3395 Method->setDefined(impl);
3396
3397 ObjCMethodList &Entry = instance ? Pos->second.first : Pos->second.second;
3398 addMethodToGlobalList(&Entry, Method);
3399}
3400
3401/// Determines if this is an "acceptable" loose mismatch in the global
3402/// method pool. This exists mostly as a hack to get around certain
3403/// global mismatches which we can't afford to make warnings / errors.
3404/// Really, what we want is a way to take a method out of the global
3405/// method pool.
3406static bool isAcceptableMethodMismatch(ObjCMethodDecl *chosen,
3407 ObjCMethodDecl *other) {
3408 if (!chosen->isInstanceMethod())
3409 return false;
3410
3411 Selector sel = chosen->getSelector();
3412 if (!sel.isUnarySelector() || sel.getNameForSlot(0) != "length")
3413 return false;
3414
3415 // Don't complain about mismatches for -length if the method we
3416 // chose has an integral result type.
3417 return (chosen->getReturnType()->isIntegerType());
3418}
3419
3420/// Return true if the given method is wthin the type bound.
3421static bool FilterMethodsByTypeBound(ObjCMethodDecl *Method,
3422 const ObjCObjectType *TypeBound) {
3423 if (!TypeBound)
3424 return true;
3425
3426 if (TypeBound->isObjCId())
3427 // FIXME: should we handle the case of bounding to id<A, B> differently?
3428 return true;
3429
3430 auto *BoundInterface = TypeBound->getInterface();
3431 assert(BoundInterface && "unexpected object type!")(static_cast <bool> (BoundInterface && "unexpected object type!"
) ? void (0) : __assert_fail ("BoundInterface && \"unexpected object type!\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 3431, __extension__ __PRETTY_FUNCTION__))
;
3432
3433 // Check if the Method belongs to a protocol. We should allow any method
3434 // defined in any protocol, because any subclass could adopt the protocol.
3435 auto *MethodProtocol = dyn_cast<ObjCProtocolDecl>(Method->getDeclContext());
3436 if (MethodProtocol) {
3437 return true;
3438 }
3439
3440 // If the Method belongs to a class, check if it belongs to the class
3441 // hierarchy of the class bound.
3442 if (ObjCInterfaceDecl *MethodInterface = Method->getClassInterface()) {
3443 // We allow methods declared within classes that are part of the hierarchy
3444 // of the class bound (superclass of, subclass of, or the same as the class
3445 // bound).
3446 return MethodInterface == BoundInterface ||
3447 MethodInterface->isSuperClassOf(BoundInterface) ||
3448 BoundInterface->isSuperClassOf(MethodInterface);
3449 }
3450 llvm_unreachable("unknown method context")::llvm::llvm_unreachable_internal("unknown method context", "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 3450)
;
3451}
3452
3453/// We first select the type of the method: Instance or Factory, then collect
3454/// all methods with that type.
3455bool Sema::CollectMultipleMethodsInGlobalPool(
3456 Selector Sel, SmallVectorImpl<ObjCMethodDecl *> &Methods,
3457 bool InstanceFirst, bool CheckTheOther,
3458 const ObjCObjectType *TypeBound) {
3459 if (ExternalSource)
3460 ReadMethodPool(Sel);
3461
3462 GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3463 if (Pos == MethodPool.end())
3464 return false;
3465
3466 // Gather the non-hidden methods.
3467 ObjCMethodList &MethList = InstanceFirst ? Pos->second.first :
3468 Pos->second.second;
3469 for (ObjCMethodList *M = &MethList; M; M = M->getNext())
3470 if (M->getMethod() && !M->getMethod()->isHidden()) {
3471 if (FilterMethodsByTypeBound(M->getMethod(), TypeBound))
3472 Methods.push_back(M->getMethod());
3473 }
3474
3475 // Return if we find any method with the desired kind.
3476 if (!Methods.empty())
3477 return Methods.size() > 1;
3478
3479 if (!CheckTheOther)
3480 return false;
3481
3482 // Gather the other kind.
3483 ObjCMethodList &MethList2 = InstanceFirst ? Pos->second.second :
3484 Pos->second.first;
3485 for (ObjCMethodList *M = &MethList2; M; M = M->getNext())
3486 if (M->getMethod() && !M->getMethod()->isHidden()) {
3487 if (FilterMethodsByTypeBound(M->getMethod(), TypeBound))
3488 Methods.push_back(M->getMethod());
3489 }
3490
3491 return Methods.size() > 1;
3492}
3493
3494bool Sema::AreMultipleMethodsInGlobalPool(
3495 Selector Sel, ObjCMethodDecl *BestMethod, SourceRange R,
3496 bool receiverIdOrClass, SmallVectorImpl<ObjCMethodDecl *> &Methods) {
3497 // Diagnose finding more than one method in global pool.
3498 SmallVector<ObjCMethodDecl *, 4> FilteredMethods;
3499 FilteredMethods.push_back(BestMethod);
3500
3501 for (auto *M : Methods)
3502 if (M != BestMethod && !M->hasAttr<UnavailableAttr>())
3503 FilteredMethods.push_back(M);
3504
3505 if (FilteredMethods.size() > 1)
3506 DiagnoseMultipleMethodInGlobalPool(FilteredMethods, Sel, R,
3507 receiverIdOrClass);
3508
3509 GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3510 // Test for no method in the pool which should not trigger any warning by
3511 // caller.
3512 if (Pos == MethodPool.end())
3513 return true;
3514 ObjCMethodList &MethList =
3515 BestMethod->isInstanceMethod() ? Pos->second.first : Pos->second.second;
3516 return MethList.hasMoreThanOneDecl();
3517}
3518
3519ObjCMethodDecl *Sema::LookupMethodInGlobalPool(Selector Sel, SourceRange R,
3520 bool receiverIdOrClass,
3521 bool instance) {
3522 if (ExternalSource)
3523 ReadMethodPool(Sel);
3524
3525 GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3526 if (Pos == MethodPool.end())
3527 return nullptr;
3528
3529 // Gather the non-hidden methods.
3530 ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second;
3531 SmallVector<ObjCMethodDecl *, 4> Methods;
3532 for (ObjCMethodList *M = &MethList; M; M = M->getNext()) {
3533 if (M->getMethod() && !M->getMethod()->isHidden())
3534 return M->getMethod();
3535 }
3536 return nullptr;
3537}
3538
3539void Sema::DiagnoseMultipleMethodInGlobalPool(SmallVectorImpl<ObjCMethodDecl*> &Methods,
3540 Selector Sel, SourceRange R,
3541 bool receiverIdOrClass) {
3542 // We found multiple methods, so we may have to complain.
3543 bool issueDiagnostic = false, issueError = false;
3544
3545 // We support a warning which complains about *any* difference in
3546 // method signature.
3547 bool strictSelectorMatch =
3548 receiverIdOrClass &&
3549 !Diags.isIgnored(diag::warn_strict_multiple_method_decl, R.getBegin());
3550 if (strictSelectorMatch) {
3551 for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3552 if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_strict)) {
3553 issueDiagnostic = true;
3554 break;
3555 }
3556 }
3557 }
3558
3559 // If we didn't see any strict differences, we won't see any loose
3560 // differences. In ARC, however, we also need to check for loose
3561 // mismatches, because most of them are errors.
3562 if (!strictSelectorMatch ||
3563 (issueDiagnostic && getLangOpts().ObjCAutoRefCount))
3564 for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3565 // This checks if the methods differ in type mismatch.
3566 if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_loose) &&
3567 !isAcceptableMethodMismatch(Methods[0], Methods[I])) {
3568 issueDiagnostic = true;
3569 if (getLangOpts().ObjCAutoRefCount)
3570 issueError = true;
3571 break;
3572 }
3573 }
3574
3575 if (issueDiagnostic) {
3576 if (issueError)
3577 Diag(R.getBegin(), diag::err_arc_multiple_method_decl) << Sel << R;
3578 else if (strictSelectorMatch)
3579 Diag(R.getBegin(), diag::warn_strict_multiple_method_decl) << Sel << R;
3580 else
3581 Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R;
3582
3583 Diag(Methods[0]->getLocStart(),
3584 issueError ? diag::note_possibility : diag::note_using)
3585 << Methods[0]->getSourceRange();
3586 for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3587 Diag(Methods[I]->getLocStart(), diag::note_also_found)
3588 << Methods[I]->getSourceRange();
3589 }
3590 }
3591}
3592
3593ObjCMethodDecl *Sema::LookupImplementedMethodInGlobalPool(Selector Sel) {
3594 GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3595 if (Pos == MethodPool.end())
3596 return nullptr;
3597
3598 GlobalMethods &Methods = Pos->second;
3599 for (const ObjCMethodList *Method = &Methods.first; Method;
3600 Method = Method->getNext())
3601 if (Method->getMethod() &&
3602 (Method->getMethod()->isDefined() ||
3603 Method->getMethod()->isPropertyAccessor()))
3604 return Method->getMethod();
3605
3606 for (const ObjCMethodList *Method = &Methods.second; Method;
3607 Method = Method->getNext())
3608 if (Method->getMethod() &&
3609 (Method->getMethod()->isDefined() ||
3610 Method->getMethod()->isPropertyAccessor()))
3611 return Method->getMethod();
3612 return nullptr;
3613}
3614
3615static void
3616HelperSelectorsForTypoCorrection(
3617 SmallVectorImpl<const ObjCMethodDecl *> &BestMethod,
3618 StringRef Typo, const ObjCMethodDecl * Method) {
3619 const unsigned MaxEditDistance = 1;
3620 unsigned BestEditDistance = MaxEditDistance + 1;
3621 std::string MethodName = Method->getSelector().getAsString();
3622
3623 unsigned MinPossibleEditDistance = abs((int)MethodName.size() - (int)Typo.size());
3624 if (MinPossibleEditDistance > 0 &&
3625 Typo.size() / MinPossibleEditDistance < 1)
3626 return;
3627 unsigned EditDistance = Typo.edit_distance(MethodName, true, MaxEditDistance);
3628 if (EditDistance > MaxEditDistance)
3629 return;
3630 if (EditDistance == BestEditDistance)
3631 BestMethod.push_back(Method);
3632 else if (EditDistance < BestEditDistance) {
3633 BestMethod.clear();
3634 BestMethod.push_back(Method);
3635 }
3636}
3637
3638static bool HelperIsMethodInObjCType(Sema &S, Selector Sel,
3639 QualType ObjectType) {
3640 if (ObjectType.isNull())
3641 return true;
3642 if (S.LookupMethodInObjectType(Sel, ObjectType, true/*Instance method*/))
3643 return true;
3644 return S.LookupMethodInObjectType(Sel, ObjectType, false/*Class method*/) !=
3645 nullptr;
3646}
3647
3648const ObjCMethodDecl *
3649Sema::SelectorsForTypoCorrection(Selector Sel,
3650 QualType ObjectType) {
3651 unsigned NumArgs = Sel.getNumArgs();
3652 SmallVector<const ObjCMethodDecl *, 8> Methods;
3653 bool ObjectIsId = true, ObjectIsClass = true;
3654 if (ObjectType.isNull())
3655 ObjectIsId = ObjectIsClass = false;
3656 else if (!ObjectType->isObjCObjectPointerType())
3657 return nullptr;
3658 else if (const ObjCObjectPointerType *ObjCPtr =
3659 ObjectType->getAsObjCInterfacePointerType()) {
3660 ObjectType = QualType(ObjCPtr->getInterfaceType(), 0);
3661 ObjectIsId = ObjectIsClass = false;
3662 }
3663 else if (ObjectType->isObjCIdType() || ObjectType->isObjCQualifiedIdType())
3664 ObjectIsClass = false;
3665 else if (ObjectType->isObjCClassType() || ObjectType->isObjCQualifiedClassType())
3666 ObjectIsId = false;
3667 else
3668 return nullptr;
3669
3670 for (GlobalMethodPool::iterator b = MethodPool.begin(),
3671 e = MethodPool.end(); b != e; b++) {
3672 // instance methods
3673 for (ObjCMethodList *M = &b->second.first; M; M=M->getNext())
3674 if (M->getMethod() &&
3675 (M->getMethod()->getSelector().getNumArgs() == NumArgs) &&
3676 (M->getMethod()->getSelector() != Sel)) {
3677 if (ObjectIsId)
3678 Methods.push_back(M->getMethod());
3679 else if (!ObjectIsClass &&
3680 HelperIsMethodInObjCType(*this, M->getMethod()->getSelector(),
3681 ObjectType))
3682 Methods.push_back(M->getMethod());
3683 }
3684 // class methods
3685 for (ObjCMethodList *M = &b->second.second; M; M=M->getNext())
3686 if (M->getMethod() &&
3687 (M->getMethod()->getSelector().getNumArgs() == NumArgs) &&
3688 (M->getMethod()->getSelector() != Sel)) {
3689 if (ObjectIsClass)
3690 Methods.push_back(M->getMethod());
3691 else if (!ObjectIsId &&
3692 HelperIsMethodInObjCType(*this, M->getMethod()->getSelector(),
3693 ObjectType))
3694 Methods.push_back(M->getMethod());
3695 }
3696 }
3697
3698 SmallVector<const ObjCMethodDecl *, 8> SelectedMethods;
3699 for (unsigned i = 0, e = Methods.size(); i < e; i++) {
3700 HelperSelectorsForTypoCorrection(SelectedMethods,
3701 Sel.getAsString(), Methods[i]);
3702 }
3703 return (SelectedMethods.size() == 1) ? SelectedMethods[0] : nullptr;
3704}
3705
3706/// DiagnoseDuplicateIvars -
3707/// Check for duplicate ivars in the entire class at the start of
3708/// \@implementation. This becomes necesssary because class extension can
3709/// add ivars to a class in random order which will not be known until
3710/// class's \@implementation is seen.
3711void Sema::DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID,
3712 ObjCInterfaceDecl *SID) {
3713 for (auto *Ivar : ID->ivars()) {
3714 if (Ivar->isInvalidDecl())
3715 continue;
3716 if (IdentifierInfo *II = Ivar->getIdentifier()) {
3717 ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(II);
3718 if (prevIvar) {
3719 Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
3720 Diag(prevIvar->getLocation(), diag::note_previous_declaration);
3721 Ivar->setInvalidDecl();
3722 }
3723 }
3724 }
3725}
3726
3727/// Diagnose attempts to define ARC-__weak ivars when __weak is disabled.
3728static void DiagnoseWeakIvars(Sema &S, ObjCImplementationDecl *ID) {
3729 if (S.getLangOpts().ObjCWeak) return;
3730
3731 for (auto ivar = ID->getClassInterface()->all_declared_ivar_begin();
3732 ivar; ivar = ivar->getNextIvar()) {
3733 if (ivar->isInvalidDecl()) continue;
3734 if (ivar->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
3735 if (S.getLangOpts().ObjCWeakRuntime) {
3736 S.Diag(ivar->getLocation(), diag::err_arc_weak_disabled);
3737 } else {
3738 S.Diag(ivar->getLocation(), diag::err_arc_weak_no_runtime);
3739 }
3740 }
3741 }
3742}
3743
3744/// Diagnose attempts to use flexible array member with retainable object type.
3745static void DiagnoseRetainableFlexibleArrayMember(Sema &S,
3746 ObjCInterfaceDecl *ID) {
3747 if (!S.getLangOpts().ObjCAutoRefCount)
3748 return;
3749
3750 for (auto ivar = ID->all_declared_ivar_begin(); ivar;
3751 ivar = ivar->getNextIvar()) {
3752 if (ivar->isInvalidDecl())
3753 continue;
3754 QualType IvarTy = ivar->getType();
3755 if (IvarTy->isIncompleteArrayType() &&
3756 (IvarTy.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) &&
3757 IvarTy->isObjCLifetimeType()) {
3758 S.Diag(ivar->getLocation(), diag::err_flexible_array_arc_retainable);
3759 ivar->setInvalidDecl();
3760 }
3761 }
3762}
3763
3764Sema::ObjCContainerKind Sema::getObjCContainerKind() const {
3765 switch (CurContext->getDeclKind()) {
3766 case Decl::ObjCInterface:
3767 return Sema::OCK_Interface;
3768 case Decl::ObjCProtocol:
3769 return Sema::OCK_Protocol;
3770 case Decl::ObjCCategory:
3771 if (cast<ObjCCategoryDecl>(CurContext)->IsClassExtension())
3772 return Sema::OCK_ClassExtension;
3773 return Sema::OCK_Category;
3774 case Decl::ObjCImplementation:
3775 return Sema::OCK_Implementation;
3776 case Decl::ObjCCategoryImpl:
3777 return Sema::OCK_CategoryImplementation;
3778
3779 default:
3780 return Sema::OCK_None;
3781 }
3782}
3783
3784static bool IsVariableSizedType(QualType T) {
3785 if (T->isIncompleteArrayType())
3786 return true;
3787 const auto *RecordTy = T->getAs<RecordType>();
3788 return (RecordTy && RecordTy->getDecl()->hasFlexibleArrayMember());
3789}
3790
3791static void DiagnoseVariableSizedIvars(Sema &S, ObjCContainerDecl *OCD) {
3792 ObjCInterfaceDecl *IntfDecl = nullptr;
3793 ObjCInterfaceDecl::ivar_range Ivars = llvm::make_range(
3794 ObjCInterfaceDecl::ivar_iterator(), ObjCInterfaceDecl::ivar_iterator());
3795 if ((IntfDecl = dyn_cast<ObjCInterfaceDecl>(OCD))) {
3796 Ivars = IntfDecl->ivars();
3797 } else if (auto *ImplDecl = dyn_cast<ObjCImplementationDecl>(OCD)) {
3798 IntfDecl = ImplDecl->getClassInterface();
3799 Ivars = ImplDecl->ivars();
3800 } else if (auto *CategoryDecl = dyn_cast<ObjCCategoryDecl>(OCD)) {
3801 if (CategoryDecl->IsClassExtension()) {
3802 IntfDecl = CategoryDecl->getClassInterface();
3803 Ivars = CategoryDecl->ivars();
3804 }
3805 }
3806
3807 // Check if variable sized ivar is in interface and visible to subclasses.
3808 if (!isa<ObjCInterfaceDecl>(OCD)) {
3809 for (auto ivar : Ivars) {
3810 if (!ivar->isInvalidDecl() && IsVariableSizedType(ivar->getType())) {
3811 S.Diag(ivar->getLocation(), diag::warn_variable_sized_ivar_visibility)
3812 << ivar->getDeclName() << ivar->getType();
3813 }
3814 }
3815 }
3816
3817 // Subsequent checks require interface decl.
3818 if (!IntfDecl)
3819 return;
3820
3821 // Check if variable sized ivar is followed by another ivar.
3822 for (ObjCIvarDecl *ivar = IntfDecl->all_declared_ivar_begin(); ivar;
3823 ivar = ivar->getNextIvar()) {
3824 if (ivar->isInvalidDecl() || !ivar->getNextIvar())
3825 continue;
3826 QualType IvarTy = ivar->getType();
3827 bool IsInvalidIvar = false;
3828 if (IvarTy->isIncompleteArrayType()) {
3829 S.Diag(ivar->getLocation(), diag::err_flexible_array_not_at_end)
3830 << ivar->getDeclName() << IvarTy
3831 << TTK_Class; // Use "class" for Obj-C.
3832 IsInvalidIvar = true;
3833 } else if (const RecordType *RecordTy = IvarTy->getAs<RecordType>()) {
3834 if (RecordTy->getDecl()->hasFlexibleArrayMember()) {
3835 S.Diag(ivar->getLocation(),
3836 diag::err_objc_variable_sized_type_not_at_end)
3837 << ivar->getDeclName() << IvarTy;
3838 IsInvalidIvar = true;
3839 }
3840 }
3841 if (IsInvalidIvar) {
3842 S.Diag(ivar->getNextIvar()->getLocation(),
3843 diag::note_next_ivar_declaration)
3844 << ivar->getNextIvar()->getSynthesize();
3845 ivar->setInvalidDecl();
3846 }
3847 }
3848
3849 // Check if ObjC container adds ivars after variable sized ivar in superclass.
3850 // Perform the check only if OCD is the first container to declare ivars to
3851 // avoid multiple warnings for the same ivar.
3852 ObjCIvarDecl *FirstIvar =
3853 (Ivars.begin() == Ivars.end()) ? nullptr : *Ivars.begin();
3854 if (FirstIvar && (FirstIvar == IntfDecl->all_declared_ivar_begin())) {
3855 const ObjCInterfaceDecl *SuperClass = IntfDecl->getSuperClass();
3856 while (SuperClass && SuperClass->ivar_empty())
3857 SuperClass = SuperClass->getSuperClass();
3858 if (SuperClass) {
3859 auto IvarIter = SuperClass->ivar_begin();
3860 std::advance(IvarIter, SuperClass->ivar_size() - 1);
3861 const ObjCIvarDecl *LastIvar = *IvarIter;
3862 if (IsVariableSizedType(LastIvar->getType())) {
3863 S.Diag(FirstIvar->getLocation(),
3864 diag::warn_superclass_variable_sized_type_not_at_end)
3865 << FirstIvar->getDeclName() << LastIvar->getDeclName()
3866 << LastIvar->getType() << SuperClass->getDeclName();
3867 S.Diag(LastIvar->getLocation(), diag::note_entity_declared_at)
3868 << LastIvar->getDeclName();
3869 }
3870 }
3871 }
3872}
3873
3874// Note: For class/category implementations, allMethods is always null.
3875Decl *Sema::ActOnAtEnd(Scope *S, SourceRange AtEnd, ArrayRef<Decl *> allMethods,
3876 ArrayRef<DeclGroupPtrTy> allTUVars) {
3877 if (getObjCContainerKind() == Sema::OCK_None)
3878 return nullptr;
3879
3880 assert(AtEnd.isValid() && "Invalid location for '@end'")(static_cast <bool> (AtEnd.isValid() && "Invalid location for '@end'"
) ? void (0) : __assert_fail ("AtEnd.isValid() && \"Invalid location for '@end'\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 3880, __extension__ __PRETTY_FUNCTION__))
;
3881
3882 auto *OCD = cast<ObjCContainerDecl>(CurContext);
3883 Decl *ClassDecl = OCD;
3884
3885 bool isInterfaceDeclKind =
3886 isa<ObjCInterfaceDecl>(ClassDecl) || isa<ObjCCategoryDecl>(ClassDecl)
3887 || isa<ObjCProtocolDecl>(ClassDecl);
3888 bool checkIdenticalMethods = isa<ObjCImplementationDecl>(ClassDecl);
3889
3890 // FIXME: Remove these and use the ObjCContainerDecl/DeclContext.
3891 llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap;
3892 llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap;
3893
3894 for (unsigned i = 0, e = allMethods.size(); i != e; i++ ) {
3895 ObjCMethodDecl *Method =
3896 cast_or_null<ObjCMethodDecl>(allMethods[i]);
3897
3898 if (!Method) continue; // Already issued a diagnostic.
3899 if (Method->isInstanceMethod()) {
3900 /// Check for instance method of the same name with incompatible types
3901 const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()];
3902 bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
3903 : false;
3904 if ((isInterfaceDeclKind && PrevMethod && !match)
3905 || (checkIdenticalMethods && match)) {
3906 Diag(Method->getLocation(), diag::err_duplicate_method_decl)
3907 << Method->getDeclName();
3908 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
3909 Method->setInvalidDecl();
3910 } else {
3911 if (PrevMethod) {
3912 Method->setAsRedeclaration(PrevMethod);
3913 if (!Context.getSourceManager().isInSystemHeader(
3914 Method->getLocation()))
3915 Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
3916 << Method->getDeclName();
3917 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
3918 }
3919 InsMap[Method->getSelector()] = Method;
3920 /// The following allows us to typecheck messages to "id".
3921 AddInstanceMethodToGlobalPool(Method);
3922 }
3923 } else {
3924 /// Check for class method of the same name with incompatible types
3925 const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()];
3926 bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
3927 : false;
3928 if ((isInterfaceDeclKind && PrevMethod && !match)
3929 || (checkIdenticalMethods && match)) {
3930 Diag(Method->getLocation(), diag::err_duplicate_method_decl)
3931 << Method->getDeclName();
3932 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
3933 Method->setInvalidDecl();
3934 } else {
3935 if (PrevMethod) {
3936 Method->setAsRedeclaration(PrevMethod);
3937 if (!Context.getSourceManager().isInSystemHeader(
3938 Method->getLocation()))
3939 Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
3940 << Method->getDeclName();
3941 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
3942 }
3943 ClsMap[Method->getSelector()] = Method;
3944 AddFactoryMethodToGlobalPool(Method);
3945 }
3946 }
3947 }
3948 if (isa<ObjCInterfaceDecl>(ClassDecl)) {
3949 // Nothing to do here.
3950 } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(ClassDecl)) {
3951 // Categories are used to extend the class by declaring new methods.
3952 // By the same token, they are also used to add new properties. No
3953 // need to compare the added property to those in the class.
3954
3955 if (C->IsClassExtension()) {
3956 ObjCInterfaceDecl *CCPrimary = C->getClassInterface();
3957 DiagnoseClassExtensionDupMethods(C, CCPrimary);
3958 }
3959 }
3960 if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(ClassDecl)) {
3961 if (CDecl->getIdentifier())
3962 // ProcessPropertyDecl is responsible for diagnosing conflicts with any
3963 // user-defined setter/getter. It also synthesizes setter/getter methods
3964 // and adds them to the DeclContext and global method pools.
3965 for (auto *I : CDecl->properties())
3966 ProcessPropertyDecl(I);
3967 CDecl->setAtEndRange(AtEnd);
3968 }
3969 if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(ClassDecl)) {
3970 IC->setAtEndRange(AtEnd);
3971 if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) {
3972 // Any property declared in a class extension might have user
3973 // declared setter or getter in current class extension or one
3974 // of the other class extensions. Mark them as synthesized as
3975 // property will be synthesized when property with same name is
3976 // seen in the @implementation.
3977 for (const auto *Ext : IDecl->visible_extensions()) {
3978 for (const auto *Property : Ext->instance_properties()) {
3979 // Skip over properties declared @dynamic
3980 if (const ObjCPropertyImplDecl *PIDecl
3981 = IC->FindPropertyImplDecl(Property->getIdentifier(),
3982 Property->getQueryKind()))
3983 if (PIDecl->getPropertyImplementation()
3984 == ObjCPropertyImplDecl::Dynamic)
3985 continue;
3986
3987 for (const auto *Ext : IDecl->visible_extensions()) {
3988 if (ObjCMethodDecl *GetterMethod
3989 = Ext->getInstanceMethod(Property->getGetterName()))
3990 GetterMethod->setPropertyAccessor(true);
3991 if (!Property->isReadOnly())
3992 if (ObjCMethodDecl *SetterMethod
3993 = Ext->getInstanceMethod(Property->getSetterName()))
3994 SetterMethod->setPropertyAccessor(true);
3995 }
3996 }
3997 }
3998 ImplMethodsVsClassMethods(S, IC, IDecl);
3999 AtomicPropertySetterGetterRules(IC, IDecl);
4000 DiagnoseOwningPropertyGetterSynthesis(IC);
4001 DiagnoseUnusedBackingIvarInAccessor(S, IC);
4002 if (IDecl->hasDesignatedInitializers())
4003 DiagnoseMissingDesignatedInitOverrides(IC, IDecl);
4004 DiagnoseWeakIvars(*this, IC);
4005 DiagnoseRetainableFlexibleArrayMember(*this, IDecl);
4006
4007 bool HasRootClassAttr = IDecl->hasAttr<ObjCRootClassAttr>();
4008 if (IDecl->getSuperClass() == nullptr) {
4009 // This class has no superclass, so check that it has been marked with
4010 // __attribute((objc_root_class)).
4011 if (!HasRootClassAttr) {
4012 SourceLocation DeclLoc(IDecl->getLocation());
4013 SourceLocation SuperClassLoc(getLocForEndOfToken(DeclLoc));
4014 Diag(DeclLoc, diag::warn_objc_root_class_missing)
4015 << IDecl->getIdentifier();
4016 // See if NSObject is in the current scope, and if it is, suggest
4017 // adding " : NSObject " to the class declaration.
4018 NamedDecl *IF = LookupSingleName(TUScope,
4019 NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject),
4020 DeclLoc, LookupOrdinaryName);
4021 ObjCInterfaceDecl *NSObjectDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF);
4022 if (NSObjectDecl && NSObjectDecl->getDefinition()) {
4023 Diag(SuperClassLoc, diag::note_objc_needs_superclass)
4024 << FixItHint::CreateInsertion(SuperClassLoc, " : NSObject ");
4025 } else {
4026 Diag(SuperClassLoc, diag::note_objc_needs_superclass);
4027 }
4028 }
4029 } else if (HasRootClassAttr) {
4030 // Complain that only root classes may have this attribute.
4031 Diag(IDecl->getLocation(), diag::err_objc_root_class_subclass);
4032 }
4033
4034 if (const ObjCInterfaceDecl *Super = IDecl->getSuperClass()) {
4035 // An interface can subclass another interface with a
4036 // objc_subclassing_restricted attribute when it has that attribute as
4037 // well (because of interfaces imported from Swift). Therefore we have
4038 // to check if we can subclass in the implementation as well.
4039 if (IDecl->hasAttr<ObjCSubclassingRestrictedAttr>() &&
4040 Super->hasAttr<ObjCSubclassingRestrictedAttr>()) {
4041 Diag(IC->getLocation(), diag::err_restricted_superclass_mismatch);
4042 Diag(Super->getLocation(), diag::note_class_declared);
4043 }
4044 }
4045
4046 if (LangOpts.ObjCRuntime.isNonFragile()) {
4047 while (IDecl->getSuperClass()) {
4048 DiagnoseDuplicateIvars(IDecl, IDecl->getSuperClass());
4049 IDecl = IDecl->getSuperClass();
4050 }
4051 }
4052 }
4053 SetIvarInitializers(IC);
4054 } else if (ObjCCategoryImplDecl* CatImplClass =
4055 dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) {
4056 CatImplClass->setAtEndRange(AtEnd);
4057
4058 // Find category interface decl and then check that all methods declared
4059 // in this interface are implemented in the category @implementation.
4060 if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) {
4061 if (ObjCCategoryDecl *Cat
4062 = IDecl->FindCategoryDeclaration(CatImplClass->getIdentifier())) {
4063 ImplMethodsVsClassMethods(S, CatImplClass, Cat);
4064 }
4065 }
4066 } else if (const auto *IntfDecl = dyn_cast<ObjCInterfaceDecl>(ClassDecl)) {
4067 if (const ObjCInterfaceDecl *Super = IntfDecl->getSuperClass()) {
4068 if (!IntfDecl->hasAttr<ObjCSubclassingRestrictedAttr>() &&
4069 Super->hasAttr<ObjCSubclassingRestrictedAttr>()) {
4070 Diag(IntfDecl->getLocation(), diag::err_restricted_superclass_mismatch);
4071 Diag(Super->getLocation(), diag::note_class_declared);
4072 }
4073 }
4074 }
4075 DiagnoseVariableSizedIvars(*this, OCD);
4076 if (isInterfaceDeclKind) {
4077 // Reject invalid vardecls.
4078 for (unsigned i = 0, e = allTUVars.size(); i != e; i++) {
4079 DeclGroupRef DG = allTUVars[i].get();
4080 for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
4081 if (VarDecl *VDecl = dyn_cast<VarDecl>(*I)) {
4082 if (!VDecl->hasExternalStorage())
4083 Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass);
4084 }
4085 }
4086 }
4087 ActOnObjCContainerFinishDefinition();
4088
4089 for (unsigned i = 0, e = allTUVars.size(); i != e; i++) {
4090 DeclGroupRef DG = allTUVars[i].get();
4091 for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
4092 (*I)->setTopLevelDeclInObjCContainer();
4093 Consumer.HandleTopLevelDeclInObjCContainer(DG);
4094 }
4095
4096 ActOnDocumentableDecl(ClassDecl);
4097 return ClassDecl;
4098}
4099
4100/// CvtQTToAstBitMask - utility routine to produce an AST bitmask for
4101/// objective-c's type qualifier from the parser version of the same info.
4102static Decl::ObjCDeclQualifier
4103CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal) {
4104 return (Decl::ObjCDeclQualifier) (unsigned) PQTVal;
4105}
4106
4107/// Check whether the declared result type of the given Objective-C
4108/// method declaration is compatible with the method's class.
4109///
4110static Sema::ResultTypeCompatibilityKind
4111CheckRelatedResultTypeCompatibility(Sema &S, ObjCMethodDecl *Method,
4112 ObjCInterfaceDecl *CurrentClass) {
4113 QualType ResultType = Method->getReturnType();
4114
4115 // If an Objective-C method inherits its related result type, then its
4116 // declared result type must be compatible with its own class type. The
4117 // declared result type is compatible if:
4118 if (const ObjCObjectPointerType *ResultObjectType
4119 = ResultType->getAs<ObjCObjectPointerType>()) {
4120 // - it is id or qualified id, or
4121 if (ResultObjectType->isObjCIdType() ||
4122 ResultObjectType->isObjCQualifiedIdType())
4123 return Sema::RTC_Compatible;
4124
4125 if (CurrentClass) {
4126 if (ObjCInterfaceDecl *ResultClass
4127 = ResultObjectType->getInterfaceDecl()) {
4128 // - it is the same as the method's class type, or
4129 if (declaresSameEntity(CurrentClass, ResultClass))
4130 return Sema::RTC_Compatible;
4131
4132 // - it is a superclass of the method's class type
4133 if (ResultClass->isSuperClassOf(CurrentClass))
4134 return Sema::RTC_Compatible;
4135 }
4136 } else {
4137 // Any Objective-C pointer type might be acceptable for a protocol
4138 // method; we just don't know.
4139 return Sema::RTC_Unknown;
4140 }
4141 }
4142
4143 return Sema::RTC_Incompatible;
4144}
4145
4146namespace {
4147/// A helper class for searching for methods which a particular method
4148/// overrides.
4149class OverrideSearch {
4150public:
4151 Sema &S;
4152 ObjCMethodDecl *Method;
4153 llvm::SmallSetVector<ObjCMethodDecl*, 4> Overridden;
4154 bool Recursive;
4155
4156public:
4157 OverrideSearch(Sema &S, ObjCMethodDecl *method) : S(S), Method(method) {
4158 Selector selector = method->getSelector();
4159
4160 // Bypass this search if we've never seen an instance/class method
4161 // with this selector before.
4162 Sema::GlobalMethodPool::iterator it = S.MethodPool.find(selector);
4163 if (it == S.MethodPool.end()) {
4164 if (!S.getExternalSource()) return;
4165 S.ReadMethodPool(selector);
4166
4167 it = S.MethodPool.find(selector);
4168 if (it == S.MethodPool.end())
4169 return;
4170 }
4171 ObjCMethodList &list =
4172 method->isInstanceMethod() ? it->second.first : it->second.second;
4173 if (!list.getMethod()) return;
4174
4175 ObjCContainerDecl *container
4176 = cast<ObjCContainerDecl>(method->getDeclContext());
4177
4178 // Prevent the search from reaching this container again. This is
4179 // important with categories, which override methods from the
4180 // interface and each other.
4181 if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(container)) {
4182 searchFromContainer(container);
4183 if (ObjCInterfaceDecl *Interface = Category->getClassInterface())
4184 searchFromContainer(Interface);
4185 } else {
4186 searchFromContainer(container);
4187 }
4188 }
4189
4190 typedef decltype(Overridden)::iterator iterator;
4191 iterator begin() const { return Overridden.begin(); }
4192 iterator end() const { return Overridden.end(); }
4193
4194private:
4195 void searchFromContainer(ObjCContainerDecl *container) {
4196 if (container->isInvalidDecl()) return;
4197
4198 switch (container->getDeclKind()) {
4199#define OBJCCONTAINER(type, base) \
4200 case Decl::type: \
4201 searchFrom(cast<type##Decl>(container)); \
4202 break;
4203#define ABSTRACT_DECL(expansion)
4204#define DECL(type, base) \
4205 case Decl::type:
4206#include "clang/AST/DeclNodes.inc"
4207 llvm_unreachable("not an ObjC container!")::llvm::llvm_unreachable_internal("not an ObjC container!", "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 4207)
;
4208 }
4209 }
4210
4211 void searchFrom(ObjCProtocolDecl *protocol) {
4212 if (!protocol->hasDefinition())
4213 return;
4214
4215 // A method in a protocol declaration overrides declarations from
4216 // referenced ("parent") protocols.
4217 search(protocol->getReferencedProtocols());
4218 }
4219
4220 void searchFrom(ObjCCategoryDecl *category) {
4221 // A method in a category declaration overrides declarations from
4222 // the main class and from protocols the category references.
4223 // The main class is handled in the constructor.
4224 search(category->getReferencedProtocols());
4225 }
4226
4227 void searchFrom(ObjCCategoryImplDecl *impl) {
4228 // A method in a category definition that has a category
4229 // declaration overrides declarations from the category
4230 // declaration.
4231 if (ObjCCategoryDecl *category = impl->getCategoryDecl()) {
4232 search(category);
4233 if (ObjCInterfaceDecl *Interface = category->getClassInterface())
4234 search(Interface);
4235
4236 // Otherwise it overrides declarations from the class.
4237 } else if (ObjCInterfaceDecl *Interface = impl->getClassInterface()) {
4238 search(Interface);
4239 }
4240 }
4241
4242 void searchFrom(ObjCInterfaceDecl *iface) {
4243 // A method in a class declaration overrides declarations from
4244 if (!iface->hasDefinition())
4245 return;
4246
4247 // - categories,
4248 for (auto *Cat : iface->known_categories())
4249 search(Cat);
4250
4251 // - the super class, and
4252 if (ObjCInterfaceDecl *super = iface->getSuperClass())
4253 search(super);
4254
4255 // - any referenced protocols.
4256 search(iface->getReferencedProtocols());
4257 }
4258
4259 void searchFrom(ObjCImplementationDecl *impl) {
4260 // A method in a class implementation overrides declarations from
4261 // the class interface.
4262 if (ObjCInterfaceDecl *Interface = impl->getClassInterface())
4263 search(Interface);
4264 }
4265
4266 void search(const ObjCProtocolList &protocols) {
4267 for (ObjCProtocolList::iterator i = protocols.begin(), e = protocols.end();
4268 i != e; ++i)
4269 search(*i);
4270 }
4271
4272 void search(ObjCContainerDecl *container) {
4273 // Check for a method in this container which matches this selector.
4274 ObjCMethodDecl *meth = container->getMethod(Method->getSelector(),
4275 Method->isInstanceMethod(),
4276 /*AllowHidden=*/true);
4277
4278 // If we find one, record it and bail out.
4279 if (meth) {
4280 Overridden.insert(meth);
4281 return;
4282 }
4283
4284 // Otherwise, search for methods that a hypothetical method here
4285 // would have overridden.
4286
4287 // Note that we're now in a recursive case.
4288 Recursive = true;
4289
4290 searchFromContainer(container);
4291 }
4292};
4293} // end anonymous namespace
4294
4295void Sema::CheckObjCMethodOverrides(ObjCMethodDecl *ObjCMethod,
4296 ObjCInterfaceDecl *CurrentClass,
4297 ResultTypeCompatibilityKind RTC) {
4298 // Search for overridden methods and merge information down from them.
4299 OverrideSearch overrides(*this, ObjCMethod);
4300 // Keep track if the method overrides any method in the class's base classes,
4301 // its protocols, or its categories' protocols; we will keep that info
4302 // in the ObjCMethodDecl.
4303 // For this info, a method in an implementation is not considered as
4304 // overriding the same method in the interface or its categories.
4305 bool hasOverriddenMethodsInBaseOrProtocol = false;
4306 for (OverrideSearch::iterator
4307 i = overrides.begin(), e = overrides.end(); i != e; ++i) {
4308 ObjCMethodDecl *overridden = *i;
4309
4310 if (!hasOverriddenMethodsInBaseOrProtocol) {
4311 if (isa<ObjCProtocolDecl>(overridden->getDeclContext()) ||
4312 CurrentClass != overridden->getClassInterface() ||
4313 overridden->isOverriding()) {
4314 hasOverriddenMethodsInBaseOrProtocol = true;
4315
4316 } else if (isa<ObjCImplDecl>(ObjCMethod->getDeclContext())) {
4317 // OverrideSearch will return as "overridden" the same method in the
4318 // interface. For hasOverriddenMethodsInBaseOrProtocol, we need to
4319 // check whether a category of a base class introduced a method with the
4320 // same selector, after the interface method declaration.
4321 // To avoid unnecessary lookups in the majority of cases, we use the
4322 // extra info bits in GlobalMethodPool to check whether there were any
4323 // category methods with this selector.
4324 GlobalMethodPool::iterator It =
4325 MethodPool.find(ObjCMethod->getSelector());
4326 if (It != MethodPool.end()) {
4327 ObjCMethodList &List =
4328 ObjCMethod->isInstanceMethod()? It->second.first: It->second.second;
4329 unsigned CategCount = List.getBits();
4330 if (CategCount > 0) {
4331 // If the method is in a category we'll do lookup if there were at
4332 // least 2 category methods recorded, otherwise only one will do.
4333 if (CategCount > 1 ||
4334 !isa<ObjCCategoryImplDecl>(overridden->getDeclContext())) {
4335 OverrideSearch overrides(*this, overridden);
4336 for (OverrideSearch::iterator
4337 OI= overrides.begin(), OE= overrides.end(); OI!=OE; ++OI) {
4338 ObjCMethodDecl *SuperOverridden = *OI;
4339 if (isa<ObjCProtocolDecl>(SuperOverridden->getDeclContext()) ||
4340 CurrentClass != SuperOverridden->getClassInterface()) {
4341 hasOverriddenMethodsInBaseOrProtocol = true;
4342 overridden->setOverriding(true);
4343 break;
4344 }
4345 }
4346 }
4347 }
4348 }
4349 }
4350 }
4351
4352 // Propagate down the 'related result type' bit from overridden methods.
4353 if (RTC != Sema::RTC_Incompatible && overridden->hasRelatedResultType())
4354 ObjCMethod->SetRelatedResultType();
4355
4356 // Then merge the declarations.
4357 mergeObjCMethodDecls(ObjCMethod, overridden);
4358
4359 if (ObjCMethod->isImplicit() && overridden->isImplicit())
4360 continue; // Conflicting properties are detected elsewhere.
4361
4362 // Check for overriding methods
4363 if (isa<ObjCInterfaceDecl>(ObjCMethod->getDeclContext()) ||
4364 isa<ObjCImplementationDecl>(ObjCMethod->getDeclContext()))
4365 CheckConflictingOverridingMethod(ObjCMethod, overridden,
4366 isa<ObjCProtocolDecl>(overridden->getDeclContext()));
4367
4368 if (CurrentClass && overridden->getDeclContext() != CurrentClass &&
4369 isa<ObjCInterfaceDecl>(overridden->getDeclContext()) &&
4370 !overridden->isImplicit() /* not meant for properties */) {
4371 ObjCMethodDecl::param_iterator ParamI = ObjCMethod->param_begin(),
4372 E = ObjCMethod->param_end();
4373 ObjCMethodDecl::param_iterator PrevI = overridden->param_begin(),
4374 PrevE = overridden->param_end();
4375 for (; ParamI != E && PrevI != PrevE; ++ParamI, ++PrevI) {
4376 assert(PrevI != overridden->param_end() && "Param mismatch")(static_cast <bool> (PrevI != overridden->param_end(
) && "Param mismatch") ? void (0) : __assert_fail ("PrevI != overridden->param_end() && \"Param mismatch\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 4376, __extension__ __PRETTY_FUNCTION__))
;
4377 QualType T1 = Context.getCanonicalType((*ParamI)->getType());
4378 QualType T2 = Context.getCanonicalType((*PrevI)->getType());
4379 // If type of argument of method in this class does not match its
4380 // respective argument type in the super class method, issue warning;
4381 if (!Context.typesAreCompatible(T1, T2)) {
4382 Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super)
4383 << T1 << T2;
4384 Diag(overridden->getLocation(), diag::note_previous_declaration);
4385 break;
4386 }
4387 }
4388 }
4389 }
4390
4391 ObjCMethod->setOverriding(hasOverriddenMethodsInBaseOrProtocol);
4392}
4393
4394/// Merge type nullability from for a redeclaration of the same entity,
4395/// producing the updated type of the redeclared entity.
4396static QualType mergeTypeNullabilityForRedecl(Sema &S, SourceLocation loc,
4397 QualType type,
4398 bool usesCSKeyword,
4399 SourceLocation prevLoc,
4400 QualType prevType,
4401 bool prevUsesCSKeyword) {
4402 // Determine the nullability of both types.
4403 auto nullability = type->getNullability(S.Context);
4404 auto prevNullability = prevType->getNullability(S.Context);
4405
4406 // Easy case: both have nullability.
4407 if (nullability.hasValue() == prevNullability.hasValue()) {
4408 // Neither has nullability; continue.
4409 if (!nullability)
4410 return type;
4411
4412 // The nullabilities are equivalent; do nothing.
4413 if (*nullability == *prevNullability)
4414 return type;
4415
4416 // Complain about mismatched nullability.
4417 S.Diag(loc, diag::err_nullability_conflicting)
4418 << DiagNullabilityKind(*nullability, usesCSKeyword)
4419 << DiagNullabilityKind(*prevNullability, prevUsesCSKeyword);
4420 return type;
4421 }
4422
4423 // If it's the redeclaration that has nullability, don't change anything.
4424 if (nullability)
4425 return type;
4426
4427 // Otherwise, provide the result with the same nullability.
4428 return S.Context.getAttributedType(
4429 AttributedType::getNullabilityAttrKind(*prevNullability),
4430 type, type);
4431}
4432
4433/// Merge information from the declaration of a method in the \@interface
4434/// (or a category/extension) into the corresponding method in the
4435/// @implementation (for a class or category).
4436static void mergeInterfaceMethodToImpl(Sema &S,
4437 ObjCMethodDecl *method,
4438 ObjCMethodDecl *prevMethod) {
4439 // Merge the objc_requires_super attribute.
4440 if (prevMethod->hasAttr<ObjCRequiresSuperAttr>() &&
4441 !method->hasAttr<ObjCRequiresSuperAttr>()) {
4442 // merge the attribute into implementation.
4443 method->addAttr(
4444 ObjCRequiresSuperAttr::CreateImplicit(S.Context,
4445 method->getLocation()));
4446 }
4447
4448 // Merge nullability of the result type.
4449 QualType newReturnType
4450 = mergeTypeNullabilityForRedecl(
4451 S, method->getReturnTypeSourceRange().getBegin(),
4452 method->getReturnType(),
4453 method->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability,
4454 prevMethod->getReturnTypeSourceRange().getBegin(),
4455 prevMethod->getReturnType(),
4456 prevMethod->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability);
4457 method->setReturnType(newReturnType);
4458
4459 // Handle each of the parameters.
4460 unsigned numParams = method->param_size();
4461 unsigned numPrevParams = prevMethod->param_size();
4462 for (unsigned i = 0, n = std::min(numParams, numPrevParams); i != n; ++i) {
4463 ParmVarDecl *param = method->param_begin()[i];
4464 ParmVarDecl *prevParam = prevMethod->param_begin()[i];
4465
4466 // Merge nullability.
4467 QualType newParamType
4468 = mergeTypeNullabilityForRedecl(
4469 S, param->getLocation(), param->getType(),
4470 param->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability,
4471 prevParam->getLocation(), prevParam->getType(),
4472 prevParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability);
4473 param->setType(newParamType);
4474 }
4475}
4476
4477/// Verify that the method parameters/return value have types that are supported
4478/// by the x86 target.
4479static void checkObjCMethodX86VectorTypes(Sema &SemaRef,
4480 const ObjCMethodDecl *Method) {
4481 assert(SemaRef.getASTContext().getTargetInfo().getTriple().getArch() ==(static_cast <bool> (SemaRef.getASTContext().getTargetInfo
().getTriple().getArch() == llvm::Triple::x86 && "x86-specific check invoked for a different target"
) ? void (0) : __assert_fail ("SemaRef.getASTContext().getTargetInfo().getTriple().getArch() == llvm::Triple::x86 && \"x86-specific check invoked for a different target\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 4483, __extension__ __PRETTY_FUNCTION__))
4482 llvm::Triple::x86 &&(static_cast <bool> (SemaRef.getASTContext().getTargetInfo
().getTriple().getArch() == llvm::Triple::x86 && "x86-specific check invoked for a different target"
) ? void (0) : __assert_fail ("SemaRef.getASTContext().getTargetInfo().getTriple().getArch() == llvm::Triple::x86 && \"x86-specific check invoked for a different target\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 4483, __extension__ __PRETTY_FUNCTION__))
4483 "x86-specific check invoked for a different target")(static_cast <bool> (SemaRef.getASTContext().getTargetInfo
().getTriple().getArch() == llvm::Triple::x86 && "x86-specific check invoked for a different target"
) ? void (0) : __assert_fail ("SemaRef.getASTContext().getTargetInfo().getTriple().getArch() == llvm::Triple::x86 && \"x86-specific check invoked for a different target\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 4483, __extension__ __PRETTY_FUNCTION__))
;
4484 SourceLocation Loc;
4485 QualType T;
4486 for (const ParmVarDecl *P : Method->parameters()) {
4487 if (P->getType()->isVectorType()) {
4488 Loc = P->getLocStart();
4489 T = P->getType();
4490 break;
4491 }
4492 }
4493 if (Loc.isInvalid()) {
4494 if (Method->getReturnType()->isVectorType()) {
4495 Loc = Method->getReturnTypeSourceRange().getBegin();
4496 T = Method->getReturnType();
4497 } else
4498 return;
4499 }
4500
4501 // Vector parameters/return values are not supported by objc_msgSend on x86 in
4502 // iOS < 9 and macOS < 10.11.
4503 const auto &Triple = SemaRef.getASTContext().getTargetInfo().getTriple();
4504 VersionTuple AcceptedInVersion;
4505 if (Triple.getOS() == llvm::Triple::IOS)
4506 AcceptedInVersion = VersionTuple(/*Major=*/9);
4507 else if (Triple.isMacOSX())
4508 AcceptedInVersion = VersionTuple(/*Major=*/10, /*Minor=*/11);
4509 else
4510 return;
4511 if (SemaRef.getASTContext().getTargetInfo().getPlatformMinVersion() >=
4512 AcceptedInVersion)
4513 return;
4514 SemaRef.Diag(Loc, diag::err_objc_method_unsupported_param_ret_type)
4515 << T << (Method->getReturnType()->isVectorType() ? /*return value*/ 1
4516 : /*parameter*/ 0)
4517 << (Triple.isMacOSX() ? "macOS 10.11" : "iOS 9");
4518}
4519
4520Decl *Sema::ActOnMethodDeclaration(
4521 Scope *S, SourceLocation MethodLoc, SourceLocation EndLoc,
4522 tok::TokenKind MethodType, ObjCDeclSpec &ReturnQT, ParsedType ReturnType,
4523 ArrayRef<SourceLocation> SelectorLocs, Selector Sel,
4524 // optional arguments. The number of types/arguments is obtained
4525 // from the Sel.getNumArgs().
4526 ObjCArgInfo *ArgInfo, DeclaratorChunk::ParamInfo *CParamInfo,
4527 unsigned CNumArgs, // c-style args
4528 const ParsedAttributesView &AttrList, tok::ObjCKeywordKind MethodDeclKind,
4529 bool isVariadic, bool MethodDefinition) {
4530 // Make sure we can establish a context for the method.
4531 if (!CurContext->isObjCContainer()) {
1
Taking false branch
4532 Diag(MethodLoc, diag::err_missing_method_context);
4533 return nullptr;
4534 }
4535 Decl *ClassDecl = cast<ObjCContainerDecl>(CurContext);
4536 QualType resultDeclType;
4537
4538 bool HasRelatedResultType = false;
4539 TypeSourceInfo *ReturnTInfo = nullptr;
4540 if (ReturnType) {
2
Taking true branch
4541 resultDeclType = GetTypeFromParser(ReturnType, &ReturnTInfo);
4542
4543 if (CheckFunctionReturnType(resultDeclType, MethodLoc))
3
Assuming the condition is false
4
Taking false branch
4544 return nullptr;
4545
4546 QualType bareResultType = resultDeclType;
4547 (void)AttributedType::stripOuterNullability(bareResultType);
4548 HasRelatedResultType = (bareResultType == Context.getObjCInstanceType());
4549 } else { // get the type for "id".
