| File: | build/source/clang/lib/Sema/SemaExpr.cpp |
| Warning: | line 4855, column 7 Called C++ object pointer is null |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | //===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===// | |||
| 2 | // | |||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | |||
| 4 | // See https://llvm.org/LICENSE.txt for license information. | |||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | |||
| 6 | // | |||
| 7 | //===----------------------------------------------------------------------===// | |||
| 8 | // | |||
| 9 | // This file implements semantic analysis for expressions. | |||
| 10 | // | |||
| 11 | //===----------------------------------------------------------------------===// | |||
| 12 | ||||
| 13 | #include "TreeTransform.h" | |||
| 14 | #include "UsedDeclVisitor.h" | |||
| 15 | #include "clang/AST/ASTConsumer.h" | |||
| 16 | #include "clang/AST/ASTContext.h" | |||
| 17 | #include "clang/AST/ASTLambda.h" | |||
| 18 | #include "clang/AST/ASTMutationListener.h" | |||
| 19 | #include "clang/AST/CXXInheritance.h" | |||
| 20 | #include "clang/AST/DeclObjC.h" | |||
| 21 | #include "clang/AST/DeclTemplate.h" | |||
| 22 | #include "clang/AST/EvaluatedExprVisitor.h" | |||
| 23 | #include "clang/AST/Expr.h" | |||
| 24 | #include "clang/AST/ExprCXX.h" | |||
| 25 | #include "clang/AST/ExprObjC.h" | |||
| 26 | #include "clang/AST/ExprOpenMP.h" | |||
| 27 | #include "clang/AST/OperationKinds.h" | |||
| 28 | #include "clang/AST/ParentMapContext.h" | |||
| 29 | #include "clang/AST/RecursiveASTVisitor.h" | |||
| 30 | #include "clang/AST/Type.h" | |||
| 31 | #include "clang/AST/TypeLoc.h" | |||
| 32 | #include "clang/Basic/Builtins.h" | |||
| 33 | #include "clang/Basic/DiagnosticSema.h" | |||
| 34 | #include "clang/Basic/PartialDiagnostic.h" | |||
| 35 | #include "clang/Basic/SourceManager.h" | |||
| 36 | #include "clang/Basic/Specifiers.h" | |||
| 37 | #include "clang/Basic/TargetInfo.h" | |||
| 38 | #include "clang/Lex/LiteralSupport.h" | |||
| 39 | #include "clang/Lex/Preprocessor.h" | |||
| 40 | #include "clang/Sema/AnalysisBasedWarnings.h" | |||
| 41 | #include "clang/Sema/DeclSpec.h" | |||
| 42 | #include "clang/Sema/DelayedDiagnostic.h" | |||
| 43 | #include "clang/Sema/Designator.h" | |||
| 44 | #include "clang/Sema/EnterExpressionEvaluationContext.h" | |||
| 45 | #include "clang/Sema/Initialization.h" | |||
| 46 | #include "clang/Sema/Lookup.h" | |||
| 47 | #include "clang/Sema/Overload.h" | |||
| 48 | #include "clang/Sema/ParsedTemplate.h" | |||
| 49 | #include "clang/Sema/Scope.h" | |||
| 50 | #include "clang/Sema/ScopeInfo.h" | |||
| 51 | #include "clang/Sema/SemaFixItUtils.h" | |||
| 52 | #include "clang/Sema/SemaInternal.h" | |||
| 53 | #include "clang/Sema/Template.h" | |||
| 54 | #include "llvm/ADT/STLExtras.h" | |||
| 55 | #include "llvm/ADT/StringExtras.h" | |||
| 56 | #include "llvm/Support/Casting.h" | |||
| 57 | #include "llvm/Support/ConvertUTF.h" | |||
| 58 | #include "llvm/Support/SaveAndRestore.h" | |||
| 59 | #include "llvm/Support/TypeSize.h" | |||
| 60 | #include <optional> | |||
| 61 | ||||
| 62 | using namespace clang; | |||
| 63 | using namespace sema; | |||
| 64 | ||||
| 65 | /// Determine whether the use of this declaration is valid, without | |||
| 66 | /// emitting diagnostics. | |||
| 67 | bool Sema::CanUseDecl(NamedDecl *D, bool TreatUnavailableAsInvalid) { | |||
| 68 | // See if this is an auto-typed variable whose initializer we are parsing. | |||
| 69 | if (ParsingInitForAutoVars.count(D)) | |||
| 70 | return false; | |||
| 71 | ||||
| 72 | // See if this is a deleted function. | |||
| 73 | if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { | |||
| 74 | if (FD->isDeleted()) | |||
| 75 | return false; | |||
| 76 | ||||
| 77 | // If the function has a deduced return type, and we can't deduce it, | |||
| 78 | // then we can't use it either. | |||
| 79 | if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() && | |||
| 80 | DeduceReturnType(FD, SourceLocation(), /*Diagnose*/ false)) | |||
| 81 | return false; | |||
| 82 | ||||
| 83 | // See if this is an aligned allocation/deallocation function that is | |||
| 84 | // unavailable. | |||
| 85 | if (TreatUnavailableAsInvalid && | |||
| 86 | isUnavailableAlignedAllocationFunction(*FD)) | |||
| 87 | return false; | |||
| 88 | } | |||
| 89 | ||||
| 90 | // See if this function is unavailable. | |||
| 91 | if (TreatUnavailableAsInvalid && D->getAvailability() == AR_Unavailable && | |||
| 92 | cast<Decl>(CurContext)->getAvailability() != AR_Unavailable) | |||
| 93 | return false; | |||
| 94 | ||||
| 95 | if (isa<UnresolvedUsingIfExistsDecl>(D)) | |||
| 96 | return false; | |||
| 97 | ||||
| 98 | return true; | |||
| 99 | } | |||
| 100 | ||||
| 101 | static void DiagnoseUnusedOfDecl(Sema &S, NamedDecl *D, SourceLocation Loc) { | |||
| 102 | // Warn if this is used but marked unused. | |||
| 103 | if (const auto *A = D->getAttr<UnusedAttr>()) { | |||
| 104 | // [[maybe_unused]] should not diagnose uses, but __attribute__((unused)) | |||
| 105 | // should diagnose them. | |||
| 106 | if (A->getSemanticSpelling() != UnusedAttr::CXX11_maybe_unused && | |||
| 107 | A->getSemanticSpelling() != UnusedAttr::C2x_maybe_unused) { | |||
| 108 | const Decl *DC = cast_or_null<Decl>(S.getCurObjCLexicalContext()); | |||
| 109 | if (DC && !DC->hasAttr<UnusedAttr>()) | |||
| 110 | S.Diag(Loc, diag::warn_used_but_marked_unused) << D; | |||
| 111 | } | |||
| 112 | } | |||
| 113 | } | |||
| 114 | ||||
| 115 | /// Emit a note explaining that this function is deleted. | |||
| 116 | void Sema::NoteDeletedFunction(FunctionDecl *Decl) { | |||
| 117 | assert(Decl && Decl->isDeleted())(static_cast <bool> (Decl && Decl->isDeleted ()) ? void (0) : __assert_fail ("Decl && Decl->isDeleted()" , "clang/lib/Sema/SemaExpr.cpp", 117, __extension__ __PRETTY_FUNCTION__ )); | |||
| 118 | ||||
| 119 | if (Decl->isDefaulted()) { | |||
| 120 | // If the method was explicitly defaulted, point at that declaration. | |||
| 121 | if (!Decl->isImplicit()) | |||
| 122 | Diag(Decl->getLocation(), diag::note_implicitly_deleted); | |||
| 123 | ||||
| 124 | // Try to diagnose why this special member function was implicitly | |||
| 125 | // deleted. This might fail, if that reason no longer applies. | |||
| 126 | DiagnoseDeletedDefaultedFunction(Decl); | |||
| 127 | return; | |||
| 128 | } | |||
| 129 | ||||
| 130 | auto *Ctor = dyn_cast<CXXConstructorDecl>(Decl); | |||
| 131 | if (Ctor && Ctor->isInheritingConstructor()) | |||
| 132 | return NoteDeletedInheritingConstructor(Ctor); | |||
| 133 | ||||
| 134 | Diag(Decl->getLocation(), diag::note_availability_specified_here) | |||
| 135 | << Decl << 1; | |||
| 136 | } | |||
| 137 | ||||
| 138 | /// Determine whether a FunctionDecl was ever declared with an | |||
| 139 | /// explicit storage class. | |||
| 140 | static bool hasAnyExplicitStorageClass(const FunctionDecl *D) { | |||
| 141 | for (auto *I : D->redecls()) { | |||
| 142 | if (I->getStorageClass() != SC_None) | |||
| 143 | return true; | |||
| 144 | } | |||
| 145 | return false; | |||
| 146 | } | |||
| 147 | ||||
| 148 | /// Check whether we're in an extern inline function and referring to a | |||
| 149 | /// variable or function with internal linkage (C11 6.7.4p3). | |||
| 150 | /// | |||
| 151 | /// This is only a warning because we used to silently accept this code, but | |||
| 152 | /// in many cases it will not behave correctly. This is not enabled in C++ mode | |||
| 153 | /// because the restriction language is a bit weaker (C++11 [basic.def.odr]p6) | |||
| 154 | /// and so while there may still be user mistakes, most of the time we can't | |||
| 155 | /// prove that there are errors. | |||
| 156 | static void diagnoseUseOfInternalDeclInInlineFunction(Sema &S, | |||
| 157 | const NamedDecl *D, | |||
| 158 | SourceLocation Loc) { | |||
| 159 | // This is disabled under C++; there are too many ways for this to fire in | |||
| 160 | // contexts where the warning is a false positive, or where it is technically | |||
| 161 | // correct but benign. | |||
| 162 | if (S.getLangOpts().CPlusPlus) | |||
| 163 | return; | |||
| 164 | ||||
| 165 | // Check if this is an inlined function or method. | |||
| 166 | FunctionDecl *Current = S.getCurFunctionDecl(); | |||
| 167 | if (!Current) | |||
| 168 | return; | |||
| 169 | if (!Current->isInlined()) | |||
| 170 | return; | |||
| 171 | if (!Current->isExternallyVisible()) | |||
| 172 | return; | |||
| 173 | ||||
| 174 | // Check if the decl has internal linkage. | |||
| 175 | if (D->getFormalLinkage() != InternalLinkage) | |||
| 176 | return; | |||
| 177 | ||||
| 178 | // Downgrade from ExtWarn to Extension if | |||
| 179 | // (1) the supposedly external inline function is in the main file, | |||
| 180 | // and probably won't be included anywhere else. | |||
| 181 | // (2) the thing we're referencing is a pure function. | |||
| 182 | // (3) the thing we're referencing is another inline function. | |||
| 183 | // This last can give us false negatives, but it's better than warning on | |||
| 184 | // wrappers for simple C library functions. | |||
| 185 | const FunctionDecl *UsedFn = dyn_cast<FunctionDecl>(D); | |||
| 186 | bool DowngradeWarning = S.getSourceManager().isInMainFile(Loc); | |||
| 187 | if (!DowngradeWarning && UsedFn) | |||
| 188 | DowngradeWarning = UsedFn->isInlined() || UsedFn->hasAttr<ConstAttr>(); | |||
| 189 | ||||
| 190 | S.Diag(Loc, DowngradeWarning ? diag::ext_internal_in_extern_inline_quiet | |||
| 191 | : diag::ext_internal_in_extern_inline) | |||
| 192 | << /*IsVar=*/!UsedFn << D; | |||
| 193 | ||||
| 194 | S.MaybeSuggestAddingStaticToDecl(Current); | |||
| 195 | ||||
| 196 | S.Diag(D->getCanonicalDecl()->getLocation(), diag::note_entity_declared_at) | |||
| 197 | << D; | |||
| 198 | } | |||
| 199 | ||||
| 200 | void Sema::MaybeSuggestAddingStaticToDecl(const FunctionDecl *Cur) { | |||
| 201 | const FunctionDecl *First = Cur->getFirstDecl(); | |||
| 202 | ||||
| 203 | // Suggest "static" on the function, if possible. | |||
| 204 | if (!hasAnyExplicitStorageClass(First)) { | |||
| 205 | SourceLocation DeclBegin = First->getSourceRange().getBegin(); | |||
| 206 | Diag(DeclBegin, diag::note_convert_inline_to_static) | |||
| 207 | << Cur << FixItHint::CreateInsertion(DeclBegin, "static "); | |||
| 208 | } | |||
| 209 | } | |||
| 210 | ||||
| 211 | /// Determine whether the use of this declaration is valid, and | |||
| 212 | /// emit any corresponding diagnostics. | |||
| 213 | /// | |||
| 214 | /// This routine diagnoses various problems with referencing | |||
| 215 | /// declarations that can occur when using a declaration. For example, | |||
| 216 | /// it might warn if a deprecated or unavailable declaration is being | |||
| 217 | /// used, or produce an error (and return true) if a C++0x deleted | |||
| 218 | /// function is being used. | |||
| 219 | /// | |||
| 220 | /// \returns true if there was an error (this declaration cannot be | |||
| 221 | /// referenced), false otherwise. | |||
| 222 | /// | |||
| 223 | bool Sema::DiagnoseUseOfDecl(NamedDecl *D, ArrayRef<SourceLocation> Locs, | |||
| 224 | const ObjCInterfaceDecl *UnknownObjCClass, | |||
| 225 | bool ObjCPropertyAccess, | |||
| 226 | bool AvoidPartialAvailabilityChecks, | |||
| 227 | ObjCInterfaceDecl *ClassReceiver, | |||
| 228 | bool SkipTrailingRequiresClause) { | |||
| 229 | SourceLocation Loc = Locs.front(); | |||
| 230 | if (getLangOpts().CPlusPlus && isa<FunctionDecl>(D)) { | |||
| 231 | // If there were any diagnostics suppressed by template argument deduction, | |||
| 232 | // emit them now. | |||
| 233 | auto Pos = SuppressedDiagnostics.find(D->getCanonicalDecl()); | |||
| 234 | if (Pos != SuppressedDiagnostics.end()) { | |||
| 235 | for (const PartialDiagnosticAt &Suppressed : Pos->second) | |||
| 236 | Diag(Suppressed.first, Suppressed.second); | |||
| 237 | ||||
| 238 | // Clear out the list of suppressed diagnostics, so that we don't emit | |||
| 239 | // them again for this specialization. However, we don't obsolete this | |||
| 240 | // entry from the table, because we want to avoid ever emitting these | |||
| 241 | // diagnostics again. | |||
| 242 | Pos->second.clear(); | |||
| 243 | } | |||
| 244 | ||||
| 245 | // C++ [basic.start.main]p3: | |||
| 246 | // The function 'main' shall not be used within a program. | |||
| 247 | if (cast<FunctionDecl>(D)->isMain()) | |||
| 248 | Diag(Loc, diag::ext_main_used); | |||
| 249 | ||||
| 250 | diagnoseUnavailableAlignedAllocation(*cast<FunctionDecl>(D), Loc); | |||
| 251 | } | |||
| 252 | ||||
| 253 | // See if this is an auto-typed variable whose initializer we are parsing. | |||
| 254 | if (ParsingInitForAutoVars.count(D)) { | |||
| 255 | if (isa<BindingDecl>(D)) { | |||
| 256 | Diag(Loc, diag::err_binding_cannot_appear_in_own_initializer) | |||
| 257 | << D->getDeclName(); | |||
| 258 | } else { | |||
| 259 | Diag(Loc, diag::err_auto_variable_cannot_appear_in_own_initializer) | |||
| 260 | << D->getDeclName() << cast<VarDecl>(D)->getType(); | |||
| 261 | } | |||
| 262 | return true; | |||
| 263 | } | |||
| 264 | ||||
| 265 | if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { | |||
| 266 | // See if this is a deleted function. | |||
| 267 | if (FD->isDeleted()) { | |||
| 268 | auto *Ctor = dyn_cast<CXXConstructorDecl>(FD); | |||
| 269 | if (Ctor && Ctor->isInheritingConstructor()) | |||
| 270 | Diag(Loc, diag::err_deleted_inherited_ctor_use) | |||
| 271 | << Ctor->getParent() | |||
| 272 | << Ctor->getInheritedConstructor().getConstructor()->getParent(); | |||
| 273 | else | |||
| 274 | Diag(Loc, diag::err_deleted_function_use); | |||
| 275 | NoteDeletedFunction(FD); | |||
| 276 | return true; | |||
| 277 | } | |||
| 278 | ||||
| 279 | // [expr.prim.id]p4 | |||
| 280 | // A program that refers explicitly or implicitly to a function with a | |||
| 281 | // trailing requires-clause whose constraint-expression is not satisfied, | |||
| 282 | // other than to declare it, is ill-formed. [...] | |||
| 283 | // | |||
| 284 | // See if this is a function with constraints that need to be satisfied. | |||
| 285 | // Check this before deducing the return type, as it might instantiate the | |||
| 286 | // definition. | |||
| 287 | if (!SkipTrailingRequiresClause && FD->getTrailingRequiresClause()) { | |||
| 288 | ConstraintSatisfaction Satisfaction; | |||
| 289 | if (CheckFunctionConstraints(FD, Satisfaction, Loc, | |||
| 290 | /*ForOverloadResolution*/ true)) | |||
| 291 | // A diagnostic will have already been generated (non-constant | |||
| 292 | // constraint expression, for example) | |||
| 293 | return true; | |||
| 294 | if (!Satisfaction.IsSatisfied) { | |||
| 295 | Diag(Loc, | |||
| 296 | diag::err_reference_to_function_with_unsatisfied_constraints) | |||
| 297 | << D; | |||
| 298 | DiagnoseUnsatisfiedConstraint(Satisfaction); | |||
| 299 | return true; | |||
| 300 | } | |||
| 301 | } | |||
| 302 | ||||
| 303 | // If the function has a deduced return type, and we can't deduce it, | |||
| 304 | // then we can't use it either. | |||
| 305 | if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() && | |||
| 306 | DeduceReturnType(FD, Loc)) | |||
| 307 | return true; | |||
| 308 | ||||
| 309 | if (getLangOpts().CUDA && !CheckCUDACall(Loc, FD)) | |||
| 310 | return true; | |||
| 311 | ||||
| 312 | } | |||
| 313 | ||||
| 314 | if (auto *MD = dyn_cast<CXXMethodDecl>(D)) { | |||
| 315 | // Lambdas are only default-constructible or assignable in C++2a onwards. | |||
| 316 | if (MD->getParent()->isLambda() && | |||
| 317 | ((isa<CXXConstructorDecl>(MD) && | |||
| 318 | cast<CXXConstructorDecl>(MD)->isDefaultConstructor()) || | |||
| 319 | MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator())) { | |||
| 320 | Diag(Loc, diag::warn_cxx17_compat_lambda_def_ctor_assign) | |||
| 321 | << !isa<CXXConstructorDecl>(MD); | |||
| 322 | } | |||
| 323 | } | |||
| 324 | ||||
| 325 | auto getReferencedObjCProp = [](const NamedDecl *D) -> | |||
| 326 | const ObjCPropertyDecl * { | |||
| 327 | if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) | |||
| 328 | return MD->findPropertyDecl(); | |||
| 329 | return nullptr; | |||
| 330 | }; | |||
| 331 | if (const ObjCPropertyDecl *ObjCPDecl = getReferencedObjCProp(D)) { | |||
| 332 | if (diagnoseArgIndependentDiagnoseIfAttrs(ObjCPDecl, Loc)) | |||
| 333 | return true; | |||
| 334 | } else if (diagnoseArgIndependentDiagnoseIfAttrs(D, Loc)) { | |||
| 335 | return true; | |||
| 336 | } | |||
| 337 | ||||
| 338 | // [OpenMP 4.0], 2.15 declare reduction Directive, Restrictions | |||
| 339 | // Only the variables omp_in and omp_out are allowed in the combiner. | |||
| 340 | // Only the variables omp_priv and omp_orig are allowed in the | |||
| 341 | // initializer-clause. | |||
| 342 | auto *DRD = dyn_cast<OMPDeclareReductionDecl>(CurContext); | |||
| 343 | if (LangOpts.OpenMP && DRD && !CurContext->containsDecl(D) && | |||
| 344 | isa<VarDecl>(D)) { | |||
| 345 | Diag(Loc, diag::err_omp_wrong_var_in_declare_reduction) | |||
| 346 | << getCurFunction()->HasOMPDeclareReductionCombiner; | |||
| 347 | Diag(D->getLocation(), diag::note_entity_declared_at) << D; | |||
| 348 | return true; | |||
| 349 | } | |||
| 350 | ||||
| 351 | // [OpenMP 5.0], 2.19.7.3. declare mapper Directive, Restrictions | |||
| 352 | // List-items in map clauses on this construct may only refer to the declared | |||
| 353 | // variable var and entities that could be referenced by a procedure defined | |||
| 354 | // at the same location. | |||
| 355 | // [OpenMP 5.2] Also allow iterator declared variables. | |||
| 356 | if (LangOpts.OpenMP && isa<VarDecl>(D) && | |||
| 357 | !isOpenMPDeclareMapperVarDeclAllowed(cast<VarDecl>(D))) { | |||
| 358 | Diag(Loc, diag::err_omp_declare_mapper_wrong_var) | |||
| 359 | << getOpenMPDeclareMapperVarName(); | |||
| 360 | Diag(D->getLocation(), diag::note_entity_declared_at) << D; | |||
| 361 | return true; | |||
| 362 | } | |||
| 363 | ||||
| 364 | if (const auto *EmptyD = dyn_cast<UnresolvedUsingIfExistsDecl>(D)) { | |||
| 365 | Diag(Loc, diag::err_use_of_empty_using_if_exists); | |||
| 366 | Diag(EmptyD->getLocation(), diag::note_empty_using_if_exists_here); | |||
| 367 | return true; | |||
| 368 | } | |||
| 369 | ||||
| 370 | DiagnoseAvailabilityOfDecl(D, Locs, UnknownObjCClass, ObjCPropertyAccess, | |||
| 371 | AvoidPartialAvailabilityChecks, ClassReceiver); | |||
| 372 | ||||
| 373 | DiagnoseUnusedOfDecl(*this, D, Loc); | |||
| 374 | ||||
| 375 | diagnoseUseOfInternalDeclInInlineFunction(*this, D, Loc); | |||
| 376 | ||||
| 377 | if (auto *VD = dyn_cast<ValueDecl>(D)) | |||
| 378 | checkTypeSupport(VD->getType(), Loc, VD); | |||
| 379 | ||||
| 380 | if (LangOpts.SYCLIsDevice || (LangOpts.OpenMP && LangOpts.OpenMPIsDevice)) { | |||
| 381 | if (!Context.getTargetInfo().isTLSSupported()) | |||
| 382 | if (const auto *VD = dyn_cast<VarDecl>(D)) | |||
| 383 | if (VD->getTLSKind() != VarDecl::TLS_None) | |||
| 384 | targetDiag(*Locs.begin(), diag::err_thread_unsupported); | |||
| 385 | } | |||
| 386 | ||||
| 387 | if (isa<ParmVarDecl>(D) && isa<RequiresExprBodyDecl>(D->getDeclContext()) && | |||
| 388 | !isUnevaluatedContext()) { | |||
| 389 | // C++ [expr.prim.req.nested] p3 | |||
| 390 | // A local parameter shall only appear as an unevaluated operand | |||
| 391 | // (Clause 8) within the constraint-expression. | |||
| 392 | Diag(Loc, diag::err_requires_expr_parameter_referenced_in_evaluated_context) | |||
| 393 | << D; | |||
| 394 | Diag(D->getLocation(), diag::note_entity_declared_at) << D; | |||
| 395 | return true; | |||
| 396 | } | |||
| 397 | ||||
| 398 | return false; | |||
| 399 | } | |||
| 400 | ||||
| 401 | /// DiagnoseSentinelCalls - This routine checks whether a call or | |||
| 402 | /// message-send is to a declaration with the sentinel attribute, and | |||
| 403 | /// if so, it checks that the requirements of the sentinel are | |||
| 404 | /// satisfied. | |||
| 405 | void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc, | |||
| 406 | ArrayRef<Expr *> Args) { | |||
| 407 | const SentinelAttr *attr = D->getAttr<SentinelAttr>(); | |||
| 408 | if (!attr) | |||
| 409 | return; | |||
| 410 | ||||
| 411 | // The number of formal parameters of the declaration. | |||
| 412 | unsigned numFormalParams; | |||
| 413 | ||||
| 414 | // The kind of declaration. This is also an index into a %select in | |||
| 415 | // the diagnostic. | |||
| 416 | enum CalleeType { CT_Function, CT_Method, CT_Block } calleeType; | |||
| 417 | ||||
| 418 | if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) { | |||
| 419 | numFormalParams = MD->param_size(); | |||
| 420 | calleeType = CT_Method; | |||
| 421 | } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { | |||
| 422 | numFormalParams = FD->param_size(); | |||
| 423 | calleeType = CT_Function; | |||
| 424 | } else if (isa<VarDecl>(D)) { | |||
| 425 | QualType type = cast<ValueDecl>(D)->getType(); | |||
| 426 | const FunctionType *fn = nullptr; | |||
| 427 | if (const PointerType *ptr = type->getAs<PointerType>()) { | |||
| 428 | fn = ptr->getPointeeType()->getAs<FunctionType>(); | |||
| 429 | if (!fn) return; | |||
| 430 | calleeType = CT_Function; | |||
| 431 | } else if (const BlockPointerType *ptr = type->getAs<BlockPointerType>()) { | |||
| 432 | fn = ptr->getPointeeType()->castAs<FunctionType>(); | |||
| 433 | calleeType = CT_Block; | |||
| 434 | } else { | |||
| 435 | return; | |||
| 436 | } | |||
| 437 | ||||
| 438 | if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fn)) { | |||
| 439 | numFormalParams = proto->getNumParams(); | |||
| 440 | } else { | |||
| 441 | numFormalParams = 0; | |||
| 442 | } | |||
| 443 | } else { | |||
| 444 | return; | |||
| 445 | } | |||
| 446 | ||||
| 447 | // "nullPos" is the number of formal parameters at the end which | |||
| 448 | // effectively count as part of the variadic arguments. This is | |||
| 449 | // useful if you would prefer to not have *any* formal parameters, | |||
| 450 | // but the language forces you to have at least one. | |||
| 451 | unsigned nullPos = attr->getNullPos(); | |||
| 452 | assert((nullPos == 0 || nullPos == 1) && "invalid null position on sentinel")(static_cast <bool> ((nullPos == 0 || nullPos == 1) && "invalid null position on sentinel") ? void (0) : __assert_fail ("(nullPos == 0 || nullPos == 1) && \"invalid null position on sentinel\"" , "clang/lib/Sema/SemaExpr.cpp", 452, __extension__ __PRETTY_FUNCTION__ )); | |||
| 453 | numFormalParams = (nullPos > numFormalParams ? 0 : numFormalParams - nullPos); | |||
| 454 | ||||
| 455 | // The number of arguments which should follow the sentinel. | |||
| 456 | unsigned numArgsAfterSentinel = attr->getSentinel(); | |||
| 457 | ||||
| 458 | // If there aren't enough arguments for all the formal parameters, | |||
| 459 | // the sentinel, and the args after the sentinel, complain. | |||
| 460 | if (Args.size() < numFormalParams + numArgsAfterSentinel + 1) { | |||
| 461 | Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName(); | |||
| 462 | Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType); | |||
| 463 | return; | |||
| 464 | } | |||
| 465 | ||||
| 466 | // Otherwise, find the sentinel expression. | |||
| 467 | Expr *sentinelExpr = Args[Args.size() - numArgsAfterSentinel - 1]; | |||
| 468 | if (!sentinelExpr) return; | |||
| 469 | if (sentinelExpr->isValueDependent()) return; | |||
| 470 | if (Context.isSentinelNullExpr(sentinelExpr)) return; | |||
| 471 | ||||
| 472 | // Pick a reasonable string to insert. Optimistically use 'nil', 'nullptr', | |||
| 473 | // or 'NULL' if those are actually defined in the context. Only use | |||
| 474 | // 'nil' for ObjC methods, where it's much more likely that the | |||
| 475 | // variadic arguments form a list of object pointers. | |||
| 476 | SourceLocation MissingNilLoc = getLocForEndOfToken(sentinelExpr->getEndLoc()); | |||
| 477 | std::string NullValue; | |||
| 478 | if (calleeType == CT_Method && PP.isMacroDefined("nil")) | |||
| 479 | NullValue = "nil"; | |||
| 480 | else if (getLangOpts().CPlusPlus11) | |||
| 481 | NullValue = "nullptr"; | |||
| 482 | else if (PP.isMacroDefined("NULL")) | |||
| 483 | NullValue = "NULL"; | |||
| 484 | else | |||
| 485 | NullValue = "(void*) 0"; | |||
| 486 | ||||
| 487 | if (MissingNilLoc.isInvalid()) | |||
| 488 | Diag(Loc, diag::warn_missing_sentinel) << int(calleeType); | |||
| 489 | else | |||
| 490 | Diag(MissingNilLoc, diag::warn_missing_sentinel) | |||
| 491 | << int(calleeType) | |||
| 492 | << FixItHint::CreateInsertion(MissingNilLoc, ", " + NullValue); | |||
| 493 | Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType); | |||
| 494 | } | |||
| 495 | ||||
| 496 | SourceRange Sema::getExprRange(Expr *E) const { | |||
| 497 | return E ? E->getSourceRange() : SourceRange(); | |||
| 498 | } | |||
| 499 | ||||
| 500 | //===----------------------------------------------------------------------===// | |||
| 501 | // Standard Promotions and Conversions | |||
| 502 | //===----------------------------------------------------------------------===// | |||
| 503 | ||||
| 504 | /// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4). | |||
| 505 | ExprResult Sema::DefaultFunctionArrayConversion(Expr *E, bool Diagnose) { | |||
| 506 | // Handle any placeholder expressions which made it here. | |||
| 507 | if (E->hasPlaceholderType()) { | |||
| 508 | ExprResult result = CheckPlaceholderExpr(E); | |||
| 509 | if (result.isInvalid()) return ExprError(); | |||
| 510 | E = result.get(); | |||
| 511 | } | |||
| 512 | ||||
| 513 | QualType Ty = E->getType(); | |||
| 514 | assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type")(static_cast <bool> (!Ty.isNull() && "DefaultFunctionArrayConversion - missing type" ) ? void (0) : __assert_fail ("!Ty.isNull() && \"DefaultFunctionArrayConversion - missing type\"" , "clang/lib/Sema/SemaExpr.cpp", 514, __extension__ __PRETTY_FUNCTION__ )); | |||
| 515 | ||||
| 516 | if (Ty->isFunctionType()) { | |||
| 517 | if (auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts())) | |||
| 518 | if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) | |||
| 519 | if (!checkAddressOfFunctionIsAvailable(FD, Diagnose, E->getExprLoc())) | |||
| 520 | return ExprError(); | |||
| 521 | ||||
| 522 | E = ImpCastExprToType(E, Context.getPointerType(Ty), | |||
| 523 | CK_FunctionToPointerDecay).get(); | |||
| 524 | } else if (Ty->isArrayType()) { | |||
| 525 | // In C90 mode, arrays only promote to pointers if the array expression is | |||
| 526 | // an lvalue. The relevant legalese is C90 6.2.2.1p3: "an lvalue that has | |||
| 527 | // type 'array of type' is converted to an expression that has type 'pointer | |||
| 528 | // to type'...". In C99 this was changed to: C99 6.3.2.1p3: "an expression | |||
| 529 | // that has type 'array of type' ...". The relevant change is "an lvalue" | |||
| 530 | // (C90) to "an expression" (C99). | |||
| 531 | // | |||
| 532 | // C++ 4.2p1: | |||
| 533 | // An lvalue or rvalue of type "array of N T" or "array of unknown bound of | |||
| 534 | // T" can be converted to an rvalue of type "pointer to T". | |||
| 535 | // | |||
| 536 | if (getLangOpts().C99 || getLangOpts().CPlusPlus || E->isLValue()) { | |||
| 537 | ExprResult Res = ImpCastExprToType(E, Context.getArrayDecayedType(Ty), | |||
| 538 | CK_ArrayToPointerDecay); | |||
| 539 | if (Res.isInvalid()) | |||
| 540 | return ExprError(); | |||
| 541 | E = Res.get(); | |||
| 542 | } | |||
| 543 | } | |||
| 544 | return E; | |||
| 545 | } | |||
| 546 | ||||
| 547 | static void CheckForNullPointerDereference(Sema &S, Expr *E) { | |||
| 548 | // Check to see if we are dereferencing a null pointer. If so, | |||
| 549 | // and if not volatile-qualified, this is undefined behavior that the | |||
| 550 | // optimizer will delete, so warn about it. People sometimes try to use this | |||
| 551 | // to get a deterministic trap and are surprised by clang's behavior. This | |||
| 552 | // only handles the pattern "*null", which is a very syntactic check. | |||
| 553 | const auto *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts()); | |||
| 554 | if (UO && UO->getOpcode() == UO_Deref && | |||
| 555 | UO->getSubExpr()->getType()->isPointerType()) { | |||
| 556 | const LangAS AS = | |||
| 557 | UO->getSubExpr()->getType()->getPointeeType().getAddressSpace(); | |||
| 558 | if ((!isTargetAddressSpace(AS) || | |||
| 559 | (isTargetAddressSpace(AS) && toTargetAddressSpace(AS) == 0)) && | |||
| 560 | UO->getSubExpr()->IgnoreParenCasts()->isNullPointerConstant( | |||
| 561 | S.Context, Expr::NPC_ValueDependentIsNotNull) && | |||
| 562 | !UO->getType().isVolatileQualified()) { | |||
| 563 | S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO, | |||
| 564 | S.PDiag(diag::warn_indirection_through_null) | |||
| 565 | << UO->getSubExpr()->getSourceRange()); | |||
| 566 | S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO, | |||
| 567 | S.PDiag(diag::note_indirection_through_null)); | |||
| 568 | } | |||
| 569 | } | |||
| 570 | } | |||
| 571 | ||||
| 572 | static void DiagnoseDirectIsaAccess(Sema &S, const ObjCIvarRefExpr *OIRE, | |||
| 573 | SourceLocation AssignLoc, | |||
| 574 | const Expr* RHS) { | |||
| 575 | const ObjCIvarDecl *IV = OIRE->getDecl(); | |||
| 576 | if (!IV) | |||
| 577 | return; | |||
| 578 | ||||
| 579 | DeclarationName MemberName = IV->getDeclName(); | |||
| 580 | IdentifierInfo *Member = MemberName.getAsIdentifierInfo(); | |||
| 581 | if (!Member || !Member->isStr("isa")) | |||
| 582 | return; | |||
| 583 | ||||
| 584 | const Expr *Base = OIRE->getBase(); | |||
| 585 | QualType BaseType = Base->getType(); | |||
| 586 | if (OIRE->isArrow()) | |||
| 587 | BaseType = BaseType->getPointeeType(); | |||
| 588 | if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>()) | |||
| 589 | if (ObjCInterfaceDecl *IDecl = OTy->getInterface()) { | |||
| 590 | ObjCInterfaceDecl *ClassDeclared = nullptr; | |||
| 591 | ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared); | |||
| 592 | if (!ClassDeclared->getSuperClass() | |||
| 593 | && (*ClassDeclared->ivar_begin()) == IV) { | |||
| 594 | if (RHS) { | |||
| 595 | NamedDecl *ObjectSetClass = | |||
| 596 | S.LookupSingleName(S.TUScope, | |||
| 597 | &S.Context.Idents.get("object_setClass"), | |||
| 598 | SourceLocation(), S.LookupOrdinaryName); | |||
| 599 | if (ObjectSetClass) { | |||
| 600 | SourceLocation RHSLocEnd = S.getLocForEndOfToken(RHS->getEndLoc()); | |||
| 601 | S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_assign) | |||
| 602 | << FixItHint::CreateInsertion(OIRE->getBeginLoc(), | |||
| 603 | "object_setClass(") | |||
| 604 | << FixItHint::CreateReplacement( | |||
| 605 | SourceRange(OIRE->getOpLoc(), AssignLoc), ",") | |||
| 606 | << FixItHint::CreateInsertion(RHSLocEnd, ")"); | |||
| 607 | } | |||
| 608 | else | |||
| 609 | S.Diag(OIRE->getLocation(), diag::warn_objc_isa_assign); | |||
| 610 | } else { | |||
| 611 | NamedDecl *ObjectGetClass = | |||
| 612 | S.LookupSingleName(S.TUScope, | |||
| 613 | &S.Context.Idents.get("object_getClass"), | |||
| 614 | SourceLocation(), S.LookupOrdinaryName); | |||
| 615 | if (ObjectGetClass) | |||
| 616 | S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_use) | |||
| 617 | << FixItHint::CreateInsertion(OIRE->getBeginLoc(), | |||
| 618 | "object_getClass(") | |||
| 619 | << FixItHint::CreateReplacement( | |||
| 620 | SourceRange(OIRE->getOpLoc(), OIRE->getEndLoc()), ")"); | |||
| 621 | else | |||
| 622 | S.Diag(OIRE->getLocation(), diag::warn_objc_isa_use); | |||
| 623 | } | |||
| 624 | S.Diag(IV->getLocation(), diag::note_ivar_decl); | |||
| 625 | } | |||
| 626 | } | |||
| 627 | } | |||
| 628 | ||||
| 629 | ExprResult Sema::DefaultLvalueConversion(Expr *E) { | |||
| 630 | // Handle any placeholder expressions which made it here. | |||
| 631 | if (E->hasPlaceholderType()) { | |||
| 632 | ExprResult result = CheckPlaceholderExpr(E); | |||
| 633 | if (result.isInvalid()) return ExprError(); | |||
| 634 | E = result.get(); | |||
| 635 | } | |||
| 636 | ||||
| 637 | // C++ [conv.lval]p1: | |||
| 638 | // A glvalue of a non-function, non-array type T can be | |||
| 639 | // converted to a prvalue. | |||
| 640 | if (!E->isGLValue()) return E; | |||
| 641 | ||||
| 642 | QualType T = E->getType(); | |||
| 643 | assert(!T.isNull() && "r-value conversion on typeless expression?")(static_cast <bool> (!T.isNull() && "r-value conversion on typeless expression?" ) ? void (0) : __assert_fail ("!T.isNull() && \"r-value conversion on typeless expression?\"" , "clang/lib/Sema/SemaExpr.cpp", 643, __extension__ __PRETTY_FUNCTION__ )); | |||
| 644 | ||||
| 645 | // lvalue-to-rvalue conversion cannot be applied to function or array types. | |||
| 646 | if (T->isFunctionType() || T->isArrayType()) | |||
| 647 | return E; | |||
| 648 | ||||
| 649 | // We don't want to throw lvalue-to-rvalue casts on top of | |||
| 650 | // expressions of certain types in C++. | |||
| 651 | if (getLangOpts().CPlusPlus && | |||
| 652 | (E->getType() == Context.OverloadTy || | |||
| 653 | T->isDependentType() || | |||
| 654 | T->isRecordType())) | |||
| 655 | return E; | |||
| 656 | ||||
| 657 | // The C standard is actually really unclear on this point, and | |||
| 658 | // DR106 tells us what the result should be but not why. It's | |||
| 659 | // generally best to say that void types just doesn't undergo | |||
| 660 | // lvalue-to-rvalue at all. Note that expressions of unqualified | |||
| 661 | // 'void' type are never l-values, but qualified void can be. | |||
| 662 | if (T->isVoidType()) | |||
| 663 | return E; | |||
| 664 | ||||
| 665 | // OpenCL usually rejects direct accesses to values of 'half' type. | |||
| 666 | if (getLangOpts().OpenCL && | |||
| 667 | !getOpenCLOptions().isAvailableOption("cl_khr_fp16", getLangOpts()) && | |||
| 668 | T->isHalfType()) { | |||
| 669 | Diag(E->getExprLoc(), diag::err_opencl_half_load_store) | |||
| 670 | << 0 << T; | |||
| 671 | return ExprError(); | |||
| 672 | } | |||
| 673 | ||||
| 674 | CheckForNullPointerDereference(*this, E); | |||
| 675 | if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(E->IgnoreParenCasts())) { | |||
| 676 | NamedDecl *ObjectGetClass = LookupSingleName(TUScope, | |||
| 677 | &Context.Idents.get("object_getClass"), | |||
| 678 | SourceLocation(), LookupOrdinaryName); | |||
| 679 | if (ObjectGetClass) | |||
| 680 | Diag(E->getExprLoc(), diag::warn_objc_isa_use) | |||
| 681 | << FixItHint::CreateInsertion(OISA->getBeginLoc(), "object_getClass(") | |||
| 682 | << FixItHint::CreateReplacement( | |||
| 683 | SourceRange(OISA->getOpLoc(), OISA->getIsaMemberLoc()), ")"); | |||
| 684 | else | |||
| 685 | Diag(E->getExprLoc(), diag::warn_objc_isa_use); | |||
| 686 | } | |||
| 687 | else if (const ObjCIvarRefExpr *OIRE = | |||
| 688 | dyn_cast<ObjCIvarRefExpr>(E->IgnoreParenCasts())) | |||
| 689 | DiagnoseDirectIsaAccess(*this, OIRE, SourceLocation(), /* Expr*/nullptr); | |||
| 690 | ||||
| 691 | // C++ [conv.lval]p1: | |||
| 692 | // [...] If T is a non-class type, the type of the prvalue is the | |||
| 693 | // cv-unqualified version of T. Otherwise, the type of the | |||
| 694 | // rvalue is T. | |||
| 695 | // | |||
| 696 | // C99 6.3.2.1p2: | |||
| 697 | // If the lvalue has qualified type, the value has the unqualified | |||
| 698 | // version of the type of the lvalue; otherwise, the value has the | |||
| 699 | // type of the lvalue. | |||
| 700 | if (T.hasQualifiers()) | |||
| 701 | T = T.getUnqualifiedType(); | |||
| 702 | ||||
| 703 | // Under the MS ABI, lock down the inheritance model now. | |||
| 704 | if (T->isMemberPointerType() && | |||
| 705 | Context.getTargetInfo().getCXXABI().isMicrosoft()) | |||
| 706 | (void)isCompleteType(E->getExprLoc(), T); | |||
| 707 | ||||
| 708 | ExprResult Res = CheckLValueToRValueConversionOperand(E); | |||
| 709 | if (Res.isInvalid()) | |||
| 710 | return Res; | |||
| 711 | E = Res.get(); | |||
| 712 | ||||
| 713 | // Loading a __weak object implicitly retains the value, so we need a cleanup to | |||
| 714 | // balance that. | |||
| 715 | if (E->getType().getObjCLifetime() == Qualifiers::OCL_Weak) | |||
| 716 | Cleanup.setExprNeedsCleanups(true); | |||
| 717 | ||||
| 718 | if (E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct) | |||
| 719 | Cleanup.setExprNeedsCleanups(true); | |||
| 720 | ||||
| 721 | // C++ [conv.lval]p3: | |||
| 722 | // If T is cv std::nullptr_t, the result is a null pointer constant. | |||
| 723 | CastKind CK = T->isNullPtrType() ? CK_NullToPointer : CK_LValueToRValue; | |||
| 724 | Res = ImplicitCastExpr::Create(Context, T, CK, E, nullptr, VK_PRValue, | |||
| 725 | CurFPFeatureOverrides()); | |||
| 726 | ||||
| 727 | // C11 6.3.2.1p2: | |||
| 728 | // ... if the lvalue has atomic type, the value has the non-atomic version | |||
| 729 | // of the type of the lvalue ... | |||
| 730 | if (const AtomicType *Atomic = T->getAs<AtomicType>()) { | |||
| 731 | T = Atomic->getValueType().getUnqualifiedType(); | |||
| 732 | Res = ImplicitCastExpr::Create(Context, T, CK_AtomicToNonAtomic, Res.get(), | |||
| 733 | nullptr, VK_PRValue, FPOptionsOverride()); | |||
| 734 | } | |||
| 735 | ||||
| 736 | return Res; | |||
| 737 | } | |||
| 738 | ||||
| 739 | ExprResult Sema::DefaultFunctionArrayLvalueConversion(Expr *E, bool Diagnose) { | |||
| 740 | ExprResult Res = DefaultFunctionArrayConversion(E, Diagnose); | |||
| 741 | if (Res.isInvalid()) | |||
| 742 | return ExprError(); | |||
| 743 | Res = DefaultLvalueConversion(Res.get()); | |||
| 744 | if (Res.isInvalid()) | |||
| 745 | return ExprError(); | |||
| 746 | return Res; | |||
| 747 | } | |||
| 748 | ||||
| 749 | /// CallExprUnaryConversions - a special case of an unary conversion | |||
| 750 | /// performed on a function designator of a call expression. | |||
| 751 | ExprResult Sema::CallExprUnaryConversions(Expr *E) { | |||
| 752 | QualType Ty = E->getType(); | |||
| 753 | ExprResult Res = E; | |||
| 754 | // Only do implicit cast for a function type, but not for a pointer | |||
| 755 | // to function type. | |||
| 756 | if (Ty->isFunctionType()) { | |||
| 757 | Res = ImpCastExprToType(E, Context.getPointerType(Ty), | |||
| 758 | CK_FunctionToPointerDecay); | |||
| 759 | if (Res.isInvalid()) | |||
| 760 | return ExprError(); | |||
| 761 | } | |||
| 762 | Res = DefaultLvalueConversion(Res.get()); | |||
| 763 | if (Res.isInvalid()) | |||
| 764 | return ExprError(); | |||
| 765 | return Res.get(); | |||
| 766 | } | |||
| 767 | ||||
| 768 | /// UsualUnaryConversions - Performs various conversions that are common to most | |||
| 769 | /// operators (C99 6.3). The conversions of array and function types are | |||
| 770 | /// sometimes suppressed. For example, the array->pointer conversion doesn't | |||
| 771 | /// apply if the array is an argument to the sizeof or address (&) operators. | |||
| 772 | /// In these instances, this routine should *not* be called. | |||
| 773 | ExprResult Sema::UsualUnaryConversions(Expr *E) { | |||
| 774 | // First, convert to an r-value. | |||
| 775 | ExprResult Res = DefaultFunctionArrayLvalueConversion(E); | |||
| 776 | if (Res.isInvalid()) | |||
| 777 | return ExprError(); | |||
| 778 | E = Res.get(); | |||
| 779 | ||||
| 780 | QualType Ty = E->getType(); | |||
| 781 | assert(!Ty.isNull() && "UsualUnaryConversions - missing type")(static_cast <bool> (!Ty.isNull() && "UsualUnaryConversions - missing type" ) ? void (0) : __assert_fail ("!Ty.isNull() && \"UsualUnaryConversions - missing type\"" , "clang/lib/Sema/SemaExpr.cpp", 781, __extension__ __PRETTY_FUNCTION__ )); | |||
| 782 | ||||
| 783 | LangOptions::FPEvalMethodKind EvalMethod = CurFPFeatures.getFPEvalMethod(); | |||
| 784 | if (EvalMethod != LangOptions::FEM_Source && Ty->isFloatingType() && | |||
| 785 | (getLangOpts().getFPEvalMethod() != | |||
| 786 | LangOptions::FPEvalMethodKind::FEM_UnsetOnCommandLine || | |||
| 787 | PP.getLastFPEvalPragmaLocation().isValid())) { | |||
| 788 | switch (EvalMethod) { | |||
| 789 | default: | |||
| 790 | llvm_unreachable("Unrecognized float evaluation method")::llvm::llvm_unreachable_internal("Unrecognized float evaluation method" , "clang/lib/Sema/SemaExpr.cpp", 790); | |||
| 791 | break; | |||
| 792 | case LangOptions::FEM_UnsetOnCommandLine: | |||
| 793 | llvm_unreachable("Float evaluation method should be set by now")::llvm::llvm_unreachable_internal("Float evaluation method should be set by now" , "clang/lib/Sema/SemaExpr.cpp", 793); | |||
| 794 | break; | |||
| 795 | case LangOptions::FEM_Double: | |||
| 796 | if (Context.getFloatingTypeOrder(Context.DoubleTy, Ty) > 0) | |||
| 797 | // Widen the expression to double. | |||
| 798 | return Ty->isComplexType() | |||
| 799 | ? ImpCastExprToType(E, | |||
| 800 | Context.getComplexType(Context.DoubleTy), | |||
| 801 | CK_FloatingComplexCast) | |||
| 802 | : ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast); | |||
| 803 | break; | |||
| 804 | case LangOptions::FEM_Extended: | |||
| 805 | if (Context.getFloatingTypeOrder(Context.LongDoubleTy, Ty) > 0) | |||
| 806 | // Widen the expression to long double. | |||
| 807 | return Ty->isComplexType() | |||
| 808 | ? ImpCastExprToType( | |||
| 809 | E, Context.getComplexType(Context.LongDoubleTy), | |||
| 810 | CK_FloatingComplexCast) | |||
| 811 | : ImpCastExprToType(E, Context.LongDoubleTy, | |||
| 812 | CK_FloatingCast); | |||
| 813 | break; | |||
| 814 | } | |||
| 815 | } | |||
| 816 | ||||
| 817 | // Half FP have to be promoted to float unless it is natively supported | |||
| 818 | if (Ty->isHalfType() && !getLangOpts().NativeHalfType) | |||
| 819 | return ImpCastExprToType(Res.get(), Context.FloatTy, CK_FloatingCast); | |||
| 820 | ||||
| 821 | // Try to perform integral promotions if the object has a theoretically | |||
| 822 | // promotable type. | |||
| 823 | if (Ty->isIntegralOrUnscopedEnumerationType()) { | |||
| 824 | // C99 6.3.1.1p2: | |||
| 825 | // | |||
| 826 | // The following may be used in an expression wherever an int or | |||
| 827 | // unsigned int may be used: | |||
| 828 | // - an object or expression with an integer type whose integer | |||
| 829 | // conversion rank is less than or equal to the rank of int | |||
| 830 | // and unsigned int. | |||
| 831 | // - A bit-field of type _Bool, int, signed int, or unsigned int. | |||
| 832 | // | |||
| 833 | // If an int can represent all values of the original type, the | |||
| 834 | // value is converted to an int; otherwise, it is converted to an | |||
| 835 | // unsigned int. These are called the integer promotions. All | |||
| 836 | // other types are unchanged by the integer promotions. | |||
| 837 | ||||
| 838 | QualType PTy = Context.isPromotableBitField(E); | |||
| 839 | if (!PTy.isNull()) { | |||
| 840 | E = ImpCastExprToType(E, PTy, CK_IntegralCast).get(); | |||
| 841 | return E; | |||
| 842 | } | |||
| 843 | if (Context.isPromotableIntegerType(Ty)) { | |||
| 844 | QualType PT = Context.getPromotedIntegerType(Ty); | |||
| 845 | E = ImpCastExprToType(E, PT, CK_IntegralCast).get(); | |||
| 846 | return E; | |||
| 847 | } | |||
| 848 | } | |||
| 849 | return E; | |||
| 850 | } | |||
| 851 | ||||
| 852 | /// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that | |||
| 853 | /// do not have a prototype. Arguments that have type float or __fp16 | |||
| 854 | /// are promoted to double. All other argument types are converted by | |||
| 855 | /// UsualUnaryConversions(). | |||
| 856 | ExprResult Sema::DefaultArgumentPromotion(Expr *E) { | |||
| 857 | QualType Ty = E->getType(); | |||
| 858 | assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type")(static_cast <bool> (!Ty.isNull() && "DefaultArgumentPromotion - missing type" ) ? void (0) : __assert_fail ("!Ty.isNull() && \"DefaultArgumentPromotion - missing type\"" , "clang/lib/Sema/SemaExpr.cpp", 858, __extension__ __PRETTY_FUNCTION__ )); | |||
| 859 | ||||
| 860 | ExprResult Res = UsualUnaryConversions(E); | |||
| 861 | if (Res.isInvalid()) | |||
| 862 | return ExprError(); | |||
| 863 | E = Res.get(); | |||
| 864 | ||||
| 865 | // If this is a 'float' or '__fp16' (CVR qualified or typedef) | |||
| 866 | // promote to double. | |||
| 867 | // Note that default argument promotion applies only to float (and | |||
| 868 | // half/fp16); it does not apply to _Float16. | |||
| 869 | const BuiltinType *BTy = Ty->getAs<BuiltinType>(); | |||
| 870 | if (BTy && (BTy->getKind() == BuiltinType::Half || | |||
| 871 | BTy->getKind() == BuiltinType::Float)) { | |||
| 872 | if (getLangOpts().OpenCL && | |||
| 873 | !getOpenCLOptions().isAvailableOption("cl_khr_fp64", getLangOpts())) { | |||
| 874 | if (BTy->getKind() == BuiltinType::Half) { | |||
| 875 | E = ImpCastExprToType(E, Context.FloatTy, CK_FloatingCast).get(); | |||
| 876 | } | |||
| 877 | } else { | |||
| 878 | E = ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast).get(); | |||
| 879 | } | |||
| 880 | } | |||
| 881 | if (BTy && | |||
| 882 | getLangOpts().getExtendIntArgs() == | |||
| 883 | LangOptions::ExtendArgsKind::ExtendTo64 && | |||
| 884 | Context.getTargetInfo().supportsExtendIntArgs() && Ty->isIntegerType() && | |||
| 885 | Context.getTypeSizeInChars(BTy) < | |||
| 886 | Context.getTypeSizeInChars(Context.LongLongTy)) { | |||
| 887 | E = (Ty->isUnsignedIntegerType()) | |||
| 888 | ? ImpCastExprToType(E, Context.UnsignedLongLongTy, CK_IntegralCast) | |||
| 889 | .get() | |||
| 890 | : ImpCastExprToType(E, Context.LongLongTy, CK_IntegralCast).get(); | |||
| 891 | assert(8 == Context.getTypeSizeInChars(Context.LongLongTy).getQuantity() &&(static_cast <bool> (8 == Context.getTypeSizeInChars(Context .LongLongTy).getQuantity() && "Unexpected typesize for LongLongTy" ) ? void (0) : __assert_fail ("8 == Context.getTypeSizeInChars(Context.LongLongTy).getQuantity() && \"Unexpected typesize for LongLongTy\"" , "clang/lib/Sema/SemaExpr.cpp", 892, __extension__ __PRETTY_FUNCTION__ )) | |||
| 892 | "Unexpected typesize for LongLongTy")(static_cast <bool> (8 == Context.getTypeSizeInChars(Context .LongLongTy).getQuantity() && "Unexpected typesize for LongLongTy" ) ? void (0) : __assert_fail ("8 == Context.getTypeSizeInChars(Context.LongLongTy).getQuantity() && \"Unexpected typesize for LongLongTy\"" , "clang/lib/Sema/SemaExpr.cpp", 892, __extension__ __PRETTY_FUNCTION__ )); | |||
| 893 | } | |||
| 894 | ||||
| 895 | // C++ performs lvalue-to-rvalue conversion as a default argument | |||
| 896 | // promotion, even on class types, but note: | |||
| 897 | // C++11 [conv.lval]p2: | |||
| 898 | // When an lvalue-to-rvalue conversion occurs in an unevaluated | |||
| 899 | // operand or a subexpression thereof the value contained in the | |||
| 900 | // referenced object is not accessed. Otherwise, if the glvalue | |||
| 901 | // has a class type, the conversion copy-initializes a temporary | |||
| 902 | // of type T from the glvalue and the result of the conversion | |||
| 903 | // is a prvalue for the temporary. | |||
| 904 | // FIXME: add some way to gate this entire thing for correctness in | |||
| 905 | // potentially potentially evaluated contexts. | |||
| 906 | if (getLangOpts().CPlusPlus && E->isGLValue() && !isUnevaluatedContext()) { | |||
| 907 | ExprResult Temp = PerformCopyInitialization( | |||
| 908 | InitializedEntity::InitializeTemporary(E->getType()), | |||
| 909 | E->getExprLoc(), E); | |||
| 910 | if (Temp.isInvalid()) | |||
| 911 | return ExprError(); | |||
| 912 | E = Temp.get(); | |||
| 913 | } | |||
| 914 | ||||
| 915 | return E; | |||
| 916 | } | |||
| 917 | ||||
| 918 | /// Determine the degree of POD-ness for an expression. | |||
| 919 | /// Incomplete types are considered POD, since this check can be performed | |||
| 920 | /// when we're in an unevaluated context. | |||
| 921 | Sema::VarArgKind Sema::isValidVarArgType(const QualType &Ty) { | |||
| 922 | if (Ty->isIncompleteType()) { | |||
| 923 | // C++11 [expr.call]p7: | |||
| 924 | // After these conversions, if the argument does not have arithmetic, | |||
| 925 | // enumeration, pointer, pointer to member, or class type, the program | |||
| 926 | // is ill-formed. | |||
| 927 | // | |||
| 928 | // Since we've already performed array-to-pointer and function-to-pointer | |||
| 929 | // decay, the only such type in C++ is cv void. This also handles | |||
| 930 | // initializer lists as variadic arguments. | |||
| 931 | if (Ty->isVoidType()) | |||
| 932 | return VAK_Invalid; | |||
| 933 | ||||
| 934 | if (Ty->isObjCObjectType()) | |||
| 935 | return VAK_Invalid; | |||
| 936 | return VAK_Valid; | |||
| 937 | } | |||
| 938 | ||||
| 939 | if (Ty.isDestructedType() == QualType::DK_nontrivial_c_struct) | |||
| 940 | return VAK_Invalid; | |||
| 941 | ||||
| 942 | if (Context.getTargetInfo().getTriple().isWasm() && | |||
| 943 | Ty->isWebAssemblyReferenceType()) { | |||
| 944 | return VAK_Invalid; | |||
| 945 | } | |||
| 946 | ||||
| 947 | if (Ty.isCXX98PODType(Context)) | |||
| 948 | return VAK_Valid; | |||
| 949 | ||||
| 950 | // C++11 [expr.call]p7: | |||
| 951 | // Passing a potentially-evaluated argument of class type (Clause 9) | |||
| 952 | // having a non-trivial copy constructor, a non-trivial move constructor, | |||
| 953 | // or a non-trivial destructor, with no corresponding parameter, | |||
| 954 | // is conditionally-supported with implementation-defined semantics. | |||
| 955 | if (getLangOpts().CPlusPlus11 && !Ty->isDependentType()) | |||
| 956 | if (CXXRecordDecl *Record = Ty->getAsCXXRecordDecl()) | |||
| 957 | if (!Record->hasNonTrivialCopyConstructor() && | |||
| 958 | !Record->hasNonTrivialMoveConstructor() && | |||
| 959 | !Record->hasNonTrivialDestructor()) | |||
| 960 | return VAK_ValidInCXX11; | |||
| 961 | ||||
| 962 | if (getLangOpts().ObjCAutoRefCount && Ty->isObjCLifetimeType()) | |||
| 963 | return VAK_Valid; | |||
| 964 | ||||
| 965 | if (Ty->isObjCObjectType()) | |||
| 966 | return VAK_Invalid; | |||
| 967 | ||||
| 968 | if (getLangOpts().MSVCCompat) | |||
| 969 | return VAK_MSVCUndefined; | |||
| 970 | ||||
| 971 | // FIXME: In C++11, these cases are conditionally-supported, meaning we're | |||
| 972 | // permitted to reject them. We should consider doing so. | |||
| 973 | return VAK_Undefined; | |||
| 974 | } | |||
| 975 | ||||
| 976 | void Sema::checkVariadicArgument(const Expr *E, VariadicCallType CT) { | |||
| 977 | // Don't allow one to pass an Objective-C interface to a vararg. | |||
| 978 | const QualType &Ty = E->getType(); | |||
| 979 | VarArgKind VAK = isValidVarArgType(Ty); | |||
| 980 | ||||
| 981 | // Complain about passing non-POD types through varargs. | |||
| 982 | switch (VAK) { | |||
| 983 | case VAK_ValidInCXX11: | |||
| 984 | DiagRuntimeBehavior( | |||
| 985 | E->getBeginLoc(), nullptr, | |||
| 986 | PDiag(diag::warn_cxx98_compat_pass_non_pod_arg_to_vararg) << Ty << CT); | |||
| 987 | [[fallthrough]]; | |||
| 988 | case VAK_Valid: | |||
| 989 | if (Ty->isRecordType()) { | |||
| 990 | // This is unlikely to be what the user intended. If the class has a | |||
| 991 | // 'c_str' member function, the user probably meant to call that. | |||
| 992 | DiagRuntimeBehavior(E->getBeginLoc(), nullptr, | |||
| 993 | PDiag(diag::warn_pass_class_arg_to_vararg) | |||
| 994 | << Ty << CT << hasCStrMethod(E) << ".c_str()"); | |||
| 995 | } | |||
| 996 | break; | |||
| 997 | ||||
| 998 | case VAK_Undefined: | |||
| 999 | case VAK_MSVCUndefined: | |||
| 1000 | DiagRuntimeBehavior(E->getBeginLoc(), nullptr, | |||
| 1001 | PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg) | |||
| 1002 | << getLangOpts().CPlusPlus11 << Ty << CT); | |||
| 1003 | break; | |||
| 1004 | ||||
| 1005 | case VAK_Invalid: | |||
| 1006 | if (Ty.isDestructedType() == QualType::DK_nontrivial_c_struct) | |||
| 1007 | Diag(E->getBeginLoc(), | |||
| 1008 | diag::err_cannot_pass_non_trivial_c_struct_to_vararg) | |||
| 1009 | << Ty << CT; | |||
| 1010 | else if (Ty->isObjCObjectType()) | |||
| 1011 | DiagRuntimeBehavior(E->getBeginLoc(), nullptr, | |||
| 1012 | PDiag(diag::err_cannot_pass_objc_interface_to_vararg) | |||
| 1013 | << Ty << CT); | |||
| 1014 | else | |||
| 1015 | Diag(E->getBeginLoc(), diag::err_cannot_pass_to_vararg) | |||
| 1016 | << isa<InitListExpr>(E) << Ty << CT; | |||
| 1017 | break; | |||
| 1018 | } | |||
| 1019 | } | |||
| 1020 | ||||
| 1021 | /// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but | |||
| 1022 | /// will create a trap if the resulting type is not a POD type. | |||
| 1023 | ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT, | |||
| 1024 | FunctionDecl *FDecl) { | |||
| 1025 | if (const BuiltinType *PlaceholderTy = E->getType()->getAsPlaceholderType()) { | |||
| 1026 | // Strip the unbridged-cast placeholder expression off, if applicable. | |||
| 1027 | if (PlaceholderTy->getKind() == BuiltinType::ARCUnbridgedCast && | |||
| 1028 | (CT == VariadicMethod || | |||
| 1029 | (FDecl && FDecl->hasAttr<CFAuditedTransferAttr>()))) { | |||
| 1030 | E = stripARCUnbridgedCast(E); | |||
| 1031 | ||||
| 1032 | // Otherwise, do normal placeholder checking. | |||
| 1033 | } else { | |||
| 1034 | ExprResult ExprRes = CheckPlaceholderExpr(E); | |||
| 1035 | if (ExprRes.isInvalid()) | |||
| 1036 | return ExprError(); | |||
| 1037 | E = ExprRes.get(); | |||
| 1038 | } | |||
| 1039 | } | |||
| 1040 | ||||
| 1041 | ExprResult ExprRes = DefaultArgumentPromotion(E); | |||
| 1042 | if (ExprRes.isInvalid()) | |||
| 1043 | return ExprError(); | |||
| 1044 | ||||
| 1045 | // Copy blocks to the heap. | |||
| 1046 | if (ExprRes.get()->getType()->isBlockPointerType()) | |||
| 1047 | maybeExtendBlockObject(ExprRes); | |||
| 1048 | ||||
| 1049 | E = ExprRes.get(); | |||
| 1050 | ||||
| 1051 | // Diagnostics regarding non-POD argument types are | |||
| 1052 | // emitted along with format string checking in Sema::CheckFunctionCall(). | |||
| 1053 | if (isValidVarArgType(E->getType()) == VAK_Undefined) { | |||
| 1054 | // Turn this into a trap. | |||
| 1055 | CXXScopeSpec SS; | |||
| 1056 | SourceLocation TemplateKWLoc; | |||
| 1057 | UnqualifiedId Name; | |||
| 1058 | Name.setIdentifier(PP.getIdentifierInfo("__builtin_trap"), | |||
| 1059 | E->getBeginLoc()); | |||
| 1060 | ExprResult TrapFn = ActOnIdExpression(TUScope, SS, TemplateKWLoc, Name, | |||
| 1061 | /*HasTrailingLParen=*/true, | |||
| 1062 | /*IsAddressOfOperand=*/false); | |||
| 1063 | if (TrapFn.isInvalid()) | |||
| 1064 | return ExprError(); | |||
| 1065 | ||||
| 1066 | ExprResult Call = BuildCallExpr(TUScope, TrapFn.get(), E->getBeginLoc(), | |||
| 1067 | std::nullopt, E->getEndLoc()); | |||
| 1068 | if (Call.isInvalid()) | |||
| 1069 | return ExprError(); | |||
| 1070 | ||||
| 1071 | ExprResult Comma = | |||
| 1072 | ActOnBinOp(TUScope, E->getBeginLoc(), tok::comma, Call.get(), E); | |||
| 1073 | if (Comma.isInvalid()) | |||
| 1074 | return ExprError(); | |||
| 1075 | return Comma.get(); | |||
| 1076 | } | |||
| 1077 | ||||
| 1078 | if (!getLangOpts().CPlusPlus && | |||
| 1079 | RequireCompleteType(E->getExprLoc(), E->getType(), | |||
| 1080 | diag::err_call_incomplete_argument)) | |||
| 1081 | return ExprError(); | |||
| 1082 | ||||
| 1083 | return E; | |||
| 1084 | } | |||
| 1085 | ||||
| 1086 | /// Converts an integer to complex float type. Helper function of | |||
| 1087 | /// UsualArithmeticConversions() | |||
| 1088 | /// | |||
| 1089 | /// \return false if the integer expression is an integer type and is | |||
| 1090 | /// successfully converted to the complex type. | |||
| 1091 | static bool handleIntegerToComplexFloatConversion(Sema &S, ExprResult &IntExpr, | |||
| 1092 | ExprResult &ComplexExpr, | |||
| 1093 | QualType IntTy, | |||
| 1094 | QualType ComplexTy, | |||
| 1095 | bool SkipCast) { | |||
| 1096 | if (IntTy->isComplexType() || IntTy->isRealFloatingType()) return true; | |||
| 1097 | if (SkipCast) return false; | |||
| 1098 | if (IntTy->isIntegerType()) { | |||
| 1099 | QualType fpTy = ComplexTy->castAs<ComplexType>()->getElementType(); | |||
| 1100 | IntExpr = S.ImpCastExprToType(IntExpr.get(), fpTy, CK_IntegralToFloating); | |||
| 1101 | IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy, | |||
| 1102 | CK_FloatingRealToComplex); | |||
| 1103 | } else { | |||
| 1104 | assert(IntTy->isComplexIntegerType())(static_cast <bool> (IntTy->isComplexIntegerType()) ? void (0) : __assert_fail ("IntTy->isComplexIntegerType()" , "clang/lib/Sema/SemaExpr.cpp", 1104, __extension__ __PRETTY_FUNCTION__ )); | |||
| 1105 | IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy, | |||
| 1106 | CK_IntegralComplexToFloatingComplex); | |||
| 1107 | } | |||
| 1108 | return false; | |||
| 1109 | } | |||
| 1110 | ||||
| 1111 | // This handles complex/complex, complex/float, or float/complex. | |||
| 1112 | // When both operands are complex, the shorter operand is converted to the | |||
| 1113 | // type of the longer, and that is the type of the result. This corresponds | |||
| 1114 | // to what is done when combining two real floating-point operands. | |||
| 1115 | // The fun begins when size promotion occur across type domains. | |||
| 1116 | // From H&S 6.3.4: When one operand is complex and the other is a real | |||
| 1117 | // floating-point type, the less precise type is converted, within it's | |||
| 1118 | // real or complex domain, to the precision of the other type. For example, | |||
| 1119 | // when combining a "long double" with a "double _Complex", the | |||
| 1120 | // "double _Complex" is promoted to "long double _Complex". | |||
| 1121 | static QualType handleComplexFloatConversion(Sema &S, ExprResult &Shorter, | |||
| 1122 | QualType ShorterType, | |||
| 1123 | QualType LongerType, | |||
| 1124 | bool PromotePrecision) { | |||
| 1125 | bool LongerIsComplex = isa<ComplexType>(LongerType.getCanonicalType()); | |||
| 1126 | QualType Result = | |||
| 1127 | LongerIsComplex ? LongerType : S.Context.getComplexType(LongerType); | |||
| 1128 | ||||
| 1129 | if (PromotePrecision) { | |||
| 1130 | if (isa<ComplexType>(ShorterType.getCanonicalType())) { | |||
| 1131 | Shorter = | |||
| 1132 | S.ImpCastExprToType(Shorter.get(), Result, CK_FloatingComplexCast); | |||
| 1133 | } else { | |||
| 1134 | if (LongerIsComplex) | |||
| 1135 | LongerType = LongerType->castAs<ComplexType>()->getElementType(); | |||
| 1136 | Shorter = S.ImpCastExprToType(Shorter.get(), LongerType, CK_FloatingCast); | |||
| 1137 | } | |||
| 1138 | } | |||
| 1139 | return Result; | |||
| 1140 | } | |||
| 1141 | ||||
| 1142 | /// Handle arithmetic conversion with complex types. Helper function of | |||
| 1143 | /// UsualArithmeticConversions() | |||
| 1144 | static QualType handleComplexConversion(Sema &S, ExprResult &LHS, | |||
| 1145 | ExprResult &RHS, QualType LHSType, | |||
| 1146 | QualType RHSType, bool IsCompAssign) { | |||
| 1147 | // if we have an integer operand, the result is the complex type. | |||
| 1148 | if (!handleIntegerToComplexFloatConversion(S, RHS, LHS, RHSType, LHSType, | |||
| 1149 | /*SkipCast=*/false)) | |||
| 1150 | return LHSType; | |||
| 1151 | if (!handleIntegerToComplexFloatConversion(S, LHS, RHS, LHSType, RHSType, | |||
| 1152 | /*SkipCast=*/IsCompAssign)) | |||
| 1153 | return RHSType; | |||
| 1154 | ||||
| 1155 | // Compute the rank of the two types, regardless of whether they are complex. | |||
| 1156 | int Order = S.Context.getFloatingTypeOrder(LHSType, RHSType); | |||
| 1157 | if (Order < 0) | |||
| 1158 | // Promote the precision of the LHS if not an assignment. | |||
| 1159 | return handleComplexFloatConversion(S, LHS, LHSType, RHSType, | |||
| 1160 | /*PromotePrecision=*/!IsCompAssign); | |||
| 1161 | // Promote the precision of the RHS unless it is already the same as the LHS. | |||
| 1162 | return handleComplexFloatConversion(S, RHS, RHSType, LHSType, | |||
| 1163 | /*PromotePrecision=*/Order > 0); | |||
| 1164 | } | |||
| 1165 | ||||
| 1166 | /// Handle arithmetic conversion from integer to float. Helper function | |||
| 1167 | /// of UsualArithmeticConversions() | |||
| 1168 | static QualType handleIntToFloatConversion(Sema &S, ExprResult &FloatExpr, | |||
| 1169 | ExprResult &IntExpr, | |||
| 1170 | QualType FloatTy, QualType IntTy, | |||
| 1171 | bool ConvertFloat, bool ConvertInt) { | |||
| 1172 | if (IntTy->isIntegerType()) { | |||
| 1173 | if (ConvertInt) | |||
| 1174 | // Convert intExpr to the lhs floating point type. | |||
| 1175 | IntExpr = S.ImpCastExprToType(IntExpr.get(), FloatTy, | |||
| 1176 | CK_IntegralToFloating); | |||
| 1177 | return FloatTy; | |||
| 1178 | } | |||
| 1179 | ||||
| 1180 | // Convert both sides to the appropriate complex float. | |||
| 1181 | assert(IntTy->isComplexIntegerType())(static_cast <bool> (IntTy->isComplexIntegerType()) ? void (0) : __assert_fail ("IntTy->isComplexIntegerType()" , "clang/lib/Sema/SemaExpr.cpp", 1181, __extension__ __PRETTY_FUNCTION__ )); | |||
| 1182 | QualType result = S.Context.getComplexType(FloatTy); | |||
| 1183 | ||||
| 1184 | // _Complex int -> _Complex float | |||
| 1185 | if (ConvertInt) | |||
| 1186 | IntExpr = S.ImpCastExprToType(IntExpr.get(), result, | |||
| 1187 | CK_IntegralComplexToFloatingComplex); | |||
| 1188 | ||||
| 1189 | // float -> _Complex float | |||
| 1190 | if (ConvertFloat) | |||
| 1191 | FloatExpr = S.ImpCastExprToType(FloatExpr.get(), result, | |||
| 1192 | CK_FloatingRealToComplex); | |||
| 1193 | ||||
| 1194 | return result; | |||
| 1195 | } | |||
| 1196 | ||||
| 1197 | /// Handle arithmethic conversion with floating point types. Helper | |||
| 1198 | /// function of UsualArithmeticConversions() | |||
| 1199 | static QualType handleFloatConversion(Sema &S, ExprResult &LHS, | |||
| 1200 | ExprResult &RHS, QualType LHSType, | |||
| 1201 | QualType RHSType, bool IsCompAssign) { | |||
| 1202 | bool LHSFloat = LHSType->isRealFloatingType(); | |||
| 1203 | bool RHSFloat = RHSType->isRealFloatingType(); | |||
| 1204 | ||||
| 1205 | // N1169 4.1.4: If one of the operands has a floating type and the other | |||
| 1206 | // operand has a fixed-point type, the fixed-point operand | |||
| 1207 | // is converted to the floating type [...] | |||
| 1208 | if (LHSType->isFixedPointType() || RHSType->isFixedPointType()) { | |||
| 1209 | if (LHSFloat) | |||
| 1210 | RHS = S.ImpCastExprToType(RHS.get(), LHSType, CK_FixedPointToFloating); | |||
| 1211 | else if (!IsCompAssign) | |||
| 1212 | LHS = S.ImpCastExprToType(LHS.get(), RHSType, CK_FixedPointToFloating); | |||
| 1213 | return LHSFloat ? LHSType : RHSType; | |||
| 1214 | } | |||
| 1215 | ||||
| 1216 | // If we have two real floating types, convert the smaller operand | |||
| 1217 | // to the bigger result. | |||
| 1218 | if (LHSFloat && RHSFloat) { | |||
| 1219 | int order = S.Context.getFloatingTypeOrder(LHSType, RHSType); | |||
| 1220 | if (order > 0) { | |||
| 1221 | RHS = S.ImpCastExprToType(RHS.get(), LHSType, CK_FloatingCast); | |||
| 1222 | return LHSType; | |||
| 1223 | } | |||
| 1224 | ||||
| 1225 | assert(order < 0 && "illegal float comparison")(static_cast <bool> (order < 0 && "illegal float comparison" ) ? void (0) : __assert_fail ("order < 0 && \"illegal float comparison\"" , "clang/lib/Sema/SemaExpr.cpp", 1225, __extension__ __PRETTY_FUNCTION__ )); | |||
| 1226 | if (!IsCompAssign) | |||
| 1227 | LHS = S.ImpCastExprToType(LHS.get(), RHSType, CK_FloatingCast); | |||
| 1228 | return RHSType; | |||
| 1229 | } | |||
| 1230 | ||||
| 1231 | if (LHSFloat) { | |||
| 1232 | // Half FP has to be promoted to float unless it is natively supported | |||
| 1233 | if (LHSType->isHalfType() && !S.getLangOpts().NativeHalfType) | |||
| 1234 | LHSType = S.Context.FloatTy; | |||
| 1235 | ||||
| 1236 | return handleIntToFloatConversion(S, LHS, RHS, LHSType, RHSType, | |||
| 1237 | /*ConvertFloat=*/!IsCompAssign, | |||
| 1238 | /*ConvertInt=*/ true); | |||
| 1239 | } | |||
| 1240 | assert(RHSFloat)(static_cast <bool> (RHSFloat) ? void (0) : __assert_fail ("RHSFloat", "clang/lib/Sema/SemaExpr.cpp", 1240, __extension__ __PRETTY_FUNCTION__)); | |||
| 1241 | return handleIntToFloatConversion(S, RHS, LHS, RHSType, LHSType, | |||
| 1242 | /*ConvertFloat=*/ true, | |||
| 1243 | /*ConvertInt=*/!IsCompAssign); | |||
| 1244 | } | |||
| 1245 | ||||
| 1246 | /// Diagnose attempts to convert between __float128, __ibm128 and | |||
| 1247 | /// long double if there is no support for such conversion. | |||
| 1248 | /// Helper function of UsualArithmeticConversions(). | |||
| 1249 | static bool unsupportedTypeConversion(const Sema &S, QualType LHSType, | |||
| 1250 | QualType RHSType) { | |||
| 1251 | // No issue if either is not a floating point type. | |||
| 1252 | if (!LHSType->isFloatingType() || !RHSType->isFloatingType()) | |||
| 1253 | return false; | |||
| 1254 | ||||
| 1255 | // No issue if both have the same 128-bit float semantics. | |||
| 1256 | auto *LHSComplex = LHSType->getAs<ComplexType>(); | |||
| 1257 | auto *RHSComplex = RHSType->getAs<ComplexType>(); | |||
| 1258 | ||||
| 1259 | QualType LHSElem = LHSComplex ? LHSComplex->getElementType() : LHSType; | |||
| 1260 | QualType RHSElem = RHSComplex ? RHSComplex->getElementType() : RHSType; | |||
| 1261 | ||||
| 1262 | const llvm::fltSemantics &LHSSem = S.Context.getFloatTypeSemantics(LHSElem); | |||
| 1263 | const llvm::fltSemantics &RHSSem = S.Context.getFloatTypeSemantics(RHSElem); | |||
| 1264 | ||||
| 1265 | if ((&LHSSem != &llvm::APFloat::PPCDoubleDouble() || | |||
| 1266 | &RHSSem != &llvm::APFloat::IEEEquad()) && | |||
| 1267 | (&LHSSem != &llvm::APFloat::IEEEquad() || | |||
| 1268 | &RHSSem != &llvm::APFloat::PPCDoubleDouble())) | |||
| 1269 | return false; | |||
| 1270 | ||||
| 1271 | return true; | |||
| 1272 | } | |||
| 1273 | ||||
| 1274 | typedef ExprResult PerformCastFn(Sema &S, Expr *operand, QualType toType); | |||
| 1275 | ||||
| 1276 | namespace { | |||
| 1277 | /// These helper callbacks are placed in an anonymous namespace to | |||
| 1278 | /// permit their use as function template parameters. | |||
| 1279 | ExprResult doIntegralCast(Sema &S, Expr *op, QualType toType) { | |||
| 1280 | return S.ImpCastExprToType(op, toType, CK_IntegralCast); | |||
| 1281 | } | |||
| 1282 | ||||
| 1283 | ExprResult doComplexIntegralCast(Sema &S, Expr *op, QualType toType) { | |||
| 1284 | return S.ImpCastExprToType(op, S.Context.getComplexType(toType), | |||
| 1285 | CK_IntegralComplexCast); | |||
| 1286 | } | |||
| 1287 | } | |||
| 1288 | ||||
| 1289 | /// Handle integer arithmetic conversions. Helper function of | |||
| 1290 | /// UsualArithmeticConversions() | |||
| 1291 | template <PerformCastFn doLHSCast, PerformCastFn doRHSCast> | |||
| 1292 | static QualType handleIntegerConversion(Sema &S, ExprResult &LHS, | |||
| 1293 | ExprResult &RHS, QualType LHSType, | |||
| 1294 | QualType RHSType, bool IsCompAssign) { | |||
| 1295 | // The rules for this case are in C99 6.3.1.8 | |||
| 1296 | int order = S.Context.getIntegerTypeOrder(LHSType, RHSType); | |||
| 1297 | bool LHSSigned = LHSType->hasSignedIntegerRepresentation(); | |||
| 1298 | bool RHSSigned = RHSType->hasSignedIntegerRepresentation(); | |||
| 1299 | if (LHSSigned == RHSSigned) { | |||
| 1300 | // Same signedness; use the higher-ranked type | |||
| 1301 | if (order >= 0) { | |||
| 1302 | RHS = (*doRHSCast)(S, RHS.get(), LHSType); | |||
| 1303 | return LHSType; | |||
| 1304 | } else if (!IsCompAssign) | |||
| 1305 | LHS = (*doLHSCast)(S, LHS.get(), RHSType); | |||
| 1306 | return RHSType; | |||
| 1307 | } else if (order != (LHSSigned ? 1 : -1)) { | |||
| 1308 | // The unsigned type has greater than or equal rank to the | |||
| 1309 | // signed type, so use the unsigned type | |||
| 1310 | if (RHSSigned) { | |||
| 1311 | RHS = (*doRHSCast)(S, RHS.get(), LHSType); | |||
| 1312 | return LHSType; | |||
| 1313 | } else if (!IsCompAssign) | |||
| 1314 | LHS = (*doLHSCast)(S, LHS.get(), RHSType); | |||
| 1315 | return RHSType; | |||
| 1316 | } else if (S.Context.getIntWidth(LHSType) != S.Context.getIntWidth(RHSType)) { | |||
| 1317 | // The two types are different widths; if we are here, that | |||
| 1318 | // means the signed type is larger than the unsigned type, so | |||
| 1319 | // use the signed type. | |||
| 1320 | if (LHSSigned) { | |||
| 1321 | RHS = (*doRHSCast)(S, RHS.get(), LHSType); | |||
| 1322 | return LHSType; | |||
| 1323 | } else if (!IsCompAssign) | |||
| 1324 | LHS = (*doLHSCast)(S, LHS.get(), RHSType); | |||
| 1325 | return RHSType; | |||
| 1326 | } else { | |||
| 1327 | // The signed type is higher-ranked than the unsigned type, | |||
| 1328 | // but isn't actually any bigger (like unsigned int and long | |||
| 1329 | // on most 32-bit systems). Use the unsigned type corresponding | |||
| 1330 | // to the signed type. | |||
| 1331 | QualType result = | |||
| 1332 | S.Context.getCorrespondingUnsignedType(LHSSigned ? LHSType : RHSType); | |||
| 1333 | RHS = (*doRHSCast)(S, RHS.get(), result); | |||
| 1334 | if (!IsCompAssign) | |||
| 1335 | LHS = (*doLHSCast)(S, LHS.get(), result); | |||
| 1336 | return result; | |||
| 1337 | } | |||
| 1338 | } | |||
| 1339 | ||||
| 1340 | /// Handle conversions with GCC complex int extension. Helper function | |||
| 1341 | /// of UsualArithmeticConversions() | |||
| 1342 | static QualType handleComplexIntConversion(Sema &S, ExprResult &LHS, | |||
| 1343 | ExprResult &RHS, QualType LHSType, | |||
| 1344 | QualType RHSType, | |||
| 1345 | bool IsCompAssign) { | |||
| 1346 | const ComplexType *LHSComplexInt = LHSType->getAsComplexIntegerType(); | |||
| 1347 | const ComplexType *RHSComplexInt = RHSType->getAsComplexIntegerType(); | |||
| 1348 | ||||
| 1349 | if (LHSComplexInt && RHSComplexInt) { | |||
| 1350 | QualType LHSEltType = LHSComplexInt->getElementType(); | |||
| 1351 | QualType RHSEltType = RHSComplexInt->getElementType(); | |||
| 1352 | QualType ScalarType = | |||
| 1353 | handleIntegerConversion<doComplexIntegralCast, doComplexIntegralCast> | |||
| 1354 | (S, LHS, RHS, LHSEltType, RHSEltType, IsCompAssign); | |||
| 1355 | ||||
| 1356 | return S.Context.getComplexType(ScalarType); | |||
| 1357 | } | |||
| 1358 | ||||
| 1359 | if (LHSComplexInt) { | |||
| 1360 | QualType LHSEltType = LHSComplexInt->getElementType(); | |||
| 1361 | QualType ScalarType = | |||
| 1362 | handleIntegerConversion<doComplexIntegralCast, doIntegralCast> | |||
| 1363 | (S, LHS, RHS, LHSEltType, RHSType, IsCompAssign); | |||
| 1364 | QualType ComplexType = S.Context.getComplexType(ScalarType); | |||
| 1365 | RHS = S.ImpCastExprToType(RHS.get(), ComplexType, | |||
| 1366 | CK_IntegralRealToComplex); | |||
| 1367 | ||||
| 1368 | return ComplexType; | |||
| 1369 | } | |||
| 1370 | ||||
| 1371 | assert(RHSComplexInt)(static_cast <bool> (RHSComplexInt) ? void (0) : __assert_fail ("RHSComplexInt", "clang/lib/Sema/SemaExpr.cpp", 1371, __extension__ __PRETTY_FUNCTION__)); | |||
| 1372 | ||||
| 1373 | QualType RHSEltType = RHSComplexInt->getElementType(); | |||
| 1374 | QualType ScalarType = | |||
| 1375 | handleIntegerConversion<doIntegralCast, doComplexIntegralCast> | |||
| 1376 | (S, LHS, RHS, LHSType, RHSEltType, IsCompAssign); | |||
| 1377 | QualType ComplexType = S.Context.getComplexType(ScalarType); | |||
| 1378 | ||||
| 1379 | if (!IsCompAssign) | |||
| 1380 | LHS = S.ImpCastExprToType(LHS.get(), ComplexType, | |||
| 1381 | CK_IntegralRealToComplex); | |||
| 1382 | return ComplexType; | |||
| 1383 | } | |||
| 1384 | ||||
| 1385 | /// Return the rank of a given fixed point or integer type. The value itself | |||
| 1386 | /// doesn't matter, but the values must be increasing with proper increasing | |||
| 1387 | /// rank as described in N1169 4.1.1. | |||
| 1388 | static unsigned GetFixedPointRank(QualType Ty) { | |||
| 1389 | const auto *BTy = Ty->getAs<BuiltinType>(); | |||
| 1390 | assert(BTy && "Expected a builtin type.")(static_cast <bool> (BTy && "Expected a builtin type." ) ? void (0) : __assert_fail ("BTy && \"Expected a builtin type.\"" , "clang/lib/Sema/SemaExpr.cpp", 1390, __extension__ __PRETTY_FUNCTION__ )); | |||
| 1391 | ||||
| 1392 | switch (BTy->getKind()) { | |||
| 1393 | case BuiltinType::ShortFract: | |||
| 1394 | case BuiltinType::UShortFract: | |||
| 1395 | case BuiltinType::SatShortFract: | |||
| 1396 | case BuiltinType::SatUShortFract: | |||
| 1397 | return 1; | |||
| 1398 | case BuiltinType::Fract: | |||
| 1399 | case BuiltinType::UFract: | |||
| 1400 | case BuiltinType::SatFract: | |||
| 1401 | case BuiltinType::SatUFract: | |||
| 1402 | return 2; | |||
| 1403 | case BuiltinType::LongFract: | |||
| 1404 | case BuiltinType::ULongFract: | |||
| 1405 | case BuiltinType::SatLongFract: | |||
| 1406 | case BuiltinType::SatULongFract: | |||
| 1407 | return 3; | |||
| 1408 | case BuiltinType::ShortAccum: | |||
| 1409 | case BuiltinType::UShortAccum: | |||
| 1410 | case BuiltinType::SatShortAccum: | |||
| 1411 | case BuiltinType::SatUShortAccum: | |||
| 1412 | return 4; | |||
| 1413 | case BuiltinType::Accum: | |||
| 1414 | case BuiltinType::UAccum: | |||
| 1415 | case BuiltinType::SatAccum: | |||
| 1416 | case BuiltinType::SatUAccum: | |||
| 1417 | return 5; | |||
| 1418 | case BuiltinType::LongAccum: | |||
| 1419 | case BuiltinType::ULongAccum: | |||
| 1420 | case BuiltinType::SatLongAccum: | |||
| 1421 | case BuiltinType::SatULongAccum: | |||
| 1422 | return 6; | |||
| 1423 | default: | |||
| 1424 | if (BTy->isInteger()) | |||
| 1425 | return 0; | |||
| 1426 | llvm_unreachable("Unexpected fixed point or integer type")::llvm::llvm_unreachable_internal("Unexpected fixed point or integer type" , "clang/lib/Sema/SemaExpr.cpp", 1426); | |||
| 1427 | } | |||
| 1428 | } | |||
| 1429 | ||||
| 1430 | /// handleFixedPointConversion - Fixed point operations between fixed | |||
| 1431 | /// point types and integers or other fixed point types do not fall under | |||
| 1432 | /// usual arithmetic conversion since these conversions could result in loss | |||
| 1433 | /// of precsision (N1169 4.1.4). These operations should be calculated with | |||
| 1434 | /// the full precision of their result type (N1169 4.1.6.2.1). | |||
| 1435 | static QualType handleFixedPointConversion(Sema &S, QualType LHSTy, | |||
| 1436 | QualType RHSTy) { | |||
| 1437 | assert((LHSTy->isFixedPointType() || RHSTy->isFixedPointType()) &&(static_cast <bool> ((LHSTy->isFixedPointType() || RHSTy ->isFixedPointType()) && "Expected at least one of the operands to be a fixed point type" ) ? void (0) : __assert_fail ("(LHSTy->isFixedPointType() || RHSTy->isFixedPointType()) && \"Expected at least one of the operands to be a fixed point type\"" , "clang/lib/Sema/SemaExpr.cpp", 1438, __extension__ __PRETTY_FUNCTION__ )) | |||
| 1438 | "Expected at least one of the operands to be a fixed point type")(static_cast <bool> ((LHSTy->isFixedPointType() || RHSTy ->isFixedPointType()) && "Expected at least one of the operands to be a fixed point type" ) ? void (0) : __assert_fail ("(LHSTy->isFixedPointType() || RHSTy->isFixedPointType()) && \"Expected at least one of the operands to be a fixed point type\"" , "clang/lib/Sema/SemaExpr.cpp", 1438, __extension__ __PRETTY_FUNCTION__ )); | |||
| 1439 | assert((LHSTy->isFixedPointOrIntegerType() ||(static_cast <bool> ((LHSTy->isFixedPointOrIntegerType () || RHSTy->isFixedPointOrIntegerType()) && "Special fixed point arithmetic operation conversions are only " "applied to ints or other fixed point types") ? void (0) : __assert_fail ("(LHSTy->isFixedPointOrIntegerType() || RHSTy->isFixedPointOrIntegerType()) && \"Special fixed point arithmetic operation conversions are only \" \"applied to ints or other fixed point types\"" , "clang/lib/Sema/SemaExpr.cpp", 1442, __extension__ __PRETTY_FUNCTION__ )) | |||
| 1440 | RHSTy->isFixedPointOrIntegerType()) &&(static_cast <bool> ((LHSTy->isFixedPointOrIntegerType () || RHSTy->isFixedPointOrIntegerType()) && "Special fixed point arithmetic operation conversions are only " "applied to ints or other fixed point types") ? void (0) : __assert_fail ("(LHSTy->isFixedPointOrIntegerType() || RHSTy->isFixedPointOrIntegerType()) && \"Special fixed point arithmetic operation conversions are only \" \"applied to ints or other fixed point types\"" , "clang/lib/Sema/SemaExpr.cpp", 1442, __extension__ __PRETTY_FUNCTION__ )) | |||
| 1441 | "Special fixed point arithmetic operation conversions are only "(static_cast <bool> ((LHSTy->isFixedPointOrIntegerType () || RHSTy->isFixedPointOrIntegerType()) && "Special fixed point arithmetic operation conversions are only " "applied to ints or other fixed point types") ? void (0) : __assert_fail ("(LHSTy->isFixedPointOrIntegerType() || RHSTy->isFixedPointOrIntegerType()) && \"Special fixed point arithmetic operation conversions are only \" \"applied to ints or other fixed point types\"" , "clang/lib/Sema/SemaExpr.cpp", 1442, __extension__ __PRETTY_FUNCTION__ )) | |||
| 1442 | "applied to ints or other fixed point types")(static_cast <bool> ((LHSTy->isFixedPointOrIntegerType () || RHSTy->isFixedPointOrIntegerType()) && "Special fixed point arithmetic operation conversions are only " "applied to ints or other fixed point types") ? void (0) : __assert_fail ("(LHSTy->isFixedPointOrIntegerType() || RHSTy->isFixedPointOrIntegerType()) && \"Special fixed point arithmetic operation conversions are only \" \"applied to ints or other fixed point types\"" , "clang/lib/Sema/SemaExpr.cpp", 1442, __extension__ __PRETTY_FUNCTION__ )); | |||
| 1443 | ||||
| 1444 | // If one operand has signed fixed-point type and the other operand has | |||
| 1445 | // unsigned fixed-point type, then the unsigned fixed-point operand is | |||
| 1446 | // converted to its corresponding signed fixed-point type and the resulting | |||
| 1447 | // type is the type of the converted operand. | |||
| 1448 | if (RHSTy->isSignedFixedPointType() && LHSTy->isUnsignedFixedPointType()) | |||
| 1449 | LHSTy = S.Context.getCorrespondingSignedFixedPointType(LHSTy); | |||
| 1450 | else if (RHSTy->isUnsignedFixedPointType() && LHSTy->isSignedFixedPointType()) | |||
| 1451 | RHSTy = S.Context.getCorrespondingSignedFixedPointType(RHSTy); | |||
| 1452 | ||||
| 1453 | // The result type is the type with the highest rank, whereby a fixed-point | |||
| 1454 | // conversion rank is always greater than an integer conversion rank; if the | |||
| 1455 | // type of either of the operands is a saturating fixedpoint type, the result | |||
| 1456 | // type shall be the saturating fixed-point type corresponding to the type | |||
| 1457 | // with the highest rank; the resulting value is converted (taking into | |||
| 1458 | // account rounding and overflow) to the precision of the resulting type. | |||
| 1459 | // Same ranks between signed and unsigned types are resolved earlier, so both | |||
| 1460 | // types are either signed or both unsigned at this point. | |||
| 1461 | unsigned LHSTyRank = GetFixedPointRank(LHSTy); | |||
| 1462 | unsigned RHSTyRank = GetFixedPointRank(RHSTy); | |||
| 1463 | ||||
| 1464 | QualType ResultTy = LHSTyRank > RHSTyRank ? LHSTy : RHSTy; | |||
| 1465 | ||||
| 1466 | if (LHSTy->isSaturatedFixedPointType() || RHSTy->isSaturatedFixedPointType()) | |||
| 1467 | ResultTy = S.Context.getCorrespondingSaturatedType(ResultTy); | |||
| 1468 | ||||
| 1469 | return ResultTy; | |||
| 1470 | } | |||
| 1471 | ||||
| 1472 | /// Check that the usual arithmetic conversions can be performed on this pair of | |||
| 1473 | /// expressions that might be of enumeration type. | |||
| 1474 | static void checkEnumArithmeticConversions(Sema &S, Expr *LHS, Expr *RHS, | |||
| 1475 | SourceLocation Loc, | |||
| 1476 | Sema::ArithConvKind ACK) { | |||
| 1477 | // C++2a [expr.arith.conv]p1: | |||
| 1478 | // If one operand is of enumeration type and the other operand is of a | |||
| 1479 | // different enumeration type or a floating-point type, this behavior is | |||
| 1480 | // deprecated ([depr.arith.conv.enum]). | |||
| 1481 | // | |||
| 1482 | // Warn on this in all language modes. Produce a deprecation warning in C++20. | |||
| 1483 | // Eventually we will presumably reject these cases (in C++23 onwards?). | |||
| 1484 | QualType L = LHS->getType(), R = RHS->getType(); | |||
| 1485 | bool LEnum = L->isUnscopedEnumerationType(), | |||
| 1486 | REnum = R->isUnscopedEnumerationType(); | |||
| 1487 | bool IsCompAssign = ACK == Sema::ACK_CompAssign; | |||
| 1488 | if ((!IsCompAssign && LEnum && R->isFloatingType()) || | |||
| 1489 | (REnum && L->isFloatingType())) { | |||
| 1490 | S.Diag(Loc, S.getLangOpts().CPlusPlus20 | |||
| 1491 | ? diag::warn_arith_conv_enum_float_cxx20 | |||
| 1492 | : diag::warn_arith_conv_enum_float) | |||
| 1493 | << LHS->getSourceRange() << RHS->getSourceRange() | |||
| 1494 | << (int)ACK << LEnum << L << R; | |||
| 1495 | } else if (!IsCompAssign && LEnum && REnum && | |||
| 1496 | !S.Context.hasSameUnqualifiedType(L, R)) { | |||
| 1497 | unsigned DiagID; | |||
| 1498 | if (!L->castAs<EnumType>()->getDecl()->hasNameForLinkage() || | |||
| 1499 | !R->castAs<EnumType>()->getDecl()->hasNameForLinkage()) { | |||
| 1500 | // If either enumeration type is unnamed, it's less likely that the | |||
| 1501 | // user cares about this, but this situation is still deprecated in | |||
| 1502 | // C++2a. Use a different warning group. | |||
| 1503 | DiagID = S.getLangOpts().CPlusPlus20 | |||
| 1504 | ? diag::warn_arith_conv_mixed_anon_enum_types_cxx20 | |||
| 1505 | : diag::warn_arith_conv_mixed_anon_enum_types; | |||
| 1506 | } else if (ACK == Sema::ACK_Conditional) { | |||
| 1507 | // Conditional expressions are separated out because they have | |||
| 1508 | // historically had a different warning flag. | |||
| 1509 | DiagID = S.getLangOpts().CPlusPlus20 | |||
| 1510 | ? diag::warn_conditional_mixed_enum_types_cxx20 | |||
| 1511 | : diag::warn_conditional_mixed_enum_types; | |||
| 1512 | } else if (ACK == Sema::ACK_Comparison) { | |||
| 1513 | // Comparison expressions are separated out because they have | |||
| 1514 | // historically had a different warning flag. | |||
| 1515 | DiagID = S.getLangOpts().CPlusPlus20 | |||
| 1516 | ? diag::warn_comparison_mixed_enum_types_cxx20 | |||
| 1517 | : diag::warn_comparison_mixed_enum_types; | |||
| 1518 | } else { | |||
| 1519 | DiagID = S.getLangOpts().CPlusPlus20 | |||
| 1520 | ? diag::warn_arith_conv_mixed_enum_types_cxx20 | |||
| 1521 | : diag::warn_arith_conv_mixed_enum_types; | |||
| 1522 | } | |||
| 1523 | S.Diag(Loc, DiagID) << LHS->getSourceRange() << RHS->getSourceRange() | |||
| 1524 | << (int)ACK << L << R; | |||
| 1525 | } | |||
| 1526 | } | |||
| 1527 | ||||
| 1528 | /// UsualArithmeticConversions - Performs various conversions that are common to | |||
| 1529 | /// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this | |||
| 1530 | /// routine returns the first non-arithmetic type found. The client is | |||
| 1531 | /// responsible for emitting appropriate error diagnostics. | |||
| 1532 | QualType Sema::UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS, | |||
| 1533 | SourceLocation Loc, | |||
| 1534 | ArithConvKind ACK) { | |||
| 1535 | checkEnumArithmeticConversions(*this, LHS.get(), RHS.get(), Loc, ACK); | |||
| 1536 | ||||
| 1537 | if (ACK != ACK_CompAssign) { | |||
| 1538 | LHS = UsualUnaryConversions(LHS.get()); | |||
| 1539 | if (LHS.isInvalid()) | |||
| 1540 | return QualType(); | |||
| 1541 | } | |||
| 1542 | ||||
| 1543 | RHS = UsualUnaryConversions(RHS.get()); | |||
| 1544 | if (RHS.isInvalid()) | |||
| 1545 | return QualType(); | |||
| 1546 | ||||
| 1547 | // For conversion purposes, we ignore any qualifiers. | |||
| 1548 | // For example, "const float" and "float" are equivalent. | |||
| 1549 | QualType LHSType = LHS.get()->getType().getUnqualifiedType(); | |||
| 1550 | QualType RHSType = RHS.get()->getType().getUnqualifiedType(); | |||
| 1551 | ||||
| 1552 | // For conversion purposes, we ignore any atomic qualifier on the LHS. | |||
| 1553 | if (const AtomicType *AtomicLHS = LHSType->getAs<AtomicType>()) | |||
| 1554 | LHSType = AtomicLHS->getValueType(); | |||
| 1555 | ||||
| 1556 | // If both types are identical, no conversion is needed. | |||
| 1557 | if (Context.hasSameType(LHSType, RHSType)) | |||
| 1558 | return Context.getCommonSugaredType(LHSType, RHSType); | |||
| 1559 | ||||
| 1560 | // If either side is a non-arithmetic type (e.g. a pointer), we are done. | |||
| 1561 | // The caller can deal with this (e.g. pointer + int). | |||
| 1562 | if (!LHSType->isArithmeticType() || !RHSType->isArithmeticType()) | |||
| 1563 | return QualType(); | |||
| 1564 | ||||
| 1565 | // Apply unary and bitfield promotions to the LHS's type. | |||
| 1566 | QualType LHSUnpromotedType = LHSType; | |||
| 1567 | if (Context.isPromotableIntegerType(LHSType)) | |||
| 1568 | LHSType = Context.getPromotedIntegerType(LHSType); | |||
| 1569 | QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(LHS.get()); | |||
| 1570 | if (!LHSBitfieldPromoteTy.isNull()) | |||
| 1571 | LHSType = LHSBitfieldPromoteTy; | |||
| 1572 | if (LHSType != LHSUnpromotedType && ACK != ACK_CompAssign) | |||
| 1573 | LHS = ImpCastExprToType(LHS.get(), LHSType, CK_IntegralCast); | |||
| 1574 | ||||
| 1575 | // If both types are identical, no conversion is needed. | |||
| 1576 | if (Context.hasSameType(LHSType, RHSType)) | |||
| 1577 | return Context.getCommonSugaredType(LHSType, RHSType); | |||
| 1578 | ||||
| 1579 | // At this point, we have two different arithmetic types. | |||
| 1580 | ||||
| 1581 | // Diagnose attempts to convert between __ibm128, __float128 and long double | |||
| 1582 | // where such conversions currently can't be handled. | |||
| 1583 | if (unsupportedTypeConversion(*this, LHSType, RHSType)) | |||
| 1584 | return QualType(); | |||
| 1585 | ||||
| 1586 | // Handle complex types first (C99 6.3.1.8p1). | |||
| 1587 | if (LHSType->isComplexType() || RHSType->isComplexType()) | |||
| 1588 | return handleComplexConversion(*this, LHS, RHS, LHSType, RHSType, | |||
| 1589 | ACK == ACK_CompAssign); | |||
| 1590 | ||||
| 1591 | // Now handle "real" floating types (i.e. float, double, long double). | |||
| 1592 | if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType()) | |||
| 1593 | return handleFloatConversion(*this, LHS, RHS, LHSType, RHSType, | |||
| 1594 | ACK == ACK_CompAssign); | |||
| 1595 | ||||
| 1596 | // Handle GCC complex int extension. | |||
| 1597 | if (LHSType->isComplexIntegerType() || RHSType->isComplexIntegerType()) | |||
| 1598 | return handleComplexIntConversion(*this, LHS, RHS, LHSType, RHSType, | |||
| 1599 | ACK == ACK_CompAssign); | |||
| 1600 | ||||
| 1601 | if (LHSType->isFixedPointType() || RHSType->isFixedPointType()) | |||
| 1602 | return handleFixedPointConversion(*this, LHSType, RHSType); | |||
| 1603 | ||||
| 1604 | // Finally, we have two differing integer types. | |||
| 1605 | return handleIntegerConversion<doIntegralCast, doIntegralCast> | |||
| 1606 | (*this, LHS, RHS, LHSType, RHSType, ACK == ACK_CompAssign); | |||
| 1607 | } | |||
| 1608 | ||||
| 1609 | //===----------------------------------------------------------------------===// | |||
| 1610 | // Semantic Analysis for various Expression Types | |||
| 1611 | //===----------------------------------------------------------------------===// | |||
| 1612 | ||||
| 1613 | ||||
| 1614 | ExprResult | |||
| 1615 | Sema::ActOnGenericSelectionExpr(SourceLocation KeyLoc, | |||
| 1616 | SourceLocation DefaultLoc, | |||
| 1617 | SourceLocation RParenLoc, | |||
| 1618 | Expr *ControllingExpr, | |||
| 1619 | ArrayRef<ParsedType> ArgTypes, | |||
| 1620 | ArrayRef<Expr *> ArgExprs) { | |||
| 1621 | unsigned NumAssocs = ArgTypes.size(); | |||
| 1622 | assert(NumAssocs == ArgExprs.size())(static_cast <bool> (NumAssocs == ArgExprs.size()) ? void (0) : __assert_fail ("NumAssocs == ArgExprs.size()", "clang/lib/Sema/SemaExpr.cpp" , 1622, __extension__ __PRETTY_FUNCTION__)); | |||
| 1623 | ||||
| 1624 | TypeSourceInfo **Types = new TypeSourceInfo*[NumAssocs]; | |||
| 1625 | for (unsigned i = 0; i < NumAssocs; ++i) { | |||
| 1626 | if (ArgTypes[i]) | |||
| 1627 | (void) GetTypeFromParser(ArgTypes[i], &Types[i]); | |||
| 1628 | else | |||
| 1629 | Types[i] = nullptr; | |||
| 1630 | } | |||
| 1631 | ||||
| 1632 | ExprResult ER = | |||
| 1633 | CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc, ControllingExpr, | |||
| 1634 | llvm::ArrayRef(Types, NumAssocs), ArgExprs); | |||
| 1635 | delete [] Types; | |||
| 1636 | return ER; | |||
| 1637 | } | |||
| 1638 | ||||
| 1639 | ExprResult | |||
| 1640 | Sema::CreateGenericSelectionExpr(SourceLocation KeyLoc, | |||
| 1641 | SourceLocation DefaultLoc, | |||
| 1642 | SourceLocation RParenLoc, | |||
| 1643 | Expr *ControllingExpr, | |||
| 1644 | ArrayRef<TypeSourceInfo *> Types, | |||
| 1645 | ArrayRef<Expr *> Exprs) { | |||
| 1646 | unsigned NumAssocs = Types.size(); | |||
| 1647 | assert(NumAssocs == Exprs.size())(static_cast <bool> (NumAssocs == Exprs.size()) ? void ( 0) : __assert_fail ("NumAssocs == Exprs.size()", "clang/lib/Sema/SemaExpr.cpp" , 1647, __extension__ __PRETTY_FUNCTION__)); | |||
| 1648 | ||||
| 1649 | // Decay and strip qualifiers for the controlling expression type, and handle | |||
| 1650 | // placeholder type replacement. See committee discussion from WG14 DR423. | |||
| 1651 | { | |||
| 1652 | EnterExpressionEvaluationContext Unevaluated( | |||
| 1653 | *this, Sema::ExpressionEvaluationContext::Unevaluated); | |||
| 1654 | ExprResult R = DefaultFunctionArrayLvalueConversion(ControllingExpr); | |||
| 1655 | if (R.isInvalid()) | |||
| 1656 | return ExprError(); | |||
| 1657 | ControllingExpr = R.get(); | |||
| 1658 | } | |||
| 1659 | ||||
| 1660 | bool TypeErrorFound = false, | |||
| 1661 | IsResultDependent = ControllingExpr->isTypeDependent(), | |||
| 1662 | ContainsUnexpandedParameterPack | |||
| 1663 | = ControllingExpr->containsUnexpandedParameterPack(); | |||
| 1664 | ||||
| 1665 | // The controlling expression is an unevaluated operand, so side effects are | |||
| 1666 | // likely unintended. | |||
| 1667 | if (!inTemplateInstantiation() && !IsResultDependent && | |||
| 1668 | ControllingExpr->HasSideEffects(Context, false)) | |||
| 1669 | Diag(ControllingExpr->getExprLoc(), | |||
| 1670 | diag::warn_side_effects_unevaluated_context); | |||
| 1671 | ||||
| 1672 | for (unsigned i = 0; i < NumAssocs; ++i) { | |||
| 1673 | if (Exprs[i]->containsUnexpandedParameterPack()) | |||
| 1674 | ContainsUnexpandedParameterPack = true; | |||
| 1675 | ||||
| 1676 | if (Types[i]) { | |||
| 1677 | if (Types[i]->getType()->containsUnexpandedParameterPack()) | |||
| 1678 | ContainsUnexpandedParameterPack = true; | |||
| 1679 | ||||
| 1680 | if (Types[i]->getType()->isDependentType()) { | |||
| 1681 | IsResultDependent = true; | |||
| 1682 | } else { | |||
| 1683 | // C11 6.5.1.1p2 "The type name in a generic association shall specify a | |||
| 1684 | // complete object type other than a variably modified type." | |||
| 1685 | unsigned D = 0; | |||
| 1686 | if (Types[i]->getType()->isIncompleteType()) | |||
| 1687 | D = diag::err_assoc_type_incomplete; | |||
| 1688 | else if (!Types[i]->getType()->isObjectType()) | |||
| 1689 | D = diag::err_assoc_type_nonobject; | |||
| 1690 | else if (Types[i]->getType()->isVariablyModifiedType()) | |||
| 1691 | D = diag::err_assoc_type_variably_modified; | |||
| 1692 | else { | |||
| 1693 | // Because the controlling expression undergoes lvalue conversion, | |||
| 1694 | // array conversion, and function conversion, an association which is | |||
| 1695 | // of array type, function type, or is qualified can never be | |||
| 1696 | // reached. We will warn about this so users are less surprised by | |||
| 1697 | // the unreachable association. However, we don't have to handle | |||
| 1698 | // function types; that's not an object type, so it's handled above. | |||
| 1699 | // | |||
| 1700 | // The logic is somewhat different for C++ because C++ has different | |||
| 1701 | // lvalue to rvalue conversion rules than C. [conv.lvalue]p1 says, | |||
| 1702 | // If T is a non-class type, the type of the prvalue is the cv- | |||
| 1703 | // unqualified version of T. Otherwise, the type of the prvalue is T. | |||
| 1704 | // The result of these rules is that all qualified types in an | |||
| 1705 | // association in C are unreachable, and in C++, only qualified non- | |||
| 1706 | // class types are unreachable. | |||
| 1707 | unsigned Reason = 0; | |||
| 1708 | QualType QT = Types[i]->getType(); | |||
| 1709 | if (QT->isArrayType()) | |||
| 1710 | Reason = 1; | |||
| 1711 | else if (QT.hasQualifiers() && | |||
| 1712 | (!LangOpts.CPlusPlus || !QT->isRecordType())) | |||
| 1713 | Reason = 2; | |||
| 1714 | ||||
| 1715 | if (Reason) | |||
| 1716 | Diag(Types[i]->getTypeLoc().getBeginLoc(), | |||
| 1717 | diag::warn_unreachable_association) | |||
| 1718 | << QT << (Reason - 1); | |||
| 1719 | } | |||
| 1720 | ||||
| 1721 | if (D != 0) { | |||
| 1722 | Diag(Types[i]->getTypeLoc().getBeginLoc(), D) | |||
| 1723 | << Types[i]->getTypeLoc().getSourceRange() | |||
| 1724 | << Types[i]->getType(); | |||
| 1725 | TypeErrorFound = true; | |||
| 1726 | } | |||
| 1727 | ||||
| 1728 | // C11 6.5.1.1p2 "No two generic associations in the same generic | |||
| 1729 | // selection shall specify compatible types." | |||
| 1730 | for (unsigned j = i+1; j < NumAssocs; ++j) | |||
| 1731 | if (Types[j] && !Types[j]->getType()->isDependentType() && | |||
| 1732 | Context.typesAreCompatible(Types[i]->getType(), | |||
| 1733 | Types[j]->getType())) { | |||
| 1734 | Diag(Types[j]->getTypeLoc().getBeginLoc(), | |||
| 1735 | diag::err_assoc_compatible_types) | |||
| 1736 | << Types[j]->getTypeLoc().getSourceRange() | |||
| 1737 | << Types[j]->getType() | |||
| 1738 | << Types[i]->getType(); | |||
| 1739 | Diag(Types[i]->getTypeLoc().getBeginLoc(), | |||
| 1740 | diag::note_compat_assoc) | |||
| 1741 | << Types[i]->getTypeLoc().getSourceRange() | |||
| 1742 | << Types[i]->getType(); | |||
| 1743 | TypeErrorFound = true; | |||
| 1744 | } | |||
| 1745 | } | |||
| 1746 | } | |||
| 1747 | } | |||
| 1748 | if (TypeErrorFound) | |||
| 1749 | return ExprError(); | |||
| 1750 | ||||
| 1751 | // If we determined that the generic selection is result-dependent, don't | |||
| 1752 | // try to compute the result expression. | |||
| 1753 | if (IsResultDependent) | |||
| 1754 | return GenericSelectionExpr::Create(Context, KeyLoc, ControllingExpr, Types, | |||
| 1755 | Exprs, DefaultLoc, RParenLoc, | |||
| 1756 | ContainsUnexpandedParameterPack); | |||
| 1757 | ||||
| 1758 | SmallVector<unsigned, 1> CompatIndices; | |||
| 1759 | unsigned DefaultIndex = -1U; | |||
| 1760 | // Look at the canonical type of the controlling expression in case it was a | |||
| 1761 | // deduced type like __auto_type. However, when issuing diagnostics, use the | |||
| 1762 | // type the user wrote in source rather than the canonical one. | |||
| 1763 | for (unsigned i = 0; i < NumAssocs; ++i) { | |||
| 1764 | if (!Types[i]) | |||
| 1765 | DefaultIndex = i; | |||
| 1766 | else if (Context.typesAreCompatible( | |||
| 1767 | ControllingExpr->getType().getCanonicalType(), | |||
| 1768 | Types[i]->getType())) | |||
| 1769 | CompatIndices.push_back(i); | |||
| 1770 | } | |||
| 1771 | ||||
| 1772 | // C11 6.5.1.1p2 "The controlling expression of a generic selection shall have | |||
| 1773 | // type compatible with at most one of the types named in its generic | |||
| 1774 | // association list." | |||
| 1775 | if (CompatIndices.size() > 1) { | |||
| 1776 | // We strip parens here because the controlling expression is typically | |||
| 1777 | // parenthesized in macro definitions. | |||
| 1778 | ControllingExpr = ControllingExpr->IgnoreParens(); | |||
| 1779 | Diag(ControllingExpr->getBeginLoc(), diag::err_generic_sel_multi_match) | |||
| 1780 | << ControllingExpr->getSourceRange() << ControllingExpr->getType() | |||
| 1781 | << (unsigned)CompatIndices.size(); | |||
| 1782 | for (unsigned I : CompatIndices) { | |||
| 1783 | Diag(Types[I]->getTypeLoc().getBeginLoc(), | |||
| 1784 | diag::note_compat_assoc) | |||
| 1785 | << Types[I]->getTypeLoc().getSourceRange() | |||
| 1786 | << Types[I]->getType(); | |||
| 1787 | } | |||
| 1788 | return ExprError(); | |||
| 1789 | } | |||
| 1790 | ||||
| 1791 | // C11 6.5.1.1p2 "If a generic selection has no default generic association, | |||
| 1792 | // its controlling expression shall have type compatible with exactly one of | |||
| 1793 | // the types named in its generic association list." | |||
| 1794 | if (DefaultIndex == -1U && CompatIndices.size() == 0) { | |||
| 1795 | // We strip parens here because the controlling expression is typically | |||
| 1796 | // parenthesized in macro definitions. | |||
| 1797 | ControllingExpr = ControllingExpr->IgnoreParens(); | |||
| 1798 | Diag(ControllingExpr->getBeginLoc(), diag::err_generic_sel_no_match) | |||
| 1799 | << ControllingExpr->getSourceRange() << ControllingExpr->getType(); | |||
| 1800 | return ExprError(); | |||
| 1801 | } | |||
| 1802 | ||||
| 1803 | // C11 6.5.1.1p3 "If a generic selection has a generic association with a | |||
| 1804 | // type name that is compatible with the type of the controlling expression, | |||
| 1805 | // then the result expression of the generic selection is the expression | |||
| 1806 | // in that generic association. Otherwise, the result expression of the | |||
| 1807 | // generic selection is the expression in the default generic association." | |||
| 1808 | unsigned ResultIndex = | |||
| 1809 | CompatIndices.size() ? CompatIndices[0] : DefaultIndex; | |||
| 1810 | ||||
| 1811 | return GenericSelectionExpr::Create( | |||
| 1812 | Context, KeyLoc, ControllingExpr, Types, Exprs, DefaultLoc, RParenLoc, | |||
| 1813 | ContainsUnexpandedParameterPack, ResultIndex); | |||
| 1814 | } | |||
| 1815 | ||||
| 1816 | /// getUDSuffixLoc - Create a SourceLocation for a ud-suffix, given the | |||
| 1817 | /// location of the token and the offset of the ud-suffix within it. | |||
| 1818 | static SourceLocation getUDSuffixLoc(Sema &S, SourceLocation TokLoc, | |||
| 1819 | unsigned Offset) { | |||
| 1820 | return Lexer::AdvanceToTokenCharacter(TokLoc, Offset, S.getSourceManager(), | |||
| 1821 | S.getLangOpts()); | |||
| 1822 | } | |||
| 1823 | ||||
| 1824 | /// BuildCookedLiteralOperatorCall - A user-defined literal was found. Look up | |||
| 1825 | /// the corresponding cooked (non-raw) literal operator, and build a call to it. | |||
| 1826 | static ExprResult BuildCookedLiteralOperatorCall(Sema &S, Scope *Scope, | |||
| 1827 | IdentifierInfo *UDSuffix, | |||
| 1828 | SourceLocation UDSuffixLoc, | |||
| 1829 | ArrayRef<Expr*> Args, | |||
| 1830 | SourceLocation LitEndLoc) { | |||
| 1831 | assert(Args.size() <= 2 && "too many arguments for literal operator")(static_cast <bool> (Args.size() <= 2 && "too many arguments for literal operator" ) ? void (0) : __assert_fail ("Args.size() <= 2 && \"too many arguments for literal operator\"" , "clang/lib/Sema/SemaExpr.cpp", 1831, __extension__ __PRETTY_FUNCTION__ )); | |||
| 1832 | ||||
| 1833 | QualType ArgTy[2]; | |||
| 1834 | for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) { | |||
| 1835 | ArgTy[ArgIdx] = Args[ArgIdx]->getType(); | |||
| 1836 | if (ArgTy[ArgIdx]->isArrayType()) | |||
| 1837 | ArgTy[ArgIdx] = S.Context.getArrayDecayedType(ArgTy[ArgIdx]); | |||
| 1838 | } | |||
| 1839 | ||||
| 1840 | DeclarationName OpName = | |||
| 1841 | S.Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix); | |||
| 1842 | DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc); | |||
| 1843 | OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc); | |||
| 1844 | ||||
| 1845 | LookupResult R(S, OpName, UDSuffixLoc, Sema::LookupOrdinaryName); | |||
| 1846 | if (S.LookupLiteralOperator(Scope, R, llvm::ArrayRef(ArgTy, Args.size()), | |||
| 1847 | /*AllowRaw*/ false, /*AllowTemplate*/ false, | |||
| 1848 | /*AllowStringTemplatePack*/ false, | |||
| 1849 | /*DiagnoseMissing*/ true) == Sema::LOLR_Error) | |||
| 1850 | return ExprError(); | |||
| 1851 | ||||
| 1852 | return S.BuildLiteralOperatorCall(R, OpNameInfo, Args, LitEndLoc); | |||
| 1853 | } | |||
| 1854 | ||||
| 1855 | /// ActOnStringLiteral - The specified tokens were lexed as pasted string | |||
| 1856 | /// fragments (e.g. "foo" "bar" L"baz"). The result string has to handle string | |||
| 1857 | /// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from | |||
| 1858 | /// multiple tokens. However, the common case is that StringToks points to one | |||
| 1859 | /// string. | |||
| 1860 | /// | |||
| 1861 | ExprResult | |||
| 1862 | Sema::ActOnStringLiteral(ArrayRef<Token> StringToks, Scope *UDLScope) { | |||
| 1863 | assert(!StringToks.empty() && "Must have at least one string!")(static_cast <bool> (!StringToks.empty() && "Must have at least one string!" ) ? void (0) : __assert_fail ("!StringToks.empty() && \"Must have at least one string!\"" , "clang/lib/Sema/SemaExpr.cpp", 1863, __extension__ __PRETTY_FUNCTION__ )); | |||
| 1864 | ||||
| 1865 | StringLiteralParser Literal(StringToks, PP); | |||
| 1866 | if (Literal.hadError) | |||
| 1867 | return ExprError(); | |||
| 1868 | ||||
| 1869 | SmallVector<SourceLocation, 4> StringTokLocs; | |||
| 1870 | for (const Token &Tok : StringToks) | |||
| 1871 | StringTokLocs.push_back(Tok.getLocation()); | |||
| 1872 | ||||
| 1873 | QualType CharTy = Context.CharTy; | |||
| 1874 | StringLiteral::StringKind Kind = StringLiteral::Ordinary; | |||
| 1875 | if (Literal.isWide()) { | |||
| 1876 | CharTy = Context.getWideCharType(); | |||
| 1877 | Kind = StringLiteral::Wide; | |||
| 1878 | } else if (Literal.isUTF8()) { | |||
| 1879 | if (getLangOpts().Char8) | |||
| 1880 | CharTy = Context.Char8Ty; | |||
| 1881 | Kind = StringLiteral::UTF8; | |||
| 1882 | } else if (Literal.isUTF16()) { | |||
| 1883 | CharTy = Context.Char16Ty; | |||
| 1884 | Kind = StringLiteral::UTF16; | |||
| 1885 | } else if (Literal.isUTF32()) { | |||
| 1886 | CharTy = Context.Char32Ty; | |||
| 1887 | Kind = StringLiteral::UTF32; | |||
| 1888 | } else if (Literal.isPascal()) { | |||
| 1889 | CharTy = Context.UnsignedCharTy; | |||
| 1890 | } | |||
| 1891 | ||||
| 1892 | // Warn on initializing an array of char from a u8 string literal; this | |||
| 1893 | // becomes ill-formed in C++2a. | |||
| 1894 | if (getLangOpts().CPlusPlus && !getLangOpts().CPlusPlus20 && | |||
| 1895 | !getLangOpts().Char8 && Kind == StringLiteral::UTF8) { | |||
| 1896 | Diag(StringTokLocs.front(), diag::warn_cxx20_compat_utf8_string); | |||
| 1897 | ||||
| 1898 | // Create removals for all 'u8' prefixes in the string literal(s). This | |||
| 1899 | // ensures C++2a compatibility (but may change the program behavior when | |||
| 1900 | // built by non-Clang compilers for which the execution character set is | |||
| 1901 | // not always UTF-8). | |||
| 1902 | auto RemovalDiag = PDiag(diag::note_cxx20_compat_utf8_string_remove_u8); | |||
| 1903 | SourceLocation RemovalDiagLoc; | |||
| 1904 | for (const Token &Tok : StringToks) { | |||
| 1905 | if (Tok.getKind() == tok::utf8_string_literal) { | |||
| 1906 | if (RemovalDiagLoc.isInvalid()) | |||
| 1907 | RemovalDiagLoc = Tok.getLocation(); | |||
| 1908 | RemovalDiag << FixItHint::CreateRemoval(CharSourceRange::getCharRange( | |||
| 1909 | Tok.getLocation(), | |||
| 1910 | Lexer::AdvanceToTokenCharacter(Tok.getLocation(), 2, | |||
| 1911 | getSourceManager(), getLangOpts()))); | |||
| 1912 | } | |||
| 1913 | } | |||
| 1914 | Diag(RemovalDiagLoc, RemovalDiag); | |||
| 1915 | } | |||
| 1916 | ||||
| 1917 | QualType StrTy = | |||
| 1918 | Context.getStringLiteralArrayType(CharTy, Literal.GetNumStringChars()); | |||
| 1919 | ||||
| 1920 | // Pass &StringTokLocs[0], StringTokLocs.size() to factory! | |||
| 1921 | StringLiteral *Lit = StringLiteral::Create(Context, Literal.GetString(), | |||
| 1922 | Kind, Literal.Pascal, StrTy, | |||
| 1923 | &StringTokLocs[0], | |||
| 1924 | StringTokLocs.size()); | |||
| 1925 | if (Literal.getUDSuffix().empty()) | |||
| 1926 | return Lit; | |||
| 1927 | ||||
| 1928 | // We're building a user-defined literal. | |||
| 1929 | IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix()); | |||
| 1930 | SourceLocation UDSuffixLoc = | |||
| 1931 | getUDSuffixLoc(*this, StringTokLocs[Literal.getUDSuffixToken()], | |||
| 1932 | Literal.getUDSuffixOffset()); | |||
| 1933 | ||||
| 1934 | // Make sure we're allowed user-defined literals here. | |||
| 1935 | if (!UDLScope) | |||
| 1936 | return ExprError(Diag(UDSuffixLoc, diag::err_invalid_string_udl)); | |||
| 1937 | ||||
| 1938 | // C++11 [lex.ext]p5: The literal L is treated as a call of the form | |||
| 1939 | // operator "" X (str, len) | |||
| 1940 | QualType SizeType = Context.getSizeType(); | |||
| 1941 | ||||
| 1942 | DeclarationName OpName = | |||
| 1943 | Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix); | |||
| 1944 | DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc); | |||
| 1945 | OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc); | |||
| 1946 | ||||
| 1947 | QualType ArgTy[] = { | |||
| 1948 | Context.getArrayDecayedType(StrTy), SizeType | |||
| 1949 | }; | |||
| 1950 | ||||
| 1951 | LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName); | |||
| 1952 | switch (LookupLiteralOperator(UDLScope, R, ArgTy, | |||
| 1953 | /*AllowRaw*/ false, /*AllowTemplate*/ true, | |||
| 1954 | /*AllowStringTemplatePack*/ true, | |||
| 1955 | /*DiagnoseMissing*/ true, Lit)) { | |||
| 1956 | ||||
| 1957 | case LOLR_Cooked: { | |||
| 1958 | llvm::APInt Len(Context.getIntWidth(SizeType), Literal.GetNumStringChars()); | |||
| 1959 | IntegerLiteral *LenArg = IntegerLiteral::Create(Context, Len, SizeType, | |||
| 1960 | StringTokLocs[0]); | |||
| 1961 | Expr *Args[] = { Lit, LenArg }; | |||
| 1962 | ||||
| 1963 | return BuildLiteralOperatorCall(R, OpNameInfo, Args, StringTokLocs.back()); | |||
| 1964 | } | |||
| 1965 | ||||
| 1966 | case LOLR_Template: { | |||
| 1967 | TemplateArgumentListInfo ExplicitArgs; | |||
| 1968 | TemplateArgument Arg(Lit); | |||
| 1969 | TemplateArgumentLocInfo ArgInfo(Lit); | |||
| 1970 | ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo)); | |||
| 1971 | return BuildLiteralOperatorCall(R, OpNameInfo, std::nullopt, | |||
| 1972 | StringTokLocs.back(), &ExplicitArgs); | |||
| 1973 | } | |||
| 1974 | ||||
| 1975 | case LOLR_StringTemplatePack: { | |||
| 1976 | TemplateArgumentListInfo ExplicitArgs; | |||
| 1977 | ||||
| 1978 | unsigned CharBits = Context.getIntWidth(CharTy); | |||
| 1979 | bool CharIsUnsigned = CharTy->isUnsignedIntegerType(); | |||
| 1980 | llvm::APSInt Value(CharBits, CharIsUnsigned); | |||
| 1981 | ||||
| 1982 | TemplateArgument TypeArg(CharTy); | |||
| 1983 | TemplateArgumentLocInfo TypeArgInfo(Context.getTrivialTypeSourceInfo(CharTy)); | |||
| 1984 | ExplicitArgs.addArgument(TemplateArgumentLoc(TypeArg, TypeArgInfo)); | |||
| 1985 | ||||
| 1986 | for (unsigned I = 0, N = Lit->getLength(); I != N; ++I) { | |||
| 1987 | Value = Lit->getCodeUnit(I); | |||
| 1988 | TemplateArgument Arg(Context, Value, CharTy); | |||
| 1989 | TemplateArgumentLocInfo ArgInfo; | |||
| 1990 | ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo)); | |||
| 1991 | } | |||
| 1992 | return BuildLiteralOperatorCall(R, OpNameInfo, std::nullopt, | |||
| 1993 | StringTokLocs.back(), &ExplicitArgs); | |||
| 1994 | } | |||
| 1995 | case LOLR_Raw: | |||
| 1996 | case LOLR_ErrorNoDiagnostic: | |||
| 1997 | llvm_unreachable("unexpected literal operator lookup result")::llvm::llvm_unreachable_internal("unexpected literal operator lookup result" , "clang/lib/Sema/SemaExpr.cpp", 1997); | |||
| 1998 | case LOLR_Error: | |||
| 1999 | return ExprError(); | |||
| 2000 | } | |||
| 2001 | llvm_unreachable("unexpected literal operator lookup result")::llvm::llvm_unreachable_internal("unexpected literal operator lookup result" , "clang/lib/Sema/SemaExpr.cpp", 2001); | |||
| 2002 | } | |||
| 2003 | ||||
| 2004 | DeclRefExpr * | |||
| 2005 | Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK, | |||
| 2006 | SourceLocation Loc, | |||
| 2007 | const CXXScopeSpec *SS) { | |||
| 2008 | DeclarationNameInfo NameInfo(D->getDeclName(), Loc); | |||
| 2009 | return BuildDeclRefExpr(D, Ty, VK, NameInfo, SS); | |||
| 2010 | } | |||
| 2011 | ||||
| 2012 | DeclRefExpr * | |||
| 2013 | Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK, | |||
| 2014 | const DeclarationNameInfo &NameInfo, | |||
| 2015 | const CXXScopeSpec *SS, NamedDecl *FoundD, | |||
| 2016 | SourceLocation TemplateKWLoc, | |||
| 2017 | const TemplateArgumentListInfo *TemplateArgs) { | |||
| 2018 | NestedNameSpecifierLoc NNS = | |||
| 2019 | SS ? SS->getWithLocInContext(Context) : NestedNameSpecifierLoc(); | |||
| 2020 | return BuildDeclRefExpr(D, Ty, VK, NameInfo, NNS, FoundD, TemplateKWLoc, | |||
| 2021 | TemplateArgs); | |||
| 2022 | } | |||
| 2023 | ||||
| 2024 | // CUDA/HIP: Check whether a captured reference variable is referencing a | |||
| 2025 | // host variable in a device or host device lambda. | |||
| 2026 | static bool isCapturingReferenceToHostVarInCUDADeviceLambda(const Sema &S, | |||
| 2027 | VarDecl *VD) { | |||
| 2028 | if (!S.getLangOpts().CUDA || !VD->hasInit()) | |||
| 2029 | return false; | |||
| 2030 | assert(VD->getType()->isReferenceType())(static_cast <bool> (VD->getType()->isReferenceType ()) ? void (0) : __assert_fail ("VD->getType()->isReferenceType()" , "clang/lib/Sema/SemaExpr.cpp", 2030, __extension__ __PRETTY_FUNCTION__ )); | |||
| 2031 | ||||
| 2032 | // Check whether the reference variable is referencing a host variable. | |||
| 2033 | auto *DRE = dyn_cast<DeclRefExpr>(VD->getInit()); | |||
| 2034 | if (!DRE) | |||
| 2035 | return false; | |||
| 2036 | auto *Referee = dyn_cast<VarDecl>(DRE->getDecl()); | |||
| 2037 | if (!Referee || !Referee->hasGlobalStorage() || | |||
| 2038 | Referee->hasAttr<CUDADeviceAttr>()) | |||
| 2039 | return false; | |||
| 2040 | ||||
| 2041 | // Check whether the current function is a device or host device lambda. | |||
| 2042 | // Check whether the reference variable is a capture by getDeclContext() | |||
| 2043 | // since refersToEnclosingVariableOrCapture() is not ready at this point. | |||
| 2044 | auto *MD = dyn_cast_or_null<CXXMethodDecl>(S.CurContext); | |||
| 2045 | if (MD && MD->getParent()->isLambda() && | |||
| 2046 | MD->getOverloadedOperator() == OO_Call && MD->hasAttr<CUDADeviceAttr>() && | |||
| 2047 | VD->getDeclContext() != MD) | |||
| 2048 | return true; | |||
| 2049 | ||||
| 2050 | return false; | |||
| 2051 | } | |||
| 2052 | ||||
| 2053 | NonOdrUseReason Sema::getNonOdrUseReasonInCurrentContext(ValueDecl *D) { | |||
| 2054 | // A declaration named in an unevaluated operand never constitutes an odr-use. | |||
| 2055 | if (isUnevaluatedContext()) | |||
| 2056 | return NOUR_Unevaluated; | |||
| 2057 | ||||
| 2058 | // C++2a [basic.def.odr]p4: | |||
| 2059 | // A variable x whose name appears as a potentially-evaluated expression e | |||
| 2060 | // is odr-used by e unless [...] x is a reference that is usable in | |||
| 2061 | // constant expressions. | |||
| 2062 | // CUDA/HIP: | |||
| 2063 | // If a reference variable referencing a host variable is captured in a | |||
| 2064 | // device or host device lambda, the value of the referee must be copied | |||
| 2065 | // to the capture and the reference variable must be treated as odr-use | |||
| 2066 | // since the value of the referee is not known at compile time and must | |||
| 2067 | // be loaded from the captured. | |||
| 2068 | if (VarDecl *VD = dyn_cast<VarDecl>(D)) { | |||
| 2069 | if (VD->getType()->isReferenceType() && | |||
| 2070 | !(getLangOpts().OpenMP && isOpenMPCapturedDecl(D)) && | |||
| 2071 | !isCapturingReferenceToHostVarInCUDADeviceLambda(*this, VD) && | |||
| 2072 | VD->isUsableInConstantExpressions(Context)) | |||
| 2073 | return NOUR_Constant; | |||
| 2074 | } | |||
| 2075 | ||||
| 2076 | // All remaining non-variable cases constitute an odr-use. For variables, we | |||
| 2077 | // need to wait and see how the expression is used. | |||
| 2078 | return NOUR_None; | |||
| 2079 | } | |||
| 2080 | ||||
| 2081 | /// BuildDeclRefExpr - Build an expression that references a | |||
| 2082 | /// declaration that does not require a closure capture. | |||
| 2083 | DeclRefExpr * | |||
| 2084 | Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK, | |||
| 2085 | const DeclarationNameInfo &NameInfo, | |||
| 2086 | NestedNameSpecifierLoc NNS, NamedDecl *FoundD, | |||
| 2087 | SourceLocation TemplateKWLoc, | |||
| 2088 | const TemplateArgumentListInfo *TemplateArgs) { | |||
| 2089 | bool RefersToCapturedVariable = isa<VarDecl, BindingDecl>(D) && | |||
| 2090 | NeedToCaptureVariable(D, NameInfo.getLoc()); | |||
| 2091 | ||||
| 2092 | DeclRefExpr *E = DeclRefExpr::Create( | |||
| 2093 | Context, NNS, TemplateKWLoc, D, RefersToCapturedVariable, NameInfo, Ty, | |||
| 2094 | VK, FoundD, TemplateArgs, getNonOdrUseReasonInCurrentContext(D)); | |||
| 2095 | MarkDeclRefReferenced(E); | |||
| 2096 | ||||
| 2097 | // C++ [except.spec]p17: | |||
| 2098 | // An exception-specification is considered to be needed when: | |||
| 2099 | // - in an expression, the function is the unique lookup result or | |||
| 2100 | // the selected member of a set of overloaded functions. | |||
| 2101 | // | |||
| 2102 | // We delay doing this until after we've built the function reference and | |||
| 2103 | // marked it as used so that: | |||
| 2104 | // a) if the function is defaulted, we get errors from defining it before / | |||
| 2105 | // instead of errors from computing its exception specification, and | |||
| 2106 | // b) if the function is a defaulted comparison, we can use the body we | |||
| 2107 | // build when defining it as input to the exception specification | |||
| 2108 | // computation rather than computing a new body. | |||
| 2109 | if (const auto *FPT = Ty->getAs<FunctionProtoType>()) { | |||
| 2110 | if (isUnresolvedExceptionSpec(FPT->getExceptionSpecType())) { | |||
| 2111 | if (const auto *NewFPT = ResolveExceptionSpec(NameInfo.getLoc(), FPT)) | |||
| 2112 | E->setType(Context.getQualifiedType(NewFPT, Ty.getQualifiers())); | |||
| 2113 | } | |||
| 2114 | } | |||
| 2115 | ||||
| 2116 | if (getLangOpts().ObjCWeak && isa<VarDecl>(D) && | |||
| 2117 | Ty.getObjCLifetime() == Qualifiers::OCL_Weak && !isUnevaluatedContext() && | |||
| 2118 | !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, E->getBeginLoc())) | |||
| 2119 | getCurFunction()->recordUseOfWeak(E); | |||
| 2120 | ||||
| 2121 | const auto *FD = dyn_cast<FieldDecl>(D); | |||
| 2122 | if (const auto *IFD = dyn_cast<IndirectFieldDecl>(D)) | |||
| 2123 | FD = IFD->getAnonField(); | |||
| 2124 | if (FD) { | |||
| 2125 | UnusedPrivateFields.remove(FD); | |||
| 2126 | // Just in case we're building an illegal pointer-to-member. | |||
| 2127 | if (FD->isBitField()) | |||
| 2128 | E->setObjectKind(OK_BitField); | |||
| 2129 | } | |||
| 2130 | ||||
| 2131 | // C++ [expr.prim]/8: The expression [...] is a bit-field if the identifier | |||
| 2132 | // designates a bit-field. | |||
| 2133 | if (const auto *BD = dyn_cast<BindingDecl>(D)) | |||
| 2134 | if (const auto *BE = BD->getBinding()) | |||
| 2135 | E->setObjectKind(BE->getObjectKind()); | |||
| 2136 | ||||
| 2137 | return E; | |||
| 2138 | } | |||
| 2139 | ||||
| 2140 | /// Decomposes the given name into a DeclarationNameInfo, its location, and | |||
| 2141 | /// possibly a list of template arguments. | |||
| 2142 | /// | |||
| 2143 | /// If this produces template arguments, it is permitted to call | |||
| 2144 | /// DecomposeTemplateName. | |||
| 2145 | /// | |||
| 2146 | /// This actually loses a lot of source location information for | |||
| 2147 | /// non-standard name kinds; we should consider preserving that in | |||
| 2148 | /// some way. | |||
| 2149 | void | |||
| 2150 | Sema::DecomposeUnqualifiedId(const UnqualifiedId &Id, | |||
| 2151 | TemplateArgumentListInfo &Buffer, | |||
| 2152 | DeclarationNameInfo &NameInfo, | |||
| 2153 | const TemplateArgumentListInfo *&TemplateArgs) { | |||
| 2154 | if (Id.getKind() == UnqualifiedIdKind::IK_TemplateId) { | |||
| 2155 | Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc); | |||
| 2156 | Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc); | |||
| 2157 | ||||
| 2158 | ASTTemplateArgsPtr TemplateArgsPtr(Id.TemplateId->getTemplateArgs(), | |||
| 2159 | Id.TemplateId->NumArgs); | |||
| 2160 | translateTemplateArguments(TemplateArgsPtr, Buffer); | |||
| 2161 | ||||
| 2162 | TemplateName TName = Id.TemplateId->Template.get(); | |||
| 2163 | SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc; | |||
| 2164 | NameInfo = Context.getNameForTemplate(TName, TNameLoc); | |||
| 2165 | TemplateArgs = &Buffer; | |||
| 2166 | } else { | |||
| 2167 | NameInfo = GetNameFromUnqualifiedId(Id); | |||
| 2168 | TemplateArgs = nullptr; | |||
| 2169 | } | |||
| 2170 | } | |||
| 2171 | ||||
| 2172 | static void emitEmptyLookupTypoDiagnostic( | |||
| 2173 | const TypoCorrection &TC, Sema &SemaRef, const CXXScopeSpec &SS, | |||
| 2174 | DeclarationName Typo, SourceLocation TypoLoc, ArrayRef<Expr *> Args, | |||
| 2175 | unsigned DiagnosticID, unsigned DiagnosticSuggestID) { | |||
| 2176 | DeclContext *Ctx = | |||
| 2177 | SS.isEmpty() ? nullptr : SemaRef.computeDeclContext(SS, false); | |||
| 2178 | if (!TC) { | |||
| 2179 | // Emit a special diagnostic for failed member lookups. | |||
| 2180 | // FIXME: computing the declaration context might fail here (?) | |||
| 2181 | if (Ctx) | |||
| 2182 | SemaRef.Diag(TypoLoc, diag::err_no_member) << Typo << Ctx | |||
| 2183 | << SS.getRange(); | |||
| 2184 | else | |||
| 2185 | SemaRef.Diag(TypoLoc, DiagnosticID) << Typo; | |||
| 2186 | return; | |||
| 2187 | } | |||
| 2188 | ||||
| 2189 | std::string CorrectedStr = TC.getAsString(SemaRef.getLangOpts()); | |||
| 2190 | bool DroppedSpecifier = | |||
| 2191 | TC.WillReplaceSpecifier() && Typo.getAsString() == CorrectedStr; | |||
| 2192 | unsigned NoteID = TC.getCorrectionDeclAs<ImplicitParamDecl>() | |||
| 2193 | ? diag::note_implicit_param_decl | |||
| 2194 | : diag::note_previous_decl; | |||
| 2195 | if (!Ctx) | |||
| 2196 | SemaRef.diagnoseTypo(TC, SemaRef.PDiag(DiagnosticSuggestID) << Typo, | |||
| 2197 | SemaRef.PDiag(NoteID)); | |||
| 2198 | else | |||
| 2199 | SemaRef.diagnoseTypo(TC, SemaRef.PDiag(diag::err_no_member_suggest) | |||
| 2200 | << Typo << Ctx << DroppedSpecifier | |||
| 2201 | << SS.getRange(), | |||
| 2202 | SemaRef.PDiag(NoteID)); | |||
| 2203 | } | |||
| 2204 | ||||
| 2205 | /// Diagnose a lookup that found results in an enclosing class during error | |||
| 2206 | /// recovery. This usually indicates that the results were found in a dependent | |||
| 2207 | /// base class that could not be searched as part of a template definition. | |||
| 2208 | /// Always issues a diagnostic (though this may be only a warning in MS | |||
| 2209 | /// compatibility mode). | |||
| 2210 | /// | |||
| 2211 | /// Return \c true if the error is unrecoverable, or \c false if the caller | |||
| 2212 | /// should attempt to recover using these lookup results. | |||
| 2213 | bool Sema::DiagnoseDependentMemberLookup(const LookupResult &R) { | |||
| 2214 | // During a default argument instantiation the CurContext points | |||
| 2215 | // to a CXXMethodDecl; but we can't apply a this-> fixit inside a | |||
| 2216 | // function parameter list, hence add an explicit check. | |||
| 2217 | bool isDefaultArgument = | |||
| 2218 | !CodeSynthesisContexts.empty() && | |||
| 2219 | CodeSynthesisContexts.back().Kind == | |||
| 2220 | CodeSynthesisContext::DefaultFunctionArgumentInstantiation; | |||
| 2221 | const auto *CurMethod = dyn_cast<CXXMethodDecl>(CurContext); | |||
| 2222 | bool isInstance = CurMethod && CurMethod->isInstance() && | |||
| 2223 | R.getNamingClass() == CurMethod->getParent() && | |||
| 2224 | !isDefaultArgument; | |||
| 2225 | ||||
| 2226 | // There are two ways we can find a class-scope declaration during template | |||
| 2227 | // instantiation that we did not find in the template definition: if it is a | |||
| 2228 | // member of a dependent base class, or if it is declared after the point of | |||
| 2229 | // use in the same class. Distinguish these by comparing the class in which | |||
| 2230 | // the member was found to the naming class of the lookup. | |||
| 2231 | unsigned DiagID = diag::err_found_in_dependent_base; | |||
| 2232 | unsigned NoteID = diag::note_member_declared_at; | |||
| 2233 | if (R.getRepresentativeDecl()->getDeclContext()->Equals(R.getNamingClass())) { | |||
| 2234 | DiagID = getLangOpts().MSVCCompat ? diag::ext_found_later_in_class | |||
| 2235 | : diag::err_found_later_in_class; | |||
| 2236 | } else if (getLangOpts().MSVCCompat) { | |||
| 2237 | DiagID = diag::ext_found_in_dependent_base; | |||
| 2238 | NoteID = diag::note_dependent_member_use; | |||
| 2239 | } | |||
| 2240 | ||||
| 2241 | if (isInstance) { | |||
| 2242 | // Give a code modification hint to insert 'this->'. | |||
| 2243 | Diag(R.getNameLoc(), DiagID) | |||
| 2244 | << R.getLookupName() | |||
| 2245 | << FixItHint::CreateInsertion(R.getNameLoc(), "this->"); | |||
| 2246 | CheckCXXThisCapture(R.getNameLoc()); | |||
| 2247 | } else { | |||
| 2248 | // FIXME: Add a FixItHint to insert 'Base::' or 'Derived::' (assuming | |||
| 2249 | // they're not shadowed). | |||
| 2250 | Diag(R.getNameLoc(), DiagID) << R.getLookupName(); | |||
| 2251 | } | |||
| 2252 | ||||
| 2253 | for (const NamedDecl *D : R) | |||
| 2254 | Diag(D->getLocation(), NoteID); | |||
| 2255 | ||||
| 2256 | // Return true if we are inside a default argument instantiation | |||
| 2257 | // and the found name refers to an instance member function, otherwise | |||
| 2258 | // the caller will try to create an implicit member call and this is wrong | |||
| 2259 | // for default arguments. | |||
| 2260 | // | |||
| 2261 | // FIXME: Is this special case necessary? We could allow the caller to | |||
| 2262 | // diagnose this. | |||
| 2263 | if (isDefaultArgument && ((*R.begin())->isCXXInstanceMember())) { | |||
| 2264 | Diag(R.getNameLoc(), diag::err_member_call_without_object); | |||
| 2265 | return true; | |||
| 2266 | } | |||
| 2267 | ||||
| 2268 | // Tell the callee to try to recover. | |||
| 2269 | return false; | |||
| 2270 | } | |||
| 2271 | ||||
| 2272 | /// Diagnose an empty lookup. | |||
| 2273 | /// | |||
| 2274 | /// \return false if new lookup candidates were found | |||
| 2275 | bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R, | |||
| 2276 | CorrectionCandidateCallback &CCC, | |||
| 2277 | TemplateArgumentListInfo *ExplicitTemplateArgs, | |||
| 2278 | ArrayRef<Expr *> Args, TypoExpr **Out) { | |||
| 2279 | DeclarationName Name = R.getLookupName(); | |||
| 2280 | ||||
| 2281 | unsigned diagnostic = diag::err_undeclared_var_use; | |||
| 2282 | unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest; | |||
| 2283 | if (Name.getNameKind() == DeclarationName::CXXOperatorName || | |||
| 2284 | Name.getNameKind() == DeclarationName::CXXLiteralOperatorName || | |||
| 2285 | Name.getNameKind() == DeclarationName::CXXConversionFunctionName) { | |||
| 2286 | diagnostic = diag::err_undeclared_use; | |||
| 2287 | diagnostic_suggest = diag::err_undeclared_use_suggest; | |||
| 2288 | } | |||
| 2289 | ||||
| 2290 | // If the original lookup was an unqualified lookup, fake an | |||
| 2291 | // unqualified lookup. This is useful when (for example) the | |||
| 2292 | // original lookup would not have found something because it was a | |||
| 2293 | // dependent name. | |||
| 2294 | DeclContext *DC = SS.isEmpty() ? CurContext : nullptr; | |||
| 2295 | while (DC) { | |||
| 2296 | if (isa<CXXRecordDecl>(DC)) { | |||
| 2297 | LookupQualifiedName(R, DC); | |||
| 2298 | ||||
| 2299 | if (!R.empty()) { | |||
| 2300 | // Don't give errors about ambiguities in this lookup. | |||
| 2301 | R.suppressDiagnostics(); | |||
| 2302 | ||||
| 2303 | // If there's a best viable function among the results, only mention | |||
| 2304 | // that one in the notes. | |||
| 2305 | OverloadCandidateSet Candidates(R.getNameLoc(), | |||
| 2306 | OverloadCandidateSet::CSK_Normal); | |||
| 2307 | AddOverloadedCallCandidates(R, ExplicitTemplateArgs, Args, Candidates); | |||
| 2308 | OverloadCandidateSet::iterator Best; | |||
| 2309 | if (Candidates.BestViableFunction(*this, R.getNameLoc(), Best) == | |||
| 2310 | OR_Success) { | |||
| 2311 | R.clear(); | |||
| 2312 | R.addDecl(Best->FoundDecl.getDecl(), Best->FoundDecl.getAccess()); | |||
| 2313 | R.resolveKind(); | |||
| 2314 | } | |||
| 2315 | ||||
| 2316 | return DiagnoseDependentMemberLookup(R); | |||
| 2317 | } | |||
| 2318 | ||||
| 2319 | R.clear(); | |||
| 2320 | } | |||
| 2321 | ||||
| 2322 | DC = DC->getLookupParent(); | |||
| 2323 | } | |||
| 2324 | ||||
| 2325 | // We didn't find anything, so try to correct for a typo. | |||
| 2326 | TypoCorrection Corrected; | |||
| 2327 | if (S && Out) { | |||
| 2328 | SourceLocation TypoLoc = R.getNameLoc(); | |||
| 2329 | assert(!ExplicitTemplateArgs &&(static_cast <bool> (!ExplicitTemplateArgs && "Diagnosing an empty lookup with explicit template args!" ) ? void (0) : __assert_fail ("!ExplicitTemplateArgs && \"Diagnosing an empty lookup with explicit template args!\"" , "clang/lib/Sema/SemaExpr.cpp", 2330, __extension__ __PRETTY_FUNCTION__ )) | |||
| 2330 | "Diagnosing an empty lookup with explicit template args!")(static_cast <bool> (!ExplicitTemplateArgs && "Diagnosing an empty lookup with explicit template args!" ) ? void (0) : __assert_fail ("!ExplicitTemplateArgs && \"Diagnosing an empty lookup with explicit template args!\"" , "clang/lib/Sema/SemaExpr.cpp", 2330, __extension__ __PRETTY_FUNCTION__ )); | |||
| 2331 | *Out = CorrectTypoDelayed( | |||
| 2332 | R.getLookupNameInfo(), R.getLookupKind(), S, &SS, CCC, | |||
| 2333 | [=](const TypoCorrection &TC) { | |||
| 2334 | emitEmptyLookupTypoDiagnostic(TC, *this, SS, Name, TypoLoc, Args, | |||
| 2335 | diagnostic, diagnostic_suggest); | |||
| 2336 | }, | |||
| 2337 | nullptr, CTK_ErrorRecovery); | |||
| 2338 | if (*Out) | |||
| 2339 | return true; | |||
| 2340 | } else if (S && | |||
| 2341 | (Corrected = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), | |||
| 2342 | S, &SS, CCC, CTK_ErrorRecovery))) { | |||
| 2343 | std::string CorrectedStr(Corrected.getAsString(getLangOpts())); | |||
| 2344 | bool DroppedSpecifier = | |||
| 2345 | Corrected.WillReplaceSpecifier() && Name.getAsString() == CorrectedStr; | |||
| 2346 | R.setLookupName(Corrected.getCorrection()); | |||
| 2347 | ||||
| 2348 | bool AcceptableWithRecovery = false; | |||
| 2349 | bool AcceptableWithoutRecovery = false; | |||
| 2350 | NamedDecl *ND = Corrected.getFoundDecl(); | |||
| 2351 | if (ND) { | |||
| 2352 | if (Corrected.isOverloaded()) { | |||
| 2353 | OverloadCandidateSet OCS(R.getNameLoc(), | |||
| 2354 | OverloadCandidateSet::CSK_Normal); | |||
| 2355 | OverloadCandidateSet::iterator Best; | |||
| 2356 | for (NamedDecl *CD : Corrected) { | |||
| 2357 | if (FunctionTemplateDecl *FTD = | |||
| 2358 | dyn_cast<FunctionTemplateDecl>(CD)) | |||
| 2359 | AddTemplateOverloadCandidate( | |||
| 2360 | FTD, DeclAccessPair::make(FTD, AS_none), ExplicitTemplateArgs, | |||
| 2361 | Args, OCS); | |||
| 2362 | else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(CD)) | |||
| 2363 | if (!ExplicitTemplateArgs || ExplicitTemplateArgs->size() == 0) | |||
| 2364 | AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none), | |||
| 2365 | Args, OCS); | |||
| 2366 | } | |||
| 2367 | switch (OCS.BestViableFunction(*this, R.getNameLoc(), Best)) { | |||
| 2368 | case OR_Success: | |||
| 2369 | ND = Best->FoundDecl; | |||
| 2370 | Corrected.setCorrectionDecl(ND); | |||
| 2371 | break; | |||
| 2372 | default: | |||
| 2373 | // FIXME: Arbitrarily pick the first declaration for the note. | |||
| 2374 | Corrected.setCorrectionDecl(ND); | |||
| 2375 | break; | |||
| 2376 | } | |||
| 2377 | } | |||
| 2378 | R.addDecl(ND); | |||
| 2379 | if (getLangOpts().CPlusPlus && ND->isCXXClassMember()) { | |||
| 2380 | CXXRecordDecl *Record = nullptr; | |||
| 2381 | if (Corrected.getCorrectionSpecifier()) { | |||
| 2382 | const Type *Ty = Corrected.getCorrectionSpecifier()->getAsType(); | |||
| 2383 | Record = Ty->getAsCXXRecordDecl(); | |||
| 2384 | } | |||
| 2385 | if (!Record) | |||
| 2386 | Record = cast<CXXRecordDecl>( | |||
| 2387 | ND->getDeclContext()->getRedeclContext()); | |||
| 2388 | R.setNamingClass(Record); | |||
| 2389 | } | |||
| 2390 | ||||
| 2391 | auto *UnderlyingND = ND->getUnderlyingDecl(); | |||
| 2392 | AcceptableWithRecovery = isa<ValueDecl>(UnderlyingND) || | |||
| 2393 | isa<FunctionTemplateDecl>(UnderlyingND); | |||
| 2394 | // FIXME: If we ended up with a typo for a type name or | |||
| 2395 | // Objective-C class name, we're in trouble because the parser | |||
| 2396 | // is in the wrong place to recover. Suggest the typo | |||
| 2397 | // correction, but don't make it a fix-it since we're not going | |||
| 2398 | // to recover well anyway. | |||
| 2399 | AcceptableWithoutRecovery = isa<TypeDecl>(UnderlyingND) || | |||
| 2400 | getAsTypeTemplateDecl(UnderlyingND) || | |||
| 2401 | isa<ObjCInterfaceDecl>(UnderlyingND); | |||
| 2402 | } else { | |||
| 2403 | // FIXME: We found a keyword. Suggest it, but don't provide a fix-it | |||
| 2404 | // because we aren't able to recover. | |||
| 2405 | AcceptableWithoutRecovery = true; | |||
| 2406 | } | |||
| 2407 | ||||
| 2408 | if (AcceptableWithRecovery || AcceptableWithoutRecovery) { | |||
| 2409 | unsigned NoteID = Corrected.getCorrectionDeclAs<ImplicitParamDecl>() | |||
| 2410 | ? diag::note_implicit_param_decl | |||
| 2411 | : diag::note_previous_decl; | |||
| 2412 | if (SS.isEmpty()) | |||
| 2413 | diagnoseTypo(Corrected, PDiag(diagnostic_suggest) << Name, | |||
| 2414 | PDiag(NoteID), AcceptableWithRecovery); | |||
| 2415 | else | |||
| 2416 | diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest) | |||
| 2417 | << Name << computeDeclContext(SS, false) | |||
| 2418 | << DroppedSpecifier << SS.getRange(), | |||
| 2419 | PDiag(NoteID), AcceptableWithRecovery); | |||
| 2420 | ||||
| 2421 | // Tell the callee whether to try to recover. | |||
| 2422 | return !AcceptableWithRecovery; | |||
| 2423 | } | |||
| 2424 | } | |||
| 2425 | R.clear(); | |||
| 2426 | ||||
| 2427 | // Emit a special diagnostic for failed member lookups. | |||
| 2428 | // FIXME: computing the declaration context might fail here (?) | |||
| 2429 | if (!SS.isEmpty()) { | |||
| 2430 | Diag(R.getNameLoc(), diag::err_no_member) | |||
| 2431 | << Name << computeDeclContext(SS, false) | |||
| 2432 | << SS.getRange(); | |||
| 2433 | return true; | |||
| 2434 | } | |||
| 2435 | ||||
| 2436 | // Give up, we can't recover. | |||
| 2437 | Diag(R.getNameLoc(), diagnostic) << Name; | |||
| 2438 | return true; | |||
| 2439 | } | |||
| 2440 | ||||
| 2441 | /// In Microsoft mode, if we are inside a template class whose parent class has | |||
| 2442 | /// dependent base classes, and we can't resolve an unqualified identifier, then | |||
| 2443 | /// assume the identifier is a member of a dependent base class. We can only | |||
| 2444 | /// recover successfully in static methods, instance methods, and other contexts | |||
| 2445 | /// where 'this' is available. This doesn't precisely match MSVC's | |||
| 2446 | /// instantiation model, but it's close enough. | |||
| 2447 | static Expr * | |||
| 2448 | recoverFromMSUnqualifiedLookup(Sema &S, ASTContext &Context, | |||
| 2449 | DeclarationNameInfo &NameInfo, | |||
| 2450 | SourceLocation TemplateKWLoc, | |||
| 2451 | const TemplateArgumentListInfo *TemplateArgs) { | |||
| 2452 | // Only try to recover from lookup into dependent bases in static methods or | |||
| 2453 | // contexts where 'this' is available. | |||
| 2454 | QualType ThisType = S.getCurrentThisType(); | |||
| 2455 | const CXXRecordDecl *RD = nullptr; | |||
| 2456 | if (!ThisType.isNull()) | |||
| 2457 | RD = ThisType->getPointeeType()->getAsCXXRecordDecl(); | |||
| 2458 | else if (auto *MD = dyn_cast<CXXMethodDecl>(S.CurContext)) | |||
| 2459 | RD = MD->getParent(); | |||
| 2460 | if (!RD || !RD->hasAnyDependentBases()) | |||
| 2461 | return nullptr; | |||
| 2462 | ||||
| 2463 | // Diagnose this as unqualified lookup into a dependent base class. If 'this' | |||
| 2464 | // is available, suggest inserting 'this->' as a fixit. | |||
| 2465 | SourceLocation Loc = NameInfo.getLoc(); | |||
| 2466 | auto DB = S.Diag(Loc, diag::ext_undeclared_unqual_id_with_dependent_base); | |||
| 2467 | DB << NameInfo.getName() << RD; | |||
| 2468 | ||||
| 2469 | if (!ThisType.isNull()) { | |||
| 2470 | DB << FixItHint::CreateInsertion(Loc, "this->"); | |||
| 2471 | return CXXDependentScopeMemberExpr::Create( | |||
| 2472 | Context, /*This=*/nullptr, ThisType, /*IsArrow=*/true, | |||
| 2473 | /*Op=*/SourceLocation(), NestedNameSpecifierLoc(), TemplateKWLoc, | |||
| 2474 | /*FirstQualifierFoundInScope=*/nullptr, NameInfo, TemplateArgs); | |||
| 2475 | } | |||
| 2476 | ||||
| 2477 | // Synthesize a fake NNS that points to the derived class. This will | |||
| 2478 | // perform name lookup during template instantiation. | |||
| 2479 | CXXScopeSpec SS; | |||
| 2480 | auto *NNS = | |||
| 2481 | NestedNameSpecifier::Create(Context, nullptr, true, RD->getTypeForDecl()); | |||
| 2482 | SS.MakeTrivial(Context, NNS, SourceRange(Loc, Loc)); | |||
| 2483 | return DependentScopeDeclRefExpr::Create( | |||
| 2484 | Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo, | |||
| 2485 | TemplateArgs); | |||
| 2486 | } | |||
| 2487 | ||||
| 2488 | ExprResult | |||
| 2489 | Sema::ActOnIdExpression(Scope *S, CXXScopeSpec &SS, | |||
| 2490 | SourceLocation TemplateKWLoc, UnqualifiedId &Id, | |||
| 2491 | bool HasTrailingLParen, bool IsAddressOfOperand, | |||
| 2492 | CorrectionCandidateCallback *CCC, | |||
| 2493 | bool IsInlineAsmIdentifier, Token *KeywordReplacement) { | |||
| 2494 | assert(!(IsAddressOfOperand && HasTrailingLParen) &&(static_cast <bool> (!(IsAddressOfOperand && HasTrailingLParen ) && "cannot be direct & operand and have a trailing lparen" ) ? void (0) : __assert_fail ("!(IsAddressOfOperand && HasTrailingLParen) && \"cannot be direct & operand and have a trailing lparen\"" , "clang/lib/Sema/SemaExpr.cpp", 2495, __extension__ __PRETTY_FUNCTION__ )) | |||
| 2495 | "cannot be direct & operand and have a trailing lparen")(static_cast <bool> (!(IsAddressOfOperand && HasTrailingLParen ) && "cannot be direct & operand and have a trailing lparen" ) ? void (0) : __assert_fail ("!(IsAddressOfOperand && HasTrailingLParen) && \"cannot be direct & operand and have a trailing lparen\"" , "clang/lib/Sema/SemaExpr.cpp", 2495, __extension__ __PRETTY_FUNCTION__ )); | |||
| 2496 | if (SS.isInvalid()) | |||
| 2497 | return ExprError(); | |||
| 2498 | ||||
| 2499 | TemplateArgumentListInfo TemplateArgsBuffer; | |||
| 2500 | ||||
| 2501 | // Decompose the UnqualifiedId into the following data. | |||
| 2502 | DeclarationNameInfo NameInfo; | |||
| 2503 | const TemplateArgumentListInfo *TemplateArgs; | |||
| 2504 | DecomposeUnqualifiedId(Id, TemplateArgsBuffer, NameInfo, TemplateArgs); | |||
| 2505 | ||||
| 2506 | DeclarationName Name = NameInfo.getName(); | |||
| 2507 | IdentifierInfo *II = Name.getAsIdentifierInfo(); | |||
| 2508 | SourceLocation NameLoc = NameInfo.getLoc(); | |||
| 2509 | ||||
| 2510 | if (II && II->isEditorPlaceholder()) { | |||
| 2511 | // FIXME: When typed placeholders are supported we can create a typed | |||
| 2512 | // placeholder expression node. | |||
| 2513 | return ExprError(); | |||
| 2514 | } | |||
| 2515 | ||||
| 2516 | // C++ [temp.dep.expr]p3: | |||
| 2517 | // An id-expression is type-dependent if it contains: | |||
| 2518 | // -- an identifier that was declared with a dependent type, | |||
| 2519 | // (note: handled after lookup) | |||
| 2520 | // -- a template-id that is dependent, | |||
| 2521 | // (note: handled in BuildTemplateIdExpr) | |||
| 2522 | // -- a conversion-function-id that specifies a dependent type, | |||
| 2523 | // -- a nested-name-specifier that contains a class-name that | |||
| 2524 | // names a dependent type. | |||
| 2525 | // Determine whether this is a member of an unknown specialization; | |||
| 2526 | // we need to handle these differently. | |||
| 2527 | bool DependentID = false; | |||
| 2528 | if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName && | |||
| 2529 | Name.getCXXNameType()->isDependentType()) { | |||
| 2530 | DependentID = true; | |||
| 2531 | } else if (SS.isSet()) { | |||
| 2532 | if (DeclContext *DC = computeDeclContext(SS, false)) { | |||
| 2533 | if (RequireCompleteDeclContext(SS, DC)) | |||
| 2534 | return ExprError(); | |||
| 2535 | } else { | |||
| 2536 | DependentID = true; | |||
| 2537 | } | |||
| 2538 | } | |||
| 2539 | ||||
| 2540 | if (DependentID) | |||
| 2541 | return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo, | |||
| 2542 | IsAddressOfOperand, TemplateArgs); | |||
| 2543 | ||||
| 2544 | // Perform the required lookup. | |||
| 2545 | LookupResult R(*this, NameInfo, | |||
| 2546 | (Id.getKind() == UnqualifiedIdKind::IK_ImplicitSelfParam) | |||
| 2547 | ? LookupObjCImplicitSelfParam | |||
| 2548 | : LookupOrdinaryName); | |||
| 2549 | if (TemplateKWLoc.isValid() || TemplateArgs) { | |||
| 2550 | // Lookup the template name again to correctly establish the context in | |||
| 2551 | // which it was found. This is really unfortunate as we already did the | |||
| 2552 | // lookup to determine that it was a template name in the first place. If | |||
| 2553 | // this becomes a performance hit, we can work harder to preserve those | |||
| 2554 | // results until we get here but it's likely not worth it. | |||
| 2555 | bool MemberOfUnknownSpecialization; | |||
| 2556 | AssumedTemplateKind AssumedTemplate; | |||
| 2557 | if (LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false, | |||
| 2558 | MemberOfUnknownSpecialization, TemplateKWLoc, | |||
| 2559 | &AssumedTemplate)) | |||
| 2560 | return ExprError(); | |||
| 2561 | ||||
| 2562 | if (MemberOfUnknownSpecialization || | |||
| 2563 | (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)) | |||
| 2564 | return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo, | |||
| 2565 | IsAddressOfOperand, TemplateArgs); | |||
| 2566 | } else { | |||
| 2567 | bool IvarLookupFollowUp = II && !SS.isSet() && getCurMethodDecl(); | |||
| 2568 | LookupParsedName(R, S, &SS, !IvarLookupFollowUp); | |||
| 2569 | ||||
| 2570 | // If the result might be in a dependent base class, this is a dependent | |||
| 2571 | // id-expression. | |||
| 2572 | if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation) | |||
| 2573 | return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo, | |||
| 2574 | IsAddressOfOperand, TemplateArgs); | |||
| 2575 | ||||
| 2576 | // If this reference is in an Objective-C method, then we need to do | |||
| 2577 | // some special Objective-C lookup, too. | |||
| 2578 | if (IvarLookupFollowUp) { | |||
| 2579 | ExprResult E(LookupInObjCMethod(R, S, II, true)); | |||
| 2580 | if (E.isInvalid()) | |||
| 2581 | return ExprError(); | |||
| 2582 | ||||
| 2583 | if (Expr *Ex = E.getAs<Expr>()) | |||
| 2584 | return Ex; | |||
| 2585 | } | |||
| 2586 | } | |||
| 2587 | ||||
| 2588 | if (R.isAmbiguous()) | |||
| 2589 | return ExprError(); | |||
| 2590 | ||||
| 2591 | // This could be an implicitly declared function reference if the language | |||
| 2592 | // mode allows it as a feature. | |||
| 2593 | if (R.empty() && HasTrailingLParen && II && | |||
| 2594 | getLangOpts().implicitFunctionsAllowed()) { | |||
| 2595 | NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S); | |||
| 2596 | if (D) R.addDecl(D); | |||
| 2597 | } | |||
| 2598 | ||||
| 2599 | // Determine whether this name might be a candidate for | |||
| 2600 | // argument-dependent lookup. | |||
| 2601 | bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen); | |||
| 2602 | ||||
| 2603 | if (R.empty() && !ADL) { | |||
| 2604 | if (SS.isEmpty() && getLangOpts().MSVCCompat) { | |||
| 2605 | if (Expr *E = recoverFromMSUnqualifiedLookup(*this, Context, NameInfo, | |||
| 2606 | TemplateKWLoc, TemplateArgs)) | |||
| 2607 | return E; | |||
| 2608 | } | |||
| 2609 | ||||
| 2610 | // Don't diagnose an empty lookup for inline assembly. | |||
| 2611 | if (IsInlineAsmIdentifier) | |||
| 2612 | return ExprError(); | |||
| 2613 | ||||
| 2614 | // If this name wasn't predeclared and if this is not a function | |||
| 2615 | // call, diagnose the problem. | |||
| 2616 | TypoExpr *TE = nullptr; | |||
| 2617 | DefaultFilterCCC DefaultValidator(II, SS.isValid() ? SS.getScopeRep() | |||
| 2618 | : nullptr); | |||
| 2619 | DefaultValidator.IsAddressOfOperand = IsAddressOfOperand; | |||
| 2620 | assert((!CCC || CCC->IsAddressOfOperand == IsAddressOfOperand) &&(static_cast <bool> ((!CCC || CCC->IsAddressOfOperand == IsAddressOfOperand) && "Typo correction callback misconfigured" ) ? void (0) : __assert_fail ("(!CCC || CCC->IsAddressOfOperand == IsAddressOfOperand) && \"Typo correction callback misconfigured\"" , "clang/lib/Sema/SemaExpr.cpp", 2621, __extension__ __PRETTY_FUNCTION__ )) | |||
| 2621 | "Typo correction callback misconfigured")(static_cast <bool> ((!CCC || CCC->IsAddressOfOperand == IsAddressOfOperand) && "Typo correction callback misconfigured" ) ? void (0) : __assert_fail ("(!CCC || CCC->IsAddressOfOperand == IsAddressOfOperand) && \"Typo correction callback misconfigured\"" , "clang/lib/Sema/SemaExpr.cpp", 2621, __extension__ __PRETTY_FUNCTION__ )); | |||
| 2622 | if (CCC) { | |||
| 2623 | // Make sure the callback knows what the typo being diagnosed is. | |||
| 2624 | CCC->setTypoName(II); | |||
| 2625 | if (SS.isValid()) | |||
| 2626 | CCC->setTypoNNS(SS.getScopeRep()); | |||
| 2627 | } | |||
| 2628 | // FIXME: DiagnoseEmptyLookup produces bad diagnostics if we're looking for | |||
| 2629 | // a template name, but we happen to have always already looked up the name | |||
| 2630 | // before we get here if it must be a template name. | |||
| 2631 | if (DiagnoseEmptyLookup(S, SS, R, CCC ? *CCC : DefaultValidator, nullptr, | |||
| 2632 | std::nullopt, &TE)) { | |||
| 2633 | if (TE && KeywordReplacement) { | |||
| 2634 | auto &State = getTypoExprState(TE); | |||
| 2635 | auto BestTC = State.Consumer->getNextCorrection(); | |||
| 2636 | if (BestTC.isKeyword()) { | |||
| 2637 | auto *II = BestTC.getCorrectionAsIdentifierInfo(); | |||
| 2638 | if (State.DiagHandler) | |||
| 2639 | State.DiagHandler(BestTC); | |||
| 2640 | KeywordReplacement->startToken(); | |||
| 2641 | KeywordReplacement->setKind(II->getTokenID()); | |||
| 2642 | KeywordReplacement->setIdentifierInfo(II); | |||
| 2643 | KeywordReplacement->setLocation(BestTC.getCorrectionRange().getBegin()); | |||
| 2644 | // Clean up the state associated with the TypoExpr, since it has | |||
| 2645 | // now been diagnosed (without a call to CorrectDelayedTyposInExpr). | |||
| 2646 | clearDelayedTypo(TE); | |||
| 2647 | // Signal that a correction to a keyword was performed by returning a | |||
| 2648 | // valid-but-null ExprResult. | |||
| 2649 | return (Expr*)nullptr; | |||
| 2650 | } | |||
| 2651 | State.Consumer->resetCorrectionStream(); | |||
| 2652 | } | |||
| 2653 | return TE ? TE : ExprError(); | |||
| 2654 | } | |||
| 2655 | ||||
| 2656 | assert(!R.empty() &&(static_cast <bool> (!R.empty() && "DiagnoseEmptyLookup returned false but added no results" ) ? void (0) : __assert_fail ("!R.empty() && \"DiagnoseEmptyLookup returned false but added no results\"" , "clang/lib/Sema/SemaExpr.cpp", 2657, __extension__ __PRETTY_FUNCTION__ )) | |||
| 2657 | "DiagnoseEmptyLookup returned false but added no results")(static_cast <bool> (!R.empty() && "DiagnoseEmptyLookup returned false but added no results" ) ? void (0) : __assert_fail ("!R.empty() && \"DiagnoseEmptyLookup returned false but added no results\"" , "clang/lib/Sema/SemaExpr.cpp", 2657, __extension__ __PRETTY_FUNCTION__ )); | |||
| 2658 | ||||
| 2659 | // If we found an Objective-C instance variable, let | |||
| 2660 | // LookupInObjCMethod build the appropriate expression to | |||
| 2661 | // reference the ivar. | |||
| 2662 | if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) { | |||
| 2663 | R.clear(); | |||
| 2664 | ExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier())); | |||
| 2665 | // In a hopelessly buggy code, Objective-C instance variable | |||
| 2666 | // lookup fails and no expression will be built to reference it. | |||
| 2667 | if (!E.isInvalid() && !E.get()) | |||
| 2668 | return ExprError(); | |||
| 2669 | return E; | |||
| 2670 | } | |||
| 2671 | } | |||
| 2672 | ||||
| 2673 | // This is guaranteed from this point on. | |||
| 2674 | assert(!R.empty() || ADL)(static_cast <bool> (!R.empty() || ADL) ? void (0) : __assert_fail ("!R.empty() || ADL", "clang/lib/Sema/SemaExpr.cpp", 2674, __extension__ __PRETTY_FUNCTION__)); | |||
| 2675 | ||||
| 2676 | // Check whether this might be a C++ implicit instance member access. | |||
| 2677 | // C++ [class.mfct.non-static]p3: | |||
| 2678 | // When an id-expression that is not part of a class member access | |||
| 2679 | // syntax and not used to form a pointer to member is used in the | |||
| 2680 | // body of a non-static member function of class X, if name lookup | |||
| 2681 | // resolves the name in the id-expression to a non-static non-type | |||
| 2682 | // member of some class C, the id-expression is transformed into a | |||
| 2683 | // class member access expression using (*this) as the | |||
| 2684 | // postfix-expression to the left of the . operator. | |||
| 2685 | // | |||
| 2686 | // But we don't actually need to do this for '&' operands if R | |||
| 2687 | // resolved to a function or overloaded function set, because the | |||
| 2688 | // expression is ill-formed if it actually works out to be a | |||
| 2689 | // non-static member function: | |||
| 2690 | // | |||
| 2691 | // C++ [expr.ref]p4: | |||
| 2692 | // Otherwise, if E1.E2 refers to a non-static member function. . . | |||
| 2693 | // [t]he expression can be used only as the left-hand operand of a | |||
| 2694 | // member function call. | |||
| 2695 | // | |||
| 2696 | // There are other safeguards against such uses, but it's important | |||
| 2697 | // to get this right here so that we don't end up making a | |||
| 2698 | // spuriously dependent expression if we're inside a dependent | |||
| 2699 | // instance method. | |||
| 2700 | if (!R.empty() && (*R.begin())->isCXXClassMember()) { | |||
| 2701 | bool MightBeImplicitMember; | |||
| 2702 | if (!IsAddressOfOperand) | |||
| 2703 | MightBeImplicitMember = true; | |||
| 2704 | else if (!SS.isEmpty()) | |||
| 2705 | MightBeImplicitMember = false; | |||
| 2706 | else if (R.isOverloadedResult()) | |||
| 2707 | MightBeImplicitMember = false; | |||
| 2708 | else if (R.isUnresolvableResult()) | |||
| 2709 | MightBeImplicitMember = true; | |||
| 2710 | else | |||
| 2711 | MightBeImplicitMember = isa<FieldDecl>(R.getFoundDecl()) || | |||
| 2712 | isa<IndirectFieldDecl>(R.getFoundDecl()) || | |||
| 2713 | isa<MSPropertyDecl>(R.getFoundDecl()); | |||
| 2714 | ||||
| 2715 | if (MightBeImplicitMember) | |||
| 2716 | return BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc, | |||
| 2717 | R, TemplateArgs, S); | |||
| 2718 | } | |||
| 2719 | ||||
| 2720 | if (TemplateArgs || TemplateKWLoc.isValid()) { | |||
| 2721 | ||||
| 2722 | // In C++1y, if this is a variable template id, then check it | |||
| 2723 | // in BuildTemplateIdExpr(). | |||
| 2724 | // The single lookup result must be a variable template declaration. | |||
| 2725 | if (Id.getKind() == UnqualifiedIdKind::IK_TemplateId && Id.TemplateId && | |||
| 2726 | Id.TemplateId->Kind == TNK_Var_template) { | |||
| 2727 | assert(R.getAsSingle<VarTemplateDecl>() &&(static_cast <bool> (R.getAsSingle<VarTemplateDecl> () && "There should only be one declaration found.") ? void (0) : __assert_fail ("R.getAsSingle<VarTemplateDecl>() && \"There should only be one declaration found.\"" , "clang/lib/Sema/SemaExpr.cpp", 2728, __extension__ __PRETTY_FUNCTION__ )) | |||
| 2728 | "There should only be one declaration found.")(static_cast <bool> (R.getAsSingle<VarTemplateDecl> () && "There should only be one declaration found.") ? void (0) : __assert_fail ("R.getAsSingle<VarTemplateDecl>() && \"There should only be one declaration found.\"" , "clang/lib/Sema/SemaExpr.cpp", 2728, __extension__ __PRETTY_FUNCTION__ )); | |||
| 2729 | } | |||
| 2730 | ||||
| 2731 | return BuildTemplateIdExpr(SS, TemplateKWLoc, R, ADL, TemplateArgs); | |||
| 2732 | } | |||
| 2733 | ||||
| 2734 | return BuildDeclarationNameExpr(SS, R, ADL); | |||
| 2735 | } | |||
| 2736 | ||||
| 2737 | /// BuildQualifiedDeclarationNameExpr - Build a C++ qualified | |||
| 2738 | /// declaration name, generally during template instantiation. | |||
| 2739 | /// There's a large number of things which don't need to be done along | |||
| 2740 | /// this path. | |||
| 2741 | ExprResult Sema::BuildQualifiedDeclarationNameExpr( | |||
| 2742 | CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, | |||
| 2743 | bool IsAddressOfOperand, const Scope *S, TypeSourceInfo **RecoveryTSI) { | |||
| 2744 | if (NameInfo.getName().isDependentName()) | |||
| 2745 | return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(), | |||
| 2746 | NameInfo, /*TemplateArgs=*/nullptr); | |||
| 2747 | ||||
| 2748 | DeclContext *DC = computeDeclContext(SS, false); | |||
| 2749 | if (!DC) | |||
| 2750 | return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(), | |||
| 2751 | NameInfo, /*TemplateArgs=*/nullptr); | |||
| 2752 | ||||
| 2753 | if (RequireCompleteDeclContext(SS, DC)) | |||
| 2754 | return ExprError(); | |||
| 2755 | ||||
| 2756 | LookupResult R(*this, NameInfo, LookupOrdinaryName); | |||
| 2757 | LookupQualifiedName(R, DC); | |||
| 2758 | ||||
| 2759 | if (R.isAmbiguous()) | |||
| 2760 | return ExprError(); | |||
| 2761 | ||||
| 2762 | if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation) | |||
| 2763 | return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(), | |||
| 2764 | NameInfo, /*TemplateArgs=*/nullptr); | |||
| 2765 | ||||
| 2766 | if (R.empty()) { | |||
| 2767 | // Don't diagnose problems with invalid record decl, the secondary no_member | |||
| 2768 | // diagnostic during template instantiation is likely bogus, e.g. if a class | |||
| 2769 | // is invalid because it's derived from an invalid base class, then missing | |||
| 2770 | // members were likely supposed to be inherited. | |||
| 2771 | if (const auto *CD = dyn_cast<CXXRecordDecl>(DC)) | |||
| 2772 | if (CD->isInvalidDecl()) | |||
| 2773 | return ExprError(); | |||
| 2774 | Diag(NameInfo.getLoc(), diag::err_no_member) | |||
| 2775 | << NameInfo.getName() << DC << SS.getRange(); | |||
| 2776 | return ExprError(); | |||
| 2777 | } | |||
| 2778 | ||||
| 2779 | if (const TypeDecl *TD = R.getAsSingle<TypeDecl>()) { | |||
| 2780 | // Diagnose a missing typename if this resolved unambiguously to a type in | |||
| 2781 | // a dependent context. If we can recover with a type, downgrade this to | |||
| 2782 | // a warning in Microsoft compatibility mode. | |||
| 2783 | unsigned DiagID = diag::err_typename_missing; | |||
| 2784 | if (RecoveryTSI && getLangOpts().MSVCCompat) | |||
| 2785 | DiagID = diag::ext_typename_missing; | |||
| 2786 | SourceLocation Loc = SS.getBeginLoc(); | |||
| 2787 | auto D = Diag(Loc, DiagID); | |||
| 2788 | D << SS.getScopeRep() << NameInfo.getName().getAsString() | |||
| 2789 | << SourceRange(Loc, NameInfo.getEndLoc()); | |||
| 2790 | ||||
| 2791 | // Don't recover if the caller isn't expecting us to or if we're in a SFINAE | |||
| 2792 | // context. | |||
| 2793 | if (!RecoveryTSI) | |||
| 2794 | return ExprError(); | |||
| 2795 | ||||
| 2796 | // Only issue the fixit if we're prepared to recover. | |||
| 2797 | D << FixItHint::CreateInsertion(Loc, "typename "); | |||
| 2798 | ||||
| 2799 | // Recover by pretending this was an elaborated type. | |||
| 2800 | QualType Ty = Context.getTypeDeclType(TD); | |||
| 2801 | TypeLocBuilder TLB; | |||
| 2802 | TLB.pushTypeSpec(Ty).setNameLoc(NameInfo.getLoc()); | |||
| 2803 | ||||
| 2804 | QualType ET = getElaboratedType(ETK_None, SS, Ty); | |||
| 2805 | ElaboratedTypeLoc QTL = TLB.push<ElaboratedTypeLoc>(ET); | |||
| 2806 | QTL.setElaboratedKeywordLoc(SourceLocation()); | |||
| 2807 | QTL.setQualifierLoc(SS.getWithLocInContext(Context)); | |||
| 2808 | ||||
| 2809 | *RecoveryTSI = TLB.getTypeSourceInfo(Context, ET); | |||
| 2810 | ||||
| 2811 | return ExprEmpty(); | |||
| 2812 | } | |||
| 2813 | ||||
| 2814 | // Defend against this resolving to an implicit member access. We usually | |||
| 2815 | // won't get here if this might be a legitimate a class member (we end up in | |||
| 2816 | // BuildMemberReferenceExpr instead), but this can be valid if we're forming | |||
| 2817 | // a pointer-to-member or in an unevaluated context in C++11. | |||
| 2818 | if (!R.empty() && (*R.begin())->isCXXClassMember() && !IsAddressOfOperand) | |||
| 2819 | return BuildPossibleImplicitMemberExpr(SS, | |||
| 2820 | /*TemplateKWLoc=*/SourceLocation(), | |||
| 2821 | R, /*TemplateArgs=*/nullptr, S); | |||
| 2822 | ||||
| 2823 | return BuildDeclarationNameExpr(SS, R, /* ADL */ false); | |||
| 2824 | } | |||
| 2825 | ||||
| 2826 | /// The parser has read a name in, and Sema has detected that we're currently | |||
| 2827 | /// inside an ObjC method. Perform some additional checks and determine if we | |||
| 2828 | /// should form a reference to an ivar. | |||
| 2829 | /// | |||
| 2830 | /// Ideally, most of this would be done by lookup, but there's | |||
| 2831 | /// actually quite a lot of extra work involved. | |||
| 2832 | DeclResult Sema::LookupIvarInObjCMethod(LookupResult &Lookup, Scope *S, | |||
| 2833 | IdentifierInfo *II) { | |||
| 2834 | SourceLocation Loc = Lookup.getNameLoc(); | |||
| 2835 | ObjCMethodDecl *CurMethod = getCurMethodDecl(); | |||
| 2836 | ||||
| 2837 | // Check for error condition which is already reported. | |||
| 2838 | if (!CurMethod) | |||
| 2839 | return DeclResult(true); | |||
| 2840 | ||||
| 2841 | // There are two cases to handle here. 1) scoped lookup could have failed, | |||
| 2842 | // in which case we should look for an ivar. 2) scoped lookup could have | |||
| 2843 | // found a decl, but that decl is outside the current instance method (i.e. | |||
| 2844 | // a global variable). In these two cases, we do a lookup for an ivar with | |||
| 2845 | // this name, if the lookup sucedes, we replace it our current decl. | |||
| 2846 | ||||
| 2847 | // If we're in a class method, we don't normally want to look for | |||
| 2848 | // ivars. But if we don't find anything else, and there's an | |||
| 2849 | // ivar, that's an error. | |||
| 2850 | bool IsClassMethod = CurMethod->isClassMethod(); | |||
| 2851 | ||||
| 2852 | bool LookForIvars; | |||
| 2853 | if (Lookup.empty()) | |||
| 2854 | LookForIvars = true; | |||
| 2855 | else if (IsClassMethod) | |||
| 2856 | LookForIvars = false; | |||
| 2857 | else | |||
| 2858 | LookForIvars = (Lookup.isSingleResult() && | |||
| 2859 | Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod()); | |||
| 2860 | ObjCInterfaceDecl *IFace = nullptr; | |||
| 2861 | if (LookForIvars) { | |||
| 2862 | IFace = CurMethod->getClassInterface(); | |||
| 2863 | ObjCInterfaceDecl *ClassDeclared; | |||
| 2864 | ObjCIvarDecl *IV = nullptr; | |||
| 2865 | if (IFace && (IV = IFace->lookupInstanceVariable(II, ClassDeclared))) { | |||
| 2866 | // Diagnose using an ivar in a class method. | |||
| 2867 | if (IsClassMethod) { | |||
| 2868 | Diag(Loc, diag::err_ivar_use_in_class_method) << IV->getDeclName(); | |||
| 2869 | return DeclResult(true); | |||
| 2870 | } | |||
| 2871 | ||||
| 2872 | // Diagnose the use of an ivar outside of the declaring class. | |||
| 2873 | if (IV->getAccessControl() == ObjCIvarDecl::Private && | |||
| 2874 | !declaresSameEntity(ClassDeclared, IFace) && | |||
| 2875 | !getLangOpts().DebuggerSupport) | |||
| 2876 | Diag(Loc, diag::err_private_ivar_access) << IV->getDeclName(); | |||
| 2877 | ||||
| 2878 | // Success. | |||
| 2879 | return IV; | |||
| 2880 | } | |||
| 2881 | } else if (CurMethod->isInstanceMethod()) { | |||
| 2882 | // We should warn if a local variable hides an ivar. | |||
| 2883 | if (ObjCInterfaceDecl *IFace = CurMethod->getClassInterface()) { | |||
| 2884 | ObjCInterfaceDecl *ClassDeclared; | |||
| 2885 | if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) { | |||
| 2886 | if (IV->getAccessControl() != ObjCIvarDecl::Private || | |||
| 2887 | declaresSameEntity(IFace, ClassDeclared)) | |||
| 2888 | Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName(); | |||
| 2889 | } | |||
| 2890 | } | |||
| 2891 | } else if (Lookup.isSingleResult() && | |||
| 2892 | Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod()) { | |||
| 2893 | // If accessing a stand-alone ivar in a class method, this is an error. | |||
| 2894 | if (const ObjCIvarDecl *IV = | |||
| 2895 | dyn_cast<ObjCIvarDecl>(Lookup.getFoundDecl())) { | |||
| 2896 | Diag(Loc, diag::err_ivar_use_in_class_method) << IV->getDeclName(); | |||
| 2897 | return DeclResult(true); | |||
| 2898 | } | |||
| 2899 | } | |||
| 2900 | ||||
| 2901 | // Didn't encounter an error, didn't find an ivar. | |||
| 2902 | return DeclResult(false); | |||
| 2903 | } | |||
| 2904 | ||||
| 2905 | ExprResult Sema::BuildIvarRefExpr(Scope *S, SourceLocation Loc, | |||
| 2906 | ObjCIvarDecl *IV) { | |||
| 2907 | ObjCMethodDecl *CurMethod = getCurMethodDecl(); | |||
| 2908 | assert(CurMethod && CurMethod->isInstanceMethod() &&(static_cast <bool> (CurMethod && CurMethod-> isInstanceMethod() && "should not reference ivar from this context" ) ? void (0) : __assert_fail ("CurMethod && CurMethod->isInstanceMethod() && \"should not reference ivar from this context\"" , "clang/lib/Sema/SemaExpr.cpp", 2909, __extension__ __PRETTY_FUNCTION__ )) | |||
| 2909 | "should not reference ivar from this context")(static_cast <bool> (CurMethod && CurMethod-> isInstanceMethod() && "should not reference ivar from this context" ) ? void (0) : __assert_fail ("CurMethod && CurMethod->isInstanceMethod() && \"should not reference ivar from this context\"" , "clang/lib/Sema/SemaExpr.cpp", 2909, __extension__ __PRETTY_FUNCTION__ )); | |||
| 2910 | ||||
| 2911 | ObjCInterfaceDecl *IFace = CurMethod->getClassInterface(); | |||
| 2912 | assert(IFace && "should not reference ivar from this context")(static_cast <bool> (IFace && "should not reference ivar from this context" ) ? void (0) : __assert_fail ("IFace && \"should not reference ivar from this context\"" , "clang/lib/Sema/SemaExpr.cpp", 2912, __extension__ __PRETTY_FUNCTION__ )); | |||
| 2913 | ||||
| 2914 | // If we're referencing an invalid decl, just return this as a silent | |||
| 2915 | // error node. The error diagnostic was already emitted on the decl. | |||
| 2916 | if (IV->isInvalidDecl()) | |||
| 2917 | return ExprError(); | |||
| 2918 | ||||
| 2919 | // Check if referencing a field with __attribute__((deprecated)). | |||
| 2920 | if (DiagnoseUseOfDecl(IV, Loc)) | |||
| 2921 | return ExprError(); | |||
| 2922 | ||||
| 2923 | // FIXME: This should use a new expr for a direct reference, don't | |||
| 2924 | // turn this into Self->ivar, just return a BareIVarExpr or something. | |||
| 2925 | IdentifierInfo &II = Context.Idents.get("self"); | |||
| 2926 | UnqualifiedId SelfName; | |||
| 2927 | SelfName.setImplicitSelfParam(&II); | |||
| 2928 | CXXScopeSpec SelfScopeSpec; | |||
| 2929 | SourceLocation TemplateKWLoc; | |||
| 2930 | ExprResult SelfExpr = | |||
| 2931 | ActOnIdExpression(S, SelfScopeSpec, TemplateKWLoc, SelfName, | |||
| 2932 | /*HasTrailingLParen=*/false, | |||
| 2933 | /*IsAddressOfOperand=*/false); | |||
| 2934 | if (SelfExpr.isInvalid()) | |||
| 2935 | return ExprError(); | |||
| 2936 | ||||
| 2937 | SelfExpr = DefaultLvalueConversion(SelfExpr.get()); | |||
| 2938 | if (SelfExpr.isInvalid()) | |||
| 2939 | return ExprError(); | |||
| 2940 | ||||
| 2941 | MarkAnyDeclReferenced(Loc, IV, true); | |||
| 2942 | ||||
| 2943 | ObjCMethodFamily MF = CurMethod->getMethodFamily(); | |||
| 2944 | if (MF != OMF_init && MF != OMF_dealloc && MF != OMF_finalize && | |||
| 2945 | !IvarBacksCurrentMethodAccessor(IFace, CurMethod, IV)) | |||
| 2946 | Diag(Loc, diag::warn_direct_ivar_access) << IV->getDeclName(); | |||
| 2947 | ||||
| 2948 | ObjCIvarRefExpr *Result = new (Context) | |||
| 2949 | ObjCIvarRefExpr(IV, IV->getUsageType(SelfExpr.get()->getType()), Loc, | |||
| 2950 | IV->getLocation(), SelfExpr.get(), true, true); | |||
| 2951 | ||||
| 2952 | if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) { | |||
| 2953 | if (!isUnevaluatedContext() && | |||
| 2954 | !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc)) | |||
| 2955 | getCurFunction()->recordUseOfWeak(Result); | |||
| 2956 | } | |||
| 2957 | if (getLangOpts().ObjCAutoRefCount && !isUnevaluatedContext()) | |||
| 2958 | if (const BlockDecl *BD = CurContext->getInnermostBlockDecl()) | |||
| 2959 | ImplicitlyRetainedSelfLocs.push_back({Loc, BD}); | |||
| 2960 | ||||
| 2961 | return Result; | |||
| 2962 | } | |||
| 2963 | ||||
| 2964 | /// The parser has read a name in, and Sema has detected that we're currently | |||
| 2965 | /// inside an ObjC method. Perform some additional checks and determine if we | |||
| 2966 | /// should form a reference to an ivar. If so, build an expression referencing | |||
| 2967 | /// that ivar. | |||
| 2968 | ExprResult | |||
| 2969 | Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S, | |||
| 2970 | IdentifierInfo *II, bool AllowBuiltinCreation) { | |||
| 2971 | // FIXME: Integrate this lookup step into LookupParsedName. | |||
| 2972 | DeclResult Ivar = LookupIvarInObjCMethod(Lookup, S, II); | |||
| 2973 | if (Ivar.isInvalid()) | |||
| 2974 | return ExprError(); | |||
| 2975 | if (Ivar.isUsable()) | |||
| 2976 | return BuildIvarRefExpr(S, Lookup.getNameLoc(), | |||
| 2977 | cast<ObjCIvarDecl>(Ivar.get())); | |||
| 2978 | ||||
| 2979 | if (Lookup.empty() && II && AllowBuiltinCreation) | |||
| 2980 | LookupBuiltin(Lookup); | |||
| 2981 | ||||
| 2982 | // Sentinel value saying that we didn't do anything special. | |||
| 2983 | return ExprResult(false); | |||
| 2984 | } | |||
| 2985 | ||||
| 2986 | /// Cast a base object to a member's actual type. | |||
| 2987 | /// | |||
| 2988 | /// There are two relevant checks: | |||
| 2989 | /// | |||
| 2990 | /// C++ [class.access.base]p7: | |||
| 2991 | /// | |||
| 2992 | /// If a class member access operator [...] is used to access a non-static | |||
| 2993 | /// data member or non-static member function, the reference is ill-formed if | |||
| 2994 | /// the left operand [...] cannot be implicitly converted to a pointer to the | |||
| 2995 | /// naming class of the right operand. | |||
| 2996 | /// | |||
| 2997 | /// C++ [expr.ref]p7: | |||
| 2998 | /// | |||
| 2999 | /// If E2 is a non-static data member or a non-static member function, the | |||
| 3000 | /// program is ill-formed if the class of which E2 is directly a member is an | |||
| 3001 | /// ambiguous base (11.8) of the naming class (11.9.3) of E2. | |||
| 3002 | /// | |||
| 3003 | /// Note that the latter check does not consider access; the access of the | |||
| 3004 | /// "real" base class is checked as appropriate when checking the access of the | |||
| 3005 | /// member name. | |||
| 3006 | ExprResult | |||
| 3007 | Sema::PerformObjectMemberConversion(Expr *From, | |||
| 3008 | NestedNameSpecifier *Qualifier, | |||
| 3009 | NamedDecl *FoundDecl, | |||
| 3010 | NamedDecl *Member) { | |||
| 3011 | const auto *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext()); | |||
| 3012 | if (!RD) | |||
| 3013 | return From; | |||
| 3014 | ||||
| 3015 | QualType DestRecordType; | |||
| 3016 | QualType DestType; | |||
| 3017 | QualType FromRecordType; | |||
| 3018 | QualType FromType = From->getType(); | |||
| 3019 | bool PointerConversions = false; | |||
| 3020 | if (isa<FieldDecl>(Member)) { | |||
| 3021 | DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD)); | |||
| 3022 | auto FromPtrType = FromType->getAs<PointerType>(); | |||
| 3023 | DestRecordType = Context.getAddrSpaceQualType( | |||
| 3024 | DestRecordType, FromPtrType | |||
| 3025 | ? FromType->getPointeeType().getAddressSpace() | |||
| 3026 | : FromType.getAddressSpace()); | |||
| 3027 | ||||
| 3028 | if (FromPtrType) { | |||
| 3029 | DestType = Context.getPointerType(DestRecordType); | |||
| 3030 | FromRecordType = FromPtrType->getPointeeType(); | |||
| 3031 | PointerConversions = true; | |||
| 3032 | } else { | |||
| 3033 | DestType = DestRecordType; | |||
| 3034 | FromRecordType = FromType; | |||
| 3035 | } | |||
| 3036 | } else if (const auto *Method = dyn_cast<CXXMethodDecl>(Member)) { | |||
| 3037 | if (Method->isStatic()) | |||
| 3038 | return From; | |||
| 3039 | ||||
| 3040 | DestType = Method->getThisType(); | |||
| 3041 | DestRecordType = DestType->getPointeeType(); | |||
| 3042 | ||||
| 3043 | if (FromType->getAs<PointerType>()) { | |||
| 3044 | FromRecordType = FromType->getPointeeType(); | |||
| 3045 | PointerConversions = true; | |||
| 3046 | } else { | |||
| 3047 | FromRecordType = FromType; | |||
| 3048 | DestType = DestRecordType; | |||
| 3049 | } | |||
| 3050 | ||||
| 3051 | LangAS FromAS = FromRecordType.getAddressSpace(); | |||
| 3052 | LangAS DestAS = DestRecordType.getAddressSpace(); | |||
| 3053 | if (FromAS != DestAS) { | |||
| 3054 | QualType FromRecordTypeWithoutAS = | |||
| 3055 | Context.removeAddrSpaceQualType(FromRecordType); | |||
| 3056 | QualType FromTypeWithDestAS = | |||
| 3057 | Context.getAddrSpaceQualType(FromRecordTypeWithoutAS, DestAS); | |||
| 3058 | if (PointerConversions) | |||
| 3059 | FromTypeWithDestAS = Context.getPointerType(FromTypeWithDestAS); | |||
| 3060 | From = ImpCastExprToType(From, FromTypeWithDestAS, | |||
| 3061 | CK_AddressSpaceConversion, From->getValueKind()) | |||
| 3062 | .get(); | |||
| 3063 | } | |||
| 3064 | } else { | |||
| 3065 | // No conversion necessary. | |||
| 3066 | return From; | |||
| 3067 | } | |||
| 3068 | ||||
| 3069 | if (DestType->isDependentType() || FromType->isDependentType()) | |||
| 3070 | return From; | |||
| 3071 | ||||
| 3072 | // If the unqualified types are the same, no conversion is necessary. | |||
| 3073 | if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType)) | |||
| 3074 | return From; | |||
| 3075 | ||||
| 3076 | SourceRange FromRange = From->getSourceRange(); | |||
| 3077 | SourceLocation FromLoc = FromRange.getBegin(); | |||
| 3078 | ||||
| 3079 | ExprValueKind VK = From->getValueKind(); | |||
| 3080 | ||||
| 3081 | // C++ [class.member.lookup]p8: | |||
| 3082 | // [...] Ambiguities can often be resolved by qualifying a name with its | |||
| 3083 | // class name. | |||
| 3084 | // | |||
| 3085 | // If the member was a qualified name and the qualified referred to a | |||
| 3086 | // specific base subobject type, we'll cast to that intermediate type | |||
| 3087 | // first and then to the object in which the member is declared. That allows | |||
| 3088 | // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as: | |||
| 3089 | // | |||
| 3090 | // class Base { public: int x; }; | |||
| 3091 | // class Derived1 : public Base { }; | |||
| 3092 | // class Derived2 : public Base { }; | |||
| 3093 | // class VeryDerived : public Derived1, public Derived2 { void f(); }; | |||
| 3094 | // | |||
| 3095 | // void VeryDerived::f() { | |||
| 3096 | // x = 17; // error: ambiguous base subobjects | |||
| 3097 | // Derived1::x = 17; // okay, pick the Base subobject of Derived1 | |||
| 3098 | // } | |||
| 3099 | if (Qualifier && Qualifier->getAsType()) { | |||
| 3100 | QualType QType = QualType(Qualifier->getAsType(), 0); | |||
| 3101 | assert(QType->isRecordType() && "lookup done with non-record type")(static_cast <bool> (QType->isRecordType() && "lookup done with non-record type") ? void (0) : __assert_fail ("QType->isRecordType() && \"lookup done with non-record type\"" , "clang/lib/Sema/SemaExpr.cpp", 3101, __extension__ __PRETTY_FUNCTION__ )); | |||
| 3102 | ||||
| 3103 | QualType QRecordType = QualType(QType->castAs<RecordType>(), 0); | |||
| 3104 | ||||
| 3105 | // In C++98, the qualifier type doesn't actually have to be a base | |||
| 3106 | // type of the object type, in which case we just ignore it. | |||
| 3107 | // Otherwise build the appropriate casts. | |||
| 3108 | if (IsDerivedFrom(FromLoc, FromRecordType, QRecordType)) { | |||
| 3109 | CXXCastPath BasePath; | |||
| 3110 | if (CheckDerivedToBaseConversion(FromRecordType, QRecordType, | |||
| 3111 | FromLoc, FromRange, &BasePath)) | |||
| 3112 | return ExprError(); | |||
| 3113 | ||||
| 3114 | if (PointerConversions) | |||
| 3115 | QType = Context.getPointerType(QType); | |||
| 3116 | From = ImpCastExprToType(From, QType, CK_UncheckedDerivedToBase, | |||
| 3117 | VK, &BasePath).get(); | |||
| 3118 | ||||
| 3119 | FromType = QType; | |||
| 3120 | FromRecordType = QRecordType; | |||
| 3121 | ||||
| 3122 | // If the qualifier type was the same as the destination type, | |||
| 3123 | // we're done. | |||
| 3124 | if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType)) | |||
| 3125 | return From; | |||
| 3126 | } | |||
| 3127 | } | |||
| 3128 | ||||
| 3129 | CXXCastPath BasePath; | |||
| 3130 | if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType, | |||
| 3131 | FromLoc, FromRange, &BasePath, | |||
| 3132 | /*IgnoreAccess=*/true)) | |||
| 3133 | return ExprError(); | |||
| 3134 | ||||
| 3135 | return ImpCastExprToType(From, DestType, CK_UncheckedDerivedToBase, | |||
| 3136 | VK, &BasePath); | |||
| 3137 | } | |||
| 3138 | ||||
| 3139 | bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS, | |||
| 3140 | const LookupResult &R, | |||
| 3141 | bool HasTrailingLParen) { | |||
| 3142 | // Only when used directly as the postfix-expression of a call. | |||
| 3143 | if (!HasTrailingLParen) | |||
| 3144 | return false; | |||
| 3145 | ||||
| 3146 | // Never if a scope specifier was provided. | |||
| 3147 | if (SS.isSet()) | |||
| 3148 | return false; | |||
| 3149 | ||||
| 3150 | // Only in C++ or ObjC++. | |||
| 3151 | if (!getLangOpts().CPlusPlus) | |||
| 3152 | return false; | |||
| 3153 | ||||
| 3154 | // Turn off ADL when we find certain kinds of declarations during | |||
| 3155 | // normal lookup: | |||
| 3156 | for (const NamedDecl *D : R) { | |||
| 3157 | // C++0x [basic.lookup.argdep]p3: | |||
| 3158 | // -- a declaration of a class member | |||
| 3159 | // Since using decls preserve this property, we check this on the | |||
| 3160 | // original decl. | |||
| 3161 | if (D->isCXXClassMember()) | |||
| 3162 | return false; | |||
| 3163 | ||||
| 3164 | // C++0x [basic.lookup.argdep]p3: | |||
| 3165 | // -- a block-scope function declaration that is not a | |||
| 3166 | // using-declaration | |||
| 3167 | // NOTE: we also trigger this for function templates (in fact, we | |||
| 3168 | // don't check the decl type at all, since all other decl types | |||
| 3169 | // turn off ADL anyway). | |||
| 3170 | if (isa<UsingShadowDecl>(D)) | |||
| 3171 | D = cast<UsingShadowDecl>(D)->getTargetDecl(); | |||
| 3172 | else if (D->getLexicalDeclContext()->isFunctionOrMethod()) | |||
| 3173 | return false; | |||
| 3174 | ||||
| 3175 | // C++0x [basic.lookup.argdep]p3: | |||
| 3176 | // -- a declaration that is neither a function or a function | |||
| 3177 | // template | |||
| 3178 | // And also for builtin functions. | |||
| 3179 | if (const auto *FDecl = dyn_cast<FunctionDecl>(D)) { | |||
| 3180 | // But also builtin functions. | |||
| 3181 | if (FDecl->getBuiltinID() && FDecl->isImplicit()) | |||
| 3182 | return false; | |||
| 3183 | } else if (!isa<FunctionTemplateDecl>(D)) | |||
| 3184 | return false; | |||
| 3185 | } | |||
| 3186 | ||||
| 3187 | return true; | |||
| 3188 | } | |||
| 3189 | ||||
| 3190 | ||||
| 3191 | /// Diagnoses obvious problems with the use of the given declaration | |||
| 3192 | /// as an expression. This is only actually called for lookups that | |||
| 3193 | /// were not overloaded, and it doesn't promise that the declaration | |||
| 3194 | /// will in fact be used. | |||
| 3195 | static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D, | |||
| 3196 | bool AcceptInvalid) { | |||
| 3197 | if (D->isInvalidDecl() && !AcceptInvalid) | |||
| 3198 | return true; | |||
| 3199 | ||||
| 3200 | if (isa<TypedefNameDecl>(D)) { | |||
| 3201 | S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName(); | |||
| 3202 | return true; | |||
| 3203 | } | |||
| 3204 | ||||
| 3205 | if (isa<ObjCInterfaceDecl>(D)) { | |||
| 3206 | S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName(); | |||
| 3207 | return true; | |||
| 3208 | } | |||
| 3209 | ||||
| 3210 | if (isa<NamespaceDecl>(D)) { | |||
| 3211 | S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName(); | |||
| 3212 | return true; | |||
| 3213 | } | |||
| 3214 | ||||
| 3215 | return false; | |||
| 3216 | } | |||
| 3217 | ||||
| 3218 | // Certain multiversion types should be treated as overloaded even when there is | |||
| 3219 | // only one result. | |||
| 3220 | static bool ShouldLookupResultBeMultiVersionOverload(const LookupResult &R) { | |||
| 3221 | assert(R.isSingleResult() && "Expected only a single result")(static_cast <bool> (R.isSingleResult() && "Expected only a single result" ) ? void (0) : __assert_fail ("R.isSingleResult() && \"Expected only a single result\"" , "clang/lib/Sema/SemaExpr.cpp", 3221, __extension__ __PRETTY_FUNCTION__ )); | |||
| 3222 | const auto *FD = dyn_cast<FunctionDecl>(R.getFoundDecl()); | |||
| 3223 | return FD && | |||
| 3224 | (FD->isCPUDispatchMultiVersion() || FD->isCPUSpecificMultiVersion()); | |||
| 3225 | } | |||
| 3226 | ||||
| 3227 | ExprResult Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS, | |||
| 3228 | LookupResult &R, bool NeedsADL, | |||
| 3229 | bool AcceptInvalidDecl) { | |||
| 3230 | // If this is a single, fully-resolved result and we don't need ADL, | |||
| 3231 | // just build an ordinary singleton decl ref. | |||
| 3232 | if (!NeedsADL && R.isSingleResult() && | |||
| 3233 | !R.getAsSingle<FunctionTemplateDecl>() && | |||
| 3234 | !ShouldLookupResultBeMultiVersionOverload(R)) | |||
| 3235 | return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), R.getFoundDecl(), | |||
| 3236 | R.getRepresentativeDecl(), nullptr, | |||
| 3237 | AcceptInvalidDecl); | |||
| 3238 | ||||
| 3239 | // We only need to check the declaration if there's exactly one | |||
| 3240 | // result, because in the overloaded case the results can only be | |||
| 3241 | // functions and function templates. | |||
| 3242 | if (R.isSingleResult() && !ShouldLookupResultBeMultiVersionOverload(R) && | |||
| 3243 | CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl(), | |||
| 3244 | AcceptInvalidDecl)) | |||
| 3245 | return ExprError(); | |||
| 3246 | ||||
| 3247 | // Otherwise, just build an unresolved lookup expression. Suppress | |||
| 3248 | // any lookup-related diagnostics; we'll hash these out later, when | |||
| 3249 | // we've picked a target. | |||
| 3250 | R.suppressDiagnostics(); | |||
| 3251 | ||||
| 3252 | UnresolvedLookupExpr *ULE | |||
| 3253 | = UnresolvedLookupExpr::Create(Context, R.getNamingClass(), | |||
| 3254 | SS.getWithLocInContext(Context), | |||
| 3255 | R.getLookupNameInfo(), | |||
| 3256 | NeedsADL, R.isOverloadedResult(), | |||
| 3257 | R.begin(), R.end()); | |||
| 3258 | ||||
| 3259 | return ULE; | |||
| 3260 | } | |||
| 3261 | ||||
| 3262 | static void diagnoseUncapturableValueReferenceOrBinding(Sema &S, | |||
| 3263 | SourceLocation loc, | |||
| 3264 | ValueDecl *var); | |||
| 3265 | ||||
| 3266 | /// Complete semantic analysis for a reference to the given declaration. | |||
| 3267 | ExprResult Sema::BuildDeclarationNameExpr( | |||
| 3268 | const CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, NamedDecl *D, | |||
| 3269 | NamedDecl *FoundD, const TemplateArgumentListInfo *TemplateArgs, | |||
| 3270 | bool AcceptInvalidDecl) { | |||
| 3271 | assert(D && "Cannot refer to a NULL declaration")(static_cast <bool> (D && "Cannot refer to a NULL declaration" ) ? void (0) : __assert_fail ("D && \"Cannot refer to a NULL declaration\"" , "clang/lib/Sema/SemaExpr.cpp", 3271, __extension__ __PRETTY_FUNCTION__ )); | |||
| 3272 | assert(!isa<FunctionTemplateDecl>(D) &&(static_cast <bool> (!isa<FunctionTemplateDecl>(D ) && "Cannot refer unambiguously to a function template" ) ? void (0) : __assert_fail ("!isa<FunctionTemplateDecl>(D) && \"Cannot refer unambiguously to a function template\"" , "clang/lib/Sema/SemaExpr.cpp", 3273, __extension__ __PRETTY_FUNCTION__ )) | |||
| 3273 | "Cannot refer unambiguously to a function template")(static_cast <bool> (!isa<FunctionTemplateDecl>(D ) && "Cannot refer unambiguously to a function template" ) ? void (0) : __assert_fail ("!isa<FunctionTemplateDecl>(D) && \"Cannot refer unambiguously to a function template\"" , "clang/lib/Sema/SemaExpr.cpp", 3273, __extension__ __PRETTY_FUNCTION__ )); | |||
| 3274 | ||||
| 3275 | SourceLocation Loc = NameInfo.getLoc(); | |||
| 3276 | if (CheckDeclInExpr(*this, Loc, D, AcceptInvalidDecl)) { | |||
| 3277 | // Recovery from invalid cases (e.g. D is an invalid Decl). | |||
| 3278 | // We use the dependent type for the RecoveryExpr to prevent bogus follow-up | |||
| 3279 | // diagnostics, as invalid decls use int as a fallback type. | |||
| 3280 | return CreateRecoveryExpr(NameInfo.getBeginLoc(), NameInfo.getEndLoc(), {}); | |||
| 3281 | } | |||
| 3282 | ||||
| 3283 | if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) { | |||
| 3284 | // Specifically diagnose references to class templates that are missing | |||
| 3285 | // a template argument list. | |||
| 3286 | diagnoseMissingTemplateArguments(TemplateName(Template), Loc); | |||
| 3287 | return ExprError(); | |||
| 3288 | } | |||
| 3289 | ||||
| 3290 | // Make sure that we're referring to a value. | |||
| 3291 | if (!isa<ValueDecl, UnresolvedUsingIfExistsDecl>(D)) { | |||
| 3292 | Diag(Loc, diag::err_ref_non_value) << D << SS.getRange(); | |||
| 3293 | Diag(D->getLocation(), diag::note_declared_at); | |||
| 3294 | return ExprError(); | |||
| 3295 | } | |||
| 3296 | ||||
| 3297 | // Check whether this declaration can be used. Note that we suppress | |||
| 3298 | // this check when we're going to perform argument-dependent lookup | |||
| 3299 | // on this function name, because this might not be the function | |||
| 3300 | // that overload resolution actually selects. | |||
| 3301 | if (DiagnoseUseOfDecl(D, Loc)) | |||
| 3302 | return ExprError(); | |||
| 3303 | ||||
| 3304 | auto *VD = cast<ValueDecl>(D); | |||
| 3305 | ||||
| 3306 | // Only create DeclRefExpr's for valid Decl's. | |||
| 3307 | if (VD->isInvalidDecl() && !AcceptInvalidDecl) | |||
| 3308 | return ExprError(); | |||
| 3309 | ||||
| 3310 | // Handle members of anonymous structs and unions. If we got here, | |||
| 3311 | // and the reference is to a class member indirect field, then this | |||
| 3312 | // must be the subject of a pointer-to-member expression. | |||
| 3313 | if (auto *IndirectField = dyn_cast<IndirectFieldDecl>(VD); | |||
| 3314 | IndirectField && !IndirectField->isCXXClassMember()) | |||
| 3315 | return BuildAnonymousStructUnionMemberReference(SS, NameInfo.getLoc(), | |||
| 3316 | IndirectField); | |||
| 3317 | ||||
| 3318 | QualType type = VD->getType(); | |||
| 3319 | if (type.isNull()) | |||
| 3320 | return ExprError(); | |||
| 3321 | ExprValueKind valueKind = VK_PRValue; | |||
| 3322 | ||||
| 3323 | // In 'T ...V;', the type of the declaration 'V' is 'T...', but the type of | |||
| 3324 | // a reference to 'V' is simply (unexpanded) 'T'. The type, like the value, | |||
| 3325 | // is expanded by some outer '...' in the context of the use. | |||
| 3326 | type = type.getNonPackExpansionType(); | |||
| 3327 | ||||
| 3328 | switch (D->getKind()) { | |||
| 3329 | // Ignore all the non-ValueDecl kinds. | |||
| 3330 | #define ABSTRACT_DECL(kind) | |||
| 3331 | #define VALUE(type, base) | |||
| 3332 | #define DECL(type, base) case Decl::type: | |||
| 3333 | #include "clang/AST/DeclNodes.inc" | |||
| 3334 | llvm_unreachable("invalid value decl kind")::llvm::llvm_unreachable_internal("invalid value decl kind", "clang/lib/Sema/SemaExpr.cpp" , 3334); | |||
| 3335 | ||||
| 3336 | // These shouldn't make it here. | |||
| 3337 | case Decl::ObjCAtDefsField: | |||
| 3338 | llvm_unreachable("forming non-member reference to ivar?")::llvm::llvm_unreachable_internal("forming non-member reference to ivar?" , "clang/lib/Sema/SemaExpr.cpp", 3338); | |||
| 3339 | ||||
| 3340 | // Enum constants are always r-values and never references. | |||
| 3341 | // Unresolved using declarations are dependent. | |||
| 3342 | case Decl::EnumConstant: | |||
| 3343 | case Decl::UnresolvedUsingValue: | |||
| 3344 | case Decl::OMPDeclareReduction: | |||
| 3345 | case Decl::OMPDeclareMapper: | |||
| 3346 | valueKind = VK_PRValue; | |||
| 3347 | break; | |||
| 3348 | ||||
| 3349 | // Fields and indirect fields that got here must be for | |||
| 3350 | // pointer-to-member expressions; we just call them l-values for | |||
| 3351 | // internal consistency, because this subexpression doesn't really | |||
| 3352 | // exist in the high-level semantics. | |||
| 3353 | case Decl::Field: | |||
| 3354 | case Decl::IndirectField: | |||
| 3355 | case Decl::ObjCIvar: | |||
| 3356 | assert(getLangOpts().CPlusPlus && "building reference to field in C?")(static_cast <bool> (getLangOpts().CPlusPlus && "building reference to field in C?") ? void (0) : __assert_fail ("getLangOpts().CPlusPlus && \"building reference to field in C?\"" , "clang/lib/Sema/SemaExpr.cpp", 3356, __extension__ __PRETTY_FUNCTION__ )); | |||
| 3357 | ||||
| 3358 | // These can't have reference type in well-formed programs, but | |||
| 3359 | // for internal consistency we do this anyway. | |||
| 3360 | type = type.getNonReferenceType(); | |||
| 3361 | valueKind = VK_LValue; | |||
| 3362 | break; | |||
| 3363 | ||||
| 3364 | // Non-type template parameters are either l-values or r-values | |||
| 3365 | // depending on the type. | |||
| 3366 | case Decl::NonTypeTemplateParm: { | |||
| 3367 | if (const ReferenceType *reftype = type->getAs<ReferenceType>()) { | |||
| 3368 | type = reftype->getPointeeType(); | |||
| 3369 | valueKind = VK_LValue; // even if the parameter is an r-value reference | |||
| 3370 | break; | |||
| 3371 | } | |||
| 3372 | ||||
| 3373 | // [expr.prim.id.unqual]p2: | |||
| 3374 | // If the entity is a template parameter object for a template | |||
| 3375 | // parameter of type T, the type of the expression is const T. | |||
| 3376 | // [...] The expression is an lvalue if the entity is a [...] template | |||
| 3377 | // parameter object. | |||
| 3378 | if (type->isRecordType()) { | |||
| 3379 | type = type.getUnqualifiedType().withConst(); | |||
| 3380 | valueKind = VK_LValue; | |||
| 3381 | break; | |||
| 3382 | } | |||
| 3383 | ||||
| 3384 | // For non-references, we need to strip qualifiers just in case | |||
| 3385 | // the template parameter was declared as 'const int' or whatever. | |||
| 3386 | valueKind = VK_PRValue; | |||
| 3387 | type = type.getUnqualifiedType(); | |||
| 3388 | break; | |||
| 3389 | } | |||
| 3390 | ||||
| 3391 | case Decl::Var: | |||
| 3392 | case Decl::VarTemplateSpecialization: | |||
| 3393 | case Decl::VarTemplatePartialSpecialization: | |||
| 3394 | case Decl::Decomposition: | |||
| 3395 | case Decl::OMPCapturedExpr: | |||
| 3396 | // In C, "extern void blah;" is valid and is an r-value. | |||
| 3397 | if (!getLangOpts().CPlusPlus && !type.hasQualifiers() && | |||
| 3398 | type->isVoidType()) { | |||
| 3399 | valueKind = VK_PRValue; | |||
| 3400 | break; | |||
| 3401 | } | |||
| 3402 | [[fallthrough]]; | |||
| 3403 | ||||
| 3404 | case Decl::ImplicitParam: | |||
| 3405 | case Decl::ParmVar: { | |||
| 3406 | // These are always l-values. | |||
| 3407 | valueKind = VK_LValue; | |||
| 3408 | type = type.getNonReferenceType(); | |||
| 3409 | ||||
| 3410 | // FIXME: Does the addition of const really only apply in | |||
| 3411 | // potentially-evaluated contexts? Since the variable isn't actually | |||
| 3412 | // captured in an unevaluated context, it seems that the answer is no. | |||
| 3413 | if (!isUnevaluatedContext()) { | |||
| 3414 | QualType CapturedType = getCapturedDeclRefType(cast<VarDecl>(VD), Loc); | |||
| 3415 | if (!CapturedType.isNull()) | |||
| 3416 | type = CapturedType; | |||
| 3417 | } | |||
| 3418 | ||||
| 3419 | break; | |||
| 3420 | } | |||
| 3421 | ||||
| 3422 | case Decl::Binding: | |||
| 3423 | // These are always lvalues. | |||
| 3424 | valueKind = VK_LValue; | |||
| 3425 | type = type.getNonReferenceType(); | |||
| 3426 | break; | |||
| 3427 | ||||
| 3428 | case Decl::Function: { | |||
| 3429 | if (unsigned BID = cast<FunctionDecl>(VD)->getBuiltinID()) { | |||
| 3430 | if (!Context.BuiltinInfo.isDirectlyAddressable(BID)) { | |||
| 3431 | type = Context.BuiltinFnTy; | |||
| 3432 | valueKind = VK_PRValue; | |||
| 3433 | break; | |||
| 3434 | } | |||
| 3435 | } | |||
| 3436 | ||||
| 3437 | const FunctionType *fty = type->castAs<FunctionType>(); | |||
| 3438 | ||||
| 3439 | // If we're referring to a function with an __unknown_anytype | |||
| 3440 | // result type, make the entire expression __unknown_anytype. | |||
| 3441 | if (fty->getReturnType() == Context.UnknownAnyTy) { | |||
| 3442 | type = Context.UnknownAnyTy; | |||
| 3443 | valueKind = VK_PRValue; | |||
| 3444 | break; | |||
| 3445 | } | |||
| 3446 | ||||
| 3447 | // Functions are l-values in C++. | |||
| 3448 | if (getLangOpts().CPlusPlus) { | |||
| 3449 | valueKind = VK_LValue; | |||
| 3450 | break; | |||
| 3451 | } | |||
| 3452 | ||||
| 3453 | // C99 DR 316 says that, if a function type comes from a | |||
| 3454 | // function definition (without a prototype), that type is only | |||
| 3455 | // used for checking compatibility. Therefore, when referencing | |||
| 3456 | // the function, we pretend that we don't have the full function | |||
| 3457 | // type. | |||
| 3458 | if (!cast<FunctionDecl>(VD)->hasPrototype() && isa<FunctionProtoType>(fty)) | |||
| 3459 | type = Context.getFunctionNoProtoType(fty->getReturnType(), | |||
| 3460 | fty->getExtInfo()); | |||
| 3461 | ||||
| 3462 | // Functions are r-values in C. | |||
| 3463 | valueKind = VK_PRValue; | |||
| 3464 | break; | |||
| 3465 | } | |||
| 3466 | ||||
| 3467 | case Decl::CXXDeductionGuide: | |||
| 3468 | llvm_unreachable("building reference to deduction guide")::llvm::llvm_unreachable_internal("building reference to deduction guide" , "clang/lib/Sema/SemaExpr.cpp", 3468); | |||
| 3469 | ||||
| 3470 | case Decl::MSProperty: | |||
| 3471 | case Decl::MSGuid: | |||
| 3472 | case Decl::TemplateParamObject: | |||
| 3473 | // FIXME: Should MSGuidDecl and template parameter objects be subject to | |||
| 3474 | // capture in OpenMP, or duplicated between host and device? | |||
| 3475 | valueKind = VK_LValue; | |||
| 3476 | break; | |||
| 3477 | ||||
| 3478 | case Decl::UnnamedGlobalConstant: | |||
| 3479 | valueKind = VK_LValue; | |||
| 3480 | break; | |||
| 3481 | ||||
| 3482 | case Decl::CXXMethod: | |||
| 3483 | // If we're referring to a method with an __unknown_anytype | |||
| 3484 | // result type, make the entire expression __unknown_anytype. | |||
| 3485 | // This should only be possible with a type written directly. | |||
| 3486 | if (const FunctionProtoType *proto = | |||
| 3487 | dyn_cast<FunctionProtoType>(VD->getType())) | |||
| 3488 | if (proto->getReturnType() == Context.UnknownAnyTy) { | |||
| 3489 | type = Context.UnknownAnyTy; | |||
| 3490 | valueKind = VK_PRValue; | |||
| 3491 | break; | |||
| 3492 | } | |||
| 3493 | ||||
| 3494 | // C++ methods are l-values if static, r-values if non-static. | |||
| 3495 | if (cast<CXXMethodDecl>(VD)->isStatic()) { | |||
| 3496 | valueKind = VK_LValue; | |||
| 3497 | break; | |||
| 3498 | } | |||
| 3499 | [[fallthrough]]; | |||
| 3500 | ||||
| 3501 | case Decl::CXXConversion: | |||
| 3502 | case Decl::CXXDestructor: | |||
| 3503 | case Decl::CXXConstructor: | |||
| 3504 | valueKind = VK_PRValue; | |||
| 3505 | break; | |||
| 3506 | } | |||
| 3507 | ||||
| 3508 | auto *E = | |||
| 3509 | BuildDeclRefExpr(VD, type, valueKind, NameInfo, &SS, FoundD, | |||
| 3510 | /*FIXME: TemplateKWLoc*/ SourceLocation(), TemplateArgs); | |||
| 3511 | // Clang AST consumers assume a DeclRefExpr refers to a valid decl. We | |||
| 3512 | // wrap a DeclRefExpr referring to an invalid decl with a dependent-type | |||
| 3513 | // RecoveryExpr to avoid follow-up semantic analysis (thus prevent bogus | |||
| 3514 | // diagnostics). | |||
| 3515 | if (VD->isInvalidDecl() && E) | |||
| 3516 | return CreateRecoveryExpr(E->getBeginLoc(), E->getEndLoc(), {E}); | |||
| 3517 | return E; | |||
| 3518 | } | |||
| 3519 | ||||
| 3520 | static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source, | |||
| 3521 | SmallString<32> &Target) { | |||
| 3522 | Target.resize(CharByteWidth * (Source.size() + 1)); | |||
| 3523 | char *ResultPtr = &Target[0]; | |||
| 3524 | const llvm::UTF8 *ErrorPtr; | |||
| 3525 | bool success = | |||
| 3526 | llvm::ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr); | |||
| 3527 | (void)success; | |||
| 3528 | assert(success)(static_cast <bool> (success) ? void (0) : __assert_fail ("success", "clang/lib/Sema/SemaExpr.cpp", 3528, __extension__ __PRETTY_FUNCTION__)); | |||
| 3529 | Target.resize(ResultPtr - &Target[0]); | |||
| 3530 | } | |||
| 3531 | ||||
| 3532 | ExprResult Sema::BuildPredefinedExpr(SourceLocation Loc, | |||
| 3533 | PredefinedExpr::IdentKind IK) { | |||
| 3534 | // Pick the current block, lambda, captured statement or function. | |||
| 3535 | Decl *currentDecl = nullptr; | |||
| 3536 | if (const BlockScopeInfo *BSI = getCurBlock()) | |||
| 3537 | currentDecl = BSI->TheDecl; | |||
| 3538 | else if (const LambdaScopeInfo *LSI = getCurLambda()) | |||
| 3539 | currentDecl = LSI->CallOperator; | |||
| 3540 | else if (const CapturedRegionScopeInfo *CSI = getCurCapturedRegion()) | |||
| 3541 | currentDecl = CSI->TheCapturedDecl; | |||
| 3542 | else | |||
| 3543 | currentDecl = getCurFunctionOrMethodDecl(); | |||
| 3544 | ||||
| 3545 | if (!currentDecl) { | |||
| 3546 | Diag(Loc, diag::ext_predef_outside_function); | |||
| 3547 | currentDecl = Context.getTranslationUnitDecl(); | |||
| 3548 | } | |||
| 3549 | ||||
| 3550 | QualType ResTy; | |||
| 3551 | StringLiteral *SL = nullptr; | |||
| 3552 | if (cast<DeclContext>(currentDecl)->isDependentContext()) | |||
| 3553 | ResTy = Context.DependentTy; | |||
| 3554 | else { | |||
| 3555 | // Pre-defined identifiers are of type char[x], where x is the length of | |||
| 3556 | // the string. | |||
| 3557 | auto Str = PredefinedExpr::ComputeName(IK, currentDecl); | |||
| 3558 | unsigned Length = Str.length(); | |||
| 3559 | ||||
| 3560 | llvm::APInt LengthI(32, Length + 1); | |||
| 3561 | if (IK == PredefinedExpr::LFunction || IK == PredefinedExpr::LFuncSig) { | |||
| 3562 | ResTy = | |||
| 3563 | Context.adjustStringLiteralBaseType(Context.WideCharTy.withConst()); | |||
| 3564 | SmallString<32> RawChars; | |||
| 3565 | ConvertUTF8ToWideString(Context.getTypeSizeInChars(ResTy).getQuantity(), | |||
| 3566 | Str, RawChars); | |||
| 3567 | ResTy = Context.getConstantArrayType(ResTy, LengthI, nullptr, | |||
| 3568 | ArrayType::Normal, | |||
| 3569 | /*IndexTypeQuals*/ 0); | |||
| 3570 | SL = StringLiteral::Create(Context, RawChars, StringLiteral::Wide, | |||
| 3571 | /*Pascal*/ false, ResTy, Loc); | |||
| 3572 | } else { | |||
| 3573 | ResTy = Context.adjustStringLiteralBaseType(Context.CharTy.withConst()); | |||
| 3574 | ResTy = Context.getConstantArrayType(ResTy, LengthI, nullptr, | |||
| 3575 | ArrayType::Normal, | |||
| 3576 | /*IndexTypeQuals*/ 0); | |||
| 3577 | SL = StringLiteral::Create(Context, Str, StringLiteral::Ordinary, | |||
| 3578 | /*Pascal*/ false, ResTy, Loc); | |||
| 3579 | } | |||
| 3580 | } | |||
| 3581 | ||||
| 3582 | return PredefinedExpr::Create(Context, Loc, ResTy, IK, SL); | |||
| 3583 | } | |||
| 3584 | ||||
| 3585 | ExprResult Sema::BuildSYCLUniqueStableNameExpr(SourceLocation OpLoc, | |||
| 3586 | SourceLocation LParen, | |||
| 3587 | SourceLocation RParen, | |||
| 3588 | TypeSourceInfo *TSI) { | |||
| 3589 | return SYCLUniqueStableNameExpr::Create(Context, OpLoc, LParen, RParen, TSI); | |||
| 3590 | } | |||
| 3591 | ||||
| 3592 | ExprResult Sema::ActOnSYCLUniqueStableNameExpr(SourceLocation OpLoc, | |||
| 3593 | SourceLocation LParen, | |||
| 3594 | SourceLocation RParen, | |||
| 3595 | ParsedType ParsedTy) { | |||
| 3596 | TypeSourceInfo *TSI = nullptr; | |||
| 3597 | QualType Ty = GetTypeFromParser(ParsedTy, &TSI); | |||
| 3598 | ||||
| 3599 | if (Ty.isNull()) | |||
| 3600 | return ExprError(); | |||
| 3601 | if (!TSI) | |||
| 3602 | TSI = Context.getTrivialTypeSourceInfo(Ty, LParen); | |||
| 3603 | ||||
| 3604 | return BuildSYCLUniqueStableNameExpr(OpLoc, LParen, RParen, TSI); | |||
| 3605 | } | |||
| 3606 | ||||
| 3607 | ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind) { | |||
| 3608 | PredefinedExpr::IdentKind IK; | |||
| 3609 | ||||
| 3610 | switch (Kind) { | |||
| 3611 | default: llvm_unreachable("Unknown simple primary expr!")::llvm::llvm_unreachable_internal("Unknown simple primary expr!" , "clang/lib/Sema/SemaExpr.cpp", 3611); | |||
| 3612 | case tok::kw___func__: IK = PredefinedExpr::Func; break; // [C99 6.4.2.2] | |||
| 3613 | case tok::kw___FUNCTION__: IK = PredefinedExpr::Function; break; | |||
| 3614 | case tok::kw___FUNCDNAME__: IK = PredefinedExpr::FuncDName; break; // [MS] | |||
| 3615 | case tok::kw___FUNCSIG__: IK = PredefinedExpr::FuncSig; break; // [MS] | |||
| 3616 | case tok::kw_L__FUNCTION__: IK = PredefinedExpr::LFunction; break; // [MS] | |||
| 3617 | case tok::kw_L__FUNCSIG__: IK = PredefinedExpr::LFuncSig; break; // [MS] | |||
| 3618 | case tok::kw___PRETTY_FUNCTION__: IK = PredefinedExpr::PrettyFunction; break; | |||
| 3619 | } | |||
| 3620 | ||||
| 3621 | return BuildPredefinedExpr(Loc, IK); | |||
| 3622 | } | |||
| 3623 | ||||
| 3624 | ExprResult Sema::ActOnCharacterConstant(const Token &Tok, Scope *UDLScope) { | |||
| 3625 | SmallString<16> CharBuffer; | |||
| 3626 | bool Invalid = false; | |||
| 3627 | StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid); | |||
| 3628 | if (Invalid) | |||
| 3629 | return ExprError(); | |||
| 3630 | ||||
| 3631 | CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(), | |||
| 3632 | PP, Tok.getKind()); | |||
| 3633 | if (Literal.hadError()) | |||
| 3634 | return ExprError(); | |||
| 3635 | ||||
| 3636 | QualType Ty; | |||
| 3637 | if (Literal.isWide()) | |||
| 3638 | Ty = Context.WideCharTy; // L'x' -> wchar_t in C and C++. | |||
| 3639 | else if (Literal.isUTF8() && getLangOpts().C2x) | |||
| 3640 | Ty = Context.UnsignedCharTy; // u8'x' -> unsigned char in C2x | |||
| 3641 | else if (Literal.isUTF8() && getLangOpts().Char8) | |||
| 3642 | Ty = Context.Char8Ty; // u8'x' -> char8_t when it exists. | |||
| 3643 | else if (Literal.isUTF16()) | |||
| 3644 | Ty = Context.Char16Ty; // u'x' -> char16_t in C11 and C++11. | |||
| 3645 | else if (Literal.isUTF32()) | |||
| 3646 | Ty = Context.Char32Ty; // U'x' -> char32_t in C11 and C++11. | |||
| 3647 | else if (!getLangOpts().CPlusPlus || Literal.isMultiChar()) | |||
| 3648 | Ty = Context.IntTy; // 'x' -> int in C, 'wxyz' -> int in C++. | |||
| 3649 | else | |||
| 3650 | Ty = Context.CharTy; // 'x' -> char in C++; | |||
| 3651 | // u8'x' -> char in C11-C17 and in C++ without char8_t. | |||
| 3652 | ||||
| 3653 | CharacterLiteral::CharacterKind Kind = CharacterLiteral::Ascii; | |||
| 3654 | if (Literal.isWide()) | |||
| 3655 | Kind = CharacterLiteral::Wide; | |||
| 3656 | else if (Literal.isUTF16()) | |||
| 3657 | Kind = CharacterLiteral::UTF16; | |||
| 3658 | else if (Literal.isUTF32()) | |||
| 3659 | Kind = CharacterLiteral::UTF32; | |||
| 3660 | else if (Literal.isUTF8()) | |||
| 3661 | Kind = CharacterLiteral::UTF8; | |||
| 3662 | ||||
| 3663 | Expr *Lit = new (Context) CharacterLiteral(Literal.getValue(), Kind, Ty, | |||
| 3664 | Tok.getLocation()); | |||
| 3665 | ||||
| 3666 | if (Literal.getUDSuffix().empty()) | |||
| 3667 | return Lit; | |||
| 3668 | ||||
| 3669 | // We're building a user-defined literal. | |||
| 3670 | IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix()); | |||
| 3671 | SourceLocation UDSuffixLoc = | |||
| 3672 | getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset()); | |||
| 3673 | ||||
| 3674 | // Make sure we're allowed user-defined literals here. | |||
| 3675 | if (!UDLScope) | |||
| 3676 | return ExprError(Diag(UDSuffixLoc, diag::err_invalid_character_udl)); | |||
| 3677 | ||||
| 3678 | // C++11 [lex.ext]p6: The literal L is treated as a call of the form | |||
| 3679 | // operator "" X (ch) | |||
| 3680 | return BuildCookedLiteralOperatorCall(*this, UDLScope, UDSuffix, UDSuffixLoc, | |||
| 3681 | Lit, Tok.getLocation()); | |||
| 3682 | } | |||
| 3683 | ||||
| 3684 | ExprResult Sema::ActOnIntegerConstant(SourceLocation Loc, uint64_t Val) { | |||
| 3685 | unsigned IntSize = Context.getTargetInfo().getIntWidth(); | |||
| 3686 | return IntegerLiteral::Create(Context, llvm::APInt(IntSize, Val), | |||
| 3687 | Context.IntTy, Loc); | |||
| 3688 | } | |||
| 3689 | ||||
| 3690 | static Expr *BuildFloatingLiteral(Sema &S, NumericLiteralParser &Literal, | |||
| 3691 | QualType Ty, SourceLocation Loc) { | |||
| 3692 | const llvm::fltSemantics &Format = S.Context.getFloatTypeSemantics(Ty); | |||
| 3693 | ||||
| 3694 | using llvm::APFloat; | |||
| 3695 | APFloat Val(Format); | |||
| 3696 | ||||
| 3697 | APFloat::opStatus result = Literal.GetFloatValue(Val); | |||
| 3698 | ||||
| 3699 | // Overflow is always an error, but underflow is only an error if | |||
| 3700 | // we underflowed to zero (APFloat reports denormals as underflow). | |||
| 3701 | if ((result & APFloat::opOverflow) || | |||
| 3702 | ((result & APFloat::opUnderflow) && Val.isZero())) { | |||
| 3703 | unsigned diagnostic; | |||
| 3704 | SmallString<20> buffer; | |||
| 3705 | if (result & APFloat::opOverflow) { | |||
| 3706 | diagnostic = diag::warn_float_overflow; | |||
| 3707 | APFloat::getLargest(Format).toString(buffer); | |||
| 3708 | } else { | |||
| 3709 | diagnostic = diag::warn_float_underflow; | |||
| 3710 | APFloat::getSmallest(Format).toString(buffer); | |||
| 3711 | } | |||
| 3712 | ||||
| 3713 | S.Diag(Loc, diagnostic) | |||
| 3714 | << Ty | |||
| 3715 | << StringRef(buffer.data(), buffer.size()); | |||
| 3716 | } | |||
| 3717 | ||||
| 3718 | bool isExact = (result == APFloat::opOK); | |||
| 3719 | return FloatingLiteral::Create(S.Context, Val, isExact, Ty, Loc); | |||
| 3720 | } | |||
| 3721 | ||||
| 3722 | bool Sema::CheckLoopHintExpr(Expr *E, SourceLocation Loc) { | |||
| 3723 | assert(E && "Invalid expression")(static_cast <bool> (E && "Invalid expression") ? void (0) : __assert_fail ("E && \"Invalid expression\"" , "clang/lib/Sema/SemaExpr.cpp", 3723, __extension__ __PRETTY_FUNCTION__ )); | |||
| 3724 | ||||
| 3725 | if (E->isValueDependent()) | |||
| 3726 | return false; | |||
| 3727 | ||||
| 3728 | QualType QT = E->getType(); | |||
| 3729 | if (!QT->isIntegerType() || QT->isBooleanType() || QT->isCharType()) { | |||
| 3730 | Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_type) << QT; | |||
| 3731 | return true; | |||
| 3732 | } | |||
| 3733 | ||||
| 3734 | llvm::APSInt ValueAPS; | |||
| 3735 | ExprResult R = VerifyIntegerConstantExpression(E, &ValueAPS); | |||
| 3736 | ||||
| 3737 | if (R.isInvalid()) | |||
| 3738 | return true; | |||
| 3739 | ||||
| 3740 | bool ValueIsPositive = ValueAPS.isStrictlyPositive(); | |||
| 3741 | if (!ValueIsPositive || ValueAPS.getActiveBits() > 31) { | |||
| 3742 | Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_value) | |||
| 3743 | << toString(ValueAPS, 10) << ValueIsPositive; | |||
| 3744 | return true; | |||
| 3745 | } | |||
| 3746 | ||||
| 3747 | return false; | |||
| 3748 | } | |||
| 3749 | ||||
| 3750 | ExprResult Sema::ActOnNumericConstant(const Token &Tok, Scope *UDLScope) { | |||
| 3751 | // Fast path for a single digit (which is quite common). A single digit | |||
| 3752 | // cannot have a trigraph, escaped newline, radix prefix, or suffix. | |||
| 3753 | if (Tok.getLength() == 1) { | |||
| 3754 | const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok); | |||
| 3755 | return ActOnIntegerConstant(Tok.getLocation(), Val-'0'); | |||
| 3756 | } | |||
| 3757 | ||||
| 3758 | SmallString<128> SpellingBuffer; | |||
| 3759 | // NumericLiteralParser wants to overread by one character. Add padding to | |||
| 3760 | // the buffer in case the token is copied to the buffer. If getSpelling() | |||
| 3761 | // returns a StringRef to the memory buffer, it should have a null char at | |||
| 3762 | // the EOF, so it is also safe. | |||
| 3763 | SpellingBuffer.resize(Tok.getLength() + 1); | |||
| 3764 | ||||
| 3765 | // Get the spelling of the token, which eliminates trigraphs, etc. | |||
| 3766 | bool Invalid = false; | |||
| 3767 | StringRef TokSpelling = PP.getSpelling(Tok, SpellingBuffer, &Invalid); | |||
| 3768 | if (Invalid) | |||
| 3769 | return ExprError(); | |||
| 3770 | ||||
| 3771 | NumericLiteralParser Literal(TokSpelling, Tok.getLocation(), | |||
| 3772 | PP.getSourceManager(), PP.getLangOpts(), | |||
| 3773 | PP.getTargetInfo(), PP.getDiagnostics()); | |||
| 3774 | if (Literal.hadError) | |||
| 3775 | return ExprError(); | |||
| 3776 | ||||
| 3777 | if (Literal.hasUDSuffix()) { | |||
| 3778 | // We're building a user-defined literal. | |||
| 3779 | const IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix()); | |||
| 3780 | SourceLocation UDSuffixLoc = | |||
| 3781 | getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset()); | |||
| 3782 | ||||
| 3783 | // Make sure we're allowed user-defined literals here. | |||
| 3784 | if (!UDLScope) | |||
| 3785 | return ExprError(Diag(UDSuffixLoc, diag::err_invalid_numeric_udl)); | |||
| 3786 | ||||
| 3787 | QualType CookedTy; | |||
| 3788 | if (Literal.isFloatingLiteral()) { | |||
| 3789 | // C++11 [lex.ext]p4: If S contains a literal operator with parameter type | |||
| 3790 | // long double, the literal is treated as a call of the form | |||
| 3791 | // operator "" X (f L) | |||
| 3792 | CookedTy = Context.LongDoubleTy; | |||
| 3793 | } else { | |||
| 3794 | // C++11 [lex.ext]p3: If S contains a literal operator with parameter type | |||
| 3795 | // unsigned long long, the literal is treated as a call of the form | |||
| 3796 | // operator "" X (n ULL) | |||
| 3797 | CookedTy = Context.UnsignedLongLongTy; | |||
| 3798 | } | |||
| 3799 | ||||
| 3800 | DeclarationName OpName = | |||
| 3801 | Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix); | |||
| 3802 | DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc); | |||
| 3803 | OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc); | |||
| 3804 | ||||
| 3805 | SourceLocation TokLoc = Tok.getLocation(); | |||
| 3806 | ||||
| 3807 | // Perform literal operator lookup to determine if we're building a raw | |||
| 3808 | // literal or a cooked one. | |||
| 3809 | LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName); | |||
| 3810 | switch (LookupLiteralOperator(UDLScope, R, CookedTy, | |||
| 3811 | /*AllowRaw*/ true, /*AllowTemplate*/ true, | |||
| 3812 | /*AllowStringTemplatePack*/ false, | |||
| 3813 | /*DiagnoseMissing*/ !Literal.isImaginary)) { | |||
| 3814 | case LOLR_ErrorNoDiagnostic: | |||
| 3815 | // Lookup failure for imaginary constants isn't fatal, there's still the | |||
| 3816 | // GNU extension producing _Complex types. | |||
| 3817 | break; | |||
| 3818 | case LOLR_Error: | |||
| 3819 | return ExprError(); | |||
| 3820 | case LOLR_Cooked: { | |||
| 3821 | Expr *Lit; | |||
| 3822 | if (Literal.isFloatingLiteral()) { | |||
| 3823 | Lit = BuildFloatingLiteral(*this, Literal, CookedTy, Tok.getLocation()); | |||
| 3824 | } else { | |||
| 3825 | llvm::APInt ResultVal(Context.getTargetInfo().getLongLongWidth(), 0); | |||
| 3826 | if (Literal.GetIntegerValue(ResultVal)) | |||
| 3827 | Diag(Tok.getLocation(), diag::err_integer_literal_too_large) | |||
| 3828 | << /* Unsigned */ 1; | |||
| 3829 | Lit = IntegerLiteral::Create(Context, ResultVal, CookedTy, | |||
| 3830 | Tok.getLocation()); | |||
| 3831 | } | |||
| 3832 | return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc); | |||
| 3833 | } | |||
| 3834 | ||||
| 3835 | case LOLR_Raw: { | |||
| 3836 | // C++11 [lit.ext]p3, p4: If S contains a raw literal operator, the | |||
| 3837 | // literal is treated as a call of the form | |||
| 3838 | // operator "" X ("n") | |||
| 3839 | unsigned Length = Literal.getUDSuffixOffset(); | |||
| 3840 | QualType StrTy = Context.getConstantArrayType( | |||
| 3841 | Context.adjustStringLiteralBaseType(Context.CharTy.withConst()), | |||
| 3842 | llvm::APInt(32, Length + 1), nullptr, ArrayType::Normal, 0); | |||
| 3843 | Expr *Lit = | |||
| 3844 | StringLiteral::Create(Context, StringRef(TokSpelling.data(), Length), | |||
| 3845 | StringLiteral::Ordinary, | |||
| 3846 | /*Pascal*/ false, StrTy, &TokLoc, 1); | |||
| 3847 | return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc); | |||
| 3848 | } | |||
| 3849 | ||||
| 3850 | case LOLR_Template: { | |||
| 3851 | // C++11 [lit.ext]p3, p4: Otherwise (S contains a literal operator | |||
| 3852 | // template), L is treated as a call fo the form | |||
| 3853 | // operator "" X <'c1', 'c2', ... 'ck'>() | |||
| 3854 | // where n is the source character sequence c1 c2 ... ck. | |||
| 3855 | TemplateArgumentListInfo ExplicitArgs; | |||
| 3856 | unsigned CharBits = Context.getIntWidth(Context.CharTy); | |||
| 3857 | bool CharIsUnsigned = Context.CharTy->isUnsignedIntegerType(); | |||
| 3858 | llvm::APSInt Value(CharBits, CharIsUnsigned); | |||
| 3859 | for (unsigned I = 0, N = Literal.getUDSuffixOffset(); I != N; ++I) { | |||
| 3860 | Value = TokSpelling[I]; | |||
| 3861 | TemplateArgument Arg(Context, Value, Context.CharTy); | |||
| 3862 | TemplateArgumentLocInfo ArgInfo; | |||
| 3863 | ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo)); | |||
| 3864 | } | |||
| 3865 | return BuildLiteralOperatorCall(R, OpNameInfo, std::nullopt, TokLoc, | |||
| 3866 | &ExplicitArgs); | |||
| 3867 | } | |||
| 3868 | case LOLR_StringTemplatePack: | |||
| 3869 | llvm_unreachable("unexpected literal operator lookup result")::llvm::llvm_unreachable_internal("unexpected literal operator lookup result" , "clang/lib/Sema/SemaExpr.cpp", 3869); | |||
| 3870 | } | |||
| 3871 | } | |||
| 3872 | ||||
| 3873 | Expr *Res; | |||
| 3874 | ||||
| 3875 | if (Literal.isFixedPointLiteral()) { | |||
| 3876 | QualType Ty; | |||
| 3877 | ||||
| 3878 | if (Literal.isAccum) { | |||
| 3879 | if (Literal.isHalf) { | |||
| 3880 | Ty = Context.ShortAccumTy; | |||
| 3881 | } else if (Literal.isLong) { | |||
| 3882 | Ty = Context.LongAccumTy; | |||
| 3883 | } else { | |||
| 3884 | Ty = Context.AccumTy; | |||
| 3885 | } | |||
| 3886 | } else if (Literal.isFract) { | |||
| 3887 | if (Literal.isHalf) { | |||
| 3888 | Ty = Context.ShortFractTy; | |||
| 3889 | } else if (Literal.isLong) { | |||
| 3890 | Ty = Context.LongFractTy; | |||
| 3891 | } else { | |||
| 3892 | Ty = Context.FractTy; | |||
| 3893 | } | |||
| 3894 | } | |||
| 3895 | ||||
| 3896 | if (Literal.isUnsigned) Ty = Context.getCorrespondingUnsignedType(Ty); | |||
| 3897 | ||||
| 3898 | bool isSigned = !Literal.isUnsigned; | |||
| 3899 | unsigned scale = Context.getFixedPointScale(Ty); | |||
| 3900 | unsigned bit_width = Context.getTypeInfo(Ty).Width; | |||
| 3901 | ||||
| 3902 | llvm::APInt Val(bit_width, 0, isSigned); | |||
| 3903 | bool Overflowed = Literal.GetFixedPointValue(Val, scale); | |||
| 3904 | bool ValIsZero = Val.isZero() && !Overflowed; | |||
| 3905 | ||||
| 3906 | auto MaxVal = Context.getFixedPointMax(Ty).getValue(); | |||
| 3907 | if (Literal.isFract && Val == MaxVal + 1 && !ValIsZero) | |||
| 3908 | // Clause 6.4.4 - The value of a constant shall be in the range of | |||
| 3909 | // representable values for its type, with exception for constants of a | |||
| 3910 | // fract type with a value of exactly 1; such a constant shall denote | |||
| 3911 | // the maximal value for the type. | |||
| 3912 | --Val; | |||
| 3913 | else if (Val.ugt(MaxVal) || Overflowed) | |||
| 3914 | Diag(Tok.getLocation(), diag::err_too_large_for_fixed_point); | |||
| 3915 | ||||
| 3916 | Res = FixedPointLiteral::CreateFromRawInt(Context, Val, Ty, | |||
| 3917 | Tok.getLocation(), scale); | |||
| 3918 | } else if (Literal.isFloatingLiteral()) { | |||
| 3919 | QualType Ty; | |||
| 3920 | if (Literal.isHalf){ | |||
| 3921 | if (getOpenCLOptions().isAvailableOption("cl_khr_fp16", getLangOpts())) | |||
| 3922 | Ty = Context.HalfTy; | |||
| 3923 | else { | |||
| 3924 | Diag(Tok.getLocation(), diag::err_half_const_requires_fp16); | |||
| 3925 | return ExprError(); | |||
| 3926 | } | |||
| 3927 | } else if (Literal.isFloat) | |||
| 3928 | Ty = Context.FloatTy; | |||
| 3929 | else if (Literal.isLong) | |||
| 3930 | Ty = Context.LongDoubleTy; | |||
| 3931 | else if (Literal.isFloat16) | |||
| 3932 | Ty = Context.Float16Ty; | |||
| 3933 | else if (Literal.isFloat128) | |||
| 3934 | Ty = Context.Float128Ty; | |||
| 3935 | else | |||
| 3936 | Ty = Context.DoubleTy; | |||
| 3937 | ||||
| 3938 | Res = BuildFloatingLiteral(*this, Literal, Ty, Tok.getLocation()); | |||
| 3939 | ||||
| 3940 | if (Ty == Context.DoubleTy) { | |||
| 3941 | if (getLangOpts().SinglePrecisionConstants) { | |||
| 3942 | if (Ty->castAs<BuiltinType>()->getKind() != BuiltinType::Float) { | |||
| 3943 | Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get(); | |||
| 3944 | } | |||
| 3945 | } else if (getLangOpts().OpenCL && !getOpenCLOptions().isAvailableOption( | |||
| 3946 | "cl_khr_fp64", getLangOpts())) { | |||
| 3947 | // Impose single-precision float type when cl_khr_fp64 is not enabled. | |||
| 3948 | Diag(Tok.getLocation(), diag::warn_double_const_requires_fp64) | |||
| 3949 | << (getLangOpts().getOpenCLCompatibleVersion() >= 300); | |||
| 3950 | Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get(); | |||
| 3951 | } | |||
| 3952 | } | |||
| 3953 | } else if (!Literal.isIntegerLiteral()) { | |||
| 3954 | return ExprError(); | |||
| 3955 | } else { | |||
| 3956 | QualType Ty; | |||
| 3957 | ||||
| 3958 | // 'z/uz' literals are a C++23 feature. | |||
| 3959 | if (Literal.isSizeT) | |||
| 3960 | Diag(Tok.getLocation(), getLangOpts().CPlusPlus | |||
| 3961 | ? getLangOpts().CPlusPlus23 | |||
| 3962 | ? diag::warn_cxx20_compat_size_t_suffix | |||
| 3963 | : diag::ext_cxx23_size_t_suffix | |||
| 3964 | : diag::err_cxx23_size_t_suffix); | |||
| 3965 | ||||
| 3966 | // 'wb/uwb' literals are a C2x feature. We support _BitInt as a type in C++, | |||
| 3967 | // but we do not currently support the suffix in C++ mode because it's not | |||
| 3968 | // entirely clear whether WG21 will prefer this suffix to return a library | |||
| 3969 | // type such as std::bit_int instead of returning a _BitInt. | |||
| 3970 | if (Literal.isBitInt && !getLangOpts().CPlusPlus) | |||
| 3971 | PP.Diag(Tok.getLocation(), getLangOpts().C2x | |||
| 3972 | ? diag::warn_c2x_compat_bitint_suffix | |||
| 3973 | : diag::ext_c2x_bitint_suffix); | |||
| 3974 | ||||
| 3975 | // Get the value in the widest-possible width. What is "widest" depends on | |||
| 3976 | // whether the literal is a bit-precise integer or not. For a bit-precise | |||
| 3977 | // integer type, try to scan the source to determine how many bits are | |||
| 3978 | // needed to represent the value. This may seem a bit expensive, but trying | |||
| 3979 | // to get the integer value from an overly-wide APInt is *extremely* | |||
| 3980 | // expensive, so the naive approach of assuming | |||
| 3981 | // llvm::IntegerType::MAX_INT_BITS is a big performance hit. | |||
| 3982 | unsigned BitsNeeded = | |||
| 3983 | Literal.isBitInt ? llvm::APInt::getSufficientBitsNeeded( | |||
| 3984 | Literal.getLiteralDigits(), Literal.getRadix()) | |||
| 3985 | : Context.getTargetInfo().getIntMaxTWidth(); | |||
| 3986 | llvm::APInt ResultVal(BitsNeeded, 0); | |||
| 3987 | ||||
| 3988 | if (Literal.GetIntegerValue(ResultVal)) { | |||
| 3989 | // If this value didn't fit into uintmax_t, error and force to ull. | |||
| 3990 | Diag(Tok.getLocation(), diag::err_integer_literal_too_large) | |||
| 3991 | << /* Unsigned */ 1; | |||
| 3992 | Ty = Context.UnsignedLongLongTy; | |||
| 3993 | assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&(static_cast <bool> (Context.getTypeSize(Ty) == ResultVal .getBitWidth() && "long long is not intmax_t?") ? void (0) : __assert_fail ("Context.getTypeSize(Ty) == ResultVal.getBitWidth() && \"long long is not intmax_t?\"" , "clang/lib/Sema/SemaExpr.cpp", 3994, __extension__ __PRETTY_FUNCTION__ )) | |||
| 3994 | "long long is not intmax_t?")(static_cast <bool> (Context.getTypeSize(Ty) == ResultVal .getBitWidth() && "long long is not intmax_t?") ? void (0) : __assert_fail ("Context.getTypeSize(Ty) == ResultVal.getBitWidth() && \"long long is not intmax_t?\"" , "clang/lib/Sema/SemaExpr.cpp", 3994, __extension__ __PRETTY_FUNCTION__ )); | |||
| 3995 | } else { | |||
| 3996 | // If this value fits into a ULL, try to figure out what else it fits into | |||
| 3997 | // according to the rules of C99 6.4.4.1p5. | |||
| 3998 | ||||
| 3999 | // Octal, Hexadecimal, and integers with a U suffix are allowed to | |||
| 4000 | // be an unsigned int. | |||
| 4001 | bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10; | |||
| 4002 | ||||
| 4003 | // Check from smallest to largest, picking the smallest type we can. | |||
| 4004 | unsigned Width = 0; | |||
| 4005 | ||||
| 4006 | // Microsoft specific integer suffixes are explicitly sized. | |||
| 4007 | if (Literal.MicrosoftInteger) { | |||
| 4008 | if (Literal.MicrosoftInteger == 8 && !Literal.isUnsigned) { | |||
| 4009 | Width = 8; | |||
| 4010 | Ty = Context.CharTy; | |||
| 4011 | } else { | |||
| 4012 | Width = Literal.MicrosoftInteger; | |||
| 4013 | Ty = Context.getIntTypeForBitwidth(Width, | |||
| 4014 | /*Signed=*/!Literal.isUnsigned); | |||
| 4015 | } | |||
| 4016 | } | |||
| 4017 | ||||
| 4018 | // Bit-precise integer literals are automagically-sized based on the | |||
| 4019 | // width required by the literal. | |||
| 4020 | if (Literal.isBitInt) { | |||
| 4021 | // The signed version has one more bit for the sign value. There are no | |||
| 4022 | // zero-width bit-precise integers, even if the literal value is 0. | |||
| 4023 | Width = std::max(ResultVal.getActiveBits(), 1u) + | |||
| 4024 | (Literal.isUnsigned ? 0u : 1u); | |||
| 4025 | ||||
| 4026 | // Diagnose if the width of the constant is larger than BITINT_MAXWIDTH, | |||
| 4027 | // and reset the type to the largest supported width. | |||
| 4028 | unsigned int MaxBitIntWidth = | |||
| 4029 | Context.getTargetInfo().getMaxBitIntWidth(); | |||
| 4030 | if (Width > MaxBitIntWidth) { | |||
| 4031 | Diag(Tok.getLocation(), diag::err_integer_literal_too_large) | |||
| 4032 | << Literal.isUnsigned; | |||
| 4033 | Width = MaxBitIntWidth; | |||
| 4034 | } | |||
| 4035 | ||||
| 4036 | // Reset the result value to the smaller APInt and select the correct | |||
| 4037 | // type to be used. Note, we zext even for signed values because the | |||
| 4038 | // literal itself is always an unsigned value (a preceeding - is a | |||
| 4039 | // unary operator, not part of the literal). | |||
| 4040 | ResultVal = ResultVal.zextOrTrunc(Width); | |||
| 4041 | Ty = Context.getBitIntType(Literal.isUnsigned, Width); | |||
| 4042 | } | |||
| 4043 | ||||
| 4044 | // Check C++23 size_t literals. | |||
| 4045 | if (Literal.isSizeT) { | |||
| 4046 | assert(!Literal.MicrosoftInteger &&(static_cast <bool> (!Literal.MicrosoftInteger && "size_t literals can't be Microsoft literals") ? void (0) : __assert_fail ("!Literal.MicrosoftInteger && \"size_t literals can't be Microsoft literals\"" , "clang/lib/Sema/SemaExpr.cpp", 4047, __extension__ __PRETTY_FUNCTION__ )) | |||
| 4047 | "size_t literals can't be Microsoft literals")(static_cast <bool> (!Literal.MicrosoftInteger && "size_t literals can't be Microsoft literals") ? void (0) : __assert_fail ("!Literal.MicrosoftInteger && \"size_t literals can't be Microsoft literals\"" , "clang/lib/Sema/SemaExpr.cpp", 4047, __extension__ __PRETTY_FUNCTION__ )); | |||
| 4048 | unsigned SizeTSize = Context.getTargetInfo().getTypeWidth( | |||
| 4049 | Context.getTargetInfo().getSizeType()); | |||
| 4050 | ||||
| 4051 | // Does it fit in size_t? | |||
| 4052 | if (ResultVal.isIntN(SizeTSize)) { | |||
| 4053 | // Does it fit in ssize_t? | |||
| 4054 | if (!Literal.isUnsigned && ResultVal[SizeTSize - 1] == 0) | |||
| 4055 | Ty = Context.getSignedSizeType(); | |||
| 4056 | else if (AllowUnsigned) | |||
| 4057 | Ty = Context.getSizeType(); | |||
| 4058 | Width = SizeTSize; | |||
| 4059 | } | |||
| 4060 | } | |||
| 4061 | ||||
| 4062 | if (Ty.isNull() && !Literal.isLong && !Literal.isLongLong && | |||
| 4063 | !Literal.isSizeT) { | |||
| 4064 | // Are int/unsigned possibilities? | |||
| 4065 | unsigned IntSize = Context.getTargetInfo().getIntWidth(); | |||
| 4066 | ||||
| 4067 | // Does it fit in a unsigned int? | |||
| 4068 | if (ResultVal.isIntN(IntSize)) { | |||
| 4069 | // Does it fit in a signed int? | |||
| 4070 | if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0) | |||
| 4071 | Ty = Context.IntTy; | |||
| 4072 | else if (AllowUnsigned) | |||
| 4073 | Ty = Context.UnsignedIntTy; | |||
| 4074 | Width = IntSize; | |||
| 4075 | } | |||
| 4076 | } | |||
| 4077 | ||||
| 4078 | // Are long/unsigned long possibilities? | |||
| 4079 | if (Ty.isNull() && !Literal.isLongLong && !Literal.isSizeT) { | |||
| 4080 | unsigned LongSize = Context.getTargetInfo().getLongWidth(); | |||
| 4081 | ||||
| 4082 | // Does it fit in a unsigned long? | |||
| 4083 | if (ResultVal.isIntN(LongSize)) { | |||
| 4084 | // Does it fit in a signed long? | |||
| 4085 | if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0) | |||
| 4086 | Ty = Context.LongTy; | |||
| 4087 | else if (AllowUnsigned) | |||
| 4088 | Ty = Context.UnsignedLongTy; | |||
| 4089 | // Check according to the rules of C90 6.1.3.2p5. C++03 [lex.icon]p2 | |||
| 4090 | // is compatible. | |||
| 4091 | else if (!getLangOpts().C99 && !getLangOpts().CPlusPlus11) { | |||
| 4092 | const unsigned LongLongSize = | |||
| 4093 | Context.getTargetInfo().getLongLongWidth(); | |||
| 4094 | Diag(Tok.getLocation(), | |||
| 4095 | getLangOpts().CPlusPlus | |||
| 4096 | ? Literal.isLong | |||
| 4097 | ? diag::warn_old_implicitly_unsigned_long_cxx | |||
| 4098 | : /*C++98 UB*/ diag:: | |||
| 4099 | ext_old_implicitly_unsigned_long_cxx | |||
| 4100 | : diag::warn_old_implicitly_unsigned_long) | |||
| 4101 | << (LongLongSize > LongSize ? /*will have type 'long long'*/ 0 | |||
| 4102 | : /*will be ill-formed*/ 1); | |||
| 4103 | Ty = Context.UnsignedLongTy; | |||
| 4104 | } | |||
| 4105 | Width = LongSize; | |||
| 4106 | } | |||
| 4107 | } | |||
| 4108 | ||||
| 4109 | // Check long long if needed. | |||
| 4110 | if (Ty.isNull() && !Literal.isSizeT) { | |||
| 4111 | unsigned LongLongSize = Context.getTargetInfo().getLongLongWidth(); | |||
| 4112 | ||||
| 4113 | // Does it fit in a unsigned long long? | |||
| 4114 | if (ResultVal.isIntN(LongLongSize)) { | |||
| 4115 | // Does it fit in a signed long long? | |||
| 4116 | // To be compatible with MSVC, hex integer literals ending with the | |||
| 4117 | // LL or i64 suffix are always signed in Microsoft mode. | |||
| 4118 | if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 || | |||
| 4119 | (getLangOpts().MSVCCompat && Literal.isLongLong))) | |||
| 4120 | Ty = Context.LongLongTy; | |||
| 4121 | else if (AllowUnsigned) | |||
| 4122 | Ty = Context.UnsignedLongLongTy; | |||
| 4123 | Width = LongLongSize; | |||
| 4124 | ||||
| 4125 | // 'long long' is a C99 or C++11 feature, whether the literal | |||
| 4126 | // explicitly specified 'long long' or we needed the extra width. | |||
| 4127 | if (getLangOpts().CPlusPlus) | |||
| 4128 | Diag(Tok.getLocation(), getLangOpts().CPlusPlus11 | |||
| 4129 | ? diag::warn_cxx98_compat_longlong | |||
| 4130 | : diag::ext_cxx11_longlong); | |||
| 4131 | else if (!getLangOpts().C99) | |||
| 4132 | Diag(Tok.getLocation(), diag::ext_c99_longlong); | |||
| 4133 | } | |||
| 4134 | } | |||
| 4135 | ||||
| 4136 | // If we still couldn't decide a type, we either have 'size_t' literal | |||
| 4137 | // that is out of range, or a decimal literal that does not fit in a | |||
| 4138 | // signed long long and has no U suffix. | |||
| 4139 | if (Ty.isNull()) { | |||
| 4140 | if (Literal.isSizeT) | |||
| 4141 | Diag(Tok.getLocation(), diag::err_size_t_literal_too_large) | |||
| 4142 | << Literal.isUnsigned; | |||
| 4143 | else | |||
| 4144 | Diag(Tok.getLocation(), | |||
| 4145 | diag::ext_integer_literal_too_large_for_signed); | |||
| 4146 | Ty = Context.UnsignedLongLongTy; | |||
| 4147 | Width = Context.getTargetInfo().getLongLongWidth(); | |||
| 4148 | } | |||
| 4149 | ||||
| 4150 | if (ResultVal.getBitWidth() != Width) | |||
| 4151 | ResultVal = ResultVal.trunc(Width); | |||
| 4152 | } | |||
| 4153 | Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation()); | |||
| 4154 | } | |||
| 4155 | ||||
| 4156 | // If this is an imaginary literal, create the ImaginaryLiteral wrapper. | |||
| 4157 | if (Literal.isImaginary) { | |||
| 4158 | Res = new (Context) ImaginaryLiteral(Res, | |||
| 4159 | Context.getComplexType(Res->getType())); | |||
| 4160 | ||||
| 4161 | Diag(Tok.getLocation(), diag::ext_imaginary_constant); | |||
| 4162 | } | |||
| 4163 | return Res; | |||
| 4164 | } | |||
| 4165 | ||||
| 4166 | ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E) { | |||
| 4167 | assert(E && "ActOnParenExpr() missing expr")(static_cast <bool> (E && "ActOnParenExpr() missing expr" ) ? void (0) : __assert_fail ("E && \"ActOnParenExpr() missing expr\"" , "clang/lib/Sema/SemaExpr.cpp", 4167, __extension__ __PRETTY_FUNCTION__ )); | |||
| 4168 | QualType ExprTy = E->getType(); | |||
| 4169 | if (getLangOpts().ProtectParens && CurFPFeatures.getAllowFPReassociate() && | |||
| 4170 | !E->isLValue() && ExprTy->hasFloatingRepresentation()) | |||
| 4171 | return BuildBuiltinCallExpr(R, Builtin::BI__arithmetic_fence, E); | |||
| 4172 | return new (Context) ParenExpr(L, R, E); | |||
| 4173 | } | |||
| 4174 | ||||
| 4175 | static bool CheckVecStepTraitOperandType(Sema &S, QualType T, | |||
| 4176 | SourceLocation Loc, | |||
| 4177 | SourceRange ArgRange) { | |||
| 4178 | // [OpenCL 1.1 6.11.12] "The vec_step built-in function takes a built-in | |||
| 4179 | // scalar or vector data type argument..." | |||
| 4180 | // Every built-in scalar type (OpenCL 1.1 6.1.1) is either an arithmetic | |||
| 4181 | // type (C99 6.2.5p18) or void. | |||
| 4182 | if (!(T->isArithmeticType() || T->isVoidType() || T->isVectorType())) { | |||
| 4183 | S.Diag(Loc, diag::err_vecstep_non_scalar_vector_type) | |||
| 4184 | << T << ArgRange; | |||
| 4185 | return true; | |||
| 4186 | } | |||
| 4187 | ||||
| 4188 | assert((T->isVoidType() || !T->isIncompleteType()) &&(static_cast <bool> ((T->isVoidType() || !T->isIncompleteType ()) && "Scalar types should always be complete") ? void (0) : __assert_fail ("(T->isVoidType() || !T->isIncompleteType()) && \"Scalar types should always be complete\"" , "clang/lib/Sema/SemaExpr.cpp", 4189, __extension__ __PRETTY_FUNCTION__ )) | |||
| 4189 | "Scalar types should always be complete")(static_cast <bool> ((T->isVoidType() || !T->isIncompleteType ()) && "Scalar types should always be complete") ? void (0) : __assert_fail ("(T->isVoidType() || !T->isIncompleteType()) && \"Scalar types should always be complete\"" , "clang/lib/Sema/SemaExpr.cpp", 4189, __extension__ __PRETTY_FUNCTION__ )); | |||
| 4190 | return false; | |||
| 4191 | } | |||
| 4192 | ||||
| 4193 | static bool CheckExtensionTraitOperandType(Sema &S, QualType T, | |||
| 4194 | SourceLocation Loc, | |||
| 4195 | SourceRange ArgRange, | |||
| 4196 | UnaryExprOrTypeTrait TraitKind) { | |||
| 4197 | // Invalid types must be hard errors for SFINAE in C++. | |||
| 4198 | if (S.LangOpts.CPlusPlus) | |||
| 4199 | return true; | |||
| 4200 | ||||
| 4201 | // C99 6.5.3.4p1: | |||
| 4202 | if (T->isFunctionType() && | |||
| 4203 | (TraitKind == UETT_SizeOf || TraitKind == UETT_AlignOf || | |||
| 4204 | TraitKind == UETT_PreferredAlignOf)) { | |||
| 4205 | // sizeof(function)/alignof(function) is allowed as an extension. | |||
| 4206 | S.Diag(Loc, diag::ext_sizeof_alignof_function_type) | |||
| 4207 | << getTraitSpelling(TraitKind) << ArgRange; | |||
| 4208 | return false; | |||
| 4209 | } | |||
| 4210 | ||||
| 4211 | // Allow sizeof(void)/alignof(void) as an extension, unless in OpenCL where | |||
| 4212 | // this is an error (OpenCL v1.1 s6.3.k) | |||
| 4213 | if (T->isVoidType()) { | |||
| 4214 | unsigned DiagID = S.LangOpts.OpenCL ? diag::err_opencl_sizeof_alignof_type | |||
| 4215 | : diag::ext_sizeof_alignof_void_type; | |||
| 4216 | S.Diag(Loc, DiagID) << getTraitSpelling(TraitKind) << ArgRange; | |||
| 4217 | return false; | |||
| 4218 | } | |||
| 4219 | ||||
| 4220 | return true; | |||
| 4221 | } | |||
| 4222 | ||||
| 4223 | static bool CheckObjCTraitOperandConstraints(Sema &S, QualType T, | |||
| 4224 | SourceLocation Loc, | |||
| 4225 | SourceRange ArgRange, | |||
| 4226 | UnaryExprOrTypeTrait TraitKind) { | |||
| 4227 | // Reject sizeof(interface) and sizeof(interface<proto>) if the | |||
| 4228 | // runtime doesn't allow it. | |||
| 4229 | if (!S.LangOpts.ObjCRuntime.allowsSizeofAlignof() && T->isObjCObjectType()) { | |||
| 4230 | S.Diag(Loc, diag::err_sizeof_nonfragile_interface) | |||
| 4231 | << T << (TraitKind == UETT_SizeOf) | |||
| 4232 | << ArgRange; | |||
| 4233 | return true; | |||
| 4234 | } | |||
| 4235 | ||||
| 4236 | return false; | |||
| 4237 | } | |||
| 4238 | ||||
| 4239 | /// Check whether E is a pointer from a decayed array type (the decayed | |||
| 4240 | /// pointer type is equal to T) and emit a warning if it is. | |||
| 4241 | static void warnOnSizeofOnArrayDecay(Sema &S, SourceLocation Loc, QualType T, | |||
| 4242 | const Expr *E) { | |||
| 4243 | // Don't warn if the operation changed the type. | |||
| 4244 | if (T != E->getType()) | |||
| 4245 | return; | |||
| 4246 | ||||
| 4247 | // Now look for array decays. | |||
| 4248 | const auto *ICE = dyn_cast<ImplicitCastExpr>(E); | |||
| 4249 | if (!ICE || ICE->getCastKind() != CK_ArrayToPointerDecay) | |||
| 4250 | return; | |||
| 4251 | ||||
| 4252 | S.Diag(Loc, diag::warn_sizeof_array_decay) << ICE->getSourceRange() | |||
| 4253 | << ICE->getType() | |||
| 4254 | << ICE->getSubExpr()->getType(); | |||
| 4255 | } | |||
| 4256 | ||||
| 4257 | /// Check the constraints on expression operands to unary type expression | |||
| 4258 | /// and type traits. | |||
| 4259 | /// | |||
| 4260 | /// Completes any types necessary and validates the constraints on the operand | |||
| 4261 | /// expression. The logic mostly mirrors the type-based overload, but may modify | |||
| 4262 | /// the expression as it completes the type for that expression through template | |||
| 4263 | /// instantiation, etc. | |||
| 4264 | bool Sema::CheckUnaryExprOrTypeTraitOperand(Expr *E, | |||
| 4265 | UnaryExprOrTypeTrait ExprKind) { | |||
| 4266 | QualType ExprTy = E->getType(); | |||
| 4267 | assert(!ExprTy->isReferenceType())(static_cast <bool> (!ExprTy->isReferenceType()) ? void (0) : __assert_fail ("!ExprTy->isReferenceType()", "clang/lib/Sema/SemaExpr.cpp" , 4267, __extension__ __PRETTY_FUNCTION__)); | |||
| 4268 | ||||
| 4269 | bool IsUnevaluatedOperand = | |||
| 4270 | (ExprKind == UETT_SizeOf || ExprKind == UETT_AlignOf || | |||
| 4271 | ExprKind == UETT_PreferredAlignOf || ExprKind == UETT_VecStep); | |||
| 4272 | if (IsUnevaluatedOperand) { | |||
| 4273 | ExprResult Result = CheckUnevaluatedOperand(E); | |||
| 4274 | if (Result.isInvalid()) | |||
| 4275 | return true; | |||
| 4276 | E = Result.get(); | |||
| 4277 | } | |||
| 4278 | ||||
| 4279 | // The operand for sizeof and alignof is in an unevaluated expression context, | |||
| 4280 | // so side effects could result in unintended consequences. | |||
| 4281 | // Exclude instantiation-dependent expressions, because 'sizeof' is sometimes | |||
| 4282 | // used to build SFINAE gadgets. | |||
| 4283 | // FIXME: Should we consider instantiation-dependent operands to 'alignof'? | |||
| 4284 | if (IsUnevaluatedOperand && !inTemplateInstantiation() && | |||
| 4285 | !E->isInstantiationDependent() && | |||
| 4286 | !E->getType()->isVariableArrayType() && | |||
| 4287 | E->HasSideEffects(Context, false)) | |||
| 4288 | Diag(E->getExprLoc(), diag::warn_side_effects_unevaluated_context); | |||
| 4289 | ||||
| 4290 | if (ExprKind == UETT_VecStep) | |||
| 4291 | return CheckVecStepTraitOperandType(*this, ExprTy, E->getExprLoc(), | |||
| 4292 | E->getSourceRange()); | |||
| 4293 | ||||
| 4294 | // Explicitly list some types as extensions. | |||
| 4295 | if (!CheckExtensionTraitOperandType(*this, ExprTy, E->getExprLoc(), | |||
| 4296 | E->getSourceRange(), ExprKind)) | |||
| 4297 | return false; | |||
| 4298 | ||||
| 4299 | // 'alignof' applied to an expression only requires the base element type of | |||
| 4300 | // the expression to be complete. 'sizeof' requires the expression's type to | |||
| 4301 | // be complete (and will attempt to complete it if it's an array of unknown | |||
| 4302 | // bound). | |||
| 4303 | if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) { | |||
