| File: | build/source/clang/lib/Sema/SemaExpr.cpp |
| Warning: | line 9982, column 27 Called C++ object pointer is null |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | //===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===// | ||||
| 2 | // | ||||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | ||||
| 4 | // See https://llvm.org/LICENSE.txt for license information. | ||||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | ||||
| 6 | // | ||||
| 7 | //===----------------------------------------------------------------------===// | ||||
| 8 | // | ||||
| 9 | // This file implements semantic analysis for expressions. | ||||
| 10 | // | ||||
| 11 | //===----------------------------------------------------------------------===// | ||||
| 12 | |||||
| 13 | #include "TreeTransform.h" | ||||
| 14 | #include "UsedDeclVisitor.h" | ||||
| 15 | #include "clang/AST/ASTConsumer.h" | ||||
| 16 | #include "clang/AST/ASTContext.h" | ||||
| 17 | #include "clang/AST/ASTLambda.h" | ||||
| 18 | #include "clang/AST/ASTMutationListener.h" | ||||
| 19 | #include "clang/AST/CXXInheritance.h" | ||||
| 20 | #include "clang/AST/DeclObjC.h" | ||||
| 21 | #include "clang/AST/DeclTemplate.h" | ||||
| 22 | #include "clang/AST/EvaluatedExprVisitor.h" | ||||
| 23 | #include "clang/AST/Expr.h" | ||||
| 24 | #include "clang/AST/ExprCXX.h" | ||||
| 25 | #include "clang/AST/ExprObjC.h" | ||||
| 26 | #include "clang/AST/ExprOpenMP.h" | ||||
| 27 | #include "clang/AST/OperationKinds.h" | ||||
| 28 | #include "clang/AST/ParentMapContext.h" | ||||
| 29 | #include "clang/AST/RecursiveASTVisitor.h" | ||||
| 30 | #include "clang/AST/Type.h" | ||||
| 31 | #include "clang/AST/TypeLoc.h" | ||||
| 32 | #include "clang/Basic/Builtins.h" | ||||
| 33 | #include "clang/Basic/DiagnosticSema.h" | ||||
| 34 | #include "clang/Basic/PartialDiagnostic.h" | ||||
| 35 | #include "clang/Basic/SourceManager.h" | ||||
| 36 | #include "clang/Basic/Specifiers.h" | ||||
| 37 | #include "clang/Basic/TargetInfo.h" | ||||
| 38 | #include "clang/Lex/LiteralSupport.h" | ||||
| 39 | #include "clang/Lex/Preprocessor.h" | ||||
| 40 | #include "clang/Sema/AnalysisBasedWarnings.h" | ||||
| 41 | #include "clang/Sema/DeclSpec.h" | ||||
| 42 | #include "clang/Sema/DelayedDiagnostic.h" | ||||
| 43 | #include "clang/Sema/Designator.h" | ||||
| 44 | #include "clang/Sema/Initialization.h" | ||||
| 45 | #include "clang/Sema/Lookup.h" | ||||
| 46 | #include "clang/Sema/Overload.h" | ||||
| 47 | #include "clang/Sema/ParsedTemplate.h" | ||||
| 48 | #include "clang/Sema/Scope.h" | ||||
| 49 | #include "clang/Sema/ScopeInfo.h" | ||||
| 50 | #include "clang/Sema/SemaFixItUtils.h" | ||||
| 51 | #include "clang/Sema/SemaInternal.h" | ||||
| 52 | #include "clang/Sema/Template.h" | ||||
| 53 | #include "llvm/ADT/STLExtras.h" | ||||
| 54 | #include "llvm/ADT/StringExtras.h" | ||||
| 55 | #include "llvm/Support/Casting.h" | ||||
| 56 | #include "llvm/Support/ConvertUTF.h" | ||||
| 57 | #include "llvm/Support/SaveAndRestore.h" | ||||
| 58 | #include "llvm/Support/TypeSize.h" | ||||
| 59 | #include <optional> | ||||
| 60 | |||||
| 61 | using namespace clang; | ||||
| 62 | using namespace sema; | ||||
| 63 | |||||
| 64 | /// Determine whether the use of this declaration is valid, without | ||||
| 65 | /// emitting diagnostics. | ||||
| 66 | bool Sema::CanUseDecl(NamedDecl *D, bool TreatUnavailableAsInvalid) { | ||||
| 67 | // See if this is an auto-typed variable whose initializer we are parsing. | ||||
| 68 | if (ParsingInitForAutoVars.count(D)) | ||||
| 69 | return false; | ||||
| 70 | |||||
| 71 | // See if this is a deleted function. | ||||
| 72 | if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { | ||||
| 73 | if (FD->isDeleted()) | ||||
| 74 | return false; | ||||
| 75 | |||||
| 76 | // If the function has a deduced return type, and we can't deduce it, | ||||
| 77 | // then we can't use it either. | ||||
| 78 | if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() && | ||||
| 79 | DeduceReturnType(FD, SourceLocation(), /*Diagnose*/ false)) | ||||
| 80 | return false; | ||||
| 81 | |||||
| 82 | // See if this is an aligned allocation/deallocation function that is | ||||
| 83 | // unavailable. | ||||
| 84 | if (TreatUnavailableAsInvalid && | ||||
| 85 | isUnavailableAlignedAllocationFunction(*FD)) | ||||
| 86 | return false; | ||||
| 87 | } | ||||
| 88 | |||||
| 89 | // See if this function is unavailable. | ||||
| 90 | if (TreatUnavailableAsInvalid && D->getAvailability() == AR_Unavailable && | ||||
| 91 | cast<Decl>(CurContext)->getAvailability() != AR_Unavailable) | ||||
| 92 | return false; | ||||
| 93 | |||||
| 94 | if (isa<UnresolvedUsingIfExistsDecl>(D)) | ||||
| 95 | return false; | ||||
| 96 | |||||
| 97 | return true; | ||||
| 98 | } | ||||
| 99 | |||||
| 100 | static void DiagnoseUnusedOfDecl(Sema &S, NamedDecl *D, SourceLocation Loc) { | ||||
| 101 | // Warn if this is used but marked unused. | ||||
| 102 | if (const auto *A = D->getAttr<UnusedAttr>()) { | ||||
| 103 | // [[maybe_unused]] should not diagnose uses, but __attribute__((unused)) | ||||
| 104 | // should diagnose them. | ||||
| 105 | if (A->getSemanticSpelling() != UnusedAttr::CXX11_maybe_unused && | ||||
| 106 | A->getSemanticSpelling() != UnusedAttr::C2x_maybe_unused) { | ||||
| 107 | const Decl *DC = cast_or_null<Decl>(S.getCurObjCLexicalContext()); | ||||
| 108 | if (DC && !DC->hasAttr<UnusedAttr>()) | ||||
| 109 | S.Diag(Loc, diag::warn_used_but_marked_unused) << D; | ||||
| 110 | } | ||||
| 111 | } | ||||
| 112 | } | ||||
| 113 | |||||
| 114 | /// Emit a note explaining that this function is deleted. | ||||
| 115 | void Sema::NoteDeletedFunction(FunctionDecl *Decl) { | ||||
| 116 | assert(Decl && Decl->isDeleted())(static_cast <bool> (Decl && Decl->isDeleted ()) ? void (0) : __assert_fail ("Decl && Decl->isDeleted()" , "clang/lib/Sema/SemaExpr.cpp", 116, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 117 | |||||
| 118 | if (Decl->isDefaulted()) { | ||||
| 119 | // If the method was explicitly defaulted, point at that declaration. | ||||
| 120 | if (!Decl->isImplicit()) | ||||
| 121 | Diag(Decl->getLocation(), diag::note_implicitly_deleted); | ||||
| 122 | |||||
| 123 | // Try to diagnose why this special member function was implicitly | ||||
| 124 | // deleted. This might fail, if that reason no longer applies. | ||||
| 125 | DiagnoseDeletedDefaultedFunction(Decl); | ||||
| 126 | return; | ||||
| 127 | } | ||||
| 128 | |||||
| 129 | auto *Ctor = dyn_cast<CXXConstructorDecl>(Decl); | ||||
| 130 | if (Ctor && Ctor->isInheritingConstructor()) | ||||
| 131 | return NoteDeletedInheritingConstructor(Ctor); | ||||
| 132 | |||||
| 133 | Diag(Decl->getLocation(), diag::note_availability_specified_here) | ||||
| 134 | << Decl << 1; | ||||
| 135 | } | ||||
| 136 | |||||
| 137 | /// Determine whether a FunctionDecl was ever declared with an | ||||
| 138 | /// explicit storage class. | ||||
| 139 | static bool hasAnyExplicitStorageClass(const FunctionDecl *D) { | ||||
| 140 | for (auto *I : D->redecls()) { | ||||
| 141 | if (I->getStorageClass() != SC_None) | ||||
| 142 | return true; | ||||
| 143 | } | ||||
| 144 | return false; | ||||
| 145 | } | ||||
| 146 | |||||
| 147 | /// Check whether we're in an extern inline function and referring to a | ||||
| 148 | /// variable or function with internal linkage (C11 6.7.4p3). | ||||
| 149 | /// | ||||
| 150 | /// This is only a warning because we used to silently accept this code, but | ||||
| 151 | /// in many cases it will not behave correctly. This is not enabled in C++ mode | ||||
| 152 | /// because the restriction language is a bit weaker (C++11 [basic.def.odr]p6) | ||||
| 153 | /// and so while there may still be user mistakes, most of the time we can't | ||||
| 154 | /// prove that there are errors. | ||||
| 155 | static void diagnoseUseOfInternalDeclInInlineFunction(Sema &S, | ||||
| 156 | const NamedDecl *D, | ||||
| 157 | SourceLocation Loc) { | ||||
| 158 | // This is disabled under C++; there are too many ways for this to fire in | ||||
| 159 | // contexts where the warning is a false positive, or where it is technically | ||||
| 160 | // correct but benign. | ||||
| 161 | if (S.getLangOpts().CPlusPlus) | ||||
| 162 | return; | ||||
| 163 | |||||
| 164 | // Check if this is an inlined function or method. | ||||
| 165 | FunctionDecl *Current = S.getCurFunctionDecl(); | ||||
| 166 | if (!Current) | ||||
| 167 | return; | ||||
| 168 | if (!Current->isInlined()) | ||||
| 169 | return; | ||||
| 170 | if (!Current->isExternallyVisible()) | ||||
| 171 | return; | ||||
| 172 | |||||
| 173 | // Check if the decl has internal linkage. | ||||
| 174 | if (D->getFormalLinkage() != InternalLinkage) | ||||
| 175 | return; | ||||
| 176 | |||||
| 177 | // Downgrade from ExtWarn to Extension if | ||||
| 178 | // (1) the supposedly external inline function is in the main file, | ||||
| 179 | // and probably won't be included anywhere else. | ||||
| 180 | // (2) the thing we're referencing is a pure function. | ||||
| 181 | // (3) the thing we're referencing is another inline function. | ||||
| 182 | // This last can give us false negatives, but it's better than warning on | ||||
| 183 | // wrappers for simple C library functions. | ||||
| 184 | const FunctionDecl *UsedFn = dyn_cast<FunctionDecl>(D); | ||||
| 185 | bool DowngradeWarning = S.getSourceManager().isInMainFile(Loc); | ||||
| 186 | if (!DowngradeWarning && UsedFn) | ||||
| 187 | DowngradeWarning = UsedFn->isInlined() || UsedFn->hasAttr<ConstAttr>(); | ||||
| 188 | |||||
| 189 | S.Diag(Loc, DowngradeWarning ? diag::ext_internal_in_extern_inline_quiet | ||||
| 190 | : diag::ext_internal_in_extern_inline) | ||||
| 191 | << /*IsVar=*/!UsedFn << D; | ||||
| 192 | |||||
| 193 | S.MaybeSuggestAddingStaticToDecl(Current); | ||||
| 194 | |||||
| 195 | S.Diag(D->getCanonicalDecl()->getLocation(), diag::note_entity_declared_at) | ||||
| 196 | << D; | ||||
| 197 | } | ||||
| 198 | |||||
| 199 | void Sema::MaybeSuggestAddingStaticToDecl(const FunctionDecl *Cur) { | ||||
| 200 | const FunctionDecl *First = Cur->getFirstDecl(); | ||||
| 201 | |||||
| 202 | // Suggest "static" on the function, if possible. | ||||
| 203 | if (!hasAnyExplicitStorageClass(First)) { | ||||
| 204 | SourceLocation DeclBegin = First->getSourceRange().getBegin(); | ||||
| 205 | Diag(DeclBegin, diag::note_convert_inline_to_static) | ||||
| 206 | << Cur << FixItHint::CreateInsertion(DeclBegin, "static "); | ||||
| 207 | } | ||||
| 208 | } | ||||
| 209 | |||||
| 210 | /// Determine whether the use of this declaration is valid, and | ||||
| 211 | /// emit any corresponding diagnostics. | ||||
| 212 | /// | ||||
| 213 | /// This routine diagnoses various problems with referencing | ||||
| 214 | /// declarations that can occur when using a declaration. For example, | ||||
| 215 | /// it might warn if a deprecated or unavailable declaration is being | ||||
| 216 | /// used, or produce an error (and return true) if a C++0x deleted | ||||
| 217 | /// function is being used. | ||||
| 218 | /// | ||||
| 219 | /// \returns true if there was an error (this declaration cannot be | ||||
| 220 | /// referenced), false otherwise. | ||||
| 221 | /// | ||||
| 222 | bool Sema::DiagnoseUseOfDecl(NamedDecl *D, ArrayRef<SourceLocation> Locs, | ||||
| 223 | const ObjCInterfaceDecl *UnknownObjCClass, | ||||
| 224 | bool ObjCPropertyAccess, | ||||
| 225 | bool AvoidPartialAvailabilityChecks, | ||||
| 226 | ObjCInterfaceDecl *ClassReceiver, | ||||
| 227 | bool SkipTrailingRequiresClause) { | ||||
| 228 | SourceLocation Loc = Locs.front(); | ||||
| 229 | if (getLangOpts().CPlusPlus && isa<FunctionDecl>(D)) { | ||||
| 230 | // If there were any diagnostics suppressed by template argument deduction, | ||||
| 231 | // emit them now. | ||||
| 232 | auto Pos = SuppressedDiagnostics.find(D->getCanonicalDecl()); | ||||
| 233 | if (Pos != SuppressedDiagnostics.end()) { | ||||
| 234 | for (const PartialDiagnosticAt &Suppressed : Pos->second) | ||||
| 235 | Diag(Suppressed.first, Suppressed.second); | ||||
| 236 | |||||
| 237 | // Clear out the list of suppressed diagnostics, so that we don't emit | ||||
| 238 | // them again for this specialization. However, we don't obsolete this | ||||
| 239 | // entry from the table, because we want to avoid ever emitting these | ||||
| 240 | // diagnostics again. | ||||
| 241 | Pos->second.clear(); | ||||
| 242 | } | ||||
| 243 | |||||
| 244 | // C++ [basic.start.main]p3: | ||||
| 245 | // The function 'main' shall not be used within a program. | ||||
| 246 | if (cast<FunctionDecl>(D)->isMain()) | ||||
| 247 | Diag(Loc, diag::ext_main_used); | ||||
| 248 | |||||
| 249 | diagnoseUnavailableAlignedAllocation(*cast<FunctionDecl>(D), Loc); | ||||
| 250 | } | ||||
| 251 | |||||
| 252 | // See if this is an auto-typed variable whose initializer we are parsing. | ||||
| 253 | if (ParsingInitForAutoVars.count(D)) { | ||||
| 254 | if (isa<BindingDecl>(D)) { | ||||
| 255 | Diag(Loc, diag::err_binding_cannot_appear_in_own_initializer) | ||||
| 256 | << D->getDeclName(); | ||||
| 257 | } else { | ||||
| 258 | Diag(Loc, diag::err_auto_variable_cannot_appear_in_own_initializer) | ||||
| 259 | << D->getDeclName() << cast<VarDecl>(D)->getType(); | ||||
| 260 | } | ||||
| 261 | return true; | ||||
| 262 | } | ||||
| 263 | |||||
| 264 | if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { | ||||
| 265 | // See if this is a deleted function. | ||||
| 266 | if (FD->isDeleted()) { | ||||
| 267 | auto *Ctor = dyn_cast<CXXConstructorDecl>(FD); | ||||
| 268 | if (Ctor && Ctor->isInheritingConstructor()) | ||||
| 269 | Diag(Loc, diag::err_deleted_inherited_ctor_use) | ||||
| 270 | << Ctor->getParent() | ||||
| 271 | << Ctor->getInheritedConstructor().getConstructor()->getParent(); | ||||
| 272 | else | ||||
| 273 | Diag(Loc, diag::err_deleted_function_use); | ||||
| 274 | NoteDeletedFunction(FD); | ||||
| 275 | return true; | ||||
| 276 | } | ||||
| 277 | |||||
| 278 | // [expr.prim.id]p4 | ||||
| 279 | // A program that refers explicitly or implicitly to a function with a | ||||
| 280 | // trailing requires-clause whose constraint-expression is not satisfied, | ||||
| 281 | // other than to declare it, is ill-formed. [...] | ||||
| 282 | // | ||||
| 283 | // See if this is a function with constraints that need to be satisfied. | ||||
| 284 | // Check this before deducing the return type, as it might instantiate the | ||||
| 285 | // definition. | ||||
| 286 | if (!SkipTrailingRequiresClause && FD->getTrailingRequiresClause()) { | ||||
| 287 | ConstraintSatisfaction Satisfaction; | ||||
| 288 | if (CheckFunctionConstraints(FD, Satisfaction, Loc, | ||||
| 289 | /*ForOverloadResolution*/ true)) | ||||
| 290 | // A diagnostic will have already been generated (non-constant | ||||
| 291 | // constraint expression, for example) | ||||
| 292 | return true; | ||||
| 293 | if (!Satisfaction.IsSatisfied) { | ||||
| 294 | Diag(Loc, | ||||
| 295 | diag::err_reference_to_function_with_unsatisfied_constraints) | ||||
| 296 | << D; | ||||
| 297 | DiagnoseUnsatisfiedConstraint(Satisfaction); | ||||
| 298 | return true; | ||||
| 299 | } | ||||
| 300 | } | ||||
| 301 | |||||
| 302 | // If the function has a deduced return type, and we can't deduce it, | ||||
| 303 | // then we can't use it either. | ||||
| 304 | if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() && | ||||
| 305 | DeduceReturnType(FD, Loc)) | ||||
| 306 | return true; | ||||
| 307 | |||||
| 308 | if (getLangOpts().CUDA && !CheckCUDACall(Loc, FD)) | ||||
| 309 | return true; | ||||
| 310 | |||||
| 311 | if (getLangOpts().SYCLIsDevice && !checkSYCLDeviceFunction(Loc, FD)) | ||||
| 312 | return true; | ||||
| 313 | } | ||||
| 314 | |||||
| 315 | if (auto *MD = dyn_cast<CXXMethodDecl>(D)) { | ||||
| 316 | // Lambdas are only default-constructible or assignable in C++2a onwards. | ||||
| 317 | if (MD->getParent()->isLambda() && | ||||
| 318 | ((isa<CXXConstructorDecl>(MD) && | ||||
| 319 | cast<CXXConstructorDecl>(MD)->isDefaultConstructor()) || | ||||
| 320 | MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator())) { | ||||
| 321 | Diag(Loc, diag::warn_cxx17_compat_lambda_def_ctor_assign) | ||||
| 322 | << !isa<CXXConstructorDecl>(MD); | ||||
| 323 | } | ||||
| 324 | } | ||||
| 325 | |||||
| 326 | auto getReferencedObjCProp = [](const NamedDecl *D) -> | ||||
| 327 | const ObjCPropertyDecl * { | ||||
| 328 | if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) | ||||
| 329 | return MD->findPropertyDecl(); | ||||
| 330 | return nullptr; | ||||
| 331 | }; | ||||
| 332 | if (const ObjCPropertyDecl *ObjCPDecl = getReferencedObjCProp(D)) { | ||||
| 333 | if (diagnoseArgIndependentDiagnoseIfAttrs(ObjCPDecl, Loc)) | ||||
| 334 | return true; | ||||
| 335 | } else if (diagnoseArgIndependentDiagnoseIfAttrs(D, Loc)) { | ||||
| 336 | return true; | ||||
| 337 | } | ||||
| 338 | |||||
| 339 | // [OpenMP 4.0], 2.15 declare reduction Directive, Restrictions | ||||
| 340 | // Only the variables omp_in and omp_out are allowed in the combiner. | ||||
| 341 | // Only the variables omp_priv and omp_orig are allowed in the | ||||
| 342 | // initializer-clause. | ||||
| 343 | auto *DRD = dyn_cast<OMPDeclareReductionDecl>(CurContext); | ||||
| 344 | if (LangOpts.OpenMP && DRD && !CurContext->containsDecl(D) && | ||||
| 345 | isa<VarDecl>(D)) { | ||||
| 346 | Diag(Loc, diag::err_omp_wrong_var_in_declare_reduction) | ||||
| 347 | << getCurFunction()->HasOMPDeclareReductionCombiner; | ||||
| 348 | Diag(D->getLocation(), diag::note_entity_declared_at) << D; | ||||
| 349 | return true; | ||||
| 350 | } | ||||
| 351 | |||||
| 352 | // [OpenMP 5.0], 2.19.7.3. declare mapper Directive, Restrictions | ||||
| 353 | // List-items in map clauses on this construct may only refer to the declared | ||||
| 354 | // variable var and entities that could be referenced by a procedure defined | ||||
| 355 | // at the same location. | ||||
| 356 | // [OpenMP 5.2] Also allow iterator declared variables. | ||||
| 357 | if (LangOpts.OpenMP && isa<VarDecl>(D) && | ||||
| 358 | !isOpenMPDeclareMapperVarDeclAllowed(cast<VarDecl>(D))) { | ||||
| 359 | Diag(Loc, diag::err_omp_declare_mapper_wrong_var) | ||||
| 360 | << getOpenMPDeclareMapperVarName(); | ||||
| 361 | Diag(D->getLocation(), diag::note_entity_declared_at) << D; | ||||
| 362 | return true; | ||||
| 363 | } | ||||
| 364 | |||||
| 365 | if (const auto *EmptyD = dyn_cast<UnresolvedUsingIfExistsDecl>(D)) { | ||||
| 366 | Diag(Loc, diag::err_use_of_empty_using_if_exists); | ||||
| 367 | Diag(EmptyD->getLocation(), diag::note_empty_using_if_exists_here); | ||||
| 368 | return true; | ||||
| 369 | } | ||||
| 370 | |||||
| 371 | DiagnoseAvailabilityOfDecl(D, Locs, UnknownObjCClass, ObjCPropertyAccess, | ||||
| 372 | AvoidPartialAvailabilityChecks, ClassReceiver); | ||||
| 373 | |||||
| 374 | DiagnoseUnusedOfDecl(*this, D, Loc); | ||||
| 375 | |||||
| 376 | diagnoseUseOfInternalDeclInInlineFunction(*this, D, Loc); | ||||
| 377 | |||||
| 378 | if (auto *VD = dyn_cast<ValueDecl>(D)) | ||||
| 379 | checkTypeSupport(VD->getType(), Loc, VD); | ||||
| 380 | |||||
| 381 | if (LangOpts.SYCLIsDevice || (LangOpts.OpenMP && LangOpts.OpenMPIsDevice)) { | ||||
| 382 | if (!Context.getTargetInfo().isTLSSupported()) | ||||
| 383 | if (const auto *VD = dyn_cast<VarDecl>(D)) | ||||
| 384 | if (VD->getTLSKind() != VarDecl::TLS_None) | ||||
| 385 | targetDiag(*Locs.begin(), diag::err_thread_unsupported); | ||||
| 386 | } | ||||
| 387 | |||||
| 388 | if (isa<ParmVarDecl>(D) && isa<RequiresExprBodyDecl>(D->getDeclContext()) && | ||||
| 389 | !isUnevaluatedContext()) { | ||||
| 390 | // C++ [expr.prim.req.nested] p3 | ||||
| 391 | // A local parameter shall only appear as an unevaluated operand | ||||
| 392 | // (Clause 8) within the constraint-expression. | ||||
| 393 | Diag(Loc, diag::err_requires_expr_parameter_referenced_in_evaluated_context) | ||||
| 394 | << D; | ||||
| 395 | Diag(D->getLocation(), diag::note_entity_declared_at) << D; | ||||
| 396 | return true; | ||||
| 397 | } | ||||
| 398 | |||||
| 399 | return false; | ||||
| 400 | } | ||||
| 401 | |||||
| 402 | /// DiagnoseSentinelCalls - This routine checks whether a call or | ||||
| 403 | /// message-send is to a declaration with the sentinel attribute, and | ||||
| 404 | /// if so, it checks that the requirements of the sentinel are | ||||
| 405 | /// satisfied. | ||||
| 406 | void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc, | ||||
| 407 | ArrayRef<Expr *> Args) { | ||||
| 408 | const SentinelAttr *attr = D->getAttr<SentinelAttr>(); | ||||
| 409 | if (!attr) | ||||
| 410 | return; | ||||
| 411 | |||||
| 412 | // The number of formal parameters of the declaration. | ||||
| 413 | unsigned numFormalParams; | ||||
| 414 | |||||
| 415 | // The kind of declaration. This is also an index into a %select in | ||||
| 416 | // the diagnostic. | ||||
| 417 | enum CalleeType { CT_Function, CT_Method, CT_Block } calleeType; | ||||
| 418 | |||||
| 419 | if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) { | ||||
| 420 | numFormalParams = MD->param_size(); | ||||
| 421 | calleeType = CT_Method; | ||||
| 422 | } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { | ||||
| 423 | numFormalParams = FD->param_size(); | ||||
| 424 | calleeType = CT_Function; | ||||
| 425 | } else if (isa<VarDecl>(D)) { | ||||
| 426 | QualType type = cast<ValueDecl>(D)->getType(); | ||||
| 427 | const FunctionType *fn = nullptr; | ||||
| 428 | if (const PointerType *ptr = type->getAs<PointerType>()) { | ||||
| 429 | fn = ptr->getPointeeType()->getAs<FunctionType>(); | ||||
| 430 | if (!fn) return; | ||||
| 431 | calleeType = CT_Function; | ||||
| 432 | } else if (const BlockPointerType *ptr = type->getAs<BlockPointerType>()) { | ||||
| 433 | fn = ptr->getPointeeType()->castAs<FunctionType>(); | ||||
| 434 | calleeType = CT_Block; | ||||
| 435 | } else { | ||||
| 436 | return; | ||||
| 437 | } | ||||
| 438 | |||||
| 439 | if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fn)) { | ||||
| 440 | numFormalParams = proto->getNumParams(); | ||||
| 441 | } else { | ||||
| 442 | numFormalParams = 0; | ||||
| 443 | } | ||||
| 444 | } else { | ||||
| 445 | return; | ||||
| 446 | } | ||||
| 447 | |||||
| 448 | // "nullPos" is the number of formal parameters at the end which | ||||
| 449 | // effectively count as part of the variadic arguments. This is | ||||
| 450 | // useful if you would prefer to not have *any* formal parameters, | ||||
| 451 | // but the language forces you to have at least one. | ||||
| 452 | unsigned nullPos = attr->getNullPos(); | ||||
| 453 | assert((nullPos == 0 || nullPos == 1) && "invalid null position on sentinel")(static_cast <bool> ((nullPos == 0 || nullPos == 1) && "invalid null position on sentinel") ? void (0) : __assert_fail ("(nullPos == 0 || nullPos == 1) && \"invalid null position on sentinel\"" , "clang/lib/Sema/SemaExpr.cpp", 453, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 454 | numFormalParams = (nullPos > numFormalParams ? 0 : numFormalParams - nullPos); | ||||
| 455 | |||||
| 456 | // The number of arguments which should follow the sentinel. | ||||
| 457 | unsigned numArgsAfterSentinel = attr->getSentinel(); | ||||
| 458 | |||||
| 459 | // If there aren't enough arguments for all the formal parameters, | ||||
| 460 | // the sentinel, and the args after the sentinel, complain. | ||||
| 461 | if (Args.size() < numFormalParams + numArgsAfterSentinel + 1) { | ||||
| 462 | Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName(); | ||||
| 463 | Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType); | ||||
| 464 | return; | ||||
| 465 | } | ||||
| 466 | |||||
| 467 | // Otherwise, find the sentinel expression. | ||||
| 468 | Expr *sentinelExpr = Args[Args.size() - numArgsAfterSentinel - 1]; | ||||
| 469 | if (!sentinelExpr) return; | ||||
| 470 | if (sentinelExpr->isValueDependent()) return; | ||||
| 471 | if (Context.isSentinelNullExpr(sentinelExpr)) return; | ||||
| 472 | |||||
| 473 | // Pick a reasonable string to insert. Optimistically use 'nil', 'nullptr', | ||||
| 474 | // or 'NULL' if those are actually defined in the context. Only use | ||||
| 475 | // 'nil' for ObjC methods, where it's much more likely that the | ||||
| 476 | // variadic arguments form a list of object pointers. | ||||
| 477 | SourceLocation MissingNilLoc = getLocForEndOfToken(sentinelExpr->getEndLoc()); | ||||
| 478 | std::string NullValue; | ||||
| 479 | if (calleeType == CT_Method && PP.isMacroDefined("nil")) | ||||
| 480 | NullValue = "nil"; | ||||
| 481 | else if (getLangOpts().CPlusPlus11) | ||||
| 482 | NullValue = "nullptr"; | ||||
| 483 | else if (PP.isMacroDefined("NULL")) | ||||
| 484 | NullValue = "NULL"; | ||||
| 485 | else | ||||
| 486 | NullValue = "(void*) 0"; | ||||
| 487 | |||||
| 488 | if (MissingNilLoc.isInvalid()) | ||||
| 489 | Diag(Loc, diag::warn_missing_sentinel) << int(calleeType); | ||||
| 490 | else | ||||
| 491 | Diag(MissingNilLoc, diag::warn_missing_sentinel) | ||||
| 492 | << int(calleeType) | ||||
| 493 | << FixItHint::CreateInsertion(MissingNilLoc, ", " + NullValue); | ||||
| 494 | Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType); | ||||
| 495 | } | ||||
| 496 | |||||
| 497 | SourceRange Sema::getExprRange(Expr *E) const { | ||||
| 498 | return E ? E->getSourceRange() : SourceRange(); | ||||
| 499 | } | ||||
| 500 | |||||
| 501 | //===----------------------------------------------------------------------===// | ||||
| 502 | // Standard Promotions and Conversions | ||||
| 503 | //===----------------------------------------------------------------------===// | ||||
| 504 | |||||
| 505 | /// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4). | ||||
| 506 | ExprResult Sema::DefaultFunctionArrayConversion(Expr *E, bool Diagnose) { | ||||
| 507 | // Handle any placeholder expressions which made it here. | ||||
| 508 | if (E->hasPlaceholderType()) { | ||||
| 509 | ExprResult result = CheckPlaceholderExpr(E); | ||||
| 510 | if (result.isInvalid()) return ExprError(); | ||||
| 511 | E = result.get(); | ||||
| 512 | } | ||||
| 513 | |||||
| 514 | QualType Ty = E->getType(); | ||||
| 515 | assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type")(static_cast <bool> (!Ty.isNull() && "DefaultFunctionArrayConversion - missing type" ) ? void (0) : __assert_fail ("!Ty.isNull() && \"DefaultFunctionArrayConversion - missing type\"" , "clang/lib/Sema/SemaExpr.cpp", 515, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 516 | |||||
| 517 | if (Ty->isFunctionType()) { | ||||
| 518 | if (auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts())) | ||||
| 519 | if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) | ||||
| 520 | if (!checkAddressOfFunctionIsAvailable(FD, Diagnose, E->getExprLoc())) | ||||
| 521 | return ExprError(); | ||||
| 522 | |||||
| 523 | E = ImpCastExprToType(E, Context.getPointerType(Ty), | ||||
| 524 | CK_FunctionToPointerDecay).get(); | ||||
| 525 | } else if (Ty->isArrayType()) { | ||||
| 526 | // In C90 mode, arrays only promote to pointers if the array expression is | ||||
| 527 | // an lvalue. The relevant legalese is C90 6.2.2.1p3: "an lvalue that has | ||||
| 528 | // type 'array of type' is converted to an expression that has type 'pointer | ||||
| 529 | // to type'...". In C99 this was changed to: C99 6.3.2.1p3: "an expression | ||||
| 530 | // that has type 'array of type' ...". The relevant change is "an lvalue" | ||||
| 531 | // (C90) to "an expression" (C99). | ||||
| 532 | // | ||||
| 533 | // C++ 4.2p1: | ||||
| 534 | // An lvalue or rvalue of type "array of N T" or "array of unknown bound of | ||||
| 535 | // T" can be converted to an rvalue of type "pointer to T". | ||||
| 536 | // | ||||
| 537 | if (getLangOpts().C99 || getLangOpts().CPlusPlus || E->isLValue()) { | ||||
| 538 | ExprResult Res = ImpCastExprToType(E, Context.getArrayDecayedType(Ty), | ||||
| 539 | CK_ArrayToPointerDecay); | ||||
| 540 | if (Res.isInvalid()) | ||||
| 541 | return ExprError(); | ||||
| 542 | E = Res.get(); | ||||
| 543 | } | ||||
| 544 | } | ||||
| 545 | return E; | ||||
| 546 | } | ||||
| 547 | |||||
| 548 | static void CheckForNullPointerDereference(Sema &S, Expr *E) { | ||||
| 549 | // Check to see if we are dereferencing a null pointer. If so, | ||||
| 550 | // and if not volatile-qualified, this is undefined behavior that the | ||||
| 551 | // optimizer will delete, so warn about it. People sometimes try to use this | ||||
| 552 | // to get a deterministic trap and are surprised by clang's behavior. This | ||||
| 553 | // only handles the pattern "*null", which is a very syntactic check. | ||||
| 554 | const auto *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts()); | ||||
| 555 | if (UO && UO->getOpcode() == UO_Deref && | ||||
| 556 | UO->getSubExpr()->getType()->isPointerType()) { | ||||
| 557 | const LangAS AS = | ||||
| 558 | UO->getSubExpr()->getType()->getPointeeType().getAddressSpace(); | ||||
| 559 | if ((!isTargetAddressSpace(AS) || | ||||
| 560 | (isTargetAddressSpace(AS) && toTargetAddressSpace(AS) == 0)) && | ||||
| 561 | UO->getSubExpr()->IgnoreParenCasts()->isNullPointerConstant( | ||||
| 562 | S.Context, Expr::NPC_ValueDependentIsNotNull) && | ||||
| 563 | !UO->getType().isVolatileQualified()) { | ||||
| 564 | S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO, | ||||
| 565 | S.PDiag(diag::warn_indirection_through_null) | ||||
| 566 | << UO->getSubExpr()->getSourceRange()); | ||||
| 567 | S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO, | ||||
| 568 | S.PDiag(diag::note_indirection_through_null)); | ||||
| 569 | } | ||||
| 570 | } | ||||
| 571 | } | ||||
| 572 | |||||
| 573 | static void DiagnoseDirectIsaAccess(Sema &S, const ObjCIvarRefExpr *OIRE, | ||||
| 574 | SourceLocation AssignLoc, | ||||
| 575 | const Expr* RHS) { | ||||
| 576 | const ObjCIvarDecl *IV = OIRE->getDecl(); | ||||
| 577 | if (!IV) | ||||
| 578 | return; | ||||
| 579 | |||||
| 580 | DeclarationName MemberName = IV->getDeclName(); | ||||
| 581 | IdentifierInfo *Member = MemberName.getAsIdentifierInfo(); | ||||
| 582 | if (!Member || !Member->isStr("isa")) | ||||
| 583 | return; | ||||
| 584 | |||||
| 585 | const Expr *Base = OIRE->getBase(); | ||||
| 586 | QualType BaseType = Base->getType(); | ||||
| 587 | if (OIRE->isArrow()) | ||||
| 588 | BaseType = BaseType->getPointeeType(); | ||||
| 589 | if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>()) | ||||
| 590 | if (ObjCInterfaceDecl *IDecl = OTy->getInterface()) { | ||||
| 591 | ObjCInterfaceDecl *ClassDeclared = nullptr; | ||||
| 592 | ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared); | ||||
| 593 | if (!ClassDeclared->getSuperClass() | ||||
| 594 | && (*ClassDeclared->ivar_begin()) == IV) { | ||||
| 595 | if (RHS) { | ||||
| 596 | NamedDecl *ObjectSetClass = | ||||
| 597 | S.LookupSingleName(S.TUScope, | ||||
| 598 | &S.Context.Idents.get("object_setClass"), | ||||
| 599 | SourceLocation(), S.LookupOrdinaryName); | ||||
| 600 | if (ObjectSetClass) { | ||||
| 601 | SourceLocation RHSLocEnd = S.getLocForEndOfToken(RHS->getEndLoc()); | ||||
| 602 | S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_assign) | ||||
| 603 | << FixItHint::CreateInsertion(OIRE->getBeginLoc(), | ||||
| 604 | "object_setClass(") | ||||
| 605 | << FixItHint::CreateReplacement( | ||||
| 606 | SourceRange(OIRE->getOpLoc(), AssignLoc), ",") | ||||
| 607 | << FixItHint::CreateInsertion(RHSLocEnd, ")"); | ||||
| 608 | } | ||||
| 609 | else | ||||
| 610 | S.Diag(OIRE->getLocation(), diag::warn_objc_isa_assign); | ||||
| 611 | } else { | ||||
| 612 | NamedDecl *ObjectGetClass = | ||||
| 613 | S.LookupSingleName(S.TUScope, | ||||
| 614 | &S.Context.Idents.get("object_getClass"), | ||||
| 615 | SourceLocation(), S.LookupOrdinaryName); | ||||
| 616 | if (ObjectGetClass) | ||||
| 617 | S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_use) | ||||
| 618 | << FixItHint::CreateInsertion(OIRE->getBeginLoc(), | ||||
| 619 | "object_getClass(") | ||||
| 620 | << FixItHint::CreateReplacement( | ||||
| 621 | SourceRange(OIRE->getOpLoc(), OIRE->getEndLoc()), ")"); | ||||
| 622 | else | ||||
| 623 | S.Diag(OIRE->getLocation(), diag::warn_objc_isa_use); | ||||
| 624 | } | ||||
| 625 | S.Diag(IV->getLocation(), diag::note_ivar_decl); | ||||
| 626 | } | ||||
| 627 | } | ||||
| 628 | } | ||||
| 629 | |||||
| 630 | ExprResult Sema::DefaultLvalueConversion(Expr *E) { | ||||
| 631 | // Handle any placeholder expressions which made it here. | ||||
| 632 | if (E->hasPlaceholderType()) { | ||||
| 633 | ExprResult result = CheckPlaceholderExpr(E); | ||||
| 634 | if (result.isInvalid()) return ExprError(); | ||||
| 635 | E = result.get(); | ||||
| 636 | } | ||||
| 637 | |||||
| 638 | // C++ [conv.lval]p1: | ||||
| 639 | // A glvalue of a non-function, non-array type T can be | ||||
| 640 | // converted to a prvalue. | ||||
| 641 | if (!E->isGLValue()) return E; | ||||
| 642 | |||||
| 643 | QualType T = E->getType(); | ||||
| 644 | assert(!T.isNull() && "r-value conversion on typeless expression?")(static_cast <bool> (!T.isNull() && "r-value conversion on typeless expression?" ) ? void (0) : __assert_fail ("!T.isNull() && \"r-value conversion on typeless expression?\"" , "clang/lib/Sema/SemaExpr.cpp", 644, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 645 | |||||
| 646 | // lvalue-to-rvalue conversion cannot be applied to function or array types. | ||||
| 647 | if (T->isFunctionType() || T->isArrayType()) | ||||
| 648 | return E; | ||||
| 649 | |||||
| 650 | // We don't want to throw lvalue-to-rvalue casts on top of | ||||
| 651 | // expressions of certain types in C++. | ||||
| 652 | if (getLangOpts().CPlusPlus && | ||||
| 653 | (E->getType() == Context.OverloadTy || | ||||
| 654 | T->isDependentType() || | ||||
| 655 | T->isRecordType())) | ||||
| 656 | return E; | ||||
| 657 | |||||
| 658 | // The C standard is actually really unclear on this point, and | ||||
| 659 | // DR106 tells us what the result should be but not why. It's | ||||
| 660 | // generally best to say that void types just doesn't undergo | ||||
| 661 | // lvalue-to-rvalue at all. Note that expressions of unqualified | ||||
| 662 | // 'void' type are never l-values, but qualified void can be. | ||||
| 663 | if (T->isVoidType()) | ||||
| 664 | return E; | ||||
| 665 | |||||
| 666 | // OpenCL usually rejects direct accesses to values of 'half' type. | ||||
| 667 | if (getLangOpts().OpenCL && | ||||
| 668 | !getOpenCLOptions().isAvailableOption("cl_khr_fp16", getLangOpts()) && | ||||
| 669 | T->isHalfType()) { | ||||
| 670 | Diag(E->getExprLoc(), diag::err_opencl_half_load_store) | ||||
| 671 | << 0 << T; | ||||
| 672 | return ExprError(); | ||||
| 673 | } | ||||
| 674 | |||||
| 675 | CheckForNullPointerDereference(*this, E); | ||||
| 676 | if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(E->IgnoreParenCasts())) { | ||||
| 677 | NamedDecl *ObjectGetClass = LookupSingleName(TUScope, | ||||
| 678 | &Context.Idents.get("object_getClass"), | ||||
| 679 | SourceLocation(), LookupOrdinaryName); | ||||
| 680 | if (ObjectGetClass) | ||||
| 681 | Diag(E->getExprLoc(), diag::warn_objc_isa_use) | ||||
| 682 | << FixItHint::CreateInsertion(OISA->getBeginLoc(), "object_getClass(") | ||||
| 683 | << FixItHint::CreateReplacement( | ||||
| 684 | SourceRange(OISA->getOpLoc(), OISA->getIsaMemberLoc()), ")"); | ||||
| 685 | else | ||||
| 686 | Diag(E->getExprLoc(), diag::warn_objc_isa_use); | ||||
| 687 | } | ||||
| 688 | else if (const ObjCIvarRefExpr *OIRE = | ||||
| 689 | dyn_cast<ObjCIvarRefExpr>(E->IgnoreParenCasts())) | ||||
| 690 | DiagnoseDirectIsaAccess(*this, OIRE, SourceLocation(), /* Expr*/nullptr); | ||||
| 691 | |||||
| 692 | // C++ [conv.lval]p1: | ||||
| 693 | // [...] If T is a non-class type, the type of the prvalue is the | ||||
| 694 | // cv-unqualified version of T. Otherwise, the type of the | ||||
| 695 | // rvalue is T. | ||||
| 696 | // | ||||
| 697 | // C99 6.3.2.1p2: | ||||
| 698 | // If the lvalue has qualified type, the value has the unqualified | ||||
| 699 | // version of the type of the lvalue; otherwise, the value has the | ||||
| 700 | // type of the lvalue. | ||||
| 701 | if (T.hasQualifiers()) | ||||
| 702 | T = T.getUnqualifiedType(); | ||||
| 703 | |||||
| 704 | // Under the MS ABI, lock down the inheritance model now. | ||||
| 705 | if (T->isMemberPointerType() && | ||||
| 706 | Context.getTargetInfo().getCXXABI().isMicrosoft()) | ||||
| 707 | (void)isCompleteType(E->getExprLoc(), T); | ||||
| 708 | |||||
| 709 | ExprResult Res = CheckLValueToRValueConversionOperand(E); | ||||
| 710 | if (Res.isInvalid()) | ||||
| 711 | return Res; | ||||
| 712 | E = Res.get(); | ||||
| 713 | |||||
| 714 | // Loading a __weak object implicitly retains the value, so we need a cleanup to | ||||
| 715 | // balance that. | ||||
| 716 | if (E->getType().getObjCLifetime() == Qualifiers::OCL_Weak) | ||||
| 717 | Cleanup.setExprNeedsCleanups(true); | ||||
| 718 | |||||
| 719 | if (E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct) | ||||
| 720 | Cleanup.setExprNeedsCleanups(true); | ||||
| 721 | |||||
| 722 | // C++ [conv.lval]p3: | ||||
| 723 | // If T is cv std::nullptr_t, the result is a null pointer constant. | ||||
| 724 | CastKind CK = T->isNullPtrType() ? CK_NullToPointer : CK_LValueToRValue; | ||||
| 725 | Res = ImplicitCastExpr::Create(Context, T, CK, E, nullptr, VK_PRValue, | ||||
| 726 | CurFPFeatureOverrides()); | ||||
| 727 | |||||
| 728 | // C11 6.3.2.1p2: | ||||
| 729 | // ... if the lvalue has atomic type, the value has the non-atomic version | ||||
| 730 | // of the type of the lvalue ... | ||||
| 731 | if (const AtomicType *Atomic = T->getAs<AtomicType>()) { | ||||
| 732 | T = Atomic->getValueType().getUnqualifiedType(); | ||||
| 733 | Res = ImplicitCastExpr::Create(Context, T, CK_AtomicToNonAtomic, Res.get(), | ||||
| 734 | nullptr, VK_PRValue, FPOptionsOverride()); | ||||
| 735 | } | ||||
| 736 | |||||
| 737 | return Res; | ||||
| 738 | } | ||||
| 739 | |||||
| 740 | ExprResult Sema::DefaultFunctionArrayLvalueConversion(Expr *E, bool Diagnose) { | ||||
| 741 | ExprResult Res = DefaultFunctionArrayConversion(E, Diagnose); | ||||
| 742 | if (Res.isInvalid()) | ||||
| 743 | return ExprError(); | ||||
| 744 | Res = DefaultLvalueConversion(Res.get()); | ||||
| 745 | if (Res.isInvalid()) | ||||
| 746 | return ExprError(); | ||||
| 747 | return Res; | ||||
| 748 | } | ||||
| 749 | |||||
| 750 | /// CallExprUnaryConversions - a special case of an unary conversion | ||||
| 751 | /// performed on a function designator of a call expression. | ||||
| 752 | ExprResult Sema::CallExprUnaryConversions(Expr *E) { | ||||
| 753 | QualType Ty = E->getType(); | ||||
| 754 | ExprResult Res = E; | ||||
| 755 | // Only do implicit cast for a function type, but not for a pointer | ||||
| 756 | // to function type. | ||||
| 757 | if (Ty->isFunctionType()) { | ||||
| 758 | Res = ImpCastExprToType(E, Context.getPointerType(Ty), | ||||
| 759 | CK_FunctionToPointerDecay); | ||||
| 760 | if (Res.isInvalid()) | ||||
| 761 | return ExprError(); | ||||
| 762 | } | ||||
| 763 | Res = DefaultLvalueConversion(Res.get()); | ||||
| 764 | if (Res.isInvalid()) | ||||
| 765 | return ExprError(); | ||||
| 766 | return Res.get(); | ||||
| 767 | } | ||||
| 768 | |||||
| 769 | /// UsualUnaryConversions - Performs various conversions that are common to most | ||||
| 770 | /// operators (C99 6.3). The conversions of array and function types are | ||||
| 771 | /// sometimes suppressed. For example, the array->pointer conversion doesn't | ||||
| 772 | /// apply if the array is an argument to the sizeof or address (&) operators. | ||||
| 773 | /// In these instances, this routine should *not* be called. | ||||
| 774 | ExprResult Sema::UsualUnaryConversions(Expr *E) { | ||||
| 775 | // First, convert to an r-value. | ||||
| 776 | ExprResult Res = DefaultFunctionArrayLvalueConversion(E); | ||||
| 777 | if (Res.isInvalid()) | ||||
| 778 | return ExprError(); | ||||
| 779 | E = Res.get(); | ||||
| 780 | |||||
| 781 | QualType Ty = E->getType(); | ||||
| 782 | assert(!Ty.isNull() && "UsualUnaryConversions - missing type")(static_cast <bool> (!Ty.isNull() && "UsualUnaryConversions - missing type" ) ? void (0) : __assert_fail ("!Ty.isNull() && \"UsualUnaryConversions - missing type\"" , "clang/lib/Sema/SemaExpr.cpp", 782, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 783 | |||||
| 784 | LangOptions::FPEvalMethodKind EvalMethod = CurFPFeatures.getFPEvalMethod(); | ||||
| 785 | if (EvalMethod != LangOptions::FEM_Source && Ty->isFloatingType() && | ||||
| 786 | (getLangOpts().getFPEvalMethod() != | ||||
| 787 | LangOptions::FPEvalMethodKind::FEM_UnsetOnCommandLine || | ||||
| 788 | PP.getLastFPEvalPragmaLocation().isValid())) { | ||||
| 789 | switch (EvalMethod) { | ||||
| 790 | default: | ||||
| 791 | llvm_unreachable("Unrecognized float evaluation method")::llvm::llvm_unreachable_internal("Unrecognized float evaluation method" , "clang/lib/Sema/SemaExpr.cpp", 791); | ||||
| 792 | break; | ||||
| 793 | case LangOptions::FEM_UnsetOnCommandLine: | ||||
| 794 | llvm_unreachable("Float evaluation method should be set by now")::llvm::llvm_unreachable_internal("Float evaluation method should be set by now" , "clang/lib/Sema/SemaExpr.cpp", 794); | ||||
| 795 | break; | ||||
| 796 | case LangOptions::FEM_Double: | ||||
| 797 | if (Context.getFloatingTypeOrder(Context.DoubleTy, Ty) > 0) | ||||
| 798 | // Widen the expression to double. | ||||
| 799 | return Ty->isComplexType() | ||||
| 800 | ? ImpCastExprToType(E, | ||||
| 801 | Context.getComplexType(Context.DoubleTy), | ||||
| 802 | CK_FloatingComplexCast) | ||||
| 803 | : ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast); | ||||
| 804 | break; | ||||
| 805 | case LangOptions::FEM_Extended: | ||||
| 806 | if (Context.getFloatingTypeOrder(Context.LongDoubleTy, Ty) > 0) | ||||
| 807 | // Widen the expression to long double. | ||||
| 808 | return Ty->isComplexType() | ||||
| 809 | ? ImpCastExprToType( | ||||
| 810 | E, Context.getComplexType(Context.LongDoubleTy), | ||||
| 811 | CK_FloatingComplexCast) | ||||
| 812 | : ImpCastExprToType(E, Context.LongDoubleTy, | ||||
| 813 | CK_FloatingCast); | ||||
| 814 | break; | ||||
| 815 | } | ||||
| 816 | } | ||||
| 817 | |||||
| 818 | // Half FP have to be promoted to float unless it is natively supported | ||||
| 819 | if (Ty->isHalfType() && !getLangOpts().NativeHalfType) | ||||
| 820 | return ImpCastExprToType(Res.get(), Context.FloatTy, CK_FloatingCast); | ||||
| 821 | |||||
| 822 | // Try to perform integral promotions if the object has a theoretically | ||||
| 823 | // promotable type. | ||||
| 824 | if (Ty->isIntegralOrUnscopedEnumerationType()) { | ||||
| 825 | // C99 6.3.1.1p2: | ||||
| 826 | // | ||||
| 827 | // The following may be used in an expression wherever an int or | ||||
| 828 | // unsigned int may be used: | ||||
| 829 | // - an object or expression with an integer type whose integer | ||||
| 830 | // conversion rank is less than or equal to the rank of int | ||||
| 831 | // and unsigned int. | ||||
| 832 | // - A bit-field of type _Bool, int, signed int, or unsigned int. | ||||
| 833 | // | ||||
| 834 | // If an int can represent all values of the original type, the | ||||
| 835 | // value is converted to an int; otherwise, it is converted to an | ||||
| 836 | // unsigned int. These are called the integer promotions. All | ||||
| 837 | // other types are unchanged by the integer promotions. | ||||
| 838 | |||||
| 839 | QualType PTy = Context.isPromotableBitField(E); | ||||
| 840 | if (!PTy.isNull()) { | ||||
| 841 | E = ImpCastExprToType(E, PTy, CK_IntegralCast).get(); | ||||
| 842 | return E; | ||||
| 843 | } | ||||
| 844 | if (Context.isPromotableIntegerType(Ty)) { | ||||
| 845 | QualType PT = Context.getPromotedIntegerType(Ty); | ||||
| 846 | E = ImpCastExprToType(E, PT, CK_IntegralCast).get(); | ||||
| 847 | return E; | ||||
| 848 | } | ||||
| 849 | } | ||||
| 850 | return E; | ||||
| 851 | } | ||||
| 852 | |||||
| 853 | /// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that | ||||
| 854 | /// do not have a prototype. Arguments that have type float or __fp16 | ||||
| 855 | /// are promoted to double. All other argument types are converted by | ||||
| 856 | /// UsualUnaryConversions(). | ||||
| 857 | ExprResult Sema::DefaultArgumentPromotion(Expr *E) { | ||||
| 858 | QualType Ty = E->getType(); | ||||
| 859 | assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type")(static_cast <bool> (!Ty.isNull() && "DefaultArgumentPromotion - missing type" ) ? void (0) : __assert_fail ("!Ty.isNull() && \"DefaultArgumentPromotion - missing type\"" , "clang/lib/Sema/SemaExpr.cpp", 859, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 860 | |||||
| 861 | ExprResult Res = UsualUnaryConversions(E); | ||||
| 862 | if (Res.isInvalid()) | ||||
| 863 | return ExprError(); | ||||
| 864 | E = Res.get(); | ||||
| 865 | |||||
| 866 | // If this is a 'float' or '__fp16' (CVR qualified or typedef) | ||||
| 867 | // promote to double. | ||||
| 868 | // Note that default argument promotion applies only to float (and | ||||
| 869 | // half/fp16); it does not apply to _Float16. | ||||
| 870 | const BuiltinType *BTy = Ty->getAs<BuiltinType>(); | ||||
| 871 | if (BTy && (BTy->getKind() == BuiltinType::Half || | ||||
| 872 | BTy->getKind() == BuiltinType::Float)) { | ||||
| 873 | if (getLangOpts().OpenCL && | ||||
| 874 | !getOpenCLOptions().isAvailableOption("cl_khr_fp64", getLangOpts())) { | ||||
| 875 | if (BTy->getKind() == BuiltinType::Half) { | ||||
| 876 | E = ImpCastExprToType(E, Context.FloatTy, CK_FloatingCast).get(); | ||||
| 877 | } | ||||
| 878 | } else { | ||||
| 879 | E = ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast).get(); | ||||
| 880 | } | ||||
| 881 | } | ||||
| 882 | if (BTy && | ||||
| 883 | getLangOpts().getExtendIntArgs() == | ||||
| 884 | LangOptions::ExtendArgsKind::ExtendTo64 && | ||||
| 885 | Context.getTargetInfo().supportsExtendIntArgs() && Ty->isIntegerType() && | ||||
| 886 | Context.getTypeSizeInChars(BTy) < | ||||
| 887 | Context.getTypeSizeInChars(Context.LongLongTy)) { | ||||
| 888 | E = (Ty->isUnsignedIntegerType()) | ||||
| 889 | ? ImpCastExprToType(E, Context.UnsignedLongLongTy, CK_IntegralCast) | ||||
| 890 | .get() | ||||
| 891 | : ImpCastExprToType(E, Context.LongLongTy, CK_IntegralCast).get(); | ||||
| 892 | assert(8 == Context.getTypeSizeInChars(Context.LongLongTy).getQuantity() &&(static_cast <bool> (8 == Context.getTypeSizeInChars(Context .LongLongTy).getQuantity() && "Unexpected typesize for LongLongTy" ) ? void (0) : __assert_fail ("8 == Context.getTypeSizeInChars(Context.LongLongTy).getQuantity() && \"Unexpected typesize for LongLongTy\"" , "clang/lib/Sema/SemaExpr.cpp", 893, __extension__ __PRETTY_FUNCTION__ )) | ||||
| 893 | "Unexpected typesize for LongLongTy")(static_cast <bool> (8 == Context.getTypeSizeInChars(Context .LongLongTy).getQuantity() && "Unexpected typesize for LongLongTy" ) ? void (0) : __assert_fail ("8 == Context.getTypeSizeInChars(Context.LongLongTy).getQuantity() && \"Unexpected typesize for LongLongTy\"" , "clang/lib/Sema/SemaExpr.cpp", 893, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 894 | } | ||||
| 895 | |||||
| 896 | // C++ performs lvalue-to-rvalue conversion as a default argument | ||||
| 897 | // promotion, even on class types, but note: | ||||
| 898 | // C++11 [conv.lval]p2: | ||||
| 899 | // When an lvalue-to-rvalue conversion occurs in an unevaluated | ||||
| 900 | // operand or a subexpression thereof the value contained in the | ||||
| 901 | // referenced object is not accessed. Otherwise, if the glvalue | ||||
| 902 | // has a class type, the conversion copy-initializes a temporary | ||||
| 903 | // of type T from the glvalue and the result of the conversion | ||||
| 904 | // is a prvalue for the temporary. | ||||
| 905 | // FIXME: add some way to gate this entire thing for correctness in | ||||
| 906 | // potentially potentially evaluated contexts. | ||||
| 907 | if (getLangOpts().CPlusPlus && E->isGLValue() && !isUnevaluatedContext()) { | ||||
| 908 | ExprResult Temp = PerformCopyInitialization( | ||||
| 909 | InitializedEntity::InitializeTemporary(E->getType()), | ||||
| 910 | E->getExprLoc(), E); | ||||
| 911 | if (Temp.isInvalid()) | ||||
| 912 | return ExprError(); | ||||
| 913 | E = Temp.get(); | ||||
| 914 | } | ||||
| 915 | |||||
| 916 | return E; | ||||
| 917 | } | ||||
| 918 | |||||
| 919 | /// Determine the degree of POD-ness for an expression. | ||||
| 920 | /// Incomplete types are considered POD, since this check can be performed | ||||
| 921 | /// when we're in an unevaluated context. | ||||
| 922 | Sema::VarArgKind Sema::isValidVarArgType(const QualType &Ty) { | ||||
| 923 | if (Ty->isIncompleteType()) { | ||||
| 924 | // C++11 [expr.call]p7: | ||||
| 925 | // After these conversions, if the argument does not have arithmetic, | ||||
| 926 | // enumeration, pointer, pointer to member, or class type, the program | ||||
| 927 | // is ill-formed. | ||||
| 928 | // | ||||
| 929 | // Since we've already performed array-to-pointer and function-to-pointer | ||||
| 930 | // decay, the only such type in C++ is cv void. This also handles | ||||
| 931 | // initializer lists as variadic arguments. | ||||
| 932 | if (Ty->isVoidType()) | ||||
| 933 | return VAK_Invalid; | ||||
| 934 | |||||
| 935 | if (Ty->isObjCObjectType()) | ||||
| 936 | return VAK_Invalid; | ||||
| 937 | return VAK_Valid; | ||||
| 938 | } | ||||
| 939 | |||||
| 940 | if (Ty.isDestructedType() == QualType::DK_nontrivial_c_struct) | ||||
| 941 | return VAK_Invalid; | ||||
| 942 | |||||
| 943 | if (Context.getTargetInfo().getTriple().isWasm() && | ||||
| 944 | Ty->isWebAssemblyReferenceType()) { | ||||
| 945 | return VAK_Invalid; | ||||
| 946 | } | ||||
| 947 | |||||
| 948 | if (Ty.isCXX98PODType(Context)) | ||||
| 949 | return VAK_Valid; | ||||
| 950 | |||||
| 951 | // C++11 [expr.call]p7: | ||||
| 952 | // Passing a potentially-evaluated argument of class type (Clause 9) | ||||
| 953 | // having a non-trivial copy constructor, a non-trivial move constructor, | ||||
| 954 | // or a non-trivial destructor, with no corresponding parameter, | ||||
| 955 | // is conditionally-supported with implementation-defined semantics. | ||||
| 956 | if (getLangOpts().CPlusPlus11 && !Ty->isDependentType()) | ||||
| 957 | if (CXXRecordDecl *Record = Ty->getAsCXXRecordDecl()) | ||||
| 958 | if (!Record->hasNonTrivialCopyConstructor() && | ||||
| 959 | !Record->hasNonTrivialMoveConstructor() && | ||||
| 960 | !Record->hasNonTrivialDestructor()) | ||||
| 961 | return VAK_ValidInCXX11; | ||||
| 962 | |||||
| 963 | if (getLangOpts().ObjCAutoRefCount && Ty->isObjCLifetimeType()) | ||||
| 964 | return VAK_Valid; | ||||
| 965 | |||||
| 966 | if (Ty->isObjCObjectType()) | ||||
| 967 | return VAK_Invalid; | ||||
| 968 | |||||
| 969 | if (getLangOpts().MSVCCompat) | ||||
| 970 | return VAK_MSVCUndefined; | ||||
| 971 | |||||
| 972 | // FIXME: In C++11, these cases are conditionally-supported, meaning we're | ||||
| 973 | // permitted to reject them. We should consider doing so. | ||||
| 974 | return VAK_Undefined; | ||||
| 975 | } | ||||
| 976 | |||||
| 977 | void Sema::checkVariadicArgument(const Expr *E, VariadicCallType CT) { | ||||
| 978 | // Don't allow one to pass an Objective-C interface to a vararg. | ||||
| 979 | const QualType &Ty = E->getType(); | ||||
| 980 | VarArgKind VAK = isValidVarArgType(Ty); | ||||
| 981 | |||||
| 982 | // Complain about passing non-POD types through varargs. | ||||
| 983 | switch (VAK) { | ||||
| 984 | case VAK_ValidInCXX11: | ||||
| 985 | DiagRuntimeBehavior( | ||||
| 986 | E->getBeginLoc(), nullptr, | ||||
| 987 | PDiag(diag::warn_cxx98_compat_pass_non_pod_arg_to_vararg) << Ty << CT); | ||||
| 988 | [[fallthrough]]; | ||||
| 989 | case VAK_Valid: | ||||
| 990 | if (Ty->isRecordType()) { | ||||
| 991 | // This is unlikely to be what the user intended. If the class has a | ||||
| 992 | // 'c_str' member function, the user probably meant to call that. | ||||
| 993 | DiagRuntimeBehavior(E->getBeginLoc(), nullptr, | ||||
| 994 | PDiag(diag::warn_pass_class_arg_to_vararg) | ||||
| 995 | << Ty << CT << hasCStrMethod(E) << ".c_str()"); | ||||
| 996 | } | ||||
| 997 | break; | ||||
| 998 | |||||
| 999 | case VAK_Undefined: | ||||
| 1000 | case VAK_MSVCUndefined: | ||||
| 1001 | DiagRuntimeBehavior(E->getBeginLoc(), nullptr, | ||||
| 1002 | PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg) | ||||
| 1003 | << getLangOpts().CPlusPlus11 << Ty << CT); | ||||
| 1004 | break; | ||||
| 1005 | |||||
| 1006 | case VAK_Invalid: | ||||
| 1007 | if (Ty.isDestructedType() == QualType::DK_nontrivial_c_struct) | ||||
| 1008 | Diag(E->getBeginLoc(), | ||||
| 1009 | diag::err_cannot_pass_non_trivial_c_struct_to_vararg) | ||||
| 1010 | << Ty << CT; | ||||
| 1011 | else if (Ty->isObjCObjectType()) | ||||
| 1012 | DiagRuntimeBehavior(E->getBeginLoc(), nullptr, | ||||
| 1013 | PDiag(diag::err_cannot_pass_objc_interface_to_vararg) | ||||
| 1014 | << Ty << CT); | ||||
| 1015 | else | ||||
| 1016 | Diag(E->getBeginLoc(), diag::err_cannot_pass_to_vararg) | ||||
| 1017 | << isa<InitListExpr>(E) << Ty << CT; | ||||
| 1018 | break; | ||||
| 1019 | } | ||||
| 1020 | } | ||||
| 1021 | |||||
| 1022 | /// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but | ||||
| 1023 | /// will create a trap if the resulting type is not a POD type. | ||||
| 1024 | ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT, | ||||
| 1025 | FunctionDecl *FDecl) { | ||||
| 1026 | if (const BuiltinType *PlaceholderTy = E->getType()->getAsPlaceholderType()) { | ||||
| 1027 | // Strip the unbridged-cast placeholder expression off, if applicable. | ||||
| 1028 | if (PlaceholderTy->getKind() == BuiltinType::ARCUnbridgedCast && | ||||
| 1029 | (CT == VariadicMethod || | ||||
| 1030 | (FDecl && FDecl->hasAttr<CFAuditedTransferAttr>()))) { | ||||
| 1031 | E = stripARCUnbridgedCast(E); | ||||
| 1032 | |||||
| 1033 | // Otherwise, do normal placeholder checking. | ||||
| 1034 | } else { | ||||
| 1035 | ExprResult ExprRes = CheckPlaceholderExpr(E); | ||||
| 1036 | if (ExprRes.isInvalid()) | ||||
| 1037 | return ExprError(); | ||||
| 1038 | E = ExprRes.get(); | ||||
| 1039 | } | ||||
| 1040 | } | ||||
| 1041 | |||||
| 1042 | ExprResult ExprRes = DefaultArgumentPromotion(E); | ||||
| 1043 | if (ExprRes.isInvalid()) | ||||
| 1044 | return ExprError(); | ||||
| 1045 | |||||
| 1046 | // Copy blocks to the heap. | ||||
| 1047 | if (ExprRes.get()->getType()->isBlockPointerType()) | ||||
| 1048 | maybeExtendBlockObject(ExprRes); | ||||
| 1049 | |||||
| 1050 | E = ExprRes.get(); | ||||
| 1051 | |||||
| 1052 | // Diagnostics regarding non-POD argument types are | ||||
| 1053 | // emitted along with format string checking in Sema::CheckFunctionCall(). | ||||
| 1054 | if (isValidVarArgType(E->getType()) == VAK_Undefined) { | ||||
| 1055 | // Turn this into a trap. | ||||
| 1056 | CXXScopeSpec SS; | ||||
| 1057 | SourceLocation TemplateKWLoc; | ||||
| 1058 | UnqualifiedId Name; | ||||
| 1059 | Name.setIdentifier(PP.getIdentifierInfo("__builtin_trap"), | ||||
| 1060 | E->getBeginLoc()); | ||||
| 1061 | ExprResult TrapFn = ActOnIdExpression(TUScope, SS, TemplateKWLoc, Name, | ||||
| 1062 | /*HasTrailingLParen=*/true, | ||||
| 1063 | /*IsAddressOfOperand=*/false); | ||||
| 1064 | if (TrapFn.isInvalid()) | ||||
| 1065 | return ExprError(); | ||||
| 1066 | |||||
| 1067 | ExprResult Call = BuildCallExpr(TUScope, TrapFn.get(), E->getBeginLoc(), | ||||
| 1068 | std::nullopt, E->getEndLoc()); | ||||
| 1069 | if (Call.isInvalid()) | ||||
| 1070 | return ExprError(); | ||||
| 1071 | |||||
| 1072 | ExprResult Comma = | ||||
| 1073 | ActOnBinOp(TUScope, E->getBeginLoc(), tok::comma, Call.get(), E); | ||||
| 1074 | if (Comma.isInvalid()) | ||||
| 1075 | return ExprError(); | ||||
| 1076 | return Comma.get(); | ||||
| 1077 | } | ||||
| 1078 | |||||
| 1079 | if (!getLangOpts().CPlusPlus && | ||||
| 1080 | RequireCompleteType(E->getExprLoc(), E->getType(), | ||||
| 1081 | diag::err_call_incomplete_argument)) | ||||
| 1082 | return ExprError(); | ||||
| 1083 | |||||
| 1084 | return E; | ||||
| 1085 | } | ||||
| 1086 | |||||
| 1087 | /// Converts an integer to complex float type. Helper function of | ||||
| 1088 | /// UsualArithmeticConversions() | ||||
| 1089 | /// | ||||
| 1090 | /// \return false if the integer expression is an integer type and is | ||||
| 1091 | /// successfully converted to the complex type. | ||||
| 1092 | static bool handleIntegerToComplexFloatConversion(Sema &S, ExprResult &IntExpr, | ||||
| 1093 | ExprResult &ComplexExpr, | ||||
| 1094 | QualType IntTy, | ||||
| 1095 | QualType ComplexTy, | ||||
| 1096 | bool SkipCast) { | ||||
| 1097 | if (IntTy->isComplexType() || IntTy->isRealFloatingType()) return true; | ||||
| 1098 | if (SkipCast) return false; | ||||
| 1099 | if (IntTy->isIntegerType()) { | ||||
| 1100 | QualType fpTy = ComplexTy->castAs<ComplexType>()->getElementType(); | ||||
| 1101 | IntExpr = S.ImpCastExprToType(IntExpr.get(), fpTy, CK_IntegralToFloating); | ||||
| 1102 | IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy, | ||||
| 1103 | CK_FloatingRealToComplex); | ||||
| 1104 | } else { | ||||
| 1105 | assert(IntTy->isComplexIntegerType())(static_cast <bool> (IntTy->isComplexIntegerType()) ? void (0) : __assert_fail ("IntTy->isComplexIntegerType()" , "clang/lib/Sema/SemaExpr.cpp", 1105, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 1106 | IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy, | ||||
| 1107 | CK_IntegralComplexToFloatingComplex); | ||||
| 1108 | } | ||||
| 1109 | return false; | ||||
| 1110 | } | ||||
| 1111 | |||||
| 1112 | // This handles complex/complex, complex/float, or float/complex. | ||||
| 1113 | // When both operands are complex, the shorter operand is converted to the | ||||
| 1114 | // type of the longer, and that is the type of the result. This corresponds | ||||
| 1115 | // to what is done when combining two real floating-point operands. | ||||
| 1116 | // The fun begins when size promotion occur across type domains. | ||||
| 1117 | // From H&S 6.3.4: When one operand is complex and the other is a real | ||||
| 1118 | // floating-point type, the less precise type is converted, within it's | ||||
| 1119 | // real or complex domain, to the precision of the other type. For example, | ||||
| 1120 | // when combining a "long double" with a "double _Complex", the | ||||
| 1121 | // "double _Complex" is promoted to "long double _Complex". | ||||
| 1122 | static QualType handleComplexFloatConversion(Sema &S, ExprResult &Shorter, | ||||
| 1123 | QualType ShorterType, | ||||
| 1124 | QualType LongerType, | ||||
| 1125 | bool PromotePrecision) { | ||||
| 1126 | bool LongerIsComplex = isa<ComplexType>(LongerType.getCanonicalType()); | ||||
| 1127 | QualType Result = | ||||
| 1128 | LongerIsComplex ? LongerType : S.Context.getComplexType(LongerType); | ||||
| 1129 | |||||
| 1130 | if (PromotePrecision) { | ||||
| 1131 | if (isa<ComplexType>(ShorterType.getCanonicalType())) { | ||||
| 1132 | Shorter = | ||||
| 1133 | S.ImpCastExprToType(Shorter.get(), Result, CK_FloatingComplexCast); | ||||
| 1134 | } else { | ||||
| 1135 | if (LongerIsComplex) | ||||
| 1136 | LongerType = LongerType->castAs<ComplexType>()->getElementType(); | ||||
| 1137 | Shorter = S.ImpCastExprToType(Shorter.get(), LongerType, CK_FloatingCast); | ||||
| 1138 | } | ||||
| 1139 | } | ||||
| 1140 | return Result; | ||||
| 1141 | } | ||||
| 1142 | |||||
| 1143 | /// Handle arithmetic conversion with complex types. Helper function of | ||||
| 1144 | /// UsualArithmeticConversions() | ||||
| 1145 | static QualType handleComplexConversion(Sema &S, ExprResult &LHS, | ||||
| 1146 | ExprResult &RHS, QualType LHSType, | ||||
| 1147 | QualType RHSType, bool IsCompAssign) { | ||||
| 1148 | // if we have an integer operand, the result is the complex type. | ||||
| 1149 | if (!handleIntegerToComplexFloatConversion(S, RHS, LHS, RHSType, LHSType, | ||||
| 1150 | /*SkipCast=*/false)) | ||||
| 1151 | return LHSType; | ||||
| 1152 | if (!handleIntegerToComplexFloatConversion(S, LHS, RHS, LHSType, RHSType, | ||||
| 1153 | /*SkipCast=*/IsCompAssign)) | ||||
| 1154 | return RHSType; | ||||
| 1155 | |||||
| 1156 | // Compute the rank of the two types, regardless of whether they are complex. | ||||
| 1157 | int Order = S.Context.getFloatingTypeOrder(LHSType, RHSType); | ||||
| 1158 | if (Order < 0) | ||||
| 1159 | // Promote the precision of the LHS if not an assignment. | ||||
| 1160 | return handleComplexFloatConversion(S, LHS, LHSType, RHSType, | ||||
| 1161 | /*PromotePrecision=*/!IsCompAssign); | ||||
| 1162 | // Promote the precision of the RHS unless it is already the same as the LHS. | ||||
| 1163 | return handleComplexFloatConversion(S, RHS, RHSType, LHSType, | ||||
| 1164 | /*PromotePrecision=*/Order > 0); | ||||
| 1165 | } | ||||
| 1166 | |||||
| 1167 | /// Handle arithmetic conversion from integer to float. Helper function | ||||
| 1168 | /// of UsualArithmeticConversions() | ||||
| 1169 | static QualType handleIntToFloatConversion(Sema &S, ExprResult &FloatExpr, | ||||
| 1170 | ExprResult &IntExpr, | ||||
| 1171 | QualType FloatTy, QualType IntTy, | ||||
| 1172 | bool ConvertFloat, bool ConvertInt) { | ||||
| 1173 | if (IntTy->isIntegerType()) { | ||||
| 1174 | if (ConvertInt) | ||||
| 1175 | // Convert intExpr to the lhs floating point type. | ||||
| 1176 | IntExpr = S.ImpCastExprToType(IntExpr.get(), FloatTy, | ||||
| 1177 | CK_IntegralToFloating); | ||||
| 1178 | return FloatTy; | ||||
| 1179 | } | ||||
| 1180 | |||||
| 1181 | // Convert both sides to the appropriate complex float. | ||||
| 1182 | assert(IntTy->isComplexIntegerType())(static_cast <bool> (IntTy->isComplexIntegerType()) ? void (0) : __assert_fail ("IntTy->isComplexIntegerType()" , "clang/lib/Sema/SemaExpr.cpp", 1182, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 1183 | QualType result = S.Context.getComplexType(FloatTy); | ||||
| 1184 | |||||
| 1185 | // _Complex int -> _Complex float | ||||
| 1186 | if (ConvertInt) | ||||
| 1187 | IntExpr = S.ImpCastExprToType(IntExpr.get(), result, | ||||
| 1188 | CK_IntegralComplexToFloatingComplex); | ||||
| 1189 | |||||
| 1190 | // float -> _Complex float | ||||
| 1191 | if (ConvertFloat) | ||||
| 1192 | FloatExpr = S.ImpCastExprToType(FloatExpr.get(), result, | ||||
| 1193 | CK_FloatingRealToComplex); | ||||
| 1194 | |||||
| 1195 | return result; | ||||
| 1196 | } | ||||
| 1197 | |||||
| 1198 | /// Handle arithmethic conversion with floating point types. Helper | ||||
| 1199 | /// function of UsualArithmeticConversions() | ||||
| 1200 | static QualType handleFloatConversion(Sema &S, ExprResult &LHS, | ||||
| 1201 | ExprResult &RHS, QualType LHSType, | ||||
| 1202 | QualType RHSType, bool IsCompAssign) { | ||||
| 1203 | bool LHSFloat = LHSType->isRealFloatingType(); | ||||
| 1204 | bool RHSFloat = RHSType->isRealFloatingType(); | ||||
| 1205 | |||||
| 1206 | // N1169 4.1.4: If one of the operands has a floating type and the other | ||||
| 1207 | // operand has a fixed-point type, the fixed-point operand | ||||
| 1208 | // is converted to the floating type [...] | ||||
| 1209 | if (LHSType->isFixedPointType() || RHSType->isFixedPointType()) { | ||||
| 1210 | if (LHSFloat) | ||||
| 1211 | RHS = S.ImpCastExprToType(RHS.get(), LHSType, CK_FixedPointToFloating); | ||||
| 1212 | else if (!IsCompAssign) | ||||
| 1213 | LHS = S.ImpCastExprToType(LHS.get(), RHSType, CK_FixedPointToFloating); | ||||
| 1214 | return LHSFloat ? LHSType : RHSType; | ||||
| 1215 | } | ||||
| 1216 | |||||
| 1217 | // If we have two real floating types, convert the smaller operand | ||||
| 1218 | // to the bigger result. | ||||
| 1219 | if (LHSFloat && RHSFloat) { | ||||
| 1220 | int order = S.Context.getFloatingTypeOrder(LHSType, RHSType); | ||||
| 1221 | if (order > 0) { | ||||
| 1222 | RHS = S.ImpCastExprToType(RHS.get(), LHSType, CK_FloatingCast); | ||||
| 1223 | return LHSType; | ||||
| 1224 | } | ||||
| 1225 | |||||
| 1226 | assert(order < 0 && "illegal float comparison")(static_cast <bool> (order < 0 && "illegal float comparison" ) ? void (0) : __assert_fail ("order < 0 && \"illegal float comparison\"" , "clang/lib/Sema/SemaExpr.cpp", 1226, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 1227 | if (!IsCompAssign) | ||||
| 1228 | LHS = S.ImpCastExprToType(LHS.get(), RHSType, CK_FloatingCast); | ||||
| 1229 | return RHSType; | ||||
| 1230 | } | ||||
| 1231 | |||||
| 1232 | if (LHSFloat) { | ||||
| 1233 | // Half FP has to be promoted to float unless it is natively supported | ||||
| 1234 | if (LHSType->isHalfType() && !S.getLangOpts().NativeHalfType) | ||||
| 1235 | LHSType = S.Context.FloatTy; | ||||
| 1236 | |||||
| 1237 | return handleIntToFloatConversion(S, LHS, RHS, LHSType, RHSType, | ||||
| 1238 | /*ConvertFloat=*/!IsCompAssign, | ||||
| 1239 | /*ConvertInt=*/ true); | ||||
| 1240 | } | ||||
| 1241 | assert(RHSFloat)(static_cast <bool> (RHSFloat) ? void (0) : __assert_fail ("RHSFloat", "clang/lib/Sema/SemaExpr.cpp", 1241, __extension__ __PRETTY_FUNCTION__)); | ||||
| 1242 | return handleIntToFloatConversion(S, RHS, LHS, RHSType, LHSType, | ||||
| 1243 | /*ConvertFloat=*/ true, | ||||
| 1244 | /*ConvertInt=*/!IsCompAssign); | ||||
| 1245 | } | ||||
| 1246 | |||||
| 1247 | /// Diagnose attempts to convert between __float128, __ibm128 and | ||||
| 1248 | /// long double if there is no support for such conversion. | ||||
| 1249 | /// Helper function of UsualArithmeticConversions(). | ||||
| 1250 | static bool unsupportedTypeConversion(const Sema &S, QualType LHSType, | ||||
| 1251 | QualType RHSType) { | ||||
| 1252 | // No issue if either is not a floating point type. | ||||
| 1253 | if (!LHSType->isFloatingType() || !RHSType->isFloatingType()) | ||||
| 1254 | return false; | ||||
| 1255 | |||||
| 1256 | // No issue if both have the same 128-bit float semantics. | ||||
| 1257 | auto *LHSComplex = LHSType->getAs<ComplexType>(); | ||||
| 1258 | auto *RHSComplex = RHSType->getAs<ComplexType>(); | ||||
| 1259 | |||||
| 1260 | QualType LHSElem = LHSComplex ? LHSComplex->getElementType() : LHSType; | ||||
| 1261 | QualType RHSElem = RHSComplex ? RHSComplex->getElementType() : RHSType; | ||||
| 1262 | |||||
| 1263 | const llvm::fltSemantics &LHSSem = S.Context.getFloatTypeSemantics(LHSElem); | ||||
| 1264 | const llvm::fltSemantics &RHSSem = S.Context.getFloatTypeSemantics(RHSElem); | ||||
| 1265 | |||||
| 1266 | if ((&LHSSem != &llvm::APFloat::PPCDoubleDouble() || | ||||
| 1267 | &RHSSem != &llvm::APFloat::IEEEquad()) && | ||||
| 1268 | (&LHSSem != &llvm::APFloat::IEEEquad() || | ||||
| 1269 | &RHSSem != &llvm::APFloat::PPCDoubleDouble())) | ||||
| 1270 | return false; | ||||
| 1271 | |||||
| 1272 | return true; | ||||
| 1273 | } | ||||
| 1274 | |||||
| 1275 | typedef ExprResult PerformCastFn(Sema &S, Expr *operand, QualType toType); | ||||
| 1276 | |||||
| 1277 | namespace { | ||||
| 1278 | /// These helper callbacks are placed in an anonymous namespace to | ||||
| 1279 | /// permit their use as function template parameters. | ||||
| 1280 | ExprResult doIntegralCast(Sema &S, Expr *op, QualType toType) { | ||||
| 1281 | return S.ImpCastExprToType(op, toType, CK_IntegralCast); | ||||
| 1282 | } | ||||
| 1283 | |||||
| 1284 | ExprResult doComplexIntegralCast(Sema &S, Expr *op, QualType toType) { | ||||
| 1285 | return S.ImpCastExprToType(op, S.Context.getComplexType(toType), | ||||
| 1286 | CK_IntegralComplexCast); | ||||
| 1287 | } | ||||
| 1288 | } | ||||
| 1289 | |||||
| 1290 | /// Handle integer arithmetic conversions. Helper function of | ||||
| 1291 | /// UsualArithmeticConversions() | ||||
| 1292 | template <PerformCastFn doLHSCast, PerformCastFn doRHSCast> | ||||
| 1293 | static QualType handleIntegerConversion(Sema &S, ExprResult &LHS, | ||||
| 1294 | ExprResult &RHS, QualType LHSType, | ||||
| 1295 | QualType RHSType, bool IsCompAssign) { | ||||
| 1296 | // The rules for this case are in C99 6.3.1.8 | ||||
| 1297 | int order = S.Context.getIntegerTypeOrder(LHSType, RHSType); | ||||
| 1298 | bool LHSSigned = LHSType->hasSignedIntegerRepresentation(); | ||||
| 1299 | bool RHSSigned = RHSType->hasSignedIntegerRepresentation(); | ||||
| 1300 | if (LHSSigned == RHSSigned) { | ||||
| 1301 | // Same signedness; use the higher-ranked type | ||||
| 1302 | if (order >= 0) { | ||||
| 1303 | RHS = (*doRHSCast)(S, RHS.get(), LHSType); | ||||
| 1304 | return LHSType; | ||||
| 1305 | } else if (!IsCompAssign) | ||||
| 1306 | LHS = (*doLHSCast)(S, LHS.get(), RHSType); | ||||
| 1307 | return RHSType; | ||||
| 1308 | } else if (order != (LHSSigned ? 1 : -1)) { | ||||
| 1309 | // The unsigned type has greater than or equal rank to the | ||||
| 1310 | // signed type, so use the unsigned type | ||||
| 1311 | if (RHSSigned) { | ||||
| 1312 | RHS = (*doRHSCast)(S, RHS.get(), LHSType); | ||||
| 1313 | return LHSType; | ||||
| 1314 | } else if (!IsCompAssign) | ||||
| 1315 | LHS = (*doLHSCast)(S, LHS.get(), RHSType); | ||||
| 1316 | return RHSType; | ||||
| 1317 | } else if (S.Context.getIntWidth(LHSType) != S.Context.getIntWidth(RHSType)) { | ||||
| 1318 | // The two types are different widths; if we are here, that | ||||
| 1319 | // means the signed type is larger than the unsigned type, so | ||||
| 1320 | // use the signed type. | ||||
| 1321 | if (LHSSigned) { | ||||
| 1322 | RHS = (*doRHSCast)(S, RHS.get(), LHSType); | ||||
| 1323 | return LHSType; | ||||
| 1324 | } else if (!IsCompAssign) | ||||
| 1325 | LHS = (*doLHSCast)(S, LHS.get(), RHSType); | ||||
| 1326 | return RHSType; | ||||
| 1327 | } else { | ||||
| 1328 | // The signed type is higher-ranked than the unsigned type, | ||||
| 1329 | // but isn't actually any bigger (like unsigned int and long | ||||
| 1330 | // on most 32-bit systems). Use the unsigned type corresponding | ||||
| 1331 | // to the signed type. | ||||
| 1332 | QualType result = | ||||
| 1333 | S.Context.getCorrespondingUnsignedType(LHSSigned ? LHSType : RHSType); | ||||
| 1334 | RHS = (*doRHSCast)(S, RHS.get(), result); | ||||
| 1335 | if (!IsCompAssign) | ||||
| 1336 | LHS = (*doLHSCast)(S, LHS.get(), result); | ||||
| 1337 | return result; | ||||
| 1338 | } | ||||
| 1339 | } | ||||
| 1340 | |||||
| 1341 | /// Handle conversions with GCC complex int extension. Helper function | ||||
| 1342 | /// of UsualArithmeticConversions() | ||||
| 1343 | static QualType handleComplexIntConversion(Sema &S, ExprResult &LHS, | ||||
| 1344 | ExprResult &RHS, QualType LHSType, | ||||
| 1345 | QualType RHSType, | ||||
| 1346 | bool IsCompAssign) { | ||||
| 1347 | const ComplexType *LHSComplexInt = LHSType->getAsComplexIntegerType(); | ||||
| 1348 | const ComplexType *RHSComplexInt = RHSType->getAsComplexIntegerType(); | ||||
| 1349 | |||||
| 1350 | if (LHSComplexInt && RHSComplexInt) { | ||||
| 1351 | QualType LHSEltType = LHSComplexInt->getElementType(); | ||||
| 1352 | QualType RHSEltType = RHSComplexInt->getElementType(); | ||||
| 1353 | QualType ScalarType = | ||||
| 1354 | handleIntegerConversion<doComplexIntegralCast, doComplexIntegralCast> | ||||
| 1355 | (S, LHS, RHS, LHSEltType, RHSEltType, IsCompAssign); | ||||
| 1356 | |||||
| 1357 | return S.Context.getComplexType(ScalarType); | ||||
| 1358 | } | ||||
| 1359 | |||||
| 1360 | if (LHSComplexInt) { | ||||
| 1361 | QualType LHSEltType = LHSComplexInt->getElementType(); | ||||
| 1362 | QualType ScalarType = | ||||
| 1363 | handleIntegerConversion<doComplexIntegralCast, doIntegralCast> | ||||
| 1364 | (S, LHS, RHS, LHSEltType, RHSType, IsCompAssign); | ||||
| 1365 | QualType ComplexType = S.Context.getComplexType(ScalarType); | ||||
| 1366 | RHS = S.ImpCastExprToType(RHS.get(), ComplexType, | ||||
| 1367 | CK_IntegralRealToComplex); | ||||
| 1368 | |||||
| 1369 | return ComplexType; | ||||
| 1370 | } | ||||
| 1371 | |||||
| 1372 | assert(RHSComplexInt)(static_cast <bool> (RHSComplexInt) ? void (0) : __assert_fail ("RHSComplexInt", "clang/lib/Sema/SemaExpr.cpp", 1372, __extension__ __PRETTY_FUNCTION__)); | ||||
| 1373 | |||||
| 1374 | QualType RHSEltType = RHSComplexInt->getElementType(); | ||||
| 1375 | QualType ScalarType = | ||||
| 1376 | handleIntegerConversion<doIntegralCast, doComplexIntegralCast> | ||||
| 1377 | (S, LHS, RHS, LHSType, RHSEltType, IsCompAssign); | ||||
| 1378 | QualType ComplexType = S.Context.getComplexType(ScalarType); | ||||
| 1379 | |||||
| 1380 | if (!IsCompAssign) | ||||
| 1381 | LHS = S.ImpCastExprToType(LHS.get(), ComplexType, | ||||
| 1382 | CK_IntegralRealToComplex); | ||||
| 1383 | return ComplexType; | ||||
| 1384 | } | ||||
| 1385 | |||||
| 1386 | /// Return the rank of a given fixed point or integer type. The value itself | ||||
| 1387 | /// doesn't matter, but the values must be increasing with proper increasing | ||||
| 1388 | /// rank as described in N1169 4.1.1. | ||||
| 1389 | static unsigned GetFixedPointRank(QualType Ty) { | ||||
| 1390 | const auto *BTy = Ty->getAs<BuiltinType>(); | ||||
| 1391 | assert(BTy && "Expected a builtin type.")(static_cast <bool> (BTy && "Expected a builtin type." ) ? void (0) : __assert_fail ("BTy && \"Expected a builtin type.\"" , "clang/lib/Sema/SemaExpr.cpp", 1391, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 1392 | |||||
| 1393 | switch (BTy->getKind()) { | ||||
| 1394 | case BuiltinType::ShortFract: | ||||
| 1395 | case BuiltinType::UShortFract: | ||||
| 1396 | case BuiltinType::SatShortFract: | ||||
| 1397 | case BuiltinType::SatUShortFract: | ||||
| 1398 | return 1; | ||||
| 1399 | case BuiltinType::Fract: | ||||
| 1400 | case BuiltinType::UFract: | ||||
| 1401 | case BuiltinType::SatFract: | ||||
| 1402 | case BuiltinType::SatUFract: | ||||
| 1403 | return 2; | ||||
| 1404 | case BuiltinType::LongFract: | ||||
| 1405 | case BuiltinType::ULongFract: | ||||
| 1406 | case BuiltinType::SatLongFract: | ||||
| 1407 | case BuiltinType::SatULongFract: | ||||
| 1408 | return 3; | ||||
| 1409 | case BuiltinType::ShortAccum: | ||||
| 1410 | case BuiltinType::UShortAccum: | ||||
| 1411 | case BuiltinType::SatShortAccum: | ||||
| 1412 | case BuiltinType::SatUShortAccum: | ||||
| 1413 | return 4; | ||||
| 1414 | case BuiltinType::Accum: | ||||
| 1415 | case BuiltinType::UAccum: | ||||
| 1416 | case BuiltinType::SatAccum: | ||||
| 1417 | case BuiltinType::SatUAccum: | ||||
| 1418 | return 5; | ||||
| 1419 | case BuiltinType::LongAccum: | ||||
| 1420 | case BuiltinType::ULongAccum: | ||||
| 1421 | case BuiltinType::SatLongAccum: | ||||
| 1422 | case BuiltinType::SatULongAccum: | ||||
| 1423 | return 6; | ||||
| 1424 | default: | ||||
| 1425 | if (BTy->isInteger()) | ||||
| 1426 | return 0; | ||||
| 1427 | llvm_unreachable("Unexpected fixed point or integer type")::llvm::llvm_unreachable_internal("Unexpected fixed point or integer type" , "clang/lib/Sema/SemaExpr.cpp", 1427); | ||||
| 1428 | } | ||||
| 1429 | } | ||||
| 1430 | |||||
| 1431 | /// handleFixedPointConversion - Fixed point operations between fixed | ||||
| 1432 | /// point types and integers or other fixed point types do not fall under | ||||
| 1433 | /// usual arithmetic conversion since these conversions could result in loss | ||||
| 1434 | /// of precsision (N1169 4.1.4). These operations should be calculated with | ||||
| 1435 | /// the full precision of their result type (N1169 4.1.6.2.1). | ||||
| 1436 | static QualType handleFixedPointConversion(Sema &S, QualType LHSTy, | ||||
| 1437 | QualType RHSTy) { | ||||
| 1438 | assert((LHSTy->isFixedPointType() || RHSTy->isFixedPointType()) &&(static_cast <bool> ((LHSTy->isFixedPointType() || RHSTy ->isFixedPointType()) && "Expected at least one of the operands to be a fixed point type" ) ? void (0) : __assert_fail ("(LHSTy->isFixedPointType() || RHSTy->isFixedPointType()) && \"Expected at least one of the operands to be a fixed point type\"" , "clang/lib/Sema/SemaExpr.cpp", 1439, __extension__ __PRETTY_FUNCTION__ )) | ||||
| 1439 | "Expected at least one of the operands to be a fixed point type")(static_cast <bool> ((LHSTy->isFixedPointType() || RHSTy ->isFixedPointType()) && "Expected at least one of the operands to be a fixed point type" ) ? void (0) : __assert_fail ("(LHSTy->isFixedPointType() || RHSTy->isFixedPointType()) && \"Expected at least one of the operands to be a fixed point type\"" , "clang/lib/Sema/SemaExpr.cpp", 1439, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 1440 | assert((LHSTy->isFixedPointOrIntegerType() ||(static_cast <bool> ((LHSTy->isFixedPointOrIntegerType () || RHSTy->isFixedPointOrIntegerType()) && "Special fixed point arithmetic operation conversions are only " "applied to ints or other fixed point types") ? void (0) : __assert_fail ("(LHSTy->isFixedPointOrIntegerType() || RHSTy->isFixedPointOrIntegerType()) && \"Special fixed point arithmetic operation conversions are only \" \"applied to ints or other fixed point types\"" , "clang/lib/Sema/SemaExpr.cpp", 1443, __extension__ __PRETTY_FUNCTION__ )) | ||||
| 1441 | RHSTy->isFixedPointOrIntegerType()) &&(static_cast <bool> ((LHSTy->isFixedPointOrIntegerType () || RHSTy->isFixedPointOrIntegerType()) && "Special fixed point arithmetic operation conversions are only " "applied to ints or other fixed point types") ? void (0) : __assert_fail ("(LHSTy->isFixedPointOrIntegerType() || RHSTy->isFixedPointOrIntegerType()) && \"Special fixed point arithmetic operation conversions are only \" \"applied to ints or other fixed point types\"" , "clang/lib/Sema/SemaExpr.cpp", 1443, __extension__ __PRETTY_FUNCTION__ )) | ||||
| 1442 | "Special fixed point arithmetic operation conversions are only "(static_cast <bool> ((LHSTy->isFixedPointOrIntegerType () || RHSTy->isFixedPointOrIntegerType()) && "Special fixed point arithmetic operation conversions are only " "applied to ints or other fixed point types") ? void (0) : __assert_fail ("(LHSTy->isFixedPointOrIntegerType() || RHSTy->isFixedPointOrIntegerType()) && \"Special fixed point arithmetic operation conversions are only \" \"applied to ints or other fixed point types\"" , "clang/lib/Sema/SemaExpr.cpp", 1443, __extension__ __PRETTY_FUNCTION__ )) | ||||
| 1443 | "applied to ints or other fixed point types")(static_cast <bool> ((LHSTy->isFixedPointOrIntegerType () || RHSTy->isFixedPointOrIntegerType()) && "Special fixed point arithmetic operation conversions are only " "applied to ints or other fixed point types") ? void (0) : __assert_fail ("(LHSTy->isFixedPointOrIntegerType() || RHSTy->isFixedPointOrIntegerType()) && \"Special fixed point arithmetic operation conversions are only \" \"applied to ints or other fixed point types\"" , "clang/lib/Sema/SemaExpr.cpp", 1443, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 1444 | |||||
| 1445 | // If one operand has signed fixed-point type and the other operand has | ||||
| 1446 | // unsigned fixed-point type, then the unsigned fixed-point operand is | ||||
| 1447 | // converted to its corresponding signed fixed-point type and the resulting | ||||
| 1448 | // type is the type of the converted operand. | ||||
| 1449 | if (RHSTy->isSignedFixedPointType() && LHSTy->isUnsignedFixedPointType()) | ||||
| 1450 | LHSTy = S.Context.getCorrespondingSignedFixedPointType(LHSTy); | ||||
| 1451 | else if (RHSTy->isUnsignedFixedPointType() && LHSTy->isSignedFixedPointType()) | ||||
| 1452 | RHSTy = S.Context.getCorrespondingSignedFixedPointType(RHSTy); | ||||
| 1453 | |||||
| 1454 | // The result type is the type with the highest rank, whereby a fixed-point | ||||
| 1455 | // conversion rank is always greater than an integer conversion rank; if the | ||||
| 1456 | // type of either of the operands is a saturating fixedpoint type, the result | ||||
| 1457 | // type shall be the saturating fixed-point type corresponding to the type | ||||
| 1458 | // with the highest rank; the resulting value is converted (taking into | ||||
| 1459 | // account rounding and overflow) to the precision of the resulting type. | ||||
| 1460 | // Same ranks between signed and unsigned types are resolved earlier, so both | ||||
| 1461 | // types are either signed or both unsigned at this point. | ||||
| 1462 | unsigned LHSTyRank = GetFixedPointRank(LHSTy); | ||||
| 1463 | unsigned RHSTyRank = GetFixedPointRank(RHSTy); | ||||
| 1464 | |||||
| 1465 | QualType ResultTy = LHSTyRank > RHSTyRank ? LHSTy : RHSTy; | ||||
| 1466 | |||||
| 1467 | if (LHSTy->isSaturatedFixedPointType() || RHSTy->isSaturatedFixedPointType()) | ||||
| 1468 | ResultTy = S.Context.getCorrespondingSaturatedType(ResultTy); | ||||
| 1469 | |||||
| 1470 | return ResultTy; | ||||
| 1471 | } | ||||
| 1472 | |||||
| 1473 | /// Check that the usual arithmetic conversions can be performed on this pair of | ||||
| 1474 | /// expressions that might be of enumeration type. | ||||
| 1475 | static void checkEnumArithmeticConversions(Sema &S, Expr *LHS, Expr *RHS, | ||||
| 1476 | SourceLocation Loc, | ||||
| 1477 | Sema::ArithConvKind ACK) { | ||||
| 1478 | // C++2a [expr.arith.conv]p1: | ||||
| 1479 | // If one operand is of enumeration type and the other operand is of a | ||||
| 1480 | // different enumeration type or a floating-point type, this behavior is | ||||
| 1481 | // deprecated ([depr.arith.conv.enum]). | ||||
| 1482 | // | ||||
| 1483 | // Warn on this in all language modes. Produce a deprecation warning in C++20. | ||||
| 1484 | // Eventually we will presumably reject these cases (in C++23 onwards?). | ||||
| 1485 | QualType L = LHS->getType(), R = RHS->getType(); | ||||
| 1486 | bool LEnum = L->isUnscopedEnumerationType(), | ||||
| 1487 | REnum = R->isUnscopedEnumerationType(); | ||||
| 1488 | bool IsCompAssign = ACK == Sema::ACK_CompAssign; | ||||
| 1489 | if ((!IsCompAssign && LEnum && R->isFloatingType()) || | ||||
| 1490 | (REnum && L->isFloatingType())) { | ||||
| 1491 | S.Diag(Loc, S.getLangOpts().CPlusPlus20 | ||||
| 1492 | ? diag::warn_arith_conv_enum_float_cxx20 | ||||
| 1493 | : diag::warn_arith_conv_enum_float) | ||||
| 1494 | << LHS->getSourceRange() << RHS->getSourceRange() | ||||
| 1495 | << (int)ACK << LEnum << L << R; | ||||
| 1496 | } else if (!IsCompAssign && LEnum && REnum && | ||||
| 1497 | !S.Context.hasSameUnqualifiedType(L, R)) { | ||||
| 1498 | unsigned DiagID; | ||||
| 1499 | if (!L->castAs<EnumType>()->getDecl()->hasNameForLinkage() || | ||||
| 1500 | !R->castAs<EnumType>()->getDecl()->hasNameForLinkage()) { | ||||
| 1501 | // If either enumeration type is unnamed, it's less likely that the | ||||
| 1502 | // user cares about this, but this situation is still deprecated in | ||||
| 1503 | // C++2a. Use a different warning group. | ||||
| 1504 | DiagID = S.getLangOpts().CPlusPlus20 | ||||
| 1505 | ? diag::warn_arith_conv_mixed_anon_enum_types_cxx20 | ||||
| 1506 | : diag::warn_arith_conv_mixed_anon_enum_types; | ||||
| 1507 | } else if (ACK == Sema::ACK_Conditional) { | ||||
| 1508 | // Conditional expressions are separated out because they have | ||||
| 1509 | // historically had a different warning flag. | ||||
| 1510 | DiagID = S.getLangOpts().CPlusPlus20 | ||||
| 1511 | ? diag::warn_conditional_mixed_enum_types_cxx20 | ||||
| 1512 | : diag::warn_conditional_mixed_enum_types; | ||||
| 1513 | } else if (ACK == Sema::ACK_Comparison) { | ||||
| 1514 | // Comparison expressions are separated out because they have | ||||
| 1515 | // historically had a different warning flag. | ||||
| 1516 | DiagID = S.getLangOpts().CPlusPlus20 | ||||
| 1517 | ? diag::warn_comparison_mixed_enum_types_cxx20 | ||||
| 1518 | : diag::warn_comparison_mixed_enum_types; | ||||
| 1519 | } else { | ||||
| 1520 | DiagID = S.getLangOpts().CPlusPlus20 | ||||
| 1521 | ? diag::warn_arith_conv_mixed_enum_types_cxx20 | ||||
| 1522 | : diag::warn_arith_conv_mixed_enum_types; | ||||
| 1523 | } | ||||
| 1524 | S.Diag(Loc, DiagID) << LHS->getSourceRange() << RHS->getSourceRange() | ||||
| 1525 | << (int)ACK << L << R; | ||||
| 1526 | } | ||||
| 1527 | } | ||||
| 1528 | |||||
| 1529 | /// UsualArithmeticConversions - Performs various conversions that are common to | ||||
| 1530 | /// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this | ||||
| 1531 | /// routine returns the first non-arithmetic type found. The client is | ||||
| 1532 | /// responsible for emitting appropriate error diagnostics. | ||||
| 1533 | QualType Sema::UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS, | ||||
| 1534 | SourceLocation Loc, | ||||
| 1535 | ArithConvKind ACK) { | ||||
| 1536 | checkEnumArithmeticConversions(*this, LHS.get(), RHS.get(), Loc, ACK); | ||||
| 1537 | |||||
| 1538 | if (ACK != ACK_CompAssign) { | ||||
| 1539 | LHS = UsualUnaryConversions(LHS.get()); | ||||
| 1540 | if (LHS.isInvalid()) | ||||
| 1541 | return QualType(); | ||||
| 1542 | } | ||||
| 1543 | |||||
| 1544 | RHS = UsualUnaryConversions(RHS.get()); | ||||
| 1545 | if (RHS.isInvalid()) | ||||
| 1546 | return QualType(); | ||||
| 1547 | |||||
| 1548 | // For conversion purposes, we ignore any qualifiers. | ||||
| 1549 | // For example, "const float" and "float" are equivalent. | ||||
| 1550 | QualType LHSType = LHS.get()->getType().getUnqualifiedType(); | ||||
| 1551 | QualType RHSType = RHS.get()->getType().getUnqualifiedType(); | ||||
| 1552 | |||||
| 1553 | // For conversion purposes, we ignore any atomic qualifier on the LHS. | ||||
| 1554 | if (const AtomicType *AtomicLHS = LHSType->getAs<AtomicType>()) | ||||
| 1555 | LHSType = AtomicLHS->getValueType(); | ||||
| 1556 | |||||
| 1557 | // If both types are identical, no conversion is needed. | ||||
| 1558 | if (Context.hasSameType(LHSType, RHSType)) | ||||
| 1559 | return Context.getCommonSugaredType(LHSType, RHSType); | ||||
| 1560 | |||||
| 1561 | // If either side is a non-arithmetic type (e.g. a pointer), we are done. | ||||
| 1562 | // The caller can deal with this (e.g. pointer + int). | ||||
| 1563 | if (!LHSType->isArithmeticType() || !RHSType->isArithmeticType()) | ||||
| 1564 | return QualType(); | ||||
| 1565 | |||||
| 1566 | // Apply unary and bitfield promotions to the LHS's type. | ||||
| 1567 | QualType LHSUnpromotedType = LHSType; | ||||
| 1568 | if (Context.isPromotableIntegerType(LHSType)) | ||||
| 1569 | LHSType = Context.getPromotedIntegerType(LHSType); | ||||
| 1570 | QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(LHS.get()); | ||||
| 1571 | if (!LHSBitfieldPromoteTy.isNull()) | ||||
| 1572 | LHSType = LHSBitfieldPromoteTy; | ||||
| 1573 | if (LHSType != LHSUnpromotedType && ACK != ACK_CompAssign) | ||||
| 1574 | LHS = ImpCastExprToType(LHS.get(), LHSType, CK_IntegralCast); | ||||
| 1575 | |||||
| 1576 | // If both types are identical, no conversion is needed. | ||||
| 1577 | if (Context.hasSameType(LHSType, RHSType)) | ||||
| 1578 | return Context.getCommonSugaredType(LHSType, RHSType); | ||||
| 1579 | |||||
| 1580 | // At this point, we have two different arithmetic types. | ||||
| 1581 | |||||
| 1582 | // Diagnose attempts to convert between __ibm128, __float128 and long double | ||||
| 1583 | // where such conversions currently can't be handled. | ||||
| 1584 | if (unsupportedTypeConversion(*this, LHSType, RHSType)) | ||||
| 1585 | return QualType(); | ||||
| 1586 | |||||
| 1587 | // Handle complex types first (C99 6.3.1.8p1). | ||||
| 1588 | if (LHSType->isComplexType() || RHSType->isComplexType()) | ||||
| 1589 | return handleComplexConversion(*this, LHS, RHS, LHSType, RHSType, | ||||
| 1590 | ACK == ACK_CompAssign); | ||||
| 1591 | |||||
| 1592 | // Now handle "real" floating types (i.e. float, double, long double). | ||||
| 1593 | if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType()) | ||||
| 1594 | return handleFloatConversion(*this, LHS, RHS, LHSType, RHSType, | ||||
| 1595 | ACK == ACK_CompAssign); | ||||
| 1596 | |||||
| 1597 | // Handle GCC complex int extension. | ||||
| 1598 | if (LHSType->isComplexIntegerType() || RHSType->isComplexIntegerType()) | ||||
| 1599 | return handleComplexIntConversion(*this, LHS, RHS, LHSType, RHSType, | ||||
| 1600 | ACK == ACK_CompAssign); | ||||
| 1601 | |||||
| 1602 | if (LHSType->isFixedPointType() || RHSType->isFixedPointType()) | ||||
| 1603 | return handleFixedPointConversion(*this, LHSType, RHSType); | ||||
| 1604 | |||||
| 1605 | // Finally, we have two differing integer types. | ||||
| 1606 | return handleIntegerConversion<doIntegralCast, doIntegralCast> | ||||
| 1607 | (*this, LHS, RHS, LHSType, RHSType, ACK == ACK_CompAssign); | ||||
| 1608 | } | ||||
| 1609 | |||||
| 1610 | //===----------------------------------------------------------------------===// | ||||
| 1611 | // Semantic Analysis for various Expression Types | ||||
| 1612 | //===----------------------------------------------------------------------===// | ||||
| 1613 | |||||
| 1614 | |||||
| 1615 | ExprResult | ||||
| 1616 | Sema::ActOnGenericSelectionExpr(SourceLocation KeyLoc, | ||||
| 1617 | SourceLocation DefaultLoc, | ||||
| 1618 | SourceLocation RParenLoc, | ||||
| 1619 | Expr *ControllingExpr, | ||||
| 1620 | ArrayRef<ParsedType> ArgTypes, | ||||
| 1621 | ArrayRef<Expr *> ArgExprs) { | ||||
| 1622 | unsigned NumAssocs = ArgTypes.size(); | ||||
| 1623 | assert(NumAssocs == ArgExprs.size())(static_cast <bool> (NumAssocs == ArgExprs.size()) ? void (0) : __assert_fail ("NumAssocs == ArgExprs.size()", "clang/lib/Sema/SemaExpr.cpp" , 1623, __extension__ __PRETTY_FUNCTION__)); | ||||
| 1624 | |||||
| 1625 | TypeSourceInfo **Types = new TypeSourceInfo*[NumAssocs]; | ||||
| 1626 | for (unsigned i = 0; i < NumAssocs; ++i) { | ||||
| 1627 | if (ArgTypes[i]) | ||||
| 1628 | (void) GetTypeFromParser(ArgTypes[i], &Types[i]); | ||||
| 1629 | else | ||||
| 1630 | Types[i] = nullptr; | ||||
| 1631 | } | ||||
| 1632 | |||||
| 1633 | ExprResult ER = | ||||
| 1634 | CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc, ControllingExpr, | ||||
| 1635 | llvm::ArrayRef(Types, NumAssocs), ArgExprs); | ||||
| 1636 | delete [] Types; | ||||
| 1637 | return ER; | ||||
| 1638 | } | ||||
| 1639 | |||||
| 1640 | ExprResult | ||||
| 1641 | Sema::CreateGenericSelectionExpr(SourceLocation KeyLoc, | ||||
| 1642 | SourceLocation DefaultLoc, | ||||
| 1643 | SourceLocation RParenLoc, | ||||
| 1644 | Expr *ControllingExpr, | ||||
| 1645 | ArrayRef<TypeSourceInfo *> Types, | ||||
| 1646 | ArrayRef<Expr *> Exprs) { | ||||
| 1647 | unsigned NumAssocs = Types.size(); | ||||
| 1648 | assert(NumAssocs == Exprs.size())(static_cast <bool> (NumAssocs == Exprs.size()) ? void ( 0) : __assert_fail ("NumAssocs == Exprs.size()", "clang/lib/Sema/SemaExpr.cpp" , 1648, __extension__ __PRETTY_FUNCTION__)); | ||||
| 1649 | |||||
| 1650 | // Decay and strip qualifiers for the controlling expression type, and handle | ||||
| 1651 | // placeholder type replacement. See committee discussion from WG14 DR423. | ||||
| 1652 | { | ||||
| 1653 | EnterExpressionEvaluationContext Unevaluated( | ||||
| 1654 | *this, Sema::ExpressionEvaluationContext::Unevaluated); | ||||
| 1655 | ExprResult R = DefaultFunctionArrayLvalueConversion(ControllingExpr); | ||||
| 1656 | if (R.isInvalid()) | ||||
| 1657 | return ExprError(); | ||||
| 1658 | ControllingExpr = R.get(); | ||||
| 1659 | } | ||||
| 1660 | |||||
| 1661 | bool TypeErrorFound = false, | ||||
| 1662 | IsResultDependent = ControllingExpr->isTypeDependent(), | ||||
| 1663 | ContainsUnexpandedParameterPack | ||||
| 1664 | = ControllingExpr->containsUnexpandedParameterPack(); | ||||
| 1665 | |||||
| 1666 | // The controlling expression is an unevaluated operand, so side effects are | ||||
| 1667 | // likely unintended. | ||||
| 1668 | if (!inTemplateInstantiation() && !IsResultDependent && | ||||
| 1669 | ControllingExpr->HasSideEffects(Context, false)) | ||||
| 1670 | Diag(ControllingExpr->getExprLoc(), | ||||
| 1671 | diag::warn_side_effects_unevaluated_context); | ||||
| 1672 | |||||
| 1673 | for (unsigned i = 0; i < NumAssocs; ++i) { | ||||
| 1674 | if (Exprs[i]->containsUnexpandedParameterPack()) | ||||
| 1675 | ContainsUnexpandedParameterPack = true; | ||||
| 1676 | |||||
| 1677 | if (Types[i]) { | ||||
| 1678 | if (Types[i]->getType()->containsUnexpandedParameterPack()) | ||||
| 1679 | ContainsUnexpandedParameterPack = true; | ||||
| 1680 | |||||
| 1681 | if (Types[i]->getType()->isDependentType()) { | ||||
| 1682 | IsResultDependent = true; | ||||
| 1683 | } else { | ||||
| 1684 | // C11 6.5.1.1p2 "The type name in a generic association shall specify a | ||||
| 1685 | // complete object type other than a variably modified type." | ||||
| 1686 | unsigned D = 0; | ||||
| 1687 | if (Types[i]->getType()->isIncompleteType()) | ||||
| 1688 | D = diag::err_assoc_type_incomplete; | ||||
| 1689 | else if (!Types[i]->getType()->isObjectType()) | ||||
| 1690 | D = diag::err_assoc_type_nonobject; | ||||
| 1691 | else if (Types[i]->getType()->isVariablyModifiedType()) | ||||
| 1692 | D = diag::err_assoc_type_variably_modified; | ||||
| 1693 | else { | ||||
| 1694 | // Because the controlling expression undergoes lvalue conversion, | ||||
| 1695 | // array conversion, and function conversion, an association which is | ||||
| 1696 | // of array type, function type, or is qualified can never be | ||||
| 1697 | // reached. We will warn about this so users are less surprised by | ||||
| 1698 | // the unreachable association. However, we don't have to handle | ||||
| 1699 | // function types; that's not an object type, so it's handled above. | ||||
| 1700 | // | ||||
| 1701 | // The logic is somewhat different for C++ because C++ has different | ||||
| 1702 | // lvalue to rvalue conversion rules than C. [conv.lvalue]p1 says, | ||||
| 1703 | // If T is a non-class type, the type of the prvalue is the cv- | ||||
| 1704 | // unqualified version of T. Otherwise, the type of the prvalue is T. | ||||
| 1705 | // The result of these rules is that all qualified types in an | ||||
| 1706 | // association in C are unreachable, and in C++, only qualified non- | ||||
| 1707 | // class types are unreachable. | ||||
| 1708 | unsigned Reason = 0; | ||||
| 1709 | QualType QT = Types[i]->getType(); | ||||
| 1710 | if (QT->isArrayType()) | ||||
| 1711 | Reason = 1; | ||||
| 1712 | else if (QT.hasQualifiers() && | ||||
| 1713 | (!LangOpts.CPlusPlus || !QT->isRecordType())) | ||||
| 1714 | Reason = 2; | ||||
| 1715 | |||||
| 1716 | if (Reason) | ||||
| 1717 | Diag(Types[i]->getTypeLoc().getBeginLoc(), | ||||
| 1718 | diag::warn_unreachable_association) | ||||
| 1719 | << QT << (Reason - 1); | ||||
| 1720 | } | ||||
| 1721 | |||||
| 1722 | if (D != 0) { | ||||
| 1723 | Diag(Types[i]->getTypeLoc().getBeginLoc(), D) | ||||
| 1724 | << Types[i]->getTypeLoc().getSourceRange() | ||||
| 1725 | << Types[i]->getType(); | ||||
| 1726 | TypeErrorFound = true; | ||||
| 1727 | } | ||||
| 1728 | |||||
| 1729 | // C11 6.5.1.1p2 "No two generic associations in the same generic | ||||
| 1730 | // selection shall specify compatible types." | ||||
| 1731 | for (unsigned j = i+1; j < NumAssocs; ++j) | ||||
| 1732 | if (Types[j] && !Types[j]->getType()->isDependentType() && | ||||
| 1733 | Context.typesAreCompatible(Types[i]->getType(), | ||||
| 1734 | Types[j]->getType())) { | ||||
| 1735 | Diag(Types[j]->getTypeLoc().getBeginLoc(), | ||||
| 1736 | diag::err_assoc_compatible_types) | ||||
| 1737 | << Types[j]->getTypeLoc().getSourceRange() | ||||
| 1738 | << Types[j]->getType() | ||||
| 1739 | << Types[i]->getType(); | ||||
| 1740 | Diag(Types[i]->getTypeLoc().getBeginLoc(), | ||||
| 1741 | diag::note_compat_assoc) | ||||
| 1742 | << Types[i]->getTypeLoc().getSourceRange() | ||||
| 1743 | << Types[i]->getType(); | ||||
| 1744 | TypeErrorFound = true; | ||||
| 1745 | } | ||||
| 1746 | } | ||||
| 1747 | } | ||||
| 1748 | } | ||||
| 1749 | if (TypeErrorFound) | ||||
| 1750 | return ExprError(); | ||||
| 1751 | |||||
| 1752 | // If we determined that the generic selection is result-dependent, don't | ||||
| 1753 | // try to compute the result expression. | ||||
| 1754 | if (IsResultDependent) | ||||
| 1755 | return GenericSelectionExpr::Create(Context, KeyLoc, ControllingExpr, Types, | ||||
| 1756 | Exprs, DefaultLoc, RParenLoc, | ||||
| 1757 | ContainsUnexpandedParameterPack); | ||||
| 1758 | |||||
| 1759 | SmallVector<unsigned, 1> CompatIndices; | ||||
| 1760 | unsigned DefaultIndex = -1U; | ||||
| 1761 | // Look at the canonical type of the controlling expression in case it was a | ||||
| 1762 | // deduced type like __auto_type. However, when issuing diagnostics, use the | ||||
| 1763 | // type the user wrote in source rather than the canonical one. | ||||
| 1764 | for (unsigned i = 0; i < NumAssocs; ++i) { | ||||
| 1765 | if (!Types[i]) | ||||
| 1766 | DefaultIndex = i; | ||||
| 1767 | else if (Context.typesAreCompatible( | ||||
| 1768 | ControllingExpr->getType().getCanonicalType(), | ||||
| 1769 | Types[i]->getType())) | ||||
| 1770 | CompatIndices.push_back(i); | ||||
| 1771 | } | ||||
| 1772 | |||||
| 1773 | // C11 6.5.1.1p2 "The controlling expression of a generic selection shall have | ||||
| 1774 | // type compatible with at most one of the types named in its generic | ||||
| 1775 | // association list." | ||||
| 1776 | if (CompatIndices.size() > 1) { | ||||
| 1777 | // We strip parens here because the controlling expression is typically | ||||
| 1778 | // parenthesized in macro definitions. | ||||
| 1779 | ControllingExpr = ControllingExpr->IgnoreParens(); | ||||
| 1780 | Diag(ControllingExpr->getBeginLoc(), diag::err_generic_sel_multi_match) | ||||
| 1781 | << ControllingExpr->getSourceRange() << ControllingExpr->getType() | ||||
| 1782 | << (unsigned)CompatIndices.size(); | ||||
| 1783 | for (unsigned I : CompatIndices) { | ||||
| 1784 | Diag(Types[I]->getTypeLoc().getBeginLoc(), | ||||
| 1785 | diag::note_compat_assoc) | ||||
| 1786 | << Types[I]->getTypeLoc().getSourceRange() | ||||
| 1787 | << Types[I]->getType(); | ||||
| 1788 | } | ||||
| 1789 | return ExprError(); | ||||
| 1790 | } | ||||
| 1791 | |||||
| 1792 | // C11 6.5.1.1p2 "If a generic selection has no default generic association, | ||||
| 1793 | // its controlling expression shall have type compatible with exactly one of | ||||
| 1794 | // the types named in its generic association list." | ||||
| 1795 | if (DefaultIndex == -1U && CompatIndices.size() == 0) { | ||||
| 1796 | // We strip parens here because the controlling expression is typically | ||||
| 1797 | // parenthesized in macro definitions. | ||||
| 1798 | ControllingExpr = ControllingExpr->IgnoreParens(); | ||||
| 1799 | Diag(ControllingExpr->getBeginLoc(), diag::err_generic_sel_no_match) | ||||
| 1800 | << ControllingExpr->getSourceRange() << ControllingExpr->getType(); | ||||
| 1801 | return ExprError(); | ||||
| 1802 | } | ||||
| 1803 | |||||
| 1804 | // C11 6.5.1.1p3 "If a generic selection has a generic association with a | ||||
| 1805 | // type name that is compatible with the type of the controlling expression, | ||||
| 1806 | // then the result expression of the generic selection is the expression | ||||
| 1807 | // in that generic association. Otherwise, the result expression of the | ||||
| 1808 | // generic selection is the expression in the default generic association." | ||||
| 1809 | unsigned ResultIndex = | ||||
| 1810 | CompatIndices.size() ? CompatIndices[0] : DefaultIndex; | ||||
| 1811 | |||||
| 1812 | return GenericSelectionExpr::Create( | ||||
| 1813 | Context, KeyLoc, ControllingExpr, Types, Exprs, DefaultLoc, RParenLoc, | ||||
| 1814 | ContainsUnexpandedParameterPack, ResultIndex); | ||||
| 1815 | } | ||||
| 1816 | |||||
| 1817 | /// getUDSuffixLoc - Create a SourceLocation for a ud-suffix, given the | ||||
| 1818 | /// location of the token and the offset of the ud-suffix within it. | ||||
| 1819 | static SourceLocation getUDSuffixLoc(Sema &S, SourceLocation TokLoc, | ||||
| 1820 | unsigned Offset) { | ||||
| 1821 | return Lexer::AdvanceToTokenCharacter(TokLoc, Offset, S.getSourceManager(), | ||||
| 1822 | S.getLangOpts()); | ||||
| 1823 | } | ||||
| 1824 | |||||
| 1825 | /// BuildCookedLiteralOperatorCall - A user-defined literal was found. Look up | ||||
| 1826 | /// the corresponding cooked (non-raw) literal operator, and build a call to it. | ||||
| 1827 | static ExprResult BuildCookedLiteralOperatorCall(Sema &S, Scope *Scope, | ||||
| 1828 | IdentifierInfo *UDSuffix, | ||||
| 1829 | SourceLocation UDSuffixLoc, | ||||
| 1830 | ArrayRef<Expr*> Args, | ||||
| 1831 | SourceLocation LitEndLoc) { | ||||
| 1832 | assert(Args.size() <= 2 && "too many arguments for literal operator")(static_cast <bool> (Args.size() <= 2 && "too many arguments for literal operator" ) ? void (0) : __assert_fail ("Args.size() <= 2 && \"too many arguments for literal operator\"" , "clang/lib/Sema/SemaExpr.cpp", 1832, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 1833 | |||||
| 1834 | QualType ArgTy[2]; | ||||
| 1835 | for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) { | ||||
| 1836 | ArgTy[ArgIdx] = Args[ArgIdx]->getType(); | ||||
| 1837 | if (ArgTy[ArgIdx]->isArrayType()) | ||||
| 1838 | ArgTy[ArgIdx] = S.Context.getArrayDecayedType(ArgTy[ArgIdx]); | ||||
| 1839 | } | ||||
| 1840 | |||||
| 1841 | DeclarationName OpName = | ||||
| 1842 | S.Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix); | ||||
| 1843 | DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc); | ||||
| 1844 | OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc); | ||||
| 1845 | |||||
| 1846 | LookupResult R(S, OpName, UDSuffixLoc, Sema::LookupOrdinaryName); | ||||
| 1847 | if (S.LookupLiteralOperator(Scope, R, llvm::ArrayRef(ArgTy, Args.size()), | ||||
| 1848 | /*AllowRaw*/ false, /*AllowTemplate*/ false, | ||||
| 1849 | /*AllowStringTemplatePack*/ false, | ||||
| 1850 | /*DiagnoseMissing*/ true) == Sema::LOLR_Error) | ||||
| 1851 | return ExprError(); | ||||
| 1852 | |||||
| 1853 | return S.BuildLiteralOperatorCall(R, OpNameInfo, Args, LitEndLoc); | ||||
| 1854 | } | ||||
| 1855 | |||||
| 1856 | /// ActOnStringLiteral - The specified tokens were lexed as pasted string | ||||
| 1857 | /// fragments (e.g. "foo" "bar" L"baz"). The result string has to handle string | ||||
| 1858 | /// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from | ||||
| 1859 | /// multiple tokens. However, the common case is that StringToks points to one | ||||
| 1860 | /// string. | ||||
| 1861 | /// | ||||
| 1862 | ExprResult | ||||
| 1863 | Sema::ActOnStringLiteral(ArrayRef<Token> StringToks, Scope *UDLScope) { | ||||
| 1864 | assert(!StringToks.empty() && "Must have at least one string!")(static_cast <bool> (!StringToks.empty() && "Must have at least one string!" ) ? void (0) : __assert_fail ("!StringToks.empty() && \"Must have at least one string!\"" , "clang/lib/Sema/SemaExpr.cpp", 1864, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 1865 | |||||
| 1866 | StringLiteralParser Literal(StringToks, PP); | ||||
| 1867 | if (Literal.hadError) | ||||
| 1868 | return ExprError(); | ||||
| 1869 | |||||
| 1870 | SmallVector<SourceLocation, 4> StringTokLocs; | ||||
| 1871 | for (const Token &Tok : StringToks) | ||||
| 1872 | StringTokLocs.push_back(Tok.getLocation()); | ||||
| 1873 | |||||
| 1874 | QualType CharTy = Context.CharTy; | ||||
| 1875 | StringLiteral::StringKind Kind = StringLiteral::Ordinary; | ||||
| 1876 | if (Literal.isWide()) { | ||||
| 1877 | CharTy = Context.getWideCharType(); | ||||
| 1878 | Kind = StringLiteral::Wide; | ||||
| 1879 | } else if (Literal.isUTF8()) { | ||||
| 1880 | if (getLangOpts().Char8) | ||||
| 1881 | CharTy = Context.Char8Ty; | ||||
| 1882 | Kind = StringLiteral::UTF8; | ||||
| 1883 | } else if (Literal.isUTF16()) { | ||||
| 1884 | CharTy = Context.Char16Ty; | ||||
| 1885 | Kind = StringLiteral::UTF16; | ||||
| 1886 | } else if (Literal.isUTF32()) { | ||||
| 1887 | CharTy = Context.Char32Ty; | ||||
| 1888 | Kind = StringLiteral::UTF32; | ||||
| 1889 | } else if (Literal.isPascal()) { | ||||
| 1890 | CharTy = Context.UnsignedCharTy; | ||||
| 1891 | } | ||||
| 1892 | |||||
| 1893 | // Warn on initializing an array of char from a u8 string literal; this | ||||
| 1894 | // becomes ill-formed in C++2a. | ||||
| 1895 | if (getLangOpts().CPlusPlus && !getLangOpts().CPlusPlus20 && | ||||
| 1896 | !getLangOpts().Char8 && Kind == StringLiteral::UTF8) { | ||||
| 1897 | Diag(StringTokLocs.front(), diag::warn_cxx20_compat_utf8_string); | ||||
| 1898 | |||||
| 1899 | // Create removals for all 'u8' prefixes in the string literal(s). This | ||||
| 1900 | // ensures C++2a compatibility (but may change the program behavior when | ||||
| 1901 | // built by non-Clang compilers for which the execution character set is | ||||
| 1902 | // not always UTF-8). | ||||
| 1903 | auto RemovalDiag = PDiag(diag::note_cxx20_compat_utf8_string_remove_u8); | ||||
| 1904 | SourceLocation RemovalDiagLoc; | ||||
| 1905 | for (const Token &Tok : StringToks) { | ||||
| 1906 | if (Tok.getKind() == tok::utf8_string_literal) { | ||||
| 1907 | if (RemovalDiagLoc.isInvalid()) | ||||
| 1908 | RemovalDiagLoc = Tok.getLocation(); | ||||
| 1909 | RemovalDiag << FixItHint::CreateRemoval(CharSourceRange::getCharRange( | ||||
| 1910 | Tok.getLocation(), | ||||
| 1911 | Lexer::AdvanceToTokenCharacter(Tok.getLocation(), 2, | ||||
| 1912 | getSourceManager(), getLangOpts()))); | ||||
| 1913 | } | ||||
| 1914 | } | ||||
| 1915 | Diag(RemovalDiagLoc, RemovalDiag); | ||||
| 1916 | } | ||||
| 1917 | |||||
| 1918 | QualType StrTy = | ||||
| 1919 | Context.getStringLiteralArrayType(CharTy, Literal.GetNumStringChars()); | ||||
| 1920 | |||||
| 1921 | // Pass &StringTokLocs[0], StringTokLocs.size() to factory! | ||||
| 1922 | StringLiteral *Lit = StringLiteral::Create(Context, Literal.GetString(), | ||||
| 1923 | Kind, Literal.Pascal, StrTy, | ||||
| 1924 | &StringTokLocs[0], | ||||
| 1925 | StringTokLocs.size()); | ||||
| 1926 | if (Literal.getUDSuffix().empty()) | ||||
| 1927 | return Lit; | ||||
| 1928 | |||||
| 1929 | // We're building a user-defined literal. | ||||
| 1930 | IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix()); | ||||
| 1931 | SourceLocation UDSuffixLoc = | ||||
| 1932 | getUDSuffixLoc(*this, StringTokLocs[Literal.getUDSuffixToken()], | ||||
| 1933 | Literal.getUDSuffixOffset()); | ||||
| 1934 | |||||
| 1935 | // Make sure we're allowed user-defined literals here. | ||||
| 1936 | if (!UDLScope) | ||||
| 1937 | return ExprError(Diag(UDSuffixLoc, diag::err_invalid_string_udl)); | ||||
| 1938 | |||||
| 1939 | // C++11 [lex.ext]p5: The literal L is treated as a call of the form | ||||
| 1940 | // operator "" X (str, len) | ||||
| 1941 | QualType SizeType = Context.getSizeType(); | ||||
| 1942 | |||||
| 1943 | DeclarationName OpName = | ||||
| 1944 | Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix); | ||||
| 1945 | DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc); | ||||
| 1946 | OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc); | ||||
| 1947 | |||||
| 1948 | QualType ArgTy[] = { | ||||
| 1949 | Context.getArrayDecayedType(StrTy), SizeType | ||||
| 1950 | }; | ||||
| 1951 | |||||
| 1952 | LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName); | ||||
| 1953 | switch (LookupLiteralOperator(UDLScope, R, ArgTy, | ||||
| 1954 | /*AllowRaw*/ false, /*AllowTemplate*/ true, | ||||
| 1955 | /*AllowStringTemplatePack*/ true, | ||||
| 1956 | /*DiagnoseMissing*/ true, Lit)) { | ||||
| 1957 | |||||
| 1958 | case LOLR_Cooked: { | ||||
| 1959 | llvm::APInt Len(Context.getIntWidth(SizeType), Literal.GetNumStringChars()); | ||||
| 1960 | IntegerLiteral *LenArg = IntegerLiteral::Create(Context, Len, SizeType, | ||||
| 1961 | StringTokLocs[0]); | ||||
| 1962 | Expr *Args[] = { Lit, LenArg }; | ||||
| 1963 | |||||
| 1964 | return BuildLiteralOperatorCall(R, OpNameInfo, Args, StringTokLocs.back()); | ||||
| 1965 | } | ||||
| 1966 | |||||
| 1967 | case LOLR_Template: { | ||||
| 1968 | TemplateArgumentListInfo ExplicitArgs; | ||||
| 1969 | TemplateArgument Arg(Lit); | ||||
| 1970 | TemplateArgumentLocInfo ArgInfo(Lit); | ||||
| 1971 | ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo)); | ||||
| 1972 | return BuildLiteralOperatorCall(R, OpNameInfo, std::nullopt, | ||||
| 1973 | StringTokLocs.back(), &ExplicitArgs); | ||||
| 1974 | } | ||||
| 1975 | |||||
| 1976 | case LOLR_StringTemplatePack: { | ||||
| 1977 | TemplateArgumentListInfo ExplicitArgs; | ||||
| 1978 | |||||
| 1979 | unsigned CharBits = Context.getIntWidth(CharTy); | ||||
| 1980 | bool CharIsUnsigned = CharTy->isUnsignedIntegerType(); | ||||
| 1981 | llvm::APSInt Value(CharBits, CharIsUnsigned); | ||||
| 1982 | |||||
| 1983 | TemplateArgument TypeArg(CharTy); | ||||
| 1984 | TemplateArgumentLocInfo TypeArgInfo(Context.getTrivialTypeSourceInfo(CharTy)); | ||||
| 1985 | ExplicitArgs.addArgument(TemplateArgumentLoc(TypeArg, TypeArgInfo)); | ||||
| 1986 | |||||
| 1987 | for (unsigned I = 0, N = Lit->getLength(); I != N; ++I) { | ||||
| 1988 | Value = Lit->getCodeUnit(I); | ||||
| 1989 | TemplateArgument Arg(Context, Value, CharTy); | ||||
| 1990 | TemplateArgumentLocInfo ArgInfo; | ||||
| 1991 | ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo)); | ||||
| 1992 | } | ||||
| 1993 | return BuildLiteralOperatorCall(R, OpNameInfo, std::nullopt, | ||||
| 1994 | StringTokLocs.back(), &ExplicitArgs); | ||||
| 1995 | } | ||||
| 1996 | case LOLR_Raw: | ||||
| 1997 | case LOLR_ErrorNoDiagnostic: | ||||
| 1998 | llvm_unreachable("unexpected literal operator lookup result")::llvm::llvm_unreachable_internal("unexpected literal operator lookup result" , "clang/lib/Sema/SemaExpr.cpp", 1998); | ||||
| 1999 | case LOLR_Error: | ||||
| 2000 | return ExprError(); | ||||
| 2001 | } | ||||
| 2002 | llvm_unreachable("unexpected literal operator lookup result")::llvm::llvm_unreachable_internal("unexpected literal operator lookup result" , "clang/lib/Sema/SemaExpr.cpp", 2002); | ||||
| 2003 | } | ||||
| 2004 | |||||
| 2005 | DeclRefExpr * | ||||
| 2006 | Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK, | ||||
| 2007 | SourceLocation Loc, | ||||
| 2008 | const CXXScopeSpec *SS) { | ||||
| 2009 | DeclarationNameInfo NameInfo(D->getDeclName(), Loc); | ||||
| 2010 | return BuildDeclRefExpr(D, Ty, VK, NameInfo, SS); | ||||
| 2011 | } | ||||
| 2012 | |||||
| 2013 | DeclRefExpr * | ||||
| 2014 | Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK, | ||||
| 2015 | const DeclarationNameInfo &NameInfo, | ||||
| 2016 | const CXXScopeSpec *SS, NamedDecl *FoundD, | ||||
| 2017 | SourceLocation TemplateKWLoc, | ||||
| 2018 | const TemplateArgumentListInfo *TemplateArgs) { | ||||
| 2019 | NestedNameSpecifierLoc NNS = | ||||
| 2020 | SS ? SS->getWithLocInContext(Context) : NestedNameSpecifierLoc(); | ||||
| 2021 | return BuildDeclRefExpr(D, Ty, VK, NameInfo, NNS, FoundD, TemplateKWLoc, | ||||
| 2022 | TemplateArgs); | ||||
| 2023 | } | ||||
| 2024 | |||||
| 2025 | // CUDA/HIP: Check whether a captured reference variable is referencing a | ||||
| 2026 | // host variable in a device or host device lambda. | ||||
| 2027 | static bool isCapturingReferenceToHostVarInCUDADeviceLambda(const Sema &S, | ||||
| 2028 | VarDecl *VD) { | ||||
| 2029 | if (!S.getLangOpts().CUDA || !VD->hasInit()) | ||||
| 2030 | return false; | ||||
| 2031 | assert(VD->getType()->isReferenceType())(static_cast <bool> (VD->getType()->isReferenceType ()) ? void (0) : __assert_fail ("VD->getType()->isReferenceType()" , "clang/lib/Sema/SemaExpr.cpp", 2031, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 2032 | |||||
| 2033 | // Check whether the reference variable is referencing a host variable. | ||||
| 2034 | auto *DRE = dyn_cast<DeclRefExpr>(VD->getInit()); | ||||
| 2035 | if (!DRE) | ||||
| 2036 | return false; | ||||
| 2037 | auto *Referee = dyn_cast<VarDecl>(DRE->getDecl()); | ||||
| 2038 | if (!Referee || !Referee->hasGlobalStorage() || | ||||
| 2039 | Referee->hasAttr<CUDADeviceAttr>()) | ||||
| 2040 | return false; | ||||
| 2041 | |||||
| 2042 | // Check whether the current function is a device or host device lambda. | ||||
| 2043 | // Check whether the reference variable is a capture by getDeclContext() | ||||
| 2044 | // since refersToEnclosingVariableOrCapture() is not ready at this point. | ||||
| 2045 | auto *MD = dyn_cast_or_null<CXXMethodDecl>(S.CurContext); | ||||
| 2046 | if (MD && MD->getParent()->isLambda() && | ||||
| 2047 | MD->getOverloadedOperator() == OO_Call && MD->hasAttr<CUDADeviceAttr>() && | ||||
| 2048 | VD->getDeclContext() != MD) | ||||
| 2049 | return true; | ||||
| 2050 | |||||
| 2051 | return false; | ||||
| 2052 | } | ||||
| 2053 | |||||
| 2054 | NonOdrUseReason Sema::getNonOdrUseReasonInCurrentContext(ValueDecl *D) { | ||||
| 2055 | // A declaration named in an unevaluated operand never constitutes an odr-use. | ||||
| 2056 | if (isUnevaluatedContext()) | ||||
| 2057 | return NOUR_Unevaluated; | ||||
| 2058 | |||||
| 2059 | // C++2a [basic.def.odr]p4: | ||||
| 2060 | // A variable x whose name appears as a potentially-evaluated expression e | ||||
| 2061 | // is odr-used by e unless [...] x is a reference that is usable in | ||||
| 2062 | // constant expressions. | ||||
| 2063 | // CUDA/HIP: | ||||
| 2064 | // If a reference variable referencing a host variable is captured in a | ||||
| 2065 | // device or host device lambda, the value of the referee must be copied | ||||
| 2066 | // to the capture and the reference variable must be treated as odr-use | ||||
| 2067 | // since the value of the referee is not known at compile time and must | ||||
| 2068 | // be loaded from the captured. | ||||
| 2069 | if (VarDecl *VD = dyn_cast<VarDecl>(D)) { | ||||
| 2070 | if (VD->getType()->isReferenceType() && | ||||
| 2071 | !(getLangOpts().OpenMP && isOpenMPCapturedDecl(D)) && | ||||
| 2072 | !isCapturingReferenceToHostVarInCUDADeviceLambda(*this, VD) && | ||||
| 2073 | VD->isUsableInConstantExpressions(Context)) | ||||
| 2074 | return NOUR_Constant; | ||||
| 2075 | } | ||||
| 2076 | |||||
| 2077 | // All remaining non-variable cases constitute an odr-use. For variables, we | ||||
| 2078 | // need to wait and see how the expression is used. | ||||
| 2079 | return NOUR_None; | ||||
| 2080 | } | ||||
| 2081 | |||||
| 2082 | /// BuildDeclRefExpr - Build an expression that references a | ||||
| 2083 | /// declaration that does not require a closure capture. | ||||
| 2084 | DeclRefExpr * | ||||
| 2085 | Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK, | ||||
| 2086 | const DeclarationNameInfo &NameInfo, | ||||
| 2087 | NestedNameSpecifierLoc NNS, NamedDecl *FoundD, | ||||
| 2088 | SourceLocation TemplateKWLoc, | ||||
| 2089 | const TemplateArgumentListInfo *TemplateArgs) { | ||||
| 2090 | bool RefersToCapturedVariable = isa<VarDecl, BindingDecl>(D) && | ||||
| 2091 | NeedToCaptureVariable(D, NameInfo.getLoc()); | ||||
| 2092 | |||||
| 2093 | DeclRefExpr *E = DeclRefExpr::Create( | ||||
| 2094 | Context, NNS, TemplateKWLoc, D, RefersToCapturedVariable, NameInfo, Ty, | ||||
| 2095 | VK, FoundD, TemplateArgs, getNonOdrUseReasonInCurrentContext(D)); | ||||
| 2096 | MarkDeclRefReferenced(E); | ||||
| 2097 | |||||
| 2098 | // C++ [except.spec]p17: | ||||
| 2099 | // An exception-specification is considered to be needed when: | ||||
| 2100 | // - in an expression, the function is the unique lookup result or | ||||
| 2101 | // the selected member of a set of overloaded functions. | ||||
| 2102 | // | ||||
| 2103 | // We delay doing this until after we've built the function reference and | ||||
| 2104 | // marked it as used so that: | ||||
| 2105 | // a) if the function is defaulted, we get errors from defining it before / | ||||
| 2106 | // instead of errors from computing its exception specification, and | ||||
| 2107 | // b) if the function is a defaulted comparison, we can use the body we | ||||
| 2108 | // build when defining it as input to the exception specification | ||||
| 2109 | // computation rather than computing a new body. | ||||
| 2110 | if (auto *FPT = Ty->getAs<FunctionProtoType>()) { | ||||
| 2111 | if (isUnresolvedExceptionSpec(FPT->getExceptionSpecType())) { | ||||
| 2112 | if (auto *NewFPT = ResolveExceptionSpec(NameInfo.getLoc(), FPT)) | ||||
| 2113 | E->setType(Context.getQualifiedType(NewFPT, Ty.getQualifiers())); | ||||
| 2114 | } | ||||
| 2115 | } | ||||
| 2116 | |||||
| 2117 | if (getLangOpts().ObjCWeak && isa<VarDecl>(D) && | ||||
| 2118 | Ty.getObjCLifetime() == Qualifiers::OCL_Weak && !isUnevaluatedContext() && | ||||
| 2119 | !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, E->getBeginLoc())) | ||||
| 2120 | getCurFunction()->recordUseOfWeak(E); | ||||
| 2121 | |||||
| 2122 | FieldDecl *FD = dyn_cast<FieldDecl>(D); | ||||
| 2123 | if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(D)) | ||||
| 2124 | FD = IFD->getAnonField(); | ||||
| 2125 | if (FD) { | ||||
| 2126 | UnusedPrivateFields.remove(FD); | ||||
| 2127 | // Just in case we're building an illegal pointer-to-member. | ||||
| 2128 | if (FD->isBitField()) | ||||
| 2129 | E->setObjectKind(OK_BitField); | ||||
| 2130 | } | ||||
| 2131 | |||||
| 2132 | // C++ [expr.prim]/8: The expression [...] is a bit-field if the identifier | ||||
| 2133 | // designates a bit-field. | ||||
| 2134 | if (auto *BD = dyn_cast<BindingDecl>(D)) | ||||
| 2135 | if (auto *BE = BD->getBinding()) | ||||
| 2136 | E->setObjectKind(BE->getObjectKind()); | ||||
| 2137 | |||||
| 2138 | return E; | ||||
| 2139 | } | ||||
| 2140 | |||||
| 2141 | /// Decomposes the given name into a DeclarationNameInfo, its location, and | ||||
| 2142 | /// possibly a list of template arguments. | ||||
| 2143 | /// | ||||
| 2144 | /// If this produces template arguments, it is permitted to call | ||||
| 2145 | /// DecomposeTemplateName. | ||||
| 2146 | /// | ||||
| 2147 | /// This actually loses a lot of source location information for | ||||
| 2148 | /// non-standard name kinds; we should consider preserving that in | ||||
| 2149 | /// some way. | ||||
| 2150 | void | ||||
| 2151 | Sema::DecomposeUnqualifiedId(const UnqualifiedId &Id, | ||||
| 2152 | TemplateArgumentListInfo &Buffer, | ||||
| 2153 | DeclarationNameInfo &NameInfo, | ||||
| 2154 | const TemplateArgumentListInfo *&TemplateArgs) { | ||||
| 2155 | if (Id.getKind() == UnqualifiedIdKind::IK_TemplateId) { | ||||
| 2156 | Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc); | ||||
| 2157 | Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc); | ||||
| 2158 | |||||
| 2159 | ASTTemplateArgsPtr TemplateArgsPtr(Id.TemplateId->getTemplateArgs(), | ||||
| 2160 | Id.TemplateId->NumArgs); | ||||
| 2161 | translateTemplateArguments(TemplateArgsPtr, Buffer); | ||||
| 2162 | |||||
| 2163 | TemplateName TName = Id.TemplateId->Template.get(); | ||||
| 2164 | SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc; | ||||
| 2165 | NameInfo = Context.getNameForTemplate(TName, TNameLoc); | ||||
| 2166 | TemplateArgs = &Buffer; | ||||
| 2167 | } else { | ||||
| 2168 | NameInfo = GetNameFromUnqualifiedId(Id); | ||||
| 2169 | TemplateArgs = nullptr; | ||||
| 2170 | } | ||||
| 2171 | } | ||||
| 2172 | |||||
| 2173 | static void emitEmptyLookupTypoDiagnostic( | ||||
| 2174 | const TypoCorrection &TC, Sema &SemaRef, const CXXScopeSpec &SS, | ||||
| 2175 | DeclarationName Typo, SourceLocation TypoLoc, ArrayRef<Expr *> Args, | ||||
| 2176 | unsigned DiagnosticID, unsigned DiagnosticSuggestID) { | ||||
| 2177 | DeclContext *Ctx = | ||||
| 2178 | SS.isEmpty() ? nullptr : SemaRef.computeDeclContext(SS, false); | ||||
| 2179 | if (!TC) { | ||||
| 2180 | // Emit a special diagnostic for failed member lookups. | ||||
| 2181 | // FIXME: computing the declaration context might fail here (?) | ||||
| 2182 | if (Ctx) | ||||
| 2183 | SemaRef.Diag(TypoLoc, diag::err_no_member) << Typo << Ctx | ||||
| 2184 | << SS.getRange(); | ||||
| 2185 | else | ||||
| 2186 | SemaRef.Diag(TypoLoc, DiagnosticID) << Typo; | ||||
| 2187 | return; | ||||
| 2188 | } | ||||
| 2189 | |||||
| 2190 | std::string CorrectedStr = TC.getAsString(SemaRef.getLangOpts()); | ||||
| 2191 | bool DroppedSpecifier = | ||||
| 2192 | TC.WillReplaceSpecifier() && Typo.getAsString() == CorrectedStr; | ||||
| 2193 | unsigned NoteID = TC.getCorrectionDeclAs<ImplicitParamDecl>() | ||||
| 2194 | ? diag::note_implicit_param_decl | ||||
| 2195 | : diag::note_previous_decl; | ||||
| 2196 | if (!Ctx) | ||||
| 2197 | SemaRef.diagnoseTypo(TC, SemaRef.PDiag(DiagnosticSuggestID) << Typo, | ||||
| 2198 | SemaRef.PDiag(NoteID)); | ||||
| 2199 | else | ||||
| 2200 | SemaRef.diagnoseTypo(TC, SemaRef.PDiag(diag::err_no_member_suggest) | ||||
| 2201 | << Typo << Ctx << DroppedSpecifier | ||||
| 2202 | << SS.getRange(), | ||||
| 2203 | SemaRef.PDiag(NoteID)); | ||||
| 2204 | } | ||||
| 2205 | |||||
| 2206 | /// Diagnose a lookup that found results in an enclosing class during error | ||||
| 2207 | /// recovery. This usually indicates that the results were found in a dependent | ||||
| 2208 | /// base class that could not be searched as part of a template definition. | ||||
| 2209 | /// Always issues a diagnostic (though this may be only a warning in MS | ||||
| 2210 | /// compatibility mode). | ||||
| 2211 | /// | ||||
| 2212 | /// Return \c true if the error is unrecoverable, or \c false if the caller | ||||
| 2213 | /// should attempt to recover using these lookup results. | ||||
| 2214 | bool Sema::DiagnoseDependentMemberLookup(LookupResult &R) { | ||||
| 2215 | // During a default argument instantiation the CurContext points | ||||
| 2216 | // to a CXXMethodDecl; but we can't apply a this-> fixit inside a | ||||
| 2217 | // function parameter list, hence add an explicit check. | ||||
| 2218 | bool isDefaultArgument = | ||||
| 2219 | !CodeSynthesisContexts.empty() && | ||||
| 2220 | CodeSynthesisContexts.back().Kind == | ||||
| 2221 | CodeSynthesisContext::DefaultFunctionArgumentInstantiation; | ||||
| 2222 | CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext); | ||||
| 2223 | bool isInstance = CurMethod && CurMethod->isInstance() && | ||||
| 2224 | R.getNamingClass() == CurMethod->getParent() && | ||||
| 2225 | !isDefaultArgument; | ||||
| 2226 | |||||
| 2227 | // There are two ways we can find a class-scope declaration during template | ||||
| 2228 | // instantiation that we did not find in the template definition: if it is a | ||||
| 2229 | // member of a dependent base class, or if it is declared after the point of | ||||
| 2230 | // use in the same class. Distinguish these by comparing the class in which | ||||
| 2231 | // the member was found to the naming class of the lookup. | ||||
| 2232 | unsigned DiagID = diag::err_found_in_dependent_base; | ||||
| 2233 | unsigned NoteID = diag::note_member_declared_at; | ||||
| 2234 | if (R.getRepresentativeDecl()->getDeclContext()->Equals(R.getNamingClass())) { | ||||
| 2235 | DiagID = getLangOpts().MSVCCompat ? diag::ext_found_later_in_class | ||||
| 2236 | : diag::err_found_later_in_class; | ||||
| 2237 | } else if (getLangOpts().MSVCCompat) { | ||||
| 2238 | DiagID = diag::ext_found_in_dependent_base; | ||||
| 2239 | NoteID = diag::note_dependent_member_use; | ||||
| 2240 | } | ||||
| 2241 | |||||
| 2242 | if (isInstance) { | ||||
| 2243 | // Give a code modification hint to insert 'this->'. | ||||
| 2244 | Diag(R.getNameLoc(), DiagID) | ||||
| 2245 | << R.getLookupName() | ||||
| 2246 | << FixItHint::CreateInsertion(R.getNameLoc(), "this->"); | ||||
| 2247 | CheckCXXThisCapture(R.getNameLoc()); | ||||
| 2248 | } else { | ||||
| 2249 | // FIXME: Add a FixItHint to insert 'Base::' or 'Derived::' (assuming | ||||
| 2250 | // they're not shadowed). | ||||
| 2251 | Diag(R.getNameLoc(), DiagID) << R.getLookupName(); | ||||
| 2252 | } | ||||
| 2253 | |||||
| 2254 | for (NamedDecl *D : R) | ||||
| 2255 | Diag(D->getLocation(), NoteID); | ||||
| 2256 | |||||
| 2257 | // Return true if we are inside a default argument instantiation | ||||
| 2258 | // and the found name refers to an instance member function, otherwise | ||||
| 2259 | // the caller will try to create an implicit member call and this is wrong | ||||
| 2260 | // for default arguments. | ||||
| 2261 | // | ||||
| 2262 | // FIXME: Is this special case necessary? We could allow the caller to | ||||
| 2263 | // diagnose this. | ||||
| 2264 | if (isDefaultArgument && ((*R.begin())->isCXXInstanceMember())) { | ||||
| 2265 | Diag(R.getNameLoc(), diag::err_member_call_without_object); | ||||
| 2266 | return true; | ||||
| 2267 | } | ||||
| 2268 | |||||
| 2269 | // Tell the callee to try to recover. | ||||
| 2270 | return false; | ||||
| 2271 | } | ||||
| 2272 | |||||
| 2273 | /// Diagnose an empty lookup. | ||||
| 2274 | /// | ||||
| 2275 | /// \return false if new lookup candidates were found | ||||
| 2276 | bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R, | ||||
| 2277 | CorrectionCandidateCallback &CCC, | ||||
| 2278 | TemplateArgumentListInfo *ExplicitTemplateArgs, | ||||
| 2279 | ArrayRef<Expr *> Args, TypoExpr **Out) { | ||||
| 2280 | DeclarationName Name = R.getLookupName(); | ||||
| 2281 | |||||
| 2282 | unsigned diagnostic = diag::err_undeclared_var_use; | ||||
| 2283 | unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest; | ||||
| 2284 | if (Name.getNameKind() == DeclarationName::CXXOperatorName || | ||||
| 2285 | Name.getNameKind() == DeclarationName::CXXLiteralOperatorName || | ||||
| 2286 | Name.getNameKind() == DeclarationName::CXXConversionFunctionName) { | ||||
| 2287 | diagnostic = diag::err_undeclared_use; | ||||
| 2288 | diagnostic_suggest = diag::err_undeclared_use_suggest; | ||||
| 2289 | } | ||||
| 2290 | |||||
| 2291 | // If the original lookup was an unqualified lookup, fake an | ||||
| 2292 | // unqualified lookup. This is useful when (for example) the | ||||
| 2293 | // original lookup would not have found something because it was a | ||||
| 2294 | // dependent name. | ||||
| 2295 | DeclContext *DC = SS.isEmpty() ? CurContext : nullptr; | ||||
| 2296 | while (DC) { | ||||
| 2297 | if (isa<CXXRecordDecl>(DC)) { | ||||
| 2298 | LookupQualifiedName(R, DC); | ||||
| 2299 | |||||
| 2300 | if (!R.empty()) { | ||||
| 2301 | // Don't give errors about ambiguities in this lookup. | ||||
| 2302 | R.suppressDiagnostics(); | ||||
| 2303 | |||||
| 2304 | // If there's a best viable function among the results, only mention | ||||
| 2305 | // that one in the notes. | ||||
| 2306 | OverloadCandidateSet Candidates(R.getNameLoc(), | ||||
| 2307 | OverloadCandidateSet::CSK_Normal); | ||||
| 2308 | AddOverloadedCallCandidates(R, ExplicitTemplateArgs, Args, Candidates); | ||||
| 2309 | OverloadCandidateSet::iterator Best; | ||||
| 2310 | if (Candidates.BestViableFunction(*this, R.getNameLoc(), Best) == | ||||
| 2311 | OR_Success) { | ||||
| 2312 | R.clear(); | ||||
| 2313 | R.addDecl(Best->FoundDecl.getDecl(), Best->FoundDecl.getAccess()); | ||||
| 2314 | R.resolveKind(); | ||||
| 2315 | } | ||||
| 2316 | |||||
| 2317 | return DiagnoseDependentMemberLookup(R); | ||||
| 2318 | } | ||||
| 2319 | |||||
| 2320 | R.clear(); | ||||
| 2321 | } | ||||
| 2322 | |||||
| 2323 | DC = DC->getLookupParent(); | ||||
| 2324 | } | ||||
| 2325 | |||||
| 2326 | // We didn't find anything, so try to correct for a typo. | ||||
| 2327 | TypoCorrection Corrected; | ||||
| 2328 | if (S && Out) { | ||||
| 2329 | SourceLocation TypoLoc = R.getNameLoc(); | ||||
| 2330 | assert(!ExplicitTemplateArgs &&(static_cast <bool> (!ExplicitTemplateArgs && "Diagnosing an empty lookup with explicit template args!" ) ? void (0) : __assert_fail ("!ExplicitTemplateArgs && \"Diagnosing an empty lookup with explicit template args!\"" , "clang/lib/Sema/SemaExpr.cpp", 2331, __extension__ __PRETTY_FUNCTION__ )) | ||||
| 2331 | "Diagnosing an empty lookup with explicit template args!")(static_cast <bool> (!ExplicitTemplateArgs && "Diagnosing an empty lookup with explicit template args!" ) ? void (0) : __assert_fail ("!ExplicitTemplateArgs && \"Diagnosing an empty lookup with explicit template args!\"" , "clang/lib/Sema/SemaExpr.cpp", 2331, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 2332 | *Out = CorrectTypoDelayed( | ||||
| 2333 | R.getLookupNameInfo(), R.getLookupKind(), S, &SS, CCC, | ||||
| 2334 | [=](const TypoCorrection &TC) { | ||||
| 2335 | emitEmptyLookupTypoDiagnostic(TC, *this, SS, Name, TypoLoc, Args, | ||||
| 2336 | diagnostic, diagnostic_suggest); | ||||
| 2337 | }, | ||||
| 2338 | nullptr, CTK_ErrorRecovery); | ||||
| 2339 | if (*Out) | ||||
| 2340 | return true; | ||||
| 2341 | } else if (S && | ||||
| 2342 | (Corrected = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), | ||||
| 2343 | S, &SS, CCC, CTK_ErrorRecovery))) { | ||||
| 2344 | std::string CorrectedStr(Corrected.getAsString(getLangOpts())); | ||||
| 2345 | bool DroppedSpecifier = | ||||
| 2346 | Corrected.WillReplaceSpecifier() && Name.getAsString() == CorrectedStr; | ||||
| 2347 | R.setLookupName(Corrected.getCorrection()); | ||||
| 2348 | |||||
| 2349 | bool AcceptableWithRecovery = false; | ||||
| 2350 | bool AcceptableWithoutRecovery = false; | ||||
| 2351 | NamedDecl *ND = Corrected.getFoundDecl(); | ||||
| 2352 | if (ND) { | ||||
| 2353 | if (Corrected.isOverloaded()) { | ||||
| 2354 | OverloadCandidateSet OCS(R.getNameLoc(), | ||||
| 2355 | OverloadCandidateSet::CSK_Normal); | ||||
| 2356 | OverloadCandidateSet::iterator Best; | ||||
| 2357 | for (NamedDecl *CD : Corrected) { | ||||
| 2358 | if (FunctionTemplateDecl *FTD = | ||||
| 2359 | dyn_cast<FunctionTemplateDecl>(CD)) | ||||
| 2360 | AddTemplateOverloadCandidate( | ||||
| 2361 | FTD, DeclAccessPair::make(FTD, AS_none), ExplicitTemplateArgs, | ||||
| 2362 | Args, OCS); | ||||
| 2363 | else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(CD)) | ||||
| 2364 | if (!ExplicitTemplateArgs || ExplicitTemplateArgs->size() == 0) | ||||
| 2365 | AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none), | ||||
| 2366 | Args, OCS); | ||||
| 2367 | } | ||||
| 2368 | switch (OCS.BestViableFunction(*this, R.getNameLoc(), Best)) { | ||||
| 2369 | case OR_Success: | ||||
| 2370 | ND = Best->FoundDecl; | ||||
| 2371 | Corrected.setCorrectionDecl(ND); | ||||
| 2372 | break; | ||||
| 2373 | default: | ||||
| 2374 | // FIXME: Arbitrarily pick the first declaration for the note. | ||||
| 2375 | Corrected.setCorrectionDecl(ND); | ||||
| 2376 | break; | ||||
| 2377 | } | ||||
| 2378 | } | ||||
| 2379 | R.addDecl(ND); | ||||
| 2380 | if (getLangOpts().CPlusPlus && ND->isCXXClassMember()) { | ||||
| 2381 | CXXRecordDecl *Record = nullptr; | ||||
| 2382 | if (Corrected.getCorrectionSpecifier()) { | ||||
| 2383 | const Type *Ty = Corrected.getCorrectionSpecifier()->getAsType(); | ||||
| 2384 | Record = Ty->getAsCXXRecordDecl(); | ||||
| 2385 | } | ||||
| 2386 | if (!Record) | ||||
| 2387 | Record = cast<CXXRecordDecl>( | ||||
| 2388 | ND->getDeclContext()->getRedeclContext()); | ||||
| 2389 | R.setNamingClass(Record); | ||||
| 2390 | } | ||||
| 2391 | |||||
| 2392 | auto *UnderlyingND = ND->getUnderlyingDecl(); | ||||
| 2393 | AcceptableWithRecovery = isa<ValueDecl>(UnderlyingND) || | ||||
| 2394 | isa<FunctionTemplateDecl>(UnderlyingND); | ||||
| 2395 | // FIXME: If we ended up with a typo for a type name or | ||||
| 2396 | // Objective-C class name, we're in trouble because the parser | ||||
| 2397 | // is in the wrong place to recover. Suggest the typo | ||||
| 2398 | // correction, but don't make it a fix-it since we're not going | ||||
| 2399 | // to recover well anyway. | ||||
| 2400 | AcceptableWithoutRecovery = isa<TypeDecl>(UnderlyingND) || | ||||
| 2401 | getAsTypeTemplateDecl(UnderlyingND) || | ||||
| 2402 | isa<ObjCInterfaceDecl>(UnderlyingND); | ||||