4550 resultDeclType = Context.getObjCIdType();
4551 Diag(MethodLoc, diag::warn_missing_method_return_type)
4552 << FixItHint::CreateInsertion(SelectorLocs.front(), "(id)");
4553 }
4554
4555 ObjCMethodDecl *ObjCMethod = ObjCMethodDecl::Create(
4556 Context, MethodLoc, EndLoc, Sel, resultDeclType, ReturnTInfo, CurContext,
4557 MethodType == tok::minus, isVariadic,
5
Assuming 'MethodType' is not equal to minus
4558 /*isPropertyAccessor=*/false,
4559 /*isImplicitlyDeclared=*/false, /*isDefined=*/false,
4560 MethodDeclKind == tok::objc_optional ? ObjCMethodDecl::Optional
6
Assuming 'MethodDeclKind' is not equal to objc_optional
7
'?' condition is false
4561 : ObjCMethodDecl::Required,
4562 HasRelatedResultType);
4563
4564 SmallVector<ParmVarDecl*, 16> Params;
4565
4566 for (unsigned i = 0, e = Sel.getNumArgs(); i != e; ++i) {
8
Assuming 'i' is equal to 'e'
9
Loop condition is false. Execution continues on line 4619
4567 QualType ArgType;
4568 TypeSourceInfo *DI;
4569
4570 if (!ArgInfo[i].Type) {
4571 ArgType = Context.getObjCIdType();
4572 DI = nullptr;
4573 } else {
4574 ArgType = GetTypeFromParser(ArgInfo[i].Type, &DI);
4575 }
4576
4577 LookupResult R(*this, ArgInfo[i].Name, ArgInfo[i].NameLoc,
4578 LookupOrdinaryName, forRedeclarationInCurContext());
4579 LookupName(R, S);
4580 if (R.isSingleResult()) {
4581 NamedDecl *PrevDecl = R.getFoundDecl();
4582 if (S->isDeclScope(PrevDecl)) {
4583 Diag(ArgInfo[i].NameLoc,
4584 (MethodDefinition ? diag::warn_method_param_redefinition
4585 : diag::warn_method_param_declaration))
4586 << ArgInfo[i].Name;
4587 Diag(PrevDecl->getLocation(),
4588 diag::note_previous_declaration);
4589 }
4590 }
4591
4592 SourceLocation StartLoc = DI
4593 ? DI->getTypeLoc().getBeginLoc()
4594 : ArgInfo[i].NameLoc;
4595
4596 ParmVarDecl* Param = CheckParameter(ObjCMethod, StartLoc,
4597 ArgInfo[i].NameLoc, ArgInfo[i].Name,
4598 ArgType, DI, SC_None);
4599
4600 Param->setObjCMethodScopeInfo(i);
4601
4602 Param->setObjCDeclQualifier(
4603 CvtQTToAstBitMask(ArgInfo[i].DeclSpec.getObjCDeclQualifier()));
4604
4605 // Apply the attributes to the parameter.
4606 ProcessDeclAttributeList(TUScope, Param, ArgInfo[i].ArgAttrs);
4607 AddPragmaAttributes(TUScope, Param);
4608
4609 if (Param->hasAttr<BlocksAttr>()) {
4610 Diag(Param->getLocation(), diag::err_block_on_nonlocal);
4611 Param->setInvalidDecl();
4612 }
4613 S->AddDecl(Param);
4614 IdResolver.AddDecl(Param);
4615
4616 Params.push_back(Param);
4617 }
4618
4619 for (unsigned i = 0, e = CNumArgs; i != e; ++i) {
10
Assuming 'i' is equal to 'e'
11
Loop condition is false. Execution continues on line 4632
4620 ParmVarDecl *Param = cast<ParmVarDecl>(CParamInfo[i].Param);
4621 QualType ArgType = Param->getType();
4622 if (ArgType.isNull())
4623 ArgType = Context.getObjCIdType();
4624 else
4625 // Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
4626 ArgType = Context.getAdjustedParameterType(ArgType);
4627
4628 Param->setDeclContext(ObjCMethod);
4629 Params.push_back(Param);
4630 }
4631
4632 ObjCMethod->setMethodParams(Context, Params, SelectorLocs);
4633 ObjCMethod->setObjCDeclQualifier(
4634 CvtQTToAstBitMask(ReturnQT.getObjCDeclQualifier()));
4635
4636 ProcessDeclAttributeList(TUScope, ObjCMethod, AttrList);
4637 AddPragmaAttributes(TUScope, ObjCMethod);
4638
4639 // Add the method now.
4640 const ObjCMethodDecl *PrevMethod = nullptr;
4641 if (ObjCImplDecl *ImpDecl = dyn_cast<ObjCImplDecl>(ClassDecl)) {
12
Taking false branch
4642 if (MethodType == tok::minus) {
4643 PrevMethod = ImpDecl->getInstanceMethod(Sel);
4644 ImpDecl->addInstanceMethod(ObjCMethod);
4645 } else {
4646 PrevMethod = ImpDecl->getClassMethod(Sel);
4647 ImpDecl->addClassMethod(ObjCMethod);
4648 }
4649
4650 // Merge information from the @interface declaration into the
4651 // @implementation.
4652 if (ObjCInterfaceDecl *IDecl = ImpDecl->getClassInterface()) {
4653 if (auto *IMD = IDecl->lookupMethod(ObjCMethod->getSelector(),
4654 ObjCMethod->isInstanceMethod())) {
4655 mergeInterfaceMethodToImpl(*this, ObjCMethod, IMD);
4656
4657 // Warn about defining -dealloc in a category.
4658 if (isa<ObjCCategoryImplDecl>(ImpDecl) && IMD->isOverriding() &&
4659 ObjCMethod->getSelector().getMethodFamily() == OMF_dealloc) {
4660 Diag(ObjCMethod->getLocation(), diag::warn_dealloc_in_category)
4661 << ObjCMethod->getDeclName();
4662 }
4663 }
4664
4665 // Warn if a method declared in a protocol to which a category or
4666 // extension conforms is non-escaping and the implementation's method is
4667 // escaping.
4668 for (auto *C : IDecl->visible_categories())
4669 for (auto &P : C->protocols())
4670 if (auto *IMD = P->lookupMethod(ObjCMethod->getSelector(),
4671 ObjCMethod->isInstanceMethod())) {
4672 assert(ObjCMethod->parameters().size() ==(static_cast <bool> (ObjCMethod->parameters().size()
== IMD->parameters().size() && "Methods have different number of parameters"
) ? void (0) : __assert_fail ("ObjCMethod->parameters().size() == IMD->parameters().size() && \"Methods have different number of parameters\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 4674, __extension__ __PRETTY_FUNCTION__))
4673 IMD->parameters().size() &&(static_cast <bool> (ObjCMethod->parameters().size()
== IMD->parameters().size() && "Methods have different number of parameters"
) ? void (0) : __assert_fail ("ObjCMethod->parameters().size() == IMD->parameters().size() && \"Methods have different number of parameters\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 4674, __extension__ __PRETTY_FUNCTION__))
4674 "Methods have different number of parameters")(static_cast <bool> (ObjCMethod->parameters().size()
== IMD->parameters().size() && "Methods have different number of parameters"
) ? void (0) : __assert_fail ("ObjCMethod->parameters().size() == IMD->parameters().size() && \"Methods have different number of parameters\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 4674, __extension__ __PRETTY_FUNCTION__))
;
4675 auto OI = IMD->param_begin(), OE = IMD->param_end();
4676 auto NI = ObjCMethod->param_begin();
4677 for (; OI != OE; ++OI, ++NI)
4678 diagnoseNoescape(*NI, *OI, C, P, *this);
4679 }
4680 }
4681 } else {
4682 cast<DeclContext>(ClassDecl)->addDecl(ObjCMethod);
4683 }
4684
4685 if (PrevMethod) {
13
Taking false branch
4686 // You can never have two method definitions with the same name.
4687 Diag(ObjCMethod->getLocation(), diag::err_duplicate_method_decl)
4688 << ObjCMethod->getDeclName();
4689 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
4690 ObjCMethod->setInvalidDecl();
4691 return ObjCMethod;
4692 }
4693
4694 // If this Objective-C method does not have a related result type, but we
4695 // are allowed to infer related result types, try to do so based on the
4696 // method family.
4697 ObjCInterfaceDecl *CurrentClass = dyn_cast<ObjCInterfaceDecl>(ClassDecl);
4698 if (!CurrentClass) {
14
Taking true branch
4699 if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(ClassDecl))
15
Taking false branch
4700 CurrentClass = Cat->getClassInterface();
4701 else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(ClassDecl))
16
Taking false branch
4702 CurrentClass = Impl->getClassInterface();
4703 else if (ObjCCategoryImplDecl *CatImpl
17
Taking false branch
4704 = dyn_cast<ObjCCategoryImplDecl>(ClassDecl))
4705 CurrentClass = CatImpl->getClassInterface();
4706 }
4707
4708 ResultTypeCompatibilityKind RTC
4709 = CheckRelatedResultTypeCompatibility(*this, ObjCMethod, CurrentClass);
4710
4711 CheckObjCMethodOverrides(ObjCMethod, CurrentClass, RTC);
4712
4713 bool ARCError = false;
4714 if (getLangOpts().ObjCAutoRefCount)
18
Assuming the condition is true
19
Taking true branch
4715 ARCError = CheckARCMethodDecl(ObjCMethod);
20
Calling 'Sema::CheckARCMethodDecl'
4716
4717 // Infer the related result type when possible.
4718 if (!ARCError && RTC == Sema::RTC_Compatible &&
4719 !ObjCMethod->hasRelatedResultType() &&
4720 LangOpts.ObjCInferRelatedResultType) {
4721 bool InferRelatedResultType = false;
4722 switch (ObjCMethod->getMethodFamily()) {
4723 case OMF_None:
4724 case OMF_copy:
4725 case OMF_dealloc:
4726 case OMF_finalize:
4727 case OMF_mutableCopy:
4728 case OMF_release:
4729 case OMF_retainCount:
4730 case OMF_initialize:
4731 case OMF_performSelector:
4732 break;
4733
4734 case OMF_alloc:
4735 case OMF_new:
4736 InferRelatedResultType = ObjCMethod->isClassMethod();
4737 break;
4738
4739 case OMF_init:
4740 case OMF_autorelease:
4741 case OMF_retain:
4742 case OMF_self:
4743 InferRelatedResultType = ObjCMethod->isInstanceMethod();
4744 break;
4745 }
4746
4747 if (InferRelatedResultType &&
4748 !ObjCMethod->getReturnType()->isObjCIndependentClassType())
4749 ObjCMethod->SetRelatedResultType();
4750 }
4751
4752 if (MethodDefinition &&
4753 Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
4754 checkObjCMethodX86VectorTypes(*this, ObjCMethod);
4755
4756 // + load method cannot have availability attributes. It get called on
4757 // startup, so it has to have the availability of the deployment target.
4758 if (const auto *attr = ObjCMethod->getAttr<AvailabilityAttr>()) {
4759 if (ObjCMethod->isClassMethod() &&
4760 ObjCMethod->getSelector().getAsString() == "load") {
4761 Diag(attr->getLocation(), diag::warn_availability_on_static_initializer)
4762 << 0;
4763 ObjCMethod->dropAttr<AvailabilityAttr>();
4764 }
4765 }
4766
4767 ActOnDocumentableDecl(ObjCMethod);
4768
4769 return ObjCMethod;
4770}
4771
4772bool Sema::CheckObjCDeclScope(Decl *D) {
4773 // Following is also an error. But it is caused by a missing @end
4774 // and diagnostic is issued elsewhere.
4775 if (isa<ObjCContainerDecl>(CurContext->getRedeclContext()))
4776 return false;
4777
4778 // If we switched context to translation unit while we are still lexically in
4779 // an objc container, it means the parser missed emitting an error.
4780 if (isa<TranslationUnitDecl>(getCurLexicalContext()->getRedeclContext()))
4781 return false;
4782
4783 Diag(D->getLocation(), diag::err_objc_decls_may_only_appear_in_global_scope);
4784 D->setInvalidDecl();
4785
4786 return true;
4787}
4788
4789/// Called whenever \@defs(ClassName) is encountered in the source. Inserts the
4790/// instance variables of ClassName into Decls.
4791void Sema::ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart,
4792 IdentifierInfo *ClassName,
4793 SmallVectorImpl<Decl*> &Decls) {
4794 // Check that ClassName is a valid class
4795 ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName, DeclStart);
4796 if (!Class) {
4797 Diag(DeclStart, diag::err_undef_interface) << ClassName;
4798 return;
4799 }
4800 if (LangOpts.ObjCRuntime.isNonFragile()) {
4801 Diag(DeclStart, diag::err_atdef_nonfragile_interface);
4802 return;
4803 }
4804
4805 // Collect the instance variables
4806 SmallVector<const ObjCIvarDecl*, 32> Ivars;
4807 Context.DeepCollectObjCIvars(Class, true, Ivars);
4808 // For each ivar, create a fresh ObjCAtDefsFieldDecl.
4809 for (unsigned i = 0; i < Ivars.size(); i++) {
4810 const FieldDecl* ID = Ivars[i];
4811 RecordDecl *Record = dyn_cast<RecordDecl>(TagD);
4812 Decl *FD = ObjCAtDefsFieldDecl::Create(Context, Record,
4813 /*FIXME: StartL=*/ID->getLocation(),
4814 ID->getLocation(),
4815 ID->getIdentifier(), ID->getType(),
4816 ID->getBitWidth());
4817 Decls.push_back(FD);
4818 }
4819
4820 // Introduce all of these fields into the appropriate scope.
4821 for (SmallVectorImpl<Decl*>::iterator D = Decls.begin();
4822 D != Decls.end(); ++D) {
4823 FieldDecl *FD = cast<FieldDecl>(*D);
4824 if (getLangOpts().CPlusPlus)
4825 PushOnScopeChains(FD, S);
4826 else if (RecordDecl *Record = dyn_cast<RecordDecl>(TagD))
4827 Record->addDecl(FD);
4828 }
4829}
4830
4831/// Build a type-check a new Objective-C exception variable declaration.
4832VarDecl *Sema::BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType T,
4833 SourceLocation StartLoc,
4834 SourceLocation IdLoc,
4835 IdentifierInfo *Id,
4836 bool Invalid) {
4837 // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
4838 // duration shall not be qualified by an address-space qualifier."
4839 // Since all parameters have automatic store duration, they can not have
4840 // an address space.
4841 if (T.getAddressSpace() != LangAS::Default) {
4842 Diag(IdLoc, diag::err_arg_with_address_space);
4843 Invalid = true;
4844 }
4845
4846 // An @catch parameter must be an unqualified object pointer type;
4847 // FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"?
4848 if (Invalid) {
4849 // Don't do any further checking.
4850 } else if (T->isDependentType()) {
4851 // Okay: we don't know what this type will instantiate to.
4852 } else if (T->isObjCQualifiedIdType()) {
4853 Invalid = true;
4854 Diag(IdLoc, diag::err_illegal_qualifiers_on_catch_parm);
4855 } else if (T->isObjCIdType()) {
4856 // Okay: we don't know what this type will instantiate to.
4857 } else if (!T->isObjCObjectPointerType()) {
4858 Invalid = true;
4859 Diag(IdLoc, diag::err_catch_param_not_objc_type);
4860 } else if (!T->getAs<ObjCObjectPointerType>()->getInterfaceType()) {
4861 Invalid = true;
4862 Diag(IdLoc, diag::err_catch_param_not_objc_type);
4863 }
4864
4865 VarDecl *New = VarDecl::Create(Context, CurContext, StartLoc, IdLoc, Id,
4866 T, TInfo, SC_None);
4867 New->setExceptionVariable(true);
4868
4869 // In ARC, infer 'retaining' for variables of retainable type.
4870 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(New))
4871 Invalid = true;
4872
4873 if (Invalid)
4874 New->setInvalidDecl();
4875 return New;
4876}
4877
4878Decl *Sema::ActOnObjCExceptionDecl(Scope *S, Declarator &D) {
4879 const DeclSpec &DS = D.getDeclSpec();
4880
4881 // We allow the "register" storage class on exception variables because
4882 // GCC did, but we drop it completely. Any other storage class is an error.
4883 if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
4884 Diag(DS.getStorageClassSpecLoc(), diag::warn_register_objc_catch_parm)
4885 << FixItHint::CreateRemoval(SourceRange(DS.getStorageClassSpecLoc()));
4886 } else if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) {
4887 Diag(DS.getStorageClassSpecLoc(), diag::err_storage_spec_on_catch_parm)
4888 << DeclSpec::getSpecifierName(SCS);
4889 }
4890 if (DS.isInlineSpecified())
4891 Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function)
4892 << getLangOpts().CPlusPlus17;
4893 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
4894 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
4895 diag::err_invalid_thread)
4896 << DeclSpec::getSpecifierName(TSCS);
4897 D.getMutableDeclSpec().ClearStorageClassSpecs();
4898
4899 DiagnoseFunctionSpecifiers(D.getDeclSpec());
4900
4901 // Check that there are no default arguments inside the type of this
4902 // exception object (C++ only).
4903 if (getLangOpts().CPlusPlus)
4904 CheckExtraCXXDefaultArguments(D);
4905
4906 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
4907 QualType ExceptionType = TInfo->getType();
4908
4909 VarDecl *New = BuildObjCExceptionDecl(TInfo, ExceptionType,
4910 D.getSourceRange().getBegin(),
4911 D.getIdentifierLoc(),
4912 D.getIdentifier(),
4913 D.isInvalidType());
4914
4915 // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
4916 if (D.getCXXScopeSpec().isSet()) {
4917 Diag(D.getIdentifierLoc(), diag::err_qualified_objc_catch_parm)
4918 << D.getCXXScopeSpec().getRange();
4919 New->setInvalidDecl();
4920 }
4921
4922 // Add the parameter declaration into this scope.
4923 S->AddDecl(New);
4924 if (D.getIdentifier())
4925 IdResolver.AddDecl(New);
4926
4927 ProcessDeclAttributes(S, New, D);
4928
4929 if (New->hasAttr<BlocksAttr>())
4930 Diag(New->getLocation(), diag::err_block_on_nonlocal);
4931 return New;
4932}
4933
4934/// CollectIvarsToConstructOrDestruct - Collect those ivars which require
4935/// initialization.
4936void Sema::CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI,
4937 SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
4938 for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv;
4939 Iv= Iv->getNextIvar()) {
4940 QualType QT = Context.getBaseElementType(Iv->getType());
4941 if (QT->isRecordType())
4942 Ivars.push_back(Iv);
4943 }
4944}
4945
4946void Sema::DiagnoseUseOfUnimplementedSelectors() {
4947 // Load referenced selectors from the external source.
4948 if (ExternalSource) {
4949 SmallVector<std::pair<Selector, SourceLocation>, 4> Sels;
4950 ExternalSource->ReadReferencedSelectors(Sels);
4951 for (unsigned I = 0, N = Sels.size(); I != N; ++I)
4952 ReferencedSelectors[Sels[I].first] = Sels[I].second;
4953 }
4954
4955 // Warning will be issued only when selector table is
4956 // generated (which means there is at lease one implementation
4957 // in the TU). This is to match gcc's behavior.
4958 if (ReferencedSelectors.empty() ||
4959 !Context.AnyObjCImplementation())
4960 return;
4961 for (auto &SelectorAndLocation : ReferencedSelectors) {
4962 Selector Sel = SelectorAndLocation.first;
4963 SourceLocation Loc = SelectorAndLocation.second;
4964 if (!LookupImplementedMethodInGlobalPool(Sel))
4965 Diag(Loc, diag::warn_unimplemented_selector) << Sel;
4966 }
4967}
4968
4969ObjCIvarDecl *
4970Sema::GetIvarBackingPropertyAccessor(const ObjCMethodDecl *Method,
4971 const ObjCPropertyDecl *&PDecl) const {
4972 if (Method->isClassMethod())
4973 return nullptr;
4974 const ObjCInterfaceDecl *IDecl = Method->getClassInterface();
4975 if (!IDecl)
4976 return nullptr;
4977 Method = IDecl->lookupMethod(Method->getSelector(), /*isInstance=*/true,
4978 /*shallowCategoryLookup=*/false,
4979 /*followSuper=*/false);
4980 if (!Method || !Method->isPropertyAccessor())
4981 return nullptr;
4982 if ((PDecl = Method->findPropertyDecl()))
4983 if (ObjCIvarDecl *IV = PDecl->getPropertyIvarDecl()) {
4984 // property backing ivar must belong to property's class
4985 // or be a private ivar in class's implementation.
4986 // FIXME. fix the const-ness issue.
4987 IV = const_cast<ObjCInterfaceDecl *>(IDecl)->lookupInstanceVariable(
4988 IV->getIdentifier());
4989 return IV;
4990 }
4991 return nullptr;
4992}
4993
4994namespace {
4995 /// Used by Sema::DiagnoseUnusedBackingIvarInAccessor to check if a property
4996 /// accessor references the backing ivar.
4997 class UnusedBackingIvarChecker :
4998 public RecursiveASTVisitor<UnusedBackingIvarChecker> {
4999 public:
5000 Sema &S;
5001 const ObjCMethodDecl *Method;
5002 const ObjCIvarDecl *IvarD;
5003 bool AccessedIvar;
5004 bool InvokedSelfMethod;
5005
5006 UnusedBackingIvarChecker(Sema &S, const ObjCMethodDecl *Method,
5007 const ObjCIvarDecl *IvarD)
5008 : S(S), Method(Method), IvarD(IvarD),
5009 AccessedIvar(false), InvokedSelfMethod(false) {
5010 assert(IvarD)(static_cast <bool> (IvarD) ? void (0) : __assert_fail (
"IvarD", "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 5010, __extension__ __PRETTY_FUNCTION__))
;
5011 }
5012
5013 bool VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
5014 if (E->getDecl() == IvarD) {
5015 AccessedIvar = true;
5016 return false;
5017 }
5018 return true;
5019 }
5020
5021 bool VisitObjCMessageExpr(ObjCMessageExpr *E) {
5022 if (E->getReceiverKind() == ObjCMessageExpr::Instance &&
5023 S.isSelfExpr(E->getInstanceReceiver(), Method)) {
5024 InvokedSelfMethod = true;
5025 }
5026 return true;
5027 }
5028 };
5029} // end anonymous namespace
5030
5031void Sema::DiagnoseUnusedBackingIvarInAccessor(Scope *S,
5032 const ObjCImplementationDecl *ImplD) {
5033 if (S->hasUnrecoverableErrorOccurred())
5034 return;
5035
5036 for (const auto *CurMethod : ImplD->instance_methods()) {
5037 unsigned DIAG = diag::warn_unused_property_backing_ivar;
5038 SourceLocation Loc = CurMethod->getLocation();
5039 if (Diags.isIgnored(DIAG, Loc))
5040 continue;
5041
5042 const ObjCPropertyDecl *PDecl;
5043 const ObjCIvarDecl *IV = GetIvarBackingPropertyAccessor(CurMethod, PDecl);
5044 if (!IV)
5045 continue;
5046
5047 UnusedBackingIvarChecker Checker(*this, CurMethod, IV);
5048 Checker.TraverseStmt(CurMethod->getBody());
5049 if (Checker.AccessedIvar)
5050 continue;
5051
5052 // Do not issue this warning if backing ivar is used somewhere and accessor
5053 // implementation makes a self call. This is to prevent false positive in
5054 // cases where the ivar is accessed by another method that the accessor
5055 // delegates to.
5056 if (!IV->isReferenced() || !Checker.InvokedSelfMethod) {
5057 Diag(Loc, DIAG) << IV;
5058 Diag(PDecl->getLocation(), diag::note_property_declare);
5059 }
5060 }
5061}

/build/llvm-toolchain-snapshot-7~svn338205/build-llvm/tools/clang/include/clang/AST/Attrs.inc

1/*===- TableGen'erated file -------------------------------------*- C++ -*-===*\
2|* *|
3|* Attribute classes' definitions *|
4|* *|
5|* Automatically generated file, do not edit! *|
6|* *|
7\*===----------------------------------------------------------------------===*/
8
9#ifndef LLVM_CLANG_ATTR_CLASSES_INC
10#define LLVM_CLANG_ATTR_CLASSES_INC
11
12class AMDGPUFlatWorkGroupSizeAttr : public InheritableAttr {
13unsigned min;
14
15unsigned max;
16
17public:
18 static AMDGPUFlatWorkGroupSizeAttr *CreateImplicit(ASTContext &Ctx, unsigned Min, unsigned Max, SourceRange Loc = SourceRange()) {
19 auto *A = new (Ctx) AMDGPUFlatWorkGroupSizeAttr(Loc, Ctx, Min, Max, 0);
20 A->setImplicit(true);
21 return A;
22 }
23
24 AMDGPUFlatWorkGroupSizeAttr(SourceRange R, ASTContext &Ctx
25 , unsigned Min
26 , unsigned Max
27 , unsigned SI
28 )
29 : InheritableAttr(attr::AMDGPUFlatWorkGroupSize, R, SI, false, false)
30 , min(Min)
31 , max(Max)
32 {
33 }
34
35 AMDGPUFlatWorkGroupSizeAttr *clone(ASTContext &C) const;
36 void printPretty(raw_ostream &OS,
37 const PrintingPolicy &Policy) const;
38 const char *getSpelling() const;
39 unsigned getMin() const {
40 return min;
41 }
42
43 unsigned getMax() const {
44 return max;
45 }
46
47
48
49 static bool classof(const Attr *A) { return A->getKind() == attr::AMDGPUFlatWorkGroupSize; }
50};
51
52class AMDGPUNumSGPRAttr : public InheritableAttr {
53unsigned numSGPR;
54
55public:
56 static AMDGPUNumSGPRAttr *CreateImplicit(ASTContext &Ctx, unsigned NumSGPR, SourceRange Loc = SourceRange()) {
57 auto *A = new (Ctx) AMDGPUNumSGPRAttr(Loc, Ctx, NumSGPR, 0);
58 A->setImplicit(true);
59 return A;
60 }
61
62 AMDGPUNumSGPRAttr(SourceRange R, ASTContext &Ctx
63 , unsigned NumSGPR
64 , unsigned SI
65 )
66 : InheritableAttr(attr::AMDGPUNumSGPR, R, SI, false, false)
67 , numSGPR(NumSGPR)
68 {
69 }
70
71 AMDGPUNumSGPRAttr *clone(ASTContext &C) const;
72 void printPretty(raw_ostream &OS,
73 const PrintingPolicy &Policy) const;
74 const char *getSpelling() const;
75 unsigned getNumSGPR() const {
76 return numSGPR;
77 }
78
79
80
81 static bool classof(const Attr *A) { return A->getKind() == attr::AMDGPUNumSGPR; }
82};
83
84class AMDGPUNumVGPRAttr : public InheritableAttr {
85unsigned numVGPR;
86
87public:
88 static AMDGPUNumVGPRAttr *CreateImplicit(ASTContext &Ctx, unsigned NumVGPR, SourceRange Loc = SourceRange()) {
89 auto *A = new (Ctx) AMDGPUNumVGPRAttr(Loc, Ctx, NumVGPR, 0);
90 A->setImplicit(true);
91 return A;
92 }
93
94 AMDGPUNumVGPRAttr(SourceRange R, ASTContext &Ctx
95 , unsigned NumVGPR
96 , unsigned SI
97 )
98 : InheritableAttr(attr::AMDGPUNumVGPR, R, SI, false, false)
99 , numVGPR(NumVGPR)
100 {
101 }
102
103 AMDGPUNumVGPRAttr *clone(ASTContext &C) const;
104 void printPretty(raw_ostream &OS,
105 const PrintingPolicy &Policy) const;
106 const char *getSpelling() const;
107 unsigned getNumVGPR() const {
108 return numVGPR;
109 }
110
111
112
113 static bool classof(const Attr *A) { return A->getKind() == attr::AMDGPUNumVGPR; }
114};
115
116class AMDGPUWavesPerEUAttr : public InheritableAttr {
117unsigned min;
118
119unsigned max;
120
121public:
122 static AMDGPUWavesPerEUAttr *CreateImplicit(ASTContext &Ctx, unsigned Min, unsigned Max, SourceRange Loc = SourceRange()) {
123 auto *A = new (Ctx) AMDGPUWavesPerEUAttr(Loc, Ctx, Min, Max, 0);
124 A->setImplicit(true);
125 return A;
126 }
127
128 AMDGPUWavesPerEUAttr(SourceRange R, ASTContext &Ctx
129 , unsigned Min
130 , unsigned Max
131 , unsigned SI
132 )
133 : InheritableAttr(attr::AMDGPUWavesPerEU, R, SI, false, false)
134 , min(Min)
135 , max(Max)
136 {
137 }
138
139 AMDGPUWavesPerEUAttr(SourceRange R, ASTContext &Ctx
140 , unsigned Min
141 , unsigned SI
142 )
143 : InheritableAttr(attr::AMDGPUWavesPerEU, R, SI, false, false)
144 , min(Min)
145 , max()
146 {
147 }
148
149 AMDGPUWavesPerEUAttr *clone(ASTContext &C) const;
150 void printPretty(raw_ostream &OS,
151 const PrintingPolicy &Policy) const;
152 const char *getSpelling() const;
153 unsigned getMin() const {
154 return min;
155 }
156
157 unsigned getMax() const {
158 return max;
159 }
160
161
162
163 static bool classof(const Attr *A) { return A->getKind() == attr::AMDGPUWavesPerEU; }
164};
165
166class ARMInterruptAttr : public InheritableAttr {
167public:
168 enum InterruptType {
169 IRQ,
170 FIQ,
171 SWI,
172 ABORT,
173 UNDEF,
174 Generic
175 };
176private:
177 InterruptType interrupt;
178
179public:
180 static ARMInterruptAttr *CreateImplicit(ASTContext &Ctx, InterruptType Interrupt, SourceRange Loc = SourceRange()) {
181 auto *A = new (Ctx) ARMInterruptAttr(Loc, Ctx, Interrupt, 0);
182 A->setImplicit(true);
183 return A;
184 }
185
186 ARMInterruptAttr(SourceRange R, ASTContext &Ctx
187 , InterruptType Interrupt
188 , unsigned SI
189 )
190 : InheritableAttr(attr::ARMInterrupt, R, SI, false, false)
191 , interrupt(Interrupt)
192 {
193 }
194
195 ARMInterruptAttr(SourceRange R, ASTContext &Ctx
196 , unsigned SI
197 )
198 : InheritableAttr(attr::ARMInterrupt, R, SI, false, false)
199 , interrupt(InterruptType(0))
200 {
201 }
202
203 ARMInterruptAttr *clone(ASTContext &C) const;
204 void printPretty(raw_ostream &OS,
205 const PrintingPolicy &Policy) const;
206 const char *getSpelling() const;
207 InterruptType getInterrupt() const {
208 return interrupt;
209 }
210
211 static bool ConvertStrToInterruptType(StringRef Val, InterruptType &Out) {
212 Optional<InterruptType> R = llvm::StringSwitch<Optional<InterruptType>>(Val)
213 .Case("IRQ", ARMInterruptAttr::IRQ)
214 .Case("FIQ", ARMInterruptAttr::FIQ)
215 .Case("SWI", ARMInterruptAttr::SWI)
216 .Case("ABORT", ARMInterruptAttr::ABORT)
217 .Case("UNDEF", ARMInterruptAttr::UNDEF)
218 .Case("", ARMInterruptAttr::Generic)
219 .Default(Optional<InterruptType>());
220 if (R) {
221 Out = *R;
222 return true;
223 }
224 return false;
225 }
226
227 static const char *ConvertInterruptTypeToStr(InterruptType Val) {
228 switch(Val) {
229 case ARMInterruptAttr::IRQ: return "IRQ";
230 case ARMInterruptAttr::FIQ: return "FIQ";
231 case ARMInterruptAttr::SWI: return "SWI";
232 case ARMInterruptAttr::ABORT: return "ABORT";
233 case ARMInterruptAttr::UNDEF: return "UNDEF";
234 case ARMInterruptAttr::Generic: return "";
235 }
236 llvm_unreachable("No enumerator with that value")::llvm::llvm_unreachable_internal("No enumerator with that value"
, "/build/llvm-toolchain-snapshot-7~svn338205/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 236)
;
237 }
238
239
240 static bool classof(const Attr *A) { return A->getKind() == attr::ARMInterrupt; }
241};
242
243class AVRInterruptAttr : public InheritableAttr {
244public:
245 static AVRInterruptAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
246 auto *A = new (Ctx) AVRInterruptAttr(Loc, Ctx, 0);
247 A->setImplicit(true);
248 return A;
249 }
250
251 AVRInterruptAttr(SourceRange R, ASTContext &Ctx
252 , unsigned SI
253 )
254 : InheritableAttr(attr::AVRInterrupt, R, SI, false, false)
255 {
256 }
257
258 AVRInterruptAttr *clone(ASTContext &C) const;
259 void printPretty(raw_ostream &OS,
260 const PrintingPolicy &Policy) const;
261 const char *getSpelling() const;
262
263
264 static bool classof(const Attr *A) { return A->getKind() == attr::AVRInterrupt; }
265};
266
267class AVRSignalAttr : public InheritableAttr {
268public:
269 static AVRSignalAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
270 auto *A = new (Ctx) AVRSignalAttr(Loc, Ctx, 0);
271 A->setImplicit(true);
272 return A;
273 }
274
275 AVRSignalAttr(SourceRange R, ASTContext &Ctx
276 , unsigned SI
277 )
278 : InheritableAttr(attr::AVRSignal, R, SI, false, false)
279 {
280 }
281
282 AVRSignalAttr *clone(ASTContext &C) const;
283 void printPretty(raw_ostream &OS,
284 const PrintingPolicy &Policy) const;
285 const char *getSpelling() const;
286
287
288 static bool classof(const Attr *A) { return A->getKind() == attr::AVRSignal; }
289};
290
291class AbiTagAttr : public Attr {
292 unsigned tags_Size;
293 StringRef *tags_;
294
295public:
296 static AbiTagAttr *CreateImplicit(ASTContext &Ctx, StringRef *Tags, unsigned TagsSize, SourceRange Loc = SourceRange()) {
297 auto *A = new (Ctx) AbiTagAttr(Loc, Ctx, Tags, TagsSize, 0);
298 A->setImplicit(true);
299 return A;
300 }
301
302 AbiTagAttr(SourceRange R, ASTContext &Ctx
303 , StringRef *Tags, unsigned TagsSize
304 , unsigned SI
305 )
306 : Attr(attr::AbiTag, R, SI, false)
307 , tags_Size(TagsSize), tags_(new (Ctx, 16) StringRef[tags_Size])
308 {
309 for (size_t I = 0, E = tags_Size; I != E;
310 ++I) {
311 StringRef Ref = Tags[I];
312 if (!Ref.empty()) {
313 char *Mem = new (Ctx, 1) char[Ref.size()];
314 std::memcpy(Mem, Ref.data(), Ref.size());
315 tags_[I] = StringRef(Mem, Ref.size());
316 }
317 }
318 }
319
320 AbiTagAttr(SourceRange R, ASTContext &Ctx
321 , unsigned SI
322 )
323 : Attr(attr::AbiTag, R, SI, false)
324 , tags_Size(0), tags_(nullptr)
325 {
326 }
327
328 AbiTagAttr *clone(ASTContext &C) const;
329 void printPretty(raw_ostream &OS,
330 const PrintingPolicy &Policy) const;
331 const char *getSpelling() const;
332 typedef StringRef* tags_iterator;
333 tags_iterator tags_begin() const { return tags_; }
334 tags_iterator tags_end() const { return tags_ + tags_Size; }
335 unsigned tags_size() const { return tags_Size; }
336 llvm::iterator_range<tags_iterator> tags() const { return llvm::make_range(tags_begin(), tags_end()); }
337
338
339
340
341 static bool classof(const Attr *A) { return A->getKind() == attr::AbiTag; }
342};
343
344class AcquireCapabilityAttr : public InheritableAttr {
345 unsigned args_Size;
346 Expr * *args_;
347
348public:
349 enum Spelling {
350 GNU_acquire_capability = 0,
351 CXX11_clang_acquire_capability = 1,
352 GNU_acquire_shared_capability = 2,
353 CXX11_clang_acquire_shared_capability = 3,
354 GNU_exclusive_lock_function = 4,
355 GNU_shared_lock_function = 5
356 };
357
358 static AcquireCapabilityAttr *CreateImplicit(ASTContext &Ctx, Spelling S, Expr * *Args, unsigned ArgsSize, SourceRange Loc = SourceRange()) {
359 auto *A = new (Ctx) AcquireCapabilityAttr(Loc, Ctx, Args, ArgsSize, S);
360 A->setImplicit(true);
361 return A;
362 }
363
364 AcquireCapabilityAttr(SourceRange R, ASTContext &Ctx
365 , Expr * *Args, unsigned ArgsSize
366 , unsigned SI
367 )
368 : InheritableAttr(attr::AcquireCapability, R, SI, true, true)
369 , args_Size(ArgsSize), args_(new (Ctx, 16) Expr *[args_Size])
370 {
371 std::copy(Args, Args + args_Size, args_);
372 }
373
374 AcquireCapabilityAttr(SourceRange R, ASTContext &Ctx
375 , unsigned SI
376 )
377 : InheritableAttr(attr::AcquireCapability, R, SI, true, true)
378 , args_Size(0), args_(nullptr)
379 {
380 }
381
382 AcquireCapabilityAttr *clone(ASTContext &C) const;
383 void printPretty(raw_ostream &OS,
384 const PrintingPolicy &Policy) const;
385 const char *getSpelling() const;
386 Spelling getSemanticSpelling() const {
387 switch (SpellingListIndex) {
388 default: llvm_unreachable("Unknown spelling list index")::llvm::llvm_unreachable_internal("Unknown spelling list index"
, "/build/llvm-toolchain-snapshot-7~svn338205/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 388)
;
389 case 0: return GNU_acquire_capability;
390 case 1: return CXX11_clang_acquire_capability;
391 case 2: return GNU_acquire_shared_capability;
392 case 3: return CXX11_clang_acquire_shared_capability;
393 case 4: return GNU_exclusive_lock_function;
394 case 5: return GNU_shared_lock_function;
395 }
396 }
397 bool isShared() const { return SpellingListIndex == 2 ||
398 SpellingListIndex == 3 ||
399 SpellingListIndex == 5; }
400 typedef Expr ** args_iterator;
401 args_iterator args_begin() const { return args_; }
402 args_iterator args_end() const { return args_ + args_Size; }
403 unsigned args_size() const { return args_Size; }
404 llvm::iterator_range<args_iterator> args() const { return llvm::make_range(args_begin(), args_end()); }
405
406
407
408
409 static bool classof(const Attr *A) { return A->getKind() == attr::AcquireCapability; }
410};
411
412class AcquiredAfterAttr : public InheritableAttr {
413 unsigned args_Size;
414 Expr * *args_;
415
416public:
417 static AcquiredAfterAttr *CreateImplicit(ASTContext &Ctx, Expr * *Args, unsigned ArgsSize, SourceRange Loc = SourceRange()) {
418 auto *A = new (Ctx) AcquiredAfterAttr(Loc, Ctx, Args, ArgsSize, 0);
419 A->setImplicit(true);
420 return A;
421 }
422
423 AcquiredAfterAttr(SourceRange R, ASTContext &Ctx
424 , Expr * *Args, unsigned ArgsSize
425 , unsigned SI
426 )
427 : InheritableAttr(attr::AcquiredAfter, R, SI, true, true)
428 , args_Size(ArgsSize), args_(new (Ctx, 16) Expr *[args_Size])
429 {
430 std::copy(Args, Args + args_Size, args_);
431 }
432
433 AcquiredAfterAttr(SourceRange R, ASTContext &Ctx
434 , unsigned SI
435 )
436 : InheritableAttr(attr::AcquiredAfter, R, SI, true, true)
437 , args_Size(0), args_(nullptr)
438 {
439 }
440
441 AcquiredAfterAttr *clone(ASTContext &C) const;
442 void printPretty(raw_ostream &OS,
443 const PrintingPolicy &Policy) const;
444 const char *getSpelling() const;
445 typedef Expr ** args_iterator;
446 args_iterator args_begin() const { return args_; }
447 args_iterator args_end() const { return args_ + args_Size; }
448 unsigned args_size() const { return args_Size; }
449 llvm::iterator_range<args_iterator> args() const { return llvm::make_range(args_begin(), args_end()); }
450
451
452
453
454 static bool classof(const Attr *A) { return A->getKind() == attr::AcquiredAfter; }
455};
456
457class AcquiredBeforeAttr : public InheritableAttr {
458 unsigned args_Size;
459 Expr * *args_;
460
461public:
462 static AcquiredBeforeAttr *CreateImplicit(ASTContext &Ctx, Expr * *Args, unsigned ArgsSize, SourceRange Loc = SourceRange()) {
463 auto *A = new (Ctx) AcquiredBeforeAttr(Loc, Ctx, Args, ArgsSize, 0);
464 A->setImplicit(true);
465 return A;
466 }
467
468 AcquiredBeforeAttr(SourceRange R, ASTContext &Ctx
469 , Expr * *Args, unsigned ArgsSize
470 , unsigned SI
471 )
472 : InheritableAttr(attr::AcquiredBefore, R, SI, true, true)
473 , args_Size(ArgsSize), args_(new (Ctx, 16) Expr *[args_Size])
474 {
475 std::copy(Args, Args + args_Size, args_);
476 }
477
478 AcquiredBeforeAttr(SourceRange R, ASTContext &Ctx
479 , unsigned SI
480 )
481 : InheritableAttr(attr::AcquiredBefore, R, SI, true, true)
482 , args_Size(0), args_(nullptr)
483 {
484 }
485
486 AcquiredBeforeAttr *clone(ASTContext &C) const;
487 void printPretty(raw_ostream &OS,
488 const PrintingPolicy &Policy) const;
489 const char *getSpelling() const;
490 typedef Expr ** args_iterator;
491 args_iterator args_begin() const { return args_; }
492 args_iterator args_end() const { return args_ + args_Size; }
493 unsigned args_size() const { return args_Size; }
494 llvm::iterator_range<args_iterator> args() const { return llvm::make_range(args_begin(), args_end()); }
495
496
497
498
499 static bool classof(const Attr *A) { return A->getKind() == attr::AcquiredBefore; }
500};
501
502class AliasAttr : public Attr {
503unsigned aliaseeLength;
504char *aliasee;
505
506public:
507 static AliasAttr *CreateImplicit(ASTContext &Ctx, llvm::StringRef Aliasee, SourceRange Loc = SourceRange()) {
508 auto *A = new (Ctx) AliasAttr(Loc, Ctx, Aliasee, 0);
509 A->setImplicit(true);
510 return A;
511 }
512
513 AliasAttr(SourceRange R, ASTContext &Ctx
514 , llvm::StringRef Aliasee
515 , unsigned SI
516 )
517 : Attr(attr::Alias, R, SI, false)
518 , aliaseeLength(Aliasee.size()),aliasee(new (Ctx, 1) char[aliaseeLength])
519 {
520 if (!Aliasee.empty())
521 std::memcpy(aliasee, Aliasee.data(), aliaseeLength);
522 }
523
524 AliasAttr *clone(ASTContext &C) const;
525 void printPretty(raw_ostream &OS,
526 const PrintingPolicy &Policy) const;
527 const char *getSpelling() const;
528 llvm::StringRef getAliasee() const {
529 return llvm::StringRef(aliasee, aliaseeLength);
530 }
531 unsigned getAliaseeLength() const {
532 return aliaseeLength;
533 }
534 void setAliasee(ASTContext &C, llvm::StringRef S) {
535 aliaseeLength = S.size();
536 this->aliasee = new (C, 1) char [aliaseeLength];
537 if (!S.empty())
538 std::memcpy(this->aliasee, S.data(), aliaseeLength);
539 }
540
541
542
543 static bool classof(const Attr *A) { return A->getKind() == attr::Alias; }
544};
545
546class AlignMac68kAttr : public InheritableAttr {
547public:
548 static AlignMac68kAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
549 auto *A = new (Ctx) AlignMac68kAttr(Loc, Ctx, 0);
550 A->setImplicit(true);
551 return A;
552 }
553
554 AlignMac68kAttr(SourceRange R, ASTContext &Ctx
555 , unsigned SI
556 )
557 : InheritableAttr(attr::AlignMac68k, R, SI, false, false)
558 {
559 }
560
561 AlignMac68kAttr *clone(ASTContext &C) const;
562 void printPretty(raw_ostream &OS,
563 const PrintingPolicy &Policy) const;
564 const char *getSpelling() const;
565
566
567 static bool classof(const Attr *A) { return A->getKind() == attr::AlignMac68k; }
568};
569
570class AlignValueAttr : public Attr {
571Expr * alignment;
572
573public:
574 static AlignValueAttr *CreateImplicit(ASTContext &Ctx, Expr * Alignment, SourceRange Loc = SourceRange()) {
575 auto *A = new (Ctx) AlignValueAttr(Loc, Ctx, Alignment, 0);
576 A->setImplicit(true);
577 return A;
578 }
579
580 AlignValueAttr(SourceRange R, ASTContext &Ctx
581 , Expr * Alignment
582 , unsigned SI
583 )
584 : Attr(attr::AlignValue, R, SI, false)
585 , alignment(Alignment)
586 {
587 }
588
589 AlignValueAttr *clone(ASTContext &C) const;
590 void printPretty(raw_ostream &OS,
591 const PrintingPolicy &Policy) const;
592 const char *getSpelling() const;
593 Expr * getAlignment() const {
594 return alignment;
595 }
596
597
598
599 static bool classof(const Attr *A) { return A->getKind() == attr::AlignValue; }
600};
601
602class AlignedAttr : public InheritableAttr {
603bool isalignmentExpr;
604union {
605Expr *alignmentExpr;
606TypeSourceInfo *alignmentType;
607};
608
609public:
610 enum Spelling {
611 GNU_aligned = 0,
612 CXX11_gnu_aligned = 1,
613 Declspec_align = 2,
614 Keyword_alignas = 3,
615 Keyword_Alignas = 4
616 };
617
618 static AlignedAttr *CreateImplicit(ASTContext &Ctx, Spelling S, bool IsAlignmentExpr, void *Alignment, SourceRange Loc = SourceRange()) {
619 auto *A = new (Ctx) AlignedAttr(Loc, Ctx, IsAlignmentExpr, Alignment, S);
620 A->setImplicit(true);
621 return A;
622 }
623
624 AlignedAttr(SourceRange R, ASTContext &Ctx
625 , bool IsAlignmentExpr, void *Alignment
626 , unsigned SI
627 )
628 : InheritableAttr(attr::Aligned, R, SI, false, false)
629 , isalignmentExpr(IsAlignmentExpr)
630 {
631 if (isalignmentExpr)
632 alignmentExpr = reinterpret_cast<Expr *>(Alignment);
633 else
634 alignmentType = reinterpret_cast<TypeSourceInfo *>(Alignment);
635 }
636
637 AlignedAttr(SourceRange R, ASTContext &Ctx
638 , unsigned SI
639 )
640 : InheritableAttr(attr::Aligned, R, SI, false, false)
641 , isalignmentExpr(false)
642 {
643 }
644
645 AlignedAttr *clone(ASTContext &C) const;
646 void printPretty(raw_ostream &OS,
647 const PrintingPolicy &Policy) const;
648 const char *getSpelling() const;
649 Spelling getSemanticSpelling() const {
650 switch (SpellingListIndex) {
651 default: llvm_unreachable("Unknown spelling list index")::llvm::llvm_unreachable_internal("Unknown spelling list index"
, "/build/llvm-toolchain-snapshot-7~svn338205/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 651)
;
652 case 0: return GNU_aligned;
653 case 1: return CXX11_gnu_aligned;
654 case 2: return Declspec_align;
655 case 3: return Keyword_alignas;
656 case 4: return Keyword_Alignas;
657 }
658 }
659 bool isGNU() const { return SpellingListIndex == 0 ||
660 SpellingListIndex == 1; }
661 bool isC11() const { return SpellingListIndex == 4; }
662 bool isAlignas() const { return SpellingListIndex == 3 ||
663 SpellingListIndex == 4; }
664 bool isDeclspec() const { return SpellingListIndex == 2; }
665 bool isAlignmentDependent() const;
666 unsigned getAlignment(ASTContext &Ctx) const;
667 bool isAlignmentExpr() const {
668 return isalignmentExpr;
669 }
670 Expr *getAlignmentExpr() const {
671 assert(isalignmentExpr)(static_cast <bool> (isalignmentExpr) ? void (0) : __assert_fail
("isalignmentExpr", "/build/llvm-toolchain-snapshot-7~svn338205/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 671, __extension__ __PRETTY_FUNCTION__))
;
672 return alignmentExpr;
673 }
674 TypeSourceInfo *getAlignmentType() const {
675 assert(!isalignmentExpr)(static_cast <bool> (!isalignmentExpr) ? void (0) : __assert_fail
("!isalignmentExpr", "/build/llvm-toolchain-snapshot-7~svn338205/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 675, __extension__ __PRETTY_FUNCTION__))
;
676 return alignmentType;
677 }
678
679
680
681 static bool classof(const Attr *A) { return A->getKind() == attr::Aligned; }
682};
683
684class AllocAlignAttr : public InheritableAttr {
685ParamIdx paramIndex;
686
687public:
688 static AllocAlignAttr *CreateImplicit(ASTContext &Ctx, ParamIdx ParamIndex, SourceRange Loc = SourceRange()) {
689 auto *A = new (Ctx) AllocAlignAttr(Loc, Ctx, ParamIndex, 0);
690 A->setImplicit(true);
691 return A;
692 }
693
694 AllocAlignAttr(SourceRange R, ASTContext &Ctx
695 , ParamIdx ParamIndex
696 , unsigned SI
697 )
698 : InheritableAttr(attr::AllocAlign, R, SI, false, false)
699 , paramIndex(ParamIndex)
700 {
701 }
702
703 AllocAlignAttr *clone(ASTContext &C) const;
704 void printPretty(raw_ostream &OS,
705 const PrintingPolicy &Policy) const;
706 const char *getSpelling() const;
707 ParamIdx getParamIndex() const {
708 return paramIndex;
709 }
710
711
712
713 static bool classof(const Attr *A) { return A->getKind() == attr::AllocAlign; }
714};
715
716class AllocSizeAttr : public InheritableAttr {
717ParamIdx elemSizeParam;
718
719ParamIdx numElemsParam;
720
721public:
722 static AllocSizeAttr *CreateImplicit(ASTContext &Ctx, ParamIdx ElemSizeParam, ParamIdx NumElemsParam, SourceRange Loc = SourceRange()) {
723 auto *A = new (Ctx) AllocSizeAttr(Loc, Ctx, ElemSizeParam, NumElemsParam, 0);
724 A->setImplicit(true);
725 return A;
726 }
727
728 AllocSizeAttr(SourceRange R, ASTContext &Ctx
729 , ParamIdx ElemSizeParam
730 , ParamIdx NumElemsParam
731 , unsigned SI
732 )
733 : InheritableAttr(attr::AllocSize, R, SI, false, false)
734 , elemSizeParam(ElemSizeParam)
735 , numElemsParam(NumElemsParam)
736 {
737 }
738
739 AllocSizeAttr(SourceRange R, ASTContext &Ctx
740 , ParamIdx ElemSizeParam
741 , unsigned SI
742 )
743 : InheritableAttr(attr::AllocSize, R, SI, false, false)
744 , elemSizeParam(ElemSizeParam)
745 , numElemsParam()
746 {
747 }
748
749 AllocSizeAttr *clone(ASTContext &C) const;
750 void printPretty(raw_ostream &OS,
751 const PrintingPolicy &Policy) const;
752 const char *getSpelling() const;
753 ParamIdx getElemSizeParam() const {
754 return elemSizeParam;
755 }
756
757 ParamIdx getNumElemsParam() const {
758 return numElemsParam;
759 }
760
761
762
763 static bool classof(const Attr *A) { return A->getKind() == attr::AllocSize; }
764};
765
766class AlwaysInlineAttr : public InheritableAttr {
767public:
768 enum Spelling {
769 GNU_always_inline = 0,
770 CXX11_gnu_always_inline = 1,
771 Keyword_forceinline = 2
772 };
773
774 static AlwaysInlineAttr *CreateImplicit(ASTContext &Ctx, Spelling S, SourceRange Loc = SourceRange()) {
775 auto *A = new (Ctx) AlwaysInlineAttr(Loc, Ctx, S);
776 A->setImplicit(true);
777 return A;
778 }
779
780 AlwaysInlineAttr(SourceRange R, ASTContext &Ctx
781 , unsigned SI
782 )
783 : InheritableAttr(attr::AlwaysInline, R, SI, false, false)
784 {
785 }
786
787 AlwaysInlineAttr *clone(ASTContext &C) const;
788 void printPretty(raw_ostream &OS,
789 const PrintingPolicy &Policy) const;
790 const char *getSpelling() const;
791 Spelling getSemanticSpelling() const {
792 switch (SpellingListIndex) {
793 default: llvm_unreachable("Unknown spelling list index")::llvm::llvm_unreachable_internal("Unknown spelling list index"
, "/build/llvm-toolchain-snapshot-7~svn338205/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 793)
;
794 case 0: return GNU_always_inline;
795 case 1: return CXX11_gnu_always_inline;
796 case 2: return Keyword_forceinline;
797 }
798 }
799
800
801 static bool classof(const Attr *A) { return A->getKind() == attr::AlwaysInline; }
802};
803
804class AnalyzerNoReturnAttr : public InheritableAttr {
805public:
806 static AnalyzerNoReturnAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
807 auto *A = new (Ctx) AnalyzerNoReturnAttr(Loc, Ctx, 0);
808 A->setImplicit(true);
809 return A;
810 }
811
812 AnalyzerNoReturnAttr(SourceRange R, ASTContext &Ctx
813 , unsigned SI
814 )
815 : InheritableAttr(attr::AnalyzerNoReturn, R, SI, false, false)
816 {
817 }
818
819 AnalyzerNoReturnAttr *clone(ASTContext &C) const;
820 void printPretty(raw_ostream &OS,
821 const PrintingPolicy &Policy) const;
822 const char *getSpelling() const;
823
824
825 static bool classof(const Attr *A) { return A->getKind() == attr::AnalyzerNoReturn; }
826};
827
828class AnnotateAttr : public InheritableParamAttr {
829unsigned annotationLength;
830char *annotation;
831
832public:
833 static AnnotateAttr *CreateImplicit(ASTContext &Ctx, llvm::StringRef Annotation, SourceRange Loc = SourceRange()) {
834 auto *A = new (Ctx) AnnotateAttr(Loc, Ctx, Annotation, 0);
835 A->setImplicit(true);
836 return A;
837 }
838
839 AnnotateAttr(SourceRange R, ASTContext &Ctx
840 , llvm::StringRef Annotation
841 , unsigned SI
842 )
843 : InheritableParamAttr(attr::Annotate, R, SI, false, false)
844 , annotationLength(Annotation.size()),annotation(new (Ctx, 1) char[annotationLength])
845 {
846 if (!Annotation.empty())
847 std::memcpy(annotation, Annotation.data(), annotationLength);
848 }
849
850 AnnotateAttr *clone(ASTContext &C) const;
851 void printPretty(raw_ostream &OS,
852 const PrintingPolicy &Policy) const;
853 const char *getSpelling() const;
854 llvm::StringRef getAnnotation() const {
855 return llvm::StringRef(annotation, annotationLength);
856 }
857 unsigned getAnnotationLength() const {
858 return annotationLength;
859 }
860 void setAnnotation(ASTContext &C, llvm::StringRef S) {
861 annotationLength = S.size();
862 this->annotation = new (C, 1) char [annotationLength];
863 if (!S.empty())
864 std::memcpy(this->annotation, S.data(), annotationLength);
865 }
866
867
868
869 static bool classof(const Attr *A) { return A->getKind() == attr::Annotate; }
870};
871
872class AnyX86InterruptAttr : public InheritableAttr {
873public:
874 static AnyX86InterruptAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
875 auto *A = new (Ctx) AnyX86InterruptAttr(Loc, Ctx, 0);
876 A->setImplicit(true);
877 return A;
878 }
879
880 AnyX86InterruptAttr(SourceRange R, ASTContext &Ctx
881 , unsigned SI
882 )
883 : InheritableAttr(attr::AnyX86Interrupt, R, SI, false, false)
884 {
885 }
886
887 AnyX86InterruptAttr *clone(ASTContext &C) const;
888 void printPretty(raw_ostream &OS,
889 const PrintingPolicy &Policy) const;
890 const char *getSpelling() const;
891
892
893 static bool classof(const Attr *A) { return A->getKind() == attr::AnyX86Interrupt; }
894};
895
896class AnyX86NoCallerSavedRegistersAttr : public InheritableAttr {
897public:
898 static AnyX86NoCallerSavedRegistersAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