| 4304 | if (RequireCompleteSizedType( | |||
| 4305 | E->getExprLoc(), Context.getBaseElementType(E->getType()), | |||
| 4306 | diag::err_sizeof_alignof_incomplete_or_sizeless_type, | |||
| 4307 | getTraitSpelling(ExprKind), E->getSourceRange())) | |||
| 4308 | return true; | |||
| 4309 | } else { | |||
| 4310 | if (RequireCompleteSizedExprType( | |||
| 4311 | E, diag::err_sizeof_alignof_incomplete_or_sizeless_type, | |||
| 4312 | getTraitSpelling(ExprKind), E->getSourceRange())) | |||
| 4313 | return true; | |||
| 4314 | } | |||
| 4315 | ||||
| 4316 | // Completing the expression's type may have changed it. | |||
| 4317 | ExprTy = E->getType(); | |||
| 4318 | assert(!ExprTy->isReferenceType())(static_cast <bool> (!ExprTy->isReferenceType()) ? void (0) : __assert_fail ("!ExprTy->isReferenceType()", "clang/lib/Sema/SemaExpr.cpp" , 4318, __extension__ __PRETTY_FUNCTION__)); | |||
| 4319 | ||||
| 4320 | if (ExprTy->isFunctionType()) { | |||
| 4321 | Diag(E->getExprLoc(), diag::err_sizeof_alignof_function_type) | |||
| 4322 | << getTraitSpelling(ExprKind) << E->getSourceRange(); | |||
| 4323 | return true; | |||
| 4324 | } | |||
| 4325 | ||||
| 4326 | if (CheckObjCTraitOperandConstraints(*this, ExprTy, E->getExprLoc(), | |||
| 4327 | E->getSourceRange(), ExprKind)) | |||
| 4328 | return true; | |||
| 4329 | ||||
| 4330 | if (ExprKind == UETT_SizeOf) { | |||
| 4331 | if (const auto *DeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParens())) { | |||
| 4332 | if (const auto *PVD = dyn_cast<ParmVarDecl>(DeclRef->getFoundDecl())) { | |||
| 4333 | QualType OType = PVD->getOriginalType(); | |||
| 4334 | QualType Type = PVD->getType(); | |||
| 4335 | if (Type->isPointerType() && OType->isArrayType()) { | |||
| 4336 | Diag(E->getExprLoc(), diag::warn_sizeof_array_param) | |||
| 4337 | << Type << OType; | |||
| 4338 | Diag(PVD->getLocation(), diag::note_declared_at); | |||
| 4339 | } | |||
| 4340 | } | |||
| 4341 | } | |||
| 4342 | ||||
| 4343 | // Warn on "sizeof(array op x)" and "sizeof(x op array)", where the array | |||
| 4344 | // decays into a pointer and returns an unintended result. This is most | |||
| 4345 | // likely a typo for "sizeof(array) op x". | |||
| 4346 | if (const auto *BO = dyn_cast<BinaryOperator>(E->IgnoreParens())) { | |||
| 4347 | warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(), | |||
| 4348 | BO->getLHS()); | |||
| 4349 | warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(), | |||
| 4350 | BO->getRHS()); | |||
| 4351 | } | |||
| 4352 | } | |||
| 4353 | ||||
| 4354 | return false; | |||
| 4355 | } | |||
| 4356 | ||||
| 4357 | /// Check the constraints on operands to unary expression and type | |||
| 4358 | /// traits. | |||
| 4359 | /// | |||
| 4360 | /// This will complete any types necessary, and validate the various constraints | |||
| 4361 | /// on those operands. | |||
| 4362 | /// | |||
| 4363 | /// The UsualUnaryConversions() function is *not* called by this routine. | |||
| 4364 | /// C99 6.3.2.1p[2-4] all state: | |||
| 4365 | /// Except when it is the operand of the sizeof operator ... | |||
| 4366 | /// | |||
| 4367 | /// C++ [expr.sizeof]p4 | |||
| 4368 | /// The lvalue-to-rvalue, array-to-pointer, and function-to-pointer | |||
| 4369 | /// standard conversions are not applied to the operand of sizeof. | |||
| 4370 | /// | |||
| 4371 | /// This policy is followed for all of the unary trait expressions. | |||
| 4372 | bool Sema::CheckUnaryExprOrTypeTraitOperand(QualType ExprType, | |||
| 4373 | SourceLocation OpLoc, | |||
| 4374 | SourceRange ExprRange, | |||
| 4375 | UnaryExprOrTypeTrait ExprKind) { | |||
| 4376 | if (ExprType->isDependentType()) | |||
| 4377 | return false; | |||
| 4378 | ||||
| 4379 | // C++ [expr.sizeof]p2: | |||
| 4380 | // When applied to a reference or a reference type, the result | |||
| 4381 | // is the size of the referenced type. | |||
| 4382 | // C++11 [expr.alignof]p3: | |||
| 4383 | // When alignof is applied to a reference type, the result | |||
| 4384 | // shall be the alignment of the referenced type. | |||
| 4385 | if (const ReferenceType *Ref = ExprType->getAs<ReferenceType>()) | |||
| 4386 | ExprType = Ref->getPointeeType(); | |||
| 4387 | ||||
| 4388 | // C11 6.5.3.4/3, C++11 [expr.alignof]p3: | |||
| 4389 | // When alignof or _Alignof is applied to an array type, the result | |||
| 4390 | // is the alignment of the element type. | |||
| 4391 | if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf || | |||
| 4392 | ExprKind == UETT_OpenMPRequiredSimdAlign) | |||
| 4393 | ExprType = Context.getBaseElementType(ExprType); | |||
| 4394 | ||||
| 4395 | if (ExprKind == UETT_VecStep) | |||
| 4396 | return CheckVecStepTraitOperandType(*this, ExprType, OpLoc, ExprRange); | |||
| 4397 | ||||
| 4398 | // Explicitly list some types as extensions. | |||
| 4399 | if (!CheckExtensionTraitOperandType(*this, ExprType, OpLoc, ExprRange, | |||
| 4400 | ExprKind)) | |||
| 4401 | return false; | |||
| 4402 | ||||
| 4403 | if (RequireCompleteSizedType( | |||
| 4404 | OpLoc, ExprType, diag::err_sizeof_alignof_incomplete_or_sizeless_type, | |||
| 4405 | getTraitSpelling(ExprKind), ExprRange)) | |||
| 4406 | return true; | |||
| 4407 | ||||
| 4408 | if (ExprType->isFunctionType()) { | |||
| 4409 | Diag(OpLoc, diag::err_sizeof_alignof_function_type) | |||
| 4410 | << getTraitSpelling(ExprKind) << ExprRange; | |||
| 4411 | return true; | |||
| 4412 | } | |||
| 4413 | ||||
| 4414 | if (CheckObjCTraitOperandConstraints(*this, ExprType, OpLoc, ExprRange, | |||
| 4415 | ExprKind)) | |||
| 4416 | return true; | |||
| 4417 | ||||
| 4418 | return false; | |||
| 4419 | } | |||
| 4420 | ||||
| 4421 | static bool CheckAlignOfExpr(Sema &S, Expr *E, UnaryExprOrTypeTrait ExprKind) { | |||
| 4422 | // Cannot know anything else if the expression is dependent. | |||
| 4423 | if (E->isTypeDependent()) | |||
| 4424 | return false; | |||
| 4425 | ||||
| 4426 | if (E->getObjectKind() == OK_BitField) { | |||
| 4427 | S.Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield) | |||
| 4428 | << 1 << E->getSourceRange(); | |||
| 4429 | return true; | |||
| 4430 | } | |||
| 4431 | ||||
| 4432 | ValueDecl *D = nullptr; | |||
| 4433 | Expr *Inner = E->IgnoreParens(); | |||
| 4434 | if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Inner)) { | |||
| 4435 | D = DRE->getDecl(); | |||
| 4436 | } else if (MemberExpr *ME = dyn_cast<MemberExpr>(Inner)) { | |||
| 4437 | D = ME->getMemberDecl(); | |||
| 4438 | } | |||
| 4439 | ||||
| 4440 | // If it's a field, require the containing struct to have a | |||
| 4441 | // complete definition so that we can compute the layout. | |||
| 4442 | // | |||
| 4443 | // This can happen in C++11 onwards, either by naming the member | |||
| 4444 | // in a way that is not transformed into a member access expression | |||
| 4445 | // (in an unevaluated operand, for instance), or by naming the member | |||
| 4446 | // in a trailing-return-type. | |||
| 4447 | // | |||
| 4448 | // For the record, since __alignof__ on expressions is a GCC | |||
| 4449 | // extension, GCC seems to permit this but always gives the | |||
| 4450 | // nonsensical answer 0. | |||
| 4451 | // | |||
| 4452 | // We don't really need the layout here --- we could instead just | |||
| 4453 | // directly check for all the appropriate alignment-lowing | |||
| 4454 | // attributes --- but that would require duplicating a lot of | |||
| 4455 | // logic that just isn't worth duplicating for such a marginal | |||
| 4456 | // use-case. | |||
| 4457 | if (FieldDecl *FD = dyn_cast_or_null<FieldDecl>(D)) { | |||
| 4458 | // Fast path this check, since we at least know the record has a | |||
| 4459 | // definition if we can find a member of it. | |||
| 4460 | if (!FD->getParent()->isCompleteDefinition()) { | |||
| 4461 | S.Diag(E->getExprLoc(), diag::err_alignof_member_of_incomplete_type) | |||
| 4462 | << E->getSourceRange(); | |||
| 4463 | return true; | |||
| 4464 | } | |||
| 4465 | ||||
| 4466 | // Otherwise, if it's a field, and the field doesn't have | |||
| 4467 | // reference type, then it must have a complete type (or be a | |||
| 4468 | // flexible array member, which we explicitly want to | |||
| 4469 | // white-list anyway), which makes the following checks trivial. | |||
| 4470 | if (!FD->getType()->isReferenceType()) | |||
| 4471 | return false; | |||
| 4472 | } | |||
| 4473 | ||||
| 4474 | return S.CheckUnaryExprOrTypeTraitOperand(E, ExprKind); | |||
| 4475 | } | |||
| 4476 | ||||
| 4477 | bool Sema::CheckVecStepExpr(Expr *E) { | |||
| 4478 | E = E->IgnoreParens(); | |||
| 4479 | ||||
| 4480 | // Cannot know anything else if the expression is dependent. | |||
| 4481 | if (E->isTypeDependent()) | |||
| 4482 | return false; | |||
| 4483 | ||||
| 4484 | return CheckUnaryExprOrTypeTraitOperand(E, UETT_VecStep); | |||
| 4485 | } | |||
| 4486 | ||||
| 4487 | static void captureVariablyModifiedType(ASTContext &Context, QualType T, | |||
| 4488 | CapturingScopeInfo *CSI) { | |||
| 4489 | assert(T->isVariablyModifiedType())(static_cast <bool> (T->isVariablyModifiedType()) ? void (0) : __assert_fail ("T->isVariablyModifiedType()", "clang/lib/Sema/SemaExpr.cpp" , 4489, __extension__ __PRETTY_FUNCTION__)); | |||
| 4490 | assert(CSI != nullptr)(static_cast <bool> (CSI != nullptr) ? void (0) : __assert_fail ("CSI != nullptr", "clang/lib/Sema/SemaExpr.cpp", 4490, __extension__ __PRETTY_FUNCTION__)); | |||
| 4491 | ||||
| 4492 | // We're going to walk down into the type and look for VLA expressions. | |||
| 4493 | do { | |||
| 4494 | const Type *Ty = T.getTypePtr(); | |||
| 4495 | switch (Ty->getTypeClass()) { | |||
| 4496 | #define TYPE(Class, Base) | |||
| 4497 | #define ABSTRACT_TYPE(Class, Base) | |||
| 4498 | #define NON_CANONICAL_TYPE(Class, Base) | |||
| 4499 | #define DEPENDENT_TYPE(Class, Base) case Type::Class: | |||
| 4500 | #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) | |||
| 4501 | #include "clang/AST/TypeNodes.inc" | |||
| 4502 | T = QualType(); | |||
| 4503 | break; | |||
| 4504 | // These types are never variably-modified. | |||
| 4505 | case Type::Builtin: | |||
| 4506 | case Type::Complex: | |||
| 4507 | case Type::Vector: | |||
| 4508 | case Type::ExtVector: | |||
| 4509 | case Type::ConstantMatrix: | |||
| 4510 | case Type::Record: | |||
| 4511 | case Type::Enum: | |||
| 4512 | case Type::TemplateSpecialization: | |||
| 4513 | case Type::ObjCObject: | |||
| 4514 | case Type::ObjCInterface: | |||
| 4515 | case Type::ObjCObjectPointer: | |||
| 4516 | case Type::ObjCTypeParam: | |||
| 4517 | case Type::Pipe: | |||
| 4518 | case Type::BitInt: | |||
| 4519 | llvm_unreachable("type class is never variably-modified!")::llvm::llvm_unreachable_internal("type class is never variably-modified!" , "clang/lib/Sema/SemaExpr.cpp", 4519); | |||
| 4520 | case Type::Elaborated: | |||
| 4521 | T = cast<ElaboratedType>(Ty)->getNamedType(); | |||
| 4522 | break; | |||
| 4523 | case Type::Adjusted: | |||
| 4524 | T = cast<AdjustedType>(Ty)->getOriginalType(); | |||
| 4525 | break; | |||
| 4526 | case Type::Decayed: | |||
| 4527 | T = cast<DecayedType>(Ty)->getPointeeType(); | |||
| 4528 | break; | |||
| 4529 | case Type::Pointer: | |||
| 4530 | T = cast<PointerType>(Ty)->getPointeeType(); | |||
| 4531 | break; | |||
| 4532 | case Type::BlockPointer: | |||
| 4533 | T = cast<BlockPointerType>(Ty)->getPointeeType(); | |||
| 4534 | break; | |||
| 4535 | case Type::LValueReference: | |||
| 4536 | case Type::RValueReference: | |||
| 4537 | T = cast<ReferenceType>(Ty)->getPointeeType(); | |||
| 4538 | break; | |||
| 4539 | case Type::MemberPointer: | |||
| 4540 | T = cast<MemberPointerType>(Ty)->getPointeeType(); | |||
| 4541 | break; | |||
| 4542 | case Type::ConstantArray: | |||
| 4543 | case Type::IncompleteArray: | |||
| 4544 | // Losing element qualification here is fine. | |||
| 4545 | T = cast<ArrayType>(Ty)->getElementType(); | |||
| 4546 | break; | |||
| 4547 | case Type::VariableArray: { | |||
| 4548 | // Losing element qualification here is fine. | |||
| 4549 | const VariableArrayType *VAT = cast<VariableArrayType>(Ty); | |||
| 4550 | ||||
| 4551 | // Unknown size indication requires no size computation. | |||
| 4552 | // Otherwise, evaluate and record it. | |||
| 4553 | auto Size = VAT->getSizeExpr(); | |||
| 4554 | if (Size && !CSI->isVLATypeCaptured(VAT) && | |||
| 4555 | (isa<CapturedRegionScopeInfo>(CSI) || isa<LambdaScopeInfo>(CSI))) | |||
| 4556 | CSI->addVLATypeCapture(Size->getExprLoc(), VAT, Context.getSizeType()); | |||
| 4557 | ||||
| 4558 | T = VAT->getElementType(); | |||
| 4559 | break; | |||
| 4560 | } | |||
| 4561 | case Type::FunctionProto: | |||
| 4562 | case Type::FunctionNoProto: | |||
| 4563 | T = cast<FunctionType>(Ty)->getReturnType(); | |||
| 4564 | break; | |||
| 4565 | case Type::Paren: | |||
| 4566 | case Type::TypeOf: | |||
| 4567 | case Type::UnaryTransform: | |||
| 4568 | case Type::Attributed: | |||
| 4569 | case Type::BTFTagAttributed: | |||
| 4570 | case Type::SubstTemplateTypeParm: | |||
| 4571 | case Type::MacroQualified: | |||
| 4572 | // Keep walking after single level desugaring. | |||
| 4573 | T = T.getSingleStepDesugaredType(Context); | |||
| 4574 | break; | |||
| 4575 | case Type::Typedef: | |||
| 4576 | T = cast<TypedefType>(Ty)->desugar(); | |||
| 4577 | break; | |||
| 4578 | case Type::Decltype: | |||
| 4579 | T = cast<DecltypeType>(Ty)->desugar(); | |||
| 4580 | break; | |||
| 4581 | case Type::Using: | |||
| 4582 | T = cast<UsingType>(Ty)->desugar(); | |||
| 4583 | break; | |||
| 4584 | case Type::Auto: | |||
| 4585 | case Type::DeducedTemplateSpecialization: | |||
| 4586 | T = cast<DeducedType>(Ty)->getDeducedType(); | |||
| 4587 | break; | |||
| 4588 | case Type::TypeOfExpr: | |||
| 4589 | T = cast<TypeOfExprType>(Ty)->getUnderlyingExpr()->getType(); | |||
| 4590 | break; | |||
| 4591 | case Type::Atomic: | |||
| 4592 | T = cast<AtomicType>(Ty)->getValueType(); | |||
| 4593 | break; | |||
| 4594 | } | |||
| 4595 | } while (!T.isNull() && T->isVariablyModifiedType()); | |||
| 4596 | } | |||
| 4597 | ||||
| 4598 | /// Build a sizeof or alignof expression given a type operand. | |||
| 4599 | ExprResult | |||
| 4600 | Sema::CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo, | |||
| 4601 | SourceLocation OpLoc, | |||
| 4602 | UnaryExprOrTypeTrait ExprKind, | |||
| 4603 | SourceRange R) { | |||
| 4604 | if (!TInfo) | |||
| 4605 | return ExprError(); | |||
| 4606 | ||||
| 4607 | QualType T = TInfo->getType(); | |||
| 4608 | ||||
| 4609 | if (!T->isDependentType() && | |||
| 4610 | CheckUnaryExprOrTypeTraitOperand(T, OpLoc, R, ExprKind)) | |||
| 4611 | return ExprError(); | |||
| 4612 | ||||
| 4613 | if (T->isVariablyModifiedType() && FunctionScopes.size() > 1) { | |||
| 4614 | if (auto *TT = T->getAs<TypedefType>()) { | |||
| 4615 | for (auto I = FunctionScopes.rbegin(), | |||
| 4616 | E = std::prev(FunctionScopes.rend()); | |||
| 4617 | I != E; ++I) { | |||
| 4618 | auto *CSI = dyn_cast<CapturingScopeInfo>(*I); | |||
| 4619 | if (CSI == nullptr) | |||
| 4620 | break; | |||
| 4621 | DeclContext *DC = nullptr; | |||
| 4622 | if (auto *LSI = dyn_cast<LambdaScopeInfo>(CSI)) | |||
| 4623 | DC = LSI->CallOperator; | |||
| 4624 | else if (auto *CRSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) | |||
| 4625 | DC = CRSI->TheCapturedDecl; | |||
| 4626 | else if (auto *BSI = dyn_cast<BlockScopeInfo>(CSI)) | |||
| 4627 | DC = BSI->TheDecl; | |||
| 4628 | if (DC) { | |||
| 4629 | if (DC->containsDecl(TT->getDecl())) | |||
| 4630 | break; | |||
| 4631 | captureVariablyModifiedType(Context, T, CSI); | |||
| 4632 | } | |||
| 4633 | } | |||
| 4634 | } | |||
| 4635 | } | |||
| 4636 | ||||
| 4637 | // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t. | |||
| 4638 | if (isUnevaluatedContext() && ExprKind == UETT_SizeOf && | |||
| 4639 | TInfo->getType()->isVariablyModifiedType()) | |||
| 4640 | TInfo = TransformToPotentiallyEvaluated(TInfo); | |||
| 4641 | ||||
| 4642 | return new (Context) UnaryExprOrTypeTraitExpr( | |||
| 4643 | ExprKind, TInfo, Context.getSizeType(), OpLoc, R.getEnd()); | |||
| 4644 | } | |||
| 4645 | ||||
| 4646 | /// Build a sizeof or alignof expression given an expression | |||
| 4647 | /// operand. | |||
| 4648 | ExprResult | |||
| 4649 | Sema::CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc, | |||
| 4650 | UnaryExprOrTypeTrait ExprKind) { | |||
| 4651 | ExprResult PE = CheckPlaceholderExpr(E); | |||
| 4652 | if (PE.isInvalid()) | |||
| 4653 | return ExprError(); | |||
| 4654 | ||||
| 4655 | E = PE.get(); | |||
| 4656 | ||||
| 4657 | // Verify that the operand is valid. | |||
| 4658 | bool isInvalid = false; | |||
| 4659 | if (E->isTypeDependent()) { | |||
| 4660 | // Delay type-checking for type-dependent expressions. | |||
| 4661 | } else if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) { | |||
| 4662 | isInvalid = CheckAlignOfExpr(*this, E, ExprKind); | |||
| 4663 | } else if (ExprKind == UETT_VecStep) { | |||
| 4664 | isInvalid = CheckVecStepExpr(E); | |||
| 4665 | } else if (ExprKind == UETT_OpenMPRequiredSimdAlign) { | |||
| 4666 | Diag(E->getExprLoc(), diag::err_openmp_default_simd_align_expr); | |||
| 4667 | isInvalid = true; | |||
| 4668 | } else if (E->refersToBitField()) { // C99 6.5.3.4p1. | |||
| 4669 | Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield) << 0; | |||
| 4670 | isInvalid = true; | |||
| 4671 | } else { | |||
| 4672 | isInvalid = CheckUnaryExprOrTypeTraitOperand(E, UETT_SizeOf); | |||
| 4673 | } | |||
| 4674 | ||||
| 4675 | if (isInvalid) | |||
| 4676 | return ExprError(); | |||
| 4677 | ||||
| 4678 | if (ExprKind == UETT_SizeOf && E->getType()->isVariableArrayType()) { | |||
| 4679 | PE = TransformToPotentiallyEvaluated(E); | |||
| 4680 | if (PE.isInvalid()) return ExprError(); | |||
| 4681 | E = PE.get(); | |||
| 4682 | } | |||
| 4683 | ||||
| 4684 | // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t. | |||
| 4685 | return new (Context) UnaryExprOrTypeTraitExpr( | |||
| 4686 | ExprKind, E, Context.getSizeType(), OpLoc, E->getSourceRange().getEnd()); | |||
| 4687 | } | |||
| 4688 | ||||
| 4689 | /// ActOnUnaryExprOrTypeTraitExpr - Handle @c sizeof(type) and @c sizeof @c | |||
| 4690 | /// expr and the same for @c alignof and @c __alignof | |||
| 4691 | /// Note that the ArgRange is invalid if isType is false. | |||
| 4692 | ExprResult | |||
| 4693 | Sema::ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc, | |||
| 4694 | UnaryExprOrTypeTrait ExprKind, bool IsType, | |||
| 4695 | void *TyOrEx, SourceRange ArgRange) { | |||
| 4696 | // If error parsing type, ignore. | |||
| 4697 | if (!TyOrEx) return ExprError(); | |||
| 4698 | ||||
| 4699 | if (IsType) { | |||
| 4700 | TypeSourceInfo *TInfo; | |||
| 4701 | (void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo); | |||
| 4702 | return CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, ArgRange); | |||
| 4703 | } | |||
| 4704 | ||||
| 4705 | Expr *ArgEx = (Expr *)TyOrEx; | |||
| 4706 | ExprResult Result = CreateUnaryExprOrTypeTraitExpr(ArgEx, OpLoc, ExprKind); | |||
| 4707 | return Result; | |||
| 4708 | } | |||
| 4709 | ||||
| 4710 | static QualType CheckRealImagOperand(Sema &S, ExprResult &V, SourceLocation Loc, | |||
| 4711 | bool IsReal) { | |||
| 4712 | if (V.get()->isTypeDependent()) | |||
| 4713 | return S.Context.DependentTy; | |||
| 4714 | ||||
| 4715 | // _Real and _Imag are only l-values for normal l-values. | |||
| 4716 | if (V.get()->getObjectKind() != OK_Ordinary) { | |||
| 4717 | V = S.DefaultLvalueConversion(V.get()); | |||
| 4718 | if (V.isInvalid()) | |||
| 4719 | return QualType(); | |||
| 4720 | } | |||
| 4721 | ||||
| 4722 | // These operators return the element type of a complex type. | |||
| 4723 | if (const ComplexType *CT = V.get()->getType()->getAs<ComplexType>()) | |||
| 4724 | return CT->getElementType(); | |||
| 4725 | ||||
| 4726 | // Otherwise they pass through real integer and floating point types here. | |||
| 4727 | if (V.get()->getType()->isArithmeticType()) | |||
| 4728 | return V.get()->getType(); | |||
| 4729 | ||||
| 4730 | // Test for placeholders. | |||
| 4731 | ExprResult PR = S.CheckPlaceholderExpr(V.get()); | |||
| 4732 | if (PR.isInvalid()) return QualType(); | |||
| 4733 | if (PR.get() != V.get()) { | |||
| 4734 | V = PR; | |||
| 4735 | return CheckRealImagOperand(S, V, Loc, IsReal); | |||
| 4736 | } | |||
| 4737 | ||||
| 4738 | // Reject anything else. | |||
| 4739 | S.Diag(Loc, diag::err_realimag_invalid_type) << V.get()->getType() | |||
| 4740 | << (IsReal ? "__real" : "__imag"); | |||
| 4741 | return QualType(); | |||
| 4742 | } | |||
| 4743 | ||||
| 4744 | ||||
| 4745 | ||||
| 4746 | ExprResult | |||
| 4747 | Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc, | |||
| 4748 | tok::TokenKind Kind, Expr *Input) { | |||
| 4749 | UnaryOperatorKind Opc; | |||
| 4750 | switch (Kind) { | |||
| 4751 | default: llvm_unreachable("Unknown unary op!")::llvm::llvm_unreachable_internal("Unknown unary op!", "clang/lib/Sema/SemaExpr.cpp" , 4751); | |||
| 4752 | case tok::plusplus: Opc = UO_PostInc; break; | |||
| 4753 | case tok::minusminus: Opc = UO_PostDec; break; | |||
| 4754 | } | |||
| 4755 | ||||
| 4756 | // Since this might is a postfix expression, get rid of ParenListExprs. | |||
| 4757 | ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Input); | |||
| 4758 | if (Result.isInvalid()) return ExprError(); | |||
| 4759 | Input = Result.get(); | |||
| 4760 | ||||
| 4761 | return BuildUnaryOp(S, OpLoc, Opc, Input); | |||
| 4762 | } | |||
| 4763 | ||||
| 4764 | /// Diagnose if arithmetic on the given ObjC pointer is illegal. | |||
| 4765 | /// | |||
| 4766 | /// \return true on error | |||
| 4767 | static bool checkArithmeticOnObjCPointer(Sema &S, | |||
| 4768 | SourceLocation opLoc, | |||
| 4769 | Expr *op) { | |||
| 4770 | assert(op->getType()->isObjCObjectPointerType())(static_cast <bool> (op->getType()->isObjCObjectPointerType ()) ? void (0) : __assert_fail ("op->getType()->isObjCObjectPointerType()" , "clang/lib/Sema/SemaExpr.cpp", 4770, __extension__ __PRETTY_FUNCTION__ )); | |||
| 4771 | if (S.LangOpts.ObjCRuntime.allowsPointerArithmetic() && | |||
| 4772 | !S.LangOpts.ObjCSubscriptingLegacyRuntime) | |||
| 4773 | return false; | |||
| 4774 | ||||
| 4775 | S.Diag(opLoc, diag::err_arithmetic_nonfragile_interface) | |||
| 4776 | << op->getType()->castAs<ObjCObjectPointerType>()->getPointeeType() | |||
| 4777 | << op->getSourceRange(); | |||
| 4778 | return true; | |||
| 4779 | } | |||
| 4780 | ||||
| 4781 | static bool isMSPropertySubscriptExpr(Sema &S, Expr *Base) { | |||
| 4782 | auto *BaseNoParens = Base->IgnoreParens(); | |||
| 4783 | if (auto *MSProp = dyn_cast<MSPropertyRefExpr>(BaseNoParens)) | |||
| 4784 | return MSProp->getPropertyDecl()->getType()->isArrayType(); | |||
| 4785 | return isa<MSPropertySubscriptExpr>(BaseNoParens); | |||
| 4786 | } | |||
| 4787 | ||||
| 4788 | // Returns the type used for LHS[RHS], given one of LHS, RHS is type-dependent. | |||
| 4789 | // Typically this is DependentTy, but can sometimes be more precise. | |||
| 4790 | // | |||
| 4791 | // There are cases when we could determine a non-dependent type: | |||
| 4792 | // - LHS and RHS may have non-dependent types despite being type-dependent | |||
| 4793 | // (e.g. unbounded array static members of the current instantiation) | |||
| 4794 | // - one may be a dependent-sized array with known element type | |||
| 4795 | // - one may be a dependent-typed valid index (enum in current instantiation) | |||
| 4796 | // | |||
| 4797 | // We *always* return a dependent type, in such cases it is DependentTy. | |||
| 4798 | // This avoids creating type-dependent expressions with non-dependent types. | |||
| 4799 | // FIXME: is this important to avoid? See https://reviews.llvm.org/D107275 | |||
| 4800 | static QualType getDependentArraySubscriptType(Expr *LHS, Expr *RHS, | |||
| 4801 | const ASTContext &Ctx) { | |||
| 4802 | assert(LHS->isTypeDependent() || RHS->isTypeDependent())(static_cast <bool> (LHS->isTypeDependent() || RHS-> isTypeDependent()) ? void (0) : __assert_fail ("LHS->isTypeDependent() || RHS->isTypeDependent()" , "clang/lib/Sema/SemaExpr.cpp", 4802, __extension__ __PRETTY_FUNCTION__ )); | |||
| 4803 | QualType LTy = LHS->getType(), RTy = RHS->getType(); | |||
| 4804 | QualType Result = Ctx.DependentTy; | |||
| 4805 | if (RTy->isIntegralOrUnscopedEnumerationType()) { | |||
| 4806 | if (const PointerType *PT = LTy->getAs<PointerType>()) | |||
| 4807 | Result = PT->getPointeeType(); | |||
| 4808 | else if (const ArrayType *AT = LTy->getAsArrayTypeUnsafe()) | |||
| 4809 | Result = AT->getElementType(); | |||
| 4810 | } else if (LTy->isIntegralOrUnscopedEnumerationType()) { | |||
| 4811 | if (const PointerType *PT = RTy->getAs<PointerType>()) | |||
| 4812 | Result = PT->getPointeeType(); | |||
| 4813 | else if (const ArrayType *AT = RTy->getAsArrayTypeUnsafe()) | |||
| 4814 | Result = AT->getElementType(); | |||
| 4815 | } | |||
| 4816 | // Ensure we return a dependent type. | |||
| 4817 | return Result->isDependentType() ? Result : Ctx.DependentTy; | |||
| 4818 | } | |||
| 4819 | ||||
| 4820 | static bool checkArgsForPlaceholders(Sema &S, MultiExprArg args); | |||
| 4821 | ||||
| 4822 | ExprResult Sema::ActOnArraySubscriptExpr(Scope *S, Expr *base, | |||
| 4823 | SourceLocation lbLoc, | |||
| 4824 | MultiExprArg ArgExprs, | |||
| 4825 | SourceLocation rbLoc) { | |||
| 4826 | ||||
| 4827 | if (base && !base->getType().isNull() && | |||
| 4828 | base->hasPlaceholderType(BuiltinType::OMPArraySection)) | |||
| 4829 | return ActOnOMPArraySectionExpr(base, lbLoc, ArgExprs.front(), SourceLocation(), | |||
| 4830 | SourceLocation(), /*Length*/ nullptr, | |||
| 4831 | /*Stride=*/nullptr, rbLoc); | |||
| 4832 | ||||
| 4833 | // Since this might be a postfix expression, get rid of ParenListExprs. | |||
| 4834 | if (isa<ParenListExpr>(base)) { | |||
| 4835 | ExprResult result = MaybeConvertParenListExprToParenExpr(S, base); | |||
| 4836 | if (result.isInvalid()) | |||
| 4837 | return ExprError(); | |||
| 4838 | base = result.get(); | |||
| 4839 | } | |||
| 4840 | ||||
| 4841 | // Check if base and idx form a MatrixSubscriptExpr. | |||
| 4842 | // | |||
| 4843 | // Helper to check for comma expressions, which are not allowed as indices for | |||
| 4844 | // matrix subscript expressions. | |||
| 4845 | auto CheckAndReportCommaError = [this, base, rbLoc](Expr *E) { | |||
| 4846 | if (isa<BinaryOperator>(E) && cast<BinaryOperator>(E)->isCommaOp()) { | |||
| 4847 | Diag(E->getExprLoc(), diag::err_matrix_subscript_comma) | |||
| 4848 | << SourceRange(base->getBeginLoc(), rbLoc); | |||
| 4849 | return true; | |||
| 4850 | } | |||
| 4851 | return false; | |||
| 4852 | }; | |||
| 4853 | // The matrix subscript operator ([][])is considered a single operator. | |||
| 4854 | // Separating the index expressions by parenthesis is not allowed. | |||
| 4855 | if (base->hasPlaceholderType(BuiltinType::IncompleteMatrixIdx) && | |||
| ||||
| 4856 | !isa<MatrixSubscriptExpr>(base)) { | |||
| 4857 | Diag(base->getExprLoc(), diag::err_matrix_separate_incomplete_index) | |||
| 4858 | << SourceRange(base->getBeginLoc(), rbLoc); | |||
| 4859 | return ExprError(); | |||
| 4860 | } | |||
| 4861 | // If the base is a MatrixSubscriptExpr, try to create a new | |||
| 4862 | // MatrixSubscriptExpr. | |||
| 4863 | auto *matSubscriptE = dyn_cast<MatrixSubscriptExpr>(base); | |||
| 4864 | if (matSubscriptE) { | |||
| 4865 | assert(ArgExprs.size() == 1)(static_cast <bool> (ArgExprs.size() == 1) ? void (0) : __assert_fail ("ArgExprs.size() == 1", "clang/lib/Sema/SemaExpr.cpp" , 4865, __extension__ __PRETTY_FUNCTION__)); | |||
| 4866 | if (CheckAndReportCommaError(ArgExprs.front())) | |||
| 4867 | return ExprError(); | |||
| 4868 | ||||
| 4869 | assert(matSubscriptE->isIncomplete() &&(static_cast <bool> (matSubscriptE->isIncomplete() && "base has to be an incomplete matrix subscript") ? void (0) : __assert_fail ("matSubscriptE->isIncomplete() && \"base has to be an incomplete matrix subscript\"" , "clang/lib/Sema/SemaExpr.cpp", 4870, __extension__ __PRETTY_FUNCTION__ )) | |||
| 4870 | "base has to be an incomplete matrix subscript")(static_cast <bool> (matSubscriptE->isIncomplete() && "base has to be an incomplete matrix subscript") ? void (0) : __assert_fail ("matSubscriptE->isIncomplete() && \"base has to be an incomplete matrix subscript\"" , "clang/lib/Sema/SemaExpr.cpp", 4870, __extension__ __PRETTY_FUNCTION__ )); | |||
| 4871 | return CreateBuiltinMatrixSubscriptExpr(matSubscriptE->getBase(), | |||
| 4872 | matSubscriptE->getRowIdx(), | |||
| 4873 | ArgExprs.front(), rbLoc); | |||
| 4874 | } | |||
| 4875 | ||||
| 4876 | // Handle any non-overload placeholder types in the base and index | |||
| 4877 | // expressions. We can't handle overloads here because the other | |||
| 4878 | // operand might be an overloadable type, in which case the overload | |||
| 4879 | // resolution for the operator overload should get the first crack | |||
| 4880 | // at the overload. | |||
| 4881 | bool IsMSPropertySubscript = false; | |||
| 4882 | if (base->getType()->isNonOverloadPlaceholderType()) { | |||
| 4883 | IsMSPropertySubscript = isMSPropertySubscriptExpr(*this, base); | |||
| 4884 | if (!IsMSPropertySubscript) { | |||
| 4885 | ExprResult result = CheckPlaceholderExpr(base); | |||
| 4886 | if (result.isInvalid()) | |||
| 4887 | return ExprError(); | |||
| 4888 | base = result.get(); | |||
| 4889 | } | |||
| 4890 | } | |||
| 4891 | ||||
| 4892 | // If the base is a matrix type, try to create a new MatrixSubscriptExpr. | |||
| 4893 | if (base->getType()->isMatrixType()) { | |||
| 4894 | assert(ArgExprs.size() == 1)(static_cast <bool> (ArgExprs.size() == 1) ? void (0) : __assert_fail ("ArgExprs.size() == 1", "clang/lib/Sema/SemaExpr.cpp" , 4894, __extension__ __PRETTY_FUNCTION__)); | |||
| 4895 | if (CheckAndReportCommaError(ArgExprs.front())) | |||
| 4896 | return ExprError(); | |||
| 4897 | ||||
| 4898 | return CreateBuiltinMatrixSubscriptExpr(base, ArgExprs.front(), nullptr, | |||
| 4899 | rbLoc); | |||
| 4900 | } | |||
| 4901 | ||||
| 4902 | if (ArgExprs.size() == 1 && getLangOpts().CPlusPlus20) { | |||
| 4903 | Expr *idx = ArgExprs[0]; | |||
| 4904 | if ((isa<BinaryOperator>(idx) && cast<BinaryOperator>(idx)->isCommaOp()) || | |||
| 4905 | (isa<CXXOperatorCallExpr>(idx) && | |||
| 4906 | cast<CXXOperatorCallExpr>(idx)->getOperator() == OO_Comma)) { | |||
| 4907 | Diag(idx->getExprLoc(), diag::warn_deprecated_comma_subscript) | |||
| 4908 | << SourceRange(base->getBeginLoc(), rbLoc); | |||
| 4909 | } | |||
| 4910 | } | |||
| 4911 | ||||
| 4912 | if (ArgExprs.size() == 1 && | |||
| 4913 | ArgExprs[0]->getType()->isNonOverloadPlaceholderType()) { | |||
| 4914 | ExprResult result = CheckPlaceholderExpr(ArgExprs[0]); | |||
| 4915 | if (result.isInvalid()) | |||
| 4916 | return ExprError(); | |||
| 4917 | ArgExprs[0] = result.get(); | |||
| 4918 | } else { | |||
| 4919 | if (checkArgsForPlaceholders(*this, ArgExprs)) | |||
| 4920 | return ExprError(); | |||
| 4921 | } | |||
| 4922 | ||||
| 4923 | // Build an unanalyzed expression if either operand is type-dependent. | |||
| 4924 | if (getLangOpts().CPlusPlus && ArgExprs.size() == 1 && | |||
| 4925 | (base->isTypeDependent() || | |||
| 4926 | Expr::hasAnyTypeDependentArguments(ArgExprs)) && | |||
| 4927 | !isa<PackExpansionExpr>(ArgExprs[0])) { | |||
| 4928 | return new (Context) ArraySubscriptExpr( | |||
| 4929 | base, ArgExprs.front(), | |||
| 4930 | getDependentArraySubscriptType(base, ArgExprs.front(), getASTContext()), | |||
| 4931 | VK_LValue, OK_Ordinary, rbLoc); | |||
| 4932 | } | |||
| 4933 | ||||
| 4934 | // MSDN, property (C++) | |||
| 4935 | // https://msdn.microsoft.com/en-us/library/yhfk0thd(v=vs.120).aspx | |||
| 4936 | // This attribute can also be used in the declaration of an empty array in a | |||
| 4937 | // class or structure definition. For example: | |||
| 4938 | // __declspec(property(get=GetX, put=PutX)) int x[]; | |||
| 4939 | // The above statement indicates that x[] can be used with one or more array | |||
| 4940 | // indices. In this case, i=p->x[a][b] will be turned into i=p->GetX(a, b), | |||
| 4941 | // and p->x[a][b] = i will be turned into p->PutX(a, b, i); | |||
| 4942 | if (IsMSPropertySubscript) { | |||
| 4943 | assert(ArgExprs.size() == 1)(static_cast <bool> (ArgExprs.size() == 1) ? void (0) : __assert_fail ("ArgExprs.size() == 1", "clang/lib/Sema/SemaExpr.cpp" , 4943, __extension__ __PRETTY_FUNCTION__)); | |||
| 4944 | // Build MS property subscript expression if base is MS property reference | |||
| 4945 | // or MS property subscript. | |||
| 4946 | return new (Context) | |||
| 4947 | MSPropertySubscriptExpr(base, ArgExprs.front(), Context.PseudoObjectTy, | |||
| 4948 | VK_LValue, OK_Ordinary, rbLoc); | |||
| 4949 | } | |||
| 4950 | ||||
| 4951 | // Use C++ overloaded-operator rules if either operand has record | |||
| 4952 | // type. The spec says to do this if either type is *overloadable*, | |||
| 4953 | // but enum types can't declare subscript operators or conversion | |||
| 4954 | // operators, so there's nothing interesting for overload resolution | |||
| 4955 | // to do if there aren't any record types involved. | |||
| 4956 | // | |||
| 4957 | // ObjC pointers have their own subscripting logic that is not tied | |||
| 4958 | // to overload resolution and so should not take this path. | |||
| 4959 | if (getLangOpts().CPlusPlus && !base->getType()->isObjCObjectPointerType() && | |||
| 4960 | ((base->getType()->isRecordType() || | |||
| 4961 | (ArgExprs.size() != 1 || isa<PackExpansionExpr>(ArgExprs[0]) || | |||
| 4962 | ArgExprs[0]->getType()->isRecordType())))) { | |||
| 4963 | return CreateOverloadedArraySubscriptExpr(lbLoc, rbLoc, base, ArgExprs); | |||
| 4964 | } | |||
| 4965 | ||||
| 4966 | ExprResult Res = | |||
| 4967 | CreateBuiltinArraySubscriptExpr(base, lbLoc, ArgExprs.front(), rbLoc); | |||
| 4968 | ||||
| 4969 | if (!Res.isInvalid() && isa<ArraySubscriptExpr>(Res.get())) | |||
| 4970 | CheckSubscriptAccessOfNoDeref(cast<ArraySubscriptExpr>(Res.get())); | |||
| 4971 | ||||
| 4972 | return Res; | |||
| 4973 | } | |||
| 4974 | ||||
| 4975 | ExprResult Sema::tryConvertExprToType(Expr *E, QualType Ty) { | |||
| 4976 | InitializedEntity Entity = InitializedEntity::InitializeTemporary(Ty); | |||
| 4977 | InitializationKind Kind = | |||
| 4978 | InitializationKind::CreateCopy(E->getBeginLoc(), SourceLocation()); | |||
| 4979 | InitializationSequence InitSeq(*this, Entity, Kind, E); | |||
| 4980 | return InitSeq.Perform(*this, Entity, Kind, E); | |||
| 4981 | } | |||
| 4982 | ||||
| 4983 | ExprResult Sema::CreateBuiltinMatrixSubscriptExpr(Expr *Base, Expr *RowIdx, | |||
| 4984 | Expr *ColumnIdx, | |||
| 4985 | SourceLocation RBLoc) { | |||
| 4986 | ExprResult BaseR = CheckPlaceholderExpr(Base); | |||
| 4987 | if (BaseR.isInvalid()) | |||
| 4988 | return BaseR; | |||
| 4989 | Base = BaseR.get(); | |||
| 4990 | ||||
| 4991 | ExprResult RowR = CheckPlaceholderExpr(RowIdx); | |||
| 4992 | if (RowR.isInvalid()) | |||
| 4993 | return RowR; | |||
| 4994 | RowIdx = RowR.get(); | |||
| 4995 | ||||
| 4996 | if (!ColumnIdx) | |||
| 4997 | return new (Context) MatrixSubscriptExpr( | |||
| 4998 | Base, RowIdx, ColumnIdx, Context.IncompleteMatrixIdxTy, RBLoc); | |||
| 4999 | ||||
| 5000 | // Build an unanalyzed expression if any of the operands is type-dependent. | |||
| 5001 | if (Base->isTypeDependent() || RowIdx->isTypeDependent() || | |||
| 5002 | ColumnIdx->isTypeDependent()) | |||
| 5003 | return new (Context) MatrixSubscriptExpr(Base, RowIdx, ColumnIdx, | |||
| 5004 | Context.DependentTy, RBLoc); | |||
| 5005 | ||||
| 5006 | ExprResult ColumnR = CheckPlaceholderExpr(ColumnIdx); | |||
| 5007 | if (ColumnR.isInvalid()) | |||
| 5008 | return ColumnR; | |||
| 5009 | ColumnIdx = ColumnR.get(); | |||
| 5010 | ||||
| 5011 | // Check that IndexExpr is an integer expression. If it is a constant | |||
| 5012 | // expression, check that it is less than Dim (= the number of elements in the | |||
| 5013 | // corresponding dimension). | |||
| 5014 | auto IsIndexValid = [&](Expr *IndexExpr, unsigned Dim, | |||
| 5015 | bool IsColumnIdx) -> Expr * { | |||
| 5016 | if (!IndexExpr->getType()->isIntegerType() && | |||
| 5017 | !IndexExpr->isTypeDependent()) { | |||
| 5018 | Diag(IndexExpr->getBeginLoc(), diag::err_matrix_index_not_integer) | |||
| 5019 | << IsColumnIdx; | |||
| 5020 | return nullptr; | |||
| 5021 | } | |||
| 5022 | ||||
| 5023 | if (std::optional<llvm::APSInt> Idx = | |||
| 5024 | IndexExpr->getIntegerConstantExpr(Context)) { | |||
| 5025 | if ((*Idx < 0 || *Idx >= Dim)) { | |||
| 5026 | Diag(IndexExpr->getBeginLoc(), diag::err_matrix_index_outside_range) | |||
| 5027 | << IsColumnIdx << Dim; | |||
| 5028 | return nullptr; | |||
| 5029 | } | |||
| 5030 | } | |||
| 5031 | ||||
| 5032 | ExprResult ConvExpr = | |||
| 5033 | tryConvertExprToType(IndexExpr, Context.getSizeType()); | |||
| 5034 | assert(!ConvExpr.isInvalid() &&(static_cast <bool> (!ConvExpr.isInvalid() && "should be able to convert any integer type to size type" ) ? void (0) : __assert_fail ("!ConvExpr.isInvalid() && \"should be able to convert any integer type to size type\"" , "clang/lib/Sema/SemaExpr.cpp", 5035, __extension__ __PRETTY_FUNCTION__ )) | |||
| 5035 | "should be able to convert any integer type to size type")(static_cast <bool> (!ConvExpr.isInvalid() && "should be able to convert any integer type to size type" ) ? void (0) : __assert_fail ("!ConvExpr.isInvalid() && \"should be able to convert any integer type to size type\"" , "clang/lib/Sema/SemaExpr.cpp", 5035, __extension__ __PRETTY_FUNCTION__ )); | |||
| 5036 | return ConvExpr.get(); | |||
| 5037 | }; | |||
| 5038 | ||||
| 5039 | auto *MTy = Base->getType()->getAs<ConstantMatrixType>(); | |||
| 5040 | RowIdx = IsIndexValid(RowIdx, MTy->getNumRows(), false); | |||
| 5041 | ColumnIdx = IsIndexValid(ColumnIdx, MTy->getNumColumns(), true); | |||
| 5042 | if (!RowIdx || !ColumnIdx) | |||
| 5043 | return ExprError(); | |||
| 5044 | ||||
| 5045 | return new (Context) MatrixSubscriptExpr(Base, RowIdx, ColumnIdx, | |||
| 5046 | MTy->getElementType(), RBLoc); | |||
| 5047 | } | |||
| 5048 | ||||
| 5049 | void Sema::CheckAddressOfNoDeref(const Expr *E) { | |||
| 5050 | ExpressionEvaluationContextRecord &LastRecord = ExprEvalContexts.back(); | |||
| 5051 | const Expr *StrippedExpr = E->IgnoreParenImpCasts(); | |||
| 5052 | ||||
| 5053 | // For expressions like `&(*s).b`, the base is recorded and what should be | |||
| 5054 | // checked. | |||
| 5055 | const MemberExpr *Member = nullptr; | |||
| 5056 | while ((Member = dyn_cast<MemberExpr>(StrippedExpr)) && !Member->isArrow()) | |||
| 5057 | StrippedExpr = Member->getBase()->IgnoreParenImpCasts(); | |||
| 5058 | ||||
| 5059 | LastRecord.PossibleDerefs.erase(StrippedExpr); | |||
| 5060 | } | |||
| 5061 | ||||
| 5062 | void Sema::CheckSubscriptAccessOfNoDeref(const ArraySubscriptExpr *E) { | |||
| 5063 | if (isUnevaluatedContext()) | |||
| 5064 | return; | |||
| 5065 | ||||
| 5066 | QualType ResultTy = E->getType(); | |||
| 5067 | ExpressionEvaluationContextRecord &LastRecord = ExprEvalContexts.back(); | |||
| 5068 | ||||
| 5069 | // Bail if the element is an array since it is not memory access. | |||
| 5070 | if (isa<ArrayType>(ResultTy)) | |||
| 5071 | return; | |||
| 5072 | ||||
| 5073 | if (ResultTy->hasAttr(attr::NoDeref)) { | |||
| 5074 | LastRecord.PossibleDerefs.insert(E); | |||
| 5075 | return; | |||
| 5076 | } | |||
| 5077 | ||||
| 5078 | // Check if the base type is a pointer to a member access of a struct | |||
| 5079 | // marked with noderef. | |||
| 5080 | const Expr *Base = E->getBase(); | |||
| 5081 | QualType BaseTy = Base->getType(); | |||
| 5082 | if (!(isa<ArrayType>(BaseTy) || isa<PointerType>(BaseTy))) | |||
| 5083 | // Not a pointer access | |||
| 5084 | return; | |||
| 5085 | ||||
| 5086 | const MemberExpr *Member = nullptr; | |||
| 5087 | while ((Member = dyn_cast<MemberExpr>(Base->IgnoreParenCasts())) && | |||
| 5088 | Member->isArrow()) | |||
| 5089 | Base = Member->getBase(); | |||
| 5090 | ||||
| 5091 | if (const auto *Ptr = dyn_cast<PointerType>(Base->getType())) { | |||
| 5092 | if (Ptr->getPointeeType()->hasAttr(attr::NoDeref)) | |||
| 5093 | LastRecord.PossibleDerefs.insert(E); | |||
| 5094 | } | |||
| 5095 | } | |||
| 5096 | ||||
| 5097 | ExprResult Sema::ActOnOMPArraySectionExpr(Expr *Base, SourceLocation LBLoc, | |||
| 5098 | Expr *LowerBound, | |||
| 5099 | SourceLocation ColonLocFirst, | |||
| 5100 | SourceLocation ColonLocSecond, | |||
| 5101 | Expr *Length, Expr *Stride, | |||
| 5102 | SourceLocation RBLoc) { | |||
| 5103 | if (Base->hasPlaceholderType() && | |||
| 5104 | !Base->hasPlaceholderType(BuiltinType::OMPArraySection)) { | |||
| 5105 | ExprResult Result = CheckPlaceholderExpr(Base); | |||
| 5106 | if (Result.isInvalid()) | |||
| 5107 | return ExprError(); | |||
| 5108 | Base = Result.get(); | |||
| 5109 | } | |||
| 5110 | if (LowerBound && LowerBound->getType()->isNonOverloadPlaceholderType()) { | |||
| 5111 | ExprResult Result = CheckPlaceholderExpr(LowerBound); | |||
| 5112 | if (Result.isInvalid()) | |||
| 5113 | return ExprError(); | |||
| 5114 | Result = DefaultLvalueConversion(Result.get()); | |||
| 5115 | if (Result.isInvalid()) | |||
| 5116 | return ExprError(); | |||
| 5117 | LowerBound = Result.get(); | |||
| 5118 | } | |||
| 5119 | if (Length && Length->getType()->isNonOverloadPlaceholderType()) { | |||
| 5120 | ExprResult Result = CheckPlaceholderExpr(Length); | |||
| 5121 | if (Result.isInvalid()) | |||
| 5122 | return ExprError(); | |||
| 5123 | Result = DefaultLvalueConversion(Result.get()); | |||
| 5124 | if (Result.isInvalid()) | |||
| 5125 | return ExprError(); | |||
| 5126 | Length = Result.get(); | |||
| 5127 | } | |||
| 5128 | if (Stride && Stride->getType()->isNonOverloadPlaceholderType()) { | |||
| 5129 | ExprResult Result = CheckPlaceholderExpr(Stride); | |||
| 5130 | if (Result.isInvalid()) | |||
| 5131 | return ExprError(); | |||
| 5132 | Result = DefaultLvalueConversion(Result.get()); | |||
| 5133 | if (Result.isInvalid()) | |||
| 5134 | return ExprError(); | |||
| 5135 | Stride = Result.get(); | |||
| 5136 | } | |||
| 5137 | ||||
| 5138 | // Build an unanalyzed expression if either operand is type-dependent. | |||
| 5139 | if (Base->isTypeDependent() || | |||
| 5140 | (LowerBound && | |||
| 5141 | (LowerBound->isTypeDependent() || LowerBound->isValueDependent())) || | |||
| 5142 | (Length && (Length->isTypeDependent() || Length->isValueDependent())) || | |||
| 5143 | (Stride && (Stride->isTypeDependent() || Stride->isValueDependent()))) { | |||
| 5144 | return new (Context) OMPArraySectionExpr( | |||
| 5145 | Base, LowerBound, Length, Stride, Context.DependentTy, VK_LValue, | |||
| 5146 | OK_Ordinary, ColonLocFirst, ColonLocSecond, RBLoc); | |||
| 5147 | } | |||
| 5148 | ||||
| 5149 | // Perform default conversions. | |||
| 5150 | QualType OriginalTy = OMPArraySectionExpr::getBaseOriginalType(Base); | |||
| 5151 | QualType ResultTy; | |||
| 5152 | if (OriginalTy->isAnyPointerType()) { | |||
| 5153 | ResultTy = OriginalTy->getPointeeType(); | |||
| 5154 | } else if (OriginalTy->isArrayType()) { | |||
| 5155 | ResultTy = OriginalTy->getAsArrayTypeUnsafe()->getElementType(); | |||
| 5156 | } else { | |||
| 5157 | return ExprError( | |||
| 5158 | Diag(Base->getExprLoc(), diag::err_omp_typecheck_section_value) | |||
| 5159 | << Base->getSourceRange()); | |||
| 5160 | } | |||
| 5161 | // C99 6.5.2.1p1 | |||
| 5162 | if (LowerBound) { | |||
| 5163 | auto Res = PerformOpenMPImplicitIntegerConversion(LowerBound->getExprLoc(), | |||
| 5164 | LowerBound); | |||
| 5165 | if (Res.isInvalid()) | |||
| 5166 | return ExprError(Diag(LowerBound->getExprLoc(), | |||
| 5167 | diag::err_omp_typecheck_section_not_integer) | |||
| 5168 | << 0 << LowerBound->getSourceRange()); | |||
| 5169 | LowerBound = Res.get(); | |||
| 5170 | ||||
| 5171 | if (LowerBound->getType()->isSpecificBuiltinType(BuiltinType::Char_S) || | |||
| 5172 | LowerBound->getType()->isSpecificBuiltinType(BuiltinType::Char_U)) | |||
| 5173 | Diag(LowerBound->getExprLoc(), diag::warn_omp_section_is_char) | |||
| 5174 | << 0 << LowerBound->getSourceRange(); | |||
| 5175 | } | |||
| 5176 | if (Length) { | |||
| 5177 | auto Res = | |||
| 5178 | PerformOpenMPImplicitIntegerConversion(Length->getExprLoc(), Length); | |||
| 5179 | if (Res.isInvalid()) | |||
| 5180 | return ExprError(Diag(Length->getExprLoc(), | |||
| 5181 | diag::err_omp_typecheck_section_not_integer) | |||
| 5182 | << 1 << Length->getSourceRange()); | |||
| 5183 | Length = Res.get(); | |||
| 5184 | ||||
| 5185 | if (Length->getType()->isSpecificBuiltinType(BuiltinType::Char_S) || | |||
| 5186 | Length->getType()->isSpecificBuiltinType(BuiltinType::Char_U)) | |||
| 5187 | Diag(Length->getExprLoc(), diag::warn_omp_section_is_char) | |||
| 5188 | << 1 << Length->getSourceRange(); | |||
| 5189 | } | |||
| 5190 | if (Stride) { | |||
| 5191 | ExprResult Res = | |||
| 5192 | PerformOpenMPImplicitIntegerConversion(Stride->getExprLoc(), Stride); | |||
| 5193 | if (Res.isInvalid()) | |||
| 5194 | return ExprError(Diag(Stride->getExprLoc(), | |||
| 5195 | diag::err_omp_typecheck_section_not_integer) | |||
| 5196 | << 1 << Stride->getSourceRange()); | |||
| 5197 | Stride = Res.get(); | |||
| 5198 | ||||
| 5199 | if (Stride->getType()->isSpecificBuiltinType(BuiltinType::Char_S) || | |||
| 5200 | Stride->getType()->isSpecificBuiltinType(BuiltinType::Char_U)) | |||
| 5201 | Diag(Stride->getExprLoc(), diag::warn_omp_section_is_char) | |||
| 5202 | << 1 << Stride->getSourceRange(); | |||
| 5203 | } | |||
| 5204 | ||||
| 5205 | // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly, | |||
| 5206 | // C++ [expr.sub]p1: The type "T" shall be a completely-defined object | |||
| 5207 | // type. Note that functions are not objects, and that (in C99 parlance) | |||
| 5208 | // incomplete types are not object types. | |||
| 5209 | if (ResultTy->isFunctionType()) { | |||
| 5210 | Diag(Base->getExprLoc(), diag::err_omp_section_function_type) | |||
| 5211 | << ResultTy << Base->getSourceRange(); | |||
| 5212 | return ExprError(); | |||
| 5213 | } | |||
| 5214 | ||||
| 5215 | if (RequireCompleteType(Base->getExprLoc(), ResultTy, | |||
| 5216 | diag::err_omp_section_incomplete_type, Base)) | |||
| 5217 | return ExprError(); | |||
| 5218 | ||||
| 5219 | if (LowerBound && !OriginalTy->isAnyPointerType()) { | |||
| 5220 | Expr::EvalResult Result; | |||
| 5221 | if (LowerBound->EvaluateAsInt(Result, Context)) { | |||
| 5222 | // OpenMP 5.0, [2.1.5 Array Sections] | |||
| 5223 | // The array section must be a subset of the original array. | |||
| 5224 | llvm::APSInt LowerBoundValue = Result.Val.getInt(); | |||
| 5225 | if (LowerBoundValue.isNegative()) { | |||
| 5226 | Diag(LowerBound->getExprLoc(), diag::err_omp_section_not_subset_of_array) | |||
| 5227 | << LowerBound->getSourceRange(); | |||
| 5228 | return ExprError(); | |||
| 5229 | } | |||
| 5230 | } | |||
| 5231 | } | |||
| 5232 | ||||
| 5233 | if (Length) { | |||
| 5234 | Expr::EvalResult Result; | |||
| 5235 | if (Length->EvaluateAsInt(Result, Context)) { | |||
| 5236 | // OpenMP 5.0, [2.1.5 Array Sections] | |||
| 5237 | // The length must evaluate to non-negative integers. | |||
| 5238 | llvm::APSInt LengthValue = Result.Val.getInt(); | |||
| 5239 | if (LengthValue.isNegative()) { | |||
| 5240 | Diag(Length->getExprLoc(), diag::err_omp_section_length_negative) | |||
| 5241 | << toString(LengthValue, /*Radix=*/10, /*Signed=*/true) | |||
| 5242 | << Length->getSourceRange(); | |||
| 5243 | return ExprError(); | |||
| 5244 | } | |||
| 5245 | } | |||
| 5246 | } else if (ColonLocFirst.isValid() && | |||
| 5247 | (OriginalTy.isNull() || (!OriginalTy->isConstantArrayType() && | |||
| 5248 | !OriginalTy->isVariableArrayType()))) { | |||
| 5249 | // OpenMP 5.0, [2.1.5 Array Sections] | |||
| 5250 | // When the size of the array dimension is not known, the length must be | |||
| 5251 | // specified explicitly. | |||
| 5252 | Diag(ColonLocFirst, diag::err_omp_section_length_undefined) | |||
| 5253 | << (!OriginalTy.isNull() && OriginalTy->isArrayType()); | |||
| 5254 | return ExprError(); | |||
| 5255 | } | |||
| 5256 | ||||
| 5257 | if (Stride) { | |||
| 5258 | Expr::EvalResult Result; | |||
| 5259 | if (Stride->EvaluateAsInt(Result, Context)) { | |||
| 5260 | // OpenMP 5.0, [2.1.5 Array Sections] | |||
| 5261 | // The stride must evaluate to a positive integer. | |||
| 5262 | llvm::APSInt StrideValue = Result.Val.getInt(); | |||
| 5263 | if (!StrideValue.isStrictlyPositive()) { | |||
| 5264 | Diag(Stride->getExprLoc(), diag::err_omp_section_stride_non_positive) | |||
| 5265 | << toString(StrideValue, /*Radix=*/10, /*Signed=*/true) | |||
| 5266 | << Stride->getSourceRange(); | |||
| 5267 | return ExprError(); | |||
| 5268 | } | |||
| 5269 | } | |||
| 5270 | } | |||
| 5271 | ||||
| 5272 | if (!Base->hasPlaceholderType(BuiltinType::OMPArraySection)) { | |||
| 5273 | ExprResult Result = DefaultFunctionArrayLvalueConversion(Base); | |||
| 5274 | if (Result.isInvalid()) | |||
| 5275 | return ExprError(); | |||
| 5276 | Base = Result.get(); | |||
| 5277 | } | |||
| 5278 | return new (Context) OMPArraySectionExpr( | |||
| 5279 | Base, LowerBound, Length, Stride, Context.OMPArraySectionTy, VK_LValue, | |||
| 5280 | OK_Ordinary, ColonLocFirst, ColonLocSecond, RBLoc); | |||
| 5281 | } | |||
| 5282 | ||||
| 5283 | ExprResult Sema::ActOnOMPArrayShapingExpr(Expr *Base, SourceLocation LParenLoc, | |||
| 5284 | SourceLocation RParenLoc, | |||
| 5285 | ArrayRef<Expr *> Dims, | |||
| 5286 | ArrayRef<SourceRange> Brackets) { | |||
| 5287 | if (Base->hasPlaceholderType()) { | |||
| 5288 | ExprResult Result = CheckPlaceholderExpr(Base); | |||
| 5289 | if (Result.isInvalid()) | |||
| 5290 | return ExprError(); | |||
| 5291 | Result = DefaultLvalueConversion(Result.get()); | |||
| 5292 | if (Result.isInvalid()) | |||
| 5293 | return ExprError(); | |||
| 5294 | Base = Result.get(); | |||
| 5295 | } | |||
| 5296 | QualType BaseTy = Base->getType(); | |||
| 5297 | // Delay analysis of the types/expressions if instantiation/specialization is | |||
| 5298 | // required. | |||
| 5299 | if (!BaseTy->isPointerType() && Base->isTypeDependent()) | |||
| 5300 | return OMPArrayShapingExpr::Create(Context, Context.DependentTy, Base, | |||
| 5301 | LParenLoc, RParenLoc, Dims, Brackets); | |||
| 5302 | if (!BaseTy->isPointerType() || | |||
| 5303 | (!Base->isTypeDependent() && | |||
| 5304 | BaseTy->getPointeeType()->isIncompleteType())) | |||
| 5305 | return ExprError(Diag(Base->getExprLoc(), | |||
| 5306 | diag::err_omp_non_pointer_type_array_shaping_base) | |||
| 5307 | << Base->getSourceRange()); | |||
| 5308 | ||||
| 5309 | SmallVector<Expr *, 4> NewDims; | |||
| 5310 | bool ErrorFound = false; | |||
| 5311 | for (Expr *Dim : Dims) { | |||
| 5312 | if (Dim->hasPlaceholderType()) { | |||
| 5313 | ExprResult Result = CheckPlaceholderExpr(Dim); | |||
| 5314 | if (Result.isInvalid()) { | |||
| 5315 | ErrorFound = true; | |||
| 5316 | continue; | |||
| 5317 | } | |||
| 5318 | Result = DefaultLvalueConversion(Result.get()); | |||
| 5319 | if (Result.isInvalid()) { | |||
| 5320 | ErrorFound = true; | |||
| 5321 | continue; | |||
| 5322 | } | |||
| 5323 | Dim = Result.get(); | |||
| 5324 | } | |||
| 5325 | if (!Dim->isTypeDependent()) { | |||
| 5326 | ExprResult Result = | |||
| 5327 | PerformOpenMPImplicitIntegerConversion(Dim->getExprLoc(), Dim); | |||
| 5328 | if (Result.isInvalid()) { | |||
| 5329 | ErrorFound = true; | |||
| 5330 | Diag(Dim->getExprLoc(), diag::err_omp_typecheck_shaping_not_integer) | |||
| 5331 | << Dim->getSourceRange(); | |||
| 5332 | continue; | |||
| 5333 | } | |||
| 5334 | Dim = Result.get(); | |||
| 5335 | Expr::EvalResult EvResult; | |||
| 5336 | if (!Dim->isValueDependent() && Dim->EvaluateAsInt(EvResult, Context)) { | |||
| 5337 | // OpenMP 5.0, [2.1.4 Array Shaping] | |||
| 5338 | // Each si is an integral type expression that must evaluate to a | |||
| 5339 | // positive integer. | |||
| 5340 | llvm::APSInt Value = EvResult.Val.getInt(); | |||
| 5341 | if (!Value.isStrictlyPositive()) { | |||
| 5342 | Diag(Dim->getExprLoc(), diag::err_omp_shaping_dimension_not_positive) | |||
| 5343 | << toString(Value, /*Radix=*/10, /*Signed=*/true) | |||
| 5344 | << Dim->getSourceRange(); | |||
| 5345 | ErrorFound = true; | |||
| 5346 | continue; | |||
| 5347 | } | |||
| 5348 | } | |||
| 5349 | } | |||
| 5350 | NewDims.push_back(Dim); | |||
| 5351 | } | |||
| 5352 | if (ErrorFound) | |||
| 5353 | return ExprError(); | |||
| 5354 | return OMPArrayShapingExpr::Create(Context, Context.OMPArrayShapingTy, Base, | |||
| 5355 | LParenLoc, RParenLoc, NewDims, Brackets); | |||
| 5356 | } | |||
| 5357 | ||||
| 5358 | ExprResult Sema::ActOnOMPIteratorExpr(Scope *S, SourceLocation IteratorKwLoc, | |||
| 5359 | SourceLocation LLoc, SourceLocation RLoc, | |||
| 5360 | ArrayRef<OMPIteratorData> Data) { | |||
| 5361 | SmallVector<OMPIteratorExpr::IteratorDefinition, 4> ID; | |||
| 5362 | bool IsCorrect = true; | |||
| 5363 | for (const OMPIteratorData &D : Data) { | |||
| 5364 | TypeSourceInfo *TInfo = nullptr; | |||
| 5365 | SourceLocation StartLoc; | |||
| 5366 | QualType DeclTy; | |||
| 5367 | if (!D.Type.getAsOpaquePtr()) { | |||
| 5368 | // OpenMP 5.0, 2.1.6 Iterators | |||
| 5369 | // In an iterator-specifier, if the iterator-type is not specified then | |||
| 5370 | // the type of that iterator is of int type. | |||
| 5371 | DeclTy = Context.IntTy; | |||
| 5372 | StartLoc = D.DeclIdentLoc; | |||
| 5373 | } else { | |||
| 5374 | DeclTy = GetTypeFromParser(D.Type, &TInfo); | |||
| 5375 | StartLoc = TInfo->getTypeLoc().getBeginLoc(); | |||
| 5376 | } | |||
| 5377 | ||||
| 5378 | bool IsDeclTyDependent = DeclTy->isDependentType() || | |||
| 5379 | DeclTy->containsUnexpandedParameterPack() || | |||
| 5380 | DeclTy->isInstantiationDependentType(); | |||
| 5381 | if (!IsDeclTyDependent) { | |||
| 5382 | if (!DeclTy->isIntegralType(Context) && !DeclTy->isAnyPointerType()) { | |||
| 5383 | // OpenMP 5.0, 2.1.6 Iterators, Restrictions, C/C++ | |||
| 5384 | // The iterator-type must be an integral or pointer type. | |||
| 5385 | Diag(StartLoc, diag::err_omp_iterator_not_integral_or_pointer) | |||
| 5386 | << DeclTy; | |||
| 5387 | IsCorrect = false; | |||
| 5388 | continue; | |||
| 5389 | } | |||
| 5390 | if (DeclTy.isConstant(Context)) { | |||
| 5391 | // OpenMP 5.0, 2.1.6 Iterators, Restrictions, C/C++ | |||
| 5392 | // The iterator-type must not be const qualified. | |||
| 5393 | Diag(StartLoc, diag::err_omp_iterator_not_integral_or_pointer) | |||
| 5394 | << DeclTy; | |||
| 5395 | IsCorrect = false; | |||
| 5396 | continue; | |||
| 5397 | } | |||
| 5398 | } | |||
| 5399 | ||||
| 5400 | // Iterator declaration. | |||
| 5401 | assert(D.DeclIdent && "Identifier expected.")(static_cast <bool> (D.DeclIdent && "Identifier expected." ) ? void (0) : __assert_fail ("D.DeclIdent && \"Identifier expected.\"" , "clang/lib/Sema/SemaExpr.cpp", 5401, __extension__ __PRETTY_FUNCTION__ )); | |||
| 5402 | // Always try to create iterator declarator to avoid extra error messages | |||
| 5403 | // about unknown declarations use. | |||
| 5404 | auto *VD = VarDecl::Create(Context, CurContext, StartLoc, D.DeclIdentLoc, | |||
| 5405 | D.DeclIdent, DeclTy, TInfo, SC_None); | |||
| 5406 | VD->setImplicit(); | |||
| 5407 | if (S) { | |||
| 5408 | // Check for conflicting previous declaration. | |||
| 5409 | DeclarationNameInfo NameInfo(VD->getDeclName(), D.DeclIdentLoc); | |||
| 5410 | LookupResult Previous(*this, NameInfo, LookupOrdinaryName, | |||
| 5411 | ForVisibleRedeclaration); | |||
| 5412 | Previous.suppressDiagnostics(); | |||
| 5413 | LookupName(Previous, S); | |||
| 5414 | ||||
| 5415 | FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage=*/false, | |||
| 5416 | /*AllowInlineNamespace=*/false); | |||
| 5417 | if (!Previous.empty()) { | |||
| 5418 | NamedDecl *Old = Previous.getRepresentativeDecl(); | |||
| 5419 | Diag(D.DeclIdentLoc, diag::err_redefinition) << VD->getDeclName(); | |||
| 5420 | Diag(Old->getLocation(), diag::note_previous_definition); | |||
| 5421 | } else { | |||
| 5422 | PushOnScopeChains(VD, S); | |||
| 5423 | } | |||
| 5424 | } else { | |||
| 5425 | CurContext->addDecl(VD); | |||
| 5426 | } | |||
| 5427 | ||||
| 5428 | /// Act on the iterator variable declaration. | |||
| 5429 | ActOnOpenMPIteratorVarDecl(VD); | |||
| 5430 | ||||
| 5431 | Expr *Begin = D.Range.Begin; | |||
| 5432 | if (!IsDeclTyDependent && Begin && !Begin->isTypeDependent()) { | |||
| 5433 | ExprResult BeginRes = | |||
| 5434 | PerformImplicitConversion(Begin, DeclTy, AA_Converting); | |||
| 5435 | Begin = BeginRes.get(); | |||
| 5436 | } | |||
| 5437 | Expr *End = D.Range.End; | |||
| 5438 | if (!IsDeclTyDependent && End && !End->isTypeDependent()) { | |||
| 5439 | ExprResult EndRes = PerformImplicitConversion(End, DeclTy, AA_Converting); | |||
| 5440 | End = EndRes.get(); | |||
| 5441 | } | |||
| 5442 | Expr *Step = D.Range.Step; | |||
| 5443 | if (!IsDeclTyDependent && Step && !Step->isTypeDependent()) { | |||
| 5444 | if (!Step->getType()->isIntegralType(Context)) { | |||
| 5445 | Diag(Step->getExprLoc(), diag::err_omp_iterator_step_not_integral) | |||
| 5446 | << Step << Step->getSourceRange(); | |||
| 5447 | IsCorrect = false; | |||
| 5448 | continue; | |||
| 5449 | } | |||
| 5450 | std::optional<llvm::APSInt> Result = | |||
| 5451 | Step->getIntegerConstantExpr(Context); | |||
| 5452 | // OpenMP 5.0, 2.1.6 Iterators, Restrictions | |||
| 5453 | // If the step expression of a range-specification equals zero, the | |||
| 5454 | // behavior is unspecified. | |||
| 5455 | if (Result && Result->isZero()) { | |||
| 5456 | Diag(Step->getExprLoc(), diag::err_omp_iterator_step_constant_zero) | |||
| 5457 | << Step << Step->getSourceRange(); | |||
| 5458 | IsCorrect = false; | |||
| 5459 | continue; | |||
| 5460 | } | |||
| 5461 | } | |||
| 5462 | if (!Begin || !End || !IsCorrect) { | |||
| 5463 | IsCorrect = false; | |||
| 5464 | continue; | |||
| 5465 | } | |||
| 5466 | OMPIteratorExpr::IteratorDefinition &IDElem = ID.emplace_back(); | |||
| 5467 | IDElem.IteratorDecl = VD; | |||
| 5468 | IDElem.AssignmentLoc = D.AssignLoc; | |||
| 5469 | IDElem.Range.Begin = Begin; | |||
| 5470 | IDElem.Range.End = End; | |||
| 5471 | IDElem.Range.Step = Step; | |||
| 5472 | IDElem.ColonLoc = D.ColonLoc; | |||
| 5473 | IDElem.SecondColonLoc = D.SecColonLoc; | |||
| 5474 | } | |||
| 5475 | if (!IsCorrect) { | |||
| 5476 | // Invalidate all created iterator declarations if error is found. | |||
| 5477 | for (const OMPIteratorExpr::IteratorDefinition &D : ID) { | |||
| 5478 | if (Decl *ID = D.IteratorDecl) | |||
| 5479 | ID->setInvalidDecl(); | |||
| 5480 | } | |||
| 5481 | return ExprError(); | |||
| 5482 | } | |||
| 5483 | SmallVector<OMPIteratorHelperData, 4> Helpers; | |||
| 5484 | if (!CurContext->isDependentContext()) { | |||
| 5485 | // Build number of ityeration for each iteration range. | |||
| 5486 | // Ni = ((Stepi > 0) ? ((Endi + Stepi -1 - Begini)/Stepi) : | |||
| 5487 | // ((Begini-Stepi-1-Endi) / -Stepi); | |||
| 5488 | for (OMPIteratorExpr::IteratorDefinition &D : ID) { | |||
| 5489 | // (Endi - Begini) | |||
| 5490 | ExprResult Res = CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub, D.Range.End, | |||
| 5491 | D.Range.Begin); | |||
| 5492 | if(!Res.isUsable()) { | |||
| 5493 | IsCorrect = false; | |||
| 5494 | continue; | |||
| 5495 | } | |||
| 5496 | ExprResult St, St1; | |||
| 5497 | if (D.Range.Step) { | |||
| 5498 | St = D.Range.Step; | |||
| 5499 | // (Endi - Begini) + Stepi | |||
| 5500 | Res = CreateBuiltinBinOp(D.AssignmentLoc, BO_Add, Res.get(), St.get()); | |||
| 5501 | if (!Res.isUsable()) { | |||
| 5502 | IsCorrect = false; | |||
| 5503 | continue; | |||
| 5504 | } | |||
| 5505 | // (Endi - Begini) + Stepi - 1 | |||
| 5506 | Res = | |||
| 5507 | CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub, Res.get(), | |||
| 5508 | ActOnIntegerConstant(D.AssignmentLoc, 1).get()); | |||
| 5509 | if (!Res.isUsable()) { | |||
| 5510 | IsCorrect = false; | |||
| 5511 | continue; | |||
| 5512 | } | |||
| 5513 | // ((Endi - Begini) + Stepi - 1) / Stepi | |||
| 5514 | Res = CreateBuiltinBinOp(D.AssignmentLoc, BO_Div, Res.get(), St.get()); | |||
| 5515 | if (!Res.isUsable()) { | |||
| 5516 | IsCorrect = false; | |||
| 5517 | continue; | |||
| 5518 | } | |||
| 5519 | St1 = CreateBuiltinUnaryOp(D.AssignmentLoc, UO_Minus, D.Range.Step); | |||
| 5520 | // (Begini - Endi) | |||
| 5521 | ExprResult Res1 = CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub, | |||
| 5522 | D.Range.Begin, D.Range.End); | |||
| 5523 | if (!Res1.isUsable()) { | |||
| 5524 | IsCorrect = false; | |||
| 5525 | continue; | |||
| 5526 | } | |||
| 5527 | // (Begini - Endi) - Stepi | |||
| 5528 | Res1 = | |||
| 5529 | CreateBuiltinBinOp(D.AssignmentLoc, BO_Add, Res1.get(), St1.get()); | |||
| 5530 | if (!Res1.isUsable()) { | |||
| 5531 | IsCorrect = false; | |||
| 5532 | continue; | |||
| 5533 | } | |||
| 5534 | // (Begini - Endi) - Stepi - 1 | |||
| 5535 | Res1 = | |||
| 5536 | CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub, Res1.get(), | |||
| 5537 | ActOnIntegerConstant(D.AssignmentLoc, 1).get()); | |||
| 5538 | if (!Res1.isUsable()) { | |||
| 5539 | IsCorrect = false; | |||
| 5540 | continue; | |||
| 5541 | } | |||
| 5542 | // ((Begini - Endi) - Stepi - 1) / (-Stepi) | |||
| 5543 | Res1 = | |||
| 5544 | CreateBuiltinBinOp(D.AssignmentLoc, BO_Div, Res1.get(), St1.get()); | |||
| 5545 | if (!Res1.isUsable()) { | |||
| 5546 | IsCorrect = false; | |||
| 5547 | continue; | |||
| 5548 | } | |||
| 5549 | // Stepi > 0. | |||
| 5550 | ExprResult CmpRes = | |||
| 5551 | CreateBuiltinBinOp(D.AssignmentLoc, BO_GT, D.Range.Step, | |||
| 5552 | ActOnIntegerConstant(D.AssignmentLoc, 0).get()); | |||
| 5553 | if (!CmpRes.isUsable()) { | |||
| 5554 | IsCorrect = false; | |||
| 5555 | continue; | |||
| 5556 | } | |||
| 5557 | Res = ActOnConditionalOp(D.AssignmentLoc, D.AssignmentLoc, CmpRes.get(), | |||
| 5558 | Res.get(), Res1.get()); | |||
| 5559 | if (!Res.isUsable()) { | |||
| 5560 | IsCorrect = false; | |||
| 5561 | continue; | |||
| 5562 | } | |||
| 5563 | } | |||
| 5564 | Res = ActOnFinishFullExpr(Res.get(), /*DiscardedValue=*/false); | |||
| 5565 | if (!Res.isUsable()) { | |||
| 5566 | IsCorrect = false; | |||
| 5567 | continue; | |||
| 5568 | } | |||
| 5569 | ||||
| 5570 | // Build counter update. | |||
| 5571 | // Build counter. | |||
| 5572 | auto *CounterVD = | |||
| 5573 | VarDecl::Create(Context, CurContext, D.IteratorDecl->getBeginLoc(), | |||
| 5574 | D.IteratorDecl->getBeginLoc(), nullptr, | |||
| 5575 | Res.get()->getType(), nullptr, SC_None); | |||
| 5576 | CounterVD->setImplicit(); | |||
| 5577 | ExprResult RefRes = | |||
| 5578 | BuildDeclRefExpr(CounterVD, CounterVD->getType(), VK_LValue, | |||
| 5579 | D.IteratorDecl->getBeginLoc()); | |||
| 5580 | // Build counter update. | |||
| 5581 | // I = Begini + counter * Stepi; | |||
| 5582 | ExprResult UpdateRes; | |||
| 5583 | if (D.Range.Step) { | |||
| 5584 | UpdateRes = CreateBuiltinBinOp( | |||
| 5585 | D.AssignmentLoc, BO_Mul, | |||
| 5586 | DefaultLvalueConversion(RefRes.get()).get(), St.get()); | |||
| 5587 | } else { | |||
| 5588 | UpdateRes = DefaultLvalueConversion(RefRes.get()); | |||
| 5589 | } | |||
| 5590 | if (!UpdateRes.isUsable()) { | |||
| 5591 | IsCorrect = false; | |||
| 5592 | continue; | |||
| 5593 | } | |||
| 5594 | UpdateRes = CreateBuiltinBinOp(D.AssignmentLoc, BO_Add, D.Range.Begin, | |||
| 5595 | UpdateRes.get()); | |||
| 5596 | if (!UpdateRes.isUsable()) { | |||
| 5597 | IsCorrect = false; | |||
| 5598 | continue; | |||
| 5599 | } | |||
| 5600 | ExprResult VDRes = | |||
| 5601 | BuildDeclRefExpr(cast<VarDecl>(D.IteratorDecl), | |||
| 5602 | cast<VarDecl>(D.IteratorDecl)->getType(), VK_LValue, | |||
| 5603 | D.IteratorDecl->getBeginLoc()); | |||
| 5604 | UpdateRes = CreateBuiltinBinOp(D.AssignmentLoc, BO_Assign, VDRes.get(), | |||
| 5605 | UpdateRes.get()); | |||
| 5606 | if (!UpdateRes.isUsable()) { | |||
| 5607 | IsCorrect = false; | |||
| 5608 | continue; | |||
| 5609 | } | |||
| 5610 | UpdateRes = | |||
| 5611 | ActOnFinishFullExpr(UpdateRes.get(), /*DiscardedValue=*/true); | |||
| 5612 | if (!UpdateRes.isUsable()) { | |||
| 5613 | IsCorrect = false; | |||
| 5614 | continue; | |||
| 5615 | } | |||
| 5616 | ExprResult CounterUpdateRes = | |||
| 5617 | CreateBuiltinUnaryOp(D.AssignmentLoc, UO_PreInc, RefRes.get()); | |||
| 5618 | if (!CounterUpdateRes.isUsable()) { | |||
| 5619 | IsCorrect = false; | |||
| 5620 | continue; | |||
| 5621 | } | |||
| 5622 | CounterUpdateRes = | |||
| 5623 | ActOnFinishFullExpr(CounterUpdateRes.get(), /*DiscardedValue=*/true); | |||
| 5624 | if (!CounterUpdateRes.isUsable()) { | |||
| 5625 | IsCorrect = false; | |||
| 5626 | continue; | |||
| 5627 | } | |||
| 5628 | OMPIteratorHelperData &HD = Helpers.emplace_back(); | |||
| 5629 | HD.CounterVD = CounterVD; | |||
| 5630 | HD.Upper = Res.get(); | |||
| 5631 | HD.Update = UpdateRes.get(); | |||
| 5632 | HD.CounterUpdate = CounterUpdateRes.get(); | |||
| 5633 | } | |||
| 5634 | } else { | |||
| 5635 | Helpers.assign(ID.size(), {}); | |||
| 5636 | } | |||
| 5637 | if (!IsCorrect) { | |||
| 5638 | // Invalidate all created iterator declarations if error is found. | |||
| 5639 | for (const OMPIteratorExpr::IteratorDefinition &D : ID) { | |||
| 5640 | if (Decl *ID = D.IteratorDecl) | |||
| 5641 | ID->setInvalidDecl(); | |||
| 5642 | } | |||
| 5643 | return ExprError(); | |||
| 5644 | } | |||
| 5645 | return OMPIteratorExpr::Create(Context, Context.OMPIteratorTy, IteratorKwLoc, | |||
| 5646 | LLoc, RLoc, ID, Helpers); | |||
| 5647 | } | |||
| 5648 | ||||
| 5649 | ExprResult | |||
| 5650 | Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc, | |||
| 5651 | Expr *Idx, SourceLocation RLoc) { | |||
| 5652 | Expr *LHSExp = Base; | |||
| 5653 | Expr *RHSExp = Idx; | |||
| 5654 | ||||
| 5655 | ExprValueKind VK = VK_LValue; | |||
| 5656 | ExprObjectKind OK = OK_Ordinary; | |||
| 5657 | ||||
| 5658 | // Per C++ core issue 1213, the result is an xvalue if either operand is | |||
| 5659 | // a non-lvalue array, and an lvalue otherwise. | |||
| 5660 | if (getLangOpts().CPlusPlus11) { | |||
| 5661 | for (auto *Op : {LHSExp, RHSExp}) { | |||
| 5662 | Op = Op->IgnoreImplicit(); | |||
| 5663 | if (Op->getType()->isArrayType() && !Op->isLValue()) | |||
| 5664 | VK = VK_XValue; | |||
| 5665 | } | |||
| 5666 | } | |||
| 5667 | ||||
| 5668 | // Perform default conversions. | |||
| 5669 | if (!LHSExp->getType()->getAs<VectorType>()) { | |||
| 5670 | ExprResult Result = DefaultFunctionArrayLvalueConversion(LHSExp); | |||
| 5671 | if (Result.isInvalid()) | |||
| 5672 | return ExprError(); | |||
| 5673 | LHSExp = Result.get(); | |||
| 5674 | } | |||
| 5675 | ExprResult Result = DefaultFunctionArrayLvalueConversion(RHSExp); | |||
| 5676 | if (Result.isInvalid()) | |||
| 5677 | return ExprError(); | |||
| 5678 | RHSExp = Result.get(); | |||
| 5679 | ||||
| 5680 | QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType(); | |||
| 5681 | ||||
| 5682 | // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent | |||
| 5683 | // to the expression *((e1)+(e2)). This means the array "Base" may actually be | |||
| 5684 | // in the subscript position. As a result, we need to derive the array base | |||
| 5685 | // and index from the expression types. | |||
| 5686 | Expr *BaseExpr, *IndexExpr; | |||
| 5687 | QualType ResultType; | |||
| 5688 | if (LHSTy->isDependentType() || RHSTy->isDependentType()) { | |||
| 5689 | BaseExpr = LHSExp; | |||
| 5690 | IndexExpr = RHSExp; | |||
| 5691 | ResultType = | |||
| 5692 | getDependentArraySubscriptType(LHSExp, RHSExp, getASTContext()); | |||
| 5693 | } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) { | |||
| 5694 | BaseExpr = LHSExp; | |||
| 5695 | IndexExpr = RHSExp; | |||
| 5696 | ResultType = PTy->getPointeeType(); | |||
| 5697 | } else if (const ObjCObjectPointerType *PTy = | |||
| 5698 | LHSTy->getAs<ObjCObjectPointerType>()) { | |||
| 5699 | BaseExpr = LHSExp; | |||
| 5700 | IndexExpr = RHSExp; | |||
| 5701 | ||||
| 5702 | // Use custom logic if this should be the pseudo-object subscript | |||
| 5703 | // expression. | |||
| 5704 | if (!LangOpts.isSubscriptPointerArithmetic()) | |||
| 5705 | return BuildObjCSubscriptExpression(RLoc, BaseExpr, IndexExpr, nullptr, | |||
| 5706 | nullptr); | |||
| 5707 | ||||
| 5708 | ResultType = PTy->getPointeeType(); | |||
| 5709 | } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) { | |||
| 5710 | // Handle the uncommon case of "123[Ptr]". | |||
| 5711 | BaseExpr = RHSExp; | |||
| 5712 | IndexExpr = LHSExp; | |||
| 5713 | ResultType = PTy->getPointeeType(); | |||
| 5714 | } else if (const ObjCObjectPointerType *PTy = | |||
| 5715 | RHSTy->getAs<ObjCObjectPointerType>()) { | |||
| 5716 | // Handle the uncommon case of "123[Ptr]". | |||
| 5717 | BaseExpr = RHSExp; | |||
| 5718 | IndexExpr = LHSExp; | |||
| 5719 | ResultType = PTy->getPointeeType(); | |||
| 5720 | if (!LangOpts.isSubscriptPointerArithmetic()) { | |||
| 5721 | Diag(LLoc, diag::err_subscript_nonfragile_interface) | |||
| 5722 | << ResultType << BaseExpr->getSourceRange(); | |||
| 5723 | return ExprError(); | |||
| 5724 | } | |||
| 5725 | } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) { | |||
| 5726 | BaseExpr = LHSExp; // vectors: V[123] | |||
| 5727 | IndexExpr = RHSExp; | |||
| 5728 | // We apply C++ DR1213 to vector subscripting too. | |||
| 5729 | if (getLangOpts().CPlusPlus11 && LHSExp->isPRValue()) { | |||
| 5730 | ExprResult Materialized = TemporaryMaterializationConversion(LHSExp); | |||
| 5731 | if (Materialized.isInvalid()) | |||
| 5732 | return ExprError(); | |||
| 5733 | LHSExp = Materialized.get(); | |||
| 5734 | } | |||
| 5735 | VK = LHSExp->getValueKind(); | |||
| 5736 | if (VK != VK_PRValue) | |||
| 5737 | OK = OK_VectorComponent; | |||
| 5738 | ||||
| 5739 | ResultType = VTy->getElementType(); | |||
| 5740 | QualType BaseType = BaseExpr->getType(); | |||
| 5741 | Qualifiers BaseQuals = BaseType.getQualifiers(); | |||
| 5742 | Qualifiers MemberQuals = ResultType.getQualifiers(); | |||
| 5743 | Qualifiers Combined = BaseQuals + MemberQuals; | |||
| 5744 | if (Combined != MemberQuals) | |||
| 5745 | ResultType = Context.getQualifiedType(ResultType, Combined); | |||
| 5746 | } else if (LHSTy->isBuiltinType() && | |||
| 5747 | LHSTy->getAs<BuiltinType>()->isVLSTBuiltinType()) { | |||
| 5748 | const BuiltinType *BTy = LHSTy->getAs<BuiltinType>(); | |||
| 5749 | if (BTy->isSVEBool()) | |||
| 5750 | return ExprError(Diag(LLoc, diag::err_subscript_svbool_t) | |||
| 5751 | << LHSExp->getSourceRange() << RHSExp->getSourceRange()); | |||
| 5752 | ||||
| 5753 | BaseExpr = LHSExp; | |||
| 5754 | IndexExpr = RHSExp; | |||
| 5755 | if (getLangOpts().CPlusPlus11 && LHSExp->isPRValue()) { | |||
| 5756 | ExprResult Materialized = TemporaryMaterializationConversion(LHSExp); | |||
| 5757 | if (Materialized.isInvalid()) | |||
| 5758 | return ExprError(); | |||
| 5759 | LHSExp = Materialized.get(); | |||
| 5760 | } | |||
| 5761 | VK = LHSExp->getValueKind(); | |||
| 5762 | if (VK != VK_PRValue) | |||
| 5763 | OK = OK_VectorComponent; | |||
| 5764 | ||||
| 5765 | ResultType = BTy->getSveEltType(Context); | |||
| 5766 | ||||
| 5767 | QualType BaseType = BaseExpr->getType(); | |||
| 5768 | Qualifiers BaseQuals = BaseType.getQualifiers(); | |||
| 5769 | Qualifiers MemberQuals = ResultType.getQualifiers(); | |||
| 5770 | Qualifiers Combined = BaseQuals + MemberQuals; | |||
| 5771 | if (Combined != MemberQuals) | |||
| 5772 | ResultType = Context.getQualifiedType(ResultType, Combined); | |||
| 5773 | } else if (LHSTy->isArrayType()) { | |||
| 5774 | // If we see an array that wasn't promoted by | |||
| 5775 | // DefaultFunctionArrayLvalueConversion, it must be an array that | |||
| 5776 | // wasn't promoted because of the C90 rule that doesn't | |||
| 5777 | // allow promoting non-lvalue arrays. Warn, then | |||
| 5778 | // force the promotion here. | |||
| 5779 | Diag(LHSExp->getBeginLoc(), diag::ext_subscript_non_lvalue) | |||
| 5780 | << LHSExp->getSourceRange(); | |||
| 5781 | LHSExp = ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy), | |||
| 5782 | CK_ArrayToPointerDecay).get(); | |||
| 5783 | LHSTy = LHSExp->getType(); | |||
| 5784 | ||||
| 5785 | BaseExpr = LHSExp; | |||
| 5786 | IndexExpr = RHSExp; | |||
| 5787 | ResultType = LHSTy->castAs<PointerType>()->getPointeeType(); | |||
| 5788 | } else if (RHSTy->isArrayType()) { | |||
| 5789 | // Same as previous, except for 123[f().a] case | |||
| 5790 | Diag(RHSExp->getBeginLoc(), diag::ext_subscript_non_lvalue) | |||
| 5791 | << RHSExp->getSourceRange(); | |||
| 5792 | RHSExp = ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy), | |||
| 5793 | CK_ArrayToPointerDecay).get(); | |||
| 5794 | RHSTy = RHSExp->getType(); | |||
| 5795 | ||||
| 5796 | BaseExpr = RHSExp; | |||
| 5797 | IndexExpr = LHSExp; | |||
| 5798 | ResultType = RHSTy->castAs<PointerType>()->getPointeeType(); | |||
| 5799 | } else { | |||
| 5800 | return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value) | |||
| 5801 | << LHSExp->getSourceRange() << RHSExp->getSourceRange()); | |||
| 5802 | } | |||
| 5803 | // C99 6.5.2.1p1 | |||
| 5804 | if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent()) | |||
| 5805 | return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer) | |||
| 5806 | << IndexExpr->getSourceRange()); | |||
| 5807 | ||||
| 5808 | if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) || | |||
| 5809 | IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U)) | |||
| 5810 | && !IndexExpr->isTypeDependent()) | |||
| 5811 | Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange(); | |||
| 5812 | ||||
| 5813 | // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly, | |||
| 5814 | // C++ [expr.sub]p1: The type "T" shall be a completely-defined object | |||
| 5815 | // type. Note that Functions are not objects, and that (in C99 parlance) | |||
| 5816 | // incomplete types are not object types. | |||
| 5817 | if (ResultType->isFunctionType()) { | |||
| 5818 | Diag(BaseExpr->getBeginLoc(), diag::err_subscript_function_type) | |||
| 5819 | << ResultType << BaseExpr->getSourceRange(); | |||
| 5820 | return ExprError(); | |||
| 5821 | } | |||
| 5822 | ||||
| 5823 | if (ResultType->isVoidType() && !getLangOpts().CPlusPlus) { | |||
| 5824 | // GNU extension: subscripting on pointer to void | |||
| 5825 | Diag(LLoc, diag::ext_gnu_subscript_void_type) | |||
| 5826 | << BaseExpr->getSourceRange(); | |||
| 5827 | ||||
| 5828 | // C forbids expressions of unqualified void type from being l-values. | |||
| 5829 | // See IsCForbiddenLValueType. | |||
| 5830 | if (!ResultType.hasQualifiers()) | |||
| 5831 | VK = VK_PRValue; | |||
| 5832 | } else if (!ResultType->isDependentType() && | |||
| 5833 | RequireCompleteSizedType( | |||
| 5834 | LLoc, ResultType, | |||
| 5835 | diag::err_subscript_incomplete_or_sizeless_type, BaseExpr)) | |||
| 5836 | return ExprError(); | |||
| 5837 | ||||
| 5838 | assert(VK == VK_PRValue || LangOpts.CPlusPlus ||(static_cast <bool> (VK == VK_PRValue || LangOpts.CPlusPlus || !ResultType.isCForbiddenLValueType()) ? void (0) : __assert_fail ("VK == VK_PRValue || LangOpts.CPlusPlus || !ResultType.isCForbiddenLValueType()" , "clang/lib/Sema/SemaExpr.cpp", 5839, __extension__ __PRETTY_FUNCTION__ )) | |||
| 5839 | !ResultType.isCForbiddenLValueType())(static_cast <bool> (VK == VK_PRValue || LangOpts.CPlusPlus || !ResultType.isCForbiddenLValueType()) ? void (0) : __assert_fail ("VK == VK_PRValue || LangOpts.CPlusPlus || !ResultType.isCForbiddenLValueType()" , "clang/lib/Sema/SemaExpr.cpp", 5839, __extension__ __PRETTY_FUNCTION__ )); | |||
| 5840 | ||||
| 5841 | if (LHSExp->IgnoreParenImpCasts()->getType()->isVariablyModifiedType() && | |||
| 5842 | FunctionScopes.size() > 1) { | |||
| 5843 | if (auto *TT = | |||
| 5844 | LHSExp->IgnoreParenImpCasts()->getType()->getAs<TypedefType>()) { | |||
| 5845 | for (auto I = FunctionScopes.rbegin(), | |||
| 5846 | E = std::prev(FunctionScopes.rend()); | |||
| 5847 | I != E; ++I) { | |||
| 5848 | auto *CSI = dyn_cast<CapturingScopeInfo>(*I); | |||
| 5849 | if (CSI == nullptr) | |||
| 5850 | break; | |||
| 5851 | DeclContext *DC = nullptr; | |||
| 5852 | if (auto *LSI = dyn_cast<LambdaScopeInfo>(CSI)) | |||
| 5853 | DC = LSI->CallOperator; | |||
| 5854 | else if (auto *CRSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) | |||
| 5855 | DC = CRSI->TheCapturedDecl; | |||
| 5856 | else if (auto *BSI = dyn_cast<BlockScopeInfo>(CSI)) | |||
| 5857 | DC = BSI->TheDecl; | |||
| 5858 | if (DC) { | |||
| 5859 | if (DC->containsDecl(TT->getDecl())) | |||
| 5860 | break; | |||
| 5861 | captureVariablyModifiedType( | |||
| 5862 | Context, LHSExp->IgnoreParenImpCasts()->getType(), CSI); | |||
| 5863 | } | |||
| 5864 | } | |||
| 5865 | } | |||
| 5866 | } | |||
| 5867 | ||||
| 5868 | return new (Context) | |||
| 5869 | ArraySubscriptExpr(LHSExp, RHSExp, ResultType, VK, OK, RLoc); | |||
| 5870 | } | |||
| 5871 | ||||
| 5872 | bool Sema::CheckCXXDefaultArgExpr(SourceLocation CallLoc, FunctionDecl *FD, | |||
| 5873 | ParmVarDecl *Param, Expr *RewrittenInit, | |||
| 5874 | bool SkipImmediateInvocations) { | |||
| 5875 | if (Param->hasUnparsedDefaultArg()) { | |||
| 5876 | assert(!RewrittenInit && "Should not have a rewritten init expression yet")(static_cast <bool> (!RewrittenInit && "Should not have a rewritten init expression yet" ) ? void (0) : __assert_fail ("!RewrittenInit && \"Should not have a rewritten init expression yet\"" , "clang/lib/Sema/SemaExpr.cpp", 5876, __extension__ __PRETTY_FUNCTION__ )); | |||
| 5877 | // If we've already cleared out the location for the default argument, | |||
| 5878 | // that means we're parsing it right now. | |||
| 5879 | if (!UnparsedDefaultArgLocs.count(Param)) { | |||
| 5880 | Diag(Param->getBeginLoc(), diag::err_recursive_default_argument) << FD; | |||
| 5881 | Diag(CallLoc, diag::note_recursive_default_argument_used_here); | |||
| 5882 | Param->setInvalidDecl(); | |||
| 5883 | return true; | |||
| 5884 | } | |||
| 5885 | ||||
| 5886 | Diag(CallLoc, diag::err_use_of_default_argument_to_function_declared_later) | |||
| 5887 | << FD << cast<CXXRecordDecl>(FD->getDeclContext()); | |||
| 5888 | Diag(UnparsedDefaultArgLocs[Param], | |||
| 5889 | diag::note_default_argument_declared_here); | |||
| 5890 | return true; | |||
| 5891 | } | |||
| 5892 | ||||
| 5893 | if (Param->hasUninstantiatedDefaultArg()) { | |||
| 5894 | assert(!RewrittenInit && "Should not have a rewitten init expression yet")(static_cast <bool> (!RewrittenInit && "Should not have a rewitten init expression yet" ) ? void (0) : __assert_fail ("!RewrittenInit && \"Should not have a rewitten init expression yet\"" , "clang/lib/Sema/SemaExpr.cpp", 5894, __extension__ __PRETTY_FUNCTION__ )); | |||
| 5895 | if (InstantiateDefaultArgument(CallLoc, FD, Param)) | |||
| 5896 | return true; | |||
| 5897 | } | |||
| 5898 | ||||
| 5899 | Expr *Init = RewrittenInit ? RewrittenInit : Param->getInit(); | |||
| 5900 | assert(Init && "default argument but no initializer?")(static_cast <bool> (Init && "default argument but no initializer?" ) ? void (0) : __assert_fail ("Init && \"default argument but no initializer?\"" , "clang/lib/Sema/SemaExpr.cpp", 5900, __extension__ __PRETTY_FUNCTION__ )); | |||
| 5901 | ||||
| 5902 | // If the default expression creates temporaries, we need to | |||
| 5903 | // push them to the current stack of expression temporaries so they'll | |||
| 5904 | // be properly destroyed. | |||
| 5905 | // FIXME: We should really be rebuilding the default argument with new | |||
| 5906 | // bound temporaries; see the comment in PR5810. | |||
| 5907 | // We don't need to do that with block decls, though, because | |||
| 5908 | // blocks in default argument expression can never capture anything. | |||
| 5909 | if (auto *InitWithCleanup = dyn_cast<ExprWithCleanups>(Init)) { | |||
| 5910 | // Set the "needs cleanups" bit regardless of whether there are | |||
| 5911 | // any explicit objects. | |||
| 5912 | Cleanup.setExprNeedsCleanups(InitWithCleanup->cleanupsHaveSideEffects()); | |||
| 5913 | // Append all the objects to the cleanup list. Right now, this | |||
| 5914 | // should always be a no-op, because blocks in default argument | |||
| 5915 | // expressions should never be able to capture anything. | |||
| 5916 | assert(!InitWithCleanup->getNumObjects() &&(static_cast <bool> (!InitWithCleanup->getNumObjects () && "default argument expression has capturing blocks?" ) ? void (0) : __assert_fail ("!InitWithCleanup->getNumObjects() && \"default argument expression has capturing blocks?\"" , "clang/lib/Sema/SemaExpr.cpp", 5917, __extension__ __PRETTY_FUNCTION__ )) | |||
| 5917 | "default argument expression has capturing blocks?")(static_cast <bool> (!InitWithCleanup->getNumObjects () && "default argument expression has capturing blocks?" ) ? void (0) : __assert_fail ("!InitWithCleanup->getNumObjects() && \"default argument expression has capturing blocks?\"" , "clang/lib/Sema/SemaExpr.cpp", 5917, __extension__ __PRETTY_FUNCTION__ )); | |||
| 5918 | } | |||
| 5919 | // C++ [expr.const]p15.1: | |||
| 5920 | // An expression or conversion is in an immediate function context if it is | |||
| 5921 | // potentially evaluated and [...] its innermost enclosing non-block scope | |||
| 5922 | // is a function parameter scope of an immediate function. | |||
| 5923 | EnterExpressionEvaluationContext EvalContext( | |||
| 5924 | *this, | |||
| 5925 | FD->isConsteval() ? ExpressionEvaluationContext::ImmediateFunctionContext | |||
| 5926 | : ExpressionEvaluationContext::PotentiallyEvaluated, | |||
| 5927 | Param); | |||
| 5928 | ExprEvalContexts.back().IsCurrentlyCheckingDefaultArgumentOrInitializer = | |||
| 5929 | SkipImmediateInvocations; | |||
| 5930 | runWithSufficientStackSpace(CallLoc, [&] { | |||
| 5931 | MarkDeclarationsReferencedInExpr(Init, /*SkipLocalVariables=*/true); | |||
| 5932 | }); | |||
| 5933 | return false; | |||
| 5934 | } | |||
| 5935 | ||||
| 5936 | struct ImmediateCallVisitor : public RecursiveASTVisitor<ImmediateCallVisitor> { | |||
| 5937 | bool HasImmediateCalls = false; | |||
| 5938 | ||||
| 5939 | bool shouldVisitImplicitCode() const { return true; } | |||
| 5940 | ||||
| 5941 | bool VisitCallExpr(CallExpr *E) { | |||
| 5942 | if (const FunctionDecl *FD = E->getDirectCallee()) | |||
| 5943 | HasImmediateCalls |= FD->isConsteval(); | |||
| 5944 | return RecursiveASTVisitor<ImmediateCallVisitor>::VisitStmt(E); | |||
| 5945 | } | |||
| 5946 | ||||
| 5947 | // SourceLocExpr are not immediate invocations | |||
| 5948 | // but CXXDefaultInitExpr/CXXDefaultArgExpr containing a SourceLocExpr | |||
| 5949 | // need to be rebuilt so that they refer to the correct SourceLocation and | |||
| 5950 | // DeclContext. | |||
| 5951 | bool VisitSourceLocExpr(SourceLocExpr *E) { | |||
| 5952 | HasImmediateCalls = true; | |||
| 5953 | return RecursiveASTVisitor<ImmediateCallVisitor>::VisitStmt(E); | |||
| 5954 | } | |||
| 5955 | ||||
| 5956 | // A nested lambda might have parameters with immediate invocations | |||
| 5957 | // in their default arguments. | |||
| 5958 | // The compound statement is not visited (as it does not constitute a | |||
| 5959 | // subexpression). | |||
| 5960 | // FIXME: We should consider visiting and transforming captures | |||
| 5961 | // with init expressions. | |||
| 5962 | bool VisitLambdaExpr(LambdaExpr *E) { | |||
| 5963 | return VisitCXXMethodDecl(E->getCallOperator()); | |||
| 5964 | } | |||
| 5965 | ||||
| 5966 | // Blocks don't support default parameters, and, as for lambdas, | |||
| 5967 | // we don't consider their body a subexpression. | |||
| 5968 | bool VisitBlockDecl(BlockDecl *B) { return false; } | |||
| 5969 | ||||
| 5970 | bool VisitCompoundStmt(CompoundStmt *B) { return false; } | |||
| 5971 | ||||
| 5972 | bool VisitCXXDefaultArgExpr(CXXDefaultArgExpr *E) { | |||
| 5973 | return TraverseStmt(E->getExpr()); | |||
| 5974 | } | |||
| 5975 | ||||
| 5976 | bool VisitCXXDefaultInitExpr(CXXDefaultInitExpr *E) { | |||
| 5977 | return TraverseStmt(E->getExpr()); | |||
| 5978 | } | |||
| 5979 | }; | |||
| 5980 | ||||
| 5981 | struct EnsureImmediateInvocationInDefaultArgs | |||
| 5982 | : TreeTransform<EnsureImmediateInvocationInDefaultArgs> { | |||
| 5983 | EnsureImmediateInvocationInDefaultArgs(Sema &SemaRef) | |||
| 5984 | : TreeTransform(SemaRef) {} | |||
| 5985 | ||||
| 5986 | // Lambda can only have immediate invocations in the default | |||
| 5987 | // args of their parameters, which is transformed upon calling the closure. | |||
| 5988 | // The body is not a subexpression, so we have nothing to do. | |||
| 5989 | // FIXME: Immediate calls in capture initializers should be transformed. | |||
| 5990 | ExprResult TransformLambdaExpr(LambdaExpr *E) { return E; } | |||
| 5991 | ExprResult TransformBlockExpr(BlockExpr *E) { return E; } | |||
| 5992 | ||||
| 5993 | // Make sure we don't rebuild the this pointer as it would | |||
| 5994 | // cause it to incorrectly point it to the outermost class | |||
| 5995 | // in the case of nested struct initialization. | |||
| 5996 | ExprResult TransformCXXThisExpr(CXXThisExpr *E) { return E; } | |||
| 5997 | }; | |||
| 5998 | ||||
| 5999 | ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc, | |||
| 6000 | FunctionDecl *FD, ParmVarDecl *Param, | |||
| 6001 | Expr *Init) { | |||
| 6002 | assert(Param->hasDefaultArg() && "can't build nonexistent default arg")(static_cast <bool> (Param->hasDefaultArg() && "can't build nonexistent default arg") ? void (0) : __assert_fail ("Param->hasDefaultArg() && \"can't build nonexistent default arg\"" , "clang/lib/Sema/SemaExpr.cpp", 6002, __extension__ __PRETTY_FUNCTION__ )); | |||
| 6003 | ||||
| 6004 | bool NestedDefaultChecking = isCheckingDefaultArgumentOrInitializer(); | |||
| 6005 | ||||
| 6006 | std::optional<ExpressionEvaluationContextRecord::InitializationContext> | |||
| 6007 | InitializationContext = | |||
| 6008 | OutermostDeclarationWithDelayedImmediateInvocations(); | |||
| 6009 | if (!InitializationContext.has_value()) | |||
| 6010 | InitializationContext.emplace(CallLoc, Param, CurContext); | |||
| 6011 | ||||
| 6012 | if (!Init && !Param->hasUnparsedDefaultArg()) { | |||
| 6013 | // Mark that we are replacing a default argument first. | |||
| 6014 | // If we are instantiating a template we won't have to | |||
| 6015 | // retransform immediate calls. | |||
| 6016 | // C++ [expr.const]p15.1: | |||
| 6017 | // An expression or conversion is in an immediate function context if it | |||
| 6018 | // is potentially evaluated and [...] its innermost enclosing non-block | |||
| 6019 | // scope is a function parameter scope of an immediate function. | |||
| 6020 | EnterExpressionEvaluationContext EvalContext( | |||
| 6021 | *this, | |||
| 6022 | FD->isConsteval() | |||
| 6023 | ? ExpressionEvaluationContext::ImmediateFunctionContext | |||
| 6024 | : ExpressionEvaluationContext::PotentiallyEvaluated, | |||
| 6025 | Param); | |||
| 6026 | ||||
| 6027 | if (Param->hasUninstantiatedDefaultArg()) { | |||
| 6028 | if (InstantiateDefaultArgument(CallLoc, FD, Param)) | |||
| 6029 | return ExprError(); | |||
| 6030 | } | |||
| 6031 | // CWG2631 | |||
| 6032 | // An immediate invocation that is not evaluated where it appears is | |||
| 6033 | // evaluated and checked for whether it is a constant expression at the | |||
| 6034 | // point where the enclosing initializer is used in a function call. | |||
| 6035 | ImmediateCallVisitor V; | |||
| 6036 | if (!NestedDefaultChecking) | |||
| 6037 | V.TraverseDecl(Param); | |||
| 6038 | if (V.HasImmediateCalls) { | |||
| 6039 | ExprEvalContexts.back().DelayedDefaultInitializationContext = { | |||
| 6040 | CallLoc, Param, CurContext}; | |||
| 6041 | EnsureImmediateInvocationInDefaultArgs Immediate(*this); | |||
| 6042 | ExprResult Res; | |||
| 6043 | runWithSufficientStackSpace(CallLoc, [&] { | |||
| 6044 | Res = Immediate.TransformInitializer(Param->getInit(), | |||
| 6045 | /*NotCopy=*/false); | |||
| 6046 | }); | |||
| 6047 | if (Res.isInvalid()) | |||
| 6048 | return ExprError(); | |||
| 6049 | Res = ConvertParamDefaultArgument(Param, Res.get(), | |||
| 6050 | Res.get()->getBeginLoc()); | |||
| 6051 | if (Res.isInvalid()) | |||
| 6052 | return ExprError(); | |||
| 6053 | Init = Res.get(); | |||
| 6054 | } | |||
| 6055 | } | |||
| 6056 | ||||
| 6057 | if (CheckCXXDefaultArgExpr( | |||
| 6058 | CallLoc, FD, Param, Init, | |||
| 6059 | /*SkipImmediateInvocations=*/NestedDefaultChecking)) | |||
| 6060 | return ExprError(); | |||
| 6061 | ||||
| 6062 | return CXXDefaultArgExpr::Create(Context, InitializationContext->Loc, Param, | |||
| 6063 | Init, InitializationContext->Context); | |||
| 6064 | } | |||
| 6065 | ||||
| 6066 | ExprResult Sema::BuildCXXDefaultInitExpr(SourceLocation Loc, FieldDecl *Field) { | |||
| 6067 | assert(Field->hasInClassInitializer())(static_cast <bool> (Field->hasInClassInitializer()) ? void (0) : __assert_fail ("Field->hasInClassInitializer()" , "clang/lib/Sema/SemaExpr.cpp", 6067, __extension__ __PRETTY_FUNCTION__ )); | |||
| 6068 | ||||
| 6069 | // If we might have already tried and failed to instantiate, don't try again. | |||
| 6070 | if (Field->isInvalidDecl()) | |||
| 6071 | return ExprError(); | |||
| 6072 | ||||
| 6073 | auto *ParentRD = cast<CXXRecordDecl>(Field->getParent()); | |||
| 6074 | ||||
| 6075 | std::optional<ExpressionEvaluationContextRecord::InitializationContext> | |||
| 6076 | InitializationContext = | |||
| 6077 | OutermostDeclarationWithDelayedImmediateInvocations(); | |||
| 6078 | if (!InitializationContext.has_value()) | |||
| 6079 | InitializationContext.emplace(Loc, Field, CurContext); | |||
| 6080 | ||||
| 6081 | Expr *Init = nullptr; | |||
| 6082 | ||||
| 6083 | bool NestedDefaultChecking = isCheckingDefaultArgumentOrInitializer(); | |||
| 6084 | ||||
| 6085 | EnterExpressionEvaluationContext EvalContext( | |||
| 6086 | *this, ExpressionEvaluationContext::PotentiallyEvaluated, Field); | |||
| 6087 | ||||
| 6088 | if (!Field->getInClassInitializer()) { | |||
| 6089 | // Maybe we haven't instantiated the in-class initializer. Go check the | |||
| 6090 | // pattern FieldDecl to see if it has one. | |||
| 6091 | if (isTemplateInstantiation(ParentRD->getTemplateSpecializationKind())) { | |||
| 6092 | CXXRecordDecl *ClassPattern = ParentRD->getTemplateInstantiationPattern(); | |||
| 6093 | DeclContext::lookup_result Lookup = | |||
| 6094 | ClassPattern->lookup(Field->getDeclName()); | |||
| 6095 | ||||
| 6096 | FieldDecl *Pattern = nullptr; | |||
| 6097 | for (auto *L : Lookup) { | |||
| 6098 | if ((Pattern = dyn_cast<FieldDecl>(L))) | |||
| 6099 | break; | |||
| 6100 | } | |||
| 6101 | assert(Pattern && "We must have set the Pattern!")(static_cast <bool> (Pattern && "We must have set the Pattern!" ) ? void (0) : __assert_fail ("Pattern && \"We must have set the Pattern!\"" , "clang/lib/Sema/SemaExpr.cpp", 6101, __extension__ __PRETTY_FUNCTION__ )); | |||
| 6102 | if (!Pattern->hasInClassInitializer() || | |||
| 6103 | InstantiateInClassInitializer(Loc, Field, Pattern, | |||
| 6104 | getTemplateInstantiationArgs(Field))) { | |||
| 6105 | Field->setInvalidDecl(); | |||
| 6106 | return ExprError(); | |||
| 6107 | } | |||
| 6108 | } | |||
| 6109 | } | |||
| 6110 | ||||
| 6111 | // CWG2631 | |||
| 6112 | // An immediate invocation that is not evaluated where it appears is | |||
| 6113 | // evaluated and checked for whether it is a constant expression at the | |||
| 6114 | // point where the enclosing initializer is used in a [...] a constructor | |||
| 6115 | // definition, or an aggregate initialization. | |||
| 6116 | ImmediateCallVisitor V; | |||
| 6117 | if (!NestedDefaultChecking) | |||
| 6118 | V.TraverseDecl(Field); | |||
| 6119 | if (V.HasImmediateCalls) { | |||
| 6120 | ExprEvalContexts.back().DelayedDefaultInitializationContext = {Loc, Field, | |||
| 6121 | CurContext}; | |||
| 6122 | ExprEvalContexts.back().IsCurrentlyCheckingDefaultArgumentOrInitializer = | |||
| 6123 | NestedDefaultChecking; | |||
| 6124 | ||||
| 6125 | EnsureImmediateInvocationInDefaultArgs Immediate(*this); | |||
| 6126 | ExprResult Res; | |||
| 6127 | runWithSufficientStackSpace(Loc, [&] { | |||
| 6128 | Res = Immediate.TransformInitializer(Field->getInClassInitializer(), | |||
| 6129 | /*CXXDirectInit=*/false); | |||
| 6130 | }); | |||
| 6131 | if (!Res.isInvalid()) | |||
| 6132 | Res = ConvertMemberDefaultInitExpression(Field, Res.get(), Loc); | |||
| 6133 | if (Res.isInvalid()) { | |||
| 6134 | Field->setInvalidDecl(); | |||
| 6135 | return ExprError(); | |||
| 6136 | } | |||
| 6137 | Init = Res.get(); | |||
| 6138 | } | |||
| 6139 | ||||
| 6140 | if (Field->getInClassInitializer()) { | |||
| 6141 | Expr *E = Init ? Init : Field->getInClassInitializer(); | |||
| 6142 | if (!NestedDefaultChecking) | |||
| 6143 | runWithSufficientStackSpace(Loc, [&] { | |||
| 6144 | MarkDeclarationsReferencedInExpr(E, /*SkipLocalVariables=*/false); | |||
| 6145 | }); | |||
| 6146 | // C++11 [class.base.init]p7: | |||
| 6147 | // The initialization of each base and member constitutes a | |||
| 6148 | // full-expression. | |||
| 6149 | ExprResult Res = ActOnFinishFullExpr(E, /*DiscardedValue=*/false); | |||
| 6150 | if (Res.isInvalid()) { | |||
| 6151 | Field->setInvalidDecl(); | |||
| 6152 | return ExprError(); | |||
| 6153 | } | |||
| 6154 | Init = Res.get(); | |||
| 6155 | ||||
| 6156 | return CXXDefaultInitExpr::Create(Context, InitializationContext->Loc, | |||
| 6157 | Field, InitializationContext->Context, | |||
| 6158 | Init); | |||
| 6159 | } | |||
| 6160 | ||||
| 6161 | // DR1351: | |||
| 6162 | // If the brace-or-equal-initializer of a non-static data member | |||
| 6163 | // invokes a defaulted default constructor of its class or of an | |||
| 6164 | // enclosing class in a potentially evaluated subexpression, the | |||
| 6165 | // program is ill-formed. | |||
| 6166 | // | |||
| 6167 | // This resolution is unworkable: the exception specification of the | |||
| 6168 | // default constructor can be needed in an unevaluated context, in | |||
| 6169 | // particular, in the operand of a noexcept-expression, and we can be | |||
| 6170 | // unable to compute an exception specification for an enclosed class. | |||
| 6171 | // | |||
| 6172 | // Any attempt to resolve the exception specification of a defaulted default | |||
| 6173 | // constructor before the initializer is lexically complete will ultimately | |||
| 6174 | // come here at which point we can diagnose it. | |||
| 6175 | RecordDecl *OutermostClass = ParentRD->getOuterLexicalRecordContext(); | |||
| 6176 | Diag(Loc, diag::err_default_member_initializer_not_yet_parsed) | |||
| 6177 | << OutermostClass << Field; | |||
| 6178 | Diag(Field->getEndLoc(), | |||
| 6179 | diag::note_default_member_initializer_not_yet_parsed); | |||
| 6180 | // Recover by marking the field invalid, unless we're in a SFINAE context. | |||
| 6181 | if (!isSFINAEContext()) | |||
| 6182 | Field->setInvalidDecl(); | |||
| 6183 | return ExprError(); | |||
| 6184 | } | |||
| 6185 | ||||
| 6186 | Sema::VariadicCallType | |||
| 6187 | Sema::getVariadicCallType(FunctionDecl *FDecl, const FunctionProtoType *Proto, | |||
| 6188 | Expr *Fn) { | |||
| 6189 | if (Proto && Proto->isVariadic()) { | |||
| 6190 | if (isa_and_nonnull<CXXConstructorDecl>(FDecl)) | |||
| 6191 | return VariadicConstructor; | |||
| 6192 | else if (Fn && Fn->getType()->isBlockPointerType()) | |||
| 6193 | return VariadicBlock; | |||
| 6194 | else if (FDecl) { | |||
| 6195 | if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl)) | |||
| 6196 | if (Method->isInstance()) | |||
| 6197 | return VariadicMethod; | |||
| 6198 | } else if (Fn && Fn->getType() == Context.BoundMemberTy) | |||
| 6199 | return VariadicMethod; | |||
| 6200 | return VariadicFunction; | |||
| 6201 | } | |||
| 6202 | return VariadicDoesNotApply; | |||
| 6203 | } | |||
| 6204 | ||||
| 6205 | namespace { | |||
| 6206 | class FunctionCallCCC final : public FunctionCallFilterCCC { | |||
| 6207 | public: | |||
| 6208 | FunctionCallCCC(Sema &SemaRef, const IdentifierInfo *FuncName, | |||
| 6209 | unsigned NumArgs, MemberExpr *ME) | |||
| 6210 | : FunctionCallFilterCCC(SemaRef, NumArgs, false, ME), | |||
| 6211 | FunctionName(FuncName) {} | |||
| 6212 | ||||
| 6213 | bool ValidateCandidate(const TypoCorrection &candidate) override { | |||
| 6214 | if (!candidate.getCorrectionSpecifier() || | |||
| 6215 | candidate.getCorrectionAsIdentifierInfo() != FunctionName) { | |||
| 6216 | return false; | |||
| 6217 | } | |||
| 6218 | ||||
| 6219 | return FunctionCallFilterCCC::ValidateCandidate(candidate); | |||
| 6220 | } | |||
| 6221 | ||||
| 6222 | std::unique_ptr<CorrectionCandidateCallback> clone() override { | |||
| 6223 | return std::make_unique<FunctionCallCCC>(*this); | |||
| 6224 | } | |||
| 6225 | ||||
| 6226 | private: | |||
| 6227 | const IdentifierInfo *const FunctionName; | |||
| 6228 | }; | |||
| 6229 | } | |||
| 6230 | ||||
| 6231 | static TypoCorrection TryTypoCorrectionForCall(Sema &S, Expr *Fn, | |||
| 6232 | FunctionDecl *FDecl, | |||
| 6233 | ArrayRef<Expr *> Args) { | |||
| 6234 | MemberExpr *ME = dyn_cast<MemberExpr>(Fn); | |||
| 6235 | DeclarationName FuncName = FDecl->getDeclName(); | |||
| 6236 | SourceLocation NameLoc = ME ? ME->getMemberLoc() : Fn->getBeginLoc(); | |||
| 6237 | ||||
| 6238 | FunctionCallCCC CCC(S, FuncName.getAsIdentifierInfo(), Args.size(), ME); | |||
| 6239 | if (TypoCorrection Corrected = S.CorrectTypo( | |||
| 6240 | DeclarationNameInfo(FuncName, NameLoc), Sema::LookupOrdinaryName, | |||
| 6241 | S.getScopeForContext(S.CurContext), nullptr, CCC, | |||
| 6242 | Sema::CTK_ErrorRecovery)) { | |||
| 6243 | if (NamedDecl *ND = Corrected.getFoundDecl()) { | |||
| 6244 | if (Corrected.isOverloaded()) { | |||
| 6245 | OverloadCandidateSet OCS(NameLoc, OverloadCandidateSet::CSK_Normal); | |||
| 6246 | OverloadCandidateSet::iterator Best; | |||
| 6247 | for (NamedDecl *CD : Corrected) { | |||
| 6248 | if (FunctionDecl *FD = dyn_cast<FunctionDecl>(CD)) | |||
| 6249 | S.AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none), Args, | |||
| 6250 | OCS); | |||
| 6251 | } | |||
| 6252 | switch (OCS.BestViableFunction(S, NameLoc, Best)) { | |||
| 6253 | case OR_Success: | |||
| 6254 | ND = Best->FoundDecl; | |||
| 6255 | Corrected.setCorrectionDecl(ND); | |||
| 6256 | break; | |||
| 6257 | default: | |||
| 6258 | break; | |||
| 6259 | } | |||
| 6260 | } | |||
| 6261 | ND = ND->getUnderlyingDecl(); | |||
| 6262 | if (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND)) | |||
| 6263 | return Corrected; | |||
| 6264 | } | |||
| 6265 | } | |||
| 6266 | return TypoCorrection(); | |||
| 6267 | } | |||
| 6268 | ||||
| 6269 | /// ConvertArgumentsForCall - Converts the arguments specified in | |||
| 6270 | /// Args/NumArgs to the parameter types of the function FDecl with | |||
| 6271 | /// function prototype Proto. Call is the call expression itself, and | |||
| 6272 | /// Fn is the function expression. For a C++ member function, this | |||
| 6273 | /// routine does not attempt to convert the object argument. Returns | |||
| 6274 | /// true if the call is ill-formed. | |||
| 6275 | bool | |||
| 6276 | Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn, | |||
| 6277 | FunctionDecl *FDecl, | |||
| 6278 | const FunctionProtoType *Proto, | |||
| 6279 | ArrayRef<Expr *> Args, | |||
| 6280 | SourceLocation RParenLoc, | |||
| 6281 | bool IsExecConfig) { | |||
| 6282 | // Bail out early if calling a builtin with custom typechecking. | |||
| 6283 | if (FDecl) | |||
| 6284 | if (unsigned ID = FDecl->getBuiltinID()) | |||
| 6285 | if (Context.BuiltinInfo.hasCustomTypechecking(ID)) | |||
| 6286 | return false; | |||
| 6287 | ||||
| 6288 | // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by | |||
| 6289 | // assignment, to the types of the corresponding parameter, ... | |||
| 6290 | unsigned NumParams = Proto->getNumParams(); | |||
| 6291 | bool Invalid = false; | |||
| 6292 | unsigned MinArgs = FDecl ? FDecl->getMinRequiredArguments() : NumParams; | |||
| 6293 | unsigned FnKind = Fn->getType()->isBlockPointerType() | |||
| 6294 | ? 1 /* block */ | |||
| 6295 | : (IsExecConfig ? 3 /* kernel function (exec config) */ | |||
| 6296 | : 0 /* function */); | |||
| 6297 | ||||
| 6298 | // If too few arguments are available (and we don't have default | |||
| 6299 | // arguments for the remaining parameters), don't make the call. | |||
| 6300 | if (Args.size() < NumParams) { | |||
| 6301 | if (Args.size() < MinArgs) { | |||
| 6302 | TypoCorrection TC; | |||
| 6303 | if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) { | |||
| 6304 | unsigned diag_id = | |||
| 6305 | MinArgs == NumParams && !Proto->isVariadic() | |||
| 6306 | ? diag::err_typecheck_call_too_few_args_suggest | |||
| 6307 | : diag::err_typecheck_call_too_few_args_at_least_suggest; | |||
| 6308 | diagnoseTypo(TC, PDiag(diag_id) << FnKind << MinArgs | |||
| 6309 | << static_cast<unsigned>(Args.size()) | |||
| 6310 | << TC.getCorrectionRange()); | |||
| 6311 | } else if (MinArgs == 1 && FDecl && FDecl->getParamDecl(0)->getDeclName()) | |||
| 6312 | Diag(RParenLoc, | |||
| 6313 | MinArgs == NumParams && !Proto->isVariadic() | |||
| 6314 | ? diag::err_typecheck_call_too_few_args_one | |||
| 6315 | : diag::err_typecheck_call_too_few_args_at_least_one) | |||
| 6316 | << FnKind << FDecl->getParamDecl(0) << Fn->getSourceRange(); | |||
| 6317 | else | |||
| 6318 | Diag(RParenLoc, MinArgs == NumParams && !Proto->isVariadic() | |||
| 6319 | ? diag::err_typecheck_call_too_few_args | |||
| 6320 | : diag::err_typecheck_call_too_few_args_at_least) | |||
| 6321 | << FnKind << MinArgs << static_cast<unsigned>(Args.size()) | |||
| 6322 | << Fn->getSourceRange(); | |||
| 6323 | ||||
| 6324 | // Emit the location of the prototype. | |||
| 6325 | if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig) | |||
| 6326 | Diag(FDecl->getLocation(), diag::note_callee_decl) << FDecl; | |||
| 6327 | ||||
| 6328 | return true; | |||
| 6329 | } | |||
| 6330 | // We reserve space for the default arguments when we create | |||
| 6331 | // the call expression, before calling ConvertArgumentsForCall. | |||
| 6332 | assert((Call->getNumArgs() == NumParams) &&(static_cast <bool> ((Call->getNumArgs() == NumParams ) && "We should have reserved space for the default arguments before!" ) ? void (0) : __assert_fail ("(Call->getNumArgs() == NumParams) && \"We should have reserved space for the default arguments before!\"" , "clang/lib/Sema/SemaExpr.cpp", 6333, __extension__ __PRETTY_FUNCTION__ )) | |||
| 6333 | "We should have reserved space for the default arguments before!")(static_cast <bool> ((Call->getNumArgs() == NumParams ) && "We should have reserved space for the default arguments before!" ) ? void (0) : __assert_fail ("(Call->getNumArgs() == NumParams) && \"We should have reserved space for the default arguments before!\"" , "clang/lib/Sema/SemaExpr.cpp", 6333, __extension__ __PRETTY_FUNCTION__ )); | |||
| 6334 | } | |||
| 6335 | ||||
| 6336 | // If too many are passed and not variadic, error on the extras and drop | |||
| 6337 | // them. | |||
| 6338 | if (Args.size() > NumParams) { | |||
| 6339 | if (!Proto->isVariadic()) { | |||
| 6340 | TypoCorrection TC; | |||
| 6341 | if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) { | |||
| 6342 | unsigned diag_id = | |||
| 6343 | MinArgs == NumParams && !Proto->isVariadic() | |||
| 6344 | ? diag::err_typecheck_call_too_many_args_suggest | |||
| 6345 | : diag::err_typecheck_call_too_many_args_at_most_suggest; | |||
| 6346 | diagnoseTypo(TC, PDiag(diag_id) << FnKind << NumParams | |||
| 6347 | << static_cast<unsigned>(Args.size()) | |||
| 6348 | << TC.getCorrectionRange()); | |||
| 6349 | } else if (NumParams == 1 && FDecl && | |||
| 6350 | FDecl->getParamDecl(0)->getDeclName()) | |||
| 6351 | Diag(Args[NumParams]->getBeginLoc(), | |||
| 6352 | MinArgs == NumParams | |||
| 6353 | ? diag::err_typecheck_call_too_many_args_one | |||
| 6354 | : diag::err_typecheck_call_too_many_args_at_most_one) | |||
| 6355 | << FnKind << FDecl->getParamDecl(0) | |||
| 6356 | << static_cast<unsigned>(Args.size()) << Fn->getSourceRange() | |||
| 6357 | << SourceRange(Args[NumParams]->getBeginLoc(), | |||
| 6358 | Args.back()->getEndLoc()); | |||
| 6359 | else | |||
| 6360 | Diag(Args[NumParams]->getBeginLoc(), | |||
| 6361 | MinArgs == NumParams | |||
| 6362 | ? diag::err_typecheck_call_too_many_args | |||
| 6363 | : diag::err_typecheck_call_too_many_args_at_most) | |||
| 6364 | << FnKind << NumParams << static_cast<unsigned>(Args.size()) | |||
| 6365 | << Fn->getSourceRange() | |||
| 6366 | << SourceRange(Args[NumParams]->getBeginLoc(), | |||
| 6367 | Args.back()->getEndLoc()); | |||
| 6368 | ||||
| 6369 | // Emit the location of the prototype. | |||
| 6370 | if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig) | |||
| 6371 | Diag(FDecl->getLocation(), diag::note_callee_decl) << FDecl; | |||
| 6372 | ||||
| 6373 | // This deletes the extra arguments. | |||
| 6374 | Call->shrinkNumArgs(NumParams); | |||
| 6375 | return true; | |||
| 6376 | } | |||
| 6377 | } | |||
| 6378 | SmallVector<Expr *, 8> AllArgs; | |||
| 6379 | VariadicCallType CallType = getVariadicCallType(FDecl, Proto, Fn); | |||
| 6380 | ||||
| 6381 | Invalid = GatherArgumentsForCall(Call->getBeginLoc(), FDecl, Proto, 0, Args, | |||
| 6382 | AllArgs, CallType); | |||
| 6383 | if (Invalid) | |||
| 6384 | return true; | |||
| 6385 | unsigned TotalNumArgs = AllArgs.size(); | |||
| 6386 | for (unsigned i = 0; i < TotalNumArgs; ++i) | |||
| 6387 | Call->setArg(i, AllArgs[i]); | |||
| 6388 | ||||
| 6389 | Call->computeDependence(); | |||
| 6390 | return false; | |||
| 6391 | } | |||
| 6392 | ||||
| 6393 | bool Sema::GatherArgumentsForCall(SourceLocation CallLoc, FunctionDecl *FDecl, | |||
| 6394 | const FunctionProtoType *Proto, | |||
| 6395 | unsigned FirstParam, ArrayRef<Expr *> Args, | |||
| 6396 | SmallVectorImpl<Expr *> &AllArgs, | |||
| 6397 | VariadicCallType CallType, bool AllowExplicit, | |||
| 6398 | bool IsListInitialization) { | |||
| 6399 | unsigned NumParams = Proto->getNumParams(); | |||
| 6400 | bool Invalid = false; | |||
| 6401 | size_t ArgIx = 0; | |||
| 6402 | // Continue to check argument types (even if we have too few/many args). | |||
| 6403 | for (unsigned i = FirstParam; i < NumParams; i++) { | |||
| 6404 | QualType ProtoArgType = Proto->getParamType(i); | |||
| 6405 | ||||
| 6406 | Expr *Arg; | |||
| 6407 | ParmVarDecl *Param = FDecl ? FDecl->getParamDecl(i) : nullptr; | |||
| 6408 | if (ArgIx < Args.size()) { | |||
| 6409 | Arg = Args[ArgIx++]; | |||
| 6410 | ||||
| 6411 | if (RequireCompleteType(Arg->getBeginLoc(), ProtoArgType, | |||
| 6412 | diag::err_call_incomplete_argument, Arg)) | |||
| 6413 | return true; | |||
| 6414 | ||||
| 6415 | // Strip the unbridged-cast placeholder expression off, if applicable. | |||
| 6416 | bool CFAudited = false; | |||
| 6417 | if (Arg->getType() == Context.ARCUnbridgedCastTy && | |||
| 6418 | FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() && | |||
| 6419 | (!Param || !Param->hasAttr<CFConsumedAttr>())) | |||
| 6420 | Arg = stripARCUnbridgedCast(Arg); | |||
| 6421 | else if (getLangOpts().ObjCAutoRefCount && | |||
| 6422 | FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() && | |||
| 6423 | (!Param || !Param->hasAttr<CFConsumedAttr>())) | |||
| 6424 | CFAudited = true; | |||
| 6425 | ||||
| 6426 | if (Proto->getExtParameterInfo(i).isNoEscape() && | |||
| 6427 | ProtoArgType->isBlockPointerType()) | |||
| 6428 | if (auto *BE = dyn_cast<BlockExpr>(Arg->IgnoreParenNoopCasts(Context))) | |||
| 6429 | BE->getBlockDecl()->setDoesNotEscape(); | |||
| 6430 | ||||
| 6431 | InitializedEntity Entity = | |||
| 6432 | Param ? InitializedEntity::InitializeParameter(Context, Param, | |||
| 6433 | ProtoArgType) | |||
| 6434 | : InitializedEntity::InitializeParameter( | |||
| 6435 | Context, ProtoArgType, Proto->isParamConsumed(i)); | |||
| 6436 | ||||
| 6437 | // Remember that parameter belongs to a CF audited API. | |||
| 6438 | if (CFAudited) | |||
| 6439 | Entity.setParameterCFAudited(); | |||
| 6440 | ||||
| 6441 | ExprResult ArgE = PerformCopyInitialization( | |||
| 6442 | Entity, SourceLocation(), Arg, IsListInitialization, AllowExplicit); | |||
| 6443 | if (ArgE.isInvalid()) | |||
| 6444 | return true; | |||
| 6445 | ||||
| 6446 | Arg = ArgE.getAs<Expr>(); | |||
| 6447 | } else { | |||
| 6448 | assert(Param && "can't use default arguments without a known callee")(static_cast <bool> (Param && "can't use default arguments without a known callee" ) ? void (0) : __assert_fail ("Param && \"can't use default arguments without a known callee\"" , "clang/lib/Sema/SemaExpr.cpp", 6448, __extension__ __PRETTY_FUNCTION__ )); | |||
| 6449 | ||||
| 6450 | ExprResult ArgExpr = BuildCXXDefaultArgExpr(CallLoc, FDecl, Param); | |||
| 6451 | if (ArgExpr.isInvalid()) | |||
| 6452 | return true; | |||
| 6453 | ||||
| 6454 | Arg = ArgExpr.getAs<Expr>(); | |||
| 6455 | } | |||
| 6456 | ||||
| 6457 | // Check for array bounds violations for each argument to the call. This | |||
| 6458 | // check only triggers warnings when the argument isn't a more complex Expr | |||
| 6459 | // with its own checking, such as a BinaryOperator. | |||
| 6460 | CheckArrayAccess(Arg); | |||
| 6461 | ||||
| 6462 | // Check for violations of C99 static array rules (C99 6.7.5.3p7). | |||
| 6463 | CheckStaticArrayArgument(CallLoc, Param, Arg); | |||
| 6464 | ||||
| 6465 | AllArgs.push_back(Arg); | |||
| 6466 | } | |||
| 6467 | ||||
| 6468 | // If this is a variadic call, handle args passed through "...". | |||
| 6469 | if (CallType != VariadicDoesNotApply) { | |||
| 6470 | // Assume that extern "C" functions with variadic arguments that | |||
| 6471 | // return __unknown_anytype aren't *really* variadic. | |||
| 6472 | if (Proto->getReturnType() == Context.UnknownAnyTy && FDecl && | |||
| 6473 | FDecl->isExternC()) { | |||
| 6474 | for (Expr *A : Args.slice(ArgIx)) { | |||
| 6475 | QualType paramType; // ignored | |||
| 6476 | ExprResult arg = checkUnknownAnyArg(CallLoc, A, paramType); | |||
| 6477 | Invalid |= arg.isInvalid(); | |||
| 6478 | AllArgs.push_back(arg.get()); | |||
| 6479 | } | |||
| 6480 | ||||
| 6481 | // Otherwise do argument promotion, (C99 6.5.2.2p7). | |||
| 6482 | } else { | |||
| 6483 | for (Expr *A : Args.slice(ArgIx)) { | |||
| 6484 | ExprResult Arg = DefaultVariadicArgumentPromotion(A, CallType, FDecl); | |||
| 6485 | Invalid |= Arg.isInvalid(); | |||
| 6486 | AllArgs.push_back(Arg.get()); | |||
| 6487 | } | |||
| 6488 | } | |||
| 6489 | ||||
| 6490 | // Check for array bounds violations. | |||
| 6491 | for (Expr *A : Args.slice(ArgIx)) | |||
| 6492 | CheckArrayAccess(A); | |||
| 6493 | } | |||
| 6494 | return Invalid; | |||
| 6495 | } | |||
| 6496 | ||||
| 6497 | static void DiagnoseCalleeStaticArrayParam(Sema &S, ParmVarDecl *PVD) { | |||
| 6498 | TypeLoc TL = PVD->getTypeSourceInfo()->getTypeLoc(); | |||
| 6499 | if (DecayedTypeLoc DTL = TL.getAs<DecayedTypeLoc>()) | |||
| 6500 | TL = DTL.getOriginalLoc(); | |||
| 6501 | if (ArrayTypeLoc ATL = TL.getAs<ArrayTypeLoc>()) | |||
| 6502 | S.Diag(PVD->getLocation(), diag::note_callee_static_array) | |||
| 6503 | << ATL.getLocalSourceRange(); | |||
| 6504 | } | |||
| 6505 | ||||
| 6506 | /// CheckStaticArrayArgument - If the given argument corresponds to a static | |||
| 6507 | /// array parameter, check that it is non-null, and that if it is formed by | |||
| 6508 | /// array-to-pointer decay, the underlying array is sufficiently large. | |||
| 6509 | /// | |||
| 6510 | /// C99 6.7.5.3p7: If the keyword static also appears within the [ and ] of the | |||
| 6511 | /// array type derivation, then for each call to the function, the value of the | |||
| 6512 | /// corresponding actual argument shall provide access to the first element of | |||
| 6513 | /// an array with at least as many elements as specified by the size expression. | |||
| 6514 | void | |||
| 6515 | Sema::CheckStaticArrayArgument(SourceLocation CallLoc, | |||
| 6516 | ParmVarDecl *Param, | |||
| 6517 | const Expr *ArgExpr) { | |||
| 6518 | // Static array parameters are not supported in C++. | |||
| 6519 | if (!Param || getLangOpts().CPlusPlus) | |||
| 6520 | return; | |||
| 6521 | ||||
| 6522 | QualType OrigTy = Param->getOriginalType(); | |||
| 6523 | ||||
| 6524 | const ArrayType *AT = Context.getAsArrayType(OrigTy); | |||
| 6525 | if (!AT || AT->getSizeModifier() != ArrayType::Static) | |||
| 6526 | return; | |||
| 6527 | ||||
| 6528 | if (ArgExpr->isNullPointerConstant(Context, | |||
| 6529 | Expr::NPC_NeverValueDependent)) { | |||
| 6530 | Diag(CallLoc, diag::warn_null_arg) << ArgExpr->getSourceRange(); | |||
| 6531 | DiagnoseCalleeStaticArrayParam(*this, Param); | |||
| 6532 | return; | |||
| 6533 | } | |||
| 6534 | ||||
| 6535 | const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT); | |||
| 6536 | if (!CAT) | |||
| 6537 | return; | |||
| 6538 | ||||
| 6539 | const ConstantArrayType *ArgCAT = | |||
| 6540 | Context.getAsConstantArrayType(ArgExpr->IgnoreParenCasts()->getType()); | |||
| 6541 | if (!ArgCAT) | |||
| 6542 | return; | |||
| 6543 | ||||
| 6544 | if (getASTContext().hasSameUnqualifiedType(CAT->getElementType(), | |||
| 6545 | ArgCAT->getElementType())) { | |||
| 6546 | if (ArgCAT->getSize().ult(CAT->getSize())) { | |||
| 6547 | Diag(CallLoc, diag::warn_static_array_too_small) | |||
| 6548 | << ArgExpr->getSourceRange() | |||
| 6549 | << (unsigned)ArgCAT->getSize().getZExtValue() | |||
| 6550 | << (unsigned)CAT->getSize().getZExtValue() << 0; | |||
| 6551 | DiagnoseCalleeStaticArrayParam(*this, Param); | |||
| 6552 | } | |||
| 6553 | return; | |||
| 6554 | } | |||
| 6555 | ||||
| 6556 | std::optional<CharUnits> ArgSize = | |||
| 6557 | getASTContext().getTypeSizeInCharsIfKnown(ArgCAT); | |||
| 6558 | std::optional<CharUnits> ParmSize = | |||
| 6559 | getASTContext().getTypeSizeInCharsIfKnown(CAT); | |||
| 6560 | if (ArgSize && ParmSize && *ArgSize < *ParmSize) { | |||
| 6561 | Diag(CallLoc, diag::warn_static_array_too_small) | |||
| 6562 | << ArgExpr->getSourceRange() << (unsigned)ArgSize->getQuantity() | |||
| 6563 | << (unsigned)ParmSize->getQuantity() << 1; | |||
| 6564 | DiagnoseCalleeStaticArrayParam(*this, Param); | |||
| 6565 | } | |||
| 6566 | } | |||
| 6567 | ||||
| 6568 | /// Given a function expression of unknown-any type, try to rebuild it | |||
| 6569 | /// to have a function type. | |||
| 6570 | static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn); | |||
| 6571 | ||||
| 6572 | /// Is the given type a placeholder that we need to lower out | |||
| 6573 | /// immediately during argument processing? | |||
| 6574 | static bool isPlaceholderToRemoveAsArg(QualType type) { | |||
| 6575 | // Placeholders are never sugared. | |||
| 6576 | const BuiltinType *placeholder = dyn_cast<BuiltinType>(type); | |||
| 6577 | if (!placeholder) return false; | |||
| 6578 | ||||
| 6579 | switch (placeholder->getKind()) { | |||
| 6580 | // Ignore all the non-placeholder types. | |||
| 6581 | #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ | |||
| 6582 | case BuiltinType::Id: | |||
| 6583 | #include "clang/Basic/OpenCLImageTypes.def" | |||
| 6584 | #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ | |||
| 6585 | case BuiltinType::Id: | |||
| 6586 | #include "clang/Basic/OpenCLExtensionTypes.def" | |||
| 6587 | // In practice we'll never use this, since all SVE types are sugared | |||
| 6588 | // via TypedefTypes rather than exposed directly as BuiltinTypes. | |||
| 6589 | #define SVE_TYPE(Name, Id, SingletonId) \ | |||
| 6590 | case BuiltinType::Id: | |||
| 6591 | #include "clang/Basic/AArch64SVEACLETypes.def" | |||
| 6592 | #define PPC_VECTOR_TYPE(Name, Id, Size) \ | |||
| 6593 | case BuiltinType::Id: | |||
| 6594 | #include "clang/Basic/PPCTypes.def" | |||
| 6595 | #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id: | |||
| 6596 | #include "clang/Basic/RISCVVTypes.def" | |||
| 6597 | #define WASM_TYPE(Name, Id, SingletonId) case BuiltinType::Id: | |||
| 6598 | #include "clang/Basic/WebAssemblyReferenceTypes.def" | |||
| 6599 | #define PLACEHOLDER_TYPE(ID, SINGLETON_ID) | |||
| 6600 | #define BUILTIN_TYPE(ID, SINGLETON_ID) case BuiltinType::ID: | |||
| 6601 | #include "clang/AST/BuiltinTypes.def" | |||
| 6602 | return false; | |||
| 6603 | ||||
| 6604 | // We cannot lower out overload sets; they might validly be resolved | |||
| 6605 | // by the call machinery. | |||
| 6606 | case BuiltinType::Overload: | |||
| 6607 | return false; | |||
| 6608 | ||||
| 6609 | // Unbridged casts in ARC can be handled in some call positions and | |||
| 6610 | // should be left in place. | |||
| 6611 | case BuiltinType::ARCUnbridgedCast: | |||
| 6612 | return false; | |||
| 6613 | ||||
| 6614 | // Pseudo-objects should be converted as soon as possible. | |||
| 6615 | case BuiltinType::PseudoObject: | |||
| 6616 | return true; | |||
| 6617 | ||||
| 6618 | // The debugger mode could theoretically but currently does not try | |||
| 6619 | // to resolve unknown-typed arguments based on known parameter types. | |||
| 6620 | case BuiltinType::UnknownAny: | |||
| 6621 | return true; | |||
| 6622 | ||||
| 6623 | // These are always invalid as call arguments and should be reported. | |||
| 6624 | case BuiltinType::BoundMember: | |||
| 6625 | case BuiltinType::BuiltinFn: | |||
| 6626 | case BuiltinType::IncompleteMatrixIdx: | |||
| 6627 | case BuiltinType::OMPArraySection: | |||
| 6628 | case BuiltinType::OMPArrayShaping: | |||
| 6629 | case BuiltinType::OMPIterator: | |||
| 6630 | return true; | |||
| 6631 | ||||
| 6632 | } | |||
| 6633 | llvm_unreachable("bad builtin type kind")::llvm::llvm_unreachable_internal("bad builtin type kind", "clang/lib/Sema/SemaExpr.cpp" , 6633); | |||
| 6634 | } | |||
| 6635 | ||||
| 6636 | /// Check an argument list for placeholders that we won't try to | |||
| 6637 | /// handle later. | |||
| 6638 | static bool checkArgsForPlaceholders(Sema &S, MultiExprArg args) { | |||
| 6639 | // Apply this processing to all the arguments at once instead of | |||
| 6640 | // dying at the first failure. | |||
| 6641 | bool hasInvalid = false; | |||
| 6642 | for (size_t i = 0, e = args.size(); i != e; i++) { | |||
| 6643 | if (isPlaceholderToRemoveAsArg(args[i]->getType())) { | |||
| 6644 | ExprResult result = S.CheckPlaceholderExpr(args[i]); | |||
| 6645 | if (result.isInvalid()) hasInvalid = true; | |||
| 6646 | else args[i] = result.get(); | |||
| 6647 | } | |||
| 6648 | } | |||
| 6649 | return hasInvalid; | |||
| 6650 | } | |||
| 6651 | ||||
| 6652 | /// If a builtin function has a pointer argument with no explicit address | |||
| 6653 | /// space, then it should be able to accept a pointer to any address | |||
| 6654 | /// space as input. In order to do this, we need to replace the | |||
| 6655 | /// standard builtin declaration with one that uses the same address space | |||
| 6656 | /// as the call. | |||
| 6657 | /// | |||
| 6658 | /// \returns nullptr If this builtin is not a candidate for a rewrite i.e. | |||
| 6659 | /// it does not contain any pointer arguments without | |||
| 6660 | /// an address space qualifer. Otherwise the rewritten | |||
| 6661 | /// FunctionDecl is returned. | |||
| 6662 | /// TODO: Handle pointer return types. | |||
| 6663 | static FunctionDecl *rewriteBuiltinFunctionDecl(Sema *Sema, ASTContext &Context, | |||
| 6664 | FunctionDecl *FDecl, | |||
| 6665 | MultiExprArg ArgExprs) { | |||
| 6666 | ||||
| 6667 | QualType DeclType = FDecl->getType(); | |||
| 6668 | const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(DeclType); | |||
| 6669 | ||||
| 6670 | if (!Context.BuiltinInfo.hasPtrArgsOrResult(FDecl->getBuiltinID()) || !FT || | |||
| 6671 | ArgExprs.size() < FT->getNumParams()) | |||
| 6672 | return nullptr; | |||
| 6673 | ||||
| 6674 | bool NeedsNewDecl = false; | |||
| 6675 | unsigned i = 0; | |||
| 6676 | SmallVector<QualType, 8> OverloadParams; | |||
| 6677 | ||||
| 6678 | for (QualType ParamType : FT->param_types()) { | |||
| 6679 | ||||
| 6680 | // Convert array arguments to pointer to simplify type lookup. | |||
| 6681 | ExprResult ArgRes = | |||
| 6682 | Sema->DefaultFunctionArrayLvalueConversion(ArgExprs[i++]); | |||
| 6683 | if (ArgRes.isInvalid()) | |||
| 6684 | return nullptr; | |||
| 6685 | Expr *Arg = ArgRes.get(); | |||
| 6686 | QualType ArgType = Arg->getType(); | |||
| 6687 | if (!ParamType->isPointerType() || ParamType.hasAddressSpace() || | |||
| 6688 | !ArgType->isPointerType() || | |||
| 6689 | !ArgType->getPointeeType().hasAddressSpace() || | |||
| 6690 | isPtrSizeAddressSpace(ArgType->getPointeeType().getAddressSpace())) { | |||
| 6691 | OverloadParams.push_back(ParamType); | |||
| 6692 | continue; | |||
| 6693 | } | |||
| 6694 | ||||
| 6695 | QualType PointeeType = ParamType->getPointeeType(); | |||
| 6696 | if (PointeeType.hasAddressSpace()) | |||
| 6697 | continue; | |||
| 6698 | ||||
| 6699 | NeedsNewDecl = true; | |||
| 6700 | LangAS AS = ArgType->getPointeeType().getAddressSpace(); | |||
| 6701 | ||||
| 6702 | PointeeType = Context.getAddrSpaceQualType(PointeeType, AS); | |||
| 6703 | OverloadParams.push_back(Context.getPointerType(PointeeType)); | |||
| 6704 | } | |||
| 6705 | ||||
| 6706 | if (!NeedsNewDecl) | |||
| 6707 | return nullptr; | |||
| 6708 | ||||
| 6709 | FunctionProtoType::ExtProtoInfo EPI; | |||
| 6710 | EPI.Variadic = FT->isVariadic(); | |||
| 6711 | QualType OverloadTy = Context.getFunctionType(FT->getReturnType(), | |||
| 6712 | OverloadParams, EPI); | |||
| 6713 | DeclContext *Parent = FDecl->getParent(); | |||
| 6714 | FunctionDecl *OverloadDecl = FunctionDecl::Create( | |||
| 6715 | Context, Parent, FDecl->getLocation(), FDecl->getLocation(), | |||
| 6716 | FDecl->getIdentifier(), OverloadTy, | |||
| 6717 | /*TInfo=*/nullptr, SC_Extern, Sema->getCurFPFeatures().isFPConstrained(), | |||
| 6718 | false, | |||
| 6719 | /*hasPrototype=*/true); | |||
| 6720 | SmallVector<ParmVarDecl*, 16> Params; | |||
| 6721 | FT = cast<FunctionProtoType>(OverloadTy); | |||
| 6722 | for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { | |||
| 6723 | QualType ParamType = FT->getParamType(i); | |||
| 6724 | ParmVarDecl *Parm = | |||
| 6725 | ParmVarDecl::Create(Context, OverloadDecl, SourceLocation(), | |||
| 6726 | SourceLocation(), nullptr, ParamType, | |||
| 6727 | /*TInfo=*/nullptr, SC_None, nullptr); | |||
| 6728 | Parm->setScopeInfo(0, i); | |||
| 6729 | Params.push_back(Parm); | |||
| 6730 | } | |||
| 6731 | OverloadDecl->setParams(Params); | |||
| 6732 | Sema->mergeDeclAttributes(OverloadDecl, FDecl); | |||
| 6733 | return OverloadDecl; | |||
| 6734 | } | |||
| 6735 | ||||
| 6736 | static void checkDirectCallValidity(Sema &S, const Expr *Fn, | |||
| 6737 | FunctionDecl *Callee, | |||
| 6738 | MultiExprArg ArgExprs) { | |||
| 6739 | // `Callee` (when called with ArgExprs) may be ill-formed. enable_if (and | |||
| 6740 | // similar attributes) really don't like it when functions are called with an | |||
| 6741 | // invalid number of args. | |||
| 6742 | if (S.TooManyArguments(Callee->getNumParams(), ArgExprs.size(), | |||
| 6743 | /*PartialOverloading=*/false) && | |||
| 6744 | !Callee->isVariadic()) | |||
| 6745 | return; | |||
| 6746 | if (Callee->getMinRequiredArguments() > ArgExprs.size()) | |||
| 6747 | return; | |||
| 6748 | ||||
| 6749 | if (const EnableIfAttr *Attr = | |||
| 6750 | S.CheckEnableIf(Callee, Fn->getBeginLoc(), ArgExprs, true)) { | |||
| 6751 | S.Diag(Fn->getBeginLoc(), | |||
| 6752 | isa<CXXMethodDecl>(Callee) | |||
| 6753 | ? diag::err_ovl_no_viable_member_function_in_call | |||
| 6754 | : diag::err_ovl_no_viable_function_in_call) | |||
| 6755 | << Callee << Callee->getSourceRange(); | |||
| 6756 | S.Diag(Callee->getLocation(), | |||
| 6757 | diag::note_ovl_candidate_disabled_by_function_cond_attr) | |||
| 6758 | << Attr->getCond()->getSourceRange() << Attr->getMessage(); | |||
| 6759 | return; | |||
| 6760 | } | |||
| 6761 | } | |||
| 6762 | ||||
| 6763 | static bool enclosingClassIsRelatedToClassInWhichMembersWereFound( | |||
| 6764 | const UnresolvedMemberExpr *const UME, Sema &S) { | |||
| 6765 | ||||
| 6766 | const auto GetFunctionLevelDCIfCXXClass = | |||
| 6767 | [](Sema &S) -> const CXXRecordDecl * { | |||
| 6768 | const DeclContext *const DC = S.getFunctionLevelDeclContext(); | |||
| 6769 | if (!DC || !DC->getParent()) | |||
| 6770 | return nullptr; | |||
| 6771 | ||||
| 6772 | // If the call to some member function was made from within a member | |||
| 6773 | // function body 'M' return return 'M's parent. | |||
| 6774 | if (const auto *MD = dyn_cast<CXXMethodDecl>(DC)) | |||
| 6775 | return MD->getParent()->getCanonicalDecl(); | |||
| 6776 | // else the call was made from within a default member initializer of a | |||
| 6777 | // class, so return the class. | |||
| 6778 | if (const auto *RD = dyn_cast<CXXRecordDecl>(DC)) | |||
| 6779 | return RD->getCanonicalDecl(); | |||
| 6780 | return nullptr; | |||
| 6781 | }; | |||
| 6782 | // If our DeclContext is neither a member function nor a class (in the | |||
| 6783 | // case of a lambda in a default member initializer), we can't have an | |||
| 6784 | // enclosing 'this'. | |||
| 6785 | ||||
| 6786 | const CXXRecordDecl *const CurParentClass = GetFunctionLevelDCIfCXXClass(S); | |||
| 6787 | if (!CurParentClass) | |||
| 6788 | return false; | |||
| 6789 | ||||
| 6790 | // The naming class for implicit member functions call is the class in which | |||
| 6791 | // name lookup starts. | |||
| 6792 | const CXXRecordDecl *const NamingClass = | |||
| 6793 | UME->getNamingClass()->getCanonicalDecl(); | |||
| 6794 | assert(NamingClass && "Must have naming class even for implicit access")(static_cast <bool> (NamingClass && "Must have naming class even for implicit access" ) ? void (0) : __assert_fail ("NamingClass && \"Must have naming class even for implicit access\"" , "clang/lib/Sema/SemaExpr.cpp", 6794, __extension__ __PRETTY_FUNCTION__ )); | |||
| 6795 | ||||
| 6796 | // If the unresolved member functions were found in a 'naming class' that is | |||
| 6797 | // related (either the same or derived from) to the class that contains the | |||
| 6798 | // member function that itself contained the implicit member access. | |||
| 6799 | ||||
| 6800 | return CurParentClass == NamingClass || | |||
| 6801 | CurParentClass->isDerivedFrom(NamingClass); | |||
| 6802 | } | |||
| 6803 | ||||
| 6804 | static void | |||
| 6805 | tryImplicitlyCaptureThisIfImplicitMemberFunctionAccessWithDependentArgs( | |||
| 6806 | Sema &S, const UnresolvedMemberExpr *const UME, SourceLocation CallLoc) { | |||
| 6807 | ||||
| 6808 | if (!UME) | |||
| 6809 | return; | |||
| 6810 | ||||
| 6811 | LambdaScopeInfo *const CurLSI = S.getCurLambda(); | |||
| 6812 | // Only try and implicitly capture 'this' within a C++ Lambda if it hasn't | |||
| 6813 | // already been captured, or if this is an implicit member function call (if | |||
| 6814 | // it isn't, an attempt to capture 'this' should already have been made). | |||
| 6815 | if (!CurLSI || CurLSI->ImpCaptureStyle == CurLSI->ImpCap_None || | |||
| 6816 | !UME->isImplicitAccess() || CurLSI->isCXXThisCaptured()) | |||
| 6817 | return; | |||
| 6818 | ||||
| 6819 | // Check if the naming class in which the unresolved members were found is | |||
| 6820 | // related (same as or is a base of) to the enclosing class. | |||
| 6821 | ||||
| 6822 | if (!enclosingClassIsRelatedToClassInWhichMembersWereFound(UME, S)) | |||
| 6823 | return; | |||
| 6824 | ||||
| 6825 | ||||
| 6826 | DeclContext *EnclosingFunctionCtx = S.CurContext->getParent()->getParent(); | |||
| 6827 | // If the enclosing function is not dependent, then this lambda is | |||
| 6828 | // capture ready, so if we can capture this, do so. | |||
| 6829 | if (!EnclosingFunctionCtx->isDependentContext()) { | |||
| 6830 | // If the current lambda and all enclosing lambdas can capture 'this' - | |||
| 6831 | // then go ahead and capture 'this' (since our unresolved overload set | |||
| 6832 | // contains at least one non-static member function). | |||
| 6833 | if (!S.CheckCXXThisCapture(CallLoc, /*Explcit*/ false, /*Diagnose*/ false)) | |||
| 6834 | S.CheckCXXThisCapture(CallLoc); | |||
| 6835 | } else if (S.CurContext->isDependentContext()) { | |||
| 6836 | // ... since this is an implicit member reference, that might potentially | |||
| 6837 | // involve a 'this' capture, mark 'this' for potential capture in | |||
| 6838 | // enclosing lambdas. | |||
| 6839 | if (CurLSI->ImpCaptureStyle != CurLSI->ImpCap_None) | |||
| 6840 | CurLSI->addPotentialThisCapture(CallLoc); | |||
| 6841 | } | |||
| 6842 | } | |||
| 6843 | ||||
| 6844 | // Once a call is fully resolved, warn for unqualified calls to specific | |||
| 6845 | // C++ standard functions, like move and forward. | |||
| 6846 | static void DiagnosedUnqualifiedCallsToStdFunctions(Sema &S, CallExpr *Call) { | |||
| 6847 | // We are only checking unary move and forward so exit early here. | |||
| 6848 | if (Call->getNumArgs() != 1) | |||
| 6849 | return; | |||
| 6850 | ||||
| 6851 | Expr *E = Call->getCallee()->IgnoreParenImpCasts(); | |||
| 6852 | if (!E || isa<UnresolvedLookupExpr>(E)) | |||
| 6853 | return; | |||
| 6854 | DeclRefExpr *DRE = dyn_cast_or_null<DeclRefExpr>(E); | |||
| 6855 | if (!DRE || !DRE->getLocation().isValid()) | |||
| 6856 | return; | |||
| 6857 | ||||
| 6858 | if (DRE->getQualifier()) | |||
| 6859 | return; | |||
| 6860 | ||||
| 6861 | const FunctionDecl *FD = Call->getDirectCallee(); | |||
| 6862 | if (!FD) | |||
| 6863 | return; | |||
| 6864 | ||||
| 6865 | // Only warn for some functions deemed more frequent or problematic. | |||
| 6866 | unsigned BuiltinID = FD->getBuiltinID(); | |||
| 6867 | if (BuiltinID != Builtin::BImove && BuiltinID != Builtin::BIforward) | |||
| 6868 | return; | |||
| 6869 | ||||
| 6870 | S.Diag(DRE->getLocation(), diag::warn_unqualified_call_to_std_cast_function) | |||
| 6871 | << FD->getQualifiedNameAsString() | |||
| 6872 | << FixItHint::CreateInsertion(DRE->getLocation(), "std::"); | |||
| 6873 | } | |||
| 6874 | ||||
| 6875 | ExprResult Sema::ActOnCallExpr(Scope *Scope, Expr *Fn, SourceLocation LParenLoc, | |||
| 6876 | MultiExprArg ArgExprs, SourceLocation RParenLoc, | |||
| 6877 | Expr *ExecConfig) { | |||
| 6878 | ExprResult Call = | |||
| 6879 | BuildCallExpr(Scope, Fn, LParenLoc, ArgExprs, RParenLoc, ExecConfig, | |||
| 6880 | /*IsExecConfig=*/false, /*AllowRecovery=*/true); | |||
| 6881 | if (Call.isInvalid()) | |||
| 6882 | return Call; | |||
| 6883 | ||||
| 6884 | // Diagnose uses of the C++20 "ADL-only template-id call" feature in earlier | |||
| 6885 | // language modes. | |||
| 6886 | if (auto *ULE = dyn_cast<UnresolvedLookupExpr>(Fn)) { | |||
| 6887 | if (ULE->hasExplicitTemplateArgs() && | |||
| 6888 | ULE->decls_begin() == ULE->decls_end()) { | |||
| 6889 | Diag(Fn->getExprLoc(), getLangOpts().CPlusPlus20 | |||
| 6890 | ? diag::warn_cxx17_compat_adl_only_template_id | |||
| 6891 | : diag::ext_adl_only_template_id) | |||
| 6892 | << ULE->getName(); | |||
| 6893 | } | |||
| 6894 | } | |||
| 6895 | ||||
| 6896 | if (LangOpts.OpenMP) | |||
| 6897 | Call = ActOnOpenMPCall(Call, Scope, LParenLoc, ArgExprs, RParenLoc, | |||
| 6898 | ExecConfig); | |||
| 6899 | if (LangOpts.CPlusPlus) { | |||
| 6900 | CallExpr *CE = dyn_cast<CallExpr>(Call.get()); | |||
| 6901 | if (CE) | |||
| 6902 | DiagnosedUnqualifiedCallsToStdFunctions(*this, CE); | |||
| 6903 | } | |||
| 6904 | return Call; | |||
| 6905 | } | |||
| 6906 | ||||
| 6907 | /// BuildCallExpr - Handle a call to Fn with the specified array of arguments. | |||
| 6908 | /// This provides the location of the left/right parens and a list of comma | |||
| 6909 | /// locations. | |||
| 6910 | ExprResult Sema::BuildCallExpr(Scope *Scope, Expr *Fn, SourceLocation LParenLoc, | |||
| 6911 | MultiExprArg ArgExprs, SourceLocation RParenLoc, | |||
| 6912 | Expr *ExecConfig, bool IsExecConfig, | |||
| 6913 | bool AllowRecovery) { | |||
| 6914 | // Since this might be a postfix expression, get rid of ParenListExprs. | |||
| 6915 | ExprResult Result = MaybeConvertParenListExprToParenExpr(Scope, Fn); | |||
| 6916 | if (Result.isInvalid()) return ExprError(); | |||
| 6917 | Fn = Result.get(); | |||
| 6918 | ||||
| 6919 | if (checkArgsForPlaceholders(*this, ArgExprs)) | |||
| 6920 | return ExprError(); | |||
| 6921 | ||||
| 6922 | if (getLangOpts().CPlusPlus) { | |||
| 6923 | // If this is a pseudo-destructor expression, build the call immediately. | |||
| 6924 | if (isa<CXXPseudoDestructorExpr>(Fn)) { | |||
| 6925 | if (!ArgExprs.empty()) { | |||
| 6926 | // Pseudo-destructor calls should not have any arguments. | |||
| 6927 | Diag(Fn->getBeginLoc(), diag::err_pseudo_dtor_call_with_args) | |||
| 6928 | << FixItHint::CreateRemoval( | |||
| 6929 | SourceRange(ArgExprs.front()->getBeginLoc(), | |||
| 6930 | ArgExprs.back()->getEndLoc())); | |||
| 6931 | } | |||
| 6932 | ||||
| 6933 | return CallExpr::Create(Context, Fn, /*Args=*/{}, Context.VoidTy, | |||
| 6934 | VK_PRValue, RParenLoc, CurFPFeatureOverrides()); | |||
| 6935 | } | |||
| 6936 | if (Fn->getType() == Context.PseudoObjectTy) { | |||
| 6937 | ExprResult result = CheckPlaceholderExpr(Fn); | |||
| 6938 | if (result.isInvalid()) return ExprError(); | |||
| 6939 | Fn = result.get(); | |||
| 6940 | } | |||
| 6941 | ||||
| 6942 | // Determine whether this is a dependent call inside a C++ template, | |||
| 6943 | // in which case we won't do any semantic analysis now. | |||
| 6944 | if (Fn->isTypeDependent() || Expr::hasAnyTypeDependentArguments(ArgExprs)) { | |||
| 6945 | if (ExecConfig) { | |||
| 6946 | return CUDAKernelCallExpr::Create(Context, Fn, | |||
| 6947 | cast<CallExpr>(ExecConfig), ArgExprs, | |||
| 6948 | Context.DependentTy, VK_PRValue, | |||
| 6949 | RParenLoc, CurFPFeatureOverrides()); | |||
| 6950 | } else { | |||
| 6951 | ||||
| 6952 | tryImplicitlyCaptureThisIfImplicitMemberFunctionAccessWithDependentArgs( | |||
| 6953 | *this, dyn_cast<UnresolvedMemberExpr>(Fn->IgnoreParens()), | |||
| 6954 | Fn->getBeginLoc()); | |||
| 6955 | ||||
| 6956 | return CallExpr::Create(Context, Fn, ArgExprs, Context.DependentTy, | |||
| 6957 | VK_PRValue, RParenLoc, CurFPFeatureOverrides()); | |||
| 6958 | } | |||
| 6959 | } | |||
| 6960 | ||||
| 6961 | // Determine whether this is a call to an object (C++ [over.call.object]). | |||
| 6962 | if (Fn->getType()->isRecordType()) | |||
| 6963 | return BuildCallToObjectOfClassType(Scope, Fn, LParenLoc, ArgExprs, | |||
| 6964 | RParenLoc); | |||
| 6965 | ||||
| 6966 | if (Fn->getType() == Context.UnknownAnyTy) { | |||
| 6967 | ExprResult result = rebuildUnknownAnyFunction(*this, Fn); | |||
| 6968 | if (result.isInvalid()) return ExprError(); | |||
| 6969 | Fn = result.get(); | |||
| 6970 | } | |||
| 6971 | ||||
| 6972 | if (Fn->getType() == Context.BoundMemberTy) { | |||
| 6973 | return BuildCallToMemberFunction(Scope, Fn, LParenLoc, ArgExprs, | |||
| 6974 | RParenLoc, ExecConfig, IsExecConfig, | |||
| 6975 | AllowRecovery); | |||
| 6976 | } | |||
| 6977 | } | |||
| 6978 | ||||
| 6979 | // Check for overloaded calls. This can happen even in C due to extensions. | |||
| 6980 | if (Fn->getType() == Context.OverloadTy) { | |||
| 6981 | OverloadExpr::FindResult find = OverloadExpr::find(Fn); | |||
| 6982 | ||||
| 6983 | // We aren't supposed to apply this logic if there's an '&' involved. | |||
| 6984 | if (!find.HasFormOfMemberPointer) { | |||
| 6985 | if (Expr::hasAnyTypeDependentArguments(ArgExprs)) | |||
| 6986 | return CallExpr::Create(Context, Fn, ArgExprs, Context.DependentTy, | |||
| 6987 | VK_PRValue, RParenLoc, CurFPFeatureOverrides()); | |||
| 6988 | OverloadExpr *ovl = find.Expression; | |||
| 6989 | if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(ovl)) | |||
| 6990 | return BuildOverloadedCallExpr( | |||
| 6991 | Scope, Fn, ULE, LParenLoc, ArgExprs, RParenLoc, ExecConfig, | |||
| 6992 | /*AllowTypoCorrection=*/true, find.IsAddressOfOperand); | |||
| 6993 | return BuildCallToMemberFunction(Scope, Fn, LParenLoc, ArgExprs, | |||
| 6994 | RParenLoc, ExecConfig, IsExecConfig, | |||
| 6995 | AllowRecovery); | |||
| 6996 | } | |||
| 6997 | } | |||
| 6998 | ||||
| 6999 | // If we're directly calling a function, get the appropriate declaration. | |||
| 7000 | if (Fn->getType() == Context.UnknownAnyTy) { | |||
| 7001 | ExprResult result = rebuildUnknownAnyFunction(*this, Fn); | |||
| 7002 | if (result.isInvalid()) return ExprError(); | |||
| 7003 | Fn = result.get(); | |||
| 7004 | } | |||
| 7005 | ||||
| 7006 | Expr *NakedFn = Fn->IgnoreParens(); | |||
| 7007 | ||||
| 7008 | bool CallingNDeclIndirectly = false; | |||
| 7009 | NamedDecl *NDecl = nullptr; | |||
| 7010 | if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(NakedFn)) { | |||
| 7011 | if (UnOp->getOpcode() == UO_AddrOf) { | |||
| 7012 | CallingNDeclIndirectly = true; | |||
| 7013 | NakedFn = UnOp->getSubExpr()->IgnoreParens(); | |||
| 7014 | } | |||
| 7015 | } | |||
| 7016 | ||||
| 7017 | if (auto *DRE = dyn_cast<DeclRefExpr>(NakedFn)) { | |||
| 7018 | NDecl = DRE->getDecl(); | |||
| 7019 | ||||
| 7020 | FunctionDecl *FDecl = dyn_cast<FunctionDecl>(NDecl); | |||
| 7021 | if (FDecl && FDecl->getBuiltinID()) { | |||
| 7022 | // Rewrite the function decl for this builtin by replacing parameters | |||
| 7023 | // with no explicit address space with the address space of the arguments | |||
| 7024 | // in ArgExprs. | |||
| 7025 | if ((FDecl = | |||
| 7026 | rewriteBuiltinFunctionDecl(this, Context, FDecl, ArgExprs))) { | |||
| 7027 | NDecl = FDecl; | |||
| 7028 | Fn = DeclRefExpr::Create( | |||
| 7029 | Context, FDecl->getQualifierLoc(), SourceLocation(), FDecl, false, | |||
| 7030 | SourceLocation(), FDecl->getType(), Fn->getValueKind(), FDecl, | |||
| 7031 | nullptr, DRE->isNonOdrUse()); | |||
| 7032 | } | |||
| 7033 | } | |||
| 7034 | } else if (auto *ME = dyn_cast<MemberExpr>(NakedFn)) | |||
| 7035 | NDecl = ME->getMemberDecl(); | |||
| 7036 | ||||
| 7037 | if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(NDecl)) { | |||
| 7038 | if (CallingNDeclIndirectly && !checkAddressOfFunctionIsAvailable( | |||
| 7039 | FD, /*Complain=*/true, Fn->getBeginLoc())) | |||
| 7040 | return ExprError(); | |||
| 7041 | ||||
| 7042 | checkDirectCallValidity(*this, Fn, FD, ArgExprs); | |||
| 7043 | ||||
| 7044 | // If this expression is a call to a builtin function in HIP device | |||
| 7045 | // compilation, allow a pointer-type argument to default address space to be | |||
| 7046 | // passed as a pointer-type parameter to a non-default address space. | |||
| 7047 | // If Arg is declared in the default address space and Param is declared | |||
| 7048 | // in a non-default address space, perform an implicit address space cast to | |||
| 7049 | // the parameter type. | |||
| 7050 | if (getLangOpts().HIP && getLangOpts().CUDAIsDevice && FD && | |||
| 7051 | FD->getBuiltinID()) { | |||
| 7052 | for (unsigned Idx = 0; Idx < FD->param_size(); ++Idx) { | |||
| 7053 | ParmVarDecl *Param = FD->getParamDecl(Idx); | |||
| 7054 | if (!ArgExprs[Idx] || !Param || !Param->getType()->isPointerType() || | |||
| 7055 | !ArgExprs[Idx]->getType()->isPointerType()) | |||
| 7056 | continue; | |||
| 7057 | ||||
| 7058 | auto ParamAS = Param->getType()->getPointeeType().getAddressSpace(); | |||
| 7059 | auto ArgTy = ArgExprs[Idx]->getType(); | |||
| 7060 | auto ArgPtTy = ArgTy->getPointeeType(); | |||
| 7061 | auto ArgAS = ArgPtTy.getAddressSpace(); | |||
| 7062 | ||||
| 7063 | // Add address space cast if target address spaces are different | |||
| 7064 | bool NeedImplicitASC = | |||
| 7065 | ParamAS != LangAS::Default && // Pointer params in generic AS don't need special handling. | |||
| 7066 | ( ArgAS == LangAS::Default || // We do allow implicit conversion from generic AS | |||
| 7067 | // or from specific AS which has target AS matching that of Param. | |||
| 7068 | getASTContext().getTargetAddressSpace(ArgAS) == getASTContext().getTargetAddressSpace(ParamAS)); | |||
| 7069 | if (!NeedImplicitASC) | |||
| 7070 | continue; | |||
| 7071 | ||||
| 7072 | // First, ensure that the Arg is an RValue. | |||
| 7073 | if (ArgExprs[Idx]->isGLValue()) { | |||
| 7074 | ArgExprs[Idx] = ImplicitCastExpr::Create( | |||
| 7075 | Context, ArgExprs[Idx]->getType(), CK_NoOp, ArgExprs[Idx], | |||
| 7076 | nullptr, VK_PRValue, FPOptionsOverride()); | |||
| 7077 | } | |||
| 7078 | ||||
| 7079 | // Construct a new arg type with address space of Param | |||
| 7080 | Qualifiers ArgPtQuals = ArgPtTy.getQualifiers(); | |||
| 7081 | ArgPtQuals.setAddressSpace(ParamAS); | |||
| 7082 | auto NewArgPtTy = | |||
| 7083 | Context.getQualifiedType(ArgPtTy.getUnqualifiedType(), ArgPtQuals); | |||
| 7084 | auto NewArgTy = | |||
| 7085 | Context.getQualifiedType(Context.getPointerType(NewArgPtTy), | |||
| 7086 | ArgTy.getQualifiers()); | |||
| 7087 | ||||
| 7088 | // Finally perform an implicit address space cast | |||
| 7089 | ArgExprs[Idx] = ImpCastExprToType(ArgExprs[Idx], NewArgTy, | |||
| 7090 | CK_AddressSpaceConversion) | |||
| 7091 | .get(); | |||
| 7092 | } | |||
| 7093 | } | |||
| 7094 | } | |||
| 7095 | ||||
| 7096 | if (Context.isDependenceAllowed() && | |||
| 7097 | (Fn->isTypeDependent() || Expr::hasAnyTypeDependentArguments(ArgExprs))) { | |||
| 7098 | assert(!getLangOpts().CPlusPlus)(static_cast <bool> (!getLangOpts().CPlusPlus) ? void ( 0) : __assert_fail ("!getLangOpts().CPlusPlus", "clang/lib/Sema/SemaExpr.cpp" , 7098, __extension__ __PRETTY_FUNCTION__)); | |||
| 7099 | assert((Fn->containsErrors() ||(static_cast <bool> ((Fn->containsErrors() || llvm:: any_of(ArgExprs, [](clang::Expr *E) { return E->containsErrors (); })) && "should only occur in error-recovery path." ) ? void (0) : __assert_fail ("(Fn->containsErrors() || llvm::any_of(ArgExprs, [](clang::Expr *E) { return E->containsErrors(); })) && \"should only occur in error-recovery path.\"" , "clang/lib/Sema/SemaExpr.cpp", 7102, __extension__ __PRETTY_FUNCTION__ )) | |||
| 7100 | llvm::any_of(ArgExprs,(static_cast <bool> ((Fn->containsErrors() || llvm:: any_of(ArgExprs, [](clang::Expr *E) { return E->containsErrors (); })) && "should only occur in error-recovery path." ) ? void (0) : __assert_fail ("(Fn->containsErrors() || llvm::any_of(ArgExprs, [](clang::Expr *E) { return E->containsErrors(); })) && \"should only occur in error-recovery path.\"" , "clang/lib/Sema/SemaExpr.cpp", 7102, __extension__ __PRETTY_FUNCTION__ )) | |||
| 7101 | [](clang::Expr *E) { return E->containsErrors(); })) &&(static_cast <bool> ((Fn->containsErrors() || llvm:: any_of(ArgExprs, [](clang::Expr *E) { return E->containsErrors (); })) && "should only occur in error-recovery path." ) ? void (0) : __assert_fail ("(Fn->containsErrors() || llvm::any_of(ArgExprs, [](clang::Expr *E) { return E->containsErrors(); })) && \"should only occur in error-recovery path.\"" , "clang/lib/Sema/SemaExpr.cpp", 7102, __extension__ __PRETTY_FUNCTION__ )) | |||
| 7102 | "should only occur in error-recovery path.")(static_cast <bool> ((Fn->containsErrors() || llvm:: any_of(ArgExprs, [](clang::Expr *E) { return E->containsErrors (); })) && "should only occur in error-recovery path." ) ? void (0) : __assert_fail ("(Fn->containsErrors() || llvm::any_of(ArgExprs, [](clang::Expr *E) { return E->containsErrors(); })) && \"should only occur in error-recovery path.\"" , "clang/lib/Sema/SemaExpr.cpp", 7102, __extension__ __PRETTY_FUNCTION__ )); | |||
| 7103 | QualType ReturnType = | |||
| 7104 | llvm::isa_and_nonnull<FunctionDecl>(NDecl) | |||
| 7105 | ? cast<FunctionDecl>(NDecl)->getCallResultType() | |||
| 7106 | : Context.DependentTy; | |||
| 7107 | return CallExpr::Create(Context, Fn, ArgExprs, ReturnType, | |||
| 7108 | Expr::getValueKindForType(ReturnType), RParenLoc, | |||
| 7109 | CurFPFeatureOverrides()); | |||
| 7110 | } | |||
| 7111 | return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, ArgExprs, RParenLoc, | |||
| 7112 | ExecConfig, IsExecConfig); | |||
| 7113 | } | |||
| 7114 | ||||
| 7115 | /// BuildBuiltinCallExpr - Create a call to a builtin function specified by Id | |||
| 7116 | // with the specified CallArgs | |||
| 7117 | Expr *Sema::BuildBuiltinCallExpr(SourceLocation Loc, Builtin::ID Id, | |||
| 7118 | MultiExprArg CallArgs) { | |||
| 7119 | StringRef Name = Context.BuiltinInfo.getName(Id); | |||
| 7120 | LookupResult R(*this, &Context.Idents.get(Name), Loc, | |||
| 7121 | Sema::LookupOrdinaryName); | |||
| 7122 | LookupName(R, TUScope, /*AllowBuiltinCreation=*/true); | |||
| 7123 | ||||
| 7124 | auto *BuiltInDecl = R.getAsSingle<FunctionDecl>(); | |||
| 7125 | assert(BuiltInDecl && "failed to find builtin declaration")(static_cast <bool> (BuiltInDecl && "failed to find builtin declaration" ) ? void (0) : __assert_fail ("BuiltInDecl && \"failed to find builtin declaration\"" , "clang/lib/Sema/SemaExpr.cpp", 7125, __extension__ __PRETTY_FUNCTION__ )); | |||
| 7126 | ||||
| 7127 | ExprResult DeclRef = | |||
| 7128 | BuildDeclRefExpr(BuiltInDecl, BuiltInDecl->getType(), VK_LValue, Loc); | |||
| 7129 | assert(DeclRef.isUsable() && "Builtin reference cannot fail")(static_cast <bool> (DeclRef.isUsable() && "Builtin reference cannot fail" ) ? void (0) : __assert_fail ("DeclRef.isUsable() && \"Builtin reference cannot fail\"" , "clang/lib/Sema/SemaExpr.cpp", 7129, __extension__ __PRETTY_FUNCTION__ )); | |||
| 7130 | ||||
| 7131 | ExprResult Call = | |||
| 7132 | BuildCallExpr(/*Scope=*/nullptr, DeclRef.get(), Loc, CallArgs, Loc); | |||
| 7133 | ||||
| 7134 | assert(!Call.isInvalid() && "Call to builtin cannot fail!")(static_cast <bool> (!Call.isInvalid() && "Call to builtin cannot fail!" ) ? void (0) : __assert_fail ("!Call.isInvalid() && \"Call to builtin cannot fail!\"" , "clang/lib/Sema/SemaExpr.cpp", 7134, __extension__ __PRETTY_FUNCTION__ )); | |||
| 7135 | return Call.get(); | |||
| 7136 | } | |||
| 7137 | ||||
| 7138 | /// Parse a __builtin_astype expression. | |||
| 7139 | /// | |||
| 7140 | /// __builtin_astype( value, dst type ) | |||
| 7141 | /// | |||
| 7142 | ExprResult Sema::ActOnAsTypeExpr(Expr *E, ParsedType ParsedDestTy, | |||
| 7143 | SourceLocation BuiltinLoc, | |||
| 7144 | SourceLocation RParenLoc) { | |||
| 7145 | QualType DstTy = GetTypeFromParser(ParsedDestTy); | |||
| 7146 | return BuildAsTypeExpr(E, DstTy, BuiltinLoc, RParenLoc); | |||
| 7147 | } | |||
| 7148 | ||||
| 7149 | /// Create a new AsTypeExpr node (bitcast) from the arguments. | |||
| 7150 | ExprResult Sema::BuildAsTypeExpr(Expr *E, QualType DestTy, | |||
| 7151 | SourceLocation BuiltinLoc, | |||
| 7152 | SourceLocation RParenLoc) { | |||
| 7153 | ExprValueKind VK = VK_PRValue; | |||
| 7154 | ExprObjectKind OK = OK_Ordinary; | |||
| 7155 | QualType SrcTy = E->getType(); | |||
| 7156 | if (!SrcTy->isDependentType() && | |||
| 7157 | Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy)) | |||
| 7158 | return ExprError( | |||
| 7159 | Diag(BuiltinLoc, diag::err_invalid_astype_of_different_size) | |||
| 7160 | << DestTy << SrcTy << E->getSourceRange()); | |||
| 7161 | return new (Context) AsTypeExpr(E, DestTy, VK, OK, BuiltinLoc, RParenLoc); | |||
| 7162 | } | |||
| 7163 | ||||
| 7164 | /// ActOnConvertVectorExpr - create a new convert-vector expression from the | |||
| 7165 | /// provided arguments. | |||
| 7166 | /// | |||
| 7167 | /// __builtin_convertvector( value, dst type ) | |||
| 7168 | /// | |||
| 7169 | ExprResult Sema::ActOnConvertVectorExpr(Expr *E, ParsedType ParsedDestTy, | |||
| 7170 | SourceLocation BuiltinLoc, | |||
| 7171 | SourceLocation RParenLoc) { | |||
| 7172 | TypeSourceInfo *TInfo; | |||
| 7173 | GetTypeFromParser(ParsedDestTy, &TInfo); | |||
| 7174 | return SemaConvertVectorExpr(E, TInfo, BuiltinLoc, RParenLoc); | |||
| 7175 | } | |||
| 7176 | ||||
| 7177 | /// BuildResolvedCallExpr - Build a call to a resolved expression, | |||
| 7178 | /// i.e. an expression not of \p OverloadTy. The expression should | |||
| 7179 | /// unary-convert to an expression of function-pointer or | |||
| 7180 | /// block-pointer type. | |||
| 7181 | /// | |||
| 7182 | /// \param NDecl the declaration being called, if available | |||
| 7183 | ExprResult Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl, | |||
| 7184 | SourceLocation LParenLoc, | |||
| 7185 | ArrayRef<Expr *> Args, | |||
| 7186 | SourceLocation RParenLoc, Expr *Config, | |||
| 7187 | bool IsExecConfig, ADLCallKind UsesADL) { | |||
| 7188 | FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl); | |||
| 7189 | unsigned BuiltinID = (FDecl ? FDecl->getBuiltinID() : 0); | |||
| 7190 | ||||
| 7191 | // Functions with 'interrupt' attribute cannot be called directly. | |||
| 7192 | if (FDecl && FDecl->hasAttr<AnyX86InterruptAttr>()) { | |||
| 7193 | Diag(Fn->getExprLoc(), diag::err_anyx86_interrupt_called); | |||
| 7194 | return ExprError(); | |||
| 7195 | } | |||
| 7196 | ||||
| 7197 | // Interrupt handlers don't save off the VFP regs automatically on ARM, | |||
| 7198 | // so there's some risk when calling out to non-interrupt handler functions | |||
| 7199 | // that the callee might not preserve them. This is easy to diagnose here, | |||
| 7200 | // but can be very challenging to debug. | |||
| 7201 | // Likewise, X86 interrupt handlers may only call routines with attribute | |||
| 7202 | // no_caller_saved_registers since there is no efficient way to | |||
| 7203 | // save and restore the non-GPR state. | |||
| 7204 | if (auto *Caller = getCurFunctionDecl()) { | |||
| 7205 | if (Caller->hasAttr<ARMInterruptAttr>()) { | |||
| 7206 | bool VFP = Context.getTargetInfo().hasFeature("vfp"); | |||
| 7207 | if (VFP && (!FDecl || !FDecl->hasAttr<ARMInterruptAttr>())) { | |||
| 7208 | Diag(Fn->getExprLoc(), diag::warn_arm_interrupt_calling_convention); | |||
| 7209 | if (FDecl) | |||
| 7210 | Diag(FDecl->getLocation(), diag::note_callee_decl) << FDecl; | |||
| 7211 | } | |||
| 7212 | } | |||
| 7213 | if (Caller->hasAttr<AnyX86InterruptAttr>() && | |||
| 7214 | ((!FDecl || !FDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>()))) { | |||
| 7215 | Diag(Fn->getExprLoc(), diag::warn_anyx86_interrupt_regsave); | |||
| 7216 | if (FDecl) | |||
| 7217 | Diag(FDecl->getLocation(), diag::note_callee_decl) << FDecl; | |||
| 7218 | } | |||
| 7219 | } | |||
| 7220 | ||||
| 7221 | // Promote the function operand. | |||
| 7222 | // We special-case function promotion here because we only allow promoting | |||
| 7223 | // builtin functions to function pointers in the callee of a call. | |||
| 7224 | ExprResult Result; | |||
| 7225 | QualType ResultTy; | |||
| 7226 | if (BuiltinID && | |||
| 7227 | Fn->getType()->isSpecificBuiltinType(BuiltinType::BuiltinFn)) { | |||
| 7228 | // Extract the return type from the (builtin) function pointer type. | |||
| 7229 | // FIXME Several builtins still have setType in | |||
| 7230 | // Sema::CheckBuiltinFunctionCall. One should review their definitions in | |||
| 7231 | // Builtins.def to ensure they are correct before removing setType calls. | |||
| 7232 | QualType FnPtrTy = Context.getPointerType(FDecl->getType()); | |||
| 7233 | Result = ImpCastExprToType(Fn, FnPtrTy, CK_BuiltinFnToFnPtr).get(); | |||
| 7234 | ResultTy = FDecl->getCallResultType(); | |||
| 7235 | } else { | |||
| 7236 | Result = CallExprUnaryConversions(Fn); | |||
| 7237 | ResultTy = Context.BoolTy; | |||
| 7238 | } | |||
| 7239 | if (Result.isInvalid()) | |||
| 7240 | return ExprError(); | |||
| 7241 | Fn = Result.get(); | |||
| 7242 | ||||
| 7243 | // Check for a valid function type, but only if it is not a builtin which | |||
| 7244 | // requires custom type checking. These will be handled by | |||
| 7245 | // CheckBuiltinFunctionCall below just after creation of the call expression. | |||
| 7246 | const FunctionType *FuncT = nullptr; | |||
| 7247 | if (!BuiltinID || !Context.BuiltinInfo.hasCustomTypechecking(BuiltinID)) { | |||
| 7248 | retry: | |||
| 7249 | if (const PointerType *PT = Fn->getType()->getAs<PointerType>()) { | |||
| 7250 | // C99 6.5.2.2p1 - "The expression that denotes the called function shall | |||
| 7251 | // have type pointer to function". | |||
| 7252 | FuncT = PT->getPointeeType()->getAs<FunctionType>(); | |||
| 7253 | if (!FuncT) | |||
| 7254 | return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function) | |||
| 7255 | << Fn->getType() << Fn->getSourceRange()); | |||
| 7256 | } else if (const BlockPointerType *BPT = | |||
| 7257 | Fn->getType()->getAs<BlockPointerType>()) { | |||
| 7258 | FuncT = BPT->getPointeeType()->castAs<FunctionType>(); | |||
| 7259 | } else { | |||
| 7260 | // Handle calls to expressions of unknown-any type. | |||
| 7261 | if (Fn->getType() == Context.UnknownAnyTy) { | |||
| 7262 | ExprResult rewrite = rebuildUnknownAnyFunction(*this, Fn); | |||
| 7263 | if (rewrite.isInvalid()) | |||
| 7264 | return ExprError(); | |||
| 7265 | Fn = rewrite.get(); | |||
| 7266 | goto retry; | |||
| 7267 | } | |||
| 7268 | ||||
| 7269 | return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function) | |||
| 7270 | << Fn->getType() << Fn->getSourceRange()); | |||
| 7271 | } | |||
| 7272 | } | |||
| 7273 | ||||
| 7274 | // Get the number of parameters in the function prototype, if any. | |||
| 7275 | // We will allocate space for max(Args.size(), NumParams) arguments | |||
| 7276 | // in the call expression. | |||
| 7277 | const auto *Proto = dyn_cast_or_null<FunctionProtoType>(FuncT); | |||
| 7278 | unsigned NumParams = Proto ? Proto->getNumParams() : 0; | |||
| 7279 | ||||
| 7280 | CallExpr *TheCall; | |||
| 7281 | if (Config) { | |||
| 7282 | assert(UsesADL == ADLCallKind::NotADL &&(static_cast <bool> (UsesADL == ADLCallKind::NotADL && "CUDAKernelCallExpr should not use ADL") ? void (0) : __assert_fail ("UsesADL == ADLCallKind::NotADL && \"CUDAKernelCallExpr should not use ADL\"" , "clang/lib/Sema/SemaExpr.cpp", 7283, __extension__ __PRETTY_FUNCTION__ )) | |||
| 7283 | "CUDAKernelCallExpr should not use ADL")(static_cast <bool> (UsesADL == ADLCallKind::NotADL && "CUDAKernelCallExpr should not use ADL") ? void (0) : __assert_fail ("UsesADL == ADLCallKind::NotADL && \"CUDAKernelCallExpr should not use ADL\"" , "clang/lib/Sema/SemaExpr.cpp", 7283, __extension__ __PRETTY_FUNCTION__ )); | |||
| 7284 | TheCall = CUDAKernelCallExpr::Create(Context, Fn, cast<CallExpr>(Config), | |||
| 7285 | Args, ResultTy, VK_PRValue, RParenLoc, | |||
| 7286 | CurFPFeatureOverrides(), NumParams); | |||
| 7287 | } else { | |||
| 7288 | TheCall = | |||
| 7289 | CallExpr::Create(Context, Fn, Args, ResultTy, VK_PRValue, RParenLoc, | |||
| 7290 | CurFPFeatureOverrides(), NumParams, UsesADL); | |||
| 7291 | } | |||
| 7292 | ||||
| 7293 | if (!Context.isDependenceAllowed()) { | |||
| 7294 | // Forget about the nulled arguments since typo correction | |||
| 7295 | // do not handle them well. | |||
| 7296 | TheCall->shrinkNumArgs(Args.size()); | |||
| 7297 | // C cannot always handle TypoExpr nodes in builtin calls and direct | |||
| 7298 | // function calls as their argument checking don't necessarily handle | |||
| 7299 | // dependent types properly, so make sure any TypoExprs have been | |||
| 7300 | // dealt with. | |||
| 7301 | ExprResult Result = CorrectDelayedTyposInExpr(TheCall); | |||
| 7302 | if (!Result.isUsable()) return ExprError(); | |||
| 7303 | CallExpr *TheOldCall = TheCall; | |||
| 7304 | TheCall = dyn_cast<CallExpr>(Result.get()); | |||
| 7305 | bool CorrectedTypos = TheCall != TheOldCall; | |||
| 7306 | if (!TheCall) return Result; | |||
| 7307 | Args = llvm::ArrayRef(TheCall->getArgs(), TheCall->getNumArgs()); | |||
| 7308 | ||||
| 7309 | // A new call expression node was created if some typos were corrected. | |||
| 7310 | // However it may not have been constructed with enough storage. In this | |||
| 7311 | // case, rebuild the node with enough storage. The waste of space is | |||
| 7312 | // immaterial since this only happens when some typos were corrected. | |||
| 7313 | if (CorrectedTypos && Args.size() < NumParams) { | |||
| 7314 | if (Config) | |||
| 7315 | TheCall = CUDAKernelCallExpr::Create( | |||
| 7316 | Context, Fn, cast<CallExpr>(Config), Args, ResultTy, VK_PRValue, | |||
| 7317 | RParenLoc, CurFPFeatureOverrides(), NumParams); | |||
| 7318 | else | |||
| 7319 | TheCall = | |||
| 7320 | CallExpr::Create(Context, Fn, Args, ResultTy, VK_PRValue, RParenLoc, | |||
| 7321 | CurFPFeatureOverrides(), NumParams, UsesADL); | |||
| 7322 | } | |||
| 7323 | // We can now handle the nulled arguments for the default arguments. | |||
| 7324 | TheCall->setNumArgsUnsafe(std::max<unsigned>(Args.size(), NumParams)); | |||
| 7325 | } | |||
| 7326 | ||||
| 7327 | // Bail out early if calling a builtin with custom type checking. | |||
| 7328 | if (BuiltinID && Context.BuiltinInfo.hasCustomTypechecking(BuiltinID)) | |||
| 7329 | return CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall); | |||
| 7330 | ||||
| 7331 | if (getLangOpts().CUDA) { | |||
| 7332 | if (Config) { | |||
| 7333 | // CUDA: Kernel calls must be to global functions | |||
| 7334 | if (FDecl && !FDecl->hasAttr<CUDAGlobalAttr>()) | |||
| 7335 | return ExprError(Diag(LParenLoc,diag::err_kern_call_not_global_function) | |||
| 7336 | << FDecl << Fn->getSourceRange()); | |||
| 7337 | ||||
| 7338 | // CUDA: Kernel function must have 'void' return type | |||
| 7339 | if (!FuncT->getReturnType()->isVoidType() && | |||
| 7340 | !FuncT->getReturnType()->getAs<AutoType>() && | |||
| 7341 | !FuncT->getReturnType()->isInstantiationDependentType()) | |||
| 7342 | return ExprError(Diag(LParenLoc, diag::err_kern_type_not_void_return) | |||
| 7343 | << Fn->getType() << Fn->getSourceRange()); | |||
| 7344 | } else { | |||
| 7345 | // CUDA: Calls to global functions must be configured | |||
| 7346 | if (FDecl && FDecl->hasAttr<CUDAGlobalAttr>()) | |||
| 7347 | return ExprError(Diag(LParenLoc, diag::err_global_call_not_config) | |||
| 7348 | << FDecl << Fn->getSourceRange()); | |||
| 7349 | } | |||
| 7350 | } | |||
| 7351 | ||||
| 7352 | // Check for a valid return type | |||
| 7353 | if (CheckCallReturnType(FuncT->getReturnType(), Fn->getBeginLoc(), TheCall, | |||
| 7354 | FDecl)) | |||
| 7355 | return ExprError(); | |||
| 7356 | ||||
| 7357 | // We know the result type of the call, set it. | |||
| 7358 | TheCall->setType(FuncT->getCallResultType(Context)); | |||
| 7359 | TheCall->setValueKind(Expr::getValueKindForType(FuncT->getReturnType())); | |||
| 7360 | ||||
| 7361 | if (Proto) { | |||
| 7362 | if (ConvertArgumentsForCall(TheCall, Fn, FDecl, Proto, Args, RParenLoc, | |||
| 7363 | IsExecConfig)) | |||
| 7364 | return ExprError(); | |||
| 7365 | } else { | |||
| 7366 | assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!")(static_cast <bool> (isa<FunctionNoProtoType>(FuncT ) && "Unknown FunctionType!") ? void (0) : __assert_fail ("isa<FunctionNoProtoType>(FuncT) && \"Unknown FunctionType!\"" , "clang/lib/Sema/SemaExpr.cpp", 7366, __extension__ __PRETTY_FUNCTION__ )); | |||
| 7367 | ||||
| 7368 | if (FDecl) { | |||
| 7369 | // Check if we have too few/too many template arguments, based | |||
| 7370 | // on our knowledge of the function definition. | |||
| 7371 | const FunctionDecl *Def = nullptr; | |||
| 7372 | if (FDecl->hasBody(Def) && Args.size() != Def->param_size()) { | |||
| 7373 | Proto = Def->getType()->getAs<FunctionProtoType>(); | |||
| 7374 | if (!Proto || !(Proto->isVariadic() && Args.size() >= Def->param_size())) | |||
| 7375 | Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments) | |||
| 7376 | << (Args.size() > Def->param_size()) << FDecl << Fn->getSourceRange(); | |||
| 7377 | } | |||
| 7378 | ||||
| 7379 | // If the function we're calling isn't a function prototype, but we have | |||
| 7380 | // a function prototype from a prior declaratiom, use that prototype. | |||
| 7381 | if (!FDecl->hasPrototype()) | |||
| 7382 | Proto = FDecl->getType()->getAs<FunctionProtoType>(); | |||
| 7383 | } | |||
| 7384 | ||||
| 7385 | // If we still haven't found a prototype to use but there are arguments to | |||
| 7386 | // the call, diagnose this as calling a function without a prototype. | |||
| 7387 | // However, if we found a function declaration, check to see if | |||
| 7388 | // -Wdeprecated-non-prototype was disabled where the function was declared. | |||
| 7389 | // If so, we will silence the diagnostic here on the assumption that this | |||
| 7390 | // interface is intentional and the user knows what they're doing. We will | |||
| 7391 | // also silence the diagnostic if there is a function declaration but it | |||
| 7392 | // was implicitly defined (the user already gets diagnostics about the | |||
| 7393 | // creation of the implicit function declaration, so the additional warning | |||
| 7394 | // is not helpful). | |||
| 7395 | if (!Proto && !Args.empty() && | |||
| 7396 | (!FDecl || (!FDecl->isImplicit() && | |||
| 7397 | !Diags.isIgnored(diag::warn_strict_uses_without_prototype, | |||
| 7398 | FDecl->getLocation())))) | |||
| 7399 | Diag(LParenLoc, diag::warn_strict_uses_without_prototype) | |||
| 7400 | << (FDecl != nullptr) << FDecl; | |||
| 7401 | ||||
| 7402 | // Promote the arguments (C99 6.5.2.2p6). | |||
| 7403 | for (unsigned i = 0, e = Args.size(); i != e; i++) { | |||
| 7404 | Expr *Arg = Args[i]; | |||
| 7405 | ||||
| 7406 | if (Proto && i < Proto->getNumParams()) { | |||
| 7407 | InitializedEntity Entity = InitializedEntity::InitializeParameter( | |||
| 7408 | Context, Proto->getParamType(i), Proto->isParamConsumed(i)); | |||
| 7409 | ExprResult ArgE = | |||
| 7410 | PerformCopyInitialization(Entity, SourceLocation(), Arg); | |||
| 7411 | if (ArgE.isInvalid()) | |||
| 7412 | return true; | |||
| 7413 | ||||
| 7414 | Arg = ArgE.getAs<Expr>(); | |||
| 7415 | ||||
| 7416 | } else { | |||
| 7417 | ExprResult ArgE = DefaultArgumentPromotion(Arg); | |||
| 7418 | ||||
| 7419 | if (ArgE.isInvalid()) | |||
| 7420 | return true; | |||
| 7421 | ||||
| 7422 | Arg = ArgE.getAs<Expr>(); | |||
| 7423 | } | |||
| 7424 | ||||
| 7425 | if (RequireCompleteType(Arg->getBeginLoc(), Arg->getType(), | |||
| 7426 | diag::err_call_incomplete_argument, Arg)) | |||
| 7427 | return ExprError(); | |||
| 7428 | ||||
| 7429 | TheCall->setArg(i, Arg); | |||
| 7430 | } | |||
| 7431 | TheCall->computeDependence(); | |||
| 7432 | } | |||
| 7433 | ||||
| 7434 | if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl)) | |||
| 7435 | if (!Method->isStatic()) | |||
| 7436 | return ExprError(Diag(LParenLoc, diag::err_member_call_without_object) | |||
| 7437 | << Fn->getSourceRange()); | |||
| 7438 | ||||
| 7439 | // Check for sentinels | |||
| 7440 | if (NDecl) | |||
| 7441 | DiagnoseSentinelCalls(NDecl, LParenLoc, Args); | |||
| 7442 | ||||
| 7443 | // Warn for unions passing across security boundary (CMSE). | |||
| 7444 | if (FuncT != nullptr && FuncT->getCmseNSCallAttr()) { | |||
| 7445 | for (unsigned i = 0, e = Args.size(); i != e; i++) { | |||
| 7446 | if (const auto *RT = | |||
| 7447 | dyn_cast<RecordType>(Args[i]->getType().getCanonicalType())) { | |||
| 7448 | if (RT->getDecl()->isOrContainsUnion()) | |||
| 7449 | Diag(Args[i]->getBeginLoc(), diag::warn_cmse_nonsecure_union) | |||
| 7450 | << 0 << i; | |||
| 7451 | } | |||
| 7452 | } | |||
| 7453 | } | |||
| 7454 | ||||
| 7455 | // Do special checking on direct calls to functions. | |||
| 7456 | if (FDecl) { | |||
| 7457 | if (CheckFunctionCall(FDecl, TheCall, Proto)) | |||
| 7458 | return ExprError(); | |||
| 7459 | ||||
| 7460 | checkFortifiedBuiltinMemoryFunction(FDecl, TheCall); | |||
| 7461 | ||||
| 7462 | if (BuiltinID) | |||
| 7463 | return CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall); | |||
| 7464 | } else if (NDecl) { | |||
| 7465 | if (CheckPointerCall(NDecl, TheCall, Proto)) | |||
| 7466 | return ExprError(); | |||
| 7467 | } else { | |||
| 7468 | if (CheckOtherCall(TheCall, Proto)) | |||
| 7469 | return ExprError(); | |||
| 7470 | } | |||
| 7471 | ||||
| 7472 | return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall), FDecl); | |||
| 7473 | } | |||
| 7474 | ||||
| 7475 | ExprResult | |||
| 7476 | Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty, | |||
| 7477 | SourceLocation RParenLoc, Expr *InitExpr) { | |||
| 7478 | assert(Ty && "ActOnCompoundLiteral(): missing type")(static_cast <bool> (Ty && "ActOnCompoundLiteral(): missing type" ) ? void (0) : __assert_fail ("Ty && \"ActOnCompoundLiteral(): missing type\"" , "clang/lib/Sema/SemaExpr.cpp", 7478, __extension__ __PRETTY_FUNCTION__ )); | |||
| 7479 | assert(InitExpr && "ActOnCompoundLiteral(): missing expression")(static_cast <bool> (InitExpr && "ActOnCompoundLiteral(): missing expression" ) ? void (0) : __assert_fail ("InitExpr && \"ActOnCompoundLiteral(): missing expression\"" , "clang/lib/Sema/SemaExpr.cpp", 7479, __extension__ __PRETTY_FUNCTION__ )); | |||
| 7480 | ||||
| 7481 | TypeSourceInfo *TInfo; | |||
| 7482 | QualType literalType = GetTypeFromParser(Ty, &TInfo); | |||
| 7483 | if (!TInfo) | |||
| 7484 | TInfo = Context.getTrivialTypeSourceInfo(literalType); | |||
| 7485 | ||||
| 7486 | return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, InitExpr); | |||
| 7487 | } | |||
| 7488 | ||||
| 7489 | ExprResult | |||
| 7490 | Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo, | |||
| 7491 | SourceLocation RParenLoc, Expr *LiteralExpr) { | |||
| 7492 | QualType literalType = TInfo->getType(); | |||
| 7493 | ||||
| 7494 | if (literalType->isArrayType()) { | |||
| 7495 | if (RequireCompleteSizedType( | |||
| 7496 | LParenLoc, Context.getBaseElementType(literalType), | |||
| 7497 | diag::err_array_incomplete_or_sizeless_type, | |||
| 7498 | SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd()))) | |||
| 7499 | return ExprError(); | |||
| 7500 | if (literalType->isVariableArrayType()) { | |||
| 7501 | // C2x 6.7.9p4: An entity of variable length array type shall not be | |||
| 7502 | // initialized except by an empty initializer. | |||
| 7503 | // | |||
| 7504 | // The C extension warnings are issued from ParseBraceInitializer() and | |||
| 7505 | // do not need to be issued here. However, we continue to issue an error | |||
| 7506 | // in the case there are initializers or we are compiling C++. We allow | |||
| 7507 | // use of VLAs in C++, but it's not clear we want to allow {} to zero | |||
| 7508 | // init a VLA in C++ in all cases (such as with non-trivial constructors). | |||
| 7509 | // FIXME: should we allow this construct in C++ when it makes sense to do | |||
| 7510 | // so? | |||
| 7511 | std::optional<unsigned> NumInits; | |||
| 7512 | if (const auto *ILE = dyn_cast<InitListExpr>(LiteralExpr)) | |||
| 7513 | NumInits = ILE->getNumInits(); | |||
| 7514 | if ((LangOpts.CPlusPlus || NumInits.value_or(0)) && | |||
| 7515 | !tryToFixVariablyModifiedVarType(TInfo, literalType, LParenLoc, | |||
| 7516 | diag::err_variable_object_no_init)) | |||
| 7517 | return ExprError(); | |||
| 7518 | } | |||
| 7519 | } else if (!literalType->isDependentType() && | |||
| 7520 | RequireCompleteType(LParenLoc, literalType, | |||
| 7521 | diag::err_typecheck_decl_incomplete_type, | |||
| 7522 | SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd()))) | |||
| 7523 | return ExprError(); | |||
| 7524 | ||||
| 7525 | InitializedEntity Entity | |||
| 7526 | = InitializedEntity::InitializeCompoundLiteralInit(TInfo); | |||
| 7527 | InitializationKind Kind | |||
| 7528 | = InitializationKind::CreateCStyleCast(LParenLoc, | |||
| 7529 | SourceRange(LParenLoc, RParenLoc), | |||
| 7530 | /*InitList=*/true); | |||
| 7531 | InitializationSequence InitSeq(*this, Entity, Kind, LiteralExpr); | |||
| 7532 | ExprResult Result = InitSeq.Perform(*this, Entity, Kind, LiteralExpr, | |||
| 7533 | &literalType); | |||
| 7534 | if (Result.isInvalid()) | |||
| 7535 | return ExprError(); | |||
| 7536 | LiteralExpr = Result.get(); | |||
| 7537 | ||||
| 7538 | bool isFileScope = !CurContext->isFunctionOrMethod(); | |||
| 7539 | ||||
| 7540 | // In C, compound literals are l-values for some reason. | |||
| 7541 | // For GCC compatibility, in C++, file-scope array compound literals with | |||
| 7542 | // constant initializers are also l-values, and compound literals are | |||
| 7543 | // otherwise prvalues. | |||
| 7544 | // | |||
| 7545 | // (GCC also treats C++ list-initialized file-scope array prvalues with | |||
| 7546 | // constant initializers as l-values, but that's non-conforming, so we don't | |||
| 7547 | // follow it there.) | |||
| 7548 | // | |||
| 7549 | // FIXME: It would be better to handle the lvalue cases as materializing and | |||
| 7550 | // lifetime-extending a temporary object, but our materialized temporaries | |||
| 7551 | // representation only supports lifetime extension from a variable, not "out | |||
| 7552 | // of thin air". | |||
| 7553 | // FIXME: For C++, we might want to instead lifetime-extend only if a pointer | |||
| 7554 | // is bound to the result of applying array-to-pointer decay to the compound | |||
| 7555 | // literal. | |||
| 7556 | // FIXME: GCC supports compound literals of reference type, which should | |||
| 7557 | // obviously have a value kind derived from the kind of reference involved. | |||
| 7558 | ExprValueKind VK = | |||
| 7559 | (getLangOpts().CPlusPlus && !(isFileScope && literalType->isArrayType())) | |||
| 7560 | ? VK_PRValue | |||
| 7561 | : VK_LValue; | |||
| 7562 | ||||
| 7563 | if (isFileScope) | |||
| 7564 | if (auto ILE = dyn_cast<InitListExpr>(LiteralExpr)) | |||
| 7565 | for (unsigned i = 0, j = ILE->getNumInits(); i != j; i++) { | |||
| 7566 | Expr *Init = ILE->getInit(i); | |||
| 7567 | ILE->setInit(i, ConstantExpr::Create(Context, Init)); | |||
| 7568 | } | |||
| 7569 | ||||
| 7570 | auto *E = new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType, | |||
| 7571 | VK, LiteralExpr, isFileScope); | |||
| 7572 | if (isFileScope) { | |||
| 7573 | if (!LiteralExpr->isTypeDependent() && | |||
| 7574 | !LiteralExpr->isValueDependent() && | |||
| 7575 | !literalType->isDependentType()) // C99 6.5.2.5p3 | |||
| 7576 | if (CheckForConstantInitializer(LiteralExpr, literalType)) | |||
| 7577 | return ExprError(); | |||
| 7578 | } else if (literalType.getAddressSpace() != LangAS::opencl_private && | |||
| 7579 | literalType.getAddressSpace() != LangAS::Default) { | |||
| 7580 | // Embedded-C extensions to C99 6.5.2.5: | |||
| 7581 | // "If the compound literal occurs inside the body of a function, the | |||
| 7582 | // type name shall not be qualified by an address-space qualifier." | |||
| 7583 | Diag(LParenLoc, diag::err_compound_literal_with_address_space) | |||
| 7584 | << SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd()); | |||
| 7585 | return ExprError(); | |||
| 7586 | } | |||
| 7587 | ||||
| 7588 | if (!isFileScope && !getLangOpts().CPlusPlus) { | |||
| 7589 | // Compound literals that have automatic storage duration are destroyed at | |||
| 7590 | // the end of the scope in C; in C++, they're just temporaries. | |||
| 7591 | ||||
| 7592 | // Emit diagnostics if it is or contains a C union type that is non-trivial | |||
| 7593 | // to destruct. | |||
| 7594 | if (E->getType().hasNonTrivialToPrimitiveDestructCUnion()) | |||
| 7595 | checkNonTrivialCUnion(E->getType(), E->getExprLoc(), | |||
| 7596 | NTCUC_CompoundLiteral, NTCUK_Destruct); | |||
| 7597 | ||||
| 7598 | // Diagnose jumps that enter or exit the lifetime of the compound literal. | |||
| 7599 | if (literalType.isDestructedType()) { | |||
| 7600 | Cleanup.setExprNeedsCleanups(true); | |||
| 7601 | ExprCleanupObjects.push_back(E); | |||
| 7602 | getCurFunction()->setHasBranchProtectedScope(); | |||
| 7603 | } | |||
| 7604 | } | |||
| 7605 | ||||
| 7606 | if (E->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion() || | |||
| 7607 | E->getType().hasNonTrivialToPrimitiveCopyCUnion()) | |||
| 7608 | checkNonTrivialCUnionInInitializer(E->getInitializer(), | |||
| 7609 | E->getInitializer()->getExprLoc()); | |||
| 7610 | ||||
| 7611 | return MaybeBindToTemporary(E); | |||
| 7612 | } | |||
| 7613 | ||||
| 7614 | ExprResult | |||
| 7615 | Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList, | |||
| 7616 | SourceLocation RBraceLoc) { | |||
| 7617 | // Only produce each kind of designated initialization diagnostic once. | |||
| 7618 | SourceLocation FirstDesignator; | |||
| 7619 | bool DiagnosedArrayDesignator = false; | |||
| 7620 | bool DiagnosedNestedDesignator = false; | |||
| 7621 | bool DiagnosedMixedDesignator = false; | |||
| 7622 | ||||
| 7623 | // Check that any designated initializers are syntactically valid in the | |||
| 7624 | // current language mode. | |||
| 7625 | for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) { | |||
| 7626 | if (auto *DIE = dyn_cast<DesignatedInitExpr>(InitArgList[I])) { | |||
| 7627 | if (FirstDesignator.isInvalid()) | |||
| 7628 | FirstDesignator = DIE->getBeginLoc(); | |||
| 7629 | ||||
| 7630 | if (!getLangOpts().CPlusPlus) | |||
| 7631 | break; | |||
| 7632 | ||||
| 7633 | if (!DiagnosedNestedDesignator && DIE->size() > 1) { | |||
| 7634 | DiagnosedNestedDesignator = true; | |||
| 7635 | Diag(DIE->getBeginLoc(), diag::ext_designated_init_nested) | |||
| 7636 | << DIE->getDesignatorsSourceRange(); | |||
| 7637 | } | |||
| 7638 | ||||
| 7639 | for (auto &Desig : DIE->designators()) { | |||
| 7640 | if (!Desig.isFieldDesignator() && !DiagnosedArrayDesignator) { | |||
| 7641 | DiagnosedArrayDesignator = true; | |||
| 7642 | Diag(Desig.getBeginLoc(), diag::ext_designated_init_array) | |||
| 7643 | << Desig.getSourceRange(); | |||
| 7644 | } | |||
| 7645 | } | |||
| 7646 | ||||
| 7647 | if (!DiagnosedMixedDesignator && | |||
| 7648 | !isa<DesignatedInitExpr>(InitArgList[0])) { | |||
| 7649 | DiagnosedMixedDesignator = true; | |||
| 7650 | Diag(DIE->getBeginLoc(), diag::ext_designated_init_mixed) | |||
| 7651 | << DIE->getSourceRange(); | |||
| 7652 | Diag(InitArgList[0]->getBeginLoc(), diag::note_designated_init_mixed) | |||
| 7653 | << InitArgList[0]->getSourceRange(); | |||
| 7654 | } | |||
| 7655 | } else if (getLangOpts().CPlusPlus && !DiagnosedMixedDesignator && | |||
| 7656 | isa<DesignatedInitExpr>(InitArgList[0])) { | |||
| 7657 | DiagnosedMixedDesignator = true; | |||
| 7658 | auto *DIE = cast<DesignatedInitExpr>(InitArgList[0]); | |||
| 7659 | Diag(DIE->getBeginLoc(), diag::ext_designated_init_mixed) | |||
| 7660 | << DIE->getSourceRange(); | |||
| 7661 | Diag(InitArgList[I]->getBeginLoc(), diag::note_designated_init_mixed) | |||
| 7662 | << InitArgList[I]->getSourceRange(); | |||
| 7663 | } | |||
| 7664 | } | |||
| 7665 | ||||
| 7666 | if (FirstDesignator.isValid()) { | |||
| 7667 | // Only diagnose designated initiaization as a C++20 extension if we didn't | |||
| 7668 | // already diagnose use of (non-C++20) C99 designator syntax. | |||
| 7669 | if (getLangOpts().CPlusPlus && !DiagnosedArrayDesignator && | |||
| 7670 | !DiagnosedNestedDesignator && !DiagnosedMixedDesignator) { | |||
| 7671 | Diag(FirstDesignator, getLangOpts().CPlusPlus20 | |||
| 7672 | ? diag::warn_cxx17_compat_designated_init | |||
| 7673 | : diag::ext_cxx_designated_init); | |||
| 7674 | } else if (!getLangOpts().CPlusPlus && !getLangOpts().C99) { | |||
| 7675 | Diag(FirstDesignator, diag::ext_designated_init); | |||
| 7676 | } | |||
| 7677 | } | |||
| 7678 | ||||
| 7679 | return BuildInitList(LBraceLoc, InitArgList, RBraceLoc); | |||
| 7680 | } | |||
| 7681 | ||||
| 7682 | ExprResult | |||
| 7683 | Sema::BuildInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList, | |||
| 7684 | SourceLocation RBraceLoc) { | |||
| 7685 | // Semantic analysis for initializers is done by ActOnDeclarator() and | |||
| 7686 | // CheckInitializer() - it requires knowledge of the object being initialized. | |||
| 7687 | ||||
| 7688 | // Immediately handle non-overload placeholders. Overloads can be | |||
| 7689 | // resolved contextually, but everything else here can't. | |||
| 7690 | for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) { | |||
| 7691 | if (InitArgList[I]->getType()->isNonOverloadPlaceholderType()) { | |||
| 7692 | ExprResult result = CheckPlaceholderExpr(InitArgList[I]); | |||
| 7693 | ||||
| 7694 | // Ignore failures; dropping the entire initializer list because | |||
| 7695 | // of one failure would be terrible for indexing/etc. | |||
| 7696 | if (result.isInvalid()) continue; | |||
| 7697 | ||||
| 7698 | InitArgList[I] = result.get(); | |||
| 7699 | } | |||
| 7700 | } | |||
| 7701 | ||||
| 7702 | InitListExpr *E = new (Context) InitListExpr(Context, LBraceLoc, InitArgList, | |||
| 7703 | RBraceLoc); | |||
| 7704 | E->setType(Context.VoidTy); // FIXME: just a place holder for now. | |||
| 7705 | return E; | |||
| 7706 | } | |||
| 7707 | ||||
| 7708 | /// Do an explicit extend of the given block pointer if we're in ARC. | |||
| 7709 | void Sema::maybeExtendBlockObject(ExprResult &E) { | |||
| 7710 | assert(E.get()->getType()->isBlockPointerType())(static_cast <bool> (E.get()->getType()->isBlockPointerType ()) ? void (0) : __assert_fail ("E.get()->getType()->isBlockPointerType()" , "clang/lib/Sema/SemaExpr.cpp", 7710, __extension__ __PRETTY_FUNCTION__ )); | |||
| 7711 | assert(E.get()->isPRValue())(static_cast <bool> (E.get()->isPRValue()) ? void (0 ) : __assert_fail ("E.get()->isPRValue()", "clang/lib/Sema/SemaExpr.cpp" , 7711, __extension__ __PRETTY_FUNCTION__)); | |||
| 7712 | ||||
| 7713 | // Only do this in an r-value context. | |||
| 7714 | if (!getLangOpts().ObjCAutoRefCount) return; | |||
| 7715 | ||||
| 7716 | E = ImplicitCastExpr::Create( | |||
| 7717 | Context, E.get()->getType(), CK_ARCExtendBlockObject, E.get(), | |||
| 7718 | /*base path*/ nullptr, VK_PRValue, FPOptionsOverride()); | |||
| 7719 | Cleanup.setExprNeedsCleanups(true); | |||
| 7720 | } | |||
| 7721 | ||||
| 7722 | /// Prepare a conversion of the given expression to an ObjC object | |||
| 7723 | /// pointer type. | |||
| 7724 | CastKind Sema::PrepareCastToObjCObjectPointer(ExprResult &E) { | |||
| 7725 | QualType type = E.get()->getType(); | |||
| 7726 | if (type->isObjCObjectPointerType()) { | |||
| 7727 | return CK_BitCast; | |||
| 7728 | } else if (type->isBlockPointerType()) { | |||
| 7729 | maybeExtendBlockObject(E); | |||
| 7730 | return CK_BlockPointerToObjCPointerCast; | |||
| 7731 | } else { | |||
| 7732 | assert(type->isPointerType())(static_cast <bool> (type->isPointerType()) ? void ( 0) : __assert_fail ("type->isPointerType()", "clang/lib/Sema/SemaExpr.cpp" , 7732, __extension__ __PRETTY_FUNCTION__)); | |||
| 7733 | return CK_CPointerToObjCPointerCast; | |||
| 7734 | } | |||
| 7735 | } | |||
| 7736 | ||||
| 7737 | /// Prepares for a scalar cast, performing all the necessary stages | |||
| 7738 | /// except the final cast and returning the kind required. | |||
| 7739 | CastKind Sema::PrepareScalarCast(ExprResult &Src, QualType DestTy) { | |||
| 7740 | // Both Src and Dest are scalar types, i.e. arithmetic or pointer. | |||
| 7741 | // Also, callers should have filtered out the invalid cases with | |||
| 7742 | // pointers. Everything else should be possible. | |||
| 7743 | ||||
| 7744 | QualType SrcTy = Src.get()->getType(); | |||
| 7745 | if (Context.hasSameUnqualifiedType(SrcTy, DestTy)) | |||
| 7746 | return CK_NoOp; | |||
| 7747 | ||||
| 7748 | switch (Type::ScalarTypeKind SrcKind = SrcTy->getScalarTypeKind()) { | |||
| 7749 | case Type::STK_MemberPointer: | |||
| 7750 | llvm_unreachable("member pointer type in C")::llvm::llvm_unreachable_internal("member pointer type in C", "clang/lib/Sema/SemaExpr.cpp", 7750); | |||
| 7751 | ||||
| 7752 | case Type::STK_CPointer: | |||
| 7753 | case Type::STK_BlockPointer: | |||
| 7754 | case Type::STK_ObjCObjectPointer: | |||
| 7755 | switch (DestTy->getScalarTypeKind()) { | |||
| 7756 | case Type::STK_CPointer: { | |||
| 7757 | LangAS SrcAS = SrcTy->getPointeeType().getAddressSpace(); | |||
| 7758 | LangAS DestAS = DestTy->getPointeeType().getAddressSpace(); | |||
| 7759 | if (SrcAS != DestAS) | |||
| 7760 | return CK_AddressSpaceConversion; | |||
| 7761 | if (Context.hasCvrSimilarType(SrcTy, DestTy)) | |||
| 7762 | return CK_NoOp; | |||
| 7763 | return CK_BitCast; | |||
| 7764 | } | |||
| 7765 | case Type::STK_BlockPointer: | |||
| 7766 | return (SrcKind == Type::STK_BlockPointer | |||
| 7767 | ? CK_BitCast : CK_AnyPointerToBlockPointerCast); | |||
| 7768 | case Type::STK_ObjCObjectPointer: | |||
| 7769 | if (SrcKind == Type::STK_ObjCObjectPointer) | |||
| 7770 | return CK_BitCast; | |||
| 7771 | if (SrcKind == Type::STK_CPointer) | |||
| 7772 | return CK_CPointerToObjCPointerCast; | |||
| 7773 | maybeExtendBlockObject(Src); | |||
| 7774 | return CK_BlockPointerToObjCPointerCast; | |||
| 7775 | case Type::STK_Bool: | |||
| 7776 | return CK_PointerToBoolean; | |||
| 7777 | case Type::STK_Integral: | |||
| 7778 | return CK_PointerToIntegral; | |||
| 7779 | case Type::STK_Floating: | |||
| 7780 | case Type::STK_FloatingComplex: | |||
| 7781 | case Type::STK_IntegralComplex: | |||
| 7782 | case Type::STK_MemberPointer: | |||
| 7783 | case Type::STK_FixedPoint: | |||
| 7784 | llvm_unreachable("illegal cast from pointer")::llvm::llvm_unreachable_internal("illegal cast from pointer" , "clang/lib/Sema/SemaExpr.cpp", 7784); | |||
| 7785 | } | |||
| 7786 | llvm_unreachable("Should have returned before this")::llvm::llvm_unreachable_internal("Should have returned before this" , "clang/lib/Sema/SemaExpr.cpp", 7786); | |||
| 7787 | ||||
| 7788 | case Type::STK_FixedPoint: | |||
| 7789 | switch (DestTy->getScalarTypeKind()) { | |||
| 7790 | case Type::STK_FixedPoint: | |||
| 7791 | return CK_FixedPointCast; | |||
| 7792 | case Type::STK_Bool: | |||
| 7793 | return CK_FixedPointToBoolean; | |||
| 7794 | case Type::STK_Integral: | |||
| 7795 | return CK_FixedPointToIntegral; | |||
| 7796 | case Type::STK_Floating: | |||
| 7797 | return CK_FixedPointToFloating; | |||
| 7798 | case Type::STK_IntegralComplex: | |||
| 7799 | case Type::STK_FloatingComplex: | |||
| 7800 | Diag(Src.get()->getExprLoc(), | |||
| 7801 | diag::err_unimplemented_conversion_with_fixed_point_type) | |||
| 7802 | << DestTy; | |||
| 7803 | return CK_IntegralCast; | |||
| 7804 | case Type::STK_CPointer: | |||
| 7805 | case Type::STK_ObjCObjectPointer: | |||
| 7806 | case Type::STK_BlockPointer: | |||
| 7807 | case Type::STK_MemberPointer: | |||
| 7808 | llvm_unreachable("illegal cast to pointer type")::llvm::llvm_unreachable_internal("illegal cast to pointer type" , "clang/lib/Sema/SemaExpr.cpp", 7808); | |||
| 7809 | } | |||
| 7810 | llvm_unreachable("Should have returned before this")::llvm::llvm_unreachable_internal("Should have returned before this" , "clang/lib/Sema/SemaExpr.cpp", 7810); | |||
| 7811 | ||||
| 7812 | case Type::STK_Bool: // casting from bool is like casting from an integer | |||
| 7813 | case Type::STK_Integral: | |||
| 7814 | switch (DestTy->getScalarTypeKind()) { | |||
| 7815 | case Type::STK_CPointer: | |||
| 7816 | case Type::STK_ObjCObjectPointer: | |||
| 7817 | case Type::STK_BlockPointer: | |||
| 7818 | if (Src.get()->isNullPointerConstant(Context, | |||
| 7819 | Expr::NPC_ValueDependentIsNull)) | |||
| 7820 | return CK_NullToPointer; | |||
| 7821 | return CK_IntegralToPointer; | |||
| 7822 | case Type::STK_Bool: | |||
| 7823 | return CK_IntegralToBoolean; | |||
| 7824 | case Type::STK_Integral: | |||
| 7825 | return CK_IntegralCast; | |||
| 7826 | case Type::STK_Floating: | |||
| 7827 | return CK_IntegralToFloating; | |||
| 7828 | case Type::STK_IntegralComplex: | |||
| 7829 | Src = ImpCastExprToType(Src.get(), | |||
| 7830 | DestTy->castAs<ComplexType>()->getElementType(), | |||
| 7831 | CK_IntegralCast); | |||
| 7832 | return CK_IntegralRealToComplex; | |||
| 7833 | case Type::STK_FloatingComplex: | |||
| 7834 | Src = ImpCastExprToType(Src.get(), | |||
| 7835 | DestTy->castAs<ComplexType>()->getElementType(), | |||
| 7836 | CK_IntegralToFloating); | |||
| 7837 | return CK_FloatingRealToComplex; | |||
| 7838 | case Type::STK_MemberPointer: | |||
| 7839 | llvm_unreachable("member pointer type in C")::llvm::llvm_unreachable_internal("member pointer type in C", "clang/lib/Sema/SemaExpr.cpp", 7839); | |||
| 7840 | case Type::STK_FixedPoint: | |||
| 7841 | return CK_IntegralToFixedPoint; | |||
| 7842 | } | |||
| 7843 | llvm_unreachable("Should have returned before this")::llvm::llvm_unreachable_internal("Should have returned before this" , "clang/lib/Sema/SemaExpr.cpp", 7843); | |||
| 7844 | ||||
| 7845 | case Type::STK_Floating: | |||
| 7846 | switch (DestTy->getScalarTypeKind()) { | |||
| 7847 | case Type::STK_Floating: | |||
| 7848 | return CK_FloatingCast; | |||
| 7849 | case Type::STK_Bool: | |||
| 7850 | return CK_FloatingToBoolean; | |||
| 7851 | case Type::STK_Integral: | |||
| 7852 | return CK_FloatingToIntegral; | |||
| 7853 | case Type::STK_FloatingComplex: | |||
| 7854 | Src = ImpCastExprToType(Src.get(), | |||
| 7855 | DestTy->castAs<ComplexType>()->getElementType(), | |||
| 7856 | CK_FloatingCast); | |||
| 7857 | return CK_FloatingRealToComplex; | |||
| 7858 | case Type::STK_IntegralComplex: | |||
| 7859 | Src = ImpCastExprToType(Src.get(), | |||
| 7860 | DestTy->castAs<ComplexType>()->getElementType(), | |||
| 7861 | CK_FloatingToIntegral); | |||
| 7862 | return CK_IntegralRealToComplex; | |||
| 7863 | case Type::STK_CPointer: | |||
| 7864 | case Type::STK_ObjCObjectPointer: | |||
| 7865 | case Type::STK_BlockPointer: | |||
| 7866 | llvm_unreachable("valid float->pointer cast?")::llvm::llvm_unreachable_internal("valid float->pointer cast?" , "clang/lib/Sema/SemaExpr.cpp", 7866); | |||
| 7867 | case Type::STK_MemberPointer: | |||
| 7868 | llvm_unreachable("member pointer type in C")::llvm::llvm_unreachable_internal("member pointer type in C", "clang/lib/Sema/SemaExpr.cpp", 7868); | |||
| 7869 | case Type::STK_FixedPoint: | |||
| 7870 | return CK_FloatingToFixedPoint; | |||
| 7871 | } | |||
| 7872 | llvm_unreachable("Should have returned before this")::llvm::llvm_unreachable_internal("Should have returned before this" , "clang/lib/Sema/SemaExpr.cpp", 7872); | |||
| 7873 | ||||
| 7874 | case Type::STK_FloatingComplex: | |||
| 7875 | switch (DestTy->getScalarTypeKind()) { | |||
| 7876 | case Type::STK_FloatingComplex: | |||
| 7877 | return CK_FloatingComplexCast; | |||
| 7878 | case Type::STK_IntegralComplex: | |||
| 7879 | return CK_FloatingComplexToIntegralComplex; | |||
| 7880 | case Type::STK_Floating: { | |||
| 7881 | QualType ET = SrcTy->castAs<ComplexType>()->getElementType(); | |||
| 7882 | if (Context.hasSameType(ET, DestTy)) | |||
| 7883 | return CK_FloatingComplexToReal; | |||
| 7884 | Src = ImpCastExprToType(Src.get(), ET, CK_FloatingComplexToReal); | |||
| 7885 | return CK_FloatingCast; | |||
| 7886 | } | |||
| 7887 | case Type::STK_Bool: | |||
| 7888 | return CK_FloatingComplexToBoolean; | |||
| 7889 | case Type::STK_Integral: | |||
| 7890 | Src = ImpCastExprToType(Src.get(), | |||
| 7891 | SrcTy->castAs<ComplexType>()->getElementType(), | |||
| 7892 | CK_FloatingComplexToReal); | |||
| 7893 | return CK_FloatingToIntegral; | |||
| 7894 | case Type::STK_CPointer: | |||
| 7895 | case Type::STK_ObjCObjectPointer: | |||
| 7896 | case Type::STK_BlockPointer: | |||
| 7897 | llvm_unreachable("valid complex float->pointer cast?")::llvm::llvm_unreachable_internal("valid complex float->pointer cast?" , "clang/lib/Sema/SemaExpr.cpp", 7897); | |||
| 7898 | case Type::STK_MemberPointer: | |||
| 7899 | llvm_unreachable("member pointer type in C")::llvm::llvm_unreachable_internal("member pointer type in C", "clang/lib/Sema/SemaExpr.cpp", 7899); | |||
| 7900 | case Type::STK_FixedPoint: | |||
| 7901 | Diag(Src.get()->getExprLoc(), | |||
| 7902 | diag::err_unimplemented_conversion_with_fixed_point_type) | |||
| 7903 | << SrcTy; | |||
| 7904 | return CK_IntegralCast; | |||
| 7905 | } | |||
| 7906 | llvm_unreachable("Should have returned before this")::llvm::llvm_unreachable_internal("Should have returned before this" , "clang/lib/Sema/SemaExpr.cpp", 7906); | |||
| 7907 | ||||
| 7908 | case Type::STK_IntegralComplex: | |||
| 7909 | switch (DestTy->getScalarTypeKind()) { | |||
| 7910 | case Type::STK_FloatingComplex: | |||
| 7911 | return CK_IntegralComplexToFloatingComplex; | |||
| 7912 | case Type::STK_IntegralComplex: | |||
| 7913 | return CK_IntegralComplexCast; | |||
| 7914 | case Type::STK_Integral: { | |||
| 7915 | QualType ET = SrcTy->castAs<ComplexType>()->getElementType(); | |||
| 7916 | if (Context.hasSameType(ET, DestTy)) | |||
| 7917 | return CK_IntegralComplexToReal; | |||
| 7918 | Src = ImpCastExprToType(Src.get(), ET, CK_IntegralComplexToReal); | |||
| 7919 | return CK_IntegralCast; | |||
| 7920 | } | |||
| 7921 | case Type::STK_Bool: | |||
| 7922 | return CK_IntegralComplexToBoolean; | |||
| 7923 | case Type::STK_Floating: | |||
| 7924 | Src = ImpCastExprToType(Src.get(), | |||
| 7925 | SrcTy->castAs<ComplexType>()->getElementType(), | |||
| 7926 | CK_IntegralComplexToReal); | |||
| 7927 | return CK_IntegralToFloating; | |||
| 7928 | case Type::STK_CPointer: | |||
| 7929 | case Type::STK_ObjCObjectPointer: | |||
| 7930 | case Type::STK_BlockPointer: | |||
| 7931 | llvm_unreachable("valid complex int->pointer cast?")::llvm::llvm_unreachable_internal("valid complex int->pointer cast?" , "clang/lib/Sema/SemaExpr.cpp", 7931); | |||
| 7932 | case Type::STK_MemberPointer: | |||
| 7933 | llvm_unreachable("member pointer type in C")::llvm::llvm_unreachable_internal("member pointer type in C", "clang/lib/Sema/SemaExpr.cpp", 7933); | |||
| 7934 | case Type::STK_FixedPoint: | |||
| 7935 | Diag(Src.get()->getExprLoc(), | |||
| 7936 | diag::err_unimplemented_conversion_with_fixed_point_type) | |||
| 7937 | << SrcTy; | |||
| 7938 | return CK_IntegralCast; | |||
| 7939 | } | |||
| 7940 | llvm_unreachable("Should have returned before this")::llvm::llvm_unreachable_internal("Should have returned before this" , "clang/lib/Sema/SemaExpr.cpp", 7940); | |||
| 7941 | } | |||
| 7942 | ||||
| 7943 | llvm_unreachable("Unhandled scalar cast")::llvm::llvm_unreachable_internal("Unhandled scalar cast", "clang/lib/Sema/SemaExpr.cpp" , 7943); | |||
| 7944 | } | |||
| 7945 | ||||
| 7946 | static bool breakDownVectorType(QualType type, uint64_t &len, | |||
| 7947 | QualType &eltType) { | |||
| 7948 | // Vectors are simple. | |||
| 7949 | if (const VectorType *vecType = type->getAs<VectorType>()) { | |||
| 7950 | len = vecType->getNumElements(); | |||
| 7951 | eltType = vecType->getElementType(); | |||
| 7952 | assert(eltType->isScalarType())(static_cast <bool> (eltType->isScalarType()) ? void (0) : __assert_fail ("eltType->isScalarType()", "clang/lib/Sema/SemaExpr.cpp" , 7952, __extension__ __PRETTY_FUNCTION__)); | |||
| 7953 | return true; | |||
| 7954 | } | |||
| 7955 | ||||
| 7956 | // We allow lax conversion to and from non-vector types, but only if | |||
| 7957 | // they're real types (i.e. non-complex, non-pointer scalar types). | |||
| 7958 | if (!type->isRealType()) return false; | |||
| 7959 | ||||
| 7960 | len = 1; | |||
| 7961 | eltType = type; | |||
| 7962 | return true; | |||
| 7963 | } | |||
| 7964 | ||||
| 7965 | /// Are the two types SVE-bitcast-compatible types? I.e. is bitcasting from the | |||
| 7966 | /// first SVE type (e.g. an SVE VLAT) to the second type (e.g. an SVE VLST) | |||
| 7967 | /// allowed? | |||
| 7968 | /// | |||
| 7969 | /// This will also return false if the two given types do not make sense from | |||
| 7970 | /// the perspective of SVE bitcasts. | |||
| 7971 | bool Sema::isValidSveBitcast(QualType srcTy, QualType destTy) { | |||
| 7972 | assert(srcTy->isVectorType() || destTy->isVectorType())(static_cast <bool> (srcTy->isVectorType() || destTy ->isVectorType()) ? void (0) : __assert_fail ("srcTy->isVectorType() || destTy->isVectorType()" , "clang/lib/Sema/SemaExpr.cpp", 7972, __extension__ __PRETTY_FUNCTION__ )); | |||
| 7973 | ||||
| 7974 | auto ValidScalableConversion = [](QualType FirstType, QualType SecondType) { | |||
| 7975 | if (!FirstType->isSVESizelessBuiltinType()) | |||
| 7976 | return false; | |||
| 7977 | ||||
| 7978 | const auto *VecTy = SecondType->getAs<VectorType>(); | |||
| 7979 | return VecTy && | |||
| 7980 | VecTy->getVectorKind() == VectorType::SveFixedLengthDataVector; | |||
| 7981 | }; | |||
| 7982 | ||||
| 7983 | return ValidScalableConversion(srcTy, destTy) || | |||
| 7984 | ValidScalableConversion(destTy, srcTy); | |||
| 7985 | } | |||
| 7986 | ||||
| 7987 | /// Are the two types RVV-bitcast-compatible types? I.e. is bitcasting from the | |||
| 7988 | /// first RVV type (e.g. an RVV scalable type) to the second type (e.g. an RVV | |||
| 7989 | /// VLS type) allowed? | |||
| 7990 | /// | |||
| 7991 | /// This will also return false if the two given types do not make sense from | |||
| 7992 | /// the perspective of RVV bitcasts. | |||
| 7993 | bool Sema::isValidRVVBitcast(QualType srcTy, QualType destTy) { | |||
| 7994 | assert(srcTy->isVectorType() || destTy->isVectorType())(static_cast <bool> (srcTy->isVectorType() || destTy ->isVectorType()) ? void (0) : __assert_fail ("srcTy->isVectorType() || destTy->isVectorType()" , "clang/lib/Sema/SemaExpr.cpp", 7994, __extension__ __PRETTY_FUNCTION__ )); | |||
| 7995 | ||||
| 7996 | auto ValidScalableConversion = [](QualType FirstType, QualType SecondType) { | |||
| 7997 | if (!FirstType->isRVVSizelessBuiltinType()) | |||
| 7998 | return false; | |||
| 7999 | ||||
| 8000 | const auto *VecTy = SecondType->getAs<VectorType>(); | |||
| 8001 | return VecTy && | |||
| 8002 | VecTy->getVectorKind() == VectorType::RVVFixedLengthDataVector; | |||
| 8003 | }; | |||
| 8004 | ||||
| 8005 | return ValidScalableConversion(srcTy, destTy) || | |||
| 8006 | ValidScalableConversion(destTy, srcTy); | |||
| 8007 | } | |||
| 8008 | ||||
| 8009 | /// Are the two types matrix types and do they have the same dimensions i.e. | |||
| 8010 | /// do they have the same number of rows and the same number of columns? | |||
| 8011 | bool Sema::areMatrixTypesOfTheSameDimension(QualType srcTy, QualType destTy) { | |||
| 8012 | if (!destTy->isMatrixType() || !srcTy->isMatrixType()) | |||
| 8013 | return false; | |||
| 8014 | ||||
| 8015 | const ConstantMatrixType *matSrcType = srcTy->getAs<ConstantMatrixType>(); | |||
| 8016 | const ConstantMatrixType *matDestType = destTy->getAs<ConstantMatrixType>(); | |||
| 8017 | ||||
| 8018 | return matSrcType->getNumRows() == matDestType->getNumRows() && | |||
| 8019 | matSrcType->getNumColumns() == matDestType->getNumColumns(); | |||
| 8020 | } | |||
| 8021 | ||||
| 8022 | bool Sema::areVectorTypesSameSize(QualType SrcTy, QualType DestTy) { | |||
| 8023 | assert(DestTy->isVectorType() || SrcTy->isVectorType())(static_cast <bool> (DestTy->isVectorType() || SrcTy ->isVectorType()) ? void (0) : __assert_fail ("DestTy->isVectorType() || SrcTy->isVectorType()" , "clang/lib/Sema/SemaExpr.cpp", 8023, __extension__ __PRETTY_FUNCTION__ )); | |||
| 8024 | ||||
| 8025 | uint64_t SrcLen, DestLen; | |||
| 8026 | QualType SrcEltTy, DestEltTy; | |||
| 8027 | if (!breakDownVectorType(SrcTy, SrcLen, SrcEltTy)) | |||
| 8028 | return false; | |||
| 8029 | if (!breakDownVectorType(DestTy, DestLen, DestEltTy)) | |||
| 8030 | return false; | |||
| 8031 | ||||
| 8032 | // ASTContext::getTypeSize will return the size rounded up to a | |||
| 8033 | // power of 2, so instead of using that, we need to use the raw | |||
| 8034 | // element size multiplied by the element count. | |||
| 8035 | uint64_t SrcEltSize = Context.getTypeSize(SrcEltTy); | |||
| 8036 | uint64_t DestEltSize = Context.getTypeSize(DestEltTy); | |||
| 8037 | ||||
| 8038 | return (SrcLen * SrcEltSize == DestLen * DestEltSize); | |||
| 8039 | } | |||
| 8040 | ||||
| 8041 | // This returns true if at least one of the types is an altivec vector. | |||
| 8042 | bool Sema::anyAltivecTypes(QualType SrcTy, QualType DestTy) { | |||
| 8043 | assert((DestTy->isVectorType() || SrcTy->isVectorType()) &&(static_cast <bool> ((DestTy->isVectorType() || SrcTy ->isVectorType()) && "expected at least one type to be a vector here" ) ? void (0) : __assert_fail ("(DestTy->isVectorType() || SrcTy->isVectorType()) && \"expected at least one type to be a vector here\"" , "clang/lib/Sema/SemaExpr.cpp", 8044, __extension__ __PRETTY_FUNCTION__ )) | |||
| 8044 | "expected at least one type to be a vector here")(static_cast <bool> ((DestTy->isVectorType() || SrcTy ->isVectorType()) && "expected at least one type to be a vector here" ) ? void (0) : __assert_fail ("(DestTy->isVectorType() || SrcTy->isVectorType()) && \"expected at least one type to be a vector here\"" , "clang/lib/Sema/SemaExpr.cpp", 8044, __extension__ __PRETTY_FUNCTION__ )); | |||
| 8045 | ||||
| 8046 | bool IsSrcTyAltivec = | |||
| 8047 | SrcTy->isVectorType() && ((SrcTy->castAs<VectorType>()->getVectorKind() == | |||
| 8048 | VectorType::AltiVecVector) || | |||
| 8049 | (SrcTy->castAs<VectorType>()->getVectorKind() == | |||
| 8050 | VectorType::AltiVecBool) || | |||
| 8051 | (SrcTy->castAs<VectorType>()->getVectorKind() == | |||
| 8052 | VectorType::AltiVecPixel)); | |||
| 8053 | ||||
| 8054 | bool IsDestTyAltivec = DestTy->isVectorType() && | |||
| 8055 | ((DestTy->castAs<VectorType>()->getVectorKind() == | |||
| 8056 | VectorType::AltiVecVector) || | |||
| 8057 | (DestTy->castAs<VectorType>()->getVectorKind() == | |||
| 8058 | VectorType::AltiVecBool) || | |||
| 8059 | (DestTy->castAs<VectorType>()->getVectorKind() == | |||
| 8060 | VectorType::AltiVecPixel)); | |||
| 8061 | ||||
| 8062 | return (IsSrcTyAltivec || IsDestTyAltivec); | |||
| 8063 | } | |||
| 8064 | ||||
| 8065 | /// Are the two types lax-compatible vector types? That is, given | |||
| 8066 | /// that one of them is a vector, do they have equal storage sizes, | |||
| 8067 | /// where the storage size is the number of elements times the element | |||
| 8068 | /// size? | |||
| 8069 | /// | |||
| 8070 | /// This will also return false if either of the types is neither a | |||
| 8071 | /// vector nor a real type. | |||
| 8072 | bool Sema::areLaxCompatibleVectorTypes(QualType srcTy, QualType destTy) { | |||
| 8073 | assert(destTy->isVectorType() || srcTy->isVectorType())(static_cast <bool> (destTy->isVectorType() || srcTy ->isVectorType()) ? void (0) : __assert_fail ("destTy->isVectorType() || srcTy->isVectorType()" , "clang/lib/Sema/SemaExpr.cpp", 8073, __extension__ __PRETTY_FUNCTION__ )); | |||
| 8074 | ||||
| 8075 | // Disallow lax conversions between scalars and ExtVectors (these | |||
| 8076 | // conversions are allowed for other vector types because common headers | |||
| 8077 | // depend on them). Most scalar OP ExtVector cases are handled by the | |||
| 8078 | // splat path anyway, which does what we want (convert, not bitcast). | |||
| 8079 | // What this rules out for ExtVectors is crazy things like char4*float. | |||
| 8080 | if (srcTy->isScalarType() && destTy->isExtVectorType()) return false; | |||
| 8081 | if (destTy->isScalarType() && srcTy->isExtVectorType()) return false; | |||
| 8082 | ||||
| 8083 | return areVectorTypesSameSize(srcTy, destTy); | |||
| 8084 | } | |||
| 8085 | ||||
| 8086 | /// Is this a legal conversion between two types, one of which is | |||
| 8087 | /// known to be a vector type? | |||
| 8088 | bool Sema::isLaxVectorConversion(QualType srcTy, QualType destTy) { | |||
| 8089 | assert(destTy->isVectorType() || srcTy->isVectorType())(static_cast <bool> (destTy->isVectorType() || srcTy ->isVectorType()) ? void (0) : __assert_fail ("destTy->isVectorType() || srcTy->isVectorType()" , "clang/lib/Sema/SemaExpr.cpp", 8089, __extension__ __PRETTY_FUNCTION__ )); | |||
| 8090 | ||||
| 8091 | switch (Context.getLangOpts().getLaxVectorConversions()) { | |||
| 8092 | case LangOptions::LaxVectorConversionKind::None: | |||
| 8093 | return false; | |||
| 8094 | ||||
| 8095 | case LangOptions::LaxVectorConversionKind::Integer: | |||
| 8096 | if (!srcTy->isIntegralOrEnumerationType()) { | |||
| 8097 | auto *Vec = srcTy->getAs<VectorType>(); | |||
| 8098 | if (!Vec || !Vec->getElementType()->isIntegralOrEnumerationType()) | |||
| 8099 | return false; | |||
| 8100 | } | |||
| 8101 | if (!destTy->isIntegralOrEnumerationType()) { | |||
| 8102 | auto *Vec = destTy->getAs<VectorType>(); | |||
| 8103 | if (!Vec || !Vec->getElementType()->isIntegralOrEnumerationType()) | |||
| 8104 | return false; | |||
| 8105 | } | |||
| 8106 | // OK, integer (vector) -> integer (vector) bitcast. | |||
| 8107 | break; | |||
| 8108 | ||||
| 8109 | case LangOptions::LaxVectorConversionKind::All: | |||
| 8110 | break; | |||
| 8111 | } | |||
| 8112 | ||||
| 8113 | return areLaxCompatibleVectorTypes(srcTy, destTy); | |||
| 8114 | } | |||
| 8115 | ||||
| 8116 | bool Sema::CheckMatrixCast(SourceRange R, QualType DestTy, QualType SrcTy, | |||
| 8117 | CastKind &Kind) { | |||
| 8118 | if (SrcTy->isMatrixType() && DestTy->isMatrixType()) { | |||
| 8119 | if (!areMatrixTypesOfTheSameDimension(SrcTy, DestTy)) { | |||
| 8120 | return Diag(R.getBegin(), diag::err_invalid_conversion_between_matrixes) | |||
| 8121 | << DestTy << SrcTy << R; | |||
| 8122 | } | |||
| 8123 | } else if (SrcTy->isMatrixType()) { | |||
| 8124 | return Diag(R.getBegin(), | |||
| 8125 | diag::err_invalid_conversion_between_matrix_and_type) | |||
| 8126 | << SrcTy << DestTy << R; | |||
| 8127 | } else if (DestTy->isMatrixType()) { | |||
| 8128 | return Diag(R.getBegin(), | |||
| 8129 | diag::err_invalid_conversion_between_matrix_and_type) | |||
| 8130 | << DestTy << SrcTy << R; | |||
| 8131 | } | |||
| 8132 | ||||
| 8133 | Kind = CK_MatrixCast; | |||
| 8134 | return false; | |||
| 8135 | } | |||
| 8136 | ||||
| 8137 | bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty, | |||
| 8138 | CastKind &Kind) { | |||
| 8139 | assert(VectorTy->isVectorType() && "Not a vector type!")(static_cast <bool> (VectorTy->isVectorType() && "Not a vector type!") ? void (0) : __assert_fail ("VectorTy->isVectorType() && \"Not a vector type!\"" , "clang/lib/Sema/SemaExpr.cpp", 8139, __extension__ __PRETTY_FUNCTION__ )); | |||
| 8140 | ||||
| 8141 | if (Ty->isVectorType() || Ty->isIntegralType(Context)) { | |||
| 8142 | if (!areLaxCompatibleVectorTypes(Ty, VectorTy)) | |||
| 8143 | return Diag(R.getBegin(), | |||
| 8144 | Ty->isVectorType() ? | |||
| 8145 | diag::err_invalid_conversion_between_vectors : | |||
| 8146 | diag::err_invalid_conversion_between_vector_and_integer) | |||
| 8147 | << VectorTy << Ty << R; | |||
| 8148 | } else | |||
| 8149 | return Diag(R.getBegin(), | |||
| 8150 | diag::err_invalid_conversion_between_vector_and_scalar) | |||
| 8151 | << VectorTy << Ty << R; | |||
| 8152 | ||||
| 8153 | Kind = CK_BitCast; | |||
| 8154 | return false; | |||
| 8155 | } | |||
| 8156 | ||||
| 8157 | ExprResult Sema::prepareVectorSplat(QualType VectorTy, Expr *SplattedExpr) { | |||
| 8158 | QualType DestElemTy = VectorTy->castAs<VectorType>()->getElementType(); | |||
| 8159 | ||||
| 8160 | if (DestElemTy == SplattedExpr->getType()) | |||
| 8161 | return SplattedExpr; | |||
| 8162 | ||||
| 8163 | assert(DestElemTy->isFloatingType() ||(static_cast <bool> (DestElemTy->isFloatingType() || DestElemTy->isIntegralOrEnumerationType()) ? void (0) : __assert_fail ("DestElemTy->isFloatingType() || DestElemTy->isIntegralOrEnumerationType()" , "clang/lib/Sema/SemaExpr.cpp", 8164, __extension__ __PRETTY_FUNCTION__ )) | |||
| 8164 | DestElemTy->isIntegralOrEnumerationType())(static_cast <bool> (DestElemTy->isFloatingType() || DestElemTy->isIntegralOrEnumerationType()) ? void (0) : __assert_fail ("DestElemTy->isFloatingType() || DestElemTy->isIntegralOrEnumerationType()" , "clang/lib/Sema/SemaExpr.cpp", 8164, __extension__ __PRETTY_FUNCTION__ )); | |||
| 8165 | ||||
| 8166 | CastKind CK; | |||
| 8167 | if (VectorTy->isExtVectorType() && SplattedExpr->getType()->isBooleanType()) { | |||
| 8168 | // OpenCL requires that we convert `true` boolean expressions to -1, but | |||
| 8169 | // only when splatting vectors. | |||
| 8170 | if (DestElemTy->isFloatingType()) { | |||
| 8171 | // To avoid having to have a CK_BooleanToSignedFloating cast kind, we cast | |||
| 8172 | // in two steps: boolean to signed integral, then to floating. | |||
| 8173 | ExprResult CastExprRes = ImpCastExprToType(SplattedExpr, Context.IntTy, | |||
| 8174 | CK_BooleanToSignedIntegral); | |||
| 8175 | SplattedExpr = CastExprRes.get(); | |||
| 8176 | CK = CK_IntegralToFloating; | |||
| 8177 | } else { | |||
| 8178 | CK = CK_BooleanToSignedIntegral; | |||
| 8179 | } | |||
| 8180 | } else { | |||
| 8181 | ExprResult CastExprRes = SplattedExpr; | |||
| 8182 | CK = PrepareScalarCast(CastExprRes, DestElemTy); | |||
| 8183 | if (CastExprRes.isInvalid()) | |||
| 8184 | return ExprError(); | |||
| 8185 | SplattedExpr = CastExprRes.get(); | |||
| 8186 | } | |||
| 8187 | return ImpCastExprToType(SplattedExpr, DestElemTy, CK); | |||
| 8188 | } | |||
| 8189 | ||||
| 8190 | ExprResult Sema::CheckExtVectorCast(SourceRange R, QualType DestTy, | |||
| 8191 | Expr *CastExpr, CastKind &Kind) { | |||
| 8192 | assert(DestTy->isExtVectorType() && "Not an extended vector type!")(static_cast <bool> (DestTy->isExtVectorType() && "Not an extended vector type!") ? void (0) : __assert_fail ( "DestTy->isExtVectorType() && \"Not an extended vector type!\"" , "clang/lib/Sema/SemaExpr.cpp", 8192, __extension__ __PRETTY_FUNCTION__ )); | |||
| 8193 | ||||
| 8194 | QualType SrcTy = CastExpr->getType(); | |||
| 8195 | ||||
| 8196 | // If SrcTy is a VectorType, the total size must match to explicitly cast to | |||
| 8197 | // an ExtVectorType. | |||
| 8198 | // In OpenCL, casts between vectors of different types are not allowed. | |||
| 8199 | // (See OpenCL 6.2). | |||
| 8200 | if (SrcTy->isVectorType()) { | |||
| 8201 | if (!areLaxCompatibleVectorTypes(SrcTy, DestTy) || | |||
| 8202 | (getLangOpts().OpenCL && | |||
| 8203 | !Context.hasSameUnqualifiedType(DestTy, SrcTy))) { | |||
| 8204 | Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors) | |||
| 8205 | << DestTy << SrcTy << R; | |||
| 8206 | return ExprError(); | |||
| 8207 | } | |||
| 8208 | Kind = CK_BitCast; | |||
| 8209 | return CastExpr; | |||
| 8210 | } | |||
| 8211 | ||||
| 8212 | // All non-pointer scalars can be cast to ExtVector type. The appropriate | |||
| 8213 | // conversion will take place first from scalar to elt type, and then | |||
| 8214 | // splat from elt type to vector. | |||
| 8215 | if (SrcTy->isPointerType()) | |||
| 8216 | return Diag(R.getBegin(), | |||
| 8217 | diag::err_invalid_conversion_between_vector_and_scalar) | |||
| 8218 | << DestTy << SrcTy << R; | |||
| 8219 | ||||
| 8220 | Kind = CK_VectorSplat; | |||
| 8221 | return prepareVectorSplat(DestTy, CastExpr); | |||
| 8222 | } | |||
| 8223 | ||||
| 8224 | ExprResult | |||
| 8225 | Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc, | |||
| 8226 | Declarator &D, ParsedType &Ty, | |||
| 8227 | SourceLocation RParenLoc, Expr *CastExpr) { | |||
| 8228 | assert(!D.isInvalidType() && (CastExpr != nullptr) &&(static_cast <bool> (!D.isInvalidType() && (CastExpr != nullptr) && "ActOnCastExpr(): missing type or expr" ) ? void (0) : __assert_fail ("!D.isInvalidType() && (CastExpr != nullptr) && \"ActOnCastExpr(): missing type or expr\"" , "clang/lib/Sema/SemaExpr.cpp", 8229, __extension__ __PRETTY_FUNCTION__ )) | |||
| 8229 | "ActOnCastExpr(): missing type or expr")(static_cast <bool> (!D.isInvalidType() && (CastExpr != nullptr) && "ActOnCastExpr(): missing type or expr" ) ? void (0) : __assert_fail ("!D.isInvalidType() && (CastExpr != nullptr) && \"ActOnCastExpr(): missing type or expr\"" , "clang/lib/Sema/SemaExpr.cpp", 8229, __extension__ __PRETTY_FUNCTION__ )); | |||
| 8230 | ||||
| 8231 | TypeSourceInfo *castTInfo = GetTypeForDeclaratorCast(D, CastExpr->getType()); | |||
| 8232 | if (D.isInvalidType()) | |||
| 8233 | return ExprError(); | |||
| 8234 | ||||
| 8235 | if (getLangOpts().CPlusPlus) { | |||
| 8236 | // Check that there are no default arguments (C++ only). | |||
| 8237 | CheckExtraCXXDefaultArguments(D); | |||
| 8238 | } else { | |||
| 8239 | // Make sure any TypoExprs have been dealt with. | |||
| 8240 | ExprResult Res = CorrectDelayedTyposInExpr(CastExpr); | |||
| 8241 | if (!Res.isUsable()) | |||
| 8242 | return ExprError(); | |||
| 8243 | CastExpr = Res.get(); | |||
| 8244 | } | |||
| 8245 | ||||
| 8246 | checkUnusedDeclAttributes(D); | |||
| 8247 | ||||
| 8248 | QualType castType = castTInfo->getType(); | |||
| 8249 | Ty = CreateParsedType(castType, castTInfo); | |||
| 8250 | ||||
| 8251 | bool isVectorLiteral = false; | |||
| 8252 | ||||
| 8253 | // Check for an altivec or OpenCL literal, | |||
| 8254 | // i.e. all the elements are integer constants. | |||
| 8255 | ParenExpr *PE = dyn_cast<ParenExpr>(CastExpr); | |||
| 8256 | ParenListExpr *PLE = dyn_cast<ParenListExpr>(CastExpr); | |||
| 8257 | if ((getLangOpts().AltiVec || getLangOpts().ZVector || getLangOpts().OpenCL) | |||
| 8258 | && castType->isVectorType() && (PE || PLE)) { | |||
| 8259 | if (PLE && PLE->getNumExprs() == 0) { | |||
| 8260 | Diag(PLE->getExprLoc(), diag::err_altivec_empty_initializer); | |||
| 8261 | return ExprError(); | |||
| 8262 | } | |||
| 8263 | if (PE || PLE->getNumExprs() == 1) { | |||
| 8264 | Expr *E = (PE ? PE->getSubExpr() : PLE->getExpr(0)); | |||
| 8265 | if (!E->isTypeDependent() && !E->getType()->isVectorType()) | |||
| 8266 | isVectorLiteral = true; | |||
| 8267 | } | |||
| 8268 | else | |||
| 8269 | isVectorLiteral = true; | |||
| 8270 | } | |||
| 8271 | ||||
| 8272 | // If this is a vector initializer, '(' type ')' '(' init, ..., init ')' | |||
| 8273 | // then handle it as such. | |||
| 8274 | if (isVectorLiteral) | |||
| 8275 | return BuildVectorLiteral(LParenLoc, RParenLoc, CastExpr, castTInfo); | |||
| 8276 | ||||
| 8277 | // If the Expr being casted is a ParenListExpr, handle it specially. | |||
| 8278 | // This is not an AltiVec-style cast, so turn the ParenListExpr into a | |||
| 8279 | // sequence of BinOp comma operators. | |||
| 8280 | if (isa<ParenListExpr>(CastExpr)) { | |||
| 8281 | ExprResult Result = MaybeConvertParenListExprToParenExpr(S, CastExpr); | |||
| 8282 | if (Result.isInvalid()) return ExprError(); | |||
| 8283 | CastExpr = Result.get(); | |||
| 8284 | } | |||
| 8285 | ||||
| 8286 | if (getLangOpts().CPlusPlus && !castType->isVoidType()) | |||
| 8287 | Diag(LParenLoc, diag::warn_old_style_cast) << CastExpr->getSourceRange(); | |||
| 8288 | ||||
| 8289 | CheckTollFreeBridgeCast(castType, CastExpr); | |||
| 8290 | ||||
| 8291 | CheckObjCBridgeRelatedCast(castType, CastExpr); | |||
| 8292 | ||||
| 8293 | DiscardMisalignedMemberAddress(castType.getTypePtr(), CastExpr); | |||
| 8294 | ||||
| 8295 | return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, CastExpr); | |||
| 8296 | } | |||
| 8297 | ||||
| 8298 | ExprResult Sema::BuildVectorLiteral(SourceLocation LParenLoc, | |||
| 8299 | SourceLocation RParenLoc, Expr *E, | |||
| 8300 | TypeSourceInfo *TInfo) { | |||
| 8301 | assert((isa<ParenListExpr>(E) || isa<ParenExpr>(E)) &&(static_cast <bool> ((isa<ParenListExpr>(E) || isa <ParenExpr>(E)) && "Expected paren or paren list expression" ) ? void (0) : __assert_fail ("(isa<ParenListExpr>(E) || isa<ParenExpr>(E)) && \"Expected paren or paren list expression\"" , "clang/lib/Sema/SemaExpr.cpp", 8302, __extension__ __PRETTY_FUNCTION__ )) | |||
| 8302 | "Expected paren or paren list expression")(static_cast <bool> ((isa<ParenListExpr>(E) || isa <ParenExpr>(E)) && "Expected paren or paren list expression" ) ? void (0) : __assert_fail ("(isa<ParenListExpr>(E) || isa<ParenExpr>(E)) && \"Expected paren or paren list expression\"" , "clang/lib/Sema/SemaExpr.cpp", 8302, __extension__ __PRETTY_FUNCTION__ )); | |||
| 8303 | ||||
| 8304 | Expr **exprs; | |||
| 8305 | unsigned numExprs; | |||
| 8306 | Expr *subExpr; | |||
| 8307 | SourceLocation LiteralLParenLoc, LiteralRParenLoc; | |||
| 8308 | if (ParenListExpr *PE = dyn_cast<ParenListExpr>(E)) { | |||
| 8309 | LiteralLParenLoc = PE->getLParenLoc(); | |||
| 8310 | LiteralRParenLoc = PE->getRParenLoc(); | |||
| 8311 | exprs = PE->getExprs(); | |||
| 8312 | numExprs = PE->getNumExprs(); | |||
| 8313 | } else { // isa<ParenExpr> by assertion at function entrance | |||
| 8314 | LiteralLParenLoc = cast<ParenExpr>(E)->getLParen(); | |||
| 8315 | LiteralRParenLoc = cast<ParenExpr>(E)->getRParen(); | |||
| 8316 | subExpr = cast<ParenExpr>(E)->getSubExpr(); | |||
| 8317 | exprs = &subExpr; | |||
| 8318 | numExprs = 1; | |||
| 8319 | } | |||
| 8320 | ||||
| 8321 | QualType Ty = TInfo->getType(); | |||
| 8322 | assert(Ty->isVectorType() && "Expected vector type")(static_cast <bool> (Ty->isVectorType() && "Expected vector type" ) ? void (0) : __assert_fail ("Ty->isVectorType() && \"Expected vector type\"" , "clang/lib/Sema/SemaExpr.cpp", 8322, __extension__ __PRETTY_FUNCTION__ )); | |||
| 8323 | ||||
| 8324 | SmallVector<Expr *, 8> initExprs; | |||
| 8325 | const VectorType *VTy = Ty->castAs<VectorType>(); | |||
| 8326 | unsigned numElems = VTy->getNumElements(); | |||
| 8327 | ||||
| 8328 | // '(...)' form of vector initialization in AltiVec: the number of | |||
| 8329 | // initializers must be one or must match the size of the vector. | |||
| 8330 | // If a single value is specified in the initializer then it will be | |||
| 8331 | // replicated to all the components of the vector | |||
| 8332 | if (CheckAltivecInitFromScalar(E->getSourceRange(), Ty, | |||
| 8333 | VTy->getElementType())) | |||
| 8334 | return ExprError(); | |||
| 8335 | if (ShouldSplatAltivecScalarInCast(VTy)) { | |||
| 8336 | // The number of initializers must be one or must match the size of the | |||
| 8337 | // vector. If a single value is specified in the initializer then it will | |||
| 8338 | // be replicated to all the components of the vector | |||
| 8339 | if (numExprs == 1) { | |||
| 8340 | QualType ElemTy = VTy->getElementType(); | |||
| 8341 | ExprResult Literal = DefaultLvalueConversion(exprs[0]); | |||
| 8342 | if (Literal.isInvalid()) | |||
| 8343 | return ExprError(); | |||
| 8344 | Literal = ImpCastExprToType(Literal.get(), ElemTy, | |||
| 8345 | PrepareScalarCast(Literal, ElemTy)); | |||
| 8346 | return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get()); | |||
| 8347 | } | |||
| 8348 | else if (numExprs < numElems) { | |||
| 8349 | Diag(E->getExprLoc(), | |||
| 8350 | diag::err_incorrect_number_of_vector_initializers); | |||
| 8351 | return ExprError(); | |||
| 8352 | } | |||
| 8353 | else | |||
| 8354 | initExprs.append(exprs, exprs + numExprs); | |||
| 8355 | } | |||
| 8356 | else { | |||
| 8357 | // For OpenCL, when the number of initializers is a single value, | |||
| 8358 | // it will be replicated to all components of the vector. | |||
| 8359 | if (getLangOpts().OpenCL && | |||
| 8360 | VTy->getVectorKind() == VectorType::GenericVector && | |||
| 8361 | numExprs == 1) { | |||
| 8362 | QualType ElemTy = VTy->getElementType(); | |||
| 8363 | ExprResult Literal = DefaultLvalueConversion(exprs[0]); | |||
| 8364 | if (Literal.isInvalid()) | |||
| 8365 | return ExprError(); | |||
| 8366 | Literal = ImpCastExprToType(Literal.get(), ElemTy, | |||
| 8367 | PrepareScalarCast(Literal, ElemTy)); | |||
| 8368 | return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get()); | |||
| 8369 | } | |||
| 8370 | ||||
| 8371 | initExprs.append(exprs, exprs + numExprs); | |||
| 8372 | } | |||
| 8373 | // FIXME: This means that pretty-printing the final AST will produce curly | |||
| 8374 | // braces instead of the original commas. | |||
| 8375 | InitListExpr *initE = new (Context) InitListExpr(Context, LiteralLParenLoc, | |||
| 8376 | initExprs, LiteralRParenLoc); | |||
| 8377 | initE->setType(Ty); | |||
| 8378 | return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, initE); | |||
| 8379 | } | |||
| 8380 | ||||
| 8381 | /// This is not an AltiVec-style cast or or C++ direct-initialization, so turn | |||
| 8382 | /// the ParenListExpr into a sequence of comma binary operators. | |||
| 8383 | ExprResult | |||
| 8384 | Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *OrigExpr) { | |||
| 8385 | ParenListExpr *E = dyn_cast<ParenListExpr>(OrigExpr); | |||
| 8386 | if (!E) | |||
| 8387 | return OrigExpr; | |||
| 8388 | ||||
| 8389 | ExprResult Result(E->getExpr(0)); | |||
| 8390 | ||||
| 8391 | for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i) | |||
| 8392 | Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, Result.get(), | |||
| 8393 | E->getExpr(i)); | |||
| 8394 | ||||
| 8395 | if (Result.isInvalid()) return ExprError(); | |||
| 8396 | ||||
| 8397 | return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), Result.get()); | |||
| 8398 | } | |||
| 8399 | ||||
| 8400 | ExprResult Sema::ActOnParenListExpr(SourceLocation L, | |||
| 8401 | SourceLocation R, | |||
| 8402 | MultiExprArg Val) { | |||
| 8403 | return ParenListExpr::Create(Context, L, Val, R); | |||
| 8404 | } | |||
| 8405 | ||||
| 8406 | /// Emit a specialized diagnostic when one expression is a null pointer | |||
| 8407 | /// constant and the other is not a pointer. Returns true if a diagnostic is | |||
| 8408 | /// emitted. | |||
| 8409 | bool Sema::DiagnoseConditionalForNull(Expr *LHSExpr, Expr *RHSExpr, | |||
| 8410 | SourceLocation QuestionLoc) { | |||
| 8411 | Expr *NullExpr = LHSExpr; | |||
| 8412 | Expr *NonPointerExpr = RHSExpr; | |||
| 8413 | Expr::NullPointerConstantKind NullKind = | |||
| 8414 | NullExpr->isNullPointerConstant(Context, | |||
| 8415 | Expr::NPC_ValueDependentIsNotNull); | |||
| 8416 | ||||
| 8417 | if (NullKind == Expr::NPCK_NotNull) { | |||
| 8418 | NullExpr = RHSExpr; | |||
| 8419 | NonPointerExpr = LHSExpr; | |||
| 8420 | NullKind = | |||
| 8421 | NullExpr->isNullPointerConstant(Context, | |||
| 8422 | Expr::NPC_ValueDependentIsNotNull); | |||
| 8423 | } | |||
| 8424 | ||||
| 8425 | if (NullKind == Expr::NPCK_NotNull) | |||
| 8426 | return false; | |||
| 8427 | ||||
| 8428 | if (NullKind == Expr::NPCK_ZeroExpression) | |||
| 8429 | return false; | |||
| 8430 | ||||
| 8431 | if (NullKind == Expr::NPCK_ZeroLiteral) { | |||
| 8432 | // In this case, check to make sure that we got here from a "NULL" | |||
| 8433 | // string in the source code. | |||
| 8434 | NullExpr = NullExpr->IgnoreParenImpCasts(); | |||
| 8435 | SourceLocation loc = NullExpr->getExprLoc(); | |||
| 8436 | if (!findMacroSpelling(loc, "NULL")) | |||
| 8437 | return false; | |||
| 8438 | } | |||
| 8439 | ||||
| 8440 | int DiagType = (NullKind == Expr::NPCK_CXX11_nullptr); | |||
| 8441 | Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands_null) | |||
| 8442 | << NonPointerExpr->getType() << DiagType | |||
| 8443 | << NonPointerExpr->getSourceRange(); | |||
| 8444 | return true; | |||
| 8445 | } | |||
| 8446 | ||||
| 8447 | /// Return false if the condition expression is valid, true otherwise. | |||
| 8448 | static bool checkCondition(Sema &S, Expr *Cond, SourceLocation QuestionLoc) { | |||
| 8449 | QualType CondTy = Cond->getType(); | |||
| 8450 | ||||
| 8451 | // OpenCL v1.1 s6.3.i says the condition cannot be a floating point type. | |||
| 8452 | if (S.getLangOpts().OpenCL && CondTy->isFloatingType()) { | |||
| 8453 | S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_nonfloat) | |||
| 8454 | << CondTy << Cond->getSourceRange(); | |||
| 8455 | return true; | |||
| 8456 | } | |||
| 8457 | ||||
| 8458 | // C99 6.5.15p2 | |||
| 8459 | if (CondTy->isScalarType()) return false; | |||
| 8460 | ||||
| 8461 | S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_scalar) | |||
| 8462 | << CondTy << Cond->getSourceRange(); | |||
| 8463 | return true; | |||
| 8464 | } | |||
| 8465 | ||||
| 8466 | /// Return false if the NullExpr can be promoted to PointerTy, | |||
| 8467 | /// true otherwise. | |||
| 8468 | static bool checkConditionalNullPointer(Sema &S, ExprResult &NullExpr, | |||
| 8469 | QualType PointerTy) { | |||
| 8470 | if ((!PointerTy->isAnyPointerType() && !PointerTy->isBlockPointerType()) || | |||
| 8471 | !NullExpr.get()->isNullPointerConstant(S.Context, | |||
| 8472 | Expr::NPC_ValueDependentIsNull)) | |||
| 8473 | return true; | |||
| 8474 | ||||
| 8475 | NullExpr = S.ImpCastExprToType(NullExpr.get(), PointerTy, CK_NullToPointer); | |||
| 8476 | return false; | |||
| 8477 | } | |||
| 8478 | ||||
| 8479 | /// Checks compatibility between two pointers and return the resulting | |||
| 8480 | /// type. | |||
| 8481 | static QualType checkConditionalPointerCompatibility(Sema &S, ExprResult &LHS, | |||
| 8482 | ExprResult &RHS, | |||
| 8483 | SourceLocation Loc) { | |||
| 8484 | QualType LHSTy = LHS.get()->getType(); | |||
| 8485 | QualType RHSTy = RHS.get()->getType(); | |||
| 8486 | ||||
| 8487 | if (S.Context.hasSameType(LHSTy, RHSTy)) { | |||
| 8488 | // Two identical pointers types are always compatible. | |||
| 8489 | return S.Context.getCommonSugaredType(LHSTy, RHSTy); | |||
| 8490 | } | |||
| 8491 | ||||
| 8492 | QualType lhptee, rhptee; | |||
| 8493 | ||||
| 8494 | // Get the pointee types. | |||
| 8495 | bool IsBlockPointer = false; | |||
| 8496 | if (const BlockPointerType *LHSBTy = LHSTy->getAs<BlockPointerType>()) { | |||
| 8497 | lhptee = LHSBTy->getPointeeType(); | |||
| 8498 | rhptee = RHSTy->castAs<BlockPointerType>()->getPointeeType(); | |||
| 8499 | IsBlockPointer = true; | |||
| 8500 | } else { | |||
| 8501 | lhptee = LHSTy->castAs<PointerType>()->getPointeeType(); | |||
| 8502 | rhptee = RHSTy->castAs<PointerType>()->getPointeeType(); | |||
| 8503 | } | |||
| 8504 | ||||
| 8505 | // C99 6.5.15p6: If both operands are pointers to compatible types or to | |||
| 8506 | // differently qualified versions of compatible types, the result type is | |||
| 8507 | // a pointer to an appropriately qualified version of the composite | |||
| 8508 | // type. | |||
| 8509 | ||||
| 8510 | // Only CVR-qualifiers exist in the standard, and the differently-qualified | |||
| 8511 | // clause doesn't make sense for our extensions. E.g. address space 2 should | |||
| 8512 | // be incompatible with address space 3: they may live on different devices or | |||
| 8513 | // anything. | |||
| 8514 | Qualifiers lhQual = lhptee.getQualifiers(); | |||
| 8515 | Qualifiers rhQual = rhptee.getQualifiers(); | |||
| 8516 | ||||
| 8517 | LangAS ResultAddrSpace = LangAS::Default; | |||
| 8518 | LangAS LAddrSpace = lhQual.getAddressSpace(); | |||
| 8519 | LangAS RAddrSpace = rhQual.getAddressSpace(); | |||
| 8520 | ||||
| 8521 | // OpenCL v1.1 s6.5 - Conversion between pointers to distinct address | |||
| 8522 | // spaces is disallowed. | |||
| 8523 | if (lhQual.isAddressSpaceSupersetOf(rhQual)) | |||
| 8524 | ResultAddrSpace = LAddrSpace; | |||
| 8525 | else if (rhQual.isAddressSpaceSupersetOf(lhQual)) | |||
| 8526 | ResultAddrSpace = RAddrSpace; | |||
| 8527 | else { | |||
| 8528 | S.Diag(Loc, diag::err_typecheck_op_on_nonoverlapping_address_space_pointers) | |||
| 8529 | << LHSTy << RHSTy << 2 << LHS.get()->getSourceRange() | |||
| 8530 | << RHS.get()->getSourceRange(); | |||
| 8531 | return QualType(); | |||
| 8532 | } | |||
| 8533 | ||||
| 8534 | unsigned MergedCVRQual = lhQual.getCVRQualifiers() | rhQual.getCVRQualifiers(); | |||
| 8535 | auto LHSCastKind = CK_BitCast, RHSCastKind = CK_BitCast; | |||
| 8536 | lhQual.removeCVRQualifiers(); | |||
| 8537 | rhQual.removeCVRQualifiers(); | |||
| 8538 | ||||
| 8539 | // OpenCL v2.0 specification doesn't extend compatibility of type qualifiers | |||
| 8540 | // (C99 6.7.3) for address spaces. We assume that the check should behave in | |||
| 8541 | // the same manner as it's defined for CVR qualifiers, so for OpenCL two | |||
| 8542 | // qual types are compatible iff | |||
| 8543 | // * corresponded types are compatible | |||
| 8544 | // * CVR qualifiers are equal | |||
| 8545 | // * address spaces are equal | |||
| 8546 | // Thus for conditional operator we merge CVR and address space unqualified | |||
| 8547 | // pointees and if there is a composite type we return a pointer to it with | |||
| 8548 | // merged qualifiers. | |||
| 8549 | LHSCastKind = | |||
| 8550 | LAddrSpace == ResultAddrSpace ? CK_BitCast : CK_AddressSpaceConversion; | |||
| 8551 | RHSCastKind = | |||
| 8552 | RAddrSpace == ResultAddrSpace ? CK_BitCast : CK_AddressSpaceConversion; | |||
| 8553 | lhQual.removeAddressSpace(); | |||
| 8554 | rhQual.removeAddressSpace(); | |||
| 8555 | ||||
| 8556 | lhptee = S.Context.getQualifiedType(lhptee.getUnqualifiedType(), lhQual); | |||
| 8557 | rhptee = S.Context.getQualifiedType(rhptee.getUnqualifiedType(), rhQual); | |||
| 8558 | ||||
| 8559 | QualType CompositeTy = S.Context.mergeTypes( | |||
| 8560 | lhptee, rhptee, /*OfBlockPointer=*/false, /*Unqualified=*/false, | |||
| 8561 | /*BlockReturnType=*/false, /*IsConditionalOperator=*/true); | |||
| 8562 | ||||
| 8563 | if (CompositeTy.isNull()) { | |||
| 8564 | // In this situation, we assume void* type. No especially good | |||
| 8565 | // reason, but this is what gcc does, and we do have to pick | |||
| 8566 | // to get a consistent AST. | |||
| 8567 | QualType incompatTy; | |||
| 8568 | incompatTy = S.Context.getPointerType( | |||
| 8569 | S.Context.getAddrSpaceQualType(S.Context.VoidTy, ResultAddrSpace)); | |||
| 8570 | LHS = S.ImpCastExprToType(LHS.get(), incompatTy, LHSCastKind); | |||
| 8571 | RHS = S.ImpCastExprToType(RHS.get(), incompatTy, RHSCastKind); | |||
| 8572 | ||||
| 8573 | // FIXME: For OpenCL the warning emission and cast to void* leaves a room | |||
| 8574 | // for casts between types with incompatible address space qualifiers. | |||
| 8575 | // For the following code the compiler produces casts between global and | |||
| 8576 | // local address spaces of the corresponded innermost pointees: | |||
| 8577 | // local int *global *a; | |||
| 8578 | // global int *global *b; | |||
| 8579 | // a = (0 ? a : b); // see C99 6.5.16.1.p1. | |||
| 8580 | S.Diag(Loc, diag::ext_typecheck_cond_incompatible_pointers) | |||
| 8581 | << LHSTy << RHSTy << LHS.get()->getSourceRange() | |||
| 8582 | << RHS.get()->getSourceRange(); | |||
| 8583 | ||||
| 8584 | return incompatTy; | |||
| 8585 | } | |||
| 8586 | ||||
| 8587 | // The pointer types are compatible. | |||
| 8588 | // In case of OpenCL ResultTy should have the address space qualifier | |||
| 8589 | // which is a superset of address spaces of both the 2nd and the 3rd | |||
| 8590 | // operands of the conditional operator. | |||
| 8591 | QualType ResultTy = [&, ResultAddrSpace]() { | |||
| 8592 | if (S.getLangOpts().OpenCL) { | |||
| 8593 | Qualifiers CompositeQuals = CompositeTy.getQualifiers(); | |||
| 8594 | CompositeQuals.setAddressSpace(ResultAddrSpace); | |||
| 8595 | return S.Context | |||
| 8596 | .getQualifiedType(CompositeTy.getUnqualifiedType(), CompositeQuals) | |||
| 8597 | .withCVRQualifiers(MergedCVRQual); | |||
| 8598 | } | |||
| 8599 | return CompositeTy.withCVRQualifiers(MergedCVRQual); | |||
| 8600 | }(); | |||
| 8601 | if (IsBlockPointer) | |||
| 8602 | ResultTy = S.Context.getBlockPointerType(ResultTy); | |||
| 8603 | else | |||
| 8604 | ResultTy = S.Context.getPointerType(ResultTy); | |||
| 8605 | ||||
| 8606 | LHS = S.ImpCastExprToType(LHS.get(), ResultTy, LHSCastKind); | |||
| 8607 | RHS = S.ImpCastExprToType(RHS.get(), ResultTy, RHSCastKind); | |||
| 8608 | return ResultTy; | |||
| 8609 | } | |||
| 8610 | ||||
| 8611 | /// Return the resulting type when the operands are both block pointers. | |||
| 8612 | static QualType checkConditionalBlockPointerCompatibility(Sema &S, | |||
| 8613 | ExprResult &LHS, | |||
| 8614 | ExprResult &RHS, | |||
| 8615 | SourceLocation Loc) { | |||
| 8616 | QualType LHSTy = LHS.get()->getType(); | |||
| 8617 | QualType RHSTy = RHS.get()->getType(); | |||
| 8618 | ||||
| 8619 | if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) { | |||
| 8620 | if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) { | |||
| 8621 | QualType destType = S.Context.getPointerType(S.Context.VoidTy); | |||
| 8622 | LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast); | |||
| 8623 | RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast); | |||
| 8624 | return destType; | |||
| 8625 | } | |||
| 8626 | S.Diag(Loc, diag::err_typecheck_cond_incompatible_operands) | |||
| 8627 | << LHSTy << RHSTy << LHS.get()->getSourceRange() | |||
| 8628 | << RHS.get()->getSourceRange(); | |||
| 8629 | return QualType(); | |||
| 8630 | } | |||
| 8631 | ||||
| 8632 | // We have 2 block pointer types. | |||
| 8633 | return checkConditionalPointerCompatibility(S, LHS, RHS, Loc); | |||
| 8634 | } | |||
| 8635 | ||||
| 8636 | /// Return the resulting type when the operands are both pointers. | |||
| 8637 | static QualType | |||
| 8638 | checkConditionalObjectPointersCompatibility(Sema &S, ExprResult &LHS, | |||
| 8639 | ExprResult &RHS, | |||
| 8640 | SourceLocation Loc) { | |||
| 8641 | // get the pointer types | |||
| 8642 | QualType LHSTy = LHS.get()->getType(); | |||
| 8643 | QualType RHSTy = RHS.get()->getType(); | |||
| 8644 | ||||
| 8645 | // get the "pointed to" types | |||
| 8646 | QualType lhptee = LHSTy->castAs<PointerType>()->getPointeeType(); | |||
| 8647 | QualType rhptee = RHSTy->castAs<PointerType>()->getPointeeType(); | |||
| 8648 | ||||
| 8649 | // ignore qualifiers on void (C99 6.5.15p3, clause 6) | |||
| 8650 | if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) { | |||