| 2403 | } else { | ||||
| 2404 | // FIXME: We found a keyword. Suggest it, but don't provide a fix-it | ||||
| 2405 | // because we aren't able to recover. | ||||
| 2406 | AcceptableWithoutRecovery = true; | ||||
| 2407 | } | ||||
| 2408 | |||||
| 2409 | if (AcceptableWithRecovery || AcceptableWithoutRecovery) { | ||||
| 2410 | unsigned NoteID = Corrected.getCorrectionDeclAs<ImplicitParamDecl>() | ||||
| 2411 | ? diag::note_implicit_param_decl | ||||
| 2412 | : diag::note_previous_decl; | ||||
| 2413 | if (SS.isEmpty()) | ||||
| 2414 | diagnoseTypo(Corrected, PDiag(diagnostic_suggest) << Name, | ||||
| 2415 | PDiag(NoteID), AcceptableWithRecovery); | ||||
| 2416 | else | ||||
| 2417 | diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest) | ||||
| 2418 | << Name << computeDeclContext(SS, false) | ||||
| 2419 | << DroppedSpecifier << SS.getRange(), | ||||
| 2420 | PDiag(NoteID), AcceptableWithRecovery); | ||||
| 2421 | |||||
| 2422 | // Tell the callee whether to try to recover. | ||||
| 2423 | return !AcceptableWithRecovery; | ||||
| 2424 | } | ||||
| 2425 | } | ||||
| 2426 | R.clear(); | ||||
| 2427 | |||||
| 2428 | // Emit a special diagnostic for failed member lookups. | ||||
| 2429 | // FIXME: computing the declaration context might fail here (?) | ||||
| 2430 | if (!SS.isEmpty()) { | ||||
| 2431 | Diag(R.getNameLoc(), diag::err_no_member) | ||||
| 2432 | << Name << computeDeclContext(SS, false) | ||||
| 2433 | << SS.getRange(); | ||||
| 2434 | return true; | ||||
| 2435 | } | ||||
| 2436 | |||||
| 2437 | // Give up, we can't recover. | ||||
| 2438 | Diag(R.getNameLoc(), diagnostic) << Name; | ||||
| 2439 | return true; | ||||
| 2440 | } | ||||
| 2441 | |||||
| 2442 | /// In Microsoft mode, if we are inside a template class whose parent class has | ||||
| 2443 | /// dependent base classes, and we can't resolve an unqualified identifier, then | ||||
| 2444 | /// assume the identifier is a member of a dependent base class. We can only | ||||
| 2445 | /// recover successfully in static methods, instance methods, and other contexts | ||||
| 2446 | /// where 'this' is available. This doesn't precisely match MSVC's | ||||
| 2447 | /// instantiation model, but it's close enough. | ||||
| 2448 | static Expr * | ||||
| 2449 | recoverFromMSUnqualifiedLookup(Sema &S, ASTContext &Context, | ||||
| 2450 | DeclarationNameInfo &NameInfo, | ||||
| 2451 | SourceLocation TemplateKWLoc, | ||||
| 2452 | const TemplateArgumentListInfo *TemplateArgs) { | ||||
| 2453 | // Only try to recover from lookup into dependent bases in static methods or | ||||
| 2454 | // contexts where 'this' is available. | ||||
| 2455 | QualType ThisType = S.getCurrentThisType(); | ||||
| 2456 | const CXXRecordDecl *RD = nullptr; | ||||
| 2457 | if (!ThisType.isNull()) | ||||
| 2458 | RD = ThisType->getPointeeType()->getAsCXXRecordDecl(); | ||||
| 2459 | else if (auto *MD = dyn_cast<CXXMethodDecl>(S.CurContext)) | ||||
| 2460 | RD = MD->getParent(); | ||||
| 2461 | if (!RD || !RD->hasAnyDependentBases()) | ||||
| 2462 | return nullptr; | ||||
| 2463 | |||||
| 2464 | // Diagnose this as unqualified lookup into a dependent base class. If 'this' | ||||
| 2465 | // is available, suggest inserting 'this->' as a fixit. | ||||
| 2466 | SourceLocation Loc = NameInfo.getLoc(); | ||||
| 2467 | auto DB = S.Diag(Loc, diag::ext_undeclared_unqual_id_with_dependent_base); | ||||
| 2468 | DB << NameInfo.getName() << RD; | ||||
| 2469 | |||||
| 2470 | if (!ThisType.isNull()) { | ||||
| 2471 | DB << FixItHint::CreateInsertion(Loc, "this->"); | ||||
| 2472 | return CXXDependentScopeMemberExpr::Create( | ||||
| 2473 | Context, /*This=*/nullptr, ThisType, /*IsArrow=*/true, | ||||
| 2474 | /*Op=*/SourceLocation(), NestedNameSpecifierLoc(), TemplateKWLoc, | ||||
| 2475 | /*FirstQualifierFoundInScope=*/nullptr, NameInfo, TemplateArgs); | ||||
| 2476 | } | ||||
| 2477 | |||||
| 2478 | // Synthesize a fake NNS that points to the derived class. This will | ||||
| 2479 | // perform name lookup during template instantiation. | ||||
| 2480 | CXXScopeSpec SS; | ||||
| 2481 | auto *NNS = | ||||
| 2482 | NestedNameSpecifier::Create(Context, nullptr, true, RD->getTypeForDecl()); | ||||
| 2483 | SS.MakeTrivial(Context, NNS, SourceRange(Loc, Loc)); | ||||
| 2484 | return DependentScopeDeclRefExpr::Create( | ||||
| 2485 | Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo, | ||||
| 2486 | TemplateArgs); | ||||
| 2487 | } | ||||
| 2488 | |||||
| 2489 | ExprResult | ||||
| 2490 | Sema::ActOnIdExpression(Scope *S, CXXScopeSpec &SS, | ||||
| 2491 | SourceLocation TemplateKWLoc, UnqualifiedId &Id, | ||||
| 2492 | bool HasTrailingLParen, bool IsAddressOfOperand, | ||||
| 2493 | CorrectionCandidateCallback *CCC, | ||||
| 2494 | bool IsInlineAsmIdentifier, Token *KeywordReplacement) { | ||||
| 2495 | assert(!(IsAddressOfOperand && HasTrailingLParen) &&(static_cast <bool> (!(IsAddressOfOperand && HasTrailingLParen ) && "cannot be direct & operand and have a trailing lparen" ) ? void (0) : __assert_fail ("!(IsAddressOfOperand && HasTrailingLParen) && \"cannot be direct & operand and have a trailing lparen\"" , "clang/lib/Sema/SemaExpr.cpp", 2496, __extension__ __PRETTY_FUNCTION__ )) | ||||
| 2496 | "cannot be direct & operand and have a trailing lparen")(static_cast <bool> (!(IsAddressOfOperand && HasTrailingLParen ) && "cannot be direct & operand and have a trailing lparen" ) ? void (0) : __assert_fail ("!(IsAddressOfOperand && HasTrailingLParen) && \"cannot be direct & operand and have a trailing lparen\"" , "clang/lib/Sema/SemaExpr.cpp", 2496, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 2497 | if (SS.isInvalid()) | ||||
| 2498 | return ExprError(); | ||||
| 2499 | |||||
| 2500 | TemplateArgumentListInfo TemplateArgsBuffer; | ||||
| 2501 | |||||
| 2502 | // Decompose the UnqualifiedId into the following data. | ||||
| 2503 | DeclarationNameInfo NameInfo; | ||||
| 2504 | const TemplateArgumentListInfo *TemplateArgs; | ||||
| 2505 | DecomposeUnqualifiedId(Id, TemplateArgsBuffer, NameInfo, TemplateArgs); | ||||
| 2506 | |||||
| 2507 | DeclarationName Name = NameInfo.getName(); | ||||
| 2508 | IdentifierInfo *II = Name.getAsIdentifierInfo(); | ||||
| 2509 | SourceLocation NameLoc = NameInfo.getLoc(); | ||||
| 2510 | |||||
| 2511 | if (II && II->isEditorPlaceholder()) { | ||||
| 2512 | // FIXME: When typed placeholders are supported we can create a typed | ||||
| 2513 | // placeholder expression node. | ||||
| 2514 | return ExprError(); | ||||
| 2515 | } | ||||
| 2516 | |||||
| 2517 | // C++ [temp.dep.expr]p3: | ||||
| 2518 | // An id-expression is type-dependent if it contains: | ||||
| 2519 | // -- an identifier that was declared with a dependent type, | ||||
| 2520 | // (note: handled after lookup) | ||||
| 2521 | // -- a template-id that is dependent, | ||||
| 2522 | // (note: handled in BuildTemplateIdExpr) | ||||
| 2523 | // -- a conversion-function-id that specifies a dependent type, | ||||
| 2524 | // -- a nested-name-specifier that contains a class-name that | ||||
| 2525 | // names a dependent type. | ||||
| 2526 | // Determine whether this is a member of an unknown specialization; | ||||
| 2527 | // we need to handle these differently. | ||||
| 2528 | bool DependentID = false; | ||||
| 2529 | if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName && | ||||
| 2530 | Name.getCXXNameType()->isDependentType()) { | ||||
| 2531 | DependentID = true; | ||||
| 2532 | } else if (SS.isSet()) { | ||||
| 2533 | if (DeclContext *DC = computeDeclContext(SS, false)) { | ||||
| 2534 | if (RequireCompleteDeclContext(SS, DC)) | ||||
| 2535 | return ExprError(); | ||||
| 2536 | } else { | ||||
| 2537 | DependentID = true; | ||||
| 2538 | } | ||||
| 2539 | } | ||||
| 2540 | |||||
| 2541 | if (DependentID) | ||||
| 2542 | return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo, | ||||
| 2543 | IsAddressOfOperand, TemplateArgs); | ||||
| 2544 | |||||
| 2545 | // Perform the required lookup. | ||||
| 2546 | LookupResult R(*this, NameInfo, | ||||
| 2547 | (Id.getKind() == UnqualifiedIdKind::IK_ImplicitSelfParam) | ||||
| 2548 | ? LookupObjCImplicitSelfParam | ||||
| 2549 | : LookupOrdinaryName); | ||||
| 2550 | if (TemplateKWLoc.isValid() || TemplateArgs) { | ||||
| 2551 | // Lookup the template name again to correctly establish the context in | ||||
| 2552 | // which it was found. This is really unfortunate as we already did the | ||||
| 2553 | // lookup to determine that it was a template name in the first place. If | ||||
| 2554 | // this becomes a performance hit, we can work harder to preserve those | ||||
| 2555 | // results until we get here but it's likely not worth it. | ||||
| 2556 | bool MemberOfUnknownSpecialization; | ||||
| 2557 | AssumedTemplateKind AssumedTemplate; | ||||
| 2558 | if (LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false, | ||||
| 2559 | MemberOfUnknownSpecialization, TemplateKWLoc, | ||||
| 2560 | &AssumedTemplate)) | ||||
| 2561 | return ExprError(); | ||||
| 2562 | |||||
| 2563 | if (MemberOfUnknownSpecialization || | ||||
| 2564 | (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)) | ||||
| 2565 | return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo, | ||||
| 2566 | IsAddressOfOperand, TemplateArgs); | ||||
| 2567 | } else { | ||||
| 2568 | bool IvarLookupFollowUp = II && !SS.isSet() && getCurMethodDecl(); | ||||
| 2569 | LookupParsedName(R, S, &SS, !IvarLookupFollowUp); | ||||
| 2570 | |||||
| 2571 | // If the result might be in a dependent base class, this is a dependent | ||||
| 2572 | // id-expression. | ||||
| 2573 | if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation) | ||||
| 2574 | return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo, | ||||
| 2575 | IsAddressOfOperand, TemplateArgs); | ||||
| 2576 | |||||
| 2577 | // If this reference is in an Objective-C method, then we need to do | ||||
| 2578 | // some special Objective-C lookup, too. | ||||
| 2579 | if (IvarLookupFollowUp) { | ||||
| 2580 | ExprResult E(LookupInObjCMethod(R, S, II, true)); | ||||
| 2581 | if (E.isInvalid()) | ||||
| 2582 | return ExprError(); | ||||
| 2583 | |||||
| 2584 | if (Expr *Ex = E.getAs<Expr>()) | ||||
| 2585 | return Ex; | ||||
| 2586 | } | ||||
| 2587 | } | ||||
| 2588 | |||||
| 2589 | if (R.isAmbiguous()) | ||||
| 2590 | return ExprError(); | ||||
| 2591 | |||||
| 2592 | // This could be an implicitly declared function reference if the language | ||||
| 2593 | // mode allows it as a feature. | ||||
| 2594 | if (R.empty() && HasTrailingLParen && II && | ||||
| 2595 | getLangOpts().implicitFunctionsAllowed()) { | ||||
| 2596 | NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S); | ||||
| 2597 | if (D) R.addDecl(D); | ||||
| 2598 | } | ||||
| 2599 | |||||
| 2600 | // Determine whether this name might be a candidate for | ||||
| 2601 | // argument-dependent lookup. | ||||
| 2602 | bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen); | ||||
| 2603 | |||||
| 2604 | if (R.empty() && !ADL) { | ||||
| 2605 | if (SS.isEmpty() && getLangOpts().MSVCCompat) { | ||||
| 2606 | if (Expr *E = recoverFromMSUnqualifiedLookup(*this, Context, NameInfo, | ||||
| 2607 | TemplateKWLoc, TemplateArgs)) | ||||
| 2608 | return E; | ||||
| 2609 | } | ||||
| 2610 | |||||
| 2611 | // Don't diagnose an empty lookup for inline assembly. | ||||
| 2612 | if (IsInlineAsmIdentifier) | ||||
| 2613 | return ExprError(); | ||||
| 2614 | |||||
| 2615 | // If this name wasn't predeclared and if this is not a function | ||||
| 2616 | // call, diagnose the problem. | ||||
| 2617 | TypoExpr *TE = nullptr; | ||||
| 2618 | DefaultFilterCCC DefaultValidator(II, SS.isValid() ? SS.getScopeRep() | ||||
| 2619 | : nullptr); | ||||
| 2620 | DefaultValidator.IsAddressOfOperand = IsAddressOfOperand; | ||||
| 2621 | assert((!CCC || CCC->IsAddressOfOperand == IsAddressOfOperand) &&(static_cast <bool> ((!CCC || CCC->IsAddressOfOperand == IsAddressOfOperand) && "Typo correction callback misconfigured" ) ? void (0) : __assert_fail ("(!CCC || CCC->IsAddressOfOperand == IsAddressOfOperand) && \"Typo correction callback misconfigured\"" , "clang/lib/Sema/SemaExpr.cpp", 2622, __extension__ __PRETTY_FUNCTION__ )) | ||||
| 2622 | "Typo correction callback misconfigured")(static_cast <bool> ((!CCC || CCC->IsAddressOfOperand == IsAddressOfOperand) && "Typo correction callback misconfigured" ) ? void (0) : __assert_fail ("(!CCC || CCC->IsAddressOfOperand == IsAddressOfOperand) && \"Typo correction callback misconfigured\"" , "clang/lib/Sema/SemaExpr.cpp", 2622, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 2623 | if (CCC) { | ||||
| 2624 | // Make sure the callback knows what the typo being diagnosed is. | ||||
| 2625 | CCC->setTypoName(II); | ||||
| 2626 | if (SS.isValid()) | ||||
| 2627 | CCC->setTypoNNS(SS.getScopeRep()); | ||||
| 2628 | } | ||||
| 2629 | // FIXME: DiagnoseEmptyLookup produces bad diagnostics if we're looking for | ||||
| 2630 | // a template name, but we happen to have always already looked up the name | ||||
| 2631 | // before we get here if it must be a template name. | ||||
| 2632 | if (DiagnoseEmptyLookup(S, SS, R, CCC ? *CCC : DefaultValidator, nullptr, | ||||
| 2633 | std::nullopt, &TE)) { | ||||
| 2634 | if (TE && KeywordReplacement) { | ||||
| 2635 | auto &State = getTypoExprState(TE); | ||||
| 2636 | auto BestTC = State.Consumer->getNextCorrection(); | ||||
| 2637 | if (BestTC.isKeyword()) { | ||||
| 2638 | auto *II = BestTC.getCorrectionAsIdentifierInfo(); | ||||
| 2639 | if (State.DiagHandler) | ||||
| 2640 | State.DiagHandler(BestTC); | ||||
| 2641 | KeywordReplacement->startToken(); | ||||
| 2642 | KeywordReplacement->setKind(II->getTokenID()); | ||||
| 2643 | KeywordReplacement->setIdentifierInfo(II); | ||||
| 2644 | KeywordReplacement->setLocation(BestTC.getCorrectionRange().getBegin()); | ||||
| 2645 | // Clean up the state associated with the TypoExpr, since it has | ||||
| 2646 | // now been diagnosed (without a call to CorrectDelayedTyposInExpr). | ||||
| 2647 | clearDelayedTypo(TE); | ||||
| 2648 | // Signal that a correction to a keyword was performed by returning a | ||||
| 2649 | // valid-but-null ExprResult. | ||||
| 2650 | return (Expr*)nullptr; | ||||
| 2651 | } | ||||
| 2652 | State.Consumer->resetCorrectionStream(); | ||||
| 2653 | } | ||||
| 2654 | return TE ? TE : ExprError(); | ||||
| 2655 | } | ||||
| 2656 | |||||
| 2657 | assert(!R.empty() &&(static_cast <bool> (!R.empty() && "DiagnoseEmptyLookup returned false but added no results" ) ? void (0) : __assert_fail ("!R.empty() && \"DiagnoseEmptyLookup returned false but added no results\"" , "clang/lib/Sema/SemaExpr.cpp", 2658, __extension__ __PRETTY_FUNCTION__ )) | ||||
| 2658 | "DiagnoseEmptyLookup returned false but added no results")(static_cast <bool> (!R.empty() && "DiagnoseEmptyLookup returned false but added no results" ) ? void (0) : __assert_fail ("!R.empty() && \"DiagnoseEmptyLookup returned false but added no results\"" , "clang/lib/Sema/SemaExpr.cpp", 2658, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 2659 | |||||
| 2660 | // If we found an Objective-C instance variable, let | ||||
| 2661 | // LookupInObjCMethod build the appropriate expression to | ||||
| 2662 | // reference the ivar. | ||||
| 2663 | if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) { | ||||
| 2664 | R.clear(); | ||||
| 2665 | ExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier())); | ||||
| 2666 | // In a hopelessly buggy code, Objective-C instance variable | ||||
| 2667 | // lookup fails and no expression will be built to reference it. | ||||
| 2668 | if (!E.isInvalid() && !E.get()) | ||||
| 2669 | return ExprError(); | ||||
| 2670 | return E; | ||||
| 2671 | } | ||||
| 2672 | } | ||||
| 2673 | |||||
| 2674 | // This is guaranteed from this point on. | ||||
| 2675 | assert(!R.empty() || ADL)(static_cast <bool> (!R.empty() || ADL) ? void (0) : __assert_fail ("!R.empty() || ADL", "clang/lib/Sema/SemaExpr.cpp", 2675, __extension__ __PRETTY_FUNCTION__)); | ||||
| 2676 | |||||
| 2677 | // Check whether this might be a C++ implicit instance member access. | ||||
| 2678 | // C++ [class.mfct.non-static]p3: | ||||
| 2679 | // When an id-expression that is not part of a class member access | ||||
| 2680 | // syntax and not used to form a pointer to member is used in the | ||||
| 2681 | // body of a non-static member function of class X, if name lookup | ||||
| 2682 | // resolves the name in the id-expression to a non-static non-type | ||||
| 2683 | // member of some class C, the id-expression is transformed into a | ||||
| 2684 | // class member access expression using (*this) as the | ||||
| 2685 | // postfix-expression to the left of the . operator. | ||||
| 2686 | // | ||||
| 2687 | // But we don't actually need to do this for '&' operands if R | ||||
| 2688 | // resolved to a function or overloaded function set, because the | ||||
| 2689 | // expression is ill-formed if it actually works out to be a | ||||
| 2690 | // non-static member function: | ||||
| 2691 | // | ||||
| 2692 | // C++ [expr.ref]p4: | ||||
| 2693 | // Otherwise, if E1.E2 refers to a non-static member function. . . | ||||
| 2694 | // [t]he expression can be used only as the left-hand operand of a | ||||
| 2695 | // member function call. | ||||
| 2696 | // | ||||
| 2697 | // There are other safeguards against such uses, but it's important | ||||
| 2698 | // to get this right here so that we don't end up making a | ||||
| 2699 | // spuriously dependent expression if we're inside a dependent | ||||
| 2700 | // instance method. | ||||
| 2701 | if (!R.empty() && (*R.begin())->isCXXClassMember()) { | ||||
| 2702 | bool MightBeImplicitMember; | ||||
| 2703 | if (!IsAddressOfOperand) | ||||
| 2704 | MightBeImplicitMember = true; | ||||
| 2705 | else if (!SS.isEmpty()) | ||||
| 2706 | MightBeImplicitMember = false; | ||||
| 2707 | else if (R.isOverloadedResult()) | ||||
| 2708 | MightBeImplicitMember = false; | ||||
| 2709 | else if (R.isUnresolvableResult()) | ||||
| 2710 | MightBeImplicitMember = true; | ||||
| 2711 | else | ||||
| 2712 | MightBeImplicitMember = isa<FieldDecl>(R.getFoundDecl()) || | ||||
| 2713 | isa<IndirectFieldDecl>(R.getFoundDecl()) || | ||||
| 2714 | isa<MSPropertyDecl>(R.getFoundDecl()); | ||||
| 2715 | |||||
| 2716 | if (MightBeImplicitMember) | ||||
| 2717 | return BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc, | ||||
| 2718 | R, TemplateArgs, S); | ||||
| 2719 | } | ||||
| 2720 | |||||
| 2721 | if (TemplateArgs || TemplateKWLoc.isValid()) { | ||||
| 2722 | |||||
| 2723 | // In C++1y, if this is a variable template id, then check it | ||||
| 2724 | // in BuildTemplateIdExpr(). | ||||
| 2725 | // The single lookup result must be a variable template declaration. | ||||
| 2726 | if (Id.getKind() == UnqualifiedIdKind::IK_TemplateId && Id.TemplateId && | ||||
| 2727 | Id.TemplateId->Kind == TNK_Var_template) { | ||||
| 2728 | assert(R.getAsSingle<VarTemplateDecl>() &&(static_cast <bool> (R.getAsSingle<VarTemplateDecl> () && "There should only be one declaration found.") ? void (0) : __assert_fail ("R.getAsSingle<VarTemplateDecl>() && \"There should only be one declaration found.\"" , "clang/lib/Sema/SemaExpr.cpp", 2729, __extension__ __PRETTY_FUNCTION__ )) | ||||
| 2729 | "There should only be one declaration found.")(static_cast <bool> (R.getAsSingle<VarTemplateDecl> () && "There should only be one declaration found.") ? void (0) : __assert_fail ("R.getAsSingle<VarTemplateDecl>() && \"There should only be one declaration found.\"" , "clang/lib/Sema/SemaExpr.cpp", 2729, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 2730 | } | ||||
| 2731 | |||||
| 2732 | return BuildTemplateIdExpr(SS, TemplateKWLoc, R, ADL, TemplateArgs); | ||||
| 2733 | } | ||||
| 2734 | |||||
| 2735 | return BuildDeclarationNameExpr(SS, R, ADL); | ||||
| 2736 | } | ||||
| 2737 | |||||
| 2738 | /// BuildQualifiedDeclarationNameExpr - Build a C++ qualified | ||||
| 2739 | /// declaration name, generally during template instantiation. | ||||
| 2740 | /// There's a large number of things which don't need to be done along | ||||
| 2741 | /// this path. | ||||
| 2742 | ExprResult Sema::BuildQualifiedDeclarationNameExpr( | ||||
| 2743 | CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, | ||||
| 2744 | bool IsAddressOfOperand, const Scope *S, TypeSourceInfo **RecoveryTSI) { | ||||
| 2745 | if (NameInfo.getName().isDependentName()) | ||||
| 2746 | return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(), | ||||
| 2747 | NameInfo, /*TemplateArgs=*/nullptr); | ||||
| 2748 | |||||
| 2749 | DeclContext *DC = computeDeclContext(SS, false); | ||||
| 2750 | if (!DC) | ||||
| 2751 | return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(), | ||||
| 2752 | NameInfo, /*TemplateArgs=*/nullptr); | ||||
| 2753 | |||||
| 2754 | if (RequireCompleteDeclContext(SS, DC)) | ||||
| 2755 | return ExprError(); | ||||
| 2756 | |||||
| 2757 | LookupResult R(*this, NameInfo, LookupOrdinaryName); | ||||
| 2758 | LookupQualifiedName(R, DC); | ||||
| 2759 | |||||
| 2760 | if (R.isAmbiguous()) | ||||
| 2761 | return ExprError(); | ||||
| 2762 | |||||
| 2763 | if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation) | ||||
| 2764 | return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(), | ||||
| 2765 | NameInfo, /*TemplateArgs=*/nullptr); | ||||
| 2766 | |||||
| 2767 | if (R.empty()) { | ||||
| 2768 | // Don't diagnose problems with invalid record decl, the secondary no_member | ||||
| 2769 | // diagnostic during template instantiation is likely bogus, e.g. if a class | ||||
| 2770 | // is invalid because it's derived from an invalid base class, then missing | ||||
| 2771 | // members were likely supposed to be inherited. | ||||
| 2772 | if (const auto *CD = dyn_cast<CXXRecordDecl>(DC)) | ||||
| 2773 | if (CD->isInvalidDecl()) | ||||
| 2774 | return ExprError(); | ||||
| 2775 | Diag(NameInfo.getLoc(), diag::err_no_member) | ||||
| 2776 | << NameInfo.getName() << DC << SS.getRange(); | ||||
| 2777 | return ExprError(); | ||||
| 2778 | } | ||||
| 2779 | |||||
| 2780 | if (const TypeDecl *TD = R.getAsSingle<TypeDecl>()) { | ||||
| 2781 | // Diagnose a missing typename if this resolved unambiguously to a type in | ||||
| 2782 | // a dependent context. If we can recover with a type, downgrade this to | ||||
| 2783 | // a warning in Microsoft compatibility mode. | ||||
| 2784 | unsigned DiagID = diag::err_typename_missing; | ||||
| 2785 | if (RecoveryTSI && getLangOpts().MSVCCompat) | ||||
| 2786 | DiagID = diag::ext_typename_missing; | ||||
| 2787 | SourceLocation Loc = SS.getBeginLoc(); | ||||
| 2788 | auto D = Diag(Loc, DiagID); | ||||
| 2789 | D << SS.getScopeRep() << NameInfo.getName().getAsString() | ||||
| 2790 | << SourceRange(Loc, NameInfo.getEndLoc()); | ||||
| 2791 | |||||
| 2792 | // Don't recover if the caller isn't expecting us to or if we're in a SFINAE | ||||
| 2793 | // context. | ||||
| 2794 | if (!RecoveryTSI) | ||||
| 2795 | return ExprError(); | ||||
| 2796 | |||||
| 2797 | // Only issue the fixit if we're prepared to recover. | ||||
| 2798 | D << FixItHint::CreateInsertion(Loc, "typename "); | ||||
| 2799 | |||||
| 2800 | // Recover by pretending this was an elaborated type. | ||||
| 2801 | QualType Ty = Context.getTypeDeclType(TD); | ||||
| 2802 | TypeLocBuilder TLB; | ||||
| 2803 | TLB.pushTypeSpec(Ty).setNameLoc(NameInfo.getLoc()); | ||||
| 2804 | |||||
| 2805 | QualType ET = getElaboratedType(ETK_None, SS, Ty); | ||||
| 2806 | ElaboratedTypeLoc QTL = TLB.push<ElaboratedTypeLoc>(ET); | ||||
| 2807 | QTL.setElaboratedKeywordLoc(SourceLocation()); | ||||
| 2808 | QTL.setQualifierLoc(SS.getWithLocInContext(Context)); | ||||
| 2809 | |||||
| 2810 | *RecoveryTSI = TLB.getTypeSourceInfo(Context, ET); | ||||
| 2811 | |||||
| 2812 | return ExprEmpty(); | ||||
| 2813 | } | ||||
| 2814 | |||||
| 2815 | // Defend against this resolving to an implicit member access. We usually | ||||
| 2816 | // won't get here if this might be a legitimate a class member (we end up in | ||||
| 2817 | // BuildMemberReferenceExpr instead), but this can be valid if we're forming | ||||
| 2818 | // a pointer-to-member or in an unevaluated context in C++11. | ||||
| 2819 | if (!R.empty() && (*R.begin())->isCXXClassMember() && !IsAddressOfOperand) | ||||
| 2820 | return BuildPossibleImplicitMemberExpr(SS, | ||||
| 2821 | /*TemplateKWLoc=*/SourceLocation(), | ||||
| 2822 | R, /*TemplateArgs=*/nullptr, S); | ||||
| 2823 | |||||
| 2824 | return BuildDeclarationNameExpr(SS, R, /* ADL */ false); | ||||
| 2825 | } | ||||
| 2826 | |||||
| 2827 | /// The parser has read a name in, and Sema has detected that we're currently | ||||
| 2828 | /// inside an ObjC method. Perform some additional checks and determine if we | ||||
| 2829 | /// should form a reference to an ivar. | ||||
| 2830 | /// | ||||
| 2831 | /// Ideally, most of this would be done by lookup, but there's | ||||
| 2832 | /// actually quite a lot of extra work involved. | ||||
| 2833 | DeclResult Sema::LookupIvarInObjCMethod(LookupResult &Lookup, Scope *S, | ||||
| 2834 | IdentifierInfo *II) { | ||||
| 2835 | SourceLocation Loc = Lookup.getNameLoc(); | ||||
| 2836 | ObjCMethodDecl *CurMethod = getCurMethodDecl(); | ||||
| 2837 | |||||
| 2838 | // Check for error condition which is already reported. | ||||
| 2839 | if (!CurMethod) | ||||
| 2840 | return DeclResult(true); | ||||
| 2841 | |||||
| 2842 | // There are two cases to handle here. 1) scoped lookup could have failed, | ||||
| 2843 | // in which case we should look for an ivar. 2) scoped lookup could have | ||||
| 2844 | // found a decl, but that decl is outside the current instance method (i.e. | ||||
| 2845 | // a global variable). In these two cases, we do a lookup for an ivar with | ||||
| 2846 | // this name, if the lookup sucedes, we replace it our current decl. | ||||
| 2847 | |||||
| 2848 | // If we're in a class method, we don't normally want to look for | ||||
| 2849 | // ivars. But if we don't find anything else, and there's an | ||||
| 2850 | // ivar, that's an error. | ||||
| 2851 | bool IsClassMethod = CurMethod->isClassMethod(); | ||||
| 2852 | |||||
| 2853 | bool LookForIvars; | ||||
| 2854 | if (Lookup.empty()) | ||||
| 2855 | LookForIvars = true; | ||||
| 2856 | else if (IsClassMethod) | ||||
| 2857 | LookForIvars = false; | ||||
| 2858 | else | ||||
| 2859 | LookForIvars = (Lookup.isSingleResult() && | ||||
| 2860 | Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod()); | ||||
| 2861 | ObjCInterfaceDecl *IFace = nullptr; | ||||
| 2862 | if (LookForIvars) { | ||||
| 2863 | IFace = CurMethod->getClassInterface(); | ||||
| 2864 | ObjCInterfaceDecl *ClassDeclared; | ||||
| 2865 | ObjCIvarDecl *IV = nullptr; | ||||
| 2866 | if (IFace && (IV = IFace->lookupInstanceVariable(II, ClassDeclared))) { | ||||
| 2867 | // Diagnose using an ivar in a class method. | ||||
| 2868 | if (IsClassMethod) { | ||||
| 2869 | Diag(Loc, diag::err_ivar_use_in_class_method) << IV->getDeclName(); | ||||
| 2870 | return DeclResult(true); | ||||
| 2871 | } | ||||
| 2872 | |||||
| 2873 | // Diagnose the use of an ivar outside of the declaring class. | ||||
| 2874 | if (IV->getAccessControl() == ObjCIvarDecl::Private && | ||||
| 2875 | !declaresSameEntity(ClassDeclared, IFace) && | ||||
| 2876 | !getLangOpts().DebuggerSupport) | ||||
| 2877 | Diag(Loc, diag::err_private_ivar_access) << IV->getDeclName(); | ||||
| 2878 | |||||
| 2879 | // Success. | ||||
| 2880 | return IV; | ||||
| 2881 | } | ||||
| 2882 | } else if (CurMethod->isInstanceMethod()) { | ||||
| 2883 | // We should warn if a local variable hides an ivar. | ||||
| 2884 | if (ObjCInterfaceDecl *IFace = CurMethod->getClassInterface()) { | ||||
| 2885 | ObjCInterfaceDecl *ClassDeclared; | ||||
| 2886 | if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) { | ||||
| 2887 | if (IV->getAccessControl() != ObjCIvarDecl::Private || | ||||
| 2888 | declaresSameEntity(IFace, ClassDeclared)) | ||||
| 2889 | Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName(); | ||||
| 2890 | } | ||||
| 2891 | } | ||||
| 2892 | } else if (Lookup.isSingleResult() && | ||||
| 2893 | Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod()) { | ||||
| 2894 | // If accessing a stand-alone ivar in a class method, this is an error. | ||||
| 2895 | if (const ObjCIvarDecl *IV = | ||||
| 2896 | dyn_cast<ObjCIvarDecl>(Lookup.getFoundDecl())) { | ||||
| 2897 | Diag(Loc, diag::err_ivar_use_in_class_method) << IV->getDeclName(); | ||||
| 2898 | return DeclResult(true); | ||||
| 2899 | } | ||||
| 2900 | } | ||||
| 2901 | |||||
| 2902 | // Didn't encounter an error, didn't find an ivar. | ||||
| 2903 | return DeclResult(false); | ||||
| 2904 | } | ||||
| 2905 | |||||
| 2906 | ExprResult Sema::BuildIvarRefExpr(Scope *S, SourceLocation Loc, | ||||
| 2907 | ObjCIvarDecl *IV) { | ||||
| 2908 | ObjCMethodDecl *CurMethod = getCurMethodDecl(); | ||||
| 2909 | assert(CurMethod && CurMethod->isInstanceMethod() &&(static_cast <bool> (CurMethod && CurMethod-> isInstanceMethod() && "should not reference ivar from this context" ) ? void (0) : __assert_fail ("CurMethod && CurMethod->isInstanceMethod() && \"should not reference ivar from this context\"" , "clang/lib/Sema/SemaExpr.cpp", 2910, __extension__ __PRETTY_FUNCTION__ )) | ||||
| 2910 | "should not reference ivar from this context")(static_cast <bool> (CurMethod && CurMethod-> isInstanceMethod() && "should not reference ivar from this context" ) ? void (0) : __assert_fail ("CurMethod && CurMethod->isInstanceMethod() && \"should not reference ivar from this context\"" , "clang/lib/Sema/SemaExpr.cpp", 2910, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 2911 | |||||
| 2912 | ObjCInterfaceDecl *IFace = CurMethod->getClassInterface(); | ||||
| 2913 | assert(IFace && "should not reference ivar from this context")(static_cast <bool> (IFace && "should not reference ivar from this context" ) ? void (0) : __assert_fail ("IFace && \"should not reference ivar from this context\"" , "clang/lib/Sema/SemaExpr.cpp", 2913, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 2914 | |||||
| 2915 | // If we're referencing an invalid decl, just return this as a silent | ||||
| 2916 | // error node. The error diagnostic was already emitted on the decl. | ||||
| 2917 | if (IV->isInvalidDecl()) | ||||
| 2918 | return ExprError(); | ||||
| 2919 | |||||
| 2920 | // Check if referencing a field with __attribute__((deprecated)). | ||||
| 2921 | if (DiagnoseUseOfDecl(IV, Loc)) | ||||
| 2922 | return ExprError(); | ||||
| 2923 | |||||
| 2924 | // FIXME: This should use a new expr for a direct reference, don't | ||||
| 2925 | // turn this into Self->ivar, just return a BareIVarExpr or something. | ||||
| 2926 | IdentifierInfo &II = Context.Idents.get("self"); | ||||
| 2927 | UnqualifiedId SelfName; | ||||
| 2928 | SelfName.setImplicitSelfParam(&II); | ||||
| 2929 | CXXScopeSpec SelfScopeSpec; | ||||
| 2930 | SourceLocation TemplateKWLoc; | ||||
| 2931 | ExprResult SelfExpr = | ||||
| 2932 | ActOnIdExpression(S, SelfScopeSpec, TemplateKWLoc, SelfName, | ||||
| 2933 | /*HasTrailingLParen=*/false, | ||||
| 2934 | /*IsAddressOfOperand=*/false); | ||||
| 2935 | if (SelfExpr.isInvalid()) | ||||
| 2936 | return ExprError(); | ||||
| 2937 | |||||
| 2938 | SelfExpr = DefaultLvalueConversion(SelfExpr.get()); | ||||
| 2939 | if (SelfExpr.isInvalid()) | ||||
| 2940 | return ExprError(); | ||||
| 2941 | |||||
| 2942 | MarkAnyDeclReferenced(Loc, IV, true); | ||||
| 2943 | |||||
| 2944 | ObjCMethodFamily MF = CurMethod->getMethodFamily(); | ||||
| 2945 | if (MF != OMF_init && MF != OMF_dealloc && MF != OMF_finalize && | ||||
| 2946 | !IvarBacksCurrentMethodAccessor(IFace, CurMethod, IV)) | ||||
| 2947 | Diag(Loc, diag::warn_direct_ivar_access) << IV->getDeclName(); | ||||
| 2948 | |||||
| 2949 | ObjCIvarRefExpr *Result = new (Context) | ||||
| 2950 | ObjCIvarRefExpr(IV, IV->getUsageType(SelfExpr.get()->getType()), Loc, | ||||
| 2951 | IV->getLocation(), SelfExpr.get(), true, true); | ||||
| 2952 | |||||
| 2953 | if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) { | ||||
| 2954 | if (!isUnevaluatedContext() && | ||||
| 2955 | !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc)) | ||||
| 2956 | getCurFunction()->recordUseOfWeak(Result); | ||||
| 2957 | } | ||||
| 2958 | if (getLangOpts().ObjCAutoRefCount && !isUnevaluatedContext()) | ||||
| 2959 | if (const BlockDecl *BD = CurContext->getInnermostBlockDecl()) | ||||
| 2960 | ImplicitlyRetainedSelfLocs.push_back({Loc, BD}); | ||||
| 2961 | |||||
| 2962 | return Result; | ||||
| 2963 | } | ||||
| 2964 | |||||
| 2965 | /// The parser has read a name in, and Sema has detected that we're currently | ||||
| 2966 | /// inside an ObjC method. Perform some additional checks and determine if we | ||||
| 2967 | /// should form a reference to an ivar. If so, build an expression referencing | ||||
| 2968 | /// that ivar. | ||||
| 2969 | ExprResult | ||||
| 2970 | Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S, | ||||
| 2971 | IdentifierInfo *II, bool AllowBuiltinCreation) { | ||||
| 2972 | // FIXME: Integrate this lookup step into LookupParsedName. | ||||
| 2973 | DeclResult Ivar = LookupIvarInObjCMethod(Lookup, S, II); | ||||
| 2974 | if (Ivar.isInvalid()) | ||||
| 2975 | return ExprError(); | ||||
| 2976 | if (Ivar.isUsable()) | ||||
| 2977 | return BuildIvarRefExpr(S, Lookup.getNameLoc(), | ||||
| 2978 | cast<ObjCIvarDecl>(Ivar.get())); | ||||
| 2979 | |||||
| 2980 | if (Lookup.empty() && II && AllowBuiltinCreation) | ||||
| 2981 | LookupBuiltin(Lookup); | ||||
| 2982 | |||||
| 2983 | // Sentinel value saying that we didn't do anything special. | ||||
| 2984 | return ExprResult(false); | ||||
| 2985 | } | ||||
| 2986 | |||||
| 2987 | /// Cast a base object to a member's actual type. | ||||
| 2988 | /// | ||||
| 2989 | /// There are two relevant checks: | ||||
| 2990 | /// | ||||
| 2991 | /// C++ [class.access.base]p7: | ||||
| 2992 | /// | ||||
| 2993 | /// If a class member access operator [...] is used to access a non-static | ||||
| 2994 | /// data member or non-static member function, the reference is ill-formed if | ||||
| 2995 | /// the left operand [...] cannot be implicitly converted to a pointer to the | ||||
| 2996 | /// naming class of the right operand. | ||||
| 2997 | /// | ||||
| 2998 | /// C++ [expr.ref]p7: | ||||
| 2999 | /// | ||||
| 3000 | /// If E2 is a non-static data member or a non-static member function, the | ||||
| 3001 | /// program is ill-formed if the class of which E2 is directly a member is an | ||||
| 3002 | /// ambiguous base (11.8) of the naming class (11.9.3) of E2. | ||||
| 3003 | /// | ||||
| 3004 | /// Note that the latter check does not consider access; the access of the | ||||
| 3005 | /// "real" base class is checked as appropriate when checking the access of the | ||||
| 3006 | /// member name. | ||||
| 3007 | ExprResult | ||||
| 3008 | Sema::PerformObjectMemberConversion(Expr *From, | ||||
| 3009 | NestedNameSpecifier *Qualifier, | ||||
| 3010 | NamedDecl *FoundDecl, | ||||
| 3011 | NamedDecl *Member) { | ||||
| 3012 | CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext()); | ||||
| 3013 | if (!RD) | ||||
| 3014 | return From; | ||||
| 3015 | |||||
| 3016 | QualType DestRecordType; | ||||
| 3017 | QualType DestType; | ||||
| 3018 | QualType FromRecordType; | ||||
| 3019 | QualType FromType = From->getType(); | ||||
| 3020 | bool PointerConversions = false; | ||||
| 3021 | if (isa<FieldDecl>(Member)) { | ||||
| 3022 | DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD)); | ||||
| 3023 | auto FromPtrType = FromType->getAs<PointerType>(); | ||||
| 3024 | DestRecordType = Context.getAddrSpaceQualType( | ||||
| 3025 | DestRecordType, FromPtrType | ||||
| 3026 | ? FromType->getPointeeType().getAddressSpace() | ||||
| 3027 | : FromType.getAddressSpace()); | ||||
| 3028 | |||||
| 3029 | if (FromPtrType) { | ||||
| 3030 | DestType = Context.getPointerType(DestRecordType); | ||||
| 3031 | FromRecordType = FromPtrType->getPointeeType(); | ||||
| 3032 | PointerConversions = true; | ||||
| 3033 | } else { | ||||
| 3034 | DestType = DestRecordType; | ||||
| 3035 | FromRecordType = FromType; | ||||
| 3036 | } | ||||
| 3037 | } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) { | ||||
| 3038 | if (Method->isStatic()) | ||||
| 3039 | return From; | ||||
| 3040 | |||||
| 3041 | DestType = Method->getThisType(); | ||||
| 3042 | DestRecordType = DestType->getPointeeType(); | ||||
| 3043 | |||||
| 3044 | if (FromType->getAs<PointerType>()) { | ||||
| 3045 | FromRecordType = FromType->getPointeeType(); | ||||
| 3046 | PointerConversions = true; | ||||
| 3047 | } else { | ||||
| 3048 | FromRecordType = FromType; | ||||
| 3049 | DestType = DestRecordType; | ||||
| 3050 | } | ||||
| 3051 | |||||
| 3052 | LangAS FromAS = FromRecordType.getAddressSpace(); | ||||
| 3053 | LangAS DestAS = DestRecordType.getAddressSpace(); | ||||
| 3054 | if (FromAS != DestAS) { | ||||
| 3055 | QualType FromRecordTypeWithoutAS = | ||||
| 3056 | Context.removeAddrSpaceQualType(FromRecordType); | ||||
| 3057 | QualType FromTypeWithDestAS = | ||||
| 3058 | Context.getAddrSpaceQualType(FromRecordTypeWithoutAS, DestAS); | ||||
| 3059 | if (PointerConversions) | ||||
| 3060 | FromTypeWithDestAS = Context.getPointerType(FromTypeWithDestAS); | ||||
| 3061 | From = ImpCastExprToType(From, FromTypeWithDestAS, | ||||
| 3062 | CK_AddressSpaceConversion, From->getValueKind()) | ||||
| 3063 | .get(); | ||||
| 3064 | } | ||||
| 3065 | } else { | ||||
| 3066 | // No conversion necessary. | ||||
| 3067 | return From; | ||||
| 3068 | } | ||||
| 3069 | |||||
| 3070 | if (DestType->isDependentType() || FromType->isDependentType()) | ||||
| 3071 | return From; | ||||
| 3072 | |||||
| 3073 | // If the unqualified types are the same, no conversion is necessary. | ||||
| 3074 | if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType)) | ||||
| 3075 | return From; | ||||
| 3076 | |||||
| 3077 | SourceRange FromRange = From->getSourceRange(); | ||||
| 3078 | SourceLocation FromLoc = FromRange.getBegin(); | ||||
| 3079 | |||||
| 3080 | ExprValueKind VK = From->getValueKind(); | ||||
| 3081 | |||||
| 3082 | // C++ [class.member.lookup]p8: | ||||
| 3083 | // [...] Ambiguities can often be resolved by qualifying a name with its | ||||
| 3084 | // class name. | ||||
| 3085 | // | ||||
| 3086 | // If the member was a qualified name and the qualified referred to a | ||||
| 3087 | // specific base subobject type, we'll cast to that intermediate type | ||||
| 3088 | // first and then to the object in which the member is declared. That allows | ||||
| 3089 | // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as: | ||||
| 3090 | // | ||||
| 3091 | // class Base { public: int x; }; | ||||
| 3092 | // class Derived1 : public Base { }; | ||||
| 3093 | // class Derived2 : public Base { }; | ||||
| 3094 | // class VeryDerived : public Derived1, public Derived2 { void f(); }; | ||||
| 3095 | // | ||||
| 3096 | // void VeryDerived::f() { | ||||
| 3097 | // x = 17; // error: ambiguous base subobjects | ||||
| 3098 | // Derived1::x = 17; // okay, pick the Base subobject of Derived1 | ||||
| 3099 | // } | ||||
| 3100 | if (Qualifier && Qualifier->getAsType()) { | ||||
| 3101 | QualType QType = QualType(Qualifier->getAsType(), 0); | ||||
| 3102 | assert(QType->isRecordType() && "lookup done with non-record type")(static_cast <bool> (QType->isRecordType() && "lookup done with non-record type") ? void (0) : __assert_fail ("QType->isRecordType() && \"lookup done with non-record type\"" , "clang/lib/Sema/SemaExpr.cpp", 3102, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 3103 | |||||
| 3104 | QualType QRecordType = QualType(QType->castAs<RecordType>(), 0); | ||||
| 3105 | |||||
| 3106 | // In C++98, the qualifier type doesn't actually have to be a base | ||||
| 3107 | // type of the object type, in which case we just ignore it. | ||||
| 3108 | // Otherwise build the appropriate casts. | ||||
| 3109 | if (IsDerivedFrom(FromLoc, FromRecordType, QRecordType)) { | ||||
| 3110 | CXXCastPath BasePath; | ||||
| 3111 | if (CheckDerivedToBaseConversion(FromRecordType, QRecordType, | ||||
| 3112 | FromLoc, FromRange, &BasePath)) | ||||
| 3113 | return ExprError(); | ||||
| 3114 | |||||
| 3115 | if (PointerConversions) | ||||
| 3116 | QType = Context.getPointerType(QType); | ||||
| 3117 | From = ImpCastExprToType(From, QType, CK_UncheckedDerivedToBase, | ||||
| 3118 | VK, &BasePath).get(); | ||||
| 3119 | |||||
| 3120 | FromType = QType; | ||||
| 3121 | FromRecordType = QRecordType; | ||||
| 3122 | |||||
| 3123 | // If the qualifier type was the same as the destination type, | ||||
| 3124 | // we're done. | ||||
| 3125 | if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType)) | ||||
| 3126 | return From; | ||||
| 3127 | } | ||||
| 3128 | } | ||||
| 3129 | |||||
| 3130 | CXXCastPath BasePath; | ||||
| 3131 | if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType, | ||||
| 3132 | FromLoc, FromRange, &BasePath, | ||||
| 3133 | /*IgnoreAccess=*/true)) | ||||
| 3134 | return ExprError(); | ||||
| 3135 | |||||
| 3136 | return ImpCastExprToType(From, DestType, CK_UncheckedDerivedToBase, | ||||
| 3137 | VK, &BasePath); | ||||
| 3138 | } | ||||
| 3139 | |||||
| 3140 | bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS, | ||||
| 3141 | const LookupResult &R, | ||||
| 3142 | bool HasTrailingLParen) { | ||||
| 3143 | // Only when used directly as the postfix-expression of a call. | ||||
| 3144 | if (!HasTrailingLParen) | ||||
| 3145 | return false; | ||||
| 3146 | |||||
| 3147 | // Never if a scope specifier was provided. | ||||
| 3148 | if (SS.isSet()) | ||||
| 3149 | return false; | ||||
| 3150 | |||||
| 3151 | // Only in C++ or ObjC++. | ||||
| 3152 | if (!getLangOpts().CPlusPlus) | ||||
| 3153 | return false; | ||||
| 3154 | |||||
| 3155 | // Turn off ADL when we find certain kinds of declarations during | ||||
| 3156 | // normal lookup: | ||||
| 3157 | for (NamedDecl *D : R) { | ||||
| 3158 | // C++0x [basic.lookup.argdep]p3: | ||||
| 3159 | // -- a declaration of a class member | ||||
| 3160 | // Since using decls preserve this property, we check this on the | ||||
| 3161 | // original decl. | ||||
| 3162 | if (D->isCXXClassMember()) | ||||
| 3163 | return false; | ||||
| 3164 | |||||
| 3165 | // C++0x [basic.lookup.argdep]p3: | ||||
| 3166 | // -- a block-scope function declaration that is not a | ||||
| 3167 | // using-declaration | ||||
| 3168 | // NOTE: we also trigger this for function templates (in fact, we | ||||
| 3169 | // don't check the decl type at all, since all other decl types | ||||
| 3170 | // turn off ADL anyway). | ||||
| 3171 | if (isa<UsingShadowDecl>(D)) | ||||
| 3172 | D = cast<UsingShadowDecl>(D)->getTargetDecl(); | ||||
| 3173 | else if (D->getLexicalDeclContext()->isFunctionOrMethod()) | ||||
| 3174 | return false; | ||||
| 3175 | |||||
| 3176 | // C++0x [basic.lookup.argdep]p3: | ||||
| 3177 | // -- a declaration that is neither a function or a function | ||||
| 3178 | // template | ||||
| 3179 | // And also for builtin functions. | ||||
| 3180 | if (isa<FunctionDecl>(D)) { | ||||
| 3181 | FunctionDecl *FDecl = cast<FunctionDecl>(D); | ||||
| 3182 | |||||
| 3183 | // But also builtin functions. | ||||
| 3184 | if (FDecl->getBuiltinID() && FDecl->isImplicit()) | ||||
| 3185 | return false; | ||||
| 3186 | } else if (!isa<FunctionTemplateDecl>(D)) | ||||
| 3187 | return false; | ||||
| 3188 | } | ||||
| 3189 | |||||
| 3190 | return true; | ||||
| 3191 | } | ||||
| 3192 | |||||
| 3193 | |||||
| 3194 | /// Diagnoses obvious problems with the use of the given declaration | ||||
| 3195 | /// as an expression. This is only actually called for lookups that | ||||
| 3196 | /// were not overloaded, and it doesn't promise that the declaration | ||||
| 3197 | /// will in fact be used. | ||||
| 3198 | static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D, | ||||
| 3199 | bool AcceptInvalid) { | ||||
| 3200 | if (D->isInvalidDecl() && !AcceptInvalid) | ||||
| 3201 | return true; | ||||
| 3202 | |||||
| 3203 | if (isa<TypedefNameDecl>(D)) { | ||||
| 3204 | S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName(); | ||||
| 3205 | return true; | ||||
| 3206 | } | ||||
| 3207 | |||||
| 3208 | if (isa<ObjCInterfaceDecl>(D)) { | ||||
| 3209 | S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName(); | ||||
| 3210 | return true; | ||||
| 3211 | } | ||||
| 3212 | |||||
| 3213 | if (isa<NamespaceDecl>(D)) { | ||||
| 3214 | S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName(); | ||||
| 3215 | return true; | ||||
| 3216 | } | ||||
| 3217 | |||||
| 3218 | return false; | ||||
| 3219 | } | ||||
| 3220 | |||||
| 3221 | // Certain multiversion types should be treated as overloaded even when there is | ||||
| 3222 | // only one result. | ||||
| 3223 | static bool ShouldLookupResultBeMultiVersionOverload(const LookupResult &R) { | ||||
| 3224 | assert(R.isSingleResult() && "Expected only a single result")(static_cast <bool> (R.isSingleResult() && "Expected only a single result" ) ? void (0) : __assert_fail ("R.isSingleResult() && \"Expected only a single result\"" , "clang/lib/Sema/SemaExpr.cpp", 3224, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 3225 | const auto *FD = dyn_cast<FunctionDecl>(R.getFoundDecl()); | ||||
| 3226 | return FD && | ||||
| 3227 | (FD->isCPUDispatchMultiVersion() || FD->isCPUSpecificMultiVersion()); | ||||
| 3228 | } | ||||
| 3229 | |||||
| 3230 | ExprResult Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS, | ||||
| 3231 | LookupResult &R, bool NeedsADL, | ||||
| 3232 | bool AcceptInvalidDecl) { | ||||
| 3233 | // If this is a single, fully-resolved result and we don't need ADL, | ||||
| 3234 | // just build an ordinary singleton decl ref. | ||||
| 3235 | if (!NeedsADL && R.isSingleResult() && | ||||
| 3236 | !R.getAsSingle<FunctionTemplateDecl>() && | ||||
| 3237 | !ShouldLookupResultBeMultiVersionOverload(R)) | ||||
| 3238 | return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), R.getFoundDecl(), | ||||
| 3239 | R.getRepresentativeDecl(), nullptr, | ||||
| 3240 | AcceptInvalidDecl); | ||||
| 3241 | |||||
| 3242 | // We only need to check the declaration if there's exactly one | ||||
| 3243 | // result, because in the overloaded case the results can only be | ||||
| 3244 | // functions and function templates. | ||||
| 3245 | if (R.isSingleResult() && !ShouldLookupResultBeMultiVersionOverload(R) && | ||||
| 3246 | CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl(), | ||||
| 3247 | AcceptInvalidDecl)) | ||||
| 3248 | return ExprError(); | ||||
| 3249 | |||||
| 3250 | // Otherwise, just build an unresolved lookup expression. Suppress | ||||
| 3251 | // any lookup-related diagnostics; we'll hash these out later, when | ||||
| 3252 | // we've picked a target. | ||||
| 3253 | R.suppressDiagnostics(); | ||||
| 3254 | |||||
| 3255 | UnresolvedLookupExpr *ULE | ||||
| 3256 | = UnresolvedLookupExpr::Create(Context, R.getNamingClass(), | ||||
| 3257 | SS.getWithLocInContext(Context), | ||||
| 3258 | R.getLookupNameInfo(), | ||||
| 3259 | NeedsADL, R.isOverloadedResult(), | ||||
| 3260 | R.begin(), R.end()); | ||||
| 3261 | |||||
| 3262 | return ULE; | ||||
| 3263 | } | ||||
| 3264 | |||||
| 3265 | static void diagnoseUncapturableValueReferenceOrBinding(Sema &S, | ||||
| 3266 | SourceLocation loc, | ||||
| 3267 | ValueDecl *var); | ||||
| 3268 | |||||
| 3269 | /// Complete semantic analysis for a reference to the given declaration. | ||||
| 3270 | ExprResult Sema::BuildDeclarationNameExpr( | ||||
| 3271 | const CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, NamedDecl *D, | ||||
| 3272 | NamedDecl *FoundD, const TemplateArgumentListInfo *TemplateArgs, | ||||
| 3273 | bool AcceptInvalidDecl) { | ||||
| 3274 | assert(D && "Cannot refer to a NULL declaration")(static_cast <bool> (D && "Cannot refer to a NULL declaration" ) ? void (0) : __assert_fail ("D && \"Cannot refer to a NULL declaration\"" , "clang/lib/Sema/SemaExpr.cpp", 3274, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 3275 | assert(!isa<FunctionTemplateDecl>(D) &&(static_cast <bool> (!isa<FunctionTemplateDecl>(D ) && "Cannot refer unambiguously to a function template" ) ? void (0) : __assert_fail ("!isa<FunctionTemplateDecl>(D) && \"Cannot refer unambiguously to a function template\"" , "clang/lib/Sema/SemaExpr.cpp", 3276, __extension__ __PRETTY_FUNCTION__ )) | ||||
| 3276 | "Cannot refer unambiguously to a function template")(static_cast <bool> (!isa<FunctionTemplateDecl>(D ) && "Cannot refer unambiguously to a function template" ) ? void (0) : __assert_fail ("!isa<FunctionTemplateDecl>(D) && \"Cannot refer unambiguously to a function template\"" , "clang/lib/Sema/SemaExpr.cpp", 3276, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 3277 | |||||
| 3278 | SourceLocation Loc = NameInfo.getLoc(); | ||||
| 3279 | if (CheckDeclInExpr(*this, Loc, D, AcceptInvalidDecl)) { | ||||
| 3280 | // Recovery from invalid cases (e.g. D is an invalid Decl). | ||||
| 3281 | // We use the dependent type for the RecoveryExpr to prevent bogus follow-up | ||||
| 3282 | // diagnostics, as invalid decls use int as a fallback type. | ||||
| 3283 | return CreateRecoveryExpr(NameInfo.getBeginLoc(), NameInfo.getEndLoc(), {}); | ||||
| 3284 | } | ||||
| 3285 | |||||
| 3286 | if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) { | ||||
| 3287 | // Specifically diagnose references to class templates that are missing | ||||
| 3288 | // a template argument list. | ||||
| 3289 | diagnoseMissingTemplateArguments(TemplateName(Template), Loc); | ||||
| 3290 | return ExprError(); | ||||
| 3291 | } | ||||
| 3292 | |||||
| 3293 | // Make sure that we're referring to a value. | ||||
| 3294 | if (!isa<ValueDecl, UnresolvedUsingIfExistsDecl>(D)) { | ||||
| 3295 | Diag(Loc, diag::err_ref_non_value) << D << SS.getRange(); | ||||
| 3296 | Diag(D->getLocation(), diag::note_declared_at); | ||||
| 3297 | return ExprError(); | ||||
| 3298 | } | ||||
| 3299 | |||||
| 3300 | // Check whether this declaration can be used. Note that we suppress | ||||
| 3301 | // this check when we're going to perform argument-dependent lookup | ||||
| 3302 | // on this function name, because this might not be the function | ||||
| 3303 | // that overload resolution actually selects. | ||||
| 3304 | if (DiagnoseUseOfDecl(D, Loc)) | ||||
| 3305 | return ExprError(); | ||||
| 3306 | |||||
| 3307 | auto *VD = cast<ValueDecl>(D); | ||||
| 3308 | |||||
| 3309 | // Only create DeclRefExpr's for valid Decl's. | ||||
| 3310 | if (VD->isInvalidDecl() && !AcceptInvalidDecl) | ||||
| 3311 | return ExprError(); | ||||
| 3312 | |||||
| 3313 | // Handle members of anonymous structs and unions. If we got here, | ||||
| 3314 | // and the reference is to a class member indirect field, then this | ||||
| 3315 | // must be the subject of a pointer-to-member expression. | ||||
| 3316 | if (IndirectFieldDecl *indirectField = dyn_cast<IndirectFieldDecl>(VD)) | ||||
| 3317 | if (!indirectField->isCXXClassMember()) | ||||
| 3318 | return BuildAnonymousStructUnionMemberReference(SS, NameInfo.getLoc(), | ||||
| 3319 | indirectField); | ||||
| 3320 | |||||
| 3321 | QualType type = VD->getType(); | ||||
| 3322 | if (type.isNull()) | ||||
| 3323 | return ExprError(); | ||||
| 3324 | ExprValueKind valueKind = VK_PRValue; | ||||
| 3325 | |||||
| 3326 | // In 'T ...V;', the type of the declaration 'V' is 'T...', but the type of | ||||
| 3327 | // a reference to 'V' is simply (unexpanded) 'T'. The type, like the value, | ||||
| 3328 | // is expanded by some outer '...' in the context of the use. | ||||
| 3329 | type = type.getNonPackExpansionType(); | ||||
| 3330 | |||||
| 3331 | switch (D->getKind()) { | ||||
| 3332 | // Ignore all the non-ValueDecl kinds. | ||||
| 3333 | #define ABSTRACT_DECL(kind) | ||||
| 3334 | #define VALUE(type, base) | ||||
| 3335 | #define DECL(type, base) case Decl::type: | ||||
| 3336 | #include "clang/AST/DeclNodes.inc" | ||||
| 3337 | llvm_unreachable("invalid value decl kind")::llvm::llvm_unreachable_internal("invalid value decl kind", "clang/lib/Sema/SemaExpr.cpp" , 3337); | ||||
| 3338 | |||||
| 3339 | // These shouldn't make it here. | ||||
| 3340 | case Decl::ObjCAtDefsField: | ||||
| 3341 | llvm_unreachable("forming non-member reference to ivar?")::llvm::llvm_unreachable_internal("forming non-member reference to ivar?" , "clang/lib/Sema/SemaExpr.cpp", 3341); | ||||
| 3342 | |||||
| 3343 | // Enum constants are always r-values and never references. | ||||
| 3344 | // Unresolved using declarations are dependent. | ||||
| 3345 | case Decl::EnumConstant: | ||||
| 3346 | case Decl::UnresolvedUsingValue: | ||||
| 3347 | case Decl::OMPDeclareReduction: | ||||
| 3348 | case Decl::OMPDeclareMapper: | ||||
| 3349 | valueKind = VK_PRValue; | ||||
| 3350 | break; | ||||
| 3351 | |||||
| 3352 | // Fields and indirect fields that got here must be for | ||||
| 3353 | // pointer-to-member expressions; we just call them l-values for | ||||
| 3354 | // internal consistency, because this subexpression doesn't really | ||||
| 3355 | // exist in the high-level semantics. | ||||
| 3356 | case Decl::Field: | ||||
| 3357 | case Decl::IndirectField: | ||||
| 3358 | case Decl::ObjCIvar: | ||||
| 3359 | assert(getLangOpts().CPlusPlus && "building reference to field in C?")(static_cast <bool> (getLangOpts().CPlusPlus && "building reference to field in C?") ? void (0) : __assert_fail ("getLangOpts().CPlusPlus && \"building reference to field in C?\"" , "clang/lib/Sema/SemaExpr.cpp", 3359, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 3360 | |||||
| 3361 | // These can't have reference type in well-formed programs, but | ||||
| 3362 | // for internal consistency we do this anyway. | ||||
| 3363 | type = type.getNonReferenceType(); | ||||
| 3364 | valueKind = VK_LValue; | ||||
| 3365 | break; | ||||
| 3366 | |||||
| 3367 | // Non-type template parameters are either l-values or r-values | ||||
| 3368 | // depending on the type. | ||||
| 3369 | case Decl::NonTypeTemplateParm: { | ||||
| 3370 | if (const ReferenceType *reftype = type->getAs<ReferenceType>()) { | ||||
| 3371 | type = reftype->getPointeeType(); | ||||
| 3372 | valueKind = VK_LValue; // even if the parameter is an r-value reference | ||||
| 3373 | break; | ||||
| 3374 | } | ||||
| 3375 | |||||
| 3376 | // [expr.prim.id.unqual]p2: | ||||
| 3377 | // If the entity is a template parameter object for a template | ||||
| 3378 | // parameter of type T, the type of the expression is const T. | ||||
| 3379 | // [...] The expression is an lvalue if the entity is a [...] template | ||||
| 3380 | // parameter object. | ||||
| 3381 | if (type->isRecordType()) { | ||||
| 3382 | type = type.getUnqualifiedType().withConst(); | ||||
| 3383 | valueKind = VK_LValue; | ||||
| 3384 | break; | ||||
| 3385 | } | ||||
| 3386 | |||||
| 3387 | // For non-references, we need to strip qualifiers just in case | ||||
| 3388 | // the template parameter was declared as 'const int' or whatever. | ||||
| 3389 | valueKind = VK_PRValue; | ||||
| 3390 | type = type.getUnqualifiedType(); | ||||
| 3391 | break; | ||||
| 3392 | } | ||||
| 3393 | |||||
| 3394 | case Decl::Var: | ||||
| 3395 | case Decl::VarTemplateSpecialization: | ||||
| 3396 | case Decl::VarTemplatePartialSpecialization: | ||||
| 3397 | case Decl::Decomposition: | ||||
| 3398 | case Decl::OMPCapturedExpr: | ||||
| 3399 | // In C, "extern void blah;" is valid and is an r-value. | ||||
| 3400 | if (!getLangOpts().CPlusPlus && !type.hasQualifiers() && | ||||
| 3401 | type->isVoidType()) { | ||||
| 3402 | valueKind = VK_PRValue; | ||||
| 3403 | break; | ||||
| 3404 | } | ||||
| 3405 | [[fallthrough]]; | ||||
| 3406 | |||||
| 3407 | case Decl::ImplicitParam: | ||||
| 3408 | case Decl::ParmVar: { | ||||
| 3409 | // These are always l-values. | ||||
| 3410 | valueKind = VK_LValue; | ||||
| 3411 | type = type.getNonReferenceType(); | ||||
| 3412 | |||||
| 3413 | // FIXME: Does the addition of const really only apply in | ||||
| 3414 | // potentially-evaluated contexts? Since the variable isn't actually | ||||
| 3415 | // captured in an unevaluated context, it seems that the answer is no. | ||||
| 3416 | if (!isUnevaluatedContext()) { | ||||
| 3417 | QualType CapturedType = getCapturedDeclRefType(cast<VarDecl>(VD), Loc); | ||||
| 3418 | if (!CapturedType.isNull()) | ||||
| 3419 | type = CapturedType; | ||||
| 3420 | } | ||||
| 3421 | |||||
| 3422 | break; | ||||
| 3423 | } | ||||
| 3424 | |||||
| 3425 | case Decl::Binding: | ||||
| 3426 | // These are always lvalues. | ||||
| 3427 | valueKind = VK_LValue; | ||||
| 3428 | type = type.getNonReferenceType(); | ||||
| 3429 | break; | ||||
| 3430 | |||||
| 3431 | case Decl::Function: { | ||||
| 3432 | if (unsigned BID = cast<FunctionDecl>(VD)->getBuiltinID()) { | ||||
| 3433 | if (!Context.BuiltinInfo.isDirectlyAddressable(BID)) { | ||||
| 3434 | type = Context.BuiltinFnTy; | ||||
| 3435 | valueKind = VK_PRValue; | ||||
| 3436 | break; | ||||
| 3437 | } | ||||
| 3438 | } | ||||
| 3439 | |||||
| 3440 | const FunctionType *fty = type->castAs<FunctionType>(); | ||||
| 3441 | |||||
| 3442 | // If we're referring to a function with an __unknown_anytype | ||||
| 3443 | // result type, make the entire expression __unknown_anytype. | ||||
| 3444 | if (fty->getReturnType() == Context.UnknownAnyTy) { | ||||
| 3445 | type = Context.UnknownAnyTy; | ||||
| 3446 | valueKind = VK_PRValue; | ||||
| 3447 | break; | ||||
| 3448 | } | ||||
| 3449 | |||||
| 3450 | // Functions are l-values in C++. | ||||
| 3451 | if (getLangOpts().CPlusPlus) { | ||||
| 3452 | valueKind = VK_LValue; | ||||
| 3453 | break; | ||||
| 3454 | } | ||||
| 3455 | |||||
| 3456 | // C99 DR 316 says that, if a function type comes from a | ||||
| 3457 | // function definition (without a prototype), that type is only | ||||
| 3458 | // used for checking compatibility. Therefore, when referencing | ||||
| 3459 | // the function, we pretend that we don't have the full function | ||||
| 3460 | // type. | ||||
| 3461 | if (!cast<FunctionDecl>(VD)->hasPrototype() && isa<FunctionProtoType>(fty)) | ||||
| 3462 | type = Context.getFunctionNoProtoType(fty->getReturnType(), | ||||
| 3463 | fty->getExtInfo()); | ||||
| 3464 | |||||
| 3465 | // Functions are r-values in C. | ||||
| 3466 | valueKind = VK_PRValue; | ||||
| 3467 | break; | ||||
| 3468 | } | ||||
| 3469 | |||||
| 3470 | case Decl::CXXDeductionGuide: | ||||
| 3471 | llvm_unreachable("building reference to deduction guide")::llvm::llvm_unreachable_internal("building reference to deduction guide" , "clang/lib/Sema/SemaExpr.cpp", 3471); | ||||
| 3472 | |||||
| 3473 | case Decl::MSProperty: | ||||
| 3474 | case Decl::MSGuid: | ||||
| 3475 | case Decl::TemplateParamObject: | ||||
| 3476 | // FIXME: Should MSGuidDecl and template parameter objects be subject to | ||||
| 3477 | // capture in OpenMP, or duplicated between host and device? | ||||
| 3478 | valueKind = VK_LValue; | ||||
| 3479 | break; | ||||
| 3480 | |||||
| 3481 | case Decl::UnnamedGlobalConstant: | ||||
| 3482 | valueKind = VK_LValue; | ||||
| 3483 | break; | ||||
| 3484 | |||||
| 3485 | case Decl::CXXMethod: | ||||
| 3486 | // If we're referring to a method with an __unknown_anytype | ||||
| 3487 | // result type, make the entire expression __unknown_anytype. | ||||
| 3488 | // This should only be possible with a type written directly. | ||||
| 3489 | if (const FunctionProtoType *proto = | ||||
| 3490 | dyn_cast<FunctionProtoType>(VD->getType())) | ||||
| 3491 | if (proto->getReturnType() == Context.UnknownAnyTy) { | ||||
| 3492 | type = Context.UnknownAnyTy; | ||||
| 3493 | valueKind = VK_PRValue; | ||||
| 3494 | break; | ||||
| 3495 | } | ||||
| 3496 | |||||
| 3497 | // C++ methods are l-values if static, r-values if non-static. | ||||
| 3498 | if (cast<CXXMethodDecl>(VD)->isStatic()) { | ||||
| 3499 | valueKind = VK_LValue; | ||||
| 3500 | break; | ||||
| 3501 | } | ||||
| 3502 | [[fallthrough]]; | ||||
| 3503 | |||||
| 3504 | case Decl::CXXConversion: | ||||
| 3505 | case Decl::CXXDestructor: | ||||
| 3506 | case Decl::CXXConstructor: | ||||
| 3507 | valueKind = VK_PRValue; | ||||
| 3508 | break; | ||||
| 3509 | } | ||||
| 3510 | |||||
| 3511 | auto *E = | ||||
| 3512 | BuildDeclRefExpr(VD, type, valueKind, NameInfo, &SS, FoundD, | ||||
| 3513 | /*FIXME: TemplateKWLoc*/ SourceLocation(), TemplateArgs); | ||||
| 3514 | // Clang AST consumers assume a DeclRefExpr refers to a valid decl. We | ||||
| 3515 | // wrap a DeclRefExpr referring to an invalid decl with a dependent-type | ||||
| 3516 | // RecoveryExpr to avoid follow-up semantic analysis (thus prevent bogus | ||||
| 3517 | // diagnostics). | ||||
| 3518 | if (VD->isInvalidDecl() && E) | ||||
| 3519 | return CreateRecoveryExpr(E->getBeginLoc(), E->getEndLoc(), {E}); | ||||
| 3520 | return E; | ||||
| 3521 | } | ||||
| 3522 | |||||
| 3523 | static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source, | ||||
| 3524 | SmallString<32> &Target) { | ||||
| 3525 | Target.resize(CharByteWidth * (Source.size() + 1)); | ||||
| 3526 | char *ResultPtr = &Target[0]; | ||||
| 3527 | const llvm::UTF8 *ErrorPtr; | ||||
| 3528 | bool success = | ||||
| 3529 | llvm::ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr); | ||||
| 3530 | (void)success; | ||||
| 3531 | assert(success)(static_cast <bool> (success) ? void (0) : __assert_fail ("success", "clang/lib/Sema/SemaExpr.cpp", 3531, __extension__ __PRETTY_FUNCTION__)); | ||||
| 3532 | Target.resize(ResultPtr - &Target[0]); | ||||
| 3533 | } | ||||
| 3534 | |||||
| 3535 | ExprResult Sema::BuildPredefinedExpr(SourceLocation Loc, | ||||
| 3536 | PredefinedExpr::IdentKind IK) { | ||||
| 3537 | // Pick the current block, lambda, captured statement or function. | ||||
| 3538 | Decl *currentDecl = nullptr; | ||||
| 3539 | if (const BlockScopeInfo *BSI = getCurBlock()) | ||||
| 3540 | currentDecl = BSI->TheDecl; | ||||
| 3541 | else if (const LambdaScopeInfo *LSI = getCurLambda()) | ||||
| 3542 | currentDecl = LSI->CallOperator; | ||||
| 3543 | else if (const CapturedRegionScopeInfo *CSI = getCurCapturedRegion()) | ||||
| 3544 | currentDecl = CSI->TheCapturedDecl; | ||||
| 3545 | else | ||||
| 3546 | currentDecl = getCurFunctionOrMethodDecl(); | ||||
| 3547 | |||||
| 3548 | if (!currentDecl) { | ||||
| 3549 | Diag(Loc, diag::ext_predef_outside_function); | ||||
| 3550 | currentDecl = Context.getTranslationUnitDecl(); | ||||
| 3551 | } | ||||
| 3552 | |||||
| 3553 | QualType ResTy; | ||||
| 3554 | StringLiteral *SL = nullptr; | ||||
| 3555 | if (cast<DeclContext>(currentDecl)->isDependentContext()) | ||||
| 3556 | ResTy = Context.DependentTy; | ||||
| 3557 | else { | ||||
| 3558 | // Pre-defined identifiers are of type char[x], where x is the length of | ||||
| 3559 | // the string. | ||||
| 3560 | auto Str = PredefinedExpr::ComputeName(IK, currentDecl); | ||||
| 3561 | unsigned Length = Str.length(); | ||||
| 3562 | |||||
| 3563 | llvm::APInt LengthI(32, Length + 1); | ||||
| 3564 | if (IK == PredefinedExpr::LFunction || IK == PredefinedExpr::LFuncSig) { | ||||
| 3565 | ResTy = | ||||
| 3566 | Context.adjustStringLiteralBaseType(Context.WideCharTy.withConst()); | ||||
| 3567 | SmallString<32> RawChars; | ||||
| 3568 | ConvertUTF8ToWideString(Context.getTypeSizeInChars(ResTy).getQuantity(), | ||||
| 3569 | Str, RawChars); | ||||
| 3570 | ResTy = Context.getConstantArrayType(ResTy, LengthI, nullptr, | ||||
| 3571 | ArrayType::Normal, | ||||
| 3572 | /*IndexTypeQuals*/ 0); | ||||
| 3573 | SL = StringLiteral::Create(Context, RawChars, StringLiteral::Wide, | ||||
| 3574 | /*Pascal*/ false, ResTy, Loc); | ||||
| 3575 | } else { | ||||
| 3576 | ResTy = Context.adjustStringLiteralBaseType(Context.CharTy.withConst()); | ||||
| 3577 | ResTy = Context.getConstantArrayType(ResTy, LengthI, nullptr, | ||||
| 3578 | ArrayType::Normal, | ||||
| 3579 | /*IndexTypeQuals*/ 0); | ||||
| 3580 | SL = StringLiteral::Create(Context, Str, StringLiteral::Ordinary, | ||||
| 3581 | /*Pascal*/ false, ResTy, Loc); | ||||
| 3582 | } | ||||
| 3583 | } | ||||
| 3584 | |||||
| 3585 | return PredefinedExpr::Create(Context, Loc, ResTy, IK, SL); | ||||
| 3586 | } | ||||
| 3587 | |||||
| 3588 | ExprResult Sema::BuildSYCLUniqueStableNameExpr(SourceLocation OpLoc, | ||||
| 3589 | SourceLocation LParen, | ||||
| 3590 | SourceLocation RParen, | ||||
| 3591 | TypeSourceInfo *TSI) { | ||||
| 3592 | return SYCLUniqueStableNameExpr::Create(Context, OpLoc, LParen, RParen, TSI); | ||||
| 3593 | } | ||||
| 3594 | |||||
| 3595 | ExprResult Sema::ActOnSYCLUniqueStableNameExpr(SourceLocation OpLoc, | ||||
| 3596 | SourceLocation LParen, | ||||
| 3597 | SourceLocation RParen, | ||||
| 3598 | ParsedType ParsedTy) { | ||||
| 3599 | TypeSourceInfo *TSI = nullptr; | ||||
| 3600 | QualType Ty = GetTypeFromParser(ParsedTy, &TSI); | ||||
| 3601 | |||||
| 3602 | if (Ty.isNull()) | ||||
| 3603 | return ExprError(); | ||||
| 3604 | if (!TSI) | ||||
| 3605 | TSI = Context.getTrivialTypeSourceInfo(Ty, LParen); | ||||
| 3606 | |||||
| 3607 | return BuildSYCLUniqueStableNameExpr(OpLoc, LParen, RParen, TSI); | ||||
| 3608 | } | ||||
| 3609 | |||||
| 3610 | ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind) { | ||||
| 3611 | PredefinedExpr::IdentKind IK; | ||||
| 3612 | |||||
| 3613 | switch (Kind) { | ||||
| 3614 | default: llvm_unreachable("Unknown simple primary expr!")::llvm::llvm_unreachable_internal("Unknown simple primary expr!" , "clang/lib/Sema/SemaExpr.cpp", 3614); | ||||
| 3615 | case tok::kw___func__: IK = PredefinedExpr::Func; break; // [C99 6.4.2.2] | ||||
| 3616 | case tok::kw___FUNCTION__: IK = PredefinedExpr::Function; break; | ||||
| 3617 | case tok::kw___FUNCDNAME__: IK = PredefinedExpr::FuncDName; break; // [MS] | ||||
| 3618 | case tok::kw___FUNCSIG__: IK = PredefinedExpr::FuncSig; break; // [MS] | ||||
| 3619 | case tok::kw_L__FUNCTION__: IK = PredefinedExpr::LFunction; break; // [MS] | ||||
| 3620 | case tok::kw_L__FUNCSIG__: IK = PredefinedExpr::LFuncSig; break; // [MS] | ||||
| 3621 | case tok::kw___PRETTY_FUNCTION__: IK = PredefinedExpr::PrettyFunction; break; | ||||
| 3622 | } | ||||
| 3623 | |||||
| 3624 | return BuildPredefinedExpr(Loc, IK); | ||||
| 3625 | } | ||||
| 3626 | |||||
| 3627 | ExprResult Sema::ActOnCharacterConstant(const Token &Tok, Scope *UDLScope) { | ||||
| 3628 | SmallString<16> CharBuffer; | ||||
| 3629 | bool Invalid = false; | ||||
| 3630 | StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid); | ||||
| 3631 | if (Invalid) | ||||
| 3632 | return ExprError(); | ||||
| 3633 | |||||
| 3634 | CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(), | ||||
| 3635 | PP, Tok.getKind()); | ||||
| 3636 | if (Literal.hadError()) | ||||
| 3637 | return ExprError(); | ||||
| 3638 | |||||
| 3639 | QualType Ty; | ||||
| 3640 | if (Literal.isWide()) | ||||
| 3641 | Ty = Context.WideCharTy; // L'x' -> wchar_t in C and C++. | ||||
| 3642 | else if (Literal.isUTF8() && getLangOpts().C2x) | ||||
| 3643 | Ty = Context.UnsignedCharTy; // u8'x' -> unsigned char in C2x | ||||
| 3644 | else if (Literal.isUTF8() && getLangOpts().Char8) | ||||
| 3645 | Ty = Context.Char8Ty; // u8'x' -> char8_t when it exists. | ||||
| 3646 | else if (Literal.isUTF16()) | ||||
| 3647 | Ty = Context.Char16Ty; // u'x' -> char16_t in C11 and C++11. | ||||
| 3648 | else if (Literal.isUTF32()) | ||||
| 3649 | Ty = Context.Char32Ty; // U'x' -> char32_t in C11 and C++11. | ||||
| 3650 | else if (!getLangOpts().CPlusPlus || Literal.isMultiChar()) | ||||
| 3651 | Ty = Context.IntTy; // 'x' -> int in C, 'wxyz' -> int in C++. | ||||
| 3652 | else | ||||
| 3653 | Ty = Context.CharTy; // 'x' -> char in C++; | ||||
| 3654 | // u8'x' -> char in C11-C17 and in C++ without char8_t. | ||||
| 3655 | |||||
| 3656 | CharacterLiteral::CharacterKind Kind = CharacterLiteral::Ascii; | ||||
| 3657 | if (Literal.isWide()) | ||||
| 3658 | Kind = CharacterLiteral::Wide; | ||||
| 3659 | else if (Literal.isUTF16()) | ||||
| 3660 | Kind = CharacterLiteral::UTF16; | ||||
| 3661 | else if (Literal.isUTF32()) | ||||
| 3662 | Kind = CharacterLiteral::UTF32; | ||||
| 3663 | else if (Literal.isUTF8()) | ||||
| 3664 | Kind = CharacterLiteral::UTF8; | ||||
| 3665 | |||||
| 3666 | Expr *Lit = new (Context) CharacterLiteral(Literal.getValue(), Kind, Ty, | ||||
| 3667 | Tok.getLocation()); | ||||
| 3668 | |||||
| 3669 | if (Literal.getUDSuffix().empty()) | ||||
| 3670 | return Lit; | ||||
| 3671 | |||||
| 3672 | // We're building a user-defined literal. | ||||
| 3673 | IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix()); | ||||
| 3674 | SourceLocation UDSuffixLoc = | ||||
| 3675 | getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset()); | ||||
| 3676 | |||||
| 3677 | // Make sure we're allowed user-defined literals here. | ||||
| 3678 | if (!UDLScope) | ||||
| 3679 | return ExprError(Diag(UDSuffixLoc, diag::err_invalid_character_udl)); | ||||
| 3680 | |||||
| 3681 | // C++11 [lex.ext]p6: The literal L is treated as a call of the form | ||||
| 3682 | // operator "" X (ch) | ||||
| 3683 | return BuildCookedLiteralOperatorCall(*this, UDLScope, UDSuffix, UDSuffixLoc, | ||||
| 3684 | Lit, Tok.getLocation()); | ||||
| 3685 | } | ||||
| 3686 | |||||
| 3687 | ExprResult Sema::ActOnIntegerConstant(SourceLocation Loc, uint64_t Val) { | ||||
| 3688 | unsigned IntSize = Context.getTargetInfo().getIntWidth(); | ||||
| 3689 | return IntegerLiteral::Create(Context, llvm::APInt(IntSize, Val), | ||||
| 3690 | Context.IntTy, Loc); | ||||
| 3691 | } | ||||
| 3692 | |||||
| 3693 | static Expr *BuildFloatingLiteral(Sema &S, NumericLiteralParser &Literal, | ||||
| 3694 | QualType Ty, SourceLocation Loc) { | ||||
| 3695 | const llvm::fltSemantics &Format = S.Context.getFloatTypeSemantics(Ty); | ||||
| 3696 | |||||
| 3697 | using llvm::APFloat; | ||||
| 3698 | APFloat Val(Format); | ||||
| 3699 | |||||
| 3700 | APFloat::opStatus result = Literal.GetFloatValue(Val); | ||||
| 3701 | |||||
| 3702 | // Overflow is always an error, but underflow is only an error if | ||||
| 3703 | // we underflowed to zero (APFloat reports denormals as underflow). | ||||
| 3704 | if ((result & APFloat::opOverflow) || | ||||
| 3705 | ((result & APFloat::opUnderflow) && Val.isZero())) { | ||||
| 3706 | unsigned diagnostic; | ||||
| 3707 | SmallString<20> buffer; | ||||
| 3708 | if (result & APFloat::opOverflow) { | ||||
| 3709 | diagnostic = diag::warn_float_overflow; | ||||
| 3710 | APFloat::getLargest(Format).toString(buffer); | ||||
| 3711 | } else { | ||||
| 3712 | diagnostic = diag::warn_float_underflow; | ||||
| 3713 | APFloat::getSmallest(Format).toString(buffer); | ||||
| 3714 | } | ||||
| 3715 | |||||
| 3716 | S.Diag(Loc, diagnostic) | ||||
| 3717 | << Ty | ||||
| 3718 | << StringRef(buffer.data(), buffer.size()); | ||||
| 3719 | } | ||||
| 3720 | |||||
| 3721 | bool isExact = (result == APFloat::opOK); | ||||
| 3722 | return FloatingLiteral::Create(S.Context, Val, isExact, Ty, Loc); | ||||
| 3723 | } | ||||
| 3724 | |||||
| 3725 | bool Sema::CheckLoopHintExpr(Expr *E, SourceLocation Loc) { | ||||
| 3726 | assert(E && "Invalid expression")(static_cast <bool> (E && "Invalid expression") ? void (0) : __assert_fail ("E && \"Invalid expression\"" , "clang/lib/Sema/SemaExpr.cpp", 3726, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 3727 | |||||
| 3728 | if (E->isValueDependent()) | ||||
| 3729 | return false; | ||||
| 3730 | |||||
| 3731 | QualType QT = E->getType(); | ||||
| 3732 | if (!QT->isIntegerType() || QT->isBooleanType() || QT->isCharType()) { | ||||
| 3733 | Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_type) << QT; | ||||
| 3734 | return true; | ||||
| 3735 | } | ||||
| 3736 | |||||
| 3737 | llvm::APSInt ValueAPS; | ||||
| 3738 | ExprResult R = VerifyIntegerConstantExpression(E, &ValueAPS); | ||||
| 3739 | |||||
| 3740 | if (R.isInvalid()) | ||||
| 3741 | return true; | ||||
| 3742 | |||||
| 3743 | bool ValueIsPositive = ValueAPS.isStrictlyPositive(); | ||||
| 3744 | if (!ValueIsPositive || ValueAPS.getActiveBits() > 31) { | ||||
| 3745 | Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_value) | ||||
| 3746 | << toString(ValueAPS, 10) << ValueIsPositive; | ||||
| 3747 | return true; | ||||
| 3748 | } | ||||
| 3749 | |||||
| 3750 | return false; | ||||
| 3751 | } | ||||
| 3752 | |||||
| 3753 | ExprResult Sema::ActOnNumericConstant(const Token &Tok, Scope *UDLScope) { | ||||
| 3754 | // Fast path for a single digit (which is quite common). A single digit | ||||
| 3755 | // cannot have a trigraph, escaped newline, radix prefix, or suffix. | ||||
| 3756 | if (Tok.getLength() == 1) { | ||||
| 3757 | const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok); | ||||
| 3758 | return ActOnIntegerConstant(Tok.getLocation(), Val-'0'); | ||||
| 3759 | } | ||||
| 3760 | |||||
| 3761 | SmallString<128> SpellingBuffer; | ||||
| 3762 | // NumericLiteralParser wants to overread by one character. Add padding to | ||||
| 3763 | // the buffer in case the token is copied to the buffer. If getSpelling() | ||||
| 3764 | // returns a StringRef to the memory buffer, it should have a null char at | ||||
| 3765 | // the EOF, so it is also safe. | ||||
| 3766 | SpellingBuffer.resize(Tok.getLength() + 1); | ||||
| 3767 | |||||
| 3768 | // Get the spelling of the token, which eliminates trigraphs, etc. | ||||
| 3769 | bool Invalid = false; | ||||
| 3770 | StringRef TokSpelling = PP.getSpelling(Tok, SpellingBuffer, &Invalid); | ||||
| 3771 | if (Invalid) | ||||
| 3772 | return ExprError(); | ||||
| 3773 | |||||
| 3774 | NumericLiteralParser Literal(TokSpelling, Tok.getLocation(), | ||||
| 3775 | PP.getSourceManager(), PP.getLangOpts(), | ||||
| 3776 | PP.getTargetInfo(), PP.getDiagnostics()); | ||||
| 3777 | if (Literal.hadError) | ||||
| 3778 | return ExprError(); | ||||
| 3779 | |||||
| 3780 | if (Literal.hasUDSuffix()) { | ||||
| 3781 | // We're building a user-defined literal. | ||||
| 3782 | IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix()); | ||||
| 3783 | SourceLocation UDSuffixLoc = | ||||
| 3784 | getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset()); | ||||
| 3785 | |||||
| 3786 | // Make sure we're allowed user-defined literals here. | ||||
| 3787 | if (!UDLScope) | ||||
| 3788 | return ExprError(Diag(UDSuffixLoc, diag::err_invalid_numeric_udl)); | ||||
| 3789 | |||||
| 3790 | QualType CookedTy; | ||||
| 3791 | if (Literal.isFloatingLiteral()) { | ||||
| 3792 | // C++11 [lex.ext]p4: If S contains a literal operator with parameter type | ||||
| 3793 | // long double, the literal is treated as a call of the form | ||||
| 3794 | // operator "" X (f L) | ||||
| 3795 | CookedTy = Context.LongDoubleTy; | ||||
| 3796 | } else { | ||||
| 3797 | // C++11 [lex.ext]p3: If S contains a literal operator with parameter type | ||||
| 3798 | // unsigned long long, the literal is treated as a call of the form | ||||
| 3799 | // operator "" X (n ULL) | ||||
| 3800 | CookedTy = Context.UnsignedLongLongTy; | ||||
| 3801 | } | ||||
| 3802 | |||||
| 3803 | DeclarationName OpName = | ||||
| 3804 | Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix); | ||||
| 3805 | DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc); | ||||
| 3806 | OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc); | ||||
| 3807 | |||||
| 3808 | SourceLocation TokLoc = Tok.getLocation(); | ||||
| 3809 | |||||
| 3810 | // Perform literal operator lookup to determine if we're building a raw | ||||
| 3811 | // literal or a cooked one. | ||||
| 3812 | LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName); | ||||
| 3813 | switch (LookupLiteralOperator(UDLScope, R, CookedTy, | ||||
| 3814 | /*AllowRaw*/ true, /*AllowTemplate*/ true, | ||||
| 3815 | /*AllowStringTemplatePack*/ false, | ||||
| 3816 | /*DiagnoseMissing*/ !Literal.isImaginary)) { | ||||
| 3817 | case LOLR_ErrorNoDiagnostic: | ||||
| 3818 | // Lookup failure for imaginary constants isn't fatal, there's still the | ||||
| 3819 | // GNU extension producing _Complex types. | ||||
| 3820 | break; | ||||
| 3821 | case LOLR_Error: | ||||
| 3822 | return ExprError(); | ||||
| 3823 | case LOLR_Cooked: { | ||||
| 3824 | Expr *Lit; | ||||
| 3825 | if (Literal.isFloatingLiteral()) { | ||||
| 3826 | Lit = BuildFloatingLiteral(*this, Literal, CookedTy, Tok.getLocation()); | ||||
| 3827 | } else { | ||||
| 3828 | llvm::APInt ResultVal(Context.getTargetInfo().getLongLongWidth(), 0); | ||||
| 3829 | if (Literal.GetIntegerValue(ResultVal)) | ||||
| 3830 | Diag(Tok.getLocation(), diag::err_integer_literal_too_large) | ||||
| 3831 | << /* Unsigned */ 1; | ||||
| 3832 | Lit = IntegerLiteral::Create(Context, ResultVal, CookedTy, | ||||
| 3833 | Tok.getLocation()); | ||||
| 3834 | } | ||||
| 3835 | return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc); | ||||
| 3836 | } | ||||
| 3837 | |||||
| 3838 | case LOLR_Raw: { | ||||
| 3839 | // C++11 [lit.ext]p3, p4: If S contains a raw literal operator, the | ||||
| 3840 | // literal is treated as a call of the form | ||||
| 3841 | // operator "" X ("n") | ||||
| 3842 | unsigned Length = Literal.getUDSuffixOffset(); | ||||
| 3843 | QualType StrTy = Context.getConstantArrayType( | ||||
| 3844 | Context.adjustStringLiteralBaseType(Context.CharTy.withConst()), | ||||
| 3845 | llvm::APInt(32, Length + 1), nullptr, ArrayType::Normal, 0); | ||||
| 3846 | Expr *Lit = | ||||
| 3847 | StringLiteral::Create(Context, StringRef(TokSpelling.data(), Length), | ||||
| 3848 | StringLiteral::Ordinary, | ||||
| 3849 | /*Pascal*/ false, StrTy, &TokLoc, 1); | ||||
| 3850 | return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc); | ||||
| 3851 | } | ||||
| 3852 | |||||
| 3853 | case LOLR_Template: { | ||||
| 3854 | // C++11 [lit.ext]p3, p4: Otherwise (S contains a literal operator | ||||
| 3855 | // template), L is treated as a call fo the form | ||||
| 3856 | // operator "" X <'c1', 'c2', ... 'ck'>() | ||||
| 3857 | // where n is the source character sequence c1 c2 ... ck. | ||||
| 3858 | TemplateArgumentListInfo ExplicitArgs; | ||||
| 3859 | unsigned CharBits = Context.getIntWidth(Context.CharTy); | ||||
| 3860 | bool CharIsUnsigned = Context.CharTy->isUnsignedIntegerType(); | ||||
| 3861 | llvm::APSInt Value(CharBits, CharIsUnsigned); | ||||
| 3862 | for (unsigned I = 0, N = Literal.getUDSuffixOffset(); I != N; ++I) { | ||||
| 3863 | Value = TokSpelling[I]; | ||||
| 3864 | TemplateArgument Arg(Context, Value, Context.CharTy); | ||||
| 3865 | TemplateArgumentLocInfo ArgInfo; | ||||
| 3866 | ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo)); | ||||
| 3867 | } | ||||
| 3868 | return BuildLiteralOperatorCall(R, OpNameInfo, std::nullopt, TokLoc, | ||||
| 3869 | &ExplicitArgs); | ||||
| 3870 | } | ||||
| 3871 | case LOLR_StringTemplatePack: | ||||
| 3872 | llvm_unreachable("unexpected literal operator lookup result")::llvm::llvm_unreachable_internal("unexpected literal operator lookup result" , "clang/lib/Sema/SemaExpr.cpp", 3872); | ||||
| 3873 | } | ||||
| 3874 | } | ||||
| 3875 | |||||
| 3876 | Expr *Res; | ||||
| 3877 | |||||
| 3878 | if (Literal.isFixedPointLiteral()) { | ||||
| 3879 | QualType Ty; | ||||
| 3880 | |||||
| 3881 | if (Literal.isAccum) { | ||||
| 3882 | if (Literal.isHalf) { | ||||
| 3883 | Ty = Context.ShortAccumTy; | ||||
| 3884 | } else if (Literal.isLong) { | ||||
| 3885 | Ty = Context.LongAccumTy; | ||||
| 3886 | } else { | ||||
| 3887 | Ty = Context.AccumTy; | ||||
| 3888 | } | ||||
| 3889 | } else if (Literal.isFract) { | ||||
| 3890 | if (Literal.isHalf) { | ||||
| 3891 | Ty = Context.ShortFractTy; | ||||
| 3892 | } else if (Literal.isLong) { | ||||
| 3893 | Ty = Context.LongFractTy; | ||||
| 3894 | } else { | ||||
| 3895 | Ty = Context.FractTy; | ||||
| 3896 | } | ||||
| 3897 | } | ||||
| 3898 | |||||
| 3899 | if (Literal.isUnsigned) Ty = Context.getCorrespondingUnsignedType(Ty); | ||||
| 3900 | |||||
| 3901 | bool isSigned = !Literal.isUnsigned; | ||||
| 3902 | unsigned scale = Context.getFixedPointScale(Ty); | ||||
| 3903 | unsigned bit_width = Context.getTypeInfo(Ty).Width; | ||||
| 3904 | |||||
| 3905 | llvm::APInt Val(bit_width, 0, isSigned); | ||||
| 3906 | bool Overflowed = Literal.GetFixedPointValue(Val, scale); | ||||
| 3907 | bool ValIsZero = Val.isZero() && !Overflowed; | ||||
| 3908 | |||||
| 3909 | auto MaxVal = Context.getFixedPointMax(Ty).getValue(); | ||||
| 3910 | if (Literal.isFract && Val == MaxVal + 1 && !ValIsZero) | ||||
| 3911 | // Clause 6.4.4 - The value of a constant shall be in the range of | ||||
| 3912 | // representable values for its type, with exception for constants of a | ||||
| 3913 | // fract type with a value of exactly 1; such a constant shall denote | ||||
| 3914 | // the maximal value for the type. | ||||
| 3915 | --Val; | ||||
| 3916 | else if (Val.ugt(MaxVal) || Overflowed) | ||||
| 3917 | Diag(Tok.getLocation(), diag::err_too_large_for_fixed_point); | ||||
| 3918 | |||||
| 3919 | Res = FixedPointLiteral::CreateFromRawInt(Context, Val, Ty, | ||||
| 3920 | Tok.getLocation(), scale); | ||||
| 3921 | } else if (Literal.isFloatingLiteral()) { | ||||
| 3922 | QualType Ty; | ||||
| 3923 | if (Literal.isHalf){ | ||||
| 3924 | if (getOpenCLOptions().isAvailableOption("cl_khr_fp16", getLangOpts())) | ||||
| 3925 | Ty = Context.HalfTy; | ||||
| 3926 | else { | ||||
| 3927 | Diag(Tok.getLocation(), diag::err_half_const_requires_fp16); | ||||
| 3928 | return ExprError(); | ||||
| 3929 | } | ||||
| 3930 | } else if (Literal.isFloat) | ||||
| 3931 | Ty = Context.FloatTy; | ||||
| 3932 | else if (Literal.isLong) | ||||
| 3933 | Ty = Context.LongDoubleTy; | ||||
| 3934 | else if (Literal.isFloat16) | ||||
| 3935 | Ty = Context.Float16Ty; | ||||
| 3936 | else if (Literal.isFloat128) | ||||
| 3937 | Ty = Context.Float128Ty; | ||||
| 3938 | else | ||||
| 3939 | Ty = Context.DoubleTy; | ||||
| 3940 | |||||
| 3941 | Res = BuildFloatingLiteral(*this, Literal, Ty, Tok.getLocation()); | ||||
| 3942 | |||||
| 3943 | if (Ty == Context.DoubleTy) { | ||||
| 3944 | if (getLangOpts().SinglePrecisionConstants) { | ||||
| 3945 | if (Ty->castAs<BuiltinType>()->getKind() != BuiltinType::Float) { | ||||
| 3946 | Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get(); | ||||
| 3947 | } | ||||
| 3948 | } else if (getLangOpts().OpenCL && !getOpenCLOptions().isAvailableOption( | ||||
| 3949 | "cl_khr_fp64", getLangOpts())) { | ||||
| 3950 | // Impose single-precision float type when cl_khr_fp64 is not enabled. | ||||
| 3951 | Diag(Tok.getLocation(), diag::warn_double_const_requires_fp64) | ||||
| 3952 | << (getLangOpts().getOpenCLCompatibleVersion() >= 300); | ||||
| 3953 | Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get(); | ||||
| 3954 | } | ||||
| 3955 | } | ||||
| 3956 | } else if (!Literal.isIntegerLiteral()) { | ||||
| 3957 | return ExprError(); | ||||
| 3958 | } else { | ||||
| 3959 | QualType Ty; | ||||
| 3960 | |||||
| 3961 | // 'z/uz' literals are a C++2b feature. | ||||
| 3962 | if (Literal.isSizeT) | ||||
| 3963 | Diag(Tok.getLocation(), getLangOpts().CPlusPlus | ||||
| 3964 | ? getLangOpts().CPlusPlus2b | ||||
| 3965 | ? diag::warn_cxx20_compat_size_t_suffix | ||||
| 3966 | : diag::ext_cxx2b_size_t_suffix | ||||
| 3967 | : diag::err_cxx2b_size_t_suffix); | ||||
| 3968 | |||||
| 3969 | // 'wb/uwb' literals are a C2x feature. We support _BitInt as a type in C++, | ||||
| 3970 | // but we do not currently support the suffix in C++ mode because it's not | ||||
| 3971 | // entirely clear whether WG21 will prefer this suffix to return a library | ||||
| 3972 | // type such as std::bit_int instead of returning a _BitInt. | ||||
| 3973 | if (Literal.isBitInt && !getLangOpts().CPlusPlus) | ||||
| 3974 | PP.Diag(Tok.getLocation(), getLangOpts().C2x | ||||
| 3975 | ? diag::warn_c2x_compat_bitint_suffix | ||||
| 3976 | : diag::ext_c2x_bitint_suffix); | ||||
| 3977 | |||||
| 3978 | // Get the value in the widest-possible width. What is "widest" depends on | ||||
| 3979 | // whether the literal is a bit-precise integer or not. For a bit-precise | ||||
| 3980 | // integer type, try to scan the source to determine how many bits are | ||||
| 3981 | // needed to represent the value. This may seem a bit expensive, but trying | ||||
| 3982 | // to get the integer value from an overly-wide APInt is *extremely* | ||||
| 3983 | // expensive, so the naive approach of assuming | ||||
| 3984 | // llvm::IntegerType::MAX_INT_BITS is a big performance hit. | ||||
| 3985 | unsigned BitsNeeded = | ||||
| 3986 | Literal.isBitInt ? llvm::APInt::getSufficientBitsNeeded( | ||||
| 3987 | Literal.getLiteralDigits(), Literal.getRadix()) | ||||
| 3988 | : Context.getTargetInfo().getIntMaxTWidth(); | ||||
| 3989 | llvm::APInt ResultVal(BitsNeeded, 0); | ||||
| 3990 | |||||
| 3991 | if (Literal.GetIntegerValue(ResultVal)) { | ||||
| 3992 | // If this value didn't fit into uintmax_t, error and force to ull. | ||||
| 3993 | Diag(Tok.getLocation(), diag::err_integer_literal_too_large) | ||||
| 3994 | << /* Unsigned */ 1; | ||||
| 3995 | Ty = Context.UnsignedLongLongTy; | ||||
| 3996 | assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&(static_cast <bool> (Context.getTypeSize(Ty) == ResultVal .getBitWidth() && "long long is not intmax_t?") ? void (0) : __assert_fail ("Context.getTypeSize(Ty) == ResultVal.getBitWidth() && \"long long is not intmax_t?\"" , "clang/lib/Sema/SemaExpr.cpp", 3997, __extension__ __PRETTY_FUNCTION__ )) | ||||
| 3997 | "long long is not intmax_t?")(static_cast <bool> (Context.getTypeSize(Ty) == ResultVal .getBitWidth() && "long long is not intmax_t?") ? void (0) : __assert_fail ("Context.getTypeSize(Ty) == ResultVal.getBitWidth() && \"long long is not intmax_t?\"" , "clang/lib/Sema/SemaExpr.cpp", 3997, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 3998 | } else { | ||||
| 3999 | // If this value fits into a ULL, try to figure out what else it fits into | ||||
| 4000 | // according to the rules of C99 6.4.4.1p5. | ||||
| 4001 | |||||
| 4002 | // Octal, Hexadecimal, and integers with a U suffix are allowed to | ||||
| 4003 | // be an unsigned int. | ||||
| 4004 | bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10; | ||||
| 4005 | |||||
| 4006 | // Check from smallest to largest, picking the smallest type we can. | ||||
| 4007 | unsigned Width = 0; | ||||
| 4008 | |||||
| 4009 | // Microsoft specific integer suffixes are explicitly sized. | ||||
| 4010 | if (Literal.MicrosoftInteger) { | ||||
| 4011 | if (Literal.MicrosoftInteger == 8 && !Literal.isUnsigned) { | ||||
| 4012 | Width = 8; | ||||
| 4013 | Ty = Context.CharTy; | ||||
| 4014 | } else { | ||||
| 4015 | Width = Literal.MicrosoftInteger; | ||||
| 4016 | Ty = Context.getIntTypeForBitwidth(Width, | ||||
| 4017 | /*Signed=*/!Literal.isUnsigned); | ||||
| 4018 | } | ||||
| 4019 | } | ||||
| 4020 | |||||
| 4021 | // Bit-precise integer literals are automagically-sized based on the | ||||
| 4022 | // width required by the literal. | ||||
| 4023 | if (Literal.isBitInt) { | ||||
| 4024 | // The signed version has one more bit for the sign value. There are no | ||||
| 4025 | // zero-width bit-precise integers, even if the literal value is 0. | ||||
| 4026 | Width = std::max(ResultVal.getActiveBits(), 1u) + | ||||
| 4027 | (Literal.isUnsigned ? 0u : 1u); | ||||
| 4028 | |||||
| 4029 | // Diagnose if the width of the constant is larger than BITINT_MAXWIDTH, | ||||
| 4030 | // and reset the type to the largest supported width. | ||||
| 4031 | unsigned int MaxBitIntWidth = | ||||
| 4032 | Context.getTargetInfo().getMaxBitIntWidth(); | ||||
| 4033 | if (Width > MaxBitIntWidth) { | ||||
| 4034 | Diag(Tok.getLocation(), diag::err_integer_literal_too_large) | ||||
| 4035 | << Literal.isUnsigned; | ||||
| 4036 | Width = MaxBitIntWidth; | ||||
| 4037 | } | ||||
| 4038 | |||||
| 4039 | // Reset the result value to the smaller APInt and select the correct | ||||
| 4040 | // type to be used. Note, we zext even for signed values because the | ||||
| 4041 | // literal itself is always an unsigned value (a preceeding - is a | ||||
| 4042 | // unary operator, not part of the literal). | ||||
| 4043 | ResultVal = ResultVal.zextOrTrunc(Width); | ||||
| 4044 | Ty = Context.getBitIntType(Literal.isUnsigned, Width); | ||||
| 4045 | } | ||||
| 4046 | |||||
| 4047 | // Check C++2b size_t literals. | ||||
| 4048 | if (Literal.isSizeT) { | ||||
| 4049 | assert(!Literal.MicrosoftInteger &&(static_cast <bool> (!Literal.MicrosoftInteger && "size_t literals can't be Microsoft literals") ? void (0) : __assert_fail ("!Literal.MicrosoftInteger && \"size_t literals can't be Microsoft literals\"" , "clang/lib/Sema/SemaExpr.cpp", 4050, __extension__ __PRETTY_FUNCTION__ )) | ||||
| 4050 | "size_t literals can't be Microsoft literals")(static_cast <bool> (!Literal.MicrosoftInteger && "size_t literals can't be Microsoft literals") ? void (0) : __assert_fail ("!Literal.MicrosoftInteger && \"size_t literals can't be Microsoft literals\"" , "clang/lib/Sema/SemaExpr.cpp", 4050, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 4051 | unsigned SizeTSize = Context.getTargetInfo().getTypeWidth( | ||||
| 4052 | Context.getTargetInfo().getSizeType()); | ||||
| 4053 | |||||
| 4054 | // Does it fit in size_t? | ||||
| 4055 | if (ResultVal.isIntN(SizeTSize)) { | ||||
| 4056 | // Does it fit in ssize_t? | ||||
| 4057 | if (!Literal.isUnsigned && ResultVal[SizeTSize - 1] == 0) | ||||
| 4058 | Ty = Context.getSignedSizeType(); | ||||
| 4059 | else if (AllowUnsigned) | ||||
| 4060 | Ty = Context.getSizeType(); | ||||
| 4061 | Width = SizeTSize; | ||||
| 4062 | } | ||||
| 4063 | } | ||||
| 4064 | |||||
| 4065 | if (Ty.isNull() && !Literal.isLong && !Literal.isLongLong && | ||||
| 4066 | !Literal.isSizeT) { | ||||
| 4067 | // Are int/unsigned possibilities? | ||||
| 4068 | unsigned IntSize = Context.getTargetInfo().getIntWidth(); | ||||
| 4069 | |||||
| 4070 | // Does it fit in a unsigned int? | ||||
| 4071 | if (ResultVal.isIntN(IntSize)) { | ||||
| 4072 | // Does it fit in a signed int? | ||||
| 4073 | if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0) | ||||
| 4074 | Ty = Context.IntTy; | ||||
| 4075 | else if (AllowUnsigned) | ||||
| 4076 | Ty = Context.UnsignedIntTy; | ||||
| 4077 | Width = IntSize; | ||||
| 4078 | } | ||||
| 4079 | } | ||||
| 4080 | |||||
| 4081 | // Are long/unsigned long possibilities? | ||||
| 4082 | if (Ty.isNull() && !Literal.isLongLong && !Literal.isSizeT) { | ||||
| 4083 | unsigned LongSize = Context.getTargetInfo().getLongWidth(); | ||||
| 4084 | |||||
| 4085 | // Does it fit in a unsigned long? | ||||
| 4086 | if (ResultVal.isIntN(LongSize)) { | ||||
| 4087 | // Does it fit in a signed long? | ||||
| 4088 | if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0) | ||||
| 4089 | Ty = Context.LongTy; | ||||
| 4090 | else if (AllowUnsigned) | ||||
| 4091 | Ty = Context.UnsignedLongTy; | ||||
| 4092 | // Check according to the rules of C90 6.1.3.2p5. C++03 [lex.icon]p2 | ||||
| 4093 | // is compatible. | ||||
| 4094 | else if (!getLangOpts().C99 && !getLangOpts().CPlusPlus11) { | ||||
| 4095 | const unsigned LongLongSize = | ||||
| 4096 | Context.getTargetInfo().getLongLongWidth(); | ||||
| 4097 | Diag(Tok.getLocation(), | ||||
| 4098 | getLangOpts().CPlusPlus | ||||
| 4099 | ? Literal.isLong | ||||
| 4100 | ? diag::warn_old_implicitly_unsigned_long_cxx | ||||
| 4101 | : /*C++98 UB*/ diag:: | ||||
| 4102 | ext_old_implicitly_unsigned_long_cxx | ||||
| 4103 | : diag::warn_old_implicitly_unsigned_long) | ||||
| 4104 | << (LongLongSize > LongSize ? /*will have type 'long long'*/ 0 | ||||
| 4105 | : /*will be ill-formed*/ 1); | ||||
| 4106 | Ty = Context.UnsignedLongTy; | ||||
| 4107 | } | ||||
| 4108 | Width = LongSize; | ||||
| 4109 | } | ||||
| 4110 | } | ||||
| 4111 | |||||
| 4112 | // Check long long if needed. | ||||
| 4113 | if (Ty.isNull() && !Literal.isSizeT) { | ||||
| 4114 | unsigned LongLongSize = Context.getTargetInfo().getLongLongWidth(); | ||||
| 4115 | |||||
| 4116 | // Does it fit in a unsigned long long? | ||||
| 4117 | if (ResultVal.isIntN(LongLongSize)) { | ||||
| 4118 | // Does it fit in a signed long long? | ||||
| 4119 | // To be compatible with MSVC, hex integer literals ending with the | ||||
| 4120 | // LL or i64 suffix are always signed in Microsoft mode. | ||||
| 4121 | if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 || | ||||
| 4122 | (getLangOpts().MSVCCompat && Literal.isLongLong))) | ||||
| 4123 | Ty = Context.LongLongTy; | ||||
| 4124 | else if (AllowUnsigned) | ||||
| 4125 | Ty = Context.UnsignedLongLongTy; | ||||
| 4126 | Width = LongLongSize; | ||||
| 4127 | |||||
| 4128 | // 'long long' is a C99 or C++11 feature, whether the literal | ||||
| 4129 | // explicitly specified 'long long' or we needed the extra width. | ||||
| 4130 | if (getLangOpts().CPlusPlus) | ||||
| 4131 | Diag(Tok.getLocation(), getLangOpts().CPlusPlus11 | ||||
| 4132 | ? diag::warn_cxx98_compat_longlong | ||||
| 4133 | : diag::ext_cxx11_longlong); | ||||
| 4134 | else if (!getLangOpts().C99) | ||||
| 4135 | Diag(Tok.getLocation(), diag::ext_c99_longlong); | ||||
| 4136 | } | ||||
| 4137 | } | ||||
| 4138 | |||||
| 4139 | // If we still couldn't decide a type, we either have 'size_t' literal | ||||
| 4140 | // that is out of range, or a decimal literal that does not fit in a | ||||
| 4141 | // signed long long and has no U suffix. | ||||
| 4142 | if (Ty.isNull()) { | ||||
| 4143 | if (Literal.isSizeT) | ||||
| 4144 | Diag(Tok.getLocation(), diag::err_size_t_literal_too_large) | ||||
| 4145 | << Literal.isUnsigned; | ||||
| 4146 | else | ||||
| 4147 | Diag(Tok.getLocation(), | ||||
| 4148 | diag::ext_integer_literal_too_large_for_signed); | ||||
| 4149 | Ty = Context.UnsignedLongLongTy; | ||||
| 4150 | Width = Context.getTargetInfo().getLongLongWidth(); | ||||
| 4151 | } | ||||
| 4152 | |||||
| 4153 | if (ResultVal.getBitWidth() != Width) | ||||
| 4154 | ResultVal = ResultVal.trunc(Width); | ||||
| 4155 | } | ||||
| 4156 | Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation()); | ||||
| 4157 | } | ||||
| 4158 | |||||
| 4159 | // If this is an imaginary literal, create the ImaginaryLiteral wrapper. | ||||
| 4160 | if (Literal.isImaginary) { | ||||
| 4161 | Res = new (Context) ImaginaryLiteral(Res, | ||||
| 4162 | Context.getComplexType(Res->getType())); | ||||
| 4163 | |||||
| 4164 | Diag(Tok.getLocation(), diag::ext_imaginary_constant); | ||||
| 4165 | } | ||||
| 4166 | return Res; | ||||
| 4167 | } | ||||
| 4168 | |||||
| 4169 | ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E) { | ||||
| 4170 | assert(E && "ActOnParenExpr() missing expr")(static_cast <bool> (E && "ActOnParenExpr() missing expr" ) ? void (0) : __assert_fail ("E && \"ActOnParenExpr() missing expr\"" , "clang/lib/Sema/SemaExpr.cpp", 4170, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 4171 | QualType ExprTy = E->getType(); | ||||
| 4172 | if (getLangOpts().ProtectParens && CurFPFeatures.getAllowFPReassociate() && | ||||
| 4173 | !E->isLValue() && ExprTy->hasFloatingRepresentation()) | ||||
| 4174 | return BuildBuiltinCallExpr(R, Builtin::BI__arithmetic_fence, E); | ||||
| 4175 | return new (Context) ParenExpr(L, R, E); | ||||
| 4176 | } | ||||
| 4177 | |||||
| 4178 | static bool CheckVecStepTraitOperandType(Sema &S, QualType T, | ||||
| 4179 | SourceLocation Loc, | ||||
| 4180 | SourceRange ArgRange) { | ||||
| 4181 | // [OpenCL 1.1 6.11.12] "The vec_step built-in function takes a built-in | ||||
| 4182 | // scalar or vector data type argument..." | ||||
| 4183 | // Every built-in scalar type (OpenCL 1.1 6.1.1) is either an arithmetic | ||||
| 4184 | // type (C99 6.2.5p18) or void. | ||||
| 4185 | if (!(T->isArithmeticType() || T->isVoidType() || T->isVectorType())) { | ||||
| 4186 | S.Diag(Loc, diag::err_vecstep_non_scalar_vector_type) | ||||
| 4187 | << T << ArgRange; | ||||
| 4188 | return true; | ||||
| 4189 | } | ||||
| 4190 | |||||
| 4191 | assert((T->isVoidType() || !T->isIncompleteType()) &&(static_cast <bool> ((T->isVoidType() || !T->isIncompleteType ()) && "Scalar types should always be complete") ? void (0) : __assert_fail ("(T->isVoidType() || !T->isIncompleteType()) && \"Scalar types should always be complete\"" , "clang/lib/Sema/SemaExpr.cpp", 4192, __extension__ __PRETTY_FUNCTION__ )) | ||||
| 4192 | "Scalar types should always be complete")(static_cast <bool> ((T->isVoidType() || !T->isIncompleteType ()) && "Scalar types should always be complete") ? void (0) : __assert_fail ("(T->isVoidType() || !T->isIncompleteType()) && \"Scalar types should always be complete\"" , "clang/lib/Sema/SemaExpr.cpp", 4192, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 4193 | return false; | ||||
| 4194 | } | ||||
| 4195 | |||||
| 4196 | static bool CheckExtensionTraitOperandType(Sema &S, QualType T, | ||||
| 4197 | SourceLocation Loc, | ||||
| 4198 | SourceRange ArgRange, | ||||
| 4199 | UnaryExprOrTypeTrait TraitKind) { | ||||
| 4200 | // Invalid types must be hard errors for SFINAE in C++. | ||||
| 4201 | if (S.LangOpts.CPlusPlus) | ||||
| 4202 | return true; | ||||
| 4203 | |||||
| 4204 | // C99 6.5.3.4p1: | ||||
| 4205 | if (T->isFunctionType() && | ||||
| 4206 | (TraitKind == UETT_SizeOf || TraitKind == UETT_AlignOf || | ||||
| 4207 | TraitKind == UETT_PreferredAlignOf)) { | ||||
| 4208 | // sizeof(function)/alignof(function) is allowed as an extension. | ||||
| 4209 | S.Diag(Loc, diag::ext_sizeof_alignof_function_type) | ||||
| 4210 | << getTraitSpelling(TraitKind) << ArgRange; | ||||
| 4211 | return false; | ||||
| 4212 | } | ||||
| 4213 | |||||
| 4214 | // Allow sizeof(void)/alignof(void) as an extension, unless in OpenCL where | ||||
| 4215 | // this is an error (OpenCL v1.1 s6.3.k) | ||||
| 4216 | if (T->isVoidType()) { | ||||
| 4217 | unsigned DiagID = S.LangOpts.OpenCL ? diag::err_opencl_sizeof_alignof_type | ||||
| 4218 | : diag::ext_sizeof_alignof_void_type; | ||||
| 4219 | S.Diag(Loc, DiagID) << getTraitSpelling(TraitKind) << ArgRange; | ||||
| 4220 | return false; | ||||
| 4221 | } | ||||
| 4222 | |||||
| 4223 | return true; | ||||
| 4224 | } | ||||
| 4225 | |||||
| 4226 | static bool CheckObjCTraitOperandConstraints(Sema &S, QualType T, | ||||
| 4227 | SourceLocation Loc, | ||||
| 4228 | SourceRange ArgRange, | ||||
| 4229 | UnaryExprOrTypeTrait TraitKind) { | ||||
| 4230 | // Reject sizeof(interface) and sizeof(interface<proto>) if the | ||||
| 4231 | // runtime doesn't allow it. | ||||
| 4232 | if (!S.LangOpts.ObjCRuntime.allowsSizeofAlignof() && T->isObjCObjectType()) { | ||||
| 4233 | S.Diag(Loc, diag::err_sizeof_nonfragile_interface) | ||||
| 4234 | << T << (TraitKind == UETT_SizeOf) | ||||
| 4235 | << ArgRange; | ||||
| 4236 | return true; | ||||
| 4237 | } | ||||
| 4238 | |||||
| 4239 | return false; | ||||
| 4240 | } | ||||
| 4241 | |||||
| 4242 | /// Check whether E is a pointer from a decayed array type (the decayed | ||||
| 4243 | /// pointer type is equal to T) and emit a warning if it is. | ||||
| 4244 | static void warnOnSizeofOnArrayDecay(Sema &S, SourceLocation Loc, QualType T, | ||||
| 4245 | Expr *E) { | ||||
| 4246 | // Don't warn if the operation changed the type. | ||||
| 4247 | if (T != E->getType()) | ||||
| 4248 | return; | ||||
| 4249 | |||||
| 4250 | // Now look for array decays. | ||||
| 4251 | ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E); | ||||
| 4252 | if (!ICE || ICE->getCastKind() != CK_ArrayToPointerDecay) | ||||
| 4253 | return; | ||||
| 4254 | |||||
| 4255 | S.Diag(Loc, diag::warn_sizeof_array_decay) << ICE->getSourceRange() | ||||
| 4256 | << ICE->getType() | ||||
| 4257 | << ICE->getSubExpr()->getType(); | ||||
| 4258 | } | ||||
| 4259 | |||||
| 4260 | /// Check the constraints on expression operands to unary type expression | ||||
| 4261 | /// and type traits. | ||||
| 4262 | /// | ||||
| 4263 | /// Completes any types necessary and validates the constraints on the operand | ||||
| 4264 | /// expression. The logic mostly mirrors the type-based overload, but may modify | ||||
| 4265 | /// the expression as it completes the type for that expression through template | ||||
| 4266 | /// instantiation, etc. | ||||
| 4267 | bool Sema::CheckUnaryExprOrTypeTraitOperand(Expr *E, | ||||
| 4268 | UnaryExprOrTypeTrait ExprKind) { | ||||
| 4269 | QualType ExprTy = E->getType(); | ||||
| 4270 | assert(!ExprTy->isReferenceType())(static_cast <bool> (!ExprTy->isReferenceType()) ? void (0) : __assert_fail ("!ExprTy->isReferenceType()", "clang/lib/Sema/SemaExpr.cpp" , 4270, __extension__ __PRETTY_FUNCTION__)); | ||||
| 4271 | |||||
| 4272 | bool IsUnevaluatedOperand = | ||||
| 4273 | (ExprKind == UETT_SizeOf || ExprKind == UETT_AlignOf || | ||||
| 4274 | ExprKind == UETT_PreferredAlignOf || ExprKind == UETT_VecStep); | ||||
| 4275 | if (IsUnevaluatedOperand) { | ||||
| 4276 | ExprResult Result = CheckUnevaluatedOperand(E); | ||||
| 4277 | if (Result.isInvalid()) | ||||
| 4278 | return true; | ||||
| 4279 | E = Result.get(); | ||||
| 4280 | } | ||||
| 4281 | |||||
| 4282 | // The operand for sizeof and alignof is in an unevaluated expression context, | ||||
| 4283 | // so side effects could result in unintended consequences. | ||||
| 4284 | // Exclude instantiation-dependent expressions, because 'sizeof' is sometimes | ||||
| 4285 | // used to build SFINAE gadgets. | ||||
| 4286 | // FIXME: Should we consider instantiation-dependent operands to 'alignof'? | ||||
| 4287 | if (IsUnevaluatedOperand && !inTemplateInstantiation() && | ||||
| 4288 | !E->isInstantiationDependent() && | ||||
| 4289 | !E->getType()->isVariableArrayType() && | ||||
| 4290 | E->HasSideEffects(Context, false)) | ||||
| 4291 | Diag(E->getExprLoc(), diag::warn_side_effects_unevaluated_context); | ||||
| 4292 | |||||
| 4293 | if (ExprKind == UETT_VecStep) | ||||
| 4294 | return CheckVecStepTraitOperandType(*this, ExprTy, E->getExprLoc(), | ||||
| 4295 | E->getSourceRange()); | ||||
| 4296 | |||||
| 4297 | // Explicitly list some types as extensions. | ||||
| 4298 | if (!CheckExtensionTraitOperandType(*this, ExprTy, E->getExprLoc(), | ||||
| 4299 | E->getSourceRange(), ExprKind)) | ||||
| 4300 | return false; | ||||
| 4301 | |||||
| 4302 | // 'alignof' applied to an expression only requires the base element type of | ||||
| 4303 | // the expression to be complete. 'sizeof' requires the expression's type to | ||||
| 4304 | // be complete (and will attempt to complete it if it's an array of unknown | ||||
| 4305 | // bound). | ||||
| 4306 | if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) { | ||||
| 4307 | if (RequireCompleteSizedType( | ||||
| 4308 | E->getExprLoc(), Context.getBaseElementType(E->getType()), | ||||
| 4309 | diag::err_sizeof_alignof_incomplete_or_sizeless_type, | ||||
| 4310 | getTraitSpelling(ExprKind), E->getSourceRange())) | ||||
| 4311 | return true; | ||||
| 4312 | } else { | ||||
| 4313 | if (RequireCompleteSizedExprType( | ||||
| 4314 | E, diag::err_sizeof_alignof_incomplete_or_sizeless_type, | ||||
| 4315 | getTraitSpelling(ExprKind), E->getSourceRange())) | ||||
| 4316 | return true; | ||||
| 4317 | } | ||||
| 4318 | |||||
| 4319 | // Completing the expression's type may have changed it. | ||||
| 4320 | ExprTy = E->getType(); | ||||
| 4321 | assert(!ExprTy->isReferenceType())(static_cast <bool> (!ExprTy->isReferenceType()) ? void (0) : __assert_fail ("!ExprTy->isReferenceType()", "clang/lib/Sema/SemaExpr.cpp" , 4321, __extension__ __PRETTY_FUNCTION__)); | ||||
| 4322 | |||||
| 4323 | if (ExprTy->isFunctionType()) { | ||||
| 4324 | Diag(E->getExprLoc(), diag::err_sizeof_alignof_function_type) | ||||
| 4325 | << getTraitSpelling(ExprKind) << E->getSourceRange(); | ||||
| 4326 | return true; | ||||
| 4327 | } | ||||
| 4328 | |||||
| 4329 | if (CheckObjCTraitOperandConstraints(*this, ExprTy, E->getExprLoc(), | ||||
| 4330 | E->getSourceRange(), ExprKind)) | ||||
| 4331 | return true; | ||||
| 4332 | |||||
| 4333 | if (ExprKind == UETT_SizeOf) { | ||||
| 4334 | if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParens())) { | ||||
| 4335 | if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DeclRef->getFoundDecl())) { | ||||
| 4336 | QualType OType = PVD->getOriginalType(); | ||||
| 4337 | QualType Type = PVD->getType(); | ||||
| 4338 | if (Type->isPointerType() && OType->isArrayType()) { | ||||
| 4339 | Diag(E->getExprLoc(), diag::warn_sizeof_array_param) | ||||
| 4340 | << Type << OType; | ||||
| 4341 | Diag(PVD->getLocation(), diag::note_declared_at); | ||||
| 4342 | } | ||||
| 4343 | } | ||||
| 4344 | } | ||||
| 4345 | |||||
| 4346 | // Warn on "sizeof(array op x)" and "sizeof(x op array)", where the array | ||||
| 4347 | // decays into a pointer and returns an unintended result. This is most | ||||
| 4348 | // likely a typo for "sizeof(array) op x". | ||||
| 4349 | if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E->IgnoreParens())) { | ||||
| 4350 | warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(), | ||||
| 4351 | BO->getLHS()); | ||||
| 4352 | warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(), | ||||
| 4353 | BO->getRHS()); | ||||
| 4354 | } | ||||
| 4355 | } | ||||
| 4356 | |||||
| 4357 | return false; | ||||
| 4358 | } | ||||
| 4359 | |||||
| 4360 | /// Check the constraints on operands to unary expression and type | ||||
| 4361 | /// traits. | ||||
| 4362 | /// | ||||
| 4363 | /// This will complete any types necessary, and validate the various constraints | ||||
| 4364 | /// on those operands. | ||||
| 4365 | /// | ||||
| 4366 | /// The UsualUnaryConversions() function is *not* called by this routine. | ||||
| 4367 | /// C99 6.3.2.1p[2-4] all state: | ||||
| 4368 | /// Except when it is the operand of the sizeof operator ... | ||||
| 4369 | /// | ||||
| 4370 | /// C++ [expr.sizeof]p4 | ||||
| 4371 | /// The lvalue-to-rvalue, array-to-pointer, and function-to-pointer | ||||
| 4372 | /// standard conversions are not applied to the operand of sizeof. | ||||
| 4373 | /// | ||||
| 4374 | /// This policy is followed for all of the unary trait expressions. | ||||
| 4375 | bool Sema::CheckUnaryExprOrTypeTraitOperand(QualType ExprType, | ||||
| 4376 | SourceLocation OpLoc, | ||||
| 4377 | SourceRange ExprRange, | ||||
| 4378 | UnaryExprOrTypeTrait ExprKind) { | ||||
| 4379 | if (ExprType->isDependentType()) | ||||
| 4380 | return false; | ||||
| 4381 | |||||
| 4382 | // C++ [expr.sizeof]p2: | ||||
| 4383 | // When applied to a reference or a reference type, the result | ||||
| 4384 | // is the size of the referenced type. | ||||
| 4385 | // C++11 [expr.alignof]p3: | ||||
| 4386 | // When alignof is applied to a reference type, the result | ||||
| 4387 | // shall be the alignment of the referenced type. | ||||
| 4388 | if (const ReferenceType *Ref = ExprType->getAs<ReferenceType>()) | ||||
| 4389 | ExprType = Ref->getPointeeType(); | ||||
| 4390 | |||||
| 4391 | // C11 6.5.3.4/3, C++11 [expr.alignof]p3: | ||||
| 4392 | // When alignof or _Alignof is applied to an array type, the result | ||||
| 4393 | // is the alignment of the element type. | ||||
| 4394 | if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf || | ||||
| 4395 | ExprKind == UETT_OpenMPRequiredSimdAlign) | ||||
| 4396 | ExprType = Context.getBaseElementType(ExprType); | ||||
| 4397 | |||||
| 4398 | if (ExprKind == UETT_VecStep) | ||||
| 4399 | return CheckVecStepTraitOperandType(*this, ExprType, OpLoc, ExprRange); | ||||
| 4400 | |||||
| 4401 | // Explicitly list some types as extensions. | ||||
| 4402 | if (!CheckExtensionTraitOperandType(*this, ExprType, OpLoc, ExprRange, | ||||
| 4403 | ExprKind)) | ||||
| 4404 | return false; | ||||
| 4405 | |||||
| 4406 | if (RequireCompleteSizedType( | ||||
| 4407 | OpLoc, ExprType, diag::err_sizeof_alignof_incomplete_or_sizeless_type, | ||||
| 4408 | getTraitSpelling(ExprKind), ExprRange)) | ||||
| 4409 | return true; | ||||
| 4410 | |||||
| 4411 | if (ExprType->isFunctionType()) { | ||||
| 4412 | Diag(OpLoc, diag::err_sizeof_alignof_function_type) | ||||
| 4413 | << getTraitSpelling(ExprKind) << ExprRange; | ||||
| 4414 | return true; | ||||
| 4415 | } | ||||
| 4416 | |||||
| 4417 | if (CheckObjCTraitOperandConstraints(*this, ExprType, OpLoc, ExprRange, | ||||
| 4418 | ExprKind)) | ||||
| 4419 | return true; | ||||
| 4420 | |||||
| 4421 | return false; | ||||
| 4422 | } | ||||
| 4423 | |||||
| 4424 | static bool CheckAlignOfExpr(Sema &S, Expr *E, UnaryExprOrTypeTrait ExprKind) { | ||||
| 4425 | // Cannot know anything else if the expression is dependent. | ||||
| 4426 | if (E->isTypeDependent()) | ||||
| 4427 | return false; | ||||
| 4428 | |||||
| 4429 | if (E->getObjectKind() == OK_BitField) { | ||||
| 4430 | S.Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield) | ||||
| 4431 | << 1 << E->getSourceRange(); | ||||
| 4432 | return true; | ||||
| 4433 | } | ||||
| 4434 | |||||
| 4435 | ValueDecl *D = nullptr; | ||||
| 4436 | Expr *Inner = E->IgnoreParens(); | ||||
| 4437 | if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Inner)) { | ||||
| 4438 | D = DRE->getDecl(); | ||||
| 4439 | } else if (MemberExpr *ME = dyn_cast<MemberExpr>(Inner)) { | ||||
| 4440 | D = ME->getMemberDecl(); | ||||
| 4441 | } | ||||
| 4442 | |||||
| 4443 | // If it's a field, require the containing struct to have a | ||||
| 4444 | // complete definition so that we can compute the layout. | ||||
| 4445 | // | ||||
| 4446 | // This can happen in C++11 onwards, either by naming the member | ||||
| 4447 | // in a way that is not transformed into a member access expression | ||||
| 4448 | // (in an unevaluated operand, for instance), or by naming the member | ||||
| 4449 | // in a trailing-return-type. | ||||
| 4450 | // | ||||
| 4451 | // For the record, since __alignof__ on expressions is a GCC | ||||
| 4452 | // extension, GCC seems to permit this but always gives the | ||||
| 4453 | // nonsensical answer 0. | ||||
| 4454 | // | ||||
| 4455 | // We don't really need the layout here --- we could instead just | ||||
| 4456 | // directly check for all the appropriate alignment-lowing | ||||
| 4457 | // attributes --- but that would require duplicating a lot of | ||||
| 4458 | // logic that just isn't worth duplicating for such a marginal | ||||
| 4459 | // use-case. | ||||
| 4460 | if (FieldDecl *FD = dyn_cast_or_null<FieldDecl>(D)) { | ||||
| 4461 | // Fast path this check, since we at least know the record has a | ||||
| 4462 | // definition if we can find a member of it. | ||||
| 4463 | if (!FD->getParent()->isCompleteDefinition()) { | ||||
| 4464 | S.Diag(E->getExprLoc(), diag::err_alignof_member_of_incomplete_type) | ||||
| 4465 | << E->getSourceRange(); | ||||
| 4466 | return true; | ||||
| 4467 | } | ||||
| 4468 | |||||
| 4469 | // Otherwise, if it's a field, and the field doesn't have | ||||
| 4470 | // reference type, then it must have a complete type (or be a | ||||
| 4471 | // flexible array member, which we explicitly want to | ||||
| 4472 | // white-list anyway), which makes the following checks trivial. | ||||
| 4473 | if (!FD->getType()->isReferenceType()) | ||||
| 4474 | return false; | ||||
| 4475 | } | ||||
| 4476 | |||||
| 4477 | return S.CheckUnaryExprOrTypeTraitOperand(E, ExprKind); | ||||
| 4478 | } | ||||
| 4479 | |||||
| 4480 | bool Sema::CheckVecStepExpr(Expr *E) { | ||||
| 4481 | E = E->IgnoreParens(); | ||||
| 4482 | |||||
| 4483 | // Cannot know anything else if the expression is dependent. | ||||
| 4484 | if (E->isTypeDependent()) | ||||
| 4485 | return false; | ||||
| 4486 | |||||
| 4487 | return CheckUnaryExprOrTypeTraitOperand(E, UETT_VecStep); | ||||
| 4488 | } | ||||
| 4489 | |||||
| 4490 | static void captureVariablyModifiedType(ASTContext &Context, QualType T, | ||||
| 4491 | CapturingScopeInfo *CSI) { | ||||
| 4492 | assert(T->isVariablyModifiedType())(static_cast <bool> (T->isVariablyModifiedType()) ? void (0) : __assert_fail ("T->isVariablyModifiedType()", "clang/lib/Sema/SemaExpr.cpp" , 4492, __extension__ __PRETTY_FUNCTION__)); | ||||
| 4493 | assert(CSI != nullptr)(static_cast <bool> (CSI != nullptr) ? void (0) : __assert_fail ("CSI != nullptr", "clang/lib/Sema/SemaExpr.cpp", 4493, __extension__ __PRETTY_FUNCTION__)); | ||||
| 4494 | |||||
| 4495 | // We're going to walk down into the type and look for VLA expressions. | ||||
| 4496 | do { | ||||
| 4497 | const Type *Ty = T.getTypePtr(); | ||||
| 4498 | switch (Ty->getTypeClass()) { | ||||
| 4499 | #define TYPE(Class, Base) | ||||
| 4500 | #define ABSTRACT_TYPE(Class, Base) | ||||
| 4501 | #define NON_CANONICAL_TYPE(Class, Base) | ||||
| 4502 | #define DEPENDENT_TYPE(Class, Base) case Type::Class: | ||||
| 4503 | #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) | ||||
| 4504 | #include "clang/AST/TypeNodes.inc" | ||||
| 4505 | T = QualType(); | ||||
| 4506 | break; | ||||
| 4507 | // These types are never variably-modified. | ||||
| 4508 | case Type::Builtin: | ||||
| 4509 | case Type::Complex: | ||||
| 4510 | case Type::Vector: | ||||
| 4511 | case Type::ExtVector: | ||||
| 4512 | case Type::ConstantMatrix: | ||||
| 4513 | case Type::Record: | ||||
| 4514 | case Type::Enum: | ||||
| 4515 | case Type::TemplateSpecialization: | ||||
| 4516 | case Type::ObjCObject: | ||||
| 4517 | case Type::ObjCInterface: | ||||
| 4518 | case Type::ObjCObjectPointer: | ||||
| 4519 | case Type::ObjCTypeParam: | ||||
| 4520 | case Type::Pipe: | ||||
| 4521 | case Type::BitInt: | ||||
| 4522 | llvm_unreachable("type class is never variably-modified!")::llvm::llvm_unreachable_internal("type class is never variably-modified!" , "clang/lib/Sema/SemaExpr.cpp", 4522); | ||||
| 4523 | case Type::Elaborated: | ||||
| 4524 | T = cast<ElaboratedType>(Ty)->getNamedType(); | ||||
| 4525 | break; | ||||
| 4526 | case Type::Adjusted: | ||||
| 4527 | T = cast<AdjustedType>(Ty)->getOriginalType(); | ||||
| 4528 | break; | ||||
| 4529 | case Type::Decayed: | ||||
| 4530 | T = cast<DecayedType>(Ty)->getPointeeType(); | ||||
| 4531 | break; | ||||
| 4532 | case Type::Pointer: | ||||
| 4533 | T = cast<PointerType>(Ty)->getPointeeType(); | ||||
| 4534 | break; | ||||
| 4535 | case Type::BlockPointer: | ||||
| 4536 | T = cast<BlockPointerType>(Ty)->getPointeeType(); | ||||
| 4537 | break; | ||||
| 4538 | case Type::LValueReference: | ||||
| 4539 | case Type::RValueReference: | ||||
| 4540 | T = cast<ReferenceType>(Ty)->getPointeeType(); | ||||
| 4541 | break; | ||||
| 4542 | case Type::MemberPointer: | ||||
| 4543 | T = cast<MemberPointerType>(Ty)->getPointeeType(); | ||||
| 4544 | break; | ||||
| 4545 | case Type::ConstantArray: | ||||
| 4546 | case Type::IncompleteArray: | ||||
| 4547 | // Losing element qualification here is fine. | ||||
| 4548 | T = cast<ArrayType>(Ty)->getElementType(); | ||||
| 4549 | break; | ||||
| 4550 | case Type::VariableArray: { | ||||
| 4551 | // Losing element qualification here is fine. | ||||
| 4552 | const VariableArrayType *VAT = cast<VariableArrayType>(Ty); | ||||
| 4553 | |||||
| 4554 | // Unknown size indication requires no size computation. | ||||
| 4555 | // Otherwise, evaluate and record it. | ||||
| 4556 | auto Size = VAT->getSizeExpr(); | ||||
| 4557 | if (Size && !CSI->isVLATypeCaptured(VAT) && | ||||
| 4558 | (isa<CapturedRegionScopeInfo>(CSI) || isa<LambdaScopeInfo>(CSI))) | ||||
| 4559 | CSI->addVLATypeCapture(Size->getExprLoc(), VAT, Context.getSizeType()); | ||||
| 4560 | |||||
| 4561 | T = VAT->getElementType(); | ||||
| 4562 | break; | ||||
| 4563 | } | ||||
| 4564 | case Type::FunctionProto: | ||||
| 4565 | case Type::FunctionNoProto: | ||||
| 4566 | T = cast<FunctionType>(Ty)->getReturnType(); | ||||
| 4567 | break; | ||||
| 4568 | case Type::Paren: | ||||
| 4569 | case Type::TypeOf: | ||||
| 4570 | case Type::UnaryTransform: | ||||
| 4571 | case Type::Attributed: | ||||
| 4572 | case Type::BTFTagAttributed: | ||||
| 4573 | case Type::SubstTemplateTypeParm: | ||||
| 4574 | case Type::MacroQualified: | ||||
| 4575 | // Keep walking after single level desugaring. | ||||
| 4576 | T = T.getSingleStepDesugaredType(Context); | ||||
| 4577 | break; | ||||
| 4578 | case Type::Typedef: | ||||
| 4579 | T = cast<TypedefType>(Ty)->desugar(); | ||||
| 4580 | break; | ||||
| 4581 | case Type::Decltype: | ||||
| 4582 | T = cast<DecltypeType>(Ty)->desugar(); | ||||
| 4583 | break; | ||||
| 4584 | case Type::Using: | ||||
| 4585 | T = cast<UsingType>(Ty)->desugar(); | ||||
| 4586 | break; | ||||
| 4587 | case Type::Auto: | ||||
| 4588 | case Type::DeducedTemplateSpecialization: | ||||
| 4589 | T = cast<DeducedType>(Ty)->getDeducedType(); | ||||
| 4590 | break; | ||||
| 4591 | case Type::TypeOfExpr: | ||||
| 4592 | T = cast<TypeOfExprType>(Ty)->getUnderlyingExpr()->getType(); | ||||
| 4593 | break; | ||||
| 4594 | case Type::Atomic: | ||||
| 4595 | T = cast<AtomicType>(Ty)->getValueType(); | ||||
| 4596 | break; | ||||
| 4597 | } | ||||
| 4598 | } while (!T.isNull() && T->isVariablyModifiedType()); | ||||
| 4599 | } | ||||
| 4600 | |||||
| 4601 | /// Build a sizeof or alignof expression given a type operand. | ||||
| 4602 | ExprResult | ||||
| 4603 | Sema::CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo, | ||||
| 4604 | SourceLocation OpLoc, | ||||
| 4605 | UnaryExprOrTypeTrait ExprKind, | ||||
| 4606 | SourceRange R) { | ||||
| 4607 | if (!TInfo) | ||||
| 4608 | return ExprError(); | ||||
| 4609 | |||||
| 4610 | QualType T = TInfo->getType(); | ||||
| 4611 | |||||
| 4612 | if (!T->isDependentType() && | ||||
| 4613 | CheckUnaryExprOrTypeTraitOperand(T, OpLoc, R, ExprKind)) | ||||
| 4614 | return ExprError(); | ||||
| 4615 | |||||
| 4616 | if (T->isVariablyModifiedType() && FunctionScopes.size() > 1) { | ||||
| 4617 | if (auto *TT = T->getAs<TypedefType>()) { | ||||
| 4618 | for (auto I = FunctionScopes.rbegin(), | ||||
| 4619 | E = std::prev(FunctionScopes.rend()); | ||||
| 4620 | I != E; ++I) { | ||||
| 4621 | auto *CSI = dyn_cast<CapturingScopeInfo>(*I); | ||||
| 4622 | if (CSI == nullptr) | ||||
| 4623 | break; | ||||
| 4624 | DeclContext *DC = nullptr; | ||||
| 4625 | if (auto *LSI = dyn_cast<LambdaScopeInfo>(CSI)) | ||||
| 4626 | DC = LSI->CallOperator; | ||||
| 4627 | else if (auto *CRSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) | ||||
| 4628 | DC = CRSI->TheCapturedDecl; | ||||
| 4629 | else if (auto *BSI = dyn_cast<BlockScopeInfo>(CSI)) | ||||
| 4630 | DC = BSI->TheDecl; | ||||
| 4631 | if (DC) { | ||||
| 4632 | if (DC->containsDecl(TT->getDecl())) | ||||
| 4633 | break; | ||||
| 4634 | captureVariablyModifiedType(Context, T, CSI); | ||||
| 4635 | } | ||||
| 4636 | } | ||||
| 4637 | } | ||||
| 4638 | } | ||||
| 4639 | |||||
| 4640 | // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t. | ||||
| 4641 | if (isUnevaluatedContext() && ExprKind == UETT_SizeOf && | ||||
| 4642 | TInfo->getType()->isVariablyModifiedType()) | ||||
| 4643 | TInfo = TransformToPotentiallyEvaluated(TInfo); | ||||
| 4644 | |||||
| 4645 | return new (Context) UnaryExprOrTypeTraitExpr( | ||||
| 4646 | ExprKind, TInfo, Context.getSizeType(), OpLoc, R.getEnd()); | ||||
| 4647 | } | ||||
| 4648 | |||||
| 4649 | /// Build a sizeof or alignof expression given an expression | ||||
| 4650 | /// operand. | ||||
| 4651 | ExprResult | ||||
| 4652 | Sema::CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc, | ||||
| 4653 | UnaryExprOrTypeTrait ExprKind) { | ||||
| 4654 | ExprResult PE = CheckPlaceholderExpr(E); | ||||
| 4655 | if (PE.isInvalid()) | ||||
| 4656 | return ExprError(); | ||||
| 4657 | |||||
| 4658 | E = PE.get(); | ||||
| 4659 | |||||
| 4660 | // Verify that the operand is valid. | ||||
| 4661 | bool isInvalid = false; | ||||
| 4662 | if (E->isTypeDependent()) { | ||||
| 4663 | // Delay type-checking for type-dependent expressions. | ||||
| 4664 | } else if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) { | ||||
| 4665 | isInvalid = CheckAlignOfExpr(*this, E, ExprKind); | ||||
| 4666 | } else if (ExprKind == UETT_VecStep) { | ||||
| 4667 | isInvalid = CheckVecStepExpr(E); | ||||
| 4668 | } else if (ExprKind == UETT_OpenMPRequiredSimdAlign) { | ||||
| 4669 | Diag(E->getExprLoc(), diag::err_openmp_default_simd_align_expr); | ||||
| 4670 | isInvalid = true; | ||||
| 4671 | } else if (E->refersToBitField()) { // C99 6.5.3.4p1. | ||||
| 4672 | Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield) << 0; | ||||
| 4673 | isInvalid = true; | ||||
| 4674 | } else { | ||||
| 4675 | isInvalid = CheckUnaryExprOrTypeTraitOperand(E, UETT_SizeOf); | ||||
| 4676 | } | ||||
| 4677 | |||||
| 4678 | if (isInvalid) | ||||
| 4679 | return ExprError(); | ||||
| 4680 | |||||
| 4681 | if (ExprKind == UETT_SizeOf && E->getType()->isVariableArrayType()) { | ||||
| 4682 | PE = TransformToPotentiallyEvaluated(E); | ||||
| 4683 | if (PE.isInvalid()) return ExprError(); | ||||
| 4684 | E = PE.get(); | ||||
| 4685 | } | ||||
| 4686 | |||||
| 4687 | // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t. | ||||
| 4688 | return new (Context) UnaryExprOrTypeTraitExpr( | ||||
| 4689 | ExprKind, E, Context.getSizeType(), OpLoc, E->getSourceRange().getEnd()); | ||||
| 4690 | } | ||||
| 4691 | |||||
| 4692 | /// ActOnUnaryExprOrTypeTraitExpr - Handle @c sizeof(type) and @c sizeof @c | ||||
| 4693 | /// expr and the same for @c alignof and @c __alignof | ||||
| 4694 | /// Note that the ArgRange is invalid if isType is false. | ||||
| 4695 | ExprResult | ||||
| 4696 | Sema::ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc, | ||||
| 4697 | UnaryExprOrTypeTrait ExprKind, bool IsType, | ||||
| 4698 | void *TyOrEx, SourceRange ArgRange) { | ||||
| 4699 | // If error parsing type, ignore. | ||||
| 4700 | if (!TyOrEx) return ExprError(); | ||||
| 4701 | |||||
| 4702 | if (IsType) { | ||||
| 4703 | TypeSourceInfo *TInfo; | ||||
| 4704 | (void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo); | ||||
| 4705 | return CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, ArgRange); | ||||
| 4706 | } | ||||
| 4707 | |||||
| 4708 | Expr *ArgEx = (Expr *)TyOrEx; | ||||
| 4709 | ExprResult Result = CreateUnaryExprOrTypeTraitExpr(ArgEx, OpLoc, ExprKind); | ||||
| 4710 | return Result; | ||||
| 4711 | } | ||||
| 4712 | |||||
| 4713 | static QualType CheckRealImagOperand(Sema &S, ExprResult &V, SourceLocation Loc, | ||||
| 4714 | bool IsReal) { | ||||
| 4715 | if (V.get()->isTypeDependent()) | ||||
| 4716 | return S.Context.DependentTy; | ||||
| 4717 | |||||
| 4718 | // _Real and _Imag are only l-values for normal l-values. | ||||
| 4719 | if (V.get()->getObjectKind() != OK_Ordinary) { | ||||
| 4720 | V = S.DefaultLvalueConversion(V.get()); | ||||
| 4721 | if (V.isInvalid()) | ||||
| 4722 | return QualType(); | ||||
| 4723 | } | ||||
| 4724 | |||||
| 4725 | // These operators return the element type of a complex type. | ||||
| 4726 | if (const ComplexType *CT = V.get()->getType()->getAs<ComplexType>()) | ||||
| 4727 | return CT->getElementType(); | ||||
| 4728 | |||||
| 4729 | // Otherwise they pass through real integer and floating point types here. | ||||
| 4730 | if (V.get()->getType()->isArithmeticType()) | ||||
| 4731 | return V.get()->getType(); | ||||
| 4732 | |||||
| 4733 | // Test for placeholders. | ||||
| 4734 | ExprResult PR = S.CheckPlaceholderExpr(V.get()); | ||||
| 4735 | if (PR.isInvalid()) return QualType(); | ||||
| 4736 | if (PR.get() != V.get()) { | ||||
| 4737 | V = PR; | ||||
| 4738 | return CheckRealImagOperand(S, V, Loc, IsReal); | ||||
| 4739 | } | ||||
| 4740 | |||||
| 4741 | // Reject anything else. | ||||
| 4742 | S.Diag(Loc, diag::err_realimag_invalid_type) << V.get()->getType() | ||||
| 4743 | << (IsReal ? "__real" : "__imag"); | ||||
| 4744 | return QualType(); | ||||
| 4745 | } | ||||
| 4746 | |||||
| 4747 | |||||
| 4748 | |||||
| 4749 | ExprResult | ||||
| 4750 | Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc, | ||||
| 4751 | tok::TokenKind Kind, Expr *Input) { | ||||
| 4752 | UnaryOperatorKind Opc; | ||||
| 4753 | switch (Kind) { | ||||
| 4754 | default: llvm_unreachable("Unknown unary op!")::llvm::llvm_unreachable_internal("Unknown unary op!", "clang/lib/Sema/SemaExpr.cpp" , 4754); | ||||
| 4755 | case tok::plusplus: Opc = UO_PostInc; break; | ||||
| 4756 | case tok::minusminus: Opc = UO_PostDec; break; | ||||
| 4757 | } | ||||
| 4758 | |||||
| 4759 | // Since this might is a postfix expression, get rid of ParenListExprs. | ||||
| 4760 | ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Input); | ||||
| 4761 | if (Result.isInvalid()) return ExprError(); | ||||
| 4762 | Input = Result.get(); | ||||
| 4763 | |||||
| 4764 | return BuildUnaryOp(S, OpLoc, Opc, Input); | ||||
| 4765 | } | ||||
| 4766 | |||||
| 4767 | /// Diagnose if arithmetic on the given ObjC pointer is illegal. | ||||
| 4768 | /// | ||||
| 4769 | /// \return true on error | ||||
| 4770 | static bool checkArithmeticOnObjCPointer(Sema &S, | ||||
| 4771 | SourceLocation opLoc, | ||||
| 4772 | Expr *op) { | ||||
| 4773 | assert(op->getType()->isObjCObjectPointerType())(static_cast <bool> (op->getType()->isObjCObjectPointerType ()) ? void (0) : __assert_fail ("op->getType()->isObjCObjectPointerType()" , "clang/lib/Sema/SemaExpr.cpp", 4773, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 4774 | if (S.LangOpts.ObjCRuntime.allowsPointerArithmetic() && | ||||
| 4775 | !S.LangOpts.ObjCSubscriptingLegacyRuntime) | ||||
| 4776 | return false; | ||||
| 4777 | |||||
| 4778 | S.Diag(opLoc, diag::err_arithmetic_nonfragile_interface) | ||||
| 4779 | << op->getType()->castAs<ObjCObjectPointerType>()->getPointeeType() | ||||
| 4780 | << op->getSourceRange(); | ||||
| 4781 | return true; | ||||
| 4782 | } | ||||
| 4783 | |||||
| 4784 | static bool isMSPropertySubscriptExpr(Sema &S, Expr *Base) { | ||||
| 4785 | auto *BaseNoParens = Base->IgnoreParens(); | ||||
| 4786 | if (auto *MSProp = dyn_cast<MSPropertyRefExpr>(BaseNoParens)) | ||||
| 4787 | return MSProp->getPropertyDecl()->getType()->isArrayType(); | ||||
| 4788 | return isa<MSPropertySubscriptExpr>(BaseNoParens); | ||||
| 4789 | } | ||||
| 4790 | |||||
| 4791 | // Returns the type used for LHS[RHS], given one of LHS, RHS is type-dependent. | ||||
| 4792 | // Typically this is DependentTy, but can sometimes be more precise. | ||||
| 4793 | // | ||||
| 4794 | // There are cases when we could determine a non-dependent type: | ||||
| 4795 | // - LHS and RHS may have non-dependent types despite being type-dependent | ||||
| 4796 | // (e.g. unbounded array static members of the current instantiation) | ||||
| 4797 | // - one may be a dependent-sized array with known element type | ||||
| 4798 | // - one may be a dependent-typed valid index (enum in current instantiation) | ||||
| 4799 | // | ||||
| 4800 | // We *always* return a dependent type, in such cases it is DependentTy. | ||||
| 4801 | // This avoids creating type-dependent expressions with non-dependent types. | ||||
| 4802 | // FIXME: is this important to avoid? See https://reviews.llvm.org/D107275 | ||||
| 4803 | static QualType getDependentArraySubscriptType(Expr *LHS, Expr *RHS, | ||||
| 4804 | const ASTContext &Ctx) { | ||||
| 4805 | assert(LHS->isTypeDependent() || RHS->isTypeDependent())(static_cast <bool> (LHS->isTypeDependent() || RHS-> isTypeDependent()) ? void (0) : __assert_fail ("LHS->isTypeDependent() || RHS->isTypeDependent()" , "clang/lib/Sema/SemaExpr.cpp", 4805, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 4806 | QualType LTy = LHS->getType(), RTy = RHS->getType(); | ||||
| 4807 | QualType Result = Ctx.DependentTy; | ||||
| 4808 | if (RTy->isIntegralOrUnscopedEnumerationType()) { | ||||
| 4809 | if (const PointerType *PT = LTy->getAs<PointerType>()) | ||||
| 4810 | Result = PT->getPointeeType(); | ||||
| 4811 | else if (const ArrayType *AT = LTy->getAsArrayTypeUnsafe()) | ||||
| 4812 | Result = AT->getElementType(); | ||||
| 4813 | } else if (LTy->isIntegralOrUnscopedEnumerationType()) { | ||||
| 4814 | if (const PointerType *PT = RTy->getAs<PointerType>()) | ||||
| 4815 | Result = PT->getPointeeType(); | ||||
| 4816 | else if (const ArrayType *AT = RTy->getAsArrayTypeUnsafe()) | ||||
| 4817 | Result = AT->getElementType(); | ||||
| 4818 | } | ||||
| 4819 | // Ensure we return a dependent type. | ||||
| 4820 | return Result->isDependentType() ? Result : Ctx.DependentTy; | ||||
| 4821 | } | ||||
| 4822 | |||||
| 4823 | static bool checkArgsForPlaceholders(Sema &S, MultiExprArg args); | ||||
| 4824 | |||||
| 4825 | ExprResult Sema::ActOnArraySubscriptExpr(Scope *S, Expr *base, | ||||
| 4826 | SourceLocation lbLoc, | ||||
| 4827 | MultiExprArg ArgExprs, | ||||
| 4828 | SourceLocation rbLoc) { | ||||
| 4829 | |||||
| 4830 | if (base && !base->getType().isNull() && | ||||
| 4831 | base->hasPlaceholderType(BuiltinType::OMPArraySection)) | ||||
| 4832 | return ActOnOMPArraySectionExpr(base, lbLoc, ArgExprs.front(), SourceLocation(), | ||||
| 4833 | SourceLocation(), /*Length*/ nullptr, | ||||
| 4834 | /*Stride=*/nullptr, rbLoc); | ||||
| 4835 | |||||
| 4836 | // Since this might be a postfix expression, get rid of ParenListExprs. | ||||
| 4837 | if (isa<ParenListExpr>(base)) { | ||||
| 4838 | ExprResult result = MaybeConvertParenListExprToParenExpr(S, base); | ||||
| 4839 | if (result.isInvalid()) | ||||
| 4840 | return ExprError(); | ||||
| 4841 | base = result.get(); | ||||
| 4842 | } | ||||
| 4843 | |||||
| 4844 | // Check if base and idx form a MatrixSubscriptExpr. | ||||
| 4845 | // | ||||
| 4846 | // Helper to check for comma expressions, which are not allowed as indices for | ||||
| 4847 | // matrix subscript expressions. | ||||
| 4848 | auto CheckAndReportCommaError = [this, base, rbLoc](Expr *E) { | ||||
| 4849 | if (isa<BinaryOperator>(E) && cast<BinaryOperator>(E)->isCommaOp()) { | ||||
| 4850 | Diag(E->getExprLoc(), diag::err_matrix_subscript_comma) | ||||
| 4851 | << SourceRange(base->getBeginLoc(), rbLoc); | ||||
| 4852 | return true; | ||||
| 4853 | } | ||||
| 4854 | return false; | ||||
| 4855 | }; | ||||
| 4856 | // The matrix subscript operator ([][])is considered a single operator. | ||||
| 4857 | // Separating the index expressions by parenthesis is not allowed. | ||||
| 4858 | if (base->hasPlaceholderType(BuiltinType::IncompleteMatrixIdx) && | ||||
| 4859 | !isa<MatrixSubscriptExpr>(base)) { | ||||
| 4860 | Diag(base->getExprLoc(), diag::err_matrix_separate_incomplete_index) | ||||
| 4861 | << SourceRange(base->getBeginLoc(), rbLoc); | ||||
| 4862 | return ExprError(); | ||||
| 4863 | } | ||||
| 4864 | // If the base is a MatrixSubscriptExpr, try to create a new | ||||
| 4865 | // MatrixSubscriptExpr. | ||||
| 4866 | auto *matSubscriptE = dyn_cast<MatrixSubscriptExpr>(base); | ||||
| 4867 | if (matSubscriptE) { | ||||
| 4868 | assert(ArgExprs.size() == 1)(static_cast <bool> (ArgExprs.size() == 1) ? void (0) : __assert_fail ("ArgExprs.size() == 1", "clang/lib/Sema/SemaExpr.cpp" , 4868, __extension__ __PRETTY_FUNCTION__)); | ||||
| 4869 | if (CheckAndReportCommaError(ArgExprs.front())) | ||||
| 4870 | return ExprError(); | ||||
| 4871 | |||||
| 4872 | assert(matSubscriptE->isIncomplete() &&(static_cast <bool> (matSubscriptE->isIncomplete() && "base has to be an incomplete matrix subscript") ? void (0) : __assert_fail ("matSubscriptE->isIncomplete() && \"base has to be an incomplete matrix subscript\"" , "clang/lib/Sema/SemaExpr.cpp", 4873, __extension__ __PRETTY_FUNCTION__ )) | ||||
| 4873 | "base has to be an incomplete matrix subscript")(static_cast <bool> (matSubscriptE->isIncomplete() && "base has to be an incomplete matrix subscript") ? void (0) : __assert_fail ("matSubscriptE->isIncomplete() && \"base has to be an incomplete matrix subscript\"" , "clang/lib/Sema/SemaExpr.cpp", 4873, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 4874 | return CreateBuiltinMatrixSubscriptExpr(matSubscriptE->getBase(), | ||||