899 auto *A = new (Ctx) AnyX86NoCallerSavedRegistersAttr(Loc, Ctx, 0);
900 A->setImplicit(true);
901 return A;
902 }
903
904 AnyX86NoCallerSavedRegistersAttr(SourceRange R, ASTContext &Ctx
905 , unsigned SI
906 )
907 : InheritableAttr(attr::AnyX86NoCallerSavedRegisters, R, SI, false, false)
908 {
909 }
910
911 AnyX86NoCallerSavedRegistersAttr *clone(ASTContext &C) const;
912 void printPretty(raw_ostream &OS,
913 const PrintingPolicy &Policy) const;
914 const char *getSpelling() const;
915
916
917 static bool classof(const Attr *A) { return A->getKind() == attr::AnyX86NoCallerSavedRegisters; }
918};
919
920class AnyX86NoCfCheckAttr : public InheritableAttr {
921public:
922 static AnyX86NoCfCheckAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
923 auto *A = new (Ctx) AnyX86NoCfCheckAttr(Loc, Ctx, 0);
924 A->setImplicit(true);
925 return A;
926 }
927
928 AnyX86NoCfCheckAttr(SourceRange R, ASTContext &Ctx
929 , unsigned SI
930 )
931 : InheritableAttr(attr::AnyX86NoCfCheck, R, SI, false, false)
932 {
933 }
934
935 AnyX86NoCfCheckAttr *clone(ASTContext &C) const;
936 void printPretty(raw_ostream &OS,
937 const PrintingPolicy &Policy) const;
938 const char *getSpelling() const;
939
940
941 static bool classof(const Attr *A) { return A->getKind() == attr::AnyX86NoCfCheck; }
942};
943
944class ArcWeakrefUnavailableAttr : public InheritableAttr {
945public:
946 static ArcWeakrefUnavailableAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
947 auto *A = new (Ctx) ArcWeakrefUnavailableAttr(Loc, Ctx, 0);
948 A->setImplicit(true);
949 return A;
950 }
951
952 ArcWeakrefUnavailableAttr(SourceRange R, ASTContext &Ctx
953 , unsigned SI
954 )
955 : InheritableAttr(attr::ArcWeakrefUnavailable, R, SI, false, false)
956 {
957 }
958
959 ArcWeakrefUnavailableAttr *clone(ASTContext &C) const;
960 void printPretty(raw_ostream &OS,
961 const PrintingPolicy &Policy) const;
962 const char *getSpelling() const;
963
964
965 static bool classof(const Attr *A) { return A->getKind() == attr::ArcWeakrefUnavailable; }
966};
967
968class ArgumentWithTypeTagAttr : public InheritableAttr {
969IdentifierInfo * argumentKind;
970
971ParamIdx argumentIdx;
972
973ParamIdx typeTagIdx;
974
975bool isPointer;
976
977public:
978 enum Spelling {
979 GNU_argument_with_type_tag = 0,
980 CXX11_clang_argument_with_type_tag = 1,
981 C2x_clang_argument_with_type_tag = 2,
982 GNU_pointer_with_type_tag = 3,
983 CXX11_clang_pointer_with_type_tag = 4,
984 C2x_clang_pointer_with_type_tag = 5
985 };
986
987 static ArgumentWithTypeTagAttr *CreateImplicit(ASTContext &Ctx, Spelling S, IdentifierInfo * ArgumentKind, ParamIdx ArgumentIdx, ParamIdx TypeTagIdx, bool IsPointer, SourceRange Loc = SourceRange()) {
988 auto *A = new (Ctx) ArgumentWithTypeTagAttr(Loc, Ctx, ArgumentKind, ArgumentIdx, TypeTagIdx, IsPointer, S);
989 A->setImplicit(true);
990 return A;
991 }
992
993 static ArgumentWithTypeTagAttr *CreateImplicit(ASTContext &Ctx, Spelling S, IdentifierInfo * ArgumentKind, ParamIdx ArgumentIdx, ParamIdx TypeTagIdx, SourceRange Loc = SourceRange()) {
994 auto *A = new (Ctx) ArgumentWithTypeTagAttr(Loc, Ctx, ArgumentKind, ArgumentIdx, TypeTagIdx, S);
995 A->setImplicit(true);
996 return A;
997 }
998
999 ArgumentWithTypeTagAttr(SourceRange R, ASTContext &Ctx
1000 , IdentifierInfo * ArgumentKind
1001 , ParamIdx ArgumentIdx
1002 , ParamIdx TypeTagIdx
1003 , bool IsPointer
1004 , unsigned SI
1005 )
1006 : InheritableAttr(attr::ArgumentWithTypeTag, R, SI, false, false)
1007 , argumentKind(ArgumentKind)
1008 , argumentIdx(ArgumentIdx)
1009 , typeTagIdx(TypeTagIdx)
1010 , isPointer(IsPointer)
1011 {
1012 }
1013
1014 ArgumentWithTypeTagAttr(SourceRange R, ASTContext &Ctx
1015 , IdentifierInfo * ArgumentKind
1016 , ParamIdx ArgumentIdx
1017 , ParamIdx TypeTagIdx
1018 , unsigned SI
1019 )
1020 : InheritableAttr(attr::ArgumentWithTypeTag, R, SI, false, false)
1021 , argumentKind(ArgumentKind)
1022 , argumentIdx(ArgumentIdx)
1023 , typeTagIdx(TypeTagIdx)
1024 , isPointer()
1025 {
1026 }
1027
1028 ArgumentWithTypeTagAttr *clone(ASTContext &C) const;
1029 void printPretty(raw_ostream &OS,
1030 const PrintingPolicy &Policy) const;
1031 const char *getSpelling() const;
1032 Spelling getSemanticSpelling() const {
1033 switch (SpellingListIndex) {
1034 default: llvm_unreachable("Unknown spelling list index")::llvm::llvm_unreachable_internal("Unknown spelling list index"
, "/build/llvm-toolchain-snapshot-7~svn338205/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 1034)
;
1035 case 0: return GNU_argument_with_type_tag;
1036 case 1: return CXX11_clang_argument_with_type_tag;
1037 case 2: return C2x_clang_argument_with_type_tag;
1038 case 3: return GNU_pointer_with_type_tag;
1039 case 4: return CXX11_clang_pointer_with_type_tag;
1040 case 5: return C2x_clang_pointer_with_type_tag;
1041 }
1042 }
1043 IdentifierInfo * getArgumentKind() const {
1044 return argumentKind;
1045 }
1046
1047 ParamIdx getArgumentIdx() const {
1048 return argumentIdx;
1049 }
1050
1051 ParamIdx getTypeTagIdx() const {
1052 return typeTagIdx;
1053 }
1054
1055 bool getIsPointer() const {
1056 return isPointer;
1057 }
1058
1059
1060
1061 static bool classof(const Attr *A) { return A->getKind() == attr::ArgumentWithTypeTag; }
1062};
1063
1064class ArtificialAttr : public InheritableAttr {
1065public:
1066 static ArtificialAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
1067 auto *A = new (Ctx) ArtificialAttr(Loc, Ctx, 0);
1068 A->setImplicit(true);
1069 return A;
1070 }
1071
1072 ArtificialAttr(SourceRange R, ASTContext &Ctx
1073 , unsigned SI
1074 )
1075 : InheritableAttr(attr::Artificial, R, SI, false, false)
1076 {
1077 }
1078
1079 ArtificialAttr *clone(ASTContext &C) const;
1080 void printPretty(raw_ostream &OS,
1081 const PrintingPolicy &Policy) const;
1082 const char *getSpelling() const;
1083
1084
1085 static bool classof(const Attr *A) { return A->getKind() == attr::Artificial; }
1086};
1087
1088class AsmLabelAttr : public InheritableAttr {
1089unsigned labelLength;
1090char *label;
1091
1092public:
1093 static AsmLabelAttr *CreateImplicit(ASTContext &Ctx, llvm::StringRef Label, SourceRange Loc = SourceRange()) {
1094 auto *A = new (Ctx) AsmLabelAttr(Loc, Ctx, Label, 0);
1095 A->setImplicit(true);
1096 return A;
1097 }
1098
1099 AsmLabelAttr(SourceRange R, ASTContext &Ctx
1100 , llvm::StringRef Label
1101 , unsigned SI
1102 )
1103 : InheritableAttr(attr::AsmLabel, R, SI, false, false)
1104 , labelLength(Label.size()),label(new (Ctx, 1) char[labelLength])
1105 {
1106 if (!Label.empty())
1107 std::memcpy(label, Label.data(), labelLength);
1108 }
1109
1110 AsmLabelAttr *clone(ASTContext &C) const;
1111 void printPretty(raw_ostream &OS,
1112 const PrintingPolicy &Policy) const;
1113 const char *getSpelling() const;
1114 llvm::StringRef getLabel() const {
1115 return llvm::StringRef(label, labelLength);
1116 }
1117 unsigned getLabelLength() const {
1118 return labelLength;
1119 }
1120 void setLabel(ASTContext &C, llvm::StringRef S) {
1121 labelLength = S.size();
1122 this->label = new (C, 1) char [labelLength];
1123 if (!S.empty())
1124 std::memcpy(this->label, S.data(), labelLength);
1125 }
1126
1127
1128
1129 static bool classof(const Attr *A) { return A->getKind() == attr::AsmLabel; }
1130};
1131
1132class AssertCapabilityAttr : public InheritableAttr {
1133 unsigned args_Size;
1134 Expr * *args_;
1135
1136public:
1137 enum Spelling {
1138 GNU_assert_capability = 0,
1139 CXX11_clang_assert_capability = 1,
1140 GNU_assert_shared_capability = 2,
1141 CXX11_clang_assert_shared_capability = 3
1142 };
1143
1144 static AssertCapabilityAttr *CreateImplicit(ASTContext &Ctx, Spelling S, Expr * *Args, unsigned ArgsSize, SourceRange Loc = SourceRange()) {
1145 auto *A = new (Ctx) AssertCapabilityAttr(Loc, Ctx, Args, ArgsSize, S);
1146 A->setImplicit(true);
1147 return A;
1148 }
1149
1150 AssertCapabilityAttr(SourceRange R, ASTContext &Ctx
1151 , Expr * *Args, unsigned ArgsSize
1152 , unsigned SI
1153 )
1154 : InheritableAttr(attr::AssertCapability, R, SI, true, true)
1155 , args_Size(ArgsSize), args_(new (Ctx, 16) Expr *[args_Size])
1156 {
1157 std::copy(Args, Args + args_Size, args_);
1158 }
1159
1160 AssertCapabilityAttr(SourceRange R, ASTContext &Ctx
1161 , unsigned SI
1162 )
1163 : InheritableAttr(attr::AssertCapability, R, SI, true, true)
1164 , args_Size(0), args_(nullptr)
1165 {
1166 }
1167
1168 AssertCapabilityAttr *clone(ASTContext &C) const;
1169 void printPretty(raw_ostream &OS,
1170 const PrintingPolicy &Policy) const;
1171 const char *getSpelling() const;
1172 Spelling getSemanticSpelling() const {
1173 switch (SpellingListIndex) {
1174 default: llvm_unreachable("Unknown spelling list index")::llvm::llvm_unreachable_internal("Unknown spelling list index"
, "/build/llvm-toolchain-snapshot-7~svn338205/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 1174)
;
1175 case 0: return GNU_assert_capability;
1176 case 1: return CXX11_clang_assert_capability;
1177 case 2: return GNU_assert_shared_capability;
1178 case 3: return CXX11_clang_assert_shared_capability;
1179 }
1180 }
1181 bool isShared() const { return SpellingListIndex == 2 ||
1182 SpellingListIndex == 3; }
1183 typedef Expr ** args_iterator;
1184 args_iterator args_begin() const { return args_; }
1185 args_iterator args_end() const { return args_ + args_Size; }
1186 unsigned args_size() const { return args_Size; }
1187 llvm::iterator_range<args_iterator> args() const { return llvm::make_range(args_begin(), args_end()); }
1188
1189
1190
1191
1192 static bool classof(const Attr *A) { return A->getKind() == attr::AssertCapability; }
1193};
1194
1195class AssertExclusiveLockAttr : public InheritableAttr {
1196 unsigned args_Size;
1197 Expr * *args_;
1198
1199public:
1200 static AssertExclusiveLockAttr *CreateImplicit(ASTContext &Ctx, Expr * *Args, unsigned ArgsSize, SourceRange Loc = SourceRange()) {
1201 auto *A = new (Ctx) AssertExclusiveLockAttr(Loc, Ctx, Args, ArgsSize, 0);
1202 A->setImplicit(true);
1203 return A;
1204 }
1205
1206 AssertExclusiveLockAttr(SourceRange R, ASTContext &Ctx
1207 , Expr * *Args, unsigned ArgsSize
1208 , unsigned SI
1209 )
1210 : InheritableAttr(attr::AssertExclusiveLock, R, SI, true, true)
1211 , args_Size(ArgsSize), args_(new (Ctx, 16) Expr *[args_Size])
1212 {
1213 std::copy(Args, Args + args_Size, args_);
1214 }
1215
1216 AssertExclusiveLockAttr(SourceRange R, ASTContext &Ctx
1217 , unsigned SI
1218 )
1219 : InheritableAttr(attr::AssertExclusiveLock, R, SI, true, true)
1220 , args_Size(0), args_(nullptr)
1221 {
1222 }
1223
1224 AssertExclusiveLockAttr *clone(ASTContext &C) const;
1225 void printPretty(raw_ostream &OS,
1226 const PrintingPolicy &Policy) const;
1227 const char *getSpelling() const;
1228 typedef Expr ** args_iterator;
1229 args_iterator args_begin() const { return args_; }
1230 args_iterator args_end() const { return args_ + args_Size; }
1231 unsigned args_size() const { return args_Size; }
1232 llvm::iterator_range<args_iterator> args() const { return llvm::make_range(args_begin(), args_end()); }
1233
1234
1235
1236
1237 static bool classof(const Attr *A) { return A->getKind() == attr::AssertExclusiveLock; }
1238};
1239
1240class AssertSharedLockAttr : public InheritableAttr {
1241 unsigned args_Size;
1242 Expr * *args_;
1243
1244public:
1245 static AssertSharedLockAttr *CreateImplicit(ASTContext &Ctx, Expr * *Args, unsigned ArgsSize, SourceRange Loc = SourceRange()) {
1246 auto *A = new (Ctx) AssertSharedLockAttr(Loc, Ctx, Args, ArgsSize, 0);
1247 A->setImplicit(true);
1248 return A;
1249 }
1250
1251 AssertSharedLockAttr(SourceRange R, ASTContext &Ctx
1252 , Expr * *Args, unsigned ArgsSize
1253 , unsigned SI
1254 )
1255 : InheritableAttr(attr::AssertSharedLock, R, SI, true, true)
1256 , args_Size(ArgsSize), args_(new (Ctx, 16) Expr *[args_Size])
1257 {
1258 std::copy(Args, Args + args_Size, args_);
1259 }
1260
1261 AssertSharedLockAttr(SourceRange R, ASTContext &Ctx
1262 , unsigned SI
1263 )
1264 : InheritableAttr(attr::AssertSharedLock, R, SI, true, true)
1265 , args_Size(0), args_(nullptr)
1266 {
1267 }
1268
1269 AssertSharedLockAttr *clone(ASTContext &C) const;
1270 void printPretty(raw_ostream &OS,
1271 const PrintingPolicy &Policy) const;
1272 const char *getSpelling() const;
1273 typedef Expr ** args_iterator;
1274 args_iterator args_begin() const { return args_; }
1275 args_iterator args_end() const { return args_ + args_Size; }
1276 unsigned args_size() const { return args_Size; }
1277 llvm::iterator_range<args_iterator> args() const { return llvm::make_range(args_begin(), args_end()); }
1278
1279
1280
1281
1282 static bool classof(const Attr *A) { return A->getKind() == attr::AssertSharedLock; }
1283};
1284
1285class AssumeAlignedAttr : public InheritableAttr {
1286Expr * alignment;
1287
1288Expr * offset;
1289
1290public:
1291 static AssumeAlignedAttr *CreateImplicit(ASTContext &Ctx, Expr * Alignment, Expr * Offset, SourceRange Loc = SourceRange()) {
1292 auto *A = new (Ctx) AssumeAlignedAttr(Loc, Ctx, Alignment, Offset, 0);
1293 A->setImplicit(true);
1294 return A;
1295 }
1296
1297 AssumeAlignedAttr(SourceRange R, ASTContext &Ctx
1298 , Expr * Alignment
1299 , Expr * Offset
1300 , unsigned SI
1301 )
1302 : InheritableAttr(attr::AssumeAligned, R, SI, false, false)
1303 , alignment(Alignment)
1304 , offset(Offset)
1305 {
1306 }
1307
1308 AssumeAlignedAttr(SourceRange R, ASTContext &Ctx
1309 , Expr * Alignment
1310 , unsigned SI
1311 )
1312 : InheritableAttr(attr::AssumeAligned, R, SI, false, false)
1313 , alignment(Alignment)
1314 , offset()
1315 {
1316 }
1317
1318 AssumeAlignedAttr *clone(ASTContext &C) const;
1319 void printPretty(raw_ostream &OS,
1320 const PrintingPolicy &Policy) const;
1321 const char *getSpelling() const;
1322 Expr * getAlignment() const {
1323 return alignment;
1324 }
1325
1326 Expr * getOffset() const {
1327 return offset;
1328 }
1329
1330
1331
1332 static bool classof(const Attr *A) { return A->getKind() == attr::AssumeAligned; }
1333};
1334
1335class AvailabilityAttr : public InheritableAttr {
1336IdentifierInfo * platform;
1337
1338VersionTuple introduced;
1339
1340
1341VersionTuple deprecated;
1342
1343
1344VersionTuple obsoleted;
1345
1346
1347bool unavailable;
1348
1349unsigned messageLength;
1350char *message;
1351
1352bool strict;
1353
1354unsigned replacementLength;
1355char *replacement;
1356
1357public:
1358 static AvailabilityAttr *CreateImplicit(ASTContext &Ctx, IdentifierInfo * Platform, VersionTuple Introduced, VersionTuple Deprecated, VersionTuple Obsoleted, bool Unavailable, llvm::StringRef Message, bool Strict, llvm::StringRef Replacement, SourceRange Loc = SourceRange()) {
1359 auto *A = new (Ctx) AvailabilityAttr(Loc, Ctx, Platform, Introduced, Deprecated, Obsoleted, Unavailable, Message, Strict, Replacement, 0);
1360 A->setImplicit(true);
1361 return A;
1362 }
1363
1364 AvailabilityAttr(SourceRange R, ASTContext &Ctx
1365 , IdentifierInfo * Platform
1366 , VersionTuple Introduced
1367 , VersionTuple Deprecated
1368 , VersionTuple Obsoleted
1369 , bool Unavailable
1370 , llvm::StringRef Message
1371 , bool Strict
1372 , llvm::StringRef Replacement
1373 , unsigned SI
1374 )
1375 : InheritableAttr(attr::Availability, R, SI, false, true)
1376 , platform(Platform)
1377 , introduced(Introduced)
1378 , deprecated(Deprecated)
1379 , obsoleted(Obsoleted)
1380 , unavailable(Unavailable)
1381 , messageLength(Message.size()),message(new (Ctx, 1) char[messageLength])
1382 , strict(Strict)
1383 , replacementLength(Replacement.size()),replacement(new (Ctx, 1) char[replacementLength])
1384 {
1385 if (!Message.empty())
1386 std::memcpy(message, Message.data(), messageLength);
1387 if (!Replacement.empty())
1388 std::memcpy(replacement, Replacement.data(), replacementLength);
1389 }
1390
1391 AvailabilityAttr *clone(ASTContext &C) const;
1392 void printPretty(raw_ostream &OS,
1393 const PrintingPolicy &Policy) const;
1394 const char *getSpelling() const;
1395 IdentifierInfo * getPlatform() const {
1396 return platform;
1397 }
1398
1399 VersionTuple getIntroduced() const {
1400 return introduced;
1401 }
1402 void setIntroduced(ASTContext &C, VersionTuple V) {
1403 introduced = V;
1404 }
1405
1406 VersionTuple getDeprecated() const {
1407 return deprecated;
1408 }
1409 void setDeprecated(ASTContext &C, VersionTuple V) {
1410 deprecated = V;
1411 }
1412
1413 VersionTuple getObsoleted() const {
1414 return obsoleted;
1415 }
1416 void setObsoleted(ASTContext &C, VersionTuple V) {
1417 obsoleted = V;
1418 }
1419
1420 bool getUnavailable() const {
1421 return unavailable;
1422 }
1423
1424 llvm::StringRef getMessage() const {
1425 return llvm::StringRef(message, messageLength);
1426 }
1427 unsigned getMessageLength() const {
1428 return messageLength;
1429 }
1430 void setMessage(ASTContext &C, llvm::StringRef S) {
1431 messageLength = S.size();
1432 this->message = new (C, 1) char [messageLength];
1433 if (!S.empty())
1434 std::memcpy(this->message, S.data(), messageLength);
1435 }
1436
1437 bool getStrict() const {
1438 return strict;
1439 }
1440
1441 llvm::StringRef getReplacement() const {
1442 return llvm::StringRef(replacement, replacementLength);
1443 }
1444 unsigned getReplacementLength() const {
1445 return replacementLength;
1446 }
1447 void setReplacement(ASTContext &C, llvm::StringRef S) {
1448 replacementLength = S.size();
1449 this->replacement = new (C, 1) char [replacementLength];
1450 if (!S.empty())
1451 std::memcpy(this->replacement, S.data(), replacementLength);
1452 }
1453
1454static llvm::StringRef getPrettyPlatformName(llvm::StringRef Platform) {
1455 return llvm::StringSwitch<llvm::StringRef>(Platform)
1456 .Case("android", "Android")
1457 .Case("ios", "iOS")
1458 .Case("macos", "macOS")
1459 .Case("tvos", "tvOS")
1460 .Case("watchos", "watchOS")
1461 .Case("ios_app_extension", "iOS (App Extension)")
1462 .Case("macos_app_extension", "macOS (App Extension)")
1463 .Case("tvos_app_extension", "tvOS (App Extension)")
1464 .Case("watchos_app_extension", "watchOS (App Extension)")
1465 .Default(llvm::StringRef());
1466}
1467static llvm::StringRef getPlatformNameSourceSpelling(llvm::StringRef Platform) {
1468 return llvm::StringSwitch<llvm::StringRef>(Platform)
1469 .Case("ios", "iOS")
1470 .Case("macos", "macOS")
1471 .Case("tvos", "tvOS")
1472 .Case("watchos", "watchOS")
1473 .Case("ios_app_extension", "iOSApplicationExtension")
1474 .Case("macos_app_extension", "macOSApplicationExtension")
1475 .Case("tvos_app_extension", "tvOSApplicationExtension")
1476 .Case("watchos_app_extension", "watchOSApplicationExtension")
1477 .Default(Platform);
1478}
1479static llvm::StringRef canonicalizePlatformName(llvm::StringRef Platform) {
1480 return llvm::StringSwitch<llvm::StringRef>(Platform)
1481 .Case("iOS", "ios")
1482 .Case("macOS", "macos")
1483 .Case("tvOS", "tvos")
1484 .Case("watchOS", "watchos")
1485 .Case("iOSApplicationExtension", "ios_app_extension")
1486 .Case("macOSApplicationExtension", "macos_app_extension")
1487 .Case("tvOSApplicationExtension", "tvos_app_extension")
1488 .Case("watchOSApplicationExtension", "watchos_app_extension")
1489 .Default(Platform);
1490}
1491
1492 static bool classof(const Attr *A) { return A->getKind() == attr::Availability; }
1493};
1494
1495class BlocksAttr : public InheritableAttr {
1496public:
1497 enum BlockType {
1498 ByRef
1499 };
1500private:
1501 BlockType type;
1502
1503public:
1504 static BlocksAttr *CreateImplicit(ASTContext &Ctx, BlockType Type, SourceRange Loc = SourceRange()) {
1505 auto *A = new (Ctx) BlocksAttr(Loc, Ctx, Type, 0);
1506 A->setImplicit(true);
1507 return A;
1508 }
1509
1510 BlocksAttr(SourceRange R, ASTContext &Ctx
1511 , BlockType Type
1512 , unsigned SI
1513 )
1514 : InheritableAttr(attr::Blocks, R, SI, false, false)
1515 , type(Type)
1516 {
1517 }
1518
1519 BlocksAttr *clone(ASTContext &C) const;
1520 void printPretty(raw_ostream &OS,
1521 const PrintingPolicy &Policy) const;
1522 const char *getSpelling() const;
1523 BlockType getType() const {
1524 return type;
1525 }
1526
1527 static bool ConvertStrToBlockType(StringRef Val, BlockType &Out) {
1528 Optional<BlockType> R = llvm::StringSwitch<Optional<BlockType>>(Val)
1529 .Case("byref", BlocksAttr::ByRef)
1530 .Default(Optional<BlockType>());
1531 if (R) {
1532 Out = *R;
1533 return true;
1534 }
1535 return false;
1536 }
1537
1538 static const char *ConvertBlockTypeToStr(BlockType Val) {
1539 switch(Val) {
1540 case BlocksAttr::ByRef: return "byref";
1541 }
1542 llvm_unreachable("No enumerator with that value")::llvm::llvm_unreachable_internal("No enumerator with that value"
, "/build/llvm-toolchain-snapshot-7~svn338205/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 1542)
;
1543 }
1544
1545
1546 static bool classof(const Attr *A) { return A->getKind() == attr::Blocks; }
1547};
1548
1549class C11NoReturnAttr : public InheritableAttr {
1550public:
1551 static C11NoReturnAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
1552 auto *A = new (Ctx) C11NoReturnAttr(Loc, Ctx, 0);
1553 A->setImplicit(true);
1554 return A;
1555 }
1556
1557 C11NoReturnAttr(SourceRange R, ASTContext &Ctx
1558 , unsigned SI
1559 )
1560 : InheritableAttr(attr::C11NoReturn, R, SI, false, false)
1561 {
1562 }
1563
1564 C11NoReturnAttr *clone(ASTContext &C) const;
1565 void printPretty(raw_ostream &OS,
1566 const PrintingPolicy &Policy) const;
1567 const char *getSpelling() const;
1568
1569
1570 static bool classof(const Attr *A) { return A->getKind() == attr::C11NoReturn; }
1571};
1572
1573class CDeclAttr : public InheritableAttr {
1574public:
1575 static CDeclAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
1576 auto *A = new (Ctx) CDeclAttr(Loc, Ctx, 0);
1577 A->setImplicit(true);
1578 return A;
1579 }
1580
1581 CDeclAttr(SourceRange R, ASTContext &Ctx
1582 , unsigned SI
1583 )
1584 : InheritableAttr(attr::CDecl, R, SI, false, false)
1585 {
1586 }
1587
1588 CDeclAttr *clone(ASTContext &C) const;
1589 void printPretty(raw_ostream &OS,
1590 const PrintingPolicy &Policy) const;
1591 const char *getSpelling() const;
1592
1593
1594 static bool classof(const Attr *A) { return A->getKind() == attr::CDecl; }
1595};
1596
1597class CFAuditedTransferAttr : public InheritableAttr {
1598public:
1599 static CFAuditedTransferAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
1600 auto *A = new (Ctx) CFAuditedTransferAttr(Loc, Ctx, 0);
1601 A->setImplicit(true);
1602 return A;
1603 }
1604
1605 CFAuditedTransferAttr(SourceRange R, ASTContext &Ctx
1606 , unsigned SI
1607 )
1608 : InheritableAttr(attr::CFAuditedTransfer, R, SI, false, false)
1609 {
1610 }
1611
1612 CFAuditedTransferAttr *clone(ASTContext &C) const;
1613 void printPretty(raw_ostream &OS,
1614 const PrintingPolicy &Policy) const;
1615 const char *getSpelling() const;
1616
1617
1618 static bool classof(const Attr *A) { return A->getKind() == attr::CFAuditedTransfer; }
1619};
1620
1621class CFConsumedAttr : public InheritableParamAttr {
1622public:
1623 static CFConsumedAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
1624 auto *A = new (Ctx) CFConsumedAttr(Loc, Ctx, 0);
1625 A->setImplicit(true);
1626 return A;
1627 }
1628
1629 CFConsumedAttr(SourceRange R, ASTContext &Ctx
1630 , unsigned SI
1631 )
1632 : InheritableParamAttr(attr::CFConsumed, R, SI, false, false)
1633 {
1634 }
1635
1636 CFConsumedAttr *clone(ASTContext &C) const;
1637 void printPretty(raw_ostream &OS,
1638 const PrintingPolicy &Policy) const;
1639 const char *getSpelling() const;
1640
1641
1642 static bool classof(const Attr *A) { return A->getKind() == attr::CFConsumed; }
1643};
1644
1645class CFReturnsNotRetainedAttr : public InheritableAttr {
1646public:
1647 static CFReturnsNotRetainedAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
1648 auto *A = new (Ctx) CFReturnsNotRetainedAttr(Loc, Ctx, 0);
1649 A->setImplicit(true);
1650 return A;
1651 }
1652
1653 CFReturnsNotRetainedAttr(SourceRange R, ASTContext &Ctx
1654 , unsigned SI
1655 )
1656 : InheritableAttr(attr::CFReturnsNotRetained, R, SI, false, false)
1657 {
1658 }
1659
1660 CFReturnsNotRetainedAttr *clone(ASTContext &C) const;
1661 void printPretty(raw_ostream &OS,
1662 const PrintingPolicy &Policy) const;
1663 const char *getSpelling() const;
1664
1665
1666 static bool classof(const Attr *A) { return A->getKind() == attr::CFReturnsNotRetained; }
1667};
1668
1669class CFReturnsRetainedAttr : public InheritableAttr {
1670public:
1671 static CFReturnsRetainedAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
1672 auto *A = new (Ctx) CFReturnsRetainedAttr(Loc, Ctx, 0);
1673 A->setImplicit(true);
1674 return A;
1675 }
1676
1677 CFReturnsRetainedAttr(SourceRange R, ASTContext &Ctx
1678 , unsigned SI
1679 )
1680 : InheritableAttr(attr::CFReturnsRetained, R, SI, false, false)
1681 {
1682 }
1683
1684 CFReturnsRetainedAttr *clone(ASTContext &C) const;
1685 void printPretty(raw_ostream &OS,
1686 const PrintingPolicy &Policy) const;
1687 const char *getSpelling() const;
1688
1689
1690 static bool classof(const Attr *A) { return A->getKind() == attr::CFReturnsRetained; }
1691};
1692
1693class CFUnknownTransferAttr : public InheritableAttr {
1694public:
1695 static CFUnknownTransferAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
1696 auto *A = new (Ctx) CFUnknownTransferAttr(Loc, Ctx, 0);
1697 A->setImplicit(true);
1698 return A;
1699 }
1700
1701 CFUnknownTransferAttr(SourceRange R, ASTContext &Ctx
1702 , unsigned SI
1703 )
1704 : InheritableAttr(attr::CFUnknownTransfer, R, SI, false, false)
1705 {
1706 }
1707
1708 CFUnknownTransferAttr *clone(ASTContext &C) const;
1709 void printPretty(raw_ostream &OS,
1710 const PrintingPolicy &Policy) const;
1711 const char *getSpelling() const;
1712
1713
1714 static bool classof(const Attr *A) { return A->getKind() == attr::CFUnknownTransfer; }
1715};
1716
1717class CPUDispatchAttr : public InheritableAttr {
1718 unsigned cpus_Size;
1719 IdentifierInfo * *cpus_;
1720
1721public:
1722 static CPUDispatchAttr *CreateImplicit(ASTContext &Ctx, IdentifierInfo * *Cpus, unsigned CpusSize, SourceRange Loc = SourceRange()) {
1723 auto *A = new (Ctx) CPUDispatchAttr(Loc, Ctx, Cpus, CpusSize, 0);
1724 A->setImplicit(true);
1725 return A;
1726 }
1727
1728 CPUDispatchAttr(SourceRange R, ASTContext &Ctx
1729 , IdentifierInfo * *Cpus, unsigned CpusSize
1730 , unsigned SI
1731 )
1732 : InheritableAttr(attr::CPUDispatch, R, SI, false, false)
1733 , cpus_Size(CpusSize), cpus_(new (Ctx, 16) IdentifierInfo *[cpus_Size])
1734 {
1735 std::copy(Cpus, Cpus + cpus_Size, cpus_);
1736 }
1737
1738 CPUDispatchAttr(SourceRange R, ASTContext &Ctx
1739 , unsigned SI
1740 )
1741 : InheritableAttr(attr::CPUDispatch, R, SI, false, false)
1742 , cpus_Size(0), cpus_(nullptr)
1743 {
1744 }
1745
1746 CPUDispatchAttr *clone(ASTContext &C) const;
1747 void printPretty(raw_ostream &OS,
1748 const PrintingPolicy &Policy) const;
1749 const char *getSpelling() const;
1750 typedef IdentifierInfo ** cpus_iterator;
1751 cpus_iterator cpus_begin() const { return cpus_; }
1752 cpus_iterator cpus_end() const { return cpus_ + cpus_Size; }
1753 unsigned cpus_size() const { return cpus_Size; }
1754 llvm::iterator_range<cpus_iterator> cpus() const { return llvm::make_range(cpus_begin(), cpus_end()); }
1755
1756
1757
1758
1759 static bool classof(const Attr *A) { return A->getKind() == attr::CPUDispatch; }
1760};
1761
1762class CPUSpecificAttr : public InheritableAttr {
1763 unsigned cpus_Size;
1764 IdentifierInfo * *cpus_;
1765
1766public:
1767 static CPUSpecificAttr *CreateImplicit(ASTContext &Ctx, IdentifierInfo * *Cpus, unsigned CpusSize, SourceRange Loc = SourceRange()) {
1768 auto *A = new (Ctx) CPUSpecificAttr(Loc, Ctx, Cpus, CpusSize, 0);
1769 A->setImplicit(true);
1770 return A;
1771 }
1772
1773 CPUSpecificAttr(SourceRange R, ASTContext &Ctx
1774 , IdentifierInfo * *Cpus, unsigned CpusSize
1775 , unsigned SI
1776 )
1777 : InheritableAttr(attr::CPUSpecific, R, SI, false, false)
1778 , cpus_Size(CpusSize), cpus_(new (Ctx, 16) IdentifierInfo *[cpus_Size])
1779 {
1780 std::copy(Cpus, Cpus + cpus_Size, cpus_);
1781 }
1782
1783 CPUSpecificAttr(SourceRange R, ASTContext &Ctx
1784 , unsigned SI
1785 )
1786 : InheritableAttr(attr::CPUSpecific, R, SI, false, false)
1787 , cpus_Size(0), cpus_(nullptr)
1788 {
1789 }
1790
1791 CPUSpecificAttr *clone(ASTContext &C) const;
1792 void printPretty(raw_ostream &OS,
1793 const PrintingPolicy &Policy) const;
1794 const char *getSpelling() const;
1795 typedef IdentifierInfo ** cpus_iterator;
1796 cpus_iterator cpus_begin() const { return cpus_; }
1797 cpus_iterator cpus_end() const { return cpus_ + cpus_Size; }
1798 unsigned cpus_size() const { return cpus_Size; }
1799 llvm::iterator_range<cpus_iterator> cpus() const { return llvm::make_range(cpus_begin(), cpus_end()); }
1800
1801
1802
1803 unsigned ActiveArgIndex = 0;
1804
1805 IdentifierInfo *getCurCPUName() const {
1806 return *(cpus_begin() + ActiveArgIndex);
1807 }
1808
1809
1810 static bool classof(const Attr *A) { return A->getKind() == attr::CPUSpecific; }
1811};
1812
1813class CUDAConstantAttr : public InheritableAttr {
1814public:
1815 static CUDAConstantAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
1816 auto *A = new (Ctx) CUDAConstantAttr(Loc, Ctx, 0);
1817 A->setImplicit(true);
1818 return A;
1819 }
1820
1821 CUDAConstantAttr(SourceRange R, ASTContext &Ctx
1822 , unsigned SI
1823 )
1824 : InheritableAttr(attr::CUDAConstant, R, SI, false, false)
1825 {
1826 }
1827
1828 CUDAConstantAttr *clone(ASTContext &C) const;
1829 void printPretty(raw_ostream &OS,
1830 const PrintingPolicy &Policy) const;
1831 const char *getSpelling() const;
1832
1833
1834 static bool classof(const Attr *A) { return A->getKind() == attr::CUDAConstant; }
1835};
1836
1837class CUDADeviceAttr : public InheritableAttr {
1838public:
1839 static CUDADeviceAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
1840 auto *A = new (Ctx) CUDADeviceAttr(Loc, Ctx, 0);
1841 A->setImplicit(true);
1842 return A;
1843 }
1844
1845 CUDADeviceAttr(SourceRange R, ASTContext &Ctx
1846 , unsigned SI
1847 )
1848 : InheritableAttr(attr::CUDADevice, R, SI, false, false)
1849 {
1850 }
1851
1852 CUDADeviceAttr *clone(ASTContext &C) const;
1853 void printPretty(raw_ostream &OS,
1854 const PrintingPolicy &Policy) const;
1855 const char *getSpelling() const;
1856
1857
1858 static bool classof(const Attr *A) { return A->getKind() == attr::CUDADevice; }
1859};
1860
1861class CUDAGlobalAttr : public InheritableAttr {
1862public:
1863 static CUDAGlobalAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
1864 auto *A = new (Ctx) CUDAGlobalAttr(Loc, Ctx, 0);
1865 A->setImplicit(true);
1866 return A;
1867 }
1868
1869 CUDAGlobalAttr(SourceRange R, ASTContext &Ctx
1870 , unsigned SI
1871 )
1872 : InheritableAttr(attr::CUDAGlobal, R, SI, false, false)
1873 {
1874 }
1875
1876 CUDAGlobalAttr *clone(ASTContext &C) const;
1877 void printPretty(raw_ostream &OS,
1878 const PrintingPolicy &Policy) const;
1879 const char *getSpelling() const;
1880
1881
1882 static bool classof(const Attr *A) { return A->getKind() == attr::CUDAGlobal; }
1883};
1884
1885class CUDAHostAttr : public InheritableAttr {
1886public:
1887 static CUDAHostAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
1888 auto *A = new (Ctx) CUDAHostAttr(Loc, Ctx, 0);
1889 A->setImplicit(true);
1890 return A;
1891 }
1892
1893 CUDAHostAttr(SourceRange R, ASTContext &Ctx
1894 , unsigned SI
1895 )
1896 : InheritableAttr(attr::CUDAHost, R, SI, false, false)
1897 {
1898 }
1899
1900 CUDAHostAttr *clone(ASTContext &C) const;
1901 void printPretty(raw_ostream &OS,
1902 const PrintingPolicy &Policy) const;
1903 const char *getSpelling() const;
1904
1905
1906 static bool classof(const Attr *A) { return A->getKind() == attr::CUDAHost; }
1907};
1908
1909class CUDAInvalidTargetAttr : public InheritableAttr {
1910public:
1911 static CUDAInvalidTargetAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
1912 auto *A = new (Ctx) CUDAInvalidTargetAttr(Loc, Ctx, 0);
1913 A->setImplicit(true);
1914 return A;
1915 }
1916
1917 CUDAInvalidTargetAttr(SourceRange R, ASTContext &Ctx
1918 , unsigned SI
1919 )
1920 : InheritableAttr(attr::CUDAInvalidTarget, R, SI, false, false)
1921 {
1922 }
1923
1924 CUDAInvalidTargetAttr *clone(ASTContext &C) const;
1925 void printPretty(raw_ostream &OS,
1926 const PrintingPolicy &Policy) const;
1927 const char *getSpelling() const;
1928
1929
1930 static bool classof(const Attr *A) { return A->getKind() == attr::CUDAInvalidTarget; }
1931};
1932
1933class CUDALaunchBoundsAttr : public InheritableAttr {
1934Expr * maxThreads;
1935
1936Expr * minBlocks;
1937
1938public:
1939 static CUDALaunchBoundsAttr *CreateImplicit(ASTContext &Ctx, Expr * MaxThreads, Expr * MinBlocks, SourceRange Loc = SourceRange()) {
1940 auto *A = new (Ctx) CUDALaunchBoundsAttr(Loc, Ctx, MaxThreads, MinBlocks, 0);
1941 A->setImplicit(true);
1942 return A;
1943 }
1944
1945 CUDALaunchBoundsAttr(SourceRange R, ASTContext &Ctx
1946 , Expr * MaxThreads
1947 , Expr * MinBlocks
1948 , unsigned SI
1949 )
1950 : InheritableAttr(attr::CUDALaunchBounds, R, SI, false, false)
1951 , maxThreads(MaxThreads)
1952 , minBlocks(MinBlocks)
1953 {
1954 }
1955
1956 CUDALaunchBoundsAttr(SourceRange R, ASTContext &Ctx
1957 , Expr * MaxThreads
1958 , unsigned SI
1959 )
1960 : InheritableAttr(attr::CUDALaunchBounds, R, SI, false, false)
1961 , maxThreads(MaxThreads)
1962 , minBlocks()
1963 {
1964 }
1965
1966 CUDALaunchBoundsAttr *clone(ASTContext &C) const;
1967 void printPretty(raw_ostream &OS,
1968 const PrintingPolicy &Policy) const;
1969 const char *getSpelling() const;
1970 Expr * getMaxThreads() const {
1971 return maxThreads;
1972 }
1973
1974 Expr * getMinBlocks() const {
1975 return minBlocks;
1976 }
1977
1978
1979
1980 static bool classof(const Attr *A) { return A->getKind() == attr::CUDALaunchBounds; }
1981};
1982
1983class CUDASharedAttr : public InheritableAttr {
1984public:
1985 static CUDASharedAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
1986 auto *A = new (Ctx) CUDASharedAttr(Loc, Ctx, 0);
1987 A->setImplicit(true);
1988 return A;
1989 }
1990
1991 CUDASharedAttr(SourceRange R, ASTContext &Ctx
1992 , unsigned SI
1993 )
1994 : InheritableAttr(attr::CUDAShared, R, SI, false, false)
1995 {
1996 }
1997
1998 CUDASharedAttr *clone(ASTContext &C) const;
1999 void printPretty(raw_ostream &OS,
2000 const PrintingPolicy &Policy) const;
2001 const char *getSpelling() const;
2002
2003
2004 static bool classof(const Attr *A) { return A->getKind() == attr::CUDAShared; }
2005};
2006
2007class CXX11NoReturnAttr : public InheritableAttr {
2008public:
2009 static CXX11NoReturnAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
2010 auto *A = new (Ctx) CXX11NoReturnAttr(Loc, Ctx, 0);
2011 A->setImplicit(true);
2012 return A;
2013 }
2014
2015 CXX11NoReturnAttr(SourceRange R, ASTContext &Ctx
2016 , unsigned SI
2017 )
2018 : InheritableAttr(attr::CXX11NoReturn, R, SI, false, false)
2019 {
2020 }
2021
2022 CXX11NoReturnAttr *clone(ASTContext &C) const;
2023 void printPretty(raw_ostream &OS,
2024 const PrintingPolicy &Policy) const;
2025 const char *getSpelling() const;
2026
2027
2028 static bool classof(const Attr *A) { return A->getKind() == attr::CXX11NoReturn; }
2029};
2030
2031class CallableWhenAttr : public InheritableAttr {
2032public:
2033 enum ConsumedState {
2034 Unknown,
2035 Consumed,
2036 Unconsumed
2037 };
2038private:
2039 unsigned callableStates_Size;
2040 ConsumedState *callableStates_;
2041
2042public:
2043 static CallableWhenAttr *CreateImplicit(ASTContext &Ctx, ConsumedState *CallableStates, unsigned CallableStatesSize, SourceRange Loc = SourceRange()) {
2044 auto *A = new (Ctx) CallableWhenAttr(Loc, Ctx, CallableStates, CallableStatesSize, 0);
2045 A->setImplicit(true);
2046 return A;
2047 }
2048
2049 CallableWhenAttr(SourceRange R, ASTContext &Ctx
2050 , ConsumedState *CallableStates, unsigned CallableStatesSize
2051 , unsigned SI
2052 )
2053 : InheritableAttr(attr::CallableWhen, R, SI, false, false)
2054 , callableStates_Size(CallableStatesSize), callableStates_(new (Ctx, 16) ConsumedState[callableStates_Size])
2055 {
2056 std::copy(CallableStates, CallableStates + callableStates_Size, callableStates_);
2057 }
2058
2059 CallableWhenAttr(SourceRange R, ASTContext &Ctx
2060 , unsigned SI
2061 )
2062 : InheritableAttr(attr::CallableWhen, R, SI, false, false)
2063 , callableStates_Size(0), callableStates_(nullptr)
2064 {
2065 }
2066
2067 CallableWhenAttr *clone(ASTContext &C) const;
2068 void printPretty(raw_ostream &OS,
2069 const PrintingPolicy &Policy) const;
2070 const char *getSpelling() const;
2071 typedef ConsumedState* callableStates_iterator;
2072 callableStates_iterator callableStates_begin() const { return callableStates_; }
2073 callableStates_iterator callableStates_end() const { return callableStates_ + callableStates_Size; }
2074 unsigned callableStates_size() const { return callableStates_Size; }
2075 llvm::iterator_range<callableStates_iterator> callableStates() const { return llvm::make_range(callableStates_begin(), callableStates_end()); }
2076
2077
2078 static bool ConvertStrToConsumedState(StringRef Val, ConsumedState &Out) {
2079 Optional<ConsumedState> R = llvm::StringSwitch<Optional<ConsumedState>>(Val)
2080 .Case("unknown", CallableWhenAttr::Unknown)
2081 .Case("consumed", CallableWhenAttr::Consumed)
2082 .Case("unconsumed", CallableWhenAttr::Unconsumed)
2083 .Default(Optional<ConsumedState>());
2084 if (R) {
2085 Out = *R;
2086 return true;
2087 }
2088 return false;
2089 }
2090
2091 static const char *ConvertConsumedStateToStr(ConsumedState Val) {
2092 switch(Val) {
2093 case CallableWhenAttr::Unknown: return "unknown";
2094 case CallableWhenAttr::Consumed: return "consumed";
2095 case CallableWhenAttr::Unconsumed: return "unconsumed";
2096 }
2097 llvm_unreachable("No enumerator with that value")::llvm::llvm_unreachable_internal("No enumerator with that value"
, "/build/llvm-toolchain-snapshot-7~svn338205/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 2097)
;
2098 }
2099
2100
2101 static bool classof(const Attr *A) { return A->getKind() == attr::CallableWhen; }
2102};
2103
2104class CapabilityAttr : public InheritableAttr {
2105unsigned nameLength;
2106char *name;
2107
2108public:
2109 enum Spelling {
2110 GNU_capability = 0,
2111 CXX11_clang_capability = 1,
2112 GNU_shared_capability = 2,
2113 CXX11_clang_shared_capability = 3
2114 };
2115
2116 static CapabilityAttr *CreateImplicit(ASTContext &Ctx, Spelling S, llvm::StringRef Name, SourceRange Loc = SourceRange()) {
2117 auto *A = new (Ctx) CapabilityAttr(Loc, Ctx, Name, S);
2118 A->setImplicit(true);
2119 return A;
2120 }
2121
2122 CapabilityAttr(SourceRange R, ASTContext &Ctx
2123 , llvm::StringRef Name
2124 , unsigned SI
2125 )
2126 : InheritableAttr(attr::Capability, R, SI, false, false)
2127 , nameLength(Name.size()),name(new (Ctx, 1) char[nameLength])
2128 {
2129 if (!Name.empty())
2130 std::memcpy(name, Name.data(), nameLength);
2131 }
2132
2133 CapabilityAttr *clone(ASTContext &C) const;
2134 void printPretty(raw_ostream &OS,
2135 const PrintingPolicy &Policy) const;
2136 const char *getSpelling() const;
2137 Spelling getSemanticSpelling() const {
2138 switch (SpellingListIndex) {
2139 default: llvm_unreachable("Unknown spelling list index")::llvm::llvm_unreachable_internal("Unknown spelling list index"
, "/build/llvm-toolchain-snapshot-7~svn338205/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 2139)
;
2140 case 0: return GNU_capability;
2141 case 1: return CXX11_clang_capability;
2142 case 2: return GNU_shared_capability;
2143 case 3: return CXX11_clang_shared_capability;
2144 }
2145 }
2146 bool isShared() const { return SpellingListIndex == 2 ||
2147 SpellingListIndex == 3; }
2148 llvm::StringRef getName() const {
2149 return llvm::StringRef(name, nameLength);
2150 }
2151 unsigned getNameLength() const {
2152 return nameLength;
2153 }
2154 void setName(ASTContext &C, llvm::StringRef S) {
2155 nameLength = S.size();
2156 this->name = new (C, 1) char [nameLength];
2157 if (!S.empty())
2158 std::memcpy(this->name, S.data(), nameLength);
2159 }
2160
2161
2162 bool isMutex() const { return getName().equals_lower("mutex"); }
2163 bool isRole() const { return getName().equals_lower("role"); }
2164
2165
2166 static bool classof(const Attr *A) { return A->getKind() == attr::Capability; }
2167};
2168
2169class CapturedRecordAttr : public InheritableAttr {
2170public:
2171 static CapturedRecordAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
2172 auto *A = new (Ctx) CapturedRecordAttr(Loc, Ctx, 0);
2173 A->setImplicit(true);
2174 return A;
2175 }
2176
2177 CapturedRecordAttr(SourceRange R, ASTContext &Ctx
2178 , unsigned SI
2179 )
2180 : InheritableAttr(attr::CapturedRecord, R, SI, false, false)
2181 {
2182 }
2183
2184 CapturedRecordAttr *clone(ASTContext &C) const;
2185 void printPretty(raw_ostream &OS,
2186 const PrintingPolicy &Policy) const;
2187 const char *getSpelling() const;
2188
2189
2190 static bool classof(const Attr *A) { return A->getKind() == attr::CapturedRecord; }
2191};
2192
2193class CarriesDependencyAttr : public InheritableParamAttr {
2194public:
2195 static CarriesDependencyAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
2196 auto *A = new (Ctx) CarriesDependencyAttr(Loc, Ctx, 0);
2197 A->setImplicit(true);
2198 return A;
2199 }
2200
2201 CarriesDependencyAttr(SourceRange R, ASTContext &Ctx
2202 , unsigned SI
2203 )
2204 : InheritableParamAttr(attr::CarriesDependency, R, SI, false, false)
2205 {
2206 }
2207
2208 CarriesDependencyAttr *clone(ASTContext &C) const;
2209 void printPretty(raw_ostream &OS,
2210 const PrintingPolicy &Policy) const;
2211 const char *getSpelling() const;
2212
2213
2214 static bool classof(const Attr *A) { return A->getKind() == attr::CarriesDependency; }
2215};
2216
2217class CleanupAttr : public InheritableAttr {
2218FunctionDecl * functionDecl;
2219
2220public:
2221 static CleanupAttr *CreateImplicit(ASTContext &Ctx, FunctionDecl * FunctionDecl, SourceRange Loc = SourceRange()) {
2222 auto *A = new (Ctx) CleanupAttr(Loc, Ctx, FunctionDecl, 0);
2223 A->setImplicit(true);
2224 return A;
2225 }
2226
2227 CleanupAttr(SourceRange R, ASTContext &Ctx
2228 , FunctionDecl * FunctionDecl
2229 , unsigned SI
2230 )
2231 : InheritableAttr(attr::Cleanup, R, SI, false, false)
2232 , functionDecl(FunctionDecl)
2233 {
2234 }
2235
2236 CleanupAttr *clone(ASTContext &C) const;
2237 void printPretty(raw_ostream &OS,
2238 const PrintingPolicy &Policy) const;
2239 const char *getSpelling() const;
2240 FunctionDecl * getFunctionDecl() const {
2241 return functionDecl;
2242 }
2243
2244
2245
2246 static bool classof(const Attr *A) { return A->getKind() == attr::Cleanup; }
2247};
2248
2249class CodeSegAttr : public InheritableAttr {
2250unsigned nameLength;
2251char *name;
2252
2253public:
2254 static CodeSegAttr *CreateImplicit(ASTContext &Ctx, llvm::StringRef Name, SourceRange Loc = SourceRange()) {
2255 auto *A = new (Ctx) CodeSegAttr(Loc, Ctx, Name, 0);
2256 A->setImplicit(true);
2257 return A;
2258 }
2259
2260 CodeSegAttr(SourceRange R, ASTContext &Ctx
2261 , llvm::StringRef Name
2262 , unsigned SI
2263 )
2264 : InheritableAttr(attr::CodeSeg, R, SI, false, false)
2265 , nameLength(Name.size()),name(new (Ctx, 1) char[nameLength])
2266 {
2267 if (!Name.empty())
2268 std::memcpy(name, Name.data(), nameLength);
2269 }
2270
2271 CodeSegAttr *clone(ASTContext &C) const;
2272 void printPretty(raw_ostream &OS,
2273 const PrintingPolicy &Policy) const;
2274 const char *getSpelling() const;
2275 llvm::StringRef getName() const {
2276 return llvm::StringRef(name, nameLength);
2277 }
2278 unsigned getNameLength() const {
2279 return nameLength;
2280 }
2281 void setName(ASTContext &C, llvm::StringRef S) {
2282 nameLength = S.size();
2283 this->name = new (C, 1) char [nameLength];
2284 if (!S.empty())
2285 std::memcpy(this->name, S.data(), nameLength);
2286 }
2287
2288
2289
2290 static bool classof(const Attr *A) { return A->getKind() == attr::CodeSeg; }
2291};
2292
2293class ColdAttr : public InheritableAttr {
2294public:
2295 static ColdAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
2296 auto *A = new (Ctx) ColdAttr(Loc, Ctx, 0);
2297 A->setImplicit(true);
2298 return A;
2299 }
2300
2301 ColdAttr(SourceRange R, ASTContext &Ctx
2302 , unsigned SI
2303 )
2304 : InheritableAttr(attr::Cold, R, SI, false, false)
2305 {
2306 }
2307
2308 ColdAttr *clone(ASTContext &C) const;
2309 void printPretty(raw_ostream &OS,
2310 const PrintingPolicy &Policy) const;
2311 const char *getSpelling() const;
2312
2313
2314 static bool classof(const Attr *A) { return A->getKind() == attr::Cold; }
2315};
2316
2317class CommonAttr : public InheritableAttr {
2318public:
2319 static CommonAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
2320 auto *A = new (Ctx) CommonAttr(Loc, Ctx, 0);
2321 A->setImplicit(true);
2322 return A;
2323 }
2324
2325 CommonAttr(SourceRange R, ASTContext &Ctx
2326 , unsigned SI
2327 )
2328 : InheritableAttr(attr::Common, R, SI, false, false)
2329 {
2330 }
2331
2332 CommonAttr *clone(ASTContext &C) const;
2333 void printPretty(raw_ostream &OS,
2334 const PrintingPolicy &Policy) const;
2335 const char *getSpelling() const;
2336
2337
2338 static bool classof(const Attr *A) { return A->getKind() == attr::Common; }
2339};
2340
2341class ConstAttr : public InheritableAttr {
2342public:
2343 static ConstAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
2344 auto *A = new (Ctx) ConstAttr(Loc, Ctx, 0);
2345 A->setImplicit(true);
2346 return A;
2347 }
2348
2349 ConstAttr(SourceRange R, ASTContext &Ctx
2350 , unsigned SI
2351 )
2352 : InheritableAttr(attr::Const, R, SI, false, false)
2353 {
2354 }
2355
2356 ConstAttr *clone(ASTContext &C) const;
2357 void printPretty(raw_ostream &OS,
2358 const PrintingPolicy &Policy) const;
2359 const char *getSpelling() const;
2360
2361
2362 static bool classof(const Attr *A) { return A->getKind() == attr::Const; }
2363};
2364
2365class ConstructorAttr : public InheritableAttr {
2366int priority;
2367
2368public:
2369 static ConstructorAttr *CreateImplicit(ASTContext &Ctx, int Priority, SourceRange Loc = SourceRange()) {
2370 auto *A = new (Ctx) ConstructorAttr(Loc, Ctx, Priority, 0);
2371 A->setImplicit(true);
2372 return A;
2373 }
2374
2375 ConstructorAttr(SourceRange R, ASTContext &Ctx
2376 , int Priority
2377 , unsigned SI
2378 )
2379 : InheritableAttr(attr::Constructor, R, SI, false, false)
2380 , priority(Priority)
2381 {
2382 }
2383
2384 ConstructorAttr(SourceRange R, ASTContext &Ctx
2385 , unsigned SI
2386 )
2387 : InheritableAttr(attr::Constructor, R, SI, false, false)
2388 , priority()
2389 {
2390 }
2391
2392 ConstructorAttr *clone(ASTContext &C) const;
2393 void printPretty(raw_ostream &OS,
2394 const PrintingPolicy &Policy) const;
2395 const char *getSpelling() const;
2396 int getPriority() const {
2397 return priority;
2398 }
2399
2400 static const int DefaultPriority = 65535;
2401
2402
2403
2404 static bool classof(const Attr *A) { return A->getKind() == attr::Constructor; }
2405};
2406
2407class ConsumableAttr : public InheritableAttr {
2408public:
2409 enum ConsumedState {
2410 Unknown,
2411 Consumed,
2412 Unconsumed
2413 };
2414private:
2415 ConsumedState defaultState;
2416
2417public:
2418 static ConsumableAttr *CreateImplicit(ASTContext &Ctx, ConsumedState DefaultState, SourceRange Loc = SourceRange()) {
2419 auto *A = new (Ctx) ConsumableAttr(Loc, Ctx, DefaultState, 0);
2420 A->setImplicit(true);
2421 return A;
2422 }
2423
2424 ConsumableAttr(SourceRange R, ASTContext &Ctx