| 8651 | // Figure out necessary qualifiers (C99 6.5.15p6) | |||
| 8652 | QualType destPointee | |||
| 8653 | = S.Context.getQualifiedType(lhptee, rhptee.getQualifiers()); | |||
| 8654 | QualType destType = S.Context.getPointerType(destPointee); | |||
| 8655 | // Add qualifiers if necessary. | |||
| 8656 | LHS = S.ImpCastExprToType(LHS.get(), destType, CK_NoOp); | |||
| 8657 | // Promote to void*. | |||
| 8658 | RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast); | |||
| 8659 | return destType; | |||
| 8660 | } | |||
| 8661 | if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) { | |||
| 8662 | QualType destPointee | |||
| 8663 | = S.Context.getQualifiedType(rhptee, lhptee.getQualifiers()); | |||
| 8664 | QualType destType = S.Context.getPointerType(destPointee); | |||
| 8665 | // Add qualifiers if necessary. | |||
| 8666 | RHS = S.ImpCastExprToType(RHS.get(), destType, CK_NoOp); | |||
| 8667 | // Promote to void*. | |||
| 8668 | LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast); | |||
| 8669 | return destType; | |||
| 8670 | } | |||
| 8671 | ||||
| 8672 | return checkConditionalPointerCompatibility(S, LHS, RHS, Loc); | |||
| 8673 | } | |||
| 8674 | ||||
| 8675 | /// Return false if the first expression is not an integer and the second | |||
| 8676 | /// expression is not a pointer, true otherwise. | |||
| 8677 | static bool checkPointerIntegerMismatch(Sema &S, ExprResult &Int, | |||
| 8678 | Expr* PointerExpr, SourceLocation Loc, | |||
| 8679 | bool IsIntFirstExpr) { | |||
| 8680 | if (!PointerExpr->getType()->isPointerType() || | |||
| 8681 | !Int.get()->getType()->isIntegerType()) | |||
| 8682 | return false; | |||
| 8683 | ||||
| 8684 | Expr *Expr1 = IsIntFirstExpr ? Int.get() : PointerExpr; | |||
| 8685 | Expr *Expr2 = IsIntFirstExpr ? PointerExpr : Int.get(); | |||
| 8686 | ||||
| 8687 | S.Diag(Loc, diag::ext_typecheck_cond_pointer_integer_mismatch) | |||
| 8688 | << Expr1->getType() << Expr2->getType() | |||
| 8689 | << Expr1->getSourceRange() << Expr2->getSourceRange(); | |||
| 8690 | Int = S.ImpCastExprToType(Int.get(), PointerExpr->getType(), | |||
| 8691 | CK_IntegralToPointer); | |||
| 8692 | return true; | |||
| 8693 | } | |||
| 8694 | ||||
| 8695 | /// Simple conversion between integer and floating point types. | |||
| 8696 | /// | |||
| 8697 | /// Used when handling the OpenCL conditional operator where the | |||
| 8698 | /// condition is a vector while the other operands are scalar. | |||
| 8699 | /// | |||
| 8700 | /// OpenCL v1.1 s6.3.i and s6.11.6 together require that the scalar | |||
| 8701 | /// types are either integer or floating type. Between the two | |||
| 8702 | /// operands, the type with the higher rank is defined as the "result | |||
| 8703 | /// type". The other operand needs to be promoted to the same type. No | |||
| 8704 | /// other type promotion is allowed. We cannot use | |||
| 8705 | /// UsualArithmeticConversions() for this purpose, since it always | |||
| 8706 | /// promotes promotable types. | |||
| 8707 | static QualType OpenCLArithmeticConversions(Sema &S, ExprResult &LHS, | |||
| 8708 | ExprResult &RHS, | |||
| 8709 | SourceLocation QuestionLoc) { | |||
| 8710 | LHS = S.DefaultFunctionArrayLvalueConversion(LHS.get()); | |||
| 8711 | if (LHS.isInvalid()) | |||
| 8712 | return QualType(); | |||
| 8713 | RHS = S.DefaultFunctionArrayLvalueConversion(RHS.get()); | |||
| 8714 | if (RHS.isInvalid()) | |||
| 8715 | return QualType(); | |||
| 8716 | ||||
| 8717 | // For conversion purposes, we ignore any qualifiers. | |||
| 8718 | // For example, "const float" and "float" are equivalent. | |||
| 8719 | QualType LHSType = | |||
| 8720 | S.Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType(); | |||
| 8721 | QualType RHSType = | |||
| 8722 | S.Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType(); | |||
| 8723 | ||||
| 8724 | if (!LHSType->isIntegerType() && !LHSType->isRealFloatingType()) { | |||
| 8725 | S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_int_float) | |||
| 8726 | << LHSType << LHS.get()->getSourceRange(); | |||
| 8727 | return QualType(); | |||
| 8728 | } | |||
| 8729 | ||||
| 8730 | if (!RHSType->isIntegerType() && !RHSType->isRealFloatingType()) { | |||
| 8731 | S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_int_float) | |||
| 8732 | << RHSType << RHS.get()->getSourceRange(); | |||
| 8733 | return QualType(); | |||
| 8734 | } | |||
| 8735 | ||||
| 8736 | // If both types are identical, no conversion is needed. | |||
| 8737 | if (LHSType == RHSType) | |||
| 8738 | return LHSType; | |||
| 8739 | ||||
| 8740 | // Now handle "real" floating types (i.e. float, double, long double). | |||
| 8741 | if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType()) | |||
| 8742 | return handleFloatConversion(S, LHS, RHS, LHSType, RHSType, | |||
| 8743 | /*IsCompAssign = */ false); | |||
| 8744 | ||||
| 8745 | // Finally, we have two differing integer types. | |||
| 8746 | return handleIntegerConversion<doIntegralCast, doIntegralCast> | |||
| 8747 | (S, LHS, RHS, LHSType, RHSType, /*IsCompAssign = */ false); | |||
| 8748 | } | |||
| 8749 | ||||
| 8750 | /// Convert scalar operands to a vector that matches the | |||
| 8751 | /// condition in length. | |||
| 8752 | /// | |||
| 8753 | /// Used when handling the OpenCL conditional operator where the | |||
| 8754 | /// condition is a vector while the other operands are scalar. | |||
| 8755 | /// | |||
| 8756 | /// We first compute the "result type" for the scalar operands | |||
| 8757 | /// according to OpenCL v1.1 s6.3.i. Both operands are then converted | |||
| 8758 | /// into a vector of that type where the length matches the condition | |||
| 8759 | /// vector type. s6.11.6 requires that the element types of the result | |||
| 8760 | /// and the condition must have the same number of bits. | |||
| 8761 | static QualType | |||
| 8762 | OpenCLConvertScalarsToVectors(Sema &S, ExprResult &LHS, ExprResult &RHS, | |||
| 8763 | QualType CondTy, SourceLocation QuestionLoc) { | |||
| 8764 | QualType ResTy = OpenCLArithmeticConversions(S, LHS, RHS, QuestionLoc); | |||
| 8765 | if (ResTy.isNull()) return QualType(); | |||
| 8766 | ||||
| 8767 | const VectorType *CV = CondTy->getAs<VectorType>(); | |||
| 8768 | assert(CV)(static_cast <bool> (CV) ? void (0) : __assert_fail ("CV" , "clang/lib/Sema/SemaExpr.cpp", 8768, __extension__ __PRETTY_FUNCTION__ )); | |||
| 8769 | ||||
| 8770 | // Determine the vector result type | |||
| 8771 | unsigned NumElements = CV->getNumElements(); | |||
| 8772 | QualType VectorTy = S.Context.getExtVectorType(ResTy, NumElements); | |||
| 8773 | ||||
| 8774 | // Ensure that all types have the same number of bits | |||
| 8775 | if (S.Context.getTypeSize(CV->getElementType()) | |||
| 8776 | != S.Context.getTypeSize(ResTy)) { | |||
| 8777 | // Since VectorTy is created internally, it does not pretty print | |||
| 8778 | // with an OpenCL name. Instead, we just print a description. | |||
| 8779 | std::string EleTyName = ResTy.getUnqualifiedType().getAsString(); | |||
| 8780 | SmallString<64> Str; | |||
| 8781 | llvm::raw_svector_ostream OS(Str); | |||
| 8782 | OS << "(vector of " << NumElements << " '" << EleTyName << "' values)"; | |||
| 8783 | S.Diag(QuestionLoc, diag::err_conditional_vector_element_size) | |||
| 8784 | << CondTy << OS.str(); | |||
| 8785 | return QualType(); | |||
| 8786 | } | |||
| 8787 | ||||
| 8788 | // Convert operands to the vector result type | |||
| 8789 | LHS = S.ImpCastExprToType(LHS.get(), VectorTy, CK_VectorSplat); | |||
| 8790 | RHS = S.ImpCastExprToType(RHS.get(), VectorTy, CK_VectorSplat); | |||
| 8791 | ||||
| 8792 | return VectorTy; | |||
| 8793 | } | |||
| 8794 | ||||
| 8795 | /// Return false if this is a valid OpenCL condition vector | |||
| 8796 | static bool checkOpenCLConditionVector(Sema &S, Expr *Cond, | |||
| 8797 | SourceLocation QuestionLoc) { | |||
| 8798 | // OpenCL v1.1 s6.11.6 says the elements of the vector must be of | |||
| 8799 | // integral type. | |||
| 8800 | const VectorType *CondTy = Cond->getType()->getAs<VectorType>(); | |||
| 8801 | assert(CondTy)(static_cast <bool> (CondTy) ? void (0) : __assert_fail ("CondTy", "clang/lib/Sema/SemaExpr.cpp", 8801, __extension__ __PRETTY_FUNCTION__)); | |||
| 8802 | QualType EleTy = CondTy->getElementType(); | |||
| 8803 | if (EleTy->isIntegerType()) return false; | |||
| 8804 | ||||
| 8805 | S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_nonfloat) | |||
| 8806 | << Cond->getType() << Cond->getSourceRange(); | |||
| 8807 | return true; | |||
| 8808 | } | |||
| 8809 | ||||
| 8810 | /// Return false if the vector condition type and the vector | |||
| 8811 | /// result type are compatible. | |||
| 8812 | /// | |||
| 8813 | /// OpenCL v1.1 s6.11.6 requires that both vector types have the same | |||
| 8814 | /// number of elements, and their element types have the same number | |||
| 8815 | /// of bits. | |||
| 8816 | static bool checkVectorResult(Sema &S, QualType CondTy, QualType VecResTy, | |||
| 8817 | SourceLocation QuestionLoc) { | |||
| 8818 | const VectorType *CV = CondTy->getAs<VectorType>(); | |||
| 8819 | const VectorType *RV = VecResTy->getAs<VectorType>(); | |||
| 8820 | assert(CV && RV)(static_cast <bool> (CV && RV) ? void (0) : __assert_fail ("CV && RV", "clang/lib/Sema/SemaExpr.cpp", 8820, __extension__ __PRETTY_FUNCTION__)); | |||
| 8821 | ||||
| 8822 | if (CV->getNumElements() != RV->getNumElements()) { | |||
| 8823 | S.Diag(QuestionLoc, diag::err_conditional_vector_size) | |||
| 8824 | << CondTy << VecResTy; | |||
| 8825 | return true; | |||
| 8826 | } | |||
| 8827 | ||||
| 8828 | QualType CVE = CV->getElementType(); | |||
| 8829 | QualType RVE = RV->getElementType(); | |||
| 8830 | ||||
| 8831 | if (S.Context.getTypeSize(CVE) != S.Context.getTypeSize(RVE)) { | |||
| 8832 | S.Diag(QuestionLoc, diag::err_conditional_vector_element_size) | |||
| 8833 | << CondTy << VecResTy; | |||
| 8834 | return true; | |||
| 8835 | } | |||
| 8836 | ||||
| 8837 | return false; | |||
| 8838 | } | |||
| 8839 | ||||
| 8840 | /// Return the resulting type for the conditional operator in | |||
| 8841 | /// OpenCL (aka "ternary selection operator", OpenCL v1.1 | |||
| 8842 | /// s6.3.i) when the condition is a vector type. | |||
| 8843 | static QualType | |||
| 8844 | OpenCLCheckVectorConditional(Sema &S, ExprResult &Cond, | |||
| 8845 | ExprResult &LHS, ExprResult &RHS, | |||
| 8846 | SourceLocation QuestionLoc) { | |||
| 8847 | Cond = S.DefaultFunctionArrayLvalueConversion(Cond.get()); | |||
| 8848 | if (Cond.isInvalid()) | |||
| 8849 | return QualType(); | |||
| 8850 | QualType CondTy = Cond.get()->getType(); | |||
| 8851 | ||||
| 8852 | if (checkOpenCLConditionVector(S, Cond.get(), QuestionLoc)) | |||
| 8853 | return QualType(); | |||
| 8854 | ||||
| 8855 | // If either operand is a vector then find the vector type of the | |||
| 8856 | // result as specified in OpenCL v1.1 s6.3.i. | |||
| 8857 | if (LHS.get()->getType()->isVectorType() || | |||
| 8858 | RHS.get()->getType()->isVectorType()) { | |||
| 8859 | bool IsBoolVecLang = | |||
| 8860 | !S.getLangOpts().OpenCL && !S.getLangOpts().OpenCLCPlusPlus; | |||
| 8861 | QualType VecResTy = | |||
| 8862 | S.CheckVectorOperands(LHS, RHS, QuestionLoc, | |||
| 8863 | /*isCompAssign*/ false, | |||
| 8864 | /*AllowBothBool*/ true, | |||
| 8865 | /*AllowBoolConversions*/ false, | |||
| 8866 | /*AllowBooleanOperation*/ IsBoolVecLang, | |||
| 8867 | /*ReportInvalid*/ true); | |||
| 8868 | if (VecResTy.isNull()) | |||
| 8869 | return QualType(); | |||
| 8870 | // The result type must match the condition type as specified in | |||
| 8871 | // OpenCL v1.1 s6.11.6. | |||
| 8872 | if (checkVectorResult(S, CondTy, VecResTy, QuestionLoc)) | |||
| 8873 | return QualType(); | |||
| 8874 | return VecResTy; | |||
| 8875 | } | |||
| 8876 | ||||
| 8877 | // Both operands are scalar. | |||
| 8878 | return OpenCLConvertScalarsToVectors(S, LHS, RHS, CondTy, QuestionLoc); | |||
| 8879 | } | |||
| 8880 | ||||
| 8881 | /// Return true if the Expr is block type | |||
| 8882 | static bool checkBlockType(Sema &S, const Expr *E) { | |||
| 8883 | if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { | |||
| 8884 | QualType Ty = CE->getCallee()->getType(); | |||
| 8885 | if (Ty->isBlockPointerType()) { | |||
| 8886 | S.Diag(E->getExprLoc(), diag::err_opencl_ternary_with_block); | |||
| 8887 | return true; | |||
| 8888 | } | |||
| 8889 | } | |||
| 8890 | return false; | |||
| 8891 | } | |||
| 8892 | ||||
| 8893 | /// Note that LHS is not null here, even if this is the gnu "x ?: y" extension. | |||
| 8894 | /// In that case, LHS = cond. | |||
| 8895 | /// C99 6.5.15 | |||
| 8896 | QualType Sema::CheckConditionalOperands(ExprResult &Cond, ExprResult &LHS, | |||
| 8897 | ExprResult &RHS, ExprValueKind &VK, | |||
| 8898 | ExprObjectKind &OK, | |||
| 8899 | SourceLocation QuestionLoc) { | |||
| 8900 | ||||
| 8901 | ExprResult LHSResult = CheckPlaceholderExpr(LHS.get()); | |||
| 8902 | if (!LHSResult.isUsable()) return QualType(); | |||
| 8903 | LHS = LHSResult; | |||
| 8904 | ||||
| 8905 | ExprResult RHSResult = CheckPlaceholderExpr(RHS.get()); | |||
| 8906 | if (!RHSResult.isUsable()) return QualType(); | |||
| 8907 | RHS = RHSResult; | |||
| 8908 | ||||
| 8909 | // C++ is sufficiently different to merit its own checker. | |||
| 8910 | if (getLangOpts().CPlusPlus) | |||
| 8911 | return CXXCheckConditionalOperands(Cond, LHS, RHS, VK, OK, QuestionLoc); | |||
| 8912 | ||||
| 8913 | VK = VK_PRValue; | |||
| 8914 | OK = OK_Ordinary; | |||
| 8915 | ||||
| 8916 | if (Context.isDependenceAllowed() && | |||
| 8917 | (Cond.get()->isTypeDependent() || LHS.get()->isTypeDependent() || | |||
| 8918 | RHS.get()->isTypeDependent())) { | |||
| 8919 | assert(!getLangOpts().CPlusPlus)(static_cast <bool> (!getLangOpts().CPlusPlus) ? void ( 0) : __assert_fail ("!getLangOpts().CPlusPlus", "clang/lib/Sema/SemaExpr.cpp" , 8919, __extension__ __PRETTY_FUNCTION__)); | |||
| 8920 | assert((Cond.get()->containsErrors() || LHS.get()->containsErrors() ||(static_cast <bool> ((Cond.get()->containsErrors() || LHS.get()->containsErrors() || RHS.get()->containsErrors ()) && "should only occur in error-recovery path.") ? void (0) : __assert_fail ("(Cond.get()->containsErrors() || LHS.get()->containsErrors() || RHS.get()->containsErrors()) && \"should only occur in error-recovery path.\"" , "clang/lib/Sema/SemaExpr.cpp", 8922, __extension__ __PRETTY_FUNCTION__ )) | |||
| 8921 | RHS.get()->containsErrors()) &&(static_cast <bool> ((Cond.get()->containsErrors() || LHS.get()->containsErrors() || RHS.get()->containsErrors ()) && "should only occur in error-recovery path.") ? void (0) : __assert_fail ("(Cond.get()->containsErrors() || LHS.get()->containsErrors() || RHS.get()->containsErrors()) && \"should only occur in error-recovery path.\"" , "clang/lib/Sema/SemaExpr.cpp", 8922, __extension__ __PRETTY_FUNCTION__ )) | |||
| 8922 | "should only occur in error-recovery path.")(static_cast <bool> ((Cond.get()->containsErrors() || LHS.get()->containsErrors() || RHS.get()->containsErrors ()) && "should only occur in error-recovery path.") ? void (0) : __assert_fail ("(Cond.get()->containsErrors() || LHS.get()->containsErrors() || RHS.get()->containsErrors()) && \"should only occur in error-recovery path.\"" , "clang/lib/Sema/SemaExpr.cpp", 8922, __extension__ __PRETTY_FUNCTION__ )); | |||
| 8923 | return Context.DependentTy; | |||
| 8924 | } | |||
| 8925 | ||||
| 8926 | // The OpenCL operator with a vector condition is sufficiently | |||
| 8927 | // different to merit its own checker. | |||
| 8928 | if ((getLangOpts().OpenCL && Cond.get()->getType()->isVectorType()) || | |||
| 8929 | Cond.get()->getType()->isExtVectorType()) | |||
| 8930 | return OpenCLCheckVectorConditional(*this, Cond, LHS, RHS, QuestionLoc); | |||
| 8931 | ||||
| 8932 | // First, check the condition. | |||
| 8933 | Cond = UsualUnaryConversions(Cond.get()); | |||
| 8934 | if (Cond.isInvalid()) | |||
| 8935 | return QualType(); | |||
| 8936 | if (checkCondition(*this, Cond.get(), QuestionLoc)) | |||
| 8937 | return QualType(); | |||
| 8938 | ||||
| 8939 | // Now check the two expressions. | |||
| 8940 | if (LHS.get()->getType()->isVectorType() || | |||
| 8941 | RHS.get()->getType()->isVectorType()) | |||
| 8942 | return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/ false, | |||
| 8943 | /*AllowBothBool*/ true, | |||
| 8944 | /*AllowBoolConversions*/ false, | |||
| 8945 | /*AllowBooleanOperation*/ false, | |||
| 8946 | /*ReportInvalid*/ true); | |||
| 8947 | ||||
| 8948 | QualType ResTy = | |||
| 8949 | UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional); | |||
| 8950 | if (LHS.isInvalid() || RHS.isInvalid()) | |||
| 8951 | return QualType(); | |||
| 8952 | ||||
| 8953 | QualType LHSTy = LHS.get()->getType(); | |||
| 8954 | QualType RHSTy = RHS.get()->getType(); | |||
| 8955 | ||||
| 8956 | // Diagnose attempts to convert between __ibm128, __float128 and long double | |||
| 8957 | // where such conversions currently can't be handled. | |||
| 8958 | if (unsupportedTypeConversion(*this, LHSTy, RHSTy)) { | |||
| 8959 | Diag(QuestionLoc, | |||
| 8960 | diag::err_typecheck_cond_incompatible_operands) << LHSTy << RHSTy | |||
| 8961 | << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); | |||
| 8962 | return QualType(); | |||
| 8963 | } | |||
| 8964 | ||||
| 8965 | // OpenCL v2.0 s6.12.5 - Blocks cannot be used as expressions of the ternary | |||
| 8966 | // selection operator (?:). | |||
| 8967 | if (getLangOpts().OpenCL && | |||
| 8968 | ((int)checkBlockType(*this, LHS.get()) | (int)checkBlockType(*this, RHS.get()))) { | |||
| 8969 | return QualType(); | |||
| 8970 | } | |||
| 8971 | ||||
| 8972 | // If both operands have arithmetic type, do the usual arithmetic conversions | |||
| 8973 | // to find a common type: C99 6.5.15p3,5. | |||
| 8974 | if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) { | |||
| 8975 | // Disallow invalid arithmetic conversions, such as those between bit- | |||
| 8976 | // precise integers types of different sizes, or between a bit-precise | |||
| 8977 | // integer and another type. | |||
| 8978 | if (ResTy.isNull() && (LHSTy->isBitIntType() || RHSTy->isBitIntType())) { | |||
| 8979 | Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands) | |||
| 8980 | << LHSTy << RHSTy << LHS.get()->getSourceRange() | |||
| 8981 | << RHS.get()->getSourceRange(); | |||
| 8982 | return QualType(); | |||
| 8983 | } | |||
| 8984 | ||||
| 8985 | LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy)); | |||
| 8986 | RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy)); | |||
| 8987 | ||||
| 8988 | return ResTy; | |||
| 8989 | } | |||
| 8990 | ||||
| 8991 | // And if they're both bfloat (which isn't arithmetic), that's fine too. | |||
| 8992 | if (LHSTy->isBFloat16Type() && RHSTy->isBFloat16Type()) { | |||
| 8993 | return Context.getCommonSugaredType(LHSTy, RHSTy); | |||
| 8994 | } | |||
| 8995 | ||||
| 8996 | // If both operands are the same structure or union type, the result is that | |||
| 8997 | // type. | |||
| 8998 | if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) { // C99 6.5.15p3 | |||
| 8999 | if (const RecordType *RHSRT = RHSTy->getAs<RecordType>()) | |||
| 9000 | if (LHSRT->getDecl() == RHSRT->getDecl()) | |||
| 9001 | // "If both the operands have structure or union type, the result has | |||
| 9002 | // that type." This implies that CV qualifiers are dropped. | |||
| 9003 | return Context.getCommonSugaredType(LHSTy.getUnqualifiedType(), | |||
| 9004 | RHSTy.getUnqualifiedType()); | |||
| 9005 | // FIXME: Type of conditional expression must be complete in C mode. | |||
| 9006 | } | |||
| 9007 | ||||
| 9008 | // C99 6.5.15p5: "If both operands have void type, the result has void type." | |||
| 9009 | // The following || allows only one side to be void (a GCC-ism). | |||
| 9010 | if (LHSTy->isVoidType() || RHSTy->isVoidType()) { | |||
| 9011 | QualType ResTy; | |||
| 9012 | if (LHSTy->isVoidType() && RHSTy->isVoidType()) { | |||
| 9013 | ResTy = Context.getCommonSugaredType(LHSTy, RHSTy); | |||
| 9014 | } else if (RHSTy->isVoidType()) { | |||
| 9015 | ResTy = RHSTy; | |||
| 9016 | Diag(RHS.get()->getBeginLoc(), diag::ext_typecheck_cond_one_void) | |||
| 9017 | << RHS.get()->getSourceRange(); | |||
| 9018 | } else { | |||
| 9019 | ResTy = LHSTy; | |||
| 9020 | Diag(LHS.get()->getBeginLoc(), diag::ext_typecheck_cond_one_void) | |||
| 9021 | << LHS.get()->getSourceRange(); | |||
| 9022 | } | |||
| 9023 | LHS = ImpCastExprToType(LHS.get(), ResTy, CK_ToVoid); | |||
| 9024 | RHS = ImpCastExprToType(RHS.get(), ResTy, CK_ToVoid); | |||
| 9025 | return ResTy; | |||
| 9026 | } | |||
| 9027 | ||||
| 9028 | // C2x 6.5.15p7: | |||
| 9029 | // ... if both the second and third operands have nullptr_t type, the | |||
| 9030 | // result also has that type. | |||
| 9031 | if (LHSTy->isNullPtrType() && Context.hasSameType(LHSTy, RHSTy)) | |||
| 9032 | return ResTy; | |||
| 9033 | ||||
| 9034 | // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has | |||
| 9035 | // the type of the other operand." | |||
| 9036 | if (!checkConditionalNullPointer(*this, RHS, LHSTy)) return LHSTy; | |||
| 9037 | if (!checkConditionalNullPointer(*this, LHS, RHSTy)) return RHSTy; | |||
| 9038 | ||||
| 9039 | // All objective-c pointer type analysis is done here. | |||
| 9040 | QualType compositeType = FindCompositeObjCPointerType(LHS, RHS, | |||
| 9041 | QuestionLoc); | |||
| 9042 | if (LHS.isInvalid() || RHS.isInvalid()) | |||
| 9043 | return QualType(); | |||
| 9044 | if (!compositeType.isNull()) | |||
| 9045 | return compositeType; | |||
| 9046 | ||||
| 9047 | ||||
| 9048 | // Handle block pointer types. | |||
| 9049 | if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) | |||
| 9050 | return checkConditionalBlockPointerCompatibility(*this, LHS, RHS, | |||
| 9051 | QuestionLoc); | |||
| 9052 | ||||
| 9053 | // Check constraints for C object pointers types (C99 6.5.15p3,6). | |||
| 9054 | if (LHSTy->isPointerType() && RHSTy->isPointerType()) | |||
| 9055 | return checkConditionalObjectPointersCompatibility(*this, LHS, RHS, | |||
| 9056 | QuestionLoc); | |||
| 9057 | ||||
| 9058 | // GCC compatibility: soften pointer/integer mismatch. Note that | |||
| 9059 | // null pointers have been filtered out by this point. | |||
| 9060 | if (checkPointerIntegerMismatch(*this, LHS, RHS.get(), QuestionLoc, | |||
| 9061 | /*IsIntFirstExpr=*/true)) | |||
| 9062 | return RHSTy; | |||
| 9063 | if (checkPointerIntegerMismatch(*this, RHS, LHS.get(), QuestionLoc, | |||
| 9064 | /*IsIntFirstExpr=*/false)) | |||
| 9065 | return LHSTy; | |||
| 9066 | ||||
| 9067 | // Allow ?: operations in which both operands have the same | |||
| 9068 | // built-in sizeless type. | |||
| 9069 | if (LHSTy->isSizelessBuiltinType() && Context.hasSameType(LHSTy, RHSTy)) | |||
| 9070 | return Context.getCommonSugaredType(LHSTy, RHSTy); | |||
| 9071 | ||||
| 9072 | // Emit a better diagnostic if one of the expressions is a null pointer | |||
| 9073 | // constant and the other is not a pointer type. In this case, the user most | |||
| 9074 | // likely forgot to take the address of the other expression. | |||
| 9075 | if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc)) | |||
| 9076 | return QualType(); | |||
| 9077 | ||||
| 9078 | // Otherwise, the operands are not compatible. | |||
| 9079 | Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands) | |||
| 9080 | << LHSTy << RHSTy << LHS.get()->getSourceRange() | |||
| 9081 | << RHS.get()->getSourceRange(); | |||
| 9082 | return QualType(); | |||
| 9083 | } | |||
| 9084 | ||||
| 9085 | /// FindCompositeObjCPointerType - Helper method to find composite type of | |||
| 9086 | /// two objective-c pointer types of the two input expressions. | |||
| 9087 | QualType Sema::FindCompositeObjCPointerType(ExprResult &LHS, ExprResult &RHS, | |||
| 9088 | SourceLocation QuestionLoc) { | |||
| 9089 | QualType LHSTy = LHS.get()->getType(); | |||
| 9090 | QualType RHSTy = RHS.get()->getType(); | |||
| 9091 | ||||
| 9092 | // Handle things like Class and struct objc_class*. Here we case the result | |||
| 9093 | // to the pseudo-builtin, because that will be implicitly cast back to the | |||
| 9094 | // redefinition type if an attempt is made to access its fields. | |||
| 9095 | if (LHSTy->isObjCClassType() && | |||
| 9096 | (Context.hasSameType(RHSTy, Context.getObjCClassRedefinitionType()))) { | |||
| 9097 | RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_CPointerToObjCPointerCast); | |||
| 9098 | return LHSTy; | |||
| 9099 | } | |||
| 9100 | if (RHSTy->isObjCClassType() && | |||
| 9101 | (Context.hasSameType(LHSTy, Context.getObjCClassRedefinitionType()))) { | |||
| 9102 | LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_CPointerToObjCPointerCast); | |||
| 9103 | return RHSTy; | |||
| 9104 | } | |||
| 9105 | // And the same for struct objc_object* / id | |||
| 9106 | if (LHSTy->isObjCIdType() && | |||
| 9107 | (Context.hasSameType(RHSTy, Context.getObjCIdRedefinitionType()))) { | |||
| 9108 | RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_CPointerToObjCPointerCast); | |||
| 9109 | return LHSTy; | |||
| 9110 | } | |||
| 9111 | if (RHSTy->isObjCIdType() && | |||
| 9112 | (Context.hasSameType(LHSTy, Context.getObjCIdRedefinitionType()))) { | |||
| 9113 | LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_CPointerToObjCPointerCast); | |||
| 9114 | return RHSTy; | |||
| 9115 | } | |||
| 9116 | // And the same for struct objc_selector* / SEL | |||
| 9117 | if (Context.isObjCSelType(LHSTy) && | |||
| 9118 | (Context.hasSameType(RHSTy, Context.getObjCSelRedefinitionType()))) { | |||
| 9119 | RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_BitCast); | |||
| 9120 | return LHSTy; | |||
| 9121 | } | |||
| 9122 | if (Context.isObjCSelType(RHSTy) && | |||
| 9123 | (Context.hasSameType(LHSTy, Context.getObjCSelRedefinitionType()))) { | |||
| 9124 | LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_BitCast); | |||
| 9125 | return RHSTy; | |||
| 9126 | } | |||
| 9127 | // Check constraints for Objective-C object pointers types. | |||
| 9128 | if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) { | |||
| 9129 | ||||
| 9130 | if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) { | |||
| 9131 | // Two identical object pointer types are always compatible. | |||
| 9132 | return LHSTy; | |||
| 9133 | } | |||
| 9134 | const ObjCObjectPointerType *LHSOPT = LHSTy->castAs<ObjCObjectPointerType>(); | |||
| 9135 | const ObjCObjectPointerType *RHSOPT = RHSTy->castAs<ObjCObjectPointerType>(); | |||
| 9136 | QualType compositeType = LHSTy; | |||
| 9137 | ||||
| 9138 | // If both operands are interfaces and either operand can be | |||
| 9139 | // assigned to the other, use that type as the composite | |||
| 9140 | // type. This allows | |||
| 9141 | // xxx ? (A*) a : (B*) b | |||
| 9142 | // where B is a subclass of A. | |||
| 9143 | // | |||
| 9144 | // Additionally, as for assignment, if either type is 'id' | |||
| 9145 | // allow silent coercion. Finally, if the types are | |||
| 9146 | // incompatible then make sure to use 'id' as the composite | |||
| 9147 | // type so the result is acceptable for sending messages to. | |||
| 9148 | ||||
| 9149 | // FIXME: Consider unifying with 'areComparableObjCPointerTypes'. | |||
| 9150 | // It could return the composite type. | |||
| 9151 | if (!(compositeType = | |||
| 9152 | Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull()) { | |||
| 9153 | // Nothing more to do. | |||
| 9154 | } else if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) { | |||
| 9155 | compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy; | |||
| 9156 | } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) { | |||
| 9157 | compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy; | |||
| 9158 | } else if ((LHSOPT->isObjCQualifiedIdType() || | |||
| 9159 | RHSOPT->isObjCQualifiedIdType()) && | |||
| 9160 | Context.ObjCQualifiedIdTypesAreCompatible(LHSOPT, RHSOPT, | |||
| 9161 | true)) { | |||
| 9162 | // Need to handle "id<xx>" explicitly. | |||
| 9163 | // GCC allows qualified id and any Objective-C type to devolve to | |||
| 9164 | // id. Currently localizing to here until clear this should be | |||
| 9165 | // part of ObjCQualifiedIdTypesAreCompatible. | |||
| 9166 | compositeType = Context.getObjCIdType(); | |||
| 9167 | } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) { | |||
| 9168 | compositeType = Context.getObjCIdType(); | |||
| 9169 | } else { | |||
| 9170 | Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands) | |||
| 9171 | << LHSTy << RHSTy | |||
| 9172 | << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); | |||
| 9173 | QualType incompatTy = Context.getObjCIdType(); | |||
| 9174 | LHS = ImpCastExprToType(LHS.get(), incompatTy, CK_BitCast); | |||
| 9175 | RHS = ImpCastExprToType(RHS.get(), incompatTy, CK_BitCast); | |||
| 9176 | return incompatTy; | |||
| 9177 | } | |||
| 9178 | // The object pointer types are compatible. | |||
| 9179 | LHS = ImpCastExprToType(LHS.get(), compositeType, CK_BitCast); | |||
| 9180 | RHS = ImpCastExprToType(RHS.get(), compositeType, CK_BitCast); | |||
| 9181 | return compositeType; | |||
| 9182 | } | |||
| 9183 | // Check Objective-C object pointer types and 'void *' | |||
| 9184 | if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) { | |||
| 9185 | if (getLangOpts().ObjCAutoRefCount) { | |||
| 9186 | // ARC forbids the implicit conversion of object pointers to 'void *', | |||
| 9187 | // so these types are not compatible. | |||
| 9188 | Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy | |||
| 9189 | << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); | |||
| 9190 | LHS = RHS = true; | |||
| 9191 | return QualType(); | |||
| 9192 | } | |||
| 9193 | QualType lhptee = LHSTy->castAs<PointerType>()->getPointeeType(); | |||
| 9194 | QualType rhptee = RHSTy->castAs<ObjCObjectPointerType>()->getPointeeType(); | |||
| 9195 | QualType destPointee | |||
| 9196 | = Context.getQualifiedType(lhptee, rhptee.getQualifiers()); | |||
| 9197 | QualType destType = Context.getPointerType(destPointee); | |||
| 9198 | // Add qualifiers if necessary. | |||
| 9199 | LHS = ImpCastExprToType(LHS.get(), destType, CK_NoOp); | |||
| 9200 | // Promote to void*. | |||
| 9201 | RHS = ImpCastExprToType(RHS.get(), destType, CK_BitCast); | |||
| 9202 | return destType; | |||
| 9203 | } | |||
| 9204 | if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) { | |||
| 9205 | if (getLangOpts().ObjCAutoRefCount) { | |||
| 9206 | // ARC forbids the implicit conversion of object pointers to 'void *', | |||
| 9207 | // so these types are not compatible. | |||
| 9208 | Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy | |||
| 9209 | << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); | |||
| 9210 | LHS = RHS = true; | |||
| 9211 | return QualType(); | |||
| 9212 | } | |||
| 9213 | QualType lhptee = LHSTy->castAs<ObjCObjectPointerType>()->getPointeeType(); | |||
| 9214 | QualType rhptee = RHSTy->castAs<PointerType>()->getPointeeType(); | |||
| 9215 | QualType destPointee | |||
| 9216 | = Context.getQualifiedType(rhptee, lhptee.getQualifiers()); | |||
| 9217 | QualType destType = Context.getPointerType(destPointee); | |||
| 9218 | // Add qualifiers if necessary. | |||
| 9219 | RHS = ImpCastExprToType(RHS.get(), destType, CK_NoOp); | |||
| 9220 | // Promote to void*. | |||
| 9221 | LHS = ImpCastExprToType(LHS.get(), destType, CK_BitCast); | |||
| 9222 | return destType; | |||
| 9223 | } | |||
| 9224 | return QualType(); | |||
| 9225 | } | |||
| 9226 | ||||
| 9227 | /// SuggestParentheses - Emit a note with a fixit hint that wraps | |||
| 9228 | /// ParenRange in parentheses. | |||
| 9229 | static void SuggestParentheses(Sema &Self, SourceLocation Loc, | |||
| 9230 | const PartialDiagnostic &Note, | |||
| 9231 | SourceRange ParenRange) { | |||
| 9232 | SourceLocation EndLoc = Self.getLocForEndOfToken(ParenRange.getEnd()); | |||
| 9233 | if (ParenRange.getBegin().isFileID() && ParenRange.getEnd().isFileID() && | |||
| 9234 | EndLoc.isValid()) { | |||
| 9235 | Self.Diag(Loc, Note) | |||
| 9236 | << FixItHint::CreateInsertion(ParenRange.getBegin(), "(") | |||
| 9237 | << FixItHint::CreateInsertion(EndLoc, ")"); | |||
| 9238 | } else { | |||
| 9239 | // We can't display the parentheses, so just show the bare note. | |||
| 9240 | Self.Diag(Loc, Note) << ParenRange; | |||
| 9241 | } | |||
| 9242 | } | |||
| 9243 | ||||
| 9244 | static bool IsArithmeticOp(BinaryOperatorKind Opc) { | |||
| 9245 | return BinaryOperator::isAdditiveOp(Opc) || | |||
| 9246 | BinaryOperator::isMultiplicativeOp(Opc) || | |||
| 9247 | BinaryOperator::isShiftOp(Opc) || Opc == BO_And || Opc == BO_Or; | |||
| 9248 | // This only checks for bitwise-or and bitwise-and, but not bitwise-xor and | |||
| 9249 | // not any of the logical operators. Bitwise-xor is commonly used as a | |||
| 9250 | // logical-xor because there is no logical-xor operator. The logical | |||
| 9251 | // operators, including uses of xor, have a high false positive rate for | |||
| 9252 | // precedence warnings. | |||
| 9253 | } | |||
| 9254 | ||||
| 9255 | /// IsArithmeticBinaryExpr - Returns true if E is an arithmetic binary | |||
| 9256 | /// expression, either using a built-in or overloaded operator, | |||
| 9257 | /// and sets *OpCode to the opcode and *RHSExprs to the right-hand side | |||
| 9258 | /// expression. | |||
| 9259 | static bool IsArithmeticBinaryExpr(Expr *E, BinaryOperatorKind *Opcode, | |||
| 9260 | Expr **RHSExprs) { | |||
| 9261 | // Don't strip parenthesis: we should not warn if E is in parenthesis. | |||
| 9262 | E = E->IgnoreImpCasts(); | |||
| 9263 | E = E->IgnoreConversionOperatorSingleStep(); | |||
| 9264 | E = E->IgnoreImpCasts(); | |||
| 9265 | if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) { | |||
| 9266 | E = MTE->getSubExpr(); | |||
| 9267 | E = E->IgnoreImpCasts(); | |||
| 9268 | } | |||
| 9269 | ||||
| 9270 | // Built-in binary operator. | |||
| 9271 | if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E)) { | |||
| 9272 | if (IsArithmeticOp(OP->getOpcode())) { | |||
| 9273 | *Opcode = OP->getOpcode(); | |||
| 9274 | *RHSExprs = OP->getRHS(); | |||
| 9275 | return true; | |||
| 9276 | } | |||
| 9277 | } | |||
| 9278 | ||||
| 9279 | // Overloaded operator. | |||
| 9280 | if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(E)) { | |||
| 9281 | if (Call->getNumArgs() != 2) | |||
| 9282 | return false; | |||
| 9283 | ||||
| 9284 | // Make sure this is really a binary operator that is safe to pass into | |||
| 9285 | // BinaryOperator::getOverloadedOpcode(), e.g. it's not a subscript op. | |||
| 9286 | OverloadedOperatorKind OO = Call->getOperator(); | |||
| 9287 | if (OO < OO_Plus || OO > OO_Arrow || | |||
| 9288 | OO == OO_PlusPlus || OO == OO_MinusMinus) | |||
| 9289 | return false; | |||
| 9290 | ||||
| 9291 | BinaryOperatorKind OpKind = BinaryOperator::getOverloadedOpcode(OO); | |||
| 9292 | if (IsArithmeticOp(OpKind)) { | |||
| 9293 | *Opcode = OpKind; | |||
| 9294 | *RHSExprs = Call->getArg(1); | |||
| 9295 | return true; | |||
| 9296 | } | |||
| 9297 | } | |||
| 9298 | ||||
| 9299 | return false; | |||
| 9300 | } | |||
| 9301 | ||||
| 9302 | /// ExprLooksBoolean - Returns true if E looks boolean, i.e. it has boolean type | |||
| 9303 | /// or is a logical expression such as (x==y) which has int type, but is | |||
| 9304 | /// commonly interpreted as boolean. | |||
| 9305 | static bool ExprLooksBoolean(Expr *E) { | |||
| 9306 | E = E->IgnoreParenImpCasts(); | |||
| 9307 | ||||
| 9308 | if (E->getType()->isBooleanType()) | |||
| 9309 | return true; | |||
| 9310 | if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E)) | |||
| 9311 | return OP->isComparisonOp() || OP->isLogicalOp(); | |||
| 9312 | if (UnaryOperator *OP = dyn_cast<UnaryOperator>(E)) | |||
| 9313 | return OP->getOpcode() == UO_LNot; | |||
| 9314 | if (E->getType()->isPointerType()) | |||
| 9315 | return true; | |||
| 9316 | // FIXME: What about overloaded operator calls returning "unspecified boolean | |||
| 9317 | // type"s (commonly pointer-to-members)? | |||
| 9318 | ||||
| 9319 | return false; | |||
| 9320 | } | |||
| 9321 | ||||
| 9322 | /// DiagnoseConditionalPrecedence - Emit a warning when a conditional operator | |||
| 9323 | /// and binary operator are mixed in a way that suggests the programmer assumed | |||
| 9324 | /// the conditional operator has higher precedence, for example: | |||
| 9325 | /// "int x = a + someBinaryCondition ? 1 : 2". | |||
| 9326 | static void DiagnoseConditionalPrecedence(Sema &Self, | |||
| 9327 | SourceLocation OpLoc, | |||
| 9328 | Expr *Condition, | |||
| 9329 | Expr *LHSExpr, | |||
| 9330 | Expr *RHSExpr) { | |||
| 9331 | BinaryOperatorKind CondOpcode; | |||
| 9332 | Expr *CondRHS; | |||
| 9333 | ||||
| 9334 | if (!IsArithmeticBinaryExpr(Condition, &CondOpcode, &CondRHS)) | |||
| 9335 | return; | |||
| 9336 | if (!ExprLooksBoolean(CondRHS)) | |||
| 9337 | return; | |||
| 9338 | ||||
| 9339 | // The condition is an arithmetic binary expression, with a right- | |||
| 9340 | // hand side that looks boolean, so warn. | |||
| 9341 | ||||
| 9342 | unsigned DiagID = BinaryOperator::isBitwiseOp(CondOpcode) | |||
| 9343 | ? diag::warn_precedence_bitwise_conditional | |||
| 9344 | : diag::warn_precedence_conditional; | |||
| 9345 | ||||
| 9346 | Self.Diag(OpLoc, DiagID) | |||
| 9347 | << Condition->getSourceRange() | |||
| 9348 | << BinaryOperator::getOpcodeStr(CondOpcode); | |||
| 9349 | ||||
| 9350 | SuggestParentheses( | |||
| 9351 | Self, OpLoc, | |||
| 9352 | Self.PDiag(diag::note_precedence_silence) | |||
| 9353 | << BinaryOperator::getOpcodeStr(CondOpcode), | |||
| 9354 | SourceRange(Condition->getBeginLoc(), Condition->getEndLoc())); | |||
| 9355 | ||||
| 9356 | SuggestParentheses(Self, OpLoc, | |||
| 9357 | Self.PDiag(diag::note_precedence_conditional_first), | |||
| 9358 | SourceRange(CondRHS->getBeginLoc(), RHSExpr->getEndLoc())); | |||
| 9359 | } | |||
| 9360 | ||||
| 9361 | /// Compute the nullability of a conditional expression. | |||
| 9362 | static QualType computeConditionalNullability(QualType ResTy, bool IsBin, | |||
| 9363 | QualType LHSTy, QualType RHSTy, | |||
| 9364 | ASTContext &Ctx) { | |||
| 9365 | if (!ResTy->isAnyPointerType()) | |||
| 9366 | return ResTy; | |||
| 9367 | ||||
| 9368 | auto GetNullability = [](QualType Ty) { | |||
| 9369 | std::optional<NullabilityKind> Kind = Ty->getNullability(); | |||
| 9370 | if (Kind) { | |||
| 9371 | // For our purposes, treat _Nullable_result as _Nullable. | |||
| 9372 | if (*Kind == NullabilityKind::NullableResult) | |||
| 9373 | return NullabilityKind::Nullable; | |||
| 9374 | return *Kind; | |||
| 9375 | } | |||
| 9376 | return NullabilityKind::Unspecified; | |||
| 9377 | }; | |||
| 9378 | ||||
| 9379 | auto LHSKind = GetNullability(LHSTy), RHSKind = GetNullability(RHSTy); | |||
| 9380 | NullabilityKind MergedKind; | |||
| 9381 | ||||
| 9382 | // Compute nullability of a binary conditional expression. | |||
| 9383 | if (IsBin) { | |||
| 9384 | if (LHSKind == NullabilityKind::NonNull) | |||
| 9385 | MergedKind = NullabilityKind::NonNull; | |||
| 9386 | else | |||
| 9387 | MergedKind = RHSKind; | |||
| 9388 | // Compute nullability of a normal conditional expression. | |||
| 9389 | } else { | |||
| 9390 | if (LHSKind == NullabilityKind::Nullable || | |||
| 9391 | RHSKind == NullabilityKind::Nullable) | |||
| 9392 | MergedKind = NullabilityKind::Nullable; | |||
| 9393 | else if (LHSKind == NullabilityKind::NonNull) | |||
| 9394 | MergedKind = RHSKind; | |||
| 9395 | else if (RHSKind == NullabilityKind::NonNull) | |||
| 9396 | MergedKind = LHSKind; | |||
| 9397 | else | |||
| 9398 | MergedKind = NullabilityKind::Unspecified; | |||
| 9399 | } | |||
| 9400 | ||||
| 9401 | // Return if ResTy already has the correct nullability. | |||
| 9402 | if (GetNullability(ResTy) == MergedKind) | |||
| 9403 | return ResTy; | |||
| 9404 | ||||
| 9405 | // Strip all nullability from ResTy. | |||
| 9406 | while (ResTy->getNullability()) | |||
| 9407 | ResTy = ResTy.getSingleStepDesugaredType(Ctx); | |||
| 9408 | ||||
| 9409 | // Create a new AttributedType with the new nullability kind. | |||
| 9410 | auto NewAttr = AttributedType::getNullabilityAttrKind(MergedKind); | |||
| 9411 | return Ctx.getAttributedType(NewAttr, ResTy, ResTy); | |||
| 9412 | } | |||
| 9413 | ||||
| 9414 | /// ActOnConditionalOp - Parse a ?: operation. Note that 'LHS' may be null | |||
| 9415 | /// in the case of a the GNU conditional expr extension. | |||
| 9416 | ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc, | |||
| 9417 | SourceLocation ColonLoc, | |||
| 9418 | Expr *CondExpr, Expr *LHSExpr, | |||
| 9419 | Expr *RHSExpr) { | |||
| 9420 | if (!Context.isDependenceAllowed()) { | |||
| 9421 | // C cannot handle TypoExpr nodes in the condition because it | |||
| 9422 | // doesn't handle dependent types properly, so make sure any TypoExprs have | |||
| 9423 | // been dealt with before checking the operands. | |||
| 9424 | ExprResult CondResult = CorrectDelayedTyposInExpr(CondExpr); | |||
| 9425 | ExprResult LHSResult = CorrectDelayedTyposInExpr(LHSExpr); | |||
| 9426 | ExprResult RHSResult = CorrectDelayedTyposInExpr(RHSExpr); | |||
| 9427 | ||||
| 9428 | if (!CondResult.isUsable()) | |||
| 9429 | return ExprError(); | |||
| 9430 | ||||
| 9431 | if (LHSExpr) { | |||
| 9432 | if (!LHSResult.isUsable()) | |||
| 9433 | return ExprError(); | |||
| 9434 | } | |||
| 9435 | ||||
| 9436 | if (!RHSResult.isUsable()) | |||
| 9437 | return ExprError(); | |||
| 9438 | ||||
| 9439 | CondExpr = CondResult.get(); | |||
| 9440 | LHSExpr = LHSResult.get(); | |||
| 9441 | RHSExpr = RHSResult.get(); | |||
| 9442 | } | |||
| 9443 | ||||
| 9444 | // If this is the gnu "x ?: y" extension, analyze the types as though the LHS | |||
| 9445 | // was the condition. | |||
| 9446 | OpaqueValueExpr *opaqueValue = nullptr; | |||
| 9447 | Expr *commonExpr = nullptr; | |||
| 9448 | if (!LHSExpr) { | |||
| 9449 | commonExpr = CondExpr; | |||
| 9450 | // Lower out placeholder types first. This is important so that we don't | |||
| 9451 | // try to capture a placeholder. This happens in few cases in C++; such | |||
| 9452 | // as Objective-C++'s dictionary subscripting syntax. | |||
| 9453 | if (commonExpr->hasPlaceholderType()) { | |||
| 9454 | ExprResult result = CheckPlaceholderExpr(commonExpr); | |||
| 9455 | if (!result.isUsable()) return ExprError(); | |||
| 9456 | commonExpr = result.get(); | |||
| 9457 | } | |||
| 9458 | // We usually want to apply unary conversions *before* saving, except | |||
| 9459 | // in the special case of a C++ l-value conditional. | |||
| 9460 | if (!(getLangOpts().CPlusPlus | |||
| 9461 | && !commonExpr->isTypeDependent() | |||
| 9462 | && commonExpr->getValueKind() == RHSExpr->getValueKind() | |||
| 9463 | && commonExpr->isGLValue() | |||
| 9464 | && commonExpr->isOrdinaryOrBitFieldObject() | |||
| 9465 | && RHSExpr->isOrdinaryOrBitFieldObject() | |||
| 9466 | && Context.hasSameType(commonExpr->getType(), RHSExpr->getType()))) { | |||
| 9467 | ExprResult commonRes = UsualUnaryConversions(commonExpr); | |||
| 9468 | if (commonRes.isInvalid()) | |||
| 9469 | return ExprError(); | |||
| 9470 | commonExpr = commonRes.get(); | |||
| 9471 | } | |||
| 9472 | ||||
| 9473 | // If the common expression is a class or array prvalue, materialize it | |||
| 9474 | // so that we can safely refer to it multiple times. | |||
| 9475 | if (commonExpr->isPRValue() && (commonExpr->getType()->isRecordType() || | |||
| 9476 | commonExpr->getType()->isArrayType())) { | |||
| 9477 | ExprResult MatExpr = TemporaryMaterializationConversion(commonExpr); | |||
| 9478 | if (MatExpr.isInvalid()) | |||
| 9479 | return ExprError(); | |||
| 9480 | commonExpr = MatExpr.get(); | |||
| 9481 | } | |||
| 9482 | ||||
| 9483 | opaqueValue = new (Context) OpaqueValueExpr(commonExpr->getExprLoc(), | |||
| 9484 | commonExpr->getType(), | |||
| 9485 | commonExpr->getValueKind(), | |||
| 9486 | commonExpr->getObjectKind(), | |||
| 9487 | commonExpr); | |||
| 9488 | LHSExpr = CondExpr = opaqueValue; | |||
| 9489 | } | |||
| 9490 | ||||
| 9491 | QualType LHSTy = LHSExpr->getType(), RHSTy = RHSExpr->getType(); | |||
| 9492 | ExprValueKind VK = VK_PRValue; | |||
| 9493 | ExprObjectKind OK = OK_Ordinary; | |||
| 9494 | ExprResult Cond = CondExpr, LHS = LHSExpr, RHS = RHSExpr; | |||
| 9495 | QualType result = CheckConditionalOperands(Cond, LHS, RHS, | |||
| 9496 | VK, OK, QuestionLoc); | |||
| 9497 | if (result.isNull() || Cond.isInvalid() || LHS.isInvalid() || | |||
| 9498 | RHS.isInvalid()) | |||
| 9499 | return ExprError(); | |||
| 9500 | ||||
| 9501 | DiagnoseConditionalPrecedence(*this, QuestionLoc, Cond.get(), LHS.get(), | |||
| 9502 | RHS.get()); | |||
| 9503 | ||||
| 9504 | CheckBoolLikeConversion(Cond.get(), QuestionLoc); | |||
| 9505 | ||||
| 9506 | result = computeConditionalNullability(result, commonExpr, LHSTy, RHSTy, | |||
| 9507 | Context); | |||
| 9508 | ||||
| 9509 | if (!commonExpr) | |||
| 9510 | return new (Context) | |||
| 9511 | ConditionalOperator(Cond.get(), QuestionLoc, LHS.get(), ColonLoc, | |||
| 9512 | RHS.get(), result, VK, OK); | |||
| 9513 | ||||
| 9514 | return new (Context) BinaryConditionalOperator( | |||
| 9515 | commonExpr, opaqueValue, Cond.get(), LHS.get(), RHS.get(), QuestionLoc, | |||
| 9516 | ColonLoc, result, VK, OK); | |||
| 9517 | } | |||
| 9518 | ||||
| 9519 | // Check if we have a conversion between incompatible cmse function pointer | |||
| 9520 | // types, that is, a conversion between a function pointer with the | |||
| 9521 | // cmse_nonsecure_call attribute and one without. | |||
| 9522 | static bool IsInvalidCmseNSCallConversion(Sema &S, QualType FromType, | |||
| 9523 | QualType ToType) { | |||
| 9524 | if (const auto *ToFn = | |||
| 9525 | dyn_cast<FunctionType>(S.Context.getCanonicalType(ToType))) { | |||
| 9526 | if (const auto *FromFn = | |||
| 9527 | dyn_cast<FunctionType>(S.Context.getCanonicalType(FromType))) { | |||
| 9528 | FunctionType::ExtInfo ToEInfo = ToFn->getExtInfo(); | |||
| 9529 | FunctionType::ExtInfo FromEInfo = FromFn->getExtInfo(); | |||
| 9530 | ||||
| 9531 | return ToEInfo.getCmseNSCall() != FromEInfo.getCmseNSCall(); | |||
| 9532 | } | |||
| 9533 | } | |||
| 9534 | return false; | |||
| 9535 | } | |||
| 9536 | ||||
| 9537 | // checkPointerTypesForAssignment - This is a very tricky routine (despite | |||
| 9538 | // being closely modeled after the C99 spec:-). The odd characteristic of this | |||
| 9539 | // routine is it effectively iqnores the qualifiers on the top level pointee. | |||
| 9540 | // This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3]. | |||
| 9541 | // FIXME: add a couple examples in this comment. | |||
| 9542 | static Sema::AssignConvertType | |||
| 9543 | checkPointerTypesForAssignment(Sema &S, QualType LHSType, QualType RHSType, | |||
| 9544 | SourceLocation Loc) { | |||
| 9545 | assert(LHSType.isCanonical() && "LHS not canonicalized!")(static_cast <bool> (LHSType.isCanonical() && "LHS not canonicalized!" ) ? void (0) : __assert_fail ("LHSType.isCanonical() && \"LHS not canonicalized!\"" , "clang/lib/Sema/SemaExpr.cpp", 9545, __extension__ __PRETTY_FUNCTION__ )); | |||
| 9546 | assert(RHSType.isCanonical() && "RHS not canonicalized!")(static_cast <bool> (RHSType.isCanonical() && "RHS not canonicalized!" ) ? void (0) : __assert_fail ("RHSType.isCanonical() && \"RHS not canonicalized!\"" , "clang/lib/Sema/SemaExpr.cpp", 9546, __extension__ __PRETTY_FUNCTION__ )); | |||
| 9547 | ||||
| 9548 | // get the "pointed to" type (ignoring qualifiers at the top level) | |||
| 9549 | const Type *lhptee, *rhptee; | |||
| 9550 | Qualifiers lhq, rhq; | |||
| 9551 | std::tie(lhptee, lhq) = | |||
| 9552 | cast<PointerType>(LHSType)->getPointeeType().split().asPair(); | |||
| 9553 | std::tie(rhptee, rhq) = | |||
| 9554 | cast<PointerType>(RHSType)->getPointeeType().split().asPair(); | |||
| 9555 | ||||
| 9556 | Sema::AssignConvertType ConvTy = Sema::Compatible; | |||
| 9557 | ||||
| 9558 | // C99 6.5.16.1p1: This following citation is common to constraints | |||
| 9559 | // 3 & 4 (below). ...and the type *pointed to* by the left has all the | |||
| 9560 | // qualifiers of the type *pointed to* by the right; | |||
| 9561 | ||||
| 9562 | // As a special case, 'non-__weak A *' -> 'non-__weak const *' is okay. | |||
| 9563 | if (lhq.getObjCLifetime() != rhq.getObjCLifetime() && | |||
| 9564 | lhq.compatiblyIncludesObjCLifetime(rhq)) { | |||
| 9565 | // Ignore lifetime for further calculation. | |||
| 9566 | lhq.removeObjCLifetime(); | |||
| 9567 | rhq.removeObjCLifetime(); | |||
| 9568 | } | |||
| 9569 | ||||
| 9570 | if (!lhq.compatiblyIncludes(rhq)) { | |||
| 9571 | // Treat address-space mismatches as fatal. | |||
| 9572 | if (!lhq.isAddressSpaceSupersetOf(rhq)) | |||
| 9573 | return Sema::IncompatiblePointerDiscardsQualifiers; | |||
| 9574 | ||||
| 9575 | // It's okay to add or remove GC or lifetime qualifiers when converting to | |||
| 9576 | // and from void*. | |||
| 9577 | else if (lhq.withoutObjCGCAttr().withoutObjCLifetime() | |||
| 9578 | .compatiblyIncludes( | |||
| 9579 | rhq.withoutObjCGCAttr().withoutObjCLifetime()) | |||
| 9580 | && (lhptee->isVoidType() || rhptee->isVoidType())) | |||
| 9581 | ; // keep old | |||
| 9582 | ||||
| 9583 | // Treat lifetime mismatches as fatal. | |||
| 9584 | else if (lhq.getObjCLifetime() != rhq.getObjCLifetime()) | |||
| 9585 | ConvTy = Sema::IncompatiblePointerDiscardsQualifiers; | |||
| 9586 | ||||
| 9587 | // For GCC/MS compatibility, other qualifier mismatches are treated | |||
| 9588 | // as still compatible in C. | |||
| 9589 | else ConvTy = Sema::CompatiblePointerDiscardsQualifiers; | |||
| 9590 | } | |||
| 9591 | ||||
| 9592 | // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or | |||
| 9593 | // incomplete type and the other is a pointer to a qualified or unqualified | |||
| 9594 | // version of void... | |||
| 9595 | if (lhptee->isVoidType()) { | |||
| 9596 | if (rhptee->isIncompleteOrObjectType()) | |||
| 9597 | return ConvTy; | |||
| 9598 | ||||
| 9599 | // As an extension, we allow cast to/from void* to function pointer. | |||
| 9600 | assert(rhptee->isFunctionType())(static_cast <bool> (rhptee->isFunctionType()) ? void (0) : __assert_fail ("rhptee->isFunctionType()", "clang/lib/Sema/SemaExpr.cpp" , 9600, __extension__ __PRETTY_FUNCTION__)); | |||
| 9601 | return Sema::FunctionVoidPointer; | |||
| 9602 | } | |||
| 9603 | ||||
| 9604 | if (rhptee->isVoidType()) { | |||
| 9605 | if (lhptee->isIncompleteOrObjectType()) | |||
| 9606 | return ConvTy; | |||
| 9607 | ||||
| 9608 | // As an extension, we allow cast to/from void* to function pointer. | |||
| 9609 | assert(lhptee->isFunctionType())(static_cast <bool> (lhptee->isFunctionType()) ? void (0) : __assert_fail ("lhptee->isFunctionType()", "clang/lib/Sema/SemaExpr.cpp" , 9609, __extension__ __PRETTY_FUNCTION__)); | |||
| 9610 | return Sema::FunctionVoidPointer; | |||
| 9611 | } | |||
| 9612 | ||||
| 9613 | if (!S.Diags.isIgnored( | |||
| 9614 | diag::warn_typecheck_convert_incompatible_function_pointer_strict, | |||
| 9615 | Loc) && | |||
| 9616 | RHSType->isFunctionPointerType() && LHSType->isFunctionPointerType() && | |||
| 9617 | !S.IsFunctionConversion(RHSType, LHSType, RHSType)) | |||
| 9618 | return Sema::IncompatibleFunctionPointerStrict; | |||
| 9619 | ||||
| 9620 | // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or | |||
| 9621 | // unqualified versions of compatible types, ... | |||
| 9622 | QualType ltrans = QualType(lhptee, 0), rtrans = QualType(rhptee, 0); | |||
| 9623 | if (!S.Context.typesAreCompatible(ltrans, rtrans)) { | |||
| 9624 | // Check if the pointee types are compatible ignoring the sign. | |||
| 9625 | // We explicitly check for char so that we catch "char" vs | |||
| 9626 | // "unsigned char" on systems where "char" is unsigned. | |||
| 9627 | if (lhptee->isCharType()) | |||
| 9628 | ltrans = S.Context.UnsignedCharTy; | |||
| 9629 | else if (lhptee->hasSignedIntegerRepresentation()) | |||
| 9630 | ltrans = S.Context.getCorrespondingUnsignedType(ltrans); | |||
| 9631 | ||||
| 9632 | if (rhptee->isCharType()) | |||
| 9633 | rtrans = S.Context.UnsignedCharTy; | |||
| 9634 | else if (rhptee->hasSignedIntegerRepresentation()) | |||
| 9635 | rtrans = S.Context.getCorrespondingUnsignedType(rtrans); | |||
| 9636 | ||||
| 9637 | if (ltrans == rtrans) { | |||
| 9638 | // Types are compatible ignoring the sign. Qualifier incompatibility | |||
| 9639 | // takes priority over sign incompatibility because the sign | |||
| 9640 | // warning can be disabled. | |||
| 9641 | if (ConvTy != Sema::Compatible) | |||
| 9642 | return ConvTy; | |||
| 9643 | ||||
| 9644 | return Sema::IncompatiblePointerSign; | |||
| 9645 | } | |||
| 9646 | ||||
| 9647 | // If we are a multi-level pointer, it's possible that our issue is simply | |||
| 9648 | // one of qualification - e.g. char ** -> const char ** is not allowed. If | |||
| 9649 | // the eventual target type is the same and the pointers have the same | |||
| 9650 | // level of indirection, this must be the issue. | |||
| 9651 | if (isa<PointerType>(lhptee) && isa<PointerType>(rhptee)) { | |||
| 9652 | do { | |||
| 9653 | std::tie(lhptee, lhq) = | |||
| 9654 | cast<PointerType>(lhptee)->getPointeeType().split().asPair(); | |||
| 9655 | std::tie(rhptee, rhq) = | |||
| 9656 | cast<PointerType>(rhptee)->getPointeeType().split().asPair(); | |||
| 9657 | ||||
| 9658 | // Inconsistent address spaces at this point is invalid, even if the | |||
| 9659 | // address spaces would be compatible. | |||
| 9660 | // FIXME: This doesn't catch address space mismatches for pointers of | |||
| 9661 | // different nesting levels, like: | |||
| 9662 | // __local int *** a; | |||
| 9663 | // int ** b = a; | |||
| 9664 | // It's not clear how to actually determine when such pointers are | |||
| 9665 | // invalidly incompatible. | |||
| 9666 | if (lhq.getAddressSpace() != rhq.getAddressSpace()) | |||
| 9667 | return Sema::IncompatibleNestedPointerAddressSpaceMismatch; | |||
| 9668 | ||||
| 9669 | } while (isa<PointerType>(lhptee) && isa<PointerType>(rhptee)); | |||
| 9670 | ||||
| 9671 | if (lhptee == rhptee) | |||
| 9672 | return Sema::IncompatibleNestedPointerQualifiers; | |||
| 9673 | } | |||
| 9674 | ||||
| 9675 | // General pointer incompatibility takes priority over qualifiers. | |||
| 9676 | if (RHSType->isFunctionPointerType() && LHSType->isFunctionPointerType()) | |||
| 9677 | return Sema::IncompatibleFunctionPointer; | |||
| 9678 | return Sema::IncompatiblePointer; | |||
| 9679 | } | |||
| 9680 | if (!S.getLangOpts().CPlusPlus && | |||
| 9681 | S.IsFunctionConversion(ltrans, rtrans, ltrans)) | |||
| 9682 | return Sema::IncompatibleFunctionPointer; | |||
| 9683 | if (IsInvalidCmseNSCallConversion(S, ltrans, rtrans)) | |||
| 9684 | return Sema::IncompatibleFunctionPointer; | |||
| 9685 | return ConvTy; | |||
| 9686 | } | |||
| 9687 | ||||
| 9688 | /// checkBlockPointerTypesForAssignment - This routine determines whether two | |||
| 9689 | /// block pointer types are compatible or whether a block and normal pointer | |||
| 9690 | /// are compatible. It is more restrict than comparing two function pointer | |||
| 9691 | // types. | |||
| 9692 | static Sema::AssignConvertType | |||
| 9693 | checkBlockPointerTypesForAssignment(Sema &S, QualType LHSType, | |||
| 9694 | QualType RHSType) { | |||
| 9695 | assert(LHSType.isCanonical() && "LHS not canonicalized!")(static_cast <bool> (LHSType.isCanonical() && "LHS not canonicalized!" ) ? void (0) : __assert_fail ("LHSType.isCanonical() && \"LHS not canonicalized!\"" , "clang/lib/Sema/SemaExpr.cpp", 9695, __extension__ __PRETTY_FUNCTION__ )); | |||
| 9696 | assert(RHSType.isCanonical() && "RHS not canonicalized!")(static_cast <bool> (RHSType.isCanonical() && "RHS not canonicalized!" ) ? void (0) : __assert_fail ("RHSType.isCanonical() && \"RHS not canonicalized!\"" , "clang/lib/Sema/SemaExpr.cpp", 9696, __extension__ __PRETTY_FUNCTION__ )); | |||
| 9697 | ||||
| 9698 | QualType lhptee, rhptee; | |||
| 9699 | ||||
| 9700 | // get the "pointed to" type (ignoring qualifiers at the top level) | |||
| 9701 | lhptee = cast<BlockPointerType>(LHSType)->getPointeeType(); | |||
| 9702 | rhptee = cast<BlockPointerType>(RHSType)->getPointeeType(); | |||
| 9703 | ||||
| 9704 | // In C++, the types have to match exactly. | |||
| 9705 | if (S.getLangOpts().CPlusPlus) | |||
| 9706 | return Sema::IncompatibleBlockPointer; | |||
| 9707 | ||||
| 9708 | Sema::AssignConvertType ConvTy = Sema::Compatible; | |||
| 9709 | ||||
| 9710 | // For blocks we enforce that qualifiers are identical. | |||
| 9711 | Qualifiers LQuals = lhptee.getLocalQualifiers(); | |||
| 9712 | Qualifiers RQuals = rhptee.getLocalQualifiers(); | |||
| 9713 | if (S.getLangOpts().OpenCL) { | |||
| 9714 | LQuals.removeAddressSpace(); | |||
| 9715 | RQuals.removeAddressSpace(); | |||
| 9716 | } | |||
| 9717 | if (LQuals != RQuals) | |||
| 9718 | ConvTy = Sema::CompatiblePointerDiscardsQualifiers; | |||
| 9719 | ||||
| 9720 | // FIXME: OpenCL doesn't define the exact compile time semantics for a block | |||
| 9721 | // assignment. | |||
| 9722 | // The current behavior is similar to C++ lambdas. A block might be | |||
| 9723 | // assigned to a variable iff its return type and parameters are compatible | |||
| 9724 | // (C99 6.2.7) with the corresponding return type and parameters of the LHS of | |||
| 9725 | // an assignment. Presumably it should behave in way that a function pointer | |||
| 9726 | // assignment does in C, so for each parameter and return type: | |||
| 9727 | // * CVR and address space of LHS should be a superset of CVR and address | |||
| 9728 | // space of RHS. | |||
| 9729 | // * unqualified types should be compatible. | |||
| 9730 | if (S.getLangOpts().OpenCL) { | |||
| 9731 | if (!S.Context.typesAreBlockPointerCompatible( | |||
| 9732 | S.Context.getQualifiedType(LHSType.getUnqualifiedType(), LQuals), | |||
| 9733 | S.Context.getQualifiedType(RHSType.getUnqualifiedType(), RQuals))) | |||
| 9734 | return Sema::IncompatibleBlockPointer; | |||
| 9735 | } else if (!S.Context.typesAreBlockPointerCompatible(LHSType, RHSType)) | |||
| 9736 | return Sema::IncompatibleBlockPointer; | |||
| 9737 | ||||
| 9738 | return ConvTy; | |||
| 9739 | } | |||
| 9740 | ||||
| 9741 | /// checkObjCPointerTypesForAssignment - Compares two objective-c pointer types | |||
| 9742 | /// for assignment compatibility. | |||
| 9743 | static Sema::AssignConvertType | |||
| 9744 | checkObjCPointerTypesForAssignment(Sema &S, QualType LHSType, | |||
| 9745 | QualType RHSType) { | |||
| 9746 | assert(LHSType.isCanonical() && "LHS was not canonicalized!")(static_cast <bool> (LHSType.isCanonical() && "LHS was not canonicalized!" ) ? void (0) : __assert_fail ("LHSType.isCanonical() && \"LHS was not canonicalized!\"" , "clang/lib/Sema/SemaExpr.cpp", 9746, __extension__ __PRETTY_FUNCTION__ )); | |||
| 9747 | assert(RHSType.isCanonical() && "RHS was not canonicalized!")(static_cast <bool> (RHSType.isCanonical() && "RHS was not canonicalized!" ) ? void (0) : __assert_fail ("RHSType.isCanonical() && \"RHS was not canonicalized!\"" , "clang/lib/Sema/SemaExpr.cpp", 9747, __extension__ __PRETTY_FUNCTION__ )); | |||
| 9748 | ||||
| 9749 | if (LHSType->isObjCBuiltinType()) { | |||
| 9750 | // Class is not compatible with ObjC object pointers. | |||
| 9751 | if (LHSType->isObjCClassType() && !RHSType->isObjCBuiltinType() && | |||
| 9752 | !RHSType->isObjCQualifiedClassType()) | |||
| 9753 | return Sema::IncompatiblePointer; | |||
| 9754 | return Sema::Compatible; | |||
| 9755 | } | |||
| 9756 | if (RHSType->isObjCBuiltinType()) { | |||
| 9757 | if (RHSType->isObjCClassType() && !LHSType->isObjCBuiltinType() && | |||
| 9758 | !LHSType->isObjCQualifiedClassType()) | |||
| 9759 | return Sema::IncompatiblePointer; | |||
| 9760 | return Sema::Compatible; | |||
| 9761 | } | |||
| 9762 | QualType lhptee = LHSType->castAs<ObjCObjectPointerType>()->getPointeeType(); | |||
| 9763 | QualType rhptee = RHSType->castAs<ObjCObjectPointerType>()->getPointeeType(); | |||
| 9764 | ||||
| 9765 | if (!lhptee.isAtLeastAsQualifiedAs(rhptee) && | |||
| 9766 | // make an exception for id<P> | |||
| 9767 | !LHSType->isObjCQualifiedIdType()) | |||
| 9768 | return Sema::CompatiblePointerDiscardsQualifiers; | |||
| 9769 | ||||
| 9770 | if (S.Context.typesAreCompatible(LHSType, RHSType)) | |||
| 9771 | return Sema::Compatible; | |||
| 9772 | if (LHSType->isObjCQualifiedIdType() || RHSType->isObjCQualifiedIdType()) | |||
| 9773 | return Sema::IncompatibleObjCQualifiedId; | |||
| 9774 | return Sema::IncompatiblePointer; | |||
| 9775 | } | |||
| 9776 | ||||
| 9777 | Sema::AssignConvertType | |||
| 9778 | Sema::CheckAssignmentConstraints(SourceLocation Loc, | |||
| 9779 | QualType LHSType, QualType RHSType) { | |||
| 9780 | // Fake up an opaque expression. We don't actually care about what | |||
| 9781 | // cast operations are required, so if CheckAssignmentConstraints | |||
| 9782 | // adds casts to this they'll be wasted, but fortunately that doesn't | |||
| 9783 | // usually happen on valid code. | |||
| 9784 | OpaqueValueExpr RHSExpr(Loc, RHSType, VK_PRValue); | |||
| 9785 | ExprResult RHSPtr = &RHSExpr; | |||
| 9786 | CastKind K; | |||
| 9787 | ||||
| 9788 | return CheckAssignmentConstraints(LHSType, RHSPtr, K, /*ConvertRHS=*/false); | |||
| 9789 | } | |||
| 9790 | ||||
| 9791 | /// This helper function returns true if QT is a vector type that has element | |||
| 9792 | /// type ElementType. | |||
| 9793 | static bool isVector(QualType QT, QualType ElementType) { | |||
| 9794 | if (const VectorType *VT = QT->getAs<VectorType>()) | |||
| 9795 | return VT->getElementType().getCanonicalType() == ElementType; | |||
| 9796 | return false; | |||
| 9797 | } | |||
| 9798 | ||||
| 9799 | /// CheckAssignmentConstraints (C99 6.5.16) - This routine currently | |||
| 9800 | /// has code to accommodate several GCC extensions when type checking | |||
| 9801 | /// pointers. Here are some objectionable examples that GCC considers warnings: | |||
| 9802 | /// | |||
| 9803 | /// int a, *pint; | |||
| 9804 | /// short *pshort; | |||
| 9805 | /// struct foo *pfoo; | |||
| 9806 | /// | |||
| 9807 | /// pint = pshort; // warning: assignment from incompatible pointer type | |||
| 9808 | /// a = pint; // warning: assignment makes integer from pointer without a cast | |||
| 9809 | /// pint = a; // warning: assignment makes pointer from integer without a cast | |||
| 9810 | /// pint = pfoo; // warning: assignment from incompatible pointer type | |||
| 9811 | /// | |||
| 9812 | /// As a result, the code for dealing with pointers is more complex than the | |||
| 9813 | /// C99 spec dictates. | |||
| 9814 | /// | |||
| 9815 | /// Sets 'Kind' for any result kind except Incompatible. | |||
| 9816 | Sema::AssignConvertType | |||
| 9817 | Sema::CheckAssignmentConstraints(QualType LHSType, ExprResult &RHS, | |||
| 9818 | CastKind &Kind, bool ConvertRHS) { | |||
| 9819 | QualType RHSType = RHS.get()->getType(); | |||
| 9820 | QualType OrigLHSType = LHSType; | |||
| 9821 | ||||
| 9822 | // Get canonical types. We're not formatting these types, just comparing | |||
| 9823 | // them. | |||
| 9824 | LHSType = Context.getCanonicalType(LHSType).getUnqualifiedType(); | |||
| 9825 | RHSType = Context.getCanonicalType(RHSType).getUnqualifiedType(); | |||
| 9826 | ||||
| 9827 | // Common case: no conversion required. | |||
| 9828 | if (LHSType == RHSType) { | |||
| 9829 | Kind = CK_NoOp; | |||
| 9830 | return Compatible; | |||
| 9831 | } | |||
| 9832 | ||||
| 9833 | // If the LHS has an __auto_type, there are no additional type constraints | |||
| 9834 | // to be worried about. | |||
| 9835 | if (const auto *AT = dyn_cast<AutoType>(LHSType)) { | |||
| 9836 | if (AT->isGNUAutoType()) { | |||
| 9837 | Kind = CK_NoOp; | |||
| 9838 | return Compatible; | |||
| 9839 | } | |||
| 9840 | } | |||
| 9841 | ||||
| 9842 | // If we have an atomic type, try a non-atomic assignment, then just add an | |||
| 9843 | // atomic qualification step. | |||
| 9844 | if (const AtomicType *AtomicTy = dyn_cast<AtomicType>(LHSType)) { | |||
| 9845 | Sema::AssignConvertType result = | |||
| 9846 | CheckAssignmentConstraints(AtomicTy->getValueType(), RHS, Kind); | |||
| 9847 | if (result != Compatible) | |||
| 9848 | return result; | |||
| 9849 | if (Kind != CK_NoOp && ConvertRHS) | |||
| 9850 | RHS = ImpCastExprToType(RHS.get(), AtomicTy->getValueType(), Kind); | |||
| 9851 | Kind = CK_NonAtomicToAtomic; | |||
| 9852 | return Compatible; | |||
| 9853 | } | |||
| 9854 | ||||
| 9855 | // If the left-hand side is a reference type, then we are in a | |||
| 9856 | // (rare!) case where we've allowed the use of references in C, | |||
| 9857 | // e.g., as a parameter type in a built-in function. In this case, | |||
| 9858 | // just make sure that the type referenced is compatible with the | |||
| 9859 | // right-hand side type. The caller is responsible for adjusting | |||
| 9860 | // LHSType so that the resulting expression does not have reference | |||
| 9861 | // type. | |||
| 9862 | if (const ReferenceType *LHSTypeRef = LHSType->getAs<ReferenceType>()) { | |||
| 9863 | if (Context.typesAreCompatible(LHSTypeRef->getPointeeType(), RHSType)) { | |||
| 9864 | Kind = CK_LValueBitCast; | |||
| 9865 | return Compatible; | |||
| 9866 | } | |||
| 9867 | return Incompatible; | |||
| 9868 | } | |||
| 9869 | ||||
| 9870 | // Allow scalar to ExtVector assignments, and assignments of an ExtVector type | |||
| 9871 | // to the same ExtVector type. | |||
| 9872 | if (LHSType->isExtVectorType()) { | |||
| 9873 | if (RHSType->isExtVectorType()) | |||
| 9874 | return Incompatible; | |||
| 9875 | if (RHSType->isArithmeticType()) { | |||
| 9876 | // CK_VectorSplat does T -> vector T, so first cast to the element type. | |||
| 9877 | if (ConvertRHS) | |||
| 9878 | RHS = prepareVectorSplat(LHSType, RHS.get()); | |||
| 9879 | Kind = CK_VectorSplat; | |||
| 9880 | return Compatible; | |||
| 9881 | } | |||
| 9882 | } | |||
| 9883 | ||||
| 9884 | // Conversions to or from vector type. | |||
| 9885 | if (LHSType->isVectorType() || RHSType->isVectorType()) { | |||
| 9886 | if (LHSType->isVectorType() && RHSType->isVectorType()) { | |||
| 9887 | // Allow assignments of an AltiVec vector type to an equivalent GCC | |||
| 9888 | // vector type and vice versa | |||
| 9889 | if (Context.areCompatibleVectorTypes(LHSType, RHSType)) { | |||
| 9890 | Kind = CK_BitCast; | |||
| 9891 | return Compatible; | |||
| 9892 | } | |||
| 9893 | ||||
| 9894 | // If we are allowing lax vector conversions, and LHS and RHS are both | |||
| 9895 | // vectors, the total size only needs to be the same. This is a bitcast; | |||
| 9896 | // no bits are changed but the result type is different. | |||
| 9897 | if (isLaxVectorConversion(RHSType, LHSType)) { | |||
| 9898 | // The default for lax vector conversions with Altivec vectors will | |||
| 9899 | // change, so if we are converting between vector types where | |||
| 9900 | // at least one is an Altivec vector, emit a warning. | |||
| 9901 | if (Context.getTargetInfo().getTriple().isPPC() && | |||
| 9902 | anyAltivecTypes(RHSType, LHSType) && | |||
| 9903 | !Context.areCompatibleVectorTypes(RHSType, LHSType)) | |||
| 9904 | Diag(RHS.get()->getExprLoc(), diag::warn_deprecated_lax_vec_conv_all) | |||
| 9905 | << RHSType << LHSType; | |||
| 9906 | Kind = CK_BitCast; | |||
| 9907 | return IncompatibleVectors; | |||
| 9908 | } | |||
| 9909 | } | |||
| 9910 | ||||
| 9911 | // When the RHS comes from another lax conversion (e.g. binops between | |||
| 9912 | // scalars and vectors) the result is canonicalized as a vector. When the | |||
| 9913 | // LHS is also a vector, the lax is allowed by the condition above. Handle | |||
| 9914 | // the case where LHS is a scalar. | |||
| 9915 | if (LHSType->isScalarType()) { | |||
| 9916 | const VectorType *VecType = RHSType->getAs<VectorType>(); | |||
| 9917 | if (VecType && VecType->getNumElements() == 1 && | |||
| 9918 | isLaxVectorConversion(RHSType, LHSType)) { | |||
| 9919 | if (Context.getTargetInfo().getTriple().isPPC() && | |||
| 9920 | (VecType->getVectorKind() == VectorType::AltiVecVector || | |||
| 9921 | VecType->getVectorKind() == VectorType::AltiVecBool || | |||
| 9922 | VecType->getVectorKind() == VectorType::AltiVecPixel)) | |||
| 9923 | Diag(RHS.get()->getExprLoc(), diag::warn_deprecated_lax_vec_conv_all) | |||
| 9924 | << RHSType << LHSType; | |||
| 9925 | ExprResult *VecExpr = &RHS; | |||
| 9926 | *VecExpr = ImpCastExprToType(VecExpr->get(), LHSType, CK_BitCast); | |||
| 9927 | Kind = CK_BitCast; | |||
| 9928 | return Compatible; | |||
| 9929 | } | |||
| 9930 | } | |||
| 9931 | ||||
| 9932 | // Allow assignments between fixed-length and sizeless SVE vectors. | |||
| 9933 | if ((LHSType->isSVESizelessBuiltinType() && RHSType->isVectorType()) || | |||
| 9934 | (LHSType->isVectorType() && RHSType->isSVESizelessBuiltinType())) | |||
| 9935 | if (Context.areCompatibleSveTypes(LHSType, RHSType) || | |||
| 9936 | Context.areLaxCompatibleSveTypes(LHSType, RHSType)) { | |||
| 9937 | Kind = CK_BitCast; | |||
| 9938 | return Compatible; | |||
| 9939 | } | |||
| 9940 | ||||
| 9941 | // Allow assignments between fixed-length and sizeless RVV vectors. | |||
| 9942 | if ((LHSType->isRVVSizelessBuiltinType() && RHSType->isVectorType()) || | |||
| 9943 | (LHSType->isVectorType() && RHSType->isRVVSizelessBuiltinType())) { | |||
| 9944 | if (Context.areCompatibleRVVTypes(LHSType, RHSType) || | |||
| 9945 | Context.areLaxCompatibleRVVTypes(LHSType, RHSType)) { | |||
| 9946 | Kind = CK_BitCast; | |||
| 9947 | return Compatible; | |||
| 9948 | } | |||
| 9949 | } | |||
| 9950 | ||||
| 9951 | return Incompatible; | |||
| 9952 | } | |||
| 9953 | ||||
| 9954 | // Diagnose attempts to convert between __ibm128, __float128 and long double | |||
| 9955 | // where such conversions currently can't be handled. | |||
| 9956 | if (unsupportedTypeConversion(*this, LHSType, RHSType)) | |||
| 9957 | return Incompatible; | |||
| 9958 | ||||
| 9959 | // Disallow assigning a _Complex to a real type in C++ mode since it simply | |||
| 9960 | // discards the imaginary part. | |||
| 9961 | if (getLangOpts().CPlusPlus && RHSType->getAs<ComplexType>() && | |||
| 9962 | !LHSType->getAs<ComplexType>()) | |||
| 9963 | return Incompatible; | |||
| 9964 | ||||
| 9965 | // Arithmetic conversions. | |||
| 9966 | if (LHSType->isArithmeticType() && RHSType->isArithmeticType() && | |||
| 9967 | !(getLangOpts().CPlusPlus && LHSType->isEnumeralType())) { | |||
| 9968 | if (ConvertRHS) | |||
| 9969 | Kind = PrepareScalarCast(RHS, LHSType); | |||
| 9970 | return Compatible; | |||
| 9971 | } | |||
| 9972 | ||||
| 9973 | // Conversions to normal pointers. | |||
| 9974 | if (const PointerType *LHSPointer = dyn_cast<PointerType>(LHSType)) { | |||
| 9975 | // U* -> T* | |||
| 9976 | if (isa<PointerType>(RHSType)) { | |||
| 9977 | LangAS AddrSpaceL = LHSPointer->getPointeeType().getAddressSpace(); | |||
| 9978 | LangAS AddrSpaceR = RHSType->getPointeeType().getAddressSpace(); | |||
| 9979 | if (AddrSpaceL != AddrSpaceR) | |||
| 9980 | Kind = CK_AddressSpaceConversion; | |||
| 9981 | else if (Context.hasCvrSimilarType(RHSType, LHSType)) | |||
| 9982 | Kind = CK_NoOp; | |||
| 9983 | else | |||
| 9984 | Kind = CK_BitCast; | |||
| 9985 | return checkPointerTypesForAssignment(*this, LHSType, RHSType, | |||
| 9986 | RHS.get()->getBeginLoc()); | |||
| 9987 | } | |||
| 9988 | ||||
| 9989 | // int -> T* | |||
| 9990 | if (RHSType->isIntegerType()) { | |||
| 9991 | Kind = CK_IntegralToPointer; // FIXME: null? | |||
| 9992 | return IntToPointer; | |||
| 9993 | } | |||
| 9994 | ||||
| 9995 | // C pointers are not compatible with ObjC object pointers, | |||
| 9996 | // with two exceptions: | |||
| 9997 | if (isa<ObjCObjectPointerType>(RHSType)) { | |||
| 9998 | // - conversions to void* | |||
| 9999 | if (LHSPointer->getPointeeType()->isVoidType()) { | |||
| 10000 | Kind = CK_BitCast; | |||
| 10001 | return Compatible; | |||
| 10002 | } | |||
| 10003 | ||||
| 10004 | // - conversions from 'Class' to the redefinition type | |||
| 10005 | if (RHSType->isObjCClassType() && | |||
| 10006 | Context.hasSameType(LHSType, | |||
| 10007 | Context.getObjCClassRedefinitionType())) { | |||
| 10008 | Kind = CK_BitCast; | |||
| 10009 | return Compatible; | |||
| 10010 | } | |||
| 10011 | ||||
| 10012 | Kind = CK_BitCast; | |||
| 10013 | return IncompatiblePointer; | |||
| 10014 | } | |||
| 10015 | ||||
| 10016 | // U^ -> void* | |||
| 10017 | if (RHSType->getAs<BlockPointerType>()) { | |||
| 10018 | if (LHSPointer->getPointeeType()->isVoidType()) { | |||
| 10019 | LangAS AddrSpaceL = LHSPointer->getPointeeType().getAddressSpace(); | |||
| 10020 | LangAS AddrSpaceR = RHSType->getAs<BlockPointerType>() | |||
| 10021 | ->getPointeeType() | |||
| 10022 | .getAddressSpace(); | |||
| 10023 | Kind = | |||
| 10024 | AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast; | |||
| 10025 | return Compatible; | |||
| 10026 | } | |||
| 10027 | } | |||
| 10028 | ||||
| 10029 | return Incompatible; | |||
| 10030 | } | |||
| 10031 | ||||
| 10032 | // Conversions to block pointers. | |||
| 10033 | if (isa<BlockPointerType>(LHSType)) { | |||
| 10034 | // U^ -> T^ | |||
| 10035 | if (RHSType->isBlockPointerType()) { | |||
| 10036 | LangAS AddrSpaceL = LHSType->getAs<BlockPointerType>() | |||
| 10037 | ->getPointeeType() | |||
| 10038 | .getAddressSpace(); | |||
| 10039 | LangAS AddrSpaceR = RHSType->getAs<BlockPointerType>() | |||
| 10040 | ->getPointeeType() | |||
| 10041 | .getAddressSpace(); | |||
| 10042 | Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast; | |||
| 10043 | return checkBlockPointerTypesForAssignment(*this, LHSType, RHSType); | |||
| 10044 | } | |||
| 10045 | ||||
| 10046 | // int or null -> T^ | |||
| 10047 | if (RHSType->isIntegerType()) { | |||
| 10048 | Kind = CK_IntegralToPointer; // FIXME: null | |||
| 10049 | return IntToBlockPointer; | |||
| 10050 | } | |||
| 10051 | ||||
| 10052 | // id -> T^ | |||
| 10053 | if (getLangOpts().ObjC && RHSType->isObjCIdType()) { | |||
| 10054 | Kind = CK_AnyPointerToBlockPointerCast; | |||
| 10055 | return Compatible; | |||
| 10056 | } | |||
| 10057 | ||||
| 10058 | // void* -> T^ | |||
| 10059 | if (const PointerType *RHSPT = RHSType->getAs<PointerType>()) | |||
| 10060 | if (RHSPT->getPointeeType()->isVoidType()) { | |||
| 10061 | Kind = CK_AnyPointerToBlockPointerCast; | |||
| 10062 | return Compatible; | |||
| 10063 | } | |||
| 10064 | ||||
| 10065 | return Incompatible; | |||
| 10066 | } | |||
| 10067 | ||||
| 10068 | // Conversions to Objective-C pointers. | |||
| 10069 | if (isa<ObjCObjectPointerType>(LHSType)) { | |||
| 10070 | // A* -> B* | |||
| 10071 | if (RHSType->isObjCObjectPointerType()) { | |||
| 10072 | Kind = CK_BitCast; | |||
| 10073 | Sema::AssignConvertType result = | |||
| 10074 | checkObjCPointerTypesForAssignment(*this, LHSType, RHSType); | |||
| 10075 | if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() && | |||
| 10076 | result == Compatible && | |||
| 10077 | !CheckObjCARCUnavailableWeakConversion(OrigLHSType, RHSType)) | |||
| 10078 | result = IncompatibleObjCWeakRef; | |||
| 10079 | return result; | |||
| 10080 | } | |||
| 10081 | ||||
| 10082 | // int or null -> A* | |||
| 10083 | if (RHSType->isIntegerType()) { | |||
| 10084 | Kind = CK_IntegralToPointer; // FIXME: null | |||
| 10085 | return IntToPointer; | |||
| 10086 | } | |||
| 10087 | ||||
| 10088 | // In general, C pointers are not compatible with ObjC object pointers, | |||
| 10089 | // with two exceptions: | |||
| 10090 | if (isa<PointerType>(RHSType)) { | |||
| 10091 | Kind = CK_CPointerToObjCPointerCast; | |||
| 10092 | ||||
| 10093 | // - conversions from 'void*' | |||
| 10094 | if (RHSType->isVoidPointerType()) { | |||
| 10095 | return Compatible; | |||
| 10096 | } | |||
| 10097 | ||||
| 10098 | // - conversions to 'Class' from its redefinition type | |||
| 10099 | if (LHSType->isObjCClassType() && | |||
| 10100 | Context.hasSameType(RHSType, | |||
| 10101 | Context.getObjCClassRedefinitionType())) { | |||
| 10102 | return Compatible; | |||
| 10103 | } | |||
| 10104 | ||||
| 10105 | return IncompatiblePointer; | |||
| 10106 | } | |||
| 10107 | ||||
| 10108 | // Only under strict condition T^ is compatible with an Objective-C pointer. | |||
| 10109 | if (RHSType->isBlockPointerType() && | |||
| 10110 | LHSType->isBlockCompatibleObjCPointerType(Context)) { | |||
| 10111 | if (ConvertRHS) | |||
| 10112 | maybeExtendBlockObject(RHS); | |||
| 10113 | Kind = CK_BlockPointerToObjCPointerCast; | |||
| 10114 | return Compatible; | |||
| 10115 | } | |||
| 10116 | ||||
| 10117 | return Incompatible; | |||
| 10118 | } | |||
| 10119 | ||||
| 10120 | // Conversion to nullptr_t (C2x only) | |||
| 10121 | if (getLangOpts().C2x && LHSType->isNullPtrType() && | |||
| 10122 | RHS.get()->isNullPointerConstant(Context, | |||
| 10123 | Expr::NPC_ValueDependentIsNull)) { | |||
| 10124 | // null -> nullptr_t | |||
| 10125 | Kind = CK_NullToPointer; | |||
| 10126 | return Compatible; | |||
| 10127 | } | |||
| 10128 | ||||
| 10129 | // Conversions from pointers that are not covered by the above. | |||
| 10130 | if (isa<PointerType>(RHSType)) { | |||
| 10131 | // T* -> _Bool | |||
| 10132 | if (LHSType == Context.BoolTy) { | |||
| 10133 | Kind = CK_PointerToBoolean; | |||
| 10134 | return Compatible; | |||
| 10135 | } | |||
| 10136 | ||||
| 10137 | // T* -> int | |||
| 10138 | if (LHSType->isIntegerType()) { | |||
| 10139 | Kind = CK_PointerToIntegral; | |||
| 10140 | return PointerToInt; | |||
| 10141 | } | |||
| 10142 | ||||
| 10143 | return Incompatible; | |||
| 10144 | } | |||
| 10145 | ||||
| 10146 | // Conversions from Objective-C pointers that are not covered by the above. | |||
| 10147 | if (isa<ObjCObjectPointerType>(RHSType)) { | |||
| 10148 | // T* -> _Bool | |||
| 10149 | if (LHSType == Context.BoolTy) { | |||
| 10150 | Kind = CK_PointerToBoolean; | |||
| 10151 | return Compatible; | |||
| 10152 | } | |||
| 10153 | ||||
| 10154 | // T* -> int | |||
| 10155 | if (LHSType->isIntegerType()) { | |||
| 10156 | Kind = CK_PointerToIntegral; | |||
| 10157 | return PointerToInt; | |||
| 10158 | } | |||
| 10159 | ||||
| 10160 | return Incompatible; | |||
| 10161 | } | |||
| 10162 | ||||
| 10163 | // struct A -> struct B | |||
| 10164 | if (isa<TagType>(LHSType) && isa<TagType>(RHSType)) { | |||
| 10165 | if (Context.typesAreCompatible(LHSType, RHSType)) { | |||
| 10166 | Kind = CK_NoOp; | |||
| 10167 | return Compatible; | |||
| 10168 | } | |||
| 10169 | } | |||
| 10170 | ||||
| 10171 | if (LHSType->isSamplerT() && RHSType->isIntegerType()) { | |||
| 10172 | Kind = CK_IntToOCLSampler; | |||
| 10173 | return Compatible; | |||
| 10174 | } | |||
| 10175 | ||||
| 10176 | return Incompatible; | |||
| 10177 | } | |||
| 10178 | ||||
| 10179 | /// Constructs a transparent union from an expression that is | |||
| 10180 | /// used to initialize the transparent union. | |||
| 10181 | static void ConstructTransparentUnion(Sema &S, ASTContext &C, | |||
| 10182 | ExprResult &EResult, QualType UnionType, | |||
| 10183 | FieldDecl *Field) { | |||
| 10184 | // Build an initializer list that designates the appropriate member | |||
| 10185 | // of the transparent union. | |||
| 10186 | Expr *E = EResult.get(); | |||
| 10187 | InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(), | |||
| 10188 | E, SourceLocation()); | |||
| 10189 | Initializer->setType(UnionType); | |||
| 10190 | Initializer->setInitializedFieldInUnion(Field); | |||
| 10191 | ||||
| 10192 | // Build a compound literal constructing a value of the transparent | |||
| 10193 | // union type from this initializer list. | |||
| 10194 | TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType); | |||
| 10195 | EResult = new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType, | |||
| 10196 | VK_PRValue, Initializer, false); | |||
| 10197 | } | |||
| 10198 | ||||
| 10199 | Sema::AssignConvertType | |||
| 10200 | Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType, | |||
| 10201 | ExprResult &RHS) { | |||
| 10202 | QualType RHSType = RHS.get()->getType(); | |||
| 10203 | ||||
| 10204 | // If the ArgType is a Union type, we want to handle a potential | |||
| 10205 | // transparent_union GCC extension. | |||
| 10206 | const RecordType *UT = ArgType->getAsUnionType(); | |||
| 10207 | if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>()) | |||
| 10208 | return Incompatible; | |||
| 10209 | ||||
| 10210 | // The field to initialize within the transparent union. | |||
| 10211 | RecordDecl *UD = UT->getDecl(); | |||
| 10212 | FieldDecl *InitField = nullptr; | |||
| 10213 | // It's compatible if the expression matches any of the fields. | |||
| 10214 | for (auto *it : UD->fields()) { | |||
| 10215 | if (it->getType()->isPointerType()) { | |||
| 10216 | // If the transparent union contains a pointer type, we allow: | |||
| 10217 | // 1) void pointer | |||
| 10218 | // 2) null pointer constant | |||
| 10219 | if (RHSType->isPointerType()) | |||
| 10220 | if (RHSType->castAs<PointerType>()->getPointeeType()->isVoidType()) { | |||
| 10221 | RHS = ImpCastExprToType(RHS.get(), it->getType(), CK_BitCast); | |||
| 10222 | InitField = it; | |||
| 10223 | break; | |||
| 10224 | } | |||
| 10225 | ||||
| 10226 | if (RHS.get()->isNullPointerConstant(Context, | |||
| 10227 | Expr::NPC_ValueDependentIsNull)) { | |||
| 10228 | RHS = ImpCastExprToType(RHS.get(), it->getType(), | |||
| 10229 | CK_NullToPointer); | |||
| 10230 | InitField = it; | |||
| 10231 | break; | |||
| 10232 | } | |||
| 10233 | } | |||
| 10234 | ||||
| 10235 | CastKind Kind; | |||
| 10236 | if (CheckAssignmentConstraints(it->getType(), RHS, Kind) | |||
| 10237 | == Compatible) { | |||
| 10238 | RHS = ImpCastExprToType(RHS.get(), it->getType(), Kind); | |||
| 10239 | InitField = it; | |||
| 10240 | break; | |||
| 10241 | } | |||
| 10242 | } | |||
| 10243 | ||||
| 10244 | if (!InitField) | |||
| 10245 | return Incompatible; | |||
| 10246 | ||||
| 10247 | ConstructTransparentUnion(*this, Context, RHS, ArgType, InitField); | |||
| 10248 | return Compatible; | |||
| 10249 | } | |||
| 10250 | ||||
| 10251 | Sema::AssignConvertType | |||
| 10252 | Sema::CheckSingleAssignmentConstraints(QualType LHSType, ExprResult &CallerRHS, | |||
| 10253 | bool Diagnose, | |||
| 10254 | bool DiagnoseCFAudited, | |||
| 10255 | bool ConvertRHS) { | |||
| 10256 | // We need to be able to tell the caller whether we diagnosed a problem, if | |||
| 10257 | // they ask us to issue diagnostics. | |||
| 10258 | assert((ConvertRHS || !Diagnose) && "can't indicate whether we diagnosed")(static_cast <bool> ((ConvertRHS || !Diagnose) && "can't indicate whether we diagnosed") ? void (0) : __assert_fail ("(ConvertRHS || !Diagnose) && \"can't indicate whether we diagnosed\"" , "clang/lib/Sema/SemaExpr.cpp", 10258, __extension__ __PRETTY_FUNCTION__ )); | |||
| 10259 | ||||
| 10260 | // If ConvertRHS is false, we want to leave the caller's RHS untouched. Sadly, | |||
| 10261 | // we can't avoid *all* modifications at the moment, so we need some somewhere | |||
| 10262 | // to put the updated value. | |||
| 10263 | ExprResult LocalRHS = CallerRHS; | |||
| 10264 | ExprResult &RHS = ConvertRHS ? CallerRHS : LocalRHS; | |||
| 10265 | ||||
| 10266 | if (const auto *LHSPtrType = LHSType->getAs<PointerType>()) { | |||
| 10267 | if (const auto *RHSPtrType = RHS.get()->getType()->getAs<PointerType>()) { | |||
| 10268 | if (RHSPtrType->getPointeeType()->hasAttr(attr::NoDeref) && | |||
| 10269 | !LHSPtrType->getPointeeType()->hasAttr(attr::NoDeref)) { | |||
| 10270 | Diag(RHS.get()->getExprLoc(), | |||
| 10271 | diag::warn_noderef_to_dereferenceable_pointer) | |||
| 10272 | << RHS.get()->getSourceRange(); | |||
| 10273 | } | |||
| 10274 | } | |||
| 10275 | } | |||
| 10276 | ||||
| 10277 | if (getLangOpts().CPlusPlus) { | |||
| 10278 | if (!LHSType->isRecordType() && !LHSType->isAtomicType()) { | |||
| 10279 | // C++ 5.17p3: If the left operand is not of class type, the | |||
| 10280 | // expression is implicitly converted (C++ 4) to the | |||
| 10281 | // cv-unqualified type of the left operand. | |||
| 10282 | QualType RHSType = RHS.get()->getType(); | |||
| 10283 | if (Diagnose) { | |||
| 10284 | RHS = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(), | |||
| 10285 | AA_Assigning); | |||
| 10286 | } else { | |||
| 10287 | ImplicitConversionSequence ICS = | |||
| 10288 | TryImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(), | |||
| 10289 | /*SuppressUserConversions=*/false, | |||
| 10290 | AllowedExplicit::None, | |||
| 10291 | /*InOverloadResolution=*/false, | |||
| 10292 | /*CStyle=*/false, | |||
| 10293 | /*AllowObjCWritebackConversion=*/false); | |||
| 10294 | if (ICS.isFailure()) | |||
| 10295 | return Incompatible; | |||
| 10296 | RHS = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(), | |||
| 10297 | ICS, AA_Assigning); | |||
| 10298 | } | |||
| 10299 | if (RHS.isInvalid()) | |||
| 10300 | return Incompatible; | |||
| 10301 | Sema::AssignConvertType result = Compatible; | |||
| 10302 | if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() && | |||
| 10303 | !CheckObjCARCUnavailableWeakConversion(LHSType, RHSType)) | |||
| 10304 | result = IncompatibleObjCWeakRef; | |||
| 10305 | return result; | |||
| 10306 | } | |||
| 10307 | ||||
| 10308 | // FIXME: Currently, we fall through and treat C++ classes like C | |||
| 10309 | // structures. | |||
| 10310 | // FIXME: We also fall through for atomics; not sure what should | |||
| 10311 | // happen there, though. | |||
| 10312 | } else if (RHS.get()->getType() == Context.OverloadTy) { | |||
| 10313 | // As a set of extensions to C, we support overloading on functions. These | |||
| 10314 | // functions need to be resolved here. | |||
| 10315 | DeclAccessPair DAP; | |||
| 10316 | if (FunctionDecl *FD = ResolveAddressOfOverloadedFunction( | |||
| 10317 | RHS.get(), LHSType, /*Complain=*/false, DAP)) | |||
| 10318 | RHS = FixOverloadedFunctionReference(RHS.get(), DAP, FD); | |||
| 10319 | else | |||
| 10320 | return Incompatible; | |||
| 10321 | } | |||
| 10322 | ||||
| 10323 | // This check seems unnatural, however it is necessary to ensure the proper | |||
| 10324 | // conversion of functions/arrays. If the conversion were done for all | |||
| 10325 | // DeclExpr's (created by ActOnIdExpression), it would mess up the unary | |||
| 10326 | // expressions that suppress this implicit conversion (&, sizeof). This needs | |||
| 10327 | // to happen before we check for null pointer conversions because C does not | |||
| 10328 | // undergo the same implicit conversions as C++ does above (by the calls to | |||
| 10329 | // TryImplicitConversion() and PerformImplicitConversion()) which insert the | |||
| 10330 | // lvalue to rvalue cast before checking for null pointer constraints. This | |||
| 10331 | // addresses code like: nullptr_t val; int *ptr; ptr = val; | |||
| 10332 | // | |||
| 10333 | // Suppress this for references: C++ 8.5.3p5. | |||
| 10334 | if (!LHSType->isReferenceType()) { | |||
| 10335 | // FIXME: We potentially allocate here even if ConvertRHS is false. | |||
| 10336 | RHS = DefaultFunctionArrayLvalueConversion(RHS.get(), Diagnose); | |||
| 10337 | if (RHS.isInvalid()) | |||
| 10338 | return Incompatible; | |||
| 10339 | } | |||
| 10340 | ||||
| 10341 | // The constraints are expressed in terms of the atomic, qualified, or | |||
| 10342 | // unqualified type of the LHS. | |||
| 10343 | QualType LHSTypeAfterConversion = LHSType.getAtomicUnqualifiedType(); | |||
| 10344 | ||||
| 10345 | // C99 6.5.16.1p1: the left operand is a pointer and the right is | |||
| 10346 | // a null pointer constant <C2x>or its type is nullptr_t;</C2x>. | |||
| 10347 | if ((LHSTypeAfterConversion->isPointerType() || | |||
| 10348 | LHSTypeAfterConversion->isObjCObjectPointerType() || | |||
| 10349 | LHSTypeAfterConversion->isBlockPointerType()) && | |||
| 10350 | ((getLangOpts().C2x && RHS.get()->getType()->isNullPtrType()) || | |||
| 10351 | RHS.get()->isNullPointerConstant(Context, | |||
| 10352 | Expr::NPC_ValueDependentIsNull))) { | |||
| 10353 | if (Diagnose || ConvertRHS) { | |||
| 10354 | CastKind Kind; | |||
| 10355 | CXXCastPath Path; | |||
| 10356 | CheckPointerConversion(RHS.get(), LHSType, Kind, Path, | |||
| 10357 | /*IgnoreBaseAccess=*/false, Diagnose); | |||
| 10358 | if (ConvertRHS) | |||
| 10359 | RHS = ImpCastExprToType(RHS.get(), LHSType, Kind, VK_PRValue, &Path); | |||
| 10360 | } | |||
| 10361 | return Compatible; | |||
| 10362 | } | |||
| 10363 | // C2x 6.5.16.1p1: the left operand has type atomic, qualified, or | |||
| 10364 | // unqualified bool, and the right operand is a pointer or its type is | |||
| 10365 | // nullptr_t. | |||
| 10366 | if (getLangOpts().C2x && LHSType->isBooleanType() && | |||
| 10367 | RHS.get()->getType()->isNullPtrType()) { | |||
| 10368 | // NB: T* -> _Bool is handled in CheckAssignmentConstraints, this only | |||
| 10369 | // only handles nullptr -> _Bool due to needing an extra conversion | |||
| 10370 | // step. | |||
| 10371 | // We model this by converting from nullptr -> void * and then let the | |||
| 10372 | // conversion from void * -> _Bool happen naturally. | |||
| 10373 | if (Diagnose || ConvertRHS) { | |||
| 10374 | CastKind Kind; | |||
| 10375 | CXXCastPath Path; | |||
| 10376 | CheckPointerConversion(RHS.get(), Context.VoidPtrTy, Kind, Path, | |||
| 10377 | /*IgnoreBaseAccess=*/false, Diagnose); | |||
| 10378 | if (ConvertRHS) | |||
| 10379 | RHS = ImpCastExprToType(RHS.get(), Context.VoidPtrTy, Kind, VK_PRValue, | |||
| 10380 | &Path); | |||
| 10381 | } | |||
| 10382 | } | |||
| 10383 | ||||
| 10384 | // OpenCL queue_t type assignment. | |||
| 10385 | if (LHSType->isQueueT() && RHS.get()->isNullPointerConstant( | |||
| 10386 | Context, Expr::NPC_ValueDependentIsNull)) { | |||
| 10387 | RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer); | |||
| 10388 | return Compatible; | |||
| 10389 | } | |||
| 10390 | ||||
| 10391 | CastKind Kind; | |||
| 10392 | Sema::AssignConvertType result = | |||
| 10393 | CheckAssignmentConstraints(LHSType, RHS, Kind, ConvertRHS); | |||
| 10394 | ||||
| 10395 | // C99 6.5.16.1p2: The value of the right operand is converted to the | |||
| 10396 | // type of the assignment expression. | |||
| 10397 | // CheckAssignmentConstraints allows the left-hand side to be a reference, | |||
| 10398 | // so that we can use references in built-in functions even in C. | |||
| 10399 | // The getNonReferenceType() call makes sure that the resulting expression | |||
| 10400 | // does not have reference type. | |||
| 10401 | if (result != Incompatible && RHS.get()->getType() != LHSType) { | |||
| 10402 | QualType Ty = LHSType.getNonLValueExprType(Context); | |||
| 10403 | Expr *E = RHS.get(); | |||
| 10404 | ||||
| 10405 | // Check for various Objective-C errors. If we are not reporting | |||
| 10406 | // diagnostics and just checking for errors, e.g., during overload | |||
| 10407 | // resolution, return Incompatible to indicate the failure. | |||
| 10408 | if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() && | |||
| 10409 | CheckObjCConversion(SourceRange(), Ty, E, CCK_ImplicitConversion, | |||
| 10410 | Diagnose, DiagnoseCFAudited) != ACR_okay) { | |||
| 10411 | if (!Diagnose) | |||
| 10412 | return Incompatible; | |||
| 10413 | } | |||
| 10414 | if (getLangOpts().ObjC && | |||
| 10415 | (CheckObjCBridgeRelatedConversions(E->getBeginLoc(), LHSType, | |||
| 10416 | E->getType(), E, Diagnose) || | |||
| 10417 | CheckConversionToObjCLiteral(LHSType, E, Diagnose))) { | |||
| 10418 | if (!Diagnose) | |||
| 10419 | return Incompatible; | |||
| 10420 | // Replace the expression with a corrected version and continue so we | |||
| 10421 | // can find further errors. | |||
| 10422 | RHS = E; | |||
| 10423 | return Compatible; | |||
| 10424 | } | |||
| 10425 | ||||
| 10426 | if (ConvertRHS) | |||
| 10427 | RHS = ImpCastExprToType(E, Ty, Kind); | |||
| 10428 | } | |||
| 10429 | ||||
| 10430 | return result; | |||
| 10431 | } | |||
| 10432 | ||||
| 10433 | namespace { | |||
| 10434 | /// The original operand to an operator, prior to the application of the usual | |||
| 10435 | /// arithmetic conversions and converting the arguments of a builtin operator | |||
| 10436 | /// candidate. | |||
| 10437 | struct OriginalOperand { | |||
| 10438 | explicit OriginalOperand(Expr *Op) : Orig(Op), Conversion(nullptr) { | |||
| 10439 | if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Op)) | |||
| 10440 | Op = MTE->getSubExpr(); | |||
| 10441 | if (auto *BTE = dyn_cast<CXXBindTemporaryExpr>(Op)) | |||
| 10442 | Op = BTE->getSubExpr(); | |||
| 10443 | if (auto *ICE = dyn_cast<ImplicitCastExpr>(Op)) { | |||
| 10444 | Orig = ICE->getSubExprAsWritten(); | |||
| 10445 | Conversion = ICE->getConversionFunction(); | |||
| 10446 | } | |||
| 10447 | } | |||
| 10448 | ||||
| 10449 | QualType getType() const { return Orig->getType(); } | |||
| 10450 | ||||
| 10451 | Expr *Orig; | |||
| 10452 | NamedDecl *Conversion; | |||
| 10453 | }; | |||
| 10454 | } | |||
| 10455 | ||||
| 10456 | QualType Sema::InvalidOperands(SourceLocation Loc, ExprResult &LHS, | |||
| 10457 | ExprResult &RHS) { | |||
| 10458 | OriginalOperand OrigLHS(LHS.get()), OrigRHS(RHS.get()); | |||
| 10459 | ||||
| 10460 | Diag(Loc, diag::err_typecheck_invalid_operands) | |||
| 10461 | << OrigLHS.getType() << OrigRHS.getType() | |||
| 10462 | << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); | |||
| 10463 | ||||
| 10464 | // If a user-defined conversion was applied to either of the operands prior | |||
| 10465 | // to applying the built-in operator rules, tell the user about it. | |||
| 10466 | if (OrigLHS.Conversion) { | |||
| 10467 | Diag(OrigLHS.Conversion->getLocation(), | |||
| 10468 | diag::note_typecheck_invalid_operands_converted) | |||
| 10469 | << 0 << LHS.get()->getType(); | |||
| 10470 | } | |||
| 10471 | if (OrigRHS.Conversion) { | |||
| 10472 | Diag(OrigRHS.Conversion->getLocation(), | |||
| 10473 | diag::note_typecheck_invalid_operands_converted) | |||
| 10474 | << 1 << RHS.get()->getType(); | |||
| 10475 | } | |||
| 10476 | ||||
| 10477 | return QualType(); | |||
| 10478 | } | |||
| 10479 | ||||
| 10480 | // Diagnose cases where a scalar was implicitly converted to a vector and | |||
| 10481 | // diagnose the underlying types. Otherwise, diagnose the error | |||
| 10482 | // as invalid vector logical operands for non-C++ cases. | |||
| 10483 | QualType Sema::InvalidLogicalVectorOperands(SourceLocation Loc, ExprResult &LHS, | |||
| 10484 | ExprResult &RHS) { | |||
| 10485 | QualType LHSType = LHS.get()->IgnoreImpCasts()->getType(); | |||
| 10486 | QualType RHSType = RHS.get()->IgnoreImpCasts()->getType(); | |||
| 10487 | ||||
| 10488 | bool LHSNatVec = LHSType->isVectorType(); | |||
| 10489 | bool RHSNatVec = RHSType->isVectorType(); | |||
| 10490 | ||||
| 10491 | if (!(LHSNatVec && RHSNatVec)) { | |||
| 10492 | Expr *Vector = LHSNatVec ? LHS.get() : RHS.get(); | |||
| 10493 | Expr *NonVector = !LHSNatVec ? LHS.get() : RHS.get(); | |||
| 10494 | Diag(Loc, diag::err_typecheck_logical_vector_expr_gnu_cpp_restrict) | |||
| 10495 | << 0 << Vector->getType() << NonVector->IgnoreImpCasts()->getType() | |||
| 10496 | << Vector->getSourceRange(); | |||
| 10497 | return QualType(); | |||
| 10498 | } | |||
| 10499 | ||||
| 10500 | Diag(Loc, diag::err_typecheck_logical_vector_expr_gnu_cpp_restrict) | |||
| 10501 | << 1 << LHSType << RHSType << LHS.get()->getSourceRange() | |||
| 10502 | << RHS.get()->getSourceRange(); | |||
| 10503 | ||||
| 10504 | return QualType(); | |||
| 10505 | } | |||
| 10506 | ||||
| 10507 | /// Try to convert a value of non-vector type to a vector type by converting | |||
| 10508 | /// the type to the element type of the vector and then performing a splat. | |||
| 10509 | /// If the language is OpenCL, we only use conversions that promote scalar | |||
| 10510 | /// rank; for C, Obj-C, and C++ we allow any real scalar conversion except | |||
| 10511 | /// for float->int. | |||
| 10512 | /// | |||
| 10513 | /// OpenCL V2.0 6.2.6.p2: | |||
| 10514 | /// An error shall occur if any scalar operand type has greater rank | |||
| 10515 | /// than the type of the vector element. | |||
| 10516 | /// | |||
| 10517 | /// \param scalar - if non-null, actually perform the conversions | |||
| 10518 | /// \return true if the operation fails (but without diagnosing the failure) | |||
| 10519 | static bool tryVectorConvertAndSplat(Sema &S, ExprResult *scalar, | |||
| 10520 | QualType scalarTy, | |||
| 10521 | QualType vectorEltTy, | |||
| 10522 | QualType vectorTy, | |||
| 10523 | unsigned &DiagID) { | |||
| 10524 | // The conversion to apply to the scalar before splatting it, | |||
| 10525 | // if necessary. | |||
| 10526 | CastKind scalarCast = CK_NoOp; | |||
| 10527 | ||||
| 10528 | if (vectorEltTy->isIntegralType(S.Context)) { | |||
| 10529 | if (S.getLangOpts().OpenCL && (scalarTy->isRealFloatingType() || | |||
| 10530 | (scalarTy->isIntegerType() && | |||
| 10531 | S.Context.getIntegerTypeOrder(vectorEltTy, scalarTy) < 0))) { | |||
| 10532 | DiagID = diag::err_opencl_scalar_type_rank_greater_than_vector_type; | |||
| 10533 | return true; | |||
| 10534 | } | |||
| 10535 | if (!scalarTy->isIntegralType(S.Context)) | |||
| 10536 | return true; | |||
| 10537 | scalarCast = CK_IntegralCast; | |||
| 10538 | } else if (vectorEltTy->isRealFloatingType()) { | |||
| 10539 | if (scalarTy->isRealFloatingType()) { | |||
| 10540 | if (S.getLangOpts().OpenCL && | |||
| 10541 | S.Context.getFloatingTypeOrder(vectorEltTy, scalarTy) < 0) { | |||
| 10542 | DiagID = diag::err_opencl_scalar_type_rank_greater_than_vector_type; | |||
| 10543 | return true; | |||
| 10544 | } | |||
| 10545 | scalarCast = CK_FloatingCast; | |||
| 10546 | } | |||
| 10547 | else if (scalarTy->isIntegralType(S.Context)) | |||
| 10548 | scalarCast = CK_IntegralToFloating; | |||
| 10549 | else | |||
| 10550 | return true; | |||
| 10551 | } else { | |||
| 10552 | return true; | |||
| 10553 | } | |||
| 10554 | ||||
| 10555 | // Adjust scalar if desired. | |||
| 10556 | if (scalar) { | |||
| 10557 | if (scalarCast != CK_NoOp) | |||
| 10558 | *scalar = S.ImpCastExprToType(scalar->get(), vectorEltTy, scalarCast); | |||
| 10559 | *scalar = S.ImpCastExprToType(scalar->get(), vectorTy, CK_VectorSplat); | |||
| 10560 | } | |||
| 10561 | return false; | |||
| 10562 | } | |||
| 10563 | ||||
| 10564 | /// Convert vector E to a vector with the same number of elements but different | |||
| 10565 | /// element type. | |||
| 10566 | static ExprResult convertVector(Expr *E, QualType ElementType, Sema &S) { | |||
| 10567 | const auto *VecTy = E->getType()->getAs<VectorType>(); | |||
| 10568 | assert(VecTy && "Expression E must be a vector")(static_cast <bool> (VecTy && "Expression E must be a vector" ) ? void (0) : __assert_fail ("VecTy && \"Expression E must be a vector\"" , "clang/lib/Sema/SemaExpr.cpp", 10568, __extension__ __PRETTY_FUNCTION__ )); | |||
| 10569 | QualType NewVecTy = | |||
| 10570 | VecTy->isExtVectorType() | |||
| 10571 | ? S.Context.getExtVectorType(ElementType, VecTy->getNumElements()) | |||
| 10572 | : S.Context.getVectorType(ElementType, VecTy->getNumElements(), | |||
| 10573 | VecTy->getVectorKind()); | |||
| 10574 | ||||
| 10575 | // Look through the implicit cast. Return the subexpression if its type is | |||
| 10576 | // NewVecTy. | |||
| 10577 | if (auto *ICE = dyn_cast<ImplicitCastExpr>(E)) | |||
| 10578 | if (ICE->getSubExpr()->getType() == NewVecTy) | |||
| 10579 | return ICE->getSubExpr(); | |||
| 10580 | ||||
| 10581 | auto Cast = ElementType->isIntegerType() ? CK_IntegralCast : CK_FloatingCast; | |||
| 10582 | return S.ImpCastExprToType(E, NewVecTy, Cast); | |||
| 10583 | } | |||
| 10584 | ||||
| 10585 | /// Test if a (constant) integer Int can be casted to another integer type | |||
| 10586 | /// IntTy without losing precision. | |||
| 10587 | static bool canConvertIntToOtherIntTy(Sema &S, ExprResult *Int, | |||
| 10588 | QualType OtherIntTy) { | |||
| 10589 | QualType IntTy = Int->get()->getType().getUnqualifiedType(); | |||
| 10590 | ||||
| 10591 | // Reject cases where the value of the Int is unknown as that would | |||
| 10592 | // possibly cause truncation, but accept cases where the scalar can be | |||
| 10593 | // demoted without loss of precision. | |||
| 10594 | Expr::EvalResult EVResult; | |||
| 10595 | bool CstInt = Int->get()->EvaluateAsInt(EVResult, S.Context); | |||
| 10596 | int Order = S.Context.getIntegerTypeOrder(OtherIntTy, IntTy); | |||
| 10597 | bool IntSigned = IntTy->hasSignedIntegerRepresentation(); | |||
| 10598 | bool OtherIntSigned = OtherIntTy->hasSignedIntegerRepresentation(); | |||
| 10599 | ||||
| 10600 | if (CstInt) { | |||
| 10601 | // If the scalar is constant and is of a higher order and has more active | |||
| 10602 | // bits that the vector element type, reject it. | |||
| 10603 | llvm::APSInt Result = EVResult.Val.getInt(); | |||
| 10604 | unsigned NumBits = IntSigned | |||
| 10605 | ? (Result.isNegative() ? Result.getSignificantBits() | |||
| 10606 | : Result.getActiveBits()) | |||
| 10607 | : Result.getActiveBits(); | |||
| 10608 | if (Order < 0 && S.Context.getIntWidth(OtherIntTy) < NumBits) | |||
| 10609 | return true; | |||
| 10610 | ||||
| 10611 | // If the signedness of the scalar type and the vector element type | |||
| 10612 | // differs and the number of bits is greater than that of the vector | |||
| 10613 | // element reject it. | |||
| 10614 | return (IntSigned != OtherIntSigned && | |||
| 10615 | NumBits > S.Context.getIntWidth(OtherIntTy)); | |||
| 10616 | } | |||
| 10617 | ||||
| 10618 | // Reject cases where the value of the scalar is not constant and it's | |||
| 10619 | // order is greater than that of the vector element type. | |||
| 10620 | return (Order < 0); | |||
| 10621 | } | |||
| 10622 | ||||
| 10623 | /// Test if a (constant) integer Int can be casted to floating point type | |||
| 10624 | /// FloatTy without losing precision. | |||
| 10625 | static bool canConvertIntTyToFloatTy(Sema &S, ExprResult *Int, | |||
| 10626 | QualType FloatTy) { | |||
| 10627 | QualType IntTy = Int->get()->getType().getUnqualifiedType(); | |||
| 10628 | ||||
| 10629 | // Determine if the integer constant can be expressed as a floating point | |||
| 10630 | // number of the appropriate type. | |||
| 10631 | Expr::EvalResult EVResult; | |||
| 10632 | bool CstInt = Int->get()->EvaluateAsInt(EVResult, S.Context); | |||
| 10633 | ||||
| 10634 | uint64_t Bits = 0; | |||
| 10635 | if (CstInt) { | |||
| 10636 | // Reject constants that would be truncated if they were converted to | |||
| 10637 | // the floating point type. Test by simple to/from conversion. | |||
| 10638 | // FIXME: Ideally the conversion to an APFloat and from an APFloat | |||
| 10639 | // could be avoided if there was a convertFromAPInt method | |||
| 10640 | // which could signal back if implicit truncation occurred. | |||
| 10641 | llvm::APSInt Result = EVResult.Val.getInt(); | |||
| 10642 | llvm::APFloat Float(S.Context.getFloatTypeSemantics(FloatTy)); | |||
| 10643 | Float.convertFromAPInt(Result, IntTy->hasSignedIntegerRepresentation(), | |||
| 10644 | llvm::APFloat::rmTowardZero); | |||
| 10645 | llvm::APSInt ConvertBack(S.Context.getIntWidth(IntTy), | |||
| 10646 | !IntTy->hasSignedIntegerRepresentation()); | |||
| 10647 | bool Ignored = false; | |||
| 10648 | Float.convertToInteger(ConvertBack, llvm::APFloat::rmNearestTiesToEven, | |||
| 10649 | &Ignored); | |||
| 10650 | if (Result != ConvertBack) | |||
| 10651 | return true; | |||
| 10652 | } else { | |||
| 10653 | // Reject types that cannot be fully encoded into the mantissa of | |||
| 10654 | // the float. | |||
| 10655 | Bits = S.Context.getTypeSize(IntTy); | |||
| 10656 | unsigned FloatPrec = llvm::APFloat::semanticsPrecision( | |||
| 10657 | S.Context.getFloatTypeSemantics(FloatTy)); | |||
| 10658 | if (Bits > FloatPrec) | |||
| 10659 | return true; | |||
| 10660 | } | |||
| 10661 | ||||
| 10662 | return false; | |||
| 10663 | } | |||
| 10664 | ||||
| 10665 | /// Attempt to convert and splat Scalar into a vector whose types matches | |||
| 10666 | /// Vector following GCC conversion rules. The rule is that implicit | |||
| 10667 | /// conversion can occur when Scalar can be casted to match Vector's element | |||
| 10668 | /// type without causing truncation of Scalar. | |||
| 10669 | static bool tryGCCVectorConvertAndSplat(Sema &S, ExprResult *Scalar, | |||
| 10670 | ExprResult *Vector) { | |||
| 10671 | QualType ScalarTy = Scalar->get()->getType().getUnqualifiedType(); | |||
| 10672 | QualType VectorTy = Vector->get()->getType().getUnqualifiedType(); | |||
| 10673 | QualType VectorEltTy; | |||
| 10674 | ||||
| 10675 | if (const auto *VT = VectorTy->getAs<VectorType>()) { | |||
| 10676 | assert(!isa<ExtVectorType>(VT) &&(static_cast <bool> (!isa<ExtVectorType>(VT) && "ExtVectorTypes should not be handled here!") ? void (0) : __assert_fail ("!isa<ExtVectorType>(VT) && \"ExtVectorTypes should not be handled here!\"" , "clang/lib/Sema/SemaExpr.cpp", 10677, __extension__ __PRETTY_FUNCTION__ )) | |||
| 10677 | "ExtVectorTypes should not be handled here!")(static_cast <bool> (!isa<ExtVectorType>(VT) && "ExtVectorTypes should not be handled here!") ? void (0) : __assert_fail ("!isa<ExtVectorType>(VT) && \"ExtVectorTypes should not be handled here!\"" , "clang/lib/Sema/SemaExpr.cpp", 10677, __extension__ __PRETTY_FUNCTION__ )); | |||
| 10678 | VectorEltTy = VT->getElementType(); | |||
| 10679 | } else if (VectorTy->isVLSTBuiltinType()) { | |||
| 10680 | VectorEltTy = | |||
| 10681 | VectorTy->castAs<BuiltinType>()->getSveEltType(S.getASTContext()); | |||
| 10682 | } else { | |||
| 10683 | llvm_unreachable("Only Fixed-Length and SVE Vector types are handled here")::llvm::llvm_unreachable_internal("Only Fixed-Length and SVE Vector types are handled here" , "clang/lib/Sema/SemaExpr.cpp", 10683); | |||
| 10684 | } | |||
| 10685 | ||||
| 10686 | // Reject cases where the vector element type or the scalar element type are | |||
| 10687 | // not integral or floating point types. | |||
| 10688 | if (!VectorEltTy->isArithmeticType() || !ScalarTy->isArithmeticType()) | |||
| 10689 | return true; | |||
| 10690 | ||||
| 10691 | // The conversion to apply to the scalar before splatting it, | |||
| 10692 | // if necessary. | |||
| 10693 | CastKind ScalarCast = CK_NoOp; | |||
| 10694 | ||||
| 10695 | // Accept cases where the vector elements are integers and the scalar is | |||
| 10696 | // an integer. | |||
| 10697 | // FIXME: Notionally if the scalar was a floating point value with a precise | |||
| 10698 | // integral representation, we could cast it to an appropriate integer | |||
| 10699 | // type and then perform the rest of the checks here. GCC will perform | |||
| 10700 | // this conversion in some cases as determined by the input language. | |||
| 10701 | // We should accept it on a language independent basis. | |||
| 10702 | if (VectorEltTy->isIntegralType(S.Context) && | |||
| 10703 | ScalarTy->isIntegralType(S.Context) && | |||
| 10704 | S.Context.getIntegerTypeOrder(VectorEltTy, ScalarTy)) { | |||
| 10705 | ||||
| 10706 | if (canConvertIntToOtherIntTy(S, Scalar, VectorEltTy)) | |||
| 10707 | return true; | |||
| 10708 | ||||
| 10709 | ScalarCast = CK_IntegralCast; | |||
| 10710 | } else if (VectorEltTy->isIntegralType(S.Context) && | |||
| 10711 | ScalarTy->isRealFloatingType()) { | |||
| 10712 | if (S.Context.getTypeSize(VectorEltTy) == S.Context.getTypeSize(ScalarTy)) | |||
| 10713 | ScalarCast = CK_FloatingToIntegral; | |||
| 10714 | else | |||
| 10715 | return true; | |||
| 10716 | } else if (VectorEltTy->isRealFloatingType()) { | |||
| 10717 | if (ScalarTy->isRealFloatingType()) { | |||
| 10718 | ||||
| 10719 | // Reject cases where the scalar type is not a constant and has a higher | |||
| 10720 | // Order than the vector element type. | |||
| 10721 | llvm::APFloat Result(0.0); | |||
| 10722 | ||||
| 10723 | // Determine whether this is a constant scalar. In the event that the | |||
| 10724 | // value is dependent (and thus cannot be evaluated by the constant | |||
| 10725 | // evaluator), skip the evaluation. This will then diagnose once the | |||
| 10726 | // expression is instantiated. | |||
| 10727 | bool CstScalar = Scalar->get()->isValueDependent() || | |||
| 10728 | Scalar->get()->EvaluateAsFloat(Result, S.Context); | |||
| 10729 | int Order = S.Context.getFloatingTypeOrder(VectorEltTy, ScalarTy); | |||
| 10730 | if (!CstScalar && Order < 0) | |||
| 10731 | return true; | |||
| 10732 | ||||
| 10733 | // If the scalar cannot be safely casted to the vector element type, | |||
| 10734 | // reject it. | |||
| 10735 | if (CstScalar) { | |||
| 10736 | bool Truncated = false; | |||
| 10737 | Result.convert(S.Context.getFloatTypeSemantics(VectorEltTy), | |||
| 10738 | llvm::APFloat::rmNearestTiesToEven, &Truncated); | |||
| 10739 | if (Truncated) | |||
| 10740 | return true; | |||
| 10741 | } | |||
| 10742 | ||||
| 10743 | ScalarCast = CK_FloatingCast; | |||
| 10744 | } else if (ScalarTy->isIntegralType(S.Context)) { | |||
| 10745 | if (canConvertIntTyToFloatTy(S, Scalar, VectorEltTy)) | |||
| 10746 | return true; | |||
| 10747 | ||||
| 10748 | ScalarCast = CK_IntegralToFloating; | |||
| 10749 | } else | |||
| 10750 | return true; | |||
| 10751 | } else if (ScalarTy->isEnumeralType()) | |||
| 10752 | return true; | |||
| 10753 | ||||
| 10754 | // Adjust scalar if desired. | |||
| 10755 | if (Scalar) { | |||
| 10756 | if (ScalarCast != CK_NoOp) | |||
| 10757 | *Scalar = S.ImpCastExprToType(Scalar->get(), VectorEltTy, ScalarCast); | |||
| 10758 | *Scalar = S.ImpCastExprToType(Scalar->get(), VectorTy, CK_VectorSplat); | |||
| 10759 | } | |||
| 10760 | return false; | |||
| 10761 | } | |||
| 10762 | ||||
| 10763 | QualType Sema::CheckVectorOperands(ExprResult &LHS, ExprResult &RHS, | |||
| 10764 | SourceLocation Loc, bool IsCompAssign, | |||
| 10765 | bool AllowBothBool, | |||
| 10766 | bool AllowBoolConversions, | |||
| 10767 | bool AllowBoolOperation, | |||
| 10768 | bool ReportInvalid) { | |||
| 10769 | if (!IsCompAssign) { | |||
| 10770 | LHS = DefaultFunctionArrayLvalueConversion(LHS.get()); | |||
| 10771 | if (LHS.isInvalid()) | |||
| 10772 | return QualType(); | |||
| 10773 | } | |||
| 10774 | RHS = DefaultFunctionArrayLvalueConversion(RHS.get()); | |||
| 10775 | if (RHS.isInvalid()) | |||
| 10776 | return QualType(); | |||
| 10777 | ||||
| 10778 | // For conversion purposes, we ignore any qualifiers. | |||
| 10779 | // For example, "const float" and "float" are equivalent. | |||
| 10780 | QualType LHSType = LHS.get()->getType().getUnqualifiedType(); | |||
| 10781 | QualType RHSType = RHS.get()->getType().getUnqualifiedType(); | |||
| 10782 | ||||
| 10783 | const VectorType *LHSVecType = LHSType->getAs<VectorType>(); | |||
| 10784 | const VectorType *RHSVecType = RHSType->getAs<VectorType>(); | |||
| 10785 | assert(LHSVecType || RHSVecType)(static_cast <bool> (LHSVecType || RHSVecType) ? void ( 0) : __assert_fail ("LHSVecType || RHSVecType", "clang/lib/Sema/SemaExpr.cpp" , 10785, __extension__ __PRETTY_FUNCTION__)); | |||
| 10786 | ||||
| 10787 | if ((LHSVecType && LHSVecType->getElementType()->isBFloat16Type()) || | |||
| 10788 | (RHSVecType && RHSVecType->getElementType()->isBFloat16Type())) | |||
| 10789 | return ReportInvalid ? InvalidOperands(Loc, LHS, RHS) : QualType(); | |||
| 10790 | ||||
| 10791 | // AltiVec-style "vector bool op vector bool" combinations are allowed | |||
| 10792 | // for some operators but not others. | |||
| 10793 | if (!AllowBothBool && | |||
| 10794 | LHSVecType && LHSVecType->getVectorKind() == VectorType::AltiVecBool && | |||
| 10795 | RHSVecType && RHSVecType->getVectorKind() == VectorType::AltiVecBool) | |||
| 10796 | return ReportInvalid ? InvalidOperands(Loc, LHS, RHS) : QualType(); | |||
| 10797 | ||||
| 10798 | // This operation may not be performed on boolean vectors. | |||
| 10799 | if (!AllowBoolOperation && | |||
| 10800 | (LHSType->isExtVectorBoolType() || RHSType->isExtVectorBoolType())) | |||
| 10801 | return ReportInvalid ? InvalidOperands(Loc, LHS, RHS) : QualType(); | |||
| 10802 | ||||
| 10803 | // If the vector types are identical, return. | |||
| 10804 | if (Context.hasSameType(LHSType, RHSType)) | |||
| 10805 | return Context.getCommonSugaredType(LHSType, RHSType); | |||
| 10806 | ||||
| 10807 | // If we have compatible AltiVec and GCC vector types, use the AltiVec type. | |||
| 10808 | if (LHSVecType && RHSVecType && | |||
| 10809 | Context.areCompatibleVectorTypes(LHSType, RHSType)) { | |||
| 10810 | if (isa<ExtVectorType>(LHSVecType)) { | |||
| 10811 | RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast); | |||
| 10812 | return LHSType; | |||
| 10813 | } | |||
| 10814 | ||||
| 10815 | if (!IsCompAssign) | |||
| 10816 | LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast); | |||
| 10817 | return RHSType; | |||
| 10818 | } | |||
| 10819 | ||||
| 10820 | // AllowBoolConversions says that bool and non-bool AltiVec vectors | |||
| 10821 | // can be mixed, with the result being the non-bool type. The non-bool | |||
| 10822 | // operand must have integer element type. | |||
| 10823 | if (AllowBoolConversions && LHSVecType && RHSVecType && | |||
| 10824 | LHSVecType->getNumElements() == RHSVecType->getNumElements() && | |||
| 10825 | (Context.getTypeSize(LHSVecType->getElementType()) == | |||
| 10826 | Context.getTypeSize(RHSVecType->getElementType()))) { | |||
| 10827 | if (LHSVecType->getVectorKind() == VectorType::AltiVecVector && | |||
| 10828 | LHSVecType->getElementType()->isIntegerType() && | |||
| 10829 | RHSVecType->getVectorKind() == VectorType::AltiVecBool) { | |||
| 10830 | RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast); | |||
| 10831 | return LHSType; | |||
| 10832 | } | |||
| 10833 | if (!IsCompAssign && | |||
| 10834 | LHSVecType->getVectorKind() == VectorType::AltiVecBool && | |||
| 10835 | RHSVecType->getVectorKind() == VectorType::AltiVecVector && | |||
| 10836 | RHSVecType->getElementType()->isIntegerType()) { | |||
| 10837 | LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast); | |||
| 10838 | return RHSType; | |||
| 10839 | } | |||
| 10840 | } | |||
| 10841 | ||||
| 10842 | // Expressions containing fixed-length and sizeless SVE/RVV vectors are | |||
| 10843 | // invalid since the ambiguity can affect the ABI. | |||
| 10844 | auto IsSveRVVConversion = [](QualType FirstType, QualType SecondType, | |||
| 10845 | unsigned &SVEorRVV) { | |||
| 10846 | const VectorType *VecType = SecondType->getAs<VectorType>(); | |||
| 10847 | SVEorRVV = 0; | |||
| 10848 | if (FirstType->isSizelessBuiltinType() && VecType) { | |||
| 10849 | if (VecType->getVectorKind() == VectorType::SveFixedLengthDataVector || | |||
| 10850 | VecType->getVectorKind() == VectorType::SveFixedLengthPredicateVector) | |||
| 10851 | return true; | |||
| 10852 | if (VecType->getVectorKind() == VectorType::RVVFixedLengthDataVector) { | |||
| 10853 | SVEorRVV = 1; | |||
| 10854 | return true; | |||
| 10855 | } | |||
| 10856 | } | |||
| 10857 | ||||
| 10858 | return false; | |||
| 10859 | }; | |||
| 10860 | ||||
| 10861 | unsigned SVEorRVV; | |||
| 10862 | if (IsSveRVVConversion(LHSType, RHSType, SVEorRVV) || | |||
| 10863 | IsSveRVVConversion(RHSType, LHSType, SVEorRVV)) { | |||
| 10864 | Diag(Loc, diag::err_typecheck_sve_rvv_ambiguous) | |||
| 10865 | << SVEorRVV << LHSType << RHSType; | |||
| 10866 | return QualType(); | |||
| 10867 | } | |||
| 10868 | ||||
| 10869 | // Expressions containing GNU and SVE or RVV (fixed or sizeless) vectors are | |||
| 10870 | // invalid since the ambiguity can affect the ABI. | |||
| 10871 | auto IsSveRVVGnuConversion = [](QualType FirstType, QualType SecondType, | |||
| 10872 | unsigned &SVEorRVV) { | |||
| 10873 | const VectorType *FirstVecType = FirstType->getAs<VectorType>(); | |||
| 10874 | const VectorType *SecondVecType = SecondType->getAs<VectorType>(); | |||
| 10875 | ||||
| 10876 | SVEorRVV = 0; | |||
| 10877 | if (FirstVecType && SecondVecType) { | |||
| 10878 | if (FirstVecType->getVectorKind() == VectorType::GenericVector) { | |||
| 10879 | if (SecondVecType->getVectorKind() == | |||
| 10880 | VectorType::SveFixedLengthDataVector || | |||
| 10881 | SecondVecType->getVectorKind() == | |||
| 10882 | VectorType::SveFixedLengthPredicateVector) | |||
| 10883 | return true; | |||
| 10884 | if (SecondVecType->getVectorKind() == | |||
| 10885 | VectorType::RVVFixedLengthDataVector) { | |||
| 10886 | SVEorRVV = 1; | |||
| 10887 | return true; | |||
| 10888 | } | |||
| 10889 | } | |||
| 10890 | return false; | |||
| 10891 | } | |||
| 10892 | ||||
| 10893 | if (SecondVecType && | |||
| 10894 | SecondVecType->getVectorKind() == VectorType::GenericVector) { | |||
| 10895 | if (FirstType->isSVESizelessBuiltinType()) | |||
| 10896 | return true; | |||
| 10897 | if (FirstType->isRVVSizelessBuiltinType()) { | |||
| 10898 | SVEorRVV = 1; | |||
| 10899 | return true; | |||
| 10900 | } | |||
| 10901 | } | |||
| 10902 | ||||
| 10903 | return false; | |||
| 10904 | }; | |||
| 10905 | ||||
| 10906 | if (IsSveRVVGnuConversion(LHSType, RHSType, SVEorRVV) || | |||
| 10907 | IsSveRVVGnuConversion(RHSType, LHSType, SVEorRVV)) { | |||
| 10908 | Diag(Loc, diag::err_typecheck_sve_rvv_gnu_ambiguous) | |||
| 10909 | << SVEorRVV << LHSType << RHSType; | |||
| 10910 | return QualType(); | |||
| 10911 | } | |||
| 10912 | ||||
| 10913 | // If there's a vector type and a scalar, try to convert the scalar to | |||
| 10914 | // the vector element type and splat. | |||
| 10915 | unsigned DiagID = diag::err_typecheck_vector_not_convertable; | |||
| 10916 | if (!RHSVecType) { | |||
| 10917 | if (isa<ExtVectorType>(LHSVecType)) { | |||
| 10918 | if (!tryVectorConvertAndSplat(*this, &RHS, RHSType, | |||
| 10919 | LHSVecType->getElementType(), LHSType, | |||
| 10920 | DiagID)) | |||
| 10921 | return LHSType; | |||
| 10922 | } else { | |||
| 10923 | if (!tryGCCVectorConvertAndSplat(*this, &RHS, &LHS)) | |||
| 10924 | return LHSType; | |||
| 10925 | } | |||
| 10926 | } | |||
| 10927 | if (!LHSVecType) { | |||
| 10928 | if (isa<ExtVectorType>(RHSVecType)) { | |||
| 10929 | if (!tryVectorConvertAndSplat(*this, (IsCompAssign ? nullptr : &LHS), | |||
| 10930 | LHSType, RHSVecType->getElementType(), | |||
| 10931 | RHSType, DiagID)) | |||
| 10932 | return RHSType; | |||
| 10933 | } else { | |||
| 10934 | if (LHS.get()->isLValue() || | |||
| 10935 | !tryGCCVectorConvertAndSplat(*this, &LHS, &RHS)) | |||
| 10936 | return RHSType; | |||
| 10937 | } | |||
| 10938 | } | |||
| 10939 | ||||
| 10940 | // FIXME: The code below also handles conversion between vectors and | |||
| 10941 | // non-scalars, we should break this down into fine grained specific checks | |||
| 10942 | // and emit proper diagnostics. | |||
| 10943 | QualType VecType = LHSVecType ? LHSType : RHSType; | |||
| 10944 | const VectorType *VT = LHSVecType ? LHSVecType : RHSVecType; | |||
| 10945 | QualType OtherType = LHSVecType ? RHSType : LHSType; | |||
| 10946 | ExprResult *OtherExpr = LHSVecType ? &RHS : &LHS; | |||
| 10947 | if (isLaxVectorConversion(OtherType, VecType)) { | |||
| 10948 | if (Context.getTargetInfo().getTriple().isPPC() && | |||
| 10949 | anyAltivecTypes(RHSType, LHSType) && | |||
| 10950 | !Context.areCompatibleVectorTypes(RHSType, LHSType)) | |||
| 10951 | Diag(Loc, diag::warn_deprecated_lax_vec_conv_all) << RHSType << LHSType; | |||
| 10952 | // If we're allowing lax vector conversions, only the total (data) size | |||
| 10953 | // needs to be the same. For non compound assignment, if one of the types is | |||
| 10954 | // scalar, the result is always the vector type. | |||
| 10955 | if (!IsCompAssign) { | |||
| 10956 | *OtherExpr = ImpCastExprToType(OtherExpr->get(), VecType, CK_BitCast); | |||
| 10957 | return VecType; | |||
| 10958 | // In a compound assignment, lhs += rhs, 'lhs' is a lvalue src, forbidding | |||
| 10959 | // any implicit cast. Here, the 'rhs' should be implicit casted to 'lhs' | |||
| 10960 | // type. Note that this is already done by non-compound assignments in | |||
| 10961 | // CheckAssignmentConstraints. If it's a scalar type, only bitcast for | |||
| 10962 | // <1 x T> -> T. The result is also a vector type. | |||
| 10963 | } else if (OtherType->isExtVectorType() || OtherType->isVectorType() || | |||
| 10964 | (OtherType->isScalarType() && VT->getNumElements() == 1)) { | |||
| 10965 | ExprResult *RHSExpr = &RHS; | |||
| 10966 | *RHSExpr = ImpCastExprToType(RHSExpr->get(), LHSType, CK_BitCast); | |||
| 10967 | return VecType; | |||
| 10968 | } | |||
| 10969 | } | |||
| 10970 | ||||
| 10971 | // Okay, the expression is invalid. | |||
| 10972 | ||||
| 10973 | // If there's a non-vector, non-real operand, diagnose that. | |||
| 10974 | if ((!RHSVecType && !RHSType->isRealType()) || | |||
| 10975 | (!LHSVecType && !LHSType->isRealType())) { | |||
| 10976 | Diag(Loc, diag::err_typecheck_vector_not_convertable_non_scalar) | |||
| 10977 | << LHSType << RHSType | |||
| 10978 | << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); | |||
| 10979 | return QualType(); | |||
| 10980 | } | |||
| 10981 | ||||
| 10982 | // OpenCL V1.1 6.2.6.p1: | |||
| 10983 | // If the operands are of more than one vector type, then an error shall | |||
| 10984 | // occur. Implicit conversions between vector types are not permitted, per | |||
| 10985 | // section 6.2.1. | |||
| 10986 | if (getLangOpts().OpenCL && | |||
| 10987 | RHSVecType && isa<ExtVectorType>(RHSVecType) && | |||
| 10988 | LHSVecType && isa<ExtVectorType>(LHSVecType)) { | |||
| 10989 | Diag(Loc, diag::err_opencl_implicit_vector_conversion) << LHSType | |||
| 10990 | << RHSType; | |||
| 10991 | return QualType(); | |||
| 10992 | } | |||
| 10993 | ||||
| 10994 | ||||
| 10995 | // If there is a vector type that is not a ExtVector and a scalar, we reach | |||
| 10996 | // this point if scalar could not be converted to the vector's element type | |||
| 10997 | // without truncation. | |||
| 10998 | if ((RHSVecType && !isa<ExtVectorType>(RHSVecType)) || | |||
| 10999 | (LHSVecType && !isa<ExtVectorType>(LHSVecType))) { | |||
| 11000 | QualType Scalar = LHSVecType ? RHSType : LHSType; | |||
| 11001 | QualType Vector = LHSVecType ? LHSType : RHSType; | |||
| 11002 | unsigned ScalarOrVector = LHSVecType && RHSVecType ? 1 : 0; | |||
| 11003 | Diag(Loc, | |||
| 11004 | diag::err_typecheck_vector_not_convertable_implict_truncation) | |||
| 11005 | << ScalarOrVector << Scalar << Vector; | |||
| 11006 | ||||
| 11007 | return QualType(); | |||
| 11008 | } | |||
| 11009 | ||||
| 11010 | // Otherwise, use the generic diagnostic. | |||
| 11011 | Diag(Loc, DiagID) | |||
| 11012 | << LHSType << RHSType | |||
| 11013 | << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); | |||
| 11014 | return QualType(); | |||
| 11015 | } | |||
| 11016 | ||||
| 11017 | QualType Sema::CheckSizelessVectorOperands(ExprResult &LHS, ExprResult &RHS, | |||
| 11018 | SourceLocation Loc, | |||
| 11019 | bool IsCompAssign, | |||
| 11020 | ArithConvKind OperationKind) { | |||
| 11021 | if (!IsCompAssign) { | |||
| 11022 | LHS = DefaultFunctionArrayLvalueConversion(LHS.get()); | |||
| 11023 | if (LHS.isInvalid()) | |||
| 11024 | return QualType(); | |||
| 11025 | } | |||
| 11026 | RHS = DefaultFunctionArrayLvalueConversion(RHS.get()); | |||
| 11027 | if (RHS.isInvalid()) | |||
| 11028 | return QualType(); | |||
| 11029 | ||||
| 11030 | QualType LHSType = LHS.get()->getType().getUnqualifiedType(); | |||
| 11031 | QualType RHSType = RHS.get()->getType().getUnqualifiedType(); | |||
| 11032 | ||||
| 11033 | const BuiltinType *LHSBuiltinTy = LHSType->getAs<BuiltinType>(); | |||
| 11034 | const BuiltinType *RHSBuiltinTy = RHSType->getAs<BuiltinType>(); | |||
| 11035 | ||||
| 11036 | unsigned DiagID = diag::err_typecheck_invalid_operands; | |||
| 11037 | if ((OperationKind == ACK_Arithmetic) && | |||
| 11038 | ((LHSBuiltinTy && LHSBuiltinTy->isSVEBool()) || | |||
| 11039 | (RHSBuiltinTy && RHSBuiltinTy->isSVEBool()))) { | |||
| 11040 | Diag(Loc, DiagID) << LHSType << RHSType << LHS.get()->getSourceRange() | |||
| 11041 | << RHS.get()->getSourceRange(); | |||
| 11042 | return QualType(); | |||
| 11043 | } | |||
| 11044 | ||||
| 11045 | if (Context.hasSameType(LHSType, RHSType)) | |||
| 11046 | return LHSType; | |||
| 11047 | ||||
| 11048 | if (LHSType->isVLSTBuiltinType() && !RHSType->isVLSTBuiltinType()) { | |||
| 11049 | if (!tryGCCVectorConvertAndSplat(*this, &RHS, &LHS)) | |||
| 11050 | return LHSType; | |||
| 11051 | } | |||
| 11052 | if (RHSType->isVLSTBuiltinType() && !LHSType->isVLSTBuiltinType()) { | |||
| 11053 | if (LHS.get()->isLValue() || | |||
| 11054 | !tryGCCVectorConvertAndSplat(*this, &LHS, &RHS)) | |||
| 11055 | return RHSType; | |||
| 11056 | } | |||
| 11057 | ||||
| 11058 | if ((!LHSType->isVLSTBuiltinType() && !LHSType->isRealType()) || | |||
| 11059 | (!RHSType->isVLSTBuiltinType() && !RHSType->isRealType())) { | |||
| 11060 | Diag(Loc, diag::err_typecheck_vector_not_convertable_non_scalar) | |||
| 11061 | << LHSType << RHSType << LHS.get()->getSourceRange() | |||
| 11062 | << RHS.get()->getSourceRange(); | |||
| 11063 | return QualType(); | |||
| 11064 | } | |||
| 11065 | ||||
| 11066 | if (LHSType->isVLSTBuiltinType() && RHSType->isVLSTBuiltinType() && | |||
| 11067 | Context.getBuiltinVectorTypeInfo(LHSBuiltinTy).EC != | |||
| 11068 | Context.getBuiltinVectorTypeInfo(RHSBuiltinTy).EC) { | |||
| 11069 | Diag(Loc, diag::err_typecheck_vector_lengths_not_equal) | |||
| 11070 | << LHSType << RHSType << LHS.get()->getSourceRange() | |||
| 11071 | << RHS.get()->getSourceRange(); | |||
| 11072 | return QualType(); | |||
| 11073 | } | |||
| 11074 | ||||
| 11075 | if (LHSType->isVLSTBuiltinType() || RHSType->isVLSTBuiltinType()) { | |||
| 11076 | QualType Scalar = LHSType->isVLSTBuiltinType() ? RHSType : LHSType; | |||
| 11077 | QualType Vector = LHSType->isVLSTBuiltinType() ? LHSType : RHSType; | |||
| 11078 | bool ScalarOrVector = | |||
| 11079 | LHSType->isVLSTBuiltinType() && RHSType->isVLSTBuiltinType(); | |||
| 11080 | ||||
| 11081 | Diag(Loc, diag::err_typecheck_vector_not_convertable_implict_truncation) | |||
| 11082 | << ScalarOrVector << Scalar << Vector; | |||
| 11083 | ||||
| 11084 | return QualType(); | |||
| 11085 | } | |||
| 11086 | ||||
| 11087 | Diag(Loc, DiagID) << LHSType << RHSType << LHS.get()->getSourceRange() | |||
| 11088 | << RHS.get()->getSourceRange(); | |||
| 11089 | return QualType(); | |||
| 11090 | } | |||
| 11091 | ||||
| 11092 | // checkArithmeticNull - Detect when a NULL constant is used improperly in an | |||
| 11093 | // expression. These are mainly cases where the null pointer is used as an | |||
| 11094 | // integer instead of a pointer. | |||
| 11095 | static void checkArithmeticNull(Sema &S, ExprResult &LHS, ExprResult &RHS, | |||
| 11096 | SourceLocation Loc, bool IsCompare) { | |||
| 11097 | // The canonical way to check for a GNU null is with isNullPointerConstant, | |||
| 11098 | // but we use a bit of a hack here for speed; this is a relatively | |||
| 11099 | // hot path, and isNullPointerConstant is slow. | |||
| 11100 | bool LHSNull = isa<GNUNullExpr>(LHS.get()->IgnoreParenImpCasts()); | |||
| 11101 | bool RHSNull = isa<GNUNullExpr>(RHS.get()->IgnoreParenImpCasts()); | |||
| 11102 | ||||
| 11103 | QualType NonNullType = LHSNull ? RHS.get()->getType() : LHS.get()->getType(); | |||
| 11104 | ||||
| 11105 | // Avoid analyzing cases where the result will either be invalid (and | |||
| 11106 | // diagnosed as such) or entirely valid and not something to warn about. | |||
| 11107 | if ((!LHSNull && !RHSNull) || NonNullType->isBlockPointerType() || | |||
| 11108 | NonNullType->isMemberPointerType() || NonNullType->isFunctionType()) | |||
| 11109 | return; | |||
| 11110 | ||||
| 11111 | // Comparison operations would not make sense with a null pointer no matter | |||
| 11112 | // what the other expression is. | |||
| 11113 | if (!IsCompare) { | |||
| 11114 | S.Diag(Loc, diag::warn_null_in_arithmetic_operation) | |||
| 11115 | << (LHSNull ? LHS.get()->getSourceRange() : SourceRange()) | |||
| 11116 | << (RHSNull ? RHS.get()->getSourceRange() : SourceRange()); | |||
| 11117 | return; | |||
| 11118 | } | |||
| 11119 | ||||
| 11120 | // The rest of the operations only make sense with a null pointer | |||
| 11121 | // if the other expression is a pointer. | |||
| 11122 | if (LHSNull == RHSNull || NonNullType->isAnyPointerType() || | |||
| 11123 | NonNullType->canDecayToPointerType()) | |||
| 11124 | return; | |||
| 11125 | ||||
| 11126 | S.Diag(Loc, diag::warn_null_in_comparison_operation) | |||
| 11127 | << LHSNull /* LHS is NULL */ << NonNullType | |||
| 11128 | << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); | |||
| 11129 | } | |||
| 11130 | ||||
| 11131 | static void DiagnoseDivisionSizeofPointerOrArray(Sema &S, Expr *LHS, Expr *RHS, | |||
| 11132 | SourceLocation Loc) { | |||
| 11133 | const auto *LUE = dyn_cast<UnaryExprOrTypeTraitExpr>(LHS); | |||
| 11134 | const auto *RUE = dyn_cast<UnaryExprOrTypeTraitExpr>(RHS); | |||
| 11135 | if (!LUE || !RUE) | |||
| 11136 | return; | |||
| 11137 | if (LUE->getKind() != UETT_SizeOf || LUE->isArgumentType() || | |||
| 11138 | RUE->getKind() != UETT_SizeOf) | |||
| 11139 | return; | |||
| 11140 | ||||
| 11141 | const Expr *LHSArg = LUE->getArgumentExpr()->IgnoreParens(); | |||
| 11142 | QualType LHSTy = LHSArg->getType(); | |||
| 11143 | QualType RHSTy; | |||
| 11144 | ||||
| 11145 | if (RUE->isArgumentType()) | |||
| 11146 | RHSTy = RUE->getArgumentType().getNonReferenceType(); | |||
| 11147 | else | |||
| 11148 | RHSTy = RUE->getArgumentExpr()->IgnoreParens()->getType(); | |||
| 11149 | ||||
| 11150 | if (LHSTy->isPointerType() && !RHSTy->isPointerType()) { | |||
| 11151 | if (!S.Context.hasSameUnqualifiedType(LHSTy->getPointeeType(), RHSTy)) | |||
| 11152 | return; | |||
| 11153 | ||||
| 11154 | S.Diag(Loc, diag::warn_division_sizeof_ptr) << LHS << LHS->getSourceRange(); | |||
| 11155 | if (const auto *DRE = dyn_cast<DeclRefExpr>(LHSArg)) { | |||
| 11156 | if (const ValueDecl *LHSArgDecl = DRE->getDecl()) | |||
| 11157 | S.Diag(LHSArgDecl->getLocation(), diag::note_pointer_declared_here) | |||
| 11158 | << LHSArgDecl; | |||
| 11159 | } | |||
| 11160 | } else if (const auto *ArrayTy = S.Context.getAsArrayType(LHSTy)) { | |||
| 11161 | QualType ArrayElemTy = ArrayTy->getElementType(); | |||
| 11162 | if (ArrayElemTy != S.Context.getBaseElementType(ArrayTy) || | |||
| 11163 | ArrayElemTy->isDependentType() || RHSTy->isDependentType() || | |||
| 11164 | RHSTy->isReferenceType() || ArrayElemTy->isCharType() || | |||
| 11165 | S.Context.getTypeSize(ArrayElemTy) == S.Context.getTypeSize(RHSTy)) | |||
| 11166 | return; | |||
| 11167 | S.Diag(Loc, diag::warn_division_sizeof_array) | |||
| 11168 | << LHSArg->getSourceRange() << ArrayElemTy << RHSTy; | |||
| 11169 | if (const auto *DRE = dyn_cast<DeclRefExpr>(LHSArg)) { | |||
| 11170 | if (const ValueDecl *LHSArgDecl = DRE->getDecl()) | |||
| 11171 | S.Diag(LHSArgDecl->getLocation(), diag::note_array_declared_here) | |||
| 11172 | << LHSArgDecl; | |||
| 11173 | } | |||
| 11174 | ||||
| 11175 | S.Diag(Loc, diag::note_precedence_silence) << RHS; | |||
| 11176 | } | |||
| 11177 | } | |||
| 11178 | ||||
| 11179 | static void DiagnoseBadDivideOrRemainderValues(Sema& S, ExprResult &LHS, | |||
| 11180 | ExprResult &RHS, | |||
| 11181 | SourceLocation Loc, bool IsDiv) { | |||
| 11182 | // Check for division/remainder by zero. | |||
| 11183 | Expr::EvalResult RHSValue; | |||
| 11184 | if (!RHS.get()->isValueDependent() && | |||
| 11185 | RHS.get()->EvaluateAsInt(RHSValue, S.Context) && | |||
| 11186 | RHSValue.Val.getInt() == 0) | |||
| 11187 | S.DiagRuntimeBehavior(Loc, RHS.get(), | |||
| 11188 | S.PDiag(diag::warn_remainder_division_by_zero) | |||
| 11189 | << IsDiv << RHS.get()->getSourceRange()); | |||
| 11190 | } | |||
| 11191 | ||||
| 11192 | QualType Sema::CheckMultiplyDivideOperands(ExprResult &LHS, ExprResult &RHS, | |||
| 11193 | SourceLocation Loc, | |||
| 11194 | bool IsCompAssign, bool IsDiv) { | |||
| 11195 | checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false); | |||
| 11196 | ||||
| 11197 | QualType LHSTy = LHS.get()->getType(); | |||
| 11198 | QualType RHSTy = RHS.get()->getType(); | |||
| 11199 | if (LHSTy->isVectorType() || RHSTy->isVectorType()) | |||
| 11200 | return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign, | |||
| 11201 | /*AllowBothBool*/ getLangOpts().AltiVec, | |||
| 11202 | /*AllowBoolConversions*/ false, | |||
| 11203 | /*AllowBooleanOperation*/ false, | |||
| 11204 | /*ReportInvalid*/ true); | |||
| 11205 | if (LHSTy->isVLSTBuiltinType() || RHSTy->isVLSTBuiltinType()) | |||
| 11206 | return CheckSizelessVectorOperands(LHS, RHS, Loc, IsCompAssign, | |||
| 11207 | ACK_Arithmetic); | |||
| 11208 | if (!IsDiv && | |||
| 11209 | (LHSTy->isConstantMatrixType() || RHSTy->isConstantMatrixType())) | |||
| 11210 | return CheckMatrixMultiplyOperands(LHS, RHS, Loc, IsCompAssign); | |||
| 11211 | // For division, only matrix-by-scalar is supported. Other combinations with | |||
| 11212 | // matrix types are invalid. | |||
| 11213 | if (IsDiv && LHSTy->isConstantMatrixType() && RHSTy->isArithmeticType()) | |||
| 11214 | return CheckMatrixElementwiseOperands(LHS, RHS, Loc, IsCompAssign); | |||
| 11215 | ||||
| 11216 | QualType compType = UsualArithmeticConversions( | |||
| 11217 | LHS, RHS, Loc, IsCompAssign ? ACK_CompAssign : ACK_Arithmetic); | |||
| 11218 | if (LHS.isInvalid() || RHS.isInvalid()) | |||
| 11219 | return QualType(); | |||
| 11220 | ||||
| 11221 | ||||
| 11222 | if (compType.isNull() || !compType->isArithmeticType()) | |||
| 11223 | return InvalidOperands(Loc, LHS, RHS); | |||
| 11224 | if (IsDiv) { | |||
| 11225 | DiagnoseBadDivideOrRemainderValues(*this, LHS, RHS, Loc, IsDiv); | |||
| 11226 | DiagnoseDivisionSizeofPointerOrArray(*this, LHS.get(), RHS.get(), Loc); | |||
| 11227 | } | |||
| 11228 | return compType; | |||
| 11229 | } | |||
| 11230 | ||||
| 11231 | QualType Sema::CheckRemainderOperands( | |||
| 11232 | ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) { | |||
| 11233 | checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false); | |||
| 11234 | ||||
| 11235 | if (LHS.get()->getType()->isVectorType() || | |||
| 11236 | RHS.get()->getType()->isVectorType()) { | |||
| 11237 | if (LHS.get()->getType()->hasIntegerRepresentation() && | |||
| 11238 | RHS.get()->getType()->hasIntegerRepresentation()) | |||
| 11239 | return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign, | |||
| 11240 | /*AllowBothBool*/ getLangOpts().AltiVec, | |||
| 11241 | /*AllowBoolConversions*/ false, | |||
| 11242 | /*AllowBooleanOperation*/ false, | |||
| 11243 | /*ReportInvalid*/ true); | |||
| 11244 | return InvalidOperands(Loc, LHS, RHS); | |||
| 11245 | } | |||
| 11246 | ||||
| 11247 | if (LHS.get()->getType()->isVLSTBuiltinType() || | |||
| 11248 | RHS.get()->getType()->isVLSTBuiltinType()) { | |||
| 11249 | if (LHS.get()->getType()->hasIntegerRepresentation() && | |||
| 11250 | RHS.get()->getType()->hasIntegerRepresentation()) | |||
| 11251 | return CheckSizelessVectorOperands(LHS, RHS, Loc, IsCompAssign, | |||
| 11252 | ACK_Arithmetic); | |||
| 11253 | ||||
| 11254 | return InvalidOperands(Loc, LHS, RHS); | |||
| 11255 | } | |||
| 11256 | ||||
| 11257 | QualType compType = UsualArithmeticConversions( | |||
| 11258 | LHS, RHS, Loc, IsCompAssign ? ACK_CompAssign : ACK_Arithmetic); | |||
| 11259 | if (LHS.isInvalid() || RHS.isInvalid()) | |||
| 11260 | return QualType(); | |||
| 11261 | ||||
| 11262 | if (compType.isNull() || !compType->isIntegerType()) | |||
| 11263 | return InvalidOperands(Loc, LHS, RHS); | |||
| 11264 | DiagnoseBadDivideOrRemainderValues(*this, LHS, RHS, Loc, false /* IsDiv */); | |||
| 11265 | return compType; | |||
| 11266 | } | |||
| 11267 | ||||
| 11268 | /// Diagnose invalid arithmetic on two void pointers. | |||
| 11269 | static void diagnoseArithmeticOnTwoVoidPointers(Sema &S, SourceLocation Loc, | |||
| 11270 | Expr *LHSExpr, Expr *RHSExpr) { | |||
| 11271 | S.Diag(Loc, S.getLangOpts().CPlusPlus | |||
| 11272 | ? diag::err_typecheck_pointer_arith_void_type | |||
| 11273 | : diag::ext_gnu_void_ptr) | |||
| 11274 | << 1 /* two pointers */ << LHSExpr->getSourceRange() | |||
| 11275 | << RHSExpr->getSourceRange(); | |||
| 11276 | } | |||
| 11277 | ||||
| 11278 | /// Diagnose invalid arithmetic on a void pointer. | |||
| 11279 | static void diagnoseArithmeticOnVoidPointer(Sema &S, SourceLocation Loc, | |||
| 11280 | Expr *Pointer) { | |||
| 11281 | S.Diag(Loc, S.getLangOpts().CPlusPlus | |||
| 11282 | ? diag::err_typecheck_pointer_arith_void_type | |||
| 11283 | : diag::ext_gnu_void_ptr) | |||
| 11284 | << 0 /* one pointer */ << Pointer->getSourceRange(); | |||
| 11285 | } | |||
| 11286 | ||||
| 11287 | /// Diagnose invalid arithmetic on a null pointer. | |||
| 11288 | /// | |||
| 11289 | /// If \p IsGNUIdiom is true, the operation is using the 'p = (i8*)nullptr + n' | |||
| 11290 | /// idiom, which we recognize as a GNU extension. | |||
| 11291 | /// | |||
| 11292 | static void diagnoseArithmeticOnNullPointer(Sema &S, SourceLocation Loc, | |||
| 11293 | Expr *Pointer, bool IsGNUIdiom) { | |||
| 11294 | if (IsGNUIdiom) | |||
| 11295 | S.Diag(Loc, diag::warn_gnu_null_ptr_arith) | |||
| 11296 | << Pointer->getSourceRange(); | |||
| 11297 | else | |||
| 11298 | S.Diag(Loc, diag::warn_pointer_arith_null_ptr) | |||
| 11299 | << S.getLangOpts().CPlusPlus << Pointer->getSourceRange(); | |||
| 11300 | } | |||
| 11301 | ||||
| 11302 | /// Diagnose invalid subraction on a null pointer. | |||
| 11303 | /// | |||
| 11304 | static void diagnoseSubtractionOnNullPointer(Sema &S, SourceLocation Loc, | |||
| 11305 | Expr *Pointer, bool BothNull) { | |||
| 11306 | // Null - null is valid in C++ [expr.add]p7 | |||
| 11307 | if (BothNull && S.getLangOpts().CPlusPlus) | |||
| 11308 | return; | |||
| 11309 | ||||
| 11310 | // Is this s a macro from a system header? | |||
| 11311 | if (S.Diags.getSuppressSystemWarnings() && S.SourceMgr.isInSystemMacro(Loc)) | |||
| 11312 | return; | |||
| 11313 | ||||
| 11314 | S.DiagRuntimeBehavior(Loc, Pointer, | |||
| 11315 | S.PDiag(diag::warn_pointer_sub_null_ptr) | |||
| 11316 | << S.getLangOpts().CPlusPlus | |||
| 11317 | << Pointer->getSourceRange()); | |||
| 11318 | } | |||
| 11319 | ||||
| 11320 | /// Diagnose invalid arithmetic on two function pointers. | |||
| 11321 | static void diagnoseArithmeticOnTwoFunctionPointers(Sema &S, SourceLocation Loc, | |||
| 11322 | Expr *LHS, Expr *RHS) { | |||
| 11323 | assert(LHS->getType()->isAnyPointerType())(static_cast <bool> (LHS->getType()->isAnyPointerType ()) ? void (0) : __assert_fail ("LHS->getType()->isAnyPointerType()" , "clang/lib/Sema/SemaExpr.cpp", 11323, __extension__ __PRETTY_FUNCTION__ )); | |||
| 11324 | assert(RHS->getType()->isAnyPointerType())(static_cast <bool> (RHS->getType()->isAnyPointerType ()) ? void (0) : __assert_fail ("RHS->getType()->isAnyPointerType()" , "clang/lib/Sema/SemaExpr.cpp", 11324, __extension__ __PRETTY_FUNCTION__ )); | |||
| 11325 | S.Diag(Loc, S.getLangOpts().CPlusPlus | |||
| 11326 | ? diag::err_typecheck_pointer_arith_function_type | |||
| 11327 | : diag::ext_gnu_ptr_func_arith) | |||
| 11328 | << 1 /* two pointers */ << LHS->getType()->getPointeeType() | |||
| 11329 | // We only show the second type if it differs from the first. | |||
| 11330 | << (unsigned)!S.Context.hasSameUnqualifiedType(LHS->getType(), | |||
| 11331 | RHS->getType()) | |||
| 11332 | << RHS->getType()->getPointeeType() | |||
| 11333 | << LHS->getSourceRange() << RHS->getSourceRange(); | |||
| 11334 | } | |||
| 11335 | ||||
| 11336 | /// Diagnose invalid arithmetic on a function pointer. | |||
| 11337 | static void diagnoseArithmeticOnFunctionPointer(Sema &S, SourceLocation Loc, | |||
| 11338 | Expr *Pointer) { | |||
| 11339 | assert(Pointer->getType()->isAnyPointerType())(static_cast <bool> (Pointer->getType()->isAnyPointerType ()) ? void (0) : __assert_fail ("Pointer->getType()->isAnyPointerType()" , "clang/lib/Sema/SemaExpr.cpp", 11339, __extension__ __PRETTY_FUNCTION__ )); | |||
| 11340 | S.Diag(Loc, S.getLangOpts().CPlusPlus | |||
| 11341 | ? diag::err_typecheck_pointer_arith_function_type | |||
| 11342 | : diag::ext_gnu_ptr_func_arith) | |||
| 11343 | << 0 /* one pointer */ << Pointer->getType()->getPointeeType() | |||
| 11344 | << 0 /* one pointer, so only one type */ | |||
| 11345 | << Pointer->getSourceRange(); | |||
| 11346 | } | |||
| 11347 | ||||
| 11348 | /// Emit error if Operand is incomplete pointer type | |||
| 11349 | /// | |||
| 11350 | /// \returns True if pointer has incomplete type | |||
| 11351 | static bool checkArithmeticIncompletePointerType(Sema &S, SourceLocation Loc, | |||
| 11352 | Expr *Operand) { | |||
| 11353 | QualType ResType = Operand->getType(); | |||
| 11354 | if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>()) | |||
| 11355 | ResType = ResAtomicType->getValueType(); | |||
| 11356 | ||||
| 11357 | assert(ResType->isAnyPointerType() && !ResType->isDependentType())(static_cast <bool> (ResType->isAnyPointerType() && !ResType->isDependentType()) ? void (0) : __assert_fail ( "ResType->isAnyPointerType() && !ResType->isDependentType()" , "clang/lib/Sema/SemaExpr.cpp", 11357, __extension__ __PRETTY_FUNCTION__ )); | |||
| 11358 | QualType PointeeTy = ResType->getPointeeType(); | |||
| 11359 | return S.RequireCompleteSizedType( | |||
| 11360 | Loc, PointeeTy, | |||
| 11361 | diag::err_typecheck_arithmetic_incomplete_or_sizeless_type, | |||
| 11362 | Operand->getSourceRange()); | |||
| 11363 | } | |||
| 11364 | ||||
| 11365 | /// Check the validity of an arithmetic pointer operand. | |||
| 11366 | /// | |||
| 11367 | /// If the operand has pointer type, this code will check for pointer types | |||
| 11368 | /// which are invalid in arithmetic operations. These will be diagnosed | |||
| 11369 | /// appropriately, including whether or not the use is supported as an | |||
| 11370 | /// extension. | |||
| 11371 | /// | |||
| 11372 | /// \returns True when the operand is valid to use (even if as an extension). | |||
| 11373 | static bool checkArithmeticOpPointerOperand(Sema &S, SourceLocation Loc, | |||
| 11374 | Expr *Operand) { | |||
| 11375 | QualType ResType = Operand->getType(); | |||
| 11376 | if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>()) | |||
| 11377 | ResType = ResAtomicType->getValueType(); | |||
| 11378 | ||||
| 11379 | if (!ResType->isAnyPointerType()) return true; | |||
| 11380 | ||||
| 11381 | QualType PointeeTy = ResType->getPointeeType(); | |||
| 11382 | if (PointeeTy->isVoidType()) { | |||
| 11383 | diagnoseArithmeticOnVoidPointer(S, Loc, Operand); | |||
| 11384 | return !S.getLangOpts().CPlusPlus; | |||
| 11385 | } | |||
| 11386 | if (PointeeTy->isFunctionType()) { | |||
| 11387 | diagnoseArithmeticOnFunctionPointer(S, Loc, Operand); | |||
| 11388 | return !S.getLangOpts().CPlusPlus; | |||
| 11389 | } | |||
| 11390 | ||||
| 11391 | if (checkArithmeticIncompletePointerType(S, Loc, Operand)) return false; | |||
| 11392 | ||||
| 11393 | return true; | |||
| 11394 | } | |||
| 11395 | ||||
| 11396 | /// Check the validity of a binary arithmetic operation w.r.t. pointer | |||
| 11397 | /// operands. | |||
| 11398 | /// | |||
| 11399 | /// This routine will diagnose any invalid arithmetic on pointer operands much | |||
| 11400 | /// like \see checkArithmeticOpPointerOperand. However, it has special logic | |||
| 11401 | /// for emitting a single diagnostic even for operations where both LHS and RHS | |||
| 11402 | /// are (potentially problematic) pointers. | |||
| 11403 | /// | |||
| 11404 | /// \returns True when the operand is valid to use (even if as an extension). | |||
| 11405 | static bool checkArithmeticBinOpPointerOperands(Sema &S, SourceLocation Loc, | |||
| 11406 | Expr *LHSExpr, Expr *RHSExpr) { | |||
| 11407 | bool isLHSPointer = LHSExpr->getType()->isAnyPointerType(); | |||
| 11408 | bool isRHSPointer = RHSExpr->getType()->isAnyPointerType(); | |||
| 11409 | if (!isLHSPointer && !isRHSPointer) return true; | |||
| 11410 | ||||
| 11411 | QualType LHSPointeeTy, RHSPointeeTy; | |||
| 11412 | if (isLHSPointer) LHSPointeeTy = LHSExpr->getType()->getPointeeType(); | |||
| 11413 | if (isRHSPointer) RHSPointeeTy = RHSExpr->getType()->getPointeeType(); | |||
| 11414 | ||||
| 11415 | // if both are pointers check if operation is valid wrt address spaces | |||
| 11416 | if (isLHSPointer && isRHSPointer) { | |||
| 11417 | if (!LHSPointeeTy.isAddressSpaceOverlapping(RHSPointeeTy)) { | |||
| 11418 | S.Diag(Loc, | |||
| 11419 | diag::err_typecheck_op_on_nonoverlapping_address_space_pointers) | |||
| 11420 | << LHSExpr->getType() << RHSExpr->getType() << 1 /*arithmetic op*/ | |||
| 11421 | << LHSExpr->getSourceRange() << RHSExpr->getSourceRange(); | |||
| 11422 | return false; | |||
| 11423 | } | |||
| 11424 | } | |||
| 11425 | ||||
| 11426 | // Check for arithmetic on pointers to incomplete types. | |||
| 11427 | bool isLHSVoidPtr = isLHSPointer && LHSPointeeTy->isVoidType(); | |||
| 11428 | bool isRHSVoidPtr = isRHSPointer && RHSPointeeTy->isVoidType(); | |||
| 11429 | if (isLHSVoidPtr || isRHSVoidPtr) { | |||
| 11430 | if (!isRHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, LHSExpr); | |||
| 11431 | else if (!isLHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, RHSExpr); | |||
| 11432 | else diagnoseArithmeticOnTwoVoidPointers(S, Loc, LHSExpr, RHSExpr); | |||
| 11433 | ||||
| 11434 | return !S.getLangOpts().CPlusPlus; | |||
| 11435 | } | |||
| 11436 | ||||
| 11437 | bool isLHSFuncPtr = isLHSPointer && LHSPointeeTy->isFunctionType(); | |||
| 11438 | bool isRHSFuncPtr = isRHSPointer && RHSPointeeTy->isFunctionType(); | |||
| 11439 | if (isLHSFuncPtr || isRHSFuncPtr) { | |||
| 11440 | if (!isRHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, LHSExpr); | |||
| 11441 | else if (!isLHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, | |||
| 11442 | RHSExpr); | |||
| 11443 | else diagnoseArithmeticOnTwoFunctionPointers(S, Loc, LHSExpr, RHSExpr); | |||
| 11444 | ||||
| 11445 | return !S.getLangOpts().CPlusPlus; | |||
| 11446 | } | |||
| 11447 | ||||
| 11448 | if (isLHSPointer && checkArithmeticIncompletePointerType(S, Loc, LHSExpr)) | |||
| 11449 | return false; | |||
| 11450 | if (isRHSPointer && checkArithmeticIncompletePointerType(S, Loc, RHSExpr)) | |||
| 11451 | return false; | |||
| 11452 | ||||
| 11453 | return true; | |||
| 11454 | } | |||
| 11455 | ||||
| 11456 | /// diagnoseStringPlusInt - Emit a warning when adding an integer to a string | |||
| 11457 | /// literal. | |||
| 11458 | static void diagnoseStringPlusInt(Sema &Self, SourceLocation OpLoc, | |||
| 11459 | Expr *LHSExpr, Expr *RHSExpr) { | |||
| 11460 | StringLiteral* StrExpr = dyn_cast<StringLiteral>(LHSExpr->IgnoreImpCasts()); | |||
| 11461 | Expr* IndexExpr = RHSExpr; | |||
| 11462 | if (!StrExpr) { | |||
| 11463 | StrExpr = dyn_cast<StringLiteral>(RHSExpr->IgnoreImpCasts()); | |||
| 11464 | IndexExpr = LHSExpr; | |||
| 11465 | } | |||
| 11466 | ||||
| 11467 | bool IsStringPlusInt = StrExpr && | |||
| 11468 | IndexExpr->getType()->isIntegralOrUnscopedEnumerationType(); | |||
| 11469 | if (!IsStringPlusInt || IndexExpr->isValueDependent()) | |||
| 11470 | return; | |||
| 11471 | ||||
| 11472 | SourceRange DiagRange(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc()); | |||
| 11473 | Self.Diag(OpLoc, diag::warn_string_plus_int) | |||
| 11474 | << DiagRange << IndexExpr->IgnoreImpCasts()->getType(); | |||
| 11475 | ||||
| 11476 | // Only print a fixit for "str" + int, not for int + "str". | |||
| 11477 | if (IndexExpr == RHSExpr) { | |||
| 11478 | SourceLocation EndLoc = Self.getLocForEndOfToken(RHSExpr->getEndLoc()); | |||
| 11479 | Self.Diag(OpLoc, diag::note_string_plus_scalar_silence) | |||
| 11480 | << FixItHint::CreateInsertion(LHSExpr->getBeginLoc(), "&") | |||
| 11481 | << FixItHint::CreateReplacement(SourceRange(OpLoc), "[") | |||
| 11482 | << FixItHint::CreateInsertion(EndLoc, "]"); | |||
| 11483 | } else | |||
| 11484 | Self.Diag(OpLoc, diag::note_string_plus_scalar_silence); | |||
| 11485 | } | |||
| 11486 | ||||
| 11487 | /// Emit a warning when adding a char literal to a string. | |||
| 11488 | static void diagnoseStringPlusChar(Sema &Self, SourceLocation OpLoc, | |||
| 11489 | Expr *LHSExpr, Expr *RHSExpr) { | |||
| 11490 | const Expr *StringRefExpr = LHSExpr; | |||
| 11491 | const CharacterLiteral *CharExpr = | |||
| 11492 | dyn_cast<CharacterLiteral>(RHSExpr->IgnoreImpCasts()); | |||
| 11493 | ||||
| 11494 | if (!CharExpr) { | |||
| 11495 | CharExpr = dyn_cast<CharacterLiteral>(LHSExpr->IgnoreImpCasts()); | |||
| 11496 | StringRefExpr = RHSExpr; | |||
| 11497 | } | |||
| 11498 | ||||
| 11499 | if (!CharExpr || !StringRefExpr) | |||
| 11500 | return; | |||
| 11501 | ||||
| 11502 | const QualType StringType = StringRefExpr->getType(); | |||
| 11503 | ||||
| 11504 | // Return if not a PointerType. | |||
| 11505 | if (!StringType->isAnyPointerType()) | |||
| 11506 | return; | |||
| 11507 | ||||
| 11508 | // Return if not a CharacterType. | |||
| 11509 | if (!StringType->getPointeeType()->isAnyCharacterType()) | |||
| 11510 | return; | |||
| 11511 | ||||
| 11512 | ASTContext &Ctx = Self.getASTContext(); | |||
| 11513 | SourceRange DiagRange(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc()); | |||
| 11514 | ||||
| 11515 | const QualType CharType = CharExpr->getType(); | |||
| 11516 | if (!CharType->isAnyCharacterType() && | |||
| 11517 | CharType->isIntegerType() && | |||
| 11518 | llvm::isUIntN(Ctx.getCharWidth(), CharExpr->getValue())) { | |||
| 11519 | Self.Diag(OpLoc, diag::warn_string_plus_char) | |||
| 11520 | << DiagRange << Ctx.CharTy; | |||
| 11521 | } else { | |||
| 11522 | Self.Diag(OpLoc, diag::warn_string_plus_char) | |||
| 11523 | << DiagRange << CharExpr->getType(); | |||
| 11524 | } | |||
| 11525 | ||||
| 11526 | // Only print a fixit for str + char, not for char + str. | |||
| 11527 | if (isa<CharacterLiteral>(RHSExpr->IgnoreImpCasts())) { | |||
| 11528 | SourceLocation EndLoc = Self.getLocForEndOfToken(RHSExpr->getEndLoc()); | |||
| 11529 | Self.Diag(OpLoc, diag::note_string_plus_scalar_silence) | |||
| 11530 | << FixItHint::CreateInsertion(LHSExpr->getBeginLoc(), "&") | |||
| 11531 | << FixItHint::CreateReplacement(SourceRange(OpLoc), "[") | |||
| 11532 | << FixItHint::CreateInsertion(EndLoc, "]"); | |||
| 11533 | } else { | |||
| 11534 | Self.Diag(OpLoc, diag::note_string_plus_scalar_silence); | |||
| 11535 | } | |||
| 11536 | } | |||
| 11537 | ||||
| 11538 | /// Emit error when two pointers are incompatible. | |||
| 11539 | static void diagnosePointerIncompatibility(Sema &S, SourceLocation Loc, | |||
| 11540 | Expr *LHSExpr, Expr *RHSExpr) { | |||
| 11541 | assert(LHSExpr->getType()->isAnyPointerType())(static_cast <bool> (LHSExpr->getType()->isAnyPointerType ()) ? void (0) : __assert_fail ("LHSExpr->getType()->isAnyPointerType()" , "clang/lib/Sema/SemaExpr.cpp", 11541, __extension__ __PRETTY_FUNCTION__ )); | |||
| 11542 | assert(RHSExpr->getType()->isAnyPointerType())(static_cast <bool> (RHSExpr->getType()->isAnyPointerType ()) ? void (0) : __assert_fail ("RHSExpr->getType()->isAnyPointerType()" , "clang/lib/Sema/SemaExpr.cpp", 11542, __extension__ __PRETTY_FUNCTION__ )); | |||
| 11543 | S.Diag(Loc, diag::err_typecheck_sub_ptr_compatible) | |||
| 11544 | << LHSExpr->getType() << RHSExpr->getType() << LHSExpr->getSourceRange() | |||
| 11545 | << RHSExpr->getSourceRange(); | |||
| 11546 | } | |||
| 11547 | ||||
| 11548 | // C99 6.5.6 | |||
| 11549 | QualType Sema::CheckAdditionOperands(ExprResult &LHS, ExprResult &RHS, | |||
| 11550 | SourceLocation Loc, BinaryOperatorKind Opc, | |||
| 11551 | QualType* CompLHSTy) { | |||
| 11552 | checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false); | |||
| 11553 | ||||
| 11554 | if (LHS.get()->getType()->isVectorType() || | |||
| 11555 | RHS.get()->getType()->isVectorType()) { | |||
| 11556 | QualType compType = | |||
| 11557 | CheckVectorOperands(LHS, RHS, Loc, CompLHSTy, | |||
| 11558 | /*AllowBothBool*/ getLangOpts().AltiVec, | |||
| 11559 | /*AllowBoolConversions*/ getLangOpts().ZVector, | |||
| 11560 | /*AllowBooleanOperation*/ false, | |||
| 11561 | /*ReportInvalid*/ true); | |||
| 11562 | if (CompLHSTy) *CompLHSTy = compType; | |||
| 11563 | return compType; | |||
| 11564 | } | |||
| 11565 | ||||
| 11566 | if (LHS.get()->getType()->isVLSTBuiltinType() || | |||
| 11567 | RHS.get()->getType()->isVLSTBuiltinType()) { | |||
| 11568 | QualType compType = | |||
| 11569 | CheckSizelessVectorOperands(LHS, RHS, Loc, CompLHSTy, ACK_Arithmetic); | |||
| 11570 | if (CompLHSTy) | |||
| 11571 | *CompLHSTy = compType; | |||
| 11572 | return compType; | |||
| 11573 | } | |||
| 11574 | ||||
| 11575 | if (LHS.get()->getType()->isConstantMatrixType() || | |||
| 11576 | RHS.get()->getType()->isConstantMatrixType()) { | |||
| 11577 | QualType compType = | |||
| 11578 | CheckMatrixElementwiseOperands(LHS, RHS, Loc, CompLHSTy); | |||
| 11579 | if (CompLHSTy) | |||
| 11580 | *CompLHSTy = compType; | |||
| 11581 | return compType; | |||
| 11582 | } | |||
| 11583 | ||||
| 11584 | QualType compType = UsualArithmeticConversions( | |||
| 11585 | LHS, RHS, Loc, CompLHSTy ? ACK_CompAssign : ACK_Arithmetic); | |||
| 11586 | if (LHS.isInvalid() || RHS.isInvalid()) | |||
| 11587 | return QualType(); | |||
| 11588 | ||||
| 11589 | // Diagnose "string literal" '+' int and string '+' "char literal". | |||
| 11590 | if (Opc == BO_Add) { | |||
| 11591 | diagnoseStringPlusInt(*this, Loc, LHS.get(), RHS.get()); | |||
| 11592 | diagnoseStringPlusChar(*this, Loc, LHS.get(), RHS.get()); | |||
| 11593 | } | |||
| 11594 | ||||
| 11595 | // handle the common case first (both operands are arithmetic). | |||
| 11596 | if (!compType.isNull() && compType->isArithmeticType()) { | |||
| 11597 | if (CompLHSTy) *CompLHSTy = compType; | |||
| 11598 | return compType; | |||
| 11599 | } | |||
| 11600 | ||||
| 11601 | // Type-checking. Ultimately the pointer's going to be in PExp; | |||
| 11602 | // note that we bias towards the LHS being the pointer. | |||
| 11603 | Expr *PExp = LHS.get(), *IExp = RHS.get(); | |||
| 11604 | ||||
| 11605 | bool isObjCPointer; | |||
| 11606 | if (PExp->getType()->isPointerType()) { | |||
| 11607 | isObjCPointer = false; | |||
| 11608 | } else if (PExp->getType()->isObjCObjectPointerType()) { | |||
| 11609 | isObjCPointer = true; | |||
| 11610 | } else { | |||
| 11611 | std::swap(PExp, IExp); | |||
| 11612 | if (PExp->getType()->isPointerType()) { | |||
| 11613 | isObjCPointer = false; | |||
| 11614 | } else if (PExp->getType()->isObjCObjectPointerType()) { | |||
| 11615 | isObjCPointer = true; | |||
| 11616 | } else { | |||
| 11617 | return InvalidOperands(Loc, LHS, RHS); | |||
| 11618 | } | |||
| 11619 | } | |||
| 11620 | assert(PExp->getType()->isAnyPointerType())(static_cast <bool> (PExp->getType()->isAnyPointerType ()) ? void (0) : __assert_fail ("PExp->getType()->isAnyPointerType()" , "clang/lib/Sema/SemaExpr.cpp", 11620, __extension__ __PRETTY_FUNCTION__ )); | |||
| 11621 | ||||
| 11622 | if (!IExp->getType()->isIntegerType()) | |||
| 11623 | return InvalidOperands(Loc, LHS, RHS); | |||
| 11624 | ||||
| 11625 | // Adding to a null pointer results in undefined behavior. | |||
| 11626 | if (PExp->IgnoreParenCasts()->isNullPointerConstant( | |||
| 11627 | Context, Expr::NPC_ValueDependentIsNotNull)) { | |||
| 11628 | // In C++ adding zero to a null pointer is defined. | |||
| 11629 | Expr::EvalResult KnownVal; | |||
| 11630 | if (!getLangOpts().CPlusPlus || | |||
| 11631 | (!IExp->isValueDependent() && | |||
| 11632 | (!IExp->EvaluateAsInt(KnownVal, Context) || | |||
| 11633 | KnownVal.Val.getInt() != 0))) { | |||
| 11634 | // Check the conditions to see if this is the 'p = nullptr + n' idiom. | |||
| 11635 | bool IsGNUIdiom = BinaryOperator::isNullPointerArithmeticExtension( | |||
| 11636 | Context, BO_Add, PExp, IExp); | |||
| 11637 | diagnoseArithmeticOnNullPointer(*this, Loc, PExp, IsGNUIdiom); | |||
| 11638 | } | |||
| 11639 | } | |||
| 11640 | ||||
| 11641 | if (!checkArithmeticOpPointerOperand(*this, Loc, PExp)) | |||
| 11642 | return QualType(); | |||
| 11643 | ||||
| 11644 | if (isObjCPointer && checkArithmeticOnObjCPointer(*this, Loc, PExp)) | |||
| 11645 | return QualType(); | |||
| 11646 | ||||
| 11647 | // Check array bounds for pointer arithemtic | |||
| 11648 | CheckArrayAccess(PExp, IExp); | |||
| 11649 | ||||
| 11650 | if (CompLHSTy) { | |||
| 11651 | QualType LHSTy = Context.isPromotableBitField(LHS.get()); | |||
| 11652 | if (LHSTy.isNull()) { | |||
| 11653 | LHSTy = LHS.get()->getType(); | |||
| 11654 | if (Context.isPromotableIntegerType(LHSTy)) | |||
| 11655 | LHSTy = Context.getPromotedIntegerType(LHSTy); | |||
| 11656 | } | |||
| 11657 | *CompLHSTy = LHSTy; | |||
| 11658 | } | |||
| 11659 | ||||
| 11660 | return PExp->getType(); | |||
| 11661 | } | |||
| 11662 | ||||
| 11663 | // C99 6.5.6 | |||
| 11664 | QualType Sema::CheckSubtractionOperands(ExprResult &LHS, ExprResult &RHS, | |||
| 11665 | SourceLocation Loc, | |||
| 11666 | QualType* CompLHSTy) { | |||
| 11667 | checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false); | |||
| 11668 | ||||
| 11669 | if (LHS.get()->getType()->isVectorType() || | |||
| 11670 | RHS.get()->getType()->isVectorType()) { | |||
| 11671 | QualType compType = | |||
| 11672 | CheckVectorOperands(LHS, RHS, Loc, CompLHSTy, | |||
| 11673 | /*AllowBothBool*/ getLangOpts().AltiVec, | |||
| 11674 | /*AllowBoolConversions*/ getLangOpts().ZVector, | |||
| 11675 | /*AllowBooleanOperation*/ false, | |||
| 11676 | /*ReportInvalid*/ true); | |||
| 11677 | if (CompLHSTy) *CompLHSTy = compType; | |||
| 11678 | return compType; | |||
| 11679 | } | |||
| 11680 | ||||
| 11681 | if (LHS.get()->getType()->isVLSTBuiltinType() || | |||
| 11682 | RHS.get()->getType()->isVLSTBuiltinType()) { | |||
| 11683 | QualType compType = | |||
| 11684 | CheckSizelessVectorOperands(LHS, RHS, Loc, CompLHSTy, ACK_Arithmetic); | |||
| 11685 | if (CompLHSTy) | |||
| 11686 | *CompLHSTy = compType; | |||
| 11687 | return compType; | |||
| 11688 | } | |||
| 11689 | ||||
| 11690 | if (LHS.get()->getType()->isConstantMatrixType() || | |||
| 11691 | RHS.get()->getType()->isConstantMatrixType()) { | |||
| 11692 | QualType compType = | |||
| 11693 | CheckMatrixElementwiseOperands(LHS, RHS, Loc, CompLHSTy); | |||
| 11694 | if (CompLHSTy) | |||
| 11695 | *CompLHSTy = compType; | |||
| 11696 | return compType; | |||
| 11697 | } | |||
| 11698 | ||||
| 11699 | QualType compType = UsualArithmeticConversions( | |||
| 11700 | LHS, RHS, Loc, CompLHSTy ? ACK_CompAssign : ACK_Arithmetic); | |||
| 11701 | if (LHS.isInvalid() || RHS.isInvalid()) | |||
| 11702 | return QualType(); | |||
| 11703 | ||||
| 11704 | // Enforce type constraints: C99 6.5.6p3. | |||
| 11705 | ||||
| 11706 | // Handle the common case first (both operands are arithmetic). | |||
| 11707 | if (!compType.isNull() && compType->isArithmeticType()) { | |||
| 11708 | if (CompLHSTy) *CompLHSTy = compType; | |||
| 11709 | return compType; | |||
| 11710 | } | |||
| 11711 | ||||
| 11712 | // Either ptr - int or ptr - ptr. | |||
| 11713 | if (LHS.get()->getType()->isAnyPointerType()) { | |||
| 11714 | QualType lpointee = LHS.get()->getType()->getPointeeType(); | |||
| 11715 | ||||
| 11716 | // Diagnose bad cases where we step over interface counts. | |||
| 11717 | if (LHS.get()->getType()->isObjCObjectPointerType() && | |||
| 11718 | checkArithmeticOnObjCPointer(*this, Loc, LHS.get())) | |||
| 11719 | return QualType(); | |||
| 11720 | ||||
| 11721 | // The result type of a pointer-int computation is the pointer type. | |||
| 11722 | if (RHS.get()->getType()->isIntegerType()) { | |||
| 11723 | // Subtracting from a null pointer should produce a warning. | |||
| 11724 | // The last argument to the diagnose call says this doesn't match the | |||
| 11725 | // GNU int-to-pointer idiom. | |||
| 11726 | if (LHS.get()->IgnoreParenCasts()->isNullPointerConstant(Context, | |||
| 11727 | Expr::NPC_ValueDependentIsNotNull)) { | |||
| 11728 | // In C++ adding zero to a null pointer is defined. | |||
| 11729 | Expr::EvalResult KnownVal; | |||
| 11730 | if (!getLangOpts().CPlusPlus || | |||
| 11731 | (!RHS.get()->isValueDependent() && | |||
| 11732 | (!RHS.get()->EvaluateAsInt(KnownVal, Context) || | |||
| 11733 | KnownVal.Val.getInt() != 0))) { | |||
| 11734 | diagnoseArithmeticOnNullPointer(*this, Loc, LHS.get(), false); | |||
| 11735 | } | |||
| 11736 | } | |||
| 11737 | ||||
| 11738 | if (!checkArithmeticOpPointerOperand(*this, Loc, LHS.get())) | |||
| 11739 | return QualType(); | |||
| 11740 | ||||
| 11741 | // Check array bounds for pointer arithemtic | |||
| 11742 | CheckArrayAccess(LHS.get(), RHS.get(), /*ArraySubscriptExpr*/nullptr, | |||
| 11743 | /*AllowOnePastEnd*/true, /*IndexNegated*/true); | |||
| 11744 | ||||
| 11745 | if (CompLHSTy) *CompLHSTy = LHS.get()->getType(); | |||
| 11746 | return LHS.get()->getType(); | |||
| 11747 | } | |||
| 11748 | ||||
| 11749 | // Handle pointer-pointer subtractions. | |||
| 11750 | if (const PointerType *RHSPTy | |||
| 11751 | = RHS.get()->getType()->getAs<PointerType>()) { | |||
| 11752 | QualType rpointee = RHSPTy->getPointeeType(); | |||
| 11753 | ||||
| 11754 | if (getLangOpts().CPlusPlus) { | |||
| 11755 | // Pointee types must be the same: C++ [expr.add] | |||
| 11756 | if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) { | |||
| 11757 | diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get()); | |||
| 11758 | } | |||
| 11759 | } else { | |||
| 11760 | // Pointee types must be compatible C99 6.5.6p3 | |||
| 11761 | if (!Context.typesAreCompatible( | |||
| 11762 | Context.getCanonicalType(lpointee).getUnqualifiedType(), | |||
| 11763 | Context.getCanonicalType(rpointee).getUnqualifiedType())) { | |||
| 11764 | diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get()); | |||
| 11765 | return QualType(); | |||
| 11766 | } | |||
| 11767 | } | |||
| 11768 | ||||
| 11769 | if (!checkArithmeticBinOpPointerOperands(*this, Loc, | |||
| 11770 | LHS.get(), RHS.get())) | |||
| 11771 | return QualType(); | |||
| 11772 | ||||
| 11773 | bool LHSIsNullPtr = LHS.get()->IgnoreParenCasts()->isNullPointerConstant( | |||
| 11774 | Context, Expr::NPC_ValueDependentIsNotNull); | |||
| 11775 | bool RHSIsNullPtr = RHS.get()->IgnoreParenCasts()->isNullPointerConstant( | |||
| 11776 | Context, Expr::NPC_ValueDependentIsNotNull); | |||
| 11777 | ||||
| 11778 | // Subtracting nullptr or from nullptr is suspect | |||
| 11779 | if (LHSIsNullPtr) | |||
| 11780 | diagnoseSubtractionOnNullPointer(*this, Loc, LHS.get(), RHSIsNullPtr); | |||
| 11781 | if (RHSIsNullPtr) | |||
| 11782 | diagnoseSubtractionOnNullPointer(*this, Loc, RHS.get(), LHSIsNullPtr); | |||
| 11783 | ||||
| 11784 | // The pointee type may have zero size. As an extension, a structure or | |||
| 11785 | // union may have zero size or an array may have zero length. In this | |||
| 11786 | // case subtraction does not make sense. | |||
| 11787 | if (!rpointee->isVoidType() && !rpointee->isFunctionType()) { | |||
| 11788 | CharUnits ElementSize = Context.getTypeSizeInChars(rpointee); | |||
| 11789 | if (ElementSize.isZero()) { | |||
| 11790 | Diag(Loc,diag::warn_sub_ptr_zero_size_types) | |||
| 11791 | << rpointee.getUnqualifiedType() | |||
| 11792 | << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); | |||
| 11793 | } | |||
| 11794 | } | |||
| 11795 | ||||
| 11796 | if (CompLHSTy) *CompLHSTy = LHS.get()->getType(); | |||
| 11797 | return Context.getPointerDiffType(); | |||
| 11798 | } | |||
| 11799 | } | |||
| 11800 | ||||
| 11801 | return InvalidOperands(Loc, LHS, RHS); | |||
| 11802 | } | |||
| 11803 | ||||
| 11804 | static bool isScopedEnumerationType(QualType T) { | |||
| 11805 | if (const EnumType *ET = T->getAs<EnumType>()) | |||
| 11806 | return ET->getDecl()->isScoped(); | |||
| 11807 | return false; | |||
| 11808 | } | |||
| 11809 | ||||
| 11810 | static void DiagnoseBadShiftValues(Sema& S, ExprResult &LHS, ExprResult &RHS, | |||
| 11811 | SourceLocation Loc, BinaryOperatorKind Opc, | |||
| 11812 | QualType LHSType) { | |||
| 11813 | // OpenCL 6.3j: shift values are effectively % word size of LHS (more defined), | |||
| 11814 | // so skip remaining warnings as we don't want to modify values within Sema. | |||
| 11815 | if (S.getLangOpts().OpenCL) | |||
| 11816 | return; | |||
| 11817 | ||||
| 11818 | // Check right/shifter operand | |||
| 11819 | Expr::EvalResult RHSResult; | |||
| 11820 | if (RHS.get()->isValueDependent() || | |||
| 11821 | !RHS.get()->EvaluateAsInt(RHSResult, S.Context)) | |||
| 11822 | return; | |||
| 11823 | llvm::APSInt Right = RHSResult.Val.getInt(); | |||
| 11824 | ||||
| 11825 | if (Right.isNegative()) { | |||
| 11826 | S.DiagRuntimeBehavior(Loc, RHS.get(), | |||
| 11827 | S.PDiag(diag::warn_shift_negative) | |||
| 11828 | << RHS.get()->getSourceRange()); | |||
| 11829 | return; | |||
| 11830 | } | |||
| 11831 | ||||
| 11832 | QualType LHSExprType = LHS.get()->getType(); | |||
| 11833 | uint64_t LeftSize = S.Context.getTypeSize(LHSExprType); | |||
| 11834 | if (LHSExprType->isBitIntType()) | |||
| 11835 | LeftSize = S.Context.getIntWidth(LHSExprType); | |||
| 11836 | else if (LHSExprType->isFixedPointType()) { | |||
| 11837 | auto FXSema = S.Context.getFixedPointSemantics(LHSExprType); | |||
| 11838 | LeftSize = FXSema.getWidth() - (unsigned)FXSema.hasUnsignedPadding(); | |||
| 11839 | } | |||
| 11840 | llvm::APInt LeftBits(Right.getBitWidth(), LeftSize); | |||
| 11841 | if (Right.uge(LeftBits)) { | |||
| 11842 | S.DiagRuntimeBehavior(Loc, RHS.get(), | |||
| 11843 | S.PDiag(diag::warn_shift_gt_typewidth) | |||
| 11844 | << RHS.get()->getSourceRange()); | |||
| 11845 | return; | |||
| 11846 | } | |||
| 11847 | ||||
| 11848 | // FIXME: We probably need to handle fixed point types specially here. | |||
| 11849 | if (Opc != BO_Shl || LHSExprType->isFixedPointType()) | |||
| 11850 | return; | |||
| 11851 | ||||
| 11852 | // When left shifting an ICE which is signed, we can check for overflow which | |||
| 11853 | // according to C++ standards prior to C++2a has undefined behavior | |||
| 11854 | // ([expr.shift] 5.8/2). Unsigned integers have defined behavior modulo one | |||
| 11855 | // more than the maximum value representable in the result type, so never | |||
| 11856 | // warn for those. (FIXME: Unsigned left-shift overflow in a constant | |||
| 11857 | // expression is still probably a bug.) | |||
| 11858 | Expr::EvalResult LHSResult; | |||
| 11859 | if (LHS.get()->isValueDependent() || | |||
| 11860 | LHSType->hasUnsignedIntegerRepresentation() || | |||
| 11861 | !LHS.get()->EvaluateAsInt(LHSResult, S.Context)) | |||
| 11862 | return; | |||
| 11863 | llvm::APSInt Left = LHSResult.Val.getInt(); | |||
| 11864 | ||||
| 11865 | // Don't warn if signed overflow is defined, then all the rest of the | |||
| 11866 | // diagnostics will not be triggered because the behavior is defined. | |||
| 11867 | // Also don't warn in C++20 mode (and newer), as signed left shifts | |||
| 11868 | // always wrap and never overflow. | |||
| 11869 | if (S.getLangOpts().isSignedOverflowDefined() || S.getLangOpts().CPlusPlus20) | |||
| 11870 | return; | |||
| 11871 | ||||
| 11872 | // If LHS does not have a non-negative value then, the | |||
| 11873 | // behavior is undefined before C++2a. Warn about it. | |||
| 11874 | if (Left.isNegative()) { | |||
| 11875 | S.DiagRuntimeBehavior(Loc, LHS.get(), | |||
| 11876 | S.PDiag(diag::warn_shift_lhs_negative) | |||
| 11877 | << LHS.get()->getSourceRange()); | |||
| 11878 | return; | |||
| 11879 | } | |||
| 11880 | ||||
| 11881 | llvm::APInt ResultBits = | |||
| 11882 | static_cast<llvm::APInt &>(Right) + Left.getSignificantBits(); | |||
| 11883 | if (LeftBits.uge(ResultBits)) | |||
| 11884 | return; | |||
| 11885 | llvm::APSInt Result = Left.extend(ResultBits.getLimitedValue()); | |||
| 11886 | Result = Result.shl(Right); | |||
| 11887 | ||||
| 11888 | // Print the bit representation of the signed integer as an unsigned | |||
| 11889 | // hexadecimal number. | |||
| 11890 | SmallString<40> HexResult; | |||
| 11891 | Result.toString(HexResult, 16, /*Signed =*/false, /*Literal =*/true); | |||
| 11892 | ||||
| 11893 | // If we are only missing a sign bit, this is less likely to result in actual | |||
| 11894 | // bugs -- if the result is cast back to an unsigned type, it will have the | |||
| 11895 | // expected value. Thus we place this behind a different warning that can be | |||
| 11896 | // turned off separately if needed. | |||
| 11897 | if (LeftBits == ResultBits - 1) { | |||
| 11898 | S.Diag(Loc, diag::warn_shift_result_sets_sign_bit) | |||
| 11899 | << HexResult << LHSType | |||
| 11900 | << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); | |||
| 11901 | return; | |||
| 11902 | } | |||
| 11903 | ||||
| 11904 | S.Diag(Loc, diag::warn_shift_result_gt_typewidth) | |||
| 11905 | << HexResult.str() << Result.getSignificantBits() << LHSType | |||
| 11906 | << Left.getBitWidth() << LHS.get()->getSourceRange() | |||
| 11907 | << RHS.get()->getSourceRange(); | |||
| 11908 | } | |||
| 11909 | ||||
| 11910 | /// Return the resulting type when a vector is shifted | |||
| 11911 | /// by a scalar or vector shift amount. | |||
| 11912 | static QualType checkVectorShift(Sema &S, ExprResult &LHS, ExprResult &RHS, | |||
| 11913 | SourceLocation Loc, bool IsCompAssign) { | |||
| 11914 | // OpenCL v1.1 s6.3.j says RHS can be a vector only if LHS is a vector. | |||
| 11915 | if ((S.LangOpts.OpenCL || S.LangOpts.ZVector) && | |||
| 11916 | !LHS.get()->getType()->isVectorType()) { | |||
| 11917 | S.Diag(Loc, diag::err_shift_rhs_only_vector) | |||
| 11918 | << RHS.get()->getType() << LHS.get()->getType() | |||
| 11919 | << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); | |||
| 11920 | return QualType(); | |||
| 11921 | } | |||
| 11922 | ||||
| 11923 | if (!IsCompAssign) { | |||
| 11924 | LHS = S.UsualUnaryConversions(LHS.get()); | |||
| 11925 | if (LHS.isInvalid()) return QualType(); | |||
| 11926 | } | |||
| 11927 | ||||
| 11928 | RHS = S.UsualUnaryConversions(RHS.get()); | |||
| 11929 | if (RHS.isInvalid()) return QualType(); | |||
| 11930 | ||||
| 11931 | QualType LHSType = LHS.get()->getType(); | |||
| 11932 | // Note that LHS might be a scalar because the routine calls not only in | |||
| 11933 | // OpenCL case. | |||
| 11934 | const VectorType *LHSVecTy = LHSType->getAs<VectorType>(); | |||
| 11935 | QualType LHSEleType = LHSVecTy ? LHSVecTy->getElementType() : LHSType; | |||
| 11936 | ||||
| 11937 | // Note that RHS might not be a vector. | |||
| 11938 | QualType RHSType = RHS.get()->getType(); | |||
| 11939 | const VectorType *RHSVecTy = RHSType->getAs<VectorType>(); | |||
| 11940 | QualType RHSEleType = RHSVecTy ? RHSVecTy->getElementType() : RHSType; | |||
| 11941 | ||||
| 11942 | // Do not allow shifts for boolean vectors. | |||
| 11943 | if ((LHSVecTy && LHSVecTy->isExtVectorBoolType()) || | |||
| 11944 | (RHSVecTy && RHSVecTy->isExtVectorBoolType())) { | |||
| 11945 | S.Diag(Loc, diag::err_typecheck_invalid_operands) | |||
| 11946 | << LHS.get()->getType() << RHS.get()->getType() | |||
| 11947 | << LHS.get()->getSourceRange(); | |||
| 11948 | return QualType(); | |||
| 11949 | } | |||
| 11950 | ||||
| 11951 | // The operands need to be integers. | |||
| 11952 | if (!LHSEleType->isIntegerType()) { | |||
| 11953 | S.Diag(Loc, diag::err_typecheck_expect_int) | |||
| 11954 | << LHS.get()->getType() << LHS.get()->getSourceRange(); | |||
| 11955 | return QualType(); | |||
| 11956 | } | |||
| 11957 | ||||
| 11958 | if (!RHSEleType->isIntegerType()) { | |||
| 11959 | S.Diag(Loc, diag::err_typecheck_expect_int) | |||
| 11960 | << RHS.get()->getType() << RHS.get()->getSourceRange(); | |||
| 11961 | return QualType(); | |||
| 11962 | } | |||
| 11963 | ||||
| 11964 | if (!LHSVecTy) { | |||
| 11965 | assert(RHSVecTy)(static_cast <bool> (RHSVecTy) ? void (0) : __assert_fail ("RHSVecTy", "clang/lib/Sema/SemaExpr.cpp", 11965, __extension__ __PRETTY_FUNCTION__)); | |||
| 11966 | if (IsCompAssign) | |||
| 11967 | return RHSType; | |||
| 11968 | if (LHSEleType != RHSEleType) { | |||
| 11969 | LHS = S.ImpCastExprToType(LHS.get(),RHSEleType, CK_IntegralCast); | |||
| 11970 | LHSEleType = RHSEleType; | |||
| 11971 | } | |||
| 11972 | QualType VecTy = | |||
| 11973 | S.Context.getExtVectorType(LHSEleType, RHSVecTy->getNumElements()); | |||
| 11974 | LHS = S.ImpCastExprToType(LHS.get(), VecTy, CK_VectorSplat); | |||
| 11975 | LHSType = VecTy; | |||
| 11976 | } else if (RHSVecTy) { | |||
| 11977 | // OpenCL v1.1 s6.3.j says that for vector types, the operators | |||
| 11978 | // are applied component-wise. So if RHS is a vector, then ensure | |||
| 11979 | // that the number of elements is the same as LHS... | |||
| 11980 | if (RHSVecTy->getNumElements() != LHSVecTy->getNumElements()) { | |||
| 11981 | S.Diag(Loc, diag::err_typecheck_vector_lengths_not_equal) | |||
| 11982 | << LHS.get()->getType() << RHS.get()->getType() | |||
| 11983 | << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); | |||
| 11984 | return QualType(); | |||
| 11985 | } | |||
| 11986 | if (!S.LangOpts.OpenCL && !S.LangOpts.ZVector) { | |||
| 11987 | const BuiltinType *LHSBT = LHSEleType->getAs<clang::BuiltinType>(); | |||
| 11988 | const BuiltinType *RHSBT = RHSEleType->getAs<clang::BuiltinType>(); | |||
| 11989 | if (LHSBT != RHSBT && | |||
| 11990 | S.Context.getTypeSize(LHSBT) != S.Context.getTypeSize(RHSBT)) { | |||
| 11991 | S.Diag(Loc, diag::warn_typecheck_vector_element_sizes_not_equal) | |||
| 11992 | << LHS.get()->getType() << RHS.get()->getType() | |||
| 11993 | << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); | |||
| 11994 | } | |||
| 11995 | } | |||
| 11996 | } else { | |||
| 11997 | // ...else expand RHS to match the number of elements in LHS. | |||
| 11998 | QualType VecTy = | |||
| 11999 | S.Context.getExtVectorType(RHSEleType, LHSVecTy->getNumElements()); | |||
| 12000 | RHS = S.ImpCastExprToType(RHS.get(), VecTy, CK_VectorSplat); | |||
| 12001 | } | |||
| 12002 | ||||
| 12003 | return LHSType; | |||
| 12004 | } | |||
| 12005 | ||||
| 12006 | static QualType checkSizelessVectorShift(Sema &S, ExprResult &LHS, | |||
| 12007 | ExprResult &RHS, SourceLocation Loc, | |||
| 12008 | bool IsCompAssign) { | |||
| 12009 | if (!IsCompAssign) { | |||
| 12010 | LHS = S.UsualUnaryConversions(LHS.get()); | |||
| 12011 | if (LHS.isInvalid()) | |||
| 12012 | return QualType(); | |||
| 12013 | } | |||
| 12014 | ||||
| 12015 | RHS = S.UsualUnaryConversions(RHS.get()); | |||
| 12016 | if (RHS.isInvalid()) | |||
| 12017 | return QualType(); | |||
| 12018 | ||||
| 12019 | QualType LHSType = LHS.get()->getType(); | |||
| 12020 | const BuiltinType *LHSBuiltinTy = LHSType->getAs<BuiltinType>(); | |||
| 12021 | QualType LHSEleType = LHSType->isVLSTBuiltinType() | |||
| 12022 | ? LHSBuiltinTy->getSveEltType(S.getASTContext()) | |||
| 12023 | : LHSType; | |||
| 12024 | ||||
| 12025 | // Note that RHS might not be a vector | |||
| 12026 | QualType RHSType = RHS.get()->getType(); | |||
| 12027 | const BuiltinType *RHSBuiltinTy = RHSType->getAs<BuiltinType>(); | |||
| 12028 | QualType RHSEleType = RHSType->isVLSTBuiltinType() | |||
| 12029 | ? RHSBuiltinTy->getSveEltType(S.getASTContext()) | |||
| 12030 | : RHSType; | |||
| 12031 | ||||
| 12032 | if ((LHSBuiltinTy && LHSBuiltinTy->isSVEBool()) || | |||
| 12033 | (RHSBuiltinTy && RHSBuiltinTy->isSVEBool())) { | |||
| 12034 | S.Diag(Loc, diag::err_typecheck_invalid_operands) | |||
| 12035 | << LHSType << RHSType << LHS.get()->getSourceRange(); | |||
| 12036 | return QualType(); | |||
| 12037 | } | |||
| 12038 | ||||
| 12039 | if (!LHSEleType->isIntegerType()) { | |||
| 12040 | S.Diag(Loc, diag::err_typecheck_expect_int) | |||
| 12041 | << LHS.get()->getType() << LHS.get()->getSourceRange(); | |||
| 12042 | return QualType(); | |||
| 12043 | } | |||
| 12044 | ||||
| 12045 | if (!RHSEleType->isIntegerType()) { | |||
| 12046 | S.Diag(Loc, diag::err_typecheck_expect_int) | |||
| 12047 | << RHS.get()->getType() << RHS.get()->getSourceRange(); | |||
| 12048 | return QualType(); | |||
| 12049 | } | |||
| 12050 | ||||
| 12051 | if (LHSType->isVLSTBuiltinType() && RHSType->isVLSTBuiltinType() && | |||
| 12052 | (S.Context.getBuiltinVectorTypeInfo(LHSBuiltinTy).EC != | |||
| 12053 | S.Context.getBuiltinVectorTypeInfo(RHSBuiltinTy).EC)) { | |||
| 12054 | S.Diag(Loc, diag::err_typecheck_invalid_operands) | |||
| 12055 | << LHSType << RHSType << LHS.get()->getSourceRange() | |||
| 12056 | << RHS.get()->getSourceRange(); | |||
| 12057 | return QualType(); | |||
| 12058 | } | |||
| 12059 | ||||
| 12060 | if (!LHSType->isVLSTBuiltinType()) { | |||
| 12061 | assert(RHSType->isVLSTBuiltinType())(static_cast <bool> (RHSType->isVLSTBuiltinType()) ? void (0) : __assert_fail ("RHSType->isVLSTBuiltinType()", "clang/lib/Sema/SemaExpr.cpp", 12061, __extension__ __PRETTY_FUNCTION__ )); | |||
| 12062 | if (IsCompAssign) | |||
| 12063 | return RHSType; | |||
| 12064 | if (LHSEleType != RHSEleType) { | |||
| 12065 | LHS = S.ImpCastExprToType(LHS.get(), RHSEleType, clang::CK_IntegralCast); | |||
| 12066 | LHSEleType = RHSEleType; | |||
| 12067 | } | |||
| 12068 | const llvm::ElementCount VecSize = | |||
| 12069 | S.Context.getBuiltinVectorTypeInfo(RHSBuiltinTy).EC; | |||
| 12070 | QualType VecTy = | |||
| 12071 | S.Context.getScalableVectorType(LHSEleType, VecSize.getKnownMinValue()); | |||
| 12072 | LHS = S.ImpCastExprToType(LHS.get(), VecTy, clang::CK_VectorSplat); | |||
| 12073 | LHSType = VecTy; | |||
| 12074 | } else if (RHSBuiltinTy && RHSBuiltinTy->isVLSTBuiltinType()) { | |||
| 12075 | if (S.Context.getTypeSize(RHSBuiltinTy) != | |||
| 12076 | S.Context.getTypeSize(LHSBuiltinTy)) { | |||
| 12077 | S.Diag(Loc, diag::err_typecheck_vector_lengths_not_equal) | |||
| 12078 | << LHSType << RHSType << LHS.get()->getSourceRange() | |||
| 12079 | << RHS.get()->getSourceRange(); | |||
| 12080 | return QualType(); | |||
| 12081 | } | |||
| 12082 | } else { | |||
| 12083 | const llvm::ElementCount VecSize = | |||
| 12084 | S.Context.getBuiltinVectorTypeInfo(LHSBuiltinTy).EC; | |||
| 12085 | if (LHSEleType != RHSEleType) { | |||
| 12086 | RHS = S.ImpCastExprToType(RHS.get(), LHSEleType, clang::CK_IntegralCast); | |||
| 12087 | RHSEleType = LHSEleType; | |||
| 12088 | } | |||
| 12089 | QualType VecTy = | |||
| 12090 | S.Context.getScalableVectorType(RHSEleType, VecSize.getKnownMinValue()); | |||
| 12091 | RHS = S.ImpCastExprToType(RHS.get(), VecTy, CK_VectorSplat); | |||
| 12092 | } | |||
| 12093 | ||||
| 12094 | return LHSType; | |||
| 12095 | } | |||
| 12096 | ||||
| 12097 | // C99 6.5.7 | |||
| 12098 | QualType Sema::CheckShiftOperands(ExprResult &LHS, ExprResult &RHS, | |||
| 12099 | SourceLocation Loc, BinaryOperatorKind Opc, | |||
| 12100 | bool IsCompAssign) { | |||
| 12101 | checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false); | |||
| 12102 | ||||
| 12103 | // Vector shifts promote their scalar inputs to vector type. | |||
| 12104 | if (LHS.get()->getType()->isVectorType() || | |||
| 12105 | RHS.get()->getType()->isVectorType()) { | |||
| 12106 | if (LangOpts.ZVector) { | |||
| 12107 | // The shift operators for the z vector extensions work basically | |||
| 12108 | // like general shifts, except that neither the LHS nor the RHS is | |||
| 12109 | // allowed to be a "vector bool". | |||
| 12110 | if (auto LHSVecType = LHS.get()->getType()->getAs<VectorType>()) | |||
| 12111 | if (LHSVecType->getVectorKind() == VectorType::AltiVecBool) | |||
| 12112 | return InvalidOperands(Loc, LHS, RHS); | |||
| 12113 | if (auto RHSVecType = RHS.get()->getType()->getAs<VectorType>()) | |||
| 12114 | if (RHSVecType->getVectorKind() == VectorType::AltiVecBool) | |||
| 12115 | return InvalidOperands(Loc, LHS, RHS); | |||
| 12116 | } | |||
| 12117 | return checkVectorShift(*this, LHS, RHS, Loc, IsCompAssign); | |||
| 12118 | } | |||
| 12119 | ||||
| 12120 | if (LHS.get()->getType()->isVLSTBuiltinType() || | |||
| 12121 | RHS.get()->getType()->isVLSTBuiltinType()) | |||
| 12122 | return checkSizelessVectorShift(*this, LHS, RHS, Loc, IsCompAssign); | |||
| 12123 | ||||
| 12124 | // Shifts don't perform usual arithmetic conversions, they just do integer | |||
| 12125 | // promotions on each operand. C99 6.5.7p3 | |||
| 12126 | ||||
| 12127 | // For the LHS, do usual unary conversions, but then reset them away | |||
| 12128 | // if this is a compound assignment. | |||
| 12129 | ExprResult OldLHS = LHS; | |||
| 12130 | LHS = UsualUnaryConversions(LHS.get()); | |||
| 12131 | if (LHS.isInvalid()) | |||
| 12132 | return QualType(); | |||
| 12133 | QualType LHSType = LHS.get()->getType(); | |||
| 12134 | if (IsCompAssign) LHS = OldLHS; | |||
| 12135 | ||||
| 12136 | // The RHS is simpler. | |||
| 12137 | RHS = UsualUnaryConversions(RHS.get()); | |||
| 12138 | if (RHS.isInvalid()) | |||
| 12139 | return QualType(); | |||
| 12140 | QualType RHSType = RHS.get()->getType(); | |||
| 12141 | ||||
| 12142 | // C99 6.5.7p2: Each of the operands shall have integer type. | |||
| 12143 | // Embedded-C 4.1.6.2.2: The LHS may also be fixed-point. | |||
| 12144 | if ((!LHSType->isFixedPointOrIntegerType() && | |||
| 12145 | !LHSType->hasIntegerRepresentation()) || | |||
| 12146 | !RHSType->hasIntegerRepresentation()) | |||
| 12147 | return InvalidOperands(Loc, LHS, RHS); | |||
| 12148 | ||||
| 12149 | // C++0x: Don't allow scoped enums. FIXME: Use something better than | |||
| 12150 | // hasIntegerRepresentation() above instead of this. | |||
| 12151 | if (isScopedEnumerationType(LHSType) || | |||
| 12152 | isScopedEnumerationType(RHSType)) { | |||
| 12153 | return InvalidOperands(Loc, LHS, RHS); | |||
| 12154 | } | |||
| 12155 | DiagnoseBadShiftValues(*this, LHS, RHS, Loc, Opc, LHSType); | |||
| 12156 | ||||
| 12157 | // "The type of the result is that of the promoted left operand." | |||
| 12158 | return LHSType; | |||
| 12159 | } | |||
| 12160 | ||||
| 12161 | /// Diagnose bad pointer comparisons. | |||
| 12162 | static void diagnoseDistinctPointerComparison(Sema &S, SourceLocation Loc, | |||
| 12163 | ExprResult &LHS, ExprResult &RHS, | |||
| 12164 | bool IsError) { | |||
| 12165 | S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_distinct_pointers | |||
| 12166 | : diag::ext_typecheck_comparison_of_distinct_pointers) | |||
| 12167 | << LHS.get()->getType() << RHS.get()->getType() | |||
| 12168 | << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); | |||
| 12169 | } | |||
| 12170 | ||||
| 12171 | /// Returns false if the pointers are converted to a composite type, | |||
| 12172 | /// true otherwise. | |||
| 12173 | static bool convertPointersToCompositeType(Sema &S, SourceLocation Loc, | |||
| 12174 | ExprResult &LHS, ExprResult &RHS) { | |||
| 12175 | // C++ [expr.rel]p2: | |||
| 12176 | // [...] Pointer conversions (4.10) and qualification | |||
| 12177 | // conversions (4.4) are performed on pointer operands (or on | |||
| 12178 | // a pointer operand and a null pointer constant) to bring | |||
| 12179 | // them to their composite pointer type. [...] | |||
| 12180 | // | |||
| 12181 | // C++ [expr.eq]p1 uses the same notion for (in)equality | |||
| 12182 | // comparisons of pointers. | |||
| 12183 | ||||
| 12184 | QualType LHSType = LHS.get()->getType(); | |||
| 12185 | QualType RHSType = RHS.get()->getType(); | |||
| 12186 | assert(LHSType->isPointerType() || RHSType->isPointerType() ||(static_cast <bool> (LHSType->isPointerType() || RHSType ->isPointerType() || LHSType->isMemberPointerType() || RHSType ->isMemberPointerType()) ? void (0) : __assert_fail ("LHSType->isPointerType() || RHSType->isPointerType() || LHSType->isMemberPointerType() || RHSType->isMemberPointerType()" , "clang/lib/Sema/SemaExpr.cpp", 12187, __extension__ __PRETTY_FUNCTION__ )) | |||
| 12187 | LHSType->isMemberPointerType() || RHSType->isMemberPointerType())(static_cast <bool> (LHSType->isPointerType() || RHSType ->isPointerType() || LHSType->isMemberPointerType() || RHSType ->isMemberPointerType()) ? void (0) : __assert_fail ("LHSType->isPointerType() || RHSType->isPointerType() || LHSType->isMemberPointerType() || RHSType->isMemberPointerType()" , "clang/lib/Sema/SemaExpr.cpp", 12187, __extension__ __PRETTY_FUNCTION__ )); | |||
| 12188 | ||||
| 12189 | QualType T = S.FindCompositePointerType(Loc, LHS, RHS); | |||
| 12190 | if (T.isNull()) { | |||
| 12191 | if ((LHSType->isAnyPointerType() || LHSType->isMemberPointerType()) && | |||
| 12192 | (RHSType->isAnyPointerType() || RHSType->isMemberPointerType())) | |||
| 12193 | diagnoseDistinctPointerComparison(S, Loc, LHS, RHS, /*isError*/true); | |||
| 12194 | else | |||
| 12195 | S.InvalidOperands(Loc, LHS, RHS); | |||
| 12196 | return true; | |||
| 12197 | } | |||
| 12198 | ||||
| 12199 | return false; | |||
| 12200 | } | |||
| 12201 | ||||
| 12202 | static void diagnoseFunctionPointerToVoidComparison(Sema &S, SourceLocation Loc, | |||
| 12203 | ExprResult &LHS, | |||
| 12204 | ExprResult &RHS, | |||
| 12205 | bool IsError) { | |||
| 12206 | S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_fptr_to_void | |||
| 12207 | : diag::ext_typecheck_comparison_of_fptr_to_void) | |||
| 12208 | << LHS.get()->getType() << RHS.get()->getType() | |||
| 12209 | << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); | |||
| 12210 | } | |||
| 12211 | ||||
| 12212 | static bool isObjCObjectLiteral(ExprResult &E) { | |||
| 12213 | switch (E.get()->IgnoreParenImpCasts()->getStmtClass()) { | |||
| 12214 | case Stmt::ObjCArrayLiteralClass: | |||
| 12215 | case Stmt::ObjCDictionaryLiteralClass: | |||
| 12216 | case Stmt::ObjCStringLiteralClass: | |||
| 12217 | case Stmt::ObjCBoxedExprClass: | |||
| 12218 | return true; | |||
| 12219 | default: | |||
| 12220 | // Note that ObjCBoolLiteral is NOT an object literal! | |||
| 12221 | return false; | |||
| 12222 | } | |||
| 12223 | } | |||
| 12224 | ||||
| 12225 | static bool hasIsEqualMethod(Sema &S, const Expr *LHS, const Expr *RHS) { | |||
| 12226 | const ObjCObjectPointerType *Type = | |||
| 12227 | LHS->getType()->getAs<ObjCObjectPointerType>(); | |||
| 12228 | ||||
| 12229 | // If this is not actually an Objective-C object, bail out. | |||
| 12230 | if (!Type) | |||
| 12231 | return false; | |||
| 12232 | ||||
| 12233 | // Get the LHS object's interface type. | |||
| 12234 | QualType InterfaceType = Type->getPointeeType(); | |||
| 12235 | ||||
| 12236 | // If the RHS isn't an Objective-C object, bail out. | |||
| 12237 | if (!RHS->getType()->isObjCObjectPointerType()) | |||
| 12238 | return false; | |||
| 12239 | ||||
| 12240 | // Try to find the -isEqual: method. | |||
| 12241 | Selector IsEqualSel = S.NSAPIObj->getIsEqualSelector(); | |||
| 12242 | ObjCMethodDecl *Method = S.LookupMethodInObjectType(IsEqualSel, | |||
| 12243 | InterfaceType, | |||
| 12244 | /*IsInstance=*/true); | |||
| 12245 | if (!Method) { | |||
| 12246 | if (Type->isObjCIdType()) { | |||
| 12247 | // For 'id', just check the global pool. | |||
| 12248 | Method = S.LookupInstanceMethodInGlobalPool(IsEqualSel, SourceRange(), | |||
| 12249 | /*receiverId=*/true); | |||
| 12250 | } else { | |||
| 12251 | // Check protocols. | |||
| 12252 | Method = S.LookupMethodInQualifiedType(IsEqualSel, Type, | |||
| 12253 | /*IsInstance=*/true); | |||
| 12254 | } | |||
| 12255 | } | |||
| 12256 | ||||
| 12257 | if (!Method) | |||
| 12258 | return false; | |||
| 12259 | ||||
| 12260 | QualType T = Method->parameters()[0]->getType(); | |||
| 12261 | if (!T->isObjCObjectPointerType()) | |||
| 12262 | return false; | |||
| 12263 | ||||
| 12264 | QualType R = Method->getReturnType(); | |||
| 12265 | if (!R->isScalarType()) | |||
| 12266 | return false; | |||
| 12267 | ||||
| 12268 | return true; | |||
| 12269 | } | |||
| 12270 | ||||
| 12271 | Sema::ObjCLiteralKind Sema::CheckLiteralKind(Expr *FromE) { | |||
| 12272 | FromE = FromE->IgnoreParenImpCasts(); | |||
| 12273 | switch (FromE->getStmtClass()) { | |||
| 12274 | default: | |||
| 12275 | break; | |||
| 12276 | case Stmt::ObjCStringLiteralClass: | |||
| 12277 | // "string literal" | |||
| 12278 | return LK_String; | |||
| 12279 | case Stmt::ObjCArrayLiteralClass: | |||
| 12280 | // "array literal" | |||
| 12281 | return LK_Array; | |||
| 12282 | case Stmt::ObjCDictionaryLiteralClass: | |||
| 12283 | // "dictionary literal" | |||
| 12284 | return LK_Dictionary; | |||
| 12285 | case Stmt::BlockExprClass: | |||
| 12286 | return LK_Block; | |||
| 12287 | case Stmt::ObjCBoxedExprClass: { | |||
| 12288 | Expr *Inner = cast<ObjCBoxedExpr>(FromE)->getSubExpr()->IgnoreParens(); | |||
| 12289 | switch (Inner->getStmtClass()) { | |||
| 12290 | case Stmt::IntegerLiteralClass: | |||
| 12291 | case Stmt::FloatingLiteralClass: | |||
| 12292 | case Stmt::CharacterLiteralClass: | |||
| 12293 | case Stmt::ObjCBoolLiteralExprClass: | |||
| 12294 | case Stmt::CXXBoolLiteralExprClass: | |||
| 12295 | // "numeric literal" | |||
| 12296 | return LK_Numeric; | |||
| 12297 | case Stmt::ImplicitCastExprClass: { | |||
| 12298 | CastKind CK = cast<CastExpr>(Inner)->getCastKind(); | |||
| 12299 | // Boolean literals can be represented by implicit casts. | |||
| 12300 | if (CK == CK_IntegralToBoolean || CK == CK_IntegralCast) | |||
| 12301 | return LK_Numeric; | |||
| 12302 | break; | |||
| 12303 | } | |||
| 12304 | default: | |||
| 12305 | break; | |||
| 12306 | } | |||
| 12307 | return LK_Boxed; | |||
| 12308 | } | |||
| 12309 | } | |||
| 12310 | return LK_None; | |||
| 12311 | } | |||
| 12312 | ||||
| 12313 | static void diagnoseObjCLiteralComparison(Sema &S, SourceLocation Loc, | |||
| 12314 | ExprResult &LHS, ExprResult &RHS, | |||
| 12315 | BinaryOperator::Opcode Opc){ | |||
| 12316 | Expr *Literal; | |||
| 12317 | Expr *Other; | |||
| 12318 | if (isObjCObjectLiteral(LHS)) { | |||
| 12319 | Literal = LHS.get(); | |||
| 12320 | Other = RHS.get(); | |||
| 12321 | } else { | |||
| 12322 | Literal = RHS.get(); | |||
| 12323 | Other = LHS.get(); | |||
| 12324 | } | |||
| 12325 | ||||
| 12326 | // Don't warn on comparisons against nil. | |||
| 12327 | Other = Other->IgnoreParenCasts(); | |||
| 12328 | if (Other->isNullPointerConstant(S.getASTContext(), | |||
| 12329 | Expr::NPC_ValueDependentIsNotNull)) | |||
| 12330 | return; | |||
| 12331 | ||||
| 12332 | // This should be kept in sync with warn_objc_literal_comparison. | |||
| 12333 | // LK_String should always be after the other literals, since it has its own | |||
| 12334 | // warning flag. | |||
| 12335 | Sema::ObjCLiteralKind LiteralKind = S.CheckLiteralKind(Literal); | |||
| 12336 | assert(LiteralKind != Sema::LK_Block)(static_cast <bool> (LiteralKind != Sema::LK_Block) ? void (0) : __assert_fail ("LiteralKind != Sema::LK_Block", "clang/lib/Sema/SemaExpr.cpp" , 12336, __extension__ __PRETTY_FUNCTION__)); | |||
| 12337 | if (LiteralKind == Sema::LK_None) { | |||
| 12338 | llvm_unreachable("Unknown Objective-C object literal kind")::llvm::llvm_unreachable_internal("Unknown Objective-C object literal kind" , "clang/lib/Sema/SemaExpr.cpp", 12338); | |||
| 12339 | } | |||
| 12340 | ||||
| 12341 | if (LiteralKind == Sema::LK_String) | |||
| 12342 | S.Diag(Loc, diag::warn_objc_string_literal_comparison) | |||
| 12343 | << Literal->getSourceRange(); | |||
| 12344 | else | |||
| 12345 | S.Diag(Loc, diag::warn_objc_literal_comparison) | |||
| 12346 | << LiteralKind << Literal->getSourceRange(); | |||
| 12347 | ||||
| 12348 | if (BinaryOperator::isEqualityOp(Opc) && | |||
| 12349 | hasIsEqualMethod(S, LHS.get(), RHS.get())) { | |||
| 12350 | SourceLocation Start = LHS.get()->getBeginLoc(); | |||
| 12351 | SourceLocation End = S.getLocForEndOfToken(RHS.get()->getEndLoc()); | |||
| 12352 | CharSourceRange OpRange = | |||
| 12353 | CharSourceRange::getCharRange(Loc, S.getLocForEndOfToken(Loc)); | |||
| 12354 | ||||
| 12355 | S.Diag(Loc, diag::note_objc_literal_comparison_isequal) | |||
| 12356 | << FixItHint::CreateInsertion(Start, Opc == BO_EQ ? "[" : "![") | |||
| 12357 | << FixItHint::CreateReplacement(OpRange, " isEqual:") | |||
| 12358 | << FixItHint::CreateInsertion(End, "]"); | |||
| 12359 | } | |||
| 12360 | } | |||
| 12361 | ||||
| 12362 | /// Warns on !x < y, !x & y where !(x < y), !(x & y) was probably intended. | |||
| 12363 | static void diagnoseLogicalNotOnLHSofCheck(Sema &S, ExprResult &LHS, | |||
| 12364 | ExprResult &RHS, SourceLocation Loc, | |||
| 12365 | BinaryOperatorKind Opc) { | |||
| 12366 | // Check that left hand side is !something. | |||
| 12367 | UnaryOperator *UO = dyn_cast<UnaryOperator>(LHS.get()->IgnoreImpCasts()); | |||
| 12368 | if (!UO || UO->getOpcode() != UO_LNot) return; | |||
| 12369 | ||||
| 12370 | // Only check if the right hand side is non-bool arithmetic type. | |||
| 12371 | if (RHS.get()->isKnownToHaveBooleanValue()) return; | |||
| 12372 | ||||
| 12373 | // Make sure that the something in !something is not bool. | |||
| 12374 | Expr *SubExpr = UO->getSubExpr()->IgnoreImpCasts(); | |||
| 12375 | if (SubExpr->isKnownToHaveBooleanValue()) return; | |||
| 12376 | ||||
| 12377 | // Emit warning. | |||
| 12378 | bool IsBitwiseOp = Opc == BO_And || Opc == BO_Or || Opc == BO_Xor; | |||
| 12379 | S.Diag(UO->getOperatorLoc(), diag::warn_logical_not_on_lhs_of_check) | |||
| 12380 | << Loc << IsBitwiseOp; | |||
| 12381 | ||||
| 12382 | // First note suggest !(x < y) | |||
| 12383 | SourceLocation FirstOpen = SubExpr->getBeginLoc(); | |||
| 12384 | SourceLocation FirstClose = RHS.get()->getEndLoc(); | |||
| 12385 | FirstClose = S.getLocForEndOfToken(FirstClose); | |||
| 12386 | if (FirstClose.isInvalid()) | |||
| 12387 | FirstOpen = SourceLocation(); | |||
| 12388 | S.Diag(UO->getOperatorLoc(), diag::note_logical_not_fix) | |||
| 12389 | << IsBitwiseOp | |||
| 12390 | << FixItHint::CreateInsertion(FirstOpen, "(") | |||
| 12391 | << FixItHint::CreateInsertion(FirstClose, ")"); | |||
| 12392 | ||||
| 12393 | // Second note suggests (!x) < y | |||
| 12394 | SourceLocation SecondOpen = LHS.get()->getBeginLoc(); | |||
| 12395 | SourceLocation SecondClose = LHS.get()->getEndLoc(); | |||
| 12396 | SecondClose = S.getLocForEndOfToken(SecondClose); | |||
| 12397 | if (SecondClose.isInvalid()) | |||
| 12398 | SecondOpen = SourceLocation(); | |||
| 12399 | S.Diag(UO->getOperatorLoc(), diag::note_logical_not_silence_with_parens) | |||
| 12400 | << FixItHint::CreateInsertion(SecondOpen, "(") | |||
| 12401 | << FixItHint::CreateInsertion(SecondClose, ")"); | |||
| 12402 | } | |||
| 12403 | ||||
| 12404 | // Returns true if E refers to a non-weak array. | |||
| 12405 | static bool checkForArray(const Expr *E) { | |||
| 12406 | const ValueDecl *D = nullptr; | |||
| 12407 | if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E)) { | |||
| 12408 | D = DR->getDecl(); | |||
| 12409 | } else if (const MemberExpr *Mem = dyn_cast<MemberExpr>(E)) { | |||
| 12410 | if (Mem->isImplicitAccess()) | |||
| 12411 | D = Mem->getMemberDecl(); | |||
| 12412 | } | |||
| 12413 | if (!D) | |||
| 12414 | return false; | |||
| 12415 | return D->getType()->isArrayType() && !D->isWeak(); | |||
| 12416 | } | |||
| 12417 | ||||
| 12418 | /// Diagnose some forms of syntactically-obvious tautological comparison. | |||
| 12419 | static void diagnoseTautologicalComparison(Sema &S, SourceLocation Loc, | |||
| 12420 | Expr *LHS, Expr *RHS, | |||
| 12421 | BinaryOperatorKind Opc) { | |||
| 12422 | Expr *LHSStripped = LHS->IgnoreParenImpCasts(); | |||
| 12423 | Expr *RHSStripped = RHS->IgnoreParenImpCasts(); | |||
| 12424 | ||||
| 12425 | QualType LHSType = LHS->getType(); | |||
| 12426 | QualType RHSType = RHS->getType(); | |||
| 12427 | if (LHSType->hasFloatingRepresentation() || | |||
| 12428 | (LHSType->isBlockPointerType() && !BinaryOperator::isEqualityOp(Opc)) || | |||
| 12429 | S.inTemplateInstantiation()) | |||
| 12430 | return; | |||
| 12431 | ||||
| 12432 | // Comparisons between two array types are ill-formed for operator<=>, so | |||
| 12433 | // we shouldn't emit any additional warnings about it. | |||
| 12434 | if (Opc == BO_Cmp && LHSType->isArrayType() && RHSType->isArrayType()) | |||
| 12435 | return; | |||
| 12436 | ||||
| 12437 | // For non-floating point types, check for self-comparisons of the form | |||
| 12438 | // x == x, x != x, x < x, etc. These always evaluate to a constant, and | |||
| 12439 | // often indicate logic errors in the program. | |||
| 12440 | // | |||
| 12441 | // NOTE: Don't warn about comparison expressions resulting from macro | |||
| 12442 | // expansion. Also don't warn about comparisons which are only self | |||
| 12443 | // comparisons within a template instantiation. The warnings should catch | |||
| 12444 | // obvious cases in the definition of the template anyways. The idea is to | |||
| 12445 | // warn when the typed comparison operator will always evaluate to the same | |||
| 12446 | // result. | |||
| 12447 | ||||
| 12448 | // Used for indexing into %select in warn_comparison_always | |||
| 12449 | enum { | |||
| 12450 | AlwaysConstant, | |||
| 12451 | AlwaysTrue, | |||
| 12452 | AlwaysFalse, | |||
| 12453 | AlwaysEqual, // std::strong_ordering::equal from operator<=> | |||
| 12454 | }; | |||
| 12455 | ||||
| 12456 | // C++2a [depr.array.comp]: | |||
| 12457 | // Equality and relational comparisons ([expr.eq], [expr.rel]) between two | |||
| 12458 | // operands of array type are deprecated. | |||
| 12459 | if (S.getLangOpts().CPlusPlus20 && LHSStripped->getType()->isArrayType() && | |||
| 12460 | RHSStripped->getType()->isArrayType()) { | |||
| 12461 | S.Diag(Loc, diag::warn_depr_array_comparison) | |||
| 12462 | << LHS->getSourceRange() << RHS->getSourceRange() | |||
| 12463 | << LHSStripped->getType() << RHSStripped->getType(); | |||
| 12464 | // Carry on to produce the tautological comparison warning, if this | |||
| 12465 | // expression is potentially-evaluated, we can resolve the array to a | |||
| 12466 | // non-weak declaration, and so on. | |||
| 12467 | } | |||
| 12468 | ||||
| 12469 | if (!LHS->getBeginLoc().isMacroID() && !RHS->getBeginLoc().isMacroID()) { | |||
| 12470 | if (Expr::isSameComparisonOperand(LHS, RHS)) { | |||
| 12471 | unsigned Result; | |||
| 12472 | switch (Opc) { | |||
| 12473 | case BO_EQ: | |||
| 12474 | case BO_LE: | |||
| 12475 | case BO_GE: | |||
| 12476 | Result = AlwaysTrue; | |||
| 12477 | break; | |||
| 12478 | case BO_NE: | |||
| 12479 | case BO_LT: | |||
| 12480 | case BO_GT: | |||
| 12481 | Result = AlwaysFalse; | |||
| 12482 | break; | |||
| 12483 | case BO_Cmp: | |||
| 12484 | Result = AlwaysEqual; | |||
| 12485 | break; | |||
| 12486 | default: | |||
| 12487 | Result = AlwaysConstant; | |||
| 12488 | break; | |||
| 12489 | } | |||
| 12490 | S.DiagRuntimeBehavior(Loc, nullptr, | |||
| 12491 | S.PDiag(diag::warn_comparison_always) | |||
| 12492 | << 0 /*self-comparison*/ | |||
| 12493 | << Result); | |||
| 12494 | } else if (checkForArray(LHSStripped) && checkForArray(RHSStripped)) { | |||
| 12495 | // What is it always going to evaluate to? | |||
| 12496 | unsigned Result; | |||
| 12497 | switch (Opc) { | |||
| 12498 | case BO_EQ: // e.g. array1 == array2 | |||
| 12499 | Result = AlwaysFalse; | |||
| 12500 | break; | |||
| 12501 | case BO_NE: // e.g. array1 != array2 | |||
| 12502 | Result = AlwaysTrue; | |||
| 12503 | break; | |||
| 12504 | default: // e.g. array1 <= array2 | |||
| 12505 | // The best we can say is 'a constant' | |||
| 12506 | Result = AlwaysConstant; | |||
| 12507 | break; | |||
| 12508 | } | |||
| 12509 | S.DiagRuntimeBehavior(Loc, nullptr, | |||
| 12510 | S.PDiag(diag::warn_comparison_always) | |||
| 12511 | << 1 /*array comparison*/ | |||
| 12512 | << Result); | |||
| 12513 | } | |||
| 12514 | } | |||
| 12515 | ||||
| 12516 | if (isa<CastExpr>(LHSStripped)) | |||
| 12517 | LHSStripped = LHSStripped->IgnoreParenCasts(); | |||
| 12518 | if (isa<CastExpr>(RHSStripped)) | |||
| 12519 | RHSStripped = RHSStripped->IgnoreParenCasts(); | |||
| 12520 | ||||
| 12521 | // Warn about comparisons against a string constant (unless the other | |||
| 12522 | // operand is null); the user probably wants string comparison function. | |||
| 12523 | Expr *LiteralString = nullptr; | |||
| 12524 | Expr *LiteralStringStripped = nullptr; | |||
| 12525 | if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) && | |||
| 12526 | !RHSStripped->isNullPointerConstant(S.Context, | |||
| 12527 | Expr::NPC_ValueDependentIsNull)) { | |||
| 12528 | LiteralString = LHS; | |||
| 12529 | LiteralStringStripped = LHSStripped; | |||
| 12530 | } else if ((isa<StringLiteral>(RHSStripped) || | |||
| 12531 | isa<ObjCEncodeExpr>(RHSStripped)) && | |||
| 12532 | !LHSStripped->isNullPointerConstant(S.Context, | |||
| 12533 | Expr::NPC_ValueDependentIsNull)) { | |||
| 12534 | LiteralString = RHS; | |||
| 12535 | LiteralStringStripped = RHSStripped; | |||
| 12536 | } | |||
| 12537 | ||||
| 12538 | if (LiteralString) { | |||
| 12539 | S.DiagRuntimeBehavior(Loc, nullptr, | |||
| 12540 | S.PDiag(diag::warn_stringcompare) | |||
| 12541 | << isa<ObjCEncodeExpr>(LiteralStringStripped) | |||
| 12542 | << LiteralString->getSourceRange()); | |||
| 12543 | } | |||
| 12544 | } | |||
| 12545 | ||||
| 12546 | static ImplicitConversionKind castKindToImplicitConversionKind(CastKind CK) { | |||
| 12547 | switch (CK) { | |||
| 12548 | default: { | |||
| 12549 | #ifndef NDEBUG | |||
| 12550 | llvm::errs() << "unhandled cast kind: " << CastExpr::getCastKindName(CK) | |||
| 12551 | << "\n"; | |||
| 12552 | #endif | |||
| 12553 | llvm_unreachable("unhandled cast kind")::llvm::llvm_unreachable_internal("unhandled cast kind", "clang/lib/Sema/SemaExpr.cpp" , 12553); | |||
| 12554 | } | |||
| 12555 | case CK_UserDefinedConversion: | |||
| 12556 | return ICK_Identity; | |||
| 12557 | case CK_LValueToRValue: | |||
| 12558 | return ICK_Lvalue_To_Rvalue; | |||
| 12559 | case CK_ArrayToPointerDecay: | |||
| 12560 | return ICK_Array_To_Pointer; | |||
| 12561 | case CK_FunctionToPointerDecay: | |||
| 12562 | return ICK_Function_To_Pointer; | |||
| 12563 | case CK_IntegralCast: | |||
| 12564 | return ICK_Integral_Conversion; | |||
| 12565 | case CK_FloatingCast: | |||
| 12566 | return ICK_Floating_Conversion; | |||
| 12567 | case CK_IntegralToFloating: | |||
| 12568 | case CK_FloatingToIntegral: | |||
| 12569 | return ICK_Floating_Integral; | |||
| 12570 | case CK_IntegralComplexCast: | |||
| 12571 | case CK_FloatingComplexCast: | |||
| 12572 | case CK_FloatingComplexToIntegralComplex: | |||
| 12573 | case CK_IntegralComplexToFloatingComplex: | |||
| 12574 | return ICK_Complex_Conversion; | |||
| 12575 | case CK_FloatingComplexToReal: | |||
| 12576 | case CK_FloatingRealToComplex: | |||
| 12577 | case CK_IntegralComplexToReal: | |||
| 12578 | case CK_IntegralRealToComplex: | |||
| 12579 | return ICK_Complex_Real; | |||
| 12580 | } | |||
| 12581 | } | |||
| 12582 | ||||
| 12583 | static bool checkThreeWayNarrowingConversion(Sema &S, QualType ToType, Expr *E, | |||
| 12584 | QualType FromType, | |||
| 12585 | SourceLocation Loc) { | |||
| 12586 | // Check for a narrowing implicit conversion. | |||
| 12587 | StandardConversionSequence SCS; | |||
| 12588 | SCS.setAsIdentityConversion(); | |||
| 12589 | SCS.setToType(0, FromType); | |||
| 12590 | SCS.setToType(1, ToType); | |||
| 12591 | if (const auto *ICE = dyn_cast<ImplicitCastExpr>(E)) | |||
| 12592 | SCS.Second = castKindToImplicitConversionKind(ICE->getCastKind()); | |||
| 12593 | ||||
| 12594 | APValue PreNarrowingValue; | |||
| 12595 | QualType PreNarrowingType; | |||
| 12596 | switch (SCS.getNarrowingKind(S.Context, E, PreNarrowingValue, | |||
| 12597 | PreNarrowingType, | |||
| 12598 | /*IgnoreFloatToIntegralConversion*/ true)) { | |||
| 12599 | case NK_Dependent_Narrowing: | |||
| 12600 | // Implicit conversion to a narrower type, but the expression is | |||
| 12601 | // value-dependent so we can't tell whether it's actually narrowing. | |||
| 12602 | case NK_Not_Narrowing: | |||
| 12603 | return false; | |||
| 12604 | ||||
| 12605 | case NK_Constant_Narrowing: | |||
| 12606 | // Implicit conversion to a narrower type, and the value is not a constant | |||
| 12607 | // expression. | |||
| 12608 | S.Diag(E->getBeginLoc(), diag::err_spaceship_argument_narrowing) | |||
| 12609 | << /*Constant*/ 1 | |||
| 12610 | << PreNarrowingValue.getAsString(S.Context, PreNarrowingType) << ToType; | |||
| 12611 | return true; | |||
| 12612 | ||||
| 12613 | case NK_Variable_Narrowing: | |||
| 12614 | // Implicit conversion to a narrower type, and the value is not a constant | |||
| 12615 | // expression. | |||
| 12616 | case NK_Type_Narrowing: | |||
| 12617 | S.Diag(E->getBeginLoc(), diag::err_spaceship_argument_narrowing) | |||
| 12618 | << /*Constant*/ 0 << FromType << ToType; | |||
| 12619 | // TODO: It's not a constant expression, but what if the user intended it | |||
| 12620 | // to be? Can we produce notes to help them figure out why it isn't? | |||
| 12621 | return true; | |||
| 12622 | } | |||
| 12623 | llvm_unreachable("unhandled case in switch")::llvm::llvm_unreachable_internal("unhandled case in switch", "clang/lib/Sema/SemaExpr.cpp", 12623); | |||
| 12624 | } | |||
| 12625 | ||||
| 12626 | static QualType checkArithmeticOrEnumeralThreeWayCompare(Sema &S, | |||
| 12627 | ExprResult &LHS, | |||
| 12628 | ExprResult &RHS, | |||
| 12629 | SourceLocation Loc) { | |||
| 12630 | QualType LHSType = LHS.get()->getType(); | |||
| 12631 | QualType RHSType = RHS.get()->getType(); | |||
| 12632 | // Dig out the original argument type and expression before implicit casts | |||
| 12633 | // were applied. These are the types/expressions we need to check the | |||
| 12634 | // [expr.spaceship] requirements against. | |||
| 12635 | ExprResult LHSStripped = LHS.get()->IgnoreParenImpCasts(); | |||
| 12636 | ExprResult RHSStripped = RHS.get()->IgnoreParenImpCasts(); | |||
| 12637 | QualType LHSStrippedType = LHSStripped.get()->getType(); | |||
| 12638 | QualType RHSStrippedType = RHSStripped.get()->getType(); | |||
| 12639 | ||||
| 12640 | // C++2a [expr.spaceship]p3: If one of the operands is of type bool and the | |||
| 12641 | // other is not, the program is ill-formed. | |||
| 12642 | if (LHSStrippedType->isBooleanType() != RHSStrippedType->isBooleanType()) { | |||
| 12643 | S.InvalidOperands(Loc, LHSStripped, RHSStripped); | |||
| 12644 | return QualType(); | |||
| 12645 | } | |||
| 12646 | ||||
| 12647 | // FIXME: Consider combining this with checkEnumArithmeticConversions. | |||
| 12648 | int NumEnumArgs = (int)LHSStrippedType->isEnumeralType() + | |||
| 12649 | RHSStrippedType->isEnumeralType(); | |||
| 12650 | if (NumEnumArgs == 1) { | |||
| 12651 | bool LHSIsEnum = LHSStrippedType->isEnumeralType(); | |||
| 12652 | QualType OtherTy = LHSIsEnum ? RHSStrippedType : LHSStrippedType; | |||
| 12653 | if (OtherTy->hasFloatingRepresentation()) { | |||
| 12654 | S.InvalidOperands(Loc, LHSStripped, RHSStripped); | |||
| 12655 | return QualType(); | |||
| 12656 | } | |||
| 12657 | } | |||
| 12658 | if (NumEnumArgs == 2) { | |||
| 12659 | // C++2a [expr.spaceship]p5: If both operands have the same enumeration | |||
| 12660 | // type E, the operator yields the result of converting the operands | |||
| 12661 | // to the underlying type of E and applying <=> to the converted operands. | |||
| 12662 | if (!S.Context.hasSameUnqualifiedType(LHSStrippedType, RHSStrippedType)) { | |||
| 12663 | S.InvalidOperands(Loc, LHS, RHS); | |||
| 12664 | return QualType(); | |||
| 12665 | } | |||
| 12666 | QualType IntType = | |||
| 12667 | LHSStrippedType->castAs<EnumType>()->getDecl()->getIntegerType(); | |||
| 12668 | assert(IntType->isArithmeticType())(static_cast <bool> (IntType->isArithmeticType()) ? void (0) : __assert_fail ("IntType->isArithmeticType()", "clang/lib/Sema/SemaExpr.cpp" , 12668, __extension__ __PRETTY_FUNCTION__)); | |||
| 12669 | ||||
| 12670 | // We can't use `CK_IntegralCast` when the underlying type is 'bool', so we | |||
| 12671 | // promote the boolean type, and all other promotable integer types, to | |||
| 12672 | // avoid this. | |||
| 12673 | if (S.Context.isPromotableIntegerType(IntType)) | |||
| 12674 | IntType = S.Context.getPromotedIntegerType(IntType); | |||
| 12675 | ||||
| 12676 | LHS = S.ImpCastExprToType(LHS.get(), IntType, CK_IntegralCast); | |||
| 12677 | RHS = S.ImpCastExprToType(RHS.get(), IntType, CK_IntegralCast); | |||
| 12678 | LHSType = RHSType = IntType; | |||
| 12679 | } | |||
| 12680 | ||||
| 12681 | // C++2a [expr.spaceship]p4: If both operands have arithmetic types, the | |||
| 12682 | // usual arithmetic conversions are applied to the operands. | |||
| 12683 | QualType Type = | |||
| 12684 | S.UsualArithmeticConversions(LHS, RHS, Loc, Sema::ACK_Comparison); | |||
| 12685 | if (LHS.isInvalid() || RHS.isInvalid()) | |||
| 12686 | return QualType(); | |||
| 12687 | if (Type.isNull()) | |||
| 12688 | return S.InvalidOperands(Loc, LHS, RHS); | |||
| 12689 | ||||
| 12690 | std::optional<ComparisonCategoryType> CCT = | |||
| 12691 | getComparisonCategoryForBuiltinCmp(Type); | |||
| 12692 | if (!CCT) | |||
| 12693 | return S.InvalidOperands(Loc, LHS, RHS); | |||
| 12694 | ||||
| 12695 | bool HasNarrowing = checkThreeWayNarrowingConversion( | |||
| 12696 | S, Type, LHS.get(), LHSType, LHS.get()->getBeginLoc()); | |||
| 12697 | HasNarrowing |= checkThreeWayNarrowingConversion(S, Type, RHS.get(), RHSType, | |||
| 12698 | RHS.get()->getBeginLoc()); | |||
| 12699 | if (HasNarrowing) | |||
| 12700 | return QualType(); | |||
| 12701 | ||||
| 12702 | assert(!Type.isNull() && "composite type for <=> has not been set")(static_cast <bool> (!Type.isNull() && "composite type for <=> has not been set" ) ? void (0) : __assert_fail ("!Type.isNull() && \"composite type for <=> has not been set\"" , "clang/lib/Sema/SemaExpr.cpp", 12702, __extension__ __PRETTY_FUNCTION__ )); | |||
| 12703 | ||||
| 12704 | return S.CheckComparisonCategoryType( | |||
| 12705 | *CCT, Loc, Sema::ComparisonCategoryUsage::OperatorInExpression); | |||
| 12706 | } | |||
| 12707 | ||||
| 12708 | static QualType checkArithmeticOrEnumeralCompare(Sema &S, ExprResult &LHS, | |||
| 12709 | ExprResult &RHS, | |||
| 12710 | SourceLocation Loc, | |||
| 12711 | BinaryOperatorKind Opc) { | |||
| 12712 | if (Opc == BO_Cmp) | |||
| 12713 | return checkArithmeticOrEnumeralThreeWayCompare(S, LHS, RHS, Loc); | |||
| 12714 | ||||
| 12715 | // C99 6.5.8p3 / C99 6.5.9p4 | |||
| 12716 | QualType Type = | |||
| 12717 | S.UsualArithmeticConversions(LHS, RHS, Loc, Sema::ACK_Comparison); | |||
| 12718 | if (LHS.isInvalid() || RHS.isInvalid()) | |||
| 12719 | return QualType(); | |||
| 12720 | if (Type.isNull()) | |||
| 12721 | return S.InvalidOperands(Loc, LHS, RHS); | |||
| 12722 | assert(Type->isArithmeticType() || Type->isEnumeralType())(static_cast <bool> (Type->isArithmeticType() || Type ->isEnumeralType()) ? void (0) : __assert_fail ("Type->isArithmeticType() || Type->isEnumeralType()" , "clang/lib/Sema/SemaExpr.cpp", 12722, __extension__ __PRETTY_FUNCTION__ )); | |||
| 12723 | ||||
| 12724 | if (Type->isAnyComplexType() && BinaryOperator::isRelationalOp(Opc)) | |||
| 12725 | return S.InvalidOperands(Loc, LHS, RHS); | |||
| 12726 | ||||
| 12727 | // Check for comparisons of floating point operands using != and ==. | |||
| 12728 | if (Type->hasFloatingRepresentation()) | |||
| 12729 | S.CheckFloatComparison(Loc, LHS.get(), RHS.get(), Opc); | |||
| 12730 | ||||
| 12731 | // The result of comparisons is 'bool' in C++, 'int' in C. | |||
| 12732 | return S.Context.getLogicalOperationType(); | |||
| 12733 | } | |||
| 12734 | ||||
| 12735 | void Sema::CheckPtrComparisonWithNullChar(ExprResult &E, ExprResult &NullE) { | |||
| 12736 | if (!NullE.get()->getType()->isAnyPointerType()) | |||
| 12737 | return; | |||
| 12738 | int NullValue = PP.isMacroDefined("NULL") ? 0 : 1; | |||
| 12739 | if (!E.get()->getType()->isAnyPointerType() && | |||
| 12740 | E.get()->isNullPointerConstant(Context, | |||
| 12741 | Expr::NPC_ValueDependentIsNotNull) == | |||
| 12742 | Expr::NPCK_ZeroExpression) { | |||
| 12743 | if (const auto *CL = dyn_cast<CharacterLiteral>(E.get())) { | |||
| 12744 | if (CL->getValue() == 0) | |||
| 12745 | Diag(E.get()->getExprLoc(), diag::warn_pointer_compare) | |||
| 12746 | << NullValue | |||
| 12747 | << FixItHint::CreateReplacement(E.get()->getExprLoc(), | |||
| 12748 | NullValue ? "NULL" : "(void *)0"); | |||
| 12749 | } else if (const auto *CE = dyn_cast<CStyleCastExpr>(E.get())) { | |||
| 12750 | TypeSourceInfo *TI = CE->getTypeInfoAsWritten(); | |||
| 12751 | QualType T = Context.getCanonicalType(TI->getType()).getUnqualifiedType(); | |||
| 12752 | if (T == Context.CharTy) | |||
| 12753 | Diag(E.get()->getExprLoc(), diag::warn_pointer_compare) | |||
| 12754 | << NullValue | |||
| 12755 | << FixItHint::CreateReplacement(E.get()->getExprLoc(), | |||
| 12756 | NullValue ? "NULL" : "(void *)0"); | |||
| 12757 | } | |||
| 12758 | } | |||
| 12759 | } | |||
| 12760 | ||||
| 12761 | // C99 6.5.8, C++ [expr.rel] | |||
| 12762 | QualType Sema::CheckCompareOperands(ExprResult &LHS, ExprResult &RHS, | |||
| 12763 | SourceLocation Loc, | |||
| 12764 | BinaryOperatorKind Opc) { | |||
| 12765 | bool IsRelational = BinaryOperator::isRelationalOp(Opc); | |||
| 12766 | bool IsThreeWay = Opc == BO_Cmp; | |||
| 12767 | bool IsOrdered = IsRelational || IsThreeWay; | |||
| 12768 | auto IsAnyPointerType = [](ExprResult E) { | |||
| 12769 | QualType Ty = E.get()->getType(); | |||
| 12770 | return Ty->isPointerType() || Ty->isMemberPointerType(); | |||
| 12771 | }; | |||
| 12772 | ||||
| 12773 | // C++2a [expr.spaceship]p6: If at least one of the operands is of pointer | |||
| 12774 | // type, array-to-pointer, ..., conversions are performed on both operands to | |||
| 12775 | // bring them to their composite type. | |||
| 12776 | // Otherwise, all comparisons expect an rvalue, so convert to rvalue before | |||
| 12777 | // any type-related checks. | |||
| 12778 | if (!IsThreeWay || IsAnyPointerType(LHS) || IsAnyPointerType(RHS)) { | |||
| 12779 | LHS = DefaultFunctionArrayLvalueConversion(LHS.get()); | |||
| 12780 | if (LHS.isInvalid()) | |||
| 12781 | return QualType(); | |||
| 12782 | RHS = DefaultFunctionArrayLvalueConversion(RHS.get()); | |||
| 12783 | if (RHS.isInvalid()) | |||
| 12784 | return QualType(); | |||
| 12785 | } else { | |||
| 12786 | LHS = DefaultLvalueConversion(LHS.get()); | |||
| 12787 | if (LHS.isInvalid()) | |||
| 12788 | return QualType(); | |||
| 12789 | RHS = DefaultLvalueConversion(RHS.get()); | |||
| 12790 | if (RHS.isInvalid()) | |||
| 12791 | return QualType(); | |||
| 12792 | } | |||
| 12793 | ||||
| 12794 | checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/true); | |||
| 12795 | if (!getLangOpts().CPlusPlus && BinaryOperator::isEqualityOp(Opc)) { | |||
| 12796 | CheckPtrComparisonWithNullChar(LHS, RHS); | |||
| 12797 | CheckPtrComparisonWithNullChar(RHS, LHS); | |||
| 12798 | } | |||
| 12799 | ||||
| 12800 | // Handle vector comparisons separately. | |||
| 12801 | if (LHS.get()->getType()->isVectorType() || | |||
| 12802 | RHS.get()->getType()->isVectorType()) | |||
| 12803 | return CheckVectorCompareOperands(LHS, RHS, Loc, Opc); | |||
| 12804 | ||||
| 12805 | if (LHS.get()->getType()->isVLSTBuiltinType() || | |||
| 12806 | RHS.get()->getType()->isVLSTBuiltinType()) | |||
| 12807 | return CheckSizelessVectorCompareOperands(LHS, RHS, Loc, Opc); | |||
| 12808 | ||||
| 12809 | diagnoseLogicalNotOnLHSofCheck(*this, LHS, RHS, Loc, Opc); | |||
| 12810 | diagnoseTautologicalComparison(*this, Loc, LHS.get(), RHS.get(), Opc); | |||
| 12811 | ||||
| 12812 | QualType LHSType = LHS.get()->getType(); | |||
| 12813 | QualType RHSType = RHS.get()->getType(); | |||
| 12814 | if ((LHSType->isArithmeticType() || LHSType->isEnumeralType()) && | |||
| 12815 | (RHSType->isArithmeticType() || RHSType->isEnumeralType())) | |||
| 12816 | return checkArithmeticOrEnumeralCompare(*this, LHS, RHS, Loc, Opc); | |||
| 12817 | ||||
| 12818 | const Expr::NullPointerConstantKind LHSNullKind = | |||
| 12819 | LHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull); | |||
| 12820 | const Expr::NullPointerConstantKind RHSNullKind = | |||
| 12821 | RHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull); | |||
| 12822 | bool LHSIsNull = LHSNullKind != Expr::NPCK_NotNull; | |||
| 12823 | bool RHSIsNull = RHSNullKind != Expr::NPCK_NotNull; | |||
| 12824 | ||||
| 12825 | auto computeResultTy = [&]() { | |||
| 12826 | if (Opc != BO_Cmp) | |||
| 12827 | return Context.getLogicalOperationType(); | |||
| 12828 | assert(getLangOpts().CPlusPlus)(static_cast <bool> (getLangOpts().CPlusPlus) ? void (0 ) : __assert_fail ("getLangOpts().CPlusPlus", "clang/lib/Sema/SemaExpr.cpp" , 12828, __extension__ __PRETTY_FUNCTION__)); | |||
| 12829 | assert(Context.hasSameType(LHS.get()->getType(), RHS.get()->getType()))(static_cast <bool> (Context.hasSameType(LHS.get()-> getType(), RHS.get()->getType())) ? void (0) : __assert_fail ("Context.hasSameType(LHS.get()->getType(), RHS.get()->getType())" , "clang/lib/Sema/SemaExpr.cpp", 12829, __extension__ __PRETTY_FUNCTION__ )); | |||
| 12830 | ||||
| 12831 | QualType CompositeTy = LHS.get()->getType(); | |||
| 12832 | assert(!CompositeTy->isReferenceType())(static_cast <bool> (!CompositeTy->isReferenceType() ) ? void (0) : __assert_fail ("!CompositeTy->isReferenceType()" , "clang/lib/Sema/SemaExpr.cpp", 12832, __extension__ __PRETTY_FUNCTION__ )); | |||
| 12833 | ||||
| 12834 | std::optional<ComparisonCategoryType> CCT = | |||
| 12835 | getComparisonCategoryForBuiltinCmp(CompositeTy); | |||
| 12836 | if (!CCT) | |||
| 12837 | return InvalidOperands(Loc, LHS, RHS); | |||
| 12838 | ||||
| 12839 | if (CompositeTy->isPointerType() && LHSIsNull != RHSIsNull) { | |||
| 12840 | // P0946R0: Comparisons between a null pointer constant and an object | |||
| 12841 | // pointer result in std::strong_equality, which is ill-formed under | |||
| 12842 | // P1959R0. | |||
| 12843 | Diag(Loc, diag::err_typecheck_three_way_comparison_of_pointer_and_zero) | |||
| 12844 | << (LHSIsNull ? LHS.get()->getSourceRange() | |||
| 12845 | : RHS.get()->getSourceRange()); | |||
| 12846 | return QualType(); | |||
| 12847 | } | |||
| 12848 | ||||
| 12849 | return CheckComparisonCategoryType( | |||
| 12850 | *CCT, Loc, ComparisonCategoryUsage::OperatorInExpression); | |||
| 12851 | }; | |||
| 12852 | ||||
| 12853 | if (!IsOrdered && LHSIsNull != RHSIsNull) { | |||
| 12854 | bool IsEquality = Opc == BO_EQ; | |||
| 12855 | if (RHSIsNull) | |||
| 12856 | DiagnoseAlwaysNonNullPointer(LHS.get(), RHSNullKind, IsEquality, | |||
| 12857 | RHS.get()->getSourceRange()); | |||
| 12858 | else | |||
| 12859 | DiagnoseAlwaysNonNullPointer(RHS.get(), LHSNullKind, IsEquality, | |||
| 12860 | LHS.get()->getSourceRange()); | |||
| 12861 | } | |||
| 12862 | ||||
| 12863 | if (IsOrdered && LHSType->isFunctionPointerType() && | |||
| 12864 | RHSType->isFunctionPointerType()) { | |||
| 12865 | // Valid unless a relational comparison of function pointers | |||
| 12866 | bool IsError = Opc == BO_Cmp; | |||
| 12867 | auto DiagID = | |||
| 12868 | IsError ? diag::err_typecheck_ordered_comparison_of_function_pointers | |||
| 12869 | : getLangOpts().CPlusPlus | |||
| 12870 | ? diag::warn_typecheck_ordered_comparison_of_function_pointers | |||
| 12871 | : diag::ext_typecheck_ordered_comparison_of_function_pointers; | |||
| 12872 | Diag(Loc, DiagID) << LHSType << RHSType << LHS.get()->getSourceRange() | |||
| 12873 | << RHS.get()->getSourceRange(); | |||
| 12874 | if (IsError) | |||
| 12875 | return QualType(); | |||
| 12876 | } | |||
| 12877 | ||||
| 12878 | if ((LHSType->isIntegerType() && !LHSIsNull) || | |||
| 12879 | (RHSType->isIntegerType() && !RHSIsNull)) { | |||
| 12880 | // Skip normal pointer conversion checks in this case; we have better | |||
| 12881 | // diagnostics for this below. | |||
| 12882 | } else if (getLangOpts().CPlusPlus) { | |||
| 12883 | // Equality comparison of a function pointer to a void pointer is invalid, | |||
| 12884 | // but we allow it as an extension. | |||
| 12885 | // FIXME: If we really want to allow this, should it be part of composite | |||
| 12886 | // pointer type computation so it works in conditionals too? | |||
| 12887 | if (!IsOrdered && | |||
| 12888 | ((LHSType->isFunctionPointerType() && RHSType->isVoidPointerType()) || | |||
| 12889 | (RHSType->isFunctionPointerType() && LHSType->isVoidPointerType()))) { | |||
| 12890 | // This is a gcc extension compatibility comparison. | |||
| 12891 | // In a SFINAE context, we treat this as a hard error to maintain | |||
| 12892 | // conformance with the C++ standard. | |||
| 12893 | diagnoseFunctionPointerToVoidComparison( | |||
| 12894 | *this, Loc, LHS, RHS, /*isError*/ (bool)isSFINAEContext()); | |||
| 12895 | ||||
| 12896 | if (isSFINAEContext()) | |||
| 12897 | return QualType(); | |||
| 12898 | ||||
| 12899 | RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast); | |||
| 12900 | return computeResultTy(); | |||
| 12901 | } | |||
| 12902 | ||||
| 12903 | // C++ [expr.eq]p2: | |||
| 12904 | // If at least one operand is a pointer [...] bring them to their | |||
| 12905 | // composite pointer type. | |||
| 12906 | // C++ [expr.spaceship]p6 | |||
| 12907 | // If at least one of the operands is of pointer type, [...] bring them | |||
| 12908 | // to their composite pointer type. | |||
| 12909 | // C++ [expr.rel]p2: | |||
| 12910 | // If both operands are pointers, [...] bring them to their composite | |||
| 12911 | // pointer type. | |||
| 12912 | // For <=>, the only valid non-pointer types are arrays and functions, and | |||
| 12913 | // we already decayed those, so this is really the same as the relational | |||
| 12914 | // comparison rule. | |||
| 12915 | if ((int)LHSType->isPointerType() + (int)RHSType->isPointerType() >= | |||
| 12916 | (IsOrdered ? 2 : 1) && | |||
| 12917 | (!LangOpts.ObjCAutoRefCount || !(LHSType->isObjCObjectPointerType() || | |||
| 12918 | RHSType->isObjCObjectPointerType()))) { | |||
| 12919 | if (convertPointersToCompositeType(*this, Loc, LHS, RHS)) | |||
| 12920 | return QualType(); | |||
| 12921 | return computeResultTy(); | |||
| 12922 | } | |||
| 12923 | } else if (LHSType->isPointerType() && | |||
| 12924 | RHSType->isPointerType()) { // C99 6.5.8p2 | |||
| 12925 | // All of the following pointer-related warnings are GCC extensions, except | |||
| 12926 | // when handling null pointer constants. | |||
| 12927 | QualType LCanPointeeTy = | |||
| 12928 | LHSType->castAs<PointerType>()->getPointeeType().getCanonicalType(); | |||
| 12929 | QualType RCanPointeeTy = | |||
| 12930 | RHSType->castAs<PointerType>()->getPointeeType().getCanonicalType(); | |||
| 12931 | ||||
| 12932 | // C99 6.5.9p2 and C99 6.5.8p2 | |||
| 12933 | if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(), | |||
| 12934 | RCanPointeeTy.getUnqualifiedType())) { | |||
| 12935 | if (IsRelational) { | |||
| 12936 | // Pointers both need to point to complete or incomplete types | |||
| 12937 | if ((LCanPointeeTy->isIncompleteType() != | |||
| 12938 | RCanPointeeTy->isIncompleteType()) && | |||
| 12939 | !getLangOpts().C11) { | |||
| 12940 | Diag(Loc, diag::ext_typecheck_compare_complete_incomplete_pointers) | |||
| 12941 | << LHS.get()->getSourceRange() << RHS.get()->getSourceRange() | |||
| 12942 | << LHSType << RHSType << LCanPointeeTy->isIncompleteType() | |||
| 12943 | << RCanPointeeTy->isIncompleteType(); | |||
| 12944 | } | |||
| 12945 | } | |||
| 12946 | } else if (!IsRelational && | |||
| 12947 | (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) { | |||
| 12948 | // Valid unless comparison between non-null pointer and function pointer | |||
| 12949 | if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType()) | |||
| 12950 | && !LHSIsNull && !RHSIsNull) | |||
| 12951 | diagnoseFunctionPointerToVoidComparison(*this, Loc, LHS, RHS, | |||
| 12952 | /*isError*/false); | |||
| 12953 | } else { | |||
| 12954 | // Invalid | |||
| 12955 | diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS, /*isError*/false); | |||
| 12956 | } | |||
| 12957 | if (LCanPointeeTy != RCanPointeeTy) { | |||
| 12958 | // Treat NULL constant as a special case in OpenCL. | |||
| 12959 | if (getLangOpts().OpenCL && !LHSIsNull && !RHSIsNull) { | |||
| 12960 | if (!LCanPointeeTy.isAddressSpaceOverlapping(RCanPointeeTy)) { | |||
| 12961 | Diag(Loc, | |||
| 12962 | diag::err_typecheck_op_on_nonoverlapping_address_space_pointers) | |||
| 12963 | << LHSType << RHSType << 0 /* comparison */ | |||
| 12964 | << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); | |||
| 12965 | } | |||
| 12966 | } | |||
| 12967 | LangAS AddrSpaceL = LCanPointeeTy.getAddressSpace(); | |||
| 12968 | LangAS AddrSpaceR = RCanPointeeTy.getAddressSpace(); | |||
| 12969 | CastKind Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion | |||
| 12970 | : CK_BitCast; | |||
| 12971 | if (LHSIsNull && !RHSIsNull) | |||
| 12972 | LHS = ImpCastExprToType(LHS.get(), RHSType, Kind); | |||
| 12973 | else | |||
| 12974 | RHS = ImpCastExprToType(RHS.get(), LHSType, Kind); | |||
| 12975 | } | |||
| 12976 | return computeResultTy(); | |||
| 12977 | } | |||
| 12978 | ||||
| 12979 | ||||
| 12980 | // C++ [expr.eq]p4: | |||
| 12981 | // Two operands of type std::nullptr_t or one operand of type | |||
| 12982 | // std::nullptr_t and the other a null pointer constant compare | |||
| 12983 | // equal. | |||
| 12984 | // C2x 6.5.9p5: | |||
| 12985 | // If both operands have type nullptr_t or one operand has type nullptr_t | |||
| 12986 | // and the other is a null pointer constant, they compare equal. | |||
| 12987 | if (!IsOrdered && LHSIsNull && RHSIsNull) { | |||
| 12988 | if (LHSType->isNullPtrType()) { | |||
| 12989 | RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer); | |||
| 12990 | return computeResultTy(); | |||
| 12991 | } | |||
| 12992 | if (RHSType->isNullPtrType()) { | |||
| 12993 | LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer); | |||
| 12994 | return computeResultTy(); | |||
| 12995 | } | |||
| 12996 | } | |||
| 12997 | ||||
| 12998 | if (!getLangOpts().CPlusPlus && !IsOrdered && (LHSIsNull || RHSIsNull)) { | |||
| 12999 | // C2x 6.5.9p6: | |||
| 13000 | // Otherwise, at least one operand is a pointer. If one is a pointer and | |||
| 13001 | // the other is a null pointer constant, the null pointer constant is | |||
| 13002 | // converted to the type of the pointer. | |||
| 13003 | if (LHSIsNull && RHSType->isPointerType()) { | |||
| 13004 | LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer); | |||
| 13005 | return computeResultTy(); | |||
| 13006 | } | |||
| 13007 | if (RHSIsNull && LHSType->isPointerType()) { | |||
| 13008 | RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer); | |||
| 13009 | return computeResultTy(); | |||
| 13010 | } | |||
| 13011 | } | |||
| 13012 | ||||
| 13013 | // Comparison of Objective-C pointers and block pointers against nullptr_t. | |||
| 13014 | // These aren't covered by the composite pointer type rules. | |||
| 13015 | if (!IsOrdered && RHSType->isNullPtrType() && | |||
| 13016 | (LHSType->isObjCObjectPointerType() || LHSType->isBlockPointerType())) { | |||
| 13017 | RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer); | |||
| 13018 | return computeResultTy(); | |||
| 13019 | } | |||
| 13020 | if (!IsOrdered && LHSType->isNullPtrType() && | |||
| 13021 | (RHSType->isObjCObjectPointerType() || RHSType->isBlockPointerType())) { | |||
| 13022 | LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer); | |||
| 13023 | return computeResultTy(); | |||
| 13024 | } | |||
| 13025 | ||||
| 13026 | if (getLangOpts().CPlusPlus) { | |||
| 13027 | if (IsRelational && | |||
| 13028 | ((LHSType->isNullPtrType() && RHSType->isPointerType()) || | |||
| 13029 | (RHSType->isNullPtrType() && LHSType->isPointerType()))) { | |||
| 13030 | // HACK: Relational comparison of nullptr_t against a pointer type is | |||
| 13031 | // invalid per DR583, but we allow it within std::less<> and friends, | |||
| 13032 | // since otherwise common uses of it break. | |||
| 13033 | // FIXME: Consider removing this hack once LWG fixes std::less<> and | |||
| 13034 | // friends to have std::nullptr_t overload candidates. | |||
| 13035 | DeclContext *DC = CurContext; | |||
| 13036 | if (isa<FunctionDecl>(DC)) | |||
| 13037 | DC = DC->getParent(); | |||
| 13038 | if (auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(DC)) { | |||
| 13039 | if (CTSD->isInStdNamespace() && | |||
| 13040 | llvm::StringSwitch<bool>(CTSD->getName()) | |||
| 13041 | .Cases("less", "less_equal", "greater", "greater_equal", true) | |||
| 13042 | .Default(false)) { | |||
| 13043 | if (RHSType->isNullPtrType()) | |||
| 13044 | RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer); | |||
| 13045 | else | |||
| 13046 | LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer); | |||
| 13047 | return computeResultTy(); | |||
| 13048 | } | |||
| 13049 | } | |||