| 4875 | matSubscriptE->getRowIdx(), | ||||
| 4876 | ArgExprs.front(), rbLoc); | ||||
| 4877 | } | ||||
| 4878 | |||||
| 4879 | // Handle any non-overload placeholder types in the base and index | ||||
| 4880 | // expressions. We can't handle overloads here because the other | ||||
| 4881 | // operand might be an overloadable type, in which case the overload | ||||
| 4882 | // resolution for the operator overload should get the first crack | ||||
| 4883 | // at the overload. | ||||
| 4884 | bool IsMSPropertySubscript = false; | ||||
| 4885 | if (base->getType()->isNonOverloadPlaceholderType()) { | ||||
| 4886 | IsMSPropertySubscript = isMSPropertySubscriptExpr(*this, base); | ||||
| 4887 | if (!IsMSPropertySubscript) { | ||||
| 4888 | ExprResult result = CheckPlaceholderExpr(base); | ||||
| 4889 | if (result.isInvalid()) | ||||
| 4890 | return ExprError(); | ||||
| 4891 | base = result.get(); | ||||
| 4892 | } | ||||
| 4893 | } | ||||
| 4894 | |||||
| 4895 | // If the base is a matrix type, try to create a new MatrixSubscriptExpr. | ||||
| 4896 | if (base->getType()->isMatrixType()) { | ||||
| 4897 | assert(ArgExprs.size() == 1)(static_cast <bool> (ArgExprs.size() == 1) ? void (0) : __assert_fail ("ArgExprs.size() == 1", "clang/lib/Sema/SemaExpr.cpp" , 4897, __extension__ __PRETTY_FUNCTION__)); | ||||
| 4898 | if (CheckAndReportCommaError(ArgExprs.front())) | ||||
| 4899 | return ExprError(); | ||||
| 4900 | |||||
| 4901 | return CreateBuiltinMatrixSubscriptExpr(base, ArgExprs.front(), nullptr, | ||||
| 4902 | rbLoc); | ||||
| 4903 | } | ||||
| 4904 | |||||
| 4905 | if (ArgExprs.size() == 1 && getLangOpts().CPlusPlus20) { | ||||
| 4906 | Expr *idx = ArgExprs[0]; | ||||
| 4907 | if ((isa<BinaryOperator>(idx) && cast<BinaryOperator>(idx)->isCommaOp()) || | ||||
| 4908 | (isa<CXXOperatorCallExpr>(idx) && | ||||
| 4909 | cast<CXXOperatorCallExpr>(idx)->getOperator() == OO_Comma)) { | ||||
| 4910 | Diag(idx->getExprLoc(), diag::warn_deprecated_comma_subscript) | ||||
| 4911 | << SourceRange(base->getBeginLoc(), rbLoc); | ||||
| 4912 | } | ||||
| 4913 | } | ||||
| 4914 | |||||
| 4915 | if (ArgExprs.size() == 1 && | ||||
| 4916 | ArgExprs[0]->getType()->isNonOverloadPlaceholderType()) { | ||||
| 4917 | ExprResult result = CheckPlaceholderExpr(ArgExprs[0]); | ||||
| 4918 | if (result.isInvalid()) | ||||
| 4919 | return ExprError(); | ||||
| 4920 | ArgExprs[0] = result.get(); | ||||
| 4921 | } else { | ||||
| 4922 | if (checkArgsForPlaceholders(*this, ArgExprs)) | ||||
| 4923 | return ExprError(); | ||||
| 4924 | } | ||||
| 4925 | |||||
| 4926 | // Build an unanalyzed expression if either operand is type-dependent. | ||||
| 4927 | if (getLangOpts().CPlusPlus && ArgExprs.size() == 1 && | ||||
| 4928 | (base->isTypeDependent() || | ||||
| 4929 | Expr::hasAnyTypeDependentArguments(ArgExprs))) { | ||||
| 4930 | return new (Context) ArraySubscriptExpr( | ||||
| 4931 | base, ArgExprs.front(), | ||||
| 4932 | getDependentArraySubscriptType(base, ArgExprs.front(), getASTContext()), | ||||
| 4933 | VK_LValue, OK_Ordinary, rbLoc); | ||||
| 4934 | } | ||||
| 4935 | |||||
| 4936 | // MSDN, property (C++) | ||||
| 4937 | // https://msdn.microsoft.com/en-us/library/yhfk0thd(v=vs.120).aspx | ||||
| 4938 | // This attribute can also be used in the declaration of an empty array in a | ||||
| 4939 | // class or structure definition. For example: | ||||
| 4940 | // __declspec(property(get=GetX, put=PutX)) int x[]; | ||||
| 4941 | // The above statement indicates that x[] can be used with one or more array | ||||
| 4942 | // indices. In this case, i=p->x[a][b] will be turned into i=p->GetX(a, b), | ||||
| 4943 | // and p->x[a][b] = i will be turned into p->PutX(a, b, i); | ||||
| 4944 | if (IsMSPropertySubscript) { | ||||
| 4945 | assert(ArgExprs.size() == 1)(static_cast <bool> (ArgExprs.size() == 1) ? void (0) : __assert_fail ("ArgExprs.size() == 1", "clang/lib/Sema/SemaExpr.cpp" , 4945, __extension__ __PRETTY_FUNCTION__)); | ||||
| 4946 | // Build MS property subscript expression if base is MS property reference | ||||
| 4947 | // or MS property subscript. | ||||
| 4948 | return new (Context) | ||||
| 4949 | MSPropertySubscriptExpr(base, ArgExprs.front(), Context.PseudoObjectTy, | ||||
| 4950 | VK_LValue, OK_Ordinary, rbLoc); | ||||
| 4951 | } | ||||
| 4952 | |||||
| 4953 | // Use C++ overloaded-operator rules if either operand has record | ||||
| 4954 | // type. The spec says to do this if either type is *overloadable*, | ||||
| 4955 | // but enum types can't declare subscript operators or conversion | ||||
| 4956 | // operators, so there's nothing interesting for overload resolution | ||||
| 4957 | // to do if there aren't any record types involved. | ||||
| 4958 | // | ||||
| 4959 | // ObjC pointers have their own subscripting logic that is not tied | ||||
| 4960 | // to overload resolution and so should not take this path. | ||||
| 4961 | if (getLangOpts().CPlusPlus && !base->getType()->isObjCObjectPointerType() && | ||||
| 4962 | ((base->getType()->isRecordType() || | ||||
| 4963 | (ArgExprs.size() != 1 || ArgExprs[0]->getType()->isRecordType())))) { | ||||
| 4964 | return CreateOverloadedArraySubscriptExpr(lbLoc, rbLoc, base, ArgExprs); | ||||
| 4965 | } | ||||
| 4966 | |||||
| 4967 | ExprResult Res = | ||||
| 4968 | CreateBuiltinArraySubscriptExpr(base, lbLoc, ArgExprs.front(), rbLoc); | ||||
| 4969 | |||||
| 4970 | if (!Res.isInvalid() && isa<ArraySubscriptExpr>(Res.get())) | ||||
| 4971 | CheckSubscriptAccessOfNoDeref(cast<ArraySubscriptExpr>(Res.get())); | ||||
| 4972 | |||||
| 4973 | return Res; | ||||
| 4974 | } | ||||
| 4975 | |||||
| 4976 | ExprResult Sema::tryConvertExprToType(Expr *E, QualType Ty) { | ||||
| 4977 | InitializedEntity Entity = InitializedEntity::InitializeTemporary(Ty); | ||||
| 4978 | InitializationKind Kind = | ||||
| 4979 | InitializationKind::CreateCopy(E->getBeginLoc(), SourceLocation()); | ||||
| 4980 | InitializationSequence InitSeq(*this, Entity, Kind, E); | ||||
| 4981 | return InitSeq.Perform(*this, Entity, Kind, E); | ||||
| 4982 | } | ||||
| 4983 | |||||
| 4984 | ExprResult Sema::CreateBuiltinMatrixSubscriptExpr(Expr *Base, Expr *RowIdx, | ||||
| 4985 | Expr *ColumnIdx, | ||||
| 4986 | SourceLocation RBLoc) { | ||||
| 4987 | ExprResult BaseR = CheckPlaceholderExpr(Base); | ||||
| 4988 | if (BaseR.isInvalid()) | ||||
| 4989 | return BaseR; | ||||
| 4990 | Base = BaseR.get(); | ||||
| 4991 | |||||
| 4992 | ExprResult RowR = CheckPlaceholderExpr(RowIdx); | ||||
| 4993 | if (RowR.isInvalid()) | ||||
| 4994 | return RowR; | ||||
| 4995 | RowIdx = RowR.get(); | ||||
| 4996 | |||||
| 4997 | if (!ColumnIdx) | ||||
| 4998 | return new (Context) MatrixSubscriptExpr( | ||||
| 4999 | Base, RowIdx, ColumnIdx, Context.IncompleteMatrixIdxTy, RBLoc); | ||||
| 5000 | |||||
| 5001 | // Build an unanalyzed expression if any of the operands is type-dependent. | ||||
| 5002 | if (Base->isTypeDependent() || RowIdx->isTypeDependent() || | ||||
| 5003 | ColumnIdx->isTypeDependent()) | ||||
| 5004 | return new (Context) MatrixSubscriptExpr(Base, RowIdx, ColumnIdx, | ||||
| 5005 | Context.DependentTy, RBLoc); | ||||
| 5006 | |||||
| 5007 | ExprResult ColumnR = CheckPlaceholderExpr(ColumnIdx); | ||||
| 5008 | if (ColumnR.isInvalid()) | ||||
| 5009 | return ColumnR; | ||||
| 5010 | ColumnIdx = ColumnR.get(); | ||||
| 5011 | |||||
| 5012 | // Check that IndexExpr is an integer expression. If it is a constant | ||||
| 5013 | // expression, check that it is less than Dim (= the number of elements in the | ||||
| 5014 | // corresponding dimension). | ||||
| 5015 | auto IsIndexValid = [&](Expr *IndexExpr, unsigned Dim, | ||||
| 5016 | bool IsColumnIdx) -> Expr * { | ||||
| 5017 | if (!IndexExpr->getType()->isIntegerType() && | ||||
| 5018 | !IndexExpr->isTypeDependent()) { | ||||
| 5019 | Diag(IndexExpr->getBeginLoc(), diag::err_matrix_index_not_integer) | ||||
| 5020 | << IsColumnIdx; | ||||
| 5021 | return nullptr; | ||||
| 5022 | } | ||||
| 5023 | |||||
| 5024 | if (std::optional<llvm::APSInt> Idx = | ||||
| 5025 | IndexExpr->getIntegerConstantExpr(Context)) { | ||||
| 5026 | if ((*Idx < 0 || *Idx >= Dim)) { | ||||
| 5027 | Diag(IndexExpr->getBeginLoc(), diag::err_matrix_index_outside_range) | ||||
| 5028 | << IsColumnIdx << Dim; | ||||
| 5029 | return nullptr; | ||||
| 5030 | } | ||||
| 5031 | } | ||||
| 5032 | |||||
| 5033 | ExprResult ConvExpr = | ||||
| 5034 | tryConvertExprToType(IndexExpr, Context.getSizeType()); | ||||
| 5035 | assert(!ConvExpr.isInvalid() &&(static_cast <bool> (!ConvExpr.isInvalid() && "should be able to convert any integer type to size type" ) ? void (0) : __assert_fail ("!ConvExpr.isInvalid() && \"should be able to convert any integer type to size type\"" , "clang/lib/Sema/SemaExpr.cpp", 5036, __extension__ __PRETTY_FUNCTION__ )) | ||||
| 5036 | "should be able to convert any integer type to size type")(static_cast <bool> (!ConvExpr.isInvalid() && "should be able to convert any integer type to size type" ) ? void (0) : __assert_fail ("!ConvExpr.isInvalid() && \"should be able to convert any integer type to size type\"" , "clang/lib/Sema/SemaExpr.cpp", 5036, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 5037 | return ConvExpr.get(); | ||||
| 5038 | }; | ||||
| 5039 | |||||
| 5040 | auto *MTy = Base->getType()->getAs<ConstantMatrixType>(); | ||||
| 5041 | RowIdx = IsIndexValid(RowIdx, MTy->getNumRows(), false); | ||||
| 5042 | ColumnIdx = IsIndexValid(ColumnIdx, MTy->getNumColumns(), true); | ||||
| 5043 | if (!RowIdx || !ColumnIdx) | ||||
| 5044 | return ExprError(); | ||||
| 5045 | |||||
| 5046 | return new (Context) MatrixSubscriptExpr(Base, RowIdx, ColumnIdx, | ||||
| 5047 | MTy->getElementType(), RBLoc); | ||||
| 5048 | } | ||||
| 5049 | |||||
| 5050 | void Sema::CheckAddressOfNoDeref(const Expr *E) { | ||||
| 5051 | ExpressionEvaluationContextRecord &LastRecord = ExprEvalContexts.back(); | ||||
| 5052 | const Expr *StrippedExpr = E->IgnoreParenImpCasts(); | ||||
| 5053 | |||||
| 5054 | // For expressions like `&(*s).b`, the base is recorded and what should be | ||||
| 5055 | // checked. | ||||
| 5056 | const MemberExpr *Member = nullptr; | ||||
| 5057 | while ((Member = dyn_cast<MemberExpr>(StrippedExpr)) && !Member->isArrow()) | ||||
| 5058 | StrippedExpr = Member->getBase()->IgnoreParenImpCasts(); | ||||
| 5059 | |||||
| 5060 | LastRecord.PossibleDerefs.erase(StrippedExpr); | ||||
| 5061 | } | ||||
| 5062 | |||||
| 5063 | void Sema::CheckSubscriptAccessOfNoDeref(const ArraySubscriptExpr *E) { | ||||
| 5064 | if (isUnevaluatedContext()) | ||||
| 5065 | return; | ||||
| 5066 | |||||
| 5067 | QualType ResultTy = E->getType(); | ||||
| 5068 | ExpressionEvaluationContextRecord &LastRecord = ExprEvalContexts.back(); | ||||
| 5069 | |||||
| 5070 | // Bail if the element is an array since it is not memory access. | ||||
| 5071 | if (isa<ArrayType>(ResultTy)) | ||||
| 5072 | return; | ||||
| 5073 | |||||
| 5074 | if (ResultTy->hasAttr(attr::NoDeref)) { | ||||
| 5075 | LastRecord.PossibleDerefs.insert(E); | ||||
| 5076 | return; | ||||
| 5077 | } | ||||
| 5078 | |||||
| 5079 | // Check if the base type is a pointer to a member access of a struct | ||||
| 5080 | // marked with noderef. | ||||
| 5081 | const Expr *Base = E->getBase(); | ||||
| 5082 | QualType BaseTy = Base->getType(); | ||||
| 5083 | if (!(isa<ArrayType>(BaseTy) || isa<PointerType>(BaseTy))) | ||||
| 5084 | // Not a pointer access | ||||
| 5085 | return; | ||||
| 5086 | |||||
| 5087 | const MemberExpr *Member = nullptr; | ||||
| 5088 | while ((Member = dyn_cast<MemberExpr>(Base->IgnoreParenCasts())) && | ||||
| 5089 | Member->isArrow()) | ||||
| 5090 | Base = Member->getBase(); | ||||
| 5091 | |||||
| 5092 | if (const auto *Ptr = dyn_cast<PointerType>(Base->getType())) { | ||||
| 5093 | if (Ptr->getPointeeType()->hasAttr(attr::NoDeref)) | ||||
| 5094 | LastRecord.PossibleDerefs.insert(E); | ||||
| 5095 | } | ||||
| 5096 | } | ||||
| 5097 | |||||
| 5098 | ExprResult Sema::ActOnOMPArraySectionExpr(Expr *Base, SourceLocation LBLoc, | ||||
| 5099 | Expr *LowerBound, | ||||
| 5100 | SourceLocation ColonLocFirst, | ||||
| 5101 | SourceLocation ColonLocSecond, | ||||
| 5102 | Expr *Length, Expr *Stride, | ||||
| 5103 | SourceLocation RBLoc) { | ||||
| 5104 | if (Base->hasPlaceholderType() && | ||||
| 5105 | !Base->hasPlaceholderType(BuiltinType::OMPArraySection)) { | ||||
| 5106 | ExprResult Result = CheckPlaceholderExpr(Base); | ||||
| 5107 | if (Result.isInvalid()) | ||||
| 5108 | return ExprError(); | ||||
| 5109 | Base = Result.get(); | ||||
| 5110 | } | ||||
| 5111 | if (LowerBound && LowerBound->getType()->isNonOverloadPlaceholderType()) { | ||||
| 5112 | ExprResult Result = CheckPlaceholderExpr(LowerBound); | ||||
| 5113 | if (Result.isInvalid()) | ||||
| 5114 | return ExprError(); | ||||
| 5115 | Result = DefaultLvalueConversion(Result.get()); | ||||
| 5116 | if (Result.isInvalid()) | ||||
| 5117 | return ExprError(); | ||||
| 5118 | LowerBound = Result.get(); | ||||
| 5119 | } | ||||
| 5120 | if (Length && Length->getType()->isNonOverloadPlaceholderType()) { | ||||
| 5121 | ExprResult Result = CheckPlaceholderExpr(Length); | ||||
| 5122 | if (Result.isInvalid()) | ||||
| 5123 | return ExprError(); | ||||
| 5124 | Result = DefaultLvalueConversion(Result.get()); | ||||
| 5125 | if (Result.isInvalid()) | ||||
| 5126 | return ExprError(); | ||||
| 5127 | Length = Result.get(); | ||||
| 5128 | } | ||||
| 5129 | if (Stride && Stride->getType()->isNonOverloadPlaceholderType()) { | ||||
| 5130 | ExprResult Result = CheckPlaceholderExpr(Stride); | ||||
| 5131 | if (Result.isInvalid()) | ||||
| 5132 | return ExprError(); | ||||
| 5133 | Result = DefaultLvalueConversion(Result.get()); | ||||
| 5134 | if (Result.isInvalid()) | ||||
| 5135 | return ExprError(); | ||||
| 5136 | Stride = Result.get(); | ||||
| 5137 | } | ||||
| 5138 | |||||
| 5139 | // Build an unanalyzed expression if either operand is type-dependent. | ||||
| 5140 | if (Base->isTypeDependent() || | ||||
| 5141 | (LowerBound && | ||||
| 5142 | (LowerBound->isTypeDependent() || LowerBound->isValueDependent())) || | ||||
| 5143 | (Length && (Length->isTypeDependent() || Length->isValueDependent())) || | ||||
| 5144 | (Stride && (Stride->isTypeDependent() || Stride->isValueDependent()))) { | ||||
| 5145 | return new (Context) OMPArraySectionExpr( | ||||
| 5146 | Base, LowerBound, Length, Stride, Context.DependentTy, VK_LValue, | ||||
| 5147 | OK_Ordinary, ColonLocFirst, ColonLocSecond, RBLoc); | ||||
| 5148 | } | ||||
| 5149 | |||||
| 5150 | // Perform default conversions. | ||||
| 5151 | QualType OriginalTy = OMPArraySectionExpr::getBaseOriginalType(Base); | ||||
| 5152 | QualType ResultTy; | ||||
| 5153 | if (OriginalTy->isAnyPointerType()) { | ||||
| 5154 | ResultTy = OriginalTy->getPointeeType(); | ||||
| 5155 | } else if (OriginalTy->isArrayType()) { | ||||
| 5156 | ResultTy = OriginalTy->getAsArrayTypeUnsafe()->getElementType(); | ||||
| 5157 | } else { | ||||
| 5158 | return ExprError( | ||||
| 5159 | Diag(Base->getExprLoc(), diag::err_omp_typecheck_section_value) | ||||
| 5160 | << Base->getSourceRange()); | ||||
| 5161 | } | ||||
| 5162 | // C99 6.5.2.1p1 | ||||
| 5163 | if (LowerBound) { | ||||
| 5164 | auto Res = PerformOpenMPImplicitIntegerConversion(LowerBound->getExprLoc(), | ||||
| 5165 | LowerBound); | ||||
| 5166 | if (Res.isInvalid()) | ||||
| 5167 | return ExprError(Diag(LowerBound->getExprLoc(), | ||||
| 5168 | diag::err_omp_typecheck_section_not_integer) | ||||
| 5169 | << 0 << LowerBound->getSourceRange()); | ||||
| 5170 | LowerBound = Res.get(); | ||||
| 5171 | |||||
| 5172 | if (LowerBound->getType()->isSpecificBuiltinType(BuiltinType::Char_S) || | ||||
| 5173 | LowerBound->getType()->isSpecificBuiltinType(BuiltinType::Char_U)) | ||||
| 5174 | Diag(LowerBound->getExprLoc(), diag::warn_omp_section_is_char) | ||||
| 5175 | << 0 << LowerBound->getSourceRange(); | ||||
| 5176 | } | ||||
| 5177 | if (Length) { | ||||
| 5178 | auto Res = | ||||
| 5179 | PerformOpenMPImplicitIntegerConversion(Length->getExprLoc(), Length); | ||||
| 5180 | if (Res.isInvalid()) | ||||
| 5181 | return ExprError(Diag(Length->getExprLoc(), | ||||
| 5182 | diag::err_omp_typecheck_section_not_integer) | ||||
| 5183 | << 1 << Length->getSourceRange()); | ||||
| 5184 | Length = Res.get(); | ||||
| 5185 | |||||
| 5186 | if (Length->getType()->isSpecificBuiltinType(BuiltinType::Char_S) || | ||||
| 5187 | Length->getType()->isSpecificBuiltinType(BuiltinType::Char_U)) | ||||
| 5188 | Diag(Length->getExprLoc(), diag::warn_omp_section_is_char) | ||||
| 5189 | << 1 << Length->getSourceRange(); | ||||
| 5190 | } | ||||
| 5191 | if (Stride) { | ||||
| 5192 | ExprResult Res = | ||||
| 5193 | PerformOpenMPImplicitIntegerConversion(Stride->getExprLoc(), Stride); | ||||
| 5194 | if (Res.isInvalid()) | ||||
| 5195 | return ExprError(Diag(Stride->getExprLoc(), | ||||
| 5196 | diag::err_omp_typecheck_section_not_integer) | ||||
| 5197 | << 1 << Stride->getSourceRange()); | ||||
| 5198 | Stride = Res.get(); | ||||
| 5199 | |||||
| 5200 | if (Stride->getType()->isSpecificBuiltinType(BuiltinType::Char_S) || | ||||
| 5201 | Stride->getType()->isSpecificBuiltinType(BuiltinType::Char_U)) | ||||
| 5202 | Diag(Stride->getExprLoc(), diag::warn_omp_section_is_char) | ||||
| 5203 | << 1 << Stride->getSourceRange(); | ||||
| 5204 | } | ||||
| 5205 | |||||
| 5206 | // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly, | ||||
| 5207 | // C++ [expr.sub]p1: The type "T" shall be a completely-defined object | ||||
| 5208 | // type. Note that functions are not objects, and that (in C99 parlance) | ||||
| 5209 | // incomplete types are not object types. | ||||
| 5210 | if (ResultTy->isFunctionType()) { | ||||
| 5211 | Diag(Base->getExprLoc(), diag::err_omp_section_function_type) | ||||
| 5212 | << ResultTy << Base->getSourceRange(); | ||||
| 5213 | return ExprError(); | ||||
| 5214 | } | ||||
| 5215 | |||||
| 5216 | if (RequireCompleteType(Base->getExprLoc(), ResultTy, | ||||
| 5217 | diag::err_omp_section_incomplete_type, Base)) | ||||
| 5218 | return ExprError(); | ||||
| 5219 | |||||
| 5220 | if (LowerBound && !OriginalTy->isAnyPointerType()) { | ||||
| 5221 | Expr::EvalResult Result; | ||||
| 5222 | if (LowerBound->EvaluateAsInt(Result, Context)) { | ||||
| 5223 | // OpenMP 5.0, [2.1.5 Array Sections] | ||||
| 5224 | // The array section must be a subset of the original array. | ||||
| 5225 | llvm::APSInt LowerBoundValue = Result.Val.getInt(); | ||||
| 5226 | if (LowerBoundValue.isNegative()) { | ||||
| 5227 | Diag(LowerBound->getExprLoc(), diag::err_omp_section_not_subset_of_array) | ||||
| 5228 | << LowerBound->getSourceRange(); | ||||
| 5229 | return ExprError(); | ||||
| 5230 | } | ||||
| 5231 | } | ||||
| 5232 | } | ||||
| 5233 | |||||
| 5234 | if (Length) { | ||||
| 5235 | Expr::EvalResult Result; | ||||
| 5236 | if (Length->EvaluateAsInt(Result, Context)) { | ||||
| 5237 | // OpenMP 5.0, [2.1.5 Array Sections] | ||||
| 5238 | // The length must evaluate to non-negative integers. | ||||
| 5239 | llvm::APSInt LengthValue = Result.Val.getInt(); | ||||
| 5240 | if (LengthValue.isNegative()) { | ||||
| 5241 | Diag(Length->getExprLoc(), diag::err_omp_section_length_negative) | ||||
| 5242 | << toString(LengthValue, /*Radix=*/10, /*Signed=*/true) | ||||
| 5243 | << Length->getSourceRange(); | ||||
| 5244 | return ExprError(); | ||||
| 5245 | } | ||||
| 5246 | } | ||||
| 5247 | } else if (ColonLocFirst.isValid() && | ||||
| 5248 | (OriginalTy.isNull() || (!OriginalTy->isConstantArrayType() && | ||||
| 5249 | !OriginalTy->isVariableArrayType()))) { | ||||
| 5250 | // OpenMP 5.0, [2.1.5 Array Sections] | ||||
| 5251 | // When the size of the array dimension is not known, the length must be | ||||
| 5252 | // specified explicitly. | ||||
| 5253 | Diag(ColonLocFirst, diag::err_omp_section_length_undefined) | ||||
| 5254 | << (!OriginalTy.isNull() && OriginalTy->isArrayType()); | ||||
| 5255 | return ExprError(); | ||||
| 5256 | } | ||||
| 5257 | |||||
| 5258 | if (Stride) { | ||||
| 5259 | Expr::EvalResult Result; | ||||
| 5260 | if (Stride->EvaluateAsInt(Result, Context)) { | ||||
| 5261 | // OpenMP 5.0, [2.1.5 Array Sections] | ||||
| 5262 | // The stride must evaluate to a positive integer. | ||||
| 5263 | llvm::APSInt StrideValue = Result.Val.getInt(); | ||||
| 5264 | if (!StrideValue.isStrictlyPositive()) { | ||||
| 5265 | Diag(Stride->getExprLoc(), diag::err_omp_section_stride_non_positive) | ||||
| 5266 | << toString(StrideValue, /*Radix=*/10, /*Signed=*/true) | ||||
| 5267 | << Stride->getSourceRange(); | ||||
| 5268 | return ExprError(); | ||||
| 5269 | } | ||||
| 5270 | } | ||||
| 5271 | } | ||||
| 5272 | |||||
| 5273 | if (!Base->hasPlaceholderType(BuiltinType::OMPArraySection)) { | ||||
| 5274 | ExprResult Result = DefaultFunctionArrayLvalueConversion(Base); | ||||
| 5275 | if (Result.isInvalid()) | ||||
| 5276 | return ExprError(); | ||||
| 5277 | Base = Result.get(); | ||||
| 5278 | } | ||||
| 5279 | return new (Context) OMPArraySectionExpr( | ||||
| 5280 | Base, LowerBound, Length, Stride, Context.OMPArraySectionTy, VK_LValue, | ||||
| 5281 | OK_Ordinary, ColonLocFirst, ColonLocSecond, RBLoc); | ||||
| 5282 | } | ||||
| 5283 | |||||
| 5284 | ExprResult Sema::ActOnOMPArrayShapingExpr(Expr *Base, SourceLocation LParenLoc, | ||||
| 5285 | SourceLocation RParenLoc, | ||||
| 5286 | ArrayRef<Expr *> Dims, | ||||
| 5287 | ArrayRef<SourceRange> Brackets) { | ||||
| 5288 | if (Base->hasPlaceholderType()) { | ||||
| 5289 | ExprResult Result = CheckPlaceholderExpr(Base); | ||||
| 5290 | if (Result.isInvalid()) | ||||
| 5291 | return ExprError(); | ||||
| 5292 | Result = DefaultLvalueConversion(Result.get()); | ||||
| 5293 | if (Result.isInvalid()) | ||||
| 5294 | return ExprError(); | ||||
| 5295 | Base = Result.get(); | ||||
| 5296 | } | ||||
| 5297 | QualType BaseTy = Base->getType(); | ||||
| 5298 | // Delay analysis of the types/expressions if instantiation/specialization is | ||||
| 5299 | // required. | ||||
| 5300 | if (!BaseTy->isPointerType() && Base->isTypeDependent()) | ||||
| 5301 | return OMPArrayShapingExpr::Create(Context, Context.DependentTy, Base, | ||||
| 5302 | LParenLoc, RParenLoc, Dims, Brackets); | ||||
| 5303 | if (!BaseTy->isPointerType() || | ||||
| 5304 | (!Base->isTypeDependent() && | ||||
| 5305 | BaseTy->getPointeeType()->isIncompleteType())) | ||||
| 5306 | return ExprError(Diag(Base->getExprLoc(), | ||||
| 5307 | diag::err_omp_non_pointer_type_array_shaping_base) | ||||
| 5308 | << Base->getSourceRange()); | ||||
| 5309 | |||||
| 5310 | SmallVector<Expr *, 4> NewDims; | ||||
| 5311 | bool ErrorFound = false; | ||||
| 5312 | for (Expr *Dim : Dims) { | ||||
| 5313 | if (Dim->hasPlaceholderType()) { | ||||
| 5314 | ExprResult Result = CheckPlaceholderExpr(Dim); | ||||
| 5315 | if (Result.isInvalid()) { | ||||
| 5316 | ErrorFound = true; | ||||
| 5317 | continue; | ||||
| 5318 | } | ||||
| 5319 | Result = DefaultLvalueConversion(Result.get()); | ||||
| 5320 | if (Result.isInvalid()) { | ||||
| 5321 | ErrorFound = true; | ||||
| 5322 | continue; | ||||
| 5323 | } | ||||
| 5324 | Dim = Result.get(); | ||||
| 5325 | } | ||||
| 5326 | if (!Dim->isTypeDependent()) { | ||||
| 5327 | ExprResult Result = | ||||
| 5328 | PerformOpenMPImplicitIntegerConversion(Dim->getExprLoc(), Dim); | ||||
| 5329 | if (Result.isInvalid()) { | ||||
| 5330 | ErrorFound = true; | ||||
| 5331 | Diag(Dim->getExprLoc(), diag::err_omp_typecheck_shaping_not_integer) | ||||
| 5332 | << Dim->getSourceRange(); | ||||
| 5333 | continue; | ||||
| 5334 | } | ||||
| 5335 | Dim = Result.get(); | ||||
| 5336 | Expr::EvalResult EvResult; | ||||
| 5337 | if (!Dim->isValueDependent() && Dim->EvaluateAsInt(EvResult, Context)) { | ||||
| 5338 | // OpenMP 5.0, [2.1.4 Array Shaping] | ||||
| 5339 | // Each si is an integral type expression that must evaluate to a | ||||
| 5340 | // positive integer. | ||||
| 5341 | llvm::APSInt Value = EvResult.Val.getInt(); | ||||
| 5342 | if (!Value.isStrictlyPositive()) { | ||||
| 5343 | Diag(Dim->getExprLoc(), diag::err_omp_shaping_dimension_not_positive) | ||||
| 5344 | << toString(Value, /*Radix=*/10, /*Signed=*/true) | ||||
| 5345 | << Dim->getSourceRange(); | ||||
| 5346 | ErrorFound = true; | ||||
| 5347 | continue; | ||||
| 5348 | } | ||||
| 5349 | } | ||||
| 5350 | } | ||||
| 5351 | NewDims.push_back(Dim); | ||||
| 5352 | } | ||||
| 5353 | if (ErrorFound) | ||||
| 5354 | return ExprError(); | ||||
| 5355 | return OMPArrayShapingExpr::Create(Context, Context.OMPArrayShapingTy, Base, | ||||
| 5356 | LParenLoc, RParenLoc, NewDims, Brackets); | ||||
| 5357 | } | ||||
| 5358 | |||||
| 5359 | ExprResult Sema::ActOnOMPIteratorExpr(Scope *S, SourceLocation IteratorKwLoc, | ||||
| 5360 | SourceLocation LLoc, SourceLocation RLoc, | ||||
| 5361 | ArrayRef<OMPIteratorData> Data) { | ||||
| 5362 | SmallVector<OMPIteratorExpr::IteratorDefinition, 4> ID; | ||||
| 5363 | bool IsCorrect = true; | ||||
| 5364 | for (const OMPIteratorData &D : Data) { | ||||
| 5365 | TypeSourceInfo *TInfo = nullptr; | ||||
| 5366 | SourceLocation StartLoc; | ||||
| 5367 | QualType DeclTy; | ||||
| 5368 | if (!D.Type.getAsOpaquePtr()) { | ||||
| 5369 | // OpenMP 5.0, 2.1.6 Iterators | ||||
| 5370 | // In an iterator-specifier, if the iterator-type is not specified then | ||||
| 5371 | // the type of that iterator is of int type. | ||||
| 5372 | DeclTy = Context.IntTy; | ||||
| 5373 | StartLoc = D.DeclIdentLoc; | ||||
| 5374 | } else { | ||||
| 5375 | DeclTy = GetTypeFromParser(D.Type, &TInfo); | ||||
| 5376 | StartLoc = TInfo->getTypeLoc().getBeginLoc(); | ||||
| 5377 | } | ||||
| 5378 | |||||
| 5379 | bool IsDeclTyDependent = DeclTy->isDependentType() || | ||||
| 5380 | DeclTy->containsUnexpandedParameterPack() || | ||||
| 5381 | DeclTy->isInstantiationDependentType(); | ||||
| 5382 | if (!IsDeclTyDependent) { | ||||
| 5383 | if (!DeclTy->isIntegralType(Context) && !DeclTy->isAnyPointerType()) { | ||||
| 5384 | // OpenMP 5.0, 2.1.6 Iterators, Restrictions, C/C++ | ||||
| 5385 | // The iterator-type must be an integral or pointer type. | ||||
| 5386 | Diag(StartLoc, diag::err_omp_iterator_not_integral_or_pointer) | ||||
| 5387 | << DeclTy; | ||||
| 5388 | IsCorrect = false; | ||||
| 5389 | continue; | ||||
| 5390 | } | ||||
| 5391 | if (DeclTy.isConstant(Context)) { | ||||
| 5392 | // OpenMP 5.0, 2.1.6 Iterators, Restrictions, C/C++ | ||||
| 5393 | // The iterator-type must not be const qualified. | ||||
| 5394 | Diag(StartLoc, diag::err_omp_iterator_not_integral_or_pointer) | ||||
| 5395 | << DeclTy; | ||||
| 5396 | IsCorrect = false; | ||||
| 5397 | continue; | ||||
| 5398 | } | ||||
| 5399 | } | ||||
| 5400 | |||||
| 5401 | // Iterator declaration. | ||||
| 5402 | assert(D.DeclIdent && "Identifier expected.")(static_cast <bool> (D.DeclIdent && "Identifier expected." ) ? void (0) : __assert_fail ("D.DeclIdent && \"Identifier expected.\"" , "clang/lib/Sema/SemaExpr.cpp", 5402, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 5403 | // Always try to create iterator declarator to avoid extra error messages | ||||
| 5404 | // about unknown declarations use. | ||||
| 5405 | auto *VD = VarDecl::Create(Context, CurContext, StartLoc, D.DeclIdentLoc, | ||||
| 5406 | D.DeclIdent, DeclTy, TInfo, SC_None); | ||||
| 5407 | VD->setImplicit(); | ||||
| 5408 | if (S) { | ||||
| 5409 | // Check for conflicting previous declaration. | ||||
| 5410 | DeclarationNameInfo NameInfo(VD->getDeclName(), D.DeclIdentLoc); | ||||
| 5411 | LookupResult Previous(*this, NameInfo, LookupOrdinaryName, | ||||
| 5412 | ForVisibleRedeclaration); | ||||
| 5413 | Previous.suppressDiagnostics(); | ||||
| 5414 | LookupName(Previous, S); | ||||
| 5415 | |||||
| 5416 | FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage=*/false, | ||||
| 5417 | /*AllowInlineNamespace=*/false); | ||||
| 5418 | if (!Previous.empty()) { | ||||
| 5419 | NamedDecl *Old = Previous.getRepresentativeDecl(); | ||||
| 5420 | Diag(D.DeclIdentLoc, diag::err_redefinition) << VD->getDeclName(); | ||||
| 5421 | Diag(Old->getLocation(), diag::note_previous_definition); | ||||
| 5422 | } else { | ||||
| 5423 | PushOnScopeChains(VD, S); | ||||
| 5424 | } | ||||
| 5425 | } else { | ||||
| 5426 | CurContext->addDecl(VD); | ||||
| 5427 | } | ||||
| 5428 | |||||
| 5429 | /// Act on the iterator variable declaration. | ||||
| 5430 | ActOnOpenMPIteratorVarDecl(VD); | ||||
| 5431 | |||||
| 5432 | Expr *Begin = D.Range.Begin; | ||||
| 5433 | if (!IsDeclTyDependent && Begin && !Begin->isTypeDependent()) { | ||||
| 5434 | ExprResult BeginRes = | ||||
| 5435 | PerformImplicitConversion(Begin, DeclTy, AA_Converting); | ||||
| 5436 | Begin = BeginRes.get(); | ||||
| 5437 | } | ||||
| 5438 | Expr *End = D.Range.End; | ||||
| 5439 | if (!IsDeclTyDependent && End && !End->isTypeDependent()) { | ||||
| 5440 | ExprResult EndRes = PerformImplicitConversion(End, DeclTy, AA_Converting); | ||||
| 5441 | End = EndRes.get(); | ||||
| 5442 | } | ||||
| 5443 | Expr *Step = D.Range.Step; | ||||
| 5444 | if (!IsDeclTyDependent && Step && !Step->isTypeDependent()) { | ||||
| 5445 | if (!Step->getType()->isIntegralType(Context)) { | ||||
| 5446 | Diag(Step->getExprLoc(), diag::err_omp_iterator_step_not_integral) | ||||
| 5447 | << Step << Step->getSourceRange(); | ||||
| 5448 | IsCorrect = false; | ||||
| 5449 | continue; | ||||
| 5450 | } | ||||
| 5451 | std::optional<llvm::APSInt> Result = | ||||
| 5452 | Step->getIntegerConstantExpr(Context); | ||||
| 5453 | // OpenMP 5.0, 2.1.6 Iterators, Restrictions | ||||
| 5454 | // If the step expression of a range-specification equals zero, the | ||||
| 5455 | // behavior is unspecified. | ||||
| 5456 | if (Result && Result->isZero()) { | ||||
| 5457 | Diag(Step->getExprLoc(), diag::err_omp_iterator_step_constant_zero) | ||||
| 5458 | << Step << Step->getSourceRange(); | ||||
| 5459 | IsCorrect = false; | ||||
| 5460 | continue; | ||||
| 5461 | } | ||||
| 5462 | } | ||||
| 5463 | if (!Begin || !End || !IsCorrect) { | ||||
| 5464 | IsCorrect = false; | ||||
| 5465 | continue; | ||||
| 5466 | } | ||||
| 5467 | OMPIteratorExpr::IteratorDefinition &IDElem = ID.emplace_back(); | ||||
| 5468 | IDElem.IteratorDecl = VD; | ||||
| 5469 | IDElem.AssignmentLoc = D.AssignLoc; | ||||
| 5470 | IDElem.Range.Begin = Begin; | ||||
| 5471 | IDElem.Range.End = End; | ||||
| 5472 | IDElem.Range.Step = Step; | ||||
| 5473 | IDElem.ColonLoc = D.ColonLoc; | ||||
| 5474 | IDElem.SecondColonLoc = D.SecColonLoc; | ||||
| 5475 | } | ||||
| 5476 | if (!IsCorrect) { | ||||
| 5477 | // Invalidate all created iterator declarations if error is found. | ||||
| 5478 | for (const OMPIteratorExpr::IteratorDefinition &D : ID) { | ||||
| 5479 | if (Decl *ID = D.IteratorDecl) | ||||
| 5480 | ID->setInvalidDecl(); | ||||
| 5481 | } | ||||
| 5482 | return ExprError(); | ||||
| 5483 | } | ||||
| 5484 | SmallVector<OMPIteratorHelperData, 4> Helpers; | ||||
| 5485 | if (!CurContext->isDependentContext()) { | ||||
| 5486 | // Build number of ityeration for each iteration range. | ||||
| 5487 | // Ni = ((Stepi > 0) ? ((Endi + Stepi -1 - Begini)/Stepi) : | ||||
| 5488 | // ((Begini-Stepi-1-Endi) / -Stepi); | ||||
| 5489 | for (OMPIteratorExpr::IteratorDefinition &D : ID) { | ||||
| 5490 | // (Endi - Begini) | ||||
| 5491 | ExprResult Res = CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub, D.Range.End, | ||||
| 5492 | D.Range.Begin); | ||||
| 5493 | if(!Res.isUsable()) { | ||||
| 5494 | IsCorrect = false; | ||||
| 5495 | continue; | ||||
| 5496 | } | ||||
| 5497 | ExprResult St, St1; | ||||
| 5498 | if (D.Range.Step) { | ||||
| 5499 | St = D.Range.Step; | ||||
| 5500 | // (Endi - Begini) + Stepi | ||||
| 5501 | Res = CreateBuiltinBinOp(D.AssignmentLoc, BO_Add, Res.get(), St.get()); | ||||
| 5502 | if (!Res.isUsable()) { | ||||
| 5503 | IsCorrect = false; | ||||
| 5504 | continue; | ||||
| 5505 | } | ||||
| 5506 | // (Endi - Begini) + Stepi - 1 | ||||
| 5507 | Res = | ||||
| 5508 | CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub, Res.get(), | ||||
| 5509 | ActOnIntegerConstant(D.AssignmentLoc, 1).get()); | ||||
| 5510 | if (!Res.isUsable()) { | ||||
| 5511 | IsCorrect = false; | ||||
| 5512 | continue; | ||||
| 5513 | } | ||||
| 5514 | // ((Endi - Begini) + Stepi - 1) / Stepi | ||||
| 5515 | Res = CreateBuiltinBinOp(D.AssignmentLoc, BO_Div, Res.get(), St.get()); | ||||
| 5516 | if (!Res.isUsable()) { | ||||
| 5517 | IsCorrect = false; | ||||
| 5518 | continue; | ||||
| 5519 | } | ||||
| 5520 | St1 = CreateBuiltinUnaryOp(D.AssignmentLoc, UO_Minus, D.Range.Step); | ||||
| 5521 | // (Begini - Endi) | ||||
| 5522 | ExprResult Res1 = CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub, | ||||
| 5523 | D.Range.Begin, D.Range.End); | ||||
| 5524 | if (!Res1.isUsable()) { | ||||
| 5525 | IsCorrect = false; | ||||
| 5526 | continue; | ||||
| 5527 | } | ||||
| 5528 | // (Begini - Endi) - Stepi | ||||
| 5529 | Res1 = | ||||
| 5530 | CreateBuiltinBinOp(D.AssignmentLoc, BO_Add, Res1.get(), St1.get()); | ||||
| 5531 | if (!Res1.isUsable()) { | ||||
| 5532 | IsCorrect = false; | ||||
| 5533 | continue; | ||||
| 5534 | } | ||||
| 5535 | // (Begini - Endi) - Stepi - 1 | ||||
| 5536 | Res1 = | ||||
| 5537 | CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub, Res1.get(), | ||||
| 5538 | ActOnIntegerConstant(D.AssignmentLoc, 1).get()); | ||||
| 5539 | if (!Res1.isUsable()) { | ||||
| 5540 | IsCorrect = false; | ||||
| 5541 | continue; | ||||
| 5542 | } | ||||
| 5543 | // ((Begini - Endi) - Stepi - 1) / (-Stepi) | ||||
| 5544 | Res1 = | ||||
| 5545 | CreateBuiltinBinOp(D.AssignmentLoc, BO_Div, Res1.get(), St1.get()); | ||||
| 5546 | if (!Res1.isUsable()) { | ||||
| 5547 | IsCorrect = false; | ||||
| 5548 | continue; | ||||
| 5549 | } | ||||
| 5550 | // Stepi > 0. | ||||
| 5551 | ExprResult CmpRes = | ||||
| 5552 | CreateBuiltinBinOp(D.AssignmentLoc, BO_GT, D.Range.Step, | ||||
| 5553 | ActOnIntegerConstant(D.AssignmentLoc, 0).get()); | ||||
| 5554 | if (!CmpRes.isUsable()) { | ||||
| 5555 | IsCorrect = false; | ||||
| 5556 | continue; | ||||
| 5557 | } | ||||
| 5558 | Res = ActOnConditionalOp(D.AssignmentLoc, D.AssignmentLoc, CmpRes.get(), | ||||
| 5559 | Res.get(), Res1.get()); | ||||
| 5560 | if (!Res.isUsable()) { | ||||
| 5561 | IsCorrect = false; | ||||
| 5562 | continue; | ||||
| 5563 | } | ||||
| 5564 | } | ||||
| 5565 | Res = ActOnFinishFullExpr(Res.get(), /*DiscardedValue=*/false); | ||||
| 5566 | if (!Res.isUsable()) { | ||||
| 5567 | IsCorrect = false; | ||||
| 5568 | continue; | ||||
| 5569 | } | ||||
| 5570 | |||||
| 5571 | // Build counter update. | ||||
| 5572 | // Build counter. | ||||
| 5573 | auto *CounterVD = | ||||
| 5574 | VarDecl::Create(Context, CurContext, D.IteratorDecl->getBeginLoc(), | ||||
| 5575 | D.IteratorDecl->getBeginLoc(), nullptr, | ||||
| 5576 | Res.get()->getType(), nullptr, SC_None); | ||||
| 5577 | CounterVD->setImplicit(); | ||||
| 5578 | ExprResult RefRes = | ||||
| 5579 | BuildDeclRefExpr(CounterVD, CounterVD->getType(), VK_LValue, | ||||
| 5580 | D.IteratorDecl->getBeginLoc()); | ||||
| 5581 | // Build counter update. | ||||
| 5582 | // I = Begini + counter * Stepi; | ||||
| 5583 | ExprResult UpdateRes; | ||||
| 5584 | if (D.Range.Step) { | ||||
| 5585 | UpdateRes = CreateBuiltinBinOp( | ||||
| 5586 | D.AssignmentLoc, BO_Mul, | ||||
| 5587 | DefaultLvalueConversion(RefRes.get()).get(), St.get()); | ||||
| 5588 | } else { | ||||
| 5589 | UpdateRes = DefaultLvalueConversion(RefRes.get()); | ||||
| 5590 | } | ||||
| 5591 | if (!UpdateRes.isUsable()) { | ||||
| 5592 | IsCorrect = false; | ||||
| 5593 | continue; | ||||
| 5594 | } | ||||
| 5595 | UpdateRes = CreateBuiltinBinOp(D.AssignmentLoc, BO_Add, D.Range.Begin, | ||||
| 5596 | UpdateRes.get()); | ||||
| 5597 | if (!UpdateRes.isUsable()) { | ||||
| 5598 | IsCorrect = false; | ||||
| 5599 | continue; | ||||
| 5600 | } | ||||
| 5601 | ExprResult VDRes = | ||||
| 5602 | BuildDeclRefExpr(cast<VarDecl>(D.IteratorDecl), | ||||
| 5603 | cast<VarDecl>(D.IteratorDecl)->getType(), VK_LValue, | ||||
| 5604 | D.IteratorDecl->getBeginLoc()); | ||||
| 5605 | UpdateRes = CreateBuiltinBinOp(D.AssignmentLoc, BO_Assign, VDRes.get(), | ||||
| 5606 | UpdateRes.get()); | ||||
| 5607 | if (!UpdateRes.isUsable()) { | ||||
| 5608 | IsCorrect = false; | ||||
| 5609 | continue; | ||||
| 5610 | } | ||||
| 5611 | UpdateRes = | ||||
| 5612 | ActOnFinishFullExpr(UpdateRes.get(), /*DiscardedValue=*/true); | ||||
| 5613 | if (!UpdateRes.isUsable()) { | ||||
| 5614 | IsCorrect = false; | ||||
| 5615 | continue; | ||||
| 5616 | } | ||||
| 5617 | ExprResult CounterUpdateRes = | ||||
| 5618 | CreateBuiltinUnaryOp(D.AssignmentLoc, UO_PreInc, RefRes.get()); | ||||
| 5619 | if (!CounterUpdateRes.isUsable()) { | ||||
| 5620 | IsCorrect = false; | ||||
| 5621 | continue; | ||||
| 5622 | } | ||||
| 5623 | CounterUpdateRes = | ||||
| 5624 | ActOnFinishFullExpr(CounterUpdateRes.get(), /*DiscardedValue=*/true); | ||||
| 5625 | if (!CounterUpdateRes.isUsable()) { | ||||
| 5626 | IsCorrect = false; | ||||
| 5627 | continue; | ||||
| 5628 | } | ||||
| 5629 | OMPIteratorHelperData &HD = Helpers.emplace_back(); | ||||
| 5630 | HD.CounterVD = CounterVD; | ||||
| 5631 | HD.Upper = Res.get(); | ||||
| 5632 | HD.Update = UpdateRes.get(); | ||||
| 5633 | HD.CounterUpdate = CounterUpdateRes.get(); | ||||
| 5634 | } | ||||
| 5635 | } else { | ||||
| 5636 | Helpers.assign(ID.size(), {}); | ||||
| 5637 | } | ||||
| 5638 | if (!IsCorrect) { | ||||
| 5639 | // Invalidate all created iterator declarations if error is found. | ||||
| 5640 | for (const OMPIteratorExpr::IteratorDefinition &D : ID) { | ||||
| 5641 | if (Decl *ID = D.IteratorDecl) | ||||
| 5642 | ID->setInvalidDecl(); | ||||
| 5643 | } | ||||
| 5644 | return ExprError(); | ||||
| 5645 | } | ||||
| 5646 | return OMPIteratorExpr::Create(Context, Context.OMPIteratorTy, IteratorKwLoc, | ||||
| 5647 | LLoc, RLoc, ID, Helpers); | ||||
| 5648 | } | ||||
| 5649 | |||||
| 5650 | ExprResult | ||||
| 5651 | Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc, | ||||
| 5652 | Expr *Idx, SourceLocation RLoc) { | ||||
| 5653 | Expr *LHSExp = Base; | ||||
| 5654 | Expr *RHSExp = Idx; | ||||
| 5655 | |||||
| 5656 | ExprValueKind VK = VK_LValue; | ||||
| 5657 | ExprObjectKind OK = OK_Ordinary; | ||||
| 5658 | |||||
| 5659 | // Per C++ core issue 1213, the result is an xvalue if either operand is | ||||
| 5660 | // a non-lvalue array, and an lvalue otherwise. | ||||
| 5661 | if (getLangOpts().CPlusPlus11) { | ||||
| 5662 | for (auto *Op : {LHSExp, RHSExp}) { | ||||
| 5663 | Op = Op->IgnoreImplicit(); | ||||
| 5664 | if (Op->getType()->isArrayType() && !Op->isLValue()) | ||||
| 5665 | VK = VK_XValue; | ||||
| 5666 | } | ||||
| 5667 | } | ||||
| 5668 | |||||
| 5669 | // Perform default conversions. | ||||
| 5670 | if (!LHSExp->getType()->getAs<VectorType>()) { | ||||
| 5671 | ExprResult Result = DefaultFunctionArrayLvalueConversion(LHSExp); | ||||
| 5672 | if (Result.isInvalid()) | ||||
| 5673 | return ExprError(); | ||||
| 5674 | LHSExp = Result.get(); | ||||
| 5675 | } | ||||
| 5676 | ExprResult Result = DefaultFunctionArrayLvalueConversion(RHSExp); | ||||
| 5677 | if (Result.isInvalid()) | ||||
| 5678 | return ExprError(); | ||||
| 5679 | RHSExp = Result.get(); | ||||
| 5680 | |||||
| 5681 | QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType(); | ||||
| 5682 | |||||
| 5683 | // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent | ||||
| 5684 | // to the expression *((e1)+(e2)). This means the array "Base" may actually be | ||||
| 5685 | // in the subscript position. As a result, we need to derive the array base | ||||
| 5686 | // and index from the expression types. | ||||
| 5687 | Expr *BaseExpr, *IndexExpr; | ||||
| 5688 | QualType ResultType; | ||||
| 5689 | if (LHSTy->isDependentType() || RHSTy->isDependentType()) { | ||||
| 5690 | BaseExpr = LHSExp; | ||||
| 5691 | IndexExpr = RHSExp; | ||||
| 5692 | ResultType = | ||||
| 5693 | getDependentArraySubscriptType(LHSExp, RHSExp, getASTContext()); | ||||
| 5694 | } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) { | ||||
| 5695 | BaseExpr = LHSExp; | ||||
| 5696 | IndexExpr = RHSExp; | ||||
| 5697 | ResultType = PTy->getPointeeType(); | ||||
| 5698 | } else if (const ObjCObjectPointerType *PTy = | ||||
| 5699 | LHSTy->getAs<ObjCObjectPointerType>()) { | ||||
| 5700 | BaseExpr = LHSExp; | ||||
| 5701 | IndexExpr = RHSExp; | ||||
| 5702 | |||||
| 5703 | // Use custom logic if this should be the pseudo-object subscript | ||||
| 5704 | // expression. | ||||
| 5705 | if (!LangOpts.isSubscriptPointerArithmetic()) | ||||
| 5706 | return BuildObjCSubscriptExpression(RLoc, BaseExpr, IndexExpr, nullptr, | ||||
| 5707 | nullptr); | ||||
| 5708 | |||||
| 5709 | ResultType = PTy->getPointeeType(); | ||||
| 5710 | } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) { | ||||
| 5711 | // Handle the uncommon case of "123[Ptr]". | ||||
| 5712 | BaseExpr = RHSExp; | ||||
| 5713 | IndexExpr = LHSExp; | ||||
| 5714 | ResultType = PTy->getPointeeType(); | ||||
| 5715 | } else if (const ObjCObjectPointerType *PTy = | ||||
| 5716 | RHSTy->getAs<ObjCObjectPointerType>()) { | ||||
| 5717 | // Handle the uncommon case of "123[Ptr]". | ||||
| 5718 | BaseExpr = RHSExp; | ||||
| 5719 | IndexExpr = LHSExp; | ||||
| 5720 | ResultType = PTy->getPointeeType(); | ||||
| 5721 | if (!LangOpts.isSubscriptPointerArithmetic()) { | ||||
| 5722 | Diag(LLoc, diag::err_subscript_nonfragile_interface) | ||||
| 5723 | << ResultType << BaseExpr->getSourceRange(); | ||||
| 5724 | return ExprError(); | ||||
| 5725 | } | ||||
| 5726 | } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) { | ||||
| 5727 | BaseExpr = LHSExp; // vectors: V[123] | ||||
| 5728 | IndexExpr = RHSExp; | ||||
| 5729 | // We apply C++ DR1213 to vector subscripting too. | ||||
| 5730 | if (getLangOpts().CPlusPlus11 && LHSExp->isPRValue()) { | ||||
| 5731 | ExprResult Materialized = TemporaryMaterializationConversion(LHSExp); | ||||
| 5732 | if (Materialized.isInvalid()) | ||||
| 5733 | return ExprError(); | ||||
| 5734 | LHSExp = Materialized.get(); | ||||
| 5735 | } | ||||
| 5736 | VK = LHSExp->getValueKind(); | ||||
| 5737 | if (VK != VK_PRValue) | ||||
| 5738 | OK = OK_VectorComponent; | ||||
| 5739 | |||||
| 5740 | ResultType = VTy->getElementType(); | ||||
| 5741 | QualType BaseType = BaseExpr->getType(); | ||||
| 5742 | Qualifiers BaseQuals = BaseType.getQualifiers(); | ||||
| 5743 | Qualifiers MemberQuals = ResultType.getQualifiers(); | ||||
| 5744 | Qualifiers Combined = BaseQuals + MemberQuals; | ||||
| 5745 | if (Combined != MemberQuals) | ||||
| 5746 | ResultType = Context.getQualifiedType(ResultType, Combined); | ||||
| 5747 | } else if (LHSTy->isBuiltinType() && | ||||
| 5748 | LHSTy->getAs<BuiltinType>()->isVLSTBuiltinType()) { | ||||
| 5749 | const BuiltinType *BTy = LHSTy->getAs<BuiltinType>(); | ||||
| 5750 | if (BTy->isSVEBool()) | ||||
| 5751 | return ExprError(Diag(LLoc, diag::err_subscript_svbool_t) | ||||
| 5752 | << LHSExp->getSourceRange() << RHSExp->getSourceRange()); | ||||
| 5753 | |||||
| 5754 | BaseExpr = LHSExp; | ||||
| 5755 | IndexExpr = RHSExp; | ||||
| 5756 | if (getLangOpts().CPlusPlus11 && LHSExp->isPRValue()) { | ||||
| 5757 | ExprResult Materialized = TemporaryMaterializationConversion(LHSExp); | ||||
| 5758 | if (Materialized.isInvalid()) | ||||
| 5759 | return ExprError(); | ||||
| 5760 | LHSExp = Materialized.get(); | ||||
| 5761 | } | ||||
| 5762 | VK = LHSExp->getValueKind(); | ||||
| 5763 | if (VK != VK_PRValue) | ||||
| 5764 | OK = OK_VectorComponent; | ||||
| 5765 | |||||
| 5766 | ResultType = BTy->getSveEltType(Context); | ||||
| 5767 | |||||
| 5768 | QualType BaseType = BaseExpr->getType(); | ||||
| 5769 | Qualifiers BaseQuals = BaseType.getQualifiers(); | ||||
| 5770 | Qualifiers MemberQuals = ResultType.getQualifiers(); | ||||
| 5771 | Qualifiers Combined = BaseQuals + MemberQuals; | ||||
| 5772 | if (Combined != MemberQuals) | ||||
| 5773 | ResultType = Context.getQualifiedType(ResultType, Combined); | ||||
| 5774 | } else if (LHSTy->isArrayType()) { | ||||
| 5775 | // If we see an array that wasn't promoted by | ||||
| 5776 | // DefaultFunctionArrayLvalueConversion, it must be an array that | ||||
| 5777 | // wasn't promoted because of the C90 rule that doesn't | ||||
| 5778 | // allow promoting non-lvalue arrays. Warn, then | ||||
| 5779 | // force the promotion here. | ||||
| 5780 | Diag(LHSExp->getBeginLoc(), diag::ext_subscript_non_lvalue) | ||||
| 5781 | << LHSExp->getSourceRange(); | ||||
| 5782 | LHSExp = ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy), | ||||
| 5783 | CK_ArrayToPointerDecay).get(); | ||||
| 5784 | LHSTy = LHSExp->getType(); | ||||
| 5785 | |||||
| 5786 | BaseExpr = LHSExp; | ||||
| 5787 | IndexExpr = RHSExp; | ||||
| 5788 | ResultType = LHSTy->castAs<PointerType>()->getPointeeType(); | ||||
| 5789 | } else if (RHSTy->isArrayType()) { | ||||
| 5790 | // Same as previous, except for 123[f().a] case | ||||
| 5791 | Diag(RHSExp->getBeginLoc(), diag::ext_subscript_non_lvalue) | ||||
| 5792 | << RHSExp->getSourceRange(); | ||||
| 5793 | RHSExp = ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy), | ||||
| 5794 | CK_ArrayToPointerDecay).get(); | ||||
| 5795 | RHSTy = RHSExp->getType(); | ||||
| 5796 | |||||
| 5797 | BaseExpr = RHSExp; | ||||
| 5798 | IndexExpr = LHSExp; | ||||
| 5799 | ResultType = RHSTy->castAs<PointerType>()->getPointeeType(); | ||||
| 5800 | } else { | ||||
| 5801 | return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value) | ||||
| 5802 | << LHSExp->getSourceRange() << RHSExp->getSourceRange()); | ||||
| 5803 | } | ||||
| 5804 | // C99 6.5.2.1p1 | ||||
| 5805 | if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent()) | ||||
| 5806 | return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer) | ||||
| 5807 | << IndexExpr->getSourceRange()); | ||||
| 5808 | |||||
| 5809 | if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) || | ||||
| 5810 | IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U)) | ||||
| 5811 | && !IndexExpr->isTypeDependent()) | ||||
| 5812 | Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange(); | ||||
| 5813 | |||||
| 5814 | // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly, | ||||
| 5815 | // C++ [expr.sub]p1: The type "T" shall be a completely-defined object | ||||
| 5816 | // type. Note that Functions are not objects, and that (in C99 parlance) | ||||
| 5817 | // incomplete types are not object types. | ||||
| 5818 | if (ResultType->isFunctionType()) { | ||||
| 5819 | Diag(BaseExpr->getBeginLoc(), diag::err_subscript_function_type) | ||||
| 5820 | << ResultType << BaseExpr->getSourceRange(); | ||||
| 5821 | return ExprError(); | ||||
| 5822 | } | ||||
| 5823 | |||||
| 5824 | if (ResultType->isVoidType() && !getLangOpts().CPlusPlus) { | ||||
| 5825 | // GNU extension: subscripting on pointer to void | ||||
| 5826 | Diag(LLoc, diag::ext_gnu_subscript_void_type) | ||||
| 5827 | << BaseExpr->getSourceRange(); | ||||
| 5828 | |||||
| 5829 | // C forbids expressions of unqualified void type from being l-values. | ||||
| 5830 | // See IsCForbiddenLValueType. | ||||
| 5831 | if (!ResultType.hasQualifiers()) | ||||
| 5832 | VK = VK_PRValue; | ||||
| 5833 | } else if (!ResultType->isDependentType() && | ||||
| 5834 | RequireCompleteSizedType( | ||||
| 5835 | LLoc, ResultType, | ||||
| 5836 | diag::err_subscript_incomplete_or_sizeless_type, BaseExpr)) | ||||
| 5837 | return ExprError(); | ||||
| 5838 | |||||
| 5839 | assert(VK == VK_PRValue || LangOpts.CPlusPlus ||(static_cast <bool> (VK == VK_PRValue || LangOpts.CPlusPlus || !ResultType.isCForbiddenLValueType()) ? void (0) : __assert_fail ("VK == VK_PRValue || LangOpts.CPlusPlus || !ResultType.isCForbiddenLValueType()" , "clang/lib/Sema/SemaExpr.cpp", 5840, __extension__ __PRETTY_FUNCTION__ )) | ||||
| 5840 | !ResultType.isCForbiddenLValueType())(static_cast <bool> (VK == VK_PRValue || LangOpts.CPlusPlus || !ResultType.isCForbiddenLValueType()) ? void (0) : __assert_fail ("VK == VK_PRValue || LangOpts.CPlusPlus || !ResultType.isCForbiddenLValueType()" , "clang/lib/Sema/SemaExpr.cpp", 5840, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 5841 | |||||
| 5842 | if (LHSExp->IgnoreParenImpCasts()->getType()->isVariablyModifiedType() && | ||||
| 5843 | FunctionScopes.size() > 1) { | ||||
| 5844 | if (auto *TT = | ||||
| 5845 | LHSExp->IgnoreParenImpCasts()->getType()->getAs<TypedefType>()) { | ||||
| 5846 | for (auto I = FunctionScopes.rbegin(), | ||||
| 5847 | E = std::prev(FunctionScopes.rend()); | ||||
| 5848 | I != E; ++I) { | ||||
| 5849 | auto *CSI = dyn_cast<CapturingScopeInfo>(*I); | ||||
| 5850 | if (CSI == nullptr) | ||||
| 5851 | break; | ||||
| 5852 | DeclContext *DC = nullptr; | ||||
| 5853 | if (auto *LSI = dyn_cast<LambdaScopeInfo>(CSI)) | ||||
| 5854 | DC = LSI->CallOperator; | ||||
| 5855 | else if (auto *CRSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) | ||||
| 5856 | DC = CRSI->TheCapturedDecl; | ||||
| 5857 | else if (auto *BSI = dyn_cast<BlockScopeInfo>(CSI)) | ||||
| 5858 | DC = BSI->TheDecl; | ||||
| 5859 | if (DC) { | ||||
| 5860 | if (DC->containsDecl(TT->getDecl())) | ||||
| 5861 | break; | ||||
| 5862 | captureVariablyModifiedType( | ||||
| 5863 | Context, LHSExp->IgnoreParenImpCasts()->getType(), CSI); | ||||
| 5864 | } | ||||
| 5865 | } | ||||
| 5866 | } | ||||
| 5867 | } | ||||
| 5868 | |||||
| 5869 | return new (Context) | ||||
| 5870 | ArraySubscriptExpr(LHSExp, RHSExp, ResultType, VK, OK, RLoc); | ||||
| 5871 | } | ||||
| 5872 | |||||
| 5873 | bool Sema::CheckCXXDefaultArgExpr(SourceLocation CallLoc, FunctionDecl *FD, | ||||
| 5874 | ParmVarDecl *Param, Expr *RewrittenInit, | ||||
| 5875 | bool SkipImmediateInvocations) { | ||||
| 5876 | if (Param->hasUnparsedDefaultArg()) { | ||||
| 5877 | assert(!RewrittenInit && "Should not have a rewritten init expression yet")(static_cast <bool> (!RewrittenInit && "Should not have a rewritten init expression yet" ) ? void (0) : __assert_fail ("!RewrittenInit && \"Should not have a rewritten init expression yet\"" , "clang/lib/Sema/SemaExpr.cpp", 5877, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 5878 | // If we've already cleared out the location for the default argument, | ||||
| 5879 | // that means we're parsing it right now. | ||||
| 5880 | if (!UnparsedDefaultArgLocs.count(Param)) { | ||||
| 5881 | Diag(Param->getBeginLoc(), diag::err_recursive_default_argument) << FD; | ||||
| 5882 | Diag(CallLoc, diag::note_recursive_default_argument_used_here); | ||||
| 5883 | Param->setInvalidDecl(); | ||||
| 5884 | return true; | ||||
| 5885 | } | ||||
| 5886 | |||||
| 5887 | Diag(CallLoc, diag::err_use_of_default_argument_to_function_declared_later) | ||||
| 5888 | << FD << cast<CXXRecordDecl>(FD->getDeclContext()); | ||||
| 5889 | Diag(UnparsedDefaultArgLocs[Param], | ||||
| 5890 | diag::note_default_argument_declared_here); | ||||
| 5891 | return true; | ||||
| 5892 | } | ||||
| 5893 | |||||
| 5894 | if (Param->hasUninstantiatedDefaultArg()) { | ||||
| 5895 | assert(!RewrittenInit && "Should not have a rewitten init expression yet")(static_cast <bool> (!RewrittenInit && "Should not have a rewitten init expression yet" ) ? void (0) : __assert_fail ("!RewrittenInit && \"Should not have a rewitten init expression yet\"" , "clang/lib/Sema/SemaExpr.cpp", 5895, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 5896 | if (InstantiateDefaultArgument(CallLoc, FD, Param)) | ||||
| 5897 | return true; | ||||
| 5898 | } | ||||
| 5899 | |||||
| 5900 | Expr *Init = RewrittenInit ? RewrittenInit : Param->getInit(); | ||||
| 5901 | assert(Init && "default argument but no initializer?")(static_cast <bool> (Init && "default argument but no initializer?" ) ? void (0) : __assert_fail ("Init && \"default argument but no initializer?\"" , "clang/lib/Sema/SemaExpr.cpp", 5901, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 5902 | |||||
| 5903 | // If the default expression creates temporaries, we need to | ||||
| 5904 | // push them to the current stack of expression temporaries so they'll | ||||
| 5905 | // be properly destroyed. | ||||
| 5906 | // FIXME: We should really be rebuilding the default argument with new | ||||
| 5907 | // bound temporaries; see the comment in PR5810. | ||||
| 5908 | // We don't need to do that with block decls, though, because | ||||
| 5909 | // blocks in default argument expression can never capture anything. | ||||
| 5910 | if (auto *InitWithCleanup = dyn_cast<ExprWithCleanups>(Init)) { | ||||
| 5911 | // Set the "needs cleanups" bit regardless of whether there are | ||||
| 5912 | // any explicit objects. | ||||
| 5913 | Cleanup.setExprNeedsCleanups(InitWithCleanup->cleanupsHaveSideEffects()); | ||||
| 5914 | // Append all the objects to the cleanup list. Right now, this | ||||
| 5915 | // should always be a no-op, because blocks in default argument | ||||
| 5916 | // expressions should never be able to capture anything. | ||||
| 5917 | assert(!InitWithCleanup->getNumObjects() &&(static_cast <bool> (!InitWithCleanup->getNumObjects () && "default argument expression has capturing blocks?" ) ? void (0) : __assert_fail ("!InitWithCleanup->getNumObjects() && \"default argument expression has capturing blocks?\"" , "clang/lib/Sema/SemaExpr.cpp", 5918, __extension__ __PRETTY_FUNCTION__ )) | ||||
| 5918 | "default argument expression has capturing blocks?")(static_cast <bool> (!InitWithCleanup->getNumObjects () && "default argument expression has capturing blocks?" ) ? void (0) : __assert_fail ("!InitWithCleanup->getNumObjects() && \"default argument expression has capturing blocks?\"" , "clang/lib/Sema/SemaExpr.cpp", 5918, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 5919 | } | ||||
| 5920 | // C++ [expr.const]p15.1: | ||||
| 5921 | // An expression or conversion is in an immediate function context if it is | ||||
| 5922 | // potentially evaluated and [...] its innermost enclosing non-block scope | ||||
| 5923 | // is a function parameter scope of an immediate function. | ||||
| 5924 | EnterExpressionEvaluationContext EvalContext( | ||||
| 5925 | *this, | ||||
| 5926 | FD->isConsteval() ? ExpressionEvaluationContext::ImmediateFunctionContext | ||||
| 5927 | : ExpressionEvaluationContext::PotentiallyEvaluated, | ||||
| 5928 | Param); | ||||
| 5929 | ExprEvalContexts.back().IsCurrentlyCheckingDefaultArgumentOrInitializer = | ||||
| 5930 | SkipImmediateInvocations; | ||||
| 5931 | MarkDeclarationsReferencedInExpr(Init, /*SkipLocalVariables*/ true); | ||||
| 5932 | return false; | ||||
| 5933 | } | ||||
| 5934 | |||||
| 5935 | struct ImmediateCallVisitor : public RecursiveASTVisitor<ImmediateCallVisitor> { | ||||
| 5936 | bool HasImmediateCalls = false; | ||||
| 5937 | |||||
| 5938 | bool shouldVisitImplicitCode() const { return true; } | ||||
| 5939 | |||||
| 5940 | bool VisitCallExpr(CallExpr *E) { | ||||
| 5941 | if (const FunctionDecl *FD = E->getDirectCallee()) | ||||
| 5942 | HasImmediateCalls |= FD->isConsteval(); | ||||
| 5943 | return RecursiveASTVisitor<ImmediateCallVisitor>::VisitStmt(E); | ||||
| 5944 | } | ||||
| 5945 | |||||
| 5946 | // SourceLocExpr are not immediate invocations | ||||
| 5947 | // but CXXDefaultInitExpr/CXXDefaultArgExpr containing a SourceLocExpr | ||||
| 5948 | // need to be rebuilt so that they refer to the correct SourceLocation and | ||||
| 5949 | // DeclContext. | ||||
| 5950 | bool VisitSourceLocExpr(SourceLocExpr *E) { | ||||
| 5951 | HasImmediateCalls = true; | ||||
| 5952 | return RecursiveASTVisitor<ImmediateCallVisitor>::VisitStmt(E); | ||||
| 5953 | } | ||||
| 5954 | |||||
| 5955 | // A nested lambda might have parameters with immediate invocations | ||||
| 5956 | // in their default arguments. | ||||
| 5957 | // The compound statement is not visited (as it does not constitute a | ||||
| 5958 | // subexpression). | ||||
| 5959 | // FIXME: We should consider visiting and transforming captures | ||||
| 5960 | // with init expressions. | ||||
| 5961 | bool VisitLambdaExpr(LambdaExpr *E) { | ||||
| 5962 | return VisitCXXMethodDecl(E->getCallOperator()); | ||||
| 5963 | } | ||||
| 5964 | |||||
| 5965 | // Blocks don't support default parameters, and, as for lambdas, | ||||
| 5966 | // we don't consider their body a subexpression. | ||||
| 5967 | bool VisitBlockDecl(BlockDecl *B) { return false; } | ||||
| 5968 | |||||
| 5969 | bool VisitCompoundStmt(CompoundStmt *B) { return false; } | ||||
| 5970 | |||||
| 5971 | bool VisitCXXDefaultArgExpr(CXXDefaultArgExpr *E) { | ||||
| 5972 | return TraverseStmt(E->getExpr()); | ||||
| 5973 | } | ||||
| 5974 | |||||
| 5975 | bool VisitCXXDefaultInitExpr(CXXDefaultInitExpr *E) { | ||||
| 5976 | return TraverseStmt(E->getExpr()); | ||||
| 5977 | } | ||||
| 5978 | }; | ||||
| 5979 | |||||
| 5980 | struct EnsureImmediateInvocationInDefaultArgs | ||||
| 5981 | : TreeTransform<EnsureImmediateInvocationInDefaultArgs> { | ||||
| 5982 | EnsureImmediateInvocationInDefaultArgs(Sema &SemaRef) | ||||
| 5983 | : TreeTransform(SemaRef) {} | ||||
| 5984 | |||||
| 5985 | // Lambda can only have immediate invocations in the default | ||||
| 5986 | // args of their parameters, which is transformed upon calling the closure. | ||||
| 5987 | // The body is not a subexpression, so we have nothing to do. | ||||
| 5988 | // FIXME: Immediate calls in capture initializers should be transformed. | ||||
| 5989 | ExprResult TransformLambdaExpr(LambdaExpr *E) { return E; } | ||||
| 5990 | ExprResult TransformBlockExpr(BlockExpr *E) { return E; } | ||||
| 5991 | |||||
| 5992 | // Make sure we don't rebuild the this pointer as it would | ||||
| 5993 | // cause it to incorrectly point it to the outermost class | ||||
| 5994 | // in the case of nested struct initialization. | ||||
| 5995 | ExprResult TransformCXXThisExpr(CXXThisExpr *E) { return E; } | ||||
| 5996 | }; | ||||
| 5997 | |||||
| 5998 | ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc, | ||||
| 5999 | FunctionDecl *FD, ParmVarDecl *Param, | ||||
| 6000 | Expr *Init) { | ||||
| 6001 | assert(Param->hasDefaultArg() && "can't build nonexistent default arg")(static_cast <bool> (Param->hasDefaultArg() && "can't build nonexistent default arg") ? void (0) : __assert_fail ("Param->hasDefaultArg() && \"can't build nonexistent default arg\"" , "clang/lib/Sema/SemaExpr.cpp", 6001, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 6002 | |||||
| 6003 | bool NestedDefaultChecking = isCheckingDefaultArgumentOrInitializer(); | ||||
| 6004 | |||||
| 6005 | std::optional<ExpressionEvaluationContextRecord::InitializationContext> | ||||
| 6006 | InitializationContext = | ||||
| 6007 | OutermostDeclarationWithDelayedImmediateInvocations(); | ||||
| 6008 | if (!InitializationContext.has_value()) | ||||
| 6009 | InitializationContext.emplace(CallLoc, Param, CurContext); | ||||
| 6010 | |||||
| 6011 | if (!Init && !Param->hasUnparsedDefaultArg()) { | ||||
| 6012 | // Mark that we are replacing a default argument first. | ||||
| 6013 | // If we are instantiating a template we won't have to | ||||
| 6014 | // retransform immediate calls. | ||||
| 6015 | // C++ [expr.const]p15.1: | ||||
| 6016 | // An expression or conversion is in an immediate function context if it | ||||
| 6017 | // is potentially evaluated and [...] its innermost enclosing non-block | ||||
| 6018 | // scope is a function parameter scope of an immediate function. | ||||
| 6019 | EnterExpressionEvaluationContext EvalContext( | ||||
| 6020 | *this, | ||||
| 6021 | FD->isConsteval() | ||||
| 6022 | ? ExpressionEvaluationContext::ImmediateFunctionContext | ||||
| 6023 | : ExpressionEvaluationContext::PotentiallyEvaluated, | ||||
| 6024 | Param); | ||||
| 6025 | |||||
| 6026 | if (Param->hasUninstantiatedDefaultArg()) { | ||||
| 6027 | if (InstantiateDefaultArgument(CallLoc, FD, Param)) | ||||
| 6028 | return ExprError(); | ||||
| 6029 | } | ||||
| 6030 | // CWG2631 | ||||
| 6031 | // An immediate invocation that is not evaluated where it appears is | ||||
| 6032 | // evaluated and checked for whether it is a constant expression at the | ||||
| 6033 | // point where the enclosing initializer is used in a function call. | ||||
| 6034 | ImmediateCallVisitor V; | ||||
| 6035 | if (!NestedDefaultChecking) | ||||
| 6036 | V.TraverseDecl(Param); | ||||
| 6037 | if (V.HasImmediateCalls) { | ||||
| 6038 | ExprEvalContexts.back().DelayedDefaultInitializationContext = { | ||||
| 6039 | CallLoc, Param, CurContext}; | ||||
| 6040 | EnsureImmediateInvocationInDefaultArgs Immediate(*this); | ||||
| 6041 | ExprResult Res = Immediate.TransformInitializer(Param->getInit(), | ||||
| 6042 | /*NotCopy=*/false); | ||||
| 6043 | if (Res.isInvalid()) | ||||
| 6044 | return ExprError(); | ||||
| 6045 | Res = ConvertParamDefaultArgument(Param, Res.get(), | ||||
| 6046 | Res.get()->getBeginLoc()); | ||||
| 6047 | if (Res.isInvalid()) | ||||
| 6048 | return ExprError(); | ||||
| 6049 | Init = Res.get(); | ||||
| 6050 | } | ||||
| 6051 | } | ||||
| 6052 | |||||
| 6053 | if (CheckCXXDefaultArgExpr( | ||||
| 6054 | CallLoc, FD, Param, Init, | ||||
| 6055 | /*SkipImmediateInvocations=*/NestedDefaultChecking)) | ||||
| 6056 | return ExprError(); | ||||
| 6057 | |||||
| 6058 | return CXXDefaultArgExpr::Create(Context, InitializationContext->Loc, Param, | ||||
| 6059 | Init, InitializationContext->Context); | ||||
| 6060 | } | ||||
| 6061 | |||||
| 6062 | ExprResult Sema::BuildCXXDefaultInitExpr(SourceLocation Loc, FieldDecl *Field) { | ||||
| 6063 | assert(Field->hasInClassInitializer())(static_cast <bool> (Field->hasInClassInitializer()) ? void (0) : __assert_fail ("Field->hasInClassInitializer()" , "clang/lib/Sema/SemaExpr.cpp", 6063, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 6064 | |||||
| 6065 | // If we might have already tried and failed to instantiate, don't try again. | ||||
| 6066 | if (Field->isInvalidDecl()) | ||||
| 6067 | return ExprError(); | ||||
| 6068 | |||||
| 6069 | auto *ParentRD = cast<CXXRecordDecl>(Field->getParent()); | ||||
| 6070 | |||||
| 6071 | std::optional<ExpressionEvaluationContextRecord::InitializationContext> | ||||
| 6072 | InitializationContext = | ||||
| 6073 | OutermostDeclarationWithDelayedImmediateInvocations(); | ||||
| 6074 | if (!InitializationContext.has_value()) | ||||
| 6075 | InitializationContext.emplace(Loc, Field, CurContext); | ||||
| 6076 | |||||
| 6077 | Expr *Init = nullptr; | ||||
| 6078 | |||||
| 6079 | bool NestedDefaultChecking = isCheckingDefaultArgumentOrInitializer(); | ||||
| 6080 | |||||
| 6081 | EnterExpressionEvaluationContext EvalContext( | ||||
| 6082 | *this, ExpressionEvaluationContext::PotentiallyEvaluated, Field); | ||||
| 6083 | |||||
| 6084 | if (!Field->getInClassInitializer()) { | ||||
| 6085 | // Maybe we haven't instantiated the in-class initializer. Go check the | ||||
| 6086 | // pattern FieldDecl to see if it has one. | ||||
| 6087 | if (isTemplateInstantiation(ParentRD->getTemplateSpecializationKind())) { | ||||
| 6088 | CXXRecordDecl *ClassPattern = ParentRD->getTemplateInstantiationPattern(); | ||||
| 6089 | DeclContext::lookup_result Lookup = | ||||
| 6090 | ClassPattern->lookup(Field->getDeclName()); | ||||
| 6091 | |||||
| 6092 | FieldDecl *Pattern = nullptr; | ||||
| 6093 | for (auto *L : Lookup) { | ||||
| 6094 | if ((Pattern = dyn_cast<FieldDecl>(L))) | ||||
| 6095 | break; | ||||
| 6096 | } | ||||
| 6097 | assert(Pattern && "We must have set the Pattern!")(static_cast <bool> (Pattern && "We must have set the Pattern!" ) ? void (0) : __assert_fail ("Pattern && \"We must have set the Pattern!\"" , "clang/lib/Sema/SemaExpr.cpp", 6097, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 6098 | if (!Pattern->hasInClassInitializer() || | ||||
| 6099 | InstantiateInClassInitializer(Loc, Field, Pattern, | ||||
| 6100 | getTemplateInstantiationArgs(Field))) { | ||||
| 6101 | Field->setInvalidDecl(); | ||||
| 6102 | return ExprError(); | ||||
| 6103 | } | ||||
| 6104 | } | ||||
| 6105 | } | ||||
| 6106 | |||||
| 6107 | // CWG2631 | ||||
| 6108 | // An immediate invocation that is not evaluated where it appears is | ||||
| 6109 | // evaluated and checked for whether it is a constant expression at the | ||||
| 6110 | // point where the enclosing initializer is used in a [...] a constructor | ||||
| 6111 | // definition, or an aggregate initialization. | ||||
| 6112 | ImmediateCallVisitor V; | ||||
| 6113 | if (!NestedDefaultChecking) | ||||
| 6114 | V.TraverseDecl(Field); | ||||
| 6115 | if (V.HasImmediateCalls) { | ||||
| 6116 | ExprEvalContexts.back().DelayedDefaultInitializationContext = {Loc, Field, | ||||
| 6117 | CurContext}; | ||||
| 6118 | ExprEvalContexts.back().IsCurrentlyCheckingDefaultArgumentOrInitializer = | ||||
| 6119 | NestedDefaultChecking; | ||||
| 6120 | |||||
| 6121 | EnsureImmediateInvocationInDefaultArgs Immediate(*this); | ||||
| 6122 | |||||
| 6123 | ExprResult Res = | ||||
| 6124 | Immediate.TransformInitializer(Field->getInClassInitializer(), | ||||
| 6125 | /*CXXDirectInit=*/false); | ||||
| 6126 | if (!Res.isInvalid()) | ||||
| 6127 | Res = ConvertMemberDefaultInitExpression(Field, Res.get(), Loc); | ||||
| 6128 | if (Res.isInvalid()) { | ||||
| 6129 | Field->setInvalidDecl(); | ||||
| 6130 | return ExprError(); | ||||
| 6131 | } | ||||
| 6132 | Init = Res.get(); | ||||
| 6133 | } | ||||
| 6134 | |||||
| 6135 | if (Field->getInClassInitializer()) { | ||||
| 6136 | Expr *E = Init ? Init : Field->getInClassInitializer(); | ||||
| 6137 | if (!NestedDefaultChecking) | ||||
| 6138 | MarkDeclarationsReferencedInExpr(E, /*SkipLocalVariables=*/false); | ||||
| 6139 | // C++11 [class.base.init]p7: | ||||
| 6140 | // The initialization of each base and member constitutes a | ||||
| 6141 | // full-expression. | ||||
| 6142 | ExprResult Res = ActOnFinishFullExpr(E, /*DiscardedValue=*/false); | ||||
| 6143 | if (Res.isInvalid()) { | ||||
| 6144 | Field->setInvalidDecl(); | ||||
| 6145 | return ExprError(); | ||||
| 6146 | } | ||||
| 6147 | Init = Res.get(); | ||||
| 6148 | |||||
| 6149 | return CXXDefaultInitExpr::Create(Context, InitializationContext->Loc, | ||||
| 6150 | Field, InitializationContext->Context, | ||||
| 6151 | Init); | ||||
| 6152 | } | ||||
| 6153 | |||||
| 6154 | // DR1351: | ||||
| 6155 | // If the brace-or-equal-initializer of a non-static data member | ||||
| 6156 | // invokes a defaulted default constructor of its class or of an | ||||
| 6157 | // enclosing class in a potentially evaluated subexpression, the | ||||
| 6158 | // program is ill-formed. | ||||
| 6159 | // | ||||
| 6160 | // This resolution is unworkable: the exception specification of the | ||||
| 6161 | // default constructor can be needed in an unevaluated context, in | ||||
| 6162 | // particular, in the operand of a noexcept-expression, and we can be | ||||
| 6163 | // unable to compute an exception specification for an enclosed class. | ||||
| 6164 | // | ||||
| 6165 | // Any attempt to resolve the exception specification of a defaulted default | ||||
| 6166 | // constructor before the initializer is lexically complete will ultimately | ||||
| 6167 | // come here at which point we can diagnose it. | ||||
| 6168 | RecordDecl *OutermostClass = ParentRD->getOuterLexicalRecordContext(); | ||||
| 6169 | Diag(Loc, diag::err_default_member_initializer_not_yet_parsed) | ||||
| 6170 | << OutermostClass << Field; | ||||
| 6171 | Diag(Field->getEndLoc(), | ||||
| 6172 | diag::note_default_member_initializer_not_yet_parsed); | ||||
| 6173 | // Recover by marking the field invalid, unless we're in a SFINAE context. | ||||
| 6174 | if (!isSFINAEContext()) | ||||
| 6175 | Field->setInvalidDecl(); | ||||
| 6176 | return ExprError(); | ||||
| 6177 | } | ||||
| 6178 | |||||
| 6179 | Sema::VariadicCallType | ||||
| 6180 | Sema::getVariadicCallType(FunctionDecl *FDecl, const FunctionProtoType *Proto, | ||||
| 6181 | Expr *Fn) { | ||||
| 6182 | if (Proto && Proto->isVariadic()) { | ||||
| 6183 | if (isa_and_nonnull<CXXConstructorDecl>(FDecl)) | ||||
| 6184 | return VariadicConstructor; | ||||
| 6185 | else if (Fn && Fn->getType()->isBlockPointerType()) | ||||
| 6186 | return VariadicBlock; | ||||
| 6187 | else if (FDecl) { | ||||
| 6188 | if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl)) | ||||
| 6189 | if (Method->isInstance()) | ||||
| 6190 | return VariadicMethod; | ||||
| 6191 | } else if (Fn && Fn->getType() == Context.BoundMemberTy) | ||||
| 6192 | return VariadicMethod; | ||||
| 6193 | return VariadicFunction; | ||||
| 6194 | } | ||||
| 6195 | return VariadicDoesNotApply; | ||||
| 6196 | } | ||||
| 6197 | |||||
| 6198 | namespace { | ||||
| 6199 | class FunctionCallCCC final : public FunctionCallFilterCCC { | ||||
| 6200 | public: | ||||
| 6201 | FunctionCallCCC(Sema &SemaRef, const IdentifierInfo *FuncName, | ||||
| 6202 | unsigned NumArgs, MemberExpr *ME) | ||||
| 6203 | : FunctionCallFilterCCC(SemaRef, NumArgs, false, ME), | ||||
| 6204 | FunctionName(FuncName) {} | ||||
| 6205 | |||||
| 6206 | bool ValidateCandidate(const TypoCorrection &candidate) override { | ||||
| 6207 | if (!candidate.getCorrectionSpecifier() || | ||||
| 6208 | candidate.getCorrectionAsIdentifierInfo() != FunctionName) { | ||||
| 6209 | return false; | ||||
| 6210 | } | ||||
| 6211 | |||||
| 6212 | return FunctionCallFilterCCC::ValidateCandidate(candidate); | ||||
| 6213 | } | ||||
| 6214 | |||||
| 6215 | std::unique_ptr<CorrectionCandidateCallback> clone() override { | ||||
| 6216 | return std::make_unique<FunctionCallCCC>(*this); | ||||
| 6217 | } | ||||
| 6218 | |||||
| 6219 | private: | ||||
| 6220 | const IdentifierInfo *const FunctionName; | ||||
| 6221 | }; | ||||
| 6222 | } | ||||
| 6223 | |||||
| 6224 | static TypoCorrection TryTypoCorrectionForCall(Sema &S, Expr *Fn, | ||||
| 6225 | FunctionDecl *FDecl, | ||||
| 6226 | ArrayRef<Expr *> Args) { | ||||
| 6227 | MemberExpr *ME = dyn_cast<MemberExpr>(Fn); | ||||
| 6228 | DeclarationName FuncName = FDecl->getDeclName(); | ||||
| 6229 | SourceLocation NameLoc = ME ? ME->getMemberLoc() : Fn->getBeginLoc(); | ||||
| 6230 | |||||
| 6231 | FunctionCallCCC CCC(S, FuncName.getAsIdentifierInfo(), Args.size(), ME); | ||||
| 6232 | if (TypoCorrection Corrected = S.CorrectTypo( | ||||
| 6233 | DeclarationNameInfo(FuncName, NameLoc), Sema::LookupOrdinaryName, | ||||
| 6234 | S.getScopeForContext(S.CurContext), nullptr, CCC, | ||||
| 6235 | Sema::CTK_ErrorRecovery)) { | ||||
| 6236 | if (NamedDecl *ND = Corrected.getFoundDecl()) { | ||||
| 6237 | if (Corrected.isOverloaded()) { | ||||
| 6238 | OverloadCandidateSet OCS(NameLoc, OverloadCandidateSet::CSK_Normal); | ||||
| 6239 | OverloadCandidateSet::iterator Best; | ||||
| 6240 | for (NamedDecl *CD : Corrected) { | ||||
| 6241 | if (FunctionDecl *FD = dyn_cast<FunctionDecl>(CD)) | ||||
| 6242 | S.AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none), Args, | ||||
| 6243 | OCS); | ||||
| 6244 | } | ||||
| 6245 | switch (OCS.BestViableFunction(S, NameLoc, Best)) { | ||||
| 6246 | case OR_Success: | ||||
| 6247 | ND = Best->FoundDecl; | ||||
| 6248 | Corrected.setCorrectionDecl(ND); | ||||
| 6249 | break; | ||||
| 6250 | default: | ||||
| 6251 | break; | ||||
| 6252 | } | ||||
| 6253 | } | ||||
| 6254 | ND = ND->getUnderlyingDecl(); | ||||
| 6255 | if (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND)) | ||||
| 6256 | return Corrected; | ||||
| 6257 | } | ||||
| 6258 | } | ||||
| 6259 | return TypoCorrection(); | ||||
| 6260 | } | ||||
| 6261 | |||||
| 6262 | /// ConvertArgumentsForCall - Converts the arguments specified in | ||||
| 6263 | /// Args/NumArgs to the parameter types of the function FDecl with | ||||
| 6264 | /// function prototype Proto. Call is the call expression itself, and | ||||
| 6265 | /// Fn is the function expression. For a C++ member function, this | ||||
| 6266 | /// routine does not attempt to convert the object argument. Returns | ||||
| 6267 | /// true if the call is ill-formed. | ||||
| 6268 | bool | ||||
| 6269 | Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn, | ||||
| 6270 | FunctionDecl *FDecl, | ||||
| 6271 | const FunctionProtoType *Proto, | ||||
| 6272 | ArrayRef<Expr *> Args, | ||||
| 6273 | SourceLocation RParenLoc, | ||||
| 6274 | bool IsExecConfig) { | ||||
| 6275 | // Bail out early if calling a builtin with custom typechecking. | ||||
| 6276 | if (FDecl) | ||||
| 6277 | if (unsigned ID = FDecl->getBuiltinID()) | ||||
| 6278 | if (Context.BuiltinInfo.hasCustomTypechecking(ID)) | ||||
| 6279 | return false; | ||||
| 6280 | |||||
| 6281 | // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by | ||||
| 6282 | // assignment, to the types of the corresponding parameter, ... | ||||
| 6283 | unsigned NumParams = Proto->getNumParams(); | ||||
| 6284 | bool Invalid = false; | ||||
| 6285 | unsigned MinArgs = FDecl ? FDecl->getMinRequiredArguments() : NumParams; | ||||
| 6286 | unsigned FnKind = Fn->getType()->isBlockPointerType() | ||||
| 6287 | ? 1 /* block */ | ||||
| 6288 | : (IsExecConfig ? 3 /* kernel function (exec config) */ | ||||
| 6289 | : 0 /* function */); | ||||
| 6290 | |||||
| 6291 | // If too few arguments are available (and we don't have default | ||||
| 6292 | // arguments for the remaining parameters), don't make the call. | ||||
| 6293 | if (Args.size() < NumParams) { | ||||
| 6294 | if (Args.size() < MinArgs) { | ||||
| 6295 | TypoCorrection TC; | ||||
| 6296 | if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) { | ||||
| 6297 | unsigned diag_id = | ||||
| 6298 | MinArgs == NumParams && !Proto->isVariadic() | ||||
| 6299 | ? diag::err_typecheck_call_too_few_args_suggest | ||||
| 6300 | : diag::err_typecheck_call_too_few_args_at_least_suggest; | ||||
| 6301 | diagnoseTypo(TC, PDiag(diag_id) << FnKind << MinArgs | ||||
| 6302 | << static_cast<unsigned>(Args.size()) | ||||
| 6303 | << TC.getCorrectionRange()); | ||||
| 6304 | } else if (MinArgs == 1 && FDecl && FDecl->getParamDecl(0)->getDeclName()) | ||||
| 6305 | Diag(RParenLoc, | ||||
| 6306 | MinArgs == NumParams && !Proto->isVariadic() | ||||
| 6307 | ? diag::err_typecheck_call_too_few_args_one | ||||
| 6308 | : diag::err_typecheck_call_too_few_args_at_least_one) | ||||
| 6309 | << FnKind << FDecl->getParamDecl(0) << Fn->getSourceRange(); | ||||
| 6310 | else | ||||
| 6311 | Diag(RParenLoc, MinArgs == NumParams && !Proto->isVariadic() | ||||
| 6312 | ? diag::err_typecheck_call_too_few_args | ||||
| 6313 | : diag::err_typecheck_call_too_few_args_at_least) | ||||
| 6314 | << FnKind << MinArgs << static_cast<unsigned>(Args.size()) | ||||
| 6315 | << Fn->getSourceRange(); | ||||
| 6316 | |||||
| 6317 | // Emit the location of the prototype. | ||||
| 6318 | if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig) | ||||
| 6319 | Diag(FDecl->getLocation(), diag::note_callee_decl) << FDecl; | ||||
| 6320 | |||||
| 6321 | return true; | ||||
| 6322 | } | ||||
| 6323 | // We reserve space for the default arguments when we create | ||||
| 6324 | // the call expression, before calling ConvertArgumentsForCall. | ||||
| 6325 | assert((Call->getNumArgs() == NumParams) &&(static_cast <bool> ((Call->getNumArgs() == NumParams ) && "We should have reserved space for the default arguments before!" ) ? void (0) : __assert_fail ("(Call->getNumArgs() == NumParams) && \"We should have reserved space for the default arguments before!\"" , "clang/lib/Sema/SemaExpr.cpp", 6326, __extension__ __PRETTY_FUNCTION__ )) | ||||
| 6326 | "We should have reserved space for the default arguments before!")(static_cast <bool> ((Call->getNumArgs() == NumParams ) && "We should have reserved space for the default arguments before!" ) ? void (0) : __assert_fail ("(Call->getNumArgs() == NumParams) && \"We should have reserved space for the default arguments before!\"" , "clang/lib/Sema/SemaExpr.cpp", 6326, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 6327 | } | ||||
| 6328 | |||||
| 6329 | // If too many are passed and not variadic, error on the extras and drop | ||||
| 6330 | // them. | ||||
| 6331 | if (Args.size() > NumParams) { | ||||
| 6332 | if (!Proto->isVariadic()) { | ||||
| 6333 | TypoCorrection TC; | ||||
| 6334 | if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) { | ||||
| 6335 | unsigned diag_id = | ||||
| 6336 | MinArgs == NumParams && !Proto->isVariadic() | ||||
| 6337 | ? diag::err_typecheck_call_too_many_args_suggest | ||||
| 6338 | : diag::err_typecheck_call_too_many_args_at_most_suggest; | ||||
| 6339 | diagnoseTypo(TC, PDiag(diag_id) << FnKind << NumParams | ||||
| 6340 | << static_cast<unsigned>(Args.size()) | ||||
| 6341 | << TC.getCorrectionRange()); | ||||
| 6342 | } else if (NumParams == 1 && FDecl && | ||||
| 6343 | FDecl->getParamDecl(0)->getDeclName()) | ||||
| 6344 | Diag(Args[NumParams]->getBeginLoc(), | ||||
| 6345 | MinArgs == NumParams | ||||
| 6346 | ? diag::err_typecheck_call_too_many_args_one | ||||
| 6347 | : diag::err_typecheck_call_too_many_args_at_most_one) | ||||
| 6348 | << FnKind << FDecl->getParamDecl(0) | ||||
| 6349 | << static_cast<unsigned>(Args.size()) << Fn->getSourceRange() | ||||
| 6350 | << SourceRange(Args[NumParams]->getBeginLoc(), | ||||
| 6351 | Args.back()->getEndLoc()); | ||||
| 6352 | else | ||||
| 6353 | Diag(Args[NumParams]->getBeginLoc(), | ||||
| 6354 | MinArgs == NumParams | ||||
| 6355 | ? diag::err_typecheck_call_too_many_args | ||||
| 6356 | : diag::err_typecheck_call_too_many_args_at_most) | ||||
| 6357 | << FnKind << NumParams << static_cast<unsigned>(Args.size()) | ||||
| 6358 | << Fn->getSourceRange() | ||||
| 6359 | << SourceRange(Args[NumParams]->getBeginLoc(), | ||||
| 6360 | Args.back()->getEndLoc()); | ||||
| 6361 | |||||
| 6362 | // Emit the location of the prototype. | ||||
| 6363 | if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig) | ||||
| 6364 | Diag(FDecl->getLocation(), diag::note_callee_decl) << FDecl; | ||||
| 6365 | |||||
| 6366 | // This deletes the extra arguments. | ||||
| 6367 | Call->shrinkNumArgs(NumParams); | ||||
| 6368 | return true; | ||||
| 6369 | } | ||||
| 6370 | } | ||||
| 6371 | SmallVector<Expr *, 8> AllArgs; | ||||
| 6372 | VariadicCallType CallType = getVariadicCallType(FDecl, Proto, Fn); | ||||
| 6373 | |||||
| 6374 | Invalid = GatherArgumentsForCall(Call->getBeginLoc(), FDecl, Proto, 0, Args, | ||||
| 6375 | AllArgs, CallType); | ||||
| 6376 | if (Invalid) | ||||
| 6377 | return true; | ||||
| 6378 | unsigned TotalNumArgs = AllArgs.size(); | ||||
| 6379 | for (unsigned i = 0; i < TotalNumArgs; ++i) | ||||
| 6380 | Call->setArg(i, AllArgs[i]); | ||||
| 6381 | |||||
| 6382 | Call->computeDependence(); | ||||
| 6383 | return false; | ||||
| 6384 | } | ||||
| 6385 | |||||
| 6386 | bool Sema::GatherArgumentsForCall(SourceLocation CallLoc, FunctionDecl *FDecl, | ||||
| 6387 | const FunctionProtoType *Proto, | ||||
| 6388 | unsigned FirstParam, ArrayRef<Expr *> Args, | ||||
| 6389 | SmallVectorImpl<Expr *> &AllArgs, | ||||
| 6390 | VariadicCallType CallType, bool AllowExplicit, | ||||
| 6391 | bool IsListInitialization) { | ||||
| 6392 | unsigned NumParams = Proto->getNumParams(); | ||||
| 6393 | bool Invalid = false; | ||||
| 6394 | size_t ArgIx = 0; | ||||
| 6395 | // Continue to check argument types (even if we have too few/many args). | ||||
| 6396 | for (unsigned i = FirstParam; i < NumParams; i++) { | ||||
| 6397 | QualType ProtoArgType = Proto->getParamType(i); | ||||
| 6398 | |||||
| 6399 | Expr *Arg; | ||||
| 6400 | ParmVarDecl *Param = FDecl ? FDecl->getParamDecl(i) : nullptr; | ||||
| 6401 | if (ArgIx < Args.size()) { | ||||
| 6402 | Arg = Args[ArgIx++]; | ||||
| 6403 | |||||
| 6404 | if (RequireCompleteType(Arg->getBeginLoc(), ProtoArgType, | ||||
| 6405 | diag::err_call_incomplete_argument, Arg)) | ||||
| 6406 | return true; | ||||
| 6407 | |||||
| 6408 | // Strip the unbridged-cast placeholder expression off, if applicable. | ||||
| 6409 | bool CFAudited = false; | ||||
| 6410 | if (Arg->getType() == Context.ARCUnbridgedCastTy && | ||||
| 6411 | FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() && | ||||
| 6412 | (!Param || !Param->hasAttr<CFConsumedAttr>())) | ||||
| 6413 | Arg = stripARCUnbridgedCast(Arg); | ||||
| 6414 | else if (getLangOpts().ObjCAutoRefCount && | ||||
| 6415 | FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() && | ||||
| 6416 | (!Param || !Param->hasAttr<CFConsumedAttr>())) | ||||
| 6417 | CFAudited = true; | ||||
| 6418 | |||||
| 6419 | if (Proto->getExtParameterInfo(i).isNoEscape() && | ||||
| 6420 | ProtoArgType->isBlockPointerType()) | ||||
| 6421 | if (auto *BE = dyn_cast<BlockExpr>(Arg->IgnoreParenNoopCasts(Context))) | ||||
| 6422 | BE->getBlockDecl()->setDoesNotEscape(); | ||||
| 6423 | |||||
| 6424 | InitializedEntity Entity = | ||||
| 6425 | Param ? InitializedEntity::InitializeParameter(Context, Param, | ||||
| 6426 | ProtoArgType) | ||||
| 6427 | : InitializedEntity::InitializeParameter( | ||||
| 6428 | Context, ProtoArgType, Proto->isParamConsumed(i)); | ||||
| 6429 | |||||
| 6430 | // Remember that parameter belongs to a CF audited API. | ||||
| 6431 | if (CFAudited) | ||||
| 6432 | Entity.setParameterCFAudited(); | ||||
| 6433 | |||||
| 6434 | ExprResult ArgE = PerformCopyInitialization( | ||||
| 6435 | Entity, SourceLocation(), Arg, IsListInitialization, AllowExplicit); | ||||
| 6436 | if (ArgE.isInvalid()) | ||||
| 6437 | return true; | ||||
| 6438 | |||||
| 6439 | Arg = ArgE.getAs<Expr>(); | ||||
| 6440 | } else { | ||||
| 6441 | assert(Param && "can't use default arguments without a known callee")(static_cast <bool> (Param && "can't use default arguments without a known callee" ) ? void (0) : __assert_fail ("Param && \"can't use default arguments without a known callee\"" , "clang/lib/Sema/SemaExpr.cpp", 6441, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 6442 | |||||
| 6443 | ExprResult ArgExpr = BuildCXXDefaultArgExpr(CallLoc, FDecl, Param); | ||||
| 6444 | if (ArgExpr.isInvalid()) | ||||
| 6445 | return true; | ||||
| 6446 | |||||
| 6447 | Arg = ArgExpr.getAs<Expr>(); | ||||
| 6448 | } | ||||
| 6449 | |||||
| 6450 | // Check for array bounds violations for each argument to the call. This | ||||
| 6451 | // check only triggers warnings when the argument isn't a more complex Expr | ||||
| 6452 | // with its own checking, such as a BinaryOperator. | ||||
| 6453 | CheckArrayAccess(Arg); | ||||
| 6454 | |||||
| 6455 | // Check for violations of C99 static array rules (C99 6.7.5.3p7). | ||||
| 6456 | CheckStaticArrayArgument(CallLoc, Param, Arg); | ||||
| 6457 | |||||
| 6458 | AllArgs.push_back(Arg); | ||||
| 6459 | } | ||||
| 6460 | |||||
| 6461 | // If this is a variadic call, handle args passed through "...". | ||||
| 6462 | if (CallType != VariadicDoesNotApply) { | ||||
| 6463 | // Assume that extern "C" functions with variadic arguments that | ||||
| 6464 | // return __unknown_anytype aren't *really* variadic. | ||||
| 6465 | if (Proto->getReturnType() == Context.UnknownAnyTy && FDecl && | ||||
| 6466 | FDecl->isExternC()) { | ||||
| 6467 | for (Expr *A : Args.slice(ArgIx)) { | ||||
| 6468 | QualType paramType; // ignored | ||||
| 6469 | ExprResult arg = checkUnknownAnyArg(CallLoc, A, paramType); | ||||
| 6470 | Invalid |= arg.isInvalid(); | ||||
| 6471 | AllArgs.push_back(arg.get()); | ||||
| 6472 | } | ||||
| 6473 | |||||
| 6474 | // Otherwise do argument promotion, (C99 6.5.2.2p7). | ||||
| 6475 | } else { | ||||
| 6476 | for (Expr *A : Args.slice(ArgIx)) { | ||||
| 6477 | ExprResult Arg = DefaultVariadicArgumentPromotion(A, CallType, FDecl); | ||||
| 6478 | Invalid |= Arg.isInvalid(); | ||||
| 6479 | AllArgs.push_back(Arg.get()); | ||||
| 6480 | } | ||||
| 6481 | } | ||||
| 6482 | |||||
| 6483 | // Check for array bounds violations. | ||||
| 6484 | for (Expr *A : Args.slice(ArgIx)) | ||||
| 6485 | CheckArrayAccess(A); | ||||
| 6486 | } | ||||
| 6487 | return Invalid; | ||||
| 6488 | } | ||||
| 6489 | |||||
| 6490 | static void DiagnoseCalleeStaticArrayParam(Sema &S, ParmVarDecl *PVD) { | ||||
| 6491 | TypeLoc TL = PVD->getTypeSourceInfo()->getTypeLoc(); | ||||
| 6492 | if (DecayedTypeLoc DTL = TL.getAs<DecayedTypeLoc>()) | ||||
| 6493 | TL = DTL.getOriginalLoc(); | ||||
| 6494 | if (ArrayTypeLoc ATL = TL.getAs<ArrayTypeLoc>()) | ||||
| 6495 | S.Diag(PVD->getLocation(), diag::note_callee_static_array) | ||||
| 6496 | << ATL.getLocalSourceRange(); | ||||
| 6497 | } | ||||
| 6498 | |||||
| 6499 | /// CheckStaticArrayArgument - If the given argument corresponds to a static | ||||
| 6500 | /// array parameter, check that it is non-null, and that if it is formed by | ||||
| 6501 | /// array-to-pointer decay, the underlying array is sufficiently large. | ||||
| 6502 | /// | ||||
| 6503 | /// C99 6.7.5.3p7: If the keyword static also appears within the [ and ] of the | ||||
| 6504 | /// array type derivation, then for each call to the function, the value of the | ||||
| 6505 | /// corresponding actual argument shall provide access to the first element of | ||||
| 6506 | /// an array with at least as many elements as specified by the size expression. | ||||
| 6507 | void | ||||
| 6508 | Sema::CheckStaticArrayArgument(SourceLocation CallLoc, | ||||
| 6509 | ParmVarDecl *Param, | ||||
| 6510 | const Expr *ArgExpr) { | ||||
| 6511 | // Static array parameters are not supported in C++. | ||||
| 6512 | if (!Param || getLangOpts().CPlusPlus) | ||||
| 6513 | return; | ||||
| 6514 | |||||
| 6515 | QualType OrigTy = Param->getOriginalType(); | ||||
| 6516 | |||||
| 6517 | const ArrayType *AT = Context.getAsArrayType(OrigTy); | ||||
| 6518 | if (!AT || AT->getSizeModifier() != ArrayType::Static) | ||||
| 6519 | return; | ||||
| 6520 | |||||
| 6521 | if (ArgExpr->isNullPointerConstant(Context, | ||||
| 6522 | Expr::NPC_NeverValueDependent)) { | ||||
| 6523 | Diag(CallLoc, diag::warn_null_arg) << ArgExpr->getSourceRange(); | ||||
| 6524 | DiagnoseCalleeStaticArrayParam(*this, Param); | ||||
| 6525 | return; | ||||
| 6526 | } | ||||
| 6527 | |||||
| 6528 | const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT); | ||||
| 6529 | if (!CAT) | ||||
| 6530 | return; | ||||
| 6531 | |||||
| 6532 | const ConstantArrayType *ArgCAT = | ||||
| 6533 | Context.getAsConstantArrayType(ArgExpr->IgnoreParenCasts()->getType()); | ||||
| 6534 | if (!ArgCAT) | ||||
| 6535 | return; | ||||
| 6536 | |||||
| 6537 | if (getASTContext().hasSameUnqualifiedType(CAT->getElementType(), | ||||
| 6538 | ArgCAT->getElementType())) { | ||||
| 6539 | if (ArgCAT->getSize().ult(CAT->getSize())) { | ||||
| 6540 | Diag(CallLoc, diag::warn_static_array_too_small) | ||||
| 6541 | << ArgExpr->getSourceRange() | ||||
| 6542 | << (unsigned)ArgCAT->getSize().getZExtValue() | ||||
| 6543 | << (unsigned)CAT->getSize().getZExtValue() << 0; | ||||
| 6544 | DiagnoseCalleeStaticArrayParam(*this, Param); | ||||
| 6545 | } | ||||
| 6546 | return; | ||||
| 6547 | } | ||||
| 6548 | |||||
| 6549 | std::optional<CharUnits> ArgSize = | ||||
| 6550 | getASTContext().getTypeSizeInCharsIfKnown(ArgCAT); | ||||
| 6551 | std::optional<CharUnits> ParmSize = | ||||
| 6552 | getASTContext().getTypeSizeInCharsIfKnown(CAT); | ||||
| 6553 | if (ArgSize && ParmSize && *ArgSize < *ParmSize) { | ||||
| 6554 | Diag(CallLoc, diag::warn_static_array_too_small) | ||||
| 6555 | << ArgExpr->getSourceRange() << (unsigned)ArgSize->getQuantity() | ||||
| 6556 | << (unsigned)ParmSize->getQuantity() << 1; | ||||
| 6557 | DiagnoseCalleeStaticArrayParam(*this, Param); | ||||
| 6558 | } | ||||
| 6559 | } | ||||
| 6560 | |||||
| 6561 | /// Given a function expression of unknown-any type, try to rebuild it | ||||
| 6562 | /// to have a function type. | ||||
| 6563 | static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn); | ||||
| 6564 | |||||
| 6565 | /// Is the given type a placeholder that we need to lower out | ||||
| 6566 | /// immediately during argument processing? | ||||
| 6567 | static bool isPlaceholderToRemoveAsArg(QualType type) { | ||||
| 6568 | // Placeholders are never sugared. | ||||
| 6569 | const BuiltinType *placeholder = dyn_cast<BuiltinType>(type); | ||||
| 6570 | if (!placeholder) return false; | ||||
| 6571 | |||||
| 6572 | switch (placeholder->getKind()) { | ||||
| 6573 | // Ignore all the non-placeholder types. | ||||
| 6574 | #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ | ||||
| 6575 | case BuiltinType::Id: | ||||
| 6576 | #include "clang/Basic/OpenCLImageTypes.def" | ||||
| 6577 | #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ | ||||
| 6578 | case BuiltinType::Id: | ||||
| 6579 | #include "clang/Basic/OpenCLExtensionTypes.def" | ||||
| 6580 | // In practice we'll never use this, since all SVE types are sugared | ||||
| 6581 | // via TypedefTypes rather than exposed directly as BuiltinTypes. | ||||
| 6582 | #define SVE_TYPE(Name, Id, SingletonId) \ | ||||
| 6583 | case BuiltinType::Id: | ||||
| 6584 | #include "clang/Basic/AArch64SVEACLETypes.def" | ||||
| 6585 | #define PPC_VECTOR_TYPE(Name, Id, Size) \ | ||||
| 6586 | case BuiltinType::Id: | ||||
| 6587 | #include "clang/Basic/PPCTypes.def" | ||||
| 6588 | #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id: | ||||
| 6589 | #include "clang/Basic/RISCVVTypes.def" | ||||
| 6590 | #define WASM_TYPE(Name, Id, SingletonId) case BuiltinType::Id: | ||||
| 6591 | #include "clang/Basic/WebAssemblyReferenceTypes.def" | ||||
| 6592 | #define PLACEHOLDER_TYPE(ID, SINGLETON_ID) | ||||
| 6593 | #define BUILTIN_TYPE(ID, SINGLETON_ID) case BuiltinType::ID: | ||||
| 6594 | #include "clang/AST/BuiltinTypes.def" | ||||
| 6595 | return false; | ||||
| 6596 | |||||
| 6597 | // We cannot lower out overload sets; they might validly be resolved | ||||
| 6598 | // by the call machinery. | ||||
| 6599 | case BuiltinType::Overload: | ||||
| 6600 | return false; | ||||
| 6601 | |||||
| 6602 | // Unbridged casts in ARC can be handled in some call positions and | ||||
| 6603 | // should be left in place. | ||||
| 6604 | case BuiltinType::ARCUnbridgedCast: | ||||
| 6605 | return false; | ||||
| 6606 | |||||
| 6607 | // Pseudo-objects should be converted as soon as possible. | ||||
| 6608 | case BuiltinType::PseudoObject: | ||||
| 6609 | return true; | ||||
| 6610 | |||||
| 6611 | // The debugger mode could theoretically but currently does not try | ||||
| 6612 | // to resolve unknown-typed arguments based on known parameter types. | ||||
| 6613 | case BuiltinType::UnknownAny: | ||||
| 6614 | return true; | ||||
| 6615 | |||||
| 6616 | // These are always invalid as call arguments and should be reported. | ||||
| 6617 | case BuiltinType::BoundMember: | ||||
| 6618 | case BuiltinType::BuiltinFn: | ||||
| 6619 | case BuiltinType::IncompleteMatrixIdx: | ||||
| 6620 | case BuiltinType::OMPArraySection: | ||||
| 6621 | case BuiltinType::OMPArrayShaping: | ||||
| 6622 | case BuiltinType::OMPIterator: | ||||
| 6623 | return true; | ||||
| 6624 | |||||
| 6625 | } | ||||
| 6626 | llvm_unreachable("bad builtin type kind")::llvm::llvm_unreachable_internal("bad builtin type kind", "clang/lib/Sema/SemaExpr.cpp" , 6626); | ||||
| 6627 | } | ||||
| 6628 | |||||
| 6629 | /// Check an argument list for placeholders that we won't try to | ||||
| 6630 | /// handle later. | ||||
| 6631 | static bool checkArgsForPlaceholders(Sema &S, MultiExprArg args) { | ||||
| 6632 | // Apply this processing to all the arguments at once instead of | ||||
| 6633 | // dying at the first failure. | ||||
| 6634 | bool hasInvalid = false; | ||||
| 6635 | for (size_t i = 0, e = args.size(); i != e; i++) { | ||||
| 6636 | if (isPlaceholderToRemoveAsArg(args[i]->getType())) { | ||||
| 6637 | ExprResult result = S.CheckPlaceholderExpr(args[i]); | ||||
| 6638 | if (result.isInvalid()) hasInvalid = true; | ||||
| 6639 | else args[i] = result.get(); | ||||
| 6640 | } | ||||
| 6641 | } | ||||
| 6642 | return hasInvalid; | ||||
| 6643 | } | ||||
| 6644 | |||||
| 6645 | /// If a builtin function has a pointer argument with no explicit address | ||||
| 6646 | /// space, then it should be able to accept a pointer to any address | ||||
| 6647 | /// space as input. In order to do this, we need to replace the | ||||
| 6648 | /// standard builtin declaration with one that uses the same address space | ||||
| 6649 | /// as the call. | ||||
| 6650 | /// | ||||
| 6651 | /// \returns nullptr If this builtin is not a candidate for a rewrite i.e. | ||||
| 6652 | /// it does not contain any pointer arguments without | ||||
| 6653 | /// an address space qualifer. Otherwise the rewritten | ||||
| 6654 | /// FunctionDecl is returned. | ||||
| 6655 | /// TODO: Handle pointer return types. | ||||
| 6656 | static FunctionDecl *rewriteBuiltinFunctionDecl(Sema *Sema, ASTContext &Context, | ||||
| 6657 | FunctionDecl *FDecl, | ||||
| 6658 | MultiExprArg ArgExprs) { | ||||
| 6659 | |||||
| 6660 | QualType DeclType = FDecl->getType(); | ||||
| 6661 | const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(DeclType); | ||||
| 6662 | |||||
| 6663 | if (!Context.BuiltinInfo.hasPtrArgsOrResult(FDecl->getBuiltinID()) || !FT || | ||||
| 6664 | ArgExprs.size() < FT->getNumParams()) | ||||
| 6665 | return nullptr; | ||||
| 6666 | |||||
| 6667 | bool NeedsNewDecl = false; | ||||
| 6668 | unsigned i = 0; | ||||
| 6669 | SmallVector<QualType, 8> OverloadParams; | ||||
| 6670 | |||||
| 6671 | for (QualType ParamType : FT->param_types()) { | ||||
| 6672 | |||||
| 6673 | // Convert array arguments to pointer to simplify type lookup. | ||||
| 6674 | ExprResult ArgRes = | ||||
| 6675 | Sema->DefaultFunctionArrayLvalueConversion(ArgExprs[i++]); | ||||
| 6676 | if (ArgRes.isInvalid()) | ||||
| 6677 | return nullptr; | ||||
| 6678 | Expr *Arg = ArgRes.get(); | ||||
| 6679 | QualType ArgType = Arg->getType(); | ||||
| 6680 | if (!ParamType->isPointerType() || ParamType.hasAddressSpace() || | ||||
| 6681 | !ArgType->isPointerType() || | ||||
| 6682 | !ArgType->getPointeeType().hasAddressSpace() || | ||||
| 6683 | isPtrSizeAddressSpace(ArgType->getPointeeType().getAddressSpace())) { | ||||
| 6684 | OverloadParams.push_back(ParamType); | ||||
| 6685 | continue; | ||||
| 6686 | } | ||||
| 6687 | |||||
| 6688 | QualType PointeeType = ParamType->getPointeeType(); | ||||
| 6689 | if (PointeeType.hasAddressSpace()) | ||||
| 6690 | continue; | ||||
| 6691 | |||||
| 6692 | NeedsNewDecl = true; | ||||
| 6693 | LangAS AS = ArgType->getPointeeType().getAddressSpace(); | ||||
| 6694 | |||||
| 6695 | PointeeType = Context.getAddrSpaceQualType(PointeeType, AS); | ||||
| 6696 | OverloadParams.push_back(Context.getPointerType(PointeeType)); | ||||
| 6697 | } | ||||
| 6698 | |||||
| 6699 | if (!NeedsNewDecl) | ||||
| 6700 | return nullptr; | ||||
| 6701 | |||||
| 6702 | FunctionProtoType::ExtProtoInfo EPI; | ||||
| 6703 | EPI.Variadic = FT->isVariadic(); | ||||
| 6704 | QualType OverloadTy = Context.getFunctionType(FT->getReturnType(), | ||||
| 6705 | OverloadParams, EPI); | ||||
| 6706 | DeclContext *Parent = FDecl->getParent(); | ||||
| 6707 | FunctionDecl *OverloadDecl = FunctionDecl::Create( | ||||
| 6708 | Context, Parent, FDecl->getLocation(), FDecl->getLocation(), | ||||
| 6709 | FDecl->getIdentifier(), OverloadTy, | ||||
| 6710 | /*TInfo=*/nullptr, SC_Extern, Sema->getCurFPFeatures().isFPConstrained(), | ||||
| 6711 | false, | ||||
| 6712 | /*hasPrototype=*/true); | ||||
| 6713 | SmallVector<ParmVarDecl*, 16> Params; | ||||
| 6714 | FT = cast<FunctionProtoType>(OverloadTy); | ||||
| 6715 | for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { | ||||
| 6716 | QualType ParamType = FT->getParamType(i); | ||||
| 6717 | ParmVarDecl *Parm = | ||||
| 6718 | ParmVarDecl::Create(Context, OverloadDecl, SourceLocation(), | ||||
| 6719 | SourceLocation(), nullptr, ParamType, | ||||
| 6720 | /*TInfo=*/nullptr, SC_None, nullptr); | ||||
| 6721 | Parm->setScopeInfo(0, i); | ||||
| 6722 | Params.push_back(Parm); | ||||
| 6723 | } | ||||
| 6724 | OverloadDecl->setParams(Params); | ||||
| 6725 | Sema->mergeDeclAttributes(OverloadDecl, FDecl); | ||||
| 6726 | return OverloadDecl; | ||||
| 6727 | } | ||||
| 6728 | |||||
| 6729 | static void checkDirectCallValidity(Sema &S, const Expr *Fn, | ||||
| 6730 | FunctionDecl *Callee, | ||||
| 6731 | MultiExprArg ArgExprs) { | ||||
| 6732 | // `Callee` (when called with ArgExprs) may be ill-formed. enable_if (and | ||||
| 6733 | // similar attributes) really don't like it when functions are called with an | ||||
| 6734 | // invalid number of args. | ||||
| 6735 | if (S.TooManyArguments(Callee->getNumParams(), ArgExprs.size(), | ||||
| 6736 | /*PartialOverloading=*/false) && | ||||
| 6737 | !Callee->isVariadic()) | ||||
| 6738 | return; | ||||
| 6739 | if (Callee->getMinRequiredArguments() > ArgExprs.size()) | ||||
| 6740 | return; | ||||
| 6741 | |||||
| 6742 | if (const EnableIfAttr *Attr = | ||||
| 6743 | S.CheckEnableIf(Callee, Fn->getBeginLoc(), ArgExprs, true)) { | ||||
| 6744 | S.Diag(Fn->getBeginLoc(), | ||||
| 6745 | isa<CXXMethodDecl>(Callee) | ||||
| 6746 | ? diag::err_ovl_no_viable_member_function_in_call | ||||
| 6747 | : diag::err_ovl_no_viable_function_in_call) | ||||
| 6748 | << Callee << Callee->getSourceRange(); | ||||
| 6749 | S.Diag(Callee->getLocation(), | ||||
| 6750 | diag::note_ovl_candidate_disabled_by_function_cond_attr) | ||||
| 6751 | << Attr->getCond()->getSourceRange() << Attr->getMessage(); | ||||
| 6752 | return; | ||||
| 6753 | } | ||||
| 6754 | } | ||||
| 6755 | |||||
| 6756 | static bool enclosingClassIsRelatedToClassInWhichMembersWereFound( | ||||
| 6757 | const UnresolvedMemberExpr *const UME, Sema &S) { | ||||
| 6758 | |||||
| 6759 | const auto GetFunctionLevelDCIfCXXClass = | ||||
| 6760 | [](Sema &S) -> const CXXRecordDecl * { | ||||
| 6761 | const DeclContext *const DC = S.getFunctionLevelDeclContext(); | ||||
| 6762 | if (!DC || !DC->getParent()) | ||||
| 6763 | return nullptr; | ||||
| 6764 | |||||
| 6765 | // If the call to some member function was made from within a member | ||||
| 6766 | // function body 'M' return return 'M's parent. | ||||
| 6767 | if (const auto *MD = dyn_cast<CXXMethodDecl>(DC)) | ||||
| 6768 | return MD->getParent()->getCanonicalDecl(); | ||||
| 6769 | // else the call was made from within a default member initializer of a | ||||
| 6770 | // class, so return the class. | ||||
| 6771 | if (const auto *RD = dyn_cast<CXXRecordDecl>(DC)) | ||||
| 6772 | return RD->getCanonicalDecl(); | ||||
| 6773 | return nullptr; | ||||
| 6774 | }; | ||||
| 6775 | // If our DeclContext is neither a member function nor a class (in the | ||||
| 6776 | // case of a lambda in a default member initializer), we can't have an | ||||
| 6777 | // enclosing 'this'. | ||||
| 6778 | |||||
| 6779 | const CXXRecordDecl *const CurParentClass = GetFunctionLevelDCIfCXXClass(S); | ||||
| 6780 | if (!CurParentClass) | ||||
| 6781 | return false; | ||||
| 6782 | |||||
| 6783 | // The naming class for implicit member functions call is the class in which | ||||
| 6784 | // name lookup starts. | ||||
| 6785 | const CXXRecordDecl *const NamingClass = | ||||
| 6786 | UME->getNamingClass()->getCanonicalDecl(); | ||||
| 6787 | assert(NamingClass && "Must have naming class even for implicit access")(static_cast <bool> (NamingClass && "Must have naming class even for implicit access" ) ? void (0) : __assert_fail ("NamingClass && \"Must have naming class even for implicit access\"" , "clang/lib/Sema/SemaExpr.cpp", 6787, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 6788 | |||||
| 6789 | // If the unresolved member functions were found in a 'naming class' that is | ||||
| 6790 | // related (either the same or derived from) to the class that contains the | ||||
| 6791 | // member function that itself contained the implicit member access. | ||||
| 6792 | |||||
| 6793 | return CurParentClass == NamingClass || | ||||
| 6794 | CurParentClass->isDerivedFrom(NamingClass); | ||||
| 6795 | } | ||||
| 6796 | |||||
| 6797 | static void | ||||
| 6798 | tryImplicitlyCaptureThisIfImplicitMemberFunctionAccessWithDependentArgs( | ||||
| 6799 | Sema &S, const UnresolvedMemberExpr *const UME, SourceLocation CallLoc) { | ||||
| 6800 | |||||
| 6801 | if (!UME) | ||||
| 6802 | return; | ||||
| 6803 | |||||
| 6804 | LambdaScopeInfo *const CurLSI = S.getCurLambda(); | ||||
| 6805 | // Only try and implicitly capture 'this' within a C++ Lambda if it hasn't | ||||
| 6806 | // already been captured, or if this is an implicit member function call (if | ||||
| 6807 | // it isn't, an attempt to capture 'this' should already have been made). | ||||
| 6808 | if (!CurLSI || CurLSI->ImpCaptureStyle == CurLSI->ImpCap_None || | ||||
| 6809 | !UME->isImplicitAccess() || CurLSI->isCXXThisCaptured()) | ||||
| 6810 | return; | ||||
| 6811 | |||||
| 6812 | // Check if the naming class in which the unresolved members were found is | ||||
| 6813 | // related (same as or is a base of) to the enclosing class. | ||||
| 6814 | |||||
| 6815 | if (!enclosingClassIsRelatedToClassInWhichMembersWereFound(UME, S)) | ||||
| 6816 | return; | ||||
| 6817 | |||||
| 6818 | |||||
| 6819 | DeclContext *EnclosingFunctionCtx = S.CurContext->getParent()->getParent(); | ||||
| 6820 | // If the enclosing function is not dependent, then this lambda is | ||||
| 6821 | // capture ready, so if we can capture this, do so. | ||||
| 6822 | if (!EnclosingFunctionCtx->isDependentContext()) { | ||||
| 6823 | // If the current lambda and all enclosing lambdas can capture 'this' - | ||||
| 6824 | // then go ahead and capture 'this' (since our unresolved overload set | ||||
| 6825 | // contains at least one non-static member function). | ||||
| 6826 | if (!S.CheckCXXThisCapture(CallLoc, /*Explcit*/ false, /*Diagnose*/ false)) | ||||
| 6827 | S.CheckCXXThisCapture(CallLoc); | ||||
| 6828 | } else if (S.CurContext->isDependentContext()) { | ||||
| 6829 | // ... since this is an implicit member reference, that might potentially | ||||
| 6830 | // involve a 'this' capture, mark 'this' for potential capture in | ||||
| 6831 | // enclosing lambdas. | ||||
| 6832 | if (CurLSI->ImpCaptureStyle != CurLSI->ImpCap_None) | ||||
| 6833 | CurLSI->addPotentialThisCapture(CallLoc); | ||||
| 6834 | } | ||||
| 6835 | } | ||||
| 6836 | |||||
| 6837 | // Once a call is fully resolved, warn for unqualified calls to specific | ||||
| 6838 | // C++ standard functions, like move and forward. | ||||
| 6839 | static void DiagnosedUnqualifiedCallsToStdFunctions(Sema &S, CallExpr *Call) { | ||||
| 6840 | // We are only checking unary move and forward so exit early here. | ||||
| 6841 | if (Call->getNumArgs() != 1) | ||||
| 6842 | return; | ||||
| 6843 | |||||
| 6844 | Expr *E = Call->getCallee()->IgnoreParenImpCasts(); | ||||
| 6845 | if (!E || isa<UnresolvedLookupExpr>(E)) | ||||
| 6846 | return; | ||||
| 6847 | DeclRefExpr *DRE = dyn_cast_or_null<DeclRefExpr>(E); | ||||
| 6848 | if (!DRE || !DRE->getLocation().isValid()) | ||||
| 6849 | return; | ||||
| 6850 | |||||
| 6851 | if (DRE->getQualifier()) | ||||
| 6852 | return; | ||||
| 6853 | |||||
| 6854 | const FunctionDecl *FD = Call->getDirectCallee(); | ||||
| 6855 | if (!FD) | ||||
| 6856 | return; | ||||
| 6857 | |||||
| 6858 | // Only warn for some functions deemed more frequent or problematic. | ||||
| 6859 | unsigned BuiltinID = FD->getBuiltinID(); | ||||
| 6860 | if (BuiltinID != Builtin::BImove && BuiltinID != Builtin::BIforward) | ||||
| 6861 | return; | ||||
| 6862 | |||||
| 6863 | S.Diag(DRE->getLocation(), diag::warn_unqualified_call_to_std_cast_function) | ||||
| 6864 | << FD->getQualifiedNameAsString() | ||||
| 6865 | << FixItHint::CreateInsertion(DRE->getLocation(), "std::"); | ||||
| 6866 | } | ||||
| 6867 | |||||
| 6868 | ExprResult Sema::ActOnCallExpr(Scope *Scope, Expr *Fn, SourceLocation LParenLoc, | ||||
| 6869 | MultiExprArg ArgExprs, SourceLocation RParenLoc, | ||||
| 6870 | Expr *ExecConfig) { | ||||
| 6871 | ExprResult Call = | ||||
| 6872 | BuildCallExpr(Scope, Fn, LParenLoc, ArgExprs, RParenLoc, ExecConfig, | ||||
| 6873 | /*IsExecConfig=*/false, /*AllowRecovery=*/true); | ||||
| 6874 | if (Call.isInvalid()) | ||||
| 6875 | return Call; | ||||
| 6876 | |||||
| 6877 | // Diagnose uses of the C++20 "ADL-only template-id call" feature in earlier | ||||
| 6878 | // language modes. | ||||
| 6879 | if (auto *ULE = dyn_cast<UnresolvedLookupExpr>(Fn)) { | ||||
| 6880 | if (ULE->hasExplicitTemplateArgs() && | ||||
| 6881 | ULE->decls_begin() == ULE->decls_end()) { | ||||
| 6882 | Diag(Fn->getExprLoc(), getLangOpts().CPlusPlus20 | ||||
| 6883 | ? diag::warn_cxx17_compat_adl_only_template_id | ||||
| 6884 | : diag::ext_adl_only_template_id) | ||||
| 6885 | << ULE->getName(); | ||||
| 6886 | } | ||||
| 6887 | } | ||||
| 6888 | |||||
| 6889 | if (LangOpts.OpenMP) | ||||
| 6890 | Call = ActOnOpenMPCall(Call, Scope, LParenLoc, ArgExprs, RParenLoc, | ||||
| 6891 | ExecConfig); | ||||
| 6892 | if (LangOpts.CPlusPlus) { | ||||
| 6893 | CallExpr *CE = dyn_cast<CallExpr>(Call.get()); | ||||
| 6894 | if (CE) | ||||
| 6895 | DiagnosedUnqualifiedCallsToStdFunctions(*this, CE); | ||||
| 6896 | } | ||||
| 6897 | return Call; | ||||
| 6898 | } | ||||
| 6899 | |||||
| 6900 | /// BuildCallExpr - Handle a call to Fn with the specified array of arguments. | ||||
| 6901 | /// This provides the location of the left/right parens and a list of comma | ||||
| 6902 | /// locations. | ||||
| 6903 | ExprResult Sema::BuildCallExpr(Scope *Scope, Expr *Fn, SourceLocation LParenLoc, | ||||
| 6904 | MultiExprArg ArgExprs, SourceLocation RParenLoc, | ||||
| 6905 | Expr *ExecConfig, bool IsExecConfig, | ||||
| 6906 | bool AllowRecovery) { | ||||
| 6907 | // Since this might be a postfix expression, get rid of ParenListExprs. | ||||
| 6908 | ExprResult Result = MaybeConvertParenListExprToParenExpr(Scope, Fn); | ||||
| 6909 | if (Result.isInvalid()) return ExprError(); | ||||
| 6910 | Fn = Result.get(); | ||||
| 6911 | |||||
| 6912 | if (checkArgsForPlaceholders(*this, ArgExprs)) | ||||
| 6913 | return ExprError(); | ||||
| 6914 | |||||
| 6915 | if (getLangOpts().CPlusPlus) { | ||||
| 6916 | // If this is a pseudo-destructor expression, build the call immediately. | ||||
| 6917 | if (isa<CXXPseudoDestructorExpr>(Fn)) { | ||||
| 6918 | if (!ArgExprs.empty()) { | ||||
| 6919 | // Pseudo-destructor calls should not have any arguments. | ||||
| 6920 | Diag(Fn->getBeginLoc(), diag::err_pseudo_dtor_call_with_args) | ||||
| 6921 | << FixItHint::CreateRemoval( | ||||
| 6922 | SourceRange(ArgExprs.front()->getBeginLoc(), | ||||
| 6923 | ArgExprs.back()->getEndLoc())); | ||||
| 6924 | } | ||||
| 6925 | |||||
| 6926 | return CallExpr::Create(Context, Fn, /*Args=*/{}, Context.VoidTy, | ||||
| 6927 | VK_PRValue, RParenLoc, CurFPFeatureOverrides()); | ||||
| 6928 | } | ||||
| 6929 | if (Fn->getType() == Context.PseudoObjectTy) { | ||||
| 6930 | ExprResult result = CheckPlaceholderExpr(Fn); | ||||
| 6931 | if (result.isInvalid()) return ExprError(); | ||||
| 6932 | Fn = result.get(); | ||||
| 6933 | } | ||||
| 6934 | |||||
| 6935 | // Determine whether this is a dependent call inside a C++ template, | ||||
| 6936 | // in which case we won't do any semantic analysis now. | ||||
| 6937 | if (Fn->isTypeDependent() || Expr::hasAnyTypeDependentArguments(ArgExprs)) { | ||||
| 6938 | if (ExecConfig) { | ||||
| 6939 | return CUDAKernelCallExpr::Create(Context, Fn, | ||||
| 6940 | cast<CallExpr>(ExecConfig), ArgExprs, | ||||
| 6941 | Context.DependentTy, VK_PRValue, | ||||
| 6942 | RParenLoc, CurFPFeatureOverrides()); | ||||
| 6943 | } else { | ||||
| 6944 | |||||
| 6945 | tryImplicitlyCaptureThisIfImplicitMemberFunctionAccessWithDependentArgs( | ||||
| 6946 | *this, dyn_cast<UnresolvedMemberExpr>(Fn->IgnoreParens()), | ||||
| 6947 | Fn->getBeginLoc()); | ||||
| 6948 | |||||
| 6949 | return CallExpr::Create(Context, Fn, ArgExprs, Context.DependentTy, | ||||
| 6950 | VK_PRValue, RParenLoc, CurFPFeatureOverrides()); | ||||
| 6951 | } | ||||
| 6952 | } | ||||
| 6953 | |||||
| 6954 | // Determine whether this is a call to an object (C++ [over.call.object]). | ||||
| 6955 | if (Fn->getType()->isRecordType()) | ||||
| 6956 | return BuildCallToObjectOfClassType(Scope, Fn, LParenLoc, ArgExprs, | ||||
| 6957 | RParenLoc); | ||||
| 6958 | |||||
| 6959 | if (Fn->getType() == Context.UnknownAnyTy) { | ||||
| 6960 | ExprResult result = rebuildUnknownAnyFunction(*this, Fn); | ||||
| 6961 | if (result.isInvalid()) return ExprError(); | ||||
| 6962 | Fn = result.get(); | ||||
| 6963 | } | ||||
| 6964 | |||||
| 6965 | if (Fn->getType() == Context.BoundMemberTy) { | ||||
| 6966 | return BuildCallToMemberFunction(Scope, Fn, LParenLoc, ArgExprs, | ||||
| 6967 | RParenLoc, ExecConfig, IsExecConfig, | ||||
| 6968 | AllowRecovery); | ||||
| 6969 | } | ||||
| 6970 | } | ||||
| 6971 | |||||
| 6972 | // Check for overloaded calls. This can happen even in C due to extensions. | ||||
| 6973 | if (Fn->getType() == Context.OverloadTy) { | ||||
| 6974 | OverloadExpr::FindResult find = OverloadExpr::find(Fn); | ||||
| 6975 | |||||
| 6976 | // We aren't supposed to apply this logic if there's an '&' involved. | ||||
| 6977 | if (!find.HasFormOfMemberPointer) { | ||||
| 6978 | if (Expr::hasAnyTypeDependentArguments(ArgExprs)) | ||||
| 6979 | return CallExpr::Create(Context, Fn, ArgExprs, Context.DependentTy, | ||||
| 6980 | VK_PRValue, RParenLoc, CurFPFeatureOverrides()); | ||||
| 6981 | OverloadExpr *ovl = find.Expression; | ||||
| 6982 | if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(ovl)) | ||||
| 6983 | return BuildOverloadedCallExpr( | ||||
| 6984 | Scope, Fn, ULE, LParenLoc, ArgExprs, RParenLoc, ExecConfig, | ||||
| 6985 | /*AllowTypoCorrection=*/true, find.IsAddressOfOperand); | ||||
| 6986 | return BuildCallToMemberFunction(Scope, Fn, LParenLoc, ArgExprs, | ||||
| 6987 | RParenLoc, ExecConfig, IsExecConfig, | ||||
| 6988 | AllowRecovery); | ||||
| 6989 | } | ||||
| 6990 | } | ||||
| 6991 | |||||
| 6992 | // If we're directly calling a function, get the appropriate declaration. | ||||
| 6993 | if (Fn->getType() == Context.UnknownAnyTy) { | ||||
| 6994 | ExprResult result = rebuildUnknownAnyFunction(*this, Fn); | ||||
| 6995 | if (result.isInvalid()) return ExprError(); | ||||
| 6996 | Fn = result.get(); | ||||
| 6997 | } | ||||
| 6998 | |||||
| 6999 | Expr *NakedFn = Fn->IgnoreParens(); | ||||
| 7000 | |||||
| 7001 | bool CallingNDeclIndirectly = false; | ||||
| 7002 | NamedDecl *NDecl = nullptr; | ||||
| 7003 | if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(NakedFn)) { | ||||
| 7004 | if (UnOp->getOpcode() == UO_AddrOf) { | ||||
| 7005 | CallingNDeclIndirectly = true; | ||||
| 7006 | NakedFn = UnOp->getSubExpr()->IgnoreParens(); | ||||
| 7007 | } | ||||
| 7008 | } | ||||
| 7009 | |||||
| 7010 | if (auto *DRE = dyn_cast<DeclRefExpr>(NakedFn)) { | ||||
| 7011 | NDecl = DRE->getDecl(); | ||||
| 7012 | |||||
| 7013 | FunctionDecl *FDecl = dyn_cast<FunctionDecl>(NDecl); | ||||
| 7014 | if (FDecl && FDecl->getBuiltinID()) { | ||||
| 7015 | // Rewrite the function decl for this builtin by replacing parameters | ||||
| 7016 | // with no explicit address space with the address space of the arguments | ||||
| 7017 | // in ArgExprs. | ||||
| 7018 | if ((FDecl = | ||||
| 7019 | rewriteBuiltinFunctionDecl(this, Context, FDecl, ArgExprs))) { | ||||
| 7020 | NDecl = FDecl; | ||||
| 7021 | Fn = DeclRefExpr::Create( | ||||
| 7022 | Context, FDecl->getQualifierLoc(), SourceLocation(), FDecl, false, | ||||
| 7023 | SourceLocation(), FDecl->getType(), Fn->getValueKind(), FDecl, | ||||
| 7024 | nullptr, DRE->isNonOdrUse()); | ||||
| 7025 | } | ||||
| 7026 | } | ||||
| 7027 | } else if (auto *ME = dyn_cast<MemberExpr>(NakedFn)) | ||||
| 7028 | NDecl = ME->getMemberDecl(); | ||||
| 7029 | |||||
| 7030 | if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(NDecl)) { | ||||
| 7031 | if (CallingNDeclIndirectly && !checkAddressOfFunctionIsAvailable( | ||||
| 7032 | FD, /*Complain=*/true, Fn->getBeginLoc())) | ||||
| 7033 | return ExprError(); | ||||
| 7034 | |||||
| 7035 | checkDirectCallValidity(*this, Fn, FD, ArgExprs); | ||||
| 7036 | |||||
| 7037 | // If this expression is a call to a builtin function in HIP device | ||||
| 7038 | // compilation, allow a pointer-type argument to default address space to be | ||||
| 7039 | // passed as a pointer-type parameter to a non-default address space. | ||||
| 7040 | // If Arg is declared in the default address space and Param is declared | ||||
| 7041 | // in a non-default address space, perform an implicit address space cast to | ||||
| 7042 | // the parameter type. | ||||
| 7043 | if (getLangOpts().HIP && getLangOpts().CUDAIsDevice && FD && | ||||
| 7044 | FD->getBuiltinID()) { | ||||
| 7045 | for (unsigned Idx = 0; Idx < FD->param_size(); ++Idx) { | ||||
| 7046 | ParmVarDecl *Param = FD->getParamDecl(Idx); | ||||
| 7047 | if (!ArgExprs[Idx] || !Param || !Param->getType()->isPointerType() || | ||||
| 7048 | !ArgExprs[Idx]->getType()->isPointerType()) | ||||
| 7049 | continue; | ||||
| 7050 | |||||
| 7051 | auto ParamAS = Param->getType()->getPointeeType().getAddressSpace(); | ||||
| 7052 | auto ArgTy = ArgExprs[Idx]->getType(); | ||||
| 7053 | auto ArgPtTy = ArgTy->getPointeeType(); | ||||
| 7054 | auto ArgAS = ArgPtTy.getAddressSpace(); | ||||
| 7055 | |||||
| 7056 | // Add address space cast if target address spaces are different | ||||
| 7057 | bool NeedImplicitASC = | ||||
| 7058 | ParamAS != LangAS::Default && // Pointer params in generic AS don't need special handling. | ||||
| 7059 | ( ArgAS == LangAS::Default || // We do allow implicit conversion from generic AS | ||||
| 7060 | // or from specific AS which has target AS matching that of Param. | ||||
| 7061 | getASTContext().getTargetAddressSpace(ArgAS) == getASTContext().getTargetAddressSpace(ParamAS)); | ||||
| 7062 | if (!NeedImplicitASC) | ||||
| 7063 | continue; | ||||
| 7064 | |||||
| 7065 | // First, ensure that the Arg is an RValue. | ||||
| 7066 | if (ArgExprs[Idx]->isGLValue()) { | ||||
| 7067 | ArgExprs[Idx] = ImplicitCastExpr::Create( | ||||
| 7068 | Context, ArgExprs[Idx]->getType(), CK_NoOp, ArgExprs[Idx], | ||||
| 7069 | nullptr, VK_PRValue, FPOptionsOverride()); | ||||
| 7070 | } | ||||
| 7071 | |||||
| 7072 | // Construct a new arg type with address space of Param | ||||
| 7073 | Qualifiers ArgPtQuals = ArgPtTy.getQualifiers(); | ||||
| 7074 | ArgPtQuals.setAddressSpace(ParamAS); | ||||
| 7075 | auto NewArgPtTy = | ||||
| 7076 | Context.getQualifiedType(ArgPtTy.getUnqualifiedType(), ArgPtQuals); | ||||
| 7077 | auto NewArgTy = | ||||
| 7078 | Context.getQualifiedType(Context.getPointerType(NewArgPtTy), | ||||
| 7079 | ArgTy.getQualifiers()); | ||||
| 7080 | |||||
| 7081 | // Finally perform an implicit address space cast | ||||
| 7082 | ArgExprs[Idx] = ImpCastExprToType(ArgExprs[Idx], NewArgTy, | ||||
| 7083 | CK_AddressSpaceConversion) | ||||
| 7084 | .get(); | ||||
| 7085 | } | ||||
| 7086 | } | ||||
| 7087 | } | ||||
| 7088 | |||||
| 7089 | if (Context.isDependenceAllowed() && | ||||
| 7090 | (Fn->isTypeDependent() || Expr::hasAnyTypeDependentArguments(ArgExprs))) { | ||||
| 7091 | assert(!getLangOpts().CPlusPlus)(static_cast <bool> (!getLangOpts().CPlusPlus) ? void ( 0) : __assert_fail ("!getLangOpts().CPlusPlus", "clang/lib/Sema/SemaExpr.cpp" , 7091, __extension__ __PRETTY_FUNCTION__)); | ||||
| 7092 | assert((Fn->containsErrors() ||(static_cast <bool> ((Fn->containsErrors() || llvm:: any_of(ArgExprs, [](clang::Expr *E) { return E->containsErrors (); })) && "should only occur in error-recovery path." ) ? void (0) : __assert_fail ("(Fn->containsErrors() || llvm::any_of(ArgExprs, [](clang::Expr *E) { return E->containsErrors(); })) && \"should only occur in error-recovery path.\"" , "clang/lib/Sema/SemaExpr.cpp", 7095, __extension__ __PRETTY_FUNCTION__ )) | ||||
| 7093 | llvm::any_of(ArgExprs,(static_cast <bool> ((Fn->containsErrors() || llvm:: any_of(ArgExprs, [](clang::Expr *E) { return E->containsErrors (); })) && "should only occur in error-recovery path." ) ? void (0) : __assert_fail ("(Fn->containsErrors() || llvm::any_of(ArgExprs, [](clang::Expr *E) { return E->containsErrors(); })) && \"should only occur in error-recovery path.\"" , "clang/lib/Sema/SemaExpr.cpp", 7095, __extension__ __PRETTY_FUNCTION__ )) | ||||
| 7094 | [](clang::Expr *E) { return E->containsErrors(); })) &&(static_cast <bool> ((Fn->containsErrors() || llvm:: any_of(ArgExprs, [](clang::Expr *E) { return E->containsErrors (); })) && "should only occur in error-recovery path." ) ? void (0) : __assert_fail ("(Fn->containsErrors() || llvm::any_of(ArgExprs, [](clang::Expr *E) { return E->containsErrors(); })) && \"should only occur in error-recovery path.\"" , "clang/lib/Sema/SemaExpr.cpp", 7095, __extension__ __PRETTY_FUNCTION__ )) | ||||
| 7095 | "should only occur in error-recovery path.")(static_cast <bool> ((Fn->containsErrors() || llvm:: any_of(ArgExprs, [](clang::Expr *E) { return E->containsErrors (); })) && "should only occur in error-recovery path." ) ? void (0) : __assert_fail ("(Fn->containsErrors() || llvm::any_of(ArgExprs, [](clang::Expr *E) { return E->containsErrors(); })) && \"should only occur in error-recovery path.\"" , "clang/lib/Sema/SemaExpr.cpp", 7095, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 7096 | QualType ReturnType = | ||||
| 7097 | llvm::isa_and_nonnull<FunctionDecl>(NDecl) | ||||
| 7098 | ? cast<FunctionDecl>(NDecl)->getCallResultType() | ||||
| 7099 | : Context.DependentTy; | ||||
| 7100 | return CallExpr::Create(Context, Fn, ArgExprs, ReturnType, | ||||
| 7101 | Expr::getValueKindForType(ReturnType), RParenLoc, | ||||
| 7102 | CurFPFeatureOverrides()); | ||||
| 7103 | } | ||||
| 7104 | return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, ArgExprs, RParenLoc, | ||||
| 7105 | ExecConfig, IsExecConfig); | ||||
| 7106 | } | ||||
| 7107 | |||||
| 7108 | /// BuildBuiltinCallExpr - Create a call to a builtin function specified by Id | ||||
| 7109 | // with the specified CallArgs | ||||
| 7110 | Expr *Sema::BuildBuiltinCallExpr(SourceLocation Loc, Builtin::ID Id, | ||||
| 7111 | MultiExprArg CallArgs) { | ||||
| 7112 | StringRef Name = Context.BuiltinInfo.getName(Id); | ||||
| 7113 | LookupResult R(*this, &Context.Idents.get(Name), Loc, | ||||
| 7114 | Sema::LookupOrdinaryName); | ||||
| 7115 | LookupName(R, TUScope, /*AllowBuiltinCreation=*/true); | ||||
| 7116 | |||||
| 7117 | auto *BuiltInDecl = R.getAsSingle<FunctionDecl>(); | ||||
| 7118 | assert(BuiltInDecl && "failed to find builtin declaration")(static_cast <bool> (BuiltInDecl && "failed to find builtin declaration" ) ? void (0) : __assert_fail ("BuiltInDecl && \"failed to find builtin declaration\"" , "clang/lib/Sema/SemaExpr.cpp", 7118, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 7119 | |||||
| 7120 | ExprResult DeclRef = | ||||
| 7121 | BuildDeclRefExpr(BuiltInDecl, BuiltInDecl->getType(), VK_LValue, Loc); | ||||
| 7122 | assert(DeclRef.isUsable() && "Builtin reference cannot fail")(static_cast <bool> (DeclRef.isUsable() && "Builtin reference cannot fail" ) ? void (0) : __assert_fail ("DeclRef.isUsable() && \"Builtin reference cannot fail\"" , "clang/lib/Sema/SemaExpr.cpp", 7122, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 7123 | |||||
| 7124 | ExprResult Call = | ||||
| 7125 | BuildCallExpr(/*Scope=*/nullptr, DeclRef.get(), Loc, CallArgs, Loc); | ||||
| 7126 | |||||
| 7127 | assert(!Call.isInvalid() && "Call to builtin cannot fail!")(static_cast <bool> (!Call.isInvalid() && "Call to builtin cannot fail!" ) ? void (0) : __assert_fail ("!Call.isInvalid() && \"Call to builtin cannot fail!\"" , "clang/lib/Sema/SemaExpr.cpp", 7127, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 7128 | return Call.get(); | ||||
| 7129 | } | ||||
| 7130 | |||||
| 7131 | /// Parse a __builtin_astype expression. | ||||
| 7132 | /// | ||||
| 7133 | /// __builtin_astype( value, dst type ) | ||||
| 7134 | /// | ||||
| 7135 | ExprResult Sema::ActOnAsTypeExpr(Expr *E, ParsedType ParsedDestTy, | ||||
| 7136 | SourceLocation BuiltinLoc, | ||||
| 7137 | SourceLocation RParenLoc) { | ||||
| 7138 | QualType DstTy = GetTypeFromParser(ParsedDestTy); | ||||
| 7139 | return BuildAsTypeExpr(E, DstTy, BuiltinLoc, RParenLoc); | ||||
| 7140 | } | ||||
| 7141 | |||||
| 7142 | /// Create a new AsTypeExpr node (bitcast) from the arguments. | ||||
| 7143 | ExprResult Sema::BuildAsTypeExpr(Expr *E, QualType DestTy, | ||||
| 7144 | SourceLocation BuiltinLoc, | ||||
| 7145 | SourceLocation RParenLoc) { | ||||
| 7146 | ExprValueKind VK = VK_PRValue; | ||||
| 7147 | ExprObjectKind OK = OK_Ordinary; | ||||
| 7148 | QualType SrcTy = E->getType(); | ||||
| 7149 | if (!SrcTy->isDependentType() && | ||||
| 7150 | Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy)) | ||||
| 7151 | return ExprError( | ||||
| 7152 | Diag(BuiltinLoc, diag::err_invalid_astype_of_different_size) | ||||
| 7153 | << DestTy << SrcTy << E->getSourceRange()); | ||||
| 7154 | return new (Context) AsTypeExpr(E, DestTy, VK, OK, BuiltinLoc, RParenLoc); | ||||
| 7155 | } | ||||
| 7156 | |||||
| 7157 | /// ActOnConvertVectorExpr - create a new convert-vector expression from the | ||||
| 7158 | /// provided arguments. | ||||
| 7159 | /// | ||||
| 7160 | /// __builtin_convertvector( value, dst type ) | ||||
| 7161 | /// | ||||
| 7162 | ExprResult Sema::ActOnConvertVectorExpr(Expr *E, ParsedType ParsedDestTy, | ||||
| 7163 | SourceLocation BuiltinLoc, | ||||
| 7164 | SourceLocation RParenLoc) { | ||||
| 7165 | TypeSourceInfo *TInfo; | ||||
| 7166 | GetTypeFromParser(ParsedDestTy, &TInfo); | ||||
| 7167 | return SemaConvertVectorExpr(E, TInfo, BuiltinLoc, RParenLoc); | ||||
| 7168 | } | ||||
| 7169 | |||||
| 7170 | /// BuildResolvedCallExpr - Build a call to a resolved expression, | ||||
| 7171 | /// i.e. an expression not of \p OverloadTy. The expression should | ||||
| 7172 | /// unary-convert to an expression of function-pointer or | ||||
| 7173 | /// block-pointer type. | ||||
| 7174 | /// | ||||
| 7175 | /// \param NDecl the declaration being called, if available | ||||
| 7176 | ExprResult Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl, | ||||
| 7177 | SourceLocation LParenLoc, | ||||
| 7178 | ArrayRef<Expr *> Args, | ||||
| 7179 | SourceLocation RParenLoc, Expr *Config, | ||||
| 7180 | bool IsExecConfig, ADLCallKind UsesADL) { | ||||
| 7181 | FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl); | ||||
| 7182 | unsigned BuiltinID = (FDecl ? FDecl->getBuiltinID() : 0); | ||||
| 7183 | |||||
| 7184 | // Functions with 'interrupt' attribute cannot be called directly. | ||||
| 7185 | if (FDecl && FDecl->hasAttr<AnyX86InterruptAttr>()) { | ||||
| 7186 | Diag(Fn->getExprLoc(), diag::err_anyx86_interrupt_called); | ||||
| 7187 | return ExprError(); | ||||
| 7188 | } | ||||
| 7189 | |||||
| 7190 | // Interrupt handlers don't save off the VFP regs automatically on ARM, | ||||
| 7191 | // so there's some risk when calling out to non-interrupt handler functions | ||||
| 7192 | // that the callee might not preserve them. This is easy to diagnose here, | ||||
| 7193 | // but can be very challenging to debug. | ||||
| 7194 | // Likewise, X86 interrupt handlers may only call routines with attribute | ||||
| 7195 | // no_caller_saved_registers since there is no efficient way to | ||||
| 7196 | // save and restore the non-GPR state. | ||||
| 7197 | if (auto *Caller = getCurFunctionDecl()) { | ||||
| 7198 | if (Caller->hasAttr<ARMInterruptAttr>()) { | ||||
| 7199 | bool VFP = Context.getTargetInfo().hasFeature("vfp"); | ||||
| 7200 | if (VFP && (!FDecl || !FDecl->hasAttr<ARMInterruptAttr>())) { | ||||
| 7201 | Diag(Fn->getExprLoc(), diag::warn_arm_interrupt_calling_convention); | ||||
| 7202 | if (FDecl) | ||||
| 7203 | Diag(FDecl->getLocation(), diag::note_callee_decl) << FDecl; | ||||
| 7204 | } | ||||
| 7205 | } | ||||
| 7206 | if (Caller->hasAttr<AnyX86InterruptAttr>() && | ||||
| 7207 | ((!FDecl || !FDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>()))) { | ||||
| 7208 | Diag(Fn->getExprLoc(), diag::warn_anyx86_interrupt_regsave); | ||||
| 7209 | if (FDecl) | ||||
| 7210 | Diag(FDecl->getLocation(), diag::note_callee_decl) << FDecl; | ||||
| 7211 | } | ||||
| 7212 | } | ||||
| 7213 | |||||
| 7214 | // Promote the function operand. | ||||
| 7215 | // We special-case function promotion here because we only allow promoting | ||||
| 7216 | // builtin functions to function pointers in the callee of a call. | ||||
| 7217 | ExprResult Result; | ||||
| 7218 | QualType ResultTy; | ||||
| 7219 | if (BuiltinID && | ||||
| 7220 | Fn->getType()->isSpecificBuiltinType(BuiltinType::BuiltinFn)) { | ||||
| 7221 | // Extract the return type from the (builtin) function pointer type. | ||||
| 7222 | // FIXME Several builtins still have setType in | ||||
| 7223 | // Sema::CheckBuiltinFunctionCall. One should review their definitions in | ||||
| 7224 | // Builtins.def to ensure they are correct before removing setType calls. | ||||
| 7225 | QualType FnPtrTy = Context.getPointerType(FDecl->getType()); | ||||
| 7226 | Result = ImpCastExprToType(Fn, FnPtrTy, CK_BuiltinFnToFnPtr).get(); | ||||
| 7227 | ResultTy = FDecl->getCallResultType(); | ||||
| 7228 | } else { | ||||
| 7229 | Result = CallExprUnaryConversions(Fn); | ||||
| 7230 | ResultTy = Context.BoolTy; | ||||
| 7231 | } | ||||
| 7232 | if (Result.isInvalid()) | ||||
| 7233 | return ExprError(); | ||||
| 7234 | Fn = Result.get(); | ||||
| 7235 | |||||
| 7236 | // Check for a valid function type, but only if it is not a builtin which | ||||
| 7237 | // requires custom type checking. These will be handled by | ||||
| 7238 | // CheckBuiltinFunctionCall below just after creation of the call expression. | ||||
| 7239 | const FunctionType *FuncT = nullptr; | ||||
| 7240 | if (!BuiltinID || !Context.BuiltinInfo.hasCustomTypechecking(BuiltinID)) { | ||||
| 7241 | retry: | ||||
| 7242 | if (const PointerType *PT = Fn->getType()->getAs<PointerType>()) { | ||||
| 7243 | // C99 6.5.2.2p1 - "The expression that denotes the called function shall | ||||
| 7244 | // have type pointer to function". | ||||
| 7245 | FuncT = PT->getPointeeType()->getAs<FunctionType>(); | ||||
| 7246 | if (!FuncT) | ||||
| 7247 | return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function) | ||||
| 7248 | << Fn->getType() << Fn->getSourceRange()); | ||||
| 7249 | } else if (const BlockPointerType *BPT = | ||||
| 7250 | Fn->getType()->getAs<BlockPointerType>()) { | ||||
| 7251 | FuncT = BPT->getPointeeType()->castAs<FunctionType>(); | ||||
| 7252 | } else { | ||||
| 7253 | // Handle calls to expressions of unknown-any type. | ||||
| 7254 | if (Fn->getType() == Context.UnknownAnyTy) { | ||||
| 7255 | ExprResult rewrite = rebuildUnknownAnyFunction(*this, Fn); | ||||
| 7256 | if (rewrite.isInvalid()) | ||||
| 7257 | return ExprError(); | ||||
| 7258 | Fn = rewrite.get(); | ||||
| 7259 | goto retry; | ||||
| 7260 | } | ||||
| 7261 | |||||
| 7262 | return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function) | ||||
| 7263 | << Fn->getType() << Fn->getSourceRange()); | ||||
| 7264 | } | ||||
| 7265 | } | ||||
| 7266 | |||||
| 7267 | // Get the number of parameters in the function prototype, if any. | ||||
| 7268 | // We will allocate space for max(Args.size(), NumParams) arguments | ||||
| 7269 | // in the call expression. | ||||
| 7270 | const auto *Proto = dyn_cast_or_null<FunctionProtoType>(FuncT); | ||||
| 7271 | unsigned NumParams = Proto ? Proto->getNumParams() : 0; | ||||
| 7272 | |||||
| 7273 | CallExpr *TheCall; | ||||
| 7274 | if (Config) { | ||||
| 7275 | assert(UsesADL == ADLCallKind::NotADL &&(static_cast <bool> (UsesADL == ADLCallKind::NotADL && "CUDAKernelCallExpr should not use ADL") ? void (0) : __assert_fail ("UsesADL == ADLCallKind::NotADL && \"CUDAKernelCallExpr should not use ADL\"" , "clang/lib/Sema/SemaExpr.cpp", 7276, __extension__ __PRETTY_FUNCTION__ )) | ||||
| 7276 | "CUDAKernelCallExpr should not use ADL")(static_cast <bool> (UsesADL == ADLCallKind::NotADL && "CUDAKernelCallExpr should not use ADL") ? void (0) : __assert_fail ("UsesADL == ADLCallKind::NotADL && \"CUDAKernelCallExpr should not use ADL\"" , "clang/lib/Sema/SemaExpr.cpp", 7276, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 7277 | TheCall = CUDAKernelCallExpr::Create(Context, Fn, cast<CallExpr>(Config), | ||||
| 7278 | Args, ResultTy, VK_PRValue, RParenLoc, | ||||
| 7279 | CurFPFeatureOverrides(), NumParams); | ||||
| 7280 | } else { | ||||
| 7281 | TheCall = | ||||
| 7282 | CallExpr::Create(Context, Fn, Args, ResultTy, VK_PRValue, RParenLoc, | ||||
| 7283 | CurFPFeatureOverrides(), NumParams, UsesADL); | ||||
| 7284 | } | ||||
| 7285 | |||||
| 7286 | if (!Context.isDependenceAllowed()) { | ||||
| 7287 | // Forget about the nulled arguments since typo correction | ||||
| 7288 | // do not handle them well. | ||||
| 7289 | TheCall->shrinkNumArgs(Args.size()); | ||||
| 7290 | // C cannot always handle TypoExpr nodes in builtin calls and direct | ||||
| 7291 | // function calls as their argument checking don't necessarily handle | ||||
| 7292 | // dependent types properly, so make sure any TypoExprs have been | ||||
| 7293 | // dealt with. | ||||
| 7294 | ExprResult Result = CorrectDelayedTyposInExpr(TheCall); | ||||
| 7295 | if (!Result.isUsable()) return ExprError(); | ||||
| 7296 | CallExpr *TheOldCall = TheCall; | ||||
| 7297 | TheCall = dyn_cast<CallExpr>(Result.get()); | ||||
| 7298 | bool CorrectedTypos = TheCall != TheOldCall; | ||||
| 7299 | if (!TheCall) return Result; | ||||
| 7300 | Args = llvm::ArrayRef(TheCall->getArgs(), TheCall->getNumArgs()); | ||||
| 7301 | |||||
| 7302 | // A new call expression node was created if some typos were corrected. | ||||
| 7303 | // However it may not have been constructed with enough storage. In this | ||||
| 7304 | // case, rebuild the node with enough storage. The waste of space is | ||||
| 7305 | // immaterial since this only happens when some typos were corrected. | ||||
| 7306 | if (CorrectedTypos && Args.size() < NumParams) { | ||||
| 7307 | if (Config) | ||||
| 7308 | TheCall = CUDAKernelCallExpr::Create( | ||||
| 7309 | Context, Fn, cast<CallExpr>(Config), Args, ResultTy, VK_PRValue, | ||||
| 7310 | RParenLoc, CurFPFeatureOverrides(), NumParams); | ||||
| 7311 | else | ||||
| 7312 | TheCall = | ||||
| 7313 | CallExpr::Create(Context, Fn, Args, ResultTy, VK_PRValue, RParenLoc, | ||||
| 7314 | CurFPFeatureOverrides(), NumParams, UsesADL); | ||||
| 7315 | } | ||||
| 7316 | // We can now handle the nulled arguments for the default arguments. | ||||
| 7317 | TheCall->setNumArgsUnsafe(std::max<unsigned>(Args.size(), NumParams)); | ||||
| 7318 | } | ||||
| 7319 | |||||
| 7320 | // Bail out early if calling a builtin with custom type checking. | ||||
| 7321 | if (BuiltinID && Context.BuiltinInfo.hasCustomTypechecking(BuiltinID)) | ||||
| 7322 | return CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall); | ||||
| 7323 | |||||
| 7324 | if (getLangOpts().CUDA) { | ||||
| 7325 | if (Config) { | ||||
| 7326 | // CUDA: Kernel calls must be to global functions | ||||
| 7327 | if (FDecl && !FDecl->hasAttr<CUDAGlobalAttr>()) | ||||
| 7328 | return ExprError(Diag(LParenLoc,diag::err_kern_call_not_global_function) | ||||
| 7329 | << FDecl << Fn->getSourceRange()); | ||||
| 7330 | |||||
| 7331 | // CUDA: Kernel function must have 'void' return type | ||||
| 7332 | if (!FuncT->getReturnType()->isVoidType() && | ||||
| 7333 | !FuncT->getReturnType()->getAs<AutoType>() && | ||||
