Bug Summary

File:clang/lib/Sema/SemaExpr.cpp
Warning:line 6860, column 12
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SemaExpr.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -relaxed-aliasing -fmath-errno -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/build-llvm/tools/clang/lib/Sema -resource-dir /usr/lib/llvm-14/lib/clang/14.0.0 -D CLANG_ROUND_TRIP_CC1_ARGS=ON -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/build-llvm/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema -I /build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include -I /build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/build-llvm/include -I /build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-14/lib/clang/14.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/build-llvm/tools/clang/lib/Sema -fdebug-prefix-map=/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0=. -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2021-08-28-193554-24367-1 -x c++ /build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp

/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp

1//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements semantic analysis for expressions.
10//
11//===----------------------------------------------------------------------===//
12
13#include "TreeTransform.h"
14#include "UsedDeclVisitor.h"
15#include "clang/AST/ASTConsumer.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/ASTLambda.h"
18#include "clang/AST/ASTMutationListener.h"
19#include "clang/AST/CXXInheritance.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/EvaluatedExprVisitor.h"
23#include "clang/AST/Expr.h"
24#include "clang/AST/ExprCXX.h"
25#include "clang/AST/ExprObjC.h"
26#include "clang/AST/ExprOpenMP.h"
27#include "clang/AST/OperationKinds.h"
28#include "clang/AST/RecursiveASTVisitor.h"
29#include "clang/AST/TypeLoc.h"
30#include "clang/Basic/Builtins.h"
31#include "clang/Basic/PartialDiagnostic.h"
32#include "clang/Basic/SourceManager.h"
33#include "clang/Basic/TargetInfo.h"
34#include "clang/Lex/LiteralSupport.h"
35#include "clang/Lex/Preprocessor.h"
36#include "clang/Sema/AnalysisBasedWarnings.h"
37#include "clang/Sema/DeclSpec.h"
38#include "clang/Sema/DelayedDiagnostic.h"
39#include "clang/Sema/Designator.h"
40#include "clang/Sema/Initialization.h"
41#include "clang/Sema/Lookup.h"
42#include "clang/Sema/Overload.h"
43#include "clang/Sema/ParsedTemplate.h"
44#include "clang/Sema/Scope.h"
45#include "clang/Sema/ScopeInfo.h"
46#include "clang/Sema/SemaFixItUtils.h"
47#include "clang/Sema/SemaInternal.h"
48#include "clang/Sema/Template.h"
49#include "llvm/ADT/STLExtras.h"
50#include "llvm/ADT/StringExtras.h"
51#include "llvm/Support/ConvertUTF.h"
52#include "llvm/Support/SaveAndRestore.h"
53
54using namespace clang;
55using namespace sema;
56using llvm::RoundingMode;
57
58/// Determine whether the use of this declaration is valid, without
59/// emitting diagnostics.
60bool Sema::CanUseDecl(NamedDecl *D, bool TreatUnavailableAsInvalid) {
61 // See if this is an auto-typed variable whose initializer we are parsing.
62 if (ParsingInitForAutoVars.count(D))
63 return false;
64
65 // See if this is a deleted function.
66 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
67 if (FD->isDeleted())
68 return false;
69
70 // If the function has a deduced return type, and we can't deduce it,
71 // then we can't use it either.
72 if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
73 DeduceReturnType(FD, SourceLocation(), /*Diagnose*/ false))
74 return false;
75
76 // See if this is an aligned allocation/deallocation function that is
77 // unavailable.
78 if (TreatUnavailableAsInvalid &&
79 isUnavailableAlignedAllocationFunction(*FD))
80 return false;
81 }
82
83 // See if this function is unavailable.
84 if (TreatUnavailableAsInvalid && D->getAvailability() == AR_Unavailable &&
85 cast<Decl>(CurContext)->getAvailability() != AR_Unavailable)
86 return false;
87
88 if (isa<UnresolvedUsingIfExistsDecl>(D))
89 return false;
90
91 return true;
92}
93
94static void DiagnoseUnusedOfDecl(Sema &S, NamedDecl *D, SourceLocation Loc) {
95 // Warn if this is used but marked unused.
96 if (const auto *A = D->getAttr<UnusedAttr>()) {
97 // [[maybe_unused]] should not diagnose uses, but __attribute__((unused))
98 // should diagnose them.
99 if (A->getSemanticSpelling() != UnusedAttr::CXX11_maybe_unused &&
100 A->getSemanticSpelling() != UnusedAttr::C2x_maybe_unused) {
101 const Decl *DC = cast_or_null<Decl>(S.getCurObjCLexicalContext());
102 if (DC && !DC->hasAttr<UnusedAttr>())
103 S.Diag(Loc, diag::warn_used_but_marked_unused) << D;
104 }
105 }
106}
107
108/// Emit a note explaining that this function is deleted.
109void Sema::NoteDeletedFunction(FunctionDecl *Decl) {
110 assert(Decl && Decl->isDeleted())(static_cast <bool> (Decl && Decl->isDeleted
()) ? void (0) : __assert_fail ("Decl && Decl->isDeleted()"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 110, __extension__ __PRETTY_FUNCTION__))
;
111
112 if (Decl->isDefaulted()) {
113 // If the method was explicitly defaulted, point at that declaration.
114 if (!Decl->isImplicit())
115 Diag(Decl->getLocation(), diag::note_implicitly_deleted);
116
117 // Try to diagnose why this special member function was implicitly
118 // deleted. This might fail, if that reason no longer applies.
119 DiagnoseDeletedDefaultedFunction(Decl);
120 return;
121 }
122
123 auto *Ctor = dyn_cast<CXXConstructorDecl>(Decl);
124 if (Ctor && Ctor->isInheritingConstructor())
125 return NoteDeletedInheritingConstructor(Ctor);
126
127 Diag(Decl->getLocation(), diag::note_availability_specified_here)
128 << Decl << 1;
129}
130
131/// Determine whether a FunctionDecl was ever declared with an
132/// explicit storage class.
133static bool hasAnyExplicitStorageClass(const FunctionDecl *D) {
134 for (auto I : D->redecls()) {
135 if (I->getStorageClass() != SC_None)
136 return true;
137 }
138 return false;
139}
140
141/// Check whether we're in an extern inline function and referring to a
142/// variable or function with internal linkage (C11 6.7.4p3).
143///
144/// This is only a warning because we used to silently accept this code, but
145/// in many cases it will not behave correctly. This is not enabled in C++ mode
146/// because the restriction language is a bit weaker (C++11 [basic.def.odr]p6)
147/// and so while there may still be user mistakes, most of the time we can't
148/// prove that there are errors.
149static void diagnoseUseOfInternalDeclInInlineFunction(Sema &S,
150 const NamedDecl *D,
151 SourceLocation Loc) {
152 // This is disabled under C++; there are too many ways for this to fire in
153 // contexts where the warning is a false positive, or where it is technically
154 // correct but benign.
155 if (S.getLangOpts().CPlusPlus)
156 return;
157
158 // Check if this is an inlined function or method.
159 FunctionDecl *Current = S.getCurFunctionDecl();
160 if (!Current)
161 return;
162 if (!Current->isInlined())
163 return;
164 if (!Current->isExternallyVisible())
165 return;
166
167 // Check if the decl has internal linkage.
168 if (D->getFormalLinkage() != InternalLinkage)
169 return;
170
171 // Downgrade from ExtWarn to Extension if
172 // (1) the supposedly external inline function is in the main file,
173 // and probably won't be included anywhere else.
174 // (2) the thing we're referencing is a pure function.
175 // (3) the thing we're referencing is another inline function.
176 // This last can give us false negatives, but it's better than warning on
177 // wrappers for simple C library functions.
178 const FunctionDecl *UsedFn = dyn_cast<FunctionDecl>(D);
179 bool DowngradeWarning = S.getSourceManager().isInMainFile(Loc);
180 if (!DowngradeWarning && UsedFn)
181 DowngradeWarning = UsedFn->isInlined() || UsedFn->hasAttr<ConstAttr>();
182
183 S.Diag(Loc, DowngradeWarning ? diag::ext_internal_in_extern_inline_quiet
184 : diag::ext_internal_in_extern_inline)
185 << /*IsVar=*/!UsedFn << D;
186
187 S.MaybeSuggestAddingStaticToDecl(Current);
188
189 S.Diag(D->getCanonicalDecl()->getLocation(), diag::note_entity_declared_at)
190 << D;
191}
192
193void Sema::MaybeSuggestAddingStaticToDecl(const FunctionDecl *Cur) {
194 const FunctionDecl *First = Cur->getFirstDecl();
195
196 // Suggest "static" on the function, if possible.
197 if (!hasAnyExplicitStorageClass(First)) {
198 SourceLocation DeclBegin = First->getSourceRange().getBegin();
199 Diag(DeclBegin, diag::note_convert_inline_to_static)
200 << Cur << FixItHint::CreateInsertion(DeclBegin, "static ");
201 }
202}
203
204/// Determine whether the use of this declaration is valid, and
205/// emit any corresponding diagnostics.
206///
207/// This routine diagnoses various problems with referencing
208/// declarations that can occur when using a declaration. For example,
209/// it might warn if a deprecated or unavailable declaration is being
210/// used, or produce an error (and return true) if a C++0x deleted
211/// function is being used.
212///
213/// \returns true if there was an error (this declaration cannot be
214/// referenced), false otherwise.
215///
216bool Sema::DiagnoseUseOfDecl(NamedDecl *D, ArrayRef<SourceLocation> Locs,
217 const ObjCInterfaceDecl *UnknownObjCClass,
218 bool ObjCPropertyAccess,
219 bool AvoidPartialAvailabilityChecks,
220 ObjCInterfaceDecl *ClassReceiver) {
221 SourceLocation Loc = Locs.front();
222 if (getLangOpts().CPlusPlus && isa<FunctionDecl>(D)) {
223 // If there were any diagnostics suppressed by template argument deduction,
224 // emit them now.
225 auto Pos = SuppressedDiagnostics.find(D->getCanonicalDecl());
226 if (Pos != SuppressedDiagnostics.end()) {
227 for (const PartialDiagnosticAt &Suppressed : Pos->second)
228 Diag(Suppressed.first, Suppressed.second);
229
230 // Clear out the list of suppressed diagnostics, so that we don't emit
231 // them again for this specialization. However, we don't obsolete this
232 // entry from the table, because we want to avoid ever emitting these
233 // diagnostics again.
234 Pos->second.clear();
235 }
236
237 // C++ [basic.start.main]p3:
238 // The function 'main' shall not be used within a program.
239 if (cast<FunctionDecl>(D)->isMain())
240 Diag(Loc, diag::ext_main_used);
241
242 diagnoseUnavailableAlignedAllocation(*cast<FunctionDecl>(D), Loc);
243 }
244
245 // See if this is an auto-typed variable whose initializer we are parsing.
246 if (ParsingInitForAutoVars.count(D)) {
247 if (isa<BindingDecl>(D)) {
248 Diag(Loc, diag::err_binding_cannot_appear_in_own_initializer)
249 << D->getDeclName();
250 } else {
251 Diag(Loc, diag::err_auto_variable_cannot_appear_in_own_initializer)
252 << D->getDeclName() << cast<VarDecl>(D)->getType();
253 }
254 return true;
255 }
256
257 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
258 // See if this is a deleted function.
259 if (FD->isDeleted()) {
260 auto *Ctor = dyn_cast<CXXConstructorDecl>(FD);
261 if (Ctor && Ctor->isInheritingConstructor())
262 Diag(Loc, diag::err_deleted_inherited_ctor_use)
263 << Ctor->getParent()
264 << Ctor->getInheritedConstructor().getConstructor()->getParent();
265 else
266 Diag(Loc, diag::err_deleted_function_use);
267 NoteDeletedFunction(FD);
268 return true;
269 }
270
271 // [expr.prim.id]p4
272 // A program that refers explicitly or implicitly to a function with a
273 // trailing requires-clause whose constraint-expression is not satisfied,
274 // other than to declare it, is ill-formed. [...]
275 //
276 // See if this is a function with constraints that need to be satisfied.
277 // Check this before deducing the return type, as it might instantiate the
278 // definition.
279 if (FD->getTrailingRequiresClause()) {
280 ConstraintSatisfaction Satisfaction;
281 if (CheckFunctionConstraints(FD, Satisfaction, Loc))
282 // A diagnostic will have already been generated (non-constant
283 // constraint expression, for example)
284 return true;
285 if (!Satisfaction.IsSatisfied) {
286 Diag(Loc,
287 diag::err_reference_to_function_with_unsatisfied_constraints)
288 << D;
289 DiagnoseUnsatisfiedConstraint(Satisfaction);
290 return true;
291 }
292 }
293
294 // If the function has a deduced return type, and we can't deduce it,
295 // then we can't use it either.
296 if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
297 DeduceReturnType(FD, Loc))
298 return true;
299
300 if (getLangOpts().CUDA && !CheckCUDACall(Loc, FD))
301 return true;
302
303 if (getLangOpts().SYCLIsDevice && !checkSYCLDeviceFunction(Loc, FD))
304 return true;
305 }
306
307 if (auto *MD = dyn_cast<CXXMethodDecl>(D)) {
308 // Lambdas are only default-constructible or assignable in C++2a onwards.
309 if (MD->getParent()->isLambda() &&
310 ((isa<CXXConstructorDecl>(MD) &&
311 cast<CXXConstructorDecl>(MD)->isDefaultConstructor()) ||
312 MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator())) {
313 Diag(Loc, diag::warn_cxx17_compat_lambda_def_ctor_assign)
314 << !isa<CXXConstructorDecl>(MD);
315 }
316 }
317
318 auto getReferencedObjCProp = [](const NamedDecl *D) ->
319 const ObjCPropertyDecl * {
320 if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
321 return MD->findPropertyDecl();
322 return nullptr;
323 };
324 if (const ObjCPropertyDecl *ObjCPDecl = getReferencedObjCProp(D)) {
325 if (diagnoseArgIndependentDiagnoseIfAttrs(ObjCPDecl, Loc))
326 return true;
327 } else if (diagnoseArgIndependentDiagnoseIfAttrs(D, Loc)) {
328 return true;
329 }
330
331 // [OpenMP 4.0], 2.15 declare reduction Directive, Restrictions
332 // Only the variables omp_in and omp_out are allowed in the combiner.
333 // Only the variables omp_priv and omp_orig are allowed in the
334 // initializer-clause.
335 auto *DRD = dyn_cast<OMPDeclareReductionDecl>(CurContext);
336 if (LangOpts.OpenMP && DRD && !CurContext->containsDecl(D) &&
337 isa<VarDecl>(D)) {
338 Diag(Loc, diag::err_omp_wrong_var_in_declare_reduction)
339 << getCurFunction()->HasOMPDeclareReductionCombiner;
340 Diag(D->getLocation(), diag::note_entity_declared_at) << D;
341 return true;
342 }
343
344 // [OpenMP 5.0], 2.19.7.3. declare mapper Directive, Restrictions
345 // List-items in map clauses on this construct may only refer to the declared
346 // variable var and entities that could be referenced by a procedure defined
347 // at the same location
348 if (LangOpts.OpenMP && isa<VarDecl>(D) &&
349 !isOpenMPDeclareMapperVarDeclAllowed(cast<VarDecl>(D))) {
350 Diag(Loc, diag::err_omp_declare_mapper_wrong_var)
351 << getOpenMPDeclareMapperVarName();
352 Diag(D->getLocation(), diag::note_entity_declared_at) << D;
353 return true;
354 }
355
356 if (const auto *EmptyD = dyn_cast<UnresolvedUsingIfExistsDecl>(D)) {
357 Diag(Loc, diag::err_use_of_empty_using_if_exists);
358 Diag(EmptyD->getLocation(), diag::note_empty_using_if_exists_here);
359 return true;
360 }
361
362 DiagnoseAvailabilityOfDecl(D, Locs, UnknownObjCClass, ObjCPropertyAccess,
363 AvoidPartialAvailabilityChecks, ClassReceiver);
364
365 DiagnoseUnusedOfDecl(*this, D, Loc);
366
367 diagnoseUseOfInternalDeclInInlineFunction(*this, D, Loc);
368
369 if (LangOpts.SYCLIsDevice || (LangOpts.OpenMP && LangOpts.OpenMPIsDevice)) {
370 if (auto *VD = dyn_cast<ValueDecl>(D))
371 checkDeviceDecl(VD, Loc);
372
373 if (!Context.getTargetInfo().isTLSSupported())
374 if (const auto *VD = dyn_cast<VarDecl>(D))
375 if (VD->getTLSKind() != VarDecl::TLS_None)
376 targetDiag(*Locs.begin(), diag::err_thread_unsupported);
377 }
378
379 if (isa<ParmVarDecl>(D) && isa<RequiresExprBodyDecl>(D->getDeclContext()) &&
380 !isUnevaluatedContext()) {
381 // C++ [expr.prim.req.nested] p3
382 // A local parameter shall only appear as an unevaluated operand
383 // (Clause 8) within the constraint-expression.
384 Diag(Loc, diag::err_requires_expr_parameter_referenced_in_evaluated_context)
385 << D;
386 Diag(D->getLocation(), diag::note_entity_declared_at) << D;
387 return true;
388 }
389
390 return false;
391}
392
393/// DiagnoseSentinelCalls - This routine checks whether a call or
394/// message-send is to a declaration with the sentinel attribute, and
395/// if so, it checks that the requirements of the sentinel are
396/// satisfied.
397void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
398 ArrayRef<Expr *> Args) {
399 const SentinelAttr *attr = D->getAttr<SentinelAttr>();
400 if (!attr)
401 return;
402
403 // The number of formal parameters of the declaration.
404 unsigned numFormalParams;
405
406 // The kind of declaration. This is also an index into a %select in
407 // the diagnostic.
408 enum CalleeType { CT_Function, CT_Method, CT_Block } calleeType;
409
410 if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
411 numFormalParams = MD->param_size();
412 calleeType = CT_Method;
413 } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
414 numFormalParams = FD->param_size();
415 calleeType = CT_Function;
416 } else if (isa<VarDecl>(D)) {
417 QualType type = cast<ValueDecl>(D)->getType();
418 const FunctionType *fn = nullptr;
419 if (const PointerType *ptr = type->getAs<PointerType>()) {
420 fn = ptr->getPointeeType()->getAs<FunctionType>();
421 if (!fn) return;
422 calleeType = CT_Function;
423 } else if (const BlockPointerType *ptr = type->getAs<BlockPointerType>()) {
424 fn = ptr->getPointeeType()->castAs<FunctionType>();
425 calleeType = CT_Block;
426 } else {
427 return;
428 }
429
430 if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fn)) {
431 numFormalParams = proto->getNumParams();
432 } else {
433 numFormalParams = 0;
434 }
435 } else {
436 return;
437 }
438
439 // "nullPos" is the number of formal parameters at the end which
440 // effectively count as part of the variadic arguments. This is
441 // useful if you would prefer to not have *any* formal parameters,
442 // but the language forces you to have at least one.
443 unsigned nullPos = attr->getNullPos();
444 assert((nullPos == 0 || nullPos == 1) && "invalid null position on sentinel")(static_cast <bool> ((nullPos == 0 || nullPos == 1) &&
"invalid null position on sentinel") ? void (0) : __assert_fail
("(nullPos == 0 || nullPos == 1) && \"invalid null position on sentinel\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 444, __extension__ __PRETTY_FUNCTION__))
;
445 numFormalParams = (nullPos > numFormalParams ? 0 : numFormalParams - nullPos);
446
447 // The number of arguments which should follow the sentinel.
448 unsigned numArgsAfterSentinel = attr->getSentinel();
449
450 // If there aren't enough arguments for all the formal parameters,
451 // the sentinel, and the args after the sentinel, complain.
452 if (Args.size() < numFormalParams + numArgsAfterSentinel + 1) {
453 Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
454 Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType);
455 return;
456 }
457
458 // Otherwise, find the sentinel expression.
459 Expr *sentinelExpr = Args[Args.size() - numArgsAfterSentinel - 1];
460 if (!sentinelExpr) return;
461 if (sentinelExpr->isValueDependent()) return;
462 if (Context.isSentinelNullExpr(sentinelExpr)) return;
463
464 // Pick a reasonable string to insert. Optimistically use 'nil', 'nullptr',
465 // or 'NULL' if those are actually defined in the context. Only use
466 // 'nil' for ObjC methods, where it's much more likely that the
467 // variadic arguments form a list of object pointers.
468 SourceLocation MissingNilLoc = getLocForEndOfToken(sentinelExpr->getEndLoc());
469 std::string NullValue;
470 if (calleeType == CT_Method && PP.isMacroDefined("nil"))
471 NullValue = "nil";
472 else if (getLangOpts().CPlusPlus11)
473 NullValue = "nullptr";
474 else if (PP.isMacroDefined("NULL"))
475 NullValue = "NULL";
476 else
477 NullValue = "(void*) 0";
478
479 if (MissingNilLoc.isInvalid())
480 Diag(Loc, diag::warn_missing_sentinel) << int(calleeType);
481 else
482 Diag(MissingNilLoc, diag::warn_missing_sentinel)
483 << int(calleeType)
484 << FixItHint::CreateInsertion(MissingNilLoc, ", " + NullValue);
485 Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType);
486}
487
488SourceRange Sema::getExprRange(Expr *E) const {
489 return E ? E->getSourceRange() : SourceRange();
490}
491
492//===----------------------------------------------------------------------===//
493// Standard Promotions and Conversions
494//===----------------------------------------------------------------------===//
495
496/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
497ExprResult Sema::DefaultFunctionArrayConversion(Expr *E, bool Diagnose) {
498 // Handle any placeholder expressions which made it here.
499 if (E->getType()->isPlaceholderType()) {
500 ExprResult result = CheckPlaceholderExpr(E);
501 if (result.isInvalid()) return ExprError();
502 E = result.get();
503 }
504
505 QualType Ty = E->getType();
506 assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type")(static_cast <bool> (!Ty.isNull() && "DefaultFunctionArrayConversion - missing type"
) ? void (0) : __assert_fail ("!Ty.isNull() && \"DefaultFunctionArrayConversion - missing type\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 506, __extension__ __PRETTY_FUNCTION__))
;
507
508 if (Ty->isFunctionType()) {
509 if (auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts()))
510 if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl()))
511 if (!checkAddressOfFunctionIsAvailable(FD, Diagnose, E->getExprLoc()))
512 return ExprError();
513
514 E = ImpCastExprToType(E, Context.getPointerType(Ty),
515 CK_FunctionToPointerDecay).get();
516 } else if (Ty->isArrayType()) {
517 // In C90 mode, arrays only promote to pointers if the array expression is
518 // an lvalue. The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
519 // type 'array of type' is converted to an expression that has type 'pointer
520 // to type'...". In C99 this was changed to: C99 6.3.2.1p3: "an expression
521 // that has type 'array of type' ...". The relevant change is "an lvalue"
522 // (C90) to "an expression" (C99).
523 //
524 // C++ 4.2p1:
525 // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
526 // T" can be converted to an rvalue of type "pointer to T".
527 //
528 if (getLangOpts().C99 || getLangOpts().CPlusPlus || E->isLValue()) {
529 ExprResult Res = ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
530 CK_ArrayToPointerDecay);
531 if (Res.isInvalid())
532 return ExprError();
533 E = Res.get();
534 }
535 }
536 return E;
537}
538
539static void CheckForNullPointerDereference(Sema &S, Expr *E) {
540 // Check to see if we are dereferencing a null pointer. If so,
541 // and if not volatile-qualified, this is undefined behavior that the
542 // optimizer will delete, so warn about it. People sometimes try to use this
543 // to get a deterministic trap and are surprised by clang's behavior. This
544 // only handles the pattern "*null", which is a very syntactic check.
545 const auto *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts());
546 if (UO && UO->getOpcode() == UO_Deref &&
547 UO->getSubExpr()->getType()->isPointerType()) {
548 const LangAS AS =
549 UO->getSubExpr()->getType()->getPointeeType().getAddressSpace();
550 if ((!isTargetAddressSpace(AS) ||
551 (isTargetAddressSpace(AS) && toTargetAddressSpace(AS) == 0)) &&
552 UO->getSubExpr()->IgnoreParenCasts()->isNullPointerConstant(
553 S.Context, Expr::NPC_ValueDependentIsNotNull) &&
554 !UO->getType().isVolatileQualified()) {
555 S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
556 S.PDiag(diag::warn_indirection_through_null)
557 << UO->getSubExpr()->getSourceRange());
558 S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
559 S.PDiag(diag::note_indirection_through_null));
560 }
561 }
562}
563
564static void DiagnoseDirectIsaAccess(Sema &S, const ObjCIvarRefExpr *OIRE,
565 SourceLocation AssignLoc,
566 const Expr* RHS) {
567 const ObjCIvarDecl *IV = OIRE->getDecl();
568 if (!IV)
569 return;
570
571 DeclarationName MemberName = IV->getDeclName();
572 IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
573 if (!Member || !Member->isStr("isa"))
574 return;
575
576 const Expr *Base = OIRE->getBase();
577 QualType BaseType = Base->getType();
578 if (OIRE->isArrow())
579 BaseType = BaseType->getPointeeType();
580 if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>())
581 if (ObjCInterfaceDecl *IDecl = OTy->getInterface()) {
582 ObjCInterfaceDecl *ClassDeclared = nullptr;
583 ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
584 if (!ClassDeclared->getSuperClass()
585 && (*ClassDeclared->ivar_begin()) == IV) {
586 if (RHS) {
587 NamedDecl *ObjectSetClass =
588 S.LookupSingleName(S.TUScope,
589 &S.Context.Idents.get("object_setClass"),
590 SourceLocation(), S.LookupOrdinaryName);
591 if (ObjectSetClass) {
592 SourceLocation RHSLocEnd = S.getLocForEndOfToken(RHS->getEndLoc());
593 S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_assign)
594 << FixItHint::CreateInsertion(OIRE->getBeginLoc(),
595 "object_setClass(")
596 << FixItHint::CreateReplacement(
597 SourceRange(OIRE->getOpLoc(), AssignLoc), ",")
598 << FixItHint::CreateInsertion(RHSLocEnd, ")");
599 }
600 else
601 S.Diag(OIRE->getLocation(), diag::warn_objc_isa_assign);
602 } else {
603 NamedDecl *ObjectGetClass =
604 S.LookupSingleName(S.TUScope,
605 &S.Context.Idents.get("object_getClass"),
606 SourceLocation(), S.LookupOrdinaryName);
607 if (ObjectGetClass)
608 S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_use)
609 << FixItHint::CreateInsertion(OIRE->getBeginLoc(),
610 "object_getClass(")
611 << FixItHint::CreateReplacement(
612 SourceRange(OIRE->getOpLoc(), OIRE->getEndLoc()), ")");
613 else
614 S.Diag(OIRE->getLocation(), diag::warn_objc_isa_use);
615 }
616 S.Diag(IV->getLocation(), diag::note_ivar_decl);
617 }
618 }
619}
620
621ExprResult Sema::DefaultLvalueConversion(Expr *E) {
622 // Handle any placeholder expressions which made it here.
623 if (E->getType()->isPlaceholderType()) {
624 ExprResult result = CheckPlaceholderExpr(E);
625 if (result.isInvalid()) return ExprError();
626 E = result.get();
627 }
628
629 // C++ [conv.lval]p1:
630 // A glvalue of a non-function, non-array type T can be
631 // converted to a prvalue.
632 if (!E->isGLValue()) return E;
633
634 QualType T = E->getType();
635 assert(!T.isNull() && "r-value conversion on typeless expression?")(static_cast <bool> (!T.isNull() && "r-value conversion on typeless expression?"
) ? void (0) : __assert_fail ("!T.isNull() && \"r-value conversion on typeless expression?\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 635, __extension__ __PRETTY_FUNCTION__))
;
636
637 // lvalue-to-rvalue conversion cannot be applied to function or array types.
638 if (T->isFunctionType() || T->isArrayType())
639 return E;
640
641 // We don't want to throw lvalue-to-rvalue casts on top of
642 // expressions of certain types in C++.
643 if (getLangOpts().CPlusPlus &&
644 (E->getType() == Context.OverloadTy ||
645 T->isDependentType() ||
646 T->isRecordType()))
647 return E;
648
649 // The C standard is actually really unclear on this point, and
650 // DR106 tells us what the result should be but not why. It's
651 // generally best to say that void types just doesn't undergo
652 // lvalue-to-rvalue at all. Note that expressions of unqualified
653 // 'void' type are never l-values, but qualified void can be.
654 if (T->isVoidType())
655 return E;
656
657 // OpenCL usually rejects direct accesses to values of 'half' type.
658 if (getLangOpts().OpenCL &&
659 !getOpenCLOptions().isAvailableOption("cl_khr_fp16", getLangOpts()) &&
660 T->isHalfType()) {
661 Diag(E->getExprLoc(), diag::err_opencl_half_load_store)
662 << 0 << T;
663 return ExprError();
664 }
665
666 CheckForNullPointerDereference(*this, E);
667 if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(E->IgnoreParenCasts())) {
668 NamedDecl *ObjectGetClass = LookupSingleName(TUScope,
669 &Context.Idents.get("object_getClass"),
670 SourceLocation(), LookupOrdinaryName);
671 if (ObjectGetClass)
672 Diag(E->getExprLoc(), diag::warn_objc_isa_use)
673 << FixItHint::CreateInsertion(OISA->getBeginLoc(), "object_getClass(")
674 << FixItHint::CreateReplacement(
675 SourceRange(OISA->getOpLoc(), OISA->getIsaMemberLoc()), ")");
676 else
677 Diag(E->getExprLoc(), diag::warn_objc_isa_use);
678 }
679 else if (const ObjCIvarRefExpr *OIRE =
680 dyn_cast<ObjCIvarRefExpr>(E->IgnoreParenCasts()))
681 DiagnoseDirectIsaAccess(*this, OIRE, SourceLocation(), /* Expr*/nullptr);
682
683 // C++ [conv.lval]p1:
684 // [...] If T is a non-class type, the type of the prvalue is the
685 // cv-unqualified version of T. Otherwise, the type of the
686 // rvalue is T.
687 //
688 // C99 6.3.2.1p2:
689 // If the lvalue has qualified type, the value has the unqualified
690 // version of the type of the lvalue; otherwise, the value has the
691 // type of the lvalue.
692 if (T.hasQualifiers())
693 T = T.getUnqualifiedType();
694
695 // Under the MS ABI, lock down the inheritance model now.
696 if (T->isMemberPointerType() &&
697 Context.getTargetInfo().getCXXABI().isMicrosoft())
698 (void)isCompleteType(E->getExprLoc(), T);
699
700 ExprResult Res = CheckLValueToRValueConversionOperand(E);
701 if (Res.isInvalid())
702 return Res;
703 E = Res.get();
704
705 // Loading a __weak object implicitly retains the value, so we need a cleanup to
706 // balance that.
707 if (E->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
708 Cleanup.setExprNeedsCleanups(true);
709
710 if (E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct)
711 Cleanup.setExprNeedsCleanups(true);
712
713 // C++ [conv.lval]p3:
714 // If T is cv std::nullptr_t, the result is a null pointer constant.
715 CastKind CK = T->isNullPtrType() ? CK_NullToPointer : CK_LValueToRValue;
716 Res = ImplicitCastExpr::Create(Context, T, CK, E, nullptr, VK_PRValue,
717 CurFPFeatureOverrides());
718
719 // C11 6.3.2.1p2:
720 // ... if the lvalue has atomic type, the value has the non-atomic version
721 // of the type of the lvalue ...
722 if (const AtomicType *Atomic = T->getAs<AtomicType>()) {
723 T = Atomic->getValueType().getUnqualifiedType();
724 Res = ImplicitCastExpr::Create(Context, T, CK_AtomicToNonAtomic, Res.get(),
725 nullptr, VK_PRValue, FPOptionsOverride());
726 }
727
728 return Res;
729}
730
731ExprResult Sema::DefaultFunctionArrayLvalueConversion(Expr *E, bool Diagnose) {
732 ExprResult Res = DefaultFunctionArrayConversion(E, Diagnose);
733 if (Res.isInvalid())
734 return ExprError();
735 Res = DefaultLvalueConversion(Res.get());
736 if (Res.isInvalid())
737 return ExprError();
738 return Res;
739}
740
741/// CallExprUnaryConversions - a special case of an unary conversion
742/// performed on a function designator of a call expression.
743ExprResult Sema::CallExprUnaryConversions(Expr *E) {
744 QualType Ty = E->getType();
745 ExprResult Res = E;
746 // Only do implicit cast for a function type, but not for a pointer
747 // to function type.
748 if (Ty->isFunctionType()) {
749 Res = ImpCastExprToType(E, Context.getPointerType(Ty),
750 CK_FunctionToPointerDecay);
751 if (Res.isInvalid())
752 return ExprError();
753 }
754 Res = DefaultLvalueConversion(Res.get());
755 if (Res.isInvalid())
756 return ExprError();
757 return Res.get();
758}
759
760/// UsualUnaryConversions - Performs various conversions that are common to most
761/// operators (C99 6.3). The conversions of array and function types are
762/// sometimes suppressed. For example, the array->pointer conversion doesn't
763/// apply if the array is an argument to the sizeof or address (&) operators.
764/// In these instances, this routine should *not* be called.
765ExprResult Sema::UsualUnaryConversions(Expr *E) {
766 // First, convert to an r-value.
767 ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
768 if (Res.isInvalid())
769 return ExprError();
770 E = Res.get();
771
772 QualType Ty = E->getType();
773 assert(!Ty.isNull() && "UsualUnaryConversions - missing type")(static_cast <bool> (!Ty.isNull() && "UsualUnaryConversions - missing type"
) ? void (0) : __assert_fail ("!Ty.isNull() && \"UsualUnaryConversions - missing type\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 773, __extension__ __PRETTY_FUNCTION__))
;
774
775 LangOptions::FPEvalMethodKind EvalMethod = CurFPFeatures.getFPEvalMethod();
776 if (EvalMethod != LangOptions::FEM_Source && Ty->isFloatingType()) {
777 switch (EvalMethod) {
778 default:
779 llvm_unreachable("Unrecognized float evaluation method")::llvm::llvm_unreachable_internal("Unrecognized float evaluation method"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 779)
;
780 break;
781 case LangOptions::FEM_TargetDefault:
782 // Float evaluation method not defined, use FEM_Source.
783 break;
784 case LangOptions::FEM_Double:
785 if (Context.getFloatingTypeOrder(Context.DoubleTy, Ty) > 0)
786 // Widen the expression to double.
787 return Ty->isComplexType()
788 ? ImpCastExprToType(E,
789 Context.getComplexType(Context.DoubleTy),
790 CK_FloatingComplexCast)
791 : ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast);
792 break;
793 case LangOptions::FEM_Extended:
794 if (Context.getFloatingTypeOrder(Context.LongDoubleTy, Ty) > 0)
795 // Widen the expression to long double.
796 return Ty->isComplexType()
797 ? ImpCastExprToType(
798 E, Context.getComplexType(Context.LongDoubleTy),
799 CK_FloatingComplexCast)
800 : ImpCastExprToType(E, Context.LongDoubleTy,
801 CK_FloatingCast);
802 break;
803 }
804 }
805
806 // Half FP have to be promoted to float unless it is natively supported
807 if (Ty->isHalfType() && !getLangOpts().NativeHalfType)
808 return ImpCastExprToType(Res.get(), Context.FloatTy, CK_FloatingCast);
809
810 // Try to perform integral promotions if the object has a theoretically
811 // promotable type.
812 if (Ty->isIntegralOrUnscopedEnumerationType()) {
813 // C99 6.3.1.1p2:
814 //
815 // The following may be used in an expression wherever an int or
816 // unsigned int may be used:
817 // - an object or expression with an integer type whose integer
818 // conversion rank is less than or equal to the rank of int
819 // and unsigned int.
820 // - A bit-field of type _Bool, int, signed int, or unsigned int.
821 //
822 // If an int can represent all values of the original type, the
823 // value is converted to an int; otherwise, it is converted to an
824 // unsigned int. These are called the integer promotions. All
825 // other types are unchanged by the integer promotions.
826
827 QualType PTy = Context.isPromotableBitField(E);
828 if (!PTy.isNull()) {
829 E = ImpCastExprToType(E, PTy, CK_IntegralCast).get();
830 return E;
831 }
832 if (Ty->isPromotableIntegerType()) {
833 QualType PT = Context.getPromotedIntegerType(Ty);
834 E = ImpCastExprToType(E, PT, CK_IntegralCast).get();
835 return E;
836 }
837 }
838 return E;
839}
840
841/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
842/// do not have a prototype. Arguments that have type float or __fp16
843/// are promoted to double. All other argument types are converted by
844/// UsualUnaryConversions().
845ExprResult Sema::DefaultArgumentPromotion(Expr *E) {
846 QualType Ty = E->getType();
847 assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type")(static_cast <bool> (!Ty.isNull() && "DefaultArgumentPromotion - missing type"
) ? void (0) : __assert_fail ("!Ty.isNull() && \"DefaultArgumentPromotion - missing type\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 847, __extension__ __PRETTY_FUNCTION__))
;
848
849 ExprResult Res = UsualUnaryConversions(E);
850 if (Res.isInvalid())
851 return ExprError();
852 E = Res.get();
853
854 // If this is a 'float' or '__fp16' (CVR qualified or typedef)
855 // promote to double.
856 // Note that default argument promotion applies only to float (and
857 // half/fp16); it does not apply to _Float16.
858 const BuiltinType *BTy = Ty->getAs<BuiltinType>();
859 if (BTy && (BTy->getKind() == BuiltinType::Half ||
860 BTy->getKind() == BuiltinType::Float)) {
861 if (getLangOpts().OpenCL &&
862 !getOpenCLOptions().isAvailableOption("cl_khr_fp64", getLangOpts())) {
863 if (BTy->getKind() == BuiltinType::Half) {
864 E = ImpCastExprToType(E, Context.FloatTy, CK_FloatingCast).get();
865 }
866 } else {
867 E = ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast).get();
868 }
869 }
870 if (BTy &&
871 getLangOpts().getExtendIntArgs() ==
872 LangOptions::ExtendArgsKind::ExtendTo64 &&
873 Context.getTargetInfo().supportsExtendIntArgs() && Ty->isIntegerType() &&
874 Context.getTypeSizeInChars(BTy) <
875 Context.getTypeSizeInChars(Context.LongLongTy)) {
876 E = (Ty->isUnsignedIntegerType())
877 ? ImpCastExprToType(E, Context.UnsignedLongLongTy, CK_IntegralCast)
878 .get()
879 : ImpCastExprToType(E, Context.LongLongTy, CK_IntegralCast).get();
880 assert(8 == Context.getTypeSizeInChars(Context.LongLongTy).getQuantity() &&(static_cast <bool> (8 == Context.getTypeSizeInChars(Context
.LongLongTy).getQuantity() && "Unexpected typesize for LongLongTy"
) ? void (0) : __assert_fail ("8 == Context.getTypeSizeInChars(Context.LongLongTy).getQuantity() && \"Unexpected typesize for LongLongTy\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 881, __extension__ __PRETTY_FUNCTION__))
881 "Unexpected typesize for LongLongTy")(static_cast <bool> (8 == Context.getTypeSizeInChars(Context
.LongLongTy).getQuantity() && "Unexpected typesize for LongLongTy"
) ? void (0) : __assert_fail ("8 == Context.getTypeSizeInChars(Context.LongLongTy).getQuantity() && \"Unexpected typesize for LongLongTy\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 881, __extension__ __PRETTY_FUNCTION__))
;
882 }
883
884 // C++ performs lvalue-to-rvalue conversion as a default argument
885 // promotion, even on class types, but note:
886 // C++11 [conv.lval]p2:
887 // When an lvalue-to-rvalue conversion occurs in an unevaluated
888 // operand or a subexpression thereof the value contained in the
889 // referenced object is not accessed. Otherwise, if the glvalue
890 // has a class type, the conversion copy-initializes a temporary
891 // of type T from the glvalue and the result of the conversion
892 // is a prvalue for the temporary.
893 // FIXME: add some way to gate this entire thing for correctness in
894 // potentially potentially evaluated contexts.
895 if (getLangOpts().CPlusPlus && E->isGLValue() && !isUnevaluatedContext()) {
896 ExprResult Temp = PerformCopyInitialization(
897 InitializedEntity::InitializeTemporary(E->getType()),
898 E->getExprLoc(), E);
899 if (Temp.isInvalid())
900 return ExprError();
901 E = Temp.get();
902 }
903
904 return E;
905}
906
907/// Determine the degree of POD-ness for an expression.
908/// Incomplete types are considered POD, since this check can be performed
909/// when we're in an unevaluated context.
910Sema::VarArgKind Sema::isValidVarArgType(const QualType &Ty) {
911 if (Ty->isIncompleteType()) {
912 // C++11 [expr.call]p7:
913 // After these conversions, if the argument does not have arithmetic,
914 // enumeration, pointer, pointer to member, or class type, the program
915 // is ill-formed.
916 //
917 // Since we've already performed array-to-pointer and function-to-pointer
918 // decay, the only such type in C++ is cv void. This also handles
919 // initializer lists as variadic arguments.
920 if (Ty->isVoidType())
921 return VAK_Invalid;
922
923 if (Ty->isObjCObjectType())
924 return VAK_Invalid;
925 return VAK_Valid;
926 }
927
928 if (Ty.isDestructedType() == QualType::DK_nontrivial_c_struct)
929 return VAK_Invalid;
930
931 if (Ty.isCXX98PODType(Context))
932 return VAK_Valid;
933
934 // C++11 [expr.call]p7:
935 // Passing a potentially-evaluated argument of class type (Clause 9)
936 // having a non-trivial copy constructor, a non-trivial move constructor,
937 // or a non-trivial destructor, with no corresponding parameter,
938 // is conditionally-supported with implementation-defined semantics.
939 if (getLangOpts().CPlusPlus11 && !Ty->isDependentType())
940 if (CXXRecordDecl *Record = Ty->getAsCXXRecordDecl())
941 if (!Record->hasNonTrivialCopyConstructor() &&
942 !Record->hasNonTrivialMoveConstructor() &&
943 !Record->hasNonTrivialDestructor())
944 return VAK_ValidInCXX11;
945
946 if (getLangOpts().ObjCAutoRefCount && Ty->isObjCLifetimeType())
947 return VAK_Valid;
948
949 if (Ty->isObjCObjectType())
950 return VAK_Invalid;
951
952 if (getLangOpts().MSVCCompat)
953 return VAK_MSVCUndefined;
954
955 // FIXME: In C++11, these cases are conditionally-supported, meaning we're
956 // permitted to reject them. We should consider doing so.
957 return VAK_Undefined;
958}
959
960void Sema::checkVariadicArgument(const Expr *E, VariadicCallType CT) {
961 // Don't allow one to pass an Objective-C interface to a vararg.
962 const QualType &Ty = E->getType();
963 VarArgKind VAK = isValidVarArgType(Ty);
964
965 // Complain about passing non-POD types through varargs.
966 switch (VAK) {
967 case VAK_ValidInCXX11:
968 DiagRuntimeBehavior(
969 E->getBeginLoc(), nullptr,
970 PDiag(diag::warn_cxx98_compat_pass_non_pod_arg_to_vararg) << Ty << CT);
971 LLVM_FALLTHROUGH[[gnu::fallthrough]];
972 case VAK_Valid:
973 if (Ty->isRecordType()) {
974 // This is unlikely to be what the user intended. If the class has a
975 // 'c_str' member function, the user probably meant to call that.
976 DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
977 PDiag(diag::warn_pass_class_arg_to_vararg)
978 << Ty << CT << hasCStrMethod(E) << ".c_str()");
979 }
980 break;
981
982 case VAK_Undefined:
983 case VAK_MSVCUndefined:
984 DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
985 PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
986 << getLangOpts().CPlusPlus11 << Ty << CT);
987 break;
988
989 case VAK_Invalid:
990 if (Ty.isDestructedType() == QualType::DK_nontrivial_c_struct)
991 Diag(E->getBeginLoc(),
992 diag::err_cannot_pass_non_trivial_c_struct_to_vararg)
993 << Ty << CT;
994 else if (Ty->isObjCObjectType())
995 DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
996 PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
997 << Ty << CT);
998 else
999 Diag(E->getBeginLoc(), diag::err_cannot_pass_to_vararg)
1000 << isa<InitListExpr>(E) << Ty << CT;
1001 break;
1002 }
1003}
1004
1005/// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
1006/// will create a trap if the resulting type is not a POD type.
1007ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
1008 FunctionDecl *FDecl) {
1009 if (const BuiltinType *PlaceholderTy = E->getType()->getAsPlaceholderType()) {
1010 // Strip the unbridged-cast placeholder expression off, if applicable.
1011 if (PlaceholderTy->getKind() == BuiltinType::ARCUnbridgedCast &&
1012 (CT == VariadicMethod ||
1013 (FDecl && FDecl->hasAttr<CFAuditedTransferAttr>()))) {
1014 E = stripARCUnbridgedCast(E);
1015
1016 // Otherwise, do normal placeholder checking.
1017 } else {
1018 ExprResult ExprRes = CheckPlaceholderExpr(E);
1019 if (ExprRes.isInvalid())
1020 return ExprError();
1021 E = ExprRes.get();
1022 }
1023 }
1024
1025 ExprResult ExprRes = DefaultArgumentPromotion(E);
1026 if (ExprRes.isInvalid())
1027 return ExprError();
1028
1029 // Copy blocks to the heap.
1030 if (ExprRes.get()->getType()->isBlockPointerType())
1031 maybeExtendBlockObject(ExprRes);
1032
1033 E = ExprRes.get();
1034
1035 // Diagnostics regarding non-POD argument types are
1036 // emitted along with format string checking in Sema::CheckFunctionCall().
1037 if (isValidVarArgType(E->getType()) == VAK_Undefined) {
1038 // Turn this into a trap.
1039 CXXScopeSpec SS;
1040 SourceLocation TemplateKWLoc;
1041 UnqualifiedId Name;
1042 Name.setIdentifier(PP.getIdentifierInfo("__builtin_trap"),
1043 E->getBeginLoc());
1044 ExprResult TrapFn = ActOnIdExpression(TUScope, SS, TemplateKWLoc, Name,
1045 /*HasTrailingLParen=*/true,
1046 /*IsAddressOfOperand=*/false);
1047 if (TrapFn.isInvalid())
1048 return ExprError();
1049
1050 ExprResult Call = BuildCallExpr(TUScope, TrapFn.get(), E->getBeginLoc(),
1051 None, E->getEndLoc());
1052 if (Call.isInvalid())
1053 return ExprError();
1054
1055 ExprResult Comma =
1056 ActOnBinOp(TUScope, E->getBeginLoc(), tok::comma, Call.get(), E);
1057 if (Comma.isInvalid())
1058 return ExprError();
1059 return Comma.get();
1060 }
1061
1062 if (!getLangOpts().CPlusPlus &&
1063 RequireCompleteType(E->getExprLoc(), E->getType(),
1064 diag::err_call_incomplete_argument))
1065 return ExprError();
1066
1067 return E;
1068}
1069
1070/// Converts an integer to complex float type. Helper function of
1071/// UsualArithmeticConversions()
1072///
1073/// \return false if the integer expression is an integer type and is
1074/// successfully converted to the complex type.
1075static bool handleIntegerToComplexFloatConversion(Sema &S, ExprResult &IntExpr,
1076 ExprResult &ComplexExpr,
1077 QualType IntTy,
1078 QualType ComplexTy,
1079 bool SkipCast) {
1080 if (IntTy->isComplexType() || IntTy->isRealFloatingType()) return true;
1081 if (SkipCast) return false;
1082 if (IntTy->isIntegerType()) {
1083 QualType fpTy = cast<ComplexType>(ComplexTy)->getElementType();
1084 IntExpr = S.ImpCastExprToType(IntExpr.get(), fpTy, CK_IntegralToFloating);
1085 IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy,
1086 CK_FloatingRealToComplex);
1087 } else {
1088 assert(IntTy->isComplexIntegerType())(static_cast <bool> (IntTy->isComplexIntegerType()) ?
void (0) : __assert_fail ("IntTy->isComplexIntegerType()"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 1088, __extension__ __PRETTY_FUNCTION__))
;
1089 IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy,
1090 CK_IntegralComplexToFloatingComplex);
1091 }
1092 return false;
1093}
1094
1095/// Handle arithmetic conversion with complex types. Helper function of
1096/// UsualArithmeticConversions()
1097static QualType handleComplexFloatConversion(Sema &S, ExprResult &LHS,
1098 ExprResult &RHS, QualType LHSType,
1099 QualType RHSType,
1100 bool IsCompAssign) {
1101 // if we have an integer operand, the result is the complex type.
1102 if (!handleIntegerToComplexFloatConversion(S, RHS, LHS, RHSType, LHSType,
1103 /*skipCast*/false))
1104 return LHSType;
1105 if (!handleIntegerToComplexFloatConversion(S, LHS, RHS, LHSType, RHSType,
1106 /*skipCast*/IsCompAssign))
1107 return RHSType;
1108
1109 // This handles complex/complex, complex/float, or float/complex.
1110 // When both operands are complex, the shorter operand is converted to the
1111 // type of the longer, and that is the type of the result. This corresponds
1112 // to what is done when combining two real floating-point operands.
1113 // The fun begins when size promotion occur across type domains.
1114 // From H&S 6.3.4: When one operand is complex and the other is a real
1115 // floating-point type, the less precise type is converted, within it's
1116 // real or complex domain, to the precision of the other type. For example,
1117 // when combining a "long double" with a "double _Complex", the
1118 // "double _Complex" is promoted to "long double _Complex".
1119
1120 // Compute the rank of the two types, regardless of whether they are complex.
1121 int Order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
1122
1123 auto *LHSComplexType = dyn_cast<ComplexType>(LHSType);
1124 auto *RHSComplexType = dyn_cast<ComplexType>(RHSType);
1125 QualType LHSElementType =
1126 LHSComplexType ? LHSComplexType->getElementType() : LHSType;
1127 QualType RHSElementType =
1128 RHSComplexType ? RHSComplexType->getElementType() : RHSType;
1129
1130 QualType ResultType = S.Context.getComplexType(LHSElementType);
1131 if (Order < 0) {
1132 // Promote the precision of the LHS if not an assignment.
1133 ResultType = S.Context.getComplexType(RHSElementType);
1134 if (!IsCompAssign) {
1135 if (LHSComplexType)
1136 LHS =
1137 S.ImpCastExprToType(LHS.get(), ResultType, CK_FloatingComplexCast);
1138 else
1139 LHS = S.ImpCastExprToType(LHS.get(), RHSElementType, CK_FloatingCast);
1140 }
1141 } else if (Order > 0) {
1142 // Promote the precision of the RHS.
1143 if (RHSComplexType)
1144 RHS = S.ImpCastExprToType(RHS.get(), ResultType, CK_FloatingComplexCast);
1145 else
1146 RHS = S.ImpCastExprToType(RHS.get(), LHSElementType, CK_FloatingCast);
1147 }
1148 return ResultType;
1149}
1150
1151/// Handle arithmetic conversion from integer to float. Helper function
1152/// of UsualArithmeticConversions()
1153static QualType handleIntToFloatConversion(Sema &S, ExprResult &FloatExpr,
1154 ExprResult &IntExpr,
1155 QualType FloatTy, QualType IntTy,
1156 bool ConvertFloat, bool ConvertInt) {
1157 if (IntTy->isIntegerType()) {
1158 if (ConvertInt)
1159 // Convert intExpr to the lhs floating point type.
1160 IntExpr = S.ImpCastExprToType(IntExpr.get(), FloatTy,
1161 CK_IntegralToFloating);
1162 return FloatTy;
1163 }
1164
1165 // Convert both sides to the appropriate complex float.
1166 assert(IntTy->isComplexIntegerType())(static_cast <bool> (IntTy->isComplexIntegerType()) ?
void (0) : __assert_fail ("IntTy->isComplexIntegerType()"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 1166, __extension__ __PRETTY_FUNCTION__))
;
1167 QualType result = S.Context.getComplexType(FloatTy);
1168
1169 // _Complex int -> _Complex float
1170 if (ConvertInt)
1171 IntExpr = S.ImpCastExprToType(IntExpr.get(), result,
1172 CK_IntegralComplexToFloatingComplex);
1173
1174 // float -> _Complex float
1175 if (ConvertFloat)
1176 FloatExpr = S.ImpCastExprToType(FloatExpr.get(), result,
1177 CK_FloatingRealToComplex);
1178
1179 return result;
1180}
1181
1182/// Handle arithmethic conversion with floating point types. Helper
1183/// function of UsualArithmeticConversions()
1184static QualType handleFloatConversion(Sema &S, ExprResult &LHS,
1185 ExprResult &RHS, QualType LHSType,
1186 QualType RHSType, bool IsCompAssign) {
1187 bool LHSFloat = LHSType->isRealFloatingType();
1188 bool RHSFloat = RHSType->isRealFloatingType();
1189
1190 // N1169 4.1.4: If one of the operands has a floating type and the other
1191 // operand has a fixed-point type, the fixed-point operand
1192 // is converted to the floating type [...]
1193 if (LHSType->isFixedPointType() || RHSType->isFixedPointType()) {
1194 if (LHSFloat)
1195 RHS = S.ImpCastExprToType(RHS.get(), LHSType, CK_FixedPointToFloating);
1196 else if (!IsCompAssign)
1197 LHS = S.ImpCastExprToType(LHS.get(), RHSType, CK_FixedPointToFloating);
1198 return LHSFloat ? LHSType : RHSType;
1199 }
1200
1201 // If we have two real floating types, convert the smaller operand
1202 // to the bigger result.
1203 if (LHSFloat && RHSFloat) {
1204 int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
1205 if (order > 0) {
1206 RHS = S.ImpCastExprToType(RHS.get(), LHSType, CK_FloatingCast);
1207 return LHSType;
1208 }
1209
1210 assert(order < 0 && "illegal float comparison")(static_cast <bool> (order < 0 && "illegal float comparison"
) ? void (0) : __assert_fail ("order < 0 && \"illegal float comparison\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 1210, __extension__ __PRETTY_FUNCTION__))
;
1211 if (!IsCompAssign)
1212 LHS = S.ImpCastExprToType(LHS.get(), RHSType, CK_FloatingCast);
1213 return RHSType;
1214 }
1215
1216 if (LHSFloat) {
1217 // Half FP has to be promoted to float unless it is natively supported
1218 if (LHSType->isHalfType() && !S.getLangOpts().NativeHalfType)
1219 LHSType = S.Context.FloatTy;
1220
1221 return handleIntToFloatConversion(S, LHS, RHS, LHSType, RHSType,
1222 /*ConvertFloat=*/!IsCompAssign,
1223 /*ConvertInt=*/ true);
1224 }
1225 assert(RHSFloat)(static_cast <bool> (RHSFloat) ? void (0) : __assert_fail
("RHSFloat", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 1225, __extension__ __PRETTY_FUNCTION__))
;
1226 return handleIntToFloatConversion(S, RHS, LHS, RHSType, LHSType,
1227 /*ConvertFloat=*/ true,
1228 /*ConvertInt=*/!IsCompAssign);
1229}
1230
1231/// Diagnose attempts to convert between __float128 and long double if
1232/// there is no support for such conversion. Helper function of
1233/// UsualArithmeticConversions().
1234static bool unsupportedTypeConversion(const Sema &S, QualType LHSType,
1235 QualType RHSType) {
1236 /* No issue converting if at least one of the types is not a floating point
1237 type or the two types have the same rank.
1238 */
1239 if (!LHSType->isFloatingType() || !RHSType->isFloatingType() ||
1240 S.Context.getFloatingTypeOrder(LHSType, RHSType) == 0)
1241 return false;
1242
1243 assert(LHSType->isFloatingType() && RHSType->isFloatingType() &&(static_cast <bool> (LHSType->isFloatingType() &&
RHSType->isFloatingType() && "The remaining types must be floating point types."
) ? void (0) : __assert_fail ("LHSType->isFloatingType() && RHSType->isFloatingType() && \"The remaining types must be floating point types.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 1244, __extension__ __PRETTY_FUNCTION__))
1244 "The remaining types must be floating point types.")(static_cast <bool> (LHSType->isFloatingType() &&
RHSType->isFloatingType() && "The remaining types must be floating point types."
) ? void (0) : __assert_fail ("LHSType->isFloatingType() && RHSType->isFloatingType() && \"The remaining types must be floating point types.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 1244, __extension__ __PRETTY_FUNCTION__))
;
1245
1246 auto *LHSComplex = LHSType->getAs<ComplexType>();
1247 auto *RHSComplex = RHSType->getAs<ComplexType>();
1248
1249 QualType LHSElemType = LHSComplex ?
1250 LHSComplex->getElementType() : LHSType;
1251 QualType RHSElemType = RHSComplex ?
1252 RHSComplex->getElementType() : RHSType;
1253
1254 // No issue if the two types have the same representation
1255 if (&S.Context.getFloatTypeSemantics(LHSElemType) ==
1256 &S.Context.getFloatTypeSemantics(RHSElemType))
1257 return false;
1258
1259 bool Float128AndLongDouble = (LHSElemType == S.Context.Float128Ty &&
1260 RHSElemType == S.Context.LongDoubleTy);
1261 Float128AndLongDouble |= (LHSElemType == S.Context.LongDoubleTy &&
1262 RHSElemType == S.Context.Float128Ty);
1263
1264 // We've handled the situation where __float128 and long double have the same
1265 // representation. We allow all conversions for all possible long double types
1266 // except PPC's double double.
1267 return Float128AndLongDouble &&
1268 (&S.Context.getFloatTypeSemantics(S.Context.LongDoubleTy) ==
1269 &llvm::APFloat::PPCDoubleDouble());
1270}
1271
1272typedef ExprResult PerformCastFn(Sema &S, Expr *operand, QualType toType);
1273
1274namespace {
1275/// These helper callbacks are placed in an anonymous namespace to
1276/// permit their use as function template parameters.
1277ExprResult doIntegralCast(Sema &S, Expr *op, QualType toType) {
1278 return S.ImpCastExprToType(op, toType, CK_IntegralCast);
1279}
1280
1281ExprResult doComplexIntegralCast(Sema &S, Expr *op, QualType toType) {
1282 return S.ImpCastExprToType(op, S.Context.getComplexType(toType),
1283 CK_IntegralComplexCast);
1284}
1285}
1286
1287/// Handle integer arithmetic conversions. Helper function of
1288/// UsualArithmeticConversions()
1289template <PerformCastFn doLHSCast, PerformCastFn doRHSCast>
1290static QualType handleIntegerConversion(Sema &S, ExprResult &LHS,
1291 ExprResult &RHS, QualType LHSType,
1292 QualType RHSType, bool IsCompAssign) {
1293 // The rules for this case are in C99 6.3.1.8
1294 int order = S.Context.getIntegerTypeOrder(LHSType, RHSType);
1295 bool LHSSigned = LHSType->hasSignedIntegerRepresentation();
1296 bool RHSSigned = RHSType->hasSignedIntegerRepresentation();
1297 if (LHSSigned == RHSSigned) {
1298 // Same signedness; use the higher-ranked type
1299 if (order >= 0) {
1300 RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1301 return LHSType;
1302 } else if (!IsCompAssign)
1303 LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1304 return RHSType;
1305 } else if (order != (LHSSigned ? 1 : -1)) {
1306 // The unsigned type has greater than or equal rank to the
1307 // signed type, so use the unsigned type
1308 if (RHSSigned) {
1309 RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1310 return LHSType;
1311 } else if (!IsCompAssign)
1312 LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1313 return RHSType;
1314 } else if (S.Context.getIntWidth(LHSType) != S.Context.getIntWidth(RHSType)) {
1315 // The two types are different widths; if we are here, that
1316 // means the signed type is larger than the unsigned type, so
1317 // use the signed type.
1318 if (LHSSigned) {
1319 RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1320 return LHSType;
1321 } else if (!IsCompAssign)
1322 LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1323 return RHSType;
1324 } else {
1325 // The signed type is higher-ranked than the unsigned type,
1326 // but isn't actually any bigger (like unsigned int and long
1327 // on most 32-bit systems). Use the unsigned type corresponding
1328 // to the signed type.
1329 QualType result =
1330 S.Context.getCorrespondingUnsignedType(LHSSigned ? LHSType : RHSType);
1331 RHS = (*doRHSCast)(S, RHS.get(), result);
1332 if (!IsCompAssign)
1333 LHS = (*doLHSCast)(S, LHS.get(), result);
1334 return result;
1335 }
1336}
1337
1338/// Handle conversions with GCC complex int extension. Helper function
1339/// of UsualArithmeticConversions()
1340static QualType handleComplexIntConversion(Sema &S, ExprResult &LHS,
1341 ExprResult &RHS, QualType LHSType,
1342 QualType RHSType,
1343 bool IsCompAssign) {
1344 const ComplexType *LHSComplexInt = LHSType->getAsComplexIntegerType();
1345 const ComplexType *RHSComplexInt = RHSType->getAsComplexIntegerType();
1346
1347 if (LHSComplexInt && RHSComplexInt) {
1348 QualType LHSEltType = LHSComplexInt->getElementType();
1349 QualType RHSEltType = RHSComplexInt->getElementType();
1350 QualType ScalarType =
1351 handleIntegerConversion<doComplexIntegralCast, doComplexIntegralCast>
1352 (S, LHS, RHS, LHSEltType, RHSEltType, IsCompAssign);
1353
1354 return S.Context.getComplexType(ScalarType);
1355 }
1356
1357 if (LHSComplexInt) {
1358 QualType LHSEltType = LHSComplexInt->getElementType();
1359 QualType ScalarType =
1360 handleIntegerConversion<doComplexIntegralCast, doIntegralCast>
1361 (S, LHS, RHS, LHSEltType, RHSType, IsCompAssign);
1362 QualType ComplexType = S.Context.getComplexType(ScalarType);
1363 RHS = S.ImpCastExprToType(RHS.get(), ComplexType,
1364 CK_IntegralRealToComplex);
1365
1366 return ComplexType;
1367 }
1368
1369 assert(RHSComplexInt)(static_cast <bool> (RHSComplexInt) ? void (0) : __assert_fail
("RHSComplexInt", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 1369, __extension__ __PRETTY_FUNCTION__))
;
1370
1371 QualType RHSEltType = RHSComplexInt->getElementType();
1372 QualType ScalarType =
1373 handleIntegerConversion<doIntegralCast, doComplexIntegralCast>
1374 (S, LHS, RHS, LHSType, RHSEltType, IsCompAssign);
1375 QualType ComplexType = S.Context.getComplexType(ScalarType);
1376
1377 if (!IsCompAssign)
1378 LHS = S.ImpCastExprToType(LHS.get(), ComplexType,
1379 CK_IntegralRealToComplex);
1380 return ComplexType;
1381}
1382
1383/// Return the rank of a given fixed point or integer type. The value itself
1384/// doesn't matter, but the values must be increasing with proper increasing
1385/// rank as described in N1169 4.1.1.
1386static unsigned GetFixedPointRank(QualType Ty) {
1387 const auto *BTy = Ty->getAs<BuiltinType>();
1388 assert(BTy && "Expected a builtin type.")(static_cast <bool> (BTy && "Expected a builtin type."
) ? void (0) : __assert_fail ("BTy && \"Expected a builtin type.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 1388, __extension__ __PRETTY_FUNCTION__))
;
1389
1390 switch (BTy->getKind()) {
1391 case BuiltinType::ShortFract:
1392 case BuiltinType::UShortFract:
1393 case BuiltinType::SatShortFract:
1394 case BuiltinType::SatUShortFract:
1395 return 1;
1396 case BuiltinType::Fract:
1397 case BuiltinType::UFract:
1398 case BuiltinType::SatFract:
1399 case BuiltinType::SatUFract:
1400 return 2;
1401 case BuiltinType::LongFract:
1402 case BuiltinType::ULongFract:
1403 case BuiltinType::SatLongFract:
1404 case BuiltinType::SatULongFract:
1405 return 3;
1406 case BuiltinType::ShortAccum:
1407 case BuiltinType::UShortAccum:
1408 case BuiltinType::SatShortAccum:
1409 case BuiltinType::SatUShortAccum:
1410 return 4;
1411 case BuiltinType::Accum:
1412 case BuiltinType::UAccum:
1413 case BuiltinType::SatAccum:
1414 case BuiltinType::SatUAccum:
1415 return 5;
1416 case BuiltinType::LongAccum:
1417 case BuiltinType::ULongAccum:
1418 case BuiltinType::SatLongAccum:
1419 case BuiltinType::SatULongAccum:
1420 return 6;
1421 default:
1422 if (BTy->isInteger())
1423 return 0;
1424 llvm_unreachable("Unexpected fixed point or integer type")::llvm::llvm_unreachable_internal("Unexpected fixed point or integer type"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 1424)
;
1425 }
1426}
1427
1428/// handleFixedPointConversion - Fixed point operations between fixed
1429/// point types and integers or other fixed point types do not fall under
1430/// usual arithmetic conversion since these conversions could result in loss
1431/// of precsision (N1169 4.1.4). These operations should be calculated with
1432/// the full precision of their result type (N1169 4.1.6.2.1).
1433static QualType handleFixedPointConversion(Sema &S, QualType LHSTy,
1434 QualType RHSTy) {
1435 assert((LHSTy->isFixedPointType() || RHSTy->isFixedPointType()) &&(static_cast <bool> ((LHSTy->isFixedPointType() || RHSTy
->isFixedPointType()) && "Expected at least one of the operands to be a fixed point type"
) ? void (0) : __assert_fail ("(LHSTy->isFixedPointType() || RHSTy->isFixedPointType()) && \"Expected at least one of the operands to be a fixed point type\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 1436, __extension__ __PRETTY_FUNCTION__))
1436 "Expected at least one of the operands to be a fixed point type")(static_cast <bool> ((LHSTy->isFixedPointType() || RHSTy
->isFixedPointType()) && "Expected at least one of the operands to be a fixed point type"
) ? void (0) : __assert_fail ("(LHSTy->isFixedPointType() || RHSTy->isFixedPointType()) && \"Expected at least one of the operands to be a fixed point type\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 1436, __extension__ __PRETTY_FUNCTION__))
;
1437 assert((LHSTy->isFixedPointOrIntegerType() ||(static_cast <bool> ((LHSTy->isFixedPointOrIntegerType
() || RHSTy->isFixedPointOrIntegerType()) && "Special fixed point arithmetic operation conversions are only "
"applied to ints or other fixed point types") ? void (0) : __assert_fail
("(LHSTy->isFixedPointOrIntegerType() || RHSTy->isFixedPointOrIntegerType()) && \"Special fixed point arithmetic operation conversions are only \" \"applied to ints or other fixed point types\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 1440, __extension__ __PRETTY_FUNCTION__))
1438 RHSTy->isFixedPointOrIntegerType()) &&(static_cast <bool> ((LHSTy->isFixedPointOrIntegerType
() || RHSTy->isFixedPointOrIntegerType()) && "Special fixed point arithmetic operation conversions are only "
"applied to ints or other fixed point types") ? void (0) : __assert_fail
("(LHSTy->isFixedPointOrIntegerType() || RHSTy->isFixedPointOrIntegerType()) && \"Special fixed point arithmetic operation conversions are only \" \"applied to ints or other fixed point types\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 1440, __extension__ __PRETTY_FUNCTION__))
1439 "Special fixed point arithmetic operation conversions are only "(static_cast <bool> ((LHSTy->isFixedPointOrIntegerType
() || RHSTy->isFixedPointOrIntegerType()) && "Special fixed point arithmetic operation conversions are only "
"applied to ints or other fixed point types") ? void (0) : __assert_fail
("(LHSTy->isFixedPointOrIntegerType() || RHSTy->isFixedPointOrIntegerType()) && \"Special fixed point arithmetic operation conversions are only \" \"applied to ints or other fixed point types\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 1440, __extension__ __PRETTY_FUNCTION__))
1440 "applied to ints or other fixed point types")(static_cast <bool> ((LHSTy->isFixedPointOrIntegerType
() || RHSTy->isFixedPointOrIntegerType()) && "Special fixed point arithmetic operation conversions are only "
"applied to ints or other fixed point types") ? void (0) : __assert_fail
("(LHSTy->isFixedPointOrIntegerType() || RHSTy->isFixedPointOrIntegerType()) && \"Special fixed point arithmetic operation conversions are only \" \"applied to ints or other fixed point types\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 1440, __extension__ __PRETTY_FUNCTION__))
;
1441
1442 // If one operand has signed fixed-point type and the other operand has
1443 // unsigned fixed-point type, then the unsigned fixed-point operand is
1444 // converted to its corresponding signed fixed-point type and the resulting
1445 // type is the type of the converted operand.
1446 if (RHSTy->isSignedFixedPointType() && LHSTy->isUnsignedFixedPointType())
1447 LHSTy = S.Context.getCorrespondingSignedFixedPointType(LHSTy);
1448 else if (RHSTy->isUnsignedFixedPointType() && LHSTy->isSignedFixedPointType())
1449 RHSTy = S.Context.getCorrespondingSignedFixedPointType(RHSTy);
1450
1451 // The result type is the type with the highest rank, whereby a fixed-point
1452 // conversion rank is always greater than an integer conversion rank; if the
1453 // type of either of the operands is a saturating fixedpoint type, the result
1454 // type shall be the saturating fixed-point type corresponding to the type
1455 // with the highest rank; the resulting value is converted (taking into
1456 // account rounding and overflow) to the precision of the resulting type.
1457 // Same ranks between signed and unsigned types are resolved earlier, so both
1458 // types are either signed or both unsigned at this point.
1459 unsigned LHSTyRank = GetFixedPointRank(LHSTy);
1460 unsigned RHSTyRank = GetFixedPointRank(RHSTy);
1461
1462 QualType ResultTy = LHSTyRank > RHSTyRank ? LHSTy : RHSTy;
1463
1464 if (LHSTy->isSaturatedFixedPointType() || RHSTy->isSaturatedFixedPointType())
1465 ResultTy = S.Context.getCorrespondingSaturatedType(ResultTy);
1466
1467 return ResultTy;
1468}
1469
1470/// Check that the usual arithmetic conversions can be performed on this pair of
1471/// expressions that might be of enumeration type.
1472static void checkEnumArithmeticConversions(Sema &S, Expr *LHS, Expr *RHS,
1473 SourceLocation Loc,
1474 Sema::ArithConvKind ACK) {
1475 // C++2a [expr.arith.conv]p1:
1476 // If one operand is of enumeration type and the other operand is of a
1477 // different enumeration type or a floating-point type, this behavior is
1478 // deprecated ([depr.arith.conv.enum]).
1479 //
1480 // Warn on this in all language modes. Produce a deprecation warning in C++20.
1481 // Eventually we will presumably reject these cases (in C++23 onwards?).
1482 QualType L = LHS->getType(), R = RHS->getType();
1483 bool LEnum = L->isUnscopedEnumerationType(),
1484 REnum = R->isUnscopedEnumerationType();
1485 bool IsCompAssign = ACK == Sema::ACK_CompAssign;
1486 if ((!IsCompAssign && LEnum && R->isFloatingType()) ||
1487 (REnum && L->isFloatingType())) {
1488 S.Diag(Loc, S.getLangOpts().CPlusPlus20
1489 ? diag::warn_arith_conv_enum_float_cxx20
1490 : diag::warn_arith_conv_enum_float)
1491 << LHS->getSourceRange() << RHS->getSourceRange()
1492 << (int)ACK << LEnum << L << R;
1493 } else if (!IsCompAssign && LEnum && REnum &&
1494 !S.Context.hasSameUnqualifiedType(L, R)) {
1495 unsigned DiagID;
1496 if (!L->castAs<EnumType>()->getDecl()->hasNameForLinkage() ||
1497 !R->castAs<EnumType>()->getDecl()->hasNameForLinkage()) {
1498 // If either enumeration type is unnamed, it's less likely that the
1499 // user cares about this, but this situation is still deprecated in
1500 // C++2a. Use a different warning group.
1501 DiagID = S.getLangOpts().CPlusPlus20
1502 ? diag::warn_arith_conv_mixed_anon_enum_types_cxx20
1503 : diag::warn_arith_conv_mixed_anon_enum_types;
1504 } else if (ACK == Sema::ACK_Conditional) {
1505 // Conditional expressions are separated out because they have
1506 // historically had a different warning flag.
1507 DiagID = S.getLangOpts().CPlusPlus20
1508 ? diag::warn_conditional_mixed_enum_types_cxx20
1509 : diag::warn_conditional_mixed_enum_types;
1510 } else if (ACK == Sema::ACK_Comparison) {
1511 // Comparison expressions are separated out because they have
1512 // historically had a different warning flag.
1513 DiagID = S.getLangOpts().CPlusPlus20
1514 ? diag::warn_comparison_mixed_enum_types_cxx20
1515 : diag::warn_comparison_mixed_enum_types;
1516 } else {
1517 DiagID = S.getLangOpts().CPlusPlus20
1518 ? diag::warn_arith_conv_mixed_enum_types_cxx20
1519 : diag::warn_arith_conv_mixed_enum_types;
1520 }
1521 S.Diag(Loc, DiagID) << LHS->getSourceRange() << RHS->getSourceRange()
1522 << (int)ACK << L << R;
1523 }
1524}
1525
1526/// UsualArithmeticConversions - Performs various conversions that are common to
1527/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
1528/// routine returns the first non-arithmetic type found. The client is
1529/// responsible for emitting appropriate error diagnostics.
1530QualType Sema::UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS,
1531 SourceLocation Loc,
1532 ArithConvKind ACK) {
1533 checkEnumArithmeticConversions(*this, LHS.get(), RHS.get(), Loc, ACK);
1534
1535 if (ACK != ACK_CompAssign) {
1536 LHS = UsualUnaryConversions(LHS.get());
1537 if (LHS.isInvalid())
1538 return QualType();
1539 }
1540
1541 RHS = UsualUnaryConversions(RHS.get());
1542 if (RHS.isInvalid())
1543 return QualType();
1544
1545 // For conversion purposes, we ignore any qualifiers.
1546 // For example, "const float" and "float" are equivalent.
1547 QualType LHSType =
1548 Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
1549 QualType RHSType =
1550 Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
1551
1552 // For conversion purposes, we ignore any atomic qualifier on the LHS.
1553 if (const AtomicType *AtomicLHS = LHSType->getAs<AtomicType>())
1554 LHSType = AtomicLHS->getValueType();
1555
1556 // If both types are identical, no conversion is needed.
1557 if (LHSType == RHSType)
1558 return LHSType;
1559
1560 // If either side is a non-arithmetic type (e.g. a pointer), we are done.
1561 // The caller can deal with this (e.g. pointer + int).
1562 if (!LHSType->isArithmeticType() || !RHSType->isArithmeticType())
1563 return QualType();
1564
1565 // Apply unary and bitfield promotions to the LHS's type.
1566 QualType LHSUnpromotedType = LHSType;
1567 if (LHSType->isPromotableIntegerType())
1568 LHSType = Context.getPromotedIntegerType(LHSType);
1569 QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(LHS.get());
1570 if (!LHSBitfieldPromoteTy.isNull())
1571 LHSType = LHSBitfieldPromoteTy;
1572 if (LHSType != LHSUnpromotedType && ACK != ACK_CompAssign)
1573 LHS = ImpCastExprToType(LHS.get(), LHSType, CK_IntegralCast);
1574
1575 // If both types are identical, no conversion is needed.
1576 if (LHSType == RHSType)
1577 return LHSType;
1578
1579 // At this point, we have two different arithmetic types.
1580
1581 // Diagnose attempts to convert between __float128 and long double where
1582 // such conversions currently can't be handled.
1583 if (unsupportedTypeConversion(*this, LHSType, RHSType))
1584 return QualType();
1585
1586 // Handle complex types first (C99 6.3.1.8p1).
1587 if (LHSType->isComplexType() || RHSType->isComplexType())
1588 return handleComplexFloatConversion(*this, LHS, RHS, LHSType, RHSType,
1589 ACK == ACK_CompAssign);
1590
1591 // Now handle "real" floating types (i.e. float, double, long double).
1592 if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
1593 return handleFloatConversion(*this, LHS, RHS, LHSType, RHSType,
1594 ACK == ACK_CompAssign);
1595
1596 // Handle GCC complex int extension.
1597 if (LHSType->isComplexIntegerType() || RHSType->isComplexIntegerType())
1598 return handleComplexIntConversion(*this, LHS, RHS, LHSType, RHSType,
1599 ACK == ACK_CompAssign);
1600
1601 if (LHSType->isFixedPointType() || RHSType->isFixedPointType())
1602 return handleFixedPointConversion(*this, LHSType, RHSType);
1603
1604 // Finally, we have two differing integer types.
1605 return handleIntegerConversion<doIntegralCast, doIntegralCast>
1606 (*this, LHS, RHS, LHSType, RHSType, ACK == ACK_CompAssign);
1607}
1608
1609//===----------------------------------------------------------------------===//
1610// Semantic Analysis for various Expression Types
1611//===----------------------------------------------------------------------===//
1612
1613
1614ExprResult
1615Sema::ActOnGenericSelectionExpr(SourceLocation KeyLoc,
1616 SourceLocation DefaultLoc,
1617 SourceLocation RParenLoc,
1618 Expr *ControllingExpr,
1619 ArrayRef<ParsedType> ArgTypes,
1620 ArrayRef<Expr *> ArgExprs) {
1621 unsigned NumAssocs = ArgTypes.size();
1622 assert(NumAssocs == ArgExprs.size())(static_cast <bool> (NumAssocs == ArgExprs.size()) ? void
(0) : __assert_fail ("NumAssocs == ArgExprs.size()", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 1622, __extension__ __PRETTY_FUNCTION__))
;
1623
1624 TypeSourceInfo **Types = new TypeSourceInfo*[NumAssocs];
1625 for (unsigned i = 0; i < NumAssocs; ++i) {
1626 if (ArgTypes[i])
1627 (void) GetTypeFromParser(ArgTypes[i], &Types[i]);
1628 else
1629 Types[i] = nullptr;
1630 }
1631
1632 ExprResult ER = CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc,
1633 ControllingExpr,
1634 llvm::makeArrayRef(Types, NumAssocs),
1635 ArgExprs);
1636 delete [] Types;
1637 return ER;
1638}
1639
1640ExprResult
1641Sema::CreateGenericSelectionExpr(SourceLocation KeyLoc,
1642 SourceLocation DefaultLoc,
1643 SourceLocation RParenLoc,
1644 Expr *ControllingExpr,
1645 ArrayRef<TypeSourceInfo *> Types,
1646 ArrayRef<Expr *> Exprs) {
1647 unsigned NumAssocs = Types.size();
1648 assert(NumAssocs == Exprs.size())(static_cast <bool> (NumAssocs == Exprs.size()) ? void (
0) : __assert_fail ("NumAssocs == Exprs.size()", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 1648, __extension__ __PRETTY_FUNCTION__))
;
1649
1650 // Decay and strip qualifiers for the controlling expression type, and handle
1651 // placeholder type replacement. See committee discussion from WG14 DR423.
1652 {
1653 EnterExpressionEvaluationContext Unevaluated(
1654 *this, Sema::ExpressionEvaluationContext::Unevaluated);
1655 ExprResult R = DefaultFunctionArrayLvalueConversion(ControllingExpr);
1656 if (R.isInvalid())
1657 return ExprError();
1658 ControllingExpr = R.get();
1659 }
1660
1661 // The controlling expression is an unevaluated operand, so side effects are
1662 // likely unintended.
1663 if (!inTemplateInstantiation() &&
1664 ControllingExpr->HasSideEffects(Context, false))
1665 Diag(ControllingExpr->getExprLoc(),
1666 diag::warn_side_effects_unevaluated_context);
1667
1668 bool TypeErrorFound = false,
1669 IsResultDependent = ControllingExpr->isTypeDependent(),
1670 ContainsUnexpandedParameterPack
1671 = ControllingExpr->containsUnexpandedParameterPack();
1672
1673 for (unsigned i = 0; i < NumAssocs; ++i) {
1674 if (Exprs[i]->containsUnexpandedParameterPack())
1675 ContainsUnexpandedParameterPack = true;
1676
1677 if (Types[i]) {
1678 if (Types[i]->getType()->containsUnexpandedParameterPack())
1679 ContainsUnexpandedParameterPack = true;
1680
1681 if (Types[i]->getType()->isDependentType()) {
1682 IsResultDependent = true;
1683 } else {
1684 // C11 6.5.1.1p2 "The type name in a generic association shall specify a
1685 // complete object type other than a variably modified type."
1686 unsigned D = 0;
1687 if (Types[i]->getType()->isIncompleteType())
1688 D = diag::err_assoc_type_incomplete;
1689 else if (!Types[i]->getType()->isObjectType())
1690 D = diag::err_assoc_type_nonobject;
1691 else if (Types[i]->getType()->isVariablyModifiedType())
1692 D = diag::err_assoc_type_variably_modified;
1693
1694 if (D != 0) {
1695 Diag(Types[i]->getTypeLoc().getBeginLoc(), D)
1696 << Types[i]->getTypeLoc().getSourceRange()
1697 << Types[i]->getType();
1698 TypeErrorFound = true;
1699 }
1700
1701 // C11 6.5.1.1p2 "No two generic associations in the same generic
1702 // selection shall specify compatible types."
1703 for (unsigned j = i+1; j < NumAssocs; ++j)
1704 if (Types[j] && !Types[j]->getType()->isDependentType() &&
1705 Context.typesAreCompatible(Types[i]->getType(),
1706 Types[j]->getType())) {
1707 Diag(Types[j]->getTypeLoc().getBeginLoc(),
1708 diag::err_assoc_compatible_types)
1709 << Types[j]->getTypeLoc().getSourceRange()
1710 << Types[j]->getType()
1711 << Types[i]->getType();
1712 Diag(Types[i]->getTypeLoc().getBeginLoc(),
1713 diag::note_compat_assoc)
1714 << Types[i]->getTypeLoc().getSourceRange()
1715 << Types[i]->getType();
1716 TypeErrorFound = true;
1717 }
1718 }
1719 }
1720 }
1721 if (TypeErrorFound)
1722 return ExprError();
1723
1724 // If we determined that the generic selection is result-dependent, don't
1725 // try to compute the result expression.
1726 if (IsResultDependent)
1727 return GenericSelectionExpr::Create(Context, KeyLoc, ControllingExpr, Types,
1728 Exprs, DefaultLoc, RParenLoc,
1729 ContainsUnexpandedParameterPack);
1730
1731 SmallVector<unsigned, 1> CompatIndices;
1732 unsigned DefaultIndex = -1U;
1733 for (unsigned i = 0; i < NumAssocs; ++i) {
1734 if (!Types[i])
1735 DefaultIndex = i;
1736 else if (Context.typesAreCompatible(ControllingExpr->getType(),
1737 Types[i]->getType()))
1738 CompatIndices.push_back(i);
1739 }
1740
1741 // C11 6.5.1.1p2 "The controlling expression of a generic selection shall have
1742 // type compatible with at most one of the types named in its generic
1743 // association list."
1744 if (CompatIndices.size() > 1) {
1745 // We strip parens here because the controlling expression is typically
1746 // parenthesized in macro definitions.
1747 ControllingExpr = ControllingExpr->IgnoreParens();
1748 Diag(ControllingExpr->getBeginLoc(), diag::err_generic_sel_multi_match)
1749 << ControllingExpr->getSourceRange() << ControllingExpr->getType()
1750 << (unsigned)CompatIndices.size();
1751 for (unsigned I : CompatIndices) {
1752 Diag(Types[I]->getTypeLoc().getBeginLoc(),
1753 diag::note_compat_assoc)
1754 << Types[I]->getTypeLoc().getSourceRange()
1755 << Types[I]->getType();
1756 }
1757 return ExprError();
1758 }
1759
1760 // C11 6.5.1.1p2 "If a generic selection has no default generic association,
1761 // its controlling expression shall have type compatible with exactly one of
1762 // the types named in its generic association list."
1763 if (DefaultIndex == -1U && CompatIndices.size() == 0) {
1764 // We strip parens here because the controlling expression is typically
1765 // parenthesized in macro definitions.
1766 ControllingExpr = ControllingExpr->IgnoreParens();
1767 Diag(ControllingExpr->getBeginLoc(), diag::err_generic_sel_no_match)
1768 << ControllingExpr->getSourceRange() << ControllingExpr->getType();
1769 return ExprError();
1770 }
1771
1772 // C11 6.5.1.1p3 "If a generic selection has a generic association with a
1773 // type name that is compatible with the type of the controlling expression,
1774 // then the result expression of the generic selection is the expression
1775 // in that generic association. Otherwise, the result expression of the
1776 // generic selection is the expression in the default generic association."
1777 unsigned ResultIndex =
1778 CompatIndices.size() ? CompatIndices[0] : DefaultIndex;
1779
1780 return GenericSelectionExpr::Create(
1781 Context, KeyLoc, ControllingExpr, Types, Exprs, DefaultLoc, RParenLoc,
1782 ContainsUnexpandedParameterPack, ResultIndex);
1783}
1784
1785/// getUDSuffixLoc - Create a SourceLocation for a ud-suffix, given the
1786/// location of the token and the offset of the ud-suffix within it.
1787static SourceLocation getUDSuffixLoc(Sema &S, SourceLocation TokLoc,
1788 unsigned Offset) {
1789 return Lexer::AdvanceToTokenCharacter(TokLoc, Offset, S.getSourceManager(),
1790 S.getLangOpts());
1791}
1792
1793/// BuildCookedLiteralOperatorCall - A user-defined literal was found. Look up
1794/// the corresponding cooked (non-raw) literal operator, and build a call to it.
1795static ExprResult BuildCookedLiteralOperatorCall(Sema &S, Scope *Scope,
1796 IdentifierInfo *UDSuffix,
1797 SourceLocation UDSuffixLoc,
1798 ArrayRef<Expr*> Args,
1799 SourceLocation LitEndLoc) {
1800 assert(Args.size() <= 2 && "too many arguments for literal operator")(static_cast <bool> (Args.size() <= 2 && "too many arguments for literal operator"
) ? void (0) : __assert_fail ("Args.size() <= 2 && \"too many arguments for literal operator\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 1800, __extension__ __PRETTY_FUNCTION__))
;
1801
1802 QualType ArgTy[2];
1803 for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
1804 ArgTy[ArgIdx] = Args[ArgIdx]->getType();
1805 if (ArgTy[ArgIdx]->isArrayType())
1806 ArgTy[ArgIdx] = S.Context.getArrayDecayedType(ArgTy[ArgIdx]);
1807 }
1808
1809 DeclarationName OpName =
1810 S.Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
1811 DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
1812 OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
1813
1814 LookupResult R(S, OpName, UDSuffixLoc, Sema::LookupOrdinaryName);
1815 if (S.LookupLiteralOperator(Scope, R, llvm::makeArrayRef(ArgTy, Args.size()),
1816 /*AllowRaw*/ false, /*AllowTemplate*/ false,
1817 /*AllowStringTemplatePack*/ false,
1818 /*DiagnoseMissing*/ true) == Sema::LOLR_Error)
1819 return ExprError();
1820
1821 return S.BuildLiteralOperatorCall(R, OpNameInfo, Args, LitEndLoc);
1822}
1823
1824/// ActOnStringLiteral - The specified tokens were lexed as pasted string
1825/// fragments (e.g. "foo" "bar" L"baz"). The result string has to handle string
1826/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
1827/// multiple tokens. However, the common case is that StringToks points to one
1828/// string.
1829///
1830ExprResult
1831Sema::ActOnStringLiteral(ArrayRef<Token> StringToks, Scope *UDLScope) {
1832 assert(!StringToks.empty() && "Must have at least one string!")(static_cast <bool> (!StringToks.empty() && "Must have at least one string!"
) ? void (0) : __assert_fail ("!StringToks.empty() && \"Must have at least one string!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 1832, __extension__ __PRETTY_FUNCTION__))
;
1833
1834 StringLiteralParser Literal(StringToks, PP);
1835 if (Literal.hadError)
1836 return ExprError();
1837
1838 SmallVector<SourceLocation, 4> StringTokLocs;
1839 for (const Token &Tok : StringToks)
1840 StringTokLocs.push_back(Tok.getLocation());
1841
1842 QualType CharTy = Context.CharTy;
1843 StringLiteral::StringKind Kind = StringLiteral::Ascii;
1844 if (Literal.isWide()) {
1845 CharTy = Context.getWideCharType();
1846 Kind = StringLiteral::Wide;
1847 } else if (Literal.isUTF8()) {
1848 if (getLangOpts().Char8)
1849 CharTy = Context.Char8Ty;
1850 Kind = StringLiteral::UTF8;
1851 } else if (Literal.isUTF16()) {
1852 CharTy = Context.Char16Ty;
1853 Kind = StringLiteral::UTF16;
1854 } else if (Literal.isUTF32()) {
1855 CharTy = Context.Char32Ty;
1856 Kind = StringLiteral::UTF32;
1857 } else if (Literal.isPascal()) {
1858 CharTy = Context.UnsignedCharTy;
1859 }
1860
1861 // Warn on initializing an array of char from a u8 string literal; this
1862 // becomes ill-formed in C++2a.
1863 if (getLangOpts().CPlusPlus && !getLangOpts().CPlusPlus20 &&
1864 !getLangOpts().Char8 && Kind == StringLiteral::UTF8) {
1865 Diag(StringTokLocs.front(), diag::warn_cxx20_compat_utf8_string);
1866
1867 // Create removals for all 'u8' prefixes in the string literal(s). This
1868 // ensures C++2a compatibility (but may change the program behavior when
1869 // built by non-Clang compilers for which the execution character set is
1870 // not always UTF-8).
1871 auto RemovalDiag = PDiag(diag::note_cxx20_compat_utf8_string_remove_u8);
1872 SourceLocation RemovalDiagLoc;
1873 for (const Token &Tok : StringToks) {
1874 if (Tok.getKind() == tok::utf8_string_literal) {
1875 if (RemovalDiagLoc.isInvalid())
1876 RemovalDiagLoc = Tok.getLocation();
1877 RemovalDiag << FixItHint::CreateRemoval(CharSourceRange::getCharRange(
1878 Tok.getLocation(),
1879 Lexer::AdvanceToTokenCharacter(Tok.getLocation(), 2,
1880 getSourceManager(), getLangOpts())));
1881 }
1882 }
1883 Diag(RemovalDiagLoc, RemovalDiag);
1884 }
1885
1886 QualType StrTy =
1887 Context.getStringLiteralArrayType(CharTy, Literal.GetNumStringChars());
1888
1889 // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
1890 StringLiteral *Lit = StringLiteral::Create(Context, Literal.GetString(),
1891 Kind, Literal.Pascal, StrTy,
1892 &StringTokLocs[0],
1893 StringTokLocs.size());
1894 if (Literal.getUDSuffix().empty())
1895 return Lit;
1896
1897 // We're building a user-defined literal.
1898 IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
1899 SourceLocation UDSuffixLoc =
1900 getUDSuffixLoc(*this, StringTokLocs[Literal.getUDSuffixToken()],
1901 Literal.getUDSuffixOffset());
1902
1903 // Make sure we're allowed user-defined literals here.
1904 if (!UDLScope)
1905 return ExprError(Diag(UDSuffixLoc, diag::err_invalid_string_udl));
1906
1907 // C++11 [lex.ext]p5: The literal L is treated as a call of the form
1908 // operator "" X (str, len)
1909 QualType SizeType = Context.getSizeType();
1910
1911 DeclarationName OpName =
1912 Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
1913 DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
1914 OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
1915
1916 QualType ArgTy[] = {
1917 Context.getArrayDecayedType(StrTy), SizeType
1918 };
1919
1920 LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
1921 switch (LookupLiteralOperator(UDLScope, R, ArgTy,
1922 /*AllowRaw*/ false, /*AllowTemplate*/ true,
1923 /*AllowStringTemplatePack*/ true,
1924 /*DiagnoseMissing*/ true, Lit)) {
1925
1926 case LOLR_Cooked: {
1927 llvm::APInt Len(Context.getIntWidth(SizeType), Literal.GetNumStringChars());
1928 IntegerLiteral *LenArg = IntegerLiteral::Create(Context, Len, SizeType,
1929 StringTokLocs[0]);
1930 Expr *Args[] = { Lit, LenArg };
1931
1932 return BuildLiteralOperatorCall(R, OpNameInfo, Args, StringTokLocs.back());
1933 }
1934
1935 case LOLR_Template: {
1936 TemplateArgumentListInfo ExplicitArgs;
1937 TemplateArgument Arg(Lit);
1938 TemplateArgumentLocInfo ArgInfo(Lit);
1939 ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
1940 return BuildLiteralOperatorCall(R, OpNameInfo, None, StringTokLocs.back(),
1941 &ExplicitArgs);
1942 }
1943
1944 case LOLR_StringTemplatePack: {
1945 TemplateArgumentListInfo ExplicitArgs;
1946
1947 unsigned CharBits = Context.getIntWidth(CharTy);
1948 bool CharIsUnsigned = CharTy->isUnsignedIntegerType();
1949 llvm::APSInt Value(CharBits, CharIsUnsigned);
1950
1951 TemplateArgument TypeArg(CharTy);
1952 TemplateArgumentLocInfo TypeArgInfo(Context.getTrivialTypeSourceInfo(CharTy));
1953 ExplicitArgs.addArgument(TemplateArgumentLoc(TypeArg, TypeArgInfo));
1954
1955 for (unsigned I = 0, N = Lit->getLength(); I != N; ++I) {
1956 Value = Lit->getCodeUnit(I);
1957 TemplateArgument Arg(Context, Value, CharTy);
1958 TemplateArgumentLocInfo ArgInfo;
1959 ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
1960 }
1961 return BuildLiteralOperatorCall(R, OpNameInfo, None, StringTokLocs.back(),
1962 &ExplicitArgs);
1963 }
1964 case LOLR_Raw:
1965 case LOLR_ErrorNoDiagnostic:
1966 llvm_unreachable("unexpected literal operator lookup result")::llvm::llvm_unreachable_internal("unexpected literal operator lookup result"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 1966)
;
1967 case LOLR_Error:
1968 return ExprError();
1969 }
1970 llvm_unreachable("unexpected literal operator lookup result")::llvm::llvm_unreachable_internal("unexpected literal operator lookup result"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 1970)
;
1971}
1972
1973DeclRefExpr *
1974Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
1975 SourceLocation Loc,
1976 const CXXScopeSpec *SS) {
1977 DeclarationNameInfo NameInfo(D->getDeclName(), Loc);
1978 return BuildDeclRefExpr(D, Ty, VK, NameInfo, SS);
1979}
1980
1981DeclRefExpr *
1982Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
1983 const DeclarationNameInfo &NameInfo,
1984 const CXXScopeSpec *SS, NamedDecl *FoundD,
1985 SourceLocation TemplateKWLoc,
1986 const TemplateArgumentListInfo *TemplateArgs) {
1987 NestedNameSpecifierLoc NNS =
1988 SS ? SS->getWithLocInContext(Context) : NestedNameSpecifierLoc();
1989 return BuildDeclRefExpr(D, Ty, VK, NameInfo, NNS, FoundD, TemplateKWLoc,
1990 TemplateArgs);
1991}
1992
1993// CUDA/HIP: Check whether a captured reference variable is referencing a
1994// host variable in a device or host device lambda.
1995static bool isCapturingReferenceToHostVarInCUDADeviceLambda(const Sema &S,
1996 VarDecl *VD) {
1997 if (!S.getLangOpts().CUDA || !VD->hasInit())
1998 return false;
1999 assert(VD->getType()->isReferenceType())(static_cast <bool> (VD->getType()->isReferenceType
()) ? void (0) : __assert_fail ("VD->getType()->isReferenceType()"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 1999, __extension__ __PRETTY_FUNCTION__))
;
2000
2001 // Check whether the reference variable is referencing a host variable.
2002 auto *DRE = dyn_cast<DeclRefExpr>(VD->getInit());
2003 if (!DRE)
2004 return false;
2005 auto *Referee = dyn_cast<VarDecl>(DRE->getDecl());
2006 if (!Referee || !Referee->hasGlobalStorage() ||
2007 Referee->hasAttr<CUDADeviceAttr>())
2008 return false;
2009
2010 // Check whether the current function is a device or host device lambda.
2011 // Check whether the reference variable is a capture by getDeclContext()
2012 // since refersToEnclosingVariableOrCapture() is not ready at this point.
2013 auto *MD = dyn_cast_or_null<CXXMethodDecl>(S.CurContext);
2014 if (MD && MD->getParent()->isLambda() &&
2015 MD->getOverloadedOperator() == OO_Call && MD->hasAttr<CUDADeviceAttr>() &&
2016 VD->getDeclContext() != MD)
2017 return true;
2018
2019 return false;
2020}
2021
2022NonOdrUseReason Sema::getNonOdrUseReasonInCurrentContext(ValueDecl *D) {
2023 // A declaration named in an unevaluated operand never constitutes an odr-use.
2024 if (isUnevaluatedContext())
2025 return NOUR_Unevaluated;
2026
2027 // C++2a [basic.def.odr]p4:
2028 // A variable x whose name appears as a potentially-evaluated expression e
2029 // is odr-used by e unless [...] x is a reference that is usable in
2030 // constant expressions.
2031 // CUDA/HIP:
2032 // If a reference variable referencing a host variable is captured in a
2033 // device or host device lambda, the value of the referee must be copied
2034 // to the capture and the reference variable must be treated as odr-use
2035 // since the value of the referee is not known at compile time and must
2036 // be loaded from the captured.
2037 if (VarDecl *VD = dyn_cast<VarDecl>(D)) {
2038 if (VD->getType()->isReferenceType() &&
2039 !(getLangOpts().OpenMP && isOpenMPCapturedDecl(D)) &&
2040 !isCapturingReferenceToHostVarInCUDADeviceLambda(*this, VD) &&
2041 VD->isUsableInConstantExpressions(Context))
2042 return NOUR_Constant;
2043 }
2044
2045 // All remaining non-variable cases constitute an odr-use. For variables, we
2046 // need to wait and see how the expression is used.
2047 return NOUR_None;
2048}
2049
2050/// BuildDeclRefExpr - Build an expression that references a
2051/// declaration that does not require a closure capture.
2052DeclRefExpr *
2053Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
2054 const DeclarationNameInfo &NameInfo,
2055 NestedNameSpecifierLoc NNS, NamedDecl *FoundD,
2056 SourceLocation TemplateKWLoc,
2057 const TemplateArgumentListInfo *TemplateArgs) {
2058 bool RefersToCapturedVariable =
2059 isa<VarDecl>(D) &&
2060 NeedToCaptureVariable(cast<VarDecl>(D), NameInfo.getLoc());
2061
2062 DeclRefExpr *E = DeclRefExpr::Create(
2063 Context, NNS, TemplateKWLoc, D, RefersToCapturedVariable, NameInfo, Ty,
2064 VK, FoundD, TemplateArgs, getNonOdrUseReasonInCurrentContext(D));
2065 MarkDeclRefReferenced(E);
2066
2067 // C++ [except.spec]p17:
2068 // An exception-specification is considered to be needed when:
2069 // - in an expression, the function is the unique lookup result or
2070 // the selected member of a set of overloaded functions.
2071 //
2072 // We delay doing this until after we've built the function reference and
2073 // marked it as used so that:
2074 // a) if the function is defaulted, we get errors from defining it before /
2075 // instead of errors from computing its exception specification, and
2076 // b) if the function is a defaulted comparison, we can use the body we
2077 // build when defining it as input to the exception specification
2078 // computation rather than computing a new body.
2079 if (auto *FPT = Ty->getAs<FunctionProtoType>()) {
2080 if (isUnresolvedExceptionSpec(FPT->getExceptionSpecType())) {
2081 if (auto *NewFPT = ResolveExceptionSpec(NameInfo.getLoc(), FPT))
2082 E->setType(Context.getQualifiedType(NewFPT, Ty.getQualifiers()));
2083 }
2084 }
2085
2086 if (getLangOpts().ObjCWeak && isa<VarDecl>(D) &&
2087 Ty.getObjCLifetime() == Qualifiers::OCL_Weak && !isUnevaluatedContext() &&
2088 !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, E->getBeginLoc()))
2089 getCurFunction()->recordUseOfWeak(E);
2090
2091 FieldDecl *FD = dyn_cast<FieldDecl>(D);
2092 if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(D))
2093 FD = IFD->getAnonField();
2094 if (FD) {
2095 UnusedPrivateFields.remove(FD);
2096 // Just in case we're building an illegal pointer-to-member.
2097 if (FD->isBitField())
2098 E->setObjectKind(OK_BitField);
2099 }
2100
2101 // C++ [expr.prim]/8: The expression [...] is a bit-field if the identifier
2102 // designates a bit-field.
2103 if (auto *BD = dyn_cast<BindingDecl>(D))
2104 if (auto *BE = BD->getBinding())
2105 E->setObjectKind(BE->getObjectKind());
2106
2107 return E;
2108}
2109
2110/// Decomposes the given name into a DeclarationNameInfo, its location, and
2111/// possibly a list of template arguments.
2112///
2113/// If this produces template arguments, it is permitted to call
2114/// DecomposeTemplateName.
2115///
2116/// This actually loses a lot of source location information for
2117/// non-standard name kinds; we should consider preserving that in
2118/// some way.
2119void
2120Sema::DecomposeUnqualifiedId(const UnqualifiedId &Id,
2121 TemplateArgumentListInfo &Buffer,
2122 DeclarationNameInfo &NameInfo,
2123 const TemplateArgumentListInfo *&TemplateArgs) {
2124 if (Id.getKind() == UnqualifiedIdKind::IK_TemplateId) {
2125 Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
2126 Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
2127
2128 ASTTemplateArgsPtr TemplateArgsPtr(Id.TemplateId->getTemplateArgs(),
2129 Id.TemplateId->NumArgs);
2130 translateTemplateArguments(TemplateArgsPtr, Buffer);
2131
2132 TemplateName TName = Id.TemplateId->Template.get();
2133 SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc;
2134 NameInfo = Context.getNameForTemplate(TName, TNameLoc);
2135 TemplateArgs = &Buffer;
2136 } else {
2137 NameInfo = GetNameFromUnqualifiedId(Id);
2138 TemplateArgs = nullptr;
2139 }
2140}
2141
2142static void emitEmptyLookupTypoDiagnostic(
2143 const TypoCorrection &TC, Sema &SemaRef, const CXXScopeSpec &SS,
2144 DeclarationName Typo, SourceLocation TypoLoc, ArrayRef<Expr *> Args,
2145 unsigned DiagnosticID, unsigned DiagnosticSuggestID) {
2146 DeclContext *Ctx =
2147 SS.isEmpty() ? nullptr : SemaRef.computeDeclContext(SS, false);
2148 if (!TC) {
2149 // Emit a special diagnostic for failed member lookups.
2150 // FIXME: computing the declaration context might fail here (?)
2151 if (Ctx)
2152 SemaRef.Diag(TypoLoc, diag::err_no_member) << Typo << Ctx
2153 << SS.getRange();
2154 else
2155 SemaRef.Diag(TypoLoc, DiagnosticID) << Typo;
2156 return;
2157 }
2158
2159 std::string CorrectedStr = TC.getAsString(SemaRef.getLangOpts());
2160 bool DroppedSpecifier =
2161 TC.WillReplaceSpecifier() && Typo.getAsString() == CorrectedStr;
2162 unsigned NoteID = TC.getCorrectionDeclAs<ImplicitParamDecl>()
2163 ? diag::note_implicit_param_decl
2164 : diag::note_previous_decl;
2165 if (!Ctx)
2166 SemaRef.diagnoseTypo(TC, SemaRef.PDiag(DiagnosticSuggestID) << Typo,
2167 SemaRef.PDiag(NoteID));
2168 else
2169 SemaRef.diagnoseTypo(TC, SemaRef.PDiag(diag::err_no_member_suggest)
2170 << Typo << Ctx << DroppedSpecifier
2171 << SS.getRange(),
2172 SemaRef.PDiag(NoteID));
2173}
2174
2175/// Diagnose a lookup that found results in an enclosing class during error
2176/// recovery. This usually indicates that the results were found in a dependent
2177/// base class that could not be searched as part of a template definition.
2178/// Always issues a diagnostic (though this may be only a warning in MS
2179/// compatibility mode).
2180///
2181/// Return \c true if the error is unrecoverable, or \c false if the caller
2182/// should attempt to recover using these lookup results.
2183bool Sema::DiagnoseDependentMemberLookup(LookupResult &R) {
2184 // During a default argument instantiation the CurContext points
2185 // to a CXXMethodDecl; but we can't apply a this-> fixit inside a
2186 // function parameter list, hence add an explicit check.
2187 bool isDefaultArgument =
2188 !CodeSynthesisContexts.empty() &&
2189 CodeSynthesisContexts.back().Kind ==
2190 CodeSynthesisContext::DefaultFunctionArgumentInstantiation;
2191 CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
2192 bool isInstance = CurMethod && CurMethod->isInstance() &&
2193 R.getNamingClass() == CurMethod->getParent() &&
2194 !isDefaultArgument;
2195
2196 // There are two ways we can find a class-scope declaration during template
2197 // instantiation that we did not find in the template definition: if it is a
2198 // member of a dependent base class, or if it is declared after the point of
2199 // use in the same class. Distinguish these by comparing the class in which
2200 // the member was found to the naming class of the lookup.
2201 unsigned DiagID = diag::err_found_in_dependent_base;
2202 unsigned NoteID = diag::note_member_declared_at;
2203 if (R.getRepresentativeDecl()->getDeclContext()->Equals(R.getNamingClass())) {
2204 DiagID = getLangOpts().MSVCCompat ? diag::ext_found_later_in_class
2205 : diag::err_found_later_in_class;
2206 } else if (getLangOpts().MSVCCompat) {
2207 DiagID = diag::ext_found_in_dependent_base;
2208 NoteID = diag::note_dependent_member_use;
2209 }
2210
2211 if (isInstance) {
2212 // Give a code modification hint to insert 'this->'.
2213 Diag(R.getNameLoc(), DiagID)
2214 << R.getLookupName()
2215 << FixItHint::CreateInsertion(R.getNameLoc(), "this->");
2216 CheckCXXThisCapture(R.getNameLoc());
2217 } else {
2218 // FIXME: Add a FixItHint to insert 'Base::' or 'Derived::' (assuming
2219 // they're not shadowed).
2220 Diag(R.getNameLoc(), DiagID) << R.getLookupName();
2221 }
2222
2223 for (NamedDecl *D : R)
2224 Diag(D->getLocation(), NoteID);
2225
2226 // Return true if we are inside a default argument instantiation
2227 // and the found name refers to an instance member function, otherwise
2228 // the caller will try to create an implicit member call and this is wrong
2229 // for default arguments.
2230 //
2231 // FIXME: Is this special case necessary? We could allow the caller to
2232 // diagnose this.
2233 if (isDefaultArgument && ((*R.begin())->isCXXInstanceMember())) {
2234 Diag(R.getNameLoc(), diag::err_member_call_without_object);
2235 return true;
2236 }
2237
2238 // Tell the callee to try to recover.
2239 return false;
2240}
2241
2242/// Diagnose an empty lookup.
2243///
2244/// \return false if new lookup candidates were found
2245bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
2246 CorrectionCandidateCallback &CCC,
2247 TemplateArgumentListInfo *ExplicitTemplateArgs,
2248 ArrayRef<Expr *> Args, TypoExpr **Out) {
2249 DeclarationName Name = R.getLookupName();
2250
2251 unsigned diagnostic = diag::err_undeclared_var_use;
2252 unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
2253 if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
2254 Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
2255 Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
2256 diagnostic = diag::err_undeclared_use;
2257 diagnostic_suggest = diag::err_undeclared_use_suggest;
2258 }
2259
2260 // If the original lookup was an unqualified lookup, fake an
2261 // unqualified lookup. This is useful when (for example) the
2262 // original lookup would not have found something because it was a
2263 // dependent name.
2264 DeclContext *DC = SS.isEmpty() ? CurContext : nullptr;
2265 while (DC) {
2266 if (isa<CXXRecordDecl>(DC)) {
2267 LookupQualifiedName(R, DC);
2268
2269 if (!R.empty()) {
2270 // Don't give errors about ambiguities in this lookup.
2271 R.suppressDiagnostics();
2272
2273 // If there's a best viable function among the results, only mention
2274 // that one in the notes.
2275 OverloadCandidateSet Candidates(R.getNameLoc(),
2276 OverloadCandidateSet::CSK_Normal);
2277 AddOverloadedCallCandidates(R, ExplicitTemplateArgs, Args, Candidates);
2278 OverloadCandidateSet::iterator Best;
2279 if (Candidates.BestViableFunction(*this, R.getNameLoc(), Best) ==
2280 OR_Success) {
2281 R.clear();
2282 R.addDecl(Best->FoundDecl.getDecl(), Best->FoundDecl.getAccess());
2283 R.resolveKind();
2284 }
2285
2286 return DiagnoseDependentMemberLookup(R);
2287 }
2288
2289 R.clear();
2290 }
2291
2292 DC = DC->getLookupParent();
2293 }
2294
2295 // We didn't find anything, so try to correct for a typo.
2296 TypoCorrection Corrected;
2297 if (S && Out) {
2298 SourceLocation TypoLoc = R.getNameLoc();
2299 assert(!ExplicitTemplateArgs &&(static_cast <bool> (!ExplicitTemplateArgs && "Diagnosing an empty lookup with explicit template args!"
) ? void (0) : __assert_fail ("!ExplicitTemplateArgs && \"Diagnosing an empty lookup with explicit template args!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 2300, __extension__ __PRETTY_FUNCTION__))
2300 "Diagnosing an empty lookup with explicit template args!")(static_cast <bool> (!ExplicitTemplateArgs && "Diagnosing an empty lookup with explicit template args!"
) ? void (0) : __assert_fail ("!ExplicitTemplateArgs && \"Diagnosing an empty lookup with explicit template args!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 2300, __extension__ __PRETTY_FUNCTION__))
;
2301 *Out = CorrectTypoDelayed(
2302 R.getLookupNameInfo(), R.getLookupKind(), S, &SS, CCC,
2303 [=](const TypoCorrection &TC) {
2304 emitEmptyLookupTypoDiagnostic(TC, *this, SS, Name, TypoLoc, Args,
2305 diagnostic, diagnostic_suggest);
2306 },
2307 nullptr, CTK_ErrorRecovery);
2308 if (*Out)
2309 return true;
2310 } else if (S &&
2311 (Corrected = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(),
2312 S, &SS, CCC, CTK_ErrorRecovery))) {
2313 std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
2314 bool DroppedSpecifier =
2315 Corrected.WillReplaceSpecifier() && Name.getAsString() == CorrectedStr;
2316 R.setLookupName(Corrected.getCorrection());
2317
2318 bool AcceptableWithRecovery = false;
2319 bool AcceptableWithoutRecovery = false;
2320 NamedDecl *ND = Corrected.getFoundDecl();
2321 if (ND) {
2322 if (Corrected.isOverloaded()) {
2323 OverloadCandidateSet OCS(R.getNameLoc(),
2324 OverloadCandidateSet::CSK_Normal);
2325 OverloadCandidateSet::iterator Best;
2326 for (NamedDecl *CD : Corrected) {
2327 if (FunctionTemplateDecl *FTD =
2328 dyn_cast<FunctionTemplateDecl>(CD))
2329 AddTemplateOverloadCandidate(
2330 FTD, DeclAccessPair::make(FTD, AS_none), ExplicitTemplateArgs,
2331 Args, OCS);
2332 else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(CD))
2333 if (!ExplicitTemplateArgs || ExplicitTemplateArgs->size() == 0)
2334 AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none),
2335 Args, OCS);
2336 }
2337 switch (OCS.BestViableFunction(*this, R.getNameLoc(), Best)) {
2338 case OR_Success:
2339 ND = Best->FoundDecl;
2340 Corrected.setCorrectionDecl(ND);
2341 break;
2342 default:
2343 // FIXME: Arbitrarily pick the first declaration for the note.
2344 Corrected.setCorrectionDecl(ND);
2345 break;
2346 }
2347 }
2348 R.addDecl(ND);
2349 if (getLangOpts().CPlusPlus && ND->isCXXClassMember()) {
2350 CXXRecordDecl *Record = nullptr;
2351 if (Corrected.getCorrectionSpecifier()) {
2352 const Type *Ty = Corrected.getCorrectionSpecifier()->getAsType();
2353 Record = Ty->getAsCXXRecordDecl();
2354 }
2355 if (!Record)
2356 Record = cast<CXXRecordDecl>(
2357 ND->getDeclContext()->getRedeclContext());
2358 R.setNamingClass(Record);
2359 }
2360
2361 auto *UnderlyingND = ND->getUnderlyingDecl();
2362 AcceptableWithRecovery = isa<ValueDecl>(UnderlyingND) ||
2363 isa<FunctionTemplateDecl>(UnderlyingND);
2364 // FIXME: If we ended up with a typo for a type name or
2365 // Objective-C class name, we're in trouble because the parser
2366 // is in the wrong place to recover. Suggest the typo
2367 // correction, but don't make it a fix-it since we're not going
2368 // to recover well anyway.
2369 AcceptableWithoutRecovery = isa<TypeDecl>(UnderlyingND) ||
2370 getAsTypeTemplateDecl(UnderlyingND) ||
2371 isa<ObjCInterfaceDecl>(UnderlyingND);
2372 } else {
2373 // FIXME: We found a keyword. Suggest it, but don't provide a fix-it
2374 // because we aren't able to recover.
2375 AcceptableWithoutRecovery = true;
2376 }
2377
2378 if (AcceptableWithRecovery || AcceptableWithoutRecovery) {
2379 unsigned NoteID = Corrected.getCorrectionDeclAs<ImplicitParamDecl>()
2380 ? diag::note_implicit_param_decl
2381 : diag::note_previous_decl;
2382 if (SS.isEmpty())
2383 diagnoseTypo(Corrected, PDiag(diagnostic_suggest) << Name,
2384 PDiag(NoteID), AcceptableWithRecovery);
2385 else
2386 diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
2387 << Name << computeDeclContext(SS, false)
2388 << DroppedSpecifier << SS.getRange(),
2389 PDiag(NoteID), AcceptableWithRecovery);
2390
2391 // Tell the callee whether to try to recover.
2392 return !AcceptableWithRecovery;
2393 }
2394 }
2395 R.clear();
2396
2397 // Emit a special diagnostic for failed member lookups.
2398 // FIXME: computing the declaration context might fail here (?)
2399 if (!SS.isEmpty()) {
2400 Diag(R.getNameLoc(), diag::err_no_member)
2401 << Name << computeDeclContext(SS, false)
2402 << SS.getRange();
2403 return true;
2404 }
2405
2406 // Give up, we can't recover.
2407 Diag(R.getNameLoc(), diagnostic) << Name;
2408 return true;
2409}
2410
2411/// In Microsoft mode, if we are inside a template class whose parent class has
2412/// dependent base classes, and we can't resolve an unqualified identifier, then
2413/// assume the identifier is a member of a dependent base class. We can only
2414/// recover successfully in static methods, instance methods, and other contexts
2415/// where 'this' is available. This doesn't precisely match MSVC's
2416/// instantiation model, but it's close enough.
2417static Expr *
2418recoverFromMSUnqualifiedLookup(Sema &S, ASTContext &Context,
2419 DeclarationNameInfo &NameInfo,
2420 SourceLocation TemplateKWLoc,
2421 const TemplateArgumentListInfo *TemplateArgs) {
2422 // Only try to recover from lookup into dependent bases in static methods or
2423 // contexts where 'this' is available.
2424 QualType ThisType = S.getCurrentThisType();
2425 const CXXRecordDecl *RD = nullptr;
2426 if (!ThisType.isNull())
2427 RD = ThisType->getPointeeType()->getAsCXXRecordDecl();
2428 else if (auto *MD = dyn_cast<CXXMethodDecl>(S.CurContext))
2429 RD = MD->getParent();
2430 if (!RD || !RD->hasAnyDependentBases())
2431 return nullptr;
2432
2433 // Diagnose this as unqualified lookup into a dependent base class. If 'this'
2434 // is available, suggest inserting 'this->' as a fixit.
2435 SourceLocation Loc = NameInfo.getLoc();
2436 auto DB = S.Diag(Loc, diag::ext_undeclared_unqual_id_with_dependent_base);
2437 DB << NameInfo.getName() << RD;
2438
2439 if (!ThisType.isNull()) {
2440 DB << FixItHint::CreateInsertion(Loc, "this->");
2441 return CXXDependentScopeMemberExpr::Create(
2442 Context, /*This=*/nullptr, ThisType, /*IsArrow=*/true,
2443 /*Op=*/SourceLocation(), NestedNameSpecifierLoc(), TemplateKWLoc,
2444 /*FirstQualifierFoundInScope=*/nullptr, NameInfo, TemplateArgs);
2445 }
2446
2447 // Synthesize a fake NNS that points to the derived class. This will
2448 // perform name lookup during template instantiation.
2449 CXXScopeSpec SS;
2450 auto *NNS =
2451 NestedNameSpecifier::Create(Context, nullptr, true, RD->getTypeForDecl());
2452 SS.MakeTrivial(Context, NNS, SourceRange(Loc, Loc));
2453 return DependentScopeDeclRefExpr::Create(
2454 Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
2455 TemplateArgs);
2456}
2457
2458ExprResult
2459Sema::ActOnIdExpression(Scope *S, CXXScopeSpec &SS,
2460 SourceLocation TemplateKWLoc, UnqualifiedId &Id,
2461 bool HasTrailingLParen, bool IsAddressOfOperand,
2462 CorrectionCandidateCallback *CCC,
2463 bool IsInlineAsmIdentifier, Token *KeywordReplacement) {
2464 assert(!(IsAddressOfOperand && HasTrailingLParen) &&(static_cast <bool> (!(IsAddressOfOperand && HasTrailingLParen
) && "cannot be direct & operand and have a trailing lparen"
) ? void (0) : __assert_fail ("!(IsAddressOfOperand && HasTrailingLParen) && \"cannot be direct & operand and have a trailing lparen\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 2465, __extension__ __PRETTY_FUNCTION__))
2465 "cannot be direct & operand and have a trailing lparen")(static_cast <bool> (!(IsAddressOfOperand && HasTrailingLParen
) && "cannot be direct & operand and have a trailing lparen"
) ? void (0) : __assert_fail ("!(IsAddressOfOperand && HasTrailingLParen) && \"cannot be direct & operand and have a trailing lparen\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 2465, __extension__ __PRETTY_FUNCTION__))
;
2466 if (SS.isInvalid())
2467 return ExprError();
2468
2469 TemplateArgumentListInfo TemplateArgsBuffer;
2470
2471 // Decompose the UnqualifiedId into the following data.
2472 DeclarationNameInfo NameInfo;
2473 const TemplateArgumentListInfo *TemplateArgs;
2474 DecomposeUnqualifiedId(Id, TemplateArgsBuffer, NameInfo, TemplateArgs);
2475
2476 DeclarationName Name = NameInfo.getName();
2477 IdentifierInfo *II = Name.getAsIdentifierInfo();
2478 SourceLocation NameLoc = NameInfo.getLoc();
2479
2480 if (II && II->isEditorPlaceholder()) {
2481 // FIXME: When typed placeholders are supported we can create a typed
2482 // placeholder expression node.
2483 return ExprError();
2484 }
2485
2486 // C++ [temp.dep.expr]p3:
2487 // An id-expression is type-dependent if it contains:
2488 // -- an identifier that was declared with a dependent type,
2489 // (note: handled after lookup)
2490 // -- a template-id that is dependent,
2491 // (note: handled in BuildTemplateIdExpr)
2492 // -- a conversion-function-id that specifies a dependent type,
2493 // -- a nested-name-specifier that contains a class-name that
2494 // names a dependent type.
2495 // Determine whether this is a member of an unknown specialization;
2496 // we need to handle these differently.
2497 bool DependentID = false;
2498 if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
2499 Name.getCXXNameType()->isDependentType()) {
2500 DependentID = true;
2501 } else if (SS.isSet()) {
2502 if (DeclContext *DC = computeDeclContext(SS, false)) {
2503 if (RequireCompleteDeclContext(SS, DC))
2504 return ExprError();
2505 } else {
2506 DependentID = true;
2507 }
2508 }
2509
2510 if (DependentID)
2511 return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2512 IsAddressOfOperand, TemplateArgs);
2513
2514 // Perform the required lookup.
2515 LookupResult R(*this, NameInfo,
2516 (Id.getKind() == UnqualifiedIdKind::IK_ImplicitSelfParam)
2517 ? LookupObjCImplicitSelfParam
2518 : LookupOrdinaryName);
2519 if (TemplateKWLoc.isValid() || TemplateArgs) {
2520 // Lookup the template name again to correctly establish the context in
2521 // which it was found. This is really unfortunate as we already did the
2522 // lookup to determine that it was a template name in the first place. If
2523 // this becomes a performance hit, we can work harder to preserve those
2524 // results until we get here but it's likely not worth it.
2525 bool MemberOfUnknownSpecialization;
2526 AssumedTemplateKind AssumedTemplate;
2527 if (LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false,
2528 MemberOfUnknownSpecialization, TemplateKWLoc,
2529 &AssumedTemplate))
2530 return ExprError();
2531
2532 if (MemberOfUnknownSpecialization ||
2533 (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation))
2534 return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2535 IsAddressOfOperand, TemplateArgs);
2536 } else {
2537 bool IvarLookupFollowUp = II && !SS.isSet() && getCurMethodDecl();
2538 LookupParsedName(R, S, &SS, !IvarLookupFollowUp);
2539
2540 // If the result might be in a dependent base class, this is a dependent
2541 // id-expression.
2542 if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
2543 return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2544 IsAddressOfOperand, TemplateArgs);
2545
2546 // If this reference is in an Objective-C method, then we need to do
2547 // some special Objective-C lookup, too.
2548 if (IvarLookupFollowUp) {
2549 ExprResult E(LookupInObjCMethod(R, S, II, true));
2550 if (E.isInvalid())
2551 return ExprError();
2552
2553 if (Expr *Ex = E.getAs<Expr>())
2554 return Ex;
2555 }
2556 }
2557
2558 if (R.isAmbiguous())
2559 return ExprError();
2560
2561 // This could be an implicitly declared function reference (legal in C90,
2562 // extension in C99, forbidden in C++).
2563 if (R.empty() && HasTrailingLParen && II && !getLangOpts().CPlusPlus) {
2564 NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
2565 if (D) R.addDecl(D);
2566 }
2567
2568 // Determine whether this name might be a candidate for
2569 // argument-dependent lookup.
2570 bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
2571
2572 if (R.empty() && !ADL) {
2573 if (SS.isEmpty() && getLangOpts().MSVCCompat) {
2574 if (Expr *E = recoverFromMSUnqualifiedLookup(*this, Context, NameInfo,
2575 TemplateKWLoc, TemplateArgs))
2576 return E;
2577 }
2578
2579 // Don't diagnose an empty lookup for inline assembly.
2580 if (IsInlineAsmIdentifier)
2581 return ExprError();
2582
2583 // If this name wasn't predeclared and if this is not a function
2584 // call, diagnose the problem.
2585 TypoExpr *TE = nullptr;
2586 DefaultFilterCCC DefaultValidator(II, SS.isValid() ? SS.getScopeRep()
2587 : nullptr);
2588 DefaultValidator.IsAddressOfOperand = IsAddressOfOperand;
2589 assert((!CCC || CCC->IsAddressOfOperand == IsAddressOfOperand) &&(static_cast <bool> ((!CCC || CCC->IsAddressOfOperand
== IsAddressOfOperand) && "Typo correction callback misconfigured"
) ? void (0) : __assert_fail ("(!CCC || CCC->IsAddressOfOperand == IsAddressOfOperand) && \"Typo correction callback misconfigured\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 2590, __extension__ __PRETTY_FUNCTION__))
2590 "Typo correction callback misconfigured")(static_cast <bool> ((!CCC || CCC->IsAddressOfOperand
== IsAddressOfOperand) && "Typo correction callback misconfigured"
) ? void (0) : __assert_fail ("(!CCC || CCC->IsAddressOfOperand == IsAddressOfOperand) && \"Typo correction callback misconfigured\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 2590, __extension__ __PRETTY_FUNCTION__))
;
2591 if (CCC) {
2592 // Make sure the callback knows what the typo being diagnosed is.
2593 CCC->setTypoName(II);
2594 if (SS.isValid())
2595 CCC->setTypoNNS(SS.getScopeRep());
2596 }
2597 // FIXME: DiagnoseEmptyLookup produces bad diagnostics if we're looking for
2598 // a template name, but we happen to have always already looked up the name
2599 // before we get here if it must be a template name.
2600 if (DiagnoseEmptyLookup(S, SS, R, CCC ? *CCC : DefaultValidator, nullptr,
2601 None, &TE)) {
2602 if (TE && KeywordReplacement) {
2603 auto &State = getTypoExprState(TE);
2604 auto BestTC = State.Consumer->getNextCorrection();
2605 if (BestTC.isKeyword()) {
2606 auto *II = BestTC.getCorrectionAsIdentifierInfo();
2607 if (State.DiagHandler)
2608 State.DiagHandler(BestTC);
2609 KeywordReplacement->startToken();
2610 KeywordReplacement->setKind(II->getTokenID());
2611 KeywordReplacement->setIdentifierInfo(II);
2612 KeywordReplacement->setLocation(BestTC.getCorrectionRange().getBegin());
2613 // Clean up the state associated with the TypoExpr, since it has
2614 // now been diagnosed (without a call to CorrectDelayedTyposInExpr).
2615 clearDelayedTypo(TE);
2616 // Signal that a correction to a keyword was performed by returning a
2617 // valid-but-null ExprResult.
2618 return (Expr*)nullptr;
2619 }
2620 State.Consumer->resetCorrectionStream();
2621 }
2622 return TE ? TE : ExprError();
2623 }
2624
2625 assert(!R.empty() &&(static_cast <bool> (!R.empty() && "DiagnoseEmptyLookup returned false but added no results"
) ? void (0) : __assert_fail ("!R.empty() && \"DiagnoseEmptyLookup returned false but added no results\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 2626, __extension__ __PRETTY_FUNCTION__))
2626 "DiagnoseEmptyLookup returned false but added no results")(static_cast <bool> (!R.empty() && "DiagnoseEmptyLookup returned false but added no results"
) ? void (0) : __assert_fail ("!R.empty() && \"DiagnoseEmptyLookup returned false but added no results\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 2626, __extension__ __PRETTY_FUNCTION__))
;
2627
2628 // If we found an Objective-C instance variable, let
2629 // LookupInObjCMethod build the appropriate expression to
2630 // reference the ivar.
2631 if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
2632 R.clear();
2633 ExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier()));
2634 // In a hopelessly buggy code, Objective-C instance variable
2635 // lookup fails and no expression will be built to reference it.
2636 if (!E.isInvalid() && !E.get())
2637 return ExprError();
2638 return E;
2639 }
2640 }
2641
2642 // This is guaranteed from this point on.
2643 assert(!R.empty() || ADL)(static_cast <bool> (!R.empty() || ADL) ? void (0) : __assert_fail
("!R.empty() || ADL", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 2643, __extension__ __PRETTY_FUNCTION__))
;
2644
2645 // Check whether this might be a C++ implicit instance member access.
2646 // C++ [class.mfct.non-static]p3:
2647 // When an id-expression that is not part of a class member access
2648 // syntax and not used to form a pointer to member is used in the
2649 // body of a non-static member function of class X, if name lookup
2650 // resolves the name in the id-expression to a non-static non-type
2651 // member of some class C, the id-expression is transformed into a
2652 // class member access expression using (*this) as the
2653 // postfix-expression to the left of the . operator.
2654 //
2655 // But we don't actually need to do this for '&' operands if R
2656 // resolved to a function or overloaded function set, because the
2657 // expression is ill-formed if it actually works out to be a
2658 // non-static member function:
2659 //
2660 // C++ [expr.ref]p4:
2661 // Otherwise, if E1.E2 refers to a non-static member function. . .
2662 // [t]he expression can be used only as the left-hand operand of a
2663 // member function call.
2664 //
2665 // There are other safeguards against such uses, but it's important
2666 // to get this right here so that we don't end up making a
2667 // spuriously dependent expression if we're inside a dependent
2668 // instance method.
2669 if (!R.empty() && (*R.begin())->isCXXClassMember()) {
2670 bool MightBeImplicitMember;
2671 if (!IsAddressOfOperand)
2672 MightBeImplicitMember = true;
2673 else if (!SS.isEmpty())
2674 MightBeImplicitMember = false;
2675 else if (R.isOverloadedResult())
2676 MightBeImplicitMember = false;
2677 else if (R.isUnresolvableResult())
2678 MightBeImplicitMember = true;
2679 else
2680 MightBeImplicitMember = isa<FieldDecl>(R.getFoundDecl()) ||
2681 isa<IndirectFieldDecl>(R.getFoundDecl()) ||
2682 isa<MSPropertyDecl>(R.getFoundDecl());
2683
2684 if (MightBeImplicitMember)
2685 return BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc,
2686 R, TemplateArgs, S);
2687 }
2688
2689 if (TemplateArgs || TemplateKWLoc.isValid()) {
2690
2691 // In C++1y, if this is a variable template id, then check it
2692 // in BuildTemplateIdExpr().
2693 // The single lookup result must be a variable template declaration.
2694 if (Id.getKind() == UnqualifiedIdKind::IK_TemplateId && Id.TemplateId &&
2695 Id.TemplateId->Kind == TNK_Var_template) {
2696 assert(R.getAsSingle<VarTemplateDecl>() &&(static_cast <bool> (R.getAsSingle<VarTemplateDecl>
() && "There should only be one declaration found.") ?
void (0) : __assert_fail ("R.getAsSingle<VarTemplateDecl>() && \"There should only be one declaration found.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 2697, __extension__ __PRETTY_FUNCTION__))
2697 "There should only be one declaration found.")(static_cast <bool> (R.getAsSingle<VarTemplateDecl>
() && "There should only be one declaration found.") ?
void (0) : __assert_fail ("R.getAsSingle<VarTemplateDecl>() && \"There should only be one declaration found.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 2697, __extension__ __PRETTY_FUNCTION__))
;
2698 }
2699
2700 return BuildTemplateIdExpr(SS, TemplateKWLoc, R, ADL, TemplateArgs);
2701 }
2702
2703 return BuildDeclarationNameExpr(SS, R, ADL);
2704}
2705
2706/// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
2707/// declaration name, generally during template instantiation.
2708/// There's a large number of things which don't need to be done along
2709/// this path.
2710ExprResult Sema::BuildQualifiedDeclarationNameExpr(
2711 CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo,
2712 bool IsAddressOfOperand, const Scope *S, TypeSourceInfo **RecoveryTSI) {
2713 DeclContext *DC = computeDeclContext(SS, false);
2714 if (!DC)
2715 return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
2716 NameInfo, /*TemplateArgs=*/nullptr);
2717
2718 if (RequireCompleteDeclContext(SS, DC))
2719 return ExprError();
2720
2721 LookupResult R(*this, NameInfo, LookupOrdinaryName);
2722 LookupQualifiedName(R, DC);
2723
2724 if (R.isAmbiguous())
2725 return ExprError();
2726
2727 if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
2728 return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
2729 NameInfo, /*TemplateArgs=*/nullptr);
2730
2731 if (R.empty()) {
2732 // Don't diagnose problems with invalid record decl, the secondary no_member
2733 // diagnostic during template instantiation is likely bogus, e.g. if a class
2734 // is invalid because it's derived from an invalid base class, then missing
2735 // members were likely supposed to be inherited.
2736 if (const auto *CD = dyn_cast<CXXRecordDecl>(DC))
2737 if (CD->isInvalidDecl())
2738 return ExprError();
2739 Diag(NameInfo.getLoc(), diag::err_no_member)
2740 << NameInfo.getName() << DC << SS.getRange();
2741 return ExprError();
2742 }
2743
2744 if (const TypeDecl *TD = R.getAsSingle<TypeDecl>()) {
2745 // Diagnose a missing typename if this resolved unambiguously to a type in
2746 // a dependent context. If we can recover with a type, downgrade this to
2747 // a warning in Microsoft compatibility mode.
2748 unsigned DiagID = diag::err_typename_missing;
2749 if (RecoveryTSI && getLangOpts().MSVCCompat)
2750 DiagID = diag::ext_typename_missing;
2751 SourceLocation Loc = SS.getBeginLoc();
2752 auto D = Diag(Loc, DiagID);
2753 D << SS.getScopeRep() << NameInfo.getName().getAsString()
2754 << SourceRange(Loc, NameInfo.getEndLoc());
2755
2756 // Don't recover if the caller isn't expecting us to or if we're in a SFINAE
2757 // context.
2758 if (!RecoveryTSI)
2759 return ExprError();
2760
2761 // Only issue the fixit if we're prepared to recover.
2762 D << FixItHint::CreateInsertion(Loc, "typename ");
2763
2764 // Recover by pretending this was an elaborated type.
2765 QualType Ty = Context.getTypeDeclType(TD);
2766 TypeLocBuilder TLB;
2767 TLB.pushTypeSpec(Ty).setNameLoc(NameInfo.getLoc());
2768
2769 QualType ET = getElaboratedType(ETK_None, SS, Ty);
2770 ElaboratedTypeLoc QTL = TLB.push<ElaboratedTypeLoc>(ET);
2771 QTL.setElaboratedKeywordLoc(SourceLocation());
2772 QTL.setQualifierLoc(SS.getWithLocInContext(Context));
2773
2774 *RecoveryTSI = TLB.getTypeSourceInfo(Context, ET);
2775
2776 return ExprEmpty();
2777 }
2778
2779 // Defend against this resolving to an implicit member access. We usually
2780 // won't get here if this might be a legitimate a class member (we end up in
2781 // BuildMemberReferenceExpr instead), but this can be valid if we're forming
2782 // a pointer-to-member or in an unevaluated context in C++11.
2783 if (!R.empty() && (*R.begin())->isCXXClassMember() && !IsAddressOfOperand)
2784 return BuildPossibleImplicitMemberExpr(SS,
2785 /*TemplateKWLoc=*/SourceLocation(),
2786 R, /*TemplateArgs=*/nullptr, S);
2787
2788 return BuildDeclarationNameExpr(SS, R, /* ADL */ false);
2789}
2790
2791/// The parser has read a name in, and Sema has detected that we're currently
2792/// inside an ObjC method. Perform some additional checks and determine if we
2793/// should form a reference to an ivar.
2794///
2795/// Ideally, most of this would be done by lookup, but there's
2796/// actually quite a lot of extra work involved.
2797DeclResult Sema::LookupIvarInObjCMethod(LookupResult &Lookup, Scope *S,
2798 IdentifierInfo *II) {
2799 SourceLocation Loc = Lookup.getNameLoc();
2800 ObjCMethodDecl *CurMethod = getCurMethodDecl();
2801
2802 // Check for error condition which is already reported.
2803 if (!CurMethod)
2804 return DeclResult(true);
2805
2806 // There are two cases to handle here. 1) scoped lookup could have failed,
2807 // in which case we should look for an ivar. 2) scoped lookup could have
2808 // found a decl, but that decl is outside the current instance method (i.e.
2809 // a global variable). In these two cases, we do a lookup for an ivar with
2810 // this name, if the lookup sucedes, we replace it our current decl.
2811
2812 // If we're in a class method, we don't normally want to look for
2813 // ivars. But if we don't find anything else, and there's an
2814 // ivar, that's an error.
2815 bool IsClassMethod = CurMethod->isClassMethod();
2816
2817 bool LookForIvars;
2818 if (Lookup.empty())
2819 LookForIvars = true;
2820 else if (IsClassMethod)
2821 LookForIvars = false;
2822 else
2823 LookForIvars = (Lookup.isSingleResult() &&
2824 Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
2825 ObjCInterfaceDecl *IFace = nullptr;
2826 if (LookForIvars) {
2827 IFace = CurMethod->getClassInterface();
2828 ObjCInterfaceDecl *ClassDeclared;
2829 ObjCIvarDecl *IV = nullptr;
2830 if (IFace && (IV = IFace->lookupInstanceVariable(II, ClassDeclared))) {
2831 // Diagnose using an ivar in a class method.
2832 if (IsClassMethod) {
2833 Diag(Loc, diag::err_ivar_use_in_class_method) << IV->getDeclName();
2834 return DeclResult(true);
2835 }
2836
2837 // Diagnose the use of an ivar outside of the declaring class.
2838 if (IV->getAccessControl() == ObjCIvarDecl::Private &&
2839 !declaresSameEntity(ClassDeclared, IFace) &&
2840 !getLangOpts().DebuggerSupport)
2841 Diag(Loc, diag::err_private_ivar_access) << IV->getDeclName();
2842
2843 // Success.
2844 return IV;
2845 }
2846 } else if (CurMethod->isInstanceMethod()) {
2847 // We should warn if a local variable hides an ivar.
2848 if (ObjCInterfaceDecl *IFace = CurMethod->getClassInterface()) {
2849 ObjCInterfaceDecl *ClassDeclared;
2850 if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
2851 if (IV->getAccessControl() != ObjCIvarDecl::Private ||
2852 declaresSameEntity(IFace, ClassDeclared))
2853 Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
2854 }
2855 }
2856 } else if (Lookup.isSingleResult() &&
2857 Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod()) {
2858 // If accessing a stand-alone ivar in a class method, this is an error.