2425 , ConsumedState DefaultState
2426 , unsigned SI
2427 )
2428 : InheritableAttr(attr::Consumable, R, SI, false, false)
2429 , defaultState(DefaultState)
2430 {
2431 }
2432
2433 ConsumableAttr *clone(ASTContext &C) const;
2434 void printPretty(raw_ostream &OS,
2435 const PrintingPolicy &Policy) const;
2436 const char *getSpelling() const;
2437 ConsumedState getDefaultState() const {
2438 return defaultState;
2439 }
2440
2441 static bool ConvertStrToConsumedState(StringRef Val, ConsumedState &Out) {
2442 Optional<ConsumedState> R = llvm::StringSwitch<Optional<ConsumedState>>(Val)
2443 .Case("unknown", ConsumableAttr::Unknown)
2444 .Case("consumed", ConsumableAttr::Consumed)
2445 .Case("unconsumed", ConsumableAttr::Unconsumed)
2446 .Default(Optional<ConsumedState>());
2447 if (R) {
2448 Out = *R;
2449 return true;
2450 }
2451 return false;
2452 }
2453
2454 static const char *ConvertConsumedStateToStr(ConsumedState Val) {
2455 switch(Val) {
2456 case ConsumableAttr::Unknown: return "unknown";
2457 case ConsumableAttr::Consumed: return "consumed";
2458 case ConsumableAttr::Unconsumed: return "unconsumed";
2459 }
2460 llvm_unreachable("No enumerator with that value")::llvm::llvm_unreachable_internal("No enumerator with that value"
, "/build/llvm-toolchain-snapshot-7~svn338205/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 2460)
;
2461 }
2462
2463
2464 static bool classof(const Attr *A) { return A->getKind() == attr::Consumable; }
2465};
2466
2467class ConsumableAutoCastAttr : public InheritableAttr {
2468public:
2469 static ConsumableAutoCastAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
2470 auto *A = new (Ctx) ConsumableAutoCastAttr(Loc, Ctx, 0);
2471 A->setImplicit(true);
2472 return A;
2473 }
2474
2475 ConsumableAutoCastAttr(SourceRange R, ASTContext &Ctx
2476 , unsigned SI
2477 )
2478 : InheritableAttr(attr::ConsumableAutoCast, R, SI, false, false)
2479 {
2480 }
2481
2482 ConsumableAutoCastAttr *clone(ASTContext &C) const;
2483 void printPretty(raw_ostream &OS,
2484 const PrintingPolicy &Policy) const;
2485 const char *getSpelling() const;
2486
2487
2488 static bool classof(const Attr *A) { return A->getKind() == attr::ConsumableAutoCast; }
2489};
2490
2491class ConsumableSetOnReadAttr : public InheritableAttr {
2492public:
2493 static ConsumableSetOnReadAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
2494 auto *A = new (Ctx) ConsumableSetOnReadAttr(Loc, Ctx, 0);
2495 A->setImplicit(true);
2496 return A;
2497 }
2498
2499 ConsumableSetOnReadAttr(SourceRange R, ASTContext &Ctx
2500 , unsigned SI
2501 )
2502 : InheritableAttr(attr::ConsumableSetOnRead, R, SI, false, false)
2503 {
2504 }
2505
2506 ConsumableSetOnReadAttr *clone(ASTContext &C) const;
2507 void printPretty(raw_ostream &OS,
2508 const PrintingPolicy &Policy) const;
2509 const char *getSpelling() const;
2510
2511
2512 static bool classof(const Attr *A) { return A->getKind() == attr::ConsumableSetOnRead; }
2513};
2514
2515class ConvergentAttr : public InheritableAttr {
2516public:
2517 static ConvergentAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
2518 auto *A = new (Ctx) ConvergentAttr(Loc, Ctx, 0);
2519 A->setImplicit(true);
2520 return A;
2521 }
2522
2523 ConvergentAttr(SourceRange R, ASTContext &Ctx
2524 , unsigned SI
2525 )
2526 : InheritableAttr(attr::Convergent, R, SI, false, false)
2527 {
2528 }
2529
2530 ConvergentAttr *clone(ASTContext &C) const;
2531 void printPretty(raw_ostream &OS,
2532 const PrintingPolicy &Policy) const;
2533 const char *getSpelling() const;
2534
2535
2536 static bool classof(const Attr *A) { return A->getKind() == attr::Convergent; }
2537};
2538
2539class DLLExportAttr : public InheritableAttr {
2540public:
2541 static DLLExportAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
2542 auto *A = new (Ctx) DLLExportAttr(Loc, Ctx, 0);
2543 A->setImplicit(true);
2544 return A;
2545 }
2546
2547 DLLExportAttr(SourceRange R, ASTContext &Ctx
2548 , unsigned SI
2549 )
2550 : InheritableAttr(attr::DLLExport, R, SI, false, false)
2551 {
2552 }
2553
2554 DLLExportAttr *clone(ASTContext &C) const;
2555 void printPretty(raw_ostream &OS,
2556 const PrintingPolicy &Policy) const;
2557 const char *getSpelling() const;
2558
2559
2560 static bool classof(const Attr *A) { return A->getKind() == attr::DLLExport; }
2561};
2562
2563class DLLImportAttr : public InheritableAttr {
2564public:
2565 static DLLImportAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
2566 auto *A = new (Ctx) DLLImportAttr(Loc, Ctx, 0);
2567 A->setImplicit(true);
2568 return A;
2569 }
2570
2571 DLLImportAttr(SourceRange R, ASTContext &Ctx
2572 , unsigned SI
2573 )
2574 : InheritableAttr(attr::DLLImport, R, SI, false, false)
2575 {
2576 }
2577
2578 DLLImportAttr *clone(ASTContext &C) const;
2579 void printPretty(raw_ostream &OS,
2580 const PrintingPolicy &Policy) const;
2581 const char *getSpelling() const;
2582
2583private:
2584 bool PropagatedToBaseTemplate = false;
2585
2586public:
2587 void setPropagatedToBaseTemplate() { PropagatedToBaseTemplate = true; }
2588 bool wasPropagatedToBaseTemplate() { return PropagatedToBaseTemplate; }
2589
2590
2591 static bool classof(const Attr *A) { return A->getKind() == attr::DLLImport; }
2592};
2593
2594class DeprecatedAttr : public InheritableAttr {
2595unsigned messageLength;
2596char *message;
2597
2598unsigned replacementLength;
2599char *replacement;
2600
2601public:
2602 static DeprecatedAttr *CreateImplicit(ASTContext &Ctx, llvm::StringRef Message, llvm::StringRef Replacement, SourceRange Loc = SourceRange()) {
2603 auto *A = new (Ctx) DeprecatedAttr(Loc, Ctx, Message, Replacement, 0);
2604 A->setImplicit(true);
2605 return A;
2606 }
2607
2608 DeprecatedAttr(SourceRange R, ASTContext &Ctx
2609 , llvm::StringRef Message
2610 , llvm::StringRef Replacement
2611 , unsigned SI
2612 )
2613 : InheritableAttr(attr::Deprecated, R, SI, false, false)
2614 , messageLength(Message.size()),message(new (Ctx, 1) char[messageLength])
2615 , replacementLength(Replacement.size()),replacement(new (Ctx, 1) char[replacementLength])
2616 {
2617 if (!Message.empty())
2618 std::memcpy(message, Message.data(), messageLength);
2619 if (!Replacement.empty())
2620 std::memcpy(replacement, Replacement.data(), replacementLength);
2621 }
2622
2623 DeprecatedAttr(SourceRange R, ASTContext &Ctx
2624 , unsigned SI
2625 )
2626 : InheritableAttr(attr::Deprecated, R, SI, false, false)
2627 , messageLength(0),message(nullptr)
2628 , replacementLength(0),replacement(nullptr)
2629 {
2630 }
2631
2632 DeprecatedAttr *clone(ASTContext &C) const;
2633 void printPretty(raw_ostream &OS,
2634 const PrintingPolicy &Policy) const;
2635 const char *getSpelling() const;
2636 llvm::StringRef getMessage() const {
2637 return llvm::StringRef(message, messageLength);
2638 }
2639 unsigned getMessageLength() const {
2640 return messageLength;
2641 }
2642 void setMessage(ASTContext &C, llvm::StringRef S) {
2643 messageLength = S.size();
2644 this->message = new (C, 1) char [messageLength];
2645 if (!S.empty())
2646 std::memcpy(this->message, S.data(), messageLength);
2647 }
2648
2649 llvm::StringRef getReplacement() const {
2650 return llvm::StringRef(replacement, replacementLength);
2651 }
2652 unsigned getReplacementLength() const {
2653 return replacementLength;
2654 }
2655 void setReplacement(ASTContext &C, llvm::StringRef S) {
2656 replacementLength = S.size();
2657 this->replacement = new (C, 1) char [replacementLength];
2658 if (!S.empty())
2659 std::memcpy(this->replacement, S.data(), replacementLength);
2660 }
2661
2662
2663
2664 static bool classof(const Attr *A) { return A->getKind() == attr::Deprecated; }
2665};
2666
2667class DestructorAttr : public InheritableAttr {
2668int priority;
2669
2670public:
2671 static DestructorAttr *CreateImplicit(ASTContext &Ctx, int Priority, SourceRange Loc = SourceRange()) {
2672 auto *A = new (Ctx) DestructorAttr(Loc, Ctx, Priority, 0);
2673 A->setImplicit(true);
2674 return A;
2675 }
2676
2677 DestructorAttr(SourceRange R, ASTContext &Ctx
2678 , int Priority
2679 , unsigned SI
2680 )
2681 : InheritableAttr(attr::Destructor, R, SI, false, false)
2682 , priority(Priority)
2683 {
2684 }
2685
2686 DestructorAttr(SourceRange R, ASTContext &Ctx
2687 , unsigned SI
2688 )
2689 : InheritableAttr(attr::Destructor, R, SI, false, false)
2690 , priority()
2691 {
2692 }
2693
2694 DestructorAttr *clone(ASTContext &C) const;
2695 void printPretty(raw_ostream &OS,
2696 const PrintingPolicy &Policy) const;
2697 const char *getSpelling() const;
2698 int getPriority() const {
2699 return priority;
2700 }
2701
2702 static const int DefaultPriority = 65535;
2703
2704
2705
2706 static bool classof(const Attr *A) { return A->getKind() == attr::Destructor; }
2707};
2708
2709class DiagnoseIfAttr : public InheritableAttr {
2710Expr * cond;
2711
2712unsigned messageLength;
2713char *message;
2714
2715public:
2716 enum DiagnosticType {
2717 DT_Error,
2718 DT_Warning
2719 };
2720private:
2721 DiagnosticType diagnosticType;
2722
2723bool argDependent;
2724
2725NamedDecl * parent;
2726
2727public:
2728 static DiagnoseIfAttr *CreateImplicit(ASTContext &Ctx, Expr * Cond, llvm::StringRef Message, DiagnosticType DiagnosticType, bool ArgDependent, NamedDecl * Parent, SourceRange Loc = SourceRange()) {
2729 auto *A = new (Ctx) DiagnoseIfAttr(Loc, Ctx, Cond, Message, DiagnosticType, ArgDependent, Parent, 0);
2730 A->setImplicit(true);
2731 return A;
2732 }
2733
2734 static DiagnoseIfAttr *CreateImplicit(ASTContext &Ctx, Expr * Cond, llvm::StringRef Message, DiagnosticType DiagnosticType, SourceRange Loc = SourceRange()) {
2735 auto *A = new (Ctx) DiagnoseIfAttr(Loc, Ctx, Cond, Message, DiagnosticType, 0);
2736 A->setImplicit(true);
2737 return A;
2738 }
2739
2740 DiagnoseIfAttr(SourceRange R, ASTContext &Ctx
2741 , Expr * Cond
2742 , llvm::StringRef Message
2743 , DiagnosticType DiagnosticType
2744 , bool ArgDependent
2745 , NamedDecl * Parent
2746 , unsigned SI
2747 )
2748 : InheritableAttr(attr::DiagnoseIf, R, SI, true, true)
2749 , cond(Cond)
2750 , messageLength(Message.size()),message(new (Ctx, 1) char[messageLength])
2751 , diagnosticType(DiagnosticType)
2752 , argDependent(ArgDependent)
2753 , parent(Parent)
2754 {
2755 if (!Message.empty())
2756 std::memcpy(message, Message.data(), messageLength);
2757 }
2758
2759 DiagnoseIfAttr(SourceRange R, ASTContext &Ctx
2760 , Expr * Cond
2761 , llvm::StringRef Message
2762 , DiagnosticType DiagnosticType
2763 , unsigned SI
2764 )
2765 : InheritableAttr(attr::DiagnoseIf, R, SI, true, true)
2766 , cond(Cond)
2767 , messageLength(Message.size()),message(new (Ctx, 1) char[messageLength])
2768 , diagnosticType(DiagnosticType)
2769 , argDependent()
2770 , parent()
2771 {
2772 if (!Message.empty())
2773 std::memcpy(message, Message.data(), messageLength);
2774 }
2775
2776 DiagnoseIfAttr *clone(ASTContext &C) const;
2777 void printPretty(raw_ostream &OS,
2778 const PrintingPolicy &Policy) const;
2779 const char *getSpelling() const;
2780 Expr * getCond() const {
2781 return cond;
2782 }
2783
2784 llvm::StringRef getMessage() const {
2785 return llvm::StringRef(message, messageLength);
2786 }
2787 unsigned getMessageLength() const {
2788 return messageLength;
2789 }
2790 void setMessage(ASTContext &C, llvm::StringRef S) {
2791 messageLength = S.size();
2792 this->message = new (C, 1) char [messageLength];
2793 if (!S.empty())
2794 std::memcpy(this->message, S.data(), messageLength);
2795 }
2796
2797 DiagnosticType getDiagnosticType() const {
2798 return diagnosticType;
2799 }
2800
2801 static bool ConvertStrToDiagnosticType(StringRef Val, DiagnosticType &Out) {
2802 Optional<DiagnosticType> R = llvm::StringSwitch<Optional<DiagnosticType>>(Val)
2803 .Case("error", DiagnoseIfAttr::DT_Error)
2804 .Case("warning", DiagnoseIfAttr::DT_Warning)
2805 .Default(Optional<DiagnosticType>());
2806 if (R) {
2807 Out = *R;
2808 return true;
2809 }
2810 return false;
2811 }
2812
2813 static const char *ConvertDiagnosticTypeToStr(DiagnosticType Val) {
2814 switch(Val) {
2815 case DiagnoseIfAttr::DT_Error: return "error";
2816 case DiagnoseIfAttr::DT_Warning: return "warning";
2817 }
2818 llvm_unreachable("No enumerator with that value")::llvm::llvm_unreachable_internal("No enumerator with that value"
, "/build/llvm-toolchain-snapshot-7~svn338205/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 2818)
;
2819 }
2820 bool getArgDependent() const {
2821 return argDependent;
2822 }
2823
2824 NamedDecl * getParent() const {
2825 return parent;
2826 }
2827
2828
2829 bool isError() const { return diagnosticType == DT_Error; }
2830 bool isWarning() const { return diagnosticType == DT_Warning; }
2831
2832
2833 static bool classof(const Attr *A) { return A->getKind() == attr::DiagnoseIf; }
2834};
2835
2836class DisableTailCallsAttr : public InheritableAttr {
2837public:
2838 static DisableTailCallsAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
2839 auto *A = new (Ctx) DisableTailCallsAttr(Loc, Ctx, 0);
2840 A->setImplicit(true);
2841 return A;
2842 }
2843
2844 DisableTailCallsAttr(SourceRange R, ASTContext &Ctx
2845 , unsigned SI
2846 )
2847 : InheritableAttr(attr::DisableTailCalls, R, SI, false, false)
2848 {
2849 }
2850
2851 DisableTailCallsAttr *clone(ASTContext &C) const;
2852 void printPretty(raw_ostream &OS,
2853 const PrintingPolicy &Policy) const;
2854 const char *getSpelling() const;
2855
2856
2857 static bool classof(const Attr *A) { return A->getKind() == attr::DisableTailCalls; }
2858};
2859
2860class EmptyBasesAttr : public InheritableAttr {
2861public:
2862 static EmptyBasesAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
2863 auto *A = new (Ctx) EmptyBasesAttr(Loc, Ctx, 0);
2864 A->setImplicit(true);
2865 return A;
2866 }
2867
2868 EmptyBasesAttr(SourceRange R, ASTContext &Ctx
2869 , unsigned SI
2870 )
2871 : InheritableAttr(attr::EmptyBases, R, SI, false, false)
2872 {
2873 }
2874
2875 EmptyBasesAttr *clone(ASTContext &C) const;
2876 void printPretty(raw_ostream &OS,
2877 const PrintingPolicy &Policy) const;
2878 const char *getSpelling() const;
2879
2880
2881 static bool classof(const Attr *A) { return A->getKind() == attr::EmptyBases; }
2882};
2883
2884class EnableIfAttr : public InheritableAttr {
2885Expr * cond;
2886
2887unsigned messageLength;
2888char *message;
2889
2890public:
2891 static EnableIfAttr *CreateImplicit(ASTContext &Ctx, Expr * Cond, llvm::StringRef Message, SourceRange Loc = SourceRange()) {
2892 auto *A = new (Ctx) EnableIfAttr(Loc, Ctx, Cond, Message, 0);
2893 A->setImplicit(true);
2894 return A;
2895 }
2896
2897 EnableIfAttr(SourceRange R, ASTContext &Ctx
2898 , Expr * Cond
2899 , llvm::StringRef Message
2900 , unsigned SI
2901 )
2902 : InheritableAttr(attr::EnableIf, R, SI, false, false)
2903 , cond(Cond)
2904 , messageLength(Message.size()),message(new (Ctx, 1) char[messageLength])
2905 {
2906 if (!Message.empty())
2907 std::memcpy(message, Message.data(), messageLength);
2908 }
2909
2910 EnableIfAttr *clone(ASTContext &C) const;
2911 void printPretty(raw_ostream &OS,
2912 const PrintingPolicy &Policy) const;
2913 const char *getSpelling() const;
2914 Expr * getCond() const {
2915 return cond;
2916 }
2917
2918 llvm::StringRef getMessage() const {
2919 return llvm::StringRef(message, messageLength);
2920 }
2921 unsigned getMessageLength() const {
2922 return messageLength;
2923 }
2924 void setMessage(ASTContext &C, llvm::StringRef S) {
2925 messageLength = S.size();
2926 this->message = new (C, 1) char [messageLength];
2927 if (!S.empty())
2928 std::memcpy(this->message, S.data(), messageLength);
2929 }
2930
2931
2932
2933 static bool classof(const Attr *A) { return A->getKind() == attr::EnableIf; }
2934};
2935
2936class EnumExtensibilityAttr : public InheritableAttr {
2937public:
2938 enum Kind {
2939 Closed,
2940 Open
2941 };
2942private:
2943 Kind extensibility;
2944
2945public:
2946 static EnumExtensibilityAttr *CreateImplicit(ASTContext &Ctx, Kind Extensibility, SourceRange Loc = SourceRange()) {
2947 auto *A = new (Ctx) EnumExtensibilityAttr(Loc, Ctx, Extensibility, 0);
2948 A->setImplicit(true);
2949 return A;
2950 }
2951
2952 EnumExtensibilityAttr(SourceRange R, ASTContext &Ctx
2953 , Kind Extensibility
2954 , unsigned SI
2955 )
2956 : InheritableAttr(attr::EnumExtensibility, R, SI, false, false)
2957 , extensibility(Extensibility)
2958 {
2959 }
2960
2961 EnumExtensibilityAttr *clone(ASTContext &C) const;
2962 void printPretty(raw_ostream &OS,
2963 const PrintingPolicy &Policy) const;
2964 const char *getSpelling() const;
2965 Kind getExtensibility() const {
2966 return extensibility;
2967 }
2968
2969 static bool ConvertStrToKind(StringRef Val, Kind &Out) {
2970 Optional<Kind> R = llvm::StringSwitch<Optional<Kind>>(Val)
2971 .Case("closed", EnumExtensibilityAttr::Closed)
2972 .Case("open", EnumExtensibilityAttr::Open)
2973 .Default(Optional<Kind>());
2974 if (R) {
2975 Out = *R;
2976 return true;
2977 }
2978 return false;
2979 }
2980
2981 static const char *ConvertKindToStr(Kind Val) {
2982 switch(Val) {
2983 case EnumExtensibilityAttr::Closed: return "closed";
2984 case EnumExtensibilityAttr::Open: return "open";
2985 }
2986 llvm_unreachable("No enumerator with that value")::llvm::llvm_unreachable_internal("No enumerator with that value"
, "/build/llvm-toolchain-snapshot-7~svn338205/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 2986)
;
2987 }
2988
2989
2990 static bool classof(const Attr *A) { return A->getKind() == attr::EnumExtensibility; }
2991};
2992
2993class ExclusiveTrylockFunctionAttr : public InheritableAttr {
2994Expr * successValue;
2995
2996 unsigned args_Size;
2997 Expr * *args_;
2998
2999public:
3000 static ExclusiveTrylockFunctionAttr *CreateImplicit(ASTContext &Ctx, Expr * SuccessValue, Expr * *Args, unsigned ArgsSize, SourceRange Loc = SourceRange()) {
3001 auto *A = new (Ctx) ExclusiveTrylockFunctionAttr(Loc, Ctx, SuccessValue, Args, ArgsSize, 0);
3002 A->setImplicit(true);
3003 return A;
3004 }
3005
3006 ExclusiveTrylockFunctionAttr(SourceRange R, ASTContext &Ctx
3007 , Expr * SuccessValue
3008 , Expr * *Args, unsigned ArgsSize
3009 , unsigned SI
3010 )
3011 : InheritableAttr(attr::ExclusiveTrylockFunction, R, SI, true, true)
3012 , successValue(SuccessValue)
3013 , args_Size(ArgsSize), args_(new (Ctx, 16) Expr *[args_Size])
3014 {
3015 std::copy(Args, Args + args_Size, args_);
3016 }
3017
3018 ExclusiveTrylockFunctionAttr(SourceRange R, ASTContext &Ctx
3019 , Expr * SuccessValue
3020 , unsigned SI
3021 )
3022 : InheritableAttr(attr::ExclusiveTrylockFunction, R, SI, true, true)
3023 , successValue(SuccessValue)
3024 , args_Size(0), args_(nullptr)
3025 {
3026 }
3027
3028 ExclusiveTrylockFunctionAttr *clone(ASTContext &C) const;
3029 void printPretty(raw_ostream &OS,
3030 const PrintingPolicy &Policy) const;
3031 const char *getSpelling() const;
3032 Expr * getSuccessValue() const {
3033 return successValue;
3034 }
3035
3036 typedef Expr ** args_iterator;
3037 args_iterator args_begin() const { return args_; }
3038 args_iterator args_end() const { return args_ + args_Size; }
3039 unsigned args_size() const { return args_Size; }
3040 llvm::iterator_range<args_iterator> args() const { return llvm::make_range(args_begin(), args_end()); }
3041
3042
3043
3044
3045 static bool classof(const Attr *A) { return A->getKind() == attr::ExclusiveTrylockFunction; }
3046};
3047
3048class ExternalSourceSymbolAttr : public InheritableAttr {
3049unsigned languageLength;
3050char *language;
3051
3052unsigned definedInLength;
3053char *definedIn;
3054
3055bool generatedDeclaration;
3056
3057public:
3058 static ExternalSourceSymbolAttr *CreateImplicit(ASTContext &Ctx, llvm::StringRef Language, llvm::StringRef DefinedIn, bool GeneratedDeclaration, SourceRange Loc = SourceRange()) {
3059 auto *A = new (Ctx) ExternalSourceSymbolAttr(Loc, Ctx, Language, DefinedIn, GeneratedDeclaration, 0);
3060 A->setImplicit(true);
3061 return A;
3062 }
3063
3064 ExternalSourceSymbolAttr(SourceRange R, ASTContext &Ctx
3065 , llvm::StringRef Language
3066 , llvm::StringRef DefinedIn
3067 , bool GeneratedDeclaration
3068 , unsigned SI
3069 )
3070 : InheritableAttr(attr::ExternalSourceSymbol, R, SI, false, false)
3071 , languageLength(Language.size()),language(new (Ctx, 1) char[languageLength])
3072 , definedInLength(DefinedIn.size()),definedIn(new (Ctx, 1) char[definedInLength])
3073 , generatedDeclaration(GeneratedDeclaration)
3074 {
3075 if (!Language.empty())
3076 std::memcpy(language, Language.data(), languageLength);
3077 if (!DefinedIn.empty())
3078 std::memcpy(definedIn, DefinedIn.data(), definedInLength);
3079 }
3080
3081 ExternalSourceSymbolAttr(SourceRange R, ASTContext &Ctx
3082 , unsigned SI
3083 )
3084 : InheritableAttr(attr::ExternalSourceSymbol, R, SI, false, false)
3085 , languageLength(0),language(nullptr)
3086 , definedInLength(0),definedIn(nullptr)
3087 , generatedDeclaration()
3088 {
3089 }
3090
3091 ExternalSourceSymbolAttr *clone(ASTContext &C) const;
3092 void printPretty(raw_ostream &OS,
3093 const PrintingPolicy &Policy) const;
3094 const char *getSpelling() const;
3095 llvm::StringRef getLanguage() const {
3096 return llvm::StringRef(language, languageLength);
3097 }
3098 unsigned getLanguageLength() const {
3099 return languageLength;
3100 }
3101 void setLanguage(ASTContext &C, llvm::StringRef S) {
3102 languageLength = S.size();
3103 this->language = new (C, 1) char [languageLength];
3104 if (!S.empty())
3105 std::memcpy(this->language, S.data(), languageLength);
3106 }
3107
3108 llvm::StringRef getDefinedIn() const {
3109 return llvm::StringRef(definedIn, definedInLength);
3110 }
3111 unsigned getDefinedInLength() const {
3112 return definedInLength;
3113 }
3114 void setDefinedIn(ASTContext &C, llvm::StringRef S) {
3115 definedInLength = S.size();
3116 this->definedIn = new (C, 1) char [definedInLength];
3117 if (!S.empty())
3118 std::memcpy(this->definedIn, S.data(), definedInLength);
3119 }
3120
3121 bool getGeneratedDeclaration() const {
3122 return generatedDeclaration;
3123 }
3124
3125
3126
3127 static bool classof(const Attr *A) { return A->getKind() == attr::ExternalSourceSymbol; }
3128};
3129
3130class FallThroughAttr : public StmtAttr {
3131public:
3132 static FallThroughAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
3133 auto *A = new (Ctx) FallThroughAttr(Loc, Ctx, 0);
3134 A->setImplicit(true);
3135 return A;
3136 }
3137
3138 FallThroughAttr(SourceRange R, ASTContext &Ctx
3139 , unsigned SI
3140 )
3141 : StmtAttr(attr::FallThrough, R, SI, false)
3142 {
3143 }
3144
3145 FallThroughAttr *clone(ASTContext &C) const;
3146 void printPretty(raw_ostream &OS,
3147 const PrintingPolicy &Policy) const;
3148 const char *getSpelling() const;
3149
3150
3151 static bool classof(const Attr *A) { return A->getKind() == attr::FallThrough; }
3152};
3153
3154class FastCallAttr : public InheritableAttr {
3155public:
3156 static FastCallAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
3157 auto *A = new (Ctx) FastCallAttr(Loc, Ctx, 0);
3158 A->setImplicit(true);
3159 return A;
3160 }
3161
3162 FastCallAttr(SourceRange R, ASTContext &Ctx
3163 , unsigned SI
3164 )
3165 : InheritableAttr(attr::FastCall, R, SI, false, false)
3166 {
3167 }
3168
3169 FastCallAttr *clone(ASTContext &C) const;
3170 void printPretty(raw_ostream &OS,
3171 const PrintingPolicy &Policy) const;
3172 const char *getSpelling() const;
3173
3174
3175 static bool classof(const Attr *A) { return A->getKind() == attr::FastCall; }
3176};
3177
3178class FinalAttr : public InheritableAttr {
3179public:
3180 enum Spelling {
3181 Keyword_final = 0,
3182 Keyword_sealed = 1
3183 };
3184
3185 static FinalAttr *CreateImplicit(ASTContext &Ctx, Spelling S, SourceRange Loc = SourceRange()) {
3186 auto *A = new (Ctx) FinalAttr(Loc, Ctx, S);
3187 A->setImplicit(true);
3188 return A;
3189 }
3190
3191 FinalAttr(SourceRange R, ASTContext &Ctx
3192 , unsigned SI
3193 )
3194 : InheritableAttr(attr::Final, R, SI, false, false)
3195 {
3196 }
3197
3198 FinalAttr *clone(ASTContext &C) const;
3199 void printPretty(raw_ostream &OS,
3200 const PrintingPolicy &Policy) const;
3201 const char *getSpelling() const;
3202 Spelling getSemanticSpelling() const {
3203 switch (SpellingListIndex) {
3204 default: llvm_unreachable("Unknown spelling list index")::llvm::llvm_unreachable_internal("Unknown spelling list index"
, "/build/llvm-toolchain-snapshot-7~svn338205/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 3204)
;
3205 case 0: return Keyword_final;
3206 case 1: return Keyword_sealed;
3207 }
3208 }
3209 bool isSpelledAsSealed() const { return SpellingListIndex == 1; }
3210
3211
3212 static bool classof(const Attr *A) { return A->getKind() == attr::Final; }
3213};
3214
3215class FlagEnumAttr : public InheritableAttr {
3216public:
3217 static FlagEnumAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
3218 auto *A = new (Ctx) FlagEnumAttr(Loc, Ctx, 0);
3219 A->setImplicit(true);
3220 return A;
3221 }
3222
3223 FlagEnumAttr(SourceRange R, ASTContext &Ctx
3224 , unsigned SI
3225 )
3226 : InheritableAttr(attr::FlagEnum, R, SI, false, false)
3227 {
3228 }
3229
3230 FlagEnumAttr *clone(ASTContext &C) const;
3231 void printPretty(raw_ostream &OS,
3232 const PrintingPolicy &Policy) const;
3233 const char *getSpelling() const;
3234
3235
3236 static bool classof(const Attr *A) { return A->getKind() == attr::FlagEnum; }
3237};
3238
3239class FlattenAttr : public InheritableAttr {
3240public:
3241 static FlattenAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
3242 auto *A = new (Ctx) FlattenAttr(Loc, Ctx, 0);
3243 A->setImplicit(true);
3244 return A;
3245 }
3246
3247 FlattenAttr(SourceRange R, ASTContext &Ctx
3248 , unsigned SI
3249 )
3250 : InheritableAttr(attr::Flatten, R, SI, false, false)
3251 {
3252 }
3253
3254 FlattenAttr *clone(ASTContext &C) const;
3255 void printPretty(raw_ostream &OS,
3256 const PrintingPolicy &Policy) const;
3257 const char *getSpelling() const;
3258
3259
3260 static bool classof(const Attr *A) { return A->getKind() == attr::Flatten; }
3261};
3262
3263class FormatAttr : public InheritableAttr {
3264IdentifierInfo * type;
3265
3266int formatIdx;
3267
3268int firstArg;
3269
3270public:
3271 static FormatAttr *CreateImplicit(ASTContext &Ctx, IdentifierInfo * Type, int FormatIdx, int FirstArg, SourceRange Loc = SourceRange()) {
3272 auto *A = new (Ctx) FormatAttr(Loc, Ctx, Type, FormatIdx, FirstArg, 0);
3273 A->setImplicit(true);
3274 return A;
3275 }
3276
3277 FormatAttr(SourceRange R, ASTContext &Ctx
3278 , IdentifierInfo * Type
3279 , int FormatIdx
3280 , int FirstArg
3281 , unsigned SI
3282 )
3283 : InheritableAttr(attr::Format, R, SI, false, false)
3284 , type(Type)
3285 , formatIdx(FormatIdx)
3286 , firstArg(FirstArg)
3287 {
3288 }
3289
3290 FormatAttr *clone(ASTContext &C) const;
3291 void printPretty(raw_ostream &OS,
3292 const PrintingPolicy &Policy) const;
3293 const char *getSpelling() const;
3294 IdentifierInfo * getType() const {
3295 return type;
3296 }
3297
3298 int getFormatIdx() const {
3299 return formatIdx;
3300 }
3301
3302 int getFirstArg() const {
3303 return firstArg;
3304 }
3305
3306
3307
3308 static bool classof(const Attr *A) { return A->getKind() == attr::Format; }
3309};
3310
3311class FormatArgAttr : public InheritableAttr {
3312ParamIdx formatIdx;
3313
3314public:
3315 static FormatArgAttr *CreateImplicit(ASTContext &Ctx, ParamIdx FormatIdx, SourceRange Loc = SourceRange()) {
3316 auto *A = new (Ctx) FormatArgAttr(Loc, Ctx, FormatIdx, 0);
3317 A->setImplicit(true);
3318 return A;
3319 }
3320
3321 FormatArgAttr(SourceRange R, ASTContext &Ctx
3322 , ParamIdx FormatIdx
3323 , unsigned SI
3324 )
3325 : InheritableAttr(attr::FormatArg, R, SI, false, false)
3326 , formatIdx(FormatIdx)
3327 {
3328 }
3329
3330 FormatArgAttr *clone(ASTContext &C) const;
3331 void printPretty(raw_ostream &OS,
3332 const PrintingPolicy &Policy) const;
3333 const char *getSpelling() const;
3334 ParamIdx getFormatIdx() const {
3335 return formatIdx;
3336 }
3337
3338
3339
3340 static bool classof(const Attr *A) { return A->getKind() == attr::FormatArg; }
3341};
3342
3343class GNUInlineAttr : public InheritableAttr {
3344public:
3345 static GNUInlineAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
3346 auto *A = new (Ctx) GNUInlineAttr(Loc, Ctx, 0);
3347 A->setImplicit(true);
3348 return A;
3349 }
3350
3351 GNUInlineAttr(SourceRange R, ASTContext &Ctx
3352 , unsigned SI
3353 )
3354 : InheritableAttr(attr::GNUInline, R, SI, false, false)
3355 {
3356 }
3357
3358 GNUInlineAttr *clone(ASTContext &C) const;
3359 void printPretty(raw_ostream &OS,
3360 const PrintingPolicy &Policy) const;
3361 const char *getSpelling() const;
3362
3363
3364 static bool classof(const Attr *A) { return A->getKind() == attr::GNUInline; }
3365};
3366
3367class GuardedByAttr : public InheritableAttr {
3368Expr * arg;
3369
3370public:
3371 static GuardedByAttr *CreateImplicit(ASTContext &Ctx, Expr * Arg, SourceRange Loc = SourceRange()) {
3372 auto *A = new (Ctx) GuardedByAttr(Loc, Ctx, Arg, 0);
3373 A->setImplicit(true);
3374 return A;
3375 }
3376
3377 GuardedByAttr(SourceRange R, ASTContext &Ctx
3378 , Expr * Arg
3379 , unsigned SI
3380 )
3381 : InheritableAttr(attr::GuardedBy, R, SI, true, true)
3382 , arg(Arg)
3383 {
3384 }
3385
3386 GuardedByAttr *clone(ASTContext &C) const;
3387 void printPretty(raw_ostream &OS,
3388 const PrintingPolicy &Policy) const;
3389 const char *getSpelling() const;
3390 Expr * getArg() const {
3391 return arg;
3392 }
3393
3394
3395
3396 static bool classof(const Attr *A) { return A->getKind() == attr::GuardedBy; }
3397};
3398
3399class GuardedVarAttr : public InheritableAttr {
3400public:
3401 static GuardedVarAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
3402 auto *A = new (Ctx) GuardedVarAttr(Loc, Ctx, 0);
3403 A->setImplicit(true);
3404 return A;
3405 }
3406
3407 GuardedVarAttr(SourceRange R, ASTContext &Ctx
3408 , unsigned SI
3409 )
3410 : InheritableAttr(attr::GuardedVar, R, SI, false, false)
3411 {
3412 }
3413
3414 GuardedVarAttr *clone(ASTContext &C) const;
3415 void printPretty(raw_ostream &OS,
3416 const PrintingPolicy &Policy) const;
3417 const char *getSpelling() const;
3418
3419
3420 static bool classof(const Attr *A) { return A->getKind() == attr::GuardedVar; }
3421};
3422
3423class HotAttr : public InheritableAttr {
3424public:
3425 static HotAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
3426 auto *A = new (Ctx) HotAttr(Loc, Ctx, 0);
3427 A->setImplicit(true);
3428 return A;
3429 }
3430
3431 HotAttr(SourceRange R, ASTContext &Ctx
3432 , unsigned SI
3433 )
3434 : InheritableAttr(attr::Hot, R, SI, false, false)
3435 {
3436 }
3437
3438 HotAttr *clone(ASTContext &C) const;
3439 void printPretty(raw_ostream &OS,
3440 const PrintingPolicy &Policy) const;
3441 const char *getSpelling() const;
3442
3443
3444 static bool classof(const Attr *A) { return A->getKind() == attr::Hot; }
3445};
3446
3447class IBActionAttr : public InheritableAttr {
3448public:
3449 static IBActionAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
3450 auto *A = new (Ctx) IBActionAttr(Loc, Ctx, 0);
3451 A->setImplicit(true);
3452 return A;
3453 }
3454
3455 IBActionAttr(SourceRange R, ASTContext &Ctx
3456 , unsigned SI
3457 )
3458 : InheritableAttr(attr::IBAction, R, SI, false, false)
3459 {
3460 }
3461
3462 IBActionAttr *clone(ASTContext &C) const;
3463 void printPretty(raw_ostream &OS,
3464 const PrintingPolicy &Policy) const;
3465 const char *getSpelling() const;
3466
3467
3468 static bool classof(const Attr *A) { return A->getKind() == attr::IBAction; }
3469};
3470
3471class IBOutletAttr : public InheritableAttr {
3472public:
3473 static IBOutletAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
3474 auto *A = new (Ctx) IBOutletAttr(Loc, Ctx, 0);
3475 A->setImplicit(true);
3476 return A;
3477 }
3478
3479 IBOutletAttr(SourceRange R, ASTContext &Ctx
3480 , unsigned SI
3481 )
3482 : InheritableAttr(attr::IBOutlet, R, SI, false, false)
3483 {
3484 }
3485
3486 IBOutletAttr *clone(ASTContext &C) const;
3487 void printPretty(raw_ostream &OS,
3488 const PrintingPolicy &Policy) const;
3489 const char *getSpelling() const;
3490
3491
3492 static bool classof(const Attr *A) { return A->getKind() == attr::IBOutlet; }
3493};
3494
3495class IBOutletCollectionAttr : public InheritableAttr {
3496TypeSourceInfo * interface_;
3497
3498public:
3499 static IBOutletCollectionAttr *CreateImplicit(ASTContext &Ctx, TypeSourceInfo * Interface, SourceRange Loc = SourceRange()) {
3500 auto *A = new (Ctx) IBOutletCollectionAttr(Loc, Ctx, Interface, 0);
3501 A->setImplicit(true);
3502 return A;
3503 }
3504
3505 IBOutletCollectionAttr(SourceRange R, ASTContext &Ctx
3506 , TypeSourceInfo * Interface
3507 , unsigned SI
3508 )
3509 : InheritableAttr(attr::IBOutletCollection, R, SI, false, false)
3510 , interface_(Interface)
3511 {
3512 }
3513
3514 IBOutletCollectionAttr(SourceRange R, ASTContext &Ctx
3515 , unsigned SI
3516 )
3517 : InheritableAttr(attr::IBOutletCollection, R, SI, false, false)
3518 , interface_()
3519 {
3520 }
3521
3522 IBOutletCollectionAttr *clone(ASTContext &C) const;
3523 void printPretty(raw_ostream &OS,
3524 const PrintingPolicy &Policy) const;
3525 const char *getSpelling() const;
3526 QualType getInterface() const {
3527 return interface_->getType();
3528 } TypeSourceInfo * getInterfaceLoc() const {
3529 return interface_;
3530 }
3531
3532
3533
3534 static bool classof(const Attr *A) { return A->getKind() == attr::IBOutletCollection; }
3535};
3536
3537class IFuncAttr : public Attr {
3538unsigned resolverLength;
3539char *resolver;
3540
3541public:
3542 static IFuncAttr *CreateImplicit(ASTContext &Ctx, llvm::StringRef Resolver, SourceRange Loc = SourceRange()) {
3543 auto *A = new (Ctx) IFuncAttr(Loc, Ctx, Resolver, 0);
3544 A->setImplicit(true);
3545 return A;
3546 }
3547
3548 IFuncAttr(SourceRange R, ASTContext &Ctx
3549 , llvm::StringRef Resolver
3550 , unsigned SI
3551 )
3552 : Attr(attr::IFunc, R, SI, false)
3553 , resolverLength(Resolver.size()),resolver(new (Ctx, 1) char[resolverLength])
3554 {
3555 if (!Resolver.empty())
3556 std::memcpy(resolver, Resolver.data(), resolverLength);
3557 }
3558
3559 IFuncAttr *clone(ASTContext &C) const;
3560 void printPretty(raw_ostream &OS,
3561 const PrintingPolicy &Policy) const;
3562 const char *getSpelling() const;
3563 llvm::StringRef getResolver() const {
3564 return llvm::StringRef(resolver, resolverLength);
3565 }
3566 unsigned getResolverLength() const {
3567 return resolverLength;
3568 }
3569 void setResolver(ASTContext &C, llvm::StringRef S) {
3570 resolverLength = S.size();
3571 this->resolver = new (C, 1) char [resolverLength];
3572 if (!S.empty())
3573 std::memcpy(this->resolver, S.data(), resolverLength);
3574 }
3575
3576
3577
3578 static bool classof(const Attr *A) { return A->getKind() == attr::IFunc; }
3579};
3580
3581class InitPriorityAttr : public InheritableAttr {
3582unsigned priority;
3583
3584public:
3585 static InitPriorityAttr *CreateImplicit(ASTContext &Ctx, unsigned Priority, SourceRange Loc = SourceRange()) {
3586 auto *A = new (Ctx) InitPriorityAttr(Loc, Ctx, Priority, 0);
3587 A->setImplicit(true);
3588 return A;
3589 }
3590
3591 InitPriorityAttr(SourceRange R, ASTContext &Ctx
3592 , unsigned Priority
3593 , unsigned SI
3594 )
3595 : InheritableAttr(attr::InitPriority, R, SI, false, false)
3596 , priority(Priority)
3597 {
3598 }
3599
3600 InitPriorityAttr *clone(ASTContext &C) const;
3601 void printPretty(raw_ostream &OS,
3602 const PrintingPolicy &Policy) const;
3603 const char *getSpelling() const;
3604 unsigned getPriority() const {
3605 return priority;
3606 }
3607
3608
3609
3610 static bool classof(const Attr *A) { return A->getKind() == attr::InitPriority; }
3611};
3612
3613class InitSegAttr : public Attr {
3614unsigned sectionLength;
3615char *section;
3616
3617public:
3618 static InitSegAttr *CreateImplicit(ASTContext &Ctx, llvm::StringRef Section, SourceRange Loc = SourceRange()) {
3619 auto *A = new (Ctx) InitSegAttr(Loc, Ctx, Section, 0);
3620 A->setImplicit(true);
3621 return A;
3622 }
3623
3624 InitSegAttr(SourceRange R, ASTContext &Ctx
3625 , llvm::StringRef Section
3626 , unsigned SI
3627 )
3628 : Attr(attr::InitSeg, R, SI, false)
3629 , sectionLength(Section.size()),section(new (Ctx, 1) char[sectionLength])
3630 {
3631 if (!Section.empty())
3632 std::memcpy(section, Section.data(), sectionLength);
3633 }
3634
3635 InitSegAttr *clone(ASTContext &C) const;
3636 void printPretty(raw_ostream &OS,
3637 const PrintingPolicy &Policy) const;
3638 const char *getSpelling() const;
3639 llvm::StringRef getSection() const {
3640 return llvm::StringRef(section, sectionLength);
3641 }
3642 unsigned getSectionLength() const {
3643 return sectionLength;
3644 }
3645 void setSection(ASTContext &C, llvm::StringRef S) {
3646 sectionLength = S.size();
3647 this->section = new (C, 1) char [sectionLength];
3648 if (!S.empty())
3649 std::memcpy(this->section, S.data(), sectionLength);
3650 }
3651
3652
3653 void printPrettyPragma(raw_ostream &OS, const PrintingPolicy &Policy) const {
3654 OS << " (" << getSection() << ')';
3655 }
3656
3657
3658 static bool classof(const Attr *A) { return A->getKind() == attr::InitSeg; }
3659};
3660
3661class IntelOclBiccAttr : public InheritableAttr {
3662public:
3663 static IntelOclBiccAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
3664 auto *A = new (Ctx) IntelOclBiccAttr(Loc, Ctx, 0);
3665 A->setImplicit(true);
3666 return A;
3667 }
3668
3669 IntelOclBiccAttr(SourceRange R, ASTContext &Ctx
3670 , unsigned SI
3671 )
3672 : InheritableAttr(attr::IntelOclBicc, R, SI, false, false)
3673 {
3674 }
3675
3676 IntelOclBiccAttr *clone(ASTContext &C) const;
3677 void printPretty(raw_ostream &OS,
3678 const PrintingPolicy &Policy) const;
3679 const char *getSpelling() const;
3680
3681
3682 static bool classof(const Attr *A) { return A->getKind() == attr::IntelOclBicc; }
3683};
3684
3685class InternalLinkageAttr : public InheritableAttr {
3686public:
3687 static InternalLinkageAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
3688 auto *A = new (Ctx) InternalLinkageAttr(Loc, Ctx, 0);
3689 A->setImplicit(true);
3690 return A;
3691 }
3692
3693 InternalLinkageAttr(SourceRange R, ASTContext &Ctx
3694 , unsigned SI
3695 )
3696 : InheritableAttr(attr::InternalLinkage, R, SI, false, false)
3697 {
3698 }
3699
3700 InternalLinkageAttr *clone(ASTContext &C) const;
3701 void printPretty(raw_ostream &OS,
3702 const PrintingPolicy &Policy) const;
3703 const char *getSpelling() const;
3704
3705
3706 static bool classof(const Attr *A) { return A->getKind() == attr::InternalLinkage; }
3707};
3708
3709class LTOVisibilityPublicAttr : public InheritableAttr {
3710public:
3711 static LTOVisibilityPublicAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
3712 auto *A = new (Ctx) LTOVisibilityPublicAttr(Loc, Ctx, 0);
3713 A->setImplicit(true);
3714 return A;
3715 }
3716
3717 LTOVisibilityPublicAttr(SourceRange R, ASTContext &Ctx
3718 , unsigned SI
3719 )
3720 : InheritableAttr(attr::LTOVisibilityPublic, R, SI, false, false)
3721 {
3722 }
3723
3724 LTOVisibilityPublicAttr *clone(ASTContext &C) const;
3725 void printPretty(raw_ostream &OS,
3726 const PrintingPolicy &Policy) const;
3727 const char *getSpelling() const;
3728
3729
3730 static bool classof(const Attr *A) { return A->getKind() == attr::LTOVisibilityPublic; }
3731};
3732
3733class LayoutVersionAttr : public InheritableAttr {
3734unsigned version;
3735
3736public:
3737 static LayoutVersionAttr *CreateImplicit(ASTContext &Ctx, unsigned Version, SourceRange Loc = SourceRange()) {
3738 auto *A = new (Ctx) LayoutVersionAttr(Loc, Ctx, Version, 0);
3739 A->setImplicit(true);
3740 return A;
3741 }
3742
3743 LayoutVersionAttr(SourceRange R, ASTContext &Ctx
3744 , unsigned Version
3745 , unsigned SI
3746 )
3747 : InheritableAttr(attr::LayoutVersion, R, SI, false, false)
3748 , version(Version)
3749 {
3750 }
3751
3752 LayoutVersionAttr *clone(ASTContext &C) const;
3753 void printPretty(raw_ostream &OS,
3754 const PrintingPolicy &Policy) const;
3755 const char *getSpelling() const;
3756 unsigned getVersion() const {
3757 return version;
3758 }
3759
3760
3761
3762 static bool classof(const Attr *A) { return A->getKind() == attr::LayoutVersion; }
3763};
3764
3765class LockReturnedAttr : public InheritableAttr {
3766Expr * arg;
3767
3768public:
3769 static LockReturnedAttr *CreateImplicit(ASTContext &Ctx, Expr * Arg, SourceRange Loc = SourceRange()) {
3770 auto *A = new (Ctx) LockReturnedAttr(Loc, Ctx, Arg, 0);
3771 A->setImplicit(true);
3772 return A;
3773 }
3774
3775 LockReturnedAttr(SourceRange R, ASTContext &Ctx
3776 , Expr * Arg
3777 , unsigned SI
3778 )
3779 : InheritableAttr(attr::LockReturned, R, SI, true, false)
3780 , arg(Arg)
3781 {
3782 }
3783
3784 LockReturnedAttr *clone(ASTContext &C) const;
3785 void printPretty(raw_ostream &OS,
3786 const PrintingPolicy &Policy) const;
3787 const char *getSpelling() const;
3788 Expr * getArg() const {
3789 return arg;
3790 }
3791
3792
3793
3794 static bool classof(const Attr *A) { return A->getKind() == attr::LockReturned; }
3795};
3796
3797class LocksExcludedAttr : public InheritableAttr {
3798 unsigned args_Size;
3799 Expr * *args_;
3800
3801public:
3802 static LocksExcludedAttr *CreateImplicit(ASTContext &Ctx, Expr * *Args, unsigned ArgsSize, SourceRange Loc = SourceRange()) {
3803 auto *A = new (Ctx) LocksExcludedAttr(Loc, Ctx, Args, ArgsSize, 0);
3804 A->setImplicit(true);
3805 return A;
3806 }
3807
3808 LocksExcludedAttr(SourceRange R, ASTContext &Ctx
3809 , Expr * *Args, unsigned ArgsSize
3810 , unsigned SI
3811 )
3812 : InheritableAttr(attr::LocksExcluded, R, SI, true, true)
3813 , args_Size(ArgsSize), args_(new (Ctx, 16) Expr *[args_Size])
3814 {
3815 std::copy(Args, Args + args_Size, args_);
3816 }
3817
3818 LocksExcludedAttr(SourceRange R, ASTContext &Ctx
3819 , unsigned SI
3820 )
3821 : InheritableAttr(attr::LocksExcluded, R, SI, true, true)
3822 , args_Size(0), args_(nullptr)
3823 {
3824 }
3825
3826 LocksExcludedAttr *clone(ASTContext &C) const;
3827 void printPretty(raw_ostream &OS,
3828 const PrintingPolicy &Policy) const;
3829 const char *getSpelling() const;
3830 typedef Expr ** args_iterator;
3831 args_iterator args_begin() const { return args_; }
3832 args_iterator args_end() const { return args_ + args_Size; }
3833 unsigned args_size() const { return args_Size; }
3834 llvm::iterator_range<args_iterator> args() const { return llvm::make_range(args_begin(), args_end()); }
3835
3836
3837
3838
3839 static bool classof(const Attr *A) { return A->getKind() == attr::LocksExcluded; }
3840};
3841
3842class LoopHintAttr : public Attr {
3843public:
3844 enum OptionType {
3845 Vectorize,
3846 VectorizeWidth,
3847 Interleave,
3848 InterleaveCount,
3849 Unroll,
3850 UnrollCount,
3851 Distribute
3852 };
3853private:
3854 OptionType option;
3855
3856public:
3857 enum LoopHintState {
3858 Enable,
3859 Disable,
3860 Numeric,
3861 AssumeSafety,
3862 Full
3863 };
3864private:
3865 LoopHintState state;
3866
3867Expr * value;
3868
3869public:
3870 enum Spelling {
3871 Pragma_clang_loop = 0,
3872 Pragma_unroll = 1,
3873 Pragma_nounroll = 2
3874 };
3875
3876 static LoopHintAttr *CreateImplicit(ASTContext &Ctx, Spelling S, OptionType Option, LoopHintState State, Expr * Value, SourceRange Loc = SourceRange()) {
3877 auto *A = new (Ctx) LoopHintAttr(Loc, Ctx, Option, State, Value, S);
3878 A->setImplicit(true);
3879 return A;
3880 }
3881
3882 LoopHintAttr(SourceRange R, ASTContext &Ctx
3883 , OptionType Option
3884 , LoopHintState State
3885 , Expr * Value
3886 , unsigned SI
3887 )
3888 : Attr(attr::LoopHint, R, SI, false)
3889 , option(Option)
3890 , state(State)
3891 , value(Value)
3892 {
3893 }
3894
3895 LoopHintAttr *clone(ASTContext &C) const;
3896 void printPretty(raw_ostream &OS,
3897 const PrintingPolicy &Policy) const;
3898 const char *getSpelling() const;
3899 Spelling getSemanticSpelling() const {
3900 switch (SpellingListIndex) {
3901 default: llvm_unreachable("Unknown spelling list index")::llvm::llvm_unreachable_internal("Unknown spelling list index"
, "/build/llvm-toolchain-snapshot-7~svn338205/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 3901)
;
3902 case 0: return Pragma_clang_loop;
3903 case 1: return Pragma_unroll;
3904 case 2: return Pragma_nounroll;
3905 }
3906 }
3907 OptionType getOption() const {
3908 return option;
3909 }
3910
3911 static bool ConvertStrToOptionType(StringRef Val, OptionType &Out) {
3912 Optional<OptionType> R = llvm::StringSwitch<Optional<OptionType>>(Val)
3913 .Case("vectorize", LoopHintAttr::Vectorize)
3914 .Case("vectorize_width", LoopHintAttr::VectorizeWidth)
3915 .Case("interleave", LoopHintAttr::Interleave)
3916 .Case("interleave_count", LoopHintAttr::InterleaveCount)
3917 .Case("unroll", LoopHintAttr::Unroll)
3918 .Case("unroll_count", LoopHintAttr::UnrollCount)
3919 .Case("distribute", LoopHintAttr::Distribute)
3920 .Default(Optional<OptionType>());
3921 if (R) {
3922 Out = *R;
3923 return true;
3924 }
3925 return false;
3926 }
3927
3928 static const char *ConvertOptionTypeToStr(OptionType Val) {
3929 switch(Val) {
3930 case LoopHintAttr::Vectorize: return "vectorize";
3931 case LoopHintAttr::VectorizeWidth: return "vectorize_width";
3932 case LoopHintAttr::Interleave: return "interleave";
3933 case LoopHintAttr::InterleaveCount: return "interleave_count";
3934 case LoopHintAttr::Unroll: return "unroll";
3935 case LoopHintAttr::UnrollCount: return "unroll_count";
3936 case LoopHintAttr::Distribute: return "distribute";
3937 }
3938 llvm_unreachable("No enumerator with that value")::llvm::llvm_unreachable_internal("No enumerator with that value"
, "/build/llvm-toolchain-snapshot-7~svn338205/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 3938)
;
3939 }
3940 LoopHintState getState() const {
3941 return state;
3942 }
3943
3944 static bool ConvertStrToLoopHintState(StringRef Val, LoopHintState &Out) {
3945 Optional<LoopHintState> R = llvm::StringSwitch<Optional<LoopHintState>>(Val)
3946 .Case("enable", LoopHintAttr::Enable)
3947 .Case("disable", LoopHintAttr::Disable)
3948 .Case("numeric", LoopHintAttr::Numeric)
3949 .Case("assume_safety", LoopHintAttr::AssumeSafety)
3950 .Case("full", LoopHintAttr::Full)
3951 .Default(Optional<LoopHintState>());
3952 if (R) {
3953 Out = *R;
3954 return true;
3955 }
3956 return false;
3957 }
3958
3959 static const char *ConvertLoopHintStateToStr(LoopHintState Val) {
3960 switch(Val) {
3961 case LoopHintAttr::Enable: return "enable";
3962 case LoopHintAttr::Disable: return "disable";
3963 case LoopHintAttr::Numeric: return "numeric";
3964 case LoopHintAttr::AssumeSafety: return "assume_safety";
3965 case LoopHintAttr::Full: return "full";
3966 }
3967 llvm_unreachable("No enumerator with that value")::llvm::llvm_unreachable_internal("No enumerator with that value"
, "/build/llvm-toolchain-snapshot-7~svn338205/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 3967)
;
3968 }
3969 Expr * getValue() const {
3970 return value;
3971 }
3972
3973
3974 static const char *getOptionName(int Option) {
3975 switch(Option) {
3976 case Vectorize: return "vectorize";
3977 case VectorizeWidth: return "vectorize_width";
3978 case Interleave: return "interleave";
3979 case InterleaveCount: return "interleave_count";
3980 case Unroll: return "unroll";
3981 case UnrollCount: return "unroll_count";
3982 case Distribute: return "distribute";
3983 }
3984 llvm_unreachable("Unhandled LoopHint option.")::llvm::llvm_unreachable_internal("Unhandled LoopHint option."