| 7334 | !FuncT->getReturnType()->isInstantiationDependentType()) | ||||
| 7335 | return ExprError(Diag(LParenLoc, diag::err_kern_type_not_void_return) | ||||
| 7336 | << Fn->getType() << Fn->getSourceRange()); | ||||
| 7337 | } else { | ||||
| 7338 | // CUDA: Calls to global functions must be configured | ||||
| 7339 | if (FDecl && FDecl->hasAttr<CUDAGlobalAttr>()) | ||||
| 7340 | return ExprError(Diag(LParenLoc, diag::err_global_call_not_config) | ||||
| 7341 | << FDecl << Fn->getSourceRange()); | ||||
| 7342 | } | ||||
| 7343 | } | ||||
| 7344 | |||||
| 7345 | // Check for a valid return type | ||||
| 7346 | if (CheckCallReturnType(FuncT->getReturnType(), Fn->getBeginLoc(), TheCall, | ||||
| 7347 | FDecl)) | ||||
| 7348 | return ExprError(); | ||||
| 7349 | |||||
| 7350 | // We know the result type of the call, set it. | ||||
| 7351 | TheCall->setType(FuncT->getCallResultType(Context)); | ||||
| 7352 | TheCall->setValueKind(Expr::getValueKindForType(FuncT->getReturnType())); | ||||
| 7353 | |||||
| 7354 | if (Proto) { | ||||
| 7355 | if (ConvertArgumentsForCall(TheCall, Fn, FDecl, Proto, Args, RParenLoc, | ||||
| 7356 | IsExecConfig)) | ||||
| 7357 | return ExprError(); | ||||
| 7358 | } else { | ||||
| 7359 | assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!")(static_cast <bool> (isa<FunctionNoProtoType>(FuncT ) && "Unknown FunctionType!") ? void (0) : __assert_fail ("isa<FunctionNoProtoType>(FuncT) && \"Unknown FunctionType!\"" , "clang/lib/Sema/SemaExpr.cpp", 7359, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 7360 | |||||
| 7361 | if (FDecl) { | ||||
| 7362 | // Check if we have too few/too many template arguments, based | ||||
| 7363 | // on our knowledge of the function definition. | ||||
| 7364 | const FunctionDecl *Def = nullptr; | ||||
| 7365 | if (FDecl->hasBody(Def) && Args.size() != Def->param_size()) { | ||||
| 7366 | Proto = Def->getType()->getAs<FunctionProtoType>(); | ||||
| 7367 | if (!Proto || !(Proto->isVariadic() && Args.size() >= Def->param_size())) | ||||
| 7368 | Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments) | ||||
| 7369 | << (Args.size() > Def->param_size()) << FDecl << Fn->getSourceRange(); | ||||
| 7370 | } | ||||
| 7371 | |||||
| 7372 | // If the function we're calling isn't a function prototype, but we have | ||||
| 7373 | // a function prototype from a prior declaratiom, use that prototype. | ||||
| 7374 | if (!FDecl->hasPrototype()) | ||||
| 7375 | Proto = FDecl->getType()->getAs<FunctionProtoType>(); | ||||
| 7376 | } | ||||
| 7377 | |||||
| 7378 | // If we still haven't found a prototype to use but there are arguments to | ||||
| 7379 | // the call, diagnose this as calling a function without a prototype. | ||||
| 7380 | // However, if we found a function declaration, check to see if | ||||
| 7381 | // -Wdeprecated-non-prototype was disabled where the function was declared. | ||||
| 7382 | // If so, we will silence the diagnostic here on the assumption that this | ||||
| 7383 | // interface is intentional and the user knows what they're doing. We will | ||||
| 7384 | // also silence the diagnostic if there is a function declaration but it | ||||
| 7385 | // was implicitly defined (the user already gets diagnostics about the | ||||
| 7386 | // creation of the implicit function declaration, so the additional warning | ||||
| 7387 | // is not helpful). | ||||
| 7388 | if (!Proto && !Args.empty() && | ||||
| 7389 | (!FDecl || (!FDecl->isImplicit() && | ||||
| 7390 | !Diags.isIgnored(diag::warn_strict_uses_without_prototype, | ||||
| 7391 | FDecl->getLocation())))) | ||||
| 7392 | Diag(LParenLoc, diag::warn_strict_uses_without_prototype) | ||||
| 7393 | << (FDecl != nullptr) << FDecl; | ||||
| 7394 | |||||
| 7395 | // Promote the arguments (C99 6.5.2.2p6). | ||||
| 7396 | for (unsigned i = 0, e = Args.size(); i != e; i++) { | ||||
| 7397 | Expr *Arg = Args[i]; | ||||
| 7398 | |||||
| 7399 | if (Proto && i < Proto->getNumParams()) { | ||||
| 7400 | InitializedEntity Entity = InitializedEntity::InitializeParameter( | ||||
| 7401 | Context, Proto->getParamType(i), Proto->isParamConsumed(i)); | ||||
| 7402 | ExprResult ArgE = | ||||
| 7403 | PerformCopyInitialization(Entity, SourceLocation(), Arg); | ||||
| 7404 | if (ArgE.isInvalid()) | ||||
| 7405 | return true; | ||||
| 7406 | |||||
| 7407 | Arg = ArgE.getAs<Expr>(); | ||||
| 7408 | |||||
| 7409 | } else { | ||||
| 7410 | ExprResult ArgE = DefaultArgumentPromotion(Arg); | ||||
| 7411 | |||||
| 7412 | if (ArgE.isInvalid()) | ||||
| 7413 | return true; | ||||
| 7414 | |||||
| 7415 | Arg = ArgE.getAs<Expr>(); | ||||
| 7416 | } | ||||
| 7417 | |||||
| 7418 | if (RequireCompleteType(Arg->getBeginLoc(), Arg->getType(), | ||||
| 7419 | diag::err_call_incomplete_argument, Arg)) | ||||
| 7420 | return ExprError(); | ||||
| 7421 | |||||
| 7422 | TheCall->setArg(i, Arg); | ||||
| 7423 | } | ||||
| 7424 | TheCall->computeDependence(); | ||||
| 7425 | } | ||||
| 7426 | |||||
| 7427 | if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl)) | ||||
| 7428 | if (!Method->isStatic()) | ||||
| 7429 | return ExprError(Diag(LParenLoc, diag::err_member_call_without_object) | ||||
| 7430 | << Fn->getSourceRange()); | ||||
| 7431 | |||||
| 7432 | // Check for sentinels | ||||
| 7433 | if (NDecl) | ||||
| 7434 | DiagnoseSentinelCalls(NDecl, LParenLoc, Args); | ||||
| 7435 | |||||
| 7436 | // Warn for unions passing across security boundary (CMSE). | ||||
| 7437 | if (FuncT != nullptr && FuncT->getCmseNSCallAttr()) { | ||||
| 7438 | for (unsigned i = 0, e = Args.size(); i != e; i++) { | ||||
| 7439 | if (const auto *RT = | ||||
| 7440 | dyn_cast<RecordType>(Args[i]->getType().getCanonicalType())) { | ||||
| 7441 | if (RT->getDecl()->isOrContainsUnion()) | ||||
| 7442 | Diag(Args[i]->getBeginLoc(), diag::warn_cmse_nonsecure_union) | ||||
| 7443 | << 0 << i; | ||||
| 7444 | } | ||||
| 7445 | } | ||||
| 7446 | } | ||||
| 7447 | |||||
| 7448 | // Do special checking on direct calls to functions. | ||||
| 7449 | if (FDecl) { | ||||
| 7450 | if (CheckFunctionCall(FDecl, TheCall, Proto)) | ||||
| 7451 | return ExprError(); | ||||
| 7452 | |||||
| 7453 | checkFortifiedBuiltinMemoryFunction(FDecl, TheCall); | ||||
| 7454 | |||||
| 7455 | if (BuiltinID) | ||||
| 7456 | return CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall); | ||||
| 7457 | } else if (NDecl) { | ||||
| 7458 | if (CheckPointerCall(NDecl, TheCall, Proto)) | ||||
| 7459 | return ExprError(); | ||||
| 7460 | } else { | ||||
| 7461 | if (CheckOtherCall(TheCall, Proto)) | ||||
| 7462 | return ExprError(); | ||||
| 7463 | } | ||||
| 7464 | |||||
| 7465 | return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall), FDecl); | ||||
| 7466 | } | ||||
| 7467 | |||||
| 7468 | ExprResult | ||||
| 7469 | Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty, | ||||
| 7470 | SourceLocation RParenLoc, Expr *InitExpr) { | ||||
| 7471 | assert(Ty && "ActOnCompoundLiteral(): missing type")(static_cast <bool> (Ty && "ActOnCompoundLiteral(): missing type" ) ? void (0) : __assert_fail ("Ty && \"ActOnCompoundLiteral(): missing type\"" , "clang/lib/Sema/SemaExpr.cpp", 7471, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 7472 | assert(InitExpr && "ActOnCompoundLiteral(): missing expression")(static_cast <bool> (InitExpr && "ActOnCompoundLiteral(): missing expression" ) ? void (0) : __assert_fail ("InitExpr && \"ActOnCompoundLiteral(): missing expression\"" , "clang/lib/Sema/SemaExpr.cpp", 7472, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 7473 | |||||
| 7474 | TypeSourceInfo *TInfo; | ||||
| 7475 | QualType literalType = GetTypeFromParser(Ty, &TInfo); | ||||
| 7476 | if (!TInfo) | ||||
| 7477 | TInfo = Context.getTrivialTypeSourceInfo(literalType); | ||||
| 7478 | |||||
| 7479 | return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, InitExpr); | ||||
| 7480 | } | ||||
| 7481 | |||||
| 7482 | ExprResult | ||||
| 7483 | Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo, | ||||
| 7484 | SourceLocation RParenLoc, Expr *LiteralExpr) { | ||||
| 7485 | QualType literalType = TInfo->getType(); | ||||
| 7486 | |||||
| 7487 | if (literalType->isArrayType()) { | ||||
| 7488 | if (RequireCompleteSizedType( | ||||
| 7489 | LParenLoc, Context.getBaseElementType(literalType), | ||||
| 7490 | diag::err_array_incomplete_or_sizeless_type, | ||||
| 7491 | SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd()))) | ||||
| 7492 | return ExprError(); | ||||
| 7493 | if (literalType->isVariableArrayType()) { | ||||
| 7494 | if (!tryToFixVariablyModifiedVarType(TInfo, literalType, LParenLoc, | ||||
| 7495 | diag::err_variable_object_no_init)) { | ||||
| 7496 | return ExprError(); | ||||
| 7497 | } | ||||
| 7498 | } | ||||
| 7499 | } else if (!literalType->isDependentType() && | ||||
| 7500 | RequireCompleteType(LParenLoc, literalType, | ||||
| 7501 | diag::err_typecheck_decl_incomplete_type, | ||||
| 7502 | SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd()))) | ||||
| 7503 | return ExprError(); | ||||
| 7504 | |||||
| 7505 | InitializedEntity Entity | ||||
| 7506 | = InitializedEntity::InitializeCompoundLiteralInit(TInfo); | ||||
| 7507 | InitializationKind Kind | ||||
| 7508 | = InitializationKind::CreateCStyleCast(LParenLoc, | ||||
| 7509 | SourceRange(LParenLoc, RParenLoc), | ||||
| 7510 | /*InitList=*/true); | ||||
| 7511 | InitializationSequence InitSeq(*this, Entity, Kind, LiteralExpr); | ||||
| 7512 | ExprResult Result = InitSeq.Perform(*this, Entity, Kind, LiteralExpr, | ||||
| 7513 | &literalType); | ||||
| 7514 | if (Result.isInvalid()) | ||||
| 7515 | return ExprError(); | ||||
| 7516 | LiteralExpr = Result.get(); | ||||
| 7517 | |||||
| 7518 | bool isFileScope = !CurContext->isFunctionOrMethod(); | ||||
| 7519 | |||||
| 7520 | // In C, compound literals are l-values for some reason. | ||||
| 7521 | // For GCC compatibility, in C++, file-scope array compound literals with | ||||
| 7522 | // constant initializers are also l-values, and compound literals are | ||||
| 7523 | // otherwise prvalues. | ||||
| 7524 | // | ||||
| 7525 | // (GCC also treats C++ list-initialized file-scope array prvalues with | ||||
| 7526 | // constant initializers as l-values, but that's non-conforming, so we don't | ||||
| 7527 | // follow it there.) | ||||
| 7528 | // | ||||
| 7529 | // FIXME: It would be better to handle the lvalue cases as materializing and | ||||
| 7530 | // lifetime-extending a temporary object, but our materialized temporaries | ||||
| 7531 | // representation only supports lifetime extension from a variable, not "out | ||||
| 7532 | // of thin air". | ||||
| 7533 | // FIXME: For C++, we might want to instead lifetime-extend only if a pointer | ||||
| 7534 | // is bound to the result of applying array-to-pointer decay to the compound | ||||
| 7535 | // literal. | ||||
| 7536 | // FIXME: GCC supports compound literals of reference type, which should | ||||
| 7537 | // obviously have a value kind derived from the kind of reference involved. | ||||
| 7538 | ExprValueKind VK = | ||||
| 7539 | (getLangOpts().CPlusPlus && !(isFileScope && literalType->isArrayType())) | ||||
| 7540 | ? VK_PRValue | ||||
| 7541 | : VK_LValue; | ||||
| 7542 | |||||
| 7543 | if (isFileScope) | ||||
| 7544 | if (auto ILE = dyn_cast<InitListExpr>(LiteralExpr)) | ||||
| 7545 | for (unsigned i = 0, j = ILE->getNumInits(); i != j; i++) { | ||||
| 7546 | Expr *Init = ILE->getInit(i); | ||||
| 7547 | ILE->setInit(i, ConstantExpr::Create(Context, Init)); | ||||
| 7548 | } | ||||
| 7549 | |||||
| 7550 | auto *E = new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType, | ||||
| 7551 | VK, LiteralExpr, isFileScope); | ||||
| 7552 | if (isFileScope) { | ||||
| 7553 | if (!LiteralExpr->isTypeDependent() && | ||||
| 7554 | !LiteralExpr->isValueDependent() && | ||||
| 7555 | !literalType->isDependentType()) // C99 6.5.2.5p3 | ||||
| 7556 | if (CheckForConstantInitializer(LiteralExpr, literalType)) | ||||
| 7557 | return ExprError(); | ||||
| 7558 | } else if (literalType.getAddressSpace() != LangAS::opencl_private && | ||||
| 7559 | literalType.getAddressSpace() != LangAS::Default) { | ||||
| 7560 | // Embedded-C extensions to C99 6.5.2.5: | ||||
| 7561 | // "If the compound literal occurs inside the body of a function, the | ||||
| 7562 | // type name shall not be qualified by an address-space qualifier." | ||||
| 7563 | Diag(LParenLoc, diag::err_compound_literal_with_address_space) | ||||
| 7564 | << SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd()); | ||||
| 7565 | return ExprError(); | ||||
| 7566 | } | ||||
| 7567 | |||||
| 7568 | if (!isFileScope && !getLangOpts().CPlusPlus) { | ||||
| 7569 | // Compound literals that have automatic storage duration are destroyed at | ||||
| 7570 | // the end of the scope in C; in C++, they're just temporaries. | ||||
| 7571 | |||||
| 7572 | // Emit diagnostics if it is or contains a C union type that is non-trivial | ||||
| 7573 | // to destruct. | ||||
| 7574 | if (E->getType().hasNonTrivialToPrimitiveDestructCUnion()) | ||||
| 7575 | checkNonTrivialCUnion(E->getType(), E->getExprLoc(), | ||||
| 7576 | NTCUC_CompoundLiteral, NTCUK_Destruct); | ||||
| 7577 | |||||
| 7578 | // Diagnose jumps that enter or exit the lifetime of the compound literal. | ||||
| 7579 | if (literalType.isDestructedType()) { | ||||
| 7580 | Cleanup.setExprNeedsCleanups(true); | ||||
| 7581 | ExprCleanupObjects.push_back(E); | ||||
| 7582 | getCurFunction()->setHasBranchProtectedScope(); | ||||
| 7583 | } | ||||
| 7584 | } | ||||
| 7585 | |||||
| 7586 | if (E->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion() || | ||||
| 7587 | E->getType().hasNonTrivialToPrimitiveCopyCUnion()) | ||||
| 7588 | checkNonTrivialCUnionInInitializer(E->getInitializer(), | ||||
| 7589 | E->getInitializer()->getExprLoc()); | ||||
| 7590 | |||||
| 7591 | return MaybeBindToTemporary(E); | ||||
| 7592 | } | ||||
| 7593 | |||||
| 7594 | ExprResult | ||||
| 7595 | Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList, | ||||
| 7596 | SourceLocation RBraceLoc) { | ||||
| 7597 | // Only produce each kind of designated initialization diagnostic once. | ||||
| 7598 | SourceLocation FirstDesignator; | ||||
| 7599 | bool DiagnosedArrayDesignator = false; | ||||
| 7600 | bool DiagnosedNestedDesignator = false; | ||||
| 7601 | bool DiagnosedMixedDesignator = false; | ||||
| 7602 | |||||
| 7603 | // Check that any designated initializers are syntactically valid in the | ||||
| 7604 | // current language mode. | ||||
| 7605 | for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) { | ||||
| 7606 | if (auto *DIE = dyn_cast<DesignatedInitExpr>(InitArgList[I])) { | ||||
| 7607 | if (FirstDesignator.isInvalid()) | ||||
| 7608 | FirstDesignator = DIE->getBeginLoc(); | ||||
| 7609 | |||||
| 7610 | if (!getLangOpts().CPlusPlus) | ||||
| 7611 | break; | ||||
| 7612 | |||||
| 7613 | if (!DiagnosedNestedDesignator && DIE->size() > 1) { | ||||
| 7614 | DiagnosedNestedDesignator = true; | ||||
| 7615 | Diag(DIE->getBeginLoc(), diag::ext_designated_init_nested) | ||||
| 7616 | << DIE->getDesignatorsSourceRange(); | ||||
| 7617 | } | ||||
| 7618 | |||||
| 7619 | for (auto &Desig : DIE->designators()) { | ||||
| 7620 | if (!Desig.isFieldDesignator() && !DiagnosedArrayDesignator) { | ||||
| 7621 | DiagnosedArrayDesignator = true; | ||||
| 7622 | Diag(Desig.getBeginLoc(), diag::ext_designated_init_array) | ||||
| 7623 | << Desig.getSourceRange(); | ||||
| 7624 | } | ||||
| 7625 | } | ||||
| 7626 | |||||
| 7627 | if (!DiagnosedMixedDesignator && | ||||
| 7628 | !isa<DesignatedInitExpr>(InitArgList[0])) { | ||||
| 7629 | DiagnosedMixedDesignator = true; | ||||
| 7630 | Diag(DIE->getBeginLoc(), diag::ext_designated_init_mixed) | ||||
| 7631 | << DIE->getSourceRange(); | ||||
| 7632 | Diag(InitArgList[0]->getBeginLoc(), diag::note_designated_init_mixed) | ||||
| 7633 | << InitArgList[0]->getSourceRange(); | ||||
| 7634 | } | ||||
| 7635 | } else if (getLangOpts().CPlusPlus && !DiagnosedMixedDesignator && | ||||
| 7636 | isa<DesignatedInitExpr>(InitArgList[0])) { | ||||
| 7637 | DiagnosedMixedDesignator = true; | ||||
| 7638 | auto *DIE = cast<DesignatedInitExpr>(InitArgList[0]); | ||||
| 7639 | Diag(DIE->getBeginLoc(), diag::ext_designated_init_mixed) | ||||
| 7640 | << DIE->getSourceRange(); | ||||
| 7641 | Diag(InitArgList[I]->getBeginLoc(), diag::note_designated_init_mixed) | ||||
| 7642 | << InitArgList[I]->getSourceRange(); | ||||
| 7643 | } | ||||
| 7644 | } | ||||
| 7645 | |||||
| 7646 | if (FirstDesignator.isValid()) { | ||||
| 7647 | // Only diagnose designated initiaization as a C++20 extension if we didn't | ||||
| 7648 | // already diagnose use of (non-C++20) C99 designator syntax. | ||||
| 7649 | if (getLangOpts().CPlusPlus && !DiagnosedArrayDesignator && | ||||
| 7650 | !DiagnosedNestedDesignator && !DiagnosedMixedDesignator) { | ||||
| 7651 | Diag(FirstDesignator, getLangOpts().CPlusPlus20 | ||||
| 7652 | ? diag::warn_cxx17_compat_designated_init | ||||
| 7653 | : diag::ext_cxx_designated_init); | ||||
| 7654 | } else if (!getLangOpts().CPlusPlus && !getLangOpts().C99) { | ||||
| 7655 | Diag(FirstDesignator, diag::ext_designated_init); | ||||
| 7656 | } | ||||
| 7657 | } | ||||
| 7658 | |||||
| 7659 | return BuildInitList(LBraceLoc, InitArgList, RBraceLoc); | ||||
| 7660 | } | ||||
| 7661 | |||||
| 7662 | ExprResult | ||||
| 7663 | Sema::BuildInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList, | ||||
| 7664 | SourceLocation RBraceLoc) { | ||||
| 7665 | // Semantic analysis for initializers is done by ActOnDeclarator() and | ||||
| 7666 | // CheckInitializer() - it requires knowledge of the object being initialized. | ||||
| 7667 | |||||
| 7668 | // Immediately handle non-overload placeholders. Overloads can be | ||||
| 7669 | // resolved contextually, but everything else here can't. | ||||
| 7670 | for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) { | ||||
| 7671 | if (InitArgList[I]->getType()->isNonOverloadPlaceholderType()) { | ||||
| 7672 | ExprResult result = CheckPlaceholderExpr(InitArgList[I]); | ||||
| 7673 | |||||
| 7674 | // Ignore failures; dropping the entire initializer list because | ||||
| 7675 | // of one failure would be terrible for indexing/etc. | ||||
| 7676 | if (result.isInvalid()) continue; | ||||
| 7677 | |||||
| 7678 | InitArgList[I] = result.get(); | ||||
| 7679 | } | ||||
| 7680 | } | ||||
| 7681 | |||||
| 7682 | InitListExpr *E = new (Context) InitListExpr(Context, LBraceLoc, InitArgList, | ||||
| 7683 | RBraceLoc); | ||||
| 7684 | E->setType(Context.VoidTy); // FIXME: just a place holder for now. | ||||
| 7685 | return E; | ||||
| 7686 | } | ||||
| 7687 | |||||
| 7688 | /// Do an explicit extend of the given block pointer if we're in ARC. | ||||
| 7689 | void Sema::maybeExtendBlockObject(ExprResult &E) { | ||||
| 7690 | assert(E.get()->getType()->isBlockPointerType())(static_cast <bool> (E.get()->getType()->isBlockPointerType ()) ? void (0) : __assert_fail ("E.get()->getType()->isBlockPointerType()" , "clang/lib/Sema/SemaExpr.cpp", 7690, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 7691 | assert(E.get()->isPRValue())(static_cast <bool> (E.get()->isPRValue()) ? void (0 ) : __assert_fail ("E.get()->isPRValue()", "clang/lib/Sema/SemaExpr.cpp" , 7691, __extension__ __PRETTY_FUNCTION__)); | ||||
| 7692 | |||||
| 7693 | // Only do this in an r-value context. | ||||
| 7694 | if (!getLangOpts().ObjCAutoRefCount) return; | ||||
| 7695 | |||||
| 7696 | E = ImplicitCastExpr::Create( | ||||
| 7697 | Context, E.get()->getType(), CK_ARCExtendBlockObject, E.get(), | ||||
| 7698 | /*base path*/ nullptr, VK_PRValue, FPOptionsOverride()); | ||||
| 7699 | Cleanup.setExprNeedsCleanups(true); | ||||
| 7700 | } | ||||
| 7701 | |||||
| 7702 | /// Prepare a conversion of the given expression to an ObjC object | ||||
| 7703 | /// pointer type. | ||||
| 7704 | CastKind Sema::PrepareCastToObjCObjectPointer(ExprResult &E) { | ||||
| 7705 | QualType type = E.get()->getType(); | ||||
| 7706 | if (type->isObjCObjectPointerType()) { | ||||
| 7707 | return CK_BitCast; | ||||
| 7708 | } else if (type->isBlockPointerType()) { | ||||
| 7709 | maybeExtendBlockObject(E); | ||||
| 7710 | return CK_BlockPointerToObjCPointerCast; | ||||
| 7711 | } else { | ||||
| 7712 | assert(type->isPointerType())(static_cast <bool> (type->isPointerType()) ? void ( 0) : __assert_fail ("type->isPointerType()", "clang/lib/Sema/SemaExpr.cpp" , 7712, __extension__ __PRETTY_FUNCTION__)); | ||||
| 7713 | return CK_CPointerToObjCPointerCast; | ||||
| 7714 | } | ||||
| 7715 | } | ||||
| 7716 | |||||
| 7717 | /// Prepares for a scalar cast, performing all the necessary stages | ||||
| 7718 | /// except the final cast and returning the kind required. | ||||
| 7719 | CastKind Sema::PrepareScalarCast(ExprResult &Src, QualType DestTy) { | ||||
| 7720 | // Both Src and Dest are scalar types, i.e. arithmetic or pointer. | ||||
| 7721 | // Also, callers should have filtered out the invalid cases with | ||||
| 7722 | // pointers. Everything else should be possible. | ||||
| 7723 | |||||
| 7724 | QualType SrcTy = Src.get()->getType(); | ||||
| 7725 | if (Context.hasSameUnqualifiedType(SrcTy, DestTy)) | ||||
| 7726 | return CK_NoOp; | ||||
| 7727 | |||||
| 7728 | switch (Type::ScalarTypeKind SrcKind = SrcTy->getScalarTypeKind()) { | ||||
| 7729 | case Type::STK_MemberPointer: | ||||
| 7730 | llvm_unreachable("member pointer type in C")::llvm::llvm_unreachable_internal("member pointer type in C", "clang/lib/Sema/SemaExpr.cpp", 7730); | ||||
| 7731 | |||||
| 7732 | case Type::STK_CPointer: | ||||
| 7733 | case Type::STK_BlockPointer: | ||||
| 7734 | case Type::STK_ObjCObjectPointer: | ||||
| 7735 | switch (DestTy->getScalarTypeKind()) { | ||||
| 7736 | case Type::STK_CPointer: { | ||||
| 7737 | LangAS SrcAS = SrcTy->getPointeeType().getAddressSpace(); | ||||
| 7738 | LangAS DestAS = DestTy->getPointeeType().getAddressSpace(); | ||||
| 7739 | if (SrcAS != DestAS) | ||||
| 7740 | return CK_AddressSpaceConversion; | ||||
| 7741 | if (Context.hasCvrSimilarType(SrcTy, DestTy)) | ||||
| 7742 | return CK_NoOp; | ||||
| 7743 | return CK_BitCast; | ||||
| 7744 | } | ||||
| 7745 | case Type::STK_BlockPointer: | ||||
| 7746 | return (SrcKind == Type::STK_BlockPointer | ||||
| 7747 | ? CK_BitCast : CK_AnyPointerToBlockPointerCast); | ||||
| 7748 | case Type::STK_ObjCObjectPointer: | ||||
| 7749 | if (SrcKind == Type::STK_ObjCObjectPointer) | ||||
| 7750 | return CK_BitCast; | ||||
| 7751 | if (SrcKind == Type::STK_CPointer) | ||||
| 7752 | return CK_CPointerToObjCPointerCast; | ||||
| 7753 | maybeExtendBlockObject(Src); | ||||
| 7754 | return CK_BlockPointerToObjCPointerCast; | ||||
| 7755 | case Type::STK_Bool: | ||||
| 7756 | return CK_PointerToBoolean; | ||||
| 7757 | case Type::STK_Integral: | ||||
| 7758 | return CK_PointerToIntegral; | ||||
| 7759 | case Type::STK_Floating: | ||||
| 7760 | case Type::STK_FloatingComplex: | ||||
| 7761 | case Type::STK_IntegralComplex: | ||||
| 7762 | case Type::STK_MemberPointer: | ||||
| 7763 | case Type::STK_FixedPoint: | ||||
| 7764 | llvm_unreachable("illegal cast from pointer")::llvm::llvm_unreachable_internal("illegal cast from pointer" , "clang/lib/Sema/SemaExpr.cpp", 7764); | ||||
| 7765 | } | ||||
| 7766 | llvm_unreachable("Should have returned before this")::llvm::llvm_unreachable_internal("Should have returned before this" , "clang/lib/Sema/SemaExpr.cpp", 7766); | ||||
| 7767 | |||||
| 7768 | case Type::STK_FixedPoint: | ||||
| 7769 | switch (DestTy->getScalarTypeKind()) { | ||||
| 7770 | case Type::STK_FixedPoint: | ||||
| 7771 | return CK_FixedPointCast; | ||||
| 7772 | case Type::STK_Bool: | ||||
| 7773 | return CK_FixedPointToBoolean; | ||||
| 7774 | case Type::STK_Integral: | ||||
| 7775 | return CK_FixedPointToIntegral; | ||||
| 7776 | case Type::STK_Floating: | ||||
| 7777 | return CK_FixedPointToFloating; | ||||
| 7778 | case Type::STK_IntegralComplex: | ||||
| 7779 | case Type::STK_FloatingComplex: | ||||
| 7780 | Diag(Src.get()->getExprLoc(), | ||||
| 7781 | diag::err_unimplemented_conversion_with_fixed_point_type) | ||||
| 7782 | << DestTy; | ||||
| 7783 | return CK_IntegralCast; | ||||
| 7784 | case Type::STK_CPointer: | ||||
| 7785 | case Type::STK_ObjCObjectPointer: | ||||
| 7786 | case Type::STK_BlockPointer: | ||||
| 7787 | case Type::STK_MemberPointer: | ||||
| 7788 | llvm_unreachable("illegal cast to pointer type")::llvm::llvm_unreachable_internal("illegal cast to pointer type" , "clang/lib/Sema/SemaExpr.cpp", 7788); | ||||
| 7789 | } | ||||
| 7790 | llvm_unreachable("Should have returned before this")::llvm::llvm_unreachable_internal("Should have returned before this" , "clang/lib/Sema/SemaExpr.cpp", 7790); | ||||
| 7791 | |||||
| 7792 | case Type::STK_Bool: // casting from bool is like casting from an integer | ||||
| 7793 | case Type::STK_Integral: | ||||
| 7794 | switch (DestTy->getScalarTypeKind()) { | ||||
| 7795 | case Type::STK_CPointer: | ||||
| 7796 | case Type::STK_ObjCObjectPointer: | ||||
| 7797 | case Type::STK_BlockPointer: | ||||
| 7798 | if (Src.get()->isNullPointerConstant(Context, | ||||
| 7799 | Expr::NPC_ValueDependentIsNull)) | ||||
| 7800 | return CK_NullToPointer; | ||||
| 7801 | return CK_IntegralToPointer; | ||||
| 7802 | case Type::STK_Bool: | ||||
| 7803 | return CK_IntegralToBoolean; | ||||
| 7804 | case Type::STK_Integral: | ||||
| 7805 | return CK_IntegralCast; | ||||
| 7806 | case Type::STK_Floating: | ||||
| 7807 | return CK_IntegralToFloating; | ||||
| 7808 | case Type::STK_IntegralComplex: | ||||
| 7809 | Src = ImpCastExprToType(Src.get(), | ||||
| 7810 | DestTy->castAs<ComplexType>()->getElementType(), | ||||
| 7811 | CK_IntegralCast); | ||||
| 7812 | return CK_IntegralRealToComplex; | ||||
| 7813 | case Type::STK_FloatingComplex: | ||||
| 7814 | Src = ImpCastExprToType(Src.get(), | ||||
| 7815 | DestTy->castAs<ComplexType>()->getElementType(), | ||||
| 7816 | CK_IntegralToFloating); | ||||
| 7817 | return CK_FloatingRealToComplex; | ||||
| 7818 | case Type::STK_MemberPointer: | ||||
| 7819 | llvm_unreachable("member pointer type in C")::llvm::llvm_unreachable_internal("member pointer type in C", "clang/lib/Sema/SemaExpr.cpp", 7819); | ||||
| 7820 | case Type::STK_FixedPoint: | ||||
| 7821 | return CK_IntegralToFixedPoint; | ||||
| 7822 | } | ||||
| 7823 | llvm_unreachable("Should have returned before this")::llvm::llvm_unreachable_internal("Should have returned before this" , "clang/lib/Sema/SemaExpr.cpp", 7823); | ||||
| 7824 | |||||
| 7825 | case Type::STK_Floating: | ||||
| 7826 | switch (DestTy->getScalarTypeKind()) { | ||||
| 7827 | case Type::STK_Floating: | ||||
| 7828 | return CK_FloatingCast; | ||||
| 7829 | case Type::STK_Bool: | ||||
| 7830 | return CK_FloatingToBoolean; | ||||
| 7831 | case Type::STK_Integral: | ||||
| 7832 | return CK_FloatingToIntegral; | ||||
| 7833 | case Type::STK_FloatingComplex: | ||||
| 7834 | Src = ImpCastExprToType(Src.get(), | ||||
| 7835 | DestTy->castAs<ComplexType>()->getElementType(), | ||||
| 7836 | CK_FloatingCast); | ||||
| 7837 | return CK_FloatingRealToComplex; | ||||
| 7838 | case Type::STK_IntegralComplex: | ||||
| 7839 | Src = ImpCastExprToType(Src.get(), | ||||
| 7840 | DestTy->castAs<ComplexType>()->getElementType(), | ||||
| 7841 | CK_FloatingToIntegral); | ||||
| 7842 | return CK_IntegralRealToComplex; | ||||
| 7843 | case Type::STK_CPointer: | ||||
| 7844 | case Type::STK_ObjCObjectPointer: | ||||
| 7845 | case Type::STK_BlockPointer: | ||||
| 7846 | llvm_unreachable("valid float->pointer cast?")::llvm::llvm_unreachable_internal("valid float->pointer cast?" , "clang/lib/Sema/SemaExpr.cpp", 7846); | ||||
| 7847 | case Type::STK_MemberPointer: | ||||
| 7848 | llvm_unreachable("member pointer type in C")::llvm::llvm_unreachable_internal("member pointer type in C", "clang/lib/Sema/SemaExpr.cpp", 7848); | ||||
| 7849 | case Type::STK_FixedPoint: | ||||
| 7850 | return CK_FloatingToFixedPoint; | ||||
| 7851 | } | ||||
| 7852 | llvm_unreachable("Should have returned before this")::llvm::llvm_unreachable_internal("Should have returned before this" , "clang/lib/Sema/SemaExpr.cpp", 7852); | ||||
| 7853 | |||||
| 7854 | case Type::STK_FloatingComplex: | ||||
| 7855 | switch (DestTy->getScalarTypeKind()) { | ||||
| 7856 | case Type::STK_FloatingComplex: | ||||
| 7857 | return CK_FloatingComplexCast; | ||||
| 7858 | case Type::STK_IntegralComplex: | ||||
| 7859 | return CK_FloatingComplexToIntegralComplex; | ||||
| 7860 | case Type::STK_Floating: { | ||||
| 7861 | QualType ET = SrcTy->castAs<ComplexType>()->getElementType(); | ||||
| 7862 | if (Context.hasSameType(ET, DestTy)) | ||||
| 7863 | return CK_FloatingComplexToReal; | ||||
| 7864 | Src = ImpCastExprToType(Src.get(), ET, CK_FloatingComplexToReal); | ||||
| 7865 | return CK_FloatingCast; | ||||
| 7866 | } | ||||
| 7867 | case Type::STK_Bool: | ||||
| 7868 | return CK_FloatingComplexToBoolean; | ||||
| 7869 | case Type::STK_Integral: | ||||
| 7870 | Src = ImpCastExprToType(Src.get(), | ||||
| 7871 | SrcTy->castAs<ComplexType>()->getElementType(), | ||||
| 7872 | CK_FloatingComplexToReal); | ||||
| 7873 | return CK_FloatingToIntegral; | ||||
| 7874 | case Type::STK_CPointer: | ||||
| 7875 | case Type::STK_ObjCObjectPointer: | ||||
| 7876 | case Type::STK_BlockPointer: | ||||
| 7877 | llvm_unreachable("valid complex float->pointer cast?")::llvm::llvm_unreachable_internal("valid complex float->pointer cast?" , "clang/lib/Sema/SemaExpr.cpp", 7877); | ||||
| 7878 | case Type::STK_MemberPointer: | ||||
| 7879 | llvm_unreachable("member pointer type in C")::llvm::llvm_unreachable_internal("member pointer type in C", "clang/lib/Sema/SemaExpr.cpp", 7879); | ||||
| 7880 | case Type::STK_FixedPoint: | ||||
| 7881 | Diag(Src.get()->getExprLoc(), | ||||
| 7882 | diag::err_unimplemented_conversion_with_fixed_point_type) | ||||
| 7883 | << SrcTy; | ||||
| 7884 | return CK_IntegralCast; | ||||
| 7885 | } | ||||
| 7886 | llvm_unreachable("Should have returned before this")::llvm::llvm_unreachable_internal("Should have returned before this" , "clang/lib/Sema/SemaExpr.cpp", 7886); | ||||
| 7887 | |||||
| 7888 | case Type::STK_IntegralComplex: | ||||
| 7889 | switch (DestTy->getScalarTypeKind()) { | ||||
| 7890 | case Type::STK_FloatingComplex: | ||||
| 7891 | return CK_IntegralComplexToFloatingComplex; | ||||
| 7892 | case Type::STK_IntegralComplex: | ||||
| 7893 | return CK_IntegralComplexCast; | ||||
| 7894 | case Type::STK_Integral: { | ||||
| 7895 | QualType ET = SrcTy->castAs<ComplexType>()->getElementType(); | ||||
| 7896 | if (Context.hasSameType(ET, DestTy)) | ||||
| 7897 | return CK_IntegralComplexToReal; | ||||
| 7898 | Src = ImpCastExprToType(Src.get(), ET, CK_IntegralComplexToReal); | ||||
| 7899 | return CK_IntegralCast; | ||||
| 7900 | } | ||||
| 7901 | case Type::STK_Bool: | ||||
| 7902 | return CK_IntegralComplexToBoolean; | ||||
| 7903 | case Type::STK_Floating: | ||||
| 7904 | Src = ImpCastExprToType(Src.get(), | ||||
| 7905 | SrcTy->castAs<ComplexType>()->getElementType(), | ||||
| 7906 | CK_IntegralComplexToReal); | ||||
| 7907 | return CK_IntegralToFloating; | ||||
| 7908 | case Type::STK_CPointer: | ||||
| 7909 | case Type::STK_ObjCObjectPointer: | ||||
| 7910 | case Type::STK_BlockPointer: | ||||
| 7911 | llvm_unreachable("valid complex int->pointer cast?")::llvm::llvm_unreachable_internal("valid complex int->pointer cast?" , "clang/lib/Sema/SemaExpr.cpp", 7911); | ||||
| 7912 | case Type::STK_MemberPointer: | ||||
| 7913 | llvm_unreachable("member pointer type in C")::llvm::llvm_unreachable_internal("member pointer type in C", "clang/lib/Sema/SemaExpr.cpp", 7913); | ||||
| 7914 | case Type::STK_FixedPoint: | ||||
| 7915 | Diag(Src.get()->getExprLoc(), | ||||
| 7916 | diag::err_unimplemented_conversion_with_fixed_point_type) | ||||
| 7917 | << SrcTy; | ||||
| 7918 | return CK_IntegralCast; | ||||
| 7919 | } | ||||
| 7920 | llvm_unreachable("Should have returned before this")::llvm::llvm_unreachable_internal("Should have returned before this" , "clang/lib/Sema/SemaExpr.cpp", 7920); | ||||
| 7921 | } | ||||
| 7922 | |||||
| 7923 | llvm_unreachable("Unhandled scalar cast")::llvm::llvm_unreachable_internal("Unhandled scalar cast", "clang/lib/Sema/SemaExpr.cpp" , 7923); | ||||
| 7924 | } | ||||
| 7925 | |||||
| 7926 | static bool breakDownVectorType(QualType type, uint64_t &len, | ||||
| 7927 | QualType &eltType) { | ||||
| 7928 | // Vectors are simple. | ||||
| 7929 | if (const VectorType *vecType = type->getAs<VectorType>()) { | ||||
| 7930 | len = vecType->getNumElements(); | ||||
| 7931 | eltType = vecType->getElementType(); | ||||
| 7932 | assert(eltType->isScalarType())(static_cast <bool> (eltType->isScalarType()) ? void (0) : __assert_fail ("eltType->isScalarType()", "clang/lib/Sema/SemaExpr.cpp" , 7932, __extension__ __PRETTY_FUNCTION__)); | ||||
| 7933 | return true; | ||||
| 7934 | } | ||||
| 7935 | |||||
| 7936 | // We allow lax conversion to and from non-vector types, but only if | ||||
| 7937 | // they're real types (i.e. non-complex, non-pointer scalar types). | ||||
| 7938 | if (!type->isRealType()) return false; | ||||
| 7939 | |||||
| 7940 | len = 1; | ||||
| 7941 | eltType = type; | ||||
| 7942 | return true; | ||||
| 7943 | } | ||||
| 7944 | |||||
| 7945 | /// Are the two types SVE-bitcast-compatible types? I.e. is bitcasting from the | ||||
| 7946 | /// first SVE type (e.g. an SVE VLAT) to the second type (e.g. an SVE VLST) | ||||
| 7947 | /// allowed? | ||||
| 7948 | /// | ||||
| 7949 | /// This will also return false if the two given types do not make sense from | ||||
| 7950 | /// the perspective of SVE bitcasts. | ||||
| 7951 | bool Sema::isValidSveBitcast(QualType srcTy, QualType destTy) { | ||||
| 7952 | assert(srcTy->isVectorType() || destTy->isVectorType())(static_cast <bool> (srcTy->isVectorType() || destTy ->isVectorType()) ? void (0) : __assert_fail ("srcTy->isVectorType() || destTy->isVectorType()" , "clang/lib/Sema/SemaExpr.cpp", 7952, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 7953 | |||||
| 7954 | auto ValidScalableConversion = [](QualType FirstType, QualType SecondType) { | ||||
| 7955 | if (!FirstType->isSVESizelessBuiltinType()) | ||||
| 7956 | return false; | ||||
| 7957 | |||||
| 7958 | const auto *VecTy = SecondType->getAs<VectorType>(); | ||||
| 7959 | return VecTy && | ||||
| 7960 | VecTy->getVectorKind() == VectorType::SveFixedLengthDataVector; | ||||
| 7961 | }; | ||||
| 7962 | |||||
| 7963 | return ValidScalableConversion(srcTy, destTy) || | ||||
| 7964 | ValidScalableConversion(destTy, srcTy); | ||||
| 7965 | } | ||||
| 7966 | |||||
| 7967 | /// Are the two types matrix types and do they have the same dimensions i.e. | ||||
| 7968 | /// do they have the same number of rows and the same number of columns? | ||||
| 7969 | bool Sema::areMatrixTypesOfTheSameDimension(QualType srcTy, QualType destTy) { | ||||
| 7970 | if (!destTy->isMatrixType() || !srcTy->isMatrixType()) | ||||
| 7971 | return false; | ||||
| 7972 | |||||
| 7973 | const ConstantMatrixType *matSrcType = srcTy->getAs<ConstantMatrixType>(); | ||||
| 7974 | const ConstantMatrixType *matDestType = destTy->getAs<ConstantMatrixType>(); | ||||
| 7975 | |||||
| 7976 | return matSrcType->getNumRows() == matDestType->getNumRows() && | ||||
| 7977 | matSrcType->getNumColumns() == matDestType->getNumColumns(); | ||||
| 7978 | } | ||||
| 7979 | |||||
| 7980 | bool Sema::areVectorTypesSameSize(QualType SrcTy, QualType DestTy) { | ||||
| 7981 | assert(DestTy->isVectorType() || SrcTy->isVectorType())(static_cast <bool> (DestTy->isVectorType() || SrcTy ->isVectorType()) ? void (0) : __assert_fail ("DestTy->isVectorType() || SrcTy->isVectorType()" , "clang/lib/Sema/SemaExpr.cpp", 7981, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 7982 | |||||
| 7983 | uint64_t SrcLen, DestLen; | ||||
| 7984 | QualType SrcEltTy, DestEltTy; | ||||
| 7985 | if (!breakDownVectorType(SrcTy, SrcLen, SrcEltTy)) | ||||
| 7986 | return false; | ||||
| 7987 | if (!breakDownVectorType(DestTy, DestLen, DestEltTy)) | ||||
| 7988 | return false; | ||||
| 7989 | |||||
| 7990 | // ASTContext::getTypeSize will return the size rounded up to a | ||||
| 7991 | // power of 2, so instead of using that, we need to use the raw | ||||
| 7992 | // element size multiplied by the element count. | ||||
| 7993 | uint64_t SrcEltSize = Context.getTypeSize(SrcEltTy); | ||||
| 7994 | uint64_t DestEltSize = Context.getTypeSize(DestEltTy); | ||||
| 7995 | |||||
| 7996 | return (SrcLen * SrcEltSize == DestLen * DestEltSize); | ||||
| 7997 | } | ||||
| 7998 | |||||
| 7999 | // This returns true if at least one of the types is an altivec vector. | ||||
| 8000 | bool Sema::anyAltivecTypes(QualType SrcTy, QualType DestTy) { | ||||
| 8001 | assert((DestTy->isVectorType() || SrcTy->isVectorType()) &&(static_cast <bool> ((DestTy->isVectorType() || SrcTy ->isVectorType()) && "expected at least one type to be a vector here" ) ? void (0) : __assert_fail ("(DestTy->isVectorType() || SrcTy->isVectorType()) && \"expected at least one type to be a vector here\"" , "clang/lib/Sema/SemaExpr.cpp", 8002, __extension__ __PRETTY_FUNCTION__ )) | ||||
| 8002 | "expected at least one type to be a vector here")(static_cast <bool> ((DestTy->isVectorType() || SrcTy ->isVectorType()) && "expected at least one type to be a vector here" ) ? void (0) : __assert_fail ("(DestTy->isVectorType() || SrcTy->isVectorType()) && \"expected at least one type to be a vector here\"" , "clang/lib/Sema/SemaExpr.cpp", 8002, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 8003 | |||||
| 8004 | bool IsSrcTyAltivec = | ||||
| 8005 | SrcTy->isVectorType() && ((SrcTy->castAs<VectorType>()->getVectorKind() == | ||||
| 8006 | VectorType::AltiVecVector) || | ||||
| 8007 | (SrcTy->castAs<VectorType>()->getVectorKind() == | ||||
| 8008 | VectorType::AltiVecBool) || | ||||
| 8009 | (SrcTy->castAs<VectorType>()->getVectorKind() == | ||||
| 8010 | VectorType::AltiVecPixel)); | ||||
| 8011 | |||||
| 8012 | bool IsDestTyAltivec = DestTy->isVectorType() && | ||||
| 8013 | ((DestTy->castAs<VectorType>()->getVectorKind() == | ||||
| 8014 | VectorType::AltiVecVector) || | ||||
| 8015 | (DestTy->castAs<VectorType>()->getVectorKind() == | ||||
| 8016 | VectorType::AltiVecBool) || | ||||
| 8017 | (DestTy->castAs<VectorType>()->getVectorKind() == | ||||
| 8018 | VectorType::AltiVecPixel)); | ||||
| 8019 | |||||
| 8020 | return (IsSrcTyAltivec || IsDestTyAltivec); | ||||
| 8021 | } | ||||
| 8022 | |||||
| 8023 | /// Are the two types lax-compatible vector types? That is, given | ||||
| 8024 | /// that one of them is a vector, do they have equal storage sizes, | ||||
| 8025 | /// where the storage size is the number of elements times the element | ||||
| 8026 | /// size? | ||||
| 8027 | /// | ||||
| 8028 | /// This will also return false if either of the types is neither a | ||||
| 8029 | /// vector nor a real type. | ||||
| 8030 | bool Sema::areLaxCompatibleVectorTypes(QualType srcTy, QualType destTy) { | ||||
| 8031 | assert(destTy->isVectorType() || srcTy->isVectorType())(static_cast <bool> (destTy->isVectorType() || srcTy ->isVectorType()) ? void (0) : __assert_fail ("destTy->isVectorType() || srcTy->isVectorType()" , "clang/lib/Sema/SemaExpr.cpp", 8031, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 8032 | |||||
| 8033 | // Disallow lax conversions between scalars and ExtVectors (these | ||||
| 8034 | // conversions are allowed for other vector types because common headers | ||||
| 8035 | // depend on them). Most scalar OP ExtVector cases are handled by the | ||||
| 8036 | // splat path anyway, which does what we want (convert, not bitcast). | ||||
| 8037 | // What this rules out for ExtVectors is crazy things like char4*float. | ||||
| 8038 | if (srcTy->isScalarType() && destTy->isExtVectorType()) return false; | ||||
| 8039 | if (destTy->isScalarType() && srcTy->isExtVectorType()) return false; | ||||
| 8040 | |||||
| 8041 | return areVectorTypesSameSize(srcTy, destTy); | ||||
| 8042 | } | ||||
| 8043 | |||||
| 8044 | /// Is this a legal conversion between two types, one of which is | ||||
| 8045 | /// known to be a vector type? | ||||
| 8046 | bool Sema::isLaxVectorConversion(QualType srcTy, QualType destTy) { | ||||
| 8047 | assert(destTy->isVectorType() || srcTy->isVectorType())(static_cast <bool> (destTy->isVectorType() || srcTy ->isVectorType()) ? void (0) : __assert_fail ("destTy->isVectorType() || srcTy->isVectorType()" , "clang/lib/Sema/SemaExpr.cpp", 8047, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 8048 | |||||
| 8049 | switch (Context.getLangOpts().getLaxVectorConversions()) { | ||||
| 8050 | case LangOptions::LaxVectorConversionKind::None: | ||||
| 8051 | return false; | ||||
| 8052 | |||||
| 8053 | case LangOptions::LaxVectorConversionKind::Integer: | ||||
| 8054 | if (!srcTy->isIntegralOrEnumerationType()) { | ||||
| 8055 | auto *Vec = srcTy->getAs<VectorType>(); | ||||
| 8056 | if (!Vec || !Vec->getElementType()->isIntegralOrEnumerationType()) | ||||
| 8057 | return false; | ||||
| 8058 | } | ||||
| 8059 | if (!destTy->isIntegralOrEnumerationType()) { | ||||
| 8060 | auto *Vec = destTy->getAs<VectorType>(); | ||||
| 8061 | if (!Vec || !Vec->getElementType()->isIntegralOrEnumerationType()) | ||||
| 8062 | return false; | ||||
| 8063 | } | ||||
| 8064 | // OK, integer (vector) -> integer (vector) bitcast. | ||||
| 8065 | break; | ||||
| 8066 | |||||
| 8067 | case LangOptions::LaxVectorConversionKind::All: | ||||
| 8068 | break; | ||||
| 8069 | } | ||||
| 8070 | |||||
| 8071 | return areLaxCompatibleVectorTypes(srcTy, destTy); | ||||
| 8072 | } | ||||
| 8073 | |||||
| 8074 | bool Sema::CheckMatrixCast(SourceRange R, QualType DestTy, QualType SrcTy, | ||||
| 8075 | CastKind &Kind) { | ||||
| 8076 | if (SrcTy->isMatrixType() && DestTy->isMatrixType()) { | ||||
| 8077 | if (!areMatrixTypesOfTheSameDimension(SrcTy, DestTy)) { | ||||
| 8078 | return Diag(R.getBegin(), diag::err_invalid_conversion_between_matrixes) | ||||
| 8079 | << DestTy << SrcTy << R; | ||||
| 8080 | } | ||||
| 8081 | } else if (SrcTy->isMatrixType()) { | ||||
| 8082 | return Diag(R.getBegin(), | ||||
| 8083 | diag::err_invalid_conversion_between_matrix_and_type) | ||||
| 8084 | << SrcTy << DestTy << R; | ||||
| 8085 | } else if (DestTy->isMatrixType()) { | ||||
| 8086 | return Diag(R.getBegin(), | ||||
| 8087 | diag::err_invalid_conversion_between_matrix_and_type) | ||||
| 8088 | << DestTy << SrcTy << R; | ||||
| 8089 | } | ||||
| 8090 | |||||
| 8091 | Kind = CK_MatrixCast; | ||||
| 8092 | return false; | ||||
| 8093 | } | ||||
| 8094 | |||||
| 8095 | bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty, | ||||
| 8096 | CastKind &Kind) { | ||||
| 8097 | assert(VectorTy->isVectorType() && "Not a vector type!")(static_cast <bool> (VectorTy->isVectorType() && "Not a vector type!") ? void (0) : __assert_fail ("VectorTy->isVectorType() && \"Not a vector type!\"" , "clang/lib/Sema/SemaExpr.cpp", 8097, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 8098 | |||||
| 8099 | if (Ty->isVectorType() || Ty->isIntegralType(Context)) { | ||||
| 8100 | if (!areLaxCompatibleVectorTypes(Ty, VectorTy)) | ||||
| 8101 | return Diag(R.getBegin(), | ||||
| 8102 | Ty->isVectorType() ? | ||||
| 8103 | diag::err_invalid_conversion_between_vectors : | ||||
| 8104 | diag::err_invalid_conversion_between_vector_and_integer) | ||||
| 8105 | << VectorTy << Ty << R; | ||||
| 8106 | } else | ||||
| 8107 | return Diag(R.getBegin(), | ||||
| 8108 | diag::err_invalid_conversion_between_vector_and_scalar) | ||||
| 8109 | << VectorTy << Ty << R; | ||||
| 8110 | |||||
| 8111 | Kind = CK_BitCast; | ||||
| 8112 | return false; | ||||
| 8113 | } | ||||
| 8114 | |||||
| 8115 | ExprResult Sema::prepareVectorSplat(QualType VectorTy, Expr *SplattedExpr) { | ||||
| 8116 | QualType DestElemTy = VectorTy->castAs<VectorType>()->getElementType(); | ||||
| 8117 | |||||
| 8118 | if (DestElemTy == SplattedExpr->getType()) | ||||
| 8119 | return SplattedExpr; | ||||
| 8120 | |||||
| 8121 | assert(DestElemTy->isFloatingType() ||(static_cast <bool> (DestElemTy->isFloatingType() || DestElemTy->isIntegralOrEnumerationType()) ? void (0) : __assert_fail ("DestElemTy->isFloatingType() || DestElemTy->isIntegralOrEnumerationType()" , "clang/lib/Sema/SemaExpr.cpp", 8122, __extension__ __PRETTY_FUNCTION__ )) | ||||
| 8122 | DestElemTy->isIntegralOrEnumerationType())(static_cast <bool> (DestElemTy->isFloatingType() || DestElemTy->isIntegralOrEnumerationType()) ? void (0) : __assert_fail ("DestElemTy->isFloatingType() || DestElemTy->isIntegralOrEnumerationType()" , "clang/lib/Sema/SemaExpr.cpp", 8122, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 8123 | |||||
| 8124 | CastKind CK; | ||||
| 8125 | if (VectorTy->isExtVectorType() && SplattedExpr->getType()->isBooleanType()) { | ||||
| 8126 | // OpenCL requires that we convert `true` boolean expressions to -1, but | ||||
| 8127 | // only when splatting vectors. | ||||
| 8128 | if (DestElemTy->isFloatingType()) { | ||||
| 8129 | // To avoid having to have a CK_BooleanToSignedFloating cast kind, we cast | ||||
| 8130 | // in two steps: boolean to signed integral, then to floating. | ||||
| 8131 | ExprResult CastExprRes = ImpCastExprToType(SplattedExpr, Context.IntTy, | ||||
| 8132 | CK_BooleanToSignedIntegral); | ||||
| 8133 | SplattedExpr = CastExprRes.get(); | ||||
| 8134 | CK = CK_IntegralToFloating; | ||||
| 8135 | } else { | ||||
| 8136 | CK = CK_BooleanToSignedIntegral; | ||||
| 8137 | } | ||||
| 8138 | } else { | ||||
| 8139 | ExprResult CastExprRes = SplattedExpr; | ||||
| 8140 | CK = PrepareScalarCast(CastExprRes, DestElemTy); | ||||
| 8141 | if (CastExprRes.isInvalid()) | ||||
| 8142 | return ExprError(); | ||||
| 8143 | SplattedExpr = CastExprRes.get(); | ||||
| 8144 | } | ||||
| 8145 | return ImpCastExprToType(SplattedExpr, DestElemTy, CK); | ||||
| 8146 | } | ||||
| 8147 | |||||
| 8148 | ExprResult Sema::CheckExtVectorCast(SourceRange R, QualType DestTy, | ||||
| 8149 | Expr *CastExpr, CastKind &Kind) { | ||||
| 8150 | assert(DestTy->isExtVectorType() && "Not an extended vector type!")(static_cast <bool> (DestTy->isExtVectorType() && "Not an extended vector type!") ? void (0) : __assert_fail ( "DestTy->isExtVectorType() && \"Not an extended vector type!\"" , "clang/lib/Sema/SemaExpr.cpp", 8150, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 8151 | |||||
| 8152 | QualType SrcTy = CastExpr->getType(); | ||||
| 8153 | |||||
| 8154 | // If SrcTy is a VectorType, the total size must match to explicitly cast to | ||||
| 8155 | // an ExtVectorType. | ||||
| 8156 | // In OpenCL, casts between vectors of different types are not allowed. | ||||
| 8157 | // (See OpenCL 6.2). | ||||
| 8158 | if (SrcTy->isVectorType()) { | ||||
| 8159 | if (!areLaxCompatibleVectorTypes(SrcTy, DestTy) || | ||||
| 8160 | (getLangOpts().OpenCL && | ||||
| 8161 | !Context.hasSameUnqualifiedType(DestTy, SrcTy))) { | ||||
| 8162 | Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors) | ||||
| 8163 | << DestTy << SrcTy << R; | ||||
| 8164 | return ExprError(); | ||||
| 8165 | } | ||||
| 8166 | Kind = CK_BitCast; | ||||
| 8167 | return CastExpr; | ||||
| 8168 | } | ||||
| 8169 | |||||
| 8170 | // All non-pointer scalars can be cast to ExtVector type. The appropriate | ||||
| 8171 | // conversion will take place first from scalar to elt type, and then | ||||
| 8172 | // splat from elt type to vector. | ||||
| 8173 | if (SrcTy->isPointerType()) | ||||
| 8174 | return Diag(R.getBegin(), | ||||
| 8175 | diag::err_invalid_conversion_between_vector_and_scalar) | ||||
| 8176 | << DestTy << SrcTy << R; | ||||
| 8177 | |||||
| 8178 | Kind = CK_VectorSplat; | ||||
| 8179 | return prepareVectorSplat(DestTy, CastExpr); | ||||
| 8180 | } | ||||
| 8181 | |||||
| 8182 | ExprResult | ||||
| 8183 | Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc, | ||||
| 8184 | Declarator &D, ParsedType &Ty, | ||||
| 8185 | SourceLocation RParenLoc, Expr *CastExpr) { | ||||
| 8186 | assert(!D.isInvalidType() && (CastExpr != nullptr) &&(static_cast <bool> (!D.isInvalidType() && (CastExpr != nullptr) && "ActOnCastExpr(): missing type or expr" ) ? void (0) : __assert_fail ("!D.isInvalidType() && (CastExpr != nullptr) && \"ActOnCastExpr(): missing type or expr\"" , "clang/lib/Sema/SemaExpr.cpp", 8187, __extension__ __PRETTY_FUNCTION__ )) | ||||
| 8187 | "ActOnCastExpr(): missing type or expr")(static_cast <bool> (!D.isInvalidType() && (CastExpr != nullptr) && "ActOnCastExpr(): missing type or expr" ) ? void (0) : __assert_fail ("!D.isInvalidType() && (CastExpr != nullptr) && \"ActOnCastExpr(): missing type or expr\"" , "clang/lib/Sema/SemaExpr.cpp", 8187, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 8188 | |||||
| 8189 | TypeSourceInfo *castTInfo = GetTypeForDeclaratorCast(D, CastExpr->getType()); | ||||
| 8190 | if (D.isInvalidType()) | ||||
| 8191 | return ExprError(); | ||||
| 8192 | |||||
| 8193 | if (getLangOpts().CPlusPlus) { | ||||
| 8194 | // Check that there are no default arguments (C++ only). | ||||
| 8195 | CheckExtraCXXDefaultArguments(D); | ||||
| 8196 | } else { | ||||
| 8197 | // Make sure any TypoExprs have been dealt with. | ||||
| 8198 | ExprResult Res = CorrectDelayedTyposInExpr(CastExpr); | ||||
| 8199 | if (!Res.isUsable()) | ||||
| 8200 | return ExprError(); | ||||
| 8201 | CastExpr = Res.get(); | ||||
| 8202 | } | ||||
| 8203 | |||||
| 8204 | checkUnusedDeclAttributes(D); | ||||
| 8205 | |||||
| 8206 | QualType castType = castTInfo->getType(); | ||||
| 8207 | Ty = CreateParsedType(castType, castTInfo); | ||||
| 8208 | |||||
| 8209 | bool isVectorLiteral = false; | ||||
| 8210 | |||||
| 8211 | // Check for an altivec or OpenCL literal, | ||||
| 8212 | // i.e. all the elements are integer constants. | ||||
| 8213 | ParenExpr *PE = dyn_cast<ParenExpr>(CastExpr); | ||||
| 8214 | ParenListExpr *PLE = dyn_cast<ParenListExpr>(CastExpr); | ||||
| 8215 | if ((getLangOpts().AltiVec || getLangOpts().ZVector || getLangOpts().OpenCL) | ||||
| 8216 | && castType->isVectorType() && (PE || PLE)) { | ||||
| 8217 | if (PLE && PLE->getNumExprs() == 0) { | ||||
| 8218 | Diag(PLE->getExprLoc(), diag::err_altivec_empty_initializer); | ||||
| 8219 | return ExprError(); | ||||
| 8220 | } | ||||
| 8221 | if (PE || PLE->getNumExprs() == 1) { | ||||
| 8222 | Expr *E = (PE ? PE->getSubExpr() : PLE->getExpr(0)); | ||||
| 8223 | if (!E->isTypeDependent() && !E->getType()->isVectorType()) | ||||
| 8224 | isVectorLiteral = true; | ||||
| 8225 | } | ||||
| 8226 | else | ||||
| 8227 | isVectorLiteral = true; | ||||
| 8228 | } | ||||
| 8229 | |||||
| 8230 | // If this is a vector initializer, '(' type ')' '(' init, ..., init ')' | ||||
| 8231 | // then handle it as such. | ||||
| 8232 | if (isVectorLiteral) | ||||
| 8233 | return BuildVectorLiteral(LParenLoc, RParenLoc, CastExpr, castTInfo); | ||||
| 8234 | |||||
| 8235 | // If the Expr being casted is a ParenListExpr, handle it specially. | ||||
| 8236 | // This is not an AltiVec-style cast, so turn the ParenListExpr into a | ||||
| 8237 | // sequence of BinOp comma operators. | ||||
| 8238 | if (isa<ParenListExpr>(CastExpr)) { | ||||
| 8239 | ExprResult Result = MaybeConvertParenListExprToParenExpr(S, CastExpr); | ||||
| 8240 | if (Result.isInvalid()) return ExprError(); | ||||
| 8241 | CastExpr = Result.get(); | ||||
| 8242 | } | ||||
| 8243 | |||||
| 8244 | if (getLangOpts().CPlusPlus && !castType->isVoidType()) | ||||
| 8245 | Diag(LParenLoc, diag::warn_old_style_cast) << CastExpr->getSourceRange(); | ||||
| 8246 | |||||
| 8247 | CheckTollFreeBridgeCast(castType, CastExpr); | ||||
| 8248 | |||||
| 8249 | CheckObjCBridgeRelatedCast(castType, CastExpr); | ||||
| 8250 | |||||
| 8251 | DiscardMisalignedMemberAddress(castType.getTypePtr(), CastExpr); | ||||
| 8252 | |||||
| 8253 | return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, CastExpr); | ||||
| 8254 | } | ||||
| 8255 | |||||
| 8256 | ExprResult Sema::BuildVectorLiteral(SourceLocation LParenLoc, | ||||
| 8257 | SourceLocation RParenLoc, Expr *E, | ||||
| 8258 | TypeSourceInfo *TInfo) { | ||||
| 8259 | assert((isa<ParenListExpr>(E) || isa<ParenExpr>(E)) &&(static_cast <bool> ((isa<ParenListExpr>(E) || isa <ParenExpr>(E)) && "Expected paren or paren list expression" ) ? void (0) : __assert_fail ("(isa<ParenListExpr>(E) || isa<ParenExpr>(E)) && \"Expected paren or paren list expression\"" , "clang/lib/Sema/SemaExpr.cpp", 8260, __extension__ __PRETTY_FUNCTION__ )) | ||||
| 8260 | "Expected paren or paren list expression")(static_cast <bool> ((isa<ParenListExpr>(E) || isa <ParenExpr>(E)) && "Expected paren or paren list expression" ) ? void (0) : __assert_fail ("(isa<ParenListExpr>(E) || isa<ParenExpr>(E)) && \"Expected paren or paren list expression\"" , "clang/lib/Sema/SemaExpr.cpp", 8260, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 8261 | |||||
| 8262 | Expr **exprs; | ||||
| 8263 | unsigned numExprs; | ||||
| 8264 | Expr *subExpr; | ||||
| 8265 | SourceLocation LiteralLParenLoc, LiteralRParenLoc; | ||||
| 8266 | if (ParenListExpr *PE = dyn_cast<ParenListExpr>(E)) { | ||||
| 8267 | LiteralLParenLoc = PE->getLParenLoc(); | ||||
| 8268 | LiteralRParenLoc = PE->getRParenLoc(); | ||||
| 8269 | exprs = PE->getExprs(); | ||||
| 8270 | numExprs = PE->getNumExprs(); | ||||
| 8271 | } else { // isa<ParenExpr> by assertion at function entrance | ||||
| 8272 | LiteralLParenLoc = cast<ParenExpr>(E)->getLParen(); | ||||
| 8273 | LiteralRParenLoc = cast<ParenExpr>(E)->getRParen(); | ||||
| 8274 | subExpr = cast<ParenExpr>(E)->getSubExpr(); | ||||
| 8275 | exprs = &subExpr; | ||||
| 8276 | numExprs = 1; | ||||
| 8277 | } | ||||
| 8278 | |||||
| 8279 | QualType Ty = TInfo->getType(); | ||||
| 8280 | assert(Ty->isVectorType() && "Expected vector type")(static_cast <bool> (Ty->isVectorType() && "Expected vector type" ) ? void (0) : __assert_fail ("Ty->isVectorType() && \"Expected vector type\"" , "clang/lib/Sema/SemaExpr.cpp", 8280, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 8281 | |||||
| 8282 | SmallVector<Expr *, 8> initExprs; | ||||
| 8283 | const VectorType *VTy = Ty->castAs<VectorType>(); | ||||
| 8284 | unsigned numElems = VTy->getNumElements(); | ||||
| 8285 | |||||
| 8286 | // '(...)' form of vector initialization in AltiVec: the number of | ||||
| 8287 | // initializers must be one or must match the size of the vector. | ||||
| 8288 | // If a single value is specified in the initializer then it will be | ||||
| 8289 | // replicated to all the components of the vector | ||||
| 8290 | if (CheckAltivecInitFromScalar(E->getSourceRange(), Ty, | ||||
| 8291 | VTy->getElementType())) | ||||
| 8292 | return ExprError(); | ||||
| 8293 | if (ShouldSplatAltivecScalarInCast(VTy)) { | ||||
| 8294 | // The number of initializers must be one or must match the size of the | ||||
| 8295 | // vector. If a single value is specified in the initializer then it will | ||||
| 8296 | // be replicated to all the components of the vector | ||||
| 8297 | if (numExprs == 1) { | ||||
| 8298 | QualType ElemTy = VTy->getElementType(); | ||||
| 8299 | ExprResult Literal = DefaultLvalueConversion(exprs[0]); | ||||
| 8300 | if (Literal.isInvalid()) | ||||
| 8301 | return ExprError(); | ||||
| 8302 | Literal = ImpCastExprToType(Literal.get(), ElemTy, | ||||
| 8303 | PrepareScalarCast(Literal, ElemTy)); | ||||
| 8304 | return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get()); | ||||
| 8305 | } | ||||
| 8306 | else if (numExprs < numElems) { | ||||
| 8307 | Diag(E->getExprLoc(), | ||||
| 8308 | diag::err_incorrect_number_of_vector_initializers); | ||||
| 8309 | return ExprError(); | ||||
| 8310 | } | ||||
| 8311 | else | ||||
| 8312 | initExprs.append(exprs, exprs + numExprs); | ||||
| 8313 | } | ||||
| 8314 | else { | ||||
| 8315 | // For OpenCL, when the number of initializers is a single value, | ||||
| 8316 | // it will be replicated to all components of the vector. | ||||
| 8317 | if (getLangOpts().OpenCL && | ||||
| 8318 | VTy->getVectorKind() == VectorType::GenericVector && | ||||
| 8319 | numExprs == 1) { | ||||
| 8320 | QualType ElemTy = VTy->getElementType(); | ||||
| 8321 | ExprResult Literal = DefaultLvalueConversion(exprs[0]); | ||||
| 8322 | if (Literal.isInvalid()) | ||||
| 8323 | return ExprError(); | ||||
| 8324 | Literal = ImpCastExprToType(Literal.get(), ElemTy, | ||||
| 8325 | PrepareScalarCast(Literal, ElemTy)); | ||||
| 8326 | return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get()); | ||||
| 8327 | } | ||||
| 8328 | |||||
| 8329 | initExprs.append(exprs, exprs + numExprs); | ||||
| 8330 | } | ||||
| 8331 | // FIXME: This means that pretty-printing the final AST will produce curly | ||||
| 8332 | // braces instead of the original commas. | ||||
| 8333 | InitListExpr *initE = new (Context) InitListExpr(Context, LiteralLParenLoc, | ||||
| 8334 | initExprs, LiteralRParenLoc); | ||||
| 8335 | initE->setType(Ty); | ||||
| 8336 | return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, initE); | ||||
| 8337 | } | ||||
| 8338 | |||||
| 8339 | /// This is not an AltiVec-style cast or or C++ direct-initialization, so turn | ||||
| 8340 | /// the ParenListExpr into a sequence of comma binary operators. | ||||
| 8341 | ExprResult | ||||
| 8342 | Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *OrigExpr) { | ||||
| 8343 | ParenListExpr *E = dyn_cast<ParenListExpr>(OrigExpr); | ||||
| 8344 | if (!E) | ||||
| 8345 | return OrigExpr; | ||||
| 8346 | |||||
| 8347 | ExprResult Result(E->getExpr(0)); | ||||
| 8348 | |||||
| 8349 | for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i) | ||||
| 8350 | Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, Result.get(), | ||||
| 8351 | E->getExpr(i)); | ||||
| 8352 | |||||
| 8353 | if (Result.isInvalid()) return ExprError(); | ||||
| 8354 | |||||
| 8355 | return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), Result.get()); | ||||
| 8356 | } | ||||
| 8357 | |||||
| 8358 | ExprResult Sema::ActOnParenListExpr(SourceLocation L, | ||||
| 8359 | SourceLocation R, | ||||
| 8360 | MultiExprArg Val) { | ||||
| 8361 | return ParenListExpr::Create(Context, L, Val, R); | ||||
| 8362 | } | ||||
| 8363 | |||||
| 8364 | /// Emit a specialized diagnostic when one expression is a null pointer | ||||
| 8365 | /// constant and the other is not a pointer. Returns true if a diagnostic is | ||||
| 8366 | /// emitted. | ||||
| 8367 | bool Sema::DiagnoseConditionalForNull(Expr *LHSExpr, Expr *RHSExpr, | ||||
| 8368 | SourceLocation QuestionLoc) { | ||||
| 8369 | Expr *NullExpr = LHSExpr; | ||||
| 8370 | Expr *NonPointerExpr = RHSExpr; | ||||
| 8371 | Expr::NullPointerConstantKind NullKind = | ||||
| 8372 | NullExpr->isNullPointerConstant(Context, | ||||
| 8373 | Expr::NPC_ValueDependentIsNotNull); | ||||
| 8374 | |||||
| 8375 | if (NullKind == Expr::NPCK_NotNull) { | ||||
| 8376 | NullExpr = RHSExpr; | ||||
| 8377 | NonPointerExpr = LHSExpr; | ||||
| 8378 | NullKind = | ||||
| 8379 | NullExpr->isNullPointerConstant(Context, | ||||
| 8380 | Expr::NPC_ValueDependentIsNotNull); | ||||
| 8381 | } | ||||
| 8382 | |||||
| 8383 | if (NullKind == Expr::NPCK_NotNull) | ||||
| 8384 | return false; | ||||
| 8385 | |||||
| 8386 | if (NullKind == Expr::NPCK_ZeroExpression) | ||||
| 8387 | return false; | ||||
| 8388 | |||||
| 8389 | if (NullKind == Expr::NPCK_ZeroLiteral) { | ||||
| 8390 | // In this case, check to make sure that we got here from a "NULL" | ||||
| 8391 | // string in the source code. | ||||
| 8392 | NullExpr = NullExpr->IgnoreParenImpCasts(); | ||||
| 8393 | SourceLocation loc = NullExpr->getExprLoc(); | ||||
| 8394 | if (!findMacroSpelling(loc, "NULL")) | ||||
| 8395 | return false; | ||||
| 8396 | } | ||||
| 8397 | |||||
| 8398 | int DiagType = (NullKind == Expr::NPCK_CXX11_nullptr); | ||||
| 8399 | Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands_null) | ||||
| 8400 | << NonPointerExpr->getType() << DiagType | ||||
| 8401 | << NonPointerExpr->getSourceRange(); | ||||
| 8402 | return true; | ||||
| 8403 | } | ||||
| 8404 | |||||
| 8405 | /// Return false if the condition expression is valid, true otherwise. | ||||
| 8406 | static bool checkCondition(Sema &S, Expr *Cond, SourceLocation QuestionLoc) { | ||||
| 8407 | QualType CondTy = Cond->getType(); | ||||
| 8408 | |||||
| 8409 | // OpenCL v1.1 s6.3.i says the condition cannot be a floating point type. | ||||
| 8410 | if (S.getLangOpts().OpenCL && CondTy->isFloatingType()) { | ||||
| 8411 | S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_nonfloat) | ||||
| 8412 | << CondTy << Cond->getSourceRange(); | ||||
| 8413 | return true; | ||||
| 8414 | } | ||||
| 8415 | |||||
| 8416 | // C99 6.5.15p2 | ||||
| 8417 | if (CondTy->isScalarType()) return false; | ||||
| 8418 | |||||
| 8419 | S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_scalar) | ||||
| 8420 | << CondTy << Cond->getSourceRange(); | ||||
| 8421 | return true; | ||||
| 8422 | } | ||||
| 8423 | |||||
| 8424 | /// Return false if the NullExpr can be promoted to PointerTy, | ||||
| 8425 | /// true otherwise. | ||||
| 8426 | static bool checkConditionalNullPointer(Sema &S, ExprResult &NullExpr, | ||||
| 8427 | QualType PointerTy) { | ||||
| 8428 | if ((!PointerTy->isAnyPointerType() && !PointerTy->isBlockPointerType()) || | ||||
| 8429 | !NullExpr.get()->isNullPointerConstant(S.Context, | ||||
| 8430 | Expr::NPC_ValueDependentIsNull)) | ||||
| 8431 | return true; | ||||
| 8432 | |||||
| 8433 | NullExpr = S.ImpCastExprToType(NullExpr.get(), PointerTy, CK_NullToPointer); | ||||
| 8434 | return false; | ||||
| 8435 | } | ||||
| 8436 | |||||
| 8437 | /// Checks compatibility between two pointers and return the resulting | ||||
| 8438 | /// type. | ||||
| 8439 | static QualType checkConditionalPointerCompatibility(Sema &S, ExprResult &LHS, | ||||
| 8440 | ExprResult &RHS, | ||||
| 8441 | SourceLocation Loc) { | ||||
| 8442 | QualType LHSTy = LHS.get()->getType(); | ||||
| 8443 | QualType RHSTy = RHS.get()->getType(); | ||||
| 8444 | |||||
| 8445 | if (S.Context.hasSameType(LHSTy, RHSTy)) { | ||||
| 8446 | // Two identical pointers types are always compatible. | ||||
| 8447 | return S.Context.getCommonSugaredType(LHSTy, RHSTy); | ||||
| 8448 | } | ||||
| 8449 | |||||
| 8450 | QualType lhptee, rhptee; | ||||
| 8451 | |||||
| 8452 | // Get the pointee types. | ||||
| 8453 | bool IsBlockPointer = false; | ||||
| 8454 | if (const BlockPointerType *LHSBTy = LHSTy->getAs<BlockPointerType>()) { | ||||
| 8455 | lhptee = LHSBTy->getPointeeType(); | ||||
| 8456 | rhptee = RHSTy->castAs<BlockPointerType>()->getPointeeType(); | ||||
| 8457 | IsBlockPointer = true; | ||||
| 8458 | } else { | ||||
| 8459 | lhptee = LHSTy->castAs<PointerType>()->getPointeeType(); | ||||
| 8460 | rhptee = RHSTy->castAs<PointerType>()->getPointeeType(); | ||||
| 8461 | } | ||||
| 8462 | |||||
| 8463 | // C99 6.5.15p6: If both operands are pointers to compatible types or to | ||||
| 8464 | // differently qualified versions of compatible types, the result type is | ||||
| 8465 | // a pointer to an appropriately qualified version of the composite | ||||
| 8466 | // type. | ||||
| 8467 | |||||
| 8468 | // Only CVR-qualifiers exist in the standard, and the differently-qualified | ||||
| 8469 | // clause doesn't make sense for our extensions. E.g. address space 2 should | ||||
| 8470 | // be incompatible with address space 3: they may live on different devices or | ||||
| 8471 | // anything. | ||||
| 8472 | Qualifiers lhQual = lhptee.getQualifiers(); | ||||
| 8473 | Qualifiers rhQual = rhptee.getQualifiers(); | ||||
| 8474 | |||||
| 8475 | LangAS ResultAddrSpace = LangAS::Default; | ||||
| 8476 | LangAS LAddrSpace = lhQual.getAddressSpace(); | ||||
| 8477 | LangAS RAddrSpace = rhQual.getAddressSpace(); | ||||
| 8478 | |||||
| 8479 | // OpenCL v1.1 s6.5 - Conversion between pointers to distinct address | ||||
| 8480 | // spaces is disallowed. | ||||
| 8481 | if (lhQual.isAddressSpaceSupersetOf(rhQual)) | ||||
| 8482 | ResultAddrSpace = LAddrSpace; | ||||
| 8483 | else if (rhQual.isAddressSpaceSupersetOf(lhQual)) | ||||
| 8484 | ResultAddrSpace = RAddrSpace; | ||||
| 8485 | else { | ||||
| 8486 | S.Diag(Loc, diag::err_typecheck_op_on_nonoverlapping_address_space_pointers) | ||||
| 8487 | << LHSTy << RHSTy << 2 << LHS.get()->getSourceRange() | ||||
| 8488 | << RHS.get()->getSourceRange(); | ||||
| 8489 | return QualType(); | ||||
| 8490 | } | ||||
| 8491 | |||||
| 8492 | unsigned MergedCVRQual = lhQual.getCVRQualifiers() | rhQual.getCVRQualifiers(); | ||||
| 8493 | auto LHSCastKind = CK_BitCast, RHSCastKind = CK_BitCast; | ||||
| 8494 | lhQual.removeCVRQualifiers(); | ||||
| 8495 | rhQual.removeCVRQualifiers(); | ||||
| 8496 | |||||
| 8497 | // OpenCL v2.0 specification doesn't extend compatibility of type qualifiers | ||||
| 8498 | // (C99 6.7.3) for address spaces. We assume that the check should behave in | ||||
| 8499 | // the same manner as it's defined for CVR qualifiers, so for OpenCL two | ||||
| 8500 | // qual types are compatible iff | ||||
| 8501 | // * corresponded types are compatible | ||||
| 8502 | // * CVR qualifiers are equal | ||||
| 8503 | // * address spaces are equal | ||||
| 8504 | // Thus for conditional operator we merge CVR and address space unqualified | ||||
| 8505 | // pointees and if there is a composite type we return a pointer to it with | ||||
| 8506 | // merged qualifiers. | ||||
| 8507 | LHSCastKind = | ||||
| 8508 | LAddrSpace == ResultAddrSpace ? CK_BitCast : CK_AddressSpaceConversion; | ||||
| 8509 | RHSCastKind = | ||||
| 8510 | RAddrSpace == ResultAddrSpace ? CK_BitCast : CK_AddressSpaceConversion; | ||||
| 8511 | lhQual.removeAddressSpace(); | ||||
| 8512 | rhQual.removeAddressSpace(); | ||||
| 8513 | |||||
| 8514 | lhptee = S.Context.getQualifiedType(lhptee.getUnqualifiedType(), lhQual); | ||||
| 8515 | rhptee = S.Context.getQualifiedType(rhptee.getUnqualifiedType(), rhQual); | ||||
| 8516 | |||||
| 8517 | QualType CompositeTy = S.Context.mergeTypes( | ||||
| 8518 | lhptee, rhptee, /*OfBlockPointer=*/false, /*Unqualified=*/false, | ||||
| 8519 | /*BlockReturnType=*/false, /*IsConditionalOperator=*/true); | ||||
| 8520 | |||||
| 8521 | if (CompositeTy.isNull()) { | ||||
| 8522 | // In this situation, we assume void* type. No especially good | ||||
| 8523 | // reason, but this is what gcc does, and we do have to pick | ||||
| 8524 | // to get a consistent AST. | ||||
| 8525 | QualType incompatTy; | ||||
| 8526 | incompatTy = S.Context.getPointerType( | ||||
| 8527 | S.Context.getAddrSpaceQualType(S.Context.VoidTy, ResultAddrSpace)); | ||||
| 8528 | LHS = S.ImpCastExprToType(LHS.get(), incompatTy, LHSCastKind); | ||||
| 8529 | RHS = S.ImpCastExprToType(RHS.get(), incompatTy, RHSCastKind); | ||||
| 8530 | |||||
| 8531 | // FIXME: For OpenCL the warning emission and cast to void* leaves a room | ||||
| 8532 | // for casts between types with incompatible address space qualifiers. | ||||
| 8533 | // For the following code the compiler produces casts between global and | ||||
| 8534 | // local address spaces of the corresponded innermost pointees: | ||||
| 8535 | // local int *global *a; | ||||
| 8536 | // global int *global *b; | ||||
| 8537 | // a = (0 ? a : b); // see C99 6.5.16.1.p1. | ||||
| 8538 | S.Diag(Loc, diag::ext_typecheck_cond_incompatible_pointers) | ||||
| 8539 | << LHSTy << RHSTy << LHS.get()->getSourceRange() | ||||
| 8540 | << RHS.get()->getSourceRange(); | ||||
| 8541 | |||||
| 8542 | return incompatTy; | ||||
| 8543 | } | ||||
| 8544 | |||||
| 8545 | // The pointer types are compatible. | ||||
| 8546 | // In case of OpenCL ResultTy should have the address space qualifier | ||||
| 8547 | // which is a superset of address spaces of both the 2nd and the 3rd | ||||
| 8548 | // operands of the conditional operator. | ||||
| 8549 | QualType ResultTy = [&, ResultAddrSpace]() { | ||||
| 8550 | if (S.getLangOpts().OpenCL) { | ||||
| 8551 | Qualifiers CompositeQuals = CompositeTy.getQualifiers(); | ||||
| 8552 | CompositeQuals.setAddressSpace(ResultAddrSpace); | ||||
| 8553 | return S.Context | ||||
| 8554 | .getQualifiedType(CompositeTy.getUnqualifiedType(), CompositeQuals) | ||||
| 8555 | .withCVRQualifiers(MergedCVRQual); | ||||
| 8556 | } | ||||
| 8557 | return CompositeTy.withCVRQualifiers(MergedCVRQual); | ||||
| 8558 | }(); | ||||
| 8559 | if (IsBlockPointer) | ||||
| 8560 | ResultTy = S.Context.getBlockPointerType(ResultTy); | ||||
| 8561 | else | ||||
| 8562 | ResultTy = S.Context.getPointerType(ResultTy); | ||||
| 8563 | |||||
| 8564 | LHS = S.ImpCastExprToType(LHS.get(), ResultTy, LHSCastKind); | ||||
| 8565 | RHS = S.ImpCastExprToType(RHS.get(), ResultTy, RHSCastKind); | ||||
| 8566 | return ResultTy; | ||||
| 8567 | } | ||||
| 8568 | |||||
| 8569 | /// Return the resulting type when the operands are both block pointers. | ||||
| 8570 | static QualType checkConditionalBlockPointerCompatibility(Sema &S, | ||||
| 8571 | ExprResult &LHS, | ||||
| 8572 | ExprResult &RHS, | ||||
| 8573 | SourceLocation Loc) { | ||||
| 8574 | QualType LHSTy = LHS.get()->getType(); | ||||
| 8575 | QualType RHSTy = RHS.get()->getType(); | ||||
| 8576 | |||||
| 8577 | if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) { | ||||
| 8578 | if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) { | ||||
| 8579 | QualType destType = S.Context.getPointerType(S.Context.VoidTy); | ||||
| 8580 | LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast); | ||||
| 8581 | RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast); | ||||
| 8582 | return destType; | ||||
| 8583 | } | ||||
| 8584 | S.Diag(Loc, diag::err_typecheck_cond_incompatible_operands) | ||||
| 8585 | << LHSTy << RHSTy << LHS.get()->getSourceRange() | ||||
| 8586 | << RHS.get()->getSourceRange(); | ||||
| 8587 | return QualType(); | ||||
| 8588 | } | ||||
| 8589 | |||||
| 8590 | // We have 2 block pointer types. | ||||
| 8591 | return checkConditionalPointerCompatibility(S, LHS, RHS, Loc); | ||||
| 8592 | } | ||||
| 8593 | |||||
| 8594 | /// Return the resulting type when the operands are both pointers. | ||||
| 8595 | static QualType | ||||
| 8596 | checkConditionalObjectPointersCompatibility(Sema &S, ExprResult &LHS, | ||||
| 8597 | ExprResult &RHS, | ||||
| 8598 | SourceLocation Loc) { | ||||
| 8599 | // get the pointer types | ||||
| 8600 | QualType LHSTy = LHS.get()->getType(); | ||||
| 8601 | QualType RHSTy = RHS.get()->getType(); | ||||
| 8602 | |||||
| 8603 | // get the "pointed to" types | ||||
| 8604 | QualType lhptee = LHSTy->castAs<PointerType>()->getPointeeType(); | ||||
| 8605 | QualType rhptee = RHSTy->castAs<PointerType>()->getPointeeType(); | ||||
| 8606 | |||||
| 8607 | // ignore qualifiers on void (C99 6.5.15p3, clause 6) | ||||
| 8608 | if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) { | ||||
| 8609 | // Figure out necessary qualifiers (C99 6.5.15p6) | ||||
| 8610 | QualType destPointee | ||||
| 8611 | = S.Context.getQualifiedType(lhptee, rhptee.getQualifiers()); | ||||
| 8612 | QualType destType = S.Context.getPointerType(destPointee); | ||||
| 8613 | // Add qualifiers if necessary. | ||||
| 8614 | LHS = S.ImpCastExprToType(LHS.get(), destType, CK_NoOp); | ||||
| 8615 | // Promote to void*. | ||||
| 8616 | RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast); | ||||
| 8617 | return destType; | ||||
| 8618 | } | ||||
| 8619 | if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) { | ||||
| 8620 | QualType destPointee | ||||
| 8621 | = S.Context.getQualifiedType(rhptee, lhptee.getQualifiers()); | ||||
| 8622 | QualType destType = S.Context.getPointerType(destPointee); | ||||
| 8623 | // Add qualifiers if necessary. | ||||
| 8624 | RHS = S.ImpCastExprToType(RHS.get(), destType, CK_NoOp); | ||||
| 8625 | // Promote to void*. | ||||
| 8626 | LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast); | ||||
| 8627 | return destType; | ||||
| 8628 | } | ||||
| 8629 | |||||
| 8630 | return checkConditionalPointerCompatibility(S, LHS, RHS, Loc); | ||||
| 8631 | } | ||||
| 8632 | |||||
| 8633 | /// Return false if the first expression is not an integer and the second | ||||
| 8634 | /// expression is not a pointer, true otherwise. | ||||
| 8635 | static bool checkPointerIntegerMismatch(Sema &S, ExprResult &Int, | ||||
| 8636 | Expr* PointerExpr, SourceLocation Loc, | ||||
| 8637 | bool IsIntFirstExpr) { | ||||
| 8638 | if (!PointerExpr->getType()->isPointerType() || | ||||
| 8639 | !Int.get()->getType()->isIntegerType()) | ||||
| 8640 | return false; | ||||
| 8641 | |||||
| 8642 | Expr *Expr1 = IsIntFirstExpr ? Int.get() : PointerExpr; | ||||
| 8643 | Expr *Expr2 = IsIntFirstExpr ? PointerExpr : Int.get(); | ||||
| 8644 | |||||
| 8645 | S.Diag(Loc, diag::ext_typecheck_cond_pointer_integer_mismatch) | ||||
| 8646 | << Expr1->getType() << Expr2->getType() | ||||
| 8647 | << Expr1->getSourceRange() << Expr2->getSourceRange(); | ||||
| 8648 | Int = S.ImpCastExprToType(Int.get(), PointerExpr->getType(), | ||||
| 8649 | CK_IntegralToPointer); | ||||
| 8650 | return true; | ||||
| 8651 | } | ||||
| 8652 | |||||
| 8653 | /// Simple conversion between integer and floating point types. | ||||
| 8654 | /// | ||||
| 8655 | /// Used when handling the OpenCL conditional operator where the | ||||
| 8656 | /// condition is a vector while the other operands are scalar. | ||||
| 8657 | /// | ||||
| 8658 | /// OpenCL v1.1 s6.3.i and s6.11.6 together require that the scalar | ||||
| 8659 | /// types are either integer or floating type. Between the two | ||||
| 8660 | /// operands, the type with the higher rank is defined as the "result | ||||
| 8661 | /// type". The other operand needs to be promoted to the same type. No | ||||
| 8662 | /// other type promotion is allowed. We cannot use | ||||
| 8663 | /// UsualArithmeticConversions() for this purpose, since it always | ||||
| 8664 | /// promotes promotable types. | ||||
| 8665 | static QualType OpenCLArithmeticConversions(Sema &S, ExprResult &LHS, | ||||
| 8666 | ExprResult &RHS, | ||||
| 8667 | SourceLocation QuestionLoc) { | ||||
| 8668 | LHS = S.DefaultFunctionArrayLvalueConversion(LHS.get()); | ||||
| 8669 | if (LHS.isInvalid()) | ||||
| 8670 | return QualType(); | ||||
| 8671 | RHS = S.DefaultFunctionArrayLvalueConversion(RHS.get()); | ||||
| 8672 | if (RHS.isInvalid()) | ||||
| 8673 | return QualType(); | ||||
| 8674 | |||||
| 8675 | // For conversion purposes, we ignore any qualifiers. | ||||
| 8676 | // For example, "const float" and "float" are equivalent. | ||||
| 8677 | QualType LHSType = | ||||
| 8678 | S.Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType(); | ||||
| 8679 | QualType RHSType = | ||||
| 8680 | S.Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType(); | ||||
| 8681 | |||||
| 8682 | if (!LHSType->isIntegerType() && !LHSType->isRealFloatingType()) { | ||||
| 8683 | S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_int_float) | ||||
| 8684 | << LHSType << LHS.get()->getSourceRange(); | ||||
| 8685 | return QualType(); | ||||
| 8686 | } | ||||
| 8687 | |||||
| 8688 | if (!RHSType->isIntegerType() && !RHSType->isRealFloatingType()) { | ||||
| 8689 | S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_int_float) | ||||
| 8690 | << RHSType << RHS.get()->getSourceRange(); | ||||
| 8691 | return QualType(); | ||||
| 8692 | } | ||||
| 8693 | |||||
| 8694 | // If both types are identical, no conversion is needed. | ||||
| 8695 | if (LHSType == RHSType) | ||||
| 8696 | return LHSType; | ||||
| 8697 | |||||
| 8698 | // Now handle "real" floating types (i.e. float, double, long double). | ||||
| 8699 | if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType()) | ||||
| 8700 | return handleFloatConversion(S, LHS, RHS, LHSType, RHSType, | ||||
| 8701 | /*IsCompAssign = */ false); | ||||
| 8702 | |||||
| 8703 | // Finally, we have two differing integer types. | ||||
| 8704 | return handleIntegerConversion<doIntegralCast, doIntegralCast> | ||||
| 8705 | (S, LHS, RHS, LHSType, RHSType, /*IsCompAssign = */ false); | ||||
| 8706 | } | ||||
| 8707 | |||||
| 8708 | /// Convert scalar operands to a vector that matches the | ||||
| 8709 | /// condition in length. | ||||
| 8710 | /// | ||||
| 8711 | /// Used when handling the OpenCL conditional operator where the | ||||
| 8712 | /// condition is a vector while the other operands are scalar. | ||||
| 8713 | /// | ||||
| 8714 | /// We first compute the "result type" for the scalar operands | ||||
| 8715 | /// according to OpenCL v1.1 s6.3.i. Both operands are then converted | ||||
| 8716 | /// into a vector of that type where the length matches the condition | ||||
| 8717 | /// vector type. s6.11.6 requires that the element types of the result | ||||
| 8718 | /// and the condition must have the same number of bits. | ||||
| 8719 | static QualType | ||||
| 8720 | OpenCLConvertScalarsToVectors(Sema &S, ExprResult &LHS, ExprResult &RHS, | ||||
| 8721 | QualType CondTy, SourceLocation QuestionLoc) { | ||||
| 8722 | QualType ResTy = OpenCLArithmeticConversions(S, LHS, RHS, QuestionLoc); | ||||
| 8723 | if (ResTy.isNull()) return QualType(); | ||||
| 8724 | |||||
| 8725 | const VectorType *CV = CondTy->getAs<VectorType>(); | ||||
| 8726 | assert(CV)(static_cast <bool> (CV) ? void (0) : __assert_fail ("CV" , "clang/lib/Sema/SemaExpr.cpp", 8726, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 8727 | |||||
| 8728 | // Determine the vector result type | ||||
| 8729 | unsigned NumElements = CV->getNumElements(); | ||||
| 8730 | QualType VectorTy = S.Context.getExtVectorType(ResTy, NumElements); | ||||
| 8731 | |||||
| 8732 | // Ensure that all types have the same number of bits | ||||
| 8733 | if (S.Context.getTypeSize(CV->getElementType()) | ||||
| 8734 | != S.Context.getTypeSize(ResTy)) { | ||||
| 8735 | // Since VectorTy is created internally, it does not pretty print | ||||
| 8736 | // with an OpenCL name. Instead, we just print a description. | ||||
| 8737 | std::string EleTyName = ResTy.getUnqualifiedType().getAsString(); | ||||
| 8738 | SmallString<64> Str; | ||||
| 8739 | llvm::raw_svector_ostream OS(Str); | ||||
| 8740 | OS << "(vector of " << NumElements << " '" << EleTyName << "' values)"; | ||||
| 8741 | S.Diag(QuestionLoc, diag::err_conditional_vector_element_size) | ||||
| 8742 | << CondTy << OS.str(); | ||||
| 8743 | return QualType(); | ||||
| 8744 | } | ||||
| 8745 | |||||
| 8746 | // Convert operands to the vector result type | ||||
| 8747 | LHS = S.ImpCastExprToType(LHS.get(), VectorTy, CK_VectorSplat); | ||||
| 8748 | RHS = S.ImpCastExprToType(RHS.get(), VectorTy, CK_VectorSplat); | ||||
| 8749 | |||||
| 8750 | return VectorTy; | ||||
| 8751 | } | ||||
| 8752 | |||||
| 8753 | /// Return false if this is a valid OpenCL condition vector | ||||
| 8754 | static bool checkOpenCLConditionVector(Sema &S, Expr *Cond, | ||||
| 8755 | SourceLocation QuestionLoc) { | ||||
| 8756 | // OpenCL v1.1 s6.11.6 says the elements of the vector must be of | ||||
| 8757 | // integral type. | ||||
| 8758 | const VectorType *CondTy = Cond->getType()->getAs<VectorType>(); | ||||
| 8759 | assert(CondTy)(static_cast <bool> (CondTy) ? void (0) : __assert_fail ("CondTy", "clang/lib/Sema/SemaExpr.cpp", 8759, __extension__ __PRETTY_FUNCTION__)); | ||||
| 8760 | QualType EleTy = CondTy->getElementType(); | ||||
| 8761 | if (EleTy->isIntegerType()) return false; | ||||
| 8762 | |||||
| 8763 | S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_nonfloat) | ||||
| 8764 | << Cond->getType() << Cond->getSourceRange(); | ||||
| 8765 | return true; | ||||
| 8766 | } | ||||
| 8767 | |||||
| 8768 | /// Return false if the vector condition type and the vector | ||||
| 8769 | /// result type are compatible. | ||||
| 8770 | /// | ||||
| 8771 | /// OpenCL v1.1 s6.11.6 requires that both vector types have the same | ||||
| 8772 | /// number of elements, and their element types have the same number | ||||
| 8773 | /// of bits. | ||||
| 8774 | static bool checkVectorResult(Sema &S, QualType CondTy, QualType VecResTy, | ||||
| 8775 | SourceLocation QuestionLoc) { | ||||
| 8776 | const VectorType *CV = CondTy->getAs<VectorType>(); | ||||
| 8777 | const VectorType *RV = VecResTy->getAs<VectorType>(); | ||||
| 8778 | assert(CV && RV)(static_cast <bool> (CV && RV) ? void (0) : __assert_fail ("CV && RV", "clang/lib/Sema/SemaExpr.cpp", 8778, __extension__ __PRETTY_FUNCTION__)); | ||||
| 8779 | |||||
| 8780 | if (CV->getNumElements() != RV->getNumElements()) { | ||||
| 8781 | S.Diag(QuestionLoc, diag::err_conditional_vector_size) | ||||
| 8782 | << CondTy << VecResTy; | ||||
| 8783 | return true; | ||||
| 8784 | } | ||||
| 8785 | |||||
| 8786 | QualType CVE = CV->getElementType(); | ||||
| 8787 | QualType RVE = RV->getElementType(); | ||||
| 8788 | |||||
| 8789 | if (S.Context.getTypeSize(CVE) != S.Context.getTypeSize(RVE)) { | ||||
| 8790 | S.Diag(QuestionLoc, diag::err_conditional_vector_element_size) | ||||
| 8791 | << CondTy << VecResTy; | ||||
| 8792 | return true; | ||||
| 8793 | } | ||||
| 8794 | |||||
| 8795 | return false; | ||||
| 8796 | } | ||||
| 8797 | |||||
| 8798 | /// Return the resulting type for the conditional operator in | ||||
| 8799 | /// OpenCL (aka "ternary selection operator", OpenCL v1.1 | ||||
| 8800 | /// s6.3.i) when the condition is a vector type. | ||||
| 8801 | static QualType | ||||
| 8802 | OpenCLCheckVectorConditional(Sema &S, ExprResult &Cond, | ||||
| 8803 | ExprResult &LHS, ExprResult &RHS, | ||||
| 8804 | SourceLocation QuestionLoc) { | ||||
| 8805 | Cond = S.DefaultFunctionArrayLvalueConversion(Cond.get()); | ||||
| 8806 | if (Cond.isInvalid()) | ||||
| 8807 | return QualType(); | ||||
| 8808 | QualType CondTy = Cond.get()->getType(); | ||||
| 8809 | |||||
| 8810 | if (checkOpenCLConditionVector(S, Cond.get(), QuestionLoc)) | ||||
| 8811 | return QualType(); | ||||
| 8812 | |||||
| 8813 | // If either operand is a vector then find the vector type of the | ||||
| 8814 | // result as specified in OpenCL v1.1 s6.3.i. | ||||
| 8815 | if (LHS.get()->getType()->isVectorType() || | ||||
| 8816 | RHS.get()->getType()->isVectorType()) { | ||||
| 8817 | bool IsBoolVecLang = | ||||
| 8818 | !S.getLangOpts().OpenCL && !S.getLangOpts().OpenCLCPlusPlus; | ||||
| 8819 | QualType VecResTy = | ||||
| 8820 | S.CheckVectorOperands(LHS, RHS, QuestionLoc, | ||||
| 8821 | /*isCompAssign*/ false, | ||||
| 8822 | /*AllowBothBool*/ true, | ||||
| 8823 | /*AllowBoolConversions*/ false, | ||||
| 8824 | /*AllowBooleanOperation*/ IsBoolVecLang, | ||||
| 8825 | /*ReportInvalid*/ true); | ||||
| 8826 | if (VecResTy.isNull()) | ||||
| 8827 | return QualType(); | ||||
| 8828 | // The result type must match the condition type as specified in | ||||
| 8829 | // OpenCL v1.1 s6.11.6. | ||||
| 8830 | if (checkVectorResult(S, CondTy, VecResTy, QuestionLoc)) | ||||
| 8831 | return QualType(); | ||||
| 8832 | return VecResTy; | ||||
| 8833 | } | ||||
| 8834 | |||||
| 8835 | // Both operands are scalar. | ||||
| 8836 | return OpenCLConvertScalarsToVectors(S, LHS, RHS, CondTy, QuestionLoc); | ||||
| 8837 | } | ||||
| 8838 | |||||
| 8839 | /// Return true if the Expr is block type | ||||
| 8840 | static bool checkBlockType(Sema &S, const Expr *E) { | ||||
| 8841 | if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { | ||||
| 8842 | QualType Ty = CE->getCallee()->getType(); | ||||
| 8843 | if (Ty->isBlockPointerType()) { | ||||
| 8844 | S.Diag(E->getExprLoc(), diag::err_opencl_ternary_with_block); | ||||
| 8845 | return true; | ||||
| 8846 | } | ||||
| 8847 | } | ||||
| 8848 | return false; | ||||
| 8849 | } | ||||
| 8850 | |||||
| 8851 | /// Note that LHS is not null here, even if this is the gnu "x ?: y" extension. | ||||
| 8852 | /// In that case, LHS = cond. | ||||
| 8853 | /// C99 6.5.15 | ||||
| 8854 | QualType Sema::CheckConditionalOperands(ExprResult &Cond, ExprResult &LHS, | ||||
| 8855 | ExprResult &RHS, ExprValueKind &VK, | ||||
| 8856 | ExprObjectKind &OK, | ||||
| 8857 | SourceLocation QuestionLoc) { | ||||
| 8858 | |||||
| 8859 | ExprResult LHSResult = CheckPlaceholderExpr(LHS.get()); | ||||
| 8860 | if (!LHSResult.isUsable()) return QualType(); | ||||
| 8861 | LHS = LHSResult; | ||||
| 8862 | |||||
| 8863 | ExprResult RHSResult = CheckPlaceholderExpr(RHS.get()); | ||||
| 8864 | if (!RHSResult.isUsable()) return QualType(); | ||||
| 8865 | RHS = RHSResult; | ||||
| 8866 | |||||
| 8867 | // C++ is sufficiently different to merit its own checker. | ||||
| 8868 | if (getLangOpts().CPlusPlus) | ||||
| 8869 | return CXXCheckConditionalOperands(Cond, LHS, RHS, VK, OK, QuestionLoc); | ||||
| 8870 | |||||
| 8871 | VK = VK_PRValue; | ||||
| 8872 | OK = OK_Ordinary; | ||||
| 8873 | |||||
| 8874 | if (Context.isDependenceAllowed() && | ||||
| 8875 | (Cond.get()->isTypeDependent() || LHS.get()->isTypeDependent() || | ||||
| 8876 | RHS.get()->isTypeDependent())) { | ||||
| 8877 | assert(!getLangOpts().CPlusPlus)(static_cast <bool> (!getLangOpts().CPlusPlus) ? void ( 0) : __assert_fail ("!getLangOpts().CPlusPlus", "clang/lib/Sema/SemaExpr.cpp" , 8877, __extension__ __PRETTY_FUNCTION__)); | ||||
| 8878 | assert((Cond.get()->containsErrors() || LHS.get()->containsErrors() ||(static_cast <bool> ((Cond.get()->containsErrors() || LHS.get()->containsErrors() || RHS.get()->containsErrors ()) && "should only occur in error-recovery path.") ? void (0) : __assert_fail ("(Cond.get()->containsErrors() || LHS.get()->containsErrors() || RHS.get()->containsErrors()) && \"should only occur in error-recovery path.\"" , "clang/lib/Sema/SemaExpr.cpp", 8880, __extension__ __PRETTY_FUNCTION__ )) | ||||
| 8879 | RHS.get()->containsErrors()) &&(static_cast <bool> ((Cond.get()->containsErrors() || LHS.get()->containsErrors() || RHS.get()->containsErrors ()) && "should only occur in error-recovery path.") ? void (0) : __assert_fail ("(Cond.get()->containsErrors() || LHS.get()->containsErrors() || RHS.get()->containsErrors()) && \"should only occur in error-recovery path.\"" , "clang/lib/Sema/SemaExpr.cpp", 8880, __extension__ __PRETTY_FUNCTION__ )) | ||||
| 8880 | "should only occur in error-recovery path.")(static_cast <bool> ((Cond.get()->containsErrors() || LHS.get()->containsErrors() || RHS.get()->containsErrors ()) && "should only occur in error-recovery path.") ? void (0) : __assert_fail ("(Cond.get()->containsErrors() || LHS.get()->containsErrors() || RHS.get()->containsErrors()) && \"should only occur in error-recovery path.\"" , "clang/lib/Sema/SemaExpr.cpp", 8880, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 8881 | return Context.DependentTy; | ||||
| 8882 | } | ||||
| 8883 | |||||
| 8884 | // The OpenCL operator with a vector condition is sufficiently | ||||
| 8885 | // different to merit its own checker. | ||||
| 8886 | if ((getLangOpts().OpenCL && Cond.get()->getType()->isVectorType()) || | ||||
| 8887 | Cond.get()->getType()->isExtVectorType()) | ||||
| 8888 | return OpenCLCheckVectorConditional(*this, Cond, LHS, RHS, QuestionLoc); | ||||
| 8889 | |||||
| 8890 | // First, check the condition. | ||||
| 8891 | Cond = UsualUnaryConversions(Cond.get()); | ||||
| 8892 | if (Cond.isInvalid()) | ||||
| 8893 | return QualType(); | ||||
| 8894 | if (checkCondition(*this, Cond.get(), QuestionLoc)) | ||||
| 8895 | return QualType(); | ||||
| 8896 | |||||
| 8897 | // Now check the two expressions. | ||||
| 8898 | if (LHS.get()->getType()->isVectorType() || | ||||
| 8899 | RHS.get()->getType()->isVectorType()) | ||||
| 8900 | return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/ false, | ||||
| 8901 | /*AllowBothBool*/ true, | ||||
| 8902 | /*AllowBoolConversions*/ false, | ||||
| 8903 | /*AllowBooleanOperation*/ false, | ||||
| 8904 | /*ReportInvalid*/ true); | ||||
| 8905 | |||||
| 8906 | QualType ResTy = | ||||
| 8907 | UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional); | ||||
| 8908 | if (LHS.isInvalid() || RHS.isInvalid()) | ||||
| 8909 | return QualType(); | ||||
| 8910 | |||||
| 8911 | QualType LHSTy = LHS.get()->getType(); | ||||
| 8912 | QualType RHSTy = RHS.get()->getType(); | ||||
| 8913 | |||||
| 8914 | // Diagnose attempts to convert between __ibm128, __float128 and long double | ||||
| 8915 | // where such conversions currently can't be handled. | ||||
| 8916 | if (unsupportedTypeConversion(*this, LHSTy, RHSTy)) { | ||||
| 8917 | Diag(QuestionLoc, | ||||
| 8918 | diag::err_typecheck_cond_incompatible_operands) << LHSTy << RHSTy | ||||
| 8919 | << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); | ||||
| 8920 | return QualType(); | ||||
| 8921 | } | ||||
| 8922 | |||||
| 8923 | // OpenCL v2.0 s6.12.5 - Blocks cannot be used as expressions of the ternary | ||||
| 8924 | // selection operator (?:). | ||||
| 8925 | if (getLangOpts().OpenCL && | ||||
| 8926 | ((int)checkBlockType(*this, LHS.get()) | (int)checkBlockType(*this, RHS.get()))) { | ||||
| 8927 | return QualType(); | ||||
| 8928 | } | ||||
| 8929 | |||||
| 8930 | // If both operands have arithmetic type, do the usual arithmetic conversions | ||||
| 8931 | // to find a common type: C99 6.5.15p3,5. | ||||
| 8932 | if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) { | ||||
| 8933 | // Disallow invalid arithmetic conversions, such as those between bit- | ||||
| 8934 | // precise integers types of different sizes, or between a bit-precise | ||||
| 8935 | // integer and another type. | ||||
| 8936 | if (ResTy.isNull() && (LHSTy->isBitIntType() || RHSTy->isBitIntType())) { | ||||
| 8937 | Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands) | ||||
| 8938 | << LHSTy << RHSTy << LHS.get()->getSourceRange() | ||||
| 8939 | << RHS.get()->getSourceRange(); | ||||
| 8940 | return QualType(); | ||||
| 8941 | } | ||||
| 8942 | |||||
| 8943 | LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy)); | ||||
| 8944 | RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy)); | ||||
| 8945 | |||||
| 8946 | return ResTy; | ||||
| 8947 | } | ||||
| 8948 | |||||
| 8949 | // And if they're both bfloat (which isn't arithmetic), that's fine too. | ||||
| 8950 | if (LHSTy->isBFloat16Type() && RHSTy->isBFloat16Type()) { | ||||
| 8951 | return Context.getCommonSugaredType(LHSTy, RHSTy); | ||||
| 8952 | } | ||||
| 8953 | |||||
| 8954 | // If both operands are the same structure or union type, the result is that | ||||
| 8955 | // type. | ||||
| 8956 | if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) { // C99 6.5.15p3 | ||||
| 8957 | if (const RecordType *RHSRT = RHSTy->getAs<RecordType>()) | ||||
| 8958 | if (LHSRT->getDecl() == RHSRT->getDecl()) | ||||
| 8959 | // "If both the operands have structure or union type, the result has | ||||
| 8960 | // that type." This implies that CV qualifiers are dropped. | ||||
| 8961 | return Context.getCommonSugaredType(LHSTy.getUnqualifiedType(), | ||||
| 8962 | RHSTy.getUnqualifiedType()); | ||||
| 8963 | // FIXME: Type of conditional expression must be complete in C mode. | ||||
| 8964 | } | ||||
| 8965 | |||||
| 8966 | // C99 6.5.15p5: "If both operands have void type, the result has void type." | ||||
| 8967 | // The following || allows only one side to be void (a GCC-ism). | ||||
| 8968 | if (LHSTy->isVoidType() || RHSTy->isVoidType()) { | ||||
| 8969 | QualType ResTy; | ||||
| 8970 | if (LHSTy->isVoidType() && RHSTy->isVoidType()) { | ||||
| 8971 | ResTy = Context.getCommonSugaredType(LHSTy, RHSTy); | ||||
| 8972 | } else if (RHSTy->isVoidType()) { | ||||
| 8973 | ResTy = RHSTy; | ||||
| 8974 | Diag(RHS.get()->getBeginLoc(), diag::ext_typecheck_cond_one_void) | ||||
| 8975 | << RHS.get()->getSourceRange(); | ||||
| 8976 | } else { | ||||
| 8977 | ResTy = LHSTy; | ||||
| 8978 | Diag(LHS.get()->getBeginLoc(), diag::ext_typecheck_cond_one_void) | ||||
| 8979 | << LHS.get()->getSourceRange(); | ||||
| 8980 | } | ||||
| 8981 | LHS = ImpCastExprToType(LHS.get(), ResTy, CK_ToVoid); | ||||
| 8982 | RHS = ImpCastExprToType(RHS.get(), ResTy, CK_ToVoid); | ||||
| 8983 | return ResTy; | ||||
| 8984 | } | ||||
| 8985 | |||||
| 8986 | // C2x 6.5.15p7: | ||||
| 8987 | // ... if both the second and third operands have nullptr_t type, the | ||||
| 8988 | // result also has that type. | ||||
| 8989 | if (LHSTy->isNullPtrType() && Context.hasSameType(LHSTy, RHSTy)) | ||||
| 8990 | return ResTy; | ||||
| 8991 | |||||
| 8992 | // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has | ||||
| 8993 | // the type of the other operand." | ||||
| 8994 | if (!checkConditionalNullPointer(*this, RHS, LHSTy)) return LHSTy; | ||||
| 8995 | if (!checkConditionalNullPointer(*this, LHS, RHSTy)) return RHSTy; | ||||
| 8996 | |||||
| 8997 | // All objective-c pointer type analysis is done here. | ||||
| 8998 | QualType compositeType = FindCompositeObjCPointerType(LHS, RHS, | ||||
| 8999 | QuestionLoc); | ||||
| 9000 | if (LHS.isInvalid() || RHS.isInvalid()) | ||||
| 9001 | return QualType(); | ||||
| 9002 | if (!compositeType.isNull()) | ||||
| 9003 | return compositeType; | ||||
| 9004 | |||||
| 9005 | |||||
| 9006 | // Handle block pointer types. | ||||
| 9007 | if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) | ||||
| 9008 | return checkConditionalBlockPointerCompatibility(*this, LHS, RHS, | ||||
| 9009 | QuestionLoc); | ||||
| 9010 | |||||
| 9011 | // Check constraints for C object pointers types (C99 6.5.15p3,6). | ||||
| 9012 | if (LHSTy->isPointerType() && RHSTy->isPointerType()) | ||||
| 9013 | return checkConditionalObjectPointersCompatibility(*this, LHS, RHS, | ||||
| 9014 | QuestionLoc); | ||||
| 9015 | |||||
| 9016 | // GCC compatibility: soften pointer/integer mismatch. Note that | ||||
| 9017 | // null pointers have been filtered out by this point. | ||||
| 9018 | if (checkPointerIntegerMismatch(*this, LHS, RHS.get(), QuestionLoc, | ||||
| 9019 | /*IsIntFirstExpr=*/true)) | ||||
| 9020 | return RHSTy; | ||||
| 9021 | if (checkPointerIntegerMismatch(*this, RHS, LHS.get(), QuestionLoc, | ||||
| 9022 | /*IsIntFirstExpr=*/false)) | ||||
| 9023 | return LHSTy; | ||||
| 9024 | |||||
| 9025 | // Allow ?: operations in which both operands have the same | ||||
| 9026 | // built-in sizeless type. | ||||
| 9027 | if (LHSTy->isSizelessBuiltinType() && Context.hasSameType(LHSTy, RHSTy)) | ||||
| 9028 | return Context.getCommonSugaredType(LHSTy, RHSTy); | ||||
| 9029 | |||||
| 9030 | // Emit a better diagnostic if one of the expressions is a null pointer | ||||
| 9031 | // constant and the other is not a pointer type. In this case, the user most | ||||
| 9032 | // likely forgot to take the address of the other expression. | ||||
| 9033 | if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc)) | ||||
| 9034 | return QualType(); | ||||
| 9035 | |||||
| 9036 | // Otherwise, the operands are not compatible. | ||||
| 9037 | Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands) | ||||
| 9038 | << LHSTy << RHSTy << LHS.get()->getSourceRange() | ||||
| 9039 | << RHS.get()->getSourceRange(); | ||||
| 9040 | return QualType(); | ||||
| 9041 | } | ||||
| 9042 | |||||
| 9043 | /// FindCompositeObjCPointerType - Helper method to find composite type of | ||||
| 9044 | /// two objective-c pointer types of the two input expressions. | ||||
| 9045 | QualType Sema::FindCompositeObjCPointerType(ExprResult &LHS, ExprResult &RHS, | ||||
| 9046 | SourceLocation QuestionLoc) { | ||||
| 9047 | QualType LHSTy = LHS.get()->getType(); | ||||
| 9048 | QualType RHSTy = RHS.get()->getType(); | ||||
| 9049 | |||||
| 9050 | // Handle things like Class and struct objc_class*. Here we case the result | ||||
| 9051 | // to the pseudo-builtin, because that will be implicitly cast back to the | ||||
| 9052 | // redefinition type if an attempt is made to access its fields. | ||||
| 9053 | if (LHSTy->isObjCClassType() && | ||||
| 9054 | (Context.hasSameType(RHSTy, Context.getObjCClassRedefinitionType()))) { | ||||
| 9055 | RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_CPointerToObjCPointerCast); | ||||
| 9056 | return LHSTy; | ||||
| 9057 | } | ||||
| 9058 | if (RHSTy->isObjCClassType() && | ||||
| 9059 | (Context.hasSameType(LHSTy, Context.getObjCClassRedefinitionType()))) { | ||||
| 9060 | LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_CPointerToObjCPointerCast); | ||||
| 9061 | return RHSTy; | ||||
| 9062 | } | ||||
| 9063 | // And the same for struct objc_object* / id | ||||
| 9064 | if (LHSTy->isObjCIdType() && | ||||
| 9065 | (Context.hasSameType(RHSTy, Context.getObjCIdRedefinitionType()))) { | ||||
| 9066 | RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_CPointerToObjCPointerCast); | ||||
| 9067 | return LHSTy; | ||||
| 9068 | } | ||||
| 9069 | if (RHSTy->isObjCIdType() && | ||||
| 9070 | (Context.hasSameType(LHSTy, Context.getObjCIdRedefinitionType()))) { | ||||
| 9071 | LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_CPointerToObjCPointerCast); | ||||
| 9072 | return RHSTy; | ||||
| 9073 | } | ||||
| 9074 | // And the same for struct objc_selector* / SEL | ||||
| 9075 | if (Context.isObjCSelType(LHSTy) && | ||||
| 9076 | (Context.hasSameType(RHSTy, Context.getObjCSelRedefinitionType()))) { | ||||
| 9077 | RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_BitCast); | ||||
| 9078 | return LHSTy; | ||||
| 9079 | } | ||||
| 9080 | if (Context.isObjCSelType(RHSTy) && | ||||
| 9081 | (Context.hasSameType(LHSTy, Context.getObjCSelRedefinitionType()))) { | ||||
| 9082 | LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_BitCast); | ||||
| 9083 | return RHSTy; | ||||
| 9084 | } | ||||
| 9085 | // Check constraints for Objective-C object pointers types. | ||||
| 9086 | if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) { | ||||
| 9087 | |||||
| 9088 | if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) { | ||||
| 9089 | // Two identical object pointer types are always compatible. | ||||
| 9090 | return LHSTy; | ||||
| 9091 | } | ||||
| 9092 | const ObjCObjectPointerType *LHSOPT = LHSTy->castAs<ObjCObjectPointerType>(); | ||||
| 9093 | const ObjCObjectPointerType *RHSOPT = RHSTy->castAs<ObjCObjectPointerType>(); | ||||
| 9094 | QualType compositeType = LHSTy; | ||||
| 9095 | |||||
| 9096 | // If both operands are interfaces and either operand can be | ||||
| 9097 | // assigned to the other, use that type as the composite | ||||
| 9098 | // type. This allows | ||||
| 9099 | // xxx ? (A*) a : (B*) b | ||||
| 9100 | // where B is a subclass of A. | ||||
| 9101 | // | ||||
| 9102 | // Additionally, as for assignment, if either type is 'id' | ||||
| 9103 | // allow silent coercion. Finally, if the types are | ||||
| 9104 | // incompatible then make sure to use 'id' as the composite | ||||
| 9105 | // type so the result is acceptable for sending messages to. | ||||
| 9106 | |||||
| 9107 | // FIXME: Consider unifying with 'areComparableObjCPointerTypes'. | ||||
| 9108 | // It could return the composite type. | ||||
| 9109 | if (!(compositeType = | ||||
| 9110 | Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull()) { | ||||
| 9111 | // Nothing more to do. | ||||
| 9112 | } else if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) { | ||||
| 9113 | compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy; | ||||
| 9114 | } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) { | ||||
| 9115 | compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy; | ||||
| 9116 | } else if ((LHSOPT->isObjCQualifiedIdType() || | ||||
| 9117 | RHSOPT->isObjCQualifiedIdType()) && | ||||
| 9118 | Context.ObjCQualifiedIdTypesAreCompatible(LHSOPT, RHSOPT, | ||||
| 9119 | true)) { | ||||
| 9120 | // Need to handle "id<xx>" explicitly. | ||||
| 9121 | // GCC allows qualified id and any Objective-C type to devolve to | ||||
| 9122 | // id. Currently localizing to here until clear this should be | ||||
| 9123 | // part of ObjCQualifiedIdTypesAreCompatible. | ||||
| 9124 | compositeType = Context.getObjCIdType(); | ||||
| 9125 | } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) { | ||||
| 9126 | compositeType = Context.getObjCIdType(); | ||||
| 9127 | } else { | ||||
| 9128 | Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands) | ||||
| 9129 | << LHSTy << RHSTy | ||||
| 9130 | << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); | ||||
| 9131 | QualType incompatTy = Context.getObjCIdType(); | ||||
| 9132 | LHS = ImpCastExprToType(LHS.get(), incompatTy, CK_BitCast); | ||||
| 9133 | RHS = ImpCastExprToType(RHS.get(), incompatTy, CK_BitCast); | ||||
| 9134 | return incompatTy; | ||||
| 9135 | } | ||||
| 9136 | // The object pointer types are compatible. | ||||
| 9137 | LHS = ImpCastExprToType(LHS.get(), compositeType, CK_BitCast); | ||||
| 9138 | RHS = ImpCastExprToType(RHS.get(), compositeType, CK_BitCast); | ||||
| 9139 | return compositeType; | ||||
| 9140 | } | ||||
| 9141 | // Check Objective-C object pointer types and 'void *' | ||||
| 9142 | if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) { | ||||
| 9143 | if (getLangOpts().ObjCAutoRefCount) { | ||||
| 9144 | // ARC forbids the implicit conversion of object pointers to 'void *', | ||||
| 9145 | // so these types are not compatible. | ||||
| 9146 | Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy | ||||
| 9147 | << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); | ||||
| 9148 | LHS = RHS = true; | ||||
| 9149 | return QualType(); | ||||
| 9150 | } | ||||
| 9151 | QualType lhptee = LHSTy->castAs<PointerType>()->getPointeeType(); | ||||
| 9152 | QualType rhptee = RHSTy->castAs<ObjCObjectPointerType>()->getPointeeType(); | ||||
| 9153 | QualType destPointee | ||||
| 9154 | = Context.getQualifiedType(lhptee, rhptee.getQualifiers()); | ||||
| 9155 | QualType destType = Context.getPointerType(destPointee); | ||||
| 9156 | // Add qualifiers if necessary. | ||||
| 9157 | LHS = ImpCastExprToType(LHS.get(), destType, CK_NoOp); | ||||
| 9158 | // Promote to void*. | ||||
| 9159 | RHS = ImpCastExprToType(RHS.get(), destType, CK_BitCast); | ||||
| 9160 | return destType; | ||||
| 9161 | } | ||||
| 9162 | if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) { | ||||
| 9163 | if (getLangOpts().ObjCAutoRefCount) { | ||||
| 9164 | // ARC forbids the implicit conversion of object pointers to 'void *', | ||||
| 9165 | // so these types are not compatible. | ||||
| 9166 | Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy | ||||
| 9167 | << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); | ||||
| 9168 | LHS = RHS = true; | ||||
| 9169 | return QualType(); | ||||
| 9170 | } | ||||
| 9171 | QualType lhptee = LHSTy->castAs<ObjCObjectPointerType>()->getPointeeType(); | ||||
| 9172 | QualType rhptee = RHSTy->castAs<PointerType>()->getPointeeType(); | ||||
| 9173 | QualType destPointee | ||||
| 9174 | = Context.getQualifiedType(rhptee, lhptee.getQualifiers()); | ||||
| 9175 | QualType destType = Context.getPointerType(destPointee); | ||||
| 9176 | // Add qualifiers if necessary. | ||||
| 9177 | RHS = ImpCastExprToType(RHS.get(), destType, CK_NoOp); | ||||
| 9178 | // Promote to void*. | ||||
| 9179 | LHS = ImpCastExprToType(LHS.get(), destType, CK_BitCast); | ||||
| 9180 | return destType; | ||||
| 9181 | } | ||||
| 9182 | return QualType(); | ||||
| 9183 | } | ||||
| 9184 | |||||
| 9185 | /// SuggestParentheses - Emit a note with a fixit hint that wraps | ||||
| 9186 | /// ParenRange in parentheses. | ||||
| 9187 | static void SuggestParentheses(Sema &Self, SourceLocation Loc, | ||||
| 9188 | const PartialDiagnostic &Note, | ||||
| 9189 | SourceRange ParenRange) { | ||||
| 9190 | SourceLocation EndLoc = Self.getLocForEndOfToken(ParenRange.getEnd()); | ||||
| 9191 | if (ParenRange.getBegin().isFileID() && ParenRange.getEnd().isFileID() && | ||||
| 9192 | EndLoc.isValid()) { | ||||
| 9193 | Self.Diag(Loc, Note) | ||||
| 9194 | << FixItHint::CreateInsertion(ParenRange.getBegin(), "(") | ||||
| 9195 | << FixItHint::CreateInsertion(EndLoc, ")"); | ||||
| 9196 | } else { | ||||
| 9197 | // We can't display the parentheses, so just show the bare note. | ||||
| 9198 | Self.Diag(Loc, Note) << ParenRange; | ||||
| 9199 | } | ||||
| 9200 | } | ||||
| 9201 | |||||
| 9202 | static bool IsArithmeticOp(BinaryOperatorKind Opc) { | ||||
| 9203 | return BinaryOperator::isAdditiveOp(Opc) || | ||||
| 9204 | BinaryOperator::isMultiplicativeOp(Opc) || | ||||
| 9205 | BinaryOperator::isShiftOp(Opc) || Opc == BO_And || Opc == BO_Or; | ||||
| 9206 | // This only checks for bitwise-or and bitwise-and, but not bitwise-xor and | ||||
| 9207 | // not any of the logical operators. Bitwise-xor is commonly used as a | ||||
| 9208 | // logical-xor because there is no logical-xor operator. The logical | ||||
| 9209 | // operators, including uses of xor, have a high false positive rate for | ||||
| 9210 | // precedence warnings. | ||||
| 9211 | } | ||||
| 9212 | |||||
| 9213 | /// IsArithmeticBinaryExpr - Returns true if E is an arithmetic binary | ||||
| 9214 | /// expression, either using a built-in or overloaded operator, | ||||
| 9215 | /// and sets *OpCode to the opcode and *RHSExprs to the right-hand side | ||||
| 9216 | /// expression. | ||||
| 9217 | static bool IsArithmeticBinaryExpr(Expr *E, BinaryOperatorKind *Opcode, | ||||
| 9218 | Expr **RHSExprs) { | ||||
| 9219 | // Don't strip parenthesis: we should not warn if E is in parenthesis. | ||||
| 9220 | E = E->IgnoreImpCasts(); | ||||
| 9221 | E = E->IgnoreConversionOperatorSingleStep(); | ||||
| 9222 | E = E->IgnoreImpCasts(); | ||||
| 9223 | if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) { | ||||
| 9224 | E = MTE->getSubExpr(); | ||||
| 9225 | E = E->IgnoreImpCasts(); | ||||
| 9226 | } | ||||
| 9227 | |||||
| 9228 | // Built-in binary operator. | ||||
| 9229 | if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E)) { | ||||
| 9230 | if (IsArithmeticOp(OP->getOpcode())) { | ||||
| 9231 | *Opcode = OP->getOpcode(); | ||||
| 9232 | *RHSExprs = OP->getRHS(); | ||||
| 9233 | return true; | ||||
| 9234 | } | ||||
| 9235 | } | ||||
| 9236 | |||||
| 9237 | // Overloaded operator. | ||||
| 9238 | if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(E)) { | ||||
| 9239 | if (Call->getNumArgs() != 2) | ||||
| 9240 | return false; | ||||
| 9241 | |||||
| 9242 | // Make sure this is really a binary operator that is safe to pass into | ||||
| 9243 | // BinaryOperator::getOverloadedOpcode(), e.g. it's not a subscript op. | ||||
| 9244 | OverloadedOperatorKind OO = Call->getOperator(); | ||||
| 9245 | if (OO < OO_Plus || OO > OO_Arrow || | ||||
| 9246 | OO == OO_PlusPlus || OO == OO_MinusMinus) | ||||
| 9247 | return false; | ||||
| 9248 | |||||
| 9249 | BinaryOperatorKind OpKind = BinaryOperator::getOverloadedOpcode(OO); | ||||
| 9250 | if (IsArithmeticOp(OpKind)) { | ||||
| 9251 | *Opcode = OpKind; | ||||
| 9252 | *RHSExprs = Call->getArg(1); | ||||
| 9253 | return true; | ||||
| 9254 | } | ||||
| 9255 | } | ||||
| 9256 | |||||
| 9257 | return false; | ||||
| 9258 | } | ||||
| 9259 | |||||
| 9260 | /// ExprLooksBoolean - Returns true if E looks boolean, i.e. it has boolean type | ||||
| 9261 | /// or is a logical expression such as (x==y) which has int type, but is | ||||
| 9262 | /// commonly interpreted as boolean. | ||||
| 9263 | static bool ExprLooksBoolean(Expr *E) { | ||||
| 9264 | E = E->IgnoreParenImpCasts(); | ||||
| 9265 | |||||
| 9266 | if (E->getType()->isBooleanType()) | ||||
| 9267 | return true; | ||||
| 9268 | if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E)) | ||||
| 9269 | return OP->isComparisonOp() || OP->isLogicalOp(); | ||||
| 9270 | if (UnaryOperator *OP = dyn_cast<UnaryOperator>(E)) | ||||
| 9271 | return OP->getOpcode() == UO_LNot; | ||||
| 9272 | if (E->getType()->isPointerType()) | ||||
| 9273 | return true; | ||||
| 9274 | // FIXME: What about overloaded operator calls returning "unspecified boolean | ||||
| 9275 | // type"s (commonly pointer-to-members)? | ||||
| 9276 | |||||
| 9277 | return false; | ||||
| 9278 | } | ||||
| 9279 | |||||
| 9280 | /// DiagnoseConditionalPrecedence - Emit a warning when a conditional operator | ||||
| 9281 | /// and binary operator are mixed in a way that suggests the programmer assumed | ||||
| 9282 | /// the conditional operator has higher precedence, for example: | ||||
| 9283 | /// "int x = a + someBinaryCondition ? 1 : 2". | ||||
| 9284 | static void DiagnoseConditionalPrecedence(Sema &Self, | ||||
| 9285 | SourceLocation OpLoc, | ||||
| 9286 | Expr *Condition, | ||||
| 9287 | Expr *LHSExpr, | ||||
| 9288 | Expr *RHSExpr) { | ||||
| 9289 | BinaryOperatorKind CondOpcode; | ||||
| 9290 | Expr *CondRHS; | ||||
| 9291 | |||||
| 9292 | if (!IsArithmeticBinaryExpr(Condition, &CondOpcode, &CondRHS)) | ||||
| 9293 | return; | ||||
| 9294 | if (!ExprLooksBoolean(CondRHS)) | ||||
| 9295 | return; | ||||
| 9296 | |||||
| 9297 | // The condition is an arithmetic binary expression, with a right- | ||||
| 9298 | // hand side that looks boolean, so warn. | ||||
| 9299 | |||||
| 9300 | unsigned DiagID = BinaryOperator::isBitwiseOp(CondOpcode) | ||||
| 9301 | ? diag::warn_precedence_bitwise_conditional | ||||
| 9302 | : diag::warn_precedence_conditional; | ||||
| 9303 | |||||
| 9304 | Self.Diag(OpLoc, DiagID) | ||||
| 9305 | << Condition->getSourceRange() | ||||
| 9306 | << BinaryOperator::getOpcodeStr(CondOpcode); | ||||
| 9307 | |||||
| 9308 | SuggestParentheses( | ||||
| 9309 | Self, OpLoc, | ||||
| 9310 | Self.PDiag(diag::note_precedence_silence) | ||||
| 9311 | << BinaryOperator::getOpcodeStr(CondOpcode), | ||||
| 9312 | SourceRange(Condition->getBeginLoc(), Condition->getEndLoc())); | ||||
| 9313 | |||||
| 9314 | SuggestParentheses(Self, OpLoc, | ||||
| 9315 | Self.PDiag(diag::note_precedence_conditional_first), | ||||
| 9316 | SourceRange(CondRHS->getBeginLoc(), RHSExpr->getEndLoc())); | ||||
| 9317 | } | ||||
| 9318 | |||||
| 9319 | /// Compute the nullability of a conditional expression. | ||||
| 9320 | static QualType computeConditionalNullability(QualType ResTy, bool IsBin, | ||||
| 9321 | QualType LHSTy, QualType RHSTy, | ||||
| 9322 | ASTContext &Ctx) { | ||||
| 9323 | if (!ResTy->isAnyPointerType()) | ||||
| 9324 | return ResTy; | ||||
| 9325 | |||||
| 9326 | auto GetNullability = [](QualType Ty) { | ||||
| 9327 | std::optional<NullabilityKind> Kind = Ty->getNullability(); | ||||
| 9328 | if (Kind) { | ||||
| 9329 | // For our purposes, treat _Nullable_result as _Nullable. | ||||
| 9330 | if (*Kind == NullabilityKind::NullableResult) | ||||
| 9331 | return NullabilityKind::Nullable; | ||||
| 9332 | return *Kind; | ||||
| 9333 | } | ||||
| 9334 | return NullabilityKind::Unspecified; | ||||
| 9335 | }; | ||||
| 9336 | |||||
| 9337 | auto LHSKind = GetNullability(LHSTy), RHSKind = GetNullability(RHSTy); | ||||
| 9338 | NullabilityKind MergedKind; | ||||
| 9339 | |||||
| 9340 | // Compute nullability of a binary conditional expression. | ||||
| 9341 | if (IsBin) { | ||||
| 9342 | if (LHSKind == NullabilityKind::NonNull) | ||||
| 9343 | MergedKind = NullabilityKind::NonNull; | ||||
| 9344 | else | ||||
| 9345 | MergedKind = RHSKind; | ||||
| 9346 | // Compute nullability of a normal conditional expression. | ||||
| 9347 | } else { | ||||
| 9348 | if (LHSKind == NullabilityKind::Nullable || | ||||
| 9349 | RHSKind == NullabilityKind::Nullable) | ||||
| 9350 | MergedKind = NullabilityKind::Nullable; | ||||
| 9351 | else if (LHSKind == NullabilityKind::NonNull) | ||||
| 9352 | MergedKind = RHSKind; | ||||
| 9353 | else if (RHSKind == NullabilityKind::NonNull) | ||||
| 9354 | MergedKind = LHSKind; | ||||
| 9355 | else | ||||
| 9356 | MergedKind = NullabilityKind::Unspecified; | ||||
| 9357 | } | ||||
| 9358 | |||||
| 9359 | // Return if ResTy already has the correct nullability. | ||||
| 9360 | if (GetNullability(ResTy) == MergedKind) | ||||
| 9361 | return ResTy; | ||||
| 9362 | |||||
| 9363 | // Strip all nullability from ResTy. | ||||
| 9364 | while (ResTy->getNullability()) | ||||
| 9365 | ResTy = ResTy.getSingleStepDesugaredType(Ctx); | ||||
| 9366 | |||||
| 9367 | // Create a new AttributedType with the new nullability kind. | ||||
| 9368 | auto NewAttr = AttributedType::getNullabilityAttrKind(MergedKind); | ||||
| 9369 | return Ctx.getAttributedType(NewAttr, ResTy, ResTy); | ||||
| 9370 | } | ||||
| 9371 | |||||
| 9372 | /// ActOnConditionalOp - Parse a ?: operation. Note that 'LHS' may be null | ||||
| 9373 | /// in the case of a the GNU conditional expr extension. | ||||
| 9374 | ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc, | ||||
| 9375 | SourceLocation ColonLoc, | ||||
| 9376 | Expr *CondExpr, Expr *LHSExpr, | ||||
| 9377 | Expr *RHSExpr) { | ||||
| 9378 | if (!Context.isDependenceAllowed()) { | ||||
| 9379 | // C cannot handle TypoExpr nodes in the condition because it | ||||
| 9380 | // doesn't handle dependent types properly, so make sure any TypoExprs have | ||||
| 9381 | // been dealt with before checking the operands. | ||||
| 9382 | ExprResult CondResult = CorrectDelayedTyposInExpr(CondExpr); | ||||
| 9383 | ExprResult LHSResult = CorrectDelayedTyposInExpr(LHSExpr); | ||||
| 9384 | ExprResult RHSResult = CorrectDelayedTyposInExpr(RHSExpr); | ||||
| 9385 | |||||
| 9386 | if (!CondResult.isUsable()) | ||||
| 9387 | return ExprError(); | ||||
| 9388 | |||||
| 9389 | if (LHSExpr) { | ||||
| 9390 | if (!LHSResult.isUsable()) | ||||
| 9391 | return ExprError(); | ||||
| 9392 | } | ||||
| 9393 | |||||
| 9394 | if (!RHSResult.isUsable()) | ||||
| 9395 | return ExprError(); | ||||
| 9396 | |||||
| 9397 | CondExpr = CondResult.get(); | ||||
| 9398 | LHSExpr = LHSResult.get(); | ||||
| 9399 | RHSExpr = RHSResult.get(); | ||||
| 9400 | } | ||||
| 9401 | |||||
| 9402 | // If this is the gnu "x ?: y" extension, analyze the types as though the LHS | ||||
| 9403 | // was the condition. | ||||
| 9404 | OpaqueValueExpr *opaqueValue = nullptr; | ||||
| 9405 | Expr *commonExpr = nullptr; | ||||
| 9406 | if (!LHSExpr) { | ||||
| 9407 | commonExpr = CondExpr; | ||||
| 9408 | // Lower out placeholder types first. This is important so that we don't | ||||
| 9409 | // try to capture a placeholder. This happens in few cases in C++; such | ||||
| 9410 | // as Objective-C++'s dictionary subscripting syntax. | ||||
| 9411 | if (commonExpr->hasPlaceholderType()) { | ||||
| 9412 | ExprResult result = CheckPlaceholderExpr(commonExpr); | ||||
| 9413 | if (!result.isUsable()) return ExprError(); | ||||
| 9414 | commonExpr = result.get(); | ||||
| 9415 | } | ||||
| 9416 | // We usually want to apply unary conversions *before* saving, except | ||||
| 9417 | // in the special case of a C++ l-value conditional. | ||||
| 9418 | if (!(getLangOpts().CPlusPlus | ||||
| 9419 | && !commonExpr->isTypeDependent() | ||||
| 9420 | && commonExpr->getValueKind() == RHSExpr->getValueKind() | ||||
| 9421 | && commonExpr->isGLValue() | ||||
| 9422 | && commonExpr->isOrdinaryOrBitFieldObject() | ||||
| 9423 | && RHSExpr->isOrdinaryOrBitFieldObject() | ||||
| 9424 | && Context.hasSameType(commonExpr->getType(), RHSExpr->getType()))) { | ||||
| 9425 | ExprResult commonRes = UsualUnaryConversions(commonExpr); | ||||
| 9426 | if (commonRes.isInvalid()) | ||||
| 9427 | return ExprError(); | ||||
| 9428 | commonExpr = commonRes.get(); | ||||
| 9429 | } | ||||
| 9430 | |||||
| 9431 | // If the common expression is a class or array prvalue, materialize it | ||||
| 9432 | // so that we can safely refer to it multiple times. | ||||
| 9433 | if (commonExpr->isPRValue() && (commonExpr->getType()->isRecordType() || | ||||
| 9434 | commonExpr->getType()->isArrayType())) { | ||||
| 9435 | ExprResult MatExpr = TemporaryMaterializationConversion(commonExpr); | ||||
| 9436 | if (MatExpr.isInvalid()) | ||||
| 9437 | return ExprError(); | ||||
| 9438 | commonExpr = MatExpr.get(); | ||||
| 9439 | } | ||||
| 9440 | |||||
| 9441 | opaqueValue = new (Context) OpaqueValueExpr(commonExpr->getExprLoc(), | ||||
| 9442 | commonExpr->getType(), | ||||
| 9443 | commonExpr->getValueKind(), | ||||
| 9444 | commonExpr->getObjectKind(), | ||||
| 9445 | commonExpr); | ||||
| 9446 | LHSExpr = CondExpr = opaqueValue; | ||||
| 9447 | } | ||||
| 9448 | |||||
| 9449 | QualType LHSTy = LHSExpr->getType(), RHSTy = RHSExpr->getType(); | ||||
| 9450 | ExprValueKind VK = VK_PRValue; | ||||
| 9451 | ExprObjectKind OK = OK_Ordinary; | ||||
| 9452 | ExprResult Cond = CondExpr, LHS = LHSExpr, RHS = RHSExpr; | ||||
| 9453 | QualType result = CheckConditionalOperands(Cond, LHS, RHS, | ||||
| 9454 | VK, OK, QuestionLoc); | ||||
| 9455 | if (result.isNull() || Cond.isInvalid() || LHS.isInvalid() || | ||||
| 9456 | RHS.isInvalid()) | ||||
| 9457 | return ExprError(); | ||||
| 9458 | |||||
| 9459 | DiagnoseConditionalPrecedence(*this, QuestionLoc, Cond.get(), LHS.get(), | ||||
| 9460 | RHS.get()); | ||||
| 9461 | |||||
| 9462 | CheckBoolLikeConversion(Cond.get(), QuestionLoc); | ||||
| 9463 | |||||
| 9464 | result = computeConditionalNullability(result, commonExpr, LHSTy, RHSTy, | ||||
| 9465 | Context); | ||||
| 9466 | |||||
| 9467 | if (!commonExpr) | ||||
| 9468 | return new (Context) | ||||
| 9469 | ConditionalOperator(Cond.get(), QuestionLoc, LHS.get(), ColonLoc, | ||||
| 9470 | RHS.get(), result, VK, OK); | ||||
| 9471 | |||||
| 9472 | return new (Context) BinaryConditionalOperator( | ||||
| 9473 | commonExpr, opaqueValue, Cond.get(), LHS.get(), RHS.get(), QuestionLoc, | ||||
| 9474 | ColonLoc, result, VK, OK); | ||||
| 9475 | } | ||||
| 9476 | |||||
| 9477 | // Check if we have a conversion between incompatible cmse function pointer | ||||
| 9478 | // types, that is, a conversion between a function pointer with the | ||||
| 9479 | // cmse_nonsecure_call attribute and one without. | ||||
| 9480 | static bool IsInvalidCmseNSCallConversion(Sema &S, QualType FromType, | ||||
| 9481 | QualType ToType) { | ||||
| 9482 | if (const auto *ToFn = | ||||
| 9483 | dyn_cast<FunctionType>(S.Context.getCanonicalType(ToType))) { | ||||
| 9484 | if (const auto *FromFn = | ||||
| 9485 | dyn_cast<FunctionType>(S.Context.getCanonicalType(FromType))) { | ||||
| 9486 | FunctionType::ExtInfo ToEInfo = ToFn->getExtInfo(); | ||||
| 9487 | FunctionType::ExtInfo FromEInfo = FromFn->getExtInfo(); | ||||
| 9488 | |||||
| 9489 | return ToEInfo.getCmseNSCall() != FromEInfo.getCmseNSCall(); | ||||
| 9490 | } | ||||
| 9491 | } | ||||
| 9492 | return false; | ||||
| 9493 | } | ||||
| 9494 | |||||
| 9495 | // checkPointerTypesForAssignment - This is a very tricky routine (despite | ||||
| 9496 | // being closely modeled after the C99 spec:-). The odd characteristic of this | ||||
| 9497 | // routine is it effectively iqnores the qualifiers on the top level pointee. | ||||
| 9498 | // This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3]. | ||||
| 9499 | // FIXME: add a couple examples in this comment. | ||||
| 9500 | static Sema::AssignConvertType | ||||
| 9501 | checkPointerTypesForAssignment(Sema &S, QualType LHSType, QualType RHSType, | ||||
| 9502 | SourceLocation Loc) { | ||||
| 9503 | assert(LHSType.isCanonical() && "LHS not canonicalized!")(static_cast <bool> (LHSType.isCanonical() && "LHS not canonicalized!" ) ? void (0) : __assert_fail ("LHSType.isCanonical() && \"LHS not canonicalized!\"" , "clang/lib/Sema/SemaExpr.cpp", 9503, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 9504 | assert(RHSType.isCanonical() && "RHS not canonicalized!")(static_cast <bool> (RHSType.isCanonical() && "RHS not canonicalized!" ) ? void (0) : __assert_fail ("RHSType.isCanonical() && \"RHS not canonicalized!\"" , "clang/lib/Sema/SemaExpr.cpp", 9504, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 9505 | |||||
| 9506 | // get the "pointed to" type (ignoring qualifiers at the top level) | ||||
| 9507 | const Type *lhptee, *rhptee; | ||||
| 9508 | Qualifiers lhq, rhq; | ||||
| 9509 | std::tie(lhptee, lhq) = | ||||
| 9510 | cast<PointerType>(LHSType)->getPointeeType().split().asPair(); | ||||
| 9511 | std::tie(rhptee, rhq) = | ||||
| 9512 | cast<PointerType>(RHSType)->getPointeeType().split().asPair(); | ||||
| 9513 | |||||
| 9514 | Sema::AssignConvertType ConvTy = Sema::Compatible; | ||||
| 9515 | |||||
| 9516 | // C99 6.5.16.1p1: This following citation is common to constraints | ||||
| 9517 | // 3 & 4 (below). ...and the type *pointed to* by the left has all the | ||||
| 9518 | // qualifiers of the type *pointed to* by the right; | ||||
| 9519 | |||||
| 9520 | // As a special case, 'non-__weak A *' -> 'non-__weak const *' is okay. | ||||
| 9521 | if (lhq.getObjCLifetime() != rhq.getObjCLifetime() && | ||||
| 9522 | lhq.compatiblyIncludesObjCLifetime(rhq)) { | ||||
| 9523 | // Ignore lifetime for further calculation. | ||||
| 9524 | lhq.removeObjCLifetime(); | ||||
| 9525 | rhq.removeObjCLifetime(); | ||||
| 9526 | } | ||||
| 9527 | |||||
| 9528 | if (!lhq.compatiblyIncludes(rhq)) { | ||||
| 9529 | // Treat address-space mismatches as fatal. | ||||
| 9530 | if (!lhq.isAddressSpaceSupersetOf(rhq)) | ||||
| 9531 | return Sema::IncompatiblePointerDiscardsQualifiers; | ||||
| 9532 | |||||
| 9533 | // It's okay to add or remove GC or lifetime qualifiers when converting to | ||||
| 9534 | // and from void*. | ||||
| 9535 | else if (lhq.withoutObjCGCAttr().withoutObjCLifetime() | ||||
| 9536 | .compatiblyIncludes( | ||||
| 9537 | rhq.withoutObjCGCAttr().withoutObjCLifetime()) | ||||
| 9538 | && (lhptee->isVoidType() || rhptee->isVoidType())) | ||||
| 9539 | ; // keep old | ||||
| 9540 | |||||
| 9541 | // Treat lifetime mismatches as fatal. | ||||
| 9542 | else if (lhq.getObjCLifetime() != rhq.getObjCLifetime()) | ||||
| 9543 | ConvTy = Sema::IncompatiblePointerDiscardsQualifiers; | ||||
| 9544 | |||||
| 9545 | // For GCC/MS compatibility, other qualifier mismatches are treated | ||||
| 9546 | // as still compatible in C. | ||||
| 9547 | else ConvTy = Sema::CompatiblePointerDiscardsQualifiers; | ||||
| 9548 | } | ||||
| 9549 | |||||
| 9550 | // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or | ||||
| 9551 | // incomplete type and the other is a pointer to a qualified or unqualified | ||||
| 9552 | // version of void... | ||||
| 9553 | if (lhptee->isVoidType()) { | ||||
| 9554 | if (rhptee->isIncompleteOrObjectType()) | ||||
| 9555 | return ConvTy; | ||||
| 9556 | |||||
| 9557 | // As an extension, we allow cast to/from void* to function pointer. | ||||
| 9558 | assert(rhptee->isFunctionType())(static_cast <bool> (rhptee->isFunctionType()) ? void (0) : __assert_fail ("rhptee->isFunctionType()", "clang/lib/Sema/SemaExpr.cpp" , 9558, __extension__ __PRETTY_FUNCTION__)); | ||||
| 9559 | return Sema::FunctionVoidPointer; | ||||
| 9560 | } | ||||
| 9561 | |||||
| 9562 | if (rhptee->isVoidType()) { | ||||
| 9563 | if (lhptee->isIncompleteOrObjectType()) | ||||
| 9564 | return ConvTy; | ||||
| 9565 | |||||
| 9566 | // As an extension, we allow cast to/from void* to function pointer. | ||||
| 9567 | assert(lhptee->isFunctionType())(static_cast <bool> (lhptee->isFunctionType()) ? void (0) : __assert_fail ("lhptee->isFunctionType()", "clang/lib/Sema/SemaExpr.cpp" , 9567, __extension__ __PRETTY_FUNCTION__)); | ||||
| 9568 | return Sema::FunctionVoidPointer; | ||||
| 9569 | } | ||||
| 9570 | |||||
| 9571 | if (!S.Diags.isIgnored( | ||||
| 9572 | diag::warn_typecheck_convert_incompatible_function_pointer_strict, | ||||
| 9573 | Loc) && | ||||
| 9574 | RHSType->isFunctionPointerType() && LHSType->isFunctionPointerType() && | ||||
| 9575 | !S.IsFunctionConversion(RHSType, LHSType, RHSType)) | ||||
| 9576 | return Sema::IncompatibleFunctionPointerStrict; | ||||
| 9577 | |||||
| 9578 | // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or | ||||
| 9579 | // unqualified versions of compatible types, ... | ||||
| 9580 | QualType ltrans = QualType(lhptee, 0), rtrans = QualType(rhptee, 0); | ||||
| 9581 | if (!S.Context.typesAreCompatible(ltrans, rtrans)) { | ||||
| 9582 | // Check if the pointee types are compatible ignoring the sign. | ||||
| 9583 | // We explicitly check for char so that we catch "char" vs | ||||
| 9584 | // "unsigned char" on systems where "char" is unsigned. | ||||
| 9585 | if (lhptee->isCharType()) | ||||
| 9586 | ltrans = S.Context.UnsignedCharTy; | ||||
| 9587 | else if (lhptee->hasSignedIntegerRepresentation()) | ||||
| 9588 | ltrans = S.Context.getCorrespondingUnsignedType(ltrans); | ||||
| 9589 | |||||
| 9590 | if (rhptee->isCharType()) | ||||
| 9591 | rtrans = S.Context.UnsignedCharTy; | ||||
| 9592 | else if (rhptee->hasSignedIntegerRepresentation()) | ||||
| 9593 | rtrans = S.Context.getCorrespondingUnsignedType(rtrans); | ||||
| 9594 | |||||
| 9595 | if (ltrans == rtrans) { | ||||
| 9596 | // Types are compatible ignoring the sign. Qualifier incompatibility | ||||
| 9597 | // takes priority over sign incompatibility because the sign | ||||
| 9598 | // warning can be disabled. | ||||
| 9599 | if (ConvTy != Sema::Compatible) | ||||
| 9600 | return ConvTy; | ||||
| 9601 | |||||
| 9602 | return Sema::IncompatiblePointerSign; | ||||
| 9603 | } | ||||
| 9604 | |||||
| 9605 | // If we are a multi-level pointer, it's possible that our issue is simply | ||||
| 9606 | // one of qualification - e.g. char ** -> const char ** is not allowed. If | ||||
| 9607 | // the eventual target type is the same and the pointers have the same | ||||
| 9608 | // level of indirection, this must be the issue. | ||||
| 9609 | if (isa<PointerType>(lhptee) && isa<PointerType>(rhptee)) { | ||||
| 9610 | do { | ||||
| 9611 | std::tie(lhptee, lhq) = | ||||
| 9612 | cast<PointerType>(lhptee)->getPointeeType().split().asPair(); | ||||
| 9613 | std::tie(rhptee, rhq) = | ||||
| 9614 | cast<PointerType>(rhptee)->getPointeeType().split().asPair(); | ||||
| 9615 | |||||
| 9616 | // Inconsistent address spaces at this point is invalid, even if the | ||||
| 9617 | // address spaces would be compatible. | ||||
| 9618 | // FIXME: This doesn't catch address space mismatches for pointers of | ||||
| 9619 | // different nesting levels, like: | ||||
| 9620 | // __local int *** a; | ||||
| 9621 | // int ** b = a; | ||||
| 9622 | // It's not clear how to actually determine when such pointers are | ||||
| 9623 | // invalidly incompatible. | ||||
| 9624 | if (lhq.getAddressSpace() != rhq.getAddressSpace()) | ||||
| 9625 | return Sema::IncompatibleNestedPointerAddressSpaceMismatch; | ||||
| 9626 | |||||
| 9627 | } while (isa<PointerType>(lhptee) && isa<PointerType>(rhptee)); | ||||
| 9628 | |||||
| 9629 | if (lhptee == rhptee) | ||||
| 9630 | return Sema::IncompatibleNestedPointerQualifiers; | ||||
| 9631 | } | ||||
| 9632 | |||||
| 9633 | // General pointer incompatibility takes priority over qualifiers. | ||||
| 9634 | if (RHSType->isFunctionPointerType() && LHSType->isFunctionPointerType()) | ||||
| 9635 | return Sema::IncompatibleFunctionPointer; | ||||
| 9636 | return Sema::IncompatiblePointer; | ||||
| 9637 | } | ||||
| 9638 | if (!S.getLangOpts().CPlusPlus && | ||||
| 9639 | S.IsFunctionConversion(ltrans, rtrans, ltrans)) | ||||
| 9640 | return Sema::IncompatibleFunctionPointer; | ||||
| 9641 | if (IsInvalidCmseNSCallConversion(S, ltrans, rtrans)) | ||||
| 9642 | return Sema::IncompatibleFunctionPointer; | ||||
| 9643 | return ConvTy; | ||||
| 9644 | } | ||||
| 9645 | |||||
| 9646 | /// checkBlockPointerTypesForAssignment - This routine determines whether two | ||||
| 9647 | /// block pointer types are compatible or whether a block and normal pointer | ||||
| 9648 | /// are compatible. It is more restrict than comparing two function pointer | ||||
| 9649 | // types. | ||||
| 9650 | static Sema::AssignConvertType | ||||
| 9651 | checkBlockPointerTypesForAssignment(Sema &S, QualType LHSType, | ||||
| 9652 | QualType RHSType) { | ||||
| 9653 | assert(LHSType.isCanonical() && "LHS not canonicalized!")(static_cast <bool> (LHSType.isCanonical() && "LHS not canonicalized!" ) ? void (0) : __assert_fail ("LHSType.isCanonical() && \"LHS not canonicalized!\"" , "clang/lib/Sema/SemaExpr.cpp", 9653, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 9654 | assert(RHSType.isCanonical() && "RHS not canonicalized!")(static_cast <bool> (RHSType.isCanonical() && "RHS not canonicalized!" ) ? void (0) : __assert_fail ("RHSType.isCanonical() && \"RHS not canonicalized!\"" , "clang/lib/Sema/SemaExpr.cpp", 9654, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 9655 | |||||
| 9656 | QualType lhptee, rhptee; | ||||
| 9657 | |||||
| 9658 | // get the "pointed to" type (ignoring qualifiers at the top level) | ||||
| 9659 | lhptee = cast<BlockPointerType>(LHSType)->getPointeeType(); | ||||
| 9660 | rhptee = cast<BlockPointerType>(RHSType)->getPointeeType(); | ||||
| 9661 | |||||
| 9662 | // In C++, the types have to match exactly. | ||||
| 9663 | if (S.getLangOpts().CPlusPlus) | ||||
| 9664 | return Sema::IncompatibleBlockPointer; | ||||
| 9665 | |||||
| 9666 | Sema::AssignConvertType ConvTy = Sema::Compatible; | ||||
| 9667 | |||||
| 9668 | // For blocks we enforce that qualifiers are identical. | ||||
| 9669 | Qualifiers LQuals = lhptee.getLocalQualifiers(); | ||||
| 9670 | Qualifiers RQuals = rhptee.getLocalQualifiers(); | ||||
| 9671 | if (S.getLangOpts().OpenCL) { | ||||
| 9672 | LQuals.removeAddressSpace(); | ||||
| 9673 | RQuals.removeAddressSpace(); | ||||
| 9674 | } | ||||
| 9675 | if (LQuals != RQuals) | ||||
| 9676 | ConvTy = Sema::CompatiblePointerDiscardsQualifiers; | ||||
| 9677 | |||||
| 9678 | // FIXME: OpenCL doesn't define the exact compile time semantics for a block | ||||
| 9679 | // assignment. | ||||
| 9680 | // The current behavior is similar to C++ lambdas. A block might be | ||||
| 9681 | // assigned to a variable iff its return type and parameters are compatible | ||||
| 9682 | // (C99 6.2.7) with the corresponding return type and parameters of the LHS of | ||||
| 9683 | // an assignment. Presumably it should behave in way that a function pointer | ||||
| 9684 | // assignment does in C, so for each parameter and return type: | ||||
| 9685 | // * CVR and address space of LHS should be a superset of CVR and address | ||||
| 9686 | // space of RHS. | ||||
| 9687 | // * unqualified types should be compatible. | ||||
| 9688 | if (S.getLangOpts().OpenCL) { | ||||
| 9689 | if (!S.Context.typesAreBlockPointerCompatible( | ||||
| 9690 | S.Context.getQualifiedType(LHSType.getUnqualifiedType(), LQuals), | ||||
| 9691 | S.Context.getQualifiedType(RHSType.getUnqualifiedType(), RQuals))) | ||||
| 9692 | return Sema::IncompatibleBlockPointer; | ||||
| 9693 | } else if (!S.Context.typesAreBlockPointerCompatible(LHSType, RHSType)) | ||||
| 9694 | return Sema::IncompatibleBlockPointer; | ||||
| 9695 | |||||
| 9696 | return ConvTy; | ||||
| 9697 | } | ||||
| 9698 | |||||
| 9699 | /// checkObjCPointerTypesForAssignment - Compares two objective-c pointer types | ||||
| 9700 | /// for assignment compatibility. | ||||
| 9701 | static Sema::AssignConvertType | ||||
| 9702 | checkObjCPointerTypesForAssignment(Sema &S, QualType LHSType, | ||||
| 9703 | QualType RHSType) { | ||||
| 9704 | assert(LHSType.isCanonical() && "LHS was not canonicalized!")(static_cast <bool> (LHSType.isCanonical() && "LHS was not canonicalized!" ) ? void (0) : __assert_fail ("LHSType.isCanonical() && \"LHS was not canonicalized!\"" , "clang/lib/Sema/SemaExpr.cpp", 9704, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 9705 | assert(RHSType.isCanonical() && "RHS was not canonicalized!")(static_cast <bool> (RHSType.isCanonical() && "RHS was not canonicalized!" ) ? void (0) : __assert_fail ("RHSType.isCanonical() && \"RHS was not canonicalized!\"" , "clang/lib/Sema/SemaExpr.cpp", 9705, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 9706 | |||||
| 9707 | if (LHSType->isObjCBuiltinType()) { | ||||
| 9708 | // Class is not compatible with ObjC object pointers. | ||||