2859 if (const ObjCIvarDecl *IV =
2860 dyn_cast<ObjCIvarDecl>(Lookup.getFoundDecl())) {
2861 Diag(Loc, diag::err_ivar_use_in_class_method) << IV->getDeclName();
2862 return DeclResult(true);
2863 }
2864 }
2865
2866 // Didn't encounter an error, didn't find an ivar.
2867 return DeclResult(false);
2868}
2869
2870ExprResult Sema::BuildIvarRefExpr(Scope *S, SourceLocation Loc,
2871 ObjCIvarDecl *IV) {
2872 ObjCMethodDecl *CurMethod = getCurMethodDecl();
2873 assert(CurMethod && CurMethod->isInstanceMethod() &&(static_cast <bool> (CurMethod && CurMethod->
isInstanceMethod() && "should not reference ivar from this context"
) ? void (0) : __assert_fail ("CurMethod && CurMethod->isInstanceMethod() && \"should not reference ivar from this context\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 2874, __extension__ __PRETTY_FUNCTION__))
2874 "should not reference ivar from this context")(static_cast <bool> (CurMethod && CurMethod->
isInstanceMethod() && "should not reference ivar from this context"
) ? void (0) : __assert_fail ("CurMethod && CurMethod->isInstanceMethod() && \"should not reference ivar from this context\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 2874, __extension__ __PRETTY_FUNCTION__))
;
2875
2876 ObjCInterfaceDecl *IFace = CurMethod->getClassInterface();
2877 assert(IFace && "should not reference ivar from this context")(static_cast <bool> (IFace && "should not reference ivar from this context"
) ? void (0) : __assert_fail ("IFace && \"should not reference ivar from this context\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 2877, __extension__ __PRETTY_FUNCTION__))
;
2878
2879 // If we're referencing an invalid decl, just return this as a silent
2880 // error node. The error diagnostic was already emitted on the decl.
2881 if (IV->isInvalidDecl())
2882 return ExprError();
2883
2884 // Check if referencing a field with __attribute__((deprecated)).
2885 if (DiagnoseUseOfDecl(IV, Loc))
2886 return ExprError();
2887
2888 // FIXME: This should use a new expr for a direct reference, don't
2889 // turn this into Self->ivar, just return a BareIVarExpr or something.
2890 IdentifierInfo &II = Context.Idents.get("self");
2891 UnqualifiedId SelfName;
2892 SelfName.setImplicitSelfParam(&II);
2893 CXXScopeSpec SelfScopeSpec;
2894 SourceLocation TemplateKWLoc;
2895 ExprResult SelfExpr =
2896 ActOnIdExpression(S, SelfScopeSpec, TemplateKWLoc, SelfName,
2897 /*HasTrailingLParen=*/false,
2898 /*IsAddressOfOperand=*/false);
2899 if (SelfExpr.isInvalid())
2900 return ExprError();
2901
2902 SelfExpr = DefaultLvalueConversion(SelfExpr.get());
2903 if (SelfExpr.isInvalid())
2904 return ExprError();
2905
2906 MarkAnyDeclReferenced(Loc, IV, true);
2907
2908 ObjCMethodFamily MF = CurMethod->getMethodFamily();
2909 if (MF != OMF_init && MF != OMF_dealloc && MF != OMF_finalize &&
2910 !IvarBacksCurrentMethodAccessor(IFace, CurMethod, IV))
2911 Diag(Loc, diag::warn_direct_ivar_access) << IV->getDeclName();
2912
2913 ObjCIvarRefExpr *Result = new (Context)
2914 ObjCIvarRefExpr(IV, IV->getUsageType(SelfExpr.get()->getType()), Loc,
2915 IV->getLocation(), SelfExpr.get(), true, true);
2916
2917 if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
2918 if (!isUnevaluatedContext() &&
2919 !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc))
2920 getCurFunction()->recordUseOfWeak(Result);
2921 }
2922 if (getLangOpts().ObjCAutoRefCount)
2923 if (const BlockDecl *BD = CurContext->getInnermostBlockDecl())
2924 ImplicitlyRetainedSelfLocs.push_back({Loc, BD});
2925
2926 return Result;
2927}
2928
2929/// The parser has read a name in, and Sema has detected that we're currently
2930/// inside an ObjC method. Perform some additional checks and determine if we
2931/// should form a reference to an ivar. If so, build an expression referencing
2932/// that ivar.
2933ExprResult
2934Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
2935 IdentifierInfo *II, bool AllowBuiltinCreation) {
2936 // FIXME: Integrate this lookup step into LookupParsedName.
2937 DeclResult Ivar = LookupIvarInObjCMethod(Lookup, S, II);
2938 if (Ivar.isInvalid())
2939 return ExprError();
2940 if (Ivar.isUsable())
2941 return BuildIvarRefExpr(S, Lookup.getNameLoc(),
2942 cast<ObjCIvarDecl>(Ivar.get()));
2943
2944 if (Lookup.empty() && II && AllowBuiltinCreation)
2945 LookupBuiltin(Lookup);
2946
2947 // Sentinel value saying that we didn't do anything special.
2948 return ExprResult(false);
2949}
2950
2951/// Cast a base object to a member's actual type.
2952///
2953/// There are two relevant checks:
2954///
2955/// C++ [class.access.base]p7:
2956///
2957/// If a class member access operator [...] is used to access a non-static
2958/// data member or non-static member function, the reference is ill-formed if
2959/// the left operand [...] cannot be implicitly converted to a pointer to the
2960/// naming class of the right operand.
2961///
2962/// C++ [expr.ref]p7:
2963///
2964/// If E2 is a non-static data member or a non-static member function, the
2965/// program is ill-formed if the class of which E2 is directly a member is an
2966/// ambiguous base (11.8) of the naming class (11.9.3) of E2.
2967///
2968/// Note that the latter check does not consider access; the access of the
2969/// "real" base class is checked as appropriate when checking the access of the
2970/// member name.
2971ExprResult
2972Sema::PerformObjectMemberConversion(Expr *From,
2973 NestedNameSpecifier *Qualifier,
2974 NamedDecl *FoundDecl,
2975 NamedDecl *Member) {
2976 CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext());
2977 if (!RD)
2978 return From;
2979
2980 QualType DestRecordType;
2981 QualType DestType;
2982 QualType FromRecordType;
2983 QualType FromType = From->getType();
2984 bool PointerConversions = false;
2985 if (isa<FieldDecl>(Member)) {
2986 DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD));
2987 auto FromPtrType = FromType->getAs<PointerType>();
2988 DestRecordType = Context.getAddrSpaceQualType(
2989 DestRecordType, FromPtrType
2990 ? FromType->getPointeeType().getAddressSpace()
2991 : FromType.getAddressSpace());
2992
2993 if (FromPtrType) {
2994 DestType = Context.getPointerType(DestRecordType);
2995 FromRecordType = FromPtrType->getPointeeType();
2996 PointerConversions = true;
2997 } else {
2998 DestType = DestRecordType;
2999 FromRecordType = FromType;
3000 }
3001 } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) {
3002 if (Method->isStatic())
3003 return From;
3004
3005 DestType = Method->getThisType();
3006 DestRecordType = DestType->getPointeeType();
3007
3008 if (FromType->getAs<PointerType>()) {
3009 FromRecordType = FromType->getPointeeType();
3010 PointerConversions = true;
3011 } else {
3012 FromRecordType = FromType;
3013 DestType = DestRecordType;
3014 }
3015
3016 LangAS FromAS = FromRecordType.getAddressSpace();
3017 LangAS DestAS = DestRecordType.getAddressSpace();
3018 if (FromAS != DestAS) {
3019 QualType FromRecordTypeWithoutAS =
3020 Context.removeAddrSpaceQualType(FromRecordType);
3021 QualType FromTypeWithDestAS =
3022 Context.getAddrSpaceQualType(FromRecordTypeWithoutAS, DestAS);
3023 if (PointerConversions)
3024 FromTypeWithDestAS = Context.getPointerType(FromTypeWithDestAS);
3025 From = ImpCastExprToType(From, FromTypeWithDestAS,
3026 CK_AddressSpaceConversion, From->getValueKind())
3027 .get();
3028 }
3029 } else {
3030 // No conversion necessary.
3031 return From;
3032 }
3033
3034 if (DestType->isDependentType() || FromType->isDependentType())
3035 return From;
3036
3037 // If the unqualified types are the same, no conversion is necessary.
3038 if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
3039 return From;
3040
3041 SourceRange FromRange = From->getSourceRange();
3042 SourceLocation FromLoc = FromRange.getBegin();
3043
3044 ExprValueKind VK = From->getValueKind();
3045
3046 // C++ [class.member.lookup]p8:
3047 // [...] Ambiguities can often be resolved by qualifying a name with its
3048 // class name.
3049 //
3050 // If the member was a qualified name and the qualified referred to a
3051 // specific base subobject type, we'll cast to that intermediate type
3052 // first and then to the object in which the member is declared. That allows
3053 // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
3054 //
3055 // class Base { public: int x; };
3056 // class Derived1 : public Base { };
3057 // class Derived2 : public Base { };
3058 // class VeryDerived : public Derived1, public Derived2 { void f(); };
3059 //
3060 // void VeryDerived::f() {
3061 // x = 17; // error: ambiguous base subobjects
3062 // Derived1::x = 17; // okay, pick the Base subobject of Derived1
3063 // }
3064 if (Qualifier && Qualifier->getAsType()) {
3065 QualType QType = QualType(Qualifier->getAsType(), 0);
3066 assert(QType->isRecordType() && "lookup done with non-record type")(static_cast <bool> (QType->isRecordType() &&
"lookup done with non-record type") ? void (0) : __assert_fail
("QType->isRecordType() && \"lookup done with non-record type\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 3066, __extension__ __PRETTY_FUNCTION__))
;
3067
3068 QualType QRecordType = QualType(QType->getAs<RecordType>(), 0);
3069
3070 // In C++98, the qualifier type doesn't actually have to be a base
3071 // type of the object type, in which case we just ignore it.
3072 // Otherwise build the appropriate casts.
3073 if (IsDerivedFrom(FromLoc, FromRecordType, QRecordType)) {
3074 CXXCastPath BasePath;
3075 if (CheckDerivedToBaseConversion(FromRecordType, QRecordType,
3076 FromLoc, FromRange, &BasePath))
3077 return ExprError();
3078
3079 if (PointerConversions)
3080 QType = Context.getPointerType(QType);
3081 From = ImpCastExprToType(From, QType, CK_UncheckedDerivedToBase,
3082 VK, &BasePath).get();
3083
3084 FromType = QType;
3085 FromRecordType = QRecordType;
3086
3087 // If the qualifier type was the same as the destination type,
3088 // we're done.
3089 if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
3090 return From;
3091 }
3092 }
3093
3094 CXXCastPath BasePath;
3095 if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType,
3096 FromLoc, FromRange, &BasePath,
3097 /*IgnoreAccess=*/true))
3098 return ExprError();
3099
3100 return ImpCastExprToType(From, DestType, CK_UncheckedDerivedToBase,
3101 VK, &BasePath);
3102}
3103
3104bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
3105 const LookupResult &R,
3106 bool HasTrailingLParen) {
3107 // Only when used directly as the postfix-expression of a call.
3108 if (!HasTrailingLParen)
3109 return false;
3110
3111 // Never if a scope specifier was provided.
3112 if (SS.isSet())
3113 return false;
3114
3115 // Only in C++ or ObjC++.
3116 if (!getLangOpts().CPlusPlus)
3117 return false;
3118
3119 // Turn off ADL when we find certain kinds of declarations during
3120 // normal lookup:
3121 for (NamedDecl *D : R) {
3122 // C++0x [basic.lookup.argdep]p3:
3123 // -- a declaration of a class member
3124 // Since using decls preserve this property, we check this on the
3125 // original decl.
3126 if (D->isCXXClassMember())
3127 return false;
3128
3129 // C++0x [basic.lookup.argdep]p3:
3130 // -- a block-scope function declaration that is not a
3131 // using-declaration
3132 // NOTE: we also trigger this for function templates (in fact, we
3133 // don't check the decl type at all, since all other decl types
3134 // turn off ADL anyway).
3135 if (isa<UsingShadowDecl>(D))
3136 D = cast<UsingShadowDecl>(D)->getTargetDecl();
3137 else if (D->getLexicalDeclContext()->isFunctionOrMethod())
3138 return false;
3139
3140 // C++0x [basic.lookup.argdep]p3:
3141 // -- a declaration that is neither a function or a function
3142 // template
3143 // And also for builtin functions.
3144 if (isa<FunctionDecl>(D)) {
3145 FunctionDecl *FDecl = cast<FunctionDecl>(D);
3146
3147 // But also builtin functions.
3148 if (FDecl->getBuiltinID() && FDecl->isImplicit())
3149 return false;
3150 } else if (!isa<FunctionTemplateDecl>(D))
3151 return false;
3152 }
3153
3154 return true;
3155}
3156
3157
3158/// Diagnoses obvious problems with the use of the given declaration
3159/// as an expression. This is only actually called for lookups that
3160/// were not overloaded, and it doesn't promise that the declaration
3161/// will in fact be used.
3162static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) {
3163 if (D->isInvalidDecl())
3164 return true;
3165
3166 if (isa<TypedefNameDecl>(D)) {
3167 S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
3168 return true;
3169 }
3170
3171 if (isa<ObjCInterfaceDecl>(D)) {
3172 S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
3173 return true;
3174 }
3175
3176 if (isa<NamespaceDecl>(D)) {
3177 S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
3178 return true;
3179 }
3180
3181 return false;
3182}
3183
3184// Certain multiversion types should be treated as overloaded even when there is
3185// only one result.
3186static bool ShouldLookupResultBeMultiVersionOverload(const LookupResult &R) {
3187 assert(R.isSingleResult() && "Expected only a single result")(static_cast <bool> (R.isSingleResult() && "Expected only a single result"
) ? void (0) : __assert_fail ("R.isSingleResult() && \"Expected only a single result\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 3187, __extension__ __PRETTY_FUNCTION__))
;
3188 const auto *FD = dyn_cast<FunctionDecl>(R.getFoundDecl());
3189 return FD &&
3190 (FD->isCPUDispatchMultiVersion() || FD->isCPUSpecificMultiVersion());
3191}
3192
3193ExprResult Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
3194 LookupResult &R, bool NeedsADL,
3195 bool AcceptInvalidDecl) {
3196 // If this is a single, fully-resolved result and we don't need ADL,
3197 // just build an ordinary singleton decl ref.
3198 if (!NeedsADL && R.isSingleResult() &&
3199 !R.getAsSingle<FunctionTemplateDecl>() &&
3200 !ShouldLookupResultBeMultiVersionOverload(R))
3201 return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), R.getFoundDecl(),
3202 R.getRepresentativeDecl(), nullptr,
3203 AcceptInvalidDecl);
3204
3205 // We only need to check the declaration if there's exactly one
3206 // result, because in the overloaded case the results can only be
3207 // functions and function templates.
3208 if (R.isSingleResult() && !ShouldLookupResultBeMultiVersionOverload(R) &&
3209 CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl()))
3210 return ExprError();
3211
3212 // Otherwise, just build an unresolved lookup expression. Suppress
3213 // any lookup-related diagnostics; we'll hash these out later, when
3214 // we've picked a target.
3215 R.suppressDiagnostics();
3216
3217 UnresolvedLookupExpr *ULE
3218 = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
3219 SS.getWithLocInContext(Context),
3220 R.getLookupNameInfo(),
3221 NeedsADL, R.isOverloadedResult(),
3222 R.begin(), R.end());
3223
3224 return ULE;
3225}
3226
3227static void
3228diagnoseUncapturableValueReference(Sema &S, SourceLocation loc,
3229 ValueDecl *var, DeclContext *DC);
3230
3231/// Complete semantic analysis for a reference to the given declaration.
3232ExprResult Sema::BuildDeclarationNameExpr(
3233 const CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, NamedDecl *D,
3234 NamedDecl *FoundD, const TemplateArgumentListInfo *TemplateArgs,
3235 bool AcceptInvalidDecl) {
3236 assert(D && "Cannot refer to a NULL declaration")(static_cast <bool> (D && "Cannot refer to a NULL declaration"
) ? void (0) : __assert_fail ("D && \"Cannot refer to a NULL declaration\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 3236, __extension__ __PRETTY_FUNCTION__))
;
3237 assert(!isa<FunctionTemplateDecl>(D) &&(static_cast <bool> (!isa<FunctionTemplateDecl>(D
) && "Cannot refer unambiguously to a function template"
) ? void (0) : __assert_fail ("!isa<FunctionTemplateDecl>(D) && \"Cannot refer unambiguously to a function template\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 3238, __extension__ __PRETTY_FUNCTION__))
3238 "Cannot refer unambiguously to a function template")(static_cast <bool> (!isa<FunctionTemplateDecl>(D
) && "Cannot refer unambiguously to a function template"
) ? void (0) : __assert_fail ("!isa<FunctionTemplateDecl>(D) && \"Cannot refer unambiguously to a function template\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 3238, __extension__ __PRETTY_FUNCTION__))
;
3239
3240 SourceLocation Loc = NameInfo.getLoc();
3241 if (CheckDeclInExpr(*this, Loc, D))
3242 return ExprError();
3243
3244 if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) {
3245 // Specifically diagnose references to class templates that are missing
3246 // a template argument list.
3247 diagnoseMissingTemplateArguments(TemplateName(Template), Loc);
3248 return ExprError();
3249 }
3250
3251 // Make sure that we're referring to a value.
3252 if (!isa<ValueDecl, UnresolvedUsingIfExistsDecl>(D)) {
3253 Diag(Loc, diag::err_ref_non_value) << D << SS.getRange();
3254 Diag(D->getLocation(), diag::note_declared_at);
3255 return ExprError();
3256 }
3257
3258 // Check whether this declaration can be used. Note that we suppress
3259 // this check when we're going to perform argument-dependent lookup
3260 // on this function name, because this might not be the function
3261 // that overload resolution actually selects.
3262 if (DiagnoseUseOfDecl(D, Loc))
3263 return ExprError();
3264
3265 auto *VD = cast<ValueDecl>(D);
3266
3267 // Only create DeclRefExpr's for valid Decl's.
3268 if (VD->isInvalidDecl() && !AcceptInvalidDecl)
3269 return ExprError();
3270
3271 // Handle members of anonymous structs and unions. If we got here,
3272 // and the reference is to a class member indirect field, then this
3273 // must be the subject of a pointer-to-member expression.
3274 if (IndirectFieldDecl *indirectField = dyn_cast<IndirectFieldDecl>(VD))
3275 if (!indirectField->isCXXClassMember())
3276 return BuildAnonymousStructUnionMemberReference(SS, NameInfo.getLoc(),
3277 indirectField);
3278
3279 QualType type = VD->getType();
3280 if (type.isNull())
3281 return ExprError();
3282 ExprValueKind valueKind = VK_PRValue;
3283
3284 // In 'T ...V;', the type of the declaration 'V' is 'T...', but the type of
3285 // a reference to 'V' is simply (unexpanded) 'T'. The type, like the value,
3286 // is expanded by some outer '...' in the context of the use.
3287 type = type.getNonPackExpansionType();
3288
3289 switch (D->getKind()) {
3290 // Ignore all the non-ValueDecl kinds.
3291#define ABSTRACT_DECL(kind)
3292#define VALUE(type, base)
3293#define DECL(type, base) case Decl::type:
3294#include "clang/AST/DeclNodes.inc"
3295 llvm_unreachable("invalid value decl kind")::llvm::llvm_unreachable_internal("invalid value decl kind", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 3295)
;
3296
3297 // These shouldn't make it here.
3298 case Decl::ObjCAtDefsField:
3299 llvm_unreachable("forming non-member reference to ivar?")::llvm::llvm_unreachable_internal("forming non-member reference to ivar?"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 3299)
;
3300
3301 // Enum constants are always r-values and never references.
3302 // Unresolved using declarations are dependent.
3303 case Decl::EnumConstant:
3304 case Decl::UnresolvedUsingValue:
3305 case Decl::OMPDeclareReduction:
3306 case Decl::OMPDeclareMapper:
3307 valueKind = VK_PRValue;
3308 break;
3309
3310 // Fields and indirect fields that got here must be for
3311 // pointer-to-member expressions; we just call them l-values for
3312 // internal consistency, because this subexpression doesn't really
3313 // exist in the high-level semantics.
3314 case Decl::Field:
3315 case Decl::IndirectField:
3316 case Decl::ObjCIvar:
3317 assert(getLangOpts().CPlusPlus && "building reference to field in C?")(static_cast <bool> (getLangOpts().CPlusPlus &&
"building reference to field in C?") ? void (0) : __assert_fail
("getLangOpts().CPlusPlus && \"building reference to field in C?\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 3317, __extension__ __PRETTY_FUNCTION__))
;
3318
3319 // These can't have reference type in well-formed programs, but
3320 // for internal consistency we do this anyway.
3321 type = type.getNonReferenceType();
3322 valueKind = VK_LValue;
3323 break;
3324
3325 // Non-type template parameters are either l-values or r-values
3326 // depending on the type.
3327 case Decl::NonTypeTemplateParm: {
3328 if (const ReferenceType *reftype = type->getAs<ReferenceType>()) {
3329 type = reftype->getPointeeType();
3330 valueKind = VK_LValue; // even if the parameter is an r-value reference
3331 break;
3332 }
3333
3334 // [expr.prim.id.unqual]p2:
3335 // If the entity is a template parameter object for a template
3336 // parameter of type T, the type of the expression is const T.
3337 // [...] The expression is an lvalue if the entity is a [...] template
3338 // parameter object.
3339 if (type->isRecordType()) {
3340 type = type.getUnqualifiedType().withConst();
3341 valueKind = VK_LValue;
3342 break;
3343 }
3344
3345 // For non-references, we need to strip qualifiers just in case
3346 // the template parameter was declared as 'const int' or whatever.
3347 valueKind = VK_PRValue;
3348 type = type.getUnqualifiedType();
3349 break;
3350 }
3351
3352 case Decl::Var:
3353 case Decl::VarTemplateSpecialization:
3354 case Decl::VarTemplatePartialSpecialization:
3355 case Decl::Decomposition:
3356 case Decl::OMPCapturedExpr:
3357 // In C, "extern void blah;" is valid and is an r-value.
3358 if (!getLangOpts().CPlusPlus && !type.hasQualifiers() &&
3359 type->isVoidType()) {
3360 valueKind = VK_PRValue;
3361 break;
3362 }
3363 LLVM_FALLTHROUGH[[gnu::fallthrough]];
3364
3365 case Decl::ImplicitParam:
3366 case Decl::ParmVar: {
3367 // These are always l-values.
3368 valueKind = VK_LValue;
3369 type = type.getNonReferenceType();
3370
3371 // FIXME: Does the addition of const really only apply in
3372 // potentially-evaluated contexts? Since the variable isn't actually
3373 // captured in an unevaluated context, it seems that the answer is no.
3374 if (!isUnevaluatedContext()) {
3375 QualType CapturedType = getCapturedDeclRefType(cast<VarDecl>(VD), Loc);
3376 if (!CapturedType.isNull())
3377 type = CapturedType;
3378 }
3379
3380 break;
3381 }
3382
3383 case Decl::Binding: {
3384 // These are always lvalues.
3385 valueKind = VK_LValue;
3386 type = type.getNonReferenceType();
3387 // FIXME: Support lambda-capture of BindingDecls, once CWG actually
3388 // decides how that's supposed to work.
3389 auto *BD = cast<BindingDecl>(VD);
3390 if (BD->getDeclContext() != CurContext) {
3391 auto *DD = dyn_cast_or_null<VarDecl>(BD->getDecomposedDecl());
3392 if (DD && DD->hasLocalStorage())
3393 diagnoseUncapturableValueReference(*this, Loc, BD, CurContext);
3394 }
3395 break;
3396 }
3397
3398 case Decl::Function: {
3399 if (unsigned BID = cast<FunctionDecl>(VD)->getBuiltinID()) {
3400 if (!Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
3401 type = Context.BuiltinFnTy;
3402 valueKind = VK_PRValue;
3403 break;
3404 }
3405 }
3406
3407 const FunctionType *fty = type->castAs<FunctionType>();
3408
3409 // If we're referring to a function with an __unknown_anytype
3410 // result type, make the entire expression __unknown_anytype.
3411 if (fty->getReturnType() == Context.UnknownAnyTy) {
3412 type = Context.UnknownAnyTy;
3413 valueKind = VK_PRValue;
3414 break;
3415 }
3416
3417 // Functions are l-values in C++.
3418 if (getLangOpts().CPlusPlus) {
3419 valueKind = VK_LValue;
3420 break;
3421 }
3422
3423 // C99 DR 316 says that, if a function type comes from a
3424 // function definition (without a prototype), that type is only
3425 // used for checking compatibility. Therefore, when referencing
3426 // the function, we pretend that we don't have the full function
3427 // type.
3428 if (!cast<FunctionDecl>(VD)->hasPrototype() && isa<FunctionProtoType>(fty))
3429 type = Context.getFunctionNoProtoType(fty->getReturnType(),
3430 fty->getExtInfo());
3431
3432 // Functions are r-values in C.
3433 valueKind = VK_PRValue;
3434 break;
3435 }
3436
3437 case Decl::CXXDeductionGuide:
3438 llvm_unreachable("building reference to deduction guide")::llvm::llvm_unreachable_internal("building reference to deduction guide"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 3438)
;
3439
3440 case Decl::MSProperty:
3441 case Decl::MSGuid:
3442 case Decl::TemplateParamObject:
3443 // FIXME: Should MSGuidDecl and template parameter objects be subject to
3444 // capture in OpenMP, or duplicated between host and device?
3445 valueKind = VK_LValue;
3446 break;
3447
3448 case Decl::CXXMethod:
3449 // If we're referring to a method with an __unknown_anytype
3450 // result type, make the entire expression __unknown_anytype.
3451 // This should only be possible with a type written directly.
3452 if (const FunctionProtoType *proto =
3453 dyn_cast<FunctionProtoType>(VD->getType()))
3454 if (proto->getReturnType() == Context.UnknownAnyTy) {
3455 type = Context.UnknownAnyTy;
3456 valueKind = VK_PRValue;
3457 break;
3458 }
3459
3460 // C++ methods are l-values if static, r-values if non-static.
3461 if (cast<CXXMethodDecl>(VD)->isStatic()) {
3462 valueKind = VK_LValue;
3463 break;
3464 }
3465 LLVM_FALLTHROUGH[[gnu::fallthrough]];
3466
3467 case Decl::CXXConversion:
3468 case Decl::CXXDestructor:
3469 case Decl::CXXConstructor:
3470 valueKind = VK_PRValue;
3471 break;
3472 }
3473
3474 return BuildDeclRefExpr(VD, type, valueKind, NameInfo, &SS, FoundD,
3475 /*FIXME: TemplateKWLoc*/ SourceLocation(),
3476 TemplateArgs);
3477}
3478
3479static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source,
3480 SmallString<32> &Target) {
3481 Target.resize(CharByteWidth * (Source.size() + 1));
3482 char *ResultPtr = &Target[0];
3483 const llvm::UTF8 *ErrorPtr;
3484 bool success =
3485 llvm::ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr);
3486 (void)success;
3487 assert(success)(static_cast <bool> (success) ? void (0) : __assert_fail
("success", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 3487, __extension__ __PRETTY_FUNCTION__))
;
3488 Target.resize(ResultPtr - &Target[0]);
3489}
3490
3491ExprResult Sema::BuildPredefinedExpr(SourceLocation Loc,
3492 PredefinedExpr::IdentKind IK) {
3493 // Pick the current block, lambda, captured statement or function.
3494 Decl *currentDecl = nullptr;
3495 if (const BlockScopeInfo *BSI = getCurBlock())
3496 currentDecl = BSI->TheDecl;
3497 else if (const LambdaScopeInfo *LSI = getCurLambda())
3498 currentDecl = LSI->CallOperator;
3499 else if (const CapturedRegionScopeInfo *CSI = getCurCapturedRegion())
3500 currentDecl = CSI->TheCapturedDecl;
3501 else
3502 currentDecl = getCurFunctionOrMethodDecl();
3503
3504 if (!currentDecl) {
3505 Diag(Loc, diag::ext_predef_outside_function);
3506 currentDecl = Context.getTranslationUnitDecl();
3507 }
3508
3509 QualType ResTy;
3510 StringLiteral *SL = nullptr;
3511 if (cast<DeclContext>(currentDecl)->isDependentContext())
3512 ResTy = Context.DependentTy;
3513 else {
3514 // Pre-defined identifiers are of type char[x], where x is the length of
3515 // the string.
3516 auto Str = PredefinedExpr::ComputeName(IK, currentDecl);
3517 unsigned Length = Str.length();
3518
3519 llvm::APInt LengthI(32, Length + 1);
3520 if (IK == PredefinedExpr::LFunction || IK == PredefinedExpr::LFuncSig) {
3521 ResTy =
3522 Context.adjustStringLiteralBaseType(Context.WideCharTy.withConst());
3523 SmallString<32> RawChars;
3524 ConvertUTF8ToWideString(Context.getTypeSizeInChars(ResTy).getQuantity(),
3525 Str, RawChars);
3526 ResTy = Context.getConstantArrayType(ResTy, LengthI, nullptr,
3527 ArrayType::Normal,
3528 /*IndexTypeQuals*/ 0);
3529 SL = StringLiteral::Create(Context, RawChars, StringLiteral::Wide,
3530 /*Pascal*/ false, ResTy, Loc);
3531 } else {
3532 ResTy = Context.adjustStringLiteralBaseType(Context.CharTy.withConst());
3533 ResTy = Context.getConstantArrayType(ResTy, LengthI, nullptr,
3534 ArrayType::Normal,
3535 /*IndexTypeQuals*/ 0);
3536 SL = StringLiteral::Create(Context, Str, StringLiteral::Ascii,
3537 /*Pascal*/ false, ResTy, Loc);
3538 }
3539 }
3540
3541 return PredefinedExpr::Create(Context, Loc, ResTy, IK, SL);
3542}
3543
3544ExprResult Sema::BuildSYCLUniqueStableNameExpr(SourceLocation OpLoc,
3545 SourceLocation LParen,
3546 SourceLocation RParen,
3547 TypeSourceInfo *TSI) {
3548 return SYCLUniqueStableNameExpr::Create(Context, OpLoc, LParen, RParen, TSI);
3549}
3550
3551ExprResult Sema::ActOnSYCLUniqueStableNameExpr(SourceLocation OpLoc,
3552 SourceLocation LParen,
3553 SourceLocation RParen,
3554 ParsedType ParsedTy) {
3555 TypeSourceInfo *TSI = nullptr;
3556 QualType Ty = GetTypeFromParser(ParsedTy, &TSI);
3557
3558 if (Ty.isNull())
3559 return ExprError();
3560 if (!TSI)
3561 TSI = Context.getTrivialTypeSourceInfo(Ty, LParen);
3562
3563 return BuildSYCLUniqueStableNameExpr(OpLoc, LParen, RParen, TSI);
3564}
3565
3566ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind) {
3567 PredefinedExpr::IdentKind IK;
3568
3569 switch (Kind) {
3570 default: llvm_unreachable("Unknown simple primary expr!")::llvm::llvm_unreachable_internal("Unknown simple primary expr!"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 3570)
;
3571 case tok::kw___func__: IK = PredefinedExpr::Func; break; // [C99 6.4.2.2]
3572 case tok::kw___FUNCTION__: IK = PredefinedExpr::Function; break;
3573 case tok::kw___FUNCDNAME__: IK = PredefinedExpr::FuncDName; break; // [MS]
3574 case tok::kw___FUNCSIG__: IK = PredefinedExpr::FuncSig; break; // [MS]
3575 case tok::kw_L__FUNCTION__: IK = PredefinedExpr::LFunction; break; // [MS]
3576 case tok::kw_L__FUNCSIG__: IK = PredefinedExpr::LFuncSig; break; // [MS]
3577 case tok::kw___PRETTY_FUNCTION__: IK = PredefinedExpr::PrettyFunction; break;
3578 }
3579
3580 return BuildPredefinedExpr(Loc, IK);
3581}
3582
3583ExprResult Sema::ActOnCharacterConstant(const Token &Tok, Scope *UDLScope) {
3584 SmallString<16> CharBuffer;
3585 bool Invalid = false;
3586 StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid);
3587 if (Invalid)
3588 return ExprError();
3589
3590 CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
3591 PP, Tok.getKind());
3592 if (Literal.hadError())
3593 return ExprError();
3594
3595 QualType Ty;
3596 if (Literal.isWide())
3597 Ty = Context.WideCharTy; // L'x' -> wchar_t in C and C++.
3598 else if (Literal.isUTF8() && getLangOpts().Char8)
3599 Ty = Context.Char8Ty; // u8'x' -> char8_t when it exists.
3600 else if (Literal.isUTF16())
3601 Ty = Context.Char16Ty; // u'x' -> char16_t in C11 and C++11.
3602 else if (Literal.isUTF32())
3603 Ty = Context.Char32Ty; // U'x' -> char32_t in C11 and C++11.
3604 else if (!getLangOpts().CPlusPlus || Literal.isMultiChar())
3605 Ty = Context.IntTy; // 'x' -> int in C, 'wxyz' -> int in C++.
3606 else
3607 Ty = Context.CharTy; // 'x' -> char in C++
3608
3609 CharacterLiteral::CharacterKind Kind = CharacterLiteral::Ascii;
3610 if (Literal.isWide())
3611 Kind = CharacterLiteral::Wide;
3612 else if (Literal.isUTF16())
3613 Kind = CharacterLiteral::UTF16;
3614 else if (Literal.isUTF32())
3615 Kind = CharacterLiteral::UTF32;
3616 else if (Literal.isUTF8())
3617 Kind = CharacterLiteral::UTF8;
3618
3619 Expr *Lit = new (Context) CharacterLiteral(Literal.getValue(), Kind, Ty,
3620 Tok.getLocation());
3621
3622 if (Literal.getUDSuffix().empty())
3623 return Lit;
3624
3625 // We're building a user-defined literal.
3626 IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
3627 SourceLocation UDSuffixLoc =
3628 getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
3629
3630 // Make sure we're allowed user-defined literals here.
3631 if (!UDLScope)
3632 return ExprError(Diag(UDSuffixLoc, diag::err_invalid_character_udl));
3633
3634 // C++11 [lex.ext]p6: The literal L is treated as a call of the form
3635 // operator "" X (ch)
3636 return BuildCookedLiteralOperatorCall(*this, UDLScope, UDSuffix, UDSuffixLoc,
3637 Lit, Tok.getLocation());
3638}
3639
3640ExprResult Sema::ActOnIntegerConstant(SourceLocation Loc, uint64_t Val) {
3641 unsigned IntSize = Context.getTargetInfo().getIntWidth();
3642 return IntegerLiteral::Create(Context, llvm::APInt(IntSize, Val),
3643 Context.IntTy, Loc);
3644}
3645
3646static Expr *BuildFloatingLiteral(Sema &S, NumericLiteralParser &Literal,
3647 QualType Ty, SourceLocation Loc) {
3648 const llvm::fltSemantics &Format = S.Context.getFloatTypeSemantics(Ty);
3649
3650 using llvm::APFloat;
3651 APFloat Val(Format);
3652
3653 APFloat::opStatus result = Literal.GetFloatValue(Val);
3654
3655 // Overflow is always an error, but underflow is only an error if
3656 // we underflowed to zero (APFloat reports denormals as underflow).
3657 if ((result & APFloat::opOverflow) ||
3658 ((result & APFloat::opUnderflow) && Val.isZero())) {
3659 unsigned diagnostic;
3660 SmallString<20> buffer;
3661 if (result & APFloat::opOverflow) {
3662 diagnostic = diag::warn_float_overflow;
3663 APFloat::getLargest(Format).toString(buffer);
3664 } else {
3665 diagnostic = diag::warn_float_underflow;
3666 APFloat::getSmallest(Format).toString(buffer);
3667 }
3668
3669 S.Diag(Loc, diagnostic)
3670 << Ty
3671 << StringRef(buffer.data(), buffer.size());
3672 }
3673
3674 bool isExact = (result == APFloat::opOK);
3675 return FloatingLiteral::Create(S.Context, Val, isExact, Ty, Loc);
3676}
3677
3678bool Sema::CheckLoopHintExpr(Expr *E, SourceLocation Loc) {
3679 assert(E && "Invalid expression")(static_cast <bool> (E && "Invalid expression")
? void (0) : __assert_fail ("E && \"Invalid expression\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 3679, __extension__ __PRETTY_FUNCTION__))
;
3680
3681 if (E->isValueDependent())
3682 return false;
3683
3684 QualType QT = E->getType();
3685 if (!QT->isIntegerType() || QT->isBooleanType() || QT->isCharType()) {
3686 Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_type) << QT;
3687 return true;
3688 }
3689
3690 llvm::APSInt ValueAPS;
3691 ExprResult R = VerifyIntegerConstantExpression(E, &ValueAPS);
3692
3693 if (R.isInvalid())
3694 return true;
3695
3696 bool ValueIsPositive = ValueAPS.isStrictlyPositive();
3697 if (!ValueIsPositive || ValueAPS.getActiveBits() > 31) {
3698 Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_value)
3699 << toString(ValueAPS, 10) << ValueIsPositive;
3700 return true;
3701 }
3702
3703 return false;
3704}
3705
3706ExprResult Sema::ActOnNumericConstant(const Token &Tok, Scope *UDLScope) {
3707 // Fast path for a single digit (which is quite common). A single digit
3708 // cannot have a trigraph, escaped newline, radix prefix, or suffix.
3709 if (Tok.getLength() == 1) {
3710 const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
3711 return ActOnIntegerConstant(Tok.getLocation(), Val-'0');
3712 }
3713
3714 SmallString<128> SpellingBuffer;
3715 // NumericLiteralParser wants to overread by one character. Add padding to
3716 // the buffer in case the token is copied to the buffer. If getSpelling()
3717 // returns a StringRef to the memory buffer, it should have a null char at
3718 // the EOF, so it is also safe.
3719 SpellingBuffer.resize(Tok.getLength() + 1);
3720
3721 // Get the spelling of the token, which eliminates trigraphs, etc.
3722 bool Invalid = false;
3723 StringRef TokSpelling = PP.getSpelling(Tok, SpellingBuffer, &Invalid);
3724 if (Invalid)
3725 return ExprError();
3726
3727 NumericLiteralParser Literal(TokSpelling, Tok.getLocation(),
3728 PP.getSourceManager(), PP.getLangOpts(),
3729 PP.getTargetInfo(), PP.getDiagnostics());
3730 if (Literal.hadError)
3731 return ExprError();
3732
3733 if (Literal.hasUDSuffix()) {
3734 // We're building a user-defined literal.
3735 IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
3736 SourceLocation UDSuffixLoc =
3737 getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
3738
3739 // Make sure we're allowed user-defined literals here.
3740 if (!UDLScope)
3741 return ExprError(Diag(UDSuffixLoc, diag::err_invalid_numeric_udl));
3742
3743 QualType CookedTy;
3744 if (Literal.isFloatingLiteral()) {
3745 // C++11 [lex.ext]p4: If S contains a literal operator with parameter type
3746 // long double, the literal is treated as a call of the form
3747 // operator "" X (f L)
3748 CookedTy = Context.LongDoubleTy;
3749 } else {
3750 // C++11 [lex.ext]p3: If S contains a literal operator with parameter type
3751 // unsigned long long, the literal is treated as a call of the form
3752 // operator "" X (n ULL)
3753 CookedTy = Context.UnsignedLongLongTy;
3754 }
3755
3756 DeclarationName OpName =
3757 Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
3758 DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
3759 OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
3760
3761 SourceLocation TokLoc = Tok.getLocation();
3762
3763 // Perform literal operator lookup to determine if we're building a raw
3764 // literal or a cooked one.
3765 LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
3766 switch (LookupLiteralOperator(UDLScope, R, CookedTy,
3767 /*AllowRaw*/ true, /*AllowTemplate*/ true,
3768 /*AllowStringTemplatePack*/ false,
3769 /*DiagnoseMissing*/ !Literal.isImaginary)) {
3770 case LOLR_ErrorNoDiagnostic:
3771 // Lookup failure for imaginary constants isn't fatal, there's still the
3772 // GNU extension producing _Complex types.
3773 break;
3774 case LOLR_Error:
3775 return ExprError();
3776 case LOLR_Cooked: {
3777 Expr *Lit;
3778 if (Literal.isFloatingLiteral()) {
3779 Lit = BuildFloatingLiteral(*this, Literal, CookedTy, Tok.getLocation());
3780 } else {
3781 llvm::APInt ResultVal(Context.getTargetInfo().getLongLongWidth(), 0);
3782 if (Literal.GetIntegerValue(ResultVal))
3783 Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
3784 << /* Unsigned */ 1;
3785 Lit = IntegerLiteral::Create(Context, ResultVal, CookedTy,
3786 Tok.getLocation());
3787 }
3788 return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
3789 }
3790
3791 case LOLR_Raw: {
3792 // C++11 [lit.ext]p3, p4: If S contains a raw literal operator, the
3793 // literal is treated as a call of the form
3794 // operator "" X ("n")
3795 unsigned Length = Literal.getUDSuffixOffset();
3796 QualType StrTy = Context.getConstantArrayType(
3797 Context.adjustStringLiteralBaseType(Context.CharTy.withConst()),
3798 llvm::APInt(32, Length + 1), nullptr, ArrayType::Normal, 0);
3799 Expr *Lit = StringLiteral::Create(
3800 Context, StringRef(TokSpelling.data(), Length), StringLiteral::Ascii,
3801 /*Pascal*/false, StrTy, &TokLoc, 1);
3802 return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
3803 }
3804
3805 case LOLR_Template: {
3806 // C++11 [lit.ext]p3, p4: Otherwise (S contains a literal operator
3807 // template), L is treated as a call fo the form
3808 // operator "" X <'c1', 'c2', ... 'ck'>()
3809 // where n is the source character sequence c1 c2 ... ck.
3810 TemplateArgumentListInfo ExplicitArgs;
3811 unsigned CharBits = Context.getIntWidth(Context.CharTy);
3812 bool CharIsUnsigned = Context.CharTy->isUnsignedIntegerType();
3813 llvm::APSInt Value(CharBits, CharIsUnsigned);
3814 for (unsigned I = 0, N = Literal.getUDSuffixOffset(); I != N; ++I) {
3815 Value = TokSpelling[I];
3816 TemplateArgument Arg(Context, Value, Context.CharTy);
3817 TemplateArgumentLocInfo ArgInfo;
3818 ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
3819 }
3820 return BuildLiteralOperatorCall(R, OpNameInfo, None, TokLoc,
3821 &ExplicitArgs);
3822 }
3823 case LOLR_StringTemplatePack:
3824 llvm_unreachable("unexpected literal operator lookup result")::llvm::llvm_unreachable_internal("unexpected literal operator lookup result"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 3824)
;
3825 }
3826 }
3827
3828 Expr *Res;
3829
3830 if (Literal.isFixedPointLiteral()) {
3831 QualType Ty;
3832
3833 if (Literal.isAccum) {
3834 if (Literal.isHalf) {
3835 Ty = Context.ShortAccumTy;
3836 } else if (Literal.isLong) {
3837 Ty = Context.LongAccumTy;
3838 } else {
3839 Ty = Context.AccumTy;
3840 }
3841 } else if (Literal.isFract) {
3842 if (Literal.isHalf) {
3843 Ty = Context.ShortFractTy;
3844 } else if (Literal.isLong) {
3845 Ty = Context.LongFractTy;
3846 } else {
3847 Ty = Context.FractTy;
3848 }
3849 }
3850
3851 if (Literal.isUnsigned) Ty = Context.getCorrespondingUnsignedType(Ty);
3852
3853 bool isSigned = !Literal.isUnsigned;
3854 unsigned scale = Context.getFixedPointScale(Ty);
3855 unsigned bit_width = Context.getTypeInfo(Ty).Width;
3856
3857 llvm::APInt Val(bit_width, 0, isSigned);
3858 bool Overflowed = Literal.GetFixedPointValue(Val, scale);
3859 bool ValIsZero = Val.isNullValue() && !Overflowed;
3860
3861 auto MaxVal = Context.getFixedPointMax(Ty).getValue();
3862 if (Literal.isFract && Val == MaxVal + 1 && !ValIsZero)
3863 // Clause 6.4.4 - The value of a constant shall be in the range of
3864 // representable values for its type, with exception for constants of a
3865 // fract type with a value of exactly 1; such a constant shall denote
3866 // the maximal value for the type.
3867 --Val;
3868 else if (Val.ugt(MaxVal) || Overflowed)
3869 Diag(Tok.getLocation(), diag::err_too_large_for_fixed_point);
3870
3871 Res = FixedPointLiteral::CreateFromRawInt(Context, Val, Ty,
3872 Tok.getLocation(), scale);
3873 } else if (Literal.isFloatingLiteral()) {
3874 QualType Ty;
3875 if (Literal.isHalf){
3876 if (getOpenCLOptions().isAvailableOption("cl_khr_fp16", getLangOpts()))
3877 Ty = Context.HalfTy;
3878 else {
3879 Diag(Tok.getLocation(), diag::err_half_const_requires_fp16);
3880 return ExprError();
3881 }
3882 } else if (Literal.isFloat)
3883 Ty = Context.FloatTy;
3884 else if (Literal.isLong)
3885 Ty = Context.LongDoubleTy;
3886 else if (Literal.isFloat16)
3887 Ty = Context.Float16Ty;
3888 else if (Literal.isFloat128)
3889 Ty = Context.Float128Ty;
3890 else
3891 Ty = Context.DoubleTy;
3892
3893 Res = BuildFloatingLiteral(*this, Literal, Ty, Tok.getLocation());
3894
3895 if (Ty == Context.DoubleTy) {
3896 if (getLangOpts().SinglePrecisionConstants) {
3897 if (Ty->castAs<BuiltinType>()->getKind() != BuiltinType::Float) {
3898 Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get();
3899 }
3900 } else if (getLangOpts().OpenCL && !getOpenCLOptions().isAvailableOption(
3901 "cl_khr_fp64", getLangOpts())) {
3902 // Impose single-precision float type when cl_khr_fp64 is not enabled.
3903 Diag(Tok.getLocation(), diag::warn_double_const_requires_fp64)
3904 << (getLangOpts().OpenCLVersion >= 300);
3905 Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get();
3906 }
3907 }
3908 } else if (!Literal.isIntegerLiteral()) {
3909 return ExprError();
3910 } else {
3911 QualType Ty;
3912
3913 // 'long long' is a C99 or C++11 feature.
3914 if (!getLangOpts().C99 && Literal.isLongLong) {
3915 if (getLangOpts().CPlusPlus)
3916 Diag(Tok.getLocation(),
3917 getLangOpts().CPlusPlus11 ?
3918 diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
3919 else
3920 Diag(Tok.getLocation(), diag::ext_c99_longlong);
3921 }
3922
3923 // 'z/uz' literals are a C++2b feature.
3924 if (Literal.isSizeT)
3925 Diag(Tok.getLocation(), getLangOpts().CPlusPlus
3926 ? getLangOpts().CPlusPlus2b
3927 ? diag::warn_cxx20_compat_size_t_suffix
3928 : diag::ext_cxx2b_size_t_suffix
3929 : diag::err_cxx2b_size_t_suffix);
3930
3931 // Get the value in the widest-possible width.
3932 unsigned MaxWidth = Context.getTargetInfo().getIntMaxTWidth();
3933 llvm::APInt ResultVal(MaxWidth, 0);
3934
3935 if (Literal.GetIntegerValue(ResultVal)) {
3936 // If this value didn't fit into uintmax_t, error and force to ull.
3937 Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
3938 << /* Unsigned */ 1;
3939 Ty = Context.UnsignedLongLongTy;
3940 assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&(static_cast <bool> (Context.getTypeSize(Ty) == ResultVal
.getBitWidth() && "long long is not intmax_t?") ? void
(0) : __assert_fail ("Context.getTypeSize(Ty) == ResultVal.getBitWidth() && \"long long is not intmax_t?\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 3941, __extension__ __PRETTY_FUNCTION__))
3941 "long long is not intmax_t?")(static_cast <bool> (Context.getTypeSize(Ty) == ResultVal
.getBitWidth() && "long long is not intmax_t?") ? void
(0) : __assert_fail ("Context.getTypeSize(Ty) == ResultVal.getBitWidth() && \"long long is not intmax_t?\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 3941, __extension__ __PRETTY_FUNCTION__))
;
3942 } else {
3943 // If this value fits into a ULL, try to figure out what else it fits into
3944 // according to the rules of C99 6.4.4.1p5.
3945
3946 // Octal, Hexadecimal, and integers with a U suffix are allowed to
3947 // be an unsigned int.
3948 bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
3949
3950 // Check from smallest to largest, picking the smallest type we can.
3951 unsigned Width = 0;
3952
3953 // Microsoft specific integer suffixes are explicitly sized.
3954 if (Literal.MicrosoftInteger) {
3955 if (Literal.MicrosoftInteger == 8 && !Literal.isUnsigned) {
3956 Width = 8;
3957 Ty = Context.CharTy;
3958 } else {
3959 Width = Literal.MicrosoftInteger;
3960 Ty = Context.getIntTypeForBitwidth(Width,
3961 /*Signed=*/!Literal.isUnsigned);
3962 }
3963 }
3964
3965 // Check C++2b size_t literals.
3966 if (Literal.isSizeT) {
3967 assert(!Literal.MicrosoftInteger &&(static_cast <bool> (!Literal.MicrosoftInteger &&
"size_t literals can't be Microsoft literals") ? void (0) : __assert_fail
("!Literal.MicrosoftInteger && \"size_t literals can't be Microsoft literals\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 3968, __extension__ __PRETTY_FUNCTION__))
3968 "size_t literals can't be Microsoft literals")(static_cast <bool> (!Literal.MicrosoftInteger &&
"size_t literals can't be Microsoft literals") ? void (0) : __assert_fail
("!Literal.MicrosoftInteger && \"size_t literals can't be Microsoft literals\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 3968, __extension__ __PRETTY_FUNCTION__))
;
3969 unsigned SizeTSize = Context.getTargetInfo().getTypeWidth(
3970 Context.getTargetInfo().getSizeType());
3971
3972 // Does it fit in size_t?
3973 if (ResultVal.isIntN(SizeTSize)) {
3974 // Does it fit in ssize_t?
3975 if (!Literal.isUnsigned && ResultVal[SizeTSize - 1] == 0)
3976 Ty = Context.getSignedSizeType();
3977 else if (AllowUnsigned)
3978 Ty = Context.getSizeType();
3979 Width = SizeTSize;
3980 }
3981 }
3982
3983 if (Ty.isNull() && !Literal.isLong && !Literal.isLongLong &&
3984 !Literal.isSizeT) {
3985 // Are int/unsigned possibilities?
3986 unsigned IntSize = Context.getTargetInfo().getIntWidth();
3987
3988 // Does it fit in a unsigned int?
3989 if (ResultVal.isIntN(IntSize)) {
3990 // Does it fit in a signed int?
3991 if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
3992 Ty = Context.IntTy;
3993 else if (AllowUnsigned)
3994 Ty = Context.UnsignedIntTy;
3995 Width = IntSize;
3996 }
3997 }
3998
3999 // Are long/unsigned long possibilities?
4000 if (Ty.isNull() && !Literal.isLongLong && !Literal.isSizeT) {
4001 unsigned LongSize = Context.getTargetInfo().getLongWidth();
4002
4003 // Does it fit in a unsigned long?
4004 if (ResultVal.isIntN(LongSize)) {
4005 // Does it fit in a signed long?
4006 if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
4007 Ty = Context.LongTy;
4008 else if (AllowUnsigned)
4009 Ty = Context.UnsignedLongTy;
4010 // Check according to the rules of C90 6.1.3.2p5. C++03 [lex.icon]p2
4011 // is compatible.
4012 else if (!getLangOpts().C99 && !getLangOpts().CPlusPlus11) {
4013 const unsigned LongLongSize =
4014 Context.getTargetInfo().getLongLongWidth();
4015 Diag(Tok.getLocation(),
4016 getLangOpts().CPlusPlus
4017 ? Literal.isLong
4018 ? diag::warn_old_implicitly_unsigned_long_cxx
4019 : /*C++98 UB*/ diag::
4020 ext_old_implicitly_unsigned_long_cxx
4021 : diag::warn_old_implicitly_unsigned_long)
4022 << (LongLongSize > LongSize ? /*will have type 'long long'*/ 0
4023 : /*will be ill-formed*/ 1);
4024 Ty = Context.UnsignedLongTy;
4025 }
4026 Width = LongSize;
4027 }
4028 }
4029
4030 // Check long long if needed.
4031 if (Ty.isNull() && !Literal.isSizeT) {
4032 unsigned LongLongSize = Context.getTargetInfo().getLongLongWidth();
4033
4034 // Does it fit in a unsigned long long?
4035 if (ResultVal.isIntN(LongLongSize)) {
4036 // Does it fit in a signed long long?
4037 // To be compatible with MSVC, hex integer literals ending with the
4038 // LL or i64 suffix are always signed in Microsoft mode.
4039 if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 ||
4040 (getLangOpts().MSVCCompat && Literal.isLongLong)))
4041 Ty = Context.LongLongTy;
4042 else if (AllowUnsigned)
4043 Ty = Context.UnsignedLongLongTy;
4044 Width = LongLongSize;
4045 }
4046 }
4047
4048 // If we still couldn't decide a type, we either have 'size_t' literal
4049 // that is out of range, or a decimal literal that does not fit in a
4050 // signed long long and has no U suffix.
4051 if (Ty.isNull()) {
4052 if (Literal.isSizeT)
4053 Diag(Tok.getLocation(), diag::err_size_t_literal_too_large)
4054 << Literal.isUnsigned;
4055 else
4056 Diag(Tok.getLocation(),
4057 diag::ext_integer_literal_too_large_for_signed);
4058 Ty = Context.UnsignedLongLongTy;
4059 Width = Context.getTargetInfo().getLongLongWidth();
4060 }
4061
4062 if (ResultVal.getBitWidth() != Width)
4063 ResultVal = ResultVal.trunc(Width);
4064 }
4065 Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation());
4066 }
4067
4068 // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
4069 if (Literal.isImaginary) {
4070 Res = new (Context) ImaginaryLiteral(Res,
4071 Context.getComplexType(Res->getType()));
4072
4073 Diag(Tok.getLocation(), diag::ext_imaginary_constant);
4074 }
4075 return Res;
4076}
4077
4078ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E) {
4079 assert(E && "ActOnParenExpr() missing expr")(static_cast <bool> (E && "ActOnParenExpr() missing expr"
) ? void (0) : __assert_fail ("E && \"ActOnParenExpr() missing expr\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 4079, __extension__ __PRETTY_FUNCTION__))
;
4080 QualType ExprTy = E->getType();
4081 if (getLangOpts().ProtectParens && CurFPFeatures.getAllowFPReassociate() &&
4082 !E->isLValue() && ExprTy->hasFloatingRepresentation())
4083 return BuildBuiltinCallExpr(R, Builtin::BI__arithmetic_fence, E);
4084 return new (Context) ParenExpr(L, R, E);
4085}
4086
4087static bool CheckVecStepTraitOperandType(Sema &S, QualType T,
4088 SourceLocation Loc,
4089 SourceRange ArgRange) {
4090 // [OpenCL 1.1 6.11.12] "The vec_step built-in function takes a built-in
4091 // scalar or vector data type argument..."
4092 // Every built-in scalar type (OpenCL 1.1 6.1.1) is either an arithmetic
4093 // type (C99 6.2.5p18) or void.
4094 if (!(T->isArithmeticType() || T->isVoidType() || T->isVectorType())) {
4095 S.Diag(Loc, diag::err_vecstep_non_scalar_vector_type)
4096 << T << ArgRange;
4097 return true;
4098 }
4099
4100 assert((T->isVoidType() || !T->isIncompleteType()) &&(static_cast <bool> ((T->isVoidType() || !T->isIncompleteType
()) && "Scalar types should always be complete") ? void
(0) : __assert_fail ("(T->isVoidType() || !T->isIncompleteType()) && \"Scalar types should always be complete\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 4101, __extension__ __PRETTY_FUNCTION__))
4101 "Scalar types should always be complete")(static_cast <bool> ((T->isVoidType() || !T->isIncompleteType
()) && "Scalar types should always be complete") ? void
(0) : __assert_fail ("(T->isVoidType() || !T->isIncompleteType()) && \"Scalar types should always be complete\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 4101, __extension__ __PRETTY_FUNCTION__))
;
4102 return false;
4103}
4104
4105static bool CheckExtensionTraitOperandType(Sema &S, QualType T,
4106 SourceLocation Loc,
4107 SourceRange ArgRange,
4108 UnaryExprOrTypeTrait TraitKind) {
4109 // Invalid types must be hard errors for SFINAE in C++.
4110 if (S.LangOpts.CPlusPlus)
4111 return true;
4112
4113 // C99 6.5.3.4p1:
4114 if (T->isFunctionType() &&
4115 (TraitKind == UETT_SizeOf || TraitKind == UETT_AlignOf ||
4116 TraitKind == UETT_PreferredAlignOf)) {
4117 // sizeof(function)/alignof(function) is allowed as an extension.
4118 S.Diag(Loc, diag::ext_sizeof_alignof_function_type)
4119 << getTraitSpelling(TraitKind) << ArgRange;
4120 return false;
4121 }
4122
4123 // Allow sizeof(void)/alignof(void) as an extension, unless in OpenCL where
4124 // this is an error (OpenCL v1.1 s6.3.k)
4125 if (T->isVoidType()) {
4126 unsigned DiagID = S.LangOpts.OpenCL ? diag::err_opencl_sizeof_alignof_type
4127 : diag::ext_sizeof_alignof_void_type;
4128 S.Diag(Loc, DiagID) << getTraitSpelling(TraitKind) << ArgRange;
4129 return false;
4130 }
4131
4132 return true;
4133}
4134
4135static bool CheckObjCTraitOperandConstraints(Sema &S, QualType T,
4136 SourceLocation Loc,
4137 SourceRange ArgRange,
4138 UnaryExprOrTypeTrait TraitKind) {
4139 // Reject sizeof(interface) and sizeof(interface<proto>) if the
4140 // runtime doesn't allow it.
4141 if (!S.LangOpts.ObjCRuntime.allowsSizeofAlignof() && T->isObjCObjectType()) {
4142 S.Diag(Loc, diag::err_sizeof_nonfragile_interface)
4143 << T << (TraitKind == UETT_SizeOf)
4144 << ArgRange;
4145 return true;
4146 }
4147
4148 return false;
4149}
4150
4151/// Check whether E is a pointer from a decayed array type (the decayed
4152/// pointer type is equal to T) and emit a warning if it is.
4153static void warnOnSizeofOnArrayDecay(Sema &S, SourceLocation Loc, QualType T,
4154 Expr *E) {
4155 // Don't warn if the operation changed the type.
4156 if (T != E->getType())
4157 return;
4158
4159 // Now look for array decays.
4160 ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E);
4161 if (!ICE || ICE->getCastKind() != CK_ArrayToPointerDecay)
4162 return;
4163
4164 S.Diag(Loc, diag::warn_sizeof_array_decay) << ICE->getSourceRange()
4165 << ICE->getType()
4166 << ICE->getSubExpr()->getType();
4167}
4168
4169/// Check the constraints on expression operands to unary type expression
4170/// and type traits.
4171///
4172/// Completes any types necessary and validates the constraints on the operand
4173/// expression. The logic mostly mirrors the type-based overload, but may modify
4174/// the expression as it completes the type for that expression through template
4175/// instantiation, etc.
4176bool Sema::CheckUnaryExprOrTypeTraitOperand(Expr *E,
4177 UnaryExprOrTypeTrait ExprKind) {
4178 QualType ExprTy = E->getType();
4179 assert(!ExprTy->isReferenceType())(static_cast <bool> (!ExprTy->isReferenceType()) ? void
(0) : __assert_fail ("!ExprTy->isReferenceType()", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 4179, __extension__ __PRETTY_FUNCTION__))
;
4180
4181 bool IsUnevaluatedOperand =
4182 (ExprKind == UETT_SizeOf || ExprKind == UETT_AlignOf ||
4183 ExprKind == UETT_PreferredAlignOf || ExprKind == UETT_VecStep);
4184 if (IsUnevaluatedOperand) {
4185 ExprResult Result = CheckUnevaluatedOperand(E);
4186 if (Result.isInvalid())
4187 return true;
4188 E = Result.get();
4189 }
4190
4191 // The operand for sizeof and alignof is in an unevaluated expression context,
4192 // so side effects could result in unintended consequences.
4193 // Exclude instantiation-dependent expressions, because 'sizeof' is sometimes
4194 // used to build SFINAE gadgets.
4195 // FIXME: Should we consider instantiation-dependent operands to 'alignof'?
4196 if (IsUnevaluatedOperand && !inTemplateInstantiation() &&
4197 !E->isInstantiationDependent() &&
4198 E->HasSideEffects(Context, false))
4199 Diag(E->getExprLoc(), diag::warn_side_effects_unevaluated_context);
4200
4201 if (ExprKind == UETT_VecStep)
4202 return CheckVecStepTraitOperandType(*this, ExprTy, E->getExprLoc(),
4203 E->getSourceRange());
4204
4205 // Explicitly list some types as extensions.
4206 if (!CheckExtensionTraitOperandType(*this, ExprTy, E->getExprLoc(),
4207 E->getSourceRange(), ExprKind))
4208 return false;
4209
4210 // 'alignof' applied to an expression only requires the base element type of
4211 // the expression to be complete. 'sizeof' requires the expression's type to
4212 // be complete (and will attempt to complete it if it's an array of unknown
4213 // bound).
4214 if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) {
4215 if (RequireCompleteSizedType(
4216 E->getExprLoc(), Context.getBaseElementType(E->getType()),
4217 diag::err_sizeof_alignof_incomplete_or_sizeless_type,
4218 getTraitSpelling(ExprKind), E->getSourceRange()))
4219 return true;
4220 } else {
4221 if (RequireCompleteSizedExprType(
4222 E, diag::err_sizeof_alignof_incomplete_or_sizeless_type,
4223 getTraitSpelling(ExprKind), E->getSourceRange()))
4224 return true;
4225 }
4226
4227 // Completing the expression's type may have changed it.
4228 ExprTy = E->getType();
4229 assert(!ExprTy->isReferenceType())(static_cast <bool> (!ExprTy->isReferenceType()) ? void
(0) : __assert_fail ("!ExprTy->isReferenceType()", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 4229, __extension__ __PRETTY_FUNCTION__))
;
4230
4231 if (ExprTy->isFunctionType()) {
4232 Diag(E->getExprLoc(), diag::err_sizeof_alignof_function_type)
4233 << getTraitSpelling(ExprKind) << E->getSourceRange();
4234 return true;
4235 }
4236
4237 if (CheckObjCTraitOperandConstraints(*this, ExprTy, E->getExprLoc(),
4238 E->getSourceRange(), ExprKind))
4239 return true;
4240
4241 if (ExprKind == UETT_SizeOf) {
4242 if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
4243 if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DeclRef->getFoundDecl())) {
4244 QualType OType = PVD->getOriginalType();
4245 QualType Type = PVD->getType();
4246 if (Type->isPointerType() && OType->isArrayType()) {
4247 Diag(E->getExprLoc(), diag::warn_sizeof_array_param)
4248 << Type << OType;
4249 Diag(PVD->getLocation(), diag::note_declared_at);
4250 }
4251 }
4252 }
4253
4254 // Warn on "sizeof(array op x)" and "sizeof(x op array)", where the array
4255 // decays into a pointer and returns an unintended result. This is most
4256 // likely a typo for "sizeof(array) op x".
4257 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E->IgnoreParens())) {
4258 warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
4259 BO->getLHS());
4260 warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
4261 BO->getRHS());
4262 }
4263 }
4264
4265 return false;
4266}
4267
4268/// Check the constraints on operands to unary expression and type
4269/// traits.
4270///
4271/// This will complete any types necessary, and validate the various constraints
4272/// on those operands.
4273///
4274/// The UsualUnaryConversions() function is *not* called by this routine.
4275/// C99 6.3.2.1p[2-4] all state:
4276/// Except when it is the operand of the sizeof operator ...
4277///
4278/// C++ [expr.sizeof]p4
4279/// The lvalue-to-rvalue, array-to-pointer, and function-to-pointer
4280/// standard conversions are not applied to the operand of sizeof.
4281///
4282/// This policy is followed for all of the unary trait expressions.
4283bool Sema::CheckUnaryExprOrTypeTraitOperand(QualType ExprType,
4284 SourceLocation OpLoc,
4285 SourceRange ExprRange,
4286 UnaryExprOrTypeTrait ExprKind) {
4287 if (ExprType->isDependentType())
4288 return false;
4289
4290 // C++ [expr.sizeof]p2:
4291 // When applied to a reference or a reference type, the result
4292 // is the size of the referenced type.
4293 // C++11 [expr.alignof]p3:
4294 // When alignof is applied to a reference type, the result
4295 // shall be the alignment of the referenced type.
4296 if (const ReferenceType *Ref = ExprType->getAs<ReferenceType>())
4297 ExprType = Ref->getPointeeType();
4298
4299 // C11 6.5.3.4/3, C++11 [expr.alignof]p3:
4300 // When alignof or _Alignof is applied to an array type, the result
4301 // is the alignment of the element type.
4302 if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf ||
4303 ExprKind == UETT_OpenMPRequiredSimdAlign)
4304 ExprType = Context.getBaseElementType(ExprType);
4305
4306 if (ExprKind == UETT_VecStep)
4307 return CheckVecStepTraitOperandType(*this, ExprType, OpLoc, ExprRange);
4308
4309 // Explicitly list some types as extensions.
4310 if (!CheckExtensionTraitOperandType(*this, ExprType, OpLoc, ExprRange,
4311 ExprKind))
4312 return false;
4313
4314 if (RequireCompleteSizedType(
4315 OpLoc, ExprType, diag::err_sizeof_alignof_incomplete_or_sizeless_type,
4316 getTraitSpelling(ExprKind), ExprRange))
4317 return true;
4318
4319 if (ExprType->isFunctionType()) {
4320 Diag(OpLoc, diag::err_sizeof_alignof_function_type)
4321 << getTraitSpelling(ExprKind) << ExprRange;
4322 return true;
4323 }
4324
4325 if (CheckObjCTraitOperandConstraints(*this, ExprType, OpLoc, ExprRange,
4326 ExprKind))
4327 return true;
4328
4329 return false;
4330}
4331
4332static bool CheckAlignOfExpr(Sema &S, Expr *E, UnaryExprOrTypeTrait ExprKind) {
4333 // Cannot know anything else if the expression is dependent.
4334 if (E->isTypeDependent())
4335 return false;
4336
4337 if (E->getObjectKind() == OK_BitField) {
4338 S.Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield)
4339 << 1 << E->getSourceRange();
4340 return true;
4341 }
4342
4343 ValueDecl *D = nullptr;
4344 Expr *Inner = E->IgnoreParens();
4345 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Inner)) {
4346 D = DRE->getDecl();
4347 } else if (MemberExpr *ME = dyn_cast<MemberExpr>(Inner)) {
4348 D = ME->getMemberDecl();
4349 }
4350
4351 // If it's a field, require the containing struct to have a
4352 // complete definition so that we can compute the layout.
4353 //
4354 // This can happen in C++11 onwards, either by naming the member
4355 // in a way that is not transformed into a member access expression
4356 // (in an unevaluated operand, for instance), or by naming the member
4357 // in a trailing-return-type.
4358 //
4359 // For the record, since __alignof__ on expressions is a GCC
4360 // extension, GCC seems to permit this but always gives the
4361 // nonsensical answer 0.
4362 //
4363 // We don't really need the layout here --- we could instead just
4364 // directly check for all the appropriate alignment-lowing
4365 // attributes --- but that would require duplicating a lot of
4366 // logic that just isn't worth duplicating for such a marginal
4367 // use-case.
4368 if (FieldDecl *FD = dyn_cast_or_null<FieldDecl>(D)) {
4369 // Fast path this check, since we at least know the record has a
4370 // definition if we can find a member of it.
4371 if (!FD->getParent()->isCompleteDefinition()) {
4372 S.Diag(E->getExprLoc(), diag::err_alignof_member_of_incomplete_type)
4373 << E->getSourceRange();
4374 return true;
4375 }
4376
4377 // Otherwise, if it's a field, and the field doesn't have
4378 // reference type, then it must have a complete type (or be a
4379 // flexible array member, which we explicitly want to
4380 // white-list anyway), which makes the following checks trivial.
4381 if (!FD->getType()->isReferenceType())
4382 return false;
4383 }
4384
4385 return S.CheckUnaryExprOrTypeTraitOperand(E, ExprKind);
4386}
4387
4388bool Sema::CheckVecStepExpr(Expr *E) {
4389 E = E->IgnoreParens();
4390
4391 // Cannot know anything else if the expression is dependent.
4392 if (E->isTypeDependent())
4393 return false;
4394
4395 return CheckUnaryExprOrTypeTraitOperand(E, UETT_VecStep);
4396}
4397
4398static void captureVariablyModifiedType(ASTContext &Context, QualType T,
4399 CapturingScopeInfo *CSI) {
4400 assert(T->isVariablyModifiedType())(static_cast <bool> (T->isVariablyModifiedType()) ? void
(0) : __assert_fail ("T->isVariablyModifiedType()", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 4400, __extension__ __PRETTY_FUNCTION__))
;
4401 assert(CSI != nullptr)(static_cast <bool> (CSI != nullptr) ? void (0) : __assert_fail
("CSI != nullptr", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 4401, __extension__ __PRETTY_FUNCTION__))
;
4402
4403 // We're going to walk down into the type and look for VLA expressions.
4404 do {
4405 const Type *Ty = T.getTypePtr();
4406 switch (Ty->getTypeClass()) {
4407#define TYPE(Class, Base)
4408#define ABSTRACT_TYPE(Class, Base)
4409#define NON_CANONICAL_TYPE(Class, Base)
4410#define DEPENDENT_TYPE(Class, Base) case Type::Class:
4411#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
4412#include "clang/AST/TypeNodes.inc"
4413 T = QualType();
4414 break;
4415 // These types are never variably-modified.
4416 case Type::Builtin:
4417 case Type::Complex:
4418 case Type::Vector:
4419 case Type::ExtVector:
4420 case Type::ConstantMatrix:
4421 case Type::Record:
4422 case Type::Enum:
4423 case Type::Elaborated:
4424 case Type::TemplateSpecialization:
4425 case Type::ObjCObject:
4426 case Type::ObjCInterface:
4427 case Type::ObjCObjectPointer:
4428 case Type::ObjCTypeParam:
4429 case Type::Pipe:
4430 case Type::ExtInt:
4431 llvm_unreachable("type class is never variably-modified!")::llvm::llvm_unreachable_internal("type class is never variably-modified!"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 4431)
;
4432 case Type::Adjusted:
4433 T = cast<AdjustedType>(Ty)->getOriginalType();
4434 break;
4435 case Type::Decayed:
4436 T = cast<DecayedType>(Ty)->getPointeeType();
4437 break;
4438 case Type::Pointer:
4439 T = cast<PointerType>(Ty)->getPointeeType();
4440 break;
4441 case Type::BlockPointer:
4442 T = cast<BlockPointerType>(Ty)->getPointeeType();
4443 break;
4444 case Type::LValueReference:
4445 case Type::RValueReference:
4446 T = cast<ReferenceType>(Ty)->getPointeeType();
4447 break;
4448 case Type::MemberPointer:
4449 T = cast<MemberPointerType>(Ty)->getPointeeType();
4450 break;
4451 case Type::ConstantArray:
4452 case Type::IncompleteArray:
4453 // Losing element qualification here is fine.
4454 T = cast<ArrayType>(Ty)->getElementType();
4455 break;
4456 case Type::VariableArray: {
4457 // Losing element qualification here is fine.
4458 const VariableArrayType *VAT = cast<VariableArrayType>(Ty);
4459
4460 // Unknown size indication requires no size computation.
4461 // Otherwise, evaluate and record it.
4462 auto Size = VAT->getSizeExpr();
4463 if (Size && !CSI->isVLATypeCaptured(VAT) &&
4464 (isa<CapturedRegionScopeInfo>(CSI) || isa<LambdaScopeInfo>(CSI)))
4465 CSI->addVLATypeCapture(Size->getExprLoc(), VAT, Context.getSizeType());
4466
4467 T = VAT->getElementType();
4468 break;
4469 }
4470 case Type::FunctionProto:
4471 case Type::FunctionNoProto:
4472 T = cast<FunctionType>(Ty)->getReturnType();
4473 break;
4474 case Type::Paren:
4475 case Type::TypeOf:
4476 case Type::UnaryTransform:
4477 case Type::Attributed:
4478 case Type::SubstTemplateTypeParm:
4479 case Type::MacroQualified:
4480 // Keep walking after single level desugaring.
4481 T = T.getSingleStepDesugaredType(Context);
4482 break;
4483 case Type::Typedef:
4484 T = cast<TypedefType>(Ty)->desugar();
4485 break;
4486 case Type::Decltype:
4487 T = cast<DecltypeType>(Ty)->desugar();
4488 break;
4489 case Type::Auto:
4490 case Type::DeducedTemplateSpecialization:
4491 T = cast<DeducedType>(Ty)->getDeducedType();
4492 break;
4493 case Type::TypeOfExpr:
4494 T = cast<TypeOfExprType>(Ty)->getUnderlyingExpr()->getType();
4495 break;
4496 case Type::Atomic:
4497 T = cast<AtomicType>(Ty)->getValueType();
4498 break;
4499 }
4500 } while (!T.isNull() && T->isVariablyModifiedType());
4501}
4502
4503/// Build a sizeof or alignof expression given a type operand.
4504ExprResult
4505Sema::CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo,
4506 SourceLocation OpLoc,
4507 UnaryExprOrTypeTrait ExprKind,
4508 SourceRange R) {
4509 if (!TInfo)
4510 return ExprError();
4511
4512 QualType T = TInfo->getType();
4513
4514 if (!T->isDependentType() &&
4515 CheckUnaryExprOrTypeTraitOperand(T, OpLoc, R, ExprKind))
4516 return ExprError();
4517
4518 if (T->isVariablyModifiedType() && FunctionScopes.size() > 1) {
4519 if (auto *TT = T->getAs<TypedefType>()) {
4520 for (auto I = FunctionScopes.rbegin(),
4521 E = std::prev(FunctionScopes.rend());
4522 I != E; ++I) {
4523 auto *CSI = dyn_cast<CapturingScopeInfo>(*I);
4524 if (CSI == nullptr)
4525 break;
4526 DeclContext *DC = nullptr;
4527 if (auto *LSI = dyn_cast<LambdaScopeInfo>(CSI))
4528 DC = LSI->CallOperator;
4529 else if (auto *CRSI = dyn_cast<CapturedRegionScopeInfo>(CSI))
4530 DC = CRSI->TheCapturedDecl;
4531 else if (auto *BSI = dyn_cast<BlockScopeInfo>(CSI))
4532 DC = BSI->TheDecl;
4533 if (DC) {
4534 if (DC->containsDecl(TT->getDecl()))
4535 break;
4536 captureVariablyModifiedType(Context, T, CSI);
4537 }
4538 }
4539 }
4540 }
4541
4542 // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
4543 return new (Context) UnaryExprOrTypeTraitExpr(
4544 ExprKind, TInfo, Context.getSizeType(), OpLoc, R.getEnd());
4545}
4546
4547/// Build a sizeof or alignof expression given an expression
4548/// operand.
4549ExprResult
4550Sema::CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc,
4551 UnaryExprOrTypeTrait ExprKind) {
4552 ExprResult PE = CheckPlaceholderExpr(E);
4553 if (PE.isInvalid())
4554 return ExprError();
4555
4556 E = PE.get();
4557
4558 // Verify that the operand is valid.
4559 bool isInvalid = false;
4560 if (E->isTypeDependent()) {
4561 // Delay type-checking for type-dependent expressions.
4562 } else if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) {
4563 isInvalid = CheckAlignOfExpr(*this, E, ExprKind);
4564 } else if (ExprKind == UETT_VecStep) {
4565 isInvalid = CheckVecStepExpr(E);
4566 } else if (ExprKind == UETT_OpenMPRequiredSimdAlign) {
4567 Diag(E->getExprLoc(), diag::err_openmp_default_simd_align_expr);
4568 isInvalid = true;
4569 } else if (E->refersToBitField()) { // C99 6.5.3.4p1.
4570 Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield) << 0;
4571 isInvalid = true;
4572 } else {
4573 isInvalid = CheckUnaryExprOrTypeTraitOperand(E, UETT_SizeOf);
4574 }
4575
4576 if (isInvalid)
4577 return ExprError();
4578
4579 if (ExprKind == UETT_SizeOf && E->getType()->isVariableArrayType()) {
4580 PE = TransformToPotentiallyEvaluated(E);
4581 if (PE.isInvalid()) return ExprError();
4582 E = PE.get();
4583 }
4584
4585 // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
4586 return new (Context) UnaryExprOrTypeTraitExpr(
4587 ExprKind, E, Context.getSizeType(), OpLoc, E->getSourceRange().getEnd());
4588}
4589
4590/// ActOnUnaryExprOrTypeTraitExpr - Handle @c sizeof(type) and @c sizeof @c
4591/// expr and the same for @c alignof and @c __alignof
4592/// Note that the ArgRange is invalid if isType is false.
4593ExprResult
4594Sema::ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,
4595 UnaryExprOrTypeTrait ExprKind, bool IsType,
4596 void *TyOrEx, SourceRange ArgRange) {
4597 // If error parsing type, ignore.
4598 if (!TyOrEx) return ExprError();
4599
4600 if (IsType) {
4601 TypeSourceInfo *TInfo;
4602 (void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo);
4603 return CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, ArgRange);
4604 }
4605
4606 Expr *ArgEx = (Expr *)TyOrEx;
4607 ExprResult Result = CreateUnaryExprOrTypeTraitExpr(ArgEx, OpLoc, ExprKind);
4608 return Result;
4609}
4610
4611static QualType CheckRealImagOperand(Sema &S, ExprResult &V, SourceLocation Loc,
4612 bool IsReal) {
4613 if (V.get()->isTypeDependent())
4614 return S.Context.DependentTy;
4615
4616 // _Real and _Imag are only l-values for normal l-values.
4617 if (V.get()->getObjectKind() != OK_Ordinary) {
4618 V = S.DefaultLvalueConversion(V.get());
4619 if (V.isInvalid())
4620 return QualType();
4621 }
4622
4623 // These operators return the element type of a complex type.
4624 if (const ComplexType *CT = V.get()->getType()->getAs<ComplexType>())
4625 return CT->getElementType();
4626
4627 // Otherwise they pass through real integer and floating point types here.
4628 if (V.get()->getType()->isArithmeticType())
4629 return V.get()->getType();
4630
4631 // Test for placeholders.
4632 ExprResult PR = S.CheckPlaceholderExpr(V.get());
4633 if (PR.isInvalid()) return QualType();
4634 if (PR.get() != V.get()) {
4635 V = PR;
4636 return CheckRealImagOperand(S, V, Loc, IsReal);
4637 }
4638
4639 // Reject anything else.
4640 S.Diag(Loc, diag::err_realimag_invalid_type) << V.get()->getType()
4641 << (IsReal ? "__real" : "__imag");
4642 return QualType();
4643}
4644
4645
4646
4647ExprResult
4648Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
4649 tok::TokenKind Kind, Expr *Input) {
4650 UnaryOperatorKind Opc;
4651 switch (Kind) {
4652 default: llvm_unreachable("Unknown unary op!")::llvm::llvm_unreachable_internal("Unknown unary op!", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 4652)
;
4653 case tok::plusplus: Opc = UO_PostInc; break;
4654 case tok::minusminus: Opc = UO_PostDec; break;
4655 }
4656
4657 // Since this might is a postfix expression, get rid of ParenListExprs.
4658 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Input);
4659 if (Result.isInvalid()) return ExprError();
4660 Input = Result.get();
4661
4662 return BuildUnaryOp(S, OpLoc, Opc, Input);
4663}
4664
4665/// Diagnose if arithmetic on the given ObjC pointer is illegal.
4666///
4667/// \return true on error
4668static bool checkArithmeticOnObjCPointer(Sema &S,
4669 SourceLocation opLoc,
4670 Expr *op) {
4671 assert(op->getType()->isObjCObjectPointerType())(static_cast <bool> (op->getType()->isObjCObjectPointerType
()) ? void (0) : __assert_fail ("op->getType()->isObjCObjectPointerType()"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 4671, __extension__ __PRETTY_FUNCTION__))
;
4672 if (S.LangOpts.ObjCRuntime.allowsPointerArithmetic() &&
4673 !S.LangOpts.ObjCSubscriptingLegacyRuntime)
4674 return false;
4675
4676 S.Diag(opLoc, diag::err_arithmetic_nonfragile_interface)
4677 << op->getType()->castAs<ObjCObjectPointerType>()->getPointeeType()
4678 << op->getSourceRange();
4679 return true;
4680}
4681
4682static bool isMSPropertySubscriptExpr(Sema &S, Expr *Base) {
4683 auto *BaseNoParens = Base->IgnoreParens();
4684 if (auto *MSProp = dyn_cast<MSPropertyRefExpr>(BaseNoParens))
4685 return MSProp->getPropertyDecl()->getType()->isArrayType();
4686 return isa<MSPropertySubscriptExpr>(BaseNoParens);
4687}
4688
4689ExprResult
4690Sema::ActOnArraySubscriptExpr(Scope *S, Expr *base, SourceLocation lbLoc,
4691 Expr *idx, SourceLocation rbLoc) {
4692 if (base && !base->getType().isNull() &&
4693 base->getType()->isSpecificPlaceholderType(BuiltinType::OMPArraySection))
4694 return ActOnOMPArraySectionExpr(base, lbLoc, idx, SourceLocation(),
4695 SourceLocation(), /*Length*/ nullptr,
4696 /*Stride=*/nullptr, rbLoc);
4697
4698 // Since this might be a postfix expression, get rid of ParenListExprs.
4699 if (isa<ParenListExpr>(base)) {
4700 ExprResult result = MaybeConvertParenListExprToParenExpr(S, base);
4701 if (result.isInvalid()) return ExprError();
4702 base = result.get();
4703 }
4704
4705 // Check if base and idx form a MatrixSubscriptExpr.
4706 //
4707 // Helper to check for comma expressions, which are not allowed as indices for
4708 // matrix subscript expressions.
4709 auto CheckAndReportCommaError = [this, base, rbLoc](Expr *E) {
4710 if (isa<BinaryOperator>(E) && cast<BinaryOperator>(E)->isCommaOp()) {
4711 Diag(E->getExprLoc(), diag::err_matrix_subscript_comma)
4712 << SourceRange(base->getBeginLoc(), rbLoc);
4713 return true;
4714 }
4715 return false;
4716 };
4717 // The matrix subscript operator ([][])is considered a single operator.
4718 // Separating the index expressions by parenthesis is not allowed.
4719 if (base->getType()->isSpecificPlaceholderType(
4720 BuiltinType::IncompleteMatrixIdx) &&
4721 !isa<MatrixSubscriptExpr>(base)) {
4722 Diag(base->getExprLoc(), diag::err_matrix_separate_incomplete_index)
4723 << SourceRange(base->getBeginLoc(), rbLoc);
4724 return ExprError();
4725 }
4726 // If the base is a MatrixSubscriptExpr, try to create a new
4727 // MatrixSubscriptExpr.
4728 auto *matSubscriptE = dyn_cast<MatrixSubscriptExpr>(base);
4729 if (matSubscriptE) {
4730 if (CheckAndReportCommaError(idx))
4731 return ExprError();
4732
4733 assert(matSubscriptE->isIncomplete() &&(static_cast <bool> (matSubscriptE->isIncomplete() &&
"base has to be an incomplete matrix subscript") ? void (0) :
__assert_fail ("matSubscriptE->isIncomplete() && \"base has to be an incomplete matrix subscript\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 4734, __extension__ __PRETTY_FUNCTION__))
4734 "base has to be an incomplete matrix subscript")(static_cast <bool> (matSubscriptE->isIncomplete() &&
"base has to be an incomplete matrix subscript") ? void (0) :
__assert_fail ("matSubscriptE->isIncomplete() && \"base has to be an incomplete matrix subscript\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 4734, __extension__ __PRETTY_FUNCTION__))
;
4735 return CreateBuiltinMatrixSubscriptExpr(
4736 matSubscriptE->getBase(), matSubscriptE->getRowIdx(), idx, rbLoc);
4737 }
4738
4739 // Handle any non-overload placeholder types in the base and index
4740 // expressions. We can't handle overloads here because the other
4741 // operand might be an overloadable type, in which case the overload
4742 // resolution for the operator overload should get the first crack
4743 // at the overload.
4744 bool IsMSPropertySubscript = false;
4745 if (base->getType()->isNonOverloadPlaceholderType()) {
4746 IsMSPropertySubscript = isMSPropertySubscriptExpr(*this, base);
4747 if (!IsMSPropertySubscript) {
4748 ExprResult result = CheckPlaceholderExpr(base);
4749 if (result.isInvalid())
4750 return ExprError();
4751 base = result.get();
4752 }
4753 }
4754
4755 // If the base is a matrix type, try to create a new MatrixSubscriptExpr.
4756 if (base->getType()->isMatrixType()) {
4757 if (CheckAndReportCommaError(idx))
4758 return ExprError();
4759
4760 return CreateBuiltinMatrixSubscriptExpr(base, idx, nullptr, rbLoc);
4761 }
4762
4763 // A comma-expression as the index is deprecated in C++2a onwards.
4764 if (getLangOpts().CPlusPlus20 &&
4765 ((isa<BinaryOperator>(idx) && cast<BinaryOperator>(idx)->isCommaOp()) ||
4766 (isa<CXXOperatorCallExpr>(idx) &&
4767 cast<CXXOperatorCallExpr>(idx)->getOperator() == OO_Comma))) {
4768 Diag(idx->getExprLoc(), diag::warn_deprecated_comma_subscript)
4769 << SourceRange(base->getBeginLoc(), rbLoc);
4770 }
4771
4772 if (idx->getType()->isNonOverloadPlaceholderType()) {
4773 ExprResult result = CheckPlaceholderExpr(idx);
4774 if (result.isInvalid()) return ExprError();
4775 idx = result.get();
4776 }
4777
4778 // Build an unanalyzed expression if either operand is type-dependent.
4779 if (getLangOpts().CPlusPlus &&
4780 (base->isTypeDependent() || idx->isTypeDependent())) {
4781 return new (Context) ArraySubscriptExpr(base, idx, Context.DependentTy,
4782 VK_LValue, OK_Ordinary, rbLoc);
4783 }
4784
4785 // MSDN, property (C++)
4786 // https://msdn.microsoft.com/en-us/library/yhfk0thd(v=vs.120).aspx
4787 // This attribute can also be used in the declaration of an empty array in a
4788 // class or structure definition. For example:
4789 // __declspec(property(get=GetX, put=PutX)) int x[];
4790 // The above statement indicates that x[] can be used with one or more array
4791 // indices. In this case, i=p->x[a][b] will be turned into i=p->GetX(a, b),
4792 // and p->x[a][b] = i will be turned into p->PutX(a, b, i);
4793 if (IsMSPropertySubscript) {
4794 // Build MS property subscript expression if base is MS property reference
4795 // or MS property subscript.
4796 return new (Context) MSPropertySubscriptExpr(
4797 base, idx, Context.PseudoObjectTy, VK_LValue, OK_Ordinary, rbLoc);
4798 }
4799
4800 // Use C++ overloaded-operator rules if either operand has record
4801 // type. The spec says to do this if either type is *overloadable*,
4802 // but enum types can't declare subscript operators or conversion
4803 // operators, so there's nothing interesting for overload resolution
4804 // to do if there aren't any record types involved.
4805 //
4806 // ObjC pointers have their own subscripting logic that is not tied
4807 // to overload resolution and so should not take this path.
4808 if (getLangOpts().CPlusPlus &&
4809 (base->getType()->isRecordType() ||
4810 (!base->getType()->isObjCObjectPointerType() &&
4811 idx->getType()->isRecordType()))) {
4812 return CreateOverloadedArraySubscriptExpr(lbLoc, rbLoc, base, idx);
4813 }
4814
4815 ExprResult Res = CreateBuiltinArraySubscriptExpr(base, lbLoc, idx, rbLoc);
4816
4817 if (!Res.isInvalid() && isa<ArraySubscriptExpr>(Res.get()))
4818 CheckSubscriptAccessOfNoDeref(cast<ArraySubscriptExpr>(Res.get()));
4819
4820 return Res;
4821}
4822
4823ExprResult Sema::tryConvertExprToType(Expr *E, QualType Ty) {
4824 InitializedEntity Entity = InitializedEntity::InitializeTemporary(Ty);
4825 InitializationKind Kind =
4826 InitializationKind::CreateCopy(E->getBeginLoc(), SourceLocation());
4827 InitializationSequence InitSeq(*this, Entity, Kind, E);
4828 return InitSeq.Perform(*this, Entity, Kind, E);
4829}
4830
4831ExprResult Sema::CreateBuiltinMatrixSubscriptExpr(Expr *Base, Expr *RowIdx,
4832 Expr *ColumnIdx,
4833 SourceLocation RBLoc) {
4834 ExprResult BaseR = CheckPlaceholderExpr(Base);
4835 if (BaseR.isInvalid())
4836 return BaseR;
4837 Base = BaseR.get();
4838
4839 ExprResult RowR = CheckPlaceholderExpr(RowIdx);
4840 if (RowR.isInvalid())
4841 return RowR;
4842 RowIdx = RowR.get();
4843
4844 if (!ColumnIdx)
4845 return new (Context) MatrixSubscriptExpr(
4846 Base, RowIdx, ColumnIdx, Context.IncompleteMatrixIdxTy, RBLoc);
4847
4848 // Build an unanalyzed expression if any of the operands is type-dependent.
4849 if (Base->isTypeDependent() || RowIdx->isTypeDependent() ||
4850 ColumnIdx->isTypeDependent())
4851 return new (Context) MatrixSubscriptExpr(Base, RowIdx, ColumnIdx,
4852 Context.DependentTy, RBLoc);
4853
4854 ExprResult ColumnR = CheckPlaceholderExpr(ColumnIdx);
4855 if (ColumnR.isInvalid())
4856 return ColumnR;
4857 ColumnIdx = ColumnR.get();
4858
4859 // Check that IndexExpr is an integer expression. If it is a constant
4860 // expression, check that it is less than Dim (= the number of elements in the
4861 // corresponding dimension).
4862 auto IsIndexValid = [&](Expr *IndexExpr, unsigned Dim,
4863 bool IsColumnIdx) -> Expr * {
4864 if (!IndexExpr->getType()->isIntegerType() &&
4865 !IndexExpr->isTypeDependent()) {
4866 Diag(IndexExpr->getBeginLoc(), diag::err_matrix_index_not_integer)
4867 << IsColumnIdx;
4868 return nullptr;
4869 }
4870
4871 if (Optional<llvm::APSInt> Idx =
4872 IndexExpr->getIntegerConstantExpr(Context)) {
4873 if ((*Idx < 0 || *Idx >= Dim)) {
4874 Diag(IndexExpr->getBeginLoc(), diag::err_matrix_index_outside_range)
4875 << IsColumnIdx << Dim;
4876 return nullptr;
4877 }
4878 }
4879
4880 ExprResult ConvExpr =
4881 tryConvertExprToType(IndexExpr, Context.getSizeType());
4882 assert(!ConvExpr.isInvalid() &&(static_cast <bool> (!ConvExpr.isInvalid() && "should be able to convert any integer type to size type"
) ? void (0) : __assert_fail ("!ConvExpr.isInvalid() && \"should be able to convert any integer type to size type\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 4883, __extension__ __PRETTY_FUNCTION__))
4883 "should be able to convert any integer type to size type")(static_cast <bool> (!ConvExpr.isInvalid() && "should be able to convert any integer type to size type"
) ? void (0) : __assert_fail ("!ConvExpr.isInvalid() && \"should be able to convert any integer type to size type\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 4883, __extension__ __PRETTY_FUNCTION__))
;
4884 return ConvExpr.get();
4885 };
4886
4887 auto *MTy = Base->getType()->getAs<ConstantMatrixType>();
4888 RowIdx = IsIndexValid(RowIdx, MTy->getNumRows(), false);
4889 ColumnIdx = IsIndexValid(ColumnIdx, MTy->getNumColumns(), true);
4890 if (!RowIdx || !ColumnIdx)
4891 return ExprError();
4892
4893 return new (Context) MatrixSubscriptExpr(Base, RowIdx, ColumnIdx,
4894 MTy->getElementType(), RBLoc);
4895}
4896
4897void Sema::CheckAddressOfNoDeref(const Expr *E) {
4898 ExpressionEvaluationContextRecord &LastRecord = ExprEvalContexts.back();
4899 const Expr *StrippedExpr = E->IgnoreParenImpCasts();
4900
4901 // For expressions like `&(*s).b`, the base is recorded and what should be
4902 // checked.
4903 const MemberExpr *Member = nullptr;
4904 while ((Member = dyn_cast<MemberExpr>(StrippedExpr)) && !Member->isArrow())
4905 StrippedExpr = Member->getBase()->IgnoreParenImpCasts();
4906
4907 LastRecord.PossibleDerefs.erase(StrippedExpr);
4908}
4909
4910void Sema::CheckSubscriptAccessOfNoDeref(const ArraySubscriptExpr *E) {
4911 if (isUnevaluatedContext())
4912 return;
4913
4914 QualType ResultTy = E->getType();
4915 ExpressionEvaluationContextRecord &LastRecord = ExprEvalContexts.back();
4916
4917 // Bail if the element is an array since it is not memory access.
4918 if (isa<ArrayType>(ResultTy))
4919 return;
4920
4921 if (ResultTy->hasAttr(attr::NoDeref)) {
4922 LastRecord.PossibleDerefs.insert(E);
4923 return;
4924 }
4925
4926 // Check if the base type is a pointer to a member access of a struct
4927 // marked with noderef.
4928 const Expr *Base = E->getBase();
4929 QualType BaseTy = Base->getType();
4930 if (!(isa<ArrayType>(BaseTy) || isa<PointerType>(BaseTy)))
4931 // Not a pointer access
4932 return;
4933
4934 const MemberExpr *Member = nullptr;
4935 while ((Member = dyn_cast<MemberExpr>(Base->IgnoreParenCasts())) &&
4936 Member->isArrow())
4937 Base = Member->getBase();
4938
4939 if (const auto *Ptr = dyn_cast<PointerType>(Base->getType())) {
4940 if (Ptr->getPointeeType()->hasAttr(attr::NoDeref))
4941 LastRecord.PossibleDerefs.insert(E);
4942 }
4943}
4944
4945ExprResult Sema::ActOnOMPArraySectionExpr(Expr *Base, SourceLocation LBLoc,
4946 Expr *LowerBound,
4947 SourceLocation ColonLocFirst,
4948 SourceLocation ColonLocSecond,
4949 Expr *Length, Expr *Stride,
4950 SourceLocation RBLoc) {
4951 if (Base->getType()->isPlaceholderType() &&
4952 !Base->getType()->isSpecificPlaceholderType(
4953 BuiltinType::OMPArraySection)) {
4954 ExprResult Result = CheckPlaceholderExpr(Base);
4955 if (Result.isInvalid())
4956 return ExprError();
4957 Base = Result.get();
4958 }
4959 if (LowerBound && LowerBound->getType()->isNonOverloadPlaceholderType()) {
4960 ExprResult Result = CheckPlaceholderExpr(LowerBound);
4961 if (Result.isInvalid())
4962 return ExprError();
4963 Result = DefaultLvalueConversion(Result.get());
4964 if (Result.isInvalid())
4965 return ExprError();
4966 LowerBound = Result.get();
4967 }
4968 if (Length && Length->getType()->isNonOverloadPlaceholderType()) {
4969 ExprResult Result = CheckPlaceholderExpr(Length);
4970 if (Result.isInvalid())
4971 return ExprError();
4972 Result = DefaultLvalueConversion(Result.get());
4973 if (Result.isInvalid())
4974 return ExprError();
4975 Length = Result.get();
4976 }
4977 if (Stride && Stride->getType()->isNonOverloadPlaceholderType()) {
4978 ExprResult Result = CheckPlaceholderExpr(Stride);
4979 if (Result.isInvalid())
4980 return ExprError();
4981 Result = DefaultLvalueConversion(Result.get());
4982 if (Result.isInvalid())
4983 return ExprError();
4984 Stride = Result.get();
4985 }
4986
4987 // Build an unanalyzed expression if either operand is type-dependent.
4988 if (Base->isTypeDependent() ||
4989 (LowerBound &&
4990 (LowerBound->isTypeDependent() || LowerBound->isValueDependent())) ||
4991 (Length && (Length->isTypeDependent() || Length->isValueDependent())) ||
4992 (Stride && (Stride->isTypeDependent() || Stride->isValueDependent()))) {
4993 return new (Context) OMPArraySectionExpr(
4994 Base, LowerBound, Length, Stride, Context.DependentTy, VK_LValue,
4995 OK_Ordinary, ColonLocFirst, ColonLocSecond, RBLoc);
4996 }
4997
4998 // Perform default conversions.
4999 QualType OriginalTy = OMPArraySectionExpr::getBaseOriginalType(Base);
5000 QualType ResultTy;
5001 if (OriginalTy->isAnyPointerType()) {
5002 ResultTy = OriginalTy->getPointeeType();
5003 } else if (OriginalTy->isArrayType()) {
5004 ResultTy = OriginalTy->getAsArrayTypeUnsafe()->getElementType();
5005 } else {
5006 return ExprError(
5007 Diag(Base->getExprLoc(), diag::err_omp_typecheck_section_value)
5008 << Base->getSourceRange());
5009 }
5010 // C99 6.5.2.1p1
5011 if (LowerBound) {
5012 auto Res = PerformOpenMPImplicitIntegerConversion(LowerBound->getExprLoc(),
5013 LowerBound);
5014 if (Res.isInvalid())
5015 return ExprError(Diag(LowerBound->getExprLoc(),
5016 diag::err_omp_typecheck_section_not_integer)
5017 << 0 << LowerBound->getSourceRange());
5018 LowerBound = Res.get();
5019
5020 if (LowerBound->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
5021 LowerBound->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
5022 Diag(LowerBound->getExprLoc(), diag::warn_omp_section_is_char)
5023 << 0 << LowerBound->getSourceRange();
5024 }
5025 if (Length) {
5026 auto Res =
5027 PerformOpenMPImplicitIntegerConversion(Length->getExprLoc(), Length);
5028 if (Res.isInvalid())
5029 return ExprError(Diag(Length->getExprLoc(),
5030 diag::err_omp_typecheck_section_not_integer)
5031 << 1 << Length->getSourceRange());
5032 Length = Res.get();
5033
5034 if (Length->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
5035 Length->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
5036 Diag(Length->getExprLoc(), diag::warn_omp_section_is_char)
5037 << 1 << Length->getSourceRange();
5038 }
5039 if (Stride) {
5040 ExprResult Res =
5041 PerformOpenMPImplicitIntegerConversion(Stride->getExprLoc(), Stride);
5042 if (Res.isInvalid())
5043 return ExprError(Diag(Stride->getExprLoc(),
5044 diag::err_omp_typecheck_section_not_integer)
5045 << 1 << Stride->getSourceRange());
5046 Stride = Res.get();
5047
5048 if (Stride->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
5049 Stride->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
5050 Diag(Stride->getExprLoc(), diag::warn_omp_section_is_char)
5051 << 1 << Stride->getSourceRange();
5052 }
5053
5054 // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
5055 // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
5056 // type. Note that functions are not objects, and that (in C99 parlance)
5057 // incomplete types are not object types.
5058 if (ResultTy->isFunctionType()) {
5059 Diag(Base->getExprLoc(), diag::err_omp_section_function_type)
5060 << ResultTy << Base->getSourceRange();
5061 return ExprError();
5062 }
5063
5064 if (RequireCompleteType(Base->getExprLoc(), ResultTy,
5065 diag::err_omp_section_incomplete_type, Base))
5066 return ExprError();
5067
5068 if (LowerBound && !OriginalTy->isAnyPointerType()) {
5069 Expr::EvalResult Result;
5070 if (LowerBound->EvaluateAsInt(Result, Context)) {
5071 // OpenMP 5.0, [2.1.5 Array Sections]
5072 // The array section must be a subset of the original array.
5073 llvm::APSInt LowerBoundValue = Result.Val.getInt();
5074 if (LowerBoundValue.isNegative()) {
5075 Diag(LowerBound->getExprLoc(), diag::err_omp_section_not_subset_of_array)
5076 << LowerBound->getSourceRange();
5077 return ExprError();
5078 }
5079 }
5080 }
5081
5082 if (Length) {
5083 Expr::EvalResult Result;
5084 if (Length->EvaluateAsInt(Result, Context)) {
5085 // OpenMP 5.0, [2.1.5 Array Sections]
5086 // The length must evaluate to non-negative integers.
5087 llvm::APSInt LengthValue = Result.Val.getInt();
5088 if (LengthValue.isNegative()) {
5089 Diag(Length->getExprLoc(), diag::err_omp_section_length_negative)
5090 << toString(LengthValue, /*Radix=*/10, /*Signed=*/true)
5091 << Length->getSourceRange();
5092 return ExprError();
5093 }
5094 }
5095 } else if (ColonLocFirst.isValid() &&
5096 (OriginalTy.isNull() || (!OriginalTy->isConstantArrayType() &&
5097 !OriginalTy->isVariableArrayType()))) {
5098 // OpenMP 5.0, [2.1.5 Array Sections]
5099 // When the size of the array dimension is not known, the length must be
5100 // specified explicitly.
5101 Diag(ColonLocFirst, diag::err_omp_section_length_undefined)
5102 << (!OriginalTy.isNull() && OriginalTy->isArrayType());
5103 return ExprError();
5104 }
5105
5106 if (Stride) {
5107 Expr::EvalResult Result;
5108 if (Stride->EvaluateAsInt(Result, Context)) {
5109 // OpenMP 5.0, [2.1.5 Array Sections]
5110 // The stride must evaluate to a positive integer.
5111 llvm::APSInt StrideValue = Result.Val.getInt();
5112 if (!StrideValue.isStrictlyPositive()) {
5113 Diag(Stride->getExprLoc(), diag::err_omp_section_stride_non_positive)
5114 << toString(StrideValue, /*Radix=*/10, /*Signed=*/true)
5115 << Stride->getSourceRange();
5116 return ExprError();
5117 }
5118 }
5119 }
5120
5121 if (!Base->getType()->isSpecificPlaceholderType(
5122 BuiltinType::OMPArraySection)) {
5123 ExprResult Result = DefaultFunctionArrayLvalueConversion(Base);
5124 if (Result.isInvalid())
5125 return ExprError();
5126 Base = Result.get();
5127 }
5128 return new (Context) OMPArraySectionExpr(
5129 Base, LowerBound, Length, Stride, Context.OMPArraySectionTy, VK_LValue,
5130 OK_Ordinary, ColonLocFirst, ColonLocSecond, RBLoc);
5131}
5132
5133ExprResult Sema::ActOnOMPArrayShapingExpr(Expr *Base, SourceLocation LParenLoc,
5134 SourceLocation RParenLoc,
5135 ArrayRef<Expr *> Dims,
5136 ArrayRef<SourceRange> Brackets) {
5137 if (Base->getType()->isPlaceholderType()) {
5138 ExprResult Result = CheckPlaceholderExpr(Base);
5139 if (Result.isInvalid())
5140 return ExprError();
5141 Result = DefaultLvalueConversion(Result.get());
5142 if (Result.isInvalid())
5143 return ExprError();
5144 Base = Result.get();
5145 }
5146 QualType BaseTy = Base->getType();
5147 // Delay analysis of the types/expressions if instantiation/specialization is
5148 // required.
5149 if (!BaseTy->isPointerType() && Base->isTypeDependent())
5150 return OMPArrayShapingExpr::Create(Context, Context.DependentTy, Base,
5151 LParenLoc, RParenLoc, Dims, Brackets);
5152 if (!BaseTy->isPointerType() ||
5153 (!Base->isTypeDependent() &&
5154 BaseTy->getPointeeType()->isIncompleteType()))
5155 return ExprError(Diag(Base->getExprLoc(),
5156 diag::err_omp_non_pointer_type_array_shaping_base)
5157 << Base->getSourceRange());
5158
5159 SmallVector<Expr *, 4> NewDims;
5160 bool ErrorFound = false;
5161 for (Expr *Dim : Dims) {
5162 if (Dim->getType()->isPlaceholderType()) {
5163 ExprResult Result = CheckPlaceholderExpr(Dim);
5164 if (Result.isInvalid()) {
5165 ErrorFound = true;
5166 continue;
5167 }
5168 Result = DefaultLvalueConversion(Result.get());
5169 if (Result.isInvalid()) {
5170 ErrorFound = true;
5171 continue;
5172 }
5173 Dim = Result.get();
5174 }
5175 if (!Dim->isTypeDependent()) {
5176 ExprResult Result =
5177 PerformOpenMPImplicitIntegerConversion(Dim->getExprLoc(), Dim);
5178 if (Result.isInvalid()) {
5179 ErrorFound = true;
5180 Diag(Dim->getExprLoc(), diag::err_omp_typecheck_shaping_not_integer)
5181 << Dim->getSourceRange();
5182 continue;
5183 }
5184 Dim = Result.get();
5185 Expr::EvalResult EvResult;
5186 if (!Dim->isValueDependent() && Dim->EvaluateAsInt(EvResult, Context)) {
5187 // OpenMP 5.0, [2.1.4 Array Shaping]
5188 // Each si is an integral type expression that must evaluate to a
5189 // positive integer.
5190 llvm::APSInt Value = EvResult.Val.getInt();
5191 if (!Value.isStrictlyPositive()) {
5192 Diag(Dim->getExprLoc(), diag::err_omp_shaping_dimension_not_positive)
5193 << toString(Value, /*Radix=*/10, /*Signed=*/true)
5194 << Dim->getSourceRange();
5195 ErrorFound = true;
5196 continue;
5197 }
5198 }
5199 }
5200 NewDims.push_back(Dim);
5201 }
5202 if (ErrorFound)
5203 return ExprError();
5204 return OMPArrayShapingExpr::Create(Context, Context.OMPArrayShapingTy, Base,
5205 LParenLoc, RParenLoc, NewDims, Brackets);
5206}
5207
5208ExprResult Sema::ActOnOMPIteratorExpr(Scope *S, SourceLocation IteratorKwLoc,
5209 SourceLocation LLoc, SourceLocation RLoc,
5210 ArrayRef<OMPIteratorData> Data) {
5211 SmallVector<OMPIteratorExpr::IteratorDefinition, 4> ID;
5212 bool IsCorrect = true;
5213 for (const OMPIteratorData &D : Data) {
5214 TypeSourceInfo *TInfo = nullptr;
5215 SourceLocation StartLoc;
5216 QualType DeclTy;
5217 if (!D.Type.getAsOpaquePtr()) {
5218 // OpenMP 5.0, 2.1.6 Iterators
5219 // In an iterator-specifier, if the iterator-type is not specified then
5220 // the type of that iterator is of int type.
5221 DeclTy = Context.IntTy;
5222 StartLoc = D.DeclIdentLoc;
5223 } else {
5224 DeclTy = GetTypeFromParser(D.Type, &TInfo);
5225 StartLoc = TInfo->getTypeLoc().getBeginLoc();
5226 }
5227
5228 bool IsDeclTyDependent = DeclTy->isDependentType() ||
5229 DeclTy->containsUnexpandedParameterPack() ||
5230 DeclTy->isInstantiationDependentType();
5231 if (!IsDeclTyDependent) {
5232 if (!DeclTy->isIntegralType(Context) && !DeclTy->isAnyPointerType()) {
5233 // OpenMP 5.0, 2.1.6 Iterators, Restrictions, C/C++
5234 // The iterator-type must be an integral or pointer type.
5235 Diag(StartLoc, diag::err_omp_iterator_not_integral_or_pointer)
5236 << DeclTy;
5237 IsCorrect = false;
5238 continue;
5239 }
5240 if (DeclTy.isConstant(Context)) {
5241 // OpenMP 5.0, 2.1.6 Iterators, Restrictions, C/C++
5242 // The iterator-type must not be const qualified.
5243 Diag(StartLoc, diag::err_omp_iterator_not_integral_or_pointer)
5244 << DeclTy;
5245 IsCorrect = false;
5246 continue;
5247 }
5248 }
5249
5250 // Iterator declaration.
5251 assert(D.DeclIdent && "Identifier expected.")(static_cast <bool> (D.DeclIdent && "Identifier expected."
) ? void (0) : __assert_fail ("D.DeclIdent && \"Identifier expected.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 5251, __extension__ __PRETTY_FUNCTION__))
;
5252 // Always try to create iterator declarator to avoid extra error messages
5253 // about unknown declarations use.
5254 auto *VD = VarDecl::Create(Context, CurContext, StartLoc, D.DeclIdentLoc,
5255 D.DeclIdent, DeclTy, TInfo, SC_None);
5256 VD->setImplicit();
5257 if (S) {
5258 // Check for conflicting previous declaration.
5259 DeclarationNameInfo NameInfo(VD->getDeclName(), D.DeclIdentLoc);
5260 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
5261 ForVisibleRedeclaration);
5262 Previous.suppressDiagnostics();
5263 LookupName(Previous, S);
5264
5265 FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage=*/false,
5266 /*AllowInlineNamespace=*/false);
5267 if (!Previous.empty()) {
5268 NamedDecl *Old = Previous.getRepresentativeDecl();
5269 Diag(D.DeclIdentLoc, diag::err_redefinition) << VD->getDeclName();
5270 Diag(Old->getLocation(), diag::note_previous_definition);
5271 } else {
5272 PushOnScopeChains(VD, S);
5273 }
5274 } else {
5275 CurContext->addDecl(VD);
5276 }
5277 Expr *Begin = D.Range.Begin;
5278 if (!IsDeclTyDependent && Begin && !Begin->isTypeDependent()) {
5279 ExprResult BeginRes =
5280 PerformImplicitConversion(Begin, DeclTy, AA_Converting);
5281 Begin = BeginRes.get();
5282 }
5283 Expr *End = D.Range.End;
5284 if (!IsDeclTyDependent && End && !End->isTypeDependent()) {
5285 ExprResult EndRes = PerformImplicitConversion(End, DeclTy, AA_Converting);
5286 End = EndRes.get();
5287 }
5288 Expr *Step = D.Range.Step;
5289 if (!IsDeclTyDependent && Step && !Step->isTypeDependent()) {
5290 if (!Step->getType()->isIntegralType(Context)) {
5291 Diag(Step->getExprLoc(), diag::err_omp_iterator_step_not_integral)
5292 << Step << Step->getSourceRange();
5293 IsCorrect = false;
5294 continue;
5295 }
5296 Optional<llvm::APSInt> Result = Step->getIntegerConstantExpr(Context);
5297 // OpenMP 5.0, 2.1.6 Iterators, Restrictions
5298 // If the step expression of a range-specification equals zero, the
5299 // behavior is unspecified.
5300 if (Result && Result->isNullValue()) {
5301 Diag(Step->getExprLoc(), diag::err_omp_iterator_step_constant_zero)
5302 << Step << Step->getSourceRange();
5303 IsCorrect = false;
5304 continue;
5305 }
5306 }
5307 if (!Begin || !End || !IsCorrect) {
5308 IsCorrect = false;
5309 continue;
5310 }
5311 OMPIteratorExpr::IteratorDefinition &IDElem = ID.emplace_back();
5312 IDElem.IteratorDecl = VD;
5313 IDElem.AssignmentLoc = D.AssignLoc;
5314 IDElem.Range.Begin = Begin;
5315 IDElem.Range.End = End;
5316 IDElem.Range.Step = Step;
5317 IDElem.ColonLoc = D.ColonLoc;
5318 IDElem.SecondColonLoc = D.SecColonLoc;
5319 }
5320 if (!IsCorrect) {
5321 // Invalidate all created iterator declarations if error is found.
5322 for (const OMPIteratorExpr::IteratorDefinition &D : ID) {
5323 if (Decl *ID = D.IteratorDecl)
5324 ID->setInvalidDecl();
5325 }
5326 return ExprError();
5327 }
5328 SmallVector<OMPIteratorHelperData, 4> Helpers;
5329 if (!CurContext->isDependentContext()) {
5330 // Build number of ityeration for each iteration range.
5331 // Ni = ((Stepi > 0) ? ((Endi + Stepi -1 - Begini)/Stepi) :
5332 // ((Begini-Stepi-1-Endi) / -Stepi);
5333 for (OMPIteratorExpr::IteratorDefinition &D : ID) {
5334 // (Endi - Begini)
5335 ExprResult Res = CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub, D.Range.End,
5336 D.Range.Begin);
5337 if(!Res.isUsable()) {
5338 IsCorrect = false;
5339 continue;
5340 }
5341 ExprResult St, St1;
5342 if (D.Range.Step) {
5343 St = D.Range.Step;
5344 // (Endi - Begini) + Stepi
5345 Res = CreateBuiltinBinOp(D.AssignmentLoc, BO_Add, Res.get(), St.get());
5346 if (!Res.isUsable()) {
5347 IsCorrect = false;
5348 continue;
5349 }
5350 // (Endi - Begini) + Stepi - 1
5351 Res =
5352 CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub, Res.get(),
5353 ActOnIntegerConstant(D.AssignmentLoc, 1).get());
5354 if (!Res.isUsable()) {
5355 IsCorrect = false;
5356 continue;
5357 }
5358 // ((Endi - Begini) + Stepi - 1) / Stepi
5359 Res = CreateBuiltinBinOp(D.AssignmentLoc, BO_Div, Res.get(), St.get());
5360 if (!Res.isUsable()) {
5361 IsCorrect = false;
5362 continue;
5363 }
5364 St1 = CreateBuiltinUnaryOp(D.AssignmentLoc, UO_Minus, D.Range.Step);
5365 // (Begini - Endi)
5366 ExprResult Res1 = CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub,
5367 D.Range.Begin, D.Range.End);
5368 if (!Res1.isUsable()) {
5369 IsCorrect = false;
5370 continue;
5371 }
5372 // (Begini - Endi) - Stepi
5373 Res1 =
5374 CreateBuiltinBinOp(D.AssignmentLoc, BO_Add, Res1.get(), St1.get());
5375 if (!Res1.isUsable()) {
5376 IsCorrect = false;
5377 continue;
5378 }
5379 // (Begini - Endi) - Stepi - 1
5380 Res1 =
5381 CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub, Res1.get(),
5382 ActOnIntegerConstant(D.AssignmentLoc, 1).get());
5383 if (!Res1.isUsable()) {
5384 IsCorrect = false;
5385 continue;
5386 }
5387 // ((Begini - Endi) - Stepi - 1) / (-Stepi)
5388 Res1 =
5389 CreateBuiltinBinOp(D.AssignmentLoc, BO_Div, Res1.get(), St1.get());
5390 if (!Res1.isUsable()) {
5391 IsCorrect = false;
5392 continue;
5393 }
5394 // Stepi > 0.
5395 ExprResult CmpRes =
5396 CreateBuiltinBinOp(D.AssignmentLoc, BO_GT, D.Range.Step,
5397 ActOnIntegerConstant(D.AssignmentLoc, 0).get());
5398 if (!CmpRes.isUsable()) {
5399 IsCorrect = false;
5400 continue;
5401 }
5402 Res = ActOnConditionalOp(D.AssignmentLoc, D.AssignmentLoc, CmpRes.get(),
5403 Res.get(), Res1.get());
5404 if (!Res.isUsable()) {
5405 IsCorrect = false;
5406 continue;
5407 }
5408 }
5409 Res = ActOnFinishFullExpr(Res.get(), /*DiscardedValue=*/false);
5410 if (!Res.isUsable()) {
5411 IsCorrect = false;
5412 continue;
5413 }
5414
5415 // Build counter update.
5416 // Build counter.
5417 auto *CounterVD =
5418 VarDecl::Create(Context, CurContext, D.IteratorDecl->getBeginLoc(),
5419 D.IteratorDecl->getBeginLoc(), nullptr,
5420 Res.get()->getType(), nullptr, SC_None);
5421 CounterVD->setImplicit();
5422 ExprResult RefRes =
5423 BuildDeclRefExpr(CounterVD, CounterVD->getType(), VK_LValue,
5424 D.IteratorDecl->getBeginLoc());
5425 // Build counter update.
5426 // I = Begini + counter * Stepi;
5427 ExprResult UpdateRes;
5428 if (D.Range.Step) {
5429 UpdateRes = CreateBuiltinBinOp(
5430 D.AssignmentLoc, BO_Mul,
5431 DefaultLvalueConversion(RefRes.get()).get(), St.get());
5432 } else {
5433 UpdateRes = DefaultLvalueConversion(RefRes.get());
5434 }
5435 if (!UpdateRes.isUsable()) {
5436 IsCorrect = false;
5437 continue;
5438 }
5439 UpdateRes = CreateBuiltinBinOp(D.AssignmentLoc, BO_Add, D.Range.Begin,
5440 UpdateRes.get());
5441 if (!UpdateRes.isUsable()) {
5442 IsCorrect = false;
5443 continue;
5444 }
5445 ExprResult VDRes =
5446 BuildDeclRefExpr(cast<VarDecl>(D.IteratorDecl),
5447 cast<VarDecl>(D.IteratorDecl)->getType(), VK_LValue,
5448 D.IteratorDecl->getBeginLoc());
5449 UpdateRes = CreateBuiltinBinOp(D.AssignmentLoc, BO_Assign, VDRes.get(),
5450 UpdateRes.get());
5451 if (!UpdateRes.isUsable()) {
5452 IsCorrect = false;
5453 continue;
5454 }
5455 UpdateRes =
5456 ActOnFinishFullExpr(UpdateRes.get(), /*DiscardedValue=*/true);
5457 if (!UpdateRes.isUsable()) {
5458 IsCorrect = false;
5459 continue;
5460 }
5461 ExprResult CounterUpdateRes =
5462 CreateBuiltinUnaryOp(D.AssignmentLoc, UO_PreInc, RefRes.get());
5463 if (!CounterUpdateRes.isUsable()) {
5464 IsCorrect = false;
5465 continue;
5466 }
5467 CounterUpdateRes =
5468 ActOnFinishFullExpr(CounterUpdateRes.get(), /*DiscardedValue=*/true);
5469 if (!CounterUpdateRes.isUsable()) {
5470 IsCorrect = false;
5471 continue;
5472 }
5473 OMPIteratorHelperData &HD = Helpers.emplace_back();
5474 HD.CounterVD = CounterVD;
5475 HD.Upper = Res.get();
5476 HD.Update = UpdateRes.get();
5477 HD.CounterUpdate = CounterUpdateRes.get();
5478 }
5479 } else {
5480 Helpers.assign(ID.size(), {});
5481 }
5482 if (!IsCorrect) {
5483 // Invalidate all created iterator declarations if error is found.
5484 for (const OMPIteratorExpr::IteratorDefinition &D : ID) {
5485 if (Decl *ID = D.IteratorDecl)
5486 ID->setInvalidDecl();
5487 }
5488 return ExprError();
5489 }
5490 return OMPIteratorExpr::Create(Context, Context.OMPIteratorTy, IteratorKwLoc,
5491 LLoc, RLoc, ID, Helpers);
5492}
5493
5494ExprResult
5495Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
5496 Expr *Idx, SourceLocation RLoc) {
5497 Expr *LHSExp = Base;
5498 Expr *RHSExp = Idx;
5499
5500 ExprValueKind VK = VK_LValue;
5501 ExprObjectKind OK = OK_Ordinary;
5502
5503 // Per C++ core issue 1213, the result is an xvalue if either operand is
5504 // a non-lvalue array, and an lvalue otherwise.
5505 if (getLangOpts().CPlusPlus11) {
5506 for (auto *Op : {LHSExp, RHSExp}) {
5507 Op = Op->IgnoreImplicit();
5508 if (Op->getType()->isArrayType() && !Op->isLValue())
5509 VK = VK_XValue;
5510 }
5511 }
5512
5513 // Perform default conversions.
5514 if (!LHSExp->getType()->getAs<VectorType>()) {
5515 ExprResult Result = DefaultFunctionArrayLvalueConversion(LHSExp);
5516 if (Result.isInvalid())
5517 return ExprError();
5518 LHSExp = Result.get();
5519 }
5520 ExprResult Result = DefaultFunctionArrayLvalueConversion(RHSExp);
5521 if (Result.isInvalid())
5522 return ExprError();
5523 RHSExp = Result.get();
5524
5525 QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
5526
5527 // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
5528 // to the expression *((e1)+(e2)). This means the array "Base" may actually be
5529 // in the subscript position. As a result, we need to derive the array base
5530 // and index from the expression types.
5531 Expr *BaseExpr, *IndexExpr;
5532 QualType ResultType;
5533 if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
5534 BaseExpr = LHSExp;
5535 IndexExpr = RHSExp;
5536 ResultType = Context.DependentTy;
5537 } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
5538 BaseExpr = LHSExp;
5539 IndexExpr = RHSExp;
5540 ResultType = PTy->getPointeeType();
5541 } else if (const ObjCObjectPointerType *PTy =
5542 LHSTy->getAs<ObjCObjectPointerType>()) {
5543 BaseExpr = LHSExp;
5544 IndexExpr = RHSExp;
5545
5546 // Use custom logic if this should be the pseudo-object subscript
5547 // expression.
5548 if (!LangOpts.isSubscriptPointerArithmetic())
5549 return BuildObjCSubscriptExpression(RLoc, BaseExpr, IndexExpr, nullptr,
5550 nullptr);
5551
5552 ResultType = PTy->getPointeeType();
5553 } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
5554 // Handle the uncommon case of "123[Ptr]".
5555 BaseExpr = RHSExp;
5556 IndexExpr = LHSExp;
5557 ResultType = PTy->getPointeeType();
5558 } else if (const ObjCObjectPointerType *PTy =
5559 RHSTy->getAs<ObjCObjectPointerType>()) {
5560 // Handle the uncommon case of "123[Ptr]".
5561 BaseExpr = RHSExp;
5562 IndexExpr = LHSExp;
5563 ResultType = PTy->getPointeeType();
5564 if (!LangOpts.isSubscriptPointerArithmetic()) {
5565 Diag(LLoc, diag::err_subscript_nonfragile_interface)
5566 << ResultType << BaseExpr->getSourceRange();
5567 return ExprError();
5568 }
5569 } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
5570 BaseExpr = LHSExp; // vectors: V[123]
5571 IndexExpr = RHSExp;
5572 // We apply C++ DR1213 to vector subscripting too.
5573 if (getLangOpts().CPlusPlus11 && LHSExp->isPRValue()) {
5574 ExprResult Materialized = TemporaryMaterializationConversion(LHSExp);
5575 if (Materialized.isInvalid())
5576 return ExprError();
5577 LHSExp = Materialized.get();
5578 }
5579 VK = LHSExp->getValueKind();
5580 if (VK != VK_PRValue)
5581 OK = OK_VectorComponent;
5582
5583 ResultType = VTy->getElementType();
5584 QualType BaseType = BaseExpr->getType();
5585 Qualifiers BaseQuals = BaseType.getQualifiers();
5586 Qualifiers MemberQuals = ResultType.getQualifiers();
5587 Qualifiers Combined = BaseQuals + MemberQuals;
5588 if (Combined != MemberQuals)
5589 ResultType = Context.getQualifiedType(ResultType, Combined);
5590 } else if (LHSTy->isArrayType()) {
5591 // If we see an array that wasn't promoted by
5592 // DefaultFunctionArrayLvalueConversion, it must be an array that
5593 // wasn't promoted because of the C90 rule that doesn't
5594 // allow promoting non-lvalue arrays. Warn, then
5595 // force the promotion here.
5596 Diag(LHSExp->getBeginLoc(), diag::ext_subscript_non_lvalue)
5597 << LHSExp->getSourceRange();
5598 LHSExp = ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
5599 CK_ArrayToPointerDecay).get();
5600 LHSTy = LHSExp->getType();
5601
5602 BaseExpr = LHSExp;
5603 IndexExpr = RHSExp;
5604 ResultType = LHSTy->castAs<PointerType>()->getPointeeType();
5605 } else if (RHSTy->isArrayType()) {
5606 // Same as previous, except for 123[f().a] case
5607 Diag(RHSExp->getBeginLoc(), diag::ext_subscript_non_lvalue)
5608 << RHSExp->getSourceRange();
5609 RHSExp = ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
5610 CK_ArrayToPointerDecay).get();
5611 RHSTy = RHSExp->getType();
5612
5613 BaseExpr = RHSExp;
5614 IndexExpr = LHSExp;
5615 ResultType = RHSTy->castAs<PointerType>()->getPointeeType();
5616 } else {
5617 return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
5618 << LHSExp->getSourceRange() << RHSExp->getSourceRange());
5619 }
5620 // C99 6.5.2.1p1
5621 if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
5622 return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
5623 << IndexExpr->getSourceRange());
5624
5625 if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
5626 IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
5627 && !IndexExpr->isTypeDependent())
5628 Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
5629
5630 // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
5631 // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
5632 // type. Note that Functions are not objects, and that (in C99 parlance)
5633 // incomplete types are not object types.
5634 if (ResultType->isFunctionType()) {
5635 Diag(BaseExpr->getBeginLoc(), diag::err_subscript_function_type)
5636 << ResultType << BaseExpr->getSourceRange();
5637 return ExprError();
5638 }
5639
5640 if (ResultType->isVoidType() && !getLangOpts().CPlusPlus) {
5641 // GNU extension: subscripting on pointer to void
5642 Diag(LLoc, diag::ext_gnu_subscript_void_type)
5643 << BaseExpr->getSourceRange();
5644
5645 // C forbids expressions of unqualified void type from being l-values.
5646 // See IsCForbiddenLValueType.
5647 if (!ResultType.hasQualifiers())
5648 VK = VK_PRValue;
5649 } else if (!ResultType->isDependentType() &&
5650 RequireCompleteSizedType(
5651 LLoc, ResultType,
5652 diag::err_subscript_incomplete_or_sizeless_type, BaseExpr))
5653 return ExprError();
5654
5655 assert(VK == VK_PRValue || LangOpts.CPlusPlus ||(static_cast <bool> (VK == VK_PRValue || LangOpts.CPlusPlus
|| !ResultType.isCForbiddenLValueType()) ? void (0) : __assert_fail
("VK == VK_PRValue || LangOpts.CPlusPlus || !ResultType.isCForbiddenLValueType()"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 5656, __extension__ __PRETTY_FUNCTION__))
5656 !ResultType.isCForbiddenLValueType())(static_cast <bool> (VK == VK_PRValue || LangOpts.CPlusPlus
|| !ResultType.isCForbiddenLValueType()) ? void (0) : __assert_fail
("VK == VK_PRValue || LangOpts.CPlusPlus || !ResultType.isCForbiddenLValueType()"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 5656, __extension__ __PRETTY_FUNCTION__))
;
5657
5658 if (LHSExp->IgnoreParenImpCasts()->getType()->isVariablyModifiedType() &&
5659 FunctionScopes.size() > 1) {
5660 if (auto *TT =
5661 LHSExp->IgnoreParenImpCasts()->getType()->getAs<TypedefType>()) {
5662 for (auto I = FunctionScopes.rbegin(),
5663 E = std::prev(FunctionScopes.rend());
5664 I != E; ++I) {
5665 auto *CSI = dyn_cast<CapturingScopeInfo>(*I);
5666 if (CSI == nullptr)
5667 break;
5668 DeclContext *DC = nullptr;
5669 if (auto *LSI = dyn_cast<LambdaScopeInfo>(CSI))
5670 DC = LSI->CallOperator;
5671 else if (auto *CRSI = dyn_cast<CapturedRegionScopeInfo>(CSI))
5672 DC = CRSI->TheCapturedDecl;
5673 else if (auto *BSI = dyn_cast<BlockScopeInfo>(CSI))
5674 DC = BSI->TheDecl;
5675 if (DC) {
5676 if (DC->containsDecl(TT->getDecl()))
5677 break;
5678 captureVariablyModifiedType(
5679 Context, LHSExp->IgnoreParenImpCasts()->getType(), CSI);
5680 }
5681 }
5682 }
5683 }
5684
5685 return new (Context)
5686 ArraySubscriptExpr(LHSExp, RHSExp, ResultType, VK, OK, RLoc);
5687}
5688
5689bool Sema::CheckCXXDefaultArgExpr(SourceLocation CallLoc, FunctionDecl *FD,
5690 ParmVarDecl *Param) {
5691 if (Param->hasUnparsedDefaultArg()) {
5692 // If we've already cleared out the location for the default argument,
5693 // that means we're parsing it right now.
5694 if (!UnparsedDefaultArgLocs.count(Param)) {
5695 Diag(Param->getBeginLoc(), diag::err_recursive_default_argument) << FD;
5696 Diag(CallLoc, diag::note_recursive_default_argument_used_here);
5697 Param->setInvalidDecl();
5698 return true;
5699 }
5700
5701 Diag(CallLoc, diag::err_use_of_default_argument_to_function_declared_later)
5702 << FD << cast<CXXRecordDecl>(FD->getDeclContext());
5703 Diag(UnparsedDefaultArgLocs[Param],
5704 diag::note_default_argument_declared_here);
5705 return true;
5706 }
5707
5708 if (Param->hasUninstantiatedDefaultArg() &&
5709 InstantiateDefaultArgument(CallLoc, FD, Param))
5710 return true;
5711
5712 assert(Param->hasInit() && "default argument but no initializer?")(static_cast <bool> (Param->hasInit() && "default argument but no initializer?"
) ? void (0) : __assert_fail ("Param->hasInit() && \"default argument but no initializer?\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 5712, __extension__ __PRETTY_FUNCTION__))
;
5713
5714 // If the default expression creates temporaries, we need to
5715 // push them to the current stack of expression temporaries so they'll
5716 // be properly destroyed.
5717 // FIXME: We should really be rebuilding the default argument with new
5718 // bound temporaries; see the comment in PR5810.
5719 // We don't need to do that with block decls, though, because
5720 // blocks in default argument expression can never capture anything.
5721 if (auto Init = dyn_cast<ExprWithCleanups>(Param->getInit())) {
5722 // Set the "needs cleanups" bit regardless of whether there are
5723 // any explicit objects.
5724 Cleanup.setExprNeedsCleanups(Init->cleanupsHaveSideEffects());
5725
5726 // Append all the objects to the cleanup list. Right now, this
5727 // should always be a no-op, because blocks in default argument
5728 // expressions should never be able to capture anything.
5729 assert(!Init->getNumObjects() &&(static_cast <bool> (!Init->getNumObjects() &&
"default argument expression has capturing blocks?") ? void (
0) : __assert_fail ("!Init->getNumObjects() && \"default argument expression has capturing blocks?\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 5730, __extension__ __PRETTY_FUNCTION__))
5730 "default argument expression has capturing blocks?")(static_cast <bool> (!Init->getNumObjects() &&
"default argument expression has capturing blocks?") ? void (
0) : __assert_fail ("!Init->getNumObjects() && \"default argument expression has capturing blocks?\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 5730, __extension__ __PRETTY_FUNCTION__))
;
5731 }
5732
5733 // We already type-checked the argument, so we know it works.
5734 // Just mark all of the declarations in this potentially-evaluated expression
5735 // as being "referenced".
5736 EnterExpressionEvaluationContext EvalContext(
5737 *this, ExpressionEvaluationContext::PotentiallyEvaluated, Param);
5738 MarkDeclarationsReferencedInExpr(Param->getDefaultArg(),
5739 /*SkipLocalVariables=*/true);
5740 return false;
5741}
5742
5743ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
5744 FunctionDecl *FD, ParmVarDecl *Param) {
5745 assert(Param->hasDefaultArg() && "can't build nonexistent default arg")(static_cast <bool> (Param->hasDefaultArg() &&
"can't build nonexistent default arg") ? void (0) : __assert_fail
("Param->hasDefaultArg() && \"can't build nonexistent default arg\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 5745, __extension__ __PRETTY_FUNCTION__))
;
5746 if (CheckCXXDefaultArgExpr(CallLoc, FD, Param))
5747 return ExprError();
5748 return CXXDefaultArgExpr::Create(Context, CallLoc, Param, CurContext);
5749}
5750
5751Sema::VariadicCallType
5752Sema::getVariadicCallType(FunctionDecl *FDecl, const FunctionProtoType *Proto,
5753 Expr *Fn) {
5754 if (Proto && Proto->isVariadic()) {
5755 if (dyn_cast_or_null<CXXConstructorDecl>(FDecl))
5756 return VariadicConstructor;
5757 else if (Fn && Fn->getType()->isBlockPointerType())
5758 return VariadicBlock;
5759 else if (FDecl) {
5760 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
5761 if (Method->isInstance())
5762 return VariadicMethod;
5763 } else if (Fn && Fn->getType() == Context.BoundMemberTy)
5764 return VariadicMethod;
5765 return VariadicFunction;
5766 }
5767 return VariadicDoesNotApply;
5768}
5769
5770namespace {
5771class FunctionCallCCC final : public FunctionCallFilterCCC {
5772public:
5773 FunctionCallCCC(Sema &SemaRef, const IdentifierInfo *FuncName,
5774 unsigned NumArgs, MemberExpr *ME)
5775 : FunctionCallFilterCCC(SemaRef, NumArgs, false, ME),
5776 FunctionName(FuncName) {}
5777
5778 bool ValidateCandidate(const TypoCorrection &candidate) override {
5779 if (!candidate.getCorrectionSpecifier() ||
5780 candidate.getCorrectionAsIdentifierInfo() != FunctionName) {
5781 return false;
5782 }
5783
5784 return FunctionCallFilterCCC::ValidateCandidate(candidate);
5785 }
5786
5787 std::unique_ptr<CorrectionCandidateCallback> clone() override {
5788 return std::make_unique<FunctionCallCCC>(*this);
5789 }
5790
5791private:
5792 const IdentifierInfo *const FunctionName;
5793};
5794}
5795
5796static TypoCorrection TryTypoCorrectionForCall(Sema &S, Expr *Fn,
5797 FunctionDecl *FDecl,
5798 ArrayRef<Expr *> Args) {
5799 MemberExpr *ME = dyn_cast<MemberExpr>(Fn);
5800 DeclarationName FuncName = FDecl->getDeclName();
5801 SourceLocation NameLoc = ME ? ME->getMemberLoc() : Fn->getBeginLoc();
5802
5803 FunctionCallCCC CCC(S, FuncName.getAsIdentifierInfo(), Args.size(), ME);
5804 if (TypoCorrection Corrected = S.CorrectTypo(
5805 DeclarationNameInfo(FuncName, NameLoc), Sema::LookupOrdinaryName,
5806 S.getScopeForContext(S.CurContext), nullptr, CCC,
5807 Sema::CTK_ErrorRecovery)) {
5808 if (NamedDecl *ND = Corrected.getFoundDecl()) {
5809 if (Corrected.isOverloaded()) {
5810 OverloadCandidateSet OCS(NameLoc, OverloadCandidateSet::CSK_Normal);
5811 OverloadCandidateSet::iterator Best;
5812 for (NamedDecl *CD : Corrected) {
5813 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(CD))
5814 S.AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none), Args,
5815 OCS);
5816 }
5817 switch (OCS.BestViableFunction(S, NameLoc, Best)) {
5818 case OR_Success:
5819 ND = Best->FoundDecl;
5820 Corrected.setCorrectionDecl(ND);
5821 break;
5822 default:
5823 break;
5824 }
5825 }
5826 ND = ND->getUnderlyingDecl();
5827 if (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND))
5828 return Corrected;
5829 }
5830 }
5831 return TypoCorrection();
5832}
5833
5834/// ConvertArgumentsForCall - Converts the arguments specified in
5835/// Args/NumArgs to the parameter types of the function FDecl with
5836/// function prototype Proto. Call is the call expression itself, and
5837/// Fn is the function expression. For a C++ member function, this
5838/// routine does not attempt to convert the object argument. Returns
5839/// true if the call is ill-formed.
5840bool
5841Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
5842 FunctionDecl *FDecl,
5843 const FunctionProtoType *Proto,
5844 ArrayRef<Expr *> Args,
5845 SourceLocation RParenLoc,
5846 bool IsExecConfig) {
5847 // Bail out early if calling a builtin with custom typechecking.
5848 if (FDecl)
5849 if (unsigned ID = FDecl->getBuiltinID())
5850 if (Context.BuiltinInfo.hasCustomTypechecking(ID))
5851 return false;
5852
5853 // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
5854 // assignment, to the types of the corresponding parameter, ...
5855 unsigned NumParams = Proto->getNumParams();
5856 bool Invalid = false;
5857 unsigned MinArgs = FDecl ? FDecl->getMinRequiredArguments() : NumParams;
5858 unsigned FnKind = Fn->getType()->isBlockPointerType()
5859 ? 1 /* block */
5860 : (IsExecConfig ? 3 /* kernel function (exec config) */
5861 : 0 /* function */);
5862
5863 // If too few arguments are available (and we don't have default
5864 // arguments for the remaining parameters), don't make the call.