, "/build/llvm-toolchain-snapshot-7~svn338205/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 3984)
;
3985 }
3986
3987 void printPrettyPragma(raw_ostream &OS, const PrintingPolicy &Policy) const {
3988 unsigned SpellingIndex = getSpellingListIndex();
3989 // For "#pragma unroll" and "#pragma nounroll" the string "unroll" or
3990 // "nounroll" is already emitted as the pragma name.
3991 if (SpellingIndex == Pragma_nounroll)
3992 return;
3993 else if (SpellingIndex == Pragma_unroll) {
3994 OS << ' ' << getValueString(Policy);
3995 return;
3996 }
3997
3998 assert(SpellingIndex == Pragma_clang_loop && "Unexpected spelling")(static_cast <bool> (SpellingIndex == Pragma_clang_loop
&& "Unexpected spelling") ? void (0) : __assert_fail
("SpellingIndex == Pragma_clang_loop && \"Unexpected spelling\""
, "/build/llvm-toolchain-snapshot-7~svn338205/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 3998, __extension__ __PRETTY_FUNCTION__))
;
3999 OS << ' ' << getOptionName(option) << getValueString(Policy);
4000 }
4001
4002 // Return a string containing the loop hint argument including the
4003 // enclosing parentheses.
4004 std::string getValueString(const PrintingPolicy &Policy) const {
4005 std::string ValueName;
4006 llvm::raw_string_ostream OS(ValueName);
4007 OS << "(";
4008 if (state == Numeric)
4009 value->printPretty(OS, nullptr, Policy);
4010 else if (state == Enable)
4011 OS << "enable";
4012 else if (state == Full)
4013 OS << "full";
4014 else if (state == AssumeSafety)
4015 OS << "assume_safety";
4016 else
4017 OS << "disable";
4018 OS << ")";
4019 return OS.str();
4020 }
4021
4022 // Return a string suitable for identifying this attribute in diagnostics.
4023 std::string getDiagnosticName(const PrintingPolicy &Policy) const {
4024 unsigned SpellingIndex = getSpellingListIndex();
4025 if (SpellingIndex == Pragma_nounroll)
4026 return "#pragma nounroll";
4027 else if (SpellingIndex == Pragma_unroll)
4028 return "#pragma unroll" + (option == UnrollCount ? getValueString(Policy) : "");
4029
4030 assert(SpellingIndex == Pragma_clang_loop && "Unexpected spelling")(static_cast <bool> (SpellingIndex == Pragma_clang_loop
&& "Unexpected spelling") ? void (0) : __assert_fail
("SpellingIndex == Pragma_clang_loop && \"Unexpected spelling\""
, "/build/llvm-toolchain-snapshot-7~svn338205/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 4030, __extension__ __PRETTY_FUNCTION__))
;
4031 return getOptionName(option) + getValueString(Policy);
4032 }
4033
4034
4035 static bool classof(const Attr *A) { return A->getKind() == attr::LoopHint; }
4036};
4037
4038class MSABIAttr : public InheritableAttr {
4039public:
4040 static MSABIAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
4041 auto *A = new (Ctx) MSABIAttr(Loc, Ctx, 0);
4042 A->setImplicit(true);
4043 return A;
4044 }
4045
4046 MSABIAttr(SourceRange R, ASTContext &Ctx
4047 , unsigned SI
4048 )
4049 : InheritableAttr(attr::MSABI, R, SI, false, false)
4050 {
4051 }
4052
4053 MSABIAttr *clone(ASTContext &C) const;
4054 void printPretty(raw_ostream &OS,
4055 const PrintingPolicy &Policy) const;
4056 const char *getSpelling() const;
4057
4058
4059 static bool classof(const Attr *A) { return A->getKind() == attr::MSABI; }
4060};
4061
4062class MSInheritanceAttr : public InheritableAttr {
4063bool bestCase;
4064
4065public:
4066 enum Spelling {
4067 Keyword_single_inheritance = 0,
4068 Keyword_multiple_inheritance = 1,
4069 Keyword_virtual_inheritance = 2,
4070 Keyword_unspecified_inheritance = 3
4071 };
4072
4073 static MSInheritanceAttr *CreateImplicit(ASTContext &Ctx, Spelling S, bool BestCase, SourceRange Loc = SourceRange()) {
4074 auto *A = new (Ctx) MSInheritanceAttr(Loc, Ctx, BestCase, S);
4075 A->setImplicit(true);
4076 return A;
4077 }
4078
4079 static MSInheritanceAttr *CreateImplicit(ASTContext &Ctx, Spelling S, SourceRange Loc = SourceRange()) {
4080 auto *A = new (Ctx) MSInheritanceAttr(Loc, Ctx, S);
4081 A->setImplicit(true);
4082 return A;
4083 }
4084
4085 MSInheritanceAttr(SourceRange R, ASTContext &Ctx
4086 , bool BestCase
4087 , unsigned SI
4088 )
4089 : InheritableAttr(attr::MSInheritance, R, SI, false, false)
4090 , bestCase(BestCase)
4091 {
4092 }
4093
4094 MSInheritanceAttr(SourceRange R, ASTContext &Ctx
4095 , unsigned SI
4096 )
4097 : InheritableAttr(attr::MSInheritance, R, SI, false, false)
4098 , bestCase()
4099 {
4100 }
4101
4102 MSInheritanceAttr *clone(ASTContext &C) const;
4103 void printPretty(raw_ostream &OS,
4104 const PrintingPolicy &Policy) const;
4105 const char *getSpelling() const;
4106 Spelling getSemanticSpelling() const {
4107 switch (SpellingListIndex) {
4108 default: llvm_unreachable("Unknown spelling list index")::llvm::llvm_unreachable_internal("Unknown spelling list index"
, "/build/llvm-toolchain-snapshot-7~svn338205/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 4108)
;
4109 case 0: return Keyword_single_inheritance;
4110 case 1: return Keyword_multiple_inheritance;
4111 case 2: return Keyword_virtual_inheritance;
4112 case 3: return Keyword_unspecified_inheritance;
4113 }
4114 }
4115 bool getBestCase() const {
4116 return bestCase;
4117 }
4118
4119 static const bool DefaultBestCase = true;
4120
4121
4122 static bool hasVBPtrOffsetField(Spelling Inheritance) {
4123 return Inheritance == Keyword_unspecified_inheritance;
4124 }
4125
4126 // Only member pointers to functions need a this adjustment, since it can be
4127 // combined with the field offset for data pointers.
4128 static bool hasNVOffsetField(bool IsMemberFunction, Spelling Inheritance) {
4129 return IsMemberFunction && Inheritance >= Keyword_multiple_inheritance;
4130 }
4131
4132 static bool hasVBTableOffsetField(Spelling Inheritance) {
4133 return Inheritance >= Keyword_virtual_inheritance;
4134 }
4135
4136 static bool hasOnlyOneField(bool IsMemberFunction,
4137 Spelling Inheritance) {
4138 if (IsMemberFunction)
4139 return Inheritance <= Keyword_single_inheritance;
4140 return Inheritance <= Keyword_multiple_inheritance;
4141 }
4142
4143
4144 static bool classof(const Attr *A) { return A->getKind() == attr::MSInheritance; }
4145};
4146
4147class MSNoVTableAttr : public InheritableAttr {
4148public:
4149 static MSNoVTableAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
4150 auto *A = new (Ctx) MSNoVTableAttr(Loc, Ctx, 0);
4151 A->setImplicit(true);
4152 return A;
4153 }
4154
4155 MSNoVTableAttr(SourceRange R, ASTContext &Ctx
4156 , unsigned SI
4157 )
4158 : InheritableAttr(attr::MSNoVTable, R, SI, false, false)
4159 {
4160 }
4161
4162 MSNoVTableAttr *clone(ASTContext &C) const;
4163 void printPretty(raw_ostream &OS,
4164 const PrintingPolicy &Policy) const;
4165 const char *getSpelling() const;
4166
4167
4168 static bool classof(const Attr *A) { return A->getKind() == attr::MSNoVTable; }
4169};
4170
4171class MSP430InterruptAttr : public InheritableAttr {
4172unsigned number;
4173
4174public:
4175 static MSP430InterruptAttr *CreateImplicit(ASTContext &Ctx, unsigned Number, SourceRange Loc = SourceRange()) {
4176 auto *A = new (Ctx) MSP430InterruptAttr(Loc, Ctx, Number, 0);
4177 A->setImplicit(true);
4178 return A;
4179 }
4180
4181 MSP430InterruptAttr(SourceRange R, ASTContext &Ctx
4182 , unsigned Number
4183 , unsigned SI
4184 )
4185 : InheritableAttr(attr::MSP430Interrupt, R, SI, false, false)
4186 , number(Number)
4187 {
4188 }
4189
4190 MSP430InterruptAttr *clone(ASTContext &C) const;
4191 void printPretty(raw_ostream &OS,
4192 const PrintingPolicy &Policy) const;
4193 const char *getSpelling() const;
4194 unsigned getNumber() const {
4195 return number;
4196 }
4197
4198
4199
4200 static bool classof(const Attr *A) { return A->getKind() == attr::MSP430Interrupt; }
4201};
4202
4203class MSStructAttr : public InheritableAttr {
4204public:
4205 static MSStructAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
4206 auto *A = new (Ctx) MSStructAttr(Loc, Ctx, 0);
4207 A->setImplicit(true);
4208 return A;
4209 }
4210
4211 MSStructAttr(SourceRange R, ASTContext &Ctx
4212 , unsigned SI
4213 )
4214 : InheritableAttr(attr::MSStruct, R, SI, false, false)
4215 {
4216 }
4217
4218 MSStructAttr *clone(ASTContext &C) const;
4219 void printPretty(raw_ostream &OS,
4220 const PrintingPolicy &Policy) const;
4221 const char *getSpelling() const;
4222
4223
4224 static bool classof(const Attr *A) { return A->getKind() == attr::MSStruct; }
4225};
4226
4227class MSVtorDispAttr : public InheritableAttr {
4228unsigned vdm;
4229
4230public:
4231 static MSVtorDispAttr *CreateImplicit(ASTContext &Ctx, unsigned Vdm, SourceRange Loc = SourceRange()) {
4232 auto *A = new (Ctx) MSVtorDispAttr(Loc, Ctx, Vdm, 0);
4233 A->setImplicit(true);
4234 return A;
4235 }
4236
4237 MSVtorDispAttr(SourceRange R, ASTContext &Ctx
4238 , unsigned Vdm
4239 , unsigned SI
4240 )
4241 : InheritableAttr(attr::MSVtorDisp, R, SI, false, false)
4242 , vdm(Vdm)
4243 {
4244 }
4245
4246 MSVtorDispAttr *clone(ASTContext &C) const;
4247 void printPretty(raw_ostream &OS,
4248 const PrintingPolicy &Policy) const;
4249 const char *getSpelling() const;
4250 unsigned getVdm() const {
4251 return vdm;
4252 }
4253
4254
4255 enum Mode {
4256 Never,
4257 ForVBaseOverride,
4258 ForVFTable
4259 };
4260
4261 Mode getVtorDispMode() const { return Mode(vdm); }
4262
4263
4264 static bool classof(const Attr *A) { return A->getKind() == attr::MSVtorDisp; }
4265};
4266
4267class MaxFieldAlignmentAttr : public InheritableAttr {
4268unsigned alignment;
4269
4270public:
4271 static MaxFieldAlignmentAttr *CreateImplicit(ASTContext &Ctx, unsigned Alignment, SourceRange Loc = SourceRange()) {
4272 auto *A = new (Ctx) MaxFieldAlignmentAttr(Loc, Ctx, Alignment, 0);
4273 A->setImplicit(true);
4274 return A;
4275 }
4276
4277 MaxFieldAlignmentAttr(SourceRange R, ASTContext &Ctx
4278 , unsigned Alignment
4279 , unsigned SI
4280 )
4281 : InheritableAttr(attr::MaxFieldAlignment, R, SI, false, false)
4282 , alignment(Alignment)
4283 {
4284 }
4285
4286 MaxFieldAlignmentAttr *clone(ASTContext &C) const;
4287 void printPretty(raw_ostream &OS,
4288 const PrintingPolicy &Policy) const;
4289 const char *getSpelling() const;
4290 unsigned getAlignment() const {
4291 return alignment;
4292 }
4293
4294
4295
4296 static bool classof(const Attr *A) { return A->getKind() == attr::MaxFieldAlignment; }
4297};
4298
4299class MayAliasAttr : public InheritableAttr {
4300public:
4301 static MayAliasAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
4302 auto *A = new (Ctx) MayAliasAttr(Loc, Ctx, 0);
4303 A->setImplicit(true);
4304 return A;
4305 }
4306
4307 MayAliasAttr(SourceRange R, ASTContext &Ctx
4308 , unsigned SI
4309 )
4310 : InheritableAttr(attr::MayAlias, R, SI, false, false)
4311 {
4312 }
4313
4314 MayAliasAttr *clone(ASTContext &C) const;
4315 void printPretty(raw_ostream &OS,
4316 const PrintingPolicy &Policy) const;
4317 const char *getSpelling() const;
4318
4319
4320 static bool classof(const Attr *A) { return A->getKind() == attr::MayAlias; }
4321};
4322
4323class MicroMipsAttr : public InheritableAttr {
4324public:
4325 static MicroMipsAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
4326 auto *A = new (Ctx) MicroMipsAttr(Loc, Ctx, 0);
4327 A->setImplicit(true);
4328 return A;
4329 }
4330
4331 MicroMipsAttr(SourceRange R, ASTContext &Ctx
4332 , unsigned SI
4333 )
4334 : InheritableAttr(attr::MicroMips, R, SI, false, false)
4335 {
4336 }
4337
4338 MicroMipsAttr *clone(ASTContext &C) const;
4339 void printPretty(raw_ostream &OS,
4340 const PrintingPolicy &Policy) const;
4341 const char *getSpelling() const;
4342
4343
4344 static bool classof(const Attr *A) { return A->getKind() == attr::MicroMips; }
4345};
4346
4347class MinSizeAttr : public InheritableAttr {
4348public:
4349 static MinSizeAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
4350 auto *A = new (Ctx) MinSizeAttr(Loc, Ctx, 0);
4351 A->setImplicit(true);
4352 return A;
4353 }
4354
4355 MinSizeAttr(SourceRange R, ASTContext &Ctx
4356 , unsigned SI
4357 )
4358 : InheritableAttr(attr::MinSize, R, SI, false, false)
4359 {
4360 }
4361
4362 MinSizeAttr *clone(ASTContext &C) const;
4363 void printPretty(raw_ostream &OS,
4364 const PrintingPolicy &Policy) const;
4365 const char *getSpelling() const;
4366
4367
4368 static bool classof(const Attr *A) { return A->getKind() == attr::MinSize; }
4369};
4370
4371class MinVectorWidthAttr : public InheritableAttr {
4372unsigned vectorWidth;
4373
4374public:
4375 static MinVectorWidthAttr *CreateImplicit(ASTContext &Ctx, unsigned VectorWidth, SourceRange Loc = SourceRange()) {
4376 auto *A = new (Ctx) MinVectorWidthAttr(Loc, Ctx, VectorWidth, 0);
4377 A->setImplicit(true);
4378 return A;
4379 }
4380
4381 MinVectorWidthAttr(SourceRange R, ASTContext &Ctx
4382 , unsigned VectorWidth
4383 , unsigned SI
4384 )
4385 : InheritableAttr(attr::MinVectorWidth, R, SI, false, false)
4386 , vectorWidth(VectorWidth)
4387 {
4388 }
4389
4390 MinVectorWidthAttr *clone(ASTContext &C) const;
4391 void printPretty(raw_ostream &OS,
4392 const PrintingPolicy &Policy) const;
4393 const char *getSpelling() const;
4394 unsigned getVectorWidth() const {
4395 return vectorWidth;
4396 }
4397
4398
4399
4400 static bool classof(const Attr *A) { return A->getKind() == attr::MinVectorWidth; }
4401};
4402
4403class Mips16Attr : public InheritableAttr {
4404public:
4405 static Mips16Attr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
4406 auto *A = new (Ctx) Mips16Attr(Loc, Ctx, 0);
4407 A->setImplicit(true);
4408 return A;
4409 }
4410
4411 Mips16Attr(SourceRange R, ASTContext &Ctx
4412 , unsigned SI
4413 )
4414 : InheritableAttr(attr::Mips16, R, SI, false, false)
4415 {
4416 }
4417
4418 Mips16Attr *clone(ASTContext &C) const;
4419 void printPretty(raw_ostream &OS,
4420 const PrintingPolicy &Policy) const;
4421 const char *getSpelling() const;
4422
4423
4424 static bool classof(const Attr *A) { return A->getKind() == attr::Mips16; }
4425};
4426
4427class MipsInterruptAttr : public InheritableAttr {
4428public:
4429 enum InterruptType {
4430 sw0,
4431 sw1,
4432 hw0,
4433 hw1,
4434 hw2,
4435 hw3,
4436 hw4,
4437 hw5,
4438 eic
4439 };
4440private:
4441 InterruptType interrupt;
4442
4443public:
4444 static MipsInterruptAttr *CreateImplicit(ASTContext &Ctx, InterruptType Interrupt, SourceRange Loc = SourceRange()) {
4445 auto *A = new (Ctx) MipsInterruptAttr(Loc, Ctx, Interrupt, 0);
4446 A->setImplicit(true);
4447 return A;
4448 }
4449
4450 MipsInterruptAttr(SourceRange R, ASTContext &Ctx
4451 , InterruptType Interrupt
4452 , unsigned SI
4453 )
4454 : InheritableAttr(attr::MipsInterrupt, R, SI, false, false)
4455 , interrupt(Interrupt)
4456 {
4457 }
4458
4459 MipsInterruptAttr *clone(ASTContext &C) const;
4460 void printPretty(raw_ostream &OS,
4461 const PrintingPolicy &Policy) const;
4462 const char *getSpelling() const;
4463 InterruptType getInterrupt() const {
4464 return interrupt;
4465 }
4466
4467 static bool ConvertStrToInterruptType(StringRef Val, InterruptType &Out) {
4468 Optional<InterruptType> R = llvm::StringSwitch<Optional<InterruptType>>(Val)
4469 .Case("vector=sw0", MipsInterruptAttr::sw0)
4470 .Case("vector=sw1", MipsInterruptAttr::sw1)
4471 .Case("vector=hw0", MipsInterruptAttr::hw0)
4472 .Case("vector=hw1", MipsInterruptAttr::hw1)
4473 .Case("vector=hw2", MipsInterruptAttr::hw2)
4474 .Case("vector=hw3", MipsInterruptAttr::hw3)
4475 .Case("vector=hw4", MipsInterruptAttr::hw4)
4476 .Case("vector=hw5", MipsInterruptAttr::hw5)
4477 .Case("eic", MipsInterruptAttr::eic)
4478 .Case("", MipsInterruptAttr::eic)
4479 .Default(Optional<InterruptType>());
4480 if (R) {
4481 Out = *R;
4482 return true;
4483 }
4484 return false;
4485 }
4486
4487 static const char *ConvertInterruptTypeToStr(InterruptType Val) {
4488 switch(Val) {
4489 case MipsInterruptAttr::sw0: return "vector=sw0";
4490 case MipsInterruptAttr::sw1: return "vector=sw1";
4491 case MipsInterruptAttr::hw0: return "vector=hw0";
4492 case MipsInterruptAttr::hw1: return "vector=hw1";
4493 case MipsInterruptAttr::hw2: return "vector=hw2";
4494 case MipsInterruptAttr::hw3: return "vector=hw3";
4495 case MipsInterruptAttr::hw4: return "vector=hw4";
4496 case MipsInterruptAttr::hw5: return "vector=hw5";
4497 case MipsInterruptAttr::eic: return "eic";
4498 }
4499 llvm_unreachable("No enumerator with that value")::llvm::llvm_unreachable_internal("No enumerator with that value"
, "/build/llvm-toolchain-snapshot-7~svn338205/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 4499)
;
4500 }
4501
4502
4503 static bool classof(const Attr *A) { return A->getKind() == attr::MipsInterrupt; }
4504};
4505
4506class MipsLongCallAttr : public InheritableAttr {
4507public:
4508 enum Spelling {
4509 GNU_long_call = 0,
4510 CXX11_gnu_long_call = 1,
4511 GNU_far = 2,
4512 CXX11_gnu_far = 3
4513 };
4514
4515 static MipsLongCallAttr *CreateImplicit(ASTContext &Ctx, Spelling S, SourceRange Loc = SourceRange()) {
4516 auto *A = new (Ctx) MipsLongCallAttr(Loc, Ctx, S);
4517 A->setImplicit(true);
4518 return A;
4519 }
4520
4521 MipsLongCallAttr(SourceRange R, ASTContext &Ctx
4522 , unsigned SI
4523 )
4524 : InheritableAttr(attr::MipsLongCall, R, SI, false, false)
4525 {
4526 }
4527
4528 MipsLongCallAttr *clone(ASTContext &C) const;
4529 void printPretty(raw_ostream &OS,
4530 const PrintingPolicy &Policy) const;
4531 const char *getSpelling() const;
4532 Spelling getSemanticSpelling() const {
4533 switch (SpellingListIndex) {
4534 default: llvm_unreachable("Unknown spelling list index")::llvm::llvm_unreachable_internal("Unknown spelling list index"
, "/build/llvm-toolchain-snapshot-7~svn338205/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 4534)
;
4535 case 0: return GNU_long_call;
4536 case 1: return CXX11_gnu_long_call;
4537 case 2: return GNU_far;
4538 case 3: return CXX11_gnu_far;
4539 }
4540 }
4541
4542
4543 static bool classof(const Attr *A) { return A->getKind() == attr::MipsLongCall; }
4544};
4545
4546class MipsShortCallAttr : public InheritableAttr {
4547public:
4548 enum Spelling {
4549 GNU_short_call = 0,
4550 CXX11_gnu_short_call = 1,
4551 GNU_near = 2,
4552 CXX11_gnu_near = 3
4553 };
4554
4555 static MipsShortCallAttr *CreateImplicit(ASTContext &Ctx, Spelling S, SourceRange Loc = SourceRange()) {
4556 auto *A = new (Ctx) MipsShortCallAttr(Loc, Ctx, S);
4557 A->setImplicit(true);
4558 return A;
4559 }
4560
4561 MipsShortCallAttr(SourceRange R, ASTContext &Ctx
4562 , unsigned SI
4563 )
4564 : InheritableAttr(attr::MipsShortCall, R, SI, false, false)
4565 {
4566 }
4567
4568 MipsShortCallAttr *clone(ASTContext &C) const;
4569 void printPretty(raw_ostream &OS,
4570 const PrintingPolicy &Policy) const;
4571 const char *getSpelling() const;
4572 Spelling getSemanticSpelling() const {
4573 switch (SpellingListIndex) {
4574 default: llvm_unreachable("Unknown spelling list index")::llvm::llvm_unreachable_internal("Unknown spelling list index"
, "/build/llvm-toolchain-snapshot-7~svn338205/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 4574)
;
4575 case 0: return GNU_short_call;
4576 case 1: return CXX11_gnu_short_call;
4577 case 2: return GNU_near;
4578 case 3: return CXX11_gnu_near;
4579 }
4580 }
4581
4582
4583 static bool classof(const Attr *A) { return A->getKind() == attr::MipsShortCall; }
4584};
4585
4586class ModeAttr : public Attr {
4587IdentifierInfo * mode;
4588
4589public:
4590 static ModeAttr *CreateImplicit(ASTContext &Ctx, IdentifierInfo * Mode, SourceRange Loc = SourceRange()) {
4591 auto *A = new (Ctx) ModeAttr(Loc, Ctx, Mode, 0);
4592 A->setImplicit(true);
4593 return A;
4594 }
4595
4596 ModeAttr(SourceRange R, ASTContext &Ctx
4597 , IdentifierInfo * Mode
4598 , unsigned SI
4599 )
4600 : Attr(attr::Mode, R, SI, false)
4601 , mode(Mode)
4602 {
4603 }
4604
4605 ModeAttr *clone(ASTContext &C) const;
4606 void printPretty(raw_ostream &OS,
4607 const PrintingPolicy &Policy) const;
4608 const char *getSpelling() const;
4609 IdentifierInfo * getMode() const {
4610 return mode;
4611 }
4612
4613
4614
4615 static bool classof(const Attr *A) { return A->getKind() == attr::Mode; }
4616};
4617
4618class NSConsumedAttr : public InheritableParamAttr {
4619public:
4620 static NSConsumedAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
4621 auto *A = new (Ctx) NSConsumedAttr(Loc, Ctx, 0);
4622 A->setImplicit(true);
4623 return A;
4624 }
4625
4626 NSConsumedAttr(SourceRange R, ASTContext &Ctx
4627 , unsigned SI
4628 )
4629 : InheritableParamAttr(attr::NSConsumed, R, SI, false, false)
4630 {
4631 }
4632
4633 NSConsumedAttr *clone(ASTContext &C) const;
4634 void printPretty(raw_ostream &OS,
4635 const PrintingPolicy &Policy) const;
4636 const char *getSpelling() const;
4637
4638
4639 static bool classof(const Attr *A) { return A->getKind() == attr::NSConsumed; }
4640};
4641
4642class NSConsumesSelfAttr : public InheritableAttr {
4643public:
4644 static NSConsumesSelfAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
4645 auto *A = new (Ctx) NSConsumesSelfAttr(Loc, Ctx, 0);
4646 A->setImplicit(true);
4647 return A;
4648 }
4649
4650 NSConsumesSelfAttr(SourceRange R, ASTContext &Ctx
4651 , unsigned SI
4652 )
4653 : InheritableAttr(attr::NSConsumesSelf, R, SI, false, false)
4654 {
4655 }
4656
4657 NSConsumesSelfAttr *clone(ASTContext &C) const;
4658 void printPretty(raw_ostream &OS,
4659 const PrintingPolicy &Policy) const;
4660 const char *getSpelling() const;
4661
4662
4663 static bool classof(const Attr *A) { return A->getKind() == attr::NSConsumesSelf; }
4664};
4665
4666class NSReturnsAutoreleasedAttr : public InheritableAttr {
4667public:
4668 static NSReturnsAutoreleasedAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
4669 auto *A = new (Ctx) NSReturnsAutoreleasedAttr(Loc, Ctx, 0);
4670 A->setImplicit(true);
4671 return A;
4672 }
4673
4674 NSReturnsAutoreleasedAttr(SourceRange R, ASTContext &Ctx
4675 , unsigned SI
4676 )
4677 : InheritableAttr(attr::NSReturnsAutoreleased, R, SI, false, false)
4678 {
4679 }
4680
4681 NSReturnsAutoreleasedAttr *clone(ASTContext &C) const;
4682 void printPretty(raw_ostream &OS,
4683 const PrintingPolicy &Policy) const;
4684 const char *getSpelling() const;
4685
4686
4687 static bool classof(const Attr *A) { return A->getKind() == attr::NSReturnsAutoreleased; }
4688};
4689
4690class NSReturnsNotRetainedAttr : public InheritableAttr {
4691public:
4692 static NSReturnsNotRetainedAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
4693 auto *A = new (Ctx) NSReturnsNotRetainedAttr(Loc, Ctx, 0);
4694 A->setImplicit(true);
4695 return A;
4696 }
4697
4698 NSReturnsNotRetainedAttr(SourceRange R, ASTContext &Ctx
4699 , unsigned SI
4700 )
4701 : InheritableAttr(attr::NSReturnsNotRetained, R, SI, false, false)
4702 {
4703 }
4704
4705 NSReturnsNotRetainedAttr *clone(ASTContext &C) const;
4706 void printPretty(raw_ostream &OS,
4707 const PrintingPolicy &Policy) const;
4708 const char *getSpelling() const;
4709
4710
4711 static bool classof(const Attr *A) { return A->getKind() == attr::NSReturnsNotRetained; }
4712};
4713
4714class NSReturnsRetainedAttr : public InheritableAttr {
4715public:
4716 static NSReturnsRetainedAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
4717 auto *A = new (Ctx) NSReturnsRetainedAttr(Loc, Ctx, 0);
25
'A' initialized to a null pointer value
4718 A->setImplicit(true);
26
Called C++ object pointer is null
4719 return A;
4720 }
4721
4722 NSReturnsRetainedAttr(SourceRange R, ASTContext &Ctx
4723 , unsigned SI
4724 )
4725 : InheritableAttr(attr::NSReturnsRetained, R, SI, false, false)
4726 {
4727 }
4728
4729 NSReturnsRetainedAttr *clone(ASTContext &C) const;
4730 void printPretty(raw_ostream &OS,
4731 const PrintingPolicy &Policy) const;
4732 const char *getSpelling() const;
4733
4734
4735 static bool classof(const Attr *A) { return A->getKind() == attr::NSReturnsRetained; }
4736};
4737
4738class NakedAttr : public InheritableAttr {
4739public:
4740 static NakedAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
4741 auto *A = new (Ctx) NakedAttr(Loc, Ctx, 0);
4742 A->setImplicit(true);
4743 return A;
4744 }
4745
4746 NakedAttr(SourceRange R, ASTContext &Ctx
4747 , unsigned SI
4748 )
4749 : InheritableAttr(attr::Naked, R, SI, false, false)
4750 {
4751 }
4752
4753 NakedAttr *clone(ASTContext &C) const;
4754 void printPretty(raw_ostream &OS,
4755 const PrintingPolicy &Policy) const;
4756 const char *getSpelling() const;
4757
4758
4759 static bool classof(const Attr *A) { return A->getKind() == attr::Naked; }
4760};
4761
4762class NoAliasAttr : public InheritableAttr {
4763public:
4764 static NoAliasAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
4765 auto *A = new (Ctx) NoAliasAttr(Loc, Ctx, 0);
4766 A->setImplicit(true);
4767 return A;
4768 }
4769
4770 NoAliasAttr(SourceRange R, ASTContext &Ctx
4771 , unsigned SI
4772 )
4773 : InheritableAttr(attr::NoAlias, R, SI, false, false)
4774 {
4775 }
4776
4777 NoAliasAttr *clone(ASTContext &C) const;
4778 void printPretty(raw_ostream &OS,
4779 const PrintingPolicy &Policy) const;
4780 const char *getSpelling() const;
4781
4782
4783 static bool classof(const Attr *A) { return A->getKind() == attr::NoAlias; }
4784};
4785
4786class NoCommonAttr : public InheritableAttr {
4787public:
4788 static NoCommonAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
4789 auto *A = new (Ctx) NoCommonAttr(Loc, Ctx, 0);
4790 A->setImplicit(true);
4791 return A;
4792 }
4793
4794 NoCommonAttr(SourceRange R, ASTContext &Ctx
4795 , unsigned SI
4796 )
4797 : InheritableAttr(attr::NoCommon, R, SI, false, false)
4798 {
4799 }
4800
4801 NoCommonAttr *clone(ASTContext &C) const;
4802 void printPretty(raw_ostream &OS,
4803 const PrintingPolicy &Policy) const;
4804 const char *getSpelling() const;
4805
4806
4807 static bool classof(const Attr *A) { return A->getKind() == attr::NoCommon; }
4808};
4809
4810class NoDebugAttr : public InheritableAttr {
4811public:
4812 static NoDebugAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
4813 auto *A = new (Ctx) NoDebugAttr(Loc, Ctx, 0);
4814 A->setImplicit(true);
4815 return A;
4816 }
4817
4818 NoDebugAttr(SourceRange R, ASTContext &Ctx
4819 , unsigned SI
4820 )
4821 : InheritableAttr(attr::NoDebug, R, SI, false, false)
4822 {
4823 }
4824
4825 NoDebugAttr *clone(ASTContext &C) const;
4826 void printPretty(raw_ostream &OS,
4827 const PrintingPolicy &Policy) const;
4828 const char *getSpelling() const;
4829
4830
4831 static bool classof(const Attr *A) { return A->getKind() == attr::NoDebug; }
4832};
4833
4834class NoDuplicateAttr : public InheritableAttr {
4835public:
4836 static NoDuplicateAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
4837 auto *A = new (Ctx) NoDuplicateAttr(Loc, Ctx, 0);
4838 A->setImplicit(true);
4839 return A;
4840 }
4841
4842 NoDuplicateAttr(SourceRange R, ASTContext &Ctx
4843 , unsigned SI
4844 )
4845 : InheritableAttr(attr::NoDuplicate, R, SI, false, false)
4846 {
4847 }
4848
4849 NoDuplicateAttr *clone(ASTContext &C) const;
4850 void printPretty(raw_ostream &OS,
4851 const PrintingPolicy &Policy) const;
4852 const char *getSpelling() const;
4853
4854
4855 static bool classof(const Attr *A) { return A->getKind() == attr::NoDuplicate; }
4856};
4857
4858class NoEscapeAttr : public Attr {
4859public:
4860 static NoEscapeAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
4861 auto *A = new (Ctx) NoEscapeAttr(Loc, Ctx, 0);
4862 A->setImplicit(true);
4863 return A;
4864 }
4865
4866 NoEscapeAttr(SourceRange R, ASTContext &Ctx
4867 , unsigned SI
4868 )
4869 : Attr(attr::NoEscape, R, SI, false)
4870 {
4871 }
4872
4873 NoEscapeAttr *clone(ASTContext &C) const;
4874 void printPretty(raw_ostream &OS,
4875 const PrintingPolicy &Policy) const;
4876 const char *getSpelling() const;
4877
4878
4879 static bool classof(const Attr *A) { return A->getKind() == attr::NoEscape; }
4880};
4881
4882class NoInlineAttr : public InheritableAttr {
4883public:
4884 static NoInlineAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
4885 auto *A = new (Ctx) NoInlineAttr(Loc, Ctx, 0);
4886 A->setImplicit(true);
4887 return A;
4888 }
4889
4890 NoInlineAttr(SourceRange R, ASTContext &Ctx
4891 , unsigned SI
4892 )
4893 : InheritableAttr(attr::NoInline, R, SI, false, false)
4894 {
4895 }
4896
4897 NoInlineAttr *clone(ASTContext &C) const;
4898 void printPretty(raw_ostream &OS,
4899 const PrintingPolicy &Policy) const;
4900 const char *getSpelling() const;
4901
4902
4903 static bool classof(const Attr *A) { return A->getKind() == attr::NoInline; }
4904};
4905
4906class NoInstrumentFunctionAttr : public InheritableAttr {
4907public:
4908 static NoInstrumentFunctionAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
4909 auto *A = new (Ctx) NoInstrumentFunctionAttr(Loc, Ctx, 0);
4910 A->setImplicit(true);
4911 return A;
4912 }
4913
4914 NoInstrumentFunctionAttr(SourceRange R, ASTContext &Ctx
4915 , unsigned SI
4916 )
4917 : InheritableAttr(attr::NoInstrumentFunction, R, SI, false, false)
4918 {
4919 }
4920
4921 NoInstrumentFunctionAttr *clone(ASTContext &C) const;
4922 void printPretty(raw_ostream &OS,
4923 const PrintingPolicy &Policy) const;
4924 const char *getSpelling() const;
4925
4926
4927 static bool classof(const Attr *A) { return A->getKind() == attr::NoInstrumentFunction; }
4928};
4929
4930class NoMicroMipsAttr : public InheritableAttr {
4931public:
4932 static NoMicroMipsAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
4933 auto *A = new (Ctx) NoMicroMipsAttr(Loc, Ctx, 0);
4934 A->setImplicit(true);
4935 return A;
4936 }
4937
4938 NoMicroMipsAttr(SourceRange R, ASTContext &Ctx
4939 , unsigned SI
4940 )
4941 : InheritableAttr(attr::NoMicroMips, R, SI, false, false)
4942 {
4943 }
4944
4945 NoMicroMipsAttr *clone(ASTContext &C) const;
4946 void printPretty(raw_ostream &OS,
4947 const PrintingPolicy &Policy) const;
4948 const char *getSpelling() const;
4949
4950
4951 static bool classof(const Attr *A) { return A->getKind() == attr::NoMicroMips; }
4952};
4953
4954class NoMips16Attr : public InheritableAttr {
4955public:
4956 static NoMips16Attr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
4957 auto *A = new (Ctx) NoMips16Attr(Loc, Ctx, 0);
4958 A->setImplicit(true);
4959 return A;
4960 }
4961
4962 NoMips16Attr(SourceRange R, ASTContext &Ctx
4963 , unsigned SI
4964 )
4965 : InheritableAttr(attr::NoMips16, R, SI, false, false)
4966 {
4967 }
4968
4969 NoMips16Attr *clone(ASTContext &C) const;
4970 void printPretty(raw_ostream &OS,
4971 const PrintingPolicy &Policy) const;
4972 const char *getSpelling() const;
4973
4974
4975 static bool classof(const Attr *A) { return A->getKind() == attr::NoMips16; }
4976};
4977
4978class NoReturnAttr : public InheritableAttr {
4979public:
4980 static NoReturnAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
4981 auto *A = new (Ctx) NoReturnAttr(Loc, Ctx, 0);
4982 A->setImplicit(true);
4983 return A;
4984 }
4985
4986 NoReturnAttr(SourceRange R, ASTContext &Ctx
4987 , unsigned SI
4988 )
4989 : InheritableAttr(attr::NoReturn, R, SI, false, false)
4990 {
4991 }
4992
4993 NoReturnAttr *clone(ASTContext &C) const;
4994 void printPretty(raw_ostream &OS,
4995 const PrintingPolicy &Policy) const;
4996 const char *getSpelling() const;
4997
4998
4999 static bool classof(const Attr *A) { return A->getKind() == attr::NoReturn; }
5000};
5001
5002class NoSanitizeAttr : public InheritableAttr {
5003 unsigned sanitizers_Size;
5004 StringRef *sanitizers_;
5005
5006public:
5007 static NoSanitizeAttr *CreateImplicit(ASTContext &Ctx, StringRef *Sanitizers, unsigned SanitizersSize, SourceRange Loc = SourceRange()) {
5008 auto *A = new (Ctx) NoSanitizeAttr(Loc, Ctx, Sanitizers, SanitizersSize, 0);
5009 A->setImplicit(true);
5010 return A;
5011 }
5012
5013 NoSanitizeAttr(SourceRange R, ASTContext &Ctx
5014 , StringRef *Sanitizers, unsigned SanitizersSize
5015 , unsigned SI
5016 )
5017 : InheritableAttr(attr::NoSanitize, R, SI, false, false)
5018 , sanitizers_Size(SanitizersSize), sanitizers_(new (Ctx, 16) StringRef[sanitizers_Size])
5019 {
5020 for (size_t I = 0, E = sanitizers_Size; I != E;
5021 ++I) {
5022 StringRef Ref = Sanitizers[I];
5023 if (!Ref.empty()) {
5024 char *Mem = new (Ctx, 1) char[Ref.size()];
5025 std::memcpy(Mem, Ref.data(), Ref.size());
5026 sanitizers_[I] = StringRef(Mem, Ref.size());
5027 }
5028 }
5029 }
5030
5031 NoSanitizeAttr(SourceRange R, ASTContext &Ctx
5032 , unsigned SI
5033 )
5034 : InheritableAttr(attr::NoSanitize, R, SI, false, false)
5035 , sanitizers_Size(0), sanitizers_(nullptr)
5036 {
5037 }
5038
5039 NoSanitizeAttr *clone(ASTContext &C) const;
5040 void printPretty(raw_ostream &OS,
5041 const PrintingPolicy &Policy) const;
5042 const char *getSpelling() const;
5043 typedef StringRef* sanitizers_iterator;
5044 sanitizers_iterator sanitizers_begin() const { return sanitizers_; }
5045 sanitizers_iterator sanitizers_end() const { return sanitizers_ + sanitizers_Size; }
5046 unsigned sanitizers_size() const { return sanitizers_Size; }
5047 llvm::iterator_range<sanitizers_iterator> sanitizers() const { return llvm::make_range(sanitizers_begin(), sanitizers_end()); }
5048
5049
5050
5051 SanitizerMask getMask() const {
5052 SanitizerMask Mask = 0;
5053 for (auto SanitizerName : sanitizers()) {
5054 SanitizerMask ParsedMask =
5055 parseSanitizerValue(SanitizerName, /*AllowGroups=*/true);
5056 Mask |= expandSanitizerGroups(ParsedMask);
5057 }
5058 return Mask;
5059 }
5060
5061
5062 static bool classof(const Attr *A) { return A->getKind() == attr::NoSanitize; }
5063};
5064
5065class NoSplitStackAttr : public InheritableAttr {
5066public:
5067 static NoSplitStackAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
5068 auto *A = new (Ctx) NoSplitStackAttr(Loc, Ctx, 0);
5069 A->setImplicit(true);
5070 return A;
5071 }
5072
5073 NoSplitStackAttr(SourceRange R, ASTContext &Ctx
5074 , unsigned SI
5075 )
5076 : InheritableAttr(attr::NoSplitStack, R, SI, false, false)
5077 {
5078 }
5079
5080 NoSplitStackAttr *clone(ASTContext &C) const;
5081 void printPretty(raw_ostream &OS,
5082 const PrintingPolicy &Policy) const;
5083 const char *getSpelling() const;
5084
5085
5086 static bool classof(const Attr *A) { return A->getKind() == attr::NoSplitStack; }
5087};
5088
5089class NoStackProtectorAttr : public InheritableAttr {
5090public:
5091 static NoStackProtectorAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
5092 auto *A = new (Ctx) NoStackProtectorAttr(Loc, Ctx, 0);
5093 A->setImplicit(true);
5094 return A;
5095 }
5096
5097 NoStackProtectorAttr(SourceRange R, ASTContext &Ctx
5098 , unsigned SI
5099 )
5100 : InheritableAttr(attr::NoStackProtector, R, SI, false, false)
5101 {
5102 }
5103
5104 NoStackProtectorAttr *clone(ASTContext &C) const;
5105 void printPretty(raw_ostream &OS,
5106 const PrintingPolicy &Policy) const;
5107 const char *getSpelling() const;
5108
5109
5110 static bool classof(const Attr *A) { return A->getKind() == attr::NoStackProtector; }
5111};
5112
5113class NoThreadSafetyAnalysisAttr : public InheritableAttr {
5114public:
5115 static NoThreadSafetyAnalysisAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
5116 auto *A = new (Ctx) NoThreadSafetyAnalysisAttr(Loc, Ctx, 0);
5117 A->setImplicit(true);
5118 return A;
5119 }
5120
5121 NoThreadSafetyAnalysisAttr(SourceRange R, ASTContext &Ctx
5122 , unsigned SI
5123 )
5124 : InheritableAttr(attr::NoThreadSafetyAnalysis, R, SI, false, false)
5125 {
5126 }
5127
5128 NoThreadSafetyAnalysisAttr *clone(ASTContext &C) const;
5129 void printPretty(raw_ostream &OS,
5130 const PrintingPolicy &Policy) const;
5131 const char *getSpelling() const;
5132
5133
5134 static bool classof(const Attr *A) { return A->getKind() == attr::NoThreadSafetyAnalysis; }
5135};
5136
5137class NoThrowAttr : public InheritableAttr {
5138public:
5139 static NoThrowAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
5140 auto *A = new (Ctx) NoThrowAttr(Loc, Ctx, 0);
5141 A->setImplicit(true);
5142 return A;
5143 }
5144
5145 NoThrowAttr(SourceRange R, ASTContext &Ctx
5146 , unsigned SI
5147 )
5148 : InheritableAttr(attr::NoThrow, R, SI, false, false)
5149 {
5150 }
5151
5152 NoThrowAttr *clone(ASTContext &C) const;
5153 void printPretty(raw_ostream &OS,
5154 const PrintingPolicy &Policy) const;
5155 const char *getSpelling() const;
5156
5157
5158 static bool classof(const Attr *A) { return A->getKind() == attr::NoThrow; }
5159};
5160
5161class NonNullAttr : public InheritableParamAttr {
5162 unsigned args_Size;
5163 ParamIdx *args_;
5164
5165public:
5166 static NonNullAttr *CreateImplicit(ASTContext &Ctx, ParamIdx *Args, unsigned ArgsSize, SourceRange Loc = SourceRange()) {
5167 auto *A = new (Ctx) NonNullAttr(Loc, Ctx, Args, ArgsSize, 0);
5168 A->setImplicit(true);
5169 return A;
5170 }
5171
5172 NonNullAttr(SourceRange R, ASTContext &Ctx
5173 , ParamIdx *Args, unsigned ArgsSize
5174 , unsigned SI
5175 )
5176 : InheritableParamAttr(attr::NonNull, R, SI, false, true)
5177 , args_Size(ArgsSize), args_(new (Ctx, 16) ParamIdx[args_Size])
5178 {
5179 std::copy(Args, Args + args_Size, args_);
5180 }
5181
5182 NonNullAttr(SourceRange R, ASTContext &Ctx
5183 , unsigned SI
5184 )
5185 : InheritableParamAttr(attr::NonNull, R, SI, false, true)
5186 , args_Size(0), args_(nullptr)
5187 {
5188 }
5189
5190 NonNullAttr *clone(ASTContext &C) const;
5191 void printPretty(raw_ostream &OS,
5192 const PrintingPolicy &Policy) const;
5193 const char *getSpelling() const;
5194 typedef ParamIdx* args_iterator;
5195 args_iterator args_begin() const { return args_; }
5196 args_iterator args_end() const { return args_ + args_Size; }
5197 unsigned args_size() const { return args_Size; }
5198 llvm::iterator_range<args_iterator> args() const { return llvm::make_range(args_begin(), args_end()); }
5199
5200
5201
5202 bool isNonNull(unsigned IdxAST) const {
5203 if (!args_size())
5204 return true;
5205 return args_end() != std::find_if(
5206 args_begin(), args_end(),
5207 [=](const ParamIdx &Idx) { return Idx.getASTIndex() == IdxAST; });
5208 }
5209
5210
5211 static bool classof(const Attr *A) { return A->getKind() == attr::NonNull; }
5212};
5213
5214class NotTailCalledAttr : public InheritableAttr {
5215public:
5216 static NotTailCalledAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
5217 auto *A = new (Ctx) NotTailCalledAttr(Loc, Ctx, 0);
5218 A->setImplicit(true);
5219 return A;
5220 }
5221
5222 NotTailCalledAttr(SourceRange R, ASTContext &Ctx
5223 , unsigned SI
5224 )
5225 : InheritableAttr(attr::NotTailCalled, R, SI, false, false)
5226 {
5227 }
5228
5229 NotTailCalledAttr *clone(ASTContext &C) const;
5230 void printPretty(raw_ostream &OS,
5231 const PrintingPolicy &Policy) const;
5232 const char *getSpelling() const;
5233
5234
5235 static bool classof(const Attr *A) { return A->getKind() == attr::NotTailCalled; }
5236};
5237
5238class OMPCaptureKindAttr : public Attr {
5239unsigned captureKind;
5240
5241public:
5242 static OMPCaptureKindAttr *CreateImplicit(ASTContext &Ctx, unsigned CaptureKind, SourceRange Loc = SourceRange()) {
5243 auto *A = new (Ctx) OMPCaptureKindAttr(Loc, Ctx, CaptureKind, 0);
5244 A->setImplicit(true);
5245 return A;
5246 }
5247
5248 OMPCaptureKindAttr(SourceRange R, ASTContext &Ctx
5249 , unsigned CaptureKind
5250 , unsigned SI
5251 )
5252 : Attr(attr::OMPCaptureKind, R, SI, false)
5253 , captureKind(CaptureKind)
5254 {
5255 }
5256
5257 OMPCaptureKindAttr *clone(ASTContext &C) const;
5258 void printPretty(raw_ostream &OS,
5259 const PrintingPolicy &Policy) const;
5260 const char *getSpelling() const;
5261 unsigned getCaptureKind() const {
5262 return captureKind;
5263 }
5264
5265
5266
5267 static bool classof(const Attr *A) { return A->getKind() == attr::OMPCaptureKind; }
5268};
5269
5270class OMPCaptureNoInitAttr : public InheritableAttr {
5271public:
5272 static OMPCaptureNoInitAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
5273 auto *A = new (Ctx) OMPCaptureNoInitAttr(Loc, Ctx, 0);
5274 A->setImplicit(true);
5275 return A;
5276 }
5277
5278 OMPCaptureNoInitAttr(SourceRange R, ASTContext &Ctx
5279 , unsigned SI
5280 )
5281 : InheritableAttr(attr::OMPCaptureNoInit, R, SI, false, false)
5282 {
5283 }
5284
5285 OMPCaptureNoInitAttr *clone(ASTContext &C) const;
5286 void printPretty(raw_ostream &OS,
5287 const PrintingPolicy &Policy) const;
5288 const char *getSpelling() const;
5289
5290
5291 static bool classof(const Attr *A) { return A->getKind() == attr::OMPCaptureNoInit; }
5292};
5293
5294class OMPDeclareSimdDeclAttr : public Attr {
5295public:
5296 enum BranchStateTy {
5297 BS_Undefined,
5298 BS_Inbranch,
5299 BS_Notinbranch
5300 };
5301private:
5302 BranchStateTy branchState;
5303
5304Expr * simdlen;
5305
5306 unsigned uniforms_Size;
5307 Expr * *uniforms_;
5308
5309 unsigned aligneds_Size;
5310 Expr * *aligneds_;
5311
5312 unsigned alignments_Size;
5313 Expr * *alignments_;
5314
5315 unsigned linears_Size;
5316 Expr * *linears_;
5317
5318 unsigned modifiers_Size;
5319 unsigned *modifiers_;
5320
5321 unsigned steps_Size;
5322 Expr * *steps_;
5323
5324public:
5325 static OMPDeclareSimdDeclAttr *CreateImplicit(ASTContext &Ctx, BranchStateTy BranchState, Expr * Simdlen, Expr * *Uniforms, unsigned UniformsSize, Expr * *Aligneds, unsigned AlignedsSize, Expr * *Alignments, unsigned AlignmentsSize, Expr * *Linears, unsigned LinearsSize, unsigned *Modifiers, unsigned ModifiersSize, Expr * *Steps, unsigned StepsSize, SourceRange Loc = SourceRange()) {
5326 auto *A = new (Ctx) OMPDeclareSimdDeclAttr(Loc, Ctx, BranchState, Simdlen, Uniforms, UniformsSize, Aligneds, AlignedsSize, Alignments, AlignmentsSize, Linears, LinearsSize, Modifiers, ModifiersSize, Steps, StepsSize, 0);
5327 A->setImplicit(true);
5328 return A;
5329 }
5330
5331 OMPDeclareSimdDeclAttr(SourceRange R, ASTContext &Ctx
5332 , BranchStateTy BranchState
5333 , Expr * Simdlen
5334 , Expr * *Uniforms, unsigned UniformsSize
5335 , Expr * *Aligneds, unsigned AlignedsSize
5336 , Expr * *Alignments, unsigned AlignmentsSize
5337 , Expr * *Linears, unsigned LinearsSize
5338 , unsigned *Modifiers, unsigned ModifiersSize
5339 , Expr * *Steps, unsigned StepsSize
5340 , unsigned SI
5341 )
5342 : Attr(attr::OMPDeclareSimdDecl, R, SI, false)
5343 , branchState(BranchState)
5344 , simdlen(Simdlen)
5345 , uniforms_Size(UniformsSize), uniforms_(new (Ctx, 16) Expr *[uniforms_Size])
5346 , aligneds_Size(AlignedsSize), aligneds_(new (Ctx, 16) Expr *[aligneds_Size])
5347 , alignments_Size(AlignmentsSize), alignments_(new (Ctx, 16) Expr *[alignments_Size])
5348 , linears_Size(LinearsSize), linears_(new (Ctx, 16) Expr *[linears_Size])
5349 , modifiers_Size(ModifiersSize), modifiers_(new (Ctx, 16) unsigned[modifiers_Size])
5350 , steps_Size(StepsSize), steps_(new (Ctx, 16) Expr *[steps_Size])
5351 {
5352 std::copy(Uniforms, Uniforms + uniforms_Size, uniforms_);
5353 std::copy(Aligneds, Aligneds + aligneds_Size, aligneds_);