| 13050 | } | |||
| 13051 | ||||
| 13052 | // C++ [expr.eq]p2: | |||
| 13053 | // If at least one operand is a pointer to member, [...] bring them to | |||
| 13054 | // their composite pointer type. | |||
| 13055 | if (!IsOrdered && | |||
| 13056 | (LHSType->isMemberPointerType() || RHSType->isMemberPointerType())) { | |||
| 13057 | if (convertPointersToCompositeType(*this, Loc, LHS, RHS)) | |||
| 13058 | return QualType(); | |||
| 13059 | else | |||
| 13060 | return computeResultTy(); | |||
| 13061 | } | |||
| 13062 | } | |||
| 13063 | ||||
| 13064 | // Handle block pointer types. | |||
| 13065 | if (!IsOrdered && LHSType->isBlockPointerType() && | |||
| 13066 | RHSType->isBlockPointerType()) { | |||
| 13067 | QualType lpointee = LHSType->castAs<BlockPointerType>()->getPointeeType(); | |||
| 13068 | QualType rpointee = RHSType->castAs<BlockPointerType>()->getPointeeType(); | |||
| 13069 | ||||
| 13070 | if (!LHSIsNull && !RHSIsNull && | |||
| 13071 | !Context.typesAreCompatible(lpointee, rpointee)) { | |||
| 13072 | Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks) | |||
| 13073 | << LHSType << RHSType << LHS.get()->getSourceRange() | |||
| 13074 | << RHS.get()->getSourceRange(); | |||
| 13075 | } | |||
| 13076 | RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast); | |||
| 13077 | return computeResultTy(); | |||
| 13078 | } | |||
| 13079 | ||||
| 13080 | // Allow block pointers to be compared with null pointer constants. | |||
| 13081 | if (!IsOrdered | |||
| 13082 | && ((LHSType->isBlockPointerType() && RHSType->isPointerType()) | |||
| 13083 | || (LHSType->isPointerType() && RHSType->isBlockPointerType()))) { | |||
| 13084 | if (!LHSIsNull && !RHSIsNull) { | |||
| 13085 | if (!((RHSType->isPointerType() && RHSType->castAs<PointerType>() | |||
| 13086 | ->getPointeeType()->isVoidType()) | |||
| 13087 | || (LHSType->isPointerType() && LHSType->castAs<PointerType>() | |||
| 13088 | ->getPointeeType()->isVoidType()))) | |||
| 13089 | Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks) | |||
| 13090 | << LHSType << RHSType << LHS.get()->getSourceRange() | |||
| 13091 | << RHS.get()->getSourceRange(); | |||
| 13092 | } | |||
| 13093 | if (LHSIsNull && !RHSIsNull) | |||
| 13094 | LHS = ImpCastExprToType(LHS.get(), RHSType, | |||
| 13095 | RHSType->isPointerType() ? CK_BitCast | |||
| 13096 | : CK_AnyPointerToBlockPointerCast); | |||
| 13097 | else | |||
| 13098 | RHS = ImpCastExprToType(RHS.get(), LHSType, | |||
| 13099 | LHSType->isPointerType() ? CK_BitCast | |||
| 13100 | : CK_AnyPointerToBlockPointerCast); | |||
| 13101 | return computeResultTy(); | |||
| 13102 | } | |||
| 13103 | ||||
| 13104 | if (LHSType->isObjCObjectPointerType() || | |||
| 13105 | RHSType->isObjCObjectPointerType()) { | |||
| 13106 | const PointerType *LPT = LHSType->getAs<PointerType>(); | |||
| 13107 | const PointerType *RPT = RHSType->getAs<PointerType>(); | |||
| 13108 | if (LPT || RPT) { | |||
| 13109 | bool LPtrToVoid = LPT ? LPT->getPointeeType()->isVoidType() : false; | |||
| 13110 | bool RPtrToVoid = RPT ? RPT->getPointeeType()->isVoidType() : false; | |||
| 13111 | ||||
| 13112 | if (!LPtrToVoid && !RPtrToVoid && | |||
| 13113 | !Context.typesAreCompatible(LHSType, RHSType)) { | |||
| 13114 | diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS, | |||
| 13115 | /*isError*/false); | |||
| 13116 | } | |||
| 13117 | // FIXME: If LPtrToVoid, we should presumably convert the LHS rather than | |||
| 13118 | // the RHS, but we have test coverage for this behavior. | |||
| 13119 | // FIXME: Consider using convertPointersToCompositeType in C++. | |||
| 13120 | if (LHSIsNull && !RHSIsNull) { | |||
| 13121 | Expr *E = LHS.get(); | |||
| 13122 | if (getLangOpts().ObjCAutoRefCount) | |||
| 13123 | CheckObjCConversion(SourceRange(), RHSType, E, | |||
| 13124 | CCK_ImplicitConversion); | |||
| 13125 | LHS = ImpCastExprToType(E, RHSType, | |||
| 13126 | RPT ? CK_BitCast :CK_CPointerToObjCPointerCast); | |||
| 13127 | } | |||
| 13128 | else { | |||
| 13129 | Expr *E = RHS.get(); | |||
| 13130 | if (getLangOpts().ObjCAutoRefCount) | |||
| 13131 | CheckObjCConversion(SourceRange(), LHSType, E, CCK_ImplicitConversion, | |||
| 13132 | /*Diagnose=*/true, | |||
| 13133 | /*DiagnoseCFAudited=*/false, Opc); | |||
| 13134 | RHS = ImpCastExprToType(E, LHSType, | |||
| 13135 | LPT ? CK_BitCast :CK_CPointerToObjCPointerCast); | |||
| 13136 | } | |||
| 13137 | return computeResultTy(); | |||
| 13138 | } | |||
| 13139 | if (LHSType->isObjCObjectPointerType() && | |||
| 13140 | RHSType->isObjCObjectPointerType()) { | |||
| 13141 | if (!Context.areComparableObjCPointerTypes(LHSType, RHSType)) | |||
| 13142 | diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS, | |||
| 13143 | /*isError*/false); | |||
| 13144 | if (isObjCObjectLiteral(LHS) || isObjCObjectLiteral(RHS)) | |||
| 13145 | diagnoseObjCLiteralComparison(*this, Loc, LHS, RHS, Opc); | |||
| 13146 | ||||
| 13147 | if (LHSIsNull && !RHSIsNull) | |||
| 13148 | LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast); | |||
| 13149 | else | |||
| 13150 | RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast); | |||
| 13151 | return computeResultTy(); | |||
| 13152 | } | |||
| 13153 | ||||
| 13154 | if (!IsOrdered && LHSType->isBlockPointerType() && | |||
| 13155 | RHSType->isBlockCompatibleObjCPointerType(Context)) { | |||
| 13156 | LHS = ImpCastExprToType(LHS.get(), RHSType, | |||
| 13157 | CK_BlockPointerToObjCPointerCast); | |||
| 13158 | return computeResultTy(); | |||
| 13159 | } else if (!IsOrdered && | |||
| 13160 | LHSType->isBlockCompatibleObjCPointerType(Context) && | |||
| 13161 | RHSType->isBlockPointerType()) { | |||
| 13162 | RHS = ImpCastExprToType(RHS.get(), LHSType, | |||
| 13163 | CK_BlockPointerToObjCPointerCast); | |||
| 13164 | return computeResultTy(); | |||
| 13165 | } | |||
| 13166 | } | |||
| 13167 | if ((LHSType->isAnyPointerType() && RHSType->isIntegerType()) || | |||
| 13168 | (LHSType->isIntegerType() && RHSType->isAnyPointerType())) { | |||
| 13169 | unsigned DiagID = 0; | |||
| 13170 | bool isError = false; | |||
| 13171 | if (LangOpts.DebuggerSupport) { | |||
| 13172 | // Under a debugger, allow the comparison of pointers to integers, | |||
| 13173 | // since users tend to want to compare addresses. | |||
| 13174 | } else if ((LHSIsNull && LHSType->isIntegerType()) || | |||
| 13175 | (RHSIsNull && RHSType->isIntegerType())) { | |||
| 13176 | if (IsOrdered) { | |||
| 13177 | isError = getLangOpts().CPlusPlus; | |||
| 13178 | DiagID = | |||
| 13179 | isError ? diag::err_typecheck_ordered_comparison_of_pointer_and_zero | |||
| 13180 | : diag::ext_typecheck_ordered_comparison_of_pointer_and_zero; | |||
| 13181 | } | |||
| 13182 | } else if (getLangOpts().CPlusPlus) { | |||
| 13183 | DiagID = diag::err_typecheck_comparison_of_pointer_integer; | |||
| 13184 | isError = true; | |||
| 13185 | } else if (IsOrdered) | |||
| 13186 | DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer; | |||
| 13187 | else | |||
| 13188 | DiagID = diag::ext_typecheck_comparison_of_pointer_integer; | |||
| 13189 | ||||
| 13190 | if (DiagID) { | |||
| 13191 | Diag(Loc, DiagID) | |||
| 13192 | << LHSType << RHSType << LHS.get()->getSourceRange() | |||
| 13193 | << RHS.get()->getSourceRange(); | |||
| 13194 | if (isError) | |||
| 13195 | return QualType(); | |||
| 13196 | } | |||
| 13197 | ||||
| 13198 | if (LHSType->isIntegerType()) | |||
| 13199 | LHS = ImpCastExprToType(LHS.get(), RHSType, | |||
| 13200 | LHSIsNull ? CK_NullToPointer : CK_IntegralToPointer); | |||
| 13201 | else | |||
| 13202 | RHS = ImpCastExprToType(RHS.get(), LHSType, | |||
| 13203 | RHSIsNull ? CK_NullToPointer : CK_IntegralToPointer); | |||
| 13204 | return computeResultTy(); | |||
| 13205 | } | |||
| 13206 | ||||
| 13207 | // Handle block pointers. | |||
| 13208 | if (!IsOrdered && RHSIsNull | |||
| 13209 | && LHSType->isBlockPointerType() && RHSType->isIntegerType()) { | |||
| 13210 | RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer); | |||
| 13211 | return computeResultTy(); | |||
| 13212 | } | |||
| 13213 | if (!IsOrdered && LHSIsNull | |||
| 13214 | && LHSType->isIntegerType() && RHSType->isBlockPointerType()) { | |||
| 13215 | LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer); | |||
| 13216 | return computeResultTy(); | |||
| 13217 | } | |||
| 13218 | ||||
| 13219 | if (getLangOpts().getOpenCLCompatibleVersion() >= 200) { | |||
| 13220 | if (LHSType->isClkEventT() && RHSType->isClkEventT()) { | |||
| 13221 | return computeResultTy(); | |||
| 13222 | } | |||
| 13223 | ||||
| 13224 | if (LHSType->isQueueT() && RHSType->isQueueT()) { | |||
| 13225 | return computeResultTy(); | |||
| 13226 | } | |||
| 13227 | ||||
| 13228 | if (LHSIsNull && RHSType->isQueueT()) { | |||
| 13229 | LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer); | |||
| 13230 | return computeResultTy(); | |||
| 13231 | } | |||
| 13232 | ||||
| 13233 | if (LHSType->isQueueT() && RHSIsNull) { | |||
| 13234 | RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer); | |||
| 13235 | return computeResultTy(); | |||
| 13236 | } | |||
| 13237 | } | |||
| 13238 | ||||
| 13239 | return InvalidOperands(Loc, LHS, RHS); | |||
| 13240 | } | |||
| 13241 | ||||
| 13242 | // Return a signed ext_vector_type that is of identical size and number of | |||
| 13243 | // elements. For floating point vectors, return an integer type of identical | |||
| 13244 | // size and number of elements. In the non ext_vector_type case, search from | |||
| 13245 | // the largest type to the smallest type to avoid cases where long long == long, | |||
| 13246 | // where long gets picked over long long. | |||
| 13247 | QualType Sema::GetSignedVectorType(QualType V) { | |||
| 13248 | const VectorType *VTy = V->castAs<VectorType>(); | |||
| 13249 | unsigned TypeSize = Context.getTypeSize(VTy->getElementType()); | |||
| 13250 | ||||
| 13251 | if (isa<ExtVectorType>(VTy)) { | |||
| 13252 | if (VTy->isExtVectorBoolType()) | |||
| 13253 | return Context.getExtVectorType(Context.BoolTy, VTy->getNumElements()); | |||
| 13254 | if (TypeSize == Context.getTypeSize(Context.CharTy)) | |||
| 13255 | return Context.getExtVectorType(Context.CharTy, VTy->getNumElements()); | |||
| 13256 | if (TypeSize == Context.getTypeSize(Context.ShortTy)) | |||
| 13257 | return Context.getExtVectorType(Context.ShortTy, VTy->getNumElements()); | |||
| 13258 | if (TypeSize == Context.getTypeSize(Context.IntTy)) | |||
| 13259 | return Context.getExtVectorType(Context.IntTy, VTy->getNumElements()); | |||
| 13260 | if (TypeSize == Context.getTypeSize(Context.Int128Ty)) | |||
| 13261 | return Context.getExtVectorType(Context.Int128Ty, VTy->getNumElements()); | |||
| 13262 | if (TypeSize == Context.getTypeSize(Context.LongTy)) | |||
| 13263 | return Context.getExtVectorType(Context.LongTy, VTy->getNumElements()); | |||
| 13264 | assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&(static_cast <bool> (TypeSize == Context.getTypeSize(Context .LongLongTy) && "Unhandled vector element size in vector compare" ) ? void (0) : __assert_fail ("TypeSize == Context.getTypeSize(Context.LongLongTy) && \"Unhandled vector element size in vector compare\"" , "clang/lib/Sema/SemaExpr.cpp", 13265, __extension__ __PRETTY_FUNCTION__ )) | |||
| 13265 | "Unhandled vector element size in vector compare")(static_cast <bool> (TypeSize == Context.getTypeSize(Context .LongLongTy) && "Unhandled vector element size in vector compare" ) ? void (0) : __assert_fail ("TypeSize == Context.getTypeSize(Context.LongLongTy) && \"Unhandled vector element size in vector compare\"" , "clang/lib/Sema/SemaExpr.cpp", 13265, __extension__ __PRETTY_FUNCTION__ )); | |||
| 13266 | return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements()); | |||
| 13267 | } | |||
| 13268 | ||||
| 13269 | if (TypeSize == Context.getTypeSize(Context.Int128Ty)) | |||
| 13270 | return Context.getVectorType(Context.Int128Ty, VTy->getNumElements(), | |||
| 13271 | VectorType::GenericVector); | |||
| 13272 | if (TypeSize == Context.getTypeSize(Context.LongLongTy)) | |||
| 13273 | return Context.getVectorType(Context.LongLongTy, VTy->getNumElements(), | |||
| 13274 | VectorType::GenericVector); | |||
| 13275 | if (TypeSize == Context.getTypeSize(Context.LongTy)) | |||
| 13276 | return Context.getVectorType(Context.LongTy, VTy->getNumElements(), | |||
| 13277 | VectorType::GenericVector); | |||
| 13278 | if (TypeSize == Context.getTypeSize(Context.IntTy)) | |||
| 13279 | return Context.getVectorType(Context.IntTy, VTy->getNumElements(), | |||
| 13280 | VectorType::GenericVector); | |||
| 13281 | if (TypeSize == Context.getTypeSize(Context.ShortTy)) | |||
| 13282 | return Context.getVectorType(Context.ShortTy, VTy->getNumElements(), | |||
| 13283 | VectorType::GenericVector); | |||
| 13284 | assert(TypeSize == Context.getTypeSize(Context.CharTy) &&(static_cast <bool> (TypeSize == Context.getTypeSize(Context .CharTy) && "Unhandled vector element size in vector compare" ) ? void (0) : __assert_fail ("TypeSize == Context.getTypeSize(Context.CharTy) && \"Unhandled vector element size in vector compare\"" , "clang/lib/Sema/SemaExpr.cpp", 13285, __extension__ __PRETTY_FUNCTION__ )) | |||
| 13285 | "Unhandled vector element size in vector compare")(static_cast <bool> (TypeSize == Context.getTypeSize(Context .CharTy) && "Unhandled vector element size in vector compare" ) ? void (0) : __assert_fail ("TypeSize == Context.getTypeSize(Context.CharTy) && \"Unhandled vector element size in vector compare\"" , "clang/lib/Sema/SemaExpr.cpp", 13285, __extension__ __PRETTY_FUNCTION__ )); | |||
| 13286 | return Context.getVectorType(Context.CharTy, VTy->getNumElements(), | |||
| 13287 | VectorType::GenericVector); | |||
| 13288 | } | |||
| 13289 | ||||
| 13290 | QualType Sema::GetSignedSizelessVectorType(QualType V) { | |||
| 13291 | const BuiltinType *VTy = V->castAs<BuiltinType>(); | |||
| 13292 | assert(VTy->isSizelessBuiltinType() && "expected sizeless type")(static_cast <bool> (VTy->isSizelessBuiltinType() && "expected sizeless type") ? void (0) : __assert_fail ("VTy->isSizelessBuiltinType() && \"expected sizeless type\"" , "clang/lib/Sema/SemaExpr.cpp", 13292, __extension__ __PRETTY_FUNCTION__ )); | |||
| 13293 | ||||
| 13294 | const QualType ETy = V->getSveEltType(Context); | |||
| 13295 | const auto TypeSize = Context.getTypeSize(ETy); | |||
| 13296 | ||||
| 13297 | const QualType IntTy = Context.getIntTypeForBitwidth(TypeSize, true); | |||
| 13298 | const llvm::ElementCount VecSize = Context.getBuiltinVectorTypeInfo(VTy).EC; | |||
| 13299 | return Context.getScalableVectorType(IntTy, VecSize.getKnownMinValue()); | |||
| 13300 | } | |||
| 13301 | ||||
| 13302 | /// CheckVectorCompareOperands - vector comparisons are a clang extension that | |||
| 13303 | /// operates on extended vector types. Instead of producing an IntTy result, | |||
| 13304 | /// like a scalar comparison, a vector comparison produces a vector of integer | |||
| 13305 | /// types. | |||
| 13306 | QualType Sema::CheckVectorCompareOperands(ExprResult &LHS, ExprResult &RHS, | |||
| 13307 | SourceLocation Loc, | |||
| 13308 | BinaryOperatorKind Opc) { | |||
| 13309 | if (Opc == BO_Cmp) { | |||
| 13310 | Diag(Loc, diag::err_three_way_vector_comparison); | |||
| 13311 | return QualType(); | |||
| 13312 | } | |||
| 13313 | ||||
| 13314 | // Check to make sure we're operating on vectors of the same type and width, | |||
| 13315 | // Allowing one side to be a scalar of element type. | |||
| 13316 | QualType vType = | |||
| 13317 | CheckVectorOperands(LHS, RHS, Loc, /*isCompAssign*/ false, | |||
| 13318 | /*AllowBothBool*/ true, | |||
| 13319 | /*AllowBoolConversions*/ getLangOpts().ZVector, | |||
| 13320 | /*AllowBooleanOperation*/ true, | |||
| 13321 | /*ReportInvalid*/ true); | |||
| 13322 | if (vType.isNull()) | |||
| 13323 | return vType; | |||
| 13324 | ||||
| 13325 | QualType LHSType = LHS.get()->getType(); | |||
| 13326 | ||||
| 13327 | // Determine the return type of a vector compare. By default clang will return | |||
| 13328 | // a scalar for all vector compares except vector bool and vector pixel. | |||
| 13329 | // With the gcc compiler we will always return a vector type and with the xl | |||
| 13330 | // compiler we will always return a scalar type. This switch allows choosing | |||
| 13331 | // which behavior is prefered. | |||
| 13332 | if (getLangOpts().AltiVec) { | |||
| 13333 | switch (getLangOpts().getAltivecSrcCompat()) { | |||
| 13334 | case LangOptions::AltivecSrcCompatKind::Mixed: | |||
| 13335 | // If AltiVec, the comparison results in a numeric type, i.e. | |||
| 13336 | // bool for C++, int for C | |||
| 13337 | if (vType->castAs<VectorType>()->getVectorKind() == | |||
| 13338 | VectorType::AltiVecVector) | |||
| 13339 | return Context.getLogicalOperationType(); | |||
| 13340 | else | |||
| 13341 | Diag(Loc, diag::warn_deprecated_altivec_src_compat); | |||
| 13342 | break; | |||
| 13343 | case LangOptions::AltivecSrcCompatKind::GCC: | |||
| 13344 | // For GCC we always return the vector type. | |||
| 13345 | break; | |||
| 13346 | case LangOptions::AltivecSrcCompatKind::XL: | |||
| 13347 | return Context.getLogicalOperationType(); | |||
| 13348 | break; | |||
| 13349 | } | |||
| 13350 | } | |||
| 13351 | ||||
| 13352 | // For non-floating point types, check for self-comparisons of the form | |||
| 13353 | // x == x, x != x, x < x, etc. These always evaluate to a constant, and | |||
| 13354 | // often indicate logic errors in the program. | |||
| 13355 | diagnoseTautologicalComparison(*this, Loc, LHS.get(), RHS.get(), Opc); | |||
| 13356 | ||||
| 13357 | // Check for comparisons of floating point operands using != and ==. | |||
| 13358 | if (LHSType->hasFloatingRepresentation()) { | |||
| 13359 | assert(RHS.get()->getType()->hasFloatingRepresentation())(static_cast <bool> (RHS.get()->getType()->hasFloatingRepresentation ()) ? void (0) : __assert_fail ("RHS.get()->getType()->hasFloatingRepresentation()" , "clang/lib/Sema/SemaExpr.cpp", 13359, __extension__ __PRETTY_FUNCTION__ )); | |||
| 13360 | CheckFloatComparison(Loc, LHS.get(), RHS.get(), Opc); | |||
| 13361 | } | |||
| 13362 | ||||
| 13363 | // Return a signed type for the vector. | |||
| 13364 | return GetSignedVectorType(vType); | |||
| 13365 | } | |||
| 13366 | ||||
| 13367 | QualType Sema::CheckSizelessVectorCompareOperands(ExprResult &LHS, | |||
| 13368 | ExprResult &RHS, | |||
| 13369 | SourceLocation Loc, | |||
| 13370 | BinaryOperatorKind Opc) { | |||
| 13371 | if (Opc == BO_Cmp) { | |||
| 13372 | Diag(Loc, diag::err_three_way_vector_comparison); | |||
| 13373 | return QualType(); | |||
| 13374 | } | |||
| 13375 | ||||
| 13376 | // Check to make sure we're operating on vectors of the same type and width, | |||
| 13377 | // Allowing one side to be a scalar of element type. | |||
| 13378 | QualType vType = CheckSizelessVectorOperands( | |||
| 13379 | LHS, RHS, Loc, /*isCompAssign*/ false, ACK_Comparison); | |||
| 13380 | ||||
| 13381 | if (vType.isNull()) | |||
| 13382 | return vType; | |||
| 13383 | ||||
| 13384 | QualType LHSType = LHS.get()->getType(); | |||
| 13385 | ||||
| 13386 | // For non-floating point types, check for self-comparisons of the form | |||
| 13387 | // x == x, x != x, x < x, etc. These always evaluate to a constant, and | |||
| 13388 | // often indicate logic errors in the program. | |||
| 13389 | diagnoseTautologicalComparison(*this, Loc, LHS.get(), RHS.get(), Opc); | |||
| 13390 | ||||
| 13391 | // Check for comparisons of floating point operands using != and ==. | |||
| 13392 | if (LHSType->hasFloatingRepresentation()) { | |||
| 13393 | assert(RHS.get()->getType()->hasFloatingRepresentation())(static_cast <bool> (RHS.get()->getType()->hasFloatingRepresentation ()) ? void (0) : __assert_fail ("RHS.get()->getType()->hasFloatingRepresentation()" , "clang/lib/Sema/SemaExpr.cpp", 13393, __extension__ __PRETTY_FUNCTION__ )); | |||
| 13394 | CheckFloatComparison(Loc, LHS.get(), RHS.get(), Opc); | |||
| 13395 | } | |||
| 13396 | ||||
| 13397 | const BuiltinType *LHSBuiltinTy = LHSType->getAs<BuiltinType>(); | |||
| 13398 | const BuiltinType *RHSBuiltinTy = RHS.get()->getType()->getAs<BuiltinType>(); | |||
| 13399 | ||||
| 13400 | if (LHSBuiltinTy && RHSBuiltinTy && LHSBuiltinTy->isSVEBool() && | |||
| 13401 | RHSBuiltinTy->isSVEBool()) | |||
| 13402 | return LHSType; | |||
| 13403 | ||||
| 13404 | // Return a signed type for the vector. | |||
| 13405 | return GetSignedSizelessVectorType(vType); | |||
| 13406 | } | |||
| 13407 | ||||
| 13408 | static void diagnoseXorMisusedAsPow(Sema &S, const ExprResult &XorLHS, | |||
| 13409 | const ExprResult &XorRHS, | |||
| 13410 | const SourceLocation Loc) { | |||
| 13411 | // Do not diagnose macros. | |||
| 13412 | if (Loc.isMacroID()) | |||
| 13413 | return; | |||
| 13414 | ||||
| 13415 | // Do not diagnose if both LHS and RHS are macros. | |||
| 13416 | if (XorLHS.get()->getExprLoc().isMacroID() && | |||
| 13417 | XorRHS.get()->getExprLoc().isMacroID()) | |||
| 13418 | return; | |||
| 13419 | ||||
| 13420 | bool Negative = false; | |||
| 13421 | bool ExplicitPlus = false; | |||
| 13422 | const auto *LHSInt = dyn_cast<IntegerLiteral>(XorLHS.get()); | |||
| 13423 | const auto *RHSInt = dyn_cast<IntegerLiteral>(XorRHS.get()); | |||
| 13424 | ||||
| 13425 | if (!LHSInt) | |||
| 13426 | return; | |||
| 13427 | if (!RHSInt) { | |||
| 13428 | // Check negative literals. | |||
| 13429 | if (const auto *UO = dyn_cast<UnaryOperator>(XorRHS.get())) { | |||
| 13430 | UnaryOperatorKind Opc = UO->getOpcode(); | |||
| 13431 | if (Opc != UO_Minus && Opc != UO_Plus) | |||
| 13432 | return; | |||
| 13433 | RHSInt = dyn_cast<IntegerLiteral>(UO->getSubExpr()); | |||
| 13434 | if (!RHSInt) | |||
| 13435 | return; | |||
| 13436 | Negative = (Opc == UO_Minus); | |||
| 13437 | ExplicitPlus = !Negative; | |||
| 13438 | } else { | |||
| 13439 | return; | |||
| 13440 | } | |||
| 13441 | } | |||
| 13442 | ||||
| 13443 | const llvm::APInt &LeftSideValue = LHSInt->getValue(); | |||
| 13444 | llvm::APInt RightSideValue = RHSInt->getValue(); | |||
| 13445 | if (LeftSideValue != 2 && LeftSideValue != 10) | |||
| 13446 | return; | |||
| 13447 | ||||
| 13448 | if (LeftSideValue.getBitWidth() != RightSideValue.getBitWidth()) | |||
| 13449 | return; | |||
| 13450 | ||||
| 13451 | CharSourceRange ExprRange = CharSourceRange::getCharRange( | |||
| 13452 | LHSInt->getBeginLoc(), S.getLocForEndOfToken(RHSInt->getLocation())); | |||
| 13453 | llvm::StringRef ExprStr = | |||
| 13454 | Lexer::getSourceText(ExprRange, S.getSourceManager(), S.getLangOpts()); | |||
| 13455 | ||||
| 13456 | CharSourceRange XorRange = | |||
| 13457 | CharSourceRange::getCharRange(Loc, S.getLocForEndOfToken(Loc)); | |||
| 13458 | llvm::StringRef XorStr = | |||
| 13459 | Lexer::getSourceText(XorRange, S.getSourceManager(), S.getLangOpts()); | |||
| 13460 | // Do not diagnose if xor keyword/macro is used. | |||
| 13461 | if (XorStr == "xor") | |||
| 13462 | return; | |||
| 13463 | ||||
| 13464 | std::string LHSStr = std::string(Lexer::getSourceText( | |||
| 13465 | CharSourceRange::getTokenRange(LHSInt->getSourceRange()), | |||
| 13466 | S.getSourceManager(), S.getLangOpts())); | |||
| 13467 | std::string RHSStr = std::string(Lexer::getSourceText( | |||
| 13468 | CharSourceRange::getTokenRange(RHSInt->getSourceRange()), | |||
| 13469 | S.getSourceManager(), S.getLangOpts())); | |||
| 13470 | ||||
| 13471 | if (Negative) { | |||
| 13472 | RightSideValue = -RightSideValue; | |||
| 13473 | RHSStr = "-" + RHSStr; | |||
| 13474 | } else if (ExplicitPlus) { | |||
| 13475 | RHSStr = "+" + RHSStr; | |||
| 13476 | } | |||
| 13477 | ||||
| 13478 | StringRef LHSStrRef = LHSStr; | |||
| 13479 | StringRef RHSStrRef = RHSStr; | |||
| 13480 | // Do not diagnose literals with digit separators, binary, hexadecimal, octal | |||
| 13481 | // literals. | |||
| 13482 | if (LHSStrRef.startswith("0b") || LHSStrRef.startswith("0B") || | |||
| 13483 | RHSStrRef.startswith("0b") || RHSStrRef.startswith("0B") || | |||
| 13484 | LHSStrRef.startswith("0x") || LHSStrRef.startswith("0X") || | |||
| 13485 | RHSStrRef.startswith("0x") || RHSStrRef.startswith("0X") || | |||
| 13486 | (LHSStrRef.size() > 1 && LHSStrRef.startswith("0")) || | |||
| 13487 | (RHSStrRef.size() > 1 && RHSStrRef.startswith("0")) || | |||
| 13488 | LHSStrRef.contains('\'') || RHSStrRef.contains('\'')) | |||
| 13489 | return; | |||
| 13490 | ||||
| 13491 | bool SuggestXor = | |||
| 13492 | S.getLangOpts().CPlusPlus || S.getPreprocessor().isMacroDefined("xor"); | |||
| 13493 | const llvm::APInt XorValue = LeftSideValue ^ RightSideValue; | |||
| 13494 | int64_t RightSideIntValue = RightSideValue.getSExtValue(); | |||
| 13495 | if (LeftSideValue == 2 && RightSideIntValue >= 0) { | |||
| 13496 | std::string SuggestedExpr = "1 << " + RHSStr; | |||
| 13497 | bool Overflow = false; | |||
| 13498 | llvm::APInt One = (LeftSideValue - 1); | |||
| 13499 | llvm::APInt PowValue = One.sshl_ov(RightSideValue, Overflow); | |||
| 13500 | if (Overflow) { | |||
| 13501 | if (RightSideIntValue < 64) | |||
| 13502 | S.Diag(Loc, diag::warn_xor_used_as_pow_base) | |||
| 13503 | << ExprStr << toString(XorValue, 10, true) << ("1LL << " + RHSStr) | |||
| 13504 | << FixItHint::CreateReplacement(ExprRange, "1LL << " + RHSStr); | |||
| 13505 | else if (RightSideIntValue == 64) | |||
| 13506 | S.Diag(Loc, diag::warn_xor_used_as_pow) | |||
| 13507 | << ExprStr << toString(XorValue, 10, true); | |||
| 13508 | else | |||
| 13509 | return; | |||
| 13510 | } else { | |||
| 13511 | S.Diag(Loc, diag::warn_xor_used_as_pow_base_extra) | |||
| 13512 | << ExprStr << toString(XorValue, 10, true) << SuggestedExpr | |||
| 13513 | << toString(PowValue, 10, true) | |||
| 13514 | << FixItHint::CreateReplacement( | |||
| 13515 | ExprRange, (RightSideIntValue == 0) ? "1" : SuggestedExpr); | |||
| 13516 | } | |||
| 13517 | ||||
| 13518 | S.Diag(Loc, diag::note_xor_used_as_pow_silence) | |||
| 13519 | << ("0x2 ^ " + RHSStr) << SuggestXor; | |||
| 13520 | } else if (LeftSideValue == 10) { | |||
| 13521 | std::string SuggestedValue = "1e" + std::to_string(RightSideIntValue); | |||
| 13522 | S.Diag(Loc, diag::warn_xor_used_as_pow_base) | |||
| 13523 | << ExprStr << toString(XorValue, 10, true) << SuggestedValue | |||
| 13524 | << FixItHint::CreateReplacement(ExprRange, SuggestedValue); | |||
| 13525 | S.Diag(Loc, diag::note_xor_used_as_pow_silence) | |||
| 13526 | << ("0xA ^ " + RHSStr) << SuggestXor; | |||
| 13527 | } | |||
| 13528 | } | |||
| 13529 | ||||
| 13530 | QualType Sema::CheckVectorLogicalOperands(ExprResult &LHS, ExprResult &RHS, | |||
| 13531 | SourceLocation Loc) { | |||
| 13532 | // Ensure that either both operands are of the same vector type, or | |||
| 13533 | // one operand is of a vector type and the other is of its element type. | |||
| 13534 | QualType vType = CheckVectorOperands(LHS, RHS, Loc, false, | |||
| 13535 | /*AllowBothBool*/ true, | |||
| 13536 | /*AllowBoolConversions*/ false, | |||
| 13537 | /*AllowBooleanOperation*/ false, | |||
| 13538 | /*ReportInvalid*/ false); | |||
| 13539 | if (vType.isNull()) | |||
| 13540 | return InvalidOperands(Loc, LHS, RHS); | |||
| 13541 | if (getLangOpts().OpenCL && | |||
| 13542 | getLangOpts().getOpenCLCompatibleVersion() < 120 && | |||
| 13543 | vType->hasFloatingRepresentation()) | |||
| 13544 | return InvalidOperands(Loc, LHS, RHS); | |||
| 13545 | // FIXME: The check for C++ here is for GCC compatibility. GCC rejects the | |||
| 13546 | // usage of the logical operators && and || with vectors in C. This | |||
| 13547 | // check could be notionally dropped. | |||
| 13548 | if (!getLangOpts().CPlusPlus && | |||
| 13549 | !(isa<ExtVectorType>(vType->getAs<VectorType>()))) | |||
| 13550 | return InvalidLogicalVectorOperands(Loc, LHS, RHS); | |||
| 13551 | ||||
| 13552 | return GetSignedVectorType(LHS.get()->getType()); | |||
| 13553 | } | |||
| 13554 | ||||
| 13555 | QualType Sema::CheckMatrixElementwiseOperands(ExprResult &LHS, ExprResult &RHS, | |||
| 13556 | SourceLocation Loc, | |||
| 13557 | bool IsCompAssign) { | |||
| 13558 | if (!IsCompAssign) { | |||
| 13559 | LHS = DefaultFunctionArrayLvalueConversion(LHS.get()); | |||
| 13560 | if (LHS.isInvalid()) | |||
| 13561 | return QualType(); | |||
| 13562 | } | |||
| 13563 | RHS = DefaultFunctionArrayLvalueConversion(RHS.get()); | |||
| 13564 | if (RHS.isInvalid()) | |||
| 13565 | return QualType(); | |||
| 13566 | ||||
| 13567 | // For conversion purposes, we ignore any qualifiers. | |||
| 13568 | // For example, "const float" and "float" are equivalent. | |||
| 13569 | QualType LHSType = LHS.get()->getType().getUnqualifiedType(); | |||
| 13570 | QualType RHSType = RHS.get()->getType().getUnqualifiedType(); | |||
| 13571 | ||||
| 13572 | const MatrixType *LHSMatType = LHSType->getAs<MatrixType>(); | |||
| 13573 | const MatrixType *RHSMatType = RHSType->getAs<MatrixType>(); | |||
| 13574 | assert((LHSMatType || RHSMatType) && "At least one operand must be a matrix")(static_cast <bool> ((LHSMatType || RHSMatType) && "At least one operand must be a matrix") ? void (0) : __assert_fail ("(LHSMatType || RHSMatType) && \"At least one operand must be a matrix\"" , "clang/lib/Sema/SemaExpr.cpp", 13574, __extension__ __PRETTY_FUNCTION__ )); | |||
| 13575 | ||||
| 13576 | if (Context.hasSameType(LHSType, RHSType)) | |||
| 13577 | return Context.getCommonSugaredType(LHSType, RHSType); | |||
| 13578 | ||||
| 13579 | // Type conversion may change LHS/RHS. Keep copies to the original results, in | |||
| 13580 | // case we have to return InvalidOperands. | |||
| 13581 | ExprResult OriginalLHS = LHS; | |||
| 13582 | ExprResult OriginalRHS = RHS; | |||
| 13583 | if (LHSMatType && !RHSMatType) { | |||
| 13584 | RHS = tryConvertExprToType(RHS.get(), LHSMatType->getElementType()); | |||
| 13585 | if (!RHS.isInvalid()) | |||
| 13586 | return LHSType; | |||
| 13587 | ||||
| 13588 | return InvalidOperands(Loc, OriginalLHS, OriginalRHS); | |||
| 13589 | } | |||
| 13590 | ||||
| 13591 | if (!LHSMatType && RHSMatType) { | |||
| 13592 | LHS = tryConvertExprToType(LHS.get(), RHSMatType->getElementType()); | |||
| 13593 | if (!LHS.isInvalid()) | |||
| 13594 | return RHSType; | |||
| 13595 | return InvalidOperands(Loc, OriginalLHS, OriginalRHS); | |||
| 13596 | } | |||
| 13597 | ||||
| 13598 | return InvalidOperands(Loc, LHS, RHS); | |||
| 13599 | } | |||
| 13600 | ||||
| 13601 | QualType Sema::CheckMatrixMultiplyOperands(ExprResult &LHS, ExprResult &RHS, | |||
| 13602 | SourceLocation Loc, | |||
| 13603 | bool IsCompAssign) { | |||
| 13604 | if (!IsCompAssign) { | |||
| 13605 | LHS = DefaultFunctionArrayLvalueConversion(LHS.get()); | |||
| 13606 | if (LHS.isInvalid()) | |||
| 13607 | return QualType(); | |||
| 13608 | } | |||
| 13609 | RHS = DefaultFunctionArrayLvalueConversion(RHS.get()); | |||
| 13610 | if (RHS.isInvalid()) | |||
| 13611 | return QualType(); | |||
| 13612 | ||||
| 13613 | auto *LHSMatType = LHS.get()->getType()->getAs<ConstantMatrixType>(); | |||
| 13614 | auto *RHSMatType = RHS.get()->getType()->getAs<ConstantMatrixType>(); | |||
| 13615 | assert((LHSMatType || RHSMatType) && "At least one operand must be a matrix")(static_cast <bool> ((LHSMatType || RHSMatType) && "At least one operand must be a matrix") ? void (0) : __assert_fail ("(LHSMatType || RHSMatType) && \"At least one operand must be a matrix\"" , "clang/lib/Sema/SemaExpr.cpp", 13615, __extension__ __PRETTY_FUNCTION__ )); | |||
| 13616 | ||||
| 13617 | if (LHSMatType && RHSMatType) { | |||
| 13618 | if (LHSMatType->getNumColumns() != RHSMatType->getNumRows()) | |||
| 13619 | return InvalidOperands(Loc, LHS, RHS); | |||
| 13620 | ||||
| 13621 | if (Context.hasSameType(LHSMatType, RHSMatType)) | |||
| 13622 | return Context.getCommonSugaredType( | |||
| 13623 | LHS.get()->getType().getUnqualifiedType(), | |||
| 13624 | RHS.get()->getType().getUnqualifiedType()); | |||
| 13625 | ||||
| 13626 | QualType LHSELTy = LHSMatType->getElementType(), | |||
| 13627 | RHSELTy = RHSMatType->getElementType(); | |||
| 13628 | if (!Context.hasSameType(LHSELTy, RHSELTy)) | |||
| 13629 | return InvalidOperands(Loc, LHS, RHS); | |||
| 13630 | ||||
| 13631 | return Context.getConstantMatrixType( | |||
| 13632 | Context.getCommonSugaredType(LHSELTy, RHSELTy), | |||
| 13633 | LHSMatType->getNumRows(), RHSMatType->getNumColumns()); | |||
| 13634 | } | |||
| 13635 | return CheckMatrixElementwiseOperands(LHS, RHS, Loc, IsCompAssign); | |||
| 13636 | } | |||
| 13637 | ||||
| 13638 | static bool isLegalBoolVectorBinaryOp(BinaryOperatorKind Opc) { | |||
| 13639 | switch (Opc) { | |||
| 13640 | default: | |||
| 13641 | return false; | |||
| 13642 | case BO_And: | |||
| 13643 | case BO_AndAssign: | |||
| 13644 | case BO_Or: | |||
| 13645 | case BO_OrAssign: | |||
| 13646 | case BO_Xor: | |||
| 13647 | case BO_XorAssign: | |||
| 13648 | return true; | |||
| 13649 | } | |||
| 13650 | } | |||
| 13651 | ||||
| 13652 | inline QualType Sema::CheckBitwiseOperands(ExprResult &LHS, ExprResult &RHS, | |||
| 13653 | SourceLocation Loc, | |||
| 13654 | BinaryOperatorKind Opc) { | |||
| 13655 | checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false); | |||
| 13656 | ||||
| 13657 | bool IsCompAssign = | |||
| 13658 | Opc == BO_AndAssign || Opc == BO_OrAssign || Opc == BO_XorAssign; | |||
| 13659 | ||||
| 13660 | bool LegalBoolVecOperator = isLegalBoolVectorBinaryOp(Opc); | |||
| 13661 | ||||
| 13662 | if (LHS.get()->getType()->isVectorType() || | |||
| 13663 | RHS.get()->getType()->isVectorType()) { | |||
| 13664 | if (LHS.get()->getType()->hasIntegerRepresentation() && | |||
| 13665 | RHS.get()->getType()->hasIntegerRepresentation()) | |||
| 13666 | return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign, | |||
| 13667 | /*AllowBothBool*/ true, | |||
| 13668 | /*AllowBoolConversions*/ getLangOpts().ZVector, | |||
| 13669 | /*AllowBooleanOperation*/ LegalBoolVecOperator, | |||
| 13670 | /*ReportInvalid*/ true); | |||
| 13671 | return InvalidOperands(Loc, LHS, RHS); | |||
| 13672 | } | |||
| 13673 | ||||
| 13674 | if (LHS.get()->getType()->isVLSTBuiltinType() || | |||
| 13675 | RHS.get()->getType()->isVLSTBuiltinType()) { | |||
| 13676 | if (LHS.get()->getType()->hasIntegerRepresentation() && | |||
| 13677 | RHS.get()->getType()->hasIntegerRepresentation()) | |||
| 13678 | return CheckSizelessVectorOperands(LHS, RHS, Loc, IsCompAssign, | |||
| 13679 | ACK_BitwiseOp); | |||
| 13680 | return InvalidOperands(Loc, LHS, RHS); | |||
| 13681 | } | |||
| 13682 | ||||
| 13683 | if (LHS.get()->getType()->isVLSTBuiltinType() || | |||
| 13684 | RHS.get()->getType()->isVLSTBuiltinType()) { | |||
| 13685 | if (LHS.get()->getType()->hasIntegerRepresentation() && | |||
| 13686 | RHS.get()->getType()->hasIntegerRepresentation()) | |||
| 13687 | return CheckSizelessVectorOperands(LHS, RHS, Loc, IsCompAssign, | |||
| 13688 | ACK_BitwiseOp); | |||
| 13689 | return InvalidOperands(Loc, LHS, RHS); | |||
| 13690 | } | |||
| 13691 | ||||
| 13692 | if (Opc == BO_And) | |||
| 13693 | diagnoseLogicalNotOnLHSofCheck(*this, LHS, RHS, Loc, Opc); | |||
| 13694 | ||||
| 13695 | if (LHS.get()->getType()->hasFloatingRepresentation() || | |||
| 13696 | RHS.get()->getType()->hasFloatingRepresentation()) | |||
| 13697 | return InvalidOperands(Loc, LHS, RHS); | |||
| 13698 | ||||
| 13699 | ExprResult LHSResult = LHS, RHSResult = RHS; | |||
| 13700 | QualType compType = UsualArithmeticConversions( | |||
| 13701 | LHSResult, RHSResult, Loc, IsCompAssign ? ACK_CompAssign : ACK_BitwiseOp); | |||
| 13702 | if (LHSResult.isInvalid() || RHSResult.isInvalid()) | |||
| 13703 | return QualType(); | |||
| 13704 | LHS = LHSResult.get(); | |||
| 13705 | RHS = RHSResult.get(); | |||
| 13706 | ||||
| 13707 | if (Opc == BO_Xor) | |||
| 13708 | diagnoseXorMisusedAsPow(*this, LHS, RHS, Loc); | |||
| 13709 | ||||
| 13710 | if (!compType.isNull() && compType->isIntegralOrUnscopedEnumerationType()) | |||
| 13711 | return compType; | |||
| 13712 | return InvalidOperands(Loc, LHS, RHS); | |||
| 13713 | } | |||
| 13714 | ||||
| 13715 | // C99 6.5.[13,14] | |||
| 13716 | inline QualType Sema::CheckLogicalOperands(ExprResult &LHS, ExprResult &RHS, | |||
| 13717 | SourceLocation Loc, | |||
| 13718 | BinaryOperatorKind Opc) { | |||
| 13719 | // Check vector operands differently. | |||
| 13720 | if (LHS.get()->getType()->isVectorType() || | |||
| 13721 | RHS.get()->getType()->isVectorType()) | |||
| 13722 | return CheckVectorLogicalOperands(LHS, RHS, Loc); | |||
| 13723 | ||||
| 13724 | bool EnumConstantInBoolContext = false; | |||
| 13725 | for (const ExprResult &HS : {LHS, RHS}) { | |||
| 13726 | if (const auto *DREHS = dyn_cast<DeclRefExpr>(HS.get())) { | |||
| 13727 | const auto *ECDHS = dyn_cast<EnumConstantDecl>(DREHS->getDecl()); | |||
| 13728 | if (ECDHS && ECDHS->getInitVal() != 0 && ECDHS->getInitVal() != 1) | |||
| 13729 | EnumConstantInBoolContext = true; | |||
| 13730 | } | |||
| 13731 | } | |||
| 13732 | ||||
| 13733 | if (EnumConstantInBoolContext) | |||
| 13734 | Diag(Loc, diag::warn_enum_constant_in_bool_context); | |||
| 13735 | ||||
| 13736 | // Diagnose cases where the user write a logical and/or but probably meant a | |||
| 13737 | // bitwise one. We do this when the LHS is a non-bool integer and the RHS | |||
| 13738 | // is a constant. | |||
| 13739 | if (!EnumConstantInBoolContext && LHS.get()->getType()->isIntegerType() && | |||
| 13740 | !LHS.get()->getType()->isBooleanType() && | |||
| 13741 | RHS.get()->getType()->isIntegerType() && !RHS.get()->isValueDependent() && | |||
| 13742 | // Don't warn in macros or template instantiations. | |||
| 13743 | !Loc.isMacroID() && !inTemplateInstantiation()) { | |||
| 13744 | // If the RHS can be constant folded, and if it constant folds to something | |||
| 13745 | // that isn't 0 or 1 (which indicate a potential logical operation that | |||
| 13746 | // happened to fold to true/false) then warn. | |||
| 13747 | // Parens on the RHS are ignored. | |||
| 13748 | Expr::EvalResult EVResult; | |||
| 13749 | if (RHS.get()->EvaluateAsInt(EVResult, Context)) { | |||
| 13750 | llvm::APSInt Result = EVResult.Val.getInt(); | |||
| 13751 | if ((getLangOpts().Bool && !RHS.get()->getType()->isBooleanType() && | |||
| 13752 | !RHS.get()->getExprLoc().isMacroID()) || | |||
| 13753 | (Result != 0 && Result != 1)) { | |||
| 13754 | Diag(Loc, diag::warn_logical_instead_of_bitwise) | |||
| 13755 | << RHS.get()->getSourceRange() << (Opc == BO_LAnd ? "&&" : "||"); | |||
| 13756 | // Suggest replacing the logical operator with the bitwise version | |||
| 13757 | Diag(Loc, diag::note_logical_instead_of_bitwise_change_operator) | |||
| 13758 | << (Opc == BO_LAnd ? "&" : "|") | |||
| 13759 | << FixItHint::CreateReplacement( | |||
| 13760 | SourceRange(Loc, getLocForEndOfToken(Loc)), | |||
| 13761 | Opc == BO_LAnd ? "&" : "|"); | |||
| 13762 | if (Opc == BO_LAnd) | |||
| 13763 | // Suggest replacing "Foo() && kNonZero" with "Foo()" | |||
| 13764 | Diag(Loc, diag::note_logical_instead_of_bitwise_remove_constant) | |||
| 13765 | << FixItHint::CreateRemoval( | |||
| 13766 | SourceRange(getLocForEndOfToken(LHS.get()->getEndLoc()), | |||
| 13767 | RHS.get()->getEndLoc())); | |||
| 13768 | } | |||
| 13769 | } | |||
| 13770 | } | |||
| 13771 | ||||
| 13772 | if (!Context.getLangOpts().CPlusPlus) { | |||
| 13773 | // OpenCL v1.1 s6.3.g: The logical operators and (&&), or (||) do | |||
| 13774 | // not operate on the built-in scalar and vector float types. | |||
| 13775 | if (Context.getLangOpts().OpenCL && | |||
| 13776 | Context.getLangOpts().OpenCLVersion < 120) { | |||
| 13777 | if (LHS.get()->getType()->isFloatingType() || | |||
| 13778 | RHS.get()->getType()->isFloatingType()) | |||
| 13779 | return InvalidOperands(Loc, LHS, RHS); | |||
| 13780 | } | |||
| 13781 | ||||
| 13782 | LHS = UsualUnaryConversions(LHS.get()); | |||
| 13783 | if (LHS.isInvalid()) | |||
| 13784 | return QualType(); | |||
| 13785 | ||||
| 13786 | RHS = UsualUnaryConversions(RHS.get()); | |||
| 13787 | if (RHS.isInvalid()) | |||
| 13788 | return QualType(); | |||
| 13789 | ||||
| 13790 | if (!LHS.get()->getType()->isScalarType() || | |||
| 13791 | !RHS.get()->getType()->isScalarType()) | |||
| 13792 | return InvalidOperands(Loc, LHS, RHS); | |||
| 13793 | ||||
| 13794 | return Context.IntTy; | |||
| 13795 | } | |||
| 13796 | ||||
| 13797 | // The following is safe because we only use this method for | |||
| 13798 | // non-overloadable operands. | |||
| 13799 | ||||
| 13800 | // C++ [expr.log.and]p1 | |||
| 13801 | // C++ [expr.log.or]p1 | |||
| 13802 | // The operands are both contextually converted to type bool. | |||
| 13803 | ExprResult LHSRes = PerformContextuallyConvertToBool(LHS.get()); | |||
| 13804 | if (LHSRes.isInvalid()) | |||
| 13805 | return InvalidOperands(Loc, LHS, RHS); | |||
| 13806 | LHS = LHSRes; | |||
| 13807 | ||||
| 13808 | ExprResult RHSRes = PerformContextuallyConvertToBool(RHS.get()); | |||
| 13809 | if (RHSRes.isInvalid()) | |||
| 13810 | return InvalidOperands(Loc, LHS, RHS); | |||
| 13811 | RHS = RHSRes; | |||
| 13812 | ||||
| 13813 | // C++ [expr.log.and]p2 | |||
| 13814 | // C++ [expr.log.or]p2 | |||
| 13815 | // The result is a bool. | |||
| 13816 | return Context.BoolTy; | |||
| 13817 | } | |||
| 13818 | ||||
| 13819 | static bool IsReadonlyMessage(Expr *E, Sema &S) { | |||
| 13820 | const MemberExpr *ME = dyn_cast<MemberExpr>(E); | |||
| 13821 | if (!ME) return false; | |||
| 13822 | if (!isa<FieldDecl>(ME->getMemberDecl())) return false; | |||
| 13823 | ObjCMessageExpr *Base = dyn_cast<ObjCMessageExpr>( | |||
| 13824 | ME->getBase()->IgnoreImplicit()->IgnoreParenImpCasts()); | |||
| 13825 | if (!Base) return false; | |||
| 13826 | return Base->getMethodDecl() != nullptr; | |||
| 13827 | } | |||
| 13828 | ||||
| 13829 | /// Is the given expression (which must be 'const') a reference to a | |||
| 13830 | /// variable which was originally non-const, but which has become | |||
| 13831 | /// 'const' due to being captured within a block? | |||
| 13832 | enum NonConstCaptureKind { NCCK_None, NCCK_Block, NCCK_Lambda }; | |||
| 13833 | static NonConstCaptureKind isReferenceToNonConstCapture(Sema &S, Expr *E) { | |||
| 13834 | assert(E->isLValue() && E->getType().isConstQualified())(static_cast <bool> (E->isLValue() && E-> getType().isConstQualified()) ? void (0) : __assert_fail ("E->isLValue() && E->getType().isConstQualified()" , "clang/lib/Sema/SemaExpr.cpp", 13834, __extension__ __PRETTY_FUNCTION__ )); | |||
| 13835 | E = E->IgnoreParens(); | |||
| 13836 | ||||
| 13837 | // Must be a reference to a declaration from an enclosing scope. | |||
| 13838 | DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E); | |||
| 13839 | if (!DRE) return NCCK_None; | |||
| 13840 | if (!DRE->refersToEnclosingVariableOrCapture()) return NCCK_None; | |||
| 13841 | ||||
| 13842 | // The declaration must be a variable which is not declared 'const'. | |||
| 13843 | VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl()); | |||
| 13844 | if (!var) return NCCK_None; | |||
| 13845 | if (var->getType().isConstQualified()) return NCCK_None; | |||
| 13846 | assert(var->hasLocalStorage() && "capture added 'const' to non-local?")(static_cast <bool> (var->hasLocalStorage() && "capture added 'const' to non-local?") ? void (0) : __assert_fail ("var->hasLocalStorage() && \"capture added 'const' to non-local?\"" , "clang/lib/Sema/SemaExpr.cpp", 13846, __extension__ __PRETTY_FUNCTION__ )); | |||
| 13847 | ||||
| 13848 | // Decide whether the first capture was for a block or a lambda. | |||
| 13849 | DeclContext *DC = S.CurContext, *Prev = nullptr; | |||
| 13850 | // Decide whether the first capture was for a block or a lambda. | |||
| 13851 | while (DC) { | |||
| 13852 | // For init-capture, it is possible that the variable belongs to the | |||
| 13853 | // template pattern of the current context. | |||
| 13854 | if (auto *FD = dyn_cast<FunctionDecl>(DC)) | |||
| 13855 | if (var->isInitCapture() && | |||
| 13856 | FD->getTemplateInstantiationPattern() == var->getDeclContext()) | |||
| 13857 | break; | |||
| 13858 | if (DC == var->getDeclContext()) | |||
| 13859 | break; | |||
| 13860 | Prev = DC; | |||
| 13861 | DC = DC->getParent(); | |||
| 13862 | } | |||
| 13863 | // Unless we have an init-capture, we've gone one step too far. | |||
| 13864 | if (!var->isInitCapture()) | |||
| 13865 | DC = Prev; | |||
| 13866 | return (isa<BlockDecl>(DC) ? NCCK_Block : NCCK_Lambda); | |||
| 13867 | } | |||
| 13868 | ||||
| 13869 | static bool IsTypeModifiable(QualType Ty, bool IsDereference) { | |||
| 13870 | Ty = Ty.getNonReferenceType(); | |||
| 13871 | if (IsDereference && Ty->isPointerType()) | |||
| 13872 | Ty = Ty->getPointeeType(); | |||
| 13873 | return !Ty.isConstQualified(); | |||
| 13874 | } | |||
| 13875 | ||||
| 13876 | // Update err_typecheck_assign_const and note_typecheck_assign_const | |||
| 13877 | // when this enum is changed. | |||
| 13878 | enum { | |||
| 13879 | ConstFunction, | |||
| 13880 | ConstVariable, | |||
| 13881 | ConstMember, | |||
| 13882 | ConstMethod, | |||
| 13883 | NestedConstMember, | |||
| 13884 | ConstUnknown, // Keep as last element | |||
| 13885 | }; | |||
| 13886 | ||||
| 13887 | /// Emit the "read-only variable not assignable" error and print notes to give | |||
| 13888 | /// more information about why the variable is not assignable, such as pointing | |||
| 13889 | /// to the declaration of a const variable, showing that a method is const, or | |||
| 13890 | /// that the function is returning a const reference. | |||
| 13891 | static void DiagnoseConstAssignment(Sema &S, const Expr *E, | |||
| 13892 | SourceLocation Loc) { | |||
| 13893 | SourceRange ExprRange = E->getSourceRange(); | |||
| 13894 | ||||
| 13895 | // Only emit one error on the first const found. All other consts will emit | |||
| 13896 | // a note to the error. | |||
| 13897 | bool DiagnosticEmitted = false; | |||
| 13898 | ||||
| 13899 | // Track if the current expression is the result of a dereference, and if the | |||
| 13900 | // next checked expression is the result of a dereference. | |||
| 13901 | bool IsDereference = false; | |||
| 13902 | bool NextIsDereference = false; | |||
| 13903 | ||||
| 13904 | // Loop to process MemberExpr chains. | |||
| 13905 | while (true) { | |||
| 13906 | IsDereference = NextIsDereference; | |||
| 13907 | ||||
| 13908 | E = E->IgnoreImplicit()->IgnoreParenImpCasts(); | |||
| 13909 | if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) { | |||
| 13910 | NextIsDereference = ME->isArrow(); | |||
| 13911 | const ValueDecl *VD = ME->getMemberDecl(); | |||
| 13912 | if (const FieldDecl *Field = dyn_cast<FieldDecl>(VD)) { | |||
| 13913 | // Mutable fields can be modified even if the class is const. | |||
| 13914 | if (Field->isMutable()) { | |||
| 13915 | assert(DiagnosticEmitted && "Expected diagnostic not emitted.")(static_cast <bool> (DiagnosticEmitted && "Expected diagnostic not emitted." ) ? void (0) : __assert_fail ("DiagnosticEmitted && \"Expected diagnostic not emitted.\"" , "clang/lib/Sema/SemaExpr.cpp", 13915, __extension__ __PRETTY_FUNCTION__ )); | |||
| 13916 | break; | |||
| 13917 | } | |||
| 13918 | ||||
| 13919 | if (!IsTypeModifiable(Field->getType(), IsDereference)) { | |||
| 13920 | if (!DiagnosticEmitted) { | |||
| 13921 | S.Diag(Loc, diag::err_typecheck_assign_const) | |||
| 13922 | << ExprRange << ConstMember << false /*static*/ << Field | |||
| 13923 | << Field->getType(); | |||
| 13924 | DiagnosticEmitted = true; | |||
| 13925 | } | |||
| 13926 | S.Diag(VD->getLocation(), diag::note_typecheck_assign_const) | |||
| 13927 | << ConstMember << false /*static*/ << Field << Field->getType() | |||
| 13928 | << Field->getSourceRange(); | |||
| 13929 | } | |||
| 13930 | E = ME->getBase(); | |||
| 13931 | continue; | |||
| 13932 | } else if (const VarDecl *VDecl = dyn_cast<VarDecl>(VD)) { | |||
| 13933 | if (VDecl->getType().isConstQualified()) { | |||
| 13934 | if (!DiagnosticEmitted) { | |||
| 13935 | S.Diag(Loc, diag::err_typecheck_assign_const) | |||
| 13936 | << ExprRange << ConstMember << true /*static*/ << VDecl | |||
| 13937 | << VDecl->getType(); | |||
| 13938 | DiagnosticEmitted = true; | |||
| 13939 | } | |||
| 13940 | S.Diag(VD->getLocation(), diag::note_typecheck_assign_const) | |||
| 13941 | << ConstMember << true /*static*/ << VDecl << VDecl->getType() | |||
| 13942 | << VDecl->getSourceRange(); | |||
| 13943 | } | |||
| 13944 | // Static fields do not inherit constness from parents. | |||
| 13945 | break; | |||
| 13946 | } | |||
| 13947 | break; // End MemberExpr | |||
| 13948 | } else if (const ArraySubscriptExpr *ASE = | |||
| 13949 | dyn_cast<ArraySubscriptExpr>(E)) { | |||
| 13950 | E = ASE->getBase()->IgnoreParenImpCasts(); | |||
| 13951 | continue; | |||
| 13952 | } else if (const ExtVectorElementExpr *EVE = | |||
| 13953 | dyn_cast<ExtVectorElementExpr>(E)) { | |||
| 13954 | E = EVE->getBase()->IgnoreParenImpCasts(); | |||
| 13955 | continue; | |||
| 13956 | } | |||
| 13957 | break; | |||
| 13958 | } | |||
| 13959 | ||||
| 13960 | if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { | |||
| 13961 | // Function calls | |||
| 13962 | const FunctionDecl *FD = CE->getDirectCallee(); | |||
| 13963 | if (FD && !IsTypeModifiable(FD->getReturnType(), IsDereference)) { | |||
| 13964 | if (!DiagnosticEmitted) { | |||
| 13965 | S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange | |||
| 13966 | << ConstFunction << FD; | |||
| 13967 | DiagnosticEmitted = true; | |||
| 13968 | } | |||
| 13969 | S.Diag(FD->getReturnTypeSourceRange().getBegin(), | |||
| 13970 | diag::note_typecheck_assign_const) | |||
| 13971 | << ConstFunction << FD << FD->getReturnType() | |||
| 13972 | << FD->getReturnTypeSourceRange(); | |||
| 13973 | } | |||
| 13974 | } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { | |||
| 13975 | // Point to variable declaration. | |||
| 13976 | if (const ValueDecl *VD = DRE->getDecl()) { | |||
| 13977 | if (!IsTypeModifiable(VD->getType(), IsDereference)) { | |||
| 13978 | if (!DiagnosticEmitted) { | |||
| 13979 | S.Diag(Loc, diag::err_typecheck_assign_const) | |||
| 13980 | << ExprRange << ConstVariable << VD << VD->getType(); | |||
| 13981 | DiagnosticEmitted = true; | |||
| 13982 | } | |||
| 13983 | S.Diag(VD->getLocation(), diag::note_typecheck_assign_const) | |||
| 13984 | << ConstVariable << VD << VD->getType() << VD->getSourceRange(); | |||
| 13985 | } | |||
| 13986 | } | |||
| 13987 | } else if (isa<CXXThisExpr>(E)) { | |||
| 13988 | if (const DeclContext *DC = S.getFunctionLevelDeclContext()) { | |||
| 13989 | if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) { | |||
| 13990 | if (MD->isConst()) { | |||
| 13991 | if (!DiagnosticEmitted) { | |||
| 13992 | S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange | |||
| 13993 | << ConstMethod << MD; | |||
| 13994 | DiagnosticEmitted = true; | |||
| 13995 | } | |||
| 13996 | S.Diag(MD->getLocation(), diag::note_typecheck_assign_const) | |||
| 13997 | << ConstMethod << MD << MD->getSourceRange(); | |||
| 13998 | } | |||
| 13999 | } | |||
| 14000 | } | |||
| 14001 | } | |||
| 14002 | ||||
| 14003 | if (DiagnosticEmitted) | |||
| 14004 | return; | |||
| 14005 | ||||
| 14006 | // Can't determine a more specific message, so display the generic error. | |||
| 14007 | S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange << ConstUnknown; | |||
| 14008 | } | |||
| 14009 | ||||
| 14010 | enum OriginalExprKind { | |||
| 14011 | OEK_Variable, | |||
| 14012 | OEK_Member, | |||
| 14013 | OEK_LValue | |||
| 14014 | }; | |||
| 14015 | ||||
| 14016 | static void DiagnoseRecursiveConstFields(Sema &S, const ValueDecl *VD, | |||
| 14017 | const RecordType *Ty, | |||
| 14018 | SourceLocation Loc, SourceRange Range, | |||
| 14019 | OriginalExprKind OEK, | |||
| 14020 | bool &DiagnosticEmitted) { | |||
| 14021 | std::vector<const RecordType *> RecordTypeList; | |||
| 14022 | RecordTypeList.push_back(Ty); | |||
| 14023 | unsigned NextToCheckIndex = 0; | |||
| 14024 | // We walk the record hierarchy breadth-first to ensure that we print | |||
| 14025 | // diagnostics in field nesting order. | |||
| 14026 | while (RecordTypeList.size() > NextToCheckIndex) { | |||
| 14027 | bool IsNested = NextToCheckIndex > 0; | |||
| 14028 | for (const FieldDecl *Field : | |||
| 14029 | RecordTypeList[NextToCheckIndex]->getDecl()->fields()) { | |||
| 14030 | // First, check every field for constness. | |||
| 14031 | QualType FieldTy = Field->getType(); | |||
| 14032 | if (FieldTy.isConstQualified()) { | |||
| 14033 | if (!DiagnosticEmitted) { | |||
| 14034 | S.Diag(Loc, diag::err_typecheck_assign_const) | |||
| 14035 | << Range << NestedConstMember << OEK << VD | |||
| 14036 | << IsNested << Field; | |||
| 14037 | DiagnosticEmitted = true; | |||
| 14038 | } | |||
| 14039 | S.Diag(Field->getLocation(), diag::note_typecheck_assign_const) | |||
| 14040 | << NestedConstMember << IsNested << Field | |||
| 14041 | << FieldTy << Field->getSourceRange(); | |||
| 14042 | } | |||
| 14043 | ||||
| 14044 | // Then we append it to the list to check next in order. | |||
| 14045 | FieldTy = FieldTy.getCanonicalType(); | |||
| 14046 | if (const auto *FieldRecTy = FieldTy->getAs<RecordType>()) { | |||
| 14047 | if (!llvm::is_contained(RecordTypeList, FieldRecTy)) | |||
| 14048 | RecordTypeList.push_back(FieldRecTy); | |||
| 14049 | } | |||
| 14050 | } | |||
| 14051 | ++NextToCheckIndex; | |||
| 14052 | } | |||
| 14053 | } | |||
| 14054 | ||||
| 14055 | /// Emit an error for the case where a record we are trying to assign to has a | |||
| 14056 | /// const-qualified field somewhere in its hierarchy. | |||
| 14057 | static void DiagnoseRecursiveConstFields(Sema &S, const Expr *E, | |||
| 14058 | SourceLocation Loc) { | |||
| 14059 | QualType Ty = E->getType(); | |||
| 14060 | assert(Ty->isRecordType() && "lvalue was not record?")(static_cast <bool> (Ty->isRecordType() && "lvalue was not record?" ) ? void (0) : __assert_fail ("Ty->isRecordType() && \"lvalue was not record?\"" , "clang/lib/Sema/SemaExpr.cpp", 14060, __extension__ __PRETTY_FUNCTION__ )); | |||
| 14061 | SourceRange Range = E->getSourceRange(); | |||
| 14062 | const RecordType *RTy = Ty.getCanonicalType()->getAs<RecordType>(); | |||
| 14063 | bool DiagEmitted = false; | |||
| 14064 | ||||
| 14065 | if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) | |||
| 14066 | DiagnoseRecursiveConstFields(S, ME->getMemberDecl(), RTy, Loc, | |||
| 14067 | Range, OEK_Member, DiagEmitted); | |||
| 14068 | else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) | |||
| 14069 | DiagnoseRecursiveConstFields(S, DRE->getDecl(), RTy, Loc, | |||
| 14070 | Range, OEK_Variable, DiagEmitted); | |||
| 14071 | else | |||
| 14072 | DiagnoseRecursiveConstFields(S, nullptr, RTy, Loc, | |||
| 14073 | Range, OEK_LValue, DiagEmitted); | |||
| 14074 | if (!DiagEmitted) | |||
| 14075 | DiagnoseConstAssignment(S, E, Loc); | |||
| 14076 | } | |||
| 14077 | ||||
| 14078 | /// CheckForModifiableLvalue - Verify that E is a modifiable lvalue. If not, | |||
| 14079 | /// emit an error and return true. If so, return false. | |||
| 14080 | static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) { | |||
| 14081 | assert(!E->hasPlaceholderType(BuiltinType::PseudoObject))(static_cast <bool> (!E->hasPlaceholderType(BuiltinType ::PseudoObject)) ? void (0) : __assert_fail ("!E->hasPlaceholderType(BuiltinType::PseudoObject)" , "clang/lib/Sema/SemaExpr.cpp", 14081, __extension__ __PRETTY_FUNCTION__ )); | |||
| 14082 | ||||
| 14083 | S.CheckShadowingDeclModification(E, Loc); | |||
| 14084 | ||||
| 14085 | SourceLocation OrigLoc = Loc; | |||
| 14086 | Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context, | |||
| 14087 | &Loc); | |||
| 14088 | if (IsLV == Expr::MLV_ClassTemporary && IsReadonlyMessage(E, S)) | |||
| 14089 | IsLV = Expr::MLV_InvalidMessageExpression; | |||
| 14090 | if (IsLV == Expr::MLV_Valid) | |||
| 14091 | return false; | |||
| 14092 | ||||
| 14093 | unsigned DiagID = 0; | |||
| 14094 | bool NeedType = false; | |||
| 14095 | switch (IsLV) { // C99 6.5.16p2 | |||
| 14096 | case Expr::MLV_ConstQualified: | |||
| 14097 | // Use a specialized diagnostic when we're assigning to an object | |||
| 14098 | // from an enclosing function or block. | |||
| 14099 | if (NonConstCaptureKind NCCK = isReferenceToNonConstCapture(S, E)) { | |||
| 14100 | if (NCCK == NCCK_Block) | |||
| 14101 | DiagID = diag::err_block_decl_ref_not_modifiable_lvalue; | |||
| 14102 | else | |||
| 14103 | DiagID = diag::err_lambda_decl_ref_not_modifiable_lvalue; | |||
| 14104 | break; | |||
| 14105 | } | |||
| 14106 | ||||
| 14107 | // In ARC, use some specialized diagnostics for occasions where we | |||
| 14108 | // infer 'const'. These are always pseudo-strong variables. | |||
| 14109 | if (S.getLangOpts().ObjCAutoRefCount) { | |||
| 14110 | DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts()); | |||
| 14111 | if (declRef && isa<VarDecl>(declRef->getDecl())) { | |||
| 14112 | VarDecl *var = cast<VarDecl>(declRef->getDecl()); | |||
| 14113 | ||||
| 14114 | // Use the normal diagnostic if it's pseudo-__strong but the | |||
| 14115 | // user actually wrote 'const'. | |||
| 14116 | if (var->isARCPseudoStrong() && | |||
| 14117 | (!var->getTypeSourceInfo() || | |||
| 14118 | !var->getTypeSourceInfo()->getType().isConstQualified())) { | |||
| 14119 | // There are three pseudo-strong cases: | |||
| 14120 | // - self | |||
| 14121 | ObjCMethodDecl *method = S.getCurMethodDecl(); | |||
| 14122 | if (method && var == method->getSelfDecl()) { | |||
| 14123 | DiagID = method->isClassMethod() | |||
| 14124 | ? diag::err_typecheck_arc_assign_self_class_method | |||
| 14125 | : diag::err_typecheck_arc_assign_self; | |||
| 14126 | ||||
| 14127 | // - Objective-C externally_retained attribute. | |||
| 14128 | } else if (var->hasAttr<ObjCExternallyRetainedAttr>() || | |||
| 14129 | isa<ParmVarDecl>(var)) { | |||
| 14130 | DiagID = diag::err_typecheck_arc_assign_externally_retained; | |||
| 14131 | ||||
| 14132 | // - fast enumeration variables | |||
| 14133 | } else { | |||
| 14134 | DiagID = diag::err_typecheck_arr_assign_enumeration; | |||
| 14135 | } | |||
| 14136 | ||||
| 14137 | SourceRange Assign; | |||
| 14138 | if (Loc != OrigLoc) | |||
| 14139 | Assign = SourceRange(OrigLoc, OrigLoc); | |||
| 14140 | S.Diag(Loc, DiagID) << E->getSourceRange() << Assign; | |||
| 14141 | // We need to preserve the AST regardless, so migration tool | |||
| 14142 | // can do its job. | |||
| 14143 | return false; | |||
| 14144 | } | |||
| 14145 | } | |||
| 14146 | } | |||
| 14147 | ||||
| 14148 | // If none of the special cases above are triggered, then this is a | |||
| 14149 | // simple const assignment. | |||
| 14150 | if (DiagID == 0) { | |||
| 14151 | DiagnoseConstAssignment(S, E, Loc); | |||
| 14152 | return true; | |||
| 14153 | } | |||
| 14154 | ||||
| 14155 | break; | |||
| 14156 | case Expr::MLV_ConstAddrSpace: | |||
| 14157 | DiagnoseConstAssignment(S, E, Loc); | |||
| 14158 | return true; | |||
| 14159 | case Expr::MLV_ConstQualifiedField: | |||
| 14160 | DiagnoseRecursiveConstFields(S, E, Loc); | |||
| 14161 | return true; | |||
| 14162 | case Expr::MLV_ArrayType: | |||
| 14163 | case Expr::MLV_ArrayTemporary: | |||
| 14164 | DiagID = diag::err_typecheck_array_not_modifiable_lvalue; | |||
| 14165 | NeedType = true; | |||
| 14166 | break; | |||
| 14167 | case Expr::MLV_NotObjectType: | |||
| 14168 | DiagID = diag::err_typecheck_non_object_not_modifiable_lvalue; | |||
| 14169 | NeedType = true; | |||
| 14170 | break; | |||
| 14171 | case Expr::MLV_LValueCast: | |||
| 14172 | DiagID = diag::err_typecheck_lvalue_casts_not_supported; | |||
| 14173 | break; | |||
| 14174 | case Expr::MLV_Valid: | |||
| 14175 | llvm_unreachable("did not take early return for MLV_Valid")::llvm::llvm_unreachable_internal("did not take early return for MLV_Valid" , "clang/lib/Sema/SemaExpr.cpp", 14175); | |||
| 14176 | case Expr::MLV_InvalidExpression: | |||
| 14177 | case Expr::MLV_MemberFunction: | |||
| 14178 | case Expr::MLV_ClassTemporary: | |||
| 14179 | DiagID = diag::err_typecheck_expression_not_modifiable_lvalue; | |||
| 14180 | break; | |||
| 14181 | case Expr::MLV_IncompleteType: | |||
| 14182 | case Expr::MLV_IncompleteVoidType: | |||
| 14183 | return S.RequireCompleteType(Loc, E->getType(), | |||
| 14184 | diag::err_typecheck_incomplete_type_not_modifiable_lvalue, E); | |||
| 14185 | case Expr::MLV_DuplicateVectorComponents: | |||
| 14186 | DiagID = diag::err_typecheck_duplicate_vector_components_not_mlvalue; | |||
| 14187 | break; | |||
| 14188 | case Expr::MLV_NoSetterProperty: | |||
| 14189 | llvm_unreachable("readonly properties should be processed differently")::llvm::llvm_unreachable_internal("readonly properties should be processed differently" , "clang/lib/Sema/SemaExpr.cpp", 14189); | |||
| 14190 | case Expr::MLV_InvalidMessageExpression: | |||
| 14191 | DiagID = diag::err_readonly_message_assignment; | |||
| 14192 | break; | |||
| 14193 | case Expr::MLV_SubObjCPropertySetting: | |||
| 14194 | DiagID = diag::err_no_subobject_property_setting; | |||
| 14195 | break; | |||
| 14196 | } | |||
| 14197 | ||||
| 14198 | SourceRange Assign; | |||
| 14199 | if (Loc != OrigLoc) | |||
| 14200 | Assign = SourceRange(OrigLoc, OrigLoc); | |||
| 14201 | if (NeedType) | |||
| 14202 | S.Diag(Loc, DiagID) << E->getType() << E->getSourceRange() << Assign; | |||
| 14203 | else | |||
| 14204 | S.Diag(Loc, DiagID) << E->getSourceRange() << Assign; | |||
| 14205 | return true; | |||
| 14206 | } | |||
| 14207 | ||||
| 14208 | static void CheckIdentityFieldAssignment(Expr *LHSExpr, Expr *RHSExpr, | |||
| 14209 | SourceLocation Loc, | |||
| 14210 | Sema &Sema) { | |||
| 14211 | if (Sema.inTemplateInstantiation()) | |||
| 14212 | return; | |||
| 14213 | if (Sema.isUnevaluatedContext()) | |||
| 14214 | return; | |||
| 14215 | if (Loc.isInvalid() || Loc.isMacroID()) | |||
| 14216 | return; | |||
| 14217 | if (LHSExpr->getExprLoc().isMacroID() || RHSExpr->getExprLoc().isMacroID()) | |||
| 14218 | return; | |||
| 14219 | ||||
| 14220 | // C / C++ fields | |||
| 14221 | MemberExpr *ML = dyn_cast<MemberExpr>(LHSExpr); | |||
| 14222 | MemberExpr *MR = dyn_cast<MemberExpr>(RHSExpr); | |||
| 14223 | if (ML && MR) { | |||
| 14224 | if (!(isa<CXXThisExpr>(ML->getBase()) && isa<CXXThisExpr>(MR->getBase()))) | |||
| 14225 | return; | |||
| 14226 | const ValueDecl *LHSDecl = | |||
| 14227 | cast<ValueDecl>(ML->getMemberDecl()->getCanonicalDecl()); | |||
| 14228 | const ValueDecl *RHSDecl = | |||
| 14229 | cast<ValueDecl>(MR->getMemberDecl()->getCanonicalDecl()); | |||
| 14230 | if (LHSDecl != RHSDecl) | |||
| 14231 | return; | |||
| 14232 | if (LHSDecl->getType().isVolatileQualified()) | |||
| 14233 | return; | |||
| 14234 | if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>()) | |||
| 14235 | if (RefTy->getPointeeType().isVolatileQualified()) | |||
| 14236 | return; | |||
| 14237 | ||||
| 14238 | Sema.Diag(Loc, diag::warn_identity_field_assign) << 0; | |||
| 14239 | } | |||
| 14240 | ||||
| 14241 | // Objective-C instance variables | |||
| 14242 | ObjCIvarRefExpr *OL = dyn_cast<ObjCIvarRefExpr>(LHSExpr); | |||
| 14243 | ObjCIvarRefExpr *OR = dyn_cast<ObjCIvarRefExpr>(RHSExpr); | |||
| 14244 | if (OL && OR && OL->getDecl() == OR->getDecl()) { | |||
| 14245 | DeclRefExpr *RL = dyn_cast<DeclRefExpr>(OL->getBase()->IgnoreImpCasts()); | |||
| 14246 | DeclRefExpr *RR = dyn_cast<DeclRefExpr>(OR->getBase()->IgnoreImpCasts()); | |||
| 14247 | if (RL && RR && RL->getDecl() == RR->getDecl()) | |||
| 14248 | Sema.Diag(Loc, diag::warn_identity_field_assign) << 1; | |||
| 14249 | } | |||
| 14250 | } | |||
| 14251 | ||||
| 14252 | // C99 6.5.16.1 | |||
| 14253 | QualType Sema::CheckAssignmentOperands(Expr *LHSExpr, ExprResult &RHS, | |||
| 14254 | SourceLocation Loc, | |||
| 14255 | QualType CompoundType, | |||
| 14256 | BinaryOperatorKind Opc) { | |||
| 14257 | assert(!LHSExpr->hasPlaceholderType(BuiltinType::PseudoObject))(static_cast <bool> (!LHSExpr->hasPlaceholderType(BuiltinType ::PseudoObject)) ? void (0) : __assert_fail ("!LHSExpr->hasPlaceholderType(BuiltinType::PseudoObject)" , "clang/lib/Sema/SemaExpr.cpp", 14257, __extension__ __PRETTY_FUNCTION__ )); | |||
| 14258 | ||||
| 14259 | // Verify that LHS is a modifiable lvalue, and emit error if not. | |||
| 14260 | if (CheckForModifiableLvalue(LHSExpr, Loc, *this)) | |||
| 14261 | return QualType(); | |||
| 14262 | ||||
| 14263 | QualType LHSType = LHSExpr->getType(); | |||
| 14264 | QualType RHSType = CompoundType.isNull() ? RHS.get()->getType() : | |||
| 14265 | CompoundType; | |||
| 14266 | // OpenCL v1.2 s6.1.1.1 p2: | |||
| 14267 | // The half data type can only be used to declare a pointer to a buffer that | |||
| 14268 | // contains half values | |||
| 14269 | if (getLangOpts().OpenCL && | |||
| 14270 | !getOpenCLOptions().isAvailableOption("cl_khr_fp16", getLangOpts()) && | |||
| 14271 | LHSType->isHalfType()) { | |||
| 14272 | Diag(Loc, diag::err_opencl_half_load_store) << 1 | |||
| 14273 | << LHSType.getUnqualifiedType(); | |||
| 14274 | return QualType(); | |||
| 14275 | } | |||
| 14276 | ||||
| 14277 | AssignConvertType ConvTy; | |||
| 14278 | if (CompoundType.isNull()) { | |||
| 14279 | Expr *RHSCheck = RHS.get(); | |||
| 14280 | ||||
| 14281 | CheckIdentityFieldAssignment(LHSExpr, RHSCheck, Loc, *this); | |||
| 14282 | ||||
| 14283 | QualType LHSTy(LHSType); | |||
| 14284 | ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS); | |||
| 14285 | if (RHS.isInvalid()) | |||
| 14286 | return QualType(); | |||
| 14287 | // Special case of NSObject attributes on c-style pointer types. | |||
| 14288 | if (ConvTy == IncompatiblePointer && | |||
| 14289 | ((Context.isObjCNSObjectType(LHSType) && | |||
| 14290 | RHSType->isObjCObjectPointerType()) || | |||
| 14291 | (Context.isObjCNSObjectType(RHSType) && | |||
| 14292 | LHSType->isObjCObjectPointerType()))) | |||
| 14293 | ConvTy = Compatible; | |||
| 14294 | ||||
| 14295 | if (ConvTy == Compatible && | |||
| 14296 | LHSType->isObjCObjectType()) | |||
| 14297 | Diag(Loc, diag::err_objc_object_assignment) | |||
| 14298 | << LHSType; | |||
| 14299 | ||||
| 14300 | // If the RHS is a unary plus or minus, check to see if they = and + are | |||
| 14301 | // right next to each other. If so, the user may have typo'd "x =+ 4" | |||
| 14302 | // instead of "x += 4". | |||
| 14303 | if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck)) | |||
| 14304 | RHSCheck = ICE->getSubExpr(); | |||
| 14305 | if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) { | |||
| 14306 | if ((UO->getOpcode() == UO_Plus || UO->getOpcode() == UO_Minus) && | |||
| 14307 | Loc.isFileID() && UO->getOperatorLoc().isFileID() && | |||
| 14308 | // Only if the two operators are exactly adjacent. | |||
| 14309 | Loc.getLocWithOffset(1) == UO->getOperatorLoc() && | |||
| 14310 | // And there is a space or other character before the subexpr of the | |||
| 14311 | // unary +/-. We don't want to warn on "x=-1". | |||
| 14312 | Loc.getLocWithOffset(2) != UO->getSubExpr()->getBeginLoc() && | |||
| 14313 | UO->getSubExpr()->getBeginLoc().isFileID()) { | |||
| 14314 | Diag(Loc, diag::warn_not_compound_assign) | |||
| 14315 | << (UO->getOpcode() == UO_Plus ? "+" : "-") | |||
| 14316 | << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc()); | |||
| 14317 | } | |||
| 14318 | } | |||
| 14319 | ||||
| 14320 | if (ConvTy == Compatible) { | |||
| 14321 | if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong) { | |||
| 14322 | // Warn about retain cycles where a block captures the LHS, but | |||
| 14323 | // not if the LHS is a simple variable into which the block is | |||
| 14324 | // being stored...unless that variable can be captured by reference! | |||
| 14325 | const Expr *InnerLHS = LHSExpr->IgnoreParenCasts(); | |||
| 14326 | const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InnerLHS); | |||
| 14327 | if (!DRE || DRE->getDecl()->hasAttr<BlocksAttr>()) | |||
| 14328 | checkRetainCycles(LHSExpr, RHS.get()); | |||
| 14329 | } | |||
| 14330 | ||||
| 14331 | if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong || | |||
| 14332 | LHSType.isNonWeakInMRRWithObjCWeak(Context)) { | |||
| 14333 | // It is safe to assign a weak reference into a strong variable. | |||
| 14334 | // Although this code can still have problems: | |||
| 14335 | // id x = self.weakProp; | |||
| 14336 | // id y = self.weakProp; | |||
| 14337 | // we do not warn to warn spuriously when 'x' and 'y' are on separate | |||
| 14338 | // paths through the function. This should be revisited if | |||
| 14339 | // -Wrepeated-use-of-weak is made flow-sensitive. | |||
| 14340 | // For ObjCWeak only, we do not warn if the assign is to a non-weak | |||
| 14341 | // variable, which will be valid for the current autorelease scope. | |||
| 14342 | if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, | |||
| 14343 | RHS.get()->getBeginLoc())) | |||
| 14344 | getCurFunction()->markSafeWeakUse(RHS.get()); | |||
| 14345 | ||||
| 14346 | } else if (getLangOpts().ObjCAutoRefCount || getLangOpts().ObjCWeak) { | |||
| 14347 | checkUnsafeExprAssigns(Loc, LHSExpr, RHS.get()); | |||
| 14348 | } | |||
| 14349 | } | |||
| 14350 | } else { | |||
| 14351 | // Compound assignment "x += y" | |||
| 14352 | ConvTy = CheckAssignmentConstraints(Loc, LHSType, RHSType); | |||
| 14353 | } | |||
| 14354 | ||||
| 14355 | if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType, | |||
| 14356 | RHS.get(), AA_Assigning)) | |||
| 14357 | return QualType(); | |||
| 14358 | ||||
| 14359 | CheckForNullPointerDereference(*this, LHSExpr); | |||
| 14360 | ||||
| 14361 | if (getLangOpts().CPlusPlus20 && LHSType.isVolatileQualified()) { | |||
| 14362 | if (CompoundType.isNull()) { | |||
| 14363 | // C++2a [expr.ass]p5: | |||
| 14364 | // A simple-assignment whose left operand is of a volatile-qualified | |||
| 14365 | // type is deprecated unless the assignment is either a discarded-value | |||
| 14366 | // expression or an unevaluated operand | |||
| 14367 | ExprEvalContexts.back().VolatileAssignmentLHSs.push_back(LHSExpr); | |||
| 14368 | } | |||
| 14369 | } | |||
| 14370 | ||||
| 14371 | // C11 6.5.16p3: The type of an assignment expression is the type of the | |||
| 14372 | // left operand would have after lvalue conversion. | |||
| 14373 | // C11 6.3.2.1p2: ...this is called lvalue conversion. If the lvalue has | |||
| 14374 | // qualified type, the value has the unqualified version of the type of the | |||
| 14375 | // lvalue; additionally, if the lvalue has atomic type, the value has the | |||
| 14376 | // non-atomic version of the type of the lvalue. | |||
| 14377 | // C++ 5.17p1: the type of the assignment expression is that of its left | |||
| 14378 | // operand. | |||
| 14379 | return getLangOpts().CPlusPlus ? LHSType : LHSType.getAtomicUnqualifiedType(); | |||
| 14380 | } | |||
| 14381 | ||||
| 14382 | // Scenarios to ignore if expression E is: | |||
| 14383 | // 1. an explicit cast expression into void | |||
| 14384 | // 2. a function call expression that returns void | |||
| 14385 | static bool IgnoreCommaOperand(const Expr *E, const ASTContext &Context) { | |||
| 14386 | E = E->IgnoreParens(); | |||
| 14387 | ||||
| 14388 | if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { | |||
| 14389 | if (CE->getCastKind() == CK_ToVoid) { | |||
| 14390 | return true; | |||
| 14391 | } | |||
| 14392 | ||||
| 14393 | // static_cast<void> on a dependent type will not show up as CK_ToVoid. | |||
| 14394 | if (CE->getCastKind() == CK_Dependent && E->getType()->isVoidType() && | |||
| 14395 | CE->getSubExpr()->getType()->isDependentType()) { | |||
| 14396 | return true; | |||
| 14397 | } | |||
| 14398 | } | |||
| 14399 | ||||
| 14400 | if (const auto *CE = dyn_cast<CallExpr>(E)) | |||
| 14401 | return CE->getCallReturnType(Context)->isVoidType(); | |||
| 14402 | return false; | |||
| 14403 | } | |||
| 14404 | ||||
| 14405 | // Look for instances where it is likely the comma operator is confused with | |||
| 14406 | // another operator. There is an explicit list of acceptable expressions for | |||
| 14407 | // the left hand side of the comma operator, otherwise emit a warning. | |||
| 14408 | void Sema::DiagnoseCommaOperator(const Expr *LHS, SourceLocation Loc) { | |||
| 14409 | // No warnings in macros | |||
| 14410 | if (Loc.isMacroID()) | |||
| 14411 | return; | |||
| 14412 | ||||
| 14413 | // Don't warn in template instantiations. | |||
| 14414 | if (inTemplateInstantiation()) | |||
| 14415 | return; | |||
| 14416 | ||||
| 14417 | // Scope isn't fine-grained enough to explicitly list the specific cases, so | |||
| 14418 | // instead, skip more than needed, then call back into here with the | |||
| 14419 | // CommaVisitor in SemaStmt.cpp. | |||
| 14420 | // The listed locations are the initialization and increment portions | |||
| 14421 | // of a for loop. The additional checks are on the condition of | |||
| 14422 | // if statements, do/while loops, and for loops. | |||
| 14423 | // Differences in scope flags for C89 mode requires the extra logic. | |||
| 14424 | const unsigned ForIncrementFlags = | |||
| 14425 | getLangOpts().C99 || getLangOpts().CPlusPlus | |||
| 14426 | ? Scope::ControlScope | Scope::ContinueScope | Scope::BreakScope | |||
| 14427 | : Scope::ContinueScope | Scope::BreakScope; | |||
| 14428 | const unsigned ForInitFlags = Scope::ControlScope | Scope::DeclScope; | |||
| 14429 | const unsigned ScopeFlags = getCurScope()->getFlags(); | |||
| 14430 | if ((ScopeFlags & ForIncrementFlags) == ForIncrementFlags || | |||
| 14431 | (ScopeFlags & ForInitFlags) == ForInitFlags) | |||
| 14432 | return; | |||
| 14433 | ||||
| 14434 | // If there are multiple comma operators used together, get the RHS of the | |||
| 14435 | // of the comma operator as the LHS. | |||
| 14436 | while (const BinaryOperator *BO = dyn_cast<BinaryOperator>(LHS)) { | |||
| 14437 | if (BO->getOpcode() != BO_Comma) | |||
| 14438 | break; | |||
| 14439 | LHS = BO->getRHS(); | |||
| 14440 | } | |||
| 14441 | ||||
| 14442 | // Only allow some expressions on LHS to not warn. | |||
| 14443 | if (IgnoreCommaOperand(LHS, Context)) | |||
| 14444 | return; | |||
| 14445 | ||||
| 14446 | Diag(Loc, diag::warn_comma_operator); | |||
| 14447 | Diag(LHS->getBeginLoc(), diag::note_cast_to_void) | |||
| 14448 | << LHS->getSourceRange() | |||
| 14449 | << FixItHint::CreateInsertion(LHS->getBeginLoc(), | |||
| 14450 | LangOpts.CPlusPlus ? "static_cast<void>(" | |||
| 14451 | : "(void)(") | |||
| 14452 | << FixItHint::CreateInsertion(PP.getLocForEndOfToken(LHS->getEndLoc()), | |||
| 14453 | ")"); | |||
| 14454 | } | |||
| 14455 | ||||
| 14456 | // C99 6.5.17 | |||
| 14457 | static QualType CheckCommaOperands(Sema &S, ExprResult &LHS, ExprResult &RHS, | |||
| 14458 | SourceLocation Loc) { | |||
| 14459 | LHS = S.CheckPlaceholderExpr(LHS.get()); | |||
| 14460 | RHS = S.CheckPlaceholderExpr(RHS.get()); | |||
| 14461 | if (LHS.isInvalid() || RHS.isInvalid()) | |||
| 14462 | return QualType(); | |||
| 14463 | ||||
| 14464 | // C's comma performs lvalue conversion (C99 6.3.2.1) on both its | |||
| 14465 | // operands, but not unary promotions. | |||
| 14466 | // C++'s comma does not do any conversions at all (C++ [expr.comma]p1). | |||
| 14467 | ||||
| 14468 | // So we treat the LHS as a ignored value, and in C++ we allow the | |||
| 14469 | // containing site to determine what should be done with the RHS. | |||
| 14470 | LHS = S.IgnoredValueConversions(LHS.get()); | |||
| 14471 | if (LHS.isInvalid()) | |||
| 14472 | return QualType(); | |||
| 14473 | ||||
| 14474 | S.DiagnoseUnusedExprResult(LHS.get(), diag::warn_unused_comma_left_operand); | |||
| 14475 | ||||
| 14476 | if (!S.getLangOpts().CPlusPlus) { | |||
| 14477 | RHS = S.DefaultFunctionArrayLvalueConversion(RHS.get()); | |||
| 14478 | if (RHS.isInvalid()) | |||
| 14479 | return QualType(); | |||
| 14480 | if (!RHS.get()->getType()->isVoidType()) | |||
| 14481 | S.RequireCompleteType(Loc, RHS.get()->getType(), | |||
| 14482 | diag::err_incomplete_type); | |||
| 14483 | } | |||
| 14484 | ||||
| 14485 | if (!S.getDiagnostics().isIgnored(diag::warn_comma_operator, Loc)) | |||
| 14486 | S.DiagnoseCommaOperator(LHS.get(), Loc); | |||
| 14487 | ||||
| 14488 | return RHS.get()->getType(); | |||
| 14489 | } | |||
| 14490 | ||||
| 14491 | /// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine | |||
| 14492 | /// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions. | |||
| 14493 | static QualType CheckIncrementDecrementOperand(Sema &S, Expr *Op, | |||
| 14494 | ExprValueKind &VK, | |||
| 14495 | ExprObjectKind &OK, | |||
| 14496 | SourceLocation OpLoc, | |||
| 14497 | bool IsInc, bool IsPrefix) { | |||
| 14498 | if (Op->isTypeDependent()) | |||
| 14499 | return S.Context.DependentTy; | |||
| 14500 | ||||
| 14501 | QualType ResType = Op->getType(); | |||
| 14502 | // Atomic types can be used for increment / decrement where the non-atomic | |||
| 14503 | // versions can, so ignore the _Atomic() specifier for the purpose of | |||
| 14504 | // checking. | |||
| 14505 | if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>()) | |||
| 14506 | ResType = ResAtomicType->getValueType(); | |||
| 14507 | ||||
| 14508 | assert(!ResType.isNull() && "no type for increment/decrement expression")(static_cast <bool> (!ResType.isNull() && "no type for increment/decrement expression" ) ? void (0) : __assert_fail ("!ResType.isNull() && \"no type for increment/decrement expression\"" , "clang/lib/Sema/SemaExpr.cpp", 14508, __extension__ __PRETTY_FUNCTION__ )); | |||
| 14509 | ||||
| 14510 | if (S.getLangOpts().CPlusPlus && ResType->isBooleanType()) { | |||
| 14511 | // Decrement of bool is not allowed. | |||
| 14512 | if (!IsInc) { | |||
| 14513 | S.Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange(); | |||
| 14514 | return QualType(); | |||
| 14515 | } | |||
| 14516 | // Increment of bool sets it to true, but is deprecated. | |||
| 14517 | S.Diag(OpLoc, S.getLangOpts().CPlusPlus17 ? diag::ext_increment_bool | |||
| 14518 | : diag::warn_increment_bool) | |||
| 14519 | << Op->getSourceRange(); | |||
| 14520 | } else if (S.getLangOpts().CPlusPlus && ResType->isEnumeralType()) { | |||
| 14521 | // Error on enum increments and decrements in C++ mode | |||
| 14522 | S.Diag(OpLoc, diag::err_increment_decrement_enum) << IsInc << ResType; | |||
| 14523 | return QualType(); | |||
| 14524 | } else if (ResType->isRealType()) { | |||
| 14525 | // OK! | |||
| 14526 | } else if (ResType->isPointerType()) { | |||
| 14527 | // C99 6.5.2.4p2, 6.5.6p2 | |||
| 14528 | if (!checkArithmeticOpPointerOperand(S, OpLoc, Op)) | |||
| 14529 | return QualType(); | |||
| 14530 | } else if (ResType->isObjCObjectPointerType()) { | |||
| 14531 | // On modern runtimes, ObjC pointer arithmetic is forbidden. | |||
| 14532 | // Otherwise, we just need a complete type. | |||
| 14533 | if (checkArithmeticIncompletePointerType(S, OpLoc, Op) || | |||
| 14534 | checkArithmeticOnObjCPointer(S, OpLoc, Op)) | |||
| 14535 | return QualType(); | |||
| 14536 | } else if (ResType->isAnyComplexType()) { | |||
| 14537 | // C99 does not support ++/-- on complex types, we allow as an extension. | |||
| 14538 | S.Diag(OpLoc, diag::ext_integer_increment_complex) | |||
| 14539 | << ResType << Op->getSourceRange(); | |||
| 14540 | } else if (ResType->isPlaceholderType()) { | |||
| 14541 | ExprResult PR = S.CheckPlaceholderExpr(Op); | |||
| 14542 | if (PR.isInvalid()) return QualType(); | |||
| 14543 | return CheckIncrementDecrementOperand(S, PR.get(), VK, OK, OpLoc, | |||
| 14544 | IsInc, IsPrefix); | |||
| 14545 | } else if (S.getLangOpts().AltiVec && ResType->isVectorType()) { | |||
| 14546 | // OK! ( C/C++ Language Extensions for CBEA(Version 2.6) 10.3 ) | |||
| 14547 | } else if (S.getLangOpts().ZVector && ResType->isVectorType() && | |||
| 14548 | (ResType->castAs<VectorType>()->getVectorKind() != | |||
| 14549 | VectorType::AltiVecBool)) { | |||
| 14550 | // The z vector extensions allow ++ and -- for non-bool vectors. | |||
| 14551 | } else if(S.getLangOpts().OpenCL && ResType->isVectorType() && | |||
| 14552 | ResType->castAs<VectorType>()->getElementType()->isIntegerType()) { | |||
| 14553 | // OpenCL V1.2 6.3 says dec/inc ops operate on integer vector types. | |||
| 14554 | } else { | |||
| 14555 | S.Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement) | |||
| 14556 | << ResType << int(IsInc) << Op->getSourceRange(); | |||
| 14557 | return QualType(); | |||
| 14558 | } | |||
| 14559 | // At this point, we know we have a real, complex or pointer type. | |||
| 14560 | // Now make sure the operand is a modifiable lvalue. | |||
| 14561 | if (CheckForModifiableLvalue(Op, OpLoc, S)) | |||
| 14562 | return QualType(); | |||
| 14563 | if (S.getLangOpts().CPlusPlus20 && ResType.isVolatileQualified()) { | |||
| 14564 | // C++2a [expr.pre.inc]p1, [expr.post.inc]p1: | |||
| 14565 | // An operand with volatile-qualified type is deprecated | |||
| 14566 | S.Diag(OpLoc, diag::warn_deprecated_increment_decrement_volatile) | |||
| 14567 | << IsInc << ResType; | |||
| 14568 | } | |||
| 14569 | // In C++, a prefix increment is the same type as the operand. Otherwise | |||
| 14570 | // (in C or with postfix), the increment is the unqualified type of the | |||
| 14571 | // operand. | |||
| 14572 | if (IsPrefix && S.getLangOpts().CPlusPlus) { | |||
| 14573 | VK = VK_LValue; | |||
| 14574 | OK = Op->getObjectKind(); | |||
| 14575 | return ResType; | |||
| 14576 | } else { | |||
| 14577 | VK = VK_PRValue; | |||
| 14578 | return ResType.getUnqualifiedType(); | |||
| 14579 | } | |||
| 14580 | } | |||
| 14581 | ||||
| 14582 | ||||
| 14583 | /// getPrimaryDecl - Helper function for CheckAddressOfOperand(). | |||
| 14584 | /// This routine allows us to typecheck complex/recursive expressions | |||
| 14585 | /// where the declaration is needed for type checking. We only need to | |||
| 14586 | /// handle cases when the expression references a function designator | |||
| 14587 | /// or is an lvalue. Here are some examples: | |||
| 14588 | /// - &(x) => x | |||
| 14589 | /// - &*****f => f for f a function designator. | |||
| 14590 | /// - &s.xx => s | |||
| 14591 | /// - &s.zz[1].yy -> s, if zz is an array | |||
| 14592 | /// - *(x + 1) -> x, if x is an array | |||
| 14593 | /// - &"123"[2] -> 0 | |||
| 14594 | /// - & __real__ x -> x | |||
| 14595 | /// | |||
| 14596 | /// FIXME: We don't recurse to the RHS of a comma, nor handle pointers to | |||
| 14597 | /// members. | |||
| 14598 | static ValueDecl *getPrimaryDecl(Expr *E) { | |||
| 14599 | switch (E->getStmtClass()) { | |||
| 14600 | case Stmt::DeclRefExprClass: | |||
| 14601 | return cast<DeclRefExpr>(E)->getDecl(); | |||
| 14602 | case Stmt::MemberExprClass: | |||
| 14603 | // If this is an arrow operator, the address is an offset from | |||
| 14604 | // the base's value, so the object the base refers to is | |||
| 14605 | // irrelevant. | |||
| 14606 | if (cast<MemberExpr>(E)->isArrow()) | |||
| 14607 | return nullptr; | |||
| 14608 | // Otherwise, the expression refers to a part of the base | |||
| 14609 | return getPrimaryDecl(cast<MemberExpr>(E)->getBase()); | |||
| 14610 | case Stmt::ArraySubscriptExprClass: { | |||
| 14611 | // FIXME: This code shouldn't be necessary! We should catch the implicit | |||
| 14612 | // promotion of register arrays earlier. | |||
| 14613 | Expr* Base = cast<ArraySubscriptExpr>(E)->getBase(); | |||
| 14614 | if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) { | |||
| 14615 | if (ICE->getSubExpr()->getType()->isArrayType()) | |||
| 14616 | return getPrimaryDecl(ICE->getSubExpr()); | |||
| 14617 | } | |||
| 14618 | return nullptr; | |||
| 14619 | } | |||
| 14620 | case Stmt::UnaryOperatorClass: { | |||
| 14621 | UnaryOperator *UO = cast<UnaryOperator>(E); | |||
| 14622 | ||||
| 14623 | switch(UO->getOpcode()) { | |||
| 14624 | case UO_Real: | |||
| 14625 | case UO_Imag: | |||
| 14626 | case UO_Extension: | |||
| 14627 | return getPrimaryDecl(UO->getSubExpr()); | |||
| 14628 | default: | |||
| 14629 | return nullptr; | |||
| 14630 | } | |||
| 14631 | } | |||
| 14632 | case Stmt::ParenExprClass: | |||
| 14633 | return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr()); | |||
| 14634 | case Stmt::ImplicitCastExprClass: | |||
| 14635 | // If the result of an implicit cast is an l-value, we care about | |||
| 14636 | // the sub-expression; otherwise, the result here doesn't matter. | |||
| 14637 | return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr()); | |||
| 14638 | case Stmt::CXXUuidofExprClass: | |||
| 14639 | return cast<CXXUuidofExpr>(E)->getGuidDecl(); | |||
| 14640 | default: | |||
| 14641 | return nullptr; | |||
| 14642 | } | |||
| 14643 | } | |||
| 14644 | ||||
| 14645 | namespace { | |||
| 14646 | enum { | |||
| 14647 | AO_Bit_Field = 0, | |||
| 14648 | AO_Vector_Element = 1, | |||
| 14649 | AO_Property_Expansion = 2, | |||
| 14650 | AO_Register_Variable = 3, | |||
| 14651 | AO_Matrix_Element = 4, | |||
| 14652 | AO_No_Error = 5 | |||
| 14653 | }; | |||
| 14654 | } | |||
| 14655 | /// Diagnose invalid operand for address of operations. | |||
| 14656 | /// | |||
| 14657 | /// \param Type The type of operand which cannot have its address taken. | |||
| 14658 | static void diagnoseAddressOfInvalidType(Sema &S, SourceLocation Loc, | |||
| 14659 | Expr *E, unsigned Type) { | |||
| 14660 | S.Diag(Loc, diag::err_typecheck_address_of) << Type << E->getSourceRange(); | |||
| 14661 | } | |||
| 14662 | ||||
| 14663 | /// CheckAddressOfOperand - The operand of & must be either a function | |||
| 14664 | /// designator or an lvalue designating an object. If it is an lvalue, the | |||
| 14665 | /// object cannot be declared with storage class register or be a bit field. | |||
| 14666 | /// Note: The usual conversions are *not* applied to the operand of the & | |||
| 14667 | /// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue. | |||
| 14668 | /// In C++, the operand might be an overloaded function name, in which case | |||
| 14669 | /// we allow the '&' but retain the overloaded-function type. | |||
| 14670 | QualType Sema::CheckAddressOfOperand(ExprResult &OrigOp, SourceLocation OpLoc) { | |||
| 14671 | if (const BuiltinType *PTy = OrigOp.get()->getType()->getAsPlaceholderType()){ | |||
| 14672 | if (PTy->getKind() == BuiltinType::Overload) { | |||
| 14673 | Expr *E = OrigOp.get()->IgnoreParens(); | |||
| 14674 | if (!isa<OverloadExpr>(E)) { | |||
| 14675 | assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf)(static_cast <bool> (cast<UnaryOperator>(E)->getOpcode () == UO_AddrOf) ? void (0) : __assert_fail ("cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf" , "clang/lib/Sema/SemaExpr.cpp", 14675, __extension__ __PRETTY_FUNCTION__ )); | |||
| 14676 | Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof_addrof_function) | |||
| 14677 | << OrigOp.get()->getSourceRange(); | |||
| 14678 | return QualType(); | |||
| 14679 | } | |||
| 14680 | ||||
| 14681 | OverloadExpr *Ovl = cast<OverloadExpr>(E); | |||
| 14682 | if (isa<UnresolvedMemberExpr>(Ovl)) | |||
| 14683 | if (!ResolveSingleFunctionTemplateSpecialization(Ovl)) { | |||
| 14684 | Diag(OpLoc, diag::err_invalid_form_pointer_member_function) | |||
| 14685 | << OrigOp.get()->getSourceRange(); | |||
| 14686 | return QualType(); | |||
| 14687 | } | |||
| 14688 | ||||
| 14689 | return Context.OverloadTy; | |||
| 14690 | } | |||
| 14691 | ||||
| 14692 | if (PTy->getKind() == BuiltinType::UnknownAny) | |||
| 14693 | return Context.UnknownAnyTy; | |||
| 14694 | ||||
| 14695 | if (PTy->getKind() == BuiltinType::BoundMember) { | |||
| 14696 | Diag(OpLoc, diag::err_invalid_form_pointer_member_function) | |||
| 14697 | << OrigOp.get()->getSourceRange(); | |||
| 14698 | return QualType(); | |||
| 14699 | } | |||
| 14700 | ||||
| 14701 | OrigOp = CheckPlaceholderExpr(OrigOp.get()); | |||
| 14702 | if (OrigOp.isInvalid()) return QualType(); | |||
| 14703 | } | |||
| 14704 | ||||
| 14705 | if (OrigOp.get()->isTypeDependent()) | |||
| 14706 | return Context.DependentTy; | |||
| 14707 | ||||
| 14708 | assert(!OrigOp.get()->hasPlaceholderType())(static_cast <bool> (!OrigOp.get()->hasPlaceholderType ()) ? void (0) : __assert_fail ("!OrigOp.get()->hasPlaceholderType()" , "clang/lib/Sema/SemaExpr.cpp", 14708, __extension__ __PRETTY_FUNCTION__ )); | |||
| 14709 | ||||
| 14710 | // Make sure to ignore parentheses in subsequent checks | |||
| 14711 | Expr *op = OrigOp.get()->IgnoreParens(); | |||
| 14712 | ||||
| 14713 | // In OpenCL captures for blocks called as lambda functions | |||
| 14714 | // are located in the private address space. Blocks used in | |||
| 14715 | // enqueue_kernel can be located in a different address space | |||
| 14716 | // depending on a vendor implementation. Thus preventing | |||
| 14717 | // taking an address of the capture to avoid invalid AS casts. | |||
| 14718 | if (LangOpts.OpenCL) { | |||
| 14719 | auto* VarRef = dyn_cast<DeclRefExpr>(op); | |||
| 14720 | if (VarRef && VarRef->refersToEnclosingVariableOrCapture()) { | |||
| 14721 | Diag(op->getExprLoc(), diag::err_opencl_taking_address_capture); | |||
| 14722 | return QualType(); | |||
| 14723 | } | |||
| 14724 | } | |||
| 14725 | ||||
| 14726 | if (getLangOpts().C99) { | |||
| 14727 | // Implement C99-only parts of addressof rules. | |||
| 14728 | if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) { | |||
| 14729 | if (uOp->getOpcode() == UO_Deref) | |||
| 14730 | // Per C99 6.5.3.2, the address of a deref always returns a valid result | |||
| 14731 | // (assuming the deref expression is valid). | |||
| 14732 | return uOp->getSubExpr()->getType(); | |||
| 14733 | } | |||
| 14734 | // Technically, there should be a check for array subscript | |||
| 14735 | // expressions here, but the result of one is always an lvalue anyway. | |||
| 14736 | } | |||
| 14737 | ValueDecl *dcl = getPrimaryDecl(op); | |||
| 14738 | ||||
| 14739 | if (auto *FD = dyn_cast_or_null<FunctionDecl>(dcl)) | |||
| 14740 | if (!checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true, | |||
| 14741 | op->getBeginLoc())) | |||
| 14742 | return QualType(); | |||
| 14743 | ||||
| 14744 | Expr::LValueClassification lval = op->ClassifyLValue(Context); | |||
| 14745 | unsigned AddressOfError = AO_No_Error; | |||
| 14746 | ||||
| 14747 | if (lval == Expr::LV_ClassTemporary || lval == Expr::LV_ArrayTemporary) { | |||
| 14748 | bool sfinae = (bool)isSFINAEContext(); | |||
| 14749 | Diag(OpLoc, isSFINAEContext() ? diag::err_typecheck_addrof_temporary | |||
| 14750 | : diag::ext_typecheck_addrof_temporary) | |||
| 14751 | << op->getType() << op->getSourceRange(); | |||
| 14752 | if (sfinae) | |||
| 14753 | return QualType(); | |||
| 14754 | // Materialize the temporary as an lvalue so that we can take its address. | |||
| 14755 | OrigOp = op = | |||
| 14756 | CreateMaterializeTemporaryExpr(op->getType(), OrigOp.get(), true); | |||
| 14757 | } else if (isa<ObjCSelectorExpr>(op)) { | |||
| 14758 | return Context.getPointerType(op->getType()); | |||
| 14759 | } else if (lval == Expr::LV_MemberFunction) { | |||
| 14760 | // If it's an instance method, make a member pointer. | |||
| 14761 | // The expression must have exactly the form &A::foo. | |||
| 14762 | ||||
| 14763 | // If the underlying expression isn't a decl ref, give up. | |||
| 14764 | if (!isa<DeclRefExpr>(op)) { | |||
| 14765 | Diag(OpLoc, diag::err_invalid_form_pointer_member_function) | |||
| 14766 | << OrigOp.get()->getSourceRange(); | |||
| 14767 | return QualType(); | |||
| 14768 | } | |||
| 14769 | DeclRefExpr *DRE = cast<DeclRefExpr>(op); | |||
| 14770 | CXXMethodDecl *MD = cast<CXXMethodDecl>(DRE->getDecl()); | |||
| 14771 | ||||
| 14772 | // The id-expression was parenthesized. | |||
| 14773 | if (OrigOp.get() != DRE) { | |||
| 14774 | Diag(OpLoc, diag::err_parens_pointer_member_function) | |||
| 14775 | << OrigOp.get()->getSourceRange(); | |||
| 14776 | ||||
| 14777 | // The method was named without a qualifier. | |||
| 14778 | } else if (!DRE->getQualifier()) { | |||
| 14779 | if (MD->getParent()->getName().empty()) | |||
| 14780 | Diag(OpLoc, diag::err_unqualified_pointer_member_function) | |||
| 14781 | << op->getSourceRange(); | |||
| 14782 | else { | |||
| 14783 | SmallString<32> Str; | |||
| 14784 | StringRef Qual = (MD->getParent()->getName() + "::").toStringRef(Str); | |||
| 14785 | Diag(OpLoc, diag::err_unqualified_pointer_member_function) | |||
| 14786 | << op->getSourceRange() | |||
| 14787 | << FixItHint::CreateInsertion(op->getSourceRange().getBegin(), Qual); | |||
| 14788 | } | |||
| 14789 | } | |||
| 14790 | ||||
| 14791 | // Taking the address of a dtor is illegal per C++ [class.dtor]p2. | |||
| 14792 | if (isa<CXXDestructorDecl>(MD)) | |||
| 14793 | Diag(OpLoc, diag::err_typecheck_addrof_dtor) << op->getSourceRange(); | |||
| 14794 | ||||
| 14795 | QualType MPTy = Context.getMemberPointerType( | |||
| 14796 | op->getType(), Context.getTypeDeclType(MD->getParent()).getTypePtr()); | |||
| 14797 | // Under the MS ABI, lock down the inheritance model now. | |||
| 14798 | if (Context.getTargetInfo().getCXXABI().isMicrosoft()) | |||
| 14799 | (void)isCompleteType(OpLoc, MPTy); | |||
| 14800 | return MPTy; | |||
| 14801 | } else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) { | |||
| 14802 | // C99 6.5.3.2p1 | |||
| 14803 | // The operand must be either an l-value or a function designator | |||
| 14804 | if (!op->getType()->isFunctionType()) { | |||
| 14805 | // Use a special diagnostic for loads from property references. | |||
| 14806 | if (isa<PseudoObjectExpr>(op)) { | |||
| 14807 | AddressOfError = AO_Property_Expansion; | |||
| 14808 | } else { | |||
| 14809 | Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof) | |||
| 14810 | << op->getType() << op->getSourceRange(); | |||
| 14811 | return QualType(); | |||
| 14812 | } | |||
| 14813 | } | |||
| 14814 | } else if (op->getObjectKind() == OK_BitField) { // C99 6.5.3.2p1 | |||
| 14815 | // The operand cannot be a bit-field | |||
| 14816 | AddressOfError = AO_Bit_Field; | |||
| 14817 | } else if (op->getObjectKind() == OK_VectorComponent) { | |||
| 14818 | // The operand cannot be an element of a vector | |||
| 14819 | AddressOfError = AO_Vector_Element; | |||
| 14820 | } else if (op->getObjectKind() == OK_MatrixComponent) { | |||
| 14821 | // The operand cannot be an element of a matrix. | |||
| 14822 | AddressOfError = AO_Matrix_Element; | |||
| 14823 | } else if (dcl) { // C99 6.5.3.2p1 | |||
| 14824 | // We have an lvalue with a decl. Make sure the decl is not declared | |||
| 14825 | // with the register storage-class specifier. | |||
| 14826 | if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) { | |||
| 14827 | // in C++ it is not error to take address of a register | |||
| 14828 | // variable (c++03 7.1.1P3) | |||
| 14829 | if (vd->getStorageClass() == SC_Register && | |||
| 14830 | !getLangOpts().CPlusPlus) { | |||
| 14831 | AddressOfError = AO_Register_Variable; | |||
| 14832 | } | |||
| 14833 | } else if (isa<MSPropertyDecl>(dcl)) { | |||
| 14834 | AddressOfError = AO_Property_Expansion; | |||
| 14835 | } else if (isa<FunctionTemplateDecl>(dcl)) { | |||
| 14836 | return Context.OverloadTy; | |||
| 14837 | } else if (isa<FieldDecl>(dcl) || isa<IndirectFieldDecl>(dcl)) { | |||
| 14838 | // Okay: we can take the address of a field. | |||
| 14839 | // Could be a pointer to member, though, if there is an explicit | |||
| 14840 | // scope qualifier for the class. | |||
| 14841 | if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) { | |||
| 14842 | DeclContext *Ctx = dcl->getDeclContext(); | |||
| 14843 | if (Ctx && Ctx->isRecord()) { | |||
| 14844 | if (dcl->getType()->isReferenceType()) { | |||
| 14845 | Diag(OpLoc, | |||
| 14846 | diag::err_cannot_form_pointer_to_member_of_reference_type) | |||
| 14847 | << dcl->getDeclName() << dcl->getType(); | |||
| 14848 | return QualType(); | |||
| 14849 | } | |||
| 14850 | ||||
| 14851 | while (cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion()) | |||
| 14852 | Ctx = Ctx->getParent(); | |||
| 14853 | ||||
| 14854 | QualType MPTy = Context.getMemberPointerType( | |||
| 14855 | op->getType(), | |||
| 14856 | Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr()); | |||
| 14857 | // Under the MS ABI, lock down the inheritance model now. | |||
| 14858 | if (Context.getTargetInfo().getCXXABI().isMicrosoft()) | |||
| 14859 | (void)isCompleteType(OpLoc, MPTy); | |||
| 14860 | return MPTy; | |||
| 14861 | } | |||
| 14862 | } | |||
| 14863 | } else if (!isa<FunctionDecl, NonTypeTemplateParmDecl, BindingDecl, | |||
| 14864 | MSGuidDecl, UnnamedGlobalConstantDecl>(dcl)) | |||
| 14865 | llvm_unreachable("Unknown/unexpected decl type")::llvm::llvm_unreachable_internal("Unknown/unexpected decl type" , "clang/lib/Sema/SemaExpr.cpp", 14865); | |||
| 14866 | } | |||
| 14867 | ||||
| 14868 | if (AddressOfError != AO_No_Error) { | |||
| 14869 | diagnoseAddressOfInvalidType(*this, OpLoc, op, AddressOfError); | |||
| 14870 | return QualType(); | |||
| 14871 | } | |||
| 14872 | ||||
| 14873 | if (lval == Expr::LV_IncompleteVoidType) { | |||
| 14874 | // Taking the address of a void variable is technically illegal, but we | |||
| 14875 | // allow it in cases which are otherwise valid. | |||
| 14876 | // Example: "extern void x; void* y = &x;". | |||
| 14877 | Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange(); | |||
| 14878 | } | |||
| 14879 | ||||
| 14880 | // If the operand has type "type", the result has type "pointer to type". | |||
| 14881 | if (op->getType()->isObjCObjectType()) | |||
| 14882 | return Context.getObjCObjectPointerType(op->getType()); | |||
| 14883 | ||||
| 14884 | if (Context.getTargetInfo().getTriple().isWasm() && | |||
| 14885 | op->getType()->isWebAssemblyReferenceType()) { | |||
| 14886 | Diag(OpLoc, diag::err_wasm_ca_reference) | |||
| 14887 | << 1 << OrigOp.get()->getSourceRange(); | |||
| 14888 | return QualType(); | |||
| 14889 | } | |||
| 14890 | ||||
| 14891 | CheckAddressOfPackedMember(op); | |||
| 14892 | ||||
| 14893 | return Context.getPointerType(op->getType()); | |||
| 14894 | } | |||
| 14895 | ||||
| 14896 | static void RecordModifiableNonNullParam(Sema &S, const Expr *Exp) { | |||
| 14897 | const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Exp); | |||
| 14898 | if (!DRE) | |||
| 14899 | return; | |||
| 14900 | const Decl *D = DRE->getDecl(); | |||
| 14901 | if (!D) | |||
| 14902 | return; | |||
| 14903 | const ParmVarDecl *Param = dyn_cast<ParmVarDecl>(D); | |||
| 14904 | if (!Param) | |||
| 14905 | return; | |||
| 14906 | if (const FunctionDecl* FD = dyn_cast<FunctionDecl>(Param->getDeclContext())) | |||
| 14907 | if (!FD->hasAttr<NonNullAttr>() && !Param->hasAttr<NonNullAttr>()) | |||
| 14908 | return; | |||
| 14909 | if (FunctionScopeInfo *FD = S.getCurFunction()) | |||
| 14910 | FD->ModifiedNonNullParams.insert(Param); | |||
| 14911 | } | |||
| 14912 | ||||
| 14913 | /// CheckIndirectionOperand - Type check unary indirection (prefix '*'). | |||
| 14914 | static QualType CheckIndirectionOperand(Sema &S, Expr *Op, ExprValueKind &VK, | |||
| 14915 | SourceLocation OpLoc, | |||
| 14916 | bool IsAfterAmp = false) { | |||
| 14917 | if (Op->isTypeDependent()) | |||
| 14918 | return S.Context.DependentTy; | |||
| 14919 | ||||
| 14920 | ExprResult ConvResult = S.UsualUnaryConversions(Op); | |||
| 14921 | if (ConvResult.isInvalid()) | |||
| 14922 | return QualType(); | |||
| 14923 | Op = ConvResult.get(); | |||
| 14924 | QualType OpTy = Op->getType(); | |||
| 14925 | QualType Result; | |||
| 14926 | ||||
| 14927 | if (isa<CXXReinterpretCastExpr>(Op)) { | |||
| 14928 | QualType OpOrigType = Op->IgnoreParenCasts()->getType(); | |||
| 14929 | S.CheckCompatibleReinterpretCast(OpOrigType, OpTy, /*IsDereference*/true, | |||
| 14930 | Op->getSourceRange()); | |||
| 14931 | } | |||
| 14932 | ||||
| 14933 | if (const PointerType *PT = OpTy->getAs<PointerType>()) | |||
| 14934 | { | |||
| 14935 | Result = PT->getPointeeType(); | |||
| 14936 | } | |||
| 14937 | else if (const ObjCObjectPointerType *OPT = | |||
| 14938 | OpTy->getAs<ObjCObjectPointerType>()) | |||
| 14939 | Result = OPT->getPointeeType(); | |||
| 14940 | else { | |||
| 14941 | ExprResult PR = S.CheckPlaceholderExpr(Op); | |||
| 14942 | if (PR.isInvalid()) return QualType(); | |||
| 14943 | if (PR.get() != Op) | |||
| 14944 | return CheckIndirectionOperand(S, PR.get(), VK, OpLoc); | |||
| 14945 | } | |||
| 14946 | ||||
| 14947 | if (Result.isNull()) { | |||
| 14948 | S.Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer) | |||
| 14949 | << OpTy << Op->getSourceRange(); | |||
| 14950 | return QualType(); | |||
| 14951 | } | |||
| 14952 | ||||
| 14953 | if (Result->isVoidType()) { | |||
| 14954 | // C++ [expr.unary.op]p1: | |||
| 14955 | // [...] the expression to which [the unary * operator] is applied shall | |||
| 14956 | // be a pointer to an object type, or a pointer to a function type | |||
| 14957 | LangOptions LO = S.getLangOpts(); | |||
| 14958 | if (LO.CPlusPlus) | |||
| 14959 | S.Diag(OpLoc, diag::ext_typecheck_indirection_through_void_pointer_cpp) | |||
| 14960 | << OpTy << Op->getSourceRange(); | |||
| 14961 | else if (!(LO.C99 && IsAfterAmp) && !S.isUnevaluatedContext()) | |||
| 14962 | S.Diag(OpLoc, diag::ext_typecheck_indirection_through_void_pointer) | |||
| 14963 | << OpTy << Op->getSourceRange(); | |||
| 14964 | } | |||
| 14965 | ||||
| 14966 | // Dereferences are usually l-values... | |||
| 14967 | VK = VK_LValue; | |||
| 14968 | ||||
| 14969 | // ...except that certain expressions are never l-values in C. | |||
| 14970 | if (!S.getLangOpts().CPlusPlus && Result.isCForbiddenLValueType()) | |||
| 14971 | VK = VK_PRValue; | |||
| 14972 | ||||
| 14973 | return Result; | |||
| 14974 | } | |||
| 14975 | ||||
| 14976 | BinaryOperatorKind Sema::ConvertTokenKindToBinaryOpcode(tok::TokenKind Kind) { | |||
| 14977 | BinaryOperatorKind Opc; | |||
| 14978 | switch (Kind) { | |||
| 14979 | default: llvm_unreachable("Unknown binop!")::llvm::llvm_unreachable_internal("Unknown binop!", "clang/lib/Sema/SemaExpr.cpp" , 14979); | |||
| 14980 | case tok::periodstar: Opc = BO_PtrMemD; break; | |||
| 14981 | case tok::arrowstar: Opc = BO_PtrMemI; break; | |||
| 14982 | case tok::star: Opc = BO_Mul; break; | |||
| 14983 | case tok::slash: Opc = BO_Div; break; | |||
| 14984 | case tok::percent: Opc = BO_Rem; break; | |||
| 14985 | case tok::plus: Opc = BO_Add; break; | |||
| 14986 | case tok::minus: Opc = BO_Sub; break; | |||
| 14987 | case tok::lessless: Opc = BO_Shl; break; | |||
| 14988 | case tok::greatergreater: Opc = BO_Shr; break; | |||
| 14989 | case tok::lessequal: Opc = BO_LE; break; | |||
| 14990 | case tok::less: Opc = BO_LT; break; | |||
| 14991 | case tok::greaterequal: Opc = BO_GE; break; | |||
| 14992 | case tok::greater: Opc = BO_GT; break; | |||
| 14993 | case tok::exclaimequal: Opc = BO_NE; break; | |||
| 14994 | case tok::equalequal: Opc = BO_EQ; break; | |||
| 14995 | case tok::spaceship: Opc = BO_Cmp; break; | |||
| 14996 | case tok::amp: Opc = BO_And; break; | |||
| 14997 | case tok::caret: Opc = BO_Xor; break; | |||
| 14998 | case tok::pipe: Opc = BO_Or; break; | |||
| 14999 | case tok::ampamp: Opc = BO_LAnd; break; | |||
| 15000 | case tok::pipepipe: Opc = BO_LOr; break; | |||
| 15001 | case tok::equal: Opc = BO_Assign; break; | |||
| 15002 | case tok::starequal: Opc = BO_MulAssign; break; | |||
| 15003 | case tok::slashequal: Opc = BO_DivAssign; break; | |||
| 15004 | case tok::percentequal: Opc = BO_RemAssign; break; | |||
| 15005 | case tok::plusequal: Opc = BO_AddAssign; break; | |||
| 15006 | case tok::minusequal: Opc = BO_SubAssign; break; | |||
| 15007 | case tok::lesslessequal: Opc = BO_ShlAssign; break; | |||
| 15008 | case tok::greatergreaterequal: Opc = BO_ShrAssign; break; | |||
| 15009 | case tok::ampequal: Opc = BO_AndAssign; break; | |||
| 15010 | case tok::caretequal: Opc = BO_XorAssign; break; | |||
| 15011 | case tok::pipeequal: Opc = BO_OrAssign; break; | |||
| 15012 | case tok::comma: Opc = BO_Comma; break; | |||
| 15013 | } | |||
| 15014 | return Opc; | |||
| 15015 | } | |||
| 15016 | ||||
| 15017 | static inline UnaryOperatorKind ConvertTokenKindToUnaryOpcode( | |||
| 15018 | tok::TokenKind Kind) { | |||
| 15019 | UnaryOperatorKind Opc; | |||
| 15020 | switch (Kind) { | |||
| 15021 | default: llvm_unreachable("Unknown unary op!")::llvm::llvm_unreachable_internal("Unknown unary op!", "clang/lib/Sema/SemaExpr.cpp" , 15021); | |||
| 15022 | case tok::plusplus: Opc = UO_PreInc; break; | |||
| 15023 | case tok::minusminus: Opc = UO_PreDec; break; | |||
| 15024 | case tok::amp: Opc = UO_AddrOf; break; | |||
| 15025 | case tok::star: Opc = UO_Deref; break; | |||
| 15026 | case tok::plus: Opc = UO_Plus; break; | |||
| 15027 | case tok::minus: Opc = UO_Minus; break; | |||
| 15028 | case tok::tilde: Opc = UO_Not; break; | |||
| 15029 | case tok::exclaim: Opc = UO_LNot; break; | |||
| 15030 | case tok::kw___real: Opc = UO_Real; break; | |||
| 15031 | case tok::kw___imag: Opc = UO_Imag; break; | |||
| 15032 | case tok::kw___extension__: Opc = UO_Extension; break; | |||
| 15033 | } | |||
| 15034 | return Opc; | |||
| 15035 | } | |||
| 15036 | ||||
| 15037 | const FieldDecl * | |||
| 15038 | Sema::getSelfAssignmentClassMemberCandidate(const ValueDecl *SelfAssigned) { | |||
| 15039 | // Explore the case for adding 'this->' to the LHS of a self assignment, very | |||
| 15040 | // common for setters. | |||
| 15041 | // struct A { | |||
| 15042 | // int X; | |||
| 15043 | // -void setX(int X) { X = X; } | |||
| 15044 | // +void setX(int X) { this->X = X; } | |||
| 15045 | // }; | |||
| 15046 | ||||
| 15047 | // Only consider parameters for self assignment fixes. | |||
| 15048 | if (!isa<ParmVarDecl>(SelfAssigned)) | |||
| 15049 | return nullptr; | |||
| 15050 | const auto *Method = | |||
| 15051 | dyn_cast_or_null<CXXMethodDecl>(getCurFunctionDecl(true)); | |||
| 15052 | if (!Method) | |||
| 15053 | return nullptr; | |||
| 15054 | ||||
| 15055 | const CXXRecordDecl *Parent = Method->getParent(); | |||
| 15056 | // In theory this is fixable if the lambda explicitly captures this, but | |||
| 15057 | // that's added complexity that's rarely going to be used. | |||
| 15058 | if (Parent->isLambda()) | |||
| 15059 | return nullptr; | |||
| 15060 | ||||
| 15061 | // FIXME: Use an actual Lookup operation instead of just traversing fields | |||
| 15062 | // in order to get base class fields. | |||
| 15063 | auto Field = | |||
| 15064 | llvm::find_if(Parent->fields(), | |||
| 15065 | [Name(SelfAssigned->getDeclName())](const FieldDecl *F) { | |||
| 15066 | return F->getDeclName() == Name; | |||
| 15067 | }); | |||
| 15068 | return (Field != Parent->field_end()) ? *Field : nullptr; | |||
| 15069 | } | |||
| 15070 | ||||
| 15071 | /// DiagnoseSelfAssignment - Emits a warning if a value is assigned to itself. | |||
| 15072 | /// This warning suppressed in the event of macro expansions. | |||
| 15073 | static void DiagnoseSelfAssignment(Sema &S, Expr *LHSExpr, Expr *RHSExpr, | |||
| 15074 | SourceLocation OpLoc, bool IsBuiltin) { | |||
| 15075 | if (S.inTemplateInstantiation()) | |||
| 15076 | return; | |||
| 15077 | if (S.isUnevaluatedContext()) | |||
| 15078 | return; | |||
| 15079 | if (OpLoc.isInvalid() || OpLoc.isMacroID()) | |||
| 15080 | return; | |||
| 15081 | LHSExpr = LHSExpr->IgnoreParenImpCasts(); | |||
| 15082 | RHSExpr = RHSExpr->IgnoreParenImpCasts(); | |||
| 15083 | const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr); | |||
| 15084 | const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr); | |||
| 15085 | if (!LHSDeclRef || !RHSDeclRef || | |||
| 15086 | LHSDeclRef->getLocation().isMacroID() || | |||
| 15087 | RHSDeclRef->getLocation().isMacroID()) | |||
| 15088 | return; | |||
| 15089 | const ValueDecl *LHSDecl = | |||
| 15090 | cast<ValueDecl>(LHSDeclRef->getDecl()->getCanonicalDecl()); | |||
| 15091 | const ValueDecl *RHSDecl = | |||
| 15092 | cast<ValueDecl>(RHSDeclRef->getDecl()->getCanonicalDecl()); | |||
| 15093 | if (LHSDecl != RHSDecl) | |||
| 15094 | return; | |||
| 15095 | if (LHSDecl->getType().isVolatileQualified()) | |||
| 15096 | return; | |||
| 15097 | if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>()) | |||
| 15098 | if (RefTy->getPointeeType().isVolatileQualified()) | |||
| 15099 | return; | |||
| 15100 | ||||
| 15101 | auto Diag = S.Diag(OpLoc, IsBuiltin ? diag::warn_self_assignment_builtin | |||
| 15102 | : diag::warn_self_assignment_overloaded) | |||
| 15103 | << LHSDeclRef->getType() << LHSExpr->getSourceRange() | |||
| 15104 | << RHSExpr->getSourceRange(); | |||
| 15105 | if (const FieldDecl *SelfAssignField = | |||
| 15106 | S.getSelfAssignmentClassMemberCandidate(RHSDecl)) | |||
| 15107 | Diag << 1 << SelfAssignField | |||
| 15108 | << FixItHint::CreateInsertion(LHSDeclRef->getBeginLoc(), "this->"); | |||
| 15109 | else | |||
| 15110 | Diag << 0; | |||
| 15111 | } | |||
| 15112 | ||||
| 15113 | /// Check if a bitwise-& is performed on an Objective-C pointer. This | |||
| 15114 | /// is usually indicative of introspection within the Objective-C pointer. | |||
| 15115 | static void checkObjCPointerIntrospection(Sema &S, ExprResult &L, ExprResult &R, | |||
| 15116 | SourceLocation OpLoc) { | |||
| 15117 | if (!S.getLangOpts().ObjC) | |||
| 15118 | return; | |||
| 15119 | ||||
| 15120 | const Expr *ObjCPointerExpr = nullptr, *OtherExpr = nullptr; | |||
| 15121 | const Expr *LHS = L.get(); | |||
| 15122 | const Expr *RHS = R.get(); | |||
| 15123 | ||||
| 15124 | if (LHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) { | |||
| 15125 | ObjCPointerExpr = LHS; | |||
| 15126 | OtherExpr = RHS; | |||
| 15127 | } | |||
| 15128 | else if (RHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) { | |||
| 15129 | ObjCPointerExpr = RHS; | |||
| 15130 | OtherExpr = LHS; | |||
| 15131 | } | |||
| 15132 | ||||
| 15133 | // This warning is deliberately made very specific to reduce false | |||
| 15134 | // positives with logic that uses '&' for hashing. This logic mainly | |||
| 15135 | // looks for code trying to introspect into tagged pointers, which | |||
| 15136 | // code should generally never do. | |||
| 15137 | if (ObjCPointerExpr && isa<IntegerLiteral>(OtherExpr->IgnoreParenCasts())) { | |||
| 15138 | unsigned Diag = diag::warn_objc_pointer_masking; | |||
| 15139 | // Determine if we are introspecting the result of performSelectorXXX. | |||
| 15140 | const Expr *Ex = ObjCPointerExpr->IgnoreParenCasts(); | |||
| 15141 | // Special case messages to -performSelector and friends, which | |||
| 15142 | // can return non-pointer values boxed in a pointer value. | |||
| 15143 | // Some clients may wish to silence warnings in this subcase. | |||
| 15144 | if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(Ex)) { | |||
| 15145 | Selector S = ME->getSelector(); | |||
| 15146 | StringRef SelArg0 = S.getNameForSlot(0); | |||
| 15147 | if (SelArg0.startswith("performSelector")) | |||
| 15148 | Diag = diag::warn_objc_pointer_masking_performSelector; | |||
| 15149 | } | |||
| 15150 | ||||
| 15151 | S.Diag(OpLoc, Diag) | |||
| 15152 | << ObjCPointerExpr->getSourceRange(); | |||
| 15153 | } | |||
| 15154 | } | |||
| 15155 | ||||
| 15156 | static NamedDecl *getDeclFromExpr(Expr *E) { | |||
| 15157 | if (!E) | |||
| 15158 | return nullptr; | |||
| 15159 | if (auto *DRE = dyn_cast<DeclRefExpr>(E)) | |||
| 15160 | return DRE->getDecl(); | |||
| 15161 | if (auto *ME = dyn_cast<MemberExpr>(E)) | |||
| 15162 | return ME->getMemberDecl(); | |||
| 15163 | if (auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) | |||
| 15164 | return IRE->getDecl(); | |||
| 15165 | return nullptr; | |||
| 15166 | } | |||
| 15167 | ||||
| 15168 | // This helper function promotes a binary operator's operands (which are of a | |||
| 15169 | // half vector type) to a vector of floats and then truncates the result to | |||
| 15170 | // a vector of either half or short. | |||
| 15171 | static ExprResult convertHalfVecBinOp(Sema &S, ExprResult LHS, ExprResult RHS, | |||
| 15172 | BinaryOperatorKind Opc, QualType ResultTy, | |||
| 15173 | ExprValueKind VK, ExprObjectKind OK, | |||
| 15174 | bool IsCompAssign, SourceLocation OpLoc, | |||
| 15175 | FPOptionsOverride FPFeatures) { | |||
| 15176 | auto &Context = S.getASTContext(); | |||
| 15177 | assert((isVector(ResultTy, Context.HalfTy) ||(static_cast <bool> ((isVector(ResultTy, Context.HalfTy ) || isVector(ResultTy, Context.ShortTy)) && "Result must be a vector of half or short" ) ? void (0) : __assert_fail ("(isVector(ResultTy, Context.HalfTy) || isVector(ResultTy, Context.ShortTy)) && \"Result must be a vector of half or short\"" , "clang/lib/Sema/SemaExpr.cpp", 15179, __extension__ __PRETTY_FUNCTION__ )) | |||
| 15178 | isVector(ResultTy, Context.ShortTy)) &&(static_cast <bool> ((isVector(ResultTy, Context.HalfTy ) || isVector(ResultTy, Context.ShortTy)) && "Result must be a vector of half or short" ) ? void (0) : __assert_fail ("(isVector(ResultTy, Context.HalfTy) || isVector(ResultTy, Context.ShortTy)) && \"Result must be a vector of half or short\"" , "clang/lib/Sema/SemaExpr.cpp", 15179, __extension__ __PRETTY_FUNCTION__ )) | |||
| 15179 | "Result must be a vector of half or short")(static_cast <bool> ((isVector(ResultTy, Context.HalfTy ) || isVector(ResultTy, Context.ShortTy)) && "Result must be a vector of half or short" ) ? void (0) : __assert_fail ("(isVector(ResultTy, Context.HalfTy) || isVector(ResultTy, Context.ShortTy)) && \"Result must be a vector of half or short\"" , "clang/lib/Sema/SemaExpr.cpp", 15179, __extension__ __PRETTY_FUNCTION__ )); | |||
| 15180 | assert(isVector(LHS.get()->getType(), Context.HalfTy) &&(static_cast <bool> (isVector(LHS.get()->getType(), Context .HalfTy) && isVector(RHS.get()->getType(), Context .HalfTy) && "both operands expected to be a half vector" ) ? void (0) : __assert_fail ("isVector(LHS.get()->getType(), Context.HalfTy) && isVector(RHS.get()->getType(), Context.HalfTy) && \"both operands expected to be a half vector\"" , "clang/lib/Sema/SemaExpr.cpp", 15182, __extension__ __PRETTY_FUNCTION__ )) | |||
| 15181 | isVector(RHS.get()->getType(), Context.HalfTy) &&(static_cast <bool> (isVector(LHS.get()->getType(), Context .HalfTy) && isVector(RHS.get()->getType(), Context .HalfTy) && "both operands expected to be a half vector" ) ? void (0) : __assert_fail ("isVector(LHS.get()->getType(), Context.HalfTy) && isVector(RHS.get()->getType(), Context.HalfTy) && \"both operands expected to be a half vector\"" , "clang/lib/Sema/SemaExpr.cpp", 15182, __extension__ __PRETTY_FUNCTION__ )) | |||
| 15182 | "both operands expected to be a half vector")(static_cast <bool> (isVector(LHS.get()->getType(), Context .HalfTy) && isVector(RHS.get()->getType(), Context .HalfTy) && "both operands expected to be a half vector" ) ? void (0) : __assert_fail ("isVector(LHS.get()->getType(), Context.HalfTy) && isVector(RHS.get()->getType(), Context.HalfTy) && \"both operands expected to be a half vector\"" , "clang/lib/Sema/SemaExpr.cpp", 15182, __extension__ __PRETTY_FUNCTION__ )); | |||
| 15183 | ||||
| 15184 | RHS = convertVector(RHS.get(), Context.FloatTy, S); | |||
| 15185 | QualType BinOpResTy = RHS.get()->getType(); | |||
| 15186 | ||||
| 15187 | // If Opc is a comparison, ResultType is a vector of shorts. In that case, | |||
| 15188 | // change BinOpResTy to a vector of ints. | |||
| 15189 | if (isVector(ResultTy, Context.ShortTy)) | |||
| 15190 | BinOpResTy = S.GetSignedVectorType(BinOpResTy); | |||
| 15191 | ||||
| 15192 | if (IsCompAssign) | |||
| 15193 | return CompoundAssignOperator::Create(Context, LHS.get(), RHS.get(), Opc, | |||
| 15194 | ResultTy, VK, OK, OpLoc, FPFeatures, | |||
| 15195 | BinOpResTy, BinOpResTy); | |||
| 15196 | ||||
| 15197 | LHS = convertVector(LHS.get(), Context.FloatTy, S); | |||
| 15198 | auto *BO = BinaryOperator::Create(Context, LHS.get(), RHS.get(), Opc, | |||
| 15199 | BinOpResTy, VK, OK, OpLoc, FPFeatures); | |||
| 15200 | return convertVector(BO, ResultTy->castAs<VectorType>()->getElementType(), S); | |||
| 15201 | } | |||
| 15202 | ||||
| 15203 | static std::pair<ExprResult, ExprResult> | |||
| 15204 | CorrectDelayedTyposInBinOp(Sema &S, BinaryOperatorKind Opc, Expr *LHSExpr, | |||
| 15205 | Expr *RHSExpr) { | |||
| 15206 | ExprResult LHS = LHSExpr, RHS = RHSExpr; | |||
| 15207 | if (!S.Context.isDependenceAllowed()) { | |||
| 15208 | // C cannot handle TypoExpr nodes on either side of a binop because it | |||
| 15209 | // doesn't handle dependent types properly, so make sure any TypoExprs have | |||
| 15210 | // been dealt with before checking the operands. | |||
| 15211 | LHS = S.CorrectDelayedTyposInExpr(LHS); | |||
| 15212 | RHS = S.CorrectDelayedTyposInExpr( | |||
| 15213 | RHS, /*InitDecl=*/nullptr, /*RecoverUncorrectedTypos=*/false, | |||
| 15214 | [Opc, LHS](Expr *E) { | |||
| 15215 | if (Opc != BO_Assign) | |||
| 15216 | return ExprResult(E); | |||
| 15217 | // Avoid correcting the RHS to the same Expr as the LHS. | |||
| 15218 | Decl *D = getDeclFromExpr(E); | |||
| 15219 | return (D && D == getDeclFromExpr(LHS.get())) ? ExprError() : E; | |||
| 15220 | }); | |||
| 15221 | } | |||
| 15222 | return std::make_pair(LHS, RHS); | |||
| 15223 | } | |||
| 15224 | ||||
| 15225 | /// Returns true if conversion between vectors of halfs and vectors of floats | |||
| 15226 | /// is needed. | |||
| 15227 | static bool needsConversionOfHalfVec(bool OpRequiresConversion, ASTContext &Ctx, | |||
| 15228 | Expr *E0, Expr *E1 = nullptr) { | |||
| 15229 | if (!OpRequiresConversion || Ctx.getLangOpts().NativeHalfType || | |||
| 15230 | Ctx.getTargetInfo().useFP16ConversionIntrinsics()) | |||
| 15231 | return false; | |||
| 15232 | ||||
| 15233 | auto HasVectorOfHalfType = [&Ctx](Expr *E) { | |||
| 15234 | QualType Ty = E->IgnoreImplicit()->getType(); | |||
| 15235 | ||||
| 15236 | // Don't promote half precision neon vectors like float16x4_t in arm_neon.h | |||
| 15237 | // to vectors of floats. Although the element type of the vectors is __fp16, | |||
| 15238 | // the vectors shouldn't be treated as storage-only types. See the | |||
| 15239 | // discussion here: https://reviews.llvm.org/rG825235c140e7 | |||
| 15240 | if (const VectorType *VT = Ty->getAs<VectorType>()) { | |||
| 15241 | if (VT->getVectorKind() == VectorType::NeonVector) | |||
| 15242 | return false; | |||
| 15243 | return VT->getElementType().getCanonicalType() == Ctx.HalfTy; | |||
| 15244 | } | |||
| 15245 | return false; | |||
| 15246 | }; | |||
| 15247 | ||||
| 15248 | return HasVectorOfHalfType(E0) && (!E1 || HasVectorOfHalfType(E1)); | |||
| 15249 | } | |||
| 15250 | ||||
| 15251 | /// CreateBuiltinBinOp - Creates a new built-in binary operation with | |||
| 15252 | /// operator @p Opc at location @c TokLoc. This routine only supports | |||
| 15253 | /// built-in operations; ActOnBinOp handles overloaded operators. | |||
| 15254 | ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc, | |||
| 15255 | BinaryOperatorKind Opc, | |||
| 15256 | Expr *LHSExpr, Expr *RHSExpr) { | |||
| 15257 | if (getLangOpts().CPlusPlus11 && isa<InitListExpr>(RHSExpr)) { | |||
| 15258 | // The syntax only allows initializer lists on the RHS of assignment, | |||
| 15259 | // so we don't need to worry about accepting invalid code for | |||
| 15260 | // non-assignment operators. | |||
| 15261 | // C++11 5.17p9: | |||
| 15262 | // The meaning of x = {v} [...] is that of x = T(v) [...]. The meaning | |||
| 15263 | // of x = {} is x = T(). | |||
| 15264 | InitializationKind Kind = InitializationKind::CreateDirectList( | |||
| 15265 | RHSExpr->getBeginLoc(), RHSExpr->getBeginLoc(), RHSExpr->getEndLoc()); | |||
| 15266 | InitializedEntity Entity = | |||
| 15267 | InitializedEntity::InitializeTemporary(LHSExpr->getType()); | |||
| 15268 | InitializationSequence InitSeq(*this, Entity, Kind, RHSExpr); | |||
| 15269 | ExprResult Init = InitSeq.Perform(*this, Entity, Kind, RHSExpr); | |||
| 15270 | if (Init.isInvalid()) | |||
| 15271 | return Init; | |||
| 15272 | RHSExpr = Init.get(); | |||
| 15273 | } | |||
| 15274 | ||||
| 15275 | ExprResult LHS = LHSExpr, RHS = RHSExpr; | |||
| 15276 | QualType ResultTy; // Result type of the binary operator. | |||
| 15277 | // The following two variables are used for compound assignment operators | |||
| 15278 | QualType CompLHSTy; // Type of LHS after promotions for computation | |||
| 15279 | QualType CompResultTy; // Type of computation result | |||
| 15280 | ExprValueKind VK = VK_PRValue; | |||
| 15281 | ExprObjectKind OK = OK_Ordinary; | |||
| 15282 | bool ConvertHalfVec = false; | |||
| 15283 | ||||
| 15284 | std::tie(LHS, RHS) = CorrectDelayedTyposInBinOp(*this, Opc, LHSExpr, RHSExpr); | |||
| 15285 | if (!LHS.isUsable() || !RHS.isUsable()) | |||
| 15286 | return ExprError(); | |||
| 15287 | ||||
| 15288 | if (getLangOpts().OpenCL) { | |||
| 15289 | QualType LHSTy = LHSExpr->getType(); | |||
| 15290 | QualType RHSTy = RHSExpr->getType(); | |||
| 15291 | // OpenCLC v2.0 s6.13.11.1 allows atomic variables to be initialized by | |||
| 15292 | // the ATOMIC_VAR_INIT macro. | |||
| 15293 | if (LHSTy->isAtomicType() || RHSTy->isAtomicType()) { | |||
| 15294 | SourceRange SR(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc()); | |||
| 15295 | if (BO_Assign == Opc) | |||
| 15296 | Diag(OpLoc, diag::err_opencl_atomic_init) << 0 << SR; | |||
| 15297 | else | |||
| 15298 | ResultTy = InvalidOperands(OpLoc, LHS, RHS); | |||
| 15299 | return ExprError(); | |||
| 15300 | } | |||
| 15301 | ||||
| 15302 | // OpenCL special types - image, sampler, pipe, and blocks are to be used | |||
| 15303 | // only with a builtin functions and therefore should be disallowed here. | |||
| 15304 | if (LHSTy->isImageType() || RHSTy->isImageType() || | |||
| 15305 | LHSTy->isSamplerT() || RHSTy->isSamplerT() || | |||
| 15306 | LHSTy->isPipeType() || RHSTy->isPipeType() || | |||
| 15307 | LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) { | |||
| 15308 | ResultTy = InvalidOperands(OpLoc, LHS, RHS); | |||
| 15309 | return ExprError(); | |||
| 15310 | } | |||
| 15311 | } | |||
| 15312 | ||||
| 15313 | checkTypeSupport(LHSExpr->getType(), OpLoc, /*ValueDecl*/ nullptr); | |||
| 15314 | checkTypeSupport(RHSExpr->getType(), OpLoc, /*ValueDecl*/ nullptr); | |||
| 15315 | ||||
| 15316 | switch (Opc) { | |||
| 15317 | case BO_Assign: | |||
| 15318 | ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, QualType(), Opc); | |||
| 15319 | if (getLangOpts().CPlusPlus && | |||
| 15320 | LHS.get()->getObjectKind() != OK_ObjCProperty) { | |||
| 15321 | VK = LHS.get()->getValueKind(); | |||
| 15322 | OK = LHS.get()->getObjectKind(); | |||
| 15323 | } | |||
| 15324 | if (!ResultTy.isNull()) { | |||
| 15325 | DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc, true); | |||
| 15326 | DiagnoseSelfMove(LHS.get(), RHS.get(), OpLoc); | |||
| 15327 | ||||
| 15328 | // Avoid copying a block to the heap if the block is assigned to a local | |||
| 15329 | // auto variable that is declared in the same scope as the block. This | |||
| 15330 | // optimization is unsafe if the local variable is declared in an outer | |||
| 15331 | // scope. For example: | |||
| 15332 | // | |||
| 15333 | // BlockTy b; | |||
| 15334 | // { | |||
| 15335 | // b = ^{...}; | |||
| 15336 | // } | |||
| 15337 | // // It is unsafe to invoke the block here if it wasn't copied to the | |||
| 15338 | // // heap. | |||
| 15339 | // b(); | |||
| 15340 | ||||
| 15341 | if (auto *BE = dyn_cast<BlockExpr>(RHS.get()->IgnoreParens())) | |||
| 15342 | if (auto *DRE = dyn_cast<DeclRefExpr>(LHS.get()->IgnoreParens())) | |||
| 15343 | if (auto *VD = dyn_cast<VarDecl>(DRE->getDecl())) | |||
| 15344 | if (VD->hasLocalStorage() && getCurScope()->isDeclScope(VD)) | |||
| 15345 | BE->getBlockDecl()->setCanAvoidCopyToHeap(); | |||
| 15346 | ||||
| 15347 | if (LHS.get()->getType().hasNonTrivialToPrimitiveCopyCUnion()) | |||
| 15348 | checkNonTrivialCUnion(LHS.get()->getType(), LHS.get()->getExprLoc(), | |||
| 15349 | NTCUC_Assignment, NTCUK_Copy); | |||
| 15350 | } | |||
| 15351 | RecordModifiableNonNullParam(*this, LHS.get()); | |||
| 15352 | break; | |||
| 15353 | case BO_PtrMemD: | |||
| 15354 | case BO_PtrMemI: | |||
| 15355 | ResultTy = CheckPointerToMemberOperands(LHS, RHS, VK, OpLoc, | |||
| 15356 | Opc == BO_PtrMemI); | |||
| 15357 | break; | |||
| 15358 | case BO_Mul: | |||
| 15359 | case BO_Div: | |||
| 15360 | ConvertHalfVec = true; | |||
| 15361 | ResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, false, | |||
| 15362 | Opc == BO_Div); | |||
| 15363 | break; | |||
| 15364 | case BO_Rem: | |||
| 15365 | ResultTy = CheckRemainderOperands(LHS, RHS, OpLoc); | |||
| 15366 | break; | |||
| 15367 | case BO_Add: | |||
| 15368 | ConvertHalfVec = true; | |||
| 15369 | ResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc); | |||
| 15370 | break; | |||
| 15371 | case BO_Sub: | |||
| 15372 | ConvertHalfVec = true; | |||
| 15373 | ResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc); | |||
| 15374 | break; | |||
| 15375 | case BO_Shl: | |||
| 15376 | case BO_Shr: | |||
| 15377 | ResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc); | |||
| 15378 | break; | |||
| 15379 | case BO_LE: | |||
| 15380 | case BO_LT: | |||
| 15381 | case BO_GE: | |||
| 15382 | case BO_GT: | |||
| 15383 | ConvertHalfVec = true; | |||
| 15384 | ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc); | |||
| 15385 | break; | |||
| 15386 | case BO_EQ: | |||
| 15387 | case BO_NE: | |||
| 15388 | ConvertHalfVec = true; | |||
| 15389 | ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc); | |||
| 15390 | break; | |||
| 15391 | case BO_Cmp: | |||
| 15392 | ConvertHalfVec = true; | |||
| 15393 | ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc); | |||
| 15394 | assert(ResultTy.isNull() || ResultTy->getAsCXXRecordDecl())(static_cast <bool> (ResultTy.isNull() || ResultTy-> getAsCXXRecordDecl()) ? void (0) : __assert_fail ("ResultTy.isNull() || ResultTy->getAsCXXRecordDecl()" , "clang/lib/Sema/SemaExpr.cpp", 15394, __extension__ __PRETTY_FUNCTION__ )); | |||
| 15395 | break; | |||
| 15396 | case BO_And: | |||
| 15397 | checkObjCPointerIntrospection(*this, LHS, RHS, OpLoc); | |||
| 15398 | [[fallthrough]]; | |||
| 15399 | case BO_Xor: | |||
| 15400 | case BO_Or: | |||
| 15401 | ResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, Opc); | |||
| 15402 | break; | |||
| 15403 | case BO_LAnd: | |||
| 15404 | case BO_LOr: | |||
| 15405 | ConvertHalfVec = true; | |||
| 15406 | ResultTy = CheckLogicalOperands(LHS, RHS, OpLoc, Opc); | |||
| 15407 | break; | |||
| 15408 | case BO_MulAssign: | |||
| 15409 | case BO_DivAssign: | |||
| 15410 | ConvertHalfVec = true; | |||
| 15411 | CompResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, true, | |||
| 15412 | Opc == BO_DivAssign); | |||
| 15413 | CompLHSTy = CompResultTy; | |||
| 15414 | if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid()) | |||
| 15415 | ResultTy = | |||
| 15416 | CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc); | |||
| 15417 | break; | |||
| 15418 | case BO_RemAssign: | |||
| 15419 | CompResultTy = CheckRemainderOperands(LHS, RHS, OpLoc, true); | |||
| 15420 | CompLHSTy = CompResultTy; | |||
| 15421 | if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid()) | |||
| 15422 | ResultTy = | |||
| 15423 | CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc); | |||
| 15424 | break; | |||
| 15425 | case BO_AddAssign: | |||
| 15426 | ConvertHalfVec = true; | |||
| 15427 | CompResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc, &CompLHSTy); | |||
| 15428 | if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid()) | |||
| 15429 | ResultTy = | |||
| 15430 | CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc); | |||
| 15431 | break; | |||
| 15432 | case BO_SubAssign: | |||
| 15433 | ConvertHalfVec = true; | |||
| 15434 | CompResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc, &CompLHSTy); | |||
| 15435 | if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid()) | |||
| 15436 | ResultTy = | |||
| 15437 | CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc); | |||
| 15438 | break; | |||
| 15439 | case BO_ShlAssign: | |||
| 15440 | case BO_ShrAssign: | |||
| 15441 | CompResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc, true); | |||
| 15442 | CompLHSTy = CompResultTy; | |||
| 15443 | if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid()) | |||
| 15444 | ResultTy = | |||
| 15445 | CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc); | |||
| 15446 | break; | |||
| 15447 | case BO_AndAssign: | |||
| 15448 | case BO_OrAssign: // fallthrough | |||
| 15449 | DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc, true); | |||
| 15450 | [[fallthrough]]; | |||
| 15451 | case BO_XorAssign: | |||
| 15452 | CompResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, Opc); | |||
| 15453 | CompLHSTy = CompResultTy; | |||
| 15454 | if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid()) | |||
| 15455 | ResultTy = | |||
| 15456 | CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc); | |||
| 15457 | break; | |||
| 15458 | case BO_Comma: | |||
| 15459 | ResultTy = CheckCommaOperands(*this, LHS, RHS, OpLoc); | |||
| 15460 | if (getLangOpts().CPlusPlus && !RHS.isInvalid()) { | |||
| 15461 | VK = RHS.get()->getValueKind(); | |||
| 15462 | OK = RHS.get()->getObjectKind(); | |||
| 15463 | } | |||
| 15464 | break; | |||
| 15465 | } | |||
| 15466 | if (ResultTy.isNull() || LHS.isInvalid() || RHS.isInvalid()) | |||
| 15467 | return ExprError(); | |||
| 15468 | ||||
| 15469 | // Some of the binary operations require promoting operands of half vector to | |||
| 15470 | // float vectors and truncating the result back to half vector. For now, we do | |||
| 15471 | // this only when HalfArgsAndReturn is set (that is, when the target is arm or | |||
| 15472 | // arm64). | |||
| 15473 | assert((static_cast <bool> ((Opc == BO_Comma || isVector(RHS.get ()->getType(), Context.HalfTy) == isVector(LHS.get()->getType (), Context.HalfTy)) && "both sides are half vectors or neither sides are" ) ? void (0) : __assert_fail ("(Opc == BO_Comma || isVector(RHS.get()->getType(), Context.HalfTy) == isVector(LHS.get()->getType(), Context.HalfTy)) && \"both sides are half vectors or neither sides are\"" , "clang/lib/Sema/SemaExpr.cpp", 15476, __extension__ __PRETTY_FUNCTION__ )) | |||
| 15474 | (Opc == BO_Comma || isVector(RHS.get()->getType(), Context.HalfTy) ==(static_cast <bool> ((Opc == BO_Comma || isVector(RHS.get ()->getType(), Context.HalfTy) == isVector(LHS.get()->getType (), Context.HalfTy)) && "both sides are half vectors or neither sides are" ) ? void (0) : __assert_fail ("(Opc == BO_Comma || isVector(RHS.get()->getType(), Context.HalfTy) == isVector(LHS.get()->getType(), Context.HalfTy)) && \"both sides are half vectors or neither sides are\"" , "clang/lib/Sema/SemaExpr.cpp", 15476, __extension__ __PRETTY_FUNCTION__ )) | |||
| 15475 | isVector(LHS.get()->getType(), Context.HalfTy)) &&(static_cast <bool> ((Opc == BO_Comma || isVector(RHS.get ()->getType(), Context.HalfTy) == isVector(LHS.get()->getType (), Context.HalfTy)) && "both sides are half vectors or neither sides are" ) ? void (0) : __assert_fail ("(Opc == BO_Comma || isVector(RHS.get()->getType(), Context.HalfTy) == isVector(LHS.get()->getType(), Context.HalfTy)) && \"both sides are half vectors or neither sides are\"" , "clang/lib/Sema/SemaExpr.cpp", 15476, __extension__ __PRETTY_FUNCTION__ )) | |||
| 15476 | "both sides are half vectors or neither sides are")(static_cast <bool> ((Opc == BO_Comma || isVector(RHS.get ()->getType(), Context.HalfTy) == isVector(LHS.get()->getType (), Context.HalfTy)) && "both sides are half vectors or neither sides are" ) ? void (0) : __assert_fail ("(Opc == BO_Comma || isVector(RHS.get()->getType(), Context.HalfTy) == isVector(LHS.get()->getType(), Context.HalfTy)) && \"both sides are half vectors or neither sides are\"" , "clang/lib/Sema/SemaExpr.cpp", 15476, __extension__ __PRETTY_FUNCTION__ )); | |||
| 15477 | ConvertHalfVec = | |||
| 15478 | needsConversionOfHalfVec(ConvertHalfVec, Context, LHS.get(), RHS.get()); | |||
| 15479 | ||||
| 15480 | // Check for array bounds violations for both sides of the BinaryOperator | |||
| 15481 | CheckArrayAccess(LHS.get()); | |||
| 15482 | CheckArrayAccess(RHS.get()); | |||
| 15483 | ||||
| 15484 | if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(LHS.get()->IgnoreParenCasts())) { | |||
| 15485 | NamedDecl *ObjectSetClass = LookupSingleName(TUScope, | |||
| 15486 | &Context.Idents.get("object_setClass"), | |||
| 15487 | SourceLocation(), LookupOrdinaryName); | |||
| 15488 | if (ObjectSetClass && isa<ObjCIsaExpr>(LHS.get())) { | |||
| 15489 | SourceLocation RHSLocEnd = getLocForEndOfToken(RHS.get()->getEndLoc()); | |||
| 15490 | Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign) | |||
| 15491 | << FixItHint::CreateInsertion(LHS.get()->getBeginLoc(), | |||
| 15492 | "object_setClass(") | |||
| 15493 | << FixItHint::CreateReplacement(SourceRange(OISA->getOpLoc(), OpLoc), | |||
| 15494 | ",") | |||
| 15495 | << FixItHint::CreateInsertion(RHSLocEnd, ")"); | |||
| 15496 | } | |||
| 15497 | else | |||
| 15498 | Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign); | |||
| 15499 | } | |||
| 15500 | else if (const ObjCIvarRefExpr *OIRE = | |||
| 15501 | dyn_cast<ObjCIvarRefExpr>(LHS.get()->IgnoreParenCasts())) | |||
| 15502 | DiagnoseDirectIsaAccess(*this, OIRE, OpLoc, RHS.get()); | |||
| 15503 | ||||
| 15504 | // Opc is not a compound assignment if CompResultTy is null. | |||
| 15505 | if (CompResultTy.isNull()) { | |||
| 15506 | if (ConvertHalfVec) | |||
| 15507 | return convertHalfVecBinOp(*this, LHS, RHS, Opc, ResultTy, VK, OK, false, | |||
| 15508 | OpLoc, CurFPFeatureOverrides()); | |||
| 15509 | return BinaryOperator::Create(Context, LHS.get(), RHS.get(), Opc, ResultTy, | |||
| 15510 | VK, OK, OpLoc, CurFPFeatureOverrides()); | |||
| 15511 | } | |||
| 15512 | ||||
| 15513 | // Handle compound assignments. | |||
| 15514 | if (getLangOpts().CPlusPlus && LHS.get()->getObjectKind() != | |||
| 15515 | OK_ObjCProperty) { | |||
| 15516 | VK = VK_LValue; | |||
| 15517 | OK = LHS.get()->getObjectKind(); | |||
| 15518 | } | |||
| 15519 | ||||
| 15520 | // The LHS is not converted to the result type for fixed-point compound | |||
| 15521 | // assignment as the common type is computed on demand. Reset the CompLHSTy | |||
| 15522 | // to the LHS type we would have gotten after unary conversions. | |||
| 15523 | if (CompResultTy->isFixedPointType()) | |||
| 15524 | CompLHSTy = UsualUnaryConversions(LHS.get()).get()->getType(); | |||
| 15525 | ||||
| 15526 | if (ConvertHalfVec) | |||
| 15527 | return convertHalfVecBinOp(*this, LHS, RHS, Opc, ResultTy, VK, OK, true, | |||
| 15528 | OpLoc, CurFPFeatureOverrides()); | |||
| 15529 | ||||
| 15530 | return CompoundAssignOperator::Create( | |||
| 15531 | Context, LHS.get(), RHS.get(), Opc, ResultTy, VK, OK, OpLoc, | |||
| 15532 | CurFPFeatureOverrides(), CompLHSTy, CompResultTy); | |||
| 15533 | } | |||
| 15534 | ||||
| 15535 | /// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison | |||
| 15536 | /// operators are mixed in a way that suggests that the programmer forgot that | |||
| 15537 | /// comparison operators have higher precedence. The most typical example of | |||
| 15538 | /// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1". | |||
| 15539 | static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperatorKind Opc, | |||
| 15540 | SourceLocation OpLoc, Expr *LHSExpr, | |||
| 15541 | Expr *RHSExpr) { | |||
| 15542 | BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHSExpr); | |||
| 15543 | BinaryOperator *RHSBO = dyn_cast<BinaryOperator>(RHSExpr); | |||
| 15544 | ||||
| 15545 | // Check that one of the sides is a comparison operator and the other isn't. | |||
| 15546 | bool isLeftComp = LHSBO && LHSBO->isComparisonOp(); | |||
| 15547 | bool isRightComp = RHSBO && RHSBO->isComparisonOp(); | |||
| 15548 | if (isLeftComp == isRightComp) | |||
| 15549 | return; | |||
| 15550 | ||||
| 15551 | // Bitwise operations are sometimes used as eager logical ops. | |||
| 15552 | // Don't diagnose this. | |||
| 15553 | bool isLeftBitwise = LHSBO && LHSBO->isBitwiseOp(); | |||
| 15554 | bool isRightBitwise = RHSBO && RHSBO->isBitwiseOp(); | |||
| 15555 | if (isLeftBitwise || isRightBitwise) | |||
| 15556 | return; | |||
| 15557 | ||||
| 15558 | SourceRange DiagRange = isLeftComp | |||
| 15559 | ? SourceRange(LHSExpr->getBeginLoc(), OpLoc) | |||
| 15560 | : SourceRange(OpLoc, RHSExpr->getEndLoc()); | |||
| 15561 | StringRef OpStr = isLeftComp ? LHSBO->getOpcodeStr() : RHSBO->getOpcodeStr(); | |||
| 15562 | SourceRange ParensRange = | |||
| 15563 | isLeftComp | |||
| 15564 | ? SourceRange(LHSBO->getRHS()->getBeginLoc(), RHSExpr->getEndLoc()) | |||
| 15565 | : SourceRange(LHSExpr->getBeginLoc(), RHSBO->getLHS()->getEndLoc()); | |||
| 15566 | ||||
| 15567 | Self.Diag(OpLoc, diag::warn_precedence_bitwise_rel) | |||
| 15568 | << DiagRange << BinaryOperator::getOpcodeStr(Opc) << OpStr; | |||
| 15569 | SuggestParentheses(Self, OpLoc, | |||
| 15570 | Self.PDiag(diag::note_precedence_silence) << OpStr, | |||
| 15571 | (isLeftComp ? LHSExpr : RHSExpr)->getSourceRange()); | |||
| 15572 | SuggestParentheses(Self, OpLoc, | |||
| 15573 | Self.PDiag(diag::note_precedence_bitwise_first) | |||
| 15574 | << BinaryOperator::getOpcodeStr(Opc), | |||
| 15575 | ParensRange); | |||
| 15576 | } | |||
| 15577 | ||||
| 15578 | /// It accepts a '&&' expr that is inside a '||' one. | |||
| 15579 | /// Emit a diagnostic together with a fixit hint that wraps the '&&' expression | |||
| 15580 | /// in parentheses. | |||
| 15581 | static void | |||
| 15582 | EmitDiagnosticForLogicalAndInLogicalOr(Sema &Self, SourceLocation OpLoc, | |||
| 15583 | BinaryOperator *Bop) { | |||
| 15584 | assert(Bop->getOpcode() == BO_LAnd)(static_cast <bool> (Bop->getOpcode() == BO_LAnd) ? void (0) : __assert_fail ("Bop->getOpcode() == BO_LAnd", "clang/lib/Sema/SemaExpr.cpp" , 15584, __extension__ __PRETTY_FUNCTION__)); | |||
| 15585 | Self.Diag(Bop->getOperatorLoc(), diag::warn_logical_and_in_logical_or) | |||
| 15586 | << Bop->getSourceRange() << OpLoc; | |||
| 15587 | SuggestParentheses(Self, Bop->getOperatorLoc(), | |||
| 15588 | Self.PDiag(diag::note_precedence_silence) | |||
| 15589 | << Bop->getOpcodeStr(), | |||
| 15590 | Bop->getSourceRange()); | |||
| 15591 | } | |||
| 15592 | ||||
| 15593 | /// Look for '&&' in the left hand of a '||' expr. | |||
| 15594 | static void DiagnoseLogicalAndInLogicalOrLHS(Sema &S, SourceLocation OpLoc, | |||
| 15595 | Expr *LHSExpr, Expr *RHSExpr) { | |||
| 15596 | if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(LHSExpr)) { | |||
| 15597 | if (Bop->getOpcode() == BO_LAnd) { | |||
| 15598 | // If it's "string_literal && a || b" don't warn since the precedence | |||
| 15599 | // doesn't matter. | |||
| 15600 | if (!isa<StringLiteral>(Bop->getLHS()->IgnoreParenImpCasts())) | |||
| 15601 | return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop); | |||
| 15602 | } else if (Bop->getOpcode() == BO_LOr) { | |||
| 15603 | if (BinaryOperator *RBop = dyn_cast<BinaryOperator>(Bop->getRHS())) { | |||
| 15604 | // If it's "a || b && string_literal || c" we didn't warn earlier for | |||
| 15605 | // "a || b && string_literal", but warn now. | |||
| 15606 | if (RBop->getOpcode() == BO_LAnd && | |||
| 15607 | isa<StringLiteral>(RBop->getRHS()->IgnoreParenImpCasts())) | |||
| 15608 | return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, RBop); | |||
| 15609 | } | |||
| 15610 | } | |||
| 15611 | } | |||
| 15612 | } | |||
| 15613 | ||||
| 15614 | /// Look for '&&' in the right hand of a '||' expr. | |||
| 15615 | static void DiagnoseLogicalAndInLogicalOrRHS(Sema &S, SourceLocation OpLoc, | |||
| 15616 | Expr *LHSExpr, Expr *RHSExpr) { | |||
| 15617 | if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(RHSExpr)) { | |||
| 15618 | if (Bop->getOpcode() == BO_LAnd) { | |||
| 15619 | // If it's "a || b && string_literal" don't warn since the precedence | |||
| 15620 | // doesn't matter. | |||
| 15621 | if (!isa<StringLiteral>(Bop->getRHS()->IgnoreParenImpCasts())) | |||
| 15622 | return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop); | |||
| 15623 | } | |||
| 15624 | } | |||
| 15625 | } | |||
| 15626 | ||||
| 15627 | /// Look for bitwise op in the left or right hand of a bitwise op with | |||
| 15628 | /// lower precedence and emit a diagnostic together with a fixit hint that wraps | |||
| 15629 | /// the '&' expression in parentheses. | |||
| 15630 | static void DiagnoseBitwiseOpInBitwiseOp(Sema &S, BinaryOperatorKind Opc, | |||
| 15631 | SourceLocation OpLoc, Expr *SubExpr) { | |||
| 15632 | if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(SubExpr)) { | |||
| 15633 | if (Bop->isBitwiseOp() && Bop->getOpcode() < Opc) { | |||
| 15634 | S.Diag(Bop->getOperatorLoc(), diag::warn_bitwise_op_in_bitwise_op) | |||
| 15635 | << Bop->getOpcodeStr() << BinaryOperator::getOpcodeStr(Opc) | |||
| 15636 | << Bop->getSourceRange() << OpLoc; | |||
| 15637 | SuggestParentheses(S, Bop->getOperatorLoc(), | |||
| 15638 | S.PDiag(diag::note_precedence_silence) | |||
| 15639 | << Bop->getOpcodeStr(), | |||
| 15640 | Bop->getSourceRange()); | |||
| 15641 | } | |||
| 15642 | } | |||
| 15643 | } | |||
| 15644 | ||||
| 15645 | static void DiagnoseAdditionInShift(Sema &S, SourceLocation OpLoc, | |||
| 15646 | Expr *SubExpr, StringRef Shift) { | |||
| 15647 | if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(SubExpr)) { | |||
| 15648 | if (Bop->getOpcode() == BO_Add || Bop->getOpcode() == BO_Sub) { | |||
| 15649 | StringRef Op = Bop->getOpcodeStr(); | |||
| 15650 | S.Diag(Bop->getOperatorLoc(), diag::warn_addition_in_bitshift) | |||
| 15651 | << Bop->getSourceRange() << OpLoc << Shift << Op; | |||
| 15652 | SuggestParentheses(S, Bop->getOperatorLoc(), | |||
| 15653 | S.PDiag(diag::note_precedence_silence) << Op, | |||
| 15654 | Bop->getSourceRange()); | |||
| 15655 | } | |||
| 15656 | } | |||
| 15657 | } | |||
| 15658 | ||||
| 15659 | static void DiagnoseShiftCompare(Sema &S, SourceLocation OpLoc, | |||
| 15660 | Expr *LHSExpr, Expr *RHSExpr) { | |||
| 15661 | CXXOperatorCallExpr *OCE = dyn_cast<CXXOperatorCallExpr>(LHSExpr); | |||
| 15662 | if (!OCE) | |||
| 15663 | return; | |||
| 15664 | ||||
| 15665 | FunctionDecl *FD = OCE->getDirectCallee(); | |||
| 15666 | if (!FD || !FD->isOverloadedOperator()) | |||
| 15667 | return; | |||
| 15668 | ||||
| 15669 | OverloadedOperatorKind Kind = FD->getOverloadedOperator(); | |||
| 15670 | if (Kind != OO_LessLess && Kind != OO_GreaterGreater) | |||
| 15671 | return; | |||
| 15672 | ||||
| 15673 | S.Diag(OpLoc, diag::warn_overloaded_shift_in_comparison) | |||
| 15674 | << LHSExpr->getSourceRange() << RHSExpr->getSourceRange() | |||
| 15675 | << (Kind == OO_LessLess); | |||
| 15676 | SuggestParentheses(S, OCE->getOperatorLoc(), | |||
| 15677 | S.PDiag(diag::note_precedence_silence) | |||
| 15678 | << (Kind == OO_LessLess ? "<<" : ">>"), | |||
| 15679 | OCE->getSourceRange()); | |||
| 15680 | SuggestParentheses( | |||
| 15681 | S, OpLoc, S.PDiag(diag::note_evaluate_comparison_first), | |||
| 15682 | SourceRange(OCE->getArg(1)->getBeginLoc(), RHSExpr->getEndLoc())); | |||
| 15683 | } | |||
| 15684 | ||||
| 15685 | /// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky | |||
| 15686 | /// precedence. | |||
| 15687 | static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperatorKind Opc, | |||
| 15688 | SourceLocation OpLoc, Expr *LHSExpr, | |||
| 15689 | Expr *RHSExpr){ | |||
| 15690 | // Diagnose "arg1 'bitwise' arg2 'eq' arg3". | |||
| 15691 | if (BinaryOperator::isBitwiseOp(Opc)) | |||
| 15692 | DiagnoseBitwisePrecedence(Self, Opc, OpLoc, LHSExpr, RHSExpr); | |||
| 15693 | ||||
| 15694 | // Diagnose "arg1 & arg2 | arg3" | |||
| 15695 | if ((Opc == BO_Or || Opc == BO_Xor) && | |||
| 15696 | !OpLoc.isMacroID()/* Don't warn in macros. */) { | |||
| 15697 | DiagnoseBitwiseOpInBitwiseOp(Self, Opc, OpLoc, LHSExpr); | |||
| 15698 | DiagnoseBitwiseOpInBitwiseOp(Self, Opc, OpLoc, RHSExpr); | |||
| 15699 | } | |||
| 15700 | ||||
| 15701 | // Warn about arg1 || arg2 && arg3, as GCC 4.3+ does. | |||
| 15702 | // We don't warn for 'assert(a || b && "bad")' since this is safe. | |||
| 15703 | if (Opc == BO_LOr && !OpLoc.isMacroID()/* Don't warn in macros. */) { | |||
| 15704 | DiagnoseLogicalAndInLogicalOrLHS(Self, OpLoc, LHSExpr, RHSExpr); | |||
| 15705 | DiagnoseLogicalAndInLogicalOrRHS(Self, OpLoc, LHSExpr, RHSExpr); | |||
| 15706 | } | |||
| 15707 | ||||
| 15708 | if ((Opc == BO_Shl && LHSExpr->getType()->isIntegralType(Self.getASTContext())) | |||
| 15709 | || Opc == BO_Shr) { | |||
| 15710 | StringRef Shift = BinaryOperator::getOpcodeStr(Opc); | |||
| 15711 | DiagnoseAdditionInShift(Self, OpLoc, LHSExpr, Shift); | |||
| 15712 | DiagnoseAdditionInShift(Self, OpLoc, RHSExpr, Shift); | |||
| 15713 | } | |||
| 15714 | ||||
| 15715 | // Warn on overloaded shift operators and comparisons, such as: | |||
| 15716 | // cout << 5 == 4; | |||
| 15717 | if (BinaryOperator::isComparisonOp(Opc)) | |||
| 15718 | DiagnoseShiftCompare(Self, OpLoc, LHSExpr, RHSExpr); | |||
| 15719 | } | |||
| 15720 | ||||
| 15721 | // Binary Operators. 'Tok' is the token for the operator. | |||
| 15722 | ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc, | |||
| 15723 | tok::TokenKind Kind, | |||
| 15724 | Expr *LHSExpr, Expr *RHSExpr) { | |||
| 15725 | BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Kind); | |||
| 15726 | assert(LHSExpr && "ActOnBinOp(): missing left expression")(static_cast <bool> (LHSExpr && "ActOnBinOp(): missing left expression" ) ? void (0) : __assert_fail ("LHSExpr && \"ActOnBinOp(): missing left expression\"" , "clang/lib/Sema/SemaExpr.cpp", 15726, __extension__ __PRETTY_FUNCTION__ )); | |||
| 15727 | assert(RHSExpr && "ActOnBinOp(): missing right expression")(static_cast <bool> (RHSExpr && "ActOnBinOp(): missing right expression" ) ? void (0) : __assert_fail ("RHSExpr && \"ActOnBinOp(): missing right expression\"" , "clang/lib/Sema/SemaExpr.cpp", 15727, __extension__ __PRETTY_FUNCTION__ )); | |||
| 15728 | ||||
| 15729 | // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0" | |||
| 15730 | DiagnoseBinOpPrecedence(*this, Opc, TokLoc, LHSExpr, RHSExpr); | |||
| 15731 | ||||
| 15732 | return BuildBinOp(S, TokLoc, Opc, LHSExpr, RHSExpr); | |||
| 15733 | } | |||
| 15734 | ||||
| 15735 | void Sema::LookupBinOp(Scope *S, SourceLocation OpLoc, BinaryOperatorKind Opc, | |||
| 15736 | UnresolvedSetImpl &Functions) { | |||
| 15737 | OverloadedOperatorKind OverOp = BinaryOperator::getOverloadedOperator(Opc); | |||
| 15738 | if (OverOp != OO_None && OverOp != OO_Equal) | |||
| 15739 | LookupOverloadedOperatorName(OverOp, S, Functions); | |||
| 15740 | ||||
| 15741 | // In C++20 onwards, we may have a second operator to look up. | |||
| 15742 | if (getLangOpts().CPlusPlus20) { | |||
| 15743 | if (OverloadedOperatorKind ExtraOp = getRewrittenOverloadedOperator(OverOp)) | |||
| 15744 | LookupOverloadedOperatorName(ExtraOp, S, Functions); | |||
| 15745 | } | |||
| 15746 | } | |||
| 15747 | ||||
| 15748 | /// Build an overloaded binary operator expression in the given scope. | |||
| 15749 | static ExprResult BuildOverloadedBinOp(Sema &S, Scope *Sc, SourceLocation OpLoc, | |||
| 15750 | BinaryOperatorKind Opc, | |||
| 15751 | Expr *LHS, Expr *RHS) { | |||
| 15752 | switch (Opc) { | |||
| 15753 | case BO_Assign: | |||
| 15754 | // In the non-overloaded case, we warn about self-assignment (x = x) for | |||
| 15755 | // both simple assignment and certain compound assignments where algebra | |||
| 15756 | // tells us the operation yields a constant result. When the operator is | |||
| 15757 | // overloaded, we can't do the latter because we don't want to assume that | |||
| 15758 | // those algebraic identities still apply; for example, a path-building | |||
| 15759 | // library might use operator/= to append paths. But it's still reasonable | |||
| 15760 | // to assume that simple assignment is just moving/copying values around | |||
| 15761 | // and so self-assignment is likely a bug. | |||
| 15762 | DiagnoseSelfAssignment(S, LHS, RHS, OpLoc, false); | |||
| 15763 | [[fallthrough]]; | |||
| 15764 | case BO_DivAssign: | |||
| 15765 | case BO_RemAssign: | |||
| 15766 | case BO_SubAssign: | |||
| 15767 | case BO_AndAssign: | |||
| 15768 | case BO_OrAssign: | |||
| 15769 | case BO_XorAssign: | |||
| 15770 | CheckIdentityFieldAssignment(LHS, RHS, OpLoc, S); | |||
| 15771 | break; | |||
| 15772 | default: | |||
| 15773 | break; | |||
| 15774 | } | |||
| 15775 | ||||
| 15776 | // Find all of the overloaded operators visible from this point. | |||
| 15777 | UnresolvedSet<16> Functions; | |||
| 15778 | S.LookupBinOp(Sc, OpLoc, Opc, Functions); | |||
| 15779 | ||||
| 15780 | // Build the (potentially-overloaded, potentially-dependent) | |||
| 15781 | // binary operation. | |||
| 15782 | return S.CreateOverloadedBinOp(OpLoc, Opc, Functions, LHS, RHS); | |||
| 15783 | } | |||
| 15784 | ||||
| 15785 | ExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc, | |||
| 15786 | BinaryOperatorKind Opc, | |||
| 15787 | Expr *LHSExpr, Expr *RHSExpr) { | |||
| 15788 | ExprResult LHS, RHS; | |||
| 15789 | std::tie(LHS, RHS) = CorrectDelayedTyposInBinOp(*this, Opc, LHSExpr, RHSExpr); | |||
| 15790 | if (!LHS.isUsable() || !RHS.isUsable()) | |||
| 15791 | return ExprError(); | |||
| 15792 | LHSExpr = LHS.get(); | |||
| 15793 | RHSExpr = RHS.get(); | |||
| 15794 | ||||
| 15795 | // We want to end up calling one of checkPseudoObjectAssignment | |||
| 15796 | // (if the LHS is a pseudo-object), BuildOverloadedBinOp (if | |||
| 15797 | // both expressions are overloadable or either is type-dependent), | |||
| 15798 | // or CreateBuiltinBinOp (in any other case). We also want to get | |||
| 15799 | // any placeholder types out of the way. | |||
| 15800 | ||||
| 15801 | // Handle pseudo-objects in the LHS. | |||
| 15802 | if (const BuiltinType *pty = LHSExpr->getType()->getAsPlaceholderType()) { | |||
| 15803 | // Assignments with a pseudo-object l-value need special analysis. | |||
| 15804 | if (pty->getKind() == BuiltinType::PseudoObject && | |||
| 15805 | BinaryOperator::isAssignmentOp(Opc)) | |||
| 15806 | return checkPseudoObjectAssignment(S, OpLoc, Opc, LHSExpr, RHSExpr); | |||
| 15807 | ||||
| 15808 | // Don't resolve overloads if the other type is overloadable. | |||
| 15809 | if (getLangOpts().CPlusPlus && pty->getKind() == BuiltinType::Overload) { | |||
| 15810 | // We can't actually test that if we still have a placeholder, | |||
| 15811 | // though. Fortunately, none of the exceptions we see in that | |||
| 15812 | // code below are valid when the LHS is an overload set. Note | |||
| 15813 | // that an overload set can be dependently-typed, but it never | |||
| 15814 | // instantiates to having an overloadable type. | |||
| 15815 | ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr); | |||
| 15816 | if (resolvedRHS.isInvalid()) return ExprError(); | |||
| 15817 | RHSExpr = resolvedRHS.get(); | |||
| 15818 | ||||
| 15819 | if (RHSExpr->isTypeDependent() || | |||
| 15820 | RHSExpr->getType()->isOverloadableType()) | |||
| 15821 | return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr); | |||
| 15822 | } | |||
| 15823 | ||||
| 15824 | // If we're instantiating "a.x < b" or "A::x < b" and 'x' names a function | |||
| 15825 | // template, diagnose the missing 'template' keyword instead of diagnosing | |||
| 15826 | // an invalid use of a bound member function. | |||
| 15827 | // | |||
| 15828 | // Note that "A::x < b" might be valid if 'b' has an overloadable type due | |||
| 15829 | // to C++1z [over.over]/1.4, but we already checked for that case above. | |||
| 15830 | if (Opc == BO_LT && inTemplateInstantiation() && | |||
| 15831 | (pty->getKind() == BuiltinType::BoundMember || | |||
| 15832 | pty->getKind() == BuiltinType::Overload)) { | |||
| 15833 | auto *OE = dyn_cast<OverloadExpr>(LHSExpr); | |||
| 15834 | if (OE && !OE->hasTemplateKeyword() && !OE->hasExplicitTemplateArgs() && | |||
| 15835 | llvm::any_of(OE->decls(), [](NamedDecl *ND) { | |||
| 15836 | return isa<FunctionTemplateDecl>(ND); | |||
| 15837 | })) { | |||
| 15838 | Diag(OE->getQualifier() ? OE->getQualifierLoc().getBeginLoc() | |||
| 15839 | : OE->getNameLoc(), | |||
| 15840 | diag::err_template_kw_missing) | |||
| 15841 | << OE->getName().getAsString() << ""; | |||
| 15842 | return ExprError(); | |||
| 15843 | } | |||
| 15844 | } | |||
| 15845 | ||||
| 15846 | ExprResult LHS = CheckPlaceholderExpr(LHSExpr); | |||
| 15847 | if (LHS.isInvalid()) return ExprError(); | |||
| 15848 | LHSExpr = LHS.get(); | |||
| 15849 | } | |||
| 15850 | ||||
| 15851 | // Handle pseudo-objects in the RHS. | |||
| 15852 | if (const BuiltinType *pty = RHSExpr->getType()->getAsPlaceholderType()) { | |||
| 15853 | // An overload in the RHS can potentially be resolved by the type | |||
| 15854 | // being assigned to. | |||
| 15855 | if (Opc == BO_Assign && pty->getKind() == BuiltinType::Overload) { | |||
| 15856 | if (getLangOpts().CPlusPlus && | |||
| 15857 | (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent() || | |||
| 15858 | LHSExpr->getType()->isOverloadableType())) | |||
| 15859 | return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr); | |||
| 15860 | ||||
| 15861 | return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr); | |||
| 15862 | } | |||
| 15863 | ||||
| 15864 | // Don't resolve overloads if the other type is overloadable. | |||
| 15865 | if (getLangOpts().CPlusPlus && pty->getKind() == BuiltinType::Overload && | |||
| 15866 | LHSExpr->getType()->isOverloadableType()) | |||
| 15867 | return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr); | |||
| 15868 | ||||
| 15869 | ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr); | |||
| 15870 | if (!resolvedRHS.isUsable()) return ExprError(); | |||
| 15871 | RHSExpr = resolvedRHS.get(); | |||
| 15872 | } | |||
| 15873 | ||||
| 15874 | if (getLangOpts().CPlusPlus) { | |||
| 15875 | // If either expression is type-dependent, always build an | |||
| 15876 | // overloaded op. | |||
| 15877 | if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent()) | |||
| 15878 | return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr); | |||
| 15879 | ||||
| 15880 | // Otherwise, build an overloaded op if either expression has an | |||
| 15881 | // overloadable type. | |||
| 15882 | if (LHSExpr->getType()->isOverloadableType() || | |||
| 15883 | RHSExpr->getType()->isOverloadableType()) | |||
| 15884 | return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr); | |||
| 15885 | } | |||
| 15886 | ||||
| 15887 | if (getLangOpts().RecoveryAST && | |||
| 15888 | (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())) { | |||
| 15889 | assert(!getLangOpts().CPlusPlus)(static_cast <bool> (!getLangOpts().CPlusPlus) ? void ( 0) : __assert_fail ("!getLangOpts().CPlusPlus", "clang/lib/Sema/SemaExpr.cpp" , 15889, __extension__ __PRETTY_FUNCTION__)); | |||
| 15890 | assert((LHSExpr->containsErrors() || RHSExpr->containsErrors()) &&(static_cast <bool> ((LHSExpr->containsErrors() || RHSExpr ->containsErrors()) && "Should only occur in error-recovery path." ) ? void (0) : __assert_fail ("(LHSExpr->containsErrors() || RHSExpr->containsErrors()) && \"Should only occur in error-recovery path.\"" , "clang/lib/Sema/SemaExpr.cpp", 15891, __extension__ __PRETTY_FUNCTION__ )) | |||
| 15891 | "Should only occur in error-recovery path.")(static_cast <bool> ((LHSExpr->containsErrors() || RHSExpr ->containsErrors()) && "Should only occur in error-recovery path." ) ? void (0) : __assert_fail ("(LHSExpr->containsErrors() || RHSExpr->containsErrors()) && \"Should only occur in error-recovery path.\"" , "clang/lib/Sema/SemaExpr.cpp", 15891, __extension__ __PRETTY_FUNCTION__ )); | |||
| 15892 | if (BinaryOperator::isCompoundAssignmentOp(Opc)) | |||
| 15893 | // C [6.15.16] p3: | |||
| 15894 | // An assignment expression has the value of the left operand after the | |||
| 15895 | // assignment, but is not an lvalue. | |||
| 15896 | return CompoundAssignOperator::Create( | |||
| 15897 | Context, LHSExpr, RHSExpr, Opc, | |||
| 15898 | LHSExpr->getType().getUnqualifiedType(), VK_PRValue, OK_Ordinary, | |||
| 15899 | OpLoc, CurFPFeatureOverrides()); | |||
| 15900 | QualType ResultType; | |||
| 15901 | switch (Opc) { | |||
| 15902 | case BO_Assign: | |||
| 15903 | ResultType = LHSExpr->getType().getUnqualifiedType(); | |||
| 15904 | break; | |||
| 15905 | case BO_LT: | |||
| 15906 | case BO_GT: | |||
| 15907 | case BO_LE: | |||
| 15908 | case BO_GE: | |||
| 15909 | case BO_EQ: | |||
| 15910 | case BO_NE: | |||
| 15911 | case BO_LAnd: | |||
| 15912 | case BO_LOr: | |||
| 15913 | // These operators have a fixed result type regardless of operands. | |||
| 15914 | ResultType = Context.IntTy; | |||
| 15915 | break; | |||
| 15916 | case BO_Comma: | |||
| 15917 | ResultType = RHSExpr->getType(); | |||
| 15918 | break; | |||
| 15919 | default: | |||
| 15920 | ResultType = Context.DependentTy; | |||
| 15921 | break; | |||
| 15922 | } | |||
| 15923 | return BinaryOperator::Create(Context, LHSExpr, RHSExpr, Opc, ResultType, | |||
| 15924 | VK_PRValue, OK_Ordinary, OpLoc, | |||
| 15925 | CurFPFeatureOverrides()); | |||
| 15926 | } | |||
| 15927 | ||||
| 15928 | // Build a built-in binary operation. | |||
| 15929 | return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr); | |||
| 15930 | } | |||
| 15931 | ||||
| 15932 | static bool isOverflowingIntegerType(ASTContext &Ctx, QualType T) { | |||
| 15933 | if (T.isNull() || T->isDependentType()) | |||
| 15934 | return false; | |||
| 15935 | ||||
| 15936 | if (!Ctx.isPromotableIntegerType(T)) | |||
| 15937 | return true; | |||
| 15938 | ||||
| 15939 | return Ctx.getIntWidth(T) >= Ctx.getIntWidth(Ctx.IntTy); | |||
| 15940 | } | |||
| 15941 | ||||
| 15942 | ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc, | |||
| 15943 | UnaryOperatorKind Opc, Expr *InputExpr, | |||
| 15944 | bool IsAfterAmp) { | |||
| 15945 | ExprResult Input = InputExpr; | |||
| 15946 | ExprValueKind VK = VK_PRValue; | |||
| 15947 | ExprObjectKind OK = OK_Ordinary; | |||
| 15948 | QualType resultType; | |||
| 15949 | bool CanOverflow = false; | |||
| 15950 | ||||
| 15951 | bool ConvertHalfVec = false; | |||
| 15952 | if (getLangOpts().OpenCL) { | |||
| 15953 | QualType Ty = InputExpr->getType(); | |||
| 15954 | // The only legal unary operation for atomics is '&'. | |||
| 15955 | if ((Opc != UO_AddrOf && Ty->isAtomicType()) || | |||
| 15956 | // OpenCL special types - image, sampler, pipe, and blocks are to be used | |||
| 15957 | // only with a builtin functions and therefore should be disallowed here. | |||
| 15958 | (Ty->isImageType() || Ty->isSamplerT() || Ty->isPipeType() | |||
| 15959 | || Ty->isBlockPointerType())) { | |||
| 15960 | return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr) | |||
| 15961 | << InputExpr->getType() | |||
| 15962 | << Input.get()->getSourceRange()); | |||
| 15963 | } | |||
| 15964 | } | |||
| 15965 | ||||
| 15966 | if (getLangOpts().HLSL && OpLoc.isValid()) { | |||
| 15967 | if (Opc == UO_AddrOf) | |||
| 15968 | return ExprError(Diag(OpLoc, diag::err_hlsl_operator_unsupported) << 0); | |||
| 15969 | if (Opc == UO_Deref) | |||
| 15970 | return ExprError(Diag(OpLoc, diag::err_hlsl_operator_unsupported) << 1); | |||
| 15971 | } | |||
| 15972 | ||||
| 15973 | switch (Opc) { | |||
| 15974 | case UO_PreInc: | |||
| 15975 | case UO_PreDec: | |||
| 15976 | case UO_PostInc: | |||
| 15977 | case UO_PostDec: | |||
| 15978 | resultType = CheckIncrementDecrementOperand(*this, Input.get(), VK, OK, | |||
| 15979 | OpLoc, | |||
| 15980 | Opc == UO_PreInc || | |||
| 15981 | Opc == UO_PostInc, | |||
| 15982 | Opc == UO_PreInc || | |||
| 15983 | Opc == UO_PreDec); | |||
| 15984 | CanOverflow = isOverflowingIntegerType(Context, resultType); | |||
| 15985 | break; | |||
| 15986 | case UO_AddrOf: | |||
| 15987 | resultType = CheckAddressOfOperand(Input, OpLoc); | |||
| 15988 | CheckAddressOfNoDeref(InputExpr); | |||
| 15989 | RecordModifiableNonNullParam(*this, InputExpr); | |||
| 15990 | break; | |||
| 15991 | case UO_Deref: { | |||
| 15992 | Input = DefaultFunctionArrayLvalueConversion(Input.get()); | |||
| 15993 | if (Input.isInvalid()) return ExprError(); | |||
| 15994 | resultType = | |||
| 15995 | CheckIndirectionOperand(*this, Input.get(), VK, OpLoc, IsAfterAmp); | |||
| 15996 | break; | |||
| 15997 | } | |||
| 15998 | case UO_Plus: | |||
| 15999 | case UO_Minus: | |||
| 16000 | CanOverflow = Opc == UO_Minus && | |||
| 16001 | isOverflowingIntegerType(Context, Input.get()->getType()); | |||
| 16002 | Input = UsualUnaryConversions(Input.get()); | |||
| 16003 | if (Input.isInvalid()) return ExprError(); | |||
| 16004 | // Unary plus and minus require promoting an operand of half vector to a | |||
| 16005 | // float vector and truncating the result back to a half vector. For now, we | |||
| 16006 | // do this only when HalfArgsAndReturns is set (that is, when the target is | |||
| 16007 | // arm or arm64). | |||
| 16008 | ConvertHalfVec = needsConversionOfHalfVec(true, Context, Input.get()); | |||
| 16009 | ||||
| 16010 | // If the operand is a half vector, promote it to a float vector. | |||
| 16011 | if (ConvertHalfVec) | |||
| 16012 | Input = convertVector(Input.get(), Context.FloatTy, *this); | |||
| 16013 | resultType = Input.get()->getType(); | |||
| 16014 | if (resultType->isDependentType()) | |||
| 16015 | break; | |||
| 16016 | if (resultType->isArithmeticType()) // C99 6.5.3.3p1 | |||
| 16017 | break; | |||
| 16018 | else if (resultType->isVectorType() && | |||
| 16019 | // The z vector extensions don't allow + or - with bool vectors. | |||
| 16020 | (!Context.getLangOpts().ZVector || | |||
| 16021 | resultType->castAs<VectorType>()->getVectorKind() != | |||
| 16022 | VectorType::AltiVecBool)) | |||
| 16023 | break; | |||
| 16024 | else if (resultType->isVLSTBuiltinType()) // SVE vectors allow + and - | |||
| 16025 | break; | |||
| 16026 | else if (getLangOpts().CPlusPlus && // C++ [expr.unary.op]p6 | |||
| 16027 | Opc == UO_Plus && | |||
| 16028 | resultType->isPointerType()) | |||
| 16029 | break; | |||
| 16030 | ||||
| 16031 | return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr) | |||
| 16032 | << resultType << Input.get()->getSourceRange()); | |||
| 16033 | ||||
| 16034 | case UO_Not: // bitwise complement | |||
| 16035 | Input = UsualUnaryConversions(Input.get()); | |||
| 16036 | if (Input.isInvalid()) | |||
| 16037 | return ExprError(); | |||
| 16038 | resultType = Input.get()->getType(); | |||
| 16039 | if (resultType->isDependentType()) | |||
| 16040 | break; | |||
| 16041 | // C99 6.5.3.3p1. We allow complex int and float as a GCC extension. | |||
| 16042 | if (resultType->isComplexType() || resultType->isComplexIntegerType()) | |||
| 16043 | // C99 does not support '~' for complex conjugation. | |||
| 16044 | Diag(OpLoc, diag::ext_integer_complement_complex) | |||
| 16045 | << resultType << Input.get()->getSourceRange(); | |||
| 16046 | else if (resultType->hasIntegerRepresentation()) | |||
| 16047 | break; | |||
| 16048 | else if (resultType->isExtVectorType() && Context.getLangOpts().OpenCL) { | |||
| 16049 | // OpenCL v1.1 s6.3.f: The bitwise operator not (~) does not operate | |||
| 16050 | // on vector float types. | |||
| 16051 | QualType T = resultType->castAs<ExtVectorType>()->getElementType(); | |||
| 16052 | if (!T->isIntegerType()) | |||
| 16053 | return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr) | |||
| 16054 | << resultType << Input.get()->getSourceRange()); | |||
| 16055 | } else { | |||
| 16056 | return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr) | |||
| 16057 | << resultType << Input.get()->getSourceRange()); | |||
| 16058 | } | |||
| 16059 | break; | |||
| 16060 | ||||
| 16061 | case UO_LNot: // logical negation | |||
| 16062 | // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5). | |||
| 16063 | Input = DefaultFunctionArrayLvalueConversion(Input.get()); | |||
| 16064 | if (Input.isInvalid()) return ExprError(); | |||
| 16065 | resultType = Input.get()->getType(); | |||
| 16066 | ||||
| 16067 | // Though we still have to promote half FP to float... | |||
| 16068 | if (resultType->isHalfType() && !Context.getLangOpts().NativeHalfType) { | |||
| 16069 | Input = ImpCastExprToType(Input.get(), Context.FloatTy, CK_FloatingCast).get(); | |||
| 16070 | resultType = Context.FloatTy; | |||
| 16071 | } | |||
| 16072 | ||||
| 16073 | if (resultType->isDependentType()) | |||
| 16074 | break; | |||
| 16075 | if (resultType->isScalarType() && !isScopedEnumerationType(resultType)) { | |||
| 16076 | // C99 6.5.3.3p1: ok, fallthrough; | |||
| 16077 | if (Context.getLangOpts().CPlusPlus) { | |||
| 16078 | // C++03 [expr.unary.op]p8, C++0x [expr.unary.op]p9: | |||
| 16079 | // operand contextually converted to bool. | |||
| 16080 | Input = ImpCastExprToType(Input.get(), Context.BoolTy, | |||
| 16081 | ScalarTypeToBooleanCastKind(resultType)); | |||
| 16082 | } else if (Context.getLangOpts().OpenCL && | |||
| 16083 | Context.getLangOpts().OpenCLVersion < 120) { | |||
| 16084 | // OpenCL v1.1 6.3.h: The logical operator not (!) does not | |||
| 16085 | // operate on scalar float types. | |||
| 16086 | if (!resultType->isIntegerType() && !resultType->isPointerType()) | |||
| 16087 | return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr) | |||
| 16088 | << resultType << Input.get()->getSourceRange()); | |||
| 16089 | } | |||
| 16090 | } else if (resultType->isExtVectorType()) { | |||
| 16091 | if (Context.getLangOpts().OpenCL && | |||
| 16092 | Context.getLangOpts().getOpenCLCompatibleVersion() < 120) { | |||
| 16093 | // OpenCL v1.1 6.3.h: The logical operator not (!) does not | |||
| 16094 | // operate on vector float types. | |||
| 16095 | QualType T = resultType->castAs<ExtVectorType>()->getElementType(); | |||
| 16096 | if (!T->isIntegerType()) | |||
| 16097 | return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr) | |||
| 16098 | << resultType << Input.get()->getSourceRange()); | |||
| 16099 | } | |||
| 16100 | // Vector logical not returns the signed variant of the operand type. | |||
| 16101 | resultType = GetSignedVectorType(resultType); | |||
| 16102 | break; | |||
| 16103 | } else if (Context.getLangOpts().CPlusPlus && resultType->isVectorType()) { | |||
| 16104 | const VectorType *VTy = resultType->castAs<VectorType>(); | |||
| 16105 | if (VTy->getVectorKind() != VectorType::GenericVector) | |||
| 16106 | return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr) | |||
| 16107 | << resultType << Input.get()->getSourceRange()); | |||
| 16108 | ||||
| 16109 | // Vector logical not returns the signed variant of the operand type. | |||
| 16110 | resultType = GetSignedVectorType(resultType); | |||
| 16111 | break; | |||
| 16112 | } else { | |||
| 16113 | return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr) | |||
| 16114 | << resultType << Input.get()->getSourceRange()); | |||
| 16115 | } | |||
| 16116 | ||||
| 16117 | // LNot always has type int. C99 6.5.3.3p5. | |||
| 16118 | // In C++, it's bool. C++ 5.3.1p8 | |||
| 16119 | resultType = Context.getLogicalOperationType(); | |||
| 16120 | break; | |||
| 16121 | case UO_Real: | |||
| 16122 | case UO_Imag: | |||
| 16123 | resultType = CheckRealImagOperand(*this, Input, OpLoc, Opc == UO_Real); | |||
| 16124 | // _Real maps ordinary l-values into ordinary l-values. _Imag maps ordinary | |||
| 16125 | // complex l-values to ordinary l-values and all other values to r-values. | |||
| 16126 | if (Input.isInvalid()) return ExprError(); | |||
| 16127 | if (Opc == UO_Real || Input.get()->getType()->isAnyComplexType()) { | |||
| 16128 | if (Input.get()->isGLValue() && | |||
| 16129 | Input.get()->getObjectKind() == OK_Ordinary) | |||
| 16130 | VK = Input.get()->getValueKind(); | |||
| 16131 | } else if (!getLangOpts().CPlusPlus) { | |||
| 16132 | // In C, a volatile scalar is read by __imag. In C++, it is not. | |||
| 16133 | Input = DefaultLvalueConversion(Input.get()); | |||
| 16134 | } | |||
| 16135 | break; | |||
| 16136 | case UO_Extension: | |||
| 16137 | resultType = Input.get()->getType(); | |||
| 16138 | VK = Input.get()->getValueKind(); | |||
| 16139 | OK = Input.get()->getObjectKind(); | |||
| 16140 | break; | |||
| 16141 | case UO_Coawait: | |||
| 16142 | // It's unnecessary to represent the pass-through operator co_await in the | |||
| 16143 | // AST; just return the input expression instead. | |||
| 16144 | assert(!Input.get()->getType()->isDependentType() &&(static_cast <bool> (!Input.get()->getType()->isDependentType () && "the co_await expression must be non-dependant before " "building operator co_await") ? void (0) : __assert_fail ("!Input.get()->getType()->isDependentType() && \"the co_await expression must be non-dependant before \" \"building operator co_await\"" , "clang/lib/Sema/SemaExpr.cpp", 16146, __extension__ __PRETTY_FUNCTION__ )) | |||
| 16145 | "the co_await expression must be non-dependant before "(static_cast <bool> (!Input.get()->getType()->isDependentType () && "the co_await expression must be non-dependant before " "building operator co_await") ? void (0) : __assert_fail ("!Input.get()->getType()->isDependentType() && \"the co_await expression must be non-dependant before \" \"building operator co_await\"" , "clang/lib/Sema/SemaExpr.cpp", 16146, __extension__ __PRETTY_FUNCTION__ )) | |||
| 16146 | "building operator co_await")(static_cast <bool> (!Input.get()->getType()->isDependentType () && "the co_await expression must be non-dependant before " "building operator co_await") ? void (0) : __assert_fail ("!Input.get()->getType()->isDependentType() && \"the co_await expression must be non-dependant before \" \"building operator co_await\"" , "clang/lib/Sema/SemaExpr.cpp", 16146, __extension__ __PRETTY_FUNCTION__ )); | |||
| 16147 | return Input; | |||
| 16148 | } | |||
| 16149 | if (resultType.isNull() || Input.isInvalid()) | |||
| 16150 | return ExprError(); | |||
| 16151 | ||||
| 16152 | // Check for array bounds violations in the operand of the UnaryOperator, | |||
| 16153 | // except for the '*' and '&' operators that have to be handled specially | |||
| 16154 | // by CheckArrayAccess (as there are special cases like &array[arraysize] | |||
| 16155 | // that are explicitly defined as valid by the standard). | |||
| 16156 | if (Opc != UO_AddrOf && Opc != UO_Deref) | |||
| 16157 | CheckArrayAccess(Input.get()); | |||
| 16158 | ||||
| 16159 | auto *UO = | |||
| 16160 | UnaryOperator::Create(Context, Input.get(), Opc, resultType, VK, OK, | |||
| 16161 | OpLoc, CanOverflow, CurFPFeatureOverrides()); | |||
| 16162 | ||||
| 16163 | if (Opc == UO_Deref && UO->getType()->hasAttr(attr::NoDeref) && | |||
| 16164 | !isa<ArrayType>(UO->getType().getDesugaredType(Context)) && | |||
| 16165 | !isUnevaluatedContext()) | |||
| 16166 | ExprEvalContexts.back().PossibleDerefs.insert(UO); | |||
| 16167 | ||||
| 16168 | // Convert the result back to a half vector. | |||
| 16169 | if (ConvertHalfVec) | |||
| 16170 | return convertVector(UO, Context.HalfTy, *this); | |||
| 16171 | return UO; | |||
| 16172 | } | |||
| 16173 | ||||
| 16174 | /// Determine whether the given expression is a qualified member | |||
| 16175 | /// access expression, of a form that could be turned into a pointer to member | |||
| 16176 | /// with the address-of operator. | |||
| 16177 | bool Sema::isQualifiedMemberAccess(Expr *E) { | |||
| 16178 | if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { | |||
| 16179 | if (!DRE->getQualifier()) | |||
| 16180 | return false; | |||
| 16181 | ||||
| 16182 | ValueDecl *VD = DRE->getDecl(); | |||
| 16183 | if (!VD->isCXXClassMember()) | |||
| 16184 | return false; | |||
| 16185 | ||||
| 16186 | if (isa<FieldDecl>(VD) || isa<IndirectFieldDecl>(VD)) | |||
| 16187 | return true; | |||
| 16188 | if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(VD)) | |||
| 16189 | return Method->isInstance(); | |||
| 16190 | ||||
| 16191 | return false; | |||
| 16192 | } | |||
| 16193 | ||||
| 16194 | if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) { | |||
| 16195 | if (!ULE->getQualifier()) | |||
| 16196 | return false; | |||
| 16197 | ||||
| 16198 | for (NamedDecl *D : ULE->decls()) { | |||
| 16199 | if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { | |||
| 16200 | if (Method->isInstance()) | |||
| 16201 | return true; | |||
| 16202 | } else { | |||
| 16203 | // Overload set does not contain methods. | |||
| 16204 | break; | |||
| 16205 | } | |||
| 16206 | } | |||
| 16207 | ||||
| 16208 | return false; | |||
| 16209 | } | |||
| 16210 | ||||
| 16211 | return false; | |||
| 16212 | } | |||
| 16213 | ||||
| 16214 | ExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc, | |||
| 16215 | UnaryOperatorKind Opc, Expr *Input, | |||
| 16216 | bool IsAfterAmp) { | |||
| 16217 | // First things first: handle placeholders so that the | |||
| 16218 | // overloaded-operator check considers the right type. | |||
| 16219 | if (const BuiltinType *pty = Input->getType()->getAsPlaceholderType()) { | |||
| 16220 | // Increment and decrement of pseudo-object references. | |||
| 16221 | if (pty->getKind() == BuiltinType::PseudoObject && | |||
| 16222 | UnaryOperator::isIncrementDecrementOp(Opc)) | |||
| 16223 | return checkPseudoObjectIncDec(S, OpLoc, Opc, Input); | |||
| 16224 | ||||
| 16225 | // extension is always a builtin operator. | |||
| 16226 | if (Opc == UO_Extension) | |||
| 16227 | return CreateBuiltinUnaryOp(OpLoc, Opc, Input); | |||
| 16228 | ||||
| 16229 | // & gets special logic for several kinds of placeholder. | |||
| 16230 | // The builtin code knows what to do. | |||
| 16231 | if (Opc == UO_AddrOf && | |||
| 16232 | (pty->getKind() == BuiltinType::Overload || | |||
| 16233 | pty->getKind() == BuiltinType::UnknownAny || | |||
| 16234 | pty->getKind() == BuiltinType::BoundMember)) | |||
| 16235 | return CreateBuiltinUnaryOp(OpLoc, Opc, Input); | |||
| 16236 | ||||
| 16237 | // Anything else needs to be handled now. | |||
| 16238 | ExprResult Result = CheckPlaceholderExpr(Input); | |||
| 16239 | if (Result.isInvalid()) return ExprError(); | |||
| 16240 | Input = Result.get(); | |||
| 16241 | } | |||
| 16242 | ||||
| 16243 | if (getLangOpts().CPlusPlus && Input->getType()->isOverloadableType() && | |||
| 16244 | UnaryOperator::getOverloadedOperator(Opc) != OO_None && | |||
| 16245 | !(Opc == UO_AddrOf && isQualifiedMemberAccess(Input))) { | |||
| 16246 | // Find all of the overloaded operators visible from this point. | |||
| 16247 | UnresolvedSet<16> Functions; | |||
| 16248 | OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc); | |||
| 16249 | if (S && OverOp != OO_None) | |||
| 16250 | LookupOverloadedOperatorName(OverOp, S, Functions); | |||
| 16251 | ||||
| 16252 | return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, Input); | |||
| 16253 | } | |||
| 16254 | ||||
| 16255 | return CreateBuiltinUnaryOp(OpLoc, Opc, Input, IsAfterAmp); | |||
| 16256 | } | |||
| 16257 | ||||
| 16258 | // Unary Operators. 'Tok' is the token for the operator. | |||
| 16259 | ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc, tok::TokenKind Op, | |||
| 16260 | Expr *Input, bool IsAfterAmp) { | |||
| 16261 | return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), Input, | |||
| 16262 | IsAfterAmp); | |||
| 16263 | } | |||
| 16264 | ||||
| 16265 | /// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo". | |||
| 16266 | ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc, | |||
| 16267 | LabelDecl *TheDecl) { | |||
| 16268 | TheDecl->markUsed(Context); | |||
| 16269 | // Create the AST node. The address of a label always has type 'void*'. | |||
| 16270 | auto *Res = new (Context) AddrLabelExpr( | |||
| 16271 | OpLoc, LabLoc, TheDecl, Context.getPointerType(Context.VoidTy)); | |||
| 16272 | ||||
| 16273 | if (getCurFunction()) | |||
| 16274 | getCurFunction()->AddrLabels.push_back(Res); | |||
| 16275 | ||||
| 16276 | return Res; | |||
| 16277 | } | |||
| 16278 | ||||
| 16279 | void Sema::ActOnStartStmtExpr() { | |||
| 16280 | PushExpressionEvaluationContext(ExprEvalContexts.back().Context); | |||
| 16281 | } | |||
| 16282 | ||||
| 16283 | void Sema::ActOnStmtExprError() { | |||
| 16284 | // Note that function is also called by TreeTransform when leaving a | |||
| 16285 | // StmtExpr scope without rebuilding anything. | |||
| 16286 | ||||
| 16287 | DiscardCleanupsInEvaluationContext(); | |||
| 16288 | PopExpressionEvaluationContext(); | |||
| 16289 | } | |||
| 16290 | ||||
| 16291 | ExprResult Sema::ActOnStmtExpr(Scope *S, SourceLocation LPLoc, Stmt *SubStmt, | |||
| 16292 | SourceLocation RPLoc) { | |||
| 16293 | return BuildStmtExpr(LPLoc, SubStmt, RPLoc, getTemplateDepth(S)); | |||
| 16294 | } | |||
| 16295 | ||||
| 16296 | ExprResult Sema::BuildStmtExpr(SourceLocation LPLoc, Stmt *SubStmt, | |||
| 16297 | SourceLocation RPLoc, unsigned TemplateDepth) { | |||
| 16298 | assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!")(static_cast <bool> (SubStmt && isa<CompoundStmt >(SubStmt) && "Invalid action invocation!") ? void (0) : __assert_fail ("SubStmt && isa<CompoundStmt>(SubStmt) && \"Invalid action invocation!\"" , "clang/lib/Sema/SemaExpr.cpp", 16298, __extension__ __PRETTY_FUNCTION__ )); | |||
| 16299 | CompoundStmt *Compound = cast<CompoundStmt>(SubStmt); | |||
| 16300 | ||||
| 16301 | if (hasAnyUnrecoverableErrorsInThisFunction()) | |||
| 16302 | DiscardCleanupsInEvaluationContext(); | |||
| 16303 | assert(!Cleanup.exprNeedsCleanups() &&(static_cast <bool> (!Cleanup.exprNeedsCleanups() && "cleanups within StmtExpr not correctly bound!") ? void (0) : __assert_fail ("!Cleanup.exprNeedsCleanups() && \"cleanups within StmtExpr not correctly bound!\"" , "clang/lib/Sema/SemaExpr.cpp", 16304, __extension__ __PRETTY_FUNCTION__ )) | |||
| 16304 | "cleanups within StmtExpr not correctly bound!")(static_cast <bool> (!Cleanup.exprNeedsCleanups() && "cleanups within StmtExpr not correctly bound!") ? void (0) : __assert_fail ("!Cleanup.exprNeedsCleanups() && \"cleanups within StmtExpr not correctly bound!\"" , "clang/lib/Sema/SemaExpr.cpp", 16304, __extension__ __PRETTY_FUNCTION__ )); | |||
| 16305 | PopExpressionEvaluationContext(); | |||
| 16306 | ||||
| 16307 | // FIXME: there are a variety of strange constraints to enforce here, for | |||
| 16308 | // example, it is not possible to goto into a stmt expression apparently. | |||
| 16309 | // More semantic analysis is needed. | |||
| 16310 | ||||
| 16311 | // If there are sub-stmts in the compound stmt, take the type of the last one | |||
| 16312 | // as the type of the stmtexpr. | |||
| 16313 | QualType Ty = Context.VoidTy; | |||
| 16314 | bool StmtExprMayBindToTemp = false; | |||
| 16315 | if (!Compound->body_empty()) { | |||
| 16316 | // For GCC compatibility we get the last Stmt excluding trailing NullStmts. | |||
| 16317 | if (const auto *LastStmt = | |||
| 16318 | dyn_cast<ValueStmt>(Compound->getStmtExprResult())) { | |||
| 16319 | if (const Expr *Value = LastStmt->getExprStmt()) { | |||
| 16320 | StmtExprMayBindToTemp = true; | |||
| 16321 | Ty = Value->getType(); | |||
| 16322 | } | |||
| 16323 | } | |||
| 16324 | } | |||
| 16325 | ||||
| 16326 | // FIXME: Check that expression type is complete/non-abstract; statement | |||
| 16327 | // expressions are not lvalues. | |||
| 16328 | Expr *ResStmtExpr = | |||
| 16329 | new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc, TemplateDepth); | |||
| 16330 | if (StmtExprMayBindToTemp) | |||
| 16331 | return MaybeBindToTemporary(ResStmtExpr); | |||
| 16332 | return ResStmtExpr; | |||
| 16333 | } | |||
| 16334 | ||||
| 16335 | ExprResult Sema::ActOnStmtExprResult(ExprResult ER) { | |||
| 16336 | if (ER.isInvalid()) | |||
| 16337 | return ExprError(); | |||
| 16338 | ||||
| 16339 | // Do function/array conversion on the last expression, but not | |||
| 16340 | // lvalue-to-rvalue. However, initialize an unqualified type. | |||
| 16341 | ER = DefaultFunctionArrayConversion(ER.get()); | |||
| 16342 | if (ER.isInvalid()) | |||
| 16343 | return ExprError(); | |||
| 16344 | Expr *E = ER.get(); | |||
| 16345 | ||||
| 16346 | if (E->isTypeDependent()) | |||
| 16347 | return E; | |||
| 16348 | ||||
| 16349 | // In ARC, if the final expression ends in a consume, splice | |||
| 16350 | // the consume out and bind it later. In the alternate case | |||
| 16351 | // (when dealing with a retainable type), the result | |||
| 16352 | // initialization will create a produce. In both cases the | |||
| 16353 | // result will be +1, and we'll need to balance that out with | |||
| 16354 | // a bind. | |||
| 16355 | auto *Cast = dyn_cast<ImplicitCastExpr>(E); | |||
| 16356 | if (Cast && Cast->getCastKind() == CK_ARCConsumeObject) | |||
| 16357 | return Cast->getSubExpr(); | |||
| 16358 | ||||
| 16359 | // FIXME: Provide a better location for the initialization. | |||
| 16360 | return PerformCopyInitialization( | |||
| 16361 | InitializedEntity::InitializeStmtExprResult( | |||
| 16362 | E->getBeginLoc(), E->getType().getUnqualifiedType()), | |||
| 16363 | SourceLocation(), E); | |||
| 16364 | } | |||
| 16365 | ||||
| 16366 | ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc, | |||
| 16367 | TypeSourceInfo *TInfo, | |||
| 16368 | ArrayRef<OffsetOfComponent> Components, | |||
| 16369 | SourceLocation RParenLoc) { | |||
| 16370 | QualType ArgTy = TInfo->getType(); | |||
| 16371 | bool Dependent = ArgTy->isDependentType(); | |||
| 16372 | SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange(); | |||
| 16373 | ||||
| 16374 | // We must have at least one component that refers to the type, and the first | |||
| 16375 | // one is known to be a field designator. Verify that the ArgTy represents | |||
| 16376 | // a struct/union/class. | |||
| 16377 | if (!Dependent && !ArgTy->isRecordType()) | |||
| 16378 | return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type) | |||
| 16379 | << ArgTy << TypeRange); | |||
| 16380 | ||||
| 16381 | // Type must be complete per C99 7.17p3 because a declaring a variable | |||
| 16382 | // with an incomplete type would be ill-formed. | |||
| 16383 | if (!Dependent | |||
| 16384 | && RequireCompleteType(BuiltinLoc, ArgTy, | |||
| 16385 | diag::err_offsetof_incomplete_type, TypeRange)) | |||
| 16386 | return ExprError(); | |||
| 16387 | ||||
| 16388 | bool DidWarnAboutNonPOD = false; | |||
| 16389 | QualType CurrentType = ArgTy; | |||
| 16390 | SmallVector<OffsetOfNode, 4> Comps; | |||
| 16391 | SmallVector<Expr*, 4> Exprs; | |||
| 16392 | for (const OffsetOfComponent &OC : Components) { | |||
| 16393 | if (OC.isBrackets) { | |||
| 16394 | // Offset of an array sub-field. TODO: Should we allow vector elements? | |||
| 16395 | if (!CurrentType->isDependentType()) { | |||
| 16396 | const ArrayType *AT = Context.getAsArrayType(CurrentType); | |||
| 16397 | if(!AT) | |||
| 16398 | return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type) | |||
| 16399 | << CurrentType); | |||
| 16400 | CurrentType = AT->getElementType(); | |||
| 16401 | } else | |||
| 16402 | CurrentType = Context.DependentTy; | |||
| 16403 | ||||
| 16404 | ExprResult IdxRval = DefaultLvalueConversion(static_cast<Expr*>(OC.U.E)); | |||
| 16405 | if (IdxRval.isInvalid()) | |||
| 16406 | return ExprError(); | |||
| 16407 | Expr *Idx = IdxRval.get(); | |||
| 16408 | ||||
| 16409 | // The expression must be an integral expression. | |||
| 16410 | // FIXME: An integral constant expression? | |||
| 16411 | if (!Idx->isTypeDependent() && !Idx->isValueDependent() && | |||
| 16412 | !Idx->getType()->isIntegerType()) | |||
| 16413 | return ExprError( | |||
| 16414 | Diag(Idx->getBeginLoc(), diag::err_typecheck_subscript_not_integer) | |||
| 16415 | << Idx->getSourceRange()); | |||
| 16416 | ||||
| 16417 | // Record this array index. | |||
| 16418 | Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd)); | |||
| 16419 | Exprs.push_back(Idx); | |||
| 16420 | continue; | |||
| 16421 | } | |||
| 16422 | ||||
| 16423 | // Offset of a field. | |||
| 16424 | if (CurrentType->isDependentType()) { | |||
| 16425 | // We have the offset of a field, but we can't look into the dependent | |||
| 16426 | // type. Just record the identifier of the field. | |||
| 16427 | Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd)); | |||
| 16428 | CurrentType = Context.DependentTy; | |||
| 16429 | continue; | |||
| 16430 | } | |||
| 16431 | ||||
| 16432 | // We need to have a complete type to look into. | |||
| 16433 | if (RequireCompleteType(OC.LocStart, CurrentType, | |||
| 16434 | diag::err_offsetof_incomplete_type)) | |||
| 16435 | return ExprError(); | |||
| 16436 | ||||
| 16437 | // Look for the designated field. | |||
| 16438 | const RecordType *RC = CurrentType->getAs<RecordType>(); | |||
| 16439 | if (!RC) | |||
| 16440 | return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type) | |||
| 16441 | << CurrentType); | |||
| 16442 | RecordDecl *RD = RC->getDecl(); | |||
| 16443 | ||||
| 16444 | // C++ [lib.support.types]p5: | |||
| 16445 | // The macro offsetof accepts a restricted set of type arguments in this | |||
| 16446 | // International Standard. type shall be a POD structure or a POD union | |||
| 16447 | // (clause 9). | |||
| 16448 | // C++11 [support.types]p4: | |||
| 16449 | // If type is not a standard-layout class (Clause 9), the results are | |||
| 16450 | // undefined. | |||
| 16451 | if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) { | |||
| 16452 | bool IsSafe = LangOpts.CPlusPlus11? CRD->isStandardLayout() : CRD->isPOD(); | |||
| 16453 | unsigned DiagID = | |||
| 16454 | LangOpts.CPlusPlus11? diag::ext_offsetof_non_standardlayout_type | |||
| 16455 | : diag::ext_offsetof_non_pod_type; | |||
| 16456 | ||||
| 16457 | if (!IsSafe && !DidWarnAboutNonPOD && | |||
| 16458 | DiagRuntimeBehavior(BuiltinLoc, nullptr, | |||
| 16459 | PDiag(DiagID) | |||
| 16460 | << SourceRange(Components[0].LocStart, OC.LocEnd) | |||
| 16461 | << CurrentType)) | |||
| 16462 | DidWarnAboutNonPOD = true; | |||
| 16463 | } | |||
| 16464 | ||||
| 16465 | // Look for the field. | |||
| 16466 | LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName); | |||
| 16467 | LookupQualifiedName(R, RD); | |||
| 16468 | FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>(); | |||
| 16469 | IndirectFieldDecl *IndirectMemberDecl = nullptr; | |||
| 16470 | if (!MemberDecl) { | |||
| 16471 | if ((IndirectMemberDecl = R.getAsSingle<IndirectFieldDecl>())) | |||
| 16472 | MemberDecl = IndirectMemberDecl->getAnonField(); | |||
| 16473 | } | |||
| 16474 | ||||
| 16475 | if (!MemberDecl) | |||
| 16476 | return ExprError(Diag(BuiltinLoc, diag::err_no_member) | |||
| 16477 | << OC.U.IdentInfo << RD << SourceRange(OC.LocStart, | |||
| 16478 | OC.LocEnd)); | |||
| 16479 | ||||
| 16480 | // C99 7.17p3: | |||
| 16481 | // (If the specified member is a bit-field, the behavior is undefined.) | |||
| 16482 | // | |||
| 16483 | // We diagnose this as an error. | |||
| 16484 | if (MemberDecl->isBitField()) { | |||
| 16485 | Diag(OC.LocEnd, diag::err_offsetof_bitfield) | |||
| 16486 | << MemberDecl->getDeclName() | |||
| 16487 | << SourceRange(BuiltinLoc, RParenLoc); | |||
| 16488 | Diag(MemberDecl->getLocation(), diag::note_bitfield_decl); | |||
| 16489 | return ExprError(); | |||
| 16490 | } | |||
| 16491 | ||||
| 16492 | RecordDecl *Parent = MemberDecl->getParent(); | |||
| 16493 | if (IndirectMemberDecl) | |||
| 16494 | Parent = cast<RecordDecl>(IndirectMemberDecl->getDeclContext()); | |||
| 16495 | ||||
| 16496 | // If the member was found in a base class, introduce OffsetOfNodes for | |||
| 16497 | // the base class indirections. | |||
| 16498 | CXXBasePaths Paths; | |||
| 16499 | if (IsDerivedFrom(OC.LocStart, CurrentType, Context.getTypeDeclType(Parent), | |||
| 16500 | Paths)) { | |||
| 16501 | if (Paths.getDetectedVirtual()) { | |||
| 16502 | Diag(OC.LocEnd, diag::err_offsetof_field_of_virtual_base) | |||
| 16503 | << MemberDecl->getDeclName() | |||
| 16504 | << SourceRange(BuiltinLoc, RParenLoc); | |||
| 16505 | return ExprError(); | |||
| 16506 | } | |||
| 16507 | ||||
| 16508 | CXXBasePath &Path = Paths.front(); | |||
| 16509 | for (const CXXBasePathElement &B : Path) | |||
| 16510 | Comps.push_back(OffsetOfNode(B.Base)); | |||
| 16511 | } | |||
| 16512 | ||||
| 16513 | if (IndirectMemberDecl) { | |||
| 16514 | for (auto *FI : IndirectMemberDecl->chain()) { | |||
| 16515 | assert(isa<FieldDecl>(FI))(static_cast <bool> (isa<FieldDecl>(FI)) ? void ( 0) : __assert_fail ("isa<FieldDecl>(FI)", "clang/lib/Sema/SemaExpr.cpp" , 16515, __extension__ __PRETTY_FUNCTION__)); | |||
| 16516 | Comps.push_back(OffsetOfNode(OC.LocStart, | |||
| 16517 | cast<FieldDecl>(FI), OC.LocEnd)); | |||
| 16518 | } | |||
| 16519 | } else | |||
| 16520 | Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd)); | |||
| 16521 | ||||
| 16522 | CurrentType = MemberDecl->getType().getNonReferenceType(); | |||
| 16523 | } | |||
| 16524 | ||||
| 16525 | return OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc, TInfo, | |||
| 16526 | Comps, Exprs, RParenLoc); | |||
| 16527 | } | |||
| 16528 | ||||
| 16529 | ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S, | |||
| 16530 | SourceLocation BuiltinLoc, | |||
| 16531 | SourceLocation TypeLoc, | |||
| 16532 | ParsedType ParsedArgTy, | |||
| 16533 | ArrayRef<OffsetOfComponent> Components, | |||
| 16534 | SourceLocation RParenLoc) { | |||
| 16535 | ||||
| 16536 | TypeSourceInfo *ArgTInfo; | |||
| 16537 | QualType ArgTy = GetTypeFromParser(ParsedArgTy, &ArgTInfo); | |||
| 16538 | if (ArgTy.isNull()) | |||
| 16539 | return ExprError(); | |||
| 16540 | ||||
| 16541 | if (!ArgTInfo) | |||
| 16542 | ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc); | |||
| 16543 | ||||
| 16544 | return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, Components, RParenLoc); | |||
| 16545 | } | |||
| 16546 | ||||
| 16547 | ||||
| 16548 | ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc, | |||
| 16549 | Expr *CondExpr, | |||
| 16550 | Expr *LHSExpr, Expr *RHSExpr, | |||
| 16551 | SourceLocation RPLoc) { | |||
| 16552 | assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)")(static_cast <bool> ((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)") ? void (0) : __assert_fail ("(CondExpr && LHSExpr && RHSExpr) && \"Missing type argument(s)\"" , "clang/lib/Sema/SemaExpr.cpp", 16552, __extension__ __PRETTY_FUNCTION__ )); | |||
| 16553 | ||||
| 16554 | ExprValueKind VK = VK_PRValue; | |||
| 16555 | ExprObjectKind OK = OK_Ordinary; | |||
| 16556 | QualType resType; | |||
| 16557 | bool CondIsTrue = false; | |||
| 16558 | if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) { | |||
| 16559 | resType = Context.DependentTy; | |||
| 16560 | } else { | |||
| 16561 | // The conditional expression is required to be a constant expression. | |||
| 16562 | llvm::APSInt condEval(32); | |||
| 16563 | ExprResult CondICE = VerifyIntegerConstantExpression( | |||
| 16564 | CondExpr, &condEval, diag::err_typecheck_choose_expr_requires_constant); | |||
| 16565 | if (CondICE.isInvalid()) | |||
| 16566 | return ExprError(); | |||
| 16567 | CondExpr = CondICE.get(); | |||
| 16568 | CondIsTrue = condEval.getZExtValue(); | |||
| 16569 | ||||
| 16570 | // If the condition is > zero, then the AST type is the same as the LHSExpr. | |||
| 16571 | Expr *ActiveExpr = CondIsTrue ? LHSExpr : RHSExpr; | |||
| 16572 | ||||
| 16573 | resType = ActiveExpr->getType(); | |||
| 16574 | VK = ActiveExpr->getValueKind(); | |||
| 16575 | OK = ActiveExpr->getObjectKind(); | |||
| 16576 | } | |||
| 16577 | ||||
| 16578 | return new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr, | |||
| 16579 | resType, VK, OK, RPLoc, CondIsTrue); | |||
| 16580 | } | |||
| 16581 | ||||
| 16582 | //===----------------------------------------------------------------------===// | |||
| 16583 | // Clang Extensions. | |||
| 16584 | //===----------------------------------------------------------------------===// | |||
| 16585 | ||||
| 16586 | /// ActOnBlockStart - This callback is invoked when a block literal is started. | |||
| 16587 | void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope) { | |||
| 16588 | BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc); | |||
| 16589 | ||||
| 16590 | if (LangOpts.CPlusPlus) { | |||
| 16591 | MangleNumberingContext *MCtx; | |||
| 16592 | Decl *ManglingContextDecl; | |||
| 16593 | std::tie(MCtx, ManglingContextDecl) = | |||
| 16594 | getCurrentMangleNumberContext(Block->getDeclContext()); | |||
| 16595 | if (MCtx) { | |||
| 16596 | unsigned ManglingNumber = MCtx->getManglingNumber(Block); | |||
| 16597 | Block->setBlockMangling(ManglingNumber, ManglingContextDecl); | |||
| 16598 | } | |||
| 16599 | } | |||
| 16600 | ||||
| 16601 | PushBlockScope(CurScope, Block); | |||
| 16602 | CurContext->addDecl(Block); | |||
| 16603 | if (CurScope) | |||
| 16604 | PushDeclContext(CurScope, Block); | |||
| 16605 | else | |||
| 16606 | CurContext = Block; | |||
| 16607 | ||||
| 16608 | getCurBlock()->HasImplicitReturnType = true; | |||
| 16609 | ||||
| 16610 | // Enter a new evaluation context to insulate the block from any | |||
| 16611 | // cleanups from the enclosing full-expression. | |||
| 16612 | PushExpressionEvaluationContext( | |||
| 16613 | ExpressionEvaluationContext::PotentiallyEvaluated); | |||
| 16614 | } | |||
| 16615 | ||||
| 16616 | void Sema::ActOnBlockArguments(SourceLocation CaretLoc, Declarator &ParamInfo, | |||
| 16617 | Scope *CurScope) { | |||
| 16618 | assert(ParamInfo.getIdentifier() == nullptr &&(static_cast <bool> (ParamInfo.getIdentifier() == nullptr && "block-id should have no identifier!") ? void (0) : __assert_fail ("ParamInfo.getIdentifier() == nullptr && \"block-id should have no identifier!\"" , "clang/lib/Sema/SemaExpr.cpp", 16619, __extension__ __PRETTY_FUNCTION__ )) | |||
| 16619 | "block-id should have no identifier!")(static_cast <bool> (ParamInfo.getIdentifier() == nullptr && "block-id should have no identifier!") ? void (0) : __assert_fail ("ParamInfo.getIdentifier() == nullptr && \"block-id should have no identifier!\"" , "clang/lib/Sema/SemaExpr.cpp", 16619, __extension__ __PRETTY_FUNCTION__ )); | |||
| 16620 | assert(ParamInfo.getContext() == DeclaratorContext::BlockLiteral)(static_cast <bool> (ParamInfo.getContext() == DeclaratorContext ::BlockLiteral) ? void (0) : __assert_fail ("ParamInfo.getContext() == DeclaratorContext::BlockLiteral" , "clang/lib/Sema/SemaExpr.cpp", 16620, __extension__ __PRETTY_FUNCTION__ )); | |||
| 16621 | BlockScopeInfo *CurBlock = getCurBlock(); | |||
| 16622 | ||||
| 16623 | TypeSourceInfo *Sig = GetTypeForDeclarator(ParamInfo, CurScope); | |||
| 16624 | QualType T = Sig->getType(); | |||
| 16625 | ||||
| 16626 | // FIXME: We should allow unexpanded parameter packs here, but that would, | |||
| 16627 | // in turn, make the block expression contain unexpanded parameter packs. | |||
| 16628 | if (DiagnoseUnexpandedParameterPack(CaretLoc, Sig, UPPC_Block)) { | |||
| 16629 | // Drop the parameters. | |||
| 16630 | FunctionProtoType::ExtProtoInfo EPI; | |||
| 16631 | EPI.HasTrailingReturn = false; | |||
| 16632 | EPI.TypeQuals.addConst(); | |||
| 16633 | T = Context.getFunctionType(Context.DependentTy, std::nullopt, EPI); | |||
| 16634 | Sig = Context.getTrivialTypeSourceInfo(T); | |||
| 16635 | } | |||
| 16636 | ||||
| 16637 | // GetTypeForDeclarator always produces a function type for a block | |||
| 16638 | // literal signature. Furthermore, it is always a FunctionProtoType | |||
| 16639 | // unless the function was written with a typedef. | |||
| 16640 | assert(T->isFunctionType() &&(static_cast <bool> (T->isFunctionType() && "GetTypeForDeclarator made a non-function block signature" ) ? void (0) : __assert_fail ("T->isFunctionType() && \"GetTypeForDeclarator made a non-function block signature\"" , "clang/lib/Sema/SemaExpr.cpp", 16641, __extension__ __PRETTY_FUNCTION__ )) | |||
| 16641 | "GetTypeForDeclarator made a non-function block signature")(static_cast <bool> (T->isFunctionType() && "GetTypeForDeclarator made a non-function block signature" ) ? void (0) : __assert_fail ("T->isFunctionType() && \"GetTypeForDeclarator made a non-function block signature\"" , "clang/lib/Sema/SemaExpr.cpp", 16641, __extension__ __PRETTY_FUNCTION__ )); | |||
| 16642 | ||||
| 16643 | // Look for an explicit signature in that function type. | |||
| 16644 | FunctionProtoTypeLoc ExplicitSignature; | |||
| 16645 | ||||
| 16646 | if ((ExplicitSignature = Sig->getTypeLoc() | |||
| 16647 | .getAsAdjusted<FunctionProtoTypeLoc>())) { | |||
| 16648 | ||||
| 16649 | // Check whether that explicit signature was synthesized by | |||
| 16650 | // GetTypeForDeclarator. If so, don't save that as part of the | |||
| 16651 | // written signature. | |||
| 16652 | if (ExplicitSignature.getLocalRangeBegin() == | |||
| 16653 | ExplicitSignature.getLocalRangeEnd()) { | |||
| 16654 | // This would be much cheaper if we stored TypeLocs instead of | |||
| 16655 | // TypeSourceInfos. | |||
| 16656 | TypeLoc Result = ExplicitSignature.getReturnLoc(); | |||
| 16657 | unsigned Size = Result.getFullDataSize(); | |||
| 16658 | Sig = Context.CreateTypeSourceInfo(Result.getType(), Size); | |||
| 16659 | Sig->getTypeLoc().initializeFullCopy(Result, Size); | |||
| 16660 | ||||
| 16661 | ExplicitSignature = FunctionProtoTypeLoc(); | |||
| 16662 | } | |||
| 16663 | } | |||
| 16664 | ||||
| 16665 | CurBlock->TheDecl->setSignatureAsWritten(Sig); | |||
| 16666 | CurBlock->FunctionType = T; | |||
| 16667 | ||||
| 16668 | const auto *Fn = T->castAs<FunctionType>(); | |||
| 16669 | QualType RetTy = Fn->getReturnType(); | |||
| 16670 | bool isVariadic = | |||
| 16671 | (isa<FunctionProtoType>(Fn) && cast<FunctionProtoType>(Fn)->isVariadic()); | |||
| 16672 | ||||
| 16673 | CurBlock->TheDecl->setIsVariadic(isVariadic); | |||
| 16674 | ||||
| 16675 | // Context.DependentTy is used as a placeholder for a missing block | |||
| 16676 | // return type. TODO: what should we do with declarators like: | |||
| 16677 | // ^ * { ... } | |||
| 16678 | // If the answer is "apply template argument deduction".... | |||
| 16679 | if (RetTy != Context.DependentTy) { | |||
| 16680 | CurBlock->ReturnType = RetTy; | |||
| 16681 | CurBlock->TheDecl->setBlockMissingReturnType(false); | |||
| 16682 | CurBlock->HasImplicitReturnType = false; | |||
| 16683 | } | |||
| 16684 | ||||
| 16685 | // Push block parameters from the declarator if we had them. | |||
| 16686 | SmallVector<ParmVarDecl*, 8> Params; | |||
| 16687 | if (ExplicitSignature) { | |||
| 16688 | for (unsigned I = 0, E = ExplicitSignature.getNumParams(); I != E; ++I) { | |||
| 16689 | ParmVarDecl *Param = ExplicitSignature.getParam(I); | |||
| 16690 | if (Param->getIdentifier() == nullptr && !Param->isImplicit() && | |||
| 16691 | !Param->isInvalidDecl() && !getLangOpts().CPlusPlus) { | |||
| 16692 | // Diagnose this as an extension in C17 and earlier. | |||
| 16693 | if (!getLangOpts().C2x) | |||
| 16694 | Diag(Param->getLocation(), diag::ext_parameter_name_omitted_c2x); | |||
| 16695 | } | |||
| 16696 | Params.push_back(Param); | |||
| 16697 | } | |||
| 16698 | ||||
| 16699 | // Fake up parameter variables if we have a typedef, like | |||
| 16700 | // ^ fntype { ... } | |||
| 16701 | } else if (const FunctionProtoType *Fn = T->getAs<FunctionProtoType>()) { | |||
| 16702 | for (const auto &I : Fn->param_types()) { | |||
| 16703 | ParmVarDecl *Param = BuildParmVarDeclForTypedef( | |||
| 16704 | CurBlock->TheDecl, ParamInfo.getBeginLoc(), I); | |||
| 16705 | Params.push_back(Param); | |||
| 16706 | } | |||
| 16707 | } | |||
| 16708 | ||||
| 16709 | // Set the parameters on the block decl. | |||
| 16710 | if (!Params.empty()) { | |||
| 16711 | CurBlock->TheDecl->setParams(Params); | |||
| 16712 | CheckParmsForFunctionDef(CurBlock->TheDecl->parameters(), | |||
| 16713 | /*CheckParameterNames=*/false); | |||
| 16714 | } | |||
| 16715 | ||||
| 16716 | // Finally we can process decl attributes. | |||
| 16717 | ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo); | |||
| 16718 | ||||
| 16719 | // Put the parameter variables in scope. | |||
| 16720 | for (auto *AI : CurBlock->TheDecl->parameters()) { | |||
| 16721 | AI->setOwningFunction(CurBlock->TheDecl); | |||
| 16722 | ||||
| 16723 | // If this has an identifier, add it to the scope stack. | |||
| 16724 | if (AI->getIdentifier()) { | |||
| 16725 | CheckShadow(CurBlock->TheScope, AI); | |||
| 16726 | ||||
| 16727 | PushOnScopeChains(AI, CurBlock->TheScope); | |||
| 16728 | } | |||
| 16729 | } | |||
| 16730 | } | |||
| 16731 | ||||
| 16732 | /// ActOnBlockError - If there is an error parsing a block, this callback | |||
| 16733 | /// is invoked to pop the information about the block from the action impl. | |||
| 16734 | void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) { | |||
| 16735 | // Leave the expression-evaluation context. | |||
| 16736 | DiscardCleanupsInEvaluationContext(); | |||
| 16737 | PopExpressionEvaluationContext(); | |||
| 16738 | ||||
| 16739 | // Pop off CurBlock, handle nested blocks. | |||
| 16740 | PopDeclContext(); | |||
| 16741 | PopFunctionScopeInfo(); | |||
| 16742 | } | |||
| 16743 | ||||
| 16744 | /// ActOnBlockStmtExpr - This is called when the body of a block statement | |||
| 16745 | /// literal was successfully completed. ^(int x){...} | |||
| 16746 | ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc, | |||
| 16747 | Stmt *Body, Scope *CurScope) { | |||
| 16748 | // If blocks are disabled, emit an error. | |||
| 16749 | if (!LangOpts.Blocks) | |||
| 16750 | Diag(CaretLoc, diag::err_blocks_disable) << LangOpts.OpenCL; | |||
| 16751 | ||||
| 16752 | // Leave the expression-evaluation context. | |||
| 16753 | if (hasAnyUnrecoverableErrorsInThisFunction()) | |||
| 16754 | DiscardCleanupsInEvaluationContext(); | |||
| 16755 | assert(!Cleanup.exprNeedsCleanups() &&(static_cast <bool> (!Cleanup.exprNeedsCleanups() && "cleanups within block not correctly bound!") ? void (0) : __assert_fail ("!Cleanup.exprNeedsCleanups() && \"cleanups within block not correctly bound!\"" , "clang/lib/Sema/SemaExpr.cpp", 16756, __extension__ __PRETTY_FUNCTION__ )) | |||
| 16756 | "cleanups within block not correctly bound!")(static_cast <bool> (!Cleanup.exprNeedsCleanups() && "cleanups within block not correctly bound!") ? void (0) : __assert_fail ("!Cleanup.exprNeedsCleanups() && \"cleanups within block not correctly bound!\"" , "clang/lib/Sema/SemaExpr.cpp", 16756, __extension__ __PRETTY_FUNCTION__ )); | |||
| 16757 | PopExpressionEvaluationContext(); | |||
| 16758 | ||||
| 16759 | BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back()); | |||
| 16760 | BlockDecl *BD = BSI->TheDecl; | |||
| 16761 | ||||
| 16762 | if (BSI->HasImplicitReturnType) | |||
| 16763 | deduceClosureReturnType(*BSI); | |||
| 16764 | ||||
| 16765 | QualType RetTy = Context.VoidTy; | |||
| 16766 | if (!BSI->ReturnType.isNull()) | |||
| 16767 | RetTy = BSI->ReturnType; | |||
| 16768 | ||||
| 16769 | bool NoReturn = BD->hasAttr<NoReturnAttr>(); | |||
| 16770 | QualType BlockTy; | |||
| 16771 | ||||
| 16772 | // If the user wrote a function type in some form, try to use that. | |||
| 16773 | if (!BSI->FunctionType.isNull()) { | |||
| 16774 | const FunctionType *FTy = BSI->FunctionType->castAs<FunctionType>(); | |||
| 16775 | ||||
| 16776 | FunctionType::ExtInfo Ext = FTy->getExtInfo(); | |||
| 16777 | if (NoReturn && !Ext.getNoReturn()) Ext = Ext.withNoReturn(true); | |||
| 16778 | ||||
| 16779 | // Turn protoless block types into nullary block types. | |||
| 16780 | if (isa<FunctionNoProtoType>(FTy)) { | |||
| 16781 | FunctionProtoType::ExtProtoInfo EPI; | |||
| 16782 | EPI.ExtInfo = Ext; | |||
| 16783 | BlockTy = Context.getFunctionType(RetTy, std::nullopt, EPI); | |||
| 16784 | ||||
| 16785 | // Otherwise, if we don't need to change anything about the function type, | |||
| 16786 | // preserve its sugar structure. | |||
| 16787 | } else if (FTy->getReturnType() == RetTy && | |||
| 16788 | (!NoReturn || FTy->getNoReturnAttr())) { | |||
| 16789 | BlockTy = BSI->FunctionType; | |||
| 16790 | ||||
| 16791 | // Otherwise, make the minimal modifications to the function type. | |||
| 16792 | } else { | |||
| 16793 | const FunctionProtoType *FPT = cast<FunctionProtoType>(FTy); | |||
| 16794 | FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); | |||
| 16795 | EPI.TypeQuals = Qualifiers(); | |||
| 16796 | EPI.ExtInfo = Ext; | |||
| 16797 | BlockTy = Context.getFunctionType(RetTy, FPT->getParamTypes(), EPI); | |||
| 16798 | } | |||
| 16799 | ||||
| 16800 | // If we don't have a function type, just build one from nothing. | |||
| 16801 | } else { | |||
| 16802 | FunctionProtoType::ExtProtoInfo EPI; | |||
| 16803 | EPI.ExtInfo = FunctionType::ExtInfo().withNoReturn(NoReturn); | |||
| 16804 | BlockTy = Context.getFunctionType(RetTy, std::nullopt, EPI); | |||
| 16805 | } | |||
| 16806 | ||||
| 16807 | DiagnoseUnusedParameters(BD->parameters()); | |||
| 16808 | BlockTy = Context.getBlockPointerType(BlockTy); | |||
| 16809 | ||||
| 16810 | // If needed, diagnose invalid gotos and switches in the block. | |||
| 16811 | if (getCurFunction()->NeedsScopeChecking() && | |||
| 16812 | !PP.isCodeCompletionEnabled()) | |||
| 16813 | DiagnoseInvalidJumps(cast<CompoundStmt>(Body)); | |||
| 16814 | ||||
| 16815 | BD->setBody(cast<CompoundStmt>(Body)); | |||
| 16816 | ||||
| 16817 | if (Body && getCurFunction()->HasPotentialAvailabilityViolations) | |||
| 16818 | DiagnoseUnguardedAvailabilityViolations(BD); | |||
| 16819 | ||||
| 16820 | // Try to apply the named return value optimization. We have to check again | |||
| 16821 | // if we can do this, though, because blocks keep return statements around | |||
| 16822 | // to deduce an implicit return type. | |||
| 16823 | if (getLangOpts().CPlusPlus && RetTy->isRecordType() && | |||
| 16824 | !BD->isDependentContext()) | |||
| 16825 | computeNRVO(Body, BSI); | |||
| 16826 | ||||
| 16827 | if (RetTy.hasNonTrivialToPrimitiveDestructCUnion() || | |||
| 16828 | RetTy.hasNonTrivialToPrimitiveCopyCUnion()) | |||
| 16829 | checkNonTrivialCUnion(RetTy, BD->getCaretLocation(), NTCUC_FunctionReturn, | |||
| 16830 | NTCUK_Destruct|NTCUK_Copy); | |||
| 16831 | ||||
| 16832 | PopDeclContext(); | |||
| 16833 | ||||
| 16834 | // Set the captured variables on the block. | |||
| 16835 | SmallVector<BlockDecl::Capture, 4> Captures; | |||
| 16836 | for (Capture &Cap : BSI->Captures) { | |||
| 16837 | if (Cap.isInvalid() || Cap.isThisCapture()) | |||
| 16838 | continue; | |||
| 16839 | // Cap.getVariable() is always a VarDecl because | |||
| 16840 | // blocks cannot capture structured bindings or other ValueDecl kinds. | |||
| 16841 | auto *Var = cast<VarDecl>(Cap.getVariable()); | |||
| 16842 | Expr *CopyExpr = nullptr; | |||
| 16843 | if (getLangOpts().CPlusPlus && Cap.isCopyCapture()) { | |||
| 16844 | if (const RecordType *Record = | |||
| 16845 | Cap.getCaptureType()->getAs<RecordType>()) { | |||
| 16846 | // The capture logic needs the destructor, so make sure we mark it. | |||
| 16847 | // Usually this is unnecessary because most local variables have | |||
| 16848 | // their destructors marked at declaration time, but parameters are | |||
| 16849 | // an exception because it's technically only the call site that | |||
| 16850 | // actually requires the destructor. | |||
| 16851 | if (isa<ParmVarDecl>(Var)) | |||
| 16852 | FinalizeVarWithDestructor(Var, Record); | |||
| 16853 | ||||
| 16854 | // Enter a separate potentially-evaluated context while building block | |||
| 16855 | // initializers to isolate their cleanups from those of the block | |||
| 16856 | // itself. | |||
| 16857 | // FIXME: Is this appropriate even when the block itself occurs in an | |||
| 16858 | // unevaluated operand? | |||
| 16859 | EnterExpressionEvaluationContext EvalContext( | |||
| 16860 | *this, ExpressionEvaluationContext::PotentiallyEvaluated); | |||
| 16861 | ||||
| 16862 | SourceLocation Loc = Cap.getLocation(); | |||
| 16863 | ||||
| 16864 | ExprResult Result = BuildDeclarationNameExpr( | |||
| 16865 | CXXScopeSpec(), DeclarationNameInfo(Var->getDeclName(), Loc), Var); | |||
| 16866 | ||||
| 16867 | // According to the blocks spec, the capture of a variable from | |||
| 16868 | // the stack requires a const copy constructor. This is not true | |||
| 16869 | // of the copy/move done to move a __block variable to the heap. | |||
| 16870 | if (!Result.isInvalid() && | |||
| 16871 | !Result.get()->getType().isConstQualified()) { | |||
| 16872 | Result = ImpCastExprToType(Result.get(), | |||
| 16873 | Result.get()->getType().withConst(), | |||
| 16874 | CK_NoOp, VK_LValue); | |||
| 16875 | } | |||
| 16876 | ||||
| 16877 | if (!Result.isInvalid()) { | |||
| 16878 | Result = PerformCopyInitialization( | |||
| 16879 | InitializedEntity::InitializeBlock(Var->getLocation(), | |||
| 16880 | Cap.getCaptureType()), | |||
| 16881 | Loc, Result.get()); | |||
| 16882 | } | |||
| 16883 | ||||
| 16884 | // Build a full-expression copy expression if initialization | |||
| 16885 | // succeeded and used a non-trivial constructor. Recover from | |||
| 16886 | // errors by pretending that the copy isn't necessary. | |||
| 16887 | if (!Result.isInvalid() && | |||
| 16888 | !cast<CXXConstructExpr>(Result.get())->getConstructor() | |||
| 16889 | ->isTrivial()) { | |||
| 16890 | Result = MaybeCreateExprWithCleanups(Result); | |||
| 16891 | CopyExpr = Result.get(); | |||
| 16892 | } | |||
| 16893 | } | |||
| 16894 | } | |||
| 16895 | ||||
| 16896 | BlockDecl::Capture NewCap(Var, Cap.isBlockCapture(), Cap.isNested(), | |||
| 16897 | CopyExpr); | |||
| 16898 | Captures.push_back(NewCap); | |||
| 16899 | } | |||
| 16900 | BD->setCaptures(Context, Captures, BSI->CXXThisCaptureIndex != 0); | |||
| 16901 | ||||
| 16902 | // Pop the block scope now but keep it alive to the end of this function. | |||
| 16903 | AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy(); | |||
| 16904 | PoppedFunctionScopePtr ScopeRAII = PopFunctionScopeInfo(&WP, BD, BlockTy); | |||
| 16905 | ||||
| 16906 | BlockExpr *Result = new (Context) BlockExpr(BD, BlockTy); | |||
| 16907 | ||||
| 16908 | // If the block isn't obviously global, i.e. it captures anything at | |||
| 16909 | // all, then we need to do a few things in the surrounding context: | |||
| 16910 | if (Result->getBlockDecl()->hasCaptures()) { | |||
| 16911 | // First, this expression has a new cleanup object. | |||
| 16912 | ExprCleanupObjects.push_back(Result->getBlockDecl()); | |||
| 16913 | Cleanup.setExprNeedsCleanups(true); | |||
| 16914 | ||||
| 16915 | // It also gets a branch-protected scope if any of the captured | |||
| 16916 | // variables needs destruction. | |||
| 16917 | for (const auto &CI : Result->getBlockDecl()->captures()) { | |||
| 16918 | const VarDecl *var = CI.getVariable(); | |||
| 16919 | if (var->getType().isDestructedType() != QualType::DK_none) { | |||
| 16920 | setFunctionHasBranchProtectedScope(); | |||
| 16921 | break; | |||
| 16922 | } | |||
| 16923 | } | |||
| 16924 | } | |||
| 16925 | ||||
| 16926 | if (getCurFunction()) | |||
| 16927 | getCurFunction()->addBlock(BD); | |||
| 16928 | ||||
| 16929 | return Result; | |||
| 16930 | } | |||
| 16931 | ||||
| 16932 | ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc, Expr *E, ParsedType Ty, | |||
| 16933 | SourceLocation RPLoc) { | |||
| 16934 | TypeSourceInfo *TInfo; | |||
| 16935 | GetTypeFromParser(Ty, &TInfo); | |||
| 16936 | return BuildVAArgExpr(BuiltinLoc, E, TInfo, RPLoc); | |||
| 16937 | } | |||
| 16938 | ||||
| 16939 | ExprResult Sema::BuildVAArgExpr(SourceLocation BuiltinLoc, | |||
| 16940 | Expr *E, TypeSourceInfo *TInfo, | |||
| 16941 | SourceLocation RPLoc) { | |||
| 16942 | Expr *OrigExpr = E; | |||
| 16943 | bool IsMS = false; | |||
| 16944 | ||||
| 16945 | // CUDA device code does not support varargs. | |||
| 16946 | if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) { | |||
| 16947 | if (const FunctionDecl *F = dyn_cast<FunctionDecl>(CurContext)) { | |||
| 16948 | CUDAFunctionTarget T = IdentifyCUDATarget(F); | |||
| 16949 | if (T == CFT_Global || T == CFT_Device || T == CFT_HostDevice) | |||
| 16950 | return ExprError(Diag(E->getBeginLoc(), diag::err_va_arg_in_device)); | |||
| 16951 | } | |||
| 16952 | } | |||
| 16953 | ||||
| 16954 | // NVPTX does not support va_arg expression. | |||
| 16955 | if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice && | |||
| 16956 | Context.getTargetInfo().getTriple().isNVPTX()) | |||
| 16957 | targetDiag(E->getBeginLoc(), diag::err_va_arg_in_device); | |||
| 16958 | ||||
| 16959 | // It might be a __builtin_ms_va_list. (But don't ever mark a va_arg() | |||
| 16960 | // as Microsoft ABI on an actual Microsoft platform, where | |||
| 16961 | // __builtin_ms_va_list and __builtin_va_list are the same.) | |||
| 16962 | if (!E->isTypeDependent() && Context.getTargetInfo().hasBuiltinMSVaList() && | |||
| 16963 | Context.getTargetInfo().getBuiltinVaListKind() != TargetInfo::CharPtrBuiltinVaList) { | |||
| 16964 | QualType MSVaListType = Context.getBuiltinMSVaListType(); | |||
| 16965 | if (Context.hasSameType(MSVaListType, E->getType())) { | |||
| 16966 | if (CheckForModifiableLvalue(E, BuiltinLoc, *this)) | |||
| 16967 | return ExprError(); | |||
| 16968 | IsMS = true; | |||
| 16969 | } | |||
| 16970 | } | |||
| 16971 | ||||
| 16972 | // Get the va_list type | |||
| 16973 | QualType VaListType = Context.getBuiltinVaListType(); | |||
| 16974 | if (!IsMS) { | |||
| 16975 | if (VaListType->isArrayType()) { | |||
| 16976 | // Deal with implicit array decay; for example, on x86-64, | |||
| 16977 | // va_list is an array, but it's supposed to decay to | |||
| 16978 | // a pointer for va_arg. | |||
| 16979 | VaListType = Context.getArrayDecayedType(VaListType); | |||
| 16980 | // Make sure the input expression also decays appropriately. | |||
| 16981 | ExprResult Result = UsualUnaryConversions(E); | |||
| 16982 | if (Result.isInvalid()) | |||
| 16983 | return ExprError(); | |||
| 16984 | E = Result.get(); | |||
| 16985 | } else if (VaListType->isRecordType() && getLangOpts().CPlusPlus) { | |||
| 16986 | // If va_list is a record type and we are compiling in C++ mode, | |||
| 16987 | // check the argument using reference binding. | |||
| 16988 | InitializedEntity Entity = InitializedEntity::InitializeParameter( | |||
| 16989 | Context, Context.getLValueReferenceType(VaListType), false); | |||
| 16990 | ExprResult Init = PerformCopyInitialization(Entity, SourceLocation(), E); | |||
| 16991 | if (Init.isInvalid()) | |||
| 16992 | return ExprError(); | |||
| 16993 | E = Init.getAs<Expr>(); | |||
| 16994 | } else { | |||
| 16995 | // Otherwise, the va_list argument must be an l-value because | |||
| 16996 | // it is modified by va_arg. | |||
| 16997 | if (!E->isTypeDependent() && | |||
| 16998 | CheckForModifiableLvalue(E, BuiltinLoc, *this)) | |||
| 16999 | return ExprError(); | |||
| 17000 | } | |||
| 17001 | } | |||
| 17002 | ||||
| 17003 | if (!IsMS && !E->isTypeDependent() && | |||
| 17004 | !Context.hasSameType(VaListType, E->getType())) | |||
| 17005 | return ExprError( | |||
| 17006 | Diag(E->getBeginLoc(), | |||
| 17007 | diag::err_first_argument_to_va_arg_not_of_type_va_list) | |||
| 17008 | << OrigExpr->getType() << E->getSourceRange()); | |||
| 17009 | ||||
| 17010 | if (!TInfo->getType()->isDependentType()) { | |||
| 17011 | if (RequireCompleteType(TInfo->getTypeLoc().getBeginLoc(), TInfo->getType(), | |||
| 17012 | diag::err_second_parameter_to_va_arg_incomplete, | |||
| 17013 | TInfo->getTypeLoc())) | |||
| 17014 | return ExprError(); | |||
| 17015 | ||||
| 17016 | if (RequireNonAbstractType(TInfo->getTypeLoc().getBeginLoc(), | |||
| 17017 | TInfo->getType(), | |||
| 17018 | diag::err_second_parameter_to_va_arg_abstract, | |||
| 17019 | TInfo->getTypeLoc())) | |||
| 17020 | return ExprError(); | |||
| 17021 | ||||
| 17022 | if (!TInfo->getType().isPODType(Context)) { | |||
| 17023 | Diag(TInfo->getTypeLoc().getBeginLoc(), | |||
| 17024 | TInfo->getType()->isObjCLifetimeType() | |||
| 17025 | ? diag::warn_second_parameter_to_va_arg_ownership_qualified | |||
| 17026 | : diag::warn_second_parameter_to_va_arg_not_pod) | |||
| 17027 | << TInfo->getType() | |||
| 17028 | << TInfo->getTypeLoc().getSourceRange(); | |||
| 17029 | } | |||
| 17030 | ||||
| 17031 | // Check for va_arg where arguments of the given type will be promoted | |||
| 17032 | // (i.e. this va_arg is guaranteed to have undefined behavior). | |||
| 17033 | QualType PromoteType; | |||
| 17034 | if (Context.isPromotableIntegerType(TInfo->getType())) { | |||
| 17035 | PromoteType = Context.getPromotedIntegerType(TInfo->getType()); | |||
| 17036 | // [cstdarg.syn]p1 defers the C++ behavior to what the C standard says, | |||
| 17037 | // and C2x 7.16.1.1p2 says, in part: | |||
| 17038 | // If type is not compatible with the type of the actual next argument | |||
| 17039 | // (as promoted according to the default argument promotions), the | |||
| 17040 | // behavior is undefined, except for the following cases: | |||
| 17041 | // - both types are pointers to qualified or unqualified versions of | |||
| 17042 | // compatible types; | |||
| 17043 | // - one type is a signed integer type, the other type is the | |||
| 17044 | // corresponding unsigned integer type, and the value is | |||
| 17045 | // representable in both types; | |||
| 17046 | // - one type is pointer to qualified or unqualified void and the | |||
| 17047 | // other is a pointer to a qualified or unqualified character type. | |||
| 17048 | // Given that type compatibility is the primary requirement (ignoring | |||
| 17049 | // qualifications), you would think we could call typesAreCompatible() | |||
| 17050 | // directly to test this. However, in C++, that checks for *same type*, | |||
| 17051 | // which causes false positives when passing an enumeration type to | |||
| 17052 | // va_arg. Instead, get the underlying type of the enumeration and pass | |||
| 17053 | // that. | |||
| 17054 | QualType UnderlyingType = TInfo->getType(); | |||
| 17055 | if (const auto *ET = UnderlyingType->getAs<EnumType>()) | |||
| 17056 | UnderlyingType = ET->getDecl()->getIntegerType(); | |||
| 17057 | if (Context.typesAreCompatible(PromoteType, UnderlyingType, | |||
| 17058 | /*CompareUnqualified*/ true)) | |||
| 17059 | PromoteType = QualType(); | |||
| 17060 | ||||
| 17061 | // If the types are still not compatible, we need to test whether the | |||
| 17062 | // promoted type and the underlying type are the same except for | |||
| 17063 | // signedness. Ask the AST for the correctly corresponding type and see | |||
| 17064 | // if that's compatible. | |||
| 17065 | if (!PromoteType.isNull() && !UnderlyingType->isBooleanType() && | |||
| 17066 | PromoteType->isUnsignedIntegerType() != | |||
| 17067 | UnderlyingType->isUnsignedIntegerType()) { | |||
| 17068 | UnderlyingType = | |||
| 17069 | UnderlyingType->isUnsignedIntegerType() | |||
| 17070 | ? Context.getCorrespondingSignedType(UnderlyingType) | |||
| 17071 | : Context.getCorrespondingUnsignedType(UnderlyingType); | |||
| 17072 | if (Context.typesAreCompatible(PromoteType, UnderlyingType, | |||
| 17073 | /*CompareUnqualified*/ true)) | |||
| 17074 | PromoteType = QualType(); | |||
| 17075 | } | |||
| 17076 | } | |||
| 17077 | if (TInfo->getType()->isSpecificBuiltinType(BuiltinType::Float)) | |||
| 17078 | PromoteType = Context.DoubleTy; | |||
| 17079 | if (!PromoteType.isNull()) | |||
| 17080 | DiagRuntimeBehavior(TInfo->getTypeLoc().getBeginLoc(), E, | |||
| 17081 | PDiag(diag::warn_second_parameter_to_va_arg_never_compatible) | |||
| 17082 | << TInfo->getType() | |||
| 17083 | << PromoteType | |||
| 17084 | << TInfo->getTypeLoc().getSourceRange()); | |||
| 17085 | } | |||
| 17086 | ||||
| 17087 | QualType T = TInfo->getType().getNonLValueExprType(Context); | |||
| 17088 | return new (Context) VAArgExpr(BuiltinLoc, E, TInfo, RPLoc, T, IsMS); | |||
| 17089 | } | |||
| 17090 | ||||
| 17091 | ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) { | |||
| 17092 | // The type of __null will be int or long, depending on the size of | |||
| 17093 | // pointers on the target. | |||
| 17094 | QualType Ty; | |||
| 17095 | unsigned pw = Context.getTargetInfo().getPointerWidth(LangAS::Default); | |||
| 17096 | if (pw == Context.getTargetInfo().getIntWidth()) | |||
| 17097 | Ty = Context.IntTy; | |||
| 17098 | else if (pw == Context.getTargetInfo().getLongWidth()) | |||
| 17099 | Ty = Context.LongTy; | |||
| 17100 | else if (pw == Context.getTargetInfo().getLongLongWidth()) | |||
| 17101 | Ty = Context.LongLongTy; | |||
| 17102 | else { | |||
| 17103 | llvm_unreachable("I don't know size of pointer!")::llvm::llvm_unreachable_internal("I don't know size of pointer!" , "clang/lib/Sema/SemaExpr.cpp", 17103); | |||
| 17104 | } | |||
| 17105 | ||||
| 17106 | return new (Context) GNUNullExpr(Ty, TokenLoc); | |||
| 17107 | } | |||
| 17108 | ||||
| 17109 | static CXXRecordDecl *LookupStdSourceLocationImpl(Sema &S, SourceLocation Loc) { | |||
| 17110 | CXXRecordDecl *ImplDecl = nullptr; | |||
| 17111 | ||||
| 17112 | // Fetch the std::source_location::__impl decl. | |||
| 17113 | if (NamespaceDecl *Std = S.getStdNamespace()) { | |||
| 17114 | LookupResult ResultSL(S, &S.PP.getIdentifierTable().get("source_location"), | |||
| 17115 | Loc, Sema::LookupOrdinaryName); | |||
| 17116 | if (S.LookupQualifiedName(ResultSL, Std)) { | |||
| 17117 | if (auto *SLDecl = ResultSL.getAsSingle<RecordDecl>()) { | |||
| 17118 | LookupResult ResultImpl(S, &S.PP.getIdentifierTable().get("__impl"), | |||
| 17119 | Loc, Sema::LookupOrdinaryName); | |||
| 17120 | if ((SLDecl->isCompleteDefinition() || SLDecl->isBeingDefined()) && | |||
| 17121 | S.LookupQualifiedName(ResultImpl, SLDecl)) { | |||
| 17122 | ImplDecl = ResultImpl.getAsSingle<CXXRecordDecl>(); | |||
| 17123 | } | |||
| 17124 | } | |||
| 17125 | } | |||
| 17126 | } | |||
| 17127 | ||||
| 17128 | if (!ImplDecl || !ImplDecl->isCompleteDefinition()) { | |||
| 17129 | S.Diag(Loc, diag::err_std_source_location_impl_not_found); | |||
| 17130 | return nullptr; | |||
| 17131 | } | |||
| 17132 | ||||
| 17133 | // Verify that __impl is a trivial struct type, with no base classes, and with | |||
| 17134 | // only the four expected fields. | |||
| 17135 | if (ImplDecl->isUnion() || !ImplDecl->isStandardLayout() || | |||
| 17136 | ImplDecl->getNumBases() != 0) { | |||
| 17137 | S.Diag(Loc, diag::err_std_source_location_impl_malformed); | |||
| 17138 | return nullptr; | |||
| 17139 | } | |||
| 17140 | ||||
| 17141 | unsigned Count = 0; | |||
| 17142 | for (FieldDecl *F : ImplDecl->fields()) { | |||
| 17143 | StringRef Name = F->getName(); | |||
| 17144 | ||||
| 17145 | if (Name == "_M_file_name") { | |||
| 17146 | if (F->getType() != | |||
| 17147 | S.Context.getPointerType(S.Context.CharTy.withConst())) | |||
| 17148 | break; | |||
| 17149 | Count++; | |||
| 17150 | } else if (Name == "_M_function_name") { | |||
| 17151 | if (F->getType() != | |||
| 17152 | S.Context.getPointerType(S.Context.CharTy.withConst())) | |||
| 17153 | break; | |||
| 17154 | Count++; | |||
| 17155 | } else if (Name == "_M_line") { | |||
| 17156 | if (!F->getType()->isIntegerType()) | |||
| 17157 | break; | |||
| 17158 | Count++; | |||
| 17159 | } else if (Name == "_M_column") { | |||
| 17160 | if (!F->getType()->isIntegerType()) | |||
| 17161 | break; | |||
| 17162 | Count++; | |||
| 17163 | } else { | |||
| 17164 | Count = 100; // invalid | |||
| 17165 | break; | |||
| 17166 | } | |||
| 17167 | } | |||
| 17168 | if (Count != 4) { | |||
| 17169 | S.Diag(Loc, diag::err_std_source_location_impl_malformed); | |||
| 17170 | return nullptr; | |||
| 17171 | } | |||
| 17172 | ||||
| 17173 | return ImplDecl; | |||
| 17174 | } | |||
| 17175 | ||||
| 17176 | ExprResult Sema::ActOnSourceLocExpr(SourceLocExpr::IdentKind Kind, | |||
| 17177 | SourceLocation BuiltinLoc, | |||
| 17178 | SourceLocation RPLoc) { | |||
| 17179 | QualType ResultTy; | |||
| 17180 | switch (Kind) { | |||
| 17181 | case SourceLocExpr::File: | |||
| 17182 | case SourceLocExpr::FileName: | |||
| 17183 | case SourceLocExpr::Function: { | |||
| 17184 | QualType ArrTy = Context.getStringLiteralArrayType(Context.CharTy, 0); | |||
| 17185 | ResultTy = | |||
| 17186 | Context.getPointerType(ArrTy->getAsArrayTypeUnsafe()->getElementType()); | |||
| 17187 | break; | |||
| 17188 | } | |||
| 17189 | case SourceLocExpr::Line: | |||
| 17190 | case SourceLocExpr::Column: | |||
| 17191 | ResultTy = Context.UnsignedIntTy; | |||
| 17192 | break; | |||
| 17193 | case SourceLocExpr::SourceLocStruct: | |||
| 17194 | if (!StdSourceLocationImplDecl) { | |||
| 17195 | StdSourceLocationImplDecl = | |||
| 17196 | LookupStdSourceLocationImpl(*this, BuiltinLoc); | |||
| 17197 | if (!StdSourceLocationImplDecl) | |||
| 17198 | return ExprError(); | |||
| 17199 | } | |||
| 17200 | ResultTy = Context.getPointerType( | |||
| 17201 | Context.getRecordType(StdSourceLocationImplDecl).withConst()); | |||
| 17202 | break; | |||
| 17203 | } | |||
| 17204 | ||||
| 17205 | return BuildSourceLocExpr(Kind, ResultTy, BuiltinLoc, RPLoc, CurContext); | |||
| 17206 | } | |||
| 17207 | ||||
| 17208 | ExprResult Sema::BuildSourceLocExpr(SourceLocExpr::IdentKind Kind, | |||
| 17209 | QualType ResultTy, | |||
| 17210 | SourceLocation BuiltinLoc, | |||
| 17211 | SourceLocation RPLoc, | |||
| 17212 | DeclContext *ParentContext) { | |||
| 17213 | return new (Context) | |||
| 17214 | SourceLocExpr(Context, Kind, ResultTy, BuiltinLoc, RPLoc, ParentContext); | |||
| 17215 | } | |||
| 17216 | ||||
| 17217 | bool Sema::CheckConversionToObjCLiteral(QualType DstType, Expr *&Exp, | |||
| 17218 | bool Diagnose) { | |||
| 17219 | if (!getLangOpts().ObjC) | |||
| 17220 | return false; | |||
| 17221 | ||||
| 17222 | const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>(); | |||
| 17223 | if (!PT) | |||
| 17224 | return false; | |||
| 17225 | const ObjCInterfaceDecl *ID = PT->getInterfaceDecl(); | |||
| 17226 | ||||
| 17227 | // Ignore any parens, implicit casts (should only be | |||
| 17228 | // array-to-pointer decays), and not-so-opaque values. The last is | |||
| 17229 | // important for making this trigger for property assignments. | |||
| 17230 | Expr *SrcExpr = Exp->IgnoreParenImpCasts(); | |||
| 17231 | if (OpaqueValueExpr *OV = dyn_cast<OpaqueValueExpr>(SrcExpr)) | |||
| 17232 | if (OV->getSourceExpr()) | |||
| 17233 | SrcExpr = OV->getSourceExpr()->IgnoreParenImpCasts(); | |||
| 17234 | ||||
| 17235 | if (auto *SL = dyn_cast<StringLiteral>(SrcExpr)) { | |||
| 17236 | if (!PT->isObjCIdType() && | |||
| 17237 | !(ID && ID->getIdentifier()->isStr("NSString"))) | |||
| 17238 | return false; | |||
| 17239 | if (!SL->isOrdinary()) | |||
| 17240 | return false; | |||
| 17241 | ||||
| 17242 | if (Diagnose) { | |||
| 17243 | Diag(SL->getBeginLoc(), diag::err_missing_atsign_prefix) | |||
| 17244 | << /*string*/0 << FixItHint::CreateInsertion(SL->getBeginLoc(), "@"); | |||
| 17245 | Exp = BuildObjCStringLiteral(SL->getBeginLoc(), SL).get(); | |||
| 17246 | } | |||
| 17247 | return true; | |||
| 17248 | } | |||
| 17249 | ||||
| 17250 | if ((isa<IntegerLiteral>(SrcExpr) || isa<CharacterLiteral>(SrcExpr) || | |||
| 17251 | isa<FloatingLiteral>(SrcExpr) || isa<ObjCBoolLiteralExpr>(SrcExpr) || | |||
| 17252 | isa<CXXBoolLiteralExpr>(SrcExpr)) && | |||
| 17253 | !SrcExpr->isNullPointerConstant( | |||
| 17254 | getASTContext(), Expr::NPC_NeverValueDependent)) { | |||
| 17255 | if (!ID || !ID->getIdentifier()->isStr("NSNumber")) | |||
| 17256 | return false; | |||
| 17257 | if (Diagnose) { | |||
| 17258 | Diag(SrcExpr->getBeginLoc(), diag::err_missing_atsign_prefix) | |||
| 17259 | << /*number*/1 | |||
| 17260 | << FixItHint::CreateInsertion(SrcExpr->getBeginLoc(), "@"); | |||
| 17261 | Expr *NumLit = | |||
| 17262 | BuildObjCNumericLiteral(SrcExpr->getBeginLoc(), SrcExpr).get(); | |||
| 17263 | if (NumLit) | |||
| 17264 | Exp = NumLit; | |||
| 17265 | } | |||
| 17266 | return true; | |||
| 17267 | } | |||
| 17268 | ||||
| 17269 | return false; | |||
| 17270 | } | |||
| 17271 | ||||
| 17272 | static bool maybeDiagnoseAssignmentToFunction(Sema &S, QualType DstType, | |||
| 17273 | const Expr *SrcExpr) { | |||
| 17274 | if (!DstType->isFunctionPointerType() || | |||
| 17275 | !SrcExpr->getType()->isFunctionType()) | |||
| 17276 | return false; | |||
| 17277 | ||||
| 17278 | auto *DRE = dyn_cast<DeclRefExpr>(SrcExpr->IgnoreParenImpCasts()); | |||
| 17279 | if (!DRE) | |||
| 17280 | return false; | |||
| 17281 | ||||
| 17282 | auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl()); | |||
| 17283 | if (!FD) | |||
| 17284 | return false; | |||
| 17285 | ||||
| 17286 | return !S.checkAddressOfFunctionIsAvailable(FD, | |||
| 17287 | /*Complain=*/true, | |||
| 17288 | SrcExpr->getBeginLoc()); | |||
| 17289 | } | |||
| 17290 | ||||
| 17291 | bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy, | |||
| 17292 | SourceLocation Loc, | |||
| 17293 | QualType DstType, QualType SrcType, | |||