5865 if (Args.size() < NumParams) {
5866 if (Args.size() < MinArgs) {
5867 TypoCorrection TC;
5868 if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) {
5869 unsigned diag_id =
5870 MinArgs == NumParams && !Proto->isVariadic()
5871 ? diag::err_typecheck_call_too_few_args_suggest
5872 : diag::err_typecheck_call_too_few_args_at_least_suggest;
5873 diagnoseTypo(TC, PDiag(diag_id) << FnKind << MinArgs
5874 << static_cast<unsigned>(Args.size())
5875 << TC.getCorrectionRange());
5876 } else if (MinArgs == 1 && FDecl && FDecl->getParamDecl(0)->getDeclName())
5877 Diag(RParenLoc,
5878 MinArgs == NumParams && !Proto->isVariadic()
5879 ? diag::err_typecheck_call_too_few_args_one
5880 : diag::err_typecheck_call_too_few_args_at_least_one)
5881 << FnKind << FDecl->getParamDecl(0) << Fn->getSourceRange();
5882 else
5883 Diag(RParenLoc, MinArgs == NumParams && !Proto->isVariadic()
5884 ? diag::err_typecheck_call_too_few_args
5885 : diag::err_typecheck_call_too_few_args_at_least)
5886 << FnKind << MinArgs << static_cast<unsigned>(Args.size())
5887 << Fn->getSourceRange();
5888
5889 // Emit the location of the prototype.
5890 if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
5891 Diag(FDecl->getLocation(), diag::note_callee_decl) << FDecl;
5892
5893 return true;
5894 }
5895 // We reserve space for the default arguments when we create
5896 // the call expression, before calling ConvertArgumentsForCall.
5897 assert((Call->getNumArgs() == NumParams) &&(static_cast <bool> ((Call->getNumArgs() == NumParams
) && "We should have reserved space for the default arguments before!"
) ? void (0) : __assert_fail ("(Call->getNumArgs() == NumParams) && \"We should have reserved space for the default arguments before!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 5898, __extension__ __PRETTY_FUNCTION__))
5898 "We should have reserved space for the default arguments before!")(static_cast <bool> ((Call->getNumArgs() == NumParams
) && "We should have reserved space for the default arguments before!"
) ? void (0) : __assert_fail ("(Call->getNumArgs() == NumParams) && \"We should have reserved space for the default arguments before!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 5898, __extension__ __PRETTY_FUNCTION__))
;
5899 }
5900
5901 // If too many are passed and not variadic, error on the extras and drop
5902 // them.
5903 if (Args.size() > NumParams) {
5904 if (!Proto->isVariadic()) {
5905 TypoCorrection TC;
5906 if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) {
5907 unsigned diag_id =
5908 MinArgs == NumParams && !Proto->isVariadic()
5909 ? diag::err_typecheck_call_too_many_args_suggest
5910 : diag::err_typecheck_call_too_many_args_at_most_suggest;
5911 diagnoseTypo(TC, PDiag(diag_id) << FnKind << NumParams
5912 << static_cast<unsigned>(Args.size())
5913 << TC.getCorrectionRange());
5914 } else if (NumParams == 1 && FDecl &&
5915 FDecl->getParamDecl(0)->getDeclName())
5916 Diag(Args[NumParams]->getBeginLoc(),
5917 MinArgs == NumParams
5918 ? diag::err_typecheck_call_too_many_args_one
5919 : diag::err_typecheck_call_too_many_args_at_most_one)
5920 << FnKind << FDecl->getParamDecl(0)
5921 << static_cast<unsigned>(Args.size()) << Fn->getSourceRange()
5922 << SourceRange(Args[NumParams]->getBeginLoc(),
5923 Args.back()->getEndLoc());
5924 else
5925 Diag(Args[NumParams]->getBeginLoc(),
5926 MinArgs == NumParams
5927 ? diag::err_typecheck_call_too_many_args
5928 : diag::err_typecheck_call_too_many_args_at_most)
5929 << FnKind << NumParams << static_cast<unsigned>(Args.size())
5930 << Fn->getSourceRange()
5931 << SourceRange(Args[NumParams]->getBeginLoc(),
5932 Args.back()->getEndLoc());
5933
5934 // Emit the location of the prototype.
5935 if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
5936 Diag(FDecl->getLocation(), diag::note_callee_decl) << FDecl;
5937
5938 // This deletes the extra arguments.
5939 Call->shrinkNumArgs(NumParams);
5940 return true;
5941 }
5942 }
5943 SmallVector<Expr *, 8> AllArgs;
5944 VariadicCallType CallType = getVariadicCallType(FDecl, Proto, Fn);
5945
5946 Invalid = GatherArgumentsForCall(Call->getBeginLoc(), FDecl, Proto, 0, Args,
5947 AllArgs, CallType);
5948 if (Invalid)
5949 return true;
5950 unsigned TotalNumArgs = AllArgs.size();
5951 for (unsigned i = 0; i < TotalNumArgs; ++i)
5952 Call->setArg(i, AllArgs[i]);
5953
5954 Call->computeDependence();
5955 return false;
5956}
5957
5958bool Sema::GatherArgumentsForCall(SourceLocation CallLoc, FunctionDecl *FDecl,
5959 const FunctionProtoType *Proto,
5960 unsigned FirstParam, ArrayRef<Expr *> Args,
5961 SmallVectorImpl<Expr *> &AllArgs,
5962 VariadicCallType CallType, bool AllowExplicit,
5963 bool IsListInitialization) {
5964 unsigned NumParams = Proto->getNumParams();
5965 bool Invalid = false;
5966 size_t ArgIx = 0;
5967 // Continue to check argument types (even if we have too few/many args).
5968 for (unsigned i = FirstParam; i < NumParams; i++) {
5969 QualType ProtoArgType = Proto->getParamType(i);
5970
5971 Expr *Arg;
5972 ParmVarDecl *Param = FDecl ? FDecl->getParamDecl(i) : nullptr;
5973 if (ArgIx < Args.size()) {
5974 Arg = Args[ArgIx++];
5975
5976 if (RequireCompleteType(Arg->getBeginLoc(), ProtoArgType,
5977 diag::err_call_incomplete_argument, Arg))
5978 return true;
5979
5980 // Strip the unbridged-cast placeholder expression off, if applicable.
5981 bool CFAudited = false;
5982 if (Arg->getType() == Context.ARCUnbridgedCastTy &&
5983 FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
5984 (!Param || !Param->hasAttr<CFConsumedAttr>()))
5985 Arg = stripARCUnbridgedCast(Arg);
5986 else if (getLangOpts().ObjCAutoRefCount &&
5987 FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
5988 (!Param || !Param->hasAttr<CFConsumedAttr>()))
5989 CFAudited = true;
5990
5991 if (Proto->getExtParameterInfo(i).isNoEscape() &&
5992 ProtoArgType->isBlockPointerType())
5993 if (auto *BE = dyn_cast<BlockExpr>(Arg->IgnoreParenNoopCasts(Context)))
5994 BE->getBlockDecl()->setDoesNotEscape();
5995
5996 InitializedEntity Entity =
5997 Param ? InitializedEntity::InitializeParameter(Context, Param,
5998 ProtoArgType)
5999 : InitializedEntity::InitializeParameter(
6000 Context, ProtoArgType, Proto->isParamConsumed(i));
6001
6002 // Remember that parameter belongs to a CF audited API.
6003 if (CFAudited)
6004 Entity.setParameterCFAudited();
6005
6006 ExprResult ArgE = PerformCopyInitialization(
6007 Entity, SourceLocation(), Arg, IsListInitialization, AllowExplicit);
6008 if (ArgE.isInvalid())
6009 return true;
6010
6011 Arg = ArgE.getAs<Expr>();
6012 } else {
6013 assert(Param && "can't use default arguments without a known callee")(static_cast <bool> (Param && "can't use default arguments without a known callee"
) ? void (0) : __assert_fail ("Param && \"can't use default arguments without a known callee\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 6013, __extension__ __PRETTY_FUNCTION__))
;
6014
6015 ExprResult ArgExpr = BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
6016 if (ArgExpr.isInvalid())
6017 return true;
6018
6019 Arg = ArgExpr.getAs<Expr>();
6020 }
6021
6022 // Check for array bounds violations for each argument to the call. This
6023 // check only triggers warnings when the argument isn't a more complex Expr
6024 // with its own checking, such as a BinaryOperator.
6025 CheckArrayAccess(Arg);
6026
6027 // Check for violations of C99 static array rules (C99 6.7.5.3p7).
6028 CheckStaticArrayArgument(CallLoc, Param, Arg);
6029
6030 AllArgs.push_back(Arg);
6031 }
6032
6033 // If this is a variadic call, handle args passed through "...".
6034 if (CallType != VariadicDoesNotApply) {
6035 // Assume that extern "C" functions with variadic arguments that
6036 // return __unknown_anytype aren't *really* variadic.
6037 if (Proto->getReturnType() == Context.UnknownAnyTy && FDecl &&
6038 FDecl->isExternC()) {
6039 for (Expr *A : Args.slice(ArgIx)) {
6040 QualType paramType; // ignored
6041 ExprResult arg = checkUnknownAnyArg(CallLoc, A, paramType);
6042 Invalid |= arg.isInvalid();
6043 AllArgs.push_back(arg.get());
6044 }
6045
6046 // Otherwise do argument promotion, (C99 6.5.2.2p7).
6047 } else {
6048 for (Expr *A : Args.slice(ArgIx)) {
6049 ExprResult Arg = DefaultVariadicArgumentPromotion(A, CallType, FDecl);
6050 Invalid |= Arg.isInvalid();
6051 AllArgs.push_back(Arg.get());
6052 }
6053 }
6054
6055 // Check for array bounds violations.
6056 for (Expr *A : Args.slice(ArgIx))
6057 CheckArrayAccess(A);
6058 }
6059 return Invalid;
6060}
6061
6062static void DiagnoseCalleeStaticArrayParam(Sema &S, ParmVarDecl *PVD) {
6063 TypeLoc TL = PVD->getTypeSourceInfo()->getTypeLoc();
6064 if (DecayedTypeLoc DTL = TL.getAs<DecayedTypeLoc>())
6065 TL = DTL.getOriginalLoc();
6066 if (ArrayTypeLoc ATL = TL.getAs<ArrayTypeLoc>())
6067 S.Diag(PVD->getLocation(), diag::note_callee_static_array)
6068 << ATL.getLocalSourceRange();
6069}
6070
6071/// CheckStaticArrayArgument - If the given argument corresponds to a static
6072/// array parameter, check that it is non-null, and that if it is formed by
6073/// array-to-pointer decay, the underlying array is sufficiently large.
6074///
6075/// C99 6.7.5.3p7: If the keyword static also appears within the [ and ] of the
6076/// array type derivation, then for each call to the function, the value of the
6077/// corresponding actual argument shall provide access to the first element of
6078/// an array with at least as many elements as specified by the size expression.
6079void
6080Sema::CheckStaticArrayArgument(SourceLocation CallLoc,
6081 ParmVarDecl *Param,
6082 const Expr *ArgExpr) {
6083 // Static array parameters are not supported in C++.
6084 if (!Param || getLangOpts().CPlusPlus)
6085 return;
6086
6087 QualType OrigTy = Param->getOriginalType();
6088
6089 const ArrayType *AT = Context.getAsArrayType(OrigTy);
6090 if (!AT || AT->getSizeModifier() != ArrayType::Static)
6091 return;
6092
6093 if (ArgExpr->isNullPointerConstant(Context,
6094 Expr::NPC_NeverValueDependent)) {
6095 Diag(CallLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
6096 DiagnoseCalleeStaticArrayParam(*this, Param);
6097 return;
6098 }
6099
6100 const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT);
6101 if (!CAT)
6102 return;
6103
6104 const ConstantArrayType *ArgCAT =
6105 Context.getAsConstantArrayType(ArgExpr->IgnoreParenCasts()->getType());
6106 if (!ArgCAT)
6107 return;
6108
6109 if (getASTContext().hasSameUnqualifiedType(CAT->getElementType(),
6110 ArgCAT->getElementType())) {
6111 if (ArgCAT->getSize().ult(CAT->getSize())) {
6112 Diag(CallLoc, diag::warn_static_array_too_small)
6113 << ArgExpr->getSourceRange()
6114 << (unsigned)ArgCAT->getSize().getZExtValue()
6115 << (unsigned)CAT->getSize().getZExtValue() << 0;
6116 DiagnoseCalleeStaticArrayParam(*this, Param);
6117 }
6118 return;
6119 }
6120
6121 Optional<CharUnits> ArgSize =
6122 getASTContext().getTypeSizeInCharsIfKnown(ArgCAT);
6123 Optional<CharUnits> ParmSize = getASTContext().getTypeSizeInCharsIfKnown(CAT);
6124 if (ArgSize && ParmSize && *ArgSize < *ParmSize) {
6125 Diag(CallLoc, diag::warn_static_array_too_small)
6126 << ArgExpr->getSourceRange() << (unsigned)ArgSize->getQuantity()
6127 << (unsigned)ParmSize->getQuantity() << 1;
6128 DiagnoseCalleeStaticArrayParam(*this, Param);
6129 }
6130}
6131
6132/// Given a function expression of unknown-any type, try to rebuild it
6133/// to have a function type.
6134static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn);
6135
6136/// Is the given type a placeholder that we need to lower out
6137/// immediately during argument processing?
6138static bool isPlaceholderToRemoveAsArg(QualType type) {
6139 // Placeholders are never sugared.
6140 const BuiltinType *placeholder = dyn_cast<BuiltinType>(type);
6141 if (!placeholder) return false;
6142
6143 switch (placeholder->getKind()) {
6144 // Ignore all the non-placeholder types.
6145#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
6146 case BuiltinType::Id:
6147#include "clang/Basic/OpenCLImageTypes.def"
6148#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
6149 case BuiltinType::Id:
6150#include "clang/Basic/OpenCLExtensionTypes.def"
6151 // In practice we'll never use this, since all SVE types are sugared
6152 // via TypedefTypes rather than exposed directly as BuiltinTypes.
6153#define SVE_TYPE(Name, Id, SingletonId) \
6154 case BuiltinType::Id:
6155#include "clang/Basic/AArch64SVEACLETypes.def"
6156#define PPC_VECTOR_TYPE(Name, Id, Size) \
6157 case BuiltinType::Id:
6158#include "clang/Basic/PPCTypes.def"
6159#define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
6160#include "clang/Basic/RISCVVTypes.def"
6161#define PLACEHOLDER_TYPE(ID, SINGLETON_ID)
6162#define BUILTIN_TYPE(ID, SINGLETON_ID) case BuiltinType::ID:
6163#include "clang/AST/BuiltinTypes.def"
6164 return false;
6165
6166 // We cannot lower out overload sets; they might validly be resolved
6167 // by the call machinery.
6168 case BuiltinType::Overload:
6169 return false;
6170
6171 // Unbridged casts in ARC can be handled in some call positions and
6172 // should be left in place.
6173 case BuiltinType::ARCUnbridgedCast:
6174 return false;
6175
6176 // Pseudo-objects should be converted as soon as possible.
6177 case BuiltinType::PseudoObject:
6178 return true;
6179
6180 // The debugger mode could theoretically but currently does not try
6181 // to resolve unknown-typed arguments based on known parameter types.
6182 case BuiltinType::UnknownAny:
6183 return true;
6184
6185 // These are always invalid as call arguments and should be reported.
6186 case BuiltinType::BoundMember:
6187 case BuiltinType::BuiltinFn:
6188 case BuiltinType::IncompleteMatrixIdx:
6189 case BuiltinType::OMPArraySection:
6190 case BuiltinType::OMPArrayShaping:
6191 case BuiltinType::OMPIterator:
6192 return true;
6193
6194 }
6195 llvm_unreachable("bad builtin type kind")::llvm::llvm_unreachable_internal("bad builtin type kind", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 6195)
;
6196}
6197
6198/// Check an argument list for placeholders that we won't try to
6199/// handle later.
6200static bool checkArgsForPlaceholders(Sema &S, MultiExprArg args) {
6201 // Apply this processing to all the arguments at once instead of
6202 // dying at the first failure.
6203 bool hasInvalid = false;
6204 for (size_t i = 0, e = args.size(); i != e; i++) {
6205 if (isPlaceholderToRemoveAsArg(args[i]->getType())) {
6206 ExprResult result = S.CheckPlaceholderExpr(args[i]);
6207 if (result.isInvalid()) hasInvalid = true;
6208 else args[i] = result.get();
6209 }
6210 }
6211 return hasInvalid;
6212}
6213
6214/// If a builtin function has a pointer argument with no explicit address
6215/// space, then it should be able to accept a pointer to any address
6216/// space as input. In order to do this, we need to replace the
6217/// standard builtin declaration with one that uses the same address space
6218/// as the call.
6219///
6220/// \returns nullptr If this builtin is not a candidate for a rewrite i.e.
6221/// it does not contain any pointer arguments without
6222/// an address space qualifer. Otherwise the rewritten
6223/// FunctionDecl is returned.
6224/// TODO: Handle pointer return types.
6225static FunctionDecl *rewriteBuiltinFunctionDecl(Sema *Sema, ASTContext &Context,
6226 FunctionDecl *FDecl,
6227 MultiExprArg ArgExprs) {
6228
6229 QualType DeclType = FDecl->getType();
6230 const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(DeclType);
6231
6232 if (!Context.BuiltinInfo.hasPtrArgsOrResult(FDecl->getBuiltinID()) || !FT ||
6233 ArgExprs.size() < FT->getNumParams())
6234 return nullptr;
6235
6236 bool NeedsNewDecl = false;
6237 unsigned i = 0;
6238 SmallVector<QualType, 8> OverloadParams;
6239
6240 for (QualType ParamType : FT->param_types()) {
6241
6242 // Convert array arguments to pointer to simplify type lookup.
6243 ExprResult ArgRes =
6244 Sema->DefaultFunctionArrayLvalueConversion(ArgExprs[i++]);
6245 if (ArgRes.isInvalid())
6246 return nullptr;
6247 Expr *Arg = ArgRes.get();
6248 QualType ArgType = Arg->getType();
6249 if (!ParamType->isPointerType() ||
6250 ParamType.hasAddressSpace() ||
6251 !ArgType->isPointerType() ||
6252 !ArgType->getPointeeType().hasAddressSpace()) {
6253 OverloadParams.push_back(ParamType);
6254 continue;
6255 }
6256
6257 QualType PointeeType = ParamType->getPointeeType();
6258 if (PointeeType.hasAddressSpace())
6259 continue;
6260
6261 NeedsNewDecl = true;
6262 LangAS AS = ArgType->getPointeeType().getAddressSpace();
6263
6264 PointeeType = Context.getAddrSpaceQualType(PointeeType, AS);
6265 OverloadParams.push_back(Context.getPointerType(PointeeType));
6266 }
6267
6268 if (!NeedsNewDecl)
6269 return nullptr;
6270
6271 FunctionProtoType::ExtProtoInfo EPI;
6272 EPI.Variadic = FT->isVariadic();
6273 QualType OverloadTy = Context.getFunctionType(FT->getReturnType(),
6274 OverloadParams, EPI);
6275 DeclContext *Parent = FDecl->getParent();
6276 FunctionDecl *OverloadDecl = FunctionDecl::Create(
6277 Context, Parent, FDecl->getLocation(), FDecl->getLocation(),
6278 FDecl->getIdentifier(), OverloadTy,
6279 /*TInfo=*/nullptr, SC_Extern, Sema->getCurFPFeatures().isFPConstrained(),
6280 false,
6281 /*hasPrototype=*/true);
6282 SmallVector<ParmVarDecl*, 16> Params;
6283 FT = cast<FunctionProtoType>(OverloadTy);
6284 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
6285 QualType ParamType = FT->getParamType(i);
6286 ParmVarDecl *Parm =
6287 ParmVarDecl::Create(Context, OverloadDecl, SourceLocation(),
6288 SourceLocation(), nullptr, ParamType,
6289 /*TInfo=*/nullptr, SC_None, nullptr);
6290 Parm->setScopeInfo(0, i);
6291 Params.push_back(Parm);
6292 }
6293 OverloadDecl->setParams(Params);
6294 Sema->mergeDeclAttributes(OverloadDecl, FDecl);
6295 return OverloadDecl;
6296}
6297
6298static void checkDirectCallValidity(Sema &S, const Expr *Fn,
6299 FunctionDecl *Callee,
6300 MultiExprArg ArgExprs) {
6301 // `Callee` (when called with ArgExprs) may be ill-formed. enable_if (and
6302 // similar attributes) really don't like it when functions are called with an
6303 // invalid number of args.
6304 if (S.TooManyArguments(Callee->getNumParams(), ArgExprs.size(),
6305 /*PartialOverloading=*/false) &&
6306 !Callee->isVariadic())
6307 return;
6308 if (Callee->getMinRequiredArguments() > ArgExprs.size())
6309 return;
6310
6311 if (const EnableIfAttr *Attr =
6312 S.CheckEnableIf(Callee, Fn->getBeginLoc(), ArgExprs, true)) {
6313 S.Diag(Fn->getBeginLoc(),
6314 isa<CXXMethodDecl>(Callee)
6315 ? diag::err_ovl_no_viable_member_function_in_call
6316 : diag::err_ovl_no_viable_function_in_call)
6317 << Callee << Callee->getSourceRange();
6318 S.Diag(Callee->getLocation(),
6319 diag::note_ovl_candidate_disabled_by_function_cond_attr)
6320 << Attr->getCond()->getSourceRange() << Attr->getMessage();
6321 return;
6322 }
6323}
6324
6325static bool enclosingClassIsRelatedToClassInWhichMembersWereFound(
6326 const UnresolvedMemberExpr *const UME, Sema &S) {
6327
6328 const auto GetFunctionLevelDCIfCXXClass =
6329 [](Sema &S) -> const CXXRecordDecl * {
6330 const DeclContext *const DC = S.getFunctionLevelDeclContext();
6331 if (!DC || !DC->getParent())
6332 return nullptr;
6333
6334 // If the call to some member function was made from within a member
6335 // function body 'M' return return 'M's parent.
6336 if (const auto *MD = dyn_cast<CXXMethodDecl>(DC))
6337 return MD->getParent()->getCanonicalDecl();
6338 // else the call was made from within a default member initializer of a
6339 // class, so return the class.
6340 if (const auto *RD = dyn_cast<CXXRecordDecl>(DC))
6341 return RD->getCanonicalDecl();
6342 return nullptr;
6343 };
6344 // If our DeclContext is neither a member function nor a class (in the
6345 // case of a lambda in a default member initializer), we can't have an
6346 // enclosing 'this'.
6347
6348 const CXXRecordDecl *const CurParentClass = GetFunctionLevelDCIfCXXClass(S);
6349 if (!CurParentClass)
6350 return false;
6351
6352 // The naming class for implicit member functions call is the class in which
6353 // name lookup starts.
6354 const CXXRecordDecl *const NamingClass =
6355 UME->getNamingClass()->getCanonicalDecl();
6356 assert(NamingClass && "Must have naming class even for implicit access")(static_cast <bool> (NamingClass && "Must have naming class even for implicit access"
) ? void (0) : __assert_fail ("NamingClass && \"Must have naming class even for implicit access\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 6356, __extension__ __PRETTY_FUNCTION__))
;
6357
6358 // If the unresolved member functions were found in a 'naming class' that is
6359 // related (either the same or derived from) to the class that contains the
6360 // member function that itself contained the implicit member access.
6361
6362 return CurParentClass == NamingClass ||
6363 CurParentClass->isDerivedFrom(NamingClass);
6364}
6365
6366static void
6367tryImplicitlyCaptureThisIfImplicitMemberFunctionAccessWithDependentArgs(
6368 Sema &S, const UnresolvedMemberExpr *const UME, SourceLocation CallLoc) {
6369
6370 if (!UME)
6371 return;
6372
6373 LambdaScopeInfo *const CurLSI = S.getCurLambda();
6374 // Only try and implicitly capture 'this' within a C++ Lambda if it hasn't
6375 // already been captured, or if this is an implicit member function call (if
6376 // it isn't, an attempt to capture 'this' should already have been made).
6377 if (!CurLSI || CurLSI->ImpCaptureStyle == CurLSI->ImpCap_None ||
6378 !UME->isImplicitAccess() || CurLSI->isCXXThisCaptured())
6379 return;
6380
6381 // Check if the naming class in which the unresolved members were found is
6382 // related (same as or is a base of) to the enclosing class.
6383
6384 if (!enclosingClassIsRelatedToClassInWhichMembersWereFound(UME, S))
6385 return;
6386
6387
6388 DeclContext *EnclosingFunctionCtx = S.CurContext->getParent()->getParent();
6389 // If the enclosing function is not dependent, then this lambda is
6390 // capture ready, so if we can capture this, do so.
6391 if (!EnclosingFunctionCtx->isDependentContext()) {
6392 // If the current lambda and all enclosing lambdas can capture 'this' -
6393 // then go ahead and capture 'this' (since our unresolved overload set
6394 // contains at least one non-static member function).
6395 if (!S.CheckCXXThisCapture(CallLoc, /*Explcit*/ false, /*Diagnose*/ false))
6396 S.CheckCXXThisCapture(CallLoc);
6397 } else if (S.CurContext->isDependentContext()) {
6398 // ... since this is an implicit member reference, that might potentially
6399 // involve a 'this' capture, mark 'this' for potential capture in
6400 // enclosing lambdas.
6401 if (CurLSI->ImpCaptureStyle != CurLSI->ImpCap_None)
6402 CurLSI->addPotentialThisCapture(CallLoc);
6403 }
6404}
6405
6406ExprResult Sema::ActOnCallExpr(Scope *Scope, Expr *Fn, SourceLocation LParenLoc,
6407 MultiExprArg ArgExprs, SourceLocation RParenLoc,
6408 Expr *ExecConfig) {
6409 ExprResult Call =
6410 BuildCallExpr(Scope, Fn, LParenLoc, ArgExprs, RParenLoc, ExecConfig,
6411 /*IsExecConfig=*/false, /*AllowRecovery=*/true);
6412 if (Call.isInvalid())
6413 return Call;
6414
6415 // Diagnose uses of the C++20 "ADL-only template-id call" feature in earlier
6416 // language modes.
6417 if (auto *ULE = dyn_cast<UnresolvedLookupExpr>(Fn)) {
6418 if (ULE->hasExplicitTemplateArgs() &&
6419 ULE->decls_begin() == ULE->decls_end()) {
6420 Diag(Fn->getExprLoc(), getLangOpts().CPlusPlus20
6421 ? diag::warn_cxx17_compat_adl_only_template_id
6422 : diag::ext_adl_only_template_id)
6423 << ULE->getName();
6424 }
6425 }
6426
6427 if (LangOpts.OpenMP)
6428 Call = ActOnOpenMPCall(Call, Scope, LParenLoc, ArgExprs, RParenLoc,
6429 ExecConfig);
6430
6431 return Call;
6432}
6433
6434/// BuildCallExpr - Handle a call to Fn with the specified array of arguments.
6435/// This provides the location of the left/right parens and a list of comma
6436/// locations.
6437ExprResult Sema::BuildCallExpr(Scope *Scope, Expr *Fn, SourceLocation LParenLoc,
6438 MultiExprArg ArgExprs, SourceLocation RParenLoc,
6439 Expr *ExecConfig, bool IsExecConfig,
6440 bool AllowRecovery) {
6441 // Since this might be a postfix expression, get rid of ParenListExprs.
6442 ExprResult Result = MaybeConvertParenListExprToParenExpr(Scope, Fn);
6443 if (Result.isInvalid()) return ExprError();
6444 Fn = Result.get();
6445
6446 if (checkArgsForPlaceholders(*this, ArgExprs))
6447 return ExprError();
6448
6449 if (getLangOpts().CPlusPlus) {
6450 // If this is a pseudo-destructor expression, build the call immediately.
6451 if (isa<CXXPseudoDestructorExpr>(Fn)) {
6452 if (!ArgExprs.empty()) {
6453 // Pseudo-destructor calls should not have any arguments.
6454 Diag(Fn->getBeginLoc(), diag::err_pseudo_dtor_call_with_args)
6455 << FixItHint::CreateRemoval(
6456 SourceRange(ArgExprs.front()->getBeginLoc(),
6457 ArgExprs.back()->getEndLoc()));
6458 }
6459
6460 return CallExpr::Create(Context, Fn, /*Args=*/{}, Context.VoidTy,
6461 VK_PRValue, RParenLoc, CurFPFeatureOverrides());
6462 }
6463 if (Fn->getType() == Context.PseudoObjectTy) {
6464 ExprResult result = CheckPlaceholderExpr(Fn);
6465 if (result.isInvalid()) return ExprError();
6466 Fn = result.get();
6467 }
6468
6469 // Determine whether this is a dependent call inside a C++ template,
6470 // in which case we won't do any semantic analysis now.
6471 if (Fn->isTypeDependent() || Expr::hasAnyTypeDependentArguments(ArgExprs)) {
6472 if (ExecConfig) {
6473 return CUDAKernelCallExpr::Create(Context, Fn,
6474 cast<CallExpr>(ExecConfig), ArgExprs,
6475 Context.DependentTy, VK_PRValue,
6476 RParenLoc, CurFPFeatureOverrides());
6477 } else {
6478
6479 tryImplicitlyCaptureThisIfImplicitMemberFunctionAccessWithDependentArgs(
6480 *this, dyn_cast<UnresolvedMemberExpr>(Fn->IgnoreParens()),
6481 Fn->getBeginLoc());
6482
6483 return CallExpr::Create(Context, Fn, ArgExprs, Context.DependentTy,
6484 VK_PRValue, RParenLoc, CurFPFeatureOverrides());
6485 }
6486 }
6487
6488 // Determine whether this is a call to an object (C++ [over.call.object]).
6489 if (Fn->getType()->isRecordType())
6490 return BuildCallToObjectOfClassType(Scope, Fn, LParenLoc, ArgExprs,
6491 RParenLoc);
6492
6493 if (Fn->getType() == Context.UnknownAnyTy) {
6494 ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
6495 if (result.isInvalid()) return ExprError();
6496 Fn = result.get();
6497 }
6498
6499 if (Fn->getType() == Context.BoundMemberTy) {
6500 return BuildCallToMemberFunction(Scope, Fn, LParenLoc, ArgExprs,
6501 RParenLoc, AllowRecovery);
6502 }
6503 }
6504
6505 // Check for overloaded calls. This can happen even in C due to extensions.
6506 if (Fn->getType() == Context.OverloadTy) {
6507 OverloadExpr::FindResult find = OverloadExpr::find(Fn);
6508
6509 // We aren't supposed to apply this logic if there's an '&' involved.
6510 if (!find.HasFormOfMemberPointer) {
6511 if (Expr::hasAnyTypeDependentArguments(ArgExprs))
6512 return CallExpr::Create(Context, Fn, ArgExprs, Context.DependentTy,
6513 VK_PRValue, RParenLoc, CurFPFeatureOverrides());
6514 OverloadExpr *ovl = find.Expression;
6515 if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(ovl))
6516 return BuildOverloadedCallExpr(
6517 Scope, Fn, ULE, LParenLoc, ArgExprs, RParenLoc, ExecConfig,
6518 /*AllowTypoCorrection=*/true, find.IsAddressOfOperand);
6519 return BuildCallToMemberFunction(Scope, Fn, LParenLoc, ArgExprs,
6520 RParenLoc, AllowRecovery);
6521 }
6522 }
6523
6524 // If we're directly calling a function, get the appropriate declaration.
6525 if (Fn->getType() == Context.UnknownAnyTy) {
6526 ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
6527 if (result.isInvalid()) return ExprError();
6528 Fn = result.get();
6529 }
6530
6531 Expr *NakedFn = Fn->IgnoreParens();
6532
6533 bool CallingNDeclIndirectly = false;
6534 NamedDecl *NDecl = nullptr;
6535 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(NakedFn)) {
6536 if (UnOp->getOpcode() == UO_AddrOf) {
6537 CallingNDeclIndirectly = true;
6538 NakedFn = UnOp->getSubExpr()->IgnoreParens();
6539 }
6540 }
6541
6542 if (auto *DRE = dyn_cast<DeclRefExpr>(NakedFn)) {
6543 NDecl = DRE->getDecl();
6544
6545 FunctionDecl *FDecl = dyn_cast<FunctionDecl>(NDecl);
6546 if (FDecl && FDecl->getBuiltinID()) {
6547 // Rewrite the function decl for this builtin by replacing parameters
6548 // with no explicit address space with the address space of the arguments
6549 // in ArgExprs.
6550 if ((FDecl =
6551 rewriteBuiltinFunctionDecl(this, Context, FDecl, ArgExprs))) {
6552 NDecl = FDecl;
6553 Fn = DeclRefExpr::Create(
6554 Context, FDecl->getQualifierLoc(), SourceLocation(), FDecl, false,
6555 SourceLocation(), FDecl->getType(), Fn->getValueKind(), FDecl,
6556 nullptr, DRE->isNonOdrUse());
6557 }
6558 }
6559 } else if (isa<MemberExpr>(NakedFn))
6560 NDecl = cast<MemberExpr>(NakedFn)->getMemberDecl();
6561
6562 if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(NDecl)) {
6563 if (CallingNDeclIndirectly && !checkAddressOfFunctionIsAvailable(
6564 FD, /*Complain=*/true, Fn->getBeginLoc()))
6565 return ExprError();
6566
6567 checkDirectCallValidity(*this, Fn, FD, ArgExprs);
6568
6569 // If this expression is a call to a builtin function in HIP device
6570 // compilation, allow a pointer-type argument to default address space to be
6571 // passed as a pointer-type parameter to a non-default address space.
6572 // If Arg is declared in the default address space and Param is declared
6573 // in a non-default address space, perform an implicit address space cast to
6574 // the parameter type.
6575 if (getLangOpts().HIP && getLangOpts().CUDAIsDevice && FD &&
6576 FD->getBuiltinID()) {
6577 for (unsigned Idx = 0; Idx < FD->param_size(); ++Idx) {
6578 ParmVarDecl *Param = FD->getParamDecl(Idx);
6579 if (!ArgExprs[Idx] || !Param || !Param->getType()->isPointerType() ||
6580 !ArgExprs[Idx]->getType()->isPointerType())
6581 continue;
6582
6583 auto ParamAS = Param->getType()->getPointeeType().getAddressSpace();
6584 auto ArgTy = ArgExprs[Idx]->getType();
6585 auto ArgPtTy = ArgTy->getPointeeType();
6586 auto ArgAS = ArgPtTy.getAddressSpace();
6587
6588 // Only allow implicit casting from a non-default address space pointee
6589 // type to a default address space pointee type
6590 if (ArgAS != LangAS::Default || ParamAS == LangAS::Default)
6591 continue;
6592
6593 // First, ensure that the Arg is an RValue.
6594 if (ArgExprs[Idx]->isGLValue()) {
6595 ArgExprs[Idx] = ImplicitCastExpr::Create(
6596 Context, ArgExprs[Idx]->getType(), CK_NoOp, ArgExprs[Idx],
6597 nullptr, VK_PRValue, FPOptionsOverride());
6598 }
6599
6600 // Construct a new arg type with address space of Param
6601 Qualifiers ArgPtQuals = ArgPtTy.getQualifiers();
6602 ArgPtQuals.setAddressSpace(ParamAS);
6603 auto NewArgPtTy =
6604 Context.getQualifiedType(ArgPtTy.getUnqualifiedType(), ArgPtQuals);
6605 auto NewArgTy =
6606 Context.getQualifiedType(Context.getPointerType(NewArgPtTy),
6607 ArgTy.getQualifiers());
6608
6609 // Finally perform an implicit address space cast
6610 ArgExprs[Idx] = ImpCastExprToType(ArgExprs[Idx], NewArgTy,
6611 CK_AddressSpaceConversion)
6612 .get();
6613 }
6614 }
6615 }
6616
6617 if (Context.isDependenceAllowed() &&
6618 (Fn->isTypeDependent() || Expr::hasAnyTypeDependentArguments(ArgExprs))) {
6619 assert(!getLangOpts().CPlusPlus)(static_cast <bool> (!getLangOpts().CPlusPlus) ? void (
0) : __assert_fail ("!getLangOpts().CPlusPlus", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 6619, __extension__ __PRETTY_FUNCTION__))
;
6620 assert((Fn->containsErrors() ||(static_cast <bool> ((Fn->containsErrors() || llvm::
any_of(ArgExprs, [](clang::Expr *E) { return E->containsErrors
(); })) && "should only occur in error-recovery path."
) ? void (0) : __assert_fail ("(Fn->containsErrors() || llvm::any_of(ArgExprs, [](clang::Expr *E) { return E->containsErrors(); })) && \"should only occur in error-recovery path.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 6623, __extension__ __PRETTY_FUNCTION__))
6621 llvm::any_of(ArgExprs,(static_cast <bool> ((Fn->containsErrors() || llvm::
any_of(ArgExprs, [](clang::Expr *E) { return E->containsErrors
(); })) && "should only occur in error-recovery path."
) ? void (0) : __assert_fail ("(Fn->containsErrors() || llvm::any_of(ArgExprs, [](clang::Expr *E) { return E->containsErrors(); })) && \"should only occur in error-recovery path.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 6623, __extension__ __PRETTY_FUNCTION__))
6622 [](clang::Expr *E) { return E->containsErrors(); })) &&(static_cast <bool> ((Fn->containsErrors() || llvm::
any_of(ArgExprs, [](clang::Expr *E) { return E->containsErrors
(); })) && "should only occur in error-recovery path."
) ? void (0) : __assert_fail ("(Fn->containsErrors() || llvm::any_of(ArgExprs, [](clang::Expr *E) { return E->containsErrors(); })) && \"should only occur in error-recovery path.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 6623, __extension__ __PRETTY_FUNCTION__))
6623 "should only occur in error-recovery path.")(static_cast <bool> ((Fn->containsErrors() || llvm::
any_of(ArgExprs, [](clang::Expr *E) { return E->containsErrors
(); })) && "should only occur in error-recovery path."
) ? void (0) : __assert_fail ("(Fn->containsErrors() || llvm::any_of(ArgExprs, [](clang::Expr *E) { return E->containsErrors(); })) && \"should only occur in error-recovery path.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 6623, __extension__ __PRETTY_FUNCTION__))
;
6624 QualType ReturnType =
6625 llvm::isa_and_nonnull<FunctionDecl>(NDecl)
6626 ? cast<FunctionDecl>(NDecl)->getCallResultType()
6627 : Context.DependentTy;
6628 return CallExpr::Create(Context, Fn, ArgExprs, ReturnType,
6629 Expr::getValueKindForType(ReturnType), RParenLoc,
6630 CurFPFeatureOverrides());
6631 }
6632 return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, ArgExprs, RParenLoc,
6633 ExecConfig, IsExecConfig);
6634}
6635
6636/// BuildBuiltinCallExpr - Create a call to a builtin function specified by Id
6637// with the specified CallArgs
6638Expr *Sema::BuildBuiltinCallExpr(SourceLocation Loc, Builtin::ID Id,
6639 MultiExprArg CallArgs) {
6640 StringRef Name = Context.BuiltinInfo.getName(Id);
6641 LookupResult R(*this, &Context.Idents.get(Name), Loc,
6642 Sema::LookupOrdinaryName);
6643 LookupName(R, TUScope, /*AllowBuiltinCreation=*/true);
6644
6645 auto *BuiltInDecl = R.getAsSingle<FunctionDecl>();
6646 assert(BuiltInDecl && "failed to find builtin declaration")(static_cast <bool> (BuiltInDecl && "failed to find builtin declaration"
) ? void (0) : __assert_fail ("BuiltInDecl && \"failed to find builtin declaration\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 6646, __extension__ __PRETTY_FUNCTION__))
;
6647
6648 ExprResult DeclRef =
6649 BuildDeclRefExpr(BuiltInDecl, BuiltInDecl->getType(), VK_LValue, Loc);
6650 assert(DeclRef.isUsable() && "Builtin reference cannot fail")(static_cast <bool> (DeclRef.isUsable() && "Builtin reference cannot fail"
) ? void (0) : __assert_fail ("DeclRef.isUsable() && \"Builtin reference cannot fail\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 6650, __extension__ __PRETTY_FUNCTION__))
;
6651
6652 ExprResult Call =
6653 BuildCallExpr(/*Scope=*/nullptr, DeclRef.get(), Loc, CallArgs, Loc);
6654
6655 assert(!Call.isInvalid() && "Call to builtin cannot fail!")(static_cast <bool> (!Call.isInvalid() && "Call to builtin cannot fail!"
) ? void (0) : __assert_fail ("!Call.isInvalid() && \"Call to builtin cannot fail!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 6655, __extension__ __PRETTY_FUNCTION__))
;
6656 return Call.get();
6657}
6658
6659/// Parse a __builtin_astype expression.
6660///
6661/// __builtin_astype( value, dst type )
6662///
6663ExprResult Sema::ActOnAsTypeExpr(Expr *E, ParsedType ParsedDestTy,
6664 SourceLocation BuiltinLoc,
6665 SourceLocation RParenLoc) {
6666 QualType DstTy = GetTypeFromParser(ParsedDestTy);
6667 return BuildAsTypeExpr(E, DstTy, BuiltinLoc, RParenLoc);
6668}
6669
6670/// Create a new AsTypeExpr node (bitcast) from the arguments.
6671ExprResult Sema::BuildAsTypeExpr(Expr *E, QualType DestTy,
6672 SourceLocation BuiltinLoc,
6673 SourceLocation RParenLoc) {
6674 ExprValueKind VK = VK_PRValue;
6675 ExprObjectKind OK = OK_Ordinary;
6676 QualType SrcTy = E->getType();
6677 if (!SrcTy->isDependentType() &&
6678 Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy))
6679 return ExprError(
6680 Diag(BuiltinLoc, diag::err_invalid_astype_of_different_size)
6681 << DestTy << SrcTy << E->getSourceRange());
6682 return new (Context) AsTypeExpr(E, DestTy, VK, OK, BuiltinLoc, RParenLoc);
6683}
6684
6685/// ActOnConvertVectorExpr - create a new convert-vector expression from the
6686/// provided arguments.
6687///
6688/// __builtin_convertvector( value, dst type )
6689///
6690ExprResult Sema::ActOnConvertVectorExpr(Expr *E, ParsedType ParsedDestTy,
6691 SourceLocation BuiltinLoc,
6692 SourceLocation RParenLoc) {
6693 TypeSourceInfo *TInfo;
6694 GetTypeFromParser(ParsedDestTy, &TInfo);
6695 return SemaConvertVectorExpr(E, TInfo, BuiltinLoc, RParenLoc);
6696}
6697
6698/// BuildResolvedCallExpr - Build a call to a resolved expression,
6699/// i.e. an expression not of \p OverloadTy. The expression should
6700/// unary-convert to an expression of function-pointer or
6701/// block-pointer type.
6702///
6703/// \param NDecl the declaration being called, if available
6704ExprResult Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
6705 SourceLocation LParenLoc,
6706 ArrayRef<Expr *> Args,
6707 SourceLocation RParenLoc, Expr *Config,
6708 bool IsExecConfig, ADLCallKind UsesADL) {
6709 FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);
1
Assuming null pointer is passed into cast
6710 unsigned BuiltinID = (FDecl
1.1
'FDecl' is null
1.1
'FDecl' is null
? FDecl->getBuiltinID() : 0);
2
'?' condition is false
6711
6712 // Functions with 'interrupt' attribute cannot be called directly.
6713 if (FDecl
2.1
'FDecl' is null
2.1
'FDecl' is null
&& FDecl->hasAttr<AnyX86InterruptAttr>()) {
6714 Diag(Fn->getExprLoc(), diag::err_anyx86_interrupt_called);
6715 return ExprError();
6716 }
6717
6718 // Interrupt handlers don't save off the VFP regs automatically on ARM,
6719 // so there's some risk when calling out to non-interrupt handler functions
6720 // that the callee might not preserve them. This is easy to diagnose here,
6721 // but can be very challenging to debug.
6722 // Likewise, X86 interrupt handlers may only call routines with attribute
6723 // no_caller_saved_registers since there is no efficient way to
6724 // save and restore the non-GPR state.
6725 if (auto *Caller = getCurFunctionDecl()) {
3
Assuming 'Caller' is null
4
Taking false branch
6726 if (Caller->hasAttr<ARMInterruptAttr>()) {
6727 bool VFP = Context.getTargetInfo().hasFeature("vfp");
6728 if (VFP && (!FDecl || !FDecl->hasAttr<ARMInterruptAttr>())) {
6729 Diag(Fn->getExprLoc(), diag::warn_arm_interrupt_calling_convention);
6730 if (FDecl)
6731 Diag(FDecl->getLocation(), diag::note_callee_decl) << FDecl;
6732 }
6733 }
6734 if (Caller->hasAttr<AnyX86InterruptAttr>() &&
6735 ((!FDecl || !FDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>()))) {
6736 Diag(Fn->getExprLoc(), diag::warn_anyx86_interrupt_regsave);
6737 if (FDecl)
6738 Diag(FDecl->getLocation(), diag::note_callee_decl) << FDecl;
6739 }
6740 }
6741
6742 // Promote the function operand.
6743 // We special-case function promotion here because we only allow promoting
6744 // builtin functions to function pointers in the callee of a call.
6745 ExprResult Result;
6746 QualType ResultTy;
6747 if (BuiltinID
4.1
'BuiltinID' is 0
4.1
'BuiltinID' is 0
&&
5
Taking false branch
6748 Fn->getType()->isSpecificBuiltinType(BuiltinType::BuiltinFn)) {
6749 // Extract the return type from the (builtin) function pointer type.
6750 // FIXME Several builtins still have setType in
6751 // Sema::CheckBuiltinFunctionCall. One should review their definitions in
6752 // Builtins.def to ensure they are correct before removing setType calls.
6753 QualType FnPtrTy = Context.getPointerType(FDecl->getType());
6754 Result = ImpCastExprToType(Fn, FnPtrTy, CK_BuiltinFnToFnPtr).get();
6755 ResultTy = FDecl->getCallResultType();
6756 } else {
6757 Result = CallExprUnaryConversions(Fn);
6758 ResultTy = Context.BoolTy;
6759 }
6760 if (Result.isInvalid())
6
Assuming the condition is false
7
Taking false branch
6761 return ExprError();
6762 Fn = Result.get();
6763
6764 // Check for a valid function type, but only if it is not a builtin which
6765 // requires custom type checking. These will be handled by
6766 // CheckBuiltinFunctionCall below just after creation of the call expression.
6767 const FunctionType *FuncT = nullptr;
6768 if (!BuiltinID
7.1
'BuiltinID' is 0
7.1
'BuiltinID' is 0
|| !Context.BuiltinInfo.hasCustomTypechecking(BuiltinID)) {
6769 retry:
6770 if (const PointerType *PT
8.1
'PT' is null
8.1
'PT' is null
= Fn->getType()->getAs<PointerType>()) {
8
Assuming the object is not a 'PointerType'
9
Taking false branch
6771 // C99 6.5.2.2p1 - "The expression that denotes the called function shall
6772 // have type pointer to function".
6773 FuncT = PT->getPointeeType()->getAs<FunctionType>();
6774 if (!FuncT)
6775 return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
6776 << Fn->getType() << Fn->getSourceRange());
6777 } else if (const BlockPointerType *BPT =
11
Assuming 'BPT' is non-null
12
Taking true branch
6778 Fn->getType()->getAs<BlockPointerType>()) {
10
Assuming the object is a 'BlockPointerType'
6779 FuncT = BPT->getPointeeType()->castAs<FunctionType>();
13
The object is a 'FunctionType'
14
Value assigned to 'FuncT'
6780 } else {
6781 // Handle calls to expressions of unknown-any type.
6782 if (Fn->getType() == Context.UnknownAnyTy) {
6783 ExprResult rewrite = rebuildUnknownAnyFunction(*this, Fn);
6784 if (rewrite.isInvalid())
6785 return ExprError();
6786 Fn = rewrite.get();
6787 goto retry;
6788 }
6789
6790 return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
6791 << Fn->getType() << Fn->getSourceRange());
6792 }
6793 }
6794
6795 // Get the number of parameters in the function prototype, if any.
6796 // We will allocate space for max(Args.size(), NumParams) arguments
6797 // in the call expression.
6798 const auto *Proto = dyn_cast_or_null<FunctionProtoType>(FuncT);
15
Assuming null pointer is passed into cast
16
Assuming pointer value is null
6799 unsigned NumParams = Proto
16.1
'Proto' is null
16.1
'Proto' is null
? Proto->getNumParams() : 0;
17
'?' condition is false
6800
6801 CallExpr *TheCall;
6802 if (Config) {
18
Assuming 'Config' is non-null
6803 assert(UsesADL == ADLCallKind::NotADL &&(static_cast <bool> (UsesADL == ADLCallKind::NotADL &&
"CUDAKernelCallExpr should not use ADL") ? void (0) : __assert_fail
("UsesADL == ADLCallKind::NotADL && \"CUDAKernelCallExpr should not use ADL\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 6804, __extension__ __PRETTY_FUNCTION__))
19
Taking true branch
20
Assuming 'UsesADL' is equal to NotADL
21
'?' condition is true
6804 "CUDAKernelCallExpr should not use ADL")(static_cast <bool> (UsesADL == ADLCallKind::NotADL &&
"CUDAKernelCallExpr should not use ADL") ? void (0) : __assert_fail
("UsesADL == ADLCallKind::NotADL && \"CUDAKernelCallExpr should not use ADL\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 6804, __extension__ __PRETTY_FUNCTION__))
;
6805 TheCall = CUDAKernelCallExpr::Create(Context, Fn, cast<CallExpr>(Config),
22
'Config' is a 'CallExpr'
6806 Args, ResultTy, VK_PRValue, RParenLoc,
6807 CurFPFeatureOverrides(), NumParams);
6808 } else {
6809 TheCall =
6810 CallExpr::Create(Context, Fn, Args, ResultTy, VK_PRValue, RParenLoc,
6811 CurFPFeatureOverrides(), NumParams, UsesADL);
6812 }
6813
6814 if (!Context.isDependenceAllowed()) {
23
Calling 'ASTContext::isDependenceAllowed'
26
Returning from 'ASTContext::isDependenceAllowed'
6815 // Forget about the nulled arguments since typo correction
6816 // do not handle them well.
6817 TheCall->shrinkNumArgs(Args.size());
6818 // C cannot always handle TypoExpr nodes in builtin calls and direct
6819 // function calls as their argument checking don't necessarily handle
6820 // dependent types properly, so make sure any TypoExprs have been
6821 // dealt with.
6822 ExprResult Result = CorrectDelayedTyposInExpr(TheCall);
6823 if (!Result.isUsable()) return ExprError();
6824 CallExpr *TheOldCall = TheCall;
6825 TheCall = dyn_cast<CallExpr>(Result.get());
6826 bool CorrectedTypos = TheCall != TheOldCall;
6827 if (!TheCall) return Result;
6828 Args = llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs());
6829
6830 // A new call expression node was created if some typos were corrected.
6831 // However it may not have been constructed with enough storage. In this
6832 // case, rebuild the node with enough storage. The waste of space is
6833 // immaterial since this only happens when some typos were corrected.
6834 if (CorrectedTypos && Args.size() < NumParams) {
6835 if (Config)
6836 TheCall = CUDAKernelCallExpr::Create(
6837 Context, Fn, cast<CallExpr>(Config), Args, ResultTy, VK_PRValue,
6838 RParenLoc, CurFPFeatureOverrides(), NumParams);
6839 else
6840 TheCall =
6841 CallExpr::Create(Context, Fn, Args, ResultTy, VK_PRValue, RParenLoc,
6842 CurFPFeatureOverrides(), NumParams, UsesADL);
6843 }
6844 // We can now handle the nulled arguments for the default arguments.
6845 TheCall->setNumArgsUnsafe(std::max<unsigned>(Args.size(), NumParams));
6846 }
6847
6848 // Bail out early if calling a builtin with custom type checking.
6849 if (BuiltinID
26.1
'BuiltinID' is 0
26.1
'BuiltinID' is 0
&& Context.BuiltinInfo.hasCustomTypechecking(BuiltinID))
6850 return CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall);
6851
6852 if (getLangOpts().CUDA) {
27
Assuming field 'CUDA' is not equal to 0
28
Taking true branch
6853 if (Config
28.1
'Config' is non-null
28.1
'Config' is non-null
) {
6854 // CUDA: Kernel calls must be to global functions
6855 if (FDecl
28.2
'FDecl' is null
28.2
'FDecl' is null
&& !FDecl->hasAttr<CUDAGlobalAttr>())
6856 return ExprError(Diag(LParenLoc,diag::err_kern_call_not_global_function)
6857 << FDecl << Fn->getSourceRange());
6858
6859 // CUDA: Kernel function must have 'void' return type
6860 if (!FuncT->getReturnType()->isVoidType() &&
29
Called C++ object pointer is null
6861 !FuncT->getReturnType()->getAs<AutoType>() &&
6862 !FuncT->getReturnType()->isInstantiationDependentType())
6863 return ExprError(Diag(LParenLoc, diag::err_kern_type_not_void_return)
6864 << Fn->getType() << Fn->getSourceRange());
6865 } else {
6866 // CUDA: Calls to global functions must be configured
6867 if (FDecl && FDecl->hasAttr<CUDAGlobalAttr>())
6868 return ExprError(Diag(LParenLoc, diag::err_global_call_not_config)
6869 << FDecl << Fn->getSourceRange());
6870 }
6871 }
6872
6873 // Check for a valid return type
6874 if (CheckCallReturnType(FuncT->getReturnType(), Fn->getBeginLoc(), TheCall,
6875 FDecl))
6876 return ExprError();
6877
6878 // We know the result type of the call, set it.
6879 TheCall->setType(FuncT->getCallResultType(Context));
6880 TheCall->setValueKind(Expr::getValueKindForType(FuncT->getReturnType()));
6881
6882 if (Proto) {
6883 if (ConvertArgumentsForCall(TheCall, Fn, FDecl, Proto, Args, RParenLoc,
6884 IsExecConfig))
6885 return ExprError();
6886 } else {
6887 assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!")(static_cast <bool> (isa<FunctionNoProtoType>(FuncT
) && "Unknown FunctionType!") ? void (0) : __assert_fail
("isa<FunctionNoProtoType>(FuncT) && \"Unknown FunctionType!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 6887, __extension__ __PRETTY_FUNCTION__))
;
6888
6889 if (FDecl) {
6890 // Check if we have too few/too many template arguments, based
6891 // on our knowledge of the function definition.
6892 const FunctionDecl *Def = nullptr;
6893 if (FDecl->hasBody(Def) && Args.size() != Def->param_size()) {
6894 Proto = Def->getType()->getAs<FunctionProtoType>();
6895 if (!Proto || !(Proto->isVariadic() && Args.size() >= Def->param_size()))
6896 Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
6897 << (Args.size() > Def->param_size()) << FDecl << Fn->getSourceRange();
6898 }
6899
6900 // If the function we're calling isn't a function prototype, but we have
6901 // a function prototype from a prior declaratiom, use that prototype.
6902 if (!FDecl->hasPrototype())
6903 Proto = FDecl->getType()->getAs<FunctionProtoType>();
6904 }
6905
6906 // Promote the arguments (C99 6.5.2.2p6).
6907 for (unsigned i = 0, e = Args.size(); i != e; i++) {
6908 Expr *Arg = Args[i];
6909
6910 if (Proto && i < Proto->getNumParams()) {
6911 InitializedEntity Entity = InitializedEntity::InitializeParameter(
6912 Context, Proto->getParamType(i), Proto->isParamConsumed(i));
6913 ExprResult ArgE =
6914 PerformCopyInitialization(Entity, SourceLocation(), Arg);
6915 if (ArgE.isInvalid())
6916 return true;
6917
6918 Arg = ArgE.getAs<Expr>();
6919
6920 } else {
6921 ExprResult ArgE = DefaultArgumentPromotion(Arg);
6922
6923 if (ArgE.isInvalid())
6924 return true;
6925
6926 Arg = ArgE.getAs<Expr>();
6927 }
6928
6929 if (RequireCompleteType(Arg->getBeginLoc(), Arg->getType(),
6930 diag::err_call_incomplete_argument, Arg))
6931 return ExprError();
6932
6933 TheCall->setArg(i, Arg);
6934 }
6935 TheCall->computeDependence();
6936 }
6937
6938 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
6939 if (!Method->isStatic())
6940 return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
6941 << Fn->getSourceRange());
6942
6943 // Check for sentinels
6944 if (NDecl)
6945 DiagnoseSentinelCalls(NDecl, LParenLoc, Args);
6946
6947 // Warn for unions passing across security boundary (CMSE).
6948 if (FuncT != nullptr && FuncT->getCmseNSCallAttr()) {
6949 for (unsigned i = 0, e = Args.size(); i != e; i++) {
6950 if (const auto *RT =
6951 dyn_cast<RecordType>(Args[i]->getType().getCanonicalType())) {
6952 if (RT->getDecl()->isOrContainsUnion())
6953 Diag(Args[i]->getBeginLoc(), diag::warn_cmse_nonsecure_union)
6954 << 0 << i;
6955 }
6956 }
6957 }
6958
6959 // Do special checking on direct calls to functions.
6960 if (FDecl) {
6961 if (CheckFunctionCall(FDecl, TheCall, Proto))
6962 return ExprError();
6963
6964 checkFortifiedBuiltinMemoryFunction(FDecl, TheCall);
6965
6966 if (BuiltinID)
6967 return CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall);
6968 } else if (NDecl) {
6969 if (CheckPointerCall(NDecl, TheCall, Proto))
6970 return ExprError();
6971 } else {
6972 if (CheckOtherCall(TheCall, Proto))
6973 return ExprError();
6974 }
6975
6976 return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall), FDecl);
6977}
6978
6979ExprResult
6980Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty,
6981 SourceLocation RParenLoc, Expr *InitExpr) {
6982 assert(Ty && "ActOnCompoundLiteral(): missing type")(static_cast <bool> (Ty && "ActOnCompoundLiteral(): missing type"
) ? void (0) : __assert_fail ("Ty && \"ActOnCompoundLiteral(): missing type\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 6982, __extension__ __PRETTY_FUNCTION__))
;
6983 assert(InitExpr && "ActOnCompoundLiteral(): missing expression")(static_cast <bool> (InitExpr && "ActOnCompoundLiteral(): missing expression"
) ? void (0) : __assert_fail ("InitExpr && \"ActOnCompoundLiteral(): missing expression\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 6983, __extension__ __PRETTY_FUNCTION__))
;
6984
6985 TypeSourceInfo *TInfo;
6986 QualType literalType = GetTypeFromParser(Ty, &TInfo);
6987 if (!TInfo)
6988 TInfo = Context.getTrivialTypeSourceInfo(literalType);
6989
6990 return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, InitExpr);
6991}
6992
6993ExprResult
6994Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
6995 SourceLocation RParenLoc, Expr *LiteralExpr) {
6996 QualType literalType = TInfo->getType();
6997
6998 if (literalType->isArrayType()) {
6999 if (RequireCompleteSizedType(
7000 LParenLoc, Context.getBaseElementType(literalType),
7001 diag::err_array_incomplete_or_sizeless_type,
7002 SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd())))
7003 return ExprError();
7004 if (literalType->isVariableArrayType()) {
7005 if (!tryToFixVariablyModifiedVarType(TInfo, literalType, LParenLoc,
7006 diag::err_variable_object_no_init)) {
7007 return ExprError();
7008 }
7009 }
7010 } else if (!literalType->isDependentType() &&
7011 RequireCompleteType(LParenLoc, literalType,
7012 diag::err_typecheck_decl_incomplete_type,
7013 SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd())))
7014 return ExprError();
7015
7016 InitializedEntity Entity
7017 = InitializedEntity::InitializeCompoundLiteralInit(TInfo);
7018 InitializationKind Kind
7019 = InitializationKind::CreateCStyleCast(LParenLoc,
7020 SourceRange(LParenLoc, RParenLoc),
7021 /*InitList=*/true);
7022 InitializationSequence InitSeq(*this, Entity, Kind, LiteralExpr);
7023 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, LiteralExpr,
7024 &literalType);
7025 if (Result.isInvalid())
7026 return ExprError();
7027 LiteralExpr = Result.get();
7028
7029 bool isFileScope = !CurContext->isFunctionOrMethod();
7030
7031 // In C, compound literals are l-values for some reason.
7032 // For GCC compatibility, in C++, file-scope array compound literals with
7033 // constant initializers are also l-values, and compound literals are
7034 // otherwise prvalues.
7035 //
7036 // (GCC also treats C++ list-initialized file-scope array prvalues with
7037 // constant initializers as l-values, but that's non-conforming, so we don't
7038 // follow it there.)
7039 //
7040 // FIXME: It would be better to handle the lvalue cases as materializing and
7041 // lifetime-extending a temporary object, but our materialized temporaries
7042 // representation only supports lifetime extension from a variable, not "out
7043 // of thin air".
7044 // FIXME: For C++, we might want to instead lifetime-extend only if a pointer
7045 // is bound to the result of applying array-to-pointer decay to the compound
7046 // literal.
7047 // FIXME: GCC supports compound literals of reference type, which should
7048 // obviously have a value kind derived from the kind of reference involved.
7049 ExprValueKind VK =
7050 (getLangOpts().CPlusPlus && !(isFileScope && literalType->isArrayType()))
7051 ? VK_PRValue
7052 : VK_LValue;
7053
7054 if (isFileScope)
7055 if (auto ILE = dyn_cast<InitListExpr>(LiteralExpr))
7056 for (unsigned i = 0, j = ILE->getNumInits(); i != j; i++) {
7057 Expr *Init = ILE->getInit(i);
7058 ILE->setInit(i, ConstantExpr::Create(Context, Init));
7059 }
7060
7061 auto *E = new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
7062 VK, LiteralExpr, isFileScope);
7063 if (isFileScope) {
7064 if (!LiteralExpr->isTypeDependent() &&
7065 !LiteralExpr->isValueDependent() &&
7066 !literalType->isDependentType()) // C99 6.5.2.5p3
7067 if (CheckForConstantInitializer(LiteralExpr, literalType))
7068 return ExprError();
7069 } else if (literalType.getAddressSpace() != LangAS::opencl_private &&
7070 literalType.getAddressSpace() != LangAS::Default) {
7071 // Embedded-C extensions to C99 6.5.2.5:
7072 // "If the compound literal occurs inside the body of a function, the
7073 // type name shall not be qualified by an address-space qualifier."
7074 Diag(LParenLoc, diag::err_compound_literal_with_address_space)
7075 << SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd());
7076 return ExprError();
7077 }
7078
7079 if (!isFileScope && !getLangOpts().CPlusPlus) {
7080 // Compound literals that have automatic storage duration are destroyed at
7081 // the end of the scope in C; in C++, they're just temporaries.
7082
7083 // Emit diagnostics if it is or contains a C union type that is non-trivial
7084 // to destruct.
7085 if (E->getType().hasNonTrivialToPrimitiveDestructCUnion())
7086 checkNonTrivialCUnion(E->getType(), E->getExprLoc(),
7087 NTCUC_CompoundLiteral, NTCUK_Destruct);
7088
7089 // Diagnose jumps that enter or exit the lifetime of the compound literal.
7090 if (literalType.isDestructedType()) {
7091 Cleanup.setExprNeedsCleanups(true);
7092 ExprCleanupObjects.push_back(E);
7093 getCurFunction()->setHasBranchProtectedScope();
7094 }
7095 }
7096
7097 if (E->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
7098 E->getType().hasNonTrivialToPrimitiveCopyCUnion())
7099 checkNonTrivialCUnionInInitializer(E->getInitializer(),
7100 E->getInitializer()->getExprLoc());
7101
7102 return MaybeBindToTemporary(E);
7103}
7104
7105ExprResult
7106Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
7107 SourceLocation RBraceLoc) {
7108 // Only produce each kind of designated initialization diagnostic once.
7109 SourceLocation FirstDesignator;
7110 bool DiagnosedArrayDesignator = false;
7111 bool DiagnosedNestedDesignator = false;
7112 bool DiagnosedMixedDesignator = false;
7113
7114 // Check that any designated initializers are syntactically valid in the
7115 // current language mode.
7116 for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) {
7117 if (auto *DIE = dyn_cast<DesignatedInitExpr>(InitArgList[I])) {
7118 if (FirstDesignator.isInvalid())
7119 FirstDesignator = DIE->getBeginLoc();
7120
7121 if (!getLangOpts().CPlusPlus)
7122 break;
7123
7124 if (!DiagnosedNestedDesignator && DIE->size() > 1) {
7125 DiagnosedNestedDesignator = true;
7126 Diag(DIE->getBeginLoc(), diag::ext_designated_init_nested)
7127 << DIE->getDesignatorsSourceRange();
7128 }
7129
7130 for (auto &Desig : DIE->designators()) {
7131 if (!Desig.isFieldDesignator() && !DiagnosedArrayDesignator) {
7132 DiagnosedArrayDesignator = true;
7133 Diag(Desig.getBeginLoc(), diag::ext_designated_init_array)
7134 << Desig.getSourceRange();
7135 }
7136 }
7137
7138 if (!DiagnosedMixedDesignator &&
7139 !isa<DesignatedInitExpr>(InitArgList[0])) {
7140 DiagnosedMixedDesignator = true;
7141 Diag(DIE->getBeginLoc(), diag::ext_designated_init_mixed)
7142 << DIE->getSourceRange();
7143 Diag(InitArgList[0]->getBeginLoc(), diag::note_designated_init_mixed)
7144 << InitArgList[0]->getSourceRange();
7145 }
7146 } else if (getLangOpts().CPlusPlus && !DiagnosedMixedDesignator &&
7147 isa<DesignatedInitExpr>(InitArgList[0])) {
7148 DiagnosedMixedDesignator = true;
7149 auto *DIE = cast<DesignatedInitExpr>(InitArgList[0]);
7150 Diag(DIE->getBeginLoc(), diag::ext_designated_init_mixed)
7151 << DIE->getSourceRange();
7152 Diag(InitArgList[I]->getBeginLoc(), diag::note_designated_init_mixed)
7153 << InitArgList[I]->getSourceRange();
7154 }
7155 }
7156
7157 if (FirstDesignator.isValid()) {
7158 // Only diagnose designated initiaization as a C++20 extension if we didn't
7159 // already diagnose use of (non-C++20) C99 designator syntax.
7160 if (getLangOpts().CPlusPlus && !DiagnosedArrayDesignator &&
7161 !DiagnosedNestedDesignator && !DiagnosedMixedDesignator) {
7162 Diag(FirstDesignator, getLangOpts().CPlusPlus20
7163 ? diag::warn_cxx17_compat_designated_init
7164 : diag::ext_cxx_designated_init);
7165 } else if (!getLangOpts().CPlusPlus && !getLangOpts().C99) {
7166 Diag(FirstDesignator, diag::ext_designated_init);
7167 }
7168 }
7169
7170 return BuildInitList(LBraceLoc, InitArgList, RBraceLoc);
7171}
7172
7173ExprResult
7174Sema::BuildInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
7175 SourceLocation RBraceLoc) {
7176 // Semantic analysis for initializers is done by ActOnDeclarator() and
7177 // CheckInitializer() - it requires knowledge of the object being initialized.
7178
7179 // Immediately handle non-overload placeholders. Overloads can be
7180 // resolved contextually, but everything else here can't.
7181 for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) {
7182 if (InitArgList[I]->getType()->isNonOverloadPlaceholderType()) {
7183 ExprResult result = CheckPlaceholderExpr(InitArgList[I]);
7184
7185 // Ignore failures; dropping the entire initializer list because
7186 // of one failure would be terrible for indexing/etc.
7187 if (result.isInvalid()) continue;
7188
7189 InitArgList[I] = result.get();
7190 }
7191 }
7192
7193 InitListExpr *E = new (Context) InitListExpr(Context, LBraceLoc, InitArgList,
7194 RBraceLoc);
7195 E->setType(Context.VoidTy); // FIXME: just a place holder for now.
7196 return E;
7197}
7198
7199/// Do an explicit extend of the given block pointer if we're in ARC.
7200void Sema::maybeExtendBlockObject(ExprResult &E) {
7201 assert(E.get()->getType()->isBlockPointerType())(static_cast <bool> (E.get()->getType()->isBlockPointerType
()) ? void (0) : __assert_fail ("E.get()->getType()->isBlockPointerType()"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 7201, __extension__ __PRETTY_FUNCTION__))
;
7202 assert(E.get()->isPRValue())(static_cast <bool> (E.get()->isPRValue()) ? void (0
) : __assert_fail ("E.get()->isPRValue()", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 7202, __extension__ __PRETTY_FUNCTION__))
;
7203
7204 // Only do this in an r-value context.
7205 if (!getLangOpts().ObjCAutoRefCount) return;
7206
7207 E = ImplicitCastExpr::Create(
7208 Context, E.get()->getType(), CK_ARCExtendBlockObject, E.get(),
7209 /*base path*/ nullptr, VK_PRValue, FPOptionsOverride());
7210 Cleanup.setExprNeedsCleanups(true);
7211}
7212
7213/// Prepare a conversion of the given expression to an ObjC object
7214/// pointer type.
7215CastKind Sema::PrepareCastToObjCObjectPointer(ExprResult &E) {
7216 QualType type = E.get()->getType();
7217 if (type->isObjCObjectPointerType()) {
7218 return CK_BitCast;
7219 } else if (type->isBlockPointerType()) {
7220 maybeExtendBlockObject(E);
7221 return CK_BlockPointerToObjCPointerCast;
7222 } else {
7223 assert(type->isPointerType())(static_cast <bool> (type->isPointerType()) ? void (
0) : __assert_fail ("type->isPointerType()", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 7223, __extension__ __PRETTY_FUNCTION__))
;
7224 return CK_CPointerToObjCPointerCast;
7225 }
7226}
7227
7228/// Prepares for a scalar cast, performing all the necessary stages
7229/// except the final cast and returning the kind required.
7230CastKind Sema::PrepareScalarCast(ExprResult &Src, QualType DestTy) {
7231 // Both Src and Dest are scalar types, i.e. arithmetic or pointer.
7232 // Also, callers should have filtered out the invalid cases with
7233 // pointers. Everything else should be possible.
7234
7235 QualType SrcTy = Src.get()->getType();
7236 if (Context.hasSameUnqualifiedType(SrcTy, DestTy))
7237 return CK_NoOp;
7238
7239 switch (Type::ScalarTypeKind SrcKind = SrcTy->getScalarTypeKind()) {
7240 case Type::STK_MemberPointer:
7241 llvm_unreachable("member pointer type in C")::llvm::llvm_unreachable_internal("member pointer type in C",
"/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 7241)
;
7242
7243 case Type::STK_CPointer:
7244 case Type::STK_BlockPointer:
7245 case Type::STK_ObjCObjectPointer:
7246 switch (DestTy->getScalarTypeKind()) {
7247 case Type::STK_CPointer: {
7248 LangAS SrcAS = SrcTy->getPointeeType().getAddressSpace();
7249 LangAS DestAS = DestTy->getPointeeType().getAddressSpace();
7250 if (SrcAS != DestAS)
7251 return CK_AddressSpaceConversion;
7252 if (Context.hasCvrSimilarType(SrcTy, DestTy))
7253 return CK_NoOp;
7254 return CK_BitCast;
7255 }
7256 case Type::STK_BlockPointer:
7257 return (SrcKind == Type::STK_BlockPointer
7258 ? CK_BitCast : CK_AnyPointerToBlockPointerCast);
7259 case Type::STK_ObjCObjectPointer:
7260 if (SrcKind == Type::STK_ObjCObjectPointer)
7261 return CK_BitCast;
7262 if (SrcKind == Type::STK_CPointer)
7263 return CK_CPointerToObjCPointerCast;
7264 maybeExtendBlockObject(Src);
7265 return CK_BlockPointerToObjCPointerCast;
7266 case Type::STK_Bool:
7267 return CK_PointerToBoolean;
7268 case Type::STK_Integral:
7269 return CK_PointerToIntegral;
7270 case Type::STK_Floating:
7271 case Type::STK_FloatingComplex:
7272 case Type::STK_IntegralComplex:
7273 case Type::STK_MemberPointer:
7274 case Type::STK_FixedPoint:
7275 llvm_unreachable("illegal cast from pointer")::llvm::llvm_unreachable_internal("illegal cast from pointer"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 7275)
;
7276 }
7277 llvm_unreachable("Should have returned before this")::llvm::llvm_unreachable_internal("Should have returned before this"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 7277)
;
7278
7279 case Type::STK_FixedPoint:
7280 switch (DestTy->getScalarTypeKind()) {
7281 case Type::STK_FixedPoint:
7282 return CK_FixedPointCast;
7283 case Type::STK_Bool:
7284 return CK_FixedPointToBoolean;
7285 case Type::STK_Integral:
7286 return CK_FixedPointToIntegral;
7287 case Type::STK_Floating:
7288 return CK_FixedPointToFloating;
7289 case Type::STK_IntegralComplex:
7290 case Type::STK_FloatingComplex:
7291 Diag(Src.get()->getExprLoc(),
7292 diag::err_unimplemented_conversion_with_fixed_point_type)
7293 << DestTy;
7294 return CK_IntegralCast;
7295 case Type::STK_CPointer:
7296 case Type::STK_ObjCObjectPointer:
7297 case Type::STK_BlockPointer:
7298 case Type::STK_MemberPointer:
7299 llvm_unreachable("illegal cast to pointer type")::llvm::llvm_unreachable_internal("illegal cast to pointer type"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 7299)
;
7300 }
7301 llvm_unreachable("Should have returned before this")::llvm::llvm_unreachable_internal("Should have returned before this"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 7301)
;
7302
7303 case Type::STK_Bool: // casting from bool is like casting from an integer
7304 case Type::STK_Integral:
7305 switch (DestTy->getScalarTypeKind()) {
7306 case Type::STK_CPointer:
7307 case Type::STK_ObjCObjectPointer:
7308 case Type::STK_BlockPointer:
7309 if (Src.get()->isNullPointerConstant(Context,
7310 Expr::NPC_ValueDependentIsNull))
7311 return CK_NullToPointer;
7312 return CK_IntegralToPointer;
7313 case Type::STK_Bool:
7314 return CK_IntegralToBoolean;
7315 case Type::STK_Integral:
7316 return CK_IntegralCast;
7317 case Type::STK_Floating:
7318 return CK_IntegralToFloating;
7319 case Type::STK_IntegralComplex:
7320 Src = ImpCastExprToType(Src.get(),
7321 DestTy->castAs<ComplexType>()->getElementType(),
7322 CK_IntegralCast);
7323 return CK_IntegralRealToComplex;
7324 case Type::STK_FloatingComplex:
7325 Src = ImpCastExprToType(Src.get(),
7326 DestTy->castAs<ComplexType>()->getElementType(),
7327 CK_IntegralToFloating);
7328 return CK_FloatingRealToComplex;
7329 case Type::STK_MemberPointer:
7330 llvm_unreachable("member pointer type in C")::llvm::llvm_unreachable_internal("member pointer type in C",
"/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 7330)
;
7331 case Type::STK_FixedPoint:
7332 return CK_IntegralToFixedPoint;
7333 }
7334 llvm_unreachable("Should have returned before this")::llvm::llvm_unreachable_internal("Should have returned before this"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 7334)
;
7335
7336 case Type::STK_Floating:
7337 switch (DestTy->getScalarTypeKind()) {
7338 case Type::STK_Floating:
7339 return CK_FloatingCast;
7340 case Type::STK_Bool:
7341 return CK_FloatingToBoolean;
7342 case Type::STK_Integral:
7343 return CK_FloatingToIntegral;
7344 case Type::STK_FloatingComplex:
7345 Src = ImpCastExprToType(Src.get(),
7346 DestTy->castAs<ComplexType>()->getElementType(),
7347 CK_FloatingCast);
7348 return CK_FloatingRealToComplex;
7349 case Type::STK_IntegralComplex:
7350 Src = ImpCastExprToType(Src.get(),
7351 DestTy->castAs<ComplexType>()->getElementType(),
7352 CK_FloatingToIntegral);
7353 return CK_IntegralRealToComplex;
7354 case Type::STK_CPointer:
7355 case Type::STK_ObjCObjectPointer:
7356 case Type::STK_BlockPointer:
7357 llvm_unreachable("valid float->pointer cast?")::llvm::llvm_unreachable_internal("valid float->pointer cast?"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 7357)
;
7358 case Type::STK_MemberPointer:
7359 llvm_unreachable("member pointer type in C")::llvm::llvm_unreachable_internal("member pointer type in C",
"/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 7359)
;
7360 case Type::STK_FixedPoint:
7361 return CK_FloatingToFixedPoint;
7362 }
7363 llvm_unreachable("Should have returned before this")::llvm::llvm_unreachable_internal("Should have returned before this"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 7363)
;
7364
7365 case Type::STK_FloatingComplex:
7366 switch (DestTy->getScalarTypeKind()) {
7367 case Type::STK_FloatingComplex:
7368 return CK_FloatingComplexCast;
7369 case Type::STK_IntegralComplex:
7370 return CK_FloatingComplexToIntegralComplex;
7371 case Type::STK_Floating: {
7372 QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
7373 if (Context.hasSameType(ET, DestTy))
7374 return CK_FloatingComplexToReal;
7375 Src = ImpCastExprToType(Src.get(), ET, CK_FloatingComplexToReal);
7376 return CK_FloatingCast;
7377 }
7378 case Type::STK_Bool:
7379 return CK_FloatingComplexToBoolean;
7380 case Type::STK_Integral:
7381 Src = ImpCastExprToType(Src.get(),
7382 SrcTy->castAs<ComplexType>()->getElementType(),
7383 CK_FloatingComplexToReal);
7384 return CK_FloatingToIntegral;
7385 case Type::STK_CPointer:
7386 case Type::STK_ObjCObjectPointer:
7387 case Type::STK_BlockPointer:
7388 llvm_unreachable("valid complex float->pointer cast?")::llvm::llvm_unreachable_internal("valid complex float->pointer cast?"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 7388)
;
7389 case Type::STK_MemberPointer:
7390 llvm_unreachable("member pointer type in C")::llvm::llvm_unreachable_internal("member pointer type in C",
"/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 7390)
;
7391 case Type::STK_FixedPoint:
7392 Diag(Src.get()->getExprLoc(),
7393 diag::err_unimplemented_conversion_with_fixed_point_type)
7394 << SrcTy;
7395 return CK_IntegralCast;
7396 }
7397 llvm_unreachable("Should have returned before this")::llvm::llvm_unreachable_internal("Should have returned before this"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 7397)
;
7398
7399 case Type::STK_IntegralComplex:
7400 switch (DestTy->getScalarTypeKind()) {
7401 case Type::STK_FloatingComplex:
7402 return CK_IntegralComplexToFloatingComplex;
7403 case Type::STK_IntegralComplex:
7404 return CK_IntegralComplexCast;
7405 case Type::STK_Integral: {
7406 QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
7407 if (Context.hasSameType(ET, DestTy))
7408 return CK_IntegralComplexToReal;
7409 Src = ImpCastExprToType(Src.get(), ET, CK_IntegralComplexToReal);
7410 return CK_IntegralCast;
7411 }
7412 case Type::STK_Bool:
7413 return CK_IntegralComplexToBoolean;
7414 case Type::STK_Floating:
7415 Src = ImpCastExprToType(Src.get(),
7416 SrcTy->castAs<ComplexType>()->getElementType(),
7417 CK_IntegralComplexToReal);
7418 return CK_IntegralToFloating;
7419 case Type::STK_CPointer:
7420 case Type::STK_ObjCObjectPointer:
7421 case Type::STK_BlockPointer:
7422 llvm_unreachable("valid complex int->pointer cast?")::llvm::llvm_unreachable_internal("valid complex int->pointer cast?"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 7422)
;
7423 case Type::STK_MemberPointer:
7424 llvm_unreachable("member pointer type in C")::llvm::llvm_unreachable_internal("member pointer type in C",
"/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 7424)
;
7425 case Type::STK_FixedPoint:
7426 Diag(Src.get()->getExprLoc(),
7427 diag::err_unimplemented_conversion_with_fixed_point_type)
7428 << SrcTy;
7429 return CK_IntegralCast;
7430 }
7431 llvm_unreachable("Should have returned before this")::llvm::llvm_unreachable_internal("Should have returned before this"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 7431)
;
7432 }
7433
7434 llvm_unreachable("Unhandled scalar cast")::llvm::llvm_unreachable_internal("Unhandled scalar cast", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 7434)
;
7435}
7436
7437static bool breakDownVectorType(QualType type, uint64_t &len,
7438 QualType &eltType) {
7439 // Vectors are simple.
7440 if (const VectorType *vecType = type->getAs<VectorType>()) {
7441 len = vecType->getNumElements();
7442 eltType = vecType->getElementType();
7443 assert(eltType->isScalarType())(static_cast <bool> (eltType->isScalarType()) ? void
(0) : __assert_fail ("eltType->isScalarType()", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 7443, __extension__ __PRETTY_FUNCTION__))
;
7444 return true;
7445 }
7446
7447 // We allow lax conversion to and from non-vector types, but only if
7448 // they're real types (i.e. non-complex, non-pointer scalar types).
7449 if (!type->isRealType()) return false;
7450
7451 len = 1;
7452 eltType = type;
7453 return true;
7454}
7455
7456/// Are the two types SVE-bitcast-compatible types? I.e. is bitcasting from the
7457/// first SVE type (e.g. an SVE VLAT) to the second type (e.g. an SVE VLST)
7458/// allowed?
7459///
7460/// This will also return false if the two given types do not make sense from
7461/// the perspective of SVE bitcasts.
7462bool Sema::isValidSveBitcast(QualType srcTy, QualType destTy) {
7463 assert(srcTy->isVectorType() || destTy->isVectorType())(static_cast <bool> (srcTy->isVectorType() || destTy
->isVectorType()) ? void (0) : __assert_fail ("srcTy->isVectorType() || destTy->isVectorType()"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 7463, __extension__ __PRETTY_FUNCTION__))
;
7464
7465 auto ValidScalableConversion = [](QualType FirstType, QualType SecondType) {
7466 if (!FirstType->isSizelessBuiltinType())
7467 return false;
7468
7469 const auto *VecTy = SecondType->getAs<VectorType>();
7470 return VecTy &&
7471 VecTy->getVectorKind() == VectorType::SveFixedLengthDataVector;
7472 };
7473
7474 return ValidScalableConversion(srcTy, destTy) ||
7475 ValidScalableConversion(destTy, srcTy);
7476}
7477
7478/// Are the two types matrix types and do they have the same dimensions i.e.
7479/// do they have the same number of rows and the same number of columns?
7480bool Sema::areMatrixTypesOfTheSameDimension(QualType srcTy, QualType destTy) {
7481 if (!destTy->isMatrixType() || !srcTy->isMatrixType())
7482 return false;
7483
7484 const ConstantMatrixType *matSrcType = srcTy->getAs<ConstantMatrixType>();
7485 const ConstantMatrixType *matDestType = destTy->getAs<ConstantMatrixType>();
7486
7487 return matSrcType->getNumRows() == matDestType->getNumRows() &&
7488 matSrcType->getNumColumns() == matDestType->getNumColumns();
7489}
7490
7491bool Sema::areVectorTypesSameSize(QualType SrcTy, QualType DestTy) {
7492 assert(DestTy->isVectorType() || SrcTy->isVectorType())(static_cast <bool> (DestTy->isVectorType() || SrcTy
->isVectorType()) ? void (0) : __assert_fail ("DestTy->isVectorType() || SrcTy->isVectorType()"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 7492, __extension__ __PRETTY_FUNCTION__))
;
7493
7494 uint64_t SrcLen, DestLen;
7495 QualType SrcEltTy, DestEltTy;
7496 if (!breakDownVectorType(SrcTy, SrcLen, SrcEltTy))
7497 return false;
7498 if (!breakDownVectorType(DestTy, DestLen, DestEltTy))
7499 return false;
7500
7501 // ASTContext::getTypeSize will return the size rounded up to a
7502 // power of 2, so instead of using that, we need to use the raw
7503 // element size multiplied by the element count.
7504 uint64_t SrcEltSize = Context.getTypeSize(SrcEltTy);
7505 uint64_t DestEltSize = Context.getTypeSize(DestEltTy);
7506
7507 return (SrcLen * SrcEltSize == DestLen * DestEltSize);
7508}
7509
7510/// Are the two types lax-compatible vector types? That is, given
7511/// that one of them is a vector, do they have equal storage sizes,
7512/// where the storage size is the number of elements times the element
7513/// size?
7514///
7515/// This will also return false if either of the types is neither a
7516/// vector nor a real type.
7517bool Sema::areLaxCompatibleVectorTypes(QualType srcTy, QualType destTy) {
7518 assert(destTy->isVectorType() || srcTy->isVectorType())(static_cast <bool> (destTy->isVectorType() || srcTy
->isVectorType()) ? void (0) : __assert_fail ("destTy->isVectorType() || srcTy->isVectorType()"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 7518, __extension__ __PRETTY_FUNCTION__))
;
7519
7520 // Disallow lax conversions between scalars and ExtVectors (these
7521 // conversions are allowed for other vector types because common headers
7522 // depend on them). Most scalar OP ExtVector cases are handled by the
7523 // splat path anyway, which does what we want (convert, not bitcast).
7524 // What this rules out for ExtVectors is crazy things like char4*float.
7525 if (srcTy->isScalarType() && destTy->isExtVectorType()) return false;
7526 if (destTy->isScalarType() && srcTy->isExtVectorType()) return false;
7527
7528 return areVectorTypesSameSize(srcTy, destTy);
7529}
7530
7531/// Is this a legal conversion between two types, one of which is
7532/// known to be a vector type?
7533bool Sema::isLaxVectorConversion(QualType srcTy, QualType destTy) {
7534 assert(destTy->isVectorType() || srcTy->isVectorType())(static_cast <bool> (destTy->isVectorType() || srcTy
->isVectorType()) ? void (0) : __assert_fail ("destTy->isVectorType() || srcTy->isVectorType()"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 7534, __extension__ __PRETTY_FUNCTION__))
;
7535
7536 switch (Context.getLangOpts().getLaxVectorConversions()) {
7537 case LangOptions::LaxVectorConversionKind::None:
7538 return false;
7539
7540 case LangOptions::LaxVectorConversionKind::Integer:
7541 if (!srcTy->isIntegralOrEnumerationType()) {
7542 auto *Vec = srcTy->getAs<VectorType>();
7543 if (!Vec || !Vec->getElementType()->isIntegralOrEnumerationType())
7544 return false;
7545 }
7546 if (!destTy->isIntegralOrEnumerationType()) {
7547 auto *Vec = destTy->getAs<VectorType>();
7548 if (!Vec || !Vec->getElementType()->isIntegralOrEnumerationType())
7549 return false;
7550 }
7551 // OK, integer (vector) -> integer (vector) bitcast.
7552 break;
7553
7554 case LangOptions::LaxVectorConversionKind::All:
7555 break;
7556 }
7557
7558 return areLaxCompatibleVectorTypes(srcTy, destTy);
7559}
7560
7561bool Sema::CheckMatrixCast(SourceRange R, QualType DestTy, QualType SrcTy,
7562 CastKind &Kind) {
7563 if (SrcTy->isMatrixType() && DestTy->isMatrixType()) {
7564 if (!areMatrixTypesOfTheSameDimension(SrcTy, DestTy)) {
7565 return Diag(R.getBegin(), diag::err_invalid_conversion_between_matrixes)
7566 << DestTy << SrcTy << R;
7567 }
7568 } else if (SrcTy->isMatrixType()) {
7569 return Diag(R.getBegin(),
7570 diag::err_invalid_conversion_between_matrix_and_type)
7571 << SrcTy << DestTy << R;
7572 } else if (DestTy->isMatrixType()) {
7573 return Diag(R.getBegin(),
7574 diag::err_invalid_conversion_between_matrix_and_type)
7575 << DestTy << SrcTy << R;
7576 }
7577
7578 Kind = CK_MatrixCast;
7579 return false;
7580}
7581
7582bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
7583 CastKind &Kind) {
7584 assert(VectorTy->isVectorType() && "Not a vector type!")(static_cast <bool> (VectorTy->isVectorType() &&
"Not a vector type!") ? void (0) : __assert_fail ("VectorTy->isVectorType() && \"Not a vector type!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 7584, __extension__ __PRETTY_FUNCTION__))
;
7585
7586 if (Ty->isVectorType() || Ty->isIntegralType(Context)) {
7587 if (!areLaxCompatibleVectorTypes(Ty, VectorTy))
7588 return Diag(R.getBegin(),
7589 Ty->isVectorType() ?
7590 diag::err_invalid_conversion_between_vectors :
7591 diag::err_invalid_conversion_between_vector_and_integer)
7592 << VectorTy << Ty << R;
7593 } else
7594 return Diag(R.getBegin(),
7595 diag::err_invalid_conversion_between_vector_and_scalar)
7596 << VectorTy << Ty << R;
7597
7598 Kind = CK_BitCast;
7599 return false;
7600}
7601
7602ExprResult Sema::prepareVectorSplat(QualType VectorTy, Expr *SplattedExpr) {
7603 QualType DestElemTy = VectorTy->castAs<VectorType>()->getElementType();
7604
7605 if (DestElemTy == SplattedExpr->getType())
7606 return SplattedExpr;
7607
7608 assert(DestElemTy->isFloatingType() ||(static_cast <bool> (DestElemTy->isFloatingType() ||
DestElemTy->isIntegralOrEnumerationType()) ? void (0) : __assert_fail
("DestElemTy->isFloatingType() || DestElemTy->isIntegralOrEnumerationType()"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 7609, __extension__ __PRETTY_FUNCTION__))
7609 DestElemTy->isIntegralOrEnumerationType())(static_cast <bool> (DestElemTy->isFloatingType() ||
DestElemTy->isIntegralOrEnumerationType()) ? void (0) : __assert_fail
("DestElemTy->isFloatingType() || DestElemTy->isIntegralOrEnumerationType()"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 7609, __extension__ __PRETTY_FUNCTION__))
;
7610
7611 CastKind CK;
7612 if (VectorTy->isExtVectorType() && SplattedExpr->getType()->isBooleanType()) {
7613 // OpenCL requires that we convert `true` boolean expressions to -1, but
7614 // only when splatting vectors.
7615 if (DestElemTy->isFloatingType()) {
7616 // To avoid having to have a CK_BooleanToSignedFloating cast kind, we cast
7617 // in two steps: boolean to signed integral, then to floating.
7618 ExprResult CastExprRes = ImpCastExprToType(SplattedExpr, Context.IntTy,
7619 CK_BooleanToSignedIntegral);
7620 SplattedExpr = CastExprRes.get();
7621 CK = CK_IntegralToFloating;
7622 } else {
7623 CK = CK_BooleanToSignedIntegral;
7624 }
7625 } else {
7626 ExprResult CastExprRes = SplattedExpr;
7627 CK = PrepareScalarCast(CastExprRes, DestElemTy);
7628 if (CastExprRes.isInvalid())
7629 return ExprError();
7630 SplattedExpr = CastExprRes.get();
7631 }
7632 return ImpCastExprToType(SplattedExpr, DestElemTy, CK);
7633}
7634
7635ExprResult Sema::CheckExtVectorCast(SourceRange R, QualType DestTy,
7636 Expr *CastExpr, CastKind &Kind) {
7637 assert(DestTy->isExtVectorType() && "Not an extended vector type!")(static_cast <bool> (DestTy->isExtVectorType() &&
"Not an extended vector type!") ? void (0) : __assert_fail (
"DestTy->isExtVectorType() && \"Not an extended vector type!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 7637, __extension__ __PRETTY_FUNCTION__))
;
7638
7639 QualType SrcTy = CastExpr->getType();
7640
7641 // If SrcTy is a VectorType, the total size must match to explicitly cast to
7642 // an ExtVectorType.
7643 // In OpenCL, casts between vectors of different types are not allowed.
7644 // (See OpenCL 6.2).
7645 if (SrcTy->isVectorType()) {
7646 if (!areLaxCompatibleVectorTypes(SrcTy, DestTy) ||
7647 (getLangOpts().OpenCL &&
7648 !Context.hasSameUnqualifiedType(DestTy, SrcTy))) {
7649 Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
7650 << DestTy << SrcTy << R;
7651 return ExprError();
7652 }
7653 Kind = CK_BitCast;
7654 return CastExpr;
7655 }
7656
7657 // All non-pointer scalars can be cast to ExtVector type. The appropriate
7658 // conversion will take place first from scalar to elt type, and then
7659 // splat from elt type to vector.
7660 if (SrcTy->isPointerType())
7661 return Diag(R.getBegin(),
7662 diag::err_invalid_conversion_between_vector_and_scalar)
7663 << DestTy << SrcTy << R;
7664
7665 Kind = CK_VectorSplat;
7666 return prepareVectorSplat(DestTy, CastExpr);
7667}
7668
7669ExprResult
7670Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc,
7671 Declarator &D, ParsedType &Ty,
7672 SourceLocation RParenLoc, Expr *CastExpr) {
7673 assert(!D.isInvalidType() && (CastExpr != nullptr) &&(static_cast <bool> (!D.isInvalidType() && (CastExpr
!= nullptr) && "ActOnCastExpr(): missing type or expr"
) ? void (0) : __assert_fail ("!D.isInvalidType() && (CastExpr != nullptr) && \"ActOnCastExpr(): missing type or expr\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 7674, __extension__ __PRETTY_FUNCTION__))
7674 "ActOnCastExpr(): missing type or expr")(static_cast <bool> (!D.isInvalidType() && (CastExpr
!= nullptr) && "ActOnCastExpr(): missing type or expr"
) ? void (0) : __assert_fail ("!D.isInvalidType() && (CastExpr != nullptr) && \"ActOnCastExpr(): missing type or expr\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 7674, __extension__ __PRETTY_FUNCTION__))
;
7675
7676 TypeSourceInfo *castTInfo = GetTypeForDeclaratorCast(D, CastExpr->getType());
7677 if (D.isInvalidType())
7678 return ExprError();
7679
7680 if (getLangOpts().CPlusPlus) {
7681 // Check that there are no default arguments (C++ only).
7682 CheckExtraCXXDefaultArguments(D);
7683 } else {
7684 // Make sure any TypoExprs have been dealt with.
7685 ExprResult Res = CorrectDelayedTyposInExpr(CastExpr);
7686 if (!Res.isUsable())
7687 return ExprError();
7688 CastExpr = Res.get();
7689 }
7690
7691 checkUnusedDeclAttributes(D);
7692
7693 QualType castType = castTInfo->getType();
7694 Ty = CreateParsedType(castType, castTInfo);
7695
7696 bool isVectorLiteral = false;
7697
7698 // Check for an altivec or OpenCL literal,
7699 // i.e. all the elements are integer constants.
7700 ParenExpr *PE = dyn_cast<ParenExpr>(CastExpr);
7701 ParenListExpr *PLE = dyn_cast<ParenListExpr>(CastExpr);
7702 if ((getLangOpts().AltiVec || getLangOpts().ZVector || getLangOpts().OpenCL)
7703 && castType->isVectorType() && (PE || PLE)) {
7704 if (PLE && PLE->getNumExprs() == 0) {
7705 Diag(PLE->getExprLoc(), diag::err_altivec_empty_initializer);
7706 return ExprError();
7707 }
7708 if (PE || PLE->getNumExprs() == 1) {
7709 Expr *E = (PE ? PE->getSubExpr() : PLE->getExpr(0));
7710 if (!E->isTypeDependent() && !E->getType()->isVectorType())
7711 isVectorLiteral = true;
7712 }
7713 else
7714 isVectorLiteral = true;
7715 }
7716
7717 // If this is a vector initializer, '(' type ')' '(' init, ..., init ')'
7718 // then handle it as such.
7719 if (isVectorLiteral)
7720 return BuildVectorLiteral(LParenLoc, RParenLoc, CastExpr, castTInfo);
7721
7722 // If the Expr being casted is a ParenListExpr, handle it specially.
7723 // This is not an AltiVec-style cast, so turn the ParenListExpr into a
7724 // sequence of BinOp comma operators.
7725 if (isa<ParenListExpr>(CastExpr)) {
7726 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, CastExpr);
7727 if (Result.isInvalid()) return ExprError();
7728 CastExpr = Result.get();
7729 }
7730
7731 if (getLangOpts().CPlusPlus && !castType->isVoidType() &&
7732 !getSourceManager().isInSystemMacro(LParenLoc))
7733 Diag(LParenLoc, diag::warn_old_style_cast) << CastExpr->getSourceRange();
7734
7735 CheckTollFreeBridgeCast(castType, CastExpr);
7736
7737 CheckObjCBridgeRelatedCast(castType, CastExpr);
7738
7739 DiscardMisalignedMemberAddress(castType.getTypePtr(), CastExpr);
7740
7741 return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, CastExpr);
7742}
7743
7744ExprResult Sema::BuildVectorLiteral(SourceLocation LParenLoc,
7745 SourceLocation RParenLoc, Expr *E,
7746 TypeSourceInfo *TInfo) {
7747 assert((isa<ParenListExpr>(E) || isa<ParenExpr>(E)) &&(static_cast <bool> ((isa<ParenListExpr>(E) || isa
<ParenExpr>(E)) && "Expected paren or paren list expression"
) ? void (0) : __assert_fail ("(isa<ParenListExpr>(E) || isa<ParenExpr>(E)) && \"Expected paren or paren list expression\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 7748, __extension__ __PRETTY_FUNCTION__))
7748 "Expected paren or paren list expression")(static_cast <bool> ((isa<ParenListExpr>(E) || isa
<ParenExpr>(E)) && "Expected paren or paren list expression"
) ? void (0) : __assert_fail ("(isa<ParenListExpr>(E) || isa<ParenExpr>(E)) && \"Expected paren or paren list expression\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 7748, __extension__ __PRETTY_FUNCTION__))
;
7749
7750 Expr **exprs;
7751 unsigned numExprs;
7752 Expr *subExpr;
7753 SourceLocation LiteralLParenLoc, LiteralRParenLoc;
7754 if (ParenListExpr *PE = dyn_cast<ParenListExpr>(E)) {
7755 LiteralLParenLoc = PE->getLParenLoc();
7756 LiteralRParenLoc = PE->getRParenLoc();
7757 exprs = PE->getExprs();
7758 numExprs = PE->getNumExprs();
7759 } else { // isa<ParenExpr> by assertion at function entrance
7760 LiteralLParenLoc = cast<ParenExpr>(E)->getLParen();
7761 LiteralRParenLoc = cast<ParenExpr>(E)->getRParen();
7762 subExpr = cast<ParenExpr>(E)->getSubExpr();
7763 exprs = &subExpr;
7764 numExprs = 1;
7765 }
7766
7767 QualType Ty = TInfo->getType();
7768 assert(Ty->isVectorType() && "Expected vector type")(static_cast <bool> (Ty->isVectorType() && "Expected vector type"
) ? void (0) : __assert_fail ("Ty->isVectorType() && \"Expected vector type\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 7768, __extension__ __PRETTY_FUNCTION__))
;
7769
7770 SmallVector<Expr *, 8> initExprs;
7771 const VectorType *VTy = Ty->castAs<VectorType>();
7772 unsigned numElems = VTy->getNumElements();
7773
7774 // '(...)' form of vector initialization in AltiVec: the number of
7775 // initializers must be one or must match the size of the vector.
7776 // If a single value is specified in the initializer then it will be
7777 // replicated to all the components of the vector
7778 if (CheckAltivecInitFromScalar(E->getSourceRange(), Ty,
7779 VTy->getElementType()))
7780 return ExprError();
7781 if (ShouldSplatAltivecScalarInCast(VTy)) {
7782 // The number of initializers must be one or must match the size of the
7783 // vector. If a single value is specified in the initializer then it will
7784 // be replicated to all the components of the vector
7785 if (numExprs == 1) {
7786 QualType ElemTy = VTy->getElementType();
7787 ExprResult Literal = DefaultLvalueConversion(exprs[0]);
7788 if (Literal.isInvalid())
7789 return ExprError();
7790 Literal = ImpCastExprToType(Literal.get(), ElemTy,
7791 PrepareScalarCast(Literal, ElemTy));
7792 return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get());
7793 }
7794 else if (numExprs < numElems) {
7795 Diag(E->getExprLoc(),
7796 diag::err_incorrect_number_of_vector_initializers);
7797 return ExprError();
7798 }
7799 else
7800 initExprs.append(exprs, exprs + numExprs);
7801 }
7802 else {
7803 // For OpenCL, when the number of initializers is a single value,
7804 // it will be replicated to all components of the vector.
7805 if (getLangOpts().OpenCL &&
7806 VTy->getVectorKind() == VectorType::GenericVector &&
7807 numExprs == 1) {
7808 QualType ElemTy = VTy->getElementType();
7809 ExprResult Literal = DefaultLvalueConversion(exprs[0]);
7810 if (Literal.isInvalid())
7811 return ExprError();
7812 Literal = ImpCastExprToType(Literal.get(), ElemTy,
7813 PrepareScalarCast(Literal, ElemTy));
7814 return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get());
7815 }
7816
7817 initExprs.append(exprs, exprs + numExprs);
7818 }
7819 // FIXME: This means that pretty-printing the final AST will produce curly
7820 // braces instead of the original commas.
7821 InitListExpr *initE = new (Context) InitListExpr(Context, LiteralLParenLoc,
7822 initExprs, LiteralRParenLoc);
7823 initE->setType(Ty);
7824 return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, initE);
7825}
7826
7827/// This is not an AltiVec-style cast or or C++ direct-initialization, so turn
7828/// the ParenListExpr into a sequence of comma binary operators.
7829ExprResult
7830Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *OrigExpr) {
7831 ParenListExpr *E = dyn_cast<ParenListExpr>(OrigExpr);
7832 if (!E)
7833 return OrigExpr;
7834
7835 ExprResult Result(E->getExpr(0));
7836
7837 for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
7838 Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, Result.get(),
7839 E->getExpr(i));
7840
7841 if (Result.isInvalid()) return ExprError();
7842
7843 return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), Result.get());
7844}
7845
7846ExprResult Sema::ActOnParenListExpr(SourceLocation L,
7847 SourceLocation R,
7848 MultiExprArg Val) {
7849 return ParenListExpr::Create(Context, L, Val, R);
7850}
7851
7852/// Emit a specialized diagnostic when one expression is a null pointer
7853/// constant and the other is not a pointer. Returns true if a diagnostic is
7854/// emitted.
7855bool Sema::DiagnoseConditionalForNull(Expr *LHSExpr, Expr *RHSExpr,
7856 SourceLocation QuestionLoc) {
7857 Expr *NullExpr = LHSExpr;
7858 Expr *NonPointerExpr = RHSExpr;
7859 Expr::NullPointerConstantKind NullKind =
7860 NullExpr->isNullPointerConstant(Context,
7861 Expr::NPC_ValueDependentIsNotNull);
7862
7863 if (NullKind == Expr::NPCK_NotNull) {
7864 NullExpr = RHSExpr;
7865 NonPointerExpr = LHSExpr;
7866 NullKind =
7867 NullExpr->isNullPointerConstant(Context,
7868 Expr::NPC_ValueDependentIsNotNull);
7869 }
7870
7871 if (NullKind == Expr::NPCK_NotNull)
7872 return false;
7873
7874 if (NullKind == Expr::NPCK_ZeroExpression)
7875 return false;
7876
7877 if (NullKind == Expr::NPCK_ZeroLiteral) {
7878 // In this case, check to make sure that we got here from a "NULL"
7879 // string in the source code.
7880 NullExpr = NullExpr->IgnoreParenImpCasts();
7881 SourceLocation loc = NullExpr->getExprLoc();
7882 if (!findMacroSpelling(loc, "NULL"))
7883 return false;
7884 }
7885
7886 int DiagType = (NullKind == Expr::NPCK_CXX11_nullptr);
7887 Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands_null)
7888 << NonPointerExpr->getType() << DiagType
7889 << NonPointerExpr->getSourceRange();
7890 return true;
7891}
7892
7893/// Return false if the condition expression is valid, true otherwise.
7894static bool checkCondition(Sema &S, Expr *Cond, SourceLocation QuestionLoc) {
7895 QualType CondTy = Cond->getType();
7896
7897 // OpenCL v1.1 s6.3.i says the condition cannot be a floating point type.
7898 if (S.getLangOpts().OpenCL && CondTy->isFloatingType()) {
7899 S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_nonfloat)
7900 << CondTy << Cond->getSourceRange();
7901 return true;
7902 }
7903
7904 // C99 6.5.15p2
7905 if (CondTy->isScalarType()) return false;
7906
7907 S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_scalar)
7908 << CondTy << Cond->getSourceRange();
7909 return true;
7910}
7911
7912/// Handle when one or both operands are void type.
7913static QualType checkConditionalVoidType(Sema &S, ExprResult &LHS,
7914 ExprResult &RHS) {
7915 Expr *LHSExpr = LHS.get();
7916 Expr *RHSExpr = RHS.get();
7917
7918 if (!LHSExpr->getType()->isVoidType())
7919 S.Diag(RHSExpr->getBeginLoc(), diag::ext_typecheck_cond_one_void)
7920 << RHSExpr->getSourceRange();
7921 if (!RHSExpr->getType()->isVoidType())
7922 S.Diag(LHSExpr->getBeginLoc(), diag::ext_typecheck_cond_one_void)
7923 << LHSExpr->getSourceRange();
7924 LHS = S.ImpCastExprToType(LHS.get(), S.Context.VoidTy, CK_ToVoid);
7925 RHS = S.ImpCastExprToType(RHS.get(), S.Context.VoidTy, CK_ToVoid);
7926 return S.Context.VoidTy;
7927}
7928
7929/// Return false if the NullExpr can be promoted to PointerTy,
7930/// true otherwise.
7931static bool checkConditionalNullPointer(Sema &S, ExprResult &NullExpr,
7932 QualType PointerTy) {
7933 if ((!PointerTy->isAnyPointerType() && !PointerTy->isBlockPointerType()) ||
7934 !NullExpr.get()->isNullPointerConstant(S.Context,
7935 Expr::NPC_ValueDependentIsNull))
7936 return true;
7937
7938 NullExpr = S.ImpCastExprToType(NullExpr.get(), PointerTy, CK_NullToPointer);
7939 return false;
7940}
7941
7942/// Checks compatibility between two pointers and return the resulting
7943/// type.
7944static QualType checkConditionalPointerCompatibility(Sema &S, ExprResult &LHS,
7945 ExprResult &RHS,
7946 SourceLocation Loc) {
7947 QualType LHSTy = LHS.get()->getType();
7948 QualType RHSTy = RHS.get()->getType();
7949
7950 if (S.Context.hasSameType(LHSTy, RHSTy)) {
7951 // Two identical pointers types are always compatible.
7952 return LHSTy;
7953 }
7954
7955 QualType lhptee, rhptee;
7956
7957 // Get the pointee types.
7958 bool IsBlockPointer = false;
7959 if (const BlockPointerType *LHSBTy = LHSTy->getAs<BlockPointerType>()) {
7960 lhptee = LHSBTy->getPointeeType();
7961 rhptee = RHSTy->castAs<BlockPointerType>()->getPointeeType();
7962 IsBlockPointer = true;
7963 } else {
7964 lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
7965 rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
7966 }
7967
7968 // C99 6.5.15p6: If both operands are pointers to compatible types or to
7969 // differently qualified versions of compatible types, the result type is
7970 // a pointer to an appropriately qualified version of the composite
7971 // type.
7972
7973 // Only CVR-qualifiers exist in the standard, and the differently-qualified
7974 // clause doesn't make sense for our extensions. E.g. address space 2 should
7975 // be incompatible with address space 3: they may live on different devices or
7976 // anything.
7977 Qualifiers lhQual = lhptee.getQualifiers();
7978 Qualifiers rhQual = rhptee.getQualifiers();
7979
7980 LangAS ResultAddrSpace = LangAS::Default;
7981 LangAS LAddrSpace = lhQual.getAddressSpace();
7982 LangAS RAddrSpace = rhQual.getAddressSpace();
7983
7984 // OpenCL v1.1 s6.5 - Conversion between pointers to distinct address
7985 // spaces is disallowed.
7986 if (lhQual.isAddressSpaceSupersetOf(rhQual))
7987 ResultAddrSpace = LAddrSpace;
7988 else if (rhQual.isAddressSpaceSupersetOf(lhQual))
7989 ResultAddrSpace = RAddrSpace;
7990 else {
7991 S.Diag(Loc, diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
7992 << LHSTy << RHSTy << 2 << LHS.get()->getSourceRange()
7993 << RHS.get()->getSourceRange();
7994 return QualType();
7995 }
7996
7997 unsigned MergedCVRQual = lhQual.getCVRQualifiers() | rhQual.getCVRQualifiers();
7998 auto LHSCastKind = CK_BitCast, RHSCastKind = CK_BitCast;
7999 lhQual.removeCVRQualifiers();
8000 rhQual.removeCVRQualifiers();
8001
8002 // OpenCL v2.0 specification doesn't extend compatibility of type qualifiers
8003 // (C99 6.7.3) for address spaces. We assume that the check should behave in
8004 // the same manner as it's defined for CVR qualifiers, so for OpenCL two
8005 // qual types are compatible iff
8006 // * corresponded types are compatible
8007 // * CVR qualifiers are equal
8008 // * address spaces are equal
8009 // Thus for conditional operator we merge CVR and address space unqualified
8010 // pointees and if there is a composite type we return a pointer to it with
8011 // merged qualifiers.
8012 LHSCastKind =
8013 LAddrSpace == ResultAddrSpace ? CK_BitCast : CK_AddressSpaceConversion;
8014 RHSCastKind =
8015 RAddrSpace == ResultAddrSpace ? CK_BitCast : CK_AddressSpaceConversion;
8016 lhQual.removeAddressSpace();
8017 rhQual.removeAddressSpace();
8018
8019 lhptee = S.Context.getQualifiedType(lhptee.getUnqualifiedType(), lhQual);
8020 rhptee = S.Context.getQualifiedType(rhptee.getUnqualifiedType(), rhQual);
8021
8022 QualType CompositeTy = S.Context.mergeTypes(lhptee, rhptee);
8023
8024 if (CompositeTy.isNull()) {
8025 // In this situation, we assume void* type. No especially good
8026 // reason, but this is what gcc does, and we do have to pick
8027 // to get a consistent AST.
8028 QualType incompatTy;
8029 incompatTy = S.Context.getPointerType(
8030 S.Context.getAddrSpaceQualType(S.Context.VoidTy, ResultAddrSpace));
8031 LHS = S.ImpCastExprToType(LHS.get(), incompatTy, LHSCastKind);
8032 RHS = S.ImpCastExprToType(RHS.get(), incompatTy, RHSCastKind);
8033
8034 // FIXME: For OpenCL the warning emission and cast to void* leaves a room
8035 // for casts between types with incompatible address space qualifiers.
8036 // For the following code the compiler produces casts between global and
8037 // local address spaces of the corresponded innermost pointees:
8038 // local int *global *a;
8039 // global int *global *b;
8040 // a = (0 ? a : b); // see C99 6.5.16.1.p1.
8041 S.Diag(Loc, diag::ext_typecheck_cond_incompatible_pointers)
8042 << LHSTy << RHSTy << LHS.get()->getSourceRange()
8043 << RHS.get()->getSourceRange();
8044
8045 return incompatTy;
8046 }
8047
8048 // The pointer types are compatible.
8049 // In case of OpenCL ResultTy should have the address space qualifier
8050 // which is a superset of address spaces of both the 2nd and the 3rd
8051 // operands of the conditional operator.
8052 QualType ResultTy = [&, ResultAddrSpace]() {
8053 if (S.getLangOpts().OpenCL) {
8054 Qualifiers CompositeQuals = CompositeTy.getQualifiers();
8055 CompositeQuals.setAddressSpace(ResultAddrSpace);
8056 return S.Context
8057 .getQualifiedType(CompositeTy.getUnqualifiedType(), CompositeQuals)
8058 .withCVRQualifiers(MergedCVRQual);
8059 }
8060 return CompositeTy.withCVRQualifiers(MergedCVRQual);
8061 }();
8062 if (IsBlockPointer)
8063 ResultTy = S.Context.getBlockPointerType(ResultTy);
8064 else
8065 ResultTy = S.Context.getPointerType(ResultTy);
8066
8067 LHS = S.ImpCastExprToType(LHS.get(), ResultTy, LHSCastKind);
8068 RHS = S.ImpCastExprToType(RHS.get(), ResultTy, RHSCastKind);
8069 return ResultTy;
8070}
8071
8072/// Return the resulting type when the operands are both block pointers.
8073static QualType checkConditionalBlockPointerCompatibility(Sema &S,
8074 ExprResult &LHS,
8075 ExprResult &RHS,
8076 SourceLocation Loc) {
8077 QualType LHSTy = LHS.get()->getType();
8078 QualType RHSTy = RHS.get()->getType();
8079
8080 if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
8081 if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
8082 QualType destType = S.Context.getPointerType(S.Context.VoidTy);
8083 LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast);
8084 RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast);
8085 return destType;
8086 }
8087 S.Diag(Loc, diag::err_typecheck_cond_incompatible_operands)
8088 << LHSTy << RHSTy << LHS.get()->getSourceRange()
8089 << RHS.get()->getSourceRange();
8090 return QualType();
8091 }
8092
8093 // We have 2 block pointer types.
8094 return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
8095}
8096
8097/// Return the resulting type when the operands are both pointers.
8098static QualType
8099checkConditionalObjectPointersCompatibility(Sema &S, ExprResult &LHS,
8100 ExprResult &RHS,
8101 SourceLocation Loc) {
8102 // get the pointer types
8103 QualType LHSTy = LHS.get()->getType();
8104 QualType RHSTy = RHS.get()->getType();
8105
8106 // get the "pointed to" types
8107 QualType lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
8108 QualType rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
8109
8110 // ignore qualifiers on void (C99 6.5.15p3, clause 6)
8111 if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
8112 // Figure out necessary qualifiers (C99 6.5.15p6)
8113 QualType destPointee
8114 = S.Context.getQualifiedType(lhptee, rhptee.getQualifiers());
8115 QualType destType = S.Context.getPointerType(destPointee);
8116 // Add qualifiers if necessary.
8117 LHS = S.ImpCastExprToType(LHS.get(), destType, CK_NoOp);
8118 // Promote to void*.
8119 RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast);
8120 return destType;
8121 }
8122 if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
8123 QualType destPointee
8124 = S.Context.getQualifiedType(rhptee, lhptee.getQualifiers());
8125 QualType destType = S.Context.getPointerType(destPointee);
8126 // Add qualifiers if necessary.
8127 RHS = S.ImpCastExprToType(RHS.get(), destType, CK_NoOp);
8128 // Promote to void*.
8129 LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast);
8130 return destType;
8131 }
8132
8133 return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
8134}
8135
8136/// Return false if the first expression is not an integer and the second
8137/// expression is not a pointer, true otherwise.
8138static bool checkPointerIntegerMismatch(Sema &S, ExprResult &Int,
8139 Expr* PointerExpr, SourceLocation Loc,
8140 bool IsIntFirstExpr) {
8141 if (!PointerExpr->getType()->isPointerType() ||
8142 !Int.get()->getType()->isIntegerType())
8143 return false;
8144
8145 Expr *Expr1 = IsIntFirstExpr ? Int.get() : PointerExpr;
8146 Expr *Expr2 = IsIntFirstExpr ? PointerExpr : Int.get();
8147
8148 S.Diag(Loc, diag::ext_typecheck_cond_pointer_integer_mismatch)
8149 << Expr1->getType() << Expr2->getType()
8150 << Expr1->getSourceRange() << Expr2->getSourceRange();
8151 Int = S.ImpCastExprToType(Int.get(), PointerExpr->getType(),
8152 CK_IntegralToPointer);
8153 return true;
8154}
8155
8156/// Simple conversion between integer and floating point types.
8157///
8158/// Used when handling the OpenCL conditional operator where the
8159/// condition is a vector while the other operands are scalar.
8160///
8161/// OpenCL v1.1 s6.3.i and s6.11.6 together require that the scalar
8162/// types are either integer or floating type. Between the two
8163/// operands, the type with the higher rank is defined as the "result
8164/// type". The other operand needs to be promoted to the same type. No
8165/// other type promotion is allowed. We cannot use
8166/// UsualArithmeticConversions() for this purpose, since it always
8167/// promotes promotable types.
8168static QualType OpenCLArithmeticConversions(Sema &S, ExprResult &LHS,
8169 ExprResult &RHS,
8170 SourceLocation QuestionLoc) {
8171 LHS = S.DefaultFunctionArrayLvalueConversion(LHS.get());
8172 if (LHS.isInvalid())
8173 return QualType();
8174 RHS = S.DefaultFunctionArrayLvalueConversion(RHS.get());
8175 if (RHS.isInvalid())
8176 return QualType();
8177
8178 // For conversion purposes, we ignore any qualifiers.
8179 // For example, "const float" and "float" are equivalent.
8180 QualType LHSType =
8181 S.Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
8182 QualType RHSType =
8183 S.Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
8184
8185 if (!LHSType->isIntegerType() && !LHSType->isRealFloatingType()) {
8186 S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_int_float)
8187 << LHSType << LHS.get()->getSourceRange();
8188 return QualType();
8189 }
8190
8191 if (!RHSType->isIntegerType() && !RHSType->isRealFloatingType()) {
8192 S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_int_float)
8193 << RHSType << RHS.get()->getSourceRange();
8194 return QualType();
8195 }
8196
8197 // If both types are identical, no conversion is needed.
8198 if (LHSType == RHSType)
8199 return LHSType;
8200
8201 // Now handle "real" floating types (i.e. float, double, long double).
8202 if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
8203 return handleFloatConversion(S, LHS, RHS, LHSType, RHSType,
8204 /*IsCompAssign = */ false);
8205
8206 // Finally, we have two differing integer types.
8207 return handleIntegerConversion<doIntegralCast, doIntegralCast>
8208 (S, LHS, RHS, LHSType, RHSType, /*IsCompAssign = */ false);
8209}
8210
8211/// Convert scalar operands to a vector that matches the
8212/// condition in length.
8213///
8214/// Used when handling the OpenCL conditional operator where the
8215/// condition is a vector while the other operands are scalar.
8216///
8217/// We first compute the "result type" for the scalar operands
8218/// according to OpenCL v1.1 s6.3.i. Both operands are then converted
8219/// into a vector of that type where the length matches the condition
8220/// vector type. s6.11.6 requires that the element types of the result
8221/// and the condition must have the same number of bits.
8222static QualType
8223OpenCLConvertScalarsToVectors(Sema &S, ExprResult &LHS, ExprResult &RHS,
8224 QualType CondTy, SourceLocation QuestionLoc) {
8225 QualType ResTy = OpenCLArithmeticConversions(S, LHS, RHS, QuestionLoc);
8226 if (ResTy.isNull()) return QualType();
8227
8228 const VectorType *CV = CondTy->getAs<VectorType>();
8229 assert(CV)(static_cast <bool> (CV) ? void (0) : __assert_fail ("CV"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 8229, __extension__ __PRETTY_FUNCTION__))
;
8230
8231 // Determine the vector result type
8232 unsigned NumElements = CV->getNumElements();
8233 QualType VectorTy = S.Context.getExtVectorType(ResTy, NumElements);
8234
8235 // Ensure that all types have the same number of bits
8236 if (S.Context.getTypeSize(CV->getElementType())
8237 != S.Context.getTypeSize(ResTy)) {
8238 // Since VectorTy is created internally, it does not pretty print
8239 // with an OpenCL name. Instead, we just print a description.
8240 std::string EleTyName = ResTy.getUnqualifiedType().getAsString();
8241 SmallString<64> Str;
8242 llvm::raw_svector_ostream OS(Str);
8243 OS << "(vector of " << NumElements << " '" << EleTyName << "' values)";
8244 S.Diag(QuestionLoc, diag::err_conditional_vector_element_size)
8245 << CondTy << OS.str();
8246 return QualType();
8247 }
8248
8249 // Convert operands to the vector result type
8250 LHS = S.ImpCastExprToType(LHS.get(), VectorTy, CK_VectorSplat);
8251 RHS = S.ImpCastExprToType(RHS.get(), VectorTy, CK_VectorSplat);
8252
8253 return VectorTy;
8254}
8255
8256/// Return false if this is a valid OpenCL condition vector
8257static bool checkOpenCLConditionVector(Sema &S, Expr *Cond,
8258 SourceLocation QuestionLoc) {
8259 // OpenCL v1.1 s6.11.6 says the elements of the vector must be of
8260 // integral type.
8261 const VectorType *CondTy = Cond->getType()->getAs<VectorType>();
8262 assert(CondTy)(static_cast <bool> (CondTy) ? void (0) : __assert_fail
("CondTy", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 8262, __extension__ __PRETTY_FUNCTION__))
;
8263 QualType EleTy = CondTy->getElementType();
8264 if (EleTy->isIntegerType()) return false;
8265
8266 S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_nonfloat)
8267 << Cond->getType() << Cond->getSourceRange();
8268 return true;
8269}
8270
8271/// Return false if the vector condition type and the vector
8272/// result type are compatible.
8273///
8274/// OpenCL v1.1 s6.11.6 requires that both vector types have the same
8275/// number of elements, and their element types have the same number
8276/// of bits.
8277static bool checkVectorResult(Sema &S, QualType CondTy, QualType VecResTy,
8278 SourceLocation QuestionLoc) {
8279 const VectorType *CV = CondTy->getAs<VectorType>();
8280 const VectorType *RV = VecResTy->getAs<VectorType>();
8281 assert(CV && RV)(static_cast <bool> (CV && RV) ? void (0) : __assert_fail
("CV && RV", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 8281, __extension__ __PRETTY_FUNCTION__))
;
8282
8283 if (CV->getNumElements() != RV->getNumElements()) {
8284 S.Diag(QuestionLoc, diag::err_conditional_vector_size)
8285 << CondTy << VecResTy;
8286 return true;
8287 }
8288
8289 QualType CVE = CV->getElementType();
8290 QualType RVE = RV->getElementType();
8291
8292 if (S.Context.getTypeSize(CVE) != S.Context.getTypeSize(RVE)) {
8293 S.Diag(QuestionLoc, diag::err_conditional_vector_element_size)
8294 << CondTy << VecResTy;
8295 return true;
8296 }
8297
8298 return false;
8299}
8300
8301/// Return the resulting type for the conditional operator in
8302/// OpenCL (aka "ternary selection operator", OpenCL v1.1
8303/// s6.3.i) when the condition is a vector type.
8304static QualType
8305OpenCLCheckVectorConditional(Sema &S, ExprResult &Cond,
8306 ExprResult &LHS, ExprResult &RHS,
8307 SourceLocation QuestionLoc) {
8308 Cond = S.DefaultFunctionArrayLvalueConversion(Cond.get());
8309 if (Cond.isInvalid())
8310 return QualType();
8311 QualType CondTy = Cond.get()->getType();
8312
8313 if (checkOpenCLConditionVector(S, Cond.get(), QuestionLoc))
8314 return QualType();
8315
8316 // If either operand is a vector then find the vector type of the
8317 // result as specified in OpenCL v1.1 s6.3.i.
8318 if (LHS.get()->getType()->isVectorType() ||
8319 RHS.get()->getType()->isVectorType()) {
8320 QualType VecResTy = S.CheckVectorOperands(LHS, RHS, QuestionLoc,
8321 /*isCompAssign*/false,
8322 /*AllowBothBool*/true,
8323 /*AllowBoolConversions*/false);
8324 if (VecResTy.isNull()) return QualType();
8325 // The result type must match the condition type as specified in
8326 // OpenCL v1.1 s6.11.6.
8327 if (checkVectorResult(S, CondTy, VecResTy, QuestionLoc))
8328 return QualType();
8329 return VecResTy;
8330 }
8331
8332 // Both operands are scalar.
8333 return OpenCLConvertScalarsToVectors(S, LHS, RHS, CondTy, QuestionLoc);
8334}
8335
8336/// Return true if the Expr is block type
8337static bool checkBlockType(Sema &S, const Expr *E) {
8338 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
8339 QualType Ty = CE->getCallee()->getType();
8340 if (Ty->isBlockPointerType()) {
8341 S.Diag(E->getExprLoc(), diag::err_opencl_ternary_with_block);
8342 return true;
8343 }
8344 }
8345 return false;
8346}
8347
8348/// Note that LHS is not null here, even if this is the gnu "x ?: y" extension.
8349/// In that case, LHS = cond.
8350/// C99 6.5.15
8351QualType Sema::CheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
8352 ExprResult &RHS, ExprValueKind &VK,
8353 ExprObjectKind &OK,
8354 SourceLocation QuestionLoc) {
8355
8356 ExprResult LHSResult = CheckPlaceholderExpr(LHS.get());
8357 if (!LHSResult.isUsable()) return QualType();
8358 LHS = LHSResult;
8359
8360 ExprResult RHSResult = CheckPlaceholderExpr(RHS.get());
8361 if (!RHSResult.isUsable()) return QualType();
8362 RHS = RHSResult;
8363
8364 // C++ is sufficiently different to merit its own checker.
8365 if (getLangOpts().CPlusPlus)
8366 return CXXCheckConditionalOperands(Cond, LHS, RHS, VK, OK, QuestionLoc);
8367
8368 VK = VK_PRValue;
8369 OK = OK_Ordinary;
8370
8371 if (Context.isDependenceAllowed() &&
8372 (Cond.get()->isTypeDependent() || LHS.get()->isTypeDependent() ||
8373 RHS.get()->isTypeDependent())) {
8374 assert(!getLangOpts().CPlusPlus)(static_cast <bool> (!getLangOpts().CPlusPlus) ? void (
0) : __assert_fail ("!getLangOpts().CPlusPlus", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 8374, __extension__ __PRETTY_FUNCTION__))
;
8375 assert((Cond.get()->containsErrors() || LHS.get()->containsErrors() ||(static_cast <bool> ((Cond.get()->containsErrors() ||
LHS.get()->containsErrors() || RHS.get()->containsErrors
()) && "should only occur in error-recovery path.") ?
void (0) : __assert_fail ("(Cond.get()->containsErrors() || LHS.get()->containsErrors() || RHS.get()->containsErrors()) && \"should only occur in error-recovery path.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 8377, __extension__ __PRETTY_FUNCTION__))
8376 RHS.get()->containsErrors()) &&(static_cast <bool> ((Cond.get()->containsErrors() ||
LHS.get()->containsErrors() || RHS.get()->containsErrors
()) && "should only occur in error-recovery path.") ?
void (0) : __assert_fail ("(Cond.get()->containsErrors() || LHS.get()->containsErrors() || RHS.get()->containsErrors()) && \"should only occur in error-recovery path.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 8377, __extension__ __PRETTY_FUNCTION__))
8377 "should only occur in error-recovery path.")(static_cast <bool> ((Cond.get()->containsErrors() ||
LHS.get()->containsErrors() || RHS.get()->containsErrors
()) && "should only occur in error-recovery path.") ?
void (0) : __assert_fail ("(Cond.get()->containsErrors() || LHS.get()->containsErrors() || RHS.get()->containsErrors()) && \"should only occur in error-recovery path.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 8377, __extension__ __PRETTY_FUNCTION__))
;
8378 return Context.DependentTy;
8379 }
8380
8381 // The OpenCL operator with a vector condition is sufficiently
8382 // different to merit its own checker.
8383 if ((getLangOpts().OpenCL && Cond.get()->getType()->isVectorType()) ||
8384 Cond.get()->getType()->isExtVectorType())
8385 return OpenCLCheckVectorConditional(*this, Cond, LHS, RHS, QuestionLoc);
8386
8387 // First, check the condition.
8388 Cond = UsualUnaryConversions(Cond.get());
8389 if (Cond.isInvalid())
8390 return QualType();
8391 if (checkCondition(*this, Cond.get(), QuestionLoc))
8392 return QualType();
8393
8394 // Now check the two expressions.
8395 if (LHS.get()->getType()->isVectorType() ||
8396 RHS.get()->getType()->isVectorType())
8397 return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false,
8398 /*AllowBothBool*/true,
8399 /*AllowBoolConversions*/false);
8400
8401 QualType ResTy =
8402 UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional);
8403 if (LHS.isInvalid() || RHS.isInvalid())
8404 return QualType();
8405
8406 QualType LHSTy = LHS.get()->getType();
8407 QualType RHSTy = RHS.get()->getType();
8408
8409 // Diagnose attempts to convert between __float128 and long double where
8410 // such conversions currently can't be handled.
8411 if (unsupportedTypeConversion(*this, LHSTy, RHSTy)) {
8412 Diag(QuestionLoc,
8413 diag::err_typecheck_cond_incompatible_operands) << LHSTy << RHSTy
8414 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
8415 return QualType();
8416 }
8417
8418 // OpenCL v2.0 s6.12.5 - Blocks cannot be used as expressions of the ternary
8419 // selection operator (?:).
8420 if (getLangOpts().OpenCL &&
8421 (checkBlockType(*this, LHS.get()) | checkBlockType(*this, RHS.get()))) {
8422 return QualType();
8423 }
8424
8425 // If both operands have arithmetic type, do the usual arithmetic conversions
8426 // to find a common type: C99 6.5.15p3,5.
8427 if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
8428 // Disallow invalid arithmetic conversions, such as those between ExtInts of
8429 // different sizes, or between ExtInts and other types.
8430 if (ResTy.isNull() && (LHSTy->isExtIntType() || RHSTy->isExtIntType())) {
8431 Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
8432 << LHSTy << RHSTy << LHS.get()->getSourceRange()
8433 << RHS.get()->getSourceRange();
8434 return QualType();
8435 }
8436
8437 LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy));
8438 RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy));
8439
8440 return ResTy;
8441 }
8442
8443 // And if they're both bfloat (which isn't arithmetic), that's fine too.
8444 if (LHSTy->isBFloat16Type() && RHSTy->isBFloat16Type()) {
8445 return LHSTy;
8446 }
8447
8448 // If both operands are the same structure or union type, the result is that
8449 // type.
8450 if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) { // C99 6.5.15p3
8451 if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
8452 if (LHSRT->getDecl() == RHSRT->getDecl())
8453 // "If both the operands have structure or union type, the result has
8454 // that type." This implies that CV qualifiers are dropped.
8455 return LHSTy.getUnqualifiedType();
8456 // FIXME: Type of conditional expression must be complete in C mode.
8457 }
8458
8459 // C99 6.5.15p5: "If both operands have void type, the result has void type."
8460 // The following || allows only one side to be void (a GCC-ism).
8461 if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
8462 return checkConditionalVoidType(*this, LHS, RHS);
8463 }
8464
8465 // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
8466 // the type of the other operand."
8467 if (!checkConditionalNullPointer(*this, RHS, LHSTy)) return LHSTy;
8468 if (!checkConditionalNullPointer(*this, LHS, RHSTy)) return RHSTy;
8469
8470 // All objective-c pointer type analysis is done here.
8471 QualType compositeType = FindCompositeObjCPointerType(LHS, RHS,
8472 QuestionLoc);
8473 if (LHS.isInvalid() || RHS.isInvalid())
8474 return QualType();
8475 if (!compositeType.isNull())
8476 return compositeType;
8477
8478
8479 // Handle block pointer types.
8480 if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType())
8481 return checkConditionalBlockPointerCompatibility(*this, LHS, RHS,
8482 QuestionLoc);
8483
8484 // Check constraints for C object pointers types (C99 6.5.15p3,6).
8485 if (LHSTy->isPointerType() && RHSTy->isPointerType())
8486 return checkConditionalObjectPointersCompatibility(*this, LHS, RHS,
8487 QuestionLoc);
8488
8489 // GCC compatibility: soften pointer/integer mismatch. Note that
8490 // null pointers have been filtered out by this point.
8491 if (checkPointerIntegerMismatch(*this, LHS, RHS.get(), QuestionLoc,
8492 /*IsIntFirstExpr=*/true))
8493 return RHSTy;
8494 if (checkPointerIntegerMismatch(*this, RHS, LHS.get(), QuestionLoc,
8495 /*IsIntFirstExpr=*/false))
8496 return LHSTy;
8497
8498 // Allow ?: operations in which both operands have the same
8499 // built-in sizeless type.
8500 if (LHSTy->isSizelessBuiltinType() && Context.hasSameType(LHSTy, RHSTy))
8501 return LHSTy;
8502
8503 // Emit a better diagnostic if one of the expressions is a null pointer
8504 // constant and the other is not a pointer type. In this case, the user most
8505 // likely forgot to take the address of the other expression.
8506 if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
8507 return QualType();
8508
8509 // Otherwise, the operands are not compatible.
8510 Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
8511 << LHSTy << RHSTy << LHS.get()->getSourceRange()
8512 << RHS.get()->getSourceRange();
8513 return QualType();
8514}
8515
8516/// FindCompositeObjCPointerType - Helper method to find composite type of
8517/// two objective-c pointer types of the two input expressions.
8518QualType Sema::FindCompositeObjCPointerType(ExprResult &LHS, ExprResult &RHS,
8519 SourceLocation QuestionLoc) {
8520 QualType LHSTy = LHS.get()->getType();
8521 QualType RHSTy = RHS.get()->getType();
8522
8523 // Handle things like Class and struct objc_class*. Here we case the result
8524 // to the pseudo-builtin, because that will be implicitly cast back to the
8525 // redefinition type if an attempt is made to access its fields.
8526 if (LHSTy->isObjCClassType() &&
8527 (Context.hasSameType(RHSTy, Context.getObjCClassRedefinitionType()))) {
8528 RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_CPointerToObjCPointerCast);
8529 return LHSTy;
8530 }
8531 if (RHSTy->isObjCClassType() &&
8532 (Context.hasSameType(LHSTy, Context.getObjCClassRedefinitionType()))) {
8533 LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_CPointerToObjCPointerCast);
8534 return RHSTy;
8535 }
8536 // And the same for struct objc_object* / id
8537 if (LHSTy->isObjCIdType() &&
8538 (Context.hasSameType(RHSTy, Context.getObjCIdRedefinitionType()))) {
8539 RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_CPointerToObjCPointerCast);
8540 return LHSTy;
8541 }
8542 if (RHSTy->isObjCIdType() &&
8543 (Context.hasSameType(LHSTy, Context.getObjCIdRedefinitionType()))) {
8544 LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_CPointerToObjCPointerCast);
8545 return RHSTy;
8546 }
8547 // And the same for struct objc_selector* / SEL
8548 if (Context.isObjCSelType(LHSTy) &&
8549 (Context.hasSameType(RHSTy, Context.getObjCSelRedefinitionType()))) {
8550 RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_BitCast);
8551 return LHSTy;
8552 }
8553 if (Context.isObjCSelType(RHSTy) &&
8554 (Context.hasSameType(LHSTy, Context.getObjCSelRedefinitionType()))) {
8555 LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_BitCast);
8556 return RHSTy;
8557 }
8558 // Check constraints for Objective-C object pointers types.
8559 if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
8560
8561 if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
8562 // Two identical object pointer types are always compatible.
8563 return LHSTy;
8564 }
8565 const ObjCObjectPointerType *LHSOPT = LHSTy->castAs<ObjCObjectPointerType>();
8566 const ObjCObjectPointerType *RHSOPT = RHSTy->castAs<ObjCObjectPointerType>();
8567 QualType compositeType = LHSTy;
8568
8569 // If both operands are interfaces and either operand can be
8570 // assigned to the other, use that type as the composite
8571 // type. This allows
8572 // xxx ? (A*) a : (B*) b
8573 // where B is a subclass of A.
8574 //
8575 // Additionally, as for assignment, if either type is 'id'
8576 // allow silent coercion. Finally, if the types are
8577 // incompatible then make sure to use 'id' as the composite
8578 // type so the result is acceptable for sending messages to.
8579
8580 // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
8581 // It could return the composite type.
8582 if (!(compositeType =
8583 Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull()) {
8584 // Nothing more to do.
8585 } else if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
8586 compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy;
8587 } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
8588 compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy;
8589 } else if ((LHSOPT->isObjCQualifiedIdType() ||
8590 RHSOPT->isObjCQualifiedIdType()) &&
8591 Context.ObjCQualifiedIdTypesAreCompatible(LHSOPT, RHSOPT,
8592 true)) {
8593 // Need to handle "id<xx>" explicitly.
8594 // GCC allows qualified id and any Objective-C type to devolve to
8595 // id. Currently localizing to here until clear this should be
8596 // part of ObjCQualifiedIdTypesAreCompatible.
8597 compositeType = Context.getObjCIdType();
8598 } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
8599 compositeType = Context.getObjCIdType();
8600 } else {
8601 Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
8602 << LHSTy << RHSTy
8603 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
8604 QualType incompatTy = Context.getObjCIdType();
8605 LHS = ImpCastExprToType(LHS.get(), incompatTy, CK_BitCast);
8606 RHS = ImpCastExprToType(RHS.get(), incompatTy, CK_BitCast);
8607 return incompatTy;
8608 }
8609 // The object pointer types are compatible.
8610 LHS = ImpCastExprToType(LHS.get(), compositeType, CK_BitCast);
8611 RHS = ImpCastExprToType(RHS.get(), compositeType, CK_BitCast);
8612 return compositeType;
8613 }
8614 // Check Objective-C object pointer types and 'void *'
8615 if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
8616 if (getLangOpts().ObjCAutoRefCount) {
8617 // ARC forbids the implicit conversion of object pointers to 'void *',
8618 // so these types are not compatible.
8619 Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
8620 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
8621 LHS = RHS = true;
8622 return QualType();
8623 }
8624 QualType lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
8625 QualType rhptee = RHSTy->castAs<ObjCObjectPointerType>()->getPointeeType();
8626 QualType destPointee
8627 = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
8628 QualType destType = Context.getPointerType(destPointee);
8629 // Add qualifiers if necessary.