5354 std::copy(Alignments, Alignments + alignments_Size, alignments_);
5355 std::copy(Linears, Linears + linears_Size, linears_);
5356 std::copy(Modifiers, Modifiers + modifiers_Size, modifiers_);
5357 std::copy(Steps, Steps + steps_Size, steps_);
5358 }
5359
5360 OMPDeclareSimdDeclAttr(SourceRange R, ASTContext &Ctx
5361 , BranchStateTy BranchState
5362 , Expr * Simdlen
5363 , unsigned SI
5364 )
5365 : Attr(attr::OMPDeclareSimdDecl, R, SI, false)
5366 , branchState(BranchState)
5367 , simdlen(Simdlen)
5368 , uniforms_Size(0), uniforms_(nullptr)
5369 , aligneds_Size(0), aligneds_(nullptr)
5370 , alignments_Size(0), alignments_(nullptr)
5371 , linears_Size(0), linears_(nullptr)
5372 , modifiers_Size(0), modifiers_(nullptr)
5373 , steps_Size(0), steps_(nullptr)
5374 {
5375 }
5376
5377 OMPDeclareSimdDeclAttr *clone(ASTContext &C) const;
5378 void printPretty(raw_ostream &OS,
5379 const PrintingPolicy &Policy) const;
5380 const char *getSpelling() const;
5381 BranchStateTy getBranchState() const {
5382 return branchState;
5383 }
5384
5385 static bool ConvertStrToBranchStateTy(StringRef Val, BranchStateTy &Out) {
5386 Optional<BranchStateTy> R = llvm::StringSwitch<Optional<BranchStateTy>>(Val)
5387 .Case("", OMPDeclareSimdDeclAttr::BS_Undefined)
5388 .Case("inbranch", OMPDeclareSimdDeclAttr::BS_Inbranch)
5389 .Case("notinbranch", OMPDeclareSimdDeclAttr::BS_Notinbranch)
5390 .Default(Optional<BranchStateTy>());
5391 if (R) {
5392 Out = *R;
5393 return true;
5394 }
5395 return false;
5396 }
5397
5398 static const char *ConvertBranchStateTyToStr(BranchStateTy Val) {
5399 switch(Val) {
5400 case OMPDeclareSimdDeclAttr::BS_Undefined: return "";
5401 case OMPDeclareSimdDeclAttr::BS_Inbranch: return "inbranch";
5402 case OMPDeclareSimdDeclAttr::BS_Notinbranch: return "notinbranch";
5403 }
5404 llvm_unreachable("No enumerator with that value")::llvm::llvm_unreachable_internal("No enumerator with that value"
, "/build/llvm-toolchain-snapshot-7~svn338205/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 5404)
;
5405 }
5406 Expr * getSimdlen() const {
5407 return simdlen;
5408 }
5409
5410 typedef Expr ** uniforms_iterator;
5411 uniforms_iterator uniforms_begin() const { return uniforms_; }
5412 uniforms_iterator uniforms_end() const { return uniforms_ + uniforms_Size; }
5413 unsigned uniforms_size() const { return uniforms_Size; }
5414 llvm::iterator_range<uniforms_iterator> uniforms() const { return llvm::make_range(uniforms_begin(), uniforms_end()); }
5415
5416
5417 typedef Expr ** aligneds_iterator;
5418 aligneds_iterator aligneds_begin() const { return aligneds_; }
5419 aligneds_iterator aligneds_end() const { return aligneds_ + aligneds_Size; }
5420 unsigned aligneds_size() const { return aligneds_Size; }
5421 llvm::iterator_range<aligneds_iterator> aligneds() const { return llvm::make_range(aligneds_begin(), aligneds_end()); }
5422
5423
5424 typedef Expr ** alignments_iterator;
5425 alignments_iterator alignments_begin() const { return alignments_; }
5426 alignments_iterator alignments_end() const { return alignments_ + alignments_Size; }
5427 unsigned alignments_size() const { return alignments_Size; }
5428 llvm::iterator_range<alignments_iterator> alignments() const { return llvm::make_range(alignments_begin(), alignments_end()); }
5429
5430
5431 typedef Expr ** linears_iterator;
5432 linears_iterator linears_begin() const { return linears_; }
5433 linears_iterator linears_end() const { return linears_ + linears_Size; }
5434 unsigned linears_size() const { return linears_Size; }
5435 llvm::iterator_range<linears_iterator> linears() const { return llvm::make_range(linears_begin(), linears_end()); }
5436
5437
5438 typedef unsigned* modifiers_iterator;
5439 modifiers_iterator modifiers_begin() const { return modifiers_; }
5440 modifiers_iterator modifiers_end() const { return modifiers_ + modifiers_Size; }
5441 unsigned modifiers_size() const { return modifiers_Size; }
5442 llvm::iterator_range<modifiers_iterator> modifiers() const { return llvm::make_range(modifiers_begin(), modifiers_end()); }
5443
5444
5445 typedef Expr ** steps_iterator;
5446 steps_iterator steps_begin() const { return steps_; }
5447 steps_iterator steps_end() const { return steps_ + steps_Size; }
5448 unsigned steps_size() const { return steps_Size; }
5449 llvm::iterator_range<steps_iterator> steps() const { return llvm::make_range(steps_begin(), steps_end()); }
5450
5451
5452
5453 void printPrettyPragma(raw_ostream & OS, const PrintingPolicy &Policy)
5454 const {
5455 if (getBranchState() != BS_Undefined)
5456 OS << ' ' << ConvertBranchStateTyToStr(getBranchState());
5457 if (auto *E = getSimdlen()) {
5458 OS << " simdlen(";
5459 E->printPretty(OS, nullptr, Policy);
5460 OS << ")";
5461 }
5462 if (uniforms_size() > 0) {
5463 OS << " uniform";
5464 StringRef Sep = "(";
5465 for (auto *E : uniforms()) {
5466 OS << Sep;
5467 E->printPretty(OS, nullptr, Policy);
5468 Sep = ", ";
5469 }
5470 OS << ")";
5471 }
5472 alignments_iterator NI = alignments_begin();
5473 for (auto *E : aligneds()) {
5474 OS << " aligned(";
5475 E->printPretty(OS, nullptr, Policy);
5476 if (*NI) {
5477 OS << ": ";
5478 (*NI)->printPretty(OS, nullptr, Policy);
5479 }
5480 OS << ")";
5481 ++NI;
5482 }
5483 steps_iterator I = steps_begin();
5484 modifiers_iterator MI = modifiers_begin();
5485 for (auto *E : linears()) {
5486 OS << " linear(";
5487 if (*MI != OMPC_LINEAR_unknown)
5488 OS << getOpenMPSimpleClauseTypeName(OMPC_linear, *MI) << "(";
5489 E->printPretty(OS, nullptr, Policy);
5490 if (*MI != OMPC_LINEAR_unknown)
5491 OS << ")";
5492 if (*I) {
5493 OS << ": ";
5494 (*I)->printPretty(OS, nullptr, Policy);
5495 }
5496 OS << ")";
5497 ++I;
5498 ++MI;
5499 }
5500 }
5501
5502
5503 static bool classof(const Attr *A) { return A->getKind() == attr::OMPDeclareSimdDecl; }
5504};
5505
5506class OMPDeclareTargetDeclAttr : public Attr {
5507public:
5508 enum MapTypeTy {
5509 MT_To,
5510 MT_Link
5511 };
5512private:
5513 MapTypeTy mapType;
5514
5515public:
5516 static OMPDeclareTargetDeclAttr *CreateImplicit(ASTContext &Ctx, MapTypeTy MapType, SourceRange Loc = SourceRange()) {
5517 auto *A = new (Ctx) OMPDeclareTargetDeclAttr(Loc, Ctx, MapType, 0);
5518 A->setImplicit(true);
5519 return A;
5520 }
5521
5522 OMPDeclareTargetDeclAttr(SourceRange R, ASTContext &Ctx
5523 , MapTypeTy MapType
5524 , unsigned SI
5525 )
5526 : Attr(attr::OMPDeclareTargetDecl, R, SI, false)
5527 , mapType(MapType)
5528 {
5529 }
5530
5531 OMPDeclareTargetDeclAttr *clone(ASTContext &C) const;
5532 void printPretty(raw_ostream &OS,
5533 const PrintingPolicy &Policy) const;
5534 const char *getSpelling() const;
5535 MapTypeTy getMapType() const {
5536 return mapType;
5537 }
5538
5539 static bool ConvertStrToMapTypeTy(StringRef Val, MapTypeTy &Out) {
5540 Optional<MapTypeTy> R = llvm::StringSwitch<Optional<MapTypeTy>>(Val)
5541 .Case("to", OMPDeclareTargetDeclAttr::MT_To)
5542 .Case("link", OMPDeclareTargetDeclAttr::MT_Link)
5543 .Default(Optional<MapTypeTy>());
5544 if (R) {
5545 Out = *R;
5546 return true;
5547 }
5548 return false;
5549 }
5550
5551 static const char *ConvertMapTypeTyToStr(MapTypeTy Val) {
5552 switch(Val) {
5553 case OMPDeclareTargetDeclAttr::MT_To: return "to";
5554 case OMPDeclareTargetDeclAttr::MT_Link: return "link";
5555 }
5556 llvm_unreachable("No enumerator with that value")::llvm::llvm_unreachable_internal("No enumerator with that value"
, "/build/llvm-toolchain-snapshot-7~svn338205/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 5556)
;
5557 }
5558
5559 void printPrettyPragma(raw_ostream &OS, const PrintingPolicy &Policy) const {
5560 // Use fake syntax because it is for testing and debugging purpose only.
5561 if (getMapType() != MT_To)
5562 OS << ' ' << ConvertMapTypeTyToStr(getMapType());
5563 }
5564
5565
5566 static bool classof(const Attr *A) { return A->getKind() == attr::OMPDeclareTargetDecl; }
5567};
5568
5569class OMPReferencedVarAttr : public Attr {
5570Expr * ref;
5571
5572public:
5573 static OMPReferencedVarAttr *CreateImplicit(ASTContext &Ctx, Expr * Ref, SourceRange Loc = SourceRange()) {
5574 auto *A = new (Ctx) OMPReferencedVarAttr(Loc, Ctx, Ref, 0);
5575 A->setImplicit(true);
5576 return A;
5577 }
5578
5579 OMPReferencedVarAttr(SourceRange R, ASTContext &Ctx
5580 , Expr * Ref
5581 , unsigned SI
5582 )
5583 : Attr(attr::OMPReferencedVar, R, SI, false)
5584 , ref(Ref)
5585 {
5586 }
5587
5588 OMPReferencedVarAttr *clone(ASTContext &C) const;
5589 void printPretty(raw_ostream &OS,
5590 const PrintingPolicy &Policy) const;
5591 const char *getSpelling() const;
5592 Expr * getRef() const {
5593 return ref;
5594 }
5595
5596
5597
5598 static bool classof(const Attr *A) { return A->getKind() == attr::OMPReferencedVar; }
5599};
5600
5601class OMPThreadPrivateDeclAttr : public InheritableAttr {
5602public:
5603 static OMPThreadPrivateDeclAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
5604 auto *A = new (Ctx) OMPThreadPrivateDeclAttr(Loc, Ctx, 0);
5605 A->setImplicit(true);
5606 return A;
5607 }
5608
5609 OMPThreadPrivateDeclAttr(SourceRange R, ASTContext &Ctx
5610 , unsigned SI
5611 )
5612 : InheritableAttr(attr::OMPThreadPrivateDecl, R, SI, false, false)
5613 {
5614 }
5615
5616 OMPThreadPrivateDeclAttr *clone(ASTContext &C) const;
5617 void printPretty(raw_ostream &OS,
5618 const PrintingPolicy &Policy) const;
5619 const char *getSpelling() const;
5620
5621
5622 static bool classof(const Attr *A) { return A->getKind() == attr::OMPThreadPrivateDecl; }
5623};
5624
5625class ObjCBoxableAttr : public Attr {
5626public:
5627 static ObjCBoxableAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
5628 auto *A = new (Ctx) ObjCBoxableAttr(Loc, Ctx, 0);
5629 A->setImplicit(true);
5630 return A;
5631 }
5632
5633 ObjCBoxableAttr(SourceRange R, ASTContext &Ctx
5634 , unsigned SI
5635 )
5636 : Attr(attr::ObjCBoxable, R, SI, false)
5637 {
5638 }
5639
5640 ObjCBoxableAttr *clone(ASTContext &C) const;
5641 void printPretty(raw_ostream &OS,
5642 const PrintingPolicy &Policy) const;
5643 const char *getSpelling() const;
5644
5645
5646 static bool classof(const Attr *A) { return A->getKind() == attr::ObjCBoxable; }
5647};
5648
5649class ObjCBridgeAttr : public InheritableAttr {
5650IdentifierInfo * bridgedType;
5651
5652public:
5653 static ObjCBridgeAttr *CreateImplicit(ASTContext &Ctx, IdentifierInfo * BridgedType, SourceRange Loc = SourceRange()) {
5654 auto *A = new (Ctx) ObjCBridgeAttr(Loc, Ctx, BridgedType, 0);
5655 A->setImplicit(true);
5656 return A;
5657 }
5658
5659 ObjCBridgeAttr(SourceRange R, ASTContext &Ctx
5660 , IdentifierInfo * BridgedType
5661 , unsigned SI
5662 )
5663 : InheritableAttr(attr::ObjCBridge, R, SI, false, false)
5664 , bridgedType(BridgedType)
5665 {
5666 }
5667
5668 ObjCBridgeAttr *clone(ASTContext &C) const;
5669 void printPretty(raw_ostream &OS,
5670 const PrintingPolicy &Policy) const;
5671 const char *getSpelling() const;
5672 IdentifierInfo * getBridgedType() const {
5673 return bridgedType;
5674 }
5675
5676
5677
5678 static bool classof(const Attr *A) { return A->getKind() == attr::ObjCBridge; }
5679};
5680
5681class ObjCBridgeMutableAttr : public InheritableAttr {
5682IdentifierInfo * bridgedType;
5683
5684public:
5685 static ObjCBridgeMutableAttr *CreateImplicit(ASTContext &Ctx, IdentifierInfo * BridgedType, SourceRange Loc = SourceRange()) {
5686 auto *A = new (Ctx) ObjCBridgeMutableAttr(Loc, Ctx, BridgedType, 0);
5687 A->setImplicit(true);
5688 return A;
5689 }
5690
5691 ObjCBridgeMutableAttr(SourceRange R, ASTContext &Ctx
5692 , IdentifierInfo * BridgedType
5693 , unsigned SI
5694 )
5695 : InheritableAttr(attr::ObjCBridgeMutable, R, SI, false, false)
5696 , bridgedType(BridgedType)
5697 {
5698 }
5699
5700 ObjCBridgeMutableAttr *clone(ASTContext &C) const;
5701 void printPretty(raw_ostream &OS,
5702 const PrintingPolicy &Policy) const;
5703 const char *getSpelling() const;
5704 IdentifierInfo * getBridgedType() const {
5705 return bridgedType;
5706 }
5707
5708
5709
5710 static bool classof(const Attr *A) { return A->getKind() == attr::ObjCBridgeMutable; }
5711};
5712
5713class ObjCBridgeRelatedAttr : public InheritableAttr {
5714IdentifierInfo * relatedClass;
5715
5716IdentifierInfo * classMethod;
5717
5718IdentifierInfo * instanceMethod;
5719
5720public:
5721 static ObjCBridgeRelatedAttr *CreateImplicit(ASTContext &Ctx, IdentifierInfo * RelatedClass, IdentifierInfo * ClassMethod, IdentifierInfo * InstanceMethod, SourceRange Loc = SourceRange()) {
5722 auto *A = new (Ctx) ObjCBridgeRelatedAttr(Loc, Ctx, RelatedClass, ClassMethod, InstanceMethod, 0);
5723 A->setImplicit(true);
5724 return A;
5725 }
5726
5727 ObjCBridgeRelatedAttr(SourceRange R, ASTContext &Ctx
5728 , IdentifierInfo * RelatedClass
5729 , IdentifierInfo * ClassMethod
5730 , IdentifierInfo * InstanceMethod
5731 , unsigned SI
5732 )
5733 : InheritableAttr(attr::ObjCBridgeRelated, R, SI, false, false)
5734 , relatedClass(RelatedClass)
5735 , classMethod(ClassMethod)
5736 , instanceMethod(InstanceMethod)
5737 {
5738 }
5739
5740 ObjCBridgeRelatedAttr *clone(ASTContext &C) const;
5741 void printPretty(raw_ostream &OS,
5742 const PrintingPolicy &Policy) const;
5743 const char *getSpelling() const;
5744 IdentifierInfo * getRelatedClass() const {
5745 return relatedClass;
5746 }
5747
5748 IdentifierInfo * getClassMethod() const {
5749 return classMethod;
5750 }
5751
5752 IdentifierInfo * getInstanceMethod() const {
5753 return instanceMethod;
5754 }
5755
5756
5757
5758 static bool classof(const Attr *A) { return A->getKind() == attr::ObjCBridgeRelated; }
5759};
5760
5761class ObjCDesignatedInitializerAttr : public Attr {
5762public:
5763 static ObjCDesignatedInitializerAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
5764 auto *A = new (Ctx) ObjCDesignatedInitializerAttr(Loc, Ctx, 0);
5765 A->setImplicit(true);
5766 return A;
5767 }
5768
5769 ObjCDesignatedInitializerAttr(SourceRange R, ASTContext &Ctx
5770 , unsigned SI
5771 )
5772 : Attr(attr::ObjCDesignatedInitializer, R, SI, false)
5773 {
5774 }
5775
5776 ObjCDesignatedInitializerAttr *clone(ASTContext &C) const;
5777 void printPretty(raw_ostream &OS,
5778 const PrintingPolicy &Policy) const;
5779 const char *getSpelling() const;
5780
5781
5782 static bool classof(const Attr *A) { return A->getKind() == attr::ObjCDesignatedInitializer; }
5783};
5784
5785class ObjCExceptionAttr : public InheritableAttr {
5786public:
5787 static ObjCExceptionAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
5788 auto *A = new (Ctx) ObjCExceptionAttr(Loc, Ctx, 0);
5789 A->setImplicit(true);
5790 return A;
5791 }
5792
5793 ObjCExceptionAttr(SourceRange R, ASTContext &Ctx
5794 , unsigned SI
5795 )
5796 : InheritableAttr(attr::ObjCException, R, SI, false, false)
5797 {
5798 }
5799
5800 ObjCExceptionAttr *clone(ASTContext &C) const;
5801 void printPretty(raw_ostream &OS,
5802 const PrintingPolicy &Policy) const;
5803 const char *getSpelling() const;
5804
5805
5806 static bool classof(const Attr *A) { return A->getKind() == attr::ObjCException; }
5807};
5808
5809class ObjCExplicitProtocolImplAttr : public InheritableAttr {
5810public:
5811 static ObjCExplicitProtocolImplAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
5812 auto *A = new (Ctx) ObjCExplicitProtocolImplAttr(Loc, Ctx, 0);
5813 A->setImplicit(true);
5814 return A;
5815 }
5816
5817 ObjCExplicitProtocolImplAttr(SourceRange R, ASTContext &Ctx
5818 , unsigned SI
5819 )
5820 : InheritableAttr(attr::ObjCExplicitProtocolImpl, R, SI, false, false)
5821 {
5822 }
5823
5824 ObjCExplicitProtocolImplAttr *clone(ASTContext &C) const;
5825 void printPretty(raw_ostream &OS,
5826 const PrintingPolicy &Policy) const;
5827 const char *getSpelling() const;
5828
5829
5830 static bool classof(const Attr *A) { return A->getKind() == attr::ObjCExplicitProtocolImpl; }
5831};
5832
5833class ObjCIndependentClassAttr : public InheritableAttr {
5834public:
5835 static ObjCIndependentClassAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
5836 auto *A = new (Ctx) ObjCIndependentClassAttr(Loc, Ctx, 0);
5837 A->setImplicit(true);
5838 return A;
5839 }
5840
5841 ObjCIndependentClassAttr(SourceRange R, ASTContext &Ctx
5842 , unsigned SI
5843 )
5844 : InheritableAttr(attr::ObjCIndependentClass, R, SI, false, false)
5845 {
5846 }
5847
5848 ObjCIndependentClassAttr *clone(ASTContext &C) const;
5849 void printPretty(raw_ostream &OS,
5850 const PrintingPolicy &Policy) const;
5851 const char *getSpelling() const;
5852
5853
5854 static bool classof(const Attr *A) { return A->getKind() == attr::ObjCIndependentClass; }
5855};
5856
5857class ObjCMethodFamilyAttr : public InheritableAttr {
5858public:
5859 enum FamilyKind {
5860 OMF_None,
5861 OMF_alloc,
5862 OMF_copy,
5863 OMF_init,
5864 OMF_mutableCopy,
5865 OMF_new
5866 };
5867private:
5868 FamilyKind family;
5869
5870public:
5871 static ObjCMethodFamilyAttr *CreateImplicit(ASTContext &Ctx, FamilyKind Family, SourceRange Loc = SourceRange()) {
5872 auto *A = new (Ctx) ObjCMethodFamilyAttr(Loc, Ctx, Family, 0);
5873 A->setImplicit(true);
5874 return A;
5875 }
5876
5877 ObjCMethodFamilyAttr(SourceRange R, ASTContext &Ctx
5878 , FamilyKind Family
5879 , unsigned SI
5880 )
5881 : InheritableAttr(attr::ObjCMethodFamily, R, SI, false, false)
5882 , family(Family)
5883 {
5884 }
5885
5886 ObjCMethodFamilyAttr *clone(ASTContext &C) const;
5887 void printPretty(raw_ostream &OS,
5888 const PrintingPolicy &Policy) const;
5889 const char *getSpelling() const;
5890 FamilyKind getFamily() const {
5891 return family;
5892 }
5893
5894 static bool ConvertStrToFamilyKind(StringRef Val, FamilyKind &Out) {
5895 Optional<FamilyKind> R = llvm::StringSwitch<Optional<FamilyKind>>(Val)
5896 .Case("none", ObjCMethodFamilyAttr::OMF_None)
5897 .Case("alloc", ObjCMethodFamilyAttr::OMF_alloc)
5898 .Case("copy", ObjCMethodFamilyAttr::OMF_copy)
5899 .Case("init", ObjCMethodFamilyAttr::OMF_init)
5900 .Case("mutableCopy", ObjCMethodFamilyAttr::OMF_mutableCopy)
5901 .Case("new", ObjCMethodFamilyAttr::OMF_new)
5902 .Default(Optional<FamilyKind>());
5903 if (R) {
5904 Out = *R;
5905 return true;
5906 }
5907 return false;
5908 }
5909
5910 static const char *ConvertFamilyKindToStr(FamilyKind Val) {
5911 switch(Val) {
5912 case ObjCMethodFamilyAttr::OMF_None: return "none";
5913 case ObjCMethodFamilyAttr::OMF_alloc: return "alloc";
5914 case ObjCMethodFamilyAttr::OMF_copy: return "copy";
5915 case ObjCMethodFamilyAttr::OMF_init: return "init";
5916 case ObjCMethodFamilyAttr::OMF_mutableCopy: return "mutableCopy";
5917 case ObjCMethodFamilyAttr::OMF_new: return "new";
5918 }
5919 llvm_unreachable("No enumerator with that value")::llvm::llvm_unreachable_internal("No enumerator with that value"
, "/build/llvm-toolchain-snapshot-7~svn338205/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 5919)
;
5920 }
5921
5922
5923 static bool classof(const Attr *A) { return A->getKind() == attr::ObjCMethodFamily; }
5924};
5925
5926class ObjCNSObjectAttr : public InheritableAttr {
5927public:
5928 static ObjCNSObjectAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
5929 auto *A = new (Ctx) ObjCNSObjectAttr(Loc, Ctx, 0);
5930 A->setImplicit(true);
5931 return A;
5932 }
5933
5934 ObjCNSObjectAttr(SourceRange R, ASTContext &Ctx
5935 , unsigned SI
5936 )
5937 : InheritableAttr(attr::ObjCNSObject, R, SI, false, false)
5938 {
5939 }
5940
5941 ObjCNSObjectAttr *clone(ASTContext &C) const;
5942 void printPretty(raw_ostream &OS,
5943 const PrintingPolicy &Policy) const;
5944 const char *getSpelling() const;
5945
5946
5947 static bool classof(const Attr *A) { return A->getKind() == attr::ObjCNSObject; }
5948};
5949
5950class ObjCPreciseLifetimeAttr : public InheritableAttr {
5951public:
5952 static ObjCPreciseLifetimeAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
5953 auto *A = new (Ctx) ObjCPreciseLifetimeAttr(Loc, Ctx, 0);
5954 A->setImplicit(true);
5955 return A;
5956 }
5957
5958 ObjCPreciseLifetimeAttr(SourceRange R, ASTContext &Ctx
5959 , unsigned SI
5960 )
5961 : InheritableAttr(attr::ObjCPreciseLifetime, R, SI, false, false)
5962 {
5963 }
5964
5965 ObjCPreciseLifetimeAttr *clone(ASTContext &C) const;
5966 void printPretty(raw_ostream &OS,
5967 const PrintingPolicy &Policy) const;
5968 const char *getSpelling() const;
5969
5970
5971 static bool classof(const Attr *A) { return A->getKind() == attr::ObjCPreciseLifetime; }
5972};
5973
5974class ObjCRequiresPropertyDefsAttr : public InheritableAttr {
5975public:
5976 static ObjCRequiresPropertyDefsAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
5977 auto *A = new (Ctx) ObjCRequiresPropertyDefsAttr(Loc, Ctx, 0);
5978 A->setImplicit(true);
5979 return A;
5980 }
5981
5982 ObjCRequiresPropertyDefsAttr(SourceRange R, ASTContext &Ctx
5983 , unsigned SI
5984 )
5985 : InheritableAttr(attr::ObjCRequiresPropertyDefs, R, SI, false, false)
5986 {
5987 }
5988
5989 ObjCRequiresPropertyDefsAttr *clone(ASTContext &C) const;
5990 void printPretty(raw_ostream &OS,
5991 const PrintingPolicy &Policy) const;
5992 const char *getSpelling() const;
5993
5994
5995 static bool classof(const Attr *A) { return A->getKind() == attr::ObjCRequiresPropertyDefs; }
5996};
5997
5998class ObjCRequiresSuperAttr : public InheritableAttr {
5999public:
6000 static ObjCRequiresSuperAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
6001 auto *A = new (Ctx) ObjCRequiresSuperAttr(Loc, Ctx, 0);
6002 A->setImplicit(true);
6003 return A;
6004 }
6005
6006 ObjCRequiresSuperAttr(SourceRange R, ASTContext &Ctx
6007 , unsigned SI
6008 )
6009 : InheritableAttr(attr::ObjCRequiresSuper, R, SI, false, false)
6010 {
6011 }
6012
6013 ObjCRequiresSuperAttr *clone(ASTContext &C) const;
6014 void printPretty(raw_ostream &OS,
6015 const PrintingPolicy &Policy) const;
6016 const char *getSpelling() const;
6017
6018
6019 static bool classof(const Attr *A) { return A->getKind() == attr::ObjCRequiresSuper; }
6020};
6021
6022class ObjCReturnsInnerPointerAttr : public InheritableAttr {
6023public:
6024 static ObjCReturnsInnerPointerAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
6025 auto *A = new (Ctx) ObjCReturnsInnerPointerAttr(Loc, Ctx, 0);
6026 A->setImplicit(true);
6027 return A;
6028 }
6029
6030 ObjCReturnsInnerPointerAttr(SourceRange R, ASTContext &Ctx
6031 , unsigned SI
6032 )
6033 : InheritableAttr(attr::ObjCReturnsInnerPointer, R, SI, false, false)
6034 {
6035 }
6036
6037 ObjCReturnsInnerPointerAttr *clone(ASTContext &C) const;
6038 void printPretty(raw_ostream &OS,
6039 const PrintingPolicy &Policy) const;
6040 const char *getSpelling() const;
6041
6042
6043 static bool classof(const Attr *A) { return A->getKind() == attr::ObjCReturnsInnerPointer; }
6044};
6045
6046class ObjCRootClassAttr : public InheritableAttr {
6047public:
6048 static ObjCRootClassAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
6049 auto *A = new (Ctx) ObjCRootClassAttr(Loc, Ctx, 0);
6050 A->setImplicit(true);
6051 return A;
6052 }
6053
6054 ObjCRootClassAttr(SourceRange R, ASTContext &Ctx
6055 , unsigned SI
6056 )
6057 : InheritableAttr(attr::ObjCRootClass, R, SI, false, false)
6058 {
6059 }
6060
6061 ObjCRootClassAttr *clone(ASTContext &C) const;
6062 void printPretty(raw_ostream &OS,
6063 const PrintingPolicy &Policy) const;
6064 const char *getSpelling() const;
6065
6066
6067 static bool classof(const Attr *A) { return A->getKind() == attr::ObjCRootClass; }
6068};
6069
6070class ObjCRuntimeNameAttr : public Attr {
6071unsigned metadataNameLength;
6072char *metadataName;
6073
6074public:
6075 static ObjCRuntimeNameAttr *CreateImplicit(ASTContext &Ctx, llvm::StringRef MetadataName, SourceRange Loc = SourceRange()) {
6076 auto *A = new (Ctx) ObjCRuntimeNameAttr(Loc, Ctx, MetadataName, 0);
6077 A->setImplicit(true);
6078 return A;
6079 }
6080
6081 ObjCRuntimeNameAttr(SourceRange R, ASTContext &Ctx
6082 , llvm::StringRef MetadataName
6083 , unsigned SI
6084 )
6085 : Attr(attr::ObjCRuntimeName, R, SI, false)
6086 , metadataNameLength(MetadataName.size()),metadataName(new (Ctx, 1) char[metadataNameLength])
6087 {
6088 if (!MetadataName.empty())
6089 std::memcpy(metadataName, MetadataName.data(), metadataNameLength);
6090 }
6091
6092 ObjCRuntimeNameAttr *clone(ASTContext &C) const;
6093 void printPretty(raw_ostream &OS,
6094 const PrintingPolicy &Policy) const;
6095 const char *getSpelling() const;
6096 llvm::StringRef getMetadataName() const {
6097 return llvm::StringRef(metadataName, metadataNameLength);
6098 }
6099 unsigned getMetadataNameLength() const {
6100 return metadataNameLength;
6101 }
6102 void setMetadataName(ASTContext &C, llvm::StringRef S) {
6103 metadataNameLength = S.size();
6104 this->metadataName = new (C, 1) char [metadataNameLength];
6105 if (!S.empty())
6106 std::memcpy(this->metadataName, S.data(), metadataNameLength);
6107 }
6108
6109
6110
6111 static bool classof(const Attr *A) { return A->getKind() == attr::ObjCRuntimeName; }
6112};
6113
6114class ObjCRuntimeVisibleAttr : public Attr {
6115public:
6116 static ObjCRuntimeVisibleAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
6117 auto *A = new (Ctx) ObjCRuntimeVisibleAttr(Loc, Ctx, 0);
6118 A->setImplicit(true);
6119 return A;
6120 }
6121
6122 ObjCRuntimeVisibleAttr(SourceRange R, ASTContext &Ctx
6123 , unsigned SI
6124 )
6125 : Attr(attr::ObjCRuntimeVisible, R, SI, false)
6126 {
6127 }
6128
6129 ObjCRuntimeVisibleAttr *clone(ASTContext &C) const;
6130 void printPretty(raw_ostream &OS,
6131 const PrintingPolicy &Policy) const;
6132 const char *getSpelling() const;
6133
6134
6135 static bool classof(const Attr *A) { return A->getKind() == attr::ObjCRuntimeVisible; }
6136};
6137
6138class ObjCSubclassingRestrictedAttr : public InheritableAttr {
6139public:
6140 static ObjCSubclassingRestrictedAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
6141 auto *A = new (Ctx) ObjCSubclassingRestrictedAttr(Loc, Ctx, 0);
6142 A->setImplicit(true);
6143 return A;
6144 }
6145
6146 ObjCSubclassingRestrictedAttr(SourceRange R, ASTContext &Ctx
6147 , unsigned SI
6148 )
6149 : InheritableAttr(attr::ObjCSubclassingRestricted, R, SI, false, false)
6150 {
6151 }
6152
6153 ObjCSubclassingRestrictedAttr *clone(ASTContext &C) const;
6154 void printPretty(raw_ostream &OS,
6155 const PrintingPolicy &Policy) const;
6156 const char *getSpelling() const;
6157
6158
6159 static bool classof(const Attr *A) { return A->getKind() == attr::ObjCSubclassingRestricted; }
6160};
6161
6162class OpenCLAccessAttr : public Attr {
6163public:
6164 enum Spelling {
6165 Keyword_read_only = 0,
6166 Keyword_write_only = 2,
6167 Keyword_read_write = 4
6168 };
6169
6170 static OpenCLAccessAttr *CreateImplicit(ASTContext &Ctx, Spelling S, SourceRange Loc = SourceRange()) {
6171 auto *A = new (Ctx) OpenCLAccessAttr(Loc, Ctx, S);
6172 A->setImplicit(true);
6173 return A;
6174 }
6175
6176 OpenCLAccessAttr(SourceRange R, ASTContext &Ctx
6177 , unsigned SI
6178 )
6179 : Attr(attr::OpenCLAccess, R, SI, false)
6180 {
6181 }
6182
6183 OpenCLAccessAttr *clone(ASTContext &C) const;
6184 void printPretty(raw_ostream &OS,
6185 const PrintingPolicy &Policy) const;
6186 const char *getSpelling() const;
6187 Spelling getSemanticSpelling() const {
6188 switch (SpellingListIndex) {
6189 default: llvm_unreachable("Unknown spelling list index")::llvm::llvm_unreachable_internal("Unknown spelling list index"
, "/build/llvm-toolchain-snapshot-7~svn338205/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 6189)
;
6190 case 0: return Keyword_read_only;
6191 case 1: return Keyword_read_only;
6192 case 2: return Keyword_write_only;
6193 case 3: return Keyword_write_only;
6194 case 4: return Keyword_read_write;
6195 case 5: return Keyword_read_write;
6196 }
6197 }
6198 bool isReadOnly() const { return SpellingListIndex == 0 ||
6199 SpellingListIndex == 1; }
6200 bool isReadWrite() const { return SpellingListIndex == 4 ||
6201 SpellingListIndex == 5; }
6202 bool isWriteOnly() const { return SpellingListIndex == 2 ||
6203 SpellingListIndex == 3; }
6204
6205
6206 static bool classof(const Attr *A) { return A->getKind() == attr::OpenCLAccess; }
6207};
6208
6209class OpenCLIntelReqdSubGroupSizeAttr : public InheritableAttr {
6210unsigned subGroupSize;
6211
6212public:
6213 static OpenCLIntelReqdSubGroupSizeAttr *CreateImplicit(ASTContext &Ctx, unsigned SubGroupSize, SourceRange Loc = SourceRange()) {
6214 auto *A = new (Ctx) OpenCLIntelReqdSubGroupSizeAttr(Loc, Ctx, SubGroupSize, 0);
6215 A->setImplicit(true);
6216 return A;
6217 }
6218
6219 OpenCLIntelReqdSubGroupSizeAttr(SourceRange R, ASTContext &Ctx
6220 , unsigned SubGroupSize
6221 , unsigned SI
6222 )
6223 : InheritableAttr(attr::OpenCLIntelReqdSubGroupSize, R, SI, false, false)
6224 , subGroupSize(SubGroupSize)
6225 {
6226 }
6227
6228 OpenCLIntelReqdSubGroupSizeAttr *clone(ASTContext &C) const;
6229 void printPretty(raw_ostream &OS,
6230 const PrintingPolicy &Policy) const;
6231 const char *getSpelling() const;
6232 unsigned getSubGroupSize() const {
6233 return subGroupSize;
6234 }
6235
6236
6237
6238 static bool classof(const Attr *A) { return A->getKind() == attr::OpenCLIntelReqdSubGroupSize; }
6239};
6240
6241class OpenCLKernelAttr : public InheritableAttr {
6242public:
6243 static OpenCLKernelAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
6244 auto *A = new (Ctx) OpenCLKernelAttr(Loc, Ctx, 0);
6245 A->setImplicit(true);
6246 return A;
6247 }
6248
6249 OpenCLKernelAttr(SourceRange R, ASTContext &Ctx
6250 , unsigned SI
6251 )
6252 : InheritableAttr(attr::OpenCLKernel, R, SI, false, false)
6253 {
6254 }
6255
6256 OpenCLKernelAttr *clone(ASTContext &C) const;
6257 void printPretty(raw_ostream &OS,
6258 const PrintingPolicy &Policy) const;
6259 const char *getSpelling() const;
6260
6261
6262 static bool classof(const Attr *A) { return A->getKind() == attr::OpenCLKernel; }
6263};
6264
6265class OpenCLUnrollHintAttr : public InheritableAttr {
6266unsigned unrollHint;
6267
6268public:
6269 static OpenCLUnrollHintAttr *CreateImplicit(ASTContext &Ctx, unsigned UnrollHint, SourceRange Loc = SourceRange()) {
6270 auto *A = new (Ctx) OpenCLUnrollHintAttr(Loc, Ctx, UnrollHint, 0);
6271 A->setImplicit(true);
6272 return A;
6273 }
6274
6275 OpenCLUnrollHintAttr(SourceRange R, ASTContext &Ctx
6276 , unsigned UnrollHint
6277 , unsigned SI
6278 )
6279 : InheritableAttr(attr::OpenCLUnrollHint, R, SI, false, false)
6280 , unrollHint(UnrollHint)
6281 {
6282 }
6283
6284 OpenCLUnrollHintAttr *clone(ASTContext &C) const;
6285 void printPretty(raw_ostream &OS,
6286 const PrintingPolicy &Policy) const;
6287 const char *getSpelling() const;
6288 unsigned getUnrollHint() const {
6289 return unrollHint;
6290 }
6291
6292
6293
6294 static bool classof(const Attr *A) { return A->getKind() == attr::OpenCLUnrollHint; }
6295};
6296
6297class OptimizeNoneAttr : public InheritableAttr {
6298public:
6299 static OptimizeNoneAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
6300 auto *A = new (Ctx) OptimizeNoneAttr(Loc, Ctx, 0);
6301 A->setImplicit(true);
6302 return A;
6303 }
6304
6305 OptimizeNoneAttr(SourceRange R, ASTContext &Ctx
6306 , unsigned SI
6307 )
6308 : InheritableAttr(attr::OptimizeNone, R, SI, false, false)
6309 {
6310 }
6311
6312 OptimizeNoneAttr *clone(ASTContext &C) const;
6313 void printPretty(raw_ostream &OS,
6314 const PrintingPolicy &Policy) const;
6315 const char *getSpelling() const;
6316
6317
6318 static bool classof(const Attr *A) { return A->getKind() == attr::OptimizeNone; }
6319};
6320
6321class OverloadableAttr : public Attr {
6322public:
6323 static OverloadableAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
6324 auto *A = new (Ctx) OverloadableAttr(Loc, Ctx, 0);
6325 A->setImplicit(true);
6326 return A;
6327 }
6328
6329 OverloadableAttr(SourceRange R, ASTContext &Ctx
6330 , unsigned SI
6331 )
6332 : Attr(attr::Overloadable, R, SI, false)
6333 {
6334 }
6335
6336 OverloadableAttr *clone(ASTContext &C) const;
6337 void printPretty(raw_ostream &OS,
6338 const PrintingPolicy &Policy) const;
6339 const char *getSpelling() const;
6340
6341
6342 static bool classof(const Attr *A) { return A->getKind() == attr::Overloadable; }
6343};
6344
6345class OverrideAttr : public InheritableAttr {
6346public:
6347 static OverrideAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
6348 auto *A = new (Ctx) OverrideAttr(Loc, Ctx, 0);
6349 A->setImplicit(true);
6350 return A;
6351 }
6352
6353 OverrideAttr(SourceRange R, ASTContext &Ctx
6354 , unsigned SI
6355 )
6356 : InheritableAttr(attr::Override, R, SI, false, false)
6357 {
6358 }
6359
6360 OverrideAttr *clone(ASTContext &C) const;
6361 void printPretty(raw_ostream &OS,
6362 const PrintingPolicy &Policy) const;
6363 const char *getSpelling() const;
6364
6365
6366 static bool classof(const Attr *A) { return A->getKind() == attr::Override; }
6367};
6368
6369class OwnershipAttr : public InheritableAttr {
6370IdentifierInfo * module;
6371
6372 unsigned args_Size;
6373 ParamIdx *args_;
6374
6375public:
6376 enum Spelling {
6377 GNU_ownership_holds = 0,
6378 CXX11_clang_ownership_holds = 1,
6379 C2x_clang_ownership_holds = 2,
6380 GNU_ownership_returns = 3,
6381 CXX11_clang_ownership_returns = 4,
6382 C2x_clang_ownership_returns = 5,
6383 GNU_ownership_takes = 6,
6384 CXX11_clang_ownership_takes = 7,
6385 C2x_clang_ownership_takes = 8
6386 };
6387
6388 static OwnershipAttr *CreateImplicit(ASTContext &Ctx, Spelling S, IdentifierInfo * Module, ParamIdx *Args, unsigned ArgsSize, SourceRange Loc = SourceRange()) {
6389 auto *A = new (Ctx) OwnershipAttr(Loc, Ctx, Module, Args, ArgsSize, S);
6390 A->setImplicit(true);
6391 return A;
6392 }
6393
6394 OwnershipAttr(SourceRange R, ASTContext &Ctx
6395 , IdentifierInfo * Module
6396 , ParamIdx *Args, unsigned ArgsSize
6397 , unsigned SI
6398 )
6399 : InheritableAttr(attr::Ownership, R, SI, false, false)
6400 , module(Module)
6401 , args_Size(ArgsSize), args_(new (Ctx, 16) ParamIdx[args_Size])
6402 {
6403 std::copy(Args, Args + args_Size, args_);
6404 }
6405
6406 OwnershipAttr(SourceRange R, ASTContext &Ctx
6407 , IdentifierInfo * Module
6408 , unsigned SI
6409 )
6410 : InheritableAttr(attr::Ownership, R, SI, false, false)
6411 , module(Module)
6412 , args_Size(0), args_(nullptr)
6413 {
6414 }
6415
6416 OwnershipAttr *clone(ASTContext &C) const;
6417 void printPretty(raw_ostream &OS,
6418 const PrintingPolicy &Policy) const;
6419 const char *getSpelling() const;
6420 Spelling getSemanticSpelling() const {
6421 switch (SpellingListIndex) {
6422 default: llvm_unreachable("Unknown spelling list index")::llvm::llvm_unreachable_internal("Unknown spelling list index"
, "/build/llvm-toolchain-snapshot-7~svn338205/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 6422)
;
6423 case 0: return GNU_ownership_holds;
6424 case 1: return CXX11_clang_ownership_holds;
6425 case 2: return C2x_clang_ownership_holds;
6426 case 3: return GNU_ownership_returns;
6427 case 4: return CXX11_clang_ownership_returns;
6428 case 5: return C2x_clang_ownership_returns;
6429 case 6: return GNU_ownership_takes;
6430 case 7: return CXX11_clang_ownership_takes;
6431 case 8: return C2x_clang_ownership_takes;
6432 }
6433 }
6434 bool isHolds() const { return SpellingListIndex == 0 ||
6435 SpellingListIndex == 1 ||
6436 SpellingListIndex == 2; }
6437 bool isReturns() const { return SpellingListIndex == 3 ||
6438 SpellingListIndex == 4 ||
6439 SpellingListIndex == 5; }
6440 bool isTakes() const { return SpellingListIndex == 6 ||
6441 SpellingListIndex == 7 ||
6442 SpellingListIndex == 8; }
6443 IdentifierInfo * getModule() const {
6444 return module;
6445 }
6446
6447 typedef ParamIdx* args_iterator;
6448 args_iterator args_begin() const { return args_; }
6449 args_iterator args_end() const { return args_ + args_Size; }
6450 unsigned args_size() const { return args_Size; }
6451 llvm::iterator_range<args_iterator> args() const { return llvm::make_range(args_begin(), args_end()); }
6452
6453
6454
6455 enum OwnershipKind { Holds, Returns, Takes };
6456 OwnershipKind getOwnKind() const {
6457 return isHolds() ? Holds :
6458 isTakes() ? Takes :
6459 Returns;
6460 }
6461
6462
6463 static bool classof(const Attr *A) { return A->getKind() == attr::Ownership; }
6464};
6465
6466class PackedAttr : public InheritableAttr {
6467public:
6468 static PackedAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
6469 auto *A = new (Ctx) PackedAttr(Loc, Ctx, 0);
6470 A->setImplicit(true);
6471 return A;
6472 }
6473
6474 PackedAttr(SourceRange R, ASTContext &Ctx
6475 , unsigned SI
6476 )
6477 : InheritableAttr(attr::Packed, R, SI, false, false)
6478 {
6479 }
6480
6481 PackedAttr *clone(ASTContext &C) const;
6482 void printPretty(raw_ostream &OS,
6483 const PrintingPolicy &Policy) const;
6484 const char *getSpelling() const;
6485
6486
6487 static bool classof(const Attr *A) { return A->getKind() == attr::Packed; }
6488};
6489
6490class ParamTypestateAttr : public InheritableAttr {
6491public:
6492 enum ConsumedState {
6493 Unknown,
6494 Consumed,
6495 Unconsumed
6496 };
6497private:
6498 ConsumedState paramState;
6499
6500public:
6501 static ParamTypestateAttr *CreateImplicit(ASTContext &Ctx, ConsumedState ParamState, SourceRange Loc = SourceRange()) {
6502 auto *A = new (Ctx) ParamTypestateAttr(Loc, Ctx, ParamState, 0);
6503 A->setImplicit(true);
6504 return A;
6505 }
6506
6507 ParamTypestateAttr(SourceRange R, ASTContext &Ctx
6508 , ConsumedState ParamState
6509 , unsigned SI
6510 )
6511 : InheritableAttr(attr::ParamTypestate, R, SI, false, false)
6512 , paramState(ParamState)
6513 {
6514 }
6515
6516 ParamTypestateAttr *clone(ASTContext &C) const;
6517 void printPretty(raw_ostream &OS,
6518 const PrintingPolicy &Policy) const;
6519 const char *getSpelling() const;
6520 ConsumedState getParamState() const {
6521 return paramState;
6522 }
6523
6524 static bool ConvertStrToConsumedState(StringRef Val, ConsumedState &Out) {
6525 Optional<ConsumedState> R = llvm::StringSwitch<Optional<ConsumedState>>(Val)
6526 .Case("unknown", ParamTypestateAttr::Unknown)
6527 .Case("consumed", ParamTypestateAttr::Consumed)
6528 .Case("unconsumed", ParamTypestateAttr::Unconsumed)
6529 .Default(Optional<ConsumedState>());
6530 if (R) {
6531 Out = *R;
6532 return true;
6533 }
6534 return false;
6535 }
6536
6537 static const char *ConvertConsumedStateToStr(ConsumedState Val) {
6538 switch(Val) {
6539 case ParamTypestateAttr::Unknown: return "unknown";
6540 case ParamTypestateAttr::Consumed: return "consumed";
6541 case ParamTypestateAttr::Unconsumed: return "unconsumed";
6542 }
6543 llvm_unreachable("No enumerator with that value")::llvm::llvm_unreachable_internal("No enumerator with that value"
, "/build/llvm-toolchain-snapshot-7~svn338205/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 6543)
;
6544 }
6545
6546
6547 static bool classof(const Attr *A) { return A->getKind() == attr::ParamTypestate; }
6548};
6549
6550class PascalAttr : public InheritableAttr {
6551public:
6552 static PascalAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
6553 auto *A = new (Ctx) PascalAttr(Loc, Ctx, 0);
6554 A->setImplicit(true);
6555 return A;
6556 }
6557
6558 PascalAttr(SourceRange R, ASTContext &Ctx
6559 , unsigned SI
6560 )
6561 : InheritableAttr(attr::Pascal, R, SI, false, false)
6562 {
6563 }
6564
6565 PascalAttr *clone(ASTContext &C) const;
6566 void printPretty(raw_ostream &OS,
6567 const PrintingPolicy &Policy) const;
6568 const char *getSpelling() const;
6569
6570
6571 static bool classof(const Attr *A) { return A->getKind() == attr::Pascal; }
6572};
6573
6574class PassObjectSizeAttr : public InheritableParamAttr {
6575int type;
6576
6577public:
6578 static PassObjectSizeAttr *CreateImplicit(ASTContext &Ctx, int Type, SourceRange Loc = SourceRange()) {
6579 auto *A = new (Ctx) PassObjectSizeAttr(Loc, Ctx, Type, 0);
6580 A->setImplicit(true);
6581 return A;
6582 }
6583
6584 PassObjectSizeAttr(SourceRange R, ASTContext &Ctx
6585 , int Type
6586 , unsigned SI
6587 )
6588 : InheritableParamAttr(attr::PassObjectSize, R, SI, false, false)
6589 , type(Type)
6590 {
6591 }
6592
6593 PassObjectSizeAttr *clone(ASTContext &C) const;
6594 void printPretty(raw_ostream &OS,
6595 const PrintingPolicy &Policy) const;
6596 const char *getSpelling() const;
6597 int getType() const {
6598 return type;
6599 }
6600
6601
6602
6603 static bool classof(const Attr *A) { return A->getKind() == attr::PassObjectSize; }
6604};
6605
6606class PcsAttr : public InheritableAttr {
6607public:
6608 enum PCSType {
6609 AAPCS,
6610 AAPCS_VFP
6611 };
6612private:
6613 PCSType pCS;
6614
6615public:
6616 static PcsAttr *CreateImplicit(ASTContext &Ctx, PCSType PCS, SourceRange Loc = SourceRange()) {
6617 auto *A = new (Ctx) PcsAttr(Loc, Ctx, PCS, 0);
6618 A->setImplicit(true);
6619 return A;
6620 }
6621
6622 PcsAttr(SourceRange R, ASTContext &Ctx
6623 , PCSType PCS
6624 , unsigned SI
6625 )
6626 : InheritableAttr(attr::Pcs, R, SI, false, false)
6627 , pCS(PCS)
6628 {
6629 }
6630
6631 PcsAttr *clone(ASTContext &C) const;
6632 void printPretty(raw_ostream &OS,
6633 const PrintingPolicy &Policy) const;
6634 const char *getSpelling() const;
6635 PCSType getPCS() const {
6636 return pCS;
6637 }
6638
6639 static bool ConvertStrToPCSType(StringRef Val, PCSType &Out) {
6640 Optional<PCSType> R = llvm::StringSwitch<Optional<PCSType>>(Val)
6641 .Case("aapcs", PcsAttr::AAPCS)
6642 .Case("aapcs-vfp", PcsAttr::AAPCS_VFP)
6643 .Default(Optional<PCSType>());
6644 if (R) {
6645 Out = *R;
6646 return true;
6647 }
6648 return false;
6649 }
6650
6651 static const char *ConvertPCSTypeToStr(PCSType Val) {
6652 switch(Val) {
6653 case PcsAttr::AAPCS: return "aapcs";
6654 case PcsAttr::AAPCS_VFP: return "aapcs-vfp";
6655 }
6656 llvm_unreachable("No enumerator with that value")::llvm::llvm_unreachable_internal("No enumerator with that value"
, "/build/llvm-toolchain-snapshot-7~svn338205/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 6656)
;
6657 }
6658
6659
6660 static bool classof(const Attr *A) { return A->getKind() == attr::Pcs; }
6661};
6662
6663class PragmaClangBSSSectionAttr : public InheritableAttr {
6664unsigned nameLength;
6665char *name;
6666
6667public:
6668 static PragmaClangBSSSectionAttr *CreateImplicit(ASTContext &Ctx, llvm::StringRef Name, SourceRange Loc = SourceRange()) {
6669 auto *A = new (Ctx) PragmaClangBSSSectionAttr(Loc, Ctx, Name, 0);
6670 A->setImplicit(true);
6671 return A;
6672 }
6673
6674 PragmaClangBSSSectionAttr(SourceRange R, ASTContext &Ctx
6675 , llvm::StringRef Name
6676 , unsigned SI
6677 )
6678 : InheritableAttr(attr::PragmaClangBSSSection, R, SI, false, false)
6679 , nameLength(Name.size()),name(new (Ctx, 1) char[nameLength])
6680 {
6681 if (!Name.empty())
6682 std::memcpy(name, Name.data(), nameLength);
6683 }
6684
6685 PragmaClangBSSSectionAttr *clone(ASTContext &C) const;
6686 void printPretty(raw_ostream &OS,