| 17294 | Expr *SrcExpr, AssignmentAction Action, | |||
| 17295 | bool *Complained) { | |||
| 17296 | if (Complained) | |||
| 17297 | *Complained = false; | |||
| 17298 | ||||
| 17299 | // Decode the result (notice that AST's are still created for extensions). | |||
| 17300 | bool CheckInferredResultType = false; | |||
| 17301 | bool isInvalid = false; | |||
| 17302 | unsigned DiagKind = 0; | |||
| 17303 | ConversionFixItGenerator ConvHints; | |||
| 17304 | bool MayHaveConvFixit = false; | |||
| 17305 | bool MayHaveFunctionDiff = false; | |||
| 17306 | const ObjCInterfaceDecl *IFace = nullptr; | |||
| 17307 | const ObjCProtocolDecl *PDecl = nullptr; | |||
| 17308 | ||||
| 17309 | switch (ConvTy) { | |||
| 17310 | case Compatible: | |||
| 17311 | DiagnoseAssignmentEnum(DstType, SrcType, SrcExpr); | |||
| 17312 | return false; | |||
| 17313 | ||||
| 17314 | case PointerToInt: | |||
| 17315 | if (getLangOpts().CPlusPlus) { | |||
| 17316 | DiagKind = diag::err_typecheck_convert_pointer_int; | |||
| 17317 | isInvalid = true; | |||
| 17318 | } else { | |||
| 17319 | DiagKind = diag::ext_typecheck_convert_pointer_int; | |||
| 17320 | } | |||
| 17321 | ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this); | |||
| 17322 | MayHaveConvFixit = true; | |||
| 17323 | break; | |||
| 17324 | case IntToPointer: | |||
| 17325 | if (getLangOpts().CPlusPlus) { | |||
| 17326 | DiagKind = diag::err_typecheck_convert_int_pointer; | |||
| 17327 | isInvalid = true; | |||
| 17328 | } else { | |||
| 17329 | DiagKind = diag::ext_typecheck_convert_int_pointer; | |||
| 17330 | } | |||
| 17331 | ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this); | |||
| 17332 | MayHaveConvFixit = true; | |||
| 17333 | break; | |||
| 17334 | case IncompatibleFunctionPointerStrict: | |||
| 17335 | DiagKind = | |||
| 17336 | diag::warn_typecheck_convert_incompatible_function_pointer_strict; | |||
| 17337 | ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this); | |||
| 17338 | MayHaveConvFixit = true; | |||
| 17339 | break; | |||
| 17340 | case IncompatibleFunctionPointer: | |||
| 17341 | if (getLangOpts().CPlusPlus) { | |||
| 17342 | DiagKind = diag::err_typecheck_convert_incompatible_function_pointer; | |||
| 17343 | isInvalid = true; | |||
| 17344 | } else { | |||
| 17345 | DiagKind = diag::ext_typecheck_convert_incompatible_function_pointer; | |||
| 17346 | } | |||
| 17347 | ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this); | |||
| 17348 | MayHaveConvFixit = true; | |||
| 17349 | break; | |||
| 17350 | case IncompatiblePointer: | |||
| 17351 | if (Action == AA_Passing_CFAudited) { | |||
| 17352 | DiagKind = diag::err_arc_typecheck_convert_incompatible_pointer; | |||
| 17353 | } else if (getLangOpts().CPlusPlus) { | |||
| 17354 | DiagKind = diag::err_typecheck_convert_incompatible_pointer; | |||
| 17355 | isInvalid = true; | |||
| 17356 | } else { | |||
| 17357 | DiagKind = diag::ext_typecheck_convert_incompatible_pointer; | |||
| 17358 | } | |||
| 17359 | CheckInferredResultType = DstType->isObjCObjectPointerType() && | |||
| 17360 | SrcType->isObjCObjectPointerType(); | |||
| 17361 | if (!CheckInferredResultType) { | |||
| 17362 | ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this); | |||
| 17363 | } else if (CheckInferredResultType) { | |||
| 17364 | SrcType = SrcType.getUnqualifiedType(); | |||
| 17365 | DstType = DstType.getUnqualifiedType(); | |||
| 17366 | } | |||
| 17367 | MayHaveConvFixit = true; | |||
| 17368 | break; | |||
| 17369 | case IncompatiblePointerSign: | |||
| 17370 | if (getLangOpts().CPlusPlus) { | |||
| 17371 | DiagKind = diag::err_typecheck_convert_incompatible_pointer_sign; | |||
| 17372 | isInvalid = true; | |||
| 17373 | } else { | |||
| 17374 | DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign; | |||
| 17375 | } | |||
| 17376 | break; | |||
| 17377 | case FunctionVoidPointer: | |||
| 17378 | if (getLangOpts().CPlusPlus) { | |||
| 17379 | DiagKind = diag::err_typecheck_convert_pointer_void_func; | |||
| 17380 | isInvalid = true; | |||
| 17381 | } else { | |||
| 17382 | DiagKind = diag::ext_typecheck_convert_pointer_void_func; | |||
| 17383 | } | |||
| 17384 | break; | |||
| 17385 | case IncompatiblePointerDiscardsQualifiers: { | |||
| 17386 | // Perform array-to-pointer decay if necessary. | |||
| 17387 | if (SrcType->isArrayType()) SrcType = Context.getArrayDecayedType(SrcType); | |||
| 17388 | ||||
| 17389 | isInvalid = true; | |||
| 17390 | ||||
| 17391 | Qualifiers lhq = SrcType->getPointeeType().getQualifiers(); | |||
| 17392 | Qualifiers rhq = DstType->getPointeeType().getQualifiers(); | |||
| 17393 | if (lhq.getAddressSpace() != rhq.getAddressSpace()) { | |||
| 17394 | DiagKind = diag::err_typecheck_incompatible_address_space; | |||
| 17395 | break; | |||
| 17396 | ||||
| 17397 | } else if (lhq.getObjCLifetime() != rhq.getObjCLifetime()) { | |||
| 17398 | DiagKind = diag::err_typecheck_incompatible_ownership; | |||
| 17399 | break; | |||
| 17400 | } | |||
| 17401 | ||||
| 17402 | llvm_unreachable("unknown error case for discarding qualifiers!")::llvm::llvm_unreachable_internal("unknown error case for discarding qualifiers!" , "clang/lib/Sema/SemaExpr.cpp", 17402); | |||
| 17403 | // fallthrough | |||
| 17404 | } | |||
| 17405 | case CompatiblePointerDiscardsQualifiers: | |||
| 17406 | // If the qualifiers lost were because we were applying the | |||
| 17407 | // (deprecated) C++ conversion from a string literal to a char* | |||
| 17408 | // (or wchar_t*), then there was no error (C++ 4.2p2). FIXME: | |||
| 17409 | // Ideally, this check would be performed in | |||
| 17410 | // checkPointerTypesForAssignment. However, that would require a | |||
| 17411 | // bit of refactoring (so that the second argument is an | |||
| 17412 | // expression, rather than a type), which should be done as part | |||
| 17413 | // of a larger effort to fix checkPointerTypesForAssignment for | |||
| 17414 | // C++ semantics. | |||
| 17415 | if (getLangOpts().CPlusPlus && | |||
| 17416 | IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType)) | |||
| 17417 | return false; | |||
| 17418 | if (getLangOpts().CPlusPlus) { | |||
| 17419 | DiagKind = diag::err_typecheck_convert_discards_qualifiers; | |||
| 17420 | isInvalid = true; | |||
| 17421 | } else { | |||
| 17422 | DiagKind = diag::ext_typecheck_convert_discards_qualifiers; | |||
| 17423 | } | |||
| 17424 | ||||
| 17425 | break; | |||
| 17426 | case IncompatibleNestedPointerQualifiers: | |||
| 17427 | if (getLangOpts().CPlusPlus) { | |||
| 17428 | isInvalid = true; | |||
| 17429 | DiagKind = diag::err_nested_pointer_qualifier_mismatch; | |||
| 17430 | } else { | |||
| 17431 | DiagKind = diag::ext_nested_pointer_qualifier_mismatch; | |||
| 17432 | } | |||
| 17433 | break; | |||
| 17434 | case IncompatibleNestedPointerAddressSpaceMismatch: | |||
| 17435 | DiagKind = diag::err_typecheck_incompatible_nested_address_space; | |||
| 17436 | isInvalid = true; | |||
| 17437 | break; | |||
| 17438 | case IntToBlockPointer: | |||
| 17439 | DiagKind = diag::err_int_to_block_pointer; | |||
| 17440 | isInvalid = true; | |||
| 17441 | break; | |||
| 17442 | case IncompatibleBlockPointer: | |||
| 17443 | DiagKind = diag::err_typecheck_convert_incompatible_block_pointer; | |||
| 17444 | isInvalid = true; | |||
| 17445 | break; | |||
| 17446 | case IncompatibleObjCQualifiedId: { | |||
| 17447 | if (SrcType->isObjCQualifiedIdType()) { | |||
| 17448 | const ObjCObjectPointerType *srcOPT = | |||
| 17449 | SrcType->castAs<ObjCObjectPointerType>(); | |||
| 17450 | for (auto *srcProto : srcOPT->quals()) { | |||
| 17451 | PDecl = srcProto; | |||
| 17452 | break; | |||
| 17453 | } | |||
| 17454 | if (const ObjCInterfaceType *IFaceT = | |||
| 17455 | DstType->castAs<ObjCObjectPointerType>()->getInterfaceType()) | |||
| 17456 | IFace = IFaceT->getDecl(); | |||
| 17457 | } | |||
| 17458 | else if (DstType->isObjCQualifiedIdType()) { | |||
| 17459 | const ObjCObjectPointerType *dstOPT = | |||
| 17460 | DstType->castAs<ObjCObjectPointerType>(); | |||
| 17461 | for (auto *dstProto : dstOPT->quals()) { | |||
| 17462 | PDecl = dstProto; | |||
| 17463 | break; | |||
| 17464 | } | |||
| 17465 | if (const ObjCInterfaceType *IFaceT = | |||
| 17466 | SrcType->castAs<ObjCObjectPointerType>()->getInterfaceType()) | |||
| 17467 | IFace = IFaceT->getDecl(); | |||
| 17468 | } | |||
| 17469 | if (getLangOpts().CPlusPlus) { | |||
| 17470 | DiagKind = diag::err_incompatible_qualified_id; | |||
| 17471 | isInvalid = true; | |||
| 17472 | } else { | |||
| 17473 | DiagKind = diag::warn_incompatible_qualified_id; | |||
| 17474 | } | |||
| 17475 | break; | |||
| 17476 | } | |||
| 17477 | case IncompatibleVectors: | |||
| 17478 | if (getLangOpts().CPlusPlus) { | |||
| 17479 | DiagKind = diag::err_incompatible_vectors; | |||
| 17480 | isInvalid = true; | |||
| 17481 | } else { | |||
| 17482 | DiagKind = diag::warn_incompatible_vectors; | |||
| 17483 | } | |||
| 17484 | break; | |||
| 17485 | case IncompatibleObjCWeakRef: | |||
| 17486 | DiagKind = diag::err_arc_weak_unavailable_assign; | |||
| 17487 | isInvalid = true; | |||
| 17488 | break; | |||
| 17489 | case Incompatible: | |||
| 17490 | if (maybeDiagnoseAssignmentToFunction(*this, DstType, SrcExpr)) { | |||
| 17491 | if (Complained) | |||
| 17492 | *Complained = true; | |||
| 17493 | return true; | |||
| 17494 | } | |||
| 17495 | ||||
| 17496 | DiagKind = diag::err_typecheck_convert_incompatible; | |||
| 17497 | ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this); | |||
| 17498 | MayHaveConvFixit = true; | |||
| 17499 | isInvalid = true; | |||
| 17500 | MayHaveFunctionDiff = true; | |||
| 17501 | break; | |||
| 17502 | } | |||
| 17503 | ||||
| 17504 | QualType FirstType, SecondType; | |||
| 17505 | switch (Action) { | |||
| 17506 | case AA_Assigning: | |||
| 17507 | case AA_Initializing: | |||
| 17508 | // The destination type comes first. | |||
| 17509 | FirstType = DstType; | |||
| 17510 | SecondType = SrcType; | |||
| 17511 | break; | |||
| 17512 | ||||
| 17513 | case AA_Returning: | |||
| 17514 | case AA_Passing: | |||
| 17515 | case AA_Passing_CFAudited: | |||
| 17516 | case AA_Converting: | |||
| 17517 | case AA_Sending: | |||
| 17518 | case AA_Casting: | |||
| 17519 | // The source type comes first. | |||
| 17520 | FirstType = SrcType; | |||
| 17521 | SecondType = DstType; | |||
| 17522 | break; | |||
| 17523 | } | |||
| 17524 | ||||
| 17525 | PartialDiagnostic FDiag = PDiag(DiagKind); | |||
| 17526 | AssignmentAction ActionForDiag = Action; | |||
| 17527 | if (Action == AA_Passing_CFAudited) | |||
| 17528 | ActionForDiag = AA_Passing; | |||
| 17529 | ||||
| 17530 | FDiag << FirstType << SecondType << ActionForDiag | |||
| 17531 | << SrcExpr->getSourceRange(); | |||
| 17532 | ||||
| 17533 | if (DiagKind == diag::ext_typecheck_convert_incompatible_pointer_sign || | |||
| 17534 | DiagKind == diag::err_typecheck_convert_incompatible_pointer_sign) { | |||
| 17535 | auto isPlainChar = [](const clang::Type *Type) { | |||
| 17536 | return Type->isSpecificBuiltinType(BuiltinType::Char_S) || | |||
| 17537 | Type->isSpecificBuiltinType(BuiltinType::Char_U); | |||
| 17538 | }; | |||
| 17539 | FDiag << (isPlainChar(FirstType->getPointeeOrArrayElementType()) || | |||
| 17540 | isPlainChar(SecondType->getPointeeOrArrayElementType())); | |||
| 17541 | } | |||
| 17542 | ||||
| 17543 | // If we can fix the conversion, suggest the FixIts. | |||
| 17544 | if (!ConvHints.isNull()) { | |||
| 17545 | for (FixItHint &H : ConvHints.Hints) | |||
| 17546 | FDiag << H; | |||
| 17547 | } | |||
| 17548 | ||||
| 17549 | if (MayHaveConvFixit) { FDiag << (unsigned) (ConvHints.Kind); } | |||
| 17550 | ||||
| 17551 | if (MayHaveFunctionDiff) | |||
| 17552 | HandleFunctionTypeMismatch(FDiag, SecondType, FirstType); | |||
| 17553 | ||||
| 17554 | Diag(Loc, FDiag); | |||
| 17555 | if ((DiagKind == diag::warn_incompatible_qualified_id || | |||
| 17556 | DiagKind == diag::err_incompatible_qualified_id) && | |||
| 17557 | PDecl && IFace && !IFace->hasDefinition()) | |||
| 17558 | Diag(IFace->getLocation(), diag::note_incomplete_class_and_qualified_id) | |||
| 17559 | << IFace << PDecl; | |||
| 17560 | ||||
| 17561 | if (SecondType == Context.OverloadTy) | |||
| 17562 | NoteAllOverloadCandidates(OverloadExpr::find(SrcExpr).Expression, | |||
| 17563 | FirstType, /*TakingAddress=*/true); | |||
| 17564 | ||||
| 17565 | if (CheckInferredResultType) | |||
| 17566 | EmitRelatedResultTypeNote(SrcExpr); | |||
| 17567 | ||||
| 17568 | if (Action == AA_Returning && ConvTy == IncompatiblePointer) | |||
| 17569 | EmitRelatedResultTypeNoteForReturn(DstType); | |||
| 17570 | ||||
| 17571 | if (Complained) | |||
| 17572 | *Complained = true; | |||
| 17573 | return isInvalid; | |||
| 17574 | } | |||
| 17575 | ||||
| 17576 | ExprResult Sema::VerifyIntegerConstantExpression(Expr *E, | |||
| 17577 | llvm::APSInt *Result, | |||
| 17578 | AllowFoldKind CanFold) { | |||
| 17579 | class SimpleICEDiagnoser : public VerifyICEDiagnoser { | |||
| 17580 | public: | |||
| 17581 | SemaDiagnosticBuilder diagnoseNotICEType(Sema &S, SourceLocation Loc, | |||
| 17582 | QualType T) override { | |||
| 17583 | return S.Diag(Loc, diag::err_ice_not_integral) | |||
| 17584 | << T << S.LangOpts.CPlusPlus; | |||
| 17585 | } | |||
| 17586 | SemaDiagnosticBuilder diagnoseNotICE(Sema &S, SourceLocation Loc) override { | |||
| 17587 | return S.Diag(Loc, diag::err_expr_not_ice) << S.LangOpts.CPlusPlus; | |||
| 17588 | } | |||
| 17589 | } Diagnoser; | |||
| 17590 | ||||
| 17591 | return VerifyIntegerConstantExpression(E, Result, Diagnoser, CanFold); | |||
| 17592 | } | |||
| 17593 | ||||
| 17594 | ExprResult Sema::VerifyIntegerConstantExpression(Expr *E, | |||
| 17595 | llvm::APSInt *Result, | |||
| 17596 | unsigned DiagID, | |||
| 17597 | AllowFoldKind CanFold) { | |||
| 17598 | class IDDiagnoser : public VerifyICEDiagnoser { | |||
| 17599 | unsigned DiagID; | |||
| 17600 | ||||
| 17601 | public: | |||
| 17602 | IDDiagnoser(unsigned DiagID) | |||
| 17603 | : VerifyICEDiagnoser(DiagID == 0), DiagID(DiagID) { } | |||
| 17604 | ||||
| 17605 | SemaDiagnosticBuilder diagnoseNotICE(Sema &S, SourceLocation Loc) override { | |||
| 17606 | return S.Diag(Loc, DiagID); | |||
| 17607 | } | |||
| 17608 | } Diagnoser(DiagID); | |||
| 17609 | ||||
| 17610 | return VerifyIntegerConstantExpression(E, Result, Diagnoser, CanFold); | |||
| 17611 | } | |||
| 17612 | ||||
| 17613 | Sema::SemaDiagnosticBuilder | |||
| 17614 | Sema::VerifyICEDiagnoser::diagnoseNotICEType(Sema &S, SourceLocation Loc, | |||
| 17615 | QualType T) { | |||
| 17616 | return diagnoseNotICE(S, Loc); | |||
| 17617 | } | |||
| 17618 | ||||
| 17619 | Sema::SemaDiagnosticBuilder | |||
| 17620 | Sema::VerifyICEDiagnoser::diagnoseFold(Sema &S, SourceLocation Loc) { | |||
| 17621 | return S.Diag(Loc, diag::ext_expr_not_ice) << S.LangOpts.CPlusPlus; | |||
| 17622 | } | |||
| 17623 | ||||
| 17624 | ExprResult | |||
| 17625 | Sema::VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result, | |||
| 17626 | VerifyICEDiagnoser &Diagnoser, | |||
| 17627 | AllowFoldKind CanFold) { | |||
| 17628 | SourceLocation DiagLoc = E->getBeginLoc(); | |||
| 17629 | ||||
| 17630 | if (getLangOpts().CPlusPlus11) { | |||
| 17631 | // C++11 [expr.const]p5: | |||
| 17632 | // If an expression of literal class type is used in a context where an | |||
| 17633 | // integral constant expression is required, then that class type shall | |||
| 17634 | // have a single non-explicit conversion function to an integral or | |||
| 17635 | // unscoped enumeration type | |||
| 17636 | ExprResult Converted; | |||
| 17637 | class CXX11ConvertDiagnoser : public ICEConvertDiagnoser { | |||
| 17638 | VerifyICEDiagnoser &BaseDiagnoser; | |||
| 17639 | public: | |||
| 17640 | CXX11ConvertDiagnoser(VerifyICEDiagnoser &BaseDiagnoser) | |||
| 17641 | : ICEConvertDiagnoser(/*AllowScopedEnumerations*/ false, | |||
| 17642 | BaseDiagnoser.Suppress, true), | |||
| 17643 | BaseDiagnoser(BaseDiagnoser) {} | |||
| 17644 | ||||
| 17645 | SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc, | |||
| 17646 | QualType T) override { | |||
| 17647 | return BaseDiagnoser.diagnoseNotICEType(S, Loc, T); | |||
| 17648 | } | |||
| 17649 | ||||
| 17650 | SemaDiagnosticBuilder diagnoseIncomplete( | |||
| 17651 | Sema &S, SourceLocation Loc, QualType T) override { | |||
| 17652 | return S.Diag(Loc, diag::err_ice_incomplete_type) << T; | |||
| 17653 | } | |||
| 17654 | ||||
| 17655 | SemaDiagnosticBuilder diagnoseExplicitConv( | |||
| 17656 | Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override { | |||
| 17657 | return S.Diag(Loc, diag::err_ice_explicit_conversion) << T << ConvTy; | |||
| 17658 | } | |||
| 17659 | ||||
| 17660 | SemaDiagnosticBuilder noteExplicitConv( | |||
| 17661 | Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override { | |||
| 17662 | return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here) | |||
| 17663 | << ConvTy->isEnumeralType() << ConvTy; | |||
| 17664 | } | |||
| 17665 | ||||
| 17666 | SemaDiagnosticBuilder diagnoseAmbiguous( | |||
| 17667 | Sema &S, SourceLocation Loc, QualType T) override { | |||
| 17668 | return S.Diag(Loc, diag::err_ice_ambiguous_conversion) << T; | |||
| 17669 | } | |||
| 17670 | ||||
| 17671 | SemaDiagnosticBuilder noteAmbiguous( | |||
| 17672 | Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override { | |||
| 17673 | return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here) | |||
| 17674 | << ConvTy->isEnumeralType() << ConvTy; | |||
| 17675 | } | |||
| 17676 | ||||
| 17677 | SemaDiagnosticBuilder diagnoseConversion( | |||
| 17678 | Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override { | |||
| 17679 | llvm_unreachable("conversion functions are permitted")::llvm::llvm_unreachable_internal("conversion functions are permitted" , "clang/lib/Sema/SemaExpr.cpp", 17679); | |||
| 17680 | } | |||
| 17681 | } ConvertDiagnoser(Diagnoser); | |||
| 17682 | ||||
| 17683 | Converted = PerformContextualImplicitConversion(DiagLoc, E, | |||
| 17684 | ConvertDiagnoser); | |||
| 17685 | if (Converted.isInvalid()) | |||
| 17686 | return Converted; | |||
| 17687 | E = Converted.get(); | |||
| 17688 | if (!E->getType()->isIntegralOrUnscopedEnumerationType()) | |||
| 17689 | return ExprError(); | |||
| 17690 | } else if (!E->getType()->isIntegralOrUnscopedEnumerationType()) { | |||
| 17691 | // An ICE must be of integral or unscoped enumeration type. | |||
| 17692 | if (!Diagnoser.Suppress) | |||
| 17693 | Diagnoser.diagnoseNotICEType(*this, DiagLoc, E->getType()) | |||
| 17694 | << E->getSourceRange(); | |||
| 17695 | return ExprError(); | |||
| 17696 | } | |||
| 17697 | ||||
| 17698 | ExprResult RValueExpr = DefaultLvalueConversion(E); | |||
| 17699 | if (RValueExpr.isInvalid()) | |||
| 17700 | return ExprError(); | |||
| 17701 | ||||
| 17702 | E = RValueExpr.get(); | |||
| 17703 | ||||
| 17704 | // Circumvent ICE checking in C++11 to avoid evaluating the expression twice | |||
| 17705 | // in the non-ICE case. | |||
| 17706 | if (!getLangOpts().CPlusPlus11 && E->isIntegerConstantExpr(Context)) { | |||
| 17707 | if (Result) | |||
| 17708 | *Result = E->EvaluateKnownConstIntCheckOverflow(Context); | |||
| 17709 | if (!isa<ConstantExpr>(E)) | |||
| 17710 | E = Result ? ConstantExpr::Create(Context, E, APValue(*Result)) | |||
| 17711 | : ConstantExpr::Create(Context, E); | |||
| 17712 | return E; | |||
| 17713 | } | |||
| 17714 | ||||
| 17715 | Expr::EvalResult EvalResult; | |||
| 17716 | SmallVector<PartialDiagnosticAt, 8> Notes; | |||
| 17717 | EvalResult.Diag = &Notes; | |||
| 17718 | ||||
| 17719 | // Try to evaluate the expression, and produce diagnostics explaining why it's | |||
| 17720 | // not a constant expression as a side-effect. | |||
| 17721 | bool Folded = | |||
| 17722 | E->EvaluateAsRValue(EvalResult, Context, /*isConstantContext*/ true) && | |||
| 17723 | EvalResult.Val.isInt() && !EvalResult.HasSideEffects; | |||
| 17724 | ||||
| 17725 | if (!isa<ConstantExpr>(E)) | |||
| 17726 | E = ConstantExpr::Create(Context, E, EvalResult.Val); | |||
| 17727 | ||||
| 17728 | // In C++11, we can rely on diagnostics being produced for any expression | |||
| 17729 | // which is not a constant expression. If no diagnostics were produced, then | |||
| 17730 | // this is a constant expression. | |||
| 17731 | if (Folded && getLangOpts().CPlusPlus11 && Notes.empty()) { | |||
| 17732 | if (Result) | |||
| 17733 | *Result = EvalResult.Val.getInt(); | |||
| 17734 | return E; | |||
| 17735 | } | |||
| 17736 | ||||
| 17737 | // If our only note is the usual "invalid subexpression" note, just point | |||
| 17738 | // the caret at its location rather than producing an essentially | |||
| 17739 | // redundant note. | |||
| 17740 | if (Notes.size() == 1 && Notes[0].second.getDiagID() == | |||
| 17741 | diag::note_invalid_subexpr_in_const_expr) { | |||
| 17742 | DiagLoc = Notes[0].first; | |||
| 17743 | Notes.clear(); | |||
| 17744 | } | |||
| 17745 | ||||
| 17746 | if (!Folded || !CanFold) { | |||
| 17747 | if (!Diagnoser.Suppress) { | |||
| 17748 | Diagnoser.diagnoseNotICE(*this, DiagLoc) << E->getSourceRange(); | |||
| 17749 | for (const PartialDiagnosticAt &Note : Notes) | |||
| 17750 | Diag(Note.first, Note.second); | |||
| 17751 | } | |||
| 17752 | ||||
| 17753 | return ExprError(); | |||
| 17754 | } | |||
| 17755 | ||||
| 17756 | Diagnoser.diagnoseFold(*this, DiagLoc) << E->getSourceRange(); | |||
| 17757 | for (const PartialDiagnosticAt &Note : Notes) | |||
| 17758 | Diag(Note.first, Note.second); | |||
| 17759 | ||||
| 17760 | if (Result) | |||
| 17761 | *Result = EvalResult.Val.getInt(); | |||
| 17762 | return E; | |||
| 17763 | } | |||
| 17764 | ||||
| 17765 | namespace { | |||
| 17766 | // Handle the case where we conclude a expression which we speculatively | |||
| 17767 | // considered to be unevaluated is actually evaluated. | |||
| 17768 | class TransformToPE : public TreeTransform<TransformToPE> { | |||
| 17769 | typedef TreeTransform<TransformToPE> BaseTransform; | |||
| 17770 | ||||
| 17771 | public: | |||
| 17772 | TransformToPE(Sema &SemaRef) : BaseTransform(SemaRef) { } | |||
| 17773 | ||||
| 17774 | // Make sure we redo semantic analysis | |||
| 17775 | bool AlwaysRebuild() { return true; } | |||
| 17776 | bool ReplacingOriginal() { return true; } | |||
| 17777 | ||||
| 17778 | // We need to special-case DeclRefExprs referring to FieldDecls which | |||
| 17779 | // are not part of a member pointer formation; normal TreeTransforming | |||
| 17780 | // doesn't catch this case because of the way we represent them in the AST. | |||
| 17781 | // FIXME: This is a bit ugly; is it really the best way to handle this | |||
| 17782 | // case? | |||
| 17783 | // | |||
| 17784 | // Error on DeclRefExprs referring to FieldDecls. | |||
| 17785 | ExprResult TransformDeclRefExpr(DeclRefExpr *E) { | |||
| 17786 | if (isa<FieldDecl>(E->getDecl()) && | |||
| 17787 | !SemaRef.isUnevaluatedContext()) | |||
| 17788 | return SemaRef.Diag(E->getLocation(), | |||
| 17789 | diag::err_invalid_non_static_member_use) | |||
| 17790 | << E->getDecl() << E->getSourceRange(); | |||
| 17791 | ||||
| 17792 | return BaseTransform::TransformDeclRefExpr(E); | |||
| 17793 | } | |||
| 17794 | ||||
| 17795 | // Exception: filter out member pointer formation | |||
| 17796 | ExprResult TransformUnaryOperator(UnaryOperator *E) { | |||
| 17797 | if (E->getOpcode() == UO_AddrOf && E->getType()->isMemberPointerType()) | |||
| 17798 | return E; | |||
| 17799 | ||||
| 17800 | return BaseTransform::TransformUnaryOperator(E); | |||
| 17801 | } | |||
| 17802 | ||||
| 17803 | // The body of a lambda-expression is in a separate expression evaluation | |||
| 17804 | // context so never needs to be transformed. | |||
| 17805 | // FIXME: Ideally we wouldn't transform the closure type either, and would | |||
| 17806 | // just recreate the capture expressions and lambda expression. | |||
| 17807 | StmtResult TransformLambdaBody(LambdaExpr *E, Stmt *Body) { | |||
| 17808 | return SkipLambdaBody(E, Body); | |||
| 17809 | } | |||
| 17810 | }; | |||
| 17811 | } | |||
| 17812 | ||||
| 17813 | ExprResult Sema::TransformToPotentiallyEvaluated(Expr *E) { | |||
| 17814 | assert(isUnevaluatedContext() &&(static_cast <bool> (isUnevaluatedContext() && "Should only transform unevaluated expressions" ) ? void (0) : __assert_fail ("isUnevaluatedContext() && \"Should only transform unevaluated expressions\"" , "clang/lib/Sema/SemaExpr.cpp", 17815, __extension__ __PRETTY_FUNCTION__ )) | |||
| 17815 | "Should only transform unevaluated expressions")(static_cast <bool> (isUnevaluatedContext() && "Should only transform unevaluated expressions" ) ? void (0) : __assert_fail ("isUnevaluatedContext() && \"Should only transform unevaluated expressions\"" , "clang/lib/Sema/SemaExpr.cpp", 17815, __extension__ __PRETTY_FUNCTION__ )); | |||
| 17816 | ExprEvalContexts.back().Context = | |||
| 17817 | ExprEvalContexts[ExprEvalContexts.size()-2].Context; | |||
| 17818 | if (isUnevaluatedContext()) | |||
| 17819 | return E; | |||
| 17820 | return TransformToPE(*this).TransformExpr(E); | |||
| 17821 | } | |||
| 17822 | ||||
| 17823 | TypeSourceInfo *Sema::TransformToPotentiallyEvaluated(TypeSourceInfo *TInfo) { | |||
| 17824 | assert(isUnevaluatedContext() &&(static_cast <bool> (isUnevaluatedContext() && "Should only transform unevaluated expressions" ) ? void (0) : __assert_fail ("isUnevaluatedContext() && \"Should only transform unevaluated expressions\"" , "clang/lib/Sema/SemaExpr.cpp", 17825, __extension__ __PRETTY_FUNCTION__ )) | |||
| 17825 | "Should only transform unevaluated expressions")(static_cast <bool> (isUnevaluatedContext() && "Should only transform unevaluated expressions" ) ? void (0) : __assert_fail ("isUnevaluatedContext() && \"Should only transform unevaluated expressions\"" , "clang/lib/Sema/SemaExpr.cpp", 17825, __extension__ __PRETTY_FUNCTION__ )); | |||
| 17826 | ExprEvalContexts.back().Context = | |||
| 17827 | ExprEvalContexts[ExprEvalContexts.size() - 2].Context; | |||
| 17828 | if (isUnevaluatedContext()) | |||
| 17829 | return TInfo; | |||
| 17830 | return TransformToPE(*this).TransformType(TInfo); | |||
| 17831 | } | |||
| 17832 | ||||
| 17833 | void | |||
| 17834 | Sema::PushExpressionEvaluationContext( | |||
| 17835 | ExpressionEvaluationContext NewContext, Decl *LambdaContextDecl, | |||
| 17836 | ExpressionEvaluationContextRecord::ExpressionKind ExprContext) { | |||
| 17837 | ExprEvalContexts.emplace_back(NewContext, ExprCleanupObjects.size(), Cleanup, | |||
| 17838 | LambdaContextDecl, ExprContext); | |||
| 17839 | ||||
| 17840 | // Discarded statements and immediate contexts nested in other | |||
| 17841 | // discarded statements or immediate context are themselves | |||
| 17842 | // a discarded statement or an immediate context, respectively. | |||
| 17843 | ExprEvalContexts.back().InDiscardedStatement = | |||
| 17844 | ExprEvalContexts[ExprEvalContexts.size() - 2] | |||
| 17845 | .isDiscardedStatementContext(); | |||
| 17846 | ExprEvalContexts.back().InImmediateFunctionContext = | |||
| 17847 | ExprEvalContexts[ExprEvalContexts.size() - 2] | |||
| 17848 | .isImmediateFunctionContext(); | |||
| 17849 | ||||
| 17850 | Cleanup.reset(); | |||
| 17851 | if (!MaybeODRUseExprs.empty()) | |||
| 17852 | std::swap(MaybeODRUseExprs, ExprEvalContexts.back().SavedMaybeODRUseExprs); | |||
| 17853 | } | |||
| 17854 | ||||
| 17855 | void | |||
| 17856 | Sema::PushExpressionEvaluationContext( | |||
| 17857 | ExpressionEvaluationContext NewContext, ReuseLambdaContextDecl_t, | |||
| 17858 | ExpressionEvaluationContextRecord::ExpressionKind ExprContext) { | |||
| 17859 | Decl *ClosureContextDecl = ExprEvalContexts.back().ManglingContextDecl; | |||
| 17860 | PushExpressionEvaluationContext(NewContext, ClosureContextDecl, ExprContext); | |||
| 17861 | } | |||
| 17862 | ||||
| 17863 | namespace { | |||
| 17864 | ||||
| 17865 | const DeclRefExpr *CheckPossibleDeref(Sema &S, const Expr *PossibleDeref) { | |||
| 17866 | PossibleDeref = PossibleDeref->IgnoreParenImpCasts(); | |||
| 17867 | if (const auto *E = dyn_cast<UnaryOperator>(PossibleDeref)) { | |||
| 17868 | if (E->getOpcode() == UO_Deref) | |||
| 17869 | return CheckPossibleDeref(S, E->getSubExpr()); | |||
| 17870 | } else if (const auto *E = dyn_cast<ArraySubscriptExpr>(PossibleDeref)) { | |||
| 17871 | return CheckPossibleDeref(S, E->getBase()); | |||
| 17872 | } else if (const auto *E = dyn_cast<MemberExpr>(PossibleDeref)) { | |||
| 17873 | return CheckPossibleDeref(S, E->getBase()); | |||
| 17874 | } else if (const auto E = dyn_cast<DeclRefExpr>(PossibleDeref)) { | |||
| 17875 | QualType Inner; | |||
| 17876 | QualType Ty = E->getType(); | |||
| 17877 | if (const auto *Ptr = Ty->getAs<PointerType>()) | |||
| 17878 | Inner = Ptr->getPointeeType(); | |||
| 17879 | else if (const auto *Arr = S.Context.getAsArrayType(Ty)) | |||
| 17880 | Inner = Arr->getElementType(); | |||
| 17881 | else | |||
| 17882 | return nullptr; | |||
| 17883 | ||||
| 17884 | if (Inner->hasAttr(attr::NoDeref)) | |||
| 17885 | return E; | |||
| 17886 | } | |||
| 17887 | return nullptr; | |||
| 17888 | } | |||
| 17889 | ||||
| 17890 | } // namespace | |||
| 17891 | ||||
| 17892 | void Sema::WarnOnPendingNoDerefs(ExpressionEvaluationContextRecord &Rec) { | |||
| 17893 | for (const Expr *E : Rec.PossibleDerefs) { | |||
| 17894 | const DeclRefExpr *DeclRef = CheckPossibleDeref(*this, E); | |||
| 17895 | if (DeclRef) { | |||
| 17896 | const ValueDecl *Decl = DeclRef->getDecl(); | |||
| 17897 | Diag(E->getExprLoc(), diag::warn_dereference_of_noderef_type) | |||
| 17898 | << Decl->getName() << E->getSourceRange(); | |||
| 17899 | Diag(Decl->getLocation(), diag::note_previous_decl) << Decl->getName(); | |||
| 17900 | } else { | |||
| 17901 | Diag(E->getExprLoc(), diag::warn_dereference_of_noderef_type_no_decl) | |||
| 17902 | << E->getSourceRange(); | |||
| 17903 | } | |||
| 17904 | } | |||
| 17905 | Rec.PossibleDerefs.clear(); | |||
| 17906 | } | |||
| 17907 | ||||
| 17908 | /// Check whether E, which is either a discarded-value expression or an | |||
| 17909 | /// unevaluated operand, is a simple-assignment to a volatlie-qualified lvalue, | |||
| 17910 | /// and if so, remove it from the list of volatile-qualified assignments that | |||
| 17911 | /// we are going to warn are deprecated. | |||
| 17912 | void Sema::CheckUnusedVolatileAssignment(Expr *E) { | |||
| 17913 | if (!E->getType().isVolatileQualified() || !getLangOpts().CPlusPlus20) | |||
| 17914 | return; | |||
| 17915 | ||||
| 17916 | // Note: ignoring parens here is not justified by the standard rules, but | |||
| 17917 | // ignoring parentheses seems like a more reasonable approach, and this only | |||
| 17918 | // drives a deprecation warning so doesn't affect conformance. | |||
| 17919 | if (auto *BO = dyn_cast<BinaryOperator>(E->IgnoreParenImpCasts())) { | |||
| 17920 | if (BO->getOpcode() == BO_Assign) { | |||
| 17921 | auto &LHSs = ExprEvalContexts.back().VolatileAssignmentLHSs; | |||
| 17922 | llvm::erase_value(LHSs, BO->getLHS()); | |||
| 17923 | } | |||
| 17924 | } | |||
| 17925 | } | |||
| 17926 | ||||
| 17927 | ExprResult Sema::CheckForImmediateInvocation(ExprResult E, FunctionDecl *Decl) { | |||
| 17928 | if (isUnevaluatedContext() || !E.isUsable() || !Decl || | |||
| 17929 | !Decl->isConsteval() || isConstantEvaluated() || | |||
| 17930 | isCheckingDefaultArgumentOrInitializer() || | |||
| 17931 | RebuildingImmediateInvocation || isImmediateFunctionContext()) | |||
| 17932 | return E; | |||
| 17933 | ||||
| 17934 | /// Opportunistically remove the callee from ReferencesToConsteval if we can. | |||
| 17935 | /// It's OK if this fails; we'll also remove this in | |||
| 17936 | /// HandleImmediateInvocations, but catching it here allows us to avoid | |||
| 17937 | /// walking the AST looking for it in simple cases. | |||
| 17938 | if (auto *Call = dyn_cast<CallExpr>(E.get()->IgnoreImplicit())) | |||
| 17939 | if (auto *DeclRef = | |||
| 17940 | dyn_cast<DeclRefExpr>(Call->getCallee()->IgnoreImplicit())) | |||
| 17941 | ExprEvalContexts.back().ReferenceToConsteval.erase(DeclRef); | |||
| 17942 | ||||
| 17943 | E = MaybeCreateExprWithCleanups(E); | |||
| 17944 | ||||
| 17945 | ConstantExpr *Res = ConstantExpr::Create( | |||
| 17946 | getASTContext(), E.get(), | |||
| 17947 | ConstantExpr::getStorageKind(Decl->getReturnType().getTypePtr(), | |||
| 17948 | getASTContext()), | |||
| 17949 | /*IsImmediateInvocation*/ true); | |||
| 17950 | /// Value-dependent constant expressions should not be immediately | |||
| 17951 | /// evaluated until they are instantiated. | |||
| 17952 | if (!Res->isValueDependent()) | |||
| 17953 | ExprEvalContexts.back().ImmediateInvocationCandidates.emplace_back(Res, 0); | |||
| 17954 | return Res; | |||
| 17955 | } | |||
| 17956 | ||||
| 17957 | static void EvaluateAndDiagnoseImmediateInvocation( | |||
| 17958 | Sema &SemaRef, Sema::ImmediateInvocationCandidate Candidate) { | |||
| 17959 | llvm::SmallVector<PartialDiagnosticAt, 8> Notes; | |||
| 17960 | Expr::EvalResult Eval; | |||
| 17961 | Eval.Diag = &Notes; | |||
| 17962 | ConstantExpr *CE = Candidate.getPointer(); | |||
| 17963 | bool Result = CE->EvaluateAsConstantExpr( | |||
| 17964 | Eval, SemaRef.getASTContext(), ConstantExprKind::ImmediateInvocation); | |||
| 17965 | if (!Result || !Notes.empty()) { | |||
| 17966 | SemaRef.FailedImmediateInvocations.insert(CE); | |||
| 17967 | Expr *InnerExpr = CE->getSubExpr()->IgnoreImplicit(); | |||
| 17968 | if (auto *FunctionalCast = dyn_cast<CXXFunctionalCastExpr>(InnerExpr)) | |||
| 17969 | InnerExpr = FunctionalCast->getSubExpr(); | |||
| 17970 | FunctionDecl *FD = nullptr; | |||
| 17971 | if (auto *Call = dyn_cast<CallExpr>(InnerExpr)) | |||
| 17972 | FD = cast<FunctionDecl>(Call->getCalleeDecl()); | |||
| 17973 | else if (auto *Call = dyn_cast<CXXConstructExpr>(InnerExpr)) | |||
| 17974 | FD = Call->getConstructor(); | |||
| 17975 | else | |||
| 17976 | llvm_unreachable("unhandled decl kind")::llvm::llvm_unreachable_internal("unhandled decl kind", "clang/lib/Sema/SemaExpr.cpp" , 17976); | |||
| 17977 | assert(FD && FD->isConsteval())(static_cast <bool> (FD && FD->isConsteval() ) ? void (0) : __assert_fail ("FD && FD->isConsteval()" , "clang/lib/Sema/SemaExpr.cpp", 17977, __extension__ __PRETTY_FUNCTION__ )); | |||
| 17978 | SemaRef.Diag(CE->getBeginLoc(), diag::err_invalid_consteval_call) << FD; | |||
| 17979 | if (auto Context = | |||
| 17980 | SemaRef.InnermostDeclarationWithDelayedImmediateInvocations()) { | |||
| 17981 | SemaRef.Diag(Context->Loc, diag::note_invalid_consteval_initializer) | |||
| 17982 | << Context->Decl; | |||
| 17983 | SemaRef.Diag(Context->Decl->getBeginLoc(), diag::note_declared_at); | |||
| 17984 | } | |||
| 17985 | for (auto &Note : Notes) | |||
| 17986 | SemaRef.Diag(Note.first, Note.second); | |||
| 17987 | return; | |||
| 17988 | } | |||
| 17989 | CE->MoveIntoResult(Eval.Val, SemaRef.getASTContext()); | |||
| 17990 | } | |||
| 17991 | ||||
| 17992 | static void RemoveNestedImmediateInvocation( | |||
| 17993 | Sema &SemaRef, Sema::ExpressionEvaluationContextRecord &Rec, | |||
| 17994 | SmallVector<Sema::ImmediateInvocationCandidate, 4>::reverse_iterator It) { | |||
| 17995 | struct ComplexRemove : TreeTransform<ComplexRemove> { | |||
| 17996 | using Base = TreeTransform<ComplexRemove>; | |||
| 17997 | llvm::SmallPtrSetImpl<DeclRefExpr *> &DRSet; | |||
| 17998 | SmallVector<Sema::ImmediateInvocationCandidate, 4> &IISet; | |||
| 17999 | SmallVector<Sema::ImmediateInvocationCandidate, 4>::reverse_iterator | |||
| 18000 | CurrentII; | |||
| 18001 | ComplexRemove(Sema &SemaRef, llvm::SmallPtrSetImpl<DeclRefExpr *> &DR, | |||
| 18002 | SmallVector<Sema::ImmediateInvocationCandidate, 4> &II, | |||
| 18003 | SmallVector<Sema::ImmediateInvocationCandidate, | |||
| 18004 | 4>::reverse_iterator Current) | |||
| 18005 | : Base(SemaRef), DRSet(DR), IISet(II), CurrentII(Current) {} | |||
| 18006 | void RemoveImmediateInvocation(ConstantExpr* E) { | |||
| 18007 | auto It = std::find_if(CurrentII, IISet.rend(), | |||
| 18008 | [E](Sema::ImmediateInvocationCandidate Elem) { | |||
| 18009 | return Elem.getPointer() == E; | |||
| 18010 | }); | |||
| 18011 | // It is possible that some subexpression of the current immediate | |||
| 18012 | // invocation was handled from another expression evaluation context. Do | |||
| 18013 | // not handle the current immediate invocation if some of its | |||
| 18014 | // subexpressions failed before. | |||
| 18015 | if (It == IISet.rend()) { | |||
| 18016 | if (SemaRef.FailedImmediateInvocations.contains(E)) | |||
| 18017 | CurrentII->setInt(1); | |||
| 18018 | } else { | |||
| 18019 | It->setInt(1); // Mark as deleted | |||
| 18020 | } | |||
| 18021 | } | |||
| 18022 | ExprResult TransformConstantExpr(ConstantExpr *E) { | |||
| 18023 | if (!E->isImmediateInvocation()) | |||
| 18024 | return Base::TransformConstantExpr(E); | |||
| 18025 | RemoveImmediateInvocation(E); | |||
| 18026 | return Base::TransformExpr(E->getSubExpr()); | |||
| 18027 | } | |||
| 18028 | /// Base::TransfromCXXOperatorCallExpr doesn't traverse the callee so | |||
| 18029 | /// we need to remove its DeclRefExpr from the DRSet. | |||
| 18030 | ExprResult TransformCXXOperatorCallExpr(CXXOperatorCallExpr *E) { | |||
| 18031 | DRSet.erase(cast<DeclRefExpr>(E->getCallee()->IgnoreImplicit())); | |||
| ||||
| 18032 | return Base::TransformCXXOperatorCallExpr(E); | |||
| 18033 | } | |||
| 18034 | /// Base::TransformInitializer skip ConstantExpr so we need to visit them | |||
| 18035 | /// here. | |||
| 18036 | ExprResult TransformInitializer(Expr *Init, bool NotCopyInit) { | |||
| 18037 | if (!Init) | |||
| 18038 | return Init; | |||
| 18039 | /// ConstantExpr are the first layer of implicit node to be removed so if | |||
| 18040 | /// Init isn't a ConstantExpr, no ConstantExpr will be skipped. | |||
| 18041 | if (auto *CE = dyn_cast<ConstantExpr>(Init)) | |||
| 18042 | if (CE->isImmediateInvocation()) | |||
| 18043 | RemoveImmediateInvocation(CE); | |||
| 18044 | return Base::TransformInitializer(Init, NotCopyInit); | |||
| 18045 | } | |||
| 18046 | ExprResult TransformDeclRefExpr(DeclRefExpr *E) { | |||
| 18047 | DRSet.erase(E); | |||
| 18048 | return E; | |||
| 18049 | } | |||
| 18050 | ExprResult TransformLambdaExpr(LambdaExpr *E) { | |||
| 18051 | // Do not rebuild lambdas to avoid creating a new type. | |||
| 18052 | // Lambdas have already been processed inside their eval context. | |||
| 18053 | return E; | |||
| 18054 | } | |||
| 18055 | bool AlwaysRebuild() { return false; } | |||
| 18056 | bool ReplacingOriginal() { return true; } | |||
| 18057 | bool AllowSkippingCXXConstructExpr() { | |||
| 18058 | bool Res = AllowSkippingFirstCXXConstructExpr; | |||
| 18059 | AllowSkippingFirstCXXConstructExpr = true; | |||
| 18060 | return Res; | |||
| 18061 | } | |||
| 18062 | bool AllowSkippingFirstCXXConstructExpr = true; | |||
| 18063 | } Transformer(SemaRef, Rec.ReferenceToConsteval, | |||
| 18064 | Rec.ImmediateInvocationCandidates, It); | |||
| 18065 | ||||
| 18066 | /// CXXConstructExpr with a single argument are getting skipped by | |||
| 18067 | /// TreeTransform in some situtation because they could be implicit. This | |||
| 18068 | /// can only occur for the top-level CXXConstructExpr because it is used | |||
| 18069 | /// nowhere in the expression being transformed therefore will not be rebuilt. | |||
| 18070 | /// Setting AllowSkippingFirstCXXConstructExpr to false will prevent from | |||
| 18071 | /// skipping the first CXXConstructExpr. | |||
| 18072 | if (isa<CXXConstructExpr>(It->getPointer()->IgnoreImplicit())) | |||
| 18073 | Transformer.AllowSkippingFirstCXXConstructExpr = false; | |||
| 18074 | ||||
| 18075 | ExprResult Res = Transformer.TransformExpr(It->getPointer()->getSubExpr()); | |||
| 18076 | // The result may not be usable in case of previous compilation errors. | |||
| 18077 | // In this case evaluation of the expression may result in crash so just | |||
| 18078 | // don't do anything further with the result. | |||
| 18079 | if (Res.isUsable()) { | |||
| 18080 | Res = SemaRef.MaybeCreateExprWithCleanups(Res); | |||
| 18081 | It->getPointer()->setSubExpr(Res.get()); | |||
| 18082 | } | |||
| 18083 | } | |||
| 18084 | ||||
| 18085 | static void | |||
| 18086 | HandleImmediateInvocations(Sema &SemaRef, | |||
| 18087 | Sema::ExpressionEvaluationContextRecord &Rec) { | |||
| 18088 | if ((Rec.ImmediateInvocationCandidates.size() == 0 && | |||
| 18089 | Rec.ReferenceToConsteval.size() == 0) || | |||
| 18090 | SemaRef.RebuildingImmediateInvocation) | |||
| 18091 | return; | |||
| 18092 | ||||
| 18093 | /// When we have more than 1 ImmediateInvocationCandidates or previously | |||
| 18094 | /// failed immediate invocations, we need to check for nested | |||
| 18095 | /// ImmediateInvocationCandidates in order to avoid duplicate diagnostics. | |||
| 18096 | /// Otherwise we only need to remove ReferenceToConsteval in the immediate | |||
| 18097 | /// invocation. | |||
| 18098 | if (Rec.ImmediateInvocationCandidates.size() > 1 || | |||
| 18099 | !SemaRef.FailedImmediateInvocations.empty()) { | |||
| 18100 | ||||
| 18101 | /// Prevent sema calls during the tree transform from adding pointers that | |||
| 18102 | /// are already in the sets. | |||
| 18103 | llvm::SaveAndRestore DisableIITracking( | |||
| 18104 | SemaRef.RebuildingImmediateInvocation, true); | |||
| 18105 | ||||
| 18106 | /// Prevent diagnostic during tree transfrom as they are duplicates | |||
| 18107 | Sema::TentativeAnalysisScope DisableDiag(SemaRef); | |||
| 18108 | ||||
| 18109 | for (auto It = Rec.ImmediateInvocationCandidates.rbegin(); | |||
| 18110 | It != Rec.ImmediateInvocationCandidates.rend(); It++) | |||
| 18111 | if (!It->getInt()) | |||
| 18112 | RemoveNestedImmediateInvocation(SemaRef, Rec, It); | |||
| 18113 | } else if (Rec.ImmediateInvocationCandidates.size() == 1 && | |||
| 18114 | Rec.ReferenceToConsteval.size()) { | |||
| 18115 | struct SimpleRemove : RecursiveASTVisitor<SimpleRemove> { | |||
| 18116 | llvm::SmallPtrSetImpl<DeclRefExpr *> &DRSet; | |||
| 18117 | SimpleRemove(llvm::SmallPtrSetImpl<DeclRefExpr *> &S) : DRSet(S) {} | |||
| 18118 | bool VisitDeclRefExpr(DeclRefExpr *E) { | |||
| 18119 | DRSet.erase(E); | |||
| 18120 | return DRSet.size(); | |||
| 18121 | } | |||
| 18122 | } Visitor(Rec.ReferenceToConsteval); | |||
| 18123 | Visitor.TraverseStmt( | |||
| 18124 | Rec.ImmediateInvocationCandidates.front().getPointer()->getSubExpr()); | |||
| 18125 | } | |||
| 18126 | for (auto CE : Rec.ImmediateInvocationCandidates) | |||
| 18127 | if (!CE.getInt()) | |||
| 18128 | EvaluateAndDiagnoseImmediateInvocation(SemaRef, CE); | |||
| 18129 | for (auto *DR : Rec.ReferenceToConsteval) { | |||
| 18130 | NamedDecl *ND = cast<FunctionDecl>(DR->getDecl()); | |||
| 18131 | if (auto *MD = llvm::dyn_cast<CXXMethodDecl>(ND); | |||
| 18132 | MD && (MD->isLambdaStaticInvoker() || isLambdaCallOperator(MD))) | |||
| 18133 | ND = MD->getParent(); | |||
| 18134 | SemaRef.Diag(DR->getBeginLoc(), diag::err_invalid_consteval_take_address) | |||
| 18135 | << ND << isa<CXXRecordDecl>(ND); | |||
| 18136 | SemaRef.Diag(ND->getLocation(), diag::note_declared_at); | |||
| 18137 | } | |||
| 18138 | } | |||
| 18139 | ||||
| 18140 | void Sema::PopExpressionEvaluationContext() { | |||
| 18141 | ExpressionEvaluationContextRecord& Rec = ExprEvalContexts.back(); | |||
| 18142 | unsigned NumTypos = Rec.NumTypos; | |||
| 18143 | ||||
| 18144 | if (!Rec.Lambdas.empty()) { | |||
| 18145 | using ExpressionKind = ExpressionEvaluationContextRecord::ExpressionKind; | |||
| 18146 | if (!getLangOpts().CPlusPlus20 && | |||
| 18147 | (Rec.ExprContext == ExpressionKind::EK_TemplateArgument || | |||
| 18148 | Rec.isUnevaluated() || | |||
| 18149 | (Rec.isConstantEvaluated() && !getLangOpts().CPlusPlus17))) { | |||
| 18150 | unsigned D; | |||
| 18151 | if (Rec.isUnevaluated()) { | |||
| 18152 | // C++11 [expr.prim.lambda]p2: | |||
| 18153 | // A lambda-expression shall not appear in an unevaluated operand | |||
| 18154 | // (Clause 5). | |||
| 18155 | D = diag::err_lambda_unevaluated_operand; | |||
| 18156 | } else if (Rec.isConstantEvaluated() && !getLangOpts().CPlusPlus17) { | |||
| 18157 | // C++1y [expr.const]p2: | |||
| 18158 | // A conditional-expression e is a core constant expression unless the | |||
| 18159 | // evaluation of e, following the rules of the abstract machine, would | |||
| 18160 | // evaluate [...] a lambda-expression. | |||
| 18161 | D = diag::err_lambda_in_constant_expression; | |||
| 18162 | } else if (Rec.ExprContext == ExpressionKind::EK_TemplateArgument) { | |||
| 18163 | // C++17 [expr.prim.lamda]p2: | |||
| 18164 | // A lambda-expression shall not appear [...] in a template-argument. | |||
| 18165 | D = diag::err_lambda_in_invalid_context; | |||
| 18166 | } else | |||
| 18167 | llvm_unreachable("Couldn't infer lambda error message.")::llvm::llvm_unreachable_internal("Couldn't infer lambda error message." , "clang/lib/Sema/SemaExpr.cpp", 18167); | |||
| 18168 | ||||
| 18169 | for (const auto *L : Rec.Lambdas) | |||
| 18170 | Diag(L->getBeginLoc(), D); | |||
| 18171 | } | |||
| 18172 | } | |||
| 18173 | ||||
| 18174 | WarnOnPendingNoDerefs(Rec); | |||
| 18175 | HandleImmediateInvocations(*this, Rec); | |||
| 18176 | ||||
| 18177 | // Warn on any volatile-qualified simple-assignments that are not discarded- | |||
| 18178 | // value expressions nor unevaluated operands (those cases get removed from | |||
| 18179 | // this list by CheckUnusedVolatileAssignment). | |||
| 18180 | for (auto *BO : Rec.VolatileAssignmentLHSs) | |||
| 18181 | Diag(BO->getBeginLoc(), diag::warn_deprecated_simple_assign_volatile) | |||
| 18182 | << BO->getType(); | |||
| 18183 | ||||
| 18184 | // When are coming out of an unevaluated context, clear out any | |||
| 18185 | // temporaries that we may have created as part of the evaluation of | |||
| 18186 | // the expression in that context: they aren't relevant because they | |||
| 18187 | // will never be constructed. | |||
| 18188 | if (Rec.isUnevaluated() || Rec.isConstantEvaluated()) { | |||
| 18189 | ExprCleanupObjects.erase(ExprCleanupObjects.begin() + Rec.NumCleanupObjects, | |||
| 18190 | ExprCleanupObjects.end()); | |||
| 18191 | Cleanup = Rec.ParentCleanup; | |||
| 18192 | CleanupVarDeclMarking(); | |||
| 18193 | std::swap(MaybeODRUseExprs, Rec.SavedMaybeODRUseExprs); | |||
| 18194 | // Otherwise, merge the contexts together. | |||
| 18195 | } else { | |||
| 18196 | Cleanup.mergeFrom(Rec.ParentCleanup); | |||
| 18197 | MaybeODRUseExprs.insert(Rec.SavedMaybeODRUseExprs.begin(), | |||
| 18198 | Rec.SavedMaybeODRUseExprs.end()); | |||
| 18199 | } | |||
| 18200 | ||||
| 18201 | // Pop the current expression evaluation context off the stack. | |||
| 18202 | ExprEvalContexts.pop_back(); | |||
| 18203 | ||||
| 18204 | // The global expression evaluation context record is never popped. | |||
| 18205 | ExprEvalContexts.back().NumTypos += NumTypos; | |||
| 18206 | } | |||
| 18207 | ||||
| 18208 | void Sema::DiscardCleanupsInEvaluationContext() { | |||
| 18209 | ExprCleanupObjects.erase( | |||
| 18210 | ExprCleanupObjects.begin() + ExprEvalContexts.back().NumCleanupObjects, | |||
| 18211 | ExprCleanupObjects.end()); | |||
| 18212 | Cleanup.reset(); | |||
| 18213 | MaybeODRUseExprs.clear(); | |||
| 18214 | } | |||
| 18215 | ||||
| 18216 | ExprResult Sema::HandleExprEvaluationContextForTypeof(Expr *E) { | |||
| 18217 | ExprResult Result = CheckPlaceholderExpr(E); | |||
| 18218 | if (Result.isInvalid()) | |||
| 18219 | return ExprError(); | |||
| 18220 | E = Result.get(); | |||
| 18221 | if (!E->getType()->isVariablyModifiedType()) | |||
| 18222 | return E; | |||
| 18223 | return TransformToPotentiallyEvaluated(E); | |||
| 18224 | } | |||
| 18225 | ||||
| 18226 | /// Are we in a context that is potentially constant evaluated per C++20 | |||
| 18227 | /// [expr.const]p12? | |||
| 18228 | static bool isPotentiallyConstantEvaluatedContext(Sema &SemaRef) { | |||
| 18229 | /// C++2a [expr.const]p12: | |||
| 18230 | // An expression or conversion is potentially constant evaluated if it is | |||
| 18231 | switch (SemaRef.ExprEvalContexts.back().Context) { | |||
| 18232 | case Sema::ExpressionEvaluationContext::ConstantEvaluated: | |||
| 18233 | case Sema::ExpressionEvaluationContext::ImmediateFunctionContext: | |||
| 18234 | ||||
| 18235 | // -- a manifestly constant-evaluated expression, | |||
| 18236 | case Sema::ExpressionEvaluationContext::PotentiallyEvaluated: | |||
| 18237 | case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed: | |||
| 18238 | case Sema::ExpressionEvaluationContext::DiscardedStatement: | |||
| 18239 | // -- a potentially-evaluated expression, | |||
| 18240 | case Sema::ExpressionEvaluationContext::UnevaluatedList: | |||
| 18241 | // -- an immediate subexpression of a braced-init-list, | |||
| 18242 | ||||
| 18243 | // -- [FIXME] an expression of the form & cast-expression that occurs | |||
| 18244 | // within a templated entity | |||
| 18245 | // -- a subexpression of one of the above that is not a subexpression of | |||
| 18246 | // a nested unevaluated operand. | |||
| 18247 | return true; | |||
| 18248 | ||||
| 18249 | case Sema::ExpressionEvaluationContext::Unevaluated: | |||
| 18250 | case Sema::ExpressionEvaluationContext::UnevaluatedAbstract: | |||
| 18251 | // Expressions in this context are never evaluated. | |||
| 18252 | return false; | |||
| 18253 | } | |||
| 18254 | llvm_unreachable("Invalid context")::llvm::llvm_unreachable_internal("Invalid context", "clang/lib/Sema/SemaExpr.cpp" , 18254); | |||
| 18255 | } | |||
| 18256 | ||||
| 18257 | /// Return true if this function has a calling convention that requires mangling | |||
| 18258 | /// in the size of the parameter pack. | |||
| 18259 | static bool funcHasParameterSizeMangling(Sema &S, FunctionDecl *FD) { | |||
| 18260 | // These manglings don't do anything on non-Windows or non-x86 platforms, so | |||
| 18261 | // we don't need parameter type sizes. | |||
| 18262 | const llvm::Triple &TT = S.Context.getTargetInfo().getTriple(); | |||
| 18263 | if (!TT.isOSWindows() || !TT.isX86()) | |||
| 18264 | return false; | |||
| 18265 | ||||
| 18266 | // If this is C++ and this isn't an extern "C" function, parameters do not | |||
| 18267 | // need to be complete. In this case, C++ mangling will apply, which doesn't | |||
| 18268 | // use the size of the parameters. | |||
| 18269 | if (S.getLangOpts().CPlusPlus && !FD->isExternC()) | |||
| 18270 | return false; | |||
| 18271 | ||||
| 18272 | // Stdcall, fastcall, and vectorcall need this special treatment. | |||
| 18273 | CallingConv CC = FD->getType()->castAs<FunctionType>()->getCallConv(); | |||
| 18274 | switch (CC) { | |||
| 18275 | case CC_X86StdCall: | |||
| 18276 | case CC_X86FastCall: | |||
| 18277 | case CC_X86VectorCall: | |||
| 18278 | return true; | |||
| 18279 | default: | |||
| 18280 | break; | |||
| 18281 | } | |||
| 18282 | return false; | |||
| 18283 | } | |||
| 18284 | ||||
| 18285 | /// Require that all of the parameter types of function be complete. Normally, | |||
| 18286 | /// parameter types are only required to be complete when a function is called | |||
| 18287 | /// or defined, but to mangle functions with certain calling conventions, the | |||
| 18288 | /// mangler needs to know the size of the parameter list. In this situation, | |||
| 18289 | /// MSVC doesn't emit an error or instantiate templates. Instead, MSVC mangles | |||
| 18290 | /// the function as _foo@0, i.e. zero bytes of parameters, which will usually | |||
| 18291 | /// result in a linker error. Clang doesn't implement this behavior, and instead | |||
| 18292 | /// attempts to error at compile time. | |||
| 18293 | static void CheckCompleteParameterTypesForMangler(Sema &S, FunctionDecl *FD, | |||
| 18294 | SourceLocation Loc) { | |||
| 18295 | class ParamIncompleteTypeDiagnoser : public Sema::TypeDiagnoser { | |||
| 18296 | FunctionDecl *FD; | |||
| 18297 | ParmVarDecl *Param; | |||
| 18298 | ||||
| 18299 | public: | |||
| 18300 | ParamIncompleteTypeDiagnoser(FunctionDecl *FD, ParmVarDecl *Param) | |||
| 18301 | : FD(FD), Param(Param) {} | |||
| 18302 | ||||
| 18303 | void diagnose(Sema &S, SourceLocation Loc, QualType T) override { | |||
| 18304 | CallingConv CC = FD->getType()->castAs<FunctionType>()->getCallConv(); | |||
| 18305 | StringRef CCName; | |||
| 18306 | switch (CC) { | |||
| 18307 | case CC_X86StdCall: | |||
| 18308 | CCName = "stdcall"; | |||
| 18309 | break; | |||
| 18310 | case CC_X86FastCall: | |||
| 18311 | CCName = "fastcall"; | |||
| 18312 | break; | |||
| 18313 | case CC_X86VectorCall: | |||
| 18314 | CCName = "vectorcall"; | |||
| 18315 | break; | |||
| 18316 | default: | |||
| 18317 | llvm_unreachable("CC does not need mangling")::llvm::llvm_unreachable_internal("CC does not need mangling" , "clang/lib/Sema/SemaExpr.cpp", 18317); | |||
| 18318 | } | |||
| 18319 | ||||
| 18320 | S.Diag(Loc, diag::err_cconv_incomplete_param_type) | |||
| 18321 | << Param->getDeclName() << FD->getDeclName() << CCName; | |||
| 18322 | } | |||
| 18323 | }; | |||
| 18324 | ||||
| 18325 | for (ParmVarDecl *Param : FD->parameters()) { | |||
| 18326 | ParamIncompleteTypeDiagnoser Diagnoser(FD, Param); | |||
| 18327 | S.RequireCompleteType(Loc, Param->getType(), Diagnoser); | |||
| 18328 | } | |||
| 18329 | } | |||
| 18330 | ||||
| 18331 | namespace { | |||
| 18332 | enum class OdrUseContext { | |||
| 18333 | /// Declarations in this context are not odr-used. | |||
| 18334 | None, | |||
| 18335 | /// Declarations in this context are formally odr-used, but this is a | |||
| 18336 | /// dependent context. | |||
| 18337 | Dependent, | |||
| 18338 | /// Declarations in this context are odr-used but not actually used (yet). | |||
| 18339 | FormallyOdrUsed, | |||
| 18340 | /// Declarations in this context are used. | |||
| 18341 | Used | |||
| 18342 | }; | |||
| 18343 | } | |||
| 18344 | ||||
| 18345 | /// Are we within a context in which references to resolved functions or to | |||
| 18346 | /// variables result in odr-use? | |||
| 18347 | static OdrUseContext isOdrUseContext(Sema &SemaRef) { | |||
| 18348 | OdrUseContext Result; | |||
| 18349 | ||||
| 18350 | switch (SemaRef.ExprEvalContexts.back().Context) { | |||
| 18351 | case Sema::ExpressionEvaluationContext::Unevaluated: | |||
| 18352 | case Sema::ExpressionEvaluationContext::UnevaluatedList: | |||
| 18353 | case Sema::ExpressionEvaluationContext::UnevaluatedAbstract: | |||
| 18354 | return OdrUseContext::None; | |||
| 18355 | ||||
| 18356 | case Sema::ExpressionEvaluationContext::ConstantEvaluated: | |||
| 18357 | case Sema::ExpressionEvaluationContext::ImmediateFunctionContext: | |||
| 18358 | case Sema::ExpressionEvaluationContext::PotentiallyEvaluated: | |||
| 18359 | Result = OdrUseContext::Used; | |||
| 18360 | break; | |||
| 18361 | ||||
| 18362 | case Sema::ExpressionEvaluationContext::DiscardedStatement: | |||
| 18363 | Result = OdrUseContext::FormallyOdrUsed; | |||
| 18364 | break; | |||
| 18365 | ||||
| 18366 | case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed: | |||
| 18367 | // A default argument formally results in odr-use, but doesn't actually | |||
| 18368 | // result in a use in any real sense until it itself is used. | |||
| 18369 | Result = OdrUseContext::FormallyOdrUsed; | |||
| 18370 | break; | |||
| 18371 | } | |||
| 18372 | ||||
| 18373 | if (SemaRef.CurContext->isDependentContext()) | |||
| 18374 | return OdrUseContext::Dependent; | |||
| 18375 | ||||
| 18376 | return Result; | |||
| 18377 | } | |||
| 18378 | ||||
| 18379 | static bool isImplicitlyDefinableConstexprFunction(FunctionDecl *Func) { | |||
| 18380 | if (!Func->isConstexpr()) | |||
| 18381 | return false; | |||
| 18382 | ||||
| 18383 | if (Func->isImplicitlyInstantiable() || !Func->isUserProvided()) | |||
| 18384 | return true; | |||
| 18385 | auto *CCD = dyn_cast<CXXConstructorDecl>(Func); | |||
| 18386 | return CCD && CCD->getInheritedConstructor(); | |||
| 18387 | } | |||
| 18388 | ||||
| 18389 | /// Mark a function referenced, and check whether it is odr-used | |||
| 18390 | /// (C++ [basic.def.odr]p2, C99 6.9p3) | |||
| 18391 | void Sema::MarkFunctionReferenced(SourceLocation Loc, FunctionDecl *Func, | |||
| 18392 | bool MightBeOdrUse) { | |||
| 18393 | assert(Func && "No function?")(static_cast <bool> (Func && "No function?") ? void (0) : __assert_fail ("Func && \"No function?\"", "clang/lib/Sema/SemaExpr.cpp" , 18393, __extension__ __PRETTY_FUNCTION__)); | |||
| 18394 | ||||
| 18395 | Func->setReferenced(); | |||
| 18396 | ||||
| 18397 | // Recursive functions aren't really used until they're used from some other | |||
| 18398 | // context. | |||
| 18399 | bool IsRecursiveCall = CurContext == Func; | |||
| 18400 | ||||
| 18401 | // C++11 [basic.def.odr]p3: | |||
| 18402 | // A function whose name appears as a potentially-evaluated expression is | |||
| 18403 | // odr-used if it is the unique lookup result or the selected member of a | |||
| 18404 | // set of overloaded functions [...]. | |||
| 18405 | // | |||
| 18406 | // We (incorrectly) mark overload resolution as an unevaluated context, so we | |||
| 18407 | // can just check that here. | |||
| 18408 | OdrUseContext OdrUse = | |||
| 18409 | MightBeOdrUse ? isOdrUseContext(*this) : OdrUseContext::None; | |||
| 18410 | if (IsRecursiveCall && OdrUse == OdrUseContext::Used) | |||
| 18411 | OdrUse = OdrUseContext::FormallyOdrUsed; | |||
| 18412 | ||||
| 18413 | // Trivial default constructors and destructors are never actually used. | |||
| 18414 | // FIXME: What about other special members? | |||
| 18415 | if (Func->isTrivial() && !Func->hasAttr<DLLExportAttr>() && | |||
| 18416 | OdrUse == OdrUseContext::Used) { | |||
| 18417 | if (auto *Constructor = dyn_cast<CXXConstructorDecl>(Func)) | |||
| 18418 | if (Constructor->isDefaultConstructor()) | |||
| 18419 | OdrUse = OdrUseContext::FormallyOdrUsed; | |||
| 18420 | if (isa<CXXDestructorDecl>(Func)) | |||
| 18421 | OdrUse = OdrUseContext::FormallyOdrUsed; | |||
| 18422 | } | |||
| 18423 | ||||
| 18424 | // C++20 [expr.const]p12: | |||
| 18425 | // A function [...] is needed for constant evaluation if it is [...] a | |||
| 18426 | // constexpr function that is named by an expression that is potentially | |||
| 18427 | // constant evaluated | |||
| 18428 | bool NeededForConstantEvaluation = | |||
| 18429 | isPotentiallyConstantEvaluatedContext(*this) && | |||
| 18430 | isImplicitlyDefinableConstexprFunction(Func); | |||
| 18431 | ||||
| 18432 | // Determine whether we require a function definition to exist, per | |||
| 18433 | // C++11 [temp.inst]p3: | |||
| 18434 | // Unless a function template specialization has been explicitly | |||
| 18435 | // instantiated or explicitly specialized, the function template | |||
| 18436 | // specialization is implicitly instantiated when the specialization is | |||
| 18437 | // referenced in a context that requires a function definition to exist. | |||
| 18438 | // C++20 [temp.inst]p7: | |||
| 18439 | // The existence of a definition of a [...] function is considered to | |||
| 18440 | // affect the semantics of the program if the [...] function is needed for | |||
| 18441 | // constant evaluation by an expression | |||
| 18442 | // C++20 [basic.def.odr]p10: | |||
| 18443 | // Every program shall contain exactly one definition of every non-inline | |||
| 18444 | // function or variable that is odr-used in that program outside of a | |||
| 18445 | // discarded statement | |||
| 18446 | // C++20 [special]p1: | |||
| 18447 | // The implementation will implicitly define [defaulted special members] | |||
| 18448 | // if they are odr-used or needed for constant evaluation. | |||
| 18449 | // | |||
| 18450 | // Note that we skip the implicit instantiation of templates that are only | |||
| 18451 | // used in unused default arguments or by recursive calls to themselves. | |||
| 18452 | // This is formally non-conforming, but seems reasonable in practice. | |||
| 18453 | bool NeedDefinition = !IsRecursiveCall && (OdrUse == OdrUseContext::Used || | |||
| 18454 | NeededForConstantEvaluation); | |||
| 18455 | ||||
| 18456 | // C++14 [temp.expl.spec]p6: | |||
| 18457 | // If a template [...] is explicitly specialized then that specialization | |||
| 18458 | // shall be declared before the first use of that specialization that would | |||
| 18459 | // cause an implicit instantiation to take place, in every translation unit | |||
| 18460 | // in which such a use occurs | |||
| 18461 | if (NeedDefinition && | |||
| 18462 | (Func->getTemplateSpecializationKind() != TSK_Undeclared || | |||
| 18463 | Func->getMemberSpecializationInfo())) | |||
| 18464 | checkSpecializationReachability(Loc, Func); | |||
| 18465 | ||||
| 18466 | if (getLangOpts().CUDA) | |||
| 18467 | CheckCUDACall(Loc, Func); | |||
| 18468 | ||||
| 18469 | // If we need a definition, try to create one. | |||
| 18470 | if (NeedDefinition && !Func->getBody()) { | |||
| 18471 | runWithSufficientStackSpace(Loc, [&] { | |||
| 18472 | if (CXXConstructorDecl *Constructor = | |||
| 18473 | dyn_cast<CXXConstructorDecl>(Func)) { | |||
| 18474 | Constructor = cast<CXXConstructorDecl>(Constructor->getFirstDecl()); | |||
| 18475 | if (Constructor->isDefaulted() && !Constructor->isDeleted()) { | |||
| 18476 | if (Constructor->isDefaultConstructor()) { | |||
| 18477 | if (Constructor->isTrivial() && | |||
| 18478 | !Constructor->hasAttr<DLLExportAttr>()) | |||
| 18479 | return; | |||
| 18480 | DefineImplicitDefaultConstructor(Loc, Constructor); | |||
| 18481 | } else if (Constructor->isCopyConstructor()) { | |||
| 18482 | DefineImplicitCopyConstructor(Loc, Constructor); | |||
| 18483 | } else if (Constructor->isMoveConstructor()) { | |||
| 18484 | DefineImplicitMoveConstructor(Loc, Constructor); | |||
| 18485 | } | |||
| 18486 | } else if (Constructor->getInheritedConstructor()) { | |||
| 18487 | DefineInheritingConstructor(Loc, Constructor); | |||
| 18488 | } | |||
| 18489 | } else if (CXXDestructorDecl *Destructor = | |||
| 18490 | dyn_cast<CXXDestructorDecl>(Func)) { | |||
| 18491 | Destructor = cast<CXXDestructorDecl>(Destructor->getFirstDecl()); | |||
| 18492 | if (Destructor->isDefaulted() && !Destructor->isDeleted()) { | |||
| 18493 | if (Destructor->isTrivial() && !Destructor->hasAttr<DLLExportAttr>()) | |||
| 18494 | return; | |||
| 18495 | DefineImplicitDestructor(Loc, Destructor); | |||
| 18496 | } | |||
| 18497 | if (Destructor->isVirtual() && getLangOpts().AppleKext) | |||
| 18498 | MarkVTableUsed(Loc, Destructor->getParent()); | |||
| 18499 | } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(Func)) { | |||
| 18500 | if (MethodDecl->isOverloadedOperator() && | |||
| 18501 | MethodDecl->getOverloadedOperator() == OO_Equal) { | |||
| 18502 | MethodDecl = cast<CXXMethodDecl>(MethodDecl->getFirstDecl()); | |||
| 18503 | if (MethodDecl->isDefaulted() && !MethodDecl->isDeleted()) { | |||
| 18504 | if (MethodDecl->isCopyAssignmentOperator()) | |||
| 18505 | DefineImplicitCopyAssignment(Loc, MethodDecl); | |||
| 18506 | else if (MethodDecl->isMoveAssignmentOperator()) | |||
| 18507 | DefineImplicitMoveAssignment(Loc, MethodDecl); | |||
| 18508 | } | |||
| 18509 | } else if (isa<CXXConversionDecl>(MethodDecl) && | |||
| 18510 | MethodDecl->getParent()->isLambda()) { | |||
| 18511 | CXXConversionDecl *Conversion = | |||
| 18512 | cast<CXXConversionDecl>(MethodDecl->getFirstDecl()); | |||
| 18513 | if (Conversion->isLambdaToBlockPointerConversion()) | |||
| 18514 | DefineImplicitLambdaToBlockPointerConversion(Loc, Conversion); | |||
| 18515 | else | |||
| 18516 | DefineImplicitLambdaToFunctionPointerConversion(Loc, Conversion); | |||
| 18517 | } else if (MethodDecl->isVirtual() && getLangOpts().AppleKext) | |||
| 18518 | MarkVTableUsed(Loc, MethodDecl->getParent()); | |||
| 18519 | } | |||
| 18520 | ||||
| 18521 | if (Func->isDefaulted() && !Func->isDeleted()) { | |||
| 18522 | DefaultedComparisonKind DCK = getDefaultedComparisonKind(Func); | |||
| 18523 | if (DCK != DefaultedComparisonKind::None) | |||
| 18524 | DefineDefaultedComparison(Loc, Func, DCK); | |||
| 18525 | } | |||
| 18526 | ||||
| 18527 | // Implicit instantiation of function templates and member functions of | |||
| 18528 | // class templates. | |||
| 18529 | if (Func->isImplicitlyInstantiable()) { | |||
| 18530 | TemplateSpecializationKind TSK = | |||
| 18531 | Func->getTemplateSpecializationKindForInstantiation(); | |||
| 18532 | SourceLocation PointOfInstantiation = Func->getPointOfInstantiation(); | |||
| 18533 | bool FirstInstantiation = PointOfInstantiation.isInvalid(); | |||
| 18534 | if (FirstInstantiation) { | |||
| 18535 | PointOfInstantiation = Loc; | |||
| 18536 | if (auto *MSI = Func->getMemberSpecializationInfo()) | |||
| 18537 | MSI->setPointOfInstantiation(Loc); | |||
| 18538 | // FIXME: Notify listener. | |||
| 18539 | else | |||
| 18540 | Func->setTemplateSpecializationKind(TSK, PointOfInstantiation); | |||
| 18541 | } else if (TSK != TSK_ImplicitInstantiation) { | |||
| 18542 | // Use the point of use as the point of instantiation, instead of the | |||
| 18543 | // point of explicit instantiation (which we track as the actual point | |||
| 18544 | // of instantiation). This gives better backtraces in diagnostics. | |||
| 18545 | PointOfInstantiation = Loc; | |||
| 18546 | } | |||
| 18547 | ||||
| 18548 | if (FirstInstantiation || TSK != TSK_ImplicitInstantiation || | |||
| 18549 | Func->isConstexpr()) { | |||
| 18550 | if (isa<CXXRecordDecl>(Func->getDeclContext()) && | |||
| 18551 | cast<CXXRecordDecl>(Func->getDeclContext())->isLocalClass() && | |||
| 18552 | CodeSynthesisContexts.size()) | |||
| 18553 | PendingLocalImplicitInstantiations.push_back( | |||
| 18554 | std::make_pair(Func, PointOfInstantiation)); | |||
| 18555 | else if (Func->isConstexpr()) | |||
| 18556 | // Do not defer instantiations of constexpr functions, to avoid the | |||
| 18557 | // expression evaluator needing to call back into Sema if it sees a | |||
| 18558 | // call to such a function. | |||
| 18559 | InstantiateFunctionDefinition(PointOfInstantiation, Func); | |||
| 18560 | else { | |||
| 18561 | Func->setInstantiationIsPending(true); | |||
| 18562 | PendingInstantiations.push_back( | |||
| 18563 | std::make_pair(Func, PointOfInstantiation)); | |||
| 18564 | // Notify the consumer that a function was implicitly instantiated. | |||
| 18565 | Consumer.HandleCXXImplicitFunctionInstantiation(Func); | |||
| 18566 | } | |||
| 18567 | } | |||
| 18568 | } else { | |||
| 18569 | // Walk redefinitions, as some of them may be instantiable. | |||
| 18570 | for (auto *i : Func->redecls()) { | |||
| 18571 | if (!i->isUsed(false) && i->isImplicitlyInstantiable()) | |||
| 18572 | MarkFunctionReferenced(Loc, i, MightBeOdrUse); | |||
| 18573 | } | |||
| 18574 | } | |||
| 18575 | }); | |||
| 18576 | } | |||
| 18577 | ||||
| 18578 | // If a constructor was defined in the context of a default parameter | |||
| 18579 | // or of another default member initializer (ie a PotentiallyEvaluatedIfUsed | |||
| 18580 | // context), its initializers may not be referenced yet. | |||
| 18581 | if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Func)) { | |||
| 18582 | for (CXXCtorInitializer *Init : Constructor->inits()) { | |||
| 18583 | if (Init->isInClassMemberInitializer()) | |||
| 18584 | runWithSufficientStackSpace(Init->getSourceLocation(), [&]() { | |||
| 18585 | MarkDeclarationsReferencedInExpr(Init->getInit()); | |||
| 18586 | }); | |||
| 18587 | } | |||
| 18588 | } | |||
| 18589 | ||||
| 18590 | // C++14 [except.spec]p17: | |||
| 18591 | // An exception-specification is considered to be needed when: | |||
| 18592 | // - the function is odr-used or, if it appears in an unevaluated operand, | |||
| 18593 | // would be odr-used if the expression were potentially-evaluated; | |||
| 18594 | // | |||
| 18595 | // Note, we do this even if MightBeOdrUse is false. That indicates that the | |||
| 18596 | // function is a pure virtual function we're calling, and in that case the | |||
| 18597 | // function was selected by overload resolution and we need to resolve its | |||
| 18598 | // exception specification for a different reason. | |||
| 18599 | const FunctionProtoType *FPT = Func->getType()->getAs<FunctionProtoType>(); | |||
| 18600 | if (FPT && isUnresolvedExceptionSpec(FPT->getExceptionSpecType())) | |||
| 18601 | ResolveExceptionSpec(Loc, FPT); | |||
| 18602 | ||||
| 18603 | // If this is the first "real" use, act on that. | |||
| 18604 | if (OdrUse == OdrUseContext::Used && !Func->isUsed(/*CheckUsedAttr=*/false)) { | |||
| 18605 | // Keep track of used but undefined functions. | |||
| 18606 | if (!Func->isDefined()) { | |||
| 18607 | if (mightHaveNonExternalLinkage(Func)) | |||
| 18608 | UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc)); | |||
| 18609 | else if (Func->getMostRecentDecl()->isInlined() && | |||
| 18610 | !LangOpts.GNUInline && | |||
| 18611 | !Func->getMostRecentDecl()->hasAttr<GNUInlineAttr>()) | |||
| 18612 | UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc)); | |||
| 18613 | else if (isExternalWithNoLinkageType(Func)) | |||
| 18614 | UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc)); | |||
| 18615 | } | |||
| 18616 | ||||
| 18617 | // Some x86 Windows calling conventions mangle the size of the parameter | |||
| 18618 | // pack into the name. Computing the size of the parameters requires the | |||
| 18619 | // parameter types to be complete. Check that now. | |||
| 18620 | if (funcHasParameterSizeMangling(*this, Func)) | |||
| 18621 | CheckCompleteParameterTypesForMangler(*this, Func, Loc); | |||
| 18622 | ||||
| 18623 | // In the MS C++ ABI, the compiler emits destructor variants where they are | |||
| 18624 | // used. If the destructor is used here but defined elsewhere, mark the | |||
| 18625 | // virtual base destructors referenced. If those virtual base destructors | |||
| 18626 | // are inline, this will ensure they are defined when emitting the complete | |||
| 18627 | // destructor variant. This checking may be redundant if the destructor is | |||
| 18628 | // provided later in this TU. | |||
| 18629 | if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { | |||
| 18630 | if (auto *Dtor = dyn_cast<CXXDestructorDecl>(Func)) { | |||
| 18631 | CXXRecordDecl *Parent = Dtor->getParent(); | |||
| 18632 | if (Parent->getNumVBases() > 0 && !Dtor->getBody()) | |||
| 18633 | CheckCompleteDestructorVariant(Loc, Dtor); | |||
| 18634 | } | |||
| 18635 | } | |||
| 18636 | ||||
| 18637 | Func->markUsed(Context); | |||
| 18638 | } | |||
| 18639 | } | |||
| 18640 | ||||
| 18641 | /// Directly mark a variable odr-used. Given a choice, prefer to use | |||
| 18642 | /// MarkVariableReferenced since it does additional checks and then | |||
| 18643 | /// calls MarkVarDeclODRUsed. | |||
| 18644 | /// If the variable must be captured: | |||
| 18645 | /// - if FunctionScopeIndexToStopAt is null, capture it in the CurContext | |||
| 18646 | /// - else capture it in the DeclContext that maps to the | |||
| 18647 | /// *FunctionScopeIndexToStopAt on the FunctionScopeInfo stack. | |||
| 18648 | static void | |||
| 18649 | MarkVarDeclODRUsed(ValueDecl *V, SourceLocation Loc, Sema &SemaRef, | |||
| 18650 | const unsigned *const FunctionScopeIndexToStopAt = nullptr) { | |||
| 18651 | // Keep track of used but undefined variables. | |||
| 18652 | // FIXME: We shouldn't suppress this warning for static data members. | |||
| 18653 | VarDecl *Var = V->getPotentiallyDecomposedVarDecl(); | |||
| 18654 | assert(Var && "expected a capturable variable")(static_cast <bool> (Var && "expected a capturable variable" ) ? void (0) : __assert_fail ("Var && \"expected a capturable variable\"" , "clang/lib/Sema/SemaExpr.cpp", 18654, __extension__ __PRETTY_FUNCTION__ )); | |||
| 18655 | ||||
| 18656 | if (Var->hasDefinition(SemaRef.Context) == VarDecl::DeclarationOnly && | |||
| 18657 | (!Var->isExternallyVisible() || Var->isInline() || | |||
| 18658 | SemaRef.isExternalWithNoLinkageType(Var)) && | |||
| 18659 | !(Var->isStaticDataMember() && Var->hasInit())) { | |||
| 18660 | SourceLocation &old = SemaRef.UndefinedButUsed[Var->getCanonicalDecl()]; | |||
| 18661 | if (old.isInvalid()) | |||
| 18662 | old = Loc; | |||
| 18663 | } | |||
| 18664 | QualType CaptureType, DeclRefType; | |||
| 18665 | if (SemaRef.LangOpts.OpenMP) | |||
| 18666 | SemaRef.tryCaptureOpenMPLambdas(V); | |||
| 18667 | SemaRef.tryCaptureVariable(V, Loc, Sema::TryCapture_Implicit, | |||
| 18668 | /*EllipsisLoc*/ SourceLocation(), | |||
| 18669 | /*BuildAndDiagnose*/ true, CaptureType, | |||
| 18670 | DeclRefType, FunctionScopeIndexToStopAt); | |||
| 18671 | ||||
| 18672 | if (SemaRef.LangOpts.CUDA && Var->hasGlobalStorage()) { | |||
| 18673 | auto *FD = dyn_cast_or_null<FunctionDecl>(SemaRef.CurContext); | |||
| 18674 | auto VarTarget = SemaRef.IdentifyCUDATarget(Var); | |||
| 18675 | auto UserTarget = SemaRef.IdentifyCUDATarget(FD); | |||
| 18676 | if (VarTarget == Sema::CVT_Host && | |||
| 18677 | (UserTarget == Sema::CFT_Device || UserTarget == Sema::CFT_HostDevice || | |||
| 18678 | UserTarget == Sema::CFT_Global)) { | |||
| 18679 | // Diagnose ODR-use of host global variables in device functions. | |||
| 18680 | // Reference of device global variables in host functions is allowed | |||
| 18681 | // through shadow variables therefore it is not diagnosed. | |||
| 18682 | if (SemaRef.LangOpts.CUDAIsDevice) { | |||
| 18683 | SemaRef.targetDiag(Loc, diag::err_ref_bad_target) | |||
| 18684 | << /*host*/ 2 << /*variable*/ 1 << Var << UserTarget; | |||
| 18685 | SemaRef.targetDiag(Var->getLocation(), | |||
| 18686 | Var->getType().isConstQualified() | |||
| 18687 | ? diag::note_cuda_const_var_unpromoted | |||
| 18688 | : diag::note_cuda_host_var); | |||
| 18689 | } | |||
| 18690 | } else if (VarTarget == Sema::CVT_Device && | |||
| 18691 | (UserTarget == Sema::CFT_Host || | |||
| 18692 | UserTarget == Sema::CFT_HostDevice)) { | |||
| 18693 | // Record a CUDA/HIP device side variable if it is ODR-used | |||
| 18694 | // by host code. This is done conservatively, when the variable is | |||
| 18695 | // referenced in any of the following contexts: | |||
| 18696 | // - a non-function context | |||
| 18697 | // - a host function | |||
| 18698 | // - a host device function | |||
| 18699 | // This makes the ODR-use of the device side variable by host code to | |||
| 18700 | // be visible in the device compilation for the compiler to be able to | |||
| 18701 | // emit template variables instantiated by host code only and to | |||
| 18702 | // externalize the static device side variable ODR-used by host code. | |||
| 18703 | if (!Var->hasExternalStorage()) | |||
| 18704 | SemaRef.getASTContext().CUDADeviceVarODRUsedByHost.insert(Var); | |||
| 18705 | else if (SemaRef.LangOpts.GPURelocatableDeviceCode) | |||
| 18706 | SemaRef.getASTContext().CUDAExternalDeviceDeclODRUsedByHost.insert(Var); | |||
| 18707 | } | |||
| 18708 | } | |||
| 18709 | ||||
| 18710 | V->markUsed(SemaRef.Context); | |||
| 18711 | } | |||
| 18712 | ||||
| 18713 | void Sema::MarkCaptureUsedInEnclosingContext(ValueDecl *Capture, | |||
| 18714 | SourceLocation Loc, | |||
| 18715 | unsigned CapturingScopeIndex) { | |||
| 18716 | MarkVarDeclODRUsed(Capture, Loc, *this, &CapturingScopeIndex); | |||
| 18717 | } | |||
| 18718 | ||||
| 18719 | void diagnoseUncapturableValueReferenceOrBinding(Sema &S, SourceLocation loc, | |||
| 18720 | ValueDecl *var) { | |||
| 18721 | DeclContext *VarDC = var->getDeclContext(); | |||
| 18722 | ||||
| 18723 | // If the parameter still belongs to the translation unit, then | |||
| 18724 | // we're actually just using one parameter in the declaration of | |||
| 18725 | // the next. | |||
| 18726 | if (isa<ParmVarDecl>(var) && | |||
| 18727 | isa<TranslationUnitDecl>(VarDC)) | |||
| 18728 | return; | |||
| 18729 | ||||
| 18730 | // For C code, don't diagnose about capture if we're not actually in code | |||
| 18731 | // right now; it's impossible to write a non-constant expression outside of | |||
| 18732 | // function context, so we'll get other (more useful) diagnostics later. | |||
| 18733 | // | |||
| 18734 | // For C++, things get a bit more nasty... it would be nice to suppress this | |||
| 18735 | // diagnostic for certain cases like using a local variable in an array bound | |||
| 18736 | // for a member of a local class, but the correct predicate is not obvious. | |||
| 18737 | if (!S.getLangOpts().CPlusPlus && !S.CurContext->isFunctionOrMethod()) | |||
| 18738 | return; | |||
| 18739 | ||||
| 18740 | unsigned ValueKind = isa<BindingDecl>(var) ? 1 : 0; | |||
| 18741 | unsigned ContextKind = 3; // unknown | |||
| 18742 | if (isa<CXXMethodDecl>(VarDC) && | |||
| 18743 | cast<CXXRecordDecl>(VarDC->getParent())->isLambda()) { | |||
| 18744 | ContextKind = 2; | |||
| 18745 | } else if (isa<FunctionDecl>(VarDC)) { | |||
| 18746 | ContextKind = 0; | |||
| 18747 | } else if (isa<BlockDecl>(VarDC)) { | |||
| 18748 | ContextKind = 1; | |||
| 18749 | } | |||
| 18750 | ||||
| 18751 | S.Diag(loc, diag::err_reference_to_local_in_enclosing_context) | |||
| 18752 | << var << ValueKind << ContextKind << VarDC; | |||
| 18753 | S.Diag(var->getLocation(), diag::note_entity_declared_at) | |||
| 18754 | << var; | |||
| 18755 | ||||
| 18756 | // FIXME: Add additional diagnostic info about class etc. which prevents | |||
| 18757 | // capture. | |||
| 18758 | } | |||
| 18759 | ||||
| 18760 | static bool isVariableAlreadyCapturedInScopeInfo(CapturingScopeInfo *CSI, | |||
| 18761 | ValueDecl *Var, | |||
| 18762 | bool &SubCapturesAreNested, | |||
| 18763 | QualType &CaptureType, | |||
| 18764 | QualType &DeclRefType) { | |||
| 18765 | // Check whether we've already captured it. | |||
| 18766 | if (CSI->CaptureMap.count(Var)) { | |||
| 18767 | // If we found a capture, any subcaptures are nested. | |||
| 18768 | SubCapturesAreNested = true; | |||
| 18769 | ||||
| 18770 | // Retrieve the capture type for this variable. | |||
| 18771 | CaptureType = CSI->getCapture(Var).getCaptureType(); | |||
| 18772 | ||||
| 18773 | // Compute the type of an expression that refers to this variable. | |||
| 18774 | DeclRefType = CaptureType.getNonReferenceType(); | |||
| 18775 | ||||
| 18776 | // Similarly to mutable captures in lambda, all the OpenMP captures by copy | |||
| 18777 | // are mutable in the sense that user can change their value - they are | |||
| 18778 | // private instances of the captured declarations. | |||
| 18779 | const Capture &Cap = CSI->getCapture(Var); | |||
| 18780 | if (Cap.isCopyCapture() && | |||
| 18781 | !(isa<LambdaScopeInfo>(CSI) && cast<LambdaScopeInfo>(CSI)->Mutable) && | |||
| 18782 | !(isa<CapturedRegionScopeInfo>(CSI) && | |||
| 18783 | cast<CapturedRegionScopeInfo>(CSI)->CapRegionKind == CR_OpenMP)) | |||
| 18784 | DeclRefType.addConst(); | |||
| 18785 | return true; | |||
| 18786 | } | |||
| 18787 | return false; | |||
| 18788 | } | |||
| 18789 | ||||
| 18790 | // Only block literals, captured statements, and lambda expressions can | |||
| 18791 | // capture; other scopes don't work. | |||
| 18792 | static DeclContext *getParentOfCapturingContextOrNull(DeclContext *DC, | |||
| 18793 | ValueDecl *Var, | |||
| 18794 | SourceLocation Loc, | |||
| 18795 | const bool Diagnose, | |||
| 18796 | Sema &S) { | |||
| 18797 | if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC) || isLambdaCallOperator(DC)) | |||
| 18798 | return getLambdaAwareParentOfDeclContext(DC); | |||
| 18799 | ||||
| 18800 | VarDecl *Underlying = Var->getPotentiallyDecomposedVarDecl(); | |||
| 18801 | if (Underlying) { | |||
| 18802 | if (Underlying->hasLocalStorage() && Diagnose) | |||
| 18803 | diagnoseUncapturableValueReferenceOrBinding(S, Loc, Var); | |||
| 18804 | } | |||
| 18805 | return nullptr; | |||
| 18806 | } | |||
| 18807 | ||||
| 18808 | // Certain capturing entities (lambdas, blocks etc.) are not allowed to capture | |||
| 18809 | // certain types of variables (unnamed, variably modified types etc.) | |||
| 18810 | // so check for eligibility. | |||
| 18811 | static bool isVariableCapturable(CapturingScopeInfo *CSI, ValueDecl *Var, | |||
| 18812 | SourceLocation Loc, const bool Diagnose, | |||
| 18813 | Sema &S) { | |||
| 18814 | ||||
| 18815 | assert((isa<VarDecl, BindingDecl>(Var)) &&(static_cast <bool> ((isa<VarDecl, BindingDecl>(Var )) && "Only variables and structured bindings can be captured" ) ? void (0) : __assert_fail ("(isa<VarDecl, BindingDecl>(Var)) && \"Only variables and structured bindings can be captured\"" , "clang/lib/Sema/SemaExpr.cpp", 18816, __extension__ __PRETTY_FUNCTION__ )) | |||
| 18816 | "Only variables and structured bindings can be captured")(static_cast <bool> ((isa<VarDecl, BindingDecl>(Var )) && "Only variables and structured bindings can be captured" ) ? void (0) : __assert_fail ("(isa<VarDecl, BindingDecl>(Var)) && \"Only variables and structured bindings can be captured\"" , "clang/lib/Sema/SemaExpr.cpp", 18816, __extension__ __PRETTY_FUNCTION__ )); | |||
| 18817 | ||||
| 18818 | bool IsBlock = isa<BlockScopeInfo>(CSI); | |||
| 18819 | bool IsLambda = isa<LambdaScopeInfo>(CSI); | |||
| 18820 | ||||
| 18821 | // Lambdas are not allowed to capture unnamed variables | |||
| 18822 | // (e.g. anonymous unions). | |||
| 18823 | // FIXME: The C++11 rule don't actually state this explicitly, but I'm | |||
| 18824 | // assuming that's the intent. | |||
| 18825 | if (IsLambda && !Var->getDeclName()) { | |||
| 18826 | if (Diagnose) { | |||
| 18827 | S.Diag(Loc, diag::err_lambda_capture_anonymous_var); | |||
| 18828 | S.Diag(Var->getLocation(), diag::note_declared_at); | |||
| 18829 | } | |||
| 18830 | return false; | |||
| 18831 | } | |||
| 18832 | ||||
| 18833 | // Prohibit variably-modified types in blocks; they're difficult to deal with. | |||
| 18834 | if (Var->getType()->isVariablyModifiedType() && IsBlock) { | |||
| 18835 | if (Diagnose) { | |||
| 18836 | S.Diag(Loc, diag::err_ref_vm_type); | |||
| 18837 | S.Diag(Var->getLocation(), diag::note_previous_decl) << Var; | |||
| 18838 | } | |||
| 18839 | return false; | |||
| 18840 | } | |||
| 18841 | // Prohibit structs with flexible array members too. | |||
| 18842 | // We cannot capture what is in the tail end of the struct. | |||
| 18843 | if (const RecordType *VTTy = Var->getType()->getAs<RecordType>()) { | |||
| 18844 | if (VTTy->getDecl()->hasFlexibleArrayMember()) { | |||
| 18845 | if (Diagnose) { | |||
| 18846 | if (IsBlock) | |||
| 18847 | S.Diag(Loc, diag::err_ref_flexarray_type); | |||
| 18848 | else | |||
| 18849 | S.Diag(Loc, diag::err_lambda_capture_flexarray_type) << Var; | |||
| 18850 | S.Diag(Var->getLocation(), diag::note_previous_decl) << Var; | |||
| 18851 | } | |||
| 18852 | return false; | |||
| 18853 | } | |||
| 18854 | } | |||
| 18855 | const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>(); | |||
| 18856 | // Lambdas and captured statements are not allowed to capture __block | |||
| 18857 | // variables; they don't support the expected semantics. | |||
| 18858 | if (HasBlocksAttr && (IsLambda || isa<CapturedRegionScopeInfo>(CSI))) { | |||
| 18859 | if (Diagnose) { | |||
| 18860 | S.Diag(Loc, diag::err_capture_block_variable) << Var << !IsLambda; | |||
| 18861 | S.Diag(Var->getLocation(), diag::note_previous_decl) << Var; | |||
| 18862 | } | |||
| 18863 | return false; | |||
| 18864 | } | |||
| 18865 | // OpenCL v2.0 s6.12.5: Blocks cannot reference/capture other blocks | |||
| 18866 | if (S.getLangOpts().OpenCL && IsBlock && | |||
| 18867 | Var->getType()->isBlockPointerType()) { | |||
| 18868 | if (Diagnose) | |||
| 18869 | S.Diag(Loc, diag::err_opencl_block_ref_block); | |||
| 18870 | return false; | |||
| 18871 | } | |||
| 18872 | ||||
| 18873 | if (isa<BindingDecl>(Var)) { | |||
| 18874 | if (!IsLambda || !S.getLangOpts().CPlusPlus) { | |||
| 18875 | if (Diagnose) | |||
| 18876 | diagnoseUncapturableValueReferenceOrBinding(S, Loc, Var); | |||
| 18877 | return false; | |||
| 18878 | } else if (Diagnose && S.getLangOpts().CPlusPlus) { | |||
| 18879 | S.Diag(Loc, S.LangOpts.CPlusPlus20 | |||
| 18880 | ? diag::warn_cxx17_compat_capture_binding | |||
| 18881 | : diag::ext_capture_binding) | |||
| 18882 | << Var; | |||
| 18883 | S.Diag(Var->getLocation(), diag::note_entity_declared_at) << Var; | |||
| 18884 | } | |||
| 18885 | } | |||
| 18886 | ||||
| 18887 | return true; | |||
| 18888 | } | |||
| 18889 | ||||
| 18890 | // Returns true if the capture by block was successful. | |||
| 18891 | static bool captureInBlock(BlockScopeInfo *BSI, ValueDecl *Var, | |||
| 18892 | SourceLocation Loc, const bool BuildAndDiagnose, | |||
| 18893 | QualType &CaptureType, QualType &DeclRefType, | |||
| 18894 | const bool Nested, Sema &S, bool Invalid) { | |||
| 18895 | bool ByRef = false; | |||
| 18896 | ||||
| 18897 | // Blocks are not allowed to capture arrays, excepting OpenCL. | |||
| 18898 | // OpenCL v2.0 s1.12.5 (revision 40): arrays are captured by reference | |||
| 18899 | // (decayed to pointers). | |||
| 18900 | if (!Invalid && !S.getLangOpts().OpenCL && CaptureType->isArrayType()) { | |||
| 18901 | if (BuildAndDiagnose) { | |||
| 18902 | S.Diag(Loc, diag::err_ref_array_type); | |||
| 18903 | S.Diag(Var->getLocation(), diag::note_previous_decl) << Var; | |||
| 18904 | Invalid = true; | |||
| 18905 | } else { | |||
| 18906 | return false; | |||
| 18907 | } | |||
| 18908 | } | |||
| 18909 | ||||
| 18910 | // Forbid the block-capture of autoreleasing variables. | |||
| 18911 | if (!Invalid && | |||
| 18912 | CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) { | |||
| 18913 | if (BuildAndDiagnose) { | |||
| 18914 | S.Diag(Loc, diag::err_arc_autoreleasing_capture) | |||
| 18915 | << /*block*/ 0; | |||
| 18916 | S.Diag(Var->getLocation(), diag::note_previous_decl) << Var; | |||
| 18917 | Invalid = true; | |||
| 18918 | } else { | |||
| 18919 | return false; | |||
| 18920 | } | |||
| 18921 | } | |||
| 18922 | ||||
| 18923 | // Warn about implicitly autoreleasing indirect parameters captured by blocks. | |||
| 18924 | if (const auto *PT = CaptureType->getAs<PointerType>()) { | |||
| 18925 | QualType PointeeTy = PT->getPointeeType(); | |||
| 18926 | ||||
| 18927 | if (!Invalid && PointeeTy->getAs<ObjCObjectPointerType>() && | |||
| 18928 | PointeeTy.getObjCLifetime() == Qualifiers::OCL_Autoreleasing && | |||
| 18929 | !S.Context.hasDirectOwnershipQualifier(PointeeTy)) { | |||
| 18930 | if (BuildAndDiagnose) { | |||
| 18931 | SourceLocation VarLoc = Var->getLocation(); | |||
| 18932 | S.Diag(Loc, diag::warn_block_capture_autoreleasing); | |||
| 18933 | S.Diag(VarLoc, diag::note_declare_parameter_strong); | |||
| 18934 | } | |||
| 18935 | } | |||
| 18936 | } | |||
| 18937 | ||||
| 18938 | const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>(); | |||
| 18939 | if (HasBlocksAttr || CaptureType->isReferenceType() || | |||
| 18940 | (S.getLangOpts().OpenMP && S.isOpenMPCapturedDecl(Var))) { | |||
| 18941 | // Block capture by reference does not change the capture or | |||
| 18942 | // declaration reference types. | |||
| 18943 | ByRef = true; | |||
| 18944 | } else { | |||
| 18945 | // Block capture by copy introduces 'const'. | |||
| 18946 | CaptureType = CaptureType.getNonReferenceType().withConst(); | |||
| 18947 | DeclRefType = CaptureType; | |||
| 18948 | } | |||
| 18949 | ||||
| 18950 | // Actually capture the variable. | |||
| 18951 | if (BuildAndDiagnose) | |||
| 18952 | BSI->addCapture(Var, HasBlocksAttr, ByRef, Nested, Loc, SourceLocation(), | |||
| 18953 | CaptureType, Invalid); | |||
| 18954 | ||||
| 18955 | return !Invalid; | |||
| 18956 | } | |||
| 18957 | ||||
| 18958 | /// Capture the given variable in the captured region. | |||
| 18959 | static bool captureInCapturedRegion( | |||
| 18960 | CapturedRegionScopeInfo *RSI, ValueDecl *Var, SourceLocation Loc, | |||
| 18961 | const bool BuildAndDiagnose, QualType &CaptureType, QualType &DeclRefType, | |||
| 18962 | const bool RefersToCapturedVariable, Sema::TryCaptureKind Kind, | |||
| 18963 | bool IsTopScope, Sema &S, bool Invalid) { | |||
| 18964 | // By default, capture variables by reference. | |||
| 18965 | bool ByRef = true; | |||
| 18966 | if (IsTopScope && Kind != Sema::TryCapture_Implicit) { | |||
| 18967 | ByRef = (Kind == Sema::TryCapture_ExplicitByRef); | |||
| 18968 | } else if (S.getLangOpts().OpenMP && RSI->CapRegionKind == CR_OpenMP) { | |||
| 18969 | // Using an LValue reference type is consistent with Lambdas (see below). | |||
| 18970 | if (S.isOpenMPCapturedDecl(Var)) { | |||
| 18971 | bool HasConst = DeclRefType.isConstQualified(); | |||
| 18972 | DeclRefType = DeclRefType.getUnqualifiedType(); | |||
| 18973 | // Don't lose diagnostics about assignments to const. | |||
| 18974 | if (HasConst) | |||
| 18975 | DeclRefType.addConst(); | |||
| 18976 | } | |||
| 18977 | // Do not capture firstprivates in tasks. | |||
| 18978 | if (S.isOpenMPPrivateDecl(Var, RSI->OpenMPLevel, RSI->OpenMPCaptureLevel) != | |||
| 18979 | OMPC_unknown) | |||
| 18980 | return true; | |||
| 18981 | ByRef = S.isOpenMPCapturedByRef(Var, RSI->OpenMPLevel, | |||
| 18982 | RSI->OpenMPCaptureLevel); | |||
| 18983 | } | |||
| 18984 | ||||
| 18985 | if (ByRef) | |||
| 18986 | CaptureType = S.Context.getLValueReferenceType(DeclRefType); | |||
| 18987 | else | |||
| 18988 | CaptureType = DeclRefType; | |||
| 18989 | ||||
| 18990 | // Actually capture the variable. | |||
| 18991 | if (BuildAndDiagnose) | |||
| 18992 | RSI->addCapture(Var, /*isBlock*/ false, ByRef, RefersToCapturedVariable, | |||
| 18993 | Loc, SourceLocation(), CaptureType, Invalid); | |||
| 18994 | ||||
| 18995 | return !Invalid; | |||
| 18996 | } | |||
| 18997 | ||||
| 18998 | /// Capture the given variable in the lambda. | |||
| 18999 | static bool captureInLambda(LambdaScopeInfo *LSI, ValueDecl *Var, | |||
| 19000 | SourceLocation Loc, const bool BuildAndDiagnose, | |||
| 19001 | QualType &CaptureType, QualType &DeclRefType, | |||
| 19002 | const bool RefersToCapturedVariable, | |||
| 19003 | const Sema::TryCaptureKind Kind, | |||
| 19004 | SourceLocation EllipsisLoc, const bool IsTopScope, | |||
| 19005 | Sema &S, bool Invalid) { | |||
| 19006 | // Determine whether we are capturing by reference or by value. | |||
| 19007 | bool ByRef = false; | |||
| 19008 | if (IsTopScope && Kind != Sema::TryCapture_Implicit) { | |||
| 19009 | ByRef = (Kind == Sema::TryCapture_ExplicitByRef); | |||
| 19010 | } else { | |||
| 19011 | ByRef = (LSI->ImpCaptureStyle == LambdaScopeInfo::ImpCap_LambdaByref); | |||
| 19012 | } | |||
| 19013 | ||||
| 19014 | BindingDecl *BD = dyn_cast<BindingDecl>(Var); | |||
| 19015 | // FIXME: We should support capturing structured bindings in OpenMP. | |||
| 19016 | if (!Invalid && BD && S.LangOpts.OpenMP) { | |||
| 19017 | if (BuildAndDiagnose) { | |||
| 19018 | S.Diag(Loc, diag::err_capture_binding_openmp) << Var; | |||
| 19019 | S.Diag(Var->getLocation(), diag::note_entity_declared_at) << Var; | |||
| 19020 | } | |||
| 19021 | Invalid = true; | |||
| 19022 | } | |||
| 19023 | ||||
| 19024 | if (BuildAndDiagnose && S.Context.getTargetInfo().getTriple().isWasm() && | |||
| 19025 | CaptureType.getNonReferenceType()->isWebAssemblyReferenceType()) { | |||
| 19026 | S.Diag(Loc, diag::err_wasm_ca_reference) << 0; | |||
| 19027 | Invalid = true; | |||
| 19028 | } | |||
| 19029 | ||||
| 19030 | // Compute the type of the field that will capture this variable. | |||
| 19031 | if (ByRef) { | |||
| 19032 | // C++11 [expr.prim.lambda]p15: | |||
| 19033 | // An entity is captured by reference if it is implicitly or | |||
| 19034 | // explicitly captured but not captured by copy. It is | |||
| 19035 | // unspecified whether additional unnamed non-static data | |||
| 19036 | // members are declared in the closure type for entities | |||
| 19037 | // captured by reference. | |||
| 19038 | // | |||
| 19039 | // FIXME: It is not clear whether we want to build an lvalue reference | |||
| 19040 | // to the DeclRefType or to CaptureType.getNonReferenceType(). GCC appears | |||
| 19041 | // to do the former, while EDG does the latter. Core issue 1249 will | |||
| 19042 | // clarify, but for now we follow GCC because it's a more permissive and | |||
| 19043 | // easily defensible position. | |||
| 19044 | CaptureType = S.Context.getLValueReferenceType(DeclRefType); | |||
| 19045 | } else { | |||
| 19046 | // C++11 [expr.prim.lambda]p14: | |||
| 19047 | // For each entity captured by copy, an unnamed non-static | |||
| 19048 | // data member is declared in the closure type. The | |||
| 19049 | // declaration order of these members is unspecified. The type | |||
| 19050 | // of such a data member is the type of the corresponding | |||
| 19051 | // captured entity if the entity is not a reference to an | |||
| 19052 | // object, or the referenced type otherwise. [Note: If the | |||
| 19053 | // captured entity is a reference to a function, the | |||
| 19054 | // corresponding data member is also a reference to a | |||
| 19055 | // function. - end note ] | |||
| 19056 | if (const ReferenceType *RefType = CaptureType->getAs<ReferenceType>()){ | |||
| 19057 | if (!RefType->getPointeeType()->isFunctionType()) | |||
| 19058 | CaptureType = RefType->getPointeeType(); | |||
| 19059 | } | |||
| 19060 | ||||
| 19061 | // Forbid the lambda copy-capture of autoreleasing variables. | |||
| 19062 | if (!Invalid && | |||
| 19063 | CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) { | |||
| 19064 | if (BuildAndDiagnose) { | |||
| 19065 | S.Diag(Loc, diag::err_arc_autoreleasing_capture) << /*lambda*/ 1; | |||
| 19066 | S.Diag(Var->getLocation(), diag::note_previous_decl) | |||
| 19067 | << Var->getDeclName(); | |||
| 19068 | Invalid = true; | |||
| 19069 | } else { | |||
| 19070 | return false; | |||
| 19071 | } | |||
| 19072 | } | |||
| 19073 | ||||
| 19074 | // Make sure that by-copy captures are of a complete and non-abstract type. | |||
| 19075 | if (!Invalid && BuildAndDiagnose) { | |||
| 19076 | if (!CaptureType->isDependentType() && | |||
| 19077 | S.RequireCompleteSizedType( | |||
| 19078 | Loc, CaptureType, | |||
| 19079 | diag::err_capture_of_incomplete_or_sizeless_type, | |||
| 19080 | Var->getDeclName())) | |||
| 19081 | Invalid = true; | |||
| 19082 | else if (S.RequireNonAbstractType(Loc, CaptureType, | |||
| 19083 | diag::err_capture_of_abstract_type)) | |||
| 19084 | Invalid = true; | |||
| 19085 | } | |||
| 19086 | } | |||
| 19087 | ||||
| 19088 | // Compute the type of a reference to this captured variable. | |||
| 19089 | if (ByRef) | |||
| 19090 | DeclRefType = CaptureType.getNonReferenceType(); | |||
| 19091 | else { | |||
| 19092 | // C++ [expr.prim.lambda]p5: | |||
| 19093 | // The closure type for a lambda-expression has a public inline | |||
| 19094 | // function call operator [...]. This function call operator is | |||
| 19095 | // declared const (9.3.1) if and only if the lambda-expression's | |||
| 19096 | // parameter-declaration-clause is not followed by mutable. | |||
| 19097 | DeclRefType = CaptureType.getNonReferenceType(); | |||
| 19098 | if (!LSI->Mutable && !CaptureType->isReferenceType()) | |||
| 19099 | DeclRefType.addConst(); | |||
| 19100 | } | |||
| 19101 | ||||
| 19102 | // Add the capture. | |||
| 19103 | if (BuildAndDiagnose) | |||
| 19104 | LSI->addCapture(Var, /*isBlock=*/false, ByRef, RefersToCapturedVariable, | |||
| 19105 | Loc, EllipsisLoc, CaptureType, Invalid); | |||
| 19106 | ||||
| 19107 | return !Invalid; | |||
| 19108 | } | |||
| 19109 | ||||
| 19110 | static bool canCaptureVariableByCopy(ValueDecl *Var, | |||
| 19111 | const ASTContext &Context) { | |||
| 19112 | // Offer a Copy fix even if the type is dependent. | |||
| 19113 | if (Var->getType()->isDependentType()) | |||
| 19114 | return true; | |||
| 19115 | QualType T = Var->getType().getNonReferenceType(); | |||
| 19116 | if (T.isTriviallyCopyableType(Context)) | |||
| 19117 | return true; | |||
| 19118 | if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) { | |||
| 19119 | ||||
| 19120 | if (!(RD = RD->getDefinition())) | |||
| 19121 | return false; | |||
| 19122 | if (RD->hasSimpleCopyConstructor()) | |||
| 19123 | return true; | |||
| 19124 | if (RD->hasUserDeclaredCopyConstructor()) | |||
| 19125 | for (CXXConstructorDecl *Ctor : RD->ctors()) | |||
| 19126 | if (Ctor->isCopyConstructor()) | |||
| 19127 | return !Ctor->isDeleted(); | |||
| 19128 | } | |||
| 19129 | return false; | |||
| 19130 | } | |||
| 19131 | ||||
| 19132 | /// Create up to 4 fix-its for explicit reference and value capture of \p Var or | |||
| 19133 | /// default capture. Fixes may be omitted if they aren't allowed by the | |||
| 19134 | /// standard, for example we can't emit a default copy capture fix-it if we | |||
| 19135 | /// already explicitly copy capture capture another variable. | |||
| 19136 | static void buildLambdaCaptureFixit(Sema &Sema, LambdaScopeInfo *LSI, | |||
| 19137 | ValueDecl *Var) { | |||
| 19138 | assert(LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None)(static_cast <bool> (LSI->ImpCaptureStyle == CapturingScopeInfo ::ImpCap_None) ? void (0) : __assert_fail ("LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None" , "clang/lib/Sema/SemaExpr.cpp", 19138, __extension__ __PRETTY_FUNCTION__ )); | |||
| 19139 | // Don't offer Capture by copy of default capture by copy fixes if Var is | |||
| 19140 | // known not to be copy constructible. | |||
| 19141 | bool ShouldOfferCopyFix = canCaptureVariableByCopy(Var, Sema.getASTContext()); | |||
| 19142 | ||||
| 19143 | SmallString<32> FixBuffer; | |||
| 19144 | StringRef Separator = LSI->NumExplicitCaptures > 0 ? ", " : ""; | |||
| 19145 | if (Var->getDeclName().isIdentifier() && !Var->getName().empty()) { | |||
| 19146 | SourceLocation VarInsertLoc = LSI->IntroducerRange.getEnd(); | |||
| 19147 | if (ShouldOfferCopyFix) { | |||
| 19148 | // Offer fixes to insert an explicit capture for the variable. | |||
| 19149 | // [] -> [VarName] | |||
| 19150 | // [OtherCapture] -> [OtherCapture, VarName] | |||
| 19151 | FixBuffer.assign({Separator, Var->getName()}); | |||
| 19152 | Sema.Diag(VarInsertLoc, diag::note_lambda_variable_capture_fixit) | |||
| 19153 | << Var << /*value*/ 0 | |||
| 19154 | << FixItHint::CreateInsertion(VarInsertLoc, FixBuffer); | |||
| 19155 | } | |||
| 19156 | // As above but capture by reference. | |||
| 19157 | FixBuffer.assign({Separator, "&", Var->getName()}); | |||
| 19158 | Sema.Diag(VarInsertLoc, diag::note_lambda_variable_capture_fixit) | |||
| 19159 | << Var << /*reference*/ 1 | |||
| 19160 | << FixItHint::CreateInsertion(VarInsertLoc, FixBuffer); | |||
| 19161 | } | |||
| 19162 | ||||
| 19163 | // Only try to offer default capture if there are no captures excluding this | |||
| 19164 | // and init captures. | |||
| 19165 | // [this]: OK. | |||
| 19166 | // [X = Y]: OK. | |||
| 19167 | // [&A, &B]: Don't offer. | |||
| 19168 | // [A, B]: Don't offer. | |||
| 19169 | if (llvm::any_of(LSI->Captures, [](Capture &C) { | |||
| 19170 | return !C.isThisCapture() && !C.isInitCapture(); | |||
| 19171 | })) | |||
| 19172 | return; | |||
| 19173 | ||||
| 19174 | // The default capture specifiers, '=' or '&', must appear first in the | |||
| 19175 | // capture body. | |||
| 19176 | SourceLocation DefaultInsertLoc = | |||
| 19177 | LSI->IntroducerRange.getBegin().getLocWithOffset(1); | |||
| 19178 | ||||
| 19179 | if (ShouldOfferCopyFix) { | |||
| 19180 | bool CanDefaultCopyCapture = true; | |||
| 19181 | // [=, *this] OK since c++17 | |||
| 19182 | // [=, this] OK since c++20 | |||
| 19183 | if (LSI->isCXXThisCaptured() && !Sema.getLangOpts().CPlusPlus20) | |||
| 19184 | CanDefaultCopyCapture = Sema.getLangOpts().CPlusPlus17 | |||
| 19185 | ? LSI->getCXXThisCapture().isCopyCapture() | |||
| 19186 | : false; | |||
| 19187 | // We can't use default capture by copy if any captures already specified | |||
| 19188 | // capture by copy. | |||
| 19189 | if (CanDefaultCopyCapture && llvm::none_of(LSI->Captures, [](Capture &C) { | |||
| 19190 | return !C.isThisCapture() && !C.isInitCapture() && C.isCopyCapture(); | |||
| 19191 | })) { | |||
| 19192 | FixBuffer.assign({"=", Separator}); | |||
| 19193 | Sema.Diag(DefaultInsertLoc, diag::note_lambda_default_capture_fixit) | |||
| 19194 | << /*value*/ 0 | |||
| 19195 | << FixItHint::CreateInsertion(DefaultInsertLoc, FixBuffer); | |||
| 19196 | } | |||
| 19197 | } | |||
| 19198 | ||||
| 19199 | // We can't use default capture by reference if any captures already specified | |||
| 19200 | // capture by reference. | |||
| 19201 | if (llvm::none_of(LSI->Captures, [](Capture &C) { | |||
| 19202 | return !C.isInitCapture() && C.isReferenceCapture() && | |||
| 19203 | !C.isThisCapture(); | |||
| 19204 | })) { | |||
| 19205 | FixBuffer.assign({"&", Separator}); | |||
| 19206 | Sema.Diag(DefaultInsertLoc, diag::note_lambda_default_capture_fixit) | |||
| 19207 | << /*reference*/ 1 | |||
| 19208 | << FixItHint::CreateInsertion(DefaultInsertLoc, FixBuffer); | |||
| 19209 | } | |||
| 19210 | } | |||
| 19211 | ||||
| 19212 | bool Sema::tryCaptureVariable( | |||
| 19213 | ValueDecl *Var, SourceLocation ExprLoc, TryCaptureKind Kind, | |||
| 19214 | SourceLocation EllipsisLoc, bool BuildAndDiagnose, QualType &CaptureType, | |||
| 19215 | QualType &DeclRefType, const unsigned *const FunctionScopeIndexToStopAt) { | |||
| 19216 | // An init-capture is notionally from the context surrounding its | |||
| 19217 | // declaration, but its parent DC is the lambda class. | |||
| 19218 | DeclContext *VarDC = Var->getDeclContext(); | |||
| 19219 | DeclContext *DC = CurContext; | |||
| 19220 | ||||
| 19221 | // tryCaptureVariable is called every time a DeclRef is formed, | |||
| 19222 | // it can therefore have non-negigible impact on performances. | |||
| 19223 | // For local variables and when there is no capturing scope, | |||
| 19224 | // we can bailout early. | |||
| 19225 | if (CapturingFunctionScopes == 0 && (!BuildAndDiagnose || VarDC == DC)) | |||
| 19226 | return true; | |||
| 19227 | ||||
| 19228 | const auto *VD = dyn_cast<VarDecl>(Var); | |||
| 19229 | if (VD) { | |||
| 19230 | if (VD->isInitCapture()) | |||
| 19231 | VarDC = VarDC->getParent(); | |||
| 19232 | } else { | |||
| 19233 | VD = Var->getPotentiallyDecomposedVarDecl(); | |||
| 19234 | } | |||
| 19235 | assert(VD && "Cannot capture a null variable")(static_cast <bool> (VD && "Cannot capture a null variable" ) ? void (0) : __assert_fail ("VD && \"Cannot capture a null variable\"" , "clang/lib/Sema/SemaExpr.cpp", 19235, __extension__ __PRETTY_FUNCTION__ )); | |||
| 19236 | ||||
| 19237 | const unsigned MaxFunctionScopesIndex = FunctionScopeIndexToStopAt | |||
| 19238 | ? *FunctionScopeIndexToStopAt : FunctionScopes.size() - 1; | |||
| 19239 | // We need to sync up the Declaration Context with the | |||
| 19240 | // FunctionScopeIndexToStopAt | |||
| 19241 | if (FunctionScopeIndexToStopAt) { | |||
| 19242 | unsigned FSIndex = FunctionScopes.size() - 1; | |||
| 19243 | while (FSIndex != MaxFunctionScopesIndex) { | |||
| 19244 | DC = getLambdaAwareParentOfDeclContext(DC); | |||
| 19245 | --FSIndex; | |||
| 19246 | } | |||
| 19247 | } | |||
| 19248 | ||||
| 19249 | // Capture global variables if it is required to use private copy of this | |||
| 19250 | // variable. | |||
| 19251 | bool IsGlobal = !VD->hasLocalStorage(); | |||
| 19252 | if (IsGlobal && | |||
| 19253 | !(LangOpts.OpenMP && isOpenMPCapturedDecl(Var, /*CheckScopeInfo=*/true, | |||
| 19254 | MaxFunctionScopesIndex))) | |||
| 19255 | return true; | |||
| 19256 | ||||
| 19257 | if (isa<VarDecl>(Var)) | |||
| 19258 | Var = cast<VarDecl>(Var->getCanonicalDecl()); | |||
| 19259 | ||||
| 19260 | // Walk up the stack to determine whether we can capture the variable, | |||
| 19261 | // performing the "simple" checks that don't depend on type. We stop when | |||
| 19262 | // we've either hit the declared scope of the variable or find an existing | |||
| 19263 | // capture of that variable. We start from the innermost capturing-entity | |||
| 19264 | // (the DC) and ensure that all intervening capturing-entities | |||
| 19265 | // (blocks/lambdas etc.) between the innermost capturer and the variable`s | |||
| 19266 | // declcontext can either capture the variable or have already captured | |||
| 19267 | // the variable. | |||
| 19268 | CaptureType = Var->getType(); | |||
| 19269 | DeclRefType = CaptureType.getNonReferenceType(); | |||
| 19270 | bool Nested = false; | |||
| 19271 | bool Explicit = (Kind != TryCapture_Implicit); | |||
| 19272 | unsigned FunctionScopesIndex = MaxFunctionScopesIndex; | |||
| 19273 | do { | |||
| 19274 | ||||
| 19275 | LambdaScopeInfo *LSI = nullptr; | |||
| 19276 | if (!FunctionScopes.empty()) | |||
| 19277 | LSI = dyn_cast_or_null<LambdaScopeInfo>( | |||
| 19278 | FunctionScopes[FunctionScopesIndex]); | |||
| 19279 | ||||
| 19280 | bool IsInScopeDeclarationContext = | |||
| 19281 | !LSI || LSI->AfterParameterList || CurContext == LSI->CallOperator; | |||
| 19282 | ||||
| 19283 | if (LSI && !LSI->AfterParameterList) { | |||
| 19284 | // This allows capturing parameters from a default value which does not | |||
| 19285 | // seems correct | |||
| 19286 | if (isa<ParmVarDecl>(Var) && !Var->getDeclContext()->isFunctionOrMethod()) | |||
| 19287 | return true; | |||
| 19288 | } | |||
| 19289 | // If the variable is declared in the current context, there is no need to | |||
| 19290 | // capture it. | |||
| 19291 | if (IsInScopeDeclarationContext && | |||
| 19292 | FunctionScopesIndex == MaxFunctionScopesIndex && VarDC == DC) | |||
| 19293 | return true; | |||
| 19294 | ||||
| 19295 | // When evaluating some attributes (like enable_if) we might refer to a | |||
| 19296 | // function parameter appertaining to the same declaration as that | |||
| 19297 | // attribute. | |||
| 19298 | if (const auto *Parm = dyn_cast<ParmVarDecl>(Var); | |||
| 19299 | Parm && Parm->getDeclContext() == DC) | |||
| 19300 | return true; | |||
| 19301 | ||||
| 19302 | // Only block literals, captured statements, and lambda expressions can | |||
| 19303 | // capture; other scopes don't work. | |||
| 19304 | DeclContext *ParentDC = | |||
| 19305 | !IsInScopeDeclarationContext | |||
| 19306 | ? DC->getParent() | |||
| 19307 | : getParentOfCapturingContextOrNull(DC, Var, ExprLoc, | |||
| 19308 | BuildAndDiagnose, *this); | |||
| 19309 | // We need to check for the parent *first* because, if we *have* | |||
| 19310 | // private-captured a global variable, we need to recursively capture it in | |||
| 19311 | // intermediate blocks, lambdas, etc. | |||
| 19312 | if (!ParentDC) { | |||
| 19313 | if (IsGlobal) { | |||
| 19314 | FunctionScopesIndex = MaxFunctionScopesIndex - 1; | |||
| 19315 | break; | |||
| 19316 | } | |||
| 19317 | return true; | |||
| 19318 | } | |||
| 19319 | ||||
| 19320 | FunctionScopeInfo *FSI = FunctionScopes[FunctionScopesIndex]; | |||
| 19321 | CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FSI); | |||
| 19322 | ||||
| 19323 | // Check whether we've already captured it. | |||
| 19324 | if (isVariableAlreadyCapturedInScopeInfo(CSI, Var, Nested, CaptureType, | |||
| 19325 | DeclRefType)) { | |||
| 19326 | CSI->getCapture(Var).markUsed(BuildAndDiagnose); | |||
| 19327 | break; | |||
| 19328 | } | |||
| 19329 | // If we are instantiating a generic lambda call operator body, | |||
| 19330 | // we do not want to capture new variables. What was captured | |||
| 19331 | // during either a lambdas transformation or initial parsing | |||
| 19332 | // should be used. | |||
| 19333 | if (isGenericLambdaCallOperatorSpecialization(DC)) { | |||
| 19334 | if (BuildAndDiagnose) { | |||
| 19335 | LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI); | |||
| 19336 | if (LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None) { | |||
| 19337 | Diag(ExprLoc, diag::err_lambda_impcap) << Var; | |||
| 19338 | Diag(Var->getLocation(), diag::note_previous_decl) << Var; | |||
| 19339 | Diag(LSI->Lambda->getBeginLoc(), diag::note_lambda_decl); | |||
| 19340 | buildLambdaCaptureFixit(*this, LSI, Var); | |||
| 19341 | } else | |||
| 19342 | diagnoseUncapturableValueReferenceOrBinding(*this, ExprLoc, Var); | |||
| 19343 | } | |||
| 19344 | return true; | |||
| 19345 | } | |||
| 19346 | ||||
| 19347 | // Try to capture variable-length arrays types. | |||
| 19348 | if (Var->getType()->isVariablyModifiedType()) { | |||
| 19349 | // We're going to walk down into the type and look for VLA | |||
| 19350 | // expressions. | |||
| 19351 | QualType QTy = Var->getType(); | |||
| 19352 | if (ParmVarDecl *PVD = dyn_cast_or_null<ParmVarDecl>(Var)) | |||
| 19353 | QTy = PVD->getOriginalType(); | |||
| 19354 | captureVariablyModifiedType(Context, QTy, CSI); | |||
| 19355 | } | |||
| 19356 | ||||
| 19357 | if (getLangOpts().OpenMP) { | |||
| 19358 | if (auto *RSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) { | |||
| 19359 | // OpenMP private variables should not be captured in outer scope, so | |||
| 19360 | // just break here. Similarly, global variables that are captured in a | |||
| 19361 | // target region should not be captured outside the scope of the region. | |||
| 19362 | if (RSI->CapRegionKind == CR_OpenMP) { | |||
| 19363 | OpenMPClauseKind IsOpenMPPrivateDecl = isOpenMPPrivateDecl( | |||
| 19364 | Var, RSI->OpenMPLevel, RSI->OpenMPCaptureLevel); | |||
| 19365 | // If the variable is private (i.e. not captured) and has variably | |||
| 19366 | // modified type, we still need to capture the type for correct | |||
| 19367 | // codegen in all regions, associated with the construct. Currently, | |||
| 19368 | // it is captured in the innermost captured region only. | |||
| 19369 | if (IsOpenMPPrivateDecl != OMPC_unknown && | |||
| 19370 | Var->getType()->isVariablyModifiedType()) { | |||
| 19371 | QualType QTy = Var->getType(); | |||
| 19372 | if (ParmVarDecl *PVD = dyn_cast_or_null<ParmVarDecl>(Var)) | |||
| 19373 | QTy = PVD->getOriginalType(); | |||
| 19374 | for (int I = 1, E = getNumberOfConstructScopes(RSI->OpenMPLevel); | |||
| 19375 | I < E; ++I) { | |||
| 19376 | auto *OuterRSI = cast<CapturedRegionScopeInfo>( | |||
| 19377 | FunctionScopes[FunctionScopesIndex - I]); | |||
| 19378 | assert(RSI->OpenMPLevel == OuterRSI->OpenMPLevel &&(static_cast <bool> (RSI->OpenMPLevel == OuterRSI-> OpenMPLevel && "Wrong number of captured regions associated with the " "OpenMP construct.") ? void (0) : __assert_fail ("RSI->OpenMPLevel == OuterRSI->OpenMPLevel && \"Wrong number of captured regions associated with the \" \"OpenMP construct.\"" , "clang/lib/Sema/SemaExpr.cpp", 19380, __extension__ __PRETTY_FUNCTION__ )) | |||
| 19379 | "Wrong number of captured regions associated with the "(static_cast <bool> (RSI->OpenMPLevel == OuterRSI-> OpenMPLevel && "Wrong number of captured regions associated with the " "OpenMP construct.") ? void (0) : __assert_fail ("RSI->OpenMPLevel == OuterRSI->OpenMPLevel && \"Wrong number of captured regions associated with the \" \"OpenMP construct.\"" , "clang/lib/Sema/SemaExpr.cpp", 19380, __extension__ __PRETTY_FUNCTION__ )) | |||
| 19380 | "OpenMP construct.")(static_cast <bool> (RSI->OpenMPLevel == OuterRSI-> OpenMPLevel && "Wrong number of captured regions associated with the " "OpenMP construct.") ? void (0) : __assert_fail ("RSI->OpenMPLevel == OuterRSI->OpenMPLevel && \"Wrong number of captured regions associated with the \" \"OpenMP construct.\"" , "clang/lib/Sema/SemaExpr.cpp", 19380, __extension__ __PRETTY_FUNCTION__ )); | |||
| 19381 | captureVariablyModifiedType(Context, QTy, OuterRSI); | |||
| 19382 | } | |||
| 19383 | } | |||
| 19384 | bool IsTargetCap = | |||
| 19385 | IsOpenMPPrivateDecl != OMPC_private && | |||
| 19386 | isOpenMPTargetCapturedDecl(Var, RSI->OpenMPLevel, | |||
| 19387 | RSI->OpenMPCaptureLevel); | |||
| 19388 | // Do not capture global if it is not privatized in outer regions. | |||
| 19389 | bool IsGlobalCap = | |||
| 19390 | IsGlobal && isOpenMPGlobalCapturedDecl(Var, RSI->OpenMPLevel, | |||
| 19391 | RSI->OpenMPCaptureLevel); | |||
| 19392 | ||||
| 19393 | // When we detect target captures we are looking from inside the | |||
| 19394 | // target region, therefore we need to propagate the capture from the | |||
| 19395 | // enclosing region. Therefore, the capture is not initially nested. | |||
| 19396 | if (IsTargetCap) | |||
| 19397 | adjustOpenMPTargetScopeIndex(FunctionScopesIndex, RSI->OpenMPLevel); | |||
| 19398 | ||||
| 19399 | if (IsTargetCap || IsOpenMPPrivateDecl == OMPC_private || | |||
| 19400 | (IsGlobal && !IsGlobalCap)) { | |||
| 19401 | Nested = !IsTargetCap; | |||
| 19402 | bool HasConst = DeclRefType.isConstQualified(); | |||
| 19403 | DeclRefType = DeclRefType.getUnqualifiedType(); | |||
| 19404 | // Don't lose diagnostics about assignments to const. | |||
| 19405 | if (HasConst) | |||
| 19406 | DeclRefType.addConst(); | |||
| 19407 | CaptureType = Context.getLValueReferenceType(DeclRefType); | |||
| 19408 | break; | |||
| 19409 | } | |||
| 19410 | } | |||
| 19411 | } | |||
| 19412 | } | |||
| 19413 | if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None && !Explicit) { | |||
| 19414 | // No capture-default, and this is not an explicit capture | |||
| 19415 | // so cannot capture this variable. | |||
| 19416 | if (BuildAndDiagnose) { | |||
| 19417 | Diag(ExprLoc, diag::err_lambda_impcap) << Var; | |||
| 19418 | Diag(Var->getLocation(), diag::note_previous_decl) << Var; | |||
| 19419 | auto *LSI = cast<LambdaScopeInfo>(CSI); | |||
| 19420 | if (LSI->Lambda) { | |||
| 19421 | Diag(LSI->Lambda->getBeginLoc(), diag::note_lambda_decl); | |||
| 19422 | buildLambdaCaptureFixit(*this, LSI, Var); | |||
| 19423 | } | |||
| 19424 | // FIXME: If we error out because an outer lambda can not implicitly | |||
| 19425 | // capture a variable that an inner lambda explicitly captures, we | |||
| 19426 | // should have the inner lambda do the explicit capture - because | |||
| 19427 | // it makes for cleaner diagnostics later. This would purely be done | |||
| 19428 | // so that the diagnostic does not misleadingly claim that a variable | |||
| 19429 | // can not be captured by a lambda implicitly even though it is captured | |||
| 19430 | // explicitly. Suggestion: | |||
| 19431 | // - create const bool VariableCaptureWasInitiallyExplicit = Explicit | |||
| 19432 | // at the function head | |||
| 19433 | // - cache the StartingDeclContext - this must be a lambda | |||
| 19434 | // - captureInLambda in the innermost lambda the variable. | |||
| 19435 | } | |||
| 19436 | return true; | |||
| 19437 | } | |||
| 19438 | Explicit = false; | |||
| 19439 | FunctionScopesIndex--; | |||
| 19440 | if (IsInScopeDeclarationContext) | |||
| 19441 | DC = ParentDC; | |||
| 19442 | } while (!VarDC->Equals(DC)); | |||
| 19443 | ||||
| 19444 | // Walk back down the scope stack, (e.g. from outer lambda to inner lambda) | |||
| 19445 | // computing the type of the capture at each step, checking type-specific | |||
| 19446 | // requirements, and adding captures if requested. | |||
| 19447 | // If the variable had already been captured previously, we start capturing | |||
| 19448 | // at the lambda nested within that one. | |||
| 19449 | bool Invalid = false; | |||
| 19450 | for (unsigned I = ++FunctionScopesIndex, N = MaxFunctionScopesIndex + 1; I != N; | |||
| 19451 | ++I) { | |||
| 19452 | CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[I]); | |||
| 19453 | ||||
| 19454 | // Certain capturing entities (lambdas, blocks etc.) are not allowed to capture | |||
| 19455 | // certain types of variables (unnamed, variably modified types etc.) | |||
| 19456 | // so check for eligibility. | |||
| 19457 | if (!Invalid) | |||
| 19458 | Invalid = | |||
| 19459 | !isVariableCapturable(CSI, Var, ExprLoc, BuildAndDiagnose, *this); | |||
| 19460 | ||||
| 19461 | // After encountering an error, if we're actually supposed to capture, keep | |||
| 19462 | // capturing in nested contexts to suppress any follow-on diagnostics. | |||
| 19463 | if (Invalid && !BuildAndDiagnose) | |||
| 19464 | return true; | |||
| 19465 | ||||
| 19466 | if (BlockScopeInfo *BSI = dyn_cast<BlockScopeInfo>(CSI)) { | |||
| 19467 | Invalid = !captureInBlock(BSI, Var, ExprLoc, BuildAndDiagnose, CaptureType, | |||
| 19468 | DeclRefType, Nested, *this, Invalid); | |||
| 19469 | Nested = true; | |||
| 19470 | } else if (CapturedRegionScopeInfo *RSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) { | |||
| 19471 | Invalid = !captureInCapturedRegion( | |||
| 19472 | RSI, Var, ExprLoc, BuildAndDiagnose, CaptureType, DeclRefType, Nested, | |||
| 19473 | Kind, /*IsTopScope*/ I == N - 1, *this, Invalid); | |||
| 19474 | Nested = true; | |||
| 19475 | } else { | |||
| 19476 | LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI); | |||
| 19477 | Invalid = | |||
| 19478 | !captureInLambda(LSI, Var, ExprLoc, BuildAndDiagnose, CaptureType, | |||
| 19479 | DeclRefType, Nested, Kind, EllipsisLoc, | |||
| 19480 | /*IsTopScope*/ I == N - 1, *this, Invalid); | |||
| 19481 | Nested = true; | |||
| 19482 | } | |||
| 19483 | ||||
| 19484 | if (Invalid && !BuildAndDiagnose) | |||
| 19485 | return true; | |||
| 19486 | } | |||
| 19487 | return Invalid; | |||
| 19488 | } | |||
| 19489 | ||||
| 19490 | bool Sema::tryCaptureVariable(ValueDecl *Var, SourceLocation Loc, | |||
| 19491 | TryCaptureKind Kind, SourceLocation EllipsisLoc) { | |||
| 19492 | QualType CaptureType; | |||
| 19493 | QualType DeclRefType; | |||
| 19494 | return tryCaptureVariable(Var, Loc, Kind, EllipsisLoc, | |||
| 19495 | /*BuildAndDiagnose=*/true, CaptureType, | |||
| 19496 | DeclRefType, nullptr); | |||
| 19497 | } | |||
| 19498 | ||||
| 19499 | bool Sema::NeedToCaptureVariable(ValueDecl *Var, SourceLocation Loc) { | |||
| 19500 | QualType CaptureType; | |||
| 19501 | QualType DeclRefType; | |||
| 19502 | return !tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(), | |||
| 19503 | /*BuildAndDiagnose=*/false, CaptureType, | |||
| 19504 | DeclRefType, nullptr); | |||
| 19505 | } | |||
| 19506 | ||||
| 19507 | QualType Sema::getCapturedDeclRefType(ValueDecl *Var, SourceLocation Loc) { | |||
| 19508 | QualType CaptureType; | |||
| 19509 | QualType DeclRefType; | |||
| 19510 | ||||
| 19511 | // Determine whether we can capture this variable. | |||
| 19512 | if (tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(), | |||
| 19513 | /*BuildAndDiagnose=*/false, CaptureType, | |||
| 19514 | DeclRefType, nullptr)) | |||
| 19515 | return QualType(); | |||
| 19516 | ||||
| 19517 | return DeclRefType; | |||
| 19518 | } | |||
| 19519 | ||||
| 19520 | namespace { | |||
| 19521 | // Helper to copy the template arguments from a DeclRefExpr or MemberExpr. | |||
| 19522 | // The produced TemplateArgumentListInfo* points to data stored within this | |||
| 19523 | // object, so should only be used in contexts where the pointer will not be | |||
| 19524 | // used after the CopiedTemplateArgs object is destroyed. | |||
| 19525 | class CopiedTemplateArgs { | |||
| 19526 | bool HasArgs; | |||
| 19527 | TemplateArgumentListInfo TemplateArgStorage; | |||
| 19528 | public: | |||
| 19529 | template<typename RefExpr> | |||
| 19530 | CopiedTemplateArgs(RefExpr *E) : HasArgs(E->hasExplicitTemplateArgs()) { | |||
| 19531 | if (HasArgs) | |||
| 19532 | E->copyTemplateArgumentsInto(TemplateArgStorage); | |||
| 19533 | } | |||
| 19534 | operator TemplateArgumentListInfo*() | |||
| 19535 | #ifdef __has_cpp_attribute | |||
| 19536 | #if0 __has_cpp_attribute(clang::lifetimebound)1 | |||
| 19537 | [[clang::lifetimebound]] | |||
| 19538 | #endif | |||
| 19539 | #endif | |||
| 19540 | { | |||
| 19541 | return HasArgs ? &TemplateArgStorage : nullptr; | |||
| 19542 | } | |||
| 19543 | }; | |||
| 19544 | } | |||
| 19545 | ||||
| 19546 | /// Walk the set of potential results of an expression and mark them all as | |||
| 19547 | /// non-odr-uses if they satisfy the side-conditions of the NonOdrUseReason. | |||
| 19548 | /// | |||
| 19549 | /// \return A new expression if we found any potential results, ExprEmpty() if | |||
| 19550 | /// not, and ExprError() if we diagnosed an error. | |||
| 19551 | static ExprResult rebuildPotentialResultsAsNonOdrUsed(Sema &S, Expr *E, | |||
| 19552 | NonOdrUseReason NOUR) { | |||
| 19553 | // Per C++11 [basic.def.odr], a variable is odr-used "unless it is | |||
| 19554 | // an object that satisfies the requirements for appearing in a | |||
| 19555 | // constant expression (5.19) and the lvalue-to-rvalue conversion (4.1) | |||
| 19556 | // is immediately applied." This function handles the lvalue-to-rvalue | |||
| 19557 | // conversion part. | |||
| 19558 | // | |||
| 19559 | // If we encounter a node that claims to be an odr-use but shouldn't be, we | |||
| 19560 | // transform it into the relevant kind of non-odr-use node and rebuild the | |||
| 19561 | // tree of nodes leading to it. | |||
| 19562 | // | |||
| 19563 | // This is a mini-TreeTransform that only transforms a restricted subset of | |||
| 19564 | // nodes (and only certain operands of them). | |||
| 19565 | ||||
| 19566 | // Rebuild a subexpression. | |||
| 19567 | auto Rebuild = [&](Expr *Sub) { | |||
| 19568 | return rebuildPotentialResultsAsNonOdrUsed(S, Sub, NOUR); | |||
| 19569 | }; | |||
| 19570 | ||||
| 19571 | // Check whether a potential result satisfies the requirements of NOUR. | |||
| 19572 | auto IsPotentialResultOdrUsed = [&](NamedDecl *D) { | |||
| 19573 | // Any entity other than a VarDecl is always odr-used whenever it's named | |||
| 19574 | // in a potentially-evaluated expression. | |||
| 19575 | auto *VD = dyn_cast<VarDecl>(D); | |||
| 19576 | if (!VD) | |||
| 19577 | return true; | |||
| 19578 | ||||
| 19579 | // C++2a [basic.def.odr]p4: | |||
| 19580 | // A variable x whose name appears as a potentially-evalauted expression | |||
| 19581 | // e is odr-used by e unless | |||
| 19582 | // -- x is a reference that is usable in constant expressions, or | |||
| 19583 | // -- x is a variable of non-reference type that is usable in constant | |||
| 19584 | // expressions and has no mutable subobjects, and e is an element of | |||
| 19585 | // the set of potential results of an expression of | |||
| 19586 | // non-volatile-qualified non-class type to which the lvalue-to-rvalue | |||
| 19587 | // conversion is applied, or | |||
| 19588 | // -- x is a variable of non-reference type, and e is an element of the | |||
| 19589 | // set of potential results of a discarded-value expression to which | |||
| 19590 | // the lvalue-to-rvalue conversion is not applied | |||
| 19591 | // | |||
| 19592 | // We check the first bullet and the "potentially-evaluated" condition in | |||
| 19593 | // BuildDeclRefExpr. We check the type requirements in the second bullet | |||
| 19594 | // in CheckLValueToRValueConversionOperand below. | |||
| 19595 | switch (NOUR) { | |||
| 19596 | case NOUR_None: | |||
| 19597 | case NOUR_Unevaluated: | |||
| 19598 | llvm_unreachable("unexpected non-odr-use-reason")::llvm::llvm_unreachable_internal("unexpected non-odr-use-reason" , "clang/lib/Sema/SemaExpr.cpp", 19598); | |||
| 19599 | ||||
| 19600 | case NOUR_Constant: | |||
| 19601 | // Constant references were handled when they were built. | |||
| 19602 | if (VD->getType()->isReferenceType()) | |||
| 19603 | return true; | |||
| 19604 | if (auto *RD = VD->getType()->getAsCXXRecordDecl()) | |||
| 19605 | if (RD->hasMutableFields()) | |||
| 19606 | return true; | |||
| 19607 | if (!VD->isUsableInConstantExpressions(S.Context)) | |||
| 19608 | return true; | |||
| 19609 | break; | |||
| 19610 | ||||
| 19611 | case NOUR_Discarded: | |||
| 19612 | if (VD->getType()->isReferenceType()) | |||
| 19613 | return true; | |||
| 19614 | break; | |||
| 19615 | } | |||
| 19616 | return false; | |||
| 19617 | }; | |||
| 19618 | ||||
| 19619 | // Mark that this expression does not constitute an odr-use. | |||
| 19620 | auto MarkNotOdrUsed = [&] { | |||
| 19621 | S.MaybeODRUseExprs.remove(E); | |||
| 19622 | if (LambdaScopeInfo *LSI = S.getCurLambda()) | |||
| 19623 | LSI->markVariableExprAsNonODRUsed(E); | |||
| 19624 | }; | |||
| 19625 | ||||
| 19626 | // C++2a [basic.def.odr]p2: | |||
| 19627 | // The set of potential results of an expression e is defined as follows: | |||
| 19628 | switch (E->getStmtClass()) { | |||
| 19629 | // -- If e is an id-expression, ... | |||
| 19630 | case Expr::DeclRefExprClass: { | |||
| 19631 | auto *DRE = cast<DeclRefExpr>(E); | |||
| 19632 | if (DRE->isNonOdrUse() || IsPotentialResultOdrUsed(DRE->getDecl())) | |||
| 19633 | break; | |||
| 19634 | ||||
| 19635 | // Rebuild as a non-odr-use DeclRefExpr. | |||
| 19636 | MarkNotOdrUsed(); | |||
| 19637 | return DeclRefExpr::Create( | |||
| 19638 | S.Context, DRE->getQualifierLoc(), DRE->getTemplateKeywordLoc(), | |||
| 19639 | DRE->getDecl(), DRE->refersToEnclosingVariableOrCapture(), | |||
| 19640 | DRE->getNameInfo(), DRE->getType(), DRE->getValueKind(), | |||
| 19641 | DRE->getFoundDecl(), CopiedTemplateArgs(DRE), NOUR); | |||
| 19642 | } | |||
| 19643 | ||||
| 19644 | case Expr::FunctionParmPackExprClass: { | |||
| 19645 | auto *FPPE = cast<FunctionParmPackExpr>(E); | |||
| 19646 | // If any of the declarations in the pack is odr-used, then the expression | |||
| 19647 | // as a whole constitutes an odr-use. | |||
| 19648 | for (VarDecl *D : *FPPE) | |||
| 19649 | if (IsPotentialResultOdrUsed(D)) | |||
| 19650 | return ExprEmpty(); | |||
| 19651 | ||||
| 19652 | // FIXME: Rebuild as a non-odr-use FunctionParmPackExpr? In practice, | |||
| 19653 | // nothing cares about whether we marked this as an odr-use, but it might | |||
| 19654 | // be useful for non-compiler tools. | |||
| 19655 | MarkNotOdrUsed(); | |||
| 19656 | break; | |||
| 19657 | } | |||
| 19658 | ||||
| 19659 | // -- If e is a subscripting operation with an array operand... | |||
| 19660 | case Expr::ArraySubscriptExprClass: { | |||
| 19661 | auto *ASE = cast<ArraySubscriptExpr>(E); | |||
| 19662 | Expr *OldBase = ASE->getBase()->IgnoreImplicit(); | |||
| 19663 | if (!OldBase->getType()->isArrayType()) | |||
| 19664 | break; | |||
| 19665 | ExprResult Base = Rebuild(OldBase); | |||
| 19666 | if (!Base.isUsable()) | |||
| 19667 | return Base; | |||
| 19668 | Expr *LHS = ASE->getBase() == ASE->getLHS() ? Base.get() : ASE->getLHS(); | |||
| 19669 | Expr *RHS = ASE->getBase() == ASE->getRHS() ? Base.get() : ASE->getRHS(); | |||
| 19670 | SourceLocation LBracketLoc = ASE->getBeginLoc(); // FIXME: Not stored. | |||
| 19671 | return S.ActOnArraySubscriptExpr(nullptr, LHS, LBracketLoc, RHS, | |||
| 19672 | ASE->getRBracketLoc()); | |||
| 19673 | } | |||
| 19674 | ||||
| 19675 | case Expr::MemberExprClass: { | |||
| 19676 | auto *ME = cast<MemberExpr>(E); | |||
| 19677 | // -- If e is a class member access expression [...] naming a non-static | |||
| 19678 | // data member... | |||
| 19679 | if (isa<FieldDecl>(ME->getMemberDecl())) { | |||
| 19680 | ExprResult Base = Rebuild(ME->getBase()); | |||
| 19681 | if (!Base.isUsable()) | |||
| 19682 | return Base; | |||
| 19683 | return MemberExpr::Create( | |||
| 19684 | S.Context, Base.get(), ME->isArrow(), ME->getOperatorLoc(), | |||
| 19685 | ME->getQualifierLoc(), ME->getTemplateKeywordLoc(), | |||
| 19686 | ME->getMemberDecl(), ME->getFoundDecl(), ME->getMemberNameInfo(), | |||
| 19687 | CopiedTemplateArgs(ME), ME->getType(), ME->getValueKind(), | |||
| 19688 | ME->getObjectKind(), ME->isNonOdrUse()); | |||
| 19689 | } | |||
| 19690 | ||||
| 19691 | if (ME->getMemberDecl()->isCXXInstanceMember()) | |||
| 19692 | break; | |||
| 19693 | ||||
| 19694 | // -- If e is a class member access expression naming a static data member, | |||
| 19695 | // ... | |||
| 19696 | if (ME->isNonOdrUse() || IsPotentialResultOdrUsed(ME->getMemberDecl())) | |||
| 19697 | break; | |||
| 19698 | ||||
| 19699 | // Rebuild as a non-odr-use MemberExpr. | |||
| 19700 | MarkNotOdrUsed(); | |||
| 19701 | return MemberExpr::Create( | |||
| 19702 | S.Context, ME->getBase(), ME->isArrow(), ME->getOperatorLoc(), | |||
| 19703 | ME->getQualifierLoc(), ME->getTemplateKeywordLoc(), ME->getMemberDecl(), | |||
| 19704 | ME->getFoundDecl(), ME->getMemberNameInfo(), CopiedTemplateArgs(ME), | |||
| 19705 | ME->getType(), ME->getValueKind(), ME->getObjectKind(), NOUR); | |||
| 19706 | } | |||
| 19707 | ||||
| 19708 | case Expr::BinaryOperatorClass: { | |||
| 19709 | auto *BO = cast<BinaryOperator>(E); | |||
| 19710 | Expr *LHS = BO->getLHS(); | |||
| 19711 | Expr *RHS = BO->getRHS(); | |||
| 19712 | // -- If e is a pointer-to-member expression of the form e1 .* e2 ... | |||
| 19713 | if (BO->getOpcode() == BO_PtrMemD) { | |||
| 19714 | ExprResult Sub = Rebuild(LHS); | |||
| 19715 | if (!Sub.isUsable()) | |||
| 19716 | return Sub; | |||
| 19717 | LHS = Sub.get(); | |||
| 19718 | // -- If e is a comma expression, ... | |||
| 19719 | } else if (BO->getOpcode() == BO_Comma) { | |||
| 19720 | ExprResult Sub = Rebuild(RHS); | |||
| 19721 | if (!Sub.isUsable()) | |||
| 19722 | return Sub; | |||
| 19723 | RHS = Sub.get(); | |||
| 19724 | } else { | |||
| 19725 | break; | |||
| 19726 | } | |||
| 19727 | return S.BuildBinOp(nullptr, BO->getOperatorLoc(), BO->getOpcode(), | |||
| 19728 | LHS, RHS); | |||
| 19729 | } | |||
| 19730 | ||||
| 19731 | // -- If e has the form (e1)... | |||
| 19732 | case Expr::ParenExprClass: { | |||
| 19733 | auto *PE = cast<ParenExpr>(E); | |||
| 19734 | ExprResult Sub = Rebuild(PE->getSubExpr()); | |||
| 19735 | if (!Sub.isUsable()) | |||
| 19736 | return Sub; | |||
| 19737 | return S.ActOnParenExpr(PE->getLParen(), PE->getRParen(), Sub.get()); | |||
| 19738 | } | |||
| 19739 | ||||
| 19740 | // -- If e is a glvalue conditional expression, ... | |||
| 19741 | // We don't apply this to a binary conditional operator. FIXME: Should we? | |||
| 19742 | case Expr::ConditionalOperatorClass: { | |||
| 19743 | auto *CO = cast<ConditionalOperator>(E); | |||
| 19744 | ExprResult LHS = Rebuild(CO->getLHS()); | |||
| 19745 | if (LHS.isInvalid()) | |||
| 19746 | return ExprError(); | |||
| 19747 | ExprResult RHS = Rebuild(CO->getRHS()); | |||
| 19748 | if (RHS.isInvalid()) | |||
| 19749 | return ExprError(); | |||
| 19750 | if (!LHS.isUsable() && !RHS.isUsable()) | |||
| 19751 | return ExprEmpty(); | |||
| 19752 | if (!LHS.isUsable()) | |||
| 19753 | LHS = CO->getLHS(); | |||
| 19754 | if (!RHS.isUsable()) | |||
| 19755 | RHS = CO->getRHS(); | |||
| 19756 | return S.ActOnConditionalOp(CO->getQuestionLoc(), CO->getColonLoc(), | |||
| 19757 | CO->getCond(), LHS.get(), RHS.get()); | |||
| 19758 | } | |||
| 19759 | ||||
| 19760 | // [Clang extension] | |||
| 19761 | // -- If e has the form __extension__ e1... | |||
| 19762 | case Expr::UnaryOperatorClass: { | |||
| 19763 | auto *UO = cast<UnaryOperator>(E); | |||
| 19764 | if (UO->getOpcode() != UO_Extension) | |||
| 19765 | break; | |||
| 19766 | ExprResult Sub = Rebuild(UO->getSubExpr()); | |||
| 19767 | if (!Sub.isUsable()) | |||
| 19768 | return Sub; | |||
| 19769 | return S.BuildUnaryOp(nullptr, UO->getOperatorLoc(), UO_Extension, | |||
| 19770 | Sub.get()); | |||
| 19771 | } | |||
| 19772 | ||||
| 19773 | // [Clang extension] | |||
| 19774 | // -- If e has the form _Generic(...), the set of potential results is the | |||
| 19775 | // union of the sets of potential results of the associated expressions. | |||
| 19776 | case Expr::GenericSelectionExprClass: { | |||
| 19777 | auto *GSE = cast<GenericSelectionExpr>(E); | |||
| 19778 | ||||
| 19779 | SmallVector<Expr *, 4> AssocExprs; | |||
| 19780 | bool AnyChanged = false; | |||
| 19781 | for (Expr *OrigAssocExpr : GSE->getAssocExprs()) { | |||
| 19782 | ExprResult AssocExpr = Rebuild(OrigAssocExpr); | |||
| 19783 | if (AssocExpr.isInvalid()) | |||
| 19784 | return ExprError(); | |||
| 19785 | if (AssocExpr.isUsable()) { | |||
| 19786 | AssocExprs.push_back(AssocExpr.get()); | |||
| 19787 | AnyChanged = true; | |||
| 19788 | } else { | |||
| 19789 | AssocExprs.push_back(OrigAssocExpr); | |||
| 19790 | } | |||
| 19791 | } | |||
| 19792 | ||||
| 19793 | return AnyChanged ? S.CreateGenericSelectionExpr( | |||
| 19794 | GSE->getGenericLoc(), GSE->getDefaultLoc(), | |||
| 19795 | GSE->getRParenLoc(), GSE->getControllingExpr(), | |||
| 19796 | GSE->getAssocTypeSourceInfos(), AssocExprs) | |||
| 19797 | : ExprEmpty(); | |||
| 19798 | } | |||
| 19799 | ||||
| 19800 | // [Clang extension] | |||
| 19801 | // -- If e has the form __builtin_choose_expr(...), the set of potential | |||
| 19802 | // results is the union of the sets of potential results of the | |||
| 19803 | // second and third subexpressions. | |||
| 19804 | case Expr::ChooseExprClass: { | |||
| 19805 | auto *CE = cast<ChooseExpr>(E); | |||
| 19806 | ||||
| 19807 | ExprResult LHS = Rebuild(CE->getLHS()); | |||
| 19808 | if (LHS.isInvalid()) | |||
| 19809 | return ExprError(); | |||
| 19810 | ||||
| 19811 | ExprResult RHS = Rebuild(CE->getLHS()); | |||
| 19812 | if (RHS.isInvalid()) | |||
| 19813 | return ExprError(); | |||
| 19814 | ||||
| 19815 | if (!LHS.get() && !RHS.get()) | |||
| 19816 | return ExprEmpty(); | |||
| 19817 | if (!LHS.isUsable()) | |||
| 19818 | LHS = CE->getLHS(); | |||
| 19819 | if (!RHS.isUsable()) | |||
| 19820 | RHS = CE->getRHS(); | |||
| 19821 | ||||
| 19822 | return S.ActOnChooseExpr(CE->getBuiltinLoc(), CE->getCond(), LHS.get(), | |||
| 19823 | RHS.get(), CE->getRParenLoc()); | |||
| 19824 | } | |||
| 19825 | ||||
| 19826 | // Step through non-syntactic nodes. | |||
| 19827 | case Expr::ConstantExprClass: { | |||
| 19828 | auto *CE = cast<ConstantExpr>(E); | |||
| 19829 | ExprResult Sub = Rebuild(CE->getSubExpr()); | |||
| 19830 | if (!Sub.isUsable()) | |||
| 19831 | return Sub; | |||
| 19832 | return ConstantExpr::Create(S.Context, Sub.get()); | |||
| 19833 | } | |||
| 19834 | ||||
| 19835 | // We could mostly rely on the recursive rebuilding to rebuild implicit | |||
| 19836 | // casts, but not at the top level, so rebuild them here. | |||
| 19837 | case Expr::ImplicitCastExprClass: { | |||
| 19838 | auto *ICE = cast<ImplicitCastExpr>(E); | |||
| 19839 | // Only step through the narrow set of cast kinds we expect to encounter. | |||
| 19840 | // Anything else suggests we've left the region in which potential results | |||
| 19841 | // can be found. | |||
| 19842 | switch (ICE->getCastKind()) { | |||
| 19843 | case CK_NoOp: | |||
| 19844 | case CK_DerivedToBase: | |||
| 19845 | case CK_UncheckedDerivedToBase: { | |||
| 19846 | ExprResult Sub = Rebuild(ICE->getSubExpr()); | |||
| 19847 | if (!Sub.isUsable()) | |||
| 19848 | return Sub; | |||
| 19849 | CXXCastPath Path(ICE->path()); | |||
| 19850 | return S.ImpCastExprToType(Sub.get(), ICE->getType(), ICE->getCastKind(), | |||
| 19851 | ICE->getValueKind(), &Path); | |||
| 19852 | } | |||
| 19853 | ||||
| 19854 | default: | |||
| 19855 | break; | |||
| 19856 | } | |||
| 19857 | break; | |||
| 19858 | } | |||
| 19859 | ||||
| 19860 | default: | |||
| 19861 | break; | |||
| 19862 | } | |||
| 19863 | ||||
| 19864 | // Can't traverse through this node. Nothing to do. | |||
| 19865 | return ExprEmpty(); | |||
| 19866 | } | |||
| 19867 | ||||
| 19868 | ExprResult Sema::CheckLValueToRValueConversionOperand(Expr *E) { | |||
| 19869 | // Check whether the operand is or contains an object of non-trivial C union | |||
| 19870 | // type. | |||
| 19871 | if (E->getType().isVolatileQualified() && | |||
| 19872 | (E->getType().hasNonTrivialToPrimitiveDestructCUnion() || | |||
| 19873 | E->getType().hasNonTrivialToPrimitiveCopyCUnion())) | |||
| 19874 | checkNonTrivialCUnion(E->getType(), E->getExprLoc(), | |||
| 19875 | Sema::NTCUC_LValueToRValueVolatile, | |||
| 19876 | NTCUK_Destruct|NTCUK_Copy); | |||
| 19877 | ||||
| 19878 | // C++2a [basic.def.odr]p4: | |||
| 19879 | // [...] an expression of non-volatile-qualified non-class type to which | |||
| 19880 | // the lvalue-to-rvalue conversion is applied [...] | |||
| 19881 | if (E->getType().isVolatileQualified() || E->getType()->getAs<RecordType>()) | |||
| 19882 | return E; | |||
| 19883 | ||||
| 19884 | ExprResult Result = | |||
| 19885 | rebuildPotentialResultsAsNonOdrUsed(*this, E, NOUR_Constant); | |||
| 19886 | if (Result.isInvalid()) | |||
| 19887 | return ExprError(); | |||
| 19888 | return Result.get() ? Result : E; | |||
| 19889 | } | |||
| 19890 | ||||
| 19891 | ExprResult Sema::ActOnConstantExpression(ExprResult Res) { | |||
| 19892 | Res = CorrectDelayedTyposInExpr(Res); | |||
| 19893 | ||||
| 19894 | if (!Res.isUsable()) | |||
| 19895 | return Res; | |||
| 19896 | ||||
| 19897 | // If a constant-expression is a reference to a variable where we delay | |||
| 19898 | // deciding whether it is an odr-use, just assume we will apply the | |||
| 19899 | // lvalue-to-rvalue conversion. In the one case where this doesn't happen | |||
| 19900 | // (a non-type template argument), we have special handling anyway. | |||
| 19901 | return CheckLValueToRValueConversionOperand(Res.get()); | |||
| 19902 | } | |||
| 19903 | ||||
| 19904 | void Sema::CleanupVarDeclMarking() { | |||
| 19905 | // Iterate through a local copy in case MarkVarDeclODRUsed makes a recursive | |||
| 19906 | // call. | |||
| 19907 | MaybeODRUseExprSet LocalMaybeODRUseExprs; | |||
| 19908 | std::swap(LocalMaybeODRUseExprs, MaybeODRUseExprs); | |||
| 19909 | ||||
| 19910 | for (Expr *E : LocalMaybeODRUseExprs) { | |||
| 19911 | if (auto *DRE = dyn_cast<DeclRefExpr>(E)) { | |||
| 19912 | MarkVarDeclODRUsed(cast<VarDecl>(DRE->getDecl()), | |||
| 19913 | DRE->getLocation(), *this); | |||
| 19914 | } else if (auto *ME = dyn_cast<MemberExpr>(E)) { | |||
| 19915 | MarkVarDeclODRUsed(cast<VarDecl>(ME->getMemberDecl()), ME->getMemberLoc(), | |||
| 19916 | *this); | |||
| 19917 | } else if (auto *FP = dyn_cast<FunctionParmPackExpr>(E)) { | |||
| 19918 | for (VarDecl *VD : *FP) | |||
| 19919 | MarkVarDeclODRUsed(VD, FP->getParameterPackLocation(), *this); | |||
| 19920 | } else { | |||
| 19921 | llvm_unreachable("Unexpected expression")::llvm::llvm_unreachable_internal("Unexpected expression", "clang/lib/Sema/SemaExpr.cpp" , 19921); | |||
| 19922 | } | |||
| 19923 | } | |||
| 19924 | ||||
| 19925 | assert(MaybeODRUseExprs.empty() &&(static_cast <bool> (MaybeODRUseExprs.empty() && "MarkVarDeclODRUsed failed to cleanup MaybeODRUseExprs?") ? void (0) : __assert_fail ("MaybeODRUseExprs.empty() && \"MarkVarDeclODRUsed failed to cleanup MaybeODRUseExprs?\"" , "clang/lib/Sema/SemaExpr.cpp", 19926, __extension__ __PRETTY_FUNCTION__ )) | |||
| 19926 | "MarkVarDeclODRUsed failed to cleanup MaybeODRUseExprs?")(static_cast <bool> (MaybeODRUseExprs.empty() && "MarkVarDeclODRUsed failed to cleanup MaybeODRUseExprs?") ? void (0) : __assert_fail ("MaybeODRUseExprs.empty() && \"MarkVarDeclODRUsed failed to cleanup MaybeODRUseExprs?\"" , "clang/lib/Sema/SemaExpr.cpp", 19926, __extension__ __PRETTY_FUNCTION__ )); | |||
| 19927 | } | |||
| 19928 | ||||
| 19929 | static void DoMarkPotentialCapture(Sema &SemaRef, SourceLocation Loc, | |||
| 19930 | ValueDecl *Var, Expr *E) { | |||
| 19931 | VarDecl *VD = Var->getPotentiallyDecomposedVarDecl(); | |||
| 19932 | if (!VD) | |||
| 19933 | return; | |||
| 19934 | ||||
| 19935 | const bool RefersToEnclosingScope = | |||
| 19936 | (SemaRef.CurContext != VD->getDeclContext() && | |||
| 19937 | VD->getDeclContext()->isFunctionOrMethod() && VD->hasLocalStorage()); | |||
| 19938 | if (RefersToEnclosingScope) { | |||
| 19939 | LambdaScopeInfo *const LSI = | |||
| 19940 | SemaRef.getCurLambda(/*IgnoreNonLambdaCapturingScope=*/true); | |||
| 19941 | if (LSI && (!LSI->CallOperator || | |||
| 19942 | !LSI->CallOperator->Encloses(Var->getDeclContext()))) { | |||
| 19943 | // If a variable could potentially be odr-used, defer marking it so | |||
| 19944 | // until we finish analyzing the full expression for any | |||
| 19945 | // lvalue-to-rvalue | |||
| 19946 | // or discarded value conversions that would obviate odr-use. | |||
| 19947 | // Add it to the list of potential captures that will be analyzed | |||
| 19948 | // later (ActOnFinishFullExpr) for eventual capture and odr-use marking | |||
| 19949 | // unless the variable is a reference that was initialized by a constant | |||
| 19950 | // expression (this will never need to be captured or odr-used). | |||
| 19951 | // | |||
| 19952 | // FIXME: We can simplify this a lot after implementing P0588R1. | |||
| 19953 | assert(E && "Capture variable should be used in an expression.")(static_cast <bool> (E && "Capture variable should be used in an expression." ) ? void (0) : __assert_fail ("E && \"Capture variable should be used in an expression.\"" , "clang/lib/Sema/SemaExpr.cpp", 19953, __extension__ __PRETTY_FUNCTION__ )); | |||
| 19954 | if (!Var->getType()->isReferenceType() || | |||
| 19955 | !VD->isUsableInConstantExpressions(SemaRef.Context)) | |||
| 19956 | LSI->addPotentialCapture(E->IgnoreParens()); | |||
| 19957 | } | |||
| 19958 | } | |||
| 19959 | } | |||
| 19960 | ||||
| 19961 | static void DoMarkVarDeclReferenced( | |||
| 19962 | Sema &SemaRef, SourceLocation Loc, VarDecl *Var, Expr *E, | |||
| 19963 | llvm::DenseMap<const VarDecl *, int> &RefsMinusAssignments) { | |||
| 19964 | assert((!E || isa<DeclRefExpr>(E) || isa<MemberExpr>(E) ||(static_cast <bool> ((!E || isa<DeclRefExpr>(E) || isa<MemberExpr>(E) || isa<FunctionParmPackExpr>( E)) && "Invalid Expr argument to DoMarkVarDeclReferenced" ) ? void (0) : __assert_fail ("(!E || isa<DeclRefExpr>(E) || isa<MemberExpr>(E) || isa<FunctionParmPackExpr>(E)) && \"Invalid Expr argument to DoMarkVarDeclReferenced\"" , "clang/lib/Sema/SemaExpr.cpp", 19966, __extension__ __PRETTY_FUNCTION__ )) | |||
| 19965 | isa<FunctionParmPackExpr>(E)) &&(static_cast <bool> ((!E || isa<DeclRefExpr>(E) || isa<MemberExpr>(E) || isa<FunctionParmPackExpr>( E)) && "Invalid Expr argument to DoMarkVarDeclReferenced" ) ? void (0) : __assert_fail ("(!E || isa<DeclRefExpr>(E) || isa<MemberExpr>(E) || isa<FunctionParmPackExpr>(E)) && \"Invalid Expr argument to DoMarkVarDeclReferenced\"" , "clang/lib/Sema/SemaExpr.cpp", 19966, __extension__ __PRETTY_FUNCTION__ )) | |||
| 19966 | "Invalid Expr argument to DoMarkVarDeclReferenced")(static_cast <bool> ((!E || isa<DeclRefExpr>(E) || isa<MemberExpr>(E) || isa<FunctionParmPackExpr>( E)) && "Invalid Expr argument to DoMarkVarDeclReferenced" ) ? void (0) : __assert_fail ("(!E || isa<DeclRefExpr>(E) || isa<MemberExpr>(E) || isa<FunctionParmPackExpr>(E)) && \"Invalid Expr argument to DoMarkVarDeclReferenced\"" , "clang/lib/Sema/SemaExpr.cpp", 19966, __extension__ __PRETTY_FUNCTION__ )); | |||
| 19967 | Var->setReferenced(); | |||
| 19968 | ||||
| 19969 | if (Var->isInvalidDecl()) | |||
| 19970 | return; | |||
| 19971 | ||||
| 19972 | auto *MSI = Var->getMemberSpecializationInfo(); | |||
| 19973 | TemplateSpecializationKind TSK = MSI ? MSI->getTemplateSpecializationKind() | |||
| 19974 | : Var->getTemplateSpecializationKind(); | |||
| 19975 | ||||
| 19976 | OdrUseContext OdrUse = isOdrUseContext(SemaRef); | |||
| 19977 | bool UsableInConstantExpr = | |||
| 19978 | Var->mightBeUsableInConstantExpressions(SemaRef.Context); | |||
| 19979 | ||||
| 19980 | if (Var->isLocalVarDeclOrParm() && !Var->hasExternalStorage()) { | |||
| 19981 | RefsMinusAssignments.insert({Var, 0}).first->getSecond()++; | |||
| 19982 | } | |||
| 19983 | ||||
| 19984 | // C++20 [expr.const]p12: | |||
| 19985 | // A variable [...] is needed for constant evaluation if it is [...] a | |||
| 19986 | // variable whose name appears as a potentially constant evaluated | |||
| 19987 | // expression that is either a contexpr variable or is of non-volatile | |||
| 19988 | // const-qualified integral type or of reference type | |||
| 19989 | bool NeededForConstantEvaluation = | |||
| 19990 | isPotentiallyConstantEvaluatedContext(SemaRef) && UsableInConstantExpr; | |||
| 19991 | ||||
| 19992 | bool NeedDefinition = | |||
| 19993 | OdrUse == OdrUseContext::Used || NeededForConstantEvaluation; | |||
| 19994 | ||||
| 19995 | assert(!isa<VarTemplatePartialSpecializationDecl>(Var) &&(static_cast <bool> (!isa<VarTemplatePartialSpecializationDecl >(Var) && "Can't instantiate a partial template specialization." ) ? void (0) : __assert_fail ("!isa<VarTemplatePartialSpecializationDecl>(Var) && \"Can't instantiate a partial template specialization.\"" , "clang/lib/Sema/SemaExpr.cpp", 19996, __extension__ __PRETTY_FUNCTION__ )) | |||
| 19996 | "Can't instantiate a partial template specialization.")(static_cast <bool> (!isa<VarTemplatePartialSpecializationDecl >(Var) && "Can't instantiate a partial template specialization." ) ? void (0) : __assert_fail ("!isa<VarTemplatePartialSpecializationDecl>(Var) && \"Can't instantiate a partial template specialization.\"" , "clang/lib/Sema/SemaExpr.cpp", 19996, __extension__ __PRETTY_FUNCTION__ )); | |||
| 19997 | ||||
| 19998 | // If this might be a member specialization of a static data member, check | |||
| 19999 | // the specialization is visible. We already did the checks for variable | |||
| 20000 | // template specializations when we created them. | |||
| 20001 | if (NeedDefinition && TSK != TSK_Undeclared && | |||
| 20002 | !isa<VarTemplateSpecializationDecl>(Var)) | |||
| 20003 | SemaRef.checkSpecializationVisibility(Loc, Var); | |||
| 20004 | ||||
| 20005 | // Perform implicit instantiation of static data members, static data member | |||
| 20006 | // templates of class templates, and variable template specializations. Delay | |||
| 20007 | // instantiations of variable templates, except for those that could be used | |||
| 20008 | // in a constant expression. | |||
| 20009 | if (NeedDefinition && isTemplateInstantiation(TSK)) { | |||
| 20010 | // Per C++17 [temp.explicit]p10, we may instantiate despite an explicit | |||
| 20011 | // instantiation declaration if a variable is usable in a constant | |||
| 20012 | // expression (among other cases). | |||
| 20013 | bool TryInstantiating = | |||
| 20014 | TSK == TSK_ImplicitInstantiation || | |||
| 20015 | (TSK == TSK_ExplicitInstantiationDeclaration && UsableInConstantExpr); | |||
| 20016 | ||||
| 20017 | if (TryInstantiating) { | |||
| 20018 | SourceLocation PointOfInstantiation = | |||
| 20019 | MSI ? MSI->getPointOfInstantiation() : Var->getPointOfInstantiation(); | |||
| 20020 | bool FirstInstantiation = PointOfInstantiation.isInvalid(); | |||
| 20021 | if (FirstInstantiation) { | |||
| 20022 | PointOfInstantiation = Loc; | |||
| 20023 | if (MSI) | |||
| 20024 | MSI->setPointOfInstantiation(PointOfInstantiation); | |||
| 20025 | // FIXME: Notify listener. | |||
| 20026 | else | |||
| 20027 | Var->setTemplateSpecializationKind(TSK, PointOfInstantiation); | |||
| 20028 | } | |||
| 20029 | ||||
| 20030 | if (UsableInConstantExpr) { | |||
| 20031 | // Do not defer instantiations of variables that could be used in a | |||
| 20032 | // constant expression. | |||
| 20033 | SemaRef.runWithSufficientStackSpace(PointOfInstantiation, [&] { | |||
| 20034 | SemaRef.InstantiateVariableDefinition(PointOfInstantiation, Var); | |||
| 20035 | }); | |||
| 20036 | ||||
| 20037 | // Re-set the member to trigger a recomputation of the dependence bits | |||
| 20038 | // for the expression. | |||
| 20039 | if (auto *DRE = dyn_cast_or_null<DeclRefExpr>(E)) | |||
| 20040 | DRE->setDecl(DRE->getDecl()); | |||
| 20041 | else if (auto *ME = dyn_cast_or_null<MemberExpr>(E)) | |||
| 20042 | ME->setMemberDecl(ME->getMemberDecl()); | |||
| 20043 | } else if (FirstInstantiation) { | |||
| 20044 | SemaRef.PendingInstantiations | |||
| 20045 | .push_back(std::make_pair(Var, PointOfInstantiation)); | |||
| 20046 | } else { | |||
| 20047 | bool Inserted = false; | |||
| 20048 | for (auto &I : SemaRef.SavedPendingInstantiations) { | |||
| 20049 | auto Iter = llvm::find_if( | |||
| 20050 | I, [Var](const Sema::PendingImplicitInstantiation &P) { | |||
| 20051 | return P.first == Var; | |||
| 20052 | }); | |||
| 20053 | if (Iter != I.end()) { | |||
| 20054 | SemaRef.PendingInstantiations.push_back(*Iter); | |||
| 20055 | I.erase(Iter); | |||
| 20056 | Inserted = true; | |||
| 20057 | break; | |||
| 20058 | } | |||
| 20059 | } | |||
| 20060 | ||||
| 20061 | // FIXME: For a specialization of a variable template, we don't | |||
| 20062 | // distinguish between "declaration and type implicitly instantiated" | |||
| 20063 | // and "implicit instantiation of definition requested", so we have | |||
| 20064 | // no direct way to avoid enqueueing the pending instantiation | |||
| 20065 | // multiple times. | |||
| 20066 | if (isa<VarTemplateSpecializationDecl>(Var) && !Inserted) | |||
| 20067 | SemaRef.PendingInstantiations | |||
| 20068 | .push_back(std::make_pair(Var, PointOfInstantiation)); | |||
| 20069 | } | |||
| 20070 | } | |||
| 20071 | } | |||
| 20072 | ||||
| 20073 | // C++2a [basic.def.odr]p4: | |||
| 20074 | // A variable x whose name appears as a potentially-evaluated expression e | |||
| 20075 | // is odr-used by e unless | |||
| 20076 | // -- x is a reference that is usable in constant expressions | |||
| 20077 | // -- x is a variable of non-reference type that is usable in constant | |||
| 20078 | // expressions and has no mutable subobjects [FIXME], and e is an | |||
| 20079 | // element of the set of potential results of an expression of | |||
| 20080 | // non-volatile-qualified non-class type to which the lvalue-to-rvalue | |||
| 20081 | // conversion is applied | |||
| 20082 | // -- x is a variable of non-reference type, and e is an element of the set | |||
| 20083 | // of potential results of a discarded-value expression to which the | |||
| 20084 | // lvalue-to-rvalue conversion is not applied [FIXME] | |||
| 20085 | // | |||
| 20086 | // We check the first part of the second bullet here, and | |||
| 20087 | // Sema::CheckLValueToRValueConversionOperand deals with the second part. | |||
| 20088 | // FIXME: To get the third bullet right, we need to delay this even for | |||
| 20089 | // variables that are not usable in constant expressions. | |||
| 20090 | ||||
| 20091 | // If we already know this isn't an odr-use, there's nothing more to do. | |||
| 20092 | if (DeclRefExpr *DRE = dyn_cast_or_null<DeclRefExpr>(E)) | |||
| 20093 | if (DRE->isNonOdrUse()) | |||
| 20094 | return; | |||
| 20095 | if (MemberExpr *ME = dyn_cast_or_null<MemberExpr>(E)) | |||
| 20096 | if (ME->isNonOdrUse()) | |||
| 20097 | return; | |||
| 20098 | ||||
| 20099 | switch (OdrUse) { | |||
| 20100 | case OdrUseContext::None: | |||
| 20101 | // In some cases, a variable may not have been marked unevaluated, if it | |||
| 20102 | // appears in a defaukt initializer. | |||
| 20103 | assert((!E || isa<FunctionParmPackExpr>(E) ||(static_cast <bool> ((!E || isa<FunctionParmPackExpr >(E) || SemaRef.isUnevaluatedContext()) && "missing non-odr-use marking for unevaluated decl ref" ) ? void (0) : __assert_fail ("(!E || isa<FunctionParmPackExpr>(E) || SemaRef.isUnevaluatedContext()) && \"missing non-odr-use marking for unevaluated decl ref\"" , "clang/lib/Sema/SemaExpr.cpp", 20105, __extension__ __PRETTY_FUNCTION__ )) | |||
| 20104 | SemaRef.isUnevaluatedContext()) &&(static_cast <bool> ((!E || isa<FunctionParmPackExpr >(E) || SemaRef.isUnevaluatedContext()) && "missing non-odr-use marking for unevaluated decl ref" ) ? void (0) : __assert_fail ("(!E || isa<FunctionParmPackExpr>(E) || SemaRef.isUnevaluatedContext()) && \"missing non-odr-use marking for unevaluated decl ref\"" , "clang/lib/Sema/SemaExpr.cpp", 20105, __extension__ __PRETTY_FUNCTION__ )) | |||
| 20105 | "missing non-odr-use marking for unevaluated decl ref")(static_cast <bool> ((!E || isa<FunctionParmPackExpr >(E) || SemaRef.isUnevaluatedContext()) && "missing non-odr-use marking for unevaluated decl ref" ) ? void (0) : __assert_fail ("(!E || isa<FunctionParmPackExpr>(E) || SemaRef.isUnevaluatedContext()) && \"missing non-odr-use marking for unevaluated decl ref\"" , "clang/lib/Sema/SemaExpr.cpp", 20105, __extension__ __PRETTY_FUNCTION__ )); | |||
| 20106 | break; | |||
| 20107 | ||||
| 20108 | case OdrUseContext::FormallyOdrUsed: | |||
| 20109 | // FIXME: Ignoring formal odr-uses results in incorrect lambda capture | |||
| 20110 | // behavior. | |||
| 20111 | break; | |||
| 20112 | ||||
| 20113 | case OdrUseContext::Used: | |||
| 20114 | // If we might later find that this expression isn't actually an odr-use, | |||
| 20115 | // delay the marking. | |||
| 20116 | if (E && Var->isUsableInConstantExpressions(SemaRef.Context)) | |||
| 20117 | SemaRef.MaybeODRUseExprs.insert(E); | |||
| 20118 | else | |||
| 20119 | MarkVarDeclODRUsed(Var, Loc, SemaRef); | |||
| 20120 | break; | |||
| 20121 | ||||
| 20122 | case OdrUseContext::Dependent: | |||
| 20123 | // If this is a dependent context, we don't need to mark variables as | |||
| 20124 | // odr-used, but we may still need to track them for lambda capture. | |||
| 20125 | // FIXME: Do we also need to do this inside dependent typeid expressions | |||
| 20126 | // (which are modeled as unevaluated at this point)? | |||
| 20127 | DoMarkPotentialCapture(SemaRef, Loc, Var, E); | |||
| 20128 | break; | |||
| 20129 | } | |||
| 20130 | } | |||
| 20131 | ||||
| 20132 | static void DoMarkBindingDeclReferenced(Sema &SemaRef, SourceLocation Loc, | |||
| 20133 | BindingDecl *BD, Expr *E) { | |||
| 20134 | BD->setReferenced(); | |||
| 20135 | ||||
| 20136 | if (BD->isInvalidDecl()) | |||
| 20137 | return; | |||
| 20138 | ||||
| 20139 | OdrUseContext OdrUse = isOdrUseContext(SemaRef); | |||
| 20140 | if (OdrUse == OdrUseContext::Used) { | |||
| 20141 | QualType CaptureType, DeclRefType; | |||
| 20142 | SemaRef.tryCaptureVariable(BD, Loc, Sema::TryCapture_Implicit, | |||
| 20143 | /*EllipsisLoc*/ SourceLocation(), | |||
| 20144 | /*BuildAndDiagnose*/ true, CaptureType, | |||
| 20145 | DeclRefType, | |||
| 20146 | /*FunctionScopeIndexToStopAt*/ nullptr); | |||
| 20147 | } else if (OdrUse == OdrUseContext::Dependent) { | |||
| 20148 | DoMarkPotentialCapture(SemaRef, Loc, BD, E); | |||
| 20149 | } | |||
| 20150 | } | |||
| 20151 | ||||
| 20152 | /// Mark a variable referenced, and check whether it is odr-used | |||
| 20153 | /// (C++ [basic.def.odr]p2, C99 6.9p3). Note that this should not be | |||
| 20154 | /// used directly for normal expressions referring to VarDecl. | |||
| 20155 | void Sema::MarkVariableReferenced(SourceLocation Loc, VarDecl *Var) { | |||
| 20156 | DoMarkVarDeclReferenced(*this, Loc, Var, nullptr, RefsMinusAssignments); | |||
| 20157 | } | |||
| 20158 | ||||
| 20159 | static void | |||
| 20160 | MarkExprReferenced(Sema &SemaRef, SourceLocation Loc, Decl *D, Expr *E, | |||
| 20161 | bool MightBeOdrUse, | |||
| 20162 | llvm::DenseMap<const VarDecl *, int> &RefsMinusAssignments) { | |||
| 20163 | if (SemaRef.isInOpenMPDeclareTargetContext()) | |||
| 20164 | SemaRef.checkDeclIsAllowedInOpenMPTarget(E, D); | |||
| 20165 | ||||
| 20166 | if (VarDecl *Var = dyn_cast<VarDecl>(D)) { | |||
| 20167 | DoMarkVarDeclReferenced(SemaRef, Loc, Var, E, RefsMinusAssignments); | |||
| 20168 | return; | |||
| 20169 | } | |||
| 20170 | ||||
| 20171 | if (BindingDecl *Decl = dyn_cast<BindingDecl>(D)) { | |||
| 20172 | DoMarkBindingDeclReferenced(SemaRef, Loc, Decl, E); | |||
| 20173 | return; | |||
| 20174 | } | |||
| 20175 | ||||
| 20176 | SemaRef.MarkAnyDeclReferenced(Loc, D, MightBeOdrUse); | |||
| 20177 | ||||
| 20178 | // If this is a call to a method via a cast, also mark the method in the | |||
| 20179 | // derived class used in case codegen can devirtualize the call. | |||
| 20180 | const MemberExpr *ME = dyn_cast<MemberExpr>(E); | |||
| 20181 | if (!ME) | |||
| 20182 | return; | |||
| 20183 | CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ME->getMemberDecl()); | |||
| 20184 | if (!MD) | |||
| 20185 | return; | |||
| 20186 | // Only attempt to devirtualize if this is truly a virtual call. | |||
| 20187 | bool IsVirtualCall = MD->isVirtual() && | |||
| 20188 | ME->performsVirtualDispatch(SemaRef.getLangOpts()); | |||
| 20189 | if (!IsVirtualCall) | |||
| 20190 | return; | |||
| 20191 | ||||
| 20192 | // If it's possible to devirtualize the call, mark the called function | |||
| 20193 | // referenced. | |||
| 20194 | CXXMethodDecl *DM = MD->getDevirtualizedMethod( | |||
| 20195 | ME->getBase(), SemaRef.getLangOpts().AppleKext); | |||
| 20196 | if (DM) | |||
| 20197 | SemaRef.MarkAnyDeclReferenced(Loc, DM, MightBeOdrUse); | |||
| 20198 | } | |||
| 20199 | ||||
| 20200 | /// Perform reference-marking and odr-use handling for a DeclRefExpr. | |||
| 20201 | /// | |||
| 20202 | /// Note, this may change the dependence of the DeclRefExpr, and so needs to be | |||
| 20203 | /// handled with care if the DeclRefExpr is not newly-created. | |||
| 20204 | void Sema::MarkDeclRefReferenced(DeclRefExpr *E, const Expr *Base) { | |||
| 20205 | // TODO: update this with DR# once a defect report is filed. | |||
| 20206 | // C++11 defect. The address of a pure member should not be an ODR use, even | |||
| 20207 | // if it's a qualified reference. | |||
| 20208 | bool OdrUse = true; | |||
| 20209 | if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getDecl())) | |||
| 20210 | if (Method->isVirtual() && | |||
| 20211 | !Method->getDevirtualizedMethod(Base, getLangOpts().AppleKext)) | |||
| 20212 | OdrUse = false; | |||
| 20213 | ||||
| 20214 | if (auto *FD = dyn_cast<FunctionDecl>(E->getDecl())) | |||
| 20215 | if (!isUnevaluatedContext() && !isConstantEvaluated() && | |||
| 20216 | !isImmediateFunctionContext() && | |||
| 20217 | !isCheckingDefaultArgumentOrInitializer() && FD->isConsteval() && | |||
| 20218 | !RebuildingImmediateInvocation && !FD->isDependentContext()) | |||
| 20219 | ExprEvalContexts.back().ReferenceToConsteval.insert(E); | |||
| 20220 | MarkExprReferenced(*this, E->getLocation(), E->getDecl(), E, OdrUse, | |||
| 20221 | RefsMinusAssignments); | |||
| 20222 | } | |||
| 20223 | ||||
| 20224 | /// Perform reference-marking and odr-use handling for a MemberExpr. | |||
| 20225 | void Sema::MarkMemberReferenced(MemberExpr *E) { | |||
| 20226 | // C++11 [basic.def.odr]p2: | |||
| 20227 | // A non-overloaded function whose name appears as a potentially-evaluated | |||
| 20228 | // expression or a member of a set of candidate functions, if selected by | |||
| 20229 | // overload resolution when referred to from a potentially-evaluated | |||
| 20230 | // expression, is odr-used, unless it is a pure virtual function and its | |||
| 20231 | // name is not explicitly qualified. | |||
| 20232 | bool MightBeOdrUse = true; | |||
| 20233 | if (E->performsVirtualDispatch(getLangOpts())) { | |||
| 20234 | if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getMemberDecl())) | |||
| 20235 | if (Method->isPure()) | |||
| 20236 | MightBeOdrUse = false; | |||
| 20237 | } | |||
| 20238 | SourceLocation Loc = | |||
| 20239 | E->getMemberLoc().isValid() ? E->getMemberLoc() : E->getBeginLoc(); | |||
| 20240 | MarkExprReferenced(*this, Loc, E->getMemberDecl(), E, MightBeOdrUse, | |||
| 20241 | RefsMinusAssignments); | |||
| 20242 | } | |||
| 20243 | ||||
| 20244 | /// Perform reference-marking and odr-use handling for a FunctionParmPackExpr. | |||
| 20245 | void Sema::MarkFunctionParmPackReferenced(FunctionParmPackExpr *E) { | |||
| 20246 | for (VarDecl *VD : *E) | |||
| 20247 | MarkExprReferenced(*this, E->getParameterPackLocation(), VD, E, true, | |||
| 20248 | RefsMinusAssignments); | |||
| 20249 | } | |||
| 20250 | ||||
| 20251 | /// Perform marking for a reference to an arbitrary declaration. It | |||
| 20252 | /// marks the declaration referenced, and performs odr-use checking for | |||
| 20253 | /// functions and variables. This method should not be used when building a | |||
| 20254 | /// normal expression which refers to a variable. | |||
| 20255 | void Sema::MarkAnyDeclReferenced(SourceLocation Loc, Decl *D, | |||
| 20256 | bool MightBeOdrUse) { | |||
| 20257 | if (MightBeOdrUse) { | |||
| 20258 | if (auto *VD = dyn_cast<VarDecl>(D)) { | |||
| 20259 | MarkVariableReferenced(Loc, VD); | |||
| 20260 | return; | |||
| 20261 | } | |||
| 20262 | } | |||
| 20263 | if (auto *FD = dyn_cast<FunctionDecl>(D)) { | |||
| 20264 | MarkFunctionReferenced(Loc, FD, MightBeOdrUse); | |||
| 20265 | return; | |||
| 20266 | } | |||
| 20267 | D->setReferenced(); | |||
| 20268 | } | |||
| 20269 | ||||
| 20270 | namespace { | |||
| 20271 | // Mark all of the declarations used by a type as referenced. | |||
| 20272 | // FIXME: Not fully implemented yet! We need to have a better understanding | |||
| 20273 | // of when we're entering a context we should not recurse into. | |||
| 20274 | // FIXME: This is and EvaluatedExprMarker are more-or-less equivalent to | |||
| 20275 | // TreeTransforms rebuilding the type in a new context. Rather than | |||
| 20276 | // duplicating the TreeTransform logic, we should consider reusing it here. | |||
| 20277 | // Currently that causes problems when rebuilding LambdaExprs. | |||
| 20278 | class MarkReferencedDecls : public RecursiveASTVisitor<MarkReferencedDecls> { | |||
| 20279 | Sema &S; | |||
| 20280 | SourceLocation Loc; | |||
| 20281 | ||||
| 20282 | public: | |||
| 20283 | typedef RecursiveASTVisitor<MarkReferencedDecls> Inherited; | |||
| 20284 | ||||
| 20285 | MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { } | |||
| 20286 | ||||
| 20287 | bool TraverseTemplateArgument(const TemplateArgument &Arg); | |||
| 20288 | }; | |||
| 20289 | } | |||
| 20290 | ||||
| 20291 | bool MarkReferencedDecls::TraverseTemplateArgument( | |||
| 20292 | const TemplateArgument &Arg) { | |||
| 20293 | { | |||
| 20294 | // A non-type template argument is a constant-evaluated context. | |||
| 20295 | EnterExpressionEvaluationContext Evaluated( | |||
| 20296 | S, Sema::ExpressionEvaluationContext::ConstantEvaluated); | |||
| 20297 | if (Arg.getKind() == TemplateArgument::Declaration) { | |||
| 20298 | if (Decl *D = Arg.getAsDecl()) | |||
| 20299 | S.MarkAnyDeclReferenced(Loc, D, true); | |||
| 20300 | } else if (Arg.getKind() == TemplateArgument::Expression) { | |||
| 20301 | S.MarkDeclarationsReferencedInExpr(Arg.getAsExpr(), false); | |||
| 20302 | } | |||
| 20303 | } | |||
| 20304 | ||||
| 20305 | return Inherited::TraverseTemplateArgument(Arg); | |||
| 20306 | } | |||
| 20307 | ||||
| 20308 | void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) { | |||
| 20309 | MarkReferencedDecls Marker(*this, Loc); | |||
| 20310 | Marker.TraverseType(T); | |||
| 20311 | } | |||
| 20312 | ||||
| 20313 | namespace { | |||
| 20314 | /// Helper class that marks all of the declarations referenced by | |||
| 20315 | /// potentially-evaluated subexpressions as "referenced". | |||
| 20316 | class EvaluatedExprMarker : public UsedDeclVisitor<EvaluatedExprMarker> { | |||
| 20317 | public: | |||
| 20318 | typedef UsedDeclVisitor<EvaluatedExprMarker> Inherited; | |||
| 20319 | bool SkipLocalVariables; | |||
| 20320 | ArrayRef<const Expr *> StopAt; | |||
| 20321 | ||||
| 20322 | EvaluatedExprMarker(Sema &S, bool SkipLocalVariables, | |||
| 20323 | ArrayRef<const Expr *> StopAt) | |||
| 20324 | : Inherited(S), SkipLocalVariables(SkipLocalVariables), StopAt(StopAt) {} | |||
| 20325 | ||||
| 20326 | void visitUsedDecl(SourceLocation Loc, Decl *D) { | |||
| 20327 | S.MarkFunctionReferenced(Loc, cast<FunctionDecl>(D)); | |||
| 20328 | } | |||
| 20329 | ||||
| 20330 | void Visit(Expr *E) { | |||
| 20331 | if (llvm::is_contained(StopAt, E)) | |||
| 20332 | return; | |||
| 20333 | Inherited::Visit(E); | |||
| 20334 | } | |||
| 20335 | ||||
| 20336 | void VisitConstantExpr(ConstantExpr *E) { | |||
| 20337 | // Don't mark declarations within a ConstantExpression, as this expression | |||
| 20338 | // will be evaluated and folded to a value. | |||
| 20339 | } | |||
| 20340 | ||||
| 20341 | void VisitDeclRefExpr(DeclRefExpr *E) { | |||
| 20342 | // If we were asked not to visit local variables, don't. | |||
| 20343 | if (SkipLocalVariables) { | |||
| 20344 | if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl())) | |||
| 20345 | if (VD->hasLocalStorage()) | |||
| 20346 | return; | |||
| 20347 | } | |||
| 20348 | ||||
| 20349 | // FIXME: This can trigger the instantiation of the initializer of a | |||
| 20350 | // variable, which can cause the expression to become value-dependent | |||
| 20351 | // or error-dependent. Do we need to propagate the new dependence bits? | |||
| 20352 | S.MarkDeclRefReferenced(E); | |||
| 20353 | } | |||
| 20354 | ||||
| 20355 | void VisitMemberExpr(MemberExpr *E) { | |||
| 20356 | S.MarkMemberReferenced(E); | |||
| 20357 | Visit(E->getBase()); | |||
| 20358 | } | |||
| 20359 | }; | |||
| 20360 | } // namespace | |||
| 20361 | ||||
| 20362 | /// Mark any declarations that appear within this expression or any | |||
| 20363 | /// potentially-evaluated subexpressions as "referenced". | |||
| 20364 | /// | |||
| 20365 | /// \param SkipLocalVariables If true, don't mark local variables as | |||
| 20366 | /// 'referenced'. | |||
| 20367 | /// \param StopAt Subexpressions that we shouldn't recurse into. | |||
| 20368 | void Sema::MarkDeclarationsReferencedInExpr(Expr *E, | |||
| 20369 | bool SkipLocalVariables, | |||
| 20370 | ArrayRef<const Expr*> StopAt) { | |||
| 20371 | EvaluatedExprMarker(*this, SkipLocalVariables, StopAt).Visit(E); | |||
| 20372 | } | |||
| 20373 | ||||
| 20374 | /// Emit a diagnostic when statements are reachable. | |||
| 20375 | /// FIXME: check for reachability even in expressions for which we don't build a | |||
| 20376 | /// CFG (eg, in the initializer of a global or in a constant expression). | |||
| 20377 | /// For example, | |||
| 20378 | /// namespace { auto *p = new double[3][false ? (1, 2) : 3]; } | |||
| 20379 | bool Sema::DiagIfReachable(SourceLocation Loc, ArrayRef<const Stmt *> Stmts, | |||
| 20380 | const PartialDiagnostic &PD) { | |||
| 20381 | if (!Stmts.empty() && getCurFunctionOrMethodDecl()) { | |||
| 20382 | if (!FunctionScopes.empty()) | |||
| 20383 | FunctionScopes.back()->PossiblyUnreachableDiags.push_back( | |||
| 20384 | sema::PossiblyUnreachableDiag(PD, Loc, Stmts)); | |||
| 20385 | return true; | |||
| 20386 | } | |||
| 20387 | ||||
| 20388 | // The initializer of a constexpr variable or of the first declaration of a | |||
| 20389 | // static data member is not syntactically a constant evaluated constant, | |||
| 20390 | // but nonetheless is always required to be a constant expression, so we | |||
| 20391 | // can skip diagnosing. | |||
| 20392 | // FIXME: Using the mangling context here is a hack. | |||
| 20393 | if (auto *VD = dyn_cast_or_null<VarDecl>( | |||
| 20394 | ExprEvalContexts.back().ManglingContextDecl)) { | |||
| 20395 | if (VD->isConstexpr() || | |||
| 20396 | (VD->isStaticDataMember() && VD->isFirstDecl() && !VD->isInline())) | |||
| 20397 | return false; | |||
| 20398 | // FIXME: For any other kind of variable, we should build a CFG for its | |||
| 20399 | // initializer and check whether the context in question is reachable. | |||
| 20400 | } | |||
| 20401 | ||||
| 20402 | Diag(Loc, PD); | |||
| 20403 | return true; | |||
| 20404 | } | |||
| 20405 | ||||
| 20406 | /// Emit a diagnostic that describes an effect on the run-time behavior | |||
| 20407 | /// of the program being compiled. | |||
| 20408 | /// | |||
| 20409 | /// This routine emits the given diagnostic when the code currently being | |||
| 20410 | /// type-checked is "potentially evaluated", meaning that there is a | |||
| 20411 | /// possibility that the code will actually be executable. Code in sizeof() | |||
| 20412 | /// expressions, code used only during overload resolution, etc., are not | |||
| 20413 | /// potentially evaluated. This routine will suppress such diagnostics or, | |||
| 20414 | /// in the absolutely nutty case of potentially potentially evaluated | |||
| 20415 | /// expressions (C++ typeid), queue the diagnostic to potentially emit it | |||
| 20416 | /// later. | |||
| 20417 | /// | |||
| 20418 | /// This routine should be used for all diagnostics that describe the run-time | |||
| 20419 | /// behavior of a program, such as passing a non-POD value through an ellipsis. | |||
| 20420 | /// Failure to do so will likely result in spurious diagnostics or failures | |||
| 20421 | /// during overload resolution or within sizeof/alignof/typeof/typeid. | |||
| 20422 | bool Sema::DiagRuntimeBehavior(SourceLocation Loc, ArrayRef<const Stmt*> Stmts, | |||
| 20423 | const PartialDiagnostic &PD) { | |||
| 20424 | ||||
| 20425 | if (ExprEvalContexts.back().isDiscardedStatementContext()) | |||
| 20426 | return false; | |||
| 20427 | ||||
| 20428 | switch (ExprEvalContexts.back().Context) { | |||
| 20429 | case ExpressionEvaluationContext::Unevaluated: | |||
| 20430 | case ExpressionEvaluationContext::UnevaluatedList: | |||
| 20431 | case ExpressionEvaluationContext::UnevaluatedAbstract: | |||
| 20432 | case ExpressionEvaluationContext::DiscardedStatement: | |||
| 20433 | // The argument will never be evaluated, so don't complain. | |||
| 20434 | break; | |||
| 20435 | ||||
| 20436 | case ExpressionEvaluationContext::ConstantEvaluated: | |||
| 20437 | case ExpressionEvaluationContext::ImmediateFunctionContext: | |||
| 20438 | // Relevant diagnostics should be produced by constant evaluation. | |||
| 20439 | break; | |||
| 20440 | ||||
| 20441 | case ExpressionEvaluationContext::PotentiallyEvaluated: | |||
| 20442 | case ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed: | |||
| 20443 | return DiagIfReachable(Loc, Stmts, PD); | |||
| 20444 | } | |||
| 20445 | ||||
| 20446 | return false; | |||
| 20447 | } | |||
| 20448 | ||||
| 20449 | bool Sema::DiagRuntimeBehavior(SourceLocation Loc, const Stmt *Statement, | |||
| 20450 | const PartialDiagnostic &PD) { | |||
| 20451 | return DiagRuntimeBehavior( | |||
| 20452 | Loc, Statement ? llvm::ArrayRef(Statement) : std::nullopt, PD); | |||
| 20453 | } | |||
| 20454 | ||||
| 20455 | bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc, | |||
| 20456 | CallExpr *CE, FunctionDecl *FD) { | |||
| 20457 | if (ReturnType->isVoidType() || !ReturnType->isIncompleteType()) | |||
| 20458 | return false; | |||
| 20459 | ||||
| 20460 | // If we're inside a decltype's expression, don't check for a valid return | |||
| 20461 | // type or construct temporaries until we know whether this is the last call. | |||
| 20462 | if (ExprEvalContexts.back().ExprContext == | |||
| 20463 | ExpressionEvaluationContextRecord::EK_Decltype) { | |||
| 20464 | ExprEvalContexts.back().DelayedDecltypeCalls.push_back(CE); | |||
| 20465 | return false; | |||
| 20466 | } | |||
| 20467 | ||||
| 20468 | class CallReturnIncompleteDiagnoser : public TypeDiagnoser { | |||
| 20469 | FunctionDecl *FD; | |||
| 20470 | CallExpr *CE; | |||
| 20471 | ||||
| 20472 | public: | |||
| 20473 | CallReturnIncompleteDiagnoser(FunctionDecl *FD, CallExpr *CE) | |||
| 20474 | : FD(FD), CE(CE) { } | |||
| 20475 | ||||
| 20476 | void diagnose(Sema &S, SourceLocation Loc, QualType T) override { | |||
| 20477 | if (!FD) { | |||
| 20478 | S.Diag(Loc, diag::err_call_incomplete_return) | |||
| 20479 | << T << CE->getSourceRange(); | |||
| 20480 | return; | |||
| 20481 | } | |||
| 20482 | ||||
| 20483 | S.Diag(Loc, diag::err_call_function_incomplete_return) | |||
| 20484 | << CE->getSourceRange() << FD << T; | |||
| 20485 | S.Diag(FD->getLocation(), diag::note_entity_declared_at) | |||
| 20486 | << FD->getDeclName(); | |||
| 20487 | } | |||
| 20488 | } Diagnoser(FD, CE); | |||
| 20489 | ||||
| 20490 | if (RequireCompleteType(Loc, ReturnType, Diagnoser)) | |||
| 20491 | return true; | |||
| 20492 | ||||
| 20493 | return false; | |||
| 20494 | } | |||
| 20495 | ||||
| 20496 | // Diagnose the s/=/==/ and s/\|=/!=/ typos. Note that adding parentheses | |||
| 20497 | // will prevent this condition from triggering, which is what we want. | |||
| 20498 | void Sema::DiagnoseAssignmentAsCondition(Expr *E) { | |||
| 20499 | SourceLocation Loc; | |||
| 20500 | ||||
| 20501 | unsigned diagnostic = diag::warn_condition_is_assignment; | |||
| 20502 | bool IsOrAssign = false; | |||
| 20503 | ||||
| 20504 | if (BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) { | |||
| 20505 | if (Op->getOpcode() != BO_Assign && Op->getOpcode() != BO_OrAssign) | |||
| 20506 | return; | |||
| 20507 | ||||
| 20508 | IsOrAssign = Op->getOpcode() == BO_OrAssign; | |||
| 20509 | ||||
| 20510 | // Greylist some idioms by putting them into a warning subcategory. | |||
| 20511 | if (ObjCMessageExpr *ME | |||
| 20512 | = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) { | |||
| 20513 | Selector Sel = ME->getSelector(); | |||
| 20514 | ||||
| 20515 | // self = [<foo> init...] | |||
| 20516 | if (isSelfExpr(Op->getLHS()) && ME->getMethodFamily() == OMF_init) | |||
| 20517 | diagnostic = diag::warn_condition_is_idiomatic_assignment; | |||
| 20518 | ||||
| 20519 | // <foo> = [<bar> nextObject] | |||
| 20520 | else if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "nextObject") | |||
| 20521 | diagnostic = diag::warn_condition_is_idiomatic_assignment; | |||
| 20522 | } | |||
| 20523 | ||||
| 20524 | Loc = Op->getOperatorLoc(); | |||
| 20525 | } else if (CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) { | |||
| 20526 | if (Op->getOperator() != OO_Equal && Op->getOperator() != OO_PipeEqual) | |||
| 20527 | return; | |||
| 20528 | ||||
| 20529 | IsOrAssign = Op->getOperator() == OO_PipeEqual; | |||
| 20530 | Loc = Op->getOperatorLoc(); | |||
| 20531 | } else if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) | |||
| 20532 | return DiagnoseAssignmentAsCondition(POE->getSyntacticForm()); | |||
| 20533 | else { | |||
| 20534 | // Not an assignment. | |||
| 20535 | return; | |||
| 20536 | } | |||
| 20537 | ||||
| 20538 | Diag(Loc, diagnostic) << E->getSourceRange(); | |||
| 20539 | ||||
| 20540 | SourceLocation Open = E->getBeginLoc(); | |||
| 20541 | SourceLocation Close = getLocForEndOfToken(E->getSourceRange().getEnd()); | |||
| 20542 | Diag(Loc, diag::note_condition_assign_silence) | |||
| 20543 | << FixItHint::CreateInsertion(Open, "(") | |||
| 20544 | << FixItHint::CreateInsertion(Close, ")"); | |||
| 20545 | ||||
| 20546 | if (IsOrAssign) | |||
| 20547 | Diag(Loc, diag::note_condition_or_assign_to_comparison) | |||
| 20548 | << FixItHint::CreateReplacement(Loc, "!="); | |||
| 20549 | else | |||
| 20550 | Diag(Loc, diag::note_condition_assign_to_comparison) | |||
| 20551 | << FixItHint::CreateReplacement(Loc, "=="); | |||
| 20552 | } | |||
| 20553 | ||||
| 20554 | /// Redundant parentheses over an equality comparison can indicate | |||
| 20555 | /// that the user intended an assignment used as condition. | |||
| 20556 | void Sema::DiagnoseEqualityWithExtraParens(ParenExpr *ParenE) { | |||
| 20557 | // Don't warn if the parens came from a macro. | |||
| 20558 | SourceLocation parenLoc = ParenE->getBeginLoc(); | |||
| 20559 | if (parenLoc.isInvalid() || parenLoc.isMacroID()) | |||
| 20560 | return; | |||
| 20561 | // Don't warn for dependent expressions. | |||
| 20562 | if (ParenE->isTypeDependent()) | |||
| 20563 | return; | |||
| 20564 | ||||
| 20565 | Expr *E = ParenE->IgnoreParens(); | |||
| 20566 | ||||
| 20567 | if (BinaryOperator *opE = dyn_cast<BinaryOperator>(E)) | |||
| 20568 | if (opE->getOpcode() == BO_EQ && | |||
| 20569 | opE->getLHS()->IgnoreParenImpCasts()->isModifiableLvalue(Context) | |||
| 20570 | == Expr::MLV_Valid) { | |||
| 20571 | SourceLocation Loc = opE->getOperatorLoc(); | |||
| 20572 | ||||
| 20573 | Diag(Loc, diag::warn_equality_with_extra_parens) << E->getSourceRange(); | |||
| 20574 | SourceRange ParenERange = ParenE->getSourceRange(); | |||
| 20575 | Diag(Loc, diag::note_equality_comparison_silence) | |||
| 20576 | << FixItHint::CreateRemoval(ParenERange.getBegin()) | |||
| 20577 | << FixItHint::CreateRemoval(ParenERange.getEnd()); | |||
| 20578 | Diag(Loc, diag::note_equality_comparison_to_assign) | |||
| 20579 | << FixItHint::CreateReplacement(Loc, "="); | |||
| 20580 | } | |||
| 20581 | } | |||
| 20582 | ||||
| 20583 | ExprResult Sema::CheckBooleanCondition(SourceLocation Loc, Expr *E, | |||
| 20584 | bool IsConstexpr) { | |||
| 20585 | DiagnoseAssignmentAsCondition(E); | |||
| 20586 | if (ParenExpr *parenE = dyn_cast<ParenExpr>(E)) | |||
| 20587 | DiagnoseEqualityWithExtraParens(parenE); | |||
| 20588 | ||||
| 20589 | ExprResult result = CheckPlaceholderExpr(E); | |||
| 20590 | if (result.isInvalid()) return ExprError(); | |||
| 20591 | E = result.get(); | |||
| 20592 | ||||
| 20593 | if (!E->isTypeDependent()) { | |||
| 20594 | if (getLangOpts().CPlusPlus) | |||
| 20595 | return CheckCXXBooleanCondition(E, IsConstexpr); // C++ 6.4p4 | |||
| 20596 | ||||
| 20597 | ExprResult ERes = DefaultFunctionArrayLvalueConversion(E); | |||
| 20598 | if (ERes.isInvalid()) | |||
| 20599 | return ExprError(); | |||
| 20600 | E = ERes.get(); | |||
| 20601 | ||||
| 20602 | QualType T = E->getType(); | |||
| 20603 | if (!T->isScalarType()) { // C99 6.8.4.1p1 | |||
| 20604 | Diag(Loc, diag::err_typecheck_statement_requires_scalar) | |||
| 20605 | << T << E->getSourceRange(); | |||
| 20606 | return ExprError(); | |||
| 20607 | } | |||
| 20608 | CheckBoolLikeConversion(E, Loc); | |||
| 20609 | } | |||
| 20610 | ||||
| 20611 | return E; | |||
| 20612 | } | |||
| 20613 | ||||
| 20614 | Sema::ConditionResult Sema::ActOnCondition(Scope *S, SourceLocation Loc, | |||
| 20615 | Expr *SubExpr, ConditionKind CK, | |||
| 20616 | bool MissingOK) { | |||
| 20617 | // MissingOK indicates whether having no condition expression is valid | |||
| 20618 | // (for loop) or invalid (e.g. while loop). | |||
| 20619 | if (!SubExpr) | |||
| 20620 | return MissingOK ? ConditionResult() : ConditionError(); | |||
| 20621 | ||||
| 20622 | ExprResult Cond; | |||
| 20623 | switch (CK) { | |||
| 20624 | case ConditionKind::Boolean: | |||
| 20625 | Cond = CheckBooleanCondition(Loc, SubExpr); | |||
| 20626 | break; | |||
| 20627 | ||||
| 20628 | case ConditionKind::ConstexprIf: | |||
| 20629 | Cond = CheckBooleanCondition(Loc, SubExpr, true); | |||
| 20630 | break; | |||
| 20631 | ||||
| 20632 | case ConditionKind::Switch: | |||
| 20633 | Cond = CheckSwitchCondition(Loc, SubExpr); | |||
| 20634 | break; | |||
| 20635 | } | |||
| 20636 | if (Cond.isInvalid()) { | |||
| 20637 | Cond = CreateRecoveryExpr(SubExpr->getBeginLoc(), SubExpr->getEndLoc(), | |||
| 20638 | {SubExpr}, PreferredConditionType(CK)); | |||
| 20639 | if (!Cond.get()) | |||
| 20640 | return ConditionError(); | |||
| 20641 | } | |||
| 20642 | // FIXME: FullExprArg doesn't have an invalid bit, so check nullness instead. | |||
| 20643 | FullExprArg FullExpr = MakeFullExpr(Cond.get(), Loc); | |||
| 20644 | if (!FullExpr.get()) | |||
| 20645 | return ConditionError(); | |||
| 20646 | ||||
| 20647 | return ConditionResult(*this, nullptr, FullExpr, | |||
| 20648 | CK == ConditionKind::ConstexprIf); | |||
| 20649 | } | |||
| 20650 | ||||
| 20651 | namespace { | |||
| 20652 | /// A visitor for rebuilding a call to an __unknown_any expression | |||
| 20653 | /// to have an appropriate type. | |||
| 20654 | struct RebuildUnknownAnyFunction | |||
| 20655 | : StmtVisitor<RebuildUnknownAnyFunction, ExprResult> { | |||
| 20656 | ||||
| 20657 | Sema &S; | |||
| 20658 | ||||
| 20659 | RebuildUnknownAnyFunction(Sema &S) : S(S) {} | |||
| 20660 | ||||
| 20661 | ExprResult VisitStmt(Stmt *S) { | |||
| 20662 | llvm_unreachable("unexpected statement!")::llvm::llvm_unreachable_internal("unexpected statement!", "clang/lib/Sema/SemaExpr.cpp" , 20662); | |||
| 20663 | } | |||
| 20664 | ||||
| 20665 | ExprResult VisitExpr(Expr *E) { | |||
| 20666 | S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_call) | |||
| 20667 | << E->getSourceRange(); | |||
| 20668 | return ExprError(); | |||
| 20669 | } | |||
| 20670 | ||||
| 20671 | /// Rebuild an expression which simply semantically wraps another | |||
| 20672 | /// expression which it shares the type and value kind of. | |||
| 20673 | template <class T> ExprResult rebuildSugarExpr(T *E) { | |||
| 20674 | ExprResult SubResult = Visit(E->getSubExpr()); | |||
| 20675 | if (SubResult.isInvalid()) return ExprError(); | |||
| 20676 | ||||
| 20677 | Expr *SubExpr = SubResult.get(); | |||
| 20678 | E->setSubExpr(SubExpr); | |||
| 20679 | E->setType(SubExpr->getType()); | |||
| 20680 | E->setValueKind(SubExpr->getValueKind()); | |||
| 20681 | assert(E->getObjectKind() == OK_Ordinary)(static_cast <bool> (E->getObjectKind() == OK_Ordinary ) ? void (0) : __assert_fail ("E->getObjectKind() == OK_Ordinary" , "clang/lib/Sema/SemaExpr.cpp", 20681, __extension__ __PRETTY_FUNCTION__ )); | |||
| 20682 | return E; | |||
| 20683 | } | |||
| 20684 | ||||
| 20685 | ExprResult VisitParenExpr(ParenExpr *E) { | |||
| 20686 | return rebuildSugarExpr(E); | |||
| 20687 | } | |||
| 20688 | ||||
| 20689 | ExprResult VisitUnaryExtension(UnaryOperator *E) { | |||
| 20690 | return rebuildSugarExpr(E); | |||
| 20691 | } | |||
| 20692 | ||||
| 20693 | ExprResult VisitUnaryAddrOf(UnaryOperator *E) { | |||
| 20694 | ExprResult SubResult = Visit(E->getSubExpr()); | |||
| 20695 | if (SubResult.isInvalid()) return ExprError(); | |||
| 20696 | ||||
| 20697 | Expr *SubExpr = SubResult.get(); | |||
| 20698 | E->setSubExpr(SubExpr); | |||
| 20699 | E->setType(S.Context.getPointerType(SubExpr->getType())); | |||
| 20700 | assert(E->isPRValue())(static_cast <bool> (E->isPRValue()) ? void (0) : __assert_fail ("E->isPRValue()", "clang/lib/Sema/SemaExpr.cpp", 20700, __extension__ __PRETTY_FUNCTION__)); | |||
| 20701 | assert(E->getObjectKind() == OK_Ordinary)(static_cast <bool> (E->getObjectKind() == OK_Ordinary ) ? void (0) : __assert_fail ("E->getObjectKind() == OK_Ordinary" , "clang/lib/Sema/SemaExpr.cpp", 20701, __extension__ __PRETTY_FUNCTION__ )); | |||
| 20702 | return E; | |||
| 20703 | } | |||
| 20704 | ||||
| 20705 | ExprResult resolveDecl(Expr *E, ValueDecl *VD) { | |||
| 20706 | if (!isa<FunctionDecl>(VD)) return VisitExpr(E); | |||
| 20707 | ||||
| 20708 | E->setType(VD->getType()); | |||
| 20709 | ||||
| 20710 | assert(E->isPRValue())(static_cast <bool> (E->isPRValue()) ? void (0) : __assert_fail ("E->isPRValue()", "clang/lib/Sema/SemaExpr.cpp", 20710, __extension__ __PRETTY_FUNCTION__)); | |||
| 20711 | if (S.getLangOpts().CPlusPlus && | |||
| 20712 | !(isa<CXXMethodDecl>(VD) && | |||
| 20713 | cast<CXXMethodDecl>(VD)->isInstance())) | |||
| 20714 | E->setValueKind(VK_LValue); | |||
| 20715 | ||||
| 20716 | return E; | |||
| 20717 | } | |||
| 20718 | ||||
| 20719 | ExprResult VisitMemberExpr(MemberExpr *E) { | |||
| 20720 | return resolveDecl(E, E->getMemberDecl()); | |||
| 20721 | } | |||
| 20722 | ||||
| 20723 | ExprResult VisitDeclRefExpr(DeclRefExpr *E) { | |||
| 20724 | return resolveDecl(E, E->getDecl()); | |||
| 20725 | } | |||
| 20726 | }; | |||
| 20727 | } | |||
| 20728 | ||||
| 20729 | /// Given a function expression of unknown-any type, try to rebuild it | |||
| 20730 | /// to have a function type. | |||
| 20731 | static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *FunctionExpr) { | |||
| 20732 | ExprResult Result = RebuildUnknownAnyFunction(S).Visit(FunctionExpr); | |||
| 20733 | if (Result.isInvalid()) return ExprError(); | |||
| 20734 | return S.DefaultFunctionArrayConversion(Result.get()); | |||
| 20735 | } | |||
| 20736 | ||||
| 20737 | namespace { | |||
| 20738 | /// A visitor for rebuilding an expression of type __unknown_anytype | |||
| 20739 | /// into one which resolves the type directly on the referring | |||
| 20740 | /// expression. Strict preservation of the original source | |||
| 20741 | /// structure is not a goal. | |||
| 20742 | struct RebuildUnknownAnyExpr | |||
| 20743 | : StmtVisitor<RebuildUnknownAnyExpr, ExprResult> { | |||
| 20744 | ||||
| 20745 | Sema &S; | |||
| 20746 | ||||
| 20747 | /// The current destination type. | |||
| 20748 | QualType DestType; | |||
| 20749 | ||||
| 20750 | RebuildUnknownAnyExpr(Sema &S, QualType CastType) | |||
| 20751 | : S(S), DestType(CastType) {} | |||
| 20752 | ||||
| 20753 | ExprResult VisitStmt(Stmt *S) { | |||
| 20754 | llvm_unreachable("unexpected statement!")::llvm::llvm_unreachable_internal("unexpected statement!", "clang/lib/Sema/SemaExpr.cpp" , 20754); | |||
| 20755 | } | |||
| 20756 | ||||
| 20757 | ExprResult VisitExpr(Expr *E) { | |||
| 20758 | S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr) | |||
| 20759 | << E->getSourceRange(); | |||
| 20760 | return ExprError(); | |||
| 20761 | } | |||
| 20762 | ||||
| 20763 | ExprResult VisitCallExpr(CallExpr *E); | |||
| 20764 | ExprResult VisitObjCMessageExpr(ObjCMessageExpr *E); | |||
| 20765 | ||||
| 20766 | /// Rebuild an expression which simply semantically wraps another | |||
| 20767 | /// expression which it shares the type and value kind of. | |||
| 20768 | template <class T> ExprResult rebuildSugarExpr(T *E) { | |||
| 20769 | ExprResult SubResult = Visit(E->getSubExpr()); | |||
| 20770 | if (SubResult.isInvalid()) return ExprError(); | |||
| 20771 | Expr *SubExpr = SubResult.get(); | |||
| 20772 | E->setSubExpr(SubExpr); | |||
| 20773 | E->setType(SubExpr->getType()); | |||
| 20774 | E->setValueKind(SubExpr->getValueKind()); | |||
| 20775 | assert(E->getObjectKind() == OK_Ordinary)(static_cast <bool> (E->getObjectKind() == OK_Ordinary ) ? void (0) : __assert_fail ("E->getObjectKind() == OK_Ordinary" , "clang/lib/Sema/SemaExpr.cpp", 20775, __extension__ __PRETTY_FUNCTION__ )); | |||
| 20776 | return E; | |||
| 20777 | } | |||
| 20778 | ||||
| 20779 | ExprResult VisitParenExpr(ParenExpr *E) { | |||
| 20780 | return rebuildSugarExpr(E); | |||
| 20781 | } | |||
| 20782 | ||||
| 20783 | ExprResult VisitUnaryExtension(UnaryOperator *E) { | |||
| 20784 | return rebuildSugarExpr(E); | |||
| 20785 | } | |||
| 20786 | ||||
| 20787 | ExprResult VisitUnaryAddrOf(UnaryOperator *E) { | |||
| 20788 | const PointerType *Ptr = DestType->getAs<PointerType>(); | |||
| 20789 | if (!Ptr) { | |||
| 20790 | S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof) | |||
| 20791 | << E->getSourceRange(); | |||
| 20792 | return ExprError(); | |||
| 20793 | } | |||
| 20794 | ||||
| 20795 | if (isa<CallExpr>(E->getSubExpr())) { | |||
| 20796 | S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof_call) | |||
| 20797 | << E->getSourceRange(); | |||
| 20798 | return ExprError(); | |||
| 20799 | } | |||
| 20800 | ||||
| 20801 | assert(E->isPRValue())(static_cast <bool> (E->isPRValue()) ? void (0) : __assert_fail ("E->isPRValue()", "clang/lib/Sema/SemaExpr.cpp", 20801, __extension__ __PRETTY_FUNCTION__)); | |||
| 20802 | assert(E->getObjectKind() == OK_Ordinary)(static_cast <bool> (E->getObjectKind() == OK_Ordinary ) ? void (0) : __assert_fail ("E->getObjectKind() == OK_Ordinary" , "clang/lib/Sema/SemaExpr.cpp", 20802, __extension__ __PRETTY_FUNCTION__ )); | |||
| 20803 | E->setType(DestType); | |||
| 20804 | ||||
| 20805 | // Build the sub-expression as if it were an object of the pointee type. | |||
| 20806 | DestType = Ptr->getPointeeType(); | |||
| 20807 | ExprResult SubResult = Visit(E->getSubExpr()); | |||
| 20808 | if (SubResult.isInvalid()) return ExprError(); | |||
| 20809 | E->setSubExpr(SubResult.get()); | |||
| 20810 | return E; | |||
| 20811 | } | |||
| 20812 | ||||
| 20813 | ExprResult VisitImplicitCastExpr(ImplicitCastExpr *E); | |||
| 20814 | ||||
| 20815 | ExprResult resolveDecl(Expr *E, ValueDecl *VD); | |||
| 20816 | ||||
| 20817 | ExprResult VisitMemberExpr(MemberExpr *E) { | |||
| 20818 | return resolveDecl(E, E->getMemberDecl()); | |||
| 20819 | } | |||
| 20820 | ||||
| 20821 | ExprResult VisitDeclRefExpr(DeclRefExpr *E) { | |||
| 20822 | return resolveDecl(E, E->getDecl()); | |||
| 20823 | } | |||
| 20824 | }; | |||
| 20825 | } | |||
| 20826 | ||||
| 20827 | /// Rebuilds a call expression which yielded __unknown_anytype. | |||
| 20828 | ExprResult RebuildUnknownAnyExpr::VisitCallExpr(CallExpr *E) { | |||
| 20829 | Expr *CalleeExpr = E->getCallee(); | |||
| 20830 | ||||
| 20831 | enum FnKind { | |||
| 20832 | FK_MemberFunction, | |||
| 20833 | FK_FunctionPointer, | |||
| 20834 | FK_BlockPointer | |||
| 20835 | }; | |||
| 20836 | ||||
| 20837 | FnKind Kind; | |||
| 20838 | QualType CalleeType = CalleeExpr->getType(); | |||
| 20839 | if (CalleeType == S.Context.BoundMemberTy) { | |||
| 20840 | assert(isa<CXXMemberCallExpr>(E) || isa<CXXOperatorCallExpr>(E))(static_cast <bool> (isa<CXXMemberCallExpr>(E) || isa<CXXOperatorCallExpr>(E)) ? void (0) : __assert_fail ("isa<CXXMemberCallExpr>(E) || isa<CXXOperatorCallExpr>(E)" , "clang/lib/Sema/SemaExpr.cpp", 20840, __extension__ __PRETTY_FUNCTION__ )); | |||
| 20841 | Kind = FK_MemberFunction; | |||
| 20842 | CalleeType = Expr::findBoundMemberType(CalleeExpr); | |||
| 20843 | } else if (const PointerType *Ptr = CalleeType->getAs<PointerType>()) { | |||
| 20844 | CalleeType = Ptr->getPointeeType(); | |||
| 20845 | Kind = FK_FunctionPointer; | |||
| 20846 | } else { | |||
| 20847 | CalleeType = CalleeType->castAs<BlockPointerType>()->getPointeeType(); | |||
| 20848 | Kind = FK_BlockPointer; | |||
| 20849 | } | |||
| 20850 | const FunctionType *FnType = CalleeType->castAs<FunctionType>(); | |||
| 20851 | ||||
| 20852 | // Verify that this is a legal result type of a function. | |||
| 20853 | if (DestType->isArrayType() || DestType->isFunctionType()) { | |||
| 20854 | unsigned diagID = diag::err_func_returning_array_function; | |||
| 20855 | if (Kind == FK_BlockPointer) | |||
| 20856 | diagID = diag::err_block_returning_array_function; | |||
| 20857 | ||||
| 20858 | S.Diag(E->getExprLoc(), diagID) | |||
| 20859 | << DestType->isFunctionType() << DestType; | |||
| 20860 | return ExprError(); | |||
| 20861 | } | |||
| 20862 | ||||
| 20863 | // Otherwise, go ahead and set DestType as the call's result. | |||
| 20864 | E->setType(DestType.getNonLValueExprType(S.Context)); | |||
| 20865 | E->setValueKind(Expr::getValueKindForType(DestType)); | |||
| 20866 | assert(E->getObjectKind() == OK_Ordinary)(static_cast <bool> (E->getObjectKind() == OK_Ordinary ) ? void (0) : __assert_fail ("E->getObjectKind() == OK_Ordinary" , "clang/lib/Sema/SemaExpr.cpp", 20866, __extension__ __PRETTY_FUNCTION__ )); | |||
| 20867 | ||||
| 20868 | // Rebuild the function type, replacing the result type with DestType. | |||
| 20869 | const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FnType); | |||
| 20870 | if (Proto) { | |||
| 20871 | // __unknown_anytype(...) is a special case used by the debugger when | |||
| 20872 | // it has no idea what a function's signature is. | |||
| 20873 | // | |||
| 20874 | // We want to build this call essentially under the K&R | |||
| 20875 | // unprototyped rules, but making a FunctionNoProtoType in C++ | |||
| 20876 | // would foul up all sorts of assumptions. However, we cannot | |||
| 20877 | // simply pass all arguments as variadic arguments, nor can we | |||
| 20878 | // portably just call the function under a non-variadic type; see | |||
| 20879 | // the comment on IR-gen's TargetInfo::isNoProtoCallVariadic. | |||
| 20880 | // However, it turns out that in practice it is generally safe to | |||
| 20881 | // call a function declared as "A foo(B,C,D);" under the prototype | |||
| 20882 | // "A foo(B,C,D,...);". The only known exception is with the | |||
| 20883 | // Windows ABI, where any variadic function is implicitly cdecl | |||
| 20884 | // regardless of its normal CC. Therefore we change the parameter | |||
| 20885 | // types to match the types of the arguments. | |||
| 20886 | // | |||
| 20887 | // This is a hack, but it is far superior to moving the | |||
| 20888 | // corresponding target-specific code from IR-gen to Sema/AST. | |||
| 20889 | ||||
| 20890 | ArrayRef<QualType> ParamTypes = Proto->getParamTypes(); | |||
| 20891 | SmallVector<QualType, 8> ArgTypes; | |||
| 20892 | if (ParamTypes.empty() && Proto->isVariadic()) { // the special case | |||
| 20893 | ArgTypes.reserve(E->getNumArgs()); | |||
| 20894 | for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) { | |||
| 20895 | ArgTypes.push_back(S.Context.getReferenceQualifiedType(E->getArg(i))); | |||
| 20896 | } | |||
| 20897 | ParamTypes = ArgTypes; | |||
| 20898 | } | |||
| 20899 | DestType = S.Context.getFunctionType(DestType, ParamTypes, | |||
| 20900 | Proto->getExtProtoInfo()); | |||
| 20901 | } else { | |||
| 20902 | DestType = S.Context.getFunctionNoProtoType(DestType, | |||
| 20903 | FnType->getExtInfo()); | |||
| 20904 | } | |||
| 20905 | ||||
| 20906 | // Rebuild the appropriate pointer-to-function type. | |||
| 20907 | switch (Kind) { | |||
| 20908 | case FK_MemberFunction: | |||
| 20909 | // Nothing to do. | |||
| 20910 | break; | |||
| 20911 | ||||
| 20912 | case FK_FunctionPointer: | |||
| 20913 | DestType = S.Context.getPointerType(DestType); | |||
| 20914 | break; | |||
| 20915 | ||||
| 20916 | case FK_BlockPointer: | |||
| 20917 | DestType = S.Context.getBlockPointerType(DestType); | |||
| 20918 | break; | |||
| 20919 | } | |||
| 20920 | ||||
| 20921 | // Finally, we can recurse. | |||
| 20922 | ExprResult CalleeResult = Visit(CalleeExpr); | |||
| 20923 | if (!CalleeResult.isUsable()) return ExprError(); | |||
| 20924 | E->setCallee(CalleeResult.get()); | |||
| 20925 | ||||
| 20926 | // Bind a temporary if necessary. | |||
| 20927 | return S.MaybeBindToTemporary(E); | |||
| 20928 | } | |||
| 20929 | ||||
| 20930 | ExprResult RebuildUnknownAnyExpr::VisitObjCMessageExpr(ObjCMessageExpr *E) { | |||
| 20931 | // Verify that this is a legal result type of a call. | |||
| 20932 | if (DestType->isArrayType() || DestType->isFunctionType()) { | |||
| 20933 | S.Diag(E->getExprLoc(), diag::err_func_returning_array_function) | |||
| 20934 | << DestType->isFunctionType() << DestType; | |||
| 20935 | return ExprError(); | |||
| 20936 | } | |||
| 20937 | ||||
| 20938 | // Rewrite the method result type if available. | |||
| 20939 | if (ObjCMethodDecl *Method = E->getMethodDecl()) { | |||
| 20940 | assert(Method->getReturnType() == S.Context.UnknownAnyTy)(static_cast <bool> (Method->getReturnType() == S.Context .UnknownAnyTy) ? void (0) : __assert_fail ("Method->getReturnType() == S.Context.UnknownAnyTy" , "clang/lib/Sema/SemaExpr.cpp", 20940, __extension__ __PRETTY_FUNCTION__ )); | |||
| 20941 | Method->setReturnType(DestType); | |||
| 20942 | } | |||
| 20943 | ||||
| 20944 | // Change the type of the message. | |||
| 20945 | E->setType(DestType.getNonReferenceType()); | |||
| 20946 | E->setValueKind(Expr::getValueKindForType(DestType)); | |||
| 20947 | ||||
| 20948 | return S.MaybeBindToTemporary(E); | |||
| 20949 | } | |||
| 20950 | ||||
| 20951 | ExprResult RebuildUnknownAnyExpr::VisitImplicitCastExpr(ImplicitCastExpr *E) { | |||
| 20952 | // The only case we should ever see here is a function-to-pointer decay. | |||
| 20953 | if (E->getCastKind() == CK_FunctionToPointerDecay) { | |||
| 20954 | assert(E->isPRValue())(static_cast <bool> (E->isPRValue()) ? void (0) : __assert_fail ("E->isPRValue()", "clang/lib/Sema/SemaExpr.cpp", 20954, __extension__ __PRETTY_FUNCTION__)); | |||
| 20955 | assert(E->getObjectKind() == OK_Ordinary)(static_cast <bool> (E->getObjectKind() == OK_Ordinary ) ? void (0) : __assert_fail ("E->getObjectKind() == OK_Ordinary" , "clang/lib/Sema/SemaExpr.cpp", 20955, __extension__ __PRETTY_FUNCTION__ )); | |||
| 20956 | ||||
| 20957 | E->setType(DestType); | |||
| 20958 | ||||
| 20959 | // Rebuild the sub-expression as the pointee (function) type. | |||
| 20960 | DestType = DestType->castAs<PointerType>()->getPointeeType(); | |||
| 20961 | ||||
| 20962 | ExprResult Result = Visit(E->getSubExpr()); | |||
| 20963 | if (!Result.isUsable()) return ExprError(); | |||
| 20964 | ||||
| 20965 | E->setSubExpr(Result.get()); | |||
| 20966 | return E; | |||
| 20967 | } else if (E->getCastKind() == CK_LValueToRValue) { | |||
| 20968 | assert(E->isPRValue())(static_cast <bool> (E->isPRValue()) ? void (0) : __assert_fail ("E->isPRValue()", "clang/lib/Sema/SemaExpr.cpp", 20968, __extension__ __PRETTY_FUNCTION__)); | |||
| 20969 | assert(E->getObjectKind() == OK_Ordinary)(static_cast <bool> (E->getObjectKind() == OK_Ordinary ) ? void (0) : __assert_fail ("E->getObjectKind() == OK_Ordinary" , "clang/lib/Sema/SemaExpr.cpp", 20969, __extension__ __PRETTY_FUNCTION__ )); | |||
| 20970 | ||||
| 20971 | assert(isa<BlockPointerType>(E->getType()))(static_cast <bool> (isa<BlockPointerType>(E-> getType())) ? void (0) : __assert_fail ("isa<BlockPointerType>(E->getType())" , "clang/lib/Sema/SemaExpr.cpp", 20971, __extension__ __PRETTY_FUNCTION__ )); | |||
| 20972 | ||||
| 20973 | E->setType(DestType); | |||
| 20974 | ||||
| 20975 | // The sub-expression has to be a lvalue reference, so rebuild it as such. | |||
| 20976 | DestType = S.Context.getLValueReferenceType(DestType); | |||
| 20977 | ||||
| 20978 | ExprResult Result = Visit(E->getSubExpr()); | |||
| 20979 | if (!Result.isUsable()) return ExprError(); | |||
| 20980 | ||||
| 20981 | E->setSubExpr(Result.get()); | |||
| 20982 | return E; | |||
| 20983 | } else { | |||
| 20984 | llvm_unreachable("Unhandled cast type!")::llvm::llvm_unreachable_internal("Unhandled cast type!", "clang/lib/Sema/SemaExpr.cpp" , 20984); | |||
| 20985 | } | |||
| 20986 | } | |||
| 20987 | ||||
| 20988 | ExprResult RebuildUnknownAnyExpr::resolveDecl(Expr *E, ValueDecl *VD) { | |||
| 20989 | ExprValueKind ValueKind = VK_LValue; | |||
| 20990 | QualType Type = DestType; | |||
| 20991 | ||||
| 20992 | // We know how to make this work for certain kinds of decls: | |||
| 20993 | ||||
| 20994 | // - functions | |||
| 20995 | if (FunctionDecl *FD = dyn_cast<FunctionDecl>(VD)) { | |||
| 20996 | if (const PointerType *Ptr = Type->getAs<PointerType>()) { | |||
| 20997 | DestType = Ptr->getPointeeType(); | |||
| 20998 | ExprResult Result = resolveDecl(E, VD); | |||
| 20999 | if (Result.isInvalid()) return ExprError(); | |||
| 21000 | return S.ImpCastExprToType(Result.get(), Type, CK_FunctionToPointerDecay, | |||
| 21001 | VK_PRValue); | |||
| 21002 | } | |||
| 21003 | ||||
| 21004 | if (!Type->isFunctionType()) { | |||
| 21005 | S.Diag(E->getExprLoc(), diag::err_unknown_any_function) | |||
| 21006 | << VD << E->getSourceRange(); | |||
| 21007 | return ExprError(); | |||
| 21008 | } | |||
| 21009 | if (const FunctionProtoType *FT = Type->getAs<FunctionProtoType>()) { | |||
| 21010 | // We must match the FunctionDecl's type to the hack introduced in | |||
| 21011 | // RebuildUnknownAnyExpr::VisitCallExpr to vararg functions of unknown | |||
| 21012 | // type. See the lengthy commentary in that routine. | |||
| 21013 | QualType FDT = FD->getType(); | |||
| 21014 | const FunctionType *FnType = FDT->castAs<FunctionType>(); | |||
| 21015 | const FunctionProtoType *Proto = dyn_cast_or_null<FunctionProtoType>(FnType); | |||
| 21016 | DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E); | |||
| 21017 | if (DRE && Proto && Proto->getParamTypes().empty() && Proto->isVariadic()) { | |||
| 21018 | SourceLocation Loc = FD->getLocation(); | |||
| 21019 | FunctionDecl *NewFD = FunctionDecl::Create( | |||
| 21020 | S.Context, FD->getDeclContext(), Loc, Loc, | |||
| 21021 | FD->getNameInfo().getName(), DestType, FD->getTypeSourceInfo(), | |||
| 21022 | SC_None, S.getCurFPFeatures().isFPConstrained(), | |||
| 21023 | false /*isInlineSpecified*/, FD->hasPrototype(), | |||
| 21024 | /*ConstexprKind*/ ConstexprSpecKind::Unspecified); | |||
| 21025 | ||||
| 21026 | if (FD->getQualifier()) | |||
| 21027 | NewFD->setQualifierInfo(FD->getQualifierLoc()); | |||
| 21028 | ||||
| 21029 | SmallVector<ParmVarDecl*, 16> Params; | |||
| 21030 | for (const auto &AI : FT->param_types()) { | |||
| 21031 | ParmVarDecl *Param = | |||
| 21032 | S.BuildParmVarDeclForTypedef(FD, Loc, AI); | |||
| 21033 | Param->setScopeInfo(0, Params.size()); | |||
| 21034 | Params.push_back(Param); | |||
| 21035 | } | |||
| 21036 | NewFD->setParams(Params); | |||
| 21037 | DRE->setDecl(NewFD); | |||
| 21038 | VD = DRE->getDecl(); | |||
| 21039 | } | |||
| 21040 | } | |||
| 21041 | ||||
| 21042 | if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) | |||
| 21043 | if (MD->isInstance()) { | |||
| 21044 | ValueKind = VK_PRValue; | |||
| 21045 | Type = S.Context.BoundMemberTy; | |||
| 21046 | } | |||
| 21047 | ||||
| 21048 | // Function references aren't l-values in C. | |||
| 21049 | if (!S.getLangOpts().CPlusPlus) | |||
| 21050 | ValueKind = VK_PRValue; | |||
| 21051 | ||||
| 21052 | // - variables | |||
| 21053 | } else if (isa<VarDecl>(VD)) { | |||
| 21054 | if (const ReferenceType *RefTy = Type->getAs<ReferenceType>()) { | |||
| 21055 | Type = RefTy->getPointeeType(); | |||
| 21056 | } else if (Type->isFunctionType()) { | |||
| 21057 | S.Diag(E->getExprLoc(), diag::err_unknown_any_var_function_type) | |||
| 21058 | << VD << E->getSourceRange(); | |||
| 21059 | return ExprError(); | |||
| 21060 | } | |||
| 21061 | ||||
| 21062 | // - nothing else | |||
| 21063 | } else { | |||
| 21064 | S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_decl) | |||
| 21065 | << VD << E->getSourceRange(); | |||
| 21066 | return ExprError(); | |||
| 21067 | } | |||
| 21068 | ||||
| 21069 | // Modifying the declaration like this is friendly to IR-gen but | |||
| 21070 | // also really dangerous. | |||
| 21071 | VD->setType(DestType); | |||
| 21072 | E->setType(Type); | |||
| 21073 | E->setValueKind(ValueKind); | |||
| 21074 | return E; | |||
| 21075 | } | |||
| 21076 | ||||
| 21077 | /// Check a cast of an unknown-any type. We intentionally only | |||
| 21078 | /// trigger this for C-style casts. | |||
| 21079 | ExprResult Sema::checkUnknownAnyCast(SourceRange TypeRange, QualType CastType, | |||
| 21080 | Expr *CastExpr, CastKind &CastKind, | |||
| 21081 | ExprValueKind &VK, CXXCastPath &Path) { | |||
| 21082 | // The type we're casting to must be either void or complete. | |||
| 21083 | if (!CastType->isVoidType() && | |||
| 21084 | RequireCompleteType(TypeRange.getBegin(), CastType, | |||
| 21085 | diag::err_typecheck_cast_to_incomplete)) | |||
| 21086 | return ExprError(); | |||
| 21087 | ||||
| 21088 | // Rewrite the casted expression from scratch. | |||
| 21089 | ExprResult result = RebuildUnknownAnyExpr(*this, CastType).Visit(CastExpr); | |||
| 21090 | if (!result.isUsable()) return ExprError(); | |||
| 21091 | ||||
| 21092 | CastExpr = result.get(); | |||
| 21093 | VK = CastExpr->getValueKind(); | |||
| 21094 | CastKind = CK_NoOp; | |||
| 21095 | ||||
| 21096 | return CastExpr; | |||
| 21097 | } | |||
| 21098 | ||||
| 21099 | ExprResult Sema::forceUnknownAnyToType(Expr *E, QualType ToType) { | |||
| 21100 | return RebuildUnknownAnyExpr(*this, ToType).Visit(E); | |||
| 21101 | } | |||
| 21102 | ||||
| 21103 | ExprResult Sema::checkUnknownAnyArg(SourceLocation callLoc, | |||
| 21104 | Expr *arg, QualType ¶mType) { | |||
| 21105 | // If the syntactic form of the argument is not an explicit cast of | |||
| 21106 | // any sort, just do default argument promotion. | |||
| 21107 | ExplicitCastExpr *castArg = dyn_cast<ExplicitCastExpr>(arg->IgnoreParens()); | |||
| 21108 | if (!castArg) { | |||
| 21109 | ExprResult result = DefaultArgumentPromotion(arg); | |||
| 21110 | if (result.isInvalid()) return ExprError(); | |||
| 21111 | paramType = result.get()->getType(); | |||
| 21112 | return result; | |||
| 21113 | } | |||
| 21114 | ||||
| 21115 | // Otherwise, use the type that was written in the explicit cast. | |||
| 21116 | assert(!arg->hasPlaceholderType())(static_cast <bool> (!arg->hasPlaceholderType()) ? void (0) : __assert_fail ("!arg->hasPlaceholderType()", "clang/lib/Sema/SemaExpr.cpp" , 21116, __extension__ __PRETTY_FUNCTION__)); | |||
| 21117 | paramType = castArg->getTypeAsWritten(); | |||
| 21118 | ||||
| 21119 | // Copy-initialize a parameter of that type. | |||
| 21120 | InitializedEntity entity = | |||
| 21121 | InitializedEntity::InitializeParameter(Context, paramType, | |||
| 21122 | /*consumed*/ false); | |||
| 21123 | return PerformCopyInitialization(entity, callLoc, arg); | |||
| 21124 | } | |||
| 21125 | ||||
| 21126 | static ExprResult diagnoseUnknownAnyExpr(Sema &S, Expr *E) { | |||
| 21127 | Expr *orig = E; | |||
| 21128 | unsigned diagID = diag::err_uncasted_use_of_unknown_any; | |||
| 21129 | while (true) { | |||
| 21130 | E = E->IgnoreParenImpCasts(); | |||
| 21131 | if (CallExpr *call = dyn_cast<CallExpr>(E)) { | |||
| 21132 | E = call->getCallee(); | |||
| 21133 | diagID = diag::err_uncasted_call_of_unknown_any; | |||
| 21134 | } else { | |||
| 21135 | break; | |||
| 21136 | } | |||
| 21137 | } | |||
| 21138 | ||||
| 21139 | SourceLocation loc; | |||
| 21140 | NamedDecl *d; | |||
| 21141 | if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(E)) { | |||
| 21142 | loc = ref->getLocation(); | |||
| 21143 | d = ref->getDecl(); | |||
| 21144 | } else if (MemberExpr *mem = dyn_cast<MemberExpr>(E)) { | |||
| 21145 | loc = mem->getMemberLoc(); | |||
| 21146 | d = mem->getMemberDecl(); | |||
| 21147 | } else if (ObjCMessageExpr *msg = dyn_cast<ObjCMessageExpr>(E)) { | |||
| 21148 | diagID = diag::err_uncasted_call_of_unknown_any; | |||
| 21149 | loc = msg->getSelectorStartLoc(); | |||
| 21150 | d = msg->getMethodDecl(); | |||
| 21151 | if (!d) { | |||
| 21152 | S.Diag(loc, diag::err_uncasted_send_to_unknown_any_method) | |||
| 21153 | << static_cast<unsigned>(msg->isClassMessage()) << msg->getSelector() | |||
| 21154 | << orig->getSourceRange(); | |||
| 21155 | return ExprError(); | |||
| 21156 | } | |||
| 21157 | } else { | |||
| 21158 | S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr) | |||
| 21159 | << E->getSourceRange(); | |||
| 21160 | return ExprError(); | |||
| 21161 | } | |||
| 21162 | ||||
| 21163 | S.Diag(loc, diagID) << d << orig->getSourceRange(); | |||
| 21164 | ||||
| 21165 | // Never recoverable. | |||
| 21166 | return ExprError(); | |||
| 21167 | } | |||
| 21168 | ||||
| 21169 | /// Check for operands with placeholder types and complain if found. | |||
| 21170 | /// Returns ExprError() if there was an error and no recovery was possible. | |||
| 21171 | ExprResult Sema::CheckPlaceholderExpr(Expr *E) { | |||
| 21172 | if (!Context.isDependenceAllowed()) { | |||
| 21173 | // C cannot handle TypoExpr nodes on either side of a binop because it | |||
| 21174 | // doesn't handle dependent types properly, so make sure any TypoExprs have | |||
| 21175 | // been dealt with before checking the operands. | |||
| 21176 | ExprResult Result = CorrectDelayedTyposInExpr(E); | |||
| 21177 | if (!Result.isUsable()) return ExprError(); | |||
| 21178 | E = Result.get(); | |||
| 21179 | } | |||
| 21180 | ||||
| 21181 | const BuiltinType *placeholderType = E->getType()->getAsPlaceholderType(); | |||
| 21182 | if (!placeholderType) return E; | |||
| 21183 | ||||
| 21184 | switch (placeholderType->getKind()) { | |||
| 21185 | ||||
| 21186 | // Overloaded expressions. | |||
| 21187 | case BuiltinType::Overload: { | |||
| 21188 | // Try to resolve a single function template specialization. | |||
| 21189 | // This is obligatory. | |||
| 21190 | ExprResult Result = E; | |||
| 21191 | if (ResolveAndFixSingleFunctionTemplateSpecialization(Result, false)) | |||
| 21192 | return Result; | |||
| 21193 | ||||
| 21194 | // No guarantees that ResolveAndFixSingleFunctionTemplateSpecialization | |||
| 21195 | // leaves Result unchanged on failure. | |||
| 21196 | Result = E; | |||
| 21197 | if (resolveAndFixAddressOfSingleOverloadCandidate(Result)) | |||
| 21198 | return Result; | |||
| 21199 | ||||
| 21200 | // If that failed, try to recover with a call. | |||
| 21201 | tryToRecoverWithCall(Result, PDiag(diag::err_ovl_unresolvable), | |||
| 21202 | /*complain*/ true); | |||
| 21203 | return Result; | |||
| 21204 | } | |||
| 21205 | ||||
| 21206 | // Bound member functions. | |||
| 21207 | case BuiltinType::BoundMember: { | |||
| 21208 | ExprResult result = E; | |||
| 21209 | const Expr *BME = E->IgnoreParens(); | |||
| 21210 | PartialDiagnostic PD = PDiag(diag::err_bound_member_function); | |||
| 21211 | // Try to give a nicer diagnostic if it is a bound member that we recognize. | |||
| 21212 | if (isa<CXXPseudoDestructorExpr>(BME)) { | |||
| 21213 | PD = PDiag(diag::err_dtor_expr_without_call) << /*pseudo-destructor*/ 1; | |||
| 21214 | } else if (const auto *ME = dyn_cast<MemberExpr>(BME)) { | |||
| 21215 | if (ME->getMemberNameInfo().getName().getNameKind() == | |||
| 21216 | DeclarationName::CXXDestructorName) | |||
| 21217 | PD = PDiag(diag::err_dtor_expr_without_call) << /*destructor*/ 0; | |||
| 21218 | } | |||
| 21219 | tryToRecoverWithCall(result, PD, | |||
| 21220 | /*complain*/ true); | |||
| 21221 | return result; | |||
| 21222 | } | |||
| 21223 | ||||
| 21224 | // ARC unbridged casts. | |||
| 21225 | case BuiltinType::ARCUnbridgedCast: { | |||
| 21226 | Expr *realCast = stripARCUnbridgedCast(E); | |||
| 21227 | diagnoseARCUnbridgedCast(realCast); | |||
| 21228 | return realCast; | |||
| 21229 | } | |||
| 21230 | ||||
| 21231 | // Expressions of unknown type. | |||
| 21232 | case BuiltinType::UnknownAny: | |||
| 21233 | return diagnoseUnknownAnyExpr(*this, E); | |||
| 21234 | ||||
| 21235 | // Pseudo-objects. | |||
| 21236 | case BuiltinType::PseudoObject: | |||
| 21237 | return checkPseudoObjectRValue(E); | |||
| 21238 | ||||
| 21239 | case BuiltinType::BuiltinFn: { | |||
| 21240 | // Accept __noop without parens by implicitly converting it to a call expr. | |||
| 21241 | auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()); | |||
| 21242 | if (DRE) { | |||
| 21243 | auto *FD = cast<FunctionDecl>(DRE->getDecl()); | |||
| 21244 | unsigned BuiltinID = FD->getBuiltinID(); | |||
| 21245 | if (BuiltinID == Builtin::BI__noop) { | |||
| 21246 | E = ImpCastExprToType(E, Context.getPointerType(FD->getType()), | |||
| 21247 | CK_BuiltinFnToFnPtr) | |||
| 21248 | .get(); | |||
| 21249 | return CallExpr::Create(Context, E, /*Args=*/{}, Context.IntTy, | |||
| 21250 | VK_PRValue, SourceLocation(), | |||
| 21251 | FPOptionsOverride()); | |||
| 21252 | } | |||
| 21253 | ||||
| 21254 | if (Context.BuiltinInfo.isInStdNamespace(BuiltinID)) { | |||
| 21255 | // Any use of these other than a direct call is ill-formed as of C++20, | |||
| 21256 | // because they are not addressable functions. In earlier language | |||
| 21257 | // modes, warn and force an instantiation of the real body. | |||
| 21258 | Diag(E->getBeginLoc(), | |||
| 21259 | getLangOpts().CPlusPlus20 | |||
| 21260 | ? diag::err_use_of_unaddressable_function | |||
| 21261 | : diag::warn_cxx20_compat_use_of_unaddressable_function); | |||
| 21262 | if (FD->isImplicitlyInstantiable()) { | |||
| 21263 | // Require a definition here because a normal attempt at | |||
| 21264 | // instantiation for a builtin will be ignored, and we won't try | |||
| 21265 | // again later. We assume that the definition of the template | |||
| 21266 | // precedes this use. | |||
| 21267 | InstantiateFunctionDefinition(E->getBeginLoc(), FD, | |||
| 21268 | /*Recursive=*/false, | |||
| 21269 | /*DefinitionRequired=*/true, | |||
| 21270 | /*AtEndOfTU=*/false); | |||
| 21271 | } | |||
| 21272 | // Produce a properly-typed reference to the function. | |||
| 21273 | CXXScopeSpec SS; | |||
| 21274 | SS.Adopt(DRE->getQualifierLoc()); | |||
| 21275 | TemplateArgumentListInfo TemplateArgs; | |||
| 21276 | DRE->copyTemplateArgumentsInto(TemplateArgs); | |||
| 21277 | return BuildDeclRefExpr( | |||
| 21278 | FD, FD->getType(), VK_LValue, DRE->getNameInfo(), | |||
| 21279 | DRE->hasQualifier() ? &SS : nullptr, DRE->getFoundDecl(), | |||
| 21280 | DRE->getTemplateKeywordLoc(), | |||
| 21281 | DRE->hasExplicitTemplateArgs() ? &TemplateArgs : nullptr); | |||
| 21282 | } | |||
| 21283 | } | |||
| 21284 | ||||
| 21285 | Diag(E->getBeginLoc(), diag::err_builtin_fn_use); | |||
| 21286 | return ExprError(); | |||
| 21287 | } | |||
| 21288 | ||||
| 21289 | case BuiltinType::IncompleteMatrixIdx: | |||
| 21290 | Diag(cast<MatrixSubscriptExpr>(E->IgnoreParens()) | |||
| 21291 | ->getRowIdx() | |||
| 21292 | ->getBeginLoc(), | |||
| 21293 | diag::err_matrix_incomplete_index); | |||
| 21294 | return ExprError(); | |||
| 21295 | ||||
| 21296 | // Expressions of unknown type. | |||
| 21297 | case BuiltinType::OMPArraySection: | |||
| 21298 | Diag(E->getBeginLoc(), diag::err_omp_array_section_use); | |||
| 21299 | return ExprError(); | |||
| 21300 | ||||
| 21301 | // Expressions of unknown type. | |||
| 21302 | case BuiltinType::OMPArrayShaping: | |||
| 21303 | return ExprError(Diag(E->getBeginLoc(), diag::err_omp_array_shaping_use)); | |||
| 21304 | ||||
| 21305 | case BuiltinType::OMPIterator: | |||
| 21306 | return ExprError(Diag(E->getBeginLoc(), diag::err_omp_iterator_use)); | |||
| 21307 | ||||
| 21308 | // Everything else should be impossible. | |||
| 21309 | #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ | |||
| 21310 | case BuiltinType::Id: | |||
| 21311 | #include "clang/Basic/OpenCLImageTypes.def" | |||
| 21312 | #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ | |||
| 21313 | case BuiltinType::Id: | |||
| 21314 | #include "clang/Basic/OpenCLExtensionTypes.def" | |||
| 21315 | #define SVE_TYPE(Name, Id, SingletonId) \ | |||
| 21316 | case BuiltinType::Id: | |||
| 21317 | #include "clang/Basic/AArch64SVEACLETypes.def" | |||
| 21318 | #define PPC_VECTOR_TYPE(Name, Id, Size) \ | |||
| 21319 | case BuiltinType::Id: | |||
| 21320 | #include "clang/Basic/PPCTypes.def" | |||
| 21321 | #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id: | |||
| 21322 | #include "clang/Basic/RISCVVTypes.def" | |||
| 21323 | #define WASM_TYPE(Name, Id, SingletonId) case BuiltinType::Id: | |||
| 21324 | #include "clang/Basic/WebAssemblyReferenceTypes.def" | |||
| 21325 | #define BUILTIN_TYPE(Id, SingletonId) case BuiltinType::Id: | |||
| 21326 | #define PLACEHOLDER_TYPE(Id, SingletonId) | |||
| 21327 | #include "clang/AST/BuiltinTypes.def" | |||
| 21328 | break; | |||
| 21329 | } | |||
| 21330 | ||||
| 21331 | llvm_unreachable("invalid placeholder type!")::llvm::llvm_unreachable_internal("invalid placeholder type!" , "clang/lib/Sema/SemaExpr.cpp", 21331); | |||
| 21332 | } | |||
| 21333 | ||||
| 21334 | bool Sema::CheckCaseExpression(Expr *E) { | |||
| 21335 | if (E->isTypeDependent()) | |||
| 21336 | return true; | |||
| 21337 | if (E->isValueDependent() || E->isIntegerConstantExpr(Context)) | |||
| 21338 | return E->getType()->isIntegralOrEnumerationType(); | |||
| 21339 | return false; | |||
| 21340 | } | |||
| 21341 | ||||
| 21342 | /// ActOnObjCBoolLiteral - Parse {__objc_yes,__objc_no} literals. | |||
| 21343 | ExprResult | |||
| 21344 | Sema::ActOnObjCBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) { | |||
| 21345 | assert((Kind == tok::kw___objc_yes || Kind == tok::kw___objc_no) &&(static_cast <bool> ((Kind == tok::kw___objc_yes || Kind == tok::kw___objc_no) && "Unknown Objective-C Boolean value!" ) ? void (0) : __assert_fail ("(Kind == tok::kw___objc_yes || Kind == tok::kw___objc_no) && \"Unknown Objective-C Boolean value!\"" , "clang/lib/Sema/SemaExpr.cpp", 21346, __extension__ __PRETTY_FUNCTION__ )) | |||
| 21346 | "Unknown Objective-C Boolean value!")(static_cast <bool> ((Kind == tok::kw___objc_yes || Kind == tok::kw___objc_no) && "Unknown Objective-C Boolean value!" ) ? void (0) : __assert_fail ("(Kind == tok::kw___objc_yes || Kind == tok::kw___objc_no) && \"Unknown Objective-C Boolean value!\"" , "clang/lib/Sema/SemaExpr.cpp", 21346, __extension__ __PRETTY_FUNCTION__ )); | |||
| 21347 | QualType BoolT = Context.ObjCBuiltinBoolTy; | |||
| 21348 | if (!Context.getBOOLDecl()) { | |||
| 21349 | LookupResult Result(*this, &Context.Idents.get("BOOL"), OpLoc, | |||
| 21350 | Sema::LookupOrdinaryName); | |||
| 21351 | if (LookupName(Result, getCurScope()) && Result.isSingleResult()) { | |||
| 21352 | NamedDecl *ND = Result.getFoundDecl(); | |||
| 21353 | if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND)) | |||
| 21354 | Context.setBOOLDecl(TD); | |||
| 21355 | } | |||
| 21356 | } | |||
| 21357 | if (Context.getBOOLDecl()) | |||
| 21358 | BoolT = Context.getBOOLType(); | |||
| 21359 | return new (Context) | |||
| 21360 | ObjCBoolLiteralExpr(Kind == tok::kw___objc_yes, BoolT, OpLoc); | |||
| 21361 | } | |||
| 21362 | ||||
| 21363 | ExprResult Sema::ActOnObjCAvailabilityCheckExpr( | |||
| 21364 | llvm::ArrayRef<AvailabilitySpec> AvailSpecs, SourceLocation AtLoc, | |||
| 21365 | SourceLocation RParen) { | |||
| 21366 | auto FindSpecVersion = | |||
| 21367 | [&](StringRef Platform) -> std::optional<VersionTuple> { | |||
| 21368 | auto Spec = llvm::find_if(AvailSpecs, [&](const AvailabilitySpec &Spec) { | |||
| 21369 | return Spec.getPlatform() == Platform; | |||
| 21370 | }); | |||
| 21371 | // Transcribe the "ios" availability check to "maccatalyst" when compiling | |||
| 21372 | // for "maccatalyst" if "maccatalyst" is not specified. | |||
| 21373 | if (Spec == AvailSpecs.end() && Platform == "maccatalyst") { | |||
| 21374 | Spec = llvm::find_if(AvailSpecs, [&](const AvailabilitySpec &Spec) { | |||
| 21375 | return Spec.getPlatform() == "ios"; | |||
| 21376 | }); | |||
| 21377 | } | |||
| 21378 | if (Spec == AvailSpecs.end()) | |||
| 21379 | return std::nullopt; | |||
| 21380 | return Spec->getVersion(); | |||
| 21381 | }; | |||
| 21382 | ||||
| 21383 | VersionTuple Version; | |||
| 21384 | if (auto MaybeVersion = | |||
| 21385 | FindSpecVersion(Context.getTargetInfo().getPlatformName())) | |||
| 21386 | Version = *MaybeVersion; | |||
| 21387 | ||||
| 21388 | // The use of `@available` in the enclosing context should be analyzed to | |||
| 21389 | // warn when it's used inappropriately (i.e. not if(@available)). | |||
| 21390 | if (FunctionScopeInfo *Context = getCurFunctionAvailabilityContext()) | |||
| 21391 | Context->HasPotentialAvailabilityViolations = true; | |||
| 21392 | ||||
| 21393 | return new (Context) | |||
| 21394 | ObjCAvailabilityCheckExpr(Version, AtLoc, RParen, Context.BoolTy); | |||
| 21395 | } | |||
| 21396 | ||||
| 21397 | ExprResult Sema::CreateRecoveryExpr(SourceLocation Begin, SourceLocation End, | |||
| 21398 | ArrayRef<Expr *> SubExprs, QualType T) { | |||
| 21399 | if (!Context.getLangOpts().RecoveryAST) | |||
| 21400 | return ExprError(); | |||
| 21401 | ||||
| 21402 | if (isSFINAEContext()) | |||
| 21403 | return ExprError(); | |||
| 21404 | ||||
| 21405 | if (T.isNull() || T->isUndeducedType() || | |||
| 21406 | !Context.getLangOpts().RecoveryASTType) | |||
| 21407 | // We don't know the concrete type, fallback to dependent type. | |||
| 21408 | T = Context.DependentTy; | |||
| 21409 | ||||
| 21410 | return RecoveryExpr::Create(Context, T, Begin, End, SubExprs); | |||
| 21411 | } |
| 1 | //===------- TreeTransform.h - Semantic Tree Transformation -----*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | //===----------------------------------------------------------------------===// |
| 7 | // |
| 8 | // This file implements a semantic tree transformation that takes a given |
| 9 | // AST and rebuilds it, possibly transforming some nodes in the process. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #ifndef LLVM_CLANG_LIB_SEMA_TREETRANSFORM_H |
| 14 | #define LLVM_CLANG_LIB_SEMA_TREETRANSFORM_H |
| 15 | |
| 16 | #include "CoroutineStmtBuilder.h" |
| 17 | #include "TypeLocBuilder.h" |
| 18 | #include "clang/AST/Decl.h" |
| 19 | #include "clang/AST/DeclObjC.h" |
| 20 | #include "clang/AST/DeclTemplate.h" |
| 21 | #include "clang/AST/Expr.h" |
| 22 | #include "clang/AST/ExprCXX.h" |
| 23 | #include "clang/AST/ExprConcepts.h" |
| 24 | #include "clang/AST/ExprObjC.h" |
| 25 | #include "clang/AST/ExprOpenMP.h" |
| 26 | #include "clang/AST/OpenMPClause.h" |
| 27 | #include "clang/AST/Stmt.h" |
| 28 | #include "clang/AST/StmtCXX.h" |
| 29 | #include "clang/AST/StmtObjC.h" |
| 30 | #include "clang/AST/StmtOpenMP.h" |
| 31 | #include "clang/Basic/DiagnosticParse.h" |
| 32 | #include "clang/Basic/OpenMPKinds.h" |
| 33 | #include "clang/Sema/Designator.h" |
| 34 | #include "clang/Sema/EnterExpressionEvaluationContext.h" |
| 35 | #include "clang/Sema/Lookup.h" |
| 36 | #include "clang/Sema/Ownership.h" |
| 37 | #include "clang/Sema/ParsedTemplate.h" |
| 38 | #include "clang/Sema/ScopeInfo.h" |
| 39 | #include "clang/Sema/SemaDiagnostic.h" |
| 40 | #include "clang/Sema/SemaInternal.h" |
| 41 | #include "llvm/ADT/ArrayRef.h" |
| 42 | #include "llvm/Support/ErrorHandling.h" |
| 43 | #include <algorithm> |
| 44 | #include <optional> |
| 45 | |
| 46 | using namespace llvm::omp; |
| 47 | |
| 48 | namespace clang { |
| 49 | using namespace sema; |
| 50 | |
| 51 | /// A semantic tree transformation that allows one to transform one |
| 52 | /// abstract syntax tree into another. |
| 53 | /// |
| 54 | /// A new tree transformation is defined by creating a new subclass \c X of |
| 55 | /// \c TreeTransform<X> and then overriding certain operations to provide |
| 56 | /// behavior specific to that transformation. For example, template |
| 57 | /// instantiation is implemented as a tree transformation where the |
| 58 | /// transformation of TemplateTypeParmType nodes involves substituting the |
| 59 | /// template arguments for their corresponding template parameters; a similar |
| 60 | /// transformation is performed for non-type template parameters and |
| 61 | /// template template parameters. |
| 62 | /// |
| 63 | /// This tree-transformation template uses static polymorphism to allow |
| 64 | /// subclasses to customize any of its operations. Thus, a subclass can |
| 65 | /// override any of the transformation or rebuild operators by providing an |
| 66 | /// operation with the same signature as the default implementation. The |
| 67 | /// overriding function should not be virtual. |
| 68 | /// |
| 69 | /// Semantic tree transformations are split into two stages, either of which |
| 70 | /// can be replaced by a subclass. The "transform" step transforms an AST node |
| 71 | /// or the parts of an AST node using the various transformation functions, |
| 72 | /// then passes the pieces on to the "rebuild" step, which constructs a new AST |
| 73 | /// node of the appropriate kind from the pieces. The default transformation |
| 74 | /// routines recursively transform the operands to composite AST nodes (e.g., |
| 75 | /// the pointee type of a PointerType node) and, if any of those operand nodes |
| 76 | /// were changed by the transformation, invokes the rebuild operation to create |
| 77 | /// a new AST node. |
| 78 | /// |
| 79 | /// Subclasses can customize the transformation at various levels. The |
| 80 | /// most coarse-grained transformations involve replacing TransformType(), |
| 81 | /// TransformExpr(), TransformDecl(), TransformNestedNameSpecifierLoc(), |
| 82 | /// TransformTemplateName(), or TransformTemplateArgument() with entirely |
| 83 | /// new implementations. |
| 84 | /// |
| 85 | /// For more fine-grained transformations, subclasses can replace any of the |
| 86 | /// \c TransformXXX functions (where XXX is the name of an AST node, e.g., |
| 87 | /// PointerType, StmtExpr) to alter the transformation. As mentioned previously, |
| 88 | /// replacing TransformTemplateTypeParmType() allows template instantiation |
| 89 | /// to substitute template arguments for their corresponding template |
| 90 | /// parameters. Additionally, subclasses can override the \c RebuildXXX |
| 91 | /// functions to control how AST nodes are rebuilt when their operands change. |
| 92 | /// By default, \c TreeTransform will invoke semantic analysis to rebuild |
| 93 | /// AST nodes. However, certain other tree transformations (e.g, cloning) may |
| 94 | /// be able to use more efficient rebuild steps. |
| 95 | /// |
| 96 | /// There are a handful of other functions that can be overridden, allowing one |
| 97 | /// to avoid traversing nodes that don't need any transformation |
| 98 | /// (\c AlreadyTransformed()), force rebuilding AST nodes even when their |
| 99 | /// operands have not changed (\c AlwaysRebuild()), and customize the |
| 100 | /// default locations and entity names used for type-checking |
| 101 | /// (\c getBaseLocation(), \c getBaseEntity()). |
| 102 | template<typename Derived> |
| 103 | class TreeTransform { |
| 104 | /// Private RAII object that helps us forget and then re-remember |
| 105 | /// the template argument corresponding to a partially-substituted parameter |
| 106 | /// pack. |
| 107 | class ForgetPartiallySubstitutedPackRAII { |
| 108 | Derived &Self; |
| 109 | TemplateArgument Old; |
| 110 | |
| 111 | public: |
| 112 | ForgetPartiallySubstitutedPackRAII(Derived &Self) : Self(Self) { |
| 113 | Old = Self.ForgetPartiallySubstitutedPack(); |
| 114 | } |
| 115 | |
| 116 | ~ForgetPartiallySubstitutedPackRAII() { |
| 117 | Self.RememberPartiallySubstitutedPack(Old); |
| 118 | } |
| 119 | }; |
| 120 | |
| 121 | protected: |
| 122 | Sema &SemaRef; |
| 123 | |
| 124 | /// The set of local declarations that have been transformed, for |
| 125 | /// cases where we are forced to build new declarations within the transformer |
| 126 | /// rather than in the subclass (e.g., lambda closure types). |
| 127 | llvm::DenseMap<Decl *, Decl *> TransformedLocalDecls; |
| 128 | |
| 129 | public: |
| 130 | /// Initializes a new tree transformer. |
| 131 | TreeTransform(Sema &SemaRef) : SemaRef(SemaRef) { } |
| 132 | |
| 133 | /// Retrieves a reference to the derived class. |
| 134 | Derived &getDerived() { return static_cast<Derived&>(*this); } |
| 135 | |
| 136 | /// Retrieves a reference to the derived class. |
| 137 | const Derived &getDerived() const { |
| 138 | return static_cast<const Derived&>(*this); |
| 139 | } |
| 140 | |
| 141 | static inline ExprResult Owned(Expr *E) { return E; } |
| 142 | static inline StmtResult Owned(Stmt *S) { return S; } |
| 143 | |
| 144 | /// Retrieves a reference to the semantic analysis object used for |
| 145 | /// this tree transform. |
| 146 | Sema &getSema() const { return SemaRef; } |
| 147 | |
| 148 | /// Whether the transformation should always rebuild AST nodes, even |
| 149 | /// if none of the children have changed. |
| 150 | /// |
| 151 | /// Subclasses may override this function to specify when the transformation |
| 152 | /// should rebuild all AST nodes. |
| 153 | /// |
| 154 | /// We must always rebuild all AST nodes when performing variadic template |
| 155 | /// pack expansion, in order to avoid violating the AST invariant that each |
| 156 | /// statement node appears at most once in its containing declaration. |
| 157 | bool AlwaysRebuild() { return SemaRef.ArgumentPackSubstitutionIndex != -1; } |
| 158 | |
| 159 | /// Whether the transformation is forming an expression or statement that |
| 160 | /// replaces the original. In this case, we'll reuse mangling numbers from |
| 161 | /// existing lambdas. |
| 162 | bool ReplacingOriginal() { return false; } |
| 163 | |
| 164 | /// Wether CXXConstructExpr can be skipped when they are implicit. |
| 165 | /// They will be reconstructed when used if needed. |
| 166 | /// This is useful when the user that cause rebuilding of the |
| 167 | /// CXXConstructExpr is outside of the expression at which the TreeTransform |
| 168 | /// started. |
| 169 | bool AllowSkippingCXXConstructExpr() { return true; } |
| 170 | |
| 171 | /// Returns the location of the entity being transformed, if that |
| 172 | /// information was not available elsewhere in the AST. |
| 173 | /// |
| 174 | /// By default, returns no source-location information. Subclasses can |
| 175 | /// provide an alternative implementation that provides better location |
| 176 | /// information. |
| 177 | SourceLocation getBaseLocation() { return SourceLocation(); } |
| 178 | |
| 179 | /// Returns the name of the entity being transformed, if that |
| 180 | /// information was not available elsewhere in the AST. |
| 181 | /// |
| 182 | /// By default, returns an empty name. Subclasses can provide an alternative |
| 183 | /// implementation with a more precise name. |
| 184 | DeclarationName getBaseEntity() { return DeclarationName(); } |
| 185 | |
| 186 | /// Sets the "base" location and entity when that |
| 187 | /// information is known based on another transformation. |
| 188 | /// |
| 189 | /// By default, the source location and entity are ignored. Subclasses can |
| 190 | /// override this function to provide a customized implementation. |
| 191 | void setBase(SourceLocation Loc, DeclarationName Entity) { } |
| 192 | |
| 193 | /// RAII object that temporarily sets the base location and entity |
| 194 | /// used for reporting diagnostics in types. |
| 195 | class TemporaryBase { |
| 196 | TreeTransform &Self; |
| 197 | SourceLocation OldLocation; |
| 198 | DeclarationName OldEntity; |
| 199 | |
| 200 | public: |
| 201 | TemporaryBase(TreeTransform &Self, SourceLocation Location, |
| 202 | DeclarationName Entity) : Self(Self) { |
| 203 | OldLocation = Self.getDerived().getBaseLocation(); |
| 204 | OldEntity = Self.getDerived().getBaseEntity(); |
| 205 | |
| 206 | if (Location.isValid()) |
| 207 | Self.getDerived().setBase(Location, Entity); |
| 208 | } |
| 209 | |
| 210 | ~TemporaryBase() { |
| 211 | Self.getDerived().setBase(OldLocation, OldEntity); |
| 212 | } |
| 213 | }; |
| 214 | |
| 215 | /// Determine whether the given type \p T has already been |
| 216 | /// transformed. |
| 217 | /// |
| 218 | /// Subclasses can provide an alternative implementation of this routine |
| 219 | /// to short-circuit evaluation when it is known that a given type will |