8630 LHS = ImpCastExprToType(LHS.get(), destType, CK_NoOp);
8631 // Promote to void*.
8632 RHS = ImpCastExprToType(RHS.get(), destType, CK_BitCast);
8633 return destType;
8634 }
8635 if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
8636 if (getLangOpts().ObjCAutoRefCount) {
8637 // ARC forbids the implicit conversion of object pointers to 'void *',
8638 // so these types are not compatible.
8639 Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
8640 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
8641 LHS = RHS = true;
8642 return QualType();
8643 }
8644 QualType lhptee = LHSTy->castAs<ObjCObjectPointerType>()->getPointeeType();
8645 QualType rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
8646 QualType destPointee
8647 = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
8648 QualType destType = Context.getPointerType(destPointee);
8649 // Add qualifiers if necessary.
8650 RHS = ImpCastExprToType(RHS.get(), destType, CK_NoOp);
8651 // Promote to void*.
8652 LHS = ImpCastExprToType(LHS.get(), destType, CK_BitCast);
8653 return destType;
8654 }
8655 return QualType();
8656}
8657
8658/// SuggestParentheses - Emit a note with a fixit hint that wraps
8659/// ParenRange in parentheses.
8660static void SuggestParentheses(Sema &Self, SourceLocation Loc,
8661 const PartialDiagnostic &Note,
8662 SourceRange ParenRange) {
8663 SourceLocation EndLoc = Self.getLocForEndOfToken(ParenRange.getEnd());
8664 if (ParenRange.getBegin().isFileID() && ParenRange.getEnd().isFileID() &&
8665 EndLoc.isValid()) {
8666 Self.Diag(Loc, Note)
8667 << FixItHint::CreateInsertion(ParenRange.getBegin(), "(")
8668 << FixItHint::CreateInsertion(EndLoc, ")");
8669 } else {
8670 // We can't display the parentheses, so just show the bare note.
8671 Self.Diag(Loc, Note) << ParenRange;
8672 }
8673}
8674
8675static bool IsArithmeticOp(BinaryOperatorKind Opc) {
8676 return BinaryOperator::isAdditiveOp(Opc) ||
8677 BinaryOperator::isMultiplicativeOp(Opc) ||
8678 BinaryOperator::isShiftOp(Opc) || Opc == BO_And || Opc == BO_Or;
8679 // This only checks for bitwise-or and bitwise-and, but not bitwise-xor and
8680 // not any of the logical operators. Bitwise-xor is commonly used as a
8681 // logical-xor because there is no logical-xor operator. The logical
8682 // operators, including uses of xor, have a high false positive rate for
8683 // precedence warnings.
8684}
8685
8686/// IsArithmeticBinaryExpr - Returns true if E is an arithmetic binary
8687/// expression, either using a built-in or overloaded operator,
8688/// and sets *OpCode to the opcode and *RHSExprs to the right-hand side
8689/// expression.
8690static bool IsArithmeticBinaryExpr(Expr *E, BinaryOperatorKind *Opcode,
8691 Expr **RHSExprs) {
8692 // Don't strip parenthesis: we should not warn if E is in parenthesis.
8693 E = E->IgnoreImpCasts();
8694 E = E->IgnoreConversionOperatorSingleStep();
8695 E = E->IgnoreImpCasts();
8696 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) {
8697 E = MTE->getSubExpr();
8698 E = E->IgnoreImpCasts();
8699 }
8700
8701 // Built-in binary operator.
8702 if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E)) {
8703 if (IsArithmeticOp(OP->getOpcode())) {
8704 *Opcode = OP->getOpcode();
8705 *RHSExprs = OP->getRHS();
8706 return true;
8707 }
8708 }
8709
8710 // Overloaded operator.
8711 if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(E)) {
8712 if (Call->getNumArgs() != 2)
8713 return false;
8714
8715 // Make sure this is really a binary operator that is safe to pass into
8716 // BinaryOperator::getOverloadedOpcode(), e.g. it's not a subscript op.
8717 OverloadedOperatorKind OO = Call->getOperator();
8718 if (OO < OO_Plus || OO > OO_Arrow ||
8719 OO == OO_PlusPlus || OO == OO_MinusMinus)
8720 return false;
8721
8722 BinaryOperatorKind OpKind = BinaryOperator::getOverloadedOpcode(OO);
8723 if (IsArithmeticOp(OpKind)) {
8724 *Opcode = OpKind;
8725 *RHSExprs = Call->getArg(1);
8726 return true;
8727 }
8728 }
8729
8730 return false;
8731}
8732
8733/// ExprLooksBoolean - Returns true if E looks boolean, i.e. it has boolean type
8734/// or is a logical expression such as (x==y) which has int type, but is
8735/// commonly interpreted as boolean.
8736static bool ExprLooksBoolean(Expr *E) {
8737 E = E->IgnoreParenImpCasts();
8738
8739 if (E->getType()->isBooleanType())
8740 return true;
8741 if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E))
8742 return OP->isComparisonOp() || OP->isLogicalOp();
8743 if (UnaryOperator *OP = dyn_cast<UnaryOperator>(E))
8744 return OP->getOpcode() == UO_LNot;
8745 if (E->getType()->isPointerType())
8746 return true;
8747 // FIXME: What about overloaded operator calls returning "unspecified boolean
8748 // type"s (commonly pointer-to-members)?
8749
8750 return false;
8751}
8752
8753/// DiagnoseConditionalPrecedence - Emit a warning when a conditional operator
8754/// and binary operator are mixed in a way that suggests the programmer assumed
8755/// the conditional operator has higher precedence, for example:
8756/// "int x = a + someBinaryCondition ? 1 : 2".
8757static void DiagnoseConditionalPrecedence(Sema &Self,
8758 SourceLocation OpLoc,
8759 Expr *Condition,
8760 Expr *LHSExpr,
8761 Expr *RHSExpr) {
8762 BinaryOperatorKind CondOpcode;
8763 Expr *CondRHS;
8764
8765 if (!IsArithmeticBinaryExpr(Condition, &CondOpcode, &CondRHS))
8766 return;
8767 if (!ExprLooksBoolean(CondRHS))
8768 return;
8769
8770 // The condition is an arithmetic binary expression, with a right-
8771 // hand side that looks boolean, so warn.
8772
8773 unsigned DiagID = BinaryOperator::isBitwiseOp(CondOpcode)
8774 ? diag::warn_precedence_bitwise_conditional
8775 : diag::warn_precedence_conditional;
8776
8777 Self.Diag(OpLoc, DiagID)
8778 << Condition->getSourceRange()
8779 << BinaryOperator::getOpcodeStr(CondOpcode);
8780
8781 SuggestParentheses(
8782 Self, OpLoc,
8783 Self.PDiag(diag::note_precedence_silence)
8784 << BinaryOperator::getOpcodeStr(CondOpcode),
8785 SourceRange(Condition->getBeginLoc(), Condition->getEndLoc()));
8786
8787 SuggestParentheses(Self, OpLoc,
8788 Self.PDiag(diag::note_precedence_conditional_first),
8789 SourceRange(CondRHS->getBeginLoc(), RHSExpr->getEndLoc()));
8790}
8791
8792/// Compute the nullability of a conditional expression.
8793static QualType computeConditionalNullability(QualType ResTy, bool IsBin,
8794 QualType LHSTy, QualType RHSTy,
8795 ASTContext &Ctx) {
8796 if (!ResTy->isAnyPointerType())
8797 return ResTy;
8798
8799 auto GetNullability = [&Ctx](QualType Ty) {
8800 Optional<NullabilityKind> Kind = Ty->getNullability(Ctx);
8801 if (Kind) {
8802 // For our purposes, treat _Nullable_result as _Nullable.
8803 if (*Kind == NullabilityKind::NullableResult)
8804 return NullabilityKind::Nullable;
8805 return *Kind;
8806 }
8807 return NullabilityKind::Unspecified;
8808 };
8809
8810 auto LHSKind = GetNullability(LHSTy), RHSKind = GetNullability(RHSTy);
8811 NullabilityKind MergedKind;
8812
8813 // Compute nullability of a binary conditional expression.
8814 if (IsBin) {
8815 if (LHSKind == NullabilityKind::NonNull)
8816 MergedKind = NullabilityKind::NonNull;
8817 else
8818 MergedKind = RHSKind;
8819 // Compute nullability of a normal conditional expression.
8820 } else {
8821 if (LHSKind == NullabilityKind::Nullable ||
8822 RHSKind == NullabilityKind::Nullable)
8823 MergedKind = NullabilityKind::Nullable;
8824 else if (LHSKind == NullabilityKind::NonNull)
8825 MergedKind = RHSKind;
8826 else if (RHSKind == NullabilityKind::NonNull)
8827 MergedKind = LHSKind;
8828 else
8829 MergedKind = NullabilityKind::Unspecified;
8830 }
8831
8832 // Return if ResTy already has the correct nullability.
8833 if (GetNullability(ResTy) == MergedKind)
8834 return ResTy;
8835
8836 // Strip all nullability from ResTy.
8837 while (ResTy->getNullability(Ctx))
8838 ResTy = ResTy.getSingleStepDesugaredType(Ctx);
8839
8840 // Create a new AttributedType with the new nullability kind.
8841 auto NewAttr = AttributedType::getNullabilityAttrKind(MergedKind);
8842 return Ctx.getAttributedType(NewAttr, ResTy, ResTy);
8843}
8844
8845/// ActOnConditionalOp - Parse a ?: operation. Note that 'LHS' may be null
8846/// in the case of a the GNU conditional expr extension.
8847ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
8848 SourceLocation ColonLoc,
8849 Expr *CondExpr, Expr *LHSExpr,
8850 Expr *RHSExpr) {
8851 if (!Context.isDependenceAllowed()) {
8852 // C cannot handle TypoExpr nodes in the condition because it
8853 // doesn't handle dependent types properly, so make sure any TypoExprs have
8854 // been dealt with before checking the operands.
8855 ExprResult CondResult = CorrectDelayedTyposInExpr(CondExpr);
8856 ExprResult LHSResult = CorrectDelayedTyposInExpr(LHSExpr);
8857 ExprResult RHSResult = CorrectDelayedTyposInExpr(RHSExpr);
8858
8859 if (!CondResult.isUsable())
8860 return ExprError();
8861
8862 if (LHSExpr) {
8863 if (!LHSResult.isUsable())
8864 return ExprError();
8865 }
8866
8867 if (!RHSResult.isUsable())
8868 return ExprError();
8869
8870 CondExpr = CondResult.get();
8871 LHSExpr = LHSResult.get();
8872 RHSExpr = RHSResult.get();
8873 }
8874
8875 // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
8876 // was the condition.
8877 OpaqueValueExpr *opaqueValue = nullptr;
8878 Expr *commonExpr = nullptr;
8879 if (!LHSExpr) {
8880 commonExpr = CondExpr;
8881 // Lower out placeholder types first. This is important so that we don't
8882 // try to capture a placeholder. This happens in few cases in C++; such
8883 // as Objective-C++'s dictionary subscripting syntax.
8884 if (commonExpr->hasPlaceholderType()) {
8885 ExprResult result = CheckPlaceholderExpr(commonExpr);
8886 if (!result.isUsable()) return ExprError();
8887 commonExpr = result.get();
8888 }
8889 // We usually want to apply unary conversions *before* saving, except
8890 // in the special case of a C++ l-value conditional.
8891 if (!(getLangOpts().CPlusPlus
8892 && !commonExpr->isTypeDependent()
8893 && commonExpr->getValueKind() == RHSExpr->getValueKind()
8894 && commonExpr->isGLValue()
8895 && commonExpr->isOrdinaryOrBitFieldObject()
8896 && RHSExpr->isOrdinaryOrBitFieldObject()
8897 && Context.hasSameType(commonExpr->getType(), RHSExpr->getType()))) {
8898 ExprResult commonRes = UsualUnaryConversions(commonExpr);
8899 if (commonRes.isInvalid())
8900 return ExprError();
8901 commonExpr = commonRes.get();
8902 }
8903
8904 // If the common expression is a class or array prvalue, materialize it
8905 // so that we can safely refer to it multiple times.
8906 if (commonExpr->isPRValue() && (commonExpr->getType()->isRecordType() ||
8907 commonExpr->getType()->isArrayType())) {
8908 ExprResult MatExpr = TemporaryMaterializationConversion(commonExpr);
8909 if (MatExpr.isInvalid())
8910 return ExprError();
8911 commonExpr = MatExpr.get();
8912 }
8913
8914 opaqueValue = new (Context) OpaqueValueExpr(commonExpr->getExprLoc(),
8915 commonExpr->getType(),
8916 commonExpr->getValueKind(),
8917 commonExpr->getObjectKind(),
8918 commonExpr);
8919 LHSExpr = CondExpr = opaqueValue;
8920 }
8921
8922 QualType LHSTy = LHSExpr->getType(), RHSTy = RHSExpr->getType();
8923 ExprValueKind VK = VK_PRValue;
8924 ExprObjectKind OK = OK_Ordinary;
8925 ExprResult Cond = CondExpr, LHS = LHSExpr, RHS = RHSExpr;
8926 QualType result = CheckConditionalOperands(Cond, LHS, RHS,
8927 VK, OK, QuestionLoc);
8928 if (result.isNull() || Cond.isInvalid() || LHS.isInvalid() ||
8929 RHS.isInvalid())
8930 return ExprError();
8931
8932 DiagnoseConditionalPrecedence(*this, QuestionLoc, Cond.get(), LHS.get(),
8933 RHS.get());
8934
8935 CheckBoolLikeConversion(Cond.get(), QuestionLoc);
8936
8937 result = computeConditionalNullability(result, commonExpr, LHSTy, RHSTy,
8938 Context);
8939
8940 if (!commonExpr)
8941 return new (Context)
8942 ConditionalOperator(Cond.get(), QuestionLoc, LHS.get(), ColonLoc,
8943 RHS.get(), result, VK, OK);
8944
8945 return new (Context) BinaryConditionalOperator(
8946 commonExpr, opaqueValue, Cond.get(), LHS.get(), RHS.get(), QuestionLoc,
8947 ColonLoc, result, VK, OK);
8948}
8949
8950// Check if we have a conversion between incompatible cmse function pointer
8951// types, that is, a conversion between a function pointer with the
8952// cmse_nonsecure_call attribute and one without.
8953static bool IsInvalidCmseNSCallConversion(Sema &S, QualType FromType,
8954 QualType ToType) {
8955 if (const auto *ToFn =
8956 dyn_cast<FunctionType>(S.Context.getCanonicalType(ToType))) {
8957 if (const auto *FromFn =
8958 dyn_cast<FunctionType>(S.Context.getCanonicalType(FromType))) {
8959 FunctionType::ExtInfo ToEInfo = ToFn->getExtInfo();
8960 FunctionType::ExtInfo FromEInfo = FromFn->getExtInfo();
8961
8962 return ToEInfo.getCmseNSCall() != FromEInfo.getCmseNSCall();
8963 }
8964 }
8965 return false;
8966}
8967
8968// checkPointerTypesForAssignment - This is a very tricky routine (despite
8969// being closely modeled after the C99 spec:-). The odd characteristic of this
8970// routine is it effectively iqnores the qualifiers on the top level pointee.
8971// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
8972// FIXME: add a couple examples in this comment.
8973static Sema::AssignConvertType
8974checkPointerTypesForAssignment(Sema &S, QualType LHSType, QualType RHSType) {
8975 assert(LHSType.isCanonical() && "LHS not canonicalized!")(static_cast <bool> (LHSType.isCanonical() && "LHS not canonicalized!"
) ? void (0) : __assert_fail ("LHSType.isCanonical() && \"LHS not canonicalized!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 8975, __extension__ __PRETTY_FUNCTION__))
;
8976 assert(RHSType.isCanonical() && "RHS not canonicalized!")(static_cast <bool> (RHSType.isCanonical() && "RHS not canonicalized!"
) ? void (0) : __assert_fail ("RHSType.isCanonical() && \"RHS not canonicalized!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 8976, __extension__ __PRETTY_FUNCTION__))
;
8977
8978 // get the "pointed to" type (ignoring qualifiers at the top level)
8979 const Type *lhptee, *rhptee;
8980 Qualifiers lhq, rhq;
8981 std::tie(lhptee, lhq) =
8982 cast<PointerType>(LHSType)->getPointeeType().split().asPair();
8983 std::tie(rhptee, rhq) =
8984 cast<PointerType>(RHSType)->getPointeeType().split().asPair();
8985
8986 Sema::AssignConvertType ConvTy = Sema::Compatible;
8987
8988 // C99 6.5.16.1p1: This following citation is common to constraints
8989 // 3 & 4 (below). ...and the type *pointed to* by the left has all the
8990 // qualifiers of the type *pointed to* by the right;
8991
8992 // As a special case, 'non-__weak A *' -> 'non-__weak const *' is okay.
8993 if (lhq.getObjCLifetime() != rhq.getObjCLifetime() &&
8994 lhq.compatiblyIncludesObjCLifetime(rhq)) {
8995 // Ignore lifetime for further calculation.
8996 lhq.removeObjCLifetime();
8997 rhq.removeObjCLifetime();
8998 }
8999
9000 if (!lhq.compatiblyIncludes(rhq)) {
9001 // Treat address-space mismatches as fatal.
9002 if (!lhq.isAddressSpaceSupersetOf(rhq))
9003 return Sema::IncompatiblePointerDiscardsQualifiers;
9004
9005 // It's okay to add or remove GC or lifetime qualifiers when converting to
9006 // and from void*.
9007 else if (lhq.withoutObjCGCAttr().withoutObjCLifetime()
9008 .compatiblyIncludes(
9009 rhq.withoutObjCGCAttr().withoutObjCLifetime())
9010 && (lhptee->isVoidType() || rhptee->isVoidType()))
9011 ; // keep old
9012
9013 // Treat lifetime mismatches as fatal.
9014 else if (lhq.getObjCLifetime() != rhq.getObjCLifetime())
9015 ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
9016
9017 // For GCC/MS compatibility, other qualifier mismatches are treated
9018 // as still compatible in C.
9019 else ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
9020 }
9021
9022 // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
9023 // incomplete type and the other is a pointer to a qualified or unqualified
9024 // version of void...
9025 if (lhptee->isVoidType()) {
9026 if (rhptee->isIncompleteOrObjectType())
9027 return ConvTy;
9028
9029 // As an extension, we allow cast to/from void* to function pointer.
9030 assert(rhptee->isFunctionType())(static_cast <bool> (rhptee->isFunctionType()) ? void
(0) : __assert_fail ("rhptee->isFunctionType()", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 9030, __extension__ __PRETTY_FUNCTION__))
;
9031 return Sema::FunctionVoidPointer;
9032 }
9033
9034 if (rhptee->isVoidType()) {
9035 if (lhptee->isIncompleteOrObjectType())
9036 return ConvTy;
9037
9038 // As an extension, we allow cast to/from void* to function pointer.
9039 assert(lhptee->isFunctionType())(static_cast <bool> (lhptee->isFunctionType()) ? void
(0) : __assert_fail ("lhptee->isFunctionType()", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 9039, __extension__ __PRETTY_FUNCTION__))
;
9040 return Sema::FunctionVoidPointer;
9041 }
9042
9043 // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
9044 // unqualified versions of compatible types, ...
9045 QualType ltrans = QualType(lhptee, 0), rtrans = QualType(rhptee, 0);
9046 if (!S.Context.typesAreCompatible(ltrans, rtrans)) {
9047 // Check if the pointee types are compatible ignoring the sign.
9048 // We explicitly check for char so that we catch "char" vs
9049 // "unsigned char" on systems where "char" is unsigned.
9050 if (lhptee->isCharType())
9051 ltrans = S.Context.UnsignedCharTy;
9052 else if (lhptee->hasSignedIntegerRepresentation())
9053 ltrans = S.Context.getCorrespondingUnsignedType(ltrans);
9054
9055 if (rhptee->isCharType())
9056 rtrans = S.Context.UnsignedCharTy;
9057 else if (rhptee->hasSignedIntegerRepresentation())
9058 rtrans = S.Context.getCorrespondingUnsignedType(rtrans);
9059
9060 if (ltrans == rtrans) {
9061 // Types are compatible ignoring the sign. Qualifier incompatibility
9062 // takes priority over sign incompatibility because the sign
9063 // warning can be disabled.
9064 if (ConvTy != Sema::Compatible)
9065 return ConvTy;
9066
9067 return Sema::IncompatiblePointerSign;
9068 }
9069
9070 // If we are a multi-level pointer, it's possible that our issue is simply
9071 // one of qualification - e.g. char ** -> const char ** is not allowed. If
9072 // the eventual target type is the same and the pointers have the same
9073 // level of indirection, this must be the issue.
9074 if (isa<PointerType>(lhptee) && isa<PointerType>(rhptee)) {
9075 do {
9076 std::tie(lhptee, lhq) =
9077 cast<PointerType>(lhptee)->getPointeeType().split().asPair();
9078 std::tie(rhptee, rhq) =
9079 cast<PointerType>(rhptee)->getPointeeType().split().asPair();
9080
9081 // Inconsistent address spaces at this point is invalid, even if the
9082 // address spaces would be compatible.
9083 // FIXME: This doesn't catch address space mismatches for pointers of
9084 // different nesting levels, like:
9085 // __local int *** a;
9086 // int ** b = a;
9087 // It's not clear how to actually determine when such pointers are
9088 // invalidly incompatible.
9089 if (lhq.getAddressSpace() != rhq.getAddressSpace())
9090 return Sema::IncompatibleNestedPointerAddressSpaceMismatch;
9091
9092 } while (isa<PointerType>(lhptee) && isa<PointerType>(rhptee));
9093
9094 if (lhptee == rhptee)
9095 return Sema::IncompatibleNestedPointerQualifiers;
9096 }
9097
9098 // General pointer incompatibility takes priority over qualifiers.
9099 if (RHSType->isFunctionPointerType() && LHSType->isFunctionPointerType())
9100 return Sema::IncompatibleFunctionPointer;
9101 return Sema::IncompatiblePointer;
9102 }
9103 if (!S.getLangOpts().CPlusPlus &&
9104 S.IsFunctionConversion(ltrans, rtrans, ltrans))
9105 return Sema::IncompatibleFunctionPointer;
9106 if (IsInvalidCmseNSCallConversion(S, ltrans, rtrans))
9107 return Sema::IncompatibleFunctionPointer;
9108 return ConvTy;
9109}
9110
9111/// checkBlockPointerTypesForAssignment - This routine determines whether two
9112/// block pointer types are compatible or whether a block and normal pointer
9113/// are compatible. It is more restrict than comparing two function pointer
9114// types.
9115static Sema::AssignConvertType
9116checkBlockPointerTypesForAssignment(Sema &S, QualType LHSType,
9117 QualType RHSType) {
9118 assert(LHSType.isCanonical() && "LHS not canonicalized!")(static_cast <bool> (LHSType.isCanonical() && "LHS not canonicalized!"
) ? void (0) : __assert_fail ("LHSType.isCanonical() && \"LHS not canonicalized!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 9118, __extension__ __PRETTY_FUNCTION__))
;
9119 assert(RHSType.isCanonical() && "RHS not canonicalized!")(static_cast <bool> (RHSType.isCanonical() && "RHS not canonicalized!"
) ? void (0) : __assert_fail ("RHSType.isCanonical() && \"RHS not canonicalized!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 9119, __extension__ __PRETTY_FUNCTION__))
;
9120
9121 QualType lhptee, rhptee;
9122
9123 // get the "pointed to" type (ignoring qualifiers at the top level)
9124 lhptee = cast<BlockPointerType>(LHSType)->getPointeeType();
9125 rhptee = cast<BlockPointerType>(RHSType)->getPointeeType();
9126
9127 // In C++, the types have to match exactly.
9128 if (S.getLangOpts().CPlusPlus)
9129 return Sema::IncompatibleBlockPointer;
9130
9131 Sema::AssignConvertType ConvTy = Sema::Compatible;
9132
9133 // For blocks we enforce that qualifiers are identical.
9134 Qualifiers LQuals = lhptee.getLocalQualifiers();
9135 Qualifiers RQuals = rhptee.getLocalQualifiers();
9136 if (S.getLangOpts().OpenCL) {
9137 LQuals.removeAddressSpace();
9138 RQuals.removeAddressSpace();
9139 }
9140 if (LQuals != RQuals)
9141 ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
9142
9143 // FIXME: OpenCL doesn't define the exact compile time semantics for a block
9144 // assignment.
9145 // The current behavior is similar to C++ lambdas. A block might be
9146 // assigned to a variable iff its return type and parameters are compatible
9147 // (C99 6.2.7) with the corresponding return type and parameters of the LHS of
9148 // an assignment. Presumably it should behave in way that a function pointer
9149 // assignment does in C, so for each parameter and return type:
9150 // * CVR and address space of LHS should be a superset of CVR and address
9151 // space of RHS.
9152 // * unqualified types should be compatible.
9153 if (S.getLangOpts().OpenCL) {
9154 if (!S.Context.typesAreBlockPointerCompatible(
9155 S.Context.getQualifiedType(LHSType.getUnqualifiedType(), LQuals),
9156 S.Context.getQualifiedType(RHSType.getUnqualifiedType(), RQuals)))
9157 return Sema::IncompatibleBlockPointer;
9158 } else if (!S.Context.typesAreBlockPointerCompatible(LHSType, RHSType))
9159 return Sema::IncompatibleBlockPointer;
9160
9161 return ConvTy;
9162}
9163
9164/// checkObjCPointerTypesForAssignment - Compares two objective-c pointer types
9165/// for assignment compatibility.
9166static Sema::AssignConvertType
9167checkObjCPointerTypesForAssignment(Sema &S, QualType LHSType,
9168 QualType RHSType) {
9169 assert(LHSType.isCanonical() && "LHS was not canonicalized!")(static_cast <bool> (LHSType.isCanonical() && "LHS was not canonicalized!"
) ? void (0) : __assert_fail ("LHSType.isCanonical() && \"LHS was not canonicalized!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 9169, __extension__ __PRETTY_FUNCTION__))
;
9170 assert(RHSType.isCanonical() && "RHS was not canonicalized!")(static_cast <bool> (RHSType.isCanonical() && "RHS was not canonicalized!"
) ? void (0) : __assert_fail ("RHSType.isCanonical() && \"RHS was not canonicalized!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 9170, __extension__ __PRETTY_FUNCTION__))
;
9171
9172 if (LHSType->isObjCBuiltinType()) {
9173 // Class is not compatible with ObjC object pointers.
9174 if (LHSType->isObjCClassType() && !RHSType->isObjCBuiltinType() &&
9175 !RHSType->isObjCQualifiedClassType())
9176 return Sema::IncompatiblePointer;
9177 return Sema::Compatible;
9178 }
9179 if (RHSType->isObjCBuiltinType()) {
9180 if (RHSType->isObjCClassType() && !LHSType->isObjCBuiltinType() &&
9181 !LHSType->isObjCQualifiedClassType())
9182 return Sema::IncompatiblePointer;
9183 return Sema::Compatible;
9184 }
9185 QualType lhptee = LHSType->castAs<ObjCObjectPointerType>()->getPointeeType();
9186 QualType rhptee = RHSType->castAs<ObjCObjectPointerType>()->getPointeeType();
9187
9188 if (!lhptee.isAtLeastAsQualifiedAs(rhptee) &&
9189 // make an exception for id<P>
9190 !LHSType->isObjCQualifiedIdType())
9191 return Sema::CompatiblePointerDiscardsQualifiers;
9192
9193 if (S.Context.typesAreCompatible(LHSType, RHSType))
9194 return Sema::Compatible;
9195 if (LHSType->isObjCQualifiedIdType() || RHSType->isObjCQualifiedIdType())
9196 return Sema::IncompatibleObjCQualifiedId;
9197 return Sema::IncompatiblePointer;
9198}
9199
9200Sema::AssignConvertType
9201Sema::CheckAssignmentConstraints(SourceLocation Loc,
9202 QualType LHSType, QualType RHSType) {
9203 // Fake up an opaque expression. We don't actually care about what
9204 // cast operations are required, so if CheckAssignmentConstraints
9205 // adds casts to this they'll be wasted, but fortunately that doesn't
9206 // usually happen on valid code.
9207 OpaqueValueExpr RHSExpr(Loc, RHSType, VK_PRValue);
9208 ExprResult RHSPtr = &RHSExpr;
9209 CastKind K;
9210
9211 return CheckAssignmentConstraints(LHSType, RHSPtr, K, /*ConvertRHS=*/false);
9212}
9213
9214/// This helper function returns true if QT is a vector type that has element
9215/// type ElementType.
9216static bool isVector(QualType QT, QualType ElementType) {
9217 if (const VectorType *VT = QT->getAs<VectorType>())
9218 return VT->getElementType().getCanonicalType() == ElementType;
9219 return false;
9220}
9221
9222/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
9223/// has code to accommodate several GCC extensions when type checking
9224/// pointers. Here are some objectionable examples that GCC considers warnings:
9225///
9226/// int a, *pint;
9227/// short *pshort;
9228/// struct foo *pfoo;
9229///
9230/// pint = pshort; // warning: assignment from incompatible pointer type
9231/// a = pint; // warning: assignment makes integer from pointer without a cast
9232/// pint = a; // warning: assignment makes pointer from integer without a cast
9233/// pint = pfoo; // warning: assignment from incompatible pointer type
9234///
9235/// As a result, the code for dealing with pointers is more complex than the
9236/// C99 spec dictates.
9237///
9238/// Sets 'Kind' for any result kind except Incompatible.
9239Sema::AssignConvertType
9240Sema::CheckAssignmentConstraints(QualType LHSType, ExprResult &RHS,
9241 CastKind &Kind, bool ConvertRHS) {
9242 QualType RHSType = RHS.get()->getType();
9243 QualType OrigLHSType = LHSType;
9244
9245 // Get canonical types. We're not formatting these types, just comparing
9246 // them.
9247 LHSType = Context.getCanonicalType(LHSType).getUnqualifiedType();
9248 RHSType = Context.getCanonicalType(RHSType).getUnqualifiedType();
9249
9250 // Common case: no conversion required.
9251 if (LHSType == RHSType) {
9252 Kind = CK_NoOp;
9253 return Compatible;
9254 }
9255
9256 // If we have an atomic type, try a non-atomic assignment, then just add an
9257 // atomic qualification step.
9258 if (const AtomicType *AtomicTy = dyn_cast<AtomicType>(LHSType)) {
9259 Sema::AssignConvertType result =
9260 CheckAssignmentConstraints(AtomicTy->getValueType(), RHS, Kind);
9261 if (result != Compatible)
9262 return result;
9263 if (Kind != CK_NoOp && ConvertRHS)
9264 RHS = ImpCastExprToType(RHS.get(), AtomicTy->getValueType(), Kind);
9265 Kind = CK_NonAtomicToAtomic;
9266 return Compatible;
9267 }
9268
9269 // If the left-hand side is a reference type, then we are in a
9270 // (rare!) case where we've allowed the use of references in C,
9271 // e.g., as a parameter type in a built-in function. In this case,
9272 // just make sure that the type referenced is compatible with the
9273 // right-hand side type. The caller is responsible for adjusting
9274 // LHSType so that the resulting expression does not have reference
9275 // type.
9276 if (const ReferenceType *LHSTypeRef = LHSType->getAs<ReferenceType>()) {
9277 if (Context.typesAreCompatible(LHSTypeRef->getPointeeType(), RHSType)) {
9278 Kind = CK_LValueBitCast;
9279 return Compatible;
9280 }
9281 return Incompatible;
9282 }
9283
9284 // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
9285 // to the same ExtVector type.
9286 if (LHSType->isExtVectorType()) {
9287 if (RHSType->isExtVectorType())
9288 return Incompatible;
9289 if (RHSType->isArithmeticType()) {
9290 // CK_VectorSplat does T -> vector T, so first cast to the element type.
9291 if (ConvertRHS)
9292 RHS = prepareVectorSplat(LHSType, RHS.get());
9293 Kind = CK_VectorSplat;
9294 return Compatible;
9295 }
9296 }
9297
9298 // Conversions to or from vector type.
9299 if (LHSType->isVectorType() || RHSType->isVectorType()) {
9300 if (LHSType->isVectorType() && RHSType->isVectorType()) {
9301 // Allow assignments of an AltiVec vector type to an equivalent GCC
9302 // vector type and vice versa
9303 if (Context.areCompatibleVectorTypes(LHSType, RHSType)) {
9304 Kind = CK_BitCast;
9305 return Compatible;
9306 }
9307
9308 // If we are allowing lax vector conversions, and LHS and RHS are both
9309 // vectors, the total size only needs to be the same. This is a bitcast;
9310 // no bits are changed but the result type is different.
9311 if (isLaxVectorConversion(RHSType, LHSType)) {
9312 Kind = CK_BitCast;
9313 return IncompatibleVectors;
9314 }
9315 }
9316
9317 // When the RHS comes from another lax conversion (e.g. binops between
9318 // scalars and vectors) the result is canonicalized as a vector. When the
9319 // LHS is also a vector, the lax is allowed by the condition above. Handle
9320 // the case where LHS is a scalar.
9321 if (LHSType->isScalarType()) {
9322 const VectorType *VecType = RHSType->getAs<VectorType>();
9323 if (VecType && VecType->getNumElements() == 1 &&
9324 isLaxVectorConversion(RHSType, LHSType)) {
9325 ExprResult *VecExpr = &RHS;
9326 *VecExpr = ImpCastExprToType(VecExpr->get(), LHSType, CK_BitCast);
9327 Kind = CK_BitCast;
9328 return Compatible;
9329 }
9330 }
9331
9332 // Allow assignments between fixed-length and sizeless SVE vectors.
9333 if ((LHSType->isSizelessBuiltinType() && RHSType->isVectorType()) ||
9334 (LHSType->isVectorType() && RHSType->isSizelessBuiltinType()))
9335 if (Context.areCompatibleSveTypes(LHSType, RHSType) ||
9336 Context.areLaxCompatibleSveTypes(LHSType, RHSType)) {
9337 Kind = CK_BitCast;
9338 return Compatible;
9339 }
9340
9341 return Incompatible;
9342 }
9343
9344 // Diagnose attempts to convert between __float128 and long double where
9345 // such conversions currently can't be handled.
9346 if (unsupportedTypeConversion(*this, LHSType, RHSType))
9347 return Incompatible;
9348
9349 // Disallow assigning a _Complex to a real type in C++ mode since it simply
9350 // discards the imaginary part.
9351 if (getLangOpts().CPlusPlus && RHSType->getAs<ComplexType>() &&
9352 !LHSType->getAs<ComplexType>())
9353 return Incompatible;
9354
9355 // Arithmetic conversions.
9356 if (LHSType->isArithmeticType() && RHSType->isArithmeticType() &&
9357 !(getLangOpts().CPlusPlus && LHSType->isEnumeralType())) {
9358 if (ConvertRHS)
9359 Kind = PrepareScalarCast(RHS, LHSType);
9360 return Compatible;
9361 }
9362
9363 // Conversions to normal pointers.
9364 if (const PointerType *LHSPointer = dyn_cast<PointerType>(LHSType)) {
9365 // U* -> T*
9366 if (isa<PointerType>(RHSType)) {
9367 LangAS AddrSpaceL = LHSPointer->getPointeeType().getAddressSpace();
9368 LangAS AddrSpaceR = RHSType->getPointeeType().getAddressSpace();
9369 if (AddrSpaceL != AddrSpaceR)
9370 Kind = CK_AddressSpaceConversion;
9371 else if (Context.hasCvrSimilarType(RHSType, LHSType))
9372 Kind = CK_NoOp;
9373 else
9374 Kind = CK_BitCast;
9375 return checkPointerTypesForAssignment(*this, LHSType, RHSType);
9376 }
9377
9378 // int -> T*
9379 if (RHSType->isIntegerType()) {
9380 Kind = CK_IntegralToPointer; // FIXME: null?
9381 return IntToPointer;
9382 }
9383
9384 // C pointers are not compatible with ObjC object pointers,
9385 // with two exceptions:
9386 if (isa<ObjCObjectPointerType>(RHSType)) {
9387 // - conversions to void*
9388 if (LHSPointer->getPointeeType()->isVoidType()) {
9389 Kind = CK_BitCast;
9390 return Compatible;
9391 }
9392
9393 // - conversions from 'Class' to the redefinition type
9394 if (RHSType->isObjCClassType() &&
9395 Context.hasSameType(LHSType,
9396 Context.getObjCClassRedefinitionType())) {
9397 Kind = CK_BitCast;
9398 return Compatible;
9399 }
9400
9401 Kind = CK_BitCast;
9402 return IncompatiblePointer;
9403 }
9404
9405 // U^ -> void*
9406 if (RHSType->getAs<BlockPointerType>()) {
9407 if (LHSPointer->getPointeeType()->isVoidType()) {
9408 LangAS AddrSpaceL = LHSPointer->getPointeeType().getAddressSpace();
9409 LangAS AddrSpaceR = RHSType->getAs<BlockPointerType>()
9410 ->getPointeeType()
9411 .getAddressSpace();
9412 Kind =
9413 AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
9414 return Compatible;
9415 }
9416 }
9417
9418 return Incompatible;
9419 }
9420
9421 // Conversions to block pointers.
9422 if (isa<BlockPointerType>(LHSType)) {
9423 // U^ -> T^
9424 if (RHSType->isBlockPointerType()) {
9425 LangAS AddrSpaceL = LHSType->getAs<BlockPointerType>()
9426 ->getPointeeType()
9427 .getAddressSpace();
9428 LangAS AddrSpaceR = RHSType->getAs<BlockPointerType>()
9429 ->getPointeeType()
9430 .getAddressSpace();
9431 Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
9432 return checkBlockPointerTypesForAssignment(*this, LHSType, RHSType);
9433 }
9434
9435 // int or null -> T^
9436 if (RHSType->isIntegerType()) {
9437 Kind = CK_IntegralToPointer; // FIXME: null
9438 return IntToBlockPointer;
9439 }
9440
9441 // id -> T^
9442 if (getLangOpts().ObjC && RHSType->isObjCIdType()) {
9443 Kind = CK_AnyPointerToBlockPointerCast;
9444 return Compatible;
9445 }
9446
9447 // void* -> T^
9448 if (const PointerType *RHSPT = RHSType->getAs<PointerType>())
9449 if (RHSPT->getPointeeType()->isVoidType()) {
9450 Kind = CK_AnyPointerToBlockPointerCast;
9451 return Compatible;
9452 }
9453
9454 return Incompatible;
9455 }
9456
9457 // Conversions to Objective-C pointers.
9458 if (isa<ObjCObjectPointerType>(LHSType)) {
9459 // A* -> B*
9460 if (RHSType->isObjCObjectPointerType()) {
9461 Kind = CK_BitCast;
9462 Sema::AssignConvertType result =
9463 checkObjCPointerTypesForAssignment(*this, LHSType, RHSType);
9464 if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
9465 result == Compatible &&
9466 !CheckObjCARCUnavailableWeakConversion(OrigLHSType, RHSType))
9467 result = IncompatibleObjCWeakRef;
9468 return result;
9469 }
9470
9471 // int or null -> A*
9472 if (RHSType->isIntegerType()) {
9473 Kind = CK_IntegralToPointer; // FIXME: null
9474 return IntToPointer;
9475 }
9476
9477 // In general, C pointers are not compatible with ObjC object pointers,
9478 // with two exceptions:
9479 if (isa<PointerType>(RHSType)) {
9480 Kind = CK_CPointerToObjCPointerCast;
9481
9482 // - conversions from 'void*'
9483 if (RHSType->isVoidPointerType()) {
9484 return Compatible;
9485 }
9486
9487 // - conversions to 'Class' from its redefinition type
9488 if (LHSType->isObjCClassType() &&
9489 Context.hasSameType(RHSType,
9490 Context.getObjCClassRedefinitionType())) {
9491 return Compatible;
9492 }
9493
9494 return IncompatiblePointer;
9495 }
9496
9497 // Only under strict condition T^ is compatible with an Objective-C pointer.
9498 if (RHSType->isBlockPointerType() &&
9499 LHSType->isBlockCompatibleObjCPointerType(Context)) {
9500 if (ConvertRHS)
9501 maybeExtendBlockObject(RHS);
9502 Kind = CK_BlockPointerToObjCPointerCast;
9503 return Compatible;
9504 }
9505
9506 return Incompatible;
9507 }
9508
9509 // Conversions from pointers that are not covered by the above.
9510 if (isa<PointerType>(RHSType)) {
9511 // T* -> _Bool
9512 if (LHSType == Context.BoolTy) {
9513 Kind = CK_PointerToBoolean;
9514 return Compatible;
9515 }
9516
9517 // T* -> int
9518 if (LHSType->isIntegerType()) {
9519 Kind = CK_PointerToIntegral;
9520 return PointerToInt;
9521 }
9522
9523 return Incompatible;
9524 }
9525
9526 // Conversions from Objective-C pointers that are not covered by the above.
9527 if (isa<ObjCObjectPointerType>(RHSType)) {
9528 // T* -> _Bool
9529 if (LHSType == Context.BoolTy) {
9530 Kind = CK_PointerToBoolean;
9531 return Compatible;
9532 }
9533
9534 // T* -> int
9535 if (LHSType->isIntegerType()) {
9536 Kind = CK_PointerToIntegral;
9537 return PointerToInt;
9538 }
9539
9540 return Incompatible;
9541 }
9542
9543 // struct A -> struct B
9544 if (isa<TagType>(LHSType) && isa<TagType>(RHSType)) {
9545 if (Context.typesAreCompatible(LHSType, RHSType)) {
9546 Kind = CK_NoOp;
9547 return Compatible;
9548 }
9549 }
9550
9551 if (LHSType->isSamplerT() && RHSType->isIntegerType()) {
9552 Kind = CK_IntToOCLSampler;
9553 return Compatible;
9554 }
9555
9556 return Incompatible;
9557}
9558
9559/// Constructs a transparent union from an expression that is
9560/// used to initialize the transparent union.
9561static void ConstructTransparentUnion(Sema &S, ASTContext &C,
9562 ExprResult &EResult, QualType UnionType,
9563 FieldDecl *Field) {
9564 // Build an initializer list that designates the appropriate member
9565 // of the transparent union.
9566 Expr *E = EResult.get();
9567 InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(),
9568 E, SourceLocation());
9569 Initializer->setType(UnionType);
9570 Initializer->setInitializedFieldInUnion(Field);
9571
9572 // Build a compound literal constructing a value of the transparent
9573 // union type from this initializer list.
9574 TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType);
9575 EResult = new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType,
9576 VK_PRValue, Initializer, false);
9577}
9578
9579Sema::AssignConvertType
9580Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType,
9581 ExprResult &RHS) {
9582 QualType RHSType = RHS.get()->getType();
9583
9584 // If the ArgType is a Union type, we want to handle a potential
9585 // transparent_union GCC extension.
9586 const RecordType *UT = ArgType->getAsUnionType();
9587 if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
9588 return Incompatible;
9589
9590 // The field to initialize within the transparent union.
9591 RecordDecl *UD = UT->getDecl();
9592 FieldDecl *InitField = nullptr;
9593 // It's compatible if the expression matches any of the fields.
9594 for (auto *it : UD->fields()) {
9595 if (it->getType()->isPointerType()) {
9596 // If the transparent union contains a pointer type, we allow:
9597 // 1) void pointer
9598 // 2) null pointer constant
9599 if (RHSType->isPointerType())
9600 if (RHSType->castAs<PointerType>()->getPointeeType()->isVoidType()) {
9601 RHS = ImpCastExprToType(RHS.get(), it->getType(), CK_BitCast);
9602 InitField = it;
9603 break;
9604 }
9605
9606 if (RHS.get()->isNullPointerConstant(Context,
9607 Expr::NPC_ValueDependentIsNull)) {
9608 RHS = ImpCastExprToType(RHS.get(), it->getType(),
9609 CK_NullToPointer);
9610 InitField = it;
9611 break;
9612 }
9613 }
9614
9615 CastKind Kind;
9616 if (CheckAssignmentConstraints(it->getType(), RHS, Kind)
9617 == Compatible) {
9618 RHS = ImpCastExprToType(RHS.get(), it->getType(), Kind);
9619 InitField = it;
9620 break;
9621 }
9622 }
9623
9624 if (!InitField)
9625 return Incompatible;
9626
9627 ConstructTransparentUnion(*this, Context, RHS, ArgType, InitField);
9628 return Compatible;
9629}
9630
9631Sema::AssignConvertType
9632Sema::CheckSingleAssignmentConstraints(QualType LHSType, ExprResult &CallerRHS,
9633 bool Diagnose,
9634 bool DiagnoseCFAudited,
9635 bool ConvertRHS) {
9636 // We need to be able to tell the caller whether we diagnosed a problem, if
9637 // they ask us to issue diagnostics.
9638 assert((ConvertRHS || !Diagnose) && "can't indicate whether we diagnosed")(static_cast <bool> ((ConvertRHS || !Diagnose) &&
"can't indicate whether we diagnosed") ? void (0) : __assert_fail
("(ConvertRHS || !Diagnose) && \"can't indicate whether we diagnosed\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 9638, __extension__ __PRETTY_FUNCTION__))
;
9639
9640 // If ConvertRHS is false, we want to leave the caller's RHS untouched. Sadly,
9641 // we can't avoid *all* modifications at the moment, so we need some somewhere
9642 // to put the updated value.
9643 ExprResult LocalRHS = CallerRHS;
9644 ExprResult &RHS = ConvertRHS ? CallerRHS : LocalRHS;
9645
9646 if (const auto *LHSPtrType = LHSType->getAs<PointerType>()) {
9647 if (const auto *RHSPtrType = RHS.get()->getType()->getAs<PointerType>()) {
9648 if (RHSPtrType->getPointeeType()->hasAttr(attr::NoDeref) &&
9649 !LHSPtrType->getPointeeType()->hasAttr(attr::NoDeref)) {
9650 Diag(RHS.get()->getExprLoc(),
9651 diag::warn_noderef_to_dereferenceable_pointer)
9652 << RHS.get()->getSourceRange();
9653 }
9654 }
9655 }
9656
9657 if (getLangOpts().CPlusPlus) {
9658 if (!LHSType->isRecordType() && !LHSType->isAtomicType()) {
9659 // C++ 5.17p3: If the left operand is not of class type, the
9660 // expression is implicitly converted (C++ 4) to the
9661 // cv-unqualified type of the left operand.
9662 QualType RHSType = RHS.get()->getType();
9663 if (Diagnose) {
9664 RHS = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
9665 AA_Assigning);
9666 } else {
9667 ImplicitConversionSequence ICS =
9668 TryImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
9669 /*SuppressUserConversions=*/false,
9670 AllowedExplicit::None,
9671 /*InOverloadResolution=*/false,
9672 /*CStyle=*/false,
9673 /*AllowObjCWritebackConversion=*/false);
9674 if (ICS.isFailure())
9675 return Incompatible;
9676 RHS = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
9677 ICS, AA_Assigning);
9678 }
9679 if (RHS.isInvalid())
9680 return Incompatible;
9681 Sema::AssignConvertType result = Compatible;
9682 if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
9683 !CheckObjCARCUnavailableWeakConversion(LHSType, RHSType))
9684 result = IncompatibleObjCWeakRef;
9685 return result;
9686 }
9687
9688 // FIXME: Currently, we fall through and treat C++ classes like C
9689 // structures.
9690 // FIXME: We also fall through for atomics; not sure what should
9691 // happen there, though.
9692 } else if (RHS.get()->getType() == Context.OverloadTy) {
9693 // As a set of extensions to C, we support overloading on functions. These
9694 // functions need to be resolved here.
9695 DeclAccessPair DAP;
9696 if (FunctionDecl *FD = ResolveAddressOfOverloadedFunction(
9697 RHS.get(), LHSType, /*Complain=*/false, DAP))
9698 RHS = FixOverloadedFunctionReference(RHS.get(), DAP, FD);
9699 else
9700 return Incompatible;
9701 }
9702
9703 // C99 6.5.16.1p1: the left operand is a pointer and the right is
9704 // a null pointer constant.
9705 if ((LHSType->isPointerType() || LHSType->isObjCObjectPointerType() ||
9706 LHSType->isBlockPointerType()) &&
9707 RHS.get()->isNullPointerConstant(Context,
9708 Expr::NPC_ValueDependentIsNull)) {
9709 if (Diagnose || ConvertRHS) {
9710 CastKind Kind;
9711 CXXCastPath Path;
9712 CheckPointerConversion(RHS.get(), LHSType, Kind, Path,
9713 /*IgnoreBaseAccess=*/false, Diagnose);
9714 if (ConvertRHS)
9715 RHS = ImpCastExprToType(RHS.get(), LHSType, Kind, VK_PRValue, &Path);
9716 }
9717 return Compatible;
9718 }
9719
9720 // OpenCL queue_t type assignment.
9721 if (LHSType->isQueueT() && RHS.get()->isNullPointerConstant(
9722 Context, Expr::NPC_ValueDependentIsNull)) {
9723 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
9724 return Compatible;
9725 }
9726
9727 // This check seems unnatural, however it is necessary to ensure the proper
9728 // conversion of functions/arrays. If the conversion were done for all
9729 // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
9730 // expressions that suppress this implicit conversion (&, sizeof).
9731 //
9732 // Suppress this for references: C++ 8.5.3p5.
9733 if (!LHSType->isReferenceType()) {
9734 // FIXME: We potentially allocate here even if ConvertRHS is false.
9735 RHS = DefaultFunctionArrayLvalueConversion(RHS.get(), Diagnose);
9736 if (RHS.isInvalid())
9737 return Incompatible;
9738 }
9739 CastKind Kind;
9740 Sema::AssignConvertType result =
9741 CheckAssignmentConstraints(LHSType, RHS, Kind, ConvertRHS);
9742
9743 // C99 6.5.16.1p2: The value of the right operand is converted to the
9744 // type of the assignment expression.
9745 // CheckAssignmentConstraints allows the left-hand side to be a reference,
9746 // so that we can use references in built-in functions even in C.
9747 // The getNonReferenceType() call makes sure that the resulting expression
9748 // does not have reference type.
9749 if (result != Incompatible && RHS.get()->getType() != LHSType) {
9750 QualType Ty = LHSType.getNonLValueExprType(Context);
9751 Expr *E = RHS.get();
9752
9753 // Check for various Objective-C errors. If we are not reporting
9754 // diagnostics and just checking for errors, e.g., during overload
9755 // resolution, return Incompatible to indicate the failure.
9756 if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
9757 CheckObjCConversion(SourceRange(), Ty, E, CCK_ImplicitConversion,
9758 Diagnose, DiagnoseCFAudited) != ACR_okay) {
9759 if (!Diagnose)
9760 return Incompatible;
9761 }
9762 if (getLangOpts().ObjC &&
9763 (CheckObjCBridgeRelatedConversions(E->getBeginLoc(), LHSType,
9764 E->getType(), E, Diagnose) ||
9765 CheckConversionToObjCLiteral(LHSType, E, Diagnose))) {
9766 if (!Diagnose)
9767 return Incompatible;
9768 // Replace the expression with a corrected version and continue so we
9769 // can find further errors.
9770 RHS = E;
9771 return Compatible;
9772 }
9773
9774 if (ConvertRHS)
9775 RHS = ImpCastExprToType(E, Ty, Kind);
9776 }
9777
9778 return result;
9779}
9780
9781namespace {
9782/// The original operand to an operator, prior to the application of the usual
9783/// arithmetic conversions and converting the arguments of a builtin operator
9784/// candidate.
9785struct OriginalOperand {
9786 explicit OriginalOperand(Expr *Op) : Orig(Op), Conversion(nullptr) {
9787 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Op))
9788 Op = MTE->getSubExpr();
9789 if (auto *BTE = dyn_cast<CXXBindTemporaryExpr>(Op))
9790 Op = BTE->getSubExpr();
9791 if (auto *ICE = dyn_cast<ImplicitCastExpr>(Op)) {
9792 Orig = ICE->getSubExprAsWritten();
9793 Conversion = ICE->getConversionFunction();
9794 }
9795 }
9796
9797 QualType getType() const { return Orig->getType(); }
9798
9799 Expr *Orig;
9800 NamedDecl *Conversion;
9801};
9802}
9803
9804QualType Sema::InvalidOperands(SourceLocation Loc, ExprResult &LHS,
9805 ExprResult &RHS) {
9806 OriginalOperand OrigLHS(LHS.get()), OrigRHS(RHS.get());
9807
9808 Diag(Loc, diag::err_typecheck_invalid_operands)
9809 << OrigLHS.getType() << OrigRHS.getType()
9810 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
9811
9812 // If a user-defined conversion was applied to either of the operands prior
9813 // to applying the built-in operator rules, tell the user about it.
9814 if (OrigLHS.Conversion) {
9815 Diag(OrigLHS.Conversion->getLocation(),
9816 diag::note_typecheck_invalid_operands_converted)
9817 << 0 << LHS.get()->getType();
9818 }
9819 if (OrigRHS.Conversion) {
9820 Diag(OrigRHS.Conversion->getLocation(),
9821 diag::note_typecheck_invalid_operands_converted)
9822 << 1 << RHS.get()->getType();
9823 }
9824
9825 return QualType();
9826}
9827
9828// Diagnose cases where a scalar was implicitly converted to a vector and
9829// diagnose the underlying types. Otherwise, diagnose the error
9830// as invalid vector logical operands for non-C++ cases.
9831QualType Sema::InvalidLogicalVectorOperands(SourceLocation Loc, ExprResult &LHS,
9832 ExprResult &RHS) {
9833 QualType LHSType = LHS.get()->IgnoreImpCasts()->getType();
9834 QualType RHSType = RHS.get()->IgnoreImpCasts()->getType();
9835
9836 bool LHSNatVec = LHSType->isVectorType();
9837 bool RHSNatVec = RHSType->isVectorType();
9838
9839 if (!(LHSNatVec && RHSNatVec)) {
9840 Expr *Vector = LHSNatVec ? LHS.get() : RHS.get();
9841 Expr *NonVector = !LHSNatVec ? LHS.get() : RHS.get();
9842 Diag(Loc, diag::err_typecheck_logical_vector_expr_gnu_cpp_restrict)
9843 << 0 << Vector->getType() << NonVector->IgnoreImpCasts()->getType()
9844 << Vector->getSourceRange();
9845 return QualType();
9846 }
9847
9848 Diag(Loc, diag::err_typecheck_logical_vector_expr_gnu_cpp_restrict)
9849 << 1 << LHSType << RHSType << LHS.get()->getSourceRange()
9850 << RHS.get()->getSourceRange();
9851
9852 return QualType();
9853}
9854
9855/// Try to convert a value of non-vector type to a vector type by converting
9856/// the type to the element type of the vector and then performing a splat.
9857/// If the language is OpenCL, we only use conversions that promote scalar
9858/// rank; for C, Obj-C, and C++ we allow any real scalar conversion except
9859/// for float->int.
9860///
9861/// OpenCL V2.0 6.2.6.p2:
9862/// An error shall occur if any scalar operand type has greater rank
9863/// than the type of the vector element.
9864///
9865/// \param scalar - if non-null, actually perform the conversions
9866/// \return true if the operation fails (but without diagnosing the failure)
9867static bool tryVectorConvertAndSplat(Sema &S, ExprResult *scalar,
9868 QualType scalarTy,
9869 QualType vectorEltTy,
9870 QualType vectorTy,
9871 unsigned &DiagID) {
9872 // The conversion to apply to the scalar before splatting it,
9873 // if necessary.
9874 CastKind scalarCast = CK_NoOp;
9875
9876 if (vectorEltTy->isIntegralType(S.Context)) {
9877 if (S.getLangOpts().OpenCL && (scalarTy->isRealFloatingType() ||
9878 (scalarTy->isIntegerType() &&
9879 S.Context.getIntegerTypeOrder(vectorEltTy, scalarTy) < 0))) {
9880 DiagID = diag::err_opencl_scalar_type_rank_greater_than_vector_type;
9881 return true;
9882 }
9883 if (!scalarTy->isIntegralType(S.Context))
9884 return true;
9885 scalarCast = CK_IntegralCast;
9886 } else if (vectorEltTy->isRealFloatingType()) {
9887 if (scalarTy->isRealFloatingType()) {
9888 if (S.getLangOpts().OpenCL &&
9889 S.Context.getFloatingTypeOrder(vectorEltTy, scalarTy) < 0) {
9890 DiagID = diag::err_opencl_scalar_type_rank_greater_than_vector_type;
9891 return true;
9892 }
9893 scalarCast = CK_FloatingCast;
9894 }
9895 else if (scalarTy->isIntegralType(S.Context))
9896 scalarCast = CK_IntegralToFloating;
9897 else
9898 return true;
9899 } else {
9900 return true;
9901 }
9902
9903 // Adjust scalar if desired.
9904 if (scalar) {
9905 if (scalarCast != CK_NoOp)
9906 *scalar = S.ImpCastExprToType(scalar->get(), vectorEltTy, scalarCast);
9907 *scalar = S.ImpCastExprToType(scalar->get(), vectorTy, CK_VectorSplat);
9908 }
9909 return false;
9910}
9911
9912/// Convert vector E to a vector with the same number of elements but different
9913/// element type.
9914static ExprResult convertVector(Expr *E, QualType ElementType, Sema &S) {
9915 const auto *VecTy = E->getType()->getAs<VectorType>();
9916 assert(VecTy && "Expression E must be a vector")(static_cast <bool> (VecTy && "Expression E must be a vector"
) ? void (0) : __assert_fail ("VecTy && \"Expression E must be a vector\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 9916, __extension__ __PRETTY_FUNCTION__))
;
9917 QualType NewVecTy = S.Context.getVectorType(ElementType,
9918 VecTy->getNumElements(),
9919 VecTy->getVectorKind());
9920
9921 // Look through the implicit cast. Return the subexpression if its type is
9922 // NewVecTy.
9923 if (auto *ICE = dyn_cast<ImplicitCastExpr>(E))
9924 if (ICE->getSubExpr()->getType() == NewVecTy)
9925 return ICE->getSubExpr();
9926
9927 auto Cast = ElementType->isIntegerType() ? CK_IntegralCast : CK_FloatingCast;
9928 return S.ImpCastExprToType(E, NewVecTy, Cast);
9929}
9930
9931/// Test if a (constant) integer Int can be casted to another integer type
9932/// IntTy without losing precision.
9933static bool canConvertIntToOtherIntTy(Sema &S, ExprResult *Int,
9934 QualType OtherIntTy) {
9935 QualType IntTy = Int->get()->getType().getUnqualifiedType();
9936
9937 // Reject cases where the value of the Int is unknown as that would
9938 // possibly cause truncation, but accept cases where the scalar can be
9939 // demoted without loss of precision.
9940 Expr::EvalResult EVResult;
9941 bool CstInt = Int->get()->EvaluateAsInt(EVResult, S.Context);
9942 int Order = S.Context.getIntegerTypeOrder(OtherIntTy, IntTy);
9943 bool IntSigned = IntTy->hasSignedIntegerRepresentation();
9944 bool OtherIntSigned = OtherIntTy->hasSignedIntegerRepresentation();
9945
9946 if (CstInt) {
9947 // If the scalar is constant and is of a higher order and has more active
9948 // bits that the vector element type, reject it.
9949 llvm::APSInt Result = EVResult.Val.getInt();
9950 unsigned NumBits = IntSigned
9951 ? (Result.isNegative() ? Result.getMinSignedBits()
9952 : Result.getActiveBits())
9953 : Result.getActiveBits();
9954 if (Order < 0 && S.Context.getIntWidth(OtherIntTy) < NumBits)
9955 return true;
9956
9957 // If the signedness of the scalar type and the vector element type
9958 // differs and the number of bits is greater than that of the vector
9959 // element reject it.
9960 return (IntSigned != OtherIntSigned &&
9961 NumBits > S.Context.getIntWidth(OtherIntTy));
9962 }
9963
9964 // Reject cases where the value of the scalar is not constant and it's
9965 // order is greater than that of the vector element type.
9966 return (Order < 0);
9967}
9968
9969/// Test if a (constant) integer Int can be casted to floating point type
9970/// FloatTy without losing precision.
9971static bool canConvertIntTyToFloatTy(Sema &S, ExprResult *Int,
9972 QualType FloatTy) {
9973 QualType IntTy = Int->get()->getType().getUnqualifiedType();
9974
9975 // Determine if the integer constant can be expressed as a floating point
9976 // number of the appropriate type.
9977 Expr::EvalResult EVResult;
9978 bool CstInt = Int->get()->EvaluateAsInt(EVResult, S.Context);
9979
9980 uint64_t Bits = 0;
9981 if (CstInt) {
9982 // Reject constants that would be truncated if they were converted to
9983 // the floating point type. Test by simple to/from conversion.
9984 // FIXME: Ideally the conversion to an APFloat and from an APFloat
9985 // could be avoided if there was a convertFromAPInt method
9986 // which could signal back if implicit truncation occurred.
9987 llvm::APSInt Result = EVResult.Val.getInt();
9988 llvm::APFloat Float(S.Context.getFloatTypeSemantics(FloatTy));
9989 Float.convertFromAPInt(Result, IntTy->hasSignedIntegerRepresentation(),
9990 llvm::APFloat::rmTowardZero);
9991 llvm::APSInt ConvertBack(S.Context.getIntWidth(IntTy),
9992 !IntTy->hasSignedIntegerRepresentation());
9993 bool Ignored = false;
9994 Float.convertToInteger(ConvertBack, llvm::APFloat::rmNearestTiesToEven,
9995 &Ignored);
9996 if (Result != ConvertBack)
9997 return true;
9998 } else {
9999 // Reject types that cannot be fully encoded into the mantissa of
10000 // the float.
10001 Bits = S.Context.getTypeSize(IntTy);
10002 unsigned FloatPrec = llvm::APFloat::semanticsPrecision(
10003 S.Context.getFloatTypeSemantics(FloatTy));
10004 if (Bits > FloatPrec)
10005 return true;
10006 }
10007
10008 return false;
10009}
10010
10011/// Attempt to convert and splat Scalar into a vector whose types matches
10012/// Vector following GCC conversion rules. The rule is that implicit
10013/// conversion can occur when Scalar can be casted to match Vector's element
10014/// type without causing truncation of Scalar.
10015static bool tryGCCVectorConvertAndSplat(Sema &S, ExprResult *Scalar,
10016 ExprResult *Vector) {
10017 QualType ScalarTy = Scalar->get()->getType().getUnqualifiedType();
10018 QualType VectorTy = Vector->get()->getType().getUnqualifiedType();
10019 const VectorType *VT = VectorTy->getAs<VectorType>();
10020
10021 assert(!isa<ExtVectorType>(VT) &&(static_cast <bool> (!isa<ExtVectorType>(VT) &&
"ExtVectorTypes should not be handled here!") ? void (0) : __assert_fail
("!isa<ExtVectorType>(VT) && \"ExtVectorTypes should not be handled here!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 10022, __extension__ __PRETTY_FUNCTION__))
10022 "ExtVectorTypes should not be handled here!")(static_cast <bool> (!isa<ExtVectorType>(VT) &&
"ExtVectorTypes should not be handled here!") ? void (0) : __assert_fail
("!isa<ExtVectorType>(VT) && \"ExtVectorTypes should not be handled here!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 10022, __extension__ __PRETTY_FUNCTION__))
;
10023
10024 QualType VectorEltTy = VT->getElementType();
10025
10026 // Reject cases where the vector element type or the scalar element type are
10027 // not integral or floating point types.
10028 if (!VectorEltTy->isArithmeticType() || !ScalarTy->isArithmeticType())
10029 return true;
10030
10031 // The conversion to apply to the scalar before splatting it,
10032 // if necessary.
10033 CastKind ScalarCast = CK_NoOp;
10034
10035 // Accept cases where the vector elements are integers and the scalar is
10036 // an integer.
10037 // FIXME: Notionally if the scalar was a floating point value with a precise
10038 // integral representation, we could cast it to an appropriate integer
10039 // type and then perform the rest of the checks here. GCC will perform
10040 // this conversion in some cases as determined by the input language.
10041 // We should accept it on a language independent basis.
10042 if (VectorEltTy->isIntegralType(S.Context) &&
10043 ScalarTy->isIntegralType(S.Context) &&
10044 S.Context.getIntegerTypeOrder(VectorEltTy, ScalarTy)) {
10045
10046 if (canConvertIntToOtherIntTy(S, Scalar, VectorEltTy))
10047 return true;
10048
10049 ScalarCast = CK_IntegralCast;
10050 } else if (VectorEltTy->isIntegralType(S.Context) &&
10051 ScalarTy->isRealFloatingType()) {
10052 if (S.Context.getTypeSize(VectorEltTy) == S.Context.getTypeSize(ScalarTy))
10053 ScalarCast = CK_FloatingToIntegral;
10054 else
10055 return true;
10056 } else if (VectorEltTy->isRealFloatingType()) {
10057 if (ScalarTy->isRealFloatingType()) {
10058
10059 // Reject cases where the scalar type is not a constant and has a higher
10060 // Order than the vector element type.
10061 llvm::APFloat Result(0.0);
10062
10063 // Determine whether this is a constant scalar. In the event that the
10064 // value is dependent (and thus cannot be evaluated by the constant
10065 // evaluator), skip the evaluation. This will then diagnose once the
10066 // expression is instantiated.
10067 bool CstScalar = Scalar->get()->isValueDependent() ||
10068 Scalar->get()->EvaluateAsFloat(Result, S.Context);
10069 int Order = S.Context.getFloatingTypeOrder(VectorEltTy, ScalarTy);
10070 if (!CstScalar && Order < 0)
10071 return true;
10072
10073 // If the scalar cannot be safely casted to the vector element type,
10074 // reject it.
10075 if (CstScalar) {
10076 bool Truncated = false;
10077 Result.convert(S.Context.getFloatTypeSemantics(VectorEltTy),
10078 llvm::APFloat::rmNearestTiesToEven, &Truncated);
10079 if (Truncated)
10080 return true;
10081 }
10082
10083 ScalarCast = CK_FloatingCast;
10084 } else if (ScalarTy->isIntegralType(S.Context)) {
10085 if (canConvertIntTyToFloatTy(S, Scalar, VectorEltTy))
10086 return true;
10087
10088 ScalarCast = CK_IntegralToFloating;
10089 } else
10090 return true;
10091 } else if (ScalarTy->isEnumeralType())
10092 return true;
10093
10094 // Adjust scalar if desired.
10095 if (Scalar) {
10096 if (ScalarCast != CK_NoOp)
10097 *Scalar = S.ImpCastExprToType(Scalar->get(), VectorEltTy, ScalarCast);
10098 *Scalar = S.ImpCastExprToType(Scalar->get(), VectorTy, CK_VectorSplat);
10099 }
10100 return false;
10101}
10102
10103QualType Sema::CheckVectorOperands(ExprResult &LHS, ExprResult &RHS,
10104 SourceLocation Loc, bool IsCompAssign,
10105 bool AllowBothBool,
10106 bool AllowBoolConversions) {
10107 if (!IsCompAssign) {
10108 LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
10109 if (LHS.isInvalid())
10110 return QualType();
10111 }
10112 RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
10113 if (RHS.isInvalid())
10114 return QualType();
10115
10116 // For conversion purposes, we ignore any qualifiers.
10117 // For example, "const float" and "float" are equivalent.
10118 QualType LHSType = LHS.get()->getType().getUnqualifiedType();
10119 QualType RHSType = RHS.get()->getType().getUnqualifiedType();
10120
10121 const VectorType *LHSVecType = LHSType->getAs<VectorType>();
10122 const VectorType *RHSVecType = RHSType->getAs<VectorType>();
10123 assert(LHSVecType || RHSVecType)(static_cast <bool> (LHSVecType || RHSVecType) ? void (
0) : __assert_fail ("LHSVecType || RHSVecType", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 10123, __extension__ __PRETTY_FUNCTION__))
;
10124
10125 if ((LHSVecType && LHSVecType->getElementType()->isBFloat16Type()) ||
10126 (RHSVecType && RHSVecType->getElementType()->isBFloat16Type()))
10127 return InvalidOperands(Loc, LHS, RHS);
10128
10129 // AltiVec-style "vector bool op vector bool" combinations are allowed
10130 // for some operators but not others.
10131 if (!AllowBothBool &&
10132 LHSVecType && LHSVecType->getVectorKind() == VectorType::AltiVecBool &&
10133 RHSVecType && RHSVecType->getVectorKind() == VectorType::AltiVecBool)
10134 return InvalidOperands(Loc, LHS, RHS);
10135
10136 // If the vector types are identical, return.
10137 if (Context.hasSameType(LHSType, RHSType))
10138 return LHSType;
10139
10140 // If we have compatible AltiVec and GCC vector types, use the AltiVec type.
10141 if (LHSVecType && RHSVecType &&
10142 Context.areCompatibleVectorTypes(LHSType, RHSType)) {
10143 if (isa<ExtVectorType>(LHSVecType)) {
10144 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
10145 return LHSType;
10146 }
10147
10148 if (!IsCompAssign)
10149 LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
10150 return RHSType;
10151 }
10152
10153 // AllowBoolConversions says that bool and non-bool AltiVec vectors
10154 // can be mixed, with the result being the non-bool type. The non-bool
10155 // operand must have integer element type.
10156 if (AllowBoolConversions && LHSVecType && RHSVecType &&
10157 LHSVecType->getNumElements() == RHSVecType->getNumElements() &&
10158 (Context.getTypeSize(LHSVecType->getElementType()) ==
10159 Context.getTypeSize(RHSVecType->getElementType()))) {
10160 if (LHSVecType->getVectorKind() == VectorType::AltiVecVector &&
10161 LHSVecType->getElementType()->isIntegerType() &&
10162 RHSVecType->getVectorKind() == VectorType::AltiVecBool) {
10163 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
10164 return LHSType;
10165 }
10166 if (!IsCompAssign &&
10167 LHSVecType->getVectorKind() == VectorType::AltiVecBool &&
10168 RHSVecType->getVectorKind() == VectorType::AltiVecVector &&
10169 RHSVecType->getElementType()->isIntegerType()) {
10170 LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
10171 return RHSType;
10172 }
10173 }
10174
10175 // Expressions containing fixed-length and sizeless SVE vectors are invalid
10176 // since the ambiguity can affect the ABI.
10177 auto IsSveConversion = [](QualType FirstType, QualType SecondType) {
10178 const VectorType *VecType = SecondType->getAs<VectorType>();
10179 return FirstType->isSizelessBuiltinType() && VecType &&
10180 (VecType->getVectorKind() == VectorType::SveFixedLengthDataVector ||
10181 VecType->getVectorKind() ==
10182 VectorType::SveFixedLengthPredicateVector);
10183 };
10184
10185 if (IsSveConversion(LHSType, RHSType) || IsSveConversion(RHSType, LHSType)) {
10186 Diag(Loc, diag::err_typecheck_sve_ambiguous) << LHSType << RHSType;
10187 return QualType();
10188 }
10189
10190 // Expressions containing GNU and SVE (fixed or sizeless) vectors are invalid
10191 // since the ambiguity can affect the ABI.
10192 auto IsSveGnuConversion = [](QualType FirstType, QualType SecondType) {
10193 const VectorType *FirstVecType = FirstType->getAs<VectorType>();
10194 const VectorType *SecondVecType = SecondType->getAs<VectorType>();
10195
10196 if (FirstVecType && SecondVecType)
10197 return FirstVecType->getVectorKind() == VectorType::GenericVector &&
10198 (SecondVecType->getVectorKind() ==
10199 VectorType::SveFixedLengthDataVector ||
10200 SecondVecType->getVectorKind() ==
10201 VectorType::SveFixedLengthPredicateVector);
10202
10203 return FirstType->isSizelessBuiltinType() && SecondVecType &&
10204 SecondVecType->getVectorKind() == VectorType::GenericVector;
10205 };
10206
10207 if (IsSveGnuConversion(LHSType, RHSType) ||
10208 IsSveGnuConversion(RHSType, LHSType)) {
10209 Diag(Loc, diag::err_typecheck_sve_gnu_ambiguous) << LHSType << RHSType;
10210 return QualType();
10211 }
10212
10213 // If there's a vector type and a scalar, try to convert the scalar to
10214 // the vector element type and splat.
10215 unsigned DiagID = diag::err_typecheck_vector_not_convertable;
10216 if (!RHSVecType) {
10217 if (isa<ExtVectorType>(LHSVecType)) {
10218 if (!tryVectorConvertAndSplat(*this, &RHS, RHSType,
10219 LHSVecType->getElementType(), LHSType,
10220 DiagID))
10221 return LHSType;
10222 } else {
10223 if (!tryGCCVectorConvertAndSplat(*this, &RHS, &LHS))
10224 return LHSType;
10225 }
10226 }
10227 if (!LHSVecType) {
10228 if (isa<ExtVectorType>(RHSVecType)) {
10229 if (!tryVectorConvertAndSplat(*this, (IsCompAssign ? nullptr : &LHS),
10230 LHSType, RHSVecType->getElementType(),
10231 RHSType, DiagID))
10232 return RHSType;
10233 } else {
10234 if (LHS.get()->isLValue() ||
10235 !tryGCCVectorConvertAndSplat(*this, &LHS, &RHS))
10236 return RHSType;
10237 }
10238 }
10239
10240 // FIXME: The code below also handles conversion between vectors and
10241 // non-scalars, we should break this down into fine grained specific checks
10242 // and emit proper diagnostics.
10243 QualType VecType = LHSVecType ? LHSType : RHSType;
10244 const VectorType *VT = LHSVecType ? LHSVecType : RHSVecType;
10245 QualType OtherType = LHSVecType ? RHSType : LHSType;
10246 ExprResult *OtherExpr = LHSVecType ? &RHS : &LHS;
10247 if (isLaxVectorConversion(OtherType, VecType)) {
10248 // If we're allowing lax vector conversions, only the total (data) size
10249 // needs to be the same. For non compound assignment, if one of the types is
10250 // scalar, the result is always the vector type.
10251 if (!IsCompAssign) {
10252 *OtherExpr = ImpCastExprToType(OtherExpr->get(), VecType, CK_BitCast);
10253 return VecType;
10254 // In a compound assignment, lhs += rhs, 'lhs' is a lvalue src, forbidding
10255 // any implicit cast. Here, the 'rhs' should be implicit casted to 'lhs'
10256 // type. Note that this is already done by non-compound assignments in
10257 // CheckAssignmentConstraints. If it's a scalar type, only bitcast for
10258 // <1 x T> -> T. The result is also a vector type.
10259 } else if (OtherType->isExtVectorType() || OtherType->isVectorType() ||
10260 (OtherType->isScalarType() && VT->getNumElements() == 1)) {
10261 ExprResult *RHSExpr = &RHS;
10262 *RHSExpr = ImpCastExprToType(RHSExpr->get(), LHSType, CK_BitCast);
10263 return VecType;
10264 }
10265 }
10266
10267 // Okay, the expression is invalid.
10268
10269 // If there's a non-vector, non-real operand, diagnose that.
10270 if ((!RHSVecType && !RHSType->isRealType()) ||
10271 (!LHSVecType && !LHSType->isRealType())) {
10272 Diag(Loc, diag::err_typecheck_vector_not_convertable_non_scalar)
10273 << LHSType << RHSType
10274 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10275 return QualType();
10276 }
10277
10278 // OpenCL V1.1 6.2.6.p1:
10279 // If the operands are of more than one vector type, then an error shall
10280 // occur. Implicit conversions between vector types are not permitted, per
10281 // section 6.2.1.
10282 if (getLangOpts().OpenCL &&
10283 RHSVecType && isa<ExtVectorType>(RHSVecType) &&
10284 LHSVecType && isa<ExtVectorType>(LHSVecType)) {
10285 Diag(Loc, diag::err_opencl_implicit_vector_conversion) << LHSType
10286 << RHSType;
10287 return QualType();
10288 }
10289
10290
10291 // If there is a vector type that is not a ExtVector and a scalar, we reach
10292 // this point if scalar could not be converted to the vector's element type
10293 // without truncation.
10294 if ((RHSVecType && !isa<ExtVectorType>(RHSVecType)) ||
10295 (LHSVecType && !isa<ExtVectorType>(LHSVecType))) {
10296 QualType Scalar = LHSVecType ? RHSType : LHSType;
10297 QualType Vector = LHSVecType ? LHSType : RHSType;
10298 unsigned ScalarOrVector = LHSVecType && RHSVecType ? 1 : 0;
10299 Diag(Loc,
10300 diag::err_typecheck_vector_not_convertable_implict_truncation)
10301 << ScalarOrVector << Scalar << Vector;
10302
10303 return QualType();
10304 }
10305
10306 // Otherwise, use the generic diagnostic.
10307 Diag(Loc, DiagID)
10308 << LHSType << RHSType
10309 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10310 return QualType();
10311}
10312
10313// checkArithmeticNull - Detect when a NULL constant is used improperly in an
10314// expression. These are mainly cases where the null pointer is used as an
10315// integer instead of a pointer.
10316static void checkArithmeticNull(Sema &S, ExprResult &LHS, ExprResult &RHS,
10317 SourceLocation Loc, bool IsCompare) {
10318 // The canonical way to check for a GNU null is with isNullPointerConstant,
10319 // but we use a bit of a hack here for speed; this is a relatively
10320 // hot path, and isNullPointerConstant is slow.
10321 bool LHSNull = isa<GNUNullExpr>(LHS.get()->IgnoreParenImpCasts());
10322 bool RHSNull = isa<GNUNullExpr>(RHS.get()->IgnoreParenImpCasts());
10323
10324 QualType NonNullType = LHSNull ? RHS.get()->getType() : LHS.get()->getType();
10325
10326 // Avoid analyzing cases where the result will either be invalid (and
10327 // diagnosed as such) or entirely valid and not something to warn about.
10328 if ((!LHSNull && !RHSNull) || NonNullType->isBlockPointerType() ||
10329 NonNullType->isMemberPointerType() || NonNullType->isFunctionType())
10330 return;
10331
10332 // Comparison operations would not make sense with a null pointer no matter
10333 // what the other expression is.
10334 if (!IsCompare) {
10335 S.Diag(Loc, diag::warn_null_in_arithmetic_operation)
10336 << (LHSNull ? LHS.get()->getSourceRange() : SourceRange())
10337 << (RHSNull ? RHS.get()->getSourceRange() : SourceRange());
10338 return;
10339 }
10340
10341 // The rest of the operations only make sense with a null pointer
10342 // if the other expression is a pointer.
10343 if (LHSNull == RHSNull || NonNullType->isAnyPointerType() ||
10344 NonNullType->canDecayToPointerType())
10345 return;
10346
10347 S.Diag(Loc, diag::warn_null_in_comparison_operation)
10348 << LHSNull /* LHS is NULL */ << NonNullType
10349 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10350}
10351
10352static void DiagnoseDivisionSizeofPointerOrArray(Sema &S, Expr *LHS, Expr *RHS,
10353 SourceLocation Loc) {
10354 const auto *LUE = dyn_cast<UnaryExprOrTypeTraitExpr>(LHS);
10355 const auto *RUE = dyn_cast<UnaryExprOrTypeTraitExpr>(RHS);
10356 if (!LUE || !RUE)
10357 return;
10358 if (LUE->getKind() != UETT_SizeOf || LUE->isArgumentType() ||
10359 RUE->getKind() != UETT_SizeOf)
10360 return;
10361
10362 const Expr *LHSArg = LUE->getArgumentExpr()->IgnoreParens();
10363 QualType LHSTy = LHSArg->getType();
10364 QualType RHSTy;
10365
10366 if (RUE->isArgumentType())
10367 RHSTy = RUE->getArgumentType().getNonReferenceType();
10368 else
10369 RHSTy = RUE->getArgumentExpr()->IgnoreParens()->getType();
10370
10371 if (LHSTy->isPointerType() && !RHSTy->isPointerType()) {
10372 if (!S.Context.hasSameUnqualifiedType(LHSTy->getPointeeType(), RHSTy))
10373 return;
10374
10375 S.Diag(Loc, diag::warn_division_sizeof_ptr) << LHS << LHS->getSourceRange();
10376 if (const auto *DRE = dyn_cast<DeclRefExpr>(LHSArg)) {
10377 if (const ValueDecl *LHSArgDecl = DRE->getDecl())
10378 S.Diag(LHSArgDecl->getLocation(), diag::note_pointer_declared_here)
10379 << LHSArgDecl;
10380 }
10381 } else if (const auto *ArrayTy = S.Context.getAsArrayType(LHSTy)) {
10382 QualType ArrayElemTy = ArrayTy->getElementType();
10383 if (ArrayElemTy != S.Context.getBaseElementType(ArrayTy) ||
10384 ArrayElemTy->isDependentType() || RHSTy->isDependentType() ||
10385 RHSTy->isReferenceType() || ArrayElemTy->isCharType() ||
10386 S.Context.getTypeSize(ArrayElemTy) == S.Context.getTypeSize(RHSTy))
10387 return;
10388 S.Diag(Loc, diag::warn_division_sizeof_array)
10389 << LHSArg->getSourceRange() << ArrayElemTy << RHSTy;
10390 if (const auto *DRE = dyn_cast<DeclRefExpr>(LHSArg)) {
10391 if (const ValueDecl *LHSArgDecl = DRE->getDecl())
10392 S.Diag(LHSArgDecl->getLocation(), diag::note_array_declared_here)
10393 << LHSArgDecl;
10394 }
10395
10396 S.Diag(Loc, diag::note_precedence_silence) << RHS;
10397 }
10398}
10399
10400static void DiagnoseBadDivideOrRemainderValues(Sema& S, ExprResult &LHS,
10401 ExprResult &RHS,
10402 SourceLocation Loc, bool IsDiv) {
10403 // Check for division/remainder by zero.
10404 Expr::EvalResult RHSValue;
10405 if (!RHS.get()->isValueDependent() &&
10406 RHS.get()->EvaluateAsInt(RHSValue, S.Context) &&
10407 RHSValue.Val.getInt() == 0)
10408 S.DiagRuntimeBehavior(Loc, RHS.get(),
10409 S.PDiag(diag::warn_remainder_division_by_zero)
10410 << IsDiv << RHS.get()->getSourceRange());
10411}
10412
10413QualType Sema::CheckMultiplyDivideOperands(ExprResult &LHS, ExprResult &RHS,
10414 SourceLocation Loc,
10415 bool IsCompAssign, bool IsDiv) {
10416 checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
10417
10418 QualType LHSTy = LHS.get()->getType();
10419 QualType RHSTy = RHS.get()->getType();
10420 if (LHSTy->isVectorType() || RHSTy->isVectorType())
10421 return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
10422 /*AllowBothBool*/getLangOpts().AltiVec,
10423 /*AllowBoolConversions*/false);
10424 if (!IsDiv &&
10425 (LHSTy->isConstantMatrixType() || RHSTy->isConstantMatrixType()))
10426 return CheckMatrixMultiplyOperands(LHS, RHS, Loc, IsCompAssign);
10427 // For division, only matrix-by-scalar is supported. Other combinations with
10428 // matrix types are invalid.
10429 if (IsDiv && LHSTy->isConstantMatrixType() && RHSTy->isArithmeticType())
10430 return CheckMatrixElementwiseOperands(LHS, RHS, Loc, IsCompAssign);
10431
10432 QualType compType = UsualArithmeticConversions(
10433 LHS, RHS, Loc, IsCompAssign ? ACK_CompAssign : ACK_Arithmetic);
10434 if (LHS.isInvalid() || RHS.isInvalid())
10435 return QualType();
10436
10437
10438 if (compType.isNull() || !compType->isArithmeticType())
10439 return InvalidOperands(Loc, LHS, RHS);
10440 if (IsDiv) {
10441 DiagnoseBadDivideOrRemainderValues(*this, LHS, RHS, Loc, IsDiv);
10442 DiagnoseDivisionSizeofPointerOrArray(*this, LHS.get(), RHS.get(), Loc);
10443 }
10444 return compType;
10445}
10446
10447QualType Sema::CheckRemainderOperands(
10448 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
10449 checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
10450
10451 if (LHS.get()->getType()->isVectorType() ||
10452 RHS.get()->getType()->isVectorType()) {
10453 if (LHS.get()->getType()->hasIntegerRepresentation() &&
10454 RHS.get()->getType()->hasIntegerRepresentation())
10455 return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
10456 /*AllowBothBool*/getLangOpts().AltiVec,
10457 /*AllowBoolConversions*/false);
10458 return InvalidOperands(Loc, LHS, RHS);
10459 }
10460
10461 QualType compType = UsualArithmeticConversions(
10462 LHS, RHS, Loc, IsCompAssign ? ACK_CompAssign : ACK_Arithmetic);
10463 if (LHS.isInvalid() || RHS.isInvalid())
10464 return QualType();
10465
10466 if (compType.isNull() || !compType->isIntegerType())
10467 return InvalidOperands(Loc, LHS, RHS);
10468 DiagnoseBadDivideOrRemainderValues(*this, LHS, RHS, Loc, false /* IsDiv */);
10469 return compType;
10470}
10471
10472/// Diagnose invalid arithmetic on two void pointers.
10473static void diagnoseArithmeticOnTwoVoidPointers(Sema &S, SourceLocation Loc,
10474 Expr *LHSExpr, Expr *RHSExpr) {
10475 S.Diag(Loc, S.getLangOpts().CPlusPlus
10476 ? diag::err_typecheck_pointer_arith_void_type
10477 : diag::ext_gnu_void_ptr)
10478 << 1 /* two pointers */ << LHSExpr->getSourceRange()
10479 << RHSExpr->getSourceRange();
10480}
10481
10482/// Diagnose invalid arithmetic on a void pointer.
10483static void diagnoseArithmeticOnVoidPointer(Sema &S, SourceLocation Loc,
10484 Expr *Pointer) {
10485 S.Diag(Loc, S.getLangOpts().CPlusPlus
10486 ? diag::err_typecheck_pointer_arith_void_type
10487 : diag::ext_gnu_void_ptr)
10488 << 0 /* one pointer */ << Pointer->getSourceRange();
10489}
10490
10491/// Diagnose invalid arithmetic on a null pointer.
10492///
10493/// If \p IsGNUIdiom is true, the operation is using the 'p = (i8*)nullptr + n'
10494/// idiom, which we recognize as a GNU extension.
10495///
10496static void diagnoseArithmeticOnNullPointer(Sema &S, SourceLocation Loc,
10497 Expr *Pointer, bool IsGNUIdiom) {
10498 if (IsGNUIdiom)
10499 S.Diag(Loc, diag::warn_gnu_null_ptr_arith)
10500 << Pointer->getSourceRange();
10501 else
10502 S.Diag(Loc, diag::warn_pointer_arith_null_ptr)
10503 << S.getLangOpts().CPlusPlus << Pointer->getSourceRange();
10504}
10505
10506/// Diagnose invalid subraction on a null pointer.
10507///
10508static void diagnoseSubtractionOnNullPointer(Sema &S, SourceLocation Loc,
10509 Expr *Pointer, bool BothNull) {
10510 // Null - null is valid in C++ [expr.add]p7
10511 if (BothNull && S.getLangOpts().CPlusPlus)
10512 return;
10513
10514 // Is this s a macro from a system header?
10515 if (S.Diags.getSuppressSystemWarnings() && S.SourceMgr.isInSystemMacro(Loc))
10516 return;
10517
10518 S.Diag(Loc, diag::warn_pointer_sub_null_ptr)
10519 << S.getLangOpts().CPlusPlus << Pointer->getSourceRange();
10520}
10521
10522/// Diagnose invalid arithmetic on two function pointers.
10523static void diagnoseArithmeticOnTwoFunctionPointers(Sema &S, SourceLocation Loc,
10524 Expr *LHS, Expr *RHS) {
10525 assert(LHS->getType()->isAnyPointerType())(static_cast <bool> (LHS->getType()->isAnyPointerType
()) ? void (0) : __assert_fail ("LHS->getType()->isAnyPointerType()"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 10525, __extension__ __PRETTY_FUNCTION__))
;
10526 assert(RHS->getType()->isAnyPointerType())(static_cast <bool> (RHS->getType()->isAnyPointerType
()) ? void (0) : __assert_fail ("RHS->getType()->isAnyPointerType()"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 10526, __extension__ __PRETTY_FUNCTION__))
;
10527 S.Diag(Loc, S.getLangOpts().CPlusPlus
10528 ? diag::err_typecheck_pointer_arith_function_type
10529 : diag::ext_gnu_ptr_func_arith)
10530 << 1 /* two pointers */ << LHS->getType()->getPointeeType()
10531 // We only show the second type if it differs from the first.
10532 << (unsigned)!S.Context.hasSameUnqualifiedType(LHS->getType(),
10533 RHS->getType())
10534 << RHS->getType()->getPointeeType()
10535 << LHS->getSourceRange() << RHS->getSourceRange();
10536}
10537
10538/// Diagnose invalid arithmetic on a function pointer.
10539static void diagnoseArithmeticOnFunctionPointer(Sema &S, SourceLocation Loc,
10540 Expr *Pointer) {
10541 assert(Pointer->getType()->isAnyPointerType())(static_cast <bool> (Pointer->getType()->isAnyPointerType
()) ? void (0) : __assert_fail ("Pointer->getType()->isAnyPointerType()"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 10541, __extension__ __PRETTY_FUNCTION__))
;
10542 S.Diag(Loc, S.getLangOpts().CPlusPlus
10543 ? diag::err_typecheck_pointer_arith_function_type
10544 : diag::ext_gnu_ptr_func_arith)
10545 << 0 /* one pointer */ << Pointer->getType()->getPointeeType()
10546 << 0 /* one pointer, so only one type */
10547 << Pointer->getSourceRange();
10548}
10549
10550/// Emit error if Operand is incomplete pointer type
10551///
10552/// \returns True if pointer has incomplete type
10553static bool checkArithmeticIncompletePointerType(Sema &S, SourceLocation Loc,
10554 Expr *Operand) {
10555 QualType ResType = Operand->getType();
10556 if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
10557 ResType = ResAtomicType->getValueType();
10558
10559 assert(ResType->isAnyPointerType() && !ResType->isDependentType())(static_cast <bool> (ResType->isAnyPointerType() &&
!ResType->isDependentType()) ? void (0) : __assert_fail (
"ResType->isAnyPointerType() && !ResType->isDependentType()"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 10559, __extension__ __PRETTY_FUNCTION__))
;
10560 QualType PointeeTy = ResType->getPointeeType();
10561 return S.RequireCompleteSizedType(
10562 Loc, PointeeTy,
10563 diag::err_typecheck_arithmetic_incomplete_or_sizeless_type,
10564 Operand->getSourceRange());
10565}
10566
10567/// Check the validity of an arithmetic pointer operand.
10568///
10569/// If the operand has pointer type, this code will check for pointer types
10570/// which are invalid in arithmetic operations. These will be diagnosed
10571/// appropriately, including whether or not the use is supported as an
10572/// extension.
10573///
10574/// \returns True when the operand is valid to use (even if as an extension).
10575static bool checkArithmeticOpPointerOperand(Sema &S, SourceLocation Loc,
10576 Expr *Operand) {
10577 QualType ResType = Operand->getType();
10578 if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
10579 ResType = ResAtomicType->getValueType();
10580
10581 if (!ResType->isAnyPointerType()) return true;
10582
10583 QualType PointeeTy = ResType->getPointeeType();
10584 if (PointeeTy->isVoidType()) {
10585 diagnoseArithmeticOnVoidPointer(S, Loc, Operand);
10586 return !S.getLangOpts().CPlusPlus;
10587 }
10588 if (PointeeTy->isFunctionType()) {
10589 diagnoseArithmeticOnFunctionPointer(S, Loc, Operand);
10590 return !S.getLangOpts().CPlusPlus;
10591 }
10592
10593 if (checkArithmeticIncompletePointerType(S, Loc, Operand)) return false;
10594
10595 return true;
10596}
10597
10598/// Check the validity of a binary arithmetic operation w.r.t. pointer
10599/// operands.
10600///
10601/// This routine will diagnose any invalid arithmetic on pointer operands much
10602/// like \see checkArithmeticOpPointerOperand. However, it has special logic
10603/// for emitting a single diagnostic even for operations where both LHS and RHS
10604/// are (potentially problematic) pointers.
10605///
10606/// \returns True when the operand is valid to use (even if as an extension).
10607static bool checkArithmeticBinOpPointerOperands(Sema &S, SourceLocation Loc,
10608 Expr *LHSExpr, Expr *RHSExpr) {
10609 bool isLHSPointer = LHSExpr->getType()->isAnyPointerType();
10610 bool isRHSPointer = RHSExpr->getType()->isAnyPointerType();
10611 if (!isLHSPointer && !isRHSPointer) return true;
10612
10613 QualType LHSPointeeTy, RHSPointeeTy;
10614 if (isLHSPointer) LHSPointeeTy = LHSExpr->getType()->getPointeeType();
10615 if (isRHSPointer) RHSPointeeTy = RHSExpr->getType()->getPointeeType();
10616
10617 // if both are pointers check if operation is valid wrt address spaces
10618 if (isLHSPointer && isRHSPointer) {
10619 if (!LHSPointeeTy.isAddressSpaceOverlapping(RHSPointeeTy)) {
10620 S.Diag(Loc,
10621 diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
10622 << LHSExpr->getType() << RHSExpr->getType() << 1 /*arithmetic op*/
10623 << LHSExpr->getSourceRange() << RHSExpr->getSourceRange();
10624 return false;
10625 }
10626 }
10627
10628 // Check for arithmetic on pointers to incomplete types.
10629 bool isLHSVoidPtr = isLHSPointer && LHSPointeeTy->isVoidType();
10630 bool isRHSVoidPtr = isRHSPointer && RHSPointeeTy->isVoidType();
10631 if (isLHSVoidPtr || isRHSVoidPtr) {
10632 if (!isRHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, LHSExpr);
10633 else if (!isLHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, RHSExpr);
10634 else diagnoseArithmeticOnTwoVoidPointers(S, Loc, LHSExpr, RHSExpr);
10635
10636 return !S.getLangOpts().CPlusPlus;
10637 }
10638
10639 bool isLHSFuncPtr = isLHSPointer && LHSPointeeTy->isFunctionType();
10640 bool isRHSFuncPtr = isRHSPointer && RHSPointeeTy->isFunctionType();
10641 if (isLHSFuncPtr || isRHSFuncPtr) {
10642 if (!isRHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, LHSExpr);
10643 else if (!isLHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc,
10644 RHSExpr);
10645 else diagnoseArithmeticOnTwoFunctionPointers(S, Loc, LHSExpr, RHSExpr);
10646
10647 return !S.getLangOpts().CPlusPlus;
10648 }
10649
10650 if (isLHSPointer && checkArithmeticIncompletePointerType(S, Loc, LHSExpr))
10651 return false;
10652 if (isRHSPointer && checkArithmeticIncompletePointerType(S, Loc, RHSExpr))
10653 return false;
10654
10655 return true;
10656}
10657
10658/// diagnoseStringPlusInt - Emit a warning when adding an integer to a string
10659/// literal.
10660static void diagnoseStringPlusInt(Sema &Self, SourceLocation OpLoc,
10661 Expr *LHSExpr, Expr *RHSExpr) {
10662 StringLiteral* StrExpr = dyn_cast<StringLiteral>(LHSExpr->IgnoreImpCasts());
10663 Expr* IndexExpr = RHSExpr;
10664 if (!StrExpr) {
10665 StrExpr = dyn_cast<StringLiteral>(RHSExpr->IgnoreImpCasts());
10666 IndexExpr = LHSExpr;
10667 }
10668
10669 bool IsStringPlusInt = StrExpr &&
10670 IndexExpr->getType()->isIntegralOrUnscopedEnumerationType();
10671 if (!IsStringPlusInt || IndexExpr->isValueDependent())
10672 return;
10673
10674 SourceRange DiagRange(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
10675 Self.Diag(OpLoc, diag::warn_string_plus_int)
10676 << DiagRange << IndexExpr->IgnoreImpCasts()->getType();
10677
10678 // Only print a fixit for "str" + int, not for int + "str".
10679 if (IndexExpr == RHSExpr) {
10680 SourceLocation EndLoc = Self.getLocForEndOfToken(RHSExpr->getEndLoc());
10681 Self.Diag(OpLoc, diag::note_string_plus_scalar_silence)
10682 << FixItHint::CreateInsertion(LHSExpr->getBeginLoc(), "&")
10683 << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
10684 << FixItHint::CreateInsertion(EndLoc, "]");
10685 } else
10686 Self.Diag(OpLoc, diag::note_string_plus_scalar_silence);
10687}
10688
10689/// Emit a warning when adding a char literal to a string.
10690static void diagnoseStringPlusChar(Sema &Self, SourceLocation OpLoc,
10691 Expr *LHSExpr, Expr *RHSExpr) {
10692 const Expr *StringRefExpr = LHSExpr;
10693 const CharacterLiteral *CharExpr =
10694 dyn_cast<CharacterLiteral>(RHSExpr->IgnoreImpCasts());
10695
10696 if (!CharExpr) {
10697 CharExpr = dyn_cast<CharacterLiteral>(LHSExpr->IgnoreImpCasts());
10698 StringRefExpr = RHSExpr;
10699 }
10700
10701 if (!CharExpr || !StringRefExpr)
10702 return;
10703
10704 const QualType StringType = StringRefExpr->getType();
10705
10706 // Return if not a PointerType.
10707 if (!StringType->isAnyPointerType())
10708 return;
10709
10710 // Return if not a CharacterType.
10711 if (!StringType->getPointeeType()->isAnyCharacterType())
10712 return;
10713
10714 ASTContext &Ctx = Self.getASTContext();
10715 SourceRange DiagRange(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
10716
10717 const QualType CharType = CharExpr->getType();
10718 if (!CharType->isAnyCharacterType() &&
10719 CharType->isIntegerType() &&
10720 llvm::isUIntN(Ctx.getCharWidth(), CharExpr->getValue())) {
10721 Self.Diag(OpLoc, diag::warn_string_plus_char)
10722 << DiagRange << Ctx.CharTy;
10723 } else {
10724 Self.Diag(OpLoc, diag::warn_string_plus_char)
10725 << DiagRange << CharExpr->getType();
10726 }
10727
10728 // Only print a fixit for str + char, not for char + str.
10729 if (isa<CharacterLiteral>(RHSExpr->IgnoreImpCasts())) {
10730 SourceLocation EndLoc = Self.getLocForEndOfToken(RHSExpr->getEndLoc());
10731 Self.Diag(OpLoc, diag::note_string_plus_scalar_silence)
10732 << FixItHint::CreateInsertion(LHSExpr->getBeginLoc(), "&")
10733 << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
10734 << FixItHint::CreateInsertion(EndLoc, "]");
10735 } else {
10736 Self.Diag(OpLoc, diag::note_string_plus_scalar_silence);
10737 }
10738}
10739
10740/// Emit error when two pointers are incompatible.
10741static void diagnosePointerIncompatibility(Sema &S, SourceLocation Loc,
10742 Expr *LHSExpr, Expr *RHSExpr) {
10743 assert(LHSExpr->getType()->isAnyPointerType())(static_cast <bool> (LHSExpr->getType()->isAnyPointerType
()) ? void (0) : __assert_fail ("LHSExpr->getType()->isAnyPointerType()"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 10743, __extension__ __PRETTY_FUNCTION__))
;
10744 assert(RHSExpr->getType()->isAnyPointerType())(static_cast <bool> (RHSExpr->getType()->isAnyPointerType
()) ? void (0) : __assert_fail ("RHSExpr->getType()->isAnyPointerType()"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 10744, __extension__ __PRETTY_FUNCTION__))
;
10745 S.Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
10746 << LHSExpr->getType() << RHSExpr->getType() << LHSExpr->getSourceRange()
10747 << RHSExpr->getSourceRange();
10748}
10749
10750// C99 6.5.6
10751QualType Sema::CheckAdditionOperands(ExprResult &LHS, ExprResult &RHS,
10752 SourceLocation Loc, BinaryOperatorKind Opc,
10753 QualType* CompLHSTy) {
10754 checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
10755
10756 if (LHS.get()->getType()->isVectorType() ||
10757 RHS.get()->getType()->isVectorType()) {
10758 QualType compType = CheckVectorOperands(
10759 LHS, RHS, Loc, CompLHSTy,
10760 /*AllowBothBool*/getLangOpts().AltiVec,
10761 /*AllowBoolConversions*/getLangOpts().ZVector);
10762 if (CompLHSTy) *CompLHSTy = compType;
10763 return compType;
10764 }
10765
10766 if (LHS.get()->getType()->isConstantMatrixType() ||
10767 RHS.get()->getType()->isConstantMatrixType()) {
10768 QualType compType =
10769 CheckMatrixElementwiseOperands(LHS, RHS, Loc, CompLHSTy);
10770 if (CompLHSTy)
10771 *CompLHSTy = compType;
10772 return compType;
10773 }
10774
10775 QualType compType = UsualArithmeticConversions(
10776 LHS, RHS, Loc, CompLHSTy ? ACK_CompAssign : ACK_Arithmetic);
10777 if (LHS.isInvalid() || RHS.isInvalid())
10778 return QualType();
10779
10780 // Diagnose "string literal" '+' int and string '+' "char literal".
10781 if (Opc == BO_Add) {
10782 diagnoseStringPlusInt(*this, Loc, LHS.get(), RHS.get());
10783 diagnoseStringPlusChar(*this, Loc, LHS.get(), RHS.get());
10784 }
10785
10786 // handle the common case first (both operands are arithmetic).
10787 if (!compType.isNull() && compType->isArithmeticType()) {
10788 if (CompLHSTy) *CompLHSTy = compType;
10789 return compType;
10790 }
10791
10792 // Type-checking. Ultimately the pointer's going to be in PExp;
10793 // note that we bias towards the LHS being the pointer.
10794 Expr *PExp = LHS.get(), *IExp = RHS.get();
10795
10796 bool isObjCPointer;
10797 if (PExp->getType()->isPointerType()) {
10798 isObjCPointer = false;
10799 } else if (PExp->getType()->isObjCObjectPointerType()) {
10800 isObjCPointer = true;
10801 } else {
10802 std::swap(PExp, IExp);
10803 if (PExp->getType()->isPointerType()) {
10804 isObjCPointer = false;
10805 } else if (PExp->getType()->isObjCObjectPointerType()) {
10806 isObjCPointer = true;
10807 } else {
10808 return InvalidOperands(Loc, LHS, RHS);
10809 }
10810 }
10811 assert(PExp->getType()->isAnyPointerType())(static_cast <bool> (PExp->getType()->isAnyPointerType
()) ? void (0) : __assert_fail ("PExp->getType()->isAnyPointerType()"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 10811, __extension__ __PRETTY_FUNCTION__))
;
10812
10813 if (!IExp->getType()->isIntegerType())
10814 return InvalidOperands(Loc, LHS, RHS);
10815
10816 // Adding to a null pointer results in undefined behavior.
10817 if (PExp->IgnoreParenCasts()->isNullPointerConstant(
10818 Context, Expr::NPC_ValueDependentIsNotNull)) {
10819 // In C++ adding zero to a null pointer is defined.
10820 Expr::EvalResult KnownVal;
10821 if (!getLangOpts().CPlusPlus ||
10822 (!IExp->isValueDependent() &&
10823 (!IExp->EvaluateAsInt(KnownVal, Context) ||
10824 KnownVal.Val.getInt() != 0))) {
10825 // Check the conditions to see if this is the 'p = nullptr + n' idiom.
10826 bool IsGNUIdiom = BinaryOperator::isNullPointerArithmeticExtension(
10827 Context, BO_Add, PExp, IExp);
10828 diagnoseArithmeticOnNullPointer(*this, Loc, PExp, IsGNUIdiom);
10829 }
10830 }
10831
10832 if (!checkArithmeticOpPointerOperand(*this, Loc, PExp))
10833 return QualType();
10834
10835 if (isObjCPointer && checkArithmeticOnObjCPointer(*this, Loc, PExp))
10836 return QualType();
10837
10838 // Check array bounds for pointer arithemtic
10839 CheckArrayAccess(PExp, IExp);
10840
10841 if (CompLHSTy) {
10842 QualType LHSTy = Context.isPromotableBitField(LHS.get());
10843 if (LHSTy.isNull()) {
10844 LHSTy = LHS.get()->getType();
10845 if (LHSTy->isPromotableIntegerType())
10846 LHSTy = Context.getPromotedIntegerType(LHSTy);
10847 }
10848 *CompLHSTy = LHSTy;
10849 }
10850
10851 return PExp->getType();
10852}
10853
10854// C99 6.5.6
10855QualType Sema::CheckSubtractionOperands(ExprResult &LHS, ExprResult &RHS,
10856 SourceLocation Loc,
10857 QualType* CompLHSTy) {
10858 checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
10859
10860 if (LHS.get()->getType()->isVectorType() ||
10861 RHS.get()->getType()->isVectorType()) {
10862 QualType compType = CheckVectorOperands(
10863 LHS, RHS, Loc, CompLHSTy,
10864 /*AllowBothBool*/getLangOpts().AltiVec,
10865 /*AllowBoolConversions*/getLangOpts().ZVector);
10866 if (CompLHSTy) *CompLHSTy = compType;
10867 return compType;
10868 }
10869
10870 if (LHS.get()->getType()->isConstantMatrixType() ||
10871 RHS.get()->getType()->isConstantMatrixType()) {
10872 QualType compType =
10873 CheckMatrixElementwiseOperands(LHS, RHS, Loc, CompLHSTy);
10874 if (CompLHSTy)
10875 *CompLHSTy = compType;
10876 return compType;
10877 }
10878
10879 QualType compType = UsualArithmeticConversions(
10880 LHS, RHS, Loc, CompLHSTy ? ACK_CompAssign : ACK_Arithmetic);
10881 if (LHS.isInvalid() || RHS.isInvalid())
10882 return QualType();
10883
10884 // Enforce type constraints: C99 6.5.6p3.
10885
10886 // Handle the common case first (both operands are arithmetic).
10887 if (!compType.isNull() && compType->isArithmeticType()) {
10888 if (CompLHSTy) *CompLHSTy = compType;
10889 return compType;
10890 }
10891
10892 // Either ptr - int or ptr - ptr.
10893 if (LHS.get()->getType()->isAnyPointerType()) {
10894 QualType lpointee = LHS.get()->getType()->getPointeeType();
10895
10896 // Diagnose bad cases where we step over interface counts.
10897 if (LHS.get()->getType()->isObjCObjectPointerType() &&
10898 checkArithmeticOnObjCPointer(*this, Loc, LHS.get()))
10899 return QualType();
10900
10901 // The result type of a pointer-int computation is the pointer type.
10902 if (RHS.get()->getType()->isIntegerType()) {
10903 // Subtracting from a null pointer should produce a warning.
10904 // The last argument to the diagnose call says this doesn't match the
10905 // GNU int-to-pointer idiom.
10906 if (LHS.get()->IgnoreParenCasts()->isNullPointerConstant(Context,
10907 Expr::NPC_ValueDependentIsNotNull)) {
10908 // In C++ adding zero to a null pointer is defined.
10909 Expr::EvalResult KnownVal;
10910 if (!getLangOpts().CPlusPlus ||
10911 (!RHS.get()->isValueDependent() &&
10912 (!RHS.get()->EvaluateAsInt(KnownVal, Context) ||
10913 KnownVal.Val.getInt() != 0))) {
10914 diagnoseArithmeticOnNullPointer(*this, Loc, LHS.get(), false);
10915 }
10916 }
10917
10918 if (!checkArithmeticOpPointerOperand(*this, Loc, LHS.get()))
10919 return QualType();
10920
10921 // Check array bounds for pointer arithemtic
10922 CheckArrayAccess(LHS.get(), RHS.get(), /*ArraySubscriptExpr*/nullptr,
10923 /*AllowOnePastEnd*/true, /*IndexNegated*/true);
10924
10925 if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
10926 return LHS.get()->getType();
10927 }
10928
10929 // Handle pointer-pointer subtractions.
10930 if (const PointerType *RHSPTy
10931 = RHS.get()->getType()->getAs<PointerType>()) {
10932 QualType rpointee = RHSPTy->getPointeeType();
10933
10934 if (getLangOpts().CPlusPlus) {
10935 // Pointee types must be the same: C++ [expr.add]
10936 if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
10937 diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
10938 }
10939 } else {
10940 // Pointee types must be compatible C99 6.5.6p3
10941 if (!Context.typesAreCompatible(
10942 Context.getCanonicalType(lpointee).getUnqualifiedType(),
10943 Context.getCanonicalType(rpointee).getUnqualifiedType())) {
10944 diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
10945 return QualType();
10946 }
10947 }
10948
10949 if (!checkArithmeticBinOpPointerOperands(*this, Loc,
10950 LHS.get(), RHS.get()))
10951 return QualType();
10952
10953 bool LHSIsNullPtr = LHS.get()->IgnoreParenCasts()->isNullPointerConstant(
10954 Context, Expr::NPC_ValueDependentIsNotNull);
10955 bool RHSIsNullPtr = RHS.get()->IgnoreParenCasts()->isNullPointerConstant(
10956 Context, Expr::NPC_ValueDependentIsNotNull);
10957
10958 // Subtracting nullptr or from nullptr is suspect
10959 if (LHSIsNullPtr)
10960 diagnoseSubtractionOnNullPointer(*this, Loc, LHS.get(), RHSIsNullPtr);
10961 if (RHSIsNullPtr)
10962 diagnoseSubtractionOnNullPointer(*this, Loc, RHS.get(), LHSIsNullPtr);
10963
10964 // The pointee type may have zero size. As an extension, a structure or
10965 // union may have zero size or an array may have zero length. In this
10966 // case subtraction does not make sense.
10967 if (!rpointee->isVoidType() && !rpointee->isFunctionType()) {
10968 CharUnits ElementSize = Context.getTypeSizeInChars(rpointee);
10969 if (ElementSize.isZero()) {
10970 Diag(Loc,diag::warn_sub_ptr_zero_size_types)
10971 << rpointee.getUnqualifiedType()
10972 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10973 }
10974 }
10975
10976 if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
10977 return Context.getPointerDiffType();
10978 }
10979 }
10980
10981 return InvalidOperands(Loc, LHS, RHS);
10982}
10983
10984static bool isScopedEnumerationType(QualType T) {
10985 if (const EnumType *ET = T->getAs<EnumType>())
10986 return ET->getDecl()->isScoped();
10987 return false;
10988}
10989
10990static void DiagnoseBadShiftValues(Sema& S, ExprResult &LHS, ExprResult &RHS,
10991 SourceLocation Loc, BinaryOperatorKind Opc,
10992 QualType LHSType) {
10993 // OpenCL 6.3j: shift values are effectively % word size of LHS (more defined),
10994 // so skip remaining warnings as we don't want to modify values within Sema.
10995 if (S.getLangOpts().OpenCL)
10996 return;
10997
10998 // Check right/shifter operand
10999 Expr::EvalResult RHSResult;
11000 if (RHS.get()->isValueDependent() ||
11001 !RHS.get()->EvaluateAsInt(RHSResult, S.Context))
11002 return;
11003 llvm::APSInt Right = RHSResult.Val.getInt();
11004
11005 if (Right.isNegative()) {
11006 S.DiagRuntimeBehavior(Loc, RHS.get(),
11007 S.PDiag(diag::warn_shift_negative)
11008 << RHS.get()->getSourceRange());
11009 return;
11010 }
11011
11012 QualType LHSExprType = LHS.get()->getType();
11013 uint64_t LeftSize = S.Context.getTypeSize(LHSExprType);
11014 if (LHSExprType->isExtIntType())
11015 LeftSize = S.Context.getIntWidth(LHSExprType);
11016 else if (LHSExprType->isFixedPointType()) {
11017 auto FXSema = S.Context.getFixedPointSemantics(LHSExprType);
11018 LeftSize = FXSema.getWidth() - (unsigned)FXSema.hasUnsignedPadding();
11019 }
11020 llvm::APInt LeftBits(Right.getBitWidth(), LeftSize);
11021 if (Right.uge(LeftBits)) {
11022 S.DiagRuntimeBehavior(Loc, RHS.get(),
11023 S.PDiag(diag::warn_shift_gt_typewidth)
11024 << RHS.get()->getSourceRange());
11025 return;
11026 }
11027
11028 // FIXME: We probably need to handle fixed point types specially here.
11029 if (Opc != BO_Shl || LHSExprType->isFixedPointType())
11030 return;
11031
11032 // When left shifting an ICE which is signed, we can check for overflow which
11033 // according to C++ standards prior to C++2a has undefined behavior
11034 // ([expr.shift] 5.8/2). Unsigned integers have defined behavior modulo one
11035 // more than the maximum value representable in the result type, so never
11036 // warn for those. (FIXME: Unsigned left-shift overflow in a constant
11037 // expression is still probably a bug.)
11038 Expr::EvalResult LHSResult;
11039 if (LHS.get()->isValueDependent() ||
11040 LHSType->hasUnsignedIntegerRepresentation() ||
11041 !LHS.get()->EvaluateAsInt(LHSResult, S.Context))
11042 return;
11043 llvm::APSInt Left = LHSResult.Val.getInt();
11044
11045 // If LHS does not have a signed type and non-negative value
11046 // then, the behavior is undefined before C++2a. Warn about it.
11047 if (Left.isNegative() && !S.getLangOpts().isSignedOverflowDefined() &&
11048 !S.getLangOpts().CPlusPlus20) {
11049 S.DiagRuntimeBehavior(Loc, LHS.get(),
11050 S.PDiag(diag::warn_shift_lhs_negative)
11051 << LHS.get()->getSourceRange());
11052 return;
11053 }
11054
11055 llvm::APInt ResultBits =
11056 static_cast<llvm::APInt&>(Right) + Left.getMinSignedBits();
11057 if (LeftBits.uge(ResultBits))
11058 return;
11059 llvm::APSInt Result = Left.extend(ResultBits.getLimitedValue());
11060 Result = Result.shl(Right);
11061
11062 // Print the bit representation of the signed integer as an unsigned
11063 // hexadecimal number.
11064 SmallString<40> HexResult;
11065 Result.toString(HexResult, 16, /*Signed =*/false, /*Literal =*/true);
11066
11067 // If we are only missing a sign bit, this is less likely to result in actual
11068 // bugs -- if the result is cast back to an unsigned type, it will have the
11069 // expected value. Thus we place this behind a different warning that can be
11070 // turned off separately if needed.
11071 if (LeftBits == ResultBits - 1) {
11072 S.Diag(Loc, diag::warn_shift_result_sets_sign_bit)
11073 << HexResult << LHSType
11074 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11075 return;
11076 }
11077
11078 S.Diag(Loc, diag::warn_shift_result_gt_typewidth)
11079 << HexResult.str() << Result.getMinSignedBits() << LHSType
11080 << Left.getBitWidth() << LHS.get()->getSourceRange()
11081 << RHS.get()->getSourceRange();
11082}
11083
11084/// Return the resulting type when a vector is shifted
11085/// by a scalar or vector shift amount.
11086static QualType checkVectorShift(Sema &S, ExprResult &LHS, ExprResult &RHS,
11087 SourceLocation Loc, bool IsCompAssign) {
11088 // OpenCL v1.1 s6.3.j says RHS can be a vector only if LHS is a vector.
11089 if ((S.LangOpts.OpenCL || S.LangOpts.ZVector) &&
11090 !LHS.get()->getType()->isVectorType()) {
11091 S.Diag(Loc, diag::err_shift_rhs_only_vector)
11092 << RHS.get()->getType() << LHS.get()->getType()
11093 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11094 return QualType();
11095 }
11096
11097 if (!IsCompAssign) {
11098 LHS = S.UsualUnaryConversions(LHS.get());
11099 if (LHS.isInvalid()) return QualType();
11100 }
11101
11102 RHS = S.UsualUnaryConversions(RHS.get());
11103 if (RHS.isInvalid()) return QualType();
11104
11105 QualType LHSType = LHS.get()->getType();
11106 // Note that LHS might be a scalar because the routine calls not only in
11107 // OpenCL case.
11108 const VectorType *LHSVecTy = LHSType->getAs<VectorType>();
11109 QualType LHSEleType = LHSVecTy ? LHSVecTy->getElementType() : LHSType;
11110
11111 // Note that RHS might not be a vector.
11112 QualType RHSType = RHS.get()->getType();
11113 const VectorType *RHSVecTy = RHSType->getAs<VectorType>();
11114 QualType RHSEleType = RHSVecTy ? RHSVecTy->getElementType() : RHSType;
11115
11116 // The operands need to be integers.
11117 if (!LHSEleType->isIntegerType()) {
11118 S.Diag(Loc, diag::err_typecheck_expect_int)
11119 << LHS.get()->getType() << LHS.get()->getSourceRange();
11120 return QualType();
11121 }
11122
11123 if (!RHSEleType->isIntegerType()) {
11124 S.Diag(Loc, diag::err_typecheck_expect_int)
11125 << RHS.get()->getType() << RHS.get()->getSourceRange();
11126 return QualType();
11127 }
11128
11129 if (!LHSVecTy) {
11130 assert(RHSVecTy)(static_cast <bool> (RHSVecTy) ? void (0) : __assert_fail
("RHSVecTy", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 11130, __extension__ __PRETTY_FUNCTION__))
;
11131 if (IsCompAssign)
11132 return RHSType;
11133 if (LHSEleType != RHSEleType) {
11134 LHS = S.ImpCastExprToType(LHS.get(),RHSEleType, CK_IntegralCast);
11135 LHSEleType = RHSEleType;
11136 }
11137 QualType VecTy =
11138 S.Context.getExtVectorType(LHSEleType, RHSVecTy->getNumElements());
11139 LHS = S.ImpCastExprToType(LHS.get(), VecTy, CK_VectorSplat);
11140 LHSType = VecTy;
11141 } else if (RHSVecTy) {
11142 // OpenCL v1.1 s6.3.j says that for vector types, the operators
11143 // are applied component-wise. So if RHS is a vector, then ensure
11144 // that the number of elements is the same as LHS...
11145 if (RHSVecTy->getNumElements() != LHSVecTy->getNumElements()) {
11146 S.Diag(Loc, diag::err_typecheck_vector_lengths_not_equal)
11147 << LHS.get()->getType() << RHS.get()->getType()
11148 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11149 return QualType();
11150 }
11151 if (!S.LangOpts.OpenCL && !S.LangOpts.ZVector) {
11152 const BuiltinType *LHSBT = LHSEleType->getAs<clang::BuiltinType>();
11153 const BuiltinType *RHSBT = RHSEleType->getAs<clang::BuiltinType>();
11154 if (LHSBT != RHSBT &&
11155 S.Context.getTypeSize(LHSBT) != S.Context.getTypeSize(RHSBT)) {
11156 S.Diag(Loc, diag::warn_typecheck_vector_element_sizes_not_equal)
11157 << LHS.get()->getType() << RHS.get()->getType()
11158 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11159 }
11160 }
11161 } else {
11162 // ...else expand RHS to match the number of elements in LHS.
11163 QualType VecTy =
11164 S.Context.getExtVectorType(RHSEleType, LHSVecTy->getNumElements());
11165 RHS = S.ImpCastExprToType(RHS.get(), VecTy, CK_VectorSplat);
11166 }
11167
11168 return LHSType;
11169}
11170
11171// C99 6.5.7
11172QualType Sema::CheckShiftOperands(ExprResult &LHS, ExprResult &RHS,
11173 SourceLocation Loc, BinaryOperatorKind Opc,
11174 bool IsCompAssign) {
11175 checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
11176
11177 // Vector shifts promote their scalar inputs to vector type.
11178 if (LHS.get()->getType()->isVectorType() ||
11179 RHS.get()->getType()->isVectorType()) {
11180 if (LangOpts.ZVector) {
11181 // The shift operators for the z vector extensions work basically
11182 // like general shifts, except that neither the LHS nor the RHS is
11183 // allowed to be a "vector bool".
11184 if (auto LHSVecType = LHS.get()->getType()->getAs<VectorType>())
11185 if (LHSVecType->getVectorKind() == VectorType::AltiVecBool)
11186 return InvalidOperands(Loc, LHS, RHS);
11187 if (auto RHSVecType = RHS.get()->getType()->getAs<VectorType>())
11188 if (RHSVecType->getVectorKind() == VectorType::AltiVecBool)
11189 return InvalidOperands(Loc, LHS, RHS);
11190 }
11191 return checkVectorShift(*this, LHS, RHS, Loc, IsCompAssign);
11192 }
11193
11194 // Shifts don't perform usual arithmetic conversions, they just do integer
11195 // promotions on each operand. C99 6.5.7p3
11196
11197 // For the LHS, do usual unary conversions, but then reset them away
11198 // if this is a compound assignment.
11199 ExprResult OldLHS = LHS;
11200 LHS = UsualUnaryConversions(LHS.get());
11201 if (LHS.isInvalid())
11202 return QualType();
11203 QualType LHSType = LHS.get()->getType();
11204 if (IsCompAssign) LHS = OldLHS;
11205
11206 // The RHS is simpler.
11207 RHS = UsualUnaryConversions(RHS.get());
11208 if (RHS.isInvalid())
11209 return QualType();
11210 QualType RHSType = RHS.get()->getType();
11211
11212 // C99 6.5.7p2: Each of the operands shall have integer type.
11213 // Embedded-C 4.1.6.2.2: The LHS may also be fixed-point.
11214 if ((!LHSType->isFixedPointOrIntegerType() &&
11215 !LHSType->hasIntegerRepresentation()) ||
11216 !RHSType->hasIntegerRepresentation())
11217 return InvalidOperands(Loc, LHS, RHS);
11218
11219 // C++0x: Don't allow scoped enums. FIXME: Use something better than
11220 // hasIntegerRepresentation() above instead of this.
11221 if (isScopedEnumerationType(LHSType) ||
11222 isScopedEnumerationType(RHSType)) {
11223 return InvalidOperands(Loc, LHS, RHS);
11224 }
11225 // Sanity-check shift operands
11226 DiagnoseBadShiftValues(*this, LHS, RHS, Loc, Opc, LHSType);
11227
11228 // "The type of the result is that of the promoted left operand."
11229 return LHSType;
11230}
11231
11232/// Diagnose bad pointer comparisons.
11233static void diagnoseDistinctPointerComparison(Sema &S, SourceLocation Loc,
11234 ExprResult &LHS, ExprResult &RHS,
11235 bool IsError) {
11236 S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_distinct_pointers
11237 : diag::ext_typecheck_comparison_of_distinct_pointers)
11238 << LHS.get()->getType() << RHS.get()->getType()
11239 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11240}
11241
11242/// Returns false if the pointers are converted to a composite type,
11243/// true otherwise.
11244static bool convertPointersToCompositeType(Sema &S, SourceLocation Loc,
11245 ExprResult &LHS, ExprResult &RHS) {
11246 // C++ [expr.rel]p2:
11247 // [...] Pointer conversions (4.10) and qualification
11248 // conversions (4.4) are performed on pointer operands (or on
11249 // a pointer operand and a null pointer constant) to bring
11250 // them to their composite pointer type. [...]
11251 //
11252 // C++ [expr.eq]p1 uses the same notion for (in)equality
11253 // comparisons of pointers.
11254
11255 QualType LHSType = LHS.get()->getType();
11256 QualType RHSType = RHS.get()->getType();
11257 assert(LHSType->isPointerType() || RHSType->isPointerType() ||(static_cast <bool> (LHSType->isPointerType() || RHSType
->isPointerType() || LHSType->isMemberPointerType() || RHSType
->isMemberPointerType()) ? void (0) : __assert_fail ("LHSType->isPointerType() || RHSType->isPointerType() || LHSType->isMemberPointerType() || RHSType->isMemberPointerType()"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 11258, __extension__ __PRETTY_FUNCTION__))
11258 LHSType->isMemberPointerType() || RHSType->isMemberPointerType())(static_cast <bool> (LHSType->isPointerType() || RHSType
->isPointerType() || LHSType->isMemberPointerType() || RHSType
->isMemberPointerType()) ? void (0) : __assert_fail ("LHSType->isPointerType() || RHSType->isPointerType() || LHSType->isMemberPointerType() || RHSType->isMemberPointerType()"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 11258, __extension__ __PRETTY_FUNCTION__))
;
11259
11260 QualType T = S.FindCompositePointerType(Loc, LHS, RHS);
11261 if (T.isNull()) {
11262 if ((LHSType->isAnyPointerType() || LHSType->isMemberPointerType()) &&
11263 (RHSType->isAnyPointerType() || RHSType->isMemberPointerType()))
11264 diagnoseDistinctPointerComparison(S, Loc, LHS, RHS, /*isError*/true);
11265 else
11266 S.InvalidOperands(Loc, LHS, RHS);
11267 return true;
11268 }
11269
11270 return false;
11271}
11272
11273static void diagnoseFunctionPointerToVoidComparison(Sema &S, SourceLocation Loc,
11274 ExprResult &LHS,
11275 ExprResult &RHS,
11276 bool IsError) {
11277 S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_fptr_to_void
11278 : diag::ext_typecheck_comparison_of_fptr_to_void)
11279 << LHS.get()->getType() << RHS.get()->getType()
11280 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11281}
11282
11283static bool isObjCObjectLiteral(ExprResult &E) {
11284 switch (E.get()->IgnoreParenImpCasts()->getStmtClass()) {
11285 case Stmt::ObjCArrayLiteralClass:
11286 case Stmt::ObjCDictionaryLiteralClass:
11287 case Stmt::ObjCStringLiteralClass:
11288 case Stmt::ObjCBoxedExprClass:
11289 return true;
11290 default:
11291 // Note that ObjCBoolLiteral is NOT an object literal!
11292 return false;
11293 }
11294}
11295
11296static bool hasIsEqualMethod(Sema &S, const Expr *LHS, const Expr *RHS) {
11297 const ObjCObjectPointerType *Type =
11298 LHS->getType()->getAs<ObjCObjectPointerType>();
11299
11300 // If this is not actually an Objective-C object, bail out.
11301 if (!Type)
11302 return false;
11303
11304 // Get the LHS object's interface type.
11305 QualType InterfaceType = Type->getPointeeType();
11306
11307 // If the RHS isn't an Objective-C object, bail out.
11308 if (!RHS->getType()->isObjCObjectPointerType())
11309 return false;
11310
11311 // Try to find the -isEqual: method.
11312 Selector IsEqualSel = S.NSAPIObj->getIsEqualSelector();
11313 ObjCMethodDecl *Method = S.LookupMethodInObjectType(IsEqualSel,
11314 InterfaceType,
11315 /*IsInstance=*/true);
11316 if (!Method) {
11317 if (Type->isObjCIdType()) {
11318 // For 'id', just check the global pool.
11319 Method = S.LookupInstanceMethodInGlobalPool(IsEqualSel, SourceRange(),
11320 /*receiverId=*/true);
11321 } else {
11322 // Check protocols.
11323 Method = S.LookupMethodInQualifiedType(IsEqualSel, Type,
11324 /*IsInstance=*/true);
11325 }
11326 }
11327
11328 if (!Method)
11329 return false;
11330
11331 QualType T = Method->parameters()[0]->getType();
11332 if (!T->isObjCObjectPointerType())
11333 return false;
11334
11335 QualType R = Method->getReturnType();
11336 if (!R->isScalarType())
11337 return false;
11338
11339 return true;
11340}
11341
11342Sema::ObjCLiteralKind Sema::CheckLiteralKind(Expr *FromE) {
11343 FromE = FromE->IgnoreParenImpCasts();
11344 switch (FromE->getStmtClass()) {
11345 default:
11346 break;
11347 case Stmt::ObjCStringLiteralClass:
11348 // "string literal"
11349 return LK_String;
11350 case Stmt::ObjCArrayLiteralClass:
11351 // "array literal"
11352 return LK_Array;
11353 case Stmt::ObjCDictionaryLiteralClass:
11354 // "dictionary literal"
11355 return LK_Dictionary;
11356 case Stmt::BlockExprClass:
11357 return LK_Block;
11358 case Stmt::ObjCBoxedExprClass: {
11359 Expr *Inner = cast<ObjCBoxedExpr>(FromE)->getSubExpr()->IgnoreParens();
11360 switch (Inner->getStmtClass()) {
11361 case Stmt::IntegerLiteralClass:
11362 case Stmt::FloatingLiteralClass:
11363 case Stmt::CharacterLiteralClass:
11364 case Stmt::ObjCBoolLiteralExprClass:
11365 case Stmt::CXXBoolLiteralExprClass:
11366 // "numeric literal"
11367 return LK_Numeric;
11368 case Stmt::ImplicitCastExprClass: {
11369 CastKind CK = cast<CastExpr>(Inner)->getCastKind();
11370 // Boolean literals can be represented by implicit casts.
11371 if (CK == CK_IntegralToBoolean || CK == CK_IntegralCast)
11372 return LK_Numeric;
11373 break;
11374 }
11375 default:
11376 break;
11377 }
11378 return LK_Boxed;
11379 }
11380 }
11381 return LK_None;
11382}
11383
11384static void diagnoseObjCLiteralComparison(Sema &S, SourceLocation Loc,
11385 ExprResult &LHS, ExprResult &RHS,
11386 BinaryOperator::Opcode Opc){
11387 Expr *Literal;
11388 Expr *Other;
11389 if (isObjCObjectLiteral(LHS)) {
11390 Literal = LHS.get();
11391 Other = RHS.get();
11392 } else {
11393 Literal = RHS.get();
11394 Other = LHS.get();
11395 }
11396
11397 // Don't warn on comparisons against nil.
11398 Other = Other->IgnoreParenCasts();
11399 if (Other->isNullPointerConstant(S.getASTContext(),
11400 Expr::NPC_ValueDependentIsNotNull))
11401 return;
11402
11403 // This should be kept in sync with warn_objc_literal_comparison.
11404 // LK_String should always be after the other literals, since it has its own
11405 // warning flag.
11406 Sema::ObjCLiteralKind LiteralKind = S.CheckLiteralKind(Literal);
11407 assert(LiteralKind != Sema::LK_Block)(static_cast <bool> (LiteralKind != Sema::LK_Block) ? void
(0) : __assert_fail ("LiteralKind != Sema::LK_Block", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 11407, __extension__ __PRETTY_FUNCTION__))
;
11408 if (LiteralKind == Sema::LK_None) {
11409 llvm_unreachable("Unknown Objective-C object literal kind")::llvm::llvm_unreachable_internal("Unknown Objective-C object literal kind"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 11409)
;
11410 }
11411
11412 if (LiteralKind == Sema::LK_String)
11413 S.Diag(Loc, diag::warn_objc_string_literal_comparison)
11414 << Literal->getSourceRange();
11415 else
11416 S.Diag(Loc, diag::warn_objc_literal_comparison)
11417 << LiteralKind << Literal->getSourceRange();
11418
11419 if (BinaryOperator::isEqualityOp(Opc) &&
11420 hasIsEqualMethod(S, LHS.get(), RHS.get())) {
11421 SourceLocation Start = LHS.get()->getBeginLoc();
11422 SourceLocation End = S.getLocForEndOfToken(RHS.get()->getEndLoc());
11423 CharSourceRange OpRange =
11424 CharSourceRange::getCharRange(Loc, S.getLocForEndOfToken(Loc));
11425
11426 S.Diag(Loc, diag::note_objc_literal_comparison_isequal)
11427 << FixItHint::CreateInsertion(Start, Opc == BO_EQ ? "[" : "![")
11428 << FixItHint::CreateReplacement(OpRange, " isEqual:")
11429 << FixItHint::CreateInsertion(End, "]");
11430 }
11431}
11432
11433/// Warns on !x < y, !x & y where !(x < y), !(x & y) was probably intended.
11434static void diagnoseLogicalNotOnLHSofCheck(Sema &S, ExprResult &LHS,
11435 ExprResult &RHS, SourceLocation Loc,
11436 BinaryOperatorKind Opc) {
11437 // Check that left hand side is !something.
11438 UnaryOperator *UO = dyn_cast<UnaryOperator>(LHS.get()->IgnoreImpCasts());
11439 if (!UO || UO->getOpcode() != UO_LNot) return;
11440
11441 // Only check if the right hand side is non-bool arithmetic type.
11442 if (RHS.get()->isKnownToHaveBooleanValue()) return;
11443
11444 // Make sure that the something in !something is not bool.
11445 Expr *SubExpr = UO->getSubExpr()->IgnoreImpCasts();
11446 if (SubExpr->isKnownToHaveBooleanValue()) return;
11447
11448 // Emit warning.
11449 bool IsBitwiseOp = Opc == BO_And || Opc == BO_Or || Opc == BO_Xor;
11450 S.Diag(UO->getOperatorLoc(), diag::warn_logical_not_on_lhs_of_check)
11451 << Loc << IsBitwiseOp;
11452
11453 // First note suggest !(x < y)
11454 SourceLocation FirstOpen = SubExpr->getBeginLoc();
11455 SourceLocation FirstClose = RHS.get()->getEndLoc();
11456 FirstClose = S.getLocForEndOfToken(FirstClose);
11457 if (FirstClose.isInvalid())
11458 FirstOpen = SourceLocation();
11459 S.Diag(UO->getOperatorLoc(), diag::note_logical_not_fix)
11460 << IsBitwiseOp
11461 << FixItHint::CreateInsertion(FirstOpen, "(")
11462 << FixItHint::CreateInsertion(FirstClose, ")");
11463
11464 // Second note suggests (!x) < y
11465 SourceLocation SecondOpen = LHS.get()->getBeginLoc();
11466 SourceLocation SecondClose = LHS.get()->getEndLoc();
11467 SecondClose = S.getLocForEndOfToken(SecondClose);
11468 if (SecondClose.isInvalid())
11469 SecondOpen = SourceLocation();
11470 S.Diag(UO->getOperatorLoc(), diag::note_logical_not_silence_with_parens)
11471 << FixItHint::CreateInsertion(SecondOpen, "(")
11472 << FixItHint::CreateInsertion(SecondClose, ")");
11473}
11474
11475// Returns true if E refers to a non-weak array.
11476static bool checkForArray(const Expr *E) {
11477 const ValueDecl *D = nullptr;
11478 if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E)) {
11479 D = DR->getDecl();
11480 } else if (const MemberExpr *Mem = dyn_cast<MemberExpr>(E)) {
11481 if (Mem->isImplicitAccess())
11482 D = Mem->getMemberDecl();
11483 }
11484 if (!D)
11485 return false;
11486 return D->getType()->isArrayType() && !D->isWeak();
11487}
11488
11489/// Diagnose some forms of syntactically-obvious tautological comparison.
11490static void diagnoseTautologicalComparison(Sema &S, SourceLocation Loc,
11491 Expr *LHS, Expr *RHS,
11492 BinaryOperatorKind Opc) {
11493 Expr *LHSStripped = LHS->IgnoreParenImpCasts();
11494 Expr *RHSStripped = RHS->IgnoreParenImpCasts();
11495
11496 QualType LHSType = LHS->getType();
11497 QualType RHSType = RHS->getType();
11498 if (LHSType->hasFloatingRepresentation() ||
11499 (LHSType->isBlockPointerType() && !BinaryOperator::isEqualityOp(Opc)) ||
11500 S.inTemplateInstantiation())
11501 return;
11502
11503 // Comparisons between two array types are ill-formed for operator<=>, so
11504 // we shouldn't emit any additional warnings about it.
11505 if (Opc == BO_Cmp && LHSType->isArrayType() && RHSType->isArrayType())
11506 return;
11507
11508 // For non-floating point types, check for self-comparisons of the form
11509 // x == x, x != x, x < x, etc. These always evaluate to a constant, and
11510 // often indicate logic errors in the program.
11511 //
11512 // NOTE: Don't warn about comparison expressions resulting from macro
11513 // expansion. Also don't warn about comparisons which are only self
11514 // comparisons within a template instantiation. The warnings should catch
11515 // obvious cases in the definition of the template anyways. The idea is to
11516 // warn when the typed comparison operator will always evaluate to the same
11517 // result.
11518
11519 // Used for indexing into %select in warn_comparison_always
11520 enum {
11521 AlwaysConstant,
11522 AlwaysTrue,
11523 AlwaysFalse,
11524 AlwaysEqual, // std::strong_ordering::equal from operator<=>
11525 };
11526
11527 // C++2a [depr.array.comp]:
11528 // Equality and relational comparisons ([expr.eq], [expr.rel]) between two
11529 // operands of array type are deprecated.
11530 if (S.getLangOpts().CPlusPlus20 && LHSStripped->getType()->isArrayType() &&
11531 RHSStripped->getType()->isArrayType()) {
11532 S.Diag(Loc, diag::warn_depr_array_comparison)
11533 << LHS->getSourceRange() << RHS->getSourceRange()
11534 << LHSStripped->getType() << RHSStripped->getType();
11535 // Carry on to produce the tautological comparison warning, if this
11536 // expression is potentially-evaluated, we can resolve the array to a
11537 // non-weak declaration, and so on.
11538 }
11539
11540 if (!LHS->getBeginLoc().isMacroID() && !RHS->getBeginLoc().isMacroID()) {
11541 if (Expr::isSameComparisonOperand(LHS, RHS)) {
11542 unsigned Result;
11543 switch (Opc) {
11544 case BO_EQ:
11545 case BO_LE:
11546 case BO_GE:
11547 Result = AlwaysTrue;
11548 break;
11549 case BO_NE:
11550 case BO_LT:
11551 case BO_GT:
11552 Result = AlwaysFalse;
11553 break;
11554 case BO_Cmp:
11555 Result = AlwaysEqual;
11556 break;
11557 default:
11558 Result = AlwaysConstant;
11559 break;
11560 }
11561 S.DiagRuntimeBehavior(Loc, nullptr,
11562 S.PDiag(diag::warn_comparison_always)
11563 << 0 /*self-comparison*/
11564 << Result);
11565 } else if (checkForArray(LHSStripped) && checkForArray(RHSStripped)) {
11566 // What is it always going to evaluate to?