| 9709 | if (LHSType->isObjCClassType() && !RHSType->isObjCBuiltinType() && | ||||
| 9710 | !RHSType->isObjCQualifiedClassType()) | ||||
| 9711 | return Sema::IncompatiblePointer; | ||||
| 9712 | return Sema::Compatible; | ||||
| 9713 | } | ||||
| 9714 | if (RHSType->isObjCBuiltinType()) { | ||||
| 9715 | if (RHSType->isObjCClassType() && !LHSType->isObjCBuiltinType() && | ||||
| 9716 | !LHSType->isObjCQualifiedClassType()) | ||||
| 9717 | return Sema::IncompatiblePointer; | ||||
| 9718 | return Sema::Compatible; | ||||
| 9719 | } | ||||
| 9720 | QualType lhptee = LHSType->castAs<ObjCObjectPointerType>()->getPointeeType(); | ||||
| 9721 | QualType rhptee = RHSType->castAs<ObjCObjectPointerType>()->getPointeeType(); | ||||
| 9722 | |||||
| 9723 | if (!lhptee.isAtLeastAsQualifiedAs(rhptee) && | ||||
| 9724 | // make an exception for id<P> | ||||
| 9725 | !LHSType->isObjCQualifiedIdType()) | ||||
| 9726 | return Sema::CompatiblePointerDiscardsQualifiers; | ||||
| 9727 | |||||
| 9728 | if (S.Context.typesAreCompatible(LHSType, RHSType)) | ||||
| 9729 | return Sema::Compatible; | ||||
| 9730 | if (LHSType->isObjCQualifiedIdType() || RHSType->isObjCQualifiedIdType()) | ||||
| 9731 | return Sema::IncompatibleObjCQualifiedId; | ||||
| 9732 | return Sema::IncompatiblePointer; | ||||
| 9733 | } | ||||
| 9734 | |||||
| 9735 | Sema::AssignConvertType | ||||
| 9736 | Sema::CheckAssignmentConstraints(SourceLocation Loc, | ||||
| 9737 | QualType LHSType, QualType RHSType) { | ||||
| 9738 | // Fake up an opaque expression. We don't actually care about what | ||||
| 9739 | // cast operations are required, so if CheckAssignmentConstraints | ||||
| 9740 | // adds casts to this they'll be wasted, but fortunately that doesn't | ||||
| 9741 | // usually happen on valid code. | ||||
| 9742 | OpaqueValueExpr RHSExpr(Loc, RHSType, VK_PRValue); | ||||
| 9743 | ExprResult RHSPtr = &RHSExpr; | ||||
| 9744 | CastKind K; | ||||
| 9745 | |||||
| 9746 | return CheckAssignmentConstraints(LHSType, RHSPtr, K, /*ConvertRHS=*/false); | ||||
| 9747 | } | ||||
| 9748 | |||||
| 9749 | /// This helper function returns true if QT is a vector type that has element | ||||
| 9750 | /// type ElementType. | ||||
| 9751 | static bool isVector(QualType QT, QualType ElementType) { | ||||
| 9752 | if (const VectorType *VT = QT->getAs<VectorType>()) | ||||
| 9753 | return VT->getElementType().getCanonicalType() == ElementType; | ||||
| 9754 | return false; | ||||
| 9755 | } | ||||
| 9756 | |||||
| 9757 | /// CheckAssignmentConstraints (C99 6.5.16) - This routine currently | ||||
| 9758 | /// has code to accommodate several GCC extensions when type checking | ||||
| 9759 | /// pointers. Here are some objectionable examples that GCC considers warnings: | ||||
| 9760 | /// | ||||
| 9761 | /// int a, *pint; | ||||
| 9762 | /// short *pshort; | ||||
| 9763 | /// struct foo *pfoo; | ||||
| 9764 | /// | ||||
| 9765 | /// pint = pshort; // warning: assignment from incompatible pointer type | ||||
| 9766 | /// a = pint; // warning: assignment makes integer from pointer without a cast | ||||
| 9767 | /// pint = a; // warning: assignment makes pointer from integer without a cast | ||||
| 9768 | /// pint = pfoo; // warning: assignment from incompatible pointer type | ||||
| 9769 | /// | ||||
| 9770 | /// As a result, the code for dealing with pointers is more complex than the | ||||
| 9771 | /// C99 spec dictates. | ||||
| 9772 | /// | ||||
| 9773 | /// Sets 'Kind' for any result kind except Incompatible. | ||||
| 9774 | Sema::AssignConvertType | ||||
| 9775 | Sema::CheckAssignmentConstraints(QualType LHSType, ExprResult &RHS, | ||||
| 9776 | CastKind &Kind, bool ConvertRHS) { | ||||
| 9777 | QualType RHSType = RHS.get()->getType(); | ||||
| 9778 | QualType OrigLHSType = LHSType; | ||||
| 9779 | |||||
| 9780 | // Get canonical types. We're not formatting these types, just comparing | ||||
| 9781 | // them. | ||||
| 9782 | LHSType = Context.getCanonicalType(LHSType).getUnqualifiedType(); | ||||
| 9783 | RHSType = Context.getCanonicalType(RHSType).getUnqualifiedType(); | ||||
| 9784 | |||||
| 9785 | // Common case: no conversion required. | ||||
| 9786 | if (LHSType == RHSType) { | ||||
| |||||
| 9787 | Kind = CK_NoOp; | ||||
| 9788 | return Compatible; | ||||
| 9789 | } | ||||
| 9790 | |||||
| 9791 | // If the LHS has an __auto_type, there are no additional type constraints | ||||
| 9792 | // to be worried about. | ||||
| 9793 | if (const auto *AT
| ||||
| 9794 | if (AT->isGNUAutoType()) { | ||||
| 9795 | Kind = CK_NoOp; | ||||
| 9796 | return Compatible; | ||||
| 9797 | } | ||||
| 9798 | } | ||||
| 9799 | |||||
| 9800 | // If we have an atomic type, try a non-atomic assignment, then just add an | ||||
| 9801 | // atomic qualification step. | ||||
| 9802 | if (const AtomicType *AtomicTy
| ||||
| 9803 | Sema::AssignConvertType result = | ||||
| 9804 | CheckAssignmentConstraints(AtomicTy->getValueType(), RHS, Kind); | ||||
| 9805 | if (result != Compatible) | ||||
| 9806 | return result; | ||||
| 9807 | if (Kind != CK_NoOp && ConvertRHS) | ||||
| 9808 | RHS = ImpCastExprToType(RHS.get(), AtomicTy->getValueType(), Kind); | ||||
| 9809 | Kind = CK_NonAtomicToAtomic; | ||||
| 9810 | return Compatible; | ||||
| 9811 | } | ||||
| 9812 | |||||
| 9813 | // If the left-hand side is a reference type, then we are in a | ||||
| 9814 | // (rare!) case where we've allowed the use of references in C, | ||||
| 9815 | // e.g., as a parameter type in a built-in function. In this case, | ||||
| 9816 | // just make sure that the type referenced is compatible with the | ||||
| 9817 | // right-hand side type. The caller is responsible for adjusting | ||||
| 9818 | // LHSType so that the resulting expression does not have reference | ||||
| 9819 | // type. | ||||
| 9820 | if (const ReferenceType *LHSTypeRef
| ||||
| 9821 | if (Context.typesAreCompatible(LHSTypeRef->getPointeeType(), RHSType)) { | ||||
| 9822 | Kind = CK_LValueBitCast; | ||||
| 9823 | return Compatible; | ||||
| 9824 | } | ||||
| 9825 | return Incompatible; | ||||
| 9826 | } | ||||
| 9827 | |||||
| 9828 | // Allow scalar to ExtVector assignments, and assignments of an ExtVector type | ||||
| 9829 | // to the same ExtVector type. | ||||
| 9830 | if (LHSType->isExtVectorType()) { | ||||
| 9831 | if (RHSType->isExtVectorType()) | ||||
| 9832 | return Incompatible; | ||||
| 9833 | if (RHSType->isArithmeticType()) { | ||||
| 9834 | // CK_VectorSplat does T -> vector T, so first cast to the element type. | ||||
| 9835 | if (ConvertRHS) | ||||
| 9836 | RHS = prepareVectorSplat(LHSType, RHS.get()); | ||||
| 9837 | Kind = CK_VectorSplat; | ||||
| 9838 | return Compatible; | ||||
| 9839 | } | ||||
| 9840 | } | ||||
| 9841 | |||||
| 9842 | // Conversions to or from vector type. | ||||
| 9843 | if (LHSType->isVectorType() || RHSType->isVectorType()) { | ||||
| 9844 | if (LHSType->isVectorType() && RHSType->isVectorType()) { | ||||
| 9845 | // Allow assignments of an AltiVec vector type to an equivalent GCC | ||||
| 9846 | // vector type and vice versa | ||||
| 9847 | if (Context.areCompatibleVectorTypes(LHSType, RHSType)) { | ||||
| 9848 | Kind = CK_BitCast; | ||||
| 9849 | return Compatible; | ||||
| 9850 | } | ||||
| 9851 | |||||
| 9852 | // If we are allowing lax vector conversions, and LHS and RHS are both | ||||
| 9853 | // vectors, the total size only needs to be the same. This is a bitcast; | ||||
| 9854 | // no bits are changed but the result type is different. | ||||
| 9855 | if (isLaxVectorConversion(RHSType, LHSType)) { | ||||
| 9856 | // The default for lax vector conversions with Altivec vectors will | ||||
| 9857 | // change, so if we are converting between vector types where | ||||
| 9858 | // at least one is an Altivec vector, emit a warning. | ||||
| 9859 | if (anyAltivecTypes(RHSType, LHSType) && | ||||
| 9860 | !Context.areCompatibleVectorTypes(RHSType, LHSType)) | ||||
| 9861 | Diag(RHS.get()->getExprLoc(), diag::warn_deprecated_lax_vec_conv_all) | ||||
| 9862 | << RHSType << LHSType; | ||||
| 9863 | Kind = CK_BitCast; | ||||
| 9864 | return IncompatibleVectors; | ||||
| 9865 | } | ||||
| 9866 | } | ||||
| 9867 | |||||
| 9868 | // When the RHS comes from another lax conversion (e.g. binops between | ||||
| 9869 | // scalars and vectors) the result is canonicalized as a vector. When the | ||||
| 9870 | // LHS is also a vector, the lax is allowed by the condition above. Handle | ||||
| 9871 | // the case where LHS is a scalar. | ||||
| 9872 | if (LHSType->isScalarType()) { | ||||
| 9873 | const VectorType *VecType = RHSType->getAs<VectorType>(); | ||||
| 9874 | if (VecType && VecType->getNumElements() == 1 && | ||||
| 9875 | isLaxVectorConversion(RHSType, LHSType)) { | ||||
| 9876 | if (VecType->getVectorKind() == VectorType::AltiVecVector || | ||||
| 9877 | VecType->getVectorKind() == VectorType::AltiVecBool || | ||||
| 9878 | VecType->getVectorKind() == VectorType::AltiVecPixel) | ||||
| 9879 | Diag(RHS.get()->getExprLoc(), diag::warn_deprecated_lax_vec_conv_all) | ||||
| 9880 | << RHSType << LHSType; | ||||
| 9881 | ExprResult *VecExpr = &RHS; | ||||
| 9882 | *VecExpr = ImpCastExprToType(VecExpr->get(), LHSType, CK_BitCast); | ||||
| 9883 | Kind = CK_BitCast; | ||||
| 9884 | return Compatible; | ||||
| 9885 | } | ||||
| 9886 | } | ||||
| 9887 | |||||
| 9888 | // Allow assignments between fixed-length and sizeless SVE vectors. | ||||
| 9889 | if ((LHSType->isSVESizelessBuiltinType() && RHSType->isVectorType()) || | ||||
| 9890 | (LHSType->isVectorType() && RHSType->isSVESizelessBuiltinType())) | ||||
| 9891 | if (Context.areCompatibleSveTypes(LHSType, RHSType) || | ||||
| 9892 | Context.areLaxCompatibleSveTypes(LHSType, RHSType)) { | ||||
| 9893 | Kind = CK_BitCast; | ||||
| 9894 | return Compatible; | ||||
| 9895 | } | ||||
| 9896 | |||||
| 9897 | return Incompatible; | ||||
| 9898 | } | ||||
| 9899 | |||||
| 9900 | // Diagnose attempts to convert between __ibm128, __float128 and long double | ||||
| 9901 | // where such conversions currently can't be handled. | ||||
| 9902 | if (unsupportedTypeConversion(*this, LHSType, RHSType)) | ||||
| 9903 | return Incompatible; | ||||
| 9904 | |||||
| 9905 | // Disallow assigning a _Complex to a real type in C++ mode since it simply | ||||
| 9906 | // discards the imaginary part. | ||||
| 9907 | if (getLangOpts().CPlusPlus && RHSType->getAs<ComplexType>() && | ||||
| 9908 | !LHSType->getAs<ComplexType>()) | ||||
| 9909 | return Incompatible; | ||||
| 9910 | |||||
| 9911 | // Arithmetic conversions. | ||||
| 9912 | if (LHSType->isArithmeticType() && RHSType->isArithmeticType() && | ||||
| 9913 | !(getLangOpts().CPlusPlus && LHSType->isEnumeralType())) { | ||||
| 9914 | if (ConvertRHS) | ||||
| 9915 | Kind = PrepareScalarCast(RHS, LHSType); | ||||
| 9916 | return Compatible; | ||||
| 9917 | } | ||||
| 9918 | |||||
| 9919 | // Conversions to normal pointers. | ||||
| 9920 | if (const PointerType *LHSPointer
| ||||
| 9921 | // U* -> T* | ||||
| 9922 | if (isa<PointerType>(RHSType)) { | ||||
| 9923 | LangAS AddrSpaceL = LHSPointer->getPointeeType().getAddressSpace(); | ||||
| 9924 | LangAS AddrSpaceR = RHSType->getPointeeType().getAddressSpace(); | ||||
| 9925 | if (AddrSpaceL != AddrSpaceR) | ||||
| 9926 | Kind = CK_AddressSpaceConversion; | ||||
| 9927 | else if (Context.hasCvrSimilarType(RHSType, LHSType)) | ||||
| 9928 | Kind = CK_NoOp; | ||||
| 9929 | else | ||||
| 9930 | Kind = CK_BitCast; | ||||
| 9931 | return checkPointerTypesForAssignment(*this, LHSType, RHSType, | ||||
| 9932 | RHS.get()->getBeginLoc()); | ||||
| 9933 | } | ||||
| 9934 | |||||
| 9935 | // int -> T* | ||||
| 9936 | if (RHSType->isIntegerType()) { | ||||
| 9937 | Kind = CK_IntegralToPointer; // FIXME: null? | ||||
| 9938 | return IntToPointer; | ||||
| 9939 | } | ||||
| 9940 | |||||
| 9941 | // C pointers are not compatible with ObjC object pointers, | ||||
| 9942 | // with two exceptions: | ||||
| 9943 | if (isa<ObjCObjectPointerType>(RHSType)) { | ||||
| 9944 | // - conversions to void* | ||||
| 9945 | if (LHSPointer->getPointeeType()->isVoidType()) { | ||||
| 9946 | Kind = CK_BitCast; | ||||
| 9947 | return Compatible; | ||||
| 9948 | } | ||||
| 9949 | |||||
| 9950 | // - conversions from 'Class' to the redefinition type | ||||
| 9951 | if (RHSType->isObjCClassType() && | ||||
| 9952 | Context.hasSameType(LHSType, | ||||
| 9953 | Context.getObjCClassRedefinitionType())) { | ||||
| 9954 | Kind = CK_BitCast; | ||||
| 9955 | return Compatible; | ||||
| 9956 | } | ||||
| 9957 | |||||
| 9958 | Kind = CK_BitCast; | ||||
| 9959 | return IncompatiblePointer; | ||||
| 9960 | } | ||||
| 9961 | |||||
| 9962 | // U^ -> void* | ||||
| 9963 | if (RHSType->getAs<BlockPointerType>()) { | ||||
| 9964 | if (LHSPointer->getPointeeType()->isVoidType()) { | ||||
| 9965 | LangAS AddrSpaceL = LHSPointer->getPointeeType().getAddressSpace(); | ||||
| 9966 | LangAS AddrSpaceR = RHSType->getAs<BlockPointerType>() | ||||
| 9967 | ->getPointeeType() | ||||
| 9968 | .getAddressSpace(); | ||||
| 9969 | Kind = | ||||
| 9970 | AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast; | ||||
| 9971 | return Compatible; | ||||
| 9972 | } | ||||
| 9973 | } | ||||
| 9974 | |||||
| 9975 | return Incompatible; | ||||
| 9976 | } | ||||
| 9977 | |||||
| 9978 | // Conversions to block pointers. | ||||
| 9979 | if (isa<BlockPointerType>(LHSType)) { | ||||
| 9980 | // U^ -> T^ | ||||
| 9981 | if (RHSType->isBlockPointerType()) { | ||||
| 9982 | LangAS AddrSpaceL = LHSType->getAs<BlockPointerType>() | ||||
| |||||
| 9983 | ->getPointeeType() | ||||
| 9984 | .getAddressSpace(); | ||||
| 9985 | LangAS AddrSpaceR = RHSType->getAs<BlockPointerType>() | ||||
| 9986 | ->getPointeeType() | ||||
| 9987 | .getAddressSpace(); | ||||
| 9988 | Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast; | ||||
| 9989 | return checkBlockPointerTypesForAssignment(*this, LHSType, RHSType); | ||||
| 9990 | } | ||||
| 9991 | |||||
| 9992 | // int or null -> T^ | ||||
| 9993 | if (RHSType->isIntegerType()) { | ||||
| 9994 | Kind = CK_IntegralToPointer; // FIXME: null | ||||
| 9995 | return IntToBlockPointer; | ||||
| 9996 | } | ||||
| 9997 | |||||
| 9998 | // id -> T^ | ||||
| 9999 | if (getLangOpts().ObjC && RHSType->isObjCIdType()) { | ||||
| 10000 | Kind = CK_AnyPointerToBlockPointerCast; | ||||
| 10001 | return Compatible; | ||||
| 10002 | } | ||||
| 10003 | |||||
| 10004 | // void* -> T^ | ||||
| 10005 | if (const PointerType *RHSPT = RHSType->getAs<PointerType>()) | ||||
| 10006 | if (RHSPT->getPointeeType()->isVoidType()) { | ||||
| 10007 | Kind = CK_AnyPointerToBlockPointerCast; | ||||
| 10008 | return Compatible; | ||||
| 10009 | } | ||||
| 10010 | |||||
| 10011 | return Incompatible; | ||||
| 10012 | } | ||||
| 10013 | |||||
| 10014 | // Conversions to Objective-C pointers. | ||||
| 10015 | if (isa<ObjCObjectPointerType>(LHSType)) { | ||||
| 10016 | // A* -> B* | ||||
| 10017 | if (RHSType->isObjCObjectPointerType()) { | ||||
| 10018 | Kind = CK_BitCast; | ||||
| 10019 | Sema::AssignConvertType result = | ||||
| 10020 | checkObjCPointerTypesForAssignment(*this, LHSType, RHSType); | ||||
| 10021 | if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() && | ||||
| 10022 | result == Compatible && | ||||
| 10023 | !CheckObjCARCUnavailableWeakConversion(OrigLHSType, RHSType)) | ||||
| 10024 | result = IncompatibleObjCWeakRef; | ||||
| 10025 | return result; | ||||
| 10026 | } | ||||
| 10027 | |||||
| 10028 | // int or null -> A* | ||||
| 10029 | if (RHSType->isIntegerType()) { | ||||
| 10030 | Kind = CK_IntegralToPointer; // FIXME: null | ||||
| 10031 | return IntToPointer; | ||||
| 10032 | } | ||||
| 10033 | |||||
| 10034 | // In general, C pointers are not compatible with ObjC object pointers, | ||||
| 10035 | // with two exceptions: | ||||
| 10036 | if (isa<PointerType>(RHSType)) { | ||||
| 10037 | Kind = CK_CPointerToObjCPointerCast; | ||||
| 10038 | |||||
| 10039 | // - conversions from 'void*' | ||||
| 10040 | if (RHSType->isVoidPointerType()) { | ||||
| 10041 | return Compatible; | ||||
| 10042 | } | ||||
| 10043 | |||||
| 10044 | // - conversions to 'Class' from its redefinition type | ||||
| 10045 | if (LHSType->isObjCClassType() && | ||||
| 10046 | Context.hasSameType(RHSType, | ||||
| 10047 | Context.getObjCClassRedefinitionType())) { | ||||
| 10048 | return Compatible; | ||||
| 10049 | } | ||||
| 10050 | |||||
| 10051 | return IncompatiblePointer; | ||||
| 10052 | } | ||||
| 10053 | |||||
| 10054 | // Only under strict condition T^ is compatible with an Objective-C pointer. | ||||
| 10055 | if (RHSType->isBlockPointerType() && | ||||
| 10056 | LHSType->isBlockCompatibleObjCPointerType(Context)) { | ||||
| 10057 | if (ConvertRHS) | ||||
| 10058 | maybeExtendBlockObject(RHS); | ||||
| 10059 | Kind = CK_BlockPointerToObjCPointerCast; | ||||
| 10060 | return Compatible; | ||||
| 10061 | } | ||||
| 10062 | |||||
| 10063 | return Incompatible; | ||||
| 10064 | } | ||||
| 10065 | |||||
| 10066 | // Conversions from pointers that are not covered by the above. | ||||
| 10067 | if (isa<PointerType>(RHSType)) { | ||||
| 10068 | // T* -> _Bool | ||||
| 10069 | if (LHSType == Context.BoolTy) { | ||||
| 10070 | Kind = CK_PointerToBoolean; | ||||
| 10071 | return Compatible; | ||||
| 10072 | } | ||||
| 10073 | |||||
| 10074 | // T* -> int | ||||
| 10075 | if (LHSType->isIntegerType()) { | ||||
| 10076 | Kind = CK_PointerToIntegral; | ||||
| 10077 | return PointerToInt; | ||||
| 10078 | } | ||||
| 10079 | |||||
| 10080 | return Incompatible; | ||||
| 10081 | } | ||||
| 10082 | |||||
| 10083 | // Conversions from Objective-C pointers that are not covered by the above. | ||||
| 10084 | if (isa<ObjCObjectPointerType>(RHSType)) { | ||||
| 10085 | // T* -> _Bool | ||||
| 10086 | if (LHSType == Context.BoolTy) { | ||||
| 10087 | Kind = CK_PointerToBoolean; | ||||
| 10088 | return Compatible; | ||||
| 10089 | } | ||||
| 10090 | |||||
| 10091 | // T* -> int | ||||
| 10092 | if (LHSType->isIntegerType()) { | ||||
| 10093 | Kind = CK_PointerToIntegral; | ||||
| 10094 | return PointerToInt; | ||||
| 10095 | } | ||||
| 10096 | |||||
| 10097 | return Incompatible; | ||||
| 10098 | } | ||||
| 10099 | |||||
| 10100 | // struct A -> struct B | ||||
| 10101 | if (isa<TagType>(LHSType) && isa<TagType>(RHSType)) { | ||||
| 10102 | if (Context.typesAreCompatible(LHSType, RHSType)) { | ||||
| 10103 | Kind = CK_NoOp; | ||||
| 10104 | return Compatible; | ||||
| 10105 | } | ||||
| 10106 | } | ||||
| 10107 | |||||
| 10108 | if (LHSType->isSamplerT() && RHSType->isIntegerType()) { | ||||
| 10109 | Kind = CK_IntToOCLSampler; | ||||
| 10110 | return Compatible; | ||||
| 10111 | } | ||||
| 10112 | |||||
| 10113 | return Incompatible; | ||||
| 10114 | } | ||||
| 10115 | |||||
| 10116 | /// Constructs a transparent union from an expression that is | ||||
| 10117 | /// used to initialize the transparent union. | ||||
| 10118 | static void ConstructTransparentUnion(Sema &S, ASTContext &C, | ||||
| 10119 | ExprResult &EResult, QualType UnionType, | ||||
| 10120 | FieldDecl *Field) { | ||||
| 10121 | // Build an initializer list that designates the appropriate member | ||||
| 10122 | // of the transparent union. | ||||
| 10123 | Expr *E = EResult.get(); | ||||
| 10124 | InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(), | ||||
| 10125 | E, SourceLocation()); | ||||
| 10126 | Initializer->setType(UnionType); | ||||
| 10127 | Initializer->setInitializedFieldInUnion(Field); | ||||
| 10128 | |||||
| 10129 | // Build a compound literal constructing a value of the transparent | ||||
| 10130 | // union type from this initializer list. | ||||
| 10131 | TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType); | ||||
| 10132 | EResult = new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType, | ||||
| 10133 | VK_PRValue, Initializer, false); | ||||
| 10134 | } | ||||
| 10135 | |||||
| 10136 | Sema::AssignConvertType | ||||
| 10137 | Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType, | ||||
| 10138 | ExprResult &RHS) { | ||||
| 10139 | QualType RHSType = RHS.get()->getType(); | ||||
| 10140 | |||||
| 10141 | // If the ArgType is a Union type, we want to handle a potential | ||||
| 10142 | // transparent_union GCC extension. | ||||
| 10143 | const RecordType *UT = ArgType->getAsUnionType(); | ||||
| 10144 | if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>()) | ||||
| 10145 | return Incompatible; | ||||
| 10146 | |||||
| 10147 | // The field to initialize within the transparent union. | ||||
| 10148 | RecordDecl *UD = UT->getDecl(); | ||||
| 10149 | FieldDecl *InitField = nullptr; | ||||
| 10150 | // It's compatible if the expression matches any of the fields. | ||||
| 10151 | for (auto *it : UD->fields()) { | ||||
| 10152 | if (it->getType()->isPointerType()) { | ||||
| 10153 | // If the transparent union contains a pointer type, we allow: | ||||
| 10154 | // 1) void pointer | ||||
| 10155 | // 2) null pointer constant | ||||
| 10156 | if (RHSType->isPointerType()) | ||||
| 10157 | if (RHSType->castAs<PointerType>()->getPointeeType()->isVoidType()) { | ||||
| 10158 | RHS = ImpCastExprToType(RHS.get(), it->getType(), CK_BitCast); | ||||
| 10159 | InitField = it; | ||||
| 10160 | break; | ||||
| 10161 | } | ||||
| 10162 | |||||
| 10163 | if (RHS.get()->isNullPointerConstant(Context, | ||||
| 10164 | Expr::NPC_ValueDependentIsNull)) { | ||||
| 10165 | RHS = ImpCastExprToType(RHS.get(), it->getType(), | ||||
| 10166 | CK_NullToPointer); | ||||
| 10167 | InitField = it; | ||||
| 10168 | break; | ||||
| 10169 | } | ||||
| 10170 | } | ||||
| 10171 | |||||
| 10172 | CastKind Kind; | ||||
| 10173 | if (CheckAssignmentConstraints(it->getType(), RHS, Kind) | ||||
| 10174 | == Compatible) { | ||||
| 10175 | RHS = ImpCastExprToType(RHS.get(), it->getType(), Kind); | ||||
| 10176 | InitField = it; | ||||
| 10177 | break; | ||||
| 10178 | } | ||||
| 10179 | } | ||||
| 10180 | |||||
| 10181 | if (!InitField) | ||||
| 10182 | return Incompatible; | ||||
| 10183 | |||||
| 10184 | ConstructTransparentUnion(*this, Context, RHS, ArgType, InitField); | ||||
| 10185 | return Compatible; | ||||
| 10186 | } | ||||
| 10187 | |||||
| 10188 | Sema::AssignConvertType | ||||
| 10189 | Sema::CheckSingleAssignmentConstraints(QualType LHSType, ExprResult &CallerRHS, | ||||
| 10190 | bool Diagnose, | ||||
| 10191 | bool DiagnoseCFAudited, | ||||
| 10192 | bool ConvertRHS) { | ||||
| 10193 | // We need to be able to tell the caller whether we diagnosed a problem, if | ||||
| 10194 | // they ask us to issue diagnostics. | ||||
| 10195 | assert((ConvertRHS || !Diagnose) && "can't indicate whether we diagnosed")(static_cast <bool> ((ConvertRHS || !Diagnose) && "can't indicate whether we diagnosed") ? void (0) : __assert_fail ("(ConvertRHS || !Diagnose) && \"can't indicate whether we diagnosed\"" , "clang/lib/Sema/SemaExpr.cpp", 10195, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 10196 | |||||
| 10197 | // If ConvertRHS is false, we want to leave the caller's RHS untouched. Sadly, | ||||
| 10198 | // we can't avoid *all* modifications at the moment, so we need some somewhere | ||||
| 10199 | // to put the updated value. | ||||
| 10200 | ExprResult LocalRHS = CallerRHS; | ||||
| 10201 | ExprResult &RHS = ConvertRHS ? CallerRHS : LocalRHS; | ||||
| 10202 | |||||
| 10203 | if (const auto *LHSPtrType = LHSType->getAs<PointerType>()) { | ||||
| 10204 | if (const auto *RHSPtrType = RHS.get()->getType()->getAs<PointerType>()) { | ||||
| 10205 | if (RHSPtrType->getPointeeType()->hasAttr(attr::NoDeref) && | ||||
| 10206 | !LHSPtrType->getPointeeType()->hasAttr(attr::NoDeref)) { | ||||
| 10207 | Diag(RHS.get()->getExprLoc(), | ||||
| 10208 | diag::warn_noderef_to_dereferenceable_pointer) | ||||
| 10209 | << RHS.get()->getSourceRange(); | ||||
| 10210 | } | ||||
| 10211 | } | ||||
| 10212 | } | ||||
| 10213 | |||||
| 10214 | if (getLangOpts().CPlusPlus) { | ||||
| 10215 | if (!LHSType->isRecordType() && !LHSType->isAtomicType()) { | ||||
| 10216 | // C++ 5.17p3: If the left operand is not of class type, the | ||||
| 10217 | // expression is implicitly converted (C++ 4) to the | ||||
| 10218 | // cv-unqualified type of the left operand. | ||||
| 10219 | QualType RHSType = RHS.get()->getType(); | ||||
| 10220 | if (Diagnose) { | ||||
| 10221 | RHS = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(), | ||||
| 10222 | AA_Assigning); | ||||
| 10223 | } else { | ||||
| 10224 | ImplicitConversionSequence ICS = | ||||
| 10225 | TryImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(), | ||||
| 10226 | /*SuppressUserConversions=*/false, | ||||
| 10227 | AllowedExplicit::None, | ||||
| 10228 | /*InOverloadResolution=*/false, | ||||
| 10229 | /*CStyle=*/false, | ||||
| 10230 | /*AllowObjCWritebackConversion=*/false); | ||||
| 10231 | if (ICS.isFailure()) | ||||
| 10232 | return Incompatible; | ||||
| 10233 | RHS = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(), | ||||
| 10234 | ICS, AA_Assigning); | ||||
| 10235 | } | ||||
| 10236 | if (RHS.isInvalid()) | ||||
| 10237 | return Incompatible; | ||||
| 10238 | Sema::AssignConvertType result = Compatible; | ||||
| 10239 | if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() && | ||||
| 10240 | !CheckObjCARCUnavailableWeakConversion(LHSType, RHSType)) | ||||
| 10241 | result = IncompatibleObjCWeakRef; | ||||
| 10242 | return result; | ||||
| 10243 | } | ||||
| 10244 | |||||
| 10245 | // FIXME: Currently, we fall through and treat C++ classes like C | ||||
| 10246 | // structures. | ||||
| 10247 | // FIXME: We also fall through for atomics; not sure what should | ||||
| 10248 | // happen there, though. | ||||
| 10249 | } else if (RHS.get()->getType() == Context.OverloadTy) { | ||||
| 10250 | // As a set of extensions to C, we support overloading on functions. These | ||||
| 10251 | // functions need to be resolved here. | ||||
| 10252 | DeclAccessPair DAP; | ||||
| 10253 | if (FunctionDecl *FD = ResolveAddressOfOverloadedFunction( | ||||
| 10254 | RHS.get(), LHSType, /*Complain=*/false, DAP)) | ||||
| 10255 | RHS = FixOverloadedFunctionReference(RHS.get(), DAP, FD); | ||||
| 10256 | else | ||||
| 10257 | return Incompatible; | ||||
| 10258 | } | ||||
| 10259 | |||||
| 10260 | // This check seems unnatural, however it is necessary to ensure the proper | ||||
| 10261 | // conversion of functions/arrays. If the conversion were done for all | ||||
| 10262 | // DeclExpr's (created by ActOnIdExpression), it would mess up the unary | ||||
| 10263 | // expressions that suppress this implicit conversion (&, sizeof). This needs | ||||
| 10264 | // to happen before we check for null pointer conversions because C does not | ||||
| 10265 | // undergo the same implicit conversions as C++ does above (by the calls to | ||||
| 10266 | // TryImplicitConversion() and PerformImplicitConversion()) which insert the | ||||
| 10267 | // lvalue to rvalue cast before checking for null pointer constraints. This | ||||
| 10268 | // addresses code like: nullptr_t val; int *ptr; ptr = val; | ||||
| 10269 | // | ||||
| 10270 | // Suppress this for references: C++ 8.5.3p5. | ||||
| 10271 | if (!LHSType->isReferenceType()) { | ||||
| 10272 | // FIXME: We potentially allocate here even if ConvertRHS is false. | ||||
| 10273 | RHS = DefaultFunctionArrayLvalueConversion(RHS.get(), Diagnose); | ||||
| 10274 | if (RHS.isInvalid()) | ||||
| 10275 | return Incompatible; | ||||
| 10276 | } | ||||
| 10277 | |||||
| 10278 | // C99 6.5.16.1p1: the left operand is a pointer and the right is | ||||
| 10279 | // a null pointer constant. | ||||
| 10280 | if ((LHSType->isPointerType() || LHSType->isObjCObjectPointerType() || | ||||
| 10281 | LHSType->isBlockPointerType()) && | ||||
| 10282 | RHS.get()->isNullPointerConstant(Context, | ||||
| 10283 | Expr::NPC_ValueDependentIsNull)) { | ||||
| 10284 | if (Diagnose || ConvertRHS) { | ||||
| 10285 | CastKind Kind; | ||||
| 10286 | CXXCastPath Path; | ||||
| 10287 | CheckPointerConversion(RHS.get(), LHSType, Kind, Path, | ||||
| 10288 | /*IgnoreBaseAccess=*/false, Diagnose); | ||||
| 10289 | if (ConvertRHS) | ||||
| 10290 | RHS = ImpCastExprToType(RHS.get(), LHSType, Kind, VK_PRValue, &Path); | ||||
| 10291 | } | ||||
| 10292 | return Compatible; | ||||
| 10293 | } | ||||
| 10294 | |||||
| 10295 | // OpenCL queue_t type assignment. | ||||
| 10296 | if (LHSType->isQueueT() && RHS.get()->isNullPointerConstant( | ||||
| 10297 | Context, Expr::NPC_ValueDependentIsNull)) { | ||||
| 10298 | RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer); | ||||
| 10299 | return Compatible; | ||||
| 10300 | } | ||||
| 10301 | |||||
| 10302 | CastKind Kind; | ||||
| 10303 | Sema::AssignConvertType result = | ||||
| 10304 | CheckAssignmentConstraints(LHSType, RHS, Kind, ConvertRHS); | ||||
| 10305 | |||||
| 10306 | // C99 6.5.16.1p2: The value of the right operand is converted to the | ||||
| 10307 | // type of the assignment expression. | ||||
| 10308 | // CheckAssignmentConstraints allows the left-hand side to be a reference, | ||||
| 10309 | // so that we can use references in built-in functions even in C. | ||||
| 10310 | // The getNonReferenceType() call makes sure that the resulting expression | ||||
| 10311 | // does not have reference type. | ||||
| 10312 | if (result != Incompatible && RHS.get()->getType() != LHSType) { | ||||
| 10313 | QualType Ty = LHSType.getNonLValueExprType(Context); | ||||
| 10314 | Expr *E = RHS.get(); | ||||
| 10315 | |||||
| 10316 | // Check for various Objective-C errors. If we are not reporting | ||||
| 10317 | // diagnostics and just checking for errors, e.g., during overload | ||||
| 10318 | // resolution, return Incompatible to indicate the failure. | ||||
| 10319 | if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() && | ||||
| 10320 | CheckObjCConversion(SourceRange(), Ty, E, CCK_ImplicitConversion, | ||||
| 10321 | Diagnose, DiagnoseCFAudited) != ACR_okay) { | ||||
| 10322 | if (!Diagnose) | ||||
| 10323 | return Incompatible; | ||||
| 10324 | } | ||||
| 10325 | if (getLangOpts().ObjC && | ||||
| 10326 | (CheckObjCBridgeRelatedConversions(E->getBeginLoc(), LHSType, | ||||
| 10327 | E->getType(), E, Diagnose) || | ||||
| 10328 | CheckConversionToObjCLiteral(LHSType, E, Diagnose))) { | ||||
| 10329 | if (!Diagnose) | ||||
| 10330 | return Incompatible; | ||||
| 10331 | // Replace the expression with a corrected version and continue so we | ||||
| 10332 | // can find further errors. | ||||
| 10333 | RHS = E; | ||||
| 10334 | return Compatible; | ||||
| 10335 | } | ||||
| 10336 | |||||
| 10337 | if (ConvertRHS) | ||||
| 10338 | RHS = ImpCastExprToType(E, Ty, Kind); | ||||
| 10339 | } | ||||
| 10340 | |||||
| 10341 | return result; | ||||
| 10342 | } | ||||
| 10343 | |||||
| 10344 | namespace { | ||||
| 10345 | /// The original operand to an operator, prior to the application of the usual | ||||
| 10346 | /// arithmetic conversions and converting the arguments of a builtin operator | ||||
| 10347 | /// candidate. | ||||
| 10348 | struct OriginalOperand { | ||||
| 10349 | explicit OriginalOperand(Expr *Op) : Orig(Op), Conversion(nullptr) { | ||||
| 10350 | if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Op)) | ||||
| 10351 | Op = MTE->getSubExpr(); | ||||
| 10352 | if (auto *BTE = dyn_cast<CXXBindTemporaryExpr>(Op)) | ||||
| 10353 | Op = BTE->getSubExpr(); | ||||
| 10354 | if (auto *ICE = dyn_cast<ImplicitCastExpr>(Op)) { | ||||
| 10355 | Orig = ICE->getSubExprAsWritten(); | ||||
| 10356 | Conversion = ICE->getConversionFunction(); | ||||
| 10357 | } | ||||
| 10358 | } | ||||
| 10359 | |||||
| 10360 | QualType getType() const { return Orig->getType(); } | ||||
| 10361 | |||||
| 10362 | Expr *Orig; | ||||
| 10363 | NamedDecl *Conversion; | ||||
| 10364 | }; | ||||
| 10365 | } | ||||
| 10366 | |||||
| 10367 | QualType Sema::InvalidOperands(SourceLocation Loc, ExprResult &LHS, | ||||
| 10368 | ExprResult &RHS) { | ||||
| 10369 | OriginalOperand OrigLHS(LHS.get()), OrigRHS(RHS.get()); | ||||
| 10370 | |||||
| 10371 | Diag(Loc, diag::err_typecheck_invalid_operands) | ||||
| 10372 | << OrigLHS.getType() << OrigRHS.getType() | ||||
| 10373 | << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); | ||||
| 10374 | |||||
| 10375 | // If a user-defined conversion was applied to either of the operands prior | ||||
| 10376 | // to applying the built-in operator rules, tell the user about it. | ||||
| 10377 | if (OrigLHS.Conversion) { | ||||
| 10378 | Diag(OrigLHS.Conversion->getLocation(), | ||||
| 10379 | diag::note_typecheck_invalid_operands_converted) | ||||
| 10380 | << 0 << LHS.get()->getType(); | ||||
| 10381 | } | ||||
| 10382 | if (OrigRHS.Conversion) { | ||||
| 10383 | Diag(OrigRHS.Conversion->getLocation(), | ||||
| 10384 | diag::note_typecheck_invalid_operands_converted) | ||||
| 10385 | << 1 << RHS.get()->getType(); | ||||
| 10386 | } | ||||
| 10387 | |||||
| 10388 | return QualType(); | ||||
| 10389 | } | ||||
| 10390 | |||||
| 10391 | // Diagnose cases where a scalar was implicitly converted to a vector and | ||||
| 10392 | // diagnose the underlying types. Otherwise, diagnose the error | ||||
| 10393 | // as invalid vector logical operands for non-C++ cases. | ||||
| 10394 | QualType Sema::InvalidLogicalVectorOperands(SourceLocation Loc, ExprResult &LHS, | ||||
| 10395 | ExprResult &RHS) { | ||||
| 10396 | QualType LHSType = LHS.get()->IgnoreImpCasts()->getType(); | ||||
| 10397 | QualType RHSType = RHS.get()->IgnoreImpCasts()->getType(); | ||||
| 10398 | |||||
| 10399 | bool LHSNatVec = LHSType->isVectorType(); | ||||
| 10400 | bool RHSNatVec = RHSType->isVectorType(); | ||||
| 10401 | |||||
| 10402 | if (!(LHSNatVec && RHSNatVec)) { | ||||
| 10403 | Expr *Vector = LHSNatVec ? LHS.get() : RHS.get(); | ||||
| 10404 | Expr *NonVector = !LHSNatVec ? LHS.get() : RHS.get(); | ||||
| 10405 | Diag(Loc, diag::err_typecheck_logical_vector_expr_gnu_cpp_restrict) | ||||
| 10406 | << 0 << Vector->getType() << NonVector->IgnoreImpCasts()->getType() | ||||
| 10407 | << Vector->getSourceRange(); | ||||
| 10408 | return QualType(); | ||||
| 10409 | } | ||||
| 10410 | |||||
| 10411 | Diag(Loc, diag::err_typecheck_logical_vector_expr_gnu_cpp_restrict) | ||||
| 10412 | << 1 << LHSType << RHSType << LHS.get()->getSourceRange() | ||||
| 10413 | << RHS.get()->getSourceRange(); | ||||
| 10414 | |||||
| 10415 | return QualType(); | ||||
| 10416 | } | ||||
| 10417 | |||||
| 10418 | /// Try to convert a value of non-vector type to a vector type by converting | ||||
| 10419 | /// the type to the element type of the vector and then performing a splat. | ||||
| 10420 | /// If the language is OpenCL, we only use conversions that promote scalar | ||||
| 10421 | /// rank; for C, Obj-C, and C++ we allow any real scalar conversion except | ||||
| 10422 | /// for float->int. | ||||
| 10423 | /// | ||||
| 10424 | /// OpenCL V2.0 6.2.6.p2: | ||||
| 10425 | /// An error shall occur if any scalar operand type has greater rank | ||||
| 10426 | /// than the type of the vector element. | ||||
| 10427 | /// | ||||
| 10428 | /// \param scalar - if non-null, actually perform the conversions | ||||
| 10429 | /// \return true if the operation fails (but without diagnosing the failure) | ||||
| 10430 | static bool tryVectorConvertAndSplat(Sema &S, ExprResult *scalar, | ||||
| 10431 | QualType scalarTy, | ||||
| 10432 | QualType vectorEltTy, | ||||
| 10433 | QualType vectorTy, | ||||
| 10434 | unsigned &DiagID) { | ||||
| 10435 | // The conversion to apply to the scalar before splatting it, | ||||
| 10436 | // if necessary. | ||||
| 10437 | CastKind scalarCast = CK_NoOp; | ||||
| 10438 | |||||
| 10439 | if (vectorEltTy->isIntegralType(S.Context)) { | ||||
| 10440 | if (S.getLangOpts().OpenCL && (scalarTy->isRealFloatingType() || | ||||
| 10441 | (scalarTy->isIntegerType() && | ||||
| 10442 | S.Context.getIntegerTypeOrder(vectorEltTy, scalarTy) < 0))) { | ||||
| 10443 | DiagID = diag::err_opencl_scalar_type_rank_greater_than_vector_type; | ||||
| 10444 | return true; | ||||
| 10445 | } | ||||
| 10446 | if (!scalarTy->isIntegralType(S.Context)) | ||||
| 10447 | return true; | ||||
| 10448 | scalarCast = CK_IntegralCast; | ||||
| 10449 | } else if (vectorEltTy->isRealFloatingType()) { | ||||
| 10450 | if (scalarTy->isRealFloatingType()) { | ||||
| 10451 | if (S.getLangOpts().OpenCL && | ||||
| 10452 | S.Context.getFloatingTypeOrder(vectorEltTy, scalarTy) < 0) { | ||||
| 10453 | DiagID = diag::err_opencl_scalar_type_rank_greater_than_vector_type; | ||||
| 10454 | return true; | ||||
| 10455 | } | ||||
| 10456 | scalarCast = CK_FloatingCast; | ||||
| 10457 | } | ||||
| 10458 | else if (scalarTy->isIntegralType(S.Context)) | ||||
| 10459 | scalarCast = CK_IntegralToFloating; | ||||
| 10460 | else | ||||
| 10461 | return true; | ||||
| 10462 | } else { | ||||
| 10463 | return true; | ||||
| 10464 | } | ||||
| 10465 | |||||
| 10466 | // Adjust scalar if desired. | ||||
| 10467 | if (scalar) { | ||||
| 10468 | if (scalarCast != CK_NoOp) | ||||
| 10469 | *scalar = S.ImpCastExprToType(scalar->get(), vectorEltTy, scalarCast); | ||||
| 10470 | *scalar = S.ImpCastExprToType(scalar->get(), vectorTy, CK_VectorSplat); | ||||
| 10471 | } | ||||
| 10472 | return false; | ||||
| 10473 | } | ||||
| 10474 | |||||
| 10475 | /// Convert vector E to a vector with the same number of elements but different | ||||
| 10476 | /// element type. | ||||
| 10477 | static ExprResult convertVector(Expr *E, QualType ElementType, Sema &S) { | ||||
| 10478 | const auto *VecTy = E->getType()->getAs<VectorType>(); | ||||
| 10479 | assert(VecTy && "Expression E must be a vector")(static_cast <bool> (VecTy && "Expression E must be a vector" ) ? void (0) : __assert_fail ("VecTy && \"Expression E must be a vector\"" , "clang/lib/Sema/SemaExpr.cpp", 10479, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 10480 | QualType NewVecTy = | ||||
| 10481 | VecTy->isExtVectorType() | ||||
| 10482 | ? S.Context.getExtVectorType(ElementType, VecTy->getNumElements()) | ||||
| 10483 | : S.Context.getVectorType(ElementType, VecTy->getNumElements(), | ||||
| 10484 | VecTy->getVectorKind()); | ||||
| 10485 | |||||
| 10486 | // Look through the implicit cast. Return the subexpression if its type is | ||||
| 10487 | // NewVecTy. | ||||
| 10488 | if (auto *ICE = dyn_cast<ImplicitCastExpr>(E)) | ||||
| 10489 | if (ICE->getSubExpr()->getType() == NewVecTy) | ||||
| 10490 | return ICE->getSubExpr(); | ||||
| 10491 | |||||
| 10492 | auto Cast = ElementType->isIntegerType() ? CK_IntegralCast : CK_FloatingCast; | ||||
| 10493 | return S.ImpCastExprToType(E, NewVecTy, Cast); | ||||
| 10494 | } | ||||
| 10495 | |||||
| 10496 | /// Test if a (constant) integer Int can be casted to another integer type | ||||
| 10497 | /// IntTy without losing precision. | ||||
| 10498 | static bool canConvertIntToOtherIntTy(Sema &S, ExprResult *Int, | ||||
| 10499 | QualType OtherIntTy) { | ||||
| 10500 | QualType IntTy = Int->get()->getType().getUnqualifiedType(); | ||||
| 10501 | |||||
| 10502 | // Reject cases where the value of the Int is unknown as that would | ||||
| 10503 | // possibly cause truncation, but accept cases where the scalar can be | ||||
| 10504 | // demoted without loss of precision. | ||||
| 10505 | Expr::EvalResult EVResult; | ||||
| 10506 | bool CstInt = Int->get()->EvaluateAsInt(EVResult, S.Context); | ||||
| 10507 | int Order = S.Context.getIntegerTypeOrder(OtherIntTy, IntTy); | ||||
| 10508 | bool IntSigned = IntTy->hasSignedIntegerRepresentation(); | ||||
| 10509 | bool OtherIntSigned = OtherIntTy->hasSignedIntegerRepresentation(); | ||||
| 10510 | |||||
| 10511 | if (CstInt) { | ||||
| 10512 | // If the scalar is constant and is of a higher order and has more active | ||||
| 10513 | // bits that the vector element type, reject it. | ||||
| 10514 | llvm::APSInt Result = EVResult.Val.getInt(); | ||||
| 10515 | unsigned NumBits = IntSigned | ||||
| 10516 | ? (Result.isNegative() ? Result.getSignificantBits() | ||||
| 10517 | : Result.getActiveBits()) | ||||
| 10518 | : Result.getActiveBits(); | ||||
| 10519 | if (Order < 0 && S.Context.getIntWidth(OtherIntTy) < NumBits) | ||||
| 10520 | return true; | ||||
| 10521 | |||||
| 10522 | // If the signedness of the scalar type and the vector element type | ||||
| 10523 | // differs and the number of bits is greater than that of the vector | ||||
| 10524 | // element reject it. | ||||
| 10525 | return (IntSigned != OtherIntSigned && | ||||
| 10526 | NumBits > S.Context.getIntWidth(OtherIntTy)); | ||||
| 10527 | } | ||||
| 10528 | |||||
| 10529 | // Reject cases where the value of the scalar is not constant and it's | ||||
| 10530 | // order is greater than that of the vector element type. | ||||
| 10531 | return (Order < 0); | ||||
| 10532 | } | ||||
| 10533 | |||||
| 10534 | /// Test if a (constant) integer Int can be casted to floating point type | ||||
| 10535 | /// FloatTy without losing precision. | ||||
| 10536 | static bool canConvertIntTyToFloatTy(Sema &S, ExprResult *Int, | ||||
| 10537 | QualType FloatTy) { | ||||
| 10538 | QualType IntTy = Int->get()->getType().getUnqualifiedType(); | ||||
| 10539 | |||||
| 10540 | // Determine if the integer constant can be expressed as a floating point | ||||
| 10541 | // number of the appropriate type. | ||||
| 10542 | Expr::EvalResult EVResult; | ||||
| 10543 | bool CstInt = Int->get()->EvaluateAsInt(EVResult, S.Context); | ||||
| 10544 | |||||
| 10545 | uint64_t Bits = 0; | ||||
| 10546 | if (CstInt) { | ||||
| 10547 | // Reject constants that would be truncated if they were converted to | ||||
| 10548 | // the floating point type. Test by simple to/from conversion. | ||||
| 10549 | // FIXME: Ideally the conversion to an APFloat and from an APFloat | ||||
| 10550 | // could be avoided if there was a convertFromAPInt method | ||||
| 10551 | // which could signal back if implicit truncation occurred. | ||||
| 10552 | llvm::APSInt Result = EVResult.Val.getInt(); | ||||
| 10553 | llvm::APFloat Float(S.Context.getFloatTypeSemantics(FloatTy)); | ||||
| 10554 | Float.convertFromAPInt(Result, IntTy->hasSignedIntegerRepresentation(), | ||||
| 10555 | llvm::APFloat::rmTowardZero); | ||||
| 10556 | llvm::APSInt ConvertBack(S.Context.getIntWidth(IntTy), | ||||
| 10557 | !IntTy->hasSignedIntegerRepresentation()); | ||||
| 10558 | bool Ignored = false; | ||||
| 10559 | Float.convertToInteger(ConvertBack, llvm::APFloat::rmNearestTiesToEven, | ||||
| 10560 | &Ignored); | ||||
| 10561 | if (Result != ConvertBack) | ||||
| 10562 | return true; | ||||
| 10563 | } else { | ||||
| 10564 | // Reject types that cannot be fully encoded into the mantissa of | ||||
| 10565 | // the float. | ||||
| 10566 | Bits = S.Context.getTypeSize(IntTy); | ||||
| 10567 | unsigned FloatPrec = llvm::APFloat::semanticsPrecision( | ||||
| 10568 | S.Context.getFloatTypeSemantics(FloatTy)); | ||||
| 10569 | if (Bits > FloatPrec) | ||||
| 10570 | return true; | ||||
| 10571 | } | ||||
| 10572 | |||||
| 10573 | return false; | ||||
| 10574 | } | ||||
| 10575 | |||||
| 10576 | /// Attempt to convert and splat Scalar into a vector whose types matches | ||||
| 10577 | /// Vector following GCC conversion rules. The rule is that implicit | ||||
| 10578 | /// conversion can occur when Scalar can be casted to match Vector's element | ||||
| 10579 | /// type without causing truncation of Scalar. | ||||
| 10580 | static bool tryGCCVectorConvertAndSplat(Sema &S, ExprResult *Scalar, | ||||
| 10581 | ExprResult *Vector) { | ||||
| 10582 | QualType ScalarTy = Scalar->get()->getType().getUnqualifiedType(); | ||||
| 10583 | QualType VectorTy = Vector->get()->getType().getUnqualifiedType(); | ||||
| 10584 | QualType VectorEltTy; | ||||
| 10585 | |||||
| 10586 | if (const auto *VT = VectorTy->getAs<VectorType>()) { | ||||
| 10587 | assert(!isa<ExtVectorType>(VT) &&(static_cast <bool> (!isa<ExtVectorType>(VT) && "ExtVectorTypes should not be handled here!") ? void (0) : __assert_fail ("!isa<ExtVectorType>(VT) && \"ExtVectorTypes should not be handled here!\"" , "clang/lib/Sema/SemaExpr.cpp", 10588, __extension__ __PRETTY_FUNCTION__ )) | ||||
| 10588 | "ExtVectorTypes should not be handled here!")(static_cast <bool> (!isa<ExtVectorType>(VT) && "ExtVectorTypes should not be handled here!") ? void (0) : __assert_fail ("!isa<ExtVectorType>(VT) && \"ExtVectorTypes should not be handled here!\"" , "clang/lib/Sema/SemaExpr.cpp", 10588, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 10589 | VectorEltTy = VT->getElementType(); | ||||
| 10590 | } else if (VectorTy->isVLSTBuiltinType()) { | ||||
| 10591 | VectorEltTy = | ||||
| 10592 | VectorTy->castAs<BuiltinType>()->getSveEltType(S.getASTContext()); | ||||
| 10593 | } else { | ||||
| 10594 | llvm_unreachable("Only Fixed-Length and SVE Vector types are handled here")::llvm::llvm_unreachable_internal("Only Fixed-Length and SVE Vector types are handled here" , "clang/lib/Sema/SemaExpr.cpp", 10594); | ||||
| 10595 | } | ||||
| 10596 | |||||
| 10597 | // Reject cases where the vector element type or the scalar element type are | ||||
| 10598 | // not integral or floating point types. | ||||
| 10599 | if (!VectorEltTy->isArithmeticType() || !ScalarTy->isArithmeticType()) | ||||
| 10600 | return true; | ||||
| 10601 | |||||
| 10602 | // The conversion to apply to the scalar before splatting it, | ||||
| 10603 | // if necessary. | ||||
| 10604 | CastKind ScalarCast = CK_NoOp; | ||||
| 10605 | |||||
| 10606 | // Accept cases where the vector elements are integers and the scalar is | ||||
| 10607 | // an integer. | ||||
| 10608 | // FIXME: Notionally if the scalar was a floating point value with a precise | ||||
| 10609 | // integral representation, we could cast it to an appropriate integer | ||||
| 10610 | // type and then perform the rest of the checks here. GCC will perform | ||||
| 10611 | // this conversion in some cases as determined by the input language. | ||||
| 10612 | // We should accept it on a language independent basis. | ||||
| 10613 | if (VectorEltTy->isIntegralType(S.Context) && | ||||
| 10614 | ScalarTy->isIntegralType(S.Context) && | ||||
| 10615 | S.Context.getIntegerTypeOrder(VectorEltTy, ScalarTy)) { | ||||
| 10616 | |||||
| 10617 | if (canConvertIntToOtherIntTy(S, Scalar, VectorEltTy)) | ||||
| 10618 | return true; | ||||
| 10619 | |||||
| 10620 | ScalarCast = CK_IntegralCast; | ||||
| 10621 | } else if (VectorEltTy->isIntegralType(S.Context) && | ||||
| 10622 | ScalarTy->isRealFloatingType()) { | ||||
| 10623 | if (S.Context.getTypeSize(VectorEltTy) == S.Context.getTypeSize(ScalarTy)) | ||||
| 10624 | ScalarCast = CK_FloatingToIntegral; | ||||
| 10625 | else | ||||
| 10626 | return true; | ||||
| 10627 | } else if (VectorEltTy->isRealFloatingType()) { | ||||
| 10628 | if (ScalarTy->isRealFloatingType()) { | ||||
| 10629 | |||||
| 10630 | // Reject cases where the scalar type is not a constant and has a higher | ||||
| 10631 | // Order than the vector element type. | ||||
| 10632 | llvm::APFloat Result(0.0); | ||||
| 10633 | |||||
| 10634 | // Determine whether this is a constant scalar. In the event that the | ||||
| 10635 | // value is dependent (and thus cannot be evaluated by the constant | ||||
| 10636 | // evaluator), skip the evaluation. This will then diagnose once the | ||||
| 10637 | // expression is instantiated. | ||||
| 10638 | bool CstScalar = Scalar->get()->isValueDependent() || | ||||
| 10639 | Scalar->get()->EvaluateAsFloat(Result, S.Context); | ||||
| 10640 | int Order = S.Context.getFloatingTypeOrder(VectorEltTy, ScalarTy); | ||||
| 10641 | if (!CstScalar && Order < 0) | ||||
| 10642 | return true; | ||||
| 10643 | |||||
| 10644 | // If the scalar cannot be safely casted to the vector element type, | ||||
| 10645 | // reject it. | ||||
| 10646 | if (CstScalar) { | ||||
| 10647 | bool Truncated = false; | ||||
| 10648 | Result.convert(S.Context.getFloatTypeSemantics(VectorEltTy), | ||||
| 10649 | llvm::APFloat::rmNearestTiesToEven, &Truncated); | ||||
| 10650 | if (Truncated) | ||||
| 10651 | return true; | ||||
| 10652 | } | ||||
| 10653 | |||||
| 10654 | ScalarCast = CK_FloatingCast; | ||||
| 10655 | } else if (ScalarTy->isIntegralType(S.Context)) { | ||||
| 10656 | if (canConvertIntTyToFloatTy(S, Scalar, VectorEltTy)) | ||||
| 10657 | return true; | ||||
| 10658 | |||||
| 10659 | ScalarCast = CK_IntegralToFloating; | ||||
| 10660 | } else | ||||
| 10661 | return true; | ||||
| 10662 | } else if (ScalarTy->isEnumeralType()) | ||||
| 10663 | return true; | ||||
| 10664 | |||||
| 10665 | // Adjust scalar if desired. | ||||
| 10666 | if (Scalar) { | ||||
| 10667 | if (ScalarCast != CK_NoOp) | ||||
| 10668 | *Scalar = S.ImpCastExprToType(Scalar->get(), VectorEltTy, ScalarCast); | ||||
| 10669 | *Scalar = S.ImpCastExprToType(Scalar->get(), VectorTy, CK_VectorSplat); | ||||
| 10670 | } | ||||
| 10671 | return false; | ||||
| 10672 | } | ||||
| 10673 | |||||
| 10674 | QualType Sema::CheckVectorOperands(ExprResult &LHS, ExprResult &RHS, | ||||
| 10675 | SourceLocation Loc, bool IsCompAssign, | ||||
| 10676 | bool AllowBothBool, | ||||
| 10677 | bool AllowBoolConversions, | ||||
| 10678 | bool AllowBoolOperation, | ||||
| 10679 | bool ReportInvalid) { | ||||
| 10680 | if (!IsCompAssign) { | ||||
| 10681 | LHS = DefaultFunctionArrayLvalueConversion(LHS.get()); | ||||
| 10682 | if (LHS.isInvalid()) | ||||
| 10683 | return QualType(); | ||||
| 10684 | } | ||||
| 10685 | RHS = DefaultFunctionArrayLvalueConversion(RHS.get()); | ||||
| 10686 | if (RHS.isInvalid()) | ||||
| 10687 | return QualType(); | ||||
| 10688 | |||||
| 10689 | // For conversion purposes, we ignore any qualifiers. | ||||
| 10690 | // For example, "const float" and "float" are equivalent. | ||||
| 10691 | QualType LHSType = LHS.get()->getType().getUnqualifiedType(); | ||||
| 10692 | QualType RHSType = RHS.get()->getType().getUnqualifiedType(); | ||||
| 10693 | |||||
| 10694 | const VectorType *LHSVecType = LHSType->getAs<VectorType>(); | ||||
| 10695 | const VectorType *RHSVecType = RHSType->getAs<VectorType>(); | ||||
| 10696 | assert(LHSVecType || RHSVecType)(static_cast <bool> (LHSVecType || RHSVecType) ? void ( 0) : __assert_fail ("LHSVecType || RHSVecType", "clang/lib/Sema/SemaExpr.cpp" , 10696, __extension__ __PRETTY_FUNCTION__)); | ||||
| 10697 | |||||
| 10698 | if ((LHSVecType && LHSVecType->getElementType()->isBFloat16Type()) || | ||||
| 10699 | (RHSVecType && RHSVecType->getElementType()->isBFloat16Type())) | ||||
| 10700 | return ReportInvalid ? InvalidOperands(Loc, LHS, RHS) : QualType(); | ||||
| 10701 | |||||
| 10702 | // AltiVec-style "vector bool op vector bool" combinations are allowed | ||||
| 10703 | // for some operators but not others. | ||||
| 10704 | if (!AllowBothBool && | ||||
| 10705 | LHSVecType && LHSVecType->getVectorKind() == VectorType::AltiVecBool && | ||||
| 10706 | RHSVecType && RHSVecType->getVectorKind() == VectorType::AltiVecBool) | ||||
| 10707 | return ReportInvalid ? InvalidOperands(Loc, LHS, RHS) : QualType(); | ||||
| 10708 | |||||
| 10709 | // This operation may not be performed on boolean vectors. | ||||
| 10710 | if (!AllowBoolOperation && | ||||
| 10711 | (LHSType->isExtVectorBoolType() || RHSType->isExtVectorBoolType())) | ||||
| 10712 | return ReportInvalid ? InvalidOperands(Loc, LHS, RHS) : QualType(); | ||||
| 10713 | |||||
| 10714 | // If the vector types are identical, return. | ||||
| 10715 | if (Context.hasSameType(LHSType, RHSType)) | ||||
| 10716 | return Context.getCommonSugaredType(LHSType, RHSType); | ||||
| 10717 | |||||
| 10718 | // If we have compatible AltiVec and GCC vector types, use the AltiVec type. | ||||
| 10719 | if (LHSVecType && RHSVecType && | ||||
| 10720 | Context.areCompatibleVectorTypes(LHSType, RHSType)) { | ||||
| 10721 | if (isa<ExtVectorType>(LHSVecType)) { | ||||
| 10722 | RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast); | ||||
| 10723 | return LHSType; | ||||
| 10724 | } | ||||
| 10725 | |||||
| 10726 | if (!IsCompAssign) | ||||
| 10727 | LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast); | ||||
| 10728 | return RHSType; | ||||
| 10729 | } | ||||
| 10730 | |||||
| 10731 | // AllowBoolConversions says that bool and non-bool AltiVec vectors | ||||
| 10732 | // can be mixed, with the result being the non-bool type. The non-bool | ||||
| 10733 | // operand must have integer element type. | ||||
| 10734 | if (AllowBoolConversions && LHSVecType && RHSVecType && | ||||
| 10735 | LHSVecType->getNumElements() == RHSVecType->getNumElements() && | ||||
| 10736 | (Context.getTypeSize(LHSVecType->getElementType()) == | ||||
| 10737 | Context.getTypeSize(RHSVecType->getElementType()))) { | ||||
| 10738 | if (LHSVecType->getVectorKind() == VectorType::AltiVecVector && | ||||
| 10739 | LHSVecType->getElementType()->isIntegerType() && | ||||
| 10740 | RHSVecType->getVectorKind() == VectorType::AltiVecBool) { | ||||
| 10741 | RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast); | ||||
| 10742 | return LHSType; | ||||
| 10743 | } | ||||
| 10744 | if (!IsCompAssign && | ||||
| 10745 | LHSVecType->getVectorKind() == VectorType::AltiVecBool && | ||||
| 10746 | RHSVecType->getVectorKind() == VectorType::AltiVecVector && | ||||
| 10747 | RHSVecType->getElementType()->isIntegerType()) { | ||||
| 10748 | LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast); | ||||
| 10749 | return RHSType; | ||||
| 10750 | } | ||||
| 10751 | } | ||||
| 10752 | |||||
| 10753 | // Expressions containing fixed-length and sizeless SVE vectors are invalid | ||||
| 10754 | // since the ambiguity can affect the ABI. | ||||
| 10755 | auto IsSveConversion = [](QualType FirstType, QualType SecondType) { | ||||
| 10756 | const VectorType *VecType = SecondType->getAs<VectorType>(); | ||||
| 10757 | return FirstType->isSizelessBuiltinType() && VecType && | ||||
| 10758 | (VecType->getVectorKind() == VectorType::SveFixedLengthDataVector || | ||||
| 10759 | VecType->getVectorKind() == | ||||
| 10760 | VectorType::SveFixedLengthPredicateVector); | ||||
| 10761 | }; | ||||
| 10762 | |||||
| 10763 | if (IsSveConversion(LHSType, RHSType) || IsSveConversion(RHSType, LHSType)) { | ||||
| 10764 | Diag(Loc, diag::err_typecheck_sve_ambiguous) << LHSType << RHSType; | ||||
| 10765 | return QualType(); | ||||
| 10766 | } | ||||
| 10767 | |||||
| 10768 | // Expressions containing GNU and SVE or RVV (fixed or sizeless) vectors are | ||||
| 10769 | // invalid since the ambiguity can affect the ABI. | ||||
| 10770 | auto IsSveRVVGnuConversion = [](QualType FirstType, QualType SecondType, | ||||
| 10771 | unsigned &SVEorRVV) { | ||||
| 10772 | const VectorType *FirstVecType = FirstType->getAs<VectorType>(); | ||||
| 10773 | const VectorType *SecondVecType = SecondType->getAs<VectorType>(); | ||||
| 10774 | |||||
| 10775 | SVEorRVV = 0; | ||||
| 10776 | if (FirstVecType && SecondVecType) | ||||
| 10777 | return FirstVecType->getVectorKind() == VectorType::GenericVector && | ||||
| 10778 | (SecondVecType->getVectorKind() == | ||||
| 10779 | VectorType::SveFixedLengthDataVector || | ||||
| 10780 | SecondVecType->getVectorKind() == | ||||
| 10781 | VectorType::SveFixedLengthPredicateVector); | ||||
| 10782 | |||||
| 10783 | if (SecondVecType && | ||||
| 10784 | SecondVecType->getVectorKind() == VectorType::GenericVector) { | ||||
| 10785 | if (FirstType->isSVESizelessBuiltinType()) | ||||
| 10786 | return true; | ||||
| 10787 | if (FirstType->isRVVSizelessBuiltinType()) { | ||||
| 10788 | SVEorRVV = 1; | ||||
| 10789 | return true; | ||||
| 10790 | } | ||||
| 10791 | } | ||||
| 10792 | |||||
| 10793 | return false; | ||||
| 10794 | }; | ||||
| 10795 | |||||
| 10796 | unsigned SVEorRVV; | ||||
| 10797 | if (IsSveRVVGnuConversion(LHSType, RHSType, SVEorRVV) || | ||||
| 10798 | IsSveRVVGnuConversion(RHSType, LHSType, SVEorRVV)) { | ||||
| 10799 | Diag(Loc, diag::err_typecheck_sve_rvv_gnu_ambiguous) | ||||
| 10800 | << SVEorRVV << LHSType << RHSType; | ||||
| 10801 | return QualType(); | ||||
| 10802 | } | ||||
| 10803 | |||||
| 10804 | // If there's a vector type and a scalar, try to convert the scalar to | ||||
| 10805 | // the vector element type and splat. | ||||
| 10806 | unsigned DiagID = diag::err_typecheck_vector_not_convertable; | ||||
| 10807 | if (!RHSVecType) { | ||||
| 10808 | if (isa<ExtVectorType>(LHSVecType)) { | ||||
| 10809 | if (!tryVectorConvertAndSplat(*this, &RHS, RHSType, | ||||
| 10810 | LHSVecType->getElementType(), LHSType, | ||||
| 10811 | DiagID)) | ||||
| 10812 | return LHSType; | ||||
| 10813 | } else { | ||||
| 10814 | if (!tryGCCVectorConvertAndSplat(*this, &RHS, &LHS)) | ||||
| 10815 | return LHSType; | ||||
| 10816 | } | ||||
| 10817 | } | ||||
| 10818 | if (!LHSVecType) { | ||||
| 10819 | if (isa<ExtVectorType>(RHSVecType)) { | ||||
| 10820 | if (!tryVectorConvertAndSplat(*this, (IsCompAssign ? nullptr : &LHS), | ||||
| 10821 | LHSType, RHSVecType->getElementType(), | ||||
| 10822 | RHSType, DiagID)) | ||||
| 10823 | return RHSType; | ||||
| 10824 | } else { | ||||
| 10825 | if (LHS.get()->isLValue() || | ||||
| 10826 | !tryGCCVectorConvertAndSplat(*this, &LHS, &RHS)) | ||||
| 10827 | return RHSType; | ||||
| 10828 | } | ||||
| 10829 | } | ||||
| 10830 | |||||
| 10831 | // FIXME: The code below also handles conversion between vectors and | ||||
| 10832 | // non-scalars, we should break this down into fine grained specific checks | ||||
| 10833 | // and emit proper diagnostics. | ||||
| 10834 | QualType VecType = LHSVecType ? LHSType : RHSType; | ||||
| 10835 | const VectorType *VT = LHSVecType ? LHSVecType : RHSVecType; | ||||
| 10836 | QualType OtherType = LHSVecType ? RHSType : LHSType; | ||||
| 10837 | ExprResult *OtherExpr = LHSVecType ? &RHS : &LHS; | ||||
| 10838 | if (isLaxVectorConversion(OtherType, VecType)) { | ||||
| 10839 | if (anyAltivecTypes(RHSType, LHSType) && | ||||
| 10840 | !Context.areCompatibleVectorTypes(RHSType, LHSType)) | ||||
| 10841 | Diag(Loc, diag::warn_deprecated_lax_vec_conv_all) << RHSType << LHSType; | ||||
| 10842 | // If we're allowing lax vector conversions, only the total (data) size | ||||
| 10843 | // needs to be the same. For non compound assignment, if one of the types is | ||||
| 10844 | // scalar, the result is always the vector type. | ||||
| 10845 | if (!IsCompAssign) { | ||||
| 10846 | *OtherExpr = ImpCastExprToType(OtherExpr->get(), VecType, CK_BitCast); | ||||
| 10847 | return VecType; | ||||
| 10848 | // In a compound assignment, lhs += rhs, 'lhs' is a lvalue src, forbidding | ||||
| 10849 | // any implicit cast. Here, the 'rhs' should be implicit casted to 'lhs' | ||||
| 10850 | // type. Note that this is already done by non-compound assignments in | ||||
| 10851 | // CheckAssignmentConstraints. If it's a scalar type, only bitcast for | ||||
| 10852 | // <1 x T> -> T. The result is also a vector type. | ||||
| 10853 | } else if (OtherType->isExtVectorType() || OtherType->isVectorType() || | ||||
| 10854 | (OtherType->isScalarType() && VT->getNumElements() == 1)) { | ||||
| 10855 | ExprResult *RHSExpr = &RHS; | ||||
| 10856 | *RHSExpr = ImpCastExprToType(RHSExpr->get(), LHSType, CK_BitCast); | ||||
| 10857 | return VecType; | ||||
| 10858 | } | ||||
| 10859 | } | ||||
| 10860 | |||||
| 10861 | // Okay, the expression is invalid. | ||||
| 10862 | |||||
| 10863 | // If there's a non-vector, non-real operand, diagnose that. | ||||
| 10864 | if ((!RHSVecType && !RHSType->isRealType()) || | ||||
| 10865 | (!LHSVecType && !LHSType->isRealType())) { | ||||
| 10866 | Diag(Loc, diag::err_typecheck_vector_not_convertable_non_scalar) | ||||
| 10867 | << LHSType << RHSType | ||||
| 10868 | << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); | ||||
| 10869 | return QualType(); | ||||
| 10870 | } | ||||
| 10871 | |||||
| 10872 | // OpenCL V1.1 6.2.6.p1: | ||||
| 10873 | // If the operands are of more than one vector type, then an error shall | ||||
| 10874 | // occur. Implicit conversions between vector types are not permitted, per | ||||
| 10875 | // section 6.2.1. | ||||
| 10876 | if (getLangOpts().OpenCL && | ||||
| 10877 | RHSVecType && isa<ExtVectorType>(RHSVecType) && | ||||
| 10878 | LHSVecType && isa<ExtVectorType>(LHSVecType)) { | ||||
| 10879 | Diag(Loc, diag::err_opencl_implicit_vector_conversion) << LHSType | ||||
| 10880 | << RHSType; | ||||
| 10881 | return QualType(); | ||||
| 10882 | } | ||||
| 10883 | |||||
| 10884 | |||||
| 10885 | // If there is a vector type that is not a ExtVector and a scalar, we reach | ||||
| 10886 | // this point if scalar could not be converted to the vector's element type | ||||
| 10887 | // without truncation. | ||||
| 10888 | if ((RHSVecType && !isa<ExtVectorType>(RHSVecType)) || | ||||
| 10889 | (LHSVecType && !isa<ExtVectorType>(LHSVecType))) { | ||||
| 10890 | QualType Scalar = LHSVecType ? RHSType : LHSType; | ||||
| 10891 | QualType Vector = LHSVecType ? LHSType : RHSType; | ||||
| 10892 | unsigned ScalarOrVector = LHSVecType && RHSVecType ? 1 : 0; | ||||
| 10893 | Diag(Loc, | ||||
| 10894 | diag::err_typecheck_vector_not_convertable_implict_truncation) | ||||
| 10895 | << ScalarOrVector << Scalar << Vector; | ||||
| 10896 | |||||
| 10897 | return QualType(); | ||||
| 10898 | } | ||||
| 10899 | |||||
| 10900 | // Otherwise, use the generic diagnostic. | ||||
| 10901 | Diag(Loc, DiagID) | ||||
| 10902 | << LHSType << RHSType | ||||
| 10903 | << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); | ||||
| 10904 | return QualType(); | ||||
| 10905 | } | ||||
| 10906 | |||||
| 10907 | QualType Sema::CheckSizelessVectorOperands(ExprResult &LHS, ExprResult &RHS, | ||||
| 10908 | SourceLocation Loc, | ||||
| 10909 | bool IsCompAssign, | ||||
| 10910 | ArithConvKind OperationKind) { | ||||
| 10911 | if (!IsCompAssign) { | ||||
| 10912 | LHS = DefaultFunctionArrayLvalueConversion(LHS.get()); | ||||
| 10913 | if (LHS.isInvalid()) | ||||
| 10914 | return QualType(); | ||||
| 10915 | } | ||||
| 10916 | RHS = DefaultFunctionArrayLvalueConversion(RHS.get()); | ||||
| 10917 | if (RHS.isInvalid()) | ||||
| 10918 | return QualType(); | ||||
| 10919 | |||||
| 10920 | QualType LHSType = LHS.get()->getType().getUnqualifiedType(); | ||||
| 10921 | QualType RHSType = RHS.get()->getType().getUnqualifiedType(); | ||||
| 10922 | |||||
| 10923 | const BuiltinType *LHSBuiltinTy = LHSType->getAs<BuiltinType>(); | ||||
| 10924 | const BuiltinType *RHSBuiltinTy = RHSType->getAs<BuiltinType>(); | ||||
| 10925 | |||||
| 10926 | unsigned DiagID = diag::err_typecheck_invalid_operands; | ||||
| 10927 | if ((OperationKind == ACK_Arithmetic) && | ||||
| 10928 | ((LHSBuiltinTy && LHSBuiltinTy->isSVEBool()) || | ||||
| 10929 | (RHSBuiltinTy && RHSBuiltinTy->isSVEBool()))) { | ||||
| 10930 | Diag(Loc, DiagID) << LHSType << RHSType << LHS.get()->getSourceRange() | ||||
| 10931 | << RHS.get()->getSourceRange(); | ||||
| 10932 | return QualType(); | ||||
| 10933 | } | ||||
| 10934 | |||||
| 10935 | if (Context.hasSameType(LHSType, RHSType)) | ||||
| 10936 | return LHSType; | ||||
| 10937 | |||||
| 10938 | if (LHSType->isVLSTBuiltinType() && !RHSType->isVLSTBuiltinType()) { | ||||
| 10939 | if (!tryGCCVectorConvertAndSplat(*this, &RHS, &LHS)) | ||||
| 10940 | return LHSType; | ||||
| 10941 | } | ||||
| 10942 | if (RHSType->isVLSTBuiltinType() && !LHSType->isVLSTBuiltinType()) { | ||||
| 10943 | if (LHS.get()->isLValue() || | ||||
| 10944 | !tryGCCVectorConvertAndSplat(*this, &LHS, &RHS)) | ||||
| 10945 | return RHSType; | ||||
| 10946 | } | ||||
| 10947 | |||||
| 10948 | if ((!LHSType->isVLSTBuiltinType() && !LHSType->isRealType()) || | ||||
| 10949 | (!RHSType->isVLSTBuiltinType() && !RHSType->isRealType())) { | ||||
| 10950 | Diag(Loc, diag::err_typecheck_vector_not_convertable_non_scalar) | ||||
| 10951 | << LHSType << RHSType << LHS.get()->getSourceRange() | ||||
| 10952 | << RHS.get()->getSourceRange(); | ||||
| 10953 | return QualType(); | ||||
| 10954 | } | ||||
| 10955 | |||||
| 10956 | if (LHSType->isVLSTBuiltinType() && RHSType->isVLSTBuiltinType() && | ||||
| 10957 | Context.getBuiltinVectorTypeInfo(LHSBuiltinTy).EC != | ||||
| 10958 | Context.getBuiltinVectorTypeInfo(RHSBuiltinTy).EC) { | ||||
| 10959 | Diag(Loc, diag::err_typecheck_vector_lengths_not_equal) | ||||
| 10960 | << LHSType << RHSType << LHS.get()->getSourceRange() | ||||
| 10961 | << RHS.get()->getSourceRange(); | ||||
| 10962 | return QualType(); | ||||
| 10963 | } | ||||
| 10964 | |||||
| 10965 | if (LHSType->isVLSTBuiltinType() || RHSType->isVLSTBuiltinType()) { | ||||
| 10966 | QualType Scalar = LHSType->isVLSTBuiltinType() ? RHSType : LHSType; | ||||
| 10967 | QualType Vector = LHSType->isVLSTBuiltinType() ? LHSType : RHSType; | ||||
| 10968 | bool ScalarOrVector = | ||||
| 10969 | LHSType->isVLSTBuiltinType() && RHSType->isVLSTBuiltinType(); | ||||
| 10970 | |||||
| 10971 | Diag(Loc, diag::err_typecheck_vector_not_convertable_implict_truncation) | ||||
| 10972 | << ScalarOrVector << Scalar << Vector; | ||||
| 10973 | |||||
| 10974 | return QualType(); | ||||
| 10975 | } | ||||
| 10976 | |||||
| 10977 | Diag(Loc, DiagID) << LHSType << RHSType << LHS.get()->getSourceRange() | ||||
| 10978 | << RHS.get()->getSourceRange(); | ||||
| 10979 | return QualType(); | ||||
| 10980 | } | ||||
| 10981 | |||||
| 10982 | // checkArithmeticNull - Detect when a NULL constant is used improperly in an | ||||
| 10983 | // expression. These are mainly cases where the null pointer is used as an | ||||
| 10984 | // integer instead of a pointer. | ||||
| 10985 | static void checkArithmeticNull(Sema &S, ExprResult &LHS, ExprResult &RHS, | ||||
| 10986 | SourceLocation Loc, bool IsCompare) { | ||||
| 10987 | // The canonical way to check for a GNU null is with isNullPointerConstant, | ||||
| 10988 | // but we use a bit of a hack here for speed; this is a relatively | ||||
| 10989 | // hot path, and isNullPointerConstant is slow. | ||||
| 10990 | bool LHSNull = isa<GNUNullExpr>(LHS.get()->IgnoreParenImpCasts()); | ||||
| 10991 | bool RHSNull = isa<GNUNullExpr>(RHS.get()->IgnoreParenImpCasts()); | ||||
| 10992 | |||||
| 10993 | QualType NonNullType = LHSNull ? RHS.get()->getType() : LHS.get()->getType(); | ||||
| 10994 | |||||
| 10995 | // Avoid analyzing cases where the result will either be invalid (and | ||||
| 10996 | // diagnosed as such) or entirely valid and not something to warn about. | ||||
| 10997 | if ((!LHSNull && !RHSNull) || NonNullType->isBlockPointerType() || | ||||
| 10998 | NonNullType->isMemberPointerType() || NonNullType->isFunctionType()) | ||||
| 10999 | return; | ||||
| 11000 | |||||
| 11001 | // Comparison operations would not make sense with a null pointer no matter | ||||
| 11002 | // what the other expression is. | ||||
| 11003 | if (!IsCompare) { | ||||
| 11004 | S.Diag(Loc, diag::warn_null_in_arithmetic_operation) | ||||
| 11005 | << (LHSNull ? LHS.get()->getSourceRange() : SourceRange()) | ||||
| 11006 | << (RHSNull ? RHS.get()->getSourceRange() : SourceRange()); | ||||
| 11007 | return; | ||||
| 11008 | } | ||||
| 11009 | |||||
| 11010 | // The rest of the operations only make sense with a null pointer | ||||
| 11011 | // if the other expression is a pointer. | ||||
| 11012 | if (LHSNull == RHSNull || NonNullType->isAnyPointerType() || | ||||
| 11013 | NonNullType->canDecayToPointerType()) | ||||
| 11014 | return; | ||||
| 11015 | |||||
| 11016 | S.Diag(Loc, diag::warn_null_in_comparison_operation) | ||||
| 11017 | << LHSNull /* LHS is NULL */ << NonNullType | ||||
| 11018 | << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); | ||||
| 11019 | } | ||||
| 11020 | |||||
| 11021 | static void DiagnoseDivisionSizeofPointerOrArray(Sema &S, Expr *LHS, Expr *RHS, | ||||
| 11022 | SourceLocation Loc) { | ||||
| 11023 | const auto *LUE = dyn_cast<UnaryExprOrTypeTraitExpr>(LHS); | ||||
| 11024 | const auto *RUE = dyn_cast<UnaryExprOrTypeTraitExpr>(RHS); | ||||
| 11025 | if (!LUE || !RUE) | ||||
| 11026 | return; | ||||
| 11027 | if (LUE->getKind() != UETT_SizeOf || LUE->isArgumentType() || | ||||
| 11028 | RUE->getKind() != UETT_SizeOf) | ||||
| 11029 | return; | ||||
| 11030 | |||||
| 11031 | const Expr *LHSArg = LUE->getArgumentExpr()->IgnoreParens(); | ||||
| 11032 | QualType LHSTy = LHSArg->getType(); | ||||
| 11033 | QualType RHSTy; | ||||
| 11034 | |||||
| 11035 | if (RUE->isArgumentType()) | ||||
| 11036 | RHSTy = RUE->getArgumentType().getNonReferenceType(); | ||||
| 11037 | else | ||||
| 11038 | RHSTy = RUE->getArgumentExpr()->IgnoreParens()->getType(); | ||||
| 11039 | |||||
| 11040 | if (LHSTy->isPointerType() && !RHSTy->isPointerType()) { | ||||
| 11041 | if (!S.Context.hasSameUnqualifiedType(LHSTy->getPointeeType(), RHSTy)) | ||||
| 11042 | return; | ||||
| 11043 | |||||
| 11044 | S.Diag(Loc, diag::warn_division_sizeof_ptr) << LHS << LHS->getSourceRange(); | ||||
| 11045 | if (const auto *DRE = dyn_cast<DeclRefExpr>(LHSArg)) { | ||||
| 11046 | if (const ValueDecl *LHSArgDecl = DRE->getDecl()) | ||||
| 11047 | S.Diag(LHSArgDecl->getLocation(), diag::note_pointer_declared_here) | ||||
| 11048 | << LHSArgDecl; | ||||
| 11049 | } | ||||
| 11050 | } else if (const auto *ArrayTy = S.Context.getAsArrayType(LHSTy)) { | ||||
| 11051 | QualType ArrayElemTy = ArrayTy->getElementType(); | ||||
| 11052 | if (ArrayElemTy != S.Context.getBaseElementType(ArrayTy) || | ||||
| 11053 | ArrayElemTy->isDependentType() || RHSTy->isDependentType() || | ||||
| 11054 | RHSTy->isReferenceType() || ArrayElemTy->isCharType() || | ||||
| 11055 | S.Context.getTypeSize(ArrayElemTy) == S.Context.getTypeSize(RHSTy)) | ||||
| 11056 | return; | ||||
| 11057 | S.Diag(Loc, diag::warn_division_sizeof_array) | ||||
| 11058 | << LHSArg->getSourceRange() << ArrayElemTy << RHSTy; | ||||
| 11059 | if (const auto *DRE = dyn_cast<DeclRefExpr>(LHSArg)) { | ||||
| 11060 | if (const ValueDecl *LHSArgDecl = DRE->getDecl()) | ||||
| 11061 | S.Diag(LHSArgDecl->getLocation(), diag::note_array_declared_here) | ||||
| 11062 | << LHSArgDecl; | ||||
| 11063 | } | ||||
| 11064 | |||||
| 11065 | S.Diag(Loc, diag::note_precedence_silence) << RHS; | ||||
| 11066 | } | ||||
| 11067 | } | ||||
| 11068 | |||||
| 11069 | static void DiagnoseBadDivideOrRemainderValues(Sema& S, ExprResult &LHS, | ||||
| 11070 | ExprResult &RHS, | ||||
| 11071 | SourceLocation Loc, bool IsDiv) { | ||||
| 11072 | // Check for division/remainder by zero. | ||||
| 11073 | Expr::EvalResult RHSValue; | ||||
| 11074 | if (!RHS.get()->isValueDependent() && | ||||
| 11075 | RHS.get()->EvaluateAsInt(RHSValue, S.Context) && | ||||
| 11076 | RHSValue.Val.getInt() == 0) | ||||
| 11077 | S.DiagRuntimeBehavior(Loc, RHS.get(), | ||||
| 11078 | S.PDiag(diag::warn_remainder_division_by_zero) | ||||
| 11079 | << IsDiv << RHS.get()->getSourceRange()); | ||||
| 11080 | } | ||||
| 11081 | |||||
| 11082 | QualType Sema::CheckMultiplyDivideOperands(ExprResult &LHS, ExprResult &RHS, | ||||
| 11083 | SourceLocation Loc, | ||||
| 11084 | bool IsCompAssign, bool IsDiv) { | ||||
| 11085 | checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false); | ||||
| 11086 | |||||
| 11087 | QualType LHSTy = LHS.get()->getType(); | ||||
| 11088 | QualType RHSTy = RHS.get()->getType(); | ||||
| 11089 | if (LHSTy->isVectorType() || RHSTy->isVectorType()) | ||||
| 11090 | return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign, | ||||
| 11091 | /*AllowBothBool*/ getLangOpts().AltiVec, | ||||
| 11092 | /*AllowBoolConversions*/ false, | ||||
| 11093 | /*AllowBooleanOperation*/ false, | ||||
| 11094 | /*ReportInvalid*/ true); | ||||
| 11095 | if (LHSTy->isVLSTBuiltinType() || RHSTy->isVLSTBuiltinType()) | ||||
| 11096 | return CheckSizelessVectorOperands(LHS, RHS, Loc, IsCompAssign, | ||||
| 11097 | ACK_Arithmetic); | ||||
| 11098 | if (!IsDiv && | ||||
| 11099 | (LHSTy->isConstantMatrixType() || RHSTy->isConstantMatrixType())) | ||||
| 11100 | return CheckMatrixMultiplyOperands(LHS, RHS, Loc, IsCompAssign); | ||||
| 11101 | // For division, only matrix-by-scalar is supported. Other combinations with | ||||
| 11102 | // matrix types are invalid. | ||||
| 11103 | if (IsDiv && LHSTy->isConstantMatrixType() && RHSTy->isArithmeticType()) | ||||
| 11104 | return CheckMatrixElementwiseOperands(LHS, RHS, Loc, IsCompAssign); | ||||
| 11105 | |||||
| 11106 | QualType compType = UsualArithmeticConversions( | ||||
| 11107 | LHS, RHS, Loc, IsCompAssign ? ACK_CompAssign : ACK_Arithmetic); | ||||
| 11108 | if (LHS.isInvalid() || RHS.isInvalid()) | ||||
| 11109 | return QualType(); | ||||
| 11110 | |||||
| 11111 | |||||
| 11112 | if (compType.isNull() || !compType->isArithmeticType()) | ||||
| 11113 | return InvalidOperands(Loc, LHS, RHS); | ||||
| 11114 | if (IsDiv) { | ||||
| 11115 | DiagnoseBadDivideOrRemainderValues(*this, LHS, RHS, Loc, IsDiv); | ||||
| 11116 | DiagnoseDivisionSizeofPointerOrArray(*this, LHS.get(), RHS.get(), Loc); | ||||
| 11117 | } | ||||
| 11118 | return compType; | ||||
| 11119 | } | ||||
| 11120 | |||||
| 11121 | QualType Sema::CheckRemainderOperands( | ||||
| 11122 | ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) { | ||||
| 11123 | checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false); | ||||
| 11124 | |||||
| 11125 | if (LHS.get()->getType()->isVectorType() || | ||||
| 11126 | RHS.get()->getType()->isVectorType()) { | ||||
| 11127 | if (LHS.get()->getType()->hasIntegerRepresentation() && | ||||
| 11128 | RHS.get()->getType()->hasIntegerRepresentation()) | ||||
| 11129 | return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign, | ||||
| 11130 | /*AllowBothBool*/ getLangOpts().AltiVec, | ||||
| 11131 | /*AllowBoolConversions*/ false, | ||||
| 11132 | /*AllowBooleanOperation*/ false, | ||||
| 11133 | /*ReportInvalid*/ true); | ||||
| 11134 | return InvalidOperands(Loc, LHS, RHS); | ||||
| 11135 | } | ||||
| 11136 | |||||
| 11137 | if (LHS.get()->getType()->isVLSTBuiltinType() || | ||||
| 11138 | RHS.get()->getType()->isVLSTBuiltinType()) { | ||||
| 11139 | if (LHS.get()->getType()->hasIntegerRepresentation() && | ||||
| 11140 | RHS.get()->getType()->hasIntegerRepresentation()) | ||||
| 11141 | return CheckSizelessVectorOperands(LHS, RHS, Loc, IsCompAssign, | ||||
| 11142 | ACK_Arithmetic); | ||||
| 11143 | |||||
| 11144 | return InvalidOperands(Loc, LHS, RHS); | ||||
| 11145 | } | ||||
| 11146 | |||||
| 11147 | QualType compType = UsualArithmeticConversions( | ||||
| 11148 | LHS, RHS, Loc, IsCompAssign ? ACK_CompAssign : ACK_Arithmetic); | ||||
| 11149 | if (LHS.isInvalid() || RHS.isInvalid()) | ||||
| 11150 | return QualType(); | ||||
| 11151 | |||||
| 11152 | if (compType.isNull() || !compType->isIntegerType()) | ||||
| 11153 | return InvalidOperands(Loc, LHS, RHS); | ||||
| 11154 | DiagnoseBadDivideOrRemainderValues(*this, LHS, RHS, Loc, false /* IsDiv */); | ||||
| 11155 | return compType; | ||||
| 11156 | } | ||||
| 11157 | |||||
| 11158 | /// Diagnose invalid arithmetic on two void pointers. | ||||
| 11159 | static void diagnoseArithmeticOnTwoVoidPointers(Sema &S, SourceLocation Loc, | ||||
| 11160 | Expr *LHSExpr, Expr *RHSExpr) { | ||||
| 11161 | S.Diag(Loc, S.getLangOpts().CPlusPlus | ||||
| 11162 | ? diag::err_typecheck_pointer_arith_void_type | ||||
| 11163 | : diag::ext_gnu_void_ptr) | ||||
| 11164 | << 1 /* two pointers */ << LHSExpr->getSourceRange() | ||||
| 11165 | << RHSExpr->getSourceRange(); | ||||
| 11166 | } | ||||
| 11167 | |||||
| 11168 | /// Diagnose invalid arithmetic on a void pointer. | ||||
| 11169 | static void diagnoseArithmeticOnVoidPointer(Sema &S, SourceLocation Loc, | ||||
| 11170 | Expr *Pointer) { | ||||
| 11171 | S.Diag(Loc, S.getLangOpts().CPlusPlus | ||||
| 11172 | ? diag::err_typecheck_pointer_arith_void_type | ||||
| 11173 | : diag::ext_gnu_void_ptr) | ||||
| 11174 | << 0 /* one pointer */ << Pointer->getSourceRange(); | ||||
| 11175 | } | ||||
| 11176 | |||||
| 11177 | /// Diagnose invalid arithmetic on a null pointer. | ||||
| 11178 | /// | ||||
| 11179 | /// If \p IsGNUIdiom is true, the operation is using the 'p = (i8*)nullptr + n' | ||||
| 11180 | /// idiom, which we recognize as a GNU extension. | ||||
| 11181 | /// | ||||
| 11182 | static void diagnoseArithmeticOnNullPointer(Sema &S, SourceLocation Loc, | ||||
| 11183 | Expr *Pointer, bool IsGNUIdiom) { | ||||
| 11184 | if (IsGNUIdiom) | ||||
| 11185 | S.Diag(Loc, diag::warn_gnu_null_ptr_arith) | ||||
| 11186 | << Pointer->getSourceRange(); | ||||
| 11187 | else | ||||
| 11188 | S.Diag(Loc, diag::warn_pointer_arith_null_ptr) | ||||
| 11189 | << S.getLangOpts().CPlusPlus << Pointer->getSourceRange(); | ||||
| 11190 | } | ||||
| 11191 | |||||
| 11192 | /// Diagnose invalid subraction on a null pointer. | ||||
| 11193 | /// | ||||
| 11194 | static void diagnoseSubtractionOnNullPointer(Sema &S, SourceLocation Loc, | ||||
| 11195 | Expr *Pointer, bool BothNull) { | ||||
| 11196 | // Null - null is valid in C++ [expr.add]p7 | ||||
| 11197 | if (BothNull && S.getLangOpts().CPlusPlus) | ||||
| 11198 | return; | ||||
| 11199 | |||||
| 11200 | // Is this s a macro from a system header? | ||||
| 11201 | if (S.Diags.getSuppressSystemWarnings() && S.SourceMgr.isInSystemMacro(Loc)) | ||||
| 11202 | return; | ||||
| 11203 | |||||
| 11204 | S.DiagRuntimeBehavior(Loc, Pointer, | ||||
| 11205 | S.PDiag(diag::warn_pointer_sub_null_ptr) | ||||
| 11206 | << S.getLangOpts().CPlusPlus | ||||
| 11207 | << Pointer->getSourceRange()); | ||||
| 11208 | } | ||||
| 11209 | |||||
| 11210 | /// Diagnose invalid arithmetic on two function pointers. | ||||
| 11211 | static void diagnoseArithmeticOnTwoFunctionPointers(Sema &S, SourceLocation Loc, | ||||
| 11212 | Expr *LHS, Expr *RHS) { | ||||
| 11213 | assert(LHS->getType()->isAnyPointerType())(static_cast <bool> (LHS->getType()->isAnyPointerType ()) ? void (0) : __assert_fail ("LHS->getType()->isAnyPointerType()" , "clang/lib/Sema/SemaExpr.cpp", 11213, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 11214 | assert(RHS->getType()->isAnyPointerType())(static_cast <bool> (RHS->getType()->isAnyPointerType ()) ? void (0) : __assert_fail ("RHS->getType()->isAnyPointerType()" , "clang/lib/Sema/SemaExpr.cpp", 11214, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 11215 | S.Diag(Loc, S.getLangOpts().CPlusPlus | ||||
| 11216 | ? diag::err_typecheck_pointer_arith_function_type | ||||
| 11217 | : diag::ext_gnu_ptr_func_arith) | ||||
| 11218 | << 1 /* two pointers */ << LHS->getType()->getPointeeType() | ||||
| 11219 | // We only show the second type if it differs from the first. | ||||
| 11220 | << (unsigned)!S.Context.hasSameUnqualifiedType(LHS->getType(), | ||||
| 11221 | RHS->getType()) | ||||
| 11222 | << RHS->getType()->getPointeeType() | ||||
| 11223 | << LHS->getSourceRange() << RHS->getSourceRange(); | ||||
| 11224 | } | ||||
| 11225 | |||||
| 11226 | /// Diagnose invalid arithmetic on a function pointer. | ||||
| 11227 | static void diagnoseArithmeticOnFunctionPointer(Sema &S, SourceLocation Loc, | ||||
| 11228 | Expr *Pointer) { | ||||
| 11229 | assert(Pointer->getType()->isAnyPointerType())(static_cast <bool> (Pointer->getType()->isAnyPointerType ()) ? void (0) : __assert_fail ("Pointer->getType()->isAnyPointerType()" , "clang/lib/Sema/SemaExpr.cpp", 11229, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 11230 | S.Diag(Loc, S.getLangOpts().CPlusPlus | ||||
| 11231 | ? diag::err_typecheck_pointer_arith_function_type | ||||
| 11232 | : diag::ext_gnu_ptr_func_arith) | ||||
| 11233 | << 0 /* one pointer */ << Pointer->getType()->getPointeeType() | ||||
| 11234 | << 0 /* one pointer, so only one type */ | ||||
| 11235 | << Pointer->getSourceRange(); | ||||
| 11236 | } | ||||
| 11237 | |||||
| 11238 | /// Emit error if Operand is incomplete pointer type | ||||
| 11239 | /// | ||||
| 11240 | /// \returns True if pointer has incomplete type | ||||
| 11241 | static bool checkArithmeticIncompletePointerType(Sema &S, SourceLocation Loc, | ||||
| 11242 | Expr *Operand) { | ||||
| 11243 | QualType ResType = Operand->getType(); | ||||
| 11244 | if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>()) | ||||
| 11245 | ResType = ResAtomicType->getValueType(); | ||||
| 11246 | |||||
| 11247 | assert(ResType->isAnyPointerType() && !ResType->isDependentType())(static_cast <bool> (ResType->isAnyPointerType() && !ResType->isDependentType()) ? void (0) : __assert_fail ( "ResType->isAnyPointerType() && !ResType->isDependentType()" , "clang/lib/Sema/SemaExpr.cpp", 11247, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 11248 | QualType PointeeTy = ResType->getPointeeType(); | ||||
| 11249 | return S.RequireCompleteSizedType( | ||||
| 11250 | Loc, PointeeTy, | ||||
| 11251 | diag::err_typecheck_arithmetic_incomplete_or_sizeless_type, | ||||
| 11252 | Operand->getSourceRange()); | ||||
| 11253 | } | ||||
| 11254 | |||||
| 11255 | /// Check the validity of an arithmetic pointer operand. | ||||
| 11256 | /// | ||||
| 11257 | /// If the operand has pointer type, this code will check for pointer types | ||||
| 11258 | /// which are invalid in arithmetic operations. These will be diagnosed | ||||
| 11259 | /// appropriately, including whether or not the use is supported as an | ||||
| 11260 | /// extension. | ||||
| 11261 | /// | ||||
| 11262 | /// \returns True when the operand is valid to use (even if as an extension). | ||||
| 11263 | static bool checkArithmeticOpPointerOperand(Sema &S, SourceLocation Loc, | ||||
| 11264 | Expr *Operand) { | ||||
| 11265 | QualType ResType = Operand->getType(); | ||||
| 11266 | if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>()) | ||||
| 11267 | ResType = ResAtomicType->getValueType(); | ||||
| 11268 | |||||
| 11269 | if (!ResType->isAnyPointerType()) return true; | ||||
| 11270 | |||||
| 11271 | QualType PointeeTy = ResType->getPointeeType(); | ||||
| 11272 | if (PointeeTy->isVoidType()) { | ||||
| 11273 | diagnoseArithmeticOnVoidPointer(S, Loc, Operand); | ||||
| 11274 | return !S.getLangOpts().CPlusPlus; | ||||
| 11275 | } | ||||
| 11276 | if (PointeeTy->isFunctionType()) { | ||||
| 11277 | diagnoseArithmeticOnFunctionPointer(S, Loc, Operand); | ||||
| 11278 | return !S.getLangOpts().CPlusPlus; | ||||
| 11279 | } | ||||
| 11280 | |||||
| 11281 | if (checkArithmeticIncompletePointerType(S, Loc, Operand)) return false; | ||||
| 11282 | |||||
| 11283 | return true; | ||||
| 11284 | } | ||||
| 11285 | |||||
| 11286 | /// Check the validity of a binary arithmetic operation w.r.t. pointer | ||||
| 11287 | /// operands. | ||||
| 11288 | /// | ||||
| 11289 | /// This routine will diagnose any invalid arithmetic on pointer operands much | ||||
| 11290 | /// like \see checkArithmeticOpPointerOperand. However, it has special logic | ||||
| 11291 | /// for emitting a single diagnostic even for operations where both LHS and RHS | ||||
| 11292 | /// are (potentially problematic) pointers. | ||||
| 11293 | /// | ||||
| 11294 | /// \returns True when the operand is valid to use (even if as an extension). | ||||
| 11295 | static bool checkArithmeticBinOpPointerOperands(Sema &S, SourceLocation Loc, | ||||
| 11296 | Expr *LHSExpr, Expr *RHSExpr) { | ||||
| 11297 | bool isLHSPointer = LHSExpr->getType()->isAnyPointerType(); | ||||
| 11298 | bool isRHSPointer = RHSExpr->getType()->isAnyPointerType(); | ||||
| 11299 | if (!isLHSPointer && !isRHSPointer) return true; | ||||
| 11300 | |||||
| 11301 | QualType LHSPointeeTy, RHSPointeeTy; | ||||
| 11302 | if (isLHSPointer) LHSPointeeTy = LHSExpr->getType()->getPointeeType(); | ||||
| 11303 | if (isRHSPointer) RHSPointeeTy = RHSExpr->getType()->getPointeeType(); | ||||
| 11304 | |||||
| 11305 | // if both are pointers check if operation is valid wrt address spaces | ||||
| 11306 | if (isLHSPointer && isRHSPointer) { | ||||
| 11307 | if (!LHSPointeeTy.isAddressSpaceOverlapping(RHSPointeeTy)) { | ||||
| 11308 | S.Diag(Loc, | ||||
| 11309 | diag::err_typecheck_op_on_nonoverlapping_address_space_pointers) | ||||
| 11310 | << LHSExpr->getType() << RHSExpr->getType() << 1 /*arithmetic op*/ | ||||
| 11311 | << LHSExpr->getSourceRange() << RHSExpr->getSourceRange(); | ||||
| 11312 | return false; | ||||
| 11313 | } | ||||
| 11314 | } | ||||
| 11315 | |||||
| 11316 | // Check for arithmetic on pointers to incomplete types. | ||||
| 11317 | bool isLHSVoidPtr = isLHSPointer && LHSPointeeTy->isVoidType(); | ||||
| 11318 | bool isRHSVoidPtr = isRHSPointer && RHSPointeeTy->isVoidType(); | ||||
| 11319 | if (isLHSVoidPtr || isRHSVoidPtr) { | ||||
| 11320 | if (!isRHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, LHSExpr); | ||||
| 11321 | else if (!isLHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, RHSExpr); | ||||
| 11322 | else diagnoseArithmeticOnTwoVoidPointers(S, Loc, LHSExpr, RHSExpr); | ||||
| 11323 | |||||
| 11324 | return !S.getLangOpts().CPlusPlus; | ||||
| 11325 | } | ||||
| 11326 | |||||
| 11327 | bool isLHSFuncPtr = isLHSPointer && LHSPointeeTy->isFunctionType(); | ||||
| 11328 | bool isRHSFuncPtr = isRHSPointer && RHSPointeeTy->isFunctionType(); | ||||
| 11329 | if (isLHSFuncPtr || isRHSFuncPtr) { | ||||
| 11330 | if (!isRHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, LHSExpr); | ||||
| 11331 | else if (!isLHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, | ||||
| 11332 | RHSExpr); | ||||
| 11333 | else diagnoseArithmeticOnTwoFunctionPointers(S, Loc, LHSExpr, RHSExpr); | ||||
| 11334 | |||||
| 11335 | return !S.getLangOpts().CPlusPlus; | ||||
| 11336 | } | ||||
| 11337 | |||||
| 11338 | if (isLHSPointer && checkArithmeticIncompletePointerType(S, Loc, LHSExpr)) | ||||
| 11339 | return false; | ||||
| 11340 | if (isRHSPointer && checkArithmeticIncompletePointerType(S, Loc, RHSExpr)) | ||||
| 11341 | return false; | ||||
| 11342 | |||||
| 11343 | return true; | ||||
| 11344 | } | ||||
| 11345 | |||||
| 11346 | /// diagnoseStringPlusInt - Emit a warning when adding an integer to a string | ||||
| 11347 | /// literal. | ||||
| 11348 | static void diagnoseStringPlusInt(Sema &Self, SourceLocation OpLoc, | ||||
| 11349 | Expr *LHSExpr, Expr *RHSExpr) { | ||||
| 11350 | StringLiteral* StrExpr = dyn_cast<StringLiteral>(LHSExpr->IgnoreImpCasts()); | ||||
| 11351 | Expr* IndexExpr = RHSExpr; | ||||
| 11352 | if (!StrExpr) { | ||||
| 11353 | StrExpr = dyn_cast<StringLiteral>(RHSExpr->IgnoreImpCasts()); | ||||
| 11354 | IndexExpr = LHSExpr; | ||||
| 11355 | } | ||||
| 11356 | |||||
| 11357 | bool IsStringPlusInt = StrExpr && | ||||
| 11358 | IndexExpr->getType()->isIntegralOrUnscopedEnumerationType(); | ||||
| 11359 | if (!IsStringPlusInt || IndexExpr->isValueDependent()) | ||||
| 11360 | return; | ||||
| 11361 | |||||
| 11362 | SourceRange DiagRange(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc()); | ||||
| 11363 | Self.Diag(OpLoc, diag::warn_string_plus_int) | ||||
| 11364 | << DiagRange << IndexExpr->IgnoreImpCasts()->getType(); | ||||
| 11365 | |||||
| 11366 | // Only print a fixit for "str" + int, not for int + "str". | ||||
| 11367 | if (IndexExpr == RHSExpr) { | ||||
| 11368 | SourceLocation EndLoc = Self.getLocForEndOfToken(RHSExpr->getEndLoc()); | ||||
| 11369 | Self.Diag(OpLoc, diag::note_string_plus_scalar_silence) | ||||
| 11370 | << FixItHint::CreateInsertion(LHSExpr->getBeginLoc(), "&") | ||||
| 11371 | << FixItHint::CreateReplacement(SourceRange(OpLoc), "[") | ||||
| 11372 | << FixItHint::CreateInsertion(EndLoc, "]"); | ||||
| 11373 | } else | ||||
| 11374 | Self.Diag(OpLoc, diag::note_string_plus_scalar_silence); | ||||
| 11375 | } | ||||
| 11376 | |||||
| 11377 | /// Emit a warning when adding a char literal to a string. | ||||
| 11378 | static void diagnoseStringPlusChar(Sema &Self, SourceLocation OpLoc, | ||||
| 11379 | Expr *LHSExpr, Expr *RHSExpr) { | ||||
| 11380 | const Expr *StringRefExpr = LHSExpr; | ||||
| 11381 | const CharacterLiteral *CharExpr = | ||||
| 11382 | dyn_cast<CharacterLiteral>(RHSExpr->IgnoreImpCasts()); | ||||
| 11383 | |||||
| 11384 | if (!CharExpr) { | ||||
| 11385 | CharExpr = dyn_cast<CharacterLiteral>(LHSExpr->IgnoreImpCasts()); | ||||
| 11386 | StringRefExpr = RHSExpr; | ||||
| 11387 | } | ||||
| 11388 | |||||
| 11389 | if (!CharExpr || !StringRefExpr) | ||||
| 11390 | return; | ||||
| 11391 | |||||
| 11392 | const QualType StringType = StringRefExpr->getType(); | ||||
| 11393 | |||||
| 11394 | // Return if not a PointerType. | ||||
| 11395 | if (!StringType->isAnyPointerType()) | ||||
| 11396 | return; | ||||
| 11397 | |||||
| 11398 | // Return if not a CharacterType. | ||||
| 11399 | if (!StringType->getPointeeType()->isAnyCharacterType()) | ||||
| 11400 | return; | ||||
| 11401 | |||||
| 11402 | ASTContext &Ctx = Self.getASTContext(); | ||||
| 11403 | SourceRange DiagRange(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc()); | ||||
| 11404 | |||||
| 11405 | const QualType CharType = CharExpr->getType(); | ||||
| 11406 | if (!CharType->isAnyCharacterType() && | ||||
| 11407 | CharType->isIntegerType() && | ||||
| 11408 | llvm::isUIntN(Ctx.getCharWidth(), CharExpr->getValue())) { | ||||
| 11409 | Self.Diag(OpLoc, diag::warn_string_plus_char) | ||||
| 11410 | << DiagRange << Ctx.CharTy; | ||||
| 11411 | } else { | ||||
| 11412 | Self.Diag(OpLoc, diag::warn_string_plus_char) | ||||
| 11413 | << DiagRange << CharExpr->getType(); | ||||
| 11414 | } | ||||
| 11415 | |||||
| 11416 | // Only print a fixit for str + char, not for char + str. | ||||
| 11417 | if (isa<CharacterLiteral>(RHSExpr->IgnoreImpCasts())) { | ||||
| 11418 | SourceLocation EndLoc = Self.getLocForEndOfToken(RHSExpr->getEndLoc()); | ||||
| 11419 | Self.Diag(OpLoc, diag::note_string_plus_scalar_silence) | ||||
| 11420 | << FixItHint::CreateInsertion(LHSExpr->getBeginLoc(), "&") | ||||
| 11421 | << FixItHint::CreateReplacement(SourceRange(OpLoc), "[") | ||||
| 11422 | << FixItHint::CreateInsertion(EndLoc, "]"); | ||||
| 11423 | } else { | ||||
| 11424 | Self.Diag(OpLoc, diag::note_string_plus_scalar_silence); | ||||
| 11425 | } | ||||
| 11426 | } | ||||
| 11427 | |||||
| 11428 | /// Emit error when two pointers are incompatible. | ||||
| 11429 | static void diagnosePointerIncompatibility(Sema &S, SourceLocation Loc, | ||||
| 11430 | Expr *LHSExpr, Expr *RHSExpr) { | ||||
| 11431 | assert(LHSExpr->getType()->isAnyPointerType())(static_cast <bool> (LHSExpr->getType()->isAnyPointerType ()) ? void (0) : __assert_fail ("LHSExpr->getType()->isAnyPointerType()" , "clang/lib/Sema/SemaExpr.cpp", 11431, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 11432 | assert(RHSExpr->getType()->isAnyPointerType())(static_cast <bool> (RHSExpr->getType()->isAnyPointerType ()) ? void (0) : __assert_fail ("RHSExpr->getType()->isAnyPointerType()" , "clang/lib/Sema/SemaExpr.cpp", 11432, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 11433 | S.Diag(Loc, diag::err_typecheck_sub_ptr_compatible) | ||||
| 11434 | << LHSExpr->getType() << RHSExpr->getType() << LHSExpr->getSourceRange() | ||||
| 11435 | << RHSExpr->getSourceRange(); | ||||
| 11436 | } | ||||
| 11437 | |||||
| 11438 | // C99 6.5.6 | ||||
| 11439 | QualType Sema::CheckAdditionOperands(ExprResult &LHS, ExprResult &RHS, | ||||
| 11440 | SourceLocation Loc, BinaryOperatorKind Opc, | ||||
| 11441 | QualType* CompLHSTy) { | ||||
| 11442 | checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false); | ||||
| 11443 | |||||
| 11444 | if (LHS.get()->getType()->isVectorType() || | ||||
| 11445 | RHS.get()->getType()->isVectorType()) { | ||||
| 11446 | QualType compType = | ||||
| 11447 | CheckVectorOperands(LHS, RHS, Loc, CompLHSTy, | ||||
| 11448 | /*AllowBothBool*/ getLangOpts().AltiVec, | ||||
| 11449 | /*AllowBoolConversions*/ getLangOpts().ZVector, | ||||
| 11450 | /*AllowBooleanOperation*/ false, | ||||
| 11451 | /*ReportInvalid*/ true); | ||||
| 11452 | if (CompLHSTy) *CompLHSTy = compType; | ||||
| 11453 | return compType; | ||||
| 11454 | } | ||||
| 11455 | |||||
| 11456 | if (LHS.get()->getType()->isVLSTBuiltinType() || | ||||
| 11457 | RHS.get()->getType()->isVLSTBuiltinType()) { | ||||
| 11458 | QualType compType = | ||||
| 11459 | CheckSizelessVectorOperands(LHS, RHS, Loc, CompLHSTy, ACK_Arithmetic); | ||||
| 11460 | if (CompLHSTy) | ||||
| 11461 | *CompLHSTy = compType; | ||||
| 11462 | return compType; | ||||
| 11463 | } | ||||
| 11464 | |||||
| 11465 | if (LHS.get()->getType()->isConstantMatrixType() || | ||||
| 11466 | RHS.get()->getType()->isConstantMatrixType()) { | ||||
| 11467 | QualType compType = | ||||
| 11468 | CheckMatrixElementwiseOperands(LHS, RHS, Loc, CompLHSTy); | ||||
| 11469 | if (CompLHSTy) | ||||
| 11470 | *CompLHSTy = compType; | ||||
| 11471 | return compType; | ||||
| 11472 | } | ||||
| 11473 | |||||
| 11474 | QualType compType = UsualArithmeticConversions( | ||||
| 11475 | LHS, RHS, Loc, CompLHSTy ? ACK_CompAssign : ACK_Arithmetic); | ||||
| 11476 | if (LHS.isInvalid() || RHS.isInvalid()) | ||||
| 11477 | return QualType(); | ||||
| 11478 | |||||
| 11479 | // Diagnose "string literal" '+' int and string '+' "char literal". | ||||
| 11480 | if (Opc == BO_Add) { | ||||
| 11481 | diagnoseStringPlusInt(*this, Loc, LHS.get(), RHS.get()); | ||||
| 11482 | diagnoseStringPlusChar(*this, Loc, LHS.get(), RHS.get()); | ||||
| 11483 | } | ||||
| 11484 | |||||
| 11485 | // handle the common case first (both operands are arithmetic). | ||||
| 11486 | if (!compType.isNull() && compType->isArithmeticType()) { | ||||
| 11487 | if (CompLHSTy) *CompLHSTy = compType; | ||||
| 11488 | return compType; | ||||
| 11489 | } | ||||
| 11490 | |||||
| 11491 | // Type-checking. Ultimately the pointer's going to be in PExp; | ||||
| 11492 | // note that we bias towards the LHS being the pointer. | ||||
| 11493 | Expr *PExp = LHS.get(), *IExp = RHS.get(); | ||||
| 11494 | |||||
| 11495 | bool isObjCPointer; | ||||
| 11496 | if (PExp->getType()->isPointerType()) { | ||||
| 11497 | isObjCPointer = false; | ||||
| 11498 | } else if (PExp->getType()->isObjCObjectPointerType()) { | ||||
| 11499 | isObjCPointer = true; | ||||
| 11500 | } else { | ||||
| 11501 | std::swap(PExp, IExp); | ||||
| 11502 | if (PExp->getType()->isPointerType()) { | ||||
| 11503 | isObjCPointer = false; | ||||
| 11504 | } else if (PExp->getType()->isObjCObjectPointerType()) { | ||||
| 11505 | isObjCPointer = true; | ||||
| 11506 | } else { | ||||
| 11507 | return InvalidOperands(Loc, LHS, RHS); | ||||
| 11508 | } | ||||
| 11509 | } | ||||
| 11510 | assert(PExp->getType()->isAnyPointerType())(static_cast <bool> (PExp->getType()->isAnyPointerType ()) ? void (0) : __assert_fail ("PExp->getType()->isAnyPointerType()" , "clang/lib/Sema/SemaExpr.cpp", 11510, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 11511 | |||||
| 11512 | if (!IExp->getType()->isIntegerType()) | ||||
| 11513 | return InvalidOperands(Loc, LHS, RHS); | ||||
| 11514 | |||||
| 11515 | // Adding to a null pointer results in undefined behavior. | ||||
| 11516 | if (PExp->IgnoreParenCasts()->isNullPointerConstant( | ||||
| 11517 | Context, Expr::NPC_ValueDependentIsNotNull)) { | ||||
| 11518 | // In C++ adding zero to a null pointer is defined. | ||||
| 11519 | Expr::EvalResult KnownVal; | ||||
| 11520 | if (!getLangOpts().CPlusPlus || | ||||
| 11521 | (!IExp->isValueDependent() && | ||||
| 11522 | (!IExp->EvaluateAsInt(KnownVal, Context) || | ||||
| 11523 | KnownVal.Val.getInt() != 0))) { | ||||
| 11524 | // Check the conditions to see if this is the 'p = nullptr + n' idiom. | ||||
| 11525 | bool IsGNUIdiom = BinaryOperator::isNullPointerArithmeticExtension( | ||||
| 11526 | Context, BO_Add, PExp, IExp); | ||||
| 11527 | diagnoseArithmeticOnNullPointer(*this, Loc, PExp, IsGNUIdiom); | ||||
| 11528 | } | ||||
| 11529 | } | ||||
| 11530 | |||||
| 11531 | if (!checkArithmeticOpPointerOperand(*this, Loc, PExp)) | ||||
| 11532 | return QualType(); | ||||
| 11533 | |||||
| 11534 | if (isObjCPointer && checkArithmeticOnObjCPointer(*this, Loc, PExp)) | ||||
| 11535 | return QualType(); | ||||
| 11536 | |||||
| 11537 | // Check array bounds for pointer arithemtic | ||||
| 11538 | CheckArrayAccess(PExp, IExp); | ||||
| 11539 | |||||
| 11540 | if (CompLHSTy) { | ||||
| 11541 | QualType LHSTy = Context.isPromotableBitField(LHS.get()); | ||||
| 11542 | if (LHSTy.isNull()) { | ||||
| 11543 | LHSTy = LHS.get()->getType(); | ||||
| 11544 | if (Context.isPromotableIntegerType(LHSTy)) | ||||
| 11545 | LHSTy = Context.getPromotedIntegerType(LHSTy); | ||||
| 11546 | } | ||||
| 11547 | *CompLHSTy = LHSTy; | ||||
| 11548 | } | ||||
| 11549 | |||||
| 11550 | return PExp->getType(); | ||||
| 11551 | } | ||||
| 11552 | |||||
| 11553 | // C99 6.5.6 | ||||
| 11554 | QualType Sema::CheckSubtractionOperands(ExprResult &LHS, ExprResult &RHS, | ||||
| 11555 | SourceLocation Loc, | ||||
| 11556 | QualType* CompLHSTy) { | ||||
| 11557 | checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false); | ||||
| 11558 | |||||
| 11559 | if (LHS.get()->getType()->isVectorType() || | ||||
| 11560 | RHS.get()->getType()->isVectorType()) { | ||||
| 11561 | QualType compType = | ||||
| 11562 | CheckVectorOperands(LHS, RHS, Loc, CompLHSTy, | ||||
| 11563 | /*AllowBothBool*/ getLangOpts().AltiVec, | ||||
| 11564 | /*AllowBoolConversions*/ getLangOpts().ZVector, | ||||
| 11565 | /*AllowBooleanOperation*/ false, | ||||
| 11566 | /*ReportInvalid*/ true); | ||||
| 11567 | if (CompLHSTy) *CompLHSTy = compType; | ||||
| 11568 | return compType; | ||||
| 11569 | } | ||||
| 11570 | |||||
| 11571 | if (LHS.get()->getType()->isVLSTBuiltinType() || | ||||
| 11572 | RHS.get()->getType()->isVLSTBuiltinType()) { | ||||
| 11573 | QualType compType = | ||||
| 11574 | CheckSizelessVectorOperands(LHS, RHS, Loc, CompLHSTy, ACK_Arithmetic); | ||||
| 11575 | if (CompLHSTy) | ||||
| 11576 | *CompLHSTy = compType; | ||||
| 11577 | return compType; | ||||
| 11578 | } | ||||
| 11579 | |||||
| 11580 | if (LHS.get()->getType()->isConstantMatrixType() || | ||||
| 11581 | RHS.get()->getType()->isConstantMatrixType()) { | ||||
| 11582 | QualType compType = | ||||
| 11583 | CheckMatrixElementwiseOperands(LHS, RHS, Loc, CompLHSTy); | ||||
| 11584 | if (CompLHSTy) | ||||
| 11585 | *CompLHSTy = compType; | ||||
| 11586 | return compType; | ||||
| 11587 | } | ||||
| 11588 | |||||
| 11589 | QualType compType = UsualArithmeticConversions( | ||||
| 11590 | LHS, RHS, Loc, CompLHSTy ? ACK_CompAssign : ACK_Arithmetic); | ||||
| 11591 | if (LHS.isInvalid() || RHS.isInvalid()) | ||||
| 11592 | return QualType(); | ||||
| 11593 | |||||
| 11594 | // Enforce type constraints: C99 6.5.6p3. | ||||
| 11595 | |||||
| 11596 | // Handle the common case first (both operands are arithmetic). | ||||
| 11597 | if (!compType.isNull() && compType->isArithmeticType()) { | ||||
| 11598 | if (CompLHSTy) *CompLHSTy = compType; | ||||
| 11599 | return compType; | ||||
| 11600 | } | ||||
| 11601 | |||||
| 11602 | // Either ptr - int or ptr - ptr. | ||||
| 11603 | if (LHS.get()->getType()->isAnyPointerType()) { | ||||
| 11604 | QualType lpointee = LHS.get()->getType()->getPointeeType(); | ||||
| 11605 | |||||
| 11606 | // Diagnose bad cases where we step over interface counts. | ||||
| 11607 | if (LHS.get()->getType()->isObjCObjectPointerType() && | ||||
| 11608 | checkArithmeticOnObjCPointer(*this, Loc, LHS.get())) | ||||
| 11609 | return QualType(); | ||||
| 11610 | |||||
| 11611 | // The result type of a pointer-int computation is the pointer type. | ||||
| 11612 | if (RHS.get()->getType()->isIntegerType()) { | ||||
| 11613 | // Subtracting from a null pointer should produce a warning. | ||||
| 11614 | // The last argument to the diagnose call says this doesn't match the | ||||
| 11615 | // GNU int-to-pointer idiom. | ||||
| 11616 | if (LHS.get()->IgnoreParenCasts()->isNullPointerConstant(Context, | ||||
| 11617 | Expr::NPC_ValueDependentIsNotNull)) { | ||||
| 11618 | // In C++ adding zero to a null pointer is defined. | ||||
| 11619 | Expr::EvalResult KnownVal; | ||||
| 11620 | if (!getLangOpts().CPlusPlus || | ||||
| 11621 | (!RHS.get()->isValueDependent() && | ||||
| 11622 | (!RHS.get()->EvaluateAsInt(KnownVal, Context) || | ||||
| 11623 | KnownVal.Val.getInt() != 0))) { | ||||
| 11624 | diagnoseArithmeticOnNullPointer(*this, Loc, LHS.get(), false); | ||||
| 11625 | } | ||||
| 11626 | } | ||||
| 11627 | |||||
| 11628 | if (!checkArithmeticOpPointerOperand(*this, Loc, LHS.get())) | ||||
| 11629 | return QualType(); | ||||
| 11630 | |||||
| 11631 | // Check array bounds for pointer arithemtic | ||||
| 11632 | CheckArrayAccess(LHS.get(), RHS.get(), /*ArraySubscriptExpr*/nullptr, | ||||
| 11633 | /*AllowOnePastEnd*/true, /*IndexNegated*/true); | ||||
| 11634 | |||||
| 11635 | if (CompLHSTy) *CompLHSTy = LHS.get()->getType(); | ||||
| 11636 | return LHS.get()->getType(); | ||||
| 11637 | } | ||||
| 11638 | |||||
| 11639 | // Handle pointer-pointer subtractions. | ||||
| 11640 | if (const PointerType *RHSPTy | ||||
| 11641 | = RHS.get()->getType()->getAs<PointerType>()) { | ||||
| 11642 | QualType rpointee = RHSPTy->getPointeeType(); | ||||
| 11643 | |||||
| 11644 | if (getLangOpts().CPlusPlus) { | ||||
| 11645 | // Pointee types must be the same: C++ [expr.add] | ||||
| 11646 | if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) { | ||||
| 11647 | diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get()); | ||||
| 11648 | } | ||||
| 11649 | } else { | ||||
| 11650 | // Pointee types must be compatible C99 6.5.6p3 | ||||
| 11651 | if (!Context.typesAreCompatible( | ||||
| 11652 | Context.getCanonicalType(lpointee).getUnqualifiedType(), | ||||
| 11653 | Context.getCanonicalType(rpointee).getUnqualifiedType())) { | ||||
| 11654 | diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get()); | ||||
| 11655 | return QualType(); | ||||
| 11656 | } | ||||
| 11657 | } | ||||
| 11658 | |||||
| 11659 | if (!checkArithmeticBinOpPointerOperands(*this, Loc, | ||||
| 11660 | LHS.get(), RHS.get())) | ||||
| 11661 | return QualType(); | ||||
| 11662 | |||||
| 11663 | bool LHSIsNullPtr = LHS.get()->IgnoreParenCasts()->isNullPointerConstant( | ||||
| 11664 | Context, Expr::NPC_ValueDependentIsNotNull); | ||||
| 11665 | bool RHSIsNullPtr = RHS.get()->IgnoreParenCasts()->isNullPointerConstant( | ||||
| 11666 | Context, Expr::NPC_ValueDependentIsNotNull); | ||||
| 11667 | |||||
| 11668 | // Subtracting nullptr or from nullptr is suspect | ||||
| 11669 | if (LHSIsNullPtr) | ||||
| 11670 | diagnoseSubtractionOnNullPointer(*this, Loc, LHS.get(), RHSIsNullPtr); | ||||
| 11671 | if (RHSIsNullPtr) | ||||
| 11672 | diagnoseSubtractionOnNullPointer(*this, Loc, RHS.get(), LHSIsNullPtr); | ||||
| 11673 | |||||
| 11674 | // The pointee type may have zero size. As an extension, a structure or | ||||
| 11675 | // union may have zero size or an array may have zero length. In this | ||||
| 11676 | // case subtraction does not make sense. | ||||
| 11677 | if (!rpointee->isVoidType() && !rpointee->isFunctionType()) { | ||||
| 11678 | CharUnits ElementSize = Context.getTypeSizeInChars(rpointee); | ||||
| 11679 | if (ElementSize.isZero()) { | ||||
| 11680 | Diag(Loc,diag::warn_sub_ptr_zero_size_types) | ||||
| 11681 | << rpointee.getUnqualifiedType() | ||||
| 11682 | << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); | ||||
| 11683 | } | ||||
| 11684 | } | ||||
| 11685 | |||||
| 11686 | if (CompLHSTy) *CompLHSTy = LHS.get()->getType(); | ||||
| 11687 | return Context.getPointerDiffType(); | ||||
| 11688 | } | ||||
| 11689 | } | ||||
| 11690 | |||||
| 11691 | return InvalidOperands(Loc, LHS, RHS); | ||||
| 11692 | } | ||||
| 11693 | |||||
| 11694 | static bool isScopedEnumerationType(QualType T) { | ||||
| 11695 | if (const EnumType *ET = T->getAs<EnumType>()) | ||||
| 11696 | return ET->getDecl()->isScoped(); | ||||
| 11697 | return false; | ||||
| 11698 | } | ||||
| 11699 | |||||
| 11700 | static void DiagnoseBadShiftValues(Sema& S, ExprResult &LHS, ExprResult &RHS, | ||||
| 11701 | SourceLocation Loc, BinaryOperatorKind Opc, | ||||
| 11702 | QualType LHSType) { | ||||
| 11703 | // OpenCL 6.3j: shift values are effectively % word size of LHS (more defined), | ||||
| 11704 | // so skip remaining warnings as we don't want to modify values within Sema. | ||||
| 11705 | if (S.getLangOpts().OpenCL) | ||||
| 11706 | return; | ||||
| 11707 | |||||
| 11708 | // Check right/shifter operand | ||||
| 11709 | Expr::EvalResult RHSResult; | ||||
| 11710 | if (RHS.get()->isValueDependent() || | ||||
| 11711 | !RHS.get()->EvaluateAsInt(RHSResult, S.Context)) | ||||
| 11712 | return; | ||||
| 11713 | llvm::APSInt Right = RHSResult.Val.getInt(); | ||||
| 11714 | |||||
| 11715 | if (Right.isNegative()) { | ||||
| 11716 | S.DiagRuntimeBehavior(Loc, RHS.get(), | ||||
| 11717 | S.PDiag(diag::warn_shift_negative) | ||||
| 11718 | << RHS.get()->getSourceRange()); | ||||
| 11719 | return; | ||||
| 11720 | } | ||||
| 11721 | |||||
| 11722 | QualType LHSExprType = LHS.get()->getType(); | ||||
| 11723 | uint64_t LeftSize = S.Context.getTypeSize(LHSExprType); | ||||
| 11724 | if (LHSExprType->isBitIntType()) | ||||
| 11725 | LeftSize = S.Context.getIntWidth(LHSExprType); | ||||
| 11726 | else if (LHSExprType->isFixedPointType()) { | ||||
| 11727 | auto FXSema = S.Context.getFixedPointSemantics(LHSExprType); | ||||
| 11728 | LeftSize = FXSema.getWidth() - (unsigned)FXSema.hasUnsignedPadding(); | ||||
| 11729 | } | ||||
| 11730 | llvm::APInt LeftBits(Right.getBitWidth(), LeftSize); | ||||
| 11731 | if (Right.uge(LeftBits)) { | ||||
| 11732 | S.DiagRuntimeBehavior(Loc, RHS.get(), | ||||
| 11733 | S.PDiag(diag::warn_shift_gt_typewidth) | ||||
| 11734 | << RHS.get()->getSourceRange()); | ||||
| 11735 | return; | ||||
| 11736 | } | ||||
| 11737 | |||||
| 11738 | // FIXME: We probably need to handle fixed point types specially here. | ||||
| 11739 | if (Opc != BO_Shl || LHSExprType->isFixedPointType()) | ||||
| 11740 | return; | ||||
| 11741 | |||||
| 11742 | // When left shifting an ICE which is signed, we can check for overflow which | ||||
| 11743 | // according to C++ standards prior to C++2a has undefined behavior | ||||
| 11744 | // ([expr.shift] 5.8/2). Unsigned integers have defined behavior modulo one | ||||
| 11745 | // more than the maximum value representable in the result type, so never | ||||
| 11746 | // warn for those. (FIXME: Unsigned left-shift overflow in a constant | ||||
| 11747 | // expression is still probably a bug.) | ||||
| 11748 | Expr::EvalResult LHSResult; | ||||
| 11749 | if (LHS.get()->isValueDependent() || | ||||
| 11750 | LHSType->hasUnsignedIntegerRepresentation() || | ||||
| 11751 | !LHS.get()->EvaluateAsInt(LHSResult, S.Context)) | ||||
| 11752 | return; | ||||
| 11753 | llvm::APSInt Left = LHSResult.Val.getInt(); | ||||
| 11754 | |||||
| 11755 | // Don't warn if signed overflow is defined, then all the rest of the | ||||
| 11756 | // diagnostics will not be triggered because the behavior is defined. | ||||
| 11757 | // Also don't warn in C++20 mode (and newer), as signed left shifts | ||||
| 11758 | // always wrap and never overflow. | ||||
| 11759 | if (S.getLangOpts().isSignedOverflowDefined() || S.getLangOpts().CPlusPlus20) | ||||
| 11760 | return; | ||||
| 11761 | |||||
| 11762 | // If LHS does not have a non-negative value then, the | ||||
| 11763 | // behavior is undefined before C++2a. Warn about it. | ||||
| 11764 | if (Left.isNegative()) { | ||||
| 11765 | S.DiagRuntimeBehavior(Loc, LHS.get(), | ||||
| 11766 | S.PDiag(diag::warn_shift_lhs_negative) | ||||
| 11767 | << LHS.get()->getSourceRange()); | ||||
| 11768 | return; | ||||
| 11769 | } | ||||
| 11770 | |||||
| 11771 | llvm::APInt ResultBits = | ||||
| 11772 | static_cast<llvm::APInt &>(Right) + Left.getSignificantBits(); | ||||
| 11773 | if (LeftBits.uge(ResultBits)) | ||||
| 11774 | return; | ||||
| 11775 | llvm::APSInt Result = Left.extend(ResultBits.getLimitedValue()); | ||||
| 11776 | Result = Result.shl(Right); | ||||
| 11777 | |||||
| 11778 | // Print the bit representation of the signed integer as an unsigned | ||||
| 11779 | // hexadecimal number. | ||||
| 11780 | SmallString<40> HexResult; | ||||
| 11781 | Result.toString(HexResult, 16, /*Signed =*/false, /*Literal =*/true); | ||||
| 11782 | |||||
| 11783 | // If we are only missing a sign bit, this is less likely to result in actual | ||||
| 11784 | // bugs -- if the result is cast back to an unsigned type, it will have the | ||||
| 11785 | // expected value. Thus we place this behind a different warning that can be | ||||
| 11786 | // turned off separately if needed. | ||||
| 11787 | if (LeftBits == ResultBits - 1) { | ||||
| 11788 | S.Diag(Loc, diag::warn_shift_result_sets_sign_bit) | ||||
| 11789 | << HexResult << LHSType | ||||
| 11790 | << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); | ||||
| 11791 | return; | ||||
| 11792 | } | ||||
| 11793 | |||||
| 11794 | S.Diag(Loc, diag::warn_shift_result_gt_typewidth) | ||||
| 11795 | << HexResult.str() << Result.getSignificantBits() << LHSType | ||||
| 11796 | << Left.getBitWidth() << LHS.get()->getSourceRange() | ||||
| 11797 | << RHS.get()->getSourceRange(); | ||||
| 11798 | } | ||||
| 11799 | |||||
| 11800 | /// Return the resulting type when a vector is shifted | ||||
| 11801 | /// by a scalar or vector shift amount. | ||||
| 11802 | static QualType checkVectorShift(Sema &S, ExprResult &LHS, ExprResult &RHS, | ||||
| 11803 | SourceLocation Loc, bool IsCompAssign) { | ||||
| 11804 | // OpenCL v1.1 s6.3.j says RHS can be a vector only if LHS is a vector. | ||||
| 11805 | if ((S.LangOpts.OpenCL || S.LangOpts.ZVector) && | ||||
| 11806 | !LHS.get()->getType()->isVectorType()) { | ||||
| 11807 | S.Diag(Loc, diag::err_shift_rhs_only_vector) | ||||
| 11808 | << RHS.get()->getType() << LHS.get()->getType() | ||||
| 11809 | << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); | ||||
| 11810 | return QualType(); | ||||
| 11811 | } | ||||
| 11812 | |||||
| 11813 | if (!IsCompAssign) { | ||||
| 11814 | LHS = S.UsualUnaryConversions(LHS.get()); | ||||
| 11815 | if (LHS.isInvalid()) return QualType(); | ||||
| 11816 | } | ||||
| 11817 | |||||
| 11818 | RHS = S.UsualUnaryConversions(RHS.get()); | ||||
| 11819 | if (RHS.isInvalid()) return QualType(); | ||||
| 11820 | |||||
| 11821 | QualType LHSType = LHS.get()->getType(); | ||||
| 11822 | // Note that LHS might be a scalar because the routine calls not only in | ||||
| 11823 | // OpenCL case. | ||||
| 11824 | const VectorType *LHSVecTy = LHSType->getAs<VectorType>(); | ||||
| 11825 | QualType LHSEleType = LHSVecTy ? LHSVecTy->getElementType() : LHSType; | ||||
| 11826 | |||||
| 11827 | // Note that RHS might not be a vector. | ||||
| 11828 | QualType RHSType = RHS.get()->getType(); | ||||
| 11829 | const VectorType *RHSVecTy = RHSType->getAs<VectorType>(); | ||||
| 11830 | QualType RHSEleType = RHSVecTy ? RHSVecTy->getElementType() : RHSType; | ||||
| 11831 | |||||
| 11832 | // Do not allow shifts for boolean vectors. | ||||
| 11833 | if ((LHSVecTy && LHSVecTy->isExtVectorBoolType()) || | ||||
| 11834 | (RHSVecTy && RHSVecTy->isExtVectorBoolType())) { | ||||
| 11835 | S.Diag(Loc, diag::err_typecheck_invalid_operands) | ||||
| 11836 | << LHS.get()->getType() << RHS.get()->getType() | ||||
| 11837 | << LHS.get()->getSourceRange(); | ||||
| 11838 | return QualType(); | ||||
| 11839 | } | ||||
| 11840 | |||||
| 11841 | // The operands need to be integers. | ||||
| 11842 | if (!LHSEleType->isIntegerType()) { | ||||
| 11843 | S.Diag(Loc, diag::err_typecheck_expect_int) | ||||
| 11844 | << LHS.get()->getType() << LHS.get()->getSourceRange(); | ||||
| 11845 | return QualType(); | ||||
| 11846 | } | ||||
| 11847 | |||||
| 11848 | if (!RHSEleType->isIntegerType()) { | ||||
| 11849 | S.Diag(Loc, diag::err_typecheck_expect_int) | ||||
| 11850 | << RHS.get()->getType() << RHS.get()->getSourceRange(); | ||||
| 11851 | return QualType(); | ||||
| 11852 | } | ||||
| 11853 | |||||
| 11854 | if (!LHSVecTy) { | ||||
| 11855 | assert(RHSVecTy)(static_cast <bool> (RHSVecTy) ? void (0) : __assert_fail ("RHSVecTy", "clang/lib/Sema/SemaExpr.cpp", 11855, __extension__ __PRETTY_FUNCTION__)); | ||||
| 11856 | if (IsCompAssign) | ||||
| 11857 | return RHSType; | ||||
| 11858 | if (LHSEleType != RHSEleType) { | ||||
| 11859 | LHS = S.ImpCastExprToType(LHS.get(),RHSEleType, CK_IntegralCast); | ||||
| 11860 | LHSEleType = RHSEleType; | ||||
| 11861 | } | ||||
| 11862 | QualType VecTy = | ||||
| 11863 | S.Context.getExtVectorType(LHSEleType, RHSVecTy->getNumElements()); | ||||
| 11864 | LHS = S.ImpCastExprToType(LHS.get(), VecTy, CK_VectorSplat); | ||||
| 11865 | LHSType = VecTy; | ||||
| 11866 | } else if (RHSVecTy) { | ||||
| 11867 | // OpenCL v1.1 s6.3.j says that for vector types, the operators | ||||
| 11868 | // are applied component-wise. So if RHS is a vector, then ensure | ||||
| 11869 | // that the number of elements is the same as LHS... | ||||
| 11870 | if (RHSVecTy->getNumElements() != LHSVecTy->getNumElements()) { | ||||
| 11871 | S.Diag(Loc, diag::err_typecheck_vector_lengths_not_equal) | ||||
| 11872 | << LHS.get()->getType() << RHS.get()->getType() | ||||
| 11873 | << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); | ||||
| 11874 | return QualType(); | ||||
| 11875 | } | ||||
| 11876 | if (!S.LangOpts.OpenCL && !S.LangOpts.ZVector) { | ||||
| 11877 | const BuiltinType *LHSBT = LHSEleType->getAs<clang::BuiltinType>(); | ||||
| 11878 | const BuiltinType *RHSBT = RHSEleType->getAs<clang::BuiltinType>(); | ||||
| 11879 | if (LHSBT != RHSBT && | ||||
| 11880 | S.Context.getTypeSize(LHSBT) != S.Context.getTypeSize(RHSBT)) { | ||||
| 11881 | S.Diag(Loc, diag::warn_typecheck_vector_element_sizes_not_equal) | ||||
| 11882 | << LHS.get()->getType() << RHS.get()->getType() | ||||
| 11883 | << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); | ||||
| 11884 | } | ||||
| 11885 | } | ||||
| 11886 | } else { | ||||
| 11887 | // ...else expand RHS to match the number of elements in LHS. | ||||
| 11888 | QualType VecTy = | ||||
| 11889 | S.Context.getExtVectorType(RHSEleType, LHSVecTy->getNumElements()); | ||||
| 11890 | RHS = S.ImpCastExprToType(RHS.get(), VecTy, CK_VectorSplat); | ||||
| 11891 | } | ||||
| 11892 | |||||
| 11893 | return LHSType; | ||||
| 11894 | } | ||||
| 11895 | |||||
| 11896 | static QualType checkSizelessVectorShift(Sema &S, ExprResult &LHS, | ||||
| 11897 | ExprResult &RHS, SourceLocation Loc, | ||||
| 11898 | bool IsCompAssign) { | ||||
| 11899 | if (!IsCompAssign) { | ||||
| 11900 | LHS = S.UsualUnaryConversions(LHS.get()); | ||||
| 11901 | if (LHS.isInvalid()) | ||||
| 11902 | return QualType(); | ||||
| 11903 | } | ||||
| 11904 | |||||
| 11905 | RHS = S.UsualUnaryConversions(RHS.get()); | ||||
| 11906 | if (RHS.isInvalid()) | ||||
| 11907 | return QualType(); | ||||
| 11908 | |||||
| 11909 | QualType LHSType = LHS.get()->getType(); | ||||
| 11910 | const BuiltinType *LHSBuiltinTy = LHSType->getAs<BuiltinType>(); | ||||
| 11911 | QualType LHSEleType = LHSType->isVLSTBuiltinType() | ||||
| 11912 | ? LHSBuiltinTy->getSveEltType(S.getASTContext()) | ||||
| 11913 | : LHSType; | ||||
| 11914 | |||||
| 11915 | // Note that RHS might not be a vector | ||||
| 11916 | QualType RHSType = RHS.get()->getType(); | ||||
| 11917 | const BuiltinType *RHSBuiltinTy = RHSType->getAs<BuiltinType>(); | ||||
| 11918 | QualType RHSEleType = RHSType->isVLSTBuiltinType() | ||||
| 11919 | ? RHSBuiltinTy->getSveEltType(S.getASTContext()) | ||||
| 11920 | : RHSType; | ||||
| 11921 | |||||
| 11922 | if ((LHSBuiltinTy && LHSBuiltinTy->isSVEBool()) || | ||||
| 11923 | (RHSBuiltinTy && RHSBuiltinTy->isSVEBool())) { | ||||
| 11924 | S.Diag(Loc, diag::err_typecheck_invalid_operands) | ||||
| 11925 | << LHSType << RHSType << LHS.get()->getSourceRange(); | ||||
| 11926 | return QualType(); | ||||
| 11927 | } | ||||
| 11928 | |||||
| 11929 | if (!LHSEleType->isIntegerType()) { | ||||
| 11930 | S.Diag(Loc, diag::err_typecheck_expect_int) | ||||
| 11931 | << LHS.get()->getType() << LHS.get()->getSourceRange(); | ||||
| 11932 | return QualType(); | ||||
| 11933 | } | ||||
| 11934 | |||||
| 11935 | if (!RHSEleType->isIntegerType()) { | ||||
| 11936 | S.Diag(Loc, diag::err_typecheck_expect_int) | ||||
| 11937 | << RHS.get()->getType() << RHS.get()->getSourceRange(); | ||||
| 11938 | return QualType(); | ||||
| 11939 | } | ||||
| 11940 | |||||
| 11941 | if (LHSType->isVLSTBuiltinType() && RHSType->isVLSTBuiltinType() && | ||||
| 11942 | (S.Context.getBuiltinVectorTypeInfo(LHSBuiltinTy).EC != | ||||
| 11943 | S.Context.getBuiltinVectorTypeInfo(RHSBuiltinTy).EC)) { | ||||
| 11944 | S.Diag(Loc, diag::err_typecheck_invalid_operands) | ||||
| 11945 | << LHSType << RHSType << LHS.get()->getSourceRange() | ||||
| 11946 | << RHS.get()->getSourceRange(); | ||||
| 11947 | return QualType(); | ||||
| 11948 | } | ||||
| 11949 | |||||
| 11950 | if (!LHSType->isVLSTBuiltinType()) { | ||||
| 11951 | assert(RHSType->isVLSTBuiltinType())(static_cast <bool> (RHSType->isVLSTBuiltinType()) ? void (0) : __assert_fail ("RHSType->isVLSTBuiltinType()", "clang/lib/Sema/SemaExpr.cpp", 11951, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 11952 | if (IsCompAssign) | ||||
| 11953 | return RHSType; | ||||
| 11954 | if (LHSEleType != RHSEleType) { | ||||
| 11955 | LHS = S.ImpCastExprToType(LHS.get(), RHSEleType, clang::CK_IntegralCast); | ||||
| 11956 | LHSEleType = RHSEleType; | ||||
| 11957 | } | ||||
| 11958 | const llvm::ElementCount VecSize = | ||||
| 11959 | S.Context.getBuiltinVectorTypeInfo(RHSBuiltinTy).EC; | ||||
| 11960 | QualType VecTy = | ||||
| 11961 | S.Context.getScalableVectorType(LHSEleType, VecSize.getKnownMinValue()); | ||||
| 11962 | LHS = S.ImpCastExprToType(LHS.get(), VecTy, clang::CK_VectorSplat); | ||||
| 11963 | LHSType = VecTy; | ||||
| 11964 | } else if (RHSBuiltinTy && RHSBuiltinTy->isVLSTBuiltinType()) { | ||||
| 11965 | if (S.Context.getTypeSize(RHSBuiltinTy) != | ||||
| 11966 | S.Context.getTypeSize(LHSBuiltinTy)) { | ||||
| 11967 | S.Diag(Loc, diag::err_typecheck_vector_lengths_not_equal) | ||||
| 11968 | << LHSType << RHSType << LHS.get()->getSourceRange() | ||||
| 11969 | << RHS.get()->getSourceRange(); | ||||
| 11970 | return QualType(); | ||||
| 11971 | } | ||||
| 11972 | } else { | ||||
| 11973 | const llvm::ElementCount VecSize = | ||||
| 11974 | S.Context.getBuiltinVectorTypeInfo(LHSBuiltinTy).EC; | ||||
| 11975 | if (LHSEleType != RHSEleType) { | ||||
| 11976 | RHS = S.ImpCastExprToType(RHS.get(), LHSEleType, clang::CK_IntegralCast); | ||||
| 11977 | RHSEleType = LHSEleType; | ||||
| 11978 | } | ||||
| 11979 | QualType VecTy = | ||||
| 11980 | S.Context.getScalableVectorType(RHSEleType, VecSize.getKnownMinValue()); | ||||
| 11981 | RHS = S.ImpCastExprToType(RHS.get(), VecTy, CK_VectorSplat); | ||||
| 11982 | } | ||||
| 11983 | |||||
| 11984 | return LHSType; | ||||
| 11985 | } | ||||
| 11986 | |||||
| 11987 | // C99 6.5.7 | ||||
| 11988 | QualType Sema::CheckShiftOperands(ExprResult &LHS, ExprResult &RHS, | ||||
| 11989 | SourceLocation Loc, BinaryOperatorKind Opc, | ||||
| 11990 | bool IsCompAssign) { | ||||
| 11991 | checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false); | ||||
| 11992 | |||||
| 11993 | // Vector shifts promote their scalar inputs to vector type. | ||||
| 11994 | if (LHS.get()->getType()->isVectorType() || | ||||
| 11995 | RHS.get()->getType()->isVectorType()) { | ||||
| 11996 | if (LangOpts.ZVector) { | ||||
| 11997 | // The shift operators for the z vector extensions work basically | ||||
| 11998 | // like general shifts, except that neither the LHS nor the RHS is | ||||
| 11999 | // allowed to be a "vector bool". | ||||
| 12000 | if (auto LHSVecType = LHS.get()->getType()->getAs<VectorType>()) | ||||
| 12001 | if (LHSVecType->getVectorKind() == VectorType::AltiVecBool) | ||||
| 12002 | return InvalidOperands(Loc, LHS, RHS); | ||||
| 12003 | if (auto RHSVecType = RHS.get()->getType()->getAs<VectorType>()) | ||||
| 12004 | if (RHSVecType->getVectorKind() == VectorType::AltiVecBool) | ||||
| 12005 | return InvalidOperands(Loc, LHS, RHS); | ||||
| 12006 | } | ||||
| 12007 | return checkVectorShift(*this, LHS, RHS, Loc, IsCompAssign); | ||||
| 12008 | } | ||||
| 12009 | |||||
| 12010 | if (LHS.get()->getType()->isVLSTBuiltinType() || | ||||
| 12011 | RHS.get()->getType()->isVLSTBuiltinType()) | ||||
| 12012 | return checkSizelessVectorShift(*this, LHS, RHS, Loc, IsCompAssign); | ||||
| 12013 | |||||
| 12014 | // Shifts don't perform usual arithmetic conversions, they just do integer | ||||
| 12015 | // promotions on each operand. C99 6.5.7p3 | ||||
| 12016 | |||||
| 12017 | // For the LHS, do usual unary conversions, but then reset them away | ||||
| 12018 | // if this is a compound assignment. | ||||
| 12019 | ExprResult OldLHS = LHS; | ||||
| 12020 | LHS = UsualUnaryConversions(LHS.get()); | ||||
| 12021 | if (LHS.isInvalid()) | ||||
| 12022 | return QualType(); | ||||
| 12023 | QualType LHSType = LHS.get()->getType(); | ||||
| 12024 | if (IsCompAssign) LHS = OldLHS; | ||||
| 12025 | |||||
| 12026 | // The RHS is simpler. | ||||
| 12027 | RHS = UsualUnaryConversions(RHS.get()); | ||||
| 12028 | if (RHS.isInvalid()) | ||||
| 12029 | return QualType(); | ||||
| 12030 | QualType RHSType = RHS.get()->getType(); | ||||
| 12031 | |||||
| 12032 | // C99 6.5.7p2: Each of the operands shall have integer type. | ||||
| 12033 | // Embedded-C 4.1.6.2.2: The LHS may also be fixed-point. | ||||
| 12034 | if ((!LHSType->isFixedPointOrIntegerType() && | ||||
| 12035 | !LHSType->hasIntegerRepresentation()) || | ||||
| 12036 | !RHSType->hasIntegerRepresentation()) | ||||
| 12037 | return InvalidOperands(Loc, LHS, RHS); | ||||
| 12038 | |||||
| 12039 | // C++0x: Don't allow scoped enums. FIXME: Use something better than | ||||
| 12040 | // hasIntegerRepresentation() above instead of this. | ||||
| 12041 | if (isScopedEnumerationType(LHSType) || | ||||
| 12042 | isScopedEnumerationType(RHSType)) { | ||||
| 12043 | return InvalidOperands(Loc, LHS, RHS); | ||||
| 12044 | } | ||||
| 12045 | DiagnoseBadShiftValues(*this, LHS, RHS, Loc, Opc, LHSType); | ||||
| 12046 | |||||
| 12047 | // "The type of the result is that of the promoted left operand." | ||||
| 12048 | return LHSType; | ||||
| 12049 | } | ||||
| 12050 | |||||
| 12051 | /// Diagnose bad pointer comparisons. | ||||
| 12052 | static void diagnoseDistinctPointerComparison(Sema &S, SourceLocation Loc, | ||||
| 12053 | ExprResult &LHS, ExprResult &RHS, | ||||
| 12054 | bool IsError) { | ||||
| 12055 | S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_distinct_pointers | ||||
| 12056 | : diag::ext_typecheck_comparison_of_distinct_pointers) | ||||
| 12057 | << LHS.get()->getType() << RHS.get()->getType() | ||||
| 12058 | << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); | ||||
| 12059 | } | ||||
| 12060 | |||||
| 12061 | /// Returns false if the pointers are converted to a composite type, | ||||
| 12062 | /// true otherwise. | ||||
| 12063 | static bool convertPointersToCompositeType(Sema &S, SourceLocation Loc, | ||||
| 12064 | ExprResult &LHS, ExprResult &RHS) { | ||||
| 12065 | // C++ [expr.rel]p2: | ||||
| 12066 | // [...] Pointer conversions (4.10) and qualification | ||||
| 12067 | // conversions (4.4) are performed on pointer operands (or on | ||||
| 12068 | // a pointer operand and a null pointer constant) to bring | ||||
| 12069 | // them to their composite pointer type. [...] | ||||
| 12070 | // | ||||
| 12071 | // C++ [expr.eq]p1 uses the same notion for (in)equality | ||||
| 12072 | // comparisons of pointers. | ||||
| 12073 | |||||
| 12074 | QualType LHSType = LHS.get()->getType(); | ||||
| 12075 | QualType RHSType = RHS.get()->getType(); | ||||
| 12076 | assert(LHSType->isPointerType() || RHSType->isPointerType() ||(static_cast <bool> (LHSType->isPointerType() || RHSType ->isPointerType() || LHSType->isMemberPointerType() || RHSType ->isMemberPointerType()) ? void (0) : __assert_fail ("LHSType->isPointerType() || RHSType->isPointerType() || LHSType->isMemberPointerType() || RHSType->isMemberPointerType()" , "clang/lib/Sema/SemaExpr.cpp", 12077, __extension__ __PRETTY_FUNCTION__ )) | ||||
| 12077 | LHSType->isMemberPointerType() || RHSType->isMemberPointerType())(static_cast <bool> (LHSType->isPointerType() || RHSType ->isPointerType() || LHSType->isMemberPointerType() || RHSType ->isMemberPointerType()) ? void (0) : __assert_fail ("LHSType->isPointerType() || RHSType->isPointerType() || LHSType->isMemberPointerType() || RHSType->isMemberPointerType()" , "clang/lib/Sema/SemaExpr.cpp", 12077, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 12078 | |||||
| 12079 | QualType T = S.FindCompositePointerType(Loc, LHS, RHS); | ||||
| 12080 | if (T.isNull()) { | ||||
| 12081 | if ((LHSType->isAnyPointerType() || LHSType->isMemberPointerType()) && | ||||
| 12082 | (RHSType->isAnyPointerType() || RHSType->isMemberPointerType())) | ||||
| 12083 | diagnoseDistinctPointerComparison(S, Loc, LHS, RHS, /*isError*/true); | ||||
| 12084 | else | ||||
| 12085 | S.InvalidOperands(Loc, LHS, RHS); | ||||
| 12086 | return true; | ||||
| 12087 | } | ||||
| 12088 | |||||
| 12089 | return false; | ||||
| 12090 | } | ||||
| 12091 | |||||
| 12092 | static void diagnoseFunctionPointerToVoidComparison(Sema &S, SourceLocation Loc, | ||||
| 12093 | ExprResult &LHS, | ||||
| 12094 | ExprResult &RHS, | ||||
| 12095 | bool IsError) { | ||||
| 12096 | S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_fptr_to_void | ||||
| 12097 | : diag::ext_typecheck_comparison_of_fptr_to_void) | ||||
| 12098 | << LHS.get()->getType() << RHS.get()->getType() | ||||
| 12099 | << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); | ||||
| 12100 | } | ||||
| 12101 | |||||
| 12102 | static bool isObjCObjectLiteral(ExprResult &E) { | ||||
| 12103 | switch (E.get()->IgnoreParenImpCasts()->getStmtClass()) { | ||||
| 12104 | case Stmt::ObjCArrayLiteralClass: | ||||
| 12105 | case Stmt::ObjCDictionaryLiteralClass: | ||||
| 12106 | case Stmt::ObjCStringLiteralClass: | ||||
| 12107 | case Stmt::ObjCBoxedExprClass: | ||||
| 12108 | return true; | ||||
| 12109 | default: | ||||
| 12110 | // Note that ObjCBoolLiteral is NOT an object literal! | ||||
| 12111 | return false; | ||||
| 12112 | } | ||||
| 12113 | } | ||||
| 12114 | |||||
| 12115 | static bool hasIsEqualMethod(Sema &S, const Expr *LHS, const Expr *RHS) { | ||||
| 12116 | const ObjCObjectPointerType *Type = | ||||
| 12117 | LHS->getType()->getAs<ObjCObjectPointerType>(); | ||||
| 12118 | |||||
| 12119 | // If this is not actually an Objective-C object, bail out. | ||||
| 12120 | if (!Type) | ||||
| 12121 | return false; | ||||
| 12122 | |||||
| 12123 | // Get the LHS object's interface type. | ||||
| 12124 | QualType InterfaceType = Type->getPointeeType(); | ||||
| 12125 | |||||
| 12126 | // If the RHS isn't an Objective-C object, bail out. | ||||
| 12127 | if (!RHS->getType()->isObjCObjectPointerType()) | ||||
| 12128 | return false; | ||||
| 12129 | |||||
| 12130 | // Try to find the -isEqual: method. | ||||
| 12131 | Selector IsEqualSel = S.NSAPIObj->getIsEqualSelector(); | ||||
| 12132 | ObjCMethodDecl *Method = S.LookupMethodInObjectType(IsEqualSel, | ||||
| 12133 | InterfaceType, | ||||
| 12134 | /*IsInstance=*/true); | ||||
| 12135 | if (!Method) { | ||||
| 12136 | if (Type->isObjCIdType()) { | ||||
| 12137 | // For 'id', just check the global pool. | ||||
| 12138 | Method = S.LookupInstanceMethodInGlobalPool(IsEqualSel, SourceRange(), | ||||
| 12139 | /*receiverId=*/true); | ||||
| 12140 | } else { | ||||
| 12141 | // Check protocols. | ||||
| 12142 | Method = S.LookupMethodInQualifiedType(IsEqualSel, Type, | ||||
| 12143 | /*IsInstance=*/true); | ||||
| 12144 | } | ||||
| 12145 | } | ||||
| 12146 | |||||
| 12147 | if (!Method) | ||||
| 12148 | return false; | ||||
| 12149 | |||||
| 12150 | QualType T = Method->parameters()[0]->getType(); | ||||
| 12151 | if (!T->isObjCObjectPointerType()) | ||||
| 12152 | return false; | ||||
| 12153 | |||||
| 12154 | QualType R = Method->getReturnType(); | ||||
| 12155 | if (!R->isScalarType()) | ||||
| 12156 | return false; | ||||
| 12157 | |||||
| 12158 | return true; | ||||
| 12159 | } | ||||
| 12160 | |||||
| 12161 | Sema::ObjCLiteralKind Sema::CheckLiteralKind(Expr *FromE) { | ||||
| 12162 | FromE = FromE->IgnoreParenImpCasts(); | ||||
| 12163 | switch (FromE->getStmtClass()) { | ||||
| 12164 | default: | ||||
| 12165 | break; | ||||
| 12166 | case Stmt::ObjCStringLiteralClass: | ||||
| 12167 | // "string literal" | ||||
| 12168 | return LK_String; | ||||
| 12169 | case Stmt::ObjCArrayLiteralClass: | ||||
| 12170 | // "array literal" | ||||
| 12171 | return LK_Array; | ||||
| 12172 | case Stmt::ObjCDictionaryLiteralClass: | ||||
| 12173 | // "dictionary literal" | ||||
| 12174 | return LK_Dictionary; | ||||
| 12175 | case Stmt::BlockExprClass: | ||||
| 12176 | return LK_Block; | ||||
| 12177 | case Stmt::ObjCBoxedExprClass: { | ||||
| 12178 | Expr *Inner = cast<ObjCBoxedExpr>(FromE)->getSubExpr()->IgnoreParens(); | ||||
| 12179 | switch (Inner->getStmtClass()) { | ||||
| 12180 | case Stmt::IntegerLiteralClass: | ||||
| 12181 | case Stmt::FloatingLiteralClass: | ||||
| 12182 | case Stmt::CharacterLiteralClass: | ||||
| 12183 | case Stmt::ObjCBoolLiteralExprClass: | ||||
| 12184 | case Stmt::CXXBoolLiteralExprClass: | ||||
| 12185 | // "numeric literal" | ||||
| 12186 | return LK_Numeric; | ||||
| 12187 | case Stmt::ImplicitCastExprClass: { | ||||
| 12188 | CastKind CK = cast<CastExpr>(Inner)->getCastKind(); | ||||
| 12189 | // Boolean literals can be represented by implicit casts. | ||||
| 12190 | if (CK == CK_IntegralToBoolean || CK == CK_IntegralCast) | ||||
| 12191 | return LK_Numeric; | ||||
| 12192 | break; | ||||
| 12193 | } | ||||
| 12194 | default: | ||||
| 12195 | break; | ||||
| 12196 | } | ||||
| 12197 | return LK_Boxed; | ||||
| 12198 | } | ||||
| 12199 | } | ||||
| 12200 | return LK_None; | ||||
| 12201 | } | ||||
| 12202 | |||||
| 12203 | static void diagnoseObjCLiteralComparison(Sema &S, SourceLocation Loc, | ||||
| 12204 | ExprResult &LHS, ExprResult &RHS, | ||||
| 12205 | BinaryOperator::Opcode Opc){ | ||||
| 12206 | Expr *Literal; | ||||
| 12207 | Expr *Other; | ||||
| 12208 | if (isObjCObjectLiteral(LHS)) { | ||||
| 12209 | Literal = LHS.get(); | ||||
| 12210 | Other = RHS.get(); | ||||
| 12211 | } else { | ||||
| 12212 | Literal = RHS.get(); | ||||
| 12213 | Other = LHS.get(); | ||||
| 12214 | } | ||||
| 12215 | |||||
| 12216 | // Don't warn on comparisons against nil. | ||||
| 12217 | Other = Other->IgnoreParenCasts(); | ||||
| 12218 | if (Other->isNullPointerConstant(S.getASTContext(), | ||||
| 12219 | Expr::NPC_ValueDependentIsNotNull)) | ||||
| 12220 | return; | ||||
| 12221 | |||||
| 12222 | // This should be kept in sync with warn_objc_literal_comparison. | ||||
| 12223 | // LK_String should always be after the other literals, since it has its own | ||||
| 12224 | // warning flag. | ||||
| 12225 | Sema::ObjCLiteralKind LiteralKind = S.CheckLiteralKind(Literal); | ||||
| 12226 | assert(LiteralKind != Sema::LK_Block)(static_cast <bool> (LiteralKind != Sema::LK_Block) ? void (0) : __assert_fail ("LiteralKind != Sema::LK_Block", "clang/lib/Sema/SemaExpr.cpp" , 12226, __extension__ __PRETTY_FUNCTION__)); | ||||
| 12227 | if (LiteralKind == Sema::LK_None) { | ||||
| 12228 | llvm_unreachable("Unknown Objective-C object literal kind")::llvm::llvm_unreachable_internal("Unknown Objective-C object literal kind" , "clang/lib/Sema/SemaExpr.cpp", 12228); | ||||
| 12229 | } | ||||
| 12230 | |||||
| 12231 | if (LiteralKind == Sema::LK_String) | ||||
| 12232 | S.Diag(Loc, diag::warn_objc_string_literal_comparison) | ||||
| 12233 | << Literal->getSourceRange(); | ||||
| 12234 | else | ||||
| 12235 | S.Diag(Loc, diag::warn_objc_literal_comparison) | ||||