| 220 | /// not change. For example, template instantiation need not traverse |
| 221 | /// non-dependent types. |
| 222 | bool AlreadyTransformed(QualType T) { |
| 223 | return T.isNull(); |
| 224 | } |
| 225 | |
| 226 | /// Transform a template parameter depth level. |
| 227 | /// |
| 228 | /// During a transformation that transforms template parameters, this maps |
| 229 | /// an old template parameter depth to a new depth. |
| 230 | unsigned TransformTemplateDepth(unsigned Depth) { |
| 231 | return Depth; |
| 232 | } |
| 233 | |
| 234 | /// Determine whether the given call argument should be dropped, e.g., |
| 235 | /// because it is a default argument. |
| 236 | /// |
| 237 | /// Subclasses can provide an alternative implementation of this routine to |
| 238 | /// determine which kinds of call arguments get dropped. By default, |
| 239 | /// CXXDefaultArgument nodes are dropped (prior to transformation). |
| 240 | bool DropCallArgument(Expr *E) { |
| 241 | return E->isDefaultArgument(); |
| 242 | } |
| 243 | |
| 244 | /// Determine whether we should expand a pack expansion with the |
| 245 | /// given set of parameter packs into separate arguments by repeatedly |
| 246 | /// transforming the pattern. |
| 247 | /// |
| 248 | /// By default, the transformer never tries to expand pack expansions. |
| 249 | /// Subclasses can override this routine to provide different behavior. |
| 250 | /// |
| 251 | /// \param EllipsisLoc The location of the ellipsis that identifies the |
| 252 | /// pack expansion. |
| 253 | /// |
| 254 | /// \param PatternRange The source range that covers the entire pattern of |
| 255 | /// the pack expansion. |
| 256 | /// |
| 257 | /// \param Unexpanded The set of unexpanded parameter packs within the |
| 258 | /// pattern. |
| 259 | /// |
| 260 | /// \param ShouldExpand Will be set to \c true if the transformer should |
| 261 | /// expand the corresponding pack expansions into separate arguments. When |
| 262 | /// set, \c NumExpansions must also be set. |
| 263 | /// |
| 264 | /// \param RetainExpansion Whether the caller should add an unexpanded |
| 265 | /// pack expansion after all of the expanded arguments. This is used |
| 266 | /// when extending explicitly-specified template argument packs per |
| 267 | /// C++0x [temp.arg.explicit]p9. |
| 268 | /// |
| 269 | /// \param NumExpansions The number of separate arguments that will be in |
| 270 | /// the expanded form of the corresponding pack expansion. This is both an |
| 271 | /// input and an output parameter, which can be set by the caller if the |
| 272 | /// number of expansions is known a priori (e.g., due to a prior substitution) |
| 273 | /// and will be set by the callee when the number of expansions is known. |
| 274 | /// The callee must set this value when \c ShouldExpand is \c true; it may |
| 275 | /// set this value in other cases. |
| 276 | /// |
| 277 | /// \returns true if an error occurred (e.g., because the parameter packs |
| 278 | /// are to be instantiated with arguments of different lengths), false |
| 279 | /// otherwise. If false, \c ShouldExpand (and possibly \c NumExpansions) |
| 280 | /// must be set. |
| 281 | bool TryExpandParameterPacks(SourceLocation EllipsisLoc, |
| 282 | SourceRange PatternRange, |
| 283 | ArrayRef<UnexpandedParameterPack> Unexpanded, |
| 284 | bool &ShouldExpand, bool &RetainExpansion, |
| 285 | std::optional<unsigned> &NumExpansions) { |
| 286 | ShouldExpand = false; |
| 287 | return false; |
| 288 | } |
| 289 | |
| 290 | /// "Forget" about the partially-substituted pack template argument, |
| 291 | /// when performing an instantiation that must preserve the parameter pack |
| 292 | /// use. |
| 293 | /// |
| 294 | /// This routine is meant to be overridden by the template instantiator. |
| 295 | TemplateArgument ForgetPartiallySubstitutedPack() { |
| 296 | return TemplateArgument(); |
| 297 | } |
| 298 | |
| 299 | /// "Remember" the partially-substituted pack template argument |
| 300 | /// after performing an instantiation that must preserve the parameter pack |
| 301 | /// use. |
| 302 | /// |
| 303 | /// This routine is meant to be overridden by the template instantiator. |
| 304 | void RememberPartiallySubstitutedPack(TemplateArgument Arg) { } |
| 305 | |
| 306 | /// Note to the derived class when a function parameter pack is |
| 307 | /// being expanded. |
| 308 | void ExpandingFunctionParameterPack(ParmVarDecl *Pack) { } |
| 309 | |
| 310 | /// Transforms the given type into another type. |
| 311 | /// |
| 312 | /// By default, this routine transforms a type by creating a |
| 313 | /// TypeSourceInfo for it and delegating to the appropriate |
| 314 | /// function. This is expensive, but we don't mind, because |
| 315 | /// this method is deprecated anyway; all users should be |
| 316 | /// switched to storing TypeSourceInfos. |
| 317 | /// |
| 318 | /// \returns the transformed type. |
| 319 | QualType TransformType(QualType T); |
| 320 | |
| 321 | /// Transforms the given type-with-location into a new |
| 322 | /// type-with-location. |
| 323 | /// |
| 324 | /// By default, this routine transforms a type by delegating to the |
| 325 | /// appropriate TransformXXXType to build a new type. Subclasses |
| 326 | /// may override this function (to take over all type |
| 327 | /// transformations) or some set of the TransformXXXType functions |
| 328 | /// to alter the transformation. |
| 329 | TypeSourceInfo *TransformType(TypeSourceInfo *DI); |
| 330 | |
| 331 | /// Transform the given type-with-location into a new |
| 332 | /// type, collecting location information in the given builder |
| 333 | /// as necessary. |
| 334 | /// |
| 335 | QualType TransformType(TypeLocBuilder &TLB, TypeLoc TL); |
| 336 | |
| 337 | /// Transform a type that is permitted to produce a |
| 338 | /// DeducedTemplateSpecializationType. |
| 339 | /// |
| 340 | /// This is used in the (relatively rare) contexts where it is acceptable |
| 341 | /// for transformation to produce a class template type with deduced |
| 342 | /// template arguments. |
| 343 | /// @{ |
| 344 | QualType TransformTypeWithDeducedTST(QualType T); |
| 345 | TypeSourceInfo *TransformTypeWithDeducedTST(TypeSourceInfo *DI); |
| 346 | /// @} |
| 347 | |
| 348 | /// The reason why the value of a statement is not discarded, if any. |
| 349 | enum StmtDiscardKind { |
| 350 | SDK_Discarded, |
| 351 | SDK_NotDiscarded, |
| 352 | SDK_StmtExprResult, |
| 353 | }; |
| 354 | |
| 355 | /// Transform the given statement. |
| 356 | /// |
| 357 | /// By default, this routine transforms a statement by delegating to the |
| 358 | /// appropriate TransformXXXStmt function to transform a specific kind of |
| 359 | /// statement or the TransformExpr() function to transform an expression. |
| 360 | /// Subclasses may override this function to transform statements using some |
| 361 | /// other mechanism. |
| 362 | /// |
| 363 | /// \returns the transformed statement. |
| 364 | StmtResult TransformStmt(Stmt *S, StmtDiscardKind SDK = SDK_Discarded); |
| 365 | |
| 366 | /// Transform the given statement. |
| 367 | /// |
| 368 | /// By default, this routine transforms a statement by delegating to the |
| 369 | /// appropriate TransformOMPXXXClause function to transform a specific kind |
| 370 | /// of clause. Subclasses may override this function to transform statements |
| 371 | /// using some other mechanism. |
| 372 | /// |
| 373 | /// \returns the transformed OpenMP clause. |
| 374 | OMPClause *TransformOMPClause(OMPClause *S); |
| 375 | |
| 376 | /// Transform the given attribute. |
| 377 | /// |
| 378 | /// By default, this routine transforms a statement by delegating to the |
| 379 | /// appropriate TransformXXXAttr function to transform a specific kind |
| 380 | /// of attribute. Subclasses may override this function to transform |
| 381 | /// attributed statements/types using some other mechanism. |
| 382 | /// |
| 383 | /// \returns the transformed attribute |
| 384 | const Attr *TransformAttr(const Attr *S); |
| 385 | |
| 386 | // Transform the given statement attribute. |
| 387 | // |
| 388 | // Delegates to the appropriate TransformXXXAttr function to transform a |
| 389 | // specific kind of statement attribute. Unlike the non-statement taking |
| 390 | // version of this, this implements all attributes, not just pragmas. |
| 391 | const Attr *TransformStmtAttr(const Stmt *OrigS, const Stmt *InstS, |
| 392 | const Attr *A); |
| 393 | |
| 394 | // Transform the specified attribute. |
| 395 | // |
| 396 | // Subclasses should override the transformation of attributes with a pragma |
| 397 | // spelling to transform expressions stored within the attribute. |
| 398 | // |
| 399 | // \returns the transformed attribute. |
| 400 | #define ATTR(X) \ |
| 401 | const X##Attr *Transform##X##Attr(const X##Attr *R) { return R; } |
| 402 | #include "clang/Basic/AttrList.inc" |
| 403 | |
| 404 | // Transform the specified attribute. |
| 405 | // |
| 406 | // Subclasses should override the transformation of attributes to do |
| 407 | // transformation and checking of statement attributes. By default, this |
| 408 | // delegates to the non-statement taking version. |
| 409 | // |
| 410 | // \returns the transformed attribute. |
| 411 | #define ATTR(X) \ |
| 412 | const X##Attr *TransformStmt##X##Attr(const Stmt *, const Stmt *, \ |
| 413 | const X##Attr *A) { \ |
| 414 | return getDerived().Transform##X##Attr(A); \ |
| 415 | } |
| 416 | #include "clang/Basic/AttrList.inc" |
| 417 | |
| 418 | /// Transform the given expression. |
| 419 | /// |
| 420 | /// By default, this routine transforms an expression by delegating to the |
| 421 | /// appropriate TransformXXXExpr function to build a new expression. |
| 422 | /// Subclasses may override this function to transform expressions using some |
| 423 | /// other mechanism. |
| 424 | /// |
| 425 | /// \returns the transformed expression. |
| 426 | ExprResult TransformExpr(Expr *E); |
| 427 | |
| 428 | /// Transform the given initializer. |
| 429 | /// |
| 430 | /// By default, this routine transforms an initializer by stripping off the |
| 431 | /// semantic nodes added by initialization, then passing the result to |
| 432 | /// TransformExpr or TransformExprs. |
| 433 | /// |
| 434 | /// \returns the transformed initializer. |
| 435 | ExprResult TransformInitializer(Expr *Init, bool NotCopyInit); |
| 436 | |
| 437 | /// Transform the given list of expressions. |
| 438 | /// |
| 439 | /// This routine transforms a list of expressions by invoking |
| 440 | /// \c TransformExpr() for each subexpression. However, it also provides |
| 441 | /// support for variadic templates by expanding any pack expansions (if the |
| 442 | /// derived class permits such expansion) along the way. When pack expansions |
| 443 | /// are present, the number of outputs may not equal the number of inputs. |
| 444 | /// |
| 445 | /// \param Inputs The set of expressions to be transformed. |
| 446 | /// |
| 447 | /// \param NumInputs The number of expressions in \c Inputs. |
| 448 | /// |
| 449 | /// \param IsCall If \c true, then this transform is being performed on |
| 450 | /// function-call arguments, and any arguments that should be dropped, will |
| 451 | /// be. |
| 452 | /// |
| 453 | /// \param Outputs The transformed input expressions will be added to this |
| 454 | /// vector. |
| 455 | /// |
| 456 | /// \param ArgChanged If non-NULL, will be set \c true if any argument changed |
| 457 | /// due to transformation. |
| 458 | /// |
| 459 | /// \returns true if an error occurred, false otherwise. |
| 460 | bool TransformExprs(Expr *const *Inputs, unsigned NumInputs, bool IsCall, |
| 461 | SmallVectorImpl<Expr *> &Outputs, |
| 462 | bool *ArgChanged = nullptr); |
| 463 | |
| 464 | /// Transform the given declaration, which is referenced from a type |
| 465 | /// or expression. |
| 466 | /// |
| 467 | /// By default, acts as the identity function on declarations, unless the |
| 468 | /// transformer has had to transform the declaration itself. Subclasses |
| 469 | /// may override this function to provide alternate behavior. |
| 470 | Decl *TransformDecl(SourceLocation Loc, Decl *D) { |
| 471 | llvm::DenseMap<Decl *, Decl *>::iterator Known |
| 472 | = TransformedLocalDecls.find(D); |
| 473 | if (Known != TransformedLocalDecls.end()) |
| 474 | return Known->second; |
| 475 | |
| 476 | return D; |
| 477 | } |
| 478 | |
| 479 | /// Transform the specified condition. |
| 480 | /// |
| 481 | /// By default, this transforms the variable and expression and rebuilds |
| 482 | /// the condition. |
| 483 | Sema::ConditionResult TransformCondition(SourceLocation Loc, VarDecl *Var, |
| 484 | Expr *Expr, |
| 485 | Sema::ConditionKind Kind); |
| 486 | |
| 487 | /// Transform the attributes associated with the given declaration and |
| 488 | /// place them on the new declaration. |
| 489 | /// |
| 490 | /// By default, this operation does nothing. Subclasses may override this |
| 491 | /// behavior to transform attributes. |
| 492 | void transformAttrs(Decl *Old, Decl *New) { } |
| 493 | |
| 494 | /// Note that a local declaration has been transformed by this |
| 495 | /// transformer. |
| 496 | /// |
| 497 | /// Local declarations are typically transformed via a call to |
| 498 | /// TransformDefinition. However, in some cases (e.g., lambda expressions), |
| 499 | /// the transformer itself has to transform the declarations. This routine |
| 500 | /// can be overridden by a subclass that keeps track of such mappings. |
| 501 | void transformedLocalDecl(Decl *Old, ArrayRef<Decl *> New) { |
| 502 | assert(New.size() == 1 &&(static_cast <bool> (New.size() == 1 && "must override transformedLocalDecl if performing pack expansion" ) ? void (0) : __assert_fail ("New.size() == 1 && \"must override transformedLocalDecl if performing pack expansion\"" , "clang/lib/Sema/TreeTransform.h", 503, __extension__ __PRETTY_FUNCTION__ )) |
| 503 | "must override transformedLocalDecl if performing pack expansion")(static_cast <bool> (New.size() == 1 && "must override transformedLocalDecl if performing pack expansion" ) ? void (0) : __assert_fail ("New.size() == 1 && \"must override transformedLocalDecl if performing pack expansion\"" , "clang/lib/Sema/TreeTransform.h", 503, __extension__ __PRETTY_FUNCTION__ )); |
| 504 | TransformedLocalDecls[Old] = New.front(); |
| 505 | } |
| 506 | |
| 507 | /// Transform the definition of the given declaration. |
| 508 | /// |
| 509 | /// By default, invokes TransformDecl() to transform the declaration. |
| 510 | /// Subclasses may override this function to provide alternate behavior. |
| 511 | Decl *TransformDefinition(SourceLocation Loc, Decl *D) { |
| 512 | return getDerived().TransformDecl(Loc, D); |
| 513 | } |
| 514 | |
| 515 | /// Transform the given declaration, which was the first part of a |
| 516 | /// nested-name-specifier in a member access expression. |
| 517 | /// |
| 518 | /// This specific declaration transformation only applies to the first |
| 519 | /// identifier in a nested-name-specifier of a member access expression, e.g., |
| 520 | /// the \c T in \c x->T::member |
| 521 | /// |
| 522 | /// By default, invokes TransformDecl() to transform the declaration. |
| 523 | /// Subclasses may override this function to provide alternate behavior. |
| 524 | NamedDecl *TransformFirstQualifierInScope(NamedDecl *D, SourceLocation Loc) { |
| 525 | return cast_or_null<NamedDecl>(getDerived().TransformDecl(Loc, D)); |
| 526 | } |
| 527 | |
| 528 | /// Transform the set of declarations in an OverloadExpr. |
| 529 | bool TransformOverloadExprDecls(OverloadExpr *Old, bool RequiresADL, |
| 530 | LookupResult &R); |
| 531 | |
| 532 | /// Transform the given nested-name-specifier with source-location |
| 533 | /// information. |
| 534 | /// |
| 535 | /// By default, transforms all of the types and declarations within the |
| 536 | /// nested-name-specifier. Subclasses may override this function to provide |
| 537 | /// alternate behavior. |
| 538 | NestedNameSpecifierLoc |
| 539 | TransformNestedNameSpecifierLoc(NestedNameSpecifierLoc NNS, |
| 540 | QualType ObjectType = QualType(), |
| 541 | NamedDecl *FirstQualifierInScope = nullptr); |
| 542 | |
| 543 | /// Transform the given declaration name. |
| 544 | /// |
| 545 | /// By default, transforms the types of conversion function, constructor, |
| 546 | /// and destructor names and then (if needed) rebuilds the declaration name. |
| 547 | /// Identifiers and selectors are returned unmodified. Subclasses may |
| 548 | /// override this function to provide alternate behavior. |
| 549 | DeclarationNameInfo |
| 550 | TransformDeclarationNameInfo(const DeclarationNameInfo &NameInfo); |
| 551 | |
| 552 | bool TransformRequiresExprRequirements(ArrayRef<concepts::Requirement *> Reqs, |
| 553 | llvm::SmallVectorImpl<concepts::Requirement *> &Transformed); |
| 554 | concepts::TypeRequirement * |
| 555 | TransformTypeRequirement(concepts::TypeRequirement *Req); |
| 556 | concepts::ExprRequirement * |
| 557 | TransformExprRequirement(concepts::ExprRequirement *Req); |
| 558 | concepts::NestedRequirement * |
| 559 | TransformNestedRequirement(concepts::NestedRequirement *Req); |
| 560 | |
| 561 | /// Transform the given template name. |
| 562 | /// |
| 563 | /// \param SS The nested-name-specifier that qualifies the template |
| 564 | /// name. This nested-name-specifier must already have been transformed. |
| 565 | /// |
| 566 | /// \param Name The template name to transform. |
| 567 | /// |
| 568 | /// \param NameLoc The source location of the template name. |
| 569 | /// |
| 570 | /// \param ObjectType If we're translating a template name within a member |
| 571 | /// access expression, this is the type of the object whose member template |
| 572 | /// is being referenced. |
| 573 | /// |
| 574 | /// \param FirstQualifierInScope If the first part of a nested-name-specifier |
| 575 | /// also refers to a name within the current (lexical) scope, this is the |
| 576 | /// declaration it refers to. |
| 577 | /// |
| 578 | /// By default, transforms the template name by transforming the declarations |
| 579 | /// and nested-name-specifiers that occur within the template name. |
| 580 | /// Subclasses may override this function to provide alternate behavior. |
| 581 | TemplateName |
| 582 | TransformTemplateName(CXXScopeSpec &SS, TemplateName Name, |
| 583 | SourceLocation NameLoc, |
| 584 | QualType ObjectType = QualType(), |
| 585 | NamedDecl *FirstQualifierInScope = nullptr, |
| 586 | bool AllowInjectedClassName = false); |
| 587 | |
| 588 | /// Transform the given template argument. |
| 589 | /// |
| 590 | /// By default, this operation transforms the type, expression, or |
| 591 | /// declaration stored within the template argument and constructs a |
| 592 | /// new template argument from the transformed result. Subclasses may |
| 593 | /// override this function to provide alternate behavior. |
| 594 | /// |
| 595 | /// Returns true if there was an error. |
| 596 | bool TransformTemplateArgument(const TemplateArgumentLoc &Input, |
| 597 | TemplateArgumentLoc &Output, |
| 598 | bool Uneval = false); |
| 599 | |
| 600 | /// Transform the given set of template arguments. |
| 601 | /// |
| 602 | /// By default, this operation transforms all of the template arguments |
| 603 | /// in the input set using \c TransformTemplateArgument(), and appends |
| 604 | /// the transformed arguments to the output list. |
| 605 | /// |
| 606 | /// Note that this overload of \c TransformTemplateArguments() is merely |
| 607 | /// a convenience function. Subclasses that wish to override this behavior |
| 608 | /// should override the iterator-based member template version. |
| 609 | /// |
| 610 | /// \param Inputs The set of template arguments to be transformed. |
| 611 | /// |
| 612 | /// \param NumInputs The number of template arguments in \p Inputs. |
| 613 | /// |
| 614 | /// \param Outputs The set of transformed template arguments output by this |
| 615 | /// routine. |
| 616 | /// |
| 617 | /// Returns true if an error occurred. |
| 618 | bool TransformTemplateArguments(const TemplateArgumentLoc *Inputs, |
| 619 | unsigned NumInputs, |
| 620 | TemplateArgumentListInfo &Outputs, |
| 621 | bool Uneval = false) { |
| 622 | return TransformTemplateArguments(Inputs, Inputs + NumInputs, Outputs, |
| 623 | Uneval); |
| 624 | } |
| 625 | |
| 626 | /// Transform the given set of template arguments. |
| 627 | /// |
| 628 | /// By default, this operation transforms all of the template arguments |
| 629 | /// in the input set using \c TransformTemplateArgument(), and appends |
| 630 | /// the transformed arguments to the output list. |
| 631 | /// |
| 632 | /// \param First An iterator to the first template argument. |
| 633 | /// |
| 634 | /// \param Last An iterator one step past the last template argument. |
| 635 | /// |
| 636 | /// \param Outputs The set of transformed template arguments output by this |
| 637 | /// routine. |
| 638 | /// |
| 639 | /// Returns true if an error occurred. |
| 640 | template<typename InputIterator> |
| 641 | bool TransformTemplateArguments(InputIterator First, |
| 642 | InputIterator Last, |
| 643 | TemplateArgumentListInfo &Outputs, |
| 644 | bool Uneval = false); |
| 645 | |
| 646 | /// Fakes up a TemplateArgumentLoc for a given TemplateArgument. |
| 647 | void InventTemplateArgumentLoc(const TemplateArgument &Arg, |
| 648 | TemplateArgumentLoc &ArgLoc); |
| 649 | |
| 650 | /// Fakes up a TypeSourceInfo for a type. |
| 651 | TypeSourceInfo *InventTypeSourceInfo(QualType T) { |
| 652 | return SemaRef.Context.getTrivialTypeSourceInfo(T, |
| 653 | getDerived().getBaseLocation()); |
| 654 | } |
| 655 | |
| 656 | #define ABSTRACT_TYPELOC(CLASS, PARENT) |
| 657 | #define TYPELOC(CLASS, PARENT) \ |
| 658 | QualType Transform##CLASS##Type(TypeLocBuilder &TLB, CLASS##TypeLoc T); |
| 659 | #include "clang/AST/TypeLocNodes.def" |
| 660 | |
| 661 | QualType TransformTemplateTypeParmType(TypeLocBuilder &TLB, |
| 662 | TemplateTypeParmTypeLoc TL, |
| 663 | bool SuppressObjCLifetime); |
| 664 | QualType |
| 665 | TransformSubstTemplateTypeParmPackType(TypeLocBuilder &TLB, |
| 666 | SubstTemplateTypeParmPackTypeLoc TL, |
| 667 | bool SuppressObjCLifetime); |
| 668 | |
| 669 | template<typename Fn> |
| 670 | QualType TransformFunctionProtoType(TypeLocBuilder &TLB, |
| 671 | FunctionProtoTypeLoc TL, |
| 672 | CXXRecordDecl *ThisContext, |
| 673 | Qualifiers ThisTypeQuals, |
| 674 | Fn TransformExceptionSpec); |
| 675 | |
| 676 | bool TransformExceptionSpec(SourceLocation Loc, |
| 677 | FunctionProtoType::ExceptionSpecInfo &ESI, |
| 678 | SmallVectorImpl<QualType> &Exceptions, |
| 679 | bool &Changed); |
| 680 | |
| 681 | StmtResult TransformSEHHandler(Stmt *Handler); |
| 682 | |
| 683 | QualType |
| 684 | TransformTemplateSpecializationType(TypeLocBuilder &TLB, |
| 685 | TemplateSpecializationTypeLoc TL, |
| 686 | TemplateName Template); |
| 687 | |
| 688 | QualType |
| 689 | TransformDependentTemplateSpecializationType(TypeLocBuilder &TLB, |
| 690 | DependentTemplateSpecializationTypeLoc TL, |
| 691 | TemplateName Template, |
| 692 | CXXScopeSpec &SS); |
| 693 | |
| 694 | QualType TransformDependentTemplateSpecializationType( |
| 695 | TypeLocBuilder &TLB, DependentTemplateSpecializationTypeLoc TL, |
| 696 | NestedNameSpecifierLoc QualifierLoc); |
| 697 | |
| 698 | /// Transforms the parameters of a function type into the |
| 699 | /// given vectors. |
| 700 | /// |
| 701 | /// The result vectors should be kept in sync; null entries in the |
| 702 | /// variables vector are acceptable. |
| 703 | /// |
| 704 | /// LastParamTransformed, if non-null, will be set to the index of the last |
| 705 | /// parameter on which transfromation was started. In the event of an error, |
| 706 | /// this will contain the parameter which failed to instantiate. |
| 707 | /// |
| 708 | /// Return true on error. |
| 709 | bool TransformFunctionTypeParams( |
| 710 | SourceLocation Loc, ArrayRef<ParmVarDecl *> Params, |
| 711 | const QualType *ParamTypes, |
| 712 | const FunctionProtoType::ExtParameterInfo *ParamInfos, |
| 713 | SmallVectorImpl<QualType> &PTypes, SmallVectorImpl<ParmVarDecl *> *PVars, |
| 714 | Sema::ExtParameterInfoBuilder &PInfos, unsigned *LastParamTransformed); |
| 715 | |
| 716 | bool TransformFunctionTypeParams( |
| 717 | SourceLocation Loc, ArrayRef<ParmVarDecl *> Params, |
| 718 | const QualType *ParamTypes, |
| 719 | const FunctionProtoType::ExtParameterInfo *ParamInfos, |
| 720 | SmallVectorImpl<QualType> &PTypes, SmallVectorImpl<ParmVarDecl *> *PVars, |
| 721 | Sema::ExtParameterInfoBuilder &PInfos) { |
| 722 | return getDerived().TransformFunctionTypeParams( |
| 723 | Loc, Params, ParamTypes, ParamInfos, PTypes, PVars, PInfos, nullptr); |
| 724 | } |
| 725 | |
| 726 | /// Transforms the parameters of a requires expresison into the given vectors. |
| 727 | /// |
| 728 | /// The result vectors should be kept in sync; null entries in the |
| 729 | /// variables vector are acceptable. |
| 730 | /// |
| 731 | /// Returns an unset ExprResult on success. Returns an ExprResult the 'not |
| 732 | /// satisfied' RequiresExpr if subsitution failed, OR an ExprError, both of |
| 733 | /// which are cases where transformation shouldn't continue. |
| 734 | ExprResult TransformRequiresTypeParams( |
| 735 | SourceLocation KWLoc, SourceLocation RBraceLoc, const RequiresExpr *RE, |
| 736 | RequiresExprBodyDecl *Body, ArrayRef<ParmVarDecl *> Params, |
| 737 | SmallVectorImpl<QualType> &PTypes, |
| 738 | SmallVectorImpl<ParmVarDecl *> &TransParams, |
| 739 | Sema::ExtParameterInfoBuilder &PInfos) { |
| 740 | if (getDerived().TransformFunctionTypeParams( |
| 741 | KWLoc, Params, /*ParamTypes=*/nullptr, |
| 742 | /*ParamInfos=*/nullptr, PTypes, &TransParams, PInfos)) |
| 743 | return ExprError(); |
| 744 | |
| 745 | return ExprResult{}; |
| 746 | } |
| 747 | |
| 748 | /// Transforms a single function-type parameter. Return null |
| 749 | /// on error. |
| 750 | /// |
| 751 | /// \param indexAdjustment - A number to add to the parameter's |
| 752 | /// scope index; can be negative |
| 753 | ParmVarDecl *TransformFunctionTypeParam(ParmVarDecl *OldParm, |
| 754 | int indexAdjustment, |
| 755 | std::optional<unsigned> NumExpansions, |
| 756 | bool ExpectParameterPack); |
| 757 | |
| 758 | /// Transform the body of a lambda-expression. |
| 759 | StmtResult TransformLambdaBody(LambdaExpr *E, Stmt *Body); |
| 760 | /// Alternative implementation of TransformLambdaBody that skips transforming |
| 761 | /// the body. |
| 762 | StmtResult SkipLambdaBody(LambdaExpr *E, Stmt *Body); |
| 763 | |
| 764 | QualType TransformReferenceType(TypeLocBuilder &TLB, ReferenceTypeLoc TL); |
| 765 | |
| 766 | StmtResult TransformCompoundStmt(CompoundStmt *S, bool IsStmtExpr); |
| 767 | ExprResult TransformCXXNamedCastExpr(CXXNamedCastExpr *E); |
| 768 | |
| 769 | TemplateParameterList *TransformTemplateParameterList( |
| 770 | TemplateParameterList *TPL) { |
| 771 | return TPL; |
| 772 | } |
| 773 | |
| 774 | ExprResult TransformAddressOfOperand(Expr *E); |
| 775 | |
| 776 | ExprResult TransformDependentScopeDeclRefExpr(DependentScopeDeclRefExpr *E, |
| 777 | bool IsAddressOfOperand, |
| 778 | TypeSourceInfo **RecoveryTSI); |
| 779 | |
| 780 | ExprResult TransformParenDependentScopeDeclRefExpr( |
| 781 | ParenExpr *PE, DependentScopeDeclRefExpr *DRE, bool IsAddressOfOperand, |
| 782 | TypeSourceInfo **RecoveryTSI); |
| 783 | |
| 784 | StmtResult TransformOMPExecutableDirective(OMPExecutableDirective *S); |
| 785 | |
| 786 | // FIXME: We use LLVM_ATTRIBUTE_NOINLINE because inlining causes a ridiculous |
| 787 | // amount of stack usage with clang. |
| 788 | #define STMT(Node, Parent) \ |
| 789 | LLVM_ATTRIBUTE_NOINLINE__attribute__((noinline)) \ |
| 790 | StmtResult Transform##Node(Node *S); |
| 791 | #define VALUESTMT(Node, Parent) \ |
| 792 | LLVM_ATTRIBUTE_NOINLINE__attribute__((noinline)) \ |
| 793 | StmtResult Transform##Node(Node *S, StmtDiscardKind SDK); |
| 794 | #define EXPR(Node, Parent) \ |
| 795 | LLVM_ATTRIBUTE_NOINLINE__attribute__((noinline)) \ |
| 796 | ExprResult Transform##Node(Node *E); |
| 797 | #define ABSTRACT_STMT(Stmt) |
| 798 | #include "clang/AST/StmtNodes.inc" |
| 799 | |
| 800 | #define GEN_CLANG_CLAUSE_CLASS |
| 801 | #define CLAUSE_CLASS(Enum, Str, Class) \ |
| 802 | LLVM_ATTRIBUTE_NOINLINE__attribute__((noinline)) \ |
| 803 | OMPClause *Transform##Class(Class *S); |
| 804 | #include "llvm/Frontend/OpenMP/OMP.inc" |
| 805 | |
| 806 | /// Build a new qualified type given its unqualified type and type location. |
| 807 | /// |
| 808 | /// By default, this routine adds type qualifiers only to types that can |
| 809 | /// have qualifiers, and silently suppresses those qualifiers that are not |
| 810 | /// permitted. Subclasses may override this routine to provide different |
| 811 | /// behavior. |
| 812 | QualType RebuildQualifiedType(QualType T, QualifiedTypeLoc TL); |
| 813 | |
| 814 | /// Build a new pointer type given its pointee type. |
| 815 | /// |
| 816 | /// By default, performs semantic analysis when building the pointer type. |
| 817 | /// Subclasses may override this routine to provide different behavior. |
| 818 | QualType RebuildPointerType(QualType PointeeType, SourceLocation Sigil); |
| 819 | |
| 820 | /// Build a new block pointer type given its pointee type. |
| 821 | /// |
| 822 | /// By default, performs semantic analysis when building the block pointer |
| 823 | /// type. Subclasses may override this routine to provide different behavior. |
| 824 | QualType RebuildBlockPointerType(QualType PointeeType, SourceLocation Sigil); |
| 825 | |
| 826 | /// Build a new reference type given the type it references. |
| 827 | /// |
| 828 | /// By default, performs semantic analysis when building the |
| 829 | /// reference type. Subclasses may override this routine to provide |
| 830 | /// different behavior. |
| 831 | /// |
| 832 | /// \param LValue whether the type was written with an lvalue sigil |
| 833 | /// or an rvalue sigil. |
| 834 | QualType RebuildReferenceType(QualType ReferentType, |
| 835 | bool LValue, |
| 836 | SourceLocation Sigil); |
| 837 | |
| 838 | /// Build a new member pointer type given the pointee type and the |
| 839 | /// class type it refers into. |
| 840 | /// |
| 841 | /// By default, performs semantic analysis when building the member pointer |
| 842 | /// type. Subclasses may override this routine to provide different behavior. |
| 843 | QualType RebuildMemberPointerType(QualType PointeeType, QualType ClassType, |
| 844 | SourceLocation Sigil); |
| 845 | |
| 846 | QualType RebuildObjCTypeParamType(const ObjCTypeParamDecl *Decl, |
| 847 | SourceLocation ProtocolLAngleLoc, |
| 848 | ArrayRef<ObjCProtocolDecl *> Protocols, |
| 849 | ArrayRef<SourceLocation> ProtocolLocs, |
| 850 | SourceLocation ProtocolRAngleLoc); |
| 851 | |
| 852 | /// Build an Objective-C object type. |
| 853 | /// |
| 854 | /// By default, performs semantic analysis when building the object type. |
| 855 | /// Subclasses may override this routine to provide different behavior. |
| 856 | QualType RebuildObjCObjectType(QualType BaseType, |
| 857 | SourceLocation Loc, |
| 858 | SourceLocation TypeArgsLAngleLoc, |
| 859 | ArrayRef<TypeSourceInfo *> TypeArgs, |
| 860 | SourceLocation TypeArgsRAngleLoc, |
| 861 | SourceLocation ProtocolLAngleLoc, |
| 862 | ArrayRef<ObjCProtocolDecl *> Protocols, |
| 863 | ArrayRef<SourceLocation> ProtocolLocs, |
| 864 | SourceLocation ProtocolRAngleLoc); |
| 865 | |
| 866 | /// Build a new Objective-C object pointer type given the pointee type. |
| 867 | /// |
| 868 | /// By default, directly builds the pointer type, with no additional semantic |
| 869 | /// analysis. |
| 870 | QualType RebuildObjCObjectPointerType(QualType PointeeType, |
| 871 | SourceLocation Star); |
| 872 | |
| 873 | /// Build a new array type given the element type, size |
| 874 | /// modifier, size of the array (if known), size expression, and index type |
| 875 | /// qualifiers. |
| 876 | /// |
| 877 | /// By default, performs semantic analysis when building the array type. |
| 878 | /// Subclasses may override this routine to provide different behavior. |
| 879 | /// Also by default, all of the other Rebuild*Array |
| 880 | QualType RebuildArrayType(QualType ElementType, |
| 881 | ArrayType::ArraySizeModifier SizeMod, |
| 882 | const llvm::APInt *Size, |
| 883 | Expr *SizeExpr, |
| 884 | unsigned IndexTypeQuals, |
| 885 | SourceRange BracketsRange); |
| 886 | |
| 887 | /// Build a new constant array type given the element type, size |
| 888 | /// modifier, (known) size of the array, and index type qualifiers. |
| 889 | /// |
| 890 | /// By default, performs semantic analysis when building the array type. |
| 891 | /// Subclasses may override this routine to provide different behavior. |
| 892 | QualType RebuildConstantArrayType(QualType ElementType, |
| 893 | ArrayType::ArraySizeModifier SizeMod, |
| 894 | const llvm::APInt &Size, |
| 895 | Expr *SizeExpr, |
| 896 | unsigned IndexTypeQuals, |
| 897 | SourceRange BracketsRange); |
| 898 | |
| 899 | /// Build a new incomplete array type given the element type, size |
| 900 | /// modifier, and index type qualifiers. |
| 901 | /// |
| 902 | /// By default, performs semantic analysis when building the array type. |
| 903 | /// Subclasses may override this routine to provide different behavior. |
| 904 | QualType RebuildIncompleteArrayType(QualType ElementType, |
| 905 | ArrayType::ArraySizeModifier SizeMod, |
| 906 | unsigned IndexTypeQuals, |
| 907 | SourceRange BracketsRange); |
| 908 | |
| 909 | /// Build a new variable-length array type given the element type, |
| 910 | /// size modifier, size expression, and index type qualifiers. |
| 911 | /// |
| 912 | /// By default, performs semantic analysis when building the array type. |
| 913 | /// Subclasses may override this routine to provide different behavior. |
| 914 | QualType RebuildVariableArrayType(QualType ElementType, |
| 915 | ArrayType::ArraySizeModifier SizeMod, |
| 916 | Expr *SizeExpr, |
| 917 | unsigned IndexTypeQuals, |
| 918 | SourceRange BracketsRange); |
| 919 | |
| 920 | /// Build a new dependent-sized array type given the element type, |
| 921 | /// size modifier, size expression, and index type qualifiers. |
| 922 | /// |
| 923 | /// By default, performs semantic analysis when building the array type. |
| 924 | /// Subclasses may override this routine to provide different behavior. |
| 925 | QualType RebuildDependentSizedArrayType(QualType ElementType, |
| 926 | ArrayType::ArraySizeModifier SizeMod, |
| 927 | Expr *SizeExpr, |
| 928 | unsigned IndexTypeQuals, |
| 929 | SourceRange BracketsRange); |
| 930 | |
| 931 | /// Build a new vector type given the element type and |
| 932 | /// number of elements. |
| 933 | /// |
| 934 | /// By default, performs semantic analysis when building the vector type. |
| 935 | /// Subclasses may override this routine to provide different behavior. |
| 936 | QualType RebuildVectorType(QualType ElementType, unsigned NumElements, |
| 937 | VectorType::VectorKind VecKind); |
| 938 | |
| 939 | /// Build a new potentially dependently-sized extended vector type |
| 940 | /// given the element type and number of elements. |
| 941 | /// |
| 942 | /// By default, performs semantic analysis when building the vector type. |
| 943 | /// Subclasses may override this routine to provide different behavior. |
| 944 | QualType RebuildDependentVectorType(QualType ElementType, Expr *SizeExpr, |
| 945 | SourceLocation AttributeLoc, |
| 946 | VectorType::VectorKind); |
| 947 | |
| 948 | /// Build a new extended vector type given the element type and |
| 949 | /// number of elements. |
| 950 | /// |
| 951 | /// By default, performs semantic analysis when building the vector type. |
| 952 | /// Subclasses may override this routine to provide different behavior. |
| 953 | QualType RebuildExtVectorType(QualType ElementType, unsigned NumElements, |
| 954 | SourceLocation AttributeLoc); |
| 955 | |
| 956 | /// Build a new potentially dependently-sized extended vector type |
| 957 | /// given the element type and number of elements. |
| 958 | /// |
| 959 | /// By default, performs semantic analysis when building the vector type. |
| 960 | /// Subclasses may override this routine to provide different behavior. |
| 961 | QualType RebuildDependentSizedExtVectorType(QualType ElementType, |
| 962 | Expr *SizeExpr, |
| 963 | SourceLocation AttributeLoc); |
| 964 | |
| 965 | /// Build a new matrix type given the element type and dimensions. |
| 966 | QualType RebuildConstantMatrixType(QualType ElementType, unsigned NumRows, |
| 967 | unsigned NumColumns); |
| 968 | |
| 969 | /// Build a new matrix type given the type and dependently-defined |
| 970 | /// dimensions. |
| 971 | QualType RebuildDependentSizedMatrixType(QualType ElementType, Expr *RowExpr, |
| 972 | Expr *ColumnExpr, |
| 973 | SourceLocation AttributeLoc); |
| 974 | |
| 975 | /// Build a new DependentAddressSpaceType or return the pointee |
| 976 | /// type variable with the correct address space (retrieved from |
| 977 | /// AddrSpaceExpr) applied to it. The former will be returned in cases |
| 978 | /// where the address space remains dependent. |
| 979 | /// |
| 980 | /// By default, performs semantic analysis when building the type with address |
| 981 | /// space applied. Subclasses may override this routine to provide different |
| 982 | /// behavior. |
| 983 | QualType RebuildDependentAddressSpaceType(QualType PointeeType, |
| 984 | Expr *AddrSpaceExpr, |
| 985 | SourceLocation AttributeLoc); |
| 986 | |
| 987 | /// Build a new function type. |
| 988 | /// |
| 989 | /// By default, performs semantic analysis when building the function type. |
| 990 | /// Subclasses may override this routine to provide different behavior. |
| 991 | QualType RebuildFunctionProtoType(QualType T, |
| 992 | MutableArrayRef<QualType> ParamTypes, |
| 993 | const FunctionProtoType::ExtProtoInfo &EPI); |
| 994 | |
| 995 | /// Build a new unprototyped function type. |
| 996 | QualType RebuildFunctionNoProtoType(QualType ResultType); |
| 997 | |
| 998 | /// Rebuild an unresolved typename type, given the decl that |
| 999 | /// the UnresolvedUsingTypenameDecl was transformed to. |
| 1000 | QualType RebuildUnresolvedUsingType(SourceLocation NameLoc, Decl *D); |
| 1001 | |
| 1002 | /// Build a new type found via an alias. |
| 1003 | QualType RebuildUsingType(UsingShadowDecl *Found, QualType Underlying) { |
| 1004 | return SemaRef.Context.getUsingType(Found, Underlying); |
| 1005 | } |
| 1006 | |
| 1007 | /// Build a new typedef type. |
| 1008 | QualType RebuildTypedefType(TypedefNameDecl *Typedef) { |
| 1009 | return SemaRef.Context.getTypeDeclType(Typedef); |
| 1010 | } |
| 1011 | |
| 1012 | /// Build a new MacroDefined type. |
| 1013 | QualType RebuildMacroQualifiedType(QualType T, |
| 1014 | const IdentifierInfo *MacroII) { |
| 1015 | return SemaRef.Context.getMacroQualifiedType(T, MacroII); |
| 1016 | } |
| 1017 | |
| 1018 | /// Build a new class/struct/union type. |
| 1019 | QualType RebuildRecordType(RecordDecl *Record) { |
| 1020 | return SemaRef.Context.getTypeDeclType(Record); |
| 1021 | } |
| 1022 | |
| 1023 | /// Build a new Enum type. |
| 1024 | QualType RebuildEnumType(EnumDecl *Enum) { |
| 1025 | return SemaRef.Context.getTypeDeclType(Enum); |
| 1026 | } |
| 1027 | |
| 1028 | /// Build a new typeof(expr) type. |
| 1029 | /// |
| 1030 | /// By default, performs semantic analysis when building the typeof type. |
| 1031 | /// Subclasses may override this routine to provide different behavior. |
| 1032 | QualType RebuildTypeOfExprType(Expr *Underlying, SourceLocation Loc, |
| 1033 | TypeOfKind Kind); |
| 1034 | |
| 1035 | /// Build a new typeof(type) type. |
| 1036 | /// |
| 1037 | /// By default, builds a new TypeOfType with the given underlying type. |
| 1038 | QualType RebuildTypeOfType(QualType Underlying, TypeOfKind Kind); |
| 1039 | |
| 1040 | /// Build a new unary transform type. |
| 1041 | QualType RebuildUnaryTransformType(QualType BaseType, |
| 1042 | UnaryTransformType::UTTKind UKind, |
| 1043 | SourceLocation Loc); |
| 1044 | |
| 1045 | /// Build a new C++11 decltype type. |
| 1046 | /// |
| 1047 | /// By default, performs semantic analysis when building the decltype type. |
| 1048 | /// Subclasses may override this routine to provide different behavior. |
| 1049 | QualType RebuildDecltypeType(Expr *Underlying, SourceLocation Loc); |
| 1050 | |
| 1051 | /// Build a new C++11 auto type. |
| 1052 | /// |
| 1053 | /// By default, builds a new AutoType with the given deduced type. |
| 1054 | QualType RebuildAutoType(QualType Deduced, AutoTypeKeyword Keyword, |
| 1055 | ConceptDecl *TypeConstraintConcept, |
| 1056 | ArrayRef<TemplateArgument> TypeConstraintArgs) { |
| 1057 | // Note, IsDependent is always false here: we implicitly convert an 'auto' |
| 1058 | // which has been deduced to a dependent type into an undeduced 'auto', so |
| 1059 | // that we'll retry deduction after the transformation. |
| 1060 | return SemaRef.Context.getAutoType(Deduced, Keyword, |
| 1061 | /*IsDependent*/ false, /*IsPack=*/false, |
| 1062 | TypeConstraintConcept, |
| 1063 | TypeConstraintArgs); |
| 1064 | } |
| 1065 | |
| 1066 | /// By default, builds a new DeducedTemplateSpecializationType with the given |
| 1067 | /// deduced type. |
| 1068 | QualType RebuildDeducedTemplateSpecializationType(TemplateName Template, |
| 1069 | QualType Deduced) { |
| 1070 | return SemaRef.Context.getDeducedTemplateSpecializationType( |
| 1071 | Template, Deduced, /*IsDependent*/ false); |
| 1072 | } |
| 1073 | |
| 1074 | /// Build a new template specialization type. |
| 1075 | /// |
| 1076 | /// By default, performs semantic analysis when building the template |
| 1077 | /// specialization type. Subclasses may override this routine to provide |
| 1078 | /// different behavior. |
| 1079 | QualType RebuildTemplateSpecializationType(TemplateName Template, |
| 1080 | SourceLocation TemplateLoc, |
| 1081 | TemplateArgumentListInfo &Args); |
| 1082 | |
| 1083 | /// Build a new parenthesized type. |
| 1084 | /// |
| 1085 | /// By default, builds a new ParenType type from the inner type. |
| 1086 | /// Subclasses may override this routine to provide different behavior. |
| 1087 | QualType RebuildParenType(QualType InnerType) { |
| 1088 | return SemaRef.BuildParenType(InnerType); |
| 1089 | } |
| 1090 | |
| 1091 | /// Build a new qualified name type. |
| 1092 | /// |
| 1093 | /// By default, builds a new ElaboratedType type from the keyword, |
| 1094 | /// the nested-name-specifier and the named type. |
| 1095 | /// Subclasses may override this routine to provide different behavior. |
| 1096 | QualType RebuildElaboratedType(SourceLocation KeywordLoc, |
| 1097 | ElaboratedTypeKeyword Keyword, |
| 1098 | NestedNameSpecifierLoc QualifierLoc, |
| 1099 | QualType Named) { |
| 1100 | return SemaRef.Context.getElaboratedType(Keyword, |
| 1101 | QualifierLoc.getNestedNameSpecifier(), |
| 1102 | Named); |
| 1103 | } |
| 1104 | |
| 1105 | /// Build a new typename type that refers to a template-id. |
| 1106 | /// |
| 1107 | /// By default, builds a new DependentNameType type from the |
| 1108 | /// nested-name-specifier and the given type. Subclasses may override |
| 1109 | /// this routine to provide different behavior. |
| 1110 | QualType RebuildDependentTemplateSpecializationType( |
| 1111 | ElaboratedTypeKeyword Keyword, |
| 1112 | NestedNameSpecifierLoc QualifierLoc, |
| 1113 | SourceLocation TemplateKWLoc, |
| 1114 | const IdentifierInfo *Name, |
| 1115 | SourceLocation NameLoc, |
| 1116 | TemplateArgumentListInfo &Args, |
| 1117 | bool AllowInjectedClassName) { |
| 1118 | // Rebuild the template name. |
| 1119 | // TODO: avoid TemplateName abstraction |
| 1120 | CXXScopeSpec SS; |
| 1121 | SS.Adopt(QualifierLoc); |
| 1122 | TemplateName InstName = getDerived().RebuildTemplateName( |
| 1123 | SS, TemplateKWLoc, *Name, NameLoc, QualType(), nullptr, |
| 1124 | AllowInjectedClassName); |
| 1125 | |
| 1126 | if (InstName.isNull()) |
| 1127 | return QualType(); |
| 1128 | |
| 1129 | // If it's still dependent, make a dependent specialization. |
| 1130 | if (InstName.getAsDependentTemplateName()) |
| 1131 | return SemaRef.Context.getDependentTemplateSpecializationType( |
| 1132 | Keyword, QualifierLoc.getNestedNameSpecifier(), Name, |
| 1133 | Args.arguments()); |
| 1134 | |
| 1135 | // Otherwise, make an elaborated type wrapping a non-dependent |
| 1136 | // specialization. |
| 1137 | QualType T = |
| 1138 | getDerived().RebuildTemplateSpecializationType(InstName, NameLoc, Args); |
| 1139 | if (T.isNull()) |
| 1140 | return QualType(); |
| 1141 | return SemaRef.Context.getElaboratedType( |
| 1142 | Keyword, QualifierLoc.getNestedNameSpecifier(), T); |
| 1143 | } |
| 1144 | |
| 1145 | /// Build a new typename type that refers to an identifier. |
| 1146 | /// |
| 1147 | /// By default, performs semantic analysis when building the typename type |
| 1148 | /// (or elaborated type). Subclasses may override this routine to provide |
| 1149 | /// different behavior. |
| 1150 | QualType RebuildDependentNameType(ElaboratedTypeKeyword Keyword, |
| 1151 | SourceLocation KeywordLoc, |
| 1152 | NestedNameSpecifierLoc QualifierLoc, |
| 1153 | const IdentifierInfo *Id, |
| 1154 | SourceLocation IdLoc, |
| 1155 | bool DeducedTSTContext) { |
| 1156 | CXXScopeSpec SS; |
| 1157 | SS.Adopt(QualifierLoc); |
| 1158 | |
| 1159 | if (QualifierLoc.getNestedNameSpecifier()->isDependent()) { |
| 1160 | // If the name is still dependent, just build a new dependent name type. |
| 1161 | if (!SemaRef.computeDeclContext(SS)) |
| 1162 | return SemaRef.Context.getDependentNameType(Keyword, |
| 1163 | QualifierLoc.getNestedNameSpecifier(), |
| 1164 | Id); |
| 1165 | } |
| 1166 | |
| 1167 | if (Keyword == ETK_None || Keyword == ETK_Typename) { |
| 1168 | return SemaRef.CheckTypenameType(Keyword, KeywordLoc, QualifierLoc, |
| 1169 | *Id, IdLoc, DeducedTSTContext); |
| 1170 | } |
| 1171 | |
| 1172 | TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForKeyword(Keyword); |
| 1173 | |
| 1174 | // We had a dependent elaborated-type-specifier that has been transformed |
| 1175 | // into a non-dependent elaborated-type-specifier. Find the tag we're |
| 1176 | // referring to. |
| 1177 | LookupResult Result(SemaRef, Id, IdLoc, Sema::LookupTagName); |
| 1178 | DeclContext *DC = SemaRef.computeDeclContext(SS, false); |
| 1179 | if (!DC) |
| 1180 | return QualType(); |
| 1181 | |
| 1182 | if (SemaRef.RequireCompleteDeclContext(SS, DC)) |
| 1183 | return QualType(); |
| 1184 | |
| 1185 | TagDecl *Tag = nullptr; |
| 1186 | SemaRef.LookupQualifiedName(Result, DC); |
| 1187 | switch (Result.getResultKind()) { |
| 1188 | case LookupResult::NotFound: |
| 1189 | case LookupResult::NotFoundInCurrentInstantiation: |
| 1190 | break; |
| 1191 | |
| 1192 | case LookupResult::Found: |
| 1193 | Tag = Result.getAsSingle<TagDecl>(); |
| 1194 | break; |
| 1195 | |
| 1196 | case LookupResult::FoundOverloaded: |
| 1197 | case LookupResult::FoundUnresolvedValue: |
| 1198 | llvm_unreachable("Tag lookup cannot find non-tags")::llvm::llvm_unreachable_internal("Tag lookup cannot find non-tags" , "clang/lib/Sema/TreeTransform.h", 1198); |
| 1199 | |
| 1200 | case LookupResult::Ambiguous: |
| 1201 | // Let the LookupResult structure handle ambiguities. |
| 1202 | return QualType(); |
| 1203 | } |
| 1204 | |
| 1205 | if (!Tag) { |
| 1206 | // Check where the name exists but isn't a tag type and use that to emit |
| 1207 | // better diagnostics. |
| 1208 | LookupResult Result(SemaRef, Id, IdLoc, Sema::LookupTagName); |
| 1209 | SemaRef.LookupQualifiedName(Result, DC); |
| 1210 | switch (Result.getResultKind()) { |
| 1211 | case LookupResult::Found: |
| 1212 | case LookupResult::FoundOverloaded: |
| 1213 | case LookupResult::FoundUnresolvedValue: { |
| 1214 | NamedDecl *SomeDecl = Result.getRepresentativeDecl(); |
| 1215 | Sema::NonTagKind NTK = SemaRef.getNonTagTypeDeclKind(SomeDecl, Kind); |
| 1216 | SemaRef.Diag(IdLoc, diag::err_tag_reference_non_tag) << SomeDecl |
| 1217 | << NTK << Kind; |
| 1218 | SemaRef.Diag(SomeDecl->getLocation(), diag::note_declared_at); |
| 1219 | break; |
| 1220 | } |
| 1221 | default: |
| 1222 | SemaRef.Diag(IdLoc, diag::err_not_tag_in_scope) |
| 1223 | << Kind << Id << DC << QualifierLoc.getSourceRange(); |
| 1224 | break; |
| 1225 | } |
| 1226 | return QualType(); |
| 1227 | } |
| 1228 | |
| 1229 | if (!SemaRef.isAcceptableTagRedeclaration(Tag, Kind, /*isDefinition*/false, |
| 1230 | IdLoc, Id)) { |
| 1231 | SemaRef.Diag(KeywordLoc, diag::err_use_with_wrong_tag) << Id; |
| 1232 | SemaRef.Diag(Tag->getLocation(), diag::note_previous_use); |
| 1233 | return QualType(); |
| 1234 | } |
| 1235 | |
| 1236 | // Build the elaborated-type-specifier type. |
| 1237 | QualType T = SemaRef.Context.getTypeDeclType(Tag); |
| 1238 | return SemaRef.Context.getElaboratedType(Keyword, |
| 1239 | QualifierLoc.getNestedNameSpecifier(), |
| 1240 | T); |
| 1241 | } |
| 1242 | |
| 1243 | /// Build a new pack expansion type. |
| 1244 | /// |
| 1245 | /// By default, builds a new PackExpansionType type from the given pattern. |
| 1246 | /// Subclasses may override this routine to provide different behavior. |
| 1247 | QualType RebuildPackExpansionType(QualType Pattern, SourceRange PatternRange, |
| 1248 | SourceLocation EllipsisLoc, |
| 1249 | std::optional<unsigned> NumExpansions) { |
| 1250 | return getSema().CheckPackExpansion(Pattern, PatternRange, EllipsisLoc, |
| 1251 | NumExpansions); |
| 1252 | } |
| 1253 | |
| 1254 | /// Build a new atomic type given its value type. |
| 1255 | /// |
| 1256 | /// By default, performs semantic analysis when building the atomic type. |
| 1257 | /// Subclasses may override this routine to provide different behavior. |
| 1258 | QualType RebuildAtomicType(QualType ValueType, SourceLocation KWLoc); |
| 1259 | |
| 1260 | /// Build a new pipe type given its value type. |
| 1261 | QualType RebuildPipeType(QualType ValueType, SourceLocation KWLoc, |
| 1262 | bool isReadPipe); |
| 1263 | |
| 1264 | /// Build a bit-precise int given its value type. |
| 1265 | QualType RebuildBitIntType(bool IsUnsigned, unsigned NumBits, |
| 1266 | SourceLocation Loc); |
| 1267 | |
| 1268 | /// Build a dependent bit-precise int given its value type. |
| 1269 | QualType RebuildDependentBitIntType(bool IsUnsigned, Expr *NumBitsExpr, |
| 1270 | SourceLocation Loc); |
| 1271 | |
| 1272 | /// Build a new template name given a nested name specifier, a flag |
| 1273 | /// indicating whether the "template" keyword was provided, and the template |
| 1274 | /// that the template name refers to. |
| 1275 | /// |
| 1276 | /// By default, builds the new template name directly. Subclasses may override |
| 1277 | /// this routine to provide different behavior. |
| 1278 | TemplateName RebuildTemplateName(CXXScopeSpec &SS, |
| 1279 | bool TemplateKW, |
| 1280 | TemplateDecl *Template); |
| 1281 | |
| 1282 | /// Build a new template name given a nested name specifier and the |
| 1283 | /// name that is referred to as a template. |
| 1284 | /// |
| 1285 | /// By default, performs semantic analysis to determine whether the name can |
| 1286 | /// be resolved to a specific template, then builds the appropriate kind of |
| 1287 | /// template name. Subclasses may override this routine to provide different |
| 1288 | /// behavior. |
| 1289 | TemplateName RebuildTemplateName(CXXScopeSpec &SS, |
| 1290 | SourceLocation TemplateKWLoc, |
| 1291 | const IdentifierInfo &Name, |
| 1292 | SourceLocation NameLoc, QualType ObjectType, |
| 1293 | NamedDecl *FirstQualifierInScope, |
| 1294 | bool AllowInjectedClassName); |
| 1295 | |
| 1296 | /// Build a new template name given a nested name specifier and the |
| 1297 | /// overloaded operator name that is referred to as a template. |
| 1298 | /// |
| 1299 | /// By default, performs semantic analysis to determine whether the name can |
| 1300 | /// be resolved to a specific template, then builds the appropriate kind of |
| 1301 | /// template name. Subclasses may override this routine to provide different |
| 1302 | /// behavior. |
| 1303 | TemplateName RebuildTemplateName(CXXScopeSpec &SS, |
| 1304 | SourceLocation TemplateKWLoc, |
| 1305 | OverloadedOperatorKind Operator, |
| 1306 | SourceLocation NameLoc, QualType ObjectType, |
| 1307 | bool AllowInjectedClassName); |
| 1308 | |
| 1309 | /// Build a new template name given a template template parameter pack |
| 1310 | /// and the |
| 1311 | /// |
| 1312 | /// By default, performs semantic analysis to determine whether the name can |
| 1313 | /// be resolved to a specific template, then builds the appropriate kind of |
| 1314 | /// template name. Subclasses may override this routine to provide different |
| 1315 | /// behavior. |
| 1316 | TemplateName RebuildTemplateName(const TemplateArgument &ArgPack, |
| 1317 | Decl *AssociatedDecl, unsigned Index, |
| 1318 | bool Final) { |
| 1319 | return getSema().Context.getSubstTemplateTemplateParmPack( |
| 1320 | ArgPack, AssociatedDecl, Index, Final); |
| 1321 | } |
| 1322 | |
| 1323 | /// Build a new compound statement. |
| 1324 | /// |
| 1325 | /// By default, performs semantic analysis to build the new statement. |
| 1326 | /// Subclasses may override this routine to provide different behavior. |
| 1327 | StmtResult RebuildCompoundStmt(SourceLocation LBraceLoc, |
| 1328 | MultiStmtArg Statements, |
| 1329 | SourceLocation RBraceLoc, |
| 1330 | bool IsStmtExpr) { |
| 1331 | return getSema().ActOnCompoundStmt(LBraceLoc, RBraceLoc, Statements, |
| 1332 | IsStmtExpr); |
| 1333 | } |
| 1334 | |
| 1335 | /// Build a new case statement. |
| 1336 | /// |
| 1337 | /// By default, performs semantic analysis to build the new statement. |
| 1338 | /// Subclasses may override this routine to provide different behavior. |
| 1339 | StmtResult RebuildCaseStmt(SourceLocation CaseLoc, |
| 1340 | Expr *LHS, |
| 1341 | SourceLocation EllipsisLoc, |
| 1342 | Expr *RHS, |
| 1343 | SourceLocation ColonLoc) { |
| 1344 | return getSema().ActOnCaseStmt(CaseLoc, LHS, EllipsisLoc, RHS, |
| 1345 | ColonLoc); |
| 1346 | } |
| 1347 | |
| 1348 | /// Attach the body to a new case statement. |
| 1349 | /// |
| 1350 | /// By default, performs semantic analysis to build the new statement. |
| 1351 | /// Subclasses may override this routine to provide different behavior. |
| 1352 | StmtResult RebuildCaseStmtBody(Stmt *S, Stmt *Body) { |
| 1353 | getSema().ActOnCaseStmtBody(S, Body); |
| 1354 | return S; |
| 1355 | } |
| 1356 | |
| 1357 | /// Build a new default statement. |
| 1358 | /// |
| 1359 | /// By default, performs semantic analysis to build the new statement. |
| 1360 | /// Subclasses may override this routine to provide different behavior. |
| 1361 | StmtResult RebuildDefaultStmt(SourceLocation DefaultLoc, |
| 1362 | SourceLocation ColonLoc, |
| 1363 | Stmt *SubStmt) { |
| 1364 | return getSema().ActOnDefaultStmt(DefaultLoc, ColonLoc, SubStmt, |
| 1365 | /*CurScope=*/nullptr); |
| 1366 | } |
| 1367 | |
| 1368 | /// Build a new label statement. |
| 1369 | /// |
| 1370 | /// By default, performs semantic analysis to build the new statement. |
| 1371 | /// Subclasses may override this routine to provide different behavior. |
| 1372 | StmtResult RebuildLabelStmt(SourceLocation IdentLoc, LabelDecl *L, |
| 1373 | SourceLocation ColonLoc, Stmt *SubStmt) { |
| 1374 | return SemaRef.ActOnLabelStmt(IdentLoc, L, ColonLoc, SubStmt); |
| 1375 | } |
| 1376 | |
| 1377 | /// Build a new attributed statement. |
| 1378 | /// |
| 1379 | /// By default, performs semantic analysis to build the new statement. |
| 1380 | /// Subclasses may override this routine to provide different behavior. |
| 1381 | StmtResult RebuildAttributedStmt(SourceLocation AttrLoc, |
| 1382 | ArrayRef<const Attr *> Attrs, |
| 1383 | Stmt *SubStmt) { |
| 1384 | return SemaRef.BuildAttributedStmt(AttrLoc, Attrs, SubStmt); |
| 1385 | } |
| 1386 | |
| 1387 | /// Build a new "if" statement. |
| 1388 | /// |
| 1389 | /// By default, performs semantic analysis to build the new statement. |
| 1390 | /// Subclasses may override this routine to provide different behavior. |
| 1391 | StmtResult RebuildIfStmt(SourceLocation IfLoc, IfStatementKind Kind, |
| 1392 | SourceLocation LParenLoc, Sema::ConditionResult Cond, |
| 1393 | SourceLocation RParenLoc, Stmt *Init, Stmt *Then, |
| 1394 | SourceLocation ElseLoc, Stmt *Else) { |
| 1395 | return getSema().ActOnIfStmt(IfLoc, Kind, LParenLoc, Init, Cond, RParenLoc, |
| 1396 | Then, ElseLoc, Else); |
| 1397 | } |
| 1398 | |
| 1399 | /// Start building a new switch statement. |
| 1400 | /// |
| 1401 | /// By default, performs semantic analysis to build the new statement. |
| 1402 | /// Subclasses may override this routine to provide different behavior. |
| 1403 | StmtResult RebuildSwitchStmtStart(SourceLocation SwitchLoc, |
| 1404 | SourceLocation LParenLoc, Stmt *Init, |
| 1405 | Sema::ConditionResult Cond, |
| 1406 | SourceLocation RParenLoc) { |
| 1407 | return getSema().ActOnStartOfSwitchStmt(SwitchLoc, LParenLoc, Init, Cond, |
| 1408 | RParenLoc); |
| 1409 | } |
| 1410 | |
| 1411 | /// Attach the body to the switch statement. |
| 1412 | /// |
| 1413 | /// By default, performs semantic analysis to build the new statement. |
| 1414 | /// Subclasses may override this routine to provide different behavior. |
| 1415 | StmtResult RebuildSwitchStmtBody(SourceLocation SwitchLoc, |
| 1416 | Stmt *Switch, Stmt *Body) { |
| 1417 | return getSema().ActOnFinishSwitchStmt(SwitchLoc, Switch, Body); |
| 1418 | } |
| 1419 | |
| 1420 | /// Build a new while statement. |
| 1421 | /// |
| 1422 | /// By default, performs semantic analysis to build the new statement. |
| 1423 | /// Subclasses may override this routine to provide different behavior. |
| 1424 | StmtResult RebuildWhileStmt(SourceLocation WhileLoc, SourceLocation LParenLoc, |
| 1425 | Sema::ConditionResult Cond, |
| 1426 | SourceLocation RParenLoc, Stmt *Body) { |
| 1427 | return getSema().ActOnWhileStmt(WhileLoc, LParenLoc, Cond, RParenLoc, Body); |
| 1428 | } |
| 1429 | |
| 1430 | /// Build a new do-while statement. |
| 1431 | /// |
| 1432 | /// By default, performs semantic analysis to build the new statement. |
| 1433 | /// Subclasses may override this routine to provide different behavior. |
| 1434 | StmtResult RebuildDoStmt(SourceLocation DoLoc, Stmt *Body, |
| 1435 | SourceLocation WhileLoc, SourceLocation LParenLoc, |
| 1436 | Expr *Cond, SourceLocation RParenLoc) { |
| 1437 | return getSema().ActOnDoStmt(DoLoc, Body, WhileLoc, LParenLoc, |
| 1438 | Cond, RParenLoc); |
| 1439 | } |
| 1440 | |
| 1441 | /// Build a new for statement. |
| 1442 | /// |
| 1443 | /// By default, performs semantic analysis to build the new statement. |
| 1444 | /// Subclasses may override this routine to provide different behavior. |
| 1445 | StmtResult RebuildForStmt(SourceLocation ForLoc, SourceLocation LParenLoc, |
| 1446 | Stmt *Init, Sema::ConditionResult Cond, |
| 1447 | Sema::FullExprArg Inc, SourceLocation RParenLoc, |
| 1448 | Stmt *Body) { |
| 1449 | return getSema().ActOnForStmt(ForLoc, LParenLoc, Init, Cond, |
| 1450 | Inc, RParenLoc, Body); |
| 1451 | } |
| 1452 | |
| 1453 | /// Build a new goto statement. |
| 1454 | /// |
| 1455 | /// By default, performs semantic analysis to build the new statement. |
| 1456 | /// Subclasses may override this routine to provide different behavior. |
| 1457 | StmtResult RebuildGotoStmt(SourceLocation GotoLoc, SourceLocation LabelLoc, |
| 1458 | LabelDecl *Label) { |
| 1459 | return getSema().ActOnGotoStmt(GotoLoc, LabelLoc, Label); |
| 1460 | } |
| 1461 | |
| 1462 | /// Build a new indirect goto statement. |
| 1463 | /// |
| 1464 | /// By default, performs semantic analysis to build the new statement. |
| 1465 | /// Subclasses may override this routine to provide different behavior. |
| 1466 | StmtResult RebuildIndirectGotoStmt(SourceLocation GotoLoc, |
| 1467 | SourceLocation StarLoc, |
| 1468 | Expr *Target) { |
| 1469 | return getSema().ActOnIndirectGotoStmt(GotoLoc, StarLoc, Target); |
| 1470 | } |
| 1471 | |
| 1472 | /// Build a new return statement. |
| 1473 | /// |
| 1474 | /// By default, performs semantic analysis to build the new statement. |
| 1475 | /// Subclasses may override this routine to provide different behavior. |
| 1476 | StmtResult RebuildReturnStmt(SourceLocation ReturnLoc, Expr *Result) { |
| 1477 | return getSema().BuildReturnStmt(ReturnLoc, Result); |
| 1478 | } |
| 1479 | |
| 1480 | /// Build a new declaration statement. |
| 1481 | /// |
| 1482 | /// By default, performs semantic analysis to build the new statement. |
| 1483 | /// Subclasses may override this routine to provide different behavior. |
| 1484 | StmtResult RebuildDeclStmt(MutableArrayRef<Decl *> Decls, |
| 1485 | SourceLocation StartLoc, SourceLocation EndLoc) { |
| 1486 | Sema::DeclGroupPtrTy DG = getSema().BuildDeclaratorGroup(Decls); |
| 1487 | return getSema().ActOnDeclStmt(DG, StartLoc, EndLoc); |
| 1488 | } |
| 1489 | |
| 1490 | /// Build a new inline asm statement. |
| 1491 | /// |
| 1492 | /// By default, performs semantic analysis to build the new statement. |
| 1493 | /// Subclasses may override this routine to provide different behavior. |
| 1494 | StmtResult RebuildGCCAsmStmt(SourceLocation AsmLoc, bool IsSimple, |
| 1495 | bool IsVolatile, unsigned NumOutputs, |
| 1496 | unsigned NumInputs, IdentifierInfo **Names, |
| 1497 | MultiExprArg Constraints, MultiExprArg Exprs, |
| 1498 | Expr *AsmString, MultiExprArg Clobbers, |
| 1499 | unsigned NumLabels, |
| 1500 | SourceLocation RParenLoc) { |
| 1501 | return getSema().ActOnGCCAsmStmt(AsmLoc, IsSimple, IsVolatile, NumOutputs, |
| 1502 | NumInputs, Names, Constraints, Exprs, |
| 1503 | AsmString, Clobbers, NumLabels, RParenLoc); |
| 1504 | } |
| 1505 | |
| 1506 | /// Build a new MS style inline asm statement. |
| 1507 | /// |
| 1508 | /// By default, performs semantic analysis to build the new statement. |
| 1509 | /// Subclasses may override this routine to provide different behavior. |
| 1510 | StmtResult RebuildMSAsmStmt(SourceLocation AsmLoc, SourceLocation LBraceLoc, |
| 1511 | ArrayRef<Token> AsmToks, |
| 1512 | StringRef AsmString, |
| 1513 | unsigned NumOutputs, unsigned NumInputs, |
| 1514 | ArrayRef<StringRef> Constraints, |
| 1515 | ArrayRef<StringRef> Clobbers, |
| 1516 | ArrayRef<Expr*> Exprs, |
| 1517 | SourceLocation EndLoc) { |
| 1518 | return getSema().ActOnMSAsmStmt(AsmLoc, LBraceLoc, AsmToks, AsmString, |
| 1519 | NumOutputs, NumInputs, |
| 1520 | Constraints, Clobbers, Exprs, EndLoc); |
| 1521 | } |
| 1522 | |
| 1523 | /// Build a new co_return statement. |
| 1524 | /// |
| 1525 | /// By default, performs semantic analysis to build the new statement. |
| 1526 | /// Subclasses may override this routine to provide different behavior. |
| 1527 | StmtResult RebuildCoreturnStmt(SourceLocation CoreturnLoc, Expr *Result, |
| 1528 | bool IsImplicit) { |
| 1529 | return getSema().BuildCoreturnStmt(CoreturnLoc, Result, IsImplicit); |
| 1530 | } |
| 1531 | |
| 1532 | /// Build a new co_await expression. |
| 1533 | /// |
| 1534 | /// By default, performs semantic analysis to build the new expression. |
| 1535 | /// Subclasses may override this routine to provide different behavior. |
| 1536 | ExprResult RebuildCoawaitExpr(SourceLocation CoawaitLoc, Expr *Operand, |
| 1537 | UnresolvedLookupExpr *OpCoawaitLookup, |
| 1538 | bool IsImplicit) { |
| 1539 | // This function rebuilds a coawait-expr given its operator. |
| 1540 | // For an explicit coawait-expr, the rebuild involves the full set |
| 1541 | // of transformations performed by BuildUnresolvedCoawaitExpr(), |
| 1542 | // including calling await_transform(). |
| 1543 | // For an implicit coawait-expr, we need to rebuild the "operator |
| 1544 | // coawait" but not await_transform(), so use BuildResolvedCoawaitExpr(). |
| 1545 | // This mirrors how the implicit CoawaitExpr is originally created |
| 1546 | // in Sema::ActOnCoroutineBodyStart(). |
| 1547 | if (IsImplicit) { |
| 1548 | ExprResult Suspend = getSema().BuildOperatorCoawaitCall( |
| 1549 | CoawaitLoc, Operand, OpCoawaitLookup); |
| 1550 | if (Suspend.isInvalid()) |
| 1551 | return ExprError(); |
| 1552 | return getSema().BuildResolvedCoawaitExpr(CoawaitLoc, Operand, |
| 1553 | Suspend.get(), true); |
| 1554 | } |
| 1555 | |
| 1556 | return getSema().BuildUnresolvedCoawaitExpr(CoawaitLoc, Operand, |
| 1557 | OpCoawaitLookup); |
| 1558 | } |
| 1559 | |
| 1560 | /// Build a new co_await expression. |
| 1561 | /// |
| 1562 | /// By default, performs semantic analysis to build the new expression. |
| 1563 | /// Subclasses may override this routine to provide different behavior. |
| 1564 | ExprResult RebuildDependentCoawaitExpr(SourceLocation CoawaitLoc, |
| 1565 | Expr *Result, |
| 1566 | UnresolvedLookupExpr *Lookup) { |
| 1567 | return getSema().BuildUnresolvedCoawaitExpr(CoawaitLoc, Result, Lookup); |
| 1568 | } |
| 1569 | |
| 1570 | /// Build a new co_yield expression. |
| 1571 | /// |
| 1572 | /// By default, performs semantic analysis to build the new expression. |
| 1573 | /// Subclasses may override this routine to provide different behavior. |
| 1574 | ExprResult RebuildCoyieldExpr(SourceLocation CoyieldLoc, Expr *Result) { |
| 1575 | return getSema().BuildCoyieldExpr(CoyieldLoc, Result); |
| 1576 | } |
| 1577 | |
| 1578 | StmtResult RebuildCoroutineBodyStmt(CoroutineBodyStmt::CtorArgs Args) { |
| 1579 | return getSema().BuildCoroutineBodyStmt(Args); |
| 1580 | } |
| 1581 | |
| 1582 | /// Build a new Objective-C \@try statement. |
| 1583 | /// |
| 1584 | /// By default, performs semantic analysis to build the new statement. |
| 1585 | /// Subclasses may override this routine to provide different behavior. |
| 1586 | StmtResult RebuildObjCAtTryStmt(SourceLocation AtLoc, |
| 1587 | Stmt *TryBody, |
| 1588 | MultiStmtArg CatchStmts, |
| 1589 | Stmt *Finally) { |
| 1590 | return getSema().ActOnObjCAtTryStmt(AtLoc, TryBody, CatchStmts, |
| 1591 | Finally); |
| 1592 | } |
| 1593 | |
| 1594 | /// Rebuild an Objective-C exception declaration. |
| 1595 | /// |
| 1596 | /// By default, performs semantic analysis to build the new declaration. |
| 1597 | /// Subclasses may override this routine to provide different behavior. |
| 1598 | VarDecl *RebuildObjCExceptionDecl(VarDecl *ExceptionDecl, |
| 1599 | TypeSourceInfo *TInfo, QualType T) { |
| 1600 | return getSema().BuildObjCExceptionDecl(TInfo, T, |
| 1601 | ExceptionDecl->getInnerLocStart(), |
| 1602 | ExceptionDecl->getLocation(), |
| 1603 | ExceptionDecl->getIdentifier()); |
| 1604 | } |
| 1605 | |
| 1606 | /// Build a new Objective-C \@catch statement. |
| 1607 | /// |
| 1608 | /// By default, performs semantic analysis to build the new statement. |
| 1609 | /// Subclasses may override this routine to provide different behavior. |
| 1610 | StmtResult RebuildObjCAtCatchStmt(SourceLocation AtLoc, |
| 1611 | SourceLocation RParenLoc, |
| 1612 | VarDecl *Var, |
| 1613 | Stmt *Body) { |
| 1614 | return getSema().ActOnObjCAtCatchStmt(AtLoc, RParenLoc, |
| 1615 | Var, Body); |
| 1616 | } |
| 1617 | |
| 1618 | /// Build a new Objective-C \@finally statement. |
| 1619 | /// |
| 1620 | /// By default, performs semantic analysis to build the new statement. |
| 1621 | /// Subclasses may override this routine to provide different behavior. |
| 1622 | StmtResult RebuildObjCAtFinallyStmt(SourceLocation AtLoc, |
| 1623 | Stmt *Body) { |
| 1624 | return getSema().ActOnObjCAtFinallyStmt(AtLoc, Body); |
| 1625 | } |
| 1626 | |
| 1627 | /// Build a new Objective-C \@throw statement. |
| 1628 | /// |
| 1629 | /// By default, performs semantic analysis to build the new statement. |
| 1630 | /// Subclasses may override this routine to provide different behavior. |
| 1631 | StmtResult RebuildObjCAtThrowStmt(SourceLocation AtLoc, |
| 1632 | Expr *Operand) { |
| 1633 | return getSema().BuildObjCAtThrowStmt(AtLoc, Operand); |
| 1634 | } |
| 1635 | |
| 1636 | /// Build a new OpenMP Canonical loop. |
| 1637 | /// |
| 1638 | /// Ensures that the outermost loop in @p LoopStmt is wrapped by a |
| 1639 | /// OMPCanonicalLoop. |
| 1640 | StmtResult RebuildOMPCanonicalLoop(Stmt *LoopStmt) { |
| 1641 | return getSema().ActOnOpenMPCanonicalLoop(LoopStmt); |
| 1642 | } |
| 1643 | |
| 1644 | /// Build a new OpenMP executable directive. |
| 1645 | /// |
| 1646 | /// By default, performs semantic analysis to build the new statement. |
| 1647 | /// Subclasses may override this routine to provide different behavior. |
| 1648 | StmtResult RebuildOMPExecutableDirective(OpenMPDirectiveKind Kind, |
| 1649 | DeclarationNameInfo DirName, |
| 1650 | OpenMPDirectiveKind CancelRegion, |
| 1651 | ArrayRef<OMPClause *> Clauses, |
| 1652 | Stmt *AStmt, SourceLocation StartLoc, |
| 1653 | SourceLocation EndLoc) { |
| 1654 | return getSema().ActOnOpenMPExecutableDirective( |
| 1655 | Kind, DirName, CancelRegion, Clauses, AStmt, StartLoc, EndLoc); |
| 1656 | } |
| 1657 | |
| 1658 | /// Build a new OpenMP 'if' clause. |
| 1659 | /// |
| 1660 | /// By default, performs semantic analysis to build the new OpenMP clause. |
| 1661 | /// Subclasses may override this routine to provide different behavior. |
| 1662 | OMPClause *RebuildOMPIfClause(OpenMPDirectiveKind NameModifier, |
| 1663 | Expr *Condition, SourceLocation StartLoc, |
| 1664 | SourceLocation LParenLoc, |
| 1665 | SourceLocation NameModifierLoc, |
| 1666 | SourceLocation ColonLoc, |
| 1667 | SourceLocation EndLoc) { |
| 1668 | return getSema().ActOnOpenMPIfClause(NameModifier, Condition, StartLoc, |
| 1669 | LParenLoc, NameModifierLoc, ColonLoc, |
| 1670 | EndLoc); |
| 1671 | } |
| 1672 | |
| 1673 | /// Build a new OpenMP 'final' clause. |
| 1674 | /// |
| 1675 | /// By default, performs semantic analysis to build the new OpenMP clause. |
| 1676 | /// Subclasses may override this routine to provide different behavior. |
| 1677 | OMPClause *RebuildOMPFinalClause(Expr *Condition, SourceLocation StartLoc, |
| 1678 | SourceLocation LParenLoc, |
| 1679 | SourceLocation EndLoc) { |
| 1680 | return getSema().ActOnOpenMPFinalClause(Condition, StartLoc, LParenLoc, |
| 1681 | EndLoc); |
| 1682 | } |
| 1683 | |
| 1684 | /// Build a new OpenMP 'num_threads' clause. |
| 1685 | /// |
| 1686 | /// By default, performs semantic analysis to build the new OpenMP clause. |
| 1687 | /// Subclasses may override this routine to provide different behavior. |
| 1688 | OMPClause *RebuildOMPNumThreadsClause(Expr *NumThreads, |
| 1689 | SourceLocation StartLoc, |
| 1690 | SourceLocation LParenLoc, |
| 1691 | SourceLocation EndLoc) { |
| 1692 | return getSema().ActOnOpenMPNumThreadsClause(NumThreads, StartLoc, |
| 1693 | LParenLoc, EndLoc); |
| 1694 | } |
| 1695 | |
| 1696 | /// Build a new OpenMP 'safelen' clause. |
| 1697 | /// |
| 1698 | /// By default, performs semantic analysis to build the new OpenMP clause. |
| 1699 | /// Subclasses may override this routine to provide different behavior. |
| 1700 | OMPClause *RebuildOMPSafelenClause(Expr *Len, SourceLocation StartLoc, |
| 1701 | SourceLocation LParenLoc, |
| 1702 | SourceLocation EndLoc) { |
| 1703 | return getSema().ActOnOpenMPSafelenClause(Len, StartLoc, LParenLoc, EndLoc); |
| 1704 | } |
| 1705 | |
| 1706 | /// Build a new OpenMP 'simdlen' clause. |
| 1707 | /// |
| 1708 | /// By default, performs semantic analysis to build the new OpenMP clause. |
| 1709 | /// Subclasses may override this routine to provide different behavior. |
| 1710 | OMPClause *RebuildOMPSimdlenClause(Expr *Len, SourceLocation StartLoc, |
| 1711 | SourceLocation LParenLoc, |
| 1712 | SourceLocation EndLoc) { |
| 1713 | return getSema().ActOnOpenMPSimdlenClause(Len, StartLoc, LParenLoc, EndLoc); |
| 1714 | } |
| 1715 | |
| 1716 | OMPClause *RebuildOMPSizesClause(ArrayRef<Expr *> Sizes, |
| 1717 | SourceLocation StartLoc, |
| 1718 | SourceLocation LParenLoc, |
| 1719 | SourceLocation EndLoc) { |
| 1720 | return getSema().ActOnOpenMPSizesClause(Sizes, StartLoc, LParenLoc, EndLoc); |
| 1721 | } |
| 1722 | |
| 1723 | /// Build a new OpenMP 'full' clause. |
| 1724 | OMPClause *RebuildOMPFullClause(SourceLocation StartLoc, |
| 1725 | SourceLocation EndLoc) { |
| 1726 | return getSema().ActOnOpenMPFullClause(StartLoc, EndLoc); |
| 1727 | } |
| 1728 | |
| 1729 | /// Build a new OpenMP 'partial' clause. |
| 1730 | OMPClause *RebuildOMPPartialClause(Expr *Factor, SourceLocation StartLoc, |
| 1731 | SourceLocation LParenLoc, |
| 1732 | SourceLocation EndLoc) { |
| 1733 | return getSema().ActOnOpenMPPartialClause(Factor, StartLoc, LParenLoc, |
| 1734 | EndLoc); |
| 1735 | } |
| 1736 | |
| 1737 | /// Build a new OpenMP 'allocator' clause. |
| 1738 | /// |
| 1739 | /// By default, performs semantic analysis to build the new OpenMP clause. |
| 1740 | /// Subclasses may override this routine to provide different behavior. |
| 1741 | OMPClause *RebuildOMPAllocatorClause(Expr *A, SourceLocation StartLoc, |
| 1742 | SourceLocation LParenLoc, |
| 1743 | SourceLocation EndLoc) { |
| 1744 | return getSema().ActOnOpenMPAllocatorClause(A, StartLoc, LParenLoc, EndLoc); |
| 1745 | } |
| 1746 | |
| 1747 | /// Build a new OpenMP 'collapse' clause. |
| 1748 | /// |
| 1749 | /// By default, performs semantic analysis to build the new OpenMP clause. |
| 1750 | /// Subclasses may override this routine to provide different behavior. |
| 1751 | OMPClause *RebuildOMPCollapseClause(Expr *Num, SourceLocation StartLoc, |
| 1752 | SourceLocation LParenLoc, |
| 1753 | SourceLocation EndLoc) { |
| 1754 | return getSema().ActOnOpenMPCollapseClause(Num, StartLoc, LParenLoc, |
| 1755 | EndLoc); |
| 1756 | } |
| 1757 | |
| 1758 | /// Build a new OpenMP 'default' clause. |
| 1759 | /// |
| 1760 | /// By default, performs semantic analysis to build the new OpenMP clause. |
| 1761 | /// Subclasses may override this routine to provide different behavior. |
| 1762 | OMPClause *RebuildOMPDefaultClause(DefaultKind Kind, SourceLocation KindKwLoc, |
| 1763 | SourceLocation StartLoc, |
| 1764 | SourceLocation LParenLoc, |
| 1765 | SourceLocation EndLoc) { |
| 1766 | return getSema().ActOnOpenMPDefaultClause(Kind, KindKwLoc, |
| 1767 | StartLoc, LParenLoc, EndLoc); |
| 1768 | } |
| 1769 | |
| 1770 | /// Build a new OpenMP 'proc_bind' clause. |
| 1771 | /// |
| 1772 | /// By default, performs semantic analysis to build the new OpenMP clause. |
| 1773 | /// Subclasses may override this routine to provide different behavior. |
| 1774 | OMPClause *RebuildOMPProcBindClause(ProcBindKind Kind, |
| 1775 | SourceLocation KindKwLoc, |
| 1776 | SourceLocation StartLoc, |
| 1777 | SourceLocation LParenLoc, |
| 1778 | SourceLocation EndLoc) { |
| 1779 | return getSema().ActOnOpenMPProcBindClause(Kind, KindKwLoc, |
| 1780 | StartLoc, LParenLoc, EndLoc); |
| 1781 | } |
| 1782 | |
| 1783 | /// Build a new OpenMP 'schedule' clause. |
| 1784 | /// |
| 1785 | /// By default, performs semantic analysis to build the new OpenMP clause. |
| 1786 | /// Subclasses may override this routine to provide different behavior. |
| 1787 | OMPClause *RebuildOMPScheduleClause( |
| 1788 | OpenMPScheduleClauseModifier M1, OpenMPScheduleClauseModifier M2, |
| 1789 | OpenMPScheduleClauseKind Kind, Expr *ChunkSize, SourceLocation StartLoc, |
| 1790 | SourceLocation LParenLoc, SourceLocation M1Loc, SourceLocation M2Loc, |
| 1791 | SourceLocation KindLoc, SourceLocation CommaLoc, SourceLocation EndLoc) { |
| 1792 | return getSema().ActOnOpenMPScheduleClause( |
| 1793 | M1, M2, Kind, ChunkSize, StartLoc, LParenLoc, M1Loc, M2Loc, KindLoc, |
| 1794 | CommaLoc, EndLoc); |
| 1795 | } |
| 1796 | |
| 1797 | /// Build a new OpenMP 'ordered' clause. |
| 1798 | /// |
| 1799 | /// By default, performs semantic analysis to build the new OpenMP clause. |
| 1800 | /// Subclasses may override this routine to provide different behavior. |
| 1801 | OMPClause *RebuildOMPOrderedClause(SourceLocation StartLoc, |
| 1802 | SourceLocation EndLoc, |
| 1803 | SourceLocation LParenLoc, Expr *Num) { |
| 1804 | return getSema().ActOnOpenMPOrderedClause(StartLoc, EndLoc, LParenLoc, Num); |
| 1805 | } |
| 1806 | |
| 1807 | /// Build a new OpenMP 'private' clause. |
| 1808 | /// |
| 1809 | /// By default, performs semantic analysis to build the new OpenMP clause. |
| 1810 | /// Subclasses may override this routine to provide different behavior. |
| 1811 | OMPClause *RebuildOMPPrivateClause(ArrayRef<Expr *> VarList, |
| 1812 | SourceLocation StartLoc, |
| 1813 | SourceLocation LParenLoc, |
| 1814 | SourceLocation EndLoc) { |
| 1815 | return getSema().ActOnOpenMPPrivateClause(VarList, StartLoc, LParenLoc, |
| 1816 | EndLoc); |
| 1817 | } |
| 1818 | |
| 1819 | /// Build a new OpenMP 'firstprivate' clause. |
| 1820 | /// |
| 1821 | /// By default, performs semantic analysis to build the new OpenMP clause. |
| 1822 | /// Subclasses may override this routine to provide different behavior. |
| 1823 | OMPClause *RebuildOMPFirstprivateClause(ArrayRef<Expr *> VarList, |
| 1824 | SourceLocation StartLoc, |
| 1825 | SourceLocation LParenLoc, |
| 1826 | SourceLocation EndLoc) { |
| 1827 | return getSema().ActOnOpenMPFirstprivateClause(VarList, StartLoc, LParenLoc, |
| 1828 | EndLoc); |
| 1829 | } |
| 1830 | |
| 1831 | /// Build a new OpenMP 'lastprivate' clause. |
| 1832 | /// |
| 1833 | /// By default, performs semantic analysis to build the new OpenMP clause. |
| 1834 | /// Subclasses may override this routine to provide different behavior. |
| 1835 | OMPClause *RebuildOMPLastprivateClause(ArrayRef<Expr *> VarList, |
| 1836 | OpenMPLastprivateModifier LPKind, |
| 1837 | SourceLocation LPKindLoc, |
| 1838 | SourceLocation ColonLoc, |
| 1839 | SourceLocation StartLoc, |
| 1840 | SourceLocation LParenLoc, |
| 1841 | SourceLocation EndLoc) { |
| 1842 | return getSema().ActOnOpenMPLastprivateClause( |
| 1843 | VarList, LPKind, LPKindLoc, ColonLoc, StartLoc, LParenLoc, EndLoc); |
| 1844 | } |
| 1845 | |
| 1846 | /// Build a new OpenMP 'shared' clause. |
| 1847 | /// |
| 1848 | /// By default, performs semantic analysis to build the new OpenMP clause. |
| 1849 | /// Subclasses may override this routine to provide different behavior. |
| 1850 | OMPClause *RebuildOMPSharedClause(ArrayRef<Expr *> VarList, |
| 1851 | SourceLocation StartLoc, |
| 1852 | SourceLocation LParenLoc, |
| 1853 | SourceLocation EndLoc) { |
| 1854 | return getSema().ActOnOpenMPSharedClause(VarList, StartLoc, LParenLoc, |
| 1855 | EndLoc); |
| 1856 | } |
| 1857 | |
| 1858 | /// Build a new OpenMP 'reduction' clause. |
| 1859 | /// |
| 1860 | /// By default, performs semantic analysis to build the new statement. |
| 1861 | /// Subclasses may override this routine to provide different behavior. |
| 1862 | OMPClause *RebuildOMPReductionClause( |
| 1863 | ArrayRef<Expr *> VarList, OpenMPReductionClauseModifier Modifier, |
| 1864 | SourceLocation StartLoc, SourceLocation LParenLoc, |
| 1865 | SourceLocation ModifierLoc, SourceLocation ColonLoc, |
| 1866 | SourceLocation EndLoc, CXXScopeSpec &ReductionIdScopeSpec, |
| 1867 | const DeclarationNameInfo &ReductionId, |
| 1868 | ArrayRef<Expr *> UnresolvedReductions) { |
| 1869 | return getSema().ActOnOpenMPReductionClause( |
| 1870 | VarList, Modifier, StartLoc, LParenLoc, ModifierLoc, ColonLoc, EndLoc, |
| 1871 | ReductionIdScopeSpec, ReductionId, UnresolvedReductions); |
| 1872 | } |
| 1873 | |
| 1874 | /// Build a new OpenMP 'task_reduction' clause. |
| 1875 | /// |
| 1876 | /// By default, performs semantic analysis to build the new statement. |
| 1877 | /// Subclasses may override this routine to provide different behavior. |
| 1878 | OMPClause *RebuildOMPTaskReductionClause( |
| 1879 | ArrayRef<Expr *> VarList, SourceLocation StartLoc, |
| 1880 | SourceLocation LParenLoc, SourceLocation ColonLoc, SourceLocation EndLoc, |
| 1881 | CXXScopeSpec &ReductionIdScopeSpec, |
| 1882 | const DeclarationNameInfo &ReductionId, |
| 1883 | ArrayRef<Expr *> UnresolvedReductions) { |
| 1884 | return getSema().ActOnOpenMPTaskReductionClause( |
| 1885 | VarList, StartLoc, LParenLoc, ColonLoc, EndLoc, ReductionIdScopeSpec, |
| 1886 | ReductionId, UnresolvedReductions); |
| 1887 | } |
| 1888 | |
| 1889 | /// Build a new OpenMP 'in_reduction' clause. |
| 1890 | /// |
| 1891 | /// By default, performs semantic analysis to build the new statement. |
| 1892 | /// Subclasses may override this routine to provide different behavior. |
| 1893 | OMPClause * |
| 1894 | RebuildOMPInReductionClause(ArrayRef<Expr *> VarList, SourceLocation StartLoc, |
| 1895 | SourceLocation LParenLoc, SourceLocation ColonLoc, |
| 1896 | SourceLocation EndLoc, |
| 1897 | CXXScopeSpec &ReductionIdScopeSpec, |
| 1898 | const DeclarationNameInfo &ReductionId, |
| 1899 | ArrayRef<Expr *> UnresolvedReductions) { |
| 1900 | return getSema().ActOnOpenMPInReductionClause( |
| 1901 | VarList, StartLoc, LParenLoc, ColonLoc, EndLoc, ReductionIdScopeSpec, |
| 1902 | ReductionId, UnresolvedReductions); |
| 1903 | } |
| 1904 | |
| 1905 | /// Build a new OpenMP 'linear' clause. |
| 1906 | /// |
| 1907 | /// By default, performs semantic analysis to build the new OpenMP clause. |
| 1908 | /// Subclasses may override this routine to provide different behavior. |
| 1909 | OMPClause *RebuildOMPLinearClause(ArrayRef<Expr *> VarList, Expr *Step, |
| 1910 | SourceLocation StartLoc, |
| 1911 | SourceLocation LParenLoc, |
| 1912 | OpenMPLinearClauseKind Modifier, |
| 1913 | SourceLocation ModifierLoc, |
| 1914 | SourceLocation ColonLoc, |
| 1915 | SourceLocation EndLoc) { |
| 1916 | return getSema().ActOnOpenMPLinearClause(VarList, Step, StartLoc, LParenLoc, |
| 1917 | Modifier, ModifierLoc, ColonLoc, |
| 1918 | EndLoc); |
| 1919 | } |
| 1920 | |
| 1921 | /// Build a new OpenMP 'aligned' clause. |
| 1922 | /// |
| 1923 | /// By default, performs semantic analysis to build the new OpenMP clause. |
| 1924 | /// Subclasses may override this routine to provide different behavior. |
| 1925 | OMPClause *RebuildOMPAlignedClause(ArrayRef<Expr *> VarList, Expr *Alignment, |
| 1926 | SourceLocation StartLoc, |
| 1927 | SourceLocation LParenLoc, |
| 1928 | SourceLocation ColonLoc, |
| 1929 | SourceLocation EndLoc) { |
| 1930 | return getSema().ActOnOpenMPAlignedClause(VarList, Alignment, StartLoc, |
| 1931 | LParenLoc, ColonLoc, EndLoc); |
| 1932 | } |
| 1933 | |
| 1934 | /// Build a new OpenMP 'copyin' clause. |
| 1935 | /// |
| 1936 | /// By default, performs semantic analysis to build the new OpenMP clause. |
| 1937 | /// Subclasses may override this routine to provide different behavior. |
| 1938 | OMPClause *RebuildOMPCopyinClause(ArrayRef<Expr *> VarList, |
| 1939 | SourceLocation StartLoc, |
| 1940 | SourceLocation LParenLoc, |
| 1941 | SourceLocation EndLoc) { |
| 1942 | return getSema().ActOnOpenMPCopyinClause(VarList, StartLoc, LParenLoc, |
| 1943 | EndLoc); |
| 1944 | } |
| 1945 | |
| 1946 | /// Build a new OpenMP 'copyprivate' clause. |
| 1947 | /// |
| 1948 | /// By default, performs semantic analysis to build the new OpenMP clause. |
| 1949 | /// Subclasses may override this routine to provide different behavior. |
| 1950 | OMPClause *RebuildOMPCopyprivateClause(ArrayRef<Expr *> VarList, |
| 1951 | SourceLocation StartLoc, |
| 1952 | SourceLocation LParenLoc, |
| 1953 | SourceLocation EndLoc) { |
| 1954 | return getSema().ActOnOpenMPCopyprivateClause(VarList, StartLoc, LParenLoc, |
| 1955 | EndLoc); |
| 1956 | } |
| 1957 | |
| 1958 | /// Build a new OpenMP 'flush' pseudo clause. |
| 1959 | /// |
| 1960 | /// By default, performs semantic analysis to build the new OpenMP clause. |
| 1961 | /// Subclasses may override this routine to provide different behavior. |
| 1962 | OMPClause *RebuildOMPFlushClause(ArrayRef<Expr *> VarList, |
| 1963 | SourceLocation StartLoc, |
| 1964 | SourceLocation LParenLoc, |
| 1965 | SourceLocation EndLoc) { |
| 1966 | return getSema().ActOnOpenMPFlushClause(VarList, StartLoc, LParenLoc, |
| 1967 | EndLoc); |
| 1968 | } |
| 1969 | |
| 1970 | /// Build a new OpenMP 'depobj' pseudo clause. |
| 1971 | /// |
| 1972 | /// By default, performs semantic analysis to build the new OpenMP clause. |
| 1973 | /// Subclasses may override this routine to provide different behavior. |
| 1974 | OMPClause *RebuildOMPDepobjClause(Expr *Depobj, SourceLocation StartLoc, |
| 1975 | SourceLocation LParenLoc, |
| 1976 | SourceLocation EndLoc) { |
| 1977 | return getSema().ActOnOpenMPDepobjClause(Depobj, StartLoc, LParenLoc, |
| 1978 | EndLoc); |
| 1979 | } |
| 1980 | |
| 1981 | /// Build a new OpenMP 'depend' pseudo clause. |
| 1982 | /// |
| 1983 | /// By default, performs semantic analysis to build the new OpenMP clause. |
| 1984 | /// Subclasses may override this routine to provide different behavior. |
| 1985 | OMPClause *RebuildOMPDependClause(OMPDependClause::DependDataTy Data, |
| 1986 | Expr *DepModifier, ArrayRef<Expr *> VarList, |
| 1987 | SourceLocation StartLoc, |
| 1988 | SourceLocation LParenLoc, |
| 1989 | SourceLocation EndLoc) { |
| 1990 | return getSema().ActOnOpenMPDependClause(Data, DepModifier, VarList, |
| 1991 | StartLoc, LParenLoc, EndLoc); |
| 1992 | } |
| 1993 | |
| 1994 | /// Build a new OpenMP 'device' clause. |
| 1995 | /// |
| 1996 | /// By default, performs semantic analysis to build the new statement. |
| 1997 | /// Subclasses may override this routine to provide different behavior. |
| 1998 | OMPClause *RebuildOMPDeviceClause(OpenMPDeviceClauseModifier Modifier, |
| 1999 | Expr *Device, SourceLocation StartLoc, |
| 2000 | SourceLocation LParenLoc, |
| 2001 | SourceLocation ModifierLoc, |
| 2002 | SourceLocation EndLoc) { |
| 2003 | return getSema().ActOnOpenMPDeviceClause(Modifier, Device, StartLoc, |
| 2004 | LParenLoc, ModifierLoc, EndLoc); |
| 2005 | } |
| 2006 | |
| 2007 | /// Build a new OpenMP 'map' clause. |
| 2008 | /// |
| 2009 | /// By default, performs semantic analysis to build the new OpenMP clause. |
| 2010 | /// Subclasses may override this routine to provide different behavior. |
| 2011 | OMPClause *RebuildOMPMapClause( |
| 2012 | Expr *IteratorModifier, ArrayRef<OpenMPMapModifierKind> MapTypeModifiers, |
| 2013 | ArrayRef<SourceLocation> MapTypeModifiersLoc, |
| 2014 | CXXScopeSpec MapperIdScopeSpec, DeclarationNameInfo MapperId, |
| 2015 | OpenMPMapClauseKind MapType, bool IsMapTypeImplicit, |
| 2016 | SourceLocation MapLoc, SourceLocation ColonLoc, ArrayRef<Expr *> VarList, |
| 2017 | const OMPVarListLocTy &Locs, ArrayRef<Expr *> UnresolvedMappers) { |
| 2018 | return getSema().ActOnOpenMPMapClause( |
| 2019 | IteratorModifier, MapTypeModifiers, MapTypeModifiersLoc, |
| 2020 | MapperIdScopeSpec, MapperId, MapType, IsMapTypeImplicit, MapLoc, |
| 2021 | ColonLoc, VarList, Locs, |
| 2022 | /*NoDiagnose=*/false, UnresolvedMappers); |
| 2023 | } |
| 2024 | |
| 2025 | /// Build a new OpenMP 'allocate' clause. |
| 2026 | /// |
| 2027 | /// By default, performs semantic analysis to build the new OpenMP clause. |
| 2028 | /// Subclasses may override this routine to provide different behavior. |
| 2029 | OMPClause *RebuildOMPAllocateClause(Expr *Allocate, ArrayRef<Expr *> VarList, |
| 2030 | SourceLocation StartLoc, |
| 2031 | SourceLocation LParenLoc, |
| 2032 | SourceLocation ColonLoc, |
| 2033 | SourceLocation EndLoc) { |
| 2034 | return getSema().ActOnOpenMPAllocateClause(Allocate, VarList, StartLoc, |
| 2035 | LParenLoc, ColonLoc, EndLoc); |
| 2036 | } |
| 2037 | |
| 2038 | /// Build a new OpenMP 'num_teams' clause. |
| 2039 | /// |
| 2040 | /// By default, performs semantic analysis to build the new statement. |
| 2041 | /// Subclasses may override this routine to provide different behavior. |
| 2042 | OMPClause *RebuildOMPNumTeamsClause(Expr *NumTeams, SourceLocation StartLoc, |
| 2043 | SourceLocation LParenLoc, |
| 2044 | SourceLocation EndLoc) { |
| 2045 | return getSema().ActOnOpenMPNumTeamsClause(NumTeams, StartLoc, LParenLoc, |
| 2046 | EndLoc); |
| 2047 | } |
| 2048 | |
| 2049 | /// Build a new OpenMP 'thread_limit' clause. |
| 2050 | /// |
| 2051 | /// By default, performs semantic analysis to build the new statement. |
| 2052 | /// Subclasses may override this routine to provide different behavior. |
| 2053 | OMPClause *RebuildOMPThreadLimitClause(Expr *ThreadLimit, |
| 2054 | SourceLocation StartLoc, |
| 2055 | SourceLocation LParenLoc, |
| 2056 | SourceLocation EndLoc) { |
| 2057 | return getSema().ActOnOpenMPThreadLimitClause(ThreadLimit, StartLoc, |
| 2058 | LParenLoc, EndLoc); |
| 2059 | } |
| 2060 | |
| 2061 | /// Build a new OpenMP 'priority' clause. |
| 2062 | /// |
| 2063 | /// By default, performs semantic analysis to build the new statement. |
| 2064 | /// Subclasses may override this routine to provide different behavior. |
| 2065 | OMPClause *RebuildOMPPriorityClause(Expr *Priority, SourceLocation StartLoc, |
| 2066 | SourceLocation LParenLoc, |
| 2067 | SourceLocation EndLoc) { |
| 2068 | return getSema().ActOnOpenMPPriorityClause(Priority, StartLoc, LParenLoc, |
| 2069 | EndLoc); |
| 2070 | } |
| 2071 | |
| 2072 | /// Build a new OpenMP 'grainsize' clause. |
| 2073 | /// |
| 2074 | /// By default, performs semantic analysis to build the new statement. |
| 2075 | /// Subclasses may override this routine to provide different behavior. |
| 2076 | OMPClause *RebuildOMPGrainsizeClause(OpenMPGrainsizeClauseModifier Modifier, |
| 2077 | Expr *Device, SourceLocation StartLoc, |
| 2078 | SourceLocation LParenLoc, |
| 2079 | SourceLocation ModifierLoc, |
| 2080 | SourceLocation EndLoc) { |
| 2081 | return getSema().ActOnOpenMPGrainsizeClause(Modifier, Device, StartLoc, |
| 2082 | LParenLoc, ModifierLoc, EndLoc); |
| 2083 | } |
| 2084 | |
| 2085 | /// Build a new OpenMP 'num_tasks' clause. |
| 2086 | /// |
| 2087 | /// By default, performs semantic analysis to build the new statement. |
| 2088 | /// Subclasses may override this routine to provide different behavior. |
| 2089 | OMPClause *RebuildOMPNumTasksClause(OpenMPNumTasksClauseModifier Modifier, |
| 2090 | Expr *NumTasks, SourceLocation StartLoc, |
| 2091 | SourceLocation LParenLoc, |
| 2092 | SourceLocation ModifierLoc, |
| 2093 | SourceLocation EndLoc) { |
| 2094 | return getSema().ActOnOpenMPNumTasksClause(Modifier, NumTasks, StartLoc, |
| 2095 | LParenLoc, ModifierLoc, EndLoc); |
| 2096 | } |
| 2097 | |
| 2098 | /// Build a new OpenMP 'hint' clause. |
| 2099 | /// |
| 2100 | /// By default, performs semantic analysis to build the new statement. |
| 2101 | /// Subclasses may override this routine to provide different behavior. |
| 2102 | OMPClause *RebuildOMPHintClause(Expr *Hint, SourceLocation StartLoc, |
| 2103 | SourceLocation LParenLoc, |
| 2104 | SourceLocation EndLoc) { |
| 2105 | return getSema().ActOnOpenMPHintClause(Hint, StartLoc, LParenLoc, EndLoc); |
| 2106 | } |
| 2107 | |
| 2108 | /// Build a new OpenMP 'detach' clause. |
| 2109 | /// |
| 2110 | /// By default, performs semantic analysis to build the new statement. |
| 2111 | /// Subclasses may override this routine to provide different behavior. |
| 2112 | OMPClause *RebuildOMPDetachClause(Expr *Evt, SourceLocation StartLoc, |
| 2113 | SourceLocation LParenLoc, |
| 2114 | SourceLocation EndLoc) { |
| 2115 | return getSema().ActOnOpenMPDetachClause(Evt, StartLoc, LParenLoc, EndLoc); |
| 2116 | } |
| 2117 | |
| 2118 | /// Build a new OpenMP 'dist_schedule' clause. |
| 2119 | /// |
| 2120 | /// By default, performs semantic analysis to build the new OpenMP clause. |
| 2121 | /// Subclasses may override this routine to provide different behavior. |
| 2122 | OMPClause * |
| 2123 | RebuildOMPDistScheduleClause(OpenMPDistScheduleClauseKind Kind, |
| 2124 | Expr *ChunkSize, SourceLocation StartLoc, |
| 2125 | SourceLocation LParenLoc, SourceLocation KindLoc, |
| 2126 | SourceLocation CommaLoc, SourceLocation EndLoc) { |
| 2127 | return getSema().ActOnOpenMPDistScheduleClause( |
| 2128 | Kind, ChunkSize, StartLoc, LParenLoc, KindLoc, CommaLoc, EndLoc); |
| 2129 | } |
| 2130 | |
| 2131 | /// Build a new OpenMP 'to' clause. |
| 2132 | /// |
| 2133 | /// By default, performs semantic analysis to build the new statement. |
| 2134 | /// Subclasses may override this routine to provide different behavior. |
| 2135 | OMPClause * |
| 2136 | RebuildOMPToClause(ArrayRef<OpenMPMotionModifierKind> MotionModifiers, |
| 2137 | ArrayRef<SourceLocation> MotionModifiersLoc, |
| 2138 | CXXScopeSpec &MapperIdScopeSpec, |
| 2139 | DeclarationNameInfo &MapperId, SourceLocation ColonLoc, |
| 2140 | ArrayRef<Expr *> VarList, const OMPVarListLocTy &Locs, |
| 2141 | ArrayRef<Expr *> UnresolvedMappers) { |
| 2142 | return getSema().ActOnOpenMPToClause(MotionModifiers, MotionModifiersLoc, |
| 2143 | MapperIdScopeSpec, MapperId, ColonLoc, |
| 2144 | VarList, Locs, UnresolvedMappers); |
| 2145 | } |
| 2146 | |
| 2147 | /// Build a new OpenMP 'from' clause. |
| 2148 | /// |
| 2149 | /// By default, performs semantic analysis to build the new statement. |
| 2150 | /// Subclasses may override this routine to provide different behavior. |
| 2151 | OMPClause * |
| 2152 | RebuildOMPFromClause(ArrayRef<OpenMPMotionModifierKind> MotionModifiers, |
| 2153 | ArrayRef<SourceLocation> MotionModifiersLoc, |
| 2154 | CXXScopeSpec &MapperIdScopeSpec, |
| 2155 | DeclarationNameInfo &MapperId, SourceLocation ColonLoc, |
| 2156 | ArrayRef<Expr *> VarList, const OMPVarListLocTy &Locs, |
| 2157 | ArrayRef<Expr *> UnresolvedMappers) { |
| 2158 | return getSema().ActOnOpenMPFromClause( |
| 2159 | MotionModifiers, MotionModifiersLoc, MapperIdScopeSpec, MapperId, |
| 2160 | ColonLoc, VarList, Locs, UnresolvedMappers); |
| 2161 | } |
| 2162 | |
| 2163 | /// Build a new OpenMP 'use_device_ptr' clause. |
| 2164 | /// |
| 2165 | /// By default, performs semantic analysis to build the new OpenMP clause. |
| 2166 | /// Subclasses may override this routine to provide different behavior. |
| 2167 | OMPClause *RebuildOMPUseDevicePtrClause(ArrayRef<Expr *> VarList, |
| 2168 | const OMPVarListLocTy &Locs) { |
| 2169 | return getSema().ActOnOpenMPUseDevicePtrClause(VarList, Locs); |
| 2170 | } |
| 2171 | |
| 2172 | /// Build a new OpenMP 'use_device_addr' clause. |
| 2173 | /// |
| 2174 | /// By default, performs semantic analysis to build the new OpenMP clause. |
| 2175 | /// Subclasses may override this routine to provide different behavior. |
| 2176 | OMPClause *RebuildOMPUseDeviceAddrClause(ArrayRef<Expr *> VarList, |
| 2177 | const OMPVarListLocTy &Locs) { |
| 2178 | return getSema().ActOnOpenMPUseDeviceAddrClause(VarList, Locs); |
| 2179 | } |
| 2180 | |
| 2181 | /// Build a new OpenMP 'is_device_ptr' clause. |
| 2182 | /// |
| 2183 | /// By default, performs semantic analysis to build the new OpenMP clause. |
| 2184 | /// Subclasses may override this routine to provide different behavior. |
| 2185 | OMPClause *RebuildOMPIsDevicePtrClause(ArrayRef<Expr *> VarList, |
| 2186 | const OMPVarListLocTy &Locs) { |
| 2187 | return getSema().ActOnOpenMPIsDevicePtrClause(VarList, Locs); |
| 2188 | } |
| 2189 | |
| 2190 | /// Build a new OpenMP 'has_device_addr' clause. |
| 2191 | /// |
| 2192 | /// By default, performs semantic analysis to build the new OpenMP clause. |
| 2193 | /// Subclasses may override this routine to provide different behavior. |
| 2194 | OMPClause *RebuildOMPHasDeviceAddrClause(ArrayRef<Expr *> VarList, |
| 2195 | const OMPVarListLocTy &Locs) { |
| 2196 | return getSema().ActOnOpenMPHasDeviceAddrClause(VarList, Locs); |
| 2197 | } |
| 2198 | |
| 2199 | /// Build a new OpenMP 'defaultmap' clause. |
| 2200 | /// |
| 2201 | /// By default, performs semantic analysis to build the new OpenMP clause. |
| 2202 | /// Subclasses may override this routine to provide different behavior. |
| 2203 | OMPClause *RebuildOMPDefaultmapClause(OpenMPDefaultmapClauseModifier M, |
| 2204 | OpenMPDefaultmapClauseKind Kind, |
| 2205 | SourceLocation StartLoc, |
| 2206 | SourceLocation LParenLoc, |
| 2207 | SourceLocation MLoc, |
| 2208 | SourceLocation KindLoc, |
| 2209 | SourceLocation EndLoc) { |
| 2210 | return getSema().ActOnOpenMPDefaultmapClause(M, Kind, StartLoc, LParenLoc, |
| 2211 | MLoc, KindLoc, EndLoc); |
| 2212 | } |
| 2213 | |
| 2214 | /// Build a new OpenMP 'nontemporal' clause. |
| 2215 | /// |
| 2216 | /// By default, performs semantic analysis to build the new OpenMP clause. |
| 2217 | /// Subclasses may override this routine to provide different behavior. |
| 2218 | OMPClause *RebuildOMPNontemporalClause(ArrayRef<Expr *> VarList, |
| 2219 | SourceLocation StartLoc, |
| 2220 | SourceLocation LParenLoc, |
| 2221 | SourceLocation EndLoc) { |
| 2222 | return getSema().ActOnOpenMPNontemporalClause(VarList, StartLoc, LParenLoc, |
| 2223 | EndLoc); |
| 2224 | } |
| 2225 | |
| 2226 | /// Build a new OpenMP 'inclusive' clause. |
| 2227 | /// |
| 2228 | /// By default, performs semantic analysis to build the new OpenMP clause. |
| 2229 | /// Subclasses may override this routine to provide different behavior. |
| 2230 | OMPClause *RebuildOMPInclusiveClause(ArrayRef<Expr *> VarList, |
| 2231 | SourceLocation StartLoc, |
| 2232 | SourceLocation LParenLoc, |
| 2233 | SourceLocation EndLoc) { |
| 2234 | return getSema().ActOnOpenMPInclusiveClause(VarList, StartLoc, LParenLoc, |
| 2235 | EndLoc); |
| 2236 | } |
| 2237 | |
| 2238 | /// Build a new OpenMP 'exclusive' clause. |
| 2239 | /// |
| 2240 | /// By default, performs semantic analysis to build the new OpenMP clause. |
| 2241 | /// Subclasses may override this routine to provide different behavior. |
| 2242 | OMPClause *RebuildOMPExclusiveClause(ArrayRef<Expr *> VarList, |
| 2243 | SourceLocation StartLoc, |
| 2244 | SourceLocation LParenLoc, |
| 2245 | SourceLocation EndLoc) { |
| 2246 | return getSema().ActOnOpenMPExclusiveClause(VarList, StartLoc, LParenLoc, |
| 2247 | EndLoc); |
| 2248 | } |
| 2249 | |
| 2250 | /// Build a new OpenMP 'uses_allocators' clause. |
| 2251 | /// |
| 2252 | /// By default, performs semantic analysis to build the new OpenMP clause. |
| 2253 | /// Subclasses may override this routine to provide different behavior. |
| 2254 | OMPClause *RebuildOMPUsesAllocatorsClause( |
| 2255 | ArrayRef<Sema::UsesAllocatorsData> Data, SourceLocation StartLoc, |
| 2256 | SourceLocation LParenLoc, SourceLocation EndLoc) { |
| 2257 | return getSema().ActOnOpenMPUsesAllocatorClause(StartLoc, LParenLoc, EndLoc, |
| 2258 | Data); |
| 2259 | } |
| 2260 | |
| 2261 | /// Build a new OpenMP 'affinity' clause. |
| 2262 | /// |
| 2263 | /// By default, performs semantic analysis to build the new OpenMP clause. |
| 2264 | /// Subclasses may override this routine to provide different behavior. |
| 2265 | OMPClause *RebuildOMPAffinityClause(SourceLocation StartLoc, |
| 2266 | SourceLocation LParenLoc, |
| 2267 | SourceLocation ColonLoc, |
| 2268 | SourceLocation EndLoc, Expr *Modifier, |
| 2269 | ArrayRef<Expr *> Locators) { |
| 2270 | return getSema().ActOnOpenMPAffinityClause(StartLoc, LParenLoc, ColonLoc, |
| 2271 | EndLoc, Modifier, Locators); |
| 2272 | } |
| 2273 | |
| 2274 | /// Build a new OpenMP 'order' clause. |
| 2275 | /// |
| 2276 | /// By default, performs semantic analysis to build the new OpenMP clause. |
| 2277 | /// Subclasses may override this routine to provide different behavior. |
| 2278 | OMPClause *RebuildOMPOrderClause( |
| 2279 | OpenMPOrderClauseKind Kind, SourceLocation KindKwLoc, |
| 2280 | SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc, |
| 2281 | OpenMPOrderClauseModifier Modifier, SourceLocation ModifierKwLoc) { |
| 2282 | return getSema().ActOnOpenMPOrderClause(Modifier, Kind, StartLoc, LParenLoc, |
| 2283 | ModifierKwLoc, KindKwLoc, EndLoc); |
| 2284 | } |
| 2285 | |
| 2286 | /// Build a new OpenMP 'init' clause. |
| 2287 | /// |
| 2288 | /// By default, performs semantic analysis to build the new OpenMP clause. |
| 2289 | /// Subclasses may override this routine to provide different behavior. |
| 2290 | OMPClause *RebuildOMPInitClause(Expr *InteropVar, OMPInteropInfo &InteropInfo, |
| 2291 | SourceLocation StartLoc, |
| 2292 | SourceLocation LParenLoc, |
| 2293 | SourceLocation VarLoc, |
| 2294 | SourceLocation EndLoc) { |
| 2295 | return getSema().ActOnOpenMPInitClause(InteropVar, InteropInfo, StartLoc, |
| 2296 | LParenLoc, VarLoc, EndLoc); |
| 2297 | } |
| 2298 | |
| 2299 | /// Build a new OpenMP 'use' clause. |
| 2300 | /// |
| 2301 | /// By default, performs semantic analysis to build the new OpenMP clause. |
| 2302 | /// Subclasses may override this routine to provide different behavior. |
| 2303 | OMPClause *RebuildOMPUseClause(Expr *InteropVar, SourceLocation StartLoc, |
| 2304 | SourceLocation LParenLoc, |
| 2305 | SourceLocation VarLoc, SourceLocation EndLoc) { |
| 2306 | return getSema().ActOnOpenMPUseClause(InteropVar, StartLoc, LParenLoc, |
| 2307 | VarLoc, EndLoc); |
| 2308 | } |
| 2309 | |
| 2310 | /// Build a new OpenMP 'destroy' clause. |
| 2311 | /// |
| 2312 | /// By default, performs semantic analysis to build the new OpenMP clause. |
| 2313 | /// Subclasses may override this routine to provide different behavior. |
| 2314 | OMPClause *RebuildOMPDestroyClause(Expr *InteropVar, SourceLocation StartLoc, |
| 2315 | SourceLocation LParenLoc, |
| 2316 | SourceLocation VarLoc, |
| 2317 | SourceLocation EndLoc) { |
| 2318 | return getSema().ActOnOpenMPDestroyClause(InteropVar, StartLoc, LParenLoc, |
| 2319 | VarLoc, EndLoc); |
| 2320 | } |
| 2321 | |
| 2322 | /// Build a new OpenMP 'novariants' clause. |
| 2323 | /// |
| 2324 | /// By default, performs semantic analysis to build the new OpenMP clause. |
| 2325 | /// Subclasses may override this routine to provide different behavior. |
| 2326 | OMPClause *RebuildOMPNovariantsClause(Expr *Condition, |
| 2327 | SourceLocation StartLoc, |
| 2328 | SourceLocation LParenLoc, |
| 2329 | SourceLocation EndLoc) { |
| 2330 | return getSema().ActOnOpenMPNovariantsClause(Condition, StartLoc, LParenLoc, |
| 2331 | EndLoc); |
| 2332 | } |
| 2333 | |
| 2334 | /// Build a new OpenMP 'nocontext' clause. |
| 2335 | /// |
| 2336 | /// By default, performs semantic analysis to build the new OpenMP clause. |
| 2337 | /// Subclasses may override this routine to provide different behavior. |
| 2338 | OMPClause *RebuildOMPNocontextClause(Expr *Condition, SourceLocation StartLoc, |
| 2339 | SourceLocation LParenLoc, |
| 2340 | SourceLocation EndLoc) { |
| 2341 | return getSema().ActOnOpenMPNocontextClause(Condition, StartLoc, LParenLoc, |
| 2342 | EndLoc); |
| 2343 | } |
| 2344 | |
| 2345 | /// Build a new OpenMP 'filter' clause. |
| 2346 | /// |
| 2347 | /// By default, performs semantic analysis to build the new OpenMP clause. |
| 2348 | /// Subclasses may override this routine to provide different behavior. |
| 2349 | OMPClause *RebuildOMPFilterClause(Expr *ThreadID, SourceLocation StartLoc, |
| 2350 | SourceLocation LParenLoc, |
| 2351 | SourceLocation EndLoc) { |
| 2352 | return getSema().ActOnOpenMPFilterClause(ThreadID, StartLoc, LParenLoc, |
| 2353 | EndLoc); |
| 2354 | } |
| 2355 | |
| 2356 | /// Build a new OpenMP 'bind' clause. |
| 2357 | /// |
| 2358 | /// By default, performs semantic analysis to build the new OpenMP clause. |
| 2359 | /// Subclasses may override this routine to provide different behavior. |
| 2360 | OMPClause *RebuildOMPBindClause(OpenMPBindClauseKind Kind, |
| 2361 | SourceLocation KindLoc, |
| 2362 | SourceLocation StartLoc, |
| 2363 | SourceLocation LParenLoc, |
| 2364 | SourceLocation EndLoc) { |
| 2365 | return getSema().ActOnOpenMPBindClause(Kind, KindLoc, StartLoc, LParenLoc, |
| 2366 | EndLoc); |
| 2367 | } |
| 2368 | |
| 2369 | /// Build a new OpenMP 'ompx_dyn_cgroup_mem' clause. |
| 2370 | /// |
| 2371 | /// By default, performs semantic analysis to build the new OpenMP clause. |
| 2372 | /// Subclasses may override this routine to provide different behavior. |
| 2373 | OMPClause *RebuildOMPXDynCGroupMemClause(Expr *Size, SourceLocation StartLoc, |
| 2374 | SourceLocation LParenLoc, |
| 2375 | SourceLocation EndLoc) { |
| 2376 | return getSema().ActOnOpenMPXDynCGroupMemClause(Size, StartLoc, LParenLoc, |
| 2377 | EndLoc); |
| 2378 | } |
| 2379 | |
| 2380 | /// Build a new OpenMP 'align' clause. |
| 2381 | /// |
| 2382 | /// By default, performs semantic analysis to build the new OpenMP clause. |
| 2383 | /// Subclasses may override this routine to provide different behavior. |
| 2384 | OMPClause *RebuildOMPAlignClause(Expr *A, SourceLocation StartLoc, |
| 2385 | SourceLocation LParenLoc, |
| 2386 | SourceLocation EndLoc) { |
| 2387 | return getSema().ActOnOpenMPAlignClause(A, StartLoc, LParenLoc, EndLoc); |
| 2388 | } |
| 2389 | |
| 2390 | /// Build a new OpenMP 'at' clause. |
| 2391 | /// |
| 2392 | /// By default, performs semantic analysis to build the new OpenMP clause. |
| 2393 | /// Subclasses may override this routine to provide different behavior. |
| 2394 | OMPClause *RebuildOMPAtClause(OpenMPAtClauseKind Kind, SourceLocation KwLoc, |
| 2395 | SourceLocation StartLoc, |
| 2396 | SourceLocation LParenLoc, |
| 2397 | SourceLocation EndLoc) { |
| 2398 | return getSema().ActOnOpenMPAtClause(Kind, KwLoc, StartLoc, LParenLoc, |
| 2399 | EndLoc); |
| 2400 | } |
| 2401 | |
| 2402 | /// Build a new OpenMP 'severity' clause. |
| 2403 | /// |
| 2404 | /// By default, performs semantic analysis to build the new OpenMP clause. |
| 2405 | /// Subclasses may override this routine to provide different behavior. |
| 2406 | OMPClause *RebuildOMPSeverityClause(OpenMPSeverityClauseKind Kind, |
| 2407 | SourceLocation KwLoc, |
| 2408 | SourceLocation StartLoc, |
| 2409 | SourceLocation LParenLoc, |
| 2410 | SourceLocation EndLoc) { |
| 2411 | return getSema().ActOnOpenMPSeverityClause(Kind, KwLoc, StartLoc, LParenLoc, |
| 2412 | EndLoc); |
| 2413 | } |
| 2414 | |
| 2415 | /// Build a new OpenMP 'message' clause. |
| 2416 | /// |
| 2417 | /// By default, performs semantic analysis to build the new OpenMP clause. |
| 2418 | /// Subclasses may override this routine to provide different behavior. |
| 2419 | OMPClause *RebuildOMPMessageClause(Expr *MS, SourceLocation StartLoc, |
| 2420 | SourceLocation LParenLoc, |
| 2421 | SourceLocation EndLoc) { |
| 2422 | return getSema().ActOnOpenMPMessageClause(MS, StartLoc, LParenLoc, EndLoc); |
| 2423 | } |
| 2424 | |
| 2425 | /// Rebuild the operand to an Objective-C \@synchronized statement. |
| 2426 | /// |
| 2427 | /// By default, performs semantic analysis to build the new statement. |
| 2428 | /// Subclasses may override this routine to provide different behavior. |
| 2429 | ExprResult RebuildObjCAtSynchronizedOperand(SourceLocation atLoc, |
| 2430 | Expr *object) { |
| 2431 | return getSema().ActOnObjCAtSynchronizedOperand(atLoc, object); |
| 2432 | } |
| 2433 | |
| 2434 | /// Build a new Objective-C \@synchronized statement. |
| 2435 | /// |
| 2436 | /// By default, performs semantic analysis to build the new statement. |
| 2437 | /// Subclasses may override this routine to provide different behavior. |
| 2438 | StmtResult RebuildObjCAtSynchronizedStmt(SourceLocation AtLoc, |
| 2439 | Expr *Object, Stmt *Body) { |
| 2440 | return getSema().ActOnObjCAtSynchronizedStmt(AtLoc, Object, Body); |
| 2441 | } |
| 2442 | |
| 2443 | /// Build a new Objective-C \@autoreleasepool statement. |
| 2444 | /// |
| 2445 | /// By default, performs semantic analysis to build the new statement. |
| 2446 | /// Subclasses may override this routine to provide different behavior. |
| 2447 | StmtResult RebuildObjCAutoreleasePoolStmt(SourceLocation AtLoc, |
| 2448 | Stmt *Body) { |
| 2449 | return getSema().ActOnObjCAutoreleasePoolStmt(AtLoc, Body); |
| 2450 | } |
| 2451 | |
| 2452 | /// Build a new Objective-C fast enumeration statement. |
| 2453 | /// |
| 2454 | /// By default, performs semantic analysis to build the new statement. |
| 2455 | /// Subclasses may override this routine to provide different behavior. |
| 2456 | StmtResult RebuildObjCForCollectionStmt(SourceLocation ForLoc, |
| 2457 | Stmt *Element, |
| 2458 | Expr *Collection, |
| 2459 | SourceLocation RParenLoc, |
| 2460 | Stmt *Body) { |
| 2461 | StmtResult ForEachStmt = getSema().ActOnObjCForCollectionStmt(ForLoc, |
| 2462 | Element, |
| 2463 | Collection, |
| 2464 | RParenLoc); |
| 2465 | if (ForEachStmt.isInvalid()) |
| 2466 | return StmtError(); |
| 2467 | |
| 2468 | return getSema().FinishObjCForCollectionStmt(ForEachStmt.get(), Body); |
| 2469 | } |
| 2470 | |
| 2471 | /// Build a new C++ exception declaration. |
| 2472 | /// |
| 2473 | /// By default, performs semantic analysis to build the new decaration. |
| 2474 | /// Subclasses may override this routine to provide different behavior. |
| 2475 | VarDecl *RebuildExceptionDecl(VarDecl *ExceptionDecl, |
| 2476 | TypeSourceInfo *Declarator, |
| 2477 | SourceLocation StartLoc, |
| 2478 | SourceLocation IdLoc, |
| 2479 | IdentifierInfo *Id) { |
| 2480 | VarDecl *Var = getSema().BuildExceptionDeclaration(nullptr, Declarator, |
| 2481 | StartLoc, IdLoc, Id); |
| 2482 | if (Var) |
| 2483 | getSema().CurContext->addDecl(Var); |
| 2484 | return Var; |
| 2485 | } |
| 2486 | |
| 2487 | /// Build a new C++ catch statement. |
| 2488 | /// |
| 2489 | /// By default, performs semantic analysis to build the new statement. |
| 2490 | /// Subclasses may override this routine to provide different behavior. |
| 2491 | StmtResult RebuildCXXCatchStmt(SourceLocation CatchLoc, |
| 2492 | VarDecl *ExceptionDecl, |
| 2493 | Stmt *Handler) { |
| 2494 | return Owned(new (getSema().Context) CXXCatchStmt(CatchLoc, ExceptionDecl, |
| 2495 | Handler)); |
| 2496 | } |
| 2497 | |
| 2498 | /// Build a new C++ try statement. |
| 2499 | /// |
| 2500 | /// By default, performs semantic analysis to build the new statement. |
| 2501 | /// Subclasses may override this routine to provide different behavior. |
| 2502 | StmtResult RebuildCXXTryStmt(SourceLocation TryLoc, Stmt *TryBlock, |
| 2503 | ArrayRef<Stmt *> Handlers) { |
| 2504 | return getSema().ActOnCXXTryBlock(TryLoc, TryBlock, Handlers); |
| 2505 | } |
| 2506 | |
| 2507 | /// Build a new C++0x range-based for statement. |
| 2508 | /// |
| 2509 | /// By default, performs semantic analysis to build the new statement. |
| 2510 | /// Subclasses may override this routine to provide different behavior. |
| 2511 | StmtResult RebuildCXXForRangeStmt(SourceLocation ForLoc, |
| 2512 | SourceLocation CoawaitLoc, Stmt *Init, |
| 2513 | SourceLocation ColonLoc, Stmt *Range, |
| 2514 | Stmt *Begin, Stmt *End, Expr *Cond, |
| 2515 | Expr *Inc, Stmt *LoopVar, |
| 2516 | SourceLocation RParenLoc) { |
| 2517 | // If we've just learned that the range is actually an Objective-C |
| 2518 | // collection, treat this as an Objective-C fast enumeration loop. |
| 2519 | if (DeclStmt *RangeStmt = dyn_cast<DeclStmt>(Range)) { |
| 2520 | if (RangeStmt->isSingleDecl()) { |
| 2521 | if (VarDecl *RangeVar = dyn_cast<VarDecl>(RangeStmt->getSingleDecl())) { |
| 2522 | if (RangeVar->isInvalidDecl()) |
| 2523 | return StmtError(); |
| 2524 | |
| 2525 | Expr *RangeExpr = RangeVar->getInit(); |
| 2526 | if (!RangeExpr->isTypeDependent() && |
| 2527 | RangeExpr->getType()->isObjCObjectPointerType()) { |
| 2528 | // FIXME: Support init-statements in Objective-C++20 ranged for |
| 2529 | // statement. |
| 2530 | if (Init) { |
| 2531 | return SemaRef.Diag(Init->getBeginLoc(), |
| 2532 | diag::err_objc_for_range_init_stmt) |
| 2533 | << Init->getSourceRange(); |
| 2534 | } |
| 2535 | return getSema().ActOnObjCForCollectionStmt(ForLoc, LoopVar, |
| 2536 | RangeExpr, RParenLoc); |
| 2537 | } |
| 2538 | } |
| 2539 | } |
| 2540 | } |
| 2541 | |
| 2542 | return getSema().BuildCXXForRangeStmt(ForLoc, CoawaitLoc, Init, ColonLoc, |
| 2543 | Range, Begin, End, Cond, Inc, LoopVar, |
| 2544 | RParenLoc, Sema::BFRK_Rebuild); |
| 2545 | } |
| 2546 | |
| 2547 | /// Build a new C++0x range-based for statement. |
| 2548 | /// |
| 2549 | /// By default, performs semantic analysis to build the new statement. |
| 2550 | /// Subclasses may override this routine to provide different behavior. |
| 2551 | StmtResult RebuildMSDependentExistsStmt(SourceLocation KeywordLoc, |
| 2552 | bool IsIfExists, |
| 2553 | NestedNameSpecifierLoc QualifierLoc, |
| 2554 | DeclarationNameInfo NameInfo, |
| 2555 | Stmt *Nested) { |
| 2556 | return getSema().BuildMSDependentExistsStmt(KeywordLoc, IsIfExists, |
| 2557 | QualifierLoc, NameInfo, Nested); |
| 2558 | } |
| 2559 | |
| 2560 | /// Attach body to a C++0x range-based for statement. |
| 2561 | /// |
| 2562 | /// By default, performs semantic analysis to finish the new statement. |
| 2563 | /// Subclasses may override this routine to provide different behavior. |
| 2564 | StmtResult FinishCXXForRangeStmt(Stmt *ForRange, Stmt *Body) { |
| 2565 | return getSema().FinishCXXForRangeStmt(ForRange, Body); |
| 2566 | } |
| 2567 | |
| 2568 | StmtResult RebuildSEHTryStmt(bool IsCXXTry, SourceLocation TryLoc, |
| 2569 | Stmt *TryBlock, Stmt *Handler) { |
| 2570 | return getSema().ActOnSEHTryBlock(IsCXXTry, TryLoc, TryBlock, Handler); |
| 2571 | } |
| 2572 | |
| 2573 | StmtResult RebuildSEHExceptStmt(SourceLocation Loc, Expr *FilterExpr, |
| 2574 | Stmt *Block) { |
| 2575 | return getSema().ActOnSEHExceptBlock(Loc, FilterExpr, Block); |
| 2576 | } |
| 2577 | |
| 2578 | StmtResult RebuildSEHFinallyStmt(SourceLocation Loc, Stmt *Block) { |
| 2579 | return SEHFinallyStmt::Create(getSema().getASTContext(), Loc, Block); |
| 2580 | } |
| 2581 | |
| 2582 | ExprResult RebuildSYCLUniqueStableNameExpr(SourceLocation OpLoc, |
| 2583 | SourceLocation LParen, |
| 2584 | SourceLocation RParen, |
| 2585 | TypeSourceInfo *TSI) { |
| 2586 | return getSema().BuildSYCLUniqueStableNameExpr(OpLoc, LParen, RParen, TSI); |
| 2587 | } |
| 2588 | |
| 2589 | /// Build a new predefined expression. |
| 2590 | /// |
| 2591 | /// By default, performs semantic analysis to build the new expression. |
| 2592 | /// Subclasses may override this routine to provide different behavior. |
| 2593 | ExprResult RebuildPredefinedExpr(SourceLocation Loc, |
| 2594 | PredefinedExpr::IdentKind IK) { |
| 2595 | return getSema().BuildPredefinedExpr(Loc, IK); |
| 2596 | } |
| 2597 | |
| 2598 | /// Build a new expression that references a declaration. |
| 2599 | /// |
| 2600 | /// By default, performs semantic analysis to build the new expression. |
| 2601 | /// Subclasses may override this routine to provide different behavior. |
| 2602 | ExprResult RebuildDeclarationNameExpr(const CXXScopeSpec &SS, |
| 2603 | LookupResult &R, |
| 2604 | bool RequiresADL) { |
| 2605 | return getSema().BuildDeclarationNameExpr(SS, R, RequiresADL); |
| 2606 | } |
| 2607 | |
| 2608 | |
| 2609 | /// Build a new expression that references a declaration. |
| 2610 | /// |
| 2611 | /// By default, performs semantic analysis to build the new expression. |
| 2612 | /// Subclasses may override this routine to provide different behavior. |
| 2613 | ExprResult RebuildDeclRefExpr(NestedNameSpecifierLoc QualifierLoc, |
| 2614 | ValueDecl *VD, |
| 2615 | const DeclarationNameInfo &NameInfo, |
| 2616 | NamedDecl *Found, |
| 2617 | TemplateArgumentListInfo *TemplateArgs) { |
| 2618 | CXXScopeSpec SS; |
| 2619 | SS.Adopt(QualifierLoc); |
| 2620 | return getSema().BuildDeclarationNameExpr(SS, NameInfo, VD, Found, |
| 2621 | TemplateArgs); |
| 2622 | } |
| 2623 | |
| 2624 | /// Build a new expression in parentheses. |
| 2625 | /// |
| 2626 | /// By default, performs semantic analysis to build the new expression. |
| 2627 | /// Subclasses may override this routine to provide different behavior. |
| 2628 | ExprResult RebuildParenExpr(Expr *SubExpr, SourceLocation LParen, |
| 2629 | SourceLocation RParen) { |
| 2630 | return getSema().ActOnParenExpr(LParen, RParen, SubExpr); |
| 2631 | } |
| 2632 | |
| 2633 | /// Build a new pseudo-destructor expression. |
| 2634 | /// |
| 2635 | /// By default, performs semantic analysis to build the new expression. |
| 2636 | /// Subclasses may override this routine to provide different behavior. |
| 2637 | ExprResult RebuildCXXPseudoDestructorExpr(Expr *Base, |
| 2638 | SourceLocation OperatorLoc, |
| 2639 | bool isArrow, |
| 2640 | CXXScopeSpec &SS, |
| 2641 | TypeSourceInfo *ScopeType, |
| 2642 | SourceLocation CCLoc, |
| 2643 | SourceLocation TildeLoc, |
| 2644 | PseudoDestructorTypeStorage Destroyed); |
| 2645 | |
| 2646 | /// Build a new unary operator expression. |
| 2647 | /// |
| 2648 | /// By default, performs semantic analysis to build the new expression. |
| 2649 | /// Subclasses may override this routine to provide different behavior. |
| 2650 | ExprResult RebuildUnaryOperator(SourceLocation OpLoc, |
| 2651 | UnaryOperatorKind Opc, |
| 2652 | Expr *SubExpr) { |
| 2653 | return getSema().BuildUnaryOp(/*Scope=*/nullptr, OpLoc, Opc, SubExpr); |
| 2654 | } |
| 2655 | |
| 2656 | /// Build a new builtin offsetof expression. |
| 2657 | /// |
| 2658 | /// By default, performs semantic analysis to build the new expression. |
| 2659 | /// Subclasses may override this routine to provide different behavior. |
| 2660 | ExprResult RebuildOffsetOfExpr(SourceLocation OperatorLoc, |
| 2661 | TypeSourceInfo *Type, |
| 2662 | ArrayRef<Sema::OffsetOfComponent> Components, |
| 2663 | SourceLocation RParenLoc) { |
| 2664 | return getSema().BuildBuiltinOffsetOf(OperatorLoc, Type, Components, |
| 2665 | RParenLoc); |
| 2666 | } |
| 2667 | |
| 2668 | /// Build a new sizeof, alignof or vec_step expression with a |
| 2669 | /// type argument. |
| 2670 | /// |
| 2671 | /// By default, performs semantic analysis to build the new expression. |
| 2672 | /// Subclasses may override this routine to provide different behavior. |
| 2673 | ExprResult RebuildUnaryExprOrTypeTrait(TypeSourceInfo *TInfo, |
| 2674 | SourceLocation OpLoc, |
| 2675 | UnaryExprOrTypeTrait ExprKind, |
| 2676 | SourceRange R) { |
| 2677 | return getSema().CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, R); |
| 2678 | } |
| 2679 | |
| 2680 | /// Build a new sizeof, alignof or vec step expression with an |
| 2681 | /// expression argument. |
| 2682 | /// |
| 2683 | /// By default, performs semantic analysis to build the new expression. |
| 2684 | /// Subclasses may override this routine to provide different behavior. |
| 2685 | ExprResult RebuildUnaryExprOrTypeTrait(Expr *SubExpr, SourceLocation OpLoc, |
| 2686 | UnaryExprOrTypeTrait ExprKind, |
| 2687 | SourceRange R) { |
| 2688 | ExprResult Result |
| 2689 | = getSema().CreateUnaryExprOrTypeTraitExpr(SubExpr, OpLoc, ExprKind); |
| 2690 | if (Result.isInvalid()) |
| 2691 | return ExprError(); |
| 2692 | |
| 2693 | return Result; |
| 2694 | } |
| 2695 | |
| 2696 | /// Build a new array subscript expression. |
| 2697 | /// |
| 2698 | /// By default, performs semantic analysis to build the new expression. |
| 2699 | /// Subclasses may override this routine to provide different behavior. |
| 2700 | ExprResult RebuildArraySubscriptExpr(Expr *LHS, |
| 2701 | SourceLocation LBracketLoc, |
| 2702 | Expr *RHS, |
| 2703 | SourceLocation RBracketLoc) { |
| 2704 | return getSema().ActOnArraySubscriptExpr(/*Scope=*/nullptr, LHS, |
| 2705 | LBracketLoc, RHS, |
| 2706 | RBracketLoc); |
| 2707 | } |
| 2708 | |
| 2709 | /// Build a new matrix subscript expression. |
| 2710 | /// |
| 2711 | /// By default, performs semantic analysis to build the new expression. |
| 2712 | /// Subclasses may override this routine to provide different behavior. |
| 2713 | ExprResult RebuildMatrixSubscriptExpr(Expr *Base, Expr *RowIdx, |
| 2714 | Expr *ColumnIdx, |
| 2715 | SourceLocation RBracketLoc) { |
| 2716 | return getSema().CreateBuiltinMatrixSubscriptExpr(Base, RowIdx, ColumnIdx, |
| 2717 | RBracketLoc); |
| 2718 | } |
| 2719 | |
| 2720 | /// Build a new array section expression. |
| 2721 | /// |
| 2722 | /// By default, performs semantic analysis to build the new expression. |
| 2723 | /// Subclasses may override this routine to provide different behavior. |
| 2724 | ExprResult RebuildOMPArraySectionExpr(Expr *Base, SourceLocation LBracketLoc, |
| 2725 | Expr *LowerBound, |
| 2726 | SourceLocation ColonLocFirst, |
| 2727 | SourceLocation ColonLocSecond, |
| 2728 | Expr *Length, Expr *Stride, |
| 2729 | SourceLocation RBracketLoc) { |
| 2730 | return getSema().ActOnOMPArraySectionExpr(Base, LBracketLoc, LowerBound, |
| 2731 | ColonLocFirst, ColonLocSecond, |
| 2732 | Length, Stride, RBracketLoc); |
| 2733 | } |
| 2734 | |
| 2735 | /// Build a new array shaping expression. |
| 2736 | /// |
| 2737 | /// By default, performs semantic analysis to build the new expression. |
| 2738 | /// Subclasses may override this routine to provide different behavior. |
| 2739 | ExprResult RebuildOMPArrayShapingExpr(Expr *Base, SourceLocation LParenLoc, |
| 2740 | SourceLocation RParenLoc, |
| 2741 | ArrayRef<Expr *> Dims, |
| 2742 | ArrayRef<SourceRange> BracketsRanges) { |
| 2743 | return getSema().ActOnOMPArrayShapingExpr(Base, LParenLoc, RParenLoc, Dims, |
| 2744 | BracketsRanges); |
| 2745 | } |
| 2746 | |
| 2747 | /// Build a new iterator expression. |
| 2748 | /// |
| 2749 | /// By default, performs semantic analysis to build the new expression. |
| 2750 | /// Subclasses may override this routine to provide different behavior. |
| 2751 | ExprResult RebuildOMPIteratorExpr( |
| 2752 | SourceLocation IteratorKwLoc, SourceLocation LLoc, SourceLocation RLoc, |
| 2753 | ArrayRef<Sema::OMPIteratorData> Data) { |
| 2754 | return getSema().ActOnOMPIteratorExpr(/*Scope=*/nullptr, IteratorKwLoc, |
| 2755 | LLoc, RLoc, Data); |
| 2756 | } |
| 2757 | |
| 2758 | /// Build a new call expression. |
| 2759 | /// |
| 2760 | /// By default, performs semantic analysis to build the new expression. |
| 2761 | /// Subclasses may override this routine to provide different behavior. |
| 2762 | ExprResult RebuildCallExpr(Expr *Callee, SourceLocation LParenLoc, |
| 2763 | MultiExprArg Args, |
| 2764 | SourceLocation RParenLoc, |
| 2765 | Expr *ExecConfig = nullptr) { |
| 2766 | return getSema().ActOnCallExpr( |
| 2767 | /*Scope=*/nullptr, Callee, LParenLoc, Args, RParenLoc, ExecConfig); |
| 2768 | } |
| 2769 | |
| 2770 | ExprResult RebuildCxxSubscriptExpr(Expr *Callee, SourceLocation LParenLoc, |
| 2771 | MultiExprArg Args, |
| 2772 | SourceLocation RParenLoc) { |
| 2773 | return getSema().ActOnArraySubscriptExpr( |
| 2774 | /*Scope=*/nullptr, Callee, LParenLoc, Args, RParenLoc); |
| 2775 | } |
| 2776 | |
| 2777 | /// Build a new member access expression. |
| 2778 | /// |
| 2779 | /// By default, performs semantic analysis to build the new expression. |
| 2780 | /// Subclasses may override this routine to provide different behavior. |
| 2781 | ExprResult RebuildMemberExpr(Expr *Base, SourceLocation OpLoc, |
| 2782 | bool isArrow, |
| 2783 | NestedNameSpecifierLoc QualifierLoc, |
| 2784 | SourceLocation TemplateKWLoc, |
| 2785 | const DeclarationNameInfo &MemberNameInfo, |
| 2786 | ValueDecl *Member, |
| 2787 | NamedDecl *FoundDecl, |
| 2788 | const TemplateArgumentListInfo *ExplicitTemplateArgs, |
| 2789 | NamedDecl *FirstQualifierInScope) { |
| 2790 | ExprResult BaseResult = getSema().PerformMemberExprBaseConversion(Base, |
| 2791 | isArrow); |
| 2792 | if (!Member->getDeclName()) { |
| 2793 | // We have a reference to an unnamed field. This is always the |
| 2794 | // base of an anonymous struct/union member access, i.e. the |
| 2795 | // field is always of record type. |
| 2796 | assert(Member->getType()->isRecordType() &&(static_cast <bool> (Member->getType()->isRecordType () && "unnamed member not of record type?") ? void (0 ) : __assert_fail ("Member->getType()->isRecordType() && \"unnamed member not of record type?\"" , "clang/lib/Sema/TreeTransform.h", 2797, __extension__ __PRETTY_FUNCTION__ )) |
| 2797 | "unnamed member not of record type?")(static_cast <bool> (Member->getType()->isRecordType () && "unnamed member not of record type?") ? void (0 ) : __assert_fail ("Member->getType()->isRecordType() && \"unnamed member not of record type?\"" , "clang/lib/Sema/TreeTransform.h", 2797, __extension__ __PRETTY_FUNCTION__ )); |
| 2798 | |
| 2799 | BaseResult = |
| 2800 | getSema().PerformObjectMemberConversion(BaseResult.get(), |
| 2801 | QualifierLoc.getNestedNameSpecifier(), |
| 2802 | FoundDecl, Member); |
| 2803 | if (BaseResult.isInvalid()) |
| 2804 | return ExprError(); |
| 2805 | Base = BaseResult.get(); |
| 2806 | |
| 2807 | CXXScopeSpec EmptySS; |
| 2808 | return getSema().BuildFieldReferenceExpr( |
| 2809 | Base, isArrow, OpLoc, EmptySS, cast<FieldDecl>(Member), |
| 2810 | DeclAccessPair::make(FoundDecl, FoundDecl->getAccess()), MemberNameInfo); |
| 2811 | } |
| 2812 | |
| 2813 | CXXScopeSpec SS; |
| 2814 | SS.Adopt(QualifierLoc); |
| 2815 | |
| 2816 | Base = BaseResult.get(); |
| 2817 | QualType BaseType = Base->getType(); |
| 2818 | |
| 2819 | if (isArrow && !BaseType->isPointerType()) |
| 2820 | return ExprError(); |
| 2821 | |
| 2822 | // FIXME: this involves duplicating earlier analysis in a lot of |
| 2823 | // cases; we should avoid this when possible. |
| 2824 | LookupResult R(getSema(), MemberNameInfo, Sema::LookupMemberName); |
| 2825 | R.addDecl(FoundDecl); |
| 2826 | R.resolveKind(); |
| 2827 | |
| 2828 | if (getSema().isUnevaluatedContext() && Base->isImplicitCXXThis() && |
| 2829 | isa<FieldDecl, IndirectFieldDecl, MSPropertyDecl>(Member)) { |
| 2830 | if (auto *ThisClass = cast<CXXThisExpr>(Base) |
| 2831 | ->getType() |
| 2832 | ->getPointeeType() |
| 2833 | ->getAsCXXRecordDecl()) { |
| 2834 | auto *Class = cast<CXXRecordDecl>(Member->getDeclContext()); |
| 2835 | // In unevaluated contexts, an expression supposed to be a member access |
| 2836 | // might reference a member in an unrelated class. |
| 2837 | if (!ThisClass->Equals(Class) && !ThisClass->isDerivedFrom(Class)) |
| 2838 | return getSema().BuildDeclRefExpr(Member, Member->getType(), |
| 2839 | VK_LValue, Member->getLocation()); |
| 2840 | } |
| 2841 | } |
| 2842 | |
| 2843 | return getSema().BuildMemberReferenceExpr(Base, BaseType, OpLoc, isArrow, |
| 2844 | SS, TemplateKWLoc, |
| 2845 | FirstQualifierInScope, |
| 2846 | R, ExplicitTemplateArgs, |
| 2847 | /*S*/nullptr); |
| 2848 | } |
| 2849 | |
| 2850 | /// Build a new binary operator expression. |
| 2851 | /// |
| 2852 | /// By default, performs semantic analysis to build the new expression. |
| 2853 | /// Subclasses may override this routine to provide different behavior. |
| 2854 | ExprResult RebuildBinaryOperator(SourceLocation OpLoc, |
| 2855 | BinaryOperatorKind Opc, |
| 2856 | Expr *LHS, Expr *RHS) { |
| 2857 | return getSema().BuildBinOp(/*Scope=*/nullptr, OpLoc, Opc, LHS, RHS); |
| 2858 | } |
| 2859 | |
| 2860 | /// Build a new rewritten operator expression. |
| 2861 | /// |
| 2862 | /// By default, performs semantic analysis to build the new expression. |
| 2863 | /// Subclasses may override this routine to provide different behavior. |
| 2864 | ExprResult RebuildCXXRewrittenBinaryOperator( |
| 2865 | SourceLocation OpLoc, BinaryOperatorKind Opcode, |
| 2866 | const UnresolvedSetImpl &UnqualLookups, Expr *LHS, Expr *RHS) { |
| 2867 | return getSema().CreateOverloadedBinOp(OpLoc, Opcode, UnqualLookups, LHS, |
| 2868 | RHS, /*RequiresADL*/false); |
| 2869 | } |
| 2870 | |
| 2871 | /// Build a new conditional operator expression. |
| 2872 | /// |
| 2873 | /// By default, performs semantic analysis to build the new expression. |
| 2874 | /// Subclasses may override this routine to provide different behavior. |
| 2875 | ExprResult RebuildConditionalOperator(Expr *Cond, |
| 2876 | SourceLocation QuestionLoc, |
| 2877 | Expr *LHS, |
| 2878 | SourceLocation ColonLoc, |
| 2879 | Expr *RHS) { |
| 2880 | return getSema().ActOnConditionalOp(QuestionLoc, ColonLoc, Cond, |
| 2881 | LHS, RHS); |
| 2882 | } |
| 2883 | |
| 2884 | /// Build a new C-style cast expression. |
| 2885 | /// |
| 2886 | /// By default, performs semantic analysis to build the new expression. |
| 2887 | /// Subclasses may override this routine to provide different behavior. |
| 2888 | ExprResult RebuildCStyleCastExpr(SourceLocation LParenLoc, |
| 2889 | TypeSourceInfo *TInfo, |
| 2890 | SourceLocation RParenLoc, |
| 2891 | Expr *SubExpr) { |
| 2892 | return getSema().BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, |
| 2893 | SubExpr); |
| 2894 | } |
| 2895 | |
| 2896 | /// Build a new compound literal expression. |
| 2897 | /// |
| 2898 | /// By default, performs semantic analysis to build the new expression. |
| 2899 | /// Subclasses may override this routine to provide different behavior. |
| 2900 | ExprResult RebuildCompoundLiteralExpr(SourceLocation LParenLoc, |
| 2901 | TypeSourceInfo *TInfo, |
| 2902 | SourceLocation RParenLoc, |
| 2903 | Expr *Init) { |
| 2904 | return getSema().BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, |
| 2905 | Init); |
| 2906 | } |
| 2907 | |
| 2908 | /// Build a new extended vector element access expression. |
| 2909 | /// |
| 2910 | /// By default, performs semantic analysis to build the new expression. |
| 2911 | /// Subclasses may override this routine to provide different behavior. |
| 2912 | ExprResult RebuildExtVectorElementExpr(Expr *Base, SourceLocation OpLoc, |
| 2913 | bool IsArrow, |
| 2914 | SourceLocation AccessorLoc, |
| 2915 | IdentifierInfo &Accessor) { |
| 2916 | |
| 2917 | CXXScopeSpec SS; |
| 2918 | DeclarationNameInfo NameInfo(&Accessor, AccessorLoc); |
| 2919 | return getSema().BuildMemberReferenceExpr( |
| 2920 | Base, Base->getType(), OpLoc, IsArrow, SS, SourceLocation(), |
| 2921 | /*FirstQualifierInScope*/ nullptr, NameInfo, |
| 2922 | /* TemplateArgs */ nullptr, |
| 2923 | /*S*/ nullptr); |
| 2924 | } |
| 2925 | |
| 2926 | /// Build a new initializer list expression. |
| 2927 | /// |
| 2928 | /// By default, performs semantic analysis to build the new expression. |
| 2929 | /// Subclasses may override this routine to provide different behavior. |
| 2930 | ExprResult RebuildInitList(SourceLocation LBraceLoc, |
| 2931 | MultiExprArg Inits, |
| 2932 | SourceLocation RBraceLoc) { |
| 2933 | return SemaRef.BuildInitList(LBraceLoc, Inits, RBraceLoc); |
| 2934 | } |
| 2935 | |
| 2936 | /// Build a new designated initializer expression. |
| 2937 | /// |
| 2938 | /// By default, performs semantic analysis to build the new expression. |
| 2939 | /// Subclasses may override this routine to provide different behavior. |
| 2940 | ExprResult RebuildDesignatedInitExpr(Designation &Desig, |
| 2941 | MultiExprArg ArrayExprs, |
| 2942 | SourceLocation EqualOrColonLoc, |
| 2943 | bool GNUSyntax, |
| 2944 | Expr *Init) { |
| 2945 | ExprResult Result |
| 2946 | = SemaRef.ActOnDesignatedInitializer(Desig, EqualOrColonLoc, GNUSyntax, |
| 2947 | Init); |
| 2948 | if (Result.isInvalid()) |
| 2949 | return ExprError(); |
| 2950 | |
| 2951 | return Result; |
| 2952 | } |
| 2953 | |
| 2954 | /// Build a new value-initialized expression. |
| 2955 | /// |
| 2956 | /// By default, builds the implicit value initialization without performing |
| 2957 | /// any semantic analysis. Subclasses may override this routine to provide |
| 2958 | /// different behavior. |
| 2959 | ExprResult RebuildImplicitValueInitExpr(QualType T) { |
| 2960 | return new (SemaRef.Context) ImplicitValueInitExpr(T); |
| 2961 | } |
| 2962 | |
| 2963 | /// Build a new \c va_arg expression. |
| 2964 | /// |
| 2965 | /// By default, performs semantic analysis to build the new expression. |
| 2966 | /// Subclasses may override this routine to provide different behavior. |
| 2967 | ExprResult RebuildVAArgExpr(SourceLocation BuiltinLoc, |
| 2968 | Expr *SubExpr, TypeSourceInfo *TInfo, |
| 2969 | SourceLocation RParenLoc) { |
| 2970 | return getSema().BuildVAArgExpr(BuiltinLoc, |
| 2971 | SubExpr, TInfo, |
| 2972 | RParenLoc); |
| 2973 | } |
| 2974 | |
| 2975 | /// Build a new expression list in parentheses. |
| 2976 | /// |
| 2977 | /// By default, performs semantic analysis to build the new expression. |
| 2978 | /// Subclasses may override this routine to provide different behavior. |
| 2979 | ExprResult RebuildParenListExpr(SourceLocation LParenLoc, |
| 2980 | MultiExprArg SubExprs, |
| 2981 | SourceLocation RParenLoc) { |
| 2982 | return getSema().ActOnParenListExpr(LParenLoc, RParenLoc, SubExprs); |
| 2983 | } |
| 2984 | |
| 2985 | /// Build a new address-of-label expression. |
| 2986 | /// |
| 2987 | /// By default, performs semantic analysis, using the name of the label |
| 2988 | /// rather than attempting to map the label statement itself. |
| 2989 | /// Subclasses may override this routine to provide different behavior. |
| 2990 | ExprResult RebuildAddrLabelExpr(SourceLocation AmpAmpLoc, |
| 2991 | SourceLocation LabelLoc, LabelDecl *Label) { |
| 2992 | return getSema().ActOnAddrLabel(AmpAmpLoc, LabelLoc, Label); |
| 2993 | } |
| 2994 | |
| 2995 | /// Build a new GNU statement expression. |
| 2996 | /// |
| 2997 | /// By default, performs semantic analysis to build the new expression. |
| 2998 | /// Subclasses may override this routine to provide different behavior. |
| 2999 | ExprResult RebuildStmtExpr(SourceLocation LParenLoc, Stmt *SubStmt, |
| 3000 | SourceLocation RParenLoc, unsigned TemplateDepth) { |
| 3001 | return getSema().BuildStmtExpr(LParenLoc, SubStmt, RParenLoc, |
| 3002 | TemplateDepth); |
| 3003 | } |
| 3004 | |
| 3005 | /// Build a new __builtin_choose_expr expression. |
| 3006 | /// |
| 3007 | /// By default, performs semantic analysis to build the new expression. |
| 3008 | /// Subclasses may override this routine to provide different behavior. |
| 3009 | ExprResult RebuildChooseExpr(SourceLocation BuiltinLoc, |
| 3010 | Expr *Cond, Expr *LHS, Expr *RHS, |
| 3011 | SourceLocation RParenLoc) { |
| 3012 | return SemaRef.ActOnChooseExpr(BuiltinLoc, |
| 3013 | Cond, LHS, RHS, |
| 3014 | RParenLoc); |
| 3015 | } |
| 3016 | |
| 3017 | /// Build a new generic selection expression. |
| 3018 | /// |
| 3019 | /// By default, performs semantic analysis to build the new expression. |
| 3020 | /// Subclasses may override this routine to provide different behavior. |
| 3021 | ExprResult RebuildGenericSelectionExpr(SourceLocation KeyLoc, |
| 3022 | SourceLocation DefaultLoc, |
| 3023 | SourceLocation RParenLoc, |
| 3024 | Expr *ControllingExpr, |
| 3025 | ArrayRef<TypeSourceInfo *> Types, |
| 3026 | ArrayRef<Expr *> Exprs) { |
| 3027 | return getSema().CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc, |
| 3028 | ControllingExpr, Types, Exprs); |
| 3029 | } |
| 3030 | |
| 3031 | /// Build a new overloaded operator call expression. |
| 3032 | /// |
| 3033 | /// By default, performs semantic analysis to build the new expression. |
| 3034 | /// The semantic analysis provides the behavior of template instantiation, |
| 3035 | /// copying with transformations that turn what looks like an overloaded |
| 3036 | /// operator call into a use of a builtin operator, performing |
| 3037 | /// argument-dependent lookup, etc. Subclasses may override this routine to |
| 3038 | /// provide different behavior. |
| 3039 | ExprResult RebuildCXXOperatorCallExpr(OverloadedOperatorKind Op, |
| 3040 | SourceLocation OpLoc, |
| 3041 | Expr *Callee, |
| 3042 | Expr *First, |
| 3043 | Expr *Second); |
| 3044 | |
| 3045 | /// Build a new C++ "named" cast expression, such as static_cast or |
| 3046 | /// reinterpret_cast. |
| 3047 | /// |
| 3048 | /// By default, this routine dispatches to one of the more-specific routines |
| 3049 | /// for a particular named case, e.g., RebuildCXXStaticCastExpr(). |
| 3050 | /// Subclasses may override this routine to provide different behavior. |
| 3051 | ExprResult RebuildCXXNamedCastExpr(SourceLocation OpLoc, |
| 3052 | Stmt::StmtClass Class, |
| 3053 | SourceLocation LAngleLoc, |
| 3054 | TypeSourceInfo *TInfo, |
| 3055 | SourceLocation RAngleLoc, |
| 3056 | SourceLocation LParenLoc, |
| 3057 | Expr *SubExpr, |
| 3058 | SourceLocation RParenLoc) { |
| 3059 | switch (Class) { |
| 3060 | case Stmt::CXXStaticCastExprClass: |
| 3061 | return getDerived().RebuildCXXStaticCastExpr(OpLoc, LAngleLoc, TInfo, |
| 3062 | RAngleLoc, LParenLoc, |
| 3063 | SubExpr, RParenLoc); |
| 3064 | |
| 3065 | case Stmt::CXXDynamicCastExprClass: |
| 3066 | return getDerived().RebuildCXXDynamicCastExpr(OpLoc, LAngleLoc, TInfo, |
| 3067 | RAngleLoc, LParenLoc, |
| 3068 | SubExpr, RParenLoc); |
| 3069 | |
| 3070 | case Stmt::CXXReinterpretCastExprClass: |
| 3071 | return getDerived().RebuildCXXReinterpretCastExpr(OpLoc, LAngleLoc, TInfo, |
| 3072 | RAngleLoc, LParenLoc, |
| 3073 | SubExpr, |
| 3074 | RParenLoc); |
| 3075 | |
| 3076 | case Stmt::CXXConstCastExprClass: |
| 3077 | return getDerived().RebuildCXXConstCastExpr(OpLoc, LAngleLoc, TInfo, |
| 3078 | RAngleLoc, LParenLoc, |
| 3079 | SubExpr, RParenLoc); |
| 3080 | |
| 3081 | case Stmt::CXXAddrspaceCastExprClass: |
| 3082 | return getDerived().RebuildCXXAddrspaceCastExpr( |
| 3083 | OpLoc, LAngleLoc, TInfo, RAngleLoc, LParenLoc, SubExpr, RParenLoc); |
| 3084 | |
| 3085 | default: |
| 3086 | llvm_unreachable("Invalid C++ named cast")::llvm::llvm_unreachable_internal("Invalid C++ named cast", "clang/lib/Sema/TreeTransform.h" , 3086); |
| 3087 | } |
| 3088 | } |
| 3089 | |
| 3090 | /// Build a new C++ static_cast expression. |
| 3091 | /// |
| 3092 | /// By default, performs semantic analysis to build the new expression. |
| 3093 | /// Subclasses may override this routine to provide different behavior. |
| 3094 | ExprResult RebuildCXXStaticCastExpr(SourceLocation OpLoc, |
| 3095 | SourceLocation LAngleLoc, |
| 3096 | TypeSourceInfo *TInfo, |
| 3097 | SourceLocation RAngleLoc, |
| 3098 | SourceLocation LParenLoc, |
| 3099 | Expr *SubExpr, |
| 3100 | SourceLocation RParenLoc) { |
| 3101 | return getSema().BuildCXXNamedCast(OpLoc, tok::kw_static_cast, |
| 3102 | TInfo, SubExpr, |
| 3103 | SourceRange(LAngleLoc, RAngleLoc), |
| 3104 | SourceRange(LParenLoc, RParenLoc)); |
| 3105 | } |
| 3106 | |
| 3107 | /// Build a new C++ dynamic_cast expression. |
| 3108 | /// |
| 3109 | /// By default, performs semantic analysis to build the new expression. |
| 3110 | /// Subclasses may override this routine to provide different behavior. |
| 3111 | ExprResult RebuildCXXDynamicCastExpr(SourceLocation OpLoc, |
| 3112 | SourceLocation LAngleLoc, |
| 3113 | TypeSourceInfo *TInfo, |
| 3114 | SourceLocation RAngleLoc, |
| 3115 | SourceLocation LParenLoc, |
| 3116 | Expr *SubExpr, |
| 3117 | SourceLocation RParenLoc) { |
| 3118 | return getSema().BuildCXXNamedCast(OpLoc, tok::kw_dynamic_cast, |
| 3119 | TInfo, SubExpr, |
| 3120 | SourceRange(LAngleLoc, RAngleLoc), |
| 3121 | SourceRange(LParenLoc, RParenLoc)); |
| 3122 | } |
| 3123 | |
| 3124 | /// Build a new C++ reinterpret_cast expression. |
| 3125 | /// |
| 3126 | /// By default, performs semantic analysis to build the new expression. |
| 3127 | /// Subclasses may override this routine to provide different behavior. |
| 3128 | ExprResult RebuildCXXReinterpretCastExpr(SourceLocation OpLoc, |
| 3129 | SourceLocation LAngleLoc, |
| 3130 | TypeSourceInfo *TInfo, |
| 3131 | SourceLocation RAngleLoc, |
| 3132 | SourceLocation LParenLoc, |
| 3133 | Expr *SubExpr, |
| 3134 | SourceLocation RParenLoc) { |
| 3135 | return getSema().BuildCXXNamedCast(OpLoc, tok::kw_reinterpret_cast, |
| 3136 | TInfo, SubExpr, |
| 3137 | SourceRange(LAngleLoc, RAngleLoc), |
| 3138 | SourceRange(LParenLoc, RParenLoc)); |
| 3139 | } |
| 3140 | |
| 3141 | /// Build a new C++ const_cast expression. |
| 3142 | /// |
| 3143 | /// By default, performs semantic analysis to build the new expression. |
| 3144 | /// Subclasses may override this routine to provide different behavior. |
| 3145 | ExprResult RebuildCXXConstCastExpr(SourceLocation OpLoc, |
| 3146 | SourceLocation LAngleLoc, |
| 3147 | TypeSourceInfo *TInfo, |
| 3148 | SourceLocation RAngleLoc, |
| 3149 | SourceLocation LParenLoc, |
| 3150 | Expr *SubExpr, |
| 3151 | SourceLocation RParenLoc) { |
| 3152 | return getSema().BuildCXXNamedCast(OpLoc, tok::kw_const_cast, |
| 3153 | TInfo, SubExpr, |
| 3154 | SourceRange(LAngleLoc, RAngleLoc), |
| 3155 | SourceRange(LParenLoc, RParenLoc)); |
| 3156 | } |
| 3157 | |
| 3158 | ExprResult |
| 3159 | RebuildCXXAddrspaceCastExpr(SourceLocation OpLoc, SourceLocation LAngleLoc, |
| 3160 | TypeSourceInfo *TInfo, SourceLocation RAngleLoc, |
| 3161 | SourceLocation LParenLoc, Expr *SubExpr, |
| 3162 | SourceLocation RParenLoc) { |
| 3163 | return getSema().BuildCXXNamedCast( |
| 3164 | OpLoc, tok::kw_addrspace_cast, TInfo, SubExpr, |
| 3165 | SourceRange(LAngleLoc, RAngleLoc), SourceRange(LParenLoc, RParenLoc)); |
| 3166 | } |
| 3167 | |
| 3168 | /// Build a new C++ functional-style cast expression. |
| 3169 | /// |
| 3170 | /// By default, performs semantic analysis to build the new expression. |
| 3171 | /// Subclasses may override this routine to provide different behavior. |
| 3172 | ExprResult RebuildCXXFunctionalCastExpr(TypeSourceInfo *TInfo, |
| 3173 | SourceLocation LParenLoc, |
| 3174 | Expr *Sub, |
| 3175 | SourceLocation RParenLoc, |
| 3176 | bool ListInitialization) { |
| 3177 | // If Sub is a ParenListExpr, then Sub is the syntatic form of a |
| 3178 | // CXXParenListInitExpr. Pass its expanded arguments so that the |
| 3179 | // CXXParenListInitExpr can be rebuilt. |
| 3180 | if (auto *PLE = dyn_cast<ParenListExpr>(Sub)) |
| 3181 | return getSema().BuildCXXTypeConstructExpr( |
| 3182 | TInfo, LParenLoc, MultiExprArg(PLE->getExprs(), PLE->getNumExprs()), |
| 3183 | RParenLoc, ListInitialization); |
| 3184 | return getSema().BuildCXXTypeConstructExpr(TInfo, LParenLoc, |
| 3185 | MultiExprArg(&Sub, 1), RParenLoc, |
| 3186 | ListInitialization); |
| 3187 | } |
| 3188 | |
| 3189 | /// Build a new C++ __builtin_bit_cast expression. |
| 3190 | /// |
| 3191 | /// By default, performs semantic analysis to build the new expression. |
| 3192 | /// Subclasses may override this routine to provide different behavior. |
| 3193 | ExprResult RebuildBuiltinBitCastExpr(SourceLocation KWLoc, |
| 3194 | TypeSourceInfo *TSI, Expr *Sub, |
| 3195 | SourceLocation RParenLoc) { |
| 3196 | return getSema().BuildBuiltinBitCastExpr(KWLoc, TSI, Sub, RParenLoc); |
| 3197 | } |
| 3198 | |
| 3199 | /// Build a new C++ typeid(type) expression. |
| 3200 | /// |
| 3201 | /// By default, performs semantic analysis to build the new expression. |
| 3202 | /// Subclasses may override this routine to provide different behavior. |
| 3203 | ExprResult RebuildCXXTypeidExpr(QualType TypeInfoType, |
| 3204 | SourceLocation TypeidLoc, |
| 3205 | TypeSourceInfo *Operand, |
| 3206 | SourceLocation RParenLoc) { |
| 3207 | return getSema().BuildCXXTypeId(TypeInfoType, TypeidLoc, Operand, |
| 3208 | RParenLoc); |
| 3209 | } |
| 3210 | |
| 3211 | |
| 3212 | /// Build a new C++ typeid(expr) expression. |
| 3213 | /// |
| 3214 | /// By default, performs semantic analysis to build the new expression. |
| 3215 | /// Subclasses may override this routine to provide different behavior. |
| 3216 | ExprResult RebuildCXXTypeidExpr(QualType TypeInfoType, |
| 3217 | SourceLocation TypeidLoc, |
| 3218 | Expr *Operand, |
| 3219 | SourceLocation RParenLoc) { |
| 3220 | return getSema().BuildCXXTypeId(TypeInfoType, TypeidLoc, Operand, |
| 3221 | RParenLoc); |
| 3222 | } |
| 3223 | |
| 3224 | /// Build a new C++ __uuidof(type) expression. |
| 3225 | /// |
| 3226 | /// By default, performs semantic analysis to build the new expression. |
| 3227 | /// Subclasses may override this routine to provide different behavior. |
| 3228 | ExprResult RebuildCXXUuidofExpr(QualType Type, SourceLocation TypeidLoc, |
| 3229 | TypeSourceInfo *Operand, |
| 3230 | SourceLocation RParenLoc) { |
| 3231 | return getSema().BuildCXXUuidof(Type, TypeidLoc, Operand, RParenLoc); |
| 3232 | } |
| 3233 | |
| 3234 | /// Build a new C++ __uuidof(expr) expression. |
| 3235 | /// |
| 3236 | /// By default, performs semantic analysis to build the new expression. |
| 3237 | /// Subclasses may override this routine to provide different behavior. |
| 3238 | ExprResult RebuildCXXUuidofExpr(QualType Type, SourceLocation TypeidLoc, |
| 3239 | Expr *Operand, SourceLocation RParenLoc) { |
| 3240 | return getSema().BuildCXXUuidof(Type, TypeidLoc, Operand, RParenLoc); |
| 3241 | } |
| 3242 | |
| 3243 | /// Build a new C++ "this" expression. |
| 3244 | /// |
| 3245 | /// By default, builds a new "this" expression without performing any |
| 3246 | /// semantic analysis. Subclasses may override this routine to provide |
| 3247 | /// different behavior. |
| 3248 | ExprResult RebuildCXXThisExpr(SourceLocation ThisLoc, |
| 3249 | QualType ThisType, |
| 3250 | bool isImplicit) { |
| 3251 | return getSema().BuildCXXThisExpr(ThisLoc, ThisType, isImplicit); |
| 3252 | } |
| 3253 | |
| 3254 | /// Build a new C++ throw expression. |
| 3255 | /// |
| 3256 | /// By default, performs semantic analysis to build the new expression. |
| 3257 | /// Subclasses may override this routine to provide different behavior. |
| 3258 | ExprResult RebuildCXXThrowExpr(SourceLocation ThrowLoc, Expr *Sub, |
| 3259 | bool IsThrownVariableInScope) { |
| 3260 | return getSema().BuildCXXThrow(ThrowLoc, Sub, IsThrownVariableInScope); |
| 3261 | } |
| 3262 | |
| 3263 | /// Build a new C++ default-argument expression. |
| 3264 | /// |
| 3265 | /// By default, builds a new default-argument expression, which does not |
| 3266 | /// require any semantic analysis. Subclasses may override this routine to |
| 3267 | /// provide different behavior. |
| 3268 | ExprResult RebuildCXXDefaultArgExpr(SourceLocation Loc, ParmVarDecl *Param, |
| 3269 | Expr *RewrittenExpr) { |
| 3270 | return CXXDefaultArgExpr::Create(getSema().Context, Loc, Param, |
| 3271 | RewrittenExpr, getSema().CurContext); |
| 3272 | } |
| 3273 | |
| 3274 | /// Build a new C++11 default-initialization expression. |
| 3275 | /// |
| 3276 | /// By default, builds a new default field initialization expression, which |
| 3277 | /// does not require any semantic analysis. Subclasses may override this |
| 3278 | /// routine to provide different behavior. |
| 3279 | ExprResult RebuildCXXDefaultInitExpr(SourceLocation Loc, |
| 3280 | FieldDecl *Field) { |
| 3281 | return getSema().BuildCXXDefaultInitExpr(Loc, Field); |
| 3282 | } |
| 3283 | |
| 3284 | /// Build a new C++ zero-initialization expression. |
| 3285 | /// |
| 3286 | /// By default, performs semantic analysis to build the new expression. |
| 3287 | /// Subclasses may override this routine to provide different behavior. |
| 3288 | ExprResult RebuildCXXScalarValueInitExpr(TypeSourceInfo *TSInfo, |
| 3289 | SourceLocation LParenLoc, |
| 3290 | SourceLocation RParenLoc) { |
| 3291 | return getSema().BuildCXXTypeConstructExpr(TSInfo, LParenLoc, std::nullopt, |
| 3292 | RParenLoc, |
| 3293 | /*ListInitialization=*/false); |
| 3294 | } |
| 3295 | |
| 3296 | /// Build a new C++ "new" expression. |
| 3297 | /// |
| 3298 | /// By default, performs semantic analysis to build the new expression. |
| 3299 | /// Subclasses may override this routine to provide different behavior. |
| 3300 | ExprResult RebuildCXXNewExpr(SourceLocation StartLoc, bool UseGlobal, |
| 3301 | SourceLocation PlacementLParen, |
| 3302 | MultiExprArg PlacementArgs, |
| 3303 | SourceLocation PlacementRParen, |
| 3304 | SourceRange TypeIdParens, QualType AllocatedType, |
| 3305 | TypeSourceInfo *AllocatedTypeInfo, |
| 3306 | std::optional<Expr *> ArraySize, |
| 3307 | SourceRange DirectInitRange, Expr *Initializer) { |
| 3308 | return getSema().BuildCXXNew(StartLoc, UseGlobal, |
| 3309 | PlacementLParen, |
| 3310 | PlacementArgs, |
| 3311 | PlacementRParen, |
| 3312 | TypeIdParens, |
| 3313 | AllocatedType, |
| 3314 | AllocatedTypeInfo, |
| 3315 | ArraySize, |
| 3316 | DirectInitRange, |
| 3317 | Initializer); |
| 3318 | } |
| 3319 | |
| 3320 | /// Build a new C++ "delete" expression. |
| 3321 | /// |
| 3322 | /// By default, performs semantic analysis to build the new expression. |
| 3323 | /// Subclasses may override this routine to provide different behavior. |
| 3324 | ExprResult RebuildCXXDeleteExpr(SourceLocation StartLoc, |
| 3325 | bool IsGlobalDelete, |
| 3326 | bool IsArrayForm, |
| 3327 | Expr *Operand) { |
| 3328 | return getSema().ActOnCXXDelete(StartLoc, IsGlobalDelete, IsArrayForm, |
| 3329 | Operand); |
| 3330 | } |
| 3331 | |
| 3332 | /// Build a new type trait expression. |
| 3333 | /// |
| 3334 | /// By default, performs semantic analysis to build the new expression. |
| 3335 | /// Subclasses may override this routine to provide different behavior. |
| 3336 | ExprResult RebuildTypeTrait(TypeTrait Trait, |
| 3337 | SourceLocation StartLoc, |
| 3338 | ArrayRef<TypeSourceInfo *> Args, |
| 3339 | SourceLocation RParenLoc) { |
| 3340 | return getSema().BuildTypeTrait(Trait, StartLoc, Args, RParenLoc); |
| 3341 | } |
| 3342 | |
| 3343 | /// Build a new array type trait expression. |
| 3344 | /// |
| 3345 | /// By default, performs semantic analysis to build the new expression. |
| 3346 | /// Subclasses may override this routine to provide different behavior. |
| 3347 | ExprResult RebuildArrayTypeTrait(ArrayTypeTrait Trait, |
| 3348 | SourceLocation StartLoc, |
| 3349 | TypeSourceInfo *TSInfo, |
| 3350 | Expr *DimExpr, |
| 3351 | SourceLocation RParenLoc) { |
| 3352 | return getSema().BuildArrayTypeTrait(Trait, StartLoc, TSInfo, DimExpr, RParenLoc); |
| 3353 | } |
| 3354 | |
| 3355 | /// Build a new expression trait expression. |
| 3356 | /// |
| 3357 | /// By default, performs semantic analysis to build the new expression. |
| 3358 | /// Subclasses may override this routine to provide different behavior. |
| 3359 | ExprResult RebuildExpressionTrait(ExpressionTrait Trait, |
| 3360 | SourceLocation StartLoc, |
| 3361 | Expr *Queried, |
| 3362 | SourceLocation RParenLoc) { |
| 3363 | return getSema().BuildExpressionTrait(Trait, StartLoc, Queried, RParenLoc); |
| 3364 | } |
| 3365 | |
| 3366 | /// Build a new (previously unresolved) declaration reference |
| 3367 | /// expression. |
| 3368 | /// |
| 3369 | /// By default, performs semantic analysis to build the new expression. |
| 3370 | /// Subclasses may override this routine to provide different behavior. |
| 3371 | ExprResult RebuildDependentScopeDeclRefExpr( |
| 3372 | NestedNameSpecifierLoc QualifierLoc, |
| 3373 | SourceLocation TemplateKWLoc, |
| 3374 | const DeclarationNameInfo &NameInfo, |
| 3375 | const TemplateArgumentListInfo *TemplateArgs, |
| 3376 | bool IsAddressOfOperand, |
| 3377 | TypeSourceInfo **RecoveryTSI) { |
| 3378 | CXXScopeSpec SS; |
| 3379 | SS.Adopt(QualifierLoc); |
| 3380 | |
| 3381 | if (TemplateArgs || TemplateKWLoc.isValid()) |
| 3382 | return getSema().BuildQualifiedTemplateIdExpr(SS, TemplateKWLoc, NameInfo, |
| 3383 | TemplateArgs); |
| 3384 | |
| 3385 | return getSema().BuildQualifiedDeclarationNameExpr( |
| 3386 | SS, NameInfo, IsAddressOfOperand, /*S*/nullptr, RecoveryTSI); |
| 3387 | } |
| 3388 | |
| 3389 | /// Build a new template-id expression. |
| 3390 | /// |
| 3391 | /// By default, performs semantic analysis to build the new expression. |
| 3392 | /// Subclasses may override this routine to provide different behavior. |
| 3393 | ExprResult RebuildTemplateIdExpr(const CXXScopeSpec &SS, |
| 3394 | SourceLocation TemplateKWLoc, |
| 3395 | LookupResult &R, |
| 3396 | bool RequiresADL, |
| 3397 | const TemplateArgumentListInfo *TemplateArgs) { |
| 3398 | return getSema().BuildTemplateIdExpr(SS, TemplateKWLoc, R, RequiresADL, |
| 3399 | TemplateArgs); |
| 3400 | } |
| 3401 | |
| 3402 | /// Build a new object-construction expression. |
| 3403 | /// |
| 3404 | /// By default, performs semantic analysis to build the new expression. |
| 3405 | /// Subclasses may override this routine to provide different behavior. |
| 3406 | ExprResult RebuildCXXConstructExpr(QualType T, |
| 3407 | SourceLocation Loc, |
| 3408 | CXXConstructorDecl *Constructor, |
| 3409 | bool IsElidable, |
| 3410 | MultiExprArg Args, |
| 3411 | bool HadMultipleCandidates, |
| 3412 | bool ListInitialization, |
| 3413 | bool StdInitListInitialization, |
| 3414 | bool RequiresZeroInit, |
| 3415 | CXXConstructExpr::ConstructionKind ConstructKind, |
| 3416 | SourceRange ParenRange) { |
| 3417 | // Reconstruct the constructor we originally found, which might be |
| 3418 | // different if this is a call to an inherited constructor. |
| 3419 | CXXConstructorDecl *FoundCtor = Constructor; |
| 3420 | if (Constructor->isInheritingConstructor()) |
| 3421 | FoundCtor = Constructor->getInheritedConstructor().getConstructor(); |
| 3422 | |
| 3423 | SmallVector<Expr *, 8> ConvertedArgs; |
| 3424 | if (getSema().CompleteConstructorCall(FoundCtor, T, Args, Loc, |
| 3425 | ConvertedArgs)) |
| 3426 | return ExprError(); |
| 3427 | |
| 3428 | return getSema().BuildCXXConstructExpr(Loc, T, Constructor, |
| 3429 | IsElidable, |
| 3430 | ConvertedArgs, |
| 3431 | HadMultipleCandidates, |
| 3432 | ListInitialization, |
| 3433 | StdInitListInitialization, |
| 3434 | RequiresZeroInit, ConstructKind, |
| 3435 | ParenRange); |
| 3436 | } |
| 3437 | |
| 3438 | /// Build a new implicit construction via inherited constructor |
| 3439 | /// expression. |
| 3440 | ExprResult RebuildCXXInheritedCtorInitExpr(QualType T, SourceLocation Loc, |
| 3441 | CXXConstructorDecl *Constructor, |
| 3442 | bool ConstructsVBase, |
| 3443 | bool InheritedFromVBase) { |
| 3444 | return new (getSema().Context) CXXInheritedCtorInitExpr( |
| 3445 | Loc, T, Constructor, ConstructsVBase, InheritedFromVBase); |
| 3446 | } |
| 3447 | |
| 3448 | /// Build a new object-construction expression. |
| 3449 | /// |
| 3450 | /// By default, performs semantic analysis to build the new expression. |
| 3451 | /// Subclasses may override this routine to provide different behavior. |
| 3452 | ExprResult RebuildCXXTemporaryObjectExpr(TypeSourceInfo *TSInfo, |
| 3453 | SourceLocation LParenOrBraceLoc, |
| 3454 | MultiExprArg Args, |
| 3455 | SourceLocation RParenOrBraceLoc, |
| 3456 | bool ListInitialization) { |
| 3457 | return getSema().BuildCXXTypeConstructExpr( |
| 3458 | TSInfo, LParenOrBraceLoc, Args, RParenOrBraceLoc, ListInitialization); |
| 3459 | } |
| 3460 | |
| 3461 | /// Build a new object-construction expression. |
| 3462 | /// |
| 3463 | /// By default, performs semantic analysis to build the new expression. |
| 3464 | /// Subclasses may override this routine to provide different behavior. |
| 3465 | ExprResult RebuildCXXUnresolvedConstructExpr(TypeSourceInfo *TSInfo, |
| 3466 | SourceLocation LParenLoc, |
| 3467 | MultiExprArg Args, |
| 3468 | SourceLocation RParenLoc, |
| 3469 | bool ListInitialization) { |
| 3470 | return getSema().BuildCXXTypeConstructExpr(TSInfo, LParenLoc, Args, |
| 3471 | RParenLoc, ListInitialization); |
| 3472 | } |
| 3473 | |
| 3474 | /// Build a new member reference expression. |
| 3475 | /// |
| 3476 | /// By default, performs semantic analysis to build the new expression. |
| 3477 | /// Subclasses may override this routine to provide different behavior. |
| 3478 | ExprResult RebuildCXXDependentScopeMemberExpr(Expr *BaseE, |
| 3479 | QualType BaseType, |
| 3480 | bool IsArrow, |
| 3481 | SourceLocation OperatorLoc, |
| 3482 | NestedNameSpecifierLoc QualifierLoc, |
| 3483 | SourceLocation TemplateKWLoc, |
| 3484 | NamedDecl *FirstQualifierInScope, |
| 3485 | const DeclarationNameInfo &MemberNameInfo, |
| 3486 | const TemplateArgumentListInfo *TemplateArgs) { |
| 3487 | CXXScopeSpec SS; |
| 3488 | SS.Adopt(QualifierLoc); |
| 3489 | |
| 3490 | return SemaRef.BuildMemberReferenceExpr(BaseE, BaseType, |
| 3491 | OperatorLoc, IsArrow, |
| 3492 | SS, TemplateKWLoc, |
| 3493 | FirstQualifierInScope, |
| 3494 | MemberNameInfo, |
| 3495 | TemplateArgs, /*S*/nullptr); |
| 3496 | } |
| 3497 | |
| 3498 | /// Build a new member reference expression. |
| 3499 | /// |
| 3500 | /// By default, performs semantic analysis to build the new expression. |
| 3501 | /// Subclasses may override this routine to provide different behavior. |
| 3502 | ExprResult RebuildUnresolvedMemberExpr(Expr *BaseE, QualType BaseType, |
| 3503 | SourceLocation OperatorLoc, |
| 3504 | bool IsArrow, |
| 3505 | NestedNameSpecifierLoc QualifierLoc, |
| 3506 | SourceLocation TemplateKWLoc, |
| 3507 | NamedDecl *FirstQualifierInScope, |
| 3508 | LookupResult &R, |
| 3509 | const TemplateArgumentListInfo *TemplateArgs) { |
| 3510 | CXXScopeSpec SS; |
| 3511 | SS.Adopt(QualifierLoc); |
| 3512 | |
| 3513 | return SemaRef.BuildMemberReferenceExpr(BaseE, BaseType, |
| 3514 | OperatorLoc, IsArrow, |
| 3515 | SS, TemplateKWLoc, |
| 3516 | FirstQualifierInScope, |
| 3517 | R, TemplateArgs, /*S*/nullptr); |
| 3518 | } |
| 3519 | |
| 3520 | /// Build a new noexcept expression. |
| 3521 | /// |
| 3522 | /// By default, performs semantic analysis to build the new expression. |
| 3523 | /// Subclasses may override this routine to provide different behavior. |
| 3524 | ExprResult RebuildCXXNoexceptExpr(SourceRange Range, Expr *Arg) { |
| 3525 | return SemaRef.BuildCXXNoexceptExpr(Range.getBegin(), Arg, Range.getEnd()); |
| 3526 | } |
| 3527 | |
| 3528 | /// Build a new expression to compute the length of a parameter pack. |
| 3529 | ExprResult RebuildSizeOfPackExpr(SourceLocation OperatorLoc, NamedDecl *Pack, |
| 3530 | SourceLocation PackLoc, |
| 3531 | SourceLocation RParenLoc, |
| 3532 | std::optional<unsigned> Length, |
| 3533 | ArrayRef<TemplateArgument> PartialArgs) { |
| 3534 | return SizeOfPackExpr::Create(SemaRef.Context, OperatorLoc, Pack, PackLoc, |
| 3535 | RParenLoc, Length, PartialArgs); |
| 3536 | } |
| 3537 | |
| 3538 | /// Build a new expression representing a call to a source location |
| 3539 | /// builtin. |
| 3540 | /// |
| 3541 | /// By default, performs semantic analysis to build the new expression. |
| 3542 | /// Subclasses may override this routine to provide different behavior. |
| 3543 | ExprResult RebuildSourceLocExpr(SourceLocExpr::IdentKind Kind, |
| 3544 | QualType ResultTy, SourceLocation BuiltinLoc, |
| 3545 | SourceLocation RPLoc, |
| 3546 | DeclContext *ParentContext) { |
| 3547 | return getSema().BuildSourceLocExpr(Kind, ResultTy, BuiltinLoc, RPLoc, |
| 3548 | ParentContext); |
| 3549 | } |
| 3550 | |
| 3551 | /// Build a new Objective-C boxed expression. |
| 3552 | /// |
| 3553 | /// By default, performs semantic analysis to build the new expression. |
| 3554 | /// Subclasses may override this routine to provide different behavior. |
| 3555 | ExprResult RebuildConceptSpecializationExpr(NestedNameSpecifierLoc NNS, |
| 3556 | SourceLocation TemplateKWLoc, DeclarationNameInfo ConceptNameInfo, |
| 3557 | NamedDecl *FoundDecl, ConceptDecl *NamedConcept, |
| 3558 | TemplateArgumentListInfo *TALI) { |
| 3559 | CXXScopeSpec SS; |
| 3560 | SS.Adopt(NNS); |
| 3561 | ExprResult Result = getSema().CheckConceptTemplateId(SS, TemplateKWLoc, |
| 3562 | ConceptNameInfo, |
| 3563 | FoundDecl, |
| 3564 | NamedConcept, TALI); |
| 3565 | if (Result.isInvalid()) |
| 3566 | return ExprError(); |
| 3567 | return Result; |
| 3568 | } |
| 3569 | |
| 3570 | /// \brief Build a new requires expression. |
| 3571 | /// |
| 3572 | /// By default, performs semantic analysis to build the new expression. |
| 3573 | /// Subclasses may override this routine to provide different behavior. |
| 3574 | ExprResult RebuildRequiresExpr(SourceLocation RequiresKWLoc, |
| 3575 | RequiresExprBodyDecl *Body, |
| 3576 | ArrayRef<ParmVarDecl *> LocalParameters, |
| 3577 | ArrayRef<concepts::Requirement *> Requirements, |
| 3578 | SourceLocation ClosingBraceLoc) { |
| 3579 | return RequiresExpr::Create(SemaRef.Context, RequiresKWLoc, Body, |
| 3580 | LocalParameters, Requirements, ClosingBraceLoc); |
| 3581 | } |
| 3582 | |
| 3583 | concepts::TypeRequirement * |
| 3584 | RebuildTypeRequirement( |
| 3585 | concepts::Requirement::SubstitutionDiagnostic *SubstDiag) { |
| 3586 | return SemaRef.BuildTypeRequirement(SubstDiag); |
| 3587 | } |
| 3588 | |
| 3589 | concepts::TypeRequirement *RebuildTypeRequirement(TypeSourceInfo *T) { |
| 3590 | return SemaRef.BuildTypeRequirement(T); |
| 3591 | } |
| 3592 | |
| 3593 | concepts::ExprRequirement * |
| 3594 | RebuildExprRequirement( |
| 3595 | concepts::Requirement::SubstitutionDiagnostic *SubstDiag, bool IsSimple, |
| 3596 | SourceLocation NoexceptLoc, |
| 3597 | concepts::ExprRequirement::ReturnTypeRequirement Ret) { |
| 3598 | return SemaRef.BuildExprRequirement(SubstDiag, IsSimple, NoexceptLoc, |
| 3599 | std::move(Ret)); |
| 3600 | } |
| 3601 | |
| 3602 | concepts::ExprRequirement * |
| 3603 | RebuildExprRequirement(Expr *E, bool IsSimple, SourceLocation NoexceptLoc, |
| 3604 | concepts::ExprRequirement::ReturnTypeRequirement Ret) { |
| 3605 | return SemaRef.BuildExprRequirement(E, IsSimple, NoexceptLoc, |
| 3606 | std::move(Ret)); |
| 3607 | } |
| 3608 | |
| 3609 | concepts::NestedRequirement * |
| 3610 | RebuildNestedRequirement(StringRef InvalidConstraintEntity, |
| 3611 | const ASTConstraintSatisfaction &Satisfaction) { |
| 3612 | return SemaRef.BuildNestedRequirement(InvalidConstraintEntity, |
| 3613 | Satisfaction); |
| 3614 | } |
| 3615 | |
| 3616 | concepts::NestedRequirement *RebuildNestedRequirement(Expr *Constraint) { |
| 3617 | return SemaRef.BuildNestedRequirement(Constraint); |
| 3618 | } |
| 3619 | |
| 3620 | /// \brief Build a new Objective-C boxed expression. |
| 3621 | /// |
| 3622 | /// By default, performs semantic analysis to build the new expression. |
| 3623 | /// Subclasses may override this routine to provide different behavior. |
| 3624 | ExprResult RebuildObjCBoxedExpr(SourceRange SR, Expr *ValueExpr) { |
| 3625 | return getSema().BuildObjCBoxedExpr(SR, ValueExpr); |
| 3626 | } |
| 3627 | |
| 3628 | /// Build a new Objective-C array literal. |
| 3629 | /// |
| 3630 | /// By default, performs semantic analysis to build the new expression. |
| 3631 | /// Subclasses may override this routine to provide different behavior. |
| 3632 | ExprResult RebuildObjCArrayLiteral(SourceRange Range, |
| 3633 | Expr **Elements, unsigned NumElements) { |
| 3634 | return getSema().BuildObjCArrayLiteral(Range, |
| 3635 | MultiExprArg(Elements, NumElements)); |
| 3636 | } |
| 3637 | |
| 3638 | ExprResult RebuildObjCSubscriptRefExpr(SourceLocation RB, |
| 3639 | Expr *Base, Expr *Key, |
| 3640 | ObjCMethodDecl *getterMethod, |
| 3641 | ObjCMethodDecl *setterMethod) { |
| 3642 | return getSema().BuildObjCSubscriptExpression(RB, Base, Key, |
| 3643 | getterMethod, setterMethod); |
| 3644 | } |
| 3645 | |
| 3646 | /// Build a new Objective-C dictionary literal. |
| 3647 | /// |
| 3648 | /// By default, performs semantic analysis to build the new expression. |
| 3649 | /// Subclasses may override this routine to provide different behavior. |
| 3650 | ExprResult RebuildObjCDictionaryLiteral(SourceRange Range, |
| 3651 | MutableArrayRef<ObjCDictionaryElement> Elements) { |
| 3652 | return getSema().BuildObjCDictionaryLiteral(Range, Elements); |
| 3653 | } |
| 3654 | |
| 3655 | /// Build a new Objective-C \@encode expression. |
| 3656 | /// |
| 3657 | /// By default, performs semantic analysis to build the new expression. |
| 3658 | /// Subclasses may override this routine to provide different behavior. |
| 3659 | ExprResult RebuildObjCEncodeExpr(SourceLocation AtLoc, |
| 3660 | TypeSourceInfo *EncodeTypeInfo, |
| 3661 | SourceLocation RParenLoc) { |
| 3662 | return SemaRef.BuildObjCEncodeExpression(AtLoc, EncodeTypeInfo, RParenLoc); |
| 3663 | } |
| 3664 | |
| 3665 | /// Build a new Objective-C class message. |
| 3666 | ExprResult RebuildObjCMessageExpr(TypeSourceInfo *ReceiverTypeInfo, |
| 3667 | Selector Sel, |
| 3668 | ArrayRef<SourceLocation> SelectorLocs, |
| 3669 | ObjCMethodDecl *Method, |
| 3670 | SourceLocation LBracLoc, |
| 3671 | MultiExprArg Args, |
| 3672 | SourceLocation RBracLoc) { |
| 3673 | return SemaRef.BuildClassMessage(ReceiverTypeInfo, |
| 3674 | ReceiverTypeInfo->getType(), |
| 3675 | /*SuperLoc=*/SourceLocation(), |
| 3676 | Sel, Method, LBracLoc, SelectorLocs, |
| 3677 | RBracLoc, Args); |
| 3678 | } |
| 3679 | |
| 3680 | /// Build a new Objective-C instance message. |
| 3681 | ExprResult RebuildObjCMessageExpr(Expr *Receiver, |
| 3682 | Selector Sel, |
| 3683 | ArrayRef<SourceLocation> SelectorLocs, |
| 3684 | ObjCMethodDecl *Method, |
| 3685 | SourceLocation LBracLoc, |
| 3686 | MultiExprArg Args, |
| 3687 | SourceLocation RBracLoc) { |
| 3688 | return SemaRef.BuildInstanceMessage(Receiver, |
| 3689 | Receiver->getType(), |
| 3690 | /*SuperLoc=*/SourceLocation(), |
| 3691 | Sel, Method, LBracLoc, SelectorLocs, |
| 3692 | RBracLoc, Args); |
| 3693 | } |
| 3694 | |
| 3695 | /// Build a new Objective-C instance/class message to 'super'. |
| 3696 | ExprResult RebuildObjCMessageExpr(SourceLocation SuperLoc, |
| 3697 | Selector Sel, |
| 3698 | ArrayRef<SourceLocation> SelectorLocs, |
| 3699 | QualType SuperType, |
| 3700 | ObjCMethodDecl *Method, |
| 3701 | SourceLocation LBracLoc, |
| 3702 | MultiExprArg Args, |
| 3703 | SourceLocation RBracLoc) { |
| 3704 | return Method->isInstanceMethod() ? SemaRef.BuildInstanceMessage(nullptr, |
| 3705 | SuperType, |
| 3706 | SuperLoc, |
| 3707 | Sel, Method, LBracLoc, SelectorLocs, |
| 3708 | RBracLoc, Args) |
| 3709 | : SemaRef.BuildClassMessage(nullptr, |
| 3710 | SuperType, |
| 3711 | SuperLoc, |
| 3712 | Sel, Method, LBracLoc, SelectorLocs, |
| 3713 | RBracLoc, Args); |
| 3714 | |
| 3715 | |
| 3716 | } |
| 3717 | |
| 3718 | /// Build a new Objective-C ivar reference expression. |
| 3719 | /// |
| 3720 | /// By default, performs semantic analysis to build the new expression. |
| 3721 | /// Subclasses may override this routine to provide different behavior. |
| 3722 | ExprResult RebuildObjCIvarRefExpr(Expr *BaseArg, ObjCIvarDecl *Ivar, |
| 3723 | SourceLocation IvarLoc, |
| 3724 | bool IsArrow, bool IsFreeIvar) { |
| 3725 | CXXScopeSpec SS; |
| 3726 | DeclarationNameInfo NameInfo(Ivar->getDeclName(), IvarLoc); |
| 3727 | ExprResult Result = getSema().BuildMemberReferenceExpr( |
| 3728 | BaseArg, BaseArg->getType(), |
| 3729 | /*FIXME:*/ IvarLoc, IsArrow, SS, SourceLocation(), |
| 3730 | /*FirstQualifierInScope=*/nullptr, NameInfo, |
| 3731 | /*TemplateArgs=*/nullptr, |
| 3732 | /*S=*/nullptr); |
| 3733 | if (IsFreeIvar && Result.isUsable()) |
| 3734 | cast<ObjCIvarRefExpr>(Result.get())->setIsFreeIvar(IsFreeIvar); |
| 3735 | return Result; |
| 3736 | } |
| 3737 | |
| 3738 | /// Build a new Objective-C property reference expression. |
| 3739 | /// |
| 3740 | /// By default, performs semantic analysis to build the new expression. |
| 3741 | /// Subclasses may override this routine to provide different behavior. |
| 3742 | ExprResult RebuildObjCPropertyRefExpr(Expr *BaseArg, |
| 3743 | ObjCPropertyDecl *Property, |
| 3744 | SourceLocation PropertyLoc) { |
| 3745 | CXXScopeSpec SS; |
| 3746 | DeclarationNameInfo NameInfo(Property->getDeclName(), PropertyLoc); |
| 3747 | return getSema().BuildMemberReferenceExpr(BaseArg, BaseArg->getType(), |
| 3748 | /*FIXME:*/PropertyLoc, |
| 3749 | /*IsArrow=*/false, |
| 3750 | SS, SourceLocation(), |
| 3751 | /*FirstQualifierInScope=*/nullptr, |
| 3752 | NameInfo, |
| 3753 | /*TemplateArgs=*/nullptr, |
| 3754 | /*S=*/nullptr); |
| 3755 | } |
| 3756 | |
| 3757 | /// Build a new Objective-C property reference expression. |
| 3758 | /// |
| 3759 | /// By default, performs semantic analysis to build the new expression. |
| 3760 | /// Subclasses may override this routine to provide different behavior. |
| 3761 | ExprResult RebuildObjCPropertyRefExpr(Expr *Base, QualType T, |
| 3762 | ObjCMethodDecl *Getter, |
| 3763 | ObjCMethodDecl *Setter, |
| 3764 | SourceLocation PropertyLoc) { |
| 3765 | // Since these expressions can only be value-dependent, we do not |
| 3766 | // need to perform semantic analysis again. |
| 3767 | return Owned( |
| 3768 | new (getSema().Context) ObjCPropertyRefExpr(Getter, Setter, T, |
| 3769 | VK_LValue, OK_ObjCProperty, |
| 3770 | PropertyLoc, Base)); |
| 3771 | } |
| 3772 | |
| 3773 | /// Build a new Objective-C "isa" expression. |
| 3774 | /// |
| 3775 | /// By default, performs semantic analysis to build the new expression. |
| 3776 | /// Subclasses may override this routine to provide different behavior. |
| 3777 | ExprResult RebuildObjCIsaExpr(Expr *BaseArg, SourceLocation IsaLoc, |
| 3778 | SourceLocation OpLoc, bool IsArrow) { |
| 3779 | CXXScopeSpec SS; |
| 3780 | DeclarationNameInfo NameInfo(&getSema().Context.Idents.get("isa"), IsaLoc); |
| 3781 | return getSema().BuildMemberReferenceExpr(BaseArg, BaseArg->getType(), |
| 3782 | OpLoc, IsArrow, |
| 3783 | SS, SourceLocation(), |
| 3784 | /*FirstQualifierInScope=*/nullptr, |
| 3785 | NameInfo, |
| 3786 | /*TemplateArgs=*/nullptr, |
| 3787 | /*S=*/nullptr); |
| 3788 | } |
| 3789 | |
| 3790 | /// Build a new shuffle vector expression. |
| 3791 | /// |
| 3792 | /// By default, performs semantic analysis to build the new expression. |
| 3793 | /// Subclasses may override this routine to provide different behavior. |
| 3794 | ExprResult RebuildShuffleVectorExpr(SourceLocation BuiltinLoc, |
| 3795 | MultiExprArg SubExprs, |
| 3796 | SourceLocation RParenLoc) { |
| 3797 | // Find the declaration for __builtin_shufflevector |
| 3798 | const IdentifierInfo &Name |
| 3799 | = SemaRef.Context.Idents.get("__builtin_shufflevector"); |
| 3800 | TranslationUnitDecl *TUDecl = SemaRef.Context.getTranslationUnitDecl(); |
| 3801 | DeclContext::lookup_result Lookup = TUDecl->lookup(DeclarationName(&Name)); |
| 3802 | assert(!Lookup.empty() && "No __builtin_shufflevector?")(static_cast <bool> (!Lookup.empty() && "No __builtin_shufflevector?" ) ? void (0) : __assert_fail ("!Lookup.empty() && \"No __builtin_shufflevector?\"" , "clang/lib/Sema/TreeTransform.h", 3802, __extension__ __PRETTY_FUNCTION__ )); |
| 3803 | |
| 3804 | // Build a reference to the __builtin_shufflevector builtin |
| 3805 | FunctionDecl *Builtin = cast<FunctionDecl>(Lookup.front()); |
| 3806 | Expr *Callee = new (SemaRef.Context) |
| 3807 | DeclRefExpr(SemaRef.Context, Builtin, false, |
| 3808 | SemaRef.Context.BuiltinFnTy, VK_PRValue, BuiltinLoc); |
| 3809 | QualType CalleePtrTy = SemaRef.Context.getPointerType(Builtin->getType()); |
| 3810 | Callee = SemaRef.ImpCastExprToType(Callee, CalleePtrTy, |
| 3811 | CK_BuiltinFnToFnPtr).get(); |
| 3812 | |
| 3813 | // Build the CallExpr |
| 3814 | ExprResult TheCall = CallExpr::Create( |
| 3815 | SemaRef.Context, Callee, SubExprs, Builtin->getCallResultType(), |
| 3816 | Expr::getValueKindForType(Builtin->getReturnType()), RParenLoc, |
| 3817 | FPOptionsOverride()); |
| 3818 | |
| 3819 | // Type-check the __builtin_shufflevector expression. |
| 3820 | return SemaRef.SemaBuiltinShuffleVector(cast<CallExpr>(TheCall.get())); |
| 3821 | } |
| 3822 | |
| 3823 | /// Build a new convert vector expression. |
| 3824 | ExprResult RebuildConvertVectorExpr(SourceLocation BuiltinLoc, |
| 3825 | Expr *SrcExpr, TypeSourceInfo *DstTInfo, |
| 3826 | SourceLocation RParenLoc) { |
| 3827 | return SemaRef.SemaConvertVectorExpr(SrcExpr, DstTInfo, |
| 3828 | BuiltinLoc, RParenLoc); |
| 3829 | } |
| 3830 | |
| 3831 | /// Build a new template argument pack expansion. |
| 3832 | /// |
| 3833 | /// By default, performs semantic analysis to build a new pack expansion |
| 3834 | /// for a template argument. Subclasses may override this routine to provide |
| 3835 | /// different behavior. |
| 3836 | TemplateArgumentLoc |
| 3837 | RebuildPackExpansion(TemplateArgumentLoc Pattern, SourceLocation EllipsisLoc, |
| 3838 | std::optional<unsigned> NumExpansions) { |
| 3839 | switch (Pattern.getArgument().getKind()) { |
| 3840 | case TemplateArgument::Expression: { |
| 3841 | ExprResult Result |
| 3842 | = getSema().CheckPackExpansion(Pattern.getSourceExpression(), |
| 3843 | EllipsisLoc, NumExpansions); |
| 3844 | if (Result.isInvalid()) |
| 3845 | return TemplateArgumentLoc(); |
| 3846 | |
| 3847 | return TemplateArgumentLoc(Result.get(), Result.get()); |
| 3848 | } |
| 3849 | |
| 3850 | case TemplateArgument::Template: |
| 3851 | return TemplateArgumentLoc( |
| 3852 | SemaRef.Context, |
| 3853 | TemplateArgument(Pattern.getArgument().getAsTemplate(), |
| 3854 | NumExpansions), |
| 3855 | Pattern.getTemplateQualifierLoc(), Pattern.getTemplateNameLoc(), |
| 3856 | EllipsisLoc); |
| 3857 | |
| 3858 | case TemplateArgument::Null: |
| 3859 | case TemplateArgument::Integral: |
| 3860 | case TemplateArgument::Declaration: |
| 3861 | case TemplateArgument::Pack: |
| 3862 | case TemplateArgument::TemplateExpansion: |
| 3863 | case TemplateArgument::NullPtr: |
| 3864 | llvm_unreachable("Pack expansion pattern has no parameter packs")::llvm::llvm_unreachable_internal("Pack expansion pattern has no parameter packs" , "clang/lib/Sema/TreeTransform.h", 3864); |
| 3865 | |
| 3866 | case TemplateArgument::Type: |
| 3867 | if (TypeSourceInfo *Expansion |
| 3868 | = getSema().CheckPackExpansion(Pattern.getTypeSourceInfo(), |
| 3869 | EllipsisLoc, |
| 3870 | NumExpansions)) |
| 3871 | return TemplateArgumentLoc(TemplateArgument(Expansion->getType()), |
| 3872 | Expansion); |
| 3873 | break; |
| 3874 | } |
| 3875 | |
| 3876 | return TemplateArgumentLoc(); |
| 3877 | } |
| 3878 | |
| 3879 | /// Build a new expression pack expansion. |
| 3880 | /// |
| 3881 | /// By default, performs semantic analysis to build a new pack expansion |
| 3882 | /// for an expression. Subclasses may override this routine to provide |
| 3883 | /// different behavior. |
| 3884 | ExprResult RebuildPackExpansion(Expr *Pattern, SourceLocation EllipsisLoc, |
| 3885 | std::optional<unsigned> NumExpansions) { |
| 3886 | return getSema().CheckPackExpansion(Pattern, EllipsisLoc, NumExpansions); |
| 3887 | } |
| 3888 | |
| 3889 | /// Build a new C++1z fold-expression. |
| 3890 | /// |
| 3891 | /// By default, performs semantic analysis in order to build a new fold |
| 3892 | /// expression. |
| 3893 | ExprResult RebuildCXXFoldExpr(UnresolvedLookupExpr *ULE, |
| 3894 | SourceLocation LParenLoc, Expr *LHS, |
| 3895 | BinaryOperatorKind Operator, |
| 3896 | SourceLocation EllipsisLoc, Expr *RHS, |
| 3897 | SourceLocation RParenLoc, |
| 3898 | std::optional<unsigned> NumExpansions) { |
| 3899 | return getSema().BuildCXXFoldExpr(ULE, LParenLoc, LHS, Operator, |
| 3900 | EllipsisLoc, RHS, RParenLoc, |
| 3901 | NumExpansions); |
| 3902 | } |
| 3903 | |
| 3904 | /// Build an empty C++1z fold-expression with the given operator. |
| 3905 | /// |
| 3906 | /// By default, produces the fallback value for the fold-expression, or |
| 3907 | /// produce an error if there is no fallback value. |
| 3908 | ExprResult RebuildEmptyCXXFoldExpr(SourceLocation EllipsisLoc, |
| 3909 | BinaryOperatorKind Operator) { |
| 3910 | return getSema().BuildEmptyCXXFoldExpr(EllipsisLoc, Operator); |
| 3911 | } |
| 3912 | |
| 3913 | /// Build a new atomic operation expression. |
| 3914 | /// |
| 3915 | /// By default, performs semantic analysis to build the new expression. |
| 3916 | /// Subclasses may override this routine to provide different behavior. |
| 3917 | ExprResult RebuildAtomicExpr(SourceLocation BuiltinLoc, MultiExprArg SubExprs, |
| 3918 | AtomicExpr::AtomicOp Op, |
| 3919 | SourceLocation RParenLoc) { |
| 3920 | // Use this for all of the locations, since we don't know the difference |
| 3921 | // between the call and the expr at this point. |
| 3922 | SourceRange Range{BuiltinLoc, RParenLoc}; |
| 3923 | return getSema().BuildAtomicExpr(Range, Range, RParenLoc, SubExprs, Op, |
| 3924 | Sema::AtomicArgumentOrder::AST); |
| 3925 | } |
| 3926 | |
| 3927 | ExprResult RebuildRecoveryExpr(SourceLocation BeginLoc, SourceLocation EndLoc, |
| 3928 | ArrayRef<Expr *> SubExprs, QualType Type) { |
| 3929 | return getSema().CreateRecoveryExpr(BeginLoc, EndLoc, SubExprs, Type); |
| 3930 | } |
| 3931 | |
| 3932 | private: |
| 3933 | TypeLoc TransformTypeInObjectScope(TypeLoc TL, |
| 3934 | QualType ObjectType, |
| 3935 | NamedDecl *FirstQualifierInScope, |
| 3936 | CXXScopeSpec &SS); |
| 3937 | |
| 3938 | TypeSourceInfo *TransformTypeInObjectScope(TypeSourceInfo *TSInfo, |
| 3939 | QualType ObjectType, |
| 3940 | NamedDecl *FirstQualifierInScope, |
| 3941 | CXXScopeSpec &SS); |
| 3942 | |
| 3943 | TypeSourceInfo *TransformTSIInObjectScope(TypeLoc TL, QualType ObjectType, |
| 3944 | NamedDecl *FirstQualifierInScope, |
| 3945 | CXXScopeSpec &SS); |
| 3946 | |
| 3947 | QualType TransformDependentNameType(TypeLocBuilder &TLB, |
| 3948 | DependentNameTypeLoc TL, |
| 3949 | bool DeducibleTSTContext); |
| 3950 | }; |
| 3951 | |
| 3952 | template <typename Derived> |
| 3953 | StmtResult TreeTransform<Derived>::TransformStmt(Stmt *S, StmtDiscardKind SDK) { |
| 3954 | if (!S) |
| 3955 | return S; |
| 3956 | |
| 3957 | switch (S->getStmtClass()) { |
| 3958 | case Stmt::NoStmtClass: break; |
| 3959 | |
| 3960 | // Transform individual statement nodes |
| 3961 | // Pass SDK into statements that can produce a value |
| 3962 | #define STMT(Node, Parent) \ |
| 3963 | case Stmt::Node##Class: return getDerived().Transform##Node(cast<Node>(S)); |
| 3964 | #define VALUESTMT(Node, Parent) \ |
| 3965 | case Stmt::Node##Class: \ |
| 3966 | return getDerived().Transform##Node(cast<Node>(S), SDK); |
| 3967 | #define ABSTRACT_STMT(Node) |
| 3968 | #define EXPR(Node, Parent) |
| 3969 | #include "clang/AST/StmtNodes.inc" |
| 3970 | |
| 3971 | // Transform expressions by calling TransformExpr. |
| 3972 | #define STMT(Node, Parent) |
| 3973 | #define ABSTRACT_STMT(Stmt) |
| 3974 | #define EXPR(Node, Parent) case Stmt::Node##Class: |
| 3975 | #include "clang/AST/StmtNodes.inc" |
| 3976 | { |
| 3977 | ExprResult E = getDerived().TransformExpr(cast<Expr>(S)); |
| 3978 | |
| 3979 | if (SDK == SDK_StmtExprResult) |
| 3980 | E = getSema().ActOnStmtExprResult(E); |
| 3981 | return getSema().ActOnExprStmt(E, SDK == SDK_Discarded); |
| 3982 | } |
| 3983 | } |
| 3984 | |
| 3985 | return S; |
| 3986 | } |
| 3987 | |
| 3988 | template<typename Derived> |
| 3989 | OMPClause *TreeTransform<Derived>::TransformOMPClause(OMPClause *S) { |
| 3990 | if (!S) |
| 3991 | return S; |
| 3992 | |
| 3993 | switch (S->getClauseKind()) { |
| 3994 | default: break; |
| 3995 | // Transform individual clause nodes |
| 3996 | #define GEN_CLANG_CLAUSE_CLASS |
| 3997 | #define CLAUSE_CLASS(Enum, Str, Class) \ |
| 3998 | case Enum: \ |
| 3999 | return getDerived().Transform##Class(cast<Class>(S)); |
| 4000 | #include "llvm/Frontend/OpenMP/OMP.inc" |
| 4001 | } |
| 4002 | |
| 4003 | return S; |
| 4004 | } |
| 4005 | |
| 4006 | |
| 4007 | template<typename Derived> |
| 4008 | ExprResult TreeTransform<Derived>::TransformExpr(Expr *E) { |
| 4009 | if (!E) |
| 4010 | return E; |
| 4011 | |
| 4012 | switch (E->getStmtClass()) { |
| 4013 | case Stmt::NoStmtClass: break; |
| 4014 | #define STMT(Node, Parent) case Stmt::Node##Class: break; |
| 4015 | #define ABSTRACT_STMT(Stmt) |
| 4016 | #define EXPR(Node, Parent) \ |
| 4017 | case Stmt::Node##Class: return getDerived().Transform##Node(cast<Node>(E)); |
| 4018 | #include "clang/AST/StmtNodes.inc" |
| 4019 | } |
| 4020 | |
| 4021 | return E; |
| 4022 | } |
| 4023 | |
| 4024 | template<typename Derived> |
| 4025 | ExprResult TreeTransform<Derived>::TransformInitializer(Expr *Init, |
| 4026 | bool NotCopyInit) { |
| 4027 | // Initializers are instantiated like expressions, except that various outer |
| 4028 | // layers are stripped. |
| 4029 | if (!Init) |
| 4030 | return Init; |
| 4031 | |
| 4032 | if (auto *FE = dyn_cast<FullExpr>(Init)) |
| 4033 | Init = FE->getSubExpr(); |
| 4034 | |
| 4035 | if (auto *AIL = dyn_cast<ArrayInitLoopExpr>(Init)) { |
| 4036 | OpaqueValueExpr *OVE = AIL->getCommonExpr(); |
| 4037 | Init = OVE->getSourceExpr(); |
| 4038 | } |
| 4039 | |
| 4040 | if (MaterializeTemporaryExpr *MTE = dyn_cast<MaterializeTemporaryExpr>(Init)) |
| 4041 | Init = MTE->getSubExpr(); |
| 4042 | |
| 4043 | while (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(Init)) |
| 4044 | Init = Binder->getSubExpr(); |
| 4045 | |
| 4046 | if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Init)) |
| 4047 | Init = ICE->getSubExprAsWritten(); |
| 4048 | |
| 4049 | if (CXXStdInitializerListExpr *ILE = |
| 4050 | dyn_cast<CXXStdInitializerListExpr>(Init)) |
| 4051 | return TransformInitializer(ILE->getSubExpr(), NotCopyInit); |
| 4052 | |
| 4053 | // If this is copy-initialization, we only need to reconstruct |
| 4054 | // InitListExprs. Other forms of copy-initialization will be a no-op if |
| 4055 | // the initializer is already the right type. |
| 4056 | CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init); |
| 4057 | if (!NotCopyInit && !(Construct && Construct->isListInitialization())) |
| 4058 | return getDerived().TransformExpr(Init); |
| 4059 | |
| 4060 | // Revert value-initialization back to empty parens. |
| 4061 | if (CXXScalarValueInitExpr *VIE = dyn_cast<CXXScalarValueInitExpr>(Init)) { |
| 4062 | SourceRange Parens = VIE->getSourceRange(); |
| 4063 | return getDerived().RebuildParenListExpr(Parens.getBegin(), std::nullopt, |
| 4064 | Parens.getEnd()); |
| 4065 | } |
| 4066 | |
| 4067 | // FIXME: We shouldn't build ImplicitValueInitExprs for direct-initialization. |
| 4068 | if (isa<ImplicitValueInitExpr>(Init)) |
| 4069 | return getDerived().RebuildParenListExpr(SourceLocation(), std::nullopt, |
| 4070 | SourceLocation()); |
| 4071 | |
| 4072 | // Revert initialization by constructor back to a parenthesized or braced list |
| 4073 | // of expressions. Any other form of initializer can just be reused directly. |
| 4074 | if (!Construct || isa<CXXTemporaryObjectExpr>(Construct)) |
| 4075 | return getDerived().TransformExpr(Init); |
| 4076 | |
| 4077 | // If the initialization implicitly converted an initializer list to a |
| 4078 | // std::initializer_list object, unwrap the std::initializer_list too. |
| 4079 | if (Construct && Construct->isStdInitListInitialization()) |
| 4080 | return TransformInitializer(Construct->getArg(0), NotCopyInit); |
| 4081 | |
| 4082 | // Enter a list-init context if this was list initialization. |
| 4083 | EnterExpressionEvaluationContext Context( |
| 4084 | getSema(), EnterExpressionEvaluationContext::InitList, |
| 4085 | Construct->isListInitialization()); |
| 4086 | |
| 4087 | SmallVector<Expr*, 8> NewArgs; |
| 4088 | bool ArgChanged = false; |
| 4089 | if (getDerived().TransformExprs(Construct->getArgs(), Construct->getNumArgs(), |
| 4090 | /*IsCall*/true, NewArgs, &ArgChanged)) |
| 4091 | return ExprError(); |
| 4092 | |
| 4093 | // If this was list initialization, revert to syntactic list form. |
| 4094 | if (Construct->isListInitialization()) |
| 4095 | return getDerived().RebuildInitList(Construct->getBeginLoc(), NewArgs, |
| 4096 | Construct->getEndLoc()); |
| 4097 | |
| 4098 | // Build a ParenListExpr to represent anything else. |
| 4099 | SourceRange Parens = Construct->getParenOrBraceRange(); |
| 4100 | if (Parens.isInvalid()) { |
| 4101 | // This was a variable declaration's initialization for which no initializer |
| 4102 | // was specified. |
| 4103 | assert(NewArgs.empty() &&(static_cast <bool> (NewArgs.empty() && "no parens or braces but have direct init with arguments?" ) ? void (0) : __assert_fail ("NewArgs.empty() && \"no parens or braces but have direct init with arguments?\"" , "clang/lib/Sema/TreeTransform.h", 4104, __extension__ __PRETTY_FUNCTION__ )) |
| 4104 | "no parens or braces but have direct init with arguments?")(static_cast <bool> (NewArgs.empty() && "no parens or braces but have direct init with arguments?" ) ? void (0) : __assert_fail ("NewArgs.empty() && \"no parens or braces but have direct init with arguments?\"" , "clang/lib/Sema/TreeTransform.h", 4104, __extension__ __PRETTY_FUNCTION__ )); |
| 4105 | return ExprEmpty(); |
| 4106 | } |
| 4107 | return getDerived().RebuildParenListExpr(Parens.getBegin(), NewArgs, |
| 4108 | Parens.getEnd()); |
| 4109 | } |
| 4110 | |
| 4111 | template<typename Derived> |
| 4112 | bool TreeTransform<Derived>::TransformExprs(Expr *const *Inputs, |
| 4113 | unsigned NumInputs, |
| 4114 | bool IsCall, |
| 4115 | SmallVectorImpl<Expr *> &Outputs, |
| 4116 | bool *ArgChanged) { |
| 4117 | for (unsigned I = 0; I != NumInputs; ++I) { |
| 4118 | // If requested, drop call arguments that need to be dropped. |
| 4119 | if (IsCall && getDerived().DropCallArgument(Inputs[I])) { |
| 4120 | if (ArgChanged) |
| 4121 | *ArgChanged = true; |
| 4122 | |
| 4123 | break; |
| 4124 | } |
| 4125 | |
| 4126 | if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(Inputs[I])) { |
| 4127 | Expr *Pattern = Expansion->getPattern(); |
| 4128 | |
| 4129 | SmallVector<UnexpandedParameterPack, 2> Unexpanded; |
| 4130 | getSema().collectUnexpandedParameterPacks(Pattern, Unexpanded); |
| 4131 | assert(!Unexpanded.empty() && "Pack expansion without parameter packs?")(static_cast <bool> (!Unexpanded.empty() && "Pack expansion without parameter packs?" ) ? void (0) : __assert_fail ("!Unexpanded.empty() && \"Pack expansion without parameter packs?\"" , "clang/lib/Sema/TreeTransform.h", 4131, __extension__ __PRETTY_FUNCTION__ )); |
| 4132 | |
| 4133 | // Determine whether the set of unexpanded parameter packs can and should |
| 4134 | // be expanded. |
| 4135 | bool Expand = true; |
| 4136 | bool RetainExpansion = false; |
| 4137 | std::optional<unsigned> OrigNumExpansions = Expansion->getNumExpansions(); |
| 4138 | std::optional<unsigned> NumExpansions = OrigNumExpansions; |
| 4139 | if (getDerived().TryExpandParameterPacks(Expansion->getEllipsisLoc(), |
| 4140 | Pattern->getSourceRange(), |
| 4141 | Unexpanded, |
| 4142 | Expand, RetainExpansion, |
| 4143 | NumExpansions)) |
| 4144 | return true; |
| 4145 | |
| 4146 | if (!Expand) { |
| 4147 | // The transform has determined that we should perform a simple |
| 4148 | // transformation on the pack expansion, producing another pack |
| 4149 | // expansion. |
| 4150 | Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1); |
| 4151 | ExprResult OutPattern = getDerived().TransformExpr(Pattern); |
| 4152 | if (OutPattern.isInvalid()) |
| 4153 | return true; |
| 4154 | |
| 4155 | ExprResult Out = getDerived().RebuildPackExpansion(OutPattern.get(), |
| 4156 | Expansion->getEllipsisLoc(), |
| 4157 | NumExpansions); |
| 4158 | if (Out.isInvalid()) |
| 4159 | return true; |
| 4160 | |
| 4161 | if (ArgChanged) |
| 4162 | *ArgChanged = true; |
| 4163 | Outputs.push_back(Out.get()); |
| 4164 | continue; |
| 4165 | } |
| 4166 | |
| 4167 | // Record right away that the argument was changed. This needs |
| 4168 | // to happen even if the array expands to nothing. |
| 4169 | if (ArgChanged) *ArgChanged = true; |
| 4170 | |
| 4171 | // The transform has determined that we should perform an elementwise |
| 4172 | // expansion of the pattern. Do so. |
| 4173 | for (unsigned I = 0; I != *NumExpansions; ++I) { |
| 4174 | Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I); |
| 4175 | ExprResult Out = getDerived().TransformExpr(Pattern); |
| 4176 | if (Out.isInvalid()) |
| 4177 | return true; |
| 4178 | |
| 4179 | if (Out.get()->containsUnexpandedParameterPack()) { |
| 4180 | Out = getDerived().RebuildPackExpansion( |
| 4181 | Out.get(), Expansion->getEllipsisLoc(), OrigNumExpansions); |
| 4182 | if (Out.isInvalid()) |
| 4183 | return true; |
| 4184 | } |
| 4185 | |
| 4186 | Outputs.push_back(Out.get()); |
| 4187 | } |
| 4188 | |
| 4189 | // If we're supposed to retain a pack expansion, do so by temporarily |
| 4190 | // forgetting the partially-substituted parameter pack. |
| 4191 | if (RetainExpansion) { |
| 4192 | ForgetPartiallySubstitutedPackRAII Forget(getDerived()); |
| 4193 | |
| 4194 | ExprResult Out = getDerived().TransformExpr(Pattern); |
| 4195 | if (Out.isInvalid()) |
| 4196 | return true; |
| 4197 | |
| 4198 | Out = getDerived().RebuildPackExpansion( |
| 4199 | Out.get(), Expansion->getEllipsisLoc(), OrigNumExpansions); |
| 4200 | if (Out.isInvalid()) |
| 4201 | return true; |
| 4202 | |
| 4203 | Outputs.push_back(Out.get()); |
| 4204 | } |
| 4205 | |
| 4206 | continue; |
| 4207 | } |
| 4208 | |
| 4209 | ExprResult Result = |
| 4210 | IsCall ? getDerived().TransformInitializer(Inputs[I], /*DirectInit*/false) |
| 4211 | : getDerived().TransformExpr(Inputs[I]); |
| 4212 | if (Result.isInvalid()) |
| 4213 | return true; |
| 4214 | |
| 4215 | if (Result.get() != Inputs[I] && ArgChanged) |
| 4216 | *ArgChanged = true; |
| 4217 | |
| 4218 | Outputs.push_back(Result.get()); |
| 4219 | } |
| 4220 | |
| 4221 | return false; |
| 4222 | } |
| 4223 | |
| 4224 | template <typename Derived> |
| 4225 | Sema::ConditionResult TreeTransform<Derived>::TransformCondition( |
| 4226 | SourceLocation Loc, VarDecl *Var, Expr *Expr, Sema::ConditionKind Kind) { |
| 4227 | if (Var) { |
| 4228 | VarDecl *ConditionVar = cast_or_null<VarDecl>( |
| 4229 | getDerived().TransformDefinition(Var->getLocation(), Var)); |
| 4230 | |
| 4231 | if (!ConditionVar) |
| 4232 | return Sema::ConditionError(); |
| 4233 | |
| 4234 | return getSema().ActOnConditionVariable(ConditionVar, Loc, Kind); |
| 4235 | } |
| 4236 | |
| 4237 | if (Expr) { |
| 4238 | ExprResult CondExpr = getDerived().TransformExpr(Expr); |
| 4239 | |
| 4240 | if (CondExpr.isInvalid()) |
| 4241 | return Sema::ConditionError(); |
| 4242 | |
| 4243 | return getSema().ActOnCondition(nullptr, Loc, CondExpr.get(), Kind, |
| 4244 | /*MissingOK=*/true); |
| 4245 | } |
| 4246 | |
| 4247 | return Sema::ConditionResult(); |
| 4248 | } |
| 4249 | |
| 4250 | template <typename Derived> |
| 4251 | NestedNameSpecifierLoc TreeTransform<Derived>::TransformNestedNameSpecifierLoc( |
| 4252 | NestedNameSpecifierLoc NNS, QualType ObjectType, |
| 4253 | NamedDecl *FirstQualifierInScope) { |
| 4254 | SmallVector<NestedNameSpecifierLoc, 4> Qualifiers; |
| 4255 | |
| 4256 | auto insertNNS = [&Qualifiers](NestedNameSpecifierLoc NNS) { |
| 4257 | for (NestedNameSpecifierLoc Qualifier = NNS; Qualifier; |
| 4258 | Qualifier = Qualifier.getPrefix()) |
| 4259 | Qualifiers.push_back(Qualifier); |
| 4260 | }; |
| 4261 | insertNNS(NNS); |
| 4262 | |
| 4263 | CXXScopeSpec SS; |
| 4264 | while (!Qualifiers.empty()) { |
| 4265 | NestedNameSpecifierLoc Q = Qualifiers.pop_back_val(); |
| 4266 | NestedNameSpecifier *QNNS = Q.getNestedNameSpecifier(); |
| 4267 | |
| 4268 | switch (QNNS->getKind()) { |
| 4269 | case NestedNameSpecifier::Identifier: { |
| 4270 | Sema::NestedNameSpecInfo IdInfo(QNNS->getAsIdentifier(), |
| 4271 | Q.getLocalBeginLoc(), Q.getLocalEndLoc(), |
| 4272 | ObjectType); |
| 4273 | if (SemaRef.BuildCXXNestedNameSpecifier(/*Scope=*/nullptr, IdInfo, false, |
| 4274 | SS, FirstQualifierInScope, false)) |
| 4275 | return NestedNameSpecifierLoc(); |
| 4276 | break; |
| 4277 | } |
| 4278 | |
| 4279 | case NestedNameSpecifier::Namespace: { |
| 4280 | NamespaceDecl *NS = |
| 4281 | cast_or_null<NamespaceDecl>(getDerived().TransformDecl( |
| 4282 | Q.getLocalBeginLoc(), QNNS->getAsNamespace())); |
| 4283 | SS.Extend(SemaRef.Context, NS, Q.getLocalBeginLoc(), Q.getLocalEndLoc()); |
| 4284 | break; |
| 4285 | } |
| 4286 | |
| 4287 | case NestedNameSpecifier::NamespaceAlias: { |
| 4288 | NamespaceAliasDecl *Alias = |
| 4289 | cast_or_null<NamespaceAliasDecl>(getDerived().TransformDecl( |
| 4290 | Q.getLocalBeginLoc(), QNNS->getAsNamespaceAlias())); |
| 4291 | SS.Extend(SemaRef.Context, Alias, Q.getLocalBeginLoc(), |
| 4292 | Q.getLocalEndLoc()); |
| 4293 | break; |
| 4294 | } |
| 4295 | |
| 4296 | case NestedNameSpecifier::Global: |
| 4297 | // There is no meaningful transformation that one could perform on the |
| 4298 | // global scope. |
| 4299 | SS.MakeGlobal(SemaRef.Context, Q.getBeginLoc()); |
| 4300 | break; |
| 4301 | |
| 4302 | case NestedNameSpecifier::Super: { |
| 4303 | CXXRecordDecl *RD = |
| 4304 | cast_or_null<CXXRecordDecl>(getDerived().TransformDecl( |
| 4305 | SourceLocation(), QNNS->getAsRecordDecl())); |
| 4306 | SS.MakeSuper(SemaRef.Context, RD, Q.getBeginLoc(), Q.getEndLoc()); |
| 4307 | break; |
| 4308 | } |
| 4309 | |
| 4310 | case NestedNameSpecifier::TypeSpecWithTemplate: |
| 4311 | case NestedNameSpecifier::TypeSpec: { |
| 4312 | TypeLoc TL = TransformTypeInObjectScope(Q.getTypeLoc(), ObjectType, |
| 4313 | FirstQualifierInScope, SS); |
| 4314 | |
| 4315 | if (!TL) |
| 4316 | return NestedNameSpecifierLoc(); |
| 4317 | |
| 4318 | QualType T = TL.getType(); |
| 4319 | if (T->isDependentType() || T->isRecordType() || |
| 4320 | (SemaRef.getLangOpts().CPlusPlus11 && T->isEnumeralType())) { |
| 4321 | if (T->isEnumeralType()) |
| 4322 | SemaRef.Diag(TL.getBeginLoc(), |
| 4323 | diag::warn_cxx98_compat_enum_nested_name_spec); |
| 4324 | |
| 4325 | if (const auto ETL = TL.getAs<ElaboratedTypeLoc>()) { |
| 4326 | SS.Adopt(ETL.getQualifierLoc()); |
| 4327 | TL = ETL.getNamedTypeLoc(); |
| 4328 | } |
| 4329 | SS.Extend(SemaRef.Context, /*FIXME:*/ SourceLocation(), TL, |
| 4330 | Q.getLocalEndLoc()); |
| 4331 | break; |
| 4332 | } |
| 4333 | // If the nested-name-specifier is an invalid type def, don't emit an |
| 4334 | // error because a previous error should have already been emitted. |
| 4335 | TypedefTypeLoc TTL = TL.getAsAdjusted<TypedefTypeLoc>(); |
| 4336 | if (!TTL || !TTL.getTypedefNameDecl()->isInvalidDecl()) { |
| 4337 | SemaRef.Diag(TL.getBeginLoc(), diag::err_nested_name_spec_non_tag) |
| 4338 | << T << SS.getRange(); |
| 4339 | } |
| 4340 | return NestedNameSpecifierLoc(); |
| 4341 | } |
| 4342 | } |
| 4343 | |
| 4344 | // The qualifier-in-scope and object type only apply to the leftmost entity. |
| 4345 | FirstQualifierInScope = nullptr; |
| 4346 | ObjectType = QualType(); |
| 4347 | } |
| 4348 | |
| 4349 | // Don't rebuild the nested-name-specifier if we don't have to. |
| 4350 | if (SS.getScopeRep() == NNS.getNestedNameSpecifier() && |
| 4351 | !getDerived().AlwaysRebuild()) |
| 4352 | return NNS; |
| 4353 | |
| 4354 | // If we can re-use the source-location data from the original |
| 4355 | // nested-name-specifier, do so. |
| 4356 | if (SS.location_size() == NNS.getDataLength() && |
| 4357 | memcmp(SS.location_data(), NNS.getOpaqueData(), SS.location_size()) == 0) |
| 4358 | return NestedNameSpecifierLoc(SS.getScopeRep(), NNS.getOpaqueData()); |
| 4359 | |
| 4360 | // Allocate new nested-name-specifier location information. |
| 4361 | return SS.getWithLocInContext(SemaRef.Context); |
| 4362 | } |
| 4363 | |
| 4364 | template<typename Derived> |
| 4365 | DeclarationNameInfo |
| 4366 | TreeTransform<Derived> |
| 4367 | ::TransformDeclarationNameInfo(const DeclarationNameInfo &NameInfo) { |
| 4368 | DeclarationName Name = NameInfo.getName(); |
| 4369 | if (!Name) |
| 4370 | return DeclarationNameInfo(); |
| 4371 | |
| 4372 | switch (Name.getNameKind()) { |
| 4373 | case DeclarationName::Identifier: |
| 4374 | case DeclarationName::ObjCZeroArgSelector: |
| 4375 | case DeclarationName::ObjCOneArgSelector: |
| 4376 | case DeclarationName::ObjCMultiArgSelector: |
| 4377 | case DeclarationName::CXXOperatorName: |
| 4378 | case DeclarationName::CXXLiteralOperatorName: |
| 4379 | case DeclarationName::CXXUsingDirective: |
| 4380 | return NameInfo; |
| 4381 | |
| 4382 | case DeclarationName::CXXDeductionGuideName: { |
| 4383 | TemplateDecl *OldTemplate = Name.getCXXDeductionGuideTemplate(); |
| 4384 | TemplateDecl *NewTemplate = cast_or_null<TemplateDecl>( |
| 4385 | getDerived().TransformDecl(NameInfo.getLoc(), OldTemplate)); |
| 4386 | if (!NewTemplate) |
| 4387 | return DeclarationNameInfo(); |
| 4388 | |
| 4389 | DeclarationNameInfo NewNameInfo(NameInfo); |
| 4390 | NewNameInfo.setName( |
| 4391 | SemaRef.Context.DeclarationNames.getCXXDeductionGuideName(NewTemplate)); |
| 4392 | return NewNameInfo; |
| 4393 | } |
| 4394 | |
| 4395 | case DeclarationName::CXXConstructorName: |
| 4396 | case DeclarationName::CXXDestructorName: |
| 4397 | case DeclarationName::CXXConversionFunctionName: { |
| 4398 | TypeSourceInfo *NewTInfo; |
| 4399 | CanQualType NewCanTy; |
| 4400 | if (TypeSourceInfo *OldTInfo = NameInfo.getNamedTypeInfo()) { |
| 4401 | NewTInfo = getDerived().TransformType(OldTInfo); |
| 4402 | if (!NewTInfo) |
| 4403 | return DeclarationNameInfo(); |
| 4404 | NewCanTy = SemaRef.Context.getCanonicalType(NewTInfo->getType()); |
| 4405 | } |
| 4406 | else { |
| 4407 | NewTInfo = nullptr; |
| 4408 | TemporaryBase Rebase(*this, NameInfo.getLoc(), Name); |
| 4409 | QualType NewT = getDerived().TransformType(Name.getCXXNameType()); |
| 4410 | if (NewT.isNull()) |
| 4411 | return DeclarationNameInfo(); |
| 4412 | NewCanTy = SemaRef.Context.getCanonicalType(NewT); |
| 4413 | } |
| 4414 | |
| 4415 | DeclarationName NewName |
| 4416 | = SemaRef.Context.DeclarationNames.getCXXSpecialName(Name.getNameKind(), |
| 4417 | NewCanTy); |
| 4418 | DeclarationNameInfo NewNameInfo(NameInfo); |
| 4419 | NewNameInfo.setName(NewName); |
| 4420 | NewNameInfo.setNamedTypeInfo(NewTInfo); |
| 4421 | return NewNameInfo; |
| 4422 | } |
| 4423 | } |
| 4424 | |
| 4425 | llvm_unreachable("Unknown name kind.")::llvm::llvm_unreachable_internal("Unknown name kind.", "clang/lib/Sema/TreeTransform.h" , 4425); |
| 4426 | } |
| 4427 | |
| 4428 | template<typename Derived> |
| 4429 | TemplateName |
| 4430 | TreeTransform<Derived>::TransformTemplateName(CXXScopeSpec &SS, |
| 4431 | TemplateName Name, |
| 4432 | SourceLocation NameLoc, |
| 4433 | QualType ObjectType, |
| 4434 | NamedDecl *FirstQualifierInScope, |
| 4435 | bool AllowInjectedClassName) { |
| 4436 | if (QualifiedTemplateName *QTN = Name.getAsQualifiedTemplateName()) { |
| 4437 | TemplateDecl *Template = QTN->getUnderlyingTemplate().getAsTemplateDecl(); |
| 4438 | assert(Template && "qualified template name must refer to a template")(static_cast <bool> (Template && "qualified template name must refer to a template" ) ? void (0) : __assert_fail ("Template && \"qualified template name must refer to a template\"" , "clang/lib/Sema/TreeTransform.h", 4438, __extension__ __PRETTY_FUNCTION__ )); |
| 4439 | |
| 4440 | TemplateDecl *TransTemplate |
| 4441 | = cast_or_null<TemplateDecl>(getDerived().TransformDecl(NameLoc, |
| 4442 | Template)); |
| 4443 | if (!TransTemplate) |
| 4444 | return TemplateName(); |
| 4445 | |
| 4446 | if (!getDerived().AlwaysRebuild() && |
| 4447 | SS.getScopeRep() == QTN->getQualifier() && |
| 4448 | TransTemplate == Template) |
| 4449 | return Name; |
| 4450 | |
| 4451 | return getDerived().RebuildTemplateName(SS, QTN->hasTemplateKeyword(), |
| 4452 | TransTemplate); |
| 4453 | } |
| 4454 | |
| 4455 | if (DependentTemplateName *DTN = Name.getAsDependentTemplateName()) { |
| 4456 | if (SS.getScopeRep()) { |
| 4457 | // These apply to the scope specifier, not the template. |
| 4458 | ObjectType = QualType(); |
| 4459 | FirstQualifierInScope = nullptr; |
| 4460 | } |
| 4461 | |
| 4462 | if (!getDerived().AlwaysRebuild() && |
| 4463 | SS.getScopeRep() == DTN->getQualifier() && |
| 4464 | ObjectType.isNull()) |
| 4465 | return Name; |
| 4466 | |
| 4467 | // FIXME: Preserve the location of the "template" keyword. |
| 4468 | SourceLocation TemplateKWLoc = NameLoc; |
| 4469 | |
| 4470 | if (DTN->isIdentifier()) { |
| 4471 | return getDerived().RebuildTemplateName(SS, |
| 4472 | TemplateKWLoc, |
| 4473 | *DTN->getIdentifier(), |
| 4474 | NameLoc, |
| 4475 | ObjectType, |
| 4476 | FirstQualifierInScope, |
| 4477 | AllowInjectedClassName); |
| 4478 | } |
| 4479 | |
| 4480 | return getDerived().RebuildTemplateName(SS, TemplateKWLoc, |
| 4481 | DTN->getOperator(), NameLoc, |
| 4482 | ObjectType, AllowInjectedClassName); |
| 4483 | } |
| 4484 | |
| 4485 | if (TemplateDecl *Template = Name.getAsTemplateDecl()) { |
| 4486 | TemplateDecl *TransTemplate |
| 4487 | = cast_or_null<TemplateDecl>(getDerived().TransformDecl(NameLoc, |
| 4488 | Template)); |
| 4489 | if (!TransTemplate) |
| 4490 | return TemplateName(); |
| 4491 | |
| 4492 | if (!getDerived().AlwaysRebuild() && |
| 4493 | TransTemplate == Template) |
| 4494 | return Name; |
| 4495 | |
| 4496 | return TemplateName(TransTemplate); |
| 4497 | } |
| 4498 | |
| 4499 | if (SubstTemplateTemplateParmPackStorage *SubstPack |
| 4500 | = Name.getAsSubstTemplateTemplateParmPack()) { |
| 4501 | return getDerived().RebuildTemplateName( |
| 4502 | SubstPack->getArgumentPack(), SubstPack->getAssociatedDecl(), |
| 4503 | SubstPack->getIndex(), SubstPack->getFinal()); |
| 4504 | } |
| 4505 | |
| 4506 | // These should be getting filtered out before they reach the AST. |
| 4507 | llvm_unreachable("overloaded function decl survived to here")::llvm::llvm_unreachable_internal("overloaded function decl survived to here" , "clang/lib/Sema/TreeTransform.h", 4507); |
| 4508 | } |
| 4509 | |
| 4510 | template<typename Derived> |
| 4511 | void TreeTransform<Derived>::InventTemplateArgumentLoc( |
| 4512 | const TemplateArgument &Arg, |
| 4513 | TemplateArgumentLoc &Output) { |
| 4514 | Output = getSema().getTrivialTemplateArgumentLoc( |
| 4515 | Arg, QualType(), getDerived().getBaseLocation()); |
| 4516 | } |
| 4517 | |
| 4518 | template <typename Derived> |
| 4519 | bool TreeTransform<Derived>::TransformTemplateArgument( |
| 4520 | const TemplateArgumentLoc &Input, TemplateArgumentLoc &Output, |
| 4521 | bool Uneval) { |
| 4522 | const TemplateArgument &Arg = Input.getArgument(); |
| 4523 | switch (Arg.getKind()) { |
| 4524 | case TemplateArgument::Null: |
| 4525 | case TemplateArgument::Pack: |
| 4526 | llvm_unreachable("Unexpected TemplateArgument")::llvm::llvm_unreachable_internal("Unexpected TemplateArgument" , "clang/lib/Sema/TreeTransform.h", 4526); |
| 4527 | |
| 4528 | case TemplateArgument::Integral: |
| 4529 | case TemplateArgument::NullPtr: |
| 4530 | case TemplateArgument::Declaration: { |
| 4531 | // Transform a resolved template argument straight to a resolved template |
| 4532 | // argument. We get here when substituting into an already-substituted |
| 4533 | // template type argument during concept satisfaction checking. |
| 4534 | QualType T = Arg.getNonTypeTemplateArgumentType(); |
| 4535 | QualType NewT = getDerived().TransformType(T); |
| 4536 | if (NewT.isNull()) |
| 4537 | return true; |
| 4538 | |
| 4539 | ValueDecl *D = Arg.getKind() == TemplateArgument::Declaration |
| 4540 | ? Arg.getAsDecl() |
| 4541 | : nullptr; |
| 4542 | ValueDecl *NewD = D ? cast_or_null<ValueDecl>(getDerived().TransformDecl( |
| 4543 | getDerived().getBaseLocation(), D)) |
| 4544 | : nullptr; |
| 4545 | if (D && !NewD) |
| 4546 | return true; |
| 4547 | |
| 4548 | if (NewT == T && D == NewD) |
| 4549 | Output = Input; |
| 4550 | else if (Arg.getKind() == TemplateArgument::Integral) |
| 4551 | Output = TemplateArgumentLoc( |
| 4552 | TemplateArgument(getSema().Context, Arg.getAsIntegral(), NewT), |
| 4553 | TemplateArgumentLocInfo()); |
| 4554 | else if (Arg.getKind() == TemplateArgument::NullPtr) |
| 4555 | Output = TemplateArgumentLoc(TemplateArgument(NewT, /*IsNullPtr=*/true), |
| 4556 | TemplateArgumentLocInfo()); |
| 4557 | else |
| 4558 | Output = TemplateArgumentLoc(TemplateArgument(NewD, NewT), |
| 4559 | TemplateArgumentLocInfo()); |
| 4560 | |
| 4561 | return false; |
| 4562 | } |
| 4563 | |
| 4564 | case TemplateArgument::Type: { |
| 4565 | TypeSourceInfo *DI = Input.getTypeSourceInfo(); |
| 4566 | if (!DI) |
| 4567 | DI = InventTypeSourceInfo(Input.getArgument().getAsType()); |
| 4568 | |
| 4569 | DI = getDerived().TransformType(DI); |
| 4570 | if (!DI) |
| 4571 | return true; |
| 4572 | |
| 4573 | Output = TemplateArgumentLoc(TemplateArgument(DI->getType()), DI); |
| 4574 | return false; |
| 4575 | } |
| 4576 | |
| 4577 | case TemplateArgument::Template: { |
| 4578 | NestedNameSpecifierLoc QualifierLoc = Input.getTemplateQualifierLoc(); |
| 4579 | if (QualifierLoc) { |
| 4580 | QualifierLoc = getDerived().TransformNestedNameSpecifierLoc(QualifierLoc); |
| 4581 | if (!QualifierLoc) |
| 4582 | return true; |
| 4583 | } |
| 4584 | |
| 4585 | CXXScopeSpec SS; |
| 4586 | SS.Adopt(QualifierLoc); |
| 4587 | TemplateName Template = getDerived().TransformTemplateName( |
| 4588 | SS, Arg.getAsTemplate(), Input.getTemplateNameLoc()); |
| 4589 | if (Template.isNull()) |
| 4590 | return true; |
| 4591 | |
| 4592 | Output = TemplateArgumentLoc(SemaRef.Context, TemplateArgument(Template), |
| 4593 | QualifierLoc, Input.getTemplateNameLoc()); |
| 4594 | return false; |
| 4595 | } |
| 4596 | |
| 4597 | case TemplateArgument::TemplateExpansion: |
| 4598 | llvm_unreachable("Caller should expand pack expansions")::llvm::llvm_unreachable_internal("Caller should expand pack expansions" , "clang/lib/Sema/TreeTransform.h", 4598); |
| 4599 | |
| 4600 | case TemplateArgument::Expression: { |
| 4601 | // Template argument expressions are constant expressions. |
| 4602 | EnterExpressionEvaluationContext Unevaluated( |
| 4603 | getSema(), |
| 4604 | Uneval ? Sema::ExpressionEvaluationContext::Unevaluated |
| 4605 | : Sema::ExpressionEvaluationContext::ConstantEvaluated, |
| 4606 | Sema::ReuseLambdaContextDecl, /*ExprContext=*/ |
| 4607 | Sema::ExpressionEvaluationContextRecord::EK_TemplateArgument); |
| 4608 | |
| 4609 | Expr *InputExpr = Input.getSourceExpression(); |
| 4610 | if (!InputExpr) |
| 4611 | InputExpr = Input.getArgument().getAsExpr(); |
| 4612 | |
| 4613 | ExprResult E = getDerived().TransformExpr(InputExpr); |
| 4614 | E = SemaRef.ActOnConstantExpression(E); |
| 4615 | if (E.isInvalid()) |
| 4616 | return true; |
| 4617 | Output = TemplateArgumentLoc(TemplateArgument(E.get()), E.get()); |
| 4618 | return false; |
| 4619 | } |
| 4620 | } |
| 4621 | |
| 4622 | // Work around bogus GCC warning |
| 4623 | return true; |
| 4624 | } |
| 4625 | |
| 4626 | /// Iterator adaptor that invents template argument location information |
| 4627 | /// for each of the template arguments in its underlying iterator. |
| 4628 | template<typename Derived, typename InputIterator> |
| 4629 | class TemplateArgumentLocInventIterator { |
| 4630 | TreeTransform<Derived> &Self; |
| 4631 | InputIterator Iter; |
| 4632 | |
| 4633 | public: |
| 4634 | typedef TemplateArgumentLoc value_type; |
| 4635 | typedef TemplateArgumentLoc reference; |
| 4636 | typedef typename std::iterator_traits<InputIterator>::difference_type |
| 4637 | difference_type; |
| 4638 | typedef std::input_iterator_tag iterator_category; |
| 4639 | |
| 4640 | class pointer { |
| 4641 | TemplateArgumentLoc Arg; |
| 4642 | |
| 4643 | public: |
| 4644 | explicit pointer(TemplateArgumentLoc Arg) : Arg(Arg) { } |
| 4645 | |
| 4646 | const TemplateArgumentLoc *operator->() const { return &Arg; } |
| 4647 | }; |
| 4648 | |
| 4649 | TemplateArgumentLocInventIterator() { } |
| 4650 | |
| 4651 | explicit TemplateArgumentLocInventIterator(TreeTransform<Derived> &Self, |
| 4652 | InputIterator Iter) |
| 4653 | : Self(Self), Iter(Iter) { } |
| 4654 | |
| 4655 | TemplateArgumentLocInventIterator &operator++() { |
| 4656 | ++Iter; |
| 4657 | return *this; |
| 4658 | } |
| 4659 | |
| 4660 | TemplateArgumentLocInventIterator operator++(int) { |
| 4661 | TemplateArgumentLocInventIterator Old(*this); |
| 4662 | ++(*this); |
| 4663 | return Old; |
| 4664 | } |
| 4665 | |
| 4666 | reference operator*() const { |
| 4667 | TemplateArgumentLoc Result; |
| 4668 | Self.InventTemplateArgumentLoc(*Iter, Result); |
| 4669 | return Result; |
| 4670 | } |
| 4671 | |
| 4672 | pointer operator->() const { return pointer(**this); } |
| 4673 | |
| 4674 | friend bool operator==(const TemplateArgumentLocInventIterator &X, |
| 4675 | const TemplateArgumentLocInventIterator &Y) { |
| 4676 | return X.Iter == Y.Iter; |
| 4677 | } |
| 4678 | |
| 4679 | friend bool operator!=(const TemplateArgumentLocInventIterator &X, |
| 4680 | const TemplateArgumentLocInventIterator &Y) { |
| 4681 | return X.Iter != Y.Iter; |
| 4682 | } |
| 4683 | }; |
| 4684 | |
| 4685 | template<typename Derived> |
| 4686 | template<typename InputIterator> |
| 4687 | bool TreeTransform<Derived>::TransformTemplateArguments( |
| 4688 | InputIterator First, InputIterator Last, TemplateArgumentListInfo &Outputs, |
| 4689 | bool Uneval) { |
| 4690 | for (; First != Last; ++First) { |
| 4691 | TemplateArgumentLoc Out; |
| 4692 | TemplateArgumentLoc In = *First; |
| 4693 | |
| 4694 | if (In.getArgument().getKind() == TemplateArgument::Pack) { |
| 4695 | // Unpack argument packs, which we translate them into separate |
| 4696 | // arguments. |
| 4697 | // FIXME: We could do much better if we could guarantee that the |
| 4698 | // TemplateArgumentLocInfo for the pack expansion would be usable for |
| 4699 | // all of the template arguments in the argument pack. |
| 4700 | typedef TemplateArgumentLocInventIterator<Derived, |
| 4701 | TemplateArgument::pack_iterator> |
| 4702 | PackLocIterator; |
| 4703 | if (TransformTemplateArguments(PackLocIterator(*this, |
| 4704 | In.getArgument().pack_begin()), |
| 4705 | PackLocIterator(*this, |
| 4706 | In.getArgument().pack_end()), |
| 4707 | Outputs, Uneval)) |
| 4708 | return true; |
| 4709 | |
| 4710 | continue; |
| 4711 | } |
| 4712 | |
| 4713 | if (In.getArgument().isPackExpansion()) { |
| 4714 | // We have a pack expansion, for which we will be substituting into |
| 4715 | // the pattern. |
| 4716 | SourceLocation Ellipsis; |
| 4717 | std::optional<unsigned> OrigNumExpansions; |
| 4718 | TemplateArgumentLoc Pattern |
| 4719 | = getSema().getTemplateArgumentPackExpansionPattern( |
| 4720 | In, Ellipsis, OrigNumExpansions); |
| 4721 | |
| 4722 | SmallVector<UnexpandedParameterPack, 2> Unexpanded; |
| 4723 | getSema().collectUnexpandedParameterPacks(Pattern, Unexpanded); |
| 4724 | assert(!Unexpanded.empty() && "Pack expansion without parameter packs?")(static_cast <bool> (!Unexpanded.empty() && "Pack expansion without parameter packs?" ) ? void (0) : __assert_fail ("!Unexpanded.empty() && \"Pack expansion without parameter packs?\"" , "clang/lib/Sema/TreeTransform.h", 4724, __extension__ __PRETTY_FUNCTION__ )); |
| 4725 | |
| 4726 | // Determine whether the set of unexpanded parameter packs can and should |
| 4727 | // be expanded. |
| 4728 | bool Expand = true; |
| 4729 | bool RetainExpansion = false; |
| 4730 | std::optional<unsigned> NumExpansions = OrigNumExpansions; |
| 4731 | if (getDerived().TryExpandParameterPacks(Ellipsis, |
| 4732 | Pattern.getSourceRange(), |
| 4733 | Unexpanded, |
| 4734 | Expand, |
| 4735 | RetainExpansion, |
| 4736 | NumExpansions)) |
| 4737 | return true; |
| 4738 | |
| 4739 | if (!Expand) { |
| 4740 | // The transform has determined that we should perform a simple |
| 4741 | // transformation on the pack expansion, producing another pack |
| 4742 | // expansion. |
| 4743 | TemplateArgumentLoc OutPattern; |
| 4744 | Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1); |
| 4745 | if (getDerived().TransformTemplateArgument(Pattern, OutPattern, Uneval)) |
| 4746 | return true; |
| 4747 | |
| 4748 | Out = getDerived().RebuildPackExpansion(OutPattern, Ellipsis, |
| 4749 | NumExpansions); |
| 4750 | if (Out.getArgument().isNull()) |
| 4751 | return true; |
| 4752 | |
| 4753 | Outputs.addArgument(Out); |
| 4754 | continue; |
| 4755 | } |
| 4756 | |
| 4757 | // The transform has determined that we should perform an elementwise |
| 4758 | // expansion of the pattern. Do so. |
| 4759 | for (unsigned I = 0; I != *NumExpansions; ++I) { |
| 4760 | Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I); |
| 4761 | |
| 4762 | if (getDerived().TransformTemplateArgument(Pattern, Out, Uneval)) |
| 4763 | return true; |
| 4764 | |
| 4765 | if (Out.getArgument().containsUnexpandedParameterPack()) { |
| 4766 | Out = getDerived().RebuildPackExpansion(Out, Ellipsis, |
| 4767 | OrigNumExpansions); |
| 4768 | if (Out.getArgument().isNull()) |
| 4769 | return true; |
| 4770 | } |
| 4771 | |
| 4772 | Outputs.addArgument(Out); |
| 4773 | } |
| 4774 | |
| 4775 | // If we're supposed to retain a pack expansion, do so by temporarily |
| 4776 | // forgetting the partially-substituted parameter pack. |
| 4777 | if (RetainExpansion) { |
| 4778 | ForgetPartiallySubstitutedPackRAII Forget(getDerived()); |
| 4779 | |
| 4780 | if (getDerived().TransformTemplateArgument(Pattern, Out, Uneval)) |
| 4781 | return true; |
| 4782 | |
| 4783 | Out = getDerived().RebuildPackExpansion(Out, Ellipsis, |
| 4784 | OrigNumExpansions); |
| 4785 | if (Out.getArgument().isNull()) |
| 4786 | return true; |
| 4787 | |
| 4788 | Outputs.addArgument(Out); |
| 4789 | } |
| 4790 | |
| 4791 | continue; |
| 4792 | } |
| 4793 | |
| 4794 | // The simple case: |
| 4795 | if (getDerived().TransformTemplateArgument(In, Out, Uneval)) |
| 4796 | return true; |
| 4797 | |
| 4798 | Outputs.addArgument(Out); |
| 4799 | } |
| 4800 | |
| 4801 | return false; |
| 4802 | |
| 4803 | } |
| 4804 | |
| 4805 | //===----------------------------------------------------------------------===// |
| 4806 | // Type transformation |
| 4807 | //===----------------------------------------------------------------------===// |
| 4808 | |
| 4809 | template<typename Derived> |
| 4810 | QualType TreeTransform<Derived>::TransformType(QualType T) { |
| 4811 | if (getDerived().AlreadyTransformed(T)) |
| 4812 | return T; |
| 4813 | |
| 4814 | // Temporary workaround. All of these transformations should |
| 4815 | // eventually turn into transformations on TypeLocs. |
| 4816 | TypeSourceInfo *DI = getSema().Context.getTrivialTypeSourceInfo(T, |
| 4817 | getDerived().getBaseLocation()); |
| 4818 | |
| 4819 | TypeSourceInfo *NewDI = getDerived().TransformType(DI); |
| 4820 | |
| 4821 | if (!NewDI) |
| 4822 | return QualType(); |
| 4823 | |
| 4824 | return NewDI->getType(); |
| 4825 | } |
| 4826 | |
| 4827 | template<typename Derived> |
| 4828 | TypeSourceInfo *TreeTransform<Derived>::TransformType(TypeSourceInfo *DI) { |
| 4829 | // Refine the base location to the type's location. |
| 4830 | TemporaryBase Rebase(*this, DI->getTypeLoc().getBeginLoc(), |
| 4831 | getDerived().getBaseEntity()); |
| 4832 | if (getDerived().AlreadyTransformed(DI->getType())) |
| 4833 | return DI; |
| 4834 | |
| 4835 | TypeLocBuilder TLB; |
| 4836 | |
| 4837 | TypeLoc TL = DI->getTypeLoc(); |
| 4838 | TLB.reserve(TL.getFullDataSize()); |
| 4839 | |
| 4840 | QualType Result = getDerived().TransformType(TLB, TL); |
| 4841 | if (Result.isNull()) |
| 4842 | return nullptr; |
| 4843 | |
| 4844 | return TLB.getTypeSourceInfo(SemaRef.Context, Result); |
| 4845 | } |
| 4846 | |
| 4847 | template<typename Derived> |
| 4848 | QualType |
| 4849 | TreeTransform<Derived>::TransformType(TypeLocBuilder &TLB, TypeLoc T) { |
| 4850 | switch (T.getTypeLocClass()) { |
| 4851 | #define ABSTRACT_TYPELOC(CLASS, PARENT) |
| 4852 | #define TYPELOC(CLASS, PARENT) \ |
| 4853 | case TypeLoc::CLASS: \ |
| 4854 | return getDerived().Transform##CLASS##Type(TLB, \ |
| 4855 | T.castAs<CLASS##TypeLoc>()); |
| 4856 | #include "clang/AST/TypeLocNodes.def" |
| 4857 | } |
| 4858 | |
| 4859 | llvm_unreachable("unhandled type loc!")::llvm::llvm_unreachable_internal("unhandled type loc!", "clang/lib/Sema/TreeTransform.h" , 4859); |
| 4860 | } |
| 4861 | |
| 4862 | template<typename Derived> |
| 4863 | QualType TreeTransform<Derived>::TransformTypeWithDeducedTST(QualType T) { |
| 4864 | if (!isa<DependentNameType>(T)) |
| 4865 | return TransformType(T); |
| 4866 | |
| 4867 | if (getDerived().AlreadyTransformed(T)) |
| 4868 | return T; |
| 4869 | TypeSourceInfo *DI = getSema().Context.getTrivialTypeSourceInfo(T, |
| 4870 | getDerived().getBaseLocation()); |
| 4871 | TypeSourceInfo *NewDI = getDerived().TransformTypeWithDeducedTST(DI); |
| 4872 | return NewDI ? NewDI->getType() : QualType(); |
| 4873 | } |
| 4874 | |
| 4875 | template<typename Derived> |
| 4876 | TypeSourceInfo * |
| 4877 | TreeTransform<Derived>::TransformTypeWithDeducedTST(TypeSourceInfo *DI) { |
| 4878 | if (!isa<DependentNameType>(DI->getType())) |
| 4879 | return TransformType(DI); |
| 4880 | |
| 4881 | // Refine the base location to the type's location. |
| 4882 | TemporaryBase Rebase(*this, DI->getTypeLoc().getBeginLoc(), |
| 4883 | getDerived().getBaseEntity()); |
| 4884 | if (getDerived().AlreadyTransformed(DI->getType())) |
| 4885 | return DI; |
| 4886 | |
| 4887 | TypeLocBuilder TLB; |
| 4888 | |
| 4889 | TypeLoc TL = DI->getTypeLoc(); |
| 4890 | TLB.reserve(TL.getFullDataSize()); |
| 4891 | |
| 4892 | auto QTL = TL.getAs<QualifiedTypeLoc>(); |
| 4893 | if (QTL) |
| 4894 | TL = QTL.getUnqualifiedLoc(); |
| 4895 | |
| 4896 | auto DNTL = TL.castAs<DependentNameTypeLoc>(); |
| 4897 | |
| 4898 | QualType Result = getDerived().TransformDependentNameType( |
| 4899 | TLB, DNTL, /*DeducedTSTContext*/true); |
| 4900 | if (Result.isNull()) |
| 4901 | return nullptr; |
| 4902 | |
| 4903 | if (QTL) { |
| 4904 | Result = getDerived().RebuildQualifiedType(Result, QTL); |
| 4905 | if (Result.isNull()) |
| 4906 | return nullptr; |
| 4907 | TLB.TypeWasModifiedSafely(Result); |
| 4908 | } |
| 4909 | |
| 4910 | return TLB.getTypeSourceInfo(SemaRef.Context, Result); |
| 4911 | } |
| 4912 | |
| 4913 | template<typename Derived> |
| 4914 | QualType |
| 4915 | TreeTransform<Derived>::TransformQualifiedType(TypeLocBuilder &TLB, |
| 4916 | QualifiedTypeLoc T) { |
| 4917 | QualType Result; |
| 4918 | TypeLoc UnqualTL = T.getUnqualifiedLoc(); |
| 4919 | auto SuppressObjCLifetime = |
| 4920 | T.getType().getLocalQualifiers().hasObjCLifetime(); |
| 4921 | if (auto TTP = UnqualTL.getAs<TemplateTypeParmTypeLoc>()) { |
| 4922 | Result = getDerived().TransformTemplateTypeParmType(TLB, TTP, |
| 4923 | SuppressObjCLifetime); |
| 4924 | } else if (auto STTP = UnqualTL.getAs<SubstTemplateTypeParmPackTypeLoc>()) { |
| 4925 | Result = getDerived().TransformSubstTemplateTypeParmPackType( |
| 4926 | TLB, STTP, SuppressObjCLifetime); |
| 4927 | } else { |
| 4928 | Result = getDerived().TransformType(TLB, UnqualTL); |
| 4929 | } |
| 4930 | |
| 4931 | if (Result.isNull()) |
| 4932 | return QualType(); |
| 4933 | |
| 4934 | Result = getDerived().RebuildQualifiedType(Result, T); |
| 4935 | |
| 4936 | if (Result.isNull()) |
| 4937 | return QualType(); |
| 4938 | |
| 4939 | // RebuildQualifiedType might have updated the type, but not in a way |
| 4940 | // that invalidates the TypeLoc. (There's no location information for |
| 4941 | // qualifiers.) |
| 4942 | TLB.TypeWasModifiedSafely(Result); |
| 4943 | |
| 4944 | return Result; |
| 4945 | } |
| 4946 | |
| 4947 | template <typename Derived> |
| 4948 | QualType TreeTransform<Derived>::RebuildQualifiedType(QualType T, |
| 4949 | QualifiedTypeLoc TL) { |
| 4950 | |
| 4951 | SourceLocation Loc = TL.getBeginLoc(); |
| 4952 | Qualifiers Quals = TL.getType().getLocalQualifiers(); |
| 4953 | |
| 4954 | if ((T.getAddressSpace() != LangAS::Default && |
| 4955 | Quals.getAddressSpace() != LangAS::Default) && |
| 4956 | T.getAddressSpace() != Quals.getAddressSpace()) { |
| 4957 | SemaRef.Diag(Loc, diag::err_address_space_mismatch_templ_inst) |
| 4958 | << TL.getType() << T; |
| 4959 | return QualType(); |
| 4960 | } |
| 4961 | |
| 4962 | // C++ [dcl.fct]p7: |
| 4963 | // [When] adding cv-qualifications on top of the function type [...] the |
| 4964 | // cv-qualifiers are ignored. |
| 4965 | if (T->isFunctionType()) { |
| 4966 | T = SemaRef.getASTContext().getAddrSpaceQualType(T, |
| 4967 | Quals.getAddressSpace()); |
| 4968 | return T; |
| 4969 | } |
| 4970 | |
| 4971 | // C++ [dcl.ref]p1: |
| 4972 | // when the cv-qualifiers are introduced through the use of a typedef-name |
| 4973 | // or decltype-specifier [...] the cv-qualifiers are ignored. |
| 4974 | // Note that [dcl.ref]p1 lists all cases in which cv-qualifiers can be |
| 4975 | // applied to a reference type. |
| 4976 | if (T->isReferenceType()) { |
| 4977 | // The only qualifier that applies to a reference type is restrict. |
| 4978 | if (!Quals.hasRestrict()) |
| 4979 | return T; |
| 4980 | Quals = Qualifiers::fromCVRMask(Qualifiers::Restrict); |
| 4981 | } |
| 4982 | |
| 4983 | // Suppress Objective-C lifetime qualifiers if they don't make sense for the |
| 4984 | // resulting type. |
| 4985 | if (Quals.hasObjCLifetime()) { |
| 4986 | if (!T->isObjCLifetimeType() && !T->isDependentType()) |
| 4987 | Quals.removeObjCLifetime(); |
| 4988 | else if (T.getObjCLifetime()) { |
| 4989 | // Objective-C ARC: |
| 4990 | // A lifetime qualifier applied to a substituted template parameter |
| 4991 | // overrides the lifetime qualifier from the template argument. |
| 4992 | const AutoType *AutoTy; |
| 4993 | if ((AutoTy = dyn_cast<AutoType>(T)) && AutoTy->isDeduced()) { |
| 4994 | // 'auto' types behave the same way as template parameters. |
| 4995 | QualType Deduced = AutoTy->getDeducedType(); |
| 4996 | Qualifiers Qs = Deduced.getQualifiers(); |
| 4997 | Qs.removeObjCLifetime(); |
| 4998 | Deduced = |
| 4999 | SemaRef.Context.getQualifiedType(Deduced.getUnqualifiedType(), Qs); |
| 5000 | T = SemaRef.Context.getAutoType(Deduced, AutoTy->getKeyword(), |
| 5001 | AutoTy->isDependentType(), |
| 5002 | /*isPack=*/false, |
| 5003 | AutoTy->getTypeConstraintConcept(), |
| 5004 | AutoTy->getTypeConstraintArguments()); |
| 5005 | } else { |
| 5006 | // Otherwise, complain about the addition of a qualifier to an |
| 5007 | // already-qualified type. |
| 5008 | // FIXME: Why is this check not in Sema::BuildQualifiedType? |
| 5009 | SemaRef.Diag(Loc, diag::err_attr_objc_ownership_redundant) << T; |
| 5010 | Quals.removeObjCLifetime(); |
| 5011 | } |
| 5012 | } |
| 5013 | } |
| 5014 | |
| 5015 | return SemaRef.BuildQualifiedType(T, Loc, Quals); |
| 5016 | } |
| 5017 | |
| 5018 | template<typename Derived> |
| 5019 | TypeLoc |
| 5020 | TreeTransform<Derived>::TransformTypeInObjectScope(TypeLoc TL, |
| 5021 | QualType ObjectType, |
| 5022 | NamedDecl *UnqualLookup, |
| 5023 | CXXScopeSpec &SS) { |
| 5024 | if (getDerived().AlreadyTransformed(TL.getType())) |
| 5025 | return TL; |
| 5026 | |
| 5027 | TypeSourceInfo *TSI = |
| 5028 | TransformTSIInObjectScope(TL, ObjectType, UnqualLookup, SS); |
| 5029 | if (TSI) |
| 5030 | return TSI->getTypeLoc(); |
| 5031 | return TypeLoc(); |
| 5032 | } |
| 5033 | |
| 5034 | template<typename Derived> |
| 5035 | TypeSourceInfo * |
| 5036 | TreeTransform<Derived>::TransformTypeInObjectScope(TypeSourceInfo *TSInfo, |
| 5037 | QualType ObjectType, |
| 5038 | NamedDecl *UnqualLookup, |
| 5039 | CXXScopeSpec &SS) { |
| 5040 | if (getDerived().AlreadyTransformed(TSInfo->getType())) |
| 5041 | return TSInfo; |
| 5042 | |
| 5043 | return TransformTSIInObjectScope(TSInfo->getTypeLoc(), ObjectType, |
| 5044 | UnqualLookup, SS); |
| 5045 | } |
| 5046 | |
| 5047 | template <typename Derived> |
| 5048 | TypeSourceInfo *TreeTransform<Derived>::TransformTSIInObjectScope( |
| 5049 | TypeLoc TL, QualType ObjectType, NamedDecl *UnqualLookup, |
| 5050 | CXXScopeSpec &SS) { |
| 5051 | QualType T = TL.getType(); |
| 5052 | assert(!getDerived().AlreadyTransformed(T))(static_cast <bool> (!getDerived().AlreadyTransformed(T )) ? void (0) : __assert_fail ("!getDerived().AlreadyTransformed(T)" , "clang/lib/Sema/TreeTransform.h", 5052, __extension__ __PRETTY_FUNCTION__ )); |
| 5053 | |
| 5054 | TypeLocBuilder TLB; |
| 5055 | QualType Result; |
| 5056 | |
| 5057 | if (isa<TemplateSpecializationType>(T)) { |
| 5058 | TemplateSpecializationTypeLoc SpecTL = |
| 5059 | TL.castAs<TemplateSpecializationTypeLoc>(); |
| 5060 | |
| 5061 | TemplateName Template = getDerived().TransformTemplateName( |
| 5062 | SS, SpecTL.getTypePtr()->getTemplateName(), SpecTL.getTemplateNameLoc(), |
| 5063 | ObjectType, UnqualLookup, /*AllowInjectedClassName*/true); |
| 5064 | if (Template.isNull()) |
| 5065 | return nullptr; |
| 5066 | |
| 5067 | Result = getDerived().TransformTemplateSpecializationType(TLB, SpecTL, |
| 5068 | Template); |
| 5069 | } else if (isa<DependentTemplateSpecializationType>(T)) { |
| 5070 | DependentTemplateSpecializationTypeLoc SpecTL = |
| 5071 | TL.castAs<DependentTemplateSpecializationTypeLoc>(); |
| 5072 | |
| 5073 | TemplateName Template |
| 5074 | = getDerived().RebuildTemplateName(SS, |
| 5075 | SpecTL.getTemplateKeywordLoc(), |
| 5076 | *SpecTL.getTypePtr()->getIdentifier(), |
| 5077 | SpecTL.getTemplateNameLoc(), |
| 5078 | ObjectType, UnqualLookup, |
| 5079 | /*AllowInjectedClassName*/true); |
| 5080 | if (Template.isNull()) |
| 5081 | return nullptr; |
| 5082 | |
| 5083 | Result = getDerived().TransformDependentTemplateSpecializationType(TLB, |
| 5084 | SpecTL, |
| 5085 | Template, |
| 5086 | SS); |
| 5087 | } else { |
| 5088 | // Nothing special needs to be done for these. |
| 5089 | Result = getDerived().TransformType(TLB, TL); |
| 5090 | } |
| 5091 | |
| 5092 | if (Result.isNull()) |
| 5093 | return nullptr; |
| 5094 | |
| 5095 | return TLB.getTypeSourceInfo(SemaRef.Context, Result); |
| 5096 | } |
| 5097 | |
| 5098 | template <class TyLoc> static inline |
| 5099 | QualType TransformTypeSpecType(TypeLocBuilder &TLB, TyLoc T) { |
| 5100 | TyLoc NewT = TLB.push<TyLoc>(T.getType()); |
| 5101 | NewT.setNameLoc(T.getNameLoc()); |
| 5102 | return T.getType(); |
| 5103 | } |
| 5104 | |
| 5105 | template<typename Derived> |
| 5106 | QualType TreeTransform<Derived>::TransformBuiltinType(TypeLocBuilder &TLB, |
| 5107 | BuiltinTypeLoc T) { |
| 5108 | BuiltinTypeLoc NewT = TLB.push<BuiltinTypeLoc>(T.getType()); |
| 5109 | NewT.setBuiltinLoc(T.getBuiltinLoc()); |
| 5110 | if (T.needsExtraLocalData()) |
| 5111 | NewT.getWrittenBuiltinSpecs() = T.getWrittenBuiltinSpecs(); |
| 5112 | return T.getType(); |
| 5113 | } |
| 5114 | |
| 5115 | template<typename Derived> |
| 5116 | QualType TreeTransform<Derived>::TransformComplexType(TypeLocBuilder &TLB, |
| 5117 | ComplexTypeLoc T) { |
| 5118 | // FIXME: recurse? |
| 5119 | return TransformTypeSpecType(TLB, T); |
| 5120 | } |
| 5121 | |
| 5122 | template <typename Derived> |
| 5123 | QualType TreeTransform<Derived>::TransformAdjustedType(TypeLocBuilder &TLB, |
| 5124 | AdjustedTypeLoc TL) { |
| 5125 | // Adjustments applied during transformation are handled elsewhere. |
| 5126 | return getDerived().TransformType(TLB, TL.getOriginalLoc()); |
| 5127 | } |
| 5128 | |
| 5129 | template<typename Derived> |
| 5130 | QualType TreeTransform<Derived>::TransformDecayedType(TypeLocBuilder &TLB, |
| 5131 | DecayedTypeLoc TL) { |
| 5132 | QualType OriginalType = getDerived().TransformType(TLB, TL.getOriginalLoc()); |
| 5133 | if (OriginalType.isNull()) |
| 5134 | return QualType(); |
| 5135 | |
| 5136 | QualType Result = TL.getType(); |
| 5137 | if (getDerived().AlwaysRebuild() || |
| 5138 | OriginalType != TL.getOriginalLoc().getType()) |
| 5139 | Result = SemaRef.Context.getDecayedType(OriginalType); |
| 5140 | TLB.push<DecayedTypeLoc>(Result); |
| 5141 | // Nothing to set for DecayedTypeLoc. |
| 5142 | return Result; |
| 5143 | } |
| 5144 | |
| 5145 | template<typename Derived> |
| 5146 | QualType TreeTransform<Derived>::TransformPointerType(TypeLocBuilder &TLB, |
| 5147 | PointerTypeLoc TL) { |
| 5148 | QualType PointeeType |
| 5149 | = getDerived().TransformType(TLB, TL.getPointeeLoc()); |
| 5150 | if (PointeeType.isNull()) |
| 5151 | return QualType(); |
| 5152 | |
| 5153 | QualType Result = TL.getType(); |
| 5154 | if (PointeeType->getAs<ObjCObjectType>()) { |
| 5155 | // A dependent pointer type 'T *' has is being transformed such |
| 5156 | // that an Objective-C class type is being replaced for 'T'. The |
| 5157 | // resulting pointer type is an ObjCObjectPointerType, not a |
| 5158 | // PointerType. |
| 5159 | Result = SemaRef.Context.getObjCObjectPointerType(PointeeType); |
| 5160 | |
| 5161 | ObjCObjectPointerTypeLoc NewT = TLB.push<ObjCObjectPointerTypeLoc>(Result); |
| 5162 | NewT.setStarLoc(TL.getStarLoc()); |
| 5163 | return Result; |
| 5164 | } |
| 5165 | |
| 5166 | if (getDerived().AlwaysRebuild() || |
| 5167 | PointeeType != TL.getPointeeLoc().getType()) { |
| 5168 | Result = getDerived().RebuildPointerType(PointeeType, TL.getSigilLoc()); |
| 5169 | if (Result.isNull()) |
| 5170 | return QualType(); |
| 5171 | } |
| 5172 | |
| 5173 | // Objective-C ARC can add lifetime qualifiers to the type that we're |
| 5174 | // pointing to. |
| 5175 | TLB.TypeWasModifiedSafely(Result->getPointeeType()); |
| 5176 | |
| 5177 | PointerTypeLoc NewT = TLB.push<PointerTypeLoc>(Result); |
| 5178 | NewT.setSigilLoc(TL.getSigilLoc()); |
| 5179 | return Result; |
| 5180 | } |
| 5181 | |
| 5182 | template<typename Derived> |
| 5183 | QualType |
| 5184 | TreeTransform<Derived>::TransformBlockPointerType(TypeLocBuilder &TLB, |
| 5185 | BlockPointerTypeLoc TL) { |
| 5186 | QualType PointeeType |
| 5187 | = getDerived().TransformType(TLB, TL.getPointeeLoc()); |
| 5188 | if (PointeeType.isNull()) |
| 5189 | return QualType(); |
| 5190 | |
| 5191 | QualType Result = TL.getType(); |
| 5192 | if (getDerived().AlwaysRebuild() || |
| 5193 | PointeeType != TL.getPointeeLoc().getType()) { |
| 5194 | Result = getDerived().RebuildBlockPointerType(PointeeType, |
| 5195 | TL.getSigilLoc()); |
| 5196 | if (Result.isNull()) |
| 5197 | return QualType(); |
| 5198 | } |
| 5199 | |
| 5200 | BlockPointerTypeLoc NewT = TLB.push<BlockPointerTypeLoc>(Result); |
| 5201 | NewT.setSigilLoc(TL.getSigilLoc()); |
| 5202 | return Result; |
| 5203 | } |
| 5204 | |
| 5205 | /// Transforms a reference type. Note that somewhat paradoxically we |
| 5206 | /// don't care whether the type itself is an l-value type or an r-value |
| 5207 | /// type; we only care if the type was *written* as an l-value type |
| 5208 | /// or an r-value type. |
| 5209 | template<typename Derived> |
| 5210 | QualType |
| 5211 | TreeTransform<Derived>::TransformReferenceType(TypeLocBuilder &TLB, |
| 5212 | ReferenceTypeLoc TL) { |
| 5213 | const ReferenceType *T = TL.getTypePtr(); |
| 5214 | |
| 5215 | // Note that this works with the pointee-as-written. |
| 5216 | QualType PointeeType = getDerived().TransformType(TLB, TL.getPointeeLoc()); |