11567 unsigned Result;
11568 switch (Opc) {
11569 case BO_EQ: // e.g. array1 == array2
11570 Result = AlwaysFalse;
11571 break;
11572 case BO_NE: // e.g. array1 != array2
11573 Result = AlwaysTrue;
11574 break;
11575 default: // e.g. array1 <= array2
11576 // The best we can say is 'a constant'
11577 Result = AlwaysConstant;
11578 break;
11579 }
11580 S.DiagRuntimeBehavior(Loc, nullptr,
11581 S.PDiag(diag::warn_comparison_always)
11582 << 1 /*array comparison*/
11583 << Result);
11584 }
11585 }
11586
11587 if (isa<CastExpr>(LHSStripped))
11588 LHSStripped = LHSStripped->IgnoreParenCasts();
11589 if (isa<CastExpr>(RHSStripped))
11590 RHSStripped = RHSStripped->IgnoreParenCasts();
11591
11592 // Warn about comparisons against a string constant (unless the other
11593 // operand is null); the user probably wants string comparison function.
11594 Expr *LiteralString = nullptr;
11595 Expr *LiteralStringStripped = nullptr;
11596 if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
11597 !RHSStripped->isNullPointerConstant(S.Context,
11598 Expr::NPC_ValueDependentIsNull)) {
11599 LiteralString = LHS;
11600 LiteralStringStripped = LHSStripped;
11601 } else if ((isa<StringLiteral>(RHSStripped) ||
11602 isa<ObjCEncodeExpr>(RHSStripped)) &&
11603 !LHSStripped->isNullPointerConstant(S.Context,
11604 Expr::NPC_ValueDependentIsNull)) {
11605 LiteralString = RHS;
11606 LiteralStringStripped = RHSStripped;
11607 }
11608
11609 if (LiteralString) {
11610 S.DiagRuntimeBehavior(Loc, nullptr,
11611 S.PDiag(diag::warn_stringcompare)
11612 << isa<ObjCEncodeExpr>(LiteralStringStripped)
11613 << LiteralString->getSourceRange());
11614 }
11615}
11616
11617static ImplicitConversionKind castKindToImplicitConversionKind(CastKind CK) {
11618 switch (CK) {
11619 default: {
11620#ifndef NDEBUG
11621 llvm::errs() << "unhandled cast kind: " << CastExpr::getCastKindName(CK)
11622 << "\n";
11623#endif
11624 llvm_unreachable("unhandled cast kind")::llvm::llvm_unreachable_internal("unhandled cast kind", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 11624)
;
11625 }
11626 case CK_UserDefinedConversion:
11627 return ICK_Identity;
11628 case CK_LValueToRValue:
11629 return ICK_Lvalue_To_Rvalue;
11630 case CK_ArrayToPointerDecay:
11631 return ICK_Array_To_Pointer;
11632 case CK_FunctionToPointerDecay:
11633 return ICK_Function_To_Pointer;
11634 case CK_IntegralCast:
11635 return ICK_Integral_Conversion;
11636 case CK_FloatingCast:
11637 return ICK_Floating_Conversion;
11638 case CK_IntegralToFloating:
11639 case CK_FloatingToIntegral:
11640 return ICK_Floating_Integral;
11641 case CK_IntegralComplexCast:
11642 case CK_FloatingComplexCast:
11643 case CK_FloatingComplexToIntegralComplex:
11644 case CK_IntegralComplexToFloatingComplex:
11645 return ICK_Complex_Conversion;
11646 case CK_FloatingComplexToReal:
11647 case CK_FloatingRealToComplex:
11648 case CK_IntegralComplexToReal:
11649 case CK_IntegralRealToComplex:
11650 return ICK_Complex_Real;
11651 }
11652}
11653
11654static bool checkThreeWayNarrowingConversion(Sema &S, QualType ToType, Expr *E,
11655 QualType FromType,
11656 SourceLocation Loc) {
11657 // Check for a narrowing implicit conversion.
11658 StandardConversionSequence SCS;
11659 SCS.setAsIdentityConversion();
11660 SCS.setToType(0, FromType);
11661 SCS.setToType(1, ToType);
11662 if (const auto *ICE = dyn_cast<ImplicitCastExpr>(E))
11663 SCS.Second = castKindToImplicitConversionKind(ICE->getCastKind());
11664
11665 APValue PreNarrowingValue;
11666 QualType PreNarrowingType;
11667 switch (SCS.getNarrowingKind(S.Context, E, PreNarrowingValue,
11668 PreNarrowingType,
11669 /*IgnoreFloatToIntegralConversion*/ true)) {
11670 case NK_Dependent_Narrowing:
11671 // Implicit conversion to a narrower type, but the expression is
11672 // value-dependent so we can't tell whether it's actually narrowing.
11673 case NK_Not_Narrowing:
11674 return false;
11675
11676 case NK_Constant_Narrowing:
11677 // Implicit conversion to a narrower type, and the value is not a constant
11678 // expression.
11679 S.Diag(E->getBeginLoc(), diag::err_spaceship_argument_narrowing)
11680 << /*Constant*/ 1
11681 << PreNarrowingValue.getAsString(S.Context, PreNarrowingType) << ToType;
11682 return true;
11683
11684 case NK_Variable_Narrowing:
11685 // Implicit conversion to a narrower type, and the value is not a constant
11686 // expression.
11687 case NK_Type_Narrowing:
11688 S.Diag(E->getBeginLoc(), diag::err_spaceship_argument_narrowing)
11689 << /*Constant*/ 0 << FromType << ToType;
11690 // TODO: It's not a constant expression, but what if the user intended it
11691 // to be? Can we produce notes to help them figure out why it isn't?
11692 return true;
11693 }
11694 llvm_unreachable("unhandled case in switch")::llvm::llvm_unreachable_internal("unhandled case in switch",
"/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 11694)
;
11695}
11696
11697static QualType checkArithmeticOrEnumeralThreeWayCompare(Sema &S,
11698 ExprResult &LHS,
11699 ExprResult &RHS,
11700 SourceLocation Loc) {
11701 QualType LHSType = LHS.get()->getType();
11702 QualType RHSType = RHS.get()->getType();
11703 // Dig out the original argument type and expression before implicit casts
11704 // were applied. These are the types/expressions we need to check the
11705 // [expr.spaceship] requirements against.
11706 ExprResult LHSStripped = LHS.get()->IgnoreParenImpCasts();
11707 ExprResult RHSStripped = RHS.get()->IgnoreParenImpCasts();
11708 QualType LHSStrippedType = LHSStripped.get()->getType();
11709 QualType RHSStrippedType = RHSStripped.get()->getType();
11710
11711 // C++2a [expr.spaceship]p3: If one of the operands is of type bool and the
11712 // other is not, the program is ill-formed.
11713 if (LHSStrippedType->isBooleanType() != RHSStrippedType->isBooleanType()) {
11714 S.InvalidOperands(Loc, LHSStripped, RHSStripped);
11715 return QualType();
11716 }
11717
11718 // FIXME: Consider combining this with checkEnumArithmeticConversions.
11719 int NumEnumArgs = (int)LHSStrippedType->isEnumeralType() +
11720 RHSStrippedType->isEnumeralType();
11721 if (NumEnumArgs == 1) {
11722 bool LHSIsEnum = LHSStrippedType->isEnumeralType();
11723 QualType OtherTy = LHSIsEnum ? RHSStrippedType : LHSStrippedType;
11724 if (OtherTy->hasFloatingRepresentation()) {
11725 S.InvalidOperands(Loc, LHSStripped, RHSStripped);
11726 return QualType();
11727 }
11728 }
11729 if (NumEnumArgs == 2) {
11730 // C++2a [expr.spaceship]p5: If both operands have the same enumeration
11731 // type E, the operator yields the result of converting the operands
11732 // to the underlying type of E and applying <=> to the converted operands.
11733 if (!S.Context.hasSameUnqualifiedType(LHSStrippedType, RHSStrippedType)) {
11734 S.InvalidOperands(Loc, LHS, RHS);
11735 return QualType();
11736 }
11737 QualType IntType =
11738 LHSStrippedType->castAs<EnumType>()->getDecl()->getIntegerType();
11739 assert(IntType->isArithmeticType())(static_cast <bool> (IntType->isArithmeticType()) ? void
(0) : __assert_fail ("IntType->isArithmeticType()", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 11739, __extension__ __PRETTY_FUNCTION__))
;
11740
11741 // We can't use `CK_IntegralCast` when the underlying type is 'bool', so we
11742 // promote the boolean type, and all other promotable integer types, to
11743 // avoid this.
11744 if (IntType->isPromotableIntegerType())
11745 IntType = S.Context.getPromotedIntegerType(IntType);
11746
11747 LHS = S.ImpCastExprToType(LHS.get(), IntType, CK_IntegralCast);
11748 RHS = S.ImpCastExprToType(RHS.get(), IntType, CK_IntegralCast);
11749 LHSType = RHSType = IntType;
11750 }
11751
11752 // C++2a [expr.spaceship]p4: If both operands have arithmetic types, the
11753 // usual arithmetic conversions are applied to the operands.
11754 QualType Type =
11755 S.UsualArithmeticConversions(LHS, RHS, Loc, Sema::ACK_Comparison);
11756 if (LHS.isInvalid() || RHS.isInvalid())
11757 return QualType();
11758 if (Type.isNull())
11759 return S.InvalidOperands(Loc, LHS, RHS);
11760
11761 Optional<ComparisonCategoryType> CCT =
11762 getComparisonCategoryForBuiltinCmp(Type);
11763 if (!CCT)
11764 return S.InvalidOperands(Loc, LHS, RHS);
11765
11766 bool HasNarrowing = checkThreeWayNarrowingConversion(
11767 S, Type, LHS.get(), LHSType, LHS.get()->getBeginLoc());
11768 HasNarrowing |= checkThreeWayNarrowingConversion(S, Type, RHS.get(), RHSType,
11769 RHS.get()->getBeginLoc());
11770 if (HasNarrowing)
11771 return QualType();
11772
11773 assert(!Type.isNull() && "composite type for <=> has not been set")(static_cast <bool> (!Type.isNull() && "composite type for <=> has not been set"
) ? void (0) : __assert_fail ("!Type.isNull() && \"composite type for <=> has not been set\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 11773, __extension__ __PRETTY_FUNCTION__))
;
11774
11775 return S.CheckComparisonCategoryType(
11776 *CCT, Loc, Sema::ComparisonCategoryUsage::OperatorInExpression);
11777}
11778
11779static QualType checkArithmeticOrEnumeralCompare(Sema &S, ExprResult &LHS,
11780 ExprResult &RHS,
11781 SourceLocation Loc,
11782 BinaryOperatorKind Opc) {
11783 if (Opc == BO_Cmp)
11784 return checkArithmeticOrEnumeralThreeWayCompare(S, LHS, RHS, Loc);
11785
11786 // C99 6.5.8p3 / C99 6.5.9p4
11787 QualType Type =
11788 S.UsualArithmeticConversions(LHS, RHS, Loc, Sema::ACK_Comparison);
11789 if (LHS.isInvalid() || RHS.isInvalid())
11790 return QualType();
11791 if (Type.isNull())
11792 return S.InvalidOperands(Loc, LHS, RHS);
11793 assert(Type->isArithmeticType() || Type->isEnumeralType())(static_cast <bool> (Type->isArithmeticType() || Type
->isEnumeralType()) ? void (0) : __assert_fail ("Type->isArithmeticType() || Type->isEnumeralType()"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 11793, __extension__ __PRETTY_FUNCTION__))
;
11794
11795 if (Type->isAnyComplexType() && BinaryOperator::isRelationalOp(Opc))
11796 return S.InvalidOperands(Loc, LHS, RHS);
11797
11798 // Check for comparisons of floating point operands using != and ==.
11799 if (Type->hasFloatingRepresentation() && BinaryOperator::isEqualityOp(Opc))
11800 S.CheckFloatComparison(Loc, LHS.get(), RHS.get());
11801
11802 // The result of comparisons is 'bool' in C++, 'int' in C.
11803 return S.Context.getLogicalOperationType();
11804}
11805
11806void Sema::CheckPtrComparisonWithNullChar(ExprResult &E, ExprResult &NullE) {
11807 if (!NullE.get()->getType()->isAnyPointerType())
11808 return;
11809 int NullValue = PP.isMacroDefined("NULL") ? 0 : 1;
11810 if (!E.get()->getType()->isAnyPointerType() &&
11811 E.get()->isNullPointerConstant(Context,
11812 Expr::NPC_ValueDependentIsNotNull) ==
11813 Expr::NPCK_ZeroExpression) {
11814 if (const auto *CL = dyn_cast<CharacterLiteral>(E.get())) {
11815 if (CL->getValue() == 0)
11816 Diag(E.get()->getExprLoc(), diag::warn_pointer_compare)
11817 << NullValue
11818 << FixItHint::CreateReplacement(E.get()->getExprLoc(),
11819 NullValue ? "NULL" : "(void *)0");
11820 } else if (const auto *CE = dyn_cast<CStyleCastExpr>(E.get())) {
11821 TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
11822 QualType T = Context.getCanonicalType(TI->getType()).getUnqualifiedType();
11823 if (T == Context.CharTy)
11824 Diag(E.get()->getExprLoc(), diag::warn_pointer_compare)
11825 << NullValue
11826 << FixItHint::CreateReplacement(E.get()->getExprLoc(),
11827 NullValue ? "NULL" : "(void *)0");
11828 }
11829 }
11830}
11831
11832// C99 6.5.8, C++ [expr.rel]
11833QualType Sema::CheckCompareOperands(ExprResult &LHS, ExprResult &RHS,
11834 SourceLocation Loc,
11835 BinaryOperatorKind Opc) {
11836 bool IsRelational = BinaryOperator::isRelationalOp(Opc);
11837 bool IsThreeWay = Opc == BO_Cmp;
11838 bool IsOrdered = IsRelational || IsThreeWay;
11839 auto IsAnyPointerType = [](ExprResult E) {
11840 QualType Ty = E.get()->getType();
11841 return Ty->isPointerType() || Ty->isMemberPointerType();
11842 };
11843
11844 // C++2a [expr.spaceship]p6: If at least one of the operands is of pointer
11845 // type, array-to-pointer, ..., conversions are performed on both operands to
11846 // bring them to their composite type.
11847 // Otherwise, all comparisons expect an rvalue, so convert to rvalue before
11848 // any type-related checks.
11849 if (!IsThreeWay || IsAnyPointerType(LHS) || IsAnyPointerType(RHS)) {
11850 LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
11851 if (LHS.isInvalid())
11852 return QualType();
11853 RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
11854 if (RHS.isInvalid())
11855 return QualType();
11856 } else {
11857 LHS = DefaultLvalueConversion(LHS.get());
11858 if (LHS.isInvalid())
11859 return QualType();
11860 RHS = DefaultLvalueConversion(RHS.get());
11861 if (RHS.isInvalid())
11862 return QualType();
11863 }
11864
11865 checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/true);
11866 if (!getLangOpts().CPlusPlus && BinaryOperator::isEqualityOp(Opc)) {
11867 CheckPtrComparisonWithNullChar(LHS, RHS);
11868 CheckPtrComparisonWithNullChar(RHS, LHS);
11869 }
11870
11871 // Handle vector comparisons separately.
11872 if (LHS.get()->getType()->isVectorType() ||
11873 RHS.get()->getType()->isVectorType())
11874 return CheckVectorCompareOperands(LHS, RHS, Loc, Opc);
11875
11876 diagnoseLogicalNotOnLHSofCheck(*this, LHS, RHS, Loc, Opc);
11877 diagnoseTautologicalComparison(*this, Loc, LHS.get(), RHS.get(), Opc);
11878
11879 QualType LHSType = LHS.get()->getType();
11880 QualType RHSType = RHS.get()->getType();
11881 if ((LHSType->isArithmeticType() || LHSType->isEnumeralType()) &&
11882 (RHSType->isArithmeticType() || RHSType->isEnumeralType()))
11883 return checkArithmeticOrEnumeralCompare(*this, LHS, RHS, Loc, Opc);
11884
11885 const Expr::NullPointerConstantKind LHSNullKind =
11886 LHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull);
11887 const Expr::NullPointerConstantKind RHSNullKind =
11888 RHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull);
11889 bool LHSIsNull = LHSNullKind != Expr::NPCK_NotNull;
11890 bool RHSIsNull = RHSNullKind != Expr::NPCK_NotNull;
11891
11892 auto computeResultTy = [&]() {
11893 if (Opc != BO_Cmp)
11894 return Context.getLogicalOperationType();
11895 assert(getLangOpts().CPlusPlus)(static_cast <bool> (getLangOpts().CPlusPlus) ? void (0
) : __assert_fail ("getLangOpts().CPlusPlus", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 11895, __extension__ __PRETTY_FUNCTION__))
;
11896 assert(Context.hasSameType(LHS.get()->getType(), RHS.get()->getType()))(static_cast <bool> (Context.hasSameType(LHS.get()->
getType(), RHS.get()->getType())) ? void (0) : __assert_fail
("Context.hasSameType(LHS.get()->getType(), RHS.get()->getType())"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 11896, __extension__ __PRETTY_FUNCTION__))
;
11897
11898 QualType CompositeTy = LHS.get()->getType();
11899 assert(!CompositeTy->isReferenceType())(static_cast <bool> (!CompositeTy->isReferenceType()
) ? void (0) : __assert_fail ("!CompositeTy->isReferenceType()"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 11899, __extension__ __PRETTY_FUNCTION__))
;
11900
11901 Optional<ComparisonCategoryType> CCT =
11902 getComparisonCategoryForBuiltinCmp(CompositeTy);
11903 if (!CCT)
11904 return InvalidOperands(Loc, LHS, RHS);
11905
11906 if (CompositeTy->isPointerType() && LHSIsNull != RHSIsNull) {
11907 // P0946R0: Comparisons between a null pointer constant and an object
11908 // pointer result in std::strong_equality, which is ill-formed under
11909 // P1959R0.
11910 Diag(Loc, diag::err_typecheck_three_way_comparison_of_pointer_and_zero)
11911 << (LHSIsNull ? LHS.get()->getSourceRange()
11912 : RHS.get()->getSourceRange());
11913 return QualType();
11914 }
11915
11916 return CheckComparisonCategoryType(
11917 *CCT, Loc, ComparisonCategoryUsage::OperatorInExpression);
11918 };
11919
11920 if (!IsOrdered && LHSIsNull != RHSIsNull) {
11921 bool IsEquality = Opc == BO_EQ;
11922 if (RHSIsNull)
11923 DiagnoseAlwaysNonNullPointer(LHS.get(), RHSNullKind, IsEquality,
11924 RHS.get()->getSourceRange());
11925 else
11926 DiagnoseAlwaysNonNullPointer(RHS.get(), LHSNullKind, IsEquality,
11927 LHS.get()->getSourceRange());
11928 }
11929
11930 if (IsOrdered && LHSType->isFunctionPointerType() &&
11931 RHSType->isFunctionPointerType()) {
11932 // Valid unless a relational comparison of function pointers
11933 bool IsError = Opc == BO_Cmp;
11934 auto DiagID =
11935 IsError ? diag::err_typecheck_ordered_comparison_of_function_pointers
11936 : getLangOpts().CPlusPlus
11937 ? diag::warn_typecheck_ordered_comparison_of_function_pointers
11938 : diag::ext_typecheck_ordered_comparison_of_function_pointers;
11939 Diag(Loc, DiagID) << LHSType << RHSType << LHS.get()->getSourceRange()
11940 << RHS.get()->getSourceRange();
11941 if (IsError)
11942 return QualType();
11943 }
11944
11945 if ((LHSType->isIntegerType() && !LHSIsNull) ||
11946 (RHSType->isIntegerType() && !RHSIsNull)) {
11947 // Skip normal pointer conversion checks in this case; we have better
11948 // diagnostics for this below.
11949 } else if (getLangOpts().CPlusPlus) {
11950 // Equality comparison of a function pointer to a void pointer is invalid,
11951 // but we allow it as an extension.
11952 // FIXME: If we really want to allow this, should it be part of composite
11953 // pointer type computation so it works in conditionals too?
11954 if (!IsOrdered &&
11955 ((LHSType->isFunctionPointerType() && RHSType->isVoidPointerType()) ||
11956 (RHSType->isFunctionPointerType() && LHSType->isVoidPointerType()))) {
11957 // This is a gcc extension compatibility comparison.
11958 // In a SFINAE context, we treat this as a hard error to maintain
11959 // conformance with the C++ standard.
11960 diagnoseFunctionPointerToVoidComparison(
11961 *this, Loc, LHS, RHS, /*isError*/ (bool)isSFINAEContext());
11962
11963 if (isSFINAEContext())
11964 return QualType();
11965
11966 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
11967 return computeResultTy();
11968 }
11969
11970 // C++ [expr.eq]p2:
11971 // If at least one operand is a pointer [...] bring them to their
11972 // composite pointer type.
11973 // C++ [expr.spaceship]p6
11974 // If at least one of the operands is of pointer type, [...] bring them
11975 // to their composite pointer type.
11976 // C++ [expr.rel]p2:
11977 // If both operands are pointers, [...] bring them to their composite
11978 // pointer type.
11979 // For <=>, the only valid non-pointer types are arrays and functions, and
11980 // we already decayed those, so this is really the same as the relational
11981 // comparison rule.
11982 if ((int)LHSType->isPointerType() + (int)RHSType->isPointerType() >=
11983 (IsOrdered ? 2 : 1) &&
11984 (!LangOpts.ObjCAutoRefCount || !(LHSType->isObjCObjectPointerType() ||
11985 RHSType->isObjCObjectPointerType()))) {
11986 if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
11987 return QualType();
11988 return computeResultTy();
11989 }
11990 } else if (LHSType->isPointerType() &&
11991 RHSType->isPointerType()) { // C99 6.5.8p2
11992 // All of the following pointer-related warnings are GCC extensions, except
11993 // when handling null pointer constants.
11994 QualType LCanPointeeTy =
11995 LHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
11996 QualType RCanPointeeTy =
11997 RHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
11998
11999 // C99 6.5.9p2 and C99 6.5.8p2
12000 if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
12001 RCanPointeeTy.getUnqualifiedType())) {
12002 if (IsRelational) {
12003 // Pointers both need to point to complete or incomplete types
12004 if ((LCanPointeeTy->isIncompleteType() !=
12005 RCanPointeeTy->isIncompleteType()) &&
12006 !getLangOpts().C11) {
12007 Diag(Loc, diag::ext_typecheck_compare_complete_incomplete_pointers)
12008 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange()
12009 << LHSType << RHSType << LCanPointeeTy->isIncompleteType()
12010 << RCanPointeeTy->isIncompleteType();
12011 }
12012 }
12013 } else if (!IsRelational &&
12014 (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
12015 // Valid unless comparison between non-null pointer and function pointer
12016 if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
12017 && !LHSIsNull && !RHSIsNull)
12018 diagnoseFunctionPointerToVoidComparison(*this, Loc, LHS, RHS,
12019 /*isError*/false);
12020 } else {
12021 // Invalid
12022 diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS, /*isError*/false);
12023 }
12024 if (LCanPointeeTy != RCanPointeeTy) {
12025 // Treat NULL constant as a special case in OpenCL.
12026 if (getLangOpts().OpenCL && !LHSIsNull && !RHSIsNull) {
12027 if (!LCanPointeeTy.isAddressSpaceOverlapping(RCanPointeeTy)) {
12028 Diag(Loc,
12029 diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
12030 << LHSType << RHSType << 0 /* comparison */
12031 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
12032 }
12033 }
12034 LangAS AddrSpaceL = LCanPointeeTy.getAddressSpace();
12035 LangAS AddrSpaceR = RCanPointeeTy.getAddressSpace();
12036 CastKind Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion
12037 : CK_BitCast;
12038 if (LHSIsNull && !RHSIsNull)
12039 LHS = ImpCastExprToType(LHS.get(), RHSType, Kind);
12040 else
12041 RHS = ImpCastExprToType(RHS.get(), LHSType, Kind);
12042 }
12043 return computeResultTy();
12044 }
12045
12046 if (getLangOpts().CPlusPlus) {
12047 // C++ [expr.eq]p4:
12048 // Two operands of type std::nullptr_t or one operand of type
12049 // std::nullptr_t and the other a null pointer constant compare equal.
12050 if (!IsOrdered && LHSIsNull && RHSIsNull) {
12051 if (LHSType->isNullPtrType()) {
12052 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
12053 return computeResultTy();
12054 }
12055 if (RHSType->isNullPtrType()) {
12056 LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
12057 return computeResultTy();
12058 }
12059 }
12060
12061 // Comparison of Objective-C pointers and block pointers against nullptr_t.
12062 // These aren't covered by the composite pointer type rules.
12063 if (!IsOrdered && RHSType->isNullPtrType() &&
12064 (LHSType->isObjCObjectPointerType() || LHSType->isBlockPointerType())) {
12065 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
12066 return computeResultTy();
12067 }
12068 if (!IsOrdered && LHSType->isNullPtrType() &&
12069 (RHSType->isObjCObjectPointerType() || RHSType->isBlockPointerType())) {
12070 LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
12071 return computeResultTy();
12072 }
12073
12074 if (IsRelational &&
12075 ((LHSType->isNullPtrType() && RHSType->isPointerType()) ||
12076 (RHSType->isNullPtrType() && LHSType->isPointerType()))) {
12077 // HACK: Relational comparison of nullptr_t against a pointer type is
12078 // invalid per DR583, but we allow it within std::less<> and friends,
12079 // since otherwise common uses of it break.
12080 // FIXME: Consider removing this hack once LWG fixes std::less<> and
12081 // friends to have std::nullptr_t overload candidates.
12082 DeclContext *DC = CurContext;
12083 if (isa<FunctionDecl>(DC))
12084 DC = DC->getParent();
12085 if (auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(DC)) {
12086 if (CTSD->isInStdNamespace() &&
12087 llvm::StringSwitch<bool>(CTSD->getName())
12088 .Cases("less", "less_equal", "greater", "greater_equal", true)
12089 .Default(false)) {
12090 if (RHSType->isNullPtrType())
12091 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
12092 else
12093 LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
12094 return computeResultTy();
12095 }
12096 }
12097 }
12098
12099 // C++ [expr.eq]p2:
12100 // If at least one operand is a pointer to member, [...] bring them to
12101 // their composite pointer type.
12102 if (!IsOrdered &&
12103 (LHSType->isMemberPointerType() || RHSType->isMemberPointerType())) {
12104 if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
12105 return QualType();
12106 else
12107 return computeResultTy();
12108 }
12109 }
12110
12111 // Handle block pointer types.
12112 if (!IsOrdered && LHSType->isBlockPointerType() &&
12113 RHSType->isBlockPointerType()) {
12114 QualType lpointee = LHSType->castAs<BlockPointerType>()->getPointeeType();
12115 QualType rpointee = RHSType->castAs<BlockPointerType>()->getPointeeType();
12116
12117 if (!LHSIsNull && !RHSIsNull &&
12118 !Context.typesAreCompatible(lpointee, rpointee)) {
12119 Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
12120 << LHSType << RHSType << LHS.get()->getSourceRange()
12121 << RHS.get()->getSourceRange();
12122 }
12123 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
12124 return computeResultTy();
12125 }
12126
12127 // Allow block pointers to be compared with null pointer constants.
12128 if (!IsOrdered
12129 && ((LHSType->isBlockPointerType() && RHSType->isPointerType())
12130 || (LHSType->isPointerType() && RHSType->isBlockPointerType()))) {
12131 if (!LHSIsNull && !RHSIsNull) {
12132 if (!((RHSType->isPointerType() && RHSType->castAs<PointerType>()
12133 ->getPointeeType()->isVoidType())
12134 || (LHSType->isPointerType() && LHSType->castAs<PointerType>()
12135 ->getPointeeType()->isVoidType())))
12136 Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
12137 << LHSType << RHSType << LHS.get()->getSourceRange()
12138 << RHS.get()->getSourceRange();
12139 }
12140 if (LHSIsNull && !RHSIsNull)
12141 LHS = ImpCastExprToType(LHS.get(), RHSType,
12142 RHSType->isPointerType() ? CK_BitCast
12143 : CK_AnyPointerToBlockPointerCast);
12144 else
12145 RHS = ImpCastExprToType(RHS.get(), LHSType,
12146 LHSType->isPointerType() ? CK_BitCast
12147 : CK_AnyPointerToBlockPointerCast);
12148 return computeResultTy();
12149 }
12150
12151 if (LHSType->isObjCObjectPointerType() ||
12152 RHSType->isObjCObjectPointerType()) {
12153 const PointerType *LPT = LHSType->getAs<PointerType>();
12154 const PointerType *RPT = RHSType->getAs<PointerType>();
12155 if (LPT || RPT) {
12156 bool LPtrToVoid = LPT ? LPT->getPointeeType()->isVoidType() : false;
12157 bool RPtrToVoid = RPT ? RPT->getPointeeType()->isVoidType() : false;
12158
12159 if (!LPtrToVoid && !RPtrToVoid &&
12160 !Context.typesAreCompatible(LHSType, RHSType)) {
12161 diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
12162 /*isError*/false);
12163 }
12164 // FIXME: If LPtrToVoid, we should presumably convert the LHS rather than
12165 // the RHS, but we have test coverage for this behavior.
12166 // FIXME: Consider using convertPointersToCompositeType in C++.
12167 if (LHSIsNull && !RHSIsNull) {
12168 Expr *E = LHS.get();
12169 if (getLangOpts().ObjCAutoRefCount)
12170 CheckObjCConversion(SourceRange(), RHSType, E,
12171 CCK_ImplicitConversion);
12172 LHS = ImpCastExprToType(E, RHSType,
12173 RPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
12174 }
12175 else {
12176 Expr *E = RHS.get();
12177 if (getLangOpts().ObjCAutoRefCount)
12178 CheckObjCConversion(SourceRange(), LHSType, E, CCK_ImplicitConversion,
12179 /*Diagnose=*/true,
12180 /*DiagnoseCFAudited=*/false, Opc);
12181 RHS = ImpCastExprToType(E, LHSType,
12182 LPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
12183 }
12184 return computeResultTy();
12185 }
12186 if (LHSType->isObjCObjectPointerType() &&
12187 RHSType->isObjCObjectPointerType()) {
12188 if (!Context.areComparableObjCPointerTypes(LHSType, RHSType))
12189 diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
12190 /*isError*/false);
12191 if (isObjCObjectLiteral(LHS) || isObjCObjectLiteral(RHS))
12192 diagnoseObjCLiteralComparison(*this, Loc, LHS, RHS, Opc);
12193
12194 if (LHSIsNull && !RHSIsNull)
12195 LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
12196 else
12197 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
12198 return computeResultTy();
12199 }
12200
12201 if (!IsOrdered && LHSType->isBlockPointerType() &&
12202 RHSType->isBlockCompatibleObjCPointerType(Context)) {
12203 LHS = ImpCastExprToType(LHS.get(), RHSType,
12204 CK_BlockPointerToObjCPointerCast);
12205 return computeResultTy();
12206 } else if (!IsOrdered &&
12207 LHSType->isBlockCompatibleObjCPointerType(Context) &&
12208 RHSType->isBlockPointerType()) {
12209 RHS = ImpCastExprToType(RHS.get(), LHSType,
12210 CK_BlockPointerToObjCPointerCast);
12211 return computeResultTy();
12212 }
12213 }
12214 if ((LHSType->isAnyPointerType() && RHSType->isIntegerType()) ||
12215 (LHSType->isIntegerType() && RHSType->isAnyPointerType())) {
12216 unsigned DiagID = 0;
12217 bool isError = false;
12218 if (LangOpts.DebuggerSupport) {
12219 // Under a debugger, allow the comparison of pointers to integers,
12220 // since users tend to want to compare addresses.
12221 } else if ((LHSIsNull && LHSType->isIntegerType()) ||
12222 (RHSIsNull && RHSType->isIntegerType())) {
12223 if (IsOrdered) {
12224 isError = getLangOpts().CPlusPlus;
12225 DiagID =
12226 isError ? diag::err_typecheck_ordered_comparison_of_pointer_and_zero
12227 : diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
12228 }
12229 } else if (getLangOpts().CPlusPlus) {
12230 DiagID = diag::err_typecheck_comparison_of_pointer_integer;
12231 isError = true;
12232 } else if (IsOrdered)
12233 DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
12234 else
12235 DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
12236
12237 if (DiagID) {
12238 Diag(Loc, DiagID)
12239 << LHSType << RHSType << LHS.get()->getSourceRange()
12240 << RHS.get()->getSourceRange();
12241 if (isError)
12242 return QualType();
12243 }
12244
12245 if (LHSType->isIntegerType())
12246 LHS = ImpCastExprToType(LHS.get(), RHSType,
12247 LHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
12248 else
12249 RHS = ImpCastExprToType(RHS.get(), LHSType,
12250 RHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
12251 return computeResultTy();
12252 }
12253
12254 // Handle block pointers.
12255 if (!IsOrdered && RHSIsNull
12256 && LHSType->isBlockPointerType() && RHSType->isIntegerType()) {
12257 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
12258 return computeResultTy();
12259 }
12260 if (!IsOrdered && LHSIsNull
12261 && LHSType->isIntegerType() && RHSType->isBlockPointerType()) {
12262 LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
12263 return computeResultTy();
12264 }
12265
12266 if (getLangOpts().OpenCLVersion >= 200 || getLangOpts().OpenCLCPlusPlus) {
12267 if (LHSType->isClkEventT() && RHSType->isClkEventT()) {
12268 return computeResultTy();
12269 }
12270
12271 if (LHSType->isQueueT() && RHSType->isQueueT()) {
12272 return computeResultTy();
12273 }
12274
12275 if (LHSIsNull && RHSType->isQueueT()) {
12276 LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
12277 return computeResultTy();
12278 }
12279
12280 if (LHSType->isQueueT() && RHSIsNull) {
12281 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
12282 return computeResultTy();
12283 }
12284 }
12285
12286 return InvalidOperands(Loc, LHS, RHS);
12287}
12288
12289// Return a signed ext_vector_type that is of identical size and number of
12290// elements. For floating point vectors, return an integer type of identical
12291// size and number of elements. In the non ext_vector_type case, search from
12292// the largest type to the smallest type to avoid cases where long long == long,
12293// where long gets picked over long long.
12294QualType Sema::GetSignedVectorType(QualType V) {
12295 const VectorType *VTy = V->castAs<VectorType>();
12296 unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
12297
12298 if (isa<ExtVectorType>(VTy)) {
12299 if (TypeSize == Context.getTypeSize(Context.CharTy))
12300 return Context.getExtVectorType(Context.CharTy, VTy->getNumElements());
12301 else if (TypeSize == Context.getTypeSize(Context.ShortTy))
12302 return Context.getExtVectorType(Context.ShortTy, VTy->getNumElements());
12303 else if (TypeSize == Context.getTypeSize(Context.IntTy))
12304 return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
12305 else if (TypeSize == Context.getTypeSize(Context.LongTy))
12306 return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
12307 assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&(static_cast <bool> (TypeSize == Context.getTypeSize(Context
.LongLongTy) && "Unhandled vector element size in vector compare"
) ? void (0) : __assert_fail ("TypeSize == Context.getTypeSize(Context.LongLongTy) && \"Unhandled vector element size in vector compare\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 12308, __extension__ __PRETTY_FUNCTION__))
12308 "Unhandled vector element size in vector compare")(static_cast <bool> (TypeSize == Context.getTypeSize(Context
.LongLongTy) && "Unhandled vector element size in vector compare"
) ? void (0) : __assert_fail ("TypeSize == Context.getTypeSize(Context.LongLongTy) && \"Unhandled vector element size in vector compare\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 12308, __extension__ __PRETTY_FUNCTION__))
;
12309 return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
12310 }
12311
12312 if (TypeSize == Context.getTypeSize(Context.LongLongTy))
12313 return Context.getVectorType(Context.LongLongTy, VTy->getNumElements(),
12314 VectorType::GenericVector);
12315 else if (TypeSize == Context.getTypeSize(Context.LongTy))
12316 return Context.getVectorType(Context.LongTy, VTy->getNumElements(),
12317 VectorType::GenericVector);
12318 else if (TypeSize == Context.getTypeSize(Context.IntTy))
12319 return Context.getVectorType(Context.IntTy, VTy->getNumElements(),
12320 VectorType::GenericVector);
12321 else if (TypeSize == Context.getTypeSize(Context.ShortTy))
12322 return Context.getVectorType(Context.ShortTy, VTy->getNumElements(),
12323 VectorType::GenericVector);
12324 assert(TypeSize == Context.getTypeSize(Context.CharTy) &&(static_cast <bool> (TypeSize == Context.getTypeSize(Context
.CharTy) && "Unhandled vector element size in vector compare"
) ? void (0) : __assert_fail ("TypeSize == Context.getTypeSize(Context.CharTy) && \"Unhandled vector element size in vector compare\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 12325, __extension__ __PRETTY_FUNCTION__))
12325 "Unhandled vector element size in vector compare")(static_cast <bool> (TypeSize == Context.getTypeSize(Context
.CharTy) && "Unhandled vector element size in vector compare"
) ? void (0) : __assert_fail ("TypeSize == Context.getTypeSize(Context.CharTy) && \"Unhandled vector element size in vector compare\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 12325, __extension__ __PRETTY_FUNCTION__))
;
12326 return Context.getVectorType(Context.CharTy, VTy->getNumElements(),
12327 VectorType::GenericVector);
12328}
12329
12330/// CheckVectorCompareOperands - vector comparisons are a clang extension that
12331/// operates on extended vector types. Instead of producing an IntTy result,
12332/// like a scalar comparison, a vector comparison produces a vector of integer
12333/// types.
12334QualType Sema::CheckVectorCompareOperands(ExprResult &LHS, ExprResult &RHS,
12335 SourceLocation Loc,
12336 BinaryOperatorKind Opc) {
12337 if (Opc == BO_Cmp) {
12338 Diag(Loc, diag::err_three_way_vector_comparison);
12339 return QualType();
12340 }
12341
12342 // Check to make sure we're operating on vectors of the same type and width,
12343 // Allowing one side to be a scalar of element type.
12344 QualType vType = CheckVectorOperands(LHS, RHS, Loc, /*isCompAssign*/false,
12345 /*AllowBothBool*/true,
12346 /*AllowBoolConversions*/getLangOpts().ZVector);
12347 if (vType.isNull())
12348 return vType;
12349
12350 QualType LHSType = LHS.get()->getType();
12351
12352 // Determine the return type of a vector compare. By default clang will return
12353 // a scalar for all vector compares except vector bool and vector pixel.
12354 // With the gcc compiler we will always return a vector type and with the xl
12355 // compiler we will always return a scalar type. This switch allows choosing
12356 // which behavior is prefered.
12357 if (getLangOpts().AltiVec) {
12358 switch (getLangOpts().getAltivecSrcCompat()) {
12359 case LangOptions::AltivecSrcCompatKind::Mixed:
12360 // If AltiVec, the comparison results in a numeric type, i.e.
12361 // bool for C++, int for C
12362 if (vType->castAs<VectorType>()->getVectorKind() ==
12363 VectorType::AltiVecVector)
12364 return Context.getLogicalOperationType();
12365 else
12366 Diag(Loc, diag::warn_deprecated_altivec_src_compat);
12367 break;
12368 case LangOptions::AltivecSrcCompatKind::GCC:
12369 // For GCC we always return the vector type.
12370 break;
12371 case LangOptions::AltivecSrcCompatKind::XL:
12372 return Context.getLogicalOperationType();
12373 break;
12374 }
12375 }
12376
12377 // For non-floating point types, check for self-comparisons of the form
12378 // x == x, x != x, x < x, etc. These always evaluate to a constant, and
12379 // often indicate logic errors in the program.
12380 diagnoseTautologicalComparison(*this, Loc, LHS.get(), RHS.get(), Opc);
12381
12382 // Check for comparisons of floating point operands using != and ==.
12383 if (BinaryOperator::isEqualityOp(Opc) &&
12384 LHSType->hasFloatingRepresentation()) {
12385 assert(RHS.get()->getType()->hasFloatingRepresentation())(static_cast <bool> (RHS.get()->getType()->hasFloatingRepresentation
()) ? void (0) : __assert_fail ("RHS.get()->getType()->hasFloatingRepresentation()"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 12385, __extension__ __PRETTY_FUNCTION__))
;
12386 CheckFloatComparison(Loc, LHS.get(), RHS.get());
12387 }
12388
12389 // Return a signed type for the vector.
12390 return GetSignedVectorType(vType);
12391}
12392
12393static void diagnoseXorMisusedAsPow(Sema &S, const ExprResult &XorLHS,
12394 const ExprResult &XorRHS,
12395 const SourceLocation Loc) {
12396 // Do not diagnose macros.
12397 if (Loc.isMacroID())
12398 return;
12399
12400 // Do not diagnose if both LHS and RHS are macros.
12401 if (XorLHS.get()->getExprLoc().isMacroID() &&
12402 XorRHS.get()->getExprLoc().isMacroID())
12403 return;
12404
12405 bool Negative = false;
12406 bool ExplicitPlus = false;
12407 const auto *LHSInt = dyn_cast<IntegerLiteral>(XorLHS.get());
12408 const auto *RHSInt = dyn_cast<IntegerLiteral>(XorRHS.get());
12409
12410 if (!LHSInt)
12411 return;
12412 if (!RHSInt) {
12413 // Check negative literals.
12414 if (const auto *UO = dyn_cast<UnaryOperator>(XorRHS.get())) {
12415 UnaryOperatorKind Opc = UO->getOpcode();
12416 if (Opc != UO_Minus && Opc != UO_Plus)
12417 return;
12418 RHSInt = dyn_cast<IntegerLiteral>(UO->getSubExpr());
12419 if (!RHSInt)
12420 return;
12421 Negative = (Opc == UO_Minus);
12422 ExplicitPlus = !Negative;
12423 } else {
12424 return;
12425 }
12426 }
12427
12428 const llvm::APInt &LeftSideValue = LHSInt->getValue();
12429 llvm::APInt RightSideValue = RHSInt->getValue();
12430 if (LeftSideValue != 2 && LeftSideValue != 10)
12431 return;
12432
12433 if (LeftSideValue.getBitWidth() != RightSideValue.getBitWidth())
12434 return;
12435
12436 CharSourceRange ExprRange = CharSourceRange::getCharRange(
12437 LHSInt->getBeginLoc(), S.getLocForEndOfToken(RHSInt->getLocation()));
12438 llvm::StringRef ExprStr =
12439 Lexer::getSourceText(ExprRange, S.getSourceManager(), S.getLangOpts());
12440
12441 CharSourceRange XorRange =
12442 CharSourceRange::getCharRange(Loc, S.getLocForEndOfToken(Loc));
12443 llvm::StringRef XorStr =
12444 Lexer::getSourceText(XorRange, S.getSourceManager(), S.getLangOpts());
12445 // Do not diagnose if xor keyword/macro is used.
12446 if (XorStr == "xor")
12447 return;
12448
12449 std::string LHSStr = std::string(Lexer::getSourceText(
12450 CharSourceRange::getTokenRange(LHSInt->getSourceRange()),
12451 S.getSourceManager(), S.getLangOpts()));
12452 std::string RHSStr = std::string(Lexer::getSourceText(
12453 CharSourceRange::getTokenRange(RHSInt->getSourceRange()),
12454 S.getSourceManager(), S.getLangOpts()));
12455
12456 if (Negative) {
12457 RightSideValue = -RightSideValue;
12458 RHSStr = "-" + RHSStr;
12459 } else if (ExplicitPlus) {
12460 RHSStr = "+" + RHSStr;
12461 }
12462
12463 StringRef LHSStrRef = LHSStr;
12464 StringRef RHSStrRef = RHSStr;
12465 // Do not diagnose literals with digit separators, binary, hexadecimal, octal
12466 // literals.
12467 if (LHSStrRef.startswith("0b") || LHSStrRef.startswith("0B") ||
12468 RHSStrRef.startswith("0b") || RHSStrRef.startswith("0B") ||
12469 LHSStrRef.startswith("0x") || LHSStrRef.startswith("0X") ||
12470 RHSStrRef.startswith("0x") || RHSStrRef.startswith("0X") ||
12471 (LHSStrRef.size() > 1 && LHSStrRef.startswith("0")) ||
12472 (RHSStrRef.size() > 1 && RHSStrRef.startswith("0")) ||
12473 LHSStrRef.find('\'') != StringRef::npos ||
12474 RHSStrRef.find('\'') != StringRef::npos)
12475 return;
12476
12477 bool SuggestXor =
12478 S.getLangOpts().CPlusPlus || S.getPreprocessor().isMacroDefined("xor");
12479 const llvm::APInt XorValue = LeftSideValue ^ RightSideValue;
12480 int64_t RightSideIntValue = RightSideValue.getSExtValue();
12481 if (LeftSideValue == 2 && RightSideIntValue >= 0) {
12482 std::string SuggestedExpr = "1 << " + RHSStr;
12483 bool Overflow = false;
12484 llvm::APInt One = (LeftSideValue - 1);
12485 llvm::APInt PowValue = One.sshl_ov(RightSideValue, Overflow);
12486 if (Overflow) {
12487 if (RightSideIntValue < 64)
12488 S.Diag(Loc, diag::warn_xor_used_as_pow_base)
12489 << ExprStr << toString(XorValue, 10, true) << ("1LL << " + RHSStr)
12490 << FixItHint::CreateReplacement(ExprRange, "1LL << " + RHSStr);
12491 else if (RightSideIntValue == 64)
12492 S.Diag(Loc, diag::warn_xor_used_as_pow)
12493 << ExprStr << toString(XorValue, 10, true);
12494 else
12495 return;
12496 } else {
12497 S.Diag(Loc, diag::warn_xor_used_as_pow_base_extra)
12498 << ExprStr << toString(XorValue, 10, true) << SuggestedExpr
12499 << toString(PowValue, 10, true)
12500 << FixItHint::CreateReplacement(
12501 ExprRange, (RightSideIntValue == 0) ? "1" : SuggestedExpr);
12502 }
12503
12504 S.Diag(Loc, diag::note_xor_used_as_pow_silence)
12505 << ("0x2 ^ " + RHSStr) << SuggestXor;
12506 } else if (LeftSideValue == 10) {
12507 std::string SuggestedValue = "1e" + std::to_string(RightSideIntValue);
12508 S.Diag(Loc, diag::warn_xor_used_as_pow_base)
12509 << ExprStr << toString(XorValue, 10, true) << SuggestedValue
12510 << FixItHint::CreateReplacement(ExprRange, SuggestedValue);
12511 S.Diag(Loc, diag::note_xor_used_as_pow_silence)
12512 << ("0xA ^ " + RHSStr) << SuggestXor;
12513 }
12514}
12515
12516QualType Sema::CheckVectorLogicalOperands(ExprResult &LHS, ExprResult &RHS,
12517 SourceLocation Loc) {
12518 // Ensure that either both operands are of the same vector type, or
12519 // one operand is of a vector type and the other is of its element type.
12520 QualType vType = CheckVectorOperands(LHS, RHS, Loc, false,
12521 /*AllowBothBool*/true,
12522 /*AllowBoolConversions*/false);
12523 if (vType.isNull())
12524 return InvalidOperands(Loc, LHS, RHS);
12525 if (getLangOpts().OpenCL && getLangOpts().OpenCLVersion < 120 &&
12526 !getLangOpts().OpenCLCPlusPlus && vType->hasFloatingRepresentation())
12527 return InvalidOperands(Loc, LHS, RHS);
12528 // FIXME: The check for C++ here is for GCC compatibility. GCC rejects the
12529 // usage of the logical operators && and || with vectors in C. This
12530 // check could be notionally dropped.
12531 if (!getLangOpts().CPlusPlus &&
12532 !(isa<ExtVectorType>(vType->getAs<VectorType>())))
12533 return InvalidLogicalVectorOperands(Loc, LHS, RHS);
12534
12535 return GetSignedVectorType(LHS.get()->getType());
12536}
12537
12538QualType Sema::CheckMatrixElementwiseOperands(ExprResult &LHS, ExprResult &RHS,
12539 SourceLocation Loc,
12540 bool IsCompAssign) {
12541 if (!IsCompAssign) {
12542 LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
12543 if (LHS.isInvalid())
12544 return QualType();
12545 }
12546 RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
12547 if (RHS.isInvalid())
12548 return QualType();
12549
12550 // For conversion purposes, we ignore any qualifiers.
12551 // For example, "const float" and "float" are equivalent.
12552 QualType LHSType = LHS.get()->getType().getUnqualifiedType();
12553 QualType RHSType = RHS.get()->getType().getUnqualifiedType();
12554
12555 const MatrixType *LHSMatType = LHSType->getAs<MatrixType>();
12556 const MatrixType *RHSMatType = RHSType->getAs<MatrixType>();
12557 assert((LHSMatType || RHSMatType) && "At least one operand must be a matrix")(static_cast <bool> ((LHSMatType || RHSMatType) &&
"At least one operand must be a matrix") ? void (0) : __assert_fail
("(LHSMatType || RHSMatType) && \"At least one operand must be a matrix\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 12557, __extension__ __PRETTY_FUNCTION__))
;
12558
12559 if (Context.hasSameType(LHSType, RHSType))
12560 return LHSType;
12561
12562 // Type conversion may change LHS/RHS. Keep copies to the original results, in
12563 // case we have to return InvalidOperands.
12564 ExprResult OriginalLHS = LHS;
12565 ExprResult OriginalRHS = RHS;
12566 if (LHSMatType && !RHSMatType) {
12567 RHS = tryConvertExprToType(RHS.get(), LHSMatType->getElementType());
12568 if (!RHS.isInvalid())
12569 return LHSType;
12570
12571 return InvalidOperands(Loc, OriginalLHS, OriginalRHS);
12572 }
12573
12574 if (!LHSMatType && RHSMatType) {
12575 LHS = tryConvertExprToType(LHS.get(), RHSMatType->getElementType());
12576 if (!LHS.isInvalid())
12577 return RHSType;
12578 return InvalidOperands(Loc, OriginalLHS, OriginalRHS);
12579 }
12580
12581 return InvalidOperands(Loc, LHS, RHS);
12582}
12583
12584QualType Sema::CheckMatrixMultiplyOperands(ExprResult &LHS, ExprResult &RHS,
12585 SourceLocation Loc,
12586 bool IsCompAssign) {
12587 if (!IsCompAssign) {
12588 LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
12589 if (LHS.isInvalid())
12590 return QualType();
12591 }
12592 RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
12593 if (RHS.isInvalid())
12594 return QualType();
12595
12596 auto *LHSMatType = LHS.get()->getType()->getAs<ConstantMatrixType>();
12597 auto *RHSMatType = RHS.get()->getType()->getAs<ConstantMatrixType>();
12598 assert((LHSMatType || RHSMatType) && "At least one operand must be a matrix")(static_cast <bool> ((LHSMatType || RHSMatType) &&
"At least one operand must be a matrix") ? void (0) : __assert_fail
("(LHSMatType || RHSMatType) && \"At least one operand must be a matrix\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 12598, __extension__ __PRETTY_FUNCTION__))
;
12599
12600 if (LHSMatType && RHSMatType) {
12601 if (LHSMatType->getNumColumns() != RHSMatType->getNumRows())
12602 return InvalidOperands(Loc, LHS, RHS);
12603
12604 if (!Context.hasSameType(LHSMatType->getElementType(),
12605 RHSMatType->getElementType()))
12606 return InvalidOperands(Loc, LHS, RHS);
12607
12608 return Context.getConstantMatrixType(LHSMatType->getElementType(),
12609 LHSMatType->getNumRows(),
12610 RHSMatType->getNumColumns());
12611 }
12612 return CheckMatrixElementwiseOperands(LHS, RHS, Loc, IsCompAssign);
12613}
12614
12615inline QualType Sema::CheckBitwiseOperands(ExprResult &LHS, ExprResult &RHS,
12616 SourceLocation Loc,
12617 BinaryOperatorKind Opc) {
12618 checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
12619
12620 bool IsCompAssign =
12621 Opc == BO_AndAssign || Opc == BO_OrAssign || Opc == BO_XorAssign;
12622
12623 if (LHS.get()->getType()->isVectorType() ||
12624 RHS.get()->getType()->isVectorType()) {
12625 if (LHS.get()->getType()->hasIntegerRepresentation() &&
12626 RHS.get()->getType()->hasIntegerRepresentation())
12627 return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
12628 /*AllowBothBool*/true,
12629 /*AllowBoolConversions*/getLangOpts().ZVector);
12630 return InvalidOperands(Loc, LHS, RHS);
12631 }
12632
12633 if (Opc == BO_And)
12634 diagnoseLogicalNotOnLHSofCheck(*this, LHS, RHS, Loc, Opc);
12635
12636 if (LHS.get()->getType()->hasFloatingRepresentation() ||
12637 RHS.get()->getType()->hasFloatingRepresentation())
12638 return InvalidOperands(Loc, LHS, RHS);
12639
12640 ExprResult LHSResult = LHS, RHSResult = RHS;
12641 QualType compType = UsualArithmeticConversions(
12642 LHSResult, RHSResult, Loc, IsCompAssign ? ACK_CompAssign : ACK_BitwiseOp);
12643 if (LHSResult.isInvalid() || RHSResult.isInvalid())
12644 return QualType();
12645 LHS = LHSResult.get();
12646 RHS = RHSResult.get();
12647
12648 if (Opc == BO_Xor)
12649 diagnoseXorMisusedAsPow(*this, LHS, RHS, Loc);
12650
12651 if (!compType.isNull() && compType->isIntegralOrUnscopedEnumerationType())
12652 return compType;
12653 return InvalidOperands(Loc, LHS, RHS);
12654}
12655
12656// C99 6.5.[13,14]
12657inline QualType Sema::CheckLogicalOperands(ExprResult &LHS, ExprResult &RHS,
12658 SourceLocation Loc,
12659 BinaryOperatorKind Opc) {
12660 // Check vector operands differently.
12661 if (LHS.get()->getType()->isVectorType() || RHS.get()->getType()->isVectorType())
12662 return CheckVectorLogicalOperands(LHS, RHS, Loc);
12663
12664 bool EnumConstantInBoolContext = false;
12665 for (const ExprResult &HS : {LHS, RHS}) {
12666 if (const auto *DREHS = dyn_cast<DeclRefExpr>(HS.get())) {
12667 const auto *ECDHS = dyn_cast<EnumConstantDecl>(DREHS->getDecl());
12668 if (ECDHS && ECDHS->getInitVal() != 0 && ECDHS->getInitVal() != 1)
12669 EnumConstantInBoolContext = true;
12670 }
12671 }
12672
12673 if (EnumConstantInBoolContext)
12674 Diag(Loc, diag::warn_enum_constant_in_bool_context);
12675
12676 // Diagnose cases where the user write a logical and/or but probably meant a
12677 // bitwise one. We do this when the LHS is a non-bool integer and the RHS
12678 // is a constant.
12679 if (!EnumConstantInBoolContext && LHS.get()->getType()->isIntegerType() &&
12680 !LHS.get()->getType()->isBooleanType() &&
12681 RHS.get()->getType()->isIntegerType() && !RHS.get()->isValueDependent() &&
12682 // Don't warn in macros or template instantiations.
12683 !Loc.isMacroID() && !inTemplateInstantiation()) {
12684 // If the RHS can be constant folded, and if it constant folds to something
12685 // that isn't 0 or 1 (which indicate a potential logical operation that
12686 // happened to fold to true/false) then warn.
12687 // Parens on the RHS are ignored.
12688 Expr::EvalResult EVResult;
12689 if (RHS.get()->EvaluateAsInt(EVResult, Context)) {
12690 llvm::APSInt Result = EVResult.Val.getInt();
12691 if ((getLangOpts().Bool && !RHS.get()->getType()->isBooleanType() &&
12692 !RHS.get()->getExprLoc().isMacroID()) ||
12693 (Result != 0 && Result != 1)) {
12694 Diag(Loc, diag::warn_logical_instead_of_bitwise)
12695 << RHS.get()->getSourceRange()
12696 << (Opc == BO_LAnd ? "&&" : "||");
12697 // Suggest replacing the logical operator with the bitwise version
12698 Diag(Loc, diag::note_logical_instead_of_bitwise_change_operator)
12699 << (Opc == BO_LAnd ? "&" : "|")
12700 << FixItHint::CreateReplacement(SourceRange(
12701 Loc, getLocForEndOfToken(Loc)),
12702 Opc == BO_LAnd ? "&" : "|");
12703 if (Opc == BO_LAnd)
12704 // Suggest replacing "Foo() && kNonZero" with "Foo()"
12705 Diag(Loc, diag::note_logical_instead_of_bitwise_remove_constant)
12706 << FixItHint::CreateRemoval(
12707 SourceRange(getLocForEndOfToken(LHS.get()->getEndLoc()),
12708 RHS.get()->getEndLoc()));
12709 }
12710 }
12711 }
12712
12713 if (!Context.getLangOpts().CPlusPlus) {
12714 // OpenCL v1.1 s6.3.g: The logical operators and (&&), or (||) do
12715 // not operate on the built-in scalar and vector float types.
12716 if (Context.getLangOpts().OpenCL &&
12717 Context.getLangOpts().OpenCLVersion < 120) {
12718 if (LHS.get()->getType()->isFloatingType() ||
12719 RHS.get()->getType()->isFloatingType())
12720 return InvalidOperands(Loc, LHS, RHS);
12721 }
12722
12723 LHS = UsualUnaryConversions(LHS.get());
12724 if (LHS.isInvalid())
12725 return QualType();
12726
12727 RHS = UsualUnaryConversions(RHS.get());
12728 if (RHS.isInvalid())
12729 return QualType();
12730
12731 if (!LHS.get()->getType()->isScalarType() ||
12732 !RHS.get()->getType()->isScalarType())
12733 return InvalidOperands(Loc, LHS, RHS);
12734
12735 return Context.IntTy;
12736 }
12737
12738 // The following is safe because we only use this method for
12739 // non-overloadable operands.
12740
12741 // C++ [expr.log.and]p1
12742 // C++ [expr.log.or]p1
12743 // The operands are both contextually converted to type bool.
12744 ExprResult LHSRes = PerformContextuallyConvertToBool(LHS.get());
12745 if (LHSRes.isInvalid())
12746 return InvalidOperands(Loc, LHS, RHS);
12747 LHS = LHSRes;
12748
12749 ExprResult RHSRes = PerformContextuallyConvertToBool(RHS.get());
12750 if (RHSRes.isInvalid())
12751 return InvalidOperands(Loc, LHS, RHS);
12752 RHS = RHSRes;
12753
12754 // C++ [expr.log.and]p2
12755 // C++ [expr.log.or]p2
12756 // The result is a bool.
12757 return Context.BoolTy;
12758}
12759
12760static bool IsReadonlyMessage(Expr *E, Sema &S) {
12761 const MemberExpr *ME = dyn_cast<MemberExpr>(E);
12762 if (!ME) return false;
12763 if (!isa<FieldDecl>(ME->getMemberDecl())) return false;
12764 ObjCMessageExpr *Base = dyn_cast<ObjCMessageExpr>(
12765 ME->getBase()->IgnoreImplicit()->IgnoreParenImpCasts());
12766 if (!Base) return false;
12767 return Base->getMethodDecl() != nullptr;
12768}
12769
12770/// Is the given expression (which must be 'const') a reference to a
12771/// variable which was originally non-const, but which has become
12772/// 'const' due to being captured within a block?
12773enum NonConstCaptureKind { NCCK_None, NCCK_Block, NCCK_Lambda };
12774static NonConstCaptureKind isReferenceToNonConstCapture(Sema &S, Expr *E) {
12775 assert(E->isLValue() && E->getType().isConstQualified())(static_cast <bool> (E->isLValue() && E->
getType().isConstQualified()) ? void (0) : __assert_fail ("E->isLValue() && E->getType().isConstQualified()"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 12775, __extension__ __PRETTY_FUNCTION__))
;
12776 E = E->IgnoreParens();
12777
12778 // Must be a reference to a declaration from an enclosing scope.
12779 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
12780 if (!DRE) return NCCK_None;
12781 if (!DRE->refersToEnclosingVariableOrCapture()) return NCCK_None;
12782
12783 // The declaration must be a variable which is not declared 'const'.
12784 VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
12785 if (!var) return NCCK_None;
12786 if (var->getType().isConstQualified()) return NCCK_None;
12787 assert(var->hasLocalStorage() && "capture added 'const' to non-local?")(static_cast <bool> (var->hasLocalStorage() &&
"capture added 'const' to non-local?") ? void (0) : __assert_fail
("var->hasLocalStorage() && \"capture added 'const' to non-local?\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 12787, __extension__ __PRETTY_FUNCTION__))
;
12788
12789 // Decide whether the first capture was for a block or a lambda.
12790 DeclContext *DC = S.CurContext, *Prev = nullptr;
12791 // Decide whether the first capture was for a block or a lambda.
12792 while (DC) {
12793 // For init-capture, it is possible that the variable belongs to the
12794 // template pattern of the current context.
12795 if (auto *FD = dyn_cast<FunctionDecl>(DC))
12796 if (var->isInitCapture() &&
12797 FD->getTemplateInstantiationPattern() == var->getDeclContext())
12798 break;
12799 if (DC == var->getDeclContext())
12800 break;
12801 Prev = DC;
12802 DC = DC->getParent();
12803 }
12804 // Unless we have an init-capture, we've gone one step too far.
12805 if (!var->isInitCapture())
12806 DC = Prev;
12807 return (isa<BlockDecl>(DC) ? NCCK_Block : NCCK_Lambda);
12808}
12809
12810static bool IsTypeModifiable(QualType Ty, bool IsDereference) {
12811 Ty = Ty.getNonReferenceType();
12812 if (IsDereference && Ty->isPointerType())
12813 Ty = Ty->getPointeeType();
12814 return !Ty.isConstQualified();
12815}
12816
12817// Update err_typecheck_assign_const and note_typecheck_assign_const
12818// when this enum is changed.
12819enum {
12820 ConstFunction,
12821 ConstVariable,
12822 ConstMember,
12823 ConstMethod,
12824 NestedConstMember,
12825 ConstUnknown, // Keep as last element
12826};
12827
12828/// Emit the "read-only variable not assignable" error and print notes to give
12829/// more information about why the variable is not assignable, such as pointing
12830/// to the declaration of a const variable, showing that a method is const, or
12831/// that the function is returning a const reference.
12832static void DiagnoseConstAssignment(Sema &S, const Expr *E,
12833 SourceLocation Loc) {
12834 SourceRange ExprRange = E->getSourceRange();
12835
12836 // Only emit one error on the first const found. All other consts will emit
12837 // a note to the error.
12838 bool DiagnosticEmitted = false;
12839
12840 // Track if the current expression is the result of a dereference, and if the
12841 // next checked expression is the result of a dereference.
12842 bool IsDereference = false;
12843 bool NextIsDereference = false;
12844
12845 // Loop to process MemberExpr chains.
12846 while (true) {
12847 IsDereference = NextIsDereference;
12848
12849 E = E->IgnoreImplicit()->IgnoreParenImpCasts();
12850 if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
12851 NextIsDereference = ME->isArrow();
12852 const ValueDecl *VD = ME->getMemberDecl();
12853 if (const FieldDecl *Field = dyn_cast<FieldDecl>(VD)) {
12854 // Mutable fields can be modified even if the class is const.
12855 if (Field->isMutable()) {
12856 assert(DiagnosticEmitted && "Expected diagnostic not emitted.")(static_cast <bool> (DiagnosticEmitted && "Expected diagnostic not emitted."
) ? void (0) : __assert_fail ("DiagnosticEmitted && \"Expected diagnostic not emitted.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 12856, __extension__ __PRETTY_FUNCTION__))
;
12857 break;
12858 }
12859
12860 if (!IsTypeModifiable(Field->getType(), IsDereference)) {
12861 if (!DiagnosticEmitted) {
12862 S.Diag(Loc, diag::err_typecheck_assign_const)
12863 << ExprRange << ConstMember << false /*static*/ << Field
12864 << Field->getType();
12865 DiagnosticEmitted = true;
12866 }
12867 S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
12868 << ConstMember << false /*static*/ << Field << Field->getType()
12869 << Field->getSourceRange();
12870 }
12871 E = ME->getBase();
12872 continue;
12873 } else if (const VarDecl *VDecl = dyn_cast<VarDecl>(VD)) {
12874 if (VDecl->getType().isConstQualified()) {
12875 if (!DiagnosticEmitted) {
12876 S.Diag(Loc, diag::err_typecheck_assign_const)
12877 << ExprRange << ConstMember << true /*static*/ << VDecl
12878 << VDecl->getType();
12879 DiagnosticEmitted = true;
12880 }
12881 S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
12882 << ConstMember << true /*static*/ << VDecl << VDecl->getType()
12883 << VDecl->getSourceRange();
12884 }
12885 // Static fields do not inherit constness from parents.
12886 break;
12887 }
12888 break; // End MemberExpr
12889 } else if (const ArraySubscriptExpr *ASE =
12890 dyn_cast<ArraySubscriptExpr>(E)) {
12891 E = ASE->getBase()->IgnoreParenImpCasts();
12892 continue;
12893 } else if (const ExtVectorElementExpr *EVE =
12894 dyn_cast<ExtVectorElementExpr>(E)) {
12895 E = EVE->getBase()->IgnoreParenImpCasts();
12896 continue;
12897 }
12898 break;
12899 }
12900
12901 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
12902 // Function calls
12903 const FunctionDecl *FD = CE->getDirectCallee();
12904 if (FD && !IsTypeModifiable(FD->getReturnType(), IsDereference)) {
12905 if (!DiagnosticEmitted) {
12906 S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange
12907 << ConstFunction << FD;
12908 DiagnosticEmitted = true;
12909 }
12910 S.Diag(FD->getReturnTypeSourceRange().getBegin(),
12911 diag::note_typecheck_assign_const)
12912 << ConstFunction << FD << FD->getReturnType()
12913 << FD->getReturnTypeSourceRange();
12914 }
12915 } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
12916 // Point to variable declaration.
12917 if (const ValueDecl *VD = DRE->getDecl()) {
12918 if (!IsTypeModifiable(VD->getType(), IsDereference)) {
12919 if (!DiagnosticEmitted) {
12920 S.Diag(Loc, diag::err_typecheck_assign_const)
12921 << ExprRange << ConstVariable << VD << VD->getType();
12922 DiagnosticEmitted = true;
12923 }
12924 S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
12925 << ConstVariable << VD << VD->getType() << VD->getSourceRange();
12926 }
12927 }
12928 } else if (isa<CXXThisExpr>(E)) {
12929 if (const DeclContext *DC = S.getFunctionLevelDeclContext()) {
12930 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
12931 if (MD->isConst()) {
12932 if (!DiagnosticEmitted) {
12933 S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange
12934 << ConstMethod << MD;
12935 DiagnosticEmitted = true;
12936 }
12937 S.Diag(MD->getLocation(), diag::note_typecheck_assign_const)
12938 << ConstMethod << MD << MD->getSourceRange();
12939 }
12940 }
12941 }
12942 }
12943
12944 if (DiagnosticEmitted)
12945 return;
12946
12947 // Can't determine a more specific message, so display the generic error.
12948 S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange << ConstUnknown;
12949}
12950
12951enum OriginalExprKind {
12952 OEK_Variable,
12953 OEK_Member,
12954 OEK_LValue
12955};
12956
12957static void DiagnoseRecursiveConstFields(Sema &S, const ValueDecl *VD,
12958 const RecordType *Ty,
12959 SourceLocation Loc, SourceRange Range,
12960 OriginalExprKind OEK,
12961 bool &DiagnosticEmitted) {
12962 std::vector<const RecordType *> RecordTypeList;
12963 RecordTypeList.push_back(Ty);
12964 unsigned NextToCheckIndex = 0;
12965 // We walk the record hierarchy breadth-first to ensure that we print
12966 // diagnostics in field nesting order.
12967 while (RecordTypeList.size() > NextToCheckIndex) {
12968 bool IsNested = NextToCheckIndex > 0;
12969 for (const FieldDecl *Field :
12970 RecordTypeList[NextToCheckIndex]->getDecl()->fields()) {
12971 // First, check every field for constness.
12972 QualType FieldTy = Field->getType();
12973 if (FieldTy.isConstQualified()) {
12974 if (!DiagnosticEmitted) {
12975 S.Diag(Loc, diag::err_typecheck_assign_const)
12976 << Range << NestedConstMember << OEK << VD
12977 << IsNested << Field;
12978 DiagnosticEmitted = true;
12979 }
12980 S.Diag(Field->getLocation(), diag::note_typecheck_assign_const)
12981 << NestedConstMember << IsNested << Field
12982 << FieldTy << Field->getSourceRange();
12983 }
12984
12985 // Then we append it to the list to check next in order.
12986 FieldTy = FieldTy.getCanonicalType();
12987 if (const auto *FieldRecTy = FieldTy->getAs<RecordType>()) {
12988 if (llvm::find(RecordTypeList, FieldRecTy) == RecordTypeList.end())
12989 RecordTypeList.push_back(FieldRecTy);
12990 }
12991 }
12992 ++NextToCheckIndex;
12993 }
12994}
12995
12996/// Emit an error for the case where a record we are trying to assign to has a
12997/// const-qualified field somewhere in its hierarchy.
12998static void DiagnoseRecursiveConstFields(Sema &S, const Expr *E,
12999 SourceLocation Loc) {
13000 QualType Ty = E->getType();
13001 assert(Ty->isRecordType() && "lvalue was not record?")(static_cast <bool> (Ty->isRecordType() && "lvalue was not record?"
) ? void (0) : __assert_fail ("Ty->isRecordType() && \"lvalue was not record?\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 13001, __extension__ __PRETTY_FUNCTION__))
;
13002 SourceRange Range = E->getSourceRange();
13003 const RecordType *RTy = Ty.getCanonicalType()->getAs<RecordType>();
13004 bool DiagEmitted = false;
13005
13006 if (const MemberExpr *ME = dyn_cast<MemberExpr>(E))
13007 DiagnoseRecursiveConstFields(S, ME->getMemberDecl(), RTy, Loc,
13008 Range, OEK_Member, DiagEmitted);
13009 else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
13010 DiagnoseRecursiveConstFields(S, DRE->getDecl(), RTy, Loc,
13011 Range, OEK_Variable, DiagEmitted);
13012 else
13013 DiagnoseRecursiveConstFields(S, nullptr, RTy, Loc,
13014 Range, OEK_LValue, DiagEmitted);
13015 if (!DiagEmitted)
13016 DiagnoseConstAssignment(S, E, Loc);
13017}
13018
13019/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue. If not,
13020/// emit an error and return true. If so, return false.
13021static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
13022 assert(!E->hasPlaceholderType(BuiltinType::PseudoObject))(static_cast <bool> (!E->hasPlaceholderType(BuiltinType
::PseudoObject)) ? void (0) : __assert_fail ("!E->hasPlaceholderType(BuiltinType::PseudoObject)"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 13022, __extension__ __PRETTY_FUNCTION__))
;
13023
13024 S.CheckShadowingDeclModification(E, Loc);
13025
13026 SourceLocation OrigLoc = Loc;
13027 Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
13028 &Loc);
13029 if (IsLV == Expr::MLV_ClassTemporary && IsReadonlyMessage(E, S))
13030 IsLV = Expr::MLV_InvalidMessageExpression;
13031 if (IsLV == Expr::MLV_Valid)
13032 return false;
13033
13034 unsigned DiagID = 0;
13035 bool NeedType = false;
13036 switch (IsLV) { // C99 6.5.16p2
13037 case Expr::MLV_ConstQualified:
13038 // Use a specialized diagnostic when we're assigning to an object
13039 // from an enclosing function or block.
13040 if (NonConstCaptureKind NCCK = isReferenceToNonConstCapture(S, E)) {
13041 if (NCCK == NCCK_Block)
13042 DiagID = diag::err_block_decl_ref_not_modifiable_lvalue;
13043 else
13044 DiagID = diag::err_lambda_decl_ref_not_modifiable_lvalue;
13045 break;
13046 }
13047
13048 // In ARC, use some specialized diagnostics for occasions where we
13049 // infer 'const'. These are always pseudo-strong variables.
13050 if (S.getLangOpts().ObjCAutoRefCount) {
13051 DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts());
13052 if (declRef && isa<VarDecl>(declRef->getDecl())) {
13053 VarDecl *var = cast<VarDecl>(declRef->getDecl());
13054
13055 // Use the normal diagnostic if it's pseudo-__strong but the
13056 // user actually wrote 'const'.
13057 if (var->isARCPseudoStrong() &&
13058 (!var->getTypeSourceInfo() ||
13059 !var->getTypeSourceInfo()->getType().isConstQualified())) {
13060 // There are three pseudo-strong cases:
13061 // - self
13062 ObjCMethodDecl *method = S.getCurMethodDecl();
13063 if (method && var == method->getSelfDecl()) {
13064 DiagID = method->isClassMethod()
13065 ? diag::err_typecheck_arc_assign_self_class_method
13066 : diag::err_typecheck_arc_assign_self;
13067
13068 // - Objective-C externally_retained attribute.
13069 } else if (var->hasAttr<ObjCExternallyRetainedAttr>() ||
13070 isa<ParmVarDecl>(var)) {
13071 DiagID = diag::err_typecheck_arc_assign_externally_retained;
13072
13073 // - fast enumeration variables
13074 } else {
13075 DiagID = diag::err_typecheck_arr_assign_enumeration;
13076 }
13077
13078 SourceRange Assign;
13079 if (Loc != OrigLoc)
13080 Assign = SourceRange(OrigLoc, OrigLoc);
13081 S.Diag(Loc, DiagID) << E->getSourceRange() << Assign;
13082 // We need to preserve the AST regardless, so migration tool
13083 // can do its job.
13084 return false;
13085 }
13086 }
13087 }
13088
13089 // If none of the special cases above are triggered, then this is a
13090 // simple const assignment.
13091 if (DiagID == 0) {
13092 DiagnoseConstAssignment(S, E, Loc);
13093 return true;
13094 }
13095
13096 break;
13097 case Expr::MLV_ConstAddrSpace:
13098 DiagnoseConstAssignment(S, E, Loc);
13099 return true;
13100 case Expr::MLV_ConstQualifiedField:
13101 DiagnoseRecursiveConstFields(S, E, Loc);
13102 return true;
13103 case Expr::MLV_ArrayType:
13104 case Expr::MLV_ArrayTemporary:
13105 DiagID = diag::err_typecheck_array_not_modifiable_lvalue;
13106 NeedType = true;
13107 break;
13108 case Expr::MLV_NotObjectType:
13109 DiagID = diag::err_typecheck_non_object_not_modifiable_lvalue;
13110 NeedType = true;
13111 break;
13112 case Expr::MLV_LValueCast:
13113 DiagID = diag::err_typecheck_lvalue_casts_not_supported;
13114 break;
13115 case Expr::MLV_Valid:
13116 llvm_unreachable("did not take early return for MLV_Valid")::llvm::llvm_unreachable_internal("did not take early return for MLV_Valid"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 13116)
;
13117 case Expr::MLV_InvalidExpression:
13118 case Expr::MLV_MemberFunction:
13119 case Expr::MLV_ClassTemporary:
13120 DiagID = diag::err_typecheck_expression_not_modifiable_lvalue;
13121 break;
13122 case Expr::MLV_IncompleteType:
13123 case Expr::MLV_IncompleteVoidType:
13124 return S.RequireCompleteType(Loc, E->getType(),
13125 diag::err_typecheck_incomplete_type_not_modifiable_lvalue, E);
13126 case Expr::MLV_DuplicateVectorComponents:
13127 DiagID = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
13128 break;
13129 case Expr::MLV_NoSetterProperty:
13130 llvm_unreachable("readonly properties should be processed differently")::llvm::llvm_unreachable_internal("readonly properties should be processed differently"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 13130)
;
13131 case Expr::MLV_InvalidMessageExpression:
13132 DiagID = diag::err_readonly_message_assignment;
13133 break;
13134 case Expr::MLV_SubObjCPropertySetting:
13135 DiagID = diag::err_no_subobject_property_setting;
13136 break;
13137 }
13138
13139 SourceRange Assign;
13140 if (Loc != OrigLoc)
13141 Assign = SourceRange(OrigLoc, OrigLoc);
13142 if (NeedType)
13143 S.Diag(Loc, DiagID) << E->getType() << E->getSourceRange() << Assign;
13144 else
13145 S.Diag(Loc, DiagID) << E->getSourceRange() << Assign;
13146 return true;
13147}
13148
13149static void CheckIdentityFieldAssignment(Expr *LHSExpr, Expr *RHSExpr,
13150 SourceLocation Loc,
13151 Sema &Sema) {
13152 if (Sema.inTemplateInstantiation())
13153 return;
13154 if (Sema.isUnevaluatedContext())
13155 return;
13156 if (Loc.isInvalid() || Loc.isMacroID())
13157 return;
13158 if (LHSExpr->getExprLoc().isMacroID() || RHSExpr->getExprLoc().isMacroID())
13159 return;
13160
13161 // C / C++ fields
13162 MemberExpr *ML = dyn_cast<MemberExpr>(LHSExpr);
13163 MemberExpr *MR = dyn_cast<MemberExpr>(RHSExpr);
13164 if (ML && MR) {
13165 if (!(isa<CXXThisExpr>(ML->getBase()) && isa<CXXThisExpr>(MR->getBase())))
13166 return;
13167 const ValueDecl *LHSDecl =
13168 cast<ValueDecl>(ML->getMemberDecl()->getCanonicalDecl());
13169 const ValueDecl *RHSDecl =
13170 cast<ValueDecl>(MR->getMemberDecl()->getCanonicalDecl());
13171 if (LHSDecl != RHSDecl)
13172 return;
13173 if (LHSDecl->getType().isVolatileQualified())
13174 return;
13175 if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
13176 if (RefTy->getPointeeType().isVolatileQualified())
13177 return;
13178
13179 Sema.Diag(Loc, diag::warn_identity_field_assign) << 0;
13180 }
13181
13182 // Objective-C instance variables
13183 ObjCIvarRefExpr *OL = dyn_cast<ObjCIvarRefExpr>(LHSExpr);
13184 ObjCIvarRefExpr *OR = dyn_cast<ObjCIvarRefExpr>(RHSExpr);
13185 if (OL && OR && OL->getDecl() == OR->getDecl()) {
13186 DeclRefExpr *RL = dyn_cast<DeclRefExpr>(OL->getBase()->IgnoreImpCasts());
13187 DeclRefExpr *RR = dyn_cast<DeclRefExpr>(OR->getBase()->IgnoreImpCasts());
13188 if (RL && RR && RL->getDecl() == RR->getDecl())
13189 Sema.Diag(Loc, diag::warn_identity_field_assign) << 1;
13190 }
13191}
13192
13193// C99 6.5.16.1
13194QualType Sema::CheckAssignmentOperands(Expr *LHSExpr, ExprResult &RHS,
13195 SourceLocation Loc,
13196 QualType CompoundType) {
13197 assert(!LHSExpr->hasPlaceholderType(BuiltinType::PseudoObject))(static_cast <bool> (!LHSExpr->hasPlaceholderType(BuiltinType
::PseudoObject)) ? void (0) : __assert_fail ("!LHSExpr->hasPlaceholderType(BuiltinType::PseudoObject)"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 13197, __extension__ __PRETTY_FUNCTION__))
;
13198
13199 // Verify that LHS is a modifiable lvalue, and emit error if not.
13200 if (CheckForModifiableLvalue(LHSExpr, Loc, *this))
13201 return QualType();
13202
13203 QualType LHSType = LHSExpr->getType();
13204 QualType RHSType = CompoundType.isNull() ? RHS.get()->getType() :
13205 CompoundType;
13206 // OpenCL v1.2 s6.1.1.1 p2:
13207 // The half data type can only be used to declare a pointer to a buffer that
13208 // contains half values
13209 if (getLangOpts().OpenCL &&
13210 !getOpenCLOptions().isAvailableOption("cl_khr_fp16", getLangOpts()) &&
13211 LHSType->isHalfType()) {
13212 Diag(Loc, diag::err_opencl_half_load_store) << 1
13213 << LHSType.getUnqualifiedType();
13214 return QualType();
13215 }
13216
13217 AssignConvertType ConvTy;
13218 if (CompoundType.isNull()) {
13219 Expr *RHSCheck = RHS.get();
13220
13221 CheckIdentityFieldAssignment(LHSExpr, RHSCheck, Loc, *this);
13222
13223 QualType LHSTy(LHSType);
13224 ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
13225 if (RHS.isInvalid())
13226 return QualType();
13227 // Special case of NSObject attributes on c-style pointer types.
13228 if (ConvTy == IncompatiblePointer &&
13229 ((Context.isObjCNSObjectType(LHSType) &&
13230 RHSType->isObjCObjectPointerType()) ||
13231 (Context.isObjCNSObjectType(RHSType) &&
13232 LHSType->isObjCObjectPointerType())))
13233 ConvTy = Compatible;
13234
13235 if (ConvTy == Compatible &&
13236 LHSType->isObjCObjectType())
13237 Diag(Loc, diag::err_objc_object_assignment)
13238 << LHSType;
13239
13240 // If the RHS is a unary plus or minus, check to see if they = and + are
13241 // right next to each other. If so, the user may have typo'd "x =+ 4"
13242 // instead of "x += 4".
13243 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
13244 RHSCheck = ICE->getSubExpr();
13245 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
13246 if ((UO->getOpcode() == UO_Plus || UO->getOpcode() == UO_Minus) &&
13247 Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
13248 // Only if the two operators are exactly adjacent.
13249 Loc.getLocWithOffset(1) == UO->getOperatorLoc() &&
13250 // And there is a space or other character before the subexpr of the
13251 // unary +/-. We don't want to warn on "x=-1".
13252 Loc.getLocWithOffset(2) != UO->getSubExpr()->getBeginLoc() &&
13253 UO->getSubExpr()->getBeginLoc().isFileID()) {
13254 Diag(Loc, diag::warn_not_compound_assign)
13255 << (UO->getOpcode() == UO_Plus ? "+" : "-")
13256 << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
13257 }
13258 }
13259
13260 if (ConvTy == Compatible) {
13261 if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong) {
13262 // Warn about retain cycles where a block captures the LHS, but
13263 // not if the LHS is a simple variable into which the block is
13264 // being stored...unless that variable can be captured by reference!
13265 const Expr *InnerLHS = LHSExpr->IgnoreParenCasts();
13266 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InnerLHS);
13267 if (!DRE || DRE->getDecl()->hasAttr<BlocksAttr>())
13268 checkRetainCycles(LHSExpr, RHS.get());
13269 }
13270
13271 if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong ||
13272 LHSType.isNonWeakInMRRWithObjCWeak(Context)) {
13273 // It is safe to assign a weak reference into a strong variable.
13274 // Although this code can still have problems:
13275 // id x = self.weakProp;
13276 // id y = self.weakProp;
13277 // we do not warn to warn spuriously when 'x' and 'y' are on separate
13278 // paths through the function. This should be revisited if
13279 // -Wrepeated-use-of-weak is made flow-sensitive.
13280 // For ObjCWeak only, we do not warn if the assign is to a non-weak
13281 // variable, which will be valid for the current autorelease scope.
13282 if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak,
13283 RHS.get()->getBeginLoc()))
13284 getCurFunction()->markSafeWeakUse(RHS.get());
13285
13286 } else if (getLangOpts().ObjCAutoRefCount || getLangOpts().ObjCWeak) {
13287 checkUnsafeExprAssigns(Loc, LHSExpr, RHS.get());
13288 }
13289 }
13290 } else {
13291 // Compound assignment "x += y"
13292 ConvTy = CheckAssignmentConstraints(Loc, LHSType, RHSType);
13293 }
13294
13295 if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
13296 RHS.get(), AA_Assigning))
13297 return QualType();
13298
13299 CheckForNullPointerDereference(*this, LHSExpr);
13300
13301 if (getLangOpts().CPlusPlus20 && LHSType.isVolatileQualified()) {
13302 if (CompoundType.isNull()) {
13303 // C++2a [expr.ass]p5:
13304 // A simple-assignment whose left operand is of a volatile-qualified
13305 // type is deprecated unless the assignment is either a discarded-value
13306 // expression or an unevaluated operand
13307 ExprEvalContexts.back().VolatileAssignmentLHSs.push_back(LHSExpr);
13308 } else {
13309 // C++2a [expr.ass]p6:
13310 // [Compound-assignment] expressions are deprecated if E1 has
13311 // volatile-qualified type
13312 Diag(Loc, diag::warn_deprecated_compound_assign_volatile) << LHSType;
13313 }
13314 }
13315
13316 // C99 6.5.16p3: The type of an assignment expression is the type of the
13317 // left operand unless the left operand has qualified type, in which case
13318 // it is the unqualified version of the type of the left operand.
13319 // C99 6.5.16.1p2: In simple assignment, the value of the right operand
13320 // is converted to the type of the assignment expression (above).
13321 // C++ 5.17p1: the type of the assignment expression is that of its left
13322 // operand.
13323 return (getLangOpts().CPlusPlus
13324 ? LHSType : LHSType.getUnqualifiedType());
13325}
13326
13327// Only ignore explicit casts to void.
13328static bool IgnoreCommaOperand(const Expr *E) {
13329 E = E->IgnoreParens();
13330
13331 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
13332 if (CE->getCastKind() == CK_ToVoid) {
13333 return true;
13334 }
13335
13336 // static_cast<void> on a dependent type will not show up as CK_ToVoid.
13337 if (CE->getCastKind() == CK_Dependent && E->getType()->isVoidType() &&
13338 CE->getSubExpr()->getType()->isDependentType()) {
13339 return true;
13340 }
13341 }
13342
13343 return false;
13344}
13345
13346// Look for instances where it is likely the comma operator is confused with
13347// another operator. There is an explicit list of acceptable expressions for
13348// the left hand side of the comma operator, otherwise emit a warning.
13349void Sema::DiagnoseCommaOperator(const Expr *LHS, SourceLocation Loc) {
13350 // No warnings in macros
13351 if (Loc.isMacroID())
13352 return;
13353
13354 // Don't warn in template instantiations.
13355 if (inTemplateInstantiation())
13356 return;
13357
13358 // Scope isn't fine-grained enough to explicitly list the specific cases, so
13359 // instead, skip more than needed, then call back into here with the
13360 // CommaVisitor in SemaStmt.cpp.
13361 // The listed locations are the initialization and increment portions
13362 // of a for loop. The additional checks are on the condition of
13363 // if statements, do/while loops, and for loops.
13364 // Differences in scope flags for C89 mode requires the extra logic.
13365 const unsigned ForIncrementFlags =
13366 getLangOpts().C99 || getLangOpts().CPlusPlus
13367 ? Scope::ControlScope | Scope::ContinueScope | Scope::BreakScope
13368 : Scope::ContinueScope | Scope::BreakScope;
13369 const unsigned ForInitFlags = Scope::ControlScope | Scope::DeclScope;
13370 const unsigned ScopeFlags = getCurScope()->getFlags();
13371 if ((ScopeFlags & ForIncrementFlags) == ForIncrementFlags ||
13372 (ScopeFlags & ForInitFlags) == ForInitFlags)
13373 return;
13374
13375 // If there are multiple comma operators used together, get the RHS of the
13376 // of the comma operator as the LHS.
13377 while (const BinaryOperator *BO = dyn_cast<BinaryOperator>(LHS)) {
13378 if (BO->getOpcode() != BO_Comma)
13379 break;
13380 LHS = BO->getRHS();
13381 }
13382
13383 // Only allow some expressions on LHS to not warn.
13384 if (IgnoreCommaOperand(LHS))
13385 return;
13386
13387 Diag(Loc, diag::warn_comma_operator);
13388 Diag(LHS->getBeginLoc(), diag::note_cast_to_void)
13389 << LHS->getSourceRange()
13390 << FixItHint::CreateInsertion(LHS->getBeginLoc(),
13391 LangOpts.CPlusPlus ? "static_cast<void>("
13392 : "(void)(")
13393 << FixItHint::CreateInsertion(PP.getLocForEndOfToken(LHS->getEndLoc()),
13394 ")");
13395}
13396
13397// C99 6.5.17
13398static QualType CheckCommaOperands(Sema &S, ExprResult &LHS, ExprResult &RHS,
13399 SourceLocation Loc) {
13400 LHS = S.CheckPlaceholderExpr(LHS.get());
13401 RHS = S.CheckPlaceholderExpr(RHS.get());
13402 if (LHS.isInvalid() || RHS.isInvalid())
13403 return QualType();
13404
13405 // C's comma performs lvalue conversion (C99 6.3.2.1) on both its
13406 // operands, but not unary promotions.
13407 // C++'s comma does not do any conversions at all (C++ [expr.comma]p1).
13408
13409 // So we treat the LHS as a ignored value, and in C++ we allow the
13410 // containing site to determine what should be done with the RHS.
13411 LHS = S.IgnoredValueConversions(LHS.get());
13412 if (LHS.isInvalid())
13413 return QualType();
13414
13415 S.DiagnoseUnusedExprResult(LHS.get());
13416
13417 if (!S.getLangOpts().CPlusPlus) {
13418 RHS = S.DefaultFunctionArrayLvalueConversion(RHS.get());
13419 if (RHS.isInvalid())
13420 return QualType();
13421 if (!RHS.get()->getType()->isVoidType())
13422 S.RequireCompleteType(Loc, RHS.get()->getType(),
13423 diag::err_incomplete_type);
13424 }
13425
13426 if (!S.getDiagnostics().isIgnored(diag::warn_comma_operator, Loc))
13427 S.DiagnoseCommaOperator(LHS.get(), Loc);
13428
13429 return RHS.get()->getType();
13430}
13431
13432/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
13433/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
13434static QualType CheckIncrementDecrementOperand(Sema &S, Expr *Op,
13435 ExprValueKind &VK,
13436 ExprObjectKind &OK,
13437 SourceLocation OpLoc,
13438 bool IsInc, bool IsPrefix) {
13439 if (Op->isTypeDependent())
13440 return S.Context.DependentTy;
13441
13442 QualType ResType = Op->getType();
13443 // Atomic types can be used for increment / decrement where the non-atomic
13444 // versions can, so ignore the _Atomic() specifier for the purpose of
13445 // checking.
13446 if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
13447 ResType = ResAtomicType->getValueType();
13448
13449 assert(!ResType.isNull() && "no type for increment/decrement expression")(static_cast <bool> (!ResType.isNull() && "no type for increment/decrement expression"
) ? void (0) : __assert_fail ("!ResType.isNull() && \"no type for increment/decrement expression\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 13449, __extension__ __PRETTY_FUNCTION__))
;
13450
13451 if (S.getLangOpts().CPlusPlus && ResType->isBooleanType()) {
13452 // Decrement of bool is not allowed.
13453 if (!IsInc) {
13454 S.Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
13455 return QualType();
13456 }
13457 // Increment of bool sets it to true, but is deprecated.
13458 S.Diag(OpLoc, S.getLangOpts().CPlusPlus17 ? diag::ext_increment_bool
13459 : diag::warn_increment_bool)
13460 << Op->getSourceRange();
13461 } else if (S.getLangOpts().CPlusPlus && ResType->isEnumeralType()) {
13462 // Error on enum increments and decrements in C++ mode
13463 S.Diag(OpLoc, diag::err_increment_decrement_enum) << IsInc << ResType;
13464 return QualType();
13465 } else if (ResType->isRealType()) {
13466 // OK!
13467 } else if (ResType->isPointerType()) {
13468 // C99 6.5.2.4p2, 6.5.6p2
13469 if (!checkArithmeticOpPointerOperand(S, OpLoc, Op))
13470 return QualType();
13471 } else if (ResType->isObjCObjectPointerType()) {
13472 // On modern runtimes, ObjC pointer arithmetic is forbidden.
13473 // Otherwise, we just need a complete type.
13474 if (checkArithmeticIncompletePointerType(S, OpLoc, Op) ||
13475 checkArithmeticOnObjCPointer(S, OpLoc, Op))
13476 return QualType();
13477 } else if (ResType->isAnyComplexType()) {
13478 // C99 does not support ++/-- on complex types, we allow as an extension.
13479 S.Diag(OpLoc, diag::ext_integer_increment_complex)
13480 << ResType << Op->getSourceRange();
13481 } else if (ResType->isPlaceholderType()) {
13482 ExprResult PR = S.CheckPlaceholderExpr(Op);
13483 if (PR.isInvalid()) return QualType();
13484 return CheckIncrementDecrementOperand(S, PR.get(), VK, OK, OpLoc,
13485 IsInc, IsPrefix);
13486 } else if (S.getLangOpts().AltiVec && ResType->isVectorType()) {
13487 // OK! ( C/C++ Language Extensions for CBEA(Version 2.6) 10.3 )
13488 } else if (S.getLangOpts().ZVector && ResType->isVectorType() &&
13489 (ResType->castAs<VectorType>()->getVectorKind() !=
13490 VectorType::AltiVecBool)) {
13491 // The z vector extensions allow ++ and -- for non-bool vectors.
13492 } else if(S.getLangOpts().OpenCL && ResType->isVectorType() &&
13493 ResType->castAs<VectorType>()->getElementType()->isIntegerType()) {
13494 // OpenCL V1.2 6.3 says dec/inc ops operate on integer vector types.
13495 } else {
13496 S.Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
13497 << ResType << int(IsInc) << Op->getSourceRange();
13498 return QualType();
13499 }
13500 // At this point, we know we have a real, complex or pointer type.
13501 // Now make sure the operand is a modifiable lvalue.
13502 if (CheckForModifiableLvalue(Op, OpLoc, S))
13503 return QualType();
13504 if (S.getLangOpts().CPlusPlus20 && ResType.isVolatileQualified()) {
13505 // C++2a [expr.pre.inc]p1, [expr.post.inc]p1:
13506 // An operand with volatile-qualified type is deprecated
13507 S.Diag(OpLoc, diag::warn_deprecated_increment_decrement_volatile)
13508 << IsInc << ResType;
13509 }
13510 // In C++, a prefix increment is the same type as the operand. Otherwise
13511 // (in C or with postfix), the increment is the unqualified type of the
13512 // operand.
13513 if (IsPrefix && S.getLangOpts().CPlusPlus) {
13514 VK = VK_LValue;
13515 OK = Op->getObjectKind();
13516 return ResType;
13517 } else {
13518 VK = VK_PRValue;
13519 return ResType.getUnqualifiedType();
13520 }
13521}
13522
13523
13524/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
13525/// This routine allows us to typecheck complex/recursive expressions
13526/// where the declaration is needed for type checking. We only need to
13527/// handle cases when the expression references a function designator
13528/// or is an lvalue. Here are some examples:
13529/// - &(x) => x
13530/// - &*****f => f for f a function designator.
13531/// - &s.xx => s
13532/// - &s.zz[1].yy -> s, if zz is an array
13533/// - *(x + 1) -> x, if x is an array
13534/// - &"123"[2] -> 0
13535/// - & __real__ x -> x
13536///
13537/// FIXME: We don't recurse to the RHS of a comma, nor handle pointers to
13538/// members.
13539static ValueDecl *getPrimaryDecl(Expr *E) {
13540 switch (E->getStmtClass()) {
13541 case Stmt::DeclRefExprClass:
13542 return cast<DeclRefExpr>(E)->getDecl();
13543 case Stmt::MemberExprClass:
13544 // If this is an arrow operator, the address is an offset from
13545 // the base's value, so the object the base refers to is
13546 // irrelevant.
13547 if (cast<MemberExpr>(E)->isArrow())
13548 return nullptr;
13549 // Otherwise, the expression refers to a part of the base
13550 return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
13551 case Stmt::ArraySubscriptExprClass: {
13552 // FIXME: This code shouldn't be necessary! We should catch the implicit
13553 // promotion of register arrays earlier.
13554 Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
13555 if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
13556 if (ICE->getSubExpr()->getType()->isArrayType())
13557 return getPrimaryDecl(ICE->getSubExpr());
13558 }
13559 return nullptr;
13560 }
13561 case Stmt::UnaryOperatorClass: {
13562 UnaryOperator *UO = cast<UnaryOperator>(E);
13563
13564 switch(UO->getOpcode()) {
13565 case UO_Real:
13566 case UO_Imag:
13567 case UO_Extension:
13568 return getPrimaryDecl(UO->getSubExpr());
13569 default:
13570 return nullptr;
13571 }
13572 }
13573 case Stmt::ParenExprClass:
13574 return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
13575 case Stmt::ImplicitCastExprClass:
13576 // If the result of an implicit cast is an l-value, we care about
13577 // the sub-expression; otherwise, the result here doesn't matter.
13578 return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
13579 case Stmt::CXXUuidofExprClass:
13580 return cast<CXXUuidofExpr>(E)->getGuidDecl();
13581 default:
13582 return nullptr;
13583 }
13584}
13585
13586namespace {
13587enum {
13588 AO_Bit_Field = 0,
13589 AO_Vector_Element = 1,
13590 AO_Property_Expansion = 2,
13591 AO_Register_Variable = 3,
13592 AO_Matrix_Element = 4,
13593 AO_No_Error = 5
13594};
13595}
13596/// Diagnose invalid operand for address of operations.
13597///
13598/// \param Type The type of operand which cannot have its address taken.
13599static void diagnoseAddressOfInvalidType(Sema &S, SourceLocation Loc,
13600 Expr *E, unsigned Type) {
13601 S.Diag(Loc, diag::err_typecheck_address_of) << Type << E->getSourceRange();
13602}
13603
13604/// CheckAddressOfOperand - The operand of & must be either a function
13605/// designator or an lvalue designating an object. If it is an lvalue, the
13606/// object cannot be declared with storage class register or be a bit field.
13607/// Note: The usual conversions are *not* applied to the operand of the &
13608/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
13609/// In C++, the operand might be an overloaded function name, in which case
13610/// we allow the '&' but retain the overloaded-function type.
13611QualType Sema::CheckAddressOfOperand(ExprResult &OrigOp, SourceLocation OpLoc) {
13612 if (const BuiltinType *PTy = OrigOp.get()->getType()->getAsPlaceholderType()){
13613 if (PTy->getKind() == BuiltinType::Overload) {
13614 Expr *E = OrigOp.get()->IgnoreParens();
13615 if (!isa<OverloadExpr>(E)) {
13616 assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf)(static_cast <bool> (cast<UnaryOperator>(E)->getOpcode
() == UO_AddrOf) ? void (0) : __assert_fail ("cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 13616, __extension__ __PRETTY_FUNCTION__))
;
13617 Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof_addrof_function)
13618 << OrigOp.get()->getSourceRange();
13619 return QualType();
13620 }
13621
13622 OverloadExpr *Ovl = cast<OverloadExpr>(E);
13623 if (isa<UnresolvedMemberExpr>(Ovl))
13624 if (!ResolveSingleFunctionTemplateSpecialization(Ovl)) {
13625 Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
13626 << OrigOp.get()->getSourceRange();
13627 return QualType();
13628 }
13629
13630 return Context.OverloadTy;
13631 }
13632
13633 if (PTy->getKind() == BuiltinType::UnknownAny)
13634 return Context.UnknownAnyTy;
13635
13636 if (PTy->getKind() == BuiltinType::BoundMember) {
13637 Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
13638 << OrigOp.get()->getSourceRange();
13639 return QualType();
13640 }
13641
13642 OrigOp = CheckPlaceholderExpr(OrigOp.get());
13643 if (OrigOp.isInvalid()) return QualType();
13644 }
13645
13646 if (OrigOp.get()->isTypeDependent())
13647 return Context.DependentTy;
13648
13649 assert(!OrigOp.get()->getType()->isPlaceholderType())(static_cast <bool> (!OrigOp.get()->getType()->isPlaceholderType
()) ? void (0) : __assert_fail ("!OrigOp.get()->getType()->isPlaceholderType()"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 13649, __extension__ __PRETTY_FUNCTION__))
;
13650
13651 // Make sure to ignore parentheses in subsequent checks
13652 Expr *op = OrigOp.get()->IgnoreParens();
13653
13654 // In OpenCL captures for blocks called as lambda functions
13655 // are located in the private address space. Blocks used in
13656 // enqueue_kernel can be located in a different address space
13657 // depending on a vendor implementation. Thus preventing
13658 // taking an address of the capture to avoid invalid AS casts.
13659 if (LangOpts.OpenCL) {
13660 auto* VarRef = dyn_cast<DeclRefExpr>(op);
13661 if (VarRef && VarRef->refersToEnclosingVariableOrCapture()) {
13662 Diag(op->getExprLoc(), diag::err_opencl_taking_address_capture);
13663 return QualType();
13664 }
13665 }
13666
13667 if (getLangOpts().C99) {
13668 // Implement C99-only parts of addressof rules.
13669 if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
13670 if (uOp->getOpcode() == UO_Deref)
13671 // Per C99 6.5.3.2, the address of a deref always returns a valid result
13672 // (assuming the deref expression is valid).
13673 return uOp->getSubExpr()->getType();
13674 }
13675 // Technically, there should be a check for array subscript
13676 // expressions here, but the result of one is always an lvalue anyway.
13677 }
13678 ValueDecl *dcl = getPrimaryDecl(op);
13679
13680 if (auto *FD = dyn_cast_or_null<FunctionDecl>(dcl))
13681 if (!checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
13682 op->getBeginLoc()))
13683 return QualType();
13684
13685 Expr::LValueClassification lval = op->ClassifyLValue(Context);
13686 unsigned AddressOfError = AO_No_Error;
13687
13688 if (lval == Expr::LV_ClassTemporary || lval == Expr::LV_ArrayTemporary) {
13689 bool sfinae = (bool)isSFINAEContext();
13690 Diag(OpLoc, isSFINAEContext() ? diag::err_typecheck_addrof_temporary
13691 : diag::ext_typecheck_addrof_temporary)
13692 << op->getType() << op->getSourceRange();
13693 if (sfinae)
13694 return QualType();
13695 // Materialize the temporary as an lvalue so that we can take its address.
13696 OrigOp = op =
13697 CreateMaterializeTemporaryExpr(op->getType(), OrigOp.get(), true);
13698 } else if (isa<ObjCSelectorExpr>(op)) {
13699 return Context.getPointerType(op->getType());
13700 } else if (lval == Expr::LV_MemberFunction) {
13701 // If it's an instance method, make a member pointer.
13702 // The expression must have exactly the form &A::foo.
13703
13704 // If the underlying expression isn't a decl ref, give up.
13705 if (!isa<DeclRefExpr>(op)) {
13706 Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
13707 << OrigOp.get()->getSourceRange();
13708 return QualType();
13709 }
13710 DeclRefExpr *DRE = cast<DeclRefExpr>(op);
13711 CXXMethodDecl *MD = cast<CXXMethodDecl>(DRE->getDecl());
13712
13713 // The id-expression was parenthesized.
13714 if (OrigOp.get() != DRE) {
13715 Diag(OpLoc, diag::err_parens_pointer_member_function)
13716 << OrigOp.get()->getSourceRange();
13717
13718 // The method was named without a qualifier.
13719 } else if (!DRE->getQualifier()) {
13720 if (MD->getParent()->getName().empty())
13721 Diag(OpLoc, diag::err_unqualified_pointer_member_function)
13722 << op->getSourceRange();
13723 else {
13724 SmallString<32> Str;
13725 StringRef Qual = (MD->getParent()->getName() + "::").toStringRef(Str);
13726 Diag(OpLoc, diag::err_unqualified_pointer_member_function)
13727 << op->getSourceRange()
13728 << FixItHint::CreateInsertion(op->getSourceRange().getBegin(), Qual);
13729 }
13730 }
13731
13732 // Taking the address of a dtor is illegal per C++ [class.dtor]p2.
13733 if (isa<CXXDestructorDecl>(MD))
13734 Diag(OpLoc, diag::err_typecheck_addrof_dtor) << op->getSourceRange();
13735
13736 QualType MPTy = Context.getMemberPointerType(
13737 op->getType(), Context.getTypeDeclType(MD->getParent()).getTypePtr());
13738 // Under the MS ABI, lock down the inheritance model now.
13739 if (Context.getTargetInfo().getCXXABI().isMicrosoft())
13740 (void)isCompleteType(OpLoc, MPTy);
13741 return MPTy;
13742 } else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
13743 // C99 6.5.3.2p1
13744 // The operand must be either an l-value or a function designator
13745 if (!op->getType()->isFunctionType()) {
13746 // Use a special diagnostic for loads from property references.
13747 if (isa<PseudoObjectExpr>(op)) {
13748 AddressOfError = AO_Property_Expansion;
13749 } else {
13750 Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
13751 << op->getType() << op->getSourceRange();
13752 return QualType();
13753 }
13754 }
13755 } else if (op->getObjectKind() == OK_BitField) { // C99 6.5.3.2p1
13756 // The operand cannot be a bit-field
13757 AddressOfError = AO_Bit_Field;
13758 } else if (op->getObjectKind() == OK_VectorComponent) {
13759 // The operand cannot be an element of a vector
13760 AddressOfError = AO_Vector_Element;
13761 } else if (op->getObjectKind() == OK_MatrixComponent) {
13762 // The operand cannot be an element of a matrix.
13763 AddressOfError = AO_Matrix_Element;
13764 } else if (dcl) { // C99 6.5.3.2p1
13765 // We have an lvalue with a decl. Make sure the decl is not declared
13766 // with the register storage-class specifier.
13767 if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
13768 // in C++ it is not error to take address of a register
13769 // variable (c++03 7.1.1P3)
13770 if (vd->getStorageClass() == SC_Register &&
13771 !getLangOpts().CPlusPlus) {
13772 AddressOfError = AO_Register_Variable;
13773 }
13774 } else if (isa<MSPropertyDecl>(dcl)) {
13775 AddressOfError = AO_Property_Expansion;
13776 } else if (isa<FunctionTemplateDecl>(dcl)) {
13777 return Context.OverloadTy;
13778 } else if (isa<FieldDecl>(dcl) || isa<IndirectFieldDecl>(dcl)) {
13779 // Okay: we can take the address of a field.
13780 // Could be a pointer to member, though, if there is an explicit
13781 // scope qualifier for the class.
13782 if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) {
13783 DeclContext *Ctx = dcl->getDeclContext();
13784 if (Ctx && Ctx->isRecord()) {
13785 if (dcl->getType()->isReferenceType()) {
13786 Diag(OpLoc,
13787 diag::err_cannot_form_pointer_to_member_of_reference_type)
13788 << dcl->getDeclName() << dcl->getType();
13789 return QualType();
13790 }
13791
13792 while (cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion())
13793 Ctx = Ctx->getParent();
13794
13795 QualType MPTy = Context.getMemberPointerType(
13796 op->getType(),
13797 Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
13798 // Under the MS ABI, lock down the inheritance model now.
13799 if (Context.getTargetInfo().getCXXABI().isMicrosoft())
13800 (void)isCompleteType(OpLoc, MPTy);
13801 return MPTy;
13802 }
13803 }
13804 } else if (!isa<FunctionDecl>(dcl) && !isa<NonTypeTemplateParmDecl>(dcl) &&
13805 !isa<BindingDecl>(dcl) && !isa<MSGuidDecl>(dcl))
13806 llvm_unreachable("Unknown/unexpected decl type")::llvm::llvm_unreachable_internal("Unknown/unexpected decl type"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 13806)
;
13807 }
13808
13809 if (AddressOfError != AO_No_Error) {
13810 diagnoseAddressOfInvalidType(*this, OpLoc, op, AddressOfError);
13811 return QualType();
13812 }
13813
13814 if (lval == Expr::LV_IncompleteVoidType) {
13815 // Taking the address of a void variable is technically illegal, but we
13816 // allow it in cases which are otherwise valid.
13817 // Example: "extern void x; void* y = &x;".
13818 Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
13819 }
13820
13821 // If the operand has type "type", the result has type "pointer to type".
13822 if (op->getType()->isObjCObjectType())
13823 return Context.getObjCObjectPointerType(op->getType());
13824
13825 CheckAddressOfPackedMember(op);
13826
13827 return Context.getPointerType(op->getType());
13828}
13829
13830static void RecordModifiableNonNullParam(Sema &S, const Expr *Exp) {
13831 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Exp);
13832 if (!DRE)
13833 return;
13834 const Decl *D = DRE->getDecl();
13835 if (!D)
13836 return;
13837 const ParmVarDecl *Param = dyn_cast<ParmVarDecl>(D);
13838 if (!Param)
13839 return;
13840 if (const FunctionDecl* FD = dyn_cast<FunctionDecl>(Param->getDeclContext()))
13841 if (!FD->hasAttr<NonNullAttr>() && !Param->hasAttr<NonNullAttr>())
13842 return;
13843 if (FunctionScopeInfo *FD = S.getCurFunction())
13844 if (!FD->ModifiedNonNullParams.count(Param))
13845 FD->ModifiedNonNullParams.insert(Param);
13846}
13847
13848/// CheckIndirectionOperand - Type check unary indirection (prefix '*').
13849static QualType CheckIndirectionOperand(Sema &S, Expr *Op, ExprValueKind &VK,
13850 SourceLocation OpLoc) {
13851 if (Op->isTypeDependent())
13852 return S.Context.DependentTy;
13853
13854 ExprResult ConvResult = S.UsualUnaryConversions(Op);
13855 if (ConvResult.isInvalid())
13856 return QualType();
13857 Op = ConvResult.get();
13858 QualType OpTy = Op->getType();
13859 QualType Result;
13860
13861 if (isa<CXXReinterpretCastExpr>(Op)) {
13862 QualType OpOrigType = Op->IgnoreParenCasts()->getType();
13863 S.CheckCompatibleReinterpretCast(OpOrigType, OpTy, /*IsDereference*/true,
13864 Op->getSourceRange());
13865 }
13866
13867 if (const PointerType *PT = OpTy->getAs<PointerType>())
13868 {
13869 Result = PT->getPointeeType();
13870 }
13871 else if (const ObjCObjectPointerType *OPT =
13872 OpTy->getAs<ObjCObjectPointerType>())
13873 Result = OPT->getPointeeType();
13874 else {
13875 ExprResult PR = S.CheckPlaceholderExpr(Op);
13876 if (PR.isInvalid()) return QualType();
13877 if (PR.get() != Op)
13878 return CheckIndirectionOperand(S, PR.get(), VK, OpLoc);
13879 }
13880
13881 if (Result.isNull()) {
13882 S.Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
13883 << OpTy << Op->getSourceRange();
13884 return QualType();
13885 }
13886
13887 // Note that per both C89 and C99, indirection is always legal, even if Result
13888 // is an incomplete type or void. It would be possible to warn about
13889 // dereferencing a void pointer, but it's completely well-defined, and such a
13890 // warning is unlikely to catch any mistakes. In C++, indirection is not valid
13891 // for pointers to 'void' but is fine for any other pointer type:
13892 //
13893 // C++ [expr.unary.op]p1:
13894 // [...] the expression to which [the unary * operator] is applied shall
13895 // be a pointer to an object type, or a pointer to a function type
13896 if (S.getLangOpts().CPlusPlus && Result->isVoidType())
13897 S.Diag(OpLoc, diag::ext_typecheck_indirection_through_void_pointer)
13898 << OpTy << Op->getSourceRange();
13899
13900 // Dereferences are usually l-values...
13901 VK = VK_LValue;
13902
13903 // ...except that certain expressions are never l-values in C.
13904 if (!S.getLangOpts().CPlusPlus && Result.isCForbiddenLValueType())
13905 VK = VK_PRValue;
13906
13907 return Result;
13908}
13909
13910BinaryOperatorKind Sema::ConvertTokenKindToBinaryOpcode(tok::TokenKind Kind) {
13911 BinaryOperatorKind Opc;
13912 switch (Kind) {
13913 default: llvm_unreachable("Unknown binop!")::llvm::llvm_unreachable_internal("Unknown binop!", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 13913)
;
13914 case tok::periodstar: Opc = BO_PtrMemD; break;
13915 case tok::arrowstar: Opc = BO_PtrMemI; break;
13916 case tok::star: Opc = BO_Mul; break;
13917 case tok::slash: Opc = BO_Div; break;
13918 case tok::percent: Opc = BO_Rem; break;
13919 case tok::plus: Opc = BO_Add; break;
13920 case tok::minus: Opc = BO_Sub; break;
13921 case tok::lessless: Opc = BO_Shl; break;
13922 case tok::greatergreater: Opc = BO_Shr; break;
13923 case tok::lessequal: Opc = BO_LE; break;
13924 case tok::less: Opc = BO_LT; break;
13925 case tok::greaterequal: Opc = BO_GE; break;
13926 case tok::greater: Opc = BO_GT; break;
13927 case tok::exclaimequal: Opc = BO_NE; break;
13928 case tok::equalequal: Opc = BO_EQ; break;
13929 case tok::spaceship: Opc = BO_Cmp; break;
13930 case tok::amp: Opc = BO_And; break;
13931 case tok::caret: Opc = BO_Xor; break;
13932 case tok::pipe: Opc = BO_Or; break;
13933 case tok::ampamp: Opc = BO_LAnd; break;
13934 case tok::pipepipe: Opc = BO_LOr; break;
13935 case tok::equal: Opc = BO_Assign; break;
13936 case tok::starequal: Opc = BO_MulAssign; break;
13937 case tok::slashequal: Opc = BO_DivAssign; break;
13938 case tok::percentequal: Opc = BO_RemAssign; break;
13939 case tok::plusequal: Opc = BO_AddAssign; break;
13940 case tok::minusequal: Opc = BO_SubAssign; break;
13941 case tok::lesslessequal: Opc = BO_ShlAssign; break;
13942 case tok::greatergreaterequal: Opc = BO_ShrAssign; break;
13943 case tok::ampequal: Opc = BO_AndAssign; break;
13944 case tok::caretequal: Opc = BO_XorAssign; break;
13945 case tok::pipeequal: Opc = BO_OrAssign; break;
13946 case tok::comma: Opc = BO_Comma; break;
13947 }
13948 return Opc;
13949}
13950
13951static inline UnaryOperatorKind ConvertTokenKindToUnaryOpcode(
13952 tok::TokenKind Kind) {
13953 UnaryOperatorKind Opc;
13954 switch (Kind) {
13955 default: llvm_unreachable("Unknown unary op!")::llvm::llvm_unreachable_internal("Unknown unary op!", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 13955)
;
13956 case tok::plusplus: Opc = UO_PreInc; break;
13957 case tok::minusminus: Opc = UO_PreDec; break;
13958 case tok::amp: Opc = UO_AddrOf; break;
13959 case tok::star: Opc = UO_Deref; break;
13960 case tok::plus: Opc = UO_Plus; break;
13961 case tok::minus: Opc = UO_Minus; break;
13962 case tok::tilde: Opc = UO_Not; break;
13963 case tok::exclaim: Opc = UO_LNot; break;
13964 case tok::kw___real: Opc = UO_Real; break;
13965 case tok::kw___imag: Opc = UO_Imag; break;
13966 case tok::kw___extension__: Opc = UO_Extension; break;
13967 }
13968 return Opc;
13969}
13970
13971/// DiagnoseSelfAssignment - Emits a warning if a value is assigned to itself.
13972/// This warning suppressed in the event of macro expansions.
13973static void DiagnoseSelfAssignment(Sema &S, Expr *LHSExpr, Expr *RHSExpr,
13974 SourceLocation OpLoc, bool IsBuiltin) {
13975 if (S.inTemplateInstantiation())
13976 return;
13977 if (S.isUnevaluatedContext())
13978 return;
13979 if (OpLoc.isInvalid() || OpLoc.isMacroID())
13980 return;
13981 LHSExpr = LHSExpr->IgnoreParenImpCasts();
13982 RHSExpr = RHSExpr->IgnoreParenImpCasts();
13983 const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
13984 const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
13985 if (!LHSDeclRef || !RHSDeclRef ||
13986 LHSDeclRef->getLocation().isMacroID() ||
13987 RHSDeclRef->getLocation().isMacroID())
13988 return;
13989 const ValueDecl *LHSDecl =
13990 cast<ValueDecl>(LHSDeclRef->getDecl()->getCanonicalDecl());
13991 const ValueDecl *RHSDecl =
13992 cast<ValueDecl>(RHSDeclRef->getDecl()->getCanonicalDecl());
13993 if (LHSDecl != RHSDecl)
13994 return;
13995 if (LHSDecl->getType().isVolatileQualified())
13996 return;
13997 if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
13998 if (RefTy->getPointeeType().isVolatileQualified())
13999 return;
14000
14001 S.Diag(OpLoc, IsBuiltin ? diag::warn_self_assignment_builtin
14002 : diag::warn_self_assignment_overloaded)
14003 << LHSDeclRef->getType() << LHSExpr->getSourceRange()
14004 << RHSExpr->getSourceRange();
14005}
14006
14007/// Check if a bitwise-& is performed on an Objective-C pointer. This
14008/// is usually indicative of introspection within the Objective-C pointer.
14009static void checkObjCPointerIntrospection(Sema &S, ExprResult &L, ExprResult &R,
14010 SourceLocation OpLoc) {
14011 if (!S.getLangOpts().ObjC)
14012 return;
14013
14014 const Expr *ObjCPointerExpr = nullptr, *OtherExpr = nullptr;
14015 const Expr *LHS = L.get();
14016 const Expr *RHS = R.get();
14017
14018 if (LHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
14019 ObjCPointerExpr = LHS;
14020 OtherExpr = RHS;
14021 }
14022 else if (RHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
14023 ObjCPointerExpr = RHS;
14024 OtherExpr = LHS;
14025 }
14026
14027 // This warning is deliberately made very specific to reduce false
14028 // positives with logic that uses '&' for hashing. This logic mainly
14029 // looks for code trying to introspect into tagged pointers, which
14030 // code should generally never do.
14031 if (ObjCPointerExpr && isa<IntegerLiteral>(OtherExpr->IgnoreParenCasts())) {
14032 unsigned Diag = diag::warn_objc_pointer_masking;
14033 // Determine if we are introspecting the result of performSelectorXXX.
14034 const Expr *Ex = ObjCPointerExpr->IgnoreParenCasts();
14035 // Special case messages to -performSelector and friends, which
14036 // can return non-pointer values boxed in a pointer value.
14037 // Some clients may wish to silence warnings in this subcase.
14038 if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(Ex)) {
14039 Selector S = ME->getSelector();
14040 StringRef SelArg0 = S.getNameForSlot(0);
14041 if (SelArg0.startswith("performSelector"))
14042 Diag = diag::warn_objc_pointer_masking_performSelector;
14043 }
14044
14045 S.Diag(OpLoc, Diag)
14046 << ObjCPointerExpr->getSourceRange();
14047 }
14048}
14049
14050static NamedDecl *getDeclFromExpr(Expr *E) {
14051 if (!E)
14052 return nullptr;
14053 if (auto *DRE = dyn_cast<DeclRefExpr>(E))
14054 return DRE->getDecl();
14055 if (auto *ME = dyn_cast<MemberExpr>(E))
14056 return ME->getMemberDecl();
14057 if (auto *IRE = dyn_cast<ObjCIvarRefExpr>(E))
14058 return IRE->getDecl();
14059 return nullptr;
14060}
14061
14062// This helper function promotes a binary operator's operands (which are of a
14063// half vector type) to a vector of floats and then truncates the result to
14064// a vector of either half or short.
14065static ExprResult convertHalfVecBinOp(Sema &S, ExprResult LHS, ExprResult RHS,
14066 BinaryOperatorKind Opc, QualType ResultTy,
14067 ExprValueKind VK, ExprObjectKind OK,
14068 bool IsCompAssign, SourceLocation OpLoc,
14069 FPOptionsOverride FPFeatures) {
14070 auto &Context = S.getASTContext();
14071 assert((isVector(ResultTy, Context.HalfTy) ||(static_cast <bool> ((isVector(ResultTy, Context.HalfTy
) || isVector(ResultTy, Context.ShortTy)) && "Result must be a vector of half or short"
) ? void (0) : __assert_fail ("(isVector(ResultTy, Context.HalfTy) || isVector(ResultTy, Context.ShortTy)) && \"Result must be a vector of half or short\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 14073, __extension__ __PRETTY_FUNCTION__))
14072 isVector(ResultTy, Context.ShortTy)) &&(static_cast <bool> ((isVector(ResultTy, Context.HalfTy
) || isVector(ResultTy, Context.ShortTy)) && "Result must be a vector of half or short"
) ? void (0) : __assert_fail ("(isVector(ResultTy, Context.HalfTy) || isVector(ResultTy, Context.ShortTy)) && \"Result must be a vector of half or short\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 14073, __extension__ __PRETTY_FUNCTION__))
14073 "Result must be a vector of half or short")(static_cast <bool> ((isVector(ResultTy, Context.HalfTy
) || isVector(ResultTy, Context.ShortTy)) && "Result must be a vector of half or short"
) ? void (0) : __assert_fail ("(isVector(ResultTy, Context.HalfTy) || isVector(ResultTy, Context.ShortTy)) && \"Result must be a vector of half or short\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 14073, __extension__ __PRETTY_FUNCTION__))
;
14074 assert(isVector(LHS.get()->getType(), Context.HalfTy) &&(static_cast <bool> (isVector(LHS.get()->getType(), Context
.HalfTy) && isVector(RHS.get()->getType(), Context
.HalfTy) && "both operands expected to be a half vector"
) ? void (0) : __assert_fail ("isVector(LHS.get()->getType(), Context.HalfTy) && isVector(RHS.get()->getType(), Context.HalfTy) && \"both operands expected to be a half vector\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 14076, __extension__ __PRETTY_FUNCTION__))
14075 isVector(RHS.get()->getType(), Context.HalfTy) &&(static_cast <bool> (isVector(LHS.get()->getType(), Context
.HalfTy) && isVector(RHS.get()->getType(), Context
.HalfTy) && "both operands expected to be a half vector"
) ? void (0) : __assert_fail ("isVector(LHS.get()->getType(), Context.HalfTy) && isVector(RHS.get()->getType(), Context.HalfTy) && \"both operands expected to be a half vector\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 14076, __extension__ __PRETTY_FUNCTION__))
14076 "both operands expected to be a half vector")(static_cast <bool> (isVector(LHS.get()->getType(), Context
.HalfTy) && isVector(RHS.get()->getType(), Context
.HalfTy) && "both operands expected to be a half vector"
) ? void (0) : __assert_fail ("isVector(LHS.get()->getType(), Context.HalfTy) && isVector(RHS.get()->getType(), Context.HalfTy) && \"both operands expected to be a half vector\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 14076, __extension__ __PRETTY_FUNCTION__))
;
14077
14078 RHS = convertVector(RHS.get(), Context.FloatTy, S);
14079 QualType BinOpResTy = RHS.get()->getType();
14080
14081 // If Opc is a comparison, ResultType is a vector of shorts. In that case,
14082 // change BinOpResTy to a vector of ints.
14083 if (isVector(ResultTy, Context.ShortTy))
14084 BinOpResTy = S.GetSignedVectorType(BinOpResTy);
14085
14086 if (IsCompAssign)
14087 return CompoundAssignOperator::Create(Context, LHS.get(), RHS.get(), Opc,
14088 ResultTy, VK, OK, OpLoc, FPFeatures,
14089 BinOpResTy, BinOpResTy);
14090
14091 LHS = convertVector(LHS.get(), Context.FloatTy, S);
14092 auto *BO = BinaryOperator::Create(Context, LHS.get(), RHS.get(), Opc,
14093 BinOpResTy, VK, OK, OpLoc, FPFeatures);
14094 return convertVector(BO, ResultTy->castAs<VectorType>()->getElementType(), S);
14095}
14096
14097static std::pair<ExprResult, ExprResult>
14098CorrectDelayedTyposInBinOp(Sema &S, BinaryOperatorKind Opc, Expr *LHSExpr,
14099 Expr *RHSExpr) {
14100 ExprResult LHS = LHSExpr, RHS = RHSExpr;
14101 if (!S.Context.isDependenceAllowed()) {
14102 // C cannot handle TypoExpr nodes on either side of a binop because it
14103 // doesn't handle dependent types properly, so make sure any TypoExprs have
14104 // been dealt with before checking the operands.
14105 LHS = S.CorrectDelayedTyposInExpr(LHS);
14106 RHS = S.CorrectDelayedTyposInExpr(
14107 RHS, /*InitDecl=*/nullptr, /*RecoverUncorrectedTypos=*/false,
14108 [Opc, LHS](Expr *E) {
14109 if (Opc != BO_Assign)
14110 return ExprResult(E);
14111 // Avoid correcting the RHS to the same Expr as the LHS.
14112 Decl *D = getDeclFromExpr(E);
14113 return (D && D == getDeclFromExpr(LHS.get())) ? ExprError() : E;
14114 });
14115 }
14116 return std::make_pair(LHS, RHS);
14117}
14118
14119/// Returns true if conversion between vectors of halfs and vectors of floats
14120/// is needed.
14121static bool needsConversionOfHalfVec(bool OpRequiresConversion, ASTContext &Ctx,
14122 Expr *E0, Expr *E1 = nullptr) {
14123 if (!OpRequiresConversion || Ctx.getLangOpts().NativeHalfType ||
14124 Ctx.getTargetInfo().useFP16ConversionIntrinsics())
14125 return false;
14126
14127 auto HasVectorOfHalfType = [&Ctx](Expr *E) {
14128 QualType Ty = E->IgnoreImplicit()->getType();
14129
14130 // Don't promote half precision neon vectors like float16x4_t in arm_neon.h
14131 // to vectors of floats. Although the element type of the vectors is __fp16,
14132 // the vectors shouldn't be treated as storage-only types. See the
14133 // discussion here: https://reviews.llvm.org/rG825235c140e7
14134 if (const VectorType *VT = Ty->getAs<VectorType>()) {
14135 if (VT->getVectorKind() == VectorType::NeonVector)
14136 return false;
14137 return VT->getElementType().getCanonicalType() == Ctx.HalfTy;
14138 }
14139 return false;
14140 };
14141
14142 return HasVectorOfHalfType(E0) && (!E1 || HasVectorOfHalfType(E1));
14143}
14144
14145/// CreateBuiltinBinOp - Creates a new built-in binary operation with
14146/// operator @p Opc at location @c TokLoc. This routine only supports
14147/// built-in operations; ActOnBinOp handles overloaded operators.
14148ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
14149 BinaryOperatorKind Opc,
14150 Expr *LHSExpr, Expr *RHSExpr) {
14151 if (getLangOpts().CPlusPlus11 && isa<InitListExpr>(RHSExpr)) {
14152 // The syntax only allows initializer lists on the RHS of assignment,
14153 // so we don't need to worry about accepting invalid code for
14154 // non-assignment operators.
14155 // C++11 5.17p9:
14156 // The meaning of x = {v} [...] is that of x = T(v) [...]. The meaning
14157 // of x = {} is x = T().
14158 InitializationKind Kind = InitializationKind::CreateDirectList(
14159 RHSExpr->getBeginLoc(), RHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
14160 InitializedEntity Entity =
14161 InitializedEntity::InitializeTemporary(LHSExpr->getType());
14162 InitializationSequence InitSeq(*this, Entity, Kind, RHSExpr);
14163 ExprResult Init = InitSeq.Perform(*this, Entity, Kind, RHSExpr);
14164 if (Init.isInvalid())
14165 return Init;
14166 RHSExpr = Init.get();
14167 }
14168
14169 ExprResult LHS = LHSExpr, RHS = RHSExpr;
14170 QualType ResultTy; // Result type of the binary operator.
14171 // The following two variables are used for compound assignment operators
14172 QualType CompLHSTy; // Type of LHS after promotions for computation
14173 QualType CompResultTy; // Type of computation result
14174 ExprValueKind VK = VK_PRValue;
14175 ExprObjectKind OK = OK_Ordinary;
14176 bool ConvertHalfVec = false;
14177
14178 std::tie(LHS, RHS) = CorrectDelayedTyposInBinOp(*this, Opc, LHSExpr, RHSExpr);
14179 if (!LHS.isUsable() || !RHS.isUsable())
14180 return ExprError();
14181
14182 if (getLangOpts().OpenCL) {
14183 QualType LHSTy = LHSExpr->getType();
14184 QualType RHSTy = RHSExpr->getType();
14185 // OpenCLC v2.0 s6.13.11.1 allows atomic variables to be initialized by
14186 // the ATOMIC_VAR_INIT macro.
14187 if (LHSTy->isAtomicType() || RHSTy->isAtomicType()) {
14188 SourceRange SR(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
14189 if (BO_Assign == Opc)
14190 Diag(OpLoc, diag::err_opencl_atomic_init) << 0 << SR;
14191 else
14192 ResultTy = InvalidOperands(OpLoc, LHS, RHS);
14193 return ExprError();
14194 }
14195
14196 // OpenCL special types - image, sampler, pipe, and blocks are to be used
14197 // only with a builtin functions and therefore should be disallowed here.
14198 if (LHSTy->isImageType() || RHSTy->isImageType() ||
14199 LHSTy->isSamplerT() || RHSTy->isSamplerT() ||
14200 LHSTy->isPipeType() || RHSTy->isPipeType() ||
14201 LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) {
14202 ResultTy = InvalidOperands(OpLoc, LHS, RHS);
14203 return ExprError();
14204 }
14205 }
14206
14207 switch (Opc) {
14208 case BO_Assign:
14209 ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, QualType());
14210 if (getLangOpts().CPlusPlus &&
14211 LHS.get()->getObjectKind() != OK_ObjCProperty) {
14212 VK = LHS.get()->getValueKind();
14213 OK = LHS.get()->getObjectKind();
14214 }
14215 if (!ResultTy.isNull()) {
14216 DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc, true);
14217 DiagnoseSelfMove(LHS.get(), RHS.get(), OpLoc);
14218
14219 // Avoid copying a block to the heap if the block is assigned to a local
14220 // auto variable that is declared in the same scope as the block. This
14221 // optimization is unsafe if the local variable is declared in an outer
14222 // scope. For example:
14223 //
14224 // BlockTy b;
14225 // {
14226 // b = ^{...};
14227 // }
14228 // // It is unsafe to invoke the block here if it wasn't copied to the
14229 // // heap.
14230 // b();
14231
14232 if (auto *BE = dyn_cast<BlockExpr>(RHS.get()->IgnoreParens()))
14233 if (auto *DRE = dyn_cast<DeclRefExpr>(LHS.get()->IgnoreParens()))
14234 if (auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
14235 if (VD->hasLocalStorage() && getCurScope()->isDeclScope(VD))
14236 BE->getBlockDecl()->setCanAvoidCopyToHeap();
14237
14238 if (LHS.get()->getType().hasNonTrivialToPrimitiveCopyCUnion())
14239 checkNonTrivialCUnion(LHS.get()->getType(), LHS.get()->getExprLoc(),
14240 NTCUC_Assignment, NTCUK_Copy);
14241 }
14242 RecordModifiableNonNullParam(*this, LHS.get());
14243 break;
14244 case BO_PtrMemD:
14245 case BO_PtrMemI:
14246 ResultTy = CheckPointerToMemberOperands(LHS, RHS, VK, OpLoc,
14247 Opc == BO_PtrMemI);
14248 break;
14249 case BO_Mul:
14250 case BO_Div:
14251 ConvertHalfVec = true;
14252 ResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, false,
14253 Opc == BO_Div);
14254 break;
14255 case BO_Rem:
14256 ResultTy = CheckRemainderOperands(LHS, RHS, OpLoc);
14257 break;
14258 case BO_Add:
14259 ConvertHalfVec = true;
14260 ResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc);
14261 break;
14262 case BO_Sub:
14263 ConvertHalfVec = true;
14264 ResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc);
14265 break;
14266 case BO_Shl:
14267 case BO_Shr:
14268 ResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc);
14269 break;
14270 case BO_LE:
14271 case BO_LT:
14272 case BO_GE:
14273 case BO_GT:
14274 ConvertHalfVec = true;
14275 ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc);
14276 break;
14277 case BO_EQ:
14278 case BO_NE:
14279 ConvertHalfVec = true;
14280 ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc);
14281 break;
14282 case BO_Cmp:
14283 ConvertHalfVec = true;
14284 ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc);
14285 assert(ResultTy.isNull() || ResultTy->getAsCXXRecordDecl())(static_cast <bool> (ResultTy.isNull() || ResultTy->
getAsCXXRecordDecl()) ? void (0) : __assert_fail ("ResultTy.isNull() || ResultTy->getAsCXXRecordDecl()"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 14285, __extension__ __PRETTY_FUNCTION__))
;
14286 break;
14287 case BO_And:
14288 checkObjCPointerIntrospection(*this, LHS, RHS, OpLoc);
14289 LLVM_FALLTHROUGH[[gnu::fallthrough]];
14290 case BO_Xor:
14291 case BO_Or:
14292 ResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, Opc);
14293 break;
14294 case BO_LAnd:
14295 case BO_LOr:
14296 ConvertHalfVec = true;
14297 ResultTy = CheckLogicalOperands(LHS, RHS, OpLoc, Opc);
14298 break;
14299 case BO_MulAssign:
14300 case BO_DivAssign:
14301 ConvertHalfVec = true;
14302 CompResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, true,
14303 Opc == BO_DivAssign);
14304 CompLHSTy = CompResultTy;
14305 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
14306 ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
14307 break;
14308 case BO_RemAssign:
14309 CompResultTy = CheckRemainderOperands(LHS, RHS, OpLoc, true);
14310 CompLHSTy = CompResultTy;
14311 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
14312 ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
14313 break;
14314 case BO_AddAssign:
14315 ConvertHalfVec = true;
14316 CompResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc, &CompLHSTy);
14317 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
14318 ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
14319 break;
14320 case BO_SubAssign:
14321 ConvertHalfVec = true;
14322 CompResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc, &CompLHSTy);
14323 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
14324 ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
14325 break;
14326 case BO_ShlAssign:
14327 case BO_ShrAssign:
14328 CompResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc, true);
14329 CompLHSTy = CompResultTy;
14330 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
14331 ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
14332 break;
14333 case BO_AndAssign:
14334 case BO_OrAssign: // fallthrough
14335 DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc, true);
14336 LLVM_FALLTHROUGH[[gnu::fallthrough]];
14337 case BO_XorAssign:
14338 CompResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, Opc);
14339 CompLHSTy = CompResultTy;
14340 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
14341 ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
14342 break;
14343 case BO_Comma:
14344 ResultTy = CheckCommaOperands(*this, LHS, RHS, OpLoc);
14345 if (getLangOpts().CPlusPlus && !RHS.isInvalid()) {
14346 VK = RHS.get()->getValueKind();
14347 OK = RHS.get()->getObjectKind();
14348 }
14349 break;
14350 }
14351 if (ResultTy.isNull() || LHS.isInvalid() || RHS.isInvalid())
14352 return ExprError();
14353
14354 // Some of the binary operations require promoting operands of half vector to
14355 // float vectors and truncating the result back to half vector. For now, we do
14356 // this only when HalfArgsAndReturn is set (that is, when the target is arm or
14357 // arm64).
14358 assert((static_cast <bool> ((Opc == BO_Comma || isVector(RHS.get
()->getType(), Context.HalfTy) == isVector(LHS.get()->getType
(), Context.HalfTy)) && "both sides are half vectors or neither sides are"
) ? void (0) : __assert_fail ("(Opc == BO_Comma || isVector(RHS.get()->getType(), Context.HalfTy) == isVector(LHS.get()->getType(), Context.HalfTy)) && \"both sides are half vectors or neither sides are\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 14361, __extension__ __PRETTY_FUNCTION__))
14359 (Opc == BO_Comma || isVector(RHS.get()->getType(), Context.HalfTy) ==(static_cast <bool> ((Opc == BO_Comma || isVector(RHS.get
()->getType(), Context.HalfTy) == isVector(LHS.get()->getType
(), Context.HalfTy)) && "both sides are half vectors or neither sides are"
) ? void (0) : __assert_fail ("(Opc == BO_Comma || isVector(RHS.get()->getType(), Context.HalfTy) == isVector(LHS.get()->getType(), Context.HalfTy)) && \"both sides are half vectors or neither sides are\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 14361, __extension__ __PRETTY_FUNCTION__))
14360 isVector(LHS.get()->getType(), Context.HalfTy)) &&(static_cast <bool> ((Opc == BO_Comma || isVector(RHS.get
()->getType(), Context.HalfTy) == isVector(LHS.get()->getType
(), Context.HalfTy)) && "both sides are half vectors or neither sides are"
) ? void (0) : __assert_fail ("(Opc == BO_Comma || isVector(RHS.get()->getType(), Context.HalfTy) == isVector(LHS.get()->getType(), Context.HalfTy)) && \"both sides are half vectors or neither sides are\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 14361, __extension__ __PRETTY_FUNCTION__))
14361 "both sides are half vectors or neither sides are")(static_cast <bool> ((Opc == BO_Comma || isVector(RHS.get
()->getType(), Context.HalfTy) == isVector(LHS.get()->getType
(), Context.HalfTy)) && "both sides are half vectors or neither sides are"
) ? void (0) : __assert_fail ("(Opc == BO_Comma || isVector(RHS.get()->getType(), Context.HalfTy) == isVector(LHS.get()->getType(), Context.HalfTy)) && \"both sides are half vectors or neither sides are\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 14361, __extension__ __PRETTY_FUNCTION__))
;
14362 ConvertHalfVec =
14363 needsConversionOfHalfVec(ConvertHalfVec, Context, LHS.get(), RHS.get());
14364
14365 // Check for array bounds violations for both sides of the BinaryOperator
14366 CheckArrayAccess(LHS.get());
14367 CheckArrayAccess(RHS.get());
14368
14369 if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(LHS.get()->IgnoreParenCasts())) {
14370 NamedDecl *ObjectSetClass = LookupSingleName(TUScope,
14371 &Context.Idents.get("object_setClass"),
14372 SourceLocation(), LookupOrdinaryName);
14373 if (ObjectSetClass && isa<ObjCIsaExpr>(LHS.get())) {
14374 SourceLocation RHSLocEnd = getLocForEndOfToken(RHS.get()->getEndLoc());
14375 Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign)
14376 << FixItHint::CreateInsertion(LHS.get()->getBeginLoc(),
14377 "object_setClass(")
14378 << FixItHint::CreateReplacement(SourceRange(OISA->getOpLoc(), OpLoc),
14379 ",")
14380 << FixItHint::CreateInsertion(RHSLocEnd, ")");
14381 }
14382 else
14383 Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign);
14384 }
14385 else if (const ObjCIvarRefExpr *OIRE =
14386 dyn_cast<ObjCIvarRefExpr>(LHS.get()->IgnoreParenCasts()))
14387 DiagnoseDirectIsaAccess(*this, OIRE, OpLoc, RHS.get());
14388
14389 // Opc is not a compound assignment if CompResultTy is null.