| 12236 | << LiteralKind << Literal->getSourceRange(); | ||||
| 12237 | |||||
| 12238 | if (BinaryOperator::isEqualityOp(Opc) && | ||||
| 12239 | hasIsEqualMethod(S, LHS.get(), RHS.get())) { | ||||
| 12240 | SourceLocation Start = LHS.get()->getBeginLoc(); | ||||
| 12241 | SourceLocation End = S.getLocForEndOfToken(RHS.get()->getEndLoc()); | ||||
| 12242 | CharSourceRange OpRange = | ||||
| 12243 | CharSourceRange::getCharRange(Loc, S.getLocForEndOfToken(Loc)); | ||||
| 12244 | |||||
| 12245 | S.Diag(Loc, diag::note_objc_literal_comparison_isequal) | ||||
| 12246 | << FixItHint::CreateInsertion(Start, Opc == BO_EQ ? "[" : "![") | ||||
| 12247 | << FixItHint::CreateReplacement(OpRange, " isEqual:") | ||||
| 12248 | << FixItHint::CreateInsertion(End, "]"); | ||||
| 12249 | } | ||||
| 12250 | } | ||||
| 12251 | |||||
| 12252 | /// Warns on !x < y, !x & y where !(x < y), !(x & y) was probably intended. | ||||
| 12253 | static void diagnoseLogicalNotOnLHSofCheck(Sema &S, ExprResult &LHS, | ||||
| 12254 | ExprResult &RHS, SourceLocation Loc, | ||||
| 12255 | BinaryOperatorKind Opc) { | ||||
| 12256 | // Check that left hand side is !something. | ||||
| 12257 | UnaryOperator *UO = dyn_cast<UnaryOperator>(LHS.get()->IgnoreImpCasts()); | ||||
| 12258 | if (!UO || UO->getOpcode() != UO_LNot) return; | ||||
| 12259 | |||||
| 12260 | // Only check if the right hand side is non-bool arithmetic type. | ||||
| 12261 | if (RHS.get()->isKnownToHaveBooleanValue()) return; | ||||
| 12262 | |||||
| 12263 | // Make sure that the something in !something is not bool. | ||||
| 12264 | Expr *SubExpr = UO->getSubExpr()->IgnoreImpCasts(); | ||||
| 12265 | if (SubExpr->isKnownToHaveBooleanValue()) return; | ||||
| 12266 | |||||
| 12267 | // Emit warning. | ||||
| 12268 | bool IsBitwiseOp = Opc == BO_And || Opc == BO_Or || Opc == BO_Xor; | ||||
| 12269 | S.Diag(UO->getOperatorLoc(), diag::warn_logical_not_on_lhs_of_check) | ||||
| 12270 | << Loc << IsBitwiseOp; | ||||
| 12271 | |||||
| 12272 | // First note suggest !(x < y) | ||||
| 12273 | SourceLocation FirstOpen = SubExpr->getBeginLoc(); | ||||
| 12274 | SourceLocation FirstClose = RHS.get()->getEndLoc(); | ||||
| 12275 | FirstClose = S.getLocForEndOfToken(FirstClose); | ||||
| 12276 | if (FirstClose.isInvalid()) | ||||
| 12277 | FirstOpen = SourceLocation(); | ||||
| 12278 | S.Diag(UO->getOperatorLoc(), diag::note_logical_not_fix) | ||||
| 12279 | << IsBitwiseOp | ||||
| 12280 | << FixItHint::CreateInsertion(FirstOpen, "(") | ||||
| 12281 | << FixItHint::CreateInsertion(FirstClose, ")"); | ||||
| 12282 | |||||
| 12283 | // Second note suggests (!x) < y | ||||
| 12284 | SourceLocation SecondOpen = LHS.get()->getBeginLoc(); | ||||
| 12285 | SourceLocation SecondClose = LHS.get()->getEndLoc(); | ||||
| 12286 | SecondClose = S.getLocForEndOfToken(SecondClose); | ||||
| 12287 | if (SecondClose.isInvalid()) | ||||
| 12288 | SecondOpen = SourceLocation(); | ||||
| 12289 | S.Diag(UO->getOperatorLoc(), diag::note_logical_not_silence_with_parens) | ||||
| 12290 | << FixItHint::CreateInsertion(SecondOpen, "(") | ||||
| 12291 | << FixItHint::CreateInsertion(SecondClose, ")"); | ||||
| 12292 | } | ||||
| 12293 | |||||
| 12294 | // Returns true if E refers to a non-weak array. | ||||
| 12295 | static bool checkForArray(const Expr *E) { | ||||
| 12296 | const ValueDecl *D = nullptr; | ||||
| 12297 | if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E)) { | ||||
| 12298 | D = DR->getDecl(); | ||||
| 12299 | } else if (const MemberExpr *Mem = dyn_cast<MemberExpr>(E)) { | ||||
| 12300 | if (Mem->isImplicitAccess()) | ||||
| 12301 | D = Mem->getMemberDecl(); | ||||
| 12302 | } | ||||
| 12303 | if (!D) | ||||
| 12304 | return false; | ||||
| 12305 | return D->getType()->isArrayType() && !D->isWeak(); | ||||
| 12306 | } | ||||
| 12307 | |||||
| 12308 | /// Diagnose some forms of syntactically-obvious tautological comparison. | ||||
| 12309 | static void diagnoseTautologicalComparison(Sema &S, SourceLocation Loc, | ||||
| 12310 | Expr *LHS, Expr *RHS, | ||||
| 12311 | BinaryOperatorKind Opc) { | ||||
| 12312 | Expr *LHSStripped = LHS->IgnoreParenImpCasts(); | ||||
| 12313 | Expr *RHSStripped = RHS->IgnoreParenImpCasts(); | ||||
| 12314 | |||||
| 12315 | QualType LHSType = LHS->getType(); | ||||
| 12316 | QualType RHSType = RHS->getType(); | ||||
| 12317 | if (LHSType->hasFloatingRepresentation() || | ||||
| 12318 | (LHSType->isBlockPointerType() && !BinaryOperator::isEqualityOp(Opc)) || | ||||
| 12319 | S.inTemplateInstantiation()) | ||||
| 12320 | return; | ||||
| 12321 | |||||
| 12322 | // Comparisons between two array types are ill-formed for operator<=>, so | ||||
| 12323 | // we shouldn't emit any additional warnings about it. | ||||
| 12324 | if (Opc == BO_Cmp && LHSType->isArrayType() && RHSType->isArrayType()) | ||||
| 12325 | return; | ||||
| 12326 | |||||
| 12327 | // For non-floating point types, check for self-comparisons of the form | ||||
| 12328 | // x == x, x != x, x < x, etc. These always evaluate to a constant, and | ||||
| 12329 | // often indicate logic errors in the program. | ||||
| 12330 | // | ||||
| 12331 | // NOTE: Don't warn about comparison expressions resulting from macro | ||||
| 12332 | // expansion. Also don't warn about comparisons which are only self | ||||
| 12333 | // comparisons within a template instantiation. The warnings should catch | ||||
| 12334 | // obvious cases in the definition of the template anyways. The idea is to | ||||
| 12335 | // warn when the typed comparison operator will always evaluate to the same | ||||
| 12336 | // result. | ||||
| 12337 | |||||
| 12338 | // Used for indexing into %select in warn_comparison_always | ||||
| 12339 | enum { | ||||
| 12340 | AlwaysConstant, | ||||
| 12341 | AlwaysTrue, | ||||
| 12342 | AlwaysFalse, | ||||
| 12343 | AlwaysEqual, // std::strong_ordering::equal from operator<=> | ||||
| 12344 | }; | ||||
| 12345 | |||||
| 12346 | // C++2a [depr.array.comp]: | ||||
| 12347 | // Equality and relational comparisons ([expr.eq], [expr.rel]) between two | ||||
| 12348 | // operands of array type are deprecated. | ||||
| 12349 | if (S.getLangOpts().CPlusPlus20 && LHSStripped->getType()->isArrayType() && | ||||
| 12350 | RHSStripped->getType()->isArrayType()) { | ||||
| 12351 | S.Diag(Loc, diag::warn_depr_array_comparison) | ||||
| 12352 | << LHS->getSourceRange() << RHS->getSourceRange() | ||||
| 12353 | << LHSStripped->getType() << RHSStripped->getType(); | ||||
| 12354 | // Carry on to produce the tautological comparison warning, if this | ||||
| 12355 | // expression is potentially-evaluated, we can resolve the array to a | ||||
| 12356 | // non-weak declaration, and so on. | ||||
| 12357 | } | ||||
| 12358 | |||||
| 12359 | if (!LHS->getBeginLoc().isMacroID() && !RHS->getBeginLoc().isMacroID()) { | ||||
| 12360 | if (Expr::isSameComparisonOperand(LHS, RHS)) { | ||||
| 12361 | unsigned Result; | ||||
| 12362 | switch (Opc) { | ||||
| 12363 | case BO_EQ: | ||||
| 12364 | case BO_LE: | ||||
| 12365 | case BO_GE: | ||||
| 12366 | Result = AlwaysTrue; | ||||
| 12367 | break; | ||||
| 12368 | case BO_NE: | ||||
| 12369 | case BO_LT: | ||||
| 12370 | case BO_GT: | ||||
| 12371 | Result = AlwaysFalse; | ||||
| 12372 | break; | ||||
| 12373 | case BO_Cmp: | ||||
| 12374 | Result = AlwaysEqual; | ||||
| 12375 | break; | ||||
| 12376 | default: | ||||
| 12377 | Result = AlwaysConstant; | ||||
| 12378 | break; | ||||
| 12379 | } | ||||
| 12380 | S.DiagRuntimeBehavior(Loc, nullptr, | ||||
| 12381 | S.PDiag(diag::warn_comparison_always) | ||||
| 12382 | << 0 /*self-comparison*/ | ||||
| 12383 | << Result); | ||||
| 12384 | } else if (checkForArray(LHSStripped) && checkForArray(RHSStripped)) { | ||||
| 12385 | // What is it always going to evaluate to? | ||||
| 12386 | unsigned Result; | ||||
| 12387 | switch (Opc) { | ||||
| 12388 | case BO_EQ: // e.g. array1 == array2 | ||||
| 12389 | Result = AlwaysFalse; | ||||
| 12390 | break; | ||||
| 12391 | case BO_NE: // e.g. array1 != array2 | ||||
| 12392 | Result = AlwaysTrue; | ||||
| 12393 | break; | ||||
| 12394 | default: // e.g. array1 <= array2 | ||||
| 12395 | // The best we can say is 'a constant' | ||||
| 12396 | Result = AlwaysConstant; | ||||
| 12397 | break; | ||||
| 12398 | } | ||||
| 12399 | S.DiagRuntimeBehavior(Loc, nullptr, | ||||
| 12400 | S.PDiag(diag::warn_comparison_always) | ||||
| 12401 | << 1 /*array comparison*/ | ||||
| 12402 | << Result); | ||||
| 12403 | } | ||||
| 12404 | } | ||||
| 12405 | |||||
| 12406 | if (isa<CastExpr>(LHSStripped)) | ||||
| 12407 | LHSStripped = LHSStripped->IgnoreParenCasts(); | ||||
| 12408 | if (isa<CastExpr>(RHSStripped)) | ||||
| 12409 | RHSStripped = RHSStripped->IgnoreParenCasts(); | ||||
| 12410 | |||||
| 12411 | // Warn about comparisons against a string constant (unless the other | ||||
| 12412 | // operand is null); the user probably wants string comparison function. | ||||
| 12413 | Expr *LiteralString = nullptr; | ||||
| 12414 | Expr *LiteralStringStripped = nullptr; | ||||
| 12415 | if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) && | ||||
| 12416 | !RHSStripped->isNullPointerConstant(S.Context, | ||||
| 12417 | Expr::NPC_ValueDependentIsNull)) { | ||||
| 12418 | LiteralString = LHS; | ||||
| 12419 | LiteralStringStripped = LHSStripped; | ||||
| 12420 | } else if ((isa<StringLiteral>(RHSStripped) || | ||||
| 12421 | isa<ObjCEncodeExpr>(RHSStripped)) && | ||||
| 12422 | !LHSStripped->isNullPointerConstant(S.Context, | ||||
| 12423 | Expr::NPC_ValueDependentIsNull)) { | ||||
| 12424 | LiteralString = RHS; | ||||
| 12425 | LiteralStringStripped = RHSStripped; | ||||
| 12426 | } | ||||
| 12427 | |||||
| 12428 | if (LiteralString) { | ||||
| 12429 | S.DiagRuntimeBehavior(Loc, nullptr, | ||||
| 12430 | S.PDiag(diag::warn_stringcompare) | ||||
| 12431 | << isa<ObjCEncodeExpr>(LiteralStringStripped) | ||||
| 12432 | << LiteralString->getSourceRange()); | ||||
| 12433 | } | ||||
| 12434 | } | ||||
| 12435 | |||||
| 12436 | static ImplicitConversionKind castKindToImplicitConversionKind(CastKind CK) { | ||||
| 12437 | switch (CK) { | ||||
| 12438 | default: { | ||||
| 12439 | #ifndef NDEBUG | ||||
| 12440 | llvm::errs() << "unhandled cast kind: " << CastExpr::getCastKindName(CK) | ||||
| 12441 | << "\n"; | ||||
| 12442 | #endif | ||||
| 12443 | llvm_unreachable("unhandled cast kind")::llvm::llvm_unreachable_internal("unhandled cast kind", "clang/lib/Sema/SemaExpr.cpp" , 12443); | ||||
| 12444 | } | ||||
| 12445 | case CK_UserDefinedConversion: | ||||
| 12446 | return ICK_Identity; | ||||
| 12447 | case CK_LValueToRValue: | ||||
| 12448 | return ICK_Lvalue_To_Rvalue; | ||||
| 12449 | case CK_ArrayToPointerDecay: | ||||
| 12450 | return ICK_Array_To_Pointer; | ||||
| 12451 | case CK_FunctionToPointerDecay: | ||||
| 12452 | return ICK_Function_To_Pointer; | ||||
| 12453 | case CK_IntegralCast: | ||||
| 12454 | return ICK_Integral_Conversion; | ||||
| 12455 | case CK_FloatingCast: | ||||
| 12456 | return ICK_Floating_Conversion; | ||||
| 12457 | case CK_IntegralToFloating: | ||||
| 12458 | case CK_FloatingToIntegral: | ||||
| 12459 | return ICK_Floating_Integral; | ||||
| 12460 | case CK_IntegralComplexCast: | ||||
| 12461 | case CK_FloatingComplexCast: | ||||
| 12462 | case CK_FloatingComplexToIntegralComplex: | ||||
| 12463 | case CK_IntegralComplexToFloatingComplex: | ||||
| 12464 | return ICK_Complex_Conversion; | ||||
| 12465 | case CK_FloatingComplexToReal: | ||||
| 12466 | case CK_FloatingRealToComplex: | ||||
| 12467 | case CK_IntegralComplexToReal: | ||||
| 12468 | case CK_IntegralRealToComplex: | ||||
| 12469 | return ICK_Complex_Real; | ||||
| 12470 | } | ||||
| 12471 | } | ||||
| 12472 | |||||
| 12473 | static bool checkThreeWayNarrowingConversion(Sema &S, QualType ToType, Expr *E, | ||||
| 12474 | QualType FromType, | ||||
| 12475 | SourceLocation Loc) { | ||||
| 12476 | // Check for a narrowing implicit conversion. | ||||
| 12477 | StandardConversionSequence SCS; | ||||
| 12478 | SCS.setAsIdentityConversion(); | ||||
| 12479 | SCS.setToType(0, FromType); | ||||
| 12480 | SCS.setToType(1, ToType); | ||||
| 12481 | if (const auto *ICE = dyn_cast<ImplicitCastExpr>(E)) | ||||
| 12482 | SCS.Second = castKindToImplicitConversionKind(ICE->getCastKind()); | ||||
| 12483 | |||||
| 12484 | APValue PreNarrowingValue; | ||||
| 12485 | QualType PreNarrowingType; | ||||
| 12486 | switch (SCS.getNarrowingKind(S.Context, E, PreNarrowingValue, | ||||
| 12487 | PreNarrowingType, | ||||
| 12488 | /*IgnoreFloatToIntegralConversion*/ true)) { | ||||
| 12489 | case NK_Dependent_Narrowing: | ||||
| 12490 | // Implicit conversion to a narrower type, but the expression is | ||||
| 12491 | // value-dependent so we can't tell whether it's actually narrowing. | ||||
| 12492 | case NK_Not_Narrowing: | ||||
| 12493 | return false; | ||||
| 12494 | |||||
| 12495 | case NK_Constant_Narrowing: | ||||
| 12496 | // Implicit conversion to a narrower type, and the value is not a constant | ||||
| 12497 | // expression. | ||||
| 12498 | S.Diag(E->getBeginLoc(), diag::err_spaceship_argument_narrowing) | ||||
| 12499 | << /*Constant*/ 1 | ||||
| 12500 | << PreNarrowingValue.getAsString(S.Context, PreNarrowingType) << ToType; | ||||
| 12501 | return true; | ||||
| 12502 | |||||
| 12503 | case NK_Variable_Narrowing: | ||||
| 12504 | // Implicit conversion to a narrower type, and the value is not a constant | ||||
| 12505 | // expression. | ||||
| 12506 | case NK_Type_Narrowing: | ||||
| 12507 | S.Diag(E->getBeginLoc(), diag::err_spaceship_argument_narrowing) | ||||
| 12508 | << /*Constant*/ 0 << FromType << ToType; | ||||
| 12509 | // TODO: It's not a constant expression, but what if the user intended it | ||||
| 12510 | // to be? Can we produce notes to help them figure out why it isn't? | ||||
| 12511 | return true; | ||||
| 12512 | } | ||||
| 12513 | llvm_unreachable("unhandled case in switch")::llvm::llvm_unreachable_internal("unhandled case in switch", "clang/lib/Sema/SemaExpr.cpp", 12513); | ||||
| 12514 | } | ||||
| 12515 | |||||
| 12516 | static QualType checkArithmeticOrEnumeralThreeWayCompare(Sema &S, | ||||
| 12517 | ExprResult &LHS, | ||||
| 12518 | ExprResult &RHS, | ||||
| 12519 | SourceLocation Loc) { | ||||
| 12520 | QualType LHSType = LHS.get()->getType(); | ||||
| 12521 | QualType RHSType = RHS.get()->getType(); | ||||
| 12522 | // Dig out the original argument type and expression before implicit casts | ||||
| 12523 | // were applied. These are the types/expressions we need to check the | ||||
| 12524 | // [expr.spaceship] requirements against. | ||||
| 12525 | ExprResult LHSStripped = LHS.get()->IgnoreParenImpCasts(); | ||||
| 12526 | ExprResult RHSStripped = RHS.get()->IgnoreParenImpCasts(); | ||||
| 12527 | QualType LHSStrippedType = LHSStripped.get()->getType(); | ||||
| 12528 | QualType RHSStrippedType = RHSStripped.get()->getType(); | ||||
| 12529 | |||||
| 12530 | // C++2a [expr.spaceship]p3: If one of the operands is of type bool and the | ||||
| 12531 | // other is not, the program is ill-formed. | ||||
| 12532 | if (LHSStrippedType->isBooleanType() != RHSStrippedType->isBooleanType()) { | ||||
| 12533 | S.InvalidOperands(Loc, LHSStripped, RHSStripped); | ||||
| 12534 | return QualType(); | ||||
| 12535 | } | ||||
| 12536 | |||||
| 12537 | // FIXME: Consider combining this with checkEnumArithmeticConversions. | ||||
| 12538 | int NumEnumArgs = (int)LHSStrippedType->isEnumeralType() + | ||||
| 12539 | RHSStrippedType->isEnumeralType(); | ||||
| 12540 | if (NumEnumArgs == 1) { | ||||
| 12541 | bool LHSIsEnum = LHSStrippedType->isEnumeralType(); | ||||
| 12542 | QualType OtherTy = LHSIsEnum ? RHSStrippedType : LHSStrippedType; | ||||
| 12543 | if (OtherTy->hasFloatingRepresentation()) { | ||||
| 12544 | S.InvalidOperands(Loc, LHSStripped, RHSStripped); | ||||
| 12545 | return QualType(); | ||||
| 12546 | } | ||||
| 12547 | } | ||||
| 12548 | if (NumEnumArgs == 2) { | ||||
| 12549 | // C++2a [expr.spaceship]p5: If both operands have the same enumeration | ||||
| 12550 | // type E, the operator yields the result of converting the operands | ||||
| 12551 | // to the underlying type of E and applying <=> to the converted operands. | ||||
| 12552 | if (!S.Context.hasSameUnqualifiedType(LHSStrippedType, RHSStrippedType)) { | ||||
| 12553 | S.InvalidOperands(Loc, LHS, RHS); | ||||
| 12554 | return QualType(); | ||||
| 12555 | } | ||||
| 12556 | QualType IntType = | ||||
| 12557 | LHSStrippedType->castAs<EnumType>()->getDecl()->getIntegerType(); | ||||
| 12558 | assert(IntType->isArithmeticType())(static_cast <bool> (IntType->isArithmeticType()) ? void (0) : __assert_fail ("IntType->isArithmeticType()", "clang/lib/Sema/SemaExpr.cpp" , 12558, __extension__ __PRETTY_FUNCTION__)); | ||||
| 12559 | |||||
| 12560 | // We can't use `CK_IntegralCast` when the underlying type is 'bool', so we | ||||
| 12561 | // promote the boolean type, and all other promotable integer types, to | ||||
| 12562 | // avoid this. | ||||
| 12563 | if (S.Context.isPromotableIntegerType(IntType)) | ||||
| 12564 | IntType = S.Context.getPromotedIntegerType(IntType); | ||||
| 12565 | |||||
| 12566 | LHS = S.ImpCastExprToType(LHS.get(), IntType, CK_IntegralCast); | ||||
| 12567 | RHS = S.ImpCastExprToType(RHS.get(), IntType, CK_IntegralCast); | ||||
| 12568 | LHSType = RHSType = IntType; | ||||
| 12569 | } | ||||
| 12570 | |||||
| 12571 | // C++2a [expr.spaceship]p4: If both operands have arithmetic types, the | ||||
| 12572 | // usual arithmetic conversions are applied to the operands. | ||||
| 12573 | QualType Type = | ||||
| 12574 | S.UsualArithmeticConversions(LHS, RHS, Loc, Sema::ACK_Comparison); | ||||
| 12575 | if (LHS.isInvalid() || RHS.isInvalid()) | ||||
| 12576 | return QualType(); | ||||
| 12577 | if (Type.isNull()) | ||||
| 12578 | return S.InvalidOperands(Loc, LHS, RHS); | ||||
| 12579 | |||||
| 12580 | std::optional<ComparisonCategoryType> CCT = | ||||
| 12581 | getComparisonCategoryForBuiltinCmp(Type); | ||||
| 12582 | if (!CCT) | ||||
| 12583 | return S.InvalidOperands(Loc, LHS, RHS); | ||||
| 12584 | |||||
| 12585 | bool HasNarrowing = checkThreeWayNarrowingConversion( | ||||
| 12586 | S, Type, LHS.get(), LHSType, LHS.get()->getBeginLoc()); | ||||
| 12587 | HasNarrowing |= checkThreeWayNarrowingConversion(S, Type, RHS.get(), RHSType, | ||||
| 12588 | RHS.get()->getBeginLoc()); | ||||
| 12589 | if (HasNarrowing) | ||||
| 12590 | return QualType(); | ||||
| 12591 | |||||
| 12592 | assert(!Type.isNull() && "composite type for <=> has not been set")(static_cast <bool> (!Type.isNull() && "composite type for <=> has not been set" ) ? void (0) : __assert_fail ("!Type.isNull() && \"composite type for <=> has not been set\"" , "clang/lib/Sema/SemaExpr.cpp", 12592, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 12593 | |||||
| 12594 | return S.CheckComparisonCategoryType( | ||||
| 12595 | *CCT, Loc, Sema::ComparisonCategoryUsage::OperatorInExpression); | ||||
| 12596 | } | ||||
| 12597 | |||||
| 12598 | static QualType checkArithmeticOrEnumeralCompare(Sema &S, ExprResult &LHS, | ||||
| 12599 | ExprResult &RHS, | ||||
| 12600 | SourceLocation Loc, | ||||
| 12601 | BinaryOperatorKind Opc) { | ||||
| 12602 | if (Opc == BO_Cmp) | ||||
| 12603 | return checkArithmeticOrEnumeralThreeWayCompare(S, LHS, RHS, Loc); | ||||
| 12604 | |||||
| 12605 | // C99 6.5.8p3 / C99 6.5.9p4 | ||||
| 12606 | QualType Type = | ||||
| 12607 | S.UsualArithmeticConversions(LHS, RHS, Loc, Sema::ACK_Comparison); | ||||
| 12608 | if (LHS.isInvalid() || RHS.isInvalid()) | ||||
| 12609 | return QualType(); | ||||
| 12610 | if (Type.isNull()) | ||||
| 12611 | return S.InvalidOperands(Loc, LHS, RHS); | ||||
| 12612 | assert(Type->isArithmeticType() || Type->isEnumeralType())(static_cast <bool> (Type->isArithmeticType() || Type ->isEnumeralType()) ? void (0) : __assert_fail ("Type->isArithmeticType() || Type->isEnumeralType()" , "clang/lib/Sema/SemaExpr.cpp", 12612, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 12613 | |||||
| 12614 | if (Type->isAnyComplexType() && BinaryOperator::isRelationalOp(Opc)) | ||||
| 12615 | return S.InvalidOperands(Loc, LHS, RHS); | ||||
| 12616 | |||||
| 12617 | // Check for comparisons of floating point operands using != and ==. | ||||
| 12618 | if (Type->hasFloatingRepresentation()) | ||||
| 12619 | S.CheckFloatComparison(Loc, LHS.get(), RHS.get(), Opc); | ||||
| 12620 | |||||
| 12621 | // The result of comparisons is 'bool' in C++, 'int' in C. | ||||
| 12622 | return S.Context.getLogicalOperationType(); | ||||
| 12623 | } | ||||
| 12624 | |||||
| 12625 | void Sema::CheckPtrComparisonWithNullChar(ExprResult &E, ExprResult &NullE) { | ||||
| 12626 | if (!NullE.get()->getType()->isAnyPointerType()) | ||||
| 12627 | return; | ||||
| 12628 | int NullValue = PP.isMacroDefined("NULL") ? 0 : 1; | ||||
| 12629 | if (!E.get()->getType()->isAnyPointerType() && | ||||
| 12630 | E.get()->isNullPointerConstant(Context, | ||||
| 12631 | Expr::NPC_ValueDependentIsNotNull) == | ||||
| 12632 | Expr::NPCK_ZeroExpression) { | ||||
| 12633 | if (const auto *CL = dyn_cast<CharacterLiteral>(E.get())) { | ||||
| 12634 | if (CL->getValue() == 0) | ||||
| 12635 | Diag(E.get()->getExprLoc(), diag::warn_pointer_compare) | ||||
| 12636 | << NullValue | ||||
| 12637 | << FixItHint::CreateReplacement(E.get()->getExprLoc(), | ||||
| 12638 | NullValue ? "NULL" : "(void *)0"); | ||||
| 12639 | } else if (const auto *CE = dyn_cast<CStyleCastExpr>(E.get())) { | ||||
| 12640 | TypeSourceInfo *TI = CE->getTypeInfoAsWritten(); | ||||
| 12641 | QualType T = Context.getCanonicalType(TI->getType()).getUnqualifiedType(); | ||||
| 12642 | if (T == Context.CharTy) | ||||
| 12643 | Diag(E.get()->getExprLoc(), diag::warn_pointer_compare) | ||||
| 12644 | << NullValue | ||||
| 12645 | << FixItHint::CreateReplacement(E.get()->getExprLoc(), | ||||
| 12646 | NullValue ? "NULL" : "(void *)0"); | ||||
| 12647 | } | ||||
| 12648 | } | ||||
| 12649 | } | ||||
| 12650 | |||||
| 12651 | // C99 6.5.8, C++ [expr.rel] | ||||
| 12652 | QualType Sema::CheckCompareOperands(ExprResult &LHS, ExprResult &RHS, | ||||
| 12653 | SourceLocation Loc, | ||||
| 12654 | BinaryOperatorKind Opc) { | ||||
| 12655 | bool IsRelational = BinaryOperator::isRelationalOp(Opc); | ||||
| 12656 | bool IsThreeWay = Opc == BO_Cmp; | ||||
| 12657 | bool IsOrdered = IsRelational || IsThreeWay; | ||||
| 12658 | auto IsAnyPointerType = [](ExprResult E) { | ||||
| 12659 | QualType Ty = E.get()->getType(); | ||||
| 12660 | return Ty->isPointerType() || Ty->isMemberPointerType(); | ||||
| 12661 | }; | ||||
| 12662 | |||||
| 12663 | // C++2a [expr.spaceship]p6: If at least one of the operands is of pointer | ||||
| 12664 | // type, array-to-pointer, ..., conversions are performed on both operands to | ||||
| 12665 | // bring them to their composite type. | ||||
| 12666 | // Otherwise, all comparisons expect an rvalue, so convert to rvalue before | ||||
| 12667 | // any type-related checks. | ||||
| 12668 | if (!IsThreeWay || IsAnyPointerType(LHS) || IsAnyPointerType(RHS)) { | ||||
| 12669 | LHS = DefaultFunctionArrayLvalueConversion(LHS.get()); | ||||
| 12670 | if (LHS.isInvalid()) | ||||
| 12671 | return QualType(); | ||||
| 12672 | RHS = DefaultFunctionArrayLvalueConversion(RHS.get()); | ||||
| 12673 | if (RHS.isInvalid()) | ||||
| 12674 | return QualType(); | ||||
| 12675 | } else { | ||||
| 12676 | LHS = DefaultLvalueConversion(LHS.get()); | ||||
| 12677 | if (LHS.isInvalid()) | ||||
| 12678 | return QualType(); | ||||
| 12679 | RHS = DefaultLvalueConversion(RHS.get()); | ||||
| 12680 | if (RHS.isInvalid()) | ||||
| 12681 | return QualType(); | ||||
| 12682 | } | ||||
| 12683 | |||||
| 12684 | checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/true); | ||||
| 12685 | if (!getLangOpts().CPlusPlus && BinaryOperator::isEqualityOp(Opc)) { | ||||
| 12686 | CheckPtrComparisonWithNullChar(LHS, RHS); | ||||
| 12687 | CheckPtrComparisonWithNullChar(RHS, LHS); | ||||
| 12688 | } | ||||
| 12689 | |||||
| 12690 | // Handle vector comparisons separately. | ||||
| 12691 | if (LHS.get()->getType()->isVectorType() || | ||||
| 12692 | RHS.get()->getType()->isVectorType()) | ||||
| 12693 | return CheckVectorCompareOperands(LHS, RHS, Loc, Opc); | ||||
| 12694 | |||||
| 12695 | if (LHS.get()->getType()->isVLSTBuiltinType() || | ||||
| 12696 | RHS.get()->getType()->isVLSTBuiltinType()) | ||||
| 12697 | return CheckSizelessVectorCompareOperands(LHS, RHS, Loc, Opc); | ||||
| 12698 | |||||
| 12699 | diagnoseLogicalNotOnLHSofCheck(*this, LHS, RHS, Loc, Opc); | ||||
| 12700 | diagnoseTautologicalComparison(*this, Loc, LHS.get(), RHS.get(), Opc); | ||||
| 12701 | |||||
| 12702 | QualType LHSType = LHS.get()->getType(); | ||||
| 12703 | QualType RHSType = RHS.get()->getType(); | ||||
| 12704 | if ((LHSType->isArithmeticType() || LHSType->isEnumeralType()) && | ||||
| 12705 | (RHSType->isArithmeticType() || RHSType->isEnumeralType())) | ||||
| 12706 | return checkArithmeticOrEnumeralCompare(*this, LHS, RHS, Loc, Opc); | ||||
| 12707 | |||||
| 12708 | const Expr::NullPointerConstantKind LHSNullKind = | ||||
| 12709 | LHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull); | ||||
| 12710 | const Expr::NullPointerConstantKind RHSNullKind = | ||||
| 12711 | RHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull); | ||||
| 12712 | bool LHSIsNull = LHSNullKind != Expr::NPCK_NotNull; | ||||
| 12713 | bool RHSIsNull = RHSNullKind != Expr::NPCK_NotNull; | ||||
| 12714 | |||||
| 12715 | auto computeResultTy = [&]() { | ||||
| 12716 | if (Opc != BO_Cmp) | ||||
| 12717 | return Context.getLogicalOperationType(); | ||||
| 12718 | assert(getLangOpts().CPlusPlus)(static_cast <bool> (getLangOpts().CPlusPlus) ? void (0 ) : __assert_fail ("getLangOpts().CPlusPlus", "clang/lib/Sema/SemaExpr.cpp" , 12718, __extension__ __PRETTY_FUNCTION__)); | ||||
| 12719 | assert(Context.hasSameType(LHS.get()->getType(), RHS.get()->getType()))(static_cast <bool> (Context.hasSameType(LHS.get()-> getType(), RHS.get()->getType())) ? void (0) : __assert_fail ("Context.hasSameType(LHS.get()->getType(), RHS.get()->getType())" , "clang/lib/Sema/SemaExpr.cpp", 12719, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 12720 | |||||
| 12721 | QualType CompositeTy = LHS.get()->getType(); | ||||
| 12722 | assert(!CompositeTy->isReferenceType())(static_cast <bool> (!CompositeTy->isReferenceType() ) ? void (0) : __assert_fail ("!CompositeTy->isReferenceType()" , "clang/lib/Sema/SemaExpr.cpp", 12722, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 12723 | |||||
| 12724 | std::optional<ComparisonCategoryType> CCT = | ||||
| 12725 | getComparisonCategoryForBuiltinCmp(CompositeTy); | ||||
| 12726 | if (!CCT) | ||||
| 12727 | return InvalidOperands(Loc, LHS, RHS); | ||||
| 12728 | |||||
| 12729 | if (CompositeTy->isPointerType() && LHSIsNull != RHSIsNull) { | ||||
| 12730 | // P0946R0: Comparisons between a null pointer constant and an object | ||||
| 12731 | // pointer result in std::strong_equality, which is ill-formed under | ||||
| 12732 | // P1959R0. | ||||
| 12733 | Diag(Loc, diag::err_typecheck_three_way_comparison_of_pointer_and_zero) | ||||
| 12734 | << (LHSIsNull ? LHS.get()->getSourceRange() | ||||
| 12735 | : RHS.get()->getSourceRange()); | ||||
| 12736 | return QualType(); | ||||
| 12737 | } | ||||
| 12738 | |||||
| 12739 | return CheckComparisonCategoryType( | ||||
| 12740 | *CCT, Loc, ComparisonCategoryUsage::OperatorInExpression); | ||||
| 12741 | }; | ||||
| 12742 | |||||
| 12743 | if (!IsOrdered && LHSIsNull != RHSIsNull) { | ||||
| 12744 | bool IsEquality = Opc == BO_EQ; | ||||
| 12745 | if (RHSIsNull) | ||||
| 12746 | DiagnoseAlwaysNonNullPointer(LHS.get(), RHSNullKind, IsEquality, | ||||
| 12747 | RHS.get()->getSourceRange()); | ||||
| 12748 | else | ||||
| 12749 | DiagnoseAlwaysNonNullPointer(RHS.get(), LHSNullKind, IsEquality, | ||||
| 12750 | LHS.get()->getSourceRange()); | ||||
| 12751 | } | ||||
| 12752 | |||||
| 12753 | if (IsOrdered && LHSType->isFunctionPointerType() && | ||||
| 12754 | RHSType->isFunctionPointerType()) { | ||||
| 12755 | // Valid unless a relational comparison of function pointers | ||||
| 12756 | bool IsError = Opc == BO_Cmp; | ||||
| 12757 | auto DiagID = | ||||
| 12758 | IsError ? diag::err_typecheck_ordered_comparison_of_function_pointers | ||||
| 12759 | : getLangOpts().CPlusPlus | ||||
| 12760 | ? diag::warn_typecheck_ordered_comparison_of_function_pointers | ||||
| 12761 | : diag::ext_typecheck_ordered_comparison_of_function_pointers; | ||||
| 12762 | Diag(Loc, DiagID) << LHSType << RHSType << LHS.get()->getSourceRange() | ||||
| 12763 | << RHS.get()->getSourceRange(); | ||||
| 12764 | if (IsError) | ||||
| 12765 | return QualType(); | ||||
| 12766 | } | ||||
| 12767 | |||||
| 12768 | if ((LHSType->isIntegerType() && !LHSIsNull) || | ||||
| 12769 | (RHSType->isIntegerType() && !RHSIsNull)) { | ||||
| 12770 | // Skip normal pointer conversion checks in this case; we have better | ||||
| 12771 | // diagnostics for this below. | ||||
| 12772 | } else if (getLangOpts().CPlusPlus) { | ||||
| 12773 | // Equality comparison of a function pointer to a void pointer is invalid, | ||||
| 12774 | // but we allow it as an extension. | ||||
| 12775 | // FIXME: If we really want to allow this, should it be part of composite | ||||
| 12776 | // pointer type computation so it works in conditionals too? | ||||
| 12777 | if (!IsOrdered && | ||||
| 12778 | ((LHSType->isFunctionPointerType() && RHSType->isVoidPointerType()) || | ||||
| 12779 | (RHSType->isFunctionPointerType() && LHSType->isVoidPointerType()))) { | ||||
| 12780 | // This is a gcc extension compatibility comparison. | ||||
| 12781 | // In a SFINAE context, we treat this as a hard error to maintain | ||||
| 12782 | // conformance with the C++ standard. | ||||
| 12783 | diagnoseFunctionPointerToVoidComparison( | ||||
| 12784 | *this, Loc, LHS, RHS, /*isError*/ (bool)isSFINAEContext()); | ||||
| 12785 | |||||
| 12786 | if (isSFINAEContext()) | ||||
| 12787 | return QualType(); | ||||
| 12788 | |||||
| 12789 | RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast); | ||||
| 12790 | return computeResultTy(); | ||||
| 12791 | } | ||||
| 12792 | |||||
| 12793 | // C++ [expr.eq]p2: | ||||
| 12794 | // If at least one operand is a pointer [...] bring them to their | ||||
| 12795 | // composite pointer type. | ||||
| 12796 | // C++ [expr.spaceship]p6 | ||||
| 12797 | // If at least one of the operands is of pointer type, [...] bring them | ||||
| 12798 | // to their composite pointer type. | ||||
| 12799 | // C++ [expr.rel]p2: | ||||
| 12800 | // If both operands are pointers, [...] bring them to their composite | ||||
| 12801 | // pointer type. | ||||
| 12802 | // For <=>, the only valid non-pointer types are arrays and functions, and | ||||
| 12803 | // we already decayed those, so this is really the same as the relational | ||||
| 12804 | // comparison rule. | ||||
| 12805 | if ((int)LHSType->isPointerType() + (int)RHSType->isPointerType() >= | ||||
| 12806 | (IsOrdered ? 2 : 1) && | ||||
| 12807 | (!LangOpts.ObjCAutoRefCount || !(LHSType->isObjCObjectPointerType() || | ||||
| 12808 | RHSType->isObjCObjectPointerType()))) { | ||||
| 12809 | if (convertPointersToCompositeType(*this, Loc, LHS, RHS)) | ||||
| 12810 | return QualType(); | ||||
| 12811 | return computeResultTy(); | ||||
| 12812 | } | ||||
| 12813 | } else if (LHSType->isPointerType() && | ||||
| 12814 | RHSType->isPointerType()) { // C99 6.5.8p2 | ||||
| 12815 | // All of the following pointer-related warnings are GCC extensions, except | ||||
| 12816 | // when handling null pointer constants. | ||||
| 12817 | QualType LCanPointeeTy = | ||||
| 12818 | LHSType->castAs<PointerType>()->getPointeeType().getCanonicalType(); | ||||
| 12819 | QualType RCanPointeeTy = | ||||
| 12820 | RHSType->castAs<PointerType>()->getPointeeType().getCanonicalType(); | ||||
| 12821 | |||||
| 12822 | // C99 6.5.9p2 and C99 6.5.8p2 | ||||
| 12823 | if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(), | ||||
| 12824 | RCanPointeeTy.getUnqualifiedType())) { | ||||
| 12825 | if (IsRelational) { | ||||
| 12826 | // Pointers both need to point to complete or incomplete types | ||||
| 12827 | if ((LCanPointeeTy->isIncompleteType() != | ||||
| 12828 | RCanPointeeTy->isIncompleteType()) && | ||||
| 12829 | !getLangOpts().C11) { | ||||
| 12830 | Diag(Loc, diag::ext_typecheck_compare_complete_incomplete_pointers) | ||||
| 12831 | << LHS.get()->getSourceRange() << RHS.get()->getSourceRange() | ||||
| 12832 | << LHSType << RHSType << LCanPointeeTy->isIncompleteType() | ||||
| 12833 | << RCanPointeeTy->isIncompleteType(); | ||||
| 12834 | } | ||||
| 12835 | } | ||||
| 12836 | } else if (!IsRelational && | ||||
| 12837 | (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) { | ||||
| 12838 | // Valid unless comparison between non-null pointer and function pointer | ||||
| 12839 | if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType()) | ||||
| 12840 | && !LHSIsNull && !RHSIsNull) | ||||
| 12841 | diagnoseFunctionPointerToVoidComparison(*this, Loc, LHS, RHS, | ||||
| 12842 | /*isError*/false); | ||||
| 12843 | } else { | ||||
| 12844 | // Invalid | ||||
| 12845 | diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS, /*isError*/false); | ||||
| 12846 | } | ||||
| 12847 | if (LCanPointeeTy != RCanPointeeTy) { | ||||
| 12848 | // Treat NULL constant as a special case in OpenCL. | ||||
| 12849 | if (getLangOpts().OpenCL && !LHSIsNull && !RHSIsNull) { | ||||
| 12850 | if (!LCanPointeeTy.isAddressSpaceOverlapping(RCanPointeeTy)) { | ||||
| 12851 | Diag(Loc, | ||||
| 12852 | diag::err_typecheck_op_on_nonoverlapping_address_space_pointers) | ||||
| 12853 | << LHSType << RHSType << 0 /* comparison */ | ||||
| 12854 | << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); | ||||
| 12855 | } | ||||
| 12856 | } | ||||
| 12857 | LangAS AddrSpaceL = LCanPointeeTy.getAddressSpace(); | ||||
| 12858 | LangAS AddrSpaceR = RCanPointeeTy.getAddressSpace(); | ||||
| 12859 | CastKind Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion | ||||
| 12860 | : CK_BitCast; | ||||
| 12861 | if (LHSIsNull && !RHSIsNull) | ||||
| 12862 | LHS = ImpCastExprToType(LHS.get(), RHSType, Kind); | ||||
| 12863 | else | ||||
| 12864 | RHS = ImpCastExprToType(RHS.get(), LHSType, Kind); | ||||
| 12865 | } | ||||
| 12866 | return computeResultTy(); | ||||
| 12867 | } | ||||
| 12868 | |||||
| 12869 | |||||
| 12870 | // C++ [expr.eq]p4: | ||||
| 12871 | // Two operands of type std::nullptr_t or one operand of type | ||||
| 12872 | // std::nullptr_t and the other a null pointer constant compare | ||||
| 12873 | // equal. | ||||
| 12874 | // C2x 6.5.9p5: | ||||
| 12875 | // If both operands have type nullptr_t or one operand has type nullptr_t | ||||
| 12876 | // and the other is a null pointer constant, they compare equal. | ||||
| 12877 | if (!IsOrdered && LHSIsNull && RHSIsNull) { | ||||
| 12878 | if (LHSType->isNullPtrType()) { | ||||
| 12879 | RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer); | ||||
| 12880 | return computeResultTy(); | ||||
| 12881 | } | ||||
| 12882 | if (RHSType->isNullPtrType()) { | ||||
| 12883 | LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer); | ||||
| 12884 | return computeResultTy(); | ||||
| 12885 | } | ||||
| 12886 | } | ||||
| 12887 | |||||
| 12888 | if (!getLangOpts().CPlusPlus && !IsOrdered && (LHSIsNull || RHSIsNull)) { | ||||
| 12889 | // C2x 6.5.9p6: | ||||
| 12890 | // Otherwise, at least one operand is a pointer. If one is a pointer and | ||||
| 12891 | // the other is a null pointer constant, the null pointer constant is | ||||
| 12892 | // converted to the type of the pointer. | ||||
| 12893 | if (LHSIsNull && RHSType->isPointerType()) { | ||||
| 12894 | LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer); | ||||
| 12895 | return computeResultTy(); | ||||
| 12896 | } | ||||
| 12897 | if (RHSIsNull && LHSType->isPointerType()) { | ||||
| 12898 | RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer); | ||||
| 12899 | return computeResultTy(); | ||||
| 12900 | } | ||||
| 12901 | } | ||||
| 12902 | |||||
| 12903 | // Comparison of Objective-C pointers and block pointers against nullptr_t. | ||||
| 12904 | // These aren't covered by the composite pointer type rules. | ||||
| 12905 | if (!IsOrdered && RHSType->isNullPtrType() && | ||||
| 12906 | (LHSType->isObjCObjectPointerType() || LHSType->isBlockPointerType())) { | ||||
| 12907 | RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer); | ||||
| 12908 | return computeResultTy(); | ||||
| 12909 | } | ||||
| 12910 | if (!IsOrdered && LHSType->isNullPtrType() && | ||||
| 12911 | (RHSType->isObjCObjectPointerType() || RHSType->isBlockPointerType())) { | ||||
| 12912 | LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer); | ||||
| 12913 | return computeResultTy(); | ||||
| 12914 | } | ||||
| 12915 | |||||
| 12916 | if (getLangOpts().CPlusPlus) { | ||||
| 12917 | if (IsRelational && | ||||
| 12918 | ((LHSType->isNullPtrType() && RHSType->isPointerType()) || | ||||
| 12919 | (RHSType->isNullPtrType() && LHSType->isPointerType()))) { | ||||
| 12920 | // HACK: Relational comparison of nullptr_t against a pointer type is | ||||
| 12921 | // invalid per DR583, but we allow it within std::less<> and friends, | ||||
| 12922 | // since otherwise common uses of it break. | ||||
| 12923 | // FIXME: Consider removing this hack once LWG fixes std::less<> and | ||||
| 12924 | // friends to have std::nullptr_t overload candidates. | ||||
| 12925 | DeclContext *DC = CurContext; | ||||
| 12926 | if (isa<FunctionDecl>(DC)) | ||||
| 12927 | DC = DC->getParent(); | ||||
| 12928 | if (auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(DC)) { | ||||
| 12929 | if (CTSD->isInStdNamespace() && | ||||
| 12930 | llvm::StringSwitch<bool>(CTSD->getName()) | ||||
| 12931 | .Cases("less", "less_equal", "greater", "greater_equal", true) | ||||
| 12932 | .Default(false)) { | ||||
| 12933 | if (RHSType->isNullPtrType()) | ||||
| 12934 | RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer); | ||||
| 12935 | else | ||||
| 12936 | LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer); | ||||
| 12937 | return computeResultTy(); | ||||
| 12938 | } | ||||
| 12939 | } | ||||
| 12940 | } | ||||
| 12941 | |||||
| 12942 | // C++ [expr.eq]p2: | ||||
| 12943 | // If at least one operand is a pointer to member, [...] bring them to | ||||
| 12944 | // their composite pointer type. | ||||
| 12945 | if (!IsOrdered && | ||||
| 12946 | (LHSType->isMemberPointerType() || RHSType->isMemberPointerType())) { | ||||
| 12947 | if (convertPointersToCompositeType(*this, Loc, LHS, RHS)) | ||||
| 12948 | return QualType(); | ||||
| 12949 | else | ||||
| 12950 | return computeResultTy(); | ||||
| 12951 | } | ||||
| 12952 | } | ||||
| 12953 | |||||
| 12954 | // Handle block pointer types. | ||||
| 12955 | if (!IsOrdered && LHSType->isBlockPointerType() && | ||||
| 12956 | RHSType->isBlockPointerType()) { | ||||
| 12957 | QualType lpointee = LHSType->castAs<BlockPointerType>()->getPointeeType(); | ||||
| 12958 | QualType rpointee = RHSType->castAs<BlockPointerType>()->getPointeeType(); | ||||
| 12959 | |||||
| 12960 | if (!LHSIsNull && !RHSIsNull && | ||||
| 12961 | !Context.typesAreCompatible(lpointee, rpointee)) { | ||||
| 12962 | Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks) | ||||
| 12963 | << LHSType << RHSType << LHS.get()->getSourceRange() | ||||
| 12964 | << RHS.get()->getSourceRange(); | ||||
| 12965 | } | ||||
| 12966 | RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast); | ||||
| 12967 | return computeResultTy(); | ||||
| 12968 | } | ||||
| 12969 | |||||
| 12970 | // Allow block pointers to be compared with null pointer constants. | ||||
| 12971 | if (!IsOrdered | ||||
| 12972 | && ((LHSType->isBlockPointerType() && RHSType->isPointerType()) | ||||
| 12973 | || (LHSType->isPointerType() && RHSType->isBlockPointerType()))) { | ||||
| 12974 | if (!LHSIsNull && !RHSIsNull) { | ||||
| 12975 | if (!((RHSType->isPointerType() && RHSType->castAs<PointerType>() | ||||
| 12976 | ->getPointeeType()->isVoidType()) | ||||
| 12977 | || (LHSType->isPointerType() && LHSType->castAs<PointerType>() | ||||
| 12978 | ->getPointeeType()->isVoidType()))) | ||||
| 12979 | Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks) | ||||
| 12980 | << LHSType << RHSType << LHS.get()->getSourceRange() | ||||
| 12981 | << RHS.get()->getSourceRange(); | ||||
| 12982 | } | ||||
| 12983 | if (LHSIsNull && !RHSIsNull) | ||||
| 12984 | LHS = ImpCastExprToType(LHS.get(), RHSType, | ||||
| 12985 | RHSType->isPointerType() ? CK_BitCast | ||||
| 12986 | : CK_AnyPointerToBlockPointerCast); | ||||
| 12987 | else | ||||
| 12988 | RHS = ImpCastExprToType(RHS.get(), LHSType, | ||||
| 12989 | LHSType->isPointerType() ? CK_BitCast | ||||
| 12990 | : CK_AnyPointerToBlockPointerCast); | ||||
| 12991 | return computeResultTy(); | ||||
| 12992 | } | ||||
| 12993 | |||||
| 12994 | if (LHSType->isObjCObjectPointerType() || | ||||
| 12995 | RHSType->isObjCObjectPointerType()) { | ||||
| 12996 | const PointerType *LPT = LHSType->getAs<PointerType>(); | ||||
| 12997 | const PointerType *RPT = RHSType->getAs<PointerType>(); | ||||
| 12998 | if (LPT || RPT) { | ||||
| 12999 | bool LPtrToVoid = LPT ? LPT->getPointeeType()->isVoidType() : false; | ||||
| 13000 | bool RPtrToVoid = RPT ? RPT->getPointeeType()->isVoidType() : false; | ||||
| 13001 | |||||
| 13002 | if (!LPtrToVoid && !RPtrToVoid && | ||||
| 13003 | !Context.typesAreCompatible(LHSType, RHSType)) { | ||||
| 13004 | diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS, | ||||
| 13005 | /*isError*/false); | ||||
| 13006 | } | ||||
| 13007 | // FIXME: If LPtrToVoid, we should presumably convert the LHS rather than | ||||
| 13008 | // the RHS, but we have test coverage for this behavior. | ||||
| 13009 | // FIXME: Consider using convertPointersToCompositeType in C++. | ||||
| 13010 | if (LHSIsNull && !RHSIsNull) { | ||||
| 13011 | Expr *E = LHS.get(); | ||||
| 13012 | if (getLangOpts().ObjCAutoRefCount) | ||||
| 13013 | CheckObjCConversion(SourceRange(), RHSType, E, | ||||
| 13014 | CCK_ImplicitConversion); | ||||
| 13015 | LHS = ImpCastExprToType(E, RHSType, | ||||
| 13016 | RPT ? CK_BitCast :CK_CPointerToObjCPointerCast); | ||||
| 13017 | } | ||||
| 13018 | else { | ||||
| 13019 | Expr *E = RHS.get(); | ||||
| 13020 | if (getLangOpts().ObjCAutoRefCount) | ||||
| 13021 | CheckObjCConversion(SourceRange(), LHSType, E, CCK_ImplicitConversion, | ||||
| 13022 | /*Diagnose=*/true, | ||||
| 13023 | /*DiagnoseCFAudited=*/false, Opc); | ||||
| 13024 | RHS = ImpCastExprToType(E, LHSType, | ||||
| 13025 | LPT ? CK_BitCast :CK_CPointerToObjCPointerCast); | ||||
| 13026 | } | ||||
| 13027 | return computeResultTy(); | ||||
| 13028 | } | ||||
| 13029 | if (LHSType->isObjCObjectPointerType() && | ||||
| 13030 | RHSType->isObjCObjectPointerType()) { | ||||
| 13031 | if (!Context.areComparableObjCPointerTypes(LHSType, RHSType)) | ||||
| 13032 | diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS, | ||||
| 13033 | /*isError*/false); | ||||
| 13034 | if (isObjCObjectLiteral(LHS) || isObjCObjectLiteral(RHS)) | ||||
| 13035 | diagnoseObjCLiteralComparison(*this, Loc, LHS, RHS, Opc); | ||||
| 13036 | |||||
| 13037 | if (LHSIsNull && !RHSIsNull) | ||||
| 13038 | LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast); | ||||
| 13039 | else | ||||
| 13040 | RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast); | ||||
| 13041 | return computeResultTy(); | ||||
| 13042 | } | ||||
| 13043 | |||||
| 13044 | if (!IsOrdered && LHSType->isBlockPointerType() && | ||||
| 13045 | RHSType->isBlockCompatibleObjCPointerType(Context)) { | ||||
| 13046 | LHS = ImpCastExprToType(LHS.get(), RHSType, | ||||
| 13047 | CK_BlockPointerToObjCPointerCast); | ||||
| 13048 | return computeResultTy(); | ||||
| 13049 | } else if (!IsOrdered && | ||||
| 13050 | LHSType->isBlockCompatibleObjCPointerType(Context) && | ||||
| 13051 | RHSType->isBlockPointerType()) { | ||||
| 13052 | RHS = ImpCastExprToType(RHS.get(), LHSType, | ||||
| 13053 | CK_BlockPointerToObjCPointerCast); | ||||
| 13054 | return computeResultTy(); | ||||
| 13055 | } | ||||
| 13056 | } | ||||
| 13057 | if ((LHSType->isAnyPointerType() && RHSType->isIntegerType()) || | ||||
| 13058 | (LHSType->isIntegerType() && RHSType->isAnyPointerType())) { | ||||
| 13059 | unsigned DiagID = 0; | ||||
| 13060 | bool isError = false; | ||||
| 13061 | if (LangOpts.DebuggerSupport) { | ||||
| 13062 | // Under a debugger, allow the comparison of pointers to integers, | ||||
| 13063 | // since users tend to want to compare addresses. | ||||
| 13064 | } else if ((LHSIsNull && LHSType->isIntegerType()) || | ||||
| 13065 | (RHSIsNull && RHSType->isIntegerType())) { | ||||
| 13066 | if (IsOrdered) { | ||||
| 13067 | isError = getLangOpts().CPlusPlus; | ||||
| 13068 | DiagID = | ||||
| 13069 | isError ? diag::err_typecheck_ordered_comparison_of_pointer_and_zero | ||||
| 13070 | : diag::ext_typecheck_ordered_comparison_of_pointer_and_zero; | ||||
| 13071 | } | ||||
| 13072 | } else if (getLangOpts().CPlusPlus) { | ||||
| 13073 | DiagID = diag::err_typecheck_comparison_of_pointer_integer; | ||||
| 13074 | isError = true; | ||||
| 13075 | } else if (IsOrdered) | ||||
| 13076 | DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer; | ||||
| 13077 | else | ||||
| 13078 | DiagID = diag::ext_typecheck_comparison_of_pointer_integer; | ||||
| 13079 | |||||
| 13080 | if (DiagID) { | ||||
| 13081 | Diag(Loc, DiagID) | ||||
| 13082 | << LHSType << RHSType << LHS.get()->getSourceRange() | ||||
| 13083 | << RHS.get()->getSourceRange(); | ||||
| 13084 | if (isError) | ||||
| 13085 | return QualType(); | ||||
| 13086 | } | ||||
| 13087 | |||||
| 13088 | if (LHSType->isIntegerType()) | ||||
| 13089 | LHS = ImpCastExprToType(LHS.get(), RHSType, | ||||
| 13090 | LHSIsNull ? CK_NullToPointer : CK_IntegralToPointer); | ||||
| 13091 | else | ||||
| 13092 | RHS = ImpCastExprToType(RHS.get(), LHSType, | ||||
| 13093 | RHSIsNull ? CK_NullToPointer : CK_IntegralToPointer); | ||||
| 13094 | return computeResultTy(); | ||||
| 13095 | } | ||||
| 13096 | |||||
| 13097 | // Handle block pointers. | ||||
| 13098 | if (!IsOrdered && RHSIsNull | ||||
| 13099 | && LHSType->isBlockPointerType() && RHSType->isIntegerType()) { | ||||
| 13100 | RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer); | ||||
| 13101 | return computeResultTy(); | ||||
| 13102 | } | ||||
| 13103 | if (!IsOrdered && LHSIsNull | ||||
| 13104 | && LHSType->isIntegerType() && RHSType->isBlockPointerType()) { | ||||
| 13105 | LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer); | ||||
| 13106 | return computeResultTy(); | ||||
| 13107 | } | ||||
| 13108 | |||||
| 13109 | if (getLangOpts().getOpenCLCompatibleVersion() >= 200) { | ||||
| 13110 | if (LHSType->isClkEventT() && RHSType->isClkEventT()) { | ||||
| 13111 | return computeResultTy(); | ||||
| 13112 | } | ||||
| 13113 | |||||
| 13114 | if (LHSType->isQueueT() && RHSType->isQueueT()) { | ||||
| 13115 | return computeResultTy(); | ||||
| 13116 | } | ||||
| 13117 | |||||
| 13118 | if (LHSIsNull && RHSType->isQueueT()) { | ||||
| 13119 | LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer); | ||||
| 13120 | return computeResultTy(); | ||||
| 13121 | } | ||||
| 13122 | |||||
| 13123 | if (LHSType->isQueueT() && RHSIsNull) { | ||||
| 13124 | RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer); | ||||
| 13125 | return computeResultTy(); | ||||
| 13126 | } | ||||
| 13127 | } | ||||
| 13128 | |||||
| 13129 | return InvalidOperands(Loc, LHS, RHS); | ||||
| 13130 | } | ||||
| 13131 | |||||
| 13132 | // Return a signed ext_vector_type that is of identical size and number of | ||||
| 13133 | // elements. For floating point vectors, return an integer type of identical | ||||
| 13134 | // size and number of elements. In the non ext_vector_type case, search from | ||||
| 13135 | // the largest type to the smallest type to avoid cases where long long == long, | ||||
| 13136 | // where long gets picked over long long. | ||||
| 13137 | QualType Sema::GetSignedVectorType(QualType V) { | ||||
| 13138 | const VectorType *VTy = V->castAs<VectorType>(); | ||||
| 13139 | unsigned TypeSize = Context.getTypeSize(VTy->getElementType()); | ||||
| 13140 | |||||
| 13141 | if (isa<ExtVectorType>(VTy)) { | ||||
| 13142 | if (VTy->isExtVectorBoolType()) | ||||
| 13143 | return Context.getExtVectorType(Context.BoolTy, VTy->getNumElements()); | ||||
| 13144 | if (TypeSize == Context.getTypeSize(Context.CharTy)) | ||||
| 13145 | return Context.getExtVectorType(Context.CharTy, VTy->getNumElements()); | ||||
| 13146 | if (TypeSize == Context.getTypeSize(Context.ShortTy)) | ||||
| 13147 | return Context.getExtVectorType(Context.ShortTy, VTy->getNumElements()); | ||||
| 13148 | if (TypeSize == Context.getTypeSize(Context.IntTy)) | ||||
| 13149 | return Context.getExtVectorType(Context.IntTy, VTy->getNumElements()); | ||||
| 13150 | if (TypeSize == Context.getTypeSize(Context.Int128Ty)) | ||||
| 13151 | return Context.getExtVectorType(Context.Int128Ty, VTy->getNumElements()); | ||||
| 13152 | if (TypeSize == Context.getTypeSize(Context.LongTy)) | ||||
| 13153 | return Context.getExtVectorType(Context.LongTy, VTy->getNumElements()); | ||||
| 13154 | assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&(static_cast <bool> (TypeSize == Context.getTypeSize(Context .LongLongTy) && "Unhandled vector element size in vector compare" ) ? void (0) : __assert_fail ("TypeSize == Context.getTypeSize(Context.LongLongTy) && \"Unhandled vector element size in vector compare\"" , "clang/lib/Sema/SemaExpr.cpp", 13155, __extension__ __PRETTY_FUNCTION__ )) | ||||
| 13155 | "Unhandled vector element size in vector compare")(static_cast <bool> (TypeSize == Context.getTypeSize(Context .LongLongTy) && "Unhandled vector element size in vector compare" ) ? void (0) : __assert_fail ("TypeSize == Context.getTypeSize(Context.LongLongTy) && \"Unhandled vector element size in vector compare\"" , "clang/lib/Sema/SemaExpr.cpp", 13155, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 13156 | return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements()); | ||||
| 13157 | } | ||||
| 13158 | |||||
| 13159 | if (TypeSize == Context.getTypeSize(Context.Int128Ty)) | ||||
| 13160 | return Context.getVectorType(Context.Int128Ty, VTy->getNumElements(), | ||||
| 13161 | VectorType::GenericVector); | ||||
| 13162 | if (TypeSize == Context.getTypeSize(Context.LongLongTy)) | ||||
| 13163 | return Context.getVectorType(Context.LongLongTy, VTy->getNumElements(), | ||||
| 13164 | VectorType::GenericVector); | ||||
| 13165 | if (TypeSize == Context.getTypeSize(Context.LongTy)) | ||||
| 13166 | return Context.getVectorType(Context.LongTy, VTy->getNumElements(), | ||||
| 13167 | VectorType::GenericVector); | ||||
| 13168 | if (TypeSize == Context.getTypeSize(Context.IntTy)) | ||||
| 13169 | return Context.getVectorType(Context.IntTy, VTy->getNumElements(), | ||||
| 13170 | VectorType::GenericVector); | ||||
| 13171 | if (TypeSize == Context.getTypeSize(Context.ShortTy)) | ||||
| 13172 | return Context.getVectorType(Context.ShortTy, VTy->getNumElements(), | ||||
| 13173 | VectorType::GenericVector); | ||||
| 13174 | assert(TypeSize == Context.getTypeSize(Context.CharTy) &&(static_cast <bool> (TypeSize == Context.getTypeSize(Context .CharTy) && "Unhandled vector element size in vector compare" ) ? void (0) : __assert_fail ("TypeSize == Context.getTypeSize(Context.CharTy) && \"Unhandled vector element size in vector compare\"" , "clang/lib/Sema/SemaExpr.cpp", 13175, __extension__ __PRETTY_FUNCTION__ )) | ||||
| 13175 | "Unhandled vector element size in vector compare")(static_cast <bool> (TypeSize == Context.getTypeSize(Context .CharTy) && "Unhandled vector element size in vector compare" ) ? void (0) : __assert_fail ("TypeSize == Context.getTypeSize(Context.CharTy) && \"Unhandled vector element size in vector compare\"" , "clang/lib/Sema/SemaExpr.cpp", 13175, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 13176 | return Context.getVectorType(Context.CharTy, VTy->getNumElements(), | ||||
| 13177 | VectorType::GenericVector); | ||||
| 13178 | } | ||||
| 13179 | |||||
| 13180 | QualType Sema::GetSignedSizelessVectorType(QualType V) { | ||||
| 13181 | const BuiltinType *VTy = V->castAs<BuiltinType>(); | ||||
| 13182 | assert(VTy->isSizelessBuiltinType() && "expected sizeless type")(static_cast <bool> (VTy->isSizelessBuiltinType() && "expected sizeless type") ? void (0) : __assert_fail ("VTy->isSizelessBuiltinType() && \"expected sizeless type\"" , "clang/lib/Sema/SemaExpr.cpp", 13182, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 13183 | |||||
| 13184 | const QualType ETy = V->getSveEltType(Context); | ||||
| 13185 | const auto TypeSize = Context.getTypeSize(ETy); | ||||
| 13186 | |||||
| 13187 | const QualType IntTy = Context.getIntTypeForBitwidth(TypeSize, true); | ||||
| 13188 | const llvm::ElementCount VecSize = Context.getBuiltinVectorTypeInfo(VTy).EC; | ||||
| 13189 | return Context.getScalableVectorType(IntTy, VecSize.getKnownMinValue()); | ||||
| 13190 | } | ||||
| 13191 | |||||
| 13192 | /// CheckVectorCompareOperands - vector comparisons are a clang extension that | ||||
| 13193 | /// operates on extended vector types. Instead of producing an IntTy result, | ||||
| 13194 | /// like a scalar comparison, a vector comparison produces a vector of integer | ||||
| 13195 | /// types. | ||||
| 13196 | QualType Sema::CheckVectorCompareOperands(ExprResult &LHS, ExprResult &RHS, | ||||
| 13197 | SourceLocation Loc, | ||||
| 13198 | BinaryOperatorKind Opc) { | ||||
| 13199 | if (Opc == BO_Cmp) { | ||||
| 13200 | Diag(Loc, diag::err_three_way_vector_comparison); | ||||
| 13201 | return QualType(); | ||||
| 13202 | } | ||||
| 13203 | |||||
| 13204 | // Check to make sure we're operating on vectors of the same type and width, | ||||
| 13205 | // Allowing one side to be a scalar of element type. | ||||
| 13206 | QualType vType = | ||||
| 13207 | CheckVectorOperands(LHS, RHS, Loc, /*isCompAssign*/ false, | ||||
| 13208 | /*AllowBothBool*/ true, | ||||
| 13209 | /*AllowBoolConversions*/ getLangOpts().ZVector, | ||||
| 13210 | /*AllowBooleanOperation*/ true, | ||||
| 13211 | /*ReportInvalid*/ true); | ||||
| 13212 | if (vType.isNull()) | ||||
| 13213 | return vType; | ||||
| 13214 | |||||
| 13215 | QualType LHSType = LHS.get()->getType(); | ||||
| 13216 | |||||
| 13217 | // Determine the return type of a vector compare. By default clang will return | ||||
| 13218 | // a scalar for all vector compares except vector bool and vector pixel. | ||||
| 13219 | // With the gcc compiler we will always return a vector type and with the xl | ||||
| 13220 | // compiler we will always return a scalar type. This switch allows choosing | ||||
| 13221 | // which behavior is prefered. | ||||
| 13222 | if (getLangOpts().AltiVec) { | ||||
| 13223 | switch (getLangOpts().getAltivecSrcCompat()) { | ||||
| 13224 | case LangOptions::AltivecSrcCompatKind::Mixed: | ||||
| 13225 | // If AltiVec, the comparison results in a numeric type, i.e. | ||||
| 13226 | // bool for C++, int for C | ||||
| 13227 | if (vType->castAs<VectorType>()->getVectorKind() == | ||||
| 13228 | VectorType::AltiVecVector) | ||||
| 13229 | return Context.getLogicalOperationType(); | ||||
| 13230 | else | ||||
| 13231 | Diag(Loc, diag::warn_deprecated_altivec_src_compat); | ||||
| 13232 | break; | ||||
| 13233 | case LangOptions::AltivecSrcCompatKind::GCC: | ||||
| 13234 | // For GCC we always return the vector type. | ||||
| 13235 | break; | ||||
| 13236 | case LangOptions::AltivecSrcCompatKind::XL: | ||||
| 13237 | return Context.getLogicalOperationType(); | ||||
| 13238 | break; | ||||
| 13239 | } | ||||
| 13240 | } | ||||
| 13241 | |||||
| 13242 | // For non-floating point types, check for self-comparisons of the form | ||||
| 13243 | // x == x, x != x, x < x, etc. These always evaluate to a constant, and | ||||
| 13244 | // often indicate logic errors in the program. | ||||
| 13245 | diagnoseTautologicalComparison(*this, Loc, LHS.get(), RHS.get(), Opc); | ||||
| 13246 | |||||
| 13247 | // Check for comparisons of floating point operands using != and ==. | ||||
| 13248 | if (LHSType->hasFloatingRepresentation()) { | ||||
| 13249 | assert(RHS.get()->getType()->hasFloatingRepresentation())(static_cast <bool> (RHS.get()->getType()->hasFloatingRepresentation ()) ? void (0) : __assert_fail ("RHS.get()->getType()->hasFloatingRepresentation()" , "clang/lib/Sema/SemaExpr.cpp", 13249, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 13250 | CheckFloatComparison(Loc, LHS.get(), RHS.get(), Opc); | ||||
| 13251 | } | ||||
| 13252 | |||||
| 13253 | // Return a signed type for the vector. | ||||
| 13254 | return GetSignedVectorType(vType); | ||||
| 13255 | } | ||||
| 13256 | |||||
| 13257 | QualType Sema::CheckSizelessVectorCompareOperands(ExprResult &LHS, | ||||
| 13258 | ExprResult &RHS, | ||||
| 13259 | SourceLocation Loc, | ||||
| 13260 | BinaryOperatorKind Opc) { | ||||
| 13261 | if (Opc == BO_Cmp) { | ||||
| 13262 | Diag(Loc, diag::err_three_way_vector_comparison); | ||||
| 13263 | return QualType(); | ||||
| 13264 | } | ||||
| 13265 | |||||
| 13266 | // Check to make sure we're operating on vectors of the same type and width, | ||||
| 13267 | // Allowing one side to be a scalar of element type. | ||||
| 13268 | QualType vType = CheckSizelessVectorOperands( | ||||
| 13269 | LHS, RHS, Loc, /*isCompAssign*/ false, ACK_Comparison); | ||||
| 13270 | |||||
| 13271 | if (vType.isNull()) | ||||
| 13272 | return vType; | ||||
| 13273 | |||||
| 13274 | QualType LHSType = LHS.get()->getType(); | ||||
| 13275 | |||||
| 13276 | // For non-floating point types, check for self-comparisons of the form | ||||
| 13277 | // x == x, x != x, x < x, etc. These always evaluate to a constant, and | ||||
| 13278 | // often indicate logic errors in the program. | ||||
| 13279 | diagnoseTautologicalComparison(*this, Loc, LHS.get(), RHS.get(), Opc); | ||||
| 13280 | |||||
| 13281 | // Check for comparisons of floating point operands using != and ==. | ||||
| 13282 | if (LHSType->hasFloatingRepresentation()) { | ||||
| 13283 | assert(RHS.get()->getType()->hasFloatingRepresentation())(static_cast <bool> (RHS.get()->getType()->hasFloatingRepresentation ()) ? void (0) : __assert_fail ("RHS.get()->getType()->hasFloatingRepresentation()" , "clang/lib/Sema/SemaExpr.cpp", 13283, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 13284 | CheckFloatComparison(Loc, LHS.get(), RHS.get(), Opc); | ||||
| 13285 | } | ||||
| 13286 | |||||
| 13287 | const BuiltinType *LHSBuiltinTy = LHSType->getAs<BuiltinType>(); | ||||
| 13288 | const BuiltinType *RHSBuiltinTy = RHS.get()->getType()->getAs<BuiltinType>(); | ||||
| 13289 | |||||
| 13290 | if (LHSBuiltinTy && RHSBuiltinTy && LHSBuiltinTy->isSVEBool() && | ||||
| 13291 | RHSBuiltinTy->isSVEBool()) | ||||
| 13292 | return LHSType; | ||||
| 13293 | |||||
| 13294 | // Return a signed type for the vector. | ||||
| 13295 | return GetSignedSizelessVectorType(vType); | ||||
| 13296 | } | ||||
| 13297 | |||||
| 13298 | static void diagnoseXorMisusedAsPow(Sema &S, const ExprResult &XorLHS, | ||||
| 13299 | const ExprResult &XorRHS, | ||||
| 13300 | const SourceLocation Loc) { | ||||
| 13301 | // Do not diagnose macros. | ||||
| 13302 | if (Loc.isMacroID()) | ||||
| 13303 | return; | ||||
| 13304 | |||||
| 13305 | // Do not diagnose if both LHS and RHS are macros. | ||||
| 13306 | if (XorLHS.get()->getExprLoc().isMacroID() && | ||||
| 13307 | XorRHS.get()->getExprLoc().isMacroID()) | ||||
| 13308 | return; | ||||
| 13309 | |||||
| 13310 | bool Negative = false; | ||||
| 13311 | bool ExplicitPlus = false; | ||||
| 13312 | const auto *LHSInt = dyn_cast<IntegerLiteral>(XorLHS.get()); | ||||
| 13313 | const auto *RHSInt = dyn_cast<IntegerLiteral>(XorRHS.get()); | ||||
| 13314 | |||||
| 13315 | if (!LHSInt) | ||||
| 13316 | return; | ||||
| 13317 | if (!RHSInt) { | ||||
| 13318 | // Check negative literals. | ||||
| 13319 | if (const auto *UO = dyn_cast<UnaryOperator>(XorRHS.get())) { | ||||
| 13320 | UnaryOperatorKind Opc = UO->getOpcode(); | ||||
| 13321 | if (Opc != UO_Minus && Opc != UO_Plus) | ||||
| 13322 | return; | ||||
| 13323 | RHSInt = dyn_cast<IntegerLiteral>(UO->getSubExpr()); | ||||
| 13324 | if (!RHSInt) | ||||
| 13325 | return; | ||||
| 13326 | Negative = (Opc == UO_Minus); | ||||
| 13327 | ExplicitPlus = !Negative; | ||||
| 13328 | } else { | ||||
| 13329 | return; | ||||
| 13330 | } | ||||
| 13331 | } | ||||
| 13332 | |||||
| 13333 | const llvm::APInt &LeftSideValue = LHSInt->getValue(); | ||||
| 13334 | llvm::APInt RightSideValue = RHSInt->getValue(); | ||||
| 13335 | if (LeftSideValue != 2 && LeftSideValue != 10) | ||||
| 13336 | return; | ||||
| 13337 | |||||
| 13338 | if (LeftSideValue.getBitWidth() != RightSideValue.getBitWidth()) | ||||
| 13339 | return; | ||||
| 13340 | |||||
| 13341 | CharSourceRange ExprRange = CharSourceRange::getCharRange( | ||||
| 13342 | LHSInt->getBeginLoc(), S.getLocForEndOfToken(RHSInt->getLocation())); | ||||
| 13343 | llvm::StringRef ExprStr = | ||||
| 13344 | Lexer::getSourceText(ExprRange, S.getSourceManager(), S.getLangOpts()); | ||||
| 13345 | |||||
| 13346 | CharSourceRange XorRange = | ||||
| 13347 | CharSourceRange::getCharRange(Loc, S.getLocForEndOfToken(Loc)); | ||||
| 13348 | llvm::StringRef XorStr = | ||||
| 13349 | Lexer::getSourceText(XorRange, S.getSourceManager(), S.getLangOpts()); | ||||
| 13350 | // Do not diagnose if xor keyword/macro is used. | ||||
| 13351 | if (XorStr == "xor") | ||||
| 13352 | return; | ||||
| 13353 | |||||
| 13354 | std::string LHSStr = std::string(Lexer::getSourceText( | ||||
| 13355 | CharSourceRange::getTokenRange(LHSInt->getSourceRange()), | ||||
| 13356 | S.getSourceManager(), S.getLangOpts())); | ||||
| 13357 | std::string RHSStr = std::string(Lexer::getSourceText( | ||||
| 13358 | CharSourceRange::getTokenRange(RHSInt->getSourceRange()), | ||||
| 13359 | S.getSourceManager(), S.getLangOpts())); | ||||
| 13360 | |||||
| 13361 | if (Negative) { | ||||
| 13362 | RightSideValue = -RightSideValue; | ||||
| 13363 | RHSStr = "-" + RHSStr; | ||||
| 13364 | } else if (ExplicitPlus) { | ||||
| 13365 | RHSStr = "+" + RHSStr; | ||||
| 13366 | } | ||||
| 13367 | |||||
| 13368 | StringRef LHSStrRef = LHSStr; | ||||
| 13369 | StringRef RHSStrRef = RHSStr; | ||||
| 13370 | // Do not diagnose literals with digit separators, binary, hexadecimal, octal | ||||
| 13371 | // literals. | ||||
| 13372 | if (LHSStrRef.startswith("0b") || LHSStrRef.startswith("0B") || | ||||
| 13373 | RHSStrRef.startswith("0b") || RHSStrRef.startswith("0B") || | ||||
| 13374 | LHSStrRef.startswith("0x") || LHSStrRef.startswith("0X") || | ||||
| 13375 | RHSStrRef.startswith("0x") || RHSStrRef.startswith("0X") || | ||||
| 13376 | (LHSStrRef.size() > 1 && LHSStrRef.startswith("0")) || | ||||
| 13377 | (RHSStrRef.size() > 1 && RHSStrRef.startswith("0")) || | ||||
| 13378 | LHSStrRef.contains('\'') || RHSStrRef.contains('\'')) | ||||
| 13379 | return; | ||||
| 13380 | |||||
| 13381 | bool SuggestXor = | ||||
| 13382 | S.getLangOpts().CPlusPlus || S.getPreprocessor().isMacroDefined("xor"); | ||||
| 13383 | const llvm::APInt XorValue = LeftSideValue ^ RightSideValue; | ||||
| 13384 | int64_t RightSideIntValue = RightSideValue.getSExtValue(); | ||||
| 13385 | if (LeftSideValue == 2 && RightSideIntValue >= 0) { | ||||
| 13386 | std::string SuggestedExpr = "1 << " + RHSStr; | ||||
| 13387 | bool Overflow = false; | ||||
| 13388 | llvm::APInt One = (LeftSideValue - 1); | ||||
| 13389 | llvm::APInt PowValue = One.sshl_ov(RightSideValue, Overflow); | ||||
| 13390 | if (Overflow) { | ||||
| 13391 | if (RightSideIntValue < 64) | ||||
| 13392 | S.Diag(Loc, diag::warn_xor_used_as_pow_base) | ||||
| 13393 | << ExprStr << toString(XorValue, 10, true) << ("1LL << " + RHSStr) | ||||
| 13394 | << FixItHint::CreateReplacement(ExprRange, "1LL << " + RHSStr); | ||||
| 13395 | else if (RightSideIntValue == 64) | ||||
| 13396 | S.Diag(Loc, diag::warn_xor_used_as_pow) | ||||
| 13397 | << ExprStr << toString(XorValue, 10, true); | ||||
| 13398 | else | ||||
| 13399 | return; | ||||
| 13400 | } else { | ||||
| 13401 | S.Diag(Loc, diag::warn_xor_used_as_pow_base_extra) | ||||
| 13402 | << ExprStr << toString(XorValue, 10, true) << SuggestedExpr | ||||
| 13403 | << toString(PowValue, 10, true) | ||||
| 13404 | << FixItHint::CreateReplacement( | ||||
| 13405 | ExprRange, (RightSideIntValue == 0) ? "1" : SuggestedExpr); | ||||
| 13406 | } | ||||
| 13407 | |||||
| 13408 | S.Diag(Loc, diag::note_xor_used_as_pow_silence) | ||||
| 13409 | << ("0x2 ^ " + RHSStr) << SuggestXor; | ||||
| 13410 | } else if (LeftSideValue == 10) { | ||||
| 13411 | std::string SuggestedValue = "1e" + std::to_string(RightSideIntValue); | ||||
| 13412 | S.Diag(Loc, diag::warn_xor_used_as_pow_base) | ||||
| 13413 | << ExprStr << toString(XorValue, 10, true) << SuggestedValue | ||||
| 13414 | << FixItHint::CreateReplacement(ExprRange, SuggestedValue); | ||||
| 13415 | S.Diag(Loc, diag::note_xor_used_as_pow_silence) | ||||
| 13416 | << ("0xA ^ " + RHSStr) << SuggestXor; | ||||
| 13417 | } | ||||
| 13418 | } | ||||
| 13419 | |||||
| 13420 | QualType Sema::CheckVectorLogicalOperands(ExprResult &LHS, ExprResult &RHS, | ||||
| 13421 | SourceLocation Loc) { | ||||
| 13422 | // Ensure that either both operands are of the same vector type, or | ||||
| 13423 | // one operand is of a vector type and the other is of its element type. | ||||
| 13424 | QualType vType = CheckVectorOperands(LHS, RHS, Loc, false, | ||||
| 13425 | /*AllowBothBool*/ true, | ||||
| 13426 | /*AllowBoolConversions*/ false, | ||||
| 13427 | /*AllowBooleanOperation*/ false, | ||||
| 13428 | /*ReportInvalid*/ false); | ||||
| 13429 | if (vType.isNull()) | ||||
| 13430 | return InvalidOperands(Loc, LHS, RHS); | ||||
| 13431 | if (getLangOpts().OpenCL && | ||||
| 13432 | getLangOpts().getOpenCLCompatibleVersion() < 120 && | ||||
| 13433 | vType->hasFloatingRepresentation()) | ||||
| 13434 | return InvalidOperands(Loc, LHS, RHS); | ||||
| 13435 | // FIXME: The check for C++ here is for GCC compatibility. GCC rejects the | ||||
| 13436 | // usage of the logical operators && and || with vectors in C. This | ||||
| 13437 | // check could be notionally dropped. | ||||
| 13438 | if (!getLangOpts().CPlusPlus && | ||||
| 13439 | !(isa<ExtVectorType>(vType->getAs<VectorType>()))) | ||||
| 13440 | return InvalidLogicalVectorOperands(Loc, LHS, RHS); | ||||
| 13441 | |||||
| 13442 | return GetSignedVectorType(LHS.get()->getType()); | ||||
| 13443 | } | ||||
| 13444 | |||||
| 13445 | QualType Sema::CheckMatrixElementwiseOperands(ExprResult &LHS, ExprResult &RHS, | ||||
| 13446 | SourceLocation Loc, | ||||
| 13447 | bool IsCompAssign) { | ||||
| 13448 | if (!IsCompAssign) { | ||||
| 13449 | LHS = DefaultFunctionArrayLvalueConversion(LHS.get()); | ||||
| 13450 | if (LHS.isInvalid()) | ||||
| 13451 | return QualType(); | ||||
| 13452 | } | ||||
| 13453 | RHS = DefaultFunctionArrayLvalueConversion(RHS.get()); | ||||
| 13454 | if (RHS.isInvalid()) | ||||
| 13455 | return QualType(); | ||||
| 13456 | |||||
| 13457 | // For conversion purposes, we ignore any qualifiers. | ||||
| 13458 | // For example, "const float" and "float" are equivalent. | ||||
| 13459 | QualType LHSType = LHS.get()->getType().getUnqualifiedType(); | ||||
| 13460 | QualType RHSType = RHS.get()->getType().getUnqualifiedType(); | ||||
| 13461 | |||||
| 13462 | const MatrixType *LHSMatType = LHSType->getAs<MatrixType>(); | ||||
| 13463 | const MatrixType *RHSMatType = RHSType->getAs<MatrixType>(); | ||||
| 13464 | assert((LHSMatType || RHSMatType) && "At least one operand must be a matrix")(static_cast <bool> ((LHSMatType || RHSMatType) && "At least one operand must be a matrix") ? void (0) : __assert_fail ("(LHSMatType || RHSMatType) && \"At least one operand must be a matrix\"" , "clang/lib/Sema/SemaExpr.cpp", 13464, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 13465 | |||||
| 13466 | if (Context.hasSameType(LHSType, RHSType)) | ||||
| 13467 | return Context.getCommonSugaredType(LHSType, RHSType); | ||||
| 13468 | |||||
| 13469 | // Type conversion may change LHS/RHS. Keep copies to the original results, in | ||||
| 13470 | // case we have to return InvalidOperands. | ||||
| 13471 | ExprResult OriginalLHS = LHS; | ||||
| 13472 | ExprResult OriginalRHS = RHS; | ||||
| 13473 | if (LHSMatType && !RHSMatType) { | ||||
| 13474 | RHS = tryConvertExprToType(RHS.get(), LHSMatType->getElementType()); | ||||
| 13475 | if (!RHS.isInvalid()) | ||||
| 13476 | return LHSType; | ||||
| 13477 | |||||
| 13478 | return InvalidOperands(Loc, OriginalLHS, OriginalRHS); | ||||
| 13479 | } | ||||
| 13480 | |||||
| 13481 | if (!LHSMatType && RHSMatType) { | ||||
| 13482 | LHS = tryConvertExprToType(LHS.get(), RHSMatType->getElementType()); | ||||
| 13483 | if (!LHS.isInvalid()) | ||||
| 13484 | return RHSType; | ||||
| 13485 | return InvalidOperands(Loc, OriginalLHS, OriginalRHS); | ||||
| 13486 | } | ||||
| 13487 | |||||
| 13488 | return InvalidOperands(Loc, LHS, RHS); | ||||
| 13489 | } | ||||
| 13490 | |||||
| 13491 | QualType Sema::CheckMatrixMultiplyOperands(ExprResult &LHS, ExprResult &RHS, | ||||
| 13492 | SourceLocation Loc, | ||||
| 13493 | bool IsCompAssign) { | ||||
| 13494 | if (!IsCompAssign) { | ||||
| 13495 | LHS = DefaultFunctionArrayLvalueConversion(LHS.get()); | ||||
| 13496 | if (LHS.isInvalid()) | ||||
| 13497 | return QualType(); | ||||
| 13498 | } | ||||
| 13499 | RHS = DefaultFunctionArrayLvalueConversion(RHS.get()); | ||||
| 13500 | if (RHS.isInvalid()) | ||||
| 13501 | return QualType(); | ||||
| 13502 | |||||
| 13503 | auto *LHSMatType = LHS.get()->getType()->getAs<ConstantMatrixType>(); | ||||
| 13504 | auto *RHSMatType = RHS.get()->getType()->getAs<ConstantMatrixType>(); | ||||
| 13505 | assert((LHSMatType || RHSMatType) && "At least one operand must be a matrix")(static_cast <bool> ((LHSMatType || RHSMatType) && "At least one operand must be a matrix") ? void (0) : __assert_fail ("(LHSMatType || RHSMatType) && \"At least one operand must be a matrix\"" , "clang/lib/Sema/SemaExpr.cpp", 13505, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 13506 | |||||
| 13507 | if (LHSMatType && RHSMatType) { | ||||
| 13508 | if (LHSMatType->getNumColumns() != RHSMatType->getNumRows()) | ||||
| 13509 | return InvalidOperands(Loc, LHS, RHS); | ||||
| 13510 | |||||
| 13511 | if (Context.hasSameType(LHSMatType, RHSMatType)) | ||||
| 13512 | return Context.getCommonSugaredType( | ||||
| 13513 | LHS.get()->getType().getUnqualifiedType(), | ||||
| 13514 | RHS.get()->getType().getUnqualifiedType()); | ||||
| 13515 | |||||
| 13516 | QualType LHSELTy = LHSMatType->getElementType(), | ||||
| 13517 | RHSELTy = RHSMatType->getElementType(); | ||||
| 13518 | if (!Context.hasSameType(LHSELTy, RHSELTy)) | ||||
| 13519 | return InvalidOperands(Loc, LHS, RHS); | ||||
| 13520 | |||||
| 13521 | return Context.getConstantMatrixType( | ||||
| 13522 | Context.getCommonSugaredType(LHSELTy, RHSELTy), | ||||
| 13523 | LHSMatType->getNumRows(), RHSMatType->getNumColumns()); | ||||
| 13524 | } | ||||
| 13525 | return CheckMatrixElementwiseOperands(LHS, RHS, Loc, IsCompAssign); | ||||
| 13526 | } | ||||
| 13527 | |||||
| 13528 | static bool isLegalBoolVectorBinaryOp(BinaryOperatorKind Opc) { | ||||
| 13529 | switch (Opc) { | ||||
| 13530 | default: | ||||
| 13531 | return false; | ||||
| 13532 | case BO_And: | ||||
| 13533 | case BO_AndAssign: | ||||
| 13534 | case BO_Or: | ||||
| 13535 | case BO_OrAssign: | ||||
| 13536 | case BO_Xor: | ||||
| 13537 | case BO_XorAssign: | ||||
| 13538 | return true; | ||||
| 13539 | } | ||||
| 13540 | } | ||||
| 13541 | |||||
| 13542 | inline QualType Sema::CheckBitwiseOperands(ExprResult &LHS, ExprResult &RHS, | ||||
| 13543 | SourceLocation Loc, | ||||
| 13544 | BinaryOperatorKind Opc) { | ||||
| 13545 | checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false); | ||||
| 13546 | |||||
| 13547 | bool IsCompAssign = | ||||
| 13548 | Opc == BO_AndAssign || Opc == BO_OrAssign || Opc == BO_XorAssign; | ||||
| 13549 | |||||
| 13550 | bool LegalBoolVecOperator = isLegalBoolVectorBinaryOp(Opc); | ||||
| 13551 | |||||
| 13552 | if (LHS.get()->getType()->isVectorType() || | ||||
| 13553 | RHS.get()->getType()->isVectorType()) { | ||||
| 13554 | if (LHS.get()->getType()->hasIntegerRepresentation() && | ||||
| 13555 | RHS.get()->getType()->hasIntegerRepresentation()) | ||||
| 13556 | return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign, | ||||
| 13557 | /*AllowBothBool*/ true, | ||||
| 13558 | /*AllowBoolConversions*/ getLangOpts().ZVector, | ||||
| 13559 | /*AllowBooleanOperation*/ LegalBoolVecOperator, | ||||
| 13560 | /*ReportInvalid*/ true); | ||||
| 13561 | return InvalidOperands(Loc, LHS, RHS); | ||||
| 13562 | } | ||||
| 13563 | |||||
| 13564 | if (LHS.get()->getType()->isVLSTBuiltinType() || | ||||
| 13565 | RHS.get()->getType()->isVLSTBuiltinType()) { | ||||
| 13566 | if (LHS.get()->getType()->hasIntegerRepresentation() && | ||||
| 13567 | RHS.get()->getType()->hasIntegerRepresentation()) | ||||
| 13568 | return CheckSizelessVectorOperands(LHS, RHS, Loc, IsCompAssign, | ||||
| 13569 | ACK_BitwiseOp); | ||||
| 13570 | return InvalidOperands(Loc, LHS, RHS); | ||||
| 13571 | } | ||||
| 13572 | |||||
| 13573 | if (LHS.get()->getType()->isVLSTBuiltinType() || | ||||
| 13574 | RHS.get()->getType()->isVLSTBuiltinType()) { | ||||
| 13575 | if (LHS.get()->getType()->hasIntegerRepresentation() && | ||||
| 13576 | RHS.get()->getType()->hasIntegerRepresentation()) | ||||
| 13577 | return CheckSizelessVectorOperands(LHS, RHS, Loc, IsCompAssign, | ||||
| 13578 | ACK_BitwiseOp); | ||||
| 13579 | return InvalidOperands(Loc, LHS, RHS); | ||||
| 13580 | } | ||||
| 13581 | |||||
| 13582 | if (Opc == BO_And) | ||||
| 13583 | diagnoseLogicalNotOnLHSofCheck(*this, LHS, RHS, Loc, Opc); | ||||
| 13584 | |||||
| 13585 | if (LHS.get()->getType()->hasFloatingRepresentation() || | ||||
| 13586 | RHS.get()->getType()->hasFloatingRepresentation()) | ||||
| 13587 | return InvalidOperands(Loc, LHS, RHS); | ||||
| 13588 | |||||
| 13589 | ExprResult LHSResult = LHS, RHSResult = RHS; | ||||
| 13590 | QualType compType = UsualArithmeticConversions( | ||||
| 13591 | LHSResult, RHSResult, Loc, IsCompAssign ? ACK_CompAssign : ACK_BitwiseOp); | ||||
| 13592 | if (LHSResult.isInvalid() || RHSResult.isInvalid()) | ||||
| 13593 | return QualType(); | ||||
| 13594 | LHS = LHSResult.get(); | ||||
| 13595 | RHS = RHSResult.get(); | ||||
| 13596 | |||||
| 13597 | if (Opc == BO_Xor) | ||||
| 13598 | diagnoseXorMisusedAsPow(*this, LHS, RHS, Loc); | ||||
| 13599 | |||||
| 13600 | if (!compType.isNull() && compType->isIntegralOrUnscopedEnumerationType()) | ||||
| 13601 | return compType; | ||||
| 13602 | return InvalidOperands(Loc, LHS, RHS); | ||||
| 13603 | } | ||||
| 13604 | |||||
| 13605 | // C99 6.5.[13,14] | ||||
| 13606 | inline QualType Sema::CheckLogicalOperands(ExprResult &LHS, ExprResult &RHS, | ||||
| 13607 | SourceLocation Loc, | ||||
| 13608 | BinaryOperatorKind Opc) { | ||||
| 13609 | // Check vector operands differently. | ||||
| 13610 | if (LHS.get()->getType()->isVectorType() || | ||||
| 13611 | RHS.get()->getType()->isVectorType()) | ||||
| 13612 | return CheckVectorLogicalOperands(LHS, RHS, Loc); | ||||
| 13613 | |||||
| 13614 | bool EnumConstantInBoolContext = false; | ||||
| 13615 | for (const ExprResult &HS : {LHS, RHS}) { | ||||
| 13616 | if (const auto *DREHS = dyn_cast<DeclRefExpr>(HS.get())) { | ||||
| 13617 | const auto *ECDHS = dyn_cast<EnumConstantDecl>(DREHS->getDecl()); | ||||
| 13618 | if (ECDHS && ECDHS->getInitVal() != 0 && ECDHS->getInitVal() != 1) | ||||
| 13619 | EnumConstantInBoolContext = true; | ||||
| 13620 | } | ||||
| 13621 | } | ||||
| 13622 | |||||
| 13623 | if (EnumConstantInBoolContext) | ||||
| 13624 | Diag(Loc, diag::warn_enum_constant_in_bool_context); | ||||
| 13625 | |||||
| 13626 | // Diagnose cases where the user write a logical and/or but probably meant a | ||||
| 13627 | // bitwise one. We do this when the LHS is a non-bool integer and the RHS | ||||
| 13628 | // is a constant. | ||||
| 13629 | if (!EnumConstantInBoolContext && LHS.get()->getType()->isIntegerType() && | ||||
| 13630 | !LHS.get()->getType()->isBooleanType() && | ||||
| 13631 | RHS.get()->getType()->isIntegerType() && !RHS.get()->isValueDependent() && | ||||
| 13632 | // Don't warn in macros or template instantiations. | ||||
| 13633 | !Loc.isMacroID() && !inTemplateInstantiation()) { | ||||
| 13634 | // If the RHS can be constant folded, and if it constant folds to something | ||||
| 13635 | // that isn't 0 or 1 (which indicate a potential logical operation that | ||||
| 13636 | // happened to fold to true/false) then warn. | ||||
| 13637 | // Parens on the RHS are ignored. | ||||
| 13638 | Expr::EvalResult EVResult; | ||||
| 13639 | if (RHS.get()->EvaluateAsInt(EVResult, Context)) { | ||||
| 13640 | llvm::APSInt Result = EVResult.Val.getInt(); | ||||
| 13641 | if ((getLangOpts().Bool && !RHS.get()->getType()->isBooleanType() && | ||||
| 13642 | !RHS.get()->getExprLoc().isMacroID()) || | ||||
| 13643 | (Result != 0 && Result != 1)) { | ||||
| 13644 | Diag(Loc, diag::warn_logical_instead_of_bitwise) | ||||
| 13645 | << RHS.get()->getSourceRange() << (Opc == BO_LAnd ? "&&" : "||"); | ||||
| 13646 | // Suggest replacing the logical operator with the bitwise version | ||||
| 13647 | Diag(Loc, diag::note_logical_instead_of_bitwise_change_operator) | ||||
| 13648 | << (Opc == BO_LAnd ? "&" : "|") | ||||
| 13649 | << FixItHint::CreateReplacement( | ||||
| 13650 | SourceRange(Loc, getLocForEndOfToken(Loc)), | ||||
| 13651 | Opc == BO_LAnd ? "&" : "|"); | ||||
| 13652 | if (Opc == BO_LAnd) | ||||
| 13653 | // Suggest replacing "Foo() && kNonZero" with "Foo()" | ||||
| 13654 | Diag(Loc, diag::note_logical_instead_of_bitwise_remove_constant) | ||||
| 13655 | << FixItHint::CreateRemoval( | ||||
| 13656 | SourceRange(getLocForEndOfToken(LHS.get()->getEndLoc()), | ||||
| 13657 | RHS.get()->getEndLoc())); | ||||
| 13658 | } | ||||
| 13659 | } | ||||
| 13660 | } | ||||
| 13661 | |||||
| 13662 | if (!Context.getLangOpts().CPlusPlus) { | ||||
| 13663 | // OpenCL v1.1 s6.3.g: The logical operators and (&&), or (||) do | ||||
| 13664 | // not operate on the built-in scalar and vector float types. | ||||
| 13665 | if (Context.getLangOpts().OpenCL && | ||||
| 13666 | Context.getLangOpts().OpenCLVersion < 120) { | ||||
| 13667 | if (LHS.get()->getType()->isFloatingType() || | ||||
| 13668 | RHS.get()->getType()->isFloatingType()) | ||||
| 13669 | return InvalidOperands(Loc, LHS, RHS); | ||||
| 13670 | } | ||||
| 13671 | |||||
| 13672 | LHS = UsualUnaryConversions(LHS.get()); | ||||
| 13673 | if (LHS.isInvalid()) | ||||
| 13674 | return QualType(); | ||||
| 13675 | |||||
| 13676 | RHS = UsualUnaryConversions(RHS.get()); | ||||
| 13677 | if (RHS.isInvalid()) | ||||
| 13678 | return QualType(); | ||||
| 13679 | |||||
| 13680 | if (!LHS.get()->getType()->isScalarType() || | ||||
| 13681 | !RHS.get()->getType()->isScalarType()) | ||||
| 13682 | return InvalidOperands(Loc, LHS, RHS); | ||||
| 13683 | |||||
| 13684 | return Context.IntTy; | ||||
| 13685 | } | ||||
| 13686 | |||||
| 13687 | // The following is safe because we only use this method for | ||||
| 13688 | // non-overloadable operands. | ||||
| 13689 | |||||
| 13690 | // C++ [expr.log.and]p1 | ||||
| 13691 | // C++ [expr.log.or]p1 | ||||
| 13692 | // The operands are both contextually converted to type bool. | ||||
| 13693 | ExprResult LHSRes = PerformContextuallyConvertToBool(LHS.get()); | ||||
| 13694 | if (LHSRes.isInvalid()) | ||||
| 13695 | return InvalidOperands(Loc, LHS, RHS); | ||||
| 13696 | LHS = LHSRes; | ||||
| 13697 | |||||
| 13698 | ExprResult RHSRes = PerformContextuallyConvertToBool(RHS.get()); | ||||
| 13699 | if (RHSRes.isInvalid()) | ||||
| 13700 | return InvalidOperands(Loc, LHS, RHS); | ||||
| 13701 | RHS = RHSRes; | ||||
| 13702 | |||||
| 13703 | // C++ [expr.log.and]p2 | ||||
| 13704 | // C++ [expr.log.or]p2 | ||||
| 13705 | // The result is a bool. | ||||
| 13706 | return Context.BoolTy; | ||||
| 13707 | } | ||||
| 13708 | |||||
| 13709 | static bool IsReadonlyMessage(Expr *E, Sema &S) { | ||||
| 13710 | const MemberExpr *ME = dyn_cast<MemberExpr>(E); | ||||
| 13711 | if (!ME) return false; | ||||
| 13712 | if (!isa<FieldDecl>(ME->getMemberDecl())) return false; | ||||
| 13713 | ObjCMessageExpr *Base = dyn_cast<ObjCMessageExpr>( | ||||
| 13714 | ME->getBase()->IgnoreImplicit()->IgnoreParenImpCasts()); | ||||
| 13715 | if (!Base) return false; | ||||
| 13716 | return Base->getMethodDecl() != nullptr; | ||||
| 13717 | } | ||||
| 13718 | |||||
| 13719 | /// Is the given expression (which must be 'const') a reference to a | ||||
| 13720 | /// variable which was originally non-const, but which has become | ||||
| 13721 | /// 'const' due to being captured within a block? | ||||
| 13722 | enum NonConstCaptureKind { NCCK_None, NCCK_Block, NCCK_Lambda }; | ||||
| 13723 | static NonConstCaptureKind isReferenceToNonConstCapture(Sema &S, Expr *E) { | ||||
| 13724 | assert(E->isLValue() && E->getType().isConstQualified())(static_cast <bool> (E->isLValue() && E-> getType().isConstQualified()) ? void (0) : __assert_fail ("E->isLValue() && E->getType().isConstQualified()" , "clang/lib/Sema/SemaExpr.cpp", 13724, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 13725 | E = E->IgnoreParens(); | ||||
| 13726 | |||||
| 13727 | // Must be a reference to a declaration from an enclosing scope. | ||||
| 13728 | DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E); | ||||
| 13729 | if (!DRE) return NCCK_None; | ||||
| 13730 | if (!DRE->refersToEnclosingVariableOrCapture()) return NCCK_None; | ||||
| 13731 | |||||
| 13732 | // The declaration must be a variable which is not declared 'const'. | ||||
| 13733 | VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl()); | ||||
| 13734 | if (!var) return NCCK_None; | ||||
| 13735 | if (var->getType().isConstQualified()) return NCCK_None; | ||||
| 13736 | assert(var->hasLocalStorage() && "capture added 'const' to non-local?")(static_cast <bool> (var->hasLocalStorage() && "capture added 'const' to non-local?") ? void (0) : __assert_fail ("var->hasLocalStorage() && \"capture added 'const' to non-local?\"" , "clang/lib/Sema/SemaExpr.cpp", 13736, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 13737 | |||||
| 13738 | // Decide whether the first capture was for a block or a lambda. | ||||
| 13739 | DeclContext *DC = S.CurContext, *Prev = nullptr; | ||||
| 13740 | // Decide whether the first capture was for a block or a lambda. | ||||
| 13741 | while (DC) { | ||||
| 13742 | // For init-capture, it is possible that the variable belongs to the | ||||
| 13743 | // template pattern of the current context. | ||||
| 13744 | if (auto *FD = dyn_cast<FunctionDecl>(DC)) | ||||
| 13745 | if (var->isInitCapture() && | ||||
| 13746 | FD->getTemplateInstantiationPattern() == var->getDeclContext()) | ||||
| 13747 | break; | ||||
| 13748 | if (DC == var->getDeclContext()) | ||||
| 13749 | break; | ||||
| 13750 | Prev = DC; | ||||
| 13751 | DC = DC->getParent(); | ||||
| 13752 | } | ||||
| 13753 | // Unless we have an init-capture, we've gone one step too far. | ||||
| 13754 | if (!var->isInitCapture()) | ||||
| 13755 | DC = Prev; | ||||
| 13756 | return (isa<BlockDecl>(DC) ? NCCK_Block : NCCK_Lambda); | ||||
| 13757 | } | ||||
| 13758 | |||||
| 13759 | static bool IsTypeModifiable(QualType Ty, bool IsDereference) { | ||||
| 13760 | Ty = Ty.getNonReferenceType(); | ||||
| 13761 | if (IsDereference && Ty->isPointerType()) | ||||
| 13762 | Ty = Ty->getPointeeType(); | ||||
| 13763 | return !Ty.isConstQualified(); | ||||
| 13764 | } | ||||
| 13765 | |||||
| 13766 | // Update err_typecheck_assign_const and note_typecheck_assign_const | ||||
| 13767 | // when this enum is changed. | ||||
| 13768 | enum { | ||||
| 13769 | ConstFunction, | ||||
| 13770 | ConstVariable, | ||||
| 13771 | ConstMember, | ||||
| 13772 | ConstMethod, | ||||
| 13773 | NestedConstMember, | ||||
| 13774 | ConstUnknown, // Keep as last element | ||||
| 13775 | }; | ||||
| 13776 | |||||
| 13777 | /// Emit the "read-only variable not assignable" error and print notes to give | ||||
| 13778 | /// more information about why the variable is not assignable, such as pointing | ||||
| 13779 | /// to the declaration of a const variable, showing that a method is const, or | ||||
| 13780 | /// that the function is returning a const reference. | ||||
| 13781 | static void DiagnoseConstAssignment(Sema &S, const Expr *E, | ||||
| 13782 | SourceLocation Loc) { | ||||
| 13783 | SourceRange ExprRange = E->getSourceRange(); | ||||
| 13784 | |||||
| 13785 | // Only emit one error on the first const found. All other consts will emit | ||||
| 13786 | // a note to the error. | ||||
| 13787 | bool DiagnosticEmitted = false; | ||||
| 13788 | |||||
| 13789 | // Track if the current expression is the result of a dereference, and if the | ||||
| 13790 | // next checked expression is the result of a dereference. | ||||
| 13791 | bool IsDereference = false; | ||||
| 13792 | bool NextIsDereference = false; | ||||
| 13793 | |||||
| 13794 | // Loop to process MemberExpr chains. | ||||
| 13795 | while (true) { | ||||
| 13796 | IsDereference = NextIsDereference; | ||||
| 13797 | |||||
| 13798 | E = E->IgnoreImplicit()->IgnoreParenImpCasts(); | ||||
| 13799 | if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) { | ||||
| 13800 | NextIsDereference = ME->isArrow(); | ||||
| 13801 | const ValueDecl *VD = ME->getMemberDecl(); | ||||
| 13802 | if (const FieldDecl *Field = dyn_cast<FieldDecl>(VD)) { | ||||
| 13803 | // Mutable fields can be modified even if the class is const. | ||||
| 13804 | if (Field->isMutable()) { | ||||
| 13805 | assert(DiagnosticEmitted && "Expected diagnostic not emitted.")(static_cast <bool> (DiagnosticEmitted && "Expected diagnostic not emitted." ) ? void (0) : __assert_fail ("DiagnosticEmitted && \"Expected diagnostic not emitted.\"" , "clang/lib/Sema/SemaExpr.cpp", 13805, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 13806 | break; | ||||
| 13807 | } | ||||
| 13808 | |||||
| 13809 | if (!IsTypeModifiable(Field->getType(), IsDereference)) { | ||||
| 13810 | if (!DiagnosticEmitted) { | ||||
| 13811 | S.Diag(Loc, diag::err_typecheck_assign_const) | ||||
| 13812 | << ExprRange << ConstMember << false /*static*/ << Field | ||||
| 13813 | << Field->getType(); | ||||
| 13814 | DiagnosticEmitted = true; | ||||
| 13815 | } | ||||
| 13816 | S.Diag(VD->getLocation(), diag::note_typecheck_assign_const) | ||||
| 13817 | << ConstMember << false /*static*/ << Field << Field->getType() | ||||
| 13818 | << Field->getSourceRange(); | ||||
| 13819 | } | ||||
| 13820 | E = ME->getBase(); | ||||
| 13821 | continue; | ||||
| 13822 | } else if (const VarDecl *VDecl = dyn_cast<VarDecl>(VD)) { | ||||
| 13823 | if (VDecl->getType().isConstQualified()) { | ||||
| 13824 | if (!DiagnosticEmitted) { | ||||
| 13825 | S.Diag(Loc, diag::err_typecheck_assign_const) | ||||
| 13826 | << ExprRange << ConstMember << true /*static*/ << VDecl | ||||
| 13827 | << VDecl->getType(); | ||||
| 13828 | DiagnosticEmitted = true; | ||||
| 13829 | } | ||||
| 13830 | S.Diag(VD->getLocation(), diag::note_typecheck_assign_const) | ||||
| 13831 | << ConstMember << true /*static*/ << VDecl << VDecl->getType() | ||||
| 13832 | << VDecl->getSourceRange(); | ||||
| 13833 | } | ||||
| 13834 | // Static fields do not inherit constness from parents. | ||||
| 13835 | break; | ||||
| 13836 | } | ||||
| 13837 | break; // End MemberExpr | ||||
| 13838 | } else if (const ArraySubscriptExpr *ASE = | ||||
| 13839 | dyn_cast<ArraySubscriptExpr>(E)) { | ||||
| 13840 | E = ASE->getBase()->IgnoreParenImpCasts(); | ||||
| 13841 | continue; | ||||
| 13842 | } else if (const ExtVectorElementExpr *EVE = | ||||
| 13843 | dyn_cast<ExtVectorElementExpr>(E)) { | ||||
| 13844 | E = EVE->getBase()->IgnoreParenImpCasts(); | ||||
| 13845 | continue; | ||||
| 13846 | } | ||||
| 13847 | break; | ||||
| 13848 | } | ||||
| 13849 | |||||
| 13850 | if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { | ||||
| 13851 | // Function calls | ||||
| 13852 | const FunctionDecl *FD = CE->getDirectCallee(); | ||||
| 13853 | if (FD && !IsTypeModifiable(FD->getReturnType(), IsDereference)) { | ||||
| 13854 | if (!DiagnosticEmitted) { | ||||
| 13855 | S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange | ||||
| 13856 | << ConstFunction << FD; | ||||
| 13857 | DiagnosticEmitted = true; | ||||
| 13858 | } | ||||
| 13859 | S.Diag(FD->getReturnTypeSourceRange().getBegin(), | ||||
| 13860 | diag::note_typecheck_assign_const) | ||||
| 13861 | << ConstFunction << FD << FD->getReturnType() | ||||
| 13862 | << FD->getReturnTypeSourceRange(); | ||||
| 13863 | } | ||||
| 13864 | } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { | ||||
| 13865 | // Point to variable declaration. | ||||
| 13866 | if (const ValueDecl *VD = DRE->getDecl()) { | ||||
| 13867 | if (!IsTypeModifiable(VD->getType(), IsDereference)) { | ||||
| 13868 | if (!DiagnosticEmitted) { | ||||
| 13869 | S.Diag(Loc, diag::err_typecheck_assign_const) | ||||
| 13870 | << ExprRange << ConstVariable << VD << VD->getType(); | ||||
| 13871 | DiagnosticEmitted = true; | ||||
| 13872 | } | ||||
| 13873 | S.Diag(VD->getLocation(), diag::note_typecheck_assign_const) | ||||
| 13874 | << ConstVariable << VD << VD->getType() << VD->getSourceRange(); | ||||
| 13875 | } | ||||
| 13876 | } | ||||
| 13877 | } else if (isa<CXXThisExpr>(E)) { | ||||
| 13878 | if (const DeclContext *DC = S.getFunctionLevelDeclContext()) { | ||||
| 13879 | if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) { | ||||
| 13880 | if (MD->isConst()) { | ||||
| 13881 | if (!DiagnosticEmitted) { | ||||
| 13882 | S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange | ||||
| 13883 | << ConstMethod << MD; | ||||
| 13884 | DiagnosticEmitted = true; | ||||
| 13885 | } | ||||
| 13886 | S.Diag(MD->getLocation(), diag::note_typecheck_assign_const) | ||||
| 13887 | << ConstMethod << MD << MD->getSourceRange(); | ||||
| 13888 | } | ||||
| 13889 | } | ||||
| 13890 | } | ||||
| 13891 | } | ||||
| 13892 | |||||
| 13893 | if (DiagnosticEmitted) | ||||
| 13894 | return; | ||||
| 13895 | |||||
| 13896 | // Can't determine a more specific message, so display the generic error. | ||||
| 13897 | S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange << ConstUnknown; | ||||
| 13898 | } | ||||
| 13899 | |||||
| 13900 | enum OriginalExprKind { | ||||
| 13901 | OEK_Variable, | ||||
| 13902 | OEK_Member, | ||||
| 13903 | OEK_LValue | ||||
| 13904 | }; | ||||
| 13905 | |||||
| 13906 | static void DiagnoseRecursiveConstFields(Sema &S, const ValueDecl *VD, | ||||
| 13907 | const RecordType *Ty, | ||||
| 13908 | SourceLocation Loc, SourceRange Range, | ||||
| 13909 | OriginalExprKind OEK, | ||||
| 13910 | bool &DiagnosticEmitted) { | ||||
| 13911 | std::vector<const RecordType *> RecordTypeList; | ||||
| 13912 | RecordTypeList.push_back(Ty); | ||||
| 13913 | unsigned NextToCheckIndex = 0; | ||||
| 13914 | // We walk the record hierarchy breadth-first to ensure that we print | ||||
| 13915 | // diagnostics in field nesting order. | ||||
| 13916 | while (RecordTypeList.size() > NextToCheckIndex) { | ||||
| 13917 | bool IsNested = NextToCheckIndex > 0; | ||||
| 13918 | for (const FieldDecl *Field : | ||||
| 13919 | RecordTypeList[NextToCheckIndex]->getDecl()->fields()) { | ||||
| 13920 | // First, check every field for constness. | ||||
| 13921 | QualType FieldTy = Field->getType(); | ||||
| 13922 | if (FieldTy.isConstQualified()) { | ||||
| 13923 | if (!DiagnosticEmitted) { | ||||
| 13924 | S.Diag(Loc, diag::err_typecheck_assign_const) | ||||
| 13925 | << Range << NestedConstMember << OEK << VD | ||||
| 13926 | << IsNested << Field; | ||||
| 13927 | DiagnosticEmitted = true; | ||||
| 13928 | } | ||||
| 13929 | S.Diag(Field->getLocation(), diag::note_typecheck_assign_const) | ||||
| 13930 | << NestedConstMember << IsNested << Field | ||||
| 13931 | << FieldTy << Field->getSourceRange(); | ||||
| 13932 | } | ||||
| 13933 | |||||
| 13934 | // Then we append it to the list to check next in order. | ||||
| 13935 | FieldTy = FieldTy.getCanonicalType(); | ||||
| 13936 | if (const auto *FieldRecTy = FieldTy->getAs<RecordType>()) { | ||||
| 13937 | if (!llvm::is_contained(RecordTypeList, FieldRecTy)) | ||||
| 13938 | RecordTypeList.push_back(FieldRecTy); | ||||
| 13939 | } | ||||
| 13940 | } | ||||
| 13941 | ++NextToCheckIndex; | ||||
| 13942 | } | ||||
| 13943 | } | ||||
| 13944 | |||||
| 13945 | /// Emit an error for the case where a record we are trying to assign to has a | ||||
| 13946 | /// const-qualified field somewhere in its hierarchy. | ||||
| 13947 | static void DiagnoseRecursiveConstFields(Sema &S, const Expr *E, | ||||
| 13948 | SourceLocation Loc) { | ||||
| 13949 | QualType Ty = E->getType(); | ||||
| 13950 | assert(Ty->isRecordType() && "lvalue was not record?")(static_cast <bool> (Ty->isRecordType() && "lvalue was not record?" ) ? void (0) : __assert_fail ("Ty->isRecordType() && \"lvalue was not record?\"" , "clang/lib/Sema/SemaExpr.cpp", 13950, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 13951 | SourceRange Range = E->getSourceRange(); | ||||
| 13952 | const RecordType *RTy = Ty.getCanonicalType()->getAs<RecordType>(); | ||||
| 13953 | bool DiagEmitted = false; | ||||
| 13954 | |||||
| 13955 | if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) | ||||
| 13956 | DiagnoseRecursiveConstFields(S, ME->getMemberDecl(), RTy, Loc, | ||||
| 13957 | Range, OEK_Member, DiagEmitted); | ||||
| 13958 | else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) | ||||
| 13959 | DiagnoseRecursiveConstFields(S, DRE->getDecl(), RTy, Loc, | ||||
| 13960 | Range, OEK_Variable, DiagEmitted); | ||||
| 13961 | else | ||||
| 13962 | DiagnoseRecursiveConstFields(S, nullptr, RTy, Loc, | ||||
| 13963 | Range, OEK_LValue, DiagEmitted); | ||||
| 13964 | if (!DiagEmitted) | ||||
| 13965 | DiagnoseConstAssignment(S, E, Loc); | ||||
| 13966 | } | ||||
| 13967 | |||||
| 13968 | /// CheckForModifiableLvalue - Verify that E is a modifiable lvalue. If not, | ||||
| 13969 | /// emit an error and return true. If so, return false. | ||||
| 13970 | static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) { | ||||
| 13971 | assert(!E->hasPlaceholderType(BuiltinType::PseudoObject))(static_cast <bool> (!E->hasPlaceholderType(BuiltinType ::PseudoObject)) ? void (0) : __assert_fail ("!E->hasPlaceholderType(BuiltinType::PseudoObject)" , "clang/lib/Sema/SemaExpr.cpp", 13971, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 13972 | |||||
| 13973 | S.CheckShadowingDeclModification(E, Loc); | ||||
| 13974 | |||||
| 13975 | SourceLocation OrigLoc = Loc; | ||||
| 13976 | Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context, | ||||
| 13977 | &Loc); | ||||
| 13978 | if (IsLV == Expr::MLV_ClassTemporary && IsReadonlyMessage(E, S)) | ||||
| 13979 | IsLV = Expr::MLV_InvalidMessageExpression; | ||||
| 13980 | if (IsLV == Expr::MLV_Valid) | ||||
| 13981 | return false; | ||||
| 13982 | |||||
| 13983 | unsigned DiagID = 0; | ||||
| 13984 | bool NeedType = false; | ||||
| 13985 | switch (IsLV) { // C99 6.5.16p2 | ||||
| 13986 | case Expr::MLV_ConstQualified: | ||||
| 13987 | // Use a specialized diagnostic when we're assigning to an object | ||||
| 13988 | // from an enclosing function or block. | ||||
| 13989 | if (NonConstCaptureKind NCCK = isReferenceToNonConstCapture(S, E)) { | ||||
| 13990 | if (NCCK == NCCK_Block) | ||||
| 13991 | DiagID = diag::err_block_decl_ref_not_modifiable_lvalue; | ||||
| 13992 | else | ||||
| 13993 | DiagID = diag::err_lambda_decl_ref_not_modifiable_lvalue; | ||||
| 13994 | break; | ||||
| 13995 | } | ||||
| 13996 | |||||
| 13997 | // In ARC, use some specialized diagnostics for occasions where we | ||||
| 13998 | // infer 'const'. These are always pseudo-strong variables. | ||||
| 13999 | if (S.getLangOpts().ObjCAutoRefCount) { | ||||
| 14000 | DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts()); | ||||
| 14001 | if (declRef && isa<VarDecl>(declRef->getDecl())) { | ||||
| 14002 | VarDecl *var = cast<VarDecl>(declRef->getDecl()); | ||||
| 14003 | |||||
| 14004 | // Use the normal diagnostic if it's pseudo-__strong but the | ||||
| 14005 | // user actually wrote 'const'. | ||||
| 14006 | if (var->isARCPseudoStrong() && | ||||
| 14007 | (!var->getTypeSourceInfo() || | ||||
| 14008 | !var->getTypeSourceInfo()->getType().isConstQualified())) { | ||||
| 14009 | // There are three pseudo-strong cases: | ||||
| 14010 | // - self | ||||
| 14011 | ObjCMethodDecl *method = S.getCurMethodDecl(); | ||||
| 14012 | if (method && var == method->getSelfDecl()) { | ||||
| 14013 | DiagID = method->isClassMethod() | ||||
| 14014 | ? diag::err_typecheck_arc_assign_self_class_method | ||||
| 14015 | : diag::err_typecheck_arc_assign_self; | ||||
| 14016 | |||||
| 14017 | // - Objective-C externally_retained attribute. | ||||
| 14018 | } else if (var->hasAttr<ObjCExternallyRetainedAttr>() || | ||||
| 14019 | isa<ParmVarDecl>(var)) { | ||||
| 14020 | DiagID = diag::err_typecheck_arc_assign_externally_retained; | ||||
| 14021 | |||||
| 14022 | // - fast enumeration variables | ||||
| 14023 | } else { | ||||
| 14024 | DiagID = diag::err_typecheck_arr_assign_enumeration; | ||||
| 14025 | } | ||||
| 14026 | |||||
| 14027 | SourceRange Assign; | ||||
| 14028 | if (Loc != OrigLoc) | ||||
| 14029 | Assign = SourceRange(OrigLoc, OrigLoc); | ||||
| 14030 | S.Diag(Loc, DiagID) << E->getSourceRange() << Assign; | ||||
| 14031 | // We need to preserve the AST regardless, so migration tool | ||||
| 14032 | // can do its job. | ||||
| 14033 | return false; | ||||
| 14034 | } | ||||
| 14035 | } | ||||
| 14036 | } | ||||
| 14037 | |||||
| 14038 | // If none of the special cases above are triggered, then this is a | ||||
| 14039 | // simple const assignment. | ||||
| 14040 | if (DiagID == 0) { | ||||
| 14041 | DiagnoseConstAssignment(S, E, Loc); | ||||
| 14042 | return true; | ||||
| 14043 | } | ||||
| 14044 | |||||
| 14045 | break; | ||||
| 14046 | case Expr::MLV_ConstAddrSpace: | ||||
| 14047 | DiagnoseConstAssignment(S, E, Loc); | ||||
| 14048 | return true; | ||||
| 14049 | case Expr::MLV_ConstQualifiedField: | ||||
| 14050 | DiagnoseRecursiveConstFields(S, E, Loc); | ||||
| 14051 | return true; | ||||
| 14052 | case Expr::MLV_ArrayType: | ||||
| 14053 | case Expr::MLV_ArrayTemporary: | ||||
| 14054 | DiagID = diag::err_typecheck_array_not_modifiable_lvalue; | ||||
| 14055 | NeedType = true; | ||||
| 14056 | break; | ||||
| 14057 | case Expr::MLV_NotObjectType: | ||||
| 14058 | DiagID = diag::err_typecheck_non_object_not_modifiable_lvalue; | ||||
| 14059 | NeedType = true; | ||||
| 14060 | break; | ||||
| 14061 | case Expr::MLV_LValueCast: | ||||
| 14062 | DiagID = diag::err_typecheck_lvalue_casts_not_supported; | ||||
| 14063 | break; | ||||
| 14064 | case Expr::MLV_Valid: | ||||
| 14065 | llvm_unreachable("did not take early return for MLV_Valid")::llvm::llvm_unreachable_internal("did not take early return for MLV_Valid" , "clang/lib/Sema/SemaExpr.cpp", 14065); | ||||
| 14066 | case Expr::MLV_InvalidExpression: | ||||
| 14067 | case Expr::MLV_MemberFunction: | ||||
| 14068 | case Expr::MLV_ClassTemporary: | ||||
| 14069 | DiagID = diag::err_typecheck_expression_not_modifiable_lvalue; | ||||
| 14070 | break; | ||||
| 14071 | case Expr::MLV_IncompleteType: | ||||
| 14072 | case Expr::MLV_IncompleteVoidType: | ||||
| 14073 | return S.RequireCompleteType(Loc, E->getType(), | ||||
| 14074 | diag::err_typecheck_incomplete_type_not_modifiable_lvalue, E); | ||||
| 14075 | case Expr::MLV_DuplicateVectorComponents: | ||||
| 14076 | DiagID = diag::err_typecheck_duplicate_vector_components_not_mlvalue; | ||||
| 14077 | break; | ||||
| 14078 | case Expr::MLV_NoSetterProperty: | ||||
| 14079 | llvm_unreachable("readonly properties should be processed differently")::llvm::llvm_unreachable_internal("readonly properties should be processed differently" , "clang/lib/Sema/SemaExpr.cpp", 14079); | ||||
| 14080 | case Expr::MLV_InvalidMessageExpression: | ||||
| 14081 | DiagID = diag::err_readonly_message_assignment; | ||||
| 14082 | break; | ||||
| 14083 | case Expr::MLV_SubObjCPropertySetting: | ||||
| 14084 | DiagID = diag::err_no_subobject_property_setting; | ||||
| 14085 | break; | ||||
| 14086 | } | ||||
| 14087 | |||||
| 14088 | SourceRange Assign; | ||||
| 14089 | if (Loc != OrigLoc) | ||||
| 14090 | Assign = SourceRange(OrigLoc, OrigLoc); | ||||
| 14091 | if (NeedType) | ||||
| 14092 | S.Diag(Loc, DiagID) << E->getType() << E->getSourceRange() << Assign; | ||||
| 14093 | else | ||||
| 14094 | S.Diag(Loc, DiagID) << E->getSourceRange() << Assign; | ||||
| 14095 | return true; | ||||
| 14096 | } | ||||
| 14097 | |||||
| 14098 | static void CheckIdentityFieldAssignment(Expr *LHSExpr, Expr *RHSExpr, | ||||
| 14099 | SourceLocation Loc, | ||||
| 14100 | Sema &Sema) { | ||||
| 14101 | if (Sema.inTemplateInstantiation()) | ||||
| 14102 | return; | ||||
| 14103 | if (Sema.isUnevaluatedContext()) | ||||
| 14104 | return; | ||||
| 14105 | if (Loc.isInvalid() || Loc.isMacroID()) | ||||
| 14106 | return; | ||||
| 14107 | if (LHSExpr->getExprLoc().isMacroID() || RHSExpr->getExprLoc().isMacroID()) | ||||
| 14108 | return; | ||||
| 14109 | |||||
| 14110 | // C / C++ fields | ||||
| 14111 | MemberExpr *ML = dyn_cast<MemberExpr>(LHSExpr); | ||||
| 14112 | MemberExpr *MR = dyn_cast<MemberExpr>(RHSExpr); | ||||
| 14113 | if (ML && MR) { | ||||
| 14114 | if (!(isa<CXXThisExpr>(ML->getBase()) && isa<CXXThisExpr>(MR->getBase()))) | ||||
| 14115 | return; | ||||
| 14116 | const ValueDecl *LHSDecl = | ||||
| 14117 | cast<ValueDecl>(ML->getMemberDecl()->getCanonicalDecl()); | ||||
| 14118 | const ValueDecl *RHSDecl = | ||||
| 14119 | cast<ValueDecl>(MR->getMemberDecl()->getCanonicalDecl()); | ||||
| 14120 | if (LHSDecl != RHSDecl) | ||||
| 14121 | return; | ||||
| 14122 | if (LHSDecl->getType().isVolatileQualified()) | ||||
| 14123 | return; | ||||
| 14124 | if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>()) | ||||
| 14125 | if (RefTy->getPointeeType().isVolatileQualified()) | ||||
| 14126 | return; | ||||
| 14127 | |||||
| 14128 | Sema.Diag(Loc, diag::warn_identity_field_assign) << 0; | ||||
| 14129 | } | ||||
| 14130 | |||||
| 14131 | // Objective-C instance variables | ||||
| 14132 | ObjCIvarRefExpr *OL = dyn_cast<ObjCIvarRefExpr>(LHSExpr); | ||||
| 14133 | ObjCIvarRefExpr *OR = dyn_cast<ObjCIvarRefExpr>(RHSExpr); | ||||
| 14134 | if (OL && OR && OL->getDecl() == OR->getDecl()) { | ||||
| 14135 | DeclRefExpr *RL = dyn_cast<DeclRefExpr>(OL->getBase()->IgnoreImpCasts()); | ||||
| 14136 | DeclRefExpr *RR = dyn_cast<DeclRefExpr>(OR->getBase()->IgnoreImpCasts()); | ||||
| 14137 | if (RL && RR && RL->getDecl() == RR->getDecl()) | ||||
| 14138 | Sema.Diag(Loc, diag::warn_identity_field_assign) << 1; | ||||
| 14139 | } | ||||
| 14140 | } | ||||
| 14141 | |||||
| 14142 | // C99 6.5.16.1 | ||||
| 14143 | QualType Sema::CheckAssignmentOperands(Expr *LHSExpr, ExprResult &RHS, | ||||
| 14144 | SourceLocation Loc, | ||||
| 14145 | QualType CompoundType, | ||||
| 14146 | BinaryOperatorKind Opc) { | ||||
| 14147 | assert(!LHSExpr->hasPlaceholderType(BuiltinType::PseudoObject))(static_cast <bool> (!LHSExpr->hasPlaceholderType(BuiltinType ::PseudoObject)) ? void (0) : __assert_fail ("!LHSExpr->hasPlaceholderType(BuiltinType::PseudoObject)" , "clang/lib/Sema/SemaExpr.cpp", 14147, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 14148 | |||||
| 14149 | // Verify that LHS is a modifiable lvalue, and emit error if not. | ||||
| 14150 | if (CheckForModifiableLvalue(LHSExpr, Loc, *this)) | ||||
| 14151 | return QualType(); | ||||
| 14152 | |||||
| 14153 | QualType LHSType = LHSExpr->getType(); | ||||
| 14154 | QualType RHSType = CompoundType.isNull() ? RHS.get()->getType() : | ||||
| 14155 | CompoundType; | ||||
| 14156 | // OpenCL v1.2 s6.1.1.1 p2: | ||||
| 14157 | // The half data type can only be used to declare a pointer to a buffer that | ||||
| 14158 | // contains half values | ||||
| 14159 | if (getLangOpts().OpenCL && | ||||
| 14160 | !getOpenCLOptions().isAvailableOption("cl_khr_fp16", getLangOpts()) && | ||||
| 14161 | LHSType->isHalfType()) { | ||||
| 14162 | Diag(Loc, diag::err_opencl_half_load_store) << 1 | ||||
| 14163 | << LHSType.getUnqualifiedType(); | ||||
| 14164 | return QualType(); | ||||
| 14165 | } | ||||
| 14166 | |||||
| 14167 | AssignConvertType ConvTy; | ||||
| 14168 | if (CompoundType.isNull()) { | ||||
| 14169 | Expr *RHSCheck = RHS.get(); | ||||
| 14170 | |||||
| 14171 | CheckIdentityFieldAssignment(LHSExpr, RHSCheck, Loc, *this); | ||||
| 14172 | |||||
| 14173 | QualType LHSTy(LHSType); | ||||
| 14174 | ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS); | ||||
| 14175 | if (RHS.isInvalid()) | ||||
| 14176 | return QualType(); | ||||
| 14177 | // Special case of NSObject attributes on c-style pointer types. | ||||
| 14178 | if (ConvTy == IncompatiblePointer && | ||||
| 14179 | ((Context.isObjCNSObjectType(LHSType) && | ||||
| 14180 | RHSType->isObjCObjectPointerType()) || | ||||
| 14181 | (Context.isObjCNSObjectType(RHSType) && | ||||
| 14182 | LHSType->isObjCObjectPointerType()))) | ||||
| 14183 | ConvTy = Compatible; | ||||
| 14184 | |||||
| 14185 | if (ConvTy == Compatible && | ||||
| 14186 | LHSType->isObjCObjectType()) | ||||
| 14187 | Diag(Loc, diag::err_objc_object_assignment) | ||||
| 14188 | << LHSType; | ||||
| 14189 | |||||
| 14190 | // If the RHS is a unary plus or minus, check to see if they = and + are | ||||
| 14191 | // right next to each other. If so, the user may have typo'd "x =+ 4" | ||||
| 14192 | // instead of "x += 4". | ||||
| 14193 | if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck)) | ||||
| 14194 | RHSCheck = ICE->getSubExpr(); | ||||
| 14195 | if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) { | ||||
| 14196 | if ((UO->getOpcode() == UO_Plus || UO->getOpcode() == UO_Minus) && | ||||
| 14197 | Loc.isFileID() && UO->getOperatorLoc().isFileID() && | ||||
| 14198 | // Only if the two operators are exactly adjacent. | ||||
| 14199 | Loc.getLocWithOffset(1) == UO->getOperatorLoc() && | ||||
| 14200 | // And there is a space or other character before the subexpr of the | ||||
| 14201 | // unary +/-. We don't want to warn on "x=-1". | ||||
| 14202 | Loc.getLocWithOffset(2) != UO->getSubExpr()->getBeginLoc() && | ||||
| 14203 | UO->getSubExpr()->getBeginLoc().isFileID()) { | ||||
| 14204 | Diag(Loc, diag::warn_not_compound_assign) | ||||
| 14205 | << (UO->getOpcode() == UO_Plus ? "+" : "-") | ||||
| 14206 | << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc()); | ||||
| 14207 | } | ||||
| 14208 | } | ||||
| 14209 | |||||
| 14210 | if (ConvTy == Compatible) { | ||||
| 14211 | if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong) { | ||||
| 14212 | // Warn about retain cycles where a block captures the LHS, but | ||||
| 14213 | // not if the LHS is a simple variable into which the block is | ||||
| 14214 | // being stored...unless that variable can be captured by reference! | ||||
| 14215 | const Expr *InnerLHS = LHSExpr->IgnoreParenCasts(); | ||||
| 14216 | const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InnerLHS); | ||||
| 14217 | if (!DRE || DRE->getDecl()->hasAttr<BlocksAttr>()) | ||||
| 14218 | checkRetainCycles(LHSExpr, RHS.get()); | ||||
| 14219 | } | ||||
| 14220 | |||||
| 14221 | if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong || | ||||
| 14222 | LHSType.isNonWeakInMRRWithObjCWeak(Context)) { | ||||
| 14223 | // It is safe to assign a weak reference into a strong variable. | ||||
| 14224 | // Although this code can still have problems: | ||||
| 14225 | // id x = self.weakProp; | ||||
| 14226 | // id y = self.weakProp; | ||||
| 14227 | // we do not warn to warn spuriously when 'x' and 'y' are on separate | ||||
| 14228 | // paths through the function. This should be revisited if | ||||
| 14229 | // -Wrepeated-use-of-weak is made flow-sensitive. | ||||
| 14230 | // For ObjCWeak only, we do not warn if the assign is to a non-weak | ||||
| 14231 | // variable, which will be valid for the current autorelease scope. | ||||
| 14232 | if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, | ||||
| 14233 | RHS.get()->getBeginLoc())) | ||||
| 14234 | getCurFunction()->markSafeWeakUse(RHS.get()); | ||||
| 14235 | |||||
| 14236 | } else if (getLangOpts().ObjCAutoRefCount || getLangOpts().ObjCWeak) { | ||||
| 14237 | checkUnsafeExprAssigns(Loc, LHSExpr, RHS.get()); | ||||
| 14238 | } | ||||
| 14239 | } | ||||
| 14240 | } else { | ||||
| 14241 | // Compound assignment "x += y" | ||||
| 14242 | ConvTy = CheckAssignmentConstraints(Loc, LHSType, RHSType); | ||||
| 14243 | } | ||||
| 14244 | |||||
| 14245 | if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType, | ||||
| 14246 | RHS.get(), AA_Assigning)) | ||||
| 14247 | return QualType(); | ||||
| 14248 | |||||
| 14249 | CheckForNullPointerDereference(*this, LHSExpr); | ||||
| 14250 | |||||
| 14251 | if (getLangOpts().CPlusPlus20 && LHSType.isVolatileQualified()) { | ||||
| 14252 | if (CompoundType.isNull()) { | ||||
| 14253 | // C++2a [expr.ass]p5: | ||||
| 14254 | // A simple-assignment whose left operand is of a volatile-qualified | ||||
| 14255 | // type is deprecated unless the assignment is either a discarded-value | ||||
| 14256 | // expression or an unevaluated operand | ||||
| 14257 | ExprEvalContexts.back().VolatileAssignmentLHSs.push_back(LHSExpr); | ||||
| 14258 | } | ||||
| 14259 | } | ||||
| 14260 | |||||
| 14261 | // C11 6.5.16p3: The type of an assignment expression is the type of the | ||||
| 14262 | // left operand would have after lvalue conversion. | ||||
| 14263 | // C11 6.3.2.1p2: ...this is called lvalue conversion. If the lvalue has | ||||
| 14264 | // qualified type, the value has the unqualified version of the type of the | ||||
| 14265 | // lvalue; additionally, if the lvalue has atomic type, the value has the | ||||
| 14266 | // non-atomic version of the type of the lvalue. | ||||
| 14267 | // C++ 5.17p1: the type of the assignment expression is that of its left | ||||
| 14268 | // operand. | ||||
| 14269 | return getLangOpts().CPlusPlus ? LHSType : LHSType.getAtomicUnqualifiedType(); | ||||
| 14270 | } | ||||
| 14271 | |||||
| 14272 | // Scenarios to ignore if expression E is: | ||||
| 14273 | // 1. an explicit cast expression into void | ||||
| 14274 | // 2. a function call expression that returns void | ||||
| 14275 | static bool IgnoreCommaOperand(const Expr *E, const ASTContext &Context) { | ||||
| 14276 | E = E->IgnoreParens(); | ||||
| 14277 | |||||
| 14278 | if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { | ||||
| 14279 | if (CE->getCastKind() == CK_ToVoid) { | ||||
| 14280 | return true; | ||||
| 14281 | } | ||||
| 14282 | |||||
| 14283 | // static_cast<void> on a dependent type will not show up as CK_ToVoid. | ||||
| 14284 | if (CE->getCastKind() == CK_Dependent && E->getType()->isVoidType() && | ||||
| 14285 | CE->getSubExpr()->getType()->isDependentType()) { | ||||
| 14286 | return true; | ||||
| 14287 | } | ||||
| 14288 | } | ||||
| 14289 | |||||
| 14290 | if (const auto *CE = dyn_cast<CallExpr>(E)) | ||||
| 14291 | return CE->getCallReturnType(Context)->isVoidType(); | ||||
| 14292 | return false; | ||||
| 14293 | } | ||||
| 14294 | |||||
| 14295 | // Look for instances where it is likely the comma operator is confused with | ||||
| 14296 | // another operator. There is an explicit list of acceptable expressions for | ||||
| 14297 | // the left hand side of the comma operator, otherwise emit a warning. | ||||
| 14298 | void Sema::DiagnoseCommaOperator(const Expr *LHS, SourceLocation Loc) { | ||||
| 14299 | // No warnings in macros | ||||
| 14300 | if (Loc.isMacroID()) | ||||
| 14301 | return; | ||||
| 14302 | |||||
| 14303 | // Don't warn in template instantiations. | ||||
| 14304 | if (inTemplateInstantiation()) | ||||
| 14305 | return; | ||||
| 14306 | |||||
| 14307 | // Scope isn't fine-grained enough to explicitly list the specific cases, so | ||||
| 14308 | // instead, skip more than needed, then call back into here with the | ||||
| 14309 | // CommaVisitor in SemaStmt.cpp. | ||||
| 14310 | // The listed locations are the initialization and increment portions | ||||
| 14311 | // of a for loop. The additional checks are on the condition of | ||||
| 14312 | // if statements, do/while loops, and for loops. | ||||
| 14313 | // Differences in scope flags for C89 mode requires the extra logic. | ||||
| 14314 | const unsigned ForIncrementFlags = | ||||
| 14315 | getLangOpts().C99 || getLangOpts().CPlusPlus | ||||
| 14316 | ? Scope::ControlScope | Scope::ContinueScope | Scope::BreakScope | ||||
| 14317 | : Scope::ContinueScope | Scope::BreakScope; | ||||
| 14318 | const unsigned ForInitFlags = Scope::ControlScope | Scope::DeclScope; | ||||
| 14319 | const unsigned ScopeFlags = getCurScope()->getFlags(); | ||||
| 14320 | if ((ScopeFlags & ForIncrementFlags) == ForIncrementFlags || | ||||
| 14321 | (ScopeFlags & ForInitFlags) == ForInitFlags) | ||||
| 14322 | return; | ||||
| 14323 | |||||
| 14324 | // If there are multiple comma operators used together, get the RHS of the | ||||
| 14325 | // of the comma operator as the LHS. | ||||
| 14326 | while (const BinaryOperator *BO = dyn_cast<BinaryOperator>(LHS)) { | ||||
| 14327 | if (BO->getOpcode() != BO_Comma) | ||||
| 14328 | break; | ||||
| 14329 | LHS = BO->getRHS(); | ||||
| 14330 | } | ||||
| 14331 | |||||
| 14332 | // Only allow some expressions on LHS to not warn. | ||||
| 14333 | if (IgnoreCommaOperand(LHS, Context)) | ||||
| 14334 | return; | ||||
| 14335 | |||||
| 14336 | Diag(Loc, diag::warn_comma_operator); | ||||
| 14337 | Diag(LHS->getBeginLoc(), diag::note_cast_to_void) | ||||
| 14338 | << LHS->getSourceRange() | ||||
| 14339 | << FixItHint::CreateInsertion(LHS->getBeginLoc(), | ||||
| 14340 | LangOpts.CPlusPlus ? "static_cast<void>(" | ||||
| 14341 | : "(void)(") | ||||
| 14342 | << FixItHint::CreateInsertion(PP.getLocForEndOfToken(LHS->getEndLoc()), | ||||
| 14343 | ")"); | ||||
| 14344 | } | ||||
| 14345 | |||||
| 14346 | // C99 6.5.17 | ||||
| 14347 | static QualType CheckCommaOperands(Sema &S, ExprResult &LHS, ExprResult &RHS, | ||||
| 14348 | SourceLocation Loc) { | ||||
| 14349 | LHS = S.CheckPlaceholderExpr(LHS.get()); | ||||
| 14350 | RHS = S.CheckPlaceholderExpr(RHS.get()); | ||||
| 14351 | if (LHS.isInvalid() || RHS.isInvalid()) | ||||
| 14352 | return QualType(); | ||||
| 14353 | |||||
| 14354 | // C's comma performs lvalue conversion (C99 6.3.2.1) on both its | ||||
| 14355 | // operands, but not unary promotions. | ||||
| 14356 | // C++'s comma does not do any conversions at all (C++ [expr.comma]p1). | ||||
| 14357 | |||||
| 14358 | // So we treat the LHS as a ignored value, and in C++ we allow the | ||||
| 14359 | // containing site to determine what should be done with the RHS. | ||||
| 14360 | LHS = S.IgnoredValueConversions(LHS.get()); | ||||
| 14361 | if (LHS.isInvalid()) | ||||
| 14362 | return QualType(); | ||||
| 14363 | |||||
| 14364 | S.DiagnoseUnusedExprResult(LHS.get(), diag::warn_unused_comma_left_operand); | ||||
| 14365 | |||||
| 14366 | if (!S.getLangOpts().CPlusPlus) { | ||||
| 14367 | RHS = S.DefaultFunctionArrayLvalueConversion(RHS.get()); | ||||
| 14368 | if (RHS.isInvalid()) | ||||
| 14369 | return QualType(); | ||||
| 14370 | if (!RHS.get()->getType()->isVoidType()) | ||||
| 14371 | S.RequireCompleteType(Loc, RHS.get()->getType(), | ||||
| 14372 | diag::err_incomplete_type); | ||||
| 14373 | } | ||||
| 14374 | |||||
| 14375 | if (!S.getDiagnostics().isIgnored(diag::warn_comma_operator, Loc)) | ||||
| 14376 | S.DiagnoseCommaOperator(LHS.get(), Loc); | ||||
| 14377 | |||||
| 14378 | return RHS.get()->getType(); | ||||
| 14379 | } | ||||
| 14380 | |||||
| 14381 | /// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine | ||||
| 14382 | /// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions. | ||||
| 14383 | static QualType CheckIncrementDecrementOperand(Sema &S, Expr *Op, | ||||
| 14384 | ExprValueKind &VK, | ||||
| 14385 | ExprObjectKind &OK, | ||||
| 14386 | SourceLocation OpLoc, | ||||
| 14387 | bool IsInc, bool IsPrefix) { | ||||
| 14388 | if (Op->isTypeDependent()) | ||||
| 14389 | return S.Context.DependentTy; | ||||
| 14390 | |||||
| 14391 | QualType ResType = Op->getType(); | ||||
| 14392 | // Atomic types can be used for increment / decrement where the non-atomic | ||||
| 14393 | // versions can, so ignore the _Atomic() specifier for the purpose of | ||||
| 14394 | // checking. | ||||
| 14395 | if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>()) | ||||
| 14396 | ResType = ResAtomicType->getValueType(); | ||||
| 14397 | |||||
| 14398 | assert(!ResType.isNull() && "no type for increment/decrement expression")(static_cast <bool> (!ResType.isNull() && "no type for increment/decrement expression" ) ? void (0) : __assert_fail ("!ResType.isNull() && \"no type for increment/decrement expression\"" , "clang/lib/Sema/SemaExpr.cpp", 14398, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 14399 | |||||
| 14400 | if (S.getLangOpts().CPlusPlus && ResType->isBooleanType()) { | ||||
| 14401 | // Decrement of bool is not allowed. | ||||
| 14402 | if (!IsInc) { | ||||
| 14403 | S.Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange(); | ||||
| 14404 | return QualType(); | ||||
| 14405 | } | ||||
| 14406 | // Increment of bool sets it to true, but is deprecated. | ||||
| 14407 | S.Diag(OpLoc, S.getLangOpts().CPlusPlus17 ? diag::ext_increment_bool | ||||
| 14408 | : diag::warn_increment_bool) | ||||
| 14409 | << Op->getSourceRange(); | ||||
| 14410 | } else if (S.getLangOpts().CPlusPlus && ResType->isEnumeralType()) { | ||||
| 14411 | // Error on enum increments and decrements in C++ mode | ||||
| 14412 | S.Diag(OpLoc, diag::err_increment_decrement_enum) << IsInc << ResType; | ||||
| 14413 | return QualType(); | ||||
| 14414 | } else if (ResType->isRealType()) { | ||||
| 14415 | // OK! | ||||
| 14416 | } else if (ResType->isPointerType()) { | ||||
| 14417 | // C99 6.5.2.4p2, 6.5.6p2 | ||||
| 14418 | if (!checkArithmeticOpPointerOperand(S, OpLoc, Op)) | ||||
| 14419 | return QualType(); | ||||
| 14420 | } else if (ResType->isObjCObjectPointerType()) { | ||||
| 14421 | // On modern runtimes, ObjC pointer arithmetic is forbidden. | ||||
| 14422 | // Otherwise, we just need a complete type. | ||||
| 14423 | if (checkArithmeticIncompletePointerType(S, OpLoc, Op) || | ||||
| 14424 | checkArithmeticOnObjCPointer(S, OpLoc, Op)) | ||||
| 14425 | return QualType(); | ||||
| 14426 | } else if (ResType->isAnyComplexType()) { | ||||
| 14427 | // C99 does not support ++/-- on complex types, we allow as an extension. | ||||
| 14428 | S.Diag(OpLoc, diag::ext_integer_increment_complex) | ||||
| 14429 | << ResType << Op->getSourceRange(); | ||||
| 14430 | } else if (ResType->isPlaceholderType()) { | ||||
| 14431 | ExprResult PR = S.CheckPlaceholderExpr(Op); | ||||
| 14432 | if (PR.isInvalid()) return QualType(); | ||||
| 14433 | return CheckIncrementDecrementOperand(S, PR.get(), VK, OK, OpLoc, | ||||
| 14434 | IsInc, IsPrefix); | ||||
| 14435 | } else if (S.getLangOpts().AltiVec && ResType->isVectorType()) { | ||||
| 14436 | // OK! ( C/C++ Language Extensions for CBEA(Version 2.6) 10.3 ) | ||||
| 14437 | } else if (S.getLangOpts().ZVector && ResType->isVectorType() && | ||||
| 14438 | (ResType->castAs<VectorType>()->getVectorKind() != | ||||
| 14439 | VectorType::AltiVecBool)) { | ||||
| 14440 | // The z vector extensions allow ++ and -- for non-bool vectors. | ||||
| 14441 | } else if(S.getLangOpts().OpenCL && ResType->isVectorType() && | ||||
| 14442 | ResType->castAs<VectorType>()->getElementType()->isIntegerType()) { | ||||
| 14443 | // OpenCL V1.2 6.3 says dec/inc ops operate on integer vector types. | ||||
| 14444 | } else { | ||||
| 14445 | S.Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement) | ||||
| 14446 | << ResType << int(IsInc) << Op->getSourceRange(); | ||||
| 14447 | return QualType(); | ||||
| 14448 | } | ||||
| 14449 | // At this point, we know we have a real, complex or pointer type. | ||||
| 14450 | // Now make sure the operand is a modifiable lvalue. | ||||
| 14451 | if (CheckForModifiableLvalue(Op, OpLoc, S)) | ||||
| 14452 | return QualType(); | ||||
| 14453 | if (S.getLangOpts().CPlusPlus20 && ResType.isVolatileQualified()) { | ||||
| 14454 | // C++2a [expr.pre.inc]p1, [expr.post.inc]p1: | ||||
| 14455 | // An operand with volatile-qualified type is deprecated | ||||
| 14456 | S.Diag(OpLoc, diag::warn_deprecated_increment_decrement_volatile) | ||||
| 14457 | << IsInc << ResType; | ||||
| 14458 | } | ||||
| 14459 | // In C++, a prefix increment is the same type as the operand. Otherwise | ||||
| 14460 | // (in C or with postfix), the increment is the unqualified type of the | ||||
| 14461 | // operand. | ||||
| 14462 | if (IsPrefix && S.getLangOpts().CPlusPlus) { | ||||
| 14463 | VK = VK_LValue; | ||||
| 14464 | OK = Op->getObjectKind(); | ||||
| 14465 | return ResType; | ||||
| 14466 | } else { | ||||
| 14467 | VK = VK_PRValue; | ||||
| 14468 | return ResType.getUnqualifiedType(); | ||||
| 14469 | } | ||||
| 14470 | } | ||||
| 14471 | |||||
| 14472 | |||||
| 14473 | /// getPrimaryDecl - Helper function for CheckAddressOfOperand(). | ||||
| 14474 | /// This routine allows us to typecheck complex/recursive expressions | ||||
| 14475 | /// where the declaration is needed for type checking. We only need to | ||||
| 14476 | /// handle cases when the expression references a function designator | ||||
| 14477 | /// or is an lvalue. Here are some examples: | ||||
| 14478 | /// - &(x) => x | ||||
| 14479 | /// - &*****f => f for f a function designator. | ||||
| 14480 | /// - &s.xx => s | ||||
| 14481 | /// - &s.zz[1].yy -> s, if zz is an array | ||||
| 14482 | /// - *(x + 1) -> x, if x is an array | ||||
| 14483 | /// - &"123"[2] -> 0 | ||||
| 14484 | /// - & __real__ x -> x | ||||
| 14485 | /// | ||||
| 14486 | /// FIXME: We don't recurse to the RHS of a comma, nor handle pointers to | ||||
| 14487 | /// members. | ||||
| 14488 | static ValueDecl *getPrimaryDecl(Expr *E) { | ||||
| 14489 | switch (E->getStmtClass()) { | ||||
| 14490 | case Stmt::DeclRefExprClass: | ||||
| 14491 | return cast<DeclRefExpr>(E)->getDecl(); | ||||
| 14492 | case Stmt::MemberExprClass: | ||||
| 14493 | // If this is an arrow operator, the address is an offset from | ||||
| 14494 | // the base's value, so the object the base refers to is | ||||
| 14495 | // irrelevant. | ||||
| 14496 | if (cast<MemberExpr>(E)->isArrow()) | ||||
| 14497 | return nullptr; | ||||
| 14498 | // Otherwise, the expression refers to a part of the base | ||||
| 14499 | return getPrimaryDecl(cast<MemberExpr>(E)->getBase()); | ||||
| 14500 | case Stmt::ArraySubscriptExprClass: { | ||||
| 14501 | // FIXME: This code shouldn't be necessary! We should catch the implicit | ||||
| 14502 | // promotion of register arrays earlier. | ||||
| 14503 | Expr* Base = cast<ArraySubscriptExpr>(E)->getBase(); | ||||
| 14504 | if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) { | ||||
| 14505 | if (ICE->getSubExpr()->getType()->isArrayType()) | ||||
| 14506 | return getPrimaryDecl(ICE->getSubExpr()); | ||||
| 14507 | } | ||||
| 14508 | return nullptr; | ||||
| 14509 | } | ||||
| 14510 | case Stmt::UnaryOperatorClass: { | ||||
| 14511 | UnaryOperator *UO = cast<UnaryOperator>(E); | ||||
| 14512 | |||||
| 14513 | switch(UO->getOpcode()) { | ||||
| 14514 | case UO_Real: | ||||
| 14515 | case UO_Imag: | ||||
| 14516 | case UO_Extension: | ||||
| 14517 | return getPrimaryDecl(UO->getSubExpr()); | ||||
| 14518 | default: | ||||
| 14519 | return nullptr; | ||||
| 14520 | } | ||||
| 14521 | } | ||||
| 14522 | case Stmt::ParenExprClass: | ||||
| 14523 | return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr()); | ||||
| 14524 | case Stmt::ImplicitCastExprClass: | ||||
| 14525 | // If the result of an implicit cast is an l-value, we care about | ||||
| 14526 | // the sub-expression; otherwise, the result here doesn't matter. | ||||
| 14527 | return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr()); | ||||
| 14528 | case Stmt::CXXUuidofExprClass: | ||||
| 14529 | return cast<CXXUuidofExpr>(E)->getGuidDecl(); | ||||
| 14530 | default: | ||||
| 14531 | return nullptr; | ||||
| 14532 | } | ||||
| 14533 | } | ||||
| 14534 | |||||
| 14535 | namespace { | ||||
| 14536 | enum { | ||||
| 14537 | AO_Bit_Field = 0, | ||||
| 14538 | AO_Vector_Element = 1, | ||||
| 14539 | AO_Property_Expansion = 2, | ||||
| 14540 | AO_Register_Variable = 3, | ||||
| 14541 | AO_Matrix_Element = 4, | ||||
| 14542 | AO_No_Error = 5 | ||||
| 14543 | }; | ||||
| 14544 | } | ||||
| 14545 | /// Diagnose invalid operand for address of operations. | ||||
| 14546 | /// | ||||
| 14547 | /// \param Type The type of operand which cannot have its address taken. | ||||
| 14548 | static void diagnoseAddressOfInvalidType(Sema &S, SourceLocation Loc, | ||||
| 14549 | Expr *E, unsigned Type) { | ||||
| 14550 | S.Diag(Loc, diag::err_typecheck_address_of) << Type << E->getSourceRange(); | ||||
| 14551 | } | ||||
| 14552 | |||||
| 14553 | /// CheckAddressOfOperand - The operand of & must be either a function | ||||
| 14554 | /// designator or an lvalue designating an object. If it is an lvalue, the | ||||
| 14555 | /// object cannot be declared with storage class register or be a bit field. | ||||
| 14556 | /// Note: The usual conversions are *not* applied to the operand of the & | ||||
| 14557 | /// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue. | ||||
| 14558 | /// In C++, the operand might be an overloaded function name, in which case | ||||
| 14559 | /// we allow the '&' but retain the overloaded-function type. | ||||
| 14560 | QualType Sema::CheckAddressOfOperand(ExprResult &OrigOp, SourceLocation OpLoc) { | ||||
| 14561 | if (const BuiltinType *PTy = OrigOp.get()->getType()->getAsPlaceholderType()){ | ||||
| 14562 | if (PTy->getKind() == BuiltinType::Overload) { | ||||
| 14563 | Expr *E = OrigOp.get()->IgnoreParens(); | ||||
| 14564 | if (!isa<OverloadExpr>(E)) { | ||||
| 14565 | assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf)(static_cast <bool> (cast<UnaryOperator>(E)->getOpcode () == UO_AddrOf) ? void (0) : __assert_fail ("cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf" , "clang/lib/Sema/SemaExpr.cpp", 14565, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 14566 | Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof_addrof_function) | ||||
| 14567 | << OrigOp.get()->getSourceRange(); | ||||
| 14568 | return QualType(); | ||||
| 14569 | } | ||||
| 14570 | |||||
| 14571 | OverloadExpr *Ovl = cast<OverloadExpr>(E); | ||||
| 14572 | if (isa<UnresolvedMemberExpr>(Ovl)) | ||||
| 14573 | if (!ResolveSingleFunctionTemplateSpecialization(Ovl)) { | ||||
| 14574 | Diag(OpLoc, diag::err_invalid_form_pointer_member_function) | ||||
| 14575 | << OrigOp.get()->getSourceRange(); | ||||
| 14576 | return QualType(); | ||||
| 14577 | } | ||||
| 14578 | |||||
| 14579 | return Context.OverloadTy; | ||||
| 14580 | } | ||||
| 14581 | |||||
| 14582 | if (PTy->getKind() == BuiltinType::UnknownAny) | ||||
| 14583 | return Context.UnknownAnyTy; | ||||
| 14584 | |||||
| 14585 | if (PTy->getKind() == BuiltinType::BoundMember) { | ||||
| 14586 | Diag(OpLoc, diag::err_invalid_form_pointer_member_function) | ||||
| 14587 | << OrigOp.get()->getSourceRange(); | ||||
| 14588 | return QualType(); | ||||
| 14589 | } | ||||
| 14590 | |||||
| 14591 | OrigOp = CheckPlaceholderExpr(OrigOp.get()); | ||||
| 14592 | if (OrigOp.isInvalid()) return QualType(); | ||||
| 14593 | } | ||||
| 14594 | |||||
| 14595 | if (OrigOp.get()->isTypeDependent()) | ||||
| 14596 | return Context.DependentTy; | ||||
| 14597 | |||||
| 14598 | assert(!OrigOp.get()->hasPlaceholderType())(static_cast <bool> (!OrigOp.get()->hasPlaceholderType ()) ? void (0) : __assert_fail ("!OrigOp.get()->hasPlaceholderType()" , "clang/lib/Sema/SemaExpr.cpp", 14598, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 14599 | |||||
| 14600 | // Make sure to ignore parentheses in subsequent checks | ||||
| 14601 | Expr *op = OrigOp.get()->IgnoreParens(); | ||||
| 14602 | |||||
| 14603 | // In OpenCL captures for blocks called as lambda functions | ||||
| 14604 | // are located in the private address space. Blocks used in | ||||
| 14605 | // enqueue_kernel can be located in a different address space | ||||
| 14606 | // depending on a vendor implementation. Thus preventing | ||||
| 14607 | // taking an address of the capture to avoid invalid AS casts. | ||||
| 14608 | if (LangOpts.OpenCL) { | ||||
| 14609 | auto* VarRef = dyn_cast<DeclRefExpr>(op); | ||||
| 14610 | if (VarRef && VarRef->refersToEnclosingVariableOrCapture()) { | ||||
| 14611 | Diag(op->getExprLoc(), diag::err_opencl_taking_address_capture); | ||||
| 14612 | return QualType(); | ||||
| 14613 | } | ||||
| 14614 | } | ||||
| 14615 | |||||
| 14616 | if (getLangOpts().C99) { | ||||
| 14617 | // Implement C99-only parts of addressof rules. | ||||
| 14618 | if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) { | ||||
| 14619 | if (uOp->getOpcode() == UO_Deref) | ||||
| 14620 | // Per C99 6.5.3.2, the address of a deref always returns a valid result | ||||
| 14621 | // (assuming the deref expression is valid). | ||||
| 14622 | return uOp->getSubExpr()->getType(); | ||||
| 14623 | } | ||||
| 14624 | // Technically, there should be a check for array subscript | ||||
| 14625 | // expressions here, but the result of one is always an lvalue anyway. | ||||
| 14626 | } | ||||
| 14627 | ValueDecl *dcl = getPrimaryDecl(op); | ||||
| 14628 | |||||
| 14629 | if (auto *FD = dyn_cast_or_null<FunctionDecl>(dcl)) | ||||
| 14630 | if (!checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true, | ||||
| 14631 | op->getBeginLoc())) | ||||
| 14632 | return QualType(); | ||||
| 14633 | |||||
| 14634 | Expr::LValueClassification lval = op->ClassifyLValue(Context); | ||||
| 14635 | unsigned AddressOfError = AO_No_Error; | ||||
| 14636 | |||||
| 14637 | if (lval == Expr::LV_ClassTemporary || lval == Expr::LV_ArrayTemporary) { | ||||
| 14638 | bool sfinae = (bool)isSFINAEContext(); | ||||
| 14639 | Diag(OpLoc, isSFINAEContext() ? diag::err_typecheck_addrof_temporary | ||||
| 14640 | : diag::ext_typecheck_addrof_temporary) | ||||
| 14641 | << op->getType() << op->getSourceRange(); | ||||
| 14642 | if (sfinae) | ||||
| 14643 | return QualType(); | ||||
| 14644 | // Materialize the temporary as an lvalue so that we can take its address. | ||||
| 14645 | OrigOp = op = | ||||
| 14646 | CreateMaterializeTemporaryExpr(op->getType(), OrigOp.get(), true); | ||||
| 14647 | } else if (isa<ObjCSelectorExpr>(op)) { | ||||
| 14648 | return Context.getPointerType(op->getType()); | ||||
| 14649 | } else if (lval == Expr::LV_MemberFunction) { | ||||
| 14650 | // If it's an instance method, make a member pointer. | ||||
| 14651 | // The expression must have exactly the form &A::foo. | ||||