| 5217 | if (PointeeType.isNull()) |
| 5218 | return QualType(); |
| 5219 | |
| 5220 | QualType Result = TL.getType(); |
| 5221 | if (getDerived().AlwaysRebuild() || |
| 5222 | PointeeType != T->getPointeeTypeAsWritten()) { |
| 5223 | Result = getDerived().RebuildReferenceType(PointeeType, |
| 5224 | T->isSpelledAsLValue(), |
| 5225 | TL.getSigilLoc()); |
| 5226 | if (Result.isNull()) |
| 5227 | return QualType(); |
| 5228 | } |
| 5229 | |
| 5230 | // Objective-C ARC can add lifetime qualifiers to the type that we're |
| 5231 | // referring to. |
| 5232 | TLB.TypeWasModifiedSafely( |
| 5233 | Result->castAs<ReferenceType>()->getPointeeTypeAsWritten()); |
| 5234 | |
| 5235 | // r-value references can be rebuilt as l-value references. |
| 5236 | ReferenceTypeLoc NewTL; |
| 5237 | if (isa<LValueReferenceType>(Result)) |
| 5238 | NewTL = TLB.push<LValueReferenceTypeLoc>(Result); |
| 5239 | else |
| 5240 | NewTL = TLB.push<RValueReferenceTypeLoc>(Result); |
| 5241 | NewTL.setSigilLoc(TL.getSigilLoc()); |
| 5242 | |
| 5243 | return Result; |
| 5244 | } |
| 5245 | |
| 5246 | template<typename Derived> |
| 5247 | QualType |
| 5248 | TreeTransform<Derived>::TransformLValueReferenceType(TypeLocBuilder &TLB, |
| 5249 | LValueReferenceTypeLoc TL) { |
| 5250 | return TransformReferenceType(TLB, TL); |
| 5251 | } |
| 5252 | |
| 5253 | template<typename Derived> |
| 5254 | QualType |
| 5255 | TreeTransform<Derived>::TransformRValueReferenceType(TypeLocBuilder &TLB, |
| 5256 | RValueReferenceTypeLoc TL) { |
| 5257 | return TransformReferenceType(TLB, TL); |
| 5258 | } |
| 5259 | |
| 5260 | template<typename Derived> |
| 5261 | QualType |
| 5262 | TreeTransform<Derived>::TransformMemberPointerType(TypeLocBuilder &TLB, |
| 5263 | MemberPointerTypeLoc TL) { |
| 5264 | QualType PointeeType = getDerived().TransformType(TLB, TL.getPointeeLoc()); |
| 5265 | if (PointeeType.isNull()) |
| 5266 | return QualType(); |
| 5267 | |
| 5268 | TypeSourceInfo* OldClsTInfo = TL.getClassTInfo(); |
| 5269 | TypeSourceInfo *NewClsTInfo = nullptr; |
| 5270 | if (OldClsTInfo) { |
| 5271 | NewClsTInfo = getDerived().TransformType(OldClsTInfo); |
| 5272 | if (!NewClsTInfo) |
| 5273 | return QualType(); |
| 5274 | } |
| 5275 | |
| 5276 | const MemberPointerType *T = TL.getTypePtr(); |
| 5277 | QualType OldClsType = QualType(T->getClass(), 0); |
| 5278 | QualType NewClsType; |
| 5279 | if (NewClsTInfo) |
| 5280 | NewClsType = NewClsTInfo->getType(); |
| 5281 | else { |
| 5282 | NewClsType = getDerived().TransformType(OldClsType); |
| 5283 | if (NewClsType.isNull()) |
| 5284 | return QualType(); |
| 5285 | } |
| 5286 | |
| 5287 | QualType Result = TL.getType(); |
| 5288 | if (getDerived().AlwaysRebuild() || |
| 5289 | PointeeType != T->getPointeeType() || |
| 5290 | NewClsType != OldClsType) { |
| 5291 | Result = getDerived().RebuildMemberPointerType(PointeeType, NewClsType, |
| 5292 | TL.getStarLoc()); |
| 5293 | if (Result.isNull()) |
| 5294 | return QualType(); |
| 5295 | } |
| 5296 | |
| 5297 | // If we had to adjust the pointee type when building a member pointer, make |
| 5298 | // sure to push TypeLoc info for it. |
| 5299 | const MemberPointerType *MPT = Result->getAs<MemberPointerType>(); |
| 5300 | if (MPT && PointeeType != MPT->getPointeeType()) { |
| 5301 | assert(isa<AdjustedType>(MPT->getPointeeType()))(static_cast <bool> (isa<AdjustedType>(MPT->getPointeeType ())) ? void (0) : __assert_fail ("isa<AdjustedType>(MPT->getPointeeType())" , "clang/lib/Sema/TreeTransform.h", 5301, __extension__ __PRETTY_FUNCTION__ )); |
| 5302 | TLB.push<AdjustedTypeLoc>(MPT->getPointeeType()); |
| 5303 | } |
| 5304 | |
| 5305 | MemberPointerTypeLoc NewTL = TLB.push<MemberPointerTypeLoc>(Result); |
| 5306 | NewTL.setSigilLoc(TL.getSigilLoc()); |
| 5307 | NewTL.setClassTInfo(NewClsTInfo); |
| 5308 | |
| 5309 | return Result; |
| 5310 | } |
| 5311 | |
| 5312 | template<typename Derived> |
| 5313 | QualType |
| 5314 | TreeTransform<Derived>::TransformConstantArrayType(TypeLocBuilder &TLB, |
| 5315 | ConstantArrayTypeLoc TL) { |
| 5316 | const ConstantArrayType *T = TL.getTypePtr(); |
| 5317 | QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc()); |
| 5318 | if (ElementType.isNull()) |
| 5319 | return QualType(); |
| 5320 | |
| 5321 | // Prefer the expression from the TypeLoc; the other may have been uniqued. |
| 5322 | Expr *OldSize = TL.getSizeExpr(); |
| 5323 | if (!OldSize) |
| 5324 | OldSize = const_cast<Expr*>(T->getSizeExpr()); |
| 5325 | Expr *NewSize = nullptr; |
| 5326 | if (OldSize) { |
| 5327 | EnterExpressionEvaluationContext Unevaluated( |
| 5328 | SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated); |
| 5329 | NewSize = getDerived().TransformExpr(OldSize).template getAs<Expr>(); |
| 5330 | NewSize = SemaRef.ActOnConstantExpression(NewSize).get(); |
| 5331 | } |
| 5332 | |
| 5333 | QualType Result = TL.getType(); |
| 5334 | if (getDerived().AlwaysRebuild() || |
| 5335 | ElementType != T->getElementType() || |
| 5336 | (T->getSizeExpr() && NewSize != OldSize)) { |
| 5337 | Result = getDerived().RebuildConstantArrayType(ElementType, |
| 5338 | T->getSizeModifier(), |
| 5339 | T->getSize(), NewSize, |
| 5340 | T->getIndexTypeCVRQualifiers(), |
| 5341 | TL.getBracketsRange()); |
| 5342 | if (Result.isNull()) |
| 5343 | return QualType(); |
| 5344 | } |
| 5345 | |
| 5346 | // We might have either a ConstantArrayType or a VariableArrayType now: |
| 5347 | // a ConstantArrayType is allowed to have an element type which is a |
| 5348 | // VariableArrayType if the type is dependent. Fortunately, all array |
| 5349 | // types have the same location layout. |
| 5350 | ArrayTypeLoc NewTL = TLB.push<ArrayTypeLoc>(Result); |
| 5351 | NewTL.setLBracketLoc(TL.getLBracketLoc()); |
| 5352 | NewTL.setRBracketLoc(TL.getRBracketLoc()); |
| 5353 | NewTL.setSizeExpr(NewSize); |
| 5354 | |
| 5355 | return Result; |
| 5356 | } |
| 5357 | |
| 5358 | template<typename Derived> |
| 5359 | QualType TreeTransform<Derived>::TransformIncompleteArrayType( |
| 5360 | TypeLocBuilder &TLB, |
| 5361 | IncompleteArrayTypeLoc TL) { |
| 5362 | const IncompleteArrayType *T = TL.getTypePtr(); |
| 5363 | QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc()); |
| 5364 | if (ElementType.isNull()) |
| 5365 | return QualType(); |
| 5366 | |
| 5367 | QualType Result = TL.getType(); |
| 5368 | if (getDerived().AlwaysRebuild() || |
| 5369 | ElementType != T->getElementType()) { |
| 5370 | Result = getDerived().RebuildIncompleteArrayType(ElementType, |
| 5371 | T->getSizeModifier(), |
| 5372 | T->getIndexTypeCVRQualifiers(), |
| 5373 | TL.getBracketsRange()); |
| 5374 | if (Result.isNull()) |
| 5375 | return QualType(); |
| 5376 | } |
| 5377 | |
| 5378 | IncompleteArrayTypeLoc NewTL = TLB.push<IncompleteArrayTypeLoc>(Result); |
| 5379 | NewTL.setLBracketLoc(TL.getLBracketLoc()); |
| 5380 | NewTL.setRBracketLoc(TL.getRBracketLoc()); |
| 5381 | NewTL.setSizeExpr(nullptr); |
| 5382 | |
| 5383 | return Result; |
| 5384 | } |
| 5385 | |
| 5386 | template<typename Derived> |
| 5387 | QualType |
| 5388 | TreeTransform<Derived>::TransformVariableArrayType(TypeLocBuilder &TLB, |
| 5389 | VariableArrayTypeLoc TL) { |
| 5390 | const VariableArrayType *T = TL.getTypePtr(); |
| 5391 | QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc()); |
| 5392 | if (ElementType.isNull()) |
| 5393 | return QualType(); |
| 5394 | |
| 5395 | ExprResult SizeResult; |
| 5396 | { |
| 5397 | EnterExpressionEvaluationContext Context( |
| 5398 | SemaRef, Sema::ExpressionEvaluationContext::PotentiallyEvaluated); |
| 5399 | SizeResult = getDerived().TransformExpr(T->getSizeExpr()); |
| 5400 | } |
| 5401 | if (SizeResult.isInvalid()) |
| 5402 | return QualType(); |
| 5403 | SizeResult = |
| 5404 | SemaRef.ActOnFinishFullExpr(SizeResult.get(), /*DiscardedValue*/ false); |
| 5405 | if (SizeResult.isInvalid()) |
| 5406 | return QualType(); |
| 5407 | |
| 5408 | Expr *Size = SizeResult.get(); |
| 5409 | |
| 5410 | QualType Result = TL.getType(); |
| 5411 | if (getDerived().AlwaysRebuild() || |
| 5412 | ElementType != T->getElementType() || |
| 5413 | Size != T->getSizeExpr()) { |
| 5414 | Result = getDerived().RebuildVariableArrayType(ElementType, |
| 5415 | T->getSizeModifier(), |
| 5416 | Size, |
| 5417 | T->getIndexTypeCVRQualifiers(), |
| 5418 | TL.getBracketsRange()); |
| 5419 | if (Result.isNull()) |
| 5420 | return QualType(); |
| 5421 | } |
| 5422 | |
| 5423 | // We might have constant size array now, but fortunately it has the same |
| 5424 | // location layout. |
| 5425 | ArrayTypeLoc NewTL = TLB.push<ArrayTypeLoc>(Result); |
| 5426 | NewTL.setLBracketLoc(TL.getLBracketLoc()); |
| 5427 | NewTL.setRBracketLoc(TL.getRBracketLoc()); |
| 5428 | NewTL.setSizeExpr(Size); |
| 5429 | |
| 5430 | return Result; |
| 5431 | } |
| 5432 | |
| 5433 | template<typename Derived> |
| 5434 | QualType |
| 5435 | TreeTransform<Derived>::TransformDependentSizedArrayType(TypeLocBuilder &TLB, |
| 5436 | DependentSizedArrayTypeLoc TL) { |
| 5437 | const DependentSizedArrayType *T = TL.getTypePtr(); |
| 5438 | QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc()); |
| 5439 | if (ElementType.isNull()) |
| 5440 | return QualType(); |
| 5441 | |
| 5442 | // Array bounds are constant expressions. |
| 5443 | EnterExpressionEvaluationContext Unevaluated( |
| 5444 | SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated); |
| 5445 | |
| 5446 | // Prefer the expression from the TypeLoc; the other may have been uniqued. |
| 5447 | Expr *origSize = TL.getSizeExpr(); |
| 5448 | if (!origSize) origSize = T->getSizeExpr(); |
| 5449 | |
| 5450 | ExprResult sizeResult |
| 5451 | = getDerived().TransformExpr(origSize); |
| 5452 | sizeResult = SemaRef.ActOnConstantExpression(sizeResult); |
| 5453 | if (sizeResult.isInvalid()) |
| 5454 | return QualType(); |
| 5455 | |
| 5456 | Expr *size = sizeResult.get(); |
| 5457 | |
| 5458 | QualType Result = TL.getType(); |
| 5459 | if (getDerived().AlwaysRebuild() || |
| 5460 | ElementType != T->getElementType() || |
| 5461 | size != origSize) { |
| 5462 | Result = getDerived().RebuildDependentSizedArrayType(ElementType, |
| 5463 | T->getSizeModifier(), |
| 5464 | size, |
| 5465 | T->getIndexTypeCVRQualifiers(), |
| 5466 | TL.getBracketsRange()); |
| 5467 | if (Result.isNull()) |
| 5468 | return QualType(); |
| 5469 | } |
| 5470 | |
| 5471 | // We might have any sort of array type now, but fortunately they |
| 5472 | // all have the same location layout. |
| 5473 | ArrayTypeLoc NewTL = TLB.push<ArrayTypeLoc>(Result); |
| 5474 | NewTL.setLBracketLoc(TL.getLBracketLoc()); |
| 5475 | NewTL.setRBracketLoc(TL.getRBracketLoc()); |
| 5476 | NewTL.setSizeExpr(size); |
| 5477 | |
| 5478 | return Result; |
| 5479 | } |
| 5480 | |
| 5481 | template <typename Derived> |
| 5482 | QualType TreeTransform<Derived>::TransformDependentVectorType( |
| 5483 | TypeLocBuilder &TLB, DependentVectorTypeLoc TL) { |
| 5484 | const DependentVectorType *T = TL.getTypePtr(); |
| 5485 | QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc()); |
| 5486 | if (ElementType.isNull()) |
| 5487 | return QualType(); |
| 5488 | |
| 5489 | EnterExpressionEvaluationContext Unevaluated( |
| 5490 | SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated); |
| 5491 | |
| 5492 | ExprResult Size = getDerived().TransformExpr(T->getSizeExpr()); |
| 5493 | Size = SemaRef.ActOnConstantExpression(Size); |
| 5494 | if (Size.isInvalid()) |
| 5495 | return QualType(); |
| 5496 | |
| 5497 | QualType Result = TL.getType(); |
| 5498 | if (getDerived().AlwaysRebuild() || ElementType != T->getElementType() || |
| 5499 | Size.get() != T->getSizeExpr()) { |
| 5500 | Result = getDerived().RebuildDependentVectorType( |
| 5501 | ElementType, Size.get(), T->getAttributeLoc(), T->getVectorKind()); |
| 5502 | if (Result.isNull()) |
| 5503 | return QualType(); |
| 5504 | } |
| 5505 | |
| 5506 | // Result might be dependent or not. |
| 5507 | if (isa<DependentVectorType>(Result)) { |
| 5508 | DependentVectorTypeLoc NewTL = |
| 5509 | TLB.push<DependentVectorTypeLoc>(Result); |
| 5510 | NewTL.setNameLoc(TL.getNameLoc()); |
| 5511 | } else { |
| 5512 | VectorTypeLoc NewTL = TLB.push<VectorTypeLoc>(Result); |
| 5513 | NewTL.setNameLoc(TL.getNameLoc()); |
| 5514 | } |
| 5515 | |
| 5516 | return Result; |
| 5517 | } |
| 5518 | |
| 5519 | template<typename Derived> |
| 5520 | QualType TreeTransform<Derived>::TransformDependentSizedExtVectorType( |
| 5521 | TypeLocBuilder &TLB, |
| 5522 | DependentSizedExtVectorTypeLoc TL) { |
| 5523 | const DependentSizedExtVectorType *T = TL.getTypePtr(); |
| 5524 | |
| 5525 | // FIXME: ext vector locs should be nested |
| 5526 | QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc()); |
| 5527 | if (ElementType.isNull()) |
| 5528 | return QualType(); |
| 5529 | |
| 5530 | // Vector sizes are constant expressions. |
| 5531 | EnterExpressionEvaluationContext Unevaluated( |
| 5532 | SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated); |
| 5533 | |
| 5534 | ExprResult Size = getDerived().TransformExpr(T->getSizeExpr()); |
| 5535 | Size = SemaRef.ActOnConstantExpression(Size); |
| 5536 | if (Size.isInvalid()) |
| 5537 | return QualType(); |
| 5538 | |
| 5539 | QualType Result = TL.getType(); |
| 5540 | if (getDerived().AlwaysRebuild() || |
| 5541 | ElementType != T->getElementType() || |
| 5542 | Size.get() != T->getSizeExpr()) { |
| 5543 | Result = getDerived().RebuildDependentSizedExtVectorType(ElementType, |
| 5544 | Size.get(), |
| 5545 | T->getAttributeLoc()); |
| 5546 | if (Result.isNull()) |
| 5547 | return QualType(); |
| 5548 | } |
| 5549 | |
| 5550 | // Result might be dependent or not. |
| 5551 | if (isa<DependentSizedExtVectorType>(Result)) { |
| 5552 | DependentSizedExtVectorTypeLoc NewTL |
| 5553 | = TLB.push<DependentSizedExtVectorTypeLoc>(Result); |
| 5554 | NewTL.setNameLoc(TL.getNameLoc()); |
| 5555 | } else { |
| 5556 | ExtVectorTypeLoc NewTL = TLB.push<ExtVectorTypeLoc>(Result); |
| 5557 | NewTL.setNameLoc(TL.getNameLoc()); |
| 5558 | } |
| 5559 | |
| 5560 | return Result; |
| 5561 | } |
| 5562 | |
| 5563 | template <typename Derived> |
| 5564 | QualType |
| 5565 | TreeTransform<Derived>::TransformConstantMatrixType(TypeLocBuilder &TLB, |
| 5566 | ConstantMatrixTypeLoc TL) { |
| 5567 | const ConstantMatrixType *T = TL.getTypePtr(); |
| 5568 | QualType ElementType = getDerived().TransformType(T->getElementType()); |
| 5569 | if (ElementType.isNull()) |
| 5570 | return QualType(); |
| 5571 | |
| 5572 | QualType Result = TL.getType(); |
| 5573 | if (getDerived().AlwaysRebuild() || ElementType != T->getElementType()) { |
| 5574 | Result = getDerived().RebuildConstantMatrixType( |
| 5575 | ElementType, T->getNumRows(), T->getNumColumns()); |
| 5576 | if (Result.isNull()) |
| 5577 | return QualType(); |
| 5578 | } |
| 5579 | |
| 5580 | ConstantMatrixTypeLoc NewTL = TLB.push<ConstantMatrixTypeLoc>(Result); |
| 5581 | NewTL.setAttrNameLoc(TL.getAttrNameLoc()); |
| 5582 | NewTL.setAttrOperandParensRange(TL.getAttrOperandParensRange()); |
| 5583 | NewTL.setAttrRowOperand(TL.getAttrRowOperand()); |
| 5584 | NewTL.setAttrColumnOperand(TL.getAttrColumnOperand()); |
| 5585 | |
| 5586 | return Result; |
| 5587 | } |
| 5588 | |
| 5589 | template <typename Derived> |
| 5590 | QualType TreeTransform<Derived>::TransformDependentSizedMatrixType( |
| 5591 | TypeLocBuilder &TLB, DependentSizedMatrixTypeLoc TL) { |
| 5592 | const DependentSizedMatrixType *T = TL.getTypePtr(); |
| 5593 | |
| 5594 | QualType ElementType = getDerived().TransformType(T->getElementType()); |
| 5595 | if (ElementType.isNull()) { |
| 5596 | return QualType(); |
| 5597 | } |
| 5598 | |
| 5599 | // Matrix dimensions are constant expressions. |
| 5600 | EnterExpressionEvaluationContext Unevaluated( |
| 5601 | SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated); |
| 5602 | |
| 5603 | Expr *origRows = TL.getAttrRowOperand(); |
| 5604 | if (!origRows) |
| 5605 | origRows = T->getRowExpr(); |
| 5606 | Expr *origColumns = TL.getAttrColumnOperand(); |
| 5607 | if (!origColumns) |
| 5608 | origColumns = T->getColumnExpr(); |
| 5609 | |
| 5610 | ExprResult rowResult = getDerived().TransformExpr(origRows); |
| 5611 | rowResult = SemaRef.ActOnConstantExpression(rowResult); |
| 5612 | if (rowResult.isInvalid()) |
| 5613 | return QualType(); |
| 5614 | |
| 5615 | ExprResult columnResult = getDerived().TransformExpr(origColumns); |
| 5616 | columnResult = SemaRef.ActOnConstantExpression(columnResult); |
| 5617 | if (columnResult.isInvalid()) |
| 5618 | return QualType(); |
| 5619 | |
| 5620 | Expr *rows = rowResult.get(); |
| 5621 | Expr *columns = columnResult.get(); |
| 5622 | |
| 5623 | QualType Result = TL.getType(); |
| 5624 | if (getDerived().AlwaysRebuild() || ElementType != T->getElementType() || |
| 5625 | rows != origRows || columns != origColumns) { |
| 5626 | Result = getDerived().RebuildDependentSizedMatrixType( |
| 5627 | ElementType, rows, columns, T->getAttributeLoc()); |
| 5628 | |
| 5629 | if (Result.isNull()) |
| 5630 | return QualType(); |
| 5631 | } |
| 5632 | |
| 5633 | // We might have any sort of matrix type now, but fortunately they |
| 5634 | // all have the same location layout. |
| 5635 | MatrixTypeLoc NewTL = TLB.push<MatrixTypeLoc>(Result); |
| 5636 | NewTL.setAttrNameLoc(TL.getAttrNameLoc()); |
| 5637 | NewTL.setAttrOperandParensRange(TL.getAttrOperandParensRange()); |
| 5638 | NewTL.setAttrRowOperand(rows); |
| 5639 | NewTL.setAttrColumnOperand(columns); |
| 5640 | return Result; |
| 5641 | } |
| 5642 | |
| 5643 | template <typename Derived> |
| 5644 | QualType TreeTransform<Derived>::TransformDependentAddressSpaceType( |
| 5645 | TypeLocBuilder &TLB, DependentAddressSpaceTypeLoc TL) { |
| 5646 | const DependentAddressSpaceType *T = TL.getTypePtr(); |
| 5647 | |
| 5648 | QualType pointeeType = getDerived().TransformType(T->getPointeeType()); |
| 5649 | |
| 5650 | if (pointeeType.isNull()) |
| 5651 | return QualType(); |
| 5652 | |
| 5653 | // Address spaces are constant expressions. |
| 5654 | EnterExpressionEvaluationContext Unevaluated( |
| 5655 | SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated); |
| 5656 | |
| 5657 | ExprResult AddrSpace = getDerived().TransformExpr(T->getAddrSpaceExpr()); |
| 5658 | AddrSpace = SemaRef.ActOnConstantExpression(AddrSpace); |
| 5659 | if (AddrSpace.isInvalid()) |
| 5660 | return QualType(); |
| 5661 | |
| 5662 | QualType Result = TL.getType(); |
| 5663 | if (getDerived().AlwaysRebuild() || pointeeType != T->getPointeeType() || |
| 5664 | AddrSpace.get() != T->getAddrSpaceExpr()) { |
| 5665 | Result = getDerived().RebuildDependentAddressSpaceType( |
| 5666 | pointeeType, AddrSpace.get(), T->getAttributeLoc()); |
| 5667 | if (Result.isNull()) |
| 5668 | return QualType(); |
| 5669 | } |
| 5670 | |
| 5671 | // Result might be dependent or not. |
| 5672 | if (isa<DependentAddressSpaceType>(Result)) { |
| 5673 | DependentAddressSpaceTypeLoc NewTL = |
| 5674 | TLB.push<DependentAddressSpaceTypeLoc>(Result); |
| 5675 | |
| 5676 | NewTL.setAttrOperandParensRange(TL.getAttrOperandParensRange()); |
| 5677 | NewTL.setAttrExprOperand(TL.getAttrExprOperand()); |
| 5678 | NewTL.setAttrNameLoc(TL.getAttrNameLoc()); |
| 5679 | |
| 5680 | } else { |
| 5681 | TypeSourceInfo *DI = getSema().Context.getTrivialTypeSourceInfo( |
| 5682 | Result, getDerived().getBaseLocation()); |
| 5683 | TransformType(TLB, DI->getTypeLoc()); |
| 5684 | } |
| 5685 | |
| 5686 | return Result; |
| 5687 | } |
| 5688 | |
| 5689 | template <typename Derived> |
| 5690 | QualType TreeTransform<Derived>::TransformVectorType(TypeLocBuilder &TLB, |
| 5691 | VectorTypeLoc TL) { |
| 5692 | const VectorType *T = TL.getTypePtr(); |
| 5693 | QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc()); |
| 5694 | if (ElementType.isNull()) |
| 5695 | return QualType(); |
| 5696 | |
| 5697 | QualType Result = TL.getType(); |
| 5698 | if (getDerived().AlwaysRebuild() || |
| 5699 | ElementType != T->getElementType()) { |
| 5700 | Result = getDerived().RebuildVectorType(ElementType, T->getNumElements(), |
| 5701 | T->getVectorKind()); |
| 5702 | if (Result.isNull()) |
| 5703 | return QualType(); |
| 5704 | } |
| 5705 | |
| 5706 | VectorTypeLoc NewTL = TLB.push<VectorTypeLoc>(Result); |
| 5707 | NewTL.setNameLoc(TL.getNameLoc()); |
| 5708 | |
| 5709 | return Result; |
| 5710 | } |
| 5711 | |
| 5712 | template<typename Derived> |
| 5713 | QualType TreeTransform<Derived>::TransformExtVectorType(TypeLocBuilder &TLB, |
| 5714 | ExtVectorTypeLoc TL) { |
| 5715 | const VectorType *T = TL.getTypePtr(); |
| 5716 | QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc()); |
| 5717 | if (ElementType.isNull()) |
| 5718 | return QualType(); |
| 5719 | |
| 5720 | QualType Result = TL.getType(); |
| 5721 | if (getDerived().AlwaysRebuild() || |
| 5722 | ElementType != T->getElementType()) { |
| 5723 | Result = getDerived().RebuildExtVectorType(ElementType, |
| 5724 | T->getNumElements(), |
| 5725 | /*FIXME*/ SourceLocation()); |
| 5726 | if (Result.isNull()) |
| 5727 | return QualType(); |
| 5728 | } |
| 5729 | |
| 5730 | ExtVectorTypeLoc NewTL = TLB.push<ExtVectorTypeLoc>(Result); |
| 5731 | NewTL.setNameLoc(TL.getNameLoc()); |
| 5732 | |
| 5733 | return Result; |
| 5734 | } |
| 5735 | |
| 5736 | template <typename Derived> |
| 5737 | ParmVarDecl *TreeTransform<Derived>::TransformFunctionTypeParam( |
| 5738 | ParmVarDecl *OldParm, int indexAdjustment, |
| 5739 | std::optional<unsigned> NumExpansions, bool ExpectParameterPack) { |
| 5740 | TypeSourceInfo *OldDI = OldParm->getTypeSourceInfo(); |
| 5741 | TypeSourceInfo *NewDI = nullptr; |
| 5742 | |
| 5743 | if (NumExpansions && isa<PackExpansionType>(OldDI->getType())) { |
| 5744 | // If we're substituting into a pack expansion type and we know the |
| 5745 | // length we want to expand to, just substitute for the pattern. |
| 5746 | TypeLoc OldTL = OldDI->getTypeLoc(); |
| 5747 | PackExpansionTypeLoc OldExpansionTL = OldTL.castAs<PackExpansionTypeLoc>(); |
| 5748 | |
| 5749 | TypeLocBuilder TLB; |
| 5750 | TypeLoc NewTL = OldDI->getTypeLoc(); |
| 5751 | TLB.reserve(NewTL.getFullDataSize()); |
| 5752 | |
| 5753 | QualType Result = getDerived().TransformType(TLB, |
| 5754 | OldExpansionTL.getPatternLoc()); |
| 5755 | if (Result.isNull()) |
| 5756 | return nullptr; |
| 5757 | |
| 5758 | Result = RebuildPackExpansionType(Result, |
| 5759 | OldExpansionTL.getPatternLoc().getSourceRange(), |
| 5760 | OldExpansionTL.getEllipsisLoc(), |
| 5761 | NumExpansions); |
| 5762 | if (Result.isNull()) |
| 5763 | return nullptr; |
| 5764 | |
| 5765 | PackExpansionTypeLoc NewExpansionTL |
| 5766 | = TLB.push<PackExpansionTypeLoc>(Result); |
| 5767 | NewExpansionTL.setEllipsisLoc(OldExpansionTL.getEllipsisLoc()); |
| 5768 | NewDI = TLB.getTypeSourceInfo(SemaRef.Context, Result); |
| 5769 | } else |
| 5770 | NewDI = getDerived().TransformType(OldDI); |
| 5771 | if (!NewDI) |
| 5772 | return nullptr; |
| 5773 | |
| 5774 | if (NewDI == OldDI && indexAdjustment == 0) |
| 5775 | return OldParm; |
| 5776 | |
| 5777 | ParmVarDecl *newParm = ParmVarDecl::Create(SemaRef.Context, |
| 5778 | OldParm->getDeclContext(), |
| 5779 | OldParm->getInnerLocStart(), |
| 5780 | OldParm->getLocation(), |
| 5781 | OldParm->getIdentifier(), |
| 5782 | NewDI->getType(), |
| 5783 | NewDI, |
| 5784 | OldParm->getStorageClass(), |
| 5785 | /* DefArg */ nullptr); |
| 5786 | newParm->setScopeInfo(OldParm->getFunctionScopeDepth(), |
| 5787 | OldParm->getFunctionScopeIndex() + indexAdjustment); |
| 5788 | transformedLocalDecl(OldParm, {newParm}); |
| 5789 | return newParm; |
| 5790 | } |
| 5791 | |
| 5792 | template <typename Derived> |
| 5793 | bool TreeTransform<Derived>::TransformFunctionTypeParams( |
| 5794 | SourceLocation Loc, ArrayRef<ParmVarDecl *> Params, |
| 5795 | const QualType *ParamTypes, |
| 5796 | const FunctionProtoType::ExtParameterInfo *ParamInfos, |
| 5797 | SmallVectorImpl<QualType> &OutParamTypes, |
| 5798 | SmallVectorImpl<ParmVarDecl *> *PVars, |
| 5799 | Sema::ExtParameterInfoBuilder &PInfos, |
| 5800 | unsigned *LastParamTransformed) { |
| 5801 | int indexAdjustment = 0; |
| 5802 | |
| 5803 | unsigned NumParams = Params.size(); |
| 5804 | for (unsigned i = 0; i != NumParams; ++i) { |
| 5805 | if (LastParamTransformed) |
| 5806 | *LastParamTransformed = i; |
| 5807 | if (ParmVarDecl *OldParm = Params[i]) { |
| 5808 | assert(OldParm->getFunctionScopeIndex() == i)(static_cast <bool> (OldParm->getFunctionScopeIndex( ) == i) ? void (0) : __assert_fail ("OldParm->getFunctionScopeIndex() == i" , "clang/lib/Sema/TreeTransform.h", 5808, __extension__ __PRETTY_FUNCTION__ )); |
| 5809 | |
| 5810 | std::optional<unsigned> NumExpansions; |
| 5811 | ParmVarDecl *NewParm = nullptr; |
| 5812 | if (OldParm->isParameterPack()) { |
| 5813 | // We have a function parameter pack that may need to be expanded. |
| 5814 | SmallVector<UnexpandedParameterPack, 2> Unexpanded; |
| 5815 | |
| 5816 | // Find the parameter packs that could be expanded. |
| 5817 | TypeLoc TL = OldParm->getTypeSourceInfo()->getTypeLoc(); |
| 5818 | PackExpansionTypeLoc ExpansionTL = TL.castAs<PackExpansionTypeLoc>(); |
| 5819 | TypeLoc Pattern = ExpansionTL.getPatternLoc(); |
| 5820 | SemaRef.collectUnexpandedParameterPacks(Pattern, Unexpanded); |
| 5821 | |
| 5822 | // Determine whether we should expand the parameter packs. |
| 5823 | bool ShouldExpand = false; |
| 5824 | bool RetainExpansion = false; |
| 5825 | std::optional<unsigned> OrigNumExpansions; |
| 5826 | if (Unexpanded.size() > 0) { |
| 5827 | OrigNumExpansions = ExpansionTL.getTypePtr()->getNumExpansions(); |
| 5828 | NumExpansions = OrigNumExpansions; |
| 5829 | if (getDerived().TryExpandParameterPacks(ExpansionTL.getEllipsisLoc(), |
| 5830 | Pattern.getSourceRange(), |
| 5831 | Unexpanded, |
| 5832 | ShouldExpand, |
| 5833 | RetainExpansion, |
| 5834 | NumExpansions)) { |
| 5835 | return true; |
| 5836 | } |
| 5837 | } else { |
| 5838 | #ifndef NDEBUG |
| 5839 | const AutoType *AT = |
| 5840 | Pattern.getType().getTypePtr()->getContainedAutoType(); |
| 5841 | assert((AT && (!AT->isDeduced() || AT->getDeducedType().isNull())) &&(static_cast <bool> ((AT && (!AT->isDeduced( ) || AT->getDeducedType().isNull())) && "Could not find parameter packs or undeduced auto type!" ) ? void (0) : __assert_fail ("(AT && (!AT->isDeduced() || AT->getDeducedType().isNull())) && \"Could not find parameter packs or undeduced auto type!\"" , "clang/lib/Sema/TreeTransform.h", 5842, __extension__ __PRETTY_FUNCTION__ )) |
| 5842 | "Could not find parameter packs or undeduced auto type!")(static_cast <bool> ((AT && (!AT->isDeduced( ) || AT->getDeducedType().isNull())) && "Could not find parameter packs or undeduced auto type!" ) ? void (0) : __assert_fail ("(AT && (!AT->isDeduced() || AT->getDeducedType().isNull())) && \"Could not find parameter packs or undeduced auto type!\"" , "clang/lib/Sema/TreeTransform.h", 5842, __extension__ __PRETTY_FUNCTION__ )); |
| 5843 | #endif |
| 5844 | } |
| 5845 | |
| 5846 | if (ShouldExpand) { |
| 5847 | // Expand the function parameter pack into multiple, separate |
| 5848 | // parameters. |
| 5849 | getDerived().ExpandingFunctionParameterPack(OldParm); |
| 5850 | for (unsigned I = 0; I != *NumExpansions; ++I) { |
| 5851 | Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I); |
| 5852 | ParmVarDecl *NewParm |
| 5853 | = getDerived().TransformFunctionTypeParam(OldParm, |
| 5854 | indexAdjustment++, |
| 5855 | OrigNumExpansions, |
| 5856 | /*ExpectParameterPack=*/false); |
| 5857 | if (!NewParm) |
| 5858 | return true; |
| 5859 | |
| 5860 | if (ParamInfos) |
| 5861 | PInfos.set(OutParamTypes.size(), ParamInfos[i]); |
| 5862 | OutParamTypes.push_back(NewParm->getType()); |
| 5863 | if (PVars) |
| 5864 | PVars->push_back(NewParm); |
| 5865 | } |
| 5866 | |
| 5867 | // If we're supposed to retain a pack expansion, do so by temporarily |
| 5868 | // forgetting the partially-substituted parameter pack. |
| 5869 | if (RetainExpansion) { |
| 5870 | ForgetPartiallySubstitutedPackRAII Forget(getDerived()); |
| 5871 | ParmVarDecl *NewParm |
| 5872 | = getDerived().TransformFunctionTypeParam(OldParm, |
| 5873 | indexAdjustment++, |
| 5874 | OrigNumExpansions, |
| 5875 | /*ExpectParameterPack=*/false); |
| 5876 | if (!NewParm) |
| 5877 | return true; |
| 5878 | |
| 5879 | if (ParamInfos) |
| 5880 | PInfos.set(OutParamTypes.size(), ParamInfos[i]); |
| 5881 | OutParamTypes.push_back(NewParm->getType()); |
| 5882 | if (PVars) |
| 5883 | PVars->push_back(NewParm); |
| 5884 | } |
| 5885 | |
| 5886 | // The next parameter should have the same adjustment as the |
| 5887 | // last thing we pushed, but we post-incremented indexAdjustment |
| 5888 | // on every push. Also, if we push nothing, the adjustment should |
| 5889 | // go down by one. |
| 5890 | indexAdjustment--; |
| 5891 | |
| 5892 | // We're done with the pack expansion. |
| 5893 | continue; |
| 5894 | } |
| 5895 | |
| 5896 | // We'll substitute the parameter now without expanding the pack |
| 5897 | // expansion. |
| 5898 | Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1); |
| 5899 | NewParm = getDerived().TransformFunctionTypeParam(OldParm, |
| 5900 | indexAdjustment, |
| 5901 | NumExpansions, |
| 5902 | /*ExpectParameterPack=*/true); |
| 5903 | assert(NewParm->isParameterPack() &&(static_cast <bool> (NewParm->isParameterPack() && "Parameter pack no longer a parameter pack after " "transformation." ) ? void (0) : __assert_fail ("NewParm->isParameterPack() && \"Parameter pack no longer a parameter pack after \" \"transformation.\"" , "clang/lib/Sema/TreeTransform.h", 5905, __extension__ __PRETTY_FUNCTION__ )) |
| 5904 | "Parameter pack no longer a parameter pack after "(static_cast <bool> (NewParm->isParameterPack() && "Parameter pack no longer a parameter pack after " "transformation." ) ? void (0) : __assert_fail ("NewParm->isParameterPack() && \"Parameter pack no longer a parameter pack after \" \"transformation.\"" , "clang/lib/Sema/TreeTransform.h", 5905, __extension__ __PRETTY_FUNCTION__ )) |
| 5905 | "transformation.")(static_cast <bool> (NewParm->isParameterPack() && "Parameter pack no longer a parameter pack after " "transformation." ) ? void (0) : __assert_fail ("NewParm->isParameterPack() && \"Parameter pack no longer a parameter pack after \" \"transformation.\"" , "clang/lib/Sema/TreeTransform.h", 5905, __extension__ __PRETTY_FUNCTION__ )); |
| 5906 | } else { |
| 5907 | NewParm = getDerived().TransformFunctionTypeParam( |
| 5908 | OldParm, indexAdjustment, std::nullopt, |
| 5909 | /*ExpectParameterPack=*/false); |
| 5910 | } |
| 5911 | |
| 5912 | if (!NewParm) |
| 5913 | return true; |
| 5914 | |
| 5915 | if (ParamInfos) |
| 5916 | PInfos.set(OutParamTypes.size(), ParamInfos[i]); |
| 5917 | OutParamTypes.push_back(NewParm->getType()); |
| 5918 | if (PVars) |
| 5919 | PVars->push_back(NewParm); |
| 5920 | continue; |
| 5921 | } |
| 5922 | |
| 5923 | // Deal with the possibility that we don't have a parameter |
| 5924 | // declaration for this parameter. |
| 5925 | assert(ParamTypes)(static_cast <bool> (ParamTypes) ? void (0) : __assert_fail ("ParamTypes", "clang/lib/Sema/TreeTransform.h", 5925, __extension__ __PRETTY_FUNCTION__)); |
| 5926 | QualType OldType = ParamTypes[i]; |
| 5927 | bool IsPackExpansion = false; |
| 5928 | std::optional<unsigned> NumExpansions; |
| 5929 | QualType NewType; |
| 5930 | if (const PackExpansionType *Expansion |
| 5931 | = dyn_cast<PackExpansionType>(OldType)) { |
| 5932 | // We have a function parameter pack that may need to be expanded. |
| 5933 | QualType Pattern = Expansion->getPattern(); |
| 5934 | SmallVector<UnexpandedParameterPack, 2> Unexpanded; |
| 5935 | getSema().collectUnexpandedParameterPacks(Pattern, Unexpanded); |
| 5936 | |
| 5937 | // Determine whether we should expand the parameter packs. |
| 5938 | bool ShouldExpand = false; |
| 5939 | bool RetainExpansion = false; |
| 5940 | if (getDerived().TryExpandParameterPacks(Loc, SourceRange(), |
| 5941 | Unexpanded, |
| 5942 | ShouldExpand, |
| 5943 | RetainExpansion, |
| 5944 | NumExpansions)) { |
| 5945 | return true; |
| 5946 | } |
| 5947 | |
| 5948 | if (ShouldExpand) { |
| 5949 | // Expand the function parameter pack into multiple, separate |
| 5950 | // parameters. |
| 5951 | for (unsigned I = 0; I != *NumExpansions; ++I) { |
| 5952 | Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I); |
| 5953 | QualType NewType = getDerived().TransformType(Pattern); |
| 5954 | if (NewType.isNull()) |
| 5955 | return true; |
| 5956 | |
| 5957 | if (NewType->containsUnexpandedParameterPack()) { |
| 5958 | NewType = getSema().getASTContext().getPackExpansionType( |
| 5959 | NewType, std::nullopt); |
| 5960 | |
| 5961 | if (NewType.isNull()) |
| 5962 | return true; |
| 5963 | } |
| 5964 | |
| 5965 | if (ParamInfos) |
| 5966 | PInfos.set(OutParamTypes.size(), ParamInfos[i]); |
| 5967 | OutParamTypes.push_back(NewType); |
| 5968 | if (PVars) |
| 5969 | PVars->push_back(nullptr); |
| 5970 | } |
| 5971 | |
| 5972 | // We're done with the pack expansion. |
| 5973 | continue; |
| 5974 | } |
| 5975 | |
| 5976 | // If we're supposed to retain a pack expansion, do so by temporarily |
| 5977 | // forgetting the partially-substituted parameter pack. |
| 5978 | if (RetainExpansion) { |
| 5979 | ForgetPartiallySubstitutedPackRAII Forget(getDerived()); |
| 5980 | QualType NewType = getDerived().TransformType(Pattern); |
| 5981 | if (NewType.isNull()) |
| 5982 | return true; |
| 5983 | |
| 5984 | if (ParamInfos) |
| 5985 | PInfos.set(OutParamTypes.size(), ParamInfos[i]); |
| 5986 | OutParamTypes.push_back(NewType); |
| 5987 | if (PVars) |
| 5988 | PVars->push_back(nullptr); |
| 5989 | } |
| 5990 | |
| 5991 | // We'll substitute the parameter now without expanding the pack |
| 5992 | // expansion. |
| 5993 | OldType = Expansion->getPattern(); |
| 5994 | IsPackExpansion = true; |
| 5995 | Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1); |
| 5996 | NewType = getDerived().TransformType(OldType); |
| 5997 | } else { |
| 5998 | NewType = getDerived().TransformType(OldType); |
| 5999 | } |
| 6000 | |
| 6001 | if (NewType.isNull()) |
| 6002 | return true; |
| 6003 | |
| 6004 | if (IsPackExpansion) |
| 6005 | NewType = getSema().Context.getPackExpansionType(NewType, |
| 6006 | NumExpansions); |
| 6007 | |
| 6008 | if (ParamInfos) |
| 6009 | PInfos.set(OutParamTypes.size(), ParamInfos[i]); |
| 6010 | OutParamTypes.push_back(NewType); |
| 6011 | if (PVars) |
| 6012 | PVars->push_back(nullptr); |
| 6013 | } |
| 6014 | |
| 6015 | #ifndef NDEBUG |
| 6016 | if (PVars) { |
| 6017 | for (unsigned i = 0, e = PVars->size(); i != e; ++i) |
| 6018 | if (ParmVarDecl *parm = (*PVars)[i]) |
| 6019 | assert(parm->getFunctionScopeIndex() == i)(static_cast <bool> (parm->getFunctionScopeIndex() == i) ? void (0) : __assert_fail ("parm->getFunctionScopeIndex() == i" , "clang/lib/Sema/TreeTransform.h", 6019, __extension__ __PRETTY_FUNCTION__ )); |
| 6020 | } |
| 6021 | #endif |
| 6022 | |
| 6023 | return false; |
| 6024 | } |
| 6025 | |
| 6026 | template<typename Derived> |
| 6027 | QualType |
| 6028 | TreeTransform<Derived>::TransformFunctionProtoType(TypeLocBuilder &TLB, |
| 6029 | FunctionProtoTypeLoc TL) { |
| 6030 | SmallVector<QualType, 4> ExceptionStorage; |
| 6031 | TreeTransform *This = this; // Work around gcc.gnu.org/PR56135. |
| 6032 | return getDerived().TransformFunctionProtoType( |
| 6033 | TLB, TL, nullptr, Qualifiers(), |
| 6034 | [&](FunctionProtoType::ExceptionSpecInfo &ESI, bool &Changed) { |
| 6035 | return This->getDerived().TransformExceptionSpec( |
| 6036 | TL.getBeginLoc(), ESI, ExceptionStorage, Changed); |
| 6037 | }); |
| 6038 | } |
| 6039 | |
| 6040 | template<typename Derived> template<typename Fn> |
| 6041 | QualType TreeTransform<Derived>::TransformFunctionProtoType( |
| 6042 | TypeLocBuilder &TLB, FunctionProtoTypeLoc TL, CXXRecordDecl *ThisContext, |
| 6043 | Qualifiers ThisTypeQuals, Fn TransformExceptionSpec) { |
| 6044 | |
| 6045 | // Transform the parameters and return type. |
| 6046 | // |
| 6047 | // We are required to instantiate the params and return type in source order. |
| 6048 | // When the function has a trailing return type, we instantiate the |
| 6049 | // parameters before the return type, since the return type can then refer |
| 6050 | // to the parameters themselves (via decltype, sizeof, etc.). |
| 6051 | // |
| 6052 | SmallVector<QualType, 4> ParamTypes; |
| 6053 | SmallVector<ParmVarDecl*, 4> ParamDecls; |
| 6054 | Sema::ExtParameterInfoBuilder ExtParamInfos; |
| 6055 | const FunctionProtoType *T = TL.getTypePtr(); |
| 6056 | |
| 6057 | QualType ResultType; |
| 6058 | |
| 6059 | if (T->hasTrailingReturn()) { |
| 6060 | if (getDerived().TransformFunctionTypeParams( |
| 6061 | TL.getBeginLoc(), TL.getParams(), |
| 6062 | TL.getTypePtr()->param_type_begin(), |
| 6063 | T->getExtParameterInfosOrNull(), |
| 6064 | ParamTypes, &ParamDecls, ExtParamInfos)) |
| 6065 | return QualType(); |
| 6066 | |
| 6067 | { |
| 6068 | // C++11 [expr.prim.general]p3: |
| 6069 | // If a declaration declares a member function or member function |
| 6070 | // template of a class X, the expression this is a prvalue of type |
| 6071 | // "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq |
| 6072 | // and the end of the function-definition, member-declarator, or |
| 6073 | // declarator. |
| 6074 | Sema::CXXThisScopeRAII ThisScope(SemaRef, ThisContext, ThisTypeQuals); |
| 6075 | |
| 6076 | ResultType = getDerived().TransformType(TLB, TL.getReturnLoc()); |
| 6077 | if (ResultType.isNull()) |
| 6078 | return QualType(); |
| 6079 | } |
| 6080 | } |
| 6081 | else { |
| 6082 | ResultType = getDerived().TransformType(TLB, TL.getReturnLoc()); |
| 6083 | if (ResultType.isNull()) |
| 6084 | return QualType(); |
| 6085 | |
| 6086 | if (getDerived().TransformFunctionTypeParams( |
| 6087 | TL.getBeginLoc(), TL.getParams(), |
| 6088 | TL.getTypePtr()->param_type_begin(), |
| 6089 | T->getExtParameterInfosOrNull(), |
| 6090 | ParamTypes, &ParamDecls, ExtParamInfos)) |
| 6091 | return QualType(); |
| 6092 | } |
| 6093 | |
| 6094 | FunctionProtoType::ExtProtoInfo EPI = T->getExtProtoInfo(); |
| 6095 | |
| 6096 | bool EPIChanged = false; |
| 6097 | if (TransformExceptionSpec(EPI.ExceptionSpec, EPIChanged)) |
| 6098 | return QualType(); |
| 6099 | |
| 6100 | // Handle extended parameter information. |
| 6101 | if (auto NewExtParamInfos = |
| 6102 | ExtParamInfos.getPointerOrNull(ParamTypes.size())) { |
| 6103 | if (!EPI.ExtParameterInfos || |
| 6104 | llvm::ArrayRef(EPI.ExtParameterInfos, TL.getNumParams()) != |
| 6105 | llvm::ArrayRef(NewExtParamInfos, ParamTypes.size())) { |
| 6106 | EPIChanged = true; |
| 6107 | } |
| 6108 | EPI.ExtParameterInfos = NewExtParamInfos; |
| 6109 | } else if (EPI.ExtParameterInfos) { |
| 6110 | EPIChanged = true; |
| 6111 | EPI.ExtParameterInfos = nullptr; |
| 6112 | } |
| 6113 | |
| 6114 | QualType Result = TL.getType(); |
| 6115 | if (getDerived().AlwaysRebuild() || ResultType != T->getReturnType() || |
| 6116 | T->getParamTypes() != llvm::ArrayRef(ParamTypes) || EPIChanged) { |
| 6117 | Result = getDerived().RebuildFunctionProtoType(ResultType, ParamTypes, EPI); |
| 6118 | if (Result.isNull()) |
| 6119 | return QualType(); |
| 6120 | } |
| 6121 | |
| 6122 | FunctionProtoTypeLoc NewTL = TLB.push<FunctionProtoTypeLoc>(Result); |
| 6123 | NewTL.setLocalRangeBegin(TL.getLocalRangeBegin()); |
| 6124 | NewTL.setLParenLoc(TL.getLParenLoc()); |
| 6125 | NewTL.setRParenLoc(TL.getRParenLoc()); |
| 6126 | NewTL.setExceptionSpecRange(TL.getExceptionSpecRange()); |
| 6127 | NewTL.setLocalRangeEnd(TL.getLocalRangeEnd()); |
| 6128 | for (unsigned i = 0, e = NewTL.getNumParams(); i != e; ++i) |
| 6129 | NewTL.setParam(i, ParamDecls[i]); |
| 6130 | |
| 6131 | return Result; |
| 6132 | } |
| 6133 | |
| 6134 | template<typename Derived> |
| 6135 | bool TreeTransform<Derived>::TransformExceptionSpec( |
| 6136 | SourceLocation Loc, FunctionProtoType::ExceptionSpecInfo &ESI, |
| 6137 | SmallVectorImpl<QualType> &Exceptions, bool &Changed) { |
| 6138 | assert(ESI.Type != EST_Uninstantiated && ESI.Type != EST_Unevaluated)(static_cast <bool> (ESI.Type != EST_Uninstantiated && ESI.Type != EST_Unevaluated) ? void (0) : __assert_fail ("ESI.Type != EST_Uninstantiated && ESI.Type != EST_Unevaluated" , "clang/lib/Sema/TreeTransform.h", 6138, __extension__ __PRETTY_FUNCTION__ )); |
| 6139 | |
| 6140 | // Instantiate a dynamic noexcept expression, if any. |
| 6141 | if (isComputedNoexcept(ESI.Type)) { |
| 6142 | EnterExpressionEvaluationContext Unevaluated( |
| 6143 | getSema(), Sema::ExpressionEvaluationContext::ConstantEvaluated); |
| 6144 | ExprResult NoexceptExpr = getDerived().TransformExpr(ESI.NoexceptExpr); |
| 6145 | if (NoexceptExpr.isInvalid()) |
| 6146 | return true; |
| 6147 | |
| 6148 | ExceptionSpecificationType EST = ESI.Type; |
| 6149 | NoexceptExpr = |
| 6150 | getSema().ActOnNoexceptSpec(NoexceptExpr.get(), EST); |
| 6151 | if (NoexceptExpr.isInvalid()) |
| 6152 | return true; |
| 6153 | |
| 6154 | if (ESI.NoexceptExpr != NoexceptExpr.get() || EST != ESI.Type) |
| 6155 | Changed = true; |
| 6156 | ESI.NoexceptExpr = NoexceptExpr.get(); |
| 6157 | ESI.Type = EST; |
| 6158 | } |
| 6159 | |
| 6160 | if (ESI.Type != EST_Dynamic) |
| 6161 | return false; |
| 6162 | |
| 6163 | // Instantiate a dynamic exception specification's type. |
| 6164 | for (QualType T : ESI.Exceptions) { |
| 6165 | if (const PackExpansionType *PackExpansion = |
| 6166 | T->getAs<PackExpansionType>()) { |
| 6167 | Changed = true; |
| 6168 | |
| 6169 | // We have a pack expansion. Instantiate it. |
| 6170 | SmallVector<UnexpandedParameterPack, 2> Unexpanded; |
| 6171 | SemaRef.collectUnexpandedParameterPacks(PackExpansion->getPattern(), |
| 6172 | Unexpanded); |
| 6173 | assert(!Unexpanded.empty() && "Pack expansion without parameter packs?")(static_cast <bool> (!Unexpanded.empty() && "Pack expansion without parameter packs?" ) ? void (0) : __assert_fail ("!Unexpanded.empty() && \"Pack expansion without parameter packs?\"" , "clang/lib/Sema/TreeTransform.h", 6173, __extension__ __PRETTY_FUNCTION__ )); |
| 6174 | |
| 6175 | // Determine whether the set of unexpanded parameter packs can and |
| 6176 | // should |
| 6177 | // be expanded. |
| 6178 | bool Expand = false; |
| 6179 | bool RetainExpansion = false; |
| 6180 | std::optional<unsigned> NumExpansions = PackExpansion->getNumExpansions(); |
| 6181 | // FIXME: Track the location of the ellipsis (and track source location |
| 6182 | // information for the types in the exception specification in general). |
| 6183 | if (getDerived().TryExpandParameterPacks( |
| 6184 | Loc, SourceRange(), Unexpanded, Expand, |
| 6185 | RetainExpansion, NumExpansions)) |
| 6186 | return true; |
| 6187 | |
| 6188 | if (!Expand) { |
| 6189 | // We can't expand this pack expansion into separate arguments yet; |
| 6190 | // just substitute into the pattern and create a new pack expansion |
| 6191 | // type. |
| 6192 | Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1); |
| 6193 | QualType U = getDerived().TransformType(PackExpansion->getPattern()); |
| 6194 | if (U.isNull()) |
| 6195 | return true; |
| 6196 | |
| 6197 | U = SemaRef.Context.getPackExpansionType(U, NumExpansions); |
| 6198 | Exceptions.push_back(U); |
| 6199 | continue; |
| 6200 | } |
| 6201 | |
| 6202 | // Substitute into the pack expansion pattern for each slice of the |
| 6203 | // pack. |
| 6204 | for (unsigned ArgIdx = 0; ArgIdx != *NumExpansions; ++ArgIdx) { |
| 6205 | Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), ArgIdx); |
| 6206 | |
| 6207 | QualType U = getDerived().TransformType(PackExpansion->getPattern()); |
| 6208 | if (U.isNull() || SemaRef.CheckSpecifiedExceptionType(U, Loc)) |
| 6209 | return true; |
| 6210 | |
| 6211 | Exceptions.push_back(U); |
| 6212 | } |
| 6213 | } else { |
| 6214 | QualType U = getDerived().TransformType(T); |
| 6215 | if (U.isNull() || SemaRef.CheckSpecifiedExceptionType(U, Loc)) |
| 6216 | return true; |
| 6217 | if (T != U) |
| 6218 | Changed = true; |
| 6219 | |
| 6220 | Exceptions.push_back(U); |
| 6221 | } |
| 6222 | } |
| 6223 | |
| 6224 | ESI.Exceptions = Exceptions; |
| 6225 | if (ESI.Exceptions.empty()) |
| 6226 | ESI.Type = EST_DynamicNone; |
| 6227 | return false; |
| 6228 | } |
| 6229 | |
| 6230 | template<typename Derived> |
| 6231 | QualType TreeTransform<Derived>::TransformFunctionNoProtoType( |
| 6232 | TypeLocBuilder &TLB, |
| 6233 | FunctionNoProtoTypeLoc TL) { |
| 6234 | const FunctionNoProtoType *T = TL.getTypePtr(); |
| 6235 | QualType ResultType = getDerived().TransformType(TLB, TL.getReturnLoc()); |
| 6236 | if (ResultType.isNull()) |
| 6237 | return QualType(); |
| 6238 | |
| 6239 | QualType Result = TL.getType(); |
| 6240 | if (getDerived().AlwaysRebuild() || ResultType != T->getReturnType()) |
| 6241 | Result = getDerived().RebuildFunctionNoProtoType(ResultType); |
| 6242 | |
| 6243 | FunctionNoProtoTypeLoc NewTL = TLB.push<FunctionNoProtoTypeLoc>(Result); |
| 6244 | NewTL.setLocalRangeBegin(TL.getLocalRangeBegin()); |
| 6245 | NewTL.setLParenLoc(TL.getLParenLoc()); |
| 6246 | NewTL.setRParenLoc(TL.getRParenLoc()); |
| 6247 | NewTL.setLocalRangeEnd(TL.getLocalRangeEnd()); |
| 6248 | |
| 6249 | return Result; |
| 6250 | } |
| 6251 | |
| 6252 | template <typename Derived> |
| 6253 | QualType TreeTransform<Derived>::TransformUnresolvedUsingType( |
| 6254 | TypeLocBuilder &TLB, UnresolvedUsingTypeLoc TL) { |
| 6255 | const UnresolvedUsingType *T = TL.getTypePtr(); |
| 6256 | Decl *D = getDerived().TransformDecl(TL.getNameLoc(), T->getDecl()); |
| 6257 | if (!D) |
| 6258 | return QualType(); |
| 6259 | |
| 6260 | QualType Result = TL.getType(); |
| 6261 | if (getDerived().AlwaysRebuild() || D != T->getDecl()) { |
| 6262 | Result = getDerived().RebuildUnresolvedUsingType(TL.getNameLoc(), D); |
| 6263 | if (Result.isNull()) |
| 6264 | return QualType(); |
| 6265 | } |
| 6266 | |
| 6267 | // We might get an arbitrary type spec type back. We should at |
| 6268 | // least always get a type spec type, though. |
| 6269 | TypeSpecTypeLoc NewTL = TLB.pushTypeSpec(Result); |
| 6270 | NewTL.setNameLoc(TL.getNameLoc()); |
| 6271 | |
| 6272 | return Result; |
| 6273 | } |
| 6274 | |
| 6275 | template <typename Derived> |
| 6276 | QualType TreeTransform<Derived>::TransformUsingType(TypeLocBuilder &TLB, |
| 6277 | UsingTypeLoc TL) { |
| 6278 | const UsingType *T = TL.getTypePtr(); |
| 6279 | |
| 6280 | auto *Found = cast_or_null<UsingShadowDecl>(getDerived().TransformDecl( |
| 6281 | TL.getLocalSourceRange().getBegin(), T->getFoundDecl())); |
| 6282 | if (!Found) |
| 6283 | return QualType(); |
| 6284 | |
| 6285 | QualType Underlying = getDerived().TransformType(T->desugar()); |
| 6286 | if (Underlying.isNull()) |
| 6287 | return QualType(); |
| 6288 | |
| 6289 | QualType Result = TL.getType(); |
| 6290 | if (getDerived().AlwaysRebuild() || Found != T->getFoundDecl() || |
| 6291 | Underlying != T->getUnderlyingType()) { |
| 6292 | Result = getDerived().RebuildUsingType(Found, Underlying); |
| 6293 | if (Result.isNull()) |
| 6294 | return QualType(); |
| 6295 | } |
| 6296 | |
| 6297 | TLB.pushTypeSpec(Result).setNameLoc(TL.getNameLoc()); |
| 6298 | return Result; |
| 6299 | } |
| 6300 | |
| 6301 | template<typename Derived> |
| 6302 | QualType TreeTransform<Derived>::TransformTypedefType(TypeLocBuilder &TLB, |
| 6303 | TypedefTypeLoc TL) { |
| 6304 | const TypedefType *T = TL.getTypePtr(); |
| 6305 | TypedefNameDecl *Typedef |
| 6306 | = cast_or_null<TypedefNameDecl>(getDerived().TransformDecl(TL.getNameLoc(), |
| 6307 | T->getDecl())); |
| 6308 | if (!Typedef) |
| 6309 | return QualType(); |
| 6310 | |
| 6311 | QualType Result = TL.getType(); |
| 6312 | if (getDerived().AlwaysRebuild() || |
| 6313 | Typedef != T->getDecl()) { |
| 6314 | Result = getDerived().RebuildTypedefType(Typedef); |
| 6315 | if (Result.isNull()) |
| 6316 | return QualType(); |
| 6317 | } |
| 6318 | |
| 6319 | TypedefTypeLoc NewTL = TLB.push<TypedefTypeLoc>(Result); |
| 6320 | NewTL.setNameLoc(TL.getNameLoc()); |
| 6321 | |
| 6322 | return Result; |
| 6323 | } |
| 6324 | |
| 6325 | template<typename Derived> |
| 6326 | QualType TreeTransform<Derived>::TransformTypeOfExprType(TypeLocBuilder &TLB, |
| 6327 | TypeOfExprTypeLoc TL) { |
| 6328 | // typeof expressions are not potentially evaluated contexts |
| 6329 | EnterExpressionEvaluationContext Unevaluated( |
| 6330 | SemaRef, Sema::ExpressionEvaluationContext::Unevaluated, |
| 6331 | Sema::ReuseLambdaContextDecl); |
| 6332 | |
| 6333 | ExprResult E = getDerived().TransformExpr(TL.getUnderlyingExpr()); |
| 6334 | if (E.isInvalid()) |
| 6335 | return QualType(); |
| 6336 | |
| 6337 | E = SemaRef.HandleExprEvaluationContextForTypeof(E.get()); |
| 6338 | if (E.isInvalid()) |
| 6339 | return QualType(); |
| 6340 | |
| 6341 | QualType Result = TL.getType(); |
| 6342 | TypeOfKind Kind = Result->getAs<TypeOfExprType>()->getKind(); |
| 6343 | if (getDerived().AlwaysRebuild() || E.get() != TL.getUnderlyingExpr()) { |
| 6344 | Result = |
| 6345 | getDerived().RebuildTypeOfExprType(E.get(), TL.getTypeofLoc(), Kind); |
| 6346 | if (Result.isNull()) |
| 6347 | return QualType(); |
| 6348 | } |
| 6349 | |
| 6350 | TypeOfExprTypeLoc NewTL = TLB.push<TypeOfExprTypeLoc>(Result); |
| 6351 | NewTL.setTypeofLoc(TL.getTypeofLoc()); |
| 6352 | NewTL.setLParenLoc(TL.getLParenLoc()); |
| 6353 | NewTL.setRParenLoc(TL.getRParenLoc()); |
| 6354 | |
| 6355 | return Result; |
| 6356 | } |
| 6357 | |
| 6358 | template<typename Derived> |
| 6359 | QualType TreeTransform<Derived>::TransformTypeOfType(TypeLocBuilder &TLB, |
| 6360 | TypeOfTypeLoc TL) { |
| 6361 | TypeSourceInfo* Old_Under_TI = TL.getUnmodifiedTInfo(); |
| 6362 | TypeSourceInfo* New_Under_TI = getDerived().TransformType(Old_Under_TI); |
| 6363 | if (!New_Under_TI) |
| 6364 | return QualType(); |
| 6365 | |
| 6366 | QualType Result = TL.getType(); |
| 6367 | TypeOfKind Kind = Result->getAs<TypeOfType>()->getKind(); |
| 6368 | if (getDerived().AlwaysRebuild() || New_Under_TI != Old_Under_TI) { |
| 6369 | Result = getDerived().RebuildTypeOfType(New_Under_TI->getType(), Kind); |
| 6370 | if (Result.isNull()) |
| 6371 | return QualType(); |
| 6372 | } |
| 6373 | |
| 6374 | TypeOfTypeLoc NewTL = TLB.push<TypeOfTypeLoc>(Result); |
| 6375 | NewTL.setTypeofLoc(TL.getTypeofLoc()); |
| 6376 | NewTL.setLParenLoc(TL.getLParenLoc()); |
| 6377 | NewTL.setRParenLoc(TL.getRParenLoc()); |
| 6378 | NewTL.setUnmodifiedTInfo(New_Under_TI); |
| 6379 | |
| 6380 | return Result; |
| 6381 | } |
| 6382 | |
| 6383 | template<typename Derived> |
| 6384 | QualType TreeTransform<Derived>::TransformDecltypeType(TypeLocBuilder &TLB, |
| 6385 | DecltypeTypeLoc TL) { |
| 6386 | const DecltypeType *T = TL.getTypePtr(); |
| 6387 | |
| 6388 | // decltype expressions are not potentially evaluated contexts |
| 6389 | EnterExpressionEvaluationContext Unevaluated( |
| 6390 | SemaRef, Sema::ExpressionEvaluationContext::Unevaluated, nullptr, |
| 6391 | Sema::ExpressionEvaluationContextRecord::EK_Decltype); |
| 6392 | |
| 6393 | ExprResult E = getDerived().TransformExpr(T->getUnderlyingExpr()); |
| 6394 | if (E.isInvalid()) |
| 6395 | return QualType(); |
| 6396 | |
| 6397 | E = getSema().ActOnDecltypeExpression(E.get()); |
| 6398 | if (E.isInvalid()) |
| 6399 | return QualType(); |
| 6400 | |
| 6401 | QualType Result = TL.getType(); |
| 6402 | if (getDerived().AlwaysRebuild() || |
| 6403 | E.get() != T->getUnderlyingExpr()) { |
| 6404 | Result = getDerived().RebuildDecltypeType(E.get(), TL.getDecltypeLoc()); |
| 6405 | if (Result.isNull()) |
| 6406 | return QualType(); |
| 6407 | } |
| 6408 | else E.get(); |
| 6409 | |
| 6410 | DecltypeTypeLoc NewTL = TLB.push<DecltypeTypeLoc>(Result); |
| 6411 | NewTL.setDecltypeLoc(TL.getDecltypeLoc()); |
| 6412 | NewTL.setRParenLoc(TL.getRParenLoc()); |
| 6413 | return Result; |
| 6414 | } |
| 6415 | |
| 6416 | template<typename Derived> |
| 6417 | QualType TreeTransform<Derived>::TransformUnaryTransformType( |
| 6418 | TypeLocBuilder &TLB, |
| 6419 | UnaryTransformTypeLoc TL) { |
| 6420 | QualType Result = TL.getType(); |
| 6421 | if (Result->isDependentType()) { |
| 6422 | const UnaryTransformType *T = TL.getTypePtr(); |
| 6423 | QualType NewBase = |
| 6424 | getDerived().TransformType(TL.getUnderlyingTInfo())->getType(); |
| 6425 | Result = getDerived().RebuildUnaryTransformType(NewBase, |
| 6426 | T->getUTTKind(), |
| 6427 | TL.getKWLoc()); |
| 6428 | if (Result.isNull()) |
| 6429 | return QualType(); |
| 6430 | } |
| 6431 | |
| 6432 | UnaryTransformTypeLoc NewTL = TLB.push<UnaryTransformTypeLoc>(Result); |
| 6433 | NewTL.setKWLoc(TL.getKWLoc()); |
| 6434 | NewTL.setParensRange(TL.getParensRange()); |
| 6435 | NewTL.setUnderlyingTInfo(TL.getUnderlyingTInfo()); |
| 6436 | return Result; |
| 6437 | } |
| 6438 | |
| 6439 | template<typename Derived> |
| 6440 | QualType TreeTransform<Derived>::TransformDeducedTemplateSpecializationType( |
| 6441 | TypeLocBuilder &TLB, DeducedTemplateSpecializationTypeLoc TL) { |
| 6442 | const DeducedTemplateSpecializationType *T = TL.getTypePtr(); |
| 6443 | |
| 6444 | CXXScopeSpec SS; |
| 6445 | TemplateName TemplateName = getDerived().TransformTemplateName( |
| 6446 | SS, T->getTemplateName(), TL.getTemplateNameLoc()); |
| 6447 | if (TemplateName.isNull()) |
| 6448 | return QualType(); |
| 6449 | |
| 6450 | QualType OldDeduced = T->getDeducedType(); |
| 6451 | QualType NewDeduced; |
| 6452 | if (!OldDeduced.isNull()) { |
| 6453 | NewDeduced = getDerived().TransformType(OldDeduced); |
| 6454 | if (NewDeduced.isNull()) |
| 6455 | return QualType(); |
| 6456 | } |
| 6457 | |
| 6458 | QualType Result = getDerived().RebuildDeducedTemplateSpecializationType( |
| 6459 | TemplateName, NewDeduced); |
| 6460 | if (Result.isNull()) |
| 6461 | return QualType(); |
| 6462 | |
| 6463 | DeducedTemplateSpecializationTypeLoc NewTL = |
| 6464 | TLB.push<DeducedTemplateSpecializationTypeLoc>(Result); |
| 6465 | NewTL.setTemplateNameLoc(TL.getTemplateNameLoc()); |
| 6466 | |
| 6467 | return Result; |
| 6468 | } |
| 6469 | |
| 6470 | template<typename Derived> |
| 6471 | QualType TreeTransform<Derived>::TransformRecordType(TypeLocBuilder &TLB, |
| 6472 | RecordTypeLoc TL) { |
| 6473 | const RecordType *T = TL.getTypePtr(); |
| 6474 | RecordDecl *Record |
| 6475 | = cast_or_null<RecordDecl>(getDerived().TransformDecl(TL.getNameLoc(), |
| 6476 | T->getDecl())); |
| 6477 | if (!Record) |
| 6478 | return QualType(); |
| 6479 | |
| 6480 | QualType Result = TL.getType(); |
| 6481 | if (getDerived().AlwaysRebuild() || |
| 6482 | Record != T->getDecl()) { |
| 6483 | Result = getDerived().RebuildRecordType(Record); |
| 6484 | if (Result.isNull()) |
| 6485 | return QualType(); |
| 6486 | } |
| 6487 | |
| 6488 | RecordTypeLoc NewTL = TLB.push<RecordTypeLoc>(Result); |
| 6489 | NewTL.setNameLoc(TL.getNameLoc()); |
| 6490 | |
| 6491 | return Result; |
| 6492 | } |
| 6493 | |
| 6494 | template<typename Derived> |
| 6495 | QualType TreeTransform<Derived>::TransformEnumType(TypeLocBuilder &TLB, |
| 6496 | EnumTypeLoc TL) { |
| 6497 | const EnumType *T = TL.getTypePtr(); |
| 6498 | EnumDecl *Enum |
| 6499 | = cast_or_null<EnumDecl>(getDerived().TransformDecl(TL.getNameLoc(), |
| 6500 | T->getDecl())); |
| 6501 | if (!Enum) |
| 6502 | return QualType(); |
| 6503 | |
| 6504 | QualType Result = TL.getType(); |
| 6505 | if (getDerived().AlwaysRebuild() || |
| 6506 | Enum != T->getDecl()) { |
| 6507 | Result = getDerived().RebuildEnumType(Enum); |
| 6508 | if (Result.isNull()) |
| 6509 | return QualType(); |
| 6510 | } |
| 6511 | |
| 6512 | EnumTypeLoc NewTL = TLB.push<EnumTypeLoc>(Result); |
| 6513 | NewTL.setNameLoc(TL.getNameLoc()); |
| 6514 | |
| 6515 | return Result; |
| 6516 | } |
| 6517 | |
| 6518 | template<typename Derived> |
| 6519 | QualType TreeTransform<Derived>::TransformInjectedClassNameType( |
| 6520 | TypeLocBuilder &TLB, |
| 6521 | InjectedClassNameTypeLoc TL) { |
| 6522 | Decl *D = getDerived().TransformDecl(TL.getNameLoc(), |
| 6523 | TL.getTypePtr()->getDecl()); |
| 6524 | if (!D) return QualType(); |
| 6525 | |
| 6526 | QualType T = SemaRef.Context.getTypeDeclType(cast<TypeDecl>(D)); |
| 6527 | TLB.pushTypeSpec(T).setNameLoc(TL.getNameLoc()); |
| 6528 | return T; |
| 6529 | } |
| 6530 | |
| 6531 | template<typename Derived> |
| 6532 | QualType TreeTransform<Derived>::TransformTemplateTypeParmType( |
| 6533 | TypeLocBuilder &TLB, |
| 6534 | TemplateTypeParmTypeLoc TL) { |
| 6535 | return getDerived().TransformTemplateTypeParmType( |
| 6536 | TLB, TL, |
| 6537 | /*SuppressObjCLifetime=*/false); |
| 6538 | } |
| 6539 | |
| 6540 | template <typename Derived> |
| 6541 | QualType TreeTransform<Derived>::TransformTemplateTypeParmType( |
| 6542 | TypeLocBuilder &TLB, TemplateTypeParmTypeLoc TL, bool) { |
| 6543 | return TransformTypeSpecType(TLB, TL); |
| 6544 | } |
| 6545 | |
| 6546 | template<typename Derived> |
| 6547 | QualType TreeTransform<Derived>::TransformSubstTemplateTypeParmType( |
| 6548 | TypeLocBuilder &TLB, |
| 6549 | SubstTemplateTypeParmTypeLoc TL) { |
| 6550 | const SubstTemplateTypeParmType *T = TL.getTypePtr(); |
| 6551 | |
| 6552 | Decl *NewReplaced = |
| 6553 | getDerived().TransformDecl(TL.getNameLoc(), T->getAssociatedDecl()); |
| 6554 | |
| 6555 | // Substitute into the replacement type, which itself might involve something |
| 6556 | // that needs to be transformed. This only tends to occur with default |
| 6557 | // template arguments of template template parameters. |
| 6558 | TemporaryBase Rebase(*this, TL.getNameLoc(), DeclarationName()); |
| 6559 | QualType Replacement = getDerived().TransformType(T->getReplacementType()); |
| 6560 | if (Replacement.isNull()) |
| 6561 | return QualType(); |
| 6562 | |
| 6563 | QualType Result = SemaRef.Context.getSubstTemplateTypeParmType( |
| 6564 | Replacement, NewReplaced, T->getIndex(), T->getPackIndex()); |
| 6565 | |
| 6566 | // Propagate type-source information. |
| 6567 | SubstTemplateTypeParmTypeLoc NewTL |
| 6568 | = TLB.push<SubstTemplateTypeParmTypeLoc>(Result); |
| 6569 | NewTL.setNameLoc(TL.getNameLoc()); |
| 6570 | return Result; |
| 6571 | |
| 6572 | } |
| 6573 | |
| 6574 | template<typename Derived> |
| 6575 | QualType TreeTransform<Derived>::TransformSubstTemplateTypeParmPackType( |
| 6576 | TypeLocBuilder &TLB, |
| 6577 | SubstTemplateTypeParmPackTypeLoc TL) { |
| 6578 | return getDerived().TransformSubstTemplateTypeParmPackType( |
| 6579 | TLB, TL, /*SuppressObjCLifetime=*/false); |
| 6580 | } |
| 6581 | |
| 6582 | template <typename Derived> |
| 6583 | QualType TreeTransform<Derived>::TransformSubstTemplateTypeParmPackType( |
| 6584 | TypeLocBuilder &TLB, SubstTemplateTypeParmPackTypeLoc TL, bool) { |
| 6585 | return TransformTypeSpecType(TLB, TL); |
| 6586 | } |
| 6587 | |
| 6588 | template<typename Derived> |
| 6589 | QualType TreeTransform<Derived>::TransformTemplateSpecializationType( |
| 6590 | TypeLocBuilder &TLB, |
| 6591 | TemplateSpecializationTypeLoc TL) { |
| 6592 | const TemplateSpecializationType *T = TL.getTypePtr(); |
| 6593 | |
| 6594 | // The nested-name-specifier never matters in a TemplateSpecializationType, |
| 6595 | // because we can't have a dependent nested-name-specifier anyway. |
| 6596 | CXXScopeSpec SS; |
| 6597 | TemplateName Template |
| 6598 | = getDerived().TransformTemplateName(SS, T->getTemplateName(), |
| 6599 | TL.getTemplateNameLoc()); |
| 6600 | if (Template.isNull()) |
| 6601 | return QualType(); |
| 6602 | |
| 6603 | return getDerived().TransformTemplateSpecializationType(TLB, TL, Template); |
| 6604 | } |
| 6605 | |
| 6606 | template<typename Derived> |
| 6607 | QualType TreeTransform<Derived>::TransformAtomicType(TypeLocBuilder &TLB, |
| 6608 | AtomicTypeLoc TL) { |
| 6609 | QualType ValueType = getDerived().TransformType(TLB, TL.getValueLoc()); |
| 6610 | if (ValueType.isNull()) |
| 6611 | return QualType(); |
| 6612 | |
| 6613 | QualType Result = TL.getType(); |
| 6614 | if (getDerived().AlwaysRebuild() || |
| 6615 | ValueType != TL.getValueLoc().getType()) { |
| 6616 | Result = getDerived().RebuildAtomicType(ValueType, TL.getKWLoc()); |
| 6617 | if (Result.isNull()) |
| 6618 | return QualType(); |
| 6619 | } |
| 6620 | |
| 6621 | AtomicTypeLoc NewTL = TLB.push<AtomicTypeLoc>(Result); |
| 6622 | NewTL.setKWLoc(TL.getKWLoc()); |
| 6623 | NewTL.setLParenLoc(TL.getLParenLoc()); |
| 6624 | NewTL.setRParenLoc(TL.getRParenLoc()); |
| 6625 | |
| 6626 | return Result; |
| 6627 | } |
| 6628 | |
| 6629 | template <typename Derived> |
| 6630 | QualType TreeTransform<Derived>::TransformPipeType(TypeLocBuilder &TLB, |
| 6631 | PipeTypeLoc TL) { |
| 6632 | QualType ValueType = getDerived().TransformType(TLB, TL.getValueLoc()); |
| 6633 | if (ValueType.isNull()) |
| 6634 | return QualType(); |
| 6635 | |
| 6636 | QualType Result = TL.getType(); |
| 6637 | if (getDerived().AlwaysRebuild() || ValueType != TL.getValueLoc().getType()) { |
| 6638 | const PipeType *PT = Result->castAs<PipeType>(); |
| 6639 | bool isReadPipe = PT->isReadOnly(); |
| 6640 | Result = getDerived().RebuildPipeType(ValueType, TL.getKWLoc(), isReadPipe); |
| 6641 | if (Result.isNull()) |
| 6642 | return QualType(); |
| 6643 | } |
| 6644 | |
| 6645 | PipeTypeLoc NewTL = TLB.push<PipeTypeLoc>(Result); |
| 6646 | NewTL.setKWLoc(TL.getKWLoc()); |
| 6647 | |
| 6648 | return Result; |
| 6649 | } |
| 6650 | |
| 6651 | template <typename Derived> |
| 6652 | QualType TreeTransform<Derived>::TransformBitIntType(TypeLocBuilder &TLB, |
| 6653 | BitIntTypeLoc TL) { |
| 6654 | const BitIntType *EIT = TL.getTypePtr(); |
| 6655 | QualType Result = TL.getType(); |
| 6656 | |
| 6657 | if (getDerived().AlwaysRebuild()) { |
| 6658 | Result = getDerived().RebuildBitIntType(EIT->isUnsigned(), |
| 6659 | EIT->getNumBits(), TL.getNameLoc()); |
| 6660 | if (Result.isNull()) |
| 6661 | return QualType(); |
| 6662 | } |
| 6663 | |
| 6664 | BitIntTypeLoc NewTL = TLB.push<BitIntTypeLoc>(Result); |
| 6665 | NewTL.setNameLoc(TL.getNameLoc()); |
| 6666 | return Result; |
| 6667 | } |
| 6668 | |
| 6669 | template <typename Derived> |
| 6670 | QualType TreeTransform<Derived>::TransformDependentBitIntType( |
| 6671 | TypeLocBuilder &TLB, DependentBitIntTypeLoc TL) { |
| 6672 | const DependentBitIntType *EIT = TL.getTypePtr(); |
| 6673 | |
| 6674 | EnterExpressionEvaluationContext Unevaluated( |
| 6675 | SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated); |
| 6676 | ExprResult BitsExpr = getDerived().TransformExpr(EIT->getNumBitsExpr()); |
| 6677 | BitsExpr = SemaRef.ActOnConstantExpression(BitsExpr); |
| 6678 | |
| 6679 | if (BitsExpr.isInvalid()) |
| 6680 | return QualType(); |
| 6681 | |
| 6682 | QualType Result = TL.getType(); |
| 6683 | |
| 6684 | if (getDerived().AlwaysRebuild() || BitsExpr.get() != EIT->getNumBitsExpr()) { |
| 6685 | Result = getDerived().RebuildDependentBitIntType( |
| 6686 | EIT->isUnsigned(), BitsExpr.get(), TL.getNameLoc()); |
| 6687 | |
| 6688 | if (Result.isNull()) |
| 6689 | return QualType(); |
| 6690 | } |
| 6691 | |
| 6692 | if (isa<DependentBitIntType>(Result)) { |
| 6693 | DependentBitIntTypeLoc NewTL = TLB.push<DependentBitIntTypeLoc>(Result); |
| 6694 | NewTL.setNameLoc(TL.getNameLoc()); |
| 6695 | } else { |
| 6696 | BitIntTypeLoc NewTL = TLB.push<BitIntTypeLoc>(Result); |
| 6697 | NewTL.setNameLoc(TL.getNameLoc()); |
| 6698 | } |
| 6699 | return Result; |
| 6700 | } |
| 6701 | |
| 6702 | /// Simple iterator that traverses the template arguments in a |
| 6703 | /// container that provides a \c getArgLoc() member function. |
| 6704 | /// |
| 6705 | /// This iterator is intended to be used with the iterator form of |
| 6706 | /// \c TreeTransform<Derived>::TransformTemplateArguments(). |
| 6707 | template<typename ArgLocContainer> |
| 6708 | class TemplateArgumentLocContainerIterator { |
| 6709 | ArgLocContainer *Container; |
| 6710 | unsigned Index; |
| 6711 | |
| 6712 | public: |
| 6713 | typedef TemplateArgumentLoc value_type; |
| 6714 | typedef TemplateArgumentLoc reference; |
| 6715 | typedef int difference_type; |
| 6716 | typedef std::input_iterator_tag iterator_category; |
| 6717 | |
| 6718 | class pointer { |
| 6719 | TemplateArgumentLoc Arg; |
| 6720 | |
| 6721 | public: |
| 6722 | explicit pointer(TemplateArgumentLoc Arg) : Arg(Arg) { } |
| 6723 | |
| 6724 | const TemplateArgumentLoc *operator->() const { |
| 6725 | return &Arg; |
| 6726 | } |
| 6727 | }; |
| 6728 | |
| 6729 | |
| 6730 | TemplateArgumentLocContainerIterator() {} |
| 6731 | |
| 6732 | TemplateArgumentLocContainerIterator(ArgLocContainer &Container, |
| 6733 | unsigned Index) |
| 6734 | : Container(&Container), Index(Index) { } |
| 6735 | |
| 6736 | TemplateArgumentLocContainerIterator &operator++() { |
| 6737 | ++Index; |
| 6738 | return *this; |
| 6739 | } |
| 6740 | |
| 6741 | TemplateArgumentLocContainerIterator operator++(int) { |
| 6742 | TemplateArgumentLocContainerIterator Old(*this); |
| 6743 | ++(*this); |
| 6744 | return Old; |
| 6745 | } |
| 6746 | |
| 6747 | TemplateArgumentLoc operator*() const { |
| 6748 | return Container->getArgLoc(Index); |
| 6749 | } |
| 6750 | |
| 6751 | pointer operator->() const { |
| 6752 | return pointer(Container->getArgLoc(Index)); |
| 6753 | } |
| 6754 | |
| 6755 | friend bool operator==(const TemplateArgumentLocContainerIterator &X, |
| 6756 | const TemplateArgumentLocContainerIterator &Y) { |
| 6757 | return X.Container == Y.Container && X.Index == Y.Index; |
| 6758 | } |
| 6759 | |
| 6760 | friend bool operator!=(const TemplateArgumentLocContainerIterator &X, |
| 6761 | const TemplateArgumentLocContainerIterator &Y) { |
| 6762 | return !(X == Y); |
| 6763 | } |
| 6764 | }; |
| 6765 | |
| 6766 | template<typename Derived> |
| 6767 | QualType TreeTransform<Derived>::TransformAutoType(TypeLocBuilder &TLB, |
| 6768 | AutoTypeLoc TL) { |
| 6769 | const AutoType *T = TL.getTypePtr(); |
| 6770 | QualType OldDeduced = T->getDeducedType(); |
| 6771 | QualType NewDeduced; |
| 6772 | if (!OldDeduced.isNull()) { |
| 6773 | NewDeduced = getDerived().TransformType(OldDeduced); |
| 6774 | if (NewDeduced.isNull()) |
| 6775 | return QualType(); |
| 6776 | } |
| 6777 | |
| 6778 | ConceptDecl *NewCD = nullptr; |
| 6779 | TemplateArgumentListInfo NewTemplateArgs; |
| 6780 | NestedNameSpecifierLoc NewNestedNameSpec; |
| 6781 | if (T->isConstrained()) { |
| 6782 | NewCD = cast_or_null<ConceptDecl>(getDerived().TransformDecl( |
| 6783 | TL.getConceptNameLoc(), T->getTypeConstraintConcept())); |
| 6784 | |
| 6785 | NewTemplateArgs.setLAngleLoc(TL.getLAngleLoc()); |
| 6786 | NewTemplateArgs.setRAngleLoc(TL.getRAngleLoc()); |
| 6787 | typedef TemplateArgumentLocContainerIterator<AutoTypeLoc> ArgIterator; |
| 6788 | if (getDerived().TransformTemplateArguments(ArgIterator(TL, 0), |
| 6789 | ArgIterator(TL, |
| 6790 | TL.getNumArgs()), |
| 6791 | NewTemplateArgs)) |
| 6792 | return QualType(); |
| 6793 | |
| 6794 | if (TL.getNestedNameSpecifierLoc()) { |
| 6795 | NewNestedNameSpec |
| 6796 | = getDerived().TransformNestedNameSpecifierLoc( |
| 6797 | TL.getNestedNameSpecifierLoc()); |
| 6798 | if (!NewNestedNameSpec) |
| 6799 | return QualType(); |
| 6800 | } |
| 6801 | } |
| 6802 | |
| 6803 | QualType Result = TL.getType(); |
| 6804 | if (getDerived().AlwaysRebuild() || NewDeduced != OldDeduced || |
| 6805 | T->isDependentType() || T->isConstrained()) { |
| 6806 | // FIXME: Maybe don't rebuild if all template arguments are the same. |
| 6807 | llvm::SmallVector<TemplateArgument, 4> NewArgList; |
| 6808 | NewArgList.reserve(NewTemplateArgs.size()); |
| 6809 | for (const auto &ArgLoc : NewTemplateArgs.arguments()) |
| 6810 | NewArgList.push_back(ArgLoc.getArgument()); |
| 6811 | Result = getDerived().RebuildAutoType(NewDeduced, T->getKeyword(), NewCD, |
| 6812 | NewArgList); |
| 6813 | if (Result.isNull()) |
| 6814 | return QualType(); |
| 6815 | } |
| 6816 | |
| 6817 | AutoTypeLoc NewTL = TLB.push<AutoTypeLoc>(Result); |
| 6818 | NewTL.setNameLoc(TL.getNameLoc()); |
| 6819 | NewTL.setNestedNameSpecifierLoc(NewNestedNameSpec); |
| 6820 | NewTL.setTemplateKWLoc(TL.getTemplateKWLoc()); |
| 6821 | NewTL.setConceptNameLoc(TL.getConceptNameLoc()); |
| 6822 | NewTL.setFoundDecl(TL.getFoundDecl()); |
| 6823 | NewTL.setLAngleLoc(TL.getLAngleLoc()); |
| 6824 | NewTL.setRAngleLoc(TL.getRAngleLoc()); |
| 6825 | NewTL.setRParenLoc(TL.getRParenLoc()); |
| 6826 | for (unsigned I = 0; I < NewTL.getNumArgs(); ++I) |
| 6827 | NewTL.setArgLocInfo(I, NewTemplateArgs.arguments()[I].getLocInfo()); |
| 6828 | |
| 6829 | return Result; |
| 6830 | } |
| 6831 | |
| 6832 | template <typename Derived> |
| 6833 | QualType TreeTransform<Derived>::TransformTemplateSpecializationType( |
| 6834 | TypeLocBuilder &TLB, |
| 6835 | TemplateSpecializationTypeLoc TL, |
| 6836 | TemplateName Template) { |
| 6837 | TemplateArgumentListInfo NewTemplateArgs; |
| 6838 | NewTemplateArgs.setLAngleLoc(TL.getLAngleLoc()); |
| 6839 | NewTemplateArgs.setRAngleLoc(TL.getRAngleLoc()); |
| 6840 | typedef TemplateArgumentLocContainerIterator<TemplateSpecializationTypeLoc> |
| 6841 | ArgIterator; |
| 6842 | if (getDerived().TransformTemplateArguments(ArgIterator(TL, 0), |
| 6843 | ArgIterator(TL, TL.getNumArgs()), |
| 6844 | NewTemplateArgs)) |
| 6845 | return QualType(); |
| 6846 | |
| 6847 | // FIXME: maybe don't rebuild if all the template arguments are the same. |
| 6848 | |
| 6849 | QualType Result = |
| 6850 | getDerived().RebuildTemplateSpecializationType(Template, |
| 6851 | TL.getTemplateNameLoc(), |
| 6852 | NewTemplateArgs); |
| 6853 | |
| 6854 | if (!Result.isNull()) { |
| 6855 | // Specializations of template template parameters are represented as |
| 6856 | // TemplateSpecializationTypes, and substitution of type alias templates |
| 6857 | // within a dependent context can transform them into |
| 6858 | // DependentTemplateSpecializationTypes. |
| 6859 | if (isa<DependentTemplateSpecializationType>(Result)) { |
| 6860 | DependentTemplateSpecializationTypeLoc NewTL |
| 6861 | = TLB.push<DependentTemplateSpecializationTypeLoc>(Result); |
| 6862 | NewTL.setElaboratedKeywordLoc(SourceLocation()); |
| 6863 | NewTL.setQualifierLoc(NestedNameSpecifierLoc()); |
| 6864 | NewTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc()); |
| 6865 | NewTL.setTemplateNameLoc(TL.getTemplateNameLoc()); |
| 6866 | NewTL.setLAngleLoc(TL.getLAngleLoc()); |
| 6867 | NewTL.setRAngleLoc(TL.getRAngleLoc()); |
| 6868 | for (unsigned i = 0, e = NewTemplateArgs.size(); i != e; ++i) |
| 6869 | NewTL.setArgLocInfo(i, NewTemplateArgs[i].getLocInfo()); |
| 6870 | return Result; |
| 6871 | } |
| 6872 | |
| 6873 | TemplateSpecializationTypeLoc NewTL |
| 6874 | = TLB.push<TemplateSpecializationTypeLoc>(Result); |
| 6875 | NewTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc()); |
| 6876 | NewTL.setTemplateNameLoc(TL.getTemplateNameLoc()); |
| 6877 | NewTL.setLAngleLoc(TL.getLAngleLoc()); |
| 6878 | NewTL.setRAngleLoc(TL.getRAngleLoc()); |
| 6879 | for (unsigned i = 0, e = NewTemplateArgs.size(); i != e; ++i) |
| 6880 | NewTL.setArgLocInfo(i, NewTemplateArgs[i].getLocInfo()); |
| 6881 | } |
| 6882 | |
| 6883 | return Result; |
| 6884 | } |
| 6885 | |
| 6886 | template <typename Derived> |
| 6887 | QualType TreeTransform<Derived>::TransformDependentTemplateSpecializationType( |
| 6888 | TypeLocBuilder &TLB, |
| 6889 | DependentTemplateSpecializationTypeLoc TL, |
| 6890 | TemplateName Template, |
| 6891 | CXXScopeSpec &SS) { |
| 6892 | TemplateArgumentListInfo NewTemplateArgs; |
| 6893 | NewTemplateArgs.setLAngleLoc(TL.getLAngleLoc()); |
| 6894 | NewTemplateArgs.setRAngleLoc(TL.getRAngleLoc()); |
| 6895 | typedef TemplateArgumentLocContainerIterator< |
| 6896 | DependentTemplateSpecializationTypeLoc> ArgIterator; |
| 6897 | if (getDerived().TransformTemplateArguments(ArgIterator(TL, 0), |
| 6898 | ArgIterator(TL, TL.getNumArgs()), |
| 6899 | NewTemplateArgs)) |
| 6900 | return QualType(); |
| 6901 | |
| 6902 | // FIXME: maybe don't rebuild if all the template arguments are the same. |
| 6903 | |
| 6904 | if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { |
| 6905 | QualType Result = getSema().Context.getDependentTemplateSpecializationType( |
| 6906 | TL.getTypePtr()->getKeyword(), DTN->getQualifier(), |
| 6907 | DTN->getIdentifier(), NewTemplateArgs.arguments()); |
| 6908 | |
| 6909 | DependentTemplateSpecializationTypeLoc NewTL |
| 6910 | = TLB.push<DependentTemplateSpecializationTypeLoc>(Result); |
| 6911 | NewTL.setElaboratedKeywordLoc(TL.getElaboratedKeywordLoc()); |
| 6912 | NewTL.setQualifierLoc(SS.getWithLocInContext(SemaRef.Context)); |
| 6913 | NewTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc()); |
| 6914 | NewTL.setTemplateNameLoc(TL.getTemplateNameLoc()); |
| 6915 | NewTL.setLAngleLoc(TL.getLAngleLoc()); |
| 6916 | NewTL.setRAngleLoc(TL.getRAngleLoc()); |
| 6917 | for (unsigned i = 0, e = NewTemplateArgs.size(); i != e; ++i) |
| 6918 | NewTL.setArgLocInfo(i, NewTemplateArgs[i].getLocInfo()); |
| 6919 | return Result; |
| 6920 | } |
| 6921 | |
| 6922 | QualType Result |
| 6923 | = getDerived().RebuildTemplateSpecializationType(Template, |
| 6924 | TL.getTemplateNameLoc(), |
| 6925 | NewTemplateArgs); |
| 6926 | |
| 6927 | if (!Result.isNull()) { |
| 6928 | /// FIXME: Wrap this in an elaborated-type-specifier? |
| 6929 | TemplateSpecializationTypeLoc NewTL |
| 6930 | = TLB.push<TemplateSpecializationTypeLoc>(Result); |
| 6931 | NewTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc()); |
| 6932 | NewTL.setTemplateNameLoc(TL.getTemplateNameLoc()); |
| 6933 | NewTL.setLAngleLoc(TL.getLAngleLoc()); |
| 6934 | NewTL.setRAngleLoc(TL.getRAngleLoc()); |
| 6935 | for (unsigned i = 0, e = NewTemplateArgs.size(); i != e; ++i) |
| 6936 | NewTL.setArgLocInfo(i, NewTemplateArgs[i].getLocInfo()); |
| 6937 | } |
| 6938 | |
| 6939 | return Result; |
| 6940 | } |
| 6941 | |
| 6942 | template<typename Derived> |
| 6943 | QualType |
| 6944 | TreeTransform<Derived>::TransformElaboratedType(TypeLocBuilder &TLB, |
| 6945 | ElaboratedTypeLoc TL) { |
| 6946 | const ElaboratedType *T = TL.getTypePtr(); |
| 6947 | |
| 6948 | NestedNameSpecifierLoc QualifierLoc; |
| 6949 | // NOTE: the qualifier in an ElaboratedType is optional. |
| 6950 | if (TL.getQualifierLoc()) { |
| 6951 | QualifierLoc |
| 6952 | = getDerived().TransformNestedNameSpecifierLoc(TL.getQualifierLoc()); |
| 6953 | if (!QualifierLoc) |
| 6954 | return QualType(); |
| 6955 | } |
| 6956 | |
| 6957 | QualType NamedT = getDerived().TransformType(TLB, TL.getNamedTypeLoc()); |
| 6958 | if (NamedT.isNull()) |
| 6959 | return QualType(); |
| 6960 | |
| 6961 | // C++0x [dcl.type.elab]p2: |
| 6962 | // If the identifier resolves to a typedef-name or the simple-template-id |
| 6963 | // resolves to an alias template specialization, the |
| 6964 | // elaborated-type-specifier is ill-formed. |
| 6965 | if (T->getKeyword() != ETK_None && T->getKeyword() != ETK_Typename) { |
| 6966 | if (const TemplateSpecializationType *TST = |
| 6967 | NamedT->getAs<TemplateSpecializationType>()) { |
| 6968 | TemplateName Template = TST->getTemplateName(); |
| 6969 | if (TypeAliasTemplateDecl *TAT = dyn_cast_or_null<TypeAliasTemplateDecl>( |
| 6970 | Template.getAsTemplateDecl())) { |
| 6971 | SemaRef.Diag(TL.getNamedTypeLoc().getBeginLoc(), |
| 6972 | diag::err_tag_reference_non_tag) |
| 6973 | << TAT << Sema::NTK_TypeAliasTemplate |
| 6974 | << ElaboratedType::getTagTypeKindForKeyword(T->getKeyword()); |
| 6975 | SemaRef.Diag(TAT->getLocation(), diag::note_declared_at); |
| 6976 | } |
| 6977 | } |
| 6978 | } |
| 6979 | |
| 6980 | QualType Result = TL.getType(); |
| 6981 | if (getDerived().AlwaysRebuild() || |
| 6982 | QualifierLoc != TL.getQualifierLoc() || |
| 6983 | NamedT != T->getNamedType()) { |
| 6984 | Result = getDerived().RebuildElaboratedType(TL.getElaboratedKeywordLoc(), |
| 6985 | T->getKeyword(), |
| 6986 | QualifierLoc, NamedT); |
| 6987 | if (Result.isNull()) |
| 6988 | return QualType(); |
| 6989 | } |
| 6990 | |
| 6991 | ElaboratedTypeLoc NewTL = TLB.push<ElaboratedTypeLoc>(Result); |
| 6992 | NewTL.setElaboratedKeywordLoc(TL.getElaboratedKeywordLoc()); |
| 6993 | NewTL.setQualifierLoc(QualifierLoc); |
| 6994 | return Result; |
| 6995 | } |
| 6996 | |
| 6997 | template<typename Derived> |
| 6998 | QualType TreeTransform<Derived>::TransformAttributedType( |
| 6999 | TypeLocBuilder &TLB, |
| 7000 | AttributedTypeLoc TL) { |
| 7001 | const AttributedType *oldType = TL.getTypePtr(); |
| 7002 | QualType modifiedType = getDerived().TransformType(TLB, TL.getModifiedLoc()); |
| 7003 | if (modifiedType.isNull()) |
| 7004 | return QualType(); |
| 7005 | |
| 7006 | // oldAttr can be null if we started with a QualType rather than a TypeLoc. |
| 7007 | const Attr *oldAttr = TL.getAttr(); |
| 7008 | const Attr *newAttr = oldAttr ? getDerived().TransformAttr(oldAttr) : nullptr; |
| 7009 | if (oldAttr && !newAttr) |
| 7010 | return QualType(); |
| 7011 | |
| 7012 | QualType result = TL.getType(); |
| 7013 | |
| 7014 | // FIXME: dependent operand expressions? |
| 7015 | if (getDerived().AlwaysRebuild() || |
| 7016 | modifiedType != oldType->getModifiedType()) { |
| 7017 | // TODO: this is really lame; we should really be rebuilding the |
| 7018 | // equivalent type from first principles. |
| 7019 | QualType equivalentType |
| 7020 | = getDerived().TransformType(oldType->getEquivalentType()); |
| 7021 | if (equivalentType.isNull()) |
| 7022 | return QualType(); |
| 7023 | |
| 7024 | // Check whether we can add nullability; it is only represented as |
| 7025 | // type sugar, and therefore cannot be diagnosed in any other way. |
| 7026 | if (auto nullability = oldType->getImmediateNullability()) { |
| 7027 | if (!modifiedType->canHaveNullability()) { |
| 7028 | SemaRef.Diag((TL.getAttr() ? TL.getAttr()->getLocation() |
| 7029 | : TL.getModifiedLoc().getBeginLoc()), |
| 7030 | diag::err_nullability_nonpointer) |
| 7031 | << DiagNullabilityKind(*nullability, false) << modifiedType; |
| 7032 | return QualType(); |
| 7033 | } |
| 7034 | } |
| 7035 | |
| 7036 | result = SemaRef.Context.getAttributedType(TL.getAttrKind(), |
| 7037 | modifiedType, |
| 7038 | equivalentType); |
| 7039 | } |
| 7040 | |
| 7041 | AttributedTypeLoc newTL = TLB.push<AttributedTypeLoc>(result); |
| 7042 | newTL.setAttr(newAttr); |
| 7043 | return result; |
| 7044 | } |
| 7045 | |
| 7046 | template <typename Derived> |
| 7047 | QualType TreeTransform<Derived>::TransformBTFTagAttributedType( |
| 7048 | TypeLocBuilder &TLB, BTFTagAttributedTypeLoc TL) { |
| 7049 | // The BTFTagAttributedType is available for C only. |
| 7050 | llvm_unreachable("Unexpected TreeTransform for BTFTagAttributedType")::llvm::llvm_unreachable_internal("Unexpected TreeTransform for BTFTagAttributedType" , "clang/lib/Sema/TreeTransform.h", 7050); |
| 7051 | } |
| 7052 | |
| 7053 | template<typename Derived> |
| 7054 | QualType |
| 7055 | TreeTransform<Derived>::TransformParenType(TypeLocBuilder &TLB, |
| 7056 | ParenTypeLoc TL) { |
| 7057 | QualType Inner = getDerived().TransformType(TLB, TL.getInnerLoc()); |
| 7058 | if (Inner.isNull()) |
| 7059 | return QualType(); |
| 7060 | |
| 7061 | QualType Result = TL.getType(); |
| 7062 | if (getDerived().AlwaysRebuild() || |
| 7063 | Inner != TL.getInnerLoc().getType()) { |
| 7064 | Result = getDerived().RebuildParenType(Inner); |
| 7065 | if (Result.isNull()) |
| 7066 | return QualType(); |
| 7067 | } |
| 7068 | |
| 7069 | ParenTypeLoc NewTL = TLB.push<ParenTypeLoc>(Result); |
| 7070 | NewTL.setLParenLoc(TL.getLParenLoc()); |
| 7071 | NewTL.setRParenLoc(TL.getRParenLoc()); |
| 7072 | return Result; |
| 7073 | } |
| 7074 | |
| 7075 | template <typename Derived> |
| 7076 | QualType |
| 7077 | TreeTransform<Derived>::TransformMacroQualifiedType(TypeLocBuilder &TLB, |
| 7078 | MacroQualifiedTypeLoc TL) { |
| 7079 | QualType Inner = getDerived().TransformType(TLB, TL.getInnerLoc()); |
| 7080 | if (Inner.isNull()) |
| 7081 | return QualType(); |
| 7082 | |
| 7083 | QualType Result = TL.getType(); |
| 7084 | if (getDerived().AlwaysRebuild() || Inner != TL.getInnerLoc().getType()) { |
| 7085 | Result = |
| 7086 | getDerived().RebuildMacroQualifiedType(Inner, TL.getMacroIdentifier()); |
| 7087 | if (Result.isNull()) |
| 7088 | return QualType(); |
| 7089 | } |
| 7090 | |
| 7091 | MacroQualifiedTypeLoc NewTL = TLB.push<MacroQualifiedTypeLoc>(Result); |
| 7092 | NewTL.setExpansionLoc(TL.getExpansionLoc()); |
| 7093 | return Result; |
| 7094 | } |
| 7095 | |
| 7096 | template<typename Derived> |
| 7097 | QualType TreeTransform<Derived>::TransformDependentNameType( |
| 7098 | TypeLocBuilder &TLB, DependentNameTypeLoc TL) { |
| 7099 | return TransformDependentNameType(TLB, TL, false); |
| 7100 | } |
| 7101 | |
| 7102 | template<typename Derived> |
| 7103 | QualType TreeTransform<Derived>::TransformDependentNameType( |
| 7104 | TypeLocBuilder &TLB, DependentNameTypeLoc TL, bool DeducedTSTContext) { |
| 7105 | const DependentNameType *T = TL.getTypePtr(); |
| 7106 | |
| 7107 | NestedNameSpecifierLoc QualifierLoc |
| 7108 | = getDerived().TransformNestedNameSpecifierLoc(TL.getQualifierLoc()); |
| 7109 | if (!QualifierLoc) |
| 7110 | return QualType(); |
| 7111 | |
| 7112 | QualType Result |
| 7113 | = getDerived().RebuildDependentNameType(T->getKeyword(), |
| 7114 | TL.getElaboratedKeywordLoc(), |
| 7115 | QualifierLoc, |
| 7116 | T->getIdentifier(), |
| 7117 | TL.getNameLoc(), |
| 7118 | DeducedTSTContext); |
| 7119 | if (Result.isNull()) |
| 7120 | return QualType(); |
| 7121 | |
| 7122 | if (const ElaboratedType* ElabT = Result->getAs<ElaboratedType>()) { |
| 7123 | QualType NamedT = ElabT->getNamedType(); |
| 7124 | TLB.pushTypeSpec(NamedT).setNameLoc(TL.getNameLoc()); |
| 7125 | |
| 7126 | ElaboratedTypeLoc NewTL = TLB.push<ElaboratedTypeLoc>(Result); |
| 7127 | NewTL.setElaboratedKeywordLoc(TL.getElaboratedKeywordLoc()); |
| 7128 | NewTL.setQualifierLoc(QualifierLoc); |
| 7129 | } else { |
| 7130 | DependentNameTypeLoc NewTL = TLB.push<DependentNameTypeLoc>(Result); |
| 7131 | NewTL.setElaboratedKeywordLoc(TL.getElaboratedKeywordLoc()); |
| 7132 | NewTL.setQualifierLoc(QualifierLoc); |
| 7133 | NewTL.setNameLoc(TL.getNameLoc()); |
| 7134 | } |
| 7135 | return Result; |
| 7136 | } |
| 7137 | |
| 7138 | template<typename Derived> |
| 7139 | QualType TreeTransform<Derived>:: |
| 7140 | TransformDependentTemplateSpecializationType(TypeLocBuilder &TLB, |
| 7141 | DependentTemplateSpecializationTypeLoc TL) { |
| 7142 | NestedNameSpecifierLoc QualifierLoc; |
| 7143 | if (TL.getQualifierLoc()) { |
| 7144 | QualifierLoc |
| 7145 | = getDerived().TransformNestedNameSpecifierLoc(TL.getQualifierLoc()); |
| 7146 | if (!QualifierLoc) |
| 7147 | return QualType(); |
| 7148 | } |
| 7149 | |
| 7150 | return getDerived() |
| 7151 | .TransformDependentTemplateSpecializationType(TLB, TL, QualifierLoc); |
| 7152 | } |
| 7153 | |
| 7154 | template<typename Derived> |
| 7155 | QualType TreeTransform<Derived>:: |
| 7156 | TransformDependentTemplateSpecializationType(TypeLocBuilder &TLB, |
| 7157 | DependentTemplateSpecializationTypeLoc TL, |
| 7158 | NestedNameSpecifierLoc QualifierLoc) { |
| 7159 | const DependentTemplateSpecializationType *T = TL.getTypePtr(); |
| 7160 | |
| 7161 | TemplateArgumentListInfo NewTemplateArgs; |
| 7162 | NewTemplateArgs.setLAngleLoc(TL.getLAngleLoc()); |
| 7163 | NewTemplateArgs.setRAngleLoc(TL.getRAngleLoc()); |
| 7164 | |
| 7165 | typedef TemplateArgumentLocContainerIterator< |
| 7166 | DependentTemplateSpecializationTypeLoc> ArgIterator; |
| 7167 | if (getDerived().TransformTemplateArguments(ArgIterator(TL, 0), |
| 7168 | ArgIterator(TL, TL.getNumArgs()), |
| 7169 | NewTemplateArgs)) |
| 7170 | return QualType(); |
| 7171 | |
| 7172 | QualType Result = getDerived().RebuildDependentTemplateSpecializationType( |
| 7173 | T->getKeyword(), QualifierLoc, TL.getTemplateKeywordLoc(), |
| 7174 | T->getIdentifier(), TL.getTemplateNameLoc(), NewTemplateArgs, |
| 7175 | /*AllowInjectedClassName*/ false); |
| 7176 | if (Result.isNull()) |
| 7177 | return QualType(); |
| 7178 | |
| 7179 | if (const ElaboratedType *ElabT = dyn_cast<ElaboratedType>(Result)) { |
| 7180 | QualType NamedT = ElabT->getNamedType(); |
| 7181 | |
| 7182 | // Copy information relevant to the template specialization. |
| 7183 | TemplateSpecializationTypeLoc NamedTL |
| 7184 | = TLB.push<TemplateSpecializationTypeLoc>(NamedT); |
| 7185 | NamedTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc()); |
| 7186 | NamedTL.setTemplateNameLoc(TL.getTemplateNameLoc()); |
| 7187 | NamedTL.setLAngleLoc(TL.getLAngleLoc()); |
| 7188 | NamedTL.setRAngleLoc(TL.getRAngleLoc()); |
| 7189 | for (unsigned I = 0, E = NewTemplateArgs.size(); I != E; ++I) |
| 7190 | NamedTL.setArgLocInfo(I, NewTemplateArgs[I].getLocInfo()); |
| 7191 | |
| 7192 | // Copy information relevant to the elaborated type. |
| 7193 | ElaboratedTypeLoc NewTL = TLB.push<ElaboratedTypeLoc>(Result); |
| 7194 | NewTL.setElaboratedKeywordLoc(TL.getElaboratedKeywordLoc()); |
| 7195 | NewTL.setQualifierLoc(QualifierLoc); |
| 7196 | } else if (isa<DependentTemplateSpecializationType>(Result)) { |
| 7197 | DependentTemplateSpecializationTypeLoc SpecTL |
| 7198 | = TLB.push<DependentTemplateSpecializationTypeLoc>(Result); |
| 7199 | SpecTL.setElaboratedKeywordLoc(TL.getElaboratedKeywordLoc()); |
| 7200 | SpecTL.setQualifierLoc(QualifierLoc); |
| 7201 | SpecTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc()); |
| 7202 | SpecTL.setTemplateNameLoc(TL.getTemplateNameLoc()); |
| 7203 | SpecTL.setLAngleLoc(TL.getLAngleLoc()); |
| 7204 | SpecTL.setRAngleLoc(TL.getRAngleLoc()); |
| 7205 | for (unsigned I = 0, E = NewTemplateArgs.size(); I != E; ++I) |
| 7206 | SpecTL.setArgLocInfo(I, NewTemplateArgs[I].getLocInfo()); |
| 7207 | } else { |
| 7208 | TemplateSpecializationTypeLoc SpecTL |
| 7209 | = TLB.push<TemplateSpecializationTypeLoc>(Result); |
| 7210 | SpecTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc()); |
| 7211 | SpecTL.setTemplateNameLoc(TL.getTemplateNameLoc()); |
| 7212 | SpecTL.setLAngleLoc(TL.getLAngleLoc()); |
| 7213 | SpecTL.setRAngleLoc(TL.getRAngleLoc()); |
| 7214 | for (unsigned I = 0, E = NewTemplateArgs.size(); I != E; ++I) |
| 7215 | SpecTL.setArgLocInfo(I, NewTemplateArgs[I].getLocInfo()); |
| 7216 | } |
| 7217 | return Result; |
| 7218 | } |
| 7219 | |
| 7220 | template<typename Derived> |
| 7221 | QualType TreeTransform<Derived>::TransformPackExpansionType(TypeLocBuilder &TLB, |
| 7222 | PackExpansionTypeLoc TL) { |
| 7223 | QualType Pattern |
| 7224 | = getDerived().TransformType(TLB, TL.getPatternLoc()); |
| 7225 | if (Pattern.isNull()) |
| 7226 | return QualType(); |
| 7227 | |
| 7228 | QualType Result = TL.getType(); |
| 7229 | if (getDerived().AlwaysRebuild() || |
| 7230 | Pattern != TL.getPatternLoc().getType()) { |
| 7231 | Result = getDerived().RebuildPackExpansionType(Pattern, |
| 7232 | TL.getPatternLoc().getSourceRange(), |
| 7233 | TL.getEllipsisLoc(), |
| 7234 | TL.getTypePtr()->getNumExpansions()); |
| 7235 | if (Result.isNull()) |
| 7236 | return QualType(); |
| 7237 | } |
| 7238 | |
| 7239 | PackExpansionTypeLoc NewT = TLB.push<PackExpansionTypeLoc>(Result); |
| 7240 | NewT.setEllipsisLoc(TL.getEllipsisLoc()); |
| 7241 | return Result; |
| 7242 | } |
| 7243 | |
| 7244 | template<typename Derived> |
| 7245 | QualType |
| 7246 | TreeTransform<Derived>::TransformObjCInterfaceType(TypeLocBuilder &TLB, |
| 7247 | ObjCInterfaceTypeLoc TL) { |
| 7248 | // ObjCInterfaceType is never dependent. |
| 7249 | TLB.pushFullCopy(TL); |
| 7250 | return TL.getType(); |
| 7251 | } |
| 7252 | |
| 7253 | template<typename Derived> |
| 7254 | QualType |
| 7255 | TreeTransform<Derived>::TransformObjCTypeParamType(TypeLocBuilder &TLB, |
| 7256 | ObjCTypeParamTypeLoc TL) { |
| 7257 | const ObjCTypeParamType *T = TL.getTypePtr(); |
| 7258 | ObjCTypeParamDecl *OTP = cast_or_null<ObjCTypeParamDecl>( |
| 7259 | getDerived().TransformDecl(T->getDecl()->getLocation(), T->getDecl())); |
| 7260 | if (!OTP) |
| 7261 | return QualType(); |
| 7262 | |
| 7263 | QualType Result = TL.getType(); |
| 7264 | if (getDerived().AlwaysRebuild() || |
| 7265 | OTP != T->getDecl()) { |
| 7266 | Result = getDerived().RebuildObjCTypeParamType( |
| 7267 | OTP, TL.getProtocolLAngleLoc(), |
| 7268 | llvm::ArrayRef(TL.getTypePtr()->qual_begin(), TL.getNumProtocols()), |
| 7269 | TL.getProtocolLocs(), TL.getProtocolRAngleLoc()); |
| 7270 | if (Result.isNull()) |
| 7271 | return QualType(); |
| 7272 | } |
| 7273 | |
| 7274 | ObjCTypeParamTypeLoc NewTL = TLB.push<ObjCTypeParamTypeLoc>(Result); |
| 7275 | if (TL.getNumProtocols()) { |
| 7276 | NewTL.setProtocolLAngleLoc(TL.getProtocolLAngleLoc()); |
| 7277 | for (unsigned i = 0, n = TL.getNumProtocols(); i != n; ++i) |
| 7278 | NewTL.setProtocolLoc(i, TL.getProtocolLoc(i)); |
| 7279 | NewTL.setProtocolRAngleLoc(TL.getProtocolRAngleLoc()); |
| 7280 | } |
| 7281 | return Result; |
| 7282 | } |
| 7283 | |
| 7284 | template<typename Derived> |
| 7285 | QualType |
| 7286 | TreeTransform<Derived>::TransformObjCObjectType(TypeLocBuilder &TLB, |
| 7287 | ObjCObjectTypeLoc TL) { |
| 7288 | // Transform base type. |
| 7289 | QualType BaseType = getDerived().TransformType(TLB, TL.getBaseLoc()); |
| 7290 | if (BaseType.isNull()) |
| 7291 | return QualType(); |
| 7292 | |
| 7293 | bool AnyChanged = BaseType != TL.getBaseLoc().getType(); |
| 7294 | |
| 7295 | // Transform type arguments. |
| 7296 | SmallVector<TypeSourceInfo *, 4> NewTypeArgInfos; |
| 7297 | for (unsigned i = 0, n = TL.getNumTypeArgs(); i != n; ++i) { |
| 7298 | TypeSourceInfo *TypeArgInfo = TL.getTypeArgTInfo(i); |
| 7299 | TypeLoc TypeArgLoc = TypeArgInfo->getTypeLoc(); |
| 7300 | QualType TypeArg = TypeArgInfo->getType(); |
| 7301 | if (auto PackExpansionLoc = TypeArgLoc.getAs<PackExpansionTypeLoc>()) { |
| 7302 | AnyChanged = true; |
| 7303 | |
| 7304 | // We have a pack expansion. Instantiate it. |
| 7305 | const auto *PackExpansion = PackExpansionLoc.getType() |
| 7306 | ->castAs<PackExpansionType>(); |
| 7307 | SmallVector<UnexpandedParameterPack, 2> Unexpanded; |
| 7308 | SemaRef.collectUnexpandedParameterPacks(PackExpansion->getPattern(), |
| 7309 | Unexpanded); |
| 7310 | assert(!Unexpanded.empty() && "Pack expansion without parameter packs?")(static_cast <bool> (!Unexpanded.empty() && "Pack expansion without parameter packs?" ) ? void (0) : __assert_fail ("!Unexpanded.empty() && \"Pack expansion without parameter packs?\"" , "clang/lib/Sema/TreeTransform.h", 7310, __extension__ __PRETTY_FUNCTION__ )); |
| 7311 | |
| 7312 | // Determine whether the set of unexpanded parameter packs can |
| 7313 | // and should be expanded. |
| 7314 | TypeLoc PatternLoc = PackExpansionLoc.getPatternLoc(); |
| 7315 | bool Expand = false; |
| 7316 | bool RetainExpansion = false; |
| 7317 | std::optional<unsigned> NumExpansions = PackExpansion->getNumExpansions(); |
| 7318 | if (getDerived().TryExpandParameterPacks( |
| 7319 | PackExpansionLoc.getEllipsisLoc(), PatternLoc.getSourceRange(), |
| 7320 | Unexpanded, Expand, RetainExpansion, NumExpansions)) |
| 7321 | return QualType(); |
| 7322 | |
| 7323 | if (!Expand) { |
| 7324 | // We can't expand this pack expansion into separate arguments yet; |
| 7325 | // just substitute into the pattern and create a new pack expansion |
| 7326 | // type. |
| 7327 | Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1); |
| 7328 | |
| 7329 | TypeLocBuilder TypeArgBuilder; |
| 7330 | TypeArgBuilder.reserve(PatternLoc.getFullDataSize()); |
| 7331 | QualType NewPatternType = getDerived().TransformType(TypeArgBuilder, |
| 7332 | PatternLoc); |
| 7333 | if (NewPatternType.isNull()) |
| 7334 | return QualType(); |
| 7335 | |
| 7336 | QualType NewExpansionType = SemaRef.Context.getPackExpansionType( |
| 7337 | NewPatternType, NumExpansions); |
| 7338 | auto NewExpansionLoc = TLB.push<PackExpansionTypeLoc>(NewExpansionType); |
| 7339 | NewExpansionLoc.setEllipsisLoc(PackExpansionLoc.getEllipsisLoc()); |
| 7340 | NewTypeArgInfos.push_back( |
| 7341 | TypeArgBuilder.getTypeSourceInfo(SemaRef.Context, NewExpansionType)); |
| 7342 | continue; |
| 7343 | } |
| 7344 | |
| 7345 | // Substitute into the pack expansion pattern for each slice of the |
| 7346 | // pack. |
| 7347 | for (unsigned ArgIdx = 0; ArgIdx != *NumExpansions; ++ArgIdx) { |
| 7348 | Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), ArgIdx); |
| 7349 | |
| 7350 | TypeLocBuilder TypeArgBuilder; |
| 7351 | TypeArgBuilder.reserve(PatternLoc.getFullDataSize()); |
| 7352 | |
| 7353 | QualType NewTypeArg = getDerived().TransformType(TypeArgBuilder, |
| 7354 | PatternLoc); |
| 7355 | if (NewTypeArg.isNull()) |
| 7356 | return QualType(); |
| 7357 | |
| 7358 | NewTypeArgInfos.push_back( |
| 7359 | TypeArgBuilder.getTypeSourceInfo(SemaRef.Context, NewTypeArg)); |
| 7360 | } |
| 7361 | |
| 7362 | continue; |
| 7363 | } |
| 7364 | |
| 7365 | TypeLocBuilder TypeArgBuilder; |
| 7366 | TypeArgBuilder.reserve(TypeArgLoc.getFullDataSize()); |
| 7367 | QualType NewTypeArg = |
| 7368 | getDerived().TransformType(TypeArgBuilder, TypeArgLoc); |
| 7369 | if (NewTypeArg.isNull()) |
| 7370 | return QualType(); |
| 7371 | |
| 7372 | // If nothing changed, just keep the old TypeSourceInfo. |
| 7373 | if (NewTypeArg == TypeArg) { |
| 7374 | NewTypeArgInfos.push_back(TypeArgInfo); |
| 7375 | continue; |
| 7376 | } |
| 7377 | |
| 7378 | NewTypeArgInfos.push_back( |
| 7379 | TypeArgBuilder.getTypeSourceInfo(SemaRef.Context, NewTypeArg)); |
| 7380 | AnyChanged = true; |
| 7381 | } |
| 7382 | |
| 7383 | QualType Result = TL.getType(); |
| 7384 | if (getDerived().AlwaysRebuild() || AnyChanged) { |
| 7385 | // Rebuild the type. |
| 7386 | Result = getDerived().RebuildObjCObjectType( |
| 7387 | BaseType, TL.getBeginLoc(), TL.getTypeArgsLAngleLoc(), NewTypeArgInfos, |
| 7388 | TL.getTypeArgsRAngleLoc(), TL.getProtocolLAngleLoc(), |
| 7389 | llvm::ArrayRef(TL.getTypePtr()->qual_begin(), TL.getNumProtocols()), |
| 7390 | TL.getProtocolLocs(), TL.getProtocolRAngleLoc()); |
| 7391 | |
| 7392 | if (Result.isNull()) |
| 7393 | return QualType(); |
| 7394 | } |
| 7395 | |
| 7396 | ObjCObjectTypeLoc NewT = TLB.push<ObjCObjectTypeLoc>(Result); |
| 7397 | NewT.setHasBaseTypeAsWritten(true); |
| 7398 | NewT.setTypeArgsLAngleLoc(TL.getTypeArgsLAngleLoc()); |
| 7399 | for (unsigned i = 0, n = TL.getNumTypeArgs(); i != n; ++i) |
| 7400 | NewT.setTypeArgTInfo(i, NewTypeArgInfos[i]); |
| 7401 | NewT.setTypeArgsRAngleLoc(TL.getTypeArgsRAngleLoc()); |
| 7402 | NewT.setProtocolLAngleLoc(TL.getProtocolLAngleLoc()); |
| 7403 | for (unsigned i = 0, n = TL.getNumProtocols(); i != n; ++i) |
| 7404 | NewT.setProtocolLoc(i, TL.getProtocolLoc(i)); |
| 7405 | NewT.setProtocolRAngleLoc(TL.getProtocolRAngleLoc()); |
| 7406 | return Result; |
| 7407 | } |
| 7408 | |
| 7409 | template<typename Derived> |
| 7410 | QualType |
| 7411 | TreeTransform<Derived>::TransformObjCObjectPointerType(TypeLocBuilder &TLB, |
| 7412 | ObjCObjectPointerTypeLoc TL) { |
| 7413 | QualType PointeeType = getDerived().TransformType(TLB, TL.getPointeeLoc()); |
| 7414 | if (PointeeType.isNull()) |
| 7415 | return QualType(); |
| 7416 | |
| 7417 | QualType Result = TL.getType(); |
| 7418 | if (getDerived().AlwaysRebuild() || |
| 7419 | PointeeType != TL.getPointeeLoc().getType()) { |
| 7420 | Result = getDerived().RebuildObjCObjectPointerType(PointeeType, |
| 7421 | TL.getStarLoc()); |
| 7422 | if (Result.isNull()) |
| 7423 | return QualType(); |
| 7424 | } |
| 7425 | |
| 7426 | ObjCObjectPointerTypeLoc NewT = TLB.push<ObjCObjectPointerTypeLoc>(Result); |
| 7427 | NewT.setStarLoc(TL.getStarLoc()); |
| 7428 | return Result; |
| 7429 | } |
| 7430 | |
| 7431 | //===----------------------------------------------------------------------===// |
| 7432 | // Statement transformation |
| 7433 | //===----------------------------------------------------------------------===// |
| 7434 | template<typename Derived> |
| 7435 | StmtResult |
| 7436 | TreeTransform<Derived>::TransformNullStmt(NullStmt *S) { |
| 7437 | return S; |
| 7438 | } |
| 7439 | |
| 7440 | template<typename Derived> |
| 7441 | StmtResult |
| 7442 | TreeTransform<Derived>::TransformCompoundStmt(CompoundStmt *S) { |
| 7443 | return getDerived().TransformCompoundStmt(S, false); |
| 7444 | } |
| 7445 | |
| 7446 | template<typename Derived> |
| 7447 | StmtResult |
| 7448 | TreeTransform<Derived>::TransformCompoundStmt(CompoundStmt *S, |
| 7449 | bool IsStmtExpr) { |
| 7450 | Sema::CompoundScopeRAII CompoundScope(getSema()); |
| 7451 | |
| 7452 | const Stmt *ExprResult = S->getStmtExprResult(); |
| 7453 | bool SubStmtInvalid = false; |
| 7454 | bool SubStmtChanged = false; |
| 7455 | SmallVector<Stmt*, 8> Statements; |
| 7456 | for (auto *B : S->body()) { |
| 7457 | StmtResult Result = getDerived().TransformStmt( |
| 7458 | B, IsStmtExpr && B == ExprResult ? SDK_StmtExprResult : SDK_Discarded); |
| 7459 | |
| 7460 | if (Result.isInvalid()) { |
| 7461 | // Immediately fail if this was a DeclStmt, since it's very |
| 7462 | // likely that this will cause problems for future statements. |
| 7463 | if (isa<DeclStmt>(B)) |
| 7464 | return StmtError(); |
| 7465 | |
| 7466 | // Otherwise, just keep processing substatements and fail later. |
| 7467 | SubStmtInvalid = true; |
| 7468 | continue; |
| 7469 | } |
| 7470 | |
| 7471 | SubStmtChanged = SubStmtChanged || Result.get() != B; |
| 7472 | Statements.push_back(Result.getAs<Stmt>()); |
| 7473 | } |
| 7474 | |
| 7475 | if (SubStmtInvalid) |
| 7476 | return StmtError(); |
| 7477 | |
| 7478 | if (!getDerived().AlwaysRebuild() && |
| 7479 | !SubStmtChanged) |
| 7480 | return S; |
| 7481 | |
| 7482 | return getDerived().RebuildCompoundStmt(S->getLBracLoc(), |
| 7483 | Statements, |
| 7484 | S->getRBracLoc(), |
| 7485 | IsStmtExpr); |
| 7486 | } |
| 7487 | |
| 7488 | template<typename Derived> |
| 7489 | StmtResult |
| 7490 | TreeTransform<Derived>::TransformCaseStmt(CaseStmt *S) { |
| 7491 | ExprResult LHS, RHS; |
| 7492 | { |
| 7493 | EnterExpressionEvaluationContext Unevaluated( |
| 7494 | SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated); |
| 7495 | |
| 7496 | // Transform the left-hand case value. |
| 7497 | LHS = getDerived().TransformExpr(S->getLHS()); |
| 7498 | LHS = SemaRef.ActOnCaseExpr(S->getCaseLoc(), LHS); |
| 7499 | if (LHS.isInvalid()) |
| 7500 | return StmtError(); |
| 7501 | |
| 7502 | // Transform the right-hand case value (for the GNU case-range extension). |
| 7503 | RHS = getDerived().TransformExpr(S->getRHS()); |
| 7504 | RHS = SemaRef.ActOnCaseExpr(S->getCaseLoc(), RHS); |
| 7505 | if (RHS.isInvalid()) |
| 7506 | return StmtError(); |
| 7507 | } |
| 7508 | |
| 7509 | // Build the case statement. |
| 7510 | // Case statements are always rebuilt so that they will attached to their |
| 7511 | // transformed switch statement. |
| 7512 | StmtResult Case = getDerived().RebuildCaseStmt(S->getCaseLoc(), |
| 7513 | LHS.get(), |
| 7514 | S->getEllipsisLoc(), |
| 7515 | RHS.get(), |
| 7516 | S->getColonLoc()); |
| 7517 | if (Case.isInvalid()) |
| 7518 | return StmtError(); |
| 7519 | |
| 7520 | // Transform the statement following the case |
| 7521 | StmtResult SubStmt = |
| 7522 | getDerived().TransformStmt(S->getSubStmt()); |
| 7523 | if (SubStmt.isInvalid()) |
| 7524 | return StmtError(); |
| 7525 | |
| 7526 | // Attach the body to the case statement |
| 7527 | return getDerived().RebuildCaseStmtBody(Case.get(), SubStmt.get()); |
| 7528 | } |
| 7529 | |
| 7530 | template <typename Derived> |
| 7531 | StmtResult TreeTransform<Derived>::TransformDefaultStmt(DefaultStmt *S) { |
| 7532 | // Transform the statement following the default case |
| 7533 | StmtResult SubStmt = |
| 7534 | getDerived().TransformStmt(S->getSubStmt()); |
| 7535 | if (SubStmt.isInvalid()) |
| 7536 | return StmtError(); |
| 7537 | |
| 7538 | // Default statements are always rebuilt |
| 7539 | return getDerived().RebuildDefaultStmt(S->getDefaultLoc(), S->getColonLoc(), |
| 7540 | SubStmt.get()); |
| 7541 | } |
| 7542 | |
| 7543 | template<typename Derived> |
| 7544 | StmtResult |
| 7545 | TreeTransform<Derived>::TransformLabelStmt(LabelStmt *S, StmtDiscardKind SDK) { |
| 7546 | StmtResult SubStmt = getDerived().TransformStmt(S->getSubStmt(), SDK); |
| 7547 | if (SubStmt.isInvalid()) |
| 7548 | return StmtError(); |
| 7549 | |
| 7550 | Decl *LD = getDerived().TransformDecl(S->getDecl()->getLocation(), |
| 7551 | S->getDecl()); |
| 7552 | if (!LD) |
| 7553 | return StmtError(); |
| 7554 | |
| 7555 | // If we're transforming "in-place" (we're not creating new local |
| 7556 | // declarations), assume we're replacing the old label statement |
| 7557 | // and clear out the reference to it. |
| 7558 | if (LD == S->getDecl()) |
| 7559 | S->getDecl()->setStmt(nullptr); |
| 7560 | |
| 7561 | // FIXME: Pass the real colon location in. |
| 7562 | return getDerived().RebuildLabelStmt(S->getIdentLoc(), |
| 7563 | cast<LabelDecl>(LD), SourceLocation(), |
| 7564 | SubStmt.get()); |
| 7565 | } |
| 7566 | |
| 7567 | template <typename Derived> |
| 7568 | const Attr *TreeTransform<Derived>::TransformAttr(const Attr *R) { |
| 7569 | if (!R) |
| 7570 | return R; |
| 7571 | |
| 7572 | switch (R->getKind()) { |
| 7573 | // Transform attributes by calling TransformXXXAttr. |
| 7574 | #define ATTR(X) \ |
| 7575 | case attr::X: \ |
| 7576 | return getDerived().Transform##X##Attr(cast<X##Attr>(R)); |
| 7577 | #include "clang/Basic/AttrList.inc" |
| 7578 | } |
| 7579 | return R; |
| 7580 | } |
| 7581 | |
| 7582 | template <typename Derived> |
| 7583 | const Attr *TreeTransform<Derived>::TransformStmtAttr(const Stmt *OrigS, |
| 7584 | const Stmt *InstS, |
| 7585 | const Attr *R) { |
| 7586 | if (!R) |
| 7587 | return R; |
| 7588 | |
| 7589 | switch (R->getKind()) { |
| 7590 | // Transform attributes by calling TransformStmtXXXAttr. |
| 7591 | #define ATTR(X) \ |
| 7592 | case attr::X: \ |
| 7593 | return getDerived().TransformStmt##X##Attr(OrigS, InstS, cast<X##Attr>(R)); |
| 7594 | #include "clang/Basic/AttrList.inc" |
| 7595 | } |
| 7596 | return TransformAttr(R); |
| 7597 | } |
| 7598 | |
| 7599 | template <typename Derived> |
| 7600 | StmtResult |
| 7601 | TreeTransform<Derived>::TransformAttributedStmt(AttributedStmt *S, |
| 7602 | StmtDiscardKind SDK) { |
| 7603 | StmtResult SubStmt = getDerived().TransformStmt(S->getSubStmt(), SDK); |
| 7604 | if (SubStmt.isInvalid()) |
| 7605 | return StmtError(); |
| 7606 | |
| 7607 | bool AttrsChanged = false; |
| 7608 | SmallVector<const Attr *, 1> Attrs; |
| 7609 | |
| 7610 | // Visit attributes and keep track if any are transformed. |
| 7611 | for (const auto *I : S->getAttrs()) { |
| 7612 | const Attr *R = |
| 7613 | getDerived().TransformStmtAttr(S->getSubStmt(), SubStmt.get(), I); |
| 7614 | AttrsChanged |= (I != R); |
| 7615 | if (R) |
| 7616 | Attrs.push_back(R); |
| 7617 | } |
| 7618 | |
| 7619 | if (SubStmt.get() == S->getSubStmt() && !AttrsChanged) |
| 7620 | return S; |
| 7621 | |
| 7622 | // If transforming the attributes failed for all of the attributes in the |
| 7623 | // statement, don't make an AttributedStmt without attributes. |
| 7624 | if (Attrs.empty()) |
| 7625 | return SubStmt; |
| 7626 | |
| 7627 | return getDerived().RebuildAttributedStmt(S->getAttrLoc(), Attrs, |
| 7628 | SubStmt.get()); |
| 7629 | } |
| 7630 | |
| 7631 | template<typename Derived> |
| 7632 | StmtResult |
| 7633 | TreeTransform<Derived>::TransformIfStmt(IfStmt *S) { |
| 7634 | // Transform the initialization statement |
| 7635 | StmtResult Init = getDerived().TransformStmt(S->getInit()); |
| 7636 | if (Init.isInvalid()) |
| 7637 | return StmtError(); |
| 7638 | |
| 7639 | Sema::ConditionResult Cond; |
| 7640 | if (!S->isConsteval()) { |
| 7641 | // Transform the condition |
| 7642 | Cond = getDerived().TransformCondition( |
| 7643 | S->getIfLoc(), S->getConditionVariable(), S->getCond(), |
| 7644 | S->isConstexpr() ? Sema::ConditionKind::ConstexprIf |
| 7645 | : Sema::ConditionKind::Boolean); |
| 7646 | if (Cond.isInvalid()) |
| 7647 | return StmtError(); |
| 7648 | } |
| 7649 | |
| 7650 | // If this is a constexpr if, determine which arm we should instantiate. |
| 7651 | std::optional<bool> ConstexprConditionValue; |
| 7652 | if (S->isConstexpr()) |
| 7653 | ConstexprConditionValue = Cond.getKnownValue(); |
| 7654 | |
| 7655 | // Transform the "then" branch. |
| 7656 | StmtResult Then; |
| 7657 | if (!ConstexprConditionValue || *ConstexprConditionValue) { |
| 7658 | Then = getDerived().TransformStmt(S->getThen()); |
| 7659 | if (Then.isInvalid()) |
| 7660 | return StmtError(); |
| 7661 | } else { |
| 7662 | Then = new (getSema().Context) NullStmt(S->getThen()->getBeginLoc()); |
| 7663 | } |
| 7664 | |
| 7665 | // Transform the "else" branch. |
| 7666 | StmtResult Else; |
| 7667 | if (!ConstexprConditionValue || !*ConstexprConditionValue) { |
| 7668 | Else = getDerived().TransformStmt(S->getElse()); |
| 7669 | if (Else.isInvalid()) |
| 7670 | return StmtError(); |
| 7671 | } |
| 7672 | |
| 7673 | if (!getDerived().AlwaysRebuild() && |
| 7674 | Init.get() == S->getInit() && |
| 7675 | Cond.get() == std::make_pair(S->getConditionVariable(), S->getCond()) && |
| 7676 | Then.get() == S->getThen() && |
| 7677 | Else.get() == S->getElse()) |
| 7678 | return S; |
| 7679 | |
| 7680 | return getDerived().RebuildIfStmt( |
| 7681 | S->getIfLoc(), S->getStatementKind(), S->getLParenLoc(), Cond, |
| 7682 | S->getRParenLoc(), Init.get(), Then.get(), S->getElseLoc(), Else.get()); |
| 7683 | } |
| 7684 | |
| 7685 | template<typename Derived> |
| 7686 | StmtResult |
| 7687 | TreeTransform<Derived>::TransformSwitchStmt(SwitchStmt *S) { |
| 7688 | // Transform the initialization statement |
| 7689 | StmtResult Init = getDerived().TransformStmt(S->getInit()); |
| 7690 | if (Init.isInvalid()) |
| 7691 | return StmtError(); |
| 7692 | |
| 7693 | // Transform the condition. |
| 7694 | Sema::ConditionResult Cond = getDerived().TransformCondition( |
| 7695 | S->getSwitchLoc(), S->getConditionVariable(), S->getCond(), |
| 7696 | Sema::ConditionKind::Switch); |
| 7697 | if (Cond.isInvalid()) |
| 7698 | return StmtError(); |
| 7699 | |
| 7700 | // Rebuild the switch statement. |
| 7701 | StmtResult Switch = |
| 7702 | getDerived().RebuildSwitchStmtStart(S->getSwitchLoc(), S->getLParenLoc(), |
| 7703 | Init.get(), Cond, S->getRParenLoc()); |
| 7704 | if (Switch.isInvalid()) |
| 7705 | return StmtError(); |
| 7706 | |
| 7707 | // Transform the body of the switch statement. |
| 7708 | StmtResult Body = getDerived().TransformStmt(S->getBody()); |
| 7709 | if (Body.isInvalid()) |
| 7710 | return StmtError(); |
| 7711 | |
| 7712 | // Complete the switch statement. |
| 7713 | return getDerived().RebuildSwitchStmtBody(S->getSwitchLoc(), Switch.get(), |
| 7714 | Body.get()); |
| 7715 | } |
| 7716 | |
| 7717 | template<typename Derived> |
| 7718 | StmtResult |
| 7719 | TreeTransform<Derived>::TransformWhileStmt(WhileStmt *S) { |
| 7720 | // Transform the condition |
| 7721 | Sema::ConditionResult Cond = getDerived().TransformCondition( |
| 7722 | S->getWhileLoc(), S->getConditionVariable(), S->getCond(), |
| 7723 | Sema::ConditionKind::Boolean); |
| 7724 | if (Cond.isInvalid()) |
| 7725 | return StmtError(); |
| 7726 | |
| 7727 | // Transform the body |
| 7728 | StmtResult Body = getDerived().TransformStmt(S->getBody()); |
| 7729 | if (Body.isInvalid()) |
| 7730 | return StmtError(); |
| 7731 | |
| 7732 | if (!getDerived().AlwaysRebuild() && |
| 7733 | Cond.get() == std::make_pair(S->getConditionVariable(), S->getCond()) && |
| 7734 | Body.get() == S->getBody()) |
| 7735 | return Owned(S); |
| 7736 | |
| 7737 | return getDerived().RebuildWhileStmt(S->getWhileLoc(), S->getLParenLoc(), |
| 7738 | Cond, S->getRParenLoc(), Body.get()); |
| 7739 | } |
| 7740 | |
| 7741 | template<typename Derived> |
| 7742 | StmtResult |
| 7743 | TreeTransform<Derived>::TransformDoStmt(DoStmt *S) { |
| 7744 | // Transform the body |
| 7745 | StmtResult Body = getDerived().TransformStmt(S->getBody()); |
| 7746 | if (Body.isInvalid()) |
| 7747 | return StmtError(); |
| 7748 | |
| 7749 | // Transform the condition |
| 7750 | ExprResult Cond = getDerived().TransformExpr(S->getCond()); |
| 7751 | if (Cond.isInvalid()) |
| 7752 | return StmtError(); |
| 7753 | |
| 7754 | if (!getDerived().AlwaysRebuild() && |
| 7755 | Cond.get() == S->getCond() && |
| 7756 | Body.get() == S->getBody()) |
| 7757 | return S; |
| 7758 | |
| 7759 | return getDerived().RebuildDoStmt(S->getDoLoc(), Body.get(), S->getWhileLoc(), |
| 7760 | /*FIXME:*/S->getWhileLoc(), Cond.get(), |
| 7761 | S->getRParenLoc()); |
| 7762 | } |
| 7763 | |
| 7764 | template<typename Derived> |
| 7765 | StmtResult |
| 7766 | TreeTransform<Derived>::TransformForStmt(ForStmt *S) { |
| 7767 | if (getSema().getLangOpts().OpenMP) |
| 7768 | getSema().startOpenMPLoop(); |
| 7769 | |
| 7770 | // Transform the initialization statement |
| 7771 | StmtResult Init = getDerived().TransformStmt(S->getInit()); |
| 7772 | if (Init.isInvalid()) |
| 7773 | return StmtError(); |
| 7774 | |
| 7775 | // In OpenMP loop region loop control variable must be captured and be |
| 7776 | // private. Perform analysis of first part (if any). |
| 7777 | if (getSema().getLangOpts().OpenMP && Init.isUsable()) |
| 7778 | getSema().ActOnOpenMPLoopInitialization(S->getForLoc(), Init.get()); |
| 7779 | |
| 7780 | // Transform the condition |
| 7781 | Sema::ConditionResult Cond = getDerived().TransformCondition( |
| 7782 | S->getForLoc(), S->getConditionVariable(), S->getCond(), |
| 7783 | Sema::ConditionKind::Boolean); |
| 7784 | if (Cond.isInvalid()) |
| 7785 | return StmtError(); |
| 7786 | |
| 7787 | // Transform the increment |
| 7788 | ExprResult Inc = getDerived().TransformExpr(S->getInc()); |
| 7789 | if (Inc.isInvalid()) |
| 7790 | return StmtError(); |
| 7791 | |
| 7792 | Sema::FullExprArg FullInc(getSema().MakeFullDiscardedValueExpr(Inc.get())); |
| 7793 | if (S->getInc() && !FullInc.get()) |
| 7794 | return StmtError(); |
| 7795 | |
| 7796 | // Transform the body |
| 7797 | StmtResult Body = getDerived().TransformStmt(S->getBody()); |
| 7798 | if (Body.isInvalid()) |
| 7799 | return StmtError(); |
| 7800 | |
| 7801 | if (!getDerived().AlwaysRebuild() && |
| 7802 | Init.get() == S->getInit() && |
| 7803 | Cond.get() == std::make_pair(S->getConditionVariable(), S->getCond()) && |
| 7804 | Inc.get() == S->getInc() && |
| 7805 | Body.get() == S->getBody()) |
| 7806 | return S; |
| 7807 | |
| 7808 | return getDerived().RebuildForStmt(S->getForLoc(), S->getLParenLoc(), |
| 7809 | Init.get(), Cond, FullInc, |
| 7810 | S->getRParenLoc(), Body.get()); |
| 7811 | } |
| 7812 | |
| 7813 | template<typename Derived> |
| 7814 | StmtResult |
| 7815 | TreeTransform<Derived>::TransformGotoStmt(GotoStmt *S) { |
| 7816 | Decl *LD = getDerived().TransformDecl(S->getLabel()->getLocation(), |
| 7817 | S->getLabel()); |
| 7818 | if (!LD) |
| 7819 | return StmtError(); |
| 7820 | |
| 7821 | // Goto statements must always be rebuilt, to resolve the label. |
| 7822 | return getDerived().RebuildGotoStmt(S->getGotoLoc(), S->getLabelLoc(), |
| 7823 | cast<LabelDecl>(LD)); |
| 7824 | } |
| 7825 | |
| 7826 | template<typename Derived> |
| 7827 | StmtResult |
| 7828 | TreeTransform<Derived>::TransformIndirectGotoStmt(IndirectGotoStmt *S) { |
| 7829 | ExprResult Target = getDerived().TransformExpr(S->getTarget()); |
| 7830 | if (Target.isInvalid()) |
| 7831 | return StmtError(); |
| 7832 | Target = SemaRef.MaybeCreateExprWithCleanups(Target.get()); |
| 7833 | |
| 7834 | if (!getDerived().AlwaysRebuild() && |
| 7835 | Target.get() == S->getTarget()) |
| 7836 | return S; |
| 7837 | |
| 7838 | return getDerived().RebuildIndirectGotoStmt(S->getGotoLoc(), S->getStarLoc(), |
| 7839 | Target.get()); |
| 7840 | } |
| 7841 | |
| 7842 | template<typename Derived> |
| 7843 | StmtResult |
| 7844 | TreeTransform<Derived>::TransformContinueStmt(ContinueStmt *S) { |
| 7845 | return S; |
| 7846 | } |
| 7847 | |
| 7848 | template<typename Derived> |
| 7849 | StmtResult |
| 7850 | TreeTransform<Derived>::TransformBreakStmt(BreakStmt *S) { |
| 7851 | return S; |
| 7852 | } |
| 7853 | |
| 7854 | template<typename Derived> |
| 7855 | StmtResult |
| 7856 | TreeTransform<Derived>::TransformReturnStmt(ReturnStmt *S) { |
| 7857 | ExprResult Result = getDerived().TransformInitializer(S->getRetValue(), |
| 7858 | /*NotCopyInit*/false); |
| 7859 | if (Result.isInvalid()) |
| 7860 | return StmtError(); |
| 7861 | |
| 7862 | // FIXME: We always rebuild the return statement because there is no way |
| 7863 | // to tell whether the return type of the function has changed. |
| 7864 | return getDerived().RebuildReturnStmt(S->getReturnLoc(), Result.get()); |
| 7865 | } |
| 7866 | |
| 7867 | template<typename Derived> |
| 7868 | StmtResult |
| 7869 | TreeTransform<Derived>::TransformDeclStmt(DeclStmt *S) { |
| 7870 | bool DeclChanged = false; |
| 7871 | SmallVector<Decl *, 4> Decls; |
| 7872 | for (auto *D : S->decls()) { |
| 7873 | Decl *Transformed = getDerived().TransformDefinition(D->getLocation(), D); |
| 7874 | if (!Transformed) |
| 7875 | return StmtError(); |
| 7876 | |
| 7877 | if (Transformed != D) |
| 7878 | DeclChanged = true; |
| 7879 | |
| 7880 | Decls.push_back(Transformed); |
| 7881 | } |
| 7882 | |
| 7883 | if (!getDerived().AlwaysRebuild() && !DeclChanged) |
| 7884 | return S; |
| 7885 | |
| 7886 | return getDerived().RebuildDeclStmt(Decls, S->getBeginLoc(), S->getEndLoc()); |
| 7887 | } |
| 7888 | |
| 7889 | template<typename Derived> |
| 7890 | StmtResult |
| 7891 | TreeTransform<Derived>::TransformGCCAsmStmt(GCCAsmStmt *S) { |
| 7892 | |
| 7893 | SmallVector<Expr*, 8> Constraints; |
| 7894 | SmallVector<Expr*, 8> Exprs; |
| 7895 | SmallVector<IdentifierInfo *, 4> Names; |
| 7896 | |
| 7897 | ExprResult AsmString; |
| 7898 | SmallVector<Expr*, 8> Clobbers; |
| 7899 | |
| 7900 | bool ExprsChanged = false; |
| 7901 | |
| 7902 | // Go through the outputs. |
| 7903 | for (unsigned I = 0, E = S->getNumOutputs(); I != E; ++I) { |
| 7904 | Names.push_back(S->getOutputIdentifier(I)); |
| 7905 | |
| 7906 | // No need to transform the constraint literal. |
| 7907 | Constraints.push_back(S->getOutputConstraintLiteral(I)); |
| 7908 | |
| 7909 | // Transform the output expr. |
| 7910 | Expr *OutputExpr = S->getOutputExpr(I); |
| 7911 | ExprResult Result = getDerived().TransformExpr(OutputExpr); |
| 7912 | if (Result.isInvalid()) |
| 7913 | return StmtError(); |
| 7914 | |
| 7915 | ExprsChanged |= Result.get() != OutputExpr; |
| 7916 | |
| 7917 | Exprs.push_back(Result.get()); |
| 7918 | } |
| 7919 | |
| 7920 | // Go through the inputs. |
| 7921 | for (unsigned I = 0, E = S->getNumInputs(); I != E; ++I) { |
| 7922 | Names.push_back(S->getInputIdentifier(I)); |
| 7923 | |
| 7924 | // No need to transform the constraint literal. |
| 7925 | Constraints.push_back(S->getInputConstraintLiteral(I)); |
| 7926 | |
| 7927 | // Transform the input expr. |
| 7928 | Expr *InputExpr = S->getInputExpr(I); |
| 7929 | ExprResult Result = getDerived().TransformExpr(InputExpr); |
| 7930 | if (Result.isInvalid()) |
| 7931 | return StmtError(); |
| 7932 | |
| 7933 | ExprsChanged |= Result.get() != InputExpr; |
| 7934 | |
| 7935 | Exprs.push_back(Result.get()); |
| 7936 | } |
| 7937 | |
| 7938 | // Go through the Labels. |
| 7939 | for (unsigned I = 0, E = S->getNumLabels(); I != E; ++I) { |
| 7940 | Names.push_back(S->getLabelIdentifier(I)); |
| 7941 | |
| 7942 | ExprResult Result = getDerived().TransformExpr(S->getLabelExpr(I)); |
| 7943 | if (Result.isInvalid()) |
| 7944 | return StmtError(); |
| 7945 | ExprsChanged |= Result.get() != S->getLabelExpr(I); |
| 7946 | Exprs.push_back(Result.get()); |
| 7947 | } |
| 7948 | if (!getDerived().AlwaysRebuild() && !ExprsChanged) |
| 7949 | return S; |
| 7950 | |
| 7951 | // Go through the clobbers. |
| 7952 | for (unsigned I = 0, E = S->getNumClobbers(); I != E; ++I) |
| 7953 | Clobbers.push_back(S->getClobberStringLiteral(I)); |
| 7954 | |
| 7955 | // No need to transform the asm string literal. |
| 7956 | AsmString = S->getAsmString(); |
| 7957 | return getDerived().RebuildGCCAsmStmt(S->getAsmLoc(), S->isSimple(), |
| 7958 | S->isVolatile(), S->getNumOutputs(), |
| 7959 | S->getNumInputs(), Names.data(), |
| 7960 | Constraints, Exprs, AsmString.get(), |
| 7961 | Clobbers, S->getNumLabels(), |
| 7962 | S->getRParenLoc()); |
| 7963 | } |
| 7964 | |
| 7965 | template<typename Derived> |
| 7966 | StmtResult |
| 7967 | TreeTransform<Derived>::TransformMSAsmStmt(MSAsmStmt *S) { |
| 7968 | ArrayRef<Token> AsmToks = llvm::ArrayRef(S->getAsmToks(), S->getNumAsmToks()); |
| 7969 | |
| 7970 | bool HadError = false, HadChange = false; |
| 7971 | |
| 7972 | ArrayRef<Expr*> SrcExprs = S->getAllExprs(); |
| 7973 | SmallVector<Expr*, 8> TransformedExprs; |
| 7974 | TransformedExprs.reserve(SrcExprs.size()); |
| 7975 | for (unsigned i = 0, e = SrcExprs.size(); i != e; ++i) { |
| 7976 | ExprResult Result = getDerived().TransformExpr(SrcExprs[i]); |
| 7977 | if (!Result.isUsable()) { |
| 7978 | HadError = true; |
| 7979 | } else { |
| 7980 | HadChange |= (Result.get() != SrcExprs[i]); |
| 7981 | TransformedExprs.push_back(Result.get()); |
| 7982 | } |
| 7983 | } |
| 7984 | |
| 7985 | if (HadError) return StmtError(); |
| 7986 | if (!HadChange && !getDerived().AlwaysRebuild()) |
| 7987 | return Owned(S); |
| 7988 | |
| 7989 | return getDerived().RebuildMSAsmStmt(S->getAsmLoc(), S->getLBraceLoc(), |
| 7990 | AsmToks, S->getAsmString(), |
| 7991 | S->getNumOutputs(), S->getNumInputs(), |
| 7992 | S->getAllConstraints(), S->getClobbers(), |
| 7993 | TransformedExprs, S->getEndLoc()); |
| 7994 | } |
| 7995 | |
| 7996 | // C++ Coroutines |
| 7997 | template<typename Derived> |
| 7998 | StmtResult |
| 7999 | TreeTransform<Derived>::TransformCoroutineBodyStmt(CoroutineBodyStmt *S) { |
| 8000 | auto *ScopeInfo = SemaRef.getCurFunction(); |
| 8001 | auto *FD = cast<FunctionDecl>(SemaRef.CurContext); |
| 8002 | assert(FD && ScopeInfo && !ScopeInfo->CoroutinePromise &&(static_cast <bool> (FD && ScopeInfo && !ScopeInfo->CoroutinePromise && ScopeInfo->NeedsCoroutineSuspends && ScopeInfo->CoroutineSuspends.first == nullptr && ScopeInfo->CoroutineSuspends.second == nullptr && "expected clean scope info") ? void (0) : __assert_fail ("FD && ScopeInfo && !ScopeInfo->CoroutinePromise && ScopeInfo->NeedsCoroutineSuspends && ScopeInfo->CoroutineSuspends.first == nullptr && ScopeInfo->CoroutineSuspends.second == nullptr && \"expected clean scope info\"" , "clang/lib/Sema/TreeTransform.h", 8006, __extension__ __PRETTY_FUNCTION__ )) |
| 8003 | ScopeInfo->NeedsCoroutineSuspends &&(static_cast <bool> (FD && ScopeInfo && !ScopeInfo->CoroutinePromise && ScopeInfo->NeedsCoroutineSuspends && ScopeInfo->CoroutineSuspends.first == nullptr && ScopeInfo->CoroutineSuspends.second == nullptr && "expected clean scope info") ? void (0) : __assert_fail ("FD && ScopeInfo && !ScopeInfo->CoroutinePromise && ScopeInfo->NeedsCoroutineSuspends && ScopeInfo->CoroutineSuspends.first == nullptr && ScopeInfo->CoroutineSuspends.second == nullptr && \"expected clean scope info\"" , "clang/lib/Sema/TreeTransform.h", 8006, __extension__ __PRETTY_FUNCTION__ )) |
| 8004 | ScopeInfo->CoroutineSuspends.first == nullptr &&(static_cast <bool> (FD && ScopeInfo && !ScopeInfo->CoroutinePromise && ScopeInfo->NeedsCoroutineSuspends && ScopeInfo->CoroutineSuspends.first == nullptr && ScopeInfo->CoroutineSuspends.second == nullptr && "expected clean scope info") ? void (0) : __assert_fail ("FD && ScopeInfo && !ScopeInfo->CoroutinePromise && ScopeInfo->NeedsCoroutineSuspends && ScopeInfo->CoroutineSuspends.first == nullptr && ScopeInfo->CoroutineSuspends.second == nullptr && \"expected clean scope info\"" , "clang/lib/Sema/TreeTransform.h", 8006, __extension__ __PRETTY_FUNCTION__ )) |
| 8005 | ScopeInfo->CoroutineSuspends.second == nullptr &&(static_cast <bool> (FD && ScopeInfo && !ScopeInfo->CoroutinePromise && ScopeInfo->NeedsCoroutineSuspends && ScopeInfo->CoroutineSuspends.first == nullptr && ScopeInfo->CoroutineSuspends.second == nullptr && "expected clean scope info") ? void (0) : __assert_fail ("FD && ScopeInfo && !ScopeInfo->CoroutinePromise && ScopeInfo->NeedsCoroutineSuspends && ScopeInfo->CoroutineSuspends.first == nullptr && ScopeInfo->CoroutineSuspends.second == nullptr && \"expected clean scope info\"" , "clang/lib/Sema/TreeTransform.h", 8006, __extension__ __PRETTY_FUNCTION__ )) |
| 8006 | "expected clean scope info")(static_cast <bool> (FD && ScopeInfo && !ScopeInfo->CoroutinePromise && ScopeInfo->NeedsCoroutineSuspends && ScopeInfo->CoroutineSuspends.first == nullptr && ScopeInfo->CoroutineSuspends.second == nullptr && "expected clean scope info") ? void (0) : __assert_fail ("FD && ScopeInfo && !ScopeInfo->CoroutinePromise && ScopeInfo->NeedsCoroutineSuspends && ScopeInfo->CoroutineSuspends.first == nullptr && ScopeInfo->CoroutineSuspends.second == nullptr && \"expected clean scope info\"" , "clang/lib/Sema/TreeTransform.h", 8006, __extension__ __PRETTY_FUNCTION__ )); |
| 8007 | |
| 8008 | // Set that we have (possibly-invalid) suspend points before we do anything |
| 8009 | // that may fail. |
| 8010 | ScopeInfo->setNeedsCoroutineSuspends(false); |
| 8011 | |
| 8012 | // We re-build the coroutine promise object (and the coroutine parameters its |
| 8013 | // type and constructor depend on) based on the types used in our current |
| 8014 | // function. We must do so, and set it on the current FunctionScopeInfo, |
| 8015 | // before attempting to transform the other parts of the coroutine body |
| 8016 | // statement, such as the implicit suspend statements (because those |
| 8017 | // statements reference the FunctionScopeInfo::CoroutinePromise). |
| 8018 | if (!SemaRef.buildCoroutineParameterMoves(FD->getLocation())) |
| 8019 | return StmtError(); |
| 8020 | auto *Promise = SemaRef.buildCoroutinePromise(FD->getLocation()); |
| 8021 | if (!Promise) |
| 8022 | return StmtError(); |
| 8023 | getDerived().transformedLocalDecl(S->getPromiseDecl(), {Promise}); |
| 8024 | ScopeInfo->CoroutinePromise = Promise; |
| 8025 | |
| 8026 | // Transform the implicit coroutine statements constructed using dependent |
| 8027 | // types during the previous parse: initial and final suspensions, the return |
| 8028 | // object, and others. We also transform the coroutine function's body. |
| 8029 | StmtResult InitSuspend = getDerived().TransformStmt(S->getInitSuspendStmt()); |
| 8030 | if (InitSuspend.isInvalid()) |
| 8031 | return StmtError(); |
| 8032 | StmtResult FinalSuspend = |
| 8033 | getDerived().TransformStmt(S->getFinalSuspendStmt()); |
| 8034 | if (FinalSuspend.isInvalid() || |
| 8035 | !SemaRef.checkFinalSuspendNoThrow(FinalSuspend.get())) |
| 8036 | return StmtError(); |
| 8037 | ScopeInfo->setCoroutineSuspends(InitSuspend.get(), FinalSuspend.get()); |
| 8038 | assert(isa<Expr>(InitSuspend.get()) && isa<Expr>(FinalSuspend.get()))(static_cast <bool> (isa<Expr>(InitSuspend.get()) && isa<Expr>(FinalSuspend.get())) ? void (0) : __assert_fail ("isa<Expr>(InitSuspend.get()) && isa<Expr>(FinalSuspend.get())" , "clang/lib/Sema/TreeTransform.h", 8038, __extension__ __PRETTY_FUNCTION__ )); |
| 8039 | |
| 8040 | StmtResult BodyRes = getDerived().TransformStmt(S->getBody()); |
| 8041 | if (BodyRes.isInvalid()) |
| 8042 | return StmtError(); |
| 8043 | |
| 8044 | CoroutineStmtBuilder Builder(SemaRef, *FD, *ScopeInfo, BodyRes.get()); |
| 8045 | if (Builder.isInvalid()) |
| 8046 | return StmtError(); |
| 8047 | |
| 8048 | Expr *ReturnObject = S->getReturnValueInit(); |
| 8049 | assert(ReturnObject && "the return object is expected to be valid")(static_cast <bool> (ReturnObject && "the return object is expected to be valid" ) ? void (0) : __assert_fail ("ReturnObject && \"the return object is expected to be valid\"" , "clang/lib/Sema/TreeTransform.h", 8049, __extension__ __PRETTY_FUNCTION__ )); |
| 8050 | ExprResult Res = getDerived().TransformInitializer(ReturnObject, |
| 8051 | /*NoCopyInit*/ false); |
| 8052 | if (Res.isInvalid()) |
| 8053 | return StmtError(); |
| 8054 | Builder.ReturnValue = Res.get(); |
| 8055 | |
| 8056 | // If during the previous parse the coroutine still had a dependent promise |
| 8057 | // statement, we may need to build some implicit coroutine statements |
| 8058 | // (such as exception and fallthrough handlers) for the first time. |
| 8059 | if (S->hasDependentPromiseType()) { |
| 8060 | // We can only build these statements, however, if the current promise type |
| 8061 | // is not dependent. |
| 8062 | if (!Promise->getType()->isDependentType()) { |
| 8063 | assert(!S->getFallthroughHandler() && !S->getExceptionHandler() &&(static_cast <bool> (!S->getFallthroughHandler() && !S->getExceptionHandler() && !S->getReturnStmtOnAllocFailure () && !S->getDeallocate() && "these nodes should not have been built yet" ) ? void (0) : __assert_fail ("!S->getFallthroughHandler() && !S->getExceptionHandler() && !S->getReturnStmtOnAllocFailure() && !S->getDeallocate() && \"these nodes should not have been built yet\"" , "clang/lib/Sema/TreeTransform.h", 8065, __extension__ __PRETTY_FUNCTION__ )) |
| 8064 | !S->getReturnStmtOnAllocFailure() && !S->getDeallocate() &&(static_cast <bool> (!S->getFallthroughHandler() && !S->getExceptionHandler() && !S->getReturnStmtOnAllocFailure () && !S->getDeallocate() && "these nodes should not have been built yet" ) ? void (0) : __assert_fail ("!S->getFallthroughHandler() && !S->getExceptionHandler() && !S->getReturnStmtOnAllocFailure() && !S->getDeallocate() && \"these nodes should not have been built yet\"" , "clang/lib/Sema/TreeTransform.h", 8065, __extension__ __PRETTY_FUNCTION__ )) |
| 8065 | "these nodes should not have been built yet")(static_cast <bool> (!S->getFallthroughHandler() && !S->getExceptionHandler() && !S->getReturnStmtOnAllocFailure () && !S->getDeallocate() && "these nodes should not have been built yet" ) ? void (0) : __assert_fail ("!S->getFallthroughHandler() && !S->getExceptionHandler() && !S->getReturnStmtOnAllocFailure() && !S->getDeallocate() && \"these nodes should not have been built yet\"" , "clang/lib/Sema/TreeTransform.h", 8065, __extension__ __PRETTY_FUNCTION__ )); |
| 8066 | if (!Builder.buildDependentStatements()) |
| 8067 | return StmtError(); |
| 8068 | } |
| 8069 | } else { |
| 8070 | if (auto *OnFallthrough = S->getFallthroughHandler()) { |
| 8071 | StmtResult Res = getDerived().TransformStmt(OnFallthrough); |
| 8072 | if (Res.isInvalid()) |
| 8073 | return StmtError(); |
| 8074 | Builder.OnFallthrough = Res.get(); |
| 8075 | } |
| 8076 | |
| 8077 | if (auto *OnException = S->getExceptionHandler()) { |
| 8078 | StmtResult Res = getDerived().TransformStmt(OnException); |
| 8079 | if (Res.isInvalid()) |
| 8080 | return StmtError(); |
| 8081 | Builder.OnException = Res.get(); |
| 8082 | } |
| 8083 | |
| 8084 | if (auto *OnAllocFailure = S->getReturnStmtOnAllocFailure()) { |
| 8085 | StmtResult Res = getDerived().TransformStmt(OnAllocFailure); |
| 8086 | if (Res.isInvalid()) |
| 8087 | return StmtError(); |
| 8088 | Builder.ReturnStmtOnAllocFailure = Res.get(); |
| 8089 | } |
| 8090 | |
| 8091 | // Transform any additional statements we may have already built |
| 8092 | assert(S->getAllocate() && S->getDeallocate() &&(static_cast <bool> (S->getAllocate() && S-> getDeallocate() && "allocation and deallocation calls must already be built" ) ? void (0) : __assert_fail ("S->getAllocate() && S->getDeallocate() && \"allocation and deallocation calls must already be built\"" , "clang/lib/Sema/TreeTransform.h", 8093, __extension__ __PRETTY_FUNCTION__ )) |
| 8093 | "allocation and deallocation calls must already be built")(static_cast <bool> (S->getAllocate() && S-> getDeallocate() && "allocation and deallocation calls must already be built" ) ? void (0) : __assert_fail ("S->getAllocate() && S->getDeallocate() && \"allocation and deallocation calls must already be built\"" , "clang/lib/Sema/TreeTransform.h", 8093, __extension__ __PRETTY_FUNCTION__ )); |
| 8094 | ExprResult AllocRes = getDerived().TransformExpr(S->getAllocate()); |
| 8095 | if (AllocRes.isInvalid()) |
| 8096 | return StmtError(); |
| 8097 | Builder.Allocate = AllocRes.get(); |
| 8098 | |
| 8099 | ExprResult DeallocRes = getDerived().TransformExpr(S->getDeallocate()); |
| 8100 | if (DeallocRes.isInvalid()) |
| 8101 | return StmtError(); |
| 8102 | Builder.Deallocate = DeallocRes.get(); |
| 8103 | |
| 8104 | if (auto *ResultDecl = S->getResultDecl()) { |
| 8105 | StmtResult Res = getDerived().TransformStmt(ResultDecl); |
| 8106 | if (Res.isInvalid()) |
| 8107 | return StmtError(); |
| 8108 | Builder.ResultDecl = Res.get(); |
| 8109 | } |
| 8110 | |
| 8111 | if (auto *ReturnStmt = S->getReturnStmt()) { |
| 8112 | StmtResult Res = getDerived().TransformStmt(ReturnStmt); |
| 8113 | if (Res.isInvalid()) |
| 8114 | return StmtError(); |
| 8115 | Builder.ReturnStmt = Res.get(); |
| 8116 | } |
| 8117 | } |
| 8118 | |
| 8119 | return getDerived().RebuildCoroutineBodyStmt(Builder); |
| 8120 | } |
| 8121 | |
| 8122 | template<typename Derived> |
| 8123 | StmtResult |
| 8124 | TreeTransform<Derived>::TransformCoreturnStmt(CoreturnStmt *S) { |
| 8125 | ExprResult Result = getDerived().TransformInitializer(S->getOperand(), |
| 8126 | /*NotCopyInit*/false); |
| 8127 | if (Result.isInvalid()) |
| 8128 | return StmtError(); |
| 8129 | |
| 8130 | // Always rebuild; we don't know if this needs to be injected into a new |
| 8131 | // context or if the promise type has changed. |
| 8132 | return getDerived().RebuildCoreturnStmt(S->getKeywordLoc(), Result.get(), |
| 8133 | S->isImplicit()); |
| 8134 | } |
| 8135 | |
| 8136 | template <typename Derived> |
| 8137 | ExprResult TreeTransform<Derived>::TransformCoawaitExpr(CoawaitExpr *E) { |
| 8138 | ExprResult Operand = getDerived().TransformInitializer(E->getOperand(), |
| 8139 | /*NotCopyInit*/ false); |
| 8140 | if (Operand.isInvalid()) |
| 8141 | return ExprError(); |
| 8142 | |
| 8143 | // Rebuild the common-expr from the operand rather than transforming it |
| 8144 | // separately. |
| 8145 | |
| 8146 | // FIXME: getCurScope() should not be used during template instantiation. |
| 8147 | // We should pick up the set of unqualified lookup results for operator |
| 8148 | // co_await during the initial parse. |
| 8149 | ExprResult Lookup = getSema().BuildOperatorCoawaitLookupExpr( |
| 8150 | getSema().getCurScope(), E->getKeywordLoc()); |
| 8151 | |
| 8152 | // Always rebuild; we don't know if this needs to be injected into a new |
| 8153 | // context or if the promise type has changed. |
| 8154 | return getDerived().RebuildCoawaitExpr( |
| 8155 | E->getKeywordLoc(), Operand.get(), |
| 8156 | cast<UnresolvedLookupExpr>(Lookup.get()), E->isImplicit()); |
| 8157 | } |
| 8158 | |
| 8159 | template <typename Derived> |
| 8160 | ExprResult |
| 8161 | TreeTransform<Derived>::TransformDependentCoawaitExpr(DependentCoawaitExpr *E) { |
| 8162 | ExprResult OperandResult = getDerived().TransformInitializer(E->getOperand(), |
| 8163 | /*NotCopyInit*/ false); |
| 8164 | if (OperandResult.isInvalid()) |
| 8165 | return ExprError(); |
| 8166 | |
| 8167 | ExprResult LookupResult = getDerived().TransformUnresolvedLookupExpr( |
| 8168 | E->getOperatorCoawaitLookup()); |
| 8169 | |
| 8170 | if (LookupResult.isInvalid()) |
| 8171 | return ExprError(); |
| 8172 | |
| 8173 | // Always rebuild; we don't know if this needs to be injected into a new |
| 8174 | // context or if the promise type has changed. |
| 8175 | return getDerived().RebuildDependentCoawaitExpr( |
| 8176 | E->getKeywordLoc(), OperandResult.get(), |
| 8177 | cast<UnresolvedLookupExpr>(LookupResult.get())); |
| 8178 | } |
| 8179 | |
| 8180 | template<typename Derived> |
| 8181 | ExprResult |
| 8182 | TreeTransform<Derived>::TransformCoyieldExpr(CoyieldExpr *E) { |
| 8183 | ExprResult Result = getDerived().TransformInitializer(E->getOperand(), |
| 8184 | /*NotCopyInit*/false); |
| 8185 | if (Result.isInvalid()) |
| 8186 | return ExprError(); |
| 8187 | |
| 8188 | // Always rebuild; we don't know if this needs to be injected into a new |
| 8189 | // context or if the promise type has changed. |
| 8190 | return getDerived().RebuildCoyieldExpr(E->getKeywordLoc(), Result.get()); |
| 8191 | } |
| 8192 | |
| 8193 | // Objective-C Statements. |
| 8194 | |
| 8195 | template<typename Derived> |
| 8196 | StmtResult |
| 8197 | TreeTransform<Derived>::TransformObjCAtTryStmt(ObjCAtTryStmt *S) { |
| 8198 | // Transform the body of the @try. |
| 8199 | StmtResult TryBody = getDerived().TransformStmt(S->getTryBody()); |
| 8200 | if (TryBody.isInvalid()) |
| 8201 | return StmtError(); |
| 8202 | |
| 8203 | // Transform the @catch statements (if present). |
| 8204 | bool AnyCatchChanged = false; |
| 8205 | SmallVector<Stmt*, 8> CatchStmts; |
| 8206 | for (unsigned I = 0, N = S->getNumCatchStmts(); I != N; ++I) { |
| 8207 | StmtResult Catch = getDerived().TransformStmt(S->getCatchStmt(I)); |
| 8208 | if (Catch.isInvalid()) |
| 8209 | return StmtError(); |
| 8210 | if (Catch.get() != S->getCatchStmt(I)) |
| 8211 | AnyCatchChanged = true; |
| 8212 | CatchStmts.push_back(Catch.get()); |
| 8213 | } |
| 8214 | |
| 8215 | // Transform the @finally statement (if present). |
| 8216 | StmtResult Finally; |
| 8217 | if (S->getFinallyStmt()) { |
| 8218 | Finally = getDerived().TransformStmt(S->getFinallyStmt()); |
| 8219 | if (Finally.isInvalid()) |
| 8220 | return StmtError(); |
| 8221 | } |
| 8222 | |
| 8223 | // If nothing changed, just retain this statement. |
| 8224 | if (!getDerived().AlwaysRebuild() && |
| 8225 | TryBody.get() == S->getTryBody() && |
| 8226 | !AnyCatchChanged && |
| 8227 | Finally.get() == S->getFinallyStmt()) |
| 8228 | return S; |
| 8229 | |
| 8230 | // Build a new statement. |
| 8231 | return getDerived().RebuildObjCAtTryStmt(S->getAtTryLoc(), TryBody.get(), |
| 8232 | CatchStmts, Finally.get()); |
| 8233 | } |
| 8234 | |
| 8235 | template<typename Derived> |
| 8236 | StmtResult |
| 8237 | TreeTransform<Derived>::TransformObjCAtCatchStmt(ObjCAtCatchStmt *S) { |
| 8238 | // Transform the @catch parameter, if there is one. |
| 8239 | VarDecl *Var = nullptr; |
| 8240 | if (VarDecl *FromVar = S->getCatchParamDecl()) { |
| 8241 | TypeSourceInfo *TSInfo = nullptr; |
| 8242 | if (FromVar->getTypeSourceInfo()) { |
| 8243 | TSInfo = getDerived().TransformType(FromVar->getTypeSourceInfo()); |
| 8244 | if (!TSInfo) |
| 8245 | return StmtError(); |
| 8246 | } |
| 8247 | |
| 8248 | QualType T; |
| 8249 | if (TSInfo) |
| 8250 | T = TSInfo->getType(); |
| 8251 | else { |
| 8252 | T = getDerived().TransformType(FromVar->getType()); |
| 8253 | if (T.isNull()) |
| 8254 | return StmtError(); |
| 8255 | } |
| 8256 | |
| 8257 | Var = getDerived().RebuildObjCExceptionDecl(FromVar, TSInfo, T); |
| 8258 | if (!Var) |
| 8259 | return StmtError(); |
| 8260 | } |
| 8261 | |
| 8262 | StmtResult Body = getDerived().TransformStmt(S->getCatchBody()); |
| 8263 | if (Body.isInvalid()) |
| 8264 | return StmtError(); |
| 8265 | |
| 8266 | return getDerived().RebuildObjCAtCatchStmt(S->getAtCatchLoc(), |
| 8267 | S->getRParenLoc(), |
| 8268 | Var, Body.get()); |
| 8269 | } |
| 8270 | |
| 8271 | template<typename Derived> |
| 8272 | StmtResult |
| 8273 | TreeTransform<Derived>::TransformObjCAtFinallyStmt(ObjCAtFinallyStmt *S) { |
| 8274 | // Transform the body. |
| 8275 | StmtResult Body = getDerived().TransformStmt(S->getFinallyBody()); |
| 8276 | if (Body.isInvalid()) |
| 8277 | return StmtError(); |
| 8278 | |
| 8279 | // If nothing changed, just retain this statement. |
| 8280 | if (!getDerived().AlwaysRebuild() && |
| 8281 | Body.get() == S->getFinallyBody()) |
| 8282 | return S; |
| 8283 | |
| 8284 | // Build a new statement. |
| 8285 | return getDerived().RebuildObjCAtFinallyStmt(S->getAtFinallyLoc(), |
| 8286 | Body.get()); |
| 8287 | } |
| 8288 | |
| 8289 | template<typename Derived> |
| 8290 | StmtResult |
| 8291 | TreeTransform<Derived>::TransformObjCAtThrowStmt(ObjCAtThrowStmt *S) { |
| 8292 | ExprResult Operand; |
| 8293 | if (S->getThrowExpr()) { |
| 8294 | Operand = getDerived().TransformExpr(S->getThrowExpr()); |
| 8295 | if (Operand.isInvalid()) |
| 8296 | return StmtError(); |
| 8297 | } |
| 8298 | |
| 8299 | if (!getDerived().AlwaysRebuild() && |
| 8300 | Operand.get() == S->getThrowExpr()) |
| 8301 | return S; |
| 8302 | |
| 8303 | return getDerived().RebuildObjCAtThrowStmt(S->getThrowLoc(), Operand.get()); |
| 8304 | } |
| 8305 | |
| 8306 | template<typename Derived> |
| 8307 | StmtResult |
| 8308 | TreeTransform<Derived>::TransformObjCAtSynchronizedStmt( |
| 8309 | ObjCAtSynchronizedStmt *S) { |
| 8310 | // Transform the object we are locking. |
| 8311 | ExprResult Object = getDerived().TransformExpr(S->getSynchExpr()); |
| 8312 | if (Object.isInvalid()) |
| 8313 | return StmtError(); |
| 8314 | Object = |
| 8315 | getDerived().RebuildObjCAtSynchronizedOperand(S->getAtSynchronizedLoc(), |
| 8316 | Object.get()); |
| 8317 | if (Object.isInvalid()) |
| 8318 | return StmtError(); |
| 8319 | |
| 8320 | // Transform the body. |
| 8321 | StmtResult Body = getDerived().TransformStmt(S->getSynchBody()); |
| 8322 | if (Body.isInvalid()) |
| 8323 | return StmtError(); |
| 8324 | |
| 8325 | // If nothing change, just retain the current statement. |
| 8326 | if (!getDerived().AlwaysRebuild() && |
| 8327 | Object.get() == S->getSynchExpr() && |
| 8328 | Body.get() == S->getSynchBody()) |
| 8329 | return S; |
| 8330 | |
| 8331 | // Build a new statement. |
| 8332 | return getDerived().RebuildObjCAtSynchronizedStmt(S->getAtSynchronizedLoc(), |
| 8333 | Object.get(), Body.get()); |
| 8334 | } |
| 8335 | |
| 8336 | template<typename Derived> |
| 8337 | StmtResult |
| 8338 | TreeTransform<Derived>::TransformObjCAutoreleasePoolStmt( |
| 8339 | ObjCAutoreleasePoolStmt *S) { |
| 8340 | // Transform the body. |
| 8341 | StmtResult Body = getDerived().TransformStmt(S->getSubStmt()); |
| 8342 | if (Body.isInvalid()) |
| 8343 | return StmtError(); |
| 8344 | |
| 8345 | // If nothing changed, just retain this statement. |
| 8346 | if (!getDerived().AlwaysRebuild() && |
| 8347 | Body.get() == S->getSubStmt()) |
| 8348 | return S; |
| 8349 | |
| 8350 | // Build a new statement. |
| 8351 | return getDerived().RebuildObjCAutoreleasePoolStmt( |
| 8352 | S->getAtLoc(), Body.get()); |
| 8353 | } |
| 8354 | |
| 8355 | template<typename Derived> |
| 8356 | StmtResult |
| 8357 | TreeTransform<Derived>::TransformObjCForCollectionStmt( |
| 8358 | ObjCForCollectionStmt *S) { |
| 8359 | // Transform the element statement. |
| 8360 | StmtResult Element = |
| 8361 | getDerived().TransformStmt(S->getElement(), SDK_NotDiscarded); |
| 8362 | if (Element.isInvalid()) |
| 8363 | return StmtError(); |
| 8364 | |
| 8365 | // Transform the collection expression. |
| 8366 | ExprResult Collection = getDerived().TransformExpr(S->getCollection()); |
| 8367 | if (Collection.isInvalid()) |
| 8368 | return StmtError(); |
| 8369 | |
| 8370 | // Transform the body. |
| 8371 | StmtResult Body = getDerived().TransformStmt(S->getBody()); |
| 8372 | if (Body.isInvalid()) |
| 8373 | return StmtError(); |
| 8374 | |
| 8375 | // If nothing changed, just retain this statement. |
| 8376 | if (!getDerived().AlwaysRebuild() && |
| 8377 | Element.get() == S->getElement() && |
| 8378 | Collection.get() == S->getCollection() && |
| 8379 | Body.get() == S->getBody()) |
| 8380 | return S; |
| 8381 | |
| 8382 | // Build a new statement. |
| 8383 | return getDerived().RebuildObjCForCollectionStmt(S->getForLoc(), |
| 8384 | Element.get(), |
| 8385 | Collection.get(), |
| 8386 | S->getRParenLoc(), |
| 8387 | Body.get()); |
| 8388 | } |
| 8389 | |
| 8390 | template <typename Derived> |
| 8391 | StmtResult TreeTransform<Derived>::TransformCXXCatchStmt(CXXCatchStmt *S) { |
| 8392 | // Transform the exception declaration, if any. |
| 8393 | VarDecl *Var = nullptr; |
| 8394 | if (VarDecl *ExceptionDecl = S->getExceptionDecl()) { |
| 8395 | TypeSourceInfo *T = |
| 8396 | getDerived().TransformType(ExceptionDecl->getTypeSourceInfo()); |
| 8397 | if (!T) |
| 8398 | return StmtError(); |
| 8399 | |
| 8400 | Var = getDerived().RebuildExceptionDecl( |
| 8401 | ExceptionDecl, T, ExceptionDecl->getInnerLocStart(), |
| 8402 | ExceptionDecl->getLocation(), ExceptionDecl->getIdentifier()); |
| 8403 | if (!Var || Var->isInvalidDecl()) |
| 8404 | return StmtError(); |
| 8405 | } |
| 8406 | |
| 8407 | // Transform the actual exception handler. |
| 8408 | StmtResult Handler = getDerived().TransformStmt(S->getHandlerBlock()); |
| 8409 | if (Handler.isInvalid()) |
| 8410 | return StmtError(); |
| 8411 | |
| 8412 | if (!getDerived().AlwaysRebuild() && !Var && |
| 8413 | Handler.get() == S->getHandlerBlock()) |
| 8414 | return S; |
| 8415 | |
| 8416 | return getDerived().RebuildCXXCatchStmt(S->getCatchLoc(), Var, Handler.get()); |
| 8417 | } |
| 8418 | |
| 8419 | template <typename Derived> |
| 8420 | StmtResult TreeTransform<Derived>::TransformCXXTryStmt(CXXTryStmt *S) { |
| 8421 | // Transform the try block itself. |
| 8422 | StmtResult TryBlock = getDerived().TransformCompoundStmt(S->getTryBlock()); |
| 8423 | if (TryBlock.isInvalid()) |
| 8424 | return StmtError(); |
| 8425 | |
| 8426 | // Transform the handlers. |
| 8427 | bool HandlerChanged = false; |
| 8428 | SmallVector<Stmt *, 8> Handlers; |
| 8429 | for (unsigned I = 0, N = S->getNumHandlers(); I != N; ++I) { |
| 8430 | StmtResult Handler = getDerived().TransformCXXCatchStmt(S->getHandler(I)); |
| 8431 | if (Handler.isInvalid()) |
| 8432 | return StmtError(); |
| 8433 | |
| 8434 | HandlerChanged = HandlerChanged || Handler.get() != S->getHandler(I); |
| 8435 | Handlers.push_back(Handler.getAs<Stmt>()); |
| 8436 | } |
| 8437 | |
| 8438 | if (!getDerived().AlwaysRebuild() && TryBlock.get() == S->getTryBlock() && |
| 8439 | !HandlerChanged) |
| 8440 | return S; |
| 8441 | |
| 8442 | return getDerived().RebuildCXXTryStmt(S->getTryLoc(), TryBlock.get(), |
| 8443 | Handlers); |
| 8444 | } |
| 8445 | |
| 8446 | template<typename Derived> |
| 8447 | StmtResult |
| 8448 | TreeTransform<Derived>::TransformCXXForRangeStmt(CXXForRangeStmt *S) { |
| 8449 | StmtResult Init = |
| 8450 | S->getInit() ? getDerived().TransformStmt(S->getInit()) : StmtResult(); |
| 8451 | if (Init.isInvalid()) |
| 8452 | return StmtError(); |
| 8453 | |
| 8454 | StmtResult Range = getDerived().TransformStmt(S->getRangeStmt()); |
| 8455 | if (Range.isInvalid()) |
| 8456 | return StmtError(); |
| 8457 | |
| 8458 | StmtResult Begin = getDerived().TransformStmt(S->getBeginStmt()); |
| 8459 | if (Begin.isInvalid()) |
| 8460 | return StmtError(); |
| 8461 | StmtResult End = getDerived().TransformStmt(S->getEndStmt()); |
| 8462 | if (End.isInvalid()) |
| 8463 | return StmtError(); |
| 8464 | |
| 8465 | ExprResult Cond = getDerived().TransformExpr(S->getCond()); |
| 8466 | if (Cond.isInvalid()) |
| 8467 | return StmtError(); |
| 8468 | if (Cond.get()) |
| 8469 | Cond = SemaRef.CheckBooleanCondition(S->getColonLoc(), Cond.get()); |
| 8470 | if (Cond.isInvalid()) |
| 8471 | return StmtError(); |
| 8472 | if (Cond.get()) |
| 8473 | Cond = SemaRef.MaybeCreateExprWithCleanups(Cond.get()); |
| 8474 | |
| 8475 | ExprResult Inc = getDerived().TransformExpr(S->getInc()); |
| 8476 | if (Inc.isInvalid()) |
| 8477 | return StmtError(); |
| 8478 | if (Inc.get()) |
| 8479 | Inc = SemaRef.MaybeCreateExprWithCleanups(Inc.get()); |
| 8480 | |
| 8481 | StmtResult LoopVar = getDerived().TransformStmt(S->getLoopVarStmt()); |
| 8482 | if (LoopVar.isInvalid()) |
| 8483 | return StmtError(); |
| 8484 | |
| 8485 | StmtResult NewStmt = S; |
| 8486 | if (getDerived().AlwaysRebuild() || |
| 8487 | Init.get() != S->getInit() || |
| 8488 | Range.get() != S->getRangeStmt() || |
| 8489 | Begin.get() != S->getBeginStmt() || |
| 8490 | End.get() != S->getEndStmt() || |
| 8491 | Cond.get() != S->getCond() || |
| 8492 | Inc.get() != S->getInc() || |
| 8493 | LoopVar.get() != S->getLoopVarStmt()) { |
| 8494 | NewStmt = getDerived().RebuildCXXForRangeStmt(S->getForLoc(), |
| 8495 | S->getCoawaitLoc(), Init.get(), |
| 8496 | S->getColonLoc(), Range.get(), |
| 8497 | Begin.get(), End.get(), |
| 8498 | Cond.get(), |
| 8499 | Inc.get(), LoopVar.get(), |
| 8500 | S->getRParenLoc()); |
| 8501 | if (NewStmt.isInvalid() && LoopVar.get() != S->getLoopVarStmt()) { |
| 8502 | // Might not have attached any initializer to the loop variable. |
| 8503 | getSema().ActOnInitializerError( |
| 8504 | cast<DeclStmt>(LoopVar.get())->getSingleDecl()); |
| 8505 | return StmtError(); |
| 8506 | } |
| 8507 | } |
| 8508 | |
| 8509 | StmtResult Body = getDerived().TransformStmt(S->getBody()); |
| 8510 | if (Body.isInvalid()) |
| 8511 | return StmtError(); |
| 8512 | |
| 8513 | // Body has changed but we didn't rebuild the for-range statement. Rebuild |
| 8514 | // it now so we have a new statement to attach the body to. |
| 8515 | if (Body.get() != S->getBody() && NewStmt.get() == S) { |
| 8516 | NewStmt = getDerived().RebuildCXXForRangeStmt(S->getForLoc(), |
| 8517 | S->getCoawaitLoc(), Init.get(), |
| 8518 | S->getColonLoc(), Range.get(), |
| 8519 | Begin.get(), End.get(), |
| 8520 | Cond.get(), |
| 8521 | Inc.get(), LoopVar.get(), |
| 8522 | S->getRParenLoc()); |
| 8523 | if (NewStmt.isInvalid()) |
| 8524 | return StmtError(); |
| 8525 | } |
| 8526 | |
| 8527 | if (NewStmt.get() == S) |
| 8528 | return S; |
| 8529 | |
| 8530 | return FinishCXXForRangeStmt(NewStmt.get(), Body.get()); |
| 8531 | } |
| 8532 | |
| 8533 | template<typename Derived> |
| 8534 | StmtResult |
| 8535 | TreeTransform<Derived>::TransformMSDependentExistsStmt( |
| 8536 | MSDependentExistsStmt *S) { |
| 8537 | // Transform the nested-name-specifier, if any. |
| 8538 | NestedNameSpecifierLoc QualifierLoc; |
| 8539 | if (S->getQualifierLoc()) { |
| 8540 | QualifierLoc |
| 8541 | = getDerived().TransformNestedNameSpecifierLoc(S->getQualifierLoc()); |
| 8542 | if (!QualifierLoc) |
| 8543 | return StmtError(); |
| 8544 | } |
| 8545 | |
| 8546 | // Transform the declaration name. |
| 8547 | DeclarationNameInfo NameInfo = S->getNameInfo(); |
| 8548 | if (NameInfo.getName()) { |
| 8549 | NameInfo = getDerived().TransformDeclarationNameInfo(NameInfo); |
| 8550 | if (!NameInfo.getName()) |
| 8551 | return StmtError(); |
| 8552 | } |
| 8553 | |
| 8554 | // Check whether anything changed. |
| 8555 | if (!getDerived().AlwaysRebuild() && |
| 8556 | QualifierLoc == S->getQualifierLoc() && |
| 8557 | NameInfo.getName() == S->getNameInfo().getName()) |
| 8558 | return S; |
| 8559 | |
| 8560 | // Determine whether this name exists, if we can. |
| 8561 | CXXScopeSpec SS; |
| 8562 | SS.Adopt(QualifierLoc); |
| 8563 | bool Dependent = false; |
| 8564 | switch (getSema().CheckMicrosoftIfExistsSymbol(/*S=*/nullptr, SS, NameInfo)) { |
| 8565 | case Sema::IER_Exists: |
| 8566 | if (S->isIfExists()) |
| 8567 | break; |
| 8568 | |
| 8569 | return new (getSema().Context) NullStmt(S->getKeywordLoc()); |
| 8570 | |
| 8571 | case Sema::IER_DoesNotExist: |
| 8572 | if (S->isIfNotExists()) |
| 8573 | break; |
| 8574 | |
| 8575 | return new (getSema().Context) NullStmt(S->getKeywordLoc()); |
| 8576 | |
| 8577 | case Sema::IER_Dependent: |
| 8578 | Dependent = true; |
| 8579 | break; |
| 8580 | |
| 8581 | case Sema::IER_Error: |
| 8582 | return StmtError(); |
| 8583 | } |
| 8584 | |
| 8585 | // We need to continue with the instantiation, so do so now. |
| 8586 | StmtResult SubStmt = getDerived().TransformCompoundStmt(S->getSubStmt()); |
| 8587 | if (SubStmt.isInvalid()) |
| 8588 | return StmtError(); |
| 8589 | |
| 8590 | // If we have resolved the name, just transform to the substatement. |
| 8591 | if (!Dependent) |
| 8592 | return SubStmt; |
| 8593 | |
| 8594 | // The name is still dependent, so build a dependent expression again. |
| 8595 | return getDerived().RebuildMSDependentExistsStmt(S->getKeywordLoc(), |
| 8596 | S->isIfExists(), |
| 8597 | QualifierLoc, |
| 8598 | NameInfo, |
| 8599 | SubStmt.get()); |
| 8600 | } |
| 8601 | |
| 8602 | template<typename Derived> |
| 8603 | ExprResult |
| 8604 | TreeTransform<Derived>::TransformMSPropertyRefExpr(MSPropertyRefExpr *E) { |
| 8605 | NestedNameSpecifierLoc QualifierLoc; |
| 8606 | if (E->getQualifierLoc()) { |
| 8607 | QualifierLoc |
| 8608 | = getDerived().TransformNestedNameSpecifierLoc(E->getQualifierLoc()); |
| 8609 | if (!QualifierLoc) |
| 8610 | return ExprError(); |
| 8611 | } |
| 8612 | |
| 8613 | MSPropertyDecl *PD = cast_or_null<MSPropertyDecl>( |
| 8614 | getDerived().TransformDecl(E->getMemberLoc(), E->getPropertyDecl())); |
| 8615 | if (!PD) |
| 8616 | return ExprError(); |
| 8617 | |
| 8618 | ExprResult Base = getDerived().TransformExpr(E->getBaseExpr()); |
| 8619 | if (Base.isInvalid()) |
| 8620 | return ExprError(); |
| 8621 | |
| 8622 | return new (SemaRef.getASTContext()) |
| 8623 | MSPropertyRefExpr(Base.get(), PD, E->isArrow(), |
| 8624 | SemaRef.getASTContext().PseudoObjectTy, VK_LValue, |
| 8625 | QualifierLoc, E->getMemberLoc()); |
| 8626 | } |
| 8627 | |
| 8628 | template <typename Derived> |
| 8629 | ExprResult TreeTransform<Derived>::TransformMSPropertySubscriptExpr( |
| 8630 | MSPropertySubscriptExpr *E) { |
| 8631 | auto BaseRes = getDerived().TransformExpr(E->getBase()); |
| 8632 | if (BaseRes.isInvalid()) |
| 8633 | return ExprError(); |
| 8634 | auto IdxRes = getDerived().TransformExpr(E->getIdx()); |
| 8635 | if (IdxRes.isInvalid()) |
| 8636 | return ExprError(); |
| 8637 | |
| 8638 | if (!getDerived().AlwaysRebuild() && |
| 8639 | BaseRes.get() == E->getBase() && |
| 8640 | IdxRes.get() == E->getIdx()) |
| 8641 | return E; |
| 8642 | |
| 8643 | return getDerived().RebuildArraySubscriptExpr( |
| 8644 | BaseRes.get(), SourceLocation(), IdxRes.get(), E->getRBracketLoc()); |
| 8645 | } |
| 8646 | |
| 8647 | template <typename Derived> |
| 8648 | StmtResult TreeTransform<Derived>::TransformSEHTryStmt(SEHTryStmt *S) { |
| 8649 | StmtResult TryBlock = getDerived().TransformCompoundStmt(S->getTryBlock()); |
| 8650 | if (TryBlock.isInvalid()) |
| 8651 | return StmtError(); |
| 8652 | |
| 8653 | StmtResult Handler = getDerived().TransformSEHHandler(S->getHandler()); |
| 8654 | if (Handler.isInvalid()) |
| 8655 | return StmtError(); |
| 8656 | |
| 8657 | if (!getDerived().AlwaysRebuild() && TryBlock.get() == S->getTryBlock() && |
| 8658 | Handler.get() == S->getHandler()) |
| 8659 | return S; |
| 8660 | |
| 8661 | return getDerived().RebuildSEHTryStmt(S->getIsCXXTry(), S->getTryLoc(), |
| 8662 | TryBlock.get(), Handler.get()); |
| 8663 | } |
| 8664 | |
| 8665 | template <typename Derived> |
| 8666 | StmtResult TreeTransform<Derived>::TransformSEHFinallyStmt(SEHFinallyStmt *S) { |
| 8667 | StmtResult Block = getDerived().TransformCompoundStmt(S->getBlock()); |
| 8668 | if (Block.isInvalid()) |
| 8669 | return StmtError(); |
| 8670 | |
| 8671 | return getDerived().RebuildSEHFinallyStmt(S->getFinallyLoc(), Block.get()); |
| 8672 | } |
| 8673 | |
| 8674 | template <typename Derived> |
| 8675 | StmtResult TreeTransform<Derived>::TransformSEHExceptStmt(SEHExceptStmt *S) { |
| 8676 | ExprResult FilterExpr = getDerived().TransformExpr(S->getFilterExpr()); |
| 8677 | if (FilterExpr.isInvalid()) |
| 8678 | return StmtError(); |
| 8679 | |
| 8680 | StmtResult Block = getDerived().TransformCompoundStmt(S->getBlock()); |
| 8681 | if (Block.isInvalid()) |
| 8682 | return StmtError(); |
| 8683 | |
| 8684 | return getDerived().RebuildSEHExceptStmt(S->getExceptLoc(), FilterExpr.get(), |
| 8685 | Block.get()); |
| 8686 | } |
| 8687 | |
| 8688 | template <typename Derived> |
| 8689 | StmtResult TreeTransform<Derived>::TransformSEHHandler(Stmt *Handler) { |
| 8690 | if (isa<SEHFinallyStmt>(Handler)) |
| 8691 | return getDerived().TransformSEHFinallyStmt(cast<SEHFinallyStmt>(Handler)); |
| 8692 | else |
| 8693 | return getDerived().TransformSEHExceptStmt(cast<SEHExceptStmt>(Handler)); |
| 8694 | } |
| 8695 | |
| 8696 | template<typename Derived> |
| 8697 | StmtResult |
| 8698 | TreeTransform<Derived>::TransformSEHLeaveStmt(SEHLeaveStmt *S) { |
| 8699 | return S; |
| 8700 | } |
| 8701 | |
| 8702 | //===----------------------------------------------------------------------===// |
| 8703 | // OpenMP directive transformation |
| 8704 | //===----------------------------------------------------------------------===// |
| 8705 | |
| 8706 | template <typename Derived> |
| 8707 | StmtResult |
| 8708 | TreeTransform<Derived>::TransformOMPCanonicalLoop(OMPCanonicalLoop *L) { |
| 8709 | // OMPCanonicalLoops are eliminated during transformation, since they will be |
| 8710 | // recomputed by semantic analysis of the associated OMPLoopBasedDirective |
| 8711 | // after transformation. |
| 8712 | return getDerived().TransformStmt(L->getLoopStmt()); |
| 8713 | } |
| 8714 | |
| 8715 | template <typename Derived> |
| 8716 | StmtResult TreeTransform<Derived>::TransformOMPExecutableDirective( |
| 8717 | OMPExecutableDirective *D) { |
| 8718 | |
| 8719 | // Transform the clauses |
| 8720 | llvm::SmallVector<OMPClause *, 16> TClauses; |
| 8721 | ArrayRef<OMPClause *> Clauses = D->clauses(); |
| 8722 | TClauses.reserve(Clauses.size()); |
| 8723 | for (ArrayRef<OMPClause *>::iterator I = Clauses.begin(), E = Clauses.end(); |
| 8724 | I != E; ++I) { |
| 8725 | if (*I) { |
| 8726 | getDerived().getSema().StartOpenMPClause((*I)->getClauseKind()); |
| 8727 | OMPClause *Clause = getDerived().TransformOMPClause(*I); |
| 8728 | getDerived().getSema().EndOpenMPClause(); |
| 8729 | if (Clause) |
| 8730 | TClauses.push_back(Clause); |
| 8731 | } else { |
| 8732 | TClauses.push_back(nullptr); |
| 8733 | } |
| 8734 | } |
| 8735 | StmtResult AssociatedStmt; |
| 8736 | if (D->hasAssociatedStmt() && D->getAssociatedStmt()) { |
| 8737 | getDerived().getSema().ActOnOpenMPRegionStart(D->getDirectiveKind(), |
| 8738 | /*CurScope=*/nullptr); |
| 8739 | StmtResult Body; |
| 8740 | { |
| 8741 | Sema::CompoundScopeRAII CompoundScope(getSema()); |
| 8742 | Stmt *CS; |
| 8743 | if (D->getDirectiveKind() == OMPD_atomic || |
| 8744 | D->getDirectiveKind() == OMPD_critical || |
| 8745 | D->getDirectiveKind() == OMPD_section || |
| 8746 | D->getDirectiveKind() == OMPD_master) |
| 8747 | CS = D->getAssociatedStmt(); |
| 8748 | else |
| 8749 | CS = D->getRawStmt(); |
| 8750 | Body = getDerived().TransformStmt(CS); |
| 8751 | if (Body.isUsable() && isOpenMPLoopDirective(D->getDirectiveKind()) && |
| 8752 | getSema().getLangOpts().OpenMPIRBuilder) |
| 8753 | Body = getDerived().RebuildOMPCanonicalLoop(Body.get()); |
| 8754 | } |
| 8755 | AssociatedStmt = |
| 8756 | getDerived().getSema().ActOnOpenMPRegionEnd(Body, TClauses); |
| 8757 | if (AssociatedStmt.isInvalid()) { |
| 8758 | return StmtError(); |
| 8759 | } |
| 8760 | } |
| 8761 | if (TClauses.size() != Clauses.size()) { |
| 8762 | return StmtError(); |
| 8763 | } |
| 8764 | |
| 8765 | // Transform directive name for 'omp critical' directive. |
| 8766 | DeclarationNameInfo DirName; |
| 8767 | if (D->getDirectiveKind() == OMPD_critical) { |
| 8768 | DirName = cast<OMPCriticalDirective>(D)->getDirectiveName(); |
| 8769 | DirName = getDerived().TransformDeclarationNameInfo(DirName); |
| 8770 | } |
| 8771 | OpenMPDirectiveKind CancelRegion = OMPD_unknown; |
| 8772 | if (D->getDirectiveKind() == OMPD_cancellation_point) { |
| 8773 | CancelRegion = cast<OMPCancellationPointDirective>(D)->getCancelRegion(); |
| 8774 | } else if (D->getDirectiveKind() == OMPD_cancel) { |
| 8775 | CancelRegion = cast<OMPCancelDirective>(D)->getCancelRegion(); |
| 8776 | } |
| 8777 | |
| 8778 | return getDerived().RebuildOMPExecutableDirective( |
| 8779 | D->getDirectiveKind(), DirName, CancelRegion, TClauses, |
| 8780 | AssociatedStmt.get(), D->getBeginLoc(), D->getEndLoc()); |
| 8781 | } |
| 8782 | |
| 8783 | template <typename Derived> |
| 8784 | StmtResult |
| 8785 | TreeTransform<Derived>::TransformOMPMetaDirective(OMPMetaDirective *D) { |
| 8786 | // TODO: Fix This |
| 8787 | SemaRef.Diag(D->getBeginLoc(), diag::err_omp_instantiation_not_supported) |
| 8788 | << getOpenMPDirectiveName(D->getDirectiveKind()); |
| 8789 | return StmtError(); |
| 8790 | } |
| 8791 | |
| 8792 | template <typename Derived> |
| 8793 | StmtResult |
| 8794 | TreeTransform<Derived>::TransformOMPParallelDirective(OMPParallelDirective *D) { |
| 8795 | DeclarationNameInfo DirName; |
| 8796 | getDerived().getSema().StartOpenMPDSABlock(OMPD_parallel, DirName, nullptr, |
| 8797 | D->getBeginLoc()); |
| 8798 | StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| 8799 | getDerived().getSema().EndOpenMPDSABlock(Res.get()); |
| 8800 | return Res; |
| 8801 | } |
| 8802 | |
| 8803 | template <typename Derived> |
| 8804 | StmtResult |
| 8805 | TreeTransform<Derived>::TransformOMPSimdDirective(OMPSimdDirective *D) { |
| 8806 | DeclarationNameInfo DirName; |
| 8807 | getDerived().getSema().StartOpenMPDSABlock(OMPD_simd, DirName, nullptr, |
| 8808 | D->getBeginLoc()); |
| 8809 | StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| 8810 | getDerived().getSema().EndOpenMPDSABlock(Res.get()); |
| 8811 | return Res; |
| 8812 | } |
| 8813 | |
| 8814 | template <typename Derived> |
| 8815 | StmtResult |
| 8816 | TreeTransform<Derived>::TransformOMPTileDirective(OMPTileDirective *D) { |
| 8817 | DeclarationNameInfo DirName; |
| 8818 | getDerived().getSema().StartOpenMPDSABlock(D->getDirectiveKind(), DirName, |
| 8819 | nullptr, D->getBeginLoc()); |
| 8820 | StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| 8821 | getDerived().getSema().EndOpenMPDSABlock(Res.get()); |
| 8822 | return Res; |
| 8823 | } |
| 8824 | |
| 8825 | template <typename Derived> |
| 8826 | StmtResult |
| 8827 | TreeTransform<Derived>::TransformOMPUnrollDirective(OMPUnrollDirective *D) { |
| 8828 | DeclarationNameInfo DirName; |
| 8829 | getDerived().getSema().StartOpenMPDSABlock(D->getDirectiveKind(), DirName, |
| 8830 | nullptr, D->getBeginLoc()); |
| 8831 | StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| 8832 | getDerived().getSema().EndOpenMPDSABlock(Res.get()); |
| 8833 | return Res; |
| 8834 | } |
| 8835 | |
| 8836 | template <typename Derived> |
| 8837 | StmtResult |
| 8838 | TreeTransform<Derived>::TransformOMPForDirective(OMPForDirective *D) { |
| 8839 | DeclarationNameInfo DirName; |
| 8840 | getDerived().getSema().StartOpenMPDSABlock(OMPD_for, DirName, nullptr, |
| 8841 | D->getBeginLoc()); |
| 8842 | StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| 8843 | getDerived().getSema().EndOpenMPDSABlock(Res.get()); |
| 8844 | return Res; |
| 8845 | } |
| 8846 | |
| 8847 | template <typename Derived> |
| 8848 | StmtResult |
| 8849 | TreeTransform<Derived>::TransformOMPForSimdDirective(OMPForSimdDirective *D) { |
| 8850 | DeclarationNameInfo DirName; |
| 8851 | getDerived().getSema().StartOpenMPDSABlock(OMPD_for_simd, DirName, nullptr, |
| 8852 | D->getBeginLoc()); |
| 8853 | StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| 8854 | getDerived().getSema().EndOpenMPDSABlock(Res.get()); |
| 8855 | return Res; |
| 8856 | } |
| 8857 | |
| 8858 | template <typename Derived> |
| 8859 | StmtResult |
| 8860 | TreeTransform<Derived>::TransformOMPSectionsDirective(OMPSectionsDirective *D) { |
| 8861 | DeclarationNameInfo DirName; |
| 8862 | getDerived().getSema().StartOpenMPDSABlock(OMPD_sections, DirName, nullptr, |
| 8863 | D->getBeginLoc()); |
| 8864 | StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| 8865 | getDerived().getSema().EndOpenMPDSABlock(Res.get()); |
| 8866 | return Res; |
| 8867 | } |
| 8868 | |
| 8869 | template <typename Derived> |
| 8870 | StmtResult |
| 8871 | TreeTransform<Derived>::TransformOMPSectionDirective(OMPSectionDirective *D) { |
| 8872 | DeclarationNameInfo DirName; |
| 8873 | getDerived().getSema().StartOpenMPDSABlock(OMPD_section, DirName, nullptr, |
| 8874 | D->getBeginLoc()); |
| 8875 | StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| 8876 | getDerived().getSema().EndOpenMPDSABlock(Res.get()); |
| 8877 | return Res; |
| 8878 | } |
| 8879 | |
| 8880 | template <typename Derived> |
| 8881 | StmtResult |
| 8882 | TreeTransform<Derived>::TransformOMPSingleDirective(OMPSingleDirective *D) { |
| 8883 | DeclarationNameInfo DirName; |
| 8884 | getDerived().getSema().StartOpenMPDSABlock(OMPD_single, DirName, nullptr, |
| 8885 | D->getBeginLoc()); |
| 8886 | StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| 8887 | getDerived().getSema().EndOpenMPDSABlock(Res.get()); |
| 8888 | return Res; |
| 8889 | } |
| 8890 | |
| 8891 | template <typename Derived> |
| 8892 | StmtResult |
| 8893 | TreeTransform<Derived>::TransformOMPMasterDirective(OMPMasterDirective *D) { |
| 8894 | DeclarationNameInfo DirName; |
| 8895 | getDerived().getSema().StartOpenMPDSABlock(OMPD_master, DirName, nullptr, |
| 8896 | D->getBeginLoc()); |
| 8897 | StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| 8898 | getDerived().getSema().EndOpenMPDSABlock(Res.get()); |
| 8899 | return Res; |
| 8900 | } |
| 8901 | |
| 8902 | template <typename Derived> |
| 8903 | StmtResult |
| 8904 | TreeTransform<Derived>::TransformOMPCriticalDirective(OMPCriticalDirective *D) { |
| 8905 | getDerived().getSema().StartOpenMPDSABlock( |
| 8906 | OMPD_critical, D->getDirectiveName(), nullptr, D->getBeginLoc()); |
| 8907 | StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| 8908 | getDerived().getSema().EndOpenMPDSABlock(Res.get()); |
| 8909 | return Res; |
| 8910 | } |
| 8911 | |
| 8912 | template <typename Derived> |
| 8913 | StmtResult TreeTransform<Derived>::TransformOMPParallelForDirective( |
| 8914 | OMPParallelForDirective *D) { |
| 8915 | DeclarationNameInfo DirName; |
| 8916 | getDerived().getSema().StartOpenMPDSABlock(OMPD_parallel_for, DirName, |
| 8917 | nullptr, D->getBeginLoc()); |
| 8918 | StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| 8919 | getDerived().getSema().EndOpenMPDSABlock(Res.get()); |
| 8920 | return Res; |
| 8921 | } |
| 8922 | |
| 8923 | template <typename Derived> |
| 8924 | StmtResult TreeTransform<Derived>::TransformOMPParallelForSimdDirective( |
| 8925 | OMPParallelForSimdDirective *D) { |
| 8926 | DeclarationNameInfo DirName; |
| 8927 | getDerived().getSema().StartOpenMPDSABlock(OMPD_parallel_for_simd, DirName, |
| 8928 | nullptr, D->getBeginLoc()); |
| 8929 | StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| 8930 | getDerived().getSema().EndOpenMPDSABlock(Res.get()); |
| 8931 | return Res; |
| 8932 | } |
| 8933 | |
| 8934 | template <typename Derived> |
| 8935 | StmtResult TreeTransform<Derived>::TransformOMPParallelMasterDirective( |
| 8936 | OMPParallelMasterDirective *D) { |
| 8937 | DeclarationNameInfo DirName; |
| 8938 | getDerived().getSema().StartOpenMPDSABlock(OMPD_parallel_master, DirName, |
| 8939 | nullptr, D->getBeginLoc()); |
| 8940 | StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| 8941 | getDerived().getSema().EndOpenMPDSABlock(Res.get()); |
| 8942 | return Res; |
| 8943 | } |
| 8944 | |
| 8945 | template <typename Derived> |
| 8946 | StmtResult TreeTransform<Derived>::TransformOMPParallelMaskedDirective( |
| 8947 | OMPParallelMaskedDirective *D) { |
| 8948 | DeclarationNameInfo DirName; |
| 8949 | getDerived().getSema().StartOpenMPDSABlock(OMPD_parallel_masked, DirName, |
| 8950 | nullptr, D->getBeginLoc()); |
| 8951 | StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| 8952 | getDerived().getSema().EndOpenMPDSABlock(Res.get()); |
| 8953 | return Res; |
| 8954 | } |
| 8955 | |
| 8956 | template <typename Derived> |
| 8957 | StmtResult TreeTransform<Derived>::TransformOMPParallelSectionsDirective( |
| 8958 | OMPParallelSectionsDirective *D) { |
| 8959 | DeclarationNameInfo DirName; |
| 8960 | getDerived().getSema().StartOpenMPDSABlock(OMPD_parallel_sections, DirName, |
| 8961 | nullptr, D->getBeginLoc()); |
| 8962 | StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| 8963 | getDerived().getSema().EndOpenMPDSABlock(Res.get()); |
| 8964 | return Res; |
| 8965 | } |
| 8966 | |
| 8967 | template <typename Derived> |
| 8968 | StmtResult |
| 8969 | TreeTransform<Derived>::TransformOMPTaskDirective(OMPTaskDirective *D) { |
| 8970 | DeclarationNameInfo DirName; |
| 8971 | getDerived().getSema().StartOpenMPDSABlock(OMPD_task, DirName, nullptr, |
| 8972 | D->getBeginLoc()); |
| 8973 | StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| 8974 | getDerived().getSema().EndOpenMPDSABlock(Res.get()); |
| 8975 | return Res; |
| 8976 | } |
| 8977 | |
| 8978 | template <typename Derived> |
| 8979 | StmtResult TreeTransform<Derived>::TransformOMPTaskyieldDirective( |
| 8980 | OMPTaskyieldDirective *D) { |
| 8981 | DeclarationNameInfo DirName; |
| 8982 | getDerived().getSema().StartOpenMPDSABlock(OMPD_taskyield, DirName, nullptr, |
| 8983 | D->getBeginLoc()); |
| 8984 | StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| 8985 | getDerived().getSema().EndOpenMPDSABlock(Res.get()); |
| 8986 | return Res; |
| 8987 | } |
| 8988 | |
| 8989 | template <typename Derived> |
| 8990 | StmtResult |
| 8991 | TreeTransform<Derived>::TransformOMPBarrierDirective(OMPBarrierDirective *D) { |
| 8992 | DeclarationNameInfo DirName; |
| 8993 | getDerived().getSema().StartOpenMPDSABlock(OMPD_barrier, DirName, nullptr, |
| 8994 | D->getBeginLoc()); |
| 8995 | StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| 8996 | getDerived().getSema().EndOpenMPDSABlock(Res.get()); |
| 8997 | return Res; |
| 8998 | } |
| 8999 | |
| 9000 | template <typename Derived> |
| 9001 | StmtResult |
| 9002 | TreeTransform<Derived>::TransformOMPTaskwaitDirective(OMPTaskwaitDirective *D) { |
| 9003 | DeclarationNameInfo DirName; |
| 9004 | getDerived().getSema().StartOpenMPDSABlock(OMPD_taskwait, DirName, nullptr, |
| 9005 | D->getBeginLoc()); |
| 9006 | StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| 9007 | getDerived().getSema().EndOpenMPDSABlock(Res.get()); |
| 9008 | return Res; |
| 9009 | } |
| 9010 | |
| 9011 | template <typename Derived> |
| 9012 | StmtResult |
| 9013 | TreeTransform<Derived>::TransformOMPErrorDirective(OMPErrorDirective *D) { |
| 9014 | DeclarationNameInfo DirName; |
| 9015 | getDerived().getSema().StartOpenMPDSABlock(OMPD_error, DirName, nullptr, |
| 9016 | D->getBeginLoc()); |
| 9017 | StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| 9018 | getDerived().getSema().EndOpenMPDSABlock(Res.get()); |
| 9019 | return Res; |
| 9020 | } |
| 9021 | |
| 9022 | template <typename Derived> |
| 9023 | StmtResult TreeTransform<Derived>::TransformOMPTaskgroupDirective( |
| 9024 | OMPTaskgroupDirective *D) { |
| 9025 | DeclarationNameInfo DirName; |
| 9026 | getDerived().getSema().StartOpenMPDSABlock(OMPD_taskgroup, DirName, nullptr, |
| 9027 | D->getBeginLoc()); |
| 9028 | StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| 9029 | getDerived().getSema().EndOpenMPDSABlock(Res.get()); |
| 9030 | return Res; |
| 9031 | } |
| 9032 | |
| 9033 | template <typename Derived> |
| 9034 | StmtResult |
| 9035 | TreeTransform<Derived>::TransformOMPFlushDirective(OMPFlushDirective *D) { |
| 9036 | DeclarationNameInfo DirName; |
| 9037 | getDerived().getSema().StartOpenMPDSABlock(OMPD_flush, DirName, nullptr, |
| 9038 | D->getBeginLoc()); |
| 9039 | StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| 9040 | getDerived().getSema().EndOpenMPDSABlock(Res.get()); |
| 9041 | return Res; |
| 9042 | } |
| 9043 | |
| 9044 | template <typename Derived> |
| 9045 | StmtResult |
| 9046 | TreeTransform<Derived>::TransformOMPDepobjDirective(OMPDepobjDirective *D) { |
| 9047 | DeclarationNameInfo DirName; |
| 9048 | getDerived().getSema().StartOpenMPDSABlock(OMPD_depobj, DirName, nullptr, |
| 9049 | D->getBeginLoc()); |
| 9050 | StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| 9051 | getDerived().getSema().EndOpenMPDSABlock(Res.get()); |
| 9052 | return Res; |
| 9053 | } |
| 9054 | |
| 9055 | template <typename Derived> |
| 9056 | StmtResult |
| 9057 | TreeTransform<Derived>::TransformOMPScanDirective(OMPScanDirective *D) { |
| 9058 | DeclarationNameInfo DirName; |
| 9059 | getDerived().getSema().StartOpenMPDSABlock(OMPD_scan, DirName, nullptr, |
| 9060 | D->getBeginLoc()); |
| 9061 | StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| 9062 | getDerived().getSema().EndOpenMPDSABlock(Res.get()); |
| 9063 | return Res; |
| 9064 | } |
| 9065 | |
| 9066 | template <typename Derived> |
| 9067 | StmtResult |
| 9068 | TreeTransform<Derived>::TransformOMPOrderedDirective(OMPOrderedDirective *D) { |
| 9069 | DeclarationNameInfo DirName; |
| 9070 | getDerived().getSema().StartOpenMPDSABlock(OMPD_ordered, DirName, nullptr, |
| 9071 | D->getBeginLoc()); |
| 9072 | StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| 9073 | getDerived().getSema().EndOpenMPDSABlock(Res.get()); |
| 9074 | return Res; |
| 9075 | } |
| 9076 | |
| 9077 | template <typename Derived> |
| 9078 | StmtResult |
| 9079 | TreeTransform<Derived>::TransformOMPAtomicDirective(OMPAtomicDirective *D) { |
| 9080 | DeclarationNameInfo DirName; |
| 9081 | getDerived().getSema().StartOpenMPDSABlock(OMPD_atomic, DirName, nullptr, |
| 9082 | D->getBeginLoc()); |
| 9083 | StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| 9084 | getDerived().getSema().EndOpenMPDSABlock(Res.get()); |
| 9085 | return Res; |
| 9086 | } |
| 9087 | |
| 9088 | template <typename Derived> |
| 9089 | StmtResult |
| 9090 | TreeTransform<Derived>::TransformOMPTargetDirective(OMPTargetDirective *D) { |
| 9091 | DeclarationNameInfo DirName; |
| 9092 | getDerived().getSema().StartOpenMPDSABlock(OMPD_target, DirName, nullptr, |
| 9093 | D->getBeginLoc()); |
| 9094 | StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| 9095 | getDerived().getSema().EndOpenMPDSABlock(Res.get()); |
| 9096 | return Res; |
| 9097 | } |
| 9098 | |
| 9099 | template <typename Derived> |
| 9100 | StmtResult TreeTransform<Derived>::TransformOMPTargetDataDirective( |
| 9101 | OMPTargetDataDirective *D) { |
| 9102 | DeclarationNameInfo DirName; |
| 9103 | getDerived().getSema().StartOpenMPDSABlock(OMPD_target_data, DirName, nullptr, |
| 9104 | D->getBeginLoc()); |
| 9105 | StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| 9106 | getDerived().getSema().EndOpenMPDSABlock(Res.get()); |
| 9107 | return Res; |
| 9108 | } |
| 9109 | |
| 9110 | template <typename Derived> |
| 9111 | StmtResult TreeTransform<Derived>::TransformOMPTargetEnterDataDirective( |
| 9112 | OMPTargetEnterDataDirective *D) { |
| 9113 | DeclarationNameInfo DirName; |
| 9114 | getDerived().getSema().StartOpenMPDSABlock(OMPD_target_enter_data, DirName, |
| 9115 | nullptr, D->getBeginLoc()); |
| 9116 | StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| 9117 | getDerived().getSema().EndOpenMPDSABlock(Res.get()); |
| 9118 | return Res; |
| 9119 | } |
| 9120 | |
| 9121 | template <typename Derived> |
| 9122 | StmtResult TreeTransform<Derived>::TransformOMPTargetExitDataDirective( |
| 9123 | OMPTargetExitDataDirective *D) { |
| 9124 | DeclarationNameInfo DirName; |
| 9125 | getDerived().getSema().StartOpenMPDSABlock(OMPD_target_exit_data, DirName, |
| 9126 | nullptr, D->getBeginLoc()); |
| 9127 | StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| 9128 | getDerived().getSema().EndOpenMPDSABlock(Res.get()); |
| 9129 | return Res; |
| 9130 | } |
| 9131 | |
| 9132 | template <typename Derived> |
| 9133 | StmtResult TreeTransform<Derived>::TransformOMPTargetParallelDirective( |
| 9134 | OMPTargetParallelDirective *D) { |
| 9135 | DeclarationNameInfo DirName; |
| 9136 | getDerived().getSema().StartOpenMPDSABlock(OMPD_target_parallel, DirName, |
| 9137 | nullptr, D->getBeginLoc()); |
| 9138 | StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| 9139 | getDerived().getSema().EndOpenMPDSABlock(Res.get()); |
| 9140 | return Res; |
| 9141 | } |
| 9142 | |
| 9143 | template <typename Derived> |
| 9144 | StmtResult TreeTransform<Derived>::TransformOMPTargetParallelForDirective( |
| 9145 | OMPTargetParallelForDirective *D) { |
| 9146 | DeclarationNameInfo DirName; |
| 9147 | getDerived().getSema().StartOpenMPDSABlock(OMPD_target_parallel_for, DirName, |
| 9148 | nullptr, D->getBeginLoc()); |
| 9149 | StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| 9150 | getDerived().getSema().EndOpenMPDSABlock(Res.get()); |
| 9151 | return Res; |
| 9152 | } |
| 9153 | |
| 9154 | template <typename Derived> |
| 9155 | StmtResult TreeTransform<Derived>::TransformOMPTargetUpdateDirective( |
| 9156 | OMPTargetUpdateDirective *D) { |
| 9157 | DeclarationNameInfo DirName; |
| 9158 | getDerived().getSema().StartOpenMPDSABlock(OMPD_target_update, DirName, |
| 9159 | nullptr, D->getBeginLoc()); |
| 9160 | StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| 9161 | getDerived().getSema().EndOpenMPDSABlock(Res.get()); |
| 9162 | return Res; |
| 9163 | } |
| 9164 | |
| 9165 | template <typename Derived> |
| 9166 | StmtResult |
| 9167 | TreeTransform<Derived>::TransformOMPTeamsDirective(OMPTeamsDirective *D) { |
| 9168 | DeclarationNameInfo DirName; |
| 9169 | getDerived().getSema().StartOpenMPDSABlock(OMPD_teams, DirName, nullptr, |
| 9170 | D->getBeginLoc()); |
| 9171 | StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| 9172 | getDerived().getSema().EndOpenMPDSABlock(Res.get()); |
| 9173 | return Res; |
| 9174 | } |
| 9175 | |
| 9176 | template <typename Derived> |
| 9177 | StmtResult TreeTransform<Derived>::TransformOMPCancellationPointDirective( |
| 9178 | OMPCancellationPointDirective *D) { |
| 9179 | DeclarationNameInfo DirName; |
| 9180 | getDerived().getSema().StartOpenMPDSABlock(OMPD_cancellation_point, DirName, |
| 9181 | nullptr, D->getBeginLoc()); |
| 9182 | StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| 9183 | getDerived().getSema().EndOpenMPDSABlock(Res.get()); |
| 9184 | return Res; |
| 9185 | } |
| 9186 | |
| 9187 | template <typename Derived> |
| 9188 | StmtResult |
| 9189 | TreeTransform<Derived>::TransformOMPCancelDirective(OMPCancelDirective *D) { |
| 9190 | DeclarationNameInfo DirName; |
| 9191 | getDerived().getSema().StartOpenMPDSABlock(OMPD_cancel, DirName, nullptr, |
| 9192 | D->getBeginLoc()); |
| 9193 | StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| 9194 | getDerived().getSema().EndOpenMPDSABlock(Res.get()); |
| 9195 | return Res; |
| 9196 | } |
| 9197 | |
| 9198 | template <typename Derived> |
| 9199 | StmtResult |
| 9200 | TreeTransform<Derived>::TransformOMPTaskLoopDirective(OMPTaskLoopDirective *D) { |
| 9201 | DeclarationNameInfo DirName; |
| 9202 | getDerived().getSema().StartOpenMPDSABlock(OMPD_taskloop, DirName, nullptr, |
| 9203 | D->getBeginLoc()); |
| 9204 | StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| 9205 | getDerived().getSema().EndOpenMPDSABlock(Res.get()); |
| 9206 | return Res; |
| 9207 | } |
| 9208 | |
| 9209 | template <typename Derived> |
| 9210 | StmtResult TreeTransform<Derived>::TransformOMPTaskLoopSimdDirective( |
| 9211 | OMPTaskLoopSimdDirective *D) { |
| 9212 | DeclarationNameInfo DirName; |
| 9213 | getDerived().getSema().StartOpenMPDSABlock(OMPD_taskloop_simd, DirName, |
| 9214 | nullptr, D->getBeginLoc()); |
| 9215 | StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| 9216 | getDerived().getSema().EndOpenMPDSABlock(Res.get()); |
| 9217 | return Res; |
| 9218 | } |
| 9219 | |
| 9220 | template <typename Derived> |
| 9221 | StmtResult TreeTransform<Derived>::TransformOMPMasterTaskLoopDirective( |
| 9222 | OMPMasterTaskLoopDirective *D) { |
| 9223 | DeclarationNameInfo DirName; |
| 9224 | getDerived().getSema().StartOpenMPDSABlock(OMPD_master_taskloop, DirName, |
| 9225 | nullptr, D->getBeginLoc()); |
| 9226 | StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| 9227 | getDerived().getSema().EndOpenMPDSABlock(Res.get()); |
| 9228 | return Res; |
| 9229 | } |
| 9230 | |
| 9231 | template <typename Derived> |
| 9232 | StmtResult TreeTransform<Derived>::TransformOMPMaskedTaskLoopDirective( |
| 9233 | OMPMaskedTaskLoopDirective *D) { |
| 9234 | DeclarationNameInfo DirName; |
| 9235 | getDerived().getSema().StartOpenMPDSABlock(OMPD_masked_taskloop, DirName, |
| 9236 | nullptr, D->getBeginLoc()); |
| 9237 | StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| 9238 | getDerived().getSema().EndOpenMPDSABlock(Res.get()); |
| 9239 | return Res; |
| 9240 | } |
| 9241 | |
| 9242 | template <typename Derived> |
| 9243 | StmtResult TreeTransform<Derived>::TransformOMPMasterTaskLoopSimdDirective( |
| 9244 | OMPMasterTaskLoopSimdDirective *D) { |
| 9245 | DeclarationNameInfo DirName; |
| 9246 | getDerived().getSema().StartOpenMPDSABlock(OMPD_master_taskloop_simd, DirName, |
| 9247 | nullptr, D->getBeginLoc()); |
| 9248 | StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| 9249 | getDerived().getSema().EndOpenMPDSABlock(Res.get()); |
| 9250 | return Res; |
| 9251 | } |
| 9252 | |
| 9253 | template <typename Derived> |
| 9254 | StmtResult TreeTransform<Derived>::TransformOMPMaskedTaskLoopSimdDirective( |
| 9255 | OMPMaskedTaskLoopSimdDirective *D) { |
| 9256 | DeclarationNameInfo DirName; |
| 9257 | getDerived().getSema().StartOpenMPDSABlock(OMPD_masked_taskloop_simd, DirName, |
| 9258 | nullptr, D->getBeginLoc()); |
| 9259 | StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| 9260 | getDerived().getSema().EndOpenMPDSABlock(Res.get()); |
| 9261 | return Res; |
| 9262 | } |
| 9263 | |
| 9264 | template <typename Derived> |
| 9265 | StmtResult TreeTransform<Derived>::TransformOMPParallelMasterTaskLoopDirective( |
| 9266 | OMPParallelMasterTaskLoopDirective *D) { |
| 9267 | DeclarationNameInfo DirName; |
| 9268 | getDerived().getSema().StartOpenMPDSABlock( |
| 9269 | OMPD_parallel_master_taskloop, DirName, nullptr, D->getBeginLoc()); |
| 9270 | StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| 9271 | getDerived().getSema().EndOpenMPDSABlock(Res.get()); |
| 9272 | return Res; |
| 9273 | } |
| 9274 | |
| 9275 | template <typename Derived> |
| 9276 | StmtResult TreeTransform<Derived>::TransformOMPParallelMaskedTaskLoopDirective( |
| 9277 | OMPParallelMaskedTaskLoopDirective *D) { |
| 9278 | DeclarationNameInfo DirName; |
| 9279 | getDerived().getSema().StartOpenMPDSABlock( |
| 9280 | OMPD_parallel_masked_taskloop, DirName, nullptr, D->getBeginLoc()); |
| 9281 | StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| 9282 | getDerived().getSema().EndOpenMPDSABlock(Res.get()); |
| 9283 | return Res; |
| 9284 | } |
| 9285 | |
| 9286 | template <typename Derived> |
| 9287 | StmtResult |
| 9288 | TreeTransform<Derived>::TransformOMPParallelMasterTaskLoopSimdDirective( |
| 9289 | OMPParallelMasterTaskLoopSimdDirective *D) { |
| 9290 | DeclarationNameInfo DirName; |
| 9291 | getDerived().getSema().StartOpenMPDSABlock( |
| 9292 | OMPD_parallel_master_taskloop_simd, DirName, nullptr, D->getBeginLoc()); |
| 9293 | StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| 9294 | getDerived().getSema().EndOpenMPDSABlock(Res.get()); |
| 9295 | return Res; |
| 9296 | } |
| 9297 | |
| 9298 | template <typename Derived> |
| 9299 | StmtResult |
| 9300 | TreeTransform<Derived>::TransformOMPParallelMaskedTaskLoopSimdDirective( |
| 9301 | OMPParallelMaskedTaskLoopSimdDirective *D) { |
| 9302 | DeclarationNameInfo DirName; |
| 9303 | getDerived().getSema().StartOpenMPDSABlock( |
| 9304 | OMPD_parallel_masked_taskloop_simd, DirName, nullptr, D->getBeginLoc()); |
| 9305 | StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| 9306 | getDerived().getSema().EndOpenMPDSABlock(Res.get()); |
| 9307 | return Res; |
| 9308 | } |
| 9309 | |
| 9310 | template <typename Derived> |
| 9311 | StmtResult TreeTransform<Derived>::TransformOMPDistributeDirective( |
| 9312 | OMPDistributeDirective *D) { |
| 9313 | DeclarationNameInfo DirName; |
| 9314 | getDerived().getSema().StartOpenMPDSABlock(OMPD_distribute, DirName, nullptr, |
| 9315 | D->getBeginLoc()); |
| 9316 | StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| 9317 | getDerived().getSema().EndOpenMPDSABlock(Res.get()); |
| 9318 | return Res; |
| 9319 | } |
| 9320 | |
| 9321 | template <typename Derived> |
| 9322 | StmtResult TreeTransform<Derived>::TransformOMPDistributeParallelForDirective( |
| 9323 | OMPDistributeParallelForDirective *D) { |
| 9324 | DeclarationNameInfo DirName; |
| 9325 | getDerived().getSema().StartOpenMPDSABlock( |
| 9326 | OMPD_distribute_parallel_for, DirName, nullptr, D->getBeginLoc()); |
| 9327 | StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| 9328 | getDerived().getSema().EndOpenMPDSABlock(Res.get()); |
| 9329 | return Res; |
| 9330 | } |
| 9331 | |
| 9332 | template <typename Derived> |
| 9333 | StmtResult |
| 9334 | TreeTransform<Derived>::TransformOMPDistributeParallelForSimdDirective( |
| 9335 | OMPDistributeParallelForSimdDirective *D) { |
| 9336 | DeclarationNameInfo DirName; |
| 9337 | getDerived().getSema().StartOpenMPDSABlock( |
| 9338 | OMPD_distribute_parallel_for_simd, DirName, nullptr, D->getBeginLoc()); |
| 9339 | StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| 9340 | getDerived().getSema().EndOpenMPDSABlock(Res.get()); |
| 9341 | return Res; |
| 9342 | } |
| 9343 | |
| 9344 | template <typename Derived> |
| 9345 | StmtResult TreeTransform<Derived>::TransformOMPDistributeSimdDirective( |
| 9346 | OMPDistributeSimdDirective *D) { |
| 9347 | DeclarationNameInfo DirName; |
| 9348 | getDerived().getSema().StartOpenMPDSABlock(OMPD_distribute_simd, DirName, |
| 9349 | nullptr, D->getBeginLoc()); |
| 9350 | StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| 9351 | getDerived().getSema().EndOpenMPDSABlock(Res.get()); |
| 9352 | return Res; |
| 9353 | } |
| 9354 | |
| 9355 | template <typename Derived> |
| 9356 | StmtResult TreeTransform<Derived>::TransformOMPTargetParallelForSimdDirective( |
| 9357 | OMPTargetParallelForSimdDirective *D) { |
| 9358 | DeclarationNameInfo DirName; |
| 9359 | getDerived().getSema().StartOpenMPDSABlock( |
| 9360 | OMPD_target_parallel_for_simd, DirName, nullptr, D->getBeginLoc()); |
| 9361 | StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| 9362 | getDerived().getSema().EndOpenMPDSABlock(Res.get()); |
| 9363 | return Res; |
| 9364 | } |
| 9365 | |
| 9366 | template <typename Derived> |
| 9367 | StmtResult TreeTransform<Derived>::TransformOMPTargetSimdDirective( |
| 9368 | OMPTargetSimdDirective *D) { |
| 9369 | DeclarationNameInfo DirName; |
| 9370 | getDerived().getSema().StartOpenMPDSABlock(OMPD_target_simd, DirName, nullptr, |
| 9371 | D->getBeginLoc()); |
| 9372 | StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| 9373 | getDerived().getSema().EndOpenMPDSABlock(Res.get()); |
| 9374 | return Res; |
| 9375 | } |
| 9376 | |
| 9377 | template <typename Derived> |
| 9378 | StmtResult TreeTransform<Derived>::TransformOMPTeamsDistributeDirective( |
| 9379 | OMPTeamsDistributeDirective *D) { |
| 9380 | DeclarationNameInfo DirName; |
| 9381 | getDerived().getSema().StartOpenMPDSABlock(OMPD_teams_distribute, DirName, |
| 9382 | nullptr, D->getBeginLoc()); |
| 9383 | StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| 9384 | getDerived().getSema().EndOpenMPDSABlock(Res.get()); |
| 9385 | return Res; |
| 9386 | } |
| 9387 | |
| 9388 | template <typename Derived> |
| 9389 | StmtResult TreeTransform<Derived>::TransformOMPTeamsDistributeSimdDirective( |
| 9390 | OMPTeamsDistributeSimdDirective *D) { |
| 9391 | DeclarationNameInfo DirName; |
| 9392 | getDerived().getSema().StartOpenMPDSABlock( |
| 9393 | OMPD_teams_distribute_simd, DirName, nullptr, D->getBeginLoc()); |
| 9394 | StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| 9395 | getDerived().getSema().EndOpenMPDSABlock(Res.get()); |
| 9396 | return Res; |
| 9397 | } |
| 9398 | |
| 9399 | template <typename Derived> |
| 9400 | StmtResult TreeTransform<Derived>::TransformOMPTeamsDistributeParallelForSimdDirective( |
| 9401 | OMPTeamsDistributeParallelForSimdDirective *D) { |
| 9402 | DeclarationNameInfo DirName; |
| 9403 | getDerived().getSema().StartOpenMPDSABlock( |
| 9404 | OMPD_teams_distribute_parallel_for_simd, DirName, nullptr, |
| 9405 | D->getBeginLoc()); |
| 9406 | StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| 9407 | getDerived().getSema().EndOpenMPDSABlock(Res.get()); |
| 9408 | return Res; |
| 9409 | } |
| 9410 | |
| 9411 | template <typename Derived> |
| 9412 | StmtResult TreeTransform<Derived>::TransformOMPTeamsDistributeParallelForDirective( |
| 9413 | OMPTeamsDistributeParallelForDirective *D) { |
| 9414 | DeclarationNameInfo DirName; |
| 9415 | getDerived().getSema().StartOpenMPDSABlock( |
| 9416 | OMPD_teams_distribute_parallel_for, DirName, nullptr, D->getBeginLoc()); |
| 9417 | StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| 9418 | getDerived().getSema().EndOpenMPDSABlock(Res.get()); |
| 9419 | return Res; |
| 9420 | } |
| 9421 | |
| 9422 | template <typename Derived> |
| 9423 | StmtResult TreeTransform<Derived>::TransformOMPTargetTeamsDirective( |
| 9424 | OMPTargetTeamsDirective *D) { |
| 9425 | DeclarationNameInfo DirName; |
| 9426 | getDerived().getSema().StartOpenMPDSABlock(OMPD_target_teams, DirName, |
| 9427 | nullptr, D->getBeginLoc()); |
| 9428 | auto Res = getDerived().TransformOMPExecutableDirective(D); |
| 9429 | getDerived().getSema().EndOpenMPDSABlock(Res.get()); |
| 9430 | return Res; |
| 9431 | } |
| 9432 | |
| 9433 | template <typename Derived> |
| 9434 | StmtResult TreeTransform<Derived>::TransformOMPTargetTeamsDistributeDirective( |
| 9435 | OMPTargetTeamsDistributeDirective *D) { |
| 9436 | DeclarationNameInfo DirName; |
| 9437 | getDerived().getSema().StartOpenMPDSABlock( |
| 9438 | OMPD_target_teams_distribute, DirName, nullptr, D->getBeginLoc()); |
| 9439 | auto Res = getDerived().TransformOMPExecutableDirective(D); |
| 9440 | getDerived().getSema().EndOpenMPDSABlock(Res.get()); |
| 9441 | return Res; |
| 9442 | } |
| 9443 | |
| 9444 | template <typename Derived> |
| 9445 | StmtResult |
| 9446 | TreeTransform<Derived>::TransformOMPTargetTeamsDistributeParallelForDirective( |
| 9447 | OMPTargetTeamsDistributeParallelForDirective *D) { |
| 9448 | DeclarationNameInfo DirName; |
| 9449 | getDerived().getSema().StartOpenMPDSABlock( |
| 9450 | OMPD_target_teams_distribute_parallel_for, DirName, nullptr, |
| 9451 | D->getBeginLoc()); |
| 9452 | auto Res = getDerived().TransformOMPExecutableDirective(D); |
| 9453 | getDerived().getSema().EndOpenMPDSABlock(Res.get()); |
| 9454 | return Res; |
| 9455 | } |
| 9456 | |
| 9457 | template <typename Derived> |
| 9458 | StmtResult TreeTransform<Derived>:: |
| 9459 | TransformOMPTargetTeamsDistributeParallelForSimdDirective( |
| 9460 | OMPTargetTeamsDistributeParallelForSimdDirective *D) { |
| 9461 | DeclarationNameInfo DirName; |
| 9462 | getDerived().getSema().StartOpenMPDSABlock( |
| 9463 | OMPD_target_teams_distribute_parallel_for_simd, DirName, nullptr, |
| 9464 | D->getBeginLoc()); |
| 9465 | auto Res = getDerived().TransformOMPExecutableDirective(D); |
| 9466 | getDerived().getSema().EndOpenMPDSABlock(Res.get()); |
| 9467 | return Res; |
| 9468 | } |
| 9469 | |
| 9470 | template <typename Derived> |
| 9471 | StmtResult |
| 9472 | TreeTransform<Derived>::TransformOMPTargetTeamsDistributeSimdDirective( |
| 9473 | OMPTargetTeamsDistributeSimdDirective *D) { |
| 9474 | DeclarationNameInfo DirName; |
| 9475 | getDerived().getSema().StartOpenMPDSABlock( |
| 9476 | OMPD_target_teams_distribute_simd, DirName, nullptr, D->getBeginLoc()); |
| 9477 | auto Res = getDerived().TransformOMPExecutableDirective(D); |
| 9478 | getDerived().getSema().EndOpenMPDSABlock(Res.get()); |
| 9479 | return Res; |
| 9480 | } |
| 9481 | |
| 9482 | template <typename Derived> |
| 9483 | StmtResult |
| 9484 | TreeTransform<Derived>::TransformOMPInteropDirective(OMPInteropDirective *D) { |
| 9485 | DeclarationNameInfo DirName; |
| 9486 | getDerived().getSema().StartOpenMPDSABlock(OMPD_interop, DirName, nullptr, |
| 9487 | D->getBeginLoc()); |
| 9488 | StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| 9489 | getDerived().getSema().EndOpenMPDSABlock(Res.get()); |
| 9490 | return Res; |
| 9491 | } |
| 9492 | |
| 9493 | template <typename Derived> |
| 9494 | StmtResult |
| 9495 | TreeTransform<Derived>::TransformOMPDispatchDirective(OMPDispatchDirective *D) { |
| 9496 | DeclarationNameInfo DirName; |
| 9497 | getDerived().getSema().StartOpenMPDSABlock(OMPD_dispatch, DirName, nullptr, |
| 9498 | D->getBeginLoc()); |
| 9499 | StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| 9500 | getDerived().getSema().EndOpenMPDSABlock(Res.get()); |
| 9501 | return Res; |
| 9502 | } |
| 9503 | |
| 9504 | template <typename Derived> |
| 9505 | StmtResult |
| 9506 | TreeTransform<Derived>::TransformOMPMaskedDirective(OMPMaskedDirective *D) { |
| 9507 | DeclarationNameInfo DirName; |
| 9508 | getDerived().getSema().StartOpenMPDSABlock(OMPD_masked, DirName, nullptr, |
| 9509 | D->getBeginLoc()); |
| 9510 | StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| 9511 | getDerived().getSema().EndOpenMPDSABlock(Res.get()); |
| 9512 | return Res; |
| 9513 | } |
| 9514 | |
| 9515 | template <typename Derived> |
| 9516 | StmtResult TreeTransform<Derived>::TransformOMPGenericLoopDirective( |
| 9517 | OMPGenericLoopDirective *D) { |
| 9518 | DeclarationNameInfo DirName; |
| 9519 | getDerived().getSema().StartOpenMPDSABlock(OMPD_loop, DirName, nullptr, |
| 9520 | D->getBeginLoc()); |
| 9521 | StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| 9522 | getDerived().getSema().EndOpenMPDSABlock(Res.get()); |
| 9523 | return Res; |
| 9524 | } |
| 9525 | |
| 9526 | template <typename Derived> |
| 9527 | StmtResult TreeTransform<Derived>::TransformOMPTeamsGenericLoopDirective( |
| 9528 | OMPTeamsGenericLoopDirective *D) { |
| 9529 | DeclarationNameInfo DirName; |
| 9530 | getDerived().getSema().StartOpenMPDSABlock(OMPD_teams_loop, DirName, nullptr, |
| 9531 | D->getBeginLoc()); |
| 9532 | StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| 9533 | getDerived().getSema().EndOpenMPDSABlock(Res.get()); |
| 9534 | return Res; |
| 9535 | } |
| 9536 | |
| 9537 | template <typename Derived> |
| 9538 | StmtResult TreeTransform<Derived>::TransformOMPTargetTeamsGenericLoopDirective( |
| 9539 | OMPTargetTeamsGenericLoopDirective *D) { |
| 9540 | DeclarationNameInfo DirName; |
| 9541 | getDerived().getSema().StartOpenMPDSABlock(OMPD_target_teams_loop, DirName, |
| 9542 | nullptr, D->getBeginLoc()); |
| 9543 | StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| 9544 | getDerived().getSema().EndOpenMPDSABlock(Res.get()); |
| 9545 | return Res; |
| 9546 | } |
| 9547 | |
| 9548 | template <typename Derived> |
| 9549 | StmtResult TreeTransform<Derived>::TransformOMPParallelGenericLoopDirective( |
| 9550 | OMPParallelGenericLoopDirective *D) { |
| 9551 | DeclarationNameInfo DirName; |
| 9552 | getDerived().getSema().StartOpenMPDSABlock(OMPD_parallel_loop, DirName, |
| 9553 | nullptr, D->getBeginLoc()); |
| 9554 | StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| 9555 | getDerived().getSema().EndOpenMPDSABlock(Res.get()); |
| 9556 | return Res; |
| 9557 | } |
| 9558 | |
| 9559 | template <typename Derived> |
| 9560 | StmtResult |
| 9561 | TreeTransform<Derived>::TransformOMPTargetParallelGenericLoopDirective( |
| 9562 | OMPTargetParallelGenericLoopDirective *D) { |
| 9563 | DeclarationNameInfo DirName; |
| 9564 | getDerived().getSema().StartOpenMPDSABlock(OMPD_target_parallel_loop, DirName, |
| 9565 | nullptr, D->getBeginLoc()); |
| 9566 | StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| 9567 | getDerived().getSema().EndOpenMPDSABlock(Res.get()); |
| 9568 | return Res; |
| 9569 | } |
| 9570 | |
| 9571 | //===----------------------------------------------------------------------===// |
| 9572 | // OpenMP clause transformation |
| 9573 | //===----------------------------------------------------------------------===// |
| 9574 | template <typename Derived> |
| 9575 | OMPClause *TreeTransform<Derived>::TransformOMPIfClause(OMPIfClause *C) { |
| 9576 | ExprResult Cond = getDerived().TransformExpr(C->getCondition()); |
| 9577 | if (Cond.isInvalid()) |
| 9578 | return nullptr; |
| 9579 | return getDerived().RebuildOMPIfClause( |
| 9580 | C->getNameModifier(), Cond.get(), C->getBeginLoc(), C->getLParenLoc(), |
| 9581 | C->getNameModifierLoc(), C->getColonLoc(), C->getEndLoc()); |
| 9582 | } |
| 9583 | |
| 9584 | template <typename Derived> |
| 9585 | OMPClause *TreeTransform<Derived>::TransformOMPFinalClause(OMPFinalClause *C) { |
| 9586 | ExprResult Cond = getDerived().TransformExpr(C->getCondition()); |
| 9587 | if (Cond.isInvalid()) |
| 9588 | return nullptr; |
| 9589 | return getDerived().RebuildOMPFinalClause(Cond.get(), C->getBeginLoc(), |
| 9590 | C->getLParenLoc(), C->getEndLoc()); |
| 9591 | } |
| 9592 | |
| 9593 | template <typename Derived> |
| 9594 | OMPClause * |
| 9595 | TreeTransform<Derived>::TransformOMPNumThreadsClause(OMPNumThreadsClause *C) { |
| 9596 | ExprResult NumThreads = getDerived().TransformExpr(C->getNumThreads()); |
| 9597 | if (NumThreads.isInvalid()) |
| 9598 | return nullptr; |
| 9599 | return getDerived().RebuildOMPNumThreadsClause( |
| 9600 | NumThreads.get(), C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); |
| 9601 | } |
| 9602 | |
| 9603 | template <typename Derived> |
| 9604 | OMPClause * |
| 9605 | TreeTransform<Derived>::TransformOMPSafelenClause(OMPSafelenClause *C) { |
| 9606 | ExprResult E = getDerived().TransformExpr(C->getSafelen()); |
| 9607 | if (E.isInvalid()) |
| 9608 | return nullptr; |
| 9609 | return getDerived().RebuildOMPSafelenClause( |
| 9610 | E.get(), C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); |
| 9611 | } |
| 9612 | |
| 9613 | template <typename Derived> |
| 9614 | OMPClause * |
| 9615 | TreeTransform<Derived>::TransformOMPAllocatorClause(OMPAllocatorClause *C) { |
| 9616 | ExprResult E = getDerived().TransformExpr(C->getAllocator()); |
| 9617 | if (E.isInvalid()) |
| 9618 | return nullptr; |
| 9619 | return getDerived().RebuildOMPAllocatorClause( |
| 9620 | E.get(), C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); |
| 9621 | } |
| 9622 | |
| 9623 | template <typename Derived> |
| 9624 | OMPClause * |
| 9625 | TreeTransform<Derived>::TransformOMPSimdlenClause(OMPSimdlenClause *C) { |
| 9626 | ExprResult E = getDerived().TransformExpr(C->getSimdlen()); |
| 9627 | if (E.isInvalid()) |
| 9628 | return nullptr; |
| 9629 | return getDerived().RebuildOMPSimdlenClause( |
| 9630 | E.get(), C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); |
| 9631 | } |
| 9632 | |
| 9633 | template <typename Derived> |
| 9634 | OMPClause *TreeTransform<Derived>::TransformOMPSizesClause(OMPSizesClause *C) { |
| 9635 | SmallVector<Expr *, 4> TransformedSizes; |
| 9636 | TransformedSizes.reserve(C->getNumSizes()); |
| 9637 | bool Changed = false; |
| 9638 | for (Expr *E : C->getSizesRefs()) { |
| 9639 | if (!E) { |
| 9640 | TransformedSizes.push_back(nullptr); |
| 9641 | continue; |
| 9642 | } |
| 9643 | |
| 9644 | ExprResult T = getDerived().TransformExpr(E); |
| 9645 | if (T.isInvalid()) |
| 9646 | return nullptr; |
| 9647 | if (E != T.get()) |
| 9648 | Changed = true; |
| 9649 | TransformedSizes.push_back(T.get()); |
| 9650 | } |
| 9651 | |
| 9652 | if (!Changed && !getDerived().AlwaysRebuild()) |
| 9653 | return C; |
| 9654 | return RebuildOMPSizesClause(TransformedSizes, C->getBeginLoc(), |
| 9655 | C->getLParenLoc(), C->getEndLoc()); |
| 9656 | } |
| 9657 | |
| 9658 | template <typename Derived> |
| 9659 | OMPClause *TreeTransform<Derived>::TransformOMPFullClause(OMPFullClause *C) { |
| 9660 | if (!getDerived().AlwaysRebuild()) |
| 9661 | return C; |
| 9662 | return RebuildOMPFullClause(C->getBeginLoc(), C->getEndLoc()); |
| 9663 | } |
| 9664 | |
| 9665 | template <typename Derived> |
| 9666 | OMPClause * |
| 9667 | TreeTransform<Derived>::TransformOMPPartialClause(OMPPartialClause *C) { |
| 9668 | ExprResult T = getDerived().TransformExpr(C->getFactor()); |
| 9669 | if (T.isInvalid()) |
| 9670 | return nullptr; |
| 9671 | Expr *Factor = T.get(); |
| 9672 | bool Changed = Factor != C->getFactor(); |
| 9673 | |
| 9674 | if (!Changed && !getDerived().AlwaysRebuild()) |
| 9675 | return C; |
| 9676 | return RebuildOMPPartialClause(Factor, C->getBeginLoc(), C->getLParenLoc(), |
| 9677 | C->getEndLoc()); |
| 9678 | } |
| 9679 | |
| 9680 | template <typename Derived> |
| 9681 | OMPClause * |
| 9682 | TreeTransform<Derived>::TransformOMPCollapseClause(OMPCollapseClause *C) { |
| 9683 | ExprResult E = getDerived().TransformExpr(C->getNumForLoops()); |
| 9684 | if (E.isInvalid()) |
| 9685 | return nullptr; |
| 9686 | return getDerived().RebuildOMPCollapseClause( |
| 9687 | E.get(), C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); |
| 9688 | } |
| 9689 | |
| 9690 | template <typename Derived> |
| 9691 | OMPClause * |
| 9692 | TreeTransform<Derived>::TransformOMPDefaultClause(OMPDefaultClause *C) { |
| 9693 | return getDerived().RebuildOMPDefaultClause( |
| 9694 | C->getDefaultKind(), C->getDefaultKindKwLoc(), C->getBeginLoc(), |
| 9695 | C->getLParenLoc(), C->getEndLoc()); |
| 9696 | } |
| 9697 | |
| 9698 | template <typename Derived> |
| 9699 | OMPClause * |
| 9700 | TreeTransform<Derived>::TransformOMPProcBindClause(OMPProcBindClause *C) { |
| 9701 | return getDerived().RebuildOMPProcBindClause( |
| 9702 | C->getProcBindKind(), C->getProcBindKindKwLoc(), C->getBeginLoc(), |
| 9703 | C->getLParenLoc(), C->getEndLoc()); |
| 9704 | } |
| 9705 | |
| 9706 | template <typename Derived> |
| 9707 | OMPClause * |
| 9708 | TreeTransform<Derived>::TransformOMPScheduleClause(OMPScheduleClause *C) { |
| 9709 | ExprResult E = getDerived().TransformExpr(C->getChunkSize()); |
| 9710 | if (E.isInvalid()) |
| 9711 | return nullptr; |
| 9712 | return getDerived().RebuildOMPScheduleClause( |
| 9713 | C->getFirstScheduleModifier(), C->getSecondScheduleModifier(), |
| 9714 | C->getScheduleKind(), E.get(), C->getBeginLoc(), C->getLParenLoc(), |
| 9715 | C->getFirstScheduleModifierLoc(), C->getSecondScheduleModifierLoc(), |
| 9716 | C->getScheduleKindLoc(), C->getCommaLoc(), C->getEndLoc()); |
| 9717 | } |
| 9718 | |
| 9719 | template <typename Derived> |
| 9720 | OMPClause * |
| 9721 | TreeTransform<Derived>::TransformOMPOrderedClause(OMPOrderedClause *C) { |
| 9722 | ExprResult E; |
| 9723 | if (auto *Num = C->getNumForLoops()) { |
| 9724 | E = getDerived().TransformExpr(Num); |
| 9725 | if (E.isInvalid()) |
| 9726 | return nullptr; |
| 9727 | } |
| 9728 | return getDerived().RebuildOMPOrderedClause(C->getBeginLoc(), C->getEndLoc(), |
| 9729 | C->getLParenLoc(), E.get()); |
| 9730 | } |
| 9731 | |
| 9732 | template <typename Derived> |
| 9733 | OMPClause * |
| 9734 | TreeTransform<Derived>::TransformOMPDetachClause(OMPDetachClause *C) { |
| 9735 | ExprResult E; |
| 9736 | if (Expr *Evt = C->getEventHandler()) { |
| 9737 | E = getDerived().TransformExpr(Evt); |
| 9738 | if (E.isInvalid()) |
| 9739 | return nullptr; |
| 9740 | } |
| 9741 | return getDerived().RebuildOMPDetachClause(E.get(), C->getBeginLoc(), |
| 9742 | C->getLParenLoc(), C->getEndLoc()); |
| 9743 | } |
| 9744 | |
| 9745 | template <typename Derived> |
| 9746 | OMPClause * |
| 9747 | TreeTransform<Derived>::TransformOMPNowaitClause(OMPNowaitClause *C) { |
| 9748 | // No need to rebuild this clause, no template-dependent parameters. |
| 9749 | return C; |
| 9750 | } |
| 9751 | |
| 9752 | template <typename Derived> |
| 9753 | OMPClause * |
| 9754 | TreeTransform<Derived>::TransformOMPUntiedClause(OMPUntiedClause *C) { |
| 9755 | // No need to rebuild this clause, no template-dependent parameters. |
| 9756 | return C; |
| 9757 | } |
| 9758 | |
| 9759 | template <typename Derived> |
| 9760 | OMPClause * |
| 9761 | TreeTransform<Derived>::TransformOMPMergeableClause(OMPMergeableClause *C) { |
| 9762 | // No need to rebuild this clause, no template-dependent parameters. |
| 9763 | return C; |
| 9764 | } |
| 9765 | |
| 9766 | template <typename Derived> |
| 9767 | OMPClause *TreeTransform<Derived>::TransformOMPReadClause(OMPReadClause *C) { |
| 9768 | // No need to rebuild this clause, no template-dependent parameters. |
| 9769 | return C; |
| 9770 | } |
| 9771 | |
| 9772 | template <typename Derived> |
| 9773 | OMPClause *TreeTransform<Derived>::TransformOMPWriteClause(OMPWriteClause *C) { |
| 9774 | // No need to rebuild this clause, no template-dependent parameters. |
| 9775 | return C; |
| 9776 | } |
| 9777 | |
| 9778 | template <typename Derived> |
| 9779 | OMPClause * |
| 9780 | TreeTransform<Derived>::TransformOMPUpdateClause(OMPUpdateClause *C) { |
| 9781 | // No need to rebuild this clause, no template-dependent parameters. |
| 9782 | return C; |
| 9783 | } |
| 9784 | |
| 9785 | template <typename Derived> |
| 9786 | OMPClause * |
| 9787 | TreeTransform<Derived>::TransformOMPCaptureClause(OMPCaptureClause *C) { |
| 9788 | // No need to rebuild this clause, no template-dependent parameters. |
| 9789 | return C; |
| 9790 | } |
| 9791 | |
| 9792 | template <typename Derived> |
| 9793 | OMPClause * |
| 9794 | TreeTransform<Derived>::TransformOMPCompareClause(OMPCompareClause *C) { |
| 9795 | // No need to rebuild this clause, no template-dependent parameters. |
| 9796 | return C; |
| 9797 | } |
| 9798 | |
| 9799 | template <typename Derived> |
| 9800 | OMPClause * |
| 9801 | TreeTransform<Derived>::TransformOMPSeqCstClause(OMPSeqCstClause *C) { |
| 9802 | // No need to rebuild this clause, no template-dependent parameters. |
| 9803 | return C; |
| 9804 | } |
| 9805 | |
| 9806 | template <typename Derived> |
| 9807 | OMPClause * |
| 9808 | TreeTransform<Derived>::TransformOMPAcqRelClause(OMPAcqRelClause *C) { |
| 9809 | // No need to rebuild this clause, no template-dependent parameters. |
| 9810 | return C; |
| 9811 | } |
| 9812 | |
| 9813 | template <typename Derived> |
| 9814 | OMPClause * |
| 9815 | TreeTransform<Derived>::TransformOMPAcquireClause(OMPAcquireClause *C) { |
| 9816 | // No need to rebuild this clause, no template-dependent parameters. |
| 9817 | return C; |
| 9818 | } |
| 9819 | |
| 9820 | template <typename Derived> |
| 9821 | OMPClause * |
| 9822 | TreeTransform<Derived>::TransformOMPReleaseClause(OMPReleaseClause *C) { |
| 9823 | // No need to rebuild this clause, no template-dependent parameters. |
| 9824 | return C; |
| 9825 | } |
| 9826 | |
| 9827 | template <typename Derived> |
| 9828 | OMPClause * |
| 9829 | TreeTransform<Derived>::TransformOMPRelaxedClause(OMPRelaxedClause *C) { |
| 9830 | // No need to rebuild this clause, no template-dependent parameters. |
| 9831 | return C; |
| 9832 | } |
| 9833 | |
| 9834 | template <typename Derived> |
| 9835 | OMPClause * |
| 9836 | TreeTransform<Derived>::TransformOMPThreadsClause(OMPThreadsClause *C) { |
| 9837 | // No need to rebuild this clause, no template-dependent parameters. |
| 9838 | return C; |
| 9839 | } |
| 9840 | |
| 9841 | template <typename Derived> |
| 9842 | OMPClause *TreeTransform<Derived>::TransformOMPSIMDClause(OMPSIMDClause *C) { |
| 9843 | // No need to rebuild this clause, no template-dependent parameters. |
| 9844 | return C; |
| 9845 | } |
| 9846 | |
| 9847 | template <typename Derived> |
| 9848 | OMPClause * |
| 9849 | TreeTransform<Derived>::TransformOMPNogroupClause(OMPNogroupClause *C) { |
| 9850 | // No need to rebuild this clause, no template-dependent parameters. |
| 9851 | return C; |
| 9852 | } |
| 9853 | |
| 9854 | template <typename Derived> |
| 9855 | OMPClause *TreeTransform<Derived>::TransformOMPInitClause(OMPInitClause *C) { |
| 9856 | ExprResult IVR = getDerived().TransformExpr(C->getInteropVar()); |
| 9857 | if (IVR.isInvalid()) |
| 9858 | return nullptr; |
| 9859 | |
| 9860 | OMPInteropInfo InteropInfo(C->getIsTarget(), C->getIsTargetSync()); |
| 9861 | InteropInfo.PreferTypes.reserve(C->varlist_size() - 1); |
| 9862 | for (Expr *E : llvm::drop_begin(C->varlists())) { |
| 9863 | ExprResult ER = getDerived().TransformExpr(cast<Expr>(E)); |
| 9864 | if (ER.isInvalid()) |
| 9865 | return nullptr; |
| 9866 | InteropInfo.PreferTypes.push_back(ER.get()); |
| 9867 | } |
| 9868 | return getDerived().RebuildOMPInitClause(IVR.get(), InteropInfo, |
| 9869 | C->getBeginLoc(), C->getLParenLoc(), |
| 9870 | C->getVarLoc(), C->getEndLoc()); |
| 9871 | } |
| 9872 | |
| 9873 | template <typename Derived> |
| 9874 | OMPClause *TreeTransform<Derived>::TransformOMPUseClause(OMPUseClause *C) { |
| 9875 | ExprResult ER = getDerived().TransformExpr(C->getInteropVar()); |
| 9876 | if (ER.isInvalid()) |
| 9877 | return nullptr; |
| 9878 | return getDerived().RebuildOMPUseClause(ER.get(), C->getBeginLoc(), |
| 9879 | C->getLParenLoc(), C->getVarLoc(), |
| 9880 | C->getEndLoc()); |
| 9881 | } |
| 9882 | |
| 9883 | template <typename Derived> |
| 9884 | OMPClause * |
| 9885 | TreeTransform<Derived>::TransformOMPDestroyClause(OMPDestroyClause *C) { |
| 9886 | ExprResult ER; |
| 9887 | if (Expr *IV = C->getInteropVar()) { |
| 9888 | ER = getDerived().TransformExpr(IV); |
| 9889 | if (ER.isInvalid()) |
| 9890 | return nullptr; |
| 9891 | } |
| 9892 | return getDerived().RebuildOMPDestroyClause(ER.get(), C->getBeginLoc(), |
| 9893 | C->getLParenLoc(), C->getVarLoc(), |
| 9894 | C->getEndLoc()); |
| 9895 | } |
| 9896 | |
| 9897 | template <typename Derived> |
| 9898 | OMPClause * |
| 9899 | TreeTransform<Derived>::TransformOMPNovariantsClause(OMPNovariantsClause *C) { |
| 9900 | ExprResult Cond = getDerived().TransformExpr(C->getCondition()); |
| 9901 | if (Cond.isInvalid()) |
| 9902 | return nullptr; |
| 9903 | return getDerived().RebuildOMPNovariantsClause( |
| 9904 | Cond.get(), C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); |
| 9905 | } |
| 9906 | |
| 9907 | template <typename Derived> |
| 9908 | OMPClause * |
| 9909 | TreeTransform<Derived>::TransformOMPNocontextClause(OMPNocontextClause *C) { |
| 9910 | ExprResult Cond = getDerived().TransformExpr(C->getCondition()); |
| 9911 | if (Cond.isInvalid()) |
| 9912 | return nullptr; |
| 9913 | return getDerived().RebuildOMPNocontextClause( |
| 9914 | Cond.get(), C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); |
| 9915 | } |
| 9916 | |
| 9917 | template <typename Derived> |
| 9918 | OMPClause * |
| 9919 | TreeTransform<Derived>::TransformOMPFilterClause(OMPFilterClause *C) { |
| 9920 | ExprResult ThreadID = getDerived().TransformExpr(C->getThreadID()); |
| 9921 | if (ThreadID.isInvalid()) |
| 9922 | return nullptr; |
| 9923 | return getDerived().RebuildOMPFilterClause(ThreadID.get(), C->getBeginLoc(), |
| 9924 | C->getLParenLoc(), C->getEndLoc()); |
| 9925 | } |
| 9926 | |
| 9927 | template <typename Derived> |
| 9928 | OMPClause *TreeTransform<Derived>::TransformOMPAlignClause(OMPAlignClause *C) { |
| 9929 | ExprResult E = getDerived().TransformExpr(C->getAlignment()); |
| 9930 | if (E.isInvalid()) |
| 9931 | return nullptr; |
| 9932 | return getDerived().RebuildOMPAlignClause(E.get(), C->getBeginLoc(), |
| 9933 | C->getLParenLoc(), C->getEndLoc()); |
| 9934 | } |
| 9935 | |
| 9936 | template <typename Derived> |
| 9937 | OMPClause *TreeTransform<Derived>::TransformOMPUnifiedAddressClause( |
| 9938 | OMPUnifiedAddressClause *C) { |
| 9939 | llvm_unreachable("unified_address clause cannot appear in dependent context")::llvm::llvm_unreachable_internal("unified_address clause cannot appear in dependent context" , "clang/lib/Sema/TreeTransform.h", 9939); |
| 9940 | } |
| 9941 | |
| 9942 | template <typename Derived> |
| 9943 | OMPClause *TreeTransform<Derived>::TransformOMPUnifiedSharedMemoryClause( |
| 9944 | OMPUnifiedSharedMemoryClause *C) { |
| 9945 | llvm_unreachable(::llvm::llvm_unreachable_internal("unified_shared_memory clause cannot appear in dependent context" , "clang/lib/Sema/TreeTransform.h", 9946) |
| 9946 | "unified_shared_memory clause cannot appear in dependent context")::llvm::llvm_unreachable_internal("unified_shared_memory clause cannot appear in dependent context" , "clang/lib/Sema/TreeTransform.h", 9946); |
| 9947 | } |
| 9948 | |
| 9949 | template <typename Derived> |
| 9950 | OMPClause *TreeTransform<Derived>::TransformOMPReverseOffloadClause( |
| 9951 | OMPReverseOffloadClause *C) { |
| 9952 | llvm_unreachable("reverse_offload clause cannot appear in dependent context")::llvm::llvm_unreachable_internal("reverse_offload clause cannot appear in dependent context" , "clang/lib/Sema/TreeTransform.h", 9952); |
| 9953 | } |
| 9954 | |
| 9955 | template <typename Derived> |
| 9956 | OMPClause *TreeTransform<Derived>::TransformOMPDynamicAllocatorsClause( |
| 9957 | OMPDynamicAllocatorsClause *C) { |
| 9958 | llvm_unreachable(::llvm::llvm_unreachable_internal("dynamic_allocators clause cannot appear in dependent context" , "clang/lib/Sema/TreeTransform.h", 9959) |
| 9959 | "dynamic_allocators clause cannot appear in dependent context")::llvm::llvm_unreachable_internal("dynamic_allocators clause cannot appear in dependent context" , "clang/lib/Sema/TreeTransform.h", 9959); |
| 9960 | } |
| 9961 | |
| 9962 | template <typename Derived> |
| 9963 | OMPClause *TreeTransform<Derived>::TransformOMPAtomicDefaultMemOrderClause( |
| 9964 | OMPAtomicDefaultMemOrderClause *C) { |
| 9965 | llvm_unreachable(::llvm::llvm_unreachable_internal("atomic_default_mem_order clause cannot appear in dependent context" , "clang/lib/Sema/TreeTransform.h", 9966) |
| 9966 | "atomic_default_mem_order clause cannot appear in dependent context")::llvm::llvm_unreachable_internal("atomic_default_mem_order clause cannot appear in dependent context" , "clang/lib/Sema/TreeTransform.h", 9966); |
| 9967 | } |
| 9968 | |
| 9969 | template <typename Derived> |
| 9970 | OMPClause *TreeTransform<Derived>::TransformOMPAtClause(OMPAtClause *C) { |
| 9971 | return getDerived().RebuildOMPAtClause(C->getAtKind(), C->getAtKindKwLoc(), |
| 9972 | C->getBeginLoc(), C->getLParenLoc(), |
| 9973 | C->getEndLoc()); |
| 9974 | } |
| 9975 | |
| 9976 | template <typename Derived> |
| 9977 | OMPClause * |
| 9978 | TreeTransform<Derived>::TransformOMPSeverityClause(OMPSeverityClause *C) { |
| 9979 | return getDerived().RebuildOMPSeverityClause( |
| 9980 | C->getSeverityKind(), C->getSeverityKindKwLoc(), C->getBeginLoc(), |
| 9981 | C->getLParenLoc(), C->getEndLoc()); |
| 9982 | } |
| 9983 | |
| 9984 | template <typename Derived> |
| 9985 | OMPClause * |
| 9986 | TreeTransform<Derived>::TransformOMPMessageClause(OMPMessageClause *C) { |
| 9987 | ExprResult E = getDerived().TransformExpr(C->getMessageString()); |
| 9988 | if (E.isInvalid()) |
| 9989 | return nullptr; |
| 9990 | return getDerived().RebuildOMPMessageClause( |
| 9991 | C->getMessageString(), C->getBeginLoc(), C->getLParenLoc(), |
| 9992 | C->getEndLoc()); |
| 9993 | } |
| 9994 | |
| 9995 | template <typename Derived> |
| 9996 | OMPClause * |
| 9997 | TreeTransform<Derived>::TransformOMPPrivateClause(OMPPrivateClause *C) { |
| 9998 | llvm::SmallVector<Expr *, 16> Vars; |
| 9999 | Vars.reserve(C->varlist_size()); |
| 10000 | for (auto *VE : C->varlists()) { |
| 10001 | ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE)); |
| 10002 | if (EVar.isInvalid()) |
| 10003 | return nullptr; |
| 10004 | Vars.push_back(EVar.get()); |
| 10005 | } |
| 10006 | return getDerived().RebuildOMPPrivateClause( |
| 10007 | Vars, C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); |
| 10008 | } |
| 10009 | |
| 10010 | template <typename Derived> |
| 10011 | OMPClause *TreeTransform<Derived>::TransformOMPFirstprivateClause( |
| 10012 | OMPFirstprivateClause *C) { |
| 10013 | llvm::SmallVector<Expr *, 16> Vars; |
| 10014 | Vars.reserve(C->varlist_size()); |
| 10015 | for (auto *VE : C->varlists()) { |
| 10016 | ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE)); |
| 10017 | if (EVar.isInvalid()) |
| 10018 | return nullptr; |
| 10019 | Vars.push_back(EVar.get()); |
| 10020 | } |
| 10021 | return getDerived().RebuildOMPFirstprivateClause( |
| 10022 | Vars, C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); |
| 10023 | } |
| 10024 | |
| 10025 | template <typename Derived> |
| 10026 | OMPClause * |
| 10027 | TreeTransform<Derived>::TransformOMPLastprivateClause(OMPLastprivateClause *C) { |
| 10028 | llvm::SmallVector<Expr *, 16> Vars; |
| 10029 | Vars.reserve(C->varlist_size()); |
| 10030 | for (auto *VE : C->varlists()) { |
| 10031 | ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE)); |
| 10032 | if (EVar.isInvalid()) |
| 10033 | return nullptr; |
| 10034 | Vars.push_back(EVar.get()); |
| 10035 | } |
| 10036 | return getDerived().RebuildOMPLastprivateClause( |
| 10037 | Vars, C->getKind(), C->getKindLoc(), C->getColonLoc(), C->getBeginLoc(), |
| 10038 | C->getLParenLoc(), C->getEndLoc()); |
| 10039 | } |
| 10040 | |
| 10041 | template <typename Derived> |
| 10042 | OMPClause * |
| 10043 | TreeTransform<Derived>::TransformOMPSharedClause(OMPSharedClause *C) { |
| 10044 | llvm::SmallVector<Expr *, 16> Vars; |
| 10045 | Vars.reserve(C->varlist_size()); |
| 10046 | for (auto *VE : C->varlists()) { |
| 10047 | ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE)); |
| 10048 | if (EVar.isInvalid()) |
| 10049 | return nullptr; |
| 10050 | Vars.push_back(EVar.get()); |
| 10051 | } |
| 10052 | return getDerived().RebuildOMPSharedClause(Vars, C->getBeginLoc(), |
| 10053 | C->getLParenLoc(), C->getEndLoc()); |
| 10054 | } |
| 10055 | |
| 10056 | template <typename Derived> |
| 10057 | OMPClause * |
| 10058 | TreeTransform<Derived>::TransformOMPReductionClause(OMPReductionClause *C) { |
| 10059 | llvm::SmallVector<Expr *, 16> Vars; |
| 10060 | Vars.reserve(C->varlist_size()); |
| 10061 | for (auto *VE : C->varlists()) { |
| 10062 | ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE)); |
| 10063 | if (EVar.isInvalid()) |
| 10064 | return nullptr; |
| 10065 | Vars.push_back(EVar.get()); |
| 10066 | } |
| 10067 | CXXScopeSpec ReductionIdScopeSpec; |
| 10068 | ReductionIdScopeSpec.Adopt(C->getQualifierLoc()); |
| 10069 | |
| 10070 | DeclarationNameInfo NameInfo = C->getNameInfo(); |
| 10071 | if (NameInfo.getName()) { |
| 10072 | NameInfo = getDerived().TransformDeclarationNameInfo(NameInfo); |
| 10073 | if (!NameInfo.getName()) |
| 10074 | return nullptr; |
| 10075 | } |
| 10076 | // Build a list of all UDR decls with the same names ranged by the Scopes. |
| 10077 | // The Scope boundary is a duplication of the previous decl. |
| 10078 | llvm::SmallVector<Expr *, 16> UnresolvedReductions; |
| 10079 | for (auto *E : C->reduction_ops()) { |
| 10080 | // Transform all the decls. |
| 10081 | if (E) { |
| 10082 | auto *ULE = cast<UnresolvedLookupExpr>(E); |
| 10083 | UnresolvedSet<8> Decls; |
| 10084 | for (auto *D : ULE->decls()) { |
| 10085 | NamedDecl *InstD = |
| 10086 | cast<NamedDecl>(getDerived().TransformDecl(E->getExprLoc(), D)); |
| 10087 | Decls.addDecl(InstD, InstD->getAccess()); |
| 10088 | } |
| 10089 | UnresolvedReductions.push_back( |
| 10090 | UnresolvedLookupExpr::Create( |
| 10091 | SemaRef.Context, /*NamingClass=*/nullptr, |
| 10092 | ReductionIdScopeSpec.getWithLocInContext(SemaRef.Context), |
| 10093 | NameInfo, /*ADL=*/true, ULE->isOverloaded(), |
| 10094 | Decls.begin(), Decls.end())); |
| 10095 | } else |
| 10096 | UnresolvedReductions.push_back(nullptr); |
| 10097 | } |
| 10098 | return getDerived().RebuildOMPReductionClause( |
| 10099 | Vars, C->getModifier(), C->getBeginLoc(), C->getLParenLoc(), |
| 10100 | C->getModifierLoc(), C->getColonLoc(), C->getEndLoc(), |
| 10101 | ReductionIdScopeSpec, NameInfo, UnresolvedReductions); |
| 10102 | } |
| 10103 | |
| 10104 | template <typename Derived> |
| 10105 | OMPClause *TreeTransform<Derived>::TransformOMPTaskReductionClause( |
| 10106 | OMPTaskReductionClause *C) { |
| 10107 | llvm::SmallVector<Expr *, 16> Vars; |
| 10108 | Vars.reserve(C->varlist_size()); |
| 10109 | for (auto *VE : C->varlists()) { |
| 10110 | ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE)); |
| 10111 | if (EVar.isInvalid()) |
| 10112 | return nullptr; |
| 10113 | Vars.push_back(EVar.get()); |
| 10114 | } |
| 10115 | CXXScopeSpec ReductionIdScopeSpec; |
| 10116 | ReductionIdScopeSpec.Adopt(C->getQualifierLoc()); |
| 10117 | |
| 10118 | DeclarationNameInfo NameInfo = C->getNameInfo(); |
| 10119 | if (NameInfo.getName()) { |
| 10120 | NameInfo = getDerived().TransformDeclarationNameInfo(NameInfo); |
| 10121 | if (!NameInfo.getName()) |
| 10122 | return nullptr; |
| 10123 | } |
| 10124 | // Build a list of all UDR decls with the same names ranged by the Scopes. |
| 10125 | // The Scope boundary is a duplication of the previous decl. |
| 10126 | llvm::SmallVector<Expr *, 16> UnresolvedReductions; |
| 10127 | for (auto *E : C->reduction_ops()) { |
| 10128 | // Transform all the decls. |
| 10129 | if (E) { |
| 10130 | auto *ULE = cast<UnresolvedLookupExpr>(E); |
| 10131 | UnresolvedSet<8> Decls; |
| 10132 | for (auto *D : ULE->decls()) { |
| 10133 | NamedDecl *InstD = |
| 10134 | cast<NamedDecl>(getDerived().TransformDecl(E->getExprLoc(), D)); |
| 10135 | Decls.addDecl(InstD, InstD->getAccess()); |
| 10136 | } |
| 10137 | UnresolvedReductions.push_back(UnresolvedLookupExpr::Create( |
| 10138 | SemaRef.Context, /*NamingClass=*/nullptr, |
| 10139 | ReductionIdScopeSpec.getWithLocInContext(SemaRef.Context), NameInfo, |
| 10140 | /*ADL=*/true, ULE->isOverloaded(), Decls.begin(), Decls.end())); |
| 10141 | } else |
| 10142 | UnresolvedReductions.push_back(nullptr); |
| 10143 | } |
| 10144 | return getDerived().RebuildOMPTaskReductionClause( |
| 10145 | Vars, C->getBeginLoc(), C->getLParenLoc(), C->getColonLoc(), |
| 10146 | C->getEndLoc(), ReductionIdScopeSpec, NameInfo, UnresolvedReductions); |
| 10147 | } |
| 10148 | |
| 10149 | template <typename Derived> |
| 10150 | OMPClause * |
| 10151 | TreeTransform<Derived>::TransformOMPInReductionClause(OMPInReductionClause *C) { |
| 10152 | llvm::SmallVector<Expr *, 16> Vars; |
| 10153 | Vars.reserve(C->varlist_size()); |
| 10154 | for (auto *VE : C->varlists()) { |
| 10155 | ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE)); |
| 10156 | if (EVar.isInvalid()) |
| 10157 | return nullptr; |
| 10158 | Vars.push_back(EVar.get()); |
| 10159 | } |
| 10160 | CXXScopeSpec ReductionIdScopeSpec; |
| 10161 | ReductionIdScopeSpec.Adopt(C->getQualifierLoc()); |
| 10162 | |
| 10163 | DeclarationNameInfo NameInfo = C->getNameInfo(); |
| 10164 | if (NameInfo.getName()) { |
| 10165 | NameInfo = getDerived().TransformDeclarationNameInfo(NameInfo); |
| 10166 | if (!NameInfo.getName()) |
| 10167 | return nullptr; |
| 10168 | } |
| 10169 | // Build a list of all UDR decls with the same names ranged by the Scopes. |
| 10170 | // The Scope boundary is a duplication of the previous decl. |
| 10171 | llvm::SmallVector<Expr *, 16> UnresolvedReductions; |
| 10172 | for (auto *E : C->reduction_ops()) { |
| 10173 | // Transform all the decls. |
| 10174 | if (E) { |
| 10175 | auto *ULE = cast<UnresolvedLookupExpr>(E); |
| 10176 | UnresolvedSet<8> Decls; |
| 10177 | for (auto *D : ULE->decls()) { |
| 10178 | NamedDecl *InstD = |
| 10179 | cast<NamedDecl>(getDerived().TransformDecl(E->getExprLoc(), D)); |
| 10180 | Decls.addDecl(InstD, InstD->getAccess()); |
| 10181 | } |
| 10182 | UnresolvedReductions.push_back(UnresolvedLookupExpr::Create( |
| 10183 | SemaRef.Context, /*NamingClass=*/nullptr, |
| 10184 | ReductionIdScopeSpec.getWithLocInContext(SemaRef.Context), NameInfo, |
| 10185 | /*ADL=*/true, ULE->isOverloaded(), Decls.begin(), Decls.end())); |
| 10186 | } else |
| 10187 | UnresolvedReductions.push_back(nullptr); |
| 10188 | } |
| 10189 | return getDerived().RebuildOMPInReductionClause( |
| 10190 | Vars, C->getBeginLoc(), C->getLParenLoc(), C->getColonLoc(), |
| 10191 | C->getEndLoc(), ReductionIdScopeSpec, NameInfo, UnresolvedReductions); |
| 10192 | } |
| 10193 | |
| 10194 | template <typename Derived> |
| 10195 | OMPClause * |
| 10196 | TreeTransform<Derived>::TransformOMPLinearClause(OMPLinearClause *C) { |
| 10197 | llvm::SmallVector<Expr *, 16> Vars; |
| 10198 | Vars.reserve(C->varlist_size()); |
| 10199 | for (auto *VE : C->varlists()) { |
| 10200 | ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE)); |
| 10201 | if (EVar.isInvalid()) |
| 10202 | return nullptr; |
| 10203 | Vars.push_back(EVar.get()); |
| 10204 | } |
| 10205 | ExprResult Step = getDerived().TransformExpr(C->getStep()); |
| 10206 | if (Step.isInvalid()) |
| 10207 | return nullptr; |
| 10208 | return getDerived().RebuildOMPLinearClause( |
| 10209 | Vars, Step.get(), C->getBeginLoc(), C->getLParenLoc(), C->getModifier(), |
| 10210 | C->getModifierLoc(), C->getColonLoc(), C->getEndLoc()); |
| 10211 | } |
| 10212 | |
| 10213 | template <typename Derived> |
| 10214 | OMPClause * |
| 10215 | TreeTransform<Derived>::TransformOMPAlignedClause(OMPAlignedClause *C) { |
| 10216 | llvm::SmallVector<Expr *, 16> Vars; |
| 10217 | Vars.reserve(C->varlist_size()); |
| 10218 | for (auto *VE : C->varlists()) { |
| 10219 | ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE)); |
| 10220 | if (EVar.isInvalid()) |
| 10221 | return nullptr; |
| 10222 | Vars.push_back(EVar.get()); |
| 10223 | } |
| 10224 | ExprResult Alignment = getDerived().TransformExpr(C->getAlignment()); |
| 10225 | if (Alignment.isInvalid()) |
| 10226 | return nullptr; |
| 10227 | return getDerived().RebuildOMPAlignedClause( |
| 10228 | Vars, Alignment.get(), C->getBeginLoc(), C->getLParenLoc(), |
| 10229 | C->getColonLoc(), C->getEndLoc()); |
| 10230 | } |
| 10231 | |
| 10232 | template <typename Derived> |
| 10233 | OMPClause * |
| 10234 | TreeTransform<Derived>::TransformOMPCopyinClause(OMPCopyinClause *C) { |
| 10235 | llvm::SmallVector<Expr *, 16> Vars; |
| 10236 | Vars.reserve(C->varlist_size()); |
| 10237 | for (auto *VE : C->varlists()) { |
| 10238 | ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE)); |
| 10239 | if (EVar.isInvalid()) |
| 10240 | return nullptr; |
| 10241 | Vars.push_back(EVar.get()); |
| 10242 | } |
| 10243 | return getDerived().RebuildOMPCopyinClause(Vars, C->getBeginLoc(), |
| 10244 | C->getLParenLoc(), C->getEndLoc()); |
| 10245 | } |
| 10246 | |
| 10247 | template <typename Derived> |
| 10248 | OMPClause * |
| 10249 | TreeTransform<Derived>::TransformOMPCopyprivateClause(OMPCopyprivateClause *C) { |
| 10250 | llvm::SmallVector<Expr *, 16> Vars; |
| 10251 | Vars.reserve(C->varlist_size()); |
| 10252 | for (auto *VE : C->varlists()) { |
| 10253 | ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE)); |
| 10254 | if (EVar.isInvalid()) |
| 10255 | return nullptr; |
| 10256 | Vars.push_back(EVar.get()); |
| 10257 | } |
| 10258 | return getDerived().RebuildOMPCopyprivateClause( |
| 10259 | Vars, C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); |
| 10260 | } |
| 10261 | |
| 10262 | template <typename Derived> |
| 10263 | OMPClause *TreeTransform<Derived>::TransformOMPFlushClause(OMPFlushClause *C) { |
| 10264 | llvm::SmallVector<Expr *, 16> Vars; |
| 10265 | Vars.reserve(C->varlist_size()); |
| 10266 | for (auto *VE : C->varlists()) { |
| 10267 | ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE)); |
| 10268 | if (EVar.isInvalid()) |
| 10269 | return nullptr; |
| 10270 | Vars.push_back(EVar.get()); |
| 10271 | } |
| 10272 | return getDerived().RebuildOMPFlushClause(Vars, C->getBeginLoc(), |
| 10273 | C->getLParenLoc(), C->getEndLoc()); |
| 10274 | } |
| 10275 | |
| 10276 | template <typename Derived> |
| 10277 | OMPClause * |
| 10278 | TreeTransform<Derived>::TransformOMPDepobjClause(OMPDepobjClause *C) { |
| 10279 | ExprResult E = getDerived().TransformExpr(C->getDepobj()); |
| 10280 | if (E.isInvalid()) |
| 10281 | return nullptr; |
| 10282 | return getDerived().RebuildOMPDepobjClause(E.get(), C->getBeginLoc(), |
| 10283 | C->getLParenLoc(), C->getEndLoc()); |
| 10284 | } |
| 10285 | |
| 10286 | template <typename Derived> |
| 10287 | OMPClause * |
| 10288 | TreeTransform<Derived>::TransformOMPDependClause(OMPDependClause *C) { |
| 10289 | llvm::SmallVector<Expr *, 16> Vars; |
| 10290 | Expr *DepModifier = C->getModifier(); |
| 10291 | if (DepModifier) { |
| 10292 | ExprResult DepModRes = getDerived().TransformExpr(DepModifier); |
| 10293 | if (DepModRes.isInvalid()) |
| 10294 | return nullptr; |
| 10295 | DepModifier = DepModRes.get(); |
| 10296 | } |
| 10297 | Vars.reserve(C->varlist_size()); |
| 10298 | for (auto *VE : C->varlists()) { |
| 10299 | ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE)); |
| 10300 | if (EVar.isInvalid()) |
| 10301 | return nullptr; |
| 10302 | Vars.push_back(EVar.get()); |
| 10303 | } |
| 10304 | return getDerived().RebuildOMPDependClause( |
| 10305 | {C->getDependencyKind(), C->getDependencyLoc(), C->getColonLoc(), |
| 10306 | C->getOmpAllMemoryLoc()}, |
| 10307 | DepModifier, Vars, C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); |
| 10308 | } |
| 10309 | |
| 10310 | template <typename Derived> |
| 10311 | OMPClause * |
| 10312 | TreeTransform<Derived>::TransformOMPDeviceClause(OMPDeviceClause *C) { |
| 10313 | ExprResult E = getDerived().TransformExpr(C->getDevice()); |
| 10314 | if (E.isInvalid()) |
| 10315 | return nullptr; |
| 10316 | return getDerived().RebuildOMPDeviceClause( |
| 10317 | C->getModifier(), E.get(), C->getBeginLoc(), C->getLParenLoc(), |
| 10318 | C->getModifierLoc(), C->getEndLoc()); |
| 10319 | } |
| 10320 | |
| 10321 | template <typename Derived, class T> |
| 10322 | bool transformOMPMappableExprListClause( |
| 10323 | TreeTransform<Derived> &TT, OMPMappableExprListClause<T> *C, |
| 10324 | llvm::SmallVectorImpl<Expr *> &Vars, CXXScopeSpec &MapperIdScopeSpec, |
| 10325 | DeclarationNameInfo &MapperIdInfo, |
| 10326 | llvm::SmallVectorImpl<Expr *> &UnresolvedMappers) { |
| 10327 | // Transform expressions in the list. |
| 10328 | Vars.reserve(C->varlist_size()); |
| 10329 | for (auto *VE : C->varlists()) { |
| 10330 | ExprResult EVar = TT.getDerived().TransformExpr(cast<Expr>(VE)); |
| 10331 | if (EVar.isInvalid()) |
| 10332 | return true; |
| 10333 | Vars.push_back(EVar.get()); |
| 10334 | } |
| 10335 | // Transform mapper scope specifier and identifier. |
| 10336 | NestedNameSpecifierLoc QualifierLoc; |
| 10337 | if (C->getMapperQualifierLoc()) { |
| 10338 | QualifierLoc = TT.getDerived().TransformNestedNameSpecifierLoc( |
| 10339 | C->getMapperQualifierLoc()); |
| 10340 | if (!QualifierLoc) |
| 10341 | return true; |
| 10342 | } |
| 10343 | MapperIdScopeSpec.Adopt(QualifierLoc); |
| 10344 | MapperIdInfo = C->getMapperIdInfo(); |
| 10345 | if (MapperIdInfo.getName()) { |
| 10346 | MapperIdInfo = TT.getDerived().TransformDeclarationNameInfo(MapperIdInfo); |
| 10347 | if (!MapperIdInfo.getName()) |
| 10348 | return true; |
| 10349 | } |
| 10350 | // Build a list of all candidate OMPDeclareMapperDecls, which is provided by |
| 10351 | // the previous user-defined mapper lookup in dependent environment. |
| 10352 | for (auto *E : C->mapperlists()) { |
| 10353 | // Transform all the decls. |
| 10354 | if (E) { |
| 10355 | auto *ULE = cast<UnresolvedLookupExpr>(E); |
| 10356 | UnresolvedSet<8> Decls; |
| 10357 | for (auto *D : ULE->decls()) { |
| 10358 | NamedDecl *InstD = |
| 10359 | cast<NamedDecl>(TT.getDerived().TransformDecl(E->getExprLoc(), D)); |
| 10360 | Decls.addDecl(InstD, InstD->getAccess()); |
| 10361 | } |
| 10362 | UnresolvedMappers.push_back(UnresolvedLookupExpr::Create( |
| 10363 | TT.getSema().Context, /*NamingClass=*/nullptr, |
| 10364 | MapperIdScopeSpec.getWithLocInContext(TT.getSema().Context), |
| 10365 | MapperIdInfo, /*ADL=*/true, ULE->isOverloaded(), Decls.begin(), |
| 10366 | Decls.end())); |
| 10367 | } else { |
| 10368 | UnresolvedMappers.push_back(nullptr); |
| 10369 | } |
| 10370 | } |
| 10371 | return false; |
| 10372 | } |
| 10373 | |
| 10374 | template <typename Derived> |
| 10375 | OMPClause *TreeTransform<Derived>::TransformOMPMapClause(OMPMapClause *C) { |
| 10376 | OMPVarListLocTy Locs(C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); |
| 10377 | llvm::SmallVector<Expr *, 16> Vars; |
| 10378 | Expr *IteratorModifier = C->getIteratorModifier(); |
| 10379 | if (IteratorModifier) { |
| 10380 | ExprResult MapModRes = getDerived().TransformExpr(IteratorModifier); |
| 10381 | if (MapModRes.isInvalid()) |
| 10382 | return nullptr; |
| 10383 | IteratorModifier = MapModRes.get(); |
| 10384 | } |
| 10385 | CXXScopeSpec MapperIdScopeSpec; |
| 10386 | DeclarationNameInfo MapperIdInfo; |
| 10387 | llvm::SmallVector<Expr *, 16> UnresolvedMappers; |
| 10388 | if (transformOMPMappableExprListClause<Derived, OMPMapClause>( |
| 10389 | *this, C, Vars, MapperIdScopeSpec, MapperIdInfo, UnresolvedMappers)) |
| 10390 | return nullptr; |
| 10391 | return getDerived().RebuildOMPMapClause( |
| 10392 | IteratorModifier, C->getMapTypeModifiers(), C->getMapTypeModifiersLoc(), |
| 10393 | MapperIdScopeSpec, MapperIdInfo, C->getMapType(), C->isImplicitMapType(), |
| 10394 | C->getMapLoc(), C->getColonLoc(), Vars, Locs, UnresolvedMappers); |
| 10395 | } |
| 10396 | |
| 10397 | template <typename Derived> |
| 10398 | OMPClause * |
| 10399 | TreeTransform<Derived>::TransformOMPAllocateClause(OMPAllocateClause *C) { |
| 10400 | Expr *Allocator = C->getAllocator(); |
| 10401 | if (Allocator) { |
| 10402 | ExprResult AllocatorRes = getDerived().TransformExpr(Allocator); |
| 10403 | if (AllocatorRes.isInvalid()) |
| 10404 | return nullptr; |
| 10405 | Allocator = AllocatorRes.get(); |
| 10406 | } |
| 10407 | llvm::SmallVector<Expr *, 16> Vars; |
| 10408 | Vars.reserve(C->varlist_size()); |
| 10409 | for (auto *VE : C->varlists()) { |
| 10410 | ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE)); |
| 10411 | if (EVar.isInvalid()) |
| 10412 | return nullptr; |
| 10413 | Vars.push_back(EVar.get()); |
| 10414 | } |
| 10415 | return getDerived().RebuildOMPAllocateClause( |
| 10416 | Allocator, Vars, C->getBeginLoc(), C->getLParenLoc(), C->getColonLoc(), |