14390 if (CompResultTy.isNull()) {
14391 if (ConvertHalfVec)
14392 return convertHalfVecBinOp(*this, LHS, RHS, Opc, ResultTy, VK, OK, false,
14393 OpLoc, CurFPFeatureOverrides());
14394 return BinaryOperator::Create(Context, LHS.get(), RHS.get(), Opc, ResultTy,
14395 VK, OK, OpLoc, CurFPFeatureOverrides());
14396 }
14397
14398 // Handle compound assignments.
14399 if (getLangOpts().CPlusPlus && LHS.get()->getObjectKind() !=
14400 OK_ObjCProperty) {
14401 VK = VK_LValue;
14402 OK = LHS.get()->getObjectKind();
14403 }
14404
14405 // The LHS is not converted to the result type for fixed-point compound
14406 // assignment as the common type is computed on demand. Reset the CompLHSTy
14407 // to the LHS type we would have gotten after unary conversions.
14408 if (CompResultTy->isFixedPointType())
14409 CompLHSTy = UsualUnaryConversions(LHS.get()).get()->getType();
14410
14411 if (ConvertHalfVec)
14412 return convertHalfVecBinOp(*this, LHS, RHS, Opc, ResultTy, VK, OK, true,
14413 OpLoc, CurFPFeatureOverrides());
14414
14415 return CompoundAssignOperator::Create(
14416 Context, LHS.get(), RHS.get(), Opc, ResultTy, VK, OK, OpLoc,
14417 CurFPFeatureOverrides(), CompLHSTy, CompResultTy);
14418}
14419
14420/// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
14421/// operators are mixed in a way that suggests that the programmer forgot that
14422/// comparison operators have higher precedence. The most typical example of
14423/// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
14424static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperatorKind Opc,
14425 SourceLocation OpLoc, Expr *LHSExpr,
14426 Expr *RHSExpr) {
14427 BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHSExpr);
14428 BinaryOperator *RHSBO = dyn_cast<BinaryOperator>(RHSExpr);
14429
14430 // Check that one of the sides is a comparison operator and the other isn't.
14431 bool isLeftComp = LHSBO && LHSBO->isComparisonOp();
14432 bool isRightComp = RHSBO && RHSBO->isComparisonOp();
14433 if (isLeftComp == isRightComp)
14434 return;
14435
14436 // Bitwise operations are sometimes used as eager logical ops.
14437 // Don't diagnose this.
14438 bool isLeftBitwise = LHSBO && LHSBO->isBitwiseOp();
14439 bool isRightBitwise = RHSBO && RHSBO->isBitwiseOp();
14440 if (isLeftBitwise || isRightBitwise)
14441 return;
14442
14443 SourceRange DiagRange = isLeftComp
14444 ? SourceRange(LHSExpr->getBeginLoc(), OpLoc)
14445 : SourceRange(OpLoc, RHSExpr->getEndLoc());
14446 StringRef OpStr = isLeftComp ? LHSBO->getOpcodeStr() : RHSBO->getOpcodeStr();
14447 SourceRange ParensRange =
14448 isLeftComp
14449 ? SourceRange(LHSBO->getRHS()->getBeginLoc(), RHSExpr->getEndLoc())
14450 : SourceRange(LHSExpr->getBeginLoc(), RHSBO->getLHS()->getEndLoc());
14451
14452 Self.Diag(OpLoc, diag::warn_precedence_bitwise_rel)
14453 << DiagRange << BinaryOperator::getOpcodeStr(Opc) << OpStr;
14454 SuggestParentheses(Self, OpLoc,
14455 Self.PDiag(diag::note_precedence_silence) << OpStr,
14456 (isLeftComp ? LHSExpr : RHSExpr)->getSourceRange());
14457 SuggestParentheses(Self, OpLoc,
14458 Self.PDiag(diag::note_precedence_bitwise_first)
14459 << BinaryOperator::getOpcodeStr(Opc),
14460 ParensRange);
14461}
14462
14463/// It accepts a '&&' expr that is inside a '||' one.
14464/// Emit a diagnostic together with a fixit hint that wraps the '&&' expression
14465/// in parentheses.
14466static void
14467EmitDiagnosticForLogicalAndInLogicalOr(Sema &Self, SourceLocation OpLoc,
14468 BinaryOperator *Bop) {
14469 assert(Bop->getOpcode() == BO_LAnd)(static_cast <bool> (Bop->getOpcode() == BO_LAnd) ? void
(0) : __assert_fail ("Bop->getOpcode() == BO_LAnd", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 14469, __extension__ __PRETTY_FUNCTION__))
;
14470 Self.Diag(Bop->getOperatorLoc(), diag::warn_logical_and_in_logical_or)
14471 << Bop->getSourceRange() << OpLoc;
14472 SuggestParentheses(Self, Bop->getOperatorLoc(),
14473 Self.PDiag(diag::note_precedence_silence)
14474 << Bop->getOpcodeStr(),
14475 Bop->getSourceRange());
14476}
14477
14478/// Returns true if the given expression can be evaluated as a constant
14479/// 'true'.
14480static bool EvaluatesAsTrue(Sema &S, Expr *E) {
14481 bool Res;
14482 return !E->isValueDependent() &&
14483 E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && Res;
14484}
14485
14486/// Returns true if the given expression can be evaluated as a constant
14487/// 'false'.
14488static bool EvaluatesAsFalse(Sema &S, Expr *E) {
14489 bool Res;
14490 return !E->isValueDependent() &&
14491 E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && !Res;
14492}
14493
14494/// Look for '&&' in the left hand of a '||' expr.
14495static void DiagnoseLogicalAndInLogicalOrLHS(Sema &S, SourceLocation OpLoc,
14496 Expr *LHSExpr, Expr *RHSExpr) {
14497 if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(LHSExpr)) {
14498 if (Bop->getOpcode() == BO_LAnd) {
14499 // If it's "a && b || 0" don't warn since the precedence doesn't matter.
14500 if (EvaluatesAsFalse(S, RHSExpr))
14501 return;
14502 // If it's "1 && a || b" don't warn since the precedence doesn't matter.
14503 if (!EvaluatesAsTrue(S, Bop->getLHS()))
14504 return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
14505 } else if (Bop->getOpcode() == BO_LOr) {
14506 if (BinaryOperator *RBop = dyn_cast<BinaryOperator>(Bop->getRHS())) {
14507 // If it's "a || b && 1 || c" we didn't warn earlier for
14508 // "a || b && 1", but warn now.
14509 if (RBop->getOpcode() == BO_LAnd && EvaluatesAsTrue(S, RBop->getRHS()))
14510 return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, RBop);
14511 }
14512 }
14513 }
14514}
14515
14516/// Look for '&&' in the right hand of a '||' expr.
14517static void DiagnoseLogicalAndInLogicalOrRHS(Sema &S, SourceLocation OpLoc,
14518 Expr *LHSExpr, Expr *RHSExpr) {
14519 if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(RHSExpr)) {
14520 if (Bop->getOpcode() == BO_LAnd) {
14521 // If it's "0 || a && b" don't warn since the precedence doesn't matter.
14522 if (EvaluatesAsFalse(S, LHSExpr))
14523 return;
14524 // If it's "a || b && 1" don't warn since the precedence doesn't matter.
14525 if (!EvaluatesAsTrue(S, Bop->getRHS()))
14526 return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
14527 }
14528 }
14529}
14530
14531/// Look for bitwise op in the left or right hand of a bitwise op with
14532/// lower precedence and emit a diagnostic together with a fixit hint that wraps
14533/// the '&' expression in parentheses.
14534static void DiagnoseBitwiseOpInBitwiseOp(Sema &S, BinaryOperatorKind Opc,
14535 SourceLocation OpLoc, Expr *SubExpr) {
14536 if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(SubExpr)) {
14537 if (Bop->isBitwiseOp() && Bop->getOpcode() < Opc) {
14538 S.Diag(Bop->getOperatorLoc(), diag::warn_bitwise_op_in_bitwise_op)
14539 << Bop->getOpcodeStr() << BinaryOperator::getOpcodeStr(Opc)
14540 << Bop->getSourceRange() << OpLoc;
14541 SuggestParentheses(S, Bop->getOperatorLoc(),
14542 S.PDiag(diag::note_precedence_silence)
14543 << Bop->getOpcodeStr(),
14544 Bop->getSourceRange());
14545 }
14546 }
14547}
14548
14549static void DiagnoseAdditionInShift(Sema &S, SourceLocation OpLoc,
14550 Expr *SubExpr, StringRef Shift) {
14551 if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(SubExpr)) {
14552 if (Bop->getOpcode() == BO_Add || Bop->getOpcode() == BO_Sub) {
14553 StringRef Op = Bop->getOpcodeStr();
14554 S.Diag(Bop->getOperatorLoc(), diag::warn_addition_in_bitshift)
14555 << Bop->getSourceRange() << OpLoc << Shift << Op;
14556 SuggestParentheses(S, Bop->getOperatorLoc(),
14557 S.PDiag(diag::note_precedence_silence) << Op,
14558 Bop->getSourceRange());
14559 }
14560 }
14561}
14562
14563static void DiagnoseShiftCompare(Sema &S, SourceLocation OpLoc,
14564 Expr *LHSExpr, Expr *RHSExpr) {
14565 CXXOperatorCallExpr *OCE = dyn_cast<CXXOperatorCallExpr>(LHSExpr);
14566 if (!OCE)
14567 return;
14568
14569 FunctionDecl *FD = OCE->getDirectCallee();
14570 if (!FD || !FD->isOverloadedOperator())
14571 return;
14572
14573 OverloadedOperatorKind Kind = FD->getOverloadedOperator();
14574 if (Kind != OO_LessLess && Kind != OO_GreaterGreater)
14575 return;
14576
14577 S.Diag(OpLoc, diag::warn_overloaded_shift_in_comparison)
14578 << LHSExpr->getSourceRange() << RHSExpr->getSourceRange()
14579 << (Kind == OO_LessLess);
14580 SuggestParentheses(S, OCE->getOperatorLoc(),
14581 S.PDiag(diag::note_precedence_silence)
14582 << (Kind == OO_LessLess ? "<<" : ">>"),
14583 OCE->getSourceRange());
14584 SuggestParentheses(
14585 S, OpLoc, S.PDiag(diag::note_evaluate_comparison_first),
14586 SourceRange(OCE->getArg(1)->getBeginLoc(), RHSExpr->getEndLoc()));
14587}
14588
14589/// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
14590/// precedence.
14591static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperatorKind Opc,
14592 SourceLocation OpLoc, Expr *LHSExpr,
14593 Expr *RHSExpr){
14594 // Diagnose "arg1 'bitwise' arg2 'eq' arg3".
14595 if (BinaryOperator::isBitwiseOp(Opc))
14596 DiagnoseBitwisePrecedence(Self, Opc, OpLoc, LHSExpr, RHSExpr);
14597
14598 // Diagnose "arg1 & arg2 | arg3"
14599 if ((Opc == BO_Or || Opc == BO_Xor) &&
14600 !OpLoc.isMacroID()/* Don't warn in macros. */) {
14601 DiagnoseBitwiseOpInBitwiseOp(Self, Opc, OpLoc, LHSExpr);
14602 DiagnoseBitwiseOpInBitwiseOp(Self, Opc, OpLoc, RHSExpr);
14603 }
14604
14605 // Warn about arg1 || arg2 && arg3, as GCC 4.3+ does.
14606 // We don't warn for 'assert(a || b && "bad")' since this is safe.
14607 if (Opc == BO_LOr && !OpLoc.isMacroID()/* Don't warn in macros. */) {
14608 DiagnoseLogicalAndInLogicalOrLHS(Self, OpLoc, LHSExpr, RHSExpr);
14609 DiagnoseLogicalAndInLogicalOrRHS(Self, OpLoc, LHSExpr, RHSExpr);
14610 }
14611
14612 if ((Opc == BO_Shl && LHSExpr->getType()->isIntegralType(Self.getASTContext()))
14613 || Opc == BO_Shr) {
14614 StringRef Shift = BinaryOperator::getOpcodeStr(Opc);
14615 DiagnoseAdditionInShift(Self, OpLoc, LHSExpr, Shift);
14616 DiagnoseAdditionInShift(Self, OpLoc, RHSExpr, Shift);
14617 }
14618
14619 // Warn on overloaded shift operators and comparisons, such as:
14620 // cout << 5 == 4;
14621 if (BinaryOperator::isComparisonOp(Opc))
14622 DiagnoseShiftCompare(Self, OpLoc, LHSExpr, RHSExpr);
14623}
14624
14625// Binary Operators. 'Tok' is the token for the operator.
14626ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
14627 tok::TokenKind Kind,
14628 Expr *LHSExpr, Expr *RHSExpr) {
14629 BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Kind);
14630 assert(LHSExpr && "ActOnBinOp(): missing left expression")(static_cast <bool> (LHSExpr && "ActOnBinOp(): missing left expression"
) ? void (0) : __assert_fail ("LHSExpr && \"ActOnBinOp(): missing left expression\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 14630, __extension__ __PRETTY_FUNCTION__))
;
14631 assert(RHSExpr && "ActOnBinOp(): missing right expression")(static_cast <bool> (RHSExpr && "ActOnBinOp(): missing right expression"
) ? void (0) : __assert_fail ("RHSExpr && \"ActOnBinOp(): missing right expression\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 14631, __extension__ __PRETTY_FUNCTION__))
;
14632
14633 // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
14634 DiagnoseBinOpPrecedence(*this, Opc, TokLoc, LHSExpr, RHSExpr);
14635
14636 return BuildBinOp(S, TokLoc, Opc, LHSExpr, RHSExpr);
14637}
14638
14639void Sema::LookupBinOp(Scope *S, SourceLocation OpLoc, BinaryOperatorKind Opc,
14640 UnresolvedSetImpl &Functions) {
14641 OverloadedOperatorKind OverOp = BinaryOperator::getOverloadedOperator(Opc);
14642 if (OverOp != OO_None && OverOp != OO_Equal)
14643 LookupOverloadedOperatorName(OverOp, S, Functions);
14644
14645 // In C++20 onwards, we may have a second operator to look up.
14646 if (getLangOpts().CPlusPlus20) {
14647 if (OverloadedOperatorKind ExtraOp = getRewrittenOverloadedOperator(OverOp))
14648 LookupOverloadedOperatorName(ExtraOp, S, Functions);
14649 }
14650}
14651
14652/// Build an overloaded binary operator expression in the given scope.
14653static ExprResult BuildOverloadedBinOp(Sema &S, Scope *Sc, SourceLocation OpLoc,
14654 BinaryOperatorKind Opc,
14655 Expr *LHS, Expr *RHS) {
14656 switch (Opc) {
14657 case BO_Assign:
14658 case BO_DivAssign:
14659 case BO_RemAssign:
14660 case BO_SubAssign:
14661 case BO_AndAssign:
14662 case BO_OrAssign:
14663 case BO_XorAssign:
14664 DiagnoseSelfAssignment(S, LHS, RHS, OpLoc, false);
14665 CheckIdentityFieldAssignment(LHS, RHS, OpLoc, S);
14666 break;
14667 default:
14668 break;
14669 }
14670
14671 // Find all of the overloaded operators visible from this point.
14672 UnresolvedSet<16> Functions;
14673 S.LookupBinOp(Sc, OpLoc, Opc, Functions);
14674
14675 // Build the (potentially-overloaded, potentially-dependent)
14676 // binary operation.
14677 return S.CreateOverloadedBinOp(OpLoc, Opc, Functions, LHS, RHS);
14678}
14679
14680ExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
14681 BinaryOperatorKind Opc,
14682 Expr *LHSExpr, Expr *RHSExpr) {
14683 ExprResult LHS, RHS;
14684 std::tie(LHS, RHS) = CorrectDelayedTyposInBinOp(*this, Opc, LHSExpr, RHSExpr);
14685 if (!LHS.isUsable() || !RHS.isUsable())
14686 return ExprError();
14687 LHSExpr = LHS.get();
14688 RHSExpr = RHS.get();
14689
14690 // We want to end up calling one of checkPseudoObjectAssignment
14691 // (if the LHS is a pseudo-object), BuildOverloadedBinOp (if
14692 // both expressions are overloadable or either is type-dependent),
14693 // or CreateBuiltinBinOp (in any other case). We also want to get
14694 // any placeholder types out of the way.
14695
14696 // Handle pseudo-objects in the LHS.
14697 if (const BuiltinType *pty = LHSExpr->getType()->getAsPlaceholderType()) {
14698 // Assignments with a pseudo-object l-value need special analysis.
14699 if (pty->getKind() == BuiltinType::PseudoObject &&
14700 BinaryOperator::isAssignmentOp(Opc))
14701 return checkPseudoObjectAssignment(S, OpLoc, Opc, LHSExpr, RHSExpr);
14702
14703 // Don't resolve overloads if the other type is overloadable.
14704 if (getLangOpts().CPlusPlus && pty->getKind() == BuiltinType::Overload) {
14705 // We can't actually test that if we still have a placeholder,
14706 // though. Fortunately, none of the exceptions we see in that
14707 // code below are valid when the LHS is an overload set. Note
14708 // that an overload set can be dependently-typed, but it never
14709 // instantiates to having an overloadable type.
14710 ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
14711 if (resolvedRHS.isInvalid()) return ExprError();
14712 RHSExpr = resolvedRHS.get();
14713
14714 if (RHSExpr->isTypeDependent() ||
14715 RHSExpr->getType()->isOverloadableType())
14716 return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
14717 }
14718
14719 // If we're instantiating "a.x < b" or "A::x < b" and 'x' names a function
14720 // template, diagnose the missing 'template' keyword instead of diagnosing
14721 // an invalid use of a bound member function.
14722 //
14723 // Note that "A::x < b" might be valid if 'b' has an overloadable type due
14724 // to C++1z [over.over]/1.4, but we already checked for that case above.
14725 if (Opc == BO_LT && inTemplateInstantiation() &&
14726 (pty->getKind() == BuiltinType::BoundMember ||
14727 pty->getKind() == BuiltinType::Overload)) {
14728 auto *OE = dyn_cast<OverloadExpr>(LHSExpr);
14729 if (OE && !OE->hasTemplateKeyword() && !OE->hasExplicitTemplateArgs() &&
14730 std::any_of(OE->decls_begin(), OE->decls_end(), [](NamedDecl *ND) {
14731 return isa<FunctionTemplateDecl>(ND);
14732 })) {
14733 Diag(OE->getQualifier() ? OE->getQualifierLoc().getBeginLoc()
14734 : OE->getNameLoc(),
14735 diag::err_template_kw_missing)
14736 << OE->getName().getAsString() << "";
14737 return ExprError();
14738 }
14739 }
14740
14741 ExprResult LHS = CheckPlaceholderExpr(LHSExpr);
14742 if (LHS.isInvalid()) return ExprError();
14743 LHSExpr = LHS.get();
14744 }
14745
14746 // Handle pseudo-objects in the RHS.
14747 if (const BuiltinType *pty = RHSExpr->getType()->getAsPlaceholderType()) {
14748 // An overload in the RHS can potentially be resolved by the type
14749 // being assigned to.
14750 if (Opc == BO_Assign && pty->getKind() == BuiltinType::Overload) {
14751 if (getLangOpts().CPlusPlus &&
14752 (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent() ||
14753 LHSExpr->getType()->isOverloadableType()))
14754 return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
14755
14756 return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
14757 }
14758
14759 // Don't resolve overloads if the other type is overloadable.
14760 if (getLangOpts().CPlusPlus && pty->getKind() == BuiltinType::Overload &&
14761 LHSExpr->getType()->isOverloadableType())
14762 return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
14763
14764 ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
14765 if (!resolvedRHS.isUsable()) return ExprError();
14766 RHSExpr = resolvedRHS.get();
14767 }
14768
14769 if (getLangOpts().CPlusPlus) {
14770 // If either expression is type-dependent, always build an
14771 // overloaded op.
14772 if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())
14773 return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
14774
14775 // Otherwise, build an overloaded op if either expression has an
14776 // overloadable type.
14777 if (LHSExpr->getType()->isOverloadableType() ||
14778 RHSExpr->getType()->isOverloadableType())
14779 return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
14780 }
14781
14782 if (getLangOpts().RecoveryAST &&
14783 (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())) {
14784 assert(!getLangOpts().CPlusPlus)(static_cast <bool> (!getLangOpts().CPlusPlus) ? void (
0) : __assert_fail ("!getLangOpts().CPlusPlus", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 14784, __extension__ __PRETTY_FUNCTION__))
;
14785 assert((LHSExpr->containsErrors() || RHSExpr->containsErrors()) &&(static_cast <bool> ((LHSExpr->containsErrors() || RHSExpr
->containsErrors()) && "Should only occur in error-recovery path."
) ? void (0) : __assert_fail ("(LHSExpr->containsErrors() || RHSExpr->containsErrors()) && \"Should only occur in error-recovery path.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 14786, __extension__ __PRETTY_FUNCTION__))
14786 "Should only occur in error-recovery path.")(static_cast <bool> ((LHSExpr->containsErrors() || RHSExpr
->containsErrors()) && "Should only occur in error-recovery path."
) ? void (0) : __assert_fail ("(LHSExpr->containsErrors() || RHSExpr->containsErrors()) && \"Should only occur in error-recovery path.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 14786, __extension__ __PRETTY_FUNCTION__))
;
14787 if (BinaryOperator::isCompoundAssignmentOp(Opc))
14788 // C [6.15.16] p3:
14789 // An assignment expression has the value of the left operand after the
14790 // assignment, but is not an lvalue.
14791 return CompoundAssignOperator::Create(
14792 Context, LHSExpr, RHSExpr, Opc,
14793 LHSExpr->getType().getUnqualifiedType(), VK_PRValue, OK_Ordinary,
14794 OpLoc, CurFPFeatureOverrides());
14795 QualType ResultType;
14796 switch (Opc) {
14797 case BO_Assign:
14798 ResultType = LHSExpr->getType().getUnqualifiedType();
14799 break;
14800 case BO_LT:
14801 case BO_GT:
14802 case BO_LE:
14803 case BO_GE:
14804 case BO_EQ:
14805 case BO_NE:
14806 case BO_LAnd:
14807 case BO_LOr:
14808 // These operators have a fixed result type regardless of operands.
14809 ResultType = Context.IntTy;
14810 break;
14811 case BO_Comma:
14812 ResultType = RHSExpr->getType();
14813 break;
14814 default:
14815 ResultType = Context.DependentTy;
14816 break;
14817 }
14818 return BinaryOperator::Create(Context, LHSExpr, RHSExpr, Opc, ResultType,
14819 VK_PRValue, OK_Ordinary, OpLoc,
14820 CurFPFeatureOverrides());
14821 }
14822
14823 // Build a built-in binary operation.
14824 return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
14825}
14826
14827static bool isOverflowingIntegerType(ASTContext &Ctx, QualType T) {
14828 if (T.isNull() || T->isDependentType())
14829 return false;
14830
14831 if (!T->isPromotableIntegerType())
14832 return true;
14833
14834 return Ctx.getIntWidth(T) >= Ctx.getIntWidth(Ctx.IntTy);
14835}
14836
14837ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
14838 UnaryOperatorKind Opc,
14839 Expr *InputExpr) {
14840 ExprResult Input = InputExpr;
14841 ExprValueKind VK = VK_PRValue;
14842 ExprObjectKind OK = OK_Ordinary;
14843 QualType resultType;
14844 bool CanOverflow = false;
14845
14846 bool ConvertHalfVec = false;
14847 if (getLangOpts().OpenCL) {
14848 QualType Ty = InputExpr->getType();
14849 // The only legal unary operation for atomics is '&'.
14850 if ((Opc != UO_AddrOf && Ty->isAtomicType()) ||
14851 // OpenCL special types - image, sampler, pipe, and blocks are to be used
14852 // only with a builtin functions and therefore should be disallowed here.
14853 (Ty->isImageType() || Ty->isSamplerT() || Ty->isPipeType()
14854 || Ty->isBlockPointerType())) {
14855 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
14856 << InputExpr->getType()
14857 << Input.get()->getSourceRange());
14858 }
14859 }
14860
14861 switch (Opc) {
14862 case UO_PreInc:
14863 case UO_PreDec:
14864 case UO_PostInc:
14865 case UO_PostDec:
14866 resultType = CheckIncrementDecrementOperand(*this, Input.get(), VK, OK,
14867 OpLoc,
14868 Opc == UO_PreInc ||
14869 Opc == UO_PostInc,
14870 Opc == UO_PreInc ||
14871 Opc == UO_PreDec);
14872 CanOverflow = isOverflowingIntegerType(Context, resultType);
14873 break;
14874 case UO_AddrOf:
14875 resultType = CheckAddressOfOperand(Input, OpLoc);
14876 CheckAddressOfNoDeref(InputExpr);
14877 RecordModifiableNonNullParam(*this, InputExpr);
14878 break;
14879 case UO_Deref: {
14880 Input = DefaultFunctionArrayLvalueConversion(Input.get());
14881 if (Input.isInvalid()) return ExprError();
14882 resultType = CheckIndirectionOperand(*this, Input.get(), VK, OpLoc);
14883 break;
14884 }
14885 case UO_Plus:
14886 case UO_Minus:
14887 CanOverflow = Opc == UO_Minus &&
14888 isOverflowingIntegerType(Context, Input.get()->getType());
14889 Input = UsualUnaryConversions(Input.get());
14890 if (Input.isInvalid()) return ExprError();
14891 // Unary plus and minus require promoting an operand of half vector to a
14892 // float vector and truncating the result back to a half vector. For now, we
14893 // do this only when HalfArgsAndReturns is set (that is, when the target is
14894 // arm or arm64).
14895 ConvertHalfVec = needsConversionOfHalfVec(true, Context, Input.get());
14896
14897 // If the operand is a half vector, promote it to a float vector.
14898 if (ConvertHalfVec)
14899 Input = convertVector(Input.get(), Context.FloatTy, *this);
14900 resultType = Input.get()->getType();
14901 if (resultType->isDependentType())
14902 break;
14903 if (resultType->isArithmeticType()) // C99 6.5.3.3p1
14904 break;
14905 else if (resultType->isVectorType() &&
14906 // The z vector extensions don't allow + or - with bool vectors.
14907 (!Context.getLangOpts().ZVector ||
14908 resultType->castAs<VectorType>()->getVectorKind() !=
14909 VectorType::AltiVecBool))
14910 break;
14911 else if (getLangOpts().CPlusPlus && // C++ [expr.unary.op]p6
14912 Opc == UO_Plus &&
14913 resultType->isPointerType())
14914 break;
14915
14916 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
14917 << resultType << Input.get()->getSourceRange());
14918
14919 case UO_Not: // bitwise complement
14920 Input = UsualUnaryConversions(Input.get());
14921 if (Input.isInvalid())
14922 return ExprError();
14923 resultType = Input.get()->getType();
14924 if (resultType->isDependentType())
14925 break;
14926 // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
14927 if (resultType->isComplexType() || resultType->isComplexIntegerType())
14928 // C99 does not support '~' for complex conjugation.
14929 Diag(OpLoc, diag::ext_integer_complement_complex)
14930 << resultType << Input.get()->getSourceRange();
14931 else if (resultType->hasIntegerRepresentation())
14932 break;
14933 else if (resultType->isExtVectorType() && Context.getLangOpts().OpenCL) {
14934 // OpenCL v1.1 s6.3.f: The bitwise operator not (~) does not operate
14935 // on vector float types.
14936 QualType T = resultType->castAs<ExtVectorType>()->getElementType();
14937 if (!T->isIntegerType())
14938 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
14939 << resultType << Input.get()->getSourceRange());
14940 } else {
14941 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
14942 << resultType << Input.get()->getSourceRange());
14943 }
14944 break;
14945
14946 case UO_LNot: // logical negation
14947 // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
14948 Input = DefaultFunctionArrayLvalueConversion(Input.get());
14949 if (Input.isInvalid()) return ExprError();
14950 resultType = Input.get()->getType();
14951
14952 // Though we still have to promote half FP to float...
14953 if (resultType->isHalfType() && !Context.getLangOpts().NativeHalfType) {
14954 Input = ImpCastExprToType(Input.get(), Context.FloatTy, CK_FloatingCast).get();
14955 resultType = Context.FloatTy;
14956 }
14957
14958 if (resultType->isDependentType())
14959 break;
14960 if (resultType->isScalarType() && !isScopedEnumerationType(resultType)) {
14961 // C99 6.5.3.3p1: ok, fallthrough;
14962 if (Context.getLangOpts().CPlusPlus) {
14963 // C++03 [expr.unary.op]p8, C++0x [expr.unary.op]p9:
14964 // operand contextually converted to bool.
14965 Input = ImpCastExprToType(Input.get(), Context.BoolTy,
14966 ScalarTypeToBooleanCastKind(resultType));
14967 } else if (Context.getLangOpts().OpenCL &&
14968 Context.getLangOpts().OpenCLVersion < 120) {
14969 // OpenCL v1.1 6.3.h: The logical operator not (!) does not
14970 // operate on scalar float types.
14971 if (!resultType->isIntegerType() && !resultType->isPointerType())
14972 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
14973 << resultType << Input.get()->getSourceRange());
14974 }
14975 } else if (resultType->isExtVectorType()) {
14976 if (Context.getLangOpts().OpenCL &&
14977 Context.getLangOpts().OpenCLVersion < 120 &&
14978 !Context.getLangOpts().OpenCLCPlusPlus) {
14979 // OpenCL v1.1 6.3.h: The logical operator not (!) does not
14980 // operate on vector float types.
14981 QualType T = resultType->castAs<ExtVectorType>()->getElementType();
14982 if (!T->isIntegerType())
14983 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
14984 << resultType << Input.get()->getSourceRange());
14985 }
14986 // Vector logical not returns the signed variant of the operand type.
14987 resultType = GetSignedVectorType(resultType);
14988 break;
14989 } else if (Context.getLangOpts().CPlusPlus && resultType->isVectorType()) {
14990 const VectorType *VTy = resultType->castAs<VectorType>();
14991 if (VTy->getVectorKind() != VectorType::GenericVector)
14992 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
14993 << resultType << Input.get()->getSourceRange());
14994
14995 // Vector logical not returns the signed variant of the operand type.
14996 resultType = GetSignedVectorType(resultType);
14997 break;
14998 } else {
14999 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
15000 << resultType << Input.get()->getSourceRange());
15001 }
15002
15003 // LNot always has type int. C99 6.5.3.3p5.
15004 // In C++, it's bool. C++ 5.3.1p8
15005 resultType = Context.getLogicalOperationType();
15006 break;
15007 case UO_Real:
15008 case UO_Imag:
15009 resultType = CheckRealImagOperand(*this, Input, OpLoc, Opc == UO_Real);
15010 // _Real maps ordinary l-values into ordinary l-values. _Imag maps ordinary
15011 // complex l-values to ordinary l-values and all other values to r-values.
15012 if (Input.isInvalid()) return ExprError();
15013 if (Opc == UO_Real || Input.get()->getType()->isAnyComplexType()) {
15014 if (Input.get()->isGLValue() &&
15015 Input.get()->getObjectKind() == OK_Ordinary)
15016 VK = Input.get()->getValueKind();
15017 } else if (!getLangOpts().CPlusPlus) {
15018 // In C, a volatile scalar is read by __imag. In C++, it is not.
15019 Input = DefaultLvalueConversion(Input.get());
15020 }
15021 break;
15022 case UO_Extension:
15023 resultType = Input.get()->getType();
15024 VK = Input.get()->getValueKind();
15025 OK = Input.get()->getObjectKind();
15026 break;
15027 case UO_Coawait:
15028 // It's unnecessary to represent the pass-through operator co_await in the
15029 // AST; just return the input expression instead.
15030 assert(!Input.get()->getType()->isDependentType() &&(static_cast <bool> (!Input.get()->getType()->isDependentType
() && "the co_await expression must be non-dependant before "
"building operator co_await") ? void (0) : __assert_fail ("!Input.get()->getType()->isDependentType() && \"the co_await expression must be non-dependant before \" \"building operator co_await\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 15032, __extension__ __PRETTY_FUNCTION__))
15031 "the co_await expression must be non-dependant before "(static_cast <bool> (!Input.get()->getType()->isDependentType
() && "the co_await expression must be non-dependant before "
"building operator co_await") ? void (0) : __assert_fail ("!Input.get()->getType()->isDependentType() && \"the co_await expression must be non-dependant before \" \"building operator co_await\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 15032, __extension__ __PRETTY_FUNCTION__))
15032 "building operator co_await")(static_cast <bool> (!Input.get()->getType()->isDependentType
() && "the co_await expression must be non-dependant before "
"building operator co_await") ? void (0) : __assert_fail ("!Input.get()->getType()->isDependentType() && \"the co_await expression must be non-dependant before \" \"building operator co_await\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 15032, __extension__ __PRETTY_FUNCTION__))
;
15033 return Input;
15034 }
15035 if (resultType.isNull() || Input.isInvalid())
15036 return ExprError();
15037
15038 // Check for array bounds violations in the operand of the UnaryOperator,
15039 // except for the '*' and '&' operators that have to be handled specially
15040 // by CheckArrayAccess (as there are special cases like &array[arraysize]
15041 // that are explicitly defined as valid by the standard).
15042 if (Opc != UO_AddrOf && Opc != UO_Deref)
15043 CheckArrayAccess(Input.get());
15044
15045 auto *UO =
15046 UnaryOperator::Create(Context, Input.get(), Opc, resultType, VK, OK,
15047 OpLoc, CanOverflow, CurFPFeatureOverrides());
15048
15049 if (Opc == UO_Deref && UO->getType()->hasAttr(attr::NoDeref) &&
15050 !isa<ArrayType>(UO->getType().getDesugaredType(Context)) &&
15051 !isUnevaluatedContext())
15052 ExprEvalContexts.back().PossibleDerefs.insert(UO);
15053
15054 // Convert the result back to a half vector.
15055 if (ConvertHalfVec)
15056 return convertVector(UO, Context.HalfTy, *this);
15057 return UO;
15058}
15059
15060/// Determine whether the given expression is a qualified member
15061/// access expression, of a form that could be turned into a pointer to member
15062/// with the address-of operator.
15063bool Sema::isQualifiedMemberAccess(Expr *E) {
15064 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
15065 if (!DRE->getQualifier())
15066 return false;
15067
15068 ValueDecl *VD = DRE->getDecl();
15069 if (!VD->isCXXClassMember())
15070 return false;
15071
15072 if (isa<FieldDecl>(VD) || isa<IndirectFieldDecl>(VD))
15073 return true;
15074 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(VD))
15075 return Method->isInstance();
15076
15077 return false;
15078 }
15079
15080 if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
15081 if (!ULE->getQualifier())
15082 return false;
15083
15084 for (NamedDecl *D : ULE->decls()) {
15085 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
15086 if (Method->isInstance())
15087 return true;
15088 } else {
15089 // Overload set does not contain methods.
15090 break;
15091 }
15092 }
15093
15094 return false;
15095 }
15096
15097 return false;
15098}
15099
15100ExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
15101 UnaryOperatorKind Opc, Expr *Input) {
15102 // First things first: handle placeholders so that the
15103 // overloaded-operator check considers the right type.
15104 if (const BuiltinType *pty = Input->getType()->getAsPlaceholderType()) {
15105 // Increment and decrement of pseudo-object references.
15106 if (pty->getKind() == BuiltinType::PseudoObject &&
15107 UnaryOperator::isIncrementDecrementOp(Opc))
15108 return checkPseudoObjectIncDec(S, OpLoc, Opc, Input);
15109
15110 // extension is always a builtin operator.
15111 if (Opc == UO_Extension)
15112 return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
15113
15114 // & gets special logic for several kinds of placeholder.
15115 // The builtin code knows what to do.
15116 if (Opc == UO_AddrOf &&
15117 (pty->getKind() == BuiltinType::Overload ||
15118 pty->getKind() == BuiltinType::UnknownAny ||
15119 pty->getKind() == BuiltinType::BoundMember))
15120 return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
15121
15122 // Anything else needs to be handled now.
15123 ExprResult Result = CheckPlaceholderExpr(Input);
15124 if (Result.isInvalid()) return ExprError();
15125 Input = Result.get();
15126 }
15127
15128 if (getLangOpts().CPlusPlus && Input->getType()->isOverloadableType() &&
15129 UnaryOperator::getOverloadedOperator(Opc) != OO_None &&
15130 !(Opc == UO_AddrOf && isQualifiedMemberAccess(Input))) {
15131 // Find all of the overloaded operators visible from this point.
15132 UnresolvedSet<16> Functions;
15133 OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
15134 if (S && OverOp != OO_None)
15135 LookupOverloadedOperatorName(OverOp, S, Functions);
15136
15137 return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, Input);
15138 }
15139
15140 return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
15141}
15142
15143// Unary Operators. 'Tok' is the token for the operator.
15144ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
15145 tok::TokenKind Op, Expr *Input) {
15146 return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), Input);
15147}
15148
15149/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
15150ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc,
15151 LabelDecl *TheDecl) {
15152 TheDecl->markUsed(Context);
15153 // Create the AST node. The address of a label always has type 'void*'.
15154 return new (Context) AddrLabelExpr(OpLoc, LabLoc, TheDecl,
15155 Context.getPointerType(Context.VoidTy));
15156}
15157
15158void Sema::ActOnStartStmtExpr() {
15159 PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
15160}
15161
15162void Sema::ActOnStmtExprError() {
15163 // Note that function is also called by TreeTransform when leaving a
15164 // StmtExpr scope without rebuilding anything.
15165
15166 DiscardCleanupsInEvaluationContext();
15167 PopExpressionEvaluationContext();
15168}
15169
15170ExprResult Sema::ActOnStmtExpr(Scope *S, SourceLocation LPLoc, Stmt *SubStmt,
15171 SourceLocation RPLoc) {
15172 return BuildStmtExpr(LPLoc, SubStmt, RPLoc, getTemplateDepth(S));
15173}
15174
15175ExprResult Sema::BuildStmtExpr(SourceLocation LPLoc, Stmt *SubStmt,
15176 SourceLocation RPLoc, unsigned TemplateDepth) {
15177 assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!")(static_cast <bool> (SubStmt && isa<CompoundStmt
>(SubStmt) && "Invalid action invocation!") ? void
(0) : __assert_fail ("SubStmt && isa<CompoundStmt>(SubStmt) && \"Invalid action invocation!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 15177, __extension__ __PRETTY_FUNCTION__))
;
15178 CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
15179
15180 if (hasAnyUnrecoverableErrorsInThisFunction())
15181 DiscardCleanupsInEvaluationContext();
15182 assert(!Cleanup.exprNeedsCleanups() &&(static_cast <bool> (!Cleanup.exprNeedsCleanups() &&
"cleanups within StmtExpr not correctly bound!") ? void (0) :
__assert_fail ("!Cleanup.exprNeedsCleanups() && \"cleanups within StmtExpr not correctly bound!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 15183, __extension__ __PRETTY_FUNCTION__))
15183 "cleanups within StmtExpr not correctly bound!")(static_cast <bool> (!Cleanup.exprNeedsCleanups() &&
"cleanups within StmtExpr not correctly bound!") ? void (0) :
__assert_fail ("!Cleanup.exprNeedsCleanups() && \"cleanups within StmtExpr not correctly bound!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 15183, __extension__ __PRETTY_FUNCTION__))
;
15184 PopExpressionEvaluationContext();
15185
15186 // FIXME: there are a variety of strange constraints to enforce here, for
15187 // example, it is not possible to goto into a stmt expression apparently.
15188 // More semantic analysis is needed.
15189
15190 // If there are sub-stmts in the compound stmt, take the type of the last one
15191 // as the type of the stmtexpr.
15192 QualType Ty = Context.VoidTy;
15193 bool StmtExprMayBindToTemp = false;
15194 if (!Compound->body_empty()) {
15195 // For GCC compatibility we get the last Stmt excluding trailing NullStmts.
15196 if (const auto *LastStmt =
15197 dyn_cast<ValueStmt>(Compound->getStmtExprResult())) {
15198 if (const Expr *Value = LastStmt->getExprStmt()) {
15199 StmtExprMayBindToTemp = true;
15200 Ty = Value->getType();
15201 }
15202 }
15203 }
15204
15205 // FIXME: Check that expression type is complete/non-abstract; statement
15206 // expressions are not lvalues.
15207 Expr *ResStmtExpr =
15208 new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc, TemplateDepth);
15209 if (StmtExprMayBindToTemp)
15210 return MaybeBindToTemporary(ResStmtExpr);
15211 return ResStmtExpr;
15212}
15213
15214ExprResult Sema::ActOnStmtExprResult(ExprResult ER) {
15215 if (ER.isInvalid())
15216 return ExprError();
15217
15218 // Do function/array conversion on the last expression, but not
15219 // lvalue-to-rvalue. However, initialize an unqualified type.
15220 ER = DefaultFunctionArrayConversion(ER.get());
15221 if (ER.isInvalid())
15222 return ExprError();
15223 Expr *E = ER.get();
15224
15225 if (E->isTypeDependent())
15226 return E;
15227
15228 // In ARC, if the final expression ends in a consume, splice
15229 // the consume out and bind it later. In the alternate case
15230 // (when dealing with a retainable type), the result
15231 // initialization will create a produce. In both cases the
15232 // result will be +1, and we'll need to balance that out with
15233 // a bind.
15234 auto *Cast = dyn_cast<ImplicitCastExpr>(E);
15235 if (Cast && Cast->getCastKind() == CK_ARCConsumeObject)
15236 return Cast->getSubExpr();
15237
15238 // FIXME: Provide a better location for the initialization.
15239 return PerformCopyInitialization(
15240 InitializedEntity::InitializeStmtExprResult(
15241 E->getBeginLoc(), E->getType().getUnqualifiedType()),
15242 SourceLocation(), E);
15243}
15244
15245ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
15246 TypeSourceInfo *TInfo,
15247 ArrayRef<OffsetOfComponent> Components,
15248 SourceLocation RParenLoc) {
15249 QualType ArgTy = TInfo->getType();
15250 bool Dependent = ArgTy->isDependentType();
15251 SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange();
15252
15253 // We must have at least one component that refers to the type, and the first
15254 // one is known to be a field designator. Verify that the ArgTy represents
15255 // a struct/union/class.
15256 if (!Dependent && !ArgTy->isRecordType())
15257 return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type)
15258 << ArgTy << TypeRange);
15259
15260 // Type must be complete per C99 7.17p3 because a declaring a variable
15261 // with an incomplete type would be ill-formed.
15262 if (!Dependent
15263 && RequireCompleteType(BuiltinLoc, ArgTy,
15264 diag::err_offsetof_incomplete_type, TypeRange))
15265 return ExprError();
15266
15267 bool DidWarnAboutNonPOD = false;
15268 QualType CurrentType = ArgTy;
15269 SmallVector<OffsetOfNode, 4> Comps;
15270 SmallVector<Expr*, 4> Exprs;
15271 for (const OffsetOfComponent &OC : Components) {
15272 if (OC.isBrackets) {
15273 // Offset of an array sub-field. TODO: Should we allow vector elements?
15274 if (!CurrentType->isDependentType()) {
15275 const ArrayType *AT = Context.getAsArrayType(CurrentType);
15276 if(!AT)
15277 return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
15278 << CurrentType);
15279 CurrentType = AT->getElementType();
15280 } else
15281 CurrentType = Context.DependentTy;
15282
15283 ExprResult IdxRval = DefaultLvalueConversion(static_cast<Expr*>(OC.U.E));
15284 if (IdxRval.isInvalid())
15285 return ExprError();
15286 Expr *Idx = IdxRval.get();
15287
15288 // The expression must be an integral expression.
15289 // FIXME: An integral constant expression?
15290 if (!Idx->isTypeDependent() && !Idx->isValueDependent() &&
15291 !Idx->getType()->isIntegerType())
15292 return ExprError(
15293 Diag(Idx->getBeginLoc(), diag::err_typecheck_subscript_not_integer)
15294 << Idx->getSourceRange());
15295
15296 // Record this array index.
15297 Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd));
15298 Exprs.push_back(Idx);
15299 continue;
15300 }
15301
15302 // Offset of a field.
15303 if (CurrentType->isDependentType()) {
15304 // We have the offset of a field, but we can't look into the dependent
15305 // type. Just record the identifier of the field.
15306 Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd));
15307 CurrentType = Context.DependentTy;
15308 continue;
15309 }
15310
15311 // We need to have a complete type to look into.
15312 if (RequireCompleteType(OC.LocStart, CurrentType,
15313 diag::err_offsetof_incomplete_type))
15314 return ExprError();
15315
15316 // Look for the designated field.
15317 const RecordType *RC = CurrentType->getAs<RecordType>();
15318 if (!RC)
15319 return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
15320 << CurrentType);
15321 RecordDecl *RD = RC->getDecl();
15322
15323 // C++ [lib.support.types]p5:
15324 // The macro offsetof accepts a restricted set of type arguments in this
15325 // International Standard. type shall be a POD structure or a POD union
15326 // (clause 9).
15327 // C++11 [support.types]p4:
15328 // If type is not a standard-layout class (Clause 9), the results are
15329 // undefined.
15330 if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
15331 bool IsSafe = LangOpts.CPlusPlus11? CRD->isStandardLayout() : CRD->isPOD();
15332 unsigned DiagID =
15333 LangOpts.CPlusPlus11? diag::ext_offsetof_non_standardlayout_type
15334 : diag::ext_offsetof_non_pod_type;
15335
15336 if (!IsSafe && !DidWarnAboutNonPOD &&
15337 DiagRuntimeBehavior(BuiltinLoc, nullptr,
15338 PDiag(DiagID)
15339 << SourceRange(Components[0].LocStart, OC.LocEnd)
15340 << CurrentType))
15341 DidWarnAboutNonPOD = true;
15342 }
15343
15344 // Look for the field.
15345 LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
15346 LookupQualifiedName(R, RD);
15347 FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
15348 IndirectFieldDecl *IndirectMemberDecl = nullptr;
15349 if (!MemberDecl) {
15350 if ((IndirectMemberDecl = R.getAsSingle<IndirectFieldDecl>()))
15351 MemberDecl = IndirectMemberDecl->getAnonField();
15352 }
15353
15354 if (!MemberDecl)
15355 return ExprError(Diag(BuiltinLoc, diag::err_no_member)
15356 << OC.U.IdentInfo << RD << SourceRange(OC.LocStart,
15357 OC.LocEnd));
15358
15359 // C99 7.17p3:
15360 // (If the specified member is a bit-field, the behavior is undefined.)
15361 //
15362 // We diagnose this as an error.
15363 if (MemberDecl->isBitField()) {
15364 Diag(OC.LocEnd, diag::err_offsetof_bitfield)
15365 << MemberDecl->getDeclName()
15366 << SourceRange(BuiltinLoc, RParenLoc);
15367 Diag(MemberDecl->getLocation(), diag::note_bitfield_decl);
15368 return ExprError();
15369 }
15370
15371 RecordDecl *Parent = MemberDecl->getParent();
15372 if (IndirectMemberDecl)
15373 Parent = cast<RecordDecl>(IndirectMemberDecl->getDeclContext());
15374
15375 // If the member was found in a base class, introduce OffsetOfNodes for
15376 // the base class indirections.
15377 CXXBasePaths Paths;
15378 if (IsDerivedFrom(OC.LocStart, CurrentType, Context.getTypeDeclType(Parent),
15379 Paths)) {
15380 if (Paths.getDetectedVirtual()) {
15381 Diag(OC.LocEnd, diag::err_offsetof_field_of_virtual_base)
15382 << MemberDecl->getDeclName()
15383 << SourceRange(BuiltinLoc, RParenLoc);
15384 return ExprError();
15385 }
15386
15387 CXXBasePath &Path = Paths.front();
15388 for (const CXXBasePathElement &B : Path)
15389 Comps.push_back(OffsetOfNode(B.Base));
15390 }
15391
15392 if (IndirectMemberDecl) {
15393 for (auto *FI : IndirectMemberDecl->chain()) {
15394 assert(isa<FieldDecl>(FI))(static_cast <bool> (isa<FieldDecl>(FI)) ? void (
0) : __assert_fail ("isa<FieldDecl>(FI)", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 15394, __extension__ __PRETTY_FUNCTION__))
;
15395 Comps.push_back(OffsetOfNode(OC.LocStart,
15396 cast<FieldDecl>(FI), OC.LocEnd));
15397 }
15398 } else
15399 Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd));
15400
15401 CurrentType = MemberDecl->getType().getNonReferenceType();
15402 }
15403
15404 return OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc, TInfo,
15405 Comps, Exprs, RParenLoc);
15406}
15407
15408ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
15409 SourceLocation BuiltinLoc,
15410 SourceLocation TypeLoc,
15411 ParsedType ParsedArgTy,
15412 ArrayRef<OffsetOfComponent> Components,
15413 SourceLocation RParenLoc) {
15414
15415 TypeSourceInfo *ArgTInfo;
15416 QualType ArgTy = GetTypeFromParser(ParsedArgTy, &ArgTInfo);
15417 if (ArgTy.isNull())
15418 return ExprError();
15419
15420 if (!ArgTInfo)
15421 ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc);
15422
15423 return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, Components, RParenLoc);
15424}
15425
15426
15427ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
15428 Expr *CondExpr,
15429 Expr *LHSExpr, Expr *RHSExpr,
15430 SourceLocation RPLoc) {
15431 assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)")(static_cast <bool> ((CondExpr && LHSExpr &&
RHSExpr) && "Missing type argument(s)") ? void (0) :
__assert_fail ("(CondExpr && LHSExpr && RHSExpr) && \"Missing type argument(s)\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 15431, __extension__ __PRETTY_FUNCTION__))
;
15432
15433 ExprValueKind VK = VK_PRValue;
15434 ExprObjectKind OK = OK_Ordinary;
15435 QualType resType;
15436 bool CondIsTrue = false;
15437 if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
15438 resType = Context.DependentTy;
15439 } else {
15440 // The conditional expression is required to be a constant expression.
15441 llvm::APSInt condEval(32);
15442 ExprResult CondICE = VerifyIntegerConstantExpression(
15443 CondExpr, &condEval, diag::err_typecheck_choose_expr_requires_constant);
15444 if (CondICE.isInvalid())
15445 return ExprError();
15446 CondExpr = CondICE.get();
15447 CondIsTrue = condEval.getZExtValue();
15448
15449 // If the condition is > zero, then the AST type is the same as the LHSExpr.
15450 Expr *ActiveExpr = CondIsTrue ? LHSExpr : RHSExpr;
15451
15452 resType = ActiveExpr->getType();
15453 VK = ActiveExpr->getValueKind();
15454 OK = ActiveExpr->getObjectKind();
15455 }
15456
15457 return new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
15458 resType, VK, OK, RPLoc, CondIsTrue);
15459}
15460
15461//===----------------------------------------------------------------------===//
15462// Clang Extensions.
15463//===----------------------------------------------------------------------===//
15464
15465/// ActOnBlockStart - This callback is invoked when a block literal is started.
15466void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope) {
15467 BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc);
15468
15469 if (LangOpts.CPlusPlus) {
15470 MangleNumberingContext *MCtx;
15471 Decl *ManglingContextDecl;
15472 std::tie(MCtx, ManglingContextDecl) =
15473 getCurrentMangleNumberContext(Block->getDeclContext());
15474 if (MCtx) {
15475 unsigned ManglingNumber = MCtx->getManglingNumber(Block);
15476 Block->setBlockMangling(ManglingNumber, ManglingContextDecl);
15477 }
15478 }
15479
15480 PushBlockScope(CurScope, Block);
15481 CurContext->addDecl(Block);
15482 if (CurScope)
15483 PushDeclContext(CurScope, Block);
15484 else
15485 CurContext = Block;
15486
15487 getCurBlock()->HasImplicitReturnType = true;
15488
15489 // Enter a new evaluation context to insulate the block from any
15490 // cleanups from the enclosing full-expression.
15491 PushExpressionEvaluationContext(
15492 ExpressionEvaluationContext::PotentiallyEvaluated);
15493}
15494
15495void Sema::ActOnBlockArguments(SourceLocation CaretLoc, Declarator &ParamInfo,
15496 Scope *CurScope) {
15497 assert(ParamInfo.getIdentifier() == nullptr &&(static_cast <bool> (ParamInfo.getIdentifier() == nullptr
&& "block-id should have no identifier!") ? void (0)
: __assert_fail ("ParamInfo.getIdentifier() == nullptr && \"block-id should have no identifier!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 15498, __extension__ __PRETTY_FUNCTION__))
15498 "block-id should have no identifier!")(static_cast <bool> (ParamInfo.getIdentifier() == nullptr
&& "block-id should have no identifier!") ? void (0)
: __assert_fail ("ParamInfo.getIdentifier() == nullptr && \"block-id should have no identifier!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 15498, __extension__ __PRETTY_FUNCTION__))
;
15499 assert(ParamInfo.getContext() == DeclaratorContext::BlockLiteral)(static_cast <bool> (ParamInfo.getContext() == DeclaratorContext
::BlockLiteral) ? void (0) : __assert_fail ("ParamInfo.getContext() == DeclaratorContext::BlockLiteral"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 15499, __extension__ __PRETTY_FUNCTION__))
;
15500 BlockScopeInfo *CurBlock = getCurBlock();
15501
15502 TypeSourceInfo *Sig = GetTypeForDeclarator(ParamInfo, CurScope);
15503 QualType T = Sig->getType();
15504
15505 // FIXME: We should allow unexpanded parameter packs here, but that would,
15506 // in turn, make the block expression contain unexpanded parameter packs.
15507 if (DiagnoseUnexpandedParameterPack(CaretLoc, Sig, UPPC_Block)) {
15508 // Drop the parameters.
15509 FunctionProtoType::ExtProtoInfo EPI;
15510 EPI.HasTrailingReturn = false;
15511 EPI.TypeQuals.addConst();
15512 T = Context.getFunctionType(Context.DependentTy, None, EPI);
15513 Sig = Context.getTrivialTypeSourceInfo(T);
15514 }
15515
15516 // GetTypeForDeclarator always produces a function type for a block
15517 // literal signature. Furthermore, it is always a FunctionProtoType
15518 // unless the function was written with a typedef.
15519 assert(T->isFunctionType() &&(static_cast <bool> (T->isFunctionType() && "GetTypeForDeclarator made a non-function block signature"
) ? void (0) : __assert_fail ("T->isFunctionType() && \"GetTypeForDeclarator made a non-function block signature\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 15520, __extension__ __PRETTY_FUNCTION__))
15520 "GetTypeForDeclarator made a non-function block signature")(static_cast <bool> (T->isFunctionType() && "GetTypeForDeclarator made a non-function block signature"
) ? void (0) : __assert_fail ("T->isFunctionType() && \"GetTypeForDeclarator made a non-function block signature\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 15520, __extension__ __PRETTY_FUNCTION__))
;
15521
15522 // Look for an explicit signature in that function type.
15523 FunctionProtoTypeLoc ExplicitSignature;
15524
15525 if ((ExplicitSignature = Sig->getTypeLoc()
15526 .getAsAdjusted<FunctionProtoTypeLoc>())) {
15527
15528 // Check whether that explicit signature was synthesized by
15529 // GetTypeForDeclarator. If so, don't save that as part of the
15530 // written signature.
15531 if (ExplicitSignature.getLocalRangeBegin() ==
15532 ExplicitSignature.getLocalRangeEnd()) {
15533 // This would be much cheaper if we stored TypeLocs instead of
15534 // TypeSourceInfos.
15535 TypeLoc Result = ExplicitSignature.getReturnLoc();
15536 unsigned Size = Result.getFullDataSize();
15537 Sig = Context.CreateTypeSourceInfo(Result.getType(), Size);
15538 Sig->getTypeLoc().initializeFullCopy(Result, Size);
15539
15540 ExplicitSignature = FunctionProtoTypeLoc();
15541 }
15542 }
15543
15544 CurBlock->TheDecl->setSignatureAsWritten(Sig);
15545 CurBlock->FunctionType = T;
15546
15547 const auto *Fn = T->castAs<FunctionType>();
15548 QualType RetTy = Fn->getReturnType();
15549 bool isVariadic =
15550 (isa<FunctionProtoType>(Fn) && cast<FunctionProtoType>(Fn)->isVariadic());
15551
15552 CurBlock->TheDecl->setIsVariadic(isVariadic);
15553
15554 // Context.DependentTy is used as a placeholder for a missing block
15555 // return type. TODO: what should we do with declarators like:
15556 // ^ * { ... }
15557 // If the answer is "apply template argument deduction"....
15558 if (RetTy != Context.DependentTy) {
15559 CurBlock->ReturnType = RetTy;
15560 CurBlock->TheDecl->setBlockMissingReturnType(false);
15561 CurBlock->HasImplicitReturnType = false;
15562 }
15563
15564 // Push block parameters from the declarator if we had them.
15565 SmallVector<ParmVarDecl*, 8> Params;
15566 if (ExplicitSignature) {
15567 for (unsigned I = 0, E = ExplicitSignature.getNumParams(); I != E; ++I) {
15568 ParmVarDecl *Param = ExplicitSignature.getParam(I);
15569 if (Param->getIdentifier() == nullptr && !Param->isImplicit() &&
15570 !Param->isInvalidDecl() && !getLangOpts().CPlusPlus) {
15571 // Diagnose this as an extension in C17 and earlier.
15572 if (!getLangOpts().C2x)
15573 Diag(Param->getLocation(), diag::ext_parameter_name_omitted_c2x);
15574 }
15575 Params.push_back(Param);
15576 }
15577
15578 // Fake up parameter variables if we have a typedef, like
15579 // ^ fntype { ... }
15580 } else if (const FunctionProtoType *Fn = T->getAs<FunctionProtoType>()) {
15581 for (const auto &I : Fn->param_types()) {
15582 ParmVarDecl *Param = BuildParmVarDeclForTypedef(
15583 CurBlock->TheDecl, ParamInfo.getBeginLoc(), I);
15584 Params.push_back(Param);
15585 }
15586 }
15587
15588 // Set the parameters on the block decl.
15589 if (!Params.empty()) {
15590 CurBlock->TheDecl->setParams(Params);
15591 CheckParmsForFunctionDef(CurBlock->TheDecl->parameters(),
15592 /*CheckParameterNames=*/false);
15593 }
15594
15595 // Finally we can process decl attributes.
15596 ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
15597
15598 // Put the parameter variables in scope.
15599 for (auto AI : CurBlock->TheDecl->parameters()) {
15600 AI->setOwningFunction(CurBlock->TheDecl);
15601
15602 // If this has an identifier, add it to the scope stack.
15603 if (AI->getIdentifier()) {
15604 CheckShadow(CurBlock->TheScope, AI);
15605
15606 PushOnScopeChains(AI, CurBlock->TheScope);
15607 }
15608 }
15609}
15610
15611/// ActOnBlockError - If there is an error parsing a block, this callback
15612/// is invoked to pop the information about the block from the action impl.
15613void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
15614 // Leave the expression-evaluation context.
15615 DiscardCleanupsInEvaluationContext();
15616 PopExpressionEvaluationContext();
15617
15618 // Pop off CurBlock, handle nested blocks.
15619 PopDeclContext();
15620 PopFunctionScopeInfo();
15621}
15622
15623/// ActOnBlockStmtExpr - This is called when the body of a block statement
15624/// literal was successfully completed. ^(int x){...}
15625ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
15626 Stmt *Body, Scope *CurScope) {
15627 // If blocks are disabled, emit an error.
15628 if (!LangOpts.Blocks)
15629 Diag(CaretLoc, diag::err_blocks_disable) << LangOpts.OpenCL;
15630
15631 // Leave the expression-evaluation context.
15632 if (hasAnyUnrecoverableErrorsInThisFunction())
15633 DiscardCleanupsInEvaluationContext();
15634 assert(!Cleanup.exprNeedsCleanups() &&(static_cast <bool> (!Cleanup.exprNeedsCleanups() &&
"cleanups within block not correctly bound!") ? void (0) : __assert_fail
("!Cleanup.exprNeedsCleanups() && \"cleanups within block not correctly bound!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 15635, __extension__ __PRETTY_FUNCTION__))
15635 "cleanups within block not correctly bound!")(static_cast <bool> (!Cleanup.exprNeedsCleanups() &&
"cleanups within block not correctly bound!") ? void (0) : __assert_fail
("!Cleanup.exprNeedsCleanups() && \"cleanups within block not correctly bound!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 15635, __extension__ __PRETTY_FUNCTION__))
;
15636 PopExpressionEvaluationContext();
15637
15638 BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back());
15639 BlockDecl *BD = BSI->TheDecl;
15640
15641 if (BSI->HasImplicitReturnType)
15642 deduceClosureReturnType(*BSI);
15643
15644 QualType RetTy = Context.VoidTy;
15645 if (!BSI->ReturnType.isNull())
15646 RetTy = BSI->ReturnType;
15647
15648 bool NoReturn = BD->hasAttr<NoReturnAttr>();
15649 QualType BlockTy;
15650
15651 // If the user wrote a function type in some form, try to use that.
15652 if (!BSI->FunctionType.isNull()) {
15653 const FunctionType *FTy = BSI->FunctionType->castAs<FunctionType>();
15654
15655 FunctionType::ExtInfo Ext = FTy->getExtInfo();
15656 if (NoReturn && !Ext.getNoReturn()) Ext = Ext.withNoReturn(true);
15657
15658 // Turn protoless block types into nullary block types.
15659 if (isa<FunctionNoProtoType>(FTy)) {
15660 FunctionProtoType::ExtProtoInfo EPI;
15661 EPI.ExtInfo = Ext;
15662 BlockTy = Context.getFunctionType(RetTy, None, EPI);
15663
15664 // Otherwise, if we don't need to change anything about the function type,
15665 // preserve its sugar structure.
15666 } else if (FTy->getReturnType() == RetTy &&
15667 (!NoReturn || FTy->getNoReturnAttr())) {
15668 BlockTy = BSI->FunctionType;
15669
15670 // Otherwise, make the minimal modifications to the function type.
15671 } else {
15672 const FunctionProtoType *FPT = cast<FunctionProtoType>(FTy);
15673 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
15674 EPI.TypeQuals = Qualifiers();
15675 EPI.ExtInfo = Ext;
15676 BlockTy = Context.getFunctionType(RetTy, FPT->getParamTypes(), EPI);
15677 }
15678
15679 // If we don't have a function type, just build one from nothing.
15680 } else {
15681 FunctionProtoType::ExtProtoInfo EPI;
15682 EPI.ExtInfo = FunctionType::ExtInfo().withNoReturn(NoReturn);
15683 BlockTy = Context.getFunctionType(RetTy, None, EPI);
15684 }
15685
15686 DiagnoseUnusedParameters(BD->parameters());
15687 BlockTy = Context.getBlockPointerType(BlockTy);
15688
15689 // If needed, diagnose invalid gotos and switches in the block.
15690 if (getCurFunction()->NeedsScopeChecking() &&
15691 !PP.isCodeCompletionEnabled())
15692 DiagnoseInvalidJumps(cast<CompoundStmt>(Body));
15693
15694 BD->setBody(cast<CompoundStmt>(Body));
15695
15696 if (Body && getCurFunction()->HasPotentialAvailabilityViolations)
15697 DiagnoseUnguardedAvailabilityViolations(BD);
15698
15699 // Try to apply the named return value optimization. We have to check again
15700 // if we can do this, though, because blocks keep return statements around
15701 // to deduce an implicit return type.
15702 if (getLangOpts().CPlusPlus && RetTy->isRecordType() &&
15703 !BD->isDependentContext())
15704 computeNRVO(Body, BSI);
15705
15706 if (RetTy.hasNonTrivialToPrimitiveDestructCUnion() ||
15707 RetTy.hasNonTrivialToPrimitiveCopyCUnion())
15708 checkNonTrivialCUnion(RetTy, BD->getCaretLocation(), NTCUC_FunctionReturn,
15709 NTCUK_Destruct|NTCUK_Copy);
15710
15711 PopDeclContext();
15712
15713 // Set the captured variables on the block.
15714 SmallVector<BlockDecl::Capture, 4> Captures;
15715 for (Capture &Cap : BSI->Captures) {
15716 if (Cap.isInvalid() || Cap.isThisCapture())
15717 continue;
15718
15719 VarDecl *Var = Cap.getVariable();
15720 Expr *CopyExpr = nullptr;
15721 if (getLangOpts().CPlusPlus && Cap.isCopyCapture()) {
15722 if (const RecordType *Record =
15723 Cap.getCaptureType()->getAs<RecordType>()) {
15724 // The capture logic needs the destructor, so make sure we mark it.
15725 // Usually this is unnecessary because most local variables have
15726 // their destructors marked at declaration time, but parameters are
15727 // an exception because it's technically only the call site that
15728 // actually requires the destructor.
15729 if (isa<ParmVarDecl>(Var))
15730 FinalizeVarWithDestructor(Var, Record);
15731
15732 // Enter a separate potentially-evaluated context while building block
15733 // initializers to isolate their cleanups from those of the block
15734 // itself.
15735 // FIXME: Is this appropriate even when the block itself occurs in an
15736 // unevaluated operand?
15737 EnterExpressionEvaluationContext EvalContext(
15738 *this, ExpressionEvaluationContext::PotentiallyEvaluated);
15739
15740 SourceLocation Loc = Cap.getLocation();
15741
15742 ExprResult Result = BuildDeclarationNameExpr(
15743 CXXScopeSpec(), DeclarationNameInfo(Var->getDeclName(), Loc), Var);
15744
15745 // According to the blocks spec, the capture of a variable from
15746 // the stack requires a const copy constructor. This is not true
15747 // of the copy/move done to move a __block variable to the heap.
15748 if (!Result.isInvalid() &&
15749 !Result.get()->getType().isConstQualified()) {
15750 Result = ImpCastExprToType(Result.get(),
15751 Result.get()->getType().withConst(),
15752 CK_NoOp, VK_LValue);
15753 }
15754
15755 if (!Result.isInvalid()) {
15756 Result = PerformCopyInitialization(
15757 InitializedEntity::InitializeBlock(Var->getLocation(),
15758 Cap.getCaptureType(), false),
15759 Loc, Result.get());
15760 }
15761
15762 // Build a full-expression copy expression if initialization
15763 // succeeded and used a non-trivial constructor. Recover from
15764 // errors by pretending that the copy isn't necessary.
15765 if (!Result.isInvalid() &&
15766 !cast<CXXConstructExpr>(Result.get())->getConstructor()
15767 ->isTrivial()) {
15768 Result = MaybeCreateExprWithCleanups(Result);
15769 CopyExpr = Result.get();
15770 }
15771 }
15772 }
15773
15774 BlockDecl::Capture NewCap(Var, Cap.isBlockCapture(), Cap.isNested(),
15775 CopyExpr);
15776 Captures.push_back(NewCap);
15777 }
15778 BD->setCaptures(Context, Captures, BSI->CXXThisCaptureIndex != 0);
15779
15780 // Pop the block scope now but keep it alive to the end of this function.
15781 AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
15782 PoppedFunctionScopePtr ScopeRAII = PopFunctionScopeInfo(&WP, BD, BlockTy);
15783
15784 BlockExpr *Result = new (Context) BlockExpr(BD, BlockTy);
15785
15786 // If the block isn't obviously global, i.e. it captures anything at
15787 // all, then we need to do a few things in the surrounding context:
15788 if (Result->getBlockDecl()->hasCaptures()) {
15789 // First, this expression has a new cleanup object.
15790 ExprCleanupObjects.push_back(Result->getBlockDecl());
15791 Cleanup.setExprNeedsCleanups(true);
15792
15793 // It also gets a branch-protected scope if any of the captured
15794 // variables needs destruction.
15795 for (const auto &CI : Result->getBlockDecl()->captures()) {
15796 const VarDecl *var = CI.getVariable();
15797 if (var->getType().isDestructedType() != QualType::DK_none) {
15798 setFunctionHasBranchProtectedScope();
15799 break;
15800 }
15801 }
15802 }
15803
15804 if (getCurFunction())
15805 getCurFunction()->addBlock(BD);
15806
15807 return Result;
15808}
15809
15810ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc, Expr *E, ParsedType Ty,
15811 SourceLocation RPLoc) {
15812 TypeSourceInfo *TInfo;
15813 GetTypeFromParser(Ty, &TInfo);
15814 return BuildVAArgExpr(BuiltinLoc, E, TInfo, RPLoc);
15815}
15816
15817ExprResult Sema::BuildVAArgExpr(SourceLocation BuiltinLoc,
15818 Expr *E, TypeSourceInfo *TInfo,
15819 SourceLocation RPLoc) {
15820 Expr *OrigExpr = E;
15821 bool IsMS = false;
15822
15823 // CUDA device code does not support varargs.
15824 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) {
15825 if (const FunctionDecl *F = dyn_cast<FunctionDecl>(CurContext)) {
15826 CUDAFunctionTarget T = IdentifyCUDATarget(F);
15827 if (T == CFT_Global || T == CFT_Device || T == CFT_HostDevice)
15828 return ExprError(Diag(E->getBeginLoc(), diag::err_va_arg_in_device));
15829 }
15830 }
15831
15832 // NVPTX does not support va_arg expression.
15833 if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
15834 Context.getTargetInfo().getTriple().isNVPTX())
15835 targetDiag(E->getBeginLoc(), diag::err_va_arg_in_device);
15836
15837 // It might be a __builtin_ms_va_list. (But don't ever mark a va_arg()
15838 // as Microsoft ABI on an actual Microsoft platform, where
15839 // __builtin_ms_va_list and __builtin_va_list are the same.)
15840 if (!E->isTypeDependent() && Context.getTargetInfo().hasBuiltinMSVaList() &&
15841 Context.getTargetInfo().getBuiltinVaListKind() != TargetInfo::CharPtrBuiltinVaList) {
15842 QualType MSVaListType = Context.getBuiltinMSVaListType();
15843 if (Context.hasSameType(MSVaListType, E->getType())) {
15844 if (CheckForModifiableLvalue(E, BuiltinLoc, *this))
15845 return ExprError();
15846 IsMS = true;
15847 }
15848 }
15849
15850 // Get the va_list type
15851 QualType VaListType = Context.getBuiltinVaListType();
15852 if (!IsMS) {
15853 if (VaListType->isArrayType()) {
15854 // Deal with implicit array decay; for example, on x86-64,
15855 // va_list is an array, but it's supposed to decay to
15856 // a pointer for va_arg.
15857 VaListType = Context.getArrayDecayedType(VaListType);
15858 // Make sure the input expression also decays appropriately.
15859 ExprResult Result = UsualUnaryConversions(E);
15860 if (Result.isInvalid())
15861 return ExprError();
15862 E = Result.get();
15863 } else if (VaListType->isRecordType() && getLangOpts().CPlusPlus) {
15864 // If va_list is a record type and we are compiling in C++ mode,
15865 // check the argument using reference binding.
15866 InitializedEntity Entity = InitializedEntity::InitializeParameter(
15867 Context, Context.getLValueReferenceType(VaListType), false);
15868 ExprResult Init = PerformCopyInitialization(Entity, SourceLocation(), E);
15869 if (Init.isInvalid())
15870 return ExprError();
15871 E = Init.getAs<Expr>();
15872 } else {
15873 // Otherwise, the va_list argument must be an l-value because
15874 // it is modified by va_arg.
15875 if (!E->isTypeDependent() &&
15876 CheckForModifiableLvalue(E, BuiltinLoc, *this))
15877 return ExprError();
15878 }
15879 }
15880
15881 if (!IsMS && !E->isTypeDependent() &&
15882 !Context.hasSameType(VaListType, E->getType()))
15883 return ExprError(
15884 Diag(E->getBeginLoc(),
15885 diag::err_first_argument_to_va_arg_not_of_type_va_list)
15886 << OrigExpr->getType() << E->getSourceRange());
15887
15888 if (!TInfo->getType()->isDependentType()) {
15889 if (RequireCompleteType(TInfo->getTypeLoc().getBeginLoc(), TInfo->getType(),
15890 diag::err_second_parameter_to_va_arg_incomplete,
15891 TInfo->getTypeLoc()))
15892 return ExprError();
15893
15894 if (RequireNonAbstractType(TInfo->getTypeLoc().getBeginLoc(),
15895 TInfo->getType(),
15896 diag::err_second_parameter_to_va_arg_abstract,
15897 TInfo->getTypeLoc()))
15898 return ExprError();
15899
15900 if (!TInfo->getType().isPODType(Context)) {
15901 Diag(TInfo->getTypeLoc().getBeginLoc(),
15902 TInfo->getType()->isObjCLifetimeType()
15903 ? diag::warn_second_parameter_to_va_arg_ownership_qualified
15904 : diag::warn_second_parameter_to_va_arg_not_pod)
15905 << TInfo->getType()
15906 << TInfo->getTypeLoc().getSourceRange();
15907 }
15908
15909 // Check for va_arg where arguments of the given type will be promoted
15910 // (i.e. this va_arg is guaranteed to have undefined behavior).
15911 QualType PromoteType;
15912 if (TInfo->getType()->isPromotableIntegerType()) {
15913 PromoteType = Context.getPromotedIntegerType(TInfo->getType());
15914 // [cstdarg.syn]p1 defers the C++ behavior to what the C standard says,
15915 // and C2x 7.16.1.1p2 says, in part:
15916 // If type is not compatible with the type of the actual next argument
15917 // (as promoted according to the default argument promotions), the
15918 // behavior is undefined, except for the following cases:
15919 // - both types are pointers to qualified or unqualified versions of
15920 // compatible types;
15921 // - one type is a signed integer type, the other type is the
15922 // corresponding unsigned integer type, and the value is
15923 // representable in both types;
15924 // - one type is pointer to qualified or unqualified void and the
15925 // other is a pointer to a qualified or unqualified character type.
15926 // Given that type compatibility is the primary requirement (ignoring
15927 // qualifications), you would think we could call typesAreCompatible()
15928 // directly to test this. However, in C++, that checks for *same type*,
15929 // which causes false positives when passing an enumeration type to
15930 // va_arg. Instead, get the underlying type of the enumeration and pass
15931 // that.
15932 QualType UnderlyingType = TInfo->getType();
15933 if (const auto *ET = UnderlyingType->getAs<EnumType>())
15934 UnderlyingType = ET->getDecl()->getIntegerType();
15935 if (Context.typesAreCompatible(PromoteType, UnderlyingType,
15936 /*CompareUnqualified*/ true))
15937 PromoteType = QualType();
15938
15939 // If the types are still not compatible, we need to test whether the
15940 // promoted type and the underlying type are the same except for
15941 // signedness. Ask the AST for the correctly corresponding type and see
15942 // if that's compatible.
15943 if (!PromoteType.isNull() &&
15944 PromoteType->isUnsignedIntegerType() !=
15945 UnderlyingType->isUnsignedIntegerType()) {
15946 UnderlyingType =
15947 UnderlyingType->isUnsignedIntegerType()
15948 ? Context.getCorrespondingSignedType(UnderlyingType)
15949 : Context.getCorrespondingUnsignedType(UnderlyingType);
15950 if (Context.typesAreCompatible(PromoteType, UnderlyingType,
15951 /*CompareUnqualified*/ true))
15952 PromoteType = QualType();
15953 }
15954 }
15955 if (TInfo->getType()->isSpecificBuiltinType(BuiltinType::Float))
15956 PromoteType = Context.DoubleTy;
15957 if (!PromoteType.isNull())
15958 DiagRuntimeBehavior(TInfo->getTypeLoc().getBeginLoc(), E,
15959 PDiag(diag::warn_second_parameter_to_va_arg_never_compatible)
15960 << TInfo->getType()
15961 << PromoteType
15962 << TInfo->getTypeLoc().getSourceRange());
15963 }
15964
15965 QualType T = TInfo->getType().getNonLValueExprType(Context);
15966 return new (Context) VAArgExpr(BuiltinLoc, E, TInfo, RPLoc, T, IsMS);
15967}
15968
15969ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
15970 // The type of __null will be int or long, depending on the size of
15971 // pointers on the target.
15972 QualType Ty;
15973 unsigned pw = Context.getTargetInfo().getPointerWidth(0);
15974 if (pw == Context.getTargetInfo().getIntWidth())
15975 Ty = Context.IntTy;
15976 else if (pw == Context.getTargetInfo().getLongWidth())
15977 Ty = Context.LongTy;
15978 else if (pw == Context.getTargetInfo().getLongLongWidth())
15979 Ty = Context.LongLongTy;
15980 else {
15981 llvm_unreachable("I don't know size of pointer!")::llvm::llvm_unreachable_internal("I don't know size of pointer!"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 15981)
;
15982 }
15983
15984 return new (Context) GNUNullExpr(Ty, TokenLoc);
15985}
15986
15987ExprResult Sema::ActOnSourceLocExpr(SourceLocExpr::IdentKind Kind,
15988 SourceLocation BuiltinLoc,
15989 SourceLocation RPLoc) {
15990 return BuildSourceLocExpr(Kind, BuiltinLoc, RPLoc, CurContext);
15991}
15992
15993ExprResult Sema::BuildSourceLocExpr(SourceLocExpr::IdentKind Kind,
15994 SourceLocation BuiltinLoc,
15995 SourceLocation RPLoc,
15996 DeclContext *ParentContext) {
15997 return new (Context)
15998 SourceLocExpr(Context, Kind, BuiltinLoc, RPLoc, ParentContext);
15999}
16000
16001bool Sema::CheckConversionToObjCLiteral(QualType DstType, Expr *&Exp,
16002 bool Diagnose) {
16003 if (!getLangOpts().ObjC)
16004 return false;
16005
16006 const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>();
16007 if (!PT)
16008 return false;
16009 const ObjCInterfaceDecl *ID = PT->getInterfaceDecl();
16010
16011 // Ignore any parens, implicit casts (should only be
16012 // array-to-pointer decays), and not-so-opaque values. The last is
16013 // important for making this trigger for property assignments.
16014 Expr *SrcExpr = Exp->IgnoreParenImpCasts();
16015 if (OpaqueValueExpr *OV = dyn_cast<OpaqueValueExpr>(SrcExpr))
16016 if (OV->getSourceExpr())
16017 SrcExpr = OV->getSourceExpr()->IgnoreParenImpCasts();
16018
16019 if (auto *SL = dyn_cast<StringLiteral>(SrcExpr)) {
16020 if (!PT->isObjCIdType() &&
16021 !(ID && ID->getIdentifier()->isStr("NSString")))
16022 return false;
16023 if (!SL->isAscii())
16024 return false;
16025
16026 if (Diagnose) {
16027 Diag(SL->getBeginLoc(), diag::err_missing_atsign_prefix)
16028 << /*string*/0 << FixItHint::CreateInsertion(SL->getBeginLoc(), "@");
16029 Exp = BuildObjCStringLiteral(SL->getBeginLoc(), SL).get();
16030 }
16031 return true;
16032 }
16033
16034 if ((isa<IntegerLiteral>(SrcExpr) || isa<CharacterLiteral>(SrcExpr) ||
16035 isa<FloatingLiteral>(SrcExpr) || isa<ObjCBoolLiteralExpr>(SrcExpr) ||
16036 isa<CXXBoolLiteralExpr>(SrcExpr)) &&
16037 !SrcExpr->isNullPointerConstant(
16038 getASTContext(), Expr::NPC_NeverValueDependent)) {
16039 if (!ID || !ID->getIdentifier()->isStr("NSNumber"))
16040 return false;
16041 if (Diagnose) {
16042 Diag(SrcExpr->getBeginLoc(), diag::err_missing_atsign_prefix)
16043 << /*number*/1
16044 << FixItHint::CreateInsertion(SrcExpr->getBeginLoc(), "@");
16045 Expr *NumLit =
16046 BuildObjCNumericLiteral(SrcExpr->getBeginLoc(), SrcExpr).get();
16047 if (NumLit)
16048 Exp = NumLit;
16049 }
16050 return true;
16051 }
16052
16053 return false;
16054}
16055
16056static bool maybeDiagnoseAssignmentToFunction(Sema &S, QualType DstType,
16057 const Expr *SrcExpr) {
16058 if (!DstType->isFunctionPointerType() ||
16059 !SrcExpr->getType()->isFunctionType())
16060 return false;
16061
16062 auto *DRE = dyn_cast<DeclRefExpr>(SrcExpr->IgnoreParenImpCasts());
16063 if (!DRE)
16064 return false;
16065
16066 auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl());
16067 if (!FD)
16068 return false;
16069
16070 return !S.checkAddressOfFunctionIsAvailable(FD,
16071 /*Complain=*/true,
16072 SrcExpr->getBeginLoc());
16073}
16074
16075bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
16076 SourceLocation Loc,
16077 QualType DstType, QualType SrcType,
16078 Expr *SrcExpr, AssignmentAction Action,
16079 bool *Complained) {
16080 if (Complained)
16081 *Complained = false;
16082
16083 // Decode the result (notice that AST's are still created for extensions).
16084 bool CheckInferredResultType = false;
16085 bool isInvalid = false;
16086 unsigned DiagKind = 0;
16087 ConversionFixItGenerator ConvHints;
16088 bool MayHaveConvFixit = false;
16089 bool MayHaveFunctionDiff = false;
16090 const ObjCInterfaceDecl *IFace = nullptr;
16091 const ObjCProtocolDecl *PDecl = nullptr;
16092
16093 switch (ConvTy) {
16094 case Compatible:
16095 DiagnoseAssignmentEnum(DstType, SrcType, SrcExpr);
16096 return false;
16097
16098 case PointerToInt:
16099 if (getLangOpts().CPlusPlus) {
16100 DiagKind = diag::err_typecheck_convert_pointer_int;
16101 isInvalid = true;
16102 } else {
16103 DiagKind = diag::ext_typecheck_convert_pointer_int;
16104 }
16105 ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
16106 MayHaveConvFixit = true;
16107 break;
16108 case IntToPointer:
16109 if (getLangOpts().CPlusPlus) {
16110 DiagKind = diag::err_typecheck_convert_int_pointer;
16111 isInvalid = true;
16112 } else {
16113 DiagKind = diag::ext_typecheck_convert_int_pointer;
16114 }
16115 ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
16116 MayHaveConvFixit = true;
16117 break;
16118 case IncompatibleFunctionPointer:
16119 if (getLangOpts().CPlusPlus) {
16120 DiagKind = diag::err_typecheck_convert_incompatible_function_pointer;
16121 isInvalid = true;
16122 } else {
16123 DiagKind = diag::ext_typecheck_convert_incompatible_function_pointer;
16124 }
16125 ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
16126 MayHaveConvFixit = true;
16127 break;
16128 case IncompatiblePointer:
16129 if (Action == AA_Passing_CFAudited) {
16130 DiagKind = diag::err_arc_typecheck_convert_incompatible_pointer;
16131 } else if (getLangOpts().CPlusPlus) {
16132 DiagKind = diag::err_typecheck_convert_incompatible_pointer;
16133 isInvalid = true;
16134 } else {
16135 DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
16136 }
16137 CheckInferredResultType = DstType->isObjCObjectPointerType() &&
16138 SrcType->isObjCObjectPointerType();
16139 if (!CheckInferredResultType) {
16140 ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
16141 } else if (CheckInferredResultType) {
16142 SrcType = SrcType.getUnqualifiedType();
16143 DstType = DstType.getUnqualifiedType();
16144 }
16145 MayHaveConvFixit = true;
16146 break;
16147 case IncompatiblePointerSign:
16148 if (getLangOpts().CPlusPlus) {
16149 DiagKind = diag::err_typecheck_convert_incompatible_pointer_sign;
16150 isInvalid = true;
16151 } else {
16152 DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
16153 }
16154 break;
16155 case FunctionVoidPointer:
16156 if (getLangOpts().CPlusPlus) {
16157 DiagKind = diag::err_typecheck_convert_pointer_void_func;
16158 isInvalid = true;
16159 } else {
16160 DiagKind = diag::ext_typecheck_convert_pointer_void_func;
16161 }
16162 break;
16163 case IncompatiblePointerDiscardsQualifiers: {
16164 // Perform array-to-pointer decay if necessary.
16165 if (SrcType->isArrayType()) SrcType = Context.getArrayDecayedType(SrcType);
16166
16167 isInvalid = true;
16168
16169 Qualifiers lhq = SrcType->getPointeeType().getQualifiers();
16170 Qualifiers rhq = DstType->getPointeeType().getQualifiers();
16171 if (lhq.getAddressSpace() != rhq.getAddressSpace()) {
16172 DiagKind = diag::err_typecheck_incompatible_address_space;
16173 break;
16174
16175 } else if (lhq.getObjCLifetime() != rhq.getObjCLifetime()) {
16176 DiagKind = diag::err_typecheck_incompatible_ownership;
16177 break;
16178 }
16179
16180 llvm_unreachable("unknown error case for discarding qualifiers!")::llvm::llvm_unreachable_internal("unknown error case for discarding qualifiers!"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 16180)
;
16181 // fallthrough
16182 }
16183 case CompatiblePointerDiscardsQualifiers:
16184 // If the qualifiers lost were because we were applying the
16185 // (deprecated) C++ conversion from a string literal to a char*
16186 // (or wchar_t*), then there was no error (C++ 4.2p2). FIXME:
16187 // Ideally, this check would be performed in
16188 // checkPointerTypesForAssignment. However, that would require a
16189 // bit of refactoring (so that the second argument is an
16190 // expression, rather than a type), which should be done as part
16191 // of a larger effort to fix checkPointerTypesForAssignment for
16192 // C++ semantics.
16193 if (getLangOpts().CPlusPlus &&
16194 IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
16195 return false;
16196 if (getLangOpts().CPlusPlus) {
16197 DiagKind = diag::err_typecheck_convert_discards_qualifiers;
16198 isInvalid = true;
16199 } else {
16200 DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
16201 }
16202
16203 break;
16204 case IncompatibleNestedPointerQualifiers:
16205 if (getLangOpts().CPlusPlus) {
16206 isInvalid = true;
16207 DiagKind = diag::err_nested_pointer_qualifier_mismatch;
16208 } else {
16209 DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
16210 }
16211 break;
16212 case IncompatibleNestedPointerAddressSpaceMismatch:
16213 DiagKind = diag::err_typecheck_incompatible_nested_address_space;
16214 isInvalid = true;
16215 break;
16216 case IntToBlockPointer:
16217 DiagKind = diag::err_int_to_block_pointer;
16218 isInvalid = true;
16219 break;
16220 case IncompatibleBlockPointer:
16221 DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
16222 isInvalid = true;
16223 break;
16224 case IncompatibleObjCQualifiedId: {
16225 if (SrcType->isObjCQualifiedIdType()) {
16226 const ObjCObjectPointerType *srcOPT =
16227 SrcType->castAs<ObjCObjectPointerType>();
16228 for (auto *srcProto : srcOPT->quals()) {
16229 PDecl = srcProto;
16230 break;
16231 }
16232 if (const ObjCInterfaceType *IFaceT =
16233 DstType->castAs<ObjCObjectPointerType>()->getInterfaceType())
16234 IFace = IFaceT->getDecl();
16235 }
16236 else if (DstType->isObjCQualifiedIdType()) {
16237 const ObjCObjectPointerType *dstOPT =
16238 DstType->castAs<ObjCObjectPointerType>();
16239 for (auto *dstProto : dstOPT->quals()) {
16240 PDecl = dstProto;
16241 break;
16242 }
16243 if (const ObjCInterfaceType *IFaceT =
16244 SrcType->castAs<ObjCObjectPointerType>()->getInterfaceType())
16245 IFace = IFaceT->getDecl();
16246 }
16247 if (getLangOpts().CPlusPlus) {
16248 DiagKind = diag::err_incompatible_qualified_id;
16249 isInvalid = true;
16250 } else {
16251 DiagKind = diag::warn_incompatible_qualified_id;
16252 }
16253 break;
16254 }
16255 case IncompatibleVectors:
16256 if (getLangOpts().CPlusPlus) {
16257 DiagKind = diag::err_incompatible_vectors;
16258 isInvalid = true;
16259 } else {
16260 DiagKind = diag::warn_incompatible_vectors;
16261 }
16262 break;
16263 case IncompatibleObjCWeakRef:
16264 DiagKind = diag::err_arc_weak_unavailable_assign;
16265 isInvalid = true;
16266 break;
16267 case Incompatible:
16268 if (maybeDiagnoseAssignmentToFunction(*this, DstType, SrcExpr)) {
16269 if (Complained)
16270 *Complained = true;
16271 return true;
16272 }
16273
16274 DiagKind = diag::err_typecheck_convert_incompatible;
16275 ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
16276 MayHaveConvFixit = true;
16277 isInvalid = true;
16278 MayHaveFunctionDiff = true;
16279 break;
16280 }
16281
16282 QualType FirstType, SecondType;
16283 switch (Action) {
16284 case AA_Assigning:
16285 case AA_Initializing:
16286 // The destination type comes first.
16287 FirstType = DstType;
16288 SecondType = SrcType;
16289 break;
16290
16291 case AA_Returning:
16292 case AA_Passing:
16293 case AA_Passing_CFAudited:
16294 case AA_Converting:
16295 case AA_Sending:
16296 case AA_Casting:
16297 // The source type comes first.
16298 FirstType = SrcType;
16299 SecondType = DstType;
16300 break;
16301 }
16302
16303 PartialDiagnostic FDiag = PDiag(DiagKind);
16304 if (Action == AA_Passing_CFAudited)
16305 FDiag << FirstType << SecondType << AA_Passing << SrcExpr->getSourceRange();
16306 else
16307 FDiag << FirstType << SecondType << Action << SrcExpr->getSourceRange();
16308
16309 if (DiagKind == diag::ext_typecheck_convert_incompatible_pointer_sign ||
16310 DiagKind == diag::err_typecheck_convert_incompatible_pointer_sign) {
16311 auto isPlainChar = [](const clang::Type *Type) {
16312 return Type->isSpecificBuiltinType(BuiltinType::Char_S) ||
16313 Type->isSpecificBuiltinType(BuiltinType::Char_U);
16314 };
16315 FDiag << (isPlainChar(FirstType->getPointeeOrArrayElementType()) ||
16316 isPlainChar(SecondType->getPointeeOrArrayElementType()));
16317 }
16318
16319 // If we can fix the conversion, suggest the FixIts.
16320 if (!ConvHints.isNull()) {
16321 for (FixItHint &H : ConvHints.Hints)
16322 FDiag << H;
16323 }
16324
16325 if (MayHaveConvFixit) { FDiag << (unsigned) (ConvHints.Kind); }
16326
16327 if (MayHaveFunctionDiff)
16328 HandleFunctionTypeMismatch(FDiag, SecondType, FirstType);
16329
16330 Diag(Loc, FDiag);
16331 if ((DiagKind == diag::warn_incompatible_qualified_id ||
16332 DiagKind == diag::err_incompatible_qualified_id) &&
16333 PDecl && IFace && !IFace->hasDefinition())
16334 Diag(IFace->getLocation(), diag::note_incomplete_class_and_qualified_id)
16335 << IFace << PDecl;
16336
16337 if (SecondType == Context.OverloadTy)
16338 NoteAllOverloadCandidates(OverloadExpr::find(SrcExpr).Expression,
16339 FirstType, /*TakingAddress=*/true);
16340
16341 if (CheckInferredResultType)
16342 EmitRelatedResultTypeNote(SrcExpr);
16343
16344 if (Action == AA_Returning && ConvTy == IncompatiblePointer)
16345 EmitRelatedResultTypeNoteForReturn(DstType);
16346
16347 if (Complained)
16348 *Complained = true;
16349 return isInvalid;
16350}
16351
16352ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
16353 llvm::APSInt *Result,
16354 AllowFoldKind CanFold) {
16355 class SimpleICEDiagnoser : public VerifyICEDiagnoser {
16356 public:
16357 SemaDiagnosticBuilder diagnoseNotICEType(Sema &S, SourceLocation Loc,
16358 QualType T) override {
16359 return S.Diag(Loc, diag::err_ice_not_integral)
16360 << T << S.LangOpts.CPlusPlus;
16361 }
16362 SemaDiagnosticBuilder diagnoseNotICE(Sema &S, SourceLocation Loc) override {
16363 return S.Diag(Loc, diag::err_expr_not_ice) << S.LangOpts.CPlusPlus;
16364 }
16365 } Diagnoser;
16366
16367 return VerifyIntegerConstantExpression(E, Result, Diagnoser, CanFold);
16368}
16369
16370ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
16371 llvm::APSInt *Result,
16372 unsigned DiagID,
16373 AllowFoldKind CanFold) {
16374 class IDDiagnoser : public VerifyICEDiagnoser {
16375 unsigned DiagID;
16376
16377 public:
16378 IDDiagnoser(unsigned DiagID)
16379 : VerifyICEDiagnoser(DiagID == 0), DiagID(DiagID) { }
16380
16381 SemaDiagnosticBuilder diagnoseNotICE(Sema &S, SourceLocation Loc) override {
16382 return S.Diag(Loc, DiagID);
16383 }
16384 } Diagnoser(DiagID);
16385
16386 return VerifyIntegerConstantExpression(E, Result, Diagnoser, CanFold);
16387}
16388
16389Sema::SemaDiagnosticBuilder
16390Sema::VerifyICEDiagnoser::diagnoseNotICEType(Sema &S, SourceLocation Loc,
16391 QualType T) {
16392 return diagnoseNotICE(S, Loc);
16393}
16394
16395Sema::SemaDiagnosticBuilder
16396Sema::VerifyICEDiagnoser::diagnoseFold(Sema &S, SourceLocation Loc) {
16397 return S.Diag(Loc, diag::ext_expr_not_ice) << S.LangOpts.CPlusPlus;
16398}
16399
16400ExprResult
16401Sema::VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result,
16402 VerifyICEDiagnoser &Diagnoser,
16403 AllowFoldKind CanFold) {
16404 SourceLocation DiagLoc = E->getBeginLoc();
16405
16406 if (getLangOpts().CPlusPlus11) {
16407 // C++11 [expr.const]p5:
16408 // If an expression of literal class type is used in a context where an
16409 // integral constant expression is required, then that class type shall
16410 // have a single non-explicit conversion function to an integral or
16411 // unscoped enumeration type
16412 ExprResult Converted;
16413 class CXX11ConvertDiagnoser : public ICEConvertDiagnoser {
16414 VerifyICEDiagnoser &BaseDiagnoser;
16415 public:
16416 CXX11ConvertDiagnoser(VerifyICEDiagnoser &BaseDiagnoser)
16417 : ICEConvertDiagnoser(/*AllowScopedEnumerations*/ false,
16418 BaseDiagnoser.Suppress, true),
16419 BaseDiagnoser(BaseDiagnoser) {}
16420
16421 SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
16422 QualType T) override {
16423 return BaseDiagnoser.diagnoseNotICEType(S, Loc, T);
16424 }
16425
16426 SemaDiagnosticBuilder diagnoseIncomplete(
16427 Sema &S, SourceLocation Loc, QualType T) override {
16428 return S.Diag(Loc, diag::err_ice_incomplete_type) << T;
16429 }
16430
16431 SemaDiagnosticBuilder diagnoseExplicitConv(
16432 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
16433 return S.Diag(Loc, diag::err_ice_explicit_conversion) << T << ConvTy;
16434 }
16435
16436 SemaDiagnosticBuilder noteExplicitConv(
16437 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
16438 return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
16439 << ConvTy->isEnumeralType() << ConvTy;
16440 }
16441
16442 SemaDiagnosticBuilder diagnoseAmbiguous(
16443 Sema &S, SourceLocation Loc, QualType T) override {
16444 return S.Diag(Loc, diag::err_ice_ambiguous_conversion) << T;
16445 }
16446
16447 SemaDiagnosticBuilder noteAmbiguous(
16448 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
16449 return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
16450 << ConvTy->isEnumeralType() << ConvTy;
16451 }
16452
16453 SemaDiagnosticBuilder diagnoseConversion(
16454 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
16455 llvm_unreachable("conversion functions are permitted")::llvm::llvm_unreachable_internal("conversion functions are permitted"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 16455)
;
16456 }
16457 } ConvertDiagnoser(Diagnoser);
16458
16459 Converted = PerformContextualImplicitConversion(DiagLoc, E,
16460 ConvertDiagnoser);
16461 if (Converted.isInvalid())
16462 return Converted;
16463 E = Converted.get();
16464 if (!E->getType()->isIntegralOrUnscopedEnumerationType())
16465 return ExprError();
16466 } else if (!E->getType()->isIntegralOrUnscopedEnumerationType()) {
16467 // An ICE must be of integral or unscoped enumeration type.
16468 if (!Diagnoser.Suppress)
16469 Diagnoser.diagnoseNotICEType(*this, DiagLoc, E->getType())
16470 << E->getSourceRange();
16471 return ExprError();
16472 }
16473
16474 ExprResult RValueExpr = DefaultLvalueConversion(E);
16475 if (RValueExpr.isInvalid())
16476 return ExprError();
16477
16478 E = RValueExpr.get();
16479
16480 // Circumvent ICE checking in C++11 to avoid evaluating the expression twice
16481 // in the non-ICE case.
16482 if (!getLangOpts().CPlusPlus11 && E->isIntegerConstantExpr(Context)) {
16483 if (Result)
16484 *Result = E->EvaluateKnownConstIntCheckOverflow(Context);
16485 if (!isa<ConstantExpr>(E))
16486 E = Result ? ConstantExpr::Create(Context, E, APValue(*Result))
16487 : ConstantExpr::Create(Context, E);
16488 return E;
16489 }
16490
16491 Expr::EvalResult EvalResult;
16492 SmallVector<PartialDiagnosticAt, 8> Notes;
16493 EvalResult.Diag = &Notes;
16494
16495 // Try to evaluate the expression, and produce diagnostics explaining why it's
16496 // not a constant expression as a side-effect.
16497 bool Folded =
16498 E->EvaluateAsRValue(EvalResult, Context, /*isConstantContext*/ true) &&
16499 EvalResult.Val.isInt() && !EvalResult.HasSideEffects;
16500
16501 if (!isa<ConstantExpr>(E))
16502 E = ConstantExpr::Create(Context, E, EvalResult.Val);
16503
16504 // In C++11, we can rely on diagnostics being produced for any expression
16505 // which is not a constant expression. If no diagnostics were produced, then
16506 // this is a constant expression.
16507 if (Folded && getLangOpts().CPlusPlus11 && Notes.empty()) {
16508 if (Result)
16509 *Result = EvalResult.Val.getInt();
16510 return E;
16511 }
16512
16513 // If our only note is the usual "invalid subexpression" note, just point
16514 // the caret at its location rather than producing an essentially
16515 // redundant note.
16516 if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
16517 diag::note_invalid_subexpr_in_const_expr) {
16518 DiagLoc = Notes[0].first;
16519 Notes.clear();
16520 }
16521
16522 if (!Folded || !CanFold) {
16523 if (!Diagnoser.Suppress) {
16524 Diagnoser.diagnoseNotICE(*this, DiagLoc) << E->getSourceRange();
16525 for (const PartialDiagnosticAt &Note : Notes)
16526 Diag(Note.first, Note.second);
16527 }
16528
16529 return ExprError();
16530 }
16531
16532 Diagnoser.diagnoseFold(*this, DiagLoc) << E->getSourceRange();
16533 for (const PartialDiagnosticAt &Note : Notes)
16534 Diag(Note.first, Note.second);
16535
16536 if (Result)
16537 *Result = EvalResult.Val.getInt();
16538 return E;
16539}
16540
16541namespace {
16542 // Handle the case where we conclude a expression which we speculatively
16543 // considered to be unevaluated is actually evaluated.
16544 class TransformToPE : public TreeTransform<TransformToPE> {
16545 typedef TreeTransform<TransformToPE> BaseTransform;
16546
16547 public:
16548 TransformToPE(Sema &SemaRef) : BaseTransform(SemaRef) { }
16549
16550 // Make sure we redo semantic analysis
16551 bool AlwaysRebuild() { return true; }
16552 bool ReplacingOriginal() { return true; }
16553
16554 // We need to special-case DeclRefExprs referring to FieldDecls which
16555 // are not part of a member pointer formation; normal TreeTransforming
16556 // doesn't catch this case because of the way we represent them in the AST.
16557 // FIXME: This is a bit ugly; is it really the best way to handle this
16558 // case?
16559 //
16560 // Error on DeclRefExprs referring to FieldDecls.
16561 ExprResult TransformDeclRefExpr(DeclRefExpr *E) {
16562 if (isa<FieldDecl>(E->getDecl()) &&
16563 !SemaRef.isUnevaluatedContext())
16564 return SemaRef.Diag(E->getLocation(),
16565 diag::err_invalid_non_static_member_use)
16566 << E->getDecl() << E->getSourceRange();
16567
16568 return BaseTransform::TransformDeclRefExpr(E);
16569 }
16570
16571 // Exception: filter out member pointer formation
16572 ExprResult TransformUnaryOperator(UnaryOperator *E) {
16573 if (E->getOpcode() == UO_AddrOf && E->getType()->isMemberPointerType())
16574 return E;
16575
16576 return BaseTransform::TransformUnaryOperator(E);
16577 }
16578
16579 // The body of a lambda-expression is in a separate expression evaluation
16580 // context so never needs to be transformed.
16581 // FIXME: Ideally we wouldn't transform the closure type either, and would
16582 // just recreate the capture expressions and lambda expression.
16583 StmtResult TransformLambdaBody(LambdaExpr *E, Stmt *Body) {
16584 return SkipLambdaBody(E, Body);
16585 }
16586 };
16587}
16588
16589ExprResult Sema::TransformToPotentiallyEvaluated(Expr *E) {
16590 assert(isUnevaluatedContext() &&(static_cast <bool> (isUnevaluatedContext() && "Should only transform unevaluated expressions"
) ? void (0) : __assert_fail ("isUnevaluatedContext() && \"Should only transform unevaluated expressions\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 16591, __extension__ __PRETTY_FUNCTION__))
16591 "Should only transform unevaluated expressions")(static_cast <bool> (isUnevaluatedContext() && "Should only transform unevaluated expressions"
) ? void (0) : __assert_fail ("isUnevaluatedContext() && \"Should only transform unevaluated expressions\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 16591, __extension__ __PRETTY_FUNCTION__))
;
16592 ExprEvalContexts.back().Context =
16593 ExprEvalContexts[ExprEvalContexts.size()-2].Context;
16594 if (isUnevaluatedContext())
16595 return E;
16596 return TransformToPE(*this).TransformExpr(E);
16597}
16598
16599void
16600Sema::PushExpressionEvaluationContext(
16601 ExpressionEvaluationContext NewContext, Decl *LambdaContextDecl,
16602 ExpressionEvaluationContextRecord::ExpressionKind ExprContext) {
16603 ExprEvalContexts.emplace_back(NewContext, ExprCleanupObjects.size(), Cleanup,
16604 LambdaContextDecl, ExprContext);
16605 Cleanup.reset();
16606 if (!MaybeODRUseExprs.empty())
16607 std::swap(MaybeODRUseExprs, ExprEvalContexts.back().SavedMaybeODRUseExprs);
16608}
16609
16610void
16611Sema::PushExpressionEvaluationContext(
16612 ExpressionEvaluationContext NewContext, ReuseLambdaContextDecl_t,
16613 ExpressionEvaluationContextRecord::ExpressionKind ExprContext) {
16614 Decl *ClosureContextDecl = ExprEvalContexts.back().ManglingContextDecl;
16615 PushExpressionEvaluationContext(NewContext, ClosureContextDecl, ExprContext);
16616}
16617
16618namespace {
16619
16620const DeclRefExpr *CheckPossibleDeref(Sema &S, const Expr *PossibleDeref) {
16621 PossibleDeref = PossibleDeref->IgnoreParenImpCasts();
16622 if (const auto *E = dyn_cast<UnaryOperator>(PossibleDeref)) {
16623 if (E->getOpcode() == UO_Deref)
16624 return CheckPossibleDeref(S, E->getSubExpr());
16625 } else if (const auto *E = dyn_cast<ArraySubscriptExpr>(PossibleDeref)) {
16626 return CheckPossibleDeref(S, E->getBase());
16627 } else if (const auto *E = dyn_cast<MemberExpr>(PossibleDeref)) {
16628 return CheckPossibleDeref(S, E->getBase());
16629 } else if (const auto E = dyn_cast<DeclRefExpr>(PossibleDeref)) {
16630 QualType Inner;
16631 QualType Ty = E->getType();
16632 if (const auto *Ptr = Ty->getAs<PointerType>())
16633 Inner = Ptr->getPointeeType();
16634 else if (const auto *Arr = S.Context.getAsArrayType(Ty))
16635 Inner = Arr->getElementType();
16636 else
16637 return nullptr;
16638
16639 if (Inner->hasAttr(attr::NoDeref))
16640 return E;
16641 }
16642 return nullptr;
16643}
16644
16645} // namespace
16646
16647void Sema::WarnOnPendingNoDerefs(ExpressionEvaluationContextRecord &Rec) {
16648 for (const Expr *E : Rec.PossibleDerefs) {
16649 const DeclRefExpr *DeclRef = CheckPossibleDeref(*this, E);
16650 if (DeclRef) {
16651 const ValueDecl *Decl = DeclRef->getDecl();
16652 Diag(E->getExprLoc(), diag::warn_dereference_of_noderef_type)
16653 << Decl->getName() << E->getSourceRange();
16654 Diag(Decl->getLocation(), diag::note_previous_decl) << Decl->getName();
16655 } else {
16656 Diag(E->getExprLoc(), diag::warn_dereference_of_noderef_type_no_decl)
16657 << E->getSourceRange();
16658 }
16659 }
16660 Rec.PossibleDerefs.clear();
16661}
16662
16663/// Check whether E, which is either a discarded-value expression or an
16664/// unevaluated operand, is a simple-assignment to a volatlie-qualified lvalue,
16665/// and if so, remove it from the list of volatile-qualified assignments that
16666/// we are going to warn are deprecated.
16667void Sema::CheckUnusedVolatileAssignment(Expr *E) {
16668 if (!E->getType().isVolatileQualified() || !getLangOpts().CPlusPlus20)
16669 return;
16670
16671 // Note: ignoring parens here is not justified by the standard rules, but
16672 // ignoring parentheses seems like a more reasonable approach, and this only
16673 // drives a deprecation warning so doesn't affect conformance.
16674 if (auto *BO = dyn_cast<BinaryOperator>(E->IgnoreParenImpCasts())) {
16675 if (BO->getOpcode() == BO_Assign) {
16676 auto &LHSs = ExprEvalContexts.back().VolatileAssignmentLHSs;
16677 LHSs.erase(std::remove(LHSs.begin(), LHSs.end(), BO->getLHS()),
16678 LHSs.end());
16679 }
16680 }
16681}
16682
16683ExprResult Sema::CheckForImmediateInvocation(ExprResult E, FunctionDecl *Decl) {
16684 if (isUnevaluatedContext() || !E.isUsable() || !Decl ||
16685 !Decl->isConsteval() || isConstantEvaluated() ||
16686 RebuildingImmediateInvocation)
16687 return E;
16688
16689 /// Opportunistically remove the callee from ReferencesToConsteval if we can.
16690 /// It's OK if this fails; we'll also remove this in
16691 /// HandleImmediateInvocations, but catching it here allows us to avoid
16692 /// walking the AST looking for it in simple cases.
16693 if (auto *Call = dyn_cast<CallExpr>(E.get()->IgnoreImplicit()))
16694 if (auto *DeclRef =
16695 dyn_cast<DeclRefExpr>(Call->getCallee()->IgnoreImplicit()))
16696 ExprEvalContexts.back().ReferenceToConsteval.erase(DeclRef);
16697
16698 E = MaybeCreateExprWithCleanups(E);
16699
16700 ConstantExpr *Res = ConstantExpr::Create(
16701 getASTContext(), E.get(),
16702 ConstantExpr::getStorageKind(Decl->getReturnType().getTypePtr(),
16703 getASTContext()),
16704 /*IsImmediateInvocation*/ true);
16705 ExprEvalContexts.back().ImmediateInvocationCandidates.emplace_back(Res, 0);
16706 return Res;
16707}
16708
16709static void EvaluateAndDiagnoseImmediateInvocation(
16710 Sema &SemaRef, Sema::ImmediateInvocationCandidate Candidate) {
16711 llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
16712 Expr::EvalResult Eval;
16713 Eval.Diag = &Notes;
16714 ConstantExpr *CE = Candidate.getPointer();
16715 bool Result = CE->EvaluateAsConstantExpr(
16716 Eval, SemaRef.getASTContext(), ConstantExprKind::ImmediateInvocation);
16717 if (!Result || !Notes.empty()) {
16718 Expr *InnerExpr = CE->getSubExpr()->IgnoreImplicit();
16719 if (auto *FunctionalCast = dyn_cast<CXXFunctionalCastExpr>(InnerExpr))
16720 InnerExpr = FunctionalCast->getSubExpr();
16721 FunctionDecl *FD = nullptr;
16722 if (auto *Call = dyn_cast<CallExpr>(InnerExpr))
16723 FD = cast<FunctionDecl>(Call->getCalleeDecl());
16724 else if (auto *Call = dyn_cast<CXXConstructExpr>(InnerExpr))
16725 FD = Call->getConstructor();
16726 else
16727 llvm_unreachable("unhandled decl kind")::llvm::llvm_unreachable_internal("unhandled decl kind", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 16727)
;
16728 assert(FD->isConsteval())(static_cast <bool> (FD->isConsteval()) ? void (0) :
__assert_fail ("FD->isConsteval()", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 16728, __extension__ __PRETTY_FUNCTION__))
;
16729 SemaRef.Diag(CE->getBeginLoc(), diag::err_invalid_consteval_call) << FD;
16730 for (auto &Note : Notes)
16731 SemaRef.Diag(Note.first, Note.second);
16732 return;
16733 }
16734 CE->MoveIntoResult(Eval.Val, SemaRef.getASTContext());
16735}
16736
16737static void RemoveNestedImmediateInvocation(
16738 Sema &SemaRef, Sema::ExpressionEvaluationContextRecord &Rec,
16739 SmallVector<Sema::ImmediateInvocationCandidate, 4>::reverse_iterator It) {
16740 struct ComplexRemove : TreeTransform<ComplexRemove> {
16741 using Base = TreeTransform<ComplexRemove>;
16742 llvm::SmallPtrSetImpl<DeclRefExpr *> &DRSet;
16743 SmallVector<Sema::ImmediateInvocationCandidate, 4> &IISet;
16744 SmallVector<Sema::ImmediateInvocationCandidate, 4>::reverse_iterator
16745 CurrentII;
16746 ComplexRemove(Sema &SemaRef, llvm::SmallPtrSetImpl<DeclRefExpr *> &DR,
16747 SmallVector<Sema::ImmediateInvocationCandidate, 4> &II,
16748 SmallVector<Sema::ImmediateInvocationCandidate,
16749 4>::reverse_iterator Current)
16750 : Base(SemaRef), DRSet(DR), IISet(II), CurrentII(Current) {}
16751 void RemoveImmediateInvocation(ConstantExpr* E) {
16752 auto It = std::find_if(CurrentII, IISet.rend(),
16753 [E](Sema::ImmediateInvocationCandidate Elem) {
16754 return Elem.getPointer() == E;
16755 });
16756 assert(It != IISet.rend() &&(static_cast <bool> (It != IISet.rend() && "ConstantExpr marked IsImmediateInvocation should "
"be present") ? void (0) : __assert_fail ("It != IISet.rend() && \"ConstantExpr marked IsImmediateInvocation should \" \"be present\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 16758, __extension__ __PRETTY_FUNCTION__))
16757 "ConstantExpr marked IsImmediateInvocation should "(static_cast <bool> (It != IISet.rend() && "ConstantExpr marked IsImmediateInvocation should "
"be present") ? void (0) : __assert_fail ("It != IISet.rend() && \"ConstantExpr marked IsImmediateInvocation should \" \"be present\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 16758, __extension__ __PRETTY_FUNCTION__))
16758 "be present")(static_cast <bool> (It != IISet.rend() && "ConstantExpr marked IsImmediateInvocation should "
"be present") ? void (0) : __assert_fail ("It != IISet.rend() && \"ConstantExpr marked IsImmediateInvocation should \" \"be present\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 16758, __extension__ __PRETTY_FUNCTION__))
;
16759 It->setInt(1); // Mark as deleted
16760 }
16761 ExprResult TransformConstantExpr(ConstantExpr *E) {
16762 if (!E->isImmediateInvocation())
16763 return Base::TransformConstantExpr(E);
16764 RemoveImmediateInvocation(E);
16765 return Base::TransformExpr(E->getSubExpr());
16766 }
16767 /// Base::TransfromCXXOperatorCallExpr doesn't traverse the callee so
16768 /// we need to remove its DeclRefExpr from the DRSet.
16769 ExprResult TransformCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
16770 DRSet.erase(cast<DeclRefExpr>(E->getCallee()->IgnoreImplicit()));
16771 return Base::TransformCXXOperatorCallExpr(E);
16772 }
16773 /// Base::TransformInitializer skip ConstantExpr so we need to visit them
16774 /// here.
16775 ExprResult TransformInitializer(Expr *Init, bool NotCopyInit) {
16776 if (!Init)
16777 return Init;
16778 /// ConstantExpr are the first layer of implicit node to be removed so if
16779 /// Init isn't a ConstantExpr, no ConstantExpr will be skipped.
16780 if (auto *CE = dyn_cast<ConstantExpr>(Init))
16781 if (CE->isImmediateInvocation())
16782 RemoveImmediateInvocation(CE);
16783 return Base::TransformInitializer(Init, NotCopyInit);
16784 }
16785 ExprResult TransformDeclRefExpr(DeclRefExpr *E) {
16786 DRSet.erase(E);
16787 return E;
16788 }
16789 bool AlwaysRebuild() { return false; }
16790 bool ReplacingOriginal() { return true; }
16791 bool AllowSkippingCXXConstructExpr() {
16792 bool Res = AllowSkippingFirstCXXConstructExpr;
16793 AllowSkippingFirstCXXConstructExpr = true;
16794 return Res;
16795 }
16796 bool AllowSkippingFirstCXXConstructExpr = true;
16797 } Transformer(SemaRef, Rec.ReferenceToConsteval,
16798 Rec.ImmediateInvocationCandidates, It);
16799
16800 /// CXXConstructExpr with a single argument are getting skipped by
16801 /// TreeTransform in some situtation because they could be implicit. This
16802 /// can only occur for the top-level CXXConstructExpr because it is used
16803 /// nowhere in the expression being transformed therefore will not be rebuilt.
16804 /// Setting AllowSkippingFirstCXXConstructExpr to false will prevent from
16805 /// skipping the first CXXConstructExpr.
16806 if (isa<CXXConstructExpr>(It->getPointer()->IgnoreImplicit()))
16807 Transformer.AllowSkippingFirstCXXConstructExpr = false;
16808
16809 ExprResult Res = Transformer.TransformExpr(It->getPointer()->getSubExpr());
16810 assert(Res.isUsable())(static_cast <bool> (Res.isUsable()) ? void (0) : __assert_fail
("Res.isUsable()", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 16810, __extension__ __PRETTY_FUNCTION__))
;
16811 Res = SemaRef.MaybeCreateExprWithCleanups(Res);
16812 It->getPointer()->setSubExpr(Res.get());
16813}
16814
16815static void
16816HandleImmediateInvocations(Sema &SemaRef,
16817 Sema::ExpressionEvaluationContextRecord &Rec) {
16818 if ((Rec.ImmediateInvocationCandidates.size() == 0 &&
16819 Rec.ReferenceToConsteval.size() == 0) ||
16820 SemaRef.RebuildingImmediateInvocation)
16821 return;
16822
16823 /// When we have more then 1 ImmediateInvocationCandidates we need to check
16824 /// for nested ImmediateInvocationCandidates. when we have only 1 we only
16825 /// need to remove ReferenceToConsteval in the immediate invocation.
16826 if (Rec.ImmediateInvocationCandidates.size() > 1) {
16827
16828 /// Prevent sema calls during the tree transform from adding pointers that
16829 /// are already in the sets.
16830 llvm::SaveAndRestore<bool> DisableIITracking(
16831 SemaRef.RebuildingImmediateInvocation, true);
16832
16833 /// Prevent diagnostic during tree transfrom as they are duplicates
16834 Sema::TentativeAnalysisScope DisableDiag(SemaRef);
16835
16836 for (auto It = Rec.ImmediateInvocationCandidates.rbegin();
16837 It != Rec.ImmediateInvocationCandidates.rend(); It++)
16838 if (!It->getInt())
16839 RemoveNestedImmediateInvocation(SemaRef, Rec, It);
16840 } else if (Rec.ImmediateInvocationCandidates.size() == 1 &&
16841 Rec.ReferenceToConsteval.size()) {
16842 struct SimpleRemove : RecursiveASTVisitor<SimpleRemove> {
16843 llvm::SmallPtrSetImpl<DeclRefExpr *> &DRSet;
16844 SimpleRemove(llvm::SmallPtrSetImpl<DeclRefExpr *> &S) : DRSet(S) {}
16845 bool VisitDeclRefExpr(DeclRefExpr *E) {
16846 DRSet.erase(E);
16847 return DRSet.size();
16848 }
16849 } Visitor(Rec.ReferenceToConsteval);
16850 Visitor.TraverseStmt(
16851 Rec.ImmediateInvocationCandidates.front().getPointer()->getSubExpr());
16852 }
16853 for (auto CE : Rec.ImmediateInvocationCandidates)
16854 if (!CE.getInt())
16855 EvaluateAndDiagnoseImmediateInvocation(SemaRef, CE);
16856 for (auto DR : Rec.ReferenceToConsteval) {
16857 auto *FD = cast<FunctionDecl>(DR->getDecl());
16858 SemaRef.Diag(DR->getBeginLoc(), diag::err_invalid_consteval_take_address)
16859 << FD;
16860 SemaRef.Diag(FD->getLocation(), diag::note_declared_at);
16861 }
16862}
16863
16864void Sema::PopExpressionEvaluationContext() {
16865 ExpressionEvaluationContextRecord& Rec = ExprEvalContexts.back();
16866 unsigned NumTypos = Rec.NumTypos;
16867
16868 if (!Rec.Lambdas.empty()) {
16869 using ExpressionKind = ExpressionEvaluationContextRecord::ExpressionKind;
16870 if (!getLangOpts().CPlusPlus20 &&
16871 (Rec.ExprContext == ExpressionKind::EK_TemplateArgument ||
16872 Rec.isUnevaluated() ||
16873 (Rec.isConstantEvaluated() && !getLangOpts().CPlusPlus17))) {
16874 unsigned D;
16875 if (Rec.isUnevaluated()) {
16876 // C++11 [expr.prim.lambda]p2:
16877 // A lambda-expression shall not appear in an unevaluated operand
16878 // (Clause 5).
16879 D = diag::err_lambda_unevaluated_operand;
16880 } else if (Rec.isConstantEvaluated() && !getLangOpts().CPlusPlus17) {
16881 // C++1y [expr.const]p2:
16882 // A conditional-expression e is a core constant expression unless the
16883 // evaluation of e, following the rules of the abstract machine, would
16884 // evaluate [...] a lambda-expression.
16885 D = diag::err_lambda_in_constant_expression;
16886 } else if (Rec.ExprContext == ExpressionKind::EK_TemplateArgument) {
16887 // C++17 [expr.prim.lamda]p2:
16888 // A lambda-expression shall not appear [...] in a template-argument.
16889 D = diag::err_lambda_in_invalid_context;
16890 } else
16891 llvm_unreachable("Couldn't infer lambda error message.")::llvm::llvm_unreachable_internal("Couldn't infer lambda error message."
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 16891)
;
16892
16893 for (const auto *L : Rec.Lambdas)
16894 Diag(L->getBeginLoc(), D);
16895 }
16896 }
16897
16898 WarnOnPendingNoDerefs(Rec);
16899 HandleImmediateInvocations(*this, Rec);
16900
16901 // Warn on any volatile-qualified simple-assignments that are not discarded-
16902 // value expressions nor unevaluated operands (those cases get removed from
16903 // this list by CheckUnusedVolatileAssignment).
16904 for (auto *BO : Rec.VolatileAssignmentLHSs)
16905 Diag(BO->getBeginLoc(), diag::warn_deprecated_simple_assign_volatile)
16906 << BO->getType();
16907
16908 // When are coming out of an unevaluated context, clear out any
16909 // temporaries that we may have created as part of the evaluation of
16910 // the expression in that context: they aren't relevant because they
16911 // will never be constructed.
16912 if (Rec.isUnevaluated() || Rec.isConstantEvaluated()) {
16913 ExprCleanupObjects.erase(ExprCleanupObjects.begin() + Rec.NumCleanupObjects,
16914 ExprCleanupObjects.end());
16915 Cleanup = Rec.ParentCleanup;
16916 CleanupVarDeclMarking();
16917 std::swap(MaybeODRUseExprs, Rec.SavedMaybeODRUseExprs);
16918 // Otherwise, merge the contexts together.
16919 } else {
16920 Cleanup.mergeFrom(Rec.ParentCleanup);
16921 MaybeODRUseExprs.insert(Rec.SavedMaybeODRUseExprs.begin(),
16922 Rec.SavedMaybeODRUseExprs.end());
16923 }
16924
16925 // Pop the current expression evaluation context off the stack.
16926 ExprEvalContexts.pop_back();
16927
16928 // The global expression evaluation context record is never popped.
16929 ExprEvalContexts.back().NumTypos += NumTypos;
16930}
16931
16932void Sema::DiscardCleanupsInEvaluationContext() {
16933 ExprCleanupObjects.erase(
16934 ExprCleanupObjects.begin() + ExprEvalContexts.back().NumCleanupObjects,
16935 ExprCleanupObjects.end());
16936 Cleanup.reset();
16937 MaybeODRUseExprs.clear();
16938}
16939
16940ExprResult Sema::HandleExprEvaluationContextForTypeof(Expr *E) {
16941 ExprResult Result = CheckPlaceholderExpr(E);
16942 if (Result.isInvalid())
16943 return ExprError();
16944 E = Result.get();
16945 if (!E->getType()->isVariablyModifiedType())
16946 return E;
16947 return TransformToPotentiallyEvaluated(E);
16948}
16949
16950/// Are we in a context that is potentially constant evaluated per C++20
16951/// [expr.const]p12?
16952static bool isPotentiallyConstantEvaluatedContext(Sema &SemaRef) {
16953 /// C++2a [expr.const]p12:
16954 // An expression or conversion is potentially constant evaluated if it is
16955 switch (SemaRef.ExprEvalContexts.back().Context) {
16956 case Sema::ExpressionEvaluationContext::ConstantEvaluated:
16957 // -- a manifestly constant-evaluated expression,
16958 case Sema::ExpressionEvaluationContext::PotentiallyEvaluated:
16959 case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
16960 case Sema::ExpressionEvaluationContext::DiscardedStatement:
16961 // -- a potentially-evaluated expression,
16962 case Sema::ExpressionEvaluationContext::UnevaluatedList:
16963 // -- an immediate subexpression of a braced-init-list,
16964
16965 // -- [FIXME] an expression of the form & cast-expression that occurs
16966 // within a templated entity
16967 // -- a subexpression of one of the above that is not a subexpression of
16968 // a nested unevaluated operand.
16969 return true;
16970
16971 case Sema::ExpressionEvaluationContext::Unevaluated:
16972 case Sema::ExpressionEvaluationContext::UnevaluatedAbstract:
16973 // Expressions in this context are never evaluated.
16974 return false;
16975 }
16976 llvm_unreachable("Invalid context")::llvm::llvm_unreachable_internal("Invalid context", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 16976)
;
16977}
16978
16979/// Return true if this function has a calling convention that requires mangling
16980/// in the size of the parameter pack.
16981static bool funcHasParameterSizeMangling(Sema &S, FunctionDecl *FD) {
16982 // These manglings don't do anything on non-Windows or non-x86 platforms, so
16983 // we don't need parameter type sizes.
16984 const llvm::Triple &TT = S.Context.getTargetInfo().getTriple();
16985 if (!TT.isOSWindows() || !TT.isX86())
16986 return false;
16987
16988 // If this is C++ and this isn't an extern "C" function, parameters do not
16989 // need to be complete. In this case, C++ mangling will apply, which doesn't
16990 // use the size of the parameters.
16991 if (S.getLangOpts().CPlusPlus && !FD->isExternC())
16992 return false;
16993
16994 // Stdcall, fastcall, and vectorcall need this special treatment.
16995 CallingConv CC = FD->getType()->castAs<FunctionType>()->getCallConv();
16996 switch (CC) {
16997 case CC_X86StdCall:
16998 case CC_X86FastCall:
16999 case CC_X86VectorCall:
17000 return true;
17001 default:
17002 break;
17003 }
17004 return false;
17005}
17006
17007/// Require that all of the parameter types of function be complete. Normally,
17008/// parameter types are only required to be complete when a function is called
17009/// or defined, but to mangle functions with certain calling conventions, the
17010/// mangler needs to know the size of the parameter list. In this situation,
17011/// MSVC doesn't emit an error or instantiate templates. Instead, MSVC mangles
17012/// the function as _foo@0, i.e. zero bytes of parameters, which will usually
17013/// result in a linker error. Clang doesn't implement this behavior, and instead
17014/// attempts to error at compile time.
17015static void CheckCompleteParameterTypesForMangler(Sema &S, FunctionDecl *FD,
17016 SourceLocation Loc) {
17017 class ParamIncompleteTypeDiagnoser : public Sema::TypeDiagnoser {
17018 FunctionDecl *FD;
17019 ParmVarDecl *Param;
17020
17021 public:
17022 ParamIncompleteTypeDiagnoser(FunctionDecl *FD, ParmVarDecl *Param)
17023 : FD(FD), Param(Param) {}
17024
17025 void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
17026 CallingConv CC = FD->getType()->castAs<FunctionType>()->getCallConv();
17027 StringRef CCName;
17028 switch (CC) {
17029 case CC_X86StdCall:
17030 CCName = "stdcall";
17031 break;
17032 case CC_X86FastCall:
17033 CCName = "fastcall";
17034 break;
17035 case CC_X86VectorCall:
17036 CCName = "vectorcall";
17037 break;
17038 default:
17039 llvm_unreachable("CC does not need mangling")::llvm::llvm_unreachable_internal("CC does not need mangling"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 17039)
;
17040 }
17041
17042 S.Diag(Loc, diag::err_cconv_incomplete_param_type)
17043 << Param->getDeclName() << FD->getDeclName() << CCName;
17044 }
17045 };
17046
17047 for (ParmVarDecl *Param : FD->parameters()) {
17048 ParamIncompleteTypeDiagnoser Diagnoser(FD, Param);
17049 S.RequireCompleteType(Loc, Param->getType(), Diagnoser);
17050 }
17051}
17052
17053namespace {
17054enum class OdrUseContext {
17055 /// Declarations in this context are not odr-used.
17056 None,
17057 /// Declarations in this context are formally odr-used, but this is a
17058 /// dependent context.
17059 Dependent,
17060 /// Declarations in this context are odr-used but not actually used (yet).
17061 FormallyOdrUsed,
17062 /// Declarations in this context are used.
17063 Used
17064};
17065}
17066
17067/// Are we within a context in which references to resolved functions or to
17068/// variables result in odr-use?
17069static OdrUseContext isOdrUseContext(Sema &SemaRef) {
17070 OdrUseContext Result;
17071
17072 switch (SemaRef.ExprEvalContexts.back().Context) {
17073 case Sema::ExpressionEvaluationContext::Unevaluated:
17074 case Sema::ExpressionEvaluationContext::UnevaluatedList:
17075 case Sema::ExpressionEvaluationContext::UnevaluatedAbstract:
17076 return OdrUseContext::None;
17077
17078 case Sema::ExpressionEvaluationContext::ConstantEvaluated:
17079 case Sema::ExpressionEvaluationContext::PotentiallyEvaluated:
17080 Result = OdrUseContext::Used;
17081 break;
17082
17083 case Sema::ExpressionEvaluationContext::DiscardedStatement:
17084 Result = OdrUseContext::FormallyOdrUsed;
17085 break;
17086
17087 case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
17088 // A default argument formally results in odr-use, but doesn't actually
17089 // result in a use in any real sense until it itself is used.
17090 Result = OdrUseContext::FormallyOdrUsed;
17091 break;
17092 }
17093
17094 if (SemaRef.CurContext->isDependentContext())
17095 return OdrUseContext::Dependent;
17096
17097 return Result;
17098}
17099
17100static bool isImplicitlyDefinableConstexprFunction(FunctionDecl *Func) {
17101 if (!Func->isConstexpr())
17102 return false;
17103
17104 if (Func->isImplicitlyInstantiable() || !Func->isUserProvided())
17105 return true;
17106 auto *CCD = dyn_cast<CXXConstructorDecl>(Func);
17107 return CCD && CCD->getInheritedConstructor();
17108}
17109
17110/// Mark a function referenced, and check whether it is odr-used
17111/// (C++ [basic.def.odr]p2, C99 6.9p3)
17112void Sema::MarkFunctionReferenced(SourceLocation Loc, FunctionDecl *Func,
17113 bool MightBeOdrUse) {
17114 assert(Func && "No function?")(static_cast <bool> (Func && "No function?") ? void
(0) : __assert_fail ("Func && \"No function?\"", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 17114, __extension__ __PRETTY_FUNCTION__))
;
17115
17116 Func->setReferenced();
17117
17118 // Recursive functions aren't really used until they're used from some other
17119 // context.
17120 bool IsRecursiveCall = CurContext == Func;
17121
17122 // C++11 [basic.def.odr]p3:
17123 // A function whose name appears as a potentially-evaluated expression is
17124 // odr-used if it is the unique lookup result or the selected member of a
17125 // set of overloaded functions [...].
17126 //
17127 // We (incorrectly) mark overload resolution as an unevaluated context, so we
17128 // can just check that here.
17129 OdrUseContext OdrUse =
17130 MightBeOdrUse ? isOdrUseContext(*this) : OdrUseContext::None;
17131 if (IsRecursiveCall && OdrUse == OdrUseContext::Used)
17132 OdrUse = OdrUseContext::FormallyOdrUsed;
17133
17134 // Trivial default constructors and destructors are never actually used.
17135 // FIXME: What about other special members?
17136 if (Func->isTrivial() && !Func->hasAttr<DLLExportAttr>() &&
17137 OdrUse == OdrUseContext::Used) {
17138 if (auto *Constructor = dyn_cast<CXXConstructorDecl>(Func))
17139 if (Constructor->isDefaultConstructor())
17140 OdrUse = OdrUseContext::FormallyOdrUsed;
17141 if (isa<CXXDestructorDecl>(Func))
17142 OdrUse = OdrUseContext::FormallyOdrUsed;
17143 }
17144
17145 // C++20 [expr.const]p12:
17146 // A function [...] is needed for constant evaluation if it is [...] a
17147 // constexpr function that is named by an expression that is potentially
17148 // constant evaluated
17149 bool NeededForConstantEvaluation =
17150 isPotentiallyConstantEvaluatedContext(*this) &&
17151 isImplicitlyDefinableConstexprFunction(Func);
17152
17153 // Determine whether we require a function definition to exist, per
17154 // C++11 [temp.inst]p3:
17155 // Unless a function template specialization has been explicitly
17156 // instantiated or explicitly specialized, the function template
17157 // specialization is implicitly instantiated when the specialization is
17158 // referenced in a context that requires a function definition to exist.
17159 // C++20 [temp.inst]p7:
17160 // The existence of a definition of a [...] function is considered to
17161 // affect the semantics of the program if the [...] function is needed for
17162 // constant evaluation by an expression
17163 // C++20 [basic.def.odr]p10:
17164 // Every program shall contain exactly one definition of every non-inline
17165 // function or variable that is odr-used in that program outside of a
17166 // discarded statement
17167 // C++20 [special]p1:
17168 // The implementation will implicitly define [defaulted special members]
17169 // if they are odr-used or needed for constant evaluation.
17170 //
17171 // Note that we skip the implicit instantiation of templates that are only
17172 // used in unused default arguments or by recursive calls to themselves.
17173 // This is formally non-conforming, but seems reasonable in practice.
17174 bool NeedDefinition = !IsRecursiveCall && (OdrUse == OdrUseContext::Used ||
17175 NeededForConstantEvaluation);
17176
17177 // C++14 [temp.expl.spec]p6:
17178 // If a template [...] is explicitly specialized then that specialization
17179 // shall be declared before the first use of that specialization that would
17180 // cause an implicit instantiation to take place, in every translation unit
17181 // in which such a use occurs
17182 if (NeedDefinition &&
17183 (Func->getTemplateSpecializationKind() != TSK_Undeclared ||
17184 Func->getMemberSpecializationInfo()))
17185 checkSpecializationVisibility(Loc, Func);
17186
17187 if (getLangOpts().CUDA)
17188 CheckCUDACall(Loc, Func);
17189
17190 if (getLangOpts().SYCLIsDevice)
17191 checkSYCLDeviceFunction(Loc, Func);
17192
17193 // If we need a definition, try to create one.
17194 if (NeedDefinition && !Func->getBody()) {
17195 runWithSufficientStackSpace(Loc, [&] {
17196 if (CXXConstructorDecl *Constructor =
17197 dyn_cast<CXXConstructorDecl>(Func)) {
17198 Constructor = cast<CXXConstructorDecl>(Constructor->getFirstDecl());
17199 if (Constructor->isDefaulted() && !Constructor->isDeleted()) {
17200 if (Constructor->isDefaultConstructor()) {
17201 if (Constructor->isTrivial() &&
17202 !Constructor->hasAttr<DLLExportAttr>())
17203 return;
17204 DefineImplicitDefaultConstructor(Loc, Constructor);
17205 } else if (Constructor->isCopyConstructor()) {
17206 DefineImplicitCopyConstructor(Loc, Constructor);
17207 } else if (Constructor->isMoveConstructor()) {
17208 DefineImplicitMoveConstructor(Loc, Constructor);
17209 }
17210 } else if (Constructor->getInheritedConstructor()) {
17211 DefineInheritingConstructor(Loc, Constructor);
17212 }
17213 } else if (CXXDestructorDecl *Destructor =
17214 dyn_cast<CXXDestructorDecl>(Func)) {
17215 Destructor = cast<CXXDestructorDecl>(Destructor->getFirstDecl());
17216 if (Destructor->isDefaulted() && !Destructor->isDeleted()) {
17217 if (Destructor->isTrivial() && !Destructor->hasAttr<DLLExportAttr>())
17218 return;
17219 DefineImplicitDestructor(Loc, Destructor);
17220 }
17221 if (Destructor->isVirtual() && getLangOpts().AppleKext)
17222 MarkVTableUsed(Loc, Destructor->getParent());
17223 } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(Func)) {
17224 if (MethodDecl->isOverloadedOperator() &&
17225 MethodDecl->getOverloadedOperator() == OO_Equal) {
17226 MethodDecl = cast<CXXMethodDecl>(MethodDecl->getFirstDecl());
17227 if (MethodDecl->isDefaulted() && !MethodDecl->isDeleted()) {
17228 if (MethodDecl->isCopyAssignmentOperator())
17229 DefineImplicitCopyAssignment(Loc, MethodDecl);
17230 else if (MethodDecl->isMoveAssignmentOperator())
17231 DefineImplicitMoveAssignment(Loc, MethodDecl);
17232 }
17233 } else if (isa<CXXConversionDecl>(MethodDecl) &&
17234 MethodDecl->getParent()->isLambda()) {
17235 CXXConversionDecl *Conversion =
17236 cast<CXXConversionDecl>(MethodDecl->getFirstDecl());
17237 if (Conversion->isLambdaToBlockPointerConversion())
17238 DefineImplicitLambdaToBlockPointerConversion(Loc, Conversion);
17239 else
17240 DefineImplicitLambdaToFunctionPointerConversion(Loc, Conversion);
17241 } else if (MethodDecl->isVirtual() && getLangOpts().AppleKext)
17242 MarkVTableUsed(Loc, MethodDecl->getParent());
17243 }
17244
17245 if (Func->isDefaulted() && !Func->isDeleted()) {
17246 DefaultedComparisonKind DCK = getDefaultedComparisonKind(Func);
17247 if (DCK != DefaultedComparisonKind::None)
17248 DefineDefaultedComparison(Loc, Func, DCK);
17249 }
17250
17251 // Implicit instantiation of function templates and member functions of
17252 // class templates.