6687 const PrintingPolicy &Policy) const;
6688 const char *getSpelling() const;
6689 llvm::StringRef getName() const {
6690 return llvm::StringRef(name, nameLength);
6691 }
6692 unsigned getNameLength() const {
6693 return nameLength;
6694 }
6695 void setName(ASTContext &C, llvm::StringRef S) {
6696 nameLength = S.size();
6697 this->name = new (C, 1) char [nameLength];
6698 if (!S.empty())
6699 std::memcpy(this->name, S.data(), nameLength);
6700 }
6701
6702
6703
6704 static bool classof(const Attr *A) { return A->getKind() == attr::PragmaClangBSSSection; }
6705};
6706
6707class PragmaClangDataSectionAttr : public InheritableAttr {
6708unsigned nameLength;
6709char *name;
6710
6711public:
6712 static PragmaClangDataSectionAttr *CreateImplicit(ASTContext &Ctx, llvm::StringRef Name, SourceRange Loc = SourceRange()) {
6713 auto *A = new (Ctx) PragmaClangDataSectionAttr(Loc, Ctx, Name, 0);
6714 A->setImplicit(true);
6715 return A;
6716 }
6717
6718 PragmaClangDataSectionAttr(SourceRange R, ASTContext &Ctx
6719 , llvm::StringRef Name
6720 , unsigned SI
6721 )
6722 : InheritableAttr(attr::PragmaClangDataSection, R, SI, false, false)
6723 , nameLength(Name.size()),name(new (Ctx, 1) char[nameLength])
6724 {
6725 if (!Name.empty())
6726 std::memcpy(name, Name.data(), nameLength);
6727 }
6728
6729 PragmaClangDataSectionAttr *clone(ASTContext &C) const;
6730 void printPretty(raw_ostream &OS,
6731 const PrintingPolicy &Policy) const;
6732 const char *getSpelling() const;
6733 llvm::StringRef getName() const {
6734 return llvm::StringRef(name, nameLength);
6735 }
6736 unsigned getNameLength() const {
6737 return nameLength;
6738 }
6739 void setName(ASTContext &C, llvm::StringRef S) {
6740 nameLength = S.size();
6741 this->name = new (C, 1) char [nameLength];
6742 if (!S.empty())
6743 std::memcpy(this->name, S.data(), nameLength);
6744 }
6745
6746
6747
6748 static bool classof(const Attr *A) { return A->getKind() == attr::PragmaClangDataSection; }
6749};
6750
6751class PragmaClangRodataSectionAttr : public InheritableAttr {
6752unsigned nameLength;
6753char *name;
6754
6755public:
6756 static PragmaClangRodataSectionAttr *CreateImplicit(ASTContext &Ctx, llvm::StringRef Name, SourceRange Loc = SourceRange()) {
6757 auto *A = new (Ctx) PragmaClangRodataSectionAttr(Loc, Ctx, Name, 0);
6758 A->setImplicit(true);
6759 return A;
6760 }
6761
6762 PragmaClangRodataSectionAttr(SourceRange R, ASTContext &Ctx
6763 , llvm::StringRef Name
6764 , unsigned SI
6765 )
6766 : InheritableAttr(attr::PragmaClangRodataSection, R, SI, false, false)
6767 , nameLength(Name.size()),name(new (Ctx, 1) char[nameLength])
6768 {
6769 if (!Name.empty())
6770 std::memcpy(name, Name.data(), nameLength);
6771 }
6772
6773 PragmaClangRodataSectionAttr *clone(ASTContext &C) const;
6774 void printPretty(raw_ostream &OS,
6775 const PrintingPolicy &Policy) const;
6776 const char *getSpelling() const;
6777 llvm::StringRef getName() const {
6778 return llvm::StringRef(name, nameLength);
6779 }
6780 unsigned getNameLength() const {
6781 return nameLength;
6782 }
6783 void setName(ASTContext &C, llvm::StringRef S) {
6784 nameLength = S.size();
6785 this->name = new (C, 1) char [nameLength];
6786 if (!S.empty())
6787 std::memcpy(this->name, S.data(), nameLength);
6788 }
6789
6790
6791
6792 static bool classof(const Attr *A) { return A->getKind() == attr::PragmaClangRodataSection; }
6793};
6794
6795class PragmaClangTextSectionAttr : public InheritableAttr {
6796unsigned nameLength;
6797char *name;
6798
6799public:
6800 static PragmaClangTextSectionAttr *CreateImplicit(ASTContext &Ctx, llvm::StringRef Name, SourceRange Loc = SourceRange()) {
6801 auto *A = new (Ctx) PragmaClangTextSectionAttr(Loc, Ctx, Name, 0);
6802 A->setImplicit(true);
6803 return A;
6804 }
6805
6806 PragmaClangTextSectionAttr(SourceRange R, ASTContext &Ctx
6807 , llvm::StringRef Name
6808 , unsigned SI
6809 )
6810 : InheritableAttr(attr::PragmaClangTextSection, R, SI, false, false)
6811 , nameLength(Name.size()),name(new (Ctx, 1) char[nameLength])
6812 {
6813 if (!Name.empty())
6814 std::memcpy(name, Name.data(), nameLength);
6815 }
6816
6817 PragmaClangTextSectionAttr *clone(ASTContext &C) const;
6818 void printPretty(raw_ostream &OS,
6819 const PrintingPolicy &Policy) const;
6820 const char *getSpelling() const;
6821 llvm::StringRef getName() const {
6822 return llvm::StringRef(name, nameLength);
6823 }
6824 unsigned getNameLength() const {
6825 return nameLength;
6826 }
6827 void setName(ASTContext &C, llvm::StringRef S) {
6828 nameLength = S.size();
6829 this->name = new (C, 1) char [nameLength];
6830 if (!S.empty())
6831 std::memcpy(this->name, S.data(), nameLength);
6832 }
6833
6834
6835
6836 static bool classof(const Attr *A) { return A->getKind() == attr::PragmaClangTextSection; }
6837};
6838
6839class PreserveAllAttr : public InheritableAttr {
6840public:
6841 static PreserveAllAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
6842 auto *A = new (Ctx) PreserveAllAttr(Loc, Ctx, 0);
6843 A->setImplicit(true);
6844 return A;
6845 }
6846
6847 PreserveAllAttr(SourceRange R, ASTContext &Ctx
6848 , unsigned SI
6849 )
6850 : InheritableAttr(attr::PreserveAll, R, SI, false, false)
6851 {
6852 }
6853
6854 PreserveAllAttr *clone(ASTContext &C) const;
6855 void printPretty(raw_ostream &OS,
6856 const PrintingPolicy &Policy) const;
6857 const char *getSpelling() const;
6858
6859
6860 static bool classof(const Attr *A) { return A->getKind() == attr::PreserveAll; }
6861};
6862
6863class PreserveMostAttr : public InheritableAttr {
6864public:
6865 static PreserveMostAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
6866 auto *A = new (Ctx) PreserveMostAttr(Loc, Ctx, 0);
6867 A->setImplicit(true);
6868 return A;
6869 }
6870
6871 PreserveMostAttr(SourceRange R, ASTContext &Ctx
6872 , unsigned SI
6873 )
6874 : InheritableAttr(attr::PreserveMost, R, SI, false, false)
6875 {
6876 }
6877
6878 PreserveMostAttr *clone(ASTContext &C) const;
6879 void printPretty(raw_ostream &OS,
6880 const PrintingPolicy &Policy) const;
6881 const char *getSpelling() const;
6882
6883
6884 static bool classof(const Attr *A) { return A->getKind() == attr::PreserveMost; }
6885};
6886
6887class PtGuardedByAttr : public InheritableAttr {
6888Expr * arg;
6889
6890public:
6891 static PtGuardedByAttr *CreateImplicit(ASTContext &Ctx, Expr * Arg, SourceRange Loc = SourceRange()) {
6892 auto *A = new (Ctx) PtGuardedByAttr(Loc, Ctx, Arg, 0);
6893 A->setImplicit(true);
6894 return A;
6895 }
6896
6897 PtGuardedByAttr(SourceRange R, ASTContext &Ctx
6898 , Expr * Arg
6899 , unsigned SI
6900 )
6901 : InheritableAttr(attr::PtGuardedBy, R, SI, true, true)
6902 , arg(Arg)
6903 {
6904 }
6905
6906 PtGuardedByAttr *clone(ASTContext &C) const;
6907 void printPretty(raw_ostream &OS,
6908 const PrintingPolicy &Policy) const;
6909 const char *getSpelling() const;
6910 Expr * getArg() const {
6911 return arg;
6912 }
6913
6914
6915
6916 static bool classof(const Attr *A) { return A->getKind() == attr::PtGuardedBy; }
6917};
6918
6919class PtGuardedVarAttr : public InheritableAttr {
6920public:
6921 static PtGuardedVarAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
6922 auto *A = new (Ctx) PtGuardedVarAttr(Loc, Ctx, 0);
6923 A->setImplicit(true);
6924 return A;
6925 }
6926
6927 PtGuardedVarAttr(SourceRange R, ASTContext &Ctx
6928 , unsigned SI
6929 )
6930 : InheritableAttr(attr::PtGuardedVar, R, SI, false, false)
6931 {
6932 }
6933
6934 PtGuardedVarAttr *clone(ASTContext &C) const;
6935 void printPretty(raw_ostream &OS,
6936 const PrintingPolicy &Policy) const;
6937 const char *getSpelling() const;
6938
6939
6940 static bool classof(const Attr *A) { return A->getKind() == attr::PtGuardedVar; }
6941};
6942
6943class PureAttr : public InheritableAttr {
6944public:
6945 static PureAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
6946 auto *A = new (Ctx) PureAttr(Loc, Ctx, 0);
6947 A->setImplicit(true);
6948 return A;
6949 }
6950
6951 PureAttr(SourceRange R, ASTContext &Ctx
6952 , unsigned SI
6953 )
6954 : InheritableAttr(attr::Pure, R, SI, false, false)
6955 {
6956 }
6957
6958 PureAttr *clone(ASTContext &C) const;
6959 void printPretty(raw_ostream &OS,
6960 const PrintingPolicy &Policy) const;
6961 const char *getSpelling() const;
6962
6963
6964 static bool classof(const Attr *A) { return A->getKind() == attr::Pure; }
6965};
6966
6967class RISCVInterruptAttr : public InheritableAttr {
6968public:
6969 enum InterruptType {
6970 user,
6971 supervisor,
6972 machine
6973 };
6974private:
6975 InterruptType interrupt;
6976
6977public:
6978 static RISCVInterruptAttr *CreateImplicit(ASTContext &Ctx, InterruptType Interrupt, SourceRange Loc = SourceRange()) {
6979 auto *A = new (Ctx) RISCVInterruptAttr(Loc, Ctx, Interrupt, 0);
6980 A->setImplicit(true);
6981 return A;
6982 }
6983
6984 RISCVInterruptAttr(SourceRange R, ASTContext &Ctx
6985 , InterruptType Interrupt
6986 , unsigned SI
6987 )
6988 : InheritableAttr(attr::RISCVInterrupt, R, SI, false, false)
6989 , interrupt(Interrupt)
6990 {
6991 }
6992
6993 RISCVInterruptAttr(SourceRange R, ASTContext &Ctx
6994 , unsigned SI
6995 )
6996 : InheritableAttr(attr::RISCVInterrupt, R, SI, false, false)
6997 , interrupt(InterruptType(0))
6998 {
6999 }
7000
7001 RISCVInterruptAttr *clone(ASTContext &C) const;
7002 void printPretty(raw_ostream &OS,
7003 const PrintingPolicy &Policy) const;
7004 const char *getSpelling() const;
7005 InterruptType getInterrupt() const {
7006 return interrupt;
7007 }
7008
7009 static bool ConvertStrToInterruptType(StringRef Val, InterruptType &Out) {
7010 Optional<InterruptType> R = llvm::StringSwitch<Optional<InterruptType>>(Val)
7011 .Case("user", RISCVInterruptAttr::user)
7012 .Case("supervisor", RISCVInterruptAttr::supervisor)
7013 .Case("machine", RISCVInterruptAttr::machine)
7014 .Default(Optional<InterruptType>());
7015 if (R) {
7016 Out = *R;
7017 return true;
7018 }
7019 return false;
7020 }
7021
7022 static const char *ConvertInterruptTypeToStr(InterruptType Val) {
7023 switch(Val) {
7024 case RISCVInterruptAttr::user: return "user";
7025 case RISCVInterruptAttr::supervisor: return "supervisor";
7026 case RISCVInterruptAttr::machine: return "machine";
7027 }
7028 llvm_unreachable("No enumerator with that value")::llvm::llvm_unreachable_internal("No enumerator with that value"
, "/build/llvm-toolchain-snapshot-7~svn338205/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 7028)
;
7029 }
7030
7031
7032 static bool classof(const Attr *A) { return A->getKind() == attr::RISCVInterrupt; }
7033};
7034
7035class RegCallAttr : public InheritableAttr {
7036public:
7037 static RegCallAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
7038 auto *A = new (Ctx) RegCallAttr(Loc, Ctx, 0);
7039 A->setImplicit(true);
7040 return A;
7041 }
7042
7043 RegCallAttr(SourceRange R, ASTContext &Ctx
7044 , unsigned SI
7045 )
7046 : InheritableAttr(attr::RegCall, R, SI, false, false)
7047 {
7048 }
7049
7050 RegCallAttr *clone(ASTContext &C) const;
7051 void printPretty(raw_ostream &OS,
7052 const PrintingPolicy &Policy) const;
7053 const char *getSpelling() const;
7054
7055
7056 static bool classof(const Attr *A) { return A->getKind() == attr::RegCall; }
7057};
7058
7059class ReleaseCapabilityAttr : public InheritableAttr {
7060 unsigned args_Size;
7061 Expr * *args_;
7062
7063public:
7064 enum Spelling {
7065 GNU_release_capability = 0,
7066 CXX11_clang_release_capability = 1,
7067 GNU_release_shared_capability = 2,
7068 CXX11_clang_release_shared_capability = 3,
7069 GNU_release_generic_capability = 4,
7070 CXX11_clang_release_generic_capability = 5,
7071 GNU_unlock_function = 6,
7072 CXX11_clang_unlock_function = 7
7073 };
7074
7075 static ReleaseCapabilityAttr *CreateImplicit(ASTContext &Ctx, Spelling S, Expr * *Args, unsigned ArgsSize, SourceRange Loc = SourceRange()) {
7076 auto *A = new (Ctx) ReleaseCapabilityAttr(Loc, Ctx, Args, ArgsSize, S);
7077 A->setImplicit(true);
7078 return A;
7079 }
7080
7081 ReleaseCapabilityAttr(SourceRange R, ASTContext &Ctx
7082 , Expr * *Args, unsigned ArgsSize
7083 , unsigned SI
7084 )
7085 : InheritableAttr(attr::ReleaseCapability, R, SI, true, true)
7086 , args_Size(ArgsSize), args_(new (Ctx, 16) Expr *[args_Size])
7087 {
7088 std::copy(Args, Args + args_Size, args_);
7089 }
7090
7091 ReleaseCapabilityAttr(SourceRange R, ASTContext &Ctx
7092 , unsigned SI
7093 )
7094 : InheritableAttr(attr::ReleaseCapability, R, SI, true, true)
7095 , args_Size(0), args_(nullptr)
7096 {
7097 }
7098
7099 ReleaseCapabilityAttr *clone(ASTContext &C) const;
7100 void printPretty(raw_ostream &OS,
7101 const PrintingPolicy &Policy) const;
7102 const char *getSpelling() const;
7103 Spelling getSemanticSpelling() const {
7104 switch (SpellingListIndex) {
7105 default: llvm_unreachable("Unknown spelling list index")::llvm::llvm_unreachable_internal("Unknown spelling list index"
, "/build/llvm-toolchain-snapshot-7~svn338205/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 7105)
;
7106 case 0: return GNU_release_capability;
7107 case 1: return CXX11_clang_release_capability;
7108 case 2: return GNU_release_shared_capability;
7109 case 3: return CXX11_clang_release_shared_capability;
7110 case 4: return GNU_release_generic_capability;
7111 case 5: return CXX11_clang_release_generic_capability;
7112 case 6: return GNU_unlock_function;
7113 case 7: return CXX11_clang_unlock_function;
7114 }
7115 }
7116 bool isShared() const { return SpellingListIndex == 2 ||
7117 SpellingListIndex == 3; }
7118 bool isGeneric() const { return SpellingListIndex == 4 ||
7119 SpellingListIndex == 5 ||
7120 SpellingListIndex == 6 ||
7121 SpellingListIndex == 7; }
7122 typedef Expr ** args_iterator;
7123 args_iterator args_begin() const { return args_; }
7124 args_iterator args_end() const { return args_ + args_Size; }
7125 unsigned args_size() const { return args_Size; }
7126 llvm::iterator_range<args_iterator> args() const { return llvm::make_range(args_begin(), args_end()); }
7127
7128
7129
7130
7131 static bool classof(const Attr *A) { return A->getKind() == attr::ReleaseCapability; }
7132};
7133
7134class RenderScriptKernelAttr : public Attr {
7135public:
7136 static RenderScriptKernelAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
7137 auto *A = new (Ctx) RenderScriptKernelAttr(Loc, Ctx, 0);
7138 A->setImplicit(true);
7139 return A;
7140 }
7141
7142 RenderScriptKernelAttr(SourceRange R, ASTContext &Ctx
7143 , unsigned SI
7144 )
7145 : Attr(attr::RenderScriptKernel, R, SI, false)
7146 {
7147 }
7148
7149 RenderScriptKernelAttr *clone(ASTContext &C) const;
7150 void printPretty(raw_ostream &OS,
7151 const PrintingPolicy &Policy) const;
7152 const char *getSpelling() const;
7153
7154
7155 static bool classof(const Attr *A) { return A->getKind() == attr::RenderScriptKernel; }
7156};
7157
7158class ReqdWorkGroupSizeAttr : public InheritableAttr {
7159unsigned xDim;
7160
7161unsigned yDim;
7162
7163unsigned zDim;
7164
7165public:
7166 static ReqdWorkGroupSizeAttr *CreateImplicit(ASTContext &Ctx, unsigned XDim, unsigned YDim, unsigned ZDim, SourceRange Loc = SourceRange()) {
7167 auto *A = new (Ctx) ReqdWorkGroupSizeAttr(Loc, Ctx, XDim, YDim, ZDim, 0);
7168 A->setImplicit(true);
7169 return A;
7170 }
7171
7172 ReqdWorkGroupSizeAttr(SourceRange R, ASTContext &Ctx
7173 , unsigned XDim
7174 , unsigned YDim
7175 , unsigned ZDim
7176 , unsigned SI
7177 )
7178 : InheritableAttr(attr::ReqdWorkGroupSize, R, SI, false, false)
7179 , xDim(XDim)
7180 , yDim(YDim)
7181 , zDim(ZDim)
7182 {
7183 }
7184
7185 ReqdWorkGroupSizeAttr *clone(ASTContext &C) const;
7186 void printPretty(raw_ostream &OS,
7187 const PrintingPolicy &Policy) const;
7188 const char *getSpelling() const;
7189 unsigned getXDim() const {
7190 return xDim;
7191 }
7192
7193 unsigned getYDim() const {
7194 return yDim;
7195 }
7196
7197 unsigned getZDim() const {
7198 return zDim;
7199 }
7200
7201
7202
7203 static bool classof(const Attr *A) { return A->getKind() == attr::ReqdWorkGroupSize; }
7204};
7205
7206class RequireConstantInitAttr : public InheritableAttr {
7207public:
7208 static RequireConstantInitAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
7209 auto *A = new (Ctx) RequireConstantInitAttr(Loc, Ctx, 0);
7210 A->setImplicit(true);
7211 return A;
7212 }
7213
7214 RequireConstantInitAttr(SourceRange R, ASTContext &Ctx
7215 , unsigned SI
7216 )
7217 : InheritableAttr(attr::RequireConstantInit, R, SI, false, false)
7218 {
7219 }
7220
7221 RequireConstantInitAttr *clone(ASTContext &C) const;
7222 void printPretty(raw_ostream &OS,
7223 const PrintingPolicy &Policy) const;
7224 const char *getSpelling() const;
7225
7226
7227 static bool classof(const Attr *A) { return A->getKind() == attr::RequireConstantInit; }
7228};
7229
7230class RequiresCapabilityAttr : public InheritableAttr {
7231 unsigned args_Size;
7232 Expr * *args_;
7233
7234public:
7235 enum Spelling {
7236 GNU_requires_capability = 0,
7237 CXX11_clang_requires_capability = 1,
7238 GNU_exclusive_locks_required = 2,
7239 CXX11_clang_exclusive_locks_required = 3,
7240 GNU_requires_shared_capability = 4,
7241 CXX11_clang_requires_shared_capability = 5,
7242 GNU_shared_locks_required = 6,
7243 CXX11_clang_shared_locks_required = 7
7244 };
7245
7246 static RequiresCapabilityAttr *CreateImplicit(ASTContext &Ctx, Spelling S, Expr * *Args, unsigned ArgsSize, SourceRange Loc = SourceRange()) {
7247 auto *A = new (Ctx) RequiresCapabilityAttr(Loc, Ctx, Args, ArgsSize, S);
7248 A->setImplicit(true);
7249 return A;
7250 }
7251
7252 RequiresCapabilityAttr(SourceRange R, ASTContext &Ctx
7253 , Expr * *Args, unsigned ArgsSize
7254 , unsigned SI
7255 )
7256 : InheritableAttr(attr::RequiresCapability, R, SI, true, true)
7257 , args_Size(ArgsSize), args_(new (Ctx, 16) Expr *[args_Size])
7258 {
7259 std::copy(Args, Args + args_Size, args_);
7260 }
7261
7262 RequiresCapabilityAttr(SourceRange R, ASTContext &Ctx
7263 , unsigned SI
7264 )
7265 : InheritableAttr(attr::RequiresCapability, R, SI, true, true)
7266 , args_Size(0), args_(nullptr)
7267 {
7268 }
7269
7270 RequiresCapabilityAttr *clone(ASTContext &C) const;
7271 void printPretty(raw_ostream &OS,
7272 const PrintingPolicy &Policy) const;
7273 const char *getSpelling() const;
7274 Spelling getSemanticSpelling() const {
7275 switch (SpellingListIndex) {
7276 default: llvm_unreachable("Unknown spelling list index")::llvm::llvm_unreachable_internal("Unknown spelling list index"
, "/build/llvm-toolchain-snapshot-7~svn338205/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 7276)
;
7277 case 0: return GNU_requires_capability;
7278 case 1: return CXX11_clang_requires_capability;
7279 case 2: return GNU_exclusive_locks_required;
7280 case 3: return CXX11_clang_exclusive_locks_required;
7281 case 4: return GNU_requires_shared_capability;
7282 case 5: return CXX11_clang_requires_shared_capability;
7283 case 6: return GNU_shared_locks_required;
7284 case 7: return CXX11_clang_shared_locks_required;
7285 }
7286 }
7287 bool isShared() const { return SpellingListIndex == 4 ||
7288 SpellingListIndex == 5 ||
7289 SpellingListIndex == 6 ||
7290 SpellingListIndex == 7; }
7291 typedef Expr ** args_iterator;
7292 args_iterator args_begin() const { return args_; }
7293 args_iterator args_end() const { return args_ + args_Size; }
7294 unsigned args_size() const { return args_Size; }
7295 llvm::iterator_range<args_iterator> args() const { return llvm::make_range(args_begin(), args_end()); }
7296
7297
7298
7299
7300 static bool classof(const Attr *A) { return A->getKind() == attr::RequiresCapability; }
7301};
7302
7303class RestrictAttr : public InheritableAttr {
7304public:
7305 enum Spelling {
7306 Declspec_restrict = 0,
7307 GNU_malloc = 1,
7308 CXX11_gnu_malloc = 2
7309 };
7310
7311 static RestrictAttr *CreateImplicit(ASTContext &Ctx, Spelling S, SourceRange Loc = SourceRange()) {
7312 auto *A = new (Ctx) RestrictAttr(Loc, Ctx, S);
7313 A->setImplicit(true);
7314 return A;
7315 }
7316
7317 RestrictAttr(SourceRange R, ASTContext &Ctx
7318 , unsigned SI
7319 )
7320 : InheritableAttr(attr::Restrict, R, SI, false, false)
7321 {
7322 }
7323
7324 RestrictAttr *clone(ASTContext &C) const;
7325 void printPretty(raw_ostream &OS,
7326 const PrintingPolicy &Policy) const;
7327 const char *getSpelling() const;
7328 Spelling getSemanticSpelling() const {
7329 switch (SpellingListIndex) {
7330 default: llvm_unreachable("Unknown spelling list index")::llvm::llvm_unreachable_internal("Unknown spelling list index"
, "/build/llvm-toolchain-snapshot-7~svn338205/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 7330)
;
7331 case 0: return Declspec_restrict;
7332 case 1: return GNU_malloc;
7333 case 2: return CXX11_gnu_malloc;
7334 }
7335 }
7336
7337
7338 static bool classof(const Attr *A) { return A->getKind() == attr::Restrict; }
7339};
7340
7341class ReturnTypestateAttr : public InheritableAttr {
7342public:
7343 enum ConsumedState {
7344 Unknown,
7345 Consumed,
7346 Unconsumed
7347 };
7348private:
7349 ConsumedState state;
7350
7351public:
7352 static ReturnTypestateAttr *CreateImplicit(ASTContext &Ctx, ConsumedState State, SourceRange Loc = SourceRange()) {
7353 auto *A = new (Ctx) ReturnTypestateAttr(Loc, Ctx, State, 0);
7354 A->setImplicit(true);
7355 return A;
7356 }
7357
7358 ReturnTypestateAttr(SourceRange R, ASTContext &Ctx
7359 , ConsumedState State
7360 , unsigned SI
7361 )
7362 : InheritableAttr(attr::ReturnTypestate, R, SI, false, false)
7363 , state(State)
7364 {
7365 }
7366
7367 ReturnTypestateAttr *clone(ASTContext &C) const;
7368 void printPretty(raw_ostream &OS,
7369 const PrintingPolicy &Policy) const;
7370 const char *getSpelling() const;
7371 ConsumedState getState() const {
7372 return state;
7373 }
7374
7375 static bool ConvertStrToConsumedState(StringRef Val, ConsumedState &Out) {
7376 Optional<ConsumedState> R = llvm::StringSwitch<Optional<ConsumedState>>(Val)
7377 .Case("unknown", ReturnTypestateAttr::Unknown)
7378 .Case("consumed", ReturnTypestateAttr::Consumed)
7379 .Case("unconsumed", ReturnTypestateAttr::Unconsumed)
7380 .Default(Optional<ConsumedState>());
7381 if (R) {
7382 Out = *R;
7383 return true;
7384 }
7385 return false;
7386 }
7387
7388 static const char *ConvertConsumedStateToStr(ConsumedState Val) {
7389 switch(Val) {
7390 case ReturnTypestateAttr::Unknown: return "unknown";
7391 case ReturnTypestateAttr::Consumed: return "consumed";
7392 case ReturnTypestateAttr::Unconsumed: return "unconsumed";
7393 }
7394 llvm_unreachable("No enumerator with that value")::llvm::llvm_unreachable_internal("No enumerator with that value"
, "/build/llvm-toolchain-snapshot-7~svn338205/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 7394)
;
7395 }
7396
7397
7398 static bool classof(const Attr *A) { return A->getKind() == attr::ReturnTypestate; }
7399};
7400
7401class ReturnsNonNullAttr : public InheritableAttr {
7402public:
7403 static ReturnsNonNullAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
7404 auto *A = new (Ctx) ReturnsNonNullAttr(Loc, Ctx, 0);
7405 A->setImplicit(true);
7406 return A;
7407 }
7408
7409 ReturnsNonNullAttr(SourceRange R, ASTContext &Ctx
7410 , unsigned SI
7411 )
7412 : InheritableAttr(attr::ReturnsNonNull, R, SI, false, false)
7413 {
7414 }
7415
7416 ReturnsNonNullAttr *clone(ASTContext &C) const;
7417 void printPretty(raw_ostream &OS,
7418 const PrintingPolicy &Policy) const;
7419 const char *getSpelling() const;
7420
7421
7422 static bool classof(const Attr *A) { return A->getKind() == attr::ReturnsNonNull; }
7423};
7424
7425class ReturnsTwiceAttr : public InheritableAttr {
7426public:
7427 static ReturnsTwiceAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
7428 auto *A = new (Ctx) ReturnsTwiceAttr(Loc, Ctx, 0);
7429 A->setImplicit(true);
7430 return A;
7431 }
7432
7433 ReturnsTwiceAttr(SourceRange R, ASTContext &Ctx
7434 , unsigned SI
7435 )
7436 : InheritableAttr(attr::ReturnsTwice, R, SI, false, false)
7437 {
7438 }
7439
7440 ReturnsTwiceAttr *clone(ASTContext &C) const;
7441 void printPretty(raw_ostream &OS,
7442 const PrintingPolicy &Policy) const;
7443 const char *getSpelling() const;
7444
7445
7446 static bool classof(const Attr *A) { return A->getKind() == attr::ReturnsTwice; }
7447};
7448
7449class ScopedLockableAttr : public InheritableAttr {
7450public:
7451 static ScopedLockableAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
7452 auto *A = new (Ctx) ScopedLockableAttr(Loc, Ctx, 0);
7453 A->setImplicit(true);
7454 return A;
7455 }
7456
7457 ScopedLockableAttr(SourceRange R, ASTContext &Ctx
7458 , unsigned SI
7459 )
7460 : InheritableAttr(attr::ScopedLockable, R, SI, false, false)
7461 {
7462 }
7463
7464 ScopedLockableAttr *clone(ASTContext &C) const;
7465 void printPretty(raw_ostream &OS,
7466 const PrintingPolicy &Policy) const;
7467 const char *getSpelling() const;
7468
7469
7470 static bool classof(const Attr *A) { return A->getKind() == attr::ScopedLockable; }
7471};
7472
7473class SectionAttr : public InheritableAttr {
7474unsigned nameLength;
7475char *name;
7476
7477public:
7478 enum Spelling {
7479 GNU_section = 0,
7480 CXX11_gnu_section = 1,
7481 Declspec_allocate = 2
7482 };
7483
7484 static SectionAttr *CreateImplicit(ASTContext &Ctx, Spelling S, llvm::StringRef Name, SourceRange Loc = SourceRange()) {
7485 auto *A = new (Ctx) SectionAttr(Loc, Ctx, Name, S);
7486 A->setImplicit(true);
7487 return A;
7488 }
7489
7490 SectionAttr(SourceRange R, ASTContext &Ctx
7491 , llvm::StringRef Name
7492 , unsigned SI
7493 )
7494 : InheritableAttr(attr::Section, R, SI, false, false)
7495 , nameLength(Name.size()),name(new (Ctx, 1) char[nameLength])
7496 {
7497 if (!Name.empty())
7498 std::memcpy(name, Name.data(), nameLength);
7499 }
7500
7501 SectionAttr *clone(ASTContext &C) const;
7502 void printPretty(raw_ostream &OS,
7503 const PrintingPolicy &Policy) const;
7504 const char *getSpelling() const;
7505 Spelling getSemanticSpelling() const {
7506 switch (SpellingListIndex) {
7507 default: llvm_unreachable("Unknown spelling list index")::llvm::llvm_unreachable_internal("Unknown spelling list index"
, "/build/llvm-toolchain-snapshot-7~svn338205/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 7507)
;
7508 case 0: return GNU_section;
7509 case 1: return CXX11_gnu_section;
7510 case 2: return Declspec_allocate;
7511 }
7512 }
7513 llvm::StringRef getName() const {
7514 return llvm::StringRef(name, nameLength);
7515 }
7516 unsigned getNameLength() const {
7517 return nameLength;
7518 }
7519 void setName(ASTContext &C, llvm::StringRef S) {
7520 nameLength = S.size();
7521 this->name = new (C, 1) char [nameLength];
7522 if (!S.empty())
7523 std::memcpy(this->name, S.data(), nameLength);
7524 }
7525
7526
7527
7528 static bool classof(const Attr *A) { return A->getKind() == attr::Section; }
7529};
7530
7531class SelectAnyAttr : public InheritableAttr {
7532public:
7533 static SelectAnyAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
7534 auto *A = new (Ctx) SelectAnyAttr(Loc, Ctx, 0);
7535 A->setImplicit(true);
7536 return A;
7537 }
7538
7539 SelectAnyAttr(SourceRange R, ASTContext &Ctx
7540 , unsigned SI
7541 )
7542 : InheritableAttr(attr::SelectAny, R, SI, false, false)
7543 {
7544 }
7545
7546 SelectAnyAttr *clone(ASTContext &C) const;
7547 void printPretty(raw_ostream &OS,
7548 const PrintingPolicy &Policy) const;
7549 const char *getSpelling() const;
7550
7551
7552 static bool classof(const Attr *A) { return A->getKind() == attr::SelectAny; }
7553};
7554
7555class SentinelAttr : public InheritableAttr {
7556int sentinel;
7557
7558int nullPos;
7559
7560public:
7561 static SentinelAttr *CreateImplicit(ASTContext &Ctx, int Sentinel, int NullPos, SourceRange Loc = SourceRange()) {
7562 auto *A = new (Ctx) SentinelAttr(Loc, Ctx, Sentinel, NullPos, 0);
7563 A->setImplicit(true);
7564 return A;
7565 }
7566
7567 SentinelAttr(SourceRange R, ASTContext &Ctx
7568 , int Sentinel
7569 , int NullPos
7570 , unsigned SI
7571 )
7572 : InheritableAttr(attr::Sentinel, R, SI, false, false)
7573 , sentinel(Sentinel)
7574 , nullPos(NullPos)
7575 {
7576 }
7577
7578 SentinelAttr(SourceRange R, ASTContext &Ctx
7579 , unsigned SI
7580 )
7581 : InheritableAttr(attr::Sentinel, R, SI, false, false)
7582 , sentinel()
7583 , nullPos()
7584 {
7585 }
7586
7587 SentinelAttr *clone(ASTContext &C) const;
7588 void printPretty(raw_ostream &OS,
7589 const PrintingPolicy &Policy) const;
7590 const char *getSpelling() const;
7591 int getSentinel() const {
7592 return sentinel;
7593 }
7594
7595 static const int DefaultSentinel = 0;
7596
7597 int getNullPos() const {
7598 return nullPos;
7599 }
7600
7601 static const int DefaultNullPos = 0;
7602
7603
7604
7605 static bool classof(const Attr *A) { return A->getKind() == attr::Sentinel; }
7606};
7607
7608class SetTypestateAttr : public InheritableAttr {
7609public:
7610 enum ConsumedState {
7611 Unknown,
7612 Consumed,
7613 Unconsumed
7614 };
7615private:
7616 ConsumedState newState;
7617
7618public:
7619 static SetTypestateAttr *CreateImplicit(ASTContext &Ctx, ConsumedState NewState, SourceRange Loc = SourceRange()) {
7620 auto *A = new (Ctx) SetTypestateAttr(Loc, Ctx, NewState, 0);
7621 A->setImplicit(true);
7622 return A;
7623 }
7624
7625 SetTypestateAttr(SourceRange R, ASTContext &Ctx
7626 , ConsumedState NewState
7627 , unsigned SI
7628 )
7629 : InheritableAttr(attr::SetTypestate, R, SI, false, false)
7630 , newState(NewState)
7631 {
7632 }
7633
7634 SetTypestateAttr *clone(ASTContext &C) const;
7635 void printPretty(raw_ostream &OS,
7636 const PrintingPolicy &Policy) const;
7637 const char *getSpelling() const;
7638 ConsumedState getNewState() const {
7639 return newState;
7640 }
7641
7642 static bool ConvertStrToConsumedState(StringRef Val, ConsumedState &Out) {
7643 Optional<ConsumedState> R = llvm::StringSwitch<Optional<ConsumedState>>(Val)
7644 .Case("unknown", SetTypestateAttr::Unknown)
7645 .Case("consumed", SetTypestateAttr::Consumed)
7646 .Case("unconsumed", SetTypestateAttr::Unconsumed)
7647 .Default(Optional<ConsumedState>());
7648 if (R) {
7649 Out = *R;
7650 return true;
7651 }
7652 return false;
7653 }
7654
7655 static const char *ConvertConsumedStateToStr(ConsumedState Val) {
7656 switch(Val) {
7657 case SetTypestateAttr::Unknown: return "unknown";
7658 case SetTypestateAttr::Consumed: return "consumed";
7659 case SetTypestateAttr::Unconsumed: return "unconsumed";
7660 }
7661 llvm_unreachable("No enumerator with that value")::llvm::llvm_unreachable_internal("No enumerator with that value"
, "/build/llvm-toolchain-snapshot-7~svn338205/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 7661)
;
7662 }
7663
7664
7665 static bool classof(const Attr *A) { return A->getKind() == attr::SetTypestate; }
7666};
7667
7668class SharedTrylockFunctionAttr : public InheritableAttr {
7669Expr * successValue;
7670
7671 unsigned args_Size;
7672 Expr * *args_;
7673
7674public:
7675 static SharedTrylockFunctionAttr *CreateImplicit(ASTContext &Ctx, Expr * SuccessValue, Expr * *Args, unsigned ArgsSize, SourceRange Loc = SourceRange()) {
7676 auto *A = new (Ctx) SharedTrylockFunctionAttr(Loc, Ctx, SuccessValue, Args, ArgsSize, 0);
7677 A->setImplicit(true);
7678 return A;
7679 }
7680
7681 SharedTrylockFunctionAttr(SourceRange R, ASTContext &Ctx
7682 , Expr * SuccessValue
7683 , Expr * *Args, unsigned ArgsSize
7684 , unsigned SI
7685 )
7686 : InheritableAttr(attr::SharedTrylockFunction, R, SI, true, true)
7687 , successValue(SuccessValue)
7688 , args_Size(ArgsSize), args_(new (Ctx, 16) Expr *[args_Size])
7689 {
7690 std::copy(Args, Args + args_Size, args_);
7691 }
7692
7693 SharedTrylockFunctionAttr(SourceRange R, ASTContext &Ctx
7694 , Expr * SuccessValue
7695 , unsigned SI
7696 )
7697 : InheritableAttr(attr::SharedTrylockFunction, R, SI, true, true)
7698 , successValue(SuccessValue)
7699 , args_Size(0), args_(nullptr)
7700 {
7701 }
7702
7703 SharedTrylockFunctionAttr *clone(ASTContext &C) const;
7704 void printPretty(raw_ostream &OS,
7705 const PrintingPolicy &Policy) const;
7706 const char *getSpelling() const;
7707 Expr * getSuccessValue() const {
7708 return successValue;
7709 }
7710
7711 typedef Expr ** args_iterator;
7712 args_iterator args_begin() const { return args_; }
7713 args_iterator args_end() const { return args_ + args_Size; }
7714 unsigned args_size() const { return args_Size; }
7715 llvm::iterator_range<args_iterator> args() const { return llvm::make_range(args_begin(), args_end()); }
7716
7717
7718
7719
7720 static bool classof(const Attr *A) { return A->getKind() == attr::SharedTrylockFunction; }
7721};
7722
7723class StdCallAttr : public InheritableAttr {
7724public:
7725 static StdCallAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
7726 auto *A = new (Ctx) StdCallAttr(Loc, Ctx, 0);
7727 A->setImplicit(true);
7728 return A;
7729 }
7730
7731 StdCallAttr(SourceRange R, ASTContext &Ctx
7732 , unsigned SI
7733 )
7734 : InheritableAttr(attr::StdCall, R, SI, false, false)
7735 {
7736 }
7737
7738 StdCallAttr *clone(ASTContext &C) const;
7739 void printPretty(raw_ostream &OS,
7740 const PrintingPolicy &Policy) const;
7741 const char *getSpelling() const;
7742
7743
7744 static bool classof(const Attr *A) { return A->getKind() == attr::StdCall; }
7745};
7746
7747class SuppressAttr : public StmtAttr {
7748 unsigned diagnosticIdentifiers_Size;
7749 StringRef *diagnosticIdentifiers_;
7750
7751public:
7752 static SuppressAttr *CreateImplicit(ASTContext &Ctx, StringRef *DiagnosticIdentifiers, unsigned DiagnosticIdentifiersSize, SourceRange Loc = SourceRange()) {
7753 auto *A = new (Ctx) SuppressAttr(Loc, Ctx, DiagnosticIdentifiers, DiagnosticIdentifiersSize, 0);
7754 A->setImplicit(true);
7755 return A;
7756 }
7757
7758 SuppressAttr(SourceRange R, ASTContext &Ctx
7759 , StringRef *DiagnosticIdentifiers, unsigned DiagnosticIdentifiersSize
7760 , unsigned SI
7761 )
7762 : StmtAttr(attr::Suppress, R, SI, false)
7763 , diagnosticIdentifiers_Size(DiagnosticIdentifiersSize), diagnosticIdentifiers_(new (Ctx, 16) StringRef[diagnosticIdentifiers_Size])
7764 {
7765 for (size_t I = 0, E = diagnosticIdentifiers_Size; I != E;
7766 ++I) {
7767 StringRef Ref = DiagnosticIdentifiers[I];
7768 if (!Ref.empty()) {
7769 char *Mem = new (Ctx, 1) char[Ref.size()];
7770 std::memcpy(Mem, Ref.data(), Ref.size());
7771 diagnosticIdentifiers_[I] = StringRef(Mem, Ref.size());
7772 }
7773 }
7774 }
7775
7776 SuppressAttr(SourceRange R, ASTContext &Ctx
7777 , unsigned SI
7778 )
7779 : StmtAttr(attr::Suppress, R, SI, false)
7780 , diagnosticIdentifiers_Size(0), diagnosticIdentifiers_(nullptr)
7781 {
7782 }
7783
7784 SuppressAttr *clone(ASTContext &C) const;
7785 void printPretty(raw_ostream &OS,
7786 const PrintingPolicy &Policy) const;
7787 const char *getSpelling() const;
7788 typedef StringRef* diagnosticIdentifiers_iterator;
7789 diagnosticIdentifiers_iterator diagnosticIdentifiers_begin() const { return diagnosticIdentifiers_; }
7790 diagnosticIdentifiers_iterator diagnosticIdentifiers_end() const { return diagnosticIdentifiers_ + diagnosticIdentifiers_Size; }
7791 unsigned diagnosticIdentifiers_size() const { return diagnosticIdentifiers_Size; }
7792 llvm::iterator_range<diagnosticIdentifiers_iterator> diagnosticIdentifiers() const { return llvm::make_range(diagnosticIdentifiers_begin(), diagnosticIdentifiers_end()); }
7793
7794
7795
7796
7797 static bool classof(const Attr *A) { return A->getKind() == attr::Suppress; }
7798};
7799
7800class SwiftCallAttr : public InheritableAttr {
7801public:
7802 static SwiftCallAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
7803 auto *A = new (Ctx) SwiftCallAttr(Loc, Ctx, 0);
7804 A->setImplicit(true);
7805 return A;
7806 }
7807
7808 SwiftCallAttr(SourceRange R, ASTContext &Ctx
7809 , unsigned SI
7810 )
7811 : InheritableAttr(attr::SwiftCall, R, SI, false, false)
7812 {
7813 }
7814
7815 SwiftCallAttr *clone(ASTContext &C) const;
7816 void printPretty(raw_ostream &OS,
7817 const PrintingPolicy &Policy) const;
7818 const char *getSpelling() const;
7819
7820
7821 static bool classof(const Attr *A) { return A->getKind() == attr::SwiftCall; }
7822};
7823
7824class SwiftContextAttr : public ParameterABIAttr {
7825public:
7826 static SwiftContextAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
7827 auto *A = new (Ctx) SwiftContextAttr(Loc, Ctx, 0);
7828 A->setImplicit(true);
7829 return A;
7830 }
7831
7832 SwiftContextAttr(SourceRange R, ASTContext &Ctx
7833 , unsigned SI
7834 )
7835 : ParameterABIAttr(attr::SwiftContext, R, SI, false, false)
7836 {
7837 }
7838
7839 SwiftContextAttr *clone(ASTContext &C) const;
7840 void printPretty(raw_ostream &OS,
7841 const PrintingPolicy &Policy) const;
7842 const char *getSpelling() const;
7843
7844
7845 static bool classof(const Attr *A) { return A->getKind() == attr::SwiftContext; }
7846};
7847
7848class SwiftErrorResultAttr : public ParameterABIAttr {
7849public:
7850 static SwiftErrorResultAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
7851 auto *A = new (Ctx) SwiftErrorResultAttr(Loc, Ctx, 0);
7852 A->setImplicit(true);
7853 return A;
7854 }
7855
7856 SwiftErrorResultAttr(SourceRange R, ASTContext &Ctx
7857 , unsigned SI
7858 )
7859 : ParameterABIAttr(attr::SwiftErrorResult, R, SI, false, false)
7860 {
7861 }
7862
7863 SwiftErrorResultAttr *clone(ASTContext &C) const;
7864 void printPretty(raw_ostream &OS,
7865 const PrintingPolicy &Policy) const;
7866 const char *getSpelling() const;
7867
7868
7869 static bool classof(const Attr *A) { return A->getKind() == attr::SwiftErrorResult; }
7870};
7871
7872class SwiftIndirectResultAttr : public ParameterABIAttr {
7873public:
7874 static SwiftIndirectResultAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
7875 auto *A = new (Ctx) SwiftIndirectResultAttr(Loc, Ctx, 0);
7876 A->setImplicit(true);
7877 return A;
7878 }
7879
7880 SwiftIndirectResultAttr(SourceRange R, ASTContext &Ctx
7881 , unsigned SI
7882 )
7883 : ParameterABIAttr(attr::SwiftIndirectResult, R, SI, false, false)
7884 {
7885 }
7886
7887 SwiftIndirectResultAttr *clone(ASTContext &C) const;
7888 void printPretty(raw_ostream &OS,
7889 const PrintingPolicy &Policy) const;
7890 const char *getSpelling() const;
7891
7892
7893 static bool classof(const Attr *A) { return A->getKind() == attr::SwiftIndirectResult; }
7894};
7895
7896class SysVABIAttr : public InheritableAttr {
7897public:
7898 static SysVABIAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
7899 auto *A = new (Ctx) SysVABIAttr(Loc, Ctx, 0);
7900 A->setImplicit(true);
7901 return A;
7902 }
7903
7904 SysVABIAttr(SourceRange R, ASTContext &Ctx
7905 , unsigned SI
7906 )
7907 : InheritableAttr(attr::SysVABI, R, SI, false, false)
7908 {
7909 }
7910
7911 SysVABIAttr *clone(ASTContext &C) const;
7912 void printPretty(raw_ostream &OS,
7913 const PrintingPolicy &Policy) const;
7914 const char *getSpelling() const;
7915
7916
7917 static bool classof(const Attr *A) { return A->getKind() == attr::SysVABI; }
7918};
7919
7920class TLSModelAttr : public InheritableAttr {
7921unsigned modelLength;
7922char *model;
7923
7924public:
7925 static TLSModelAttr *CreateImplicit(ASTContext &Ctx, llvm::StringRef Model, SourceRange Loc = SourceRange()) {
7926 auto *A = new (Ctx) TLSModelAttr(Loc, Ctx, Model, 0);
7927 A->setImplicit(true);
7928 return A;
7929 }
7930
7931 TLSModelAttr(SourceRange R, ASTContext &Ctx
7932 , llvm::StringRef Model
7933 , unsigned SI
7934 )
7935 : InheritableAttr(attr::TLSModel, R, SI, false, false)
7936 , modelLength(Model.size()),model(new (Ctx, 1) char[modelLength])
7937 {
7938 if (!Model.empty())
7939 std::memcpy(model, Model.data(), modelLength);
7940 }
7941
7942 TLSModelAttr *clone(ASTContext &C) const;
7943 void printPretty(raw_ostream &OS,
7944 const PrintingPolicy &Policy) const;
7945 const char *getSpelling() const;
7946 llvm::StringRef getModel() const {
7947 return llvm::StringRef(model, modelLength);
7948 }
7949 unsigned getModelLength() const {
7950 return modelLength;
7951 }
7952 void setModel(ASTContext &C, llvm::StringRef S) {
7953 modelLength = S.size();
7954 this->model = new (C, 1) char [modelLength];
7955 if (!S.empty())
7956 std::memcpy(this->model, S.data(), modelLength);
7957 }
7958
7959
7960
7961 static bool classof(const Attr *A) { return A->getKind() == attr::TLSModel; }
7962};
7963
7964class TargetAttr : public InheritableAttr {
7965unsigned featuresStrLength;
7966char *featuresStr;
7967
7968public:
7969 static TargetAttr *CreateImplicit(ASTContext &Ctx, llvm::StringRef FeaturesStr, SourceRange Loc = SourceRange()) {
7970 auto *A = new (Ctx) TargetAttr(Loc, Ctx, FeaturesStr, 0);
7971 A->setImplicit(true);
7972 return A;
7973 }
7974
7975 TargetAttr(SourceRange R, ASTContext &Ctx
7976 , llvm::StringRef FeaturesStr
7977 , unsigned SI
7978 )
7979 : InheritableAttr(attr::Target, R, SI, false, false)
7980 , featuresStrLength(FeaturesStr.size()),featuresStr(new (Ctx, 1) char[featuresStrLength])
7981 {
7982 if (!FeaturesStr.empty())
7983 std::memcpy(featuresStr, FeaturesStr.data(), featuresStrLength);
7984 }
7985
7986 TargetAttr *clone(ASTContext &C) const;
7987 void printPretty(raw_ostream &OS,
7988 const PrintingPolicy &Policy) const;
7989 const char *getSpelling() const;
7990 llvm::StringRef getFeaturesStr() const {
7991 return llvm::StringRef(featuresStr, featuresStrLength);
7992 }
7993 unsigned getFeaturesStrLength() const {
7994 return featuresStrLength;
7995 }
7996 void setFeaturesStr(ASTContext &C, llvm::StringRef S) {
7997 featuresStrLength = S.size();
7998 this->featuresStr = new (C, 1) char [featuresStrLength];
7999 if (!S.empty())
8000 std::memcpy(this->featuresStr, S.data(), featuresStrLength);
8001 }
8002
8003
8004 struct ParsedTargetAttr {
8005 std::vector<std::string> Features;
8006 StringRef Architecture;
8007 bool DuplicateArchitecture = false;
8008 bool operator ==(const ParsedTargetAttr &Other) const {
8009 return DuplicateArchitecture == Other.DuplicateArchitecture &&
8010 Architecture == Other.Architecture && Features == Other.Features;
8011 }
8012 };
8013 ParsedTargetAttr parse() const {
8014 return parse(getFeaturesStr());
8015 }
8016
8017 template<class Compare>
8018 ParsedTargetAttr parse(Compare cmp) const {
8019 ParsedTargetAttr Attrs = parse();
8020 llvm::sort(std::begin(Attrs.Features), std::end(Attrs.Features), cmp);
8021 return Attrs;
8022 }
8023
8024 bool isDefaultVersion() const { return getFeaturesStr() == "default"; }
8025
8026 static ParsedTargetAttr parse(StringRef Features) {
8027 ParsedTargetAttr Ret;
8028 if (Features == "default") return Ret;
8029 SmallVector<StringRef, 1> AttrFeatures;
8030 Features.split(AttrFeatures, ",");
8031
8032 // Grab the various features and prepend a "+" to turn on the feature to
8033 // the backend and add them to our existing set of features.