| 14652 | |||||
| 14653 | // If the underlying expression isn't a decl ref, give up. | ||||
| 14654 | if (!isa<DeclRefExpr>(op)) { | ||||
| 14655 | Diag(OpLoc, diag::err_invalid_form_pointer_member_function) | ||||
| 14656 | << OrigOp.get()->getSourceRange(); | ||||
| 14657 | return QualType(); | ||||
| 14658 | } | ||||
| 14659 | DeclRefExpr *DRE = cast<DeclRefExpr>(op); | ||||
| 14660 | CXXMethodDecl *MD = cast<CXXMethodDecl>(DRE->getDecl()); | ||||
| 14661 | |||||
| 14662 | // The id-expression was parenthesized. | ||||
| 14663 | if (OrigOp.get() != DRE) { | ||||
| 14664 | Diag(OpLoc, diag::err_parens_pointer_member_function) | ||||
| 14665 | << OrigOp.get()->getSourceRange(); | ||||
| 14666 | |||||
| 14667 | // The method was named without a qualifier. | ||||
| 14668 | } else if (!DRE->getQualifier()) { | ||||
| 14669 | if (MD->getParent()->getName().empty()) | ||||
| 14670 | Diag(OpLoc, diag::err_unqualified_pointer_member_function) | ||||
| 14671 | << op->getSourceRange(); | ||||
| 14672 | else { | ||||
| 14673 | SmallString<32> Str; | ||||
| 14674 | StringRef Qual = (MD->getParent()->getName() + "::").toStringRef(Str); | ||||
| 14675 | Diag(OpLoc, diag::err_unqualified_pointer_member_function) | ||||
| 14676 | << op->getSourceRange() | ||||
| 14677 | << FixItHint::CreateInsertion(op->getSourceRange().getBegin(), Qual); | ||||
| 14678 | } | ||||
| 14679 | } | ||||
| 14680 | |||||
| 14681 | // Taking the address of a dtor is illegal per C++ [class.dtor]p2. | ||||
| 14682 | if (isa<CXXDestructorDecl>(MD)) | ||||
| 14683 | Diag(OpLoc, diag::err_typecheck_addrof_dtor) << op->getSourceRange(); | ||||
| 14684 | |||||
| 14685 | QualType MPTy = Context.getMemberPointerType( | ||||
| 14686 | op->getType(), Context.getTypeDeclType(MD->getParent()).getTypePtr()); | ||||
| 14687 | // Under the MS ABI, lock down the inheritance model now. | ||||
| 14688 | if (Context.getTargetInfo().getCXXABI().isMicrosoft()) | ||||
| 14689 | (void)isCompleteType(OpLoc, MPTy); | ||||
| 14690 | return MPTy; | ||||
| 14691 | } else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) { | ||||
| 14692 | // C99 6.5.3.2p1 | ||||
| 14693 | // The operand must be either an l-value or a function designator | ||||
| 14694 | if (!op->getType()->isFunctionType()) { | ||||
| 14695 | // Use a special diagnostic for loads from property references. | ||||
| 14696 | if (isa<PseudoObjectExpr>(op)) { | ||||
| 14697 | AddressOfError = AO_Property_Expansion; | ||||
| 14698 | } else { | ||||
| 14699 | Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof) | ||||
| 14700 | << op->getType() << op->getSourceRange(); | ||||
| 14701 | return QualType(); | ||||
| 14702 | } | ||||
| 14703 | } | ||||
| 14704 | } else if (op->getObjectKind() == OK_BitField) { // C99 6.5.3.2p1 | ||||
| 14705 | // The operand cannot be a bit-field | ||||
| 14706 | AddressOfError = AO_Bit_Field; | ||||
| 14707 | } else if (op->getObjectKind() == OK_VectorComponent) { | ||||
| 14708 | // The operand cannot be an element of a vector | ||||
| 14709 | AddressOfError = AO_Vector_Element; | ||||
| 14710 | } else if (op->getObjectKind() == OK_MatrixComponent) { | ||||
| 14711 | // The operand cannot be an element of a matrix. | ||||
| 14712 | AddressOfError = AO_Matrix_Element; | ||||
| 14713 | } else if (dcl) { // C99 6.5.3.2p1 | ||||
| 14714 | // We have an lvalue with a decl. Make sure the decl is not declared | ||||
| 14715 | // with the register storage-class specifier. | ||||
| 14716 | if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) { | ||||
| 14717 | // in C++ it is not error to take address of a register | ||||
| 14718 | // variable (c++03 7.1.1P3) | ||||
| 14719 | if (vd->getStorageClass() == SC_Register && | ||||
| 14720 | !getLangOpts().CPlusPlus) { | ||||
| 14721 | AddressOfError = AO_Register_Variable; | ||||
| 14722 | } | ||||
| 14723 | } else if (isa<MSPropertyDecl>(dcl)) { | ||||
| 14724 | AddressOfError = AO_Property_Expansion; | ||||
| 14725 | } else if (isa<FunctionTemplateDecl>(dcl)) { | ||||
| 14726 | return Context.OverloadTy; | ||||
| 14727 | } else if (isa<FieldDecl>(dcl) || isa<IndirectFieldDecl>(dcl)) { | ||||
| 14728 | // Okay: we can take the address of a field. | ||||
| 14729 | // Could be a pointer to member, though, if there is an explicit | ||||
| 14730 | // scope qualifier for the class. | ||||
| 14731 | if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) { | ||||
| 14732 | DeclContext *Ctx = dcl->getDeclContext(); | ||||
| 14733 | if (Ctx && Ctx->isRecord()) { | ||||
| 14734 | if (dcl->getType()->isReferenceType()) { | ||||
| 14735 | Diag(OpLoc, | ||||
| 14736 | diag::err_cannot_form_pointer_to_member_of_reference_type) | ||||
| 14737 | << dcl->getDeclName() << dcl->getType(); | ||||
| 14738 | return QualType(); | ||||
| 14739 | } | ||||
| 14740 | |||||
| 14741 | while (cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion()) | ||||
| 14742 | Ctx = Ctx->getParent(); | ||||
| 14743 | |||||
| 14744 | QualType MPTy = Context.getMemberPointerType( | ||||
| 14745 | op->getType(), | ||||
| 14746 | Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr()); | ||||
| 14747 | // Under the MS ABI, lock down the inheritance model now. | ||||
| 14748 | if (Context.getTargetInfo().getCXXABI().isMicrosoft()) | ||||
| 14749 | (void)isCompleteType(OpLoc, MPTy); | ||||
| 14750 | return MPTy; | ||||
| 14751 | } | ||||
| 14752 | } | ||||
| 14753 | } else if (!isa<FunctionDecl, NonTypeTemplateParmDecl, BindingDecl, | ||||
| 14754 | MSGuidDecl, UnnamedGlobalConstantDecl>(dcl)) | ||||
| 14755 | llvm_unreachable("Unknown/unexpected decl type")::llvm::llvm_unreachable_internal("Unknown/unexpected decl type" , "clang/lib/Sema/SemaExpr.cpp", 14755); | ||||
| 14756 | } | ||||
| 14757 | |||||
| 14758 | if (AddressOfError != AO_No_Error) { | ||||
| 14759 | diagnoseAddressOfInvalidType(*this, OpLoc, op, AddressOfError); | ||||
| 14760 | return QualType(); | ||||
| 14761 | } | ||||
| 14762 | |||||
| 14763 | if (lval == Expr::LV_IncompleteVoidType) { | ||||
| 14764 | // Taking the address of a void variable is technically illegal, but we | ||||
| 14765 | // allow it in cases which are otherwise valid. | ||||
| 14766 | // Example: "extern void x; void* y = &x;". | ||||
| 14767 | Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange(); | ||||
| 14768 | } | ||||
| 14769 | |||||
| 14770 | // If the operand has type "type", the result has type "pointer to type". | ||||
| 14771 | if (op->getType()->isObjCObjectType()) | ||||
| 14772 | return Context.getObjCObjectPointerType(op->getType()); | ||||
| 14773 | |||||
| 14774 | if (Context.getTargetInfo().getTriple().isWasm() && | ||||
| 14775 | op->getType()->isWebAssemblyReferenceType()) { | ||||
| 14776 | Diag(OpLoc, diag::err_wasm_ca_reference) | ||||
| 14777 | << 1 << OrigOp.get()->getSourceRange(); | ||||
| 14778 | return QualType(); | ||||
| 14779 | } | ||||
| 14780 | |||||
| 14781 | CheckAddressOfPackedMember(op); | ||||
| 14782 | |||||
| 14783 | return Context.getPointerType(op->getType()); | ||||
| 14784 | } | ||||
| 14785 | |||||
| 14786 | static void RecordModifiableNonNullParam(Sema &S, const Expr *Exp) { | ||||
| 14787 | const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Exp); | ||||
| 14788 | if (!DRE) | ||||
| 14789 | return; | ||||
| 14790 | const Decl *D = DRE->getDecl(); | ||||
| 14791 | if (!D) | ||||
| 14792 | return; | ||||
| 14793 | const ParmVarDecl *Param = dyn_cast<ParmVarDecl>(D); | ||||
| 14794 | if (!Param) | ||||
| 14795 | return; | ||||
| 14796 | if (const FunctionDecl* FD = dyn_cast<FunctionDecl>(Param->getDeclContext())) | ||||
| 14797 | if (!FD->hasAttr<NonNullAttr>() && !Param->hasAttr<NonNullAttr>()) | ||||
| 14798 | return; | ||||
| 14799 | if (FunctionScopeInfo *FD = S.getCurFunction()) | ||||
| 14800 | FD->ModifiedNonNullParams.insert(Param); | ||||
| 14801 | } | ||||
| 14802 | |||||
| 14803 | /// CheckIndirectionOperand - Type check unary indirection (prefix '*'). | ||||
| 14804 | static QualType CheckIndirectionOperand(Sema &S, Expr *Op, ExprValueKind &VK, | ||||
| 14805 | SourceLocation OpLoc, | ||||
| 14806 | bool IsAfterAmp = false) { | ||||
| 14807 | if (Op->isTypeDependent()) | ||||
| 14808 | return S.Context.DependentTy; | ||||
| 14809 | |||||
| 14810 | ExprResult ConvResult = S.UsualUnaryConversions(Op); | ||||
| 14811 | if (ConvResult.isInvalid()) | ||||
| 14812 | return QualType(); | ||||
| 14813 | Op = ConvResult.get(); | ||||
| 14814 | QualType OpTy = Op->getType(); | ||||
| 14815 | QualType Result; | ||||
| 14816 | |||||
| 14817 | if (isa<CXXReinterpretCastExpr>(Op)) { | ||||
| 14818 | QualType OpOrigType = Op->IgnoreParenCasts()->getType(); | ||||
| 14819 | S.CheckCompatibleReinterpretCast(OpOrigType, OpTy, /*IsDereference*/true, | ||||
| 14820 | Op->getSourceRange()); | ||||
| 14821 | } | ||||
| 14822 | |||||
| 14823 | if (const PointerType *PT = OpTy->getAs<PointerType>()) | ||||
| 14824 | { | ||||
| 14825 | Result = PT->getPointeeType(); | ||||
| 14826 | } | ||||
| 14827 | else if (const ObjCObjectPointerType *OPT = | ||||
| 14828 | OpTy->getAs<ObjCObjectPointerType>()) | ||||
| 14829 | Result = OPT->getPointeeType(); | ||||
| 14830 | else { | ||||
| 14831 | ExprResult PR = S.CheckPlaceholderExpr(Op); | ||||
| 14832 | if (PR.isInvalid()) return QualType(); | ||||
| 14833 | if (PR.get() != Op) | ||||
| 14834 | return CheckIndirectionOperand(S, PR.get(), VK, OpLoc); | ||||
| 14835 | } | ||||
| 14836 | |||||
| 14837 | if (Result.isNull()) { | ||||
| 14838 | S.Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer) | ||||
| 14839 | << OpTy << Op->getSourceRange(); | ||||
| 14840 | return QualType(); | ||||
| 14841 | } | ||||
| 14842 | |||||
| 14843 | if (Result->isVoidType()) { | ||||
| 14844 | // C++ [expr.unary.op]p1: | ||||
| 14845 | // [...] the expression to which [the unary * operator] is applied shall | ||||
| 14846 | // be a pointer to an object type, or a pointer to a function type | ||||
| 14847 | LangOptions LO = S.getLangOpts(); | ||||
| 14848 | if (LO.CPlusPlus) | ||||
| 14849 | S.Diag(OpLoc, diag::ext_typecheck_indirection_through_void_pointer_cpp) | ||||
| 14850 | << OpTy << Op->getSourceRange(); | ||||
| 14851 | else if (!(LO.C99 && IsAfterAmp) && !S.isUnevaluatedContext()) | ||||
| 14852 | S.Diag(OpLoc, diag::ext_typecheck_indirection_through_void_pointer) | ||||
| 14853 | << OpTy << Op->getSourceRange(); | ||||
| 14854 | } | ||||
| 14855 | |||||
| 14856 | // Dereferences are usually l-values... | ||||
| 14857 | VK = VK_LValue; | ||||
| 14858 | |||||
| 14859 | // ...except that certain expressions are never l-values in C. | ||||
| 14860 | if (!S.getLangOpts().CPlusPlus && Result.isCForbiddenLValueType()) | ||||
| 14861 | VK = VK_PRValue; | ||||
| 14862 | |||||
| 14863 | return Result; | ||||
| 14864 | } | ||||
| 14865 | |||||
| 14866 | BinaryOperatorKind Sema::ConvertTokenKindToBinaryOpcode(tok::TokenKind Kind) { | ||||
| 14867 | BinaryOperatorKind Opc; | ||||
| 14868 | switch (Kind) { | ||||
| 14869 | default: llvm_unreachable("Unknown binop!")::llvm::llvm_unreachable_internal("Unknown binop!", "clang/lib/Sema/SemaExpr.cpp" , 14869); | ||||
| 14870 | case tok::periodstar: Opc = BO_PtrMemD; break; | ||||
| 14871 | case tok::arrowstar: Opc = BO_PtrMemI; break; | ||||
| 14872 | case tok::star: Opc = BO_Mul; break; | ||||
| 14873 | case tok::slash: Opc = BO_Div; break; | ||||
| 14874 | case tok::percent: Opc = BO_Rem; break; | ||||
| 14875 | case tok::plus: Opc = BO_Add; break; | ||||
| 14876 | case tok::minus: Opc = BO_Sub; break; | ||||
| 14877 | case tok::lessless: Opc = BO_Shl; break; | ||||
| 14878 | case tok::greatergreater: Opc = BO_Shr; break; | ||||
| 14879 | case tok::lessequal: Opc = BO_LE; break; | ||||
| 14880 | case tok::less: Opc = BO_LT; break; | ||||
| 14881 | case tok::greaterequal: Opc = BO_GE; break; | ||||
| 14882 | case tok::greater: Opc = BO_GT; break; | ||||
| 14883 | case tok::exclaimequal: Opc = BO_NE; break; | ||||
| 14884 | case tok::equalequal: Opc = BO_EQ; break; | ||||
| 14885 | case tok::spaceship: Opc = BO_Cmp; break; | ||||
| 14886 | case tok::amp: Opc = BO_And; break; | ||||
| 14887 | case tok::caret: Opc = BO_Xor; break; | ||||
| 14888 | case tok::pipe: Opc = BO_Or; break; | ||||
| 14889 | case tok::ampamp: Opc = BO_LAnd; break; | ||||
| 14890 | case tok::pipepipe: Opc = BO_LOr; break; | ||||
| 14891 | case tok::equal: Opc = BO_Assign; break; | ||||
| 14892 | case tok::starequal: Opc = BO_MulAssign; break; | ||||
| 14893 | case tok::slashequal: Opc = BO_DivAssign; break; | ||||
| 14894 | case tok::percentequal: Opc = BO_RemAssign; break; | ||||
| 14895 | case tok::plusequal: Opc = BO_AddAssign; break; | ||||
| 14896 | case tok::minusequal: Opc = BO_SubAssign; break; | ||||
| 14897 | case tok::lesslessequal: Opc = BO_ShlAssign; break; | ||||
| 14898 | case tok::greatergreaterequal: Opc = BO_ShrAssign; break; | ||||
| 14899 | case tok::ampequal: Opc = BO_AndAssign; break; | ||||
| 14900 | case tok::caretequal: Opc = BO_XorAssign; break; | ||||
| 14901 | case tok::pipeequal: Opc = BO_OrAssign; break; | ||||
| 14902 | case tok::comma: Opc = BO_Comma; break; | ||||
| 14903 | } | ||||
| 14904 | return Opc; | ||||
| 14905 | } | ||||
| 14906 | |||||
| 14907 | static inline UnaryOperatorKind ConvertTokenKindToUnaryOpcode( | ||||
| 14908 | tok::TokenKind Kind) { | ||||
| 14909 | UnaryOperatorKind Opc; | ||||
| 14910 | switch (Kind) { | ||||
| 14911 | default: llvm_unreachable("Unknown unary op!")::llvm::llvm_unreachable_internal("Unknown unary op!", "clang/lib/Sema/SemaExpr.cpp" , 14911); | ||||
| 14912 | case tok::plusplus: Opc = UO_PreInc; break; | ||||
| 14913 | case tok::minusminus: Opc = UO_PreDec; break; | ||||
| 14914 | case tok::amp: Opc = UO_AddrOf; break; | ||||
| 14915 | case tok::star: Opc = UO_Deref; break; | ||||
| 14916 | case tok::plus: Opc = UO_Plus; break; | ||||
| 14917 | case tok::minus: Opc = UO_Minus; break; | ||||
| 14918 | case tok::tilde: Opc = UO_Not; break; | ||||
| 14919 | case tok::exclaim: Opc = UO_LNot; break; | ||||
| 14920 | case tok::kw___real: Opc = UO_Real; break; | ||||
| 14921 | case tok::kw___imag: Opc = UO_Imag; break; | ||||
| 14922 | case tok::kw___extension__: Opc = UO_Extension; break; | ||||
| 14923 | } | ||||
| 14924 | return Opc; | ||||
| 14925 | } | ||||
| 14926 | |||||
| 14927 | const FieldDecl * | ||||
| 14928 | Sema::getSelfAssignmentClassMemberCandidate(const ValueDecl *SelfAssigned) { | ||||
| 14929 | // Explore the case for adding 'this->' to the LHS of a self assignment, very | ||||
| 14930 | // common for setters. | ||||
| 14931 | // struct A { | ||||
| 14932 | // int X; | ||||
| 14933 | // -void setX(int X) { X = X; } | ||||
| 14934 | // +void setX(int X) { this->X = X; } | ||||
| 14935 | // }; | ||||
| 14936 | |||||
| 14937 | // Only consider parameters for self assignment fixes. | ||||
| 14938 | if (!isa<ParmVarDecl>(SelfAssigned)) | ||||
| 14939 | return nullptr; | ||||
| 14940 | const auto *Method = | ||||
| 14941 | dyn_cast_or_null<CXXMethodDecl>(getCurFunctionDecl(true)); | ||||
| 14942 | if (!Method) | ||||
| 14943 | return nullptr; | ||||
| 14944 | |||||
| 14945 | const CXXRecordDecl *Parent = Method->getParent(); | ||||
| 14946 | // In theory this is fixable if the lambda explicitly captures this, but | ||||
| 14947 | // that's added complexity that's rarely going to be used. | ||||
| 14948 | if (Parent->isLambda()) | ||||
| 14949 | return nullptr; | ||||
| 14950 | |||||
| 14951 | // FIXME: Use an actual Lookup operation instead of just traversing fields | ||||
| 14952 | // in order to get base class fields. | ||||
| 14953 | auto Field = | ||||
| 14954 | llvm::find_if(Parent->fields(), | ||||
| 14955 | [Name(SelfAssigned->getDeclName())](const FieldDecl *F) { | ||||
| 14956 | return F->getDeclName() == Name; | ||||
| 14957 | }); | ||||
| 14958 | return (Field != Parent->field_end()) ? *Field : nullptr; | ||||
| 14959 | } | ||||
| 14960 | |||||
| 14961 | /// DiagnoseSelfAssignment - Emits a warning if a value is assigned to itself. | ||||
| 14962 | /// This warning suppressed in the event of macro expansions. | ||||
| 14963 | static void DiagnoseSelfAssignment(Sema &S, Expr *LHSExpr, Expr *RHSExpr, | ||||
| 14964 | SourceLocation OpLoc, bool IsBuiltin) { | ||||
| 14965 | if (S.inTemplateInstantiation()) | ||||
| 14966 | return; | ||||
| 14967 | if (S.isUnevaluatedContext()) | ||||
| 14968 | return; | ||||
| 14969 | if (OpLoc.isInvalid() || OpLoc.isMacroID()) | ||||
| 14970 | return; | ||||
| 14971 | LHSExpr = LHSExpr->IgnoreParenImpCasts(); | ||||
| 14972 | RHSExpr = RHSExpr->IgnoreParenImpCasts(); | ||||
| 14973 | const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr); | ||||
| 14974 | const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr); | ||||
| 14975 | if (!LHSDeclRef || !RHSDeclRef || | ||||
| 14976 | LHSDeclRef->getLocation().isMacroID() || | ||||
| 14977 | RHSDeclRef->getLocation().isMacroID()) | ||||
| 14978 | return; | ||||
| 14979 | const ValueDecl *LHSDecl = | ||||
| 14980 | cast<ValueDecl>(LHSDeclRef->getDecl()->getCanonicalDecl()); | ||||
| 14981 | const ValueDecl *RHSDecl = | ||||
| 14982 | cast<ValueDecl>(RHSDeclRef->getDecl()->getCanonicalDecl()); | ||||
| 14983 | if (LHSDecl != RHSDecl) | ||||
| 14984 | return; | ||||
| 14985 | if (LHSDecl->getType().isVolatileQualified()) | ||||
| 14986 | return; | ||||
| 14987 | if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>()) | ||||
| 14988 | if (RefTy->getPointeeType().isVolatileQualified()) | ||||
| 14989 | return; | ||||
| 14990 | |||||
| 14991 | auto Diag = S.Diag(OpLoc, IsBuiltin ? diag::warn_self_assignment_builtin | ||||
| 14992 | : diag::warn_self_assignment_overloaded) | ||||
| 14993 | << LHSDeclRef->getType() << LHSExpr->getSourceRange() | ||||
| 14994 | << RHSExpr->getSourceRange(); | ||||
| 14995 | if (const FieldDecl *SelfAssignField = | ||||
| 14996 | S.getSelfAssignmentClassMemberCandidate(RHSDecl)) | ||||
| 14997 | Diag << 1 << SelfAssignField | ||||
| 14998 | << FixItHint::CreateInsertion(LHSDeclRef->getBeginLoc(), "this->"); | ||||
| 14999 | else | ||||
| 15000 | Diag << 0; | ||||
| 15001 | } | ||||
| 15002 | |||||
| 15003 | /// Check if a bitwise-& is performed on an Objective-C pointer. This | ||||
| 15004 | /// is usually indicative of introspection within the Objective-C pointer. | ||||
| 15005 | static void checkObjCPointerIntrospection(Sema &S, ExprResult &L, ExprResult &R, | ||||
| 15006 | SourceLocation OpLoc) { | ||||
| 15007 | if (!S.getLangOpts().ObjC) | ||||
| 15008 | return; | ||||
| 15009 | |||||
| 15010 | const Expr *ObjCPointerExpr = nullptr, *OtherExpr = nullptr; | ||||
| 15011 | const Expr *LHS = L.get(); | ||||
| 15012 | const Expr *RHS = R.get(); | ||||
| 15013 | |||||
| 15014 | if (LHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) { | ||||
| 15015 | ObjCPointerExpr = LHS; | ||||
| 15016 | OtherExpr = RHS; | ||||
| 15017 | } | ||||
| 15018 | else if (RHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) { | ||||
| 15019 | ObjCPointerExpr = RHS; | ||||
| 15020 | OtherExpr = LHS; | ||||
| 15021 | } | ||||
| 15022 | |||||
| 15023 | // This warning is deliberately made very specific to reduce false | ||||
| 15024 | // positives with logic that uses '&' for hashing. This logic mainly | ||||
| 15025 | // looks for code trying to introspect into tagged pointers, which | ||||
| 15026 | // code should generally never do. | ||||
| 15027 | if (ObjCPointerExpr && isa<IntegerLiteral>(OtherExpr->IgnoreParenCasts())) { | ||||
| 15028 | unsigned Diag = diag::warn_objc_pointer_masking; | ||||
| 15029 | // Determine if we are introspecting the result of performSelectorXXX. | ||||
| 15030 | const Expr *Ex = ObjCPointerExpr->IgnoreParenCasts(); | ||||
| 15031 | // Special case messages to -performSelector and friends, which | ||||
| 15032 | // can return non-pointer values boxed in a pointer value. | ||||
| 15033 | // Some clients may wish to silence warnings in this subcase. | ||||
| 15034 | if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(Ex)) { | ||||
| 15035 | Selector S = ME->getSelector(); | ||||
| 15036 | StringRef SelArg0 = S.getNameForSlot(0); | ||||
| 15037 | if (SelArg0.startswith("performSelector")) | ||||
| 15038 | Diag = diag::warn_objc_pointer_masking_performSelector; | ||||
| 15039 | } | ||||
| 15040 | |||||
| 15041 | S.Diag(OpLoc, Diag) | ||||
| 15042 | << ObjCPointerExpr->getSourceRange(); | ||||
| 15043 | } | ||||
| 15044 | } | ||||
| 15045 | |||||
| 15046 | static NamedDecl *getDeclFromExpr(Expr *E) { | ||||
| 15047 | if (!E) | ||||
| 15048 | return nullptr; | ||||
| 15049 | if (auto *DRE = dyn_cast<DeclRefExpr>(E)) | ||||
| 15050 | return DRE->getDecl(); | ||||
| 15051 | if (auto *ME = dyn_cast<MemberExpr>(E)) | ||||
| 15052 | return ME->getMemberDecl(); | ||||
| 15053 | if (auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) | ||||
| 15054 | return IRE->getDecl(); | ||||
| 15055 | return nullptr; | ||||
| 15056 | } | ||||
| 15057 | |||||
| 15058 | // This helper function promotes a binary operator's operands (which are of a | ||||
| 15059 | // half vector type) to a vector of floats and then truncates the result to | ||||
| 15060 | // a vector of either half or short. | ||||
| 15061 | static ExprResult convertHalfVecBinOp(Sema &S, ExprResult LHS, ExprResult RHS, | ||||
| 15062 | BinaryOperatorKind Opc, QualType ResultTy, | ||||
| 15063 | ExprValueKind VK, ExprObjectKind OK, | ||||
| 15064 | bool IsCompAssign, SourceLocation OpLoc, | ||||
| 15065 | FPOptionsOverride FPFeatures) { | ||||
| 15066 | auto &Context = S.getASTContext(); | ||||
| 15067 | assert((isVector(ResultTy, Context.HalfTy) ||(static_cast <bool> ((isVector(ResultTy, Context.HalfTy ) || isVector(ResultTy, Context.ShortTy)) && "Result must be a vector of half or short" ) ? void (0) : __assert_fail ("(isVector(ResultTy, Context.HalfTy) || isVector(ResultTy, Context.ShortTy)) && \"Result must be a vector of half or short\"" , "clang/lib/Sema/SemaExpr.cpp", 15069, __extension__ __PRETTY_FUNCTION__ )) | ||||
| 15068 | isVector(ResultTy, Context.ShortTy)) &&(static_cast <bool> ((isVector(ResultTy, Context.HalfTy ) || isVector(ResultTy, Context.ShortTy)) && "Result must be a vector of half or short" ) ? void (0) : __assert_fail ("(isVector(ResultTy, Context.HalfTy) || isVector(ResultTy, Context.ShortTy)) && \"Result must be a vector of half or short\"" , "clang/lib/Sema/SemaExpr.cpp", 15069, __extension__ __PRETTY_FUNCTION__ )) | ||||
| 15069 | "Result must be a vector of half or short")(static_cast <bool> ((isVector(ResultTy, Context.HalfTy ) || isVector(ResultTy, Context.ShortTy)) && "Result must be a vector of half or short" ) ? void (0) : __assert_fail ("(isVector(ResultTy, Context.HalfTy) || isVector(ResultTy, Context.ShortTy)) && \"Result must be a vector of half or short\"" , "clang/lib/Sema/SemaExpr.cpp", 15069, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 15070 | assert(isVector(LHS.get()->getType(), Context.HalfTy) &&(static_cast <bool> (isVector(LHS.get()->getType(), Context .HalfTy) && isVector(RHS.get()->getType(), Context .HalfTy) && "both operands expected to be a half vector" ) ? void (0) : __assert_fail ("isVector(LHS.get()->getType(), Context.HalfTy) && isVector(RHS.get()->getType(), Context.HalfTy) && \"both operands expected to be a half vector\"" , "clang/lib/Sema/SemaExpr.cpp", 15072, __extension__ __PRETTY_FUNCTION__ )) | ||||
| 15071 | isVector(RHS.get()->getType(), Context.HalfTy) &&(static_cast <bool> (isVector(LHS.get()->getType(), Context .HalfTy) && isVector(RHS.get()->getType(), Context .HalfTy) && "both operands expected to be a half vector" ) ? void (0) : __assert_fail ("isVector(LHS.get()->getType(), Context.HalfTy) && isVector(RHS.get()->getType(), Context.HalfTy) && \"both operands expected to be a half vector\"" , "clang/lib/Sema/SemaExpr.cpp", 15072, __extension__ __PRETTY_FUNCTION__ )) | ||||
| 15072 | "both operands expected to be a half vector")(static_cast <bool> (isVector(LHS.get()->getType(), Context .HalfTy) && isVector(RHS.get()->getType(), Context .HalfTy) && "both operands expected to be a half vector" ) ? void (0) : __assert_fail ("isVector(LHS.get()->getType(), Context.HalfTy) && isVector(RHS.get()->getType(), Context.HalfTy) && \"both operands expected to be a half vector\"" , "clang/lib/Sema/SemaExpr.cpp", 15072, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 15073 | |||||
| 15074 | RHS = convertVector(RHS.get(), Context.FloatTy, S); | ||||
| 15075 | QualType BinOpResTy = RHS.get()->getType(); | ||||
| 15076 | |||||
| 15077 | // If Opc is a comparison, ResultType is a vector of shorts. In that case, | ||||
| 15078 | // change BinOpResTy to a vector of ints. | ||||
| 15079 | if (isVector(ResultTy, Context.ShortTy)) | ||||
| 15080 | BinOpResTy = S.GetSignedVectorType(BinOpResTy); | ||||
| 15081 | |||||
| 15082 | if (IsCompAssign) | ||||
| 15083 | return CompoundAssignOperator::Create(Context, LHS.get(), RHS.get(), Opc, | ||||
| 15084 | ResultTy, VK, OK, OpLoc, FPFeatures, | ||||
| 15085 | BinOpResTy, BinOpResTy); | ||||
| 15086 | |||||
| 15087 | LHS = convertVector(LHS.get(), Context.FloatTy, S); | ||||
| 15088 | auto *BO = BinaryOperator::Create(Context, LHS.get(), RHS.get(), Opc, | ||||
| 15089 | BinOpResTy, VK, OK, OpLoc, FPFeatures); | ||||
| 15090 | return convertVector(BO, ResultTy->castAs<VectorType>()->getElementType(), S); | ||||
| 15091 | } | ||||
| 15092 | |||||
| 15093 | static std::pair<ExprResult, ExprResult> | ||||
| 15094 | CorrectDelayedTyposInBinOp(Sema &S, BinaryOperatorKind Opc, Expr *LHSExpr, | ||||
| 15095 | Expr *RHSExpr) { | ||||
| 15096 | ExprResult LHS = LHSExpr, RHS = RHSExpr; | ||||
| 15097 | if (!S.Context.isDependenceAllowed()) { | ||||
| 15098 | // C cannot handle TypoExpr nodes on either side of a binop because it | ||||
| 15099 | // doesn't handle dependent types properly, so make sure any TypoExprs have | ||||
| 15100 | // been dealt with before checking the operands. | ||||
| 15101 | LHS = S.CorrectDelayedTyposInExpr(LHS); | ||||
| 15102 | RHS = S.CorrectDelayedTyposInExpr( | ||||
| 15103 | RHS, /*InitDecl=*/nullptr, /*RecoverUncorrectedTypos=*/false, | ||||
| 15104 | [Opc, LHS](Expr *E) { | ||||
| 15105 | if (Opc != BO_Assign) | ||||
| 15106 | return ExprResult(E); | ||||
| 15107 | // Avoid correcting the RHS to the same Expr as the LHS. | ||||
| 15108 | Decl *D = getDeclFromExpr(E); | ||||
| 15109 | return (D && D == getDeclFromExpr(LHS.get())) ? ExprError() : E; | ||||
| 15110 | }); | ||||
| 15111 | } | ||||
| 15112 | return std::make_pair(LHS, RHS); | ||||
| 15113 | } | ||||
| 15114 | |||||
| 15115 | /// Returns true if conversion between vectors of halfs and vectors of floats | ||||
| 15116 | /// is needed. | ||||
| 15117 | static bool needsConversionOfHalfVec(bool OpRequiresConversion, ASTContext &Ctx, | ||||
| 15118 | Expr *E0, Expr *E1 = nullptr) { | ||||
| 15119 | if (!OpRequiresConversion || Ctx.getLangOpts().NativeHalfType || | ||||
| 15120 | Ctx.getTargetInfo().useFP16ConversionIntrinsics()) | ||||
| 15121 | return false; | ||||
| 15122 | |||||
| 15123 | auto HasVectorOfHalfType = [&Ctx](Expr *E) { | ||||
| 15124 | QualType Ty = E->IgnoreImplicit()->getType(); | ||||
| 15125 | |||||
| 15126 | // Don't promote half precision neon vectors like float16x4_t in arm_neon.h | ||||
| 15127 | // to vectors of floats. Although the element type of the vectors is __fp16, | ||||
| 15128 | // the vectors shouldn't be treated as storage-only types. See the | ||||
| 15129 | // discussion here: https://reviews.llvm.org/rG825235c140e7 | ||||
| 15130 | if (const VectorType *VT = Ty->getAs<VectorType>()) { | ||||
| 15131 | if (VT->getVectorKind() == VectorType::NeonVector) | ||||
| 15132 | return false; | ||||
| 15133 | return VT->getElementType().getCanonicalType() == Ctx.HalfTy; | ||||
| 15134 | } | ||||
| 15135 | return false; | ||||
| 15136 | }; | ||||
| 15137 | |||||
| 15138 | return HasVectorOfHalfType(E0) && (!E1 || HasVectorOfHalfType(E1)); | ||||
| 15139 | } | ||||
| 15140 | |||||
| 15141 | /// CreateBuiltinBinOp - Creates a new built-in binary operation with | ||||
| 15142 | /// operator @p Opc at location @c TokLoc. This routine only supports | ||||
| 15143 | /// built-in operations; ActOnBinOp handles overloaded operators. | ||||
| 15144 | ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc, | ||||
| 15145 | BinaryOperatorKind Opc, | ||||
| 15146 | Expr *LHSExpr, Expr *RHSExpr) { | ||||
| 15147 | if (getLangOpts().CPlusPlus11 && isa<InitListExpr>(RHSExpr)) { | ||||
| 15148 | // The syntax only allows initializer lists on the RHS of assignment, | ||||
| 15149 | // so we don't need to worry about accepting invalid code for | ||||
| 15150 | // non-assignment operators. | ||||
| 15151 | // C++11 5.17p9: | ||||
| 15152 | // The meaning of x = {v} [...] is that of x = T(v) [...]. The meaning | ||||
| 15153 | // of x = {} is x = T(). | ||||
| 15154 | InitializationKind Kind = InitializationKind::CreateDirectList( | ||||
| 15155 | RHSExpr->getBeginLoc(), RHSExpr->getBeginLoc(), RHSExpr->getEndLoc()); | ||||
| 15156 | InitializedEntity Entity = | ||||
| 15157 | InitializedEntity::InitializeTemporary(LHSExpr->getType()); | ||||
| 15158 | InitializationSequence InitSeq(*this, Entity, Kind, RHSExpr); | ||||
| 15159 | ExprResult Init = InitSeq.Perform(*this, Entity, Kind, RHSExpr); | ||||
| 15160 | if (Init.isInvalid()) | ||||
| 15161 | return Init; | ||||
| 15162 | RHSExpr = Init.get(); | ||||
| 15163 | } | ||||
| 15164 | |||||
| 15165 | ExprResult LHS = LHSExpr, RHS = RHSExpr; | ||||
| 15166 | QualType ResultTy; // Result type of the binary operator. | ||||
| 15167 | // The following two variables are used for compound assignment operators | ||||
| 15168 | QualType CompLHSTy; // Type of LHS after promotions for computation | ||||
| 15169 | QualType CompResultTy; // Type of computation result | ||||
| 15170 | ExprValueKind VK = VK_PRValue; | ||||
| 15171 | ExprObjectKind OK = OK_Ordinary; | ||||
| 15172 | bool ConvertHalfVec = false; | ||||
| 15173 | |||||
| 15174 | std::tie(LHS, RHS) = CorrectDelayedTyposInBinOp(*this, Opc, LHSExpr, RHSExpr); | ||||
| 15175 | if (!LHS.isUsable() || !RHS.isUsable()) | ||||
| 15176 | return ExprError(); | ||||
| 15177 | |||||
| 15178 | if (getLangOpts().OpenCL) { | ||||
| 15179 | QualType LHSTy = LHSExpr->getType(); | ||||
| 15180 | QualType RHSTy = RHSExpr->getType(); | ||||
| 15181 | // OpenCLC v2.0 s6.13.11.1 allows atomic variables to be initialized by | ||||
| 15182 | // the ATOMIC_VAR_INIT macro. | ||||
| 15183 | if (LHSTy->isAtomicType() || RHSTy->isAtomicType()) { | ||||
| 15184 | SourceRange SR(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc()); | ||||
| 15185 | if (BO_Assign == Opc) | ||||
| 15186 | Diag(OpLoc, diag::err_opencl_atomic_init) << 0 << SR; | ||||
| 15187 | else | ||||
| 15188 | ResultTy = InvalidOperands(OpLoc, LHS, RHS); | ||||
| 15189 | return ExprError(); | ||||
| 15190 | } | ||||
| 15191 | |||||
| 15192 | // OpenCL special types - image, sampler, pipe, and blocks are to be used | ||||
| 15193 | // only with a builtin functions and therefore should be disallowed here. | ||||
| 15194 | if (LHSTy->isImageType() || RHSTy->isImageType() || | ||||
| 15195 | LHSTy->isSamplerT() || RHSTy->isSamplerT() || | ||||
| 15196 | LHSTy->isPipeType() || RHSTy->isPipeType() || | ||||
| 15197 | LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) { | ||||
| 15198 | ResultTy = InvalidOperands(OpLoc, LHS, RHS); | ||||
| 15199 | return ExprError(); | ||||
| 15200 | } | ||||
| 15201 | } | ||||
| 15202 | |||||
| 15203 | checkTypeSupport(LHSExpr->getType(), OpLoc, /*ValueDecl*/ nullptr); | ||||
| 15204 | checkTypeSupport(RHSExpr->getType(), OpLoc, /*ValueDecl*/ nullptr); | ||||
| 15205 | |||||
| 15206 | switch (Opc) { | ||||
| 15207 | case BO_Assign: | ||||
| 15208 | ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, QualType(), Opc); | ||||
| 15209 | if (getLangOpts().CPlusPlus && | ||||
| 15210 | LHS.get()->getObjectKind() != OK_ObjCProperty) { | ||||
| 15211 | VK = LHS.get()->getValueKind(); | ||||
| 15212 | OK = LHS.get()->getObjectKind(); | ||||
| 15213 | } | ||||
| 15214 | if (!ResultTy.isNull()) { | ||||
| 15215 | DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc, true); | ||||
| 15216 | DiagnoseSelfMove(LHS.get(), RHS.get(), OpLoc); | ||||
| 15217 | |||||
| 15218 | // Avoid copying a block to the heap if the block is assigned to a local | ||||
| 15219 | // auto variable that is declared in the same scope as the block. This | ||||
| 15220 | // optimization is unsafe if the local variable is declared in an outer | ||||
| 15221 | // scope. For example: | ||||
| 15222 | // | ||||
| 15223 | // BlockTy b; | ||||
| 15224 | // { | ||||
| 15225 | // b = ^{...}; | ||||
| 15226 | // } | ||||
| 15227 | // // It is unsafe to invoke the block here if it wasn't copied to the | ||||
| 15228 | // // heap. | ||||
| 15229 | // b(); | ||||
| 15230 | |||||
| 15231 | if (auto *BE = dyn_cast<BlockExpr>(RHS.get()->IgnoreParens())) | ||||
| 15232 | if (auto *DRE = dyn_cast<DeclRefExpr>(LHS.get()->IgnoreParens())) | ||||
| 15233 | if (auto *VD = dyn_cast<VarDecl>(DRE->getDecl())) | ||||
| 15234 | if (VD->hasLocalStorage() && getCurScope()->isDeclScope(VD)) | ||||
| 15235 | BE->getBlockDecl()->setCanAvoidCopyToHeap(); | ||||
| 15236 | |||||
| 15237 | if (LHS.get()->getType().hasNonTrivialToPrimitiveCopyCUnion()) | ||||
| 15238 | checkNonTrivialCUnion(LHS.get()->getType(), LHS.get()->getExprLoc(), | ||||
| 15239 | NTCUC_Assignment, NTCUK_Copy); | ||||
| 15240 | } | ||||
| 15241 | RecordModifiableNonNullParam(*this, LHS.get()); | ||||
| 15242 | break; | ||||
| 15243 | case BO_PtrMemD: | ||||
| 15244 | case BO_PtrMemI: | ||||
| 15245 | ResultTy = CheckPointerToMemberOperands(LHS, RHS, VK, OpLoc, | ||||
| 15246 | Opc == BO_PtrMemI); | ||||
| 15247 | break; | ||||
| 15248 | case BO_Mul: | ||||
| 15249 | case BO_Div: | ||||
| 15250 | ConvertHalfVec = true; | ||||
| 15251 | ResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, false, | ||||
| 15252 | Opc == BO_Div); | ||||
| 15253 | break; | ||||
| 15254 | case BO_Rem: | ||||
| 15255 | ResultTy = CheckRemainderOperands(LHS, RHS, OpLoc); | ||||
| 15256 | break; | ||||
| 15257 | case BO_Add: | ||||
| 15258 | ConvertHalfVec = true; | ||||
| 15259 | ResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc); | ||||
| 15260 | break; | ||||
| 15261 | case BO_Sub: | ||||
| 15262 | ConvertHalfVec = true; | ||||
| 15263 | ResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc); | ||||
| 15264 | break; | ||||
| 15265 | case BO_Shl: | ||||
| 15266 | case BO_Shr: | ||||
| 15267 | ResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc); | ||||
| 15268 | break; | ||||
| 15269 | case BO_LE: | ||||
| 15270 | case BO_LT: | ||||
| 15271 | case BO_GE: | ||||
| 15272 | case BO_GT: | ||||
| 15273 | ConvertHalfVec = true; | ||||
| 15274 | ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc); | ||||
| 15275 | break; | ||||
| 15276 | case BO_EQ: | ||||
| 15277 | case BO_NE: | ||||
| 15278 | ConvertHalfVec = true; | ||||
| 15279 | ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc); | ||||
| 15280 | break; | ||||
| 15281 | case BO_Cmp: | ||||
| 15282 | ConvertHalfVec = true; | ||||
| 15283 | ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc); | ||||
| 15284 | assert(ResultTy.isNull() || ResultTy->getAsCXXRecordDecl())(static_cast <bool> (ResultTy.isNull() || ResultTy-> getAsCXXRecordDecl()) ? void (0) : __assert_fail ("ResultTy.isNull() || ResultTy->getAsCXXRecordDecl()" , "clang/lib/Sema/SemaExpr.cpp", 15284, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 15285 | break; | ||||
| 15286 | case BO_And: | ||||
| 15287 | checkObjCPointerIntrospection(*this, LHS, RHS, OpLoc); | ||||
| 15288 | [[fallthrough]]; | ||||
| 15289 | case BO_Xor: | ||||
| 15290 | case BO_Or: | ||||
| 15291 | ResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, Opc); | ||||
| 15292 | break; | ||||
| 15293 | case BO_LAnd: | ||||
| 15294 | case BO_LOr: | ||||
| 15295 | ConvertHalfVec = true; | ||||
| 15296 | ResultTy = CheckLogicalOperands(LHS, RHS, OpLoc, Opc); | ||||
| 15297 | break; | ||||
| 15298 | case BO_MulAssign: | ||||
| 15299 | case BO_DivAssign: | ||||
| 15300 | ConvertHalfVec = true; | ||||
| 15301 | CompResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, true, | ||||
| 15302 | Opc == BO_DivAssign); | ||||
| 15303 | CompLHSTy = CompResultTy; | ||||
| 15304 | if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid()) | ||||
| 15305 | ResultTy = | ||||
| 15306 | CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc); | ||||
| 15307 | break; | ||||
| 15308 | case BO_RemAssign: | ||||
| 15309 | CompResultTy = CheckRemainderOperands(LHS, RHS, OpLoc, true); | ||||
| 15310 | CompLHSTy = CompResultTy; | ||||
| 15311 | if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid()) | ||||
| 15312 | ResultTy = | ||||
| 15313 | CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc); | ||||
| 15314 | break; | ||||
| 15315 | case BO_AddAssign: | ||||
| 15316 | ConvertHalfVec = true; | ||||
| 15317 | CompResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc, &CompLHSTy); | ||||
| 15318 | if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid()) | ||||
| 15319 | ResultTy = | ||||
| 15320 | CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc); | ||||
| 15321 | break; | ||||
| 15322 | case BO_SubAssign: | ||||
| 15323 | ConvertHalfVec = true; | ||||
| 15324 | CompResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc, &CompLHSTy); | ||||
| 15325 | if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid()) | ||||
| 15326 | ResultTy = | ||||
| 15327 | CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc); | ||||
| 15328 | break; | ||||
| 15329 | case BO_ShlAssign: | ||||
| 15330 | case BO_ShrAssign: | ||||
| 15331 | CompResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc, true); | ||||
| 15332 | CompLHSTy = CompResultTy; | ||||
| 15333 | if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid()) | ||||
| 15334 | ResultTy = | ||||
| 15335 | CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc); | ||||
| 15336 | break; | ||||
| 15337 | case BO_AndAssign: | ||||
| 15338 | case BO_OrAssign: // fallthrough | ||||
| 15339 | DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc, true); | ||||
| 15340 | [[fallthrough]]; | ||||
| 15341 | case BO_XorAssign: | ||||
| 15342 | CompResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, Opc); | ||||
| 15343 | CompLHSTy = CompResultTy; | ||||
| 15344 | if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid()) | ||||
| 15345 | ResultTy = | ||||
| 15346 | CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc); | ||||
| 15347 | break; | ||||
| 15348 | case BO_Comma: | ||||
| 15349 | ResultTy = CheckCommaOperands(*this, LHS, RHS, OpLoc); | ||||
| 15350 | if (getLangOpts().CPlusPlus && !RHS.isInvalid()) { | ||||
| 15351 | VK = RHS.get()->getValueKind(); | ||||
| 15352 | OK = RHS.get()->getObjectKind(); | ||||
| 15353 | } | ||||
| 15354 | break; | ||||
| 15355 | } | ||||
| 15356 | if (ResultTy.isNull() || LHS.isInvalid() || RHS.isInvalid()) | ||||
| 15357 | return ExprError(); | ||||
| 15358 | |||||
| 15359 | // Some of the binary operations require promoting operands of half vector to | ||||
| 15360 | // float vectors and truncating the result back to half vector. For now, we do | ||||
| 15361 | // this only when HalfArgsAndReturn is set (that is, when the target is arm or | ||||
| 15362 | // arm64). | ||||
| 15363 | assert((static_cast <bool> ((Opc == BO_Comma || isVector(RHS.get ()->getType(), Context.HalfTy) == isVector(LHS.get()->getType (), Context.HalfTy)) && "both sides are half vectors or neither sides are" ) ? void (0) : __assert_fail ("(Opc == BO_Comma || isVector(RHS.get()->getType(), Context.HalfTy) == isVector(LHS.get()->getType(), Context.HalfTy)) && \"both sides are half vectors or neither sides are\"" , "clang/lib/Sema/SemaExpr.cpp", 15366, __extension__ __PRETTY_FUNCTION__ )) | ||||
| 15364 | (Opc == BO_Comma || isVector(RHS.get()->getType(), Context.HalfTy) ==(static_cast <bool> ((Opc == BO_Comma || isVector(RHS.get ()->getType(), Context.HalfTy) == isVector(LHS.get()->getType (), Context.HalfTy)) && "both sides are half vectors or neither sides are" ) ? void (0) : __assert_fail ("(Opc == BO_Comma || isVector(RHS.get()->getType(), Context.HalfTy) == isVector(LHS.get()->getType(), Context.HalfTy)) && \"both sides are half vectors or neither sides are\"" , "clang/lib/Sema/SemaExpr.cpp", 15366, __extension__ __PRETTY_FUNCTION__ )) | ||||
| 15365 | isVector(LHS.get()->getType(), Context.HalfTy)) &&(static_cast <bool> ((Opc == BO_Comma || isVector(RHS.get ()->getType(), Context.HalfTy) == isVector(LHS.get()->getType (), Context.HalfTy)) && "both sides are half vectors or neither sides are" ) ? void (0) : __assert_fail ("(Opc == BO_Comma || isVector(RHS.get()->getType(), Context.HalfTy) == isVector(LHS.get()->getType(), Context.HalfTy)) && \"both sides are half vectors or neither sides are\"" , "clang/lib/Sema/SemaExpr.cpp", 15366, __extension__ __PRETTY_FUNCTION__ )) | ||||
| 15366 | "both sides are half vectors or neither sides are")(static_cast <bool> ((Opc == BO_Comma || isVector(RHS.get ()->getType(), Context.HalfTy) == isVector(LHS.get()->getType (), Context.HalfTy)) && "both sides are half vectors or neither sides are" ) ? void (0) : __assert_fail ("(Opc == BO_Comma || isVector(RHS.get()->getType(), Context.HalfTy) == isVector(LHS.get()->getType(), Context.HalfTy)) && \"both sides are half vectors or neither sides are\"" , "clang/lib/Sema/SemaExpr.cpp", 15366, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 15367 | ConvertHalfVec = | ||||
| 15368 | needsConversionOfHalfVec(ConvertHalfVec, Context, LHS.get(), RHS.get()); | ||||
| 15369 | |||||
| 15370 | // Check for array bounds violations for both sides of the BinaryOperator | ||||
| 15371 | CheckArrayAccess(LHS.get()); | ||||
| 15372 | CheckArrayAccess(RHS.get()); | ||||
| 15373 | |||||
| 15374 | if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(LHS.get()->IgnoreParenCasts())) { | ||||
| 15375 | NamedDecl *ObjectSetClass = LookupSingleName(TUScope, | ||||
| 15376 | &Context.Idents.get("object_setClass"), | ||||
| 15377 | SourceLocation(), LookupOrdinaryName); | ||||
| 15378 | if (ObjectSetClass && isa<ObjCIsaExpr>(LHS.get())) { | ||||
| 15379 | SourceLocation RHSLocEnd = getLocForEndOfToken(RHS.get()->getEndLoc()); | ||||
| 15380 | Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign) | ||||
| 15381 | << FixItHint::CreateInsertion(LHS.get()->getBeginLoc(), | ||||
| 15382 | "object_setClass(") | ||||
| 15383 | << FixItHint::CreateReplacement(SourceRange(OISA->getOpLoc(), OpLoc), | ||||
| 15384 | ",") | ||||
| 15385 | << FixItHint::CreateInsertion(RHSLocEnd, ")"); | ||||
| 15386 | } | ||||
| 15387 | else | ||||
| 15388 | Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign); | ||||
| 15389 | } | ||||
| 15390 | else if (const ObjCIvarRefExpr *OIRE = | ||||
| 15391 | dyn_cast<ObjCIvarRefExpr>(LHS.get()->IgnoreParenCasts())) | ||||
| 15392 | DiagnoseDirectIsaAccess(*this, OIRE, OpLoc, RHS.get()); | ||||
| 15393 | |||||
| 15394 | // Opc is not a compound assignment if CompResultTy is null. | ||||
| 15395 | if (CompResultTy.isNull()) { | ||||
| 15396 | if (ConvertHalfVec) | ||||
| 15397 | return convertHalfVecBinOp(*this, LHS, RHS, Opc, ResultTy, VK, OK, false, | ||||
| 15398 | OpLoc, CurFPFeatureOverrides()); | ||||
| 15399 | return BinaryOperator::Create(Context, LHS.get(), RHS.get(), Opc, ResultTy, | ||||
| 15400 | VK, OK, OpLoc, CurFPFeatureOverrides()); | ||||
| 15401 | } | ||||
| 15402 | |||||
| 15403 | // Handle compound assignments. | ||||
| 15404 | if (getLangOpts().CPlusPlus && LHS.get()->getObjectKind() != | ||||
| 15405 | OK_ObjCProperty) { | ||||
| 15406 | VK = VK_LValue; | ||||
| 15407 | OK = LHS.get()->getObjectKind(); | ||||
| 15408 | } | ||||
| 15409 | |||||
| 15410 | // The LHS is not converted to the result type for fixed-point compound | ||||
| 15411 | // assignment as the common type is computed on demand. Reset the CompLHSTy | ||||
| 15412 | // to the LHS type we would have gotten after unary conversions. | ||||
| 15413 | if (CompResultTy->isFixedPointType()) | ||||
| 15414 | CompLHSTy = UsualUnaryConversions(LHS.get()).get()->getType(); | ||||
| 15415 | |||||
| 15416 | if (ConvertHalfVec) | ||||
| 15417 | return convertHalfVecBinOp(*this, LHS, RHS, Opc, ResultTy, VK, OK, true, | ||||
| 15418 | OpLoc, CurFPFeatureOverrides()); | ||||
| 15419 | |||||
| 15420 | return CompoundAssignOperator::Create( | ||||
| 15421 | Context, LHS.get(), RHS.get(), Opc, ResultTy, VK, OK, OpLoc, | ||||
| 15422 | CurFPFeatureOverrides(), CompLHSTy, CompResultTy); | ||||
| 15423 | } | ||||
| 15424 | |||||
| 15425 | /// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison | ||||
| 15426 | /// operators are mixed in a way that suggests that the programmer forgot that | ||||
| 15427 | /// comparison operators have higher precedence. The most typical example of | ||||
| 15428 | /// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1". | ||||
| 15429 | static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperatorKind Opc, | ||||
| 15430 | SourceLocation OpLoc, Expr *LHSExpr, | ||||
| 15431 | Expr *RHSExpr) { | ||||
| 15432 | BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHSExpr); | ||||
| 15433 | BinaryOperator *RHSBO = dyn_cast<BinaryOperator>(RHSExpr); | ||||
| 15434 | |||||
| 15435 | // Check that one of the sides is a comparison operator and the other isn't. | ||||
| 15436 | bool isLeftComp = LHSBO && LHSBO->isComparisonOp(); | ||||
| 15437 | bool isRightComp = RHSBO && RHSBO->isComparisonOp(); | ||||
| 15438 | if (isLeftComp == isRightComp) | ||||
| 15439 | return; | ||||
| 15440 | |||||
| 15441 | // Bitwise operations are sometimes used as eager logical ops. | ||||
| 15442 | // Don't diagnose this. | ||||
| 15443 | bool isLeftBitwise = LHSBO && LHSBO->isBitwiseOp(); | ||||
| 15444 | bool isRightBitwise = RHSBO && RHSBO->isBitwiseOp(); | ||||
| 15445 | if (isLeftBitwise || isRightBitwise) | ||||
| 15446 | return; | ||||
| 15447 | |||||
| 15448 | SourceRange DiagRange = isLeftComp | ||||
| 15449 | ? SourceRange(LHSExpr->getBeginLoc(), OpLoc) | ||||
| 15450 | : SourceRange(OpLoc, RHSExpr->getEndLoc()); | ||||
| 15451 | StringRef OpStr = isLeftComp ? LHSBO->getOpcodeStr() : RHSBO->getOpcodeStr(); | ||||
| 15452 | SourceRange ParensRange = | ||||
| 15453 | isLeftComp | ||||
| 15454 | ? SourceRange(LHSBO->getRHS()->getBeginLoc(), RHSExpr->getEndLoc()) | ||||
| 15455 | : SourceRange(LHSExpr->getBeginLoc(), RHSBO->getLHS()->getEndLoc()); | ||||
| 15456 | |||||
| 15457 | Self.Diag(OpLoc, diag::warn_precedence_bitwise_rel) | ||||
| 15458 | << DiagRange << BinaryOperator::getOpcodeStr(Opc) << OpStr; | ||||
| 15459 | SuggestParentheses(Self, OpLoc, | ||||
| 15460 | Self.PDiag(diag::note_precedence_silence) << OpStr, | ||||
| 15461 | (isLeftComp ? LHSExpr : RHSExpr)->getSourceRange()); | ||||
| 15462 | SuggestParentheses(Self, OpLoc, | ||||
| 15463 | Self.PDiag(diag::note_precedence_bitwise_first) | ||||
| 15464 | << BinaryOperator::getOpcodeStr(Opc), | ||||
| 15465 | ParensRange); | ||||
| 15466 | } | ||||
| 15467 | |||||
| 15468 | /// It accepts a '&&' expr that is inside a '||' one. | ||||
| 15469 | /// Emit a diagnostic together with a fixit hint that wraps the '&&' expression | ||||
| 15470 | /// in parentheses. | ||||
| 15471 | static void | ||||
| 15472 | EmitDiagnosticForLogicalAndInLogicalOr(Sema &Self, SourceLocation OpLoc, | ||||
| 15473 | BinaryOperator *Bop) { | ||||
| 15474 | assert(Bop->getOpcode() == BO_LAnd)(static_cast <bool> (Bop->getOpcode() == BO_LAnd) ? void (0) : __assert_fail ("Bop->getOpcode() == BO_LAnd", "clang/lib/Sema/SemaExpr.cpp" , 15474, __extension__ __PRETTY_FUNCTION__)); | ||||
| 15475 | Self.Diag(Bop->getOperatorLoc(), diag::warn_logical_and_in_logical_or) | ||||
| 15476 | << Bop->getSourceRange() << OpLoc; | ||||
| 15477 | SuggestParentheses(Self, Bop->getOperatorLoc(), | ||||
| 15478 | Self.PDiag(diag::note_precedence_silence) | ||||
| 15479 | << Bop->getOpcodeStr(), | ||||
| 15480 | Bop->getSourceRange()); | ||||
| 15481 | } | ||||
| 15482 | |||||
| 15483 | /// Look for '&&' in the left hand of a '||' expr. | ||||
| 15484 | static void DiagnoseLogicalAndInLogicalOrLHS(Sema &S, SourceLocation OpLoc, | ||||
| 15485 | Expr *LHSExpr, Expr *RHSExpr) { | ||||
| 15486 | if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(LHSExpr)) { | ||||
| 15487 | if (Bop->getOpcode() == BO_LAnd) { | ||||
| 15488 | // If it's "string_literal && a || b" don't warn since the precedence | ||||
| 15489 | // doesn't matter. | ||||
| 15490 | if (!isa<StringLiteral>(Bop->getLHS()->IgnoreParenImpCasts())) | ||||
| 15491 | return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop); | ||||
| 15492 | } else if (Bop->getOpcode() == BO_LOr) { | ||||
| 15493 | if (BinaryOperator *RBop = dyn_cast<BinaryOperator>(Bop->getRHS())) { | ||||
| 15494 | // If it's "a || b && string_literal || c" we didn't warn earlier for | ||||
| 15495 | // "a || b && string_literal", but warn now. | ||||
| 15496 | if (RBop->getOpcode() == BO_LAnd && | ||||
| 15497 | isa<StringLiteral>(RBop->getRHS()->IgnoreParenImpCasts())) | ||||
| 15498 | return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, RBop); | ||||
| 15499 | } | ||||
| 15500 | } | ||||
| 15501 | } | ||||
| 15502 | } | ||||
| 15503 | |||||
| 15504 | /// Look for '&&' in the right hand of a '||' expr. | ||||
| 15505 | static void DiagnoseLogicalAndInLogicalOrRHS(Sema &S, SourceLocation OpLoc, | ||||
| 15506 | Expr *LHSExpr, Expr *RHSExpr) { | ||||
| 15507 | if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(RHSExpr)) { | ||||
| 15508 | if (Bop->getOpcode() == BO_LAnd) { | ||||
| 15509 | // If it's "a || b && string_literal" don't warn since the precedence | ||||
| 15510 | // doesn't matter. | ||||
| 15511 | if (!isa<StringLiteral>(Bop->getRHS()->IgnoreParenImpCasts())) | ||||
| 15512 | return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop); | ||||
| 15513 | } | ||||
| 15514 | } | ||||
| 15515 | } | ||||
| 15516 | |||||
| 15517 | /// Look for bitwise op in the left or right hand of a bitwise op with | ||||
| 15518 | /// lower precedence and emit a diagnostic together with a fixit hint that wraps | ||||
| 15519 | /// the '&' expression in parentheses. | ||||
| 15520 | static void DiagnoseBitwiseOpInBitwiseOp(Sema &S, BinaryOperatorKind Opc, | ||||
| 15521 | SourceLocation OpLoc, Expr *SubExpr) { | ||||
| 15522 | if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(SubExpr)) { | ||||
| 15523 | if (Bop->isBitwiseOp() && Bop->getOpcode() < Opc) { | ||||
| 15524 | S.Diag(Bop->getOperatorLoc(), diag::warn_bitwise_op_in_bitwise_op) | ||||
| 15525 | << Bop->getOpcodeStr() << BinaryOperator::getOpcodeStr(Opc) | ||||
| 15526 | << Bop->getSourceRange() << OpLoc; | ||||
| 15527 | SuggestParentheses(S, Bop->getOperatorLoc(), | ||||
| 15528 | S.PDiag(diag::note_precedence_silence) | ||||
| 15529 | << Bop->getOpcodeStr(), | ||||
| 15530 | Bop->getSourceRange()); | ||||
| 15531 | } | ||||
| 15532 | } | ||||
| 15533 | } | ||||
| 15534 | |||||
| 15535 | static void DiagnoseAdditionInShift(Sema &S, SourceLocation OpLoc, | ||||
| 15536 | Expr *SubExpr, StringRef Shift) { | ||||
| 15537 | if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(SubExpr)) { | ||||
| 15538 | if (Bop->getOpcode() == BO_Add || Bop->getOpcode() == BO_Sub) { | ||||
| 15539 | StringRef Op = Bop->getOpcodeStr(); | ||||
| 15540 | S.Diag(Bop->getOperatorLoc(), diag::warn_addition_in_bitshift) | ||||
| 15541 | << Bop->getSourceRange() << OpLoc << Shift << Op; | ||||
| 15542 | SuggestParentheses(S, Bop->getOperatorLoc(), | ||||
| 15543 | S.PDiag(diag::note_precedence_silence) << Op, | ||||
| 15544 | Bop->getSourceRange()); | ||||
| 15545 | } | ||||
| 15546 | } | ||||
| 15547 | } | ||||
| 15548 | |||||
| 15549 | static void DiagnoseShiftCompare(Sema &S, SourceLocation OpLoc, | ||||
| 15550 | Expr *LHSExpr, Expr *RHSExpr) { | ||||
| 15551 | CXXOperatorCallExpr *OCE = dyn_cast<CXXOperatorCallExpr>(LHSExpr); | ||||
| 15552 | if (!OCE) | ||||
| 15553 | return; | ||||
| 15554 | |||||
| 15555 | FunctionDecl *FD = OCE->getDirectCallee(); | ||||
| 15556 | if (!FD || !FD->isOverloadedOperator()) | ||||
| 15557 | return; | ||||
| 15558 | |||||
| 15559 | OverloadedOperatorKind Kind = FD->getOverloadedOperator(); | ||||
| 15560 | if (Kind != OO_LessLess && Kind != OO_GreaterGreater) | ||||
| 15561 | return; | ||||
| 15562 | |||||
| 15563 | S.Diag(OpLoc, diag::warn_overloaded_shift_in_comparison) | ||||
| 15564 | << LHSExpr->getSourceRange() << RHSExpr->getSourceRange() | ||||
| 15565 | << (Kind == OO_LessLess); | ||||
| 15566 | SuggestParentheses(S, OCE->getOperatorLoc(), | ||||
| 15567 | S.PDiag(diag::note_precedence_silence) | ||||
| 15568 | << (Kind == OO_LessLess ? "<<" : ">>"), | ||||
| 15569 | OCE->getSourceRange()); | ||||
| 15570 | SuggestParentheses( | ||||
| 15571 | S, OpLoc, S.PDiag(diag::note_evaluate_comparison_first), | ||||
| 15572 | SourceRange(OCE->getArg(1)->getBeginLoc(), RHSExpr->getEndLoc())); | ||||
| 15573 | } | ||||
| 15574 | |||||
| 15575 | /// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky | ||||
| 15576 | /// precedence. | ||||
| 15577 | static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperatorKind Opc, | ||||
| 15578 | SourceLocation OpLoc, Expr *LHSExpr, | ||||
| 15579 | Expr *RHSExpr){ | ||||
| 15580 | // Diagnose "arg1 'bitwise' arg2 'eq' arg3". | ||||
| 15581 | if (BinaryOperator::isBitwiseOp(Opc)) | ||||
| 15582 | DiagnoseBitwisePrecedence(Self, Opc, OpLoc, LHSExpr, RHSExpr); | ||||
| 15583 | |||||
| 15584 | // Diagnose "arg1 & arg2 | arg3" | ||||
| 15585 | if ((Opc == BO_Or || Opc == BO_Xor) && | ||||
| 15586 | !OpLoc.isMacroID()/* Don't warn in macros. */) { | ||||
| 15587 | DiagnoseBitwiseOpInBitwiseOp(Self, Opc, OpLoc, LHSExpr); | ||||
| 15588 | DiagnoseBitwiseOpInBitwiseOp(Self, Opc, OpLoc, RHSExpr); | ||||
| 15589 | } | ||||
| 15590 | |||||
| 15591 | // Warn about arg1 || arg2 && arg3, as GCC 4.3+ does. | ||||
| 15592 | // We don't warn for 'assert(a || b && "bad")' since this is safe. | ||||
| 15593 | if (Opc == BO_LOr && !OpLoc.isMacroID()/* Don't warn in macros. */) { | ||||
| 15594 | DiagnoseLogicalAndInLogicalOrLHS(Self, OpLoc, LHSExpr, RHSExpr); | ||||
| 15595 | DiagnoseLogicalAndInLogicalOrRHS(Self, OpLoc, LHSExpr, RHSExpr); | ||||
| 15596 | } | ||||
| 15597 | |||||
| 15598 | if ((Opc == BO_Shl && LHSExpr->getType()->isIntegralType(Self.getASTContext())) | ||||
| 15599 | || Opc == BO_Shr) { | ||||
| 15600 | StringRef Shift = BinaryOperator::getOpcodeStr(Opc); | ||||
| 15601 | DiagnoseAdditionInShift(Self, OpLoc, LHSExpr, Shift); | ||||
| 15602 | DiagnoseAdditionInShift(Self, OpLoc, RHSExpr, Shift); | ||||
| 15603 | } | ||||
| 15604 | |||||
| 15605 | // Warn on overloaded shift operators and comparisons, such as: | ||||
| 15606 | // cout << 5 == 4; | ||||
| 15607 | if (BinaryOperator::isComparisonOp(Opc)) | ||||
| 15608 | DiagnoseShiftCompare(Self, OpLoc, LHSExpr, RHSExpr); | ||||
| 15609 | } | ||||
| 15610 | |||||
| 15611 | // Binary Operators. 'Tok' is the token for the operator. | ||||
| 15612 | ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc, | ||||
| 15613 | tok::TokenKind Kind, | ||||
| 15614 | Expr *LHSExpr, Expr *RHSExpr) { | ||||
| 15615 | BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Kind); | ||||
| 15616 | assert(LHSExpr && "ActOnBinOp(): missing left expression")(static_cast <bool> (LHSExpr && "ActOnBinOp(): missing left expression" ) ? void (0) : __assert_fail ("LHSExpr && \"ActOnBinOp(): missing left expression\"" , "clang/lib/Sema/SemaExpr.cpp", 15616, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 15617 | assert(RHSExpr && "ActOnBinOp(): missing right expression")(static_cast <bool> (RHSExpr && "ActOnBinOp(): missing right expression" ) ? void (0) : __assert_fail ("RHSExpr && \"ActOnBinOp(): missing right expression\"" , "clang/lib/Sema/SemaExpr.cpp", 15617, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 15618 | |||||
| 15619 | // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0" | ||||
| 15620 | DiagnoseBinOpPrecedence(*this, Opc, TokLoc, LHSExpr, RHSExpr); | ||||
| 15621 | |||||
| 15622 | return BuildBinOp(S, TokLoc, Opc, LHSExpr, RHSExpr); | ||||
| 15623 | } | ||||
| 15624 | |||||
| 15625 | void Sema::LookupBinOp(Scope *S, SourceLocation OpLoc, BinaryOperatorKind Opc, | ||||
| 15626 | UnresolvedSetImpl &Functions) { | ||||
| 15627 | OverloadedOperatorKind OverOp = BinaryOperator::getOverloadedOperator(Opc); | ||||
| 15628 | if (OverOp != OO_None && OverOp != OO_Equal) | ||||
| 15629 | LookupOverloadedOperatorName(OverOp, S, Functions); | ||||
| 15630 | |||||
| 15631 | // In C++20 onwards, we may have a second operator to look up. | ||||
| 15632 | if (getLangOpts().CPlusPlus20) { | ||||
| 15633 | if (OverloadedOperatorKind ExtraOp = getRewrittenOverloadedOperator(OverOp)) | ||||
| 15634 | LookupOverloadedOperatorName(ExtraOp, S, Functions); | ||||
| 15635 | } | ||||
| 15636 | } | ||||
| 15637 | |||||
| 15638 | /// Build an overloaded binary operator expression in the given scope. | ||||
| 15639 | static ExprResult BuildOverloadedBinOp(Sema &S, Scope *Sc, SourceLocation OpLoc, | ||||
| 15640 | BinaryOperatorKind Opc, | ||||
| 15641 | Expr *LHS, Expr *RHS) { | ||||
| 15642 | switch (Opc) { | ||||
| 15643 | case BO_Assign: | ||||
| 15644 | case BO_DivAssign: | ||||
| 15645 | case BO_RemAssign: | ||||
| 15646 | case BO_SubAssign: | ||||
| 15647 | case BO_AndAssign: | ||||
| 15648 | case BO_OrAssign: | ||||
| 15649 | case BO_XorAssign: | ||||
| 15650 | DiagnoseSelfAssignment(S, LHS, RHS, OpLoc, false); | ||||
| 15651 | CheckIdentityFieldAssignment(LHS, RHS, OpLoc, S); | ||||
| 15652 | break; | ||||
| 15653 | default: | ||||
| 15654 | break; | ||||
| 15655 | } | ||||
| 15656 | |||||
| 15657 | // Find all of the overloaded operators visible from this point. | ||||
| 15658 | UnresolvedSet<16> Functions; | ||||
| 15659 | S.LookupBinOp(Sc, OpLoc, Opc, Functions); | ||||
| 15660 | |||||
| 15661 | // Build the (potentially-overloaded, potentially-dependent) | ||||
| 15662 | // binary operation. | ||||
| 15663 | return S.CreateOverloadedBinOp(OpLoc, Opc, Functions, LHS, RHS); | ||||
| 15664 | } | ||||
| 15665 | |||||
| 15666 | ExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc, | ||||
| 15667 | BinaryOperatorKind Opc, | ||||
| 15668 | Expr *LHSExpr, Expr *RHSExpr) { | ||||
| 15669 | ExprResult LHS, RHS; | ||||
| 15670 | std::tie(LHS, RHS) = CorrectDelayedTyposInBinOp(*this, Opc, LHSExpr, RHSExpr); | ||||
| 15671 | if (!LHS.isUsable() || !RHS.isUsable()) | ||||
| 15672 | return ExprError(); | ||||
| 15673 | LHSExpr = LHS.get(); | ||||
| 15674 | RHSExpr = RHS.get(); | ||||
| 15675 | |||||
| 15676 | // We want to end up calling one of checkPseudoObjectAssignment | ||||
| 15677 | // (if the LHS is a pseudo-object), BuildOverloadedBinOp (if | ||||
| 15678 | // both expressions are overloadable or either is type-dependent), | ||||
| 15679 | // or CreateBuiltinBinOp (in any other case). We also want to get | ||||
| 15680 | // any placeholder types out of the way. | ||||
| 15681 | |||||
| 15682 | // Handle pseudo-objects in the LHS. | ||||
| 15683 | if (const BuiltinType *pty = LHSExpr->getType()->getAsPlaceholderType()) { | ||||
| 15684 | // Assignments with a pseudo-object l-value need special analysis. | ||||
| 15685 | if (pty->getKind() == BuiltinType::PseudoObject && | ||||
| 15686 | BinaryOperator::isAssignmentOp(Opc)) | ||||
| 15687 | return checkPseudoObjectAssignment(S, OpLoc, Opc, LHSExpr, RHSExpr); | ||||
| 15688 | |||||
| 15689 | // Don't resolve overloads if the other type is overloadable. | ||||
| 15690 | if (getLangOpts().CPlusPlus && pty->getKind() == BuiltinType::Overload) { | ||||
| 15691 | // We can't actually test that if we still have a placeholder, | ||||
| 15692 | // though. Fortunately, none of the exceptions we see in that | ||||
| 15693 | // code below are valid when the LHS is an overload set. Note | ||||
| 15694 | // that an overload set can be dependently-typed, but it never | ||||
| 15695 | // instantiates to having an overloadable type. | ||||
| 15696 | ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr); | ||||
| 15697 | if (resolvedRHS.isInvalid()) return ExprError(); | ||||
| 15698 | RHSExpr = resolvedRHS.get(); | ||||
| 15699 | |||||
| 15700 | if (RHSExpr->isTypeDependent() || | ||||
| 15701 | RHSExpr->getType()->isOverloadableType()) | ||||
| 15702 | return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr); | ||||
| 15703 | } | ||||
| 15704 | |||||
| 15705 | // If we're instantiating "a.x < b" or "A::x < b" and 'x' names a function | ||||
| 15706 | // template, diagnose the missing 'template' keyword instead of diagnosing | ||||
| 15707 | // an invalid use of a bound member function. | ||||
| 15708 | // | ||||
| 15709 | // Note that "A::x < b" might be valid if 'b' has an overloadable type due | ||||
| 15710 | // to C++1z [over.over]/1.4, but we already checked for that case above. | ||||
| 15711 | if (Opc == BO_LT && inTemplateInstantiation() && | ||||
| 15712 | (pty->getKind() == BuiltinType::BoundMember || | ||||
| 15713 | pty->getKind() == BuiltinType::Overload)) { | ||||
| 15714 | auto *OE = dyn_cast<OverloadExpr>(LHSExpr); | ||||
| 15715 | if (OE && !OE->hasTemplateKeyword() && !OE->hasExplicitTemplateArgs() && | ||||
| 15716 | llvm::any_of(OE->decls(), [](NamedDecl *ND) { | ||||
| 15717 | return isa<FunctionTemplateDecl>(ND); | ||||
| 15718 | })) { | ||||
| 15719 | Diag(OE->getQualifier() ? OE->getQualifierLoc().getBeginLoc() | ||||
| 15720 | : OE->getNameLoc(), | ||||
| 15721 | diag::err_template_kw_missing) | ||||
| 15722 | << OE->getName().getAsString() << ""; | ||||
| 15723 | return ExprError(); | ||||
| 15724 | } | ||||
| 15725 | } | ||||
| 15726 | |||||
| 15727 | ExprResult LHS = CheckPlaceholderExpr(LHSExpr); | ||||
| 15728 | if (LHS.isInvalid()) return ExprError(); | ||||
| 15729 | LHSExpr = LHS.get(); | ||||
| 15730 | } | ||||
| 15731 | |||||
| 15732 | // Handle pseudo-objects in the RHS. | ||||
| 15733 | if (const BuiltinType *pty = RHSExpr->getType()->getAsPlaceholderType()) { | ||||
| 15734 | // An overload in the RHS can potentially be resolved by the type | ||||
| 15735 | // being assigned to. | ||||
| 15736 | if (Opc == BO_Assign && pty->getKind() == BuiltinType::Overload) { | ||||
| 15737 | if (getLangOpts().CPlusPlus && | ||||
| 15738 | (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent() || | ||||
| 15739 | LHSExpr->getType()->isOverloadableType())) | ||||
| 15740 | return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr); | ||||
| 15741 | |||||
| 15742 | return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr); | ||||
| 15743 | } | ||||
| 15744 | |||||
| 15745 | // Don't resolve overloads if the other type is overloadable. | ||||
| 15746 | if (getLangOpts().CPlusPlus && pty->getKind() == BuiltinType::Overload && | ||||
| 15747 | LHSExpr->getType()->isOverloadableType()) | ||||
| 15748 | return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr); | ||||
| 15749 | |||||
| 15750 | ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr); | ||||
| 15751 | if (!resolvedRHS.isUsable()) return ExprError(); | ||||
| 15752 | RHSExpr = resolvedRHS.get(); | ||||
| 15753 | } | ||||
| 15754 | |||||
| 15755 | if (getLangOpts().CPlusPlus) { | ||||
| 15756 | // If either expression is type-dependent, always build an | ||||
| 15757 | // overloaded op. | ||||
| 15758 | if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent()) | ||||
| 15759 | return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr); | ||||
| 15760 | |||||
| 15761 | // Otherwise, build an overloaded op if either expression has an | ||||
| 15762 | // overloadable type. | ||||
| 15763 | if (LHSExpr->getType()->isOverloadableType() || | ||||
| 15764 | RHSExpr->getType()->isOverloadableType()) | ||||
| 15765 | return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr); | ||||
| 15766 | } | ||||
| 15767 | |||||
| 15768 | if (getLangOpts().RecoveryAST && | ||||
| 15769 | (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())) { | ||||
| 15770 | assert(!getLangOpts().CPlusPlus)(static_cast <bool> (!getLangOpts().CPlusPlus) ? void ( 0) : __assert_fail ("!getLangOpts().CPlusPlus", "clang/lib/Sema/SemaExpr.cpp" , 15770, __extension__ __PRETTY_FUNCTION__)); | ||||
| 15771 | assert((LHSExpr->containsErrors() || RHSExpr->containsErrors()) &&(static_cast <bool> ((LHSExpr->containsErrors() || RHSExpr ->containsErrors()) && "Should only occur in error-recovery path." ) ? void (0) : __assert_fail ("(LHSExpr->containsErrors() || RHSExpr->containsErrors()) && \"Should only occur in error-recovery path.\"" , "clang/lib/Sema/SemaExpr.cpp", 15772, __extension__ __PRETTY_FUNCTION__ )) | ||||
| 15772 | "Should only occur in error-recovery path.")(static_cast <bool> ((LHSExpr->containsErrors() || RHSExpr ->containsErrors()) && "Should only occur in error-recovery path." ) ? void (0) : __assert_fail ("(LHSExpr->containsErrors() || RHSExpr->containsErrors()) && \"Should only occur in error-recovery path.\"" , "clang/lib/Sema/SemaExpr.cpp", 15772, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 15773 | if (BinaryOperator::isCompoundAssignmentOp(Opc)) | ||||
| 15774 | // C [6.15.16] p3: | ||||
| 15775 | // An assignment expression has the value of the left operand after the | ||||
| 15776 | // assignment, but is not an lvalue. | ||||
| 15777 | return CompoundAssignOperator::Create( | ||||
| 15778 | Context, LHSExpr, RHSExpr, Opc, | ||||
| 15779 | LHSExpr->getType().getUnqualifiedType(), VK_PRValue, OK_Ordinary, | ||||
| 15780 | OpLoc, CurFPFeatureOverrides()); | ||||
| 15781 | QualType ResultType; | ||||
| 15782 | switch (Opc) { | ||||
| 15783 | case BO_Assign: | ||||
| 15784 | ResultType = LHSExpr->getType().getUnqualifiedType(); | ||||
| 15785 | break; | ||||
| 15786 | case BO_LT: | ||||
| 15787 | case BO_GT: | ||||
| 15788 | case BO_LE: | ||||
| 15789 | case BO_GE: | ||||
| 15790 | case BO_EQ: | ||||
| 15791 | case BO_NE: | ||||
| 15792 | case BO_LAnd: | ||||
| 15793 | case BO_LOr: | ||||
| 15794 | // These operators have a fixed result type regardless of operands. | ||||
| 15795 | ResultType = Context.IntTy; | ||||
| 15796 | break; | ||||
| 15797 | case BO_Comma: | ||||
| 15798 | ResultType = RHSExpr->getType(); | ||||
| 15799 | break; | ||||
| 15800 | default: | ||||
| 15801 | ResultType = Context.DependentTy; | ||||
| 15802 | break; | ||||
| 15803 | } | ||||
| 15804 | return BinaryOperator::Create(Context, LHSExpr, RHSExpr, Opc, ResultType, | ||||
| 15805 | VK_PRValue, OK_Ordinary, OpLoc, | ||||
| 15806 | CurFPFeatureOverrides()); | ||||
| 15807 | } | ||||
| 15808 | |||||
| 15809 | // Build a built-in binary operation. | ||||
| 15810 | return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr); | ||||
| 15811 | } | ||||
| 15812 | |||||
| 15813 | static bool isOverflowingIntegerType(ASTContext &Ctx, QualType T) { | ||||
| 15814 | if (T.isNull() || T->isDependentType()) | ||||
| 15815 | return false; | ||||
| 15816 | |||||
| 15817 | if (!Ctx.isPromotableIntegerType(T)) | ||||
| 15818 | return true; | ||||
| 15819 | |||||
| 15820 | return Ctx.getIntWidth(T) >= Ctx.getIntWidth(Ctx.IntTy); | ||||
| 15821 | } | ||||
| 15822 | |||||
| 15823 | ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc, | ||||
| 15824 | UnaryOperatorKind Opc, Expr *InputExpr, | ||||
| 15825 | bool IsAfterAmp) { | ||||
| 15826 | ExprResult Input = InputExpr; | ||||
| 15827 | ExprValueKind VK = VK_PRValue; | ||||
| 15828 | ExprObjectKind OK = OK_Ordinary; | ||||
| 15829 | QualType resultType; | ||||
| 15830 | bool CanOverflow = false; | ||||
| 15831 | |||||
| 15832 | bool ConvertHalfVec = false; | ||||
| 15833 | if (getLangOpts().OpenCL) { | ||||
| 15834 | QualType Ty = InputExpr->getType(); | ||||
| 15835 | // The only legal unary operation for atomics is '&'. | ||||
| 15836 | if ((Opc != UO_AddrOf && Ty->isAtomicType()) || | ||||
| 15837 | // OpenCL special types - image, sampler, pipe, and blocks are to be used | ||||
| 15838 | // only with a builtin functions and therefore should be disallowed here. | ||||
| 15839 | (Ty->isImageType() || Ty->isSamplerT() || Ty->isPipeType() | ||||
| 15840 | || Ty->isBlockPointerType())) { | ||||
| 15841 | return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr) | ||||
| 15842 | << InputExpr->getType() | ||||
| 15843 | << Input.get()->getSourceRange()); | ||||
| 15844 | } | ||||
| 15845 | } | ||||
| 15846 | |||||
| 15847 | if (getLangOpts().HLSL && OpLoc.isValid()) { | ||||
| 15848 | if (Opc == UO_AddrOf) | ||||
| 15849 | return ExprError(Diag(OpLoc, diag::err_hlsl_operator_unsupported) << 0); | ||||
| 15850 | if (Opc == UO_Deref) | ||||
| 15851 | return ExprError(Diag(OpLoc, diag::err_hlsl_operator_unsupported) << 1); | ||||
| 15852 | } | ||||
| 15853 | |||||
| 15854 | switch (Opc) { | ||||
| 15855 | case UO_PreInc: | ||||
| 15856 | case UO_PreDec: | ||||
| 15857 | case UO_PostInc: | ||||
| 15858 | case UO_PostDec: | ||||
| 15859 | resultType = CheckIncrementDecrementOperand(*this, Input.get(), VK, OK, | ||||
| 15860 | OpLoc, | ||||
| 15861 | Opc == UO_PreInc || | ||||
| 15862 | Opc == UO_PostInc, | ||||
| 15863 | Opc == UO_PreInc || | ||||
| 15864 | Opc == UO_PreDec); | ||||
| 15865 | CanOverflow = isOverflowingIntegerType(Context, resultType); | ||||
| 15866 | break; | ||||
| 15867 | case UO_AddrOf: | ||||
| 15868 | resultType = CheckAddressOfOperand(Input, OpLoc); | ||||
| 15869 | CheckAddressOfNoDeref(InputExpr); | ||||
| 15870 | RecordModifiableNonNullParam(*this, InputExpr); | ||||
| 15871 | break; | ||||
| 15872 | case UO_Deref: { | ||||
| 15873 | Input = DefaultFunctionArrayLvalueConversion(Input.get()); | ||||
| 15874 | if (Input.isInvalid()) return ExprError(); | ||||
| 15875 | resultType = | ||||
| 15876 | CheckIndirectionOperand(*this, Input.get(), VK, OpLoc, IsAfterAmp); | ||||
| 15877 | break; | ||||
| 15878 | } | ||||
| 15879 | case UO_Plus: | ||||
| 15880 | case UO_Minus: | ||||
| 15881 | CanOverflow = Opc == UO_Minus && | ||||
| 15882 | isOverflowingIntegerType(Context, Input.get()->getType()); | ||||
| 15883 | Input = UsualUnaryConversions(Input.get()); | ||||
| 15884 | if (Input.isInvalid()) return ExprError(); | ||||
| 15885 | // Unary plus and minus require promoting an operand of half vector to a | ||||
| 15886 | // float vector and truncating the result back to a half vector. For now, we | ||||
| 15887 | // do this only when HalfArgsAndReturns is set (that is, when the target is | ||||
| 15888 | // arm or arm64). | ||||
| 15889 | ConvertHalfVec = needsConversionOfHalfVec(true, Context, Input.get()); | ||||
| 15890 | |||||
| 15891 | // If the operand is a half vector, promote it to a float vector. | ||||
| 15892 | if (ConvertHalfVec) | ||||
| 15893 | Input = convertVector(Input.get(), Context.FloatTy, *this); | ||||
| 15894 | resultType = Input.get()->getType(); | ||||
| 15895 | if (resultType->isDependentType()) | ||||
| 15896 | break; | ||||
| 15897 | if (resultType->isArithmeticType()) // C99 6.5.3.3p1 | ||||
| 15898 | break; | ||||
| 15899 | else if (resultType->isVectorType() && | ||||
| 15900 | // The z vector extensions don't allow + or - with bool vectors. | ||||
| 15901 | (!Context.getLangOpts().ZVector || | ||||
| 15902 | resultType->castAs<VectorType>()->getVectorKind() != | ||||
| 15903 | VectorType::AltiVecBool)) | ||||
| 15904 | break; | ||||
| 15905 | else if (resultType->isVLSTBuiltinType()) // SVE vectors allow + and - | ||||
| 15906 | break; | ||||
| 15907 | else if (getLangOpts().CPlusPlus && // C++ [expr.unary.op]p6 | ||||
| 15908 | Opc == UO_Plus && | ||||
| 15909 | resultType->isPointerType()) | ||||
| 15910 | break; | ||||
| 15911 | |||||
| 15912 | return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr) | ||||
| 15913 | << resultType << Input.get()->getSourceRange()); | ||||
| 15914 | |||||
| 15915 | case UO_Not: // bitwise complement | ||||
| 15916 | Input = UsualUnaryConversions(Input.get()); | ||||
| 15917 | if (Input.isInvalid()) | ||||
| 15918 | return ExprError(); | ||||
| 15919 | resultType = Input.get()->getType(); | ||||
| 15920 | if (resultType->isDependentType()) | ||||
| 15921 | break; | ||||
| 15922 | // C99 6.5.3.3p1. We allow complex int and float as a GCC extension. | ||||
| 15923 | if (resultType->isComplexType() || resultType->isComplexIntegerType()) | ||||
| 15924 | // C99 does not support '~' for complex conjugation. | ||||
| 15925 | Diag(OpLoc, diag::ext_integer_complement_complex) | ||||
| 15926 | << resultType << Input.get()->getSourceRange(); | ||||
| 15927 | else if (resultType->hasIntegerRepresentation()) | ||||
| 15928 | break; | ||||
| 15929 | else if (resultType->isExtVectorType() && Context.getLangOpts().OpenCL) { | ||||
| 15930 | // OpenCL v1.1 s6.3.f: The bitwise operator not (~) does not operate | ||||
| 15931 | // on vector float types. | ||||
| 15932 | QualType T = resultType->castAs<ExtVectorType>()->getElementType(); | ||||
| 15933 | if (!T->isIntegerType()) | ||||
| 15934 | return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr) | ||||
| 15935 | << resultType << Input.get()->getSourceRange()); | ||||
| 15936 | } else { | ||||
| 15937 | return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr) | ||||
| 15938 | << resultType << Input.get()->getSourceRange()); | ||||
| 15939 | } | ||||
| 15940 | break; | ||||
| 15941 | |||||
| 15942 | case UO_LNot: // logical negation | ||||
| 15943 | // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5). | ||||
| 15944 | Input = DefaultFunctionArrayLvalueConversion(Input.get()); | ||||
| 15945 | if (Input.isInvalid()) return ExprError(); | ||||
| 15946 | resultType = Input.get()->getType(); | ||||
| 15947 | |||||
| 15948 | // Though we still have to promote half FP to float... | ||||
| 15949 | if (resultType->isHalfType() && !Context.getLangOpts().NativeHalfType) { | ||||
| 15950 | Input = ImpCastExprToType(Input.get(), Context.FloatTy, CK_FloatingCast).get(); | ||||
| 15951 | resultType = Context.FloatTy; | ||||
| 15952 | } | ||||
| 15953 | |||||
| 15954 | if (resultType->isDependentType()) | ||||
| 15955 | break; | ||||
| 15956 | if (resultType->isScalarType() && !isScopedEnumerationType(resultType)) { | ||||
| 15957 | // C99 6.5.3.3p1: ok, fallthrough; | ||||
| 15958 | if (Context.getLangOpts().CPlusPlus) { | ||||
| 15959 | // C++03 [expr.unary.op]p8, C++0x [expr.unary.op]p9: | ||||
| 15960 | // operand contextually converted to bool. | ||||
| 15961 | Input = ImpCastExprToType(Input.get(), Context.BoolTy, | ||||
| 15962 | ScalarTypeToBooleanCastKind(resultType)); | ||||
| 15963 | } else if (Context.getLangOpts().OpenCL && | ||||
| 15964 | Context.getLangOpts().OpenCLVersion < 120) { | ||||
| 15965 | // OpenCL v1.1 6.3.h: The logical operator not (!) does not | ||||
| 15966 | // operate on scalar float types. | ||||
| 15967 | if (!resultType->isIntegerType() && !resultType->isPointerType()) | ||||
| 15968 | return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr) | ||||
| 15969 | << resultType << Input.get()->getSourceRange()); | ||||
| 15970 | } | ||||
| 15971 | } else if (resultType->isExtVectorType()) { | ||||
| 15972 | if (Context.getLangOpts().OpenCL && | ||||
| 15973 | Context.getLangOpts().getOpenCLCompatibleVersion() < 120) { | ||||
| 15974 | // OpenCL v1.1 6.3.h: The logical operator not (!) does not | ||||
| 15975 | // operate on vector float types. | ||||
| 15976 | QualType T = resultType->castAs<ExtVectorType>()->getElementType(); | ||||
| 15977 | if (!T->isIntegerType()) | ||||
| 15978 | return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr) | ||||
| 15979 | << resultType << Input.get()->getSourceRange()); | ||||
| 15980 | } | ||||
| 15981 | // Vector logical not returns the signed variant of the operand type. | ||||
| 15982 | resultType = GetSignedVectorType(resultType); | ||||
| 15983 | break; | ||||
| 15984 | } else if (Context.getLangOpts().CPlusPlus && resultType->isVectorType()) { | ||||
| 15985 | const VectorType *VTy = resultType->castAs<VectorType>(); | ||||
| 15986 | if (VTy->getVectorKind() != VectorType::GenericVector) | ||||
| 15987 | return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr) | ||||
| 15988 | << resultType << Input.get()->getSourceRange()); | ||||
| 15989 | |||||
| 15990 | // Vector logical not returns the signed variant of the operand type. | ||||
| 15991 | resultType = GetSignedVectorType(resultType); | ||||
| 15992 | break; | ||||
| 15993 | } else { | ||||
| 15994 | return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr) | ||||
| 15995 | << resultType << Input.get()->getSourceRange()); | ||||
| 15996 | } | ||||
| 15997 | |||||
| 15998 | // LNot always has type int. C99 6.5.3.3p5. | ||||
| 15999 | // In C++, it's bool. C++ 5.3.1p8 | ||||
| 16000 | resultType = Context.getLogicalOperationType(); | ||||
| 16001 | break; | ||||
| 16002 | case UO_Real: | ||||
| 16003 | case UO_Imag: | ||||
| 16004 | resultType = CheckRealImagOperand(*this, Input, OpLoc, Opc == UO_Real); | ||||
| 16005 | // _Real maps ordinary l-values into ordinary l-values. _Imag maps ordinary | ||||
| 16006 | // complex l-values to ordinary l-values and all other values to r-values. | ||||
| 16007 | if (Input.isInvalid()) return ExprError(); | ||||
| 16008 | if (Opc == UO_Real || Input.get()->getType()->isAnyComplexType()) { | ||||
| 16009 | if (Input.get()->isGLValue() && | ||||
| 16010 | Input.get()->getObjectKind() == OK_Ordinary) | ||||
| 16011 | VK = Input.get()->getValueKind(); | ||||
| 16012 | } else if (!getLangOpts().CPlusPlus) { | ||||
| 16013 | // In C, a volatile scalar is read by __imag. In C++, it is not. | ||||
| 16014 | Input = DefaultLvalueConversion(Input.get()); | ||||
| 16015 | } | ||||
| 16016 | break; | ||||
| 16017 | case UO_Extension: | ||||
| 16018 | resultType = Input.get()->getType(); | ||||
| 16019 | VK = Input.get()->getValueKind(); | ||||
| 16020 | OK = Input.get()->getObjectKind(); | ||||
| 16021 | break; | ||||
| 16022 | case UO_Coawait: | ||||
| 16023 | // It's unnecessary to represent the pass-through operator co_await in the | ||||
| 16024 | // AST; just return the input expression instead. | ||||
| 16025 | assert(!Input.get()->getType()->isDependentType() &&(static_cast <bool> (!Input.get()->getType()->isDependentType () && "the co_await expression must be non-dependant before " "building operator co_await") ? void (0) : __assert_fail ("!Input.get()->getType()->isDependentType() && \"the co_await expression must be non-dependant before \" \"building operator co_await\"" , "clang/lib/Sema/SemaExpr.cpp", 16027, __extension__ __PRETTY_FUNCTION__ )) | ||||
| 16026 | "the co_await expression must be non-dependant before "(static_cast <bool> (!Input.get()->getType()->isDependentType () && "the co_await expression must be non-dependant before " "building operator co_await") ? void (0) : __assert_fail ("!Input.get()->getType()->isDependentType() && \"the co_await expression must be non-dependant before \" \"building operator co_await\"" , "clang/lib/Sema/SemaExpr.cpp", 16027, __extension__ __PRETTY_FUNCTION__ )) | ||||
| 16027 | "building operator co_await")(static_cast <bool> (!Input.get()->getType()->isDependentType () && "the co_await expression must be non-dependant before " "building operator co_await") ? void (0) : __assert_fail ("!Input.get()->getType()->isDependentType() && \"the co_await expression must be non-dependant before \" \"building operator co_await\"" , "clang/lib/Sema/SemaExpr.cpp", 16027, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 16028 | return Input; | ||||
| 16029 | } | ||||
| 16030 | if (resultType.isNull() || Input.isInvalid()) | ||||
| 16031 | return ExprError(); | ||||
| 16032 | |||||
| 16033 | // Check for array bounds violations in the operand of the UnaryOperator, | ||||
| 16034 | // except for the '*' and '&' operators that have to be handled specially | ||||
| 16035 | // by CheckArrayAccess (as there are special cases like &array[arraysize] | ||||
| 16036 | // that are explicitly defined as valid by the standard). | ||||
| 16037 | if (Opc != UO_AddrOf && Opc != UO_Deref) | ||||
| 16038 | CheckArrayAccess(Input.get()); | ||||
| 16039 | |||||
| 16040 | auto *UO = | ||||
| 16041 | UnaryOperator::Create(Context, Input.get(), Opc, resultType, VK, OK, | ||||
| 16042 | OpLoc, CanOverflow, CurFPFeatureOverrides()); | ||||
| 16043 | |||||
| 16044 | if (Opc == UO_Deref && UO->getType()->hasAttr(attr::NoDeref) && | ||||
| 16045 | !isa<ArrayType>(UO->getType().getDesugaredType(Context)) && | ||||
| 16046 | !isUnevaluatedContext()) | ||||
| 16047 | ExprEvalContexts.back().PossibleDerefs.insert(UO); | ||||
| 16048 | |||||
| 16049 | // Convert the result back to a half vector. | ||||
| 16050 | if (ConvertHalfVec) | ||||
| 16051 | return convertVector(UO, Context.HalfTy, *this); | ||||
| 16052 | return UO; | ||||
| 16053 | } | ||||
| 16054 | |||||
| 16055 | /// Determine whether the given expression is a qualified member | ||||
| 16056 | /// access expression, of a form that could be turned into a pointer to member | ||||
| 16057 | /// with the address-of operator. | ||||
| 16058 | bool Sema::isQualifiedMemberAccess(Expr *E) { | ||||
| 16059 | if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { | ||||
| 16060 | if (!DRE->getQualifier()) | ||||
| 16061 | return false; | ||||
| 16062 | |||||
| 16063 | ValueDecl *VD = DRE->getDecl(); | ||||
| 16064 | if (!VD->isCXXClassMember()) | ||||
| 16065 | return false; | ||||
| 16066 | |||||
| 16067 | if (isa<FieldDecl>(VD) || isa<IndirectFieldDecl>(VD)) | ||||
| 16068 | return true; | ||||
| 16069 | if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(VD)) | ||||
| 16070 | return Method->isInstance(); | ||||
| 16071 | |||||
| 16072 | return false; | ||||
| 16073 | } | ||||
| 16074 | |||||
| 16075 | if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) { | ||||
| 16076 | if (!ULE->getQualifier()) | ||||
| 16077 | return false; | ||||
| 16078 | |||||
| 16079 | for (NamedDecl *D : ULE->decls()) { | ||||
| 16080 | if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { | ||||
| 16081 | if (Method->isInstance()) | ||||
| 16082 | return true; | ||||
| 16083 | } else { | ||||
| 16084 | // Overload set does not contain methods. | ||||
| 16085 | break; | ||||
| 16086 | } | ||||
| 16087 | } | ||||
| 16088 | |||||
| 16089 | return false; | ||||
| 16090 | } | ||||
| 16091 | |||||
| 16092 | return false; | ||||
| 16093 | } | ||||
| 16094 | |||||
| 16095 | ExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc, | ||||
| 16096 | UnaryOperatorKind Opc, Expr *Input, | ||||
| 16097 | bool IsAfterAmp) { | ||||
| 16098 | // First things first: handle placeholders so that the | ||||
| 16099 | // overloaded-operator check considers the right type. | ||||
| 16100 | if (const BuiltinType *pty = Input->getType()->getAsPlaceholderType()) { | ||||
| 16101 | // Increment and decrement of pseudo-object references. | ||||
| 16102 | if (pty->getKind() == BuiltinType::PseudoObject && | ||||
| 16103 | UnaryOperator::isIncrementDecrementOp(Opc)) | ||||
| 16104 | return checkPseudoObjectIncDec(S, OpLoc, Opc, Input); | ||||
| 16105 | |||||
| 16106 | // extension is always a builtin operator. | ||||
| 16107 | if (Opc == UO_Extension) | ||||
| 16108 | return CreateBuiltinUnaryOp(OpLoc, Opc, Input); | ||||
| 16109 | |||||
| 16110 | // & gets special logic for several kinds of placeholder. | ||||
| 16111 | // The builtin code knows what to do. | ||||
| 16112 | if (Opc == UO_AddrOf && | ||||
| 16113 | (pty->getKind() == BuiltinType::Overload || | ||||
| 16114 | pty->getKind() == BuiltinType::UnknownAny || | ||||
| 16115 | pty->getKind() == BuiltinType::BoundMember)) | ||||
| 16116 | return CreateBuiltinUnaryOp(OpLoc, Opc, Input); | ||||
| 16117 | |||||
| 16118 | // Anything else needs to be handled now. | ||||
| 16119 | ExprResult Result = CheckPlaceholderExpr(Input); | ||||
| 16120 | if (Result.isInvalid()) return ExprError(); | ||||
| 16121 | Input = Result.get(); | ||||
| 16122 | } | ||||
| 16123 | |||||
| 16124 | if (getLangOpts().CPlusPlus && Input->getType()->isOverloadableType() && | ||||
| 16125 | UnaryOperator::getOverloadedOperator(Opc) != OO_None && | ||||
| 16126 | !(Opc == UO_AddrOf && isQualifiedMemberAccess(Input))) { | ||||
| 16127 | // Find all of the overloaded operators visible from this point. | ||||
| 16128 | UnresolvedSet<16> Functions; | ||||
| 16129 | OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc); | ||||
| 16130 | if (S && OverOp != OO_None) | ||||
| 16131 | LookupOverloadedOperatorName(OverOp, S, Functions); | ||||
| 16132 | |||||
| 16133 | return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, Input); | ||||
| 16134 | } | ||||
| 16135 | |||||
| 16136 | return CreateBuiltinUnaryOp(OpLoc, Opc, Input, IsAfterAmp); | ||||
| 16137 | } | ||||
| 16138 | |||||
| 16139 | // Unary Operators. 'Tok' is the token for the operator. | ||||
| 16140 | ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc, tok::TokenKind Op, | ||||
| 16141 | Expr *Input, bool IsAfterAmp) { | ||||
| 16142 | return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), Input, | ||||
| 16143 | IsAfterAmp); | ||||
| 16144 | } | ||||
| 16145 | |||||
| 16146 | /// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo". | ||||
| 16147 | ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc, | ||||
| 16148 | LabelDecl *TheDecl) { | ||||
| 16149 | TheDecl->markUsed(Context); | ||||
| 16150 | // Create the AST node. The address of a label always has type 'void*'. | ||||
| 16151 | auto *Res = new (Context) AddrLabelExpr( | ||||
| 16152 | OpLoc, LabLoc, TheDecl, Context.getPointerType(Context.VoidTy)); | ||||
| 16153 | |||||
| 16154 | if (getCurFunction()) | ||||
| 16155 | getCurFunction()->AddrLabels.push_back(Res); | ||||
| 16156 | |||||
| 16157 | return Res; | ||||
| 16158 | } | ||||
| 16159 | |||||
| 16160 | void Sema::ActOnStartStmtExpr() { | ||||
| 16161 | PushExpressionEvaluationContext(ExprEvalContexts.back().Context); | ||||
| 16162 | } | ||||
| 16163 | |||||
| 16164 | void Sema::ActOnStmtExprError() { | ||||
| 16165 | // Note that function is also called by TreeTransform when leaving a | ||||
| 16166 | // StmtExpr scope without rebuilding anything. | ||||
| 16167 | |||||
| 16168 | DiscardCleanupsInEvaluationContext(); | ||||
| 16169 | PopExpressionEvaluationContext(); | ||||
| 16170 | } | ||||
| 16171 | |||||
| 16172 | ExprResult Sema::ActOnStmtExpr(Scope *S, SourceLocation LPLoc, Stmt *SubStmt, | ||||
| 16173 | SourceLocation RPLoc) { | ||||
| 16174 | return BuildStmtExpr(LPLoc, SubStmt, RPLoc, getTemplateDepth(S)); | ||||
| 16175 | } | ||||
| 16176 | |||||
| 16177 | ExprResult Sema::BuildStmtExpr(SourceLocation LPLoc, Stmt *SubStmt, | ||||
| 16178 | SourceLocation RPLoc, unsigned TemplateDepth) { | ||||
| 16179 | assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!")(static_cast <bool> (SubStmt && isa<CompoundStmt >(SubStmt) && "Invalid action invocation!") ? void (0) : __assert_fail ("SubStmt && isa<CompoundStmt>(SubStmt) && \"Invalid action invocation!\"" , "clang/lib/Sema/SemaExpr.cpp", 16179, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 16180 | CompoundStmt *Compound = cast<CompoundStmt>(SubStmt); | ||||
| 16181 | |||||
| 16182 | if (hasAnyUnrecoverableErrorsInThisFunction()) | ||||
| 16183 | DiscardCleanupsInEvaluationContext(); | ||||
| 16184 | assert(!Cleanup.exprNeedsCleanups() &&(static_cast <bool> (!Cleanup.exprNeedsCleanups() && "cleanups within StmtExpr not correctly bound!") ? void (0) : __assert_fail ("!Cleanup.exprNeedsCleanups() && \"cleanups within StmtExpr not correctly bound!\"" , "clang/lib/Sema/SemaExpr.cpp", 16185, __extension__ __PRETTY_FUNCTION__ )) | ||||
| 16185 | "cleanups within StmtExpr not correctly bound!")(static_cast <bool> (!Cleanup.exprNeedsCleanups() && "cleanups within StmtExpr not correctly bound!") ? void (0) : __assert_fail ("!Cleanup.exprNeedsCleanups() && \"cleanups within StmtExpr not correctly bound!\"" , "clang/lib/Sema/SemaExpr.cpp", 16185, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 16186 | PopExpressionEvaluationContext(); | ||||
| 16187 | |||||
| 16188 | // FIXME: there are a variety of strange constraints to enforce here, for | ||||
| 16189 | // example, it is not possible to goto into a stmt expression apparently. | ||||
| 16190 | // More semantic analysis is needed. | ||||
| 16191 | |||||
| 16192 | // If there are sub-stmts in the compound stmt, take the type of the last one | ||||
| 16193 | // as the type of the stmtexpr. | ||||
| 16194 | QualType Ty = Context.VoidTy; | ||||
| 16195 | bool StmtExprMayBindToTemp = false; | ||||
| 16196 | if (!Compound->body_empty()) { | ||||
| 16197 | // For GCC compatibility we get the last Stmt excluding trailing NullStmts. | ||||
| 16198 | if (const auto *LastStmt = | ||||
| 16199 | dyn_cast<ValueStmt>(Compound->getStmtExprResult())) { | ||||
| 16200 | if (const Expr *Value = LastStmt->getExprStmt()) { | ||||
| 16201 | StmtExprMayBindToTemp = true; | ||||
| 16202 | Ty = Value->getType(); | ||||
| 16203 | } | ||||
| 16204 | } | ||||
| 16205 | } | ||||
| 16206 | |||||
| 16207 | // FIXME: Check that expression type is complete/non-abstract; statement | ||||
| 16208 | // expressions are not lvalues. | ||||
| 16209 | Expr *ResStmtExpr = | ||||
| 16210 | new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc, TemplateDepth); | ||||
| 16211 | if (StmtExprMayBindToTemp) | ||||
| 16212 | return MaybeBindToTemporary(ResStmtExpr); | ||||
| 16213 | return ResStmtExpr; | ||||
| 16214 | } | ||||
| 16215 | |||||
| 16216 | ExprResult Sema::ActOnStmtExprResult(ExprResult ER) { | ||||
| 16217 | if (ER.isInvalid()) | ||||
| 16218 | return ExprError(); | ||||
| 16219 | |||||
| 16220 | // Do function/array conversion on the last expression, but not | ||||
| 16221 | // lvalue-to-rvalue. However, initialize an unqualified type. | ||||
| 16222 | ER = DefaultFunctionArrayConversion(ER.get()); | ||||
| 16223 | if (ER.isInvalid()) | ||||
| 16224 | return ExprError(); | ||||
| 16225 | Expr *E = ER.get(); | ||||
| 16226 | |||||
| 16227 | if (E->isTypeDependent()) | ||||
| 16228 | return E; | ||||
| 16229 | |||||
| 16230 | // In ARC, if the final expression ends in a consume, splice | ||||
| 16231 | // the consume out and bind it later. In the alternate case | ||||
| 16232 | // (when dealing with a retainable type), the result | ||||
| 16233 | // initialization will create a produce. In both cases the | ||||
| 16234 | // result will be +1, and we'll need to balance that out with | ||||
| 16235 | // a bind. | ||||
| 16236 | auto *Cast = dyn_cast<ImplicitCastExpr>(E); | ||||
| 16237 | if (Cast && Cast->getCastKind() == CK_ARCConsumeObject) | ||||
| 16238 | return Cast->getSubExpr(); | ||||
| 16239 | |||||
| 16240 | // FIXME: Provide a better location for the initialization. | ||||
| 16241 | return PerformCopyInitialization( | ||||
| 16242 | InitializedEntity::InitializeStmtExprResult( | ||||
| 16243 | E->getBeginLoc(), E->getType().getUnqualifiedType()), | ||||
| 16244 | SourceLocation(), E); | ||||
| 16245 | } | ||||
| 16246 | |||||
| 16247 | ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc, | ||||
| 16248 | TypeSourceInfo *TInfo, | ||||
| 16249 | ArrayRef<OffsetOfComponent> Components, | ||||
| 16250 | SourceLocation RParenLoc) { | ||||
| 16251 | QualType ArgTy = TInfo->getType(); | ||||
| 16252 | bool Dependent = ArgTy->isDependentType(); | ||||
| 16253 | SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange(); | ||||
| 16254 | |||||
| 16255 | // We must have at least one component that refers to the type, and the first | ||||
| 16256 | // one is known to be a field designator. Verify that the ArgTy represents | ||||
| 16257 | // a struct/union/class. | ||||
| 16258 | if (!Dependent && !ArgTy->isRecordType()) | ||||
| 16259 | return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type) | ||||
| 16260 | << ArgTy << TypeRange); | ||||
| 16261 | |||||
| 16262 | // Type must be complete per C99 7.17p3 because a declaring a variable | ||||
| 16263 | // with an incomplete type would be ill-formed. | ||||
| 16264 | if (!Dependent | ||||
| 16265 | && RequireCompleteType(BuiltinLoc, ArgTy, | ||||
| 16266 | diag::err_offsetof_incomplete_type, TypeRange)) | ||||
| 16267 | return ExprError(); | ||||
| 16268 | |||||
| 16269 | bool DidWarnAboutNonPOD = false; | ||||
| 16270 | QualType CurrentType = ArgTy; | ||||
| 16271 | SmallVector<OffsetOfNode, 4> Comps; | ||||
| 16272 | SmallVector<Expr*, 4> Exprs; | ||||
| 16273 | for (const OffsetOfComponent &OC : Components) { | ||||
| 16274 | if (OC.isBrackets) { | ||||
| 16275 | // Offset of an array sub-field. TODO: Should we allow vector elements? | ||||
| 16276 | if (!CurrentType->isDependentType()) { | ||||
| 16277 | const ArrayType *AT = Context.getAsArrayType(CurrentType); | ||||
| 16278 | if(!AT) | ||||
| 16279 | return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type) | ||||
| 16280 | << CurrentType); | ||||
| 16281 | CurrentType = AT->getElementType(); | ||||
| 16282 | } else | ||||
| 16283 | CurrentType = Context.DependentTy; | ||||
| 16284 | |||||
| 16285 | ExprResult IdxRval = DefaultLvalueConversion(static_cast<Expr*>(OC.U.E)); | ||||
| 16286 | if (IdxRval.isInvalid()) | ||||
| 16287 | return ExprError(); | ||||
| 16288 | Expr *Idx = IdxRval.get(); | ||||
| 16289 | |||||
| 16290 | // The expression must be an integral expression. | ||||
| 16291 | // FIXME: An integral constant expression? | ||||
| 16292 | if (!Idx->isTypeDependent() && !Idx->isValueDependent() && | ||||
| 16293 | !Idx->getType()->isIntegerType()) | ||||
| 16294 | return ExprError( | ||||
| 16295 | Diag(Idx->getBeginLoc(), diag::err_typecheck_subscript_not_integer) | ||||
| 16296 | << Idx->getSourceRange()); | ||||
| 16297 | |||||
| 16298 | // Record this array index. | ||||
| 16299 | Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd)); | ||||
| 16300 | Exprs.push_back(Idx); | ||||
| 16301 | continue; | ||||
| 16302 | } | ||||
| 16303 | |||||
| 16304 | // Offset of a field. | ||||
| 16305 | if (CurrentType->isDependentType()) { | ||||
| 16306 | // We have the offset of a field, but we can't look into the dependent | ||||
| 16307 | // type. Just record the identifier of the field. | ||||
| 16308 | Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd)); | ||||
| 16309 | CurrentType = Context.DependentTy; | ||||
| 16310 | continue; | ||||
| 16311 | } | ||||
| 16312 | |||||
| 16313 | // We need to have a complete type to look into. | ||||
| 16314 | if (RequireCompleteType(OC.LocStart, CurrentType, | ||||
| 16315 | diag::err_offsetof_incomplete_type)) | ||||
| 16316 | return ExprError(); | ||||
| 16317 | |||||
| 16318 | // Look for the designated field. | ||||
| 16319 | const RecordType *RC = CurrentType->getAs<RecordType>(); | ||||
| 16320 | if (!RC) | ||||
| 16321 | return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type) | ||||
| 16322 | << CurrentType); | ||||
| 16323 | RecordDecl *RD = RC->getDecl(); | ||||
| 16324 | |||||
| 16325 | // C++ [lib.support.types]p5: | ||||
| 16326 | // The macro offsetof accepts a restricted set of type arguments in this | ||||
| 16327 | // International Standard. type shall be a POD structure or a POD union | ||||
| 16328 | // (clause 9). | ||||
| 16329 | // C++11 [support.types]p4: | ||||
| 16330 | // If type is not a standard-layout class (Clause 9), the results are | ||||
| 16331 | // undefined. | ||||
| 16332 | if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) { | ||||
| 16333 | bool IsSafe = LangOpts.CPlusPlus11? CRD->isStandardLayout() : CRD->isPOD(); | ||||
| 16334 | unsigned DiagID = | ||||
| 16335 | LangOpts.CPlusPlus11? diag::ext_offsetof_non_standardlayout_type | ||||
| 16336 | : diag::ext_offsetof_non_pod_type; | ||||
| 16337 | |||||
| 16338 | if (!IsSafe && !DidWarnAboutNonPOD && | ||||
| 16339 | DiagRuntimeBehavior(BuiltinLoc, nullptr, | ||||
| 16340 | PDiag(DiagID) | ||||
| 16341 | << SourceRange(Components[0].LocStart, OC.LocEnd) | ||||
| 16342 | << CurrentType)) | ||||
| 16343 | DidWarnAboutNonPOD = true; | ||||
| 16344 | } | ||||
| 16345 | |||||
| 16346 | // Look for the field. | ||||
| 16347 | LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName); | ||||
| 16348 | LookupQualifiedName(R, RD); | ||||
| 16349 | FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>(); | ||||
| 16350 | IndirectFieldDecl *IndirectMemberDecl = nullptr; | ||||
| 16351 | if (!MemberDecl) { | ||||
| 16352 | if ((IndirectMemberDecl = R.getAsSingle<IndirectFieldDecl>())) | ||||
| 16353 | MemberDecl = IndirectMemberDecl->getAnonField(); | ||||
| 16354 | } | ||||
| 16355 | |||||
| 16356 | if (!MemberDecl) | ||||
| 16357 | return ExprError(Diag(BuiltinLoc, diag::err_no_member) | ||||
| 16358 | << OC.U.IdentInfo << RD << SourceRange(OC.LocStart, | ||||
| 16359 | OC.LocEnd)); | ||||
| 16360 | |||||
| 16361 | // C99 7.17p3: | ||||
| 16362 | // (If the specified member is a bit-field, the behavior is undefined.) | ||||
| 16363 | // | ||||
| 16364 | // We diagnose this as an error. | ||||
| 16365 | if (MemberDecl->isBitField()) { | ||||
| 16366 | Diag(OC.LocEnd, diag::err_offsetof_bitfield) | ||||
| 16367 | << MemberDecl->getDeclName() | ||||
| 16368 | << SourceRange(BuiltinLoc, RParenLoc); | ||||
| 16369 | Diag(MemberDecl->getLocation(), diag::note_bitfield_decl); | ||||
| 16370 | return ExprError(); | ||||
| 16371 | } | ||||
| 16372 | |||||
| 16373 | RecordDecl *Parent = MemberDecl->getParent(); | ||||
| 16374 | if (IndirectMemberDecl) | ||||
| 16375 | Parent = cast<RecordDecl>(IndirectMemberDecl->getDeclContext()); | ||||
| 16376 | |||||
| 16377 | // If the member was found in a base class, introduce OffsetOfNodes for | ||||
| 16378 | // the base class indirections. | ||||
| 16379 | CXXBasePaths Paths; | ||||
| 16380 | if (IsDerivedFrom(OC.LocStart, CurrentType, Context.getTypeDeclType(Parent), | ||||
| 16381 | Paths)) { | ||||
| 16382 | if (Paths.getDetectedVirtual()) { | ||||
| 16383 | Diag(OC.LocEnd, diag::err_offsetof_field_of_virtual_base) | ||||
| 16384 | << MemberDecl->getDeclName() | ||||
| 16385 | << SourceRange(BuiltinLoc, RParenLoc); | ||||
| 16386 | return ExprError(); | ||||
| 16387 | } | ||||
| 16388 | |||||
| 16389 | CXXBasePath &Path = Paths.front(); | ||||
| 16390 | for (const CXXBasePathElement &B : Path) | ||||
| 16391 | Comps.push_back(OffsetOfNode(B.Base)); | ||||
| 16392 | } | ||||
| 16393 | |||||
| 16394 | if (IndirectMemberDecl) { | ||||
| 16395 | for (auto *FI : IndirectMemberDecl->chain()) { | ||||
| 16396 | assert(isa<FieldDecl>(FI))(static_cast <bool> (isa<FieldDecl>(FI)) ? void ( 0) : __assert_fail ("isa<FieldDecl>(FI)", "clang/lib/Sema/SemaExpr.cpp" , 16396, __extension__ __PRETTY_FUNCTION__)); | ||||
| 16397 | Comps.push_back(OffsetOfNode(OC.LocStart, | ||||
| 16398 | cast<FieldDecl>(FI), OC.LocEnd)); | ||||
| 16399 | } | ||||
| 16400 | } else | ||||
| 16401 | Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd)); | ||||
| 16402 | |||||
| 16403 | CurrentType = MemberDecl->getType().getNonReferenceType(); | ||||
| 16404 | } | ||||
| 16405 | |||||
| 16406 | return OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc, TInfo, | ||||
| 16407 | Comps, Exprs, RParenLoc); | ||||
| 16408 | } | ||||
| 16409 | |||||
| 16410 | ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S, | ||||
| 16411 | SourceLocation BuiltinLoc, | ||||
| 16412 | SourceLocation TypeLoc, | ||||
| 16413 | ParsedType ParsedArgTy, | ||||
| 16414 | ArrayRef<OffsetOfComponent> Components, | ||||
| 16415 | SourceLocation RParenLoc) { | ||||
| 16416 | |||||
| 16417 | TypeSourceInfo *ArgTInfo; | ||||
| 16418 | QualType ArgTy = GetTypeFromParser(ParsedArgTy, &ArgTInfo); | ||||
| 16419 | if (ArgTy.isNull()) | ||||
| 16420 | return ExprError(); | ||||
| 16421 | |||||
| 16422 | if (!ArgTInfo) | ||||
| 16423 | ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc); | ||||
| 16424 | |||||
| 16425 | return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, Components, RParenLoc); | ||||
| 16426 | } | ||||
| 16427 | |||||
| 16428 | |||||
| 16429 | ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc, | ||||
| 16430 | Expr *CondExpr, | ||||
| 16431 | Expr *LHSExpr, Expr *RHSExpr, | ||||
| 16432 | SourceLocation RPLoc) { | ||||
| 16433 | assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)")(static_cast <bool> ((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)") ? void (0) : __assert_fail ("(CondExpr && LHSExpr && RHSExpr) && \"Missing type argument(s)\"" , "clang/lib/Sema/SemaExpr.cpp", 16433, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 16434 | |||||
| 16435 | ExprValueKind VK = VK_PRValue; | ||||
| 16436 | ExprObjectKind OK = OK_Ordinary; | ||||
| 16437 | QualType resType; | ||||
| 16438 | bool CondIsTrue = false; | ||||
| 16439 | if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) { | ||||
| 16440 | resType = Context.DependentTy; | ||||
| 16441 | } else { | ||||
| 16442 | // The conditional expression is required to be a constant expression. | ||||
| 16443 | llvm::APSInt condEval(32); | ||||
| 16444 | ExprResult CondICE = VerifyIntegerConstantExpression( | ||||
| 16445 | CondExpr, &condEval, diag::err_typecheck_choose_expr_requires_constant); | ||||
| 16446 | if (CondICE.isInvalid()) | ||||
| 16447 | return ExprError(); | ||||
| 16448 | CondExpr = CondICE.get(); | ||||
| 16449 | CondIsTrue = condEval.getZExtValue(); | ||||
| 16450 | |||||
| 16451 | // If the condition is > zero, then the AST type is the same as the LHSExpr. | ||||
| 16452 | Expr *ActiveExpr = CondIsTrue ? LHSExpr : RHSExpr; | ||||
| 16453 | |||||
| 16454 | resType = ActiveExpr->getType(); | ||||
| 16455 | VK = ActiveExpr->getValueKind(); | ||||
| 16456 | OK = ActiveExpr->getObjectKind(); | ||||
| 16457 | } | ||||
| 16458 | |||||
| 16459 | return new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr, | ||||
| 16460 | resType, VK, OK, RPLoc, CondIsTrue); | ||||
| 16461 | } | ||||
| 16462 | |||||
| 16463 | //===----------------------------------------------------------------------===// | ||||
| 16464 | // Clang Extensions. | ||||
| 16465 | //===----------------------------------------------------------------------===// | ||||
| 16466 | |||||
| 16467 | /// ActOnBlockStart - This callback is invoked when a block literal is started. | ||||
| 16468 | void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope) { | ||||
| 16469 | BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc); | ||||
| 16470 | |||||
| 16471 | if (LangOpts.CPlusPlus) { | ||||
| 16472 | MangleNumberingContext *MCtx; | ||||
| 16473 | Decl *ManglingContextDecl; | ||||
| 16474 | std::tie(MCtx, ManglingContextDecl) = | ||||
| 16475 | getCurrentMangleNumberContext(Block->getDeclContext()); | ||||
| 16476 | if (MCtx) { | ||||
| 16477 | unsigned ManglingNumber = MCtx->getManglingNumber(Block); | ||||
| 16478 | Block->setBlockMangling(ManglingNumber, ManglingContextDecl); | ||||
| 16479 | } | ||||
| 16480 | } | ||||
| 16481 | |||||
| 16482 | PushBlockScope(CurScope, Block); | ||||
| 16483 | CurContext->addDecl(Block); | ||||
| 16484 | if (CurScope) | ||||
| 16485 | PushDeclContext(CurScope, Block); | ||||
| 16486 | else | ||||
| 16487 | CurContext = Block; | ||||
| 16488 | |||||
| 16489 | getCurBlock()->HasImplicitReturnType = true; | ||||
| 16490 | |||||
| 16491 | // Enter a new evaluation context to insulate the block from any | ||||
| 16492 | // cleanups from the enclosing full-expression. | ||||
| 16493 | PushExpressionEvaluationContext( | ||||
| 16494 | ExpressionEvaluationContext::PotentiallyEvaluated); | ||||
| 16495 | } | ||||
| 16496 | |||||
| 16497 | void Sema::ActOnBlockArguments(SourceLocation CaretLoc, Declarator &ParamInfo, | ||||
| 16498 | Scope *CurScope) { | ||||
| 16499 | assert(ParamInfo.getIdentifier() == nullptr &&(static_cast <bool> (ParamInfo.getIdentifier() == nullptr && "block-id should have no identifier!") ? void (0) : __assert_fail ("ParamInfo.getIdentifier() == nullptr && \"block-id should have no identifier!\"" , "clang/lib/Sema/SemaExpr.cpp", 16500, __extension__ __PRETTY_FUNCTION__ )) | ||||
| 16500 | "block-id should have no identifier!")(static_cast <bool> (ParamInfo.getIdentifier() == nullptr && "block-id should have no identifier!") ? void (0) : __assert_fail ("ParamInfo.getIdentifier() == nullptr && \"block-id should have no identifier!\"" , "clang/lib/Sema/SemaExpr.cpp", 16500, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 16501 | assert(ParamInfo.getContext() == DeclaratorContext::BlockLiteral)(static_cast <bool> (ParamInfo.getContext() == DeclaratorContext ::BlockLiteral) ? void (0) : __assert_fail ("ParamInfo.getContext() == DeclaratorContext::BlockLiteral" , "clang/lib/Sema/SemaExpr.cpp", 16501, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 16502 | BlockScopeInfo *CurBlock = getCurBlock(); | ||||
| 16503 | |||||
| 16504 | TypeSourceInfo *Sig = GetTypeForDeclarator(ParamInfo, CurScope); | ||||
| 16505 | QualType T = Sig->getType(); | ||||
| 16506 | |||||
| 16507 | // FIXME: We should allow unexpanded parameter packs here, but that would, | ||||
| 16508 | // in turn, make the block expression contain unexpanded parameter packs. | ||||
| 16509 | if (DiagnoseUnexpandedParameterPack(CaretLoc, Sig, UPPC_Block)) { | ||||
| 16510 | // Drop the parameters. | ||||
| 16511 | FunctionProtoType::ExtProtoInfo EPI; | ||||
| 16512 | EPI.HasTrailingReturn = false; | ||||
| 16513 | EPI.TypeQuals.addConst(); | ||||
| 16514 | T = Context.getFunctionType(Context.DependentTy, std::nullopt, EPI); | ||||
| 16515 | Sig = Context.getTrivialTypeSourceInfo(T); | ||||
| 16516 | } | ||||
| 16517 | |||||
| 16518 | // GetTypeForDeclarator always produces a function type for a block | ||||
| 16519 | // literal signature. Furthermore, it is always a FunctionProtoType | ||||
| 16520 | // unless the function was written with a typedef. | ||||
| 16521 | assert(T->isFunctionType() &&(static_cast <bool> (T->isFunctionType() && "GetTypeForDeclarator made a non-function block signature" ) ? void (0) : __assert_fail ("T->isFunctionType() && \"GetTypeForDeclarator made a non-function block signature\"" , "clang/lib/Sema/SemaExpr.cpp", 16522, __extension__ __PRETTY_FUNCTION__ )) | ||||
| 16522 | "GetTypeForDeclarator made a non-function block signature")(static_cast <bool> (T->isFunctionType() && "GetTypeForDeclarator made a non-function block signature" ) ? void (0) : __assert_fail ("T->isFunctionType() && \"GetTypeForDeclarator made a non-function block signature\"" , "clang/lib/Sema/SemaExpr.cpp", 16522, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 16523 | |||||
| 16524 | // Look for an explicit signature in that function type. | ||||
| 16525 | FunctionProtoTypeLoc ExplicitSignature; | ||||
| 16526 | |||||
| 16527 | if ((ExplicitSignature = Sig->getTypeLoc() | ||||
| 16528 | .getAsAdjusted<FunctionProtoTypeLoc>())) { | ||||
| 16529 | |||||
| 16530 | // Check whether that explicit signature was synthesized by | ||||
| 16531 | // GetTypeForDeclarator. If so, don't save that as part of the | ||||
| 16532 | // written signature. | ||||
| 16533 | if (ExplicitSignature.getLocalRangeBegin() == | ||||
| 16534 | ExplicitSignature.getLocalRangeEnd()) { | ||||
| 16535 | // This would be much cheaper if we stored TypeLocs instead of | ||||
| 16536 | // TypeSourceInfos. | ||||
| 16537 | TypeLoc Result = ExplicitSignature.getReturnLoc(); | ||||
| 16538 | unsigned Size = Result.getFullDataSize(); | ||||
| 16539 | Sig = Context.CreateTypeSourceInfo(Result.getType(), Size); | ||||
| 16540 | Sig->getTypeLoc().initializeFullCopy(Result, Size); | ||||
| 16541 | |||||
| 16542 | ExplicitSignature = FunctionProtoTypeLoc(); | ||||
| 16543 | } | ||||
| 16544 | } | ||||
| 16545 | |||||
| 16546 | CurBlock->TheDecl->setSignatureAsWritten(Sig); | ||||
| 16547 | CurBlock->FunctionType = T; | ||||
| 16548 | |||||
| 16549 | const auto *Fn = T->castAs<FunctionType>(); | ||||
| 16550 | QualType RetTy = Fn->getReturnType(); | ||||
| 16551 | bool isVariadic = | ||||
| 16552 | (isa<FunctionProtoType>(Fn) && cast<FunctionProtoType>(Fn)->isVariadic()); | ||||
| 16553 | |||||
| 16554 | CurBlock->TheDecl->setIsVariadic(isVariadic); | ||||
| 16555 | |||||
| 16556 | // Context.DependentTy is used as a placeholder for a missing block | ||||
| 16557 | // return type. TODO: what should we do with declarators like: | ||||
| 16558 | // ^ * { ... } | ||||
| 16559 | // If the answer is "apply template argument deduction".... | ||||
| 16560 | if (RetTy != Context.DependentTy) { | ||||
| 16561 | CurBlock->ReturnType = RetTy; | ||||
| 16562 | CurBlock->TheDecl->setBlockMissingReturnType(false); | ||||
| 16563 | CurBlock->HasImplicitReturnType = false; | ||||
| 16564 | } | ||||
| 16565 | |||||
| 16566 | // Push block parameters from the declarator if we had them. | ||||
| 16567 | SmallVector<ParmVarDecl*, 8> Params; | ||||
| 16568 | if (ExplicitSignature) { | ||||
| 16569 | for (unsigned I = 0, E = ExplicitSignature.getNumParams(); I != E; ++I) { | ||||
| 16570 | ParmVarDecl *Param = ExplicitSignature.getParam(I); | ||||
| 16571 | if (Param->getIdentifier() == nullptr && !Param->isImplicit() && | ||||
| 16572 | !Param->isInvalidDecl() && !getLangOpts().CPlusPlus) { | ||||
| 16573 | // Diagnose this as an extension in C17 and earlier. | ||||
| 16574 | if (!getLangOpts().C2x) | ||||
| 16575 | Diag(Param->getLocation(), diag::ext_parameter_name_omitted_c2x); | ||||
| 16576 | } | ||||
| 16577 | Params.push_back(Param); | ||||
| 16578 | } | ||||
| 16579 | |||||
| 16580 | // Fake up parameter variables if we have a typedef, like | ||||
| 16581 | // ^ fntype { ... } | ||||
| 16582 | } else if (const FunctionProtoType *Fn = T->getAs<FunctionProtoType>()) { | ||||
| 16583 | for (const auto &I : Fn->param_types()) { | ||||
| 16584 | ParmVarDecl *Param = BuildParmVarDeclForTypedef( | ||||
| 16585 | CurBlock->TheDecl, ParamInfo.getBeginLoc(), I); | ||||
| 16586 | Params.push_back(Param); | ||||
| 16587 | } | ||||
| 16588 | } | ||||
| 16589 | |||||
| 16590 | // Set the parameters on the block decl. | ||||
| 16591 | if (!Params.empty()) { | ||||
| 16592 | CurBlock->TheDecl->setParams(Params); | ||||
| 16593 | CheckParmsForFunctionDef(CurBlock->TheDecl->parameters(), | ||||
| 16594 | /*CheckParameterNames=*/false); | ||||
| 16595 | } | ||||
| 16596 | |||||
| 16597 | // Finally we can process decl attributes. | ||||
| 16598 | ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo); | ||||
| 16599 | |||||
| 16600 | // Put the parameter variables in scope. | ||||
| 16601 | for (auto *AI : CurBlock->TheDecl->parameters()) { | ||||
| 16602 | AI->setOwningFunction(CurBlock->TheDecl); | ||||
| 16603 | |||||
| 16604 | // If this has an identifier, add it to the scope stack. | ||||
| 16605 | if (AI->getIdentifier()) { | ||||
| 16606 | CheckShadow(CurBlock->TheScope, AI); | ||||
| 16607 | |||||
| 16608 | PushOnScopeChains(AI, CurBlock->TheScope); | ||||
| 16609 | } | ||||
| 16610 | } | ||||
| 16611 | } | ||||
| 16612 | |||||
| 16613 | /// ActOnBlockError - If there is an error parsing a block, this callback | ||||
| 16614 | /// is invoked to pop the information about the block from the action impl. | ||||
| 16615 | void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) { | ||||
| 16616 | // Leave the expression-evaluation context. | ||||
| 16617 | DiscardCleanupsInEvaluationContext(); | ||||
| 16618 | PopExpressionEvaluationContext(); | ||||
| 16619 | |||||
| 16620 | // Pop off CurBlock, handle nested blocks. | ||||
| 16621 | PopDeclContext(); | ||||
| 16622 | PopFunctionScopeInfo(); | ||||
| 16623 | } | ||||
| 16624 | |||||
| 16625 | /// ActOnBlockStmtExpr - This is called when the body of a block statement | ||||
| 16626 | /// literal was successfully completed. ^(int x){...} | ||||
| 16627 | ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc, | ||||
| 16628 | Stmt *Body, Scope *CurScope) { | ||||
| 16629 | // If blocks are disabled, emit an error. | ||||
| 16630 | if (!LangOpts.Blocks) | ||||
| 16631 | Diag(CaretLoc, diag::err_blocks_disable) << LangOpts.OpenCL; | ||||
| 16632 | |||||
| 16633 | // Leave the expression-evaluation context. | ||||
| 16634 | if (hasAnyUnrecoverableErrorsInThisFunction()) | ||||
| 16635 | DiscardCleanupsInEvaluationContext(); | ||||
| 16636 | assert(!Cleanup.exprNeedsCleanups() &&(static_cast <bool> (!Cleanup.exprNeedsCleanups() && "cleanups within block not correctly bound!") ? void (0) : __assert_fail ("!Cleanup.exprNeedsCleanups() && \"cleanups within block not correctly bound!\"" , "clang/lib/Sema/SemaExpr.cpp", 16637, __extension__ __PRETTY_FUNCTION__ )) | ||||
| 16637 | "cleanups within block not correctly bound!")(static_cast <bool> (!Cleanup.exprNeedsCleanups() && "cleanups within block not correctly bound!") ? void (0) : __assert_fail ("!Cleanup.exprNeedsCleanups() && \"cleanups within block not correctly bound!\"" , "clang/lib/Sema/SemaExpr.cpp", 16637, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 16638 | PopExpressionEvaluationContext(); | ||||
| 16639 | |||||
| 16640 | BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back()); | ||||
| 16641 | BlockDecl *BD = BSI->TheDecl; | ||||
| 16642 | |||||
| 16643 | if (BSI->HasImplicitReturnType) | ||||
| 16644 | deduceClosureReturnType(*BSI); | ||||
| 16645 | |||||
| 16646 | QualType RetTy = Context.VoidTy; | ||||
| 16647 | if (!BSI->ReturnType.isNull()) | ||||
| 16648 | RetTy = BSI->ReturnType; | ||||
| 16649 | |||||
| 16650 | bool NoReturn = BD->hasAttr<NoReturnAttr>(); | ||||
| 16651 | QualType BlockTy; | ||||
| 16652 | |||||
| 16653 | // If the user wrote a function type in some form, try to use that. | ||||
| 16654 | if (!BSI->FunctionType.isNull()) { | ||||
| 16655 | const FunctionType *FTy = BSI->FunctionType->castAs<FunctionType>(); | ||||
| 16656 | |||||
| 16657 | FunctionType::ExtInfo Ext = FTy->getExtInfo(); | ||||
| 16658 | if (NoReturn && !Ext.getNoReturn()) Ext = Ext.withNoReturn(true); | ||||
| 16659 | |||||
| 16660 | // Turn protoless block types into nullary block types. | ||||
| 16661 | if (isa<FunctionNoProtoType>(FTy)) { | ||||
| 16662 | FunctionProtoType::ExtProtoInfo EPI; | ||||
| 16663 | EPI.ExtInfo = Ext; | ||||
| 16664 | BlockTy = Context.getFunctionType(RetTy, std::nullopt, EPI); | ||||
| 16665 | |||||
| 16666 | // Otherwise, if we don't need to change anything about the function type, | ||||
| 16667 | // preserve its sugar structure. | ||||
| 16668 | } else if (FTy->getReturnType() == RetTy && | ||||
| 16669 | (!NoReturn || FTy->getNoReturnAttr())) { | ||||
| 16670 | BlockTy = BSI->FunctionType; | ||||
| 16671 | |||||
| 16672 | // Otherwise, make the minimal modifications to the function type. | ||||
| 16673 | } else { | ||||
| 16674 | const FunctionProtoType *FPT = cast<FunctionProtoType>(FTy); | ||||
| 16675 | FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); | ||||
| 16676 | EPI.TypeQuals = Qualifiers(); | ||||
| 16677 | EPI.ExtInfo = Ext; | ||||
| 16678 | BlockTy = Context.getFunctionType(RetTy, FPT->getParamTypes(), EPI); | ||||
| 16679 | } | ||||
| 16680 | |||||
| 16681 | // If we don't have a function type, just build one from nothing. | ||||
| 16682 | } else { | ||||
| 16683 | FunctionProtoType::ExtProtoInfo EPI; | ||||
| 16684 | EPI.ExtInfo = FunctionType::ExtInfo().withNoReturn(NoReturn); | ||||
| 16685 | BlockTy = Context.getFunctionType(RetTy, std::nullopt, EPI); | ||||
| 16686 | } | ||||
| 16687 | |||||
| 16688 | DiagnoseUnusedParameters(BD->parameters()); | ||||
| 16689 | BlockTy = Context.getBlockPointerType(BlockTy); | ||||
| 16690 | |||||
| 16691 | // If needed, diagnose invalid gotos and switches in the block. | ||||
| 16692 | if (getCurFunction()->NeedsScopeChecking() && | ||||
| 16693 | !PP.isCodeCompletionEnabled()) | ||||
| 16694 | DiagnoseInvalidJumps(cast<CompoundStmt>(Body)); | ||||
| 16695 | |||||
| 16696 | BD->setBody(cast<CompoundStmt>(Body)); | ||||
| 16697 | |||||
| 16698 | if (Body && getCurFunction()->HasPotentialAvailabilityViolations) | ||||
| 16699 | DiagnoseUnguardedAvailabilityViolations(BD); | ||||
| 16700 | |||||
| 16701 | // Try to apply the named return value optimization. We have to check again | ||||
| 16702 | // if we can do this, though, because blocks keep return statements around | ||||
| 16703 | // to deduce an implicit return type. | ||||
| 16704 | if (getLangOpts().CPlusPlus && RetTy->isRecordType() && | ||||
| 16705 | !BD->isDependentContext()) | ||||
| 16706 | computeNRVO(Body, BSI); | ||||
| 16707 | |||||
| 16708 | if (RetTy.hasNonTrivialToPrimitiveDestructCUnion() || | ||||
| 16709 | RetTy.hasNonTrivialToPrimitiveCopyCUnion()) | ||||
| 16710 | checkNonTrivialCUnion(RetTy, BD->getCaretLocation(), NTCUC_FunctionReturn, | ||||
| 16711 | NTCUK_Destruct|NTCUK_Copy); | ||||
| 16712 | |||||
| 16713 | PopDeclContext(); | ||||
| 16714 | |||||
| 16715 | // Set the captured variables on the block. | ||||
| 16716 | SmallVector<BlockDecl::Capture, 4> Captures; | ||||
| 16717 | for (Capture &Cap : BSI->Captures) { | ||||
| 16718 | if (Cap.isInvalid() || Cap.isThisCapture()) | ||||
| 16719 | continue; | ||||
| 16720 | // Cap.getVariable() is always a VarDecl because | ||||
| 16721 | // blocks cannot capture structured bindings or other ValueDecl kinds. | ||||
| 16722 | auto *Var = cast<VarDecl>(Cap.getVariable()); | ||||
| 16723 | Expr *CopyExpr = nullptr; | ||||
| 16724 | if (getLangOpts().CPlusPlus && Cap.isCopyCapture()) { | ||||
| 16725 | if (const RecordType *Record = | ||||
| 16726 | Cap.getCaptureType()->getAs<RecordType>()) { | ||||
| 16727 | // The capture logic needs the destructor, so make sure we mark it. | ||||
| 16728 | // Usually this is unnecessary because most local variables have | ||||
| 16729 | // their destructors marked at declaration time, but parameters are | ||||
| 16730 | // an exception because it's technically only the call site that | ||||
| 16731 | // actually requires the destructor. | ||||
| 16732 | if (isa<ParmVarDecl>(Var)) | ||||
| 16733 | FinalizeVarWithDestructor(Var, Record); | ||||
| 16734 | |||||
| 16735 | // Enter a separate potentially-evaluated context while building block | ||||
| 16736 | // initializers to isolate their cleanups from those of the block | ||||
| 16737 | // itself. | ||||
| 16738 | // FIXME: Is this appropriate even when the block itself occurs in an | ||||
| 16739 | // unevaluated operand? | ||||
| 16740 | EnterExpressionEvaluationContext EvalContext( | ||||
| 16741 | *this, ExpressionEvaluationContext::PotentiallyEvaluated); | ||||
| 16742 | |||||
| 16743 | SourceLocation Loc = Cap.getLocation(); | ||||
| 16744 | |||||
| 16745 | ExprResult Result = BuildDeclarationNameExpr( | ||||
| 16746 | CXXScopeSpec(), DeclarationNameInfo(Var->getDeclName(), Loc), Var); | ||||
| 16747 | |||||
| 16748 | // According to the blocks spec, the capture of a variable from | ||||
| 16749 | // the stack requires a const copy constructor. This is not true | ||||
| 16750 | // of the copy/move done to move a __block variable to the heap. | ||||
| 16751 | if (!Result.isInvalid() && | ||||
| 16752 | !Result.get()->getType().isConstQualified()) { | ||||
| 16753 | Result = ImpCastExprToType(Result.get(), | ||||
| 16754 | Result.get()->getType().withConst(), | ||||
| 16755 | CK_NoOp, VK_LValue); | ||||
| 16756 | } | ||||
| 16757 | |||||
| 16758 | if (!Result.isInvalid()) { | ||||
| 16759 | Result = PerformCopyInitialization( | ||||
| 16760 | InitializedEntity::InitializeBlock(Var->getLocation(), | ||||
| 16761 | Cap.getCaptureType()), | ||||
| 16762 | Loc, Result.get()); | ||||
| 16763 | } | ||||
| 16764 | |||||
| 16765 | // Build a full-expression copy expression if initialization | ||||
| 16766 | // succeeded and used a non-trivial constructor. Recover from | ||||
| 16767 | // errors by pretending that the copy isn't necessary. | ||||
| 16768 | if (!Result.isInvalid() && | ||||
| 16769 | !cast<CXXConstructExpr>(Result.get())->getConstructor() | ||||
| 16770 | ->isTrivial()) { | ||||
| 16771 | Result = MaybeCreateExprWithCleanups(Result); | ||||
| 16772 | CopyExpr = Result.get(); | ||||
| 16773 | } | ||||
| 16774 | } | ||||
| 16775 | } | ||||
| 16776 | |||||
| 16777 | BlockDecl::Capture NewCap(Var, Cap.isBlockCapture(), Cap.isNested(), | ||||
| 16778 | CopyExpr); | ||||
| 16779 | Captures.push_back(NewCap); | ||||
| 16780 | } | ||||
| 16781 | BD->setCaptures(Context, Captures, BSI->CXXThisCaptureIndex != 0); | ||||
| 16782 | |||||
| 16783 | // Pop the block scope now but keep it alive to the end of this function. | ||||
| 16784 | AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy(); | ||||
| 16785 | PoppedFunctionScopePtr ScopeRAII = PopFunctionScopeInfo(&WP, BD, BlockTy); | ||||
| 16786 | |||||
| 16787 | BlockExpr *Result = new (Context) BlockExpr(BD, BlockTy); | ||||
| 16788 | |||||
| 16789 | // If the block isn't obviously global, i.e. it captures anything at | ||||
| 16790 | // all, then we need to do a few things in the surrounding context: | ||||
| 16791 | if (Result->getBlockDecl()->hasCaptures()) { | ||||
| 16792 | // First, this expression has a new cleanup object. | ||||
| 16793 | ExprCleanupObjects.push_back(Result->getBlockDecl()); | ||||
| 16794 | Cleanup.setExprNeedsCleanups(true); | ||||
| 16795 | |||||
| 16796 | // It also gets a branch-protected scope if any of the captured | ||||
| 16797 | // variables needs destruction. | ||||
| 16798 | for (const auto &CI : Result->getBlockDecl()->captures()) { | ||||
| 16799 | const VarDecl *var = CI.getVariable(); | ||||
| 16800 | if (var->getType().isDestructedType() != QualType::DK_none) { | ||||
| 16801 | setFunctionHasBranchProtectedScope(); | ||||
| 16802 | break; | ||||
| 16803 | } | ||||
| 16804 | } | ||||
| 16805 | } | ||||
| 16806 | |||||
| 16807 | if (getCurFunction()) | ||||
| 16808 | getCurFunction()->addBlock(BD); | ||||
| 16809 | |||||
| 16810 | return Result; | ||||
| 16811 | } | ||||
| 16812 | |||||
| 16813 | ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc, Expr *E, ParsedType Ty, | ||||
| 16814 | SourceLocation RPLoc) { | ||||
| 16815 | TypeSourceInfo *TInfo; | ||||
| 16816 | GetTypeFromParser(Ty, &TInfo); | ||||
| 16817 | return BuildVAArgExpr(BuiltinLoc, E, TInfo, RPLoc); | ||||
| 16818 | } | ||||
| 16819 | |||||
| 16820 | ExprResult Sema::BuildVAArgExpr(SourceLocation BuiltinLoc, | ||||
| 16821 | Expr *E, TypeSourceInfo *TInfo, | ||||
| 16822 | SourceLocation RPLoc) { | ||||
| 16823 | Expr *OrigExpr = E; | ||||
| 16824 | bool IsMS = false; | ||||
| 16825 | |||||
| 16826 | // CUDA device code does not support varargs. | ||||
| 16827 | if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) { | ||||
| 16828 | if (const FunctionDecl *F = dyn_cast<FunctionDecl>(CurContext)) { | ||||
| 16829 | CUDAFunctionTarget T = IdentifyCUDATarget(F); | ||||
| 16830 | if (T == CFT_Global || T == CFT_Device || T == CFT_HostDevice) | ||||
| 16831 | return ExprError(Diag(E->getBeginLoc(), diag::err_va_arg_in_device)); | ||||
| 16832 | } | ||||
| 16833 | } | ||||
| 16834 | |||||
| 16835 | // NVPTX does not support va_arg expression. | ||||
| 16836 | if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice && | ||||
| 16837 | Context.getTargetInfo().getTriple().isNVPTX()) | ||||
| 16838 | targetDiag(E->getBeginLoc(), diag::err_va_arg_in_device); | ||||
| 16839 | |||||
| 16840 | // It might be a __builtin_ms_va_list. (But don't ever mark a va_arg() | ||||
| 16841 | // as Microsoft ABI on an actual Microsoft platform, where | ||||
| 16842 | // __builtin_ms_va_list and __builtin_va_list are the same.) | ||||
| 16843 | if (!E->isTypeDependent() && Context.getTargetInfo().hasBuiltinMSVaList() && | ||||
| 16844 | Context.getTargetInfo().getBuiltinVaListKind() != TargetInfo::CharPtrBuiltinVaList) { | ||||
| 16845 | QualType MSVaListType = Context.getBuiltinMSVaListType(); | ||||
| 16846 | if (Context.hasSameType(MSVaListType, E->getType())) { | ||||
| 16847 | if (CheckForModifiableLvalue(E, BuiltinLoc, *this)) | ||||
| 16848 | return ExprError(); | ||||
| 16849 | IsMS = true; | ||||
| 16850 | } | ||||
| 16851 | } | ||||
| 16852 | |||||
| 16853 | // Get the va_list type | ||||
| 16854 | QualType VaListType = Context.getBuiltinVaListType(); | ||||
| 16855 | if (!IsMS) { | ||||
| 16856 | if (VaListType->isArrayType()) { | ||||
| 16857 | // Deal with implicit array decay; for example, on x86-64, | ||||
| 16858 | // va_list is an array, but it's supposed to decay to | ||||
| 16859 | // a pointer for va_arg. | ||||
| 16860 | VaListType = Context.getArrayDecayedType(VaListType); | ||||
| 16861 | // Make sure the input expression also decays appropriately. | ||||
| 16862 | ExprResult Result = UsualUnaryConversions(E); | ||||
| 16863 | if (Result.isInvalid()) | ||||
| 16864 | return ExprError(); | ||||
| 16865 | E = Result.get(); | ||||
| 16866 | } else if (VaListType->isRecordType() && getLangOpts().CPlusPlus) { | ||||
| 16867 | // If va_list is a record type and we are compiling in C++ mode, | ||||
| 16868 | // check the argument using reference binding. | ||||
| 16869 | InitializedEntity Entity = InitializedEntity::InitializeParameter( | ||||
| 16870 | Context, Context.getLValueReferenceType(VaListType), false); | ||||
| 16871 | ExprResult Init = PerformCopyInitialization(Entity, SourceLocation(), E); | ||||
| 16872 | if (Init.isInvalid()) | ||||
| 16873 | return ExprError(); | ||||
| 16874 | E = Init.getAs<Expr>(); | ||||
| 16875 | } else { | ||||
| 16876 | // Otherwise, the va_list argument must be an l-value because | ||||
| 16877 | // it is modified by va_arg. | ||||
| 16878 | if (!E->isTypeDependent() && | ||||
| 16879 | CheckForModifiableLvalue(E, BuiltinLoc, *this)) | ||||
| 16880 | return ExprError(); | ||||
| 16881 | } | ||||
| 16882 | } | ||||
| 16883 | |||||
| 16884 | if (!IsMS && !E->isTypeDependent() && | ||||
| 16885 | !Context.hasSameType(VaListType, E->getType())) | ||||
| 16886 | return ExprError( | ||||
| 16887 | Diag(E->getBeginLoc(), | ||||
| 16888 | diag::err_first_argument_to_va_arg_not_of_type_va_list) | ||||
| 16889 | << OrigExpr->getType() << E->getSourceRange()); | ||||
| 16890 | |||||
| 16891 | if (!TInfo->getType()->isDependentType()) { | ||||
| 16892 | if (RequireCompleteType(TInfo->getTypeLoc().getBeginLoc(), TInfo->getType(), | ||||
| 16893 | diag::err_second_parameter_to_va_arg_incomplete, | ||||
| 16894 | TInfo->getTypeLoc())) | ||||
| 16895 | return ExprError(); | ||||
| 16896 | |||||
| 16897 | if (RequireNonAbstractType(TInfo->getTypeLoc().getBeginLoc(), | ||||
| 16898 | TInfo->getType(), | ||||
| 16899 | diag::err_second_parameter_to_va_arg_abstract, | ||||
| 16900 | TInfo->getTypeLoc())) | ||||
| 16901 | return ExprError(); | ||||
| 16902 | |||||
| 16903 | if (!TInfo->getType().isPODType(Context)) { | ||||
| 16904 | Diag(TInfo->getTypeLoc().getBeginLoc(), | ||||
| 16905 | TInfo->getType()->isObjCLifetimeType() | ||||
| 16906 | ? diag::warn_second_parameter_to_va_arg_ownership_qualified | ||||
| 16907 | : diag::warn_second_parameter_to_va_arg_not_pod) | ||||
| 16908 | << TInfo->getType() | ||||
| 16909 | << TInfo->getTypeLoc().getSourceRange(); | ||||
| 16910 | } | ||||
| 16911 | |||||
| 16912 | // Check for va_arg where arguments of the given type will be promoted | ||||
| 16913 | // (i.e. this va_arg is guaranteed to have undefined behavior). | ||||
| 16914 | QualType PromoteType; | ||||
| 16915 | if (Context.isPromotableIntegerType(TInfo->getType())) { | ||||
| 16916 | PromoteType = Context.getPromotedIntegerType(TInfo->getType()); | ||||
| 16917 | // [cstdarg.syn]p1 defers the C++ behavior to what the C standard says, | ||||
| 16918 | // and C2x 7.16.1.1p2 says, in part: | ||||
| 16919 | // If type is not compatible with the type of the actual next argument | ||||
| 16920 | // (as promoted according to the default argument promotions), the | ||||
| 16921 | // behavior is undefined, except for the following cases: | ||||
| 16922 | // - both types are pointers to qualified or unqualified versions of | ||||
| 16923 | // compatible types; | ||||
| 16924 | // - one type is a signed integer type, the other type is the | ||||
| 16925 | // corresponding unsigned integer type, and the value is | ||||
| 16926 | // representable in both types; | ||||
| 16927 | // - one type is pointer to qualified or unqualified void and the | ||||
| 16928 | // other is a pointer to a qualified or unqualified character type. | ||||
| 16929 | // Given that type compatibility is the primary requirement (ignoring | ||||
| 16930 | // qualifications), you would think we could call typesAreCompatible() | ||||
| 16931 | // directly to test this. However, in C++, that checks for *same type*, | ||||
| 16932 | // which causes false positives when passing an enumeration type to | ||||
| 16933 | // va_arg. Instead, get the underlying type of the enumeration and pass | ||||
| 16934 | // that. | ||||
| 16935 | QualType UnderlyingType = TInfo->getType(); | ||||
| 16936 | if (const auto *ET = UnderlyingType->getAs<EnumType>()) | ||||
| 16937 | UnderlyingType = ET->getDecl()->getIntegerType(); | ||||
| 16938 | if (Context.typesAreCompatible(PromoteType, UnderlyingType, | ||||
| 16939 | /*CompareUnqualified*/ true)) | ||||
| 16940 | PromoteType = QualType(); | ||||
| 16941 | |||||
| 16942 | // If the types are still not compatible, we need to test whether the | ||||
| 16943 | // promoted type and the underlying type are the same except for | ||||
| 16944 | // signedness. Ask the AST for the correctly corresponding type and see | ||||
| 16945 | // if that's compatible. | ||||
| 16946 | if (!PromoteType.isNull() && !UnderlyingType->isBooleanType() && | ||||
| 16947 | PromoteType->isUnsignedIntegerType() != | ||||
| 16948 | UnderlyingType->isUnsignedIntegerType()) { | ||||
| 16949 | UnderlyingType = | ||||
| 16950 | UnderlyingType->isUnsignedIntegerType() | ||||
| 16951 | ? Context.getCorrespondingSignedType(UnderlyingType) | ||||
| 16952 | : Context.getCorrespondingUnsignedType(UnderlyingType); | ||||
| 16953 | if (Context.typesAreCompatible(PromoteType, UnderlyingType, | ||||
| 16954 | /*CompareUnqualified*/ true)) | ||||
| 16955 | PromoteType = QualType(); | ||||
| 16956 | } | ||||
| 16957 | } | ||||
| 16958 | if (TInfo->getType()->isSpecificBuiltinType(BuiltinType::Float)) | ||||
| 16959 | PromoteType = Context.DoubleTy; | ||||
| 16960 | if (!PromoteType.isNull()) | ||||
| 16961 | DiagRuntimeBehavior(TInfo->getTypeLoc().getBeginLoc(), E, | ||||
| 16962 | PDiag(diag::warn_second_parameter_to_va_arg_never_compatible) | ||||
| 16963 | << TInfo->getType() | ||||
| 16964 | << PromoteType | ||||
| 16965 | << TInfo->getTypeLoc().getSourceRange()); | ||||
| 16966 | } | ||||
| 16967 | |||||
| 16968 | QualType T = TInfo->getType().getNonLValueExprType(Context); | ||||
| 16969 | return new (Context) VAArgExpr(BuiltinLoc, E, TInfo, RPLoc, T, IsMS); | ||||
| 16970 | } | ||||
| 16971 | |||||
| 16972 | ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) { | ||||
| 16973 | // The type of __null will be int or long, depending on the size of | ||||
| 16974 | // pointers on the target. | ||||
| 16975 | QualType Ty; | ||||
| 16976 | unsigned pw = Context.getTargetInfo().getPointerWidth(LangAS::Default); | ||||
| 16977 | if (pw == Context.getTargetInfo().getIntWidth()) | ||||
| 16978 | Ty = Context.IntTy; | ||||
| 16979 | else if (pw == Context.getTargetInfo().getLongWidth()) | ||||
| 16980 | Ty = Context.LongTy; | ||||
| 16981 | else if (pw == Context.getTargetInfo().getLongLongWidth()) | ||||
| 16982 | Ty = Context.LongLongTy; | ||||
| 16983 | else { | ||||