| 10417 | C->getEndLoc()); |
| 10418 | } |
| 10419 | |
| 10420 | template <typename Derived> |
| 10421 | OMPClause * |
| 10422 | TreeTransform<Derived>::TransformOMPNumTeamsClause(OMPNumTeamsClause *C) { |
| 10423 | ExprResult E = getDerived().TransformExpr(C->getNumTeams()); |
| 10424 | if (E.isInvalid()) |
| 10425 | return nullptr; |
| 10426 | return getDerived().RebuildOMPNumTeamsClause( |
| 10427 | E.get(), C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); |
| 10428 | } |
| 10429 | |
| 10430 | template <typename Derived> |
| 10431 | OMPClause * |
| 10432 | TreeTransform<Derived>::TransformOMPThreadLimitClause(OMPThreadLimitClause *C) { |
| 10433 | ExprResult E = getDerived().TransformExpr(C->getThreadLimit()); |
| 10434 | if (E.isInvalid()) |
| 10435 | return nullptr; |
| 10436 | return getDerived().RebuildOMPThreadLimitClause( |
| 10437 | E.get(), C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); |
| 10438 | } |
| 10439 | |
| 10440 | template <typename Derived> |
| 10441 | OMPClause * |
| 10442 | TreeTransform<Derived>::TransformOMPPriorityClause(OMPPriorityClause *C) { |
| 10443 | ExprResult E = getDerived().TransformExpr(C->getPriority()); |
| 10444 | if (E.isInvalid()) |
| 10445 | return nullptr; |
| 10446 | return getDerived().RebuildOMPPriorityClause( |
| 10447 | E.get(), C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); |
| 10448 | } |
| 10449 | |
| 10450 | template <typename Derived> |
| 10451 | OMPClause * |
| 10452 | TreeTransform<Derived>::TransformOMPGrainsizeClause(OMPGrainsizeClause *C) { |
| 10453 | ExprResult E = getDerived().TransformExpr(C->getGrainsize()); |
| 10454 | if (E.isInvalid()) |
| 10455 | return nullptr; |
| 10456 | return getDerived().RebuildOMPGrainsizeClause( |
| 10457 | C->getModifier(), E.get(), C->getBeginLoc(), C->getLParenLoc(), |
| 10458 | C->getModifierLoc(), C->getEndLoc()); |
| 10459 | } |
| 10460 | |
| 10461 | template <typename Derived> |
| 10462 | OMPClause * |
| 10463 | TreeTransform<Derived>::TransformOMPNumTasksClause(OMPNumTasksClause *C) { |
| 10464 | ExprResult E = getDerived().TransformExpr(C->getNumTasks()); |
| 10465 | if (E.isInvalid()) |
| 10466 | return nullptr; |
| 10467 | return getDerived().RebuildOMPNumTasksClause( |
| 10468 | C->getModifier(), E.get(), C->getBeginLoc(), C->getLParenLoc(), |
| 10469 | C->getModifierLoc(), C->getEndLoc()); |
| 10470 | } |
| 10471 | |
| 10472 | template <typename Derived> |
| 10473 | OMPClause *TreeTransform<Derived>::TransformOMPHintClause(OMPHintClause *C) { |
| 10474 | ExprResult E = getDerived().TransformExpr(C->getHint()); |
| 10475 | if (E.isInvalid()) |
| 10476 | return nullptr; |
| 10477 | return getDerived().RebuildOMPHintClause(E.get(), C->getBeginLoc(), |
| 10478 | C->getLParenLoc(), C->getEndLoc()); |
| 10479 | } |
| 10480 | |
| 10481 | template <typename Derived> |
| 10482 | OMPClause *TreeTransform<Derived>::TransformOMPDistScheduleClause( |
| 10483 | OMPDistScheduleClause *C) { |
| 10484 | ExprResult E = getDerived().TransformExpr(C->getChunkSize()); |
| 10485 | if (E.isInvalid()) |
| 10486 | return nullptr; |
| 10487 | return getDerived().RebuildOMPDistScheduleClause( |
| 10488 | C->getDistScheduleKind(), E.get(), C->getBeginLoc(), C->getLParenLoc(), |
| 10489 | C->getDistScheduleKindLoc(), C->getCommaLoc(), C->getEndLoc()); |
| 10490 | } |
| 10491 | |
| 10492 | template <typename Derived> |
| 10493 | OMPClause * |
| 10494 | TreeTransform<Derived>::TransformOMPDefaultmapClause(OMPDefaultmapClause *C) { |
| 10495 | // Rebuild Defaultmap Clause since we need to invoke the checking of |
| 10496 | // defaultmap(none:variable-category) after template initialization. |
| 10497 | return getDerived().RebuildOMPDefaultmapClause(C->getDefaultmapModifier(), |
| 10498 | C->getDefaultmapKind(), |
| 10499 | C->getBeginLoc(), |
| 10500 | C->getLParenLoc(), |
| 10501 | C->getDefaultmapModifierLoc(), |
| 10502 | C->getDefaultmapKindLoc(), |
| 10503 | C->getEndLoc()); |
| 10504 | } |
| 10505 | |
| 10506 | template <typename Derived> |
| 10507 | OMPClause *TreeTransform<Derived>::TransformOMPToClause(OMPToClause *C) { |
| 10508 | OMPVarListLocTy Locs(C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); |
| 10509 | llvm::SmallVector<Expr *, 16> Vars; |
| 10510 | CXXScopeSpec MapperIdScopeSpec; |
| 10511 | DeclarationNameInfo MapperIdInfo; |
| 10512 | llvm::SmallVector<Expr *, 16> UnresolvedMappers; |
| 10513 | if (transformOMPMappableExprListClause<Derived, OMPToClause>( |
| 10514 | *this, C, Vars, MapperIdScopeSpec, MapperIdInfo, UnresolvedMappers)) |
| 10515 | return nullptr; |
| 10516 | return getDerived().RebuildOMPToClause( |
| 10517 | C->getMotionModifiers(), C->getMotionModifiersLoc(), MapperIdScopeSpec, |
| 10518 | MapperIdInfo, C->getColonLoc(), Vars, Locs, UnresolvedMappers); |
| 10519 | } |
| 10520 | |
| 10521 | template <typename Derived> |
| 10522 | OMPClause *TreeTransform<Derived>::TransformOMPFromClause(OMPFromClause *C) { |
| 10523 | OMPVarListLocTy Locs(C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); |
| 10524 | llvm::SmallVector<Expr *, 16> Vars; |
| 10525 | CXXScopeSpec MapperIdScopeSpec; |
| 10526 | DeclarationNameInfo MapperIdInfo; |
| 10527 | llvm::SmallVector<Expr *, 16> UnresolvedMappers; |
| 10528 | if (transformOMPMappableExprListClause<Derived, OMPFromClause>( |
| 10529 | *this, C, Vars, MapperIdScopeSpec, MapperIdInfo, UnresolvedMappers)) |
| 10530 | return nullptr; |
| 10531 | return getDerived().RebuildOMPFromClause( |
| 10532 | C->getMotionModifiers(), C->getMotionModifiersLoc(), MapperIdScopeSpec, |
| 10533 | MapperIdInfo, C->getColonLoc(), Vars, Locs, UnresolvedMappers); |
| 10534 | } |
| 10535 | |
| 10536 | template <typename Derived> |
| 10537 | OMPClause *TreeTransform<Derived>::TransformOMPUseDevicePtrClause( |
| 10538 | OMPUseDevicePtrClause *C) { |
| 10539 | llvm::SmallVector<Expr *, 16> Vars; |
| 10540 | Vars.reserve(C->varlist_size()); |
| 10541 | for (auto *VE : C->varlists()) { |
| 10542 | ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE)); |
| 10543 | if (EVar.isInvalid()) |
| 10544 | return nullptr; |
| 10545 | Vars.push_back(EVar.get()); |
| 10546 | } |
| 10547 | OMPVarListLocTy Locs(C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); |
| 10548 | return getDerived().RebuildOMPUseDevicePtrClause(Vars, Locs); |
| 10549 | } |
| 10550 | |
| 10551 | template <typename Derived> |
| 10552 | OMPClause *TreeTransform<Derived>::TransformOMPUseDeviceAddrClause( |
| 10553 | OMPUseDeviceAddrClause *C) { |
| 10554 | llvm::SmallVector<Expr *, 16> Vars; |
| 10555 | Vars.reserve(C->varlist_size()); |
| 10556 | for (auto *VE : C->varlists()) { |
| 10557 | ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE)); |
| 10558 | if (EVar.isInvalid()) |
| 10559 | return nullptr; |
| 10560 | Vars.push_back(EVar.get()); |
| 10561 | } |
| 10562 | OMPVarListLocTy Locs(C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); |
| 10563 | return getDerived().RebuildOMPUseDeviceAddrClause(Vars, Locs); |
| 10564 | } |
| 10565 | |
| 10566 | template <typename Derived> |
| 10567 | OMPClause * |
| 10568 | TreeTransform<Derived>::TransformOMPIsDevicePtrClause(OMPIsDevicePtrClause *C) { |
| 10569 | llvm::SmallVector<Expr *, 16> Vars; |
| 10570 | Vars.reserve(C->varlist_size()); |
| 10571 | for (auto *VE : C->varlists()) { |
| 10572 | ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE)); |
| 10573 | if (EVar.isInvalid()) |
| 10574 | return nullptr; |
| 10575 | Vars.push_back(EVar.get()); |
| 10576 | } |
| 10577 | OMPVarListLocTy Locs(C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); |
| 10578 | return getDerived().RebuildOMPIsDevicePtrClause(Vars, Locs); |
| 10579 | } |
| 10580 | |
| 10581 | template <typename Derived> |
| 10582 | OMPClause *TreeTransform<Derived>::TransformOMPHasDeviceAddrClause( |
| 10583 | OMPHasDeviceAddrClause *C) { |
| 10584 | llvm::SmallVector<Expr *, 16> Vars; |
| 10585 | Vars.reserve(C->varlist_size()); |
| 10586 | for (auto *VE : C->varlists()) { |
| 10587 | ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE)); |
| 10588 | if (EVar.isInvalid()) |
| 10589 | return nullptr; |
| 10590 | Vars.push_back(EVar.get()); |
| 10591 | } |
| 10592 | OMPVarListLocTy Locs(C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); |
| 10593 | return getDerived().RebuildOMPHasDeviceAddrClause(Vars, Locs); |
| 10594 | } |
| 10595 | |
| 10596 | template <typename Derived> |
| 10597 | OMPClause * |
| 10598 | TreeTransform<Derived>::TransformOMPNontemporalClause(OMPNontemporalClause *C) { |
| 10599 | llvm::SmallVector<Expr *, 16> Vars; |
| 10600 | Vars.reserve(C->varlist_size()); |
| 10601 | for (auto *VE : C->varlists()) { |
| 10602 | ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE)); |
| 10603 | if (EVar.isInvalid()) |
| 10604 | return nullptr; |
| 10605 | Vars.push_back(EVar.get()); |
| 10606 | } |
| 10607 | return getDerived().RebuildOMPNontemporalClause( |
| 10608 | Vars, C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); |
| 10609 | } |
| 10610 | |
| 10611 | template <typename Derived> |
| 10612 | OMPClause * |
| 10613 | TreeTransform<Derived>::TransformOMPInclusiveClause(OMPInclusiveClause *C) { |
| 10614 | llvm::SmallVector<Expr *, 16> Vars; |
| 10615 | Vars.reserve(C->varlist_size()); |
| 10616 | for (auto *VE : C->varlists()) { |
| 10617 | ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE)); |
| 10618 | if (EVar.isInvalid()) |
| 10619 | return nullptr; |
| 10620 | Vars.push_back(EVar.get()); |
| 10621 | } |
| 10622 | return getDerived().RebuildOMPInclusiveClause( |
| 10623 | Vars, C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); |
| 10624 | } |
| 10625 | |
| 10626 | template <typename Derived> |
| 10627 | OMPClause * |
| 10628 | TreeTransform<Derived>::TransformOMPExclusiveClause(OMPExclusiveClause *C) { |
| 10629 | llvm::SmallVector<Expr *, 16> Vars; |
| 10630 | Vars.reserve(C->varlist_size()); |
| 10631 | for (auto *VE : C->varlists()) { |
| 10632 | ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE)); |
| 10633 | if (EVar.isInvalid()) |
| 10634 | return nullptr; |
| 10635 | Vars.push_back(EVar.get()); |
| 10636 | } |
| 10637 | return getDerived().RebuildOMPExclusiveClause( |
| 10638 | Vars, C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); |
| 10639 | } |
| 10640 | |
| 10641 | template <typename Derived> |
| 10642 | OMPClause *TreeTransform<Derived>::TransformOMPUsesAllocatorsClause( |
| 10643 | OMPUsesAllocatorsClause *C) { |
| 10644 | SmallVector<Sema::UsesAllocatorsData, 16> Data; |
| 10645 | Data.reserve(C->getNumberOfAllocators()); |
| 10646 | for (unsigned I = 0, E = C->getNumberOfAllocators(); I < E; ++I) { |
| 10647 | OMPUsesAllocatorsClause::Data D = C->getAllocatorData(I); |
| 10648 | ExprResult Allocator = getDerived().TransformExpr(D.Allocator); |
| 10649 | if (Allocator.isInvalid()) |
| 10650 | continue; |
| 10651 | ExprResult AllocatorTraits; |
| 10652 | if (Expr *AT = D.AllocatorTraits) { |
| 10653 | AllocatorTraits = getDerived().TransformExpr(AT); |
| 10654 | if (AllocatorTraits.isInvalid()) |
| 10655 | continue; |
| 10656 | } |
| 10657 | Sema::UsesAllocatorsData &NewD = Data.emplace_back(); |
| 10658 | NewD.Allocator = Allocator.get(); |
| 10659 | NewD.AllocatorTraits = AllocatorTraits.get(); |
| 10660 | NewD.LParenLoc = D.LParenLoc; |
| 10661 | NewD.RParenLoc = D.RParenLoc; |
| 10662 | } |
| 10663 | return getDerived().RebuildOMPUsesAllocatorsClause( |
| 10664 | Data, C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); |
| 10665 | } |
| 10666 | |
| 10667 | template <typename Derived> |
| 10668 | OMPClause * |
| 10669 | TreeTransform<Derived>::TransformOMPAffinityClause(OMPAffinityClause *C) { |
| 10670 | SmallVector<Expr *, 4> Locators; |
| 10671 | Locators.reserve(C->varlist_size()); |
| 10672 | ExprResult ModifierRes; |
| 10673 | if (Expr *Modifier = C->getModifier()) { |
| 10674 | ModifierRes = getDerived().TransformExpr(Modifier); |
| 10675 | if (ModifierRes.isInvalid()) |
| 10676 | return nullptr; |
| 10677 | } |
| 10678 | for (Expr *E : C->varlists()) { |
| 10679 | ExprResult Locator = getDerived().TransformExpr(E); |
| 10680 | if (Locator.isInvalid()) |
| 10681 | continue; |
| 10682 | Locators.push_back(Locator.get()); |
| 10683 | } |
| 10684 | return getDerived().RebuildOMPAffinityClause( |
| 10685 | C->getBeginLoc(), C->getLParenLoc(), C->getColonLoc(), C->getEndLoc(), |
| 10686 | ModifierRes.get(), Locators); |
| 10687 | } |
| 10688 | |
| 10689 | template <typename Derived> |
| 10690 | OMPClause *TreeTransform<Derived>::TransformOMPOrderClause(OMPOrderClause *C) { |
| 10691 | return getDerived().RebuildOMPOrderClause( |
| 10692 | C->getKind(), C->getKindKwLoc(), C->getBeginLoc(), C->getLParenLoc(), |
| 10693 | C->getEndLoc(), C->getModifier(), C->getModifierKwLoc()); |
| 10694 | } |
| 10695 | |
| 10696 | template <typename Derived> |
| 10697 | OMPClause *TreeTransform<Derived>::TransformOMPBindClause(OMPBindClause *C) { |
| 10698 | return getDerived().RebuildOMPBindClause( |
| 10699 | C->getBindKind(), C->getBindKindLoc(), C->getBeginLoc(), |
| 10700 | C->getLParenLoc(), C->getEndLoc()); |
| 10701 | } |
| 10702 | |
| 10703 | template <typename Derived> |
| 10704 | OMPClause *TreeTransform<Derived>::TransformOMPXDynCGroupMemClause( |
| 10705 | OMPXDynCGroupMemClause *C) { |
| 10706 | ExprResult Size = getDerived().TransformExpr(C->getSize()); |
| 10707 | if (Size.isInvalid()) |
| 10708 | return nullptr; |
| 10709 | return getDerived().RebuildOMPXDynCGroupMemClause( |
| 10710 | Size.get(), C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); |
| 10711 | } |
| 10712 | |
| 10713 | //===----------------------------------------------------------------------===// |
| 10714 | // Expression transformation |
| 10715 | //===----------------------------------------------------------------------===// |
| 10716 | template<typename Derived> |
| 10717 | ExprResult |
| 10718 | TreeTransform<Derived>::TransformConstantExpr(ConstantExpr *E) { |
| 10719 | return TransformExpr(E->getSubExpr()); |
| 10720 | } |
| 10721 | |
| 10722 | template <typename Derived> |
| 10723 | ExprResult TreeTransform<Derived>::TransformSYCLUniqueStableNameExpr( |
| 10724 | SYCLUniqueStableNameExpr *E) { |
| 10725 | if (!E->isTypeDependent()) |
| 10726 | return E; |
| 10727 | |
| 10728 | TypeSourceInfo *NewT = getDerived().TransformType(E->getTypeSourceInfo()); |
| 10729 | |
| 10730 | if (!NewT) |
| 10731 | return ExprError(); |
| 10732 | |
| 10733 | if (!getDerived().AlwaysRebuild() && E->getTypeSourceInfo() == NewT) |
| 10734 | return E; |
| 10735 | |
| 10736 | return getDerived().RebuildSYCLUniqueStableNameExpr( |
| 10737 | E->getLocation(), E->getLParenLocation(), E->getRParenLocation(), NewT); |
| 10738 | } |
| 10739 | |
| 10740 | template<typename Derived> |
| 10741 | ExprResult |
| 10742 | TreeTransform<Derived>::TransformPredefinedExpr(PredefinedExpr *E) { |
| 10743 | if (!E->isTypeDependent()) |
| 10744 | return E; |
| 10745 | |
| 10746 | return getDerived().RebuildPredefinedExpr(E->getLocation(), |
| 10747 | E->getIdentKind()); |
| 10748 | } |
| 10749 | |
| 10750 | template<typename Derived> |
| 10751 | ExprResult |
| 10752 | TreeTransform<Derived>::TransformDeclRefExpr(DeclRefExpr *E) { |
| 10753 | NestedNameSpecifierLoc QualifierLoc; |
| 10754 | if (E->getQualifierLoc()) { |
| 10755 | QualifierLoc |
| 10756 | = getDerived().TransformNestedNameSpecifierLoc(E->getQualifierLoc()); |
| 10757 | if (!QualifierLoc) |
| 10758 | return ExprError(); |
| 10759 | } |
| 10760 | |
| 10761 | ValueDecl *ND |
| 10762 | = cast_or_null<ValueDecl>(getDerived().TransformDecl(E->getLocation(), |
| 10763 | E->getDecl())); |
| 10764 | if (!ND) |
| 10765 | return ExprError(); |
| 10766 | |
| 10767 | NamedDecl *Found = ND; |
| 10768 | if (E->getFoundDecl() != E->getDecl()) { |
| 10769 | Found = cast_or_null<NamedDecl>( |
| 10770 | getDerived().TransformDecl(E->getLocation(), E->getFoundDecl())); |
| 10771 | if (!Found) |
| 10772 | return ExprError(); |
| 10773 | } |
| 10774 | |
| 10775 | DeclarationNameInfo NameInfo = E->getNameInfo(); |
| 10776 | if (NameInfo.getName()) { |
| 10777 | NameInfo = getDerived().TransformDeclarationNameInfo(NameInfo); |
| 10778 | if (!NameInfo.getName()) |
| 10779 | return ExprError(); |
| 10780 | } |
| 10781 | |
| 10782 | if (!getDerived().AlwaysRebuild() && |
| 10783 | QualifierLoc == E->getQualifierLoc() && |
| 10784 | ND == E->getDecl() && |
| 10785 | Found == E->getFoundDecl() && |
| 10786 | NameInfo.getName() == E->getDecl()->getDeclName() && |
| 10787 | !E->hasExplicitTemplateArgs()) { |
| 10788 | |
| 10789 | // Mark it referenced in the new context regardless. |
| 10790 | // FIXME: this is a bit instantiation-specific. |
| 10791 | SemaRef.MarkDeclRefReferenced(E); |
| 10792 | |
| 10793 | return E; |
| 10794 | } |
| 10795 | |
| 10796 | TemplateArgumentListInfo TransArgs, *TemplateArgs = nullptr; |
| 10797 | if (E->hasExplicitTemplateArgs()) { |
| 10798 | TemplateArgs = &TransArgs; |
| 10799 | TransArgs.setLAngleLoc(E->getLAngleLoc()); |
| 10800 | TransArgs.setRAngleLoc(E->getRAngleLoc()); |
| 10801 | if (getDerived().TransformTemplateArguments(E->getTemplateArgs(), |
| 10802 | E->getNumTemplateArgs(), |
| 10803 | TransArgs)) |
| 10804 | return ExprError(); |
| 10805 | } |
| 10806 | |
| 10807 | return getDerived().RebuildDeclRefExpr(QualifierLoc, ND, NameInfo, |
| 10808 | Found, TemplateArgs); |
| 10809 | } |
| 10810 | |
| 10811 | template<typename Derived> |
| 10812 | ExprResult |
| 10813 | TreeTransform<Derived>::TransformIntegerLiteral(IntegerLiteral *E) { |
| 10814 | return E; |
| 10815 | } |
| 10816 | |
| 10817 | template <typename Derived> |
| 10818 | ExprResult TreeTransform<Derived>::TransformFixedPointLiteral( |
| 10819 | FixedPointLiteral *E) { |
| 10820 | return E; |
| 10821 | } |
| 10822 | |
| 10823 | template<typename Derived> |
| 10824 | ExprResult |
| 10825 | TreeTransform<Derived>::TransformFloatingLiteral(FloatingLiteral *E) { |
| 10826 | return E; |
| 10827 | } |
| 10828 | |
| 10829 | template<typename Derived> |
| 10830 | ExprResult |
| 10831 | TreeTransform<Derived>::TransformImaginaryLiteral(ImaginaryLiteral *E) { |
| 10832 | return E; |
| 10833 | } |
| 10834 | |
| 10835 | template<typename Derived> |
| 10836 | ExprResult |
| 10837 | TreeTransform<Derived>::TransformStringLiteral(StringLiteral *E) { |
| 10838 | return E; |
| 10839 | } |
| 10840 | |
| 10841 | template<typename Derived> |
| 10842 | ExprResult |
| 10843 | TreeTransform<Derived>::TransformCharacterLiteral(CharacterLiteral *E) { |
| 10844 | return E; |
| 10845 | } |
| 10846 | |
| 10847 | template<typename Derived> |
| 10848 | ExprResult |
| 10849 | TreeTransform<Derived>::TransformUserDefinedLiteral(UserDefinedLiteral *E) { |
| 10850 | return getDerived().TransformCallExpr(E); |
| 10851 | } |
| 10852 | |
| 10853 | template<typename Derived> |
| 10854 | ExprResult |
| 10855 | TreeTransform<Derived>::TransformGenericSelectionExpr(GenericSelectionExpr *E) { |
| 10856 | ExprResult ControllingExpr = |
| 10857 | getDerived().TransformExpr(E->getControllingExpr()); |
| 10858 | if (ControllingExpr.isInvalid()) |
| 10859 | return ExprError(); |
| 10860 | |
| 10861 | SmallVector<Expr *, 4> AssocExprs; |
| 10862 | SmallVector<TypeSourceInfo *, 4> AssocTypes; |
| 10863 | for (const GenericSelectionExpr::Association Assoc : E->associations()) { |
| 10864 | TypeSourceInfo *TSI = Assoc.getTypeSourceInfo(); |
| 10865 | if (TSI) { |
| 10866 | TypeSourceInfo *AssocType = getDerived().TransformType(TSI); |
| 10867 | if (!AssocType) |
| 10868 | return ExprError(); |
| 10869 | AssocTypes.push_back(AssocType); |
| 10870 | } else { |
| 10871 | AssocTypes.push_back(nullptr); |
| 10872 | } |
| 10873 | |
| 10874 | ExprResult AssocExpr = |
| 10875 | getDerived().TransformExpr(Assoc.getAssociationExpr()); |
| 10876 | if (AssocExpr.isInvalid()) |
| 10877 | return ExprError(); |
| 10878 | AssocExprs.push_back(AssocExpr.get()); |
| 10879 | } |
| 10880 | |
| 10881 | return getDerived().RebuildGenericSelectionExpr(E->getGenericLoc(), |
| 10882 | E->getDefaultLoc(), |
| 10883 | E->getRParenLoc(), |
| 10884 | ControllingExpr.get(), |
| 10885 | AssocTypes, |
| 10886 | AssocExprs); |
| 10887 | } |
| 10888 | |
| 10889 | template<typename Derived> |
| 10890 | ExprResult |
| 10891 | TreeTransform<Derived>::TransformParenExpr(ParenExpr *E) { |
| 10892 | ExprResult SubExpr = getDerived().TransformExpr(E->getSubExpr()); |
| 10893 | if (SubExpr.isInvalid()) |
| 10894 | return ExprError(); |
| 10895 | |
| 10896 | if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getSubExpr()) |
| 10897 | return E; |
| 10898 | |
| 10899 | return getDerived().RebuildParenExpr(SubExpr.get(), E->getLParen(), |
| 10900 | E->getRParen()); |
| 10901 | } |
| 10902 | |
| 10903 | /// The operand of a unary address-of operator has special rules: it's |
| 10904 | /// allowed to refer to a non-static member of a class even if there's no 'this' |
| 10905 | /// object available. |
| 10906 | template<typename Derived> |
| 10907 | ExprResult |
| 10908 | TreeTransform<Derived>::TransformAddressOfOperand(Expr *E) { |
| 10909 | if (DependentScopeDeclRefExpr *DRE = dyn_cast<DependentScopeDeclRefExpr>(E)) |
| 10910 | return getDerived().TransformDependentScopeDeclRefExpr(DRE, true, nullptr); |
| 10911 | else |
| 10912 | return getDerived().TransformExpr(E); |
| 10913 | } |
| 10914 | |
| 10915 | template<typename Derived> |
| 10916 | ExprResult |
| 10917 | TreeTransform<Derived>::TransformUnaryOperator(UnaryOperator *E) { |
| 10918 | ExprResult SubExpr; |
| 10919 | if (E->getOpcode() == UO_AddrOf) |
| 10920 | SubExpr = TransformAddressOfOperand(E->getSubExpr()); |
| 10921 | else |
| 10922 | SubExpr = TransformExpr(E->getSubExpr()); |
| 10923 | if (SubExpr.isInvalid()) |
| 10924 | return ExprError(); |
| 10925 | |
| 10926 | if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getSubExpr()) |
| 10927 | return E; |
| 10928 | |
| 10929 | return getDerived().RebuildUnaryOperator(E->getOperatorLoc(), |
| 10930 | E->getOpcode(), |
| 10931 | SubExpr.get()); |
| 10932 | } |
| 10933 | |
| 10934 | template<typename Derived> |
| 10935 | ExprResult |
| 10936 | TreeTransform<Derived>::TransformOffsetOfExpr(OffsetOfExpr *E) { |
| 10937 | // Transform the type. |
| 10938 | TypeSourceInfo *Type = getDerived().TransformType(E->getTypeSourceInfo()); |
| 10939 | if (!Type) |
| 10940 | return ExprError(); |
| 10941 | |
| 10942 | // Transform all of the components into components similar to what the |
| 10943 | // parser uses. |
| 10944 | // FIXME: It would be slightly more efficient in the non-dependent case to |
| 10945 | // just map FieldDecls, rather than requiring the rebuilder to look for |
| 10946 | // the fields again. However, __builtin_offsetof is rare enough in |
| 10947 | // template code that we don't care. |
| 10948 | bool ExprChanged = false; |
| 10949 | typedef Sema::OffsetOfComponent Component; |
| 10950 | SmallVector<Component, 4> Components; |
| 10951 | for (unsigned I = 0, N = E->getNumComponents(); I != N; ++I) { |
| 10952 | const OffsetOfNode &ON = E->getComponent(I); |
| 10953 | Component Comp; |
| 10954 | Comp.isBrackets = true; |
| 10955 | Comp.LocStart = ON.getSourceRange().getBegin(); |
| 10956 | Comp.LocEnd = ON.getSourceRange().getEnd(); |
| 10957 | switch (ON.getKind()) { |
| 10958 | case OffsetOfNode::Array: { |
| 10959 | Expr *FromIndex = E->getIndexExpr(ON.getArrayExprIndex()); |
| 10960 | ExprResult Index = getDerived().TransformExpr(FromIndex); |
| 10961 | if (Index.isInvalid()) |
| 10962 | return ExprError(); |
| 10963 | |
| 10964 | ExprChanged = ExprChanged || Index.get() != FromIndex; |
| 10965 | Comp.isBrackets = true; |
| 10966 | Comp.U.E = Index.get(); |
| 10967 | break; |
| 10968 | } |
| 10969 | |
| 10970 | case OffsetOfNode::Field: |
| 10971 | case OffsetOfNode::Identifier: |
| 10972 | Comp.isBrackets = false; |
| 10973 | Comp.U.IdentInfo = ON.getFieldName(); |
| 10974 | if (!Comp.U.IdentInfo) |
| 10975 | continue; |
| 10976 | |
| 10977 | break; |
| 10978 | |
| 10979 | case OffsetOfNode::Base: |
| 10980 | // Will be recomputed during the rebuild. |
| 10981 | continue; |
| 10982 | } |
| 10983 | |
| 10984 | Components.push_back(Comp); |
| 10985 | } |
| 10986 | |
| 10987 | // If nothing changed, retain the existing expression. |
| 10988 | if (!getDerived().AlwaysRebuild() && |
| 10989 | Type == E->getTypeSourceInfo() && |
| 10990 | !ExprChanged) |
| 10991 | return E; |
| 10992 | |
| 10993 | // Build a new offsetof expression. |
| 10994 | return getDerived().RebuildOffsetOfExpr(E->getOperatorLoc(), Type, |
| 10995 | Components, E->getRParenLoc()); |
| 10996 | } |
| 10997 | |
| 10998 | template<typename Derived> |
| 10999 | ExprResult |
| 11000 | TreeTransform<Derived>::TransformOpaqueValueExpr(OpaqueValueExpr *E) { |
| 11001 | assert((!E->getSourceExpr() || getDerived().AlreadyTransformed(E->getType())) &&(static_cast <bool> ((!E->getSourceExpr() || getDerived ().AlreadyTransformed(E->getType())) && "opaque value expression requires transformation" ) ? void (0) : __assert_fail ("(!E->getSourceExpr() || getDerived().AlreadyTransformed(E->getType())) && \"opaque value expression requires transformation\"" , "clang/lib/Sema/TreeTransform.h", 11002, __extension__ __PRETTY_FUNCTION__ )) |
| 11002 | "opaque value expression requires transformation")(static_cast <bool> ((!E->getSourceExpr() || getDerived ().AlreadyTransformed(E->getType())) && "opaque value expression requires transformation" ) ? void (0) : __assert_fail ("(!E->getSourceExpr() || getDerived().AlreadyTransformed(E->getType())) && \"opaque value expression requires transformation\"" , "clang/lib/Sema/TreeTransform.h", 11002, __extension__ __PRETTY_FUNCTION__ )); |
| 11003 | return E; |
| 11004 | } |
| 11005 | |
| 11006 | template<typename Derived> |
| 11007 | ExprResult |
| 11008 | TreeTransform<Derived>::TransformTypoExpr(TypoExpr *E) { |
| 11009 | return E; |
| 11010 | } |
| 11011 | |
| 11012 | template <typename Derived> |
| 11013 | ExprResult TreeTransform<Derived>::TransformRecoveryExpr(RecoveryExpr *E) { |
| 11014 | llvm::SmallVector<Expr *, 8> Children; |
| 11015 | bool Changed = false; |
| 11016 | for (Expr *C : E->subExpressions()) { |
| 11017 | ExprResult NewC = getDerived().TransformExpr(C); |
| 11018 | if (NewC.isInvalid()) |
| 11019 | return ExprError(); |
| 11020 | Children.push_back(NewC.get()); |
| 11021 | |
| 11022 | Changed |= NewC.get() != C; |
| 11023 | } |
| 11024 | if (!getDerived().AlwaysRebuild() && !Changed) |
| 11025 | return E; |
| 11026 | return getDerived().RebuildRecoveryExpr(E->getBeginLoc(), E->getEndLoc(), |
| 11027 | Children, E->getType()); |
| 11028 | } |
| 11029 | |
| 11030 | template<typename Derived> |
| 11031 | ExprResult |
| 11032 | TreeTransform<Derived>::TransformPseudoObjectExpr(PseudoObjectExpr *E) { |
| 11033 | // Rebuild the syntactic form. The original syntactic form has |
| 11034 | // opaque-value expressions in it, so strip those away and rebuild |
| 11035 | // the result. This is a really awful way of doing this, but the |
| 11036 | // better solution (rebuilding the semantic expressions and |
| 11037 | // rebinding OVEs as necessary) doesn't work; we'd need |
| 11038 | // TreeTransform to not strip away implicit conversions. |
| 11039 | Expr *newSyntacticForm = SemaRef.recreateSyntacticForm(E); |
| 11040 | ExprResult result = getDerived().TransformExpr(newSyntacticForm); |
| 11041 | if (result.isInvalid()) return ExprError(); |
| 11042 | |
| 11043 | // If that gives us a pseudo-object result back, the pseudo-object |
| 11044 | // expression must have been an lvalue-to-rvalue conversion which we |
| 11045 | // should reapply. |
| 11046 | if (result.get()->hasPlaceholderType(BuiltinType::PseudoObject)) |
| 11047 | result = SemaRef.checkPseudoObjectRValue(result.get()); |
| 11048 | |
| 11049 | return result; |
| 11050 | } |
| 11051 | |
| 11052 | template<typename Derived> |
| 11053 | ExprResult |
| 11054 | TreeTransform<Derived>::TransformUnaryExprOrTypeTraitExpr( |
| 11055 | UnaryExprOrTypeTraitExpr *E) { |
| 11056 | if (E->isArgumentType()) { |
| 11057 | TypeSourceInfo *OldT = E->getArgumentTypeInfo(); |
| 11058 | |
| 11059 | TypeSourceInfo *NewT = getDerived().TransformType(OldT); |
| 11060 | if (!NewT) |
| 11061 | return ExprError(); |
| 11062 | |
| 11063 | if (!getDerived().AlwaysRebuild() && OldT == NewT) |
| 11064 | return E; |
| 11065 | |
| 11066 | return getDerived().RebuildUnaryExprOrTypeTrait(NewT, E->getOperatorLoc(), |
| 11067 | E->getKind(), |
| 11068 | E->getSourceRange()); |
| 11069 | } |
| 11070 | |
| 11071 | // C++0x [expr.sizeof]p1: |
| 11072 | // The operand is either an expression, which is an unevaluated operand |
| 11073 | // [...] |
| 11074 | EnterExpressionEvaluationContext Unevaluated( |
| 11075 | SemaRef, Sema::ExpressionEvaluationContext::Unevaluated, |
| 11076 | Sema::ReuseLambdaContextDecl); |
| 11077 | |
| 11078 | // Try to recover if we have something like sizeof(T::X) where X is a type. |
| 11079 | // Notably, there must be *exactly* one set of parens if X is a type. |
| 11080 | TypeSourceInfo *RecoveryTSI = nullptr; |
| 11081 | ExprResult SubExpr; |
| 11082 | auto *PE = dyn_cast<ParenExpr>(E->getArgumentExpr()); |
| 11083 | if (auto *DRE = |
| 11084 | PE ? dyn_cast<DependentScopeDeclRefExpr>(PE->getSubExpr()) : nullptr) |
| 11085 | SubExpr = getDerived().TransformParenDependentScopeDeclRefExpr( |
| 11086 | PE, DRE, false, &RecoveryTSI); |
| 11087 | else |
| 11088 | SubExpr = getDerived().TransformExpr(E->getArgumentExpr()); |
| 11089 | |
| 11090 | if (RecoveryTSI) { |
| 11091 | return getDerived().RebuildUnaryExprOrTypeTrait( |
| 11092 | RecoveryTSI, E->getOperatorLoc(), E->getKind(), E->getSourceRange()); |
| 11093 | } else if (SubExpr.isInvalid()) |
| 11094 | return ExprError(); |
| 11095 | |
| 11096 | if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getArgumentExpr()) |
| 11097 | return E; |
| 11098 | |
| 11099 | return getDerived().RebuildUnaryExprOrTypeTrait(SubExpr.get(), |
| 11100 | E->getOperatorLoc(), |
| 11101 | E->getKind(), |
| 11102 | E->getSourceRange()); |
| 11103 | } |
| 11104 | |
| 11105 | template<typename Derived> |
| 11106 | ExprResult |
| 11107 | TreeTransform<Derived>::TransformArraySubscriptExpr(ArraySubscriptExpr *E) { |
| 11108 | ExprResult LHS = getDerived().TransformExpr(E->getLHS()); |
| 11109 | if (LHS.isInvalid()) |
| 11110 | return ExprError(); |
| 11111 | |
| 11112 | ExprResult RHS = getDerived().TransformExpr(E->getRHS()); |
| 11113 | if (RHS.isInvalid()) |
| 11114 | return ExprError(); |
| 11115 | |
| 11116 | |
| 11117 | if (!getDerived().AlwaysRebuild() && |
| 11118 | LHS.get() == E->getLHS() && |
| 11119 | RHS.get() == E->getRHS()) |
| 11120 | return E; |
| 11121 | |
| 11122 | return getDerived().RebuildArraySubscriptExpr( |
| 11123 | LHS.get(), |
| 11124 | /*FIXME:*/ E->getLHS()->getBeginLoc(), RHS.get(), E->getRBracketLoc()); |
| 11125 | } |
| 11126 | |
| 11127 | template <typename Derived> |
| 11128 | ExprResult |
| 11129 | TreeTransform<Derived>::TransformMatrixSubscriptExpr(MatrixSubscriptExpr *E) { |
| 11130 | ExprResult Base = getDerived().TransformExpr(E->getBase()); |
| 11131 | if (Base.isInvalid()) |
| 11132 | return ExprError(); |
| 11133 | |
| 11134 | ExprResult RowIdx = getDerived().TransformExpr(E->getRowIdx()); |
| 11135 | if (RowIdx.isInvalid()) |
| 11136 | return ExprError(); |
| 11137 | |
| 11138 | ExprResult ColumnIdx = getDerived().TransformExpr(E->getColumnIdx()); |
| 11139 | if (ColumnIdx.isInvalid()) |
| 11140 | return ExprError(); |
| 11141 | |
| 11142 | if (!getDerived().AlwaysRebuild() && Base.get() == E->getBase() && |
| 11143 | RowIdx.get() == E->getRowIdx() && ColumnIdx.get() == E->getColumnIdx()) |
| 11144 | return E; |
| 11145 | |
| 11146 | return getDerived().RebuildMatrixSubscriptExpr( |
| 11147 | Base.get(), RowIdx.get(), ColumnIdx.get(), E->getRBracketLoc()); |
| 11148 | } |
| 11149 | |
| 11150 | template <typename Derived> |
| 11151 | ExprResult |
| 11152 | TreeTransform<Derived>::TransformOMPArraySectionExpr(OMPArraySectionExpr *E) { |
| 11153 | ExprResult Base = getDerived().TransformExpr(E->getBase()); |
| 11154 | if (Base.isInvalid()) |
| 11155 | return ExprError(); |
| 11156 | |
| 11157 | ExprResult LowerBound; |
| 11158 | if (E->getLowerBound()) { |
| 11159 | LowerBound = getDerived().TransformExpr(E->getLowerBound()); |
| 11160 | if (LowerBound.isInvalid()) |
| 11161 | return ExprError(); |
| 11162 | } |
| 11163 | |
| 11164 | ExprResult Length; |
| 11165 | if (E->getLength()) { |
| 11166 | Length = getDerived().TransformExpr(E->getLength()); |
| 11167 | if (Length.isInvalid()) |
| 11168 | return ExprError(); |
| 11169 | } |
| 11170 | |
| 11171 | ExprResult Stride; |
| 11172 | if (Expr *Str = E->getStride()) { |
| 11173 | Stride = getDerived().TransformExpr(Str); |
| 11174 | if (Stride.isInvalid()) |
| 11175 | return ExprError(); |
| 11176 | } |
| 11177 | |
| 11178 | if (!getDerived().AlwaysRebuild() && Base.get() == E->getBase() && |
| 11179 | LowerBound.get() == E->getLowerBound() && Length.get() == E->getLength()) |
| 11180 | return E; |
| 11181 | |
| 11182 | return getDerived().RebuildOMPArraySectionExpr( |
| 11183 | Base.get(), E->getBase()->getEndLoc(), LowerBound.get(), |
| 11184 | E->getColonLocFirst(), E->getColonLocSecond(), Length.get(), Stride.get(), |
| 11185 | E->getRBracketLoc()); |
| 11186 | } |
| 11187 | |
| 11188 | template <typename Derived> |
| 11189 | ExprResult |
| 11190 | TreeTransform<Derived>::TransformOMPArrayShapingExpr(OMPArrayShapingExpr *E) { |
| 11191 | ExprResult Base = getDerived().TransformExpr(E->getBase()); |
| 11192 | if (Base.isInvalid()) |
| 11193 | return ExprError(); |
| 11194 | |
| 11195 | SmallVector<Expr *, 4> Dims; |
| 11196 | bool ErrorFound = false; |
| 11197 | for (Expr *Dim : E->getDimensions()) { |
| 11198 | ExprResult DimRes = getDerived().TransformExpr(Dim); |
| 11199 | if (DimRes.isInvalid()) { |
| 11200 | ErrorFound = true; |
| 11201 | continue; |
| 11202 | } |
| 11203 | Dims.push_back(DimRes.get()); |
| 11204 | } |
| 11205 | |
| 11206 | if (ErrorFound) |
| 11207 | return ExprError(); |
| 11208 | return getDerived().RebuildOMPArrayShapingExpr(Base.get(), E->getLParenLoc(), |
| 11209 | E->getRParenLoc(), Dims, |
| 11210 | E->getBracketsRanges()); |
| 11211 | } |
| 11212 | |
| 11213 | template <typename Derived> |
| 11214 | ExprResult |
| 11215 | TreeTransform<Derived>::TransformOMPIteratorExpr(OMPIteratorExpr *E) { |
| 11216 | unsigned NumIterators = E->numOfIterators(); |
| 11217 | SmallVector<Sema::OMPIteratorData, 4> Data(NumIterators); |
| 11218 | |
| 11219 | bool ErrorFound = false; |
| 11220 | bool NeedToRebuild = getDerived().AlwaysRebuild(); |
| 11221 | for (unsigned I = 0; I < NumIterators; ++I) { |
| 11222 | auto *D = cast<VarDecl>(E->getIteratorDecl(I)); |
| 11223 | Data[I].DeclIdent = D->getIdentifier(); |
| 11224 | Data[I].DeclIdentLoc = D->getLocation(); |
| 11225 | if (D->getLocation() == D->getBeginLoc()) { |
| 11226 | assert(SemaRef.Context.hasSameType(D->getType(), SemaRef.Context.IntTy) &&(static_cast <bool> (SemaRef.Context.hasSameType(D-> getType(), SemaRef.Context.IntTy) && "Implicit type must be int." ) ? void (0) : __assert_fail ("SemaRef.Context.hasSameType(D->getType(), SemaRef.Context.IntTy) && \"Implicit type must be int.\"" , "clang/lib/Sema/TreeTransform.h", 11227, __extension__ __PRETTY_FUNCTION__ )) |
| 11227 | "Implicit type must be int.")(static_cast <bool> (SemaRef.Context.hasSameType(D-> getType(), SemaRef.Context.IntTy) && "Implicit type must be int." ) ? void (0) : __assert_fail ("SemaRef.Context.hasSameType(D->getType(), SemaRef.Context.IntTy) && \"Implicit type must be int.\"" , "clang/lib/Sema/TreeTransform.h", 11227, __extension__ __PRETTY_FUNCTION__ )); |
| 11228 | } else { |
| 11229 | TypeSourceInfo *TSI = getDerived().TransformType(D->getTypeSourceInfo()); |
| 11230 | QualType DeclTy = getDerived().TransformType(D->getType()); |
| 11231 | Data[I].Type = SemaRef.CreateParsedType(DeclTy, TSI); |
| 11232 | } |
| 11233 | OMPIteratorExpr::IteratorRange Range = E->getIteratorRange(I); |
| 11234 | ExprResult Begin = getDerived().TransformExpr(Range.Begin); |
| 11235 | ExprResult End = getDerived().TransformExpr(Range.End); |
| 11236 | ExprResult Step = getDerived().TransformExpr(Range.Step); |
| 11237 | ErrorFound = ErrorFound || |
| 11238 | !(!D->getTypeSourceInfo() || (Data[I].Type.getAsOpaquePtr() && |
| 11239 | !Data[I].Type.get().isNull())) || |
| 11240 | Begin.isInvalid() || End.isInvalid() || Step.isInvalid(); |
| 11241 | if (ErrorFound) |
| 11242 | continue; |
| 11243 | Data[I].Range.Begin = Begin.get(); |
| 11244 | Data[I].Range.End = End.get(); |
| 11245 | Data[I].Range.Step = Step.get(); |
| 11246 | Data[I].AssignLoc = E->getAssignLoc(I); |
| 11247 | Data[I].ColonLoc = E->getColonLoc(I); |
| 11248 | Data[I].SecColonLoc = E->getSecondColonLoc(I); |
| 11249 | NeedToRebuild = |
| 11250 | NeedToRebuild || |
| 11251 | (D->getTypeSourceInfo() && Data[I].Type.get().getTypePtrOrNull() != |
| 11252 | D->getType().getTypePtrOrNull()) || |
| 11253 | Range.Begin != Data[I].Range.Begin || Range.End != Data[I].Range.End || |
| 11254 | Range.Step != Data[I].Range.Step; |
| 11255 | } |
| 11256 | if (ErrorFound) |
| 11257 | return ExprError(); |
| 11258 | if (!NeedToRebuild) |
| 11259 | return E; |
| 11260 | |
| 11261 | ExprResult Res = getDerived().RebuildOMPIteratorExpr( |
| 11262 | E->getIteratorKwLoc(), E->getLParenLoc(), E->getRParenLoc(), Data); |
| 11263 | if (!Res.isUsable()) |
| 11264 | return Res; |
| 11265 | auto *IE = cast<OMPIteratorExpr>(Res.get()); |
| 11266 | for (unsigned I = 0; I < NumIterators; ++I) |
| 11267 | getDerived().transformedLocalDecl(E->getIteratorDecl(I), |
| 11268 | IE->getIteratorDecl(I)); |
| 11269 | return Res; |
| 11270 | } |
| 11271 | |
| 11272 | template<typename Derived> |
| 11273 | ExprResult |
| 11274 | TreeTransform<Derived>::TransformCallExpr(CallExpr *E) { |
| 11275 | // Transform the callee. |
| 11276 | ExprResult Callee = getDerived().TransformExpr(E->getCallee()); |
| 11277 | if (Callee.isInvalid()) |
| 11278 | return ExprError(); |
| 11279 | |
| 11280 | // Transform arguments. |
| 11281 | bool ArgChanged = false; |
| 11282 | SmallVector<Expr*, 8> Args; |
| 11283 | if (getDerived().TransformExprs(E->getArgs(), E->getNumArgs(), true, Args, |
| 11284 | &ArgChanged)) |
| 11285 | return ExprError(); |
| 11286 | |
| 11287 | if (!getDerived().AlwaysRebuild() && |
| 11288 | Callee.get() == E->getCallee() && |
| 11289 | !ArgChanged) |
| 11290 | return SemaRef.MaybeBindToTemporary(E); |
| 11291 | |
| 11292 | // FIXME: Wrong source location information for the '('. |
| 11293 | SourceLocation FakeLParenLoc |
| 11294 | = ((Expr *)Callee.get())->getSourceRange().getBegin(); |
| 11295 | |
| 11296 | Sema::FPFeaturesStateRAII FPFeaturesState(getSema()); |
| 11297 | if (E->hasStoredFPFeatures()) { |
| 11298 | FPOptionsOverride NewOverrides = E->getFPFeatures(); |
| 11299 | getSema().CurFPFeatures = |
| 11300 | NewOverrides.applyOverrides(getSema().getLangOpts()); |
| 11301 | getSema().FpPragmaStack.CurrentValue = NewOverrides; |
| 11302 | } |
| 11303 | |
| 11304 | return getDerived().RebuildCallExpr(Callee.get(), FakeLParenLoc, |
| 11305 | Args, |
| 11306 | E->getRParenLoc()); |
| 11307 | } |
| 11308 | |
| 11309 | template<typename Derived> |
| 11310 | ExprResult |
| 11311 | TreeTransform<Derived>::TransformMemberExpr(MemberExpr *E) { |
| 11312 | ExprResult Base = getDerived().TransformExpr(E->getBase()); |
| 11313 | if (Base.isInvalid()) |
| 11314 | return ExprError(); |
| 11315 | |
| 11316 | NestedNameSpecifierLoc QualifierLoc; |
| 11317 | if (E->hasQualifier()) { |
| 11318 | QualifierLoc |
| 11319 | = getDerived().TransformNestedNameSpecifierLoc(E->getQualifierLoc()); |
| 11320 | |
| 11321 | if (!QualifierLoc) |
| 11322 | return ExprError(); |
| 11323 | } |
| 11324 | SourceLocation TemplateKWLoc = E->getTemplateKeywordLoc(); |
| 11325 | |
| 11326 | ValueDecl *Member |
| 11327 | = cast_or_null<ValueDecl>(getDerived().TransformDecl(E->getMemberLoc(), |
| 11328 | E->getMemberDecl())); |
| 11329 | if (!Member) |
| 11330 | return ExprError(); |
| 11331 | |
| 11332 | NamedDecl *FoundDecl = E->getFoundDecl(); |
| 11333 | if (FoundDecl == E->getMemberDecl()) { |
| 11334 | FoundDecl = Member; |
| 11335 | } else { |
| 11336 | FoundDecl = cast_or_null<NamedDecl>( |
| 11337 | getDerived().TransformDecl(E->getMemberLoc(), FoundDecl)); |
| 11338 | if (!FoundDecl) |
| 11339 | return ExprError(); |
| 11340 | } |
| 11341 | |
| 11342 | if (!getDerived().AlwaysRebuild() && |
| 11343 | Base.get() == E->getBase() && |
| 11344 | QualifierLoc == E->getQualifierLoc() && |
| 11345 | Member == E->getMemberDecl() && |
| 11346 | FoundDecl == E->getFoundDecl() && |
| 11347 | !E->hasExplicitTemplateArgs()) { |
| 11348 | |
| 11349 | // Skip for member expression of (this->f), rebuilt thisi->f is needed |
| 11350 | // for Openmp where the field need to be privatizized in the case. |
| 11351 | if (!(isa<CXXThisExpr>(E->getBase()) && |
| 11352 | getSema().isOpenMPRebuildMemberExpr(cast<ValueDecl>(Member)))) { |
| 11353 | // Mark it referenced in the new context regardless. |
| 11354 | // FIXME: this is a bit instantiation-specific. |
| 11355 | SemaRef.MarkMemberReferenced(E); |
| 11356 | return E; |
| 11357 | } |
| 11358 | } |
| 11359 | |
| 11360 | TemplateArgumentListInfo TransArgs; |
| 11361 | if (E->hasExplicitTemplateArgs()) { |
| 11362 | TransArgs.setLAngleLoc(E->getLAngleLoc()); |
| 11363 | TransArgs.setRAngleLoc(E->getRAngleLoc()); |
| 11364 | if (getDerived().TransformTemplateArguments(E->getTemplateArgs(), |
| 11365 | E->getNumTemplateArgs(), |
| 11366 | TransArgs)) |
| 11367 | return ExprError(); |
| 11368 | } |
| 11369 | |
| 11370 | // FIXME: Bogus source location for the operator |
| 11371 | SourceLocation FakeOperatorLoc = |
| 11372 | SemaRef.getLocForEndOfToken(E->getBase()->getSourceRange().getEnd()); |
| 11373 | |
| 11374 | // FIXME: to do this check properly, we will need to preserve the |
| 11375 | // first-qualifier-in-scope here, just in case we had a dependent |
| 11376 | // base (and therefore couldn't do the check) and a |
| 11377 | // nested-name-qualifier (and therefore could do the lookup). |
| 11378 | NamedDecl *FirstQualifierInScope = nullptr; |
| 11379 | DeclarationNameInfo MemberNameInfo = E->getMemberNameInfo(); |
| 11380 | if (MemberNameInfo.getName()) { |
| 11381 | MemberNameInfo = getDerived().TransformDeclarationNameInfo(MemberNameInfo); |
| 11382 | if (!MemberNameInfo.getName()) |
| 11383 | return ExprError(); |
| 11384 | } |
| 11385 | |
| 11386 | return getDerived().RebuildMemberExpr(Base.get(), FakeOperatorLoc, |
| 11387 | E->isArrow(), |
| 11388 | QualifierLoc, |
| 11389 | TemplateKWLoc, |
| 11390 | MemberNameInfo, |
| 11391 | Member, |
| 11392 | FoundDecl, |
| 11393 | (E->hasExplicitTemplateArgs() |
| 11394 | ? &TransArgs : nullptr), |
| 11395 | FirstQualifierInScope); |
| 11396 | } |
| 11397 | |
| 11398 | template<typename Derived> |
| 11399 | ExprResult |
| 11400 | TreeTransform<Derived>::TransformBinaryOperator(BinaryOperator *E) { |
| 11401 | ExprResult LHS = getDerived().TransformExpr(E->getLHS()); |
| 11402 | if (LHS.isInvalid()) |
| 11403 | return ExprError(); |
| 11404 | |
| 11405 | ExprResult RHS = getDerived().TransformExpr(E->getRHS()); |
| 11406 | if (RHS.isInvalid()) |
| 11407 | return ExprError(); |
| 11408 | |
| 11409 | if (!getDerived().AlwaysRebuild() && |
| 11410 | LHS.get() == E->getLHS() && |
| 11411 | RHS.get() == E->getRHS()) |
| 11412 | return E; |
| 11413 | |
| 11414 | if (E->isCompoundAssignmentOp()) |
| 11415 | // FPFeatures has already been established from trailing storage |
| 11416 | return getDerived().RebuildBinaryOperator( |
| 11417 | E->getOperatorLoc(), E->getOpcode(), LHS.get(), RHS.get()); |
| 11418 | Sema::FPFeaturesStateRAII FPFeaturesState(getSema()); |
| 11419 | FPOptionsOverride NewOverrides(E->getFPFeatures()); |
| 11420 | getSema().CurFPFeatures = |
| 11421 | NewOverrides.applyOverrides(getSema().getLangOpts()); |
| 11422 | getSema().FpPragmaStack.CurrentValue = NewOverrides; |
| 11423 | return getDerived().RebuildBinaryOperator(E->getOperatorLoc(), E->getOpcode(), |
| 11424 | LHS.get(), RHS.get()); |
| 11425 | } |
| 11426 | |
| 11427 | template <typename Derived> |
| 11428 | ExprResult TreeTransform<Derived>::TransformCXXRewrittenBinaryOperator( |
| 11429 | CXXRewrittenBinaryOperator *E) { |
| 11430 | CXXRewrittenBinaryOperator::DecomposedForm Decomp = E->getDecomposedForm(); |
| 11431 | |
| 11432 | ExprResult LHS = getDerived().TransformExpr(const_cast<Expr*>(Decomp.LHS)); |
| 11433 | if (LHS.isInvalid()) |
| 11434 | return ExprError(); |
| 11435 | |
| 11436 | ExprResult RHS = getDerived().TransformExpr(const_cast<Expr*>(Decomp.RHS)); |
| 11437 | if (RHS.isInvalid()) |
| 11438 | return ExprError(); |
| 11439 | |
| 11440 | // Extract the already-resolved callee declarations so that we can restrict |
| 11441 | // ourselves to using them as the unqualified lookup results when rebuilding. |
| 11442 | UnresolvedSet<2> UnqualLookups; |
| 11443 | bool ChangedAnyLookups = false; |
| 11444 | Expr *PossibleBinOps[] = {E->getSemanticForm(), |
| 11445 | const_cast<Expr *>(Decomp.InnerBinOp)}; |
| 11446 | for (Expr *PossibleBinOp : PossibleBinOps) { |
| 11447 | auto *Op = dyn_cast<CXXOperatorCallExpr>(PossibleBinOp->IgnoreImplicit()); |
| 11448 | if (!Op) |
| 11449 | continue; |
| 11450 | auto *Callee = dyn_cast<DeclRefExpr>(Op->getCallee()->IgnoreImplicit()); |
| 11451 | if (!Callee || isa<CXXMethodDecl>(Callee->getDecl())) |
| 11452 | continue; |
| 11453 | |
| 11454 | // Transform the callee in case we built a call to a local extern |
| 11455 | // declaration. |
| 11456 | NamedDecl *Found = cast_or_null<NamedDecl>(getDerived().TransformDecl( |
| 11457 | E->getOperatorLoc(), Callee->getFoundDecl())); |
| 11458 | if (!Found) |
| 11459 | return ExprError(); |
| 11460 | if (Found != Callee->getFoundDecl()) |
| 11461 | ChangedAnyLookups = true; |
| 11462 | UnqualLookups.addDecl(Found); |
| 11463 | } |
| 11464 | |
| 11465 | if (!getDerived().AlwaysRebuild() && !ChangedAnyLookups && |
| 11466 | LHS.get() == Decomp.LHS && RHS.get() == Decomp.RHS) { |
| 11467 | // Mark all functions used in the rewrite as referenced. Note that when |
| 11468 | // a < b is rewritten to (a <=> b) < 0, both the <=> and the < might be |
| 11469 | // function calls, and/or there might be a user-defined conversion sequence |
| 11470 | // applied to the operands of the <. |
| 11471 | // FIXME: this is a bit instantiation-specific. |
| 11472 | const Expr *StopAt[] = {Decomp.LHS, Decomp.RHS}; |
| 11473 | SemaRef.MarkDeclarationsReferencedInExpr(E, false, StopAt); |
| 11474 | return E; |
| 11475 | } |
| 11476 | |
| 11477 | return getDerived().RebuildCXXRewrittenBinaryOperator( |
| 11478 | E->getOperatorLoc(), Decomp.Opcode, UnqualLookups, LHS.get(), RHS.get()); |
| 11479 | } |
| 11480 | |
| 11481 | template<typename Derived> |
| 11482 | ExprResult |
| 11483 | TreeTransform<Derived>::TransformCompoundAssignOperator( |
| 11484 | CompoundAssignOperator *E) { |
| 11485 | Sema::FPFeaturesStateRAII FPFeaturesState(getSema()); |
| 11486 | FPOptionsOverride NewOverrides(E->getFPFeatures()); |
| 11487 | getSema().CurFPFeatures = |
| 11488 | NewOverrides.applyOverrides(getSema().getLangOpts()); |
| 11489 | getSema().FpPragmaStack.CurrentValue = NewOverrides; |
| 11490 | return getDerived().TransformBinaryOperator(E); |
| 11491 | } |
| 11492 | |
| 11493 | template<typename Derived> |
| 11494 | ExprResult TreeTransform<Derived>:: |
| 11495 | TransformBinaryConditionalOperator(BinaryConditionalOperator *e) { |
| 11496 | // Just rebuild the common and RHS expressions and see whether we |
| 11497 | // get any changes. |
| 11498 | |
| 11499 | ExprResult commonExpr = getDerived().TransformExpr(e->getCommon()); |
| 11500 | if (commonExpr.isInvalid()) |
| 11501 | return ExprError(); |
| 11502 | |
| 11503 | ExprResult rhs = getDerived().TransformExpr(e->getFalseExpr()); |
| 11504 | if (rhs.isInvalid()) |
| 11505 | return ExprError(); |
| 11506 | |
| 11507 | if (!getDerived().AlwaysRebuild() && |
| 11508 | commonExpr.get() == e->getCommon() && |
| 11509 | rhs.get() == e->getFalseExpr()) |
| 11510 | return e; |
| 11511 | |
| 11512 | return getDerived().RebuildConditionalOperator(commonExpr.get(), |
| 11513 | e->getQuestionLoc(), |
| 11514 | nullptr, |
| 11515 | e->getColonLoc(), |
| 11516 | rhs.get()); |
| 11517 | } |
| 11518 | |
| 11519 | template<typename Derived> |
| 11520 | ExprResult |
| 11521 | TreeTransform<Derived>::TransformConditionalOperator(ConditionalOperator *E) { |
| 11522 | ExprResult Cond = getDerived().TransformExpr(E->getCond()); |
| 11523 | if (Cond.isInvalid()) |
| 11524 | return ExprError(); |
| 11525 | |
| 11526 | ExprResult LHS = getDerived().TransformExpr(E->getLHS()); |
| 11527 | if (LHS.isInvalid()) |
| 11528 | return ExprError(); |
| 11529 | |
| 11530 | ExprResult RHS = getDerived().TransformExpr(E->getRHS()); |
| 11531 | if (RHS.isInvalid()) |
| 11532 | return ExprError(); |
| 11533 | |
| 11534 | if (!getDerived().AlwaysRebuild() && |
| 11535 | Cond.get() == E->getCond() && |
| 11536 | LHS.get() == E->getLHS() && |
| 11537 | RHS.get() == E->getRHS()) |
| 11538 | return E; |
| 11539 | |
| 11540 | return getDerived().RebuildConditionalOperator(Cond.get(), |
| 11541 | E->getQuestionLoc(), |
| 11542 | LHS.get(), |
| 11543 | E->getColonLoc(), |
| 11544 | RHS.get()); |
| 11545 | } |
| 11546 | |
| 11547 | template<typename Derived> |
| 11548 | ExprResult |
| 11549 | TreeTransform<Derived>::TransformImplicitCastExpr(ImplicitCastExpr *E) { |
| 11550 | // Implicit casts are eliminated during transformation, since they |
| 11551 | // will be recomputed by semantic analysis after transformation. |
| 11552 | return getDerived().TransformExpr(E->getSubExprAsWritten()); |
| 11553 | } |
| 11554 | |
| 11555 | template<typename Derived> |
| 11556 | ExprResult |
| 11557 | TreeTransform<Derived>::TransformCStyleCastExpr(CStyleCastExpr *E) { |
| 11558 | TypeSourceInfo *Type = getDerived().TransformType(E->getTypeInfoAsWritten()); |
| 11559 | if (!Type) |
| 11560 | return ExprError(); |
| 11561 | |
| 11562 | ExprResult SubExpr |
| 11563 | = getDerived().TransformExpr(E->getSubExprAsWritten()); |
| 11564 | if (SubExpr.isInvalid()) |
| 11565 | return ExprError(); |
| 11566 | |
| 11567 | if (!getDerived().AlwaysRebuild() && |
| 11568 | Type == E->getTypeInfoAsWritten() && |
| 11569 | SubExpr.get() == E->getSubExpr()) |
| 11570 | return E; |
| 11571 | |
| 11572 | return getDerived().RebuildCStyleCastExpr(E->getLParenLoc(), |
| 11573 | Type, |
| 11574 | E->getRParenLoc(), |
| 11575 | SubExpr.get()); |
| 11576 | } |
| 11577 | |
| 11578 | template<typename Derived> |
| 11579 | ExprResult |
| 11580 | TreeTransform<Derived>::TransformCompoundLiteralExpr(CompoundLiteralExpr *E) { |
| 11581 | TypeSourceInfo *OldT = E->getTypeSourceInfo(); |
| 11582 | TypeSourceInfo *NewT = getDerived().TransformType(OldT); |
| 11583 | if (!NewT) |
| 11584 | return ExprError(); |
| 11585 | |
| 11586 | ExprResult Init = getDerived().TransformExpr(E->getInitializer()); |
| 11587 | if (Init.isInvalid()) |
| 11588 | return ExprError(); |
| 11589 | |
| 11590 | if (!getDerived().AlwaysRebuild() && |
| 11591 | OldT == NewT && |
| 11592 | Init.get() == E->getInitializer()) |
| 11593 | return SemaRef.MaybeBindToTemporary(E); |
| 11594 | |
| 11595 | // Note: the expression type doesn't necessarily match the |
| 11596 | // type-as-written, but that's okay, because it should always be |
| 11597 | // derivable from the initializer. |
| 11598 | |
| 11599 | return getDerived().RebuildCompoundLiteralExpr( |
| 11600 | E->getLParenLoc(), NewT, |
| 11601 | /*FIXME:*/ E->getInitializer()->getEndLoc(), Init.get()); |
| 11602 | } |
| 11603 | |
| 11604 | template<typename Derived> |
| 11605 | ExprResult |
| 11606 | TreeTransform<Derived>::TransformExtVectorElementExpr(ExtVectorElementExpr *E) { |
| 11607 | ExprResult Base = getDerived().TransformExpr(E->getBase()); |
| 11608 | if (Base.isInvalid()) |
| 11609 | return ExprError(); |
| 11610 | |
| 11611 | if (!getDerived().AlwaysRebuild() && |
| 11612 | Base.get() == E->getBase()) |
| 11613 | return E; |
| 11614 | |
| 11615 | // FIXME: Bad source location |
| 11616 | SourceLocation FakeOperatorLoc = |
| 11617 | SemaRef.getLocForEndOfToken(E->getBase()->getEndLoc()); |
| 11618 | return getDerived().RebuildExtVectorElementExpr( |
| 11619 | Base.get(), FakeOperatorLoc, E->isArrow(), E->getAccessorLoc(), |
| 11620 | E->getAccessor()); |
| 11621 | } |
| 11622 | |
| 11623 | template<typename Derived> |
| 11624 | ExprResult |
| 11625 | TreeTransform<Derived>::TransformInitListExpr(InitListExpr *E) { |
| 11626 | if (InitListExpr *Syntactic = E->getSyntacticForm()) |
| 11627 | E = Syntactic; |
| 11628 | |
| 11629 | bool InitChanged = false; |
| 11630 | |
| 11631 | EnterExpressionEvaluationContext Context( |
| 11632 | getSema(), EnterExpressionEvaluationContext::InitList); |
| 11633 | |
| 11634 | SmallVector<Expr*, 4> Inits; |
| 11635 | if (getDerived().TransformExprs(E->getInits(), E->getNumInits(), false, |
| 11636 | Inits, &InitChanged)) |
| 11637 | return ExprError(); |
| 11638 | |
| 11639 | if (!getDerived().AlwaysRebuild() && !InitChanged) { |
| 11640 | // FIXME: Attempt to reuse the existing syntactic form of the InitListExpr |
| 11641 | // in some cases. We can't reuse it in general, because the syntactic and |
| 11642 | // semantic forms are linked, and we can't know that semantic form will |
| 11643 | // match even if the syntactic form does. |
| 11644 | } |
| 11645 | |
| 11646 | return getDerived().RebuildInitList(E->getLBraceLoc(), Inits, |
| 11647 | E->getRBraceLoc()); |
| 11648 | } |
| 11649 | |
| 11650 | template<typename Derived> |
| 11651 | ExprResult |
| 11652 | TreeTransform<Derived>::TransformDesignatedInitExpr(DesignatedInitExpr *E) { |
| 11653 | Designation Desig; |
| 11654 | |
| 11655 | // transform the initializer value |
| 11656 | ExprResult Init = getDerived().TransformExpr(E->getInit()); |
| 11657 | if (Init.isInvalid()) |
| 11658 | return ExprError(); |
| 11659 | |
| 11660 | // transform the designators. |
| 11661 | SmallVector<Expr*, 4> ArrayExprs; |
| 11662 | bool ExprChanged = false; |
| 11663 | for (const DesignatedInitExpr::Designator &D : E->designators()) { |
| 11664 | if (D.isFieldDesignator()) { |
| 11665 | Desig.AddDesignator(Designator::CreateFieldDesignator( |
| 11666 | D.getFieldName(), D.getDotLoc(), D.getFieldLoc())); |
| 11667 | if (D.getFieldDecl()) { |
| 11668 | FieldDecl *Field = cast_or_null<FieldDecl>( |
| 11669 | getDerived().TransformDecl(D.getFieldLoc(), D.getFieldDecl())); |
| 11670 | if (Field != D.getFieldDecl()) |
| 11671 | // Rebuild the expression when the transformed FieldDecl is |
| 11672 | // different to the already assigned FieldDecl. |
| 11673 | ExprChanged = true; |
| 11674 | } else { |
| 11675 | // Ensure that the designator expression is rebuilt when there isn't |
| 11676 | // a resolved FieldDecl in the designator as we don't want to assign |
| 11677 | // a FieldDecl to a pattern designator that will be instantiated again. |
| 11678 | ExprChanged = true; |
| 11679 | } |
| 11680 | continue; |
| 11681 | } |
| 11682 | |
| 11683 | if (D.isArrayDesignator()) { |
| 11684 | ExprResult Index = getDerived().TransformExpr(E->getArrayIndex(D)); |
| 11685 | if (Index.isInvalid()) |
| 11686 | return ExprError(); |
| 11687 | |
| 11688 | Desig.AddDesignator( |
| 11689 | Designator::CreateArrayDesignator(Index.get(), D.getLBracketLoc())); |
| 11690 | |
| 11691 | ExprChanged = ExprChanged || Init.get() != E->getArrayIndex(D); |
| 11692 | ArrayExprs.push_back(Index.get()); |
| 11693 | continue; |
| 11694 | } |
| 11695 | |
| 11696 | assert(D.isArrayRangeDesignator() && "New kind of designator?")(static_cast <bool> (D.isArrayRangeDesignator() && "New kind of designator?") ? void (0) : __assert_fail ("D.isArrayRangeDesignator() && \"New kind of designator?\"" , "clang/lib/Sema/TreeTransform.h", 11696, __extension__ __PRETTY_FUNCTION__ )); |
| 11697 | ExprResult Start |
| 11698 | = getDerived().TransformExpr(E->getArrayRangeStart(D)); |
| 11699 | if (Start.isInvalid()) |
| 11700 | return ExprError(); |
| 11701 | |
| 11702 | ExprResult End = getDerived().TransformExpr(E->getArrayRangeEnd(D)); |
| 11703 | if (End.isInvalid()) |
| 11704 | return ExprError(); |
| 11705 | |
| 11706 | Desig.AddDesignator(Designator::CreateArrayRangeDesignator( |
| 11707 | Start.get(), End.get(), D.getLBracketLoc(), D.getEllipsisLoc())); |
| 11708 | |
| 11709 | ExprChanged = ExprChanged || Start.get() != E->getArrayRangeStart(D) || |
| 11710 | End.get() != E->getArrayRangeEnd(D); |
| 11711 | |
| 11712 | ArrayExprs.push_back(Start.get()); |
| 11713 | ArrayExprs.push_back(End.get()); |
| 11714 | } |
| 11715 | |
| 11716 | if (!getDerived().AlwaysRebuild() && |
| 11717 | Init.get() == E->getInit() && |
| 11718 | !ExprChanged) |
| 11719 | return E; |
| 11720 | |
| 11721 | return getDerived().RebuildDesignatedInitExpr(Desig, ArrayExprs, |
| 11722 | E->getEqualOrColonLoc(), |
| 11723 | E->usesGNUSyntax(), Init.get()); |
| 11724 | } |
| 11725 | |
| 11726 | // Seems that if TransformInitListExpr() only works on the syntactic form of an |
| 11727 | // InitListExpr, then a DesignatedInitUpdateExpr is not encountered. |
| 11728 | template<typename Derived> |
| 11729 | ExprResult |
| 11730 | TreeTransform<Derived>::TransformDesignatedInitUpdateExpr( |
| 11731 | DesignatedInitUpdateExpr *E) { |
| 11732 | llvm_unreachable("Unexpected DesignatedInitUpdateExpr in syntactic form of "::llvm::llvm_unreachable_internal("Unexpected DesignatedInitUpdateExpr in syntactic form of " "initializer", "clang/lib/Sema/TreeTransform.h", 11733) |
| 11733 | "initializer")::llvm::llvm_unreachable_internal("Unexpected DesignatedInitUpdateExpr in syntactic form of " "initializer", "clang/lib/Sema/TreeTransform.h", 11733); |
| 11734 | return ExprError(); |
| 11735 | } |
| 11736 | |
| 11737 | template<typename Derived> |
| 11738 | ExprResult |
| 11739 | TreeTransform<Derived>::TransformNoInitExpr( |
| 11740 | NoInitExpr *E) { |
| 11741 | llvm_unreachable("Unexpected NoInitExpr in syntactic form of initializer")::llvm::llvm_unreachable_internal("Unexpected NoInitExpr in syntactic form of initializer" , "clang/lib/Sema/TreeTransform.h", 11741); |
| 11742 | return ExprError(); |
| 11743 | } |
| 11744 | |
| 11745 | template<typename Derived> |
| 11746 | ExprResult |
| 11747 | TreeTransform<Derived>::TransformArrayInitLoopExpr(ArrayInitLoopExpr *E) { |
| 11748 | llvm_unreachable("Unexpected ArrayInitLoopExpr outside of initializer")::llvm::llvm_unreachable_internal("Unexpected ArrayInitLoopExpr outside of initializer" , "clang/lib/Sema/TreeTransform.h", 11748); |
| 11749 | return ExprError(); |
| 11750 | } |
| 11751 | |
| 11752 | template<typename Derived> |
| 11753 | ExprResult |
| 11754 | TreeTransform<Derived>::TransformArrayInitIndexExpr(ArrayInitIndexExpr *E) { |
| 11755 | llvm_unreachable("Unexpected ArrayInitIndexExpr outside of initializer")::llvm::llvm_unreachable_internal("Unexpected ArrayInitIndexExpr outside of initializer" , "clang/lib/Sema/TreeTransform.h", 11755); |
| 11756 | return ExprError(); |
| 11757 | } |
| 11758 | |
| 11759 | template<typename Derived> |
| 11760 | ExprResult |
| 11761 | TreeTransform<Derived>::TransformImplicitValueInitExpr( |
| 11762 | ImplicitValueInitExpr *E) { |
| 11763 | TemporaryBase Rebase(*this, E->getBeginLoc(), DeclarationName()); |
| 11764 | |
| 11765 | // FIXME: Will we ever have proper type location here? Will we actually |
| 11766 | // need to transform the type? |
| 11767 | QualType T = getDerived().TransformType(E->getType()); |
| 11768 | if (T.isNull()) |
| 11769 | return ExprError(); |
| 11770 | |
| 11771 | if (!getDerived().AlwaysRebuild() && |
| 11772 | T == E->getType()) |
| 11773 | return E; |
| 11774 | |
| 11775 | return getDerived().RebuildImplicitValueInitExpr(T); |
| 11776 | } |
| 11777 | |
| 11778 | template<typename Derived> |
| 11779 | ExprResult |
| 11780 | TreeTransform<Derived>::TransformVAArgExpr(VAArgExpr *E) { |
| 11781 | TypeSourceInfo *TInfo = getDerived().TransformType(E->getWrittenTypeInfo()); |
| 11782 | if (!TInfo) |
| 11783 | return ExprError(); |
| 11784 | |
| 11785 | ExprResult SubExpr = getDerived().TransformExpr(E->getSubExpr()); |
| 11786 | if (SubExpr.isInvalid()) |
| 11787 | return ExprError(); |
| 11788 | |
| 11789 | if (!getDerived().AlwaysRebuild() && |
| 11790 | TInfo == E->getWrittenTypeInfo() && |
| 11791 | SubExpr.get() == E->getSubExpr()) |
| 11792 | return E; |
| 11793 | |
| 11794 | return getDerived().RebuildVAArgExpr(E->getBuiltinLoc(), SubExpr.get(), |
| 11795 | TInfo, E->getRParenLoc()); |
| 11796 | } |
| 11797 | |
| 11798 | template<typename Derived> |
| 11799 | ExprResult |
| 11800 | TreeTransform<Derived>::TransformParenListExpr(ParenListExpr *E) { |
| 11801 | bool ArgumentChanged = false; |
| 11802 | SmallVector<Expr*, 4> Inits; |
| 11803 | if (TransformExprs(E->getExprs(), E->getNumExprs(), true, Inits, |
| 11804 | &ArgumentChanged)) |
| 11805 | return ExprError(); |
| 11806 | |
| 11807 | return getDerived().RebuildParenListExpr(E->getLParenLoc(), |
| 11808 | Inits, |
| 11809 | E->getRParenLoc()); |
| 11810 | } |
| 11811 | |
| 11812 | /// Transform an address-of-label expression. |
| 11813 | /// |
| 11814 | /// By default, the transformation of an address-of-label expression always |
| 11815 | /// rebuilds the expression, so that the label identifier can be resolved to |
| 11816 | /// the corresponding label statement by semantic analysis. |
| 11817 | template<typename Derived> |
| 11818 | ExprResult |
| 11819 | TreeTransform<Derived>::TransformAddrLabelExpr(AddrLabelExpr *E) { |
| 11820 | Decl *LD = getDerived().TransformDecl(E->getLabel()->getLocation(), |
| 11821 | E->getLabel()); |
| 11822 | if (!LD) |
| 11823 | return ExprError(); |
| 11824 | |
| 11825 | return getDerived().RebuildAddrLabelExpr(E->getAmpAmpLoc(), E->getLabelLoc(), |
| 11826 | cast<LabelDecl>(LD)); |
| 11827 | } |
| 11828 | |
| 11829 | template<typename Derived> |
| 11830 | ExprResult |
| 11831 | TreeTransform<Derived>::TransformStmtExpr(StmtExpr *E) { |
| 11832 | SemaRef.ActOnStartStmtExpr(); |
| 11833 | StmtResult SubStmt |
| 11834 | = getDerived().TransformCompoundStmt(E->getSubStmt(), true); |
| 11835 | if (SubStmt.isInvalid()) { |
| 11836 | SemaRef.ActOnStmtExprError(); |
| 11837 | return ExprError(); |
| 11838 | } |
| 11839 | |
| 11840 | unsigned OldDepth = E->getTemplateDepth(); |
| 11841 | unsigned NewDepth = getDerived().TransformTemplateDepth(OldDepth); |
| 11842 | |
| 11843 | if (!getDerived().AlwaysRebuild() && OldDepth == NewDepth && |
| 11844 | SubStmt.get() == E->getSubStmt()) { |
| 11845 | // Calling this an 'error' is unintuitive, but it does the right thing. |
| 11846 | SemaRef.ActOnStmtExprError(); |
| 11847 | return SemaRef.MaybeBindToTemporary(E); |
| 11848 | } |
| 11849 | |
| 11850 | return getDerived().RebuildStmtExpr(E->getLParenLoc(), SubStmt.get(), |
| 11851 | E->getRParenLoc(), NewDepth); |
| 11852 | } |
| 11853 | |
| 11854 | template<typename Derived> |
| 11855 | ExprResult |
| 11856 | TreeTransform<Derived>::TransformChooseExpr(ChooseExpr *E) { |
| 11857 | ExprResult Cond = getDerived().TransformExpr(E->getCond()); |
| 11858 | if (Cond.isInvalid()) |
| 11859 | return ExprError(); |
| 11860 | |
| 11861 | ExprResult LHS = getDerived().TransformExpr(E->getLHS()); |
| 11862 | if (LHS.isInvalid()) |
| 11863 | return ExprError(); |
| 11864 | |
| 11865 | ExprResult RHS = getDerived().TransformExpr(E->getRHS()); |
| 11866 | if (RHS.isInvalid()) |
| 11867 | return ExprError(); |
| 11868 | |
| 11869 | if (!getDerived().AlwaysRebuild() && |
| 11870 | Cond.get() == E->getCond() && |
| 11871 | LHS.get() == E->getLHS() && |
| 11872 | RHS.get() == E->getRHS()) |
| 11873 | return E; |
| 11874 | |
| 11875 | return getDerived().RebuildChooseExpr(E->getBuiltinLoc(), |
| 11876 | Cond.get(), LHS.get(), RHS.get(), |
| 11877 | E->getRParenLoc()); |
| 11878 | } |
| 11879 | |
| 11880 | template<typename Derived> |
| 11881 | ExprResult |
| 11882 | TreeTransform<Derived>::TransformGNUNullExpr(GNUNullExpr *E) { |
| 11883 | return E; |
| 11884 | } |
| 11885 | |
| 11886 | template<typename Derived> |
| 11887 | ExprResult |
| 11888 | TreeTransform<Derived>::TransformCXXOperatorCallExpr(CXXOperatorCallExpr *E) { |
| 11889 | switch (E->getOperator()) { |
| 11890 | case OO_New: |
| 11891 | case OO_Delete: |
| 11892 | case OO_Array_New: |
| 11893 | case OO_Array_Delete: |
| 11894 | llvm_unreachable("new and delete operators cannot use CXXOperatorCallExpr")::llvm::llvm_unreachable_internal("new and delete operators cannot use CXXOperatorCallExpr" , "clang/lib/Sema/TreeTransform.h", 11894); |
| 11895 | |
| 11896 | case OO_Subscript: |
| 11897 | case OO_Call: { |
| 11898 | // This is a call to an object's operator(). |
| 11899 | assert(E->getNumArgs() >= 1 && "Object call is missing arguments")(static_cast <bool> (E->getNumArgs() >= 1 && "Object call is missing arguments") ? void (0) : __assert_fail ("E->getNumArgs() >= 1 && \"Object call is missing arguments\"" , "clang/lib/Sema/TreeTransform.h", 11899, __extension__ __PRETTY_FUNCTION__ )); |
| 11900 | |
| 11901 | // Transform the object itself. |
| 11902 | ExprResult Object = getDerived().TransformExpr(E->getArg(0)); |
| 11903 | if (Object.isInvalid()) |
| 11904 | return ExprError(); |
| 11905 | |
| 11906 | // FIXME: Poor location information |
| 11907 | SourceLocation FakeLParenLoc = SemaRef.getLocForEndOfToken( |
| 11908 | static_cast<Expr *>(Object.get())->getEndLoc()); |
| 11909 | |
| 11910 | // Transform the call arguments. |
| 11911 | SmallVector<Expr*, 8> Args; |
| 11912 | if (getDerived().TransformExprs(E->getArgs() + 1, E->getNumArgs() - 1, true, |
| 11913 | Args)) |
| 11914 | return ExprError(); |
| 11915 | |
| 11916 | if (E->getOperator() == OO_Subscript) |
| 11917 | return getDerived().RebuildCxxSubscriptExpr(Object.get(), FakeLParenLoc, |
| 11918 | Args, E->getEndLoc()); |
| 11919 | |
| 11920 | return getDerived().RebuildCallExpr(Object.get(), FakeLParenLoc, Args, |
| 11921 | E->getEndLoc()); |
| 11922 | } |
| 11923 | |
| 11924 | #define OVERLOADED_OPERATOR(Name, Spelling, Token, Unary, Binary, MemberOnly) \ |
| 11925 | case OO_##Name: \ |
| 11926 | break; |
| 11927 | |
| 11928 | #define OVERLOADED_OPERATOR_MULTI(Name,Spelling,Unary,Binary,MemberOnly) |
| 11929 | #include "clang/Basic/OperatorKinds.def" |
| 11930 | |
| 11931 | case OO_Conditional: |
| 11932 | llvm_unreachable("conditional operator is not actually overloadable")::llvm::llvm_unreachable_internal("conditional operator is not actually overloadable" , "clang/lib/Sema/TreeTransform.h", 11932); |
| 11933 | |
| 11934 | case OO_None: |
| 11935 | case NUM_OVERLOADED_OPERATORS: |
| 11936 | llvm_unreachable("not an overloaded operator?")::llvm::llvm_unreachable_internal("not an overloaded operator?" , "clang/lib/Sema/TreeTransform.h", 11936); |
| 11937 | } |
| 11938 | |
| 11939 | ExprResult Callee = getDerived().TransformExpr(E->getCallee()); |
| 11940 | if (Callee.isInvalid()) |
| 11941 | return ExprError(); |
| 11942 | |
| 11943 | ExprResult First; |
| 11944 | if (E->getOperator() == OO_Amp) |
| 11945 | First = getDerived().TransformAddressOfOperand(E->getArg(0)); |
| 11946 | else |
| 11947 | First = getDerived().TransformExpr(E->getArg(0)); |
| 11948 | if (First.isInvalid()) |
| 11949 | return ExprError(); |
| 11950 | |
| 11951 | ExprResult Second; |
| 11952 | if (E->getNumArgs() == 2) { |
| 11953 | Second = getDerived().TransformExpr(E->getArg(1)); |
| 11954 | if (Second.isInvalid()) |
| 11955 | return ExprError(); |
| 11956 | } |
| 11957 | |
| 11958 | if (!getDerived().AlwaysRebuild() && |
| 11959 | Callee.get() == E->getCallee() && |
| 11960 | First.get() == E->getArg(0) && |
| 11961 | (E->getNumArgs() != 2 || Second.get() == E->getArg(1))) |
| 11962 | return SemaRef.MaybeBindToTemporary(E); |
| 11963 | |
| 11964 | Sema::FPFeaturesStateRAII FPFeaturesState(getSema()); |
| 11965 | FPOptionsOverride NewOverrides(E->getFPFeatures()); |
| 11966 | getSema().CurFPFeatures = |
| 11967 | NewOverrides.applyOverrides(getSema().getLangOpts()); |
| 11968 | getSema().FpPragmaStack.CurrentValue = NewOverrides; |
| 11969 | |
| 11970 | return getDerived().RebuildCXXOperatorCallExpr(E->getOperator(), |
| 11971 | E->getOperatorLoc(), |
| 11972 | Callee.get(), |
| 11973 | First.get(), |
| 11974 | Second.get()); |
| 11975 | } |
| 11976 | |
| 11977 | template<typename Derived> |
| 11978 | ExprResult |
| 11979 | TreeTransform<Derived>::TransformCXXMemberCallExpr(CXXMemberCallExpr *E) { |
| 11980 | return getDerived().TransformCallExpr(E); |
| 11981 | } |
| 11982 | |
| 11983 | template <typename Derived> |
| 11984 | ExprResult TreeTransform<Derived>::TransformSourceLocExpr(SourceLocExpr *E) { |
| 11985 | bool NeedRebuildFunc = E->getIdentKind() == SourceLocExpr::Function && |
| 11986 | getSema().CurContext != E->getParentContext(); |
| 11987 | |
| 11988 | if (!getDerived().AlwaysRebuild() && !NeedRebuildFunc) |
| 11989 | return E; |
| 11990 | |
| 11991 | return getDerived().RebuildSourceLocExpr(E->getIdentKind(), E->getType(), |
| 11992 | E->getBeginLoc(), E->getEndLoc(), |
| 11993 | getSema().CurContext); |
| 11994 | } |
| 11995 | |
| 11996 | template<typename Derived> |
| 11997 | ExprResult |
| 11998 | TreeTransform<Derived>::TransformCUDAKernelCallExpr(CUDAKernelCallExpr *E) { |
| 11999 | // Transform the callee. |
| 12000 | ExprResult Callee = getDerived().TransformExpr(E->getCallee()); |
| 12001 | if (Callee.isInvalid()) |
| 12002 | return ExprError(); |
| 12003 | |
| 12004 | // Transform exec config. |
| 12005 | ExprResult EC = getDerived().TransformCallExpr(E->getConfig()); |
| 12006 | if (EC.isInvalid()) |
| 12007 | return ExprError(); |
| 12008 | |
| 12009 | // Transform arguments. |
| 12010 | bool ArgChanged = false; |
| 12011 | SmallVector<Expr*, 8> Args; |
| 12012 | if (getDerived().TransformExprs(E->getArgs(), E->getNumArgs(), true, Args, |
| 12013 | &ArgChanged)) |
| 12014 | return ExprError(); |
| 12015 | |
| 12016 | if (!getDerived().AlwaysRebuild() && |
| 12017 | Callee.get() == E->getCallee() && |
| 12018 | !ArgChanged) |
| 12019 | return SemaRef.MaybeBindToTemporary(E); |
| 12020 | |
| 12021 | // FIXME: Wrong source location information for the '('. |
| 12022 | SourceLocation FakeLParenLoc |
| 12023 | = ((Expr *)Callee.get())->getSourceRange().getBegin(); |
| 12024 | return getDerived().RebuildCallExpr(Callee.get(), FakeLParenLoc, |
| 12025 | Args, |
| 12026 | E->getRParenLoc(), EC.get()); |
| 12027 | } |
| 12028 | |
| 12029 | template<typename Derived> |
| 12030 | ExprResult |
| 12031 | TreeTransform<Derived>::TransformCXXNamedCastExpr(CXXNamedCastExpr *E) { |
| 12032 | TypeSourceInfo *Type = getDerived().TransformType(E->getTypeInfoAsWritten()); |
| 12033 | if (!Type) |
| 12034 | return ExprError(); |
| 12035 | |
| 12036 | ExprResult SubExpr |
| 12037 | = getDerived().TransformExpr(E->getSubExprAsWritten()); |
| 12038 | if (SubExpr.isInvalid()) |
| 12039 | return ExprError(); |
| 12040 | |
| 12041 | if (!getDerived().AlwaysRebuild() && |
| 12042 | Type == E->getTypeInfoAsWritten() && |
| 12043 | SubExpr.get() == E->getSubExpr()) |
| 12044 | return E; |
| 12045 | return getDerived().RebuildCXXNamedCastExpr( |
| 12046 | E->getOperatorLoc(), E->getStmtClass(), E->getAngleBrackets().getBegin(), |
| 12047 | Type, E->getAngleBrackets().getEnd(), |
| 12048 | // FIXME. this should be '(' location |
| 12049 | E->getAngleBrackets().getEnd(), SubExpr.get(), E->getRParenLoc()); |
| 12050 | } |
| 12051 | |
| 12052 | template<typename Derived> |
| 12053 | ExprResult |
| 12054 | TreeTransform<Derived>::TransformBuiltinBitCastExpr(BuiltinBitCastExpr *BCE) { |
| 12055 | TypeSourceInfo *TSI = |
| 12056 | getDerived().TransformType(BCE->getTypeInfoAsWritten()); |
| 12057 | if (!TSI) |
| 12058 | return ExprError(); |
| 12059 | |
| 12060 | ExprResult Sub = getDerived().TransformExpr(BCE->getSubExpr()); |
| 12061 | if (Sub.isInvalid()) |
| 12062 | return ExprError(); |
| 12063 | |
| 12064 | return getDerived().RebuildBuiltinBitCastExpr(BCE->getBeginLoc(), TSI, |
| 12065 | Sub.get(), BCE->getEndLoc()); |
| 12066 | } |
| 12067 | |
| 12068 | template<typename Derived> |
| 12069 | ExprResult |
| 12070 | TreeTransform<Derived>::TransformCXXStaticCastExpr(CXXStaticCastExpr *E) { |
| 12071 | return getDerived().TransformCXXNamedCastExpr(E); |
| 12072 | } |
| 12073 | |
| 12074 | template<typename Derived> |
| 12075 | ExprResult |
| 12076 | TreeTransform<Derived>::TransformCXXDynamicCastExpr(CXXDynamicCastExpr *E) { |
| 12077 | return getDerived().TransformCXXNamedCastExpr(E); |
| 12078 | } |
| 12079 | |
| 12080 | template<typename Derived> |
| 12081 | ExprResult |
| 12082 | TreeTransform<Derived>::TransformCXXReinterpretCastExpr( |
| 12083 | CXXReinterpretCastExpr *E) { |
| 12084 | return getDerived().TransformCXXNamedCastExpr(E); |
| 12085 | } |
| 12086 | |
| 12087 | template<typename Derived> |
| 12088 | ExprResult |
| 12089 | TreeTransform<Derived>::TransformCXXConstCastExpr(CXXConstCastExpr *E) { |
| 12090 | return getDerived().TransformCXXNamedCastExpr(E); |
| 12091 | } |
| 12092 | |
| 12093 | template<typename Derived> |
| 12094 | ExprResult |
| 12095 | TreeTransform<Derived>::TransformCXXAddrspaceCastExpr(CXXAddrspaceCastExpr *E) { |
| 12096 | return getDerived().TransformCXXNamedCastExpr(E); |
| 12097 | } |
| 12098 | |
| 12099 | template<typename Derived> |
| 12100 | ExprResult |
| 12101 | TreeTransform<Derived>::TransformCXXFunctionalCastExpr( |
| 12102 | CXXFunctionalCastExpr *E) { |
| 12103 | TypeSourceInfo *Type = |
| 12104 | getDerived().TransformTypeWithDeducedTST(E->getTypeInfoAsWritten()); |
| 12105 | if (!Type) |
| 12106 | return ExprError(); |
| 12107 | |
| 12108 | ExprResult SubExpr |
| 12109 | = getDerived().TransformExpr(E->getSubExprAsWritten()); |
| 12110 | if (SubExpr.isInvalid()) |
| 12111 | return ExprError(); |
| 12112 | |
| 12113 | if (!getDerived().AlwaysRebuild() && |
| 12114 | Type == E->getTypeInfoAsWritten() && |
| 12115 | SubExpr.get() == E->getSubExpr()) |
| 12116 | return E; |
| 12117 | |
| 12118 | return getDerived().RebuildCXXFunctionalCastExpr(Type, |
| 12119 | E->getLParenLoc(), |
| 12120 | SubExpr.get(), |
| 12121 | E->getRParenLoc(), |
| 12122 | E->isListInitialization()); |
| 12123 | } |
| 12124 | |
| 12125 | template<typename Derived> |
| 12126 | ExprResult |
| 12127 | TreeTransform<Derived>::TransformCXXTypeidExpr(CXXTypeidExpr *E) { |
| 12128 | if (E->isTypeOperand()) { |
| 12129 | TypeSourceInfo *TInfo |
| 12130 | = getDerived().TransformType(E->getTypeOperandSourceInfo()); |
| 12131 | if (!TInfo) |
| 12132 | return ExprError(); |
| 12133 | |
| 12134 | if (!getDerived().AlwaysRebuild() && |
| 12135 | TInfo == E->getTypeOperandSourceInfo()) |
| 12136 | return E; |
| 12137 | |
| 12138 | return getDerived().RebuildCXXTypeidExpr(E->getType(), E->getBeginLoc(), |
| 12139 | TInfo, E->getEndLoc()); |
| 12140 | } |
| 12141 | |
| 12142 | // Typeid's operand is an unevaluated context, unless it's a polymorphic |
| 12143 | // type. We must not unilaterally enter unevaluated context here, as then |
| 12144 | // semantic processing can re-transform an already transformed operand. |
| 12145 | Expr *Op = E->getExprOperand(); |
| 12146 | auto EvalCtx = Sema::ExpressionEvaluationContext::Unevaluated; |
| 12147 | if (E->isGLValue()) |
| 12148 | if (auto *RecordT = Op->getType()->getAs<RecordType>()) |
| 12149 | if (cast<CXXRecordDecl>(RecordT->getDecl())->isPolymorphic()) |
| 12150 | EvalCtx = SemaRef.ExprEvalContexts.back().Context; |
| 12151 | |
| 12152 | EnterExpressionEvaluationContext Unevaluated(SemaRef, EvalCtx, |
| 12153 | Sema::ReuseLambdaContextDecl); |
| 12154 | |
| 12155 | ExprResult SubExpr = getDerived().TransformExpr(Op); |
| 12156 | if (SubExpr.isInvalid()) |
| 12157 | return ExprError(); |
| 12158 | |
| 12159 | if (!getDerived().AlwaysRebuild() && |
| 12160 | SubExpr.get() == E->getExprOperand()) |
| 12161 | return E; |
| 12162 | |
| 12163 | return getDerived().RebuildCXXTypeidExpr(E->getType(), E->getBeginLoc(), |
| 12164 | SubExpr.get(), E->getEndLoc()); |
| 12165 | } |
| 12166 | |
| 12167 | template<typename Derived> |
| 12168 | ExprResult |
| 12169 | TreeTransform<Derived>::TransformCXXUuidofExpr(CXXUuidofExpr *E) { |
| 12170 | if (E->isTypeOperand()) { |
| 12171 | TypeSourceInfo *TInfo |
| 12172 | = getDerived().TransformType(E->getTypeOperandSourceInfo()); |
| 12173 | if (!TInfo) |
| 12174 | return ExprError(); |
| 12175 | |
| 12176 | if (!getDerived().AlwaysRebuild() && |
| 12177 | TInfo == E->getTypeOperandSourceInfo()) |
| 12178 | return E; |
| 12179 | |
| 12180 | return getDerived().RebuildCXXUuidofExpr(E->getType(), E->getBeginLoc(), |
| 12181 | TInfo, E->getEndLoc()); |
| 12182 | } |
| 12183 | |
| 12184 | EnterExpressionEvaluationContext Unevaluated( |
| 12185 | SemaRef, Sema::ExpressionEvaluationContext::Unevaluated); |
| 12186 | |
| 12187 | ExprResult SubExpr = getDerived().TransformExpr(E->getExprOperand()); |
| 12188 | if (SubExpr.isInvalid()) |
| 12189 | return ExprError(); |
| 12190 | |
| 12191 | if (!getDerived().AlwaysRebuild() && |
| 12192 | SubExpr.get() == E->getExprOperand()) |
| 12193 | return E; |
| 12194 | |
| 12195 | return getDerived().RebuildCXXUuidofExpr(E->getType(), E->getBeginLoc(), |
| 12196 | SubExpr.get(), E->getEndLoc()); |
| 12197 | } |
| 12198 | |
| 12199 | template<typename Derived> |
| 12200 | ExprResult |
| 12201 | TreeTransform<Derived>::TransformCXXBoolLiteralExpr(CXXBoolLiteralExpr *E) { |
| 12202 | return E; |
| 12203 | } |
| 12204 | |
| 12205 | template<typename Derived> |
| 12206 | ExprResult |
| 12207 | TreeTransform<Derived>::TransformCXXNullPtrLiteralExpr( |
| 12208 | CXXNullPtrLiteralExpr *E) { |
| 12209 | return E; |
| 12210 | } |
| 12211 | |
| 12212 | template<typename Derived> |
| 12213 | ExprResult |
| 12214 | TreeTransform<Derived>::TransformCXXThisExpr(CXXThisExpr *E) { |
| 12215 | QualType T = getSema().getCurrentThisType(); |
| 12216 | |
| 12217 | if (!getDerived().AlwaysRebuild() && T == E->getType()) { |
| 12218 | // Mark it referenced in the new context regardless. |
| 12219 | // FIXME: this is a bit instantiation-specific. |
| 12220 | getSema().MarkThisReferenced(E); |
| 12221 | return E; |
| 12222 | } |
| 12223 | |
| 12224 | return getDerived().RebuildCXXThisExpr(E->getBeginLoc(), T, E->isImplicit()); |
| 12225 | } |
| 12226 | |
| 12227 | template<typename Derived> |
| 12228 | ExprResult |
| 12229 | TreeTransform<Derived>::TransformCXXThrowExpr(CXXThrowExpr *E) { |
| 12230 | ExprResult SubExpr = getDerived().TransformExpr(E->getSubExpr()); |
| 12231 | if (SubExpr.isInvalid()) |
| 12232 | return ExprError(); |
| 12233 | |
| 12234 | if (!getDerived().AlwaysRebuild() && |
| 12235 | SubExpr.get() == E->getSubExpr()) |
| 12236 | return E; |
| 12237 | |
| 12238 | return getDerived().RebuildCXXThrowExpr(E->getThrowLoc(), SubExpr.get(), |
| 12239 | E->isThrownVariableInScope()); |
| 12240 | } |
| 12241 | |
| 12242 | template<typename Derived> |
| 12243 | ExprResult |
| 12244 | TreeTransform<Derived>::TransformCXXDefaultArgExpr(CXXDefaultArgExpr *E) { |
| 12245 | ParmVarDecl *Param = cast_or_null<ParmVarDecl>( |
| 12246 | getDerived().TransformDecl(E->getBeginLoc(), E->getParam())); |
| 12247 | if (!Param) |
| 12248 | return ExprError(); |
| 12249 | |
| 12250 | ExprResult InitRes; |
| 12251 | if (E->hasRewrittenInit()) { |
| 12252 | InitRes = getDerived().TransformExpr(E->getRewrittenExpr()); |
| 12253 | if (InitRes.isInvalid()) |
| 12254 | return ExprError(); |
| 12255 | } |
| 12256 | |
| 12257 | if (!getDerived().AlwaysRebuild() && Param == E->getParam() && |
| 12258 | E->getUsedContext() == SemaRef.CurContext && |
| 12259 | InitRes.get() == E->getRewrittenExpr()) |
| 12260 | return E; |
| 12261 | |
| 12262 | return getDerived().RebuildCXXDefaultArgExpr(E->getUsedLocation(), Param, |
| 12263 | InitRes.get()); |
| 12264 | } |
| 12265 | |
| 12266 | template<typename Derived> |
| 12267 | ExprResult |
| 12268 | TreeTransform<Derived>::TransformCXXDefaultInitExpr(CXXDefaultInitExpr *E) { |
| 12269 | FieldDecl *Field = cast_or_null<FieldDecl>( |
| 12270 | getDerived().TransformDecl(E->getBeginLoc(), E->getField())); |
| 12271 | if (!Field) |
| 12272 | return ExprError(); |
| 12273 | |
| 12274 | if (!getDerived().AlwaysRebuild() && Field == E->getField() && |
| 12275 | E->getUsedContext() == SemaRef.CurContext) |
| 12276 | return E; |
| 12277 | |
| 12278 | return getDerived().RebuildCXXDefaultInitExpr(E->getExprLoc(), Field); |
| 12279 | } |
| 12280 | |
| 12281 | template<typename Derived> |
| 12282 | ExprResult |
| 12283 | TreeTransform<Derived>::TransformCXXScalarValueInitExpr( |
| 12284 | CXXScalarValueInitExpr *E) { |
| 12285 | TypeSourceInfo *T = getDerived().TransformType(E->getTypeSourceInfo()); |
| 12286 | if (!T) |
| 12287 | return ExprError(); |
| 12288 | |
| 12289 | if (!getDerived().AlwaysRebuild() && |
| 12290 | T == E->getTypeSourceInfo()) |
| 12291 | return E; |
| 12292 | |
| 12293 | return getDerived().RebuildCXXScalarValueInitExpr(T, |
| 12294 | /*FIXME:*/T->getTypeLoc().getEndLoc(), |
| 12295 | E->getRParenLoc()); |
| 12296 | } |
| 12297 | |
| 12298 | template<typename Derived> |
| 12299 | ExprResult |
| 12300 | TreeTransform<Derived>::TransformCXXNewExpr(CXXNewExpr *E) { |
| 12301 | // Transform the type that we're allocating |
| 12302 | TypeSourceInfo *AllocTypeInfo = |
| 12303 | getDerived().TransformTypeWithDeducedTST(E->getAllocatedTypeSourceInfo()); |
| 12304 | if (!AllocTypeInfo) |
| 12305 | return ExprError(); |
| 12306 | |
| 12307 | // Transform the size of the array we're allocating (if any). |
| 12308 | std::optional<Expr *> ArraySize; |
| 12309 | if (E->isArray()) { |
| 12310 | ExprResult NewArraySize; |
| 12311 | if (std::optional<Expr *> OldArraySize = E->getArraySize()) { |
| 12312 | NewArraySize = getDerived().TransformExpr(*OldArraySize); |
| 12313 | if (NewArraySize.isInvalid()) |
| 12314 | return ExprError(); |
| 12315 | } |
| 12316 | ArraySize = NewArraySize.get(); |
| 12317 | } |
| 12318 | |
| 12319 | // Transform the placement arguments (if any). |
| 12320 | bool ArgumentChanged = false; |
| 12321 | SmallVector<Expr*, 8> PlacementArgs; |
| 12322 | if (getDerived().TransformExprs(E->getPlacementArgs(), |
| 12323 | E->getNumPlacementArgs(), true, |
| 12324 | PlacementArgs, &ArgumentChanged)) |
| 12325 | return ExprError(); |
| 12326 | |
| 12327 | // Transform the initializer (if any). |
| 12328 | Expr *OldInit = E->getInitializer(); |
| 12329 | ExprResult NewInit; |
| 12330 | if (OldInit) |
| 12331 | NewInit = getDerived().TransformInitializer(OldInit, true); |
| 12332 | if (NewInit.isInvalid()) |
| 12333 | return ExprError(); |
| 12334 | |
| 12335 | // Transform new operator and delete operator. |
| 12336 | FunctionDecl *OperatorNew = nullptr; |
| 12337 | if (E->getOperatorNew()) { |
| 12338 | OperatorNew = cast_or_null<FunctionDecl>( |
| 12339 | getDerived().TransformDecl(E->getBeginLoc(), E->getOperatorNew())); |
| 12340 | if (!OperatorNew) |
| 12341 | return ExprError(); |
| 12342 | } |
| 12343 | |
| 12344 | FunctionDecl *OperatorDelete = nullptr; |
| 12345 | if (E->getOperatorDelete()) { |
| 12346 | OperatorDelete = cast_or_null<FunctionDecl>( |
| 12347 | getDerived().TransformDecl(E->getBeginLoc(), E->getOperatorDelete())); |
| 12348 | if (!OperatorDelete) |
| 12349 | return ExprError(); |
| 12350 | } |
| 12351 | |
| 12352 | if (!getDerived().AlwaysRebuild() && |
| 12353 | AllocTypeInfo == E->getAllocatedTypeSourceInfo() && |
| 12354 | ArraySize == E->getArraySize() && |
| 12355 | NewInit.get() == OldInit && |
| 12356 | OperatorNew == E->getOperatorNew() && |
| 12357 | OperatorDelete == E->getOperatorDelete() && |
| 12358 | !ArgumentChanged) { |
| 12359 | // Mark any declarations we need as referenced. |
| 12360 | // FIXME: instantiation-specific. |
| 12361 | if (OperatorNew) |
| 12362 | SemaRef.MarkFunctionReferenced(E->getBeginLoc(), OperatorNew); |
| 12363 | if (OperatorDelete) |
| 12364 | SemaRef.MarkFunctionReferenced(E->getBeginLoc(), OperatorDelete); |
| 12365 | |
| 12366 | if (E->isArray() && !E->getAllocatedType()->isDependentType()) { |
| 12367 | QualType ElementType |
| 12368 | = SemaRef.Context.getBaseElementType(E->getAllocatedType()); |
| 12369 | if (const RecordType *RecordT = ElementType->getAs<RecordType>()) { |
| 12370 | CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordT->getDecl()); |
| 12371 | if (CXXDestructorDecl *Destructor = SemaRef.LookupDestructor(Record)) { |
| 12372 | SemaRef.MarkFunctionReferenced(E->getBeginLoc(), Destructor); |
| 12373 | } |
| 12374 | } |
| 12375 | } |
| 12376 | |
| 12377 | return E; |
| 12378 | } |
| 12379 | |
| 12380 | QualType AllocType = AllocTypeInfo->getType(); |
| 12381 | if (!ArraySize) { |
| 12382 | // If no array size was specified, but the new expression was |
| 12383 | // instantiated with an array type (e.g., "new T" where T is |
| 12384 | // instantiated with "int[4]"), extract the outer bound from the |
| 12385 | // array type as our array size. We do this with constant and |
| 12386 | // dependently-sized array types. |
| 12387 | const ArrayType *ArrayT = SemaRef.Context.getAsArrayType(AllocType); |
| 12388 | if (!ArrayT) { |
| 12389 | // Do nothing |
| 12390 | } else if (const ConstantArrayType *ConsArrayT |
| 12391 | = dyn_cast<ConstantArrayType>(ArrayT)) { |
| 12392 | ArraySize = IntegerLiteral::Create(SemaRef.Context, ConsArrayT->getSize(), |
| 12393 | SemaRef.Context.getSizeType(), |
| 12394 | /*FIXME:*/ E->getBeginLoc()); |
| 12395 | AllocType = ConsArrayT->getElementType(); |
| 12396 | } else if (const DependentSizedArrayType *DepArrayT |
| 12397 | = dyn_cast<DependentSizedArrayType>(ArrayT)) { |
| 12398 | if (DepArrayT->getSizeExpr()) { |
| 12399 | ArraySize = DepArrayT->getSizeExpr(); |
| 12400 | AllocType = DepArrayT->getElementType(); |
| 12401 | } |
| 12402 | } |
| 12403 | } |
| 12404 | |
| 12405 | return getDerived().RebuildCXXNewExpr( |
| 12406 | E->getBeginLoc(), E->isGlobalNew(), |
| 12407 | /*FIXME:*/ E->getBeginLoc(), PlacementArgs, |
| 12408 | /*FIXME:*/ E->getBeginLoc(), E->getTypeIdParens(), AllocType, |
| 12409 | AllocTypeInfo, ArraySize, E->getDirectInitRange(), NewInit.get()); |
| 12410 | } |
| 12411 | |
| 12412 | template<typename Derived> |
| 12413 | ExprResult |
| 12414 | TreeTransform<Derived>::TransformCXXDeleteExpr(CXXDeleteExpr *E) { |
| 12415 | ExprResult Operand = getDerived().TransformExpr(E->getArgument()); |
| 12416 | if (Operand.isInvalid()) |
| 12417 | return ExprError(); |
| 12418 | |
| 12419 | // Transform the delete operator, if known. |
| 12420 | FunctionDecl *OperatorDelete = nullptr; |
| 12421 | if (E->getOperatorDelete()) { |
| 12422 | OperatorDelete = cast_or_null<FunctionDecl>( |
| 12423 | getDerived().TransformDecl(E->getBeginLoc(), E->getOperatorDelete())); |
| 12424 | if (!OperatorDelete) |
| 12425 | return ExprError(); |
| 12426 | } |
| 12427 | |
| 12428 | if (!getDerived().AlwaysRebuild() && |
| 12429 | Operand.get() == E->getArgument() && |
| 12430 | OperatorDelete == E->getOperatorDelete()) { |
| 12431 | // Mark any declarations we need as referenced. |
| 12432 | // FIXME: instantiation-specific. |
| 12433 | if (OperatorDelete) |
| 12434 | SemaRef.MarkFunctionReferenced(E->getBeginLoc(), OperatorDelete); |
| 12435 | |
| 12436 | if (!E->getArgument()->isTypeDependent()) { |
| 12437 | QualType Destroyed = SemaRef.Context.getBaseElementType( |
| 12438 | E->getDestroyedType()); |
| 12439 | if (const RecordType *DestroyedRec = Destroyed->getAs<RecordType>()) { |
| 12440 | CXXRecordDecl *Record = cast<CXXRecordDecl>(DestroyedRec->getDecl()); |
| 12441 | SemaRef.MarkFunctionReferenced(E->getBeginLoc(), |
| 12442 | SemaRef.LookupDestructor(Record)); |
| 12443 | } |
| 12444 | } |
| 12445 | |
| 12446 | return E; |
| 12447 | } |
| 12448 | |
| 12449 | return getDerived().RebuildCXXDeleteExpr( |
| 12450 | E->getBeginLoc(), E->isGlobalDelete(), E->isArrayForm(), Operand.get()); |
| 12451 | } |
| 12452 | |
| 12453 | template<typename Derived> |
| 12454 | ExprResult |
| 12455 | TreeTransform<Derived>::TransformCXXPseudoDestructorExpr( |
| 12456 | CXXPseudoDestructorExpr *E) { |
| 12457 | ExprResult Base = getDerived().TransformExpr(E->getBase()); |
| 12458 | if (Base.isInvalid()) |
| 12459 | return ExprError(); |
| 12460 | |
| 12461 | ParsedType ObjectTypePtr; |
| 12462 | bool MayBePseudoDestructor = false; |
| 12463 | Base = SemaRef.ActOnStartCXXMemberReference(nullptr, Base.get(), |
| 12464 | E->getOperatorLoc(), |
| 12465 | E->isArrow()? tok::arrow : tok::period, |
| 12466 | ObjectTypePtr, |
| 12467 | MayBePseudoDestructor); |
| 12468 | if (Base.isInvalid()) |
| 12469 | return ExprError(); |
| 12470 | |
| 12471 | QualType ObjectType = ObjectTypePtr.get(); |
| 12472 | NestedNameSpecifierLoc QualifierLoc = E->getQualifierLoc(); |
| 12473 | if (QualifierLoc) { |
| 12474 | QualifierLoc |
| 12475 | = getDerived().TransformNestedNameSpecifierLoc(QualifierLoc, ObjectType); |
| 12476 | if (!QualifierLoc) |
| 12477 | return ExprError(); |
| 12478 | } |
| 12479 | CXXScopeSpec SS; |
| 12480 | SS.Adopt(QualifierLoc); |
| 12481 | |
| 12482 | PseudoDestructorTypeStorage Destroyed; |
| 12483 | if (E->getDestroyedTypeInfo()) { |
| 12484 | TypeSourceInfo *DestroyedTypeInfo |
| 12485 | = getDerived().TransformTypeInObjectScope(E->getDestroyedTypeInfo(), |
| 12486 | ObjectType, nullptr, SS); |
| 12487 | if (!DestroyedTypeInfo) |
| 12488 | return ExprError(); |
| 12489 | Destroyed = DestroyedTypeInfo; |
| 12490 | } else if (!ObjectType.isNull() && ObjectType->isDependentType()) { |
| 12491 | // We aren't likely to be able to resolve the identifier down to a type |
| 12492 | // now anyway, so just retain the identifier. |
| 12493 | Destroyed = PseudoDestructorTypeStorage(E->getDestroyedTypeIdentifier(), |
| 12494 | E->getDestroyedTypeLoc()); |
| 12495 | } else { |
| 12496 | // Look for a destructor known with the given name. |
| 12497 | ParsedType T = SemaRef.getDestructorName(E->getTildeLoc(), |
| 12498 | *E->getDestroyedTypeIdentifier(), |
| 12499 | E->getDestroyedTypeLoc(), |
| 12500 | /*Scope=*/nullptr, |
| 12501 | SS, ObjectTypePtr, |
| 12502 | false); |
| 12503 | if (!T) |
| 12504 | return ExprError(); |
| 12505 | |
| 12506 | Destroyed |
| 12507 | = SemaRef.Context.getTrivialTypeSourceInfo(SemaRef.GetTypeFromParser(T), |
| 12508 | E->getDestroyedTypeLoc()); |
| 12509 | } |
| 12510 | |
| 12511 | TypeSourceInfo *ScopeTypeInfo = nullptr; |
| 12512 | if (E->getScopeTypeInfo()) { |
| 12513 | CXXScopeSpec EmptySS; |
| 12514 | ScopeTypeInfo = getDerived().TransformTypeInObjectScope( |
| 12515 | E->getScopeTypeInfo(), ObjectType, nullptr, EmptySS); |
| 12516 | if (!ScopeTypeInfo) |
| 12517 | return ExprError(); |
| 12518 | } |
| 12519 | |
| 12520 | return getDerived().RebuildCXXPseudoDestructorExpr(Base.get(), |
| 12521 | E->getOperatorLoc(), |
| 12522 | E->isArrow(), |
| 12523 | SS, |
| 12524 | ScopeTypeInfo, |
| 12525 | E->getColonColonLoc(), |
| 12526 | E->getTildeLoc(), |
| 12527 | Destroyed); |
| 12528 | } |
| 12529 | |
| 12530 | template <typename Derived> |
| 12531 | bool TreeTransform<Derived>::TransformOverloadExprDecls(OverloadExpr *Old, |
| 12532 | bool RequiresADL, |
| 12533 | LookupResult &R) { |
| 12534 | // Transform all the decls. |
| 12535 | bool AllEmptyPacks = true; |
| 12536 | for (auto *OldD : Old->decls()) { |
| 12537 | Decl *InstD = getDerived().TransformDecl(Old->getNameLoc(), OldD); |
| 12538 | if (!InstD) { |
| 12539 | // Silently ignore these if a UsingShadowDecl instantiated to nothing. |
| 12540 | // This can happen because of dependent hiding. |
| 12541 | if (isa<UsingShadowDecl>(OldD)) |
| 12542 | continue; |
| 12543 | else { |
| 12544 | R.clear(); |
| 12545 | return true; |
| 12546 | } |
| 12547 | } |
| 12548 | |
| 12549 | // Expand using pack declarations. |
| 12550 | NamedDecl *SingleDecl = cast<NamedDecl>(InstD); |
| 12551 | ArrayRef<NamedDecl*> Decls = SingleDecl; |
| 12552 | if (auto *UPD = dyn_cast<UsingPackDecl>(InstD)) |
| 12553 | Decls = UPD->expansions(); |
| 12554 | |
| 12555 | // Expand using declarations. |
| 12556 | for (auto *D : Decls) { |
| 12557 | if (auto *UD = dyn_cast<UsingDecl>(D)) { |
| 12558 | for (auto *SD : UD->shadows()) |
| 12559 | R.addDecl(SD); |
| 12560 | } else { |
| 12561 | R.addDecl(D); |
| 12562 | } |
| 12563 | } |
| 12564 | |
| 12565 | AllEmptyPacks &= Decls.empty(); |
| 12566 | }; |
| 12567 | |
| 12568 | // C++ [temp.res]/8.4.2: |
| 12569 | // The program is ill-formed, no diagnostic required, if [...] lookup for |
| 12570 | // a name in the template definition found a using-declaration, but the |
| 12571 | // lookup in the corresponding scope in the instantiation odoes not find |
| 12572 | // any declarations because the using-declaration was a pack expansion and |
| 12573 | // the corresponding pack is empty |
| 12574 | if (AllEmptyPacks && !RequiresADL) { |
| 12575 | getSema().Diag(Old->getNameLoc(), diag::err_using_pack_expansion_empty) |
| 12576 | << isa<UnresolvedMemberExpr>(Old) << Old->getName(); |
| 12577 | return true; |
| 12578 | } |
| 12579 | |
| 12580 | // Resolve a kind, but don't do any further analysis. If it's |
| 12581 | // ambiguous, the callee needs to deal with it. |
| 12582 | R.resolveKind(); |
| 12583 | return false; |
| 12584 | } |
| 12585 | |
| 12586 | template<typename Derived> |
| 12587 | ExprResult |
| 12588 | TreeTransform<Derived>::TransformUnresolvedLookupExpr( |
| 12589 | UnresolvedLookupExpr *Old) { |
| 12590 | LookupResult R(SemaRef, Old->getName(), Old->getNameLoc(), |
| 12591 | Sema::LookupOrdinaryName); |
| 12592 | |
| 12593 | // Transform the declaration set. |
| 12594 | if (TransformOverloadExprDecls(Old, Old->requiresADL(), R)) |
| 12595 | return ExprError(); |
| 12596 | |
| 12597 | // Rebuild the nested-name qualifier, if present. |
| 12598 | CXXScopeSpec SS; |
| 12599 | if (Old->getQualifierLoc()) { |
| 12600 | NestedNameSpecifierLoc QualifierLoc |
| 12601 | = getDerived().TransformNestedNameSpecifierLoc(Old->getQualifierLoc()); |
| 12602 | if (!QualifierLoc) |
| 12603 | return ExprError(); |
| 12604 | |
| 12605 | SS.Adopt(QualifierLoc); |
| 12606 | } |
| 12607 | |
| 12608 | if (Old->getNamingClass()) { |
| 12609 | CXXRecordDecl *NamingClass |
| 12610 | = cast_or_null<CXXRecordDecl>(getDerived().TransformDecl( |
| 12611 | Old->getNameLoc(), |
| 12612 | Old->getNamingClass())); |
| 12613 | if (!NamingClass) { |
| 12614 | R.clear(); |
| 12615 | return ExprError(); |
| 12616 | } |
| 12617 | |
| 12618 | R.setNamingClass(NamingClass); |
| 12619 | } |
| 12620 | |
| 12621 | SourceLocation TemplateKWLoc = Old->getTemplateKeywordLoc(); |
| 12622 | |
| 12623 | // If we have neither explicit template arguments, nor the template keyword, |
| 12624 | // it's a normal declaration name or member reference. |
| 12625 | if (!Old->hasExplicitTemplateArgs() && !TemplateKWLoc.isValid()) { |
| 12626 | NamedDecl *D = R.getAsSingle<NamedDecl>(); |
| 12627 | // In a C++11 unevaluated context, an UnresolvedLookupExpr might refer to an |
| 12628 | // instance member. In other contexts, BuildPossibleImplicitMemberExpr will |
| 12629 | // give a good diagnostic. |
| 12630 | if (D && D->isCXXInstanceMember()) { |
| 12631 | return SemaRef.BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc, R, |
| 12632 | /*TemplateArgs=*/nullptr, |
| 12633 | /*Scope=*/nullptr); |
| 12634 | } |
| 12635 | |
| 12636 | return getDerived().RebuildDeclarationNameExpr(SS, R, Old->requiresADL()); |
| 12637 | } |
| 12638 | |
| 12639 | // If we have template arguments, rebuild them, then rebuild the |
| 12640 | // templateid expression. |
| 12641 | TemplateArgumentListInfo TransArgs(Old->getLAngleLoc(), Old->getRAngleLoc()); |
| 12642 | if (Old->hasExplicitTemplateArgs() && |
| 12643 | getDerived().TransformTemplateArguments(Old->getTemplateArgs(), |
| 12644 | Old->getNumTemplateArgs(), |
| 12645 | TransArgs)) { |
| 12646 | R.clear(); |
| 12647 | return ExprError(); |
| 12648 | } |
| 12649 | |
| 12650 | return getDerived().RebuildTemplateIdExpr(SS, TemplateKWLoc, R, |
| 12651 | Old->requiresADL(), &TransArgs); |
| 12652 | } |
| 12653 | |
| 12654 | template<typename Derived> |
| 12655 | ExprResult |
| 12656 | TreeTransform<Derived>::TransformTypeTraitExpr(TypeTraitExpr *E) { |
| 12657 | bool ArgChanged = false; |
| 12658 | SmallVector<TypeSourceInfo *, 4> Args; |
| 12659 | for (unsigned I = 0, N = E->getNumArgs(); I != N; ++I) { |
| 12660 | TypeSourceInfo *From = E->getArg(I); |
| 12661 | TypeLoc FromTL = From->getTypeLoc(); |
| 12662 | if (!FromTL.getAs<PackExpansionTypeLoc>()) { |
| 12663 | TypeLocBuilder TLB; |
| 12664 | TLB.reserve(FromTL.getFullDataSize()); |
| 12665 | QualType To = getDerived().TransformType(TLB, FromTL); |
| 12666 | if (To.isNull()) |
| 12667 | return ExprError(); |
| 12668 | |
| 12669 | if (To == From->getType()) |
| 12670 | Args.push_back(From); |
| 12671 | else { |
| 12672 | Args.push_back(TLB.getTypeSourceInfo(SemaRef.Context, To)); |
| 12673 | ArgChanged = true; |
| 12674 | } |
| 12675 | continue; |
| 12676 | } |
| 12677 | |
| 12678 | ArgChanged = true; |
| 12679 | |
| 12680 | // We have a pack expansion. Instantiate it. |
| 12681 | PackExpansionTypeLoc ExpansionTL = FromTL.castAs<PackExpansionTypeLoc>(); |
| 12682 | TypeLoc PatternTL = ExpansionTL.getPatternLoc(); |
| 12683 | SmallVector<UnexpandedParameterPack, 2> Unexpanded; |
| 12684 | SemaRef.collectUnexpandedParameterPacks(PatternTL, Unexpanded); |
| 12685 | |
| 12686 | // Determine whether the set of unexpanded parameter packs can and should |
| 12687 | // be expanded. |
| 12688 | bool Expand = true; |
| 12689 | bool RetainExpansion = false; |
| 12690 | std::optional<unsigned> OrigNumExpansions = |
| 12691 | ExpansionTL.getTypePtr()->getNumExpansions(); |
| 12692 | std::optional<unsigned> NumExpansions = OrigNumExpansions; |
| 12693 | if (getDerived().TryExpandParameterPacks(ExpansionTL.getEllipsisLoc(), |
| 12694 | PatternTL.getSourceRange(), |
| 12695 | Unexpanded, |
| 12696 | Expand, RetainExpansion, |
| 12697 | NumExpansions)) |
| 12698 | return ExprError(); |
| 12699 | |
| 12700 | if (!Expand) { |
| 12701 | // The transform has determined that we should perform a simple |
| 12702 | // transformation on the pack expansion, producing another pack |
| 12703 | // expansion. |
| 12704 | Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1); |
| 12705 | |
| 12706 | TypeLocBuilder TLB; |
| 12707 | TLB.reserve(From->getTypeLoc().getFullDataSize()); |
| 12708 | |
| 12709 | QualType To = getDerived().TransformType(TLB, PatternTL); |
| 12710 | if (To.isNull()) |
| 12711 | return ExprError(); |
| 12712 | |
| 12713 | To = getDerived().RebuildPackExpansionType(To, |
| 12714 | PatternTL.getSourceRange(), |
| 12715 | ExpansionTL.getEllipsisLoc(), |
| 12716 | NumExpansions); |
| 12717 | if (To.isNull()) |
| 12718 | return ExprError(); |
| 12719 | |
| 12720 | PackExpansionTypeLoc ToExpansionTL |
| 12721 | = TLB.push<PackExpansionTypeLoc>(To); |
| 12722 | ToExpansionTL.setEllipsisLoc(ExpansionTL.getEllipsisLoc()); |
| 12723 | Args.push_back(TLB.getTypeSourceInfo(SemaRef.Context, To)); |
| 12724 | continue; |
| 12725 | } |
| 12726 | |
| 12727 | // Expand the pack expansion by substituting for each argument in the |
| 12728 | // pack(s). |
| 12729 | for (unsigned I = 0; I != *NumExpansions; ++I) { |
| 12730 | Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, I); |
| 12731 | TypeLocBuilder TLB; |
| 12732 | TLB.reserve(PatternTL.getFullDataSize()); |
| 12733 | QualType To = getDerived().TransformType(TLB, PatternTL); |
| 12734 | if (To.isNull()) |
| 12735 | return ExprError(); |
| 12736 | |
| 12737 | if (To->containsUnexpandedParameterPack()) { |
| 12738 | To = getDerived().RebuildPackExpansionType(To, |
| 12739 | PatternTL.getSourceRange(), |
| 12740 | ExpansionTL.getEllipsisLoc(), |
| 12741 | NumExpansions); |
| 12742 | if (To.isNull()) |
| 12743 | return ExprError(); |
| 12744 | |
| 12745 | PackExpansionTypeLoc ToExpansionTL |
| 12746 | = TLB.push<PackExpansionTypeLoc>(To); |
| 12747 | ToExpansionTL.setEllipsisLoc(ExpansionTL.getEllipsisLoc()); |
| 12748 | } |
| 12749 | |
| 12750 | Args.push_back(TLB.getTypeSourceInfo(SemaRef.Context, To)); |
| 12751 | } |
| 12752 | |
| 12753 | if (!RetainExpansion) |
| 12754 | continue; |
| 12755 | |
| 12756 | // If we're supposed to retain a pack expansion, do so by temporarily |
| 12757 | // forgetting the partially-substituted parameter pack. |
| 12758 | ForgetPartiallySubstitutedPackRAII Forget(getDerived()); |
| 12759 | |
| 12760 | TypeLocBuilder TLB; |
| 12761 | TLB.reserve(From->getTypeLoc().getFullDataSize()); |
| 12762 | |
| 12763 | QualType To = getDerived().TransformType(TLB, PatternTL); |
| 12764 | if (To.isNull()) |
| 12765 | return ExprError(); |
| 12766 | |
| 12767 | To = getDerived().RebuildPackExpansionType(To, |
| 12768 | PatternTL.getSourceRange(), |
| 12769 | ExpansionTL.getEllipsisLoc(), |
| 12770 | NumExpansions); |
| 12771 | if (To.isNull()) |
| 12772 | return ExprError(); |
| 12773 | |
| 12774 | PackExpansionTypeLoc ToExpansionTL |
| 12775 | = TLB.push<PackExpansionTypeLoc>(To); |
| 12776 | ToExpansionTL.setEllipsisLoc(ExpansionTL.getEllipsisLoc()); |
| 12777 | Args.push_back(TLB.getTypeSourceInfo(SemaRef.Context, To)); |
| 12778 | } |
| 12779 | |
| 12780 | if (!getDerived().AlwaysRebuild() && !ArgChanged) |
| 12781 | return E; |
| 12782 | |
| 12783 | return getDerived().RebuildTypeTrait(E->getTrait(), E->getBeginLoc(), Args, |
| 12784 | E->getEndLoc()); |
| 12785 | } |
| 12786 | |
| 12787 | template<typename Derived> |
| 12788 | ExprResult |
| 12789 | TreeTransform<Derived>::TransformConceptSpecializationExpr( |
| 12790 | ConceptSpecializationExpr *E) { |
| 12791 | const ASTTemplateArgumentListInfo *Old = E->getTemplateArgsAsWritten(); |
| 12792 | TemplateArgumentListInfo TransArgs(Old->LAngleLoc, Old->RAngleLoc); |
| 12793 | if (getDerived().TransformTemplateArguments(Old->getTemplateArgs(), |
| 12794 | Old->NumTemplateArgs, TransArgs)) |
| 12795 | return ExprError(); |
| 12796 | |
| 12797 | return getDerived().RebuildConceptSpecializationExpr( |
| 12798 | E->getNestedNameSpecifierLoc(), E->getTemplateKWLoc(), |
| 12799 | E->getConceptNameInfo(), E->getFoundDecl(), E->getNamedConcept(), |
| 12800 | &TransArgs); |
| 12801 | } |
| 12802 | |
| 12803 | template<typename Derived> |
| 12804 | ExprResult |
| 12805 | TreeTransform<Derived>::TransformRequiresExpr(RequiresExpr *E) { |
| 12806 | SmallVector<ParmVarDecl*, 4> TransParams; |
| 12807 | SmallVector<QualType, 4> TransParamTypes; |
| 12808 | Sema::ExtParameterInfoBuilder ExtParamInfos; |
| 12809 | |
| 12810 | // C++2a [expr.prim.req]p2 |
| 12811 | // Expressions appearing within a requirement-body are unevaluated operands. |
| 12812 | EnterExpressionEvaluationContext Ctx( |
| 12813 | SemaRef, Sema::ExpressionEvaluationContext::Unevaluated, |
| 12814 | Sema::ReuseLambdaContextDecl); |
| 12815 | |
| 12816 | RequiresExprBodyDecl *Body = RequiresExprBodyDecl::Create( |
| 12817 | getSema().Context, getSema().CurContext, |
| 12818 | E->getBody()->getBeginLoc()); |
| 12819 | |
| 12820 | Sema::ContextRAII SavedContext(getSema(), Body, /*NewThisContext*/false); |
| 12821 | |
| 12822 | ExprResult TypeParamResult = getDerived().TransformRequiresTypeParams( |
| 12823 | E->getRequiresKWLoc(), E->getRBraceLoc(), E, Body, |
| 12824 | E->getLocalParameters(), TransParamTypes, TransParams, ExtParamInfos); |
| 12825 | |
| 12826 | for (ParmVarDecl *Param : TransParams) |
| 12827 | if (Param) |
| 12828 | Param->setDeclContext(Body); |
| 12829 | |
| 12830 | // On failure to transform, TransformRequiresTypeParams returns an expression |
| 12831 | // in the event that the transformation of the type params failed in some way. |
| 12832 | // It is expected that this will result in a 'not satisfied' Requires clause |
| 12833 | // when instantiating. |
| 12834 | if (!TypeParamResult.isUnset()) |
| 12835 | return TypeParamResult; |
| 12836 | |
| 12837 | SmallVector<concepts::Requirement *, 4> TransReqs; |
| 12838 | if (getDerived().TransformRequiresExprRequirements(E->getRequirements(), |
| 12839 | TransReqs)) |
| 12840 | return ExprError(); |
| 12841 | |
| 12842 | for (concepts::Requirement *Req : TransReqs) { |
| 12843 | if (auto *ER = dyn_cast<concepts::ExprRequirement>(Req)) { |
| 12844 | if (ER->getReturnTypeRequirement().isTypeConstraint()) { |
| 12845 | ER->getReturnTypeRequirement() |
| 12846 | .getTypeConstraintTemplateParameterList()->getParam(0) |
| 12847 | ->setDeclContext(Body); |
| 12848 | } |
| 12849 | } |
| 12850 | } |
| 12851 | |
| 12852 | return getDerived().RebuildRequiresExpr(E->getRequiresKWLoc(), Body, |
| 12853 | TransParams, TransReqs, |
| 12854 | E->getRBraceLoc()); |
| 12855 | } |
| 12856 | |
| 12857 | template<typename Derived> |
| 12858 | bool TreeTransform<Derived>::TransformRequiresExprRequirements( |
| 12859 | ArrayRef<concepts::Requirement *> Reqs, |
| 12860 | SmallVectorImpl<concepts::Requirement *> &Transformed) { |
| 12861 | for (concepts::Requirement *Req : Reqs) { |
| 12862 | concepts::Requirement *TransReq = nullptr; |
| 12863 | if (auto *TypeReq = dyn_cast<concepts::TypeRequirement>(Req)) |
| 12864 | TransReq = getDerived().TransformTypeRequirement(TypeReq); |
| 12865 | else if (auto *ExprReq = dyn_cast<concepts::ExprRequirement>(Req)) |
| 12866 | TransReq = getDerived().TransformExprRequirement(ExprReq); |
| 12867 | else |
| 12868 | TransReq = getDerived().TransformNestedRequirement( |
| 12869 | cast<concepts::NestedRequirement>(Req)); |
| 12870 | if (!TransReq) |
| 12871 | return true; |
| 12872 | Transformed.push_back(TransReq); |
| 12873 | } |
| 12874 | return false; |
| 12875 | } |
| 12876 | |
| 12877 | template<typename Derived> |
| 12878 | concepts::TypeRequirement * |
| 12879 | TreeTransform<Derived>::TransformTypeRequirement( |
| 12880 | concepts::TypeRequirement *Req) { |
| 12881 | if (Req->isSubstitutionFailure()) { |
| 12882 | if (getDerived().AlwaysRebuild()) |
| 12883 | return getDerived().RebuildTypeRequirement( |
| 12884 | Req->getSubstitutionDiagnostic()); |
| 12885 | return Req; |
| 12886 | } |
| 12887 | TypeSourceInfo *TransType = getDerived().TransformType(Req->getType()); |
| 12888 | if (!TransType) |
| 12889 | return nullptr; |
| 12890 | return getDerived().RebuildTypeRequirement(TransType); |
| 12891 | } |
| 12892 | |
| 12893 | template<typename Derived> |
| 12894 | concepts::ExprRequirement * |
| 12895 | TreeTransform<Derived>::TransformExprRequirement(concepts::ExprRequirement *Req) { |
| 12896 | llvm::PointerUnion<Expr *, concepts::Requirement::SubstitutionDiagnostic *> TransExpr; |
| 12897 | if (Req->isExprSubstitutionFailure()) |
| 12898 | TransExpr = Req->getExprSubstitutionDiagnostic(); |
| 12899 | else { |
| 12900 | ExprResult TransExprRes = getDerived().TransformExpr(Req->getExpr()); |
| 12901 | if (TransExprRes.isUsable() && TransExprRes.get()->hasPlaceholderType()) |
| 12902 | TransExprRes = SemaRef.CheckPlaceholderExpr(TransExprRes.get()); |
| 12903 | if (TransExprRes.isInvalid()) |
| 12904 | return nullptr; |
| 12905 | TransExpr = TransExprRes.get(); |
| 12906 | } |
| 12907 | |
| 12908 | std::optional<concepts::ExprRequirement::ReturnTypeRequirement> TransRetReq; |
| 12909 | const auto &RetReq = Req->getReturnTypeRequirement(); |
| 12910 | if (RetReq.isEmpty()) |
| 12911 | TransRetReq.emplace(); |
| 12912 | else if (RetReq.isSubstitutionFailure()) |
| 12913 | TransRetReq.emplace(RetReq.getSubstitutionDiagnostic()); |
| 12914 | else if (RetReq.isTypeConstraint()) { |
| 12915 | TemplateParameterList *OrigTPL = |
| 12916 | RetReq.getTypeConstraintTemplateParameterList(); |
| 12917 | TemplateParameterList *TPL = |
| 12918 | getDerived().TransformTemplateParameterList(OrigTPL); |
| 12919 | if (!TPL) |
| 12920 | return nullptr; |
| 12921 | TransRetReq.emplace(TPL); |
| 12922 | } |
| 12923 | assert(TransRetReq && "All code paths leading here must set TransRetReq")(static_cast <bool> (TransRetReq && "All code paths leading here must set TransRetReq" ) ? void (0) : __assert_fail ("TransRetReq && \"All code paths leading here must set TransRetReq\"" , "clang/lib/Sema/TreeTransform.h", 12923, __extension__ __PRETTY_FUNCTION__ )); |
| 12924 | if (Expr *E = TransExpr.dyn_cast<Expr *>()) |
| 12925 | return getDerived().RebuildExprRequirement(E, Req->isSimple(), |
| 12926 | Req->getNoexceptLoc(), |
| 12927 | std::move(*TransRetReq)); |
| 12928 | return getDerived().RebuildExprRequirement( |
| 12929 | TransExpr.get<concepts::Requirement::SubstitutionDiagnostic *>(), |
| 12930 | Req->isSimple(), Req->getNoexceptLoc(), std::move(*TransRetReq)); |
| 12931 | } |
| 12932 | |
| 12933 | template<typename Derived> |
| 12934 | concepts::NestedRequirement * |
| 12935 | TreeTransform<Derived>::TransformNestedRequirement( |
| 12936 | concepts::NestedRequirement *Req) { |
| 12937 | if (Req->hasInvalidConstraint()) { |
| 12938 | if (getDerived().AlwaysRebuild()) |
| 12939 | return getDerived().RebuildNestedRequirement( |
| 12940 | Req->getInvalidConstraintEntity(), Req->getConstraintSatisfaction()); |
| 12941 | return Req; |
| 12942 | } |
| 12943 | ExprResult TransConstraint = |
| 12944 | getDerived().TransformExpr(Req->getConstraintExpr()); |
| 12945 | if (TransConstraint.isInvalid()) |
| 12946 | return nullptr; |
| 12947 | return getDerived().RebuildNestedRequirement(TransConstraint.get()); |
| 12948 | } |
| 12949 | |
| 12950 | template<typename Derived> |
| 12951 | ExprResult |
| 12952 | TreeTransform<Derived>::TransformArrayTypeTraitExpr(ArrayTypeTraitExpr *E) { |
| 12953 | TypeSourceInfo *T = getDerived().TransformType(E->getQueriedTypeSourceInfo()); |
| 12954 | if (!T) |
| 12955 | return ExprError(); |
| 12956 | |
| 12957 | if (!getDerived().AlwaysRebuild() && |
| 12958 | T == E->getQueriedTypeSourceInfo()) |
| 12959 | return E; |
| 12960 | |
| 12961 | ExprResult SubExpr; |
| 12962 | { |
| 12963 | EnterExpressionEvaluationContext Unevaluated( |
| 12964 | SemaRef, Sema::ExpressionEvaluationContext::Unevaluated); |
| 12965 | SubExpr = getDerived().TransformExpr(E->getDimensionExpression()); |
| 12966 | if (SubExpr.isInvalid()) |
| 12967 | return ExprError(); |
| 12968 | |
| 12969 | if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getDimensionExpression()) |
| 12970 | return E; |
| 12971 | } |
| 12972 | |
| 12973 | return getDerived().RebuildArrayTypeTrait(E->getTrait(), E->getBeginLoc(), T, |
| 12974 | SubExpr.get(), E->getEndLoc()); |
| 12975 | } |
| 12976 | |
| 12977 | template<typename Derived> |
| 12978 | ExprResult |
| 12979 | TreeTransform<Derived>::TransformExpressionTraitExpr(ExpressionTraitExpr *E) { |
| 12980 | ExprResult SubExpr; |
| 12981 | { |
| 12982 | EnterExpressionEvaluationContext Unevaluated( |
| 12983 | SemaRef, Sema::ExpressionEvaluationContext::Unevaluated); |
| 12984 | SubExpr = getDerived().TransformExpr(E->getQueriedExpression()); |
| 12985 | if (SubExpr.isInvalid()) |
| 12986 | return ExprError(); |
| 12987 | |
| 12988 | if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getQueriedExpression()) |
| 12989 | return E; |
| 12990 | } |
| 12991 | |
| 12992 | return getDerived().RebuildExpressionTrait(E->getTrait(), E->getBeginLoc(), |
| 12993 | SubExpr.get(), E->getEndLoc()); |
| 12994 | } |
| 12995 | |
| 12996 | template <typename Derived> |
| 12997 | ExprResult TreeTransform<Derived>::TransformParenDependentScopeDeclRefExpr( |
| 12998 | ParenExpr *PE, DependentScopeDeclRefExpr *DRE, bool AddrTaken, |
| 12999 | TypeSourceInfo **RecoveryTSI) { |
| 13000 | ExprResult NewDRE = getDerived().TransformDependentScopeDeclRefExpr( |
| 13001 | DRE, AddrTaken, RecoveryTSI); |
| 13002 | |
| 13003 | // Propagate both errors and recovered types, which return ExprEmpty. |
| 13004 | if (!NewDRE.isUsable()) |
| 13005 | return NewDRE; |
| 13006 | |
| 13007 | // We got an expr, wrap it up in parens. |
| 13008 | if (!getDerived().AlwaysRebuild() && NewDRE.get() == DRE) |
| 13009 | return PE; |
| 13010 | return getDerived().RebuildParenExpr(NewDRE.get(), PE->getLParen(), |
| 13011 | PE->getRParen()); |
| 13012 | } |
| 13013 | |
| 13014 | template <typename Derived> |
| 13015 | ExprResult TreeTransform<Derived>::TransformDependentScopeDeclRefExpr( |
| 13016 | DependentScopeDeclRefExpr *E) { |
| 13017 | return TransformDependentScopeDeclRefExpr(E, /*IsAddressOfOperand=*/false, |
| 13018 | nullptr); |
| 13019 | } |
| 13020 | |
| 13021 | template <typename Derived> |
| 13022 | ExprResult TreeTransform<Derived>::TransformDependentScopeDeclRefExpr( |
| 13023 | DependentScopeDeclRefExpr *E, bool IsAddressOfOperand, |
| 13024 | TypeSourceInfo **RecoveryTSI) { |
| 13025 | assert(E->getQualifierLoc())(static_cast <bool> (E->getQualifierLoc()) ? void (0 ) : __assert_fail ("E->getQualifierLoc()", "clang/lib/Sema/TreeTransform.h" , 13025, __extension__ __PRETTY_FUNCTION__)); |
| 13026 | NestedNameSpecifierLoc QualifierLoc = |
| 13027 | getDerived().TransformNestedNameSpecifierLoc(E->getQualifierLoc()); |
| 13028 | if (!QualifierLoc) |
| 13029 | return ExprError(); |
| 13030 | SourceLocation TemplateKWLoc = E->getTemplateKeywordLoc(); |
| 13031 | |
| 13032 | // TODO: If this is a conversion-function-id, verify that the |
| 13033 | // destination type name (if present) resolves the same way after |
| 13034 | // instantiation as it did in the local scope. |
| 13035 | |
| 13036 | DeclarationNameInfo NameInfo = |
| 13037 | getDerived().TransformDeclarationNameInfo(E->getNameInfo()); |
| 13038 | if (!NameInfo.getName()) |
| 13039 | return ExprError(); |
| 13040 | |
| 13041 | if (!E->hasExplicitTemplateArgs()) { |
| 13042 | if (!getDerived().AlwaysRebuild() && QualifierLoc == E->getQualifierLoc() && |
| 13043 | // Note: it is sufficient to compare the Name component of NameInfo: |
| 13044 | // if name has not changed, DNLoc has not changed either. |
| 13045 | NameInfo.getName() == E->getDeclName()) |
| 13046 | return E; |
| 13047 | |
| 13048 | return getDerived().RebuildDependentScopeDeclRefExpr( |
| 13049 | QualifierLoc, TemplateKWLoc, NameInfo, /*TemplateArgs=*/nullptr, |
| 13050 | IsAddressOfOperand, RecoveryTSI); |
| 13051 | } |
| 13052 | |
| 13053 | TemplateArgumentListInfo TransArgs(E->getLAngleLoc(), E->getRAngleLoc()); |
| 13054 | if (getDerived().TransformTemplateArguments( |
| 13055 | E->getTemplateArgs(), E->getNumTemplateArgs(), TransArgs)) |
| 13056 | return ExprError(); |
| 13057 | |
| 13058 | return getDerived().RebuildDependentScopeDeclRefExpr( |
| 13059 | QualifierLoc, TemplateKWLoc, NameInfo, &TransArgs, IsAddressOfOperand, |
| 13060 | RecoveryTSI); |
| 13061 | } |
| 13062 | |
| 13063 | template<typename Derived> |
| 13064 | ExprResult |
| 13065 | TreeTransform<Derived>::TransformCXXConstructExpr(CXXConstructExpr *E) { |
| 13066 | // CXXConstructExprs other than for list-initialization and |
| 13067 | // CXXTemporaryObjectExpr are always implicit, so when we have |
| 13068 | // a 1-argument construction we just transform that argument. |
| 13069 | if (getDerived().AllowSkippingCXXConstructExpr() && |
| 13070 | ((E->getNumArgs() == 1 || |
| 13071 | (E->getNumArgs() > 1 && getDerived().DropCallArgument(E->getArg(1)))) && |
| 13072 | (!getDerived().DropCallArgument(E->getArg(0))) && |
| 13073 | !E->isListInitialization())) |
| 13074 | return getDerived().TransformInitializer(E->getArg(0), |
| 13075 | /*DirectInit*/ false); |
| 13076 | |
| 13077 | TemporaryBase Rebase(*this, /*FIXME*/ E->getBeginLoc(), DeclarationName()); |
| 13078 | |
| 13079 | QualType T = getDerived().TransformType(E->getType()); |
| 13080 | if (T.isNull()) |
| 13081 | return ExprError(); |
| 13082 | |
| 13083 | CXXConstructorDecl *Constructor = cast_or_null<CXXConstructorDecl>( |
| 13084 | getDerived().TransformDecl(E->getBeginLoc(), E->getConstructor())); |
| 13085 | if (!Constructor) |
| 13086 | return ExprError(); |
| 13087 | |
| 13088 | bool ArgumentChanged = false; |
| 13089 | SmallVector<Expr*, 8> Args; |
| 13090 | { |
| 13091 | EnterExpressionEvaluationContext Context( |
| 13092 | getSema(), EnterExpressionEvaluationContext::InitList, |
| 13093 | E->isListInitialization()); |
| 13094 | if (getDerived().TransformExprs(E->getArgs(), E->getNumArgs(), true, Args, |
| 13095 | &ArgumentChanged)) |
| 13096 | return ExprError(); |
| 13097 | } |
| 13098 | |
| 13099 | if (!getDerived().AlwaysRebuild() && |
| 13100 | T == E->getType() && |
| 13101 | Constructor == E->getConstructor() && |
| 13102 | !ArgumentChanged) { |
| 13103 | // Mark the constructor as referenced. |
| 13104 | // FIXME: Instantiation-specific |
| 13105 | SemaRef.MarkFunctionReferenced(E->getBeginLoc(), Constructor); |
| 13106 | return E; |
| 13107 | } |
| 13108 | |
| 13109 | return getDerived().RebuildCXXConstructExpr( |
| 13110 | T, /*FIXME:*/ E->getBeginLoc(), Constructor, E->isElidable(), Args, |
| 13111 | E->hadMultipleCandidates(), E->isListInitialization(), |
| 13112 | E->isStdInitListInitialization(), E->requiresZeroInitialization(), |
| 13113 | E->getConstructionKind(), E->getParenOrBraceRange()); |
| 13114 | } |
| 13115 | |
| 13116 | template<typename Derived> |
| 13117 | ExprResult TreeTransform<Derived>::TransformCXXInheritedCtorInitExpr( |
| 13118 | CXXInheritedCtorInitExpr *E) { |
| 13119 | QualType T = getDerived().TransformType(E->getType()); |
| 13120 | if (T.isNull()) |
| 13121 | return ExprError(); |
| 13122 | |
| 13123 | CXXConstructorDecl *Constructor = cast_or_null<CXXConstructorDecl>( |
| 13124 | getDerived().TransformDecl(E->getBeginLoc(), E->getConstructor())); |
| 13125 | if (!Constructor) |
| 13126 | return ExprError(); |
| 13127 | |
| 13128 | if (!getDerived().AlwaysRebuild() && |
| 13129 | T == E->getType() && |
| 13130 | Constructor == E->getConstructor()) { |
| 13131 | // Mark the constructor as referenced. |
| 13132 | // FIXME: Instantiation-specific |
| 13133 | SemaRef.MarkFunctionReferenced(E->getBeginLoc(), Constructor); |
| 13134 | return E; |
| 13135 | } |
| 13136 | |
| 13137 | return getDerived().RebuildCXXInheritedCtorInitExpr( |
| 13138 | T, E->getLocation(), Constructor, |
| 13139 | E->constructsVBase(), E->inheritedFromVBase()); |
| 13140 | } |
| 13141 | |
| 13142 | /// Transform a C++ temporary-binding expression. |
| 13143 | /// |
| 13144 | /// Since CXXBindTemporaryExpr nodes are implicitly generated, we just |
| 13145 | /// transform the subexpression and return that. |
| 13146 | template<typename Derived> |
| 13147 | ExprResult |
| 13148 | TreeTransform<Derived>::TransformCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { |
| 13149 | if (auto *Dtor = E->getTemporary()->getDestructor()) |
| 13150 | SemaRef.MarkFunctionReferenced(E->getBeginLoc(), |
| 13151 | const_cast<CXXDestructorDecl *>(Dtor)); |
| 13152 | return getDerived().TransformExpr(E->getSubExpr()); |
| 13153 | } |
| 13154 | |
| 13155 | /// Transform a C++ expression that contains cleanups that should |
| 13156 | /// be run after the expression is evaluated. |
| 13157 | /// |
| 13158 | /// Since ExprWithCleanups nodes are implicitly generated, we |
| 13159 | /// just transform the subexpression and return that. |
| 13160 | template<typename Derived> |
| 13161 | ExprResult |
| 13162 | TreeTransform<Derived>::TransformExprWithCleanups(ExprWithCleanups *E) { |
| 13163 | return getDerived().TransformExpr(E->getSubExpr()); |
| 13164 | } |
| 13165 | |
| 13166 | template<typename Derived> |
| 13167 | ExprResult |
| 13168 | TreeTransform<Derived>::TransformCXXTemporaryObjectExpr( |
| 13169 | CXXTemporaryObjectExpr *E) { |
| 13170 | TypeSourceInfo *T = |
| 13171 | getDerived().TransformTypeWithDeducedTST(E->getTypeSourceInfo()); |
| 13172 | if (!T) |
| 13173 | return ExprError(); |
| 13174 | |
| 13175 | CXXConstructorDecl *Constructor = cast_or_null<CXXConstructorDecl>( |
| 13176 | getDerived().TransformDecl(E->getBeginLoc(), E->getConstructor())); |
| 13177 | if (!Constructor) |
| 13178 | return ExprError(); |
| 13179 | |
| 13180 | bool ArgumentChanged = false; |
| 13181 | SmallVector<Expr*, 8> Args; |
| 13182 | Args.reserve(E->getNumArgs()); |
| 13183 | { |
| 13184 | EnterExpressionEvaluationContext Context( |
| 13185 | getSema(), EnterExpressionEvaluationContext::InitList, |
| 13186 | E->isListInitialization()); |
| 13187 | if (TransformExprs(E->getArgs(), E->getNumArgs(), true, Args, |
| 13188 | &ArgumentChanged)) |
| 13189 | return ExprError(); |
| 13190 | } |
| 13191 | |
| 13192 | if (!getDerived().AlwaysRebuild() && |
| 13193 | T == E->getTypeSourceInfo() && |
| 13194 | Constructor == E->getConstructor() && |
| 13195 | !ArgumentChanged) { |
| 13196 | // FIXME: Instantiation-specific |
| 13197 | SemaRef.MarkFunctionReferenced(E->getBeginLoc(), Constructor); |
| 13198 | return SemaRef.MaybeBindToTemporary(E); |
| 13199 | } |
| 13200 | |
| 13201 | // FIXME: We should just pass E->isListInitialization(), but we're not |
| 13202 | // prepared to handle list-initialization without a child InitListExpr. |
| 13203 | SourceLocation LParenLoc = T->getTypeLoc().getEndLoc(); |
| 13204 | return getDerived().RebuildCXXTemporaryObjectExpr( |
| 13205 | T, LParenLoc, Args, E->getEndLoc(), |
| 13206 | /*ListInitialization=*/LParenLoc.isInvalid()); |
| 13207 | } |
| 13208 | |
| 13209 | template<typename Derived> |
| 13210 | ExprResult |
| 13211 | TreeTransform<Derived>::TransformLambdaExpr(LambdaExpr *E) { |
| 13212 | // Transform any init-capture expressions before entering the scope of the |
| 13213 | // lambda body, because they are not semantically within that scope. |
| 13214 | typedef std::pair<ExprResult, QualType> InitCaptureInfoTy; |
| 13215 | struct TransformedInitCapture { |
| 13216 | // The location of the ... if the result is retaining a pack expansion. |
| 13217 | SourceLocation EllipsisLoc; |
| 13218 | // Zero or more expansions of the init-capture. |
| 13219 | SmallVector<InitCaptureInfoTy, 4> Expansions; |
| 13220 | }; |
| 13221 | SmallVector<TransformedInitCapture, 4> InitCaptures; |
| 13222 | InitCaptures.resize(E->explicit_capture_end() - E->explicit_capture_begin()); |
| 13223 | for (LambdaExpr::capture_iterator C = E->capture_begin(), |
| 13224 | CEnd = E->capture_end(); |
| 13225 | C != CEnd; ++C) { |
| 13226 | if (!E->isInitCapture(C)) |
| 13227 | continue; |
| 13228 | |
| 13229 | TransformedInitCapture &Result = InitCaptures[C - E->capture_begin()]; |
| 13230 | auto *OldVD = cast<VarDecl>(C->getCapturedVar()); |
| 13231 | |
| 13232 | auto SubstInitCapture = [&](SourceLocation EllipsisLoc, |
| 13233 | std::optional<unsigned> NumExpansions) { |
| 13234 | ExprResult NewExprInitResult = getDerived().TransformInitializer( |
| 13235 | OldVD->getInit(), OldVD->getInitStyle() == VarDecl::CallInit); |
| 13236 | |
| 13237 | if (NewExprInitResult.isInvalid()) { |
| 13238 | Result.Expansions.push_back(InitCaptureInfoTy(ExprError(), QualType())); |
| 13239 | return; |
| 13240 | } |
| 13241 | Expr *NewExprInit = NewExprInitResult.get(); |
| 13242 | |
| 13243 | QualType NewInitCaptureType = |
| 13244 | getSema().buildLambdaInitCaptureInitialization( |
| 13245 | C->getLocation(), C->getCaptureKind() == LCK_ByRef, |
| 13246 | EllipsisLoc, NumExpansions, OldVD->getIdentifier(), |
| 13247 | cast<VarDecl>(C->getCapturedVar())->getInitStyle() != |
| 13248 | VarDecl::CInit, |
| 13249 | NewExprInit); |
| 13250 | Result.Expansions.push_back( |
| 13251 | InitCaptureInfoTy(NewExprInit, NewInitCaptureType)); |
| 13252 | }; |
| 13253 | |
| 13254 | // If this is an init-capture pack, consider expanding the pack now. |
| 13255 | if (OldVD->isParameterPack()) { |
| 13256 | PackExpansionTypeLoc ExpansionTL = OldVD->getTypeSourceInfo() |
| 13257 | ->getTypeLoc() |
| 13258 | .castAs<PackExpansionTypeLoc>(); |
| 13259 | SmallVector<UnexpandedParameterPack, 2> Unexpanded; |
| 13260 | SemaRef.collectUnexpandedParameterPacks(OldVD->getInit(), Unexpanded); |
| 13261 | |
| 13262 | // Determine whether the set of unexpanded parameter packs can and should |
| 13263 | // be expanded. |
| 13264 | bool Expand = true; |
| 13265 | bool RetainExpansion = false; |
| 13266 | std::optional<unsigned> OrigNumExpansions = |
| 13267 | ExpansionTL.getTypePtr()->getNumExpansions(); |
| 13268 | std::optional<unsigned> NumExpansions = OrigNumExpansions; |
| 13269 | if (getDerived().TryExpandParameterPacks( |
| 13270 | ExpansionTL.getEllipsisLoc(), |
| 13271 | OldVD->getInit()->getSourceRange(), Unexpanded, Expand, |
| 13272 | RetainExpansion, NumExpansions)) |
| 13273 | return ExprError(); |
| 13274 | if (Expand) { |
| 13275 | for (unsigned I = 0; I != *NumExpansions; ++I) { |
| 13276 | Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I); |
| 13277 | SubstInitCapture(SourceLocation(), std::nullopt); |
| 13278 | } |
| 13279 | } |
| 13280 | if (!Expand || RetainExpansion) { |
| 13281 | ForgetPartiallySubstitutedPackRAII Forget(getDerived()); |
| 13282 | SubstInitCapture(ExpansionTL.getEllipsisLoc(), NumExpansions); |
| 13283 | Result.EllipsisLoc = ExpansionTL.getEllipsisLoc(); |
| 13284 | } |
| 13285 | } else { |
| 13286 | SubstInitCapture(SourceLocation(), std::nullopt); |
| 13287 | } |
| 13288 | } |
| 13289 | |
| 13290 | LambdaScopeInfo *LSI = getSema().PushLambdaScope(); |
| 13291 | Sema::FunctionScopeRAII FuncScopeCleanup(getSema()); |
| 13292 | |
| 13293 | // Create the local class that will describe the lambda. |
| 13294 | |
| 13295 | // FIXME: DependencyKind below is wrong when substituting inside a templated |
| 13296 | // context that isn't a DeclContext (such as a variable template), or when |
| 13297 | // substituting an unevaluated lambda inside of a function's parameter's type |
| 13298 | // - as parameter types are not instantiated from within a function's DC. We |
| 13299 | // use evaluation contexts to distinguish the function parameter case. |
| 13300 | CXXRecordDecl::LambdaDependencyKind DependencyKind = |
| 13301 | CXXRecordDecl::LDK_Unknown; |
| 13302 | if ((getSema().isUnevaluatedContext() || |
| 13303 | getSema().isConstantEvaluatedContext()) && |
| 13304 | (getSema().CurContext->isFileContext() || |
| 13305 | !getSema().CurContext->getParent()->isDependentContext())) |
| 13306 | DependencyKind = CXXRecordDecl::LDK_NeverDependent; |
| 13307 | |
| 13308 | CXXRecordDecl *OldClass = E->getLambdaClass(); |
| 13309 | CXXRecordDecl *Class = getSema().createLambdaClosureType( |
| 13310 | E->getIntroducerRange(), /*Info=*/nullptr, DependencyKind, |
| 13311 | E->getCaptureDefault()); |
| 13312 | getDerived().transformedLocalDecl(OldClass, {Class}); |
| 13313 | |
| 13314 | CXXMethodDecl *NewCallOperator = |
| 13315 | getSema().CreateLambdaCallOperator(E->getIntroducerRange(), Class); |
| 13316 | NewCallOperator->setLexicalDeclContext(getSema().CurContext); |
| 13317 | |
| 13318 | // Enter the scope of the lambda. |
| 13319 | getSema().buildLambdaScope(LSI, NewCallOperator, E->getIntroducerRange(), |
| 13320 | E->getCaptureDefault(), E->getCaptureDefaultLoc(), |
| 13321 | E->hasExplicitParameters(), E->isMutable()); |
| 13322 | |
| 13323 | // Introduce the context of the call operator. |
| 13324 | Sema::ContextRAII SavedContext(getSema(), NewCallOperator, |
| 13325 | /*NewThisContext*/false); |
| 13326 | |
| 13327 | bool Invalid = false; |
| 13328 | |
| 13329 | // Transform captures. |
| 13330 | for (LambdaExpr::capture_iterator C = E->capture_begin(), |
| 13331 | CEnd = E->capture_end(); |
| 13332 | C != CEnd; ++C) { |
| 13333 | // When we hit the first implicit capture, tell Sema that we've finished |
| 13334 | // the list of explicit captures. |
| 13335 | if (C->isImplicit()) |
| 13336 | break; |
| 13337 | |
| 13338 | // Capturing 'this' is trivial. |
| 13339 | if (C->capturesThis()) { |
| 13340 | getSema().CheckCXXThisCapture(C->getLocation(), C->isExplicit(), |
| 13341 | /*BuildAndDiagnose*/ true, nullptr, |
| 13342 | C->getCaptureKind() == LCK_StarThis); |
| 13343 | continue; |
| 13344 | } |
| 13345 | // Captured expression will be recaptured during captured variables |
| 13346 | // rebuilding. |
| 13347 | if (C->capturesVLAType()) |
| 13348 | continue; |
| 13349 | |
| 13350 | // Rebuild init-captures, including the implied field declaration. |
| 13351 | if (E->isInitCapture(C)) { |
| 13352 | TransformedInitCapture &NewC = InitCaptures[C - E->capture_begin()]; |
| 13353 | |
| 13354 | auto *OldVD = cast<VarDecl>(C->getCapturedVar()); |
| 13355 | llvm::SmallVector<Decl*, 4> NewVDs; |
| 13356 | |
| 13357 | for (InitCaptureInfoTy &Info : NewC.Expansions) { |
| 13358 | ExprResult Init = Info.first; |
| 13359 | QualType InitQualType = Info.second; |
| 13360 | if (Init.isInvalid() || InitQualType.isNull()) { |
| 13361 | Invalid = true; |
| 13362 | break; |
| 13363 | } |
| 13364 | VarDecl *NewVD = getSema().createLambdaInitCaptureVarDecl( |
| 13365 | OldVD->getLocation(), InitQualType, NewC.EllipsisLoc, |
| 13366 | OldVD->getIdentifier(), OldVD->getInitStyle(), Init.get(), |
| 13367 | getSema().CurContext); |
| 13368 | if (!NewVD) { |
| 13369 | Invalid = true; |
| 13370 | break; |
| 13371 | } |
| 13372 | NewVDs.push_back(NewVD); |
| 13373 | getSema().addInitCapture(LSI, NewVD, C->getCaptureKind() == LCK_ByRef); |
| 13374 | } |
| 13375 | |
| 13376 | if (Invalid) |
| 13377 | break; |
| 13378 | |
| 13379 | getDerived().transformedLocalDecl(OldVD, NewVDs); |
| 13380 | continue; |
| 13381 | } |
| 13382 | |
| 13383 | assert(C->capturesVariable() && "unexpected kind of lambda capture")(static_cast <bool> (C->capturesVariable() && "unexpected kind of lambda capture") ? void (0) : __assert_fail ("C->capturesVariable() && \"unexpected kind of lambda capture\"" , "clang/lib/Sema/TreeTransform.h", 13383, __extension__ __PRETTY_FUNCTION__ )); |
| 13384 | |
| 13385 | // Determine the capture kind for Sema. |
| 13386 | Sema::TryCaptureKind Kind |
| 13387 | = C->isImplicit()? Sema::TryCapture_Implicit |
| 13388 | : C->getCaptureKind() == LCK_ByCopy |
| 13389 | ? Sema::TryCapture_ExplicitByVal |
| 13390 | : Sema::TryCapture_ExplicitByRef; |
| 13391 | SourceLocation EllipsisLoc; |
| 13392 | if (C->isPackExpansion()) { |
| 13393 | UnexpandedParameterPack Unexpanded(C->getCapturedVar(), C->getLocation()); |
| 13394 | bool ShouldExpand = false; |
| 13395 | bool RetainExpansion = false; |
| 13396 | std::optional<unsigned> NumExpansions; |
| 13397 | if (getDerived().TryExpandParameterPacks(C->getEllipsisLoc(), |
| 13398 | C->getLocation(), |
| 13399 | Unexpanded, |
| 13400 | ShouldExpand, RetainExpansion, |
| 13401 | NumExpansions)) { |
| 13402 | Invalid = true; |
| 13403 | continue; |
| 13404 | } |
| 13405 | |
| 13406 | if (ShouldExpand) { |
| 13407 | // The transform has determined that we should perform an expansion; |
| 13408 | // transform and capture each of the arguments. |
| 13409 | // expansion of the pattern. Do so. |
| 13410 | auto *Pack = cast<VarDecl>(C->getCapturedVar()); |
| 13411 | for (unsigned I = 0; I != *NumExpansions; ++I) { |
| 13412 | Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I); |
| 13413 | VarDecl *CapturedVar |
| 13414 | = cast_or_null<VarDecl>(getDerived().TransformDecl(C->getLocation(), |
| 13415 | Pack)); |
| 13416 | if (!CapturedVar) { |
| 13417 | Invalid = true; |
| 13418 | continue; |
| 13419 | } |
| 13420 | |
| 13421 | // Capture the transformed variable. |
| 13422 | getSema().tryCaptureVariable(CapturedVar, C->getLocation(), Kind); |
| 13423 | } |
| 13424 | |
| 13425 | // FIXME: Retain a pack expansion if RetainExpansion is true. |
| 13426 | |
| 13427 | continue; |
| 13428 | } |
| 13429 | |
| 13430 | EllipsisLoc = C->getEllipsisLoc(); |
| 13431 | } |
| 13432 | |
| 13433 | // Transform the captured variable. |
| 13434 | auto *CapturedVar = cast_or_null<ValueDecl>( |
| 13435 | getDerived().TransformDecl(C->getLocation(), C->getCapturedVar())); |
| 13436 | if (!CapturedVar || CapturedVar->isInvalidDecl()) { |
| 13437 | Invalid = true; |
| 13438 | continue; |
| 13439 | } |
| 13440 | |
| 13441 | // Capture the transformed variable. |
| 13442 | getSema().tryCaptureVariable(CapturedVar, C->getLocation(), Kind, |
| 13443 | EllipsisLoc); |
| 13444 | } |
| 13445 | getSema().finishLambdaExplicitCaptures(LSI); |
| 13446 | |
| 13447 | // Transform the template parameters, and add them to the current |
| 13448 | // instantiation scope. The null case is handled correctly. |
| 13449 | auto TPL = getDerived().TransformTemplateParameterList( |
| 13450 | E->getTemplateParameterList()); |
| 13451 | LSI->GLTemplateParameterList = TPL; |
| 13452 | |
| 13453 | // Transform the type of the original lambda's call operator. |
| 13454 | // The transformation MUST be done in the CurrentInstantiationScope since |
| 13455 | // it introduces a mapping of the original to the newly created |
| 13456 | // transformed parameters. |
| 13457 | TypeSourceInfo *NewCallOpTSI = nullptr; |
| 13458 | { |
| 13459 | TypeSourceInfo *OldCallOpTSI = E->getCallOperator()->getTypeSourceInfo(); |
| 13460 | auto OldCallOpFPTL = |
| 13461 | OldCallOpTSI->getTypeLoc().getAs<FunctionProtoTypeLoc>(); |
| 13462 | |
| 13463 | TypeLocBuilder NewCallOpTLBuilder; |
| 13464 | SmallVector<QualType, 4> ExceptionStorage; |
| 13465 | TreeTransform *This = this; // Work around gcc.gnu.org/PR56135. |
| 13466 | QualType NewCallOpType = TransformFunctionProtoType( |
| 13467 | NewCallOpTLBuilder, OldCallOpFPTL, nullptr, Qualifiers(), |
| 13468 | [&](FunctionProtoType::ExceptionSpecInfo &ESI, bool &Changed) { |
| 13469 | return This->TransformExceptionSpec(OldCallOpFPTL.getBeginLoc(), ESI, |
| 13470 | ExceptionStorage, Changed); |
| 13471 | }); |
| 13472 | if (NewCallOpType.isNull()) |
| 13473 | return ExprError(); |
| 13474 | NewCallOpTSI = |
| 13475 | NewCallOpTLBuilder.getTypeSourceInfo(getSema().Context, NewCallOpType); |
| 13476 | } |
| 13477 | |
| 13478 | getSema().CompleteLambdaCallOperator( |
| 13479 | NewCallOperator, E->getCallOperator()->getLocation(), |
| 13480 | E->getCallOperator()->getInnerLocStart(), |
| 13481 | E->getCallOperator()->getTrailingRequiresClause(), NewCallOpTSI, |
| 13482 | E->getCallOperator()->getConstexprKind(), |
| 13483 | E->getCallOperator()->getStorageClass(), |
| 13484 | NewCallOpTSI->getTypeLoc().castAs<FunctionProtoTypeLoc>().getParams(), |
| 13485 | E->hasExplicitResultType()); |
| 13486 | |
| 13487 | getDerived().transformAttrs(E->getCallOperator(), NewCallOperator); |
| 13488 | getDerived().transformedLocalDecl(E->getCallOperator(), {NewCallOperator}); |
| 13489 | |
| 13490 | { |
| 13491 | // Number the lambda for linkage purposes if necessary. |
| 13492 | Sema::ContextRAII ManglingContext(getSema(), Class->getDeclContext()); |
| 13493 | |
| 13494 | std::optional<CXXRecordDecl::LambdaNumbering> Numbering; |
| 13495 | if (getDerived().ReplacingOriginal()) { |
| 13496 | Numbering = OldClass->getLambdaNumbering(); |
| 13497 | } |
| 13498 | |
| 13499 | getSema().handleLambdaNumbering(Class, NewCallOperator, Numbering); |
| 13500 | } |
| 13501 | |
| 13502 | // FIXME: Sema's lambda-building mechanism expects us to push an expression |
| 13503 | // evaluation context even if we're not transforming the function body. |
| 13504 | getSema().PushExpressionEvaluationContext( |
| 13505 | Sema::ExpressionEvaluationContext::PotentiallyEvaluated); |
| 13506 | |
| 13507 | // Instantiate the body of the lambda expression. |
| 13508 | StmtResult Body = |
| 13509 | Invalid ? StmtError() : getDerived().TransformLambdaBody(E, E->getBody()); |
| 13510 | |
| 13511 | // ActOnLambda* will pop the function scope for us. |
| 13512 | FuncScopeCleanup.disable(); |
| 13513 | |
| 13514 | if (Body.isInvalid()) { |
| 13515 | SavedContext.pop(); |
| 13516 | getSema().ActOnLambdaError(E->getBeginLoc(), /*CurScope=*/nullptr, |
| 13517 | /*IsInstantiation=*/true); |
| 13518 | return ExprError(); |
| 13519 | } |
| 13520 | |
| 13521 | // Copy the LSI before ActOnFinishFunctionBody removes it. |
| 13522 | // FIXME: This is dumb. Store the lambda information somewhere that outlives |
| 13523 | // the call operator. |
| 13524 | auto LSICopy = *LSI; |
| 13525 | getSema().ActOnFinishFunctionBody(NewCallOperator, Body.get(), |
| 13526 | /*IsInstantiation*/ true); |
| 13527 | SavedContext.pop(); |
| 13528 | |
| 13529 | return getSema().BuildLambdaExpr(E->getBeginLoc(), Body.get()->getEndLoc(), |
| 13530 | &LSICopy); |
| 13531 | } |
| 13532 | |
| 13533 | template<typename Derived> |
| 13534 | StmtResult |
| 13535 | TreeTransform<Derived>::TransformLambdaBody(LambdaExpr *E, Stmt *S) { |
| 13536 | return TransformStmt(S); |
| 13537 | } |
| 13538 | |
| 13539 | template<typename Derived> |
| 13540 | StmtResult |
| 13541 | TreeTransform<Derived>::SkipLambdaBody(LambdaExpr *E, Stmt *S) { |
| 13542 | // Transform captures. |
| 13543 | for (LambdaExpr::capture_iterator C = E->capture_begin(), |
| 13544 | CEnd = E->capture_end(); |
| 13545 | C != CEnd; ++C) { |
| 13546 | // When we hit the first implicit capture, tell Sema that we've finished |
| 13547 | // the list of explicit captures. |
| 13548 | if (!C->isImplicit()) |
| 13549 | continue; |
| 13550 | |
| 13551 | // Capturing 'this' is trivial. |
| 13552 | if (C->capturesThis()) { |
| 13553 | getSema().CheckCXXThisCapture(C->getLocation(), C->isExplicit(), |
| 13554 | /*BuildAndDiagnose*/ true, nullptr, |
| 13555 | C->getCaptureKind() == LCK_StarThis); |
| 13556 | continue; |
| 13557 | } |
| 13558 | // Captured expression will be recaptured during captured variables |
| 13559 | // rebuilding. |
| 13560 | if (C->capturesVLAType()) |
| 13561 | continue; |
| 13562 | |
| 13563 | assert(C->capturesVariable() && "unexpected kind of lambda capture")(static_cast <bool> (C->capturesVariable() && "unexpected kind of lambda capture") ? void (0) : __assert_fail ("C->capturesVariable() && \"unexpected kind of lambda capture\"" , "clang/lib/Sema/TreeTransform.h", 13563, __extension__ __PRETTY_FUNCTION__ )); |
| 13564 | assert(!E->isInitCapture(C) && "implicit init-capture?")(static_cast <bool> (!E->isInitCapture(C) && "implicit init-capture?") ? void (0) : __assert_fail ("!E->isInitCapture(C) && \"implicit init-capture?\"" , "clang/lib/Sema/TreeTransform.h", 13564, __extension__ __PRETTY_FUNCTION__ )); |
| 13565 | |
| 13566 | // Transform the captured variable. |
| 13567 | VarDecl *CapturedVar = cast_or_null<VarDecl>( |
| 13568 | getDerived().TransformDecl(C->getLocation(), C->getCapturedVar())); |
| 13569 | if (!CapturedVar || CapturedVar->isInvalidDecl()) |
| 13570 | return StmtError(); |
| 13571 | |
| 13572 | // Capture the transformed variable. |
| 13573 | getSema().tryCaptureVariable(CapturedVar, C->getLocation()); |
| 13574 | } |
| 13575 | |
| 13576 | return S; |
| 13577 | } |
| 13578 | |
| 13579 | template<typename Derived> |
| 13580 | ExprResult |
| 13581 | TreeTransform<Derived>::TransformCXXUnresolvedConstructExpr( |
| 13582 | CXXUnresolvedConstructExpr *E) { |
| 13583 | TypeSourceInfo *T = |
| 13584 | getDerived().TransformTypeWithDeducedTST(E->getTypeSourceInfo()); |
| 13585 | if (!T) |
| 13586 | return ExprError(); |
| 13587 | |
| 13588 | bool ArgumentChanged = false; |
| 13589 | SmallVector<Expr*, 8> Args; |
| 13590 | Args.reserve(E->getNumArgs()); |
| 13591 | { |
| 13592 | EnterExpressionEvaluationContext Context( |
| 13593 | getSema(), EnterExpressionEvaluationContext::InitList, |
| 13594 | E->isListInitialization()); |
| 13595 | if (getDerived().TransformExprs(E->arg_begin(), E->getNumArgs(), true, Args, |
| 13596 | &ArgumentChanged)) |
| 13597 | return ExprError(); |
| 13598 | } |
| 13599 | |
| 13600 | if (!getDerived().AlwaysRebuild() && |
| 13601 | T == E->getTypeSourceInfo() && |
| 13602 | !ArgumentChanged) |
| 13603 | return E; |
| 13604 | |
| 13605 | // FIXME: we're faking the locations of the commas |
| 13606 | return getDerived().RebuildCXXUnresolvedConstructExpr( |
| 13607 | T, E->getLParenLoc(), Args, E->getRParenLoc(), E->isListInitialization()); |
| 13608 | } |
| 13609 | |
| 13610 | template<typename Derived> |
| 13611 | ExprResult |
| 13612 | TreeTransform<Derived>::TransformCXXDependentScopeMemberExpr( |
| 13613 | CXXDependentScopeMemberExpr *E) { |
| 13614 | // Transform the base of the expression. |
| 13615 | ExprResult Base((Expr*) nullptr); |
| 13616 | Expr *OldBase; |
| 13617 | QualType BaseType; |
| 13618 | QualType ObjectType; |
| 13619 | if (!E->isImplicitAccess()) { |
| 13620 | OldBase = E->getBase(); |
| 13621 | Base = getDerived().TransformExpr(OldBase); |
| 13622 | if (Base.isInvalid()) |
| 13623 | return ExprError(); |
| 13624 | |
| 13625 | // Start the member reference and compute the object's type. |
| 13626 | ParsedType ObjectTy; |
| 13627 | bool MayBePseudoDestructor = false; |
| 13628 | Base = SemaRef.ActOnStartCXXMemberReference(nullptr, Base.get(), |
| 13629 | E->getOperatorLoc(), |
| 13630 | E->isArrow()? tok::arrow : tok::period, |
| 13631 | ObjectTy, |
| 13632 | MayBePseudoDestructor); |
| 13633 | if (Base.isInvalid()) |
| 13634 | return ExprError(); |
| 13635 | |
| 13636 | ObjectType = ObjectTy.get(); |
| 13637 | BaseType = ((Expr*) Base.get())->getType(); |
| 13638 | } else { |
| 13639 | OldBase = nullptr; |
| 13640 | BaseType = getDerived().TransformType(E->getBaseType()); |
| 13641 | ObjectType = BaseType->castAs<PointerType>()->getPointeeType(); |
| 13642 | } |
| 13643 | |
| 13644 | // Transform the first part of the nested-name-specifier that qualifies |
| 13645 | // the member name. |
| 13646 | NamedDecl *FirstQualifierInScope |
| 13647 | = getDerived().TransformFirstQualifierInScope( |
| 13648 | E->getFirstQualifierFoundInScope(), |
| 13649 | E->getQualifierLoc().getBeginLoc()); |
| 13650 | |
| 13651 | NestedNameSpecifierLoc QualifierLoc; |
| 13652 | if (E->getQualifier()) { |
| 13653 | QualifierLoc |
| 13654 | = getDerived().TransformNestedNameSpecifierLoc(E->getQualifierLoc(), |
| 13655 | ObjectType, |
| 13656 | FirstQualifierInScope); |
| 13657 | if (!QualifierLoc) |
| 13658 | return ExprError(); |
| 13659 | } |
| 13660 | |
| 13661 | SourceLocation TemplateKWLoc = E->getTemplateKeywordLoc(); |
| 13662 | |
| 13663 | // TODO: If this is a conversion-function-id, verify that the |
| 13664 | // destination type name (if present) resolves the same way after |
| 13665 | // instantiation as it did in the local scope. |
| 13666 | |
| 13667 | DeclarationNameInfo NameInfo |
| 13668 | = getDerived().TransformDeclarationNameInfo(E->getMemberNameInfo()); |
| 13669 | if (!NameInfo.getName()) |
| 13670 | return ExprError(); |
| 13671 | |
| 13672 | if (!E->hasExplicitTemplateArgs()) { |
| 13673 | // This is a reference to a member without an explicitly-specified |
| 13674 | // template argument list. Optimize for this common case. |
| 13675 | if (!getDerived().AlwaysRebuild() && |
| 13676 | Base.get() == OldBase && |
| 13677 | BaseType == E->getBaseType() && |
| 13678 | QualifierLoc == E->getQualifierLoc() && |
| 13679 | NameInfo.getName() == E->getMember() && |
| 13680 | FirstQualifierInScope == E->getFirstQualifierFoundInScope()) |
| 13681 | return E; |
| 13682 | |
| 13683 | return getDerived().RebuildCXXDependentScopeMemberExpr(Base.get(), |
| 13684 | BaseType, |
| 13685 | E->isArrow(), |
| 13686 | E->getOperatorLoc(), |
| 13687 | QualifierLoc, |
| 13688 | TemplateKWLoc, |
| 13689 | FirstQualifierInScope, |
| 13690 | NameInfo, |
| 13691 | /*TemplateArgs*/nullptr); |
| 13692 | } |
| 13693 | |
| 13694 | TemplateArgumentListInfo TransArgs(E->getLAngleLoc(), E->getRAngleLoc()); |
| 13695 | if (getDerived().TransformTemplateArguments(E->getTemplateArgs(), |
| 13696 | E->getNumTemplateArgs(), |
| 13697 | TransArgs)) |
| 13698 | return ExprError(); |
| 13699 | |
| 13700 | return getDerived().RebuildCXXDependentScopeMemberExpr(Base.get(), |
| 13701 | BaseType, |
| 13702 | E->isArrow(), |
| 13703 | E->getOperatorLoc(), |
| 13704 | QualifierLoc, |
| 13705 | TemplateKWLoc, |
| 13706 | FirstQualifierInScope, |
| 13707 | NameInfo, |
| 13708 | &TransArgs); |
| 13709 | } |
| 13710 | |
| 13711 | template <typename Derived> |
| 13712 | ExprResult TreeTransform<Derived>::TransformUnresolvedMemberExpr( |
| 13713 | UnresolvedMemberExpr *Old) { |
| 13714 | // Transform the base of the expression. |
| 13715 | ExprResult Base((Expr *)nullptr); |
| 13716 | QualType BaseType; |
| 13717 | if (!Old->isImplicitAccess()) { |
| 13718 | Base = getDerived().TransformExpr(Old->getBase()); |
| 13719 | if (Base.isInvalid()) |
| 13720 | return ExprError(); |
| 13721 | Base = |
| 13722 | getSema().PerformMemberExprBaseConversion(Base.get(), Old->isArrow()); |
| 13723 | if (Base.isInvalid()) |
| 13724 | return ExprError(); |
| 13725 | BaseType = Base.get()->getType(); |
| 13726 | } else { |
| 13727 | BaseType = getDerived().TransformType(Old->getBaseType()); |
| 13728 | } |
| 13729 | |
| 13730 | NestedNameSpecifierLoc QualifierLoc; |
| 13731 | if (Old->getQualifierLoc()) { |
| 13732 | QualifierLoc = |
| 13733 | getDerived().TransformNestedNameSpecifierLoc(Old->getQualifierLoc()); |
| 13734 | if (!QualifierLoc) |
| 13735 | return ExprError(); |
| 13736 | } |
| 13737 | |
| 13738 | SourceLocation TemplateKWLoc = Old->getTemplateKeywordLoc(); |
| 13739 | |
| 13740 | LookupResult R(SemaRef, Old->getMemberNameInfo(), Sema::LookupOrdinaryName); |
| 13741 | |
| 13742 | // Transform the declaration set. |
| 13743 | if (TransformOverloadExprDecls(Old, /*RequiresADL*/ false, R)) |
| 13744 | return ExprError(); |
| 13745 | |
| 13746 | // Determine the naming class. |
| 13747 | if (Old->getNamingClass()) { |
| 13748 | CXXRecordDecl *NamingClass = cast_or_null<CXXRecordDecl>( |
| 13749 | getDerived().TransformDecl(Old->getMemberLoc(), Old->getNamingClass())); |
| 13750 | if (!NamingClass) |
| 13751 | return ExprError(); |
| 13752 | |
| 13753 | R.setNamingClass(NamingClass); |
| 13754 | } |
| 13755 | |
| 13756 | TemplateArgumentListInfo TransArgs; |
| 13757 | if (Old->hasExplicitTemplateArgs()) { |
| 13758 | TransArgs.setLAngleLoc(Old->getLAngleLoc()); |
| 13759 | TransArgs.setRAngleLoc(Old->getRAngleLoc()); |
| 13760 | if (getDerived().TransformTemplateArguments( |
| 13761 | Old->getTemplateArgs(), Old->getNumTemplateArgs(), TransArgs)) |
| 13762 | return ExprError(); |
| 13763 | } |
| 13764 | |
| 13765 | // FIXME: to do this check properly, we will need to preserve the |
| 13766 | // first-qualifier-in-scope here, just in case we had a dependent |
| 13767 | // base (and therefore couldn't do the check) and a |
| 13768 | // nested-name-qualifier (and therefore could do the lookup). |
| 13769 | NamedDecl *FirstQualifierInScope = nullptr; |
| 13770 | |
| 13771 | return getDerived().RebuildUnresolvedMemberExpr( |
| 13772 | Base.get(), BaseType, Old->getOperatorLoc(), Old->isArrow(), QualifierLoc, |
| 13773 | TemplateKWLoc, FirstQualifierInScope, R, |
| 13774 | (Old->hasExplicitTemplateArgs() ? &TransArgs : nullptr)); |
| 13775 | } |
| 13776 | |
| 13777 | template<typename Derived> |
| 13778 | ExprResult |
| 13779 | TreeTransform<Derived>::TransformCXXNoexceptExpr(CXXNoexceptExpr *E) { |
| 13780 | EnterExpressionEvaluationContext Unevaluated( |
| 13781 | SemaRef, Sema::ExpressionEvaluationContext::Unevaluated); |
| 13782 | ExprResult SubExpr = getDerived().TransformExpr(E->getOperand()); |
| 13783 | if (SubExpr.isInvalid()) |
| 13784 | return ExprError(); |
| 13785 | |
| 13786 | if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getOperand()) |
| 13787 | return E; |
| 13788 | |
| 13789 | return getDerived().RebuildCXXNoexceptExpr(E->getSourceRange(),SubExpr.get()); |
| 13790 | } |
| 13791 | |
| 13792 | template<typename Derived> |
| 13793 | ExprResult |
| 13794 | TreeTransform<Derived>::TransformPackExpansionExpr(PackExpansionExpr *E) { |
| 13795 | ExprResult Pattern = getDerived().TransformExpr(E->getPattern()); |
| 13796 | if (Pattern.isInvalid()) |
| 13797 | return ExprError(); |
| 13798 | |
| 13799 | if (!getDerived().AlwaysRebuild() && Pattern.get() == E->getPattern()) |
| 13800 | return E; |
| 13801 | |
| 13802 | return getDerived().RebuildPackExpansion(Pattern.get(), E->getEllipsisLoc(), |
| 13803 | E->getNumExpansions()); |
| 13804 | } |
| 13805 | |
| 13806 | template<typename Derived> |
| 13807 | ExprResult |
| 13808 | TreeTransform<Derived>::TransformSizeOfPackExpr(SizeOfPackExpr *E) { |
| 13809 | // If E is not value-dependent, then nothing will change when we transform it. |
| 13810 | // Note: This is an instantiation-centric view. |
| 13811 | if (!E->isValueDependent()) |
| 13812 | return E; |
| 13813 | |
| 13814 | EnterExpressionEvaluationContext Unevaluated( |
| 13815 | getSema(), Sema::ExpressionEvaluationContext::Unevaluated); |
| 13816 | |
| 13817 | ArrayRef<TemplateArgument> PackArgs; |
| 13818 | TemplateArgument ArgStorage; |
| 13819 | |
| 13820 | // Find the argument list to transform. |
| 13821 | if (E->isPartiallySubstituted()) { |
| 13822 | PackArgs = E->getPartialArguments(); |
| 13823 | } else if (E->isValueDependent()) { |
| 13824 | UnexpandedParameterPack Unexpanded(E->getPack(), E->getPackLoc()); |
| 13825 | bool ShouldExpand = false; |
| 13826 | bool RetainExpansion = false; |
| 13827 | std::optional<unsigned> NumExpansions; |
| 13828 | if (getDerived().TryExpandParameterPacks(E->getOperatorLoc(), E->getPackLoc(), |
| 13829 | Unexpanded, |
| 13830 | ShouldExpand, RetainExpansion, |
| 13831 | NumExpansions)) |
| 13832 | return ExprError(); |
| 13833 | |
| 13834 | // If we need to expand the pack, build a template argument from it and |
| 13835 | // expand that. |
| 13836 | if (ShouldExpand) { |
| 13837 | auto *Pack = E->getPack(); |
| 13838 | if (auto *TTPD = dyn_cast<TemplateTypeParmDecl>(Pack)) { |
| 13839 | ArgStorage = getSema().Context.getPackExpansionType( |
| 13840 | getSema().Context.getTypeDeclType(TTPD), std::nullopt); |
| 13841 | } else if (auto *TTPD = dyn_cast<TemplateTemplateParmDecl>(Pack)) { |
| 13842 | ArgStorage = TemplateArgument(TemplateName(TTPD), std::nullopt); |
| 13843 | } else { |
| 13844 | auto *VD = cast<ValueDecl>(Pack); |
| 13845 | ExprResult DRE = getSema().BuildDeclRefExpr( |
| 13846 | VD, VD->getType().getNonLValueExprType(getSema().Context), |
| 13847 | VD->getType()->isReferenceType() ? VK_LValue : VK_PRValue, |
| 13848 | E->getPackLoc()); |
| 13849 | if (DRE.isInvalid()) |
| 13850 | return ExprError(); |
| 13851 | ArgStorage = new (getSema().Context) |
| 13852 | PackExpansionExpr(getSema().Context.DependentTy, DRE.get(), |
| 13853 | E->getPackLoc(), std::nullopt); |
| 13854 | } |
| 13855 | PackArgs = ArgStorage; |
| 13856 | } |
| 13857 | } |
| 13858 | |
| 13859 | // If we're not expanding the pack, just transform the decl. |
| 13860 | if (!PackArgs.size()) { |
| 13861 | auto *Pack = cast_or_null<NamedDecl>( |
| 13862 | getDerived().TransformDecl(E->getPackLoc(), E->getPack())); |
| 13863 | if (!Pack) |
| 13864 | return ExprError(); |
| 13865 | return getDerived().RebuildSizeOfPackExpr( |
| 13866 | E->getOperatorLoc(), Pack, E->getPackLoc(), E->getRParenLoc(), |
| 13867 | std::nullopt, std::nullopt); |
| 13868 | } |
| 13869 | |
| 13870 | // Try to compute the result without performing a partial substitution. |
| 13871 | std::optional<unsigned> Result = 0; |
| 13872 | for (const TemplateArgument &Arg : PackArgs) { |
| 13873 | if (!Arg.isPackExpansion()) { |
| 13874 | Result = *Result + 1; |
| 13875 | continue; |
| 13876 | } |
| 13877 | |
| 13878 | TemplateArgumentLoc ArgLoc; |
| 13879 | InventTemplateArgumentLoc(Arg, ArgLoc); |
| 13880 | |
| 13881 | // Find the pattern of the pack expansion. |
| 13882 | SourceLocation Ellipsis; |
| 13883 | std::optional<unsigned> OrigNumExpansions; |
| 13884 | TemplateArgumentLoc Pattern = |
| 13885 | getSema().getTemplateArgumentPackExpansionPattern(ArgLoc, Ellipsis, |
| 13886 | OrigNumExpansions); |
| 13887 | |
| 13888 | // Substitute under the pack expansion. Do not expand the pack (yet). |
| 13889 | TemplateArgumentLoc OutPattern; |
| 13890 | Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1); |
| 13891 | if (getDerived().TransformTemplateArgument(Pattern, OutPattern, |
| 13892 | /*Uneval*/ true)) |
| 13893 | return true; |
| 13894 | |
| 13895 | // See if we can determine the number of arguments from the result. |
| 13896 | std::optional<unsigned> NumExpansions = |
| 13897 | getSema().getFullyPackExpandedSize(OutPattern.getArgument()); |
| 13898 | if (!NumExpansions) { |
| 13899 | // No: we must be in an alias template expansion, and we're going to need |
| 13900 | // to actually expand the packs. |
| 13901 | Result = std::nullopt; |
| 13902 | break; |
| 13903 | } |
| 13904 | |
| 13905 | Result = *Result + *NumExpansions; |
| 13906 | } |
| 13907 | |
| 13908 | // Common case: we could determine the number of expansions without |
| 13909 | // substituting. |
| 13910 | if (Result) |
| 13911 | return getDerived().RebuildSizeOfPackExpr( |
| 13912 | E->getOperatorLoc(), E->getPack(), E->getPackLoc(), E->getRParenLoc(), |
| 13913 | *Result, std::nullopt); |
| 13914 | |
| 13915 | TemplateArgumentListInfo TransformedPackArgs(E->getPackLoc(), |
| 13916 | E->getPackLoc()); |
| 13917 | { |
| 13918 | TemporaryBase Rebase(*this, E->getPackLoc(), getBaseEntity()); |
| 13919 | typedef TemplateArgumentLocInventIterator< |
| 13920 | Derived, const TemplateArgument*> PackLocIterator; |
| 13921 | if (TransformTemplateArguments(PackLocIterator(*this, PackArgs.begin()), |
| 13922 | PackLocIterator(*this, PackArgs.end()), |
| 13923 | TransformedPackArgs, /*Uneval*/true)) |
| 13924 | return ExprError(); |
| 13925 | } |
| 13926 | |
| 13927 | // Check whether we managed to fully-expand the pack. |
| 13928 | // FIXME: Is it possible for us to do so and not hit the early exit path? |
| 13929 | SmallVector<TemplateArgument, 8> Args; |
| 13930 | bool PartialSubstitution = false; |
| 13931 | for (auto &Loc : TransformedPackArgs.arguments()) { |
| 13932 | Args.push_back(Loc.getArgument()); |
| 13933 | if (Loc.getArgument().isPackExpansion()) |
| 13934 | PartialSubstitution = true; |
| 13935 | } |
| 13936 | |
| 13937 | if (PartialSubstitution) |
| 13938 | return getDerived().RebuildSizeOfPackExpr( |
| 13939 | E->getOperatorLoc(), E->getPack(), E->getPackLoc(), E->getRParenLoc(), |
| 13940 | std::nullopt, Args); |
| 13941 | |
| 13942 | return getDerived().RebuildSizeOfPackExpr(E->getOperatorLoc(), E->getPack(), |
| 13943 | E->getPackLoc(), E->getRParenLoc(), |
| 13944 | Args.size(), std::nullopt); |
| 13945 | } |
| 13946 | |
| 13947 | template<typename Derived> |
| 13948 | ExprResult |
| 13949 | TreeTransform<Derived>::TransformSubstNonTypeTemplateParmPackExpr( |
| 13950 | SubstNonTypeTemplateParmPackExpr *E) { |
| 13951 | // Default behavior is to do nothing with this transformation. |
| 13952 | return E; |
| 13953 | } |
| 13954 | |
| 13955 | template<typename Derived> |
| 13956 | ExprResult |
| 13957 | TreeTransform<Derived>::TransformSubstNonTypeTemplateParmExpr( |
| 13958 | SubstNonTypeTemplateParmExpr *E) { |
| 13959 | // Default behavior is to do nothing with this transformation. |
| 13960 | return E; |
| 13961 | } |
| 13962 | |
| 13963 | template<typename Derived> |
| 13964 | ExprResult |
| 13965 | TreeTransform<Derived>::TransformFunctionParmPackExpr(FunctionParmPackExpr *E) { |
| 13966 | // Default behavior is to do nothing with this transformation. |
| 13967 | return E; |
| 13968 | } |
| 13969 | |
| 13970 | template<typename Derived> |
| 13971 | ExprResult |
| 13972 | TreeTransform<Derived>::TransformMaterializeTemporaryExpr( |
| 13973 | MaterializeTemporaryExpr *E) { |
| 13974 | return getDerived().TransformExpr(E->getSubExpr()); |
| 13975 | } |
| 13976 | |
| 13977 | template<typename Derived> |
| 13978 | ExprResult |
| 13979 | TreeTransform<Derived>::TransformCXXFoldExpr(CXXFoldExpr *E) { |
| 13980 | UnresolvedLookupExpr *Callee = nullptr; |
| 13981 | if (Expr *OldCallee = E->getCallee()) { |
| 13982 | ExprResult CalleeResult = getDerived().TransformExpr(OldCallee); |
| 13983 | if (CalleeResult.isInvalid()) |
| 13984 | return ExprError(); |
| 13985 | Callee = cast<UnresolvedLookupExpr>(CalleeResult.get()); |
| 13986 | } |
| 13987 | |
| 13988 | Expr *Pattern = E->getPattern(); |
| 13989 | |
| 13990 | SmallVector<UnexpandedParameterPack, 2> Unexpanded; |
| 13991 | getSema().collectUnexpandedParameterPacks(Pattern, Unexpanded); |
| 13992 | assert(!Unexpanded.empty() && "Pack expansion without parameter packs?")(static_cast <bool> (!Unexpanded.empty() && "Pack expansion without parameter packs?" ) ? void (0) : __assert_fail ("!Unexpanded.empty() && \"Pack expansion without parameter packs?\"" , "clang/lib/Sema/TreeTransform.h", 13992, __extension__ __PRETTY_FUNCTION__ )); |
| 13993 | |
| 13994 | // Determine whether the set of unexpanded parameter packs can and should |
| 13995 | // be expanded. |
| 13996 | bool Expand = true; |
| 13997 | bool RetainExpansion = false; |
| 13998 | std::optional<unsigned> OrigNumExpansions = E->getNumExpansions(), |
| 13999 | NumExpansions = OrigNumExpansions; |
| 14000 | if (getDerived().TryExpandParameterPacks(E->getEllipsisLoc(), |
| 14001 | Pattern->getSourceRange(), |
| 14002 | Unexpanded, |
| 14003 | Expand, RetainExpansion, |
| 14004 | NumExpansions)) |
| 14005 | return true; |
| 14006 | |
| 14007 | if (!Expand) { |
| 14008 | // Do not expand any packs here, just transform and rebuild a fold |
| 14009 | // expression. |
| 14010 | Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1); |
| 14011 | |
| 14012 | ExprResult LHS = |
| 14013 | E->getLHS() ? getDerived().TransformExpr(E->getLHS()) : ExprResult(); |
| 14014 | if (LHS.isInvalid()) |
| 14015 | return true; |
| 14016 | |
| 14017 | ExprResult RHS = |
| 14018 | E->getRHS() ? getDerived().TransformExpr(E->getRHS()) : ExprResult(); |
| 14019 | if (RHS.isInvalid()) |
| 14020 | return true; |
| 14021 | |
| 14022 | if (!getDerived().AlwaysRebuild() && |
| 14023 | LHS.get() == E->getLHS() && RHS.get() == E->getRHS()) |
| 14024 | return E; |
| 14025 | |
| 14026 | return getDerived().RebuildCXXFoldExpr( |
| 14027 | Callee, E->getBeginLoc(), LHS.get(), E->getOperator(), |
| 14028 | E->getEllipsisLoc(), RHS.get(), E->getEndLoc(), NumExpansions); |
| 14029 | } |
| 14030 | |
| 14031 | // Formally a fold expression expands to nested parenthesized expressions. |
| 14032 | // Enforce this limit to avoid creating trees so deep we can't safely traverse |
| 14033 | // them. |
| 14034 | if (NumExpansions && SemaRef.getLangOpts().BracketDepth < NumExpansions) { |
| 14035 | SemaRef.Diag(E->getEllipsisLoc(), |
| 14036 | clang::diag::err_fold_expression_limit_exceeded) |
| 14037 | << *NumExpansions << SemaRef.getLangOpts().BracketDepth |
| 14038 | << E->getSourceRange(); |
| 14039 | SemaRef.Diag(E->getEllipsisLoc(), diag::note_bracket_depth); |
| 14040 | return ExprError(); |
| 14041 | } |
| 14042 | |
| 14043 | // The transform has determined that we should perform an elementwise |
| 14044 | // expansion of the pattern. Do so. |
| 14045 | ExprResult Result = getDerived().TransformExpr(E->getInit()); |
| 14046 | if (Result.isInvalid()) |
| 14047 | return true; |
| 14048 | bool LeftFold = E->isLeftFold(); |
| 14049 | |
| 14050 | // If we're retaining an expansion for a right fold, it is the innermost |
| 14051 | // component and takes the init (if any). |
| 14052 | if (!LeftFold && RetainExpansion) { |
| 14053 | ForgetPartiallySubstitutedPackRAII Forget(getDerived()); |
| 14054 | |
| 14055 | ExprResult Out = getDerived().TransformExpr(Pattern); |
| 14056 | if (Out.isInvalid()) |
| 14057 | return true; |
| 14058 | |
| 14059 | Result = getDerived().RebuildCXXFoldExpr( |
| 14060 | Callee, E->getBeginLoc(), Out.get(), E->getOperator(), |
| 14061 | E->getEllipsisLoc(), Result.get(), E->getEndLoc(), OrigNumExpansions); |
| 14062 | if (Result.isInvalid()) |
| 14063 | return true; |
| 14064 | } |
| 14065 | |
| 14066 | for (unsigned I = 0; I != *NumExpansions; ++I) { |
| 14067 | Sema::ArgumentPackSubstitutionIndexRAII SubstIndex( |
| 14068 | getSema(), LeftFold ? I : *NumExpansions - I - 1); |
| 14069 | ExprResult Out = getDerived().TransformExpr(Pattern); |
| 14070 | if (Out.isInvalid()) |
| 14071 | return true; |
| 14072 | |
| 14073 | if (Out.get()->containsUnexpandedParameterPack()) { |
| 14074 | // We still have a pack; retain a pack expansion for this slice. |
| 14075 | Result = getDerived().RebuildCXXFoldExpr( |
| 14076 | Callee, E->getBeginLoc(), LeftFold ? Result.get() : Out.get(), |
| 14077 | E->getOperator(), E->getEllipsisLoc(), |
| 14078 | LeftFold ? Out.get() : Result.get(), E->getEndLoc(), |
| 14079 | OrigNumExpansions); |
| 14080 | } else if (Result.isUsable()) { |
| 14081 | // We've got down to a single element; build a binary operator. |
| 14082 | Expr *LHS = LeftFold ? Result.get() : Out.get(); |
| 14083 | Expr *RHS = LeftFold ? Out.get() : Result.get(); |
| 14084 | if (Callee) |
| 14085 | Result = getDerived().RebuildCXXOperatorCallExpr( |
| 14086 | BinaryOperator::getOverloadedOperator(E->getOperator()), |
| 14087 | E->getEllipsisLoc(), Callee, LHS, RHS); |
| 14088 | else |
| 14089 | Result = getDerived().RebuildBinaryOperator(E->getEllipsisLoc(), |
| 14090 | E->getOperator(), LHS, RHS); |
| 14091 | } else |
| 14092 | Result = Out; |
| 14093 | |
| 14094 | if (Result.isInvalid()) |
| 14095 | return true; |
| 14096 | } |
| 14097 | |
| 14098 | // If we're retaining an expansion for a left fold, it is the outermost |
| 14099 | // component and takes the complete expansion so far as its init (if any). |
| 14100 | if (LeftFold && RetainExpansion) { |
| 14101 | ForgetPartiallySubstitutedPackRAII Forget(getDerived()); |
| 14102 | |
| 14103 | ExprResult Out = getDerived().TransformExpr(Pattern); |
| 14104 | if (Out.isInvalid()) |
| 14105 | return true; |
| 14106 | |
| 14107 | Result = getDerived().RebuildCXXFoldExpr( |
| 14108 | Callee, E->getBeginLoc(), Result.get(), E->getOperator(), |
| 14109 | E->getEllipsisLoc(), Out.get(), E->getEndLoc(), OrigNumExpansions); |
| 14110 | if (Result.isInvalid()) |
| 14111 | return true; |
| 14112 | } |
| 14113 | |
| 14114 | // If we had no init and an empty pack, and we're not retaining an expansion, |
| 14115 | // then produce a fallback value or error. |
| 14116 | if (Result.isUnset()) |
| 14117 | return getDerived().RebuildEmptyCXXFoldExpr(E->getEllipsisLoc(), |
| 14118 | E->getOperator()); |
| 14119 | |
| 14120 | return Result; |
| 14121 | } |
| 14122 | |
| 14123 | template <typename Derived> |
| 14124 | ExprResult |
| 14125 | TreeTransform<Derived>::TransformCXXParenListInitExpr(CXXParenListInitExpr *E) { |
| 14126 | SmallVector<Expr *, 4> TransformedInits; |
| 14127 | ArrayRef<Expr *> InitExprs = E->getInitExprs(); |
| 14128 | if (TransformExprs(InitExprs.data(), InitExprs.size(), true, |
| 14129 | TransformedInits)) |
| 14130 | return ExprError(); |
| 14131 | |
| 14132 | return getDerived().RebuildParenListExpr(E->getBeginLoc(), TransformedInits, |
| 14133 | E->getEndLoc()); |
| 14134 | } |
| 14135 | |
| 14136 | template<typename Derived> |
| 14137 | ExprResult |
| 14138 | TreeTransform<Derived>::TransformCXXStdInitializerListExpr( |
| 14139 | CXXStdInitializerListExpr *E) { |
| 14140 | return getDerived().TransformExpr(E->getSubExpr()); |
| 14141 | } |
| 14142 | |
| 14143 | template<typename Derived> |
| 14144 | ExprResult |
| 14145 | TreeTransform<Derived>::TransformObjCStringLiteral(ObjCStringLiteral *E) { |
| 14146 | return SemaRef.MaybeBindToTemporary(E); |
| 14147 | } |
| 14148 | |
| 14149 | template<typename Derived> |
| 14150 | ExprResult |
| 14151 | TreeTransform<Derived>::TransformObjCBoolLiteralExpr(ObjCBoolLiteralExpr *E) { |
| 14152 | return E; |
| 14153 | } |
| 14154 | |
| 14155 | template<typename Derived> |
| 14156 | ExprResult |
| 14157 | TreeTransform<Derived>::TransformObjCBoxedExpr(ObjCBoxedExpr *E) { |
| 14158 | ExprResult SubExpr = getDerived().TransformExpr(E->getSubExpr()); |
| 14159 | if (SubExpr.isInvalid()) |
| 14160 | return ExprError(); |
| 14161 | |
| 14162 | if (!getDerived().AlwaysRebuild() && |
| 14163 | SubExpr.get() == E->getSubExpr()) |
| 14164 | return E; |
| 14165 | |
| 14166 | return getDerived().RebuildObjCBoxedExpr(E->getSourceRange(), SubExpr.get()); |
| 14167 | } |
| 14168 | |
| 14169 | template<typename Derived> |
| 14170 | ExprResult |
| 14171 | TreeTransform<Derived>::TransformObjCArrayLiteral(ObjCArrayLiteral *E) { |
| 14172 | // Transform each of the elements. |
| 14173 | SmallVector<Expr *, 8> Elements; |
| 14174 | bool ArgChanged = false; |
| 14175 | if (getDerived().TransformExprs(E->getElements(), E->getNumElements(), |
| 14176 | /*IsCall=*/false, Elements, &ArgChanged)) |
| 14177 | return ExprError(); |
| 14178 | |
| 14179 | if (!getDerived().AlwaysRebuild() && !ArgChanged) |
| 14180 | return SemaRef.MaybeBindToTemporary(E); |
| 14181 | |
| 14182 | return getDerived().RebuildObjCArrayLiteral(E->getSourceRange(), |
| 14183 | Elements.data(), |
| 14184 | Elements.size()); |
| 14185 | } |
| 14186 | |
| 14187 | template<typename Derived> |
| 14188 | ExprResult |
| 14189 | TreeTransform<Derived>::TransformObjCDictionaryLiteral( |
| 14190 | ObjCDictionaryLiteral *E) { |
| 14191 | // Transform each of the elements. |
| 14192 | SmallVector<ObjCDictionaryElement, 8> Elements; |
| 14193 | bool ArgChanged = false; |
| 14194 | for (unsigned I = 0, N = E->getNumElements(); I != N; ++I) { |
| 14195 | ObjCDictionaryElement OrigElement = E->getKeyValueElement(I); |
| 14196 | |
| 14197 | if (OrigElement.isPackExpansion()) { |
| 14198 | // This key/value element is a pack expansion. |
| 14199 | SmallVector<UnexpandedParameterPack, 2> Unexpanded; |
| 14200 | getSema().collectUnexpandedParameterPacks(OrigElement.Key, Unexpanded); |
| 14201 | getSema().collectUnexpandedParameterPacks(OrigElement.Value, Unexpanded); |
| 14202 | assert(!Unexpanded.empty() && "Pack expansion without parameter packs?")(static_cast <bool> (!Unexpanded.empty() && "Pack expansion without parameter packs?" ) ? void (0) : __assert_fail ("!Unexpanded.empty() && \"Pack expansion without parameter packs?\"" , "clang/lib/Sema/TreeTransform.h", 14202, __extension__ __PRETTY_FUNCTION__ )); |
| 14203 | |
| 14204 | // Determine whether the set of unexpanded parameter packs can |
| 14205 | // and should be expanded. |
| 14206 | bool Expand = true; |
| 14207 | bool RetainExpansion = false; |
| 14208 | std::optional<unsigned> OrigNumExpansions = OrigElement.NumExpansions; |
| 14209 | std::optional<unsigned> NumExpansions = OrigNumExpansions; |
| 14210 | SourceRange PatternRange(OrigElement.Key->getBeginLoc(), |
| 14211 | OrigElement.Value->getEndLoc()); |
| 14212 | if (getDerived().TryExpandParameterPacks(OrigElement.EllipsisLoc, |
| 14213 | PatternRange, Unexpanded, Expand, |
| 14214 | RetainExpansion, NumExpansions)) |
| 14215 | return ExprError(); |
| 14216 | |
| 14217 | if (!Expand) { |
| 14218 | // The transform has determined that we should perform a simple |
| 14219 | // transformation on the pack expansion, producing another pack |
| 14220 | // expansion. |
| 14221 | Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1); |
| 14222 | ExprResult Key = getDerived().TransformExpr(OrigElement.Key); |
| 14223 | if (Key.isInvalid()) |
| 14224 | return ExprError(); |
| 14225 | |
| 14226 | if (Key.get() != OrigElement.Key) |
| 14227 | ArgChanged = true; |
| 14228 | |
| 14229 | ExprResult Value = getDerived().TransformExpr(OrigElement.Value); |
| 14230 | if (Value.isInvalid()) |
| 14231 | return ExprError(); |
| 14232 | |
| 14233 | if (Value.get() != OrigElement.Value) |
| 14234 | ArgChanged = true; |
| 14235 | |
| 14236 | ObjCDictionaryElement Expansion = { |
| 14237 | Key.get(), Value.get(), OrigElement.EllipsisLoc, NumExpansions |
| 14238 | }; |
| 14239 | Elements.push_back(Expansion); |
| 14240 | continue; |
| 14241 | } |
| 14242 | |
| 14243 | // Record right away that the argument was changed. This needs |
| 14244 | // to happen even if the array expands to nothing. |
| 14245 | ArgChanged = true; |
| 14246 | |
| 14247 | // The transform has determined that we should perform an elementwise |
| 14248 | // expansion of the pattern. Do so. |
| 14249 | for (unsigned I = 0; I != *NumExpansions; ++I) { |
| 14250 | Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I); |
| 14251 | ExprResult Key = getDerived().TransformExpr(OrigElement.Key); |
| 14252 | if (Key.isInvalid()) |
| 14253 | return ExprError(); |
| 14254 | |
| 14255 | ExprResult Value = getDerived().TransformExpr(OrigElement.Value); |
| 14256 | if (Value.isInvalid()) |
| 14257 | return ExprError(); |
| 14258 | |
| 14259 | ObjCDictionaryElement Element = { |
| 14260 | Key.get(), Value.get(), SourceLocation(), NumExpansions |
| 14261 | }; |
| 14262 | |
| 14263 | // If any unexpanded parameter packs remain, we still have a |
| 14264 | // pack expansion. |
| 14265 | // FIXME: Can this really happen? |
| 14266 | if (Key.get()->containsUnexpandedParameterPack() || |
| 14267 | Value.get()->containsUnexpandedParameterPack()) |
| 14268 | Element.EllipsisLoc = OrigElement.EllipsisLoc; |
| 14269 | |
| 14270 | Elements.push_back(Element); |
| 14271 | } |
| 14272 | |
| 14273 | // FIXME: Retain a pack expansion if RetainExpansion is true. |
| 14274 | |
| 14275 | // We've finished with this pack expansion. |
| 14276 | continue; |
| 14277 | } |
| 14278 | |
| 14279 | // Transform and check key. |
| 14280 | ExprResult Key = getDerived().TransformExpr(OrigElement.Key); |
| 14281 | if (Key.isInvalid()) |
| 14282 | return ExprError(); |
| 14283 | |
| 14284 | if (Key.get() != OrigElement.Key) |
| 14285 | ArgChanged = true; |
| 14286 | |
| 14287 | // Transform and check value. |
| 14288 | ExprResult Value |
| 14289 | = getDerived().TransformExpr(OrigElement.Value); |
| 14290 | if (Value.isInvalid()) |
| 14291 | return ExprError(); |
| 14292 | |
| 14293 | if (Value.get() != OrigElement.Value) |
| 14294 | ArgChanged = true; |
| 14295 | |
| 14296 | ObjCDictionaryElement Element = {Key.get(), Value.get(), SourceLocation(), |
| 14297 | std::nullopt}; |
| 14298 | Elements.push_back(Element); |
| 14299 | } |
| 14300 | |
| 14301 | if (!getDerived().AlwaysRebuild() && !ArgChanged) |
| 14302 | return SemaRef.MaybeBindToTemporary(E); |
| 14303 | |
| 14304 | return getDerived().RebuildObjCDictionaryLiteral(E->getSourceRange(), |
| 14305 | Elements); |
| 14306 | } |
| 14307 | |
| 14308 | template<typename Derived> |
| 14309 | ExprResult |
| 14310 | TreeTransform<Derived>::TransformObjCEncodeExpr(ObjCEncodeExpr *E) { |
| 14311 | TypeSourceInfo *EncodedTypeInfo |
| 14312 | = getDerived().TransformType(E->getEncodedTypeSourceInfo()); |
| 14313 | if (!EncodedTypeInfo) |
| 14314 | return ExprError(); |
| 14315 | |
| 14316 | if (!getDerived().AlwaysRebuild() && |
| 14317 | EncodedTypeInfo == E->getEncodedTypeSourceInfo()) |
| 14318 | return E; |
| 14319 | |
| 14320 | return getDerived().RebuildObjCEncodeExpr(E->getAtLoc(), |
| 14321 | EncodedTypeInfo, |
| 14322 | E->getRParenLoc()); |
| 14323 | } |
| 14324 | |
| 14325 | template<typename Derived> |
| 14326 | ExprResult TreeTransform<Derived>:: |
| 14327 | TransformObjCIndirectCopyRestoreExpr(ObjCIndirectCopyRestoreExpr *E) { |
| 14328 | // This is a kind of implicit conversion, and it needs to get dropped |
| 14329 | // and recomputed for the same general reasons that ImplicitCastExprs |
| 14330 | // do, as well a more specific one: this expression is only valid when |
| 14331 | // it appears *immediately* as an argument expression. |
| 14332 | return getDerived().TransformExpr(E->getSubExpr()); |
| 14333 | } |
| 14334 | |
| 14335 | template<typename Derived> |
| 14336 | ExprResult TreeTransform<Derived>:: |
| 14337 | TransformObjCBridgedCastExpr(ObjCBridgedCastExpr *E) { |
| 14338 | TypeSourceInfo *TSInfo |
| 14339 | = getDerived().TransformType(E->getTypeInfoAsWritten()); |
| 14340 | if (!TSInfo) |
| 14341 | return ExprError(); |
| 14342 | |
| 14343 | ExprResult Result = getDerived().TransformExpr(E->getSubExpr()); |
| 14344 | if (Result.isInvalid()) |
| 14345 | return ExprError(); |
| 14346 | |
| 14347 | if (!getDerived().AlwaysRebuild() && |
| 14348 | TSInfo == E->getTypeInfoAsWritten() && |
| 14349 | Result.get() == E->getSubExpr()) |
| 14350 | return E; |
| 14351 | |
| 14352 | return SemaRef.BuildObjCBridgedCast(E->getLParenLoc(), E->getBridgeKind(), |
| 14353 | E->getBridgeKeywordLoc(), TSInfo, |
| 14354 | Result.get()); |
| 14355 | } |
| 14356 | |
| 14357 | template <typename Derived> |
| 14358 | ExprResult TreeTransform<Derived>::TransformObjCAvailabilityCheckExpr( |
| 14359 | ObjCAvailabilityCheckExpr *E) { |
| 14360 | return E; |
| 14361 | } |
| 14362 | |
| 14363 | template<typename Derived> |
| 14364 | ExprResult |
| 14365 | TreeTransform<Derived>::TransformObjCMessageExpr(ObjCMessageExpr *E) { |
| 14366 | // Transform arguments. |
| 14367 | bool ArgChanged = false; |
| 14368 | SmallVector<Expr*, 8> Args; |
| 14369 | Args.reserve(E->getNumArgs()); |
| 14370 | if (getDerived().TransformExprs(E->getArgs(), E->getNumArgs(), false, Args, |
| 14371 | &ArgChanged)) |
| 14372 | return ExprError(); |
| 14373 | |
| 14374 | if (E->getReceiverKind() == ObjCMessageExpr::Class) { |
| 14375 | // Class message: transform the receiver type. |
| 14376 | TypeSourceInfo *ReceiverTypeInfo |
| 14377 | = getDerived().TransformType(E->getClassReceiverTypeInfo()); |
| 14378 | if (!ReceiverTypeInfo) |
| 14379 | return ExprError(); |
| 14380 | |
| 14381 | // If nothing changed, just retain the existing message send. |
| 14382 | if (!getDerived().AlwaysRebuild() && |
| 14383 | ReceiverTypeInfo == E->getClassReceiverTypeInfo() && !ArgChanged) |
| 14384 | return SemaRef.MaybeBindToTemporary(E); |
| 14385 | |
| 14386 | // Build a new class message send. |
| 14387 | SmallVector<SourceLocation, 16> SelLocs; |
| 14388 | E->getSelectorLocs(SelLocs); |
| 14389 | return getDerived().RebuildObjCMessageExpr(ReceiverTypeInfo, |
| 14390 | E->getSelector(), |
| 14391 | SelLocs, |
| 14392 | E->getMethodDecl(), |
| 14393 | E->getLeftLoc(), |
| 14394 | Args, |
| 14395 | E->getRightLoc()); |
| 14396 | } |
| 14397 | else if (E->getReceiverKind() == ObjCMessageExpr::SuperClass || |
| 14398 | E->getReceiverKind() == ObjCMessageExpr::SuperInstance) { |
| 14399 | if (!E->getMethodDecl()) |
| 14400 | return ExprError(); |
| 14401 | |
| 14402 | // Build a new class message send to 'super'. |
| 14403 | SmallVector<SourceLocation, 16> SelLocs; |
| 14404 | E->getSelectorLocs(SelLocs); |
| 14405 | return getDerived().RebuildObjCMessageExpr(E->getSuperLoc(), |
| 14406 | E->getSelector(), |
| 14407 | SelLocs, |
| 14408 | E->getReceiverType(), |
| 14409 | E->getMethodDecl(), |
| 14410 | E->getLeftLoc(), |
| 14411 | Args, |
| 14412 | E->getRightLoc()); |
| 14413 | } |
| 14414 | |
| 14415 | // Instance message: transform the receiver |
| 14416 | assert(E->getReceiverKind() == ObjCMessageExpr::Instance &&(static_cast <bool> (E->getReceiverKind() == ObjCMessageExpr ::Instance && "Only class and instance messages may be instantiated" ) ? void (0) : __assert_fail ("E->getReceiverKind() == ObjCMessageExpr::Instance && \"Only class and instance messages may be instantiated\"" , "clang/lib/Sema/TreeTransform.h", 14417, __extension__ __PRETTY_FUNCTION__ )) |
| 14417 | "Only class and instance messages may be instantiated")(static_cast <bool> (E->getReceiverKind() == ObjCMessageExpr ::Instance && "Only class and instance messages may be instantiated" ) ? void (0) : __assert_fail ("E->getReceiverKind() == ObjCMessageExpr::Instance && \"Only class and instance messages may be instantiated\"" , "clang/lib/Sema/TreeTransform.h", 14417, __extension__ __PRETTY_FUNCTION__ )); |
| 14418 | ExprResult Receiver |
| 14419 | = getDerived().TransformExpr(E->getInstanceReceiver()); |
| 14420 | if (Receiver.isInvalid()) |
| 14421 | return ExprError(); |
| 14422 | |
| 14423 | // If nothing changed, just retain the existing message send. |
| 14424 | if (!getDerived().AlwaysRebuild() && |
| 14425 | Receiver.get() == E->getInstanceReceiver() && !ArgChanged) |
| 14426 | return SemaRef.MaybeBindToTemporary(E); |
| 14427 | |
| 14428 | // Build a new instance message send. |
| 14429 | SmallVector<SourceLocation, 16> SelLocs; |
| 14430 | E->getSelectorLocs(SelLocs); |
| 14431 | return getDerived().RebuildObjCMessageExpr(Receiver.get(), |
| 14432 | E->getSelector(), |
| 14433 | SelLocs, |
| 14434 | E->getMethodDecl(), |
| 14435 | E->getLeftLoc(), |
| 14436 | Args, |
| 14437 | E->getRightLoc()); |
| 14438 | } |
| 14439 | |
| 14440 | template<typename Derived> |
| 14441 | ExprResult |
| 14442 | TreeTransform<Derived>::TransformObjCSelectorExpr(ObjCSelectorExpr *E) { |
| 14443 | return E; |
| 14444 | } |
| 14445 | |
| 14446 | template<typename Derived> |
| 14447 | ExprResult |
| 14448 | TreeTransform<Derived>::TransformObjCProtocolExpr(ObjCProtocolExpr *E) { |
| 14449 | return E; |
| 14450 | } |
| 14451 | |
| 14452 | template<typename Derived> |
| 14453 | ExprResult |
| 14454 | TreeTransform<Derived>::TransformObjCIvarRefExpr(ObjCIvarRefExpr *E) { |
| 14455 | // Transform the base expression. |
| 14456 | ExprResult Base = getDerived().TransformExpr(E->getBase()); |
| 14457 | if (Base.isInvalid()) |
| 14458 | return ExprError(); |
| 14459 | |
| 14460 | // We don't need to transform the ivar; it will never change. |
| 14461 | |
| 14462 | // If nothing changed, just retain the existing expression. |
| 14463 | if (!getDerived().AlwaysRebuild() && |
| 14464 | Base.get() == E->getBase()) |
| 14465 | return E; |
| 14466 | |
| 14467 | return getDerived().RebuildObjCIvarRefExpr(Base.get(), E->getDecl(), |
| 14468 | E->getLocation(), |
| 14469 | E->isArrow(), E->isFreeIvar()); |
| 14470 | } |
| 14471 | |
| 14472 | template<typename Derived> |
| 14473 | ExprResult |
| 14474 | TreeTransform<Derived>::TransformObjCPropertyRefExpr(ObjCPropertyRefExpr *E) { |
| 14475 | // 'super' and types never change. Property never changes. Just |
| 14476 | // retain the existing expression. |
| 14477 | if (!E->isObjectReceiver()) |
| 14478 | return E; |
| 14479 | |
| 14480 | // Transform the base expression. |
| 14481 | ExprResult Base = getDerived().TransformExpr(E->getBase()); |
| 14482 | if (Base.isInvalid()) |
| 14483 | return ExprError(); |
| 14484 | |
| 14485 | // We don't need to transform the property; it will never change. |
| 14486 | |
| 14487 | // If nothing changed, just retain the existing expression. |
| 14488 | if (!getDerived().AlwaysRebuild() && |
| 14489 | Base.get() == E->getBase()) |
| 14490 | return E; |
| 14491 | |
| 14492 | if (E->isExplicitProperty()) |
| 14493 | return getDerived().RebuildObjCPropertyRefExpr(Base.get(), |
| 14494 | E->getExplicitProperty(), |
| 14495 | E->getLocation()); |
| 14496 | |
| 14497 | return getDerived().RebuildObjCPropertyRefExpr(Base.get(), |
| 14498 | SemaRef.Context.PseudoObjectTy, |
| 14499 | E->getImplicitPropertyGetter(), |
| 14500 | E->getImplicitPropertySetter(), |
| 14501 | E->getLocation()); |
| 14502 | } |
| 14503 | |
| 14504 | template<typename Derived> |
| 14505 | ExprResult |
| 14506 | TreeTransform<Derived>::TransformObjCSubscriptRefExpr(ObjCSubscriptRefExpr *E) { |
| 14507 | // Transform the base expression. |
| 14508 | ExprResult Base = getDerived().TransformExpr(E->getBaseExpr()); |
| 14509 | if (Base.isInvalid()) |
| 14510 | return ExprError(); |
| 14511 | |
| 14512 | // Transform the key expression. |
| 14513 | ExprResult Key = getDerived().TransformExpr(E->getKeyExpr()); |
| 14514 | if (Key.isInvalid()) |
| 14515 | return ExprError(); |
| 14516 | |
| 14517 | // If nothing changed, just retain the existing expression. |
| 14518 | if (!getDerived().AlwaysRebuild() && |
| 14519 | Key.get() == E->getKeyExpr() && Base.get() == E->getBaseExpr()) |
| 14520 | return E; |
| 14521 | |
| 14522 | return getDerived().RebuildObjCSubscriptRefExpr(E->getRBracket(), |
| 14523 | Base.get(), Key.get(), |
| 14524 | E->getAtIndexMethodDecl(), |
| 14525 | E->setAtIndexMethodDecl()); |
| 14526 | } |
| 14527 | |
| 14528 | template<typename Derived> |
| 14529 | ExprResult |
| 14530 | TreeTransform<Derived>::TransformObjCIsaExpr(ObjCIsaExpr *E) { |
| 14531 | // Transform the base expression. |
| 14532 | ExprResult Base = getDerived().TransformExpr(E->getBase()); |
| 14533 | if (Base.isInvalid()) |
| 14534 | return ExprError(); |
| 14535 | |
| 14536 | // If nothing changed, just retain the existing expression. |
| 14537 | if (!getDerived().AlwaysRebuild() && |
| 14538 | Base.get() == E->getBase()) |
| 14539 | return E; |
| 14540 | |
| 14541 | return getDerived().RebuildObjCIsaExpr(Base.get(), E->getIsaMemberLoc(), |
| 14542 | E->getOpLoc(), |
| 14543 | E->isArrow()); |
| 14544 | } |
| 14545 | |
| 14546 | template<typename Derived> |
| 14547 | ExprResult |
| 14548 | TreeTransform<Derived>::TransformShuffleVectorExpr(ShuffleVectorExpr *E) { |
| 14549 | bool ArgumentChanged = false; |
| 14550 | SmallVector<Expr*, 8> SubExprs; |
| 14551 | SubExprs.reserve(E->getNumSubExprs()); |
| 14552 | if (getDerived().TransformExprs(E->getSubExprs(), E->getNumSubExprs(), false, |
| 14553 | SubExprs, &ArgumentChanged)) |
| 14554 | return ExprError(); |
| 14555 | |
| 14556 | if (!getDerived().AlwaysRebuild() && |
| 14557 | !ArgumentChanged) |
| 14558 | return E; |
| 14559 | |
| 14560 | return getDerived().RebuildShuffleVectorExpr(E->getBuiltinLoc(), |
| 14561 | SubExprs, |
| 14562 | E->getRParenLoc()); |
| 14563 | } |
| 14564 | |
| 14565 | template<typename Derived> |
| 14566 | ExprResult |
| 14567 | TreeTransform<Derived>::TransformConvertVectorExpr(ConvertVectorExpr *E) { |
| 14568 | ExprResult SrcExpr = getDerived().TransformExpr(E->getSrcExpr()); |
| 14569 | if (SrcExpr.isInvalid()) |
| 14570 | return ExprError(); |
| 14571 | |
| 14572 | TypeSourceInfo *Type = getDerived().TransformType(E->getTypeSourceInfo()); |
| 14573 | if (!Type) |
| 14574 | return ExprError(); |
| 14575 | |
| 14576 | if (!getDerived().AlwaysRebuild() && |
| 14577 | Type == E->getTypeSourceInfo() && |
| 14578 | SrcExpr.get() == E->getSrcExpr()) |
| 14579 | return E; |
| 14580 | |
| 14581 | return getDerived().RebuildConvertVectorExpr(E->getBuiltinLoc(), |
| 14582 | SrcExpr.get(), Type, |
| 14583 | E->getRParenLoc()); |
| 14584 | } |
| 14585 | |
| 14586 | template<typename Derived> |
| 14587 | ExprResult |
| 14588 | TreeTransform<Derived>::TransformBlockExpr(BlockExpr *E) { |
| 14589 | BlockDecl *oldBlock = E->getBlockDecl(); |
| 14590 | |
| 14591 | SemaRef.ActOnBlockStart(E->getCaretLocation(), /*Scope=*/nullptr); |
| 14592 | BlockScopeInfo *blockScope = SemaRef.getCurBlock(); |
| 14593 | |
| 14594 | blockScope->TheDecl->setIsVariadic(oldBlock->isVariadic()); |
| 14595 | blockScope->TheDecl->setBlockMissingReturnType( |
| 14596 | oldBlock->blockMissingReturnType()); |
| 14597 | |
| 14598 | SmallVector<ParmVarDecl*, 4> params; |
| 14599 | SmallVector<QualType, 4> paramTypes; |
| 14600 | |
| 14601 | const FunctionProtoType *exprFunctionType = E->getFunctionType(); |
| 14602 | |
| 14603 | // Parameter substitution. |
| 14604 | Sema::ExtParameterInfoBuilder extParamInfos; |
| 14605 | if (getDerived().TransformFunctionTypeParams( |
| 14606 | E->getCaretLocation(), oldBlock->parameters(), nullptr, |
| 14607 | exprFunctionType->getExtParameterInfosOrNull(), paramTypes, ¶ms, |
| 14608 | extParamInfos)) { |
| 14609 | getSema().ActOnBlockError(E->getCaretLocation(), /*Scope=*/nullptr); |
| 14610 | return ExprError(); |
| 14611 | } |
| 14612 | |
| 14613 | QualType exprResultType = |
| 14614 | getDerived().TransformType(exprFunctionType->getReturnType()); |
| 14615 | |
| 14616 | auto epi = exprFunctionType->getExtProtoInfo(); |
| 14617 | epi.ExtParameterInfos = extParamInfos.getPointerOrNull(paramTypes.size()); |
| 14618 | |
| 14619 | QualType functionType = |
| 14620 | getDerived().RebuildFunctionProtoType(exprResultType, paramTypes, epi); |
| 14621 | blockScope->FunctionType = functionType; |
| 14622 | |
| 14623 | // Set the parameters on the block decl. |
| 14624 | if (!params.empty()) |
| 14625 | blockScope->TheDecl->setParams(params); |
| 14626 | |
| 14627 | if (!oldBlock->blockMissingReturnType()) { |
| 14628 | blockScope->HasImplicitReturnType = false; |
| 14629 | blockScope->ReturnType = exprResultType; |
| 14630 | } |
| 14631 | |
| 14632 | // Transform the body |
| 14633 | StmtResult body = getDerived().TransformStmt(E->getBody()); |
| 14634 | if (body.isInvalid()) { |
| 14635 | getSema().ActOnBlockError(E->getCaretLocation(), /*Scope=*/nullptr); |
| 14636 | return ExprError(); |
| 14637 | } |
| 14638 | |
| 14639 | #ifndef NDEBUG |
| 14640 | // In builds with assertions, make sure that we captured everything we |
| 14641 | // captured before. |
| 14642 | if (!SemaRef.getDiagnostics().hasErrorOccurred()) { |
| 14643 | for (const auto &I : oldBlock->captures()) { |
| 14644 | VarDecl *oldCapture = I.getVariable(); |
| 14645 | |
| 14646 | // Ignore parameter packs. |
| 14647 | if (oldCapture->isParameterPack()) |
| 14648 | continue; |
| 14649 | |
| 14650 | VarDecl *newCapture = |
| 14651 | cast<VarDecl>(getDerived().TransformDecl(E->getCaretLocation(), |
| 14652 | oldCapture)); |
| 14653 | assert(blockScope->CaptureMap.count(newCapture))(static_cast <bool> (blockScope->CaptureMap.count(newCapture )) ? void (0) : __assert_fail ("blockScope->CaptureMap.count(newCapture)" , "clang/lib/Sema/TreeTransform.h", 14653, __extension__ __PRETTY_FUNCTION__ )); |
| 14654 | } |
| 14655 | |
| 14656 | // The this pointer may not be captured by the instantiated block, even when |
| 14657 | // it's captured by the original block, if the expression causing the |
| 14658 | // capture is in the discarded branch of a constexpr if statement. |
| 14659 | assert((!blockScope->isCXXThisCaptured() || oldBlock->capturesCXXThis()) &&(static_cast <bool> ((!blockScope->isCXXThisCaptured () || oldBlock->capturesCXXThis()) && "this pointer isn't captured in the old block" ) ? void (0) : __assert_fail ("(!blockScope->isCXXThisCaptured() || oldBlock->capturesCXXThis()) && \"this pointer isn't captured in the old block\"" , "clang/lib/Sema/TreeTransform.h", 14660, __extension__ __PRETTY_FUNCTION__ )) |
| 14660 | "this pointer isn't captured in the old block")(static_cast <bool> ((!blockScope->isCXXThisCaptured () || oldBlock->capturesCXXThis()) && "this pointer isn't captured in the old block" ) ? void (0) : __assert_fail ("(!blockScope->isCXXThisCaptured() || oldBlock->capturesCXXThis()) && \"this pointer isn't captured in the old block\"" , "clang/lib/Sema/TreeTransform.h", 14660, __extension__ __PRETTY_FUNCTION__ )); |
| 14661 | } |
| 14662 | #endif |
| 14663 | |
| 14664 | return SemaRef.ActOnBlockStmtExpr(E->getCaretLocation(), body.get(), |
| 14665 | /*Scope=*/nullptr); |
| 14666 | } |
| 14667 | |
| 14668 | template<typename Derived> |
| 14669 | ExprResult |
| 14670 | TreeTransform<Derived>::TransformAsTypeExpr(AsTypeExpr *E) { |
| 14671 | ExprResult SrcExpr = getDerived().TransformExpr(E->getSrcExpr()); |
| 14672 | if (SrcExpr.isInvalid()) |
| 14673 | return ExprError(); |
| 14674 | |
| 14675 | QualType Type = getDerived().TransformType(E->getType()); |
| 14676 | |
| 14677 | return SemaRef.BuildAsTypeExpr(SrcExpr.get(), Type, E->getBuiltinLoc(), |
| 14678 | E->getRParenLoc()); |
| 14679 | } |
| 14680 | |
| 14681 | template<typename Derived> |
| 14682 | ExprResult |
| 14683 | TreeTransform<Derived>::TransformAtomicExpr(AtomicExpr *E) { |
| 14684 | bool ArgumentChanged = false; |
| 14685 | SmallVector<Expr*, 8> SubExprs; |
| 14686 | SubExprs.reserve(E->getNumSubExprs()); |
| 14687 | if (getDerived().TransformExprs(E->getSubExprs(), E->getNumSubExprs(), false, |
| 14688 | SubExprs, &ArgumentChanged)) |
| 14689 | return ExprError(); |
| 14690 | |
| 14691 | if (!getDerived().AlwaysRebuild() && |
| 14692 | !ArgumentChanged) |
| 14693 | return E; |
| 14694 | |
| 14695 | return getDerived().RebuildAtomicExpr(E->getBuiltinLoc(), SubExprs, |
| 14696 | E->getOp(), E->getRParenLoc()); |
| 14697 | } |
| 14698 | |
| 14699 | //===----------------------------------------------------------------------===// |
| 14700 | // Type reconstruction |
| 14701 | //===----------------------------------------------------------------------===// |
| 14702 | |
| 14703 | template<typename Derived> |
| 14704 | QualType TreeTransform<Derived>::RebuildPointerType(QualType PointeeType, |
| 14705 | SourceLocation Star) { |
| 14706 | return SemaRef.BuildPointerType(PointeeType, Star, |
| 14707 | getDerived().getBaseEntity()); |
| 14708 | } |
| 14709 | |
| 14710 | template<typename Derived> |
| 14711 | QualType TreeTransform<Derived>::RebuildBlockPointerType(QualType PointeeType, |
| 14712 | SourceLocation Star) { |
| 14713 | return SemaRef.BuildBlockPointerType(PointeeType, Star, |
| 14714 | getDerived().getBaseEntity()); |
| 14715 | } |
| 14716 | |
| 14717 | template<typename Derived> |
| 14718 | QualType |
| 14719 | TreeTransform<Derived>::RebuildReferenceType(QualType ReferentType, |
| 14720 | bool WrittenAsLValue, |
| 14721 | SourceLocation Sigil) { |
| 14722 | return SemaRef.BuildReferenceType(ReferentType, WrittenAsLValue, |
| 14723 | Sigil, getDerived().getBaseEntity()); |
| 14724 | } |
| 14725 | |
| 14726 | template<typename Derived> |
| 14727 | QualType |
| 14728 | TreeTransform<Derived>::RebuildMemberPointerType(QualType PointeeType, |
| 14729 | QualType ClassType, |
| 14730 | SourceLocation Sigil) { |
| 14731 | return SemaRef.BuildMemberPointerType(PointeeType, ClassType, Sigil, |
| 14732 | getDerived().getBaseEntity()); |
| 14733 | } |
| 14734 | |
| 14735 | template<typename Derived> |
| 14736 | QualType TreeTransform<Derived>::RebuildObjCTypeParamType( |
| 14737 | const ObjCTypeParamDecl *Decl, |
| 14738 | SourceLocation ProtocolLAngleLoc, |
| 14739 | ArrayRef<ObjCProtocolDecl *> Protocols, |
| 14740 | ArrayRef<SourceLocation> ProtocolLocs, |
| 14741 | SourceLocation ProtocolRAngleLoc) { |
| 14742 | return SemaRef.BuildObjCTypeParamType(Decl, |
| 14743 | ProtocolLAngleLoc, Protocols, |
| 14744 | ProtocolLocs, ProtocolRAngleLoc, |
| 14745 | /*FailOnError=*/true); |
| 14746 | } |
| 14747 | |
| 14748 | template<typename Derived> |
| 14749 | QualType TreeTransform<Derived>::RebuildObjCObjectType( |
| 14750 | QualType BaseType, |
| 14751 | SourceLocation Loc, |
| 14752 | SourceLocation TypeArgsLAngleLoc, |
| 14753 | ArrayRef<TypeSourceInfo *> TypeArgs, |
| 14754 | SourceLocation TypeArgsRAngleLoc, |
| 14755 | SourceLocation ProtocolLAngleLoc, |
| 14756 | ArrayRef<ObjCProtocolDecl *> Protocols, |
| 14757 | ArrayRef<SourceLocation> ProtocolLocs, |
| 14758 | SourceLocation ProtocolRAngleLoc) { |
| 14759 | return SemaRef.BuildObjCObjectType(BaseType, Loc, TypeArgsLAngleLoc, TypeArgs, |
| 14760 | TypeArgsRAngleLoc, ProtocolLAngleLoc, |
| 14761 | Protocols, ProtocolLocs, ProtocolRAngleLoc, |
| 14762 | /*FailOnError=*/true, |
| 14763 | /*Rebuilding=*/true); |
| 14764 | } |
| 14765 | |
| 14766 | template<typename Derived> |
| 14767 | QualType TreeTransform<Derived>::RebuildObjCObjectPointerType( |
| 14768 | QualType PointeeType, |
| 14769 | SourceLocation Star) { |
| 14770 | return SemaRef.Context.getObjCObjectPointerType(PointeeType); |
| 14771 | } |
| 14772 | |
| 14773 | template<typename Derived> |
| 14774 | QualType |
| 14775 | TreeTransform<Derived>::RebuildArrayType(QualType ElementType, |
| 14776 | ArrayType::ArraySizeModifier SizeMod, |
| 14777 | const llvm::APInt *Size, |
| 14778 | Expr *SizeExpr, |
| 14779 | unsigned IndexTypeQuals, |
| 14780 | SourceRange BracketsRange) { |
| 14781 | if (SizeExpr || !Size) |
| 14782 | return SemaRef.BuildArrayType(ElementType, SizeMod, SizeExpr, |
| 14783 | IndexTypeQuals, BracketsRange, |
| 14784 | getDerived().getBaseEntity()); |
| 14785 | |
| 14786 | QualType Types[] = { |
| 14787 | SemaRef.Context.UnsignedCharTy, SemaRef.Context.UnsignedShortTy, |
| 14788 | SemaRef.Context.UnsignedIntTy, SemaRef.Context.UnsignedLongTy, |
| 14789 | SemaRef.Context.UnsignedLongLongTy, SemaRef.Context.UnsignedInt128Ty |
| 14790 | }; |
| 14791 | QualType SizeType; |
| 14792 | for (const auto &T : Types) |
| 14793 | if (Size->getBitWidth() == SemaRef.Context.getIntWidth(T)) { |
| 14794 | SizeType = T; |
| 14795 | break; |
| 14796 | } |
| 14797 | |
| 14798 | // Note that we can return a VariableArrayType here in the case where |
| 14799 | // the element type was a dependent VariableArrayType. |
| 14800 | IntegerLiteral *ArraySize |
| 14801 | = IntegerLiteral::Create(SemaRef.Context, *Size, SizeType, |
| 14802 | /*FIXME*/BracketsRange.getBegin()); |
| 14803 | return SemaRef.BuildArrayType(ElementType, SizeMod, ArraySize, |
| 14804 | IndexTypeQuals, BracketsRange, |
| 14805 | getDerived().getBaseEntity()); |
| 14806 | } |
| 14807 | |
| 14808 | template<typename Derived> |
| 14809 | QualType |
| 14810 | TreeTransform<Derived>::RebuildConstantArrayType(QualType ElementType, |
| 14811 | ArrayType::ArraySizeModifier SizeMod, |
| 14812 | const llvm::APInt &Size, |
| 14813 | Expr *SizeExpr, |
| 14814 | unsigned IndexTypeQuals, |
| 14815 | SourceRange BracketsRange) { |
| 14816 | return getDerived().RebuildArrayType(ElementType, SizeMod, &Size, SizeExpr, |
| 14817 | IndexTypeQuals, BracketsRange); |
| 14818 | } |
| 14819 | |
| 14820 | template<typename Derived> |
| 14821 | QualType |
| 14822 | TreeTransform<Derived>::RebuildIncompleteArrayType(QualType ElementType, |
| 14823 | ArrayType::ArraySizeModifier SizeMod, |
| 14824 | unsigned IndexTypeQuals, |
| 14825 | SourceRange BracketsRange) { |
| 14826 | return getDerived().RebuildArrayType(ElementType, SizeMod, nullptr, nullptr, |
| 14827 | IndexTypeQuals, BracketsRange); |
| 14828 | } |
| 14829 | |
| 14830 | template<typename Derived> |
| 14831 | QualType |
| 14832 | TreeTransform<Derived>::RebuildVariableArrayType(QualType ElementType, |
| 14833 | ArrayType::ArraySizeModifier SizeMod, |
| 14834 | Expr *SizeExpr, |
| 14835 | unsigned IndexTypeQuals, |
| 14836 | SourceRange BracketsRange) { |
| 14837 | return getDerived().RebuildArrayType(ElementType, SizeMod, nullptr, |
| 14838 | SizeExpr, |
| 14839 | IndexTypeQuals, BracketsRange); |
| 14840 | } |
| 14841 | |
| 14842 | template<typename Derived> |
| 14843 | QualType |
| 14844 | TreeTransform<Derived>::RebuildDependentSizedArrayType(QualType ElementType, |
| 14845 | ArrayType::ArraySizeModifier SizeMod, |
| 14846 | Expr *SizeExpr, |
| 14847 | unsigned IndexTypeQuals, |
| 14848 | SourceRange BracketsRange) { |
| 14849 | return getDerived().RebuildArrayType(ElementType, SizeMod, nullptr, |
| 14850 | SizeExpr, |
| 14851 | IndexTypeQuals, BracketsRange); |
| 14852 | } |
| 14853 | |
| 14854 | template <typename Derived> |
| 14855 | QualType TreeTransform<Derived>::RebuildDependentAddressSpaceType( |
| 14856 | QualType PointeeType, Expr *AddrSpaceExpr, SourceLocation AttributeLoc) { |
| 14857 | return SemaRef.BuildAddressSpaceAttr(PointeeType, AddrSpaceExpr, |
| 14858 | AttributeLoc); |
| 14859 | } |
| 14860 | |
| 14861 | template <typename Derived> |
| 14862 | QualType |
| 14863 | TreeTransform<Derived>::RebuildVectorType(QualType ElementType, |
| 14864 | unsigned NumElements, |
| 14865 | VectorType::VectorKind VecKind) { |
| 14866 | // FIXME: semantic checking! |
| 14867 | return SemaRef.Context.getVectorType(ElementType, NumElements, VecKind); |
| 14868 | } |
| 14869 | |
| 14870 | template <typename Derived> |
| 14871 | QualType TreeTransform<Derived>::RebuildDependentVectorType( |
| 14872 | QualType ElementType, Expr *SizeExpr, SourceLocation AttributeLoc, |
| 14873 | VectorType::VectorKind VecKind) { |
| 14874 | return SemaRef.BuildVectorType(ElementType, SizeExpr, AttributeLoc); |
| 14875 | } |
| 14876 | |
| 14877 | template<typename Derived> |
| 14878 | QualType TreeTransform<Derived>::RebuildExtVectorType(QualType ElementType, |
| 14879 | unsigned NumElements, |
| 14880 | SourceLocation AttributeLoc) { |
| 14881 | llvm::APInt numElements(SemaRef.Context.getIntWidth(SemaRef.Context.IntTy), |
| 14882 | NumElements, true); |
| 14883 | IntegerLiteral *VectorSize |
| 14884 | = IntegerLiteral::Create(SemaRef.Context, numElements, SemaRef.Context.IntTy, |
| 14885 | AttributeLoc); |
| 14886 | return SemaRef.BuildExtVectorType(ElementType, VectorSize, AttributeLoc); |
| 14887 | } |
| 14888 | |
| 14889 | template<typename Derived> |
| 14890 | QualType |
| 14891 | TreeTransform<Derived>::RebuildDependentSizedExtVectorType(QualType ElementType, |
| 14892 | Expr *SizeExpr, |
| 14893 | SourceLocation AttributeLoc) { |
| 14894 | return SemaRef.BuildExtVectorType(ElementType, SizeExpr, AttributeLoc); |
| 14895 | } |
| 14896 | |
| 14897 | template <typename Derived> |
| 14898 | QualType TreeTransform<Derived>::RebuildConstantMatrixType( |
| 14899 | QualType ElementType, unsigned NumRows, unsigned NumColumns) { |
| 14900 | return SemaRef.Context.getConstantMatrixType(ElementType, NumRows, |
| 14901 | NumColumns); |
| 14902 | } |
| 14903 | |
| 14904 | template <typename Derived> |
| 14905 | QualType TreeTransform<Derived>::RebuildDependentSizedMatrixType( |
| 14906 | QualType ElementType, Expr *RowExpr, Expr *ColumnExpr, |
| 14907 | SourceLocation AttributeLoc) { |
| 14908 | return SemaRef.BuildMatrixType(ElementType, RowExpr, ColumnExpr, |
| 14909 | AttributeLoc); |
| 14910 | } |
| 14911 | |
| 14912 | template<typename Derived> |
| 14913 | QualType TreeTransform<Derived>::RebuildFunctionProtoType( |
| 14914 | QualType T, |
| 14915 | MutableArrayRef<QualType> ParamTypes, |
| 14916 | const FunctionProtoType::ExtProtoInfo &EPI) { |
| 14917 | return SemaRef.BuildFunctionType(T, ParamTypes, |
| 14918 | getDerived().getBaseLocation(), |
| 14919 | getDerived().getBaseEntity(), |
| 14920 | EPI); |
| 14921 | } |
| 14922 | |
| 14923 | template<typename Derived> |
| 14924 | QualType TreeTransform<Derived>::RebuildFunctionNoProtoType(QualType T) { |
| 14925 | return SemaRef.Context.getFunctionNoProtoType(T); |
| 14926 | } |
| 14927 | |
| 14928 | template<typename Derived> |
| 14929 | QualType TreeTransform<Derived>::RebuildUnresolvedUsingType(SourceLocation Loc, |
| 14930 | Decl *D) { |
| 14931 | assert(D && "no decl found")(static_cast <bool> (D && "no decl found") ? void (0) : __assert_fail ("D && \"no decl found\"", "clang/lib/Sema/TreeTransform.h" , 14931, __extension__ __PRETTY_FUNCTION__)); |
| 14932 | if (D->isInvalidDecl()) return QualType(); |
| 14933 | |
| 14934 | // FIXME: Doesn't account for ObjCInterfaceDecl! |
| 14935 | if (auto *UPD = dyn_cast<UsingPackDecl>(D)) { |
| 14936 | // A valid resolved using typename pack expansion decl can have multiple |
| 14937 | // UsingDecls, but they must each have exactly one type, and it must be |
| 14938 | // the same type in every case. But we must have at least one expansion! |
| 14939 | if (UPD->expansions().empty()) { |
| 14940 | getSema().Diag(Loc, diag::err_using_pack_expansion_empty) |
| 14941 | << UPD->isCXXClassMember() << UPD; |
| 14942 | return QualType(); |
| 14943 | } |
| 14944 | |
| 14945 | // We might still have some unresolved types. Try to pick a resolved type |
| 14946 | // if we can. The final instantiation will check that the remaining |
| 14947 | // unresolved types instantiate to the type we pick. |
| 14948 | QualType FallbackT; |
| 14949 | QualType T; |
| 14950 | for (auto *E : UPD->expansions()) { |
| 14951 | QualType ThisT = RebuildUnresolvedUsingType(Loc, E); |
| 14952 | if (ThisT.isNull()) |
| 14953 | continue; |
| 14954 | else if (ThisT->getAs<UnresolvedUsingType>()) |
| 14955 | FallbackT = ThisT; |
| 14956 | else if (T.isNull()) |
| 14957 | T = ThisT; |
| 14958 | else |
| 14959 | assert(getSema().Context.hasSameType(ThisT, T) &&(static_cast <bool> (getSema().Context.hasSameType(ThisT , T) && "mismatched resolved types in using pack expansion" ) ? void (0) : __assert_fail ("getSema().Context.hasSameType(ThisT, T) && \"mismatched resolved types in using pack expansion\"" , "clang/lib/Sema/TreeTransform.h", 14960, __extension__ __PRETTY_FUNCTION__ )) |
| 14960 | "mismatched resolved types in using pack expansion")(static_cast <bool> (getSema().Context.hasSameType(ThisT , T) && "mismatched resolved types in using pack expansion" ) ? void (0) : __assert_fail ("getSema().Context.hasSameType(ThisT, T) && \"mismatched resolved types in using pack expansion\"" , "clang/lib/Sema/TreeTransform.h", 14960, __extension__ __PRETTY_FUNCTION__ )); |
| 14961 | } |
| 14962 | return T.isNull() ? FallbackT : T; |
| 14963 | } else if (auto *Using = dyn_cast<UsingDecl>(D)) { |
| 14964 | assert(Using->hasTypename() &&(static_cast <bool> (Using->hasTypename() && "UnresolvedUsingTypenameDecl transformed to non-typename using" ) ? void (0) : __assert_fail ("Using->hasTypename() && \"UnresolvedUsingTypenameDecl transformed to non-typename using\"" , "clang/lib/Sema/TreeTransform.h", 14965, __extension__ __PRETTY_FUNCTION__ )) |
| 14965 | "UnresolvedUsingTypenameDecl transformed to non-typename using")(static_cast <bool> (Using->hasTypename() && "UnresolvedUsingTypenameDecl transformed to non-typename using" ) ? void (0) : __assert_fail ("Using->hasTypename() && \"UnresolvedUsingTypenameDecl transformed to non-typename using\"" , "clang/lib/Sema/TreeTransform.h", 14965, __extension__ __PRETTY_FUNCTION__ )); |
| 14966 | |
| 14967 | // A valid resolved using typename decl points to exactly one type decl. |
| 14968 | assert(++Using->shadow_begin() == Using->shadow_end())(static_cast <bool> (++Using->shadow_begin() == Using ->shadow_end()) ? void (0) : __assert_fail ("++Using->shadow_begin() == Using->shadow_end()" , "clang/lib/Sema/TreeTransform.h", 14968, __extension__ __PRETTY_FUNCTION__ )); |
| 14969 | |
| 14970 | UsingShadowDecl *Shadow = *Using->shadow_begin(); |
| 14971 | if (SemaRef.DiagnoseUseOfDecl(Shadow->getTargetDecl(), Loc)) |
| 14972 | return QualType(); |
| 14973 | return SemaRef.Context.getUsingType( |
| 14974 | Shadow, SemaRef.Context.getTypeDeclType( |
| 14975 | cast<TypeDecl>(Shadow->getTargetDecl()))); |
| 14976 | } else { |
| 14977 | assert(isa<UnresolvedUsingTypenameDecl>(D) &&(static_cast <bool> (isa<UnresolvedUsingTypenameDecl >(D) && "UnresolvedUsingTypenameDecl transformed to non-using decl" ) ? void (0) : __assert_fail ("isa<UnresolvedUsingTypenameDecl>(D) && \"UnresolvedUsingTypenameDecl transformed to non-using decl\"" , "clang/lib/Sema/TreeTransform.h", 14978, __extension__ __PRETTY_FUNCTION__ )) |
| 14978 | "UnresolvedUsingTypenameDecl transformed to non-using decl")(static_cast <bool> (isa<UnresolvedUsingTypenameDecl >(D) && "UnresolvedUsingTypenameDecl transformed to non-using decl" ) ? void (0) : __assert_fail ("isa<UnresolvedUsingTypenameDecl>(D) && \"UnresolvedUsingTypenameDecl transformed to non-using decl\"" , "clang/lib/Sema/TreeTransform.h", 14978, __extension__ __PRETTY_FUNCTION__ )); |
| 14979 | return SemaRef.Context.getTypeDeclType( |
| 14980 | cast<UnresolvedUsingTypenameDecl>(D)); |
| 14981 | } |
| 14982 | } |
| 14983 | |
| 14984 | template <typename Derived> |
| 14985 | QualType TreeTransform<Derived>::RebuildTypeOfExprType(Expr *E, SourceLocation, |
| 14986 | TypeOfKind Kind) { |
| 14987 | return SemaRef.BuildTypeofExprType(E, Kind); |
| 14988 | } |
| 14989 | |
| 14990 | template<typename Derived> |
| 14991 | QualType TreeTransform<Derived>::RebuildTypeOfType(QualType Underlying, |
| 14992 | TypeOfKind Kind) { |
| 14993 | return SemaRef.Context.getTypeOfType(Underlying, Kind); |
| 14994 | } |
| 14995 | |
| 14996 | template <typename Derived> |
| 14997 | QualType TreeTransform<Derived>::RebuildDecltypeType(Expr *E, SourceLocation) { |
| 14998 | return SemaRef.BuildDecltypeType(E); |
| 14999 | } |
| 15000 | |
| 15001 | template<typename Derived> |
| 15002 | QualType TreeTransform<Derived>::RebuildUnaryTransformType(QualType BaseType, |
| 15003 | UnaryTransformType::UTTKind UKind, |
| 15004 | SourceLocation Loc) { |
| 15005 | return SemaRef.BuildUnaryTransformType(BaseType, UKind, Loc); |
| 15006 | } |
| 15007 | |
| 15008 | template<typename Derived> |
| 15009 | QualType TreeTransform<Derived>::RebuildTemplateSpecializationType( |
| 15010 | TemplateName Template, |
| 15011 | SourceLocation TemplateNameLoc, |
| 15012 | TemplateArgumentListInfo &TemplateArgs) { |
| 15013 | return SemaRef.CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs); |
| 15014 | } |
| 15015 | |
| 15016 | template<typename Derived> |
| 15017 | QualType TreeTransform<Derived>::RebuildAtomicType(QualType ValueType, |
| 15018 | SourceLocation KWLoc) { |
| 15019 | return SemaRef.BuildAtomicType(ValueType, KWLoc); |
| 15020 | } |
| 15021 | |
| 15022 | template<typename Derived> |
| 15023 | QualType TreeTransform<Derived>::RebuildPipeType(QualType ValueType, |
| 15024 | SourceLocation KWLoc, |
| 15025 | bool isReadPipe) { |
| 15026 | return isReadPipe ? SemaRef.BuildReadPipeType(ValueType, KWLoc) |
| 15027 | : SemaRef.BuildWritePipeType(ValueType, KWLoc); |
| 15028 | } |
| 15029 | |
| 15030 | template <typename Derived> |
| 15031 | QualType TreeTransform<Derived>::RebuildBitIntType(bool IsUnsigned, |
| 15032 | unsigned NumBits, |
| 15033 | SourceLocation Loc) { |
| 15034 | llvm::APInt NumBitsAP(SemaRef.Context.getIntWidth(SemaRef.Context.IntTy), |
| 15035 | NumBits, true); |
| 15036 | IntegerLiteral *Bits = IntegerLiteral::Create(SemaRef.Context, NumBitsAP, |
| 15037 | SemaRef.Context.IntTy, Loc); |
| 15038 | return SemaRef.BuildBitIntType(IsUnsigned, Bits, Loc); |
| 15039 | } |
| 15040 | |
| 15041 | template <typename Derived> |
| 15042 | QualType TreeTransform<Derived>::RebuildDependentBitIntType( |
| 15043 | bool IsUnsigned, Expr *NumBitsExpr, SourceLocation Loc) { |
| 15044 | return SemaRef.BuildBitIntType(IsUnsigned, NumBitsExpr, Loc); |
| 15045 | } |
| 15046 | |
| 15047 | template<typename Derived> |
| 15048 | TemplateName |
| 15049 | TreeTransform<Derived>::RebuildTemplateName(CXXScopeSpec &SS, |
| 15050 | bool TemplateKW, |
| 15051 | TemplateDecl *Template) { |
| 15052 | return SemaRef.Context.getQualifiedTemplateName(SS.getScopeRep(), TemplateKW, |
| 15053 | TemplateName(Template)); |
| 15054 | } |
| 15055 | |
| 15056 | template<typename Derived> |
| 15057 | TemplateName |
| 15058 | TreeTransform<Derived>::RebuildTemplateName(CXXScopeSpec &SS, |
| 15059 | SourceLocation TemplateKWLoc, |
| 15060 | const IdentifierInfo &Name, |
| 15061 | SourceLocation NameLoc, |
| 15062 | QualType ObjectType, |
| 15063 | NamedDecl *FirstQualifierInScope, |
| 15064 | bool AllowInjectedClassName) { |
| 15065 | UnqualifiedId TemplateName; |
| 15066 | TemplateName.setIdentifier(&Name, NameLoc); |
| 15067 | Sema::TemplateTy Template; |
| 15068 | getSema().ActOnTemplateName(/*Scope=*/nullptr, SS, TemplateKWLoc, |
| 15069 | TemplateName, ParsedType::make(ObjectType), |
| 15070 | /*EnteringContext=*/false, Template, |
| 15071 | AllowInjectedClassName); |
| 15072 | return Template.get(); |
| 15073 | } |
| 15074 | |
| 15075 | template<typename Derived> |
| 15076 | TemplateName |
| 15077 | TreeTransform<Derived>::RebuildTemplateName(CXXScopeSpec &SS, |
| 15078 | SourceLocation TemplateKWLoc, |
| 15079 | OverloadedOperatorKind Operator, |
| 15080 | SourceLocation NameLoc, |
| 15081 | QualType ObjectType, |
| 15082 | bool AllowInjectedClassName) { |
| 15083 | UnqualifiedId Name; |
| 15084 | // FIXME: Bogus location information. |
| 15085 | SourceLocation SymbolLocations[3] = { NameLoc, NameLoc, NameLoc }; |
| 15086 | Name.setOperatorFunctionId(NameLoc, Operator, SymbolLocations); |
| 15087 | Sema::TemplateTy Template; |
| 15088 | getSema().ActOnTemplateName( |
| 15089 | /*Scope=*/nullptr, SS, TemplateKWLoc, Name, ParsedType::make(ObjectType), |
| 15090 | /*EnteringContext=*/false, Template, AllowInjectedClassName); |
| 15091 | return Template.get(); |
| 15092 | } |
| 15093 | |
| 15094 | template<typename Derived> |
| 15095 | ExprResult |
| 15096 | TreeTransform<Derived>::RebuildCXXOperatorCallExpr(OverloadedOperatorKind Op, |
| 15097 | SourceLocation OpLoc, |
| 15098 | Expr *OrigCallee, |
| 15099 | Expr *First, |
| 15100 | Expr *Second) { |
| 15101 | Expr *Callee = OrigCallee->IgnoreParenCasts(); |
| 15102 | bool isPostIncDec = Second && (Op == OO_PlusPlus || Op == OO_MinusMinus); |
| 15103 | |
| 15104 | if (First->getObjectKind() == OK_ObjCProperty) { |
| 15105 | BinaryOperatorKind Opc = BinaryOperator::getOverloadedOpcode(Op); |
| 15106 | if (BinaryOperator::isAssignmentOp(Opc)) |
| 15107 | return SemaRef.checkPseudoObjectAssignment(/*Scope=*/nullptr, OpLoc, Opc, |
| 15108 | First, Second); |
| 15109 | ExprResult Result = SemaRef.CheckPlaceholderExpr(First); |
| 15110 | if (Result.isInvalid()) |
| 15111 | return ExprError(); |
| 15112 | First = Result.get(); |
| 15113 | } |
| 15114 | |
| 15115 | if (Second && Second->getObjectKind() == OK_ObjCProperty) { |
| 15116 | ExprResult Result = SemaRef.CheckPlaceholderExpr(Second); |
| 15117 | if (Result.isInvalid()) |
| 15118 | return ExprError(); |
| 15119 | Second = Result.get(); |
| 15120 | } |
| 15121 | |
| 15122 | // Determine whether this should be a builtin operation. |
| 15123 | if (Op == OO_Subscript) { |
| 15124 | if (!First->getType()->isOverloadableType() && |
| 15125 | !Second->getType()->isOverloadableType()) |
| 15126 | return getSema().CreateBuiltinArraySubscriptExpr( |
| 15127 | First, Callee->getBeginLoc(), Second, OpLoc); |
| 15128 | } else if (Op == OO_Arrow) { |
| 15129 | // It is possible that the type refers to a RecoveryExpr created earlier |
| 15130 | // in the tree transformation. |
| 15131 | if (First->getType()->isDependentType()) |
| 15132 | return ExprError(); |
| 15133 | // -> is never a builtin operation. |
| 15134 | return SemaRef.BuildOverloadedArrowExpr(nullptr, First, OpLoc); |
| 15135 | } else if (Second == nullptr || isPostIncDec) { |
| 15136 | if (!First->getType()->isOverloadableType() || |
| 15137 | (Op == OO_Amp && getSema().isQualifiedMemberAccess(First))) { |
| 15138 | // The argument is not of overloadable type, or this is an expression |
| 15139 | // of the form &Class::member, so try to create a built-in unary |
| 15140 | // operation. |
| 15141 | UnaryOperatorKind Opc |
| 15142 | = UnaryOperator::getOverloadedOpcode(Op, isPostIncDec); |
| 15143 | |
| 15144 | return getSema().CreateBuiltinUnaryOp(OpLoc, Opc, First); |
| 15145 | } |
| 15146 | } else { |
| 15147 | if (!First->getType()->isOverloadableType() && |
| 15148 | !Second->getType()->isOverloadableType()) { |
| 15149 | // Neither of the arguments is an overloadable type, so try to |
| 15150 | // create a built-in binary operation. |
| 15151 | BinaryOperatorKind Opc = BinaryOperator::getOverloadedOpcode(Op); |
| 15152 | ExprResult Result |
| 15153 | = SemaRef.CreateBuiltinBinOp(OpLoc, Opc, First, Second); |
| 15154 | if (Result.isInvalid()) |
| 15155 | return ExprError(); |
| 15156 | |
| 15157 | return Result; |
| 15158 | } |
| 15159 | } |
| 15160 | |
| 15161 | // Compute the transformed set of functions (and function templates) to be |
| 15162 | // used during overload resolution. |
| 15163 | UnresolvedSet<16> Functions; |
| 15164 | bool RequiresADL; |
| 15165 | |
| 15166 | if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(Callee)) { |
| 15167 | Functions.append(ULE->decls_begin(), ULE->decls_end()); |
| 15168 | // If the overload could not be resolved in the template definition |
| 15169 | // (because we had a dependent argument), ADL is performed as part of |
| 15170 | // template instantiation. |
| 15171 | RequiresADL = ULE->requiresADL(); |
| 15172 | } else { |
| 15173 | // If we've resolved this to a particular non-member function, just call |
| 15174 | // that function. If we resolved it to a member function, |
| 15175 | // CreateOverloaded* will find that function for us. |
| 15176 | NamedDecl *ND = cast<DeclRefExpr>(Callee)->getDecl(); |
| 15177 | if (!isa<CXXMethodDecl>(ND)) |
| 15178 | Functions.addDecl(ND); |
| 15179 | RequiresADL = false; |
| 15180 | } |
| 15181 | |
| 15182 | // Add any functions found via argument-dependent lookup. |
| 15183 | Expr *Args[2] = { First, Second }; |
| 15184 | unsigned NumArgs = 1 + (Second != nullptr); |
| 15185 | |
| 15186 | // Create the overloaded operator invocation for unary operators. |
| 15187 | if (NumArgs == 1 || isPostIncDec) { |
| 15188 | UnaryOperatorKind Opc |
| 15189 | = UnaryOperator::getOverloadedOpcode(Op, isPostIncDec); |
| 15190 | return SemaRef.CreateOverloadedUnaryOp(OpLoc, Opc, Functions, First, |
| 15191 | RequiresADL); |
| 15192 | } |
| 15193 | |
| 15194 | if (Op == OO_Subscript) { |
| 15195 | SourceLocation LBrace; |
| 15196 | SourceLocation RBrace; |
| 15197 | |
| 15198 | if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Callee)) { |
| 15199 | DeclarationNameLoc NameLoc = DRE->getNameInfo().getInfo(); |
| 15200 | LBrace = NameLoc.getCXXOperatorNameBeginLoc(); |
| 15201 | RBrace = NameLoc.getCXXOperatorNameEndLoc(); |
| 15202 | } else { |
| 15203 | LBrace = Callee->getBeginLoc(); |
| 15204 | RBrace = OpLoc; |
| 15205 | } |
| 15206 | |
| 15207 | return SemaRef.CreateOverloadedArraySubscriptExpr(LBrace, RBrace, |
| 15208 | First, Second); |
| 15209 | } |
| 15210 | |
| 15211 | // Create the overloaded operator invocation for binary operators. |
| 15212 | BinaryOperatorKind Opc = BinaryOperator::getOverloadedOpcode(Op); |
| 15213 | ExprResult Result = SemaRef.CreateOverloadedBinOp( |
| 15214 | OpLoc, Opc, Functions, Args[0], Args[1], RequiresADL); |
| 15215 | if (Result.isInvalid()) |
| 15216 | return ExprError(); |
| 15217 | |
| 15218 | return Result; |
| 15219 | } |
| 15220 | |
| 15221 | template<typename Derived> |
| 15222 | ExprResult |
| 15223 | TreeTransform<Derived>::RebuildCXXPseudoDestructorExpr(Expr *Base, |
| 15224 | SourceLocation OperatorLoc, |
| 15225 | bool isArrow, |
| 15226 | CXXScopeSpec &SS, |
| 15227 | TypeSourceInfo *ScopeType, |
| 15228 | SourceLocation CCLoc, |
| 15229 | SourceLocation TildeLoc, |
| 15230 | PseudoDestructorTypeStorage Destroyed) { |
| 15231 | QualType BaseType = Base->getType(); |
| 15232 | if (Base->isTypeDependent() || Destroyed.getIdentifier() || |
| 15233 | (!isArrow && !BaseType->getAs<RecordType>()) || |
| 15234 | (isArrow && BaseType->getAs<PointerType>() && |
| 15235 | !BaseType->castAs<PointerType>()->getPointeeType() |
| 15236 | ->template getAs<RecordType>())){ |
| 15237 | // This pseudo-destructor expression is still a pseudo-destructor. |
| 15238 | return SemaRef.BuildPseudoDestructorExpr( |
| 15239 | Base, OperatorLoc, isArrow ? tok::arrow : tok::period, SS, ScopeType, |
| 15240 | CCLoc, TildeLoc, Destroyed); |
| 15241 | } |
| 15242 | |
| 15243 | TypeSourceInfo *DestroyedType = Destroyed.getTypeSourceInfo(); |
| 15244 | DeclarationName Name(SemaRef.Context.DeclarationNames.getCXXDestructorName( |
| 15245 | SemaRef.Context.getCanonicalType(DestroyedType->getType()))); |
| 15246 | DeclarationNameInfo NameInfo(Name, Destroyed.getLocation()); |
| 15247 | NameInfo.setNamedTypeInfo(DestroyedType); |
| 15248 | |
| 15249 | // The scope type is now known to be a valid nested name specifier |
| 15250 | // component. Tack it on to the end of the nested name specifier. |
| 15251 | if (ScopeType) { |
| 15252 | if (!ScopeType->getType()->getAs<TagType>()) { |
| 15253 | getSema().Diag(ScopeType->getTypeLoc().getBeginLoc(), |
| 15254 | diag::err_expected_class_or_namespace) |
| 15255 | << ScopeType->getType() << getSema().getLangOpts().CPlusPlus; |
| 15256 | return ExprError(); |
| 15257 | } |
| 15258 | SS.Extend(SemaRef.Context, SourceLocation(), ScopeType->getTypeLoc(), |
| 15259 | CCLoc); |
| 15260 | } |
| 15261 | |
| 15262 | SourceLocation TemplateKWLoc; // FIXME: retrieve it from caller. |
| 15263 | return getSema().BuildMemberReferenceExpr(Base, BaseType, |
| 15264 | OperatorLoc, isArrow, |
| 15265 | SS, TemplateKWLoc, |
| 15266 | /*FIXME: FirstQualifier*/ nullptr, |
| 15267 | NameInfo, |
| 15268 | /*TemplateArgs*/ nullptr, |
| 15269 | /*S*/nullptr); |
| 15270 | } |
| 15271 | |
| 15272 | template<typename Derived> |
| 15273 | StmtResult |
| 15274 | TreeTransform<Derived>::TransformCapturedStmt(CapturedStmt *S) { |
| 15275 | SourceLocation Loc = S->getBeginLoc(); |
| 15276 | CapturedDecl *CD = S->getCapturedDecl(); |
| 15277 | unsigned NumParams = CD->getNumParams(); |
| 15278 | unsigned ContextParamPos = CD->getContextParamPosition(); |
| 15279 | SmallVector<Sema::CapturedParamNameType, 4> Params; |
| 15280 | for (unsigned I = 0; I < NumParams; ++I) { |
| 15281 | if (I != ContextParamPos) { |
| 15282 | Params.push_back( |
| 15283 | std::make_pair( |
| 15284 | CD->getParam(I)->getName(), |
| 15285 | getDerived().TransformType(CD->getParam(I)->getType()))); |
| 15286 | } else { |
| 15287 | Params.push_back(std::make_pair(StringRef(), QualType())); |
| 15288 | } |
| 15289 | } |
| 15290 | getSema().ActOnCapturedRegionStart(Loc, /*CurScope*/nullptr, |
| 15291 | S->getCapturedRegionKind(), Params); |
| 15292 | StmtResult Body; |
| 15293 | { |
| 15294 | Sema::CompoundScopeRAII CompoundScope(getSema()); |
| 15295 | Body = getDerived().TransformStmt(S->getCapturedStmt()); |
| 15296 | } |
| 15297 | |
| 15298 | if (Body.isInvalid()) { |
| 15299 | getSema().ActOnCapturedRegionError(); |
| 15300 | return StmtError(); |
| 15301 | } |
| 15302 | |
| 15303 | return getSema().ActOnCapturedRegionEnd(Body.get()); |
| 15304 | } |
| 15305 | |
| 15306 | } // end namespace clang |
| 15307 | |
| 15308 | #endif // LLVM_CLANG_LIB_SEMA_TREETRANSFORM_H |
| 1 | //===- Ownership.h - Parser ownership helpers -------------------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file contains classes for managing ownership of Stmt and Expr nodes. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #ifndef LLVM_CLANG_SEMA_OWNERSHIP_H |
| 14 | #define LLVM_CLANG_SEMA_OWNERSHIP_H |
| 15 | |
| 16 | #include "clang/AST/Expr.h" |
| 17 | #include "clang/Basic/LLVM.h" |
| 18 | #include "llvm/ADT/ArrayRef.h" |
| 19 | #include "llvm/Support/PointerLikeTypeTraits.h" |
| 20 | #include "llvm/Support/type_traits.h" |
| 21 | #include <cassert> |
| 22 | #include <cstddef> |
| 23 | #include <cstdint> |
| 24 | |
| 25 | //===----------------------------------------------------------------------===// |
| 26 | // OpaquePtr |
| 27 | //===----------------------------------------------------------------------===// |
| 28 | |
| 29 | namespace clang { |
| 30 | |
| 31 | class CXXBaseSpecifier; |
| 32 | class CXXCtorInitializer; |
| 33 | class Decl; |
| 34 | class Expr; |
| 35 | class ParsedTemplateArgument; |
| 36 | class QualType; |
| 37 | class Stmt; |
| 38 | class TemplateName; |
| 39 | class TemplateParameterList; |
| 40 | |
| 41 | /// Wrapper for void* pointer. |
| 42 | /// \tparam PtrTy Either a pointer type like 'T*' or a type that behaves like |
| 43 | /// a pointer. |
| 44 | /// |
| 45 | /// This is a very simple POD type that wraps a pointer that the Parser |
| 46 | /// doesn't know about but that Sema or another client does. The PtrTy |
| 47 | /// template argument is used to make sure that "Decl" pointers are not |
| 48 | /// compatible with "Type" pointers for example. |
| 49 | template <class PtrTy> |
| 50 | class OpaquePtr { |
| 51 | void *Ptr = nullptr; |
| 52 | |
| 53 | explicit OpaquePtr(void *Ptr) : Ptr(Ptr) {} |
| 54 | |
| 55 | using Traits = llvm::PointerLikeTypeTraits<PtrTy>; |
| 56 | |
| 57 | public: |
| 58 | OpaquePtr(std::nullptr_t = nullptr) {} |
| 59 | |
| 60 | static OpaquePtr make(PtrTy P) { OpaquePtr OP; OP.set(P); return OP; } |
| 61 | |
| 62 | /// Returns plain pointer to the entity pointed by this wrapper. |
| 63 | /// \tparam PointeeT Type of pointed entity. |
| 64 | /// |
| 65 | /// It is identical to getPtrAs<PointeeT*>. |
| 66 | template <typename PointeeT> PointeeT* getPtrTo() const { |
| 67 | return get(); |
| 68 | } |
| 69 | |
| 70 | /// Returns pointer converted to the specified type. |
| 71 | /// \tparam PtrT Result pointer type. There must be implicit conversion |
| 72 | /// from PtrTy to PtrT. |
| 73 | /// |
| 74 | /// In contrast to getPtrTo, this method allows the return type to be |
| 75 | /// a smart pointer. |
| 76 | template <typename PtrT> PtrT getPtrAs() const { |
| 77 | return get(); |
| 78 | } |
| 79 | |
| 80 | PtrTy get() const { |
| 81 | return Traits::getFromVoidPointer(Ptr); |
| 82 | } |
| 83 | |
| 84 | void set(PtrTy P) { |
| 85 | Ptr = Traits::getAsVoidPointer(P); |
| 86 | } |
| 87 | |
| 88 | explicit operator bool() const { return Ptr != nullptr; } |
| 89 | |
| 90 | void *getAsOpaquePtr() const { return Ptr; } |
| 91 | static OpaquePtr getFromOpaquePtr(void *P) { return OpaquePtr(P); } |
| 92 | }; |
| 93 | |
| 94 | /// UnionOpaquePtr - A version of OpaquePtr suitable for membership |
| 95 | /// in a union. |
| 96 | template <class T> struct UnionOpaquePtr { |
| 97 | void *Ptr; |
| 98 | |
| 99 | static UnionOpaquePtr make(OpaquePtr<T> P) { |
| 100 | UnionOpaquePtr OP = { P.getAsOpaquePtr() }; |
| 101 | return OP; |
| 102 | } |
| 103 | |
| 104 | OpaquePtr<T> get() const { return OpaquePtr<T>::getFromOpaquePtr(Ptr); } |
| 105 | operator OpaquePtr<T>() const { return get(); } |
| 106 | |
| 107 | UnionOpaquePtr &operator=(OpaquePtr<T> P) { |
| 108 | Ptr = P.getAsOpaquePtr(); |
| 109 | return *this; |
| 110 | } |
| 111 | }; |
| 112 | |
| 113 | } // namespace clang |
| 114 | |
| 115 | namespace llvm { |
| 116 | |
| 117 | template <class T> |
| 118 | struct PointerLikeTypeTraits<clang::OpaquePtr<T>> { |
| 119 | static constexpr int NumLowBitsAvailable = 0; |
| 120 | |
| 121 | static inline void *getAsVoidPointer(clang::OpaquePtr<T> P) { |
| 122 | // FIXME: Doesn't work? return P.getAs< void >(); |
| 123 | return P.getAsOpaquePtr(); |
| 124 | } |
| 125 | |
| 126 | static inline clang::OpaquePtr<T> getFromVoidPointer(void *P) { |
| 127 | return clang::OpaquePtr<T>::getFromOpaquePtr(P); |
| 128 | } |
| 129 | }; |
| 130 | |
| 131 | } // namespace llvm |
| 132 | |
| 133 | namespace clang { |
| 134 | |
| 135 | // Basic |
| 136 | class StreamingDiagnostic; |
| 137 | |
| 138 | // Determines whether the low bit of the result pointer for the |
| 139 | // given UID is always zero. If so, ActionResult will use that bit |
| 140 | // for it's "invalid" flag. |
| 141 | template <class Ptr> struct IsResultPtrLowBitFree { |
| 142 | static const bool value = false; |
| 143 | }; |
| 144 | |
| 145 | /// ActionResult - This structure is used while parsing/acting on |
| 146 | /// expressions, stmts, etc. It encapsulates both the object returned by |
| 147 | /// the action, plus a sense of whether or not it is valid. |
| 148 | /// When CompressInvalid is true, the "invalid" flag will be |
| 149 | /// stored in the low bit of the Val pointer. |
| 150 | template<class PtrTy, |
| 151 | bool CompressInvalid = IsResultPtrLowBitFree<PtrTy>::value> |
| 152 | class ActionResult { |
| 153 | PtrTy Val; |
| 154 | bool Invalid; |
| 155 | |
| 156 | public: |
| 157 | ActionResult(bool Invalid = false) : Val(PtrTy()), Invalid(Invalid) {} |
| 158 | ActionResult(PtrTy val) : Val(val), Invalid(false) {} |
| 159 | ActionResult(const DiagnosticBuilder &) : Val(PtrTy()), Invalid(true) {} |
| 160 | |
| 161 | // These two overloads prevent void* -> bool conversions. |
| 162 | ActionResult(const void *) = delete; |
| 163 | ActionResult(volatile void *) = delete; |
| 164 | |
| 165 | bool isInvalid() const { return Invalid; } |
| 166 | bool isUsable() const { return !Invalid && Val; } |
| 167 | bool isUnset() const { return !Invalid && !Val; } |
| 168 | |
| 169 | PtrTy get() const { return Val; } |
| 170 | template <typename T> T *getAs() { return static_cast<T*>(get()); } |
| 171 | |
| 172 | void set(PtrTy V) { Val = V; } |
| 173 | |
| 174 | const ActionResult &operator=(PtrTy RHS) { |
| 175 | Val = RHS; |
| 176 | Invalid = false; |
| 177 | return *this; |
| 178 | } |
| 179 | }; |
| 180 | |
| 181 | // This ActionResult partial specialization places the "invalid" |
| 182 | // flag into the low bit of the pointer. |
| 183 | template<typename PtrTy> |
| 184 | class ActionResult<PtrTy, true> { |
| 185 | // A pointer whose low bit is 1 if this result is invalid, 0 |
| 186 | // otherwise. |
| 187 | uintptr_t PtrWithInvalid; |
| 188 | |
| 189 | using PtrTraits = llvm::PointerLikeTypeTraits<PtrTy>; |
| 190 | |
| 191 | public: |
| 192 | ActionResult(bool Invalid = false) |
| 193 | : PtrWithInvalid(static_cast<uintptr_t>(Invalid)) {} |
| 194 | |
| 195 | ActionResult(PtrTy V) { |
| 196 | void *VP = PtrTraits::getAsVoidPointer(V); |
| 197 | PtrWithInvalid = reinterpret_cast<uintptr_t>(VP); |
| 198 | assert((PtrWithInvalid & 0x01) == 0 && "Badly aligned pointer")(static_cast <bool> ((PtrWithInvalid & 0x01) == 0 && "Badly aligned pointer") ? void (0) : __assert_fail ("(PtrWithInvalid & 0x01) == 0 && \"Badly aligned pointer\"" , "clang/include/clang/Sema/Ownership.h", 198, __extension__ __PRETTY_FUNCTION__ )); |
| 199 | } |
| 200 | |
| 201 | ActionResult(const DiagnosticBuilder &) : PtrWithInvalid(0x01) {} |
| 202 | |
| 203 | // These two overloads prevent void* -> bool conversions. |
| 204 | ActionResult(const void *) = delete; |
| 205 | ActionResult(volatile void *) = delete; |
| 206 | |
| 207 | bool isInvalid() const { return PtrWithInvalid & 0x01; } |
| 208 | bool isUsable() const { return PtrWithInvalid > 0x01; } |
| 209 | bool isUnset() const { return PtrWithInvalid == 0; } |
| 210 | |
| 211 | PtrTy get() const { |
| 212 | void *VP = reinterpret_cast<void *>(PtrWithInvalid & ~0x01); |
| 213 | return PtrTraits::getFromVoidPointer(VP); |
| 214 | } |
| 215 | |
| 216 | template <typename T> T *getAs() { return static_cast<T*>(get()); } |
| 217 | |
| 218 | void set(PtrTy V) { |
| 219 | void *VP = PtrTraits::getAsVoidPointer(V); |
| 220 | PtrWithInvalid = reinterpret_cast<uintptr_t>(VP); |
| 221 | assert((PtrWithInvalid & 0x01) == 0 && "Badly aligned pointer")(static_cast <bool> ((PtrWithInvalid & 0x01) == 0 && "Badly aligned pointer") ? void (0) : __assert_fail ("(PtrWithInvalid & 0x01) == 0 && \"Badly aligned pointer\"" , "clang/include/clang/Sema/Ownership.h", 221, __extension__ __PRETTY_FUNCTION__ )); |
| 222 | } |
| 223 | |
| 224 | const ActionResult &operator=(PtrTy RHS) { |
| 225 | void *VP = PtrTraits::getAsVoidPointer(RHS); |
| 226 | PtrWithInvalid = reinterpret_cast<uintptr_t>(VP); |
| 227 | assert((PtrWithInvalid & 0x01) == 0 && "Badly aligned pointer")(static_cast <bool> ((PtrWithInvalid & 0x01) == 0 && "Badly aligned pointer") ? void (0) : __assert_fail ("(PtrWithInvalid & 0x01) == 0 && \"Badly aligned pointer\"" , "clang/include/clang/Sema/Ownership.h", 227, __extension__ __PRETTY_FUNCTION__ )); |
| 228 | return *this; |
| 229 | } |
| 230 | |
| 231 | // For types where we can fit a flag in with the pointer, provide |
| 232 | // conversions to/from pointer type. |
| 233 | static ActionResult getFromOpaquePointer(void *P) { |
| 234 | ActionResult Result; |
| 235 | Result.PtrWithInvalid = (uintptr_t)P; |
| 236 | return Result; |
| 237 | } |
| 238 | void *getAsOpaquePointer() const { return (void*)PtrWithInvalid; } |
| 239 | }; |
| 240 | |
| 241 | /// An opaque type for threading parsed type information through the |
| 242 | /// parser. |
| 243 | using ParsedType = OpaquePtr<QualType>; |
| 244 | using UnionParsedType = UnionOpaquePtr<QualType>; |
| 245 | |
| 246 | // We can re-use the low bit of expression, statement, base, and |
| 247 | // member-initializer pointers for the "invalid" flag of |
| 248 | // ActionResult. |
| 249 | template<> struct IsResultPtrLowBitFree<Expr*> { |
| 250 | static const bool value = true; |
| 251 | }; |
| 252 | template<> struct IsResultPtrLowBitFree<Stmt*> { |
| 253 | static const bool value = true; |
| 254 | }; |
| 255 | template<> struct IsResultPtrLowBitFree<CXXBaseSpecifier*> { |
| 256 | static const bool value = true; |
| 257 | }; |
| 258 | template<> struct IsResultPtrLowBitFree<CXXCtorInitializer*> { |
| 259 | static const bool value = true; |
| 260 | }; |
| 261 | |
| 262 | using ExprResult = ActionResult<Expr *>; |
| 263 | using StmtResult = ActionResult<Stmt *>; |
| 264 | using TypeResult = ActionResult<ParsedType>; |
| 265 | using BaseResult = ActionResult<CXXBaseSpecifier *>; |
| 266 | using MemInitResult = ActionResult<CXXCtorInitializer *>; |
| 267 | |
| 268 | using DeclResult = ActionResult<Decl *>; |
| 269 | using ParsedTemplateTy = OpaquePtr<TemplateName>; |
| 270 | using UnionParsedTemplateTy = UnionOpaquePtr<TemplateName>; |
| 271 | |
| 272 | using MultiExprArg = MutableArrayRef<Expr *>; |
| 273 | using MultiStmtArg = MutableArrayRef<Stmt *>; |
| 274 | using ASTTemplateArgsPtr = MutableArrayRef<ParsedTemplateArgument>; |
| 275 | using MultiTypeArg = MutableArrayRef<ParsedType>; |
| 276 | using MultiTemplateParamsArg = MutableArrayRef<TemplateParameterList *>; |
| 277 | |
| 278 | inline ExprResult ExprError() { return ExprResult(true); } |
| 279 | inline StmtResult StmtError() { return StmtResult(true); } |
| 280 | inline TypeResult TypeError() { return TypeResult(true); } |
| 281 | |
| 282 | inline ExprResult ExprError(const StreamingDiagnostic &) { |
| 283 | return ExprError(); |
| 284 | } |
| 285 | inline StmtResult StmtError(const StreamingDiagnostic &) { |
| 286 | return StmtError(); |
| 287 | } |
| 288 | |
| 289 | inline ExprResult ExprEmpty() { return ExprResult(false); } |
| 290 | inline StmtResult StmtEmpty() { return StmtResult(false); } |
| 291 | |
| 292 | inline Expr *AssertSuccess(ExprResult R) { |
| 293 | assert(!R.isInvalid() && "operation was asserted to never fail!")(static_cast <bool> (!R.isInvalid() && "operation was asserted to never fail!" ) ? void (0) : __assert_fail ("!R.isInvalid() && \"operation was asserted to never fail!\"" , "clang/include/clang/Sema/Ownership.h", 293, __extension__ __PRETTY_FUNCTION__ )); |
| 294 | return R.get(); |
| 295 | } |
| 296 | |
| 297 | inline Stmt *AssertSuccess(StmtResult R) { |
| 298 | assert(!R.isInvalid() && "operation was asserted to never fail!")(static_cast <bool> (!R.isInvalid() && "operation was asserted to never fail!" ) ? void (0) : __assert_fail ("!R.isInvalid() && \"operation was asserted to never fail!\"" , "clang/include/clang/Sema/Ownership.h", 298, __extension__ __PRETTY_FUNCTION__ )); |
| 299 | return R.get(); |
| 300 | } |
| 301 | |
| 302 | } // namespace clang |
| 303 | |
| 304 | #endif // LLVM_CLANG_SEMA_OWNERSHIP_H |