17253 if (Func->isImplicitlyInstantiable()) {
17254 TemplateSpecializationKind TSK =
17255 Func->getTemplateSpecializationKindForInstantiation();
17256 SourceLocation PointOfInstantiation = Func->getPointOfInstantiation();
17257 bool FirstInstantiation = PointOfInstantiation.isInvalid();
17258 if (FirstInstantiation) {
17259 PointOfInstantiation = Loc;
17260 if (auto *MSI = Func->getMemberSpecializationInfo())
17261 MSI->setPointOfInstantiation(Loc);
17262 // FIXME: Notify listener.
17263 else
17264 Func->setTemplateSpecializationKind(TSK, PointOfInstantiation);
17265 } else if (TSK != TSK_ImplicitInstantiation) {
17266 // Use the point of use as the point of instantiation, instead of the
17267 // point of explicit instantiation (which we track as the actual point
17268 // of instantiation). This gives better backtraces in diagnostics.
17269 PointOfInstantiation = Loc;
17270 }
17271
17272 if (FirstInstantiation || TSK != TSK_ImplicitInstantiation ||
17273 Func->isConstexpr()) {
17274 if (isa<CXXRecordDecl>(Func->getDeclContext()) &&
17275 cast<CXXRecordDecl>(Func->getDeclContext())->isLocalClass() &&
17276 CodeSynthesisContexts.size())
17277 PendingLocalImplicitInstantiations.push_back(
17278 std::make_pair(Func, PointOfInstantiation));
17279 else if (Func->isConstexpr())
17280 // Do not defer instantiations of constexpr functions, to avoid the
17281 // expression evaluator needing to call back into Sema if it sees a
17282 // call to such a function.
17283 InstantiateFunctionDefinition(PointOfInstantiation, Func);
17284 else {
17285 Func->setInstantiationIsPending(true);
17286 PendingInstantiations.push_back(
17287 std::make_pair(Func, PointOfInstantiation));
17288 // Notify the consumer that a function was implicitly instantiated.
17289 Consumer.HandleCXXImplicitFunctionInstantiation(Func);
17290 }
17291 }
17292 } else {
17293 // Walk redefinitions, as some of them may be instantiable.
17294 for (auto i : Func->redecls()) {
17295 if (!i->isUsed(false) && i->isImplicitlyInstantiable())
17296 MarkFunctionReferenced(Loc, i, MightBeOdrUse);
17297 }
17298 }
17299 });
17300 }
17301
17302 // C++14 [except.spec]p17:
17303 // An exception-specification is considered to be needed when:
17304 // - the function is odr-used or, if it appears in an unevaluated operand,
17305 // would be odr-used if the expression were potentially-evaluated;
17306 //
17307 // Note, we do this even if MightBeOdrUse is false. That indicates that the
17308 // function is a pure virtual function we're calling, and in that case the
17309 // function was selected by overload resolution and we need to resolve its
17310 // exception specification for a different reason.
17311 const FunctionProtoType *FPT = Func->getType()->getAs<FunctionProtoType>();
17312 if (FPT && isUnresolvedExceptionSpec(FPT->getExceptionSpecType()))
17313 ResolveExceptionSpec(Loc, FPT);
17314
17315 // If this is the first "real" use, act on that.
17316 if (OdrUse == OdrUseContext::Used && !Func->isUsed(/*CheckUsedAttr=*/false)) {
17317 // Keep track of used but undefined functions.
17318 if (!Func->isDefined()) {
17319 if (mightHaveNonExternalLinkage(Func))
17320 UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
17321 else if (Func->getMostRecentDecl()->isInlined() &&
17322 !LangOpts.GNUInline &&
17323 !Func->getMostRecentDecl()->hasAttr<GNUInlineAttr>())
17324 UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
17325 else if (isExternalWithNoLinkageType(Func))
17326 UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
17327 }
17328
17329 // Some x86 Windows calling conventions mangle the size of the parameter
17330 // pack into the name. Computing the size of the parameters requires the
17331 // parameter types to be complete. Check that now.
17332 if (funcHasParameterSizeMangling(*this, Func))
17333 CheckCompleteParameterTypesForMangler(*this, Func, Loc);
17334
17335 // In the MS C++ ABI, the compiler emits destructor variants where they are
17336 // used. If the destructor is used here but defined elsewhere, mark the
17337 // virtual base destructors referenced. If those virtual base destructors
17338 // are inline, this will ensure they are defined when emitting the complete
17339 // destructor variant. This checking may be redundant if the destructor is
17340 // provided later in this TU.
17341 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
17342 if (auto *Dtor = dyn_cast<CXXDestructorDecl>(Func)) {
17343 CXXRecordDecl *Parent = Dtor->getParent();
17344 if (Parent->getNumVBases() > 0 && !Dtor->getBody())
17345 CheckCompleteDestructorVariant(Loc, Dtor);
17346 }
17347 }
17348
17349 Func->markUsed(Context);
17350 }
17351}
17352
17353/// Directly mark a variable odr-used. Given a choice, prefer to use
17354/// MarkVariableReferenced since it does additional checks and then
17355/// calls MarkVarDeclODRUsed.
17356/// If the variable must be captured:
17357/// - if FunctionScopeIndexToStopAt is null, capture it in the CurContext
17358/// - else capture it in the DeclContext that maps to the
17359/// *FunctionScopeIndexToStopAt on the FunctionScopeInfo stack.
17360static void
17361MarkVarDeclODRUsed(VarDecl *Var, SourceLocation Loc, Sema &SemaRef,
17362 const unsigned *const FunctionScopeIndexToStopAt = nullptr) {
17363 // Keep track of used but undefined variables.
17364 // FIXME: We shouldn't suppress this warning for static data members.
17365 if (Var->hasDefinition(SemaRef.Context) == VarDecl::DeclarationOnly &&
17366 (!Var->isExternallyVisible() || Var->isInline() ||
17367 SemaRef.isExternalWithNoLinkageType(Var)) &&
17368 !(Var->isStaticDataMember() && Var->hasInit())) {
17369 SourceLocation &old = SemaRef.UndefinedButUsed[Var->getCanonicalDecl()];
17370 if (old.isInvalid())
17371 old = Loc;
17372 }
17373 QualType CaptureType, DeclRefType;
17374 if (SemaRef.LangOpts.OpenMP)
17375 SemaRef.tryCaptureOpenMPLambdas(Var);
17376 SemaRef.tryCaptureVariable(Var, Loc, Sema::TryCapture_Implicit,
17377 /*EllipsisLoc*/ SourceLocation(),
17378 /*BuildAndDiagnose*/ true,
17379 CaptureType, DeclRefType,
17380 FunctionScopeIndexToStopAt);
17381
17382 if (SemaRef.LangOpts.CUDA && Var && Var->hasGlobalStorage()) {
17383 auto *FD = dyn_cast_or_null<FunctionDecl>(SemaRef.CurContext);
17384 auto VarTarget = SemaRef.IdentifyCUDATarget(Var);
17385 auto UserTarget = SemaRef.IdentifyCUDATarget(FD);
17386 if (VarTarget == Sema::CVT_Host &&
17387 (UserTarget == Sema::CFT_Device || UserTarget == Sema::CFT_HostDevice ||
17388 UserTarget == Sema::CFT_Global)) {
17389 // Diagnose ODR-use of host global variables in device functions.
17390 // Reference of device global variables in host functions is allowed
17391 // through shadow variables therefore it is not diagnosed.
17392 if (SemaRef.LangOpts.CUDAIsDevice) {
17393 SemaRef.targetDiag(Loc, diag::err_ref_bad_target)
17394 << /*host*/ 2 << /*variable*/ 1 << Var << UserTarget;
17395 SemaRef.targetDiag(Var->getLocation(),
17396 Var->getType().isConstQualified()
17397 ? diag::note_cuda_const_var_unpromoted
17398 : diag::note_cuda_host_var);
17399 }
17400 } else if (VarTarget == Sema::CVT_Device &&
17401 (UserTarget == Sema::CFT_Host ||
17402 UserTarget == Sema::CFT_HostDevice) &&
17403 !Var->hasExternalStorage()) {
17404 // Record a CUDA/HIP device side variable if it is ODR-used
17405 // by host code. This is done conservatively, when the variable is
17406 // referenced in any of the following contexts:
17407 // - a non-function context
17408 // - a host function
17409 // - a host device function
17410 // This makes the ODR-use of the device side variable by host code to
17411 // be visible in the device compilation for the compiler to be able to
17412 // emit template variables instantiated by host code only and to
17413 // externalize the static device side variable ODR-used by host code.
17414 SemaRef.getASTContext().CUDADeviceVarODRUsedByHost.insert(Var);
17415 }
17416 }
17417
17418 Var->markUsed(SemaRef.Context);
17419}
17420
17421void Sema::MarkCaptureUsedInEnclosingContext(VarDecl *Capture,
17422 SourceLocation Loc,
17423 unsigned CapturingScopeIndex) {
17424 MarkVarDeclODRUsed(Capture, Loc, *this, &CapturingScopeIndex);
17425}
17426
17427static void
17428diagnoseUncapturableValueReference(Sema &S, SourceLocation loc,
17429 ValueDecl *var, DeclContext *DC) {
17430 DeclContext *VarDC = var->getDeclContext();
17431
17432 // If the parameter still belongs to the translation unit, then
17433 // we're actually just using one parameter in the declaration of
17434 // the next.
17435 if (isa<ParmVarDecl>(var) &&
17436 isa<TranslationUnitDecl>(VarDC))
17437 return;
17438
17439 // For C code, don't diagnose about capture if we're not actually in code
17440 // right now; it's impossible to write a non-constant expression outside of
17441 // function context, so we'll get other (more useful) diagnostics later.
17442 //
17443 // For C++, things get a bit more nasty... it would be nice to suppress this
17444 // diagnostic for certain cases like using a local variable in an array bound
17445 // for a member of a local class, but the correct predicate is not obvious.
17446 if (!S.getLangOpts().CPlusPlus && !S.CurContext->isFunctionOrMethod())
17447 return;
17448
17449 unsigned ValueKind = isa<BindingDecl>(var) ? 1 : 0;
17450 unsigned ContextKind = 3; // unknown
17451 if (isa<CXXMethodDecl>(VarDC) &&
17452 cast<CXXRecordDecl>(VarDC->getParent())->isLambda()) {
17453 ContextKind = 2;
17454 } else if (isa<FunctionDecl>(VarDC)) {
17455 ContextKind = 0;
17456 } else if (isa<BlockDecl>(VarDC)) {
17457 ContextKind = 1;
17458 }
17459
17460 S.Diag(loc, diag::err_reference_to_local_in_enclosing_context)
17461 << var << ValueKind << ContextKind << VarDC;
17462 S.Diag(var->getLocation(), diag::note_entity_declared_at)
17463 << var;
17464
17465 // FIXME: Add additional diagnostic info about class etc. which prevents
17466 // capture.
17467}
17468
17469
17470static bool isVariableAlreadyCapturedInScopeInfo(CapturingScopeInfo *CSI, VarDecl *Var,
17471 bool &SubCapturesAreNested,
17472 QualType &CaptureType,
17473 QualType &DeclRefType) {
17474 // Check whether we've already captured it.
17475 if (CSI->CaptureMap.count(Var)) {
17476 // If we found a capture, any subcaptures are nested.
17477 SubCapturesAreNested = true;
17478
17479 // Retrieve the capture type for this variable.
17480 CaptureType = CSI->getCapture(Var).getCaptureType();
17481
17482 // Compute the type of an expression that refers to this variable.
17483 DeclRefType = CaptureType.getNonReferenceType();
17484
17485 // Similarly to mutable captures in lambda, all the OpenMP captures by copy
17486 // are mutable in the sense that user can change their value - they are
17487 // private instances of the captured declarations.
17488 const Capture &Cap = CSI->getCapture(Var);
17489 if (Cap.isCopyCapture() &&
17490 !(isa<LambdaScopeInfo>(CSI) && cast<LambdaScopeInfo>(CSI)->Mutable) &&
17491 !(isa<CapturedRegionScopeInfo>(CSI) &&
17492 cast<CapturedRegionScopeInfo>(CSI)->CapRegionKind == CR_OpenMP))
17493 DeclRefType.addConst();
17494 return true;
17495 }
17496 return false;
17497}
17498
17499// Only block literals, captured statements, and lambda expressions can
17500// capture; other scopes don't work.
17501static DeclContext *getParentOfCapturingContextOrNull(DeclContext *DC, VarDecl *Var,
17502 SourceLocation Loc,
17503 const bool Diagnose, Sema &S) {
17504 if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC) || isLambdaCallOperator(DC))
17505 return getLambdaAwareParentOfDeclContext(DC);
17506 else if (Var->hasLocalStorage()) {
17507 if (Diagnose)
17508 diagnoseUncapturableValueReference(S, Loc, Var, DC);
17509 }
17510 return nullptr;
17511}
17512
17513// Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
17514// certain types of variables (unnamed, variably modified types etc.)
17515// so check for eligibility.
17516static bool isVariableCapturable(CapturingScopeInfo *CSI, VarDecl *Var,
17517 SourceLocation Loc,
17518 const bool Diagnose, Sema &S) {
17519
17520 bool IsBlock = isa<BlockScopeInfo>(CSI);
17521 bool IsLambda = isa<LambdaScopeInfo>(CSI);
17522
17523 // Lambdas are not allowed to capture unnamed variables
17524 // (e.g. anonymous unions).
17525 // FIXME: The C++11 rule don't actually state this explicitly, but I'm
17526 // assuming that's the intent.
17527 if (IsLambda && !Var->getDeclName()) {
17528 if (Diagnose) {
17529 S.Diag(Loc, diag::err_lambda_capture_anonymous_var);
17530 S.Diag(Var->getLocation(), diag::note_declared_at);
17531 }
17532 return false;
17533 }
17534
17535 // Prohibit variably-modified types in blocks; they're difficult to deal with.
17536 if (Var->getType()->isVariablyModifiedType() && IsBlock) {
17537 if (Diagnose) {
17538 S.Diag(Loc, diag::err_ref_vm_type);
17539 S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
17540 }
17541 return false;
17542 }
17543 // Prohibit structs with flexible array members too.
17544 // We cannot capture what is in the tail end of the struct.
17545 if (const RecordType *VTTy = Var->getType()->getAs<RecordType>()) {
17546 if (VTTy->getDecl()->hasFlexibleArrayMember()) {
17547 if (Diagnose) {
17548 if (IsBlock)
17549 S.Diag(Loc, diag::err_ref_flexarray_type);
17550 else
17551 S.Diag(Loc, diag::err_lambda_capture_flexarray_type) << Var;
17552 S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
17553 }
17554 return false;
17555 }
17556 }
17557 const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
17558 // Lambdas and captured statements are not allowed to capture __block
17559 // variables; they don't support the expected semantics.
17560 if (HasBlocksAttr && (IsLambda || isa<CapturedRegionScopeInfo>(CSI))) {
17561 if (Diagnose) {
17562 S.Diag(Loc, diag::err_capture_block_variable) << Var << !IsLambda;
17563 S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
17564 }
17565 return false;
17566 }
17567 // OpenCL v2.0 s6.12.5: Blocks cannot reference/capture other blocks
17568 if (S.getLangOpts().OpenCL && IsBlock &&
17569 Var->getType()->isBlockPointerType()) {
17570 if (Diagnose)
17571 S.Diag(Loc, diag::err_opencl_block_ref_block);
17572 return false;
17573 }
17574
17575 return true;
17576}
17577
17578// Returns true if the capture by block was successful.
17579static bool captureInBlock(BlockScopeInfo *BSI, VarDecl *Var,
17580 SourceLocation Loc,
17581 const bool BuildAndDiagnose,
17582 QualType &CaptureType,
17583 QualType &DeclRefType,
17584 const bool Nested,
17585 Sema &S, bool Invalid) {
17586 bool ByRef = false;
17587
17588 // Blocks are not allowed to capture arrays, excepting OpenCL.
17589 // OpenCL v2.0 s1.12.5 (revision 40): arrays are captured by reference
17590 // (decayed to pointers).
17591 if (!Invalid && !S.getLangOpts().OpenCL && CaptureType->isArrayType()) {
17592 if (BuildAndDiagnose) {
17593 S.Diag(Loc, diag::err_ref_array_type);
17594 S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
17595 Invalid = true;
17596 } else {
17597 return false;
17598 }
17599 }
17600
17601 // Forbid the block-capture of autoreleasing variables.
17602 if (!Invalid &&
17603 CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
17604 if (BuildAndDiagnose) {
17605 S.Diag(Loc, diag::err_arc_autoreleasing_capture)
17606 << /*block*/ 0;
17607 S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
17608 Invalid = true;
17609 } else {
17610 return false;
17611 }
17612 }
17613
17614 // Warn about implicitly autoreleasing indirect parameters captured by blocks.
17615 if (const auto *PT = CaptureType->getAs<PointerType>()) {
17616 QualType PointeeTy = PT->getPointeeType();
17617
17618 if (!Invalid && PointeeTy->getAs<ObjCObjectPointerType>() &&
17619 PointeeTy.getObjCLifetime() == Qualifiers::OCL_Autoreleasing &&
17620 !S.Context.hasDirectOwnershipQualifier(PointeeTy)) {
17621 if (BuildAndDiagnose) {
17622 SourceLocation VarLoc = Var->getLocation();
17623 S.Diag(Loc, diag::warn_block_capture_autoreleasing);
17624 S.Diag(VarLoc, diag::note_declare_parameter_strong);
17625 }
17626 }
17627 }
17628
17629 const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
17630 if (HasBlocksAttr || CaptureType->isReferenceType() ||
17631 (S.getLangOpts().OpenMP && S.isOpenMPCapturedDecl(Var))) {
17632 // Block capture by reference does not change the capture or
17633 // declaration reference types.
17634 ByRef = true;
17635 } else {
17636 // Block capture by copy introduces 'const'.
17637 CaptureType = CaptureType.getNonReferenceType().withConst();
17638 DeclRefType = CaptureType;
17639 }
17640
17641 // Actually capture the variable.
17642 if (BuildAndDiagnose)
17643 BSI->addCapture(Var, HasBlocksAttr, ByRef, Nested, Loc, SourceLocation(),
17644 CaptureType, Invalid);
17645
17646 return !Invalid;
17647}
17648
17649
17650/// Capture the given variable in the captured region.
17651static bool captureInCapturedRegion(
17652 CapturedRegionScopeInfo *RSI, VarDecl *Var, SourceLocation Loc,
17653 const bool BuildAndDiagnose, QualType &CaptureType, QualType &DeclRefType,
17654 const bool RefersToCapturedVariable, Sema::TryCaptureKind Kind,
17655 bool IsTopScope, Sema &S, bool Invalid) {
17656 // By default, capture variables by reference.
17657 bool ByRef = true;
17658 if (IsTopScope && Kind != Sema::TryCapture_Implicit) {
17659 ByRef = (Kind == Sema::TryCapture_ExplicitByRef);
17660 } else if (S.getLangOpts().OpenMP && RSI->CapRegionKind == CR_OpenMP) {
17661 // Using an LValue reference type is consistent with Lambdas (see below).
17662 if (S.isOpenMPCapturedDecl(Var)) {
17663 bool HasConst = DeclRefType.isConstQualified();
17664 DeclRefType = DeclRefType.getUnqualifiedType();
17665 // Don't lose diagnostics about assignments to const.
17666 if (HasConst)
17667 DeclRefType.addConst();
17668 }
17669 // Do not capture firstprivates in tasks.
17670 if (S.isOpenMPPrivateDecl(Var, RSI->OpenMPLevel, RSI->OpenMPCaptureLevel) !=
17671 OMPC_unknown)
17672 return true;
17673 ByRef = S.isOpenMPCapturedByRef(Var, RSI->OpenMPLevel,
17674 RSI->OpenMPCaptureLevel);
17675 }
17676
17677 if (ByRef)
17678 CaptureType = S.Context.getLValueReferenceType(DeclRefType);
17679 else
17680 CaptureType = DeclRefType;
17681
17682 // Actually capture the variable.
17683 if (BuildAndDiagnose)
17684 RSI->addCapture(Var, /*isBlock*/ false, ByRef, RefersToCapturedVariable,
17685 Loc, SourceLocation(), CaptureType, Invalid);
17686
17687 return !Invalid;
17688}
17689
17690/// Capture the given variable in the lambda.
17691static bool captureInLambda(LambdaScopeInfo *LSI,
17692 VarDecl *Var,
17693 SourceLocation Loc,
17694 const bool BuildAndDiagnose,
17695 QualType &CaptureType,
17696 QualType &DeclRefType,
17697 const bool RefersToCapturedVariable,
17698 const Sema::TryCaptureKind Kind,
17699 SourceLocation EllipsisLoc,
17700 const bool IsTopScope,
17701 Sema &S, bool Invalid) {
17702 // Determine whether we are capturing by reference or by value.
17703 bool ByRef = false;
17704 if (IsTopScope && Kind != Sema::TryCapture_Implicit) {
17705 ByRef = (Kind == Sema::TryCapture_ExplicitByRef);
17706 } else {
17707 ByRef = (LSI->ImpCaptureStyle == LambdaScopeInfo::ImpCap_LambdaByref);
17708 }
17709
17710 // Compute the type of the field that will capture this variable.
17711 if (ByRef) {
17712 // C++11 [expr.prim.lambda]p15:
17713 // An entity is captured by reference if it is implicitly or
17714 // explicitly captured but not captured by copy. It is
17715 // unspecified whether additional unnamed non-static data
17716 // members are declared in the closure type for entities
17717 // captured by reference.
17718 //
17719 // FIXME: It is not clear whether we want to build an lvalue reference
17720 // to the DeclRefType or to CaptureType.getNonReferenceType(). GCC appears
17721 // to do the former, while EDG does the latter. Core issue 1249 will
17722 // clarify, but for now we follow GCC because it's a more permissive and
17723 // easily defensible position.
17724 CaptureType = S.Context.getLValueReferenceType(DeclRefType);
17725 } else {
17726 // C++11 [expr.prim.lambda]p14:
17727 // For each entity captured by copy, an unnamed non-static
17728 // data member is declared in the closure type. The
17729 // declaration order of these members is unspecified. The type
17730 // of such a data member is the type of the corresponding
17731 // captured entity if the entity is not a reference to an
17732 // object, or the referenced type otherwise. [Note: If the
17733 // captured entity is a reference to a function, the
17734 // corresponding data member is also a reference to a
17735 // function. - end note ]
17736 if (const ReferenceType *RefType = CaptureType->getAs<ReferenceType>()){
17737 if (!RefType->getPointeeType()->isFunctionType())
17738 CaptureType = RefType->getPointeeType();
17739 }
17740
17741 // Forbid the lambda copy-capture of autoreleasing variables.
17742 if (!Invalid &&
17743 CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
17744 if (BuildAndDiagnose) {
17745 S.Diag(Loc, diag::err_arc_autoreleasing_capture) << /*lambda*/ 1;
17746 S.Diag(Var->getLocation(), diag::note_previous_decl)
17747 << Var->getDeclName();
17748 Invalid = true;
17749 } else {
17750 return false;
17751 }
17752 }
17753
17754 // Make sure that by-copy captures are of a complete and non-abstract type.
17755 if (!Invalid && BuildAndDiagnose) {
17756 if (!CaptureType->isDependentType() &&
17757 S.RequireCompleteSizedType(
17758 Loc, CaptureType,
17759 diag::err_capture_of_incomplete_or_sizeless_type,
17760 Var->getDeclName()))
17761 Invalid = true;
17762 else if (S.RequireNonAbstractType(Loc, CaptureType,
17763 diag::err_capture_of_abstract_type))
17764 Invalid = true;
17765 }
17766 }
17767
17768 // Compute the type of a reference to this captured variable.
17769 if (ByRef)
17770 DeclRefType = CaptureType.getNonReferenceType();
17771 else {
17772 // C++ [expr.prim.lambda]p5:
17773 // The closure type for a lambda-expression has a public inline
17774 // function call operator [...]. This function call operator is
17775 // declared const (9.3.1) if and only if the lambda-expression's
17776 // parameter-declaration-clause is not followed by mutable.
17777 DeclRefType = CaptureType.getNonReferenceType();
17778 if (!LSI->Mutable && !CaptureType->isReferenceType())
17779 DeclRefType.addConst();
17780 }
17781
17782 // Add the capture.
17783 if (BuildAndDiagnose)
17784 LSI->addCapture(Var, /*isBlock=*/false, ByRef, RefersToCapturedVariable,
17785 Loc, EllipsisLoc, CaptureType, Invalid);
17786
17787 return !Invalid;
17788}
17789
17790static bool canCaptureVariableByCopy(VarDecl *Var, const ASTContext &Context) {
17791 // Offer a Copy fix even if the type is dependent.
17792 if (Var->getType()->isDependentType())
17793 return true;
17794 QualType T = Var->getType().getNonReferenceType();
17795 if (T.isTriviallyCopyableType(Context))
17796 return true;
17797 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
17798
17799 if (!(RD = RD->getDefinition()))
17800 return false;
17801 if (RD->hasSimpleCopyConstructor())
17802 return true;
17803 if (RD->hasUserDeclaredCopyConstructor())
17804 for (CXXConstructorDecl *Ctor : RD->ctors())
17805 if (Ctor->isCopyConstructor())
17806 return !Ctor->isDeleted();
17807 }
17808 return false;
17809}
17810
17811/// Create up to 4 fix-its for explicit reference and value capture of \p Var or
17812/// default capture. Fixes may be omitted if they aren't allowed by the
17813/// standard, for example we can't emit a default copy capture fix-it if we
17814/// already explicitly copy capture capture another variable.
17815static void buildLambdaCaptureFixit(Sema &Sema, LambdaScopeInfo *LSI,
17816 VarDecl *Var) {
17817 assert(LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None)(static_cast <bool> (LSI->ImpCaptureStyle == CapturingScopeInfo
::ImpCap_None) ? void (0) : __assert_fail ("LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 17817, __extension__ __PRETTY_FUNCTION__))
;
17818 // Don't offer Capture by copy of default capture by copy fixes if Var is
17819 // known not to be copy constructible.
17820 bool ShouldOfferCopyFix = canCaptureVariableByCopy(Var, Sema.getASTContext());
17821
17822 SmallString<32> FixBuffer;
17823 StringRef Separator = LSI->NumExplicitCaptures > 0 ? ", " : "";
17824 if (Var->getDeclName().isIdentifier() && !Var->getName().empty()) {
17825 SourceLocation VarInsertLoc = LSI->IntroducerRange.getEnd();
17826 if (ShouldOfferCopyFix) {
17827 // Offer fixes to insert an explicit capture for the variable.
17828 // [] -> [VarName]
17829 // [OtherCapture] -> [OtherCapture, VarName]
17830 FixBuffer.assign({Separator, Var->getName()});
17831 Sema.Diag(VarInsertLoc, diag::note_lambda_variable_capture_fixit)
17832 << Var << /*value*/ 0
17833 << FixItHint::CreateInsertion(VarInsertLoc, FixBuffer);
17834 }
17835 // As above but capture by reference.
17836 FixBuffer.assign({Separator, "&", Var->getName()});
17837 Sema.Diag(VarInsertLoc, diag::note_lambda_variable_capture_fixit)
17838 << Var << /*reference*/ 1
17839 << FixItHint::CreateInsertion(VarInsertLoc, FixBuffer);
17840 }
17841
17842 // Only try to offer default capture if there are no captures excluding this
17843 // and init captures.
17844 // [this]: OK.
17845 // [X = Y]: OK.
17846 // [&A, &B]: Don't offer.
17847 // [A, B]: Don't offer.
17848 if (llvm::any_of(LSI->Captures, [](Capture &C) {
17849 return !C.isThisCapture() && !C.isInitCapture();
17850 }))
17851 return;
17852
17853 // The default capture specifiers, '=' or '&', must appear first in the
17854 // capture body.
17855 SourceLocation DefaultInsertLoc =
17856 LSI->IntroducerRange.getBegin().getLocWithOffset(1);
17857
17858 if (ShouldOfferCopyFix) {
17859 bool CanDefaultCopyCapture = true;
17860 // [=, *this] OK since c++17
17861 // [=, this] OK since c++20
17862 if (LSI->isCXXThisCaptured() && !Sema.getLangOpts().CPlusPlus20)
17863 CanDefaultCopyCapture = Sema.getLangOpts().CPlusPlus17
17864 ? LSI->getCXXThisCapture().isCopyCapture()
17865 : false;
17866 // We can't use default capture by copy if any captures already specified
17867 // capture by copy.
17868 if (CanDefaultCopyCapture && llvm::none_of(LSI->Captures, [](Capture &C) {
17869 return !C.isThisCapture() && !C.isInitCapture() && C.isCopyCapture();
17870 })) {
17871 FixBuffer.assign({"=", Separator});
17872 Sema.Diag(DefaultInsertLoc, diag::note_lambda_default_capture_fixit)
17873 << /*value*/ 0
17874 << FixItHint::CreateInsertion(DefaultInsertLoc, FixBuffer);
17875 }
17876 }
17877
17878 // We can't use default capture by reference if any captures already specified
17879 // capture by reference.
17880 if (llvm::none_of(LSI->Captures, [](Capture &C) {
17881 return !C.isInitCapture() && C.isReferenceCapture() &&
17882 !C.isThisCapture();
17883 })) {
17884 FixBuffer.assign({"&", Separator});
17885 Sema.Diag(DefaultInsertLoc, diag::note_lambda_default_capture_fixit)
17886 << /*reference*/ 1
17887 << FixItHint::CreateInsertion(DefaultInsertLoc, FixBuffer);
17888 }
17889}
17890
17891bool Sema::tryCaptureVariable(
17892 VarDecl *Var, SourceLocation ExprLoc, TryCaptureKind Kind,
17893 SourceLocation EllipsisLoc, bool BuildAndDiagnose, QualType &CaptureType,
17894 QualType &DeclRefType, const unsigned *const FunctionScopeIndexToStopAt) {
17895 // An init-capture is notionally from the context surrounding its
17896 // declaration, but its parent DC is the lambda class.
17897 DeclContext *VarDC = Var->getDeclContext();
17898 if (Var->isInitCapture())
17899 VarDC = VarDC->getParent();
17900
17901 DeclContext *DC = CurContext;
17902 const unsigned MaxFunctionScopesIndex = FunctionScopeIndexToStopAt
17903 ? *FunctionScopeIndexToStopAt : FunctionScopes.size() - 1;
17904 // We need to sync up the Declaration Context with the
17905 // FunctionScopeIndexToStopAt
17906 if (FunctionScopeIndexToStopAt) {
17907 unsigned FSIndex = FunctionScopes.size() - 1;
17908 while (FSIndex != MaxFunctionScopesIndex) {
17909 DC = getLambdaAwareParentOfDeclContext(DC);
17910 --FSIndex;
17911 }
17912 }
17913
17914
17915 // If the variable is declared in the current context, there is no need to
17916 // capture it.
17917 if (VarDC == DC) return true;
17918
17919 // Capture global variables if it is required to use private copy of this
17920 // variable.
17921 bool IsGlobal = !Var->hasLocalStorage();
17922 if (IsGlobal &&
17923 !(LangOpts.OpenMP && isOpenMPCapturedDecl(Var, /*CheckScopeInfo=*/true,
17924 MaxFunctionScopesIndex)))
17925 return true;
17926 Var = Var->getCanonicalDecl();
17927
17928 // Walk up the stack to determine whether we can capture the variable,
17929 // performing the "simple" checks that don't depend on type. We stop when
17930 // we've either hit the declared scope of the variable or find an existing
17931 // capture of that variable. We start from the innermost capturing-entity
17932 // (the DC) and ensure that all intervening capturing-entities
17933 // (blocks/lambdas etc.) between the innermost capturer and the variable`s
17934 // declcontext can either capture the variable or have already captured
17935 // the variable.
17936 CaptureType = Var->getType();
17937 DeclRefType = CaptureType.getNonReferenceType();
17938 bool Nested = false;
17939 bool Explicit = (Kind != TryCapture_Implicit);
17940 unsigned FunctionScopesIndex = MaxFunctionScopesIndex;
17941 do {
17942 // Only block literals, captured statements, and lambda expressions can
17943 // capture; other scopes don't work.
17944 DeclContext *ParentDC = getParentOfCapturingContextOrNull(DC, Var,
17945 ExprLoc,
17946 BuildAndDiagnose,
17947 *this);
17948 // We need to check for the parent *first* because, if we *have*
17949 // private-captured a global variable, we need to recursively capture it in
17950 // intermediate blocks, lambdas, etc.
17951 if (!ParentDC) {
17952 if (IsGlobal) {
17953 FunctionScopesIndex = MaxFunctionScopesIndex - 1;
17954 break;
17955 }
17956 return true;
17957 }
17958
17959 FunctionScopeInfo *FSI = FunctionScopes[FunctionScopesIndex];
17960 CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FSI);
17961
17962
17963 // Check whether we've already captured it.
17964 if (isVariableAlreadyCapturedInScopeInfo(CSI, Var, Nested, CaptureType,
17965 DeclRefType)) {
17966 CSI->getCapture(Var).markUsed(BuildAndDiagnose);
17967 break;
17968 }
17969 // If we are instantiating a generic lambda call operator body,
17970 // we do not want to capture new variables. What was captured
17971 // during either a lambdas transformation or initial parsing
17972 // should be used.
17973 if (isGenericLambdaCallOperatorSpecialization(DC)) {
17974 if (BuildAndDiagnose) {
17975 LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
17976 if (LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None) {
17977 Diag(ExprLoc, diag::err_lambda_impcap) << Var;
17978 Diag(Var->getLocation(), diag::note_previous_decl) << Var;
17979 Diag(LSI->Lambda->getBeginLoc(), diag::note_lambda_decl);
17980 buildLambdaCaptureFixit(*this, LSI, Var);
17981 } else
17982 diagnoseUncapturableValueReference(*this, ExprLoc, Var, DC);
17983 }
17984 return true;
17985 }
17986
17987 // Try to capture variable-length arrays types.
17988 if (Var->getType()->isVariablyModifiedType()) {
17989 // We're going to walk down into the type and look for VLA
17990 // expressions.
17991 QualType QTy = Var->getType();
17992 if (ParmVarDecl *PVD = dyn_cast_or_null<ParmVarDecl>(Var))
17993 QTy = PVD->getOriginalType();
17994 captureVariablyModifiedType(Context, QTy, CSI);
17995 }
17996
17997 if (getLangOpts().OpenMP) {
17998 if (auto *RSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) {
17999 // OpenMP private variables should not be captured in outer scope, so
18000 // just break here. Similarly, global variables that are captured in a
18001 // target region should not be captured outside the scope of the region.
18002 if (RSI->CapRegionKind == CR_OpenMP) {
18003 OpenMPClauseKind IsOpenMPPrivateDecl = isOpenMPPrivateDecl(
18004 Var, RSI->OpenMPLevel, RSI->OpenMPCaptureLevel);
18005 // If the variable is private (i.e. not captured) and has variably
18006 // modified type, we still need to capture the type for correct
18007 // codegen in all regions, associated with the construct. Currently,
18008 // it is captured in the innermost captured region only.
18009 if (IsOpenMPPrivateDecl != OMPC_unknown &&
18010 Var->getType()->isVariablyModifiedType()) {
18011 QualType QTy = Var->getType();
18012 if (ParmVarDecl *PVD = dyn_cast_or_null<ParmVarDecl>(Var))
18013 QTy = PVD->getOriginalType();
18014 for (int I = 1, E = getNumberOfConstructScopes(RSI->OpenMPLevel);
18015 I < E; ++I) {
18016 auto *OuterRSI = cast<CapturedRegionScopeInfo>(
18017 FunctionScopes[FunctionScopesIndex - I]);
18018 assert(RSI->OpenMPLevel == OuterRSI->OpenMPLevel &&(static_cast <bool> (RSI->OpenMPLevel == OuterRSI->
OpenMPLevel && "Wrong number of captured regions associated with the "
"OpenMP construct.") ? void (0) : __assert_fail ("RSI->OpenMPLevel == OuterRSI->OpenMPLevel && \"Wrong number of captured regions associated with the \" \"OpenMP construct.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 18020, __extension__ __PRETTY_FUNCTION__))
18019 "Wrong number of captured regions associated with the "(static_cast <bool> (RSI->OpenMPLevel == OuterRSI->
OpenMPLevel && "Wrong number of captured regions associated with the "
"OpenMP construct.") ? void (0) : __assert_fail ("RSI->OpenMPLevel == OuterRSI->OpenMPLevel && \"Wrong number of captured regions associated with the \" \"OpenMP construct.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 18020, __extension__ __PRETTY_FUNCTION__))
18020 "OpenMP construct.")(static_cast <bool> (RSI->OpenMPLevel == OuterRSI->
OpenMPLevel && "Wrong number of captured regions associated with the "
"OpenMP construct.") ? void (0) : __assert_fail ("RSI->OpenMPLevel == OuterRSI->OpenMPLevel && \"Wrong number of captured regions associated with the \" \"OpenMP construct.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 18020, __extension__ __PRETTY_FUNCTION__))
;
18021 captureVariablyModifiedType(Context, QTy, OuterRSI);
18022 }
18023 }
18024 bool IsTargetCap =
18025 IsOpenMPPrivateDecl != OMPC_private &&
18026 isOpenMPTargetCapturedDecl(Var, RSI->OpenMPLevel,
18027 RSI->OpenMPCaptureLevel);
18028 // Do not capture global if it is not privatized in outer regions.
18029 bool IsGlobalCap =
18030 IsGlobal && isOpenMPGlobalCapturedDecl(Var, RSI->OpenMPLevel,
18031 RSI->OpenMPCaptureLevel);
18032
18033 // When we detect target captures we are looking from inside the
18034 // target region, therefore we need to propagate the capture from the
18035 // enclosing region. Therefore, the capture is not initially nested.
18036 if (IsTargetCap)
18037 adjustOpenMPTargetScopeIndex(FunctionScopesIndex, RSI->OpenMPLevel);
18038
18039 if (IsTargetCap || IsOpenMPPrivateDecl == OMPC_private ||
18040 (IsGlobal && !IsGlobalCap)) {
18041 Nested = !IsTargetCap;
18042 bool HasConst = DeclRefType.isConstQualified();
18043 DeclRefType = DeclRefType.getUnqualifiedType();
18044 // Don't lose diagnostics about assignments to const.
18045 if (HasConst)
18046 DeclRefType.addConst();
18047 CaptureType = Context.getLValueReferenceType(DeclRefType);
18048 break;
18049 }
18050 }
18051 }
18052 }
18053 if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None && !Explicit) {
18054 // No capture-default, and this is not an explicit capture
18055 // so cannot capture this variable.
18056 if (BuildAndDiagnose) {
18057 Diag(ExprLoc, diag::err_lambda_impcap) << Var;
18058 Diag(Var->getLocation(), diag::note_previous_decl) << Var;
18059 auto *LSI = cast<LambdaScopeInfo>(CSI);
18060 if (LSI->Lambda) {
18061 Diag(LSI->Lambda->getBeginLoc(), diag::note_lambda_decl);
18062 buildLambdaCaptureFixit(*this, LSI, Var);
18063 }
18064 // FIXME: If we error out because an outer lambda can not implicitly
18065 // capture a variable that an inner lambda explicitly captures, we
18066 // should have the inner lambda do the explicit capture - because
18067 // it makes for cleaner diagnostics later. This would purely be done
18068 // so that the diagnostic does not misleadingly claim that a variable
18069 // can not be captured by a lambda implicitly even though it is captured
18070 // explicitly. Suggestion:
18071 // - create const bool VariableCaptureWasInitiallyExplicit = Explicit
18072 // at the function head
18073 // - cache the StartingDeclContext - this must be a lambda
18074 // - captureInLambda in the innermost lambda the variable.
18075 }
18076 return true;
18077 }
18078
18079 FunctionScopesIndex--;
18080 DC = ParentDC;
18081 Explicit = false;
18082 } while (!VarDC->Equals(DC));
18083
18084 // Walk back down the scope stack, (e.g. from outer lambda to inner lambda)
18085 // computing the type of the capture at each step, checking type-specific
18086 // requirements, and adding captures if requested.
18087 // If the variable had already been captured previously, we start capturing
18088 // at the lambda nested within that one.
18089 bool Invalid = false;
18090 for (unsigned I = ++FunctionScopesIndex, N = MaxFunctionScopesIndex + 1; I != N;
18091 ++I) {
18092 CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[I]);
18093
18094 // Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
18095 // certain types of variables (unnamed, variably modified types etc.)
18096 // so check for eligibility.
18097 if (!Invalid)
18098 Invalid =
18099 !isVariableCapturable(CSI, Var, ExprLoc, BuildAndDiagnose, *this);
18100
18101 // After encountering an error, if we're actually supposed to capture, keep
18102 // capturing in nested contexts to suppress any follow-on diagnostics.
18103 if (Invalid && !BuildAndDiagnose)
18104 return true;
18105
18106 if (BlockScopeInfo *BSI = dyn_cast<BlockScopeInfo>(CSI)) {
18107 Invalid = !captureInBlock(BSI, Var, ExprLoc, BuildAndDiagnose, CaptureType,
18108 DeclRefType, Nested, *this, Invalid);
18109 Nested = true;
18110 } else if (CapturedRegionScopeInfo *RSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) {
18111 Invalid = !captureInCapturedRegion(
18112 RSI, Var, ExprLoc, BuildAndDiagnose, CaptureType, DeclRefType, Nested,
18113 Kind, /*IsTopScope*/ I == N - 1, *this, Invalid);
18114 Nested = true;
18115 } else {
18116 LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
18117 Invalid =
18118 !captureInLambda(LSI, Var, ExprLoc, BuildAndDiagnose, CaptureType,
18119 DeclRefType, Nested, Kind, EllipsisLoc,
18120 /*IsTopScope*/ I == N - 1, *this, Invalid);
18121 Nested = true;
18122 }
18123
18124 if (Invalid && !BuildAndDiagnose)
18125 return true;
18126 }
18127 return Invalid;
18128}
18129
18130bool Sema::tryCaptureVariable(VarDecl *Var, SourceLocation Loc,
18131 TryCaptureKind Kind, SourceLocation EllipsisLoc) {
18132 QualType CaptureType;
18133 QualType DeclRefType;
18134 return tryCaptureVariable(Var, Loc, Kind, EllipsisLoc,
18135 /*BuildAndDiagnose=*/true, CaptureType,
18136 DeclRefType, nullptr);
18137}
18138
18139bool Sema::NeedToCaptureVariable(VarDecl *Var, SourceLocation Loc) {
18140 QualType CaptureType;
18141 QualType DeclRefType;
18142 return !tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
18143 /*BuildAndDiagnose=*/false, CaptureType,
18144 DeclRefType, nullptr);
18145}
18146
18147QualType Sema::getCapturedDeclRefType(VarDecl *Var, SourceLocation Loc) {
18148 QualType CaptureType;
18149 QualType DeclRefType;
18150
18151 // Determine whether we can capture this variable.
18152 if (tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
18153 /*BuildAndDiagnose=*/false, CaptureType,
18154 DeclRefType, nullptr))
18155 return QualType();
18156
18157 return DeclRefType;
18158}
18159
18160namespace {
18161// Helper to copy the template arguments from a DeclRefExpr or MemberExpr.
18162// The produced TemplateArgumentListInfo* points to data stored within this
18163// object, so should only be used in contexts where the pointer will not be
18164// used after the CopiedTemplateArgs object is destroyed.
18165class CopiedTemplateArgs {
18166 bool HasArgs;
18167 TemplateArgumentListInfo TemplateArgStorage;
18168public:
18169 template<typename RefExpr>
18170 CopiedTemplateArgs(RefExpr *E) : HasArgs(E->hasExplicitTemplateArgs()) {
18171 if (HasArgs)
18172 E->copyTemplateArgumentsInto(TemplateArgStorage);
18173 }
18174 operator TemplateArgumentListInfo*()
18175#ifdef __has_cpp_attribute
18176#if0 __has_cpp_attribute(clang::lifetimebound)1
18177 [[clang::lifetimebound]]
18178#endif
18179#endif
18180 {
18181 return HasArgs ? &TemplateArgStorage : nullptr;
18182 }
18183};
18184}
18185
18186/// Walk the set of potential results of an expression and mark them all as
18187/// non-odr-uses if they satisfy the side-conditions of the NonOdrUseReason.
18188///
18189/// \return A new expression if we found any potential results, ExprEmpty() if
18190/// not, and ExprError() if we diagnosed an error.
18191static ExprResult rebuildPotentialResultsAsNonOdrUsed(Sema &S, Expr *E,
18192 NonOdrUseReason NOUR) {
18193 // Per C++11 [basic.def.odr], a variable is odr-used "unless it is
18194 // an object that satisfies the requirements for appearing in a
18195 // constant expression (5.19) and the lvalue-to-rvalue conversion (4.1)
18196 // is immediately applied." This function handles the lvalue-to-rvalue
18197 // conversion part.
18198 //
18199 // If we encounter a node that claims to be an odr-use but shouldn't be, we
18200 // transform it into the relevant kind of non-odr-use node and rebuild the
18201 // tree of nodes leading to it.
18202 //
18203 // This is a mini-TreeTransform that only transforms a restricted subset of
18204 // nodes (and only certain operands of them).
18205
18206 // Rebuild a subexpression.
18207 auto Rebuild = [&](Expr *Sub) {
18208 return rebuildPotentialResultsAsNonOdrUsed(S, Sub, NOUR);
18209 };
18210
18211 // Check whether a potential result satisfies the requirements of NOUR.
18212 auto IsPotentialResultOdrUsed = [&](NamedDecl *D) {
18213 // Any entity other than a VarDecl is always odr-used whenever it's named
18214 // in a potentially-evaluated expression.
18215 auto *VD = dyn_cast<VarDecl>(D);
18216 if (!VD)
18217 return true;
18218
18219 // C++2a [basic.def.odr]p4:
18220 // A variable x whose name appears as a potentially-evalauted expression
18221 // e is odr-used by e unless
18222 // -- x is a reference that is usable in constant expressions, or
18223 // -- x is a variable of non-reference type that is usable in constant
18224 // expressions and has no mutable subobjects, and e is an element of
18225 // the set of potential results of an expression of
18226 // non-volatile-qualified non-class type to which the lvalue-to-rvalue
18227 // conversion is applied, or
18228 // -- x is a variable of non-reference type, and e is an element of the
18229 // set of potential results of a discarded-value expression to which
18230 // the lvalue-to-rvalue conversion is not applied
18231 //
18232 // We check the first bullet and the "potentially-evaluated" condition in
18233 // BuildDeclRefExpr. We check the type requirements in the second bullet
18234 // in CheckLValueToRValueConversionOperand below.
18235 switch (NOUR) {
18236 case NOUR_None:
18237 case NOUR_Unevaluated:
18238 llvm_unreachable("unexpected non-odr-use-reason")::llvm::llvm_unreachable_internal("unexpected non-odr-use-reason"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 18238)
;
18239
18240 case NOUR_Constant:
18241 // Constant references were handled when they were built.
18242 if (VD->getType()->isReferenceType())
18243 return true;
18244 if (auto *RD = VD->getType()->getAsCXXRecordDecl())
18245 if (RD->hasMutableFields())
18246 return true;
18247 if (!VD->isUsableInConstantExpressions(S.Context))
18248 return true;
18249 break;
18250
18251 case NOUR_Discarded:
18252 if (VD->getType()->isReferenceType())
18253 return true;
18254 break;
18255 }
18256 return false;
18257 };
18258
18259 // Mark that this expression does not constitute an odr-use.
18260 auto MarkNotOdrUsed = [&] {
18261 S.MaybeODRUseExprs.remove(E);
18262 if (LambdaScopeInfo *LSI = S.getCurLambda())
18263 LSI->markVariableExprAsNonODRUsed(E);
18264 };
18265
18266 // C++2a [basic.def.odr]p2:
18267 // The set of potential results of an expression e is defined as follows:
18268 switch (E->getStmtClass()) {
18269 // -- If e is an id-expression, ...
18270 case Expr::DeclRefExprClass: {
18271 auto *DRE = cast<DeclRefExpr>(E);
18272 if (DRE->isNonOdrUse() || IsPotentialResultOdrUsed(DRE->getDecl()))
18273 break;
18274
18275 // Rebuild as a non-odr-use DeclRefExpr.
18276 MarkNotOdrUsed();
18277 return DeclRefExpr::Create(
18278 S.Context, DRE->getQualifierLoc(), DRE->getTemplateKeywordLoc(),
18279 DRE->getDecl(), DRE->refersToEnclosingVariableOrCapture(),
18280 DRE->getNameInfo(), DRE->getType(), DRE->getValueKind(),
18281 DRE->getFoundDecl(), CopiedTemplateArgs(DRE), NOUR);
18282 }
18283
18284 case Expr::FunctionParmPackExprClass: {
18285 auto *FPPE = cast<FunctionParmPackExpr>(E);
18286 // If any of the declarations in the pack is odr-used, then the expression
18287 // as a whole constitutes an odr-use.
18288 for (VarDecl *D : *FPPE)
18289 if (IsPotentialResultOdrUsed(D))
18290 return ExprEmpty();
18291
18292 // FIXME: Rebuild as a non-odr-use FunctionParmPackExpr? In practice,
18293 // nothing cares about whether we marked this as an odr-use, but it might
18294 // be useful for non-compiler tools.
18295 MarkNotOdrUsed();
18296 break;
18297 }
18298
18299 // -- If e is a subscripting operation with an array operand...
18300 case Expr::ArraySubscriptExprClass: {
18301 auto *ASE = cast<ArraySubscriptExpr>(E);
18302 Expr *OldBase = ASE->getBase()->IgnoreImplicit();
18303 if (!OldBase->getType()->isArrayType())
18304 break;
18305 ExprResult Base = Rebuild(OldBase);
18306 if (!Base.isUsable())
18307 return Base;
18308 Expr *LHS = ASE->getBase() == ASE->getLHS() ? Base.get() : ASE->getLHS();
18309 Expr *RHS = ASE->getBase() == ASE->getRHS() ? Base.get() : ASE->getRHS();
18310 SourceLocation LBracketLoc = ASE->getBeginLoc(); // FIXME: Not stored.
18311 return S.ActOnArraySubscriptExpr(nullptr, LHS, LBracketLoc, RHS,
18312 ASE->getRBracketLoc());
18313 }
18314
18315 case Expr::MemberExprClass: {
18316 auto *ME = cast<MemberExpr>(E);
18317 // -- If e is a class member access expression [...] naming a non-static
18318 // data member...
18319 if (isa<FieldDecl>(ME->getMemberDecl())) {
18320 ExprResult Base = Rebuild(ME->getBase());
18321 if (!Base.isUsable())
18322 return Base;
18323 return MemberExpr::Create(
18324 S.Context, Base.get(), ME->isArrow(), ME->getOperatorLoc(),
18325 ME->getQualifierLoc(), ME->getTemplateKeywordLoc(),
18326 ME->getMemberDecl(), ME->getFoundDecl(), ME->getMemberNameInfo(),
18327 CopiedTemplateArgs(ME), ME->getType(), ME->getValueKind(),
18328 ME->getObjectKind(), ME->isNonOdrUse());
18329 }
18330
18331 if (ME->getMemberDecl()->isCXXInstanceMember())
18332 break;
18333
18334 // -- If e is a class member access expression naming a static data member,
18335 // ...
18336 if (ME->isNonOdrUse() || IsPotentialResultOdrUsed(ME->getMemberDecl()))
18337 break;
18338
18339 // Rebuild as a non-odr-use MemberExpr.
18340 MarkNotOdrUsed();
18341 return MemberExpr::Create(
18342 S.Context, ME->getBase(), ME->isArrow(), ME->getOperatorLoc(),
18343 ME->getQualifierLoc(), ME->getTemplateKeywordLoc(), ME->getMemberDecl(),
18344 ME->getFoundDecl(), ME->getMemberNameInfo(), CopiedTemplateArgs(ME),
18345 ME->getType(), ME->getValueKind(), ME->getObjectKind(), NOUR);
18346 }
18347
18348 case Expr::BinaryOperatorClass: {
18349 auto *BO = cast<BinaryOperator>(E);
18350 Expr *LHS = BO->getLHS();
18351 Expr *RHS = BO->getRHS();
18352 // -- If e is a pointer-to-member expression of the form e1 .* e2 ...
18353 if (BO->getOpcode() == BO_PtrMemD) {
18354 ExprResult Sub = Rebuild(LHS);
18355 if (!Sub.isUsable())
18356 return Sub;
18357 LHS = Sub.get();
18358 // -- If e is a comma expression, ...
18359 } else if (BO->getOpcode() == BO_Comma) {
18360 ExprResult Sub = Rebuild(RHS);
18361 if (!Sub.isUsable())
18362 return Sub;
18363 RHS = Sub.get();
18364 } else {
18365 break;
18366 }
18367 return S.BuildBinOp(nullptr, BO->getOperatorLoc(), BO->getOpcode(),
18368 LHS, RHS);
18369 }
18370
18371 // -- If e has the form (e1)...
18372 case Expr::ParenExprClass: {
18373 auto *PE = cast<ParenExpr>(E);
18374 ExprResult Sub = Rebuild(PE->getSubExpr());
18375 if (!Sub.isUsable())
18376 return Sub;
18377 return S.ActOnParenExpr(PE->getLParen(), PE->getRParen(), Sub.get());
18378 }
18379
18380 // -- If e is a glvalue conditional expression, ...
18381 // We don't apply this to a binary conditional operator. FIXME: Should we?
18382 case Expr::ConditionalOperatorClass: {
18383 auto *CO = cast<ConditionalOperator>(E);
18384 ExprResult LHS = Rebuild(CO->getLHS());
18385 if (LHS.isInvalid())
18386 return ExprError();
18387 ExprResult RHS = Rebuild(CO->getRHS());
18388 if (RHS.isInvalid())
18389 return ExprError();
18390 if (!LHS.isUsable() && !RHS.isUsable())
18391 return ExprEmpty();
18392 if (!LHS.isUsable())
18393 LHS = CO->getLHS();
18394 if (!RHS.isUsable())
18395 RHS = CO->getRHS();
18396 return S.ActOnConditionalOp(CO->getQuestionLoc(), CO->getColonLoc(),
18397 CO->getCond(), LHS.get(), RHS.get());
18398 }
18399
18400 // [Clang extension]
18401 // -- If e has the form __extension__ e1...
18402 case Expr::UnaryOperatorClass: {
18403 auto *UO = cast<UnaryOperator>(E);
18404 if (UO->getOpcode() != UO_Extension)
18405 break;
18406 ExprResult Sub = Rebuild(UO->getSubExpr());
18407 if (!Sub.isUsable())
18408 return Sub;
18409 return S.BuildUnaryOp(nullptr, UO->getOperatorLoc(), UO_Extension,
18410 Sub.get());
18411 }
18412
18413 // [Clang extension]
18414 // -- If e has the form _Generic(...), the set of potential results is the
18415 // union of the sets of potential results of the associated expressions.
18416 case Expr::GenericSelectionExprClass: {
18417 auto *GSE = cast<GenericSelectionExpr>(E);
18418
18419 SmallVector<Expr *, 4> AssocExprs;
18420 bool AnyChanged = false;
18421 for (Expr *OrigAssocExpr : GSE->getAssocExprs()) {
18422 ExprResult AssocExpr = Rebuild(OrigAssocExpr);
18423 if (AssocExpr.isInvalid())
18424 return ExprError();
18425 if (AssocExpr.isUsable()) {
18426 AssocExprs.push_back(AssocExpr.get());
18427 AnyChanged = true;
18428 } else {
18429 AssocExprs.push_back(OrigAssocExpr);
18430 }
18431 }
18432
18433 return AnyChanged ? S.CreateGenericSelectionExpr(
18434 GSE->getGenericLoc(), GSE->getDefaultLoc(),
18435 GSE->getRParenLoc(), GSE->getControllingExpr(),
18436 GSE->getAssocTypeSourceInfos(), AssocExprs)
18437 : ExprEmpty();
18438 }
18439
18440 // [Clang extension]
18441 // -- If e has the form __builtin_choose_expr(...), the set of potential
18442 // results is the union of the sets of potential results of the
18443 // second and third subexpressions.
18444 case Expr::ChooseExprClass: {
18445 auto *CE = cast<ChooseExpr>(E);
18446
18447 ExprResult LHS = Rebuild(CE->getLHS());
18448 if (LHS.isInvalid())
18449 return ExprError();
18450
18451 ExprResult RHS = Rebuild(CE->getLHS());
18452 if (RHS.isInvalid())
18453 return ExprError();
18454
18455 if (!LHS.get() && !RHS.get())
18456 return ExprEmpty();
18457 if (!LHS.isUsable())
18458 LHS = CE->getLHS();
18459 if (!RHS.isUsable())
18460 RHS = CE->getRHS();
18461
18462 return S.ActOnChooseExpr(CE->getBuiltinLoc(), CE->getCond(), LHS.get(),
18463 RHS.get(), CE->getRParenLoc());
18464 }
18465
18466 // Step through non-syntactic nodes.
18467 case Expr::ConstantExprClass: {
18468 auto *CE = cast<ConstantExpr>(E);
18469 ExprResult Sub = Rebuild(CE->getSubExpr());
18470 if (!Sub.isUsable())
18471 return Sub;
18472 return ConstantExpr::Create(S.Context, Sub.get());
18473 }
18474
18475 // We could mostly rely on the recursive rebuilding to rebuild implicit
18476 // casts, but not at the top level, so rebuild them here.
18477 case Expr::ImplicitCastExprClass: {
18478 auto *ICE = cast<ImplicitCastExpr>(E);
18479 // Only step through the narrow set of cast kinds we expect to encounter.
18480 // Anything else suggests we've left the region in which potential results
18481 // can be found.
18482 switch (ICE->getCastKind()) {
18483 case CK_NoOp:
18484 case CK_DerivedToBase:
18485 case CK_UncheckedDerivedToBase: {
18486 ExprResult Sub = Rebuild(ICE->getSubExpr());
18487 if (!Sub.isUsable())
18488 return Sub;
18489 CXXCastPath Path(ICE->path());
18490 return S.ImpCastExprToType(Sub.get(), ICE->getType(), ICE->getCastKind(),
18491 ICE->getValueKind(), &Path);
18492 }
18493
18494 default:
18495 break;
18496 }
18497 break;
18498 }
18499
18500 default:
18501 break;
18502 }
18503
18504 // Can't traverse through this node. Nothing to do.
18505 return ExprEmpty();
18506}
18507
18508ExprResult Sema::CheckLValueToRValueConversionOperand(Expr *E) {
18509 // Check whether the operand is or contains an object of non-trivial C union
18510 // type.
18511 if (E->getType().isVolatileQualified() &&
18512 (E->getType().hasNonTrivialToPrimitiveDestructCUnion() ||
18513 E->getType().hasNonTrivialToPrimitiveCopyCUnion()))
18514 checkNonTrivialCUnion(E->getType(), E->getExprLoc(),
18515 Sema::NTCUC_LValueToRValueVolatile,
18516 NTCUK_Destruct|NTCUK_Copy);
18517
18518 // C++2a [basic.def.odr]p4:
18519 // [...] an expression of non-volatile-qualified non-class type to which
18520 // the lvalue-to-rvalue conversion is applied [...]
18521 if (E->getType().isVolatileQualified() || E->getType()->getAs<RecordType>())
18522 return E;
18523
18524 ExprResult Result =
18525 rebuildPotentialResultsAsNonOdrUsed(*this, E, NOUR_Constant);
18526 if (Result.isInvalid())
18527 return ExprError();
18528 return Result.get() ? Result : E;
18529}
18530
18531ExprResult Sema::ActOnConstantExpression(ExprResult Res) {
18532 Res = CorrectDelayedTyposInExpr(Res);
18533
18534 if (!Res.isUsable())
18535 return Res;
18536
18537 // If a constant-expression is a reference to a variable where we delay
18538 // deciding whether it is an odr-use, just assume we will apply the
18539 // lvalue-to-rvalue conversion. In the one case where this doesn't happen
18540 // (a non-type template argument), we have special handling anyway.
18541 return CheckLValueToRValueConversionOperand(Res.get());
18542}
18543
18544void Sema::CleanupVarDeclMarking() {
18545 // Iterate through a local copy in case MarkVarDeclODRUsed makes a recursive
18546 // call.
18547 MaybeODRUseExprSet LocalMaybeODRUseExprs;
18548 std::swap(LocalMaybeODRUseExprs, MaybeODRUseExprs);
18549
18550 for (Expr *E : LocalMaybeODRUseExprs) {
18551 if (auto *DRE = dyn_cast<DeclRefExpr>(E)) {
18552 MarkVarDeclODRUsed(cast<VarDecl>(DRE->getDecl()),
18553 DRE->getLocation(), *this);
18554 } else if (auto *ME = dyn_cast<MemberExpr>(E)) {
18555 MarkVarDeclODRUsed(cast<VarDecl>(ME->getMemberDecl()), ME->getMemberLoc(),
18556 *this);
18557 } else if (auto *FP = dyn_cast<FunctionParmPackExpr>(E)) {
18558 for (VarDecl *VD : *FP)
18559 MarkVarDeclODRUsed(VD, FP->getParameterPackLocation(), *this);
18560 } else {
18561 llvm_unreachable("Unexpected expression")::llvm::llvm_unreachable_internal("Unexpected expression", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 18561)
;
18562 }
18563 }
18564
18565 assert(MaybeODRUseExprs.empty() &&(static_cast <bool> (MaybeODRUseExprs.empty() &&
"MarkVarDeclODRUsed failed to cleanup MaybeODRUseExprs?") ? void
(0) : __assert_fail ("MaybeODRUseExprs.empty() && \"MarkVarDeclODRUsed failed to cleanup MaybeODRUseExprs?\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 18566, __extension__ __PRETTY_FUNCTION__))
18566 "MarkVarDeclODRUsed failed to cleanup MaybeODRUseExprs?")(static_cast <bool> (MaybeODRUseExprs.empty() &&
"MarkVarDeclODRUsed failed to cleanup MaybeODRUseExprs?") ? void
(0) : __assert_fail ("MaybeODRUseExprs.empty() && \"MarkVarDeclODRUsed failed to cleanup MaybeODRUseExprs?\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 18566, __extension__ __PRETTY_FUNCTION__))
;
18567}
18568
18569static void DoMarkVarDeclReferenced(
18570 Sema &SemaRef, SourceLocation Loc, VarDecl *Var, Expr *E,
18571 llvm::DenseMap<const VarDecl *, int> &RefsMinusAssignments) {
18572 assert((!E || isa<DeclRefExpr>(E) || isa<MemberExpr>(E) ||(static_cast <bool> ((!E || isa<DeclRefExpr>(E) ||
isa<MemberExpr>(E) || isa<FunctionParmPackExpr>(
E)) && "Invalid Expr argument to DoMarkVarDeclReferenced"
) ? void (0) : __assert_fail ("(!E || isa<DeclRefExpr>(E) || isa<MemberExpr>(E) || isa<FunctionParmPackExpr>(E)) && \"Invalid Expr argument to DoMarkVarDeclReferenced\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 18574, __extension__ __PRETTY_FUNCTION__))
18573 isa<FunctionParmPackExpr>(E)) &&(static_cast <bool> ((!E || isa<DeclRefExpr>(E) ||
isa<MemberExpr>(E) || isa<FunctionParmPackExpr>(
E)) && "Invalid Expr argument to DoMarkVarDeclReferenced"
) ? void (0) : __assert_fail ("(!E || isa<DeclRefExpr>(E) || isa<MemberExpr>(E) || isa<FunctionParmPackExpr>(E)) && \"Invalid Expr argument to DoMarkVarDeclReferenced\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 18574, __extension__ __PRETTY_FUNCTION__))
18574 "Invalid Expr argument to DoMarkVarDeclReferenced")(static_cast <bool> ((!E || isa<DeclRefExpr>(E) ||
isa<MemberExpr>(E) || isa<FunctionParmPackExpr>(
E)) && "Invalid Expr argument to DoMarkVarDeclReferenced"
) ? void (0) : __assert_fail ("(!E || isa<DeclRefExpr>(E) || isa<MemberExpr>(E) || isa<FunctionParmPackExpr>(E)) && \"Invalid Expr argument to DoMarkVarDeclReferenced\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 18574, __extension__ __PRETTY_FUNCTION__))
;
18575 Var->setReferenced();
18576
18577 if (Var->isInvalidDecl())
18578 return;
18579
18580 auto *MSI = Var->getMemberSpecializationInfo();
18581 TemplateSpecializationKind TSK = MSI ? MSI->getTemplateSpecializationKind()
18582 : Var->getTemplateSpecializationKind();
18583
18584 OdrUseContext OdrUse = isOdrUseContext(SemaRef);
18585 bool UsableInConstantExpr =
18586 Var->mightBeUsableInConstantExpressions(SemaRef.Context);
18587
18588 if (Var->isLocalVarDeclOrParm() && !Var->hasExternalStorage()) {
18589 RefsMinusAssignments.insert({Var, 0}).first->getSecond()++;
18590 }
18591
18592 // C++20 [expr.const]p12:
18593 // A variable [...] is needed for constant evaluation if it is [...] a
18594 // variable whose name appears as a potentially constant evaluated
18595 // expression that is either a contexpr variable or is of non-volatile
18596 // const-qualified integral type or of reference type
18597 bool NeededForConstantEvaluation =
18598 isPotentiallyConstantEvaluatedContext(SemaRef) && UsableInConstantExpr;
18599
18600 bool NeedDefinition =
18601 OdrUse == OdrUseContext::Used || NeededForConstantEvaluation;
18602
18603 assert(!isa<VarTemplatePartialSpecializationDecl>(Var) &&(static_cast <bool> (!isa<VarTemplatePartialSpecializationDecl
>(Var) && "Can't instantiate a partial template specialization."
) ? void (0) : __assert_fail ("!isa<VarTemplatePartialSpecializationDecl>(Var) && \"Can't instantiate a partial template specialization.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 18604, __extension__ __PRETTY_FUNCTION__))
18604 "Can't instantiate a partial template specialization.")(static_cast <bool> (!isa<VarTemplatePartialSpecializationDecl
>(Var) && "Can't instantiate a partial template specialization."
) ? void (0) : __assert_fail ("!isa<VarTemplatePartialSpecializationDecl>(Var) && \"Can't instantiate a partial template specialization.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 18604, __extension__ __PRETTY_FUNCTION__))
;
18605
18606 // If this might be a member specialization of a static data member, check
18607 // the specialization is visible. We already did the checks for variable
18608 // template specializations when we created them.
18609 if (NeedDefinition && TSK != TSK_Undeclared &&
18610 !isa<VarTemplateSpecializationDecl>(Var))
18611 SemaRef.checkSpecializationVisibility(Loc, Var);
18612
18613 // Perform implicit instantiation of static data members, static data member
18614 // templates of class templates, and variable template specializations. Delay
18615 // instantiations of variable templates, except for those that could be used
18616 // in a constant expression.
18617 if (NeedDefinition && isTemplateInstantiation(TSK)) {
18618 // Per C++17 [temp.explicit]p10, we may instantiate despite an explicit
18619 // instantiation declaration if a variable is usable in a constant
18620 // expression (among other cases).
18621 bool TryInstantiating =
18622 TSK == TSK_ImplicitInstantiation ||
18623 (TSK == TSK_ExplicitInstantiationDeclaration && UsableInConstantExpr);
18624
18625 if (TryInstantiating) {
18626 SourceLocation PointOfInstantiation =
18627 MSI ? MSI->getPointOfInstantiation() : Var->getPointOfInstantiation();
18628 bool FirstInstantiation = PointOfInstantiation.isInvalid();
18629 if (FirstInstantiation) {
18630 PointOfInstantiation = Loc;
18631 if (MSI)
18632 MSI->setPointOfInstantiation(PointOfInstantiation);
18633 // FIXME: Notify listener.
18634 else
18635 Var->setTemplateSpecializationKind(TSK, PointOfInstantiation);
18636 }
18637
18638 if (UsableInConstantExpr) {
18639 // Do not defer instantiations of variables that could be used in a
18640 // constant expression.
18641 SemaRef.runWithSufficientStackSpace(PointOfInstantiation, [&] {
18642 SemaRef.InstantiateVariableDefinition(PointOfInstantiation, Var);
18643 });
18644
18645 // Re-set the member to trigger a recomputation of the dependence bits
18646 // for the expression.
18647 if (auto *DRE = dyn_cast_or_null<DeclRefExpr>(E))
18648 DRE->setDecl(DRE->getDecl());
18649 else if (auto *ME = dyn_cast_or_null<MemberExpr>(E))
18650 ME->setMemberDecl(ME->getMemberDecl());
18651 } else if (FirstInstantiation ||
18652 isa<VarTemplateSpecializationDecl>(Var)) {
18653 // FIXME: For a specialization of a variable template, we don't
18654 // distinguish between "declaration and type implicitly instantiated"
18655 // and "implicit instantiation of definition requested", so we have
18656 // no direct way to avoid enqueueing the pending instantiation
18657 // multiple times.
18658 SemaRef.PendingInstantiations
18659 .push_back(std::make_pair(Var, PointOfInstantiation));
18660 }
18661 }
18662 }
18663
18664 // C++2a [basic.def.odr]p4:
18665 // A variable x whose name appears as a potentially-evaluated expression e
18666 // is odr-used by e unless
18667 // -- x is a reference that is usable in constant expressions
18668 // -- x is a variable of non-reference type that is usable in constant
18669 // expressions and has no mutable subobjects [FIXME], and e is an
18670 // element of the set of potential results of an expression of
18671 // non-volatile-qualified non-class type to which the lvalue-to-rvalue
18672 // conversion is applied
18673 // -- x is a variable of non-reference type, and e is an element of the set
18674 // of potential results of a discarded-value expression to which the
18675 // lvalue-to-rvalue conversion is not applied [FIXME]
18676 //
18677 // We check the first part of the second bullet here, and
18678 // Sema::CheckLValueToRValueConversionOperand deals with the second part.
18679 // FIXME: To get the third bullet right, we need to delay this even for
18680 // variables that are not usable in constant expressions.
18681
18682 // If we already know this isn't an odr-use, there's nothing more to do.
18683 if (DeclRefExpr *DRE = dyn_cast_or_null<DeclRefExpr>(E))
18684 if (DRE->isNonOdrUse())
18685 return;
18686 if (MemberExpr *ME = dyn_cast_or_null<MemberExpr>(E))
18687 if (ME->isNonOdrUse())
18688 return;
18689
18690 switch (OdrUse) {
18691 case OdrUseContext::None:
18692 assert((!E || isa<FunctionParmPackExpr>(E)) &&(static_cast <bool> ((!E || isa<FunctionParmPackExpr
>(E)) && "missing non-odr-use marking for unevaluated decl ref"
) ? void (0) : __assert_fail ("(!E || isa<FunctionParmPackExpr>(E)) && \"missing non-odr-use marking for unevaluated decl ref\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 18693, __extension__ __PRETTY_FUNCTION__))
18693 "missing non-odr-use marking for unevaluated decl ref")(static_cast <bool> ((!E || isa<FunctionParmPackExpr
>(E)) && "missing non-odr-use marking for unevaluated decl ref"
) ? void (0) : __assert_fail ("(!E || isa<FunctionParmPackExpr>(E)) && \"missing non-odr-use marking for unevaluated decl ref\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 18693, __extension__ __PRETTY_FUNCTION__))
;
18694 break;
18695
18696 case OdrUseContext::FormallyOdrUsed:
18697 // FIXME: Ignoring formal odr-uses results in incorrect lambda capture
18698 // behavior.
18699 break;
18700
18701 case OdrUseContext::Used:
18702 // If we might later find that this expression isn't actually an odr-use,
18703 // delay the marking.
18704 if (E && Var->isUsableInConstantExpressions(SemaRef.Context))
18705 SemaRef.MaybeODRUseExprs.insert(E);
18706 else
18707 MarkVarDeclODRUsed(Var, Loc, SemaRef);
18708 break;
18709
18710 case OdrUseContext::Dependent:
18711 // If this is a dependent context, we don't need to mark variables as
18712 // odr-used, but we may still need to track them for lambda capture.
18713 // FIXME: Do we also need to do this inside dependent typeid expressions
18714 // (which are modeled as unevaluated at this point)?
18715 const bool RefersToEnclosingScope =
18716 (SemaRef.CurContext != Var->getDeclContext() &&
18717 Var->getDeclContext()->isFunctionOrMethod() && Var->hasLocalStorage());
18718 if (RefersToEnclosingScope) {
18719 LambdaScopeInfo *const LSI =
18720 SemaRef.getCurLambda(/*IgnoreNonLambdaCapturingScope=*/true);
18721 if (LSI && (!LSI->CallOperator ||
18722 !LSI->CallOperator->Encloses(Var->getDeclContext()))) {
18723 // If a variable could potentially be odr-used, defer marking it so
18724 // until we finish analyzing the full expression for any
18725 // lvalue-to-rvalue
18726 // or discarded value conversions that would obviate odr-use.
18727 // Add it to the list of potential captures that will be analyzed
18728 // later (ActOnFinishFullExpr) for eventual capture and odr-use marking
18729 // unless the variable is a reference that was initialized by a constant
18730 // expression (this will never need to be captured or odr-used).
18731 //
18732 // FIXME: We can simplify this a lot after implementing P0588R1.
18733 assert(E && "Capture variable should be used in an expression.")(static_cast <bool> (E && "Capture variable should be used in an expression."
) ? void (0) : __assert_fail ("E && \"Capture variable should be used in an expression.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 18733, __extension__ __PRETTY_FUNCTION__))
;
18734 if (!Var->getType()->isReferenceType() ||
18735 !Var->isUsableInConstantExpressions(SemaRef.Context))
18736 LSI->addPotentialCapture(E->IgnoreParens());
18737 }
18738 }
18739 break;
18740 }
18741}
18742
18743/// Mark a variable referenced, and check whether it is odr-used
18744/// (C++ [basic.def.odr]p2, C99 6.9p3). Note that this should not be
18745/// used directly for normal expressions referring to VarDecl.
18746void Sema::MarkVariableReferenced(SourceLocation Loc, VarDecl *Var) {
18747 DoMarkVarDeclReferenced(*this, Loc, Var, nullptr, RefsMinusAssignments);
18748}
18749
18750static void
18751MarkExprReferenced(Sema &SemaRef, SourceLocation Loc, Decl *D, Expr *E,
18752 bool MightBeOdrUse,
18753 llvm::DenseMap<const VarDecl *, int> &RefsMinusAssignments) {
18754 if (SemaRef.isInOpenMPDeclareTargetContext())
18755 SemaRef.checkDeclIsAllowedInOpenMPTarget(E, D);
18756
18757 if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
18758 DoMarkVarDeclReferenced(SemaRef, Loc, Var, E, RefsMinusAssignments);
18759 return;
18760 }
18761
18762 SemaRef.MarkAnyDeclReferenced(Loc, D, MightBeOdrUse);
18763
18764 // If this is a call to a method via a cast, also mark the method in the
18765 // derived class used in case codegen can devirtualize the call.
18766 const MemberExpr *ME = dyn_cast<MemberExpr>(E);
18767 if (!ME)
18768 return;
18769 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ME->getMemberDecl());
18770 if (!MD)
18771 return;
18772 // Only attempt to devirtualize if this is truly a virtual call.
18773 bool IsVirtualCall = MD->isVirtual() &&
18774 ME->performsVirtualDispatch(SemaRef.getLangOpts());
18775 if (!IsVirtualCall)
18776 return;
18777
18778 // If it's possible to devirtualize the call, mark the called function
18779 // referenced.
18780 CXXMethodDecl *DM = MD->getDevirtualizedMethod(
18781 ME->getBase(), SemaRef.getLangOpts().AppleKext);
18782 if (DM)
18783 SemaRef.MarkAnyDeclReferenced(Loc, DM, MightBeOdrUse);
18784}
18785
18786/// Perform reference-marking and odr-use handling for a DeclRefExpr.
18787///
18788/// Note, this may change the dependence of the DeclRefExpr, and so needs to be
18789/// handled with care if the DeclRefExpr is not newly-created.
18790void Sema::MarkDeclRefReferenced(DeclRefExpr *E, const Expr *Base) {
18791 // TODO: update this with DR# once a defect report is filed.
18792 // C++11 defect. The address of a pure member should not be an ODR use, even
18793 // if it's a qualified reference.
18794 bool OdrUse = true;
18795 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getDecl()))
18796 if (Method->isVirtual() &&
18797 !Method->getDevirtualizedMethod(Base, getLangOpts().AppleKext))
18798 OdrUse = false;
18799
18800 if (auto *FD = dyn_cast<FunctionDecl>(E->getDecl()))
18801 if (!isUnevaluatedContext() && !isConstantEvaluated() &&
18802 FD->isConsteval() && !RebuildingImmediateInvocation)
18803 ExprEvalContexts.back().ReferenceToConsteval.insert(E);
18804 MarkExprReferenced(*this, E->getLocation(), E->getDecl(), E, OdrUse,
18805 RefsMinusAssignments);
18806}
18807
18808/// Perform reference-marking and odr-use handling for a MemberExpr.
18809void Sema::MarkMemberReferenced(MemberExpr *E) {
18810 // C++11 [basic.def.odr]p2:
18811 // A non-overloaded function whose name appears as a potentially-evaluated
18812 // expression or a member of a set of candidate functions, if selected by
18813 // overload resolution when referred to from a potentially-evaluated
18814 // expression, is odr-used, unless it is a pure virtual function and its
18815 // name is not explicitly qualified.
18816 bool MightBeOdrUse = true;
18817 if (E->performsVirtualDispatch(getLangOpts())) {
18818 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getMemberDecl()))
18819 if (Method->isPure())
18820 MightBeOdrUse = false;
18821 }
18822 SourceLocation Loc =
18823 E->getMemberLoc().isValid() ? E->getMemberLoc() : E->getBeginLoc();
18824 MarkExprReferenced(*this, Loc, E->getMemberDecl(), E, MightBeOdrUse,
18825 RefsMinusAssignments);
18826}
18827
18828/// Perform reference-marking and odr-use handling for a FunctionParmPackExpr.
18829void Sema::MarkFunctionParmPackReferenced(FunctionParmPackExpr *E) {
18830 for (VarDecl *VD : *E)
18831 MarkExprReferenced(*this, E->getParameterPackLocation(), VD, E, true,
18832 RefsMinusAssignments);
18833}
18834
18835/// Perform marking for a reference to an arbitrary declaration. It
18836/// marks the declaration referenced, and performs odr-use checking for
18837/// functions and variables. This method should not be used when building a
18838/// normal expression which refers to a variable.
18839void Sema::MarkAnyDeclReferenced(SourceLocation Loc, Decl *D,
18840 bool MightBeOdrUse) {
18841 if (MightBeOdrUse) {
18842 if (auto *VD = dyn_cast<VarDecl>(D)) {
18843 MarkVariableReferenced(Loc, VD);
18844 return;
18845 }
18846 }
18847 if (auto *FD = dyn_cast<FunctionDecl>(D)) {
18848 MarkFunctionReferenced(Loc, FD, MightBeOdrUse);
18849 return;
18850 }
18851 D->setReferenced();
18852}
18853
18854namespace {
18855 // Mark all of the declarations used by a type as referenced.
18856 // FIXME: Not fully implemented yet! We need to have a better understanding
18857 // of when we're entering a context we should not recurse into.
18858 // FIXME: This is and EvaluatedExprMarker are more-or-less equivalent to
18859 // TreeTransforms rebuilding the type in a new context. Rather than
18860 // duplicating the TreeTransform logic, we should consider reusing it here.
18861 // Currently that causes problems when rebuilding LambdaExprs.
18862 class MarkReferencedDecls : public RecursiveASTVisitor<MarkReferencedDecls> {
18863 Sema &S;
18864 SourceLocation Loc;
18865
18866 public:
18867 typedef RecursiveASTVisitor<MarkReferencedDecls> Inherited;
18868
18869 MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { }
18870
18871 bool TraverseTemplateArgument(const TemplateArgument &Arg);
18872 };
18873}
18874
18875bool MarkReferencedDecls::TraverseTemplateArgument(
18876 const TemplateArgument &Arg) {
18877 {
18878 // A non-type template argument is a constant-evaluated context.
18879 EnterExpressionEvaluationContext Evaluated(
18880 S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
18881 if (Arg.getKind() == TemplateArgument::Declaration) {
18882 if (Decl *D = Arg.getAsDecl())
18883 S.MarkAnyDeclReferenced(Loc, D, true);
18884 } else if (Arg.getKind() == TemplateArgument::Expression) {
18885 S.MarkDeclarationsReferencedInExpr(Arg.getAsExpr(), false);
18886 }
18887 }
18888
18889 return Inherited::TraverseTemplateArgument(Arg);
18890}
18891
18892void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) {
18893 MarkReferencedDecls Marker(*this, Loc);
18894 Marker.TraverseType(T);
18895}
18896
18897namespace {
18898/// Helper class that marks all of the declarations referenced by
18899/// potentially-evaluated subexpressions as "referenced".
18900class EvaluatedExprMarker : public UsedDeclVisitor<EvaluatedExprMarker> {
18901public:
18902 typedef UsedDeclVisitor<EvaluatedExprMarker> Inherited;
18903 bool SkipLocalVariables;
18904
18905 EvaluatedExprMarker(Sema &S, bool SkipLocalVariables)
18906 : Inherited(S), SkipLocalVariables(SkipLocalVariables) {}
18907
18908 void visitUsedDecl(SourceLocation Loc, Decl *D) {
18909 S.MarkFunctionReferenced(Loc, cast<FunctionDecl>(D));
18910 }
18911
18912 void VisitDeclRefExpr(DeclRefExpr *E) {
18913 // If we were asked not to visit local variables, don't.
18914 if (SkipLocalVariables) {
18915 if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
18916 if (VD->hasLocalStorage())
18917 return;
18918 }
18919
18920 // FIXME: This can trigger the instantiation of the initializer of a
18921 // variable, which can cause the expression to become value-dependent
18922 // or error-dependent. Do we need to propagate the new dependence bits?
18923 S.MarkDeclRefReferenced(E);
18924 }
18925
18926 void VisitMemberExpr(MemberExpr *E) {
18927 S.MarkMemberReferenced(E);
18928 Visit(E->getBase());
18929 }
18930};
18931} // namespace
18932
18933/// Mark any declarations that appear within this expression or any
18934/// potentially-evaluated subexpressions as "referenced".
18935///
18936/// \param SkipLocalVariables If true, don't mark local variables as
18937/// 'referenced'.
18938void Sema::MarkDeclarationsReferencedInExpr(Expr *E,
18939 bool SkipLocalVariables) {
18940 EvaluatedExprMarker(*this, SkipLocalVariables).Visit(E);
18941}
18942
18943/// Emit a diagnostic that describes an effect on the run-time behavior
18944/// of the program being compiled.
18945///
18946/// This routine emits the given diagnostic when the code currently being
18947/// type-checked is "potentially evaluated", meaning that there is a
18948/// possibility that the code will actually be executable. Code in sizeof()
18949/// expressions, code used only during overload resolution, etc., are not
18950/// potentially evaluated. This routine will suppress such diagnostics or,
18951/// in the absolutely nutty case of potentially potentially evaluated
18952/// expressions (C++ typeid), queue the diagnostic to potentially emit it
18953/// later.
18954///
18955/// This routine should be used for all diagnostics that describe the run-time
18956/// behavior of a program, such as passing a non-POD value through an ellipsis.
18957/// Failure to do so will likely result in spurious diagnostics or failures
18958/// during overload resolution or within sizeof/alignof/typeof/typeid.
18959bool Sema::DiagRuntimeBehavior(SourceLocation Loc, ArrayRef<const Stmt*> Stmts,
18960 const PartialDiagnostic &PD) {
18961 switch (ExprEvalContexts.back().Context) {
18962 case ExpressionEvaluationContext::Unevaluated:
18963 case ExpressionEvaluationContext::UnevaluatedList:
18964 case ExpressionEvaluationContext::UnevaluatedAbstract:
18965 case ExpressionEvaluationContext::DiscardedStatement:
18966 // The argument will never be evaluated, so don't complain.
18967 break;
18968
18969 case ExpressionEvaluationContext::ConstantEvaluated:
18970 // Relevant diagnostics should be produced by constant evaluation.
18971 break;
18972
18973 case ExpressionEvaluationContext::PotentiallyEvaluated:
18974 case ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
18975 if (!Stmts.empty() && getCurFunctionOrMethodDecl()) {
18976 FunctionScopes.back()->PossiblyUnreachableDiags.
18977 push_back(sema::PossiblyUnreachableDiag(PD, Loc, Stmts));
18978 return true;
18979 }
18980
18981 // The initializer of a constexpr variable or of the first declaration of a
18982 // static data member is not syntactically a constant evaluated constant,
18983 // but nonetheless is always required to be a constant expression, so we
18984 // can skip diagnosing.
18985 // FIXME: Using the mangling context here is a hack.
18986 if (auto *VD = dyn_cast_or_null<VarDecl>(
18987 ExprEvalContexts.back().ManglingContextDecl)) {
18988 if (VD->isConstexpr() ||
18989 (VD->isStaticDataMember() && VD->isFirstDecl() && !VD->isInline()))
18990 break;
18991 // FIXME: For any other kind of variable, we should build a CFG for its
18992 // initializer and check whether the context in question is reachable.
18993 }
18994
18995 Diag(Loc, PD);
18996 return true;
18997 }
18998
18999 return false;
19000}
19001
19002bool Sema::DiagRuntimeBehavior(SourceLocation Loc, const Stmt *Statement,
19003 const PartialDiagnostic &PD) {
19004 return DiagRuntimeBehavior(
19005 Loc, Statement ? llvm::makeArrayRef(Statement) : llvm::None, PD);
19006}
19007
19008bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
19009 CallExpr *CE, FunctionDecl *FD) {
19010 if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
19011 return false;
19012
19013 // If we're inside a decltype's expression, don't check for a valid return
19014 // type or construct temporaries until we know whether this is the last call.
19015 if (ExprEvalContexts.back().ExprContext ==
19016 ExpressionEvaluationContextRecord::EK_Decltype) {
19017 ExprEvalContexts.back().DelayedDecltypeCalls.push_back(CE);
19018 return false;
19019 }
19020
19021 class CallReturnIncompleteDiagnoser : public TypeDiagnoser {
19022 FunctionDecl *FD;
19023 CallExpr *CE;
19024
19025 public:
19026 CallReturnIncompleteDiagnoser(FunctionDecl *FD, CallExpr *CE)
19027 : FD(FD), CE(CE) { }
19028
19029 void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
19030 if (!FD) {
19031 S.Diag(Loc, diag::err_call_incomplete_return)
19032 << T << CE->getSourceRange();
19033 return;
19034 }
19035
19036 S.Diag(Loc, diag::err_call_function_incomplete_return)
19037 << CE->getSourceRange() << FD << T;
19038 S.Diag(FD->getLocation(), diag::note_entity_declared_at)
19039 << FD->getDeclName();
19040 }
19041 } Diagnoser(FD, CE);
19042
19043 if (RequireCompleteType(Loc, ReturnType, Diagnoser))
19044 return true;
19045
19046 return false;
19047}
19048
19049// Diagnose the s/=/==/ and s/\|=/!=/ typos. Note that adding parentheses
19050// will prevent this condition from triggering, which is what we want.
19051void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
19052 SourceLocation Loc;
19053
19054 unsigned diagnostic = diag::warn_condition_is_assignment;
19055 bool IsOrAssign = false;
19056
19057 if (BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
19058 if (Op->getOpcode() != BO_Assign && Op->getOpcode() != BO_OrAssign)
19059 return;
19060
19061 IsOrAssign = Op->getOpcode() == BO_OrAssign;
19062
19063 // Greylist some idioms by putting them into a warning subcategory.
19064 if (ObjCMessageExpr *ME
19065 = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
19066 Selector Sel = ME->getSelector();
19067
19068 // self = [<foo> init...]
19069 if (isSelfExpr(Op->getLHS()) && ME->getMethodFamily() == OMF_init)
19070 diagnostic = diag::warn_condition_is_idiomatic_assignment;
19071
19072 // <foo> = [<bar> nextObject]
19073 else if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "nextObject")
19074 diagnostic = diag::warn_condition_is_idiomatic_assignment;
19075 }
19076
19077 Loc = Op->getOperatorLoc();
19078 } else if (CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
19079 if (Op->getOperator() != OO_Equal && Op->getOperator() != OO_PipeEqual)
19080 return;
19081
19082 IsOrAssign = Op->getOperator() == OO_PipeEqual;
19083 Loc = Op->getOperatorLoc();
19084 } else if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E))
19085 return DiagnoseAssignmentAsCondition(POE->getSyntacticForm());
19086 else {
19087 // Not an assignment.
19088 return;
19089 }
19090
19091 Diag(Loc, diagnostic) << E->getSourceRange();
19092
19093 SourceLocation Open = E->getBeginLoc();
19094 SourceLocation Close = getLocForEndOfToken(E->getSourceRange().getEnd());
19095 Diag(Loc, diag::note_condition_assign_silence)
19096 << FixItHint::CreateInsertion(Open, "(")
19097 << FixItHint::CreateInsertion(Close, ")");
19098
19099 if (IsOrAssign)
19100 Diag(Loc, diag::note_condition_or_assign_to_comparison)
19101 << FixItHint::CreateReplacement(Loc, "!=");
19102 else
19103 Diag(Loc, diag::note_condition_assign_to_comparison)
19104 << FixItHint::CreateReplacement(Loc, "==");
19105}
19106
19107/// Redundant parentheses over an equality comparison can indicate
19108/// that the user intended an assignment used as condition.
19109void Sema::DiagnoseEqualityWithExtraParens(ParenExpr *ParenE) {
19110 // Don't warn if the parens came from a macro.
19111 SourceLocation parenLoc = ParenE->getBeginLoc();
19112 if (parenLoc.isInvalid() || parenLoc.isMacroID())
19113 return;
19114 // Don't warn for dependent expressions.
19115 if (ParenE->isTypeDependent())
19116 return;
19117
19118 Expr *E = ParenE->IgnoreParens();
19119
19120 if (BinaryOperator *opE = dyn_cast<BinaryOperator>(E))
19121 if (opE->getOpcode() == BO_EQ &&
19122 opE->getLHS()->IgnoreParenImpCasts()->isModifiableLvalue(Context)
19123 == Expr::MLV_Valid) {
19124 SourceLocation Loc = opE->getOperatorLoc();
19125
19126 Diag(Loc, diag::warn_equality_with_extra_parens) << E->getSourceRange();
19127 SourceRange ParenERange = ParenE->getSourceRange();
19128 Diag(Loc, diag::note_equality_comparison_silence)
19129 << FixItHint::CreateRemoval(ParenERange.getBegin())
19130 << FixItHint::CreateRemoval(ParenERange.getEnd());
19131 Diag(Loc, diag::note_equality_comparison_to_assign)
19132 << FixItHint::CreateReplacement(Loc, "=");
19133 }
19134}
19135
19136ExprResult Sema::CheckBooleanCondition(SourceLocation Loc, Expr *E,
19137 bool IsConstexpr) {
19138 DiagnoseAssignmentAsCondition(E);
19139 if (ParenExpr *parenE = dyn_cast<ParenExpr>(E))
19140 DiagnoseEqualityWithExtraParens(parenE);
19141
19142 ExprResult result = CheckPlaceholderExpr(E);
19143 if (result.isInvalid()) return ExprError();
19144 E = result.get();
19145
19146 if (!E->isTypeDependent()) {
19147 if (getLangOpts().CPlusPlus)
19148 return CheckCXXBooleanCondition(E, IsConstexpr); // C++ 6.4p4
19149
19150 ExprResult ERes = DefaultFunctionArrayLvalueConversion(E);
19151 if (ERes.isInvalid())
19152 return ExprError();
19153 E = ERes.get();
19154
19155 QualType T = E->getType();
19156 if (!T->isScalarType()) { // C99 6.8.4.1p1
19157 Diag(Loc, diag::err_typecheck_statement_requires_scalar)
19158 << T << E->getSourceRange();
19159 return ExprError();
19160 }
19161 CheckBoolLikeConversion(E, Loc);
19162 }
19163
19164 return E;
19165}
19166
19167Sema::ConditionResult Sema::ActOnCondition(Scope *S, SourceLocation Loc,
19168 Expr *SubExpr, ConditionKind CK) {
19169 // Empty conditions are valid in for-statements.
19170 if (!SubExpr)
19171 return ConditionResult();
19172
19173 ExprResult Cond;
19174 switch (CK) {
19175 case ConditionKind::Boolean:
19176 Cond = CheckBooleanCondition(Loc, SubExpr);
19177 break;
19178
19179 case ConditionKind::ConstexprIf:
19180 Cond = CheckBooleanCondition(Loc, SubExpr, true);
19181 break;
19182
19183 case ConditionKind::Switch:
19184 Cond = CheckSwitchCondition(Loc, SubExpr);
19185 break;
19186 }
19187 if (Cond.isInvalid()) {
19188 Cond = CreateRecoveryExpr(SubExpr->getBeginLoc(), SubExpr->getEndLoc(),
19189 {SubExpr});
19190 if (!Cond.get())
19191 return ConditionError();
19192 }
19193 // FIXME: FullExprArg doesn't have an invalid bit, so check nullness instead.
19194 FullExprArg FullExpr = MakeFullExpr(Cond.get(), Loc);
19195 if (!FullExpr.get())
19196 return ConditionError();
19197
19198 return ConditionResult(*this, nullptr, FullExpr,
19199 CK == ConditionKind::ConstexprIf);
19200}
19201
19202namespace {
19203 /// A visitor for rebuilding a call to an __unknown_any expression
19204 /// to have an appropriate type.
19205 struct RebuildUnknownAnyFunction
19206 : StmtVisitor<RebuildUnknownAnyFunction, ExprResult> {
19207
19208 Sema &S;
19209
19210 RebuildUnknownAnyFunction(Sema &S) : S(S) {}
19211
19212 ExprResult VisitStmt(Stmt *S) {
19213 llvm_unreachable("unexpected statement!")::llvm::llvm_unreachable_internal("unexpected statement!", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 19213)
;
19214 }
19215
19216 ExprResult VisitExpr(Expr *E) {
19217 S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_call)
19218 << E->getSourceRange();
19219 return ExprError();
19220 }
19221
19222 /// Rebuild an expression which simply semantically wraps another
19223 /// expression which it shares the type and value kind of.
19224 template <class T> ExprResult rebuildSugarExpr(T *E) {
19225 ExprResult SubResult = Visit(E->getSubExpr());
19226 if (SubResult.isInvalid()) return ExprError();
19227
19228 Expr *SubExpr = SubResult.get();
19229 E->setSubExpr(SubExpr);
19230 E->setType(SubExpr->getType());
19231 E->setValueKind(SubExpr->getValueKind());
19232 assert(E->getObjectKind() == OK_Ordinary)(static_cast <bool> (E->getObjectKind() == OK_Ordinary
) ? void (0) : __assert_fail ("E->getObjectKind() == OK_Ordinary"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 19232, __extension__ __PRETTY_FUNCTION__))
;
19233 return E;
19234 }
19235
19236 ExprResult VisitParenExpr(ParenExpr *E) {
19237 return rebuildSugarExpr(E);
19238 }
19239
19240 ExprResult VisitUnaryExtension(UnaryOperator *E) {
19241 return rebuildSugarExpr(E);
19242 }
19243
19244 ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
19245 ExprResult SubResult = Visit(E->getSubExpr());
19246 if (SubResult.isInvalid()) return ExprError();
19247
19248 Expr *SubExpr = SubResult.get();
19249 E->setSubExpr(SubExpr);
19250 E->setType(S.Context.getPointerType(SubExpr->getType()));
19251 assert(E->isPRValue())(static_cast <bool> (E->isPRValue()) ? void (0) : __assert_fail
("E->isPRValue()", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 19251, __extension__ __PRETTY_FUNCTION__))
;
19252 assert(E->getObjectKind() == OK_Ordinary)(static_cast <bool> (E->getObjectKind() == OK_Ordinary
) ? void (0) : __assert_fail ("E->getObjectKind() == OK_Ordinary"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 19252, __extension__ __PRETTY_FUNCTION__))
;
19253 return E;
19254 }
19255
19256 ExprResult resolveDecl(Expr *E, ValueDecl *VD) {
19257 if (!isa<FunctionDecl>(VD)) return VisitExpr(E);
19258
19259 E->setType(VD->getType());
19260
19261 assert(E->isPRValue())(static_cast <bool> (E->isPRValue()) ? void (0) : __assert_fail
("E->isPRValue()", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 19261, __extension__ __PRETTY_FUNCTION__))
;
19262 if (S.getLangOpts().CPlusPlus &&
19263 !(isa<CXXMethodDecl>(VD) &&
19264 cast<CXXMethodDecl>(VD)->isInstance()))
19265 E->setValueKind(VK_LValue);
19266
19267 return E;
19268 }
19269
19270 ExprResult VisitMemberExpr(MemberExpr *E) {
19271 return resolveDecl(E, E->getMemberDecl());
19272 }
19273
19274 ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
19275 return resolveDecl(E, E->getDecl());
19276 }
19277 };
19278}
19279
19280/// Given a function expression of unknown-any type, try to rebuild it
19281/// to have a function type.
19282static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *FunctionExpr) {
19283 ExprResult Result = RebuildUnknownAnyFunction(S).Visit(FunctionExpr);
19284 if (Result.isInvalid()) return ExprError();
19285 return S.DefaultFunctionArrayConversion(Result.get());
19286}
19287
19288namespace {
19289 /// A visitor for rebuilding an expression of type __unknown_anytype
19290 /// into one which resolves the type directly on the referring
19291 /// expression. Strict preservation of the original source
19292 /// structure is not a goal.
19293 struct RebuildUnknownAnyExpr
19294 : StmtVisitor<RebuildUnknownAnyExpr, ExprResult> {
19295
19296 Sema &S;
19297
19298 /// The current destination type.
19299 QualType DestType;
19300
19301 RebuildUnknownAnyExpr(Sema &S, QualType CastType)
19302 : S(S), DestType(CastType) {}
19303
19304 ExprResult VisitStmt(Stmt *S) {
19305 llvm_unreachable("unexpected statement!")::llvm::llvm_unreachable_internal("unexpected statement!", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 19305)
;
19306 }
19307
19308 ExprResult VisitExpr(Expr *E) {
19309 S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
19310 << E->getSourceRange();
19311 return ExprError();
19312 }
19313
19314 ExprResult VisitCallExpr(CallExpr *E);
19315 ExprResult VisitObjCMessageExpr(ObjCMessageExpr *E);
19316
19317 /// Rebuild an expression which simply semantically wraps another
19318 /// expression which it shares the type and value kind of.
19319 template <class T> ExprResult rebuildSugarExpr(T *E) {
19320 ExprResult SubResult = Visit(E->getSubExpr());
19321 if (SubResult.isInvalid()) return ExprError();
19322 Expr *SubExpr = SubResult.get();
19323 E->setSubExpr(SubExpr);
19324 E->setType(SubExpr->getType());
19325 E->setValueKind(SubExpr->getValueKind());
19326 assert(E->getObjectKind() == OK_Ordinary)(static_cast <bool> (E->getObjectKind() == OK_Ordinary
) ? void (0) : __assert_fail ("E->getObjectKind() == OK_Ordinary"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 19326, __extension__ __PRETTY_FUNCTION__))
;
19327 return E;
19328 }
19329
19330 ExprResult VisitParenExpr(ParenExpr *E) {
19331 return rebuildSugarExpr(E);
19332 }
19333
19334 ExprResult VisitUnaryExtension(UnaryOperator *E) {
19335 return rebuildSugarExpr(E);
19336 }
19337
19338 ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
19339 const PointerType *Ptr = DestType->getAs<PointerType>();
19340 if (!Ptr) {
19341 S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof)
19342 << E->getSourceRange();
19343 return ExprError();
19344 }
19345
19346 if (isa<CallExpr>(E->getSubExpr())) {
19347 S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof_call)
19348 << E->getSourceRange();
19349 return ExprError();
19350 }
19351
19352 assert(E->isPRValue())(static_cast <bool> (E->isPRValue()) ? void (0) : __assert_fail
("E->isPRValue()", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 19352, __extension__ __PRETTY_FUNCTION__))
;
19353 assert(E->getObjectKind() == OK_Ordinary)(static_cast <bool> (E->getObjectKind() == OK_Ordinary
) ? void (0) : __assert_fail ("E->getObjectKind() == OK_Ordinary"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 19353, __extension__ __PRETTY_FUNCTION__))
;
19354 E->setType(DestType);
19355
19356 // Build the sub-expression as if it were an object of the pointee type.
19357 DestType = Ptr->getPointeeType();
19358 ExprResult SubResult = Visit(E->getSubExpr());
19359 if (SubResult.isInvalid()) return ExprError();
19360 E->setSubExpr(SubResult.get());
19361 return E;
19362 }
19363
19364 ExprResult VisitImplicitCastExpr(ImplicitCastExpr *E);
19365
19366 ExprResult resolveDecl(Expr *E, ValueDecl *VD);
19367
19368 ExprResult VisitMemberExpr(MemberExpr *E) {
19369 return resolveDecl(E, E->getMemberDecl());
19370 }
19371
19372 ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
19373 return resolveDecl(E, E->getDecl());
19374 }
19375 };
19376}
19377
19378/// Rebuilds a call expression which yielded __unknown_anytype.
19379ExprResult RebuildUnknownAnyExpr::VisitCallExpr(CallExpr *E) {
19380 Expr *CalleeExpr = E->getCallee();
19381
19382 enum FnKind {
19383 FK_MemberFunction,
19384 FK_FunctionPointer,
19385 FK_BlockPointer
19386 };
19387
19388 FnKind Kind;
19389 QualType CalleeType = CalleeExpr->getType();
19390 if (CalleeType == S.Context.BoundMemberTy) {
19391 assert(isa<CXXMemberCallExpr>(E) || isa<CXXOperatorCallExpr>(E))(static_cast <bool> (isa<CXXMemberCallExpr>(E) ||
isa<CXXOperatorCallExpr>(E)) ? void (0) : __assert_fail
("isa<CXXMemberCallExpr>(E) || isa<CXXOperatorCallExpr>(E)"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 19391, __extension__ __PRETTY_FUNCTION__))
;
19392 Kind = FK_MemberFunction;
19393 CalleeType = Expr::findBoundMemberType(CalleeExpr);
19394 } else if (const PointerType *Ptr = CalleeType->getAs<PointerType>()) {
19395 CalleeType = Ptr->getPointeeType();
19396 Kind = FK_FunctionPointer;
19397 } else {
19398 CalleeType = CalleeType->castAs<BlockPointerType>()->getPointeeType();
19399 Kind = FK_BlockPointer;
19400 }
19401 const FunctionType *FnType = CalleeType->castAs<FunctionType>();
19402
19403 // Verify that this is a legal result type of a function.
19404 if (DestType->isArrayType() || DestType->isFunctionType()) {
19405 unsigned diagID = diag::err_func_returning_array_function;
19406 if (Kind == FK_BlockPointer)
19407 diagID = diag::err_block_returning_array_function;
19408
19409 S.Diag(E->getExprLoc(), diagID)
19410 << DestType->isFunctionType() << DestType;
19411 return ExprError();
19412 }
19413
19414 // Otherwise, go ahead and set DestType as the call's result.
19415 E->setType(DestType.getNonLValueExprType(S.Context));
19416 E->setValueKind(Expr::getValueKindForType(DestType));
19417 assert(E->getObjectKind() == OK_Ordinary)(static_cast <bool> (E->getObjectKind() == OK_Ordinary
) ? void (0) : __assert_fail ("E->getObjectKind() == OK_Ordinary"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 19417, __extension__ __PRETTY_FUNCTION__))
;
19418
19419 // Rebuild the function type, replacing the result type with DestType.
19420 const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FnType);
19421 if (Proto) {
19422 // __unknown_anytype(...) is a special case used by the debugger when
19423 // it has no idea what a function's signature is.
19424 //
19425 // We want to build this call essentially under the K&R
19426 // unprototyped rules, but making a FunctionNoProtoType in C++
19427 // would foul up all sorts of assumptions. However, we cannot
19428 // simply pass all arguments as variadic arguments, nor can we
19429 // portably just call the function under a non-variadic type; see
19430 // the comment on IR-gen's TargetInfo::isNoProtoCallVariadic.
19431 // However, it turns out that in practice it is generally safe to
19432 // call a function declared as "A foo(B,C,D);" under the prototype
19433 // "A foo(B,C,D,...);". The only known exception is with the
19434 // Windows ABI, where any variadic function is implicitly cdecl
19435 // regardless of its normal CC. Therefore we change the parameter
19436 // types to match the types of the arguments.
19437 //
19438 // This is a hack, but it is far superior to moving the
19439 // corresponding target-specific code from IR-gen to Sema/AST.
19440
19441 ArrayRef<QualType> ParamTypes = Proto->getParamTypes();
19442 SmallVector<QualType, 8> ArgTypes;
19443 if (ParamTypes.empty() && Proto->isVariadic()) { // the special case
19444 ArgTypes.reserve(E->getNumArgs());
19445 for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
19446 ArgTypes.push_back(S.Context.getReferenceQualifiedType(E->getArg(i)));
19447 }
19448 ParamTypes = ArgTypes;
19449 }
19450 DestType = S.Context.getFunctionType(DestType, ParamTypes,
19451 Proto->getExtProtoInfo());
19452 } else {
19453 DestType = S.Context.getFunctionNoProtoType(DestType,
19454 FnType->getExtInfo());
19455 }
19456
19457 // Rebuild the appropriate pointer-to-function type.
19458 switch (Kind) {
19459 case FK_MemberFunction:
19460 // Nothing to do.
19461 break;
19462
19463 case FK_FunctionPointer:
19464 DestType = S.Context.getPointerType(DestType);
19465 break;
19466
19467 case FK_BlockPointer:
19468 DestType = S.Context.getBlockPointerType(DestType);
19469 break;
19470 }
19471
19472 // Finally, we can recurse.
19473 ExprResult CalleeResult = Visit(CalleeExpr);
19474 if (!CalleeResult.isUsable()) return ExprError();
19475 E->setCallee(CalleeResult.get());
19476
19477 // Bind a temporary if necessary.
19478 return S.MaybeBindToTemporary(E);
19479}
19480
19481ExprResult RebuildUnknownAnyExpr::VisitObjCMessageExpr(ObjCMessageExpr *E) {
19482 // Verify that this is a legal result type of a call.
19483 if (DestType->isArrayType() || DestType->isFunctionType()) {
19484 S.Diag(E->getExprLoc(), diag::err_func_returning_array_function)
19485 << DestType->isFunctionType() << DestType;
19486 return ExprError();
19487 }
19488
19489 // Rewrite the method result type if available.
19490 if (ObjCMethodDecl *Method = E->getMethodDecl()) {
19491 assert(Method->getReturnType() == S.Context.UnknownAnyTy)(static_cast <bool> (Method->getReturnType() == S.Context
.UnknownAnyTy) ? void (0) : __assert_fail ("Method->getReturnType() == S.Context.UnknownAnyTy"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 19491, __extension__ __PRETTY_FUNCTION__))
;
19492 Method->setReturnType(DestType);
19493 }
19494
19495 // Change the type of the message.
19496 E->setType(DestType.getNonReferenceType());
19497 E->setValueKind(Expr::getValueKindForType(DestType));
19498
19499 return S.MaybeBindToTemporary(E);
19500}
19501
19502ExprResult RebuildUnknownAnyExpr::VisitImplicitCastExpr(ImplicitCastExpr *E) {
19503 // The only case we should ever see here is a function-to-pointer decay.
19504 if (E->getCastKind() == CK_FunctionToPointerDecay) {
19505 assert(E->isPRValue())(static_cast <bool> (E->isPRValue()) ? void (0) : __assert_fail
("E->isPRValue()", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 19505, __extension__ __PRETTY_FUNCTION__))
;
19506 assert(E->getObjectKind() == OK_Ordinary)(static_cast <bool> (E->getObjectKind() == OK_Ordinary
) ? void (0) : __assert_fail ("E->getObjectKind() == OK_Ordinary"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 19506, __extension__ __PRETTY_FUNCTION__))
;
19507
19508 E->setType(DestType);
19509
19510 // Rebuild the sub-expression as the pointee (function) type.
19511 DestType = DestType->castAs<PointerType>()->getPointeeType();
19512
19513 ExprResult Result = Visit(E->getSubExpr());
19514 if (!Result.isUsable()) return ExprError();
19515
19516 E->setSubExpr(Result.get());
19517 return E;
19518 } else if (E->getCastKind() == CK_LValueToRValue) {
19519 assert(E->isPRValue())(static_cast <bool> (E->isPRValue()) ? void (0) : __assert_fail
("E->isPRValue()", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 19519, __extension__ __PRETTY_FUNCTION__))
;
19520 assert(E->getObjectKind() == OK_Ordinary)(static_cast <bool> (E->getObjectKind() == OK_Ordinary
) ? void (0) : __assert_fail ("E->getObjectKind() == OK_Ordinary"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 19520, __extension__ __PRETTY_FUNCTION__))
;
19521
19522 assert(isa<BlockPointerType>(E->getType()))(static_cast <bool> (isa<BlockPointerType>(E->
getType())) ? void (0) : __assert_fail ("isa<BlockPointerType>(E->getType())"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 19522, __extension__ __PRETTY_FUNCTION__))
;
19523
19524 E->setType(DestType);
19525
19526 // The sub-expression has to be a lvalue reference, so rebuild it as such.
19527 DestType = S.Context.getLValueReferenceType(DestType);
19528
19529 ExprResult Result = Visit(E->getSubExpr());
19530 if (!Result.isUsable()) return ExprError();
19531
19532 E->setSubExpr(Result.get());
19533 return E;
19534 } else {
19535 llvm_unreachable("Unhandled cast type!")::llvm::llvm_unreachable_internal("Unhandled cast type!", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 19535)
;
19536 }
19537}
19538
19539ExprResult RebuildUnknownAnyExpr::resolveDecl(Expr *E, ValueDecl *VD) {
19540 ExprValueKind ValueKind = VK_LValue;
19541 QualType Type = DestType;
19542
19543 // We know how to make this work for certain kinds of decls:
19544
19545 // - functions
19546 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(VD)) {
19547 if (const PointerType *Ptr = Type->getAs<PointerType>()) {
19548 DestType = Ptr->getPointeeType();
19549 ExprResult Result = resolveDecl(E, VD);
19550 if (Result.isInvalid()) return ExprError();
19551 return S.ImpCastExprToType(Result.get(), Type, CK_FunctionToPointerDecay,
19552 VK_PRValue);
19553 }
19554
19555 if (!Type->isFunctionType()) {
19556 S.Diag(E->getExprLoc(), diag::err_unknown_any_function)
19557 << VD << E->getSourceRange();
19558 return ExprError();
19559 }
19560 if (const FunctionProtoType *FT = Type->getAs<FunctionProtoType>()) {
19561 // We must match the FunctionDecl's type to the hack introduced in
19562 // RebuildUnknownAnyExpr::VisitCallExpr to vararg functions of unknown
19563 // type. See the lengthy commentary in that routine.
19564 QualType FDT = FD->getType();
19565 const FunctionType *FnType = FDT->castAs<FunctionType>();
19566 const FunctionProtoType *Proto = dyn_cast_or_null<FunctionProtoType>(FnType);
19567 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
19568 if (DRE && Proto && Proto->getParamTypes().empty() && Proto->isVariadic()) {
19569 SourceLocation Loc = FD->getLocation();
19570 FunctionDecl *NewFD = FunctionDecl::Create(
19571 S.Context, FD->getDeclContext(), Loc, Loc,
19572 FD->getNameInfo().getName(), DestType, FD->getTypeSourceInfo(),
19573 SC_None, S.getCurFPFeatures().isFPConstrained(),
19574 false /*isInlineSpecified*/, FD->hasPrototype(),
19575 /*ConstexprKind*/ ConstexprSpecKind::Unspecified);
19576
19577 if (FD->getQualifier())
19578 NewFD->setQualifierInfo(FD->getQualifierLoc());
19579
19580 SmallVector<ParmVarDecl*, 16> Params;
19581 for (const auto &AI : FT->param_types()) {
19582 ParmVarDecl *Param =
19583 S.BuildParmVarDeclForTypedef(FD, Loc, AI);
19584 Param->setScopeInfo(0, Params.size());
19585 Params.push_back(Param);
19586 }
19587 NewFD->setParams(Params);
19588 DRE->setDecl(NewFD);
19589 VD = DRE->getDecl();
19590 }
19591 }
19592
19593 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
19594 if (MD->isInstance()) {
19595 ValueKind = VK_PRValue;
19596 Type = S.Context.BoundMemberTy;
19597 }
19598
19599 // Function references aren't l-values in C.
19600 if (!S.getLangOpts().CPlusPlus)
19601 ValueKind = VK_PRValue;
19602
19603 // - variables
19604 } else if (isa<VarDecl>(VD)) {
19605 if (const ReferenceType *RefTy = Type->getAs<ReferenceType>()) {
19606 Type = RefTy->getPointeeType();
19607 } else if (Type->isFunctionType()) {
19608 S.Diag(E->getExprLoc(), diag::err_unknown_any_var_function_type)
19609 << VD << E->getSourceRange();
19610 return ExprError();
19611 }
19612
19613 // - nothing else
19614 } else {
19615 S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_decl)
19616 << VD << E->getSourceRange();
19617 return ExprError();
19618 }
19619
19620 // Modifying the declaration like this is friendly to IR-gen but
19621 // also really dangerous.
19622 VD->setType(DestType);
19623 E->setType(Type);
19624 E->setValueKind(ValueKind);
19625 return E;
19626}
19627
19628/// Check a cast of an unknown-any type. We intentionally only
19629/// trigger this for C-style casts.
19630ExprResult Sema::checkUnknownAnyCast(SourceRange TypeRange, QualType CastType,
19631 Expr *CastExpr, CastKind &CastKind,
19632 ExprValueKind &VK, CXXCastPath &Path) {
19633 // The type we're casting to must be either void or complete.
19634 if (!CastType->isVoidType() &&
19635 RequireCompleteType(TypeRange.getBegin(), CastType,
19636 diag::err_typecheck_cast_to_incomplete))
19637 return ExprError();
19638
19639 // Rewrite the casted expression from scratch.
19640 ExprResult result = RebuildUnknownAnyExpr(*this, CastType).Visit(CastExpr);
19641 if (!result.isUsable()) return ExprError();
19642
19643 CastExpr = result.get();
19644 VK = CastExpr->getValueKind();
19645 CastKind = CK_NoOp;
19646
19647 return CastExpr;
19648}
19649
19650ExprResult Sema::forceUnknownAnyToType(Expr *E, QualType ToType) {
19651 return RebuildUnknownAnyExpr(*this, ToType).Visit(E);
19652}
19653
19654ExprResult Sema::checkUnknownAnyArg(SourceLocation callLoc,
19655 Expr *arg, QualType &paramType) {
19656 // If the syntactic form of the argument is not an explicit cast of
19657 // any sort, just do default argument promotion.
19658 ExplicitCastExpr *castArg = dyn_cast<ExplicitCastExpr>(arg->IgnoreParens());
19659 if (!castArg) {
19660 ExprResult result = DefaultArgumentPromotion(arg);
19661 if (result.isInvalid()) return ExprError();
19662 paramType = result.get()->getType();
19663 return result;
19664 }
19665
19666 // Otherwise, use the type that was written in the explicit cast.
19667 assert(!arg->hasPlaceholderType())(static_cast <bool> (!arg->hasPlaceholderType()) ? void
(0) : __assert_fail ("!arg->hasPlaceholderType()", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 19667, __extension__ __PRETTY_FUNCTION__))
;
19668 paramType = castArg->getTypeAsWritten();
19669
19670 // Copy-initialize a parameter of that type.
19671 InitializedEntity entity =
19672 InitializedEntity::InitializeParameter(Context, paramType,
19673 /*consumed*/ false);
19674 return PerformCopyInitialization(entity, callLoc, arg);
19675}
19676
19677static ExprResult diagnoseUnknownAnyExpr(Sema &S, Expr *E) {
19678 Expr *orig = E;
19679 unsigned diagID = diag::err_uncasted_use_of_unknown_any;
19680 while (true) {
19681 E = E->IgnoreParenImpCasts();
19682 if (CallExpr *call = dyn_cast<CallExpr>(E)) {
19683 E = call->getCallee();
19684 diagID = diag::err_uncasted_call_of_unknown_any;
19685 } else {
19686 break;
19687 }
19688 }
19689
19690 SourceLocation loc;
19691 NamedDecl *d;
19692 if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(E)) {
19693 loc = ref->getLocation();
19694 d = ref->getDecl();
19695 } else if (MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
19696 loc = mem->getMemberLoc();
19697 d = mem->getMemberDecl();
19698 } else if (ObjCMessageExpr *msg = dyn_cast<ObjCMessageExpr>(E)) {
19699 diagID = diag::err_uncasted_call_of_unknown_any;
19700 loc = msg->getSelectorStartLoc();
19701 d = msg->getMethodDecl();
19702 if (!d) {
19703 S.Diag(loc, diag::err_uncasted_send_to_unknown_any_method)
19704 << static_cast<unsigned>(msg->isClassMessage()) << msg->getSelector()
19705 << orig->getSourceRange();
19706 return ExprError();
19707 }
19708 } else {
19709 S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
19710 << E->getSourceRange();
19711 return ExprError();
19712 }
19713
19714 S.Diag(loc, diagID) << d << orig->getSourceRange();
19715
19716 // Never recoverable.
19717 return ExprError();
19718}
19719
19720/// Check for operands with placeholder types and complain if found.
19721/// Returns ExprError() if there was an error and no recovery was possible.
19722ExprResult Sema::CheckPlaceholderExpr(Expr *E) {
19723 if (!Context.isDependenceAllowed()) {
19724 // C cannot handle TypoExpr nodes on either side of a binop because it
19725 // doesn't handle dependent types properly, so make sure any TypoExprs have
19726 // been dealt with before checking the operands.
19727 ExprResult Result = CorrectDelayedTyposInExpr(E);
19728 if (!Result.isUsable()) return ExprError();
19729 E = Result.get();
19730 }
19731
19732 const BuiltinType *placeholderType = E->getType()->getAsPlaceholderType();
19733 if (!placeholderType) return E;
19734
19735 switch (placeholderType->getKind()) {
19736
19737 // Overloaded expressions.
19738 case BuiltinType::Overload: {
19739 // Try to resolve a single function template specialization.
19740 // This is obligatory.
19741 ExprResult Result = E;
19742 if (ResolveAndFixSingleFunctionTemplateSpecialization(Result, false))
19743 return Result;
19744
19745 // No guarantees that ResolveAndFixSingleFunctionTemplateSpecialization
19746 // leaves Result unchanged on failure.
19747 Result = E;
19748 if (resolveAndFixAddressOfSingleOverloadCandidate(Result))
19749 return Result;
19750
19751 // If that failed, try to recover with a call.
19752 tryToRecoverWithCall(Result, PDiag(diag::err_ovl_unresolvable),
19753 /*complain*/ true);
19754 return Result;
19755 }
19756
19757 // Bound member functions.
19758 case BuiltinType::BoundMember: {
19759 ExprResult result = E;
19760 const Expr *BME = E->IgnoreParens();
19761 PartialDiagnostic PD = PDiag(diag::err_bound_member_function);
19762 // Try to give a nicer diagnostic if it is a bound member that we recognize.
19763 if (isa<CXXPseudoDestructorExpr>(BME)) {
19764 PD = PDiag(diag::err_dtor_expr_without_call) << /*pseudo-destructor*/ 1;
19765 } else if (const auto *ME = dyn_cast<MemberExpr>(BME)) {
19766 if (ME->getMemberNameInfo().getName().getNameKind() ==
19767 DeclarationName::CXXDestructorName)
19768 PD = PDiag(diag::err_dtor_expr_without_call) << /*destructor*/ 0;
19769 }
19770 tryToRecoverWithCall(result, PD,
19771 /*complain*/ true);
19772 return result;
19773 }
19774
19775 // ARC unbridged casts.
19776 case BuiltinType::ARCUnbridgedCast: {
19777 Expr *realCast = stripARCUnbridgedCast(E);
19778 diagnoseARCUnbridgedCast(realCast);
19779 return realCast;
19780 }
19781
19782 // Expressions of unknown type.
19783 case BuiltinType::UnknownAny:
19784 return diagnoseUnknownAnyExpr(*this, E);
19785
19786 // Pseudo-objects.
19787 case BuiltinType::PseudoObject:
19788 return checkPseudoObjectRValue(E);
19789
19790 case BuiltinType::BuiltinFn: {
19791 // Accept __noop without parens by implicitly converting it to a call expr.
19792 auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
19793 if (DRE) {
19794 auto *FD = cast<FunctionDecl>(DRE->getDecl());
19795 if (FD->getBuiltinID() == Builtin::BI__noop) {
19796 E = ImpCastExprToType(E, Context.getPointerType(FD->getType()),
19797 CK_BuiltinFnToFnPtr)
19798 .get();
19799 return CallExpr::Create(Context, E, /*Args=*/{}, Context.IntTy,
19800 VK_PRValue, SourceLocation(),
19801 FPOptionsOverride());
19802 }
19803 }
19804
19805 Diag(E->getBeginLoc(), diag::err_builtin_fn_use);
19806 return ExprError();
19807 }
19808
19809 case BuiltinType::IncompleteMatrixIdx:
19810 Diag(cast<MatrixSubscriptExpr>(E->IgnoreParens())
19811 ->getRowIdx()
19812 ->getBeginLoc(),
19813 diag::err_matrix_incomplete_index);
19814 return ExprError();
19815
19816 // Expressions of unknown type.
19817 case BuiltinType::OMPArraySection:
19818 Diag(E->getBeginLoc(), diag::err_omp_array_section_use);
19819 return ExprError();
19820
19821 // Expressions of unknown type.
19822 case BuiltinType::OMPArrayShaping:
19823 return ExprError(Diag(E->getBeginLoc(), diag::err_omp_array_shaping_use));
19824
19825 case BuiltinType::OMPIterator:
19826 return ExprError(Diag(E->getBeginLoc(), diag::err_omp_iterator_use));
19827
19828 // Everything else should be impossible.
19829#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
19830 case BuiltinType::Id:
19831#include "clang/Basic/OpenCLImageTypes.def"
19832#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
19833 case BuiltinType::Id:
19834#include "clang/Basic/OpenCLExtensionTypes.def"
19835#define SVE_TYPE(Name, Id, SingletonId) \
19836 case BuiltinType::Id:
19837#include "clang/Basic/AArch64SVEACLETypes.def"
19838#define PPC_VECTOR_TYPE(Name, Id, Size) \
19839 case BuiltinType::Id:
19840#include "clang/Basic/PPCTypes.def"
19841#define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
19842#include "clang/Basic/RISCVVTypes.def"
19843#define BUILTIN_TYPE(Id, SingletonId) case BuiltinType::Id:
19844#define PLACEHOLDER_TYPE(Id, SingletonId)
19845#include "clang/AST/BuiltinTypes.def"
19846 break;
19847 }
19848
19849 llvm_unreachable("invalid placeholder type!")::llvm::llvm_unreachable_internal("invalid placeholder type!"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 19849)
;
19850}
19851
19852bool Sema::CheckCaseExpression(Expr *E) {
19853 if (E->isTypeDependent())
19854 return true;
19855 if (E->isValueDependent() || E->isIntegerConstantExpr(Context))
19856 return E->getType()->isIntegralOrEnumerationType();
19857 return false;
19858}
19859
19860/// ActOnObjCBoolLiteral - Parse {__objc_yes,__objc_no} literals.
19861ExprResult
19862Sema::ActOnObjCBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
19863 assert((Kind == tok::kw___objc_yes || Kind == tok::kw___objc_no) &&(static_cast <bool> ((Kind == tok::kw___objc_yes || Kind
== tok::kw___objc_no) && "Unknown Objective-C Boolean value!"
) ? void (0) : __assert_fail ("(Kind == tok::kw___objc_yes || Kind == tok::kw___objc_no) && \"Unknown Objective-C Boolean value!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 19864, __extension__ __PRETTY_FUNCTION__))
19864 "Unknown Objective-C Boolean value!")(static_cast <bool> ((Kind == tok::kw___objc_yes || Kind
== tok::kw___objc_no) && "Unknown Objective-C Boolean value!"
) ? void (0) : __assert_fail ("(Kind == tok::kw___objc_yes || Kind == tok::kw___objc_no) && \"Unknown Objective-C Boolean value!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaExpr.cpp"
, 19864, __extension__ __PRETTY_FUNCTION__))
;
19865 QualType BoolT = Context.ObjCBuiltinBoolTy;
19866 if (!Context.getBOOLDecl()) {
19867 LookupResult Result(*this, &Context.Idents.get("BOOL"), OpLoc,
19868 Sema::LookupOrdinaryName);
19869 if (LookupName(Result, getCurScope()) && Result.isSingleResult()) {
19870 NamedDecl *ND = Result.getFoundDecl();
19871 if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND))
19872 Context.setBOOLDecl(TD);
19873 }
19874 }
19875 if (Context.getBOOLDecl())
19876 BoolT = Context.getBOOLType();
19877 return new (Context)
19878 ObjCBoolLiteralExpr(Kind == tok::kw___objc_yes, BoolT, OpLoc);
19879}
19880
19881ExprResult Sema::ActOnObjCAvailabilityCheckExpr(
19882 llvm::ArrayRef<AvailabilitySpec> AvailSpecs, SourceLocation AtLoc,
19883 SourceLocation RParen) {
19884 auto FindSpecVersion = [&](StringRef Platform) -> Optional<VersionTuple> {
19885 auto Spec = llvm::find_if(AvailSpecs, [&](const AvailabilitySpec &Spec) {
19886 return Spec.getPlatform() == Platform;
19887 });
19888 // Transcribe the "ios" availability check to "maccatalyst" when compiling
19889 // for "maccatalyst" if "maccatalyst" is not specified.
19890 if (Spec == AvailSpecs.end() && Platform == "maccatalyst") {
19891 Spec = llvm::find_if(AvailSpecs, [&](const AvailabilitySpec &Spec) {
19892 return Spec.getPlatform() == "ios";
19893 });
19894 }
19895 if (Spec == AvailSpecs.end())
19896 return None;
19897 return Spec->getVersion();
19898 };
19899
19900 VersionTuple Version;
19901 if (auto MaybeVersion =
19902 FindSpecVersion(Context.getTargetInfo().getPlatformName()))
19903 Version = *MaybeVersion;
19904
19905 // The use of `@available` in the enclosing context should be analyzed to
19906 // warn when it's used inappropriately (i.e. not if(@available)).
19907 if (FunctionScopeInfo *Context = getCurFunctionAvailabilityContext())
19908 Context->HasPotentialAvailabilityViolations = true;
19909
19910 return new (Context)
19911 ObjCAvailabilityCheckExpr(Version, AtLoc, RParen, Context.BoolTy);
19912}
19913
19914ExprResult Sema::CreateRecoveryExpr(SourceLocation Begin, SourceLocation End,
19915 ArrayRef<Expr *> SubExprs, QualType T) {
19916 if (!Context.getLangOpts().RecoveryAST)
19917 return ExprError();
19918
19919 if (isSFINAEContext())
19920 return ExprError();
19921
19922 if (T.isNull() || T->isUndeducedType() ||
19923 !Context.getLangOpts().RecoveryASTType)
19924 // We don't know the concrete type, fallback to dependent type.
19925 T = Context.DependentTy;
19926
19927 return RecoveryExpr::Create(Context, T, Begin, End, SubExprs);
19928}

/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/ASTContext.h

1//===- ASTContext.h - Context to hold long-lived AST nodes ------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file
10/// Defines the clang::ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_ASTCONTEXT_H
15#define LLVM_CLANG_AST_ASTCONTEXT_H
16
17#include "clang/AST/ASTContextAllocate.h"
18#include "clang/AST/ASTFwd.h"
19#include "clang/AST/CanonicalType.h"
20#include "clang/AST/CommentCommandTraits.h"
21#include "clang/AST/ComparisonCategories.h"
22#include "clang/AST/Decl.h"
23#include "clang/AST/DeclBase.h"
24#include "clang/AST/DeclarationName.h"
25#include "clang/AST/ExternalASTSource.h"
26#include "clang/AST/NestedNameSpecifier.h"
27#include "clang/AST/PrettyPrinter.h"
28#include "clang/AST/RawCommentList.h"
29#include "clang/AST/TemplateName.h"
30#include "clang/AST/Type.h"
31#include "clang/Basic/AddressSpaces.h"
32#include "clang/Basic/AttrKinds.h"
33#include "clang/Basic/IdentifierTable.h"
34#include "clang/Basic/LLVM.h"
35#include "clang/Basic/LangOptions.h"
36#include "clang/Basic/Linkage.h"
37#include "clang/Basic/NoSanitizeList.h"
38#include "clang/Basic/OperatorKinds.h"
39#include "clang/Basic/PartialDiagnostic.h"
40#include "clang/Basic/ProfileList.h"
41#include "clang/Basic/SourceLocation.h"
42#include "clang/Basic/Specifiers.h"
43#include "clang/Basic/TargetCXXABI.h"
44#include "clang/Basic/XRayLists.h"
45#include "llvm/ADT/APSInt.h"
46#include "llvm/ADT/ArrayRef.h"
47#include "llvm/ADT/DenseMap.h"
48#include "llvm/ADT/DenseSet.h"
49#include "llvm/ADT/FoldingSet.h"
50#include "llvm/ADT/IntrusiveRefCntPtr.h"
51#include "llvm/ADT/MapVector.h"
52#include "llvm/ADT/None.h"
53#include "llvm/ADT/Optional.h"
54#include "llvm/ADT/PointerIntPair.h"
55#include "llvm/ADT/PointerUnion.h"
56#include "llvm/ADT/SmallVector.h"
57#include "llvm/ADT/StringMap.h"
58#include "llvm/ADT/StringRef.h"
59#include "llvm/ADT/TinyPtrVector.h"
60#include "llvm/ADT/Triple.h"
61#include "llvm/ADT/iterator_range.h"
62#include "llvm/Support/AlignOf.h"
63#include "llvm/Support/Allocator.h"
64#include "llvm/Support/Casting.h"
65#include "llvm/Support/Compiler.h"
66#include "llvm/Support/TypeSize.h"
67#include <cassert>
68#include <cstddef>
69#include <cstdint>
70#include <iterator>
71#include <memory>
72#include <string>
73#include <type_traits>
74#include <utility>
75#include <vector>
76
77namespace llvm {
78
79class APFixedPoint;
80class FixedPointSemantics;
81struct fltSemantics;
82template <typename T, unsigned N> class SmallPtrSet;
83
84} // namespace llvm
85
86namespace clang {
87
88class APValue;
89class ASTMutationListener;
90class ASTRecordLayout;
91class AtomicExpr;
92class BlockExpr;
93class BuiltinTemplateDecl;
94class CharUnits;
95class ConceptDecl;
96class CXXABI;
97class CXXConstructorDecl;
98class CXXMethodDecl;
99class CXXRecordDecl;
100class DiagnosticsEngine;
101class ParentMapContext;
102class DynTypedNode;
103class DynTypedNodeList;
104class Expr;
105class GlobalDecl;
106class ItaniumMangleContext;
107class MangleContext;
108class MangleNumberingContext;
109class MaterializeTemporaryExpr;
110class MemberSpecializationInfo;
111class Module;
112struct MSGuidDeclParts;
113class ObjCCategoryDecl;
114class ObjCCategoryImplDecl;
115class ObjCContainerDecl;
116class ObjCImplDecl;
117class ObjCImplementationDecl;
118class ObjCInterfaceDecl;
119class ObjCIvarDecl;
120class ObjCMethodDecl;
121class ObjCPropertyDecl;
122class ObjCPropertyImplDecl;
123class ObjCProtocolDecl;
124class ObjCTypeParamDecl;
125class OMPTraitInfo;
126struct ParsedTargetAttr;
127class Preprocessor;
128class Stmt;
129class StoredDeclsMap;
130class TargetAttr;
131class TargetInfo;
132class TemplateDecl;
133class TemplateParameterList;
134class TemplateTemplateParmDecl;
135class TemplateTypeParmDecl;
136class UnresolvedSetIterator;
137class UsingShadowDecl;
138class VarTemplateDecl;
139class VTableContextBase;
140struct BlockVarCopyInit;
141
142namespace Builtin {
143
144class Context;
145
146} // namespace Builtin
147
148enum BuiltinTemplateKind : int;
149enum OpenCLTypeKind : uint8_t;
150
151namespace comments {
152
153class FullComment;
154
155} // namespace comments
156
157namespace interp {
158
159class Context;
160
161} // namespace interp
162
163namespace serialization {
164template <class> class AbstractTypeReader;
165} // namespace serialization
166
167struct TypeInfo {
168 uint64_t Width = 0;
169 unsigned Align = 0;
170 bool AlignIsRequired : 1;
171
172 TypeInfo() : AlignIsRequired(false) {}
173 TypeInfo(uint64_t Width, unsigned Align, bool AlignIsRequired)
174 : Width(Width), Align(Align), AlignIsRequired(AlignIsRequired) {}
175};
176
177struct TypeInfoChars {
178 CharUnits Width;
179 CharUnits Align;
180 bool AlignIsRequired : 1;
181
182 TypeInfoChars() : AlignIsRequired(false) {}
183 TypeInfoChars(CharUnits Width, CharUnits Align, bool AlignIsRequired)
184 : Width(Width), Align(Align), AlignIsRequired(AlignIsRequired) {}
185};
186
187/// Holds long-lived AST nodes (such as types and decls) that can be
188/// referred to throughout the semantic analysis of a file.
189class ASTContext : public RefCountedBase<ASTContext> {
190 friend class NestedNameSpecifier;
191
192 mutable SmallVector<Type *, 0> Types;
193 mutable llvm::FoldingSet<ExtQuals> ExtQualNodes;
194 mutable llvm::FoldingSet<ComplexType> ComplexTypes;
195 mutable llvm::FoldingSet<PointerType> PointerTypes;
196 mutable llvm::FoldingSet<AdjustedType> AdjustedTypes;
197 mutable llvm::FoldingSet<BlockPointerType> BlockPointerTypes;
198 mutable llvm::FoldingSet<LValueReferenceType> LValueReferenceTypes;
199 mutable llvm::FoldingSet<RValueReferenceType> RValueReferenceTypes;
200 mutable llvm::FoldingSet<MemberPointerType> MemberPointerTypes;
201 mutable llvm::ContextualFoldingSet<ConstantArrayType, ASTContext &>
202 ConstantArrayTypes;
203 mutable llvm::FoldingSet<IncompleteArrayType> IncompleteArrayTypes;
204 mutable std::vector<VariableArrayType*> VariableArrayTypes;
205 mutable llvm::FoldingSet<DependentSizedArrayType> DependentSizedArrayTypes;
206 mutable llvm::FoldingSet<DependentSizedExtVectorType>
207 DependentSizedExtVectorTypes;
208 mutable llvm::FoldingSet<DependentAddressSpaceType>
209 DependentAddressSpaceTypes;
210 mutable llvm::FoldingSet<VectorType> VectorTypes;
211 mutable llvm::FoldingSet<DependentVectorType> DependentVectorTypes;
212 mutable llvm::FoldingSet<ConstantMatrixType> MatrixTypes;
213 mutable llvm::FoldingSet<DependentSizedMatrixType> DependentSizedMatrixTypes;
214 mutable llvm::FoldingSet<FunctionNoProtoType> FunctionNoProtoTypes;
215 mutable llvm::ContextualFoldingSet<FunctionProtoType, ASTContext&>
216 FunctionProtoTypes;
217 mutable llvm::FoldingSet<DependentTypeOfExprType> DependentTypeOfExprTypes;
218 mutable llvm::FoldingSet<DependentDecltypeType> DependentDecltypeTypes;
219 mutable llvm::FoldingSet<TemplateTypeParmType> TemplateTypeParmTypes;
220 mutable llvm::FoldingSet<ObjCTypeParamType> ObjCTypeParamTypes;
221 mutable llvm::FoldingSet<SubstTemplateTypeParmType>
222 SubstTemplateTypeParmTypes;
223 mutable llvm::FoldingSet<SubstTemplateTypeParmPackType>
224 SubstTemplateTypeParmPackTypes;
225 mutable llvm::ContextualFoldingSet<TemplateSpecializationType, ASTContext&>
226 TemplateSpecializationTypes;
227 mutable llvm::FoldingSet<ParenType> ParenTypes;
228 mutable llvm::FoldingSet<ElaboratedType> ElaboratedTypes;
229 mutable llvm::FoldingSet<DependentNameType> DependentNameTypes;
230 mutable llvm::ContextualFoldingSet<DependentTemplateSpecializationType,
231 ASTContext&>
232 DependentTemplateSpecializationTypes;
233 llvm::FoldingSet<PackExpansionType> PackExpansionTypes;
234 mutable llvm::FoldingSet<ObjCObjectTypeImpl> ObjCObjectTypes;
235 mutable llvm::FoldingSet<ObjCObjectPointerType> ObjCObjectPointerTypes;
236 mutable llvm::FoldingSet<DependentUnaryTransformType>
237 DependentUnaryTransformTypes;
238 mutable llvm::ContextualFoldingSet<AutoType, ASTContext&> AutoTypes;
239 mutable llvm::FoldingSet<DeducedTemplateSpecializationType>
240 DeducedTemplateSpecializationTypes;
241 mutable llvm::FoldingSet<AtomicType> AtomicTypes;
242 llvm::FoldingSet<AttributedType> AttributedTypes;
243 mutable llvm::FoldingSet<PipeType> PipeTypes;
244 mutable llvm::FoldingSet<ExtIntType> ExtIntTypes;
245 mutable llvm::FoldingSet<DependentExtIntType> DependentExtIntTypes;
246
247 mutable llvm::FoldingSet<QualifiedTemplateName> QualifiedTemplateNames;
248 mutable llvm::FoldingSet<DependentTemplateName> DependentTemplateNames;
249 mutable llvm::FoldingSet<SubstTemplateTemplateParmStorage>
250 SubstTemplateTemplateParms;
251 mutable llvm::ContextualFoldingSet<SubstTemplateTemplateParmPackStorage,
252 ASTContext&>
253 SubstTemplateTemplateParmPacks;
254
255 /// The set of nested name specifiers.