8034 for (auto &Feature : AttrFeatures) {
8035 // Go ahead and trim whitespace rather than either erroring or
8036 // accepting it weirdly.
8037 Feature = Feature.trim();
8038
8039 // We don't support cpu tuning this way currently.
8040 // TODO: Support the fpmath option. It will require checking
8041 // overall feature validity for the function with the rest of the
8042 // attributes on the function.
8043 if (Feature.startswith("fpmath=") || Feature.startswith("tune="))
8044 continue;
8045
8046 // While we're here iterating check for a different target cpu.
8047 if (Feature.startswith("arch=")) {
8048 if (!Ret.Architecture.empty())
8049 Ret.DuplicateArchitecture = true;
8050 else
8051 Ret.Architecture = Feature.split("=").second.trim();
8052 } else if (Feature.startswith("no-"))
8053 Ret.Features.push_back("-" + Feature.split("-").second.str());
8054 else
8055 Ret.Features.push_back("+" + Feature.str());
8056 }
8057 return Ret;
8058 }
8059
8060
8061 static bool classof(const Attr *A) { return A->getKind() == attr::Target; }
8062};
8063
8064class TestTypestateAttr : public InheritableAttr {
8065public:
8066 enum ConsumedState {
8067 Consumed,
8068 Unconsumed
8069 };
8070private:
8071 ConsumedState testState;
8072
8073public:
8074 static TestTypestateAttr *CreateImplicit(ASTContext &Ctx, ConsumedState TestState, SourceRange Loc = SourceRange()) {
8075 auto *A = new (Ctx) TestTypestateAttr(Loc, Ctx, TestState, 0);
8076 A->setImplicit(true);
8077 return A;
8078 }
8079
8080 TestTypestateAttr(SourceRange R, ASTContext &Ctx
8081 , ConsumedState TestState
8082 , unsigned SI
8083 )
8084 : InheritableAttr(attr::TestTypestate, R, SI, false, false)
8085 , testState(TestState)
8086 {
8087 }
8088
8089 TestTypestateAttr *clone(ASTContext &C) const;
8090 void printPretty(raw_ostream &OS,
8091 const PrintingPolicy &Policy) const;
8092 const char *getSpelling() const;
8093 ConsumedState getTestState() const {
8094 return testState;
8095 }
8096
8097 static bool ConvertStrToConsumedState(StringRef Val, ConsumedState &Out) {
8098 Optional<ConsumedState> R = llvm::StringSwitch<Optional<ConsumedState>>(Val)
8099 .Case("consumed", TestTypestateAttr::Consumed)
8100 .Case("unconsumed", TestTypestateAttr::Unconsumed)
8101 .Default(Optional<ConsumedState>());
8102 if (R) {
8103 Out = *R;
8104 return true;
8105 }
8106 return false;
8107 }
8108
8109 static const char *ConvertConsumedStateToStr(ConsumedState Val) {
8110 switch(Val) {
8111 case TestTypestateAttr::Consumed: return "consumed";
8112 case TestTypestateAttr::Unconsumed: return "unconsumed";
8113 }
8114 llvm_unreachable("No enumerator with that value")::llvm::llvm_unreachable_internal("No enumerator with that value"
, "/build/llvm-toolchain-snapshot-7~svn338205/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 8114)
;
8115 }
8116
8117
8118 static bool classof(const Attr *A) { return A->getKind() == attr::TestTypestate; }
8119};
8120
8121class ThisCallAttr : public InheritableAttr {
8122public:
8123 static ThisCallAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
8124 auto *A = new (Ctx) ThisCallAttr(Loc, Ctx, 0);
8125 A->setImplicit(true);
8126 return A;
8127 }
8128
8129 ThisCallAttr(SourceRange R, ASTContext &Ctx
8130 , unsigned SI
8131 )
8132 : InheritableAttr(attr::ThisCall, R, SI, false, false)
8133 {
8134 }
8135
8136 ThisCallAttr *clone(ASTContext &C) const;
8137 void printPretty(raw_ostream &OS,
8138 const PrintingPolicy &Policy) const;
8139 const char *getSpelling() const;
8140
8141
8142 static bool classof(const Attr *A) { return A->getKind() == attr::ThisCall; }
8143};
8144
8145class ThreadAttr : public Attr {
8146public:
8147 static ThreadAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
8148 auto *A = new (Ctx) ThreadAttr(Loc, Ctx, 0);
8149 A->setImplicit(true);
8150 return A;
8151 }
8152
8153 ThreadAttr(SourceRange R, ASTContext &Ctx
8154 , unsigned SI
8155 )
8156 : Attr(attr::Thread, R, SI, false)
8157 {
8158 }
8159
8160 ThreadAttr *clone(ASTContext &C) const;
8161 void printPretty(raw_ostream &OS,
8162 const PrintingPolicy &Policy) const;
8163 const char *getSpelling() const;
8164
8165
8166 static bool classof(const Attr *A) { return A->getKind() == attr::Thread; }
8167};
8168
8169class TransparentUnionAttr : public InheritableAttr {
8170public:
8171 static TransparentUnionAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
8172 auto *A = new (Ctx) TransparentUnionAttr(Loc, Ctx, 0);
8173 A->setImplicit(true);
8174 return A;
8175 }
8176
8177 TransparentUnionAttr(SourceRange R, ASTContext &Ctx
8178 , unsigned SI
8179 )
8180 : InheritableAttr(attr::TransparentUnion, R, SI, false, false)
8181 {
8182 }
8183
8184 TransparentUnionAttr *clone(ASTContext &C) const;
8185 void printPretty(raw_ostream &OS,
8186 const PrintingPolicy &Policy) const;
8187 const char *getSpelling() const;
8188
8189
8190 static bool classof(const Attr *A) { return A->getKind() == attr::TransparentUnion; }
8191};
8192
8193class TrivialABIAttr : public InheritableAttr {
8194public:
8195 static TrivialABIAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
8196 auto *A = new (Ctx) TrivialABIAttr(Loc, Ctx, 0);
8197 A->setImplicit(true);
8198 return A;
8199 }
8200
8201 TrivialABIAttr(SourceRange R, ASTContext &Ctx
8202 , unsigned SI
8203 )
8204 : InheritableAttr(attr::TrivialABI, R, SI, false, false)
8205 {
8206 }
8207
8208 TrivialABIAttr *clone(ASTContext &C) const;
8209 void printPretty(raw_ostream &OS,
8210 const PrintingPolicy &Policy) const;
8211 const char *getSpelling() const;
8212
8213
8214 static bool classof(const Attr *A) { return A->getKind() == attr::TrivialABI; }
8215};
8216
8217class TryAcquireCapabilityAttr : public InheritableAttr {
8218Expr * successValue;
8219
8220 unsigned args_Size;
8221 Expr * *args_;
8222
8223public:
8224 enum Spelling {
8225 GNU_try_acquire_capability = 0,
8226 CXX11_clang_try_acquire_capability = 1,
8227 GNU_try_acquire_shared_capability = 2,
8228 CXX11_clang_try_acquire_shared_capability = 3
8229 };
8230
8231 static TryAcquireCapabilityAttr *CreateImplicit(ASTContext &Ctx, Spelling S, Expr * SuccessValue, Expr * *Args, unsigned ArgsSize, SourceRange Loc = SourceRange()) {
8232 auto *A = new (Ctx) TryAcquireCapabilityAttr(Loc, Ctx, SuccessValue, Args, ArgsSize, S);
8233 A->setImplicit(true);
8234 return A;
8235 }
8236
8237 TryAcquireCapabilityAttr(SourceRange R, ASTContext &Ctx
8238 , Expr * SuccessValue
8239 , Expr * *Args, unsigned ArgsSize
8240 , unsigned SI
8241 )
8242 : InheritableAttr(attr::TryAcquireCapability, R, SI, true, true)
8243 , successValue(SuccessValue)
8244 , args_Size(ArgsSize), args_(new (Ctx, 16) Expr *[args_Size])
8245 {
8246 std::copy(Args, Args + args_Size, args_);
8247 }
8248
8249 TryAcquireCapabilityAttr(SourceRange R, ASTContext &Ctx
8250 , Expr * SuccessValue
8251 , unsigned SI
8252 )
8253 : InheritableAttr(attr::TryAcquireCapability, R, SI, true, true)
8254 , successValue(SuccessValue)
8255 , args_Size(0), args_(nullptr)
8256 {
8257 }
8258
8259 TryAcquireCapabilityAttr *clone(ASTContext &C) const;
8260 void printPretty(raw_ostream &OS,
8261 const PrintingPolicy &Policy) const;
8262 const char *getSpelling() const;
8263 Spelling getSemanticSpelling() const {
8264 switch (SpellingListIndex) {
8265 default: llvm_unreachable("Unknown spelling list index")::llvm::llvm_unreachable_internal("Unknown spelling list index"
, "/build/llvm-toolchain-snapshot-7~svn338205/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 8265)
;
8266 case 0: return GNU_try_acquire_capability;
8267 case 1: return CXX11_clang_try_acquire_capability;
8268 case 2: return GNU_try_acquire_shared_capability;
8269 case 3: return CXX11_clang_try_acquire_shared_capability;
8270 }
8271 }
8272 bool isShared() const { return SpellingListIndex == 2 ||
8273 SpellingListIndex == 3; }
8274 Expr * getSuccessValue() const {
8275 return successValue;
8276 }
8277
8278 typedef Expr ** args_iterator;
8279 args_iterator args_begin() const { return args_; }
8280 args_iterator args_end() const { return args_ + args_Size; }
8281 unsigned args_size() const { return args_Size; }
8282 llvm::iterator_range<args_iterator> args() const { return llvm::make_range(args_begin(), args_end()); }
8283
8284
8285
8286
8287 static bool classof(const Attr *A) { return A->getKind() == attr::TryAcquireCapability; }
8288};
8289
8290class TypeTagForDatatypeAttr : public InheritableAttr {
8291IdentifierInfo * argumentKind;
8292
8293TypeSourceInfo * matchingCType;
8294
8295bool layoutCompatible;
8296
8297bool mustBeNull;
8298
8299public:
8300 static TypeTagForDatatypeAttr *CreateImplicit(ASTContext &Ctx, IdentifierInfo * ArgumentKind, TypeSourceInfo * MatchingCType, bool LayoutCompatible, bool MustBeNull, SourceRange Loc = SourceRange()) {
8301 auto *A = new (Ctx) TypeTagForDatatypeAttr(Loc, Ctx, ArgumentKind, MatchingCType, LayoutCompatible, MustBeNull, 0);
8302 A->setImplicit(true);
8303 return A;
8304 }
8305
8306 TypeTagForDatatypeAttr(SourceRange R, ASTContext &Ctx
8307 , IdentifierInfo * ArgumentKind
8308 , TypeSourceInfo * MatchingCType
8309 , bool LayoutCompatible
8310 , bool MustBeNull
8311 , unsigned SI
8312 )
8313 : InheritableAttr(attr::TypeTagForDatatype, R, SI, false, false)
8314 , argumentKind(ArgumentKind)
8315 , matchingCType(MatchingCType)
8316 , layoutCompatible(LayoutCompatible)
8317 , mustBeNull(MustBeNull)
8318 {
8319 }
8320
8321 TypeTagForDatatypeAttr *clone(ASTContext &C) const;
8322 void printPretty(raw_ostream &OS,
8323 const PrintingPolicy &Policy) const;
8324 const char *getSpelling() const;
8325 IdentifierInfo * getArgumentKind() const {
8326 return argumentKind;
8327 }
8328
8329 QualType getMatchingCType() const {
8330 return matchingCType->getType();
8331 } TypeSourceInfo * getMatchingCTypeLoc() const {
8332 return matchingCType;
8333 }
8334
8335 bool getLayoutCompatible() const {
8336 return layoutCompatible;
8337 }
8338
8339 bool getMustBeNull() const {
8340 return mustBeNull;
8341 }
8342
8343
8344
8345 static bool classof(const Attr *A) { return A->getKind() == attr::TypeTagForDatatype; }
8346};
8347
8348class TypeVisibilityAttr : public InheritableAttr {
8349public:
8350 enum VisibilityType {
8351 Default,
8352 Hidden,
8353 Protected
8354 };
8355private:
8356 VisibilityType visibility;
8357
8358public:
8359 static TypeVisibilityAttr *CreateImplicit(ASTContext &Ctx, VisibilityType Visibility, SourceRange Loc = SourceRange()) {
8360 auto *A = new (Ctx) TypeVisibilityAttr(Loc, Ctx, Visibility, 0);
8361 A->setImplicit(true);
8362 return A;
8363 }
8364
8365 TypeVisibilityAttr(SourceRange R, ASTContext &Ctx
8366 , VisibilityType Visibility
8367 , unsigned SI
8368 )
8369 : InheritableAttr(attr::TypeVisibility, R, SI, false, false)
8370 , visibility(Visibility)
8371 {
8372 }
8373
8374 TypeVisibilityAttr *clone(ASTContext &C) const;
8375 void printPretty(raw_ostream &OS,
8376 const PrintingPolicy &Policy) const;
8377 const char *getSpelling() const;
8378 VisibilityType getVisibility() const {
8379 return visibility;
8380 }
8381
8382 static bool ConvertStrToVisibilityType(StringRef Val, VisibilityType &Out) {
8383 Optional<VisibilityType> R = llvm::StringSwitch<Optional<VisibilityType>>(Val)
8384 .Case("default", TypeVisibilityAttr::Default)
8385 .Case("hidden", TypeVisibilityAttr::Hidden)
8386 .Case("internal", TypeVisibilityAttr::Hidden)
8387 .Case("protected", TypeVisibilityAttr::Protected)
8388 .Default(Optional<VisibilityType>());
8389 if (R) {
8390 Out = *R;
8391 return true;
8392 }
8393 return false;
8394 }
8395
8396 static const char *ConvertVisibilityTypeToStr(VisibilityType Val) {
8397 switch(Val) {
8398 case TypeVisibilityAttr::Default: return "default";
8399 case TypeVisibilityAttr::Hidden: return "hidden";
8400 case TypeVisibilityAttr::Protected: return "protected";
8401 }
8402 llvm_unreachable("No enumerator with that value")::llvm::llvm_unreachable_internal("No enumerator with that value"
, "/build/llvm-toolchain-snapshot-7~svn338205/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 8402)
;
8403 }
8404
8405
8406 static bool classof(const Attr *A) { return A->getKind() == attr::TypeVisibility; }
8407};
8408
8409class UnavailableAttr : public InheritableAttr {
8410unsigned messageLength;
8411char *message;
8412
8413public:
8414 enum ImplicitReason {
8415 IR_None,
8416 IR_ARCForbiddenType,
8417 IR_ForbiddenWeak,
8418 IR_ARCForbiddenConversion,
8419 IR_ARCInitReturnsUnrelated,
8420 IR_ARCFieldWithOwnership
8421 };
8422private:
8423 ImplicitReason implicitReason;
8424
8425public:
8426 static UnavailableAttr *CreateImplicit(ASTContext &Ctx, llvm::StringRef Message, ImplicitReason ImplicitReason, SourceRange Loc = SourceRange()) {
8427 auto *A = new (Ctx) UnavailableAttr(Loc, Ctx, Message, ImplicitReason, 0);
8428 A->setImplicit(true);
8429 return A;
8430 }
8431
8432 static UnavailableAttr *CreateImplicit(ASTContext &Ctx, llvm::StringRef Message, SourceRange Loc = SourceRange()) {
8433 auto *A = new (Ctx) UnavailableAttr(Loc, Ctx, Message, 0);
8434 A->setImplicit(true);
8435 return A;
8436 }
8437
8438 UnavailableAttr(SourceRange R, ASTContext &Ctx
8439 , llvm::StringRef Message
8440 , ImplicitReason ImplicitReason
8441 , unsigned SI
8442 )
8443 : InheritableAttr(attr::Unavailable, R, SI, false, false)
8444 , messageLength(Message.size()),message(new (Ctx, 1) char[messageLength])
8445 , implicitReason(ImplicitReason)
8446 {
8447 if (!Message.empty())
8448 std::memcpy(message, Message.data(), messageLength);
8449 }
8450
8451 UnavailableAttr(SourceRange R, ASTContext &Ctx
8452 , llvm::StringRef Message
8453 , unsigned SI
8454 )
8455 : InheritableAttr(attr::Unavailable, R, SI, false, false)
8456 , messageLength(Message.size()),message(new (Ctx, 1) char[messageLength])
8457 , implicitReason(ImplicitReason(0))
8458 {
8459 if (!Message.empty())
8460 std::memcpy(message, Message.data(), messageLength);
8461 }
8462
8463 UnavailableAttr(SourceRange R, ASTContext &Ctx
8464 , unsigned SI
8465 )
8466 : InheritableAttr(attr::Unavailable, R, SI, false, false)
8467 , messageLength(0),message(nullptr)
8468 , implicitReason(ImplicitReason(0))
8469 {
8470 }
8471
8472 UnavailableAttr *clone(ASTContext &C) const;
8473 void printPretty(raw_ostream &OS,
8474 const PrintingPolicy &Policy) const;
8475 const char *getSpelling() const;
8476 llvm::StringRef getMessage() const {
8477 return llvm::StringRef(message, messageLength);
8478 }
8479 unsigned getMessageLength() const {
8480 return messageLength;
8481 }
8482 void setMessage(ASTContext &C, llvm::StringRef S) {
8483 messageLength = S.size();
8484 this->message = new (C, 1) char [messageLength];
8485 if (!S.empty())
8486 std::memcpy(this->message, S.data(), messageLength);
8487 }
8488
8489 ImplicitReason getImplicitReason() const {
8490 return implicitReason;
8491 }
8492
8493
8494
8495 static bool classof(const Attr *A) { return A->getKind() == attr::Unavailable; }
8496};
8497
8498class UnusedAttr : public InheritableAttr {
8499public:
8500 enum Spelling {
8501 CXX11_maybe_unused = 0,
8502 GNU_unused = 1,
8503 CXX11_gnu_unused = 2,
8504 C2x_maybe_unused = 3
8505 };
8506
8507 static UnusedAttr *CreateImplicit(ASTContext &Ctx, Spelling S, SourceRange Loc = SourceRange()) {
8508 auto *A = new (Ctx) UnusedAttr(Loc, Ctx, S);
8509 A->setImplicit(true);
8510 return A;
8511 }
8512
8513 UnusedAttr(SourceRange R, ASTContext &Ctx
8514 , unsigned SI
8515 )
8516 : InheritableAttr(attr::Unused, R, SI, false, false)
8517 {
8518 }
8519
8520 UnusedAttr *clone(ASTContext &C) const;
8521 void printPretty(raw_ostream &OS,
8522 const PrintingPolicy &Policy) const;
8523 const char *getSpelling() const;
8524 Spelling getSemanticSpelling() const {
8525 switch (SpellingListIndex) {
8526 default: llvm_unreachable("Unknown spelling list index")::llvm::llvm_unreachable_internal("Unknown spelling list index"
, "/build/llvm-toolchain-snapshot-7~svn338205/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 8526)
;
8527 case 0: return CXX11_maybe_unused;
8528 case 1: return GNU_unused;
8529 case 2: return CXX11_gnu_unused;
8530 case 3: return C2x_maybe_unused;
8531 }
8532 }
8533
8534
8535 static bool classof(const Attr *A) { return A->getKind() == attr::Unused; }
8536};
8537
8538class UsedAttr : public InheritableAttr {
8539public:
8540 static UsedAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
8541 auto *A = new (Ctx) UsedAttr(Loc, Ctx, 0);
8542 A->setImplicit(true);
8543 return A;
8544 }
8545
8546 UsedAttr(SourceRange R, ASTContext &Ctx
8547 , unsigned SI
8548 )
8549 : InheritableAttr(attr::Used, R, SI, false, false)
8550 {
8551 }
8552
8553 UsedAttr *clone(ASTContext &C) const;
8554 void printPretty(raw_ostream &OS,
8555 const PrintingPolicy &Policy) const;
8556 const char *getSpelling() const;
8557
8558
8559 static bool classof(const Attr *A) { return A->getKind() == attr::Used; }
8560};
8561
8562class UuidAttr : public InheritableAttr {
8563unsigned guidLength;
8564char *guid;
8565
8566public:
8567 static UuidAttr *CreateImplicit(ASTContext &Ctx, llvm::StringRef Guid, SourceRange Loc = SourceRange()) {
8568 auto *A = new (Ctx) UuidAttr(Loc, Ctx, Guid, 0);
8569 A->setImplicit(true);
8570 return A;
8571 }
8572
8573 UuidAttr(SourceRange R, ASTContext &Ctx
8574 , llvm::StringRef Guid
8575 , unsigned SI
8576 )
8577 : InheritableAttr(attr::Uuid, R, SI, false, false)
8578 , guidLength(Guid.size()),guid(new (Ctx, 1) char[guidLength])
8579 {
8580 if (!Guid.empty())
8581 std::memcpy(guid, Guid.data(), guidLength);
8582 }
8583
8584 UuidAttr *clone(ASTContext &C) const;
8585 void printPretty(raw_ostream &OS,
8586 const PrintingPolicy &Policy) const;
8587 const char *getSpelling() const;
8588 llvm::StringRef getGuid() const {
8589 return llvm::StringRef(guid, guidLength);
8590 }
8591 unsigned getGuidLength() const {
8592 return guidLength;
8593 }
8594 void setGuid(ASTContext &C, llvm::StringRef S) {
8595 guidLength = S.size();
8596 this->guid = new (C, 1) char [guidLength];
8597 if (!S.empty())
8598 std::memcpy(this->guid, S.data(), guidLength);
8599 }
8600
8601
8602
8603 static bool classof(const Attr *A) { return A->getKind() == attr::Uuid; }
8604};
8605
8606class VecReturnAttr : public InheritableAttr {
8607public:
8608 static VecReturnAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
8609 auto *A = new (Ctx) VecReturnAttr(Loc, Ctx, 0);
8610 A->setImplicit(true);
8611 return A;
8612 }
8613
8614 VecReturnAttr(SourceRange R, ASTContext &Ctx
8615 , unsigned SI
8616 )
8617 : InheritableAttr(attr::VecReturn, R, SI, false, false)
8618 {
8619 }
8620
8621 VecReturnAttr *clone(ASTContext &C) const;
8622 void printPretty(raw_ostream &OS,
8623 const PrintingPolicy &Policy) const;
8624 const char *getSpelling() const;
8625
8626
8627 static bool classof(const Attr *A) { return A->getKind() == attr::VecReturn; }
8628};
8629
8630class VecTypeHintAttr : public InheritableAttr {
8631TypeSourceInfo * typeHint;
8632
8633public:
8634 static VecTypeHintAttr *CreateImplicit(ASTContext &Ctx, TypeSourceInfo * TypeHint, SourceRange Loc = SourceRange()) {
8635 auto *A = new (Ctx) VecTypeHintAttr(Loc, Ctx, TypeHint, 0);
8636 A->setImplicit(true);
8637 return A;
8638 }
8639
8640 VecTypeHintAttr(SourceRange R, ASTContext &Ctx
8641 , TypeSourceInfo * TypeHint
8642 , unsigned SI
8643 )
8644 : InheritableAttr(attr::VecTypeHint, R, SI, false, false)
8645 , typeHint(TypeHint)
8646 {
8647 }
8648
8649 VecTypeHintAttr *clone(ASTContext &C) const;
8650 void printPretty(raw_ostream &OS,
8651 const PrintingPolicy &Policy) const;
8652 const char *getSpelling() const;
8653 QualType getTypeHint() const {
8654 return typeHint->getType();
8655 } TypeSourceInfo * getTypeHintLoc() const {
8656 return typeHint;
8657 }
8658
8659
8660
8661 static bool classof(const Attr *A) { return A->getKind() == attr::VecTypeHint; }
8662};
8663
8664class VectorCallAttr : public InheritableAttr {
8665public:
8666 static VectorCallAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
8667 auto *A = new (Ctx) VectorCallAttr(Loc, Ctx, 0);
8668 A->setImplicit(true);
8669 return A;
8670 }
8671
8672 VectorCallAttr(SourceRange R, ASTContext &Ctx
8673 , unsigned SI
8674 )
8675 : InheritableAttr(attr::VectorCall, R, SI, false, false)
8676 {
8677 }
8678
8679 VectorCallAttr *clone(ASTContext &C) const;
8680 void printPretty(raw_ostream &OS,
8681 const PrintingPolicy &Policy) const;
8682 const char *getSpelling() const;
8683
8684
8685 static bool classof(const Attr *A) { return A->getKind() == attr::VectorCall; }
8686};
8687
8688class VisibilityAttr : public InheritableAttr {
8689public:
8690 enum VisibilityType {
8691 Default,
8692 Hidden,
8693 Protected
8694 };
8695private:
8696 VisibilityType visibility;
8697
8698public:
8699 static VisibilityAttr *CreateImplicit(ASTContext &Ctx, VisibilityType Visibility, SourceRange Loc = SourceRange()) {
8700 auto *A = new (Ctx) VisibilityAttr(Loc, Ctx, Visibility, 0);
8701 A->setImplicit(true);
8702 return A;
8703 }
8704
8705 VisibilityAttr(SourceRange R, ASTContext &Ctx
8706 , VisibilityType Visibility
8707 , unsigned SI
8708 )
8709 : InheritableAttr(attr::Visibility, R, SI, false, false)
8710 , visibility(Visibility)
8711 {
8712 }
8713
8714 VisibilityAttr *clone(ASTContext &C) const;
8715 void printPretty(raw_ostream &OS,
8716 const PrintingPolicy &Policy) const;
8717 const char *getSpelling() const;
8718 VisibilityType getVisibility() const {
8719 return visibility;
8720 }
8721
8722 static bool ConvertStrToVisibilityType(StringRef Val, VisibilityType &Out) {
8723 Optional<VisibilityType> R = llvm::StringSwitch<Optional<VisibilityType>>(Val)
8724 .Case("default", VisibilityAttr::Default)
8725 .Case("hidden", VisibilityAttr::Hidden)
8726 .Case("internal", VisibilityAttr::Hidden)
8727 .Case("protected", VisibilityAttr::Protected)
8728 .Default(Optional<VisibilityType>());
8729 if (R) {
8730 Out = *R;
8731 return true;
8732 }
8733 return false;
8734 }
8735
8736 static const char *ConvertVisibilityTypeToStr(VisibilityType Val) {
8737 switch(Val) {
8738 case VisibilityAttr::Default: return "default";
8739 case VisibilityAttr::Hidden: return "hidden";
8740 case VisibilityAttr::Protected: return "protected";
8741 }
8742 llvm_unreachable("No enumerator with that value")::llvm::llvm_unreachable_internal("No enumerator with that value"
, "/build/llvm-toolchain-snapshot-7~svn338205/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 8742)
;
8743 }
8744
8745
8746 static bool classof(const Attr *A) { return A->getKind() == attr::Visibility; }
8747};
8748
8749class WarnUnusedAttr : public InheritableAttr {
8750public:
8751 static WarnUnusedAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
8752 auto *A = new (Ctx) WarnUnusedAttr(Loc, Ctx, 0);
8753 A->setImplicit(true);
8754 return A;
8755 }
8756
8757 WarnUnusedAttr(SourceRange R, ASTContext &Ctx
8758 , unsigned SI
8759 )
8760 : InheritableAttr(attr::WarnUnused, R, SI, false, false)
8761 {
8762 }
8763
8764 WarnUnusedAttr *clone(ASTContext &C) const;
8765 void printPretty(raw_ostream &OS,
8766 const PrintingPolicy &Policy) const;
8767 const char *getSpelling() const;
8768
8769
8770 static bool classof(const Attr *A) { return A->getKind() == attr::WarnUnused; }
8771};
8772
8773class WarnUnusedResultAttr : public InheritableAttr {
8774public:
8775 enum Spelling {
8776 CXX11_nodiscard = 0,
8777 C2x_nodiscard = 1,
8778 CXX11_clang_warn_unused_result = 2,
8779 GNU_warn_unused_result = 3,
8780 CXX11_gnu_warn_unused_result = 4
8781 };
8782
8783 static WarnUnusedResultAttr *CreateImplicit(ASTContext &Ctx, Spelling S, SourceRange Loc = SourceRange()) {
8784 auto *A = new (Ctx) WarnUnusedResultAttr(Loc, Ctx, S);
8785 A->setImplicit(true);
8786 return A;
8787 }
8788
8789 WarnUnusedResultAttr(SourceRange R, ASTContext &Ctx
8790 , unsigned SI
8791 )
8792 : InheritableAttr(attr::WarnUnusedResult, R, SI, false, false)
8793 {
8794 }
8795
8796 WarnUnusedResultAttr *clone(ASTContext &C) const;
8797 void printPretty(raw_ostream &OS,
8798 const PrintingPolicy &Policy) const;
8799 const char *getSpelling() const;
8800 Spelling getSemanticSpelling() const {
8801 switch (SpellingListIndex) {
8802 default: llvm_unreachable("Unknown spelling list index")::llvm::llvm_unreachable_internal("Unknown spelling list index"
, "/build/llvm-toolchain-snapshot-7~svn338205/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 8802)
;
8803 case 0: return CXX11_nodiscard;
8804 case 1: return C2x_nodiscard;
8805 case 2: return CXX11_clang_warn_unused_result;
8806 case 3: return GNU_warn_unused_result;
8807 case 4: return CXX11_gnu_warn_unused_result;
8808 }
8809 }
8810
8811
8812 static bool classof(const Attr *A) { return A->getKind() == attr::WarnUnusedResult; }
8813};
8814
8815class WeakAttr : public InheritableAttr {
8816public:
8817 static WeakAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
8818 auto *A = new (Ctx) WeakAttr(Loc, Ctx, 0);
8819 A->setImplicit(true);
8820 return A;
8821 }
8822
8823 WeakAttr(SourceRange R, ASTContext &Ctx
8824 , unsigned SI
8825 )
8826 : InheritableAttr(attr::Weak, R, SI, false, false)
8827 {
8828 }
8829
8830 WeakAttr *clone(ASTContext &C) const;
8831 void printPretty(raw_ostream &OS,
8832 const PrintingPolicy &Policy) const;
8833 const char *getSpelling() const;
8834
8835
8836 static bool classof(const Attr *A) { return A->getKind() == attr::Weak; }
8837};
8838
8839class WeakImportAttr : public InheritableAttr {
8840public:
8841 static WeakImportAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
8842 auto *A = new (Ctx) WeakImportAttr(Loc, Ctx, 0);
8843 A->setImplicit(true);
8844 return A;
8845 }
8846
8847 WeakImportAttr(SourceRange R, ASTContext &Ctx
8848 , unsigned SI
8849 )
8850 : InheritableAttr(attr::WeakImport, R, SI, false, false)
8851 {
8852 }
8853
8854 WeakImportAttr *clone(ASTContext &C) const;
8855 void printPretty(raw_ostream &OS,
8856 const PrintingPolicy &Policy) const;
8857 const char *getSpelling() const;
8858
8859
8860 static bool classof(const Attr *A) { return A->getKind() == attr::WeakImport; }
8861};
8862
8863class WeakRefAttr : public InheritableAttr {
8864unsigned aliaseeLength;
8865char *aliasee;
8866
8867public:
8868 static WeakRefAttr *CreateImplicit(ASTContext &Ctx, llvm::StringRef Aliasee, SourceRange Loc = SourceRange()) {
8869 auto *A = new (Ctx) WeakRefAttr(Loc, Ctx, Aliasee, 0);
8870 A->setImplicit(true);
8871 return A;
8872 }
8873
8874 WeakRefAttr(SourceRange R, ASTContext &Ctx
8875 , llvm::StringRef Aliasee
8876 , unsigned SI
8877 )
8878 : InheritableAttr(attr::WeakRef, R, SI, false, false)
8879 , aliaseeLength(Aliasee.size()),aliasee(new (Ctx, 1) char[aliaseeLength])
8880 {
8881 if (!Aliasee.empty())
8882 std::memcpy(aliasee, Aliasee.data(), aliaseeLength);
8883 }
8884
8885 WeakRefAttr(SourceRange R, ASTContext &Ctx
8886 , unsigned SI
8887 )
8888 : InheritableAttr(attr::WeakRef, R, SI, false, false)
8889 , aliaseeLength(0),aliasee(nullptr)
8890 {
8891 }
8892
8893 WeakRefAttr *clone(ASTContext &C) const;
8894 void printPretty(raw_ostream &OS,
8895 const PrintingPolicy &Policy) const;
8896 const char *getSpelling() const;
8897 llvm::StringRef getAliasee() const {
8898 return llvm::StringRef(aliasee, aliaseeLength);
8899 }
8900 unsigned getAliaseeLength() const {
8901 return aliaseeLength;
8902 }
8903 void setAliasee(ASTContext &C, llvm::StringRef S) {
8904 aliaseeLength = S.size();
8905 this->aliasee = new (C, 1) char [aliaseeLength];
8906 if (!S.empty())
8907 std::memcpy(this->aliasee, S.data(), aliaseeLength);
8908 }
8909
8910
8911
8912 static bool classof(const Attr *A) { return A->getKind() == attr::WeakRef; }
8913};
8914
8915class WorkGroupSizeHintAttr : public InheritableAttr {
8916unsigned xDim;
8917
8918unsigned yDim;
8919
8920unsigned zDim;
8921
8922public:
8923 static WorkGroupSizeHintAttr *CreateImplicit(ASTContext &Ctx, unsigned XDim, unsigned YDim, unsigned ZDim, SourceRange Loc = SourceRange()) {
8924 auto *A = new (Ctx) WorkGroupSizeHintAttr(Loc, Ctx, XDim, YDim, ZDim, 0);
8925 A->setImplicit(true);
8926 return A;
8927 }
8928
8929 WorkGroupSizeHintAttr(SourceRange R, ASTContext &Ctx
8930 , unsigned XDim
8931 , unsigned YDim
8932 , unsigned ZDim
8933 , unsigned SI
8934 )
8935 : InheritableAttr(attr::WorkGroupSizeHint, R, SI, false, false)
8936 , xDim(XDim)
8937 , yDim(YDim)
8938 , zDim(ZDim)
8939 {
8940 }
8941
8942 WorkGroupSizeHintAttr *clone(ASTContext &C) const;
8943 void printPretty(raw_ostream &OS,
8944 const PrintingPolicy &Policy) const;
8945 const char *getSpelling() const;
8946 unsigned getXDim() const {
8947 return xDim;
8948 }
8949
8950 unsigned getYDim() const {
8951 return yDim;
8952 }
8953
8954 unsigned getZDim() const {
8955 return zDim;
8956 }
8957
8958
8959
8960 static bool classof(const Attr *A) { return A->getKind() == attr::WorkGroupSizeHint; }
8961};
8962
8963class X86ForceAlignArgPointerAttr : public InheritableAttr {
8964public:
8965 static X86ForceAlignArgPointerAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
8966 auto *A = new (Ctx) X86ForceAlignArgPointerAttr(Loc, Ctx, 0);
8967 A->setImplicit(true);
8968 return A;
8969 }
8970
8971 X86ForceAlignArgPointerAttr(SourceRange R, ASTContext &Ctx
8972 , unsigned SI
8973 )
8974 : InheritableAttr(attr::X86ForceAlignArgPointer, R, SI, false, false)
8975 {
8976 }
8977
8978 X86ForceAlignArgPointerAttr *clone(ASTContext &C) const;
8979 void printPretty(raw_ostream &OS,
8980 const PrintingPolicy &Policy) const;
8981 const char *getSpelling() const;
8982
8983
8984 static bool classof(const Attr *A) { return A->getKind() == attr::X86ForceAlignArgPointer; }
8985};
8986
8987class XRayInstrumentAttr : public InheritableAttr {
8988public:
8989 enum Spelling {
8990 GNU_xray_always_instrument = 0,
8991 CXX11_clang_xray_always_instrument = 1,
8992 C2x_clang_xray_always_instrument = 2,
8993 GNU_xray_never_instrument = 3,
8994 CXX11_clang_xray_never_instrument = 4,
8995 C2x_clang_xray_never_instrument = 5
8996 };
8997
8998 static XRayInstrumentAttr *CreateImplicit(ASTContext &Ctx, Spelling S, SourceRange Loc = SourceRange()) {
8999 auto *A = new (Ctx) XRayInstrumentAttr(Loc, Ctx, S);
9000 A->setImplicit(true);
9001 return A;
9002 }
9003
9004 XRayInstrumentAttr(SourceRange R, ASTContext &Ctx
9005 , unsigned SI
9006 )
9007 : InheritableAttr(attr::XRayInstrument, R, SI, false, false)
9008 {
9009 }
9010
9011 XRayInstrumentAttr *clone(ASTContext &C) const;
9012 void printPretty(raw_ostream &OS,
9013 const PrintingPolicy &Policy) const;
9014 const char *getSpelling() const;
9015 Spelling getSemanticSpelling() const {
9016 switch (SpellingListIndex) {
9017 default: llvm_unreachable("Unknown spelling list index")::llvm::llvm_unreachable_internal("Unknown spelling list index"
, "/build/llvm-toolchain-snapshot-7~svn338205/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 9017)
;
9018 case 0: return GNU_xray_always_instrument;
9019 case 1: return CXX11_clang_xray_always_instrument;
9020 case 2: return C2x_clang_xray_always_instrument;
9021 case 3: return GNU_xray_never_instrument;
9022 case 4: return CXX11_clang_xray_never_instrument;
9023 case 5: return C2x_clang_xray_never_instrument;
9024 }
9025 }
9026 bool alwaysXRayInstrument() const { return SpellingListIndex == 0 ||
9027 SpellingListIndex == 1 ||
9028 SpellingListIndex == 2; }
9029 bool neverXRayInstrument() const { return SpellingListIndex == 3 ||
9030 SpellingListIndex == 4 ||
9031 SpellingListIndex == 5; }
9032
9033
9034 static bool classof(const Attr *A) { return A->getKind() == attr::XRayInstrument; }
9035};
9036
9037class XRayLogArgsAttr : public InheritableAttr {
9038unsigned argumentCount;
9039
9040public:
9041 static XRayLogArgsAttr *CreateImplicit(ASTContext &Ctx, unsigned ArgumentCount, SourceRange Loc = SourceRange()) {
9042 auto *A = new (Ctx) XRayLogArgsAttr(Loc, Ctx, ArgumentCount, 0);
9043 A->setImplicit(true);
9044 return A;
9045 }
9046
9047 XRayLogArgsAttr(SourceRange R, ASTContext &Ctx
9048 , unsigned ArgumentCount
9049 , unsigned SI
9050 )
9051 : InheritableAttr(attr::XRayLogArgs, R, SI, false, false)
9052 , argumentCount(ArgumentCount)
9053 {
9054 }
9055
9056 XRayLogArgsAttr *clone(ASTContext &C) const;
9057 void printPretty(raw_ostream &OS,
9058 const PrintingPolicy &Policy) const;
9059 const char *getSpelling() const;
9060 unsigned getArgumentCount() const {
9061 return argumentCount;
9062 }
9063
9064
9065
9066 static bool classof(const Attr *A) { return A->getKind() == attr::XRayLogArgs; }
9067};
9068
9069#endif // LLVM_CLANG_ATTR_CLASSES_INC