256 ///
257 /// This set is managed by the NestedNameSpecifier class.
258 mutable llvm::FoldingSet<NestedNameSpecifier> NestedNameSpecifiers;
259 mutable NestedNameSpecifier *GlobalNestedNameSpecifier = nullptr;
260
261 /// A cache mapping from RecordDecls to ASTRecordLayouts.
262 ///
263 /// This is lazily created. This is intentionally not serialized.
264 mutable llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>
265 ASTRecordLayouts;
266 mutable llvm::DenseMap<const ObjCContainerDecl*, const ASTRecordLayout*>
267 ObjCLayouts;
268
269 /// A cache from types to size and alignment information.
270 using TypeInfoMap = llvm::DenseMap<const Type *, struct TypeInfo>;
271 mutable TypeInfoMap MemoizedTypeInfo;
272
273 /// A cache from types to unadjusted alignment information. Only ARM and
274 /// AArch64 targets need this information, keeping it separate prevents
275 /// imposing overhead on TypeInfo size.
276 using UnadjustedAlignMap = llvm::DenseMap<const Type *, unsigned>;
277 mutable UnadjustedAlignMap MemoizedUnadjustedAlign;
278
279 /// A cache mapping from CXXRecordDecls to key functions.
280 llvm::DenseMap<const CXXRecordDecl*, LazyDeclPtr> KeyFunctions;
281
282 /// Mapping from ObjCContainers to their ObjCImplementations.
283 llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*> ObjCImpls;
284
285 /// Mapping from ObjCMethod to its duplicate declaration in the same
286 /// interface.
287 llvm::DenseMap<const ObjCMethodDecl*,const ObjCMethodDecl*> ObjCMethodRedecls;
288
289 /// Mapping from __block VarDecls to BlockVarCopyInit.
290 llvm::DenseMap<const VarDecl *, BlockVarCopyInit> BlockVarCopyInits;
291
292 /// Mapping from GUIDs to the corresponding MSGuidDecl.
293 mutable llvm::FoldingSet<MSGuidDecl> MSGuidDecls;
294
295 /// Mapping from APValues to the corresponding TemplateParamObjects.
296 mutable llvm::FoldingSet<TemplateParamObjectDecl> TemplateParamObjectDecls;
297
298 /// A cache mapping a string value to a StringLiteral object with the same
299 /// value.
300 ///
301 /// This is lazily created. This is intentionally not serialized.
302 mutable llvm::StringMap<StringLiteral *> StringLiteralCache;
303
304 /// MD5 hash of CUID. It is calculated when first used and cached by this
305 /// data member.
306 mutable std::string CUIDHash;
307
308 /// Representation of a "canonical" template template parameter that
309 /// is used in canonical template names.
310 class CanonicalTemplateTemplateParm : public llvm::FoldingSetNode {
311 TemplateTemplateParmDecl *Parm;
312
313 public:
314 CanonicalTemplateTemplateParm(TemplateTemplateParmDecl *Parm)
315 : Parm(Parm) {}
316
317 TemplateTemplateParmDecl *getParam() const { return Parm; }
318
319 void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &C) {
320 Profile(ID, C, Parm);
321 }
322
323 static void Profile(llvm::FoldingSetNodeID &ID,
324 const ASTContext &C,
325 TemplateTemplateParmDecl *Parm);
326 };
327 mutable llvm::ContextualFoldingSet<CanonicalTemplateTemplateParm,
328 const ASTContext&>
329 CanonTemplateTemplateParms;
330
331 TemplateTemplateParmDecl *
332 getCanonicalTemplateTemplateParmDecl(TemplateTemplateParmDecl *TTP) const;
333
334 /// The typedef for the __int128_t type.
335 mutable TypedefDecl *Int128Decl = nullptr;
336
337 /// The typedef for the __uint128_t type.
338 mutable TypedefDecl *UInt128Decl = nullptr;
339
340 /// The typedef for the target specific predefined
341 /// __builtin_va_list type.
342 mutable TypedefDecl *BuiltinVaListDecl = nullptr;
343
344 /// The typedef for the predefined \c __builtin_ms_va_list type.
345 mutable TypedefDecl *BuiltinMSVaListDecl = nullptr;
346
347 /// The typedef for the predefined \c id type.
348 mutable TypedefDecl *ObjCIdDecl = nullptr;
349
350 /// The typedef for the predefined \c SEL type.
351 mutable TypedefDecl *ObjCSelDecl = nullptr;
352
353 /// The typedef for the predefined \c Class type.
354 mutable TypedefDecl *ObjCClassDecl = nullptr;
355
356 /// The typedef for the predefined \c Protocol class in Objective-C.
357 mutable ObjCInterfaceDecl *ObjCProtocolClassDecl = nullptr;
358
359 /// The typedef for the predefined 'BOOL' type.
360 mutable TypedefDecl *BOOLDecl = nullptr;
361
362 // Typedefs which may be provided defining the structure of Objective-C
363 // pseudo-builtins
364 QualType ObjCIdRedefinitionType;
365 QualType ObjCClassRedefinitionType;
366 QualType ObjCSelRedefinitionType;
367
368 /// The identifier 'bool'.
369 mutable IdentifierInfo *BoolName = nullptr;
370
371 /// The identifier 'NSObject'.
372 mutable IdentifierInfo *NSObjectName = nullptr;
373
374 /// The identifier 'NSCopying'.
375 IdentifierInfo *NSCopyingName = nullptr;
376
377 /// The identifier '__make_integer_seq'.
378 mutable IdentifierInfo *MakeIntegerSeqName = nullptr;
379
380 /// The identifier '__type_pack_element'.
381 mutable IdentifierInfo *TypePackElementName = nullptr;
382
383 QualType ObjCConstantStringType;
384 mutable RecordDecl *CFConstantStringTagDecl = nullptr;
385 mutable TypedefDecl *CFConstantStringTypeDecl = nullptr;
386
387 mutable QualType ObjCSuperType;
388
389 QualType ObjCNSStringType;
390
391 /// The typedef declaration for the Objective-C "instancetype" type.
392 TypedefDecl *ObjCInstanceTypeDecl = nullptr;
393
394 /// The type for the C FILE type.
395 TypeDecl *FILEDecl = nullptr;
396
397 /// The type for the C jmp_buf type.
398 TypeDecl *jmp_bufDecl = nullptr;
399
400 /// The type for the C sigjmp_buf type.
401 TypeDecl *sigjmp_bufDecl = nullptr;
402
403 /// The type for the C ucontext_t type.
404 TypeDecl *ucontext_tDecl = nullptr;
405
406 /// Type for the Block descriptor for Blocks CodeGen.
407 ///
408 /// Since this is only used for generation of debug info, it is not
409 /// serialized.
410 mutable RecordDecl *BlockDescriptorType = nullptr;
411
412 /// Type for the Block descriptor for Blocks CodeGen.
413 ///
414 /// Since this is only used for generation of debug info, it is not
415 /// serialized.
416 mutable RecordDecl *BlockDescriptorExtendedType = nullptr;
417
418 /// Declaration for the CUDA cudaConfigureCall function.
419 FunctionDecl *cudaConfigureCallDecl = nullptr;
420
421 /// Keeps track of all declaration attributes.
422 ///
423 /// Since so few decls have attrs, we keep them in a hash map instead of
424 /// wasting space in the Decl class.
425 llvm::DenseMap<const Decl*, AttrVec*> DeclAttrs;
426
427 /// A mapping from non-redeclarable declarations in modules that were
428 /// merged with other declarations to the canonical declaration that they were
429 /// merged into.
430 llvm::DenseMap<Decl*, Decl*> MergedDecls;
431
432 /// A mapping from a defining declaration to a list of modules (other
433 /// than the owning module of the declaration) that contain merged
434 /// definitions of that entity.
435 llvm::DenseMap<NamedDecl*, llvm::TinyPtrVector<Module*>> MergedDefModules;
436
437 /// Initializers for a module, in order. Each Decl will be either
438 /// something that has a semantic effect on startup (such as a variable with
439 /// a non-constant initializer), or an ImportDecl (which recursively triggers
440 /// initialization of another module).
441 struct PerModuleInitializers {
442 llvm::SmallVector<Decl*, 4> Initializers;
443 llvm::SmallVector<uint32_t, 4> LazyInitializers;
444
445 void resolve(ASTContext &Ctx);
446 };
447 llvm::DenseMap<Module*, PerModuleInitializers*> ModuleInitializers;
448
449 ASTContext &this_() { return *this; }
450
451public:
452 /// A type synonym for the TemplateOrInstantiation mapping.
453 using TemplateOrSpecializationInfo =
454 llvm::PointerUnion<VarTemplateDecl *, MemberSpecializationInfo *>;
455
456private:
457 friend class ASTDeclReader;
458 friend class ASTReader;
459 friend class ASTWriter;
460 template <class> friend class serialization::AbstractTypeReader;
461 friend class CXXRecordDecl;
462 friend class IncrementalParser;
463
464 /// A mapping to contain the template or declaration that
465 /// a variable declaration describes or was instantiated from,
466 /// respectively.
467 ///
468 /// For non-templates, this value will be NULL. For variable
469 /// declarations that describe a variable template, this will be a
470 /// pointer to a VarTemplateDecl. For static data members
471 /// of class template specializations, this will be the
472 /// MemberSpecializationInfo referring to the member variable that was
473 /// instantiated or specialized. Thus, the mapping will keep track of
474 /// the static data member templates from which static data members of
475 /// class template specializations were instantiated.
476 ///
477 /// Given the following example:
478 ///
479 /// \code
480 /// template<typename T>
481 /// struct X {
482 /// static T value;
483 /// };
484 ///
485 /// template<typename T>
486 /// T X<T>::value = T(17);
487 ///
488 /// int *x = &X<int>::value;
489 /// \endcode
490 ///
491 /// This mapping will contain an entry that maps from the VarDecl for
492 /// X<int>::value to the corresponding VarDecl for X<T>::value (within the
493 /// class template X) and will be marked TSK_ImplicitInstantiation.
494 llvm::DenseMap<const VarDecl *, TemplateOrSpecializationInfo>
495 TemplateOrInstantiation;
496
497 /// Keeps track of the declaration from which a using declaration was
498 /// created during instantiation.
499 ///
500 /// The source and target declarations are always a UsingDecl, an
501 /// UnresolvedUsingValueDecl, or an UnresolvedUsingTypenameDecl.
502 ///
503 /// For example:
504 /// \code
505 /// template<typename T>
506 /// struct A {
507 /// void f();
508 /// };
509 ///
510 /// template<typename T>
511 /// struct B : A<T> {
512 /// using A<T>::f;
513 /// };
514 ///
515 /// template struct B<int>;
516 /// \endcode
517 ///
518 /// This mapping will contain an entry that maps from the UsingDecl in
519 /// B<int> to the UnresolvedUsingDecl in B<T>.
520 llvm::DenseMap<NamedDecl *, NamedDecl *> InstantiatedFromUsingDecl;
521
522 /// Like InstantiatedFromUsingDecl, but for using-enum-declarations. Maps
523 /// from the instantiated using-enum to the templated decl from whence it
524 /// came.
525 /// Note that using-enum-declarations cannot be dependent and
526 /// thus will never be instantiated from an "unresolved"
527 /// version thereof (as with using-declarations), so each mapping is from
528 /// a (resolved) UsingEnumDecl to a (resolved) UsingEnumDecl.
529 llvm::DenseMap<UsingEnumDecl *, UsingEnumDecl *>
530 InstantiatedFromUsingEnumDecl;
531
532 /// Simlarly maps instantiated UsingShadowDecls to their origin.
533 llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>
534 InstantiatedFromUsingShadowDecl;
535
536 llvm::DenseMap<FieldDecl *, FieldDecl *> InstantiatedFromUnnamedFieldDecl;
537
538 /// Mapping that stores the methods overridden by a given C++
539 /// member function.
540 ///
541 /// Since most C++ member functions aren't virtual and therefore
542 /// don't override anything, we store the overridden functions in
543 /// this map on the side rather than within the CXXMethodDecl structure.
544 using CXXMethodVector = llvm::TinyPtrVector<const CXXMethodDecl *>;
545 llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector> OverriddenMethods;
546
547 /// Mapping from each declaration context to its corresponding
548 /// mangling numbering context (used for constructs like lambdas which
549 /// need to be consistently numbered for the mangler).
550 llvm::DenseMap<const DeclContext *, std::unique_ptr<MangleNumberingContext>>
551 MangleNumberingContexts;
552 llvm::DenseMap<const Decl *, std::unique_ptr<MangleNumberingContext>>
553 ExtraMangleNumberingContexts;
554
555 /// Side-table of mangling numbers for declarations which rarely
556 /// need them (like static local vars).
557 llvm::MapVector<const NamedDecl *, unsigned> MangleNumbers;
558 llvm::MapVector<const VarDecl *, unsigned> StaticLocalNumbers;
559 /// Mapping the associated device lambda mangling number if present.
560 mutable llvm::DenseMap<const CXXRecordDecl *, unsigned>
561 DeviceLambdaManglingNumbers;
562
563 /// Mapping that stores parameterIndex values for ParmVarDecls when
564 /// that value exceeds the bitfield size of ParmVarDeclBits.ParameterIndex.
565 using ParameterIndexTable = llvm::DenseMap<const VarDecl *, unsigned>;
566 ParameterIndexTable ParamIndices;
567
568 ImportDecl *FirstLocalImport = nullptr;
569 ImportDecl *LastLocalImport = nullptr;
570
571 TranslationUnitDecl *TUDecl = nullptr;
572 mutable ExternCContextDecl *ExternCContext = nullptr;
573 mutable BuiltinTemplateDecl *MakeIntegerSeqDecl = nullptr;
574 mutable BuiltinTemplateDecl *TypePackElementDecl = nullptr;
575
576 /// The associated SourceManager object.
577 SourceManager &SourceMgr;
578
579 /// The language options used to create the AST associated with
580 /// this ASTContext object.
581 LangOptions &LangOpts;
582
583 /// NoSanitizeList object that is used by sanitizers to decide which
584 /// entities should not be instrumented.
585 std::unique_ptr<NoSanitizeList> NoSanitizeL;
586
587 /// Function filtering mechanism to determine whether a given function
588 /// should be imbued with the XRay "always" or "never" attributes.
589 std::unique_ptr<XRayFunctionFilter> XRayFilter;
590
591 /// ProfileList object that is used by the profile instrumentation
592 /// to decide which entities should be instrumented.
593 std::unique_ptr<ProfileList> ProfList;
594
595 /// The allocator used to create AST objects.
596 ///
597 /// AST objects are never destructed; rather, all memory associated with the
598 /// AST objects will be released when the ASTContext itself is destroyed.
599 mutable llvm::BumpPtrAllocator BumpAlloc;
600
601 /// Allocator for partial diagnostics.
602 PartialDiagnostic::DiagStorageAllocator DiagAllocator;
603
604 /// The current C++ ABI.
605 std::unique_ptr<CXXABI> ABI;
606 CXXABI *createCXXABI(const TargetInfo &T);
607
608 /// The logical -> physical address space map.
609 const LangASMap *AddrSpaceMap = nullptr;
610
611 /// Address space map mangling must be used with language specific
612 /// address spaces (e.g. OpenCL/CUDA)
613 bool AddrSpaceMapMangling;
614
615 const TargetInfo *Target = nullptr;
616 const TargetInfo *AuxTarget = nullptr;
617 clang::PrintingPolicy PrintingPolicy;
618 std::unique_ptr<interp::Context> InterpContext;
619 std::unique_ptr<ParentMapContext> ParentMapCtx;
620
621 /// Keeps track of the deallocated DeclListNodes for future reuse.
622 DeclListNode *ListNodeFreeList = nullptr;
623
624public:
625 IdentifierTable &Idents;
626 SelectorTable &Selectors;
627 Builtin::Context &BuiltinInfo;
628 const TranslationUnitKind TUKind;
629 mutable DeclarationNameTable DeclarationNames;
630 IntrusiveRefCntPtr<ExternalASTSource> ExternalSource;
631 ASTMutationListener *Listener = nullptr;
632
633 /// Returns the clang bytecode interpreter context.
634 interp::Context &getInterpContext();
635
636 /// Returns the dynamic AST node parent map context.
637 ParentMapContext &getParentMapContext();
638
639 // A traversal scope limits the parts of the AST visible to certain analyses.
640 // RecursiveASTVisitor only visits specified children of TranslationUnitDecl.
641 // getParents() will only observe reachable parent edges.
642 //
643 // The scope is defined by a set of "top-level" declarations which will be
644 // visible under the TranslationUnitDecl.
645 // Initially, it is the entire TU, represented by {getTranslationUnitDecl()}.
646 //
647 // After setTraversalScope({foo, bar}), the exposed AST looks like:
648 // TranslationUnitDecl
649 // - foo
650 // - ...
651 // - bar
652 // - ...
653 // All other siblings of foo and bar are pruned from the tree.
654 // (However they are still accessible via TranslationUnitDecl->decls())
655 //
656 // Changing the scope clears the parent cache, which is expensive to rebuild.
657 std::vector<Decl *> getTraversalScope() const { return TraversalScope; }
658 void setTraversalScope(const std::vector<Decl *> &);
659
660 /// Forwards to get node parents from the ParentMapContext. New callers should
661 /// use ParentMapContext::getParents() directly.
662 template <typename NodeT> DynTypedNodeList getParents(const NodeT &Node);
663
664 const clang::PrintingPolicy &getPrintingPolicy() const {
665 return PrintingPolicy;
666 }
667
668 void setPrintingPolicy(const clang::PrintingPolicy &Policy) {
669 PrintingPolicy = Policy;
670 }
671
672 SourceManager& getSourceManager() { return SourceMgr; }
673 const SourceManager& getSourceManager() const { return SourceMgr; }
674
675 llvm::BumpPtrAllocator &getAllocator() const {
676 return BumpAlloc;
677 }
678
679 void *Allocate(size_t Size, unsigned Align = 8) const {
680 return BumpAlloc.Allocate(Size, Align);
681 }
682 template <typename T> T *Allocate(size_t Num = 1) const {
683 return static_cast<T *>(Allocate(Num * sizeof(T), alignof(T)));
684 }
685 void Deallocate(void *Ptr) const {}
686
687 /// Allocates a \c DeclListNode or returns one from the \c ListNodeFreeList
688 /// pool.
689 DeclListNode *AllocateDeclListNode(clang::NamedDecl *ND) {
690 if (DeclListNode *Alloc = ListNodeFreeList) {
691 ListNodeFreeList = Alloc->Rest.dyn_cast<DeclListNode*>();
692 Alloc->D = ND;
693 Alloc->Rest = nullptr;
694 return Alloc;
695 }
696 return new (*this) DeclListNode(ND);
697 }
698 /// Deallcates a \c DeclListNode by returning it to the \c ListNodeFreeList
699 /// pool.
700 void DeallocateDeclListNode(DeclListNode *N) {
701 N->Rest = ListNodeFreeList;
702 ListNodeFreeList = N;
703 }
704
705 /// Return the total amount of physical memory allocated for representing
706 /// AST nodes and type information.
707 size_t getASTAllocatedMemory() const {
708 return BumpAlloc.getTotalMemory();
709 }
710
711 /// Return the total memory used for various side tables.
712 size_t getSideTableAllocatedMemory() const;
713
714 PartialDiagnostic::DiagStorageAllocator &getDiagAllocator() {
715 return DiagAllocator;
716 }
717
718 const TargetInfo &getTargetInfo() const { return *Target; }
719 const TargetInfo *getAuxTargetInfo() const { return AuxTarget; }
720
721 /// getIntTypeForBitwidth -
722 /// sets integer QualTy according to specified details:
723 /// bitwidth, signed/unsigned.
724 /// Returns empty type if there is no appropriate target types.
725 QualType getIntTypeForBitwidth(unsigned DestWidth,
726 unsigned Signed) const;
727
728 /// getRealTypeForBitwidth -
729 /// sets floating point QualTy according to specified bitwidth.
730 /// Returns empty type if there is no appropriate target types.
731 QualType getRealTypeForBitwidth(unsigned DestWidth, bool ExplicitIEEE) const;
732
733 bool AtomicUsesUnsupportedLibcall(const AtomicExpr *E) const;
734
735 const LangOptions& getLangOpts() const { return LangOpts; }
736
737 // If this condition is false, typo correction must be performed eagerly
738 // rather than delayed in many places, as it makes use of dependent types.
739 // the condition is false for clang's C-only codepath, as it doesn't support
740 // dependent types yet.
741 bool isDependenceAllowed() const {
742 return LangOpts.CPlusPlus || LangOpts.RecoveryAST;
24
Assuming field 'CPlusPlus' is not equal to 0
25
Returning the value 1, which participates in a condition later
743 }
744
745 const NoSanitizeList &getNoSanitizeList() const { return *NoSanitizeL; }
746
747 const XRayFunctionFilter &getXRayFilter() const {
748 return *XRayFilter;
749 }
750
751 const ProfileList &getProfileList() const { return *ProfList; }
752
753 DiagnosticsEngine &getDiagnostics() const;
754
755 FullSourceLoc getFullLoc(SourceLocation Loc) const {
756 return FullSourceLoc(Loc,SourceMgr);
757 }
758
759 /// Return the C++ ABI kind that should be used. The C++ ABI can be overriden
760 /// at compile time with `-fc++-abi=`. If this is not provided, we instead use
761 /// the default ABI set by the target.
762 TargetCXXABI::Kind getCXXABIKind() const;
763
764 /// All comments in this translation unit.
765 RawCommentList Comments;
766
767 /// True if comments are already loaded from ExternalASTSource.
768 mutable bool CommentsLoaded = false;
769
770 /// Mapping from declaration to directly attached comment.
771 ///
772 /// Raw comments are owned by Comments list. This mapping is populated
773 /// lazily.
774 mutable llvm::DenseMap<const Decl *, const RawComment *> DeclRawComments;
775
776 /// Mapping from canonical declaration to the first redeclaration in chain
777 /// that has a comment attached.
778 ///
779 /// Raw comments are owned by Comments list. This mapping is populated
780 /// lazily.
781 mutable llvm::DenseMap<const Decl *, const Decl *> RedeclChainComments;
782
783 /// Keeps track of redeclaration chains that don't have any comment attached.
784 /// Mapping from canonical declaration to redeclaration chain that has no
785 /// comments attached to any redeclaration. Specifically it's mapping to
786 /// the last redeclaration we've checked.
787 ///
788 /// Shall not contain declarations that have comments attached to any
789 /// redeclaration in their chain.
790 mutable llvm::DenseMap<const Decl *, const Decl *> CommentlessRedeclChains;
791
792 /// Mapping from declarations to parsed comments attached to any
793 /// redeclaration.
794 mutable llvm::DenseMap<const Decl *, comments::FullComment *> ParsedComments;
795
796 /// Attaches \p Comment to \p OriginalD and to its redeclaration chain
797 /// and removes the redeclaration chain from the set of commentless chains.
798 ///
799 /// Don't do anything if a comment has already been attached to \p OriginalD
800 /// or its redeclaration chain.
801 void cacheRawCommentForDecl(const Decl &OriginalD,
802 const RawComment &Comment) const;
803
804 /// \returns searches \p CommentsInFile for doc comment for \p D.
805 ///
806 /// \p RepresentativeLocForDecl is used as a location for searching doc
807 /// comments. \p CommentsInFile is a mapping offset -> comment of files in the
808 /// same file where \p RepresentativeLocForDecl is.
809 RawComment *getRawCommentForDeclNoCacheImpl(
810 const Decl *D, const SourceLocation RepresentativeLocForDecl,
811 const std::map<unsigned, RawComment *> &CommentsInFile) const;
812
813 /// Return the documentation comment attached to a given declaration,
814 /// without looking into cache.
815 RawComment *getRawCommentForDeclNoCache(const Decl *D) const;
816
817public:
818 void addComment(const RawComment &RC);
819
820 /// Return the documentation comment attached to a given declaration.
821 /// Returns nullptr if no comment is attached.
822 ///
823 /// \param OriginalDecl if not nullptr, is set to declaration AST node that
824 /// had the comment, if the comment we found comes from a redeclaration.
825 const RawComment *
826 getRawCommentForAnyRedecl(const Decl *D,
827 const Decl **OriginalDecl = nullptr) const;
828
829 /// Searches existing comments for doc comments that should be attached to \p
830 /// Decls. If any doc comment is found, it is parsed.
831 ///
832 /// Requirement: All \p Decls are in the same file.
833 ///
834 /// If the last comment in the file is already attached we assume
835 /// there are not comments left to be attached to \p Decls.
836 void attachCommentsToJustParsedDecls(ArrayRef<Decl *> Decls,
837 const Preprocessor *PP);
838
839 /// Return parsed documentation comment attached to a given declaration.
840 /// Returns nullptr if no comment is attached.
841 ///
842 /// \param PP the Preprocessor used with this TU. Could be nullptr if
843 /// preprocessor is not available.
844 comments::FullComment *getCommentForDecl(const Decl *D,
845 const Preprocessor *PP) const;
846
847 /// Return parsed documentation comment attached to a given declaration.
848 /// Returns nullptr if no comment is attached. Does not look at any
849 /// redeclarations of the declaration.
850 comments::FullComment *getLocalCommentForDeclUncached(const Decl *D) const;
851
852 comments::FullComment *cloneFullComment(comments::FullComment *FC,
853 const Decl *D) const;
854
855private:
856 mutable comments::CommandTraits CommentCommandTraits;
857
858 /// Iterator that visits import declarations.
859 class import_iterator {
860 ImportDecl *Import = nullptr;
861
862 public:
863 using value_type = ImportDecl *;
864 using reference = ImportDecl *;
865 using pointer = ImportDecl *;
866 using difference_type = int;
867 using iterator_category = std::forward_iterator_tag;
868
869 import_iterator() = default;
870 explicit import_iterator(ImportDecl *Import) : Import(Import) {}
871
872 reference operator*() const { return Import; }
873 pointer operator->() const { return Import; }
874
875 import_iterator &operator++() {
876 Import = ASTContext::getNextLocalImport(Import);
877 return *this;
878 }
879
880 import_iterator operator++(int) {
881 import_iterator Other(*this);
882 ++(*this);
883 return Other;
884 }
885
886 friend bool operator==(import_iterator X, import_iterator Y) {
887 return X.Import == Y.Import;
888 }
889
890 friend bool operator!=(import_iterator X, import_iterator Y) {
891 return X.Import != Y.Import;
892 }
893 };
894
895public:
896 comments::CommandTraits &getCommentCommandTraits() const {
897 return CommentCommandTraits;
898 }
899
900 /// Retrieve the attributes for the given declaration.
901 AttrVec& getDeclAttrs(const Decl *D);
902
903 /// Erase the attributes corresponding to the given declaration.
904 void eraseDeclAttrs(const Decl *D);
905
906 /// If this variable is an instantiated static data member of a
907 /// class template specialization, returns the templated static data member
908 /// from which it was instantiated.
909 // FIXME: Remove ?
910 MemberSpecializationInfo *getInstantiatedFromStaticDataMember(
911 const VarDecl *Var);
912
913 /// Note that the static data member \p Inst is an instantiation of
914 /// the static data member template \p Tmpl of a class template.
915 void setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
916 TemplateSpecializationKind TSK,
917 SourceLocation PointOfInstantiation = SourceLocation());
918
919 TemplateOrSpecializationInfo
920 getTemplateOrSpecializationInfo(const VarDecl *Var);
921
922 void setTemplateOrSpecializationInfo(VarDecl *Inst,
923 TemplateOrSpecializationInfo TSI);
924
925 /// If the given using decl \p Inst is an instantiation of
926 /// another (possibly unresolved) using decl, return it.
927 NamedDecl *getInstantiatedFromUsingDecl(NamedDecl *Inst);
928
929 /// Remember that the using decl \p Inst is an instantiation
930 /// of the using decl \p Pattern of a class template.
931 void setInstantiatedFromUsingDecl(NamedDecl *Inst, NamedDecl *Pattern);
932
933 /// If the given using-enum decl \p Inst is an instantiation of
934 /// another using-enum decl, return it.
935 UsingEnumDecl *getInstantiatedFromUsingEnumDecl(UsingEnumDecl *Inst);
936
937 /// Remember that the using enum decl \p Inst is an instantiation
938 /// of the using enum decl \p Pattern of a class template.
939 void setInstantiatedFromUsingEnumDecl(UsingEnumDecl *Inst,
940 UsingEnumDecl *Pattern);
941
942 UsingShadowDecl *getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst);
943 void setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
944 UsingShadowDecl *Pattern);
945
946 FieldDecl *getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field);
947
948 void setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst, FieldDecl *Tmpl);
949
950 // Access to the set of methods overridden by the given C++ method.
951 using overridden_cxx_method_iterator = CXXMethodVector::const_iterator;
952 overridden_cxx_method_iterator
953 overridden_methods_begin(const CXXMethodDecl *Method) const;
954
955 overridden_cxx_method_iterator
956 overridden_methods_end(const CXXMethodDecl *Method) const;
957
958 unsigned overridden_methods_size(const CXXMethodDecl *Method) const;
959
960 using overridden_method_range =
961 llvm::iterator_range<overridden_cxx_method_iterator>;
962
963 overridden_method_range overridden_methods(const CXXMethodDecl *Method) const;
964
965 /// Note that the given C++ \p Method overrides the given \p
966 /// Overridden method.
967 void addOverriddenMethod(const CXXMethodDecl *Method,
968 const CXXMethodDecl *Overridden);
969
970 /// Return C++ or ObjC overridden methods for the given \p Method.
971 ///
972 /// An ObjC method is considered to override any method in the class's
973 /// base classes, its protocols, or its categories' protocols, that has
974 /// the same selector and is of the same kind (class or instance).
975 /// A method in an implementation is not considered as overriding the same
976 /// method in the interface or its categories.
977 void getOverriddenMethods(
978 const NamedDecl *Method,
979 SmallVectorImpl<const NamedDecl *> &Overridden) const;
980
981 /// Notify the AST context that a new import declaration has been
982 /// parsed or implicitly created within this translation unit.
983 void addedLocalImportDecl(ImportDecl *Import);
984
985 static ImportDecl *getNextLocalImport(ImportDecl *Import) {
986 return Import->getNextLocalImport();
987 }
988
989 using import_range = llvm::iterator_range<import_iterator>;
990
991 import_range local_imports() const {
992 return import_range(import_iterator(FirstLocalImport), import_iterator());
993 }
994
995 Decl *getPrimaryMergedDecl(Decl *D) {
996 Decl *Result = MergedDecls.lookup(D);
997 return Result ? Result : D;
998 }
999 void setPrimaryMergedDecl(Decl *D, Decl *Primary) {
1000 MergedDecls[D] = Primary;
1001 }
1002
1003 /// Note that the definition \p ND has been merged into module \p M,
1004 /// and should be visible whenever \p M is visible.
1005 void mergeDefinitionIntoModule(NamedDecl *ND, Module *M,
1006 bool NotifyListeners = true);
1007
1008 /// Clean up the merged definition list. Call this if you might have
1009 /// added duplicates into the list.
1010 void deduplicateMergedDefinitonsFor(NamedDecl *ND);
1011
1012 /// Get the additional modules in which the definition \p Def has
1013 /// been merged.
1014 ArrayRef<Module*> getModulesWithMergedDefinition(const NamedDecl *Def);
1015
1016 /// Add a declaration to the list of declarations that are initialized
1017 /// for a module. This will typically be a global variable (with internal
1018 /// linkage) that runs module initializers, such as the iostream initializer,
1019 /// or an ImportDecl nominating another module that has initializers.
1020 void addModuleInitializer(Module *M, Decl *Init);
1021
1022 void addLazyModuleInitializers(Module *M, ArrayRef<uint32_t> IDs);
1023
1024 /// Get the initializations to perform when importing a module, if any.
1025 ArrayRef<Decl*> getModuleInitializers(Module *M);
1026
1027 TranslationUnitDecl *getTranslationUnitDecl() const {
1028 return TUDecl->getMostRecentDecl();
1029 }
1030 void addTranslationUnitDecl() {
1031 assert(!TUDecl || TUKind == TU_Incremental)(static_cast <bool> (!TUDecl || TUKind == TU_Incremental
) ? void (0) : __assert_fail ("!TUDecl || TUKind == TU_Incremental"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/ASTContext.h"
, 1031, __extension__ __PRETTY_FUNCTION__))
;
1032 TranslationUnitDecl *NewTUDecl = TranslationUnitDecl::Create(*this);
1033 if (TraversalScope.empty() || TraversalScope.back() == TUDecl)
1034 TraversalScope = {NewTUDecl};
1035 if (TUDecl)
1036 NewTUDecl->setPreviousDecl(TUDecl);
1037 TUDecl = NewTUDecl;
1038 }
1039
1040 ExternCContextDecl *getExternCContextDecl() const;
1041 BuiltinTemplateDecl *getMakeIntegerSeqDecl() const;
1042 BuiltinTemplateDecl *getTypePackElementDecl() const;
1043
1044 // Builtin Types.
1045 CanQualType VoidTy;
1046 CanQualType BoolTy;
1047 CanQualType CharTy;
1048 CanQualType WCharTy; // [C++ 3.9.1p5].
1049 CanQualType WideCharTy; // Same as WCharTy in C++, integer type in C99.
1050 CanQualType WIntTy; // [C99 7.24.1], integer type unchanged by default promotions.
1051 CanQualType Char8Ty; // [C++20 proposal]
1052 CanQualType Char16Ty; // [C++0x 3.9.1p5], integer type in C99.
1053 CanQualType Char32Ty; // [C++0x 3.9.1p5], integer type in C99.
1054 CanQualType SignedCharTy, ShortTy, IntTy, LongTy, LongLongTy, Int128Ty;
1055 CanQualType UnsignedCharTy, UnsignedShortTy, UnsignedIntTy, UnsignedLongTy;
1056 CanQualType UnsignedLongLongTy, UnsignedInt128Ty;
1057 CanQualType FloatTy, DoubleTy, LongDoubleTy, Float128Ty;
1058 CanQualType ShortAccumTy, AccumTy,
1059 LongAccumTy; // ISO/IEC JTC1 SC22 WG14 N1169 Extension
1060 CanQualType UnsignedShortAccumTy, UnsignedAccumTy, UnsignedLongAccumTy;
1061 CanQualType ShortFractTy, FractTy, LongFractTy;
1062 CanQualType UnsignedShortFractTy, UnsignedFractTy, UnsignedLongFractTy;
1063 CanQualType SatShortAccumTy, SatAccumTy, SatLongAccumTy;
1064 CanQualType SatUnsignedShortAccumTy, SatUnsignedAccumTy,
1065 SatUnsignedLongAccumTy;
1066 CanQualType SatShortFractTy, SatFractTy, SatLongFractTy;
1067 CanQualType SatUnsignedShortFractTy, SatUnsignedFractTy,
1068 SatUnsignedLongFractTy;
1069 CanQualType HalfTy; // [OpenCL 6.1.1.1], ARM NEON
1070 CanQualType BFloat16Ty;
1071 CanQualType Float16Ty; // C11 extension ISO/IEC TS 18661-3
1072 CanQualType FloatComplexTy, DoubleComplexTy, LongDoubleComplexTy;
1073 CanQualType Float128ComplexTy;
1074 CanQualType VoidPtrTy, NullPtrTy;
1075 CanQualType DependentTy, OverloadTy, BoundMemberTy, UnknownAnyTy;
1076 CanQualType BuiltinFnTy;
1077 CanQualType PseudoObjectTy, ARCUnbridgedCastTy;
1078 CanQualType ObjCBuiltinIdTy, ObjCBuiltinClassTy, ObjCBuiltinSelTy;
1079 CanQualType ObjCBuiltinBoolTy;
1080#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
1081 CanQualType SingletonId;
1082#include "clang/Basic/OpenCLImageTypes.def"
1083 CanQualType OCLSamplerTy, OCLEventTy, OCLClkEventTy;
1084 CanQualType OCLQueueTy, OCLReserveIDTy;
1085 CanQualType IncompleteMatrixIdxTy;
1086 CanQualType OMPArraySectionTy, OMPArrayShapingTy, OMPIteratorTy;
1087#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
1088 CanQualType Id##Ty;
1089#include "clang/Basic/OpenCLExtensionTypes.def"
1090#define SVE_TYPE(Name, Id, SingletonId) \
1091 CanQualType SingletonId;
1092#include "clang/Basic/AArch64SVEACLETypes.def"
1093#define PPC_VECTOR_TYPE(Name, Id, Size) \
1094 CanQualType Id##Ty;
1095#include "clang/Basic/PPCTypes.def"
1096#define RVV_TYPE(Name, Id, SingletonId) \
1097 CanQualType SingletonId;
1098#include "clang/Basic/RISCVVTypes.def"
1099
1100 // Types for deductions in C++0x [stmt.ranged]'s desugaring. Built on demand.
1101 mutable QualType AutoDeductTy; // Deduction against 'auto'.
1102 mutable QualType AutoRRefDeductTy; // Deduction against 'auto &&'.
1103
1104 // Decl used to help define __builtin_va_list for some targets.
1105 // The decl is built when constructing 'BuiltinVaListDecl'.
1106 mutable Decl *VaListTagDecl = nullptr;
1107
1108 // Implicitly-declared type 'struct _GUID'.
1109 mutable TagDecl *MSGuidTagDecl = nullptr;
1110
1111 /// Keep track of CUDA/HIP device-side variables ODR-used by host code.
1112 llvm::DenseSet<const VarDecl *> CUDADeviceVarODRUsedByHost;
1113
1114 ASTContext(LangOptions &LOpts, SourceManager &SM, IdentifierTable &idents,
1115 SelectorTable &sels, Builtin::Context &builtins,
1116 TranslationUnitKind TUKind);
1117 ASTContext(const ASTContext &) = delete;
1118 ASTContext &operator=(const ASTContext &) = delete;
1119 ~ASTContext();
1120
1121 /// Attach an external AST source to the AST context.
1122 ///
1123 /// The external AST source provides the ability to load parts of
1124 /// the abstract syntax tree as needed from some external storage,
1125 /// e.g., a precompiled header.
1126 void setExternalSource(IntrusiveRefCntPtr<ExternalASTSource> Source);
1127
1128 /// Retrieve a pointer to the external AST source associated
1129 /// with this AST context, if any.
1130 ExternalASTSource *getExternalSource() const {
1131 return ExternalSource.get();
1132 }
1133
1134 /// Attach an AST mutation listener to the AST context.
1135 ///
1136 /// The AST mutation listener provides the ability to track modifications to
1137 /// the abstract syntax tree entities committed after they were initially
1138 /// created.
1139 void setASTMutationListener(ASTMutationListener *Listener) {
1140 this->Listener = Listener;
1141 }
1142
1143 /// Retrieve a pointer to the AST mutation listener associated
1144 /// with this AST context, if any.
1145 ASTMutationListener *getASTMutationListener() const { return Listener; }
1146
1147 void PrintStats() const;
1148 const SmallVectorImpl<Type *>& getTypes() const { return Types; }
1149
1150 BuiltinTemplateDecl *buildBuiltinTemplateDecl(BuiltinTemplateKind BTK,
1151 const IdentifierInfo *II) const;
1152
1153 /// Create a new implicit TU-level CXXRecordDecl or RecordDecl
1154 /// declaration.
1155 RecordDecl *buildImplicitRecord(StringRef Name,
1156 RecordDecl::TagKind TK = TTK_Struct) const;
1157
1158 /// Create a new implicit TU-level typedef declaration.
1159 TypedefDecl *buildImplicitTypedef(QualType T, StringRef Name) const;
1160
1161 /// Retrieve the declaration for the 128-bit signed integer type.
1162 TypedefDecl *getInt128Decl() const;
1163
1164 /// Retrieve the declaration for the 128-bit unsigned integer type.
1165 TypedefDecl *getUInt128Decl() const;
1166
1167 //===--------------------------------------------------------------------===//
1168 // Type Constructors
1169 //===--------------------------------------------------------------------===//
1170
1171private:
1172 /// Return a type with extended qualifiers.
1173 QualType getExtQualType(const Type *Base, Qualifiers Quals) const;
1174
1175 QualType getTypeDeclTypeSlow(const TypeDecl *Decl) const;
1176
1177 QualType getPipeType(QualType T, bool ReadOnly) const;
1178
1179public:
1180 /// Return the uniqued reference to the type for an address space
1181 /// qualified type with the specified type and address space.
1182 ///
1183 /// The resulting type has a union of the qualifiers from T and the address
1184 /// space. If T already has an address space specifier, it is silently
1185 /// replaced.
1186 QualType getAddrSpaceQualType(QualType T, LangAS AddressSpace) const;
1187
1188 /// Remove any existing address space on the type and returns the type
1189 /// with qualifiers intact (or that's the idea anyway)
1190 ///
1191 /// The return type should be T with all prior qualifiers minus the address
1192 /// space.
1193 QualType removeAddrSpaceQualType(QualType T) const;
1194
1195 /// Apply Objective-C protocol qualifiers to the given type.
1196 /// \param allowOnPointerType specifies if we can apply protocol
1197 /// qualifiers on ObjCObjectPointerType. It can be set to true when
1198 /// constructing the canonical type of a Objective-C type parameter.
1199 QualType applyObjCProtocolQualifiers(QualType type,
1200 ArrayRef<ObjCProtocolDecl *> protocols, bool &hasError,
1201 bool allowOnPointerType = false) const;
1202
1203 /// Return the uniqued reference to the type for an Objective-C
1204 /// gc-qualified type.
1205 ///
1206 /// The resulting type has a union of the qualifiers from T and the gc
1207 /// attribute.
1208 QualType getObjCGCQualType(QualType T, Qualifiers::GC gcAttr) const;
1209
1210 /// Remove the existing address space on the type if it is a pointer size
1211 /// address space and return the type with qualifiers intact.
1212 QualType removePtrSizeAddrSpace(QualType T) const;
1213
1214 /// Return the uniqued reference to the type for a \c restrict
1215 /// qualified type.
1216 ///
1217 /// The resulting type has a union of the qualifiers from \p T and
1218 /// \c restrict.
1219 QualType getRestrictType(QualType T) const {
1220 return T.withFastQualifiers(Qualifiers::Restrict);
1221 }
1222
1223 /// Return the uniqued reference to the type for a \c volatile
1224 /// qualified type.
1225 ///
1226 /// The resulting type has a union of the qualifiers from \p T and
1227 /// \c volatile.
1228 QualType getVolatileType(QualType T) const {
1229 return T.withFastQualifiers(Qualifiers::Volatile);
1230 }
1231
1232 /// Return the uniqued reference to the type for a \c const
1233 /// qualified type.
1234 ///
1235 /// The resulting type has a union of the qualifiers from \p T and \c const.
1236 ///
1237 /// It can be reasonably expected that this will always be equivalent to
1238 /// calling T.withConst().
1239 QualType getConstType(QualType T) const { return T.withConst(); }
1240
1241 /// Change the ExtInfo on a function type.
1242 const FunctionType *adjustFunctionType(const FunctionType *Fn,
1243 FunctionType::ExtInfo EInfo);
1244
1245 /// Adjust the given function result type.
1246 CanQualType getCanonicalFunctionResultType(QualType ResultType) const;
1247
1248 /// Change the result type of a function type once it is deduced.
1249 void adjustDeducedFunctionResultType(FunctionDecl *FD, QualType ResultType);
1250
1251 /// Get a function type and produce the equivalent function type with the
1252 /// specified exception specification. Type sugar that can be present on a
1253 /// declaration of a function with an exception specification is permitted
1254 /// and preserved. Other type sugar (for instance, typedefs) is not.
1255 QualType getFunctionTypeWithExceptionSpec(
1256 QualType Orig, const FunctionProtoType::ExceptionSpecInfo &ESI);
1257
1258 /// Determine whether two function types are the same, ignoring
1259 /// exception specifications in cases where they're part of the type.
1260 bool hasSameFunctionTypeIgnoringExceptionSpec(QualType T, QualType U);
1261
1262 /// Change the exception specification on a function once it is
1263 /// delay-parsed, instantiated, or computed.
1264 void adjustExceptionSpec(FunctionDecl *FD,
1265 const FunctionProtoType::ExceptionSpecInfo &ESI,
1266 bool AsWritten = false);
1267
1268 /// Get a function type and produce the equivalent function type where
1269 /// pointer size address spaces in the return type and parameter tyeps are
1270 /// replaced with the default address space.
1271 QualType getFunctionTypeWithoutPtrSizes(QualType T);
1272
1273 /// Determine whether two function types are the same, ignoring pointer sizes
1274 /// in the return type and parameter types.
1275 bool hasSameFunctionTypeIgnoringPtrSizes(QualType T, QualType U);
1276
1277 /// Return the uniqued reference to the type for a complex
1278 /// number with the specified element type.
1279 QualType getComplexType(QualType T) const;
1280 CanQualType getComplexType(CanQualType T) const {
1281 return CanQualType::CreateUnsafe(getComplexType((QualType) T));
1282 }
1283
1284 /// Return the uniqued reference to the type for a pointer to
1285 /// the specified type.
1286 QualType getPointerType(QualType T) const;
1287 CanQualType getPointerType(CanQualType T) const {
1288 return CanQualType::CreateUnsafe(getPointerType((QualType) T));
1289 }
1290
1291 /// Return the uniqued reference to a type adjusted from the original
1292 /// type to a new type.
1293 QualType getAdjustedType(QualType Orig, QualType New) const;
1294 CanQualType getAdjustedType(CanQualType Orig, CanQualType New) const {
1295 return CanQualType::CreateUnsafe(
1296 getAdjustedType((QualType)Orig, (QualType)New));
1297 }
1298
1299 /// Return the uniqued reference to the decayed version of the given
1300 /// type. Can only be called on array and function types which decay to
1301 /// pointer types.
1302 QualType getDecayedType(QualType T) const;
1303 CanQualType getDecayedType(CanQualType T) const {
1304 return CanQualType::CreateUnsafe(getDecayedType((QualType) T));
1305 }
1306
1307 /// Return the uniqued reference to the atomic type for the specified
1308 /// type.
1309 QualType getAtomicType(QualType T) const;
1310
1311 /// Return the uniqued reference to the type for a block of the
1312 /// specified type.
1313 QualType getBlockPointerType(QualType T) const;
1314
1315 /// Gets the struct used to keep track of the descriptor for pointer to
1316 /// blocks.
1317 QualType getBlockDescriptorType() const;
1318
1319 /// Return a read_only pipe type for the specified type.
1320 QualType getReadPipeType(QualType T) const;
1321
1322 /// Return a write_only pipe type for the specified type.
1323 QualType getWritePipeType(QualType T) const;
1324
1325 /// Return an extended integer type with the specified signedness and bit
1326 /// count.
1327 QualType getExtIntType(bool Unsigned, unsigned NumBits) const;
1328
1329 /// Return a dependent extended integer type with the specified signedness and
1330 /// bit count.
1331 QualType getDependentExtIntType(bool Unsigned, Expr *BitsExpr) const;
1332
1333 /// Gets the struct used to keep track of the extended descriptor for
1334 /// pointer to blocks.
1335 QualType getBlockDescriptorExtendedType() const;
1336
1337 /// Map an AST Type to an OpenCLTypeKind enum value.
1338 OpenCLTypeKind getOpenCLTypeKind(const Type *T) const;
1339
1340 /// Get address space for OpenCL type.
1341 LangAS getOpenCLTypeAddrSpace(const Type *T) const;
1342
1343 void setcudaConfigureCallDecl(FunctionDecl *FD) {
1344 cudaConfigureCallDecl = FD;
1345 }
1346
1347 FunctionDecl *getcudaConfigureCallDecl() {
1348 return cudaConfigureCallDecl;
1349 }
1350
1351 /// Returns true iff we need copy/dispose helpers for the given type.
1352 bool BlockRequiresCopying(QualType Ty, const VarDecl *D);
1353
1354 /// Returns true, if given type has a known lifetime. HasByrefExtendedLayout
1355 /// is set to false in this case. If HasByrefExtendedLayout returns true,
1356 /// byref variable has extended lifetime.
1357 bool getByrefLifetime(QualType Ty,
1358 Qualifiers::ObjCLifetime &Lifetime,
1359 bool &HasByrefExtendedLayout) const;
1360
1361 /// Return the uniqued reference to the type for an lvalue reference
1362 /// to the specified type.
1363 QualType getLValueReferenceType(QualType T, bool SpelledAsLValue = true)
1364 const;
1365
1366 /// Return the uniqued reference to the type for an rvalue reference
1367 /// to the specified type.
1368 QualType getRValueReferenceType(QualType T) const;
1369
1370 /// Return the uniqued reference to the type for a member pointer to
1371 /// the specified type in the specified class.
1372 ///
1373 /// The class \p Cls is a \c Type because it could be a dependent name.
1374 QualType getMemberPointerType(QualType T, const Type *Cls) const;
1375
1376 /// Return a non-unique reference to the type for a variable array of
1377 /// the specified element type.
1378 QualType getVariableArrayType(QualType EltTy, Expr *NumElts,
1379 ArrayType::ArraySizeModifier ASM,
1380 unsigned IndexTypeQuals,
1381 SourceRange Brackets) const;
1382
1383 /// Return a non-unique reference to the type for a dependently-sized
1384 /// array of the specified element type.
1385 ///
1386 /// FIXME: We will need these to be uniqued, or at least comparable, at some
1387 /// point.
1388 QualType getDependentSizedArrayType(QualType EltTy, Expr *NumElts,
1389 ArrayType::ArraySizeModifier ASM,
1390 unsigned IndexTypeQuals,
1391 SourceRange Brackets) const;
1392
1393 /// Return a unique reference to the type for an incomplete array of
1394 /// the specified element type.
1395 QualType getIncompleteArrayType(QualType EltTy,
1396 ArrayType::ArraySizeModifier ASM,
1397 unsigned IndexTypeQuals) const;
1398
1399 /// Return the unique reference to the type for a constant array of
1400 /// the specified element type.
1401 QualType getConstantArrayType(QualType EltTy, const llvm::APInt &ArySize,
1402 const Expr *SizeExpr,
1403 ArrayType::ArraySizeModifier ASM,
1404 unsigned IndexTypeQuals) const;
1405
1406 /// Return a type for a constant array for a string literal of the
1407 /// specified element type and length.
1408 QualType getStringLiteralArrayType(QualType EltTy, unsigned Length) const;
1409
1410 /// Returns a vla type where known sizes are replaced with [*].
1411 QualType getVariableArrayDecayedType(QualType Ty) const;
1412
1413 // Convenience struct to return information about a builtin vector type.
1414 struct BuiltinVectorTypeInfo {
1415 QualType ElementType;
1416 llvm::ElementCount EC;
1417 unsigned NumVectors;
1418 BuiltinVectorTypeInfo(QualType ElementType, llvm::ElementCount EC,
1419 unsigned NumVectors)
1420 : ElementType(ElementType), EC(EC), NumVectors(NumVectors) {}
1421 };
1422
1423 /// Returns the element type, element count and number of vectors
1424 /// (in case of tuple) for a builtin vector type.
1425 BuiltinVectorTypeInfo
1426 getBuiltinVectorTypeInfo(const BuiltinType *VecTy) const;
1427
1428 /// Return the unique reference to a scalable vector type of the specified
1429 /// element type and scalable number of elements.
1430 ///
1431 /// \pre \p EltTy must be a built-in type.
1432 QualType getScalableVectorType(QualType EltTy, unsigned NumElts) const;
1433
1434 /// Return the unique reference to a vector type of the specified
1435 /// element type and size.
1436 ///
1437 /// \pre \p VectorType must be a built-in type.
1438 QualType getVectorType(QualType VectorType, unsigned NumElts,
1439 VectorType::VectorKind VecKind) const;
1440 /// Return the unique reference to the type for a dependently sized vector of
1441 /// the specified element type.
1442 QualType getDependentVectorType(QualType VectorType, Expr *SizeExpr,
1443 SourceLocation AttrLoc,
1444 VectorType::VectorKind VecKind) const;
1445
1446 /// Return the unique reference to an extended vector type
1447 /// of the specified element type and size.
1448 ///
1449 /// \pre \p VectorType must be a built-in type.
1450 QualType getExtVectorType(QualType VectorType, unsigned NumElts) const;
1451
1452 /// \pre Return a non-unique reference to the type for a dependently-sized
1453 /// vector of the specified element type.
1454 ///
1455 /// FIXME: We will need these to be uniqued, or at least comparable, at some
1456 /// point.
1457 QualType getDependentSizedExtVectorType(QualType VectorType,
1458 Expr *SizeExpr,
1459 SourceLocation AttrLoc) const;
1460
1461 /// Return the unique reference to the matrix type of the specified element
1462 /// type and size
1463 ///
1464 /// \pre \p ElementType must be a valid matrix element type (see
1465 /// MatrixType::isValidElementType).
1466 QualType getConstantMatrixType(QualType ElementType, unsigned NumRows,
1467 unsigned NumColumns) const;
1468
1469 /// Return the unique reference to the matrix type of the specified element
1470 /// type and size
1471 QualType getDependentSizedMatrixType(QualType ElementType, Expr *RowExpr,
1472 Expr *ColumnExpr,
1473 SourceLocation AttrLoc) const;
1474
1475 QualType getDependentAddressSpaceType(QualType PointeeType,
1476 Expr *AddrSpaceExpr,
1477 SourceLocation AttrLoc) const;
1478
1479 /// Return a K&R style C function type like 'int()'.
1480 QualType getFunctionNoProtoType(QualType ResultTy,
1481 const FunctionType::ExtInfo &Info) const;
1482
1483 QualType getFunctionNoProtoType(QualType ResultTy) const {
1484 return getFunctionNoProtoType(ResultTy, FunctionType::ExtInfo());
1485 }
1486
1487 /// Return a normal function type with a typed argument list.
1488 QualType getFunctionType(QualType ResultTy, ArrayRef<QualType> Args,
1489 const FunctionProtoType::ExtProtoInfo &EPI) const {
1490 return getFunctionTypeInternal(ResultTy, Args, EPI, false);
1491 }
1492
1493 QualType adjustStringLiteralBaseType(QualType StrLTy) const;
1494
1495private:
1496 /// Return a normal function type with a typed argument list.
1497 QualType getFunctionTypeInternal(QualType ResultTy, ArrayRef<QualType> Args,
1498 const FunctionProtoType::ExtProtoInfo &EPI,
1499 bool OnlyWantCanonical) const;
1500
1501public:
1502 /// Return the unique reference to the type for the specified type
1503 /// declaration.
1504 QualType getTypeDeclType(const TypeDecl *Decl,
1505 const TypeDecl *PrevDecl = nullptr) const {
1506 assert(Decl && "Passed null for Decl param")(static_cast <bool> (Decl && "Passed null for Decl param"
) ? void (0) : __assert_fail ("Decl && \"Passed null for Decl param\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/ASTContext.h"
, 1506, __extension__ __PRETTY_FUNCTION__))
;
1507 if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1508
1509 if (PrevDecl) {
1510 assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl")(static_cast <bool> (PrevDecl->TypeForDecl &&
"previous decl has no TypeForDecl") ? void (0) : __assert_fail
("PrevDecl->TypeForDecl && \"previous decl has no TypeForDecl\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/ASTContext.h"
, 1510, __extension__ __PRETTY_FUNCTION__))
;
1511 Decl->TypeForDecl = PrevDecl->TypeForDecl;
1512 return QualType(PrevDecl->TypeForDecl, 0);
1513 }
1514
1515 return getTypeDeclTypeSlow(Decl);
1516 }
1517
1518 /// Return the unique reference to the type for the specified
1519 /// typedef-name decl.
1520 QualType getTypedefType(const TypedefNameDecl *Decl,
1521 QualType Underlying = QualType()) const;
1522
1523 QualType getRecordType(const RecordDecl *Decl) const;
1524
1525 QualType getEnumType(const EnumDecl *Decl) const;
1526
1527 QualType getInjectedClassNameType(CXXRecordDecl *Decl, QualType TST) const;
1528
1529 QualType getAttributedType(attr::Kind attrKind,
1530 QualType modifiedType,
1531 QualType equivalentType);
1532
1533 QualType getSubstTemplateTypeParmType(const TemplateTypeParmType *Replaced,
1534 QualType Replacement) const;
1535 QualType getSubstTemplateTypeParmPackType(
1536 const TemplateTypeParmType *Replaced,
1537 const TemplateArgument &ArgPack);
1538
1539 QualType
1540 getTemplateTypeParmType(unsigned Depth, unsigned Index,
1541 bool ParameterPack,
1542 TemplateTypeParmDecl *ParmDecl = nullptr) const;
1543
1544 QualType getTemplateSpecializationType(TemplateName T,
1545 ArrayRef<TemplateArgument> Args,
1546 QualType Canon = QualType()) const;
1547
1548 QualType
1549 getCanonicalTemplateSpecializationType(TemplateName T,
1550 ArrayRef<TemplateArgument> Args) const;
1551
1552 QualType getTemplateSpecializationType(TemplateName T,
1553 const TemplateArgumentListInfo &Args,
1554 QualType Canon = QualType()) const;
1555
1556 TypeSourceInfo *
1557 getTemplateSpecializationTypeInfo(TemplateName T, SourceLocation TLoc,
1558 const TemplateArgumentListInfo &Args,
1559 QualType Canon = QualType()) const;
1560
1561 QualType getParenType(QualType NamedType) const;
1562
1563 QualType getMacroQualifiedType(QualType UnderlyingTy,
1564 const IdentifierInfo *MacroII) const;
1565
1566 QualType getElaboratedType(ElaboratedTypeKeyword Keyword,
1567 NestedNameSpecifier *NNS, QualType NamedType,
1568 TagDecl *OwnedTagDecl = nullptr) const;
1569 QualType getDependentNameType(ElaboratedTypeKeyword Keyword,
1570 NestedNameSpecifier *NNS,
1571 const IdentifierInfo *Name,
1572 QualType Canon = QualType()) const;
1573
1574 QualType getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
1575 NestedNameSpecifier *NNS,
1576 const IdentifierInfo *Name,
1577 const TemplateArgumentListInfo &Args) const;
1578 QualType getDependentTemplateSpecializationType(
1579 ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
1580 const IdentifierInfo *Name, ArrayRef<TemplateArgument> Args) const;
1581
1582 TemplateArgument getInjectedTemplateArg(NamedDecl *ParamDecl);
1583
1584 /// Get a template argument list with one argument per template parameter
1585 /// in a template parameter list, such as for the injected class name of
1586 /// a class template.
1587 void getInjectedTemplateArgs(const TemplateParameterList *Params,
1588 SmallVectorImpl<TemplateArgument> &Args);
1589
1590 /// Form a pack expansion type with the given pattern.
1591 /// \param NumExpansions The number of expansions for the pack, if known.
1592 /// \param ExpectPackInType If \c false, we should not expect \p Pattern to
1593 /// contain an unexpanded pack. This only makes sense if the pack
1594 /// expansion is used in a context where the arity is inferred from
1595 /// elsewhere, such as if the pattern contains a placeholder type or
1596 /// if this is the canonical type of another pack expansion type.
1597 QualType getPackExpansionType(QualType Pattern,
1598 Optional<unsigned> NumExpansions,
1599 bool ExpectPackInType = true);
1600
1601 QualType getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
1602 ObjCInterfaceDecl *PrevDecl = nullptr) const;
1603
1604 /// Legacy interface: cannot provide type arguments or __kindof.
1605 QualType getObjCObjectType(QualType Base,
1606 ObjCProtocolDecl * const *Protocols,
1607 unsigned NumProtocols) const;
1608
1609 QualType getObjCObjectType(QualType Base,
1610 ArrayRef<QualType> typeArgs,
1611 ArrayRef<ObjCProtocolDecl *> protocols,
1612 bool isKindOf) const;
1613
1614 QualType getObjCTypeParamType(const ObjCTypeParamDecl *Decl,
1615 ArrayRef<ObjCProtocolDecl *> protocols) const;
1616 void adjustObjCTypeParamBoundType(const ObjCTypeParamDecl *Orig,
1617 ObjCTypeParamDecl *New) const;
1618
1619 bool ObjCObjectAdoptsQTypeProtocols(QualType QT, ObjCInterfaceDecl *Decl);
1620
1621 /// QIdProtocolsAdoptObjCObjectProtocols - Checks that protocols in
1622 /// QT's qualified-id protocol list adopt all protocols in IDecl's list
1623 /// of protocols.
1624 bool QIdProtocolsAdoptObjCObjectProtocols(QualType QT,
1625 ObjCInterfaceDecl *IDecl);
1626
1627 /// Return a ObjCObjectPointerType type for the given ObjCObjectType.
1628 QualType getObjCObjectPointerType(QualType OIT) const;
1629
1630 /// GCC extension.
1631 QualType getTypeOfExprType(Expr *e) const;
1632 QualType getTypeOfType(QualType t) const;
1633
1634 QualType getReferenceQualifiedType(const Expr *e) const;
1635
1636 /// C++11 decltype.
1637 QualType getDecltypeType(Expr *e, QualType UnderlyingType) const;
1638
1639 /// Unary type transforms
1640 QualType getUnaryTransformType(QualType BaseType, QualType UnderlyingType,
1641 UnaryTransformType::UTTKind UKind) const;
1642
1643 /// C++11 deduced auto type.
1644 QualType getAutoType(QualType DeducedType, AutoTypeKeyword Keyword,
1645 bool IsDependent, bool IsPack = false,
1646 ConceptDecl *TypeConstraintConcept = nullptr,
1647 ArrayRef<TemplateArgument> TypeConstraintArgs ={}) const;
1648
1649 /// C++11 deduction pattern for 'auto' type.
1650 QualType getAutoDeductType() const;
1651
1652 /// C++11 deduction pattern for 'auto &&' type.
1653 QualType getAutoRRefDeductType() const;
1654
1655 /// C++17 deduced class template specialization type.
1656 QualType getDeducedTemplateSpecializationType(TemplateName Template,
1657 QualType DeducedType,
1658 bool IsDependent) const;
1659
1660 /// Return the unique reference to the type for the specified TagDecl
1661 /// (struct/union/class/enum) decl.
1662 QualType getTagDeclType(const TagDecl *Decl) const;
1663
1664 /// Return the unique type for "size_t" (C99 7.17), defined in
1665 /// <stddef.h>.
1666 ///
1667 /// The sizeof operator requires this (C99 6.5.3.4p4).
1668 CanQualType getSizeType() const;
1669
1670 /// Return the unique signed counterpart of
1671 /// the integer type corresponding to size_t.
1672 CanQualType getSignedSizeType() const;
1673
1674 /// Return the unique type for "intmax_t" (C99 7.18.1.5), defined in
1675 /// <stdint.h>.
1676 CanQualType getIntMaxType() const;
1677
1678 /// Return the unique type for "uintmax_t" (C99 7.18.1.5), defined in
1679 /// <stdint.h>.
1680 CanQualType getUIntMaxType() const;
1681
1682 /// Return the unique wchar_t type available in C++ (and available as
1683 /// __wchar_t as a Microsoft extension).
1684 QualType getWCharType() const { return WCharTy; }
1685
1686 /// Return the type of wide characters. In C++, this returns the
1687 /// unique wchar_t type. In C99, this returns a type compatible with the type
1688 /// defined in <stddef.h> as defined by the target.
1689 QualType getWideCharType() const { return WideCharTy; }
1690
1691 /// Return the type of "signed wchar_t".
1692 ///
1693 /// Used when in C++, as a GCC extension.
1694 QualType getSignedWCharType() const;
1695
1696 /// Return the type of "unsigned wchar_t".
1697 ///
1698 /// Used when in C++, as a GCC extension.
1699 QualType getUnsignedWCharType() const;
1700
1701 /// In C99, this returns a type compatible with the type
1702 /// defined in <stddef.h> as defined by the target.
1703 QualType getWIntType() const { return WIntTy; }
1704
1705 /// Return a type compatible with "intptr_t" (C99 7.18.1.4),
1706 /// as defined by the target.
1707 QualType getIntPtrType() const;
1708
1709 /// Return a type compatible with "uintptr_t" (C99 7.18.1.4),
1710 /// as defined by the target.
1711 QualType getUIntPtrType() const;
1712
1713 /// Return the unique type for "ptrdiff_t" (C99 7.17) defined in
1714 /// <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
1715 QualType getPointerDiffType() const;
1716
1717 /// Return the unique unsigned counterpart of "ptrdiff_t"
1718 /// integer type. The standard (C11 7.21.6.1p7) refers to this type
1719 /// in the definition of %tu format specifier.
1720 QualType getUnsignedPointerDiffType() const;
1721
1722 /// Return the unique type for "pid_t" defined in
1723 /// <sys/types.h>. We need this to compute the correct type for vfork().
1724 QualType getProcessIDType() const;
1725
1726 /// Return the C structure type used to represent constant CFStrings.
1727 QualType getCFConstantStringType() const;
1728
1729 /// Returns the C struct type for objc_super
1730 QualType getObjCSuperType() const;
1731 void setObjCSuperType(QualType ST) { ObjCSuperType = ST; }
1732
1733 /// Get the structure type used to representation CFStrings, or NULL
1734 /// if it hasn't yet been built.
1735 QualType getRawCFConstantStringType() const {
1736 if (CFConstantStringTypeDecl)
1737 return getTypedefType(CFConstantStringTypeDecl);
1738 return QualType();
1739 }
1740 void setCFConstantStringType(QualType T);
1741 TypedefDecl *getCFConstantStringDecl() const;
1742 RecordDecl *getCFConstantStringTagDecl() const;
1743
1744 // This setter/getter represents the ObjC type for an NSConstantString.
1745 void setObjCConstantStringInterface(ObjCInterfaceDecl *Decl);
1746 QualType getObjCConstantStringInterface() const {
1747 return ObjCConstantStringType;
1748 }
1749
1750 QualType getObjCNSStringType() const {
1751 return ObjCNSStringType;
1752 }
1753
1754 void setObjCNSStringType(QualType T) {
1755 ObjCNSStringType = T;
1756 }
1757
1758 /// Retrieve the type that \c id has been defined to, which may be
1759 /// different from the built-in \c id if \c id has been typedef'd.
1760 QualType getObjCIdRedefinitionType() const {
1761 if (ObjCIdRedefinitionType.isNull())
1762 return getObjCIdType();
1763 return ObjCIdRedefinitionType;
1764 }
1765
1766 /// Set the user-written type that redefines \c id.
1767 void setObjCIdRedefinitionType(QualType RedefType) {
1768 ObjCIdRedefinitionType = RedefType;
1769 }
1770
1771 /// Retrieve the type that \c Class has been defined to, which may be
1772 /// different from the built-in \c Class if \c Class has been typedef'd.
1773 QualType getObjCClassRedefinitionType() const {
1774 if (ObjCClassRedefinitionType.isNull())
1775 return getObjCClassType();
1776 return ObjCClassRedefinitionType;
1777 }
1778
1779 /// Set the user-written type that redefines 'SEL'.
1780 void setObjCClassRedefinitionType(QualType RedefType) {
1781 ObjCClassRedefinitionType = RedefType;
1782 }
1783
1784 /// Retrieve the type that 'SEL' has been defined to, which may be
1785 /// different from the built-in 'SEL' if 'SEL' has been typedef'd.
1786 QualType getObjCSelRedefinitionType() const {
1787 if (ObjCSelRedefinitionType.isNull())
1788 return getObjCSelType();
1789 return ObjCSelRedefinitionType;
1790 }
1791
1792 /// Set the user-written type that redefines 'SEL'.
1793 void setObjCSelRedefinitionType(QualType RedefType) {
1794 ObjCSelRedefinitionType = RedefType;
1795 }
1796
1797 /// Retrieve the identifier 'NSObject'.
1798 IdentifierInfo *getNSObjectName() const {
1799 if (!NSObjectName) {
1800 NSObjectName = &Idents.get("NSObject");
1801 }
1802
1803 return NSObjectName;
1804 }
1805
1806 /// Retrieve the identifier 'NSCopying'.
1807 IdentifierInfo *getNSCopyingName() {
1808 if (!NSCopyingName) {
1809 NSCopyingName = &Idents.get("NSCopying");
1810 }
1811
1812 return NSCopyingName;
1813 }
1814
1815 CanQualType getNSUIntegerType() const;
1816
1817 CanQualType getNSIntegerType() const;
1818
1819 /// Retrieve the identifier 'bool'.
1820 IdentifierInfo *getBoolName() const {
1821 if (!BoolName)
1822 BoolName = &Idents.get("bool");
1823 return BoolName;
1824 }
1825
1826 IdentifierInfo *getMakeIntegerSeqName() const {
1827 if (!MakeIntegerSeqName)
1828 MakeIntegerSeqName = &Idents.get("__make_integer_seq");
1829 return MakeIntegerSeqName;
1830 }
1831
1832 IdentifierInfo *getTypePackElementName() const {
1833 if (!TypePackElementName)
1834 TypePackElementName = &Idents.get("__type_pack_element");
1835 return TypePackElementName;
1836 }
1837
1838 /// Retrieve the Objective-C "instancetype" type, if already known;
1839 /// otherwise, returns a NULL type;
1840 QualType getObjCInstanceType() {
1841 return getTypeDeclType(getObjCInstanceTypeDecl());
1842 }
1843
1844 /// Retrieve the typedef declaration corresponding to the Objective-C
1845 /// "instancetype" type.
1846 TypedefDecl *getObjCInstanceTypeDecl();
1847
1848 /// Set the type for the C FILE type.
1849 void setFILEDecl(TypeDecl *FILEDecl) { this->FILEDecl = FILEDecl; }
1850
1851 /// Retrieve the C FILE type.
1852 QualType getFILEType() const {
1853 if (FILEDecl)
1854 return getTypeDeclType(FILEDecl);
1855 return QualType();
1856 }
1857
1858 /// Set the type for the C jmp_buf type.
1859 void setjmp_bufDecl(TypeDecl *jmp_bufDecl) {
1860 this->jmp_bufDecl = jmp_bufDecl;
1861 }
1862
1863 /// Retrieve the C jmp_buf type.
1864 QualType getjmp_bufType() const {
1865 if (jmp_bufDecl)
1866 return getTypeDeclType(jmp_bufDecl);
1867 return QualType();
1868 }
1869
1870 /// Set the type for the C sigjmp_buf type.
1871 void setsigjmp_bufDecl(TypeDecl *sigjmp_bufDecl) {
1872 this->sigjmp_bufDecl = sigjmp_bufDecl;
1873 }
1874
1875 /// Retrieve the C sigjmp_buf type.
1876 QualType getsigjmp_bufType() const {
1877 if (sigjmp_bufDecl)
1878 return getTypeDeclType(sigjmp_bufDecl);
1879 return QualType();
1880 }
1881
1882 /// Set the type for the C ucontext_t type.
1883 void setucontext_tDecl(TypeDecl *ucontext_tDecl) {
1884 this->ucontext_tDecl = ucontext_tDecl;
1885 }
1886
1887 /// Retrieve the C ucontext_t type.
1888 QualType getucontext_tType() const {
1889 if (ucontext_tDecl)
1890 return getTypeDeclType(ucontext_tDecl);
1891 return QualType();
1892 }
1893
1894 /// The result type of logical operations, '<', '>', '!=', etc.
1895 QualType getLogicalOperationType() const {
1896 return getLangOpts().CPlusPlus ? BoolTy : IntTy;
1897 }
1898
1899 /// Emit the Objective-CC type encoding for the given type \p T into
1900 /// \p S.
1901 ///
1902 /// If \p Field is specified then record field names are also encoded.
1903 void getObjCEncodingForType(QualType T, std::string &S,
1904 const FieldDecl *Field=nullptr,
1905 QualType *NotEncodedT=nullptr) const;
1906
1907 /// Emit the Objective-C property type encoding for the given
1908 /// type \p T into \p S.
1909 void getObjCEncodingForPropertyType(QualType T, std::string &S) const;
1910
1911 void getLegacyIntegralTypeEncoding(QualType &t) const;
1912
1913 /// Put the string version of the type qualifiers \p QT into \p S.
1914 void getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
1915 std::string &S) const;
1916
1917 /// Emit the encoded type for the function \p Decl into \p S.
1918 ///
1919 /// This is in the same format as Objective-C method encodings.
1920 ///
1921 /// \returns true if an error occurred (e.g., because one of the parameter
1922 /// types is incomplete), false otherwise.
1923 std::string getObjCEncodingForFunctionDecl(const FunctionDecl *Decl) const;
1924
1925 /// Emit the encoded type for the method declaration \p Decl into
1926 /// \p S.
1927 std::string getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
1928 bool Extended = false) const;
1929
1930 /// Return the encoded type for this block declaration.
1931 std::string getObjCEncodingForBlock(const BlockExpr *blockExpr) const;
1932
1933 /// getObjCEncodingForPropertyDecl - Return the encoded type for
1934 /// this method declaration. If non-NULL, Container must be either
1935 /// an ObjCCategoryImplDecl or ObjCImplementationDecl; it should
1936 /// only be NULL when getting encodings for protocol properties.
1937 std::string getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
1938 const Decl *Container) const;
1939
1940 bool ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
1941 ObjCProtocolDecl *rProto) const;
1942
1943 ObjCPropertyImplDecl *getObjCPropertyImplDeclForPropertyDecl(
1944 const ObjCPropertyDecl *PD,
1945 const Decl *Container) const;
1946
1947 /// Return the size of type \p T for Objective-C encoding purpose,
1948 /// in characters.
1949 CharUnits getObjCEncodingTypeSize(QualType T) const;
1950
1951 /// Retrieve the typedef corresponding to the predefined \c id type
1952 /// in Objective-C.
1953 TypedefDecl *getObjCIdDecl() const;
1954
1955 /// Represents the Objective-CC \c id type.
1956 ///
1957 /// This is set up lazily, by Sema. \c id is always a (typedef for a)
1958 /// pointer type, a pointer to a struct.
1959 QualType getObjCIdType() const {
1960 return getTypeDeclType(getObjCIdDecl());
1961 }
1962
1963 /// Retrieve the typedef corresponding to the predefined 'SEL' type
1964 /// in Objective-C.
1965 TypedefDecl *getObjCSelDecl() const;
1966
1967 /// Retrieve the type that corresponds to the predefined Objective-C
1968 /// 'SEL' type.
1969 QualType getObjCSelType() const {
1970 return getTypeDeclType(getObjCSelDecl());
1971 }
1972
1973 /// Retrieve the typedef declaration corresponding to the predefined
1974 /// Objective-C 'Class' type.
1975 TypedefDecl *getObjCClassDecl() const;
1976
1977 /// Represents the Objective-C \c Class type.
1978 ///
1979 /// This is set up lazily, by Sema. \c Class is always a (typedef for a)
1980 /// pointer type, a pointer to a struct.
1981 QualType getObjCClassType() const {
1982 return getTypeDeclType(getObjCClassDecl());
1983 }
1984
1985 /// Retrieve the Objective-C class declaration corresponding to
1986 /// the predefined \c Protocol class.
1987 ObjCInterfaceDecl *getObjCProtocolDecl() const;
1988
1989 /// Retrieve declaration of 'BOOL' typedef
1990 TypedefDecl *getBOOLDecl() const {
1991 return BOOLDecl;
1992 }
1993
1994 /// Save declaration of 'BOOL' typedef
1995 void setBOOLDecl(TypedefDecl *TD) {
1996 BOOLDecl = TD;
1997 }
1998
1999 /// type of 'BOOL' type.
2000 QualType getBOOLType() const {
2001 return getTypeDeclType(getBOOLDecl());
2002 }
2003
2004 /// Retrieve the type of the Objective-C \c Protocol class.
2005 QualType getObjCProtoType() const {
2006 return getObjCInterfaceType(getObjCProtocolDecl());
2007 }
2008
2009 /// Retrieve the C type declaration corresponding to the predefined
2010 /// \c __builtin_va_list type.
2011 TypedefDecl *getBuiltinVaListDecl() const;
2012
2013 /// Retrieve the type of the \c __builtin_va_list type.
2014 QualType getBuiltinVaListType() const {
2015 return getTypeDeclType(getBuiltinVaListDecl());
2016 }
2017
2018 /// Retrieve the C type declaration corresponding to the predefined
2019 /// \c __va_list_tag type used to help define the \c __builtin_va_list type
2020 /// for some targets.
2021 Decl *getVaListTagDecl() const;
2022
2023 /// Retrieve the C type declaration corresponding to the predefined
2024 /// \c __builtin_ms_va_list type.
2025 TypedefDecl *getBuiltinMSVaListDecl() const;
2026
2027 /// Retrieve the type of the \c __builtin_ms_va_list type.
2028 QualType getBuiltinMSVaListType() const {
2029 return getTypeDeclType(getBuiltinMSVaListDecl());
2030 }
2031
2032 /// Retrieve the implicitly-predeclared 'struct _GUID' declaration.
2033 TagDecl *getMSGuidTagDecl() const { return MSGuidTagDecl; }
2034
2035 /// Retrieve the implicitly-predeclared 'struct _GUID' type.
2036 QualType getMSGuidType() const {
2037 assert(MSGuidTagDecl && "asked for GUID type but MS extensions disabled")(static_cast <bool> (MSGuidTagDecl && "asked for GUID type but MS extensions disabled"
) ? void (0) : __assert_fail ("MSGuidTagDecl && \"asked for GUID type but MS extensions disabled\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/ASTContext.h"
, 2037, __extension__ __PRETTY_FUNCTION__))
;
2038 return getTagDeclType(MSGuidTagDecl);
2039 }
2040
2041 /// Return whether a declaration to a builtin is allowed to be
2042 /// overloaded/redeclared.
2043 bool canBuiltinBeRedeclared(const FunctionDecl *) const;
2044
2045 /// Return a type with additional \c const, \c volatile, or
2046 /// \c restrict qualifiers.
2047 QualType getCVRQualifiedType(QualType T, unsigned CVR) const {
2048 return getQualifiedType(T, Qualifiers::fromCVRMask(CVR));
2049 }
2050
2051 /// Un-split a SplitQualType.
2052 QualType getQualifiedType(SplitQualType split) const {
2053 return getQualifiedType(split.Ty, split.Quals);
2054 }
2055
2056 /// Return a type with additional qualifiers.
2057 QualType getQualifiedType(QualType T, Qualifiers Qs) const {
2058 if (!Qs.hasNonFastQualifiers())
2059 return T.withFastQualifiers(Qs.getFastQualifiers());
2060 QualifierCollector Qc(Qs);
2061 const Type *Ptr = Qc.strip(T);
2062 return getExtQualType(Ptr, Qc);
2063 }
2064
2065 /// Return a type with additional qualifiers.
2066 QualType getQualifiedType(const Type *T, Qualifiers Qs) const {
2067 if (!Qs.hasNonFastQualifiers())
2068 return QualType(T, Qs.getFastQualifiers());
2069 return getExtQualType(T, Qs);
2070 }
2071
2072 /// Return a type with the given lifetime qualifier.
2073 ///
2074 /// \pre Neither type.ObjCLifetime() nor \p lifetime may be \c OCL_None.
2075 QualType getLifetimeQualifiedType(QualType type,
2076 Qualifiers::ObjCLifetime lifetime) {
2077 assert(type.getObjCLifetime() == Qualifiers::OCL_None)(static_cast <bool> (type.getObjCLifetime() == Qualifiers
::OCL_None) ? void (0) : __assert_fail ("type.getObjCLifetime() == Qualifiers::OCL_None"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/ASTContext.h"
, 2077, __extension__ __PRETTY_FUNCTION__))
;
2078 assert(lifetime != Qualifiers::OCL_None)(static_cast <bool> (lifetime != Qualifiers::OCL_None) ?
void (0) : __assert_fail ("lifetime != Qualifiers::OCL_None"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/ASTContext.h"
, 2078, __extension__ __PRETTY_FUNCTION__))
;
2079
2080 Qualifiers qs;
2081 qs.addObjCLifetime(lifetime);
2082 return getQualifiedType(type, qs);
2083 }
2084
2085 /// getUnqualifiedObjCPointerType - Returns version of
2086 /// Objective-C pointer type with lifetime qualifier removed.
2087 QualType getUnqualifiedObjCPointerType(QualType type) const {
2088 if (!type.getTypePtr()->isObjCObjectPointerType() ||
2089 !type.getQualifiers().hasObjCLifetime())
2090 return type;
2091 Qualifiers Qs = type.getQualifiers();
2092 Qs.removeObjCLifetime();
2093 return getQualifiedType(type.getUnqualifiedType(), Qs);
2094 }
2095
2096 unsigned char getFixedPointScale(QualType Ty) const;
2097 unsigned char getFixedPointIBits(QualType Ty) const;
2098 llvm::FixedPointSemantics getFixedPointSemantics(QualType Ty) const;
2099 llvm::APFixedPoint getFixedPointMax(QualType Ty) const;
2100 llvm::APFixedPoint getFixedPointMin(QualType Ty) const;
2101
2102 DeclarationNameInfo getNameForTemplate(TemplateName Name,
2103 SourceLocation NameLoc) const;
2104
2105 TemplateName getOverloadedTemplateName(UnresolvedSetIterator Begin,
2106 UnresolvedSetIterator End) const;
2107 TemplateName getAssumedTemplateName(DeclarationName Name) const;
2108
2109 TemplateName getQualifiedTemplateName(NestedNameSpecifier *NNS,
2110 bool TemplateKeyword,
2111 TemplateDecl *Template) const;
2112
2113 TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
2114 const IdentifierInfo *Name) const;
2115 TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
2116 OverloadedOperatorKind Operator) const;
2117 TemplateName getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
2118 TemplateName replacement) const;
2119 TemplateName getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
2120 const TemplateArgument &ArgPack) const;
2121
2122 enum GetBuiltinTypeError {
2123 /// No error
2124 GE_None,
2125
2126 /// Missing a type
2127 GE_Missing_type,
2128
2129 /// Missing a type from <stdio.h>
2130 GE_Missing_stdio,
2131
2132 /// Missing a type from <setjmp.h>
2133 GE_Missing_setjmp,
2134
2135 /// Missing a type from <ucontext.h>
2136 GE_Missing_ucontext
2137 };
2138
2139 QualType DecodeTypeStr(const char *&Str, const ASTContext &Context,
2140 ASTContext::GetBuiltinTypeError &Error,
2141 bool &RequireICE, bool AllowTypeModifiers) const;
2142
2143 /// Return the type for the specified builtin.
2144 ///
2145 /// If \p IntegerConstantArgs is non-null, it is filled in with a bitmask of
2146 /// arguments to the builtin that are required to be integer constant
2147 /// expressions.
2148 QualType GetBuiltinType(unsigned ID, GetBuiltinTypeError &Error,
2149 unsigned *IntegerConstantArgs = nullptr) const;
2150
2151 /// Types and expressions required to build C++2a three-way comparisons
2152 /// using operator<=>, including the values return by builtin <=> operators.
2153 ComparisonCategories CompCategories;
2154
2155private:
2156 CanQualType getFromTargetType(unsigned Type) const;
2157 TypeInfo getTypeInfoImpl(const Type *T) const;
2158
2159 //===--------------------------------------------------------------------===//
2160 // Type Predicates.
2161 //===--------------------------------------------------------------------===//
2162
2163public:
2164 /// Return one of the GCNone, Weak or Strong Objective-C garbage
2165 /// collection attributes.
2166 Qualifiers::GC getObjCGCAttrKind(QualType Ty) const;
2167
2168 /// Return true if the given vector types are of the same unqualified
2169 /// type or if they are equivalent to the same GCC vector type.
2170 ///
2171 /// \note This ignores whether they are target-specific (AltiVec or Neon)
2172 /// types.
2173 bool areCompatibleVectorTypes(QualType FirstVec, QualType SecondVec);
2174
2175 /// Return true if the given types are an SVE builtin and a VectorType that
2176 /// is a fixed-length representation of the SVE builtin for a specific
2177 /// vector-length.
2178 bool areCompatibleSveTypes(QualType FirstType, QualType SecondType);
2179
2180 /// Return true if the given vector types are lax-compatible SVE vector types,
2181 /// false otherwise.
2182 bool areLaxCompatibleSveTypes(QualType FirstType, QualType SecondType);
2183
2184 /// Return true if the type has been explicitly qualified with ObjC ownership.
2185 /// A type may be implicitly qualified with ownership under ObjC ARC, and in
2186 /// some cases the compiler treats these differently.
2187 bool hasDirectOwnershipQualifier(QualType Ty) const;
2188
2189 /// Return true if this is an \c NSObject object with its \c NSObject
2190 /// attribute set.
2191 static bool isObjCNSObjectType(QualType Ty) {
2192 return Ty->isObjCNSObjectType();
2193 }
2194
2195 //===--------------------------------------------------------------------===//
2196 // Type Sizing and Analysis
2197 //===--------------------------------------------------------------------===//
2198
2199 /// Return the APFloat 'semantics' for the specified scalar floating
2200 /// point type.
2201 const llvm::fltSemantics &getFloatTypeSemantics(QualType T) const;
2202
2203 /// Get the size and alignment of the specified complete type in bits.
2204 TypeInfo getTypeInfo(const Type *T) const;
2205 TypeInfo getTypeInfo(QualType T) const { return getTypeInfo(T.getTypePtr()); }
2206
2207 /// Get default simd alignment of the specified complete type in bits.
2208 unsigned getOpenMPDefaultSimdAlign(QualType T) const;
2209
2210 /// Return the size of the specified (complete) type \p T, in bits.
2211 uint64_t getTypeSize(QualType T) const { return getTypeInfo(T).Width; }
2212 uint64_t getTypeSize(const Type *T) const { return getTypeInfo(T).Width; }
2213
2214 /// Return the size of the character type, in bits.
2215 uint64_t getCharWidth() const {
2216 return getTypeSize(CharTy);
2217 }
2218
2219 /// Convert a size in bits to a size in characters.
2220 CharUnits toCharUnitsFromBits(int64_t BitSize) const;
2221
2222 /// Convert a size in characters to a size in bits.
2223 int64_t toBits(CharUnits CharSize) const;
2224
2225 /// Return the size of the specified (complete) type \p T, in
2226 /// characters.
2227 CharUnits getTypeSizeInChars(QualType T) const;
2228 CharUnits getTypeSizeInChars(const Type *T) const;
2229
2230 Optional<CharUnits> getTypeSizeInCharsIfKnown(QualType Ty) const {
2231 if (Ty->isIncompleteType() || Ty->isDependentType())
2232 return None;
2233 return getTypeSizeInChars(Ty);
2234 }
2235
2236 Optional<CharUnits> getTypeSizeInCharsIfKnown(const Type *Ty) const {
2237 return getTypeSizeInCharsIfKnown(QualType(Ty, 0));
2238 }
2239
2240 /// Return the ABI-specified alignment of a (complete) type \p T, in
2241 /// bits.
2242 unsigned getTypeAlign(QualType T) const { return getTypeInfo(T).Align; }
2243 unsigned getTypeAlign(const Type *T) const { return getTypeInfo(T).Align; }
2244
2245 /// Return the ABI-specified natural alignment of a (complete) type \p T,
2246 /// before alignment adjustments, in bits.
2247 ///
2248 /// This alignment is curently used only by ARM and AArch64 when passing
2249 /// arguments of a composite type.
2250 unsigned getTypeUnadjustedAlign(QualType T) const {
2251 return getTypeUnadjustedAlign(T.getTypePtr());
2252 }
2253 unsigned getTypeUnadjustedAlign(const Type *T) const;
2254
2255 /// Return the alignment of a type, in bits, or 0 if
2256 /// the type is incomplete and we cannot determine the alignment (for
2257 /// example, from alignment attributes). The returned alignment is the
2258 /// Preferred alignment if NeedsPreferredAlignment is true, otherwise is the
2259 /// ABI alignment.
2260 unsigned getTypeAlignIfKnown(QualType T,
2261 bool NeedsPreferredAlignment = false) const;
2262
2263 /// Return the ABI-specified alignment of a (complete) type \p T, in
2264 /// characters.
2265 CharUnits getTypeAlignInChars(QualType T) const;
2266 CharUnits getTypeAlignInChars(const Type *T) const;
2267
2268 /// Return the PreferredAlignment of a (complete) type \p T, in
2269 /// characters.
2270 CharUnits getPreferredTypeAlignInChars(QualType T) const {
2271 return toCharUnitsFromBits(getPreferredTypeAlign(T));
2272 }
2273
2274 /// getTypeUnadjustedAlignInChars - Return the ABI-specified alignment of a type,
2275 /// in characters, before alignment adjustments. This method does not work on
2276 /// incomplete types.
2277 CharUnits getTypeUnadjustedAlignInChars(QualType T) const;
2278 CharUnits getTypeUnadjustedAlignInChars(const Type *T) const;
2279
2280 // getTypeInfoDataSizeInChars - Return the size of a type, in chars. If the
2281 // type is a record, its data size is returned.
2282 TypeInfoChars getTypeInfoDataSizeInChars(QualType T) const;
2283
2284 TypeInfoChars getTypeInfoInChars(const Type *T) const;
2285 TypeInfoChars getTypeInfoInChars(QualType T) const;
2286
2287 /// Determine if the alignment the type has was required using an
2288 /// alignment attribute.
2289 bool isAlignmentRequired(const Type *T) const;
2290 bool isAlignmentRequired(QualType T) const;
2291
2292 /// Return the "preferred" alignment of the specified type \p T for
2293 /// the current target, in bits.
2294 ///
2295 /// This can be different than the ABI alignment in cases where it is
2296 /// beneficial for performance or backwards compatibility preserving to
2297 /// overalign a data type. (Note: despite the name, the preferred alignment
2298 /// is ABI-impacting, and not an optimization.)
2299 unsigned getPreferredTypeAlign(QualType T) const {
2300 return getPreferredTypeAlign(T.getTypePtr());
2301 }
2302 unsigned getPreferredTypeAlign(const Type *T) const;
2303
2304 /// Return the default alignment for __attribute__((aligned)) on
2305 /// this target, to be used if no alignment value is specified.
2306 unsigned getTargetDefaultAlignForAttributeAligned() const;
2307
2308 /// Return the alignment in bits that should be given to a
2309 /// global variable with type \p T.
2310 unsigned getAlignOfGlobalVar(QualType T) const;
2311
2312 /// Return the alignment in characters that should be given to a
2313 /// global variable with type \p T.
2314 CharUnits getAlignOfGlobalVarInChars(QualType T) const;
2315
2316 /// Return a conservative estimate of the alignment of the specified
2317 /// decl \p D.
2318 ///
2319 /// \pre \p D must not be a bitfield type, as bitfields do not have a valid
2320 /// alignment.
2321 ///
2322 /// If \p ForAlignof, references are treated like their underlying type
2323 /// and large arrays don't get any special treatment. If not \p ForAlignof
2324 /// it computes the value expected by CodeGen: references are treated like
2325 /// pointers and large arrays get extra alignment.
2326 CharUnits getDeclAlign(const Decl *D, bool ForAlignof = false) const;
2327
2328 /// Return the alignment (in bytes) of the thrown exception object. This is
2329 /// only meaningful for targets that allocate C++ exceptions in a system
2330 /// runtime, such as those using the Itanium C++ ABI.
2331 CharUnits getExnObjectAlignment() const;
2332
2333 /// Get or compute information about the layout of the specified
2334 /// record (struct/union/class) \p D, which indicates its size and field
2335 /// position information.
2336 const ASTRecordLayout &getASTRecordLayout(const RecordDecl *D) const;
2337
2338 /// Get or compute information about the layout of the specified
2339 /// Objective-C interface.
2340 const ASTRecordLayout &getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D)
2341 const;
2342
2343 void DumpRecordLayout(const RecordDecl *RD, raw_ostream &OS,
2344 bool Simple = false) const;
2345
2346 /// Get or compute information about the layout of the specified
2347 /// Objective-C implementation.
2348 ///
2349 /// This may differ from the interface if synthesized ivars are present.
2350 const ASTRecordLayout &
2351 getASTObjCImplementationLayout(const ObjCImplementationDecl *D) const;
2352
2353 /// Get our current best idea for the key function of the
2354 /// given record decl, or nullptr if there isn't one.
2355 ///
2356 /// The key function is, according to the Itanium C++ ABI section 5.2.3:
2357 /// ...the first non-pure virtual function that is not inline at the
2358 /// point of class definition.
2359 ///
2360 /// Other ABIs use the same idea. However, the ARM C++ ABI ignores
2361 /// virtual functions that are defined 'inline', which means that
2362 /// the result of this computation can change.
2363 const CXXMethodDecl *getCurrentKeyFunction(const CXXRecordDecl *RD);
2364
2365 /// Observe that the given method cannot be a key function.
2366 /// Checks the key-function cache for the method's class and clears it
2367 /// if matches the given declaration.
2368 ///
2369 /// This is used in ABIs where out-of-line definitions marked
2370 /// inline are not considered to be key functions.
2371 ///
2372 /// \param method should be the declaration from the class definition
2373 void setNonKeyFunction(const CXXMethodDecl *method);
2374
2375 /// Loading virtual member pointers using the virtual inheritance model
2376 /// always results in an adjustment using the vbtable even if the index is
2377 /// zero.
2378 ///
2379 /// This is usually OK because the first slot in the vbtable points
2380 /// backwards to the top of the MDC. However, the MDC might be reusing a
2381 /// vbptr from an nv-base. In this case, the first slot in the vbtable
2382 /// points to the start of the nv-base which introduced the vbptr and *not*
2383 /// the MDC. Modify the NonVirtualBaseAdjustment to account for this.
2384 CharUnits getOffsetOfBaseWithVBPtr(const CXXRecordDecl *RD) const;
2385
2386 /// Get the offset of a FieldDecl or IndirectFieldDecl, in bits.
2387 uint64_t getFieldOffset(const ValueDecl *FD) const;
2388
2389 /// Get the offset of an ObjCIvarDecl in bits.
2390 uint64_t lookupFieldBitOffset(const ObjCInterfaceDecl *OID,
2391 const ObjCImplementationDecl *ID,
2392 const ObjCIvarDecl *Ivar) const;
2393
2394 /// Find the 'this' offset for the member path in a pointer-to-member
2395 /// APValue.
2396 CharUnits getMemberPointerPathAdjustment(const APValue &MP) const;
2397
2398 bool isNearlyEmpty(const CXXRecordDecl *RD) const;
2399
2400 VTableContextBase *getVTableContext();
2401
2402 /// If \p T is null pointer, assume the target in ASTContext.
2403 MangleContext *createMangleContext(const TargetInfo *T = nullptr);
2404
2405 /// Creates a device mangle context to correctly mangle lambdas in a mixed
2406 /// architecture compile by setting the lambda mangling number source to the
2407 /// DeviceLambdaManglingNumber. Currently this asserts that the TargetInfo
2408 /// (from the AuxTargetInfo) is a an itanium target.
2409 MangleContext *createDeviceMangleContext(const TargetInfo &T);
2410
2411 void DeepCollectObjCIvars(const ObjCInterfaceDecl *OI, bool leafClass,
2412 SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const;
2413
2414 unsigned CountNonClassIvars(const ObjCInterfaceDecl *OI) const;
2415 void CollectInheritedProtocols(const Decl *CDecl,
2416 llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols);
2417
2418 /// Return true if the specified type has unique object representations
2419 /// according to (C++17 [meta.unary.prop]p9)
2420 bool hasUniqueObjectRepresentations(QualType Ty) const;
2421
2422 //===--------------------------------------------------------------------===//
2423 // Type Operators
2424 //===--------------------------------------------------------------------===//
2425
2426 /// Return the canonical (structural) type corresponding to the
2427 /// specified potentially non-canonical type \p T.
2428 ///
2429 /// The non-canonical version of a type may have many "decorated" versions of
2430 /// types. Decorators can include typedefs, 'typeof' operators, etc. The
2431 /// returned type is guaranteed to be free of any of these, allowing two
2432 /// canonical types to be compared for exact equality with a simple pointer
2433 /// comparison.
2434 CanQualType getCanonicalType(QualType T) const {
2435 return CanQualType::CreateUnsafe(T.getCanonicalType());
2436 }
2437
2438 const Type *getCanonicalType(const Type *T) const {
2439 return T->getCanonicalTypeInternal().getTypePtr();
2440 }
2441
2442 /// Return the canonical parameter type corresponding to the specific
2443 /// potentially non-canonical one.
2444 ///
2445 /// Qualifiers are stripped off, functions are turned into function
2446 /// pointers, and arrays decay one level into pointers.
2447 CanQualType getCanonicalParamType(QualType T) const;
2448
2449 /// Determine whether the given types \p T1 and \p T2 are equivalent.
2450 bool hasSameType(QualType T1, QualType T2) const {
2451 return getCanonicalType(T1) == getCanonicalType(T2);
2452 }
2453 bool hasSameType(const Type *T1, const Type *T2) const {
2454 return getCanonicalType(T1) == getCanonicalType(T2);
2455 }
2456
2457 /// Return this type as a completely-unqualified array type,
2458 /// capturing the qualifiers in \p Quals.
2459 ///
2460 /// This will remove the minimal amount of sugaring from the types, similar
2461 /// to the behavior of QualType::getUnqualifiedType().
2462 ///
2463 /// \param T is the qualified type, which may be an ArrayType
2464 ///
2465 /// \param Quals will receive the full set of qualifiers that were
2466 /// applied to the array.
2467 ///
2468 /// \returns if this is an array type, the completely unqualified array type
2469 /// that corresponds to it. Otherwise, returns T.getUnqualifiedType().
2470 QualType getUnqualifiedArrayType(QualType T, Qualifiers &Quals);
2471
2472 /// Determine whether the given types are equivalent after
2473 /// cvr-qualifiers have been removed.
2474 bool hasSameUnqualifiedType(QualType T1, QualType T2) const {
2475 return getCanonicalType(T1).getTypePtr() ==
2476 getCanonicalType(T2).getTypePtr();
2477 }
2478
2479 bool hasSameNullabilityTypeQualifier(QualType SubT, QualType SuperT,
2480 bool IsParam) const {
2481 auto SubTnullability = SubT->getNullability(*this);
2482 auto SuperTnullability = SuperT->getNullability(*this);
2483 if (SubTnullability.hasValue() == SuperTnullability.hasValue()) {
2484 // Neither has nullability; return true
2485 if (!SubTnullability)
2486 return true;
2487 // Both have nullability qualifier.
2488 if (*SubTnullability == *SuperTnullability ||
2489 *SubTnullability == NullabilityKind::Unspecified ||
2490 *SuperTnullability == NullabilityKind::Unspecified)
2491 return true;
2492
2493 if (IsParam) {
2494 // Ok for the superclass method parameter to be "nonnull" and the subclass
2495 // method parameter to be "nullable"
2496 return (*SuperTnullability == NullabilityKind::NonNull &&
2497 *SubTnullability == NullabilityKind::Nullable);
2498 }
2499 // For the return type, it's okay for the superclass method to specify
2500 // "nullable" and the subclass method specify "nonnull"
2501 return (*SuperTnullability == NullabilityKind::Nullable &&
2502 *SubTnullability == NullabilityKind::NonNull);
2503 }
2504 return true;
2505 }
2506
2507 bool ObjCMethodsAreEqual(const ObjCMethodDecl *MethodDecl,
2508 const ObjCMethodDecl *MethodImp);
2509
2510 bool UnwrapSimilarTypes(QualType &T1, QualType &T2);
2511 void UnwrapSimilarArrayTypes(QualType &T1, QualType &T2);
2512
2513 /// Determine if two types are similar, according to the C++ rules. That is,
2514 /// determine if they are the same other than qualifiers on the initial
2515 /// sequence of pointer / pointer-to-member / array (and in Clang, object
2516 /// pointer) types and their element types.
2517 ///
2518 /// Clang offers a number of qualifiers in addition to the C++ qualifiers;
2519 /// those qualifiers are also ignored in the 'similarity' check.
2520 bool hasSimilarType(QualType T1, QualType T2);
2521
2522 /// Determine if two types are similar, ignoring only CVR qualifiers.
2523 bool hasCvrSimilarType(QualType T1, QualType T2);
2524
2525 /// Retrieves the "canonical" nested name specifier for a
2526 /// given nested name specifier.
2527 ///
2528 /// The canonical nested name specifier is a nested name specifier
2529 /// that uniquely identifies a type or namespace within the type
2530 /// system. For example, given:
2531 ///
2532 /// \code
2533 /// namespace N {
2534 /// struct S {
2535 /// template<typename T> struct X { typename T* type; };
2536 /// };
2537 /// }
2538 ///
2539 /// template<typename T> struct Y {
2540 /// typename N::S::X<T>::type member;
2541 /// };
2542 /// \endcode
2543 ///
2544 /// Here, the nested-name-specifier for N::S::X<T>:: will be
2545 /// S::X<template-param-0-0>, since 'S' and 'X' are uniquely defined
2546 /// by declarations in the type system and the canonical type for
2547 /// the template type parameter 'T' is template-param-0-0.
2548 NestedNameSpecifier *
2549 getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const;
2550
2551 /// Retrieves the default calling convention for the current target.
2552 CallingConv getDefaultCallingConvention(bool IsVariadic,
2553 bool IsCXXMethod,
2554 bool IsBuiltin = false) const;
2555
2556 /// Retrieves the "canonical" template name that refers to a
2557 /// given template.
2558 ///
2559 /// The canonical template name is the simplest expression that can
2560 /// be used to refer to a given template. For most templates, this
2561 /// expression is just the template declaration itself. For example,
2562 /// the template std::vector can be referred to via a variety of
2563 /// names---std::vector, \::std::vector, vector (if vector is in
2564 /// scope), etc.---but all of these names map down to the same
2565 /// TemplateDecl, which is used to form the canonical template name.
2566 ///
2567 /// Dependent template names are more interesting. Here, the
2568 /// template name could be something like T::template apply or
2569 /// std::allocator<T>::template rebind, where the nested name
2570 /// specifier itself is dependent. In this case, the canonical
2571 /// template name uses the shortest form of the dependent
2572 /// nested-name-specifier, which itself contains all canonical
2573 /// types, values, and templates.
2574 TemplateName getCanonicalTemplateName(TemplateName Name) const;
2575
2576 /// Determine whether the given template names refer to the same
2577 /// template.
2578 bool hasSameTemplateName(TemplateName X, TemplateName Y);
2579
2580 /// Retrieve the "canonical" template argument.
2581 ///
2582 /// The canonical template argument is the simplest template argument
2583 /// (which may be a type, value, expression, or declaration) that
2584 /// expresses the value of the argument.
2585 TemplateArgument getCanonicalTemplateArgument(const TemplateArgument &Arg)
2586 const;
2587
2588 /// Type Query functions. If the type is an instance of the specified class,
2589 /// return the Type pointer for the underlying maximally pretty type. This
2590 /// is a member of ASTContext because this may need to do some amount of
2591 /// canonicalization, e.g. to move type qualifiers into the element type.
2592 const ArrayType *getAsArrayType(QualType T) const;
2593 const ConstantArrayType *getAsConstantArrayType(QualType T) const {
2594 return dyn_cast_or_null<ConstantArrayType>(getAsArrayType(T));
2595 }
2596 const VariableArrayType *getAsVariableArrayType(QualType T) const {
2597 return dyn_cast_or_null<VariableArrayType>(getAsArrayType(T));
2598 }
2599 const IncompleteArrayType *getAsIncompleteArrayType(QualType T) const {
2600 return dyn_cast_or_null<IncompleteArrayType>(getAsArrayType(T));
2601 }
2602 const DependentSizedArrayType *getAsDependentSizedArrayType(QualType T)
2603 const {
2604 return dyn_cast_or_null<DependentSizedArrayType>(getAsArrayType(T));
2605 }
2606
2607 /// Return the innermost element type of an array type.
2608 ///
2609 /// For example, will return "int" for int[m][n]
2610 QualType getBaseElementType(const ArrayType *VAT) const;
2611
2612 /// Return the innermost element type of a type (which needn't
2613 /// actually be an array type).
2614 QualType getBaseElementType(QualType QT) const;
2615
2616 /// Return number of constant array elements.
2617 uint64_t getConstantArrayElementCount(const ConstantArrayType *CA) const;
2618
2619 /// Perform adjustment on the parameter type of a function.
2620 ///
2621 /// This routine adjusts the given parameter type @p T to the actual
2622 /// parameter type used by semantic analysis (C99 6.7.5.3p[7,8],
2623 /// C++ [dcl.fct]p3). The adjusted parameter type is returned.
2624 QualType getAdjustedParameterType(QualType T) const;
2625
2626 /// Retrieve the parameter type as adjusted for use in the signature
2627 /// of a function, decaying array and function types and removing top-level
2628 /// cv-qualifiers.
2629 QualType getSignatureParameterType(QualType T) const;
2630
2631 QualType getExceptionObjectType(QualType T) const;
2632
2633 /// Return the properly qualified result of decaying the specified
2634 /// array type to a pointer.
2635 ///
2636 /// This operation is non-trivial when handling typedefs etc. The canonical
2637 /// type of \p T must be an array type, this returns a pointer to a properly
2638 /// qualified element of the array.
2639 ///
2640 /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
2641 QualType getArrayDecayedType(QualType T) const;
2642
2643 /// Return the type that \p PromotableType will promote to: C99
2644 /// 6.3.1.1p2, assuming that \p PromotableType is a promotable integer type.
2645 QualType getPromotedIntegerType(QualType PromotableType) const;
2646
2647 /// Recurses in pointer/array types until it finds an Objective-C
2648 /// retainable type and returns its ownership.
2649 Qualifiers::ObjCLifetime getInnerObjCOwnership(QualType T) const;
2650
2651 /// Whether this is a promotable bitfield reference according
2652 /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
2653 ///
2654 /// \returns the type this bit-field will promote to, or NULL if no
2655 /// promotion occurs.
2656 QualType isPromotableBitField(Expr *E) const;
2657
2658 /// Return the highest ranked integer type, see C99 6.3.1.8p1.
2659 ///
2660 /// If \p LHS > \p RHS, returns 1. If \p LHS == \p RHS, returns 0. If
2661 /// \p LHS < \p RHS, return -1.
2662 int getIntegerTypeOrder(QualType LHS, QualType RHS) const;
2663
2664 /// Compare the rank of the two specified floating point types,
2665 /// ignoring the domain of the type (i.e. 'double' == '_Complex double').
2666 ///
2667 /// If \p LHS > \p RHS, returns 1. If \p LHS == \p RHS, returns 0. If
2668 /// \p LHS < \p RHS, return -1.
2669 int getFloatingTypeOrder(QualType LHS, QualType RHS) const;
2670
2671 /// Compare the rank of two floating point types as above, but compare equal
2672 /// if both types have the same floating-point semantics on the target (i.e.
2673 /// long double and double on AArch64 will return 0).
2674 int getFloatingTypeSemanticOrder(QualType LHS, QualType RHS) const;
2675
2676 /// Return a real floating point or a complex type (based on
2677 /// \p typeDomain/\p typeSize).
2678 ///
2679 /// \param typeDomain a real floating point or complex type.
2680 /// \param typeSize a real floating point or complex type.
2681 QualType getFloatingTypeOfSizeWithinDomain(QualType typeSize,
2682 QualType typeDomain) const;
2683
2684 unsigned getTargetAddressSpace(QualType T) const {
2685 return getTargetAddressSpace(T.getQualifiers());
2686 }
2687
2688 unsigned getTargetAddressSpace(Qualifiers Q) const {
2689 return getTargetAddressSpace(Q.getAddressSpace());
2690 }
2691
2692 unsigned getTargetAddressSpace(LangAS AS) const;
2693
2694 LangAS getLangASForBuiltinAddressSpace(unsigned AS) const;
2695
2696 /// Get target-dependent integer value for null pointer which is used for
2697 /// constant folding.
2698 uint64_t getTargetNullPointerValue(QualType QT) const;
2699
2700 bool addressSpaceMapManglingFor(LangAS AS) const {
2701 return AddrSpaceMapMangling || isTargetAddressSpace(AS);
2702 }
2703
2704private:
2705 // Helper for integer ordering
2706 unsigned getIntegerRank(const Type *T) const;
2707
2708public:
2709 //===--------------------------------------------------------------------===//
2710 // Type Compatibility Predicates
2711 //===--------------------------------------------------------------------===//
2712
2713 /// Compatibility predicates used to check assignment expressions.
2714 bool typesAreCompatible(QualType T1, QualType T2,
2715 bool CompareUnqualified = false); // C99 6.2.7p1
2716
2717 bool propertyTypesAreCompatible(QualType, QualType);
2718 bool typesAreBlockPointerCompatible(QualType, QualType);
2719
2720 bool isObjCIdType(QualType T) const {
2721 return T == getObjCIdType();
2722 }
2723
2724 bool isObjCClassType(QualType T) const {
2725 return T == getObjCClassType();
2726 }
2727
2728 bool isObjCSelType(QualType T) const {
2729 return T == getObjCSelType();
2730 }
2731
2732 bool ObjCQualifiedIdTypesAreCompatible(const ObjCObjectPointerType *LHS,
2733 const ObjCObjectPointerType *RHS,
2734 bool ForCompare);
2735
2736 bool ObjCQualifiedClassTypesAreCompatible(const ObjCObjectPointerType *LHS,
2737 const ObjCObjectPointerType *RHS);
2738
2739 // Check the safety of assignment from LHS to RHS
2740 bool canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
2741 const ObjCObjectPointerType *RHSOPT);
2742 bool canAssignObjCInterfaces(const ObjCObjectType *LHS,
2743 const ObjCObjectType *RHS);
2744 bool canAssignObjCInterfacesInBlockPointer(
2745 const ObjCObjectPointerType *LHSOPT,
2746 const ObjCObjectPointerType *RHSOPT,
2747 bool BlockReturnType);
2748 bool areComparableObjCPointerTypes(QualType LHS, QualType RHS);
2749 QualType areCommonBaseCompatible(const ObjCObjectPointerType *LHSOPT,
2750 const ObjCObjectPointerType *RHSOPT);
2751 bool canBindObjCObjectType(QualType To, QualType From);
2752
2753 // Functions for calculating composite types
2754 QualType mergeTypes(QualType, QualType, bool OfBlockPointer=false,
2755 bool Unqualified = false, bool BlockReturnType = false);
2756 QualType mergeFunctionTypes(QualType, QualType, bool OfBlockPointer=false,
2757 bool Unqualified = false, bool AllowCXX = false);
2758 QualType mergeFunctionParameterTypes(QualType, QualType,
2759 bool OfBlockPointer = false,
2760 bool Unqualified = false);
2761 QualType mergeTransparentUnionType(QualType, QualType,
2762 bool OfBlockPointer=false,
2763 bool Unqualified = false);
2764
2765 QualType mergeObjCGCQualifiers(QualType, QualType);
2766
2767 /// This function merges the ExtParameterInfo lists of two functions. It
2768 /// returns true if the lists are compatible. The merged list is returned in
2769 /// NewParamInfos.
2770 ///
2771 /// \param FirstFnType The type of the first function.
2772 ///
2773 /// \param SecondFnType The type of the second function.
2774 ///
2775 /// \param CanUseFirst This flag is set to true if the first function's
2776 /// ExtParameterInfo list can be used as the composite list of
2777 /// ExtParameterInfo.
2778 ///
2779 /// \param CanUseSecond This flag is set to true if the second function's
2780 /// ExtParameterInfo list can be used as the composite list of
2781 /// ExtParameterInfo.
2782 ///
2783 /// \param NewParamInfos The composite list of ExtParameterInfo. The list is
2784 /// empty if none of the flags are set.
2785 ///
2786 bool mergeExtParameterInfo(
2787 const FunctionProtoType *FirstFnType,
2788 const FunctionProtoType *SecondFnType,
2789 bool &CanUseFirst, bool &CanUseSecond,
2790 SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &NewParamInfos);
2791
2792 void ResetObjCLayout(const ObjCContainerDecl *CD);
2793
2794 //===--------------------------------------------------------------------===//
2795 // Integer Predicates
2796 //===--------------------------------------------------------------------===//
2797
2798 // The width of an integer, as defined in C99 6.2.6.2. This is the number
2799 // of bits in an integer type excluding any padding bits.
2800 unsigned getIntWidth(QualType T) const;
2801
2802 // Per C99 6.2.5p6, for every signed integer type, there is a corresponding
2803 // unsigned integer type. This method takes a signed type, and returns the
2804 // corresponding unsigned integer type.
2805 // With the introduction of fixed point types in ISO N1169, this method also
2806 // accepts fixed point types and returns the corresponding unsigned type for
2807 // a given fixed point type.
2808 QualType getCorrespondingUnsignedType(QualType T) const;
2809
2810 // Per C99 6.2.5p6, for every signed integer type, there is a corresponding
2811 // unsigned integer type. This method takes an unsigned type, and returns the
2812 // corresponding signed integer type.
2813 // With the introduction of fixed point types in ISO N1169, this method also
2814 // accepts fixed point types and returns the corresponding signed type for
2815 // a given fixed point type.
2816 QualType getCorrespondingSignedType(QualType T) const;
2817
2818 // Per ISO N1169, this method accepts fixed point types and returns the
2819 // corresponding saturated type for a given fixed point type.
2820 QualType getCorrespondingSaturatedType(QualType Ty) const;
2821
2822 // This method accepts fixed point types and returns the corresponding signed
2823 // type. Unlike getCorrespondingUnsignedType(), this only accepts unsigned
2824 // fixed point types because there are unsigned integer types like bool and
2825 // char8_t that don't have signed equivalents.
2826 QualType getCorrespondingSignedFixedPointType(QualType Ty) const;
2827
2828 //===--------------------------------------------------------------------===//
2829 // Integer Values
2830 //===--------------------------------------------------------------------===//
2831
2832 /// Make an APSInt of the appropriate width and signedness for the
2833 /// given \p Value and integer \p Type.
2834 llvm::APSInt MakeIntValue(uint64_t Value, QualType Type) const {
2835 // If Type is a signed integer type larger than 64 bits, we need to be sure
2836 // to sign extend Res appropriately.
2837 llvm::APSInt Res(64, !Type->isSignedIntegerOrEnumerationType());
2838 Res = Value;
2839 unsigned Width = getIntWidth(Type);
2840 if (Width != Res.getBitWidth())
2841 return Res.extOrTrunc(Width);
2842 return Res;
2843 }
2844
2845 bool isSentinelNullExpr(const Expr *E);
2846
2847 /// Get the implementation of the ObjCInterfaceDecl \p D, or nullptr if
2848 /// none exists.
2849 ObjCImplementationDecl *getObjCImplementation(ObjCInterfaceDecl *D);
2850
2851 /// Get the implementation of the ObjCCategoryDecl \p D, or nullptr if
2852 /// none exists.
2853 ObjCCategoryImplDecl *getObjCImplementation(ObjCCategoryDecl *D);
2854
2855 /// Return true if there is at least one \@implementation in the TU.
2856 bool AnyObjCImplementation() {
2857 return !ObjCImpls.empty();
2858 }
2859
2860 /// Set the implementation of ObjCInterfaceDecl.
2861 void setObjCImplementation(ObjCInterfaceDecl *IFaceD,
2862 ObjCImplementationDecl *ImplD);
2863
2864 /// Set the implementation of ObjCCategoryDecl.
2865 void setObjCImplementation(ObjCCategoryDecl *CatD,
2866 ObjCCategoryImplDecl *ImplD);
2867
2868 /// Get the duplicate declaration of a ObjCMethod in the same
2869 /// interface, or null if none exists.
2870 const ObjCMethodDecl *
2871 getObjCMethodRedeclaration(const ObjCMethodDecl *MD) const;
2872
2873 void setObjCMethodRedeclaration(const ObjCMethodDecl *MD,
2874 const ObjCMethodDecl *Redecl);
2875
2876 /// Returns the Objective-C interface that \p ND belongs to if it is
2877 /// an Objective-C method/property/ivar etc. that is part of an interface,
2878 /// otherwise returns null.
2879 const ObjCInterfaceDecl *getObjContainingInterface(const NamedDecl *ND) const;
2880
2881 /// Set the copy initialization expression of a block var decl. \p CanThrow
2882 /// indicates whether the copy expression can throw or not.
2883 void setBlockVarCopyInit(const VarDecl* VD, Expr *CopyExpr, bool CanThrow);
2884
2885 /// Get the copy initialization expression of the VarDecl \p VD, or
2886 /// nullptr if none exists.
2887 BlockVarCopyInit getBlockVarCopyInit(const VarDecl* VD) const;
2888
2889 /// Allocate an uninitialized TypeSourceInfo.
2890 ///
2891 /// The caller should initialize the memory held by TypeSourceInfo using
2892 /// the TypeLoc wrappers.
2893 ///
2894 /// \param T the type that will be the basis for type source info. This type
2895 /// should refer to how the declarator was written in source code, not to
2896 /// what type semantic analysis resolved the declarator to.
2897 ///
2898 /// \param Size the size of the type info to create, or 0 if the size
2899 /// should be calculated based on the type.
2900 TypeSourceInfo *CreateTypeSourceInfo(QualType T, unsigned Size = 0) const;
2901
2902 /// Allocate a TypeSourceInfo where all locations have been
2903 /// initialized to a given location, which defaults to the empty
2904 /// location.
2905 TypeSourceInfo *
2906 getTrivialTypeSourceInfo(QualType T,
2907 SourceLocation Loc = SourceLocation()) const;
2908
2909 /// Add a deallocation callback that will be invoked when the
2910 /// ASTContext is destroyed.
2911 ///
2912 /// \param Callback A callback function that will be invoked on destruction.
2913 ///
2914 /// \param Data Pointer data that will be provided to the callback function
2915 /// when it is called.
2916 void AddDeallocation(void (*Callback)(void *), void *Data) const;
2917
2918 /// If T isn't trivially destructible, calls AddDeallocation to register it
2919 /// for destruction.
2920 template <typename T> void addDestruction(T *Ptr) const {
2921 if (!std::is_trivially_destructible<T>::value) {
2922 auto DestroyPtr = [](void *V) { static_cast<T *>(V)->~T(); };
2923 AddDeallocation(DestroyPtr, Ptr);
2924 }
2925 }
2926
2927 GVALinkage GetGVALinkageForFunction(const FunctionDecl *FD) const;
2928 GVALinkage GetGVALinkageForVariable(const VarDecl *VD);
2929
2930 /// Determines if the decl can be CodeGen'ed or deserialized from PCH
2931 /// lazily, only when used; this is only relevant for function or file scoped
2932 /// var definitions.
2933 ///
2934 /// \returns true if the function/var must be CodeGen'ed/deserialized even if
2935 /// it is not used.
2936 bool DeclMustBeEmitted(const Decl *D);
2937
2938 /// Visits all versions of a multiversioned function with the passed
2939 /// predicate.
2940 void forEachMultiversionedFunctionVersion(
2941 const FunctionDecl *FD,
2942 llvm::function_ref<void(FunctionDecl *)> Pred) const;
2943
2944 const CXXConstructorDecl *
2945 getCopyConstructorForExceptionObject(CXXRecordDecl *RD);
2946
2947 void addCopyConstructorForExceptionObject(CXXRecordDecl *RD,
2948 CXXConstructorDecl *CD);
2949
2950 void addTypedefNameForUnnamedTagDecl(TagDecl *TD, TypedefNameDecl *TND);
2951
2952 TypedefNameDecl *getTypedefNameForUnnamedTagDecl(const TagDecl *TD);
2953
2954 void addDeclaratorForUnnamedTagDecl(TagDecl *TD, DeclaratorDecl *DD);
2955
2956 DeclaratorDecl *getDeclaratorForUnnamedTagDecl(const TagDecl *TD);
2957
2958 void setManglingNumber(const NamedDecl *ND, unsigned Number);
2959 unsigned getManglingNumber(const NamedDecl *ND) const;
2960
2961 void setStaticLocalNumber(const VarDecl *VD, unsigned Number);
2962 unsigned getStaticLocalNumber(const VarDecl *VD) const;
2963
2964 /// Retrieve the context for computing mangling numbers in the given
2965 /// DeclContext.
2966 MangleNumberingContext &getManglingNumberContext(const DeclContext *DC);
2967 enum NeedExtraManglingDecl_t { NeedExtraManglingDecl };
2968 MangleNumberingContext &getManglingNumberContext(NeedExtraManglingDecl_t,
2969 const Decl *D);
2970
2971 std::unique_ptr<MangleNumberingContext> createMangleNumberingContext() const;
2972
2973 /// Used by ParmVarDecl to store on the side the
2974 /// index of the parameter when it exceeds the size of the normal bitfield.
2975 void setParameterIndex(const ParmVarDecl *D, unsigned index);
2976
2977 /// Used by ParmVarDecl to retrieve on the side the
2978 /// index of the parameter when it exceeds the size of the normal bitfield.
2979 unsigned getParameterIndex(const ParmVarDecl *D) const;
2980
2981 /// Return a string representing the human readable name for the specified
2982 /// function declaration or file name. Used by SourceLocExpr and
2983 /// PredefinedExpr to cache evaluated results.
2984 StringLiteral *getPredefinedStringLiteralFromCache(StringRef Key) const;
2985
2986 /// Return a declaration for the global GUID object representing the given
2987 /// GUID value.
2988 MSGuidDecl *getMSGuidDecl(MSGuidDeclParts Parts) const;
2989
2990 /// Return the template parameter object of the given type with the given
2991 /// value.
2992 TemplateParamObjectDecl *getTemplateParamObjectDecl(QualType T,
2993 const APValue &V) const;
2994
2995 /// Parses the target attributes passed in, and returns only the ones that are
2996 /// valid feature names.
2997 ParsedTargetAttr filterFunctionTargetAttrs(const TargetAttr *TD) const;
2998
2999 void getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
3000 const FunctionDecl *) const;
3001 void getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
3002 GlobalDecl GD) const;
3003
3004 //===--------------------------------------------------------------------===//
3005 // Statistics
3006 //===--------------------------------------------------------------------===//
3007
3008 /// The number of implicitly-declared default constructors.
3009 unsigned NumImplicitDefaultConstructors = 0;
3010
3011 /// The number of implicitly-declared default constructors for
3012 /// which declarations were built.
3013 unsigned NumImplicitDefaultConstructorsDeclared = 0;
3014
3015 /// The number of implicitly-declared copy constructors.
3016 unsigned NumImplicitCopyConstructors = 0;
3017
3018 /// The number of implicitly-declared copy constructors for
3019 /// which declarations were built.
3020 unsigned NumImplicitCopyConstructorsDeclared = 0;
3021
3022 /// The number of implicitly-declared move constructors.
3023 unsigned NumImplicitMoveConstructors = 0;
3024
3025 /// The number of implicitly-declared move constructors for
3026 /// which declarations were built.
3027 unsigned NumImplicitMoveConstructorsDeclared = 0;
3028
3029 /// The number of implicitly-declared copy assignment operators.
3030 unsigned NumImplicitCopyAssignmentOperators = 0;
3031
3032 /// The number of implicitly-declared copy assignment operators for
3033 /// which declarations were built.
3034 unsigned NumImplicitCopyAssignmentOperatorsDeclared = 0;
3035
3036 /// The number of implicitly-declared move assignment operators.
3037 unsigned NumImplicitMoveAssignmentOperators = 0;
3038
3039 /// The number of implicitly-declared move assignment operators for
3040 /// which declarations were built.
3041 unsigned NumImplicitMoveAssignmentOperatorsDeclared = 0;
3042
3043 /// The number of implicitly-declared destructors.
3044 unsigned NumImplicitDestructors = 0;
3045
3046 /// The number of implicitly-declared destructors for which
3047 /// declarations were built.
3048 unsigned NumImplicitDestructorsDeclared = 0;
3049
3050public:
3051 /// Initialize built-in types.
3052 ///
3053 /// This routine may only be invoked once for a given ASTContext object.
3054 /// It is normally invoked after ASTContext construction.
3055 ///
3056 /// \param Target The target
3057 void InitBuiltinTypes(const TargetInfo &Target,
3058 const TargetInfo *AuxTarget = nullptr);
3059
3060private:
3061 void InitBuiltinType(CanQualType &R, BuiltinType::Kind K);
3062
3063 class ObjCEncOptions {
3064 unsigned Bits;
3065
3066 ObjCEncOptions(unsigned Bits) : Bits(Bits) {}
3067
3068 public:
3069 ObjCEncOptions() : Bits(0) {}
3070 ObjCEncOptions(const ObjCEncOptions &RHS) : Bits(RHS.Bits) {}
3071
3072#define OPT_LIST(V) \
3073 V(ExpandPointedToStructures, 0) \
3074 V(ExpandStructures, 1) \
3075 V(IsOutermostType, 2) \
3076 V(EncodingProperty, 3) \
3077 V(IsStructField, 4) \
3078 V(EncodeBlockParameters, 5) \
3079 V(EncodeClassNames, 6) \
3080
3081#define V(N,I) ObjCEncOptions& set##N() { Bits |= 1 << I; return *this; }
3082OPT_LIST(V)
3083#undef V
3084
3085#define V(N,I) bool N() const { return Bits & 1 << I; }
3086OPT_LIST(V)
3087#undef V
3088
3089#undef OPT_LIST
3090
3091 LLVM_NODISCARD[[clang::warn_unused_result]] ObjCEncOptions keepingOnly(ObjCEncOptions Mask) const {
3092 return Bits & Mask.Bits;
3093 }
3094
3095 LLVM_NODISCARD[[clang::warn_unused_result]] ObjCEncOptions forComponentType() const {
3096 ObjCEncOptions Mask = ObjCEncOptions()
3097 .setIsOutermostType()
3098 .setIsStructField();
3099 return Bits & ~Mask.Bits;
3100 }
3101 };
3102
3103 // Return the Objective-C type encoding for a given type.
3104 void getObjCEncodingForTypeImpl(QualType t, std::string &S,
3105 ObjCEncOptions Options,
3106 const FieldDecl *Field,
3107 QualType *NotEncodedT = nullptr) const;
3108
3109 // Adds the encoding of the structure's members.
3110 void getObjCEncodingForStructureImpl(RecordDecl *RD, std::string &S,
3111 const FieldDecl *Field,
3112 bool includeVBases = true,
3113 QualType *NotEncodedT=nullptr) const;
3114
3115public:
3116 // Adds the encoding of a method parameter or return type.
3117 void getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
3118 QualType T, std::string& S,
3119 bool Extended) const;
3120
3121 /// Returns true if this is an inline-initialized static data member
3122 /// which is treated as a definition for MSVC compatibility.
3123 bool isMSStaticDataMemberInlineDefinition(const VarDecl *VD) const;
3124
3125 enum class InlineVariableDefinitionKind {
3126 /// Not an inline variable.
3127 None,
3128
3129 /// Weak definition of inline variable.
3130 Weak,
3131
3132 /// Weak for now, might become strong later in this TU.
3133 WeakUnknown,
3134
3135 /// Strong definition.
3136 Strong
3137 };
3138
3139 /// Determine whether a definition of this inline variable should
3140 /// be treated as a weak or strong definition. For compatibility with
3141 /// C++14 and before, for a constexpr static data member, if there is an
3142 /// out-of-line declaration of the member, we may promote it from weak to
3143 /// strong.
3144 InlineVariableDefinitionKind
3145 getInlineVariableDefinitionKind(const VarDecl *VD) const;
3146
3147private:
3148 friend class DeclarationNameTable;
3149 friend class DeclContext;
3150
3151 const ASTRecordLayout &
3152 getObjCLayout(const ObjCInterfaceDecl *D,
3153 const ObjCImplementationDecl *Impl) const;
3154
3155 /// A set of deallocations that should be performed when the
3156 /// ASTContext is destroyed.
3157 // FIXME: We really should have a better mechanism in the ASTContext to
3158 // manage running destructors for types which do variable sized allocation
3159 // within the AST. In some places we thread the AST bump pointer allocator
3160 // into the datastructures which avoids this mess during deallocation but is
3161 // wasteful of memory, and here we require a lot of error prone book keeping
3162 // in order to track and run destructors while we're tearing things down.
3163 using DeallocationFunctionsAndArguments =
3164 llvm::SmallVector<std::pair<void (*)(void *), void *>, 16>;
3165 mutable DeallocationFunctionsAndArguments Deallocations;
3166
3167 // FIXME: This currently contains the set of StoredDeclMaps used
3168 // by DeclContext objects. This probably should not be in ASTContext,
3169 // but we include it here so that ASTContext can quickly deallocate them.
3170 llvm::PointerIntPair<StoredDeclsMap *, 1> LastSDM;
3171
3172 std::vector<Decl *> TraversalScope;
3173
3174 std::unique_ptr<VTableContextBase> VTContext;
3175
3176 void ReleaseDeclContextMaps();
3177
3178public:
3179 enum PragmaSectionFlag : unsigned {
3180 PSF_None = 0,
3181 PSF_Read = 0x1,
3182 PSF_Write = 0x2,
3183 PSF_Execute = 0x4,
3184 PSF_Implicit = 0x8,
3185 PSF_ZeroInit = 0x10,
3186 PSF_Invalid = 0x80000000U,
3187 };
3188
3189 struct SectionInfo {
3190 NamedDecl *Decl;
3191 SourceLocation PragmaSectionLocation;
3192 int SectionFlags;
3193
3194 SectionInfo() = default;
3195 SectionInfo(NamedDecl *Decl, SourceLocation PragmaSectionLocation,
3196 int SectionFlags)
3197 : Decl(Decl), PragmaSectionLocation(PragmaSectionLocation),
3198 SectionFlags(SectionFlags) {}
3199 };
3200
3201 llvm::StringMap<SectionInfo> SectionInfos;
3202
3203 /// Return a new OMPTraitInfo object owned by this context.
3204 OMPTraitInfo &getNewOMPTraitInfo();
3205
3206 /// Whether a C++ static variable may be externalized.
3207 bool mayExternalizeStaticVar(const Decl *D) const;
3208
3209 /// Whether a C++ static variable should be externalized.
3210 bool shouldExternalizeStaticVar(const Decl *D) const;
3211
3212 StringRef getCUIDHash() const;
3213
3214 void AddSYCLKernelNamingDecl(const CXXRecordDecl *RD);
3215 bool IsSYCLKernelNamingDecl(const NamedDecl *RD) const;
3216 unsigned GetSYCLKernelNamingIndex(const NamedDecl *RD);
3217 /// A SourceLocation to store whether we have evaluated a kernel name already,
3218 /// and where it happened. If so, we need to diagnose an illegal use of the
3219 /// builtin.
3220 llvm::MapVector<const SYCLUniqueStableNameExpr *, std::string>
3221 SYCLUniqueStableNameEvaluatedValues;
3222
3223private:
3224 /// All OMPTraitInfo objects live in this collection, one per
3225 /// `pragma omp [begin] declare variant` directive.
3226 SmallVector<std::unique_ptr<OMPTraitInfo>, 4> OMPTraitInfoVector;
3227
3228 /// A list of the (right now just lambda decls) declarations required to
3229 /// name all the SYCL kernels in the translation unit, so that we can get the
3230 /// correct kernel name, as well as implement
3231 /// __builtin_sycl_unique_stable_name.
3232 llvm::DenseMap<const DeclContext *,
3233 llvm::SmallPtrSet<const CXXRecordDecl *, 4>>
3234 SYCLKernelNamingTypes;
3235 std::unique_ptr<ItaniumMangleContext> SYCLKernelFilterContext;
3236 void FilterSYCLKernelNamingDecls(
3237 const CXXRecordDecl *RD,
3238 llvm::SmallVectorImpl<const CXXRecordDecl *> &Decls);
3239};
3240
3241/// Insertion operator for diagnostics.
3242const StreamingDiagnostic &operator<<(const StreamingDiagnostic &DB,
3243 const ASTContext::SectionInfo &Section);
3244
3245/// Utility function for constructing a nullary selector.
3246inline Selector GetNullarySelector(StringRef name, ASTContext &Ctx) {
3247 IdentifierInfo* II = &Ctx.Idents.get(name);
3248 return Ctx.Selectors.getSelector(0, &II);
3249}
3250
3251/// Utility function for constructing an unary selector.
3252inline Selector GetUnarySelector(StringRef name, ASTContext &Ctx) {
3253 IdentifierInfo* II = &Ctx.Idents.get(name);
3254 return Ctx.Selectors.getSelector(1, &II);
3255}
3256
3257} // namespace clang
3258
3259// operator new and delete aren't allowed inside namespaces.
3260
3261/// Placement new for using the ASTContext's allocator.
3262///
3263/// This placement form of operator new uses the ASTContext's allocator for
3264/// obtaining memory.
3265///
3266/// IMPORTANT: These are also declared in clang/AST/ASTContextAllocate.h!
3267/// Any changes here need to also be made there.
3268///
3269/// We intentionally avoid using a nothrow specification here so that the calls
3270/// to this operator will not perform a null check on the result -- the
3271/// underlying allocator never returns null pointers.
3272///
3273/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
3274/// @code
3275/// // Default alignment (8)
3276/// IntegerLiteral *Ex = new (Context) IntegerLiteral(arguments);
3277/// // Specific alignment
3278/// IntegerLiteral *Ex2 = new (Context, 4) IntegerLiteral(arguments);
3279/// @endcode
3280/// Memory allocated through this placement new operator does not need to be
3281/// explicitly freed, as ASTContext will free all of this memory when it gets
3282/// destroyed. Please note that you cannot use delete on the pointer.
3283///
3284/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
3285/// @param C The ASTContext that provides the allocator.
3286/// @param Alignment The alignment of the allocated memory (if the underlying
3287/// allocator supports it).
3288/// @return The allocated memory. Could be nullptr.
3289inline void *operator new(size_t Bytes, const clang::ASTContext &C,
3290 size_t Alignment /* = 8 */) {
3291 return C.Allocate(Bytes, Alignment);
3292}
3293
3294/// Placement delete companion to the new above.
3295///
3296/// This operator is just a companion to the new above. There is no way of
3297/// invoking it directly; see the new operator for more details. This operator
3298/// is called implicitly by the compiler if a placement new expression using
3299/// the ASTContext throws in the object constructor.
3300inline void operator delete(void *Ptr, const clang::ASTContext &C, size_t) {
3301 C.Deallocate(Ptr);
3302}
3303
3304/// This placement form of operator new[] uses the ASTContext's allocator for
3305/// obtaining memory.
3306///
3307/// We intentionally avoid using a nothrow specification here so that the calls
3308/// to this operator will not perform a null check on the result -- the
3309/// underlying allocator never returns null pointers.
3310///
3311/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
3312/// @code
3313/// // Default alignment (8)
3314/// char *data = new (Context) char[10];
3315/// // Specific alignment
3316/// char *data = new (Context, 4) char[10];
3317/// @endcode
3318/// Memory allocated through this placement new[] operator does not need to be
3319/// explicitly freed, as ASTContext will free all of this memory when it gets
3320/// destroyed. Please note that you cannot use delete on the pointer.
3321///
3322/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
3323/// @param C The ASTContext that provides the allocator.
3324/// @param Alignment The alignment of the allocated memory (if the underlying
3325/// allocator supports it).
3326/// @return The allocated memory. Could be nullptr.
3327inline void *operator new[](size_t Bytes, const clang::ASTContext& C,
3328 size_t Alignment /* = 8 */) {
3329 return C.Allocate(Bytes, Alignment);
3330}
3331
3332/// Placement delete[] companion to the new[] above.
3333///
3334/// This operator is just a companion to the new[] above. There is no way of
3335/// invoking it directly; see the new[] operator for more details. This operator
3336/// is called implicitly by the compiler if a placement new[] expression using
3337/// the ASTContext throws in the object constructor.
3338inline void operator delete[](void *Ptr, const clang::ASTContext &C, size_t) {
3339 C.Deallocate(Ptr);
3340}
3341
3342/// Create the representation of a LazyGenerationalUpdatePtr.
3343template <typename Owner, typename T,
3344 void (clang::ExternalASTSource::*Update)(Owner)>
3345typename clang::LazyGenerationalUpdatePtr<Owner, T, Update>::ValueType
3346 clang::LazyGenerationalUpdatePtr<Owner, T, Update>::makeValue(
3347 const clang::ASTContext &Ctx, T Value) {
3348 // Note, this is implemented here so that ExternalASTSource.h doesn't need to
3349 // include ASTContext.h. We explicitly instantiate it for all relevant types
3350 // in ASTContext.cpp.
3351 if (auto *Source = Ctx.getExternalSource())
3352 return new (Ctx) LazyData(Source, Value);
3353 return Value;
3354}
3355
3356#endif // LLVM_CLANG_AST_ASTCONTEXT_H