| 16984 | llvm_unreachable("I don't know size of pointer!")::llvm::llvm_unreachable_internal("I don't know size of pointer!" , "clang/lib/Sema/SemaExpr.cpp", 16984); | ||||
| 16985 | } | ||||
| 16986 | |||||
| 16987 | return new (Context) GNUNullExpr(Ty, TokenLoc); | ||||
| 16988 | } | ||||
| 16989 | |||||
| 16990 | static CXXRecordDecl *LookupStdSourceLocationImpl(Sema &S, SourceLocation Loc) { | ||||
| 16991 | CXXRecordDecl *ImplDecl = nullptr; | ||||
| 16992 | |||||
| 16993 | // Fetch the std::source_location::__impl decl. | ||||
| 16994 | if (NamespaceDecl *Std = S.getStdNamespace()) { | ||||
| 16995 | LookupResult ResultSL(S, &S.PP.getIdentifierTable().get("source_location"), | ||||
| 16996 | Loc, Sema::LookupOrdinaryName); | ||||
| 16997 | if (S.LookupQualifiedName(ResultSL, Std)) { | ||||
| 16998 | if (auto *SLDecl = ResultSL.getAsSingle<RecordDecl>()) { | ||||
| 16999 | LookupResult ResultImpl(S, &S.PP.getIdentifierTable().get("__impl"), | ||||
| 17000 | Loc, Sema::LookupOrdinaryName); | ||||
| 17001 | if ((SLDecl->isCompleteDefinition() || SLDecl->isBeingDefined()) && | ||||
| 17002 | S.LookupQualifiedName(ResultImpl, SLDecl)) { | ||||
| 17003 | ImplDecl = ResultImpl.getAsSingle<CXXRecordDecl>(); | ||||
| 17004 | } | ||||
| 17005 | } | ||||
| 17006 | } | ||||
| 17007 | } | ||||
| 17008 | |||||
| 17009 | if (!ImplDecl || !ImplDecl->isCompleteDefinition()) { | ||||
| 17010 | S.Diag(Loc, diag::err_std_source_location_impl_not_found); | ||||
| 17011 | return nullptr; | ||||
| 17012 | } | ||||
| 17013 | |||||
| 17014 | // Verify that __impl is a trivial struct type, with no base classes, and with | ||||
| 17015 | // only the four expected fields. | ||||
| 17016 | if (ImplDecl->isUnion() || !ImplDecl->isStandardLayout() || | ||||
| 17017 | ImplDecl->getNumBases() != 0) { | ||||
| 17018 | S.Diag(Loc, diag::err_std_source_location_impl_malformed); | ||||
| 17019 | return nullptr; | ||||
| 17020 | } | ||||
| 17021 | |||||
| 17022 | unsigned Count = 0; | ||||
| 17023 | for (FieldDecl *F : ImplDecl->fields()) { | ||||
| 17024 | StringRef Name = F->getName(); | ||||
| 17025 | |||||
| 17026 | if (Name == "_M_file_name") { | ||||
| 17027 | if (F->getType() != | ||||
| 17028 | S.Context.getPointerType(S.Context.CharTy.withConst())) | ||||
| 17029 | break; | ||||
| 17030 | Count++; | ||||
| 17031 | } else if (Name == "_M_function_name") { | ||||
| 17032 | if (F->getType() != | ||||
| 17033 | S.Context.getPointerType(S.Context.CharTy.withConst())) | ||||
| 17034 | break; | ||||
| 17035 | Count++; | ||||
| 17036 | } else if (Name == "_M_line") { | ||||
| 17037 | if (!F->getType()->isIntegerType()) | ||||
| 17038 | break; | ||||
| 17039 | Count++; | ||||
| 17040 | } else if (Name == "_M_column") { | ||||
| 17041 | if (!F->getType()->isIntegerType()) | ||||
| 17042 | break; | ||||
| 17043 | Count++; | ||||
| 17044 | } else { | ||||
| 17045 | Count = 100; // invalid | ||||
| 17046 | break; | ||||
| 17047 | } | ||||
| 17048 | } | ||||
| 17049 | if (Count != 4) { | ||||
| 17050 | S.Diag(Loc, diag::err_std_source_location_impl_malformed); | ||||
| 17051 | return nullptr; | ||||
| 17052 | } | ||||
| 17053 | |||||
| 17054 | return ImplDecl; | ||||
| 17055 | } | ||||
| 17056 | |||||
| 17057 | ExprResult Sema::ActOnSourceLocExpr(SourceLocExpr::IdentKind Kind, | ||||
| 17058 | SourceLocation BuiltinLoc, | ||||
| 17059 | SourceLocation RPLoc) { | ||||
| 17060 | QualType ResultTy; | ||||
| 17061 | switch (Kind) { | ||||
| 17062 | case SourceLocExpr::File: | ||||
| 17063 | case SourceLocExpr::FileName: | ||||
| 17064 | case SourceLocExpr::Function: { | ||||
| 17065 | QualType ArrTy = Context.getStringLiteralArrayType(Context.CharTy, 0); | ||||
| 17066 | ResultTy = | ||||
| 17067 | Context.getPointerType(ArrTy->getAsArrayTypeUnsafe()->getElementType()); | ||||
| 17068 | break; | ||||
| 17069 | } | ||||
| 17070 | case SourceLocExpr::Line: | ||||
| 17071 | case SourceLocExpr::Column: | ||||
| 17072 | ResultTy = Context.UnsignedIntTy; | ||||
| 17073 | break; | ||||
| 17074 | case SourceLocExpr::SourceLocStruct: | ||||
| 17075 | if (!StdSourceLocationImplDecl) { | ||||
| 17076 | StdSourceLocationImplDecl = | ||||
| 17077 | LookupStdSourceLocationImpl(*this, BuiltinLoc); | ||||
| 17078 | if (!StdSourceLocationImplDecl) | ||||
| 17079 | return ExprError(); | ||||
| 17080 | } | ||||
| 17081 | ResultTy = Context.getPointerType( | ||||
| 17082 | Context.getRecordType(StdSourceLocationImplDecl).withConst()); | ||||
| 17083 | break; | ||||
| 17084 | } | ||||
| 17085 | |||||
| 17086 | return BuildSourceLocExpr(Kind, ResultTy, BuiltinLoc, RPLoc, CurContext); | ||||
| 17087 | } | ||||
| 17088 | |||||
| 17089 | ExprResult Sema::BuildSourceLocExpr(SourceLocExpr::IdentKind Kind, | ||||
| 17090 | QualType ResultTy, | ||||
| 17091 | SourceLocation BuiltinLoc, | ||||
| 17092 | SourceLocation RPLoc, | ||||
| 17093 | DeclContext *ParentContext) { | ||||
| 17094 | return new (Context) | ||||
| 17095 | SourceLocExpr(Context, Kind, ResultTy, BuiltinLoc, RPLoc, ParentContext); | ||||
| 17096 | } | ||||
| 17097 | |||||
| 17098 | bool Sema::CheckConversionToObjCLiteral(QualType DstType, Expr *&Exp, | ||||
| 17099 | bool Diagnose) { | ||||
| 17100 | if (!getLangOpts().ObjC) | ||||
| 17101 | return false; | ||||
| 17102 | |||||
| 17103 | const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>(); | ||||
| 17104 | if (!PT) | ||||
| 17105 | return false; | ||||
| 17106 | const ObjCInterfaceDecl *ID = PT->getInterfaceDecl(); | ||||
| 17107 | |||||
| 17108 | // Ignore any parens, implicit casts (should only be | ||||
| 17109 | // array-to-pointer decays), and not-so-opaque values. The last is | ||||
| 17110 | // important for making this trigger for property assignments. | ||||
| 17111 | Expr *SrcExpr = Exp->IgnoreParenImpCasts(); | ||||
| 17112 | if (OpaqueValueExpr *OV = dyn_cast<OpaqueValueExpr>(SrcExpr)) | ||||
| 17113 | if (OV->getSourceExpr()) | ||||
| 17114 | SrcExpr = OV->getSourceExpr()->IgnoreParenImpCasts(); | ||||
| 17115 | |||||
| 17116 | if (auto *SL = dyn_cast<StringLiteral>(SrcExpr)) { | ||||
| 17117 | if (!PT->isObjCIdType() && | ||||
| 17118 | !(ID && ID->getIdentifier()->isStr("NSString"))) | ||||
| 17119 | return false; | ||||
| 17120 | if (!SL->isOrdinary()) | ||||
| 17121 | return false; | ||||
| 17122 | |||||
| 17123 | if (Diagnose) { | ||||
| 17124 | Diag(SL->getBeginLoc(), diag::err_missing_atsign_prefix) | ||||
| 17125 | << /*string*/0 << FixItHint::CreateInsertion(SL->getBeginLoc(), "@"); | ||||
| 17126 | Exp = BuildObjCStringLiteral(SL->getBeginLoc(), SL).get(); | ||||
| 17127 | } | ||||
| 17128 | return true; | ||||
| 17129 | } | ||||
| 17130 | |||||
| 17131 | if ((isa<IntegerLiteral>(SrcExpr) || isa<CharacterLiteral>(SrcExpr) || | ||||
| 17132 | isa<FloatingLiteral>(SrcExpr) || isa<ObjCBoolLiteralExpr>(SrcExpr) || | ||||
| 17133 | isa<CXXBoolLiteralExpr>(SrcExpr)) && | ||||
| 17134 | !SrcExpr->isNullPointerConstant( | ||||
| 17135 | getASTContext(), Expr::NPC_NeverValueDependent)) { | ||||
| 17136 | if (!ID || !ID->getIdentifier()->isStr("NSNumber")) | ||||
| 17137 | return false; | ||||
| 17138 | if (Diagnose) { | ||||
| 17139 | Diag(SrcExpr->getBeginLoc(), diag::err_missing_atsign_prefix) | ||||
| 17140 | << /*number*/1 | ||||
| 17141 | << FixItHint::CreateInsertion(SrcExpr->getBeginLoc(), "@"); | ||||
| 17142 | Expr *NumLit = | ||||
| 17143 | BuildObjCNumericLiteral(SrcExpr->getBeginLoc(), SrcExpr).get(); | ||||
| 17144 | if (NumLit) | ||||
| 17145 | Exp = NumLit; | ||||
| 17146 | } | ||||
| 17147 | return true; | ||||
| 17148 | } | ||||
| 17149 | |||||
| 17150 | return false; | ||||
| 17151 | } | ||||
| 17152 | |||||
| 17153 | static bool maybeDiagnoseAssignmentToFunction(Sema &S, QualType DstType, | ||||
| 17154 | const Expr *SrcExpr) { | ||||
| 17155 | if (!DstType->isFunctionPointerType() || | ||||
| 17156 | !SrcExpr->getType()->isFunctionType()) | ||||
| 17157 | return false; | ||||
| 17158 | |||||
| 17159 | auto *DRE = dyn_cast<DeclRefExpr>(SrcExpr->IgnoreParenImpCasts()); | ||||
| 17160 | if (!DRE) | ||||
| 17161 | return false; | ||||
| 17162 | |||||
| 17163 | auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl()); | ||||
| 17164 | if (!FD) | ||||
| 17165 | return false; | ||||
| 17166 | |||||
| 17167 | return !S.checkAddressOfFunctionIsAvailable(FD, | ||||
| 17168 | /*Complain=*/true, | ||||
| 17169 | SrcExpr->getBeginLoc()); | ||||
| 17170 | } | ||||
| 17171 | |||||
| 17172 | bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy, | ||||
| 17173 | SourceLocation Loc, | ||||
| 17174 | QualType DstType, QualType SrcType, | ||||
| 17175 | Expr *SrcExpr, AssignmentAction Action, | ||||
| 17176 | bool *Complained) { | ||||
| 17177 | if (Complained) | ||||
| 17178 | *Complained = false; | ||||
| 17179 | |||||
| 17180 | // Decode the result (notice that AST's are still created for extensions). | ||||
| 17181 | bool CheckInferredResultType = false; | ||||
| 17182 | bool isInvalid = false; | ||||
| 17183 | unsigned DiagKind = 0; | ||||
| 17184 | ConversionFixItGenerator ConvHints; | ||||
| 17185 | bool MayHaveConvFixit = false; | ||||
| 17186 | bool MayHaveFunctionDiff = false; | ||||
| 17187 | const ObjCInterfaceDecl *IFace = nullptr; | ||||
| 17188 | const ObjCProtocolDecl *PDecl = nullptr; | ||||
| 17189 | |||||
| 17190 | switch (ConvTy) { | ||||
| 17191 | case Compatible: | ||||
| 17192 | DiagnoseAssignmentEnum(DstType, SrcType, SrcExpr); | ||||
| 17193 | return false; | ||||
| 17194 | |||||
| 17195 | case PointerToInt: | ||||
| 17196 | if (getLangOpts().CPlusPlus) { | ||||
| 17197 | DiagKind = diag::err_typecheck_convert_pointer_int; | ||||
| 17198 | isInvalid = true; | ||||
| 17199 | } else { | ||||
| 17200 | DiagKind = diag::ext_typecheck_convert_pointer_int; | ||||
| 17201 | } | ||||
| 17202 | ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this); | ||||
| 17203 | MayHaveConvFixit = true; | ||||
| 17204 | break; | ||||
| 17205 | case IntToPointer: | ||||
| 17206 | if (getLangOpts().CPlusPlus) { | ||||
| 17207 | DiagKind = diag::err_typecheck_convert_int_pointer; | ||||
| 17208 | isInvalid = true; | ||||
| 17209 | } else { | ||||
| 17210 | DiagKind = diag::ext_typecheck_convert_int_pointer; | ||||
| 17211 | } | ||||
| 17212 | ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this); | ||||
| 17213 | MayHaveConvFixit = true; | ||||
| 17214 | break; | ||||
| 17215 | case IncompatibleFunctionPointerStrict: | ||||
| 17216 | DiagKind = | ||||
| 17217 | diag::warn_typecheck_convert_incompatible_function_pointer_strict; | ||||
| 17218 | ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this); | ||||
| 17219 | MayHaveConvFixit = true; | ||||
| 17220 | break; | ||||
| 17221 | case IncompatibleFunctionPointer: | ||||
| 17222 | if (getLangOpts().CPlusPlus) { | ||||
| 17223 | DiagKind = diag::err_typecheck_convert_incompatible_function_pointer; | ||||
| 17224 | isInvalid = true; | ||||
| 17225 | } else { | ||||
| 17226 | DiagKind = diag::ext_typecheck_convert_incompatible_function_pointer; | ||||
| 17227 | } | ||||
| 17228 | ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this); | ||||
| 17229 | MayHaveConvFixit = true; | ||||
| 17230 | break; | ||||
| 17231 | case IncompatiblePointer: | ||||
| 17232 | if (Action == AA_Passing_CFAudited) { | ||||
| 17233 | DiagKind = diag::err_arc_typecheck_convert_incompatible_pointer; | ||||
| 17234 | } else if (getLangOpts().CPlusPlus) { | ||||
| 17235 | DiagKind = diag::err_typecheck_convert_incompatible_pointer; | ||||
| 17236 | isInvalid = true; | ||||
| 17237 | } else { | ||||
| 17238 | DiagKind = diag::ext_typecheck_convert_incompatible_pointer; | ||||
| 17239 | } | ||||
| 17240 | CheckInferredResultType = DstType->isObjCObjectPointerType() && | ||||
| 17241 | SrcType->isObjCObjectPointerType(); | ||||
| 17242 | if (!CheckInferredResultType) { | ||||
| 17243 | ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this); | ||||
| 17244 | } else if (CheckInferredResultType) { | ||||
| 17245 | SrcType = SrcType.getUnqualifiedType(); | ||||
| 17246 | DstType = DstType.getUnqualifiedType(); | ||||
| 17247 | } | ||||
| 17248 | MayHaveConvFixit = true; | ||||
| 17249 | break; | ||||
| 17250 | case IncompatiblePointerSign: | ||||
| 17251 | if (getLangOpts().CPlusPlus) { | ||||
| 17252 | DiagKind = diag::err_typecheck_convert_incompatible_pointer_sign; | ||||
| 17253 | isInvalid = true; | ||||
| 17254 | } else { | ||||
| 17255 | DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign; | ||||
| 17256 | } | ||||
| 17257 | break; | ||||
| 17258 | case FunctionVoidPointer: | ||||
| 17259 | if (getLangOpts().CPlusPlus) { | ||||
| 17260 | DiagKind = diag::err_typecheck_convert_pointer_void_func; | ||||
| 17261 | isInvalid = true; | ||||
| 17262 | } else { | ||||
| 17263 | DiagKind = diag::ext_typecheck_convert_pointer_void_func; | ||||
| 17264 | } | ||||
| 17265 | break; | ||||
| 17266 | case IncompatiblePointerDiscardsQualifiers: { | ||||
| 17267 | // Perform array-to-pointer decay if necessary. | ||||
| 17268 | if (SrcType->isArrayType()) SrcType = Context.getArrayDecayedType(SrcType); | ||||
| 17269 | |||||
| 17270 | isInvalid = true; | ||||
| 17271 | |||||
| 17272 | Qualifiers lhq = SrcType->getPointeeType().getQualifiers(); | ||||
| 17273 | Qualifiers rhq = DstType->getPointeeType().getQualifiers(); | ||||
| 17274 | if (lhq.getAddressSpace() != rhq.getAddressSpace()) { | ||||
| 17275 | DiagKind = diag::err_typecheck_incompatible_address_space; | ||||
| 17276 | break; | ||||
| 17277 | |||||
| 17278 | } else if (lhq.getObjCLifetime() != rhq.getObjCLifetime()) { | ||||
| 17279 | DiagKind = diag::err_typecheck_incompatible_ownership; | ||||
| 17280 | break; | ||||
| 17281 | } | ||||
| 17282 | |||||
| 17283 | llvm_unreachable("unknown error case for discarding qualifiers!")::llvm::llvm_unreachable_internal("unknown error case for discarding qualifiers!" , "clang/lib/Sema/SemaExpr.cpp", 17283); | ||||
| 17284 | // fallthrough | ||||
| 17285 | } | ||||
| 17286 | case CompatiblePointerDiscardsQualifiers: | ||||
| 17287 | // If the qualifiers lost were because we were applying the | ||||
| 17288 | // (deprecated) C++ conversion from a string literal to a char* | ||||
| 17289 | // (or wchar_t*), then there was no error (C++ 4.2p2). FIXME: | ||||
| 17290 | // Ideally, this check would be performed in | ||||
| 17291 | // checkPointerTypesForAssignment. However, that would require a | ||||
| 17292 | // bit of refactoring (so that the second argument is an | ||||
| 17293 | // expression, rather than a type), which should be done as part | ||||
| 17294 | // of a larger effort to fix checkPointerTypesForAssignment for | ||||
| 17295 | // C++ semantics. | ||||
| 17296 | if (getLangOpts().CPlusPlus && | ||||
| 17297 | IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType)) | ||||
| 17298 | return false; | ||||
| 17299 | if (getLangOpts().CPlusPlus) { | ||||
| 17300 | DiagKind = diag::err_typecheck_convert_discards_qualifiers; | ||||
| 17301 | isInvalid = true; | ||||
| 17302 | } else { | ||||
| 17303 | DiagKind = diag::ext_typecheck_convert_discards_qualifiers; | ||||
| 17304 | } | ||||
| 17305 | |||||
| 17306 | break; | ||||
| 17307 | case IncompatibleNestedPointerQualifiers: | ||||
| 17308 | if (getLangOpts().CPlusPlus) { | ||||
| 17309 | isInvalid = true; | ||||
| 17310 | DiagKind = diag::err_nested_pointer_qualifier_mismatch; | ||||
| 17311 | } else { | ||||
| 17312 | DiagKind = diag::ext_nested_pointer_qualifier_mismatch; | ||||
| 17313 | } | ||||
| 17314 | break; | ||||
| 17315 | case IncompatibleNestedPointerAddressSpaceMismatch: | ||||
| 17316 | DiagKind = diag::err_typecheck_incompatible_nested_address_space; | ||||
| 17317 | isInvalid = true; | ||||
| 17318 | break; | ||||
| 17319 | case IntToBlockPointer: | ||||
| 17320 | DiagKind = diag::err_int_to_block_pointer; | ||||
| 17321 | isInvalid = true; | ||||
| 17322 | break; | ||||
| 17323 | case IncompatibleBlockPointer: | ||||
| 17324 | DiagKind = diag::err_typecheck_convert_incompatible_block_pointer; | ||||
| 17325 | isInvalid = true; | ||||
| 17326 | break; | ||||
| 17327 | case IncompatibleObjCQualifiedId: { | ||||
| 17328 | if (SrcType->isObjCQualifiedIdType()) { | ||||
| 17329 | const ObjCObjectPointerType *srcOPT = | ||||
| 17330 | SrcType->castAs<ObjCObjectPointerType>(); | ||||
| 17331 | for (auto *srcProto : srcOPT->quals()) { | ||||
| 17332 | PDecl = srcProto; | ||||
| 17333 | break; | ||||
| 17334 | } | ||||
| 17335 | if (const ObjCInterfaceType *IFaceT = | ||||
| 17336 | DstType->castAs<ObjCObjectPointerType>()->getInterfaceType()) | ||||
| 17337 | IFace = IFaceT->getDecl(); | ||||
| 17338 | } | ||||
| 17339 | else if (DstType->isObjCQualifiedIdType()) { | ||||
| 17340 | const ObjCObjectPointerType *dstOPT = | ||||
| 17341 | DstType->castAs<ObjCObjectPointerType>(); | ||||
| 17342 | for (auto *dstProto : dstOPT->quals()) { | ||||
| 17343 | PDecl = dstProto; | ||||
| 17344 | break; | ||||
| 17345 | } | ||||
| 17346 | if (const ObjCInterfaceType *IFaceT = | ||||
| 17347 | SrcType->castAs<ObjCObjectPointerType>()->getInterfaceType()) | ||||
| 17348 | IFace = IFaceT->getDecl(); | ||||
| 17349 | } | ||||
| 17350 | if (getLangOpts().CPlusPlus) { | ||||
| 17351 | DiagKind = diag::err_incompatible_qualified_id; | ||||
| 17352 | isInvalid = true; | ||||
| 17353 | } else { | ||||
| 17354 | DiagKind = diag::warn_incompatible_qualified_id; | ||||
| 17355 | } | ||||
| 17356 | break; | ||||
| 17357 | } | ||||
| 17358 | case IncompatibleVectors: | ||||
| 17359 | if (getLangOpts().CPlusPlus) { | ||||
| 17360 | DiagKind = diag::err_incompatible_vectors; | ||||
| 17361 | isInvalid = true; | ||||
| 17362 | } else { | ||||
| 17363 | DiagKind = diag::warn_incompatible_vectors; | ||||
| 17364 | } | ||||
| 17365 | break; | ||||
| 17366 | case IncompatibleObjCWeakRef: | ||||
| 17367 | DiagKind = diag::err_arc_weak_unavailable_assign; | ||||
| 17368 | isInvalid = true; | ||||
| 17369 | break; | ||||
| 17370 | case Incompatible: | ||||
| 17371 | if (maybeDiagnoseAssignmentToFunction(*this, DstType, SrcExpr)) { | ||||
| 17372 | if (Complained) | ||||
| 17373 | *Complained = true; | ||||
| 17374 | return true; | ||||
| 17375 | } | ||||
| 17376 | |||||
| 17377 | DiagKind = diag::err_typecheck_convert_incompatible; | ||||
| 17378 | ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this); | ||||
| 17379 | MayHaveConvFixit = true; | ||||
| 17380 | isInvalid = true; | ||||
| 17381 | MayHaveFunctionDiff = true; | ||||
| 17382 | break; | ||||
| 17383 | } | ||||
| 17384 | |||||
| 17385 | QualType FirstType, SecondType; | ||||
| 17386 | switch (Action) { | ||||
| 17387 | case AA_Assigning: | ||||
| 17388 | case AA_Initializing: | ||||
| 17389 | // The destination type comes first. | ||||
| 17390 | FirstType = DstType; | ||||
| 17391 | SecondType = SrcType; | ||||
| 17392 | break; | ||||
| 17393 | |||||
| 17394 | case AA_Returning: | ||||
| 17395 | case AA_Passing: | ||||
| 17396 | case AA_Passing_CFAudited: | ||||
| 17397 | case AA_Converting: | ||||
| 17398 | case AA_Sending: | ||||
| 17399 | case AA_Casting: | ||||
| 17400 | // The source type comes first. | ||||
| 17401 | FirstType = SrcType; | ||||
| 17402 | SecondType = DstType; | ||||
| 17403 | break; | ||||
| 17404 | } | ||||
| 17405 | |||||
| 17406 | PartialDiagnostic FDiag = PDiag(DiagKind); | ||||
| 17407 | AssignmentAction ActionForDiag = Action; | ||||
| 17408 | if (Action == AA_Passing_CFAudited) | ||||
| 17409 | ActionForDiag = AA_Passing; | ||||
| 17410 | |||||
| 17411 | FDiag << FirstType << SecondType << ActionForDiag | ||||
| 17412 | << SrcExpr->getSourceRange(); | ||||
| 17413 | |||||
| 17414 | if (DiagKind == diag::ext_typecheck_convert_incompatible_pointer_sign || | ||||
| 17415 | DiagKind == diag::err_typecheck_convert_incompatible_pointer_sign) { | ||||
| 17416 | auto isPlainChar = [](const clang::Type *Type) { | ||||
| 17417 | return Type->isSpecificBuiltinType(BuiltinType::Char_S) || | ||||
| 17418 | Type->isSpecificBuiltinType(BuiltinType::Char_U); | ||||
| 17419 | }; | ||||
| 17420 | FDiag << (isPlainChar(FirstType->getPointeeOrArrayElementType()) || | ||||
| 17421 | isPlainChar(SecondType->getPointeeOrArrayElementType())); | ||||
| 17422 | } | ||||
| 17423 | |||||
| 17424 | // If we can fix the conversion, suggest the FixIts. | ||||
| 17425 | if (!ConvHints.isNull()) { | ||||
| 17426 | for (FixItHint &H : ConvHints.Hints) | ||||
| 17427 | FDiag << H; | ||||
| 17428 | } | ||||
| 17429 | |||||
| 17430 | if (MayHaveConvFixit) { FDiag << (unsigned) (ConvHints.Kind); } | ||||
| 17431 | |||||
| 17432 | if (MayHaveFunctionDiff) | ||||
| 17433 | HandleFunctionTypeMismatch(FDiag, SecondType, FirstType); | ||||
| 17434 | |||||
| 17435 | Diag(Loc, FDiag); | ||||
| 17436 | if ((DiagKind == diag::warn_incompatible_qualified_id || | ||||
| 17437 | DiagKind == diag::err_incompatible_qualified_id) && | ||||
| 17438 | PDecl && IFace && !IFace->hasDefinition()) | ||||
| 17439 | Diag(IFace->getLocation(), diag::note_incomplete_class_and_qualified_id) | ||||
| 17440 | << IFace << PDecl; | ||||
| 17441 | |||||
| 17442 | if (SecondType == Context.OverloadTy) | ||||
| 17443 | NoteAllOverloadCandidates(OverloadExpr::find(SrcExpr).Expression, | ||||
| 17444 | FirstType, /*TakingAddress=*/true); | ||||
| 17445 | |||||
| 17446 | if (CheckInferredResultType) | ||||
| 17447 | EmitRelatedResultTypeNote(SrcExpr); | ||||
| 17448 | |||||
| 17449 | if (Action == AA_Returning && ConvTy == IncompatiblePointer) | ||||
| 17450 | EmitRelatedResultTypeNoteForReturn(DstType); | ||||
| 17451 | |||||
| 17452 | if (Complained) | ||||
| 17453 | *Complained = true; | ||||
| 17454 | return isInvalid; | ||||
| 17455 | } | ||||
| 17456 | |||||
| 17457 | ExprResult Sema::VerifyIntegerConstantExpression(Expr *E, | ||||
| 17458 | llvm::APSInt *Result, | ||||
| 17459 | AllowFoldKind CanFold) { | ||||
| 17460 | class SimpleICEDiagnoser : public VerifyICEDiagnoser { | ||||
| 17461 | public: | ||||
| 17462 | SemaDiagnosticBuilder diagnoseNotICEType(Sema &S, SourceLocation Loc, | ||||
| 17463 | QualType T) override { | ||||
| 17464 | return S.Diag(Loc, diag::err_ice_not_integral) | ||||
| 17465 | << T << S.LangOpts.CPlusPlus; | ||||
| 17466 | } | ||||
| 17467 | SemaDiagnosticBuilder diagnoseNotICE(Sema &S, SourceLocation Loc) override { | ||||
| 17468 | return S.Diag(Loc, diag::err_expr_not_ice) << S.LangOpts.CPlusPlus; | ||||
| 17469 | } | ||||
| 17470 | } Diagnoser; | ||||
| 17471 | |||||
| 17472 | return VerifyIntegerConstantExpression(E, Result, Diagnoser, CanFold); | ||||
| 17473 | } | ||||
| 17474 | |||||
| 17475 | ExprResult Sema::VerifyIntegerConstantExpression(Expr *E, | ||||
| 17476 | llvm::APSInt *Result, | ||||
| 17477 | unsigned DiagID, | ||||
| 17478 | AllowFoldKind CanFold) { | ||||
| 17479 | class IDDiagnoser : public VerifyICEDiagnoser { | ||||
| 17480 | unsigned DiagID; | ||||
| 17481 | |||||
| 17482 | public: | ||||
| 17483 | IDDiagnoser(unsigned DiagID) | ||||
| 17484 | : VerifyICEDiagnoser(DiagID == 0), DiagID(DiagID) { } | ||||
| 17485 | |||||
| 17486 | SemaDiagnosticBuilder diagnoseNotICE(Sema &S, SourceLocation Loc) override { | ||||
| 17487 | return S.Diag(Loc, DiagID); | ||||
| 17488 | } | ||||
| 17489 | } Diagnoser(DiagID); | ||||
| 17490 | |||||
| 17491 | return VerifyIntegerConstantExpression(E, Result, Diagnoser, CanFold); | ||||
| 17492 | } | ||||
| 17493 | |||||
| 17494 | Sema::SemaDiagnosticBuilder | ||||
| 17495 | Sema::VerifyICEDiagnoser::diagnoseNotICEType(Sema &S, SourceLocation Loc, | ||||
| 17496 | QualType T) { | ||||
| 17497 | return diagnoseNotICE(S, Loc); | ||||
| 17498 | } | ||||
| 17499 | |||||
| 17500 | Sema::SemaDiagnosticBuilder | ||||
| 17501 | Sema::VerifyICEDiagnoser::diagnoseFold(Sema &S, SourceLocation Loc) { | ||||
| 17502 | return S.Diag(Loc, diag::ext_expr_not_ice) << S.LangOpts.CPlusPlus; | ||||
| 17503 | } | ||||
| 17504 | |||||
| 17505 | ExprResult | ||||
| 17506 | Sema::VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result, | ||||
| 17507 | VerifyICEDiagnoser &Diagnoser, | ||||
| 17508 | AllowFoldKind CanFold) { | ||||
| 17509 | SourceLocation DiagLoc = E->getBeginLoc(); | ||||
| 17510 | |||||
| 17511 | if (getLangOpts().CPlusPlus11) { | ||||
| 17512 | // C++11 [expr.const]p5: | ||||
| 17513 | // If an expression of literal class type is used in a context where an | ||||
| 17514 | // integral constant expression is required, then that class type shall | ||||
| 17515 | // have a single non-explicit conversion function to an integral or | ||||
| 17516 | // unscoped enumeration type | ||||
| 17517 | ExprResult Converted; | ||||
| 17518 | class CXX11ConvertDiagnoser : public ICEConvertDiagnoser { | ||||
| 17519 | VerifyICEDiagnoser &BaseDiagnoser; | ||||
| 17520 | public: | ||||
| 17521 | CXX11ConvertDiagnoser(VerifyICEDiagnoser &BaseDiagnoser) | ||||
| 17522 | : ICEConvertDiagnoser(/*AllowScopedEnumerations*/ false, | ||||
| 17523 | BaseDiagnoser.Suppress, true), | ||||
| 17524 | BaseDiagnoser(BaseDiagnoser) {} | ||||
| 17525 | |||||
| 17526 | SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc, | ||||
| 17527 | QualType T) override { | ||||
| 17528 | return BaseDiagnoser.diagnoseNotICEType(S, Loc, T); | ||||
| 17529 | } | ||||
| 17530 | |||||
| 17531 | SemaDiagnosticBuilder diagnoseIncomplete( | ||||
| 17532 | Sema &S, SourceLocation Loc, QualType T) override { | ||||
| 17533 | return S.Diag(Loc, diag::err_ice_incomplete_type) << T; | ||||
| 17534 | } | ||||
| 17535 | |||||
| 17536 | SemaDiagnosticBuilder diagnoseExplicitConv( | ||||
| 17537 | Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override { | ||||
| 17538 | return S.Diag(Loc, diag::err_ice_explicit_conversion) << T << ConvTy; | ||||
| 17539 | } | ||||
| 17540 | |||||
| 17541 | SemaDiagnosticBuilder noteExplicitConv( | ||||
| 17542 | Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override { | ||||
| 17543 | return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here) | ||||
| 17544 | << ConvTy->isEnumeralType() << ConvTy; | ||||
| 17545 | } | ||||
| 17546 | |||||
| 17547 | SemaDiagnosticBuilder diagnoseAmbiguous( | ||||
| 17548 | Sema &S, SourceLocation Loc, QualType T) override { | ||||
| 17549 | return S.Diag(Loc, diag::err_ice_ambiguous_conversion) << T; | ||||
| 17550 | } | ||||
| 17551 | |||||
| 17552 | SemaDiagnosticBuilder noteAmbiguous( | ||||
| 17553 | Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override { | ||||
| 17554 | return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here) | ||||
| 17555 | << ConvTy->isEnumeralType() << ConvTy; | ||||
| 17556 | } | ||||
| 17557 | |||||
| 17558 | SemaDiagnosticBuilder diagnoseConversion( | ||||
| 17559 | Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override { | ||||
| 17560 | llvm_unreachable("conversion functions are permitted")::llvm::llvm_unreachable_internal("conversion functions are permitted" , "clang/lib/Sema/SemaExpr.cpp", 17560); | ||||
| 17561 | } | ||||
| 17562 | } ConvertDiagnoser(Diagnoser); | ||||
| 17563 | |||||
| 17564 | Converted = PerformContextualImplicitConversion(DiagLoc, E, | ||||
| 17565 | ConvertDiagnoser); | ||||
| 17566 | if (Converted.isInvalid()) | ||||
| 17567 | return Converted; | ||||
| 17568 | E = Converted.get(); | ||||
| 17569 | if (!E->getType()->isIntegralOrUnscopedEnumerationType()) | ||||
| 17570 | return ExprError(); | ||||
| 17571 | } else if (!E->getType()->isIntegralOrUnscopedEnumerationType()) { | ||||
| 17572 | // An ICE must be of integral or unscoped enumeration type. | ||||
| 17573 | if (!Diagnoser.Suppress) | ||||
| 17574 | Diagnoser.diagnoseNotICEType(*this, DiagLoc, E->getType()) | ||||
| 17575 | << E->getSourceRange(); | ||||
| 17576 | return ExprError(); | ||||
| 17577 | } | ||||
| 17578 | |||||
| 17579 | ExprResult RValueExpr = DefaultLvalueConversion(E); | ||||
| 17580 | if (RValueExpr.isInvalid()) | ||||
| 17581 | return ExprError(); | ||||
| 17582 | |||||
| 17583 | E = RValueExpr.get(); | ||||
| 17584 | |||||
| 17585 | // Circumvent ICE checking in C++11 to avoid evaluating the expression twice | ||||
| 17586 | // in the non-ICE case. | ||||
| 17587 | if (!getLangOpts().CPlusPlus11 && E->isIntegerConstantExpr(Context)) { | ||||
| 17588 | if (Result) | ||||
| 17589 | *Result = E->EvaluateKnownConstIntCheckOverflow(Context); | ||||
| 17590 | if (!isa<ConstantExpr>(E)) | ||||
| 17591 | E = Result ? ConstantExpr::Create(Context, E, APValue(*Result)) | ||||
| 17592 | : ConstantExpr::Create(Context, E); | ||||
| 17593 | return E; | ||||
| 17594 | } | ||||
| 17595 | |||||
| 17596 | Expr::EvalResult EvalResult; | ||||
| 17597 | SmallVector<PartialDiagnosticAt, 8> Notes; | ||||
| 17598 | EvalResult.Diag = &Notes; | ||||
| 17599 | |||||
| 17600 | // Try to evaluate the expression, and produce diagnostics explaining why it's | ||||
| 17601 | // not a constant expression as a side-effect. | ||||
| 17602 | bool Folded = | ||||
| 17603 | E->EvaluateAsRValue(EvalResult, Context, /*isConstantContext*/ true) && | ||||
| 17604 | EvalResult.Val.isInt() && !EvalResult.HasSideEffects; | ||||
| 17605 | |||||
| 17606 | if (!isa<ConstantExpr>(E)) | ||||
| 17607 | E = ConstantExpr::Create(Context, E, EvalResult.Val); | ||||
| 17608 | |||||
| 17609 | // In C++11, we can rely on diagnostics being produced for any expression | ||||
| 17610 | // which is not a constant expression. If no diagnostics were produced, then | ||||
| 17611 | // this is a constant expression. | ||||
| 17612 | if (Folded && getLangOpts().CPlusPlus11 && Notes.empty()) { | ||||
| 17613 | if (Result) | ||||
| 17614 | *Result = EvalResult.Val.getInt(); | ||||
| 17615 | return E; | ||||
| 17616 | } | ||||
| 17617 | |||||
| 17618 | // If our only note is the usual "invalid subexpression" note, just point | ||||
| 17619 | // the caret at its location rather than producing an essentially | ||||
| 17620 | // redundant note. | ||||
| 17621 | if (Notes.size() == 1 && Notes[0].second.getDiagID() == | ||||
| 17622 | diag::note_invalid_subexpr_in_const_expr) { | ||||
| 17623 | DiagLoc = Notes[0].first; | ||||
| 17624 | Notes.clear(); | ||||
| 17625 | } | ||||
| 17626 | |||||
| 17627 | if (!Folded || !CanFold) { | ||||
| 17628 | if (!Diagnoser.Suppress) { | ||||
| 17629 | Diagnoser.diagnoseNotICE(*this, DiagLoc) << E->getSourceRange(); | ||||
| 17630 | for (const PartialDiagnosticAt &Note : Notes) | ||||
| 17631 | Diag(Note.first, Note.second); | ||||
| 17632 | } | ||||
| 17633 | |||||
| 17634 | return ExprError(); | ||||
| 17635 | } | ||||
| 17636 | |||||
| 17637 | Diagnoser.diagnoseFold(*this, DiagLoc) << E->getSourceRange(); | ||||
| 17638 | for (const PartialDiagnosticAt &Note : Notes) | ||||
| 17639 | Diag(Note.first, Note.second); | ||||
| 17640 | |||||
| 17641 | if (Result) | ||||
| 17642 | *Result = EvalResult.Val.getInt(); | ||||
| 17643 | return E; | ||||
| 17644 | } | ||||
| 17645 | |||||
| 17646 | namespace { | ||||
| 17647 | // Handle the case where we conclude a expression which we speculatively | ||||
| 17648 | // considered to be unevaluated is actually evaluated. | ||||
| 17649 | class TransformToPE : public TreeTransform<TransformToPE> { | ||||
| 17650 | typedef TreeTransform<TransformToPE> BaseTransform; | ||||
| 17651 | |||||
| 17652 | public: | ||||
| 17653 | TransformToPE(Sema &SemaRef) : BaseTransform(SemaRef) { } | ||||
| 17654 | |||||
| 17655 | // Make sure we redo semantic analysis | ||||
| 17656 | bool AlwaysRebuild() { return true; } | ||||
| 17657 | bool ReplacingOriginal() { return true; } | ||||
| 17658 | |||||
| 17659 | // We need to special-case DeclRefExprs referring to FieldDecls which | ||||
| 17660 | // are not part of a member pointer formation; normal TreeTransforming | ||||
| 17661 | // doesn't catch this case because of the way we represent them in the AST. | ||||
| 17662 | // FIXME: This is a bit ugly; is it really the best way to handle this | ||||
| 17663 | // case? | ||||
| 17664 | // | ||||
| 17665 | // Error on DeclRefExprs referring to FieldDecls. | ||||
| 17666 | ExprResult TransformDeclRefExpr(DeclRefExpr *E) { | ||||
| 17667 | if (isa<FieldDecl>(E->getDecl()) && | ||||
| 17668 | !SemaRef.isUnevaluatedContext()) | ||||
| 17669 | return SemaRef.Diag(E->getLocation(), | ||||
| 17670 | diag::err_invalid_non_static_member_use) | ||||
| 17671 | << E->getDecl() << E->getSourceRange(); | ||||
| 17672 | |||||
| 17673 | return BaseTransform::TransformDeclRefExpr(E); | ||||
| 17674 | } | ||||
| 17675 | |||||
| 17676 | // Exception: filter out member pointer formation | ||||
| 17677 | ExprResult TransformUnaryOperator(UnaryOperator *E) { | ||||
| 17678 | if (E->getOpcode() == UO_AddrOf && E->getType()->isMemberPointerType()) | ||||
| 17679 | return E; | ||||
| 17680 | |||||
| 17681 | return BaseTransform::TransformUnaryOperator(E); | ||||
| 17682 | } | ||||
| 17683 | |||||
| 17684 | // The body of a lambda-expression is in a separate expression evaluation | ||||
| 17685 | // context so never needs to be transformed. | ||||
| 17686 | // FIXME: Ideally we wouldn't transform the closure type either, and would | ||||
| 17687 | // just recreate the capture expressions and lambda expression. | ||||
| 17688 | StmtResult TransformLambdaBody(LambdaExpr *E, Stmt *Body) { | ||||
| 17689 | return SkipLambdaBody(E, Body); | ||||
| 17690 | } | ||||
| 17691 | }; | ||||
| 17692 | } | ||||
| 17693 | |||||
| 17694 | ExprResult Sema::TransformToPotentiallyEvaluated(Expr *E) { | ||||
| 17695 | assert(isUnevaluatedContext() &&(static_cast <bool> (isUnevaluatedContext() && "Should only transform unevaluated expressions" ) ? void (0) : __assert_fail ("isUnevaluatedContext() && \"Should only transform unevaluated expressions\"" , "clang/lib/Sema/SemaExpr.cpp", 17696, __extension__ __PRETTY_FUNCTION__ )) | ||||
| 17696 | "Should only transform unevaluated expressions")(static_cast <bool> (isUnevaluatedContext() && "Should only transform unevaluated expressions" ) ? void (0) : __assert_fail ("isUnevaluatedContext() && \"Should only transform unevaluated expressions\"" , "clang/lib/Sema/SemaExpr.cpp", 17696, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 17697 | ExprEvalContexts.back().Context = | ||||
| 17698 | ExprEvalContexts[ExprEvalContexts.size()-2].Context; | ||||
| 17699 | if (isUnevaluatedContext()) | ||||
| 17700 | return E; | ||||
| 17701 | return TransformToPE(*this).TransformExpr(E); | ||||
| 17702 | } | ||||
| 17703 | |||||
| 17704 | TypeSourceInfo *Sema::TransformToPotentiallyEvaluated(TypeSourceInfo *TInfo) { | ||||
| 17705 | assert(isUnevaluatedContext() &&(static_cast <bool> (isUnevaluatedContext() && "Should only transform unevaluated expressions" ) ? void (0) : __assert_fail ("isUnevaluatedContext() && \"Should only transform unevaluated expressions\"" , "clang/lib/Sema/SemaExpr.cpp", 17706, __extension__ __PRETTY_FUNCTION__ )) | ||||
| 17706 | "Should only transform unevaluated expressions")(static_cast <bool> (isUnevaluatedContext() && "Should only transform unevaluated expressions" ) ? void (0) : __assert_fail ("isUnevaluatedContext() && \"Should only transform unevaluated expressions\"" , "clang/lib/Sema/SemaExpr.cpp", 17706, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 17707 | ExprEvalContexts.back().Context = | ||||
| 17708 | ExprEvalContexts[ExprEvalContexts.size() - 2].Context; | ||||
| 17709 | if (isUnevaluatedContext()) | ||||
| 17710 | return TInfo; | ||||
| 17711 | return TransformToPE(*this).TransformType(TInfo); | ||||
| 17712 | } | ||||
| 17713 | |||||
| 17714 | void | ||||
| 17715 | Sema::PushExpressionEvaluationContext( | ||||
| 17716 | ExpressionEvaluationContext NewContext, Decl *LambdaContextDecl, | ||||
| 17717 | ExpressionEvaluationContextRecord::ExpressionKind ExprContext) { | ||||
| 17718 | ExprEvalContexts.emplace_back(NewContext, ExprCleanupObjects.size(), Cleanup, | ||||
| 17719 | LambdaContextDecl, ExprContext); | ||||
| 17720 | |||||
| 17721 | // Discarded statements and immediate contexts nested in other | ||||
| 17722 | // discarded statements or immediate context are themselves | ||||
| 17723 | // a discarded statement or an immediate context, respectively. | ||||
| 17724 | ExprEvalContexts.back().InDiscardedStatement = | ||||
| 17725 | ExprEvalContexts[ExprEvalContexts.size() - 2] | ||||
| 17726 | .isDiscardedStatementContext(); | ||||
| 17727 | ExprEvalContexts.back().InImmediateFunctionContext = | ||||
| 17728 | ExprEvalContexts[ExprEvalContexts.size() - 2] | ||||
| 17729 | .isImmediateFunctionContext(); | ||||
| 17730 | |||||
| 17731 | Cleanup.reset(); | ||||
| 17732 | if (!MaybeODRUseExprs.empty()) | ||||
| 17733 | std::swap(MaybeODRUseExprs, ExprEvalContexts.back().SavedMaybeODRUseExprs); | ||||
| 17734 | } | ||||
| 17735 | |||||
| 17736 | void | ||||
| 17737 | Sema::PushExpressionEvaluationContext( | ||||
| 17738 | ExpressionEvaluationContext NewContext, ReuseLambdaContextDecl_t, | ||||
| 17739 | ExpressionEvaluationContextRecord::ExpressionKind ExprContext) { | ||||
| 17740 | Decl *ClosureContextDecl = ExprEvalContexts.back().ManglingContextDecl; | ||||
| 17741 | PushExpressionEvaluationContext(NewContext, ClosureContextDecl, ExprContext); | ||||
| 17742 | } | ||||
| 17743 | |||||
| 17744 | namespace { | ||||
| 17745 | |||||
| 17746 | const DeclRefExpr *CheckPossibleDeref(Sema &S, const Expr *PossibleDeref) { | ||||
| 17747 | PossibleDeref = PossibleDeref->IgnoreParenImpCasts(); | ||||
| 17748 | if (const auto *E = dyn_cast<UnaryOperator>(PossibleDeref)) { | ||||
| 17749 | if (E->getOpcode() == UO_Deref) | ||||
| 17750 | return CheckPossibleDeref(S, E->getSubExpr()); | ||||
| 17751 | } else if (const auto *E = dyn_cast<ArraySubscriptExpr>(PossibleDeref)) { | ||||
| 17752 | return CheckPossibleDeref(S, E->getBase()); | ||||
| 17753 | } else if (const auto *E = dyn_cast<MemberExpr>(PossibleDeref)) { | ||||
| 17754 | return CheckPossibleDeref(S, E->getBase()); | ||||
| 17755 | } else if (const auto E = dyn_cast<DeclRefExpr>(PossibleDeref)) { | ||||
| 17756 | QualType Inner; | ||||
| 17757 | QualType Ty = E->getType(); | ||||
| 17758 | if (const auto *Ptr = Ty->getAs<PointerType>()) | ||||
| 17759 | Inner = Ptr->getPointeeType(); | ||||
| 17760 | else if (const auto *Arr = S.Context.getAsArrayType(Ty)) | ||||
| 17761 | Inner = Arr->getElementType(); | ||||
| 17762 | else | ||||
| 17763 | return nullptr; | ||||
| 17764 | |||||
| 17765 | if (Inner->hasAttr(attr::NoDeref)) | ||||
| 17766 | return E; | ||||
| 17767 | } | ||||
| 17768 | return nullptr; | ||||
| 17769 | } | ||||
| 17770 | |||||
| 17771 | } // namespace | ||||
| 17772 | |||||
| 17773 | void Sema::WarnOnPendingNoDerefs(ExpressionEvaluationContextRecord &Rec) { | ||||
| 17774 | for (const Expr *E : Rec.PossibleDerefs) { | ||||
| 17775 | const DeclRefExpr *DeclRef = CheckPossibleDeref(*this, E); | ||||
| 17776 | if (DeclRef) { | ||||
| 17777 | const ValueDecl *Decl = DeclRef->getDecl(); | ||||
| 17778 | Diag(E->getExprLoc(), diag::warn_dereference_of_noderef_type) | ||||
| 17779 | << Decl->getName() << E->getSourceRange(); | ||||
| 17780 | Diag(Decl->getLocation(), diag::note_previous_decl) << Decl->getName(); | ||||
| 17781 | } else { | ||||
| 17782 | Diag(E->getExprLoc(), diag::warn_dereference_of_noderef_type_no_decl) | ||||
| 17783 | << E->getSourceRange(); | ||||
| 17784 | } | ||||
| 17785 | } | ||||
| 17786 | Rec.PossibleDerefs.clear(); | ||||
| 17787 | } | ||||
| 17788 | |||||
| 17789 | /// Check whether E, which is either a discarded-value expression or an | ||||
| 17790 | /// unevaluated operand, is a simple-assignment to a volatlie-qualified lvalue, | ||||
| 17791 | /// and if so, remove it from the list of volatile-qualified assignments that | ||||
| 17792 | /// we are going to warn are deprecated. | ||||
| 17793 | void Sema::CheckUnusedVolatileAssignment(Expr *E) { | ||||
| 17794 | if (!E->getType().isVolatileQualified() || !getLangOpts().CPlusPlus20) | ||||
| 17795 | return; | ||||
| 17796 | |||||
| 17797 | // Note: ignoring parens here is not justified by the standard rules, but | ||||
| 17798 | // ignoring parentheses seems like a more reasonable approach, and this only | ||||
| 17799 | // drives a deprecation warning so doesn't affect conformance. | ||||
| 17800 | if (auto *BO = dyn_cast<BinaryOperator>(E->IgnoreParenImpCasts())) { | ||||
| 17801 | if (BO->getOpcode() == BO_Assign) { | ||||
| 17802 | auto &LHSs = ExprEvalContexts.back().VolatileAssignmentLHSs; | ||||
| 17803 | llvm::erase_value(LHSs, BO->getLHS()); | ||||
| 17804 | } | ||||
| 17805 | } | ||||
| 17806 | } | ||||
| 17807 | |||||
| 17808 | ExprResult Sema::CheckForImmediateInvocation(ExprResult E, FunctionDecl *Decl) { | ||||
| 17809 | if (isUnevaluatedContext() || !E.isUsable() || !Decl || | ||||
| 17810 | !Decl->isConsteval() || isConstantEvaluated() || | ||||
| 17811 | isCheckingDefaultArgumentOrInitializer() || | ||||
| 17812 | RebuildingImmediateInvocation || isImmediateFunctionContext()) | ||||
| 17813 | return E; | ||||
| 17814 | |||||
| 17815 | /// Opportunistically remove the callee from ReferencesToConsteval if we can. | ||||
| 17816 | /// It's OK if this fails; we'll also remove this in | ||||
| 17817 | /// HandleImmediateInvocations, but catching it here allows us to avoid | ||||
| 17818 | /// walking the AST looking for it in simple cases. | ||||
| 17819 | if (auto *Call = dyn_cast<CallExpr>(E.get()->IgnoreImplicit())) | ||||
| 17820 | if (auto *DeclRef = | ||||
| 17821 | dyn_cast<DeclRefExpr>(Call->getCallee()->IgnoreImplicit())) | ||||
| 17822 | ExprEvalContexts.back().ReferenceToConsteval.erase(DeclRef); | ||||
| 17823 | |||||
| 17824 | E = MaybeCreateExprWithCleanups(E); | ||||
| 17825 | |||||
| 17826 | ConstantExpr *Res = ConstantExpr::Create( | ||||
| 17827 | getASTContext(), E.get(), | ||||
| 17828 | ConstantExpr::getStorageKind(Decl->getReturnType().getTypePtr(), | ||||
| 17829 | getASTContext()), | ||||
| 17830 | /*IsImmediateInvocation*/ true); | ||||
| 17831 | /// Value-dependent constant expressions should not be immediately | ||||
| 17832 | /// evaluated until they are instantiated. | ||||
| 17833 | if (!Res->isValueDependent()) | ||||
| 17834 | ExprEvalContexts.back().ImmediateInvocationCandidates.emplace_back(Res, 0); | ||||
| 17835 | return Res; | ||||
| 17836 | } | ||||
| 17837 | |||||
| 17838 | static void EvaluateAndDiagnoseImmediateInvocation( | ||||
| 17839 | Sema &SemaRef, Sema::ImmediateInvocationCandidate Candidate) { | ||||
| 17840 | llvm::SmallVector<PartialDiagnosticAt, 8> Notes; | ||||
| 17841 | Expr::EvalResult Eval; | ||||
| 17842 | Eval.Diag = &Notes; | ||||
| 17843 | ConstantExpr *CE = Candidate.getPointer(); | ||||
| 17844 | bool Result = CE->EvaluateAsConstantExpr( | ||||
| 17845 | Eval, SemaRef.getASTContext(), ConstantExprKind::ImmediateInvocation); | ||||
| 17846 | if (!Result || !Notes.empty()) { | ||||
| 17847 | Expr *InnerExpr = CE->getSubExpr()->IgnoreImplicit(); | ||||
| 17848 | if (auto *FunctionalCast = dyn_cast<CXXFunctionalCastExpr>(InnerExpr)) | ||||
| 17849 | InnerExpr = FunctionalCast->getSubExpr(); | ||||
| 17850 | FunctionDecl *FD = nullptr; | ||||
| 17851 | if (auto *Call = dyn_cast<CallExpr>(InnerExpr)) | ||||
| 17852 | FD = cast<FunctionDecl>(Call->getCalleeDecl()); | ||||
| 17853 | else if (auto *Call = dyn_cast<CXXConstructExpr>(InnerExpr)) | ||||
| 17854 | FD = Call->getConstructor(); | ||||
| 17855 | else | ||||
| 17856 | llvm_unreachable("unhandled decl kind")::llvm::llvm_unreachable_internal("unhandled decl kind", "clang/lib/Sema/SemaExpr.cpp" , 17856); | ||||
| 17857 | assert(FD && FD->isConsteval())(static_cast <bool> (FD && FD->isConsteval() ) ? void (0) : __assert_fail ("FD && FD->isConsteval()" , "clang/lib/Sema/SemaExpr.cpp", 17857, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 17858 | SemaRef.Diag(CE->getBeginLoc(), diag::err_invalid_consteval_call) << FD; | ||||
| 17859 | if (auto Context = | ||||
| 17860 | SemaRef.InnermostDeclarationWithDelayedImmediateInvocations()) { | ||||
| 17861 | SemaRef.Diag(Context->Loc, diag::note_invalid_consteval_initializer) | ||||
| 17862 | << Context->Decl; | ||||
| 17863 | SemaRef.Diag(Context->Decl->getBeginLoc(), diag::note_declared_at); | ||||
| 17864 | } | ||||
| 17865 | for (auto &Note : Notes) | ||||
| 17866 | SemaRef.Diag(Note.first, Note.second); | ||||
| 17867 | return; | ||||
| 17868 | } | ||||
| 17869 | CE->MoveIntoResult(Eval.Val, SemaRef.getASTContext()); | ||||
| 17870 | } | ||||
| 17871 | |||||
| 17872 | static void RemoveNestedImmediateInvocation( | ||||
| 17873 | Sema &SemaRef, Sema::ExpressionEvaluationContextRecord &Rec, | ||||
| 17874 | SmallVector<Sema::ImmediateInvocationCandidate, 4>::reverse_iterator It) { | ||||
| 17875 | struct ComplexRemove : TreeTransform<ComplexRemove> { | ||||
| 17876 | using Base = TreeTransform<ComplexRemove>; | ||||
| 17877 | llvm::SmallPtrSetImpl<DeclRefExpr *> &DRSet; | ||||
| 17878 | SmallVector<Sema::ImmediateInvocationCandidate, 4> &IISet; | ||||
| 17879 | SmallVector<Sema::ImmediateInvocationCandidate, 4>::reverse_iterator | ||||
| 17880 | CurrentII; | ||||
| 17881 | ComplexRemove(Sema &SemaRef, llvm::SmallPtrSetImpl<DeclRefExpr *> &DR, | ||||
| 17882 | SmallVector<Sema::ImmediateInvocationCandidate, 4> &II, | ||||
| 17883 | SmallVector<Sema::ImmediateInvocationCandidate, | ||||
| 17884 | 4>::reverse_iterator Current) | ||||
| 17885 | : Base(SemaRef), DRSet(DR), IISet(II), CurrentII(Current) {} | ||||
| 17886 | void RemoveImmediateInvocation(ConstantExpr* E) { | ||||
| 17887 | auto It = std::find_if(CurrentII, IISet.rend(), | ||||
| 17888 | [E](Sema::ImmediateInvocationCandidate Elem) { | ||||
| 17889 | return Elem.getPointer() == E; | ||||
| 17890 | }); | ||||
| 17891 | assert(It != IISet.rend() &&(static_cast <bool> (It != IISet.rend() && "ConstantExpr marked IsImmediateInvocation should " "be present") ? void (0) : __assert_fail ("It != IISet.rend() && \"ConstantExpr marked IsImmediateInvocation should \" \"be present\"" , "clang/lib/Sema/SemaExpr.cpp", 17893, __extension__ __PRETTY_FUNCTION__ )) | ||||
| 17892 | "ConstantExpr marked IsImmediateInvocation should "(static_cast <bool> (It != IISet.rend() && "ConstantExpr marked IsImmediateInvocation should " "be present") ? void (0) : __assert_fail ("It != IISet.rend() && \"ConstantExpr marked IsImmediateInvocation should \" \"be present\"" , "clang/lib/Sema/SemaExpr.cpp", 17893, __extension__ __PRETTY_FUNCTION__ )) | ||||
| 17893 | "be present")(static_cast <bool> (It != IISet.rend() && "ConstantExpr marked IsImmediateInvocation should " "be present") ? void (0) : __assert_fail ("It != IISet.rend() && \"ConstantExpr marked IsImmediateInvocation should \" \"be present\"" , "clang/lib/Sema/SemaExpr.cpp", 17893, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 17894 | It->setInt(1); // Mark as deleted | ||||
| 17895 | } | ||||
| 17896 | ExprResult TransformConstantExpr(ConstantExpr *E) { | ||||
| 17897 | if (!E->isImmediateInvocation()) | ||||
| 17898 | return Base::TransformConstantExpr(E); | ||||
| 17899 | RemoveImmediateInvocation(E); | ||||
| 17900 | return Base::TransformExpr(E->getSubExpr()); | ||||
| 17901 | } | ||||
| 17902 | /// Base::TransfromCXXOperatorCallExpr doesn't traverse the callee so | ||||
| 17903 | /// we need to remove its DeclRefExpr from the DRSet. | ||||
| 17904 | ExprResult TransformCXXOperatorCallExpr(CXXOperatorCallExpr *E) { | ||||
| 17905 | DRSet.erase(cast<DeclRefExpr>(E->getCallee()->IgnoreImplicit())); | ||||
| 17906 | return Base::TransformCXXOperatorCallExpr(E); | ||||
| 17907 | } | ||||
| 17908 | /// Base::TransformInitializer skip ConstantExpr so we need to visit them | ||||
| 17909 | /// here. | ||||
| 17910 | ExprResult TransformInitializer(Expr *Init, bool NotCopyInit) { | ||||
| 17911 | if (!Init) | ||||
| 17912 | return Init; | ||||
| 17913 | /// ConstantExpr are the first layer of implicit node to be removed so if | ||||
| 17914 | /// Init isn't a ConstantExpr, no ConstantExpr will be skipped. | ||||
| 17915 | if (auto *CE = dyn_cast<ConstantExpr>(Init)) | ||||
| 17916 | if (CE->isImmediateInvocation()) | ||||
| 17917 | RemoveImmediateInvocation(CE); | ||||
| 17918 | return Base::TransformInitializer(Init, NotCopyInit); | ||||
| 17919 | } | ||||
| 17920 | ExprResult TransformDeclRefExpr(DeclRefExpr *E) { | ||||
| 17921 | DRSet.erase(E); | ||||
| 17922 | return E; | ||||
| 17923 | } | ||||
| 17924 | ExprResult TransformLambdaExpr(LambdaExpr *E) { | ||||
| 17925 | // Do not rebuild lambdas to avoid creating a new type. | ||||
| 17926 | // Lambdas have already been processed inside their eval context. | ||||
| 17927 | return E; | ||||
| 17928 | } | ||||
| 17929 | bool AlwaysRebuild() { return false; } | ||||
| 17930 | bool ReplacingOriginal() { return true; } | ||||
| 17931 | bool AllowSkippingCXXConstructExpr() { | ||||
| 17932 | bool Res = AllowSkippingFirstCXXConstructExpr; | ||||
| 17933 | AllowSkippingFirstCXXConstructExpr = true; | ||||
| 17934 | return Res; | ||||
| 17935 | } | ||||
| 17936 | bool AllowSkippingFirstCXXConstructExpr = true; | ||||
| 17937 | } Transformer(SemaRef, Rec.ReferenceToConsteval, | ||||
| 17938 | Rec.ImmediateInvocationCandidates, It); | ||||
| 17939 | |||||
| 17940 | /// CXXConstructExpr with a single argument are getting skipped by | ||||
| 17941 | /// TreeTransform in some situtation because they could be implicit. This | ||||
| 17942 | /// can only occur for the top-level CXXConstructExpr because it is used | ||||
| 17943 | /// nowhere in the expression being transformed therefore will not be rebuilt. | ||||
| 17944 | /// Setting AllowSkippingFirstCXXConstructExpr to false will prevent from | ||||
| 17945 | /// skipping the first CXXConstructExpr. | ||||
| 17946 | if (isa<CXXConstructExpr>(It->getPointer()->IgnoreImplicit())) | ||||
| 17947 | Transformer.AllowSkippingFirstCXXConstructExpr = false; | ||||
| 17948 | |||||
| 17949 | ExprResult Res = Transformer.TransformExpr(It->getPointer()->getSubExpr()); | ||||
| 17950 | // The result may not be usable in case of previous compilation errors. | ||||
| 17951 | // In this case evaluation of the expression may result in crash so just | ||||
| 17952 | // don't do anything further with the result. | ||||
| 17953 | if (Res.isUsable()) { | ||||
| 17954 | Res = SemaRef.MaybeCreateExprWithCleanups(Res); | ||||
| 17955 | It->getPointer()->setSubExpr(Res.get()); | ||||
| 17956 | } | ||||
| 17957 | } | ||||
| 17958 | |||||
| 17959 | static void | ||||
| 17960 | HandleImmediateInvocations(Sema &SemaRef, | ||||
| 17961 | Sema::ExpressionEvaluationContextRecord &Rec) { | ||||
| 17962 | if ((Rec.ImmediateInvocationCandidates.size() == 0 && | ||||
| 17963 | Rec.ReferenceToConsteval.size() == 0) || | ||||
| 17964 | SemaRef.RebuildingImmediateInvocation) | ||||
| 17965 | return; | ||||
| 17966 | |||||
| 17967 | /// When we have more then 1 ImmediateInvocationCandidates we need to check | ||||
| 17968 | /// for nested ImmediateInvocationCandidates. when we have only 1 we only | ||||
| 17969 | /// need to remove ReferenceToConsteval in the immediate invocation. | ||||
| 17970 | if (Rec.ImmediateInvocationCandidates.size() > 1) { | ||||
| 17971 | |||||
| 17972 | /// Prevent sema calls during the tree transform from adding pointers that | ||||
| 17973 | /// are already in the sets. | ||||
| 17974 | llvm::SaveAndRestore DisableIITracking( | ||||
| 17975 | SemaRef.RebuildingImmediateInvocation, true); | ||||
| 17976 | |||||
| 17977 | /// Prevent diagnostic during tree transfrom as they are duplicates | ||||
| 17978 | Sema::TentativeAnalysisScope DisableDiag(SemaRef); | ||||
| 17979 | |||||
| 17980 | for (auto It = Rec.ImmediateInvocationCandidates.rbegin(); | ||||
| 17981 | It != Rec.ImmediateInvocationCandidates.rend(); It++) | ||||
| 17982 | if (!It->getInt()) | ||||
| 17983 | RemoveNestedImmediateInvocation(SemaRef, Rec, It); | ||||
| 17984 | } else if (Rec.ImmediateInvocationCandidates.size() == 1 && | ||||
| 17985 | Rec.ReferenceToConsteval.size()) { | ||||
| 17986 | struct SimpleRemove : RecursiveASTVisitor<SimpleRemove> { | ||||
| 17987 | llvm::SmallPtrSetImpl<DeclRefExpr *> &DRSet; | ||||
| 17988 | SimpleRemove(llvm::SmallPtrSetImpl<DeclRefExpr *> &S) : DRSet(S) {} | ||||
| 17989 | bool VisitDeclRefExpr(DeclRefExpr *E) { | ||||
| 17990 | DRSet.erase(E); | ||||
| 17991 | return DRSet.size(); | ||||
| 17992 | } | ||||
| 17993 | } Visitor(Rec.ReferenceToConsteval); | ||||
| 17994 | Visitor.TraverseStmt( | ||||
| 17995 | Rec.ImmediateInvocationCandidates.front().getPointer()->getSubExpr()); | ||||
| 17996 | } | ||||
| 17997 | for (auto CE : Rec.ImmediateInvocationCandidates) | ||||
| 17998 | if (!CE.getInt()) | ||||
| 17999 | EvaluateAndDiagnoseImmediateInvocation(SemaRef, CE); | ||||
| 18000 | for (auto *DR : Rec.ReferenceToConsteval) { | ||||
| 18001 | NamedDecl *ND = cast<FunctionDecl>(DR->getDecl()); | ||||
| 18002 | if (auto *MD = llvm::dyn_cast<CXXMethodDecl>(ND); | ||||
| 18003 | MD && (MD->isLambdaStaticInvoker() || isLambdaCallOperator(MD))) | ||||
| 18004 | ND = MD->getParent(); | ||||
| 18005 | SemaRef.Diag(DR->getBeginLoc(), diag::err_invalid_consteval_take_address) | ||||
| 18006 | << ND << isa<CXXRecordDecl>(ND); | ||||
| 18007 | SemaRef.Diag(ND->getLocation(), diag::note_declared_at); | ||||
| 18008 | } | ||||
| 18009 | } | ||||
| 18010 | |||||
| 18011 | void Sema::PopExpressionEvaluationContext() { | ||||
| 18012 | ExpressionEvaluationContextRecord& Rec = ExprEvalContexts.back(); | ||||
| 18013 | unsigned NumTypos = Rec.NumTypos; | ||||
| 18014 | |||||
| 18015 | if (!Rec.Lambdas.empty()) { | ||||
| 18016 | using ExpressionKind = ExpressionEvaluationContextRecord::ExpressionKind; | ||||
| 18017 | if (!getLangOpts().CPlusPlus20 && | ||||
| 18018 | (Rec.ExprContext == ExpressionKind::EK_TemplateArgument || | ||||
| 18019 | Rec.isUnevaluated() || | ||||
| 18020 | (Rec.isConstantEvaluated() && !getLangOpts().CPlusPlus17))) { | ||||
| 18021 | unsigned D; | ||||
| 18022 | if (Rec.isUnevaluated()) { | ||||
| 18023 | // C++11 [expr.prim.lambda]p2: | ||||
| 18024 | // A lambda-expression shall not appear in an unevaluated operand | ||||
| 18025 | // (Clause 5). | ||||
| 18026 | D = diag::err_lambda_unevaluated_operand; | ||||
| 18027 | } else if (Rec.isConstantEvaluated() && !getLangOpts().CPlusPlus17) { | ||||
| 18028 | // C++1y [expr.const]p2: | ||||
| 18029 | // A conditional-expression e is a core constant expression unless the | ||||
| 18030 | // evaluation of e, following the rules of the abstract machine, would | ||||
| 18031 | // evaluate [...] a lambda-expression. | ||||
| 18032 | D = diag::err_lambda_in_constant_expression; | ||||
| 18033 | } else if (Rec.ExprContext == ExpressionKind::EK_TemplateArgument) { | ||||
| 18034 | // C++17 [expr.prim.lamda]p2: | ||||
| 18035 | // A lambda-expression shall not appear [...] in a template-argument. | ||||
| 18036 | D = diag::err_lambda_in_invalid_context; | ||||
| 18037 | } else | ||||
| 18038 | llvm_unreachable("Couldn't infer lambda error message.")::llvm::llvm_unreachable_internal("Couldn't infer lambda error message." , "clang/lib/Sema/SemaExpr.cpp", 18038); | ||||
| 18039 | |||||
| 18040 | for (const auto *L : Rec.Lambdas) | ||||
| 18041 | Diag(L->getBeginLoc(), D); | ||||
| 18042 | } | ||||
| 18043 | } | ||||
| 18044 | |||||
| 18045 | WarnOnPendingNoDerefs(Rec); | ||||
| 18046 | HandleImmediateInvocations(*this, Rec); | ||||
| 18047 | |||||
| 18048 | // Warn on any volatile-qualified simple-assignments that are not discarded- | ||||
| 18049 | // value expressions nor unevaluated operands (those cases get removed from | ||||
| 18050 | // this list by CheckUnusedVolatileAssignment). | ||||
| 18051 | for (auto *BO : Rec.VolatileAssignmentLHSs) | ||||
| 18052 | Diag(BO->getBeginLoc(), diag::warn_deprecated_simple_assign_volatile) | ||||
| 18053 | << BO->getType(); | ||||
| 18054 | |||||
| 18055 | // When are coming out of an unevaluated context, clear out any | ||||
| 18056 | // temporaries that we may have created as part of the evaluation of | ||||
| 18057 | // the expression in that context: they aren't relevant because they | ||||
| 18058 | // will never be constructed. | ||||
| 18059 | if (Rec.isUnevaluated() || Rec.isConstantEvaluated()) { | ||||
| 18060 | ExprCleanupObjects.erase(ExprCleanupObjects.begin() + Rec.NumCleanupObjects, | ||||
| 18061 | ExprCleanupObjects.end()); | ||||
| 18062 | Cleanup = Rec.ParentCleanup; | ||||
| 18063 | CleanupVarDeclMarking(); | ||||
| 18064 | std::swap(MaybeODRUseExprs, Rec.SavedMaybeODRUseExprs); | ||||
| 18065 | // Otherwise, merge the contexts together. | ||||
| 18066 | } else { | ||||
| 18067 | Cleanup.mergeFrom(Rec.ParentCleanup); | ||||
| 18068 | MaybeODRUseExprs.insert(Rec.SavedMaybeODRUseExprs.begin(), | ||||
| 18069 | Rec.SavedMaybeODRUseExprs.end()); | ||||
| 18070 | } | ||||
| 18071 | |||||
| 18072 | // Pop the current expression evaluation context off the stack. | ||||
| 18073 | ExprEvalContexts.pop_back(); | ||||
| 18074 | |||||
| 18075 | // The global expression evaluation context record is never popped. | ||||
| 18076 | ExprEvalContexts.back().NumTypos += NumTypos; | ||||
| 18077 | } | ||||
| 18078 | |||||
| 18079 | void Sema::DiscardCleanupsInEvaluationContext() { | ||||
| 18080 | ExprCleanupObjects.erase( | ||||
| 18081 | ExprCleanupObjects.begin() + ExprEvalContexts.back().NumCleanupObjects, | ||||
| 18082 | ExprCleanupObjects.end()); | ||||
| 18083 | Cleanup.reset(); | ||||
| 18084 | MaybeODRUseExprs.clear(); | ||||
| 18085 | } | ||||
| 18086 | |||||
| 18087 | ExprResult Sema::HandleExprEvaluationContextForTypeof(Expr *E) { | ||||
| 18088 | ExprResult Result = CheckPlaceholderExpr(E); | ||||
| 18089 | if (Result.isInvalid()) | ||||
| 18090 | return ExprError(); | ||||
| 18091 | E = Result.get(); | ||||
| 18092 | if (!E->getType()->isVariablyModifiedType()) | ||||
| 18093 | return E; | ||||
| 18094 | return TransformToPotentiallyEvaluated(E); | ||||
| 18095 | } | ||||
| 18096 | |||||
| 18097 | /// Are we in a context that is potentially constant evaluated per C++20 | ||||
| 18098 | /// [expr.const]p12? | ||||
| 18099 | static bool isPotentiallyConstantEvaluatedContext(Sema &SemaRef) { | ||||
| 18100 | /// C++2a [expr.const]p12: | ||||
| 18101 | // An expression or conversion is potentially constant evaluated if it is | ||||
| 18102 | switch (SemaRef.ExprEvalContexts.back().Context) { | ||||
| 18103 | case Sema::ExpressionEvaluationContext::ConstantEvaluated: | ||||
| 18104 | case Sema::ExpressionEvaluationContext::ImmediateFunctionContext: | ||||
| 18105 | |||||
| 18106 | // -- a manifestly constant-evaluated expression, | ||||
| 18107 | case Sema::ExpressionEvaluationContext::PotentiallyEvaluated: | ||||
| 18108 | case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed: | ||||
| 18109 | case Sema::ExpressionEvaluationContext::DiscardedStatement: | ||||
| 18110 | // -- a potentially-evaluated expression, | ||||
| 18111 | case Sema::ExpressionEvaluationContext::UnevaluatedList: | ||||
| 18112 | // -- an immediate subexpression of a braced-init-list, | ||||
| 18113 | |||||
| 18114 | // -- [FIXME] an expression of the form & cast-expression that occurs | ||||
| 18115 | // within a templated entity | ||||
| 18116 | // -- a subexpression of one of the above that is not a subexpression of | ||||
| 18117 | // a nested unevaluated operand. | ||||
| 18118 | return true; | ||||
| 18119 | |||||
| 18120 | case Sema::ExpressionEvaluationContext::Unevaluated: | ||||
| 18121 | case Sema::ExpressionEvaluationContext::UnevaluatedAbstract: | ||||
| 18122 | // Expressions in this context are never evaluated. | ||||
| 18123 | return false; | ||||
| 18124 | } | ||||
| 18125 | llvm_unreachable("Invalid context")::llvm::llvm_unreachable_internal("Invalid context", "clang/lib/Sema/SemaExpr.cpp" , 18125); | ||||
| 18126 | } | ||||
| 18127 | |||||
| 18128 | /// Return true if this function has a calling convention that requires mangling | ||||
| 18129 | /// in the size of the parameter pack. | ||||
| 18130 | static bool funcHasParameterSizeMangling(Sema &S, FunctionDecl *FD) { | ||||
| 18131 | // These manglings don't do anything on non-Windows or non-x86 platforms, so | ||||
| 18132 | // we don't need parameter type sizes. | ||||
| 18133 | const llvm::Triple &TT = S.Context.getTargetInfo().getTriple(); | ||||
| 18134 | if (!TT.isOSWindows() || !TT.isX86()) | ||||
| 18135 | return false; | ||||
| 18136 | |||||
| 18137 | // If this is C++ and this isn't an extern "C" function, parameters do not | ||||
| 18138 | // need to be complete. In this case, C++ mangling will apply, which doesn't | ||||
| 18139 | // use the size of the parameters. | ||||
| 18140 | if (S.getLangOpts().CPlusPlus && !FD->isExternC()) | ||||
| 18141 | return false; | ||||
| 18142 | |||||
| 18143 | // Stdcall, fastcall, and vectorcall need this special treatment. | ||||
| 18144 | CallingConv CC = FD->getType()->castAs<FunctionType>()->getCallConv(); | ||||
| 18145 | switch (CC) { | ||||
| 18146 | case CC_X86StdCall: | ||||
| 18147 | case CC_X86FastCall: | ||||
| 18148 | case CC_X86VectorCall: | ||||
| 18149 | return true; | ||||
| 18150 | default: | ||||
| 18151 | break; | ||||
| 18152 | } | ||||
| 18153 | return false; | ||||
| 18154 | } | ||||
| 18155 | |||||
| 18156 | /// Require that all of the parameter types of function be complete. Normally, | ||||
| 18157 | /// parameter types are only required to be complete when a function is called | ||||
| 18158 | /// or defined, but to mangle functions with certain calling conventions, the | ||||
| 18159 | /// mangler needs to know the size of the parameter list. In this situation, | ||||
| 18160 | /// MSVC doesn't emit an error or instantiate templates. Instead, MSVC mangles | ||||
| 18161 | /// the function as _foo@0, i.e. zero bytes of parameters, which will usually | ||||
| 18162 | /// result in a linker error. Clang doesn't implement this behavior, and instead | ||||
| 18163 | /// attempts to error at compile time. | ||||
| 18164 | static void CheckCompleteParameterTypesForMangler(Sema &S, FunctionDecl *FD, | ||||
| 18165 | SourceLocation Loc) { | ||||
| 18166 | class ParamIncompleteTypeDiagnoser : public Sema::TypeDiagnoser { | ||||
| 18167 | FunctionDecl *FD; | ||||
| 18168 | ParmVarDecl *Param; | ||||
| 18169 | |||||
| 18170 | public: | ||||
| 18171 | ParamIncompleteTypeDiagnoser(FunctionDecl *FD, ParmVarDecl *Param) | ||||
| 18172 | : FD(FD), Param(Param) {} | ||||
| 18173 | |||||
| 18174 | void diagnose(Sema &S, SourceLocation Loc, QualType T) override { | ||||
| 18175 | CallingConv CC = FD->getType()->castAs<FunctionType>()->getCallConv(); | ||||
| 18176 | StringRef CCName; | ||||
| 18177 | switch (CC) { | ||||
| 18178 | case CC_X86StdCall: | ||||
| 18179 | CCName = "stdcall"; | ||||
| 18180 | break; | ||||
| 18181 | case CC_X86FastCall: | ||||
| 18182 | CCName = "fastcall"; | ||||
| 18183 | break; | ||||
| 18184 | case CC_X86VectorCall: | ||||
| 18185 | CCName = "vectorcall"; | ||||
| 18186 | break; | ||||
| 18187 | default: | ||||
| 18188 | llvm_unreachable("CC does not need mangling")::llvm::llvm_unreachable_internal("CC does not need mangling" , "clang/lib/Sema/SemaExpr.cpp", 18188); | ||||
| 18189 | } | ||||
| 18190 | |||||
| 18191 | S.Diag(Loc, diag::err_cconv_incomplete_param_type) | ||||
| 18192 | << Param->getDeclName() << FD->getDeclName() << CCName; | ||||
| 18193 | } | ||||
| 18194 | }; | ||||
| 18195 | |||||
| 18196 | for (ParmVarDecl *Param : FD->parameters()) { | ||||
| 18197 | ParamIncompleteTypeDiagnoser Diagnoser(FD, Param); | ||||
| 18198 | S.RequireCompleteType(Loc, Param->getType(), Diagnoser); | ||||
| 18199 | } | ||||
| 18200 | } | ||||
| 18201 | |||||
| 18202 | namespace { | ||||
| 18203 | enum class OdrUseContext { | ||||
| 18204 | /// Declarations in this context are not odr-used. | ||||
| 18205 | None, | ||||
| 18206 | /// Declarations in this context are formally odr-used, but this is a | ||||
| 18207 | /// dependent context. | ||||
| 18208 | Dependent, | ||||
| 18209 | /// Declarations in this context are odr-used but not actually used (yet). | ||||
| 18210 | FormallyOdrUsed, | ||||
| 18211 | /// Declarations in this context are used. | ||||
| 18212 | Used | ||||
| 18213 | }; | ||||
| 18214 | } | ||||
| 18215 | |||||
| 18216 | /// Are we within a context in which references to resolved functions or to | ||||
| 18217 | /// variables result in odr-use? | ||||
| 18218 | static OdrUseContext isOdrUseContext(Sema &SemaRef) { | ||||
| 18219 | OdrUseContext Result; | ||||
| 18220 | |||||
| 18221 | switch (SemaRef.ExprEvalContexts.back().Context) { | ||||
| 18222 | case Sema::ExpressionEvaluationContext::Unevaluated: | ||||
| 18223 | case Sema::ExpressionEvaluationContext::UnevaluatedList: | ||||
| 18224 | case Sema::ExpressionEvaluationContext::UnevaluatedAbstract: | ||||
| 18225 | return OdrUseContext::None; | ||||
| 18226 | |||||
| 18227 | case Sema::ExpressionEvaluationContext::ConstantEvaluated: | ||||
| 18228 | case Sema::ExpressionEvaluationContext::ImmediateFunctionContext: | ||||
| 18229 | case Sema::ExpressionEvaluationContext::PotentiallyEvaluated: | ||||
| 18230 | Result = OdrUseContext::Used; | ||||
| 18231 | break; | ||||
| 18232 | |||||
| 18233 | case Sema::ExpressionEvaluationContext::DiscardedStatement: | ||||
| 18234 | Result = OdrUseContext::FormallyOdrUsed; | ||||
| 18235 | break; | ||||
| 18236 | |||||
| 18237 | case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed: | ||||
| 18238 | // A default argument formally results in odr-use, but doesn't actually | ||||
| 18239 | // result in a use in any real sense until it itself is used. | ||||
| 18240 | Result = OdrUseContext::FormallyOdrUsed; | ||||
| 18241 | break; | ||||
| 18242 | } | ||||
| 18243 | |||||
| 18244 | if (SemaRef.CurContext->isDependentContext()) | ||||
| 18245 | return OdrUseContext::Dependent; | ||||
| 18246 | |||||
| 18247 | return Result; | ||||
| 18248 | } | ||||
| 18249 | |||||
| 18250 | static bool isImplicitlyDefinableConstexprFunction(FunctionDecl *Func) { | ||||
| 18251 | if (!Func->isConstexpr()) | ||||
| 18252 | return false; | ||||
| 18253 | |||||
| 18254 | if (Func->isImplicitlyInstantiable() || !Func->isUserProvided()) | ||||
| 18255 | return true; | ||||
| 18256 | auto *CCD = dyn_cast<CXXConstructorDecl>(Func); | ||||
| 18257 | return CCD && CCD->getInheritedConstructor(); | ||||
| 18258 | } | ||||
| 18259 | |||||
| 18260 | /// Mark a function referenced, and check whether it is odr-used | ||||
| 18261 | /// (C++ [basic.def.odr]p2, C99 6.9p3) | ||||
| 18262 | void Sema::MarkFunctionReferenced(SourceLocation Loc, FunctionDecl *Func, | ||||
| 18263 | bool MightBeOdrUse) { | ||||
| 18264 | assert(Func && "No function?")(static_cast <bool> (Func && "No function?") ? void (0) : __assert_fail ("Func && \"No function?\"", "clang/lib/Sema/SemaExpr.cpp" , 18264, __extension__ __PRETTY_FUNCTION__)); | ||||
| 18265 | |||||
| 18266 | Func->setReferenced(); | ||||
| 18267 | |||||
| 18268 | // Recursive functions aren't really used until they're used from some other | ||||
| 18269 | // context. | ||||
| 18270 | bool IsRecursiveCall = CurContext == Func; | ||||
| 18271 | |||||
| 18272 | // C++11 [basic.def.odr]p3: | ||||
| 18273 | // A function whose name appears as a potentially-evaluated expression is | ||||
| 18274 | // odr-used if it is the unique lookup result or the selected member of a | ||||
| 18275 | // set of overloaded functions [...]. | ||||
| 18276 | // | ||||
| 18277 | // We (incorrectly) mark overload resolution as an unevaluated context, so we | ||||
| 18278 | // can just check that here. | ||||
| 18279 | OdrUseContext OdrUse = | ||||
| 18280 | MightBeOdrUse ? isOdrUseContext(*this) : OdrUseContext::None; | ||||
| 18281 | if (IsRecursiveCall && OdrUse == OdrUseContext::Used) | ||||
| 18282 | OdrUse = OdrUseContext::FormallyOdrUsed; | ||||
| 18283 | |||||
| 18284 | // Trivial default constructors and destructors are never actually used. | ||||
| 18285 | // FIXME: What about other special members? | ||||
| 18286 | if (Func->isTrivial() && !Func->hasAttr<DLLExportAttr>() && | ||||
| 18287 | OdrUse == OdrUseContext::Used) { | ||||
| 18288 | if (auto *Constructor = dyn_cast<CXXConstructorDecl>(Func)) | ||||
| 18289 | if (Constructor->isDefaultConstructor()) | ||||
| 18290 | OdrUse = OdrUseContext::FormallyOdrUsed; | ||||
| 18291 | if (isa<CXXDestructorDecl>(Func)) | ||||
| 18292 | OdrUse = OdrUseContext::FormallyOdrUsed; | ||||
| 18293 | } | ||||
| 18294 | |||||
| 18295 | // C++20 [expr.const]p12: | ||||
| 18296 | // A function [...] is needed for constant evaluation if it is [...] a | ||||
| 18297 | // constexpr function that is named by an expression that is potentially | ||||
| 18298 | // constant evaluated | ||||
| 18299 | bool NeededForConstantEvaluation = | ||||
| 18300 | isPotentiallyConstantEvaluatedContext(*this) && | ||||
| 18301 | isImplicitlyDefinableConstexprFunction(Func); | ||||
| 18302 | |||||
| 18303 | // Determine whether we require a function definition to exist, per | ||||
| 18304 | // C++11 [temp.inst]p3: | ||||
| 18305 | // Unless a function template specialization has been explicitly | ||||
| 18306 | // instantiated or explicitly specialized, the function template | ||||
| 18307 | // specialization is implicitly instantiated when the specialization is | ||||
| 18308 | // referenced in a context that requires a function definition to exist. | ||||
| 18309 | // C++20 [temp.inst]p7: | ||||
| 18310 | // The existence of a definition of a [...] function is considered to | ||||
| 18311 | // affect the semantics of the program if the [...] function is needed for | ||||
| 18312 | // constant evaluation by an expression | ||||
| 18313 | // C++20 [basic.def.odr]p10: | ||||
| 18314 | // Every program shall contain exactly one definition of every non-inline | ||||
| 18315 | // function or variable that is odr-used in that program outside of a | ||||
| 18316 | // discarded statement | ||||
| 18317 | // C++20 [special]p1: | ||||
| 18318 | // The implementation will implicitly define [defaulted special members] | ||||
| 18319 | // if they are odr-used or needed for constant evaluation. | ||||
| 18320 | // | ||||
| 18321 | // Note that we skip the implicit instantiation of templates that are only | ||||
| 18322 | // used in unused default arguments or by recursive calls to themselves. | ||||
| 18323 | // This is formally non-conforming, but seems reasonable in practice. | ||||
| 18324 | bool NeedDefinition = !IsRecursiveCall && (OdrUse == OdrUseContext::Used || | ||||
| 18325 | NeededForConstantEvaluation); | ||||
| 18326 | |||||
| 18327 | // C++14 [temp.expl.spec]p6: | ||||
| 18328 | // If a template [...] is explicitly specialized then that specialization | ||||
| 18329 | // shall be declared before the first use of that specialization that would | ||||
| 18330 | // cause an implicit instantiation to take place, in every translation unit | ||||
| 18331 | // in which such a use occurs | ||||
| 18332 | if (NeedDefinition && | ||||
| 18333 | (Func->getTemplateSpecializationKind() != TSK_Undeclared || | ||||
| 18334 | Func->getMemberSpecializationInfo())) | ||||
| 18335 | checkSpecializationReachability(Loc, Func); | ||||
| 18336 | |||||
| 18337 | if (getLangOpts().CUDA) | ||||
| 18338 | CheckCUDACall(Loc, Func); | ||||
| 18339 | |||||
| 18340 | if (getLangOpts().SYCLIsDevice) | ||||
| 18341 | checkSYCLDeviceFunction(Loc, Func); | ||||
| 18342 | |||||
| 18343 | // If we need a definition, try to create one. | ||||
| 18344 | if (NeedDefinition && !Func->getBody()) { | ||||
| 18345 | runWithSufficientStackSpace(Loc, [&] { | ||||
| 18346 | if (CXXConstructorDecl *Constructor = | ||||
| 18347 | dyn_cast<CXXConstructorDecl>(Func)) { | ||||
| 18348 | Constructor = cast<CXXConstructorDecl>(Constructor->getFirstDecl()); | ||||
| 18349 | if (Constructor->isDefaulted() && !Constructor->isDeleted()) { | ||||
| 18350 | if (Constructor->isDefaultConstructor()) { | ||||
| 18351 | if (Constructor->isTrivial() && | ||||
| 18352 | !Constructor->hasAttr<DLLExportAttr>()) | ||||
| 18353 | return; | ||||
| 18354 | DefineImplicitDefaultConstructor(Loc, Constructor); | ||||
| 18355 | } else if (Constructor->isCopyConstructor()) { | ||||
| 18356 | DefineImplicitCopyConstructor(Loc, Constructor); | ||||
| 18357 | } else if (Constructor->isMoveConstructor()) { | ||||
| 18358 | DefineImplicitMoveConstructor(Loc, Constructor); | ||||
| 18359 | } | ||||
| 18360 | } else if (Constructor->getInheritedConstructor()) { | ||||
| 18361 | DefineInheritingConstructor(Loc, Constructor); | ||||
| 18362 | } | ||||
| 18363 | } else if (CXXDestructorDecl *Destructor = | ||||
| 18364 | dyn_cast<CXXDestructorDecl>(Func)) { | ||||
| 18365 | Destructor = cast<CXXDestructorDecl>(Destructor->getFirstDecl()); | ||||
| 18366 | if (Destructor->isDefaulted() && !Destructor->isDeleted()) { | ||||
| 18367 | if (Destructor->isTrivial() && !Destructor->hasAttr<DLLExportAttr>()) | ||||
| 18368 | return; | ||||
| 18369 | DefineImplicitDestructor(Loc, Destructor); | ||||
| 18370 | } | ||||
| 18371 | if (Destructor->isVirtual() && getLangOpts().AppleKext) | ||||
| 18372 | MarkVTableUsed(Loc, Destructor->getParent()); | ||||
| 18373 | } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(Func)) { | ||||
| 18374 | if (MethodDecl->isOverloadedOperator() && | ||||
| 18375 | MethodDecl->getOverloadedOperator() == OO_Equal) { | ||||
| 18376 | MethodDecl = cast<CXXMethodDecl>(MethodDecl->getFirstDecl()); | ||||
| 18377 | if (MethodDecl->isDefaulted() && !MethodDecl->isDeleted()) { | ||||
| 18378 | if (MethodDecl->isCopyAssignmentOperator()) | ||||
| 18379 | DefineImplicitCopyAssignment(Loc, MethodDecl); | ||||
| 18380 | else if (MethodDecl->isMoveAssignmentOperator()) | ||||
| 18381 | DefineImplicitMoveAssignment(Loc, MethodDecl); | ||||
| 18382 | } | ||||
| 18383 | } else if (isa<CXXConversionDecl>(MethodDecl) && | ||||
| 18384 | MethodDecl->getParent()->isLambda()) { | ||||
| 18385 | CXXConversionDecl *Conversion = | ||||
| 18386 | cast<CXXConversionDecl>(MethodDecl->getFirstDecl()); | ||||
| 18387 | if (Conversion->isLambdaToBlockPointerConversion()) | ||||
| 18388 | DefineImplicitLambdaToBlockPointerConversion(Loc, Conversion); | ||||
| 18389 | else | ||||
| 18390 | DefineImplicitLambdaToFunctionPointerConversion(Loc, Conversion); | ||||
| 18391 | } else if (MethodDecl->isVirtual() && getLangOpts().AppleKext) | ||||
| 18392 | MarkVTableUsed(Loc, MethodDecl->getParent()); | ||||
| 18393 | } | ||||
| 18394 | |||||
| 18395 | if (Func->isDefaulted() && !Func->isDeleted()) { | ||||
| 18396 | DefaultedComparisonKind DCK = getDefaultedComparisonKind(Func); | ||||
| 18397 | if (DCK != DefaultedComparisonKind::None) | ||||
| 18398 | DefineDefaultedComparison(Loc, Func, DCK); | ||||
| 18399 | } | ||||
| 18400 | |||||
| 18401 | // Implicit instantiation of function templates and member functions of | ||||
| 18402 | // class templates. | ||||
| 18403 | if (Func->isImplicitlyInstantiable()) { | ||||
| 18404 | TemplateSpecializationKind TSK = | ||||
| 18405 | Func->getTemplateSpecializationKindForInstantiation(); | ||||
| 18406 | SourceLocation PointOfInstantiation = Func->getPointOfInstantiation(); | ||||
| 18407 | bool FirstInstantiation = PointOfInstantiation.isInvalid(); | ||||
| 18408 | if (FirstInstantiation) { | ||||
| 18409 | PointOfInstantiation = Loc; | ||||
| 18410 | if (auto *MSI = Func->getMemberSpecializationInfo()) | ||||
| 18411 | MSI->setPointOfInstantiation(Loc); | ||||
| 18412 | // FIXME: Notify listener. | ||||
| 18413 | else | ||||
| 18414 | Func->setTemplateSpecializationKind(TSK, PointOfInstantiation); | ||||
| 18415 | } else if (TSK != TSK_ImplicitInstantiation) { | ||||
| 18416 | // Use the point of use as the point of instantiation, instead of the | ||||
| 18417 | // point of explicit instantiation (which we track as the actual point | ||||
| 18418 | // of instantiation). This gives better backtraces in diagnostics. | ||||
| 18419 | PointOfInstantiation = Loc; | ||||
| 18420 | } | ||||
| 18421 | |||||
| 18422 | if (FirstInstantiation || TSK != TSK_ImplicitInstantiation || | ||||
| 18423 | Func->isConstexpr()) { | ||||
| 18424 | if (isa<CXXRecordDecl>(Func->getDeclContext()) && | ||||
| 18425 | cast<CXXRecordDecl>(Func->getDeclContext())->isLocalClass() && | ||||
| 18426 | CodeSynthesisContexts.size()) | ||||
| 18427 | PendingLocalImplicitInstantiations.push_back( | ||||
| 18428 | std::make_pair(Func, PointOfInstantiation)); | ||||
| 18429 | else if (Func->isConstexpr()) | ||||
| 18430 | // Do not defer instantiations of constexpr functions, to avoid the | ||||
| 18431 | // expression evaluator needing to call back into Sema if it sees a | ||||
| 18432 | // call to such a function. | ||||
| 18433 | InstantiateFunctionDefinition(PointOfInstantiation, Func); | ||||
| 18434 | else { | ||||
| 18435 | Func->setInstantiationIsPending(true); | ||||
| 18436 | PendingInstantiations.push_back( | ||||
| 18437 | std::make_pair(Func, PointOfInstantiation)); | ||||
| 18438 | // Notify the consumer that a function was implicitly instantiated. | ||||
| 18439 | Consumer.HandleCXXImplicitFunctionInstantiation(Func); | ||||
| 18440 | } | ||||
| 18441 | } | ||||
| 18442 | } else { | ||||
| 18443 | // Walk redefinitions, as some of them may be instantiable. | ||||
| 18444 | for (auto *i : Func->redecls()) { | ||||
| 18445 | if (!i->isUsed(false) && i->isImplicitlyInstantiable()) | ||||
| 18446 | MarkFunctionReferenced(Loc, i, MightBeOdrUse); | ||||
| 18447 | } | ||||
| 18448 | } | ||||
| 18449 | }); | ||||
| 18450 | } | ||||
| 18451 | |||||
| 18452 | // If a constructor was defined in the context of a default parameter | ||||
| 18453 | // or of another default member initializer (ie a PotentiallyEvaluatedIfUsed | ||||
| 18454 | // context), its initializers may not be referenced yet. | ||||
| 18455 | if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Func)) { | ||||
| 18456 | for (CXXCtorInitializer *Init : Constructor->inits()) { | ||||
| 18457 | if (Init->isInClassMemberInitializer()) | ||||
| 18458 | MarkDeclarationsReferencedInExpr(Init->getInit()); | ||||
| 18459 | } | ||||
| 18460 | } | ||||
| 18461 | |||||
| 18462 | // C++14 [except.spec]p17: | ||||
| 18463 | // An exception-specification is considered to be needed when: | ||||
| 18464 | // - the function is odr-used or, if it appears in an unevaluated operand, | ||||
| 18465 | // would be odr-used if the expression were potentially-evaluated; | ||||
| 18466 | // | ||||
| 18467 | // Note, we do this even if MightBeOdrUse is false. That indicates that the | ||||
| 18468 | // function is a pure virtual function we're calling, and in that case the | ||||
| 18469 | // function was selected by overload resolution and we need to resolve its | ||||
| 18470 | // exception specification for a different reason. | ||||
| 18471 | const FunctionProtoType *FPT = Func->getType()->getAs<FunctionProtoType>(); | ||||
| 18472 | if (FPT && isUnresolvedExceptionSpec(FPT->getExceptionSpecType())) | ||||
| 18473 | ResolveExceptionSpec(Loc, FPT); | ||||
| 18474 | |||||
| 18475 | // If this is the first "real" use, act on that. | ||||
| 18476 | if (OdrUse == OdrUseContext::Used && !Func->isUsed(/*CheckUsedAttr=*/false)) { | ||||
| 18477 | // Keep track of used but undefined functions. | ||||
| 18478 | if (!Func->isDefined()) { | ||||
| 18479 | if (mightHaveNonExternalLinkage(Func)) | ||||
| 18480 | UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc)); | ||||
| 18481 | else if (Func->getMostRecentDecl()->isInlined() && | ||||
| 18482 | !LangOpts.GNUInline && | ||||
| 18483 | !Func->getMostRecentDecl()->hasAttr<GNUInlineAttr>()) | ||||
| 18484 | UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc)); | ||||
| 18485 | else if (isExternalWithNoLinkageType(Func)) | ||||
| 18486 | UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc)); | ||||
| 18487 | } | ||||
| 18488 | |||||
| 18489 | // Some x86 Windows calling conventions mangle the size of the parameter | ||||
| 18490 | // pack into the name. Computing the size of the parameters requires the | ||||
| 18491 | // parameter types to be complete. Check that now. | ||||
| 18492 | if (funcHasParameterSizeMangling(*this, Func)) | ||||
| 18493 | CheckCompleteParameterTypesForMangler(*this, Func, Loc); | ||||
| 18494 | |||||
| 18495 | // In the MS C++ ABI, the compiler emits destructor variants where they are | ||||
| 18496 | // used. If the destructor is used here but defined elsewhere, mark the | ||||
| 18497 | // virtual base destructors referenced. If those virtual base destructors | ||||
| 18498 | // are inline, this will ensure they are defined when emitting the complete | ||||
| 18499 | // destructor variant. This checking may be redundant if the destructor is | ||||
| 18500 | // provided later in this TU. | ||||
| 18501 | if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { | ||||
| 18502 | if (auto *Dtor = dyn_cast<CXXDestructorDecl>(Func)) { | ||||
| 18503 | CXXRecordDecl *Parent = Dtor->getParent(); | ||||
| 18504 | if (Parent->getNumVBases() > 0 && !Dtor->getBody()) | ||||
| 18505 | CheckCompleteDestructorVariant(Loc, Dtor); | ||||
| 18506 | } | ||||
| 18507 | } | ||||
| 18508 | |||||
| 18509 | Func->markUsed(Context); | ||||
| 18510 | } | ||||
| 18511 | } | ||||
| 18512 | |||||
| 18513 | /// Directly mark a variable odr-used. Given a choice, prefer to use | ||||
| 18514 | /// MarkVariableReferenced since it does additional checks and then | ||||
| 18515 | /// calls MarkVarDeclODRUsed. | ||||
| 18516 | /// If the variable must be captured: | ||||
| 18517 | /// - if FunctionScopeIndexToStopAt is null, capture it in the CurContext | ||||
| 18518 | /// - else capture it in the DeclContext that maps to the | ||||
| 18519 | /// *FunctionScopeIndexToStopAt on the FunctionScopeInfo stack. | ||||
| 18520 | static void | ||||
| 18521 | MarkVarDeclODRUsed(ValueDecl *V, SourceLocation Loc, Sema &SemaRef, | ||||
| 18522 | const unsigned *const FunctionScopeIndexToStopAt = nullptr) { | ||||
| 18523 | // Keep track of used but undefined variables. | ||||
| 18524 | // FIXME: We shouldn't suppress this warning for static data members. | ||||
| 18525 | VarDecl *Var = V->getPotentiallyDecomposedVarDecl(); | ||||
| 18526 | assert(Var && "expected a capturable variable")(static_cast <bool> (Var && "expected a capturable variable" ) ? void (0) : __assert_fail ("Var && \"expected a capturable variable\"" , "clang/lib/Sema/SemaExpr.cpp", 18526, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 18527 | |||||
| 18528 | if (Var->hasDefinition(SemaRef.Context) == VarDecl::DeclarationOnly && | ||||
| 18529 | (!Var->isExternallyVisible() || Var->isInline() || | ||||
| 18530 | SemaRef.isExternalWithNoLinkageType(Var)) && | ||||
| 18531 | !(Var->isStaticDataMember() && Var->hasInit())) { | ||||
| 18532 | SourceLocation &old = SemaRef.UndefinedButUsed[Var->getCanonicalDecl()]; | ||||
| 18533 | if (old.isInvalid()) | ||||
| 18534 | old = Loc; | ||||
| 18535 | } | ||||
| 18536 | QualType CaptureType, DeclRefType; | ||||
| 18537 | if (SemaRef.LangOpts.OpenMP) | ||||
| 18538 | SemaRef.tryCaptureOpenMPLambdas(V); | ||||
| 18539 | SemaRef.tryCaptureVariable(V, Loc, Sema::TryCapture_Implicit, | ||||
| 18540 | /*EllipsisLoc*/ SourceLocation(), | ||||
| 18541 | /*BuildAndDiagnose*/ true, CaptureType, | ||||
| 18542 | DeclRefType, FunctionScopeIndexToStopAt); | ||||
| 18543 | |||||
| 18544 | if (SemaRef.LangOpts.CUDA && Var->hasGlobalStorage()) { | ||||
| 18545 | auto *FD = dyn_cast_or_null<FunctionDecl>(SemaRef.CurContext); | ||||
| 18546 | auto VarTarget = SemaRef.IdentifyCUDATarget(Var); | ||||
| 18547 | auto UserTarget = SemaRef.IdentifyCUDATarget(FD); | ||||
| 18548 | if (VarTarget == Sema::CVT_Host && | ||||
| 18549 | (UserTarget == Sema::CFT_Device || UserTarget == Sema::CFT_HostDevice || | ||||
| 18550 | UserTarget == Sema::CFT_Global)) { | ||||
| 18551 | // Diagnose ODR-use of host global variables in device functions. | ||||
| 18552 | // Reference of device global variables in host functions is allowed | ||||
| 18553 | // through shadow variables therefore it is not diagnosed. | ||||
| 18554 | if (SemaRef.LangOpts.CUDAIsDevice) { | ||||
| 18555 | SemaRef.targetDiag(Loc, diag::err_ref_bad_target) | ||||
| 18556 | << /*host*/ 2 << /*variable*/ 1 << Var << UserTarget; | ||||
| 18557 | SemaRef.targetDiag(Var->getLocation(), | ||||
| 18558 | Var->getType().isConstQualified() | ||||
| 18559 | ? diag::note_cuda_const_var_unpromoted | ||||
| 18560 | : diag::note_cuda_host_var); | ||||
| 18561 | } | ||||
| 18562 | } else if (VarTarget == Sema::CVT_Device && | ||||
| 18563 | (UserTarget == Sema::CFT_Host || | ||||
| 18564 | UserTarget == Sema::CFT_HostDevice)) { | ||||
| 18565 | // Record a CUDA/HIP device side variable if it is ODR-used | ||||
| 18566 | // by host code. This is done conservatively, when the variable is | ||||
| 18567 | // referenced in any of the following contexts: | ||||
| 18568 | // - a non-function context | ||||
| 18569 | // - a host function | ||||
| 18570 | // - a host device function | ||||
| 18571 | // This makes the ODR-use of the device side variable by host code to | ||||
| 18572 | // be visible in the device compilation for the compiler to be able to | ||||
| 18573 | // emit template variables instantiated by host code only and to | ||||
| 18574 | // externalize the static device side variable ODR-used by host code. | ||||
| 18575 | if (!Var->hasExternalStorage()) | ||||
| 18576 | SemaRef.getASTContext().CUDADeviceVarODRUsedByHost.insert(Var); | ||||
| 18577 | else if (SemaRef.LangOpts.GPURelocatableDeviceCode) | ||||
| 18578 | SemaRef.getASTContext().CUDAExternalDeviceDeclODRUsedByHost.insert(Var); | ||||
| 18579 | } | ||||
| 18580 | } | ||||
| 18581 | |||||
| 18582 | V->markUsed(SemaRef.Context); | ||||
| 18583 | } | ||||
| 18584 | |||||
| 18585 | void Sema::MarkCaptureUsedInEnclosingContext(ValueDecl *Capture, | ||||
| 18586 | SourceLocation Loc, | ||||
| 18587 | unsigned CapturingScopeIndex) { | ||||
| 18588 | MarkVarDeclODRUsed(Capture, Loc, *this, &CapturingScopeIndex); | ||||
| 18589 | } | ||||
| 18590 | |||||
| 18591 | void diagnoseUncapturableValueReferenceOrBinding(Sema &S, SourceLocation loc, | ||||
| 18592 | ValueDecl *var) { | ||||
| 18593 | DeclContext *VarDC = var->getDeclContext(); | ||||
| 18594 | |||||
| 18595 | // If the parameter still belongs to the translation unit, then | ||||
| 18596 | // we're actually just using one parameter in the declaration of | ||||
| 18597 | // the next. | ||||
| 18598 | if (isa<ParmVarDecl>(var) && | ||||
| 18599 | isa<TranslationUnitDecl>(VarDC)) | ||||
| 18600 | return; | ||||
| 18601 | |||||
| 18602 | // For C code, don't diagnose about capture if we're not actually in code | ||||
| 18603 | // right now; it's impossible to write a non-constant expression outside of | ||||
| 18604 | // function context, so we'll get other (more useful) diagnostics later. | ||||
| 18605 | // | ||||
| 18606 | // For C++, things get a bit more nasty... it would be nice to suppress this | ||||
| 18607 | // diagnostic for certain cases like using a local variable in an array bound | ||||
| 18608 | // for a member of a local class, but the correct predicate is not obvious. | ||||
| 18609 | if (!S.getLangOpts().CPlusPlus && !S.CurContext->isFunctionOrMethod()) | ||||
| 18610 | return; | ||||
| 18611 | |||||
| 18612 | unsigned ValueKind = isa<BindingDecl>(var) ? 1 : 0; | ||||
| 18613 | unsigned ContextKind = 3; // unknown | ||||
| 18614 | if (isa<CXXMethodDecl>(VarDC) && | ||||
| 18615 | cast<CXXRecordDecl>(VarDC->getParent())->isLambda()) { | ||||
| 18616 | ContextKind = 2; | ||||
| 18617 | } else if (isa<FunctionDecl>(VarDC)) { | ||||
| 18618 | ContextKind = 0; | ||||
| 18619 | } else if (isa<BlockDecl>(VarDC)) { | ||||
| 18620 | ContextKind = 1; | ||||
| 18621 | } | ||||
| 18622 | |||||
| 18623 | S.Diag(loc, diag::err_reference_to_local_in_enclosing_context) | ||||
| 18624 | << var << ValueKind << ContextKind << VarDC; | ||||
| 18625 | S.Diag(var->getLocation(), diag::note_entity_declared_at) | ||||
| 18626 | << var; | ||||
| 18627 | |||||
| 18628 | // FIXME: Add additional diagnostic info about class etc. which prevents | ||||
| 18629 | // capture. | ||||
| 18630 | } | ||||
| 18631 | |||||
| 18632 | static bool isVariableAlreadyCapturedInScopeInfo(CapturingScopeInfo *CSI, | ||||
| 18633 | ValueDecl *Var, | ||||
| 18634 | bool &SubCapturesAreNested, | ||||
| 18635 | QualType &CaptureType, | ||||
| 18636 | QualType &DeclRefType) { | ||||
| 18637 | // Check whether we've already captured it. | ||||
| 18638 | if (CSI->CaptureMap.count(Var)) { | ||||
| 18639 | // If we found a capture, any subcaptures are nested. | ||||
| 18640 | SubCapturesAreNested = true; | ||||
| 18641 | |||||
| 18642 | // Retrieve the capture type for this variable. | ||||
| 18643 | CaptureType = CSI->getCapture(Var).getCaptureType(); | ||||
| 18644 | |||||
| 18645 | // Compute the type of an expression that refers to this variable. | ||||
| 18646 | DeclRefType = CaptureType.getNonReferenceType(); | ||||
| 18647 | |||||
| 18648 | // Similarly to mutable captures in lambda, all the OpenMP captures by copy | ||||
| 18649 | // are mutable in the sense that user can change their value - they are | ||||
| 18650 | // private instances of the captured declarations. | ||||
| 18651 | const Capture &Cap = CSI->getCapture(Var); | ||||
| 18652 | if (Cap.isCopyCapture() && | ||||
| 18653 | !(isa<LambdaScopeInfo>(CSI) && cast<LambdaScopeInfo>(CSI)->Mutable) && | ||||
| 18654 | !(isa<CapturedRegionScopeInfo>(CSI) && | ||||
| 18655 | cast<CapturedRegionScopeInfo>(CSI)->CapRegionKind == CR_OpenMP)) | ||||
| 18656 | DeclRefType.addConst(); | ||||
| 18657 | return true; | ||||
| 18658 | } | ||||
| 18659 | return false; | ||||
| 18660 | } | ||||
| 18661 | |||||
| 18662 | // Only block literals, captured statements, and lambda expressions can | ||||
| 18663 | // capture; other scopes don't work. | ||||
| 18664 | static DeclContext *getParentOfCapturingContextOrNull(DeclContext *DC, | ||||
| 18665 | ValueDecl *Var, | ||||
| 18666 | SourceLocation Loc, | ||||
| 18667 | const bool Diagnose, | ||||
| 18668 | Sema &S) { | ||||
| 18669 | if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC) || isLambdaCallOperator(DC)) | ||||
| 18670 | return getLambdaAwareParentOfDeclContext(DC); | ||||
| 18671 | |||||
| 18672 | VarDecl *Underlying = Var->getPotentiallyDecomposedVarDecl(); | ||||
| 18673 | if (Underlying) { | ||||
| 18674 | if (Underlying->hasLocalStorage() && Diagnose) | ||||
| 18675 | diagnoseUncapturableValueReferenceOrBinding(S, Loc, Var); | ||||
| 18676 | } | ||||
| 18677 | return nullptr; | ||||
| 18678 | } | ||||
| 18679 | |||||
| 18680 | // Certain capturing entities (lambdas, blocks etc.) are not allowed to capture | ||||
| 18681 | // certain types of variables (unnamed, variably modified types etc.) | ||||
| 18682 | // so check for eligibility. | ||||
| 18683 | static bool isVariableCapturable(CapturingScopeInfo *CSI, ValueDecl *Var, | ||||
| 18684 | SourceLocation Loc, const bool Diagnose, | ||||
| 18685 | Sema &S) { | ||||
| 18686 | |||||
| 18687 | assert((isa<VarDecl, BindingDecl>(Var)) &&(static_cast <bool> ((isa<VarDecl, BindingDecl>(Var )) && "Only variables and structured bindings can be captured" ) ? void (0) : __assert_fail ("(isa<VarDecl, BindingDecl>(Var)) && \"Only variables and structured bindings can be captured\"" , "clang/lib/Sema/SemaExpr.cpp", 18688, __extension__ __PRETTY_FUNCTION__ )) | ||||
| 18688 | "Only variables and structured bindings can be captured")(static_cast <bool> ((isa<VarDecl, BindingDecl>(Var )) && "Only variables and structured bindings can be captured" ) ? void (0) : __assert_fail ("(isa<VarDecl, BindingDecl>(Var)) && \"Only variables and structured bindings can be captured\"" , "clang/lib/Sema/SemaExpr.cpp", 18688, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 18689 | |||||
| 18690 | bool IsBlock = isa<BlockScopeInfo>(CSI); | ||||
| 18691 | bool IsLambda = isa<LambdaScopeInfo>(CSI); | ||||
| 18692 | |||||
| 18693 | // Lambdas are not allowed to capture unnamed variables | ||||
| 18694 | // (e.g. anonymous unions). | ||||
| 18695 | // FIXME: The C++11 rule don't actually state this explicitly, but I'm | ||||
| 18696 | // assuming that's the intent. | ||||
| 18697 | if (IsLambda && !Var->getDeclName()) { | ||||
| 18698 | if (Diagnose) { | ||||
| 18699 | S.Diag(Loc, diag::err_lambda_capture_anonymous_var); | ||||
| 18700 | S.Diag(Var->getLocation(), diag::note_declared_at); | ||||
| 18701 | } | ||||
| 18702 | return false; | ||||
| 18703 | } | ||||
| 18704 | |||||
| 18705 | // Prohibit variably-modified types in blocks; they're difficult to deal with. | ||||
| 18706 | if (Var->getType()->isVariablyModifiedType() && IsBlock) { | ||||
| 18707 | if (Diagnose) { | ||||
| 18708 | S.Diag(Loc, diag::err_ref_vm_type); | ||||
| 18709 | S.Diag(Var->getLocation(), diag::note_previous_decl) << Var; | ||||
| 18710 | } | ||||
| 18711 | return false; | ||||
| 18712 | } | ||||
| 18713 | // Prohibit structs with flexible array members too. | ||||
| 18714 | // We cannot capture what is in the tail end of the struct. | ||||
| 18715 | if (const RecordType *VTTy = Var->getType()->getAs<RecordType>()) { | ||||
| 18716 | if (VTTy->getDecl()->hasFlexibleArrayMember()) { | ||||
| 18717 | if (Diagnose) { | ||||
| 18718 | if (IsBlock) | ||||
| 18719 | S.Diag(Loc, diag::err_ref_flexarray_type); | ||||
| 18720 | else | ||||
| 18721 | S.Diag(Loc, diag::err_lambda_capture_flexarray_type) << Var; | ||||
| 18722 | S.Diag(Var->getLocation(), diag::note_previous_decl) << Var; | ||||
| 18723 | } | ||||
| 18724 | return false; | ||||
| 18725 | } | ||||
| 18726 | } | ||||
| 18727 | const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>(); | ||||
| 18728 | // Lambdas and captured statements are not allowed to capture __block | ||||
| 18729 | // variables; they don't support the expected semantics. | ||||
| 18730 | if (HasBlocksAttr && (IsLambda || isa<CapturedRegionScopeInfo>(CSI))) { | ||||
| 18731 | if (Diagnose) { | ||||
| 18732 | S.Diag(Loc, diag::err_capture_block_variable) << Var << !IsLambda; | ||||
| 18733 | S.Diag(Var->getLocation(), diag::note_previous_decl) << Var; | ||||
| 18734 | } | ||||
| 18735 | return false; | ||||
| 18736 | } | ||||
| 18737 | // OpenCL v2.0 s6.12.5: Blocks cannot reference/capture other blocks | ||||
| 18738 | if (S.getLangOpts().OpenCL && IsBlock && | ||||
| 18739 | Var->getType()->isBlockPointerType()) { | ||||
| 18740 | if (Diagnose) | ||||
| 18741 | S.Diag(Loc, diag::err_opencl_block_ref_block); | ||||
| 18742 | return false; | ||||
| 18743 | } | ||||
| 18744 | |||||
| 18745 | if (isa<BindingDecl>(Var)) { | ||||
| 18746 | if (!IsLambda || !S.getLangOpts().CPlusPlus) { | ||||
| 18747 | if (Diagnose) | ||||
| 18748 | diagnoseUncapturableValueReferenceOrBinding(S, Loc, Var); | ||||
| 18749 | return false; | ||||
| 18750 | } else if (Diagnose && S.getLangOpts().CPlusPlus) { | ||||
| 18751 | S.Diag(Loc, S.LangOpts.CPlusPlus20 | ||||
| 18752 | ? diag::warn_cxx17_compat_capture_binding | ||||
| 18753 | : diag::ext_capture_binding) | ||||
| 18754 | << Var; | ||||
| 18755 | S.Diag(Var->getLocation(), diag::note_entity_declared_at) << Var; | ||||
| 18756 | } | ||||
| 18757 | } | ||||
| 18758 | |||||
| 18759 | return true; | ||||
| 18760 | } | ||||
| 18761 | |||||
| 18762 | // Returns true if the capture by block was successful. | ||||
| 18763 | static bool captureInBlock(BlockScopeInfo *BSI, ValueDecl *Var, | ||||
| 18764 | SourceLocation Loc, const bool BuildAndDiagnose, | ||||
| 18765 | QualType &CaptureType, QualType &DeclRefType, | ||||
| 18766 | const bool Nested, Sema &S, bool Invalid) { | ||||
| 18767 | bool ByRef = false; | ||||
| 18768 | |||||
| 18769 | // Blocks are not allowed to capture arrays, excepting OpenCL. | ||||
| 18770 | // OpenCL v2.0 s1.12.5 (revision 40): arrays are captured by reference | ||||
| 18771 | // (decayed to pointers). | ||||
| 18772 | if (!Invalid && !S.getLangOpts().OpenCL && CaptureType->isArrayType()) { | ||||
| 18773 | if (BuildAndDiagnose) { | ||||
| 18774 | S.Diag(Loc, diag::err_ref_array_type); | ||||
| 18775 | S.Diag(Var->getLocation(), diag::note_previous_decl) << Var; | ||||
| 18776 | Invalid = true; | ||||
| 18777 | } else { | ||||
| 18778 | return false; | ||||
| 18779 | } | ||||
| 18780 | } | ||||
| 18781 | |||||
| 18782 | // Forbid the block-capture of autoreleasing variables. | ||||
| 18783 | if (!Invalid && | ||||
| 18784 | CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) { | ||||
| 18785 | if (BuildAndDiagnose) { | ||||
| 18786 | S.Diag(Loc, diag::err_arc_autoreleasing_capture) | ||||
| 18787 | << /*block*/ 0; | ||||
| 18788 | S.Diag(Var->getLocation(), diag::note_previous_decl) << Var; | ||||
| 18789 | Invalid = true; | ||||
| 18790 | } else { | ||||
| 18791 | return false; | ||||
| 18792 | } | ||||
| 18793 | } | ||||
| 18794 | |||||
| 18795 | // Warn about implicitly autoreleasing indirect parameters captured by blocks. | ||||
| 18796 | if (const auto *PT = CaptureType->getAs<PointerType>()) { | ||||
| 18797 | QualType PointeeTy = PT->getPointeeType(); | ||||
| 18798 | |||||
| 18799 | if (!Invalid && PointeeTy->getAs<ObjCObjectPointerType>() && | ||||
| 18800 | PointeeTy.getObjCLifetime() == Qualifiers::OCL_Autoreleasing && | ||||
| 18801 | !S.Context.hasDirectOwnershipQualifier(PointeeTy)) { | ||||
| 18802 | if (BuildAndDiagnose) { | ||||
| 18803 | SourceLocation VarLoc = Var->getLocation(); | ||||
| 18804 | S.Diag(Loc, diag::warn_block_capture_autoreleasing); | ||||
| 18805 | S.Diag(VarLoc, diag::note_declare_parameter_strong); | ||||
| 18806 | } | ||||
| 18807 | } | ||||
| 18808 | } | ||||
| 18809 | |||||
| 18810 | const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>(); | ||||
| 18811 | if (HasBlocksAttr || CaptureType->isReferenceType() || | ||||
| 18812 | (S.getLangOpts().OpenMP && S.isOpenMPCapturedDecl(Var))) { | ||||
| 18813 | // Block capture by reference does not change the capture or | ||||
| 18814 | // declaration reference types. | ||||
| 18815 | ByRef = true; | ||||
| 18816 | } else { | ||||
| 18817 | // Block capture by copy introduces 'const'. | ||||
| 18818 | CaptureType = CaptureType.getNonReferenceType().withConst(); | ||||
| 18819 | DeclRefType = CaptureType; | ||||
| 18820 | } | ||||
| 18821 | |||||
| 18822 | // Actually capture the variable. | ||||
| 18823 | if (BuildAndDiagnose) | ||||
| 18824 | BSI->addCapture(Var, HasBlocksAttr, ByRef, Nested, Loc, SourceLocation(), | ||||
| 18825 | CaptureType, Invalid); | ||||
| 18826 | |||||
| 18827 | return !Invalid; | ||||
| 18828 | } | ||||
| 18829 | |||||
| 18830 | /// Capture the given variable in the captured region. | ||||
| 18831 | static bool captureInCapturedRegion( | ||||
| 18832 | CapturedRegionScopeInfo *RSI, ValueDecl *Var, SourceLocation Loc, | ||||
| 18833 | const bool BuildAndDiagnose, QualType &CaptureType, QualType &DeclRefType, | ||||
| 18834 | const bool RefersToCapturedVariable, Sema::TryCaptureKind Kind, | ||||
| 18835 | bool IsTopScope, Sema &S, bool Invalid) { | ||||
| 18836 | // By default, capture variables by reference. | ||||
| 18837 | bool ByRef = true; | ||||
| 18838 | if (IsTopScope && Kind != Sema::TryCapture_Implicit) { | ||||
| 18839 | ByRef = (Kind == Sema::TryCapture_ExplicitByRef); | ||||
| 18840 | } else if (S.getLangOpts().OpenMP && RSI->CapRegionKind == CR_OpenMP) { | ||||
| 18841 | // Using an LValue reference type is consistent with Lambdas (see below). | ||||
| 18842 | if (S.isOpenMPCapturedDecl(Var)) { | ||||
| 18843 | bool HasConst = DeclRefType.isConstQualified(); | ||||
| 18844 | DeclRefType = DeclRefType.getUnqualifiedType(); | ||||
| 18845 | // Don't lose diagnostics about assignments to const. | ||||
| 18846 | if (HasConst) | ||||
| 18847 | DeclRefType.addConst(); | ||||
| 18848 | } | ||||
| 18849 | // Do not capture firstprivates in tasks. | ||||
| 18850 | if (S.isOpenMPPrivateDecl(Var, RSI->OpenMPLevel, RSI->OpenMPCaptureLevel) != | ||||
| 18851 | OMPC_unknown) | ||||
| 18852 | return true; | ||||
| 18853 | ByRef = S.isOpenMPCapturedByRef(Var, RSI->OpenMPLevel, | ||||
| 18854 | RSI->OpenMPCaptureLevel); | ||||
| 18855 | } | ||||
| 18856 | |||||
| 18857 | if (ByRef) | ||||
| 18858 | CaptureType = S.Context.getLValueReferenceType(DeclRefType); | ||||
| 18859 | else | ||||
| 18860 | CaptureType = DeclRefType; | ||||
| 18861 | |||||
| 18862 | // Actually capture the variable. | ||||
| 18863 | if (BuildAndDiagnose) | ||||
| 18864 | RSI->addCapture(Var, /*isBlock*/ false, ByRef, RefersToCapturedVariable, | ||||
| 18865 | Loc, SourceLocation(), CaptureType, Invalid); | ||||
| 18866 | |||||
| 18867 | return !Invalid; | ||||
| 18868 | } | ||||
| 18869 | |||||
| 18870 | /// Capture the given variable in the lambda. | ||||
| 18871 | static bool captureInLambda(LambdaScopeInfo *LSI, ValueDecl *Var, | ||||
| 18872 | SourceLocation Loc, const bool BuildAndDiagnose, | ||||
| 18873 | QualType &CaptureType, QualType &DeclRefType, | ||||
| 18874 | const bool RefersToCapturedVariable, | ||||
| 18875 | const Sema::TryCaptureKind Kind, | ||||
| 18876 | SourceLocation EllipsisLoc, const bool IsTopScope, | ||||
| 18877 | Sema &S, bool Invalid) { | ||||
| 18878 | // Determine whether we are capturing by reference or by value. | ||||
| 18879 | bool ByRef = false; | ||||
| 18880 | if (IsTopScope && Kind != Sema::TryCapture_Implicit) { | ||||
| 18881 | ByRef = (Kind == Sema::TryCapture_ExplicitByRef); | ||||
| 18882 | } else { | ||||
| 18883 | ByRef = (LSI->ImpCaptureStyle == LambdaScopeInfo::ImpCap_LambdaByref); | ||||
| 18884 | } | ||||
| 18885 | |||||
| 18886 | BindingDecl *BD = dyn_cast<BindingDecl>(Var); | ||||
| 18887 | // FIXME: We should support capturing structured bindings in OpenMP. | ||||
| 18888 | if (!Invalid && BD && S.LangOpts.OpenMP) { | ||||
| 18889 | if (BuildAndDiagnose) { | ||||
| 18890 | S.Diag(Loc, diag::err_capture_binding_openmp) << Var; | ||||
| 18891 | S.Diag(Var->getLocation(), diag::note_entity_declared_at) << Var; | ||||
| 18892 | } | ||||
| 18893 | Invalid = true; | ||||
| 18894 | } | ||||
| 18895 | |||||
| 18896 | if (BuildAndDiagnose && S.Context.getTargetInfo().getTriple().isWasm() && | ||||
| 18897 | CaptureType.getNonReferenceType()->isWebAssemblyReferenceType()) { | ||||
| 18898 | S.Diag(Loc, diag::err_wasm_ca_reference) << 0; | ||||
| 18899 | Invalid = true; | ||||
| 18900 | } | ||||
| 18901 | |||||
| 18902 | // Compute the type of the field that will capture this variable. | ||||
| 18903 | if (ByRef) { | ||||
| 18904 | // C++11 [expr.prim.lambda]p15: | ||||
| 18905 | // An entity is captured by reference if it is implicitly or | ||||
| 18906 | // explicitly captured but not captured by copy. It is | ||||
| 18907 | // unspecified whether additional unnamed non-static data | ||||
| 18908 | // members are declared in the closure type for entities | ||||
| 18909 | // captured by reference. | ||||
| 18910 | // | ||||
| 18911 | // FIXME: It is not clear whether we want to build an lvalue reference | ||||
| 18912 | // to the DeclRefType or to CaptureType.getNonReferenceType(). GCC appears | ||||
| 18913 | // to do the former, while EDG does the latter. Core issue 1249 will | ||||
| 18914 | // clarify, but for now we follow GCC because it's a more permissive and | ||||
| 18915 | // easily defensible position. | ||||
| 18916 | CaptureType = S.Context.getLValueReferenceType(DeclRefType); | ||||
| 18917 | } else { | ||||
| 18918 | // C++11 [expr.prim.lambda]p14: | ||||
| 18919 | // For each entity captured by copy, an unnamed non-static | ||||
| 18920 | // data member is declared in the closure type. The | ||||
| 18921 | // declaration order of these members is unspecified. The type | ||||
| 18922 | // of such a data member is the type of the corresponding | ||||
| 18923 | // captured entity if the entity is not a reference to an | ||||
| 18924 | // object, or the referenced type otherwise. [Note: If the | ||||
| 18925 | // captured entity is a reference to a function, the | ||||
| 18926 | // corresponding data member is also a reference to a | ||||
| 18927 | // function. - end note ] | ||||
| 18928 | if (const ReferenceType *RefType = CaptureType->getAs<ReferenceType>()){ | ||||
| 18929 | if (!RefType->getPointeeType()->isFunctionType()) | ||||
| 18930 | CaptureType = RefType->getPointeeType(); | ||||
| 18931 | } | ||||
| 18932 | |||||
| 18933 | // Forbid the lambda copy-capture of autoreleasing variables. | ||||
| 18934 | if (!Invalid && | ||||
| 18935 | CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) { | ||||
| 18936 | if (BuildAndDiagnose) { | ||||
| 18937 | S.Diag(Loc, diag::err_arc_autoreleasing_capture) << /*lambda*/ 1; | ||||
| 18938 | S.Diag(Var->getLocation(), diag::note_previous_decl) | ||||
| 18939 | << Var->getDeclName(); | ||||
| 18940 | Invalid = true; | ||||
| 18941 | } else { | ||||
| 18942 | return false; | ||||
| 18943 | } | ||||
| 18944 | } | ||||
| 18945 | |||||
| 18946 | // Make sure that by-copy captures are of a complete and non-abstract type. | ||||
| 18947 | if (!Invalid && BuildAndDiagnose) { | ||||
| 18948 | if (!CaptureType->isDependentType() && | ||||
| 18949 | S.RequireCompleteSizedType( | ||||
| 18950 | Loc, CaptureType, | ||||
| 18951 | diag::err_capture_of_incomplete_or_sizeless_type, | ||||
| 18952 | Var->getDeclName())) | ||||
| 18953 | Invalid = true; | ||||
| 18954 | else if (S.RequireNonAbstractType(Loc, CaptureType, | ||||
| 18955 | diag::err_capture_of_abstract_type)) | ||||
| 18956 | Invalid = true; | ||||
| 18957 | } | ||||
| 18958 | } | ||||
| 18959 | |||||
| 18960 | // Compute the type of a reference to this captured variable. | ||||
| 18961 | if (ByRef) | ||||
| 18962 | DeclRefType = CaptureType.getNonReferenceType(); | ||||
| 18963 | else { | ||||
| 18964 | // C++ [expr.prim.lambda]p5: | ||||
| 18965 | // The closure type for a lambda-expression has a public inline | ||||
| 18966 | // function call operator [...]. This function call operator is | ||||
| 18967 | // declared const (9.3.1) if and only if the lambda-expression's | ||||
| 18968 | // parameter-declaration-clause is not followed by mutable. | ||||
| 18969 | DeclRefType = CaptureType.getNonReferenceType(); | ||||
| 18970 | if (!LSI->Mutable && !CaptureType->isReferenceType()) | ||||
| 18971 | DeclRefType.addConst(); | ||||
| 18972 | } | ||||
| 18973 | |||||
| 18974 | // Add the capture. | ||||
| 18975 | if (BuildAndDiagnose) | ||||
| 18976 | LSI->addCapture(Var, /*isBlock=*/false, ByRef, RefersToCapturedVariable, | ||||
| 18977 | Loc, EllipsisLoc, CaptureType, Invalid); | ||||
| 18978 | |||||
| 18979 | return !Invalid; | ||||
| 18980 | } | ||||
| 18981 | |||||
| 18982 | static bool canCaptureVariableByCopy(ValueDecl *Var, | ||||
| 18983 | const ASTContext &Context) { | ||||
| 18984 | // Offer a Copy fix even if the type is dependent. | ||||
| 18985 | if (Var->getType()->isDependentType()) | ||||
| 18986 | return true; | ||||
| 18987 | QualType T = Var->getType().getNonReferenceType(); | ||||
| 18988 | if (T.isTriviallyCopyableType(Context)) | ||||
| 18989 | return true; | ||||
| 18990 | if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) { | ||||
| 18991 | |||||
| 18992 | if (!(RD = RD->getDefinition())) | ||||
| 18993 | return false; | ||||
| 18994 | if (RD->hasSimpleCopyConstructor()) | ||||
| 18995 | return true; | ||||
| 18996 | if (RD->hasUserDeclaredCopyConstructor()) | ||||
| 18997 | for (CXXConstructorDecl *Ctor : RD->ctors()) | ||||
| 18998 | if (Ctor->isCopyConstructor()) | ||||
| 18999 | return !Ctor->isDeleted(); | ||||
| 19000 | } | ||||
| 19001 | return false; | ||||
| 19002 | } | ||||
| 19003 | |||||
| 19004 | /// Create up to 4 fix-its for explicit reference and value capture of \p Var or | ||||
| 19005 | /// default capture. Fixes may be omitted if they aren't allowed by the | ||||
| 19006 | /// standard, for example we can't emit a default copy capture fix-it if we | ||||
| 19007 | /// already explicitly copy capture capture another variable. | ||||
| 19008 | static void buildLambdaCaptureFixit(Sema &Sema, LambdaScopeInfo *LSI, | ||||
| 19009 | ValueDecl *Var) { | ||||
| 19010 | assert(LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None)(static_cast <bool> (LSI->ImpCaptureStyle == CapturingScopeInfo ::ImpCap_None) ? void (0) : __assert_fail ("LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None" , "clang/lib/Sema/SemaExpr.cpp", 19010, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 19011 | // Don't offer Capture by copy of default capture by copy fixes if Var is | ||||
| 19012 | // known not to be copy constructible. | ||||
| 19013 | bool ShouldOfferCopyFix = canCaptureVariableByCopy(Var, Sema.getASTContext()); | ||||
| 19014 | |||||
| 19015 | SmallString<32> FixBuffer; | ||||
| 19016 | StringRef Separator = LSI->NumExplicitCaptures > 0 ? ", " : ""; | ||||
| 19017 | if (Var->getDeclName().isIdentifier() && !Var->getName().empty()) { | ||||
| 19018 | SourceLocation VarInsertLoc = LSI->IntroducerRange.getEnd(); | ||||
| 19019 | if (ShouldOfferCopyFix) { | ||||
| 19020 | // Offer fixes to insert an explicit capture for the variable. | ||||
| 19021 | // [] -> [VarName] | ||||
| 19022 | // [OtherCapture] -> [OtherCapture, VarName] | ||||
| 19023 | FixBuffer.assign({Separator, Var->getName()}); | ||||
| 19024 | Sema.Diag(VarInsertLoc, diag::note_lambda_variable_capture_fixit) | ||||
| 19025 | << Var << /*value*/ 0 | ||||
| 19026 | << FixItHint::CreateInsertion(VarInsertLoc, FixBuffer); | ||||
| 19027 | } | ||||
| 19028 | // As above but capture by reference. | ||||
| 19029 | FixBuffer.assign({Separator, "&", Var->getName()}); | ||||
| 19030 | Sema.Diag(VarInsertLoc, diag::note_lambda_variable_capture_fixit) | ||||
| 19031 | << Var << /*reference*/ 1 | ||||
| 19032 | << FixItHint::CreateInsertion(VarInsertLoc, FixBuffer); | ||||
| 19033 | } | ||||
| 19034 | |||||
| 19035 | // Only try to offer default capture if there are no captures excluding this | ||||
| 19036 | // and init captures. | ||||
| 19037 | // [this]: OK. | ||||
| 19038 | // [X = Y]: OK. | ||||
| 19039 | // [&A, &B]: Don't offer. | ||||
| 19040 | // [A, B]: Don't offer. | ||||
| 19041 | if (llvm::any_of(LSI->Captures, [](Capture &C) { | ||||
| 19042 | return !C.isThisCapture() && !C.isInitCapture(); | ||||
| 19043 | })) | ||||
| 19044 | return; | ||||
| 19045 | |||||
| 19046 | // The default capture specifiers, '=' or '&', must appear first in the | ||||
| 19047 | // capture body. | ||||
| 19048 | SourceLocation DefaultInsertLoc = | ||||
| 19049 | LSI->IntroducerRange.getBegin().getLocWithOffset(1); | ||||
| 19050 | |||||
| 19051 | if (ShouldOfferCopyFix) { | ||||
| 19052 | bool CanDefaultCopyCapture = true; | ||||
| 19053 | // [=, *this] OK since c++17 | ||||
| 19054 | // [=, this] OK since c++20 | ||||
| 19055 | if (LSI->isCXXThisCaptured() && !Sema.getLangOpts().CPlusPlus20) | ||||
| 19056 | CanDefaultCopyCapture = Sema.getLangOpts().CPlusPlus17 | ||||
| 19057 | ? LSI->getCXXThisCapture().isCopyCapture() | ||||
| 19058 | : false; | ||||
| 19059 | // We can't use default capture by copy if any captures already specified | ||||
| 19060 | // capture by copy. | ||||
| 19061 | if (CanDefaultCopyCapture && llvm::none_of(LSI->Captures, [](Capture &C) { | ||||
| 19062 | return !C.isThisCapture() && !C.isInitCapture() && C.isCopyCapture(); | ||||
| 19063 | })) { | ||||
| 19064 | FixBuffer.assign({"=", Separator}); | ||||
| 19065 | Sema.Diag(DefaultInsertLoc, diag::note_lambda_default_capture_fixit) | ||||
| 19066 | << /*value*/ 0 | ||||
| 19067 | << FixItHint::CreateInsertion(DefaultInsertLoc, FixBuffer); | ||||
| 19068 | } | ||||
| 19069 | } | ||||
| 19070 | |||||
| 19071 | // We can't use default capture by reference if any captures already specified | ||||
| 19072 | // capture by reference. | ||||
| 19073 | if (llvm::none_of(LSI->Captures, [](Capture &C) { | ||||
| 19074 | return !C.isInitCapture() && C.isReferenceCapture() && | ||||
| 19075 | !C.isThisCapture(); | ||||
| 19076 | })) { | ||||
| 19077 | FixBuffer.assign({"&", Separator}); | ||||
| 19078 | Sema.Diag(DefaultInsertLoc, diag::note_lambda_default_capture_fixit) | ||||
| 19079 | << /*reference*/ 1 | ||||
| 19080 | << FixItHint::CreateInsertion(DefaultInsertLoc, FixBuffer); | ||||
| 19081 | } | ||||
| 19082 | } | ||||
| 19083 | |||||
| 19084 | bool Sema::tryCaptureVariable( | ||||
| 19085 | ValueDecl *Var, SourceLocation ExprLoc, TryCaptureKind Kind, | ||||
| 19086 | SourceLocation EllipsisLoc, bool BuildAndDiagnose, QualType &CaptureType, | ||||
| 19087 | QualType &DeclRefType, const unsigned *const FunctionScopeIndexToStopAt) { | ||||
| 19088 | // An init-capture is notionally from the context surrounding its | ||||
| 19089 | // declaration, but its parent DC is the lambda class. | ||||
| 19090 | DeclContext *VarDC = Var->getDeclContext(); | ||||
| 19091 | const auto *VD = dyn_cast<VarDecl>(Var); | ||||
| 19092 | if (VD) { | ||||
| 19093 | if (VD->isInitCapture()) | ||||
| 19094 | VarDC = VarDC->getParent(); | ||||
| 19095 | } else { | ||||
| 19096 | VD = Var->getPotentiallyDecomposedVarDecl(); | ||||
| 19097 | } | ||||
| 19098 | assert(VD && "Cannot capture a null variable")(static_cast <bool> (VD && "Cannot capture a null variable" ) ? void (0) : __assert_fail ("VD && \"Cannot capture a null variable\"" , "clang/lib/Sema/SemaExpr.cpp", 19098, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 19099 | |||||
| 19100 | DeclContext *DC = CurContext; | ||||
| 19101 | const unsigned MaxFunctionScopesIndex = FunctionScopeIndexToStopAt | ||||
| 19102 | ? *FunctionScopeIndexToStopAt : FunctionScopes.size() - 1; | ||||
| 19103 | // We need to sync up the Declaration Context with the | ||||
| 19104 | // FunctionScopeIndexToStopAt | ||||
| 19105 | if (FunctionScopeIndexToStopAt) { | ||||
| 19106 | unsigned FSIndex = FunctionScopes.size() - 1; | ||||
| 19107 | while (FSIndex != MaxFunctionScopesIndex) { | ||||
| 19108 | DC = getLambdaAwareParentOfDeclContext(DC); | ||||
| 19109 | --FSIndex; | ||||
| 19110 | } | ||||
| 19111 | } | ||||
| 19112 | |||||
| 19113 | // Capture global variables if it is required to use private copy of this | ||||
| 19114 | // variable. | ||||
| 19115 | bool IsGlobal = !VD->hasLocalStorage(); | ||||
| 19116 | if (IsGlobal && | ||||
| 19117 | !(LangOpts.OpenMP && isOpenMPCapturedDecl(Var, /*CheckScopeInfo=*/true, | ||||
| 19118 | MaxFunctionScopesIndex))) | ||||
| 19119 | return true; | ||||
| 19120 | |||||
| 19121 | if (isa<VarDecl>(Var)) | ||||
| 19122 | Var = cast<VarDecl>(Var->getCanonicalDecl()); | ||||
| 19123 | |||||
| 19124 | // Walk up the stack to determine whether we can capture the variable, | ||||
| 19125 | // performing the "simple" checks that don't depend on type. We stop when | ||||
| 19126 | // we've either hit the declared scope of the variable or find an existing | ||||
| 19127 | // capture of that variable. We start from the innermost capturing-entity | ||||
| 19128 | // (the DC) and ensure that all intervening capturing-entities | ||||
| 19129 | // (blocks/lambdas etc.) between the innermost capturer and the variable`s | ||||
| 19130 | // declcontext can either capture the variable or have already captured | ||||
| 19131 | // the variable. | ||||
| 19132 | CaptureType = Var->getType(); | ||||
| 19133 | DeclRefType = CaptureType.getNonReferenceType(); | ||||
| 19134 | bool Nested = false; | ||||
| 19135 | bool Explicit = (Kind != TryCapture_Implicit); | ||||
| 19136 | unsigned FunctionScopesIndex = MaxFunctionScopesIndex; | ||||
| 19137 | do { | ||||
| 19138 | |||||
| 19139 | LambdaScopeInfo *LSI = nullptr; | ||||
| 19140 | if (!FunctionScopes.empty()) | ||||
| 19141 | LSI = dyn_cast_or_null<LambdaScopeInfo>( | ||||
| 19142 | FunctionScopes[FunctionScopesIndex]); | ||||
| 19143 | |||||
| 19144 | bool IsInScopeDeclarationContext = | ||||
| 19145 | !LSI || LSI->AfterParameterList || CurContext == LSI->CallOperator; | ||||
| 19146 | |||||
| 19147 | if (LSI && !LSI->AfterParameterList) { | ||||
| 19148 | // This allows capturing parameters from a default value which does not | ||||
| 19149 | // seems correct | ||||
| 19150 | if (isa<ParmVarDecl>(Var) && !Var->getDeclContext()->isFunctionOrMethod()) | ||||
| 19151 | return true; | ||||
| 19152 | } | ||||
| 19153 | // If the variable is declared in the current context, there is no need to | ||||
| 19154 | // capture it. | ||||
| 19155 | if (IsInScopeDeclarationContext && | ||||
| 19156 | FunctionScopesIndex == MaxFunctionScopesIndex && VarDC == DC) | ||||
| 19157 | return true; | ||||
| 19158 | |||||
| 19159 | // When evaluating some attributes (like enable_if) we might refer to a | ||||
| 19160 | // function parameter appertaining to the same declaration as that | ||||
| 19161 | // attribute. | ||||
| 19162 | if (const auto *Parm = dyn_cast<ParmVarDecl>(Var); | ||||
| 19163 | Parm && Parm->getDeclContext() == DC) | ||||
| 19164 | return true; | ||||
| 19165 | |||||
| 19166 | // Only block literals, captured statements, and lambda expressions can | ||||
| 19167 | // capture; other scopes don't work. | ||||
| 19168 | DeclContext *ParentDC = | ||||
| 19169 | !IsInScopeDeclarationContext | ||||
| 19170 | ? DC->getParent() | ||||
| 19171 | : getParentOfCapturingContextOrNull(DC, Var, ExprLoc, | ||||
| 19172 | BuildAndDiagnose, *this); | ||||
| 19173 | // We need to check for the parent *first* because, if we *have* | ||||
| 19174 | // private-captured a global variable, we need to recursively capture it in | ||||
| 19175 | // intermediate blocks, lambdas, etc. | ||||
| 19176 | if (!ParentDC) { | ||||
| 19177 | if (IsGlobal) { | ||||
| 19178 | FunctionScopesIndex = MaxFunctionScopesIndex - 1; | ||||
| 19179 | break; | ||||
| 19180 | } | ||||
| 19181 | return true; | ||||
| 19182 | } | ||||
| 19183 | |||||
| 19184 | FunctionScopeInfo *FSI = FunctionScopes[FunctionScopesIndex]; | ||||
| 19185 | CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FSI); | ||||
| 19186 | |||||
| 19187 | // Check whether we've already captured it. | ||||
| 19188 | if (isVariableAlreadyCapturedInScopeInfo(CSI, Var, Nested, CaptureType, | ||||
| 19189 | DeclRefType)) { | ||||
| 19190 | CSI->getCapture(Var).markUsed(BuildAndDiagnose); | ||||
| 19191 | break; | ||||
| 19192 | } | ||||
| 19193 | // If we are instantiating a generic lambda call operator body, | ||||
| 19194 | // we do not want to capture new variables. What was captured | ||||
| 19195 | // during either a lambdas transformation or initial parsing | ||||
| 19196 | // should be used. | ||||
| 19197 | if (isGenericLambdaCallOperatorSpecialization(DC)) { | ||||
| 19198 | if (BuildAndDiagnose) { | ||||
| 19199 | LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI); | ||||
| 19200 | if (LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None) { | ||||
| 19201 | Diag(ExprLoc, diag::err_lambda_impcap) << Var; | ||||
| 19202 | Diag(Var->getLocation(), diag::note_previous_decl) << Var; | ||||
| 19203 | Diag(LSI->Lambda->getBeginLoc(), diag::note_lambda_decl); | ||||
| 19204 | buildLambdaCaptureFixit(*this, LSI, Var); | ||||
| 19205 | } else | ||||
| 19206 | diagnoseUncapturableValueReferenceOrBinding(*this, ExprLoc, Var); | ||||
| 19207 | } | ||||
| 19208 | return true; | ||||
| 19209 | } | ||||
| 19210 | |||||
| 19211 | // Try to capture variable-length arrays types. | ||||
| 19212 | if (Var->getType()->isVariablyModifiedType()) { | ||||
| 19213 | // We're going to walk down into the type and look for VLA | ||||
| 19214 | // expressions. | ||||
| 19215 | QualType QTy = Var->getType(); | ||||
| 19216 | if (ParmVarDecl *PVD = dyn_cast_or_null<ParmVarDecl>(Var)) | ||||
| 19217 | QTy = PVD->getOriginalType(); | ||||
| 19218 | captureVariablyModifiedType(Context, QTy, CSI); | ||||
| 19219 | } | ||||
| 19220 | |||||
| 19221 | if (getLangOpts().OpenMP) { | ||||
| 19222 | if (auto *RSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) { | ||||
| 19223 | // OpenMP private variables should not be captured in outer scope, so | ||||
| 19224 | // just break here. Similarly, global variables that are captured in a | ||||
| 19225 | // target region should not be captured outside the scope of the region. | ||||
| 19226 | if (RSI->CapRegionKind == CR_OpenMP) { | ||||
| 19227 | OpenMPClauseKind IsOpenMPPrivateDecl = isOpenMPPrivateDecl( | ||||
| 19228 | Var, RSI->OpenMPLevel, RSI->OpenMPCaptureLevel); | ||||
| 19229 | // If the variable is private (i.e. not captured) and has variably | ||||
| 19230 | // modified type, we still need to capture the type for correct | ||||
| 19231 | // codegen in all regions, associated with the construct. Currently, | ||||
| 19232 | // it is captured in the innermost captured region only. | ||||
| 19233 | if (IsOpenMPPrivateDecl != OMPC_unknown && | ||||
| 19234 | Var->getType()->isVariablyModifiedType()) { | ||||
| 19235 | QualType QTy = Var->getType(); | ||||
| 19236 | if (ParmVarDecl *PVD = dyn_cast_or_null<ParmVarDecl>(Var)) | ||||
| 19237 | QTy = PVD->getOriginalType(); | ||||
| 19238 | for (int I = 1, E = getNumberOfConstructScopes(RSI->OpenMPLevel); | ||||
| 19239 | I < E; ++I) { | ||||
| 19240 | auto *OuterRSI = cast<CapturedRegionScopeInfo>( | ||||
| 19241 | FunctionScopes[FunctionScopesIndex - I]); | ||||
| 19242 | assert(RSI->OpenMPLevel == OuterRSI->OpenMPLevel &&(static_cast <bool> (RSI->OpenMPLevel == OuterRSI-> OpenMPLevel && "Wrong number of captured regions associated with the " "OpenMP construct.") ? void (0) : __assert_fail ("RSI->OpenMPLevel == OuterRSI->OpenMPLevel && \"Wrong number of captured regions associated with the \" \"OpenMP construct.\"" , "clang/lib/Sema/SemaExpr.cpp", 19244, __extension__ __PRETTY_FUNCTION__ )) | ||||
| 19243 | "Wrong number of captured regions associated with the "(static_cast <bool> (RSI->OpenMPLevel == OuterRSI-> OpenMPLevel && "Wrong number of captured regions associated with the " "OpenMP construct.") ? void (0) : __assert_fail ("RSI->OpenMPLevel == OuterRSI->OpenMPLevel && \"Wrong number of captured regions associated with the \" \"OpenMP construct.\"" , "clang/lib/Sema/SemaExpr.cpp", 19244, __extension__ __PRETTY_FUNCTION__ )) | ||||
| 19244 | "OpenMP construct.")(static_cast <bool> (RSI->OpenMPLevel == OuterRSI-> OpenMPLevel && "Wrong number of captured regions associated with the " "OpenMP construct.") ? void (0) : __assert_fail ("RSI->OpenMPLevel == OuterRSI->OpenMPLevel && \"Wrong number of captured regions associated with the \" \"OpenMP construct.\"" , "clang/lib/Sema/SemaExpr.cpp", 19244, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 19245 | captureVariablyModifiedType(Context, QTy, OuterRSI); | ||||
| 19246 | } | ||||
| 19247 | } | ||||
| 19248 | bool IsTargetCap = | ||||
| 19249 | IsOpenMPPrivateDecl != OMPC_private && | ||||
| 19250 | isOpenMPTargetCapturedDecl(Var, RSI->OpenMPLevel, | ||||
| 19251 | RSI->OpenMPCaptureLevel); | ||||
| 19252 | // Do not capture global if it is not privatized in outer regions. | ||||
| 19253 | bool IsGlobalCap = | ||||
| 19254 | IsGlobal && isOpenMPGlobalCapturedDecl(Var, RSI->OpenMPLevel, | ||||
| 19255 | RSI->OpenMPCaptureLevel); | ||||
| 19256 | |||||
| 19257 | // When we detect target captures we are looking from inside the | ||||
| 19258 | // target region, therefore we need to propagate the capture from the | ||||
| 19259 | // enclosing region. Therefore, the capture is not initially nested. | ||||
| 19260 | if (IsTargetCap) | ||||
| 19261 | adjustOpenMPTargetScopeIndex(FunctionScopesIndex, RSI->OpenMPLevel); | ||||
| 19262 | |||||
| 19263 | if (IsTargetCap || IsOpenMPPrivateDecl == OMPC_private || | ||||
| 19264 | (IsGlobal && !IsGlobalCap)) { | ||||
| 19265 | Nested = !IsTargetCap; | ||||
| 19266 | bool HasConst = DeclRefType.isConstQualified(); | ||||
| 19267 | DeclRefType = DeclRefType.getUnqualifiedType(); | ||||
| 19268 | // Don't lose diagnostics about assignments to const. | ||||
| 19269 | if (HasConst) | ||||
| 19270 | DeclRefType.addConst(); | ||||
| 19271 | CaptureType = Context.getLValueReferenceType(DeclRefType); | ||||
| 19272 | break; | ||||
| 19273 | } | ||||
| 19274 | } | ||||
| 19275 | } | ||||
| 19276 | } | ||||
| 19277 | if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None && !Explicit) { | ||||
| 19278 | // No capture-default, and this is not an explicit capture | ||||
| 19279 | // so cannot capture this variable. | ||||
| 19280 | if (BuildAndDiagnose) { | ||||
| 19281 | Diag(ExprLoc, diag::err_lambda_impcap) << Var; | ||||
| 19282 | Diag(Var->getLocation(), diag::note_previous_decl) << Var; | ||||
| 19283 | auto *LSI = cast<LambdaScopeInfo>(CSI); | ||||
| 19284 | if (LSI->Lambda) { | ||||
| 19285 | Diag(LSI->Lambda->getBeginLoc(), diag::note_lambda_decl); | ||||
| 19286 | buildLambdaCaptureFixit(*this, LSI, Var); | ||||
| 19287 | } | ||||
| 19288 | // FIXME: If we error out because an outer lambda can not implicitly | ||||
| 19289 | // capture a variable that an inner lambda explicitly captures, we | ||||
| 19290 | // should have the inner lambda do the explicit capture - because | ||||
| 19291 | // it makes for cleaner diagnostics later. This would purely be done | ||||
| 19292 | // so that the diagnostic does not misleadingly claim that a variable | ||||
| 19293 | // can not be captured by a lambda implicitly even though it is captured | ||||
| 19294 | // explicitly. Suggestion: | ||||
| 19295 | // - create const bool VariableCaptureWasInitiallyExplicit = Explicit | ||||
| 19296 | // at the function head | ||||
| 19297 | // - cache the StartingDeclContext - this must be a lambda | ||||
| 19298 | // - captureInLambda in the innermost lambda the variable. | ||||
| 19299 | } | ||||
| 19300 | return true; | ||||
| 19301 | } | ||||
| 19302 | Explicit = false; | ||||
| 19303 | FunctionScopesIndex--; | ||||
| 19304 | if (IsInScopeDeclarationContext) | ||||
| 19305 | DC = ParentDC; | ||||
| 19306 | } while (!VarDC->Equals(DC)); | ||||
| 19307 | |||||
| 19308 | // Walk back down the scope stack, (e.g. from outer lambda to inner lambda) | ||||
| 19309 | // computing the type of the capture at each step, checking type-specific | ||||
| 19310 | // requirements, and adding captures if requested. | ||||
| 19311 | // If the variable had already been captured previously, we start capturing | ||||
| 19312 | // at the lambda nested within that one. | ||||
| 19313 | bool Invalid = false; | ||||
| 19314 | for (unsigned I = ++FunctionScopesIndex, N = MaxFunctionScopesIndex + 1; I != N; | ||||
| 19315 | ++I) { | ||||
| 19316 | CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[I]); | ||||
| 19317 | |||||
| 19318 | // Certain capturing entities (lambdas, blocks etc.) are not allowed to capture | ||||
| 19319 | // certain types of variables (unnamed, variably modified types etc.) | ||||
| 19320 | // so check for eligibility. | ||||
| 19321 | if (!Invalid) | ||||
| 19322 | Invalid = | ||||
| 19323 | !isVariableCapturable(CSI, Var, ExprLoc, BuildAndDiagnose, *this); | ||||
| 19324 | |||||
| 19325 | // After encountering an error, if we're actually supposed to capture, keep | ||||
| 19326 | // capturing in nested contexts to suppress any follow-on diagnostics. | ||||
| 19327 | if (Invalid && !BuildAndDiagnose) | ||||
| 19328 | return true; | ||||
| 19329 | |||||
| 19330 | if (BlockScopeInfo *BSI = dyn_cast<BlockScopeInfo>(CSI)) { | ||||
| 19331 | Invalid = !captureInBlock(BSI, Var, ExprLoc, BuildAndDiagnose, CaptureType, | ||||
| 19332 | DeclRefType, Nested, *this, Invalid); | ||||
| 19333 | Nested = true; | ||||
| 19334 | } else if (CapturedRegionScopeInfo *RSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) { | ||||
| 19335 | Invalid = !captureInCapturedRegion( | ||||
| 19336 | RSI, Var, ExprLoc, BuildAndDiagnose, CaptureType, DeclRefType, Nested, | ||||
| 19337 | Kind, /*IsTopScope*/ I == N - 1, *this, Invalid); | ||||
| 19338 | Nested = true; | ||||
| 19339 | } else { | ||||
| 19340 | LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI); | ||||
| 19341 | Invalid = | ||||
| 19342 | !captureInLambda(LSI, Var, ExprLoc, BuildAndDiagnose, CaptureType, | ||||
| 19343 | DeclRefType, Nested, Kind, EllipsisLoc, | ||||
| 19344 | /*IsTopScope*/ I == N - 1, *this, Invalid); | ||||
| 19345 | Nested = true; | ||||
| 19346 | } | ||||
| 19347 | |||||
| 19348 | if (Invalid && !BuildAndDiagnose) | ||||
| 19349 | return true; | ||||
| 19350 | } | ||||
| 19351 | return Invalid; | ||||
| 19352 | } | ||||
| 19353 | |||||
| 19354 | bool Sema::tryCaptureVariable(ValueDecl *Var, SourceLocation Loc, | ||||
| 19355 | TryCaptureKind Kind, SourceLocation EllipsisLoc) { | ||||
| 19356 | QualType CaptureType; | ||||
| 19357 | QualType DeclRefType; | ||||
| 19358 | return tryCaptureVariable(Var, Loc, Kind, EllipsisLoc, | ||||
| 19359 | /*BuildAndDiagnose=*/true, CaptureType, | ||||
| 19360 | DeclRefType, nullptr); | ||||
| 19361 | } | ||||
| 19362 | |||||
| 19363 | bool Sema::NeedToCaptureVariable(ValueDecl *Var, SourceLocation Loc) { | ||||
| 19364 | QualType CaptureType; | ||||
| 19365 | QualType DeclRefType; | ||||
| 19366 | return !tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(), | ||||
| 19367 | /*BuildAndDiagnose=*/false, CaptureType, | ||||
| 19368 | DeclRefType, nullptr); | ||||
| 19369 | } | ||||
| 19370 | |||||
| 19371 | QualType Sema::getCapturedDeclRefType(ValueDecl *Var, SourceLocation Loc) { | ||||
| 19372 | QualType CaptureType; | ||||
| 19373 | QualType DeclRefType; | ||||
| 19374 | |||||
| 19375 | // Determine whether we can capture this variable. | ||||
| 19376 | if (tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(), | ||||
| 19377 | /*BuildAndDiagnose=*/false, CaptureType, | ||||
| 19378 | DeclRefType, nullptr)) | ||||
| 19379 | return QualType(); | ||||
| 19380 | |||||
| 19381 | return DeclRefType; | ||||
| 19382 | } | ||||
| 19383 | |||||
| 19384 | namespace { | ||||
| 19385 | // Helper to copy the template arguments from a DeclRefExpr or MemberExpr. | ||||
| 19386 | // The produced TemplateArgumentListInfo* points to data stored within this | ||||
| 19387 | // object, so should only be used in contexts where the pointer will not be | ||||
| 19388 | // used after the CopiedTemplateArgs object is destroyed. | ||||
| 19389 | class CopiedTemplateArgs { | ||||
| 19390 | bool HasArgs; | ||||
| 19391 | TemplateArgumentListInfo TemplateArgStorage; | ||||
| 19392 | public: | ||||
| 19393 | template<typename RefExpr> | ||||
| 19394 | CopiedTemplateArgs(RefExpr *E) : HasArgs(E->hasExplicitTemplateArgs()) { | ||||
| 19395 | if (HasArgs) | ||||
| 19396 | E->copyTemplateArgumentsInto(TemplateArgStorage); | ||||
| 19397 | } | ||||
| 19398 | operator TemplateArgumentListInfo*() | ||||
| 19399 | #ifdef __has_cpp_attribute | ||||
| 19400 | #if0 __has_cpp_attribute(clang::lifetimebound)1 | ||||
| 19401 | [[clang::lifetimebound]] | ||||
| 19402 | #endif | ||||
| 19403 | #endif | ||||
| 19404 | { | ||||
| 19405 | return HasArgs ? &TemplateArgStorage : nullptr; | ||||
| 19406 | } | ||||
| 19407 | }; | ||||
| 19408 | } | ||||
| 19409 | |||||
| 19410 | /// Walk the set of potential results of an expression and mark them all as | ||||
| 19411 | /// non-odr-uses if they satisfy the side-conditions of the NonOdrUseReason. | ||||
| 19412 | /// | ||||
| 19413 | /// \return A new expression if we found any potential results, ExprEmpty() if | ||||
| 19414 | /// not, and ExprError() if we diagnosed an error. | ||||
| 19415 | static ExprResult rebuildPotentialResultsAsNonOdrUsed(Sema &S, Expr *E, | ||||
| 19416 | NonOdrUseReason NOUR) { | ||||
| 19417 | // Per C++11 [basic.def.odr], a variable is odr-used "unless it is | ||||
| 19418 | // an object that satisfies the requirements for appearing in a | ||||
| 19419 | // constant expression (5.19) and the lvalue-to-rvalue conversion (4.1) | ||||
| 19420 | // is immediately applied." This function handles the lvalue-to-rvalue | ||||
| 19421 | // conversion part. | ||||
| 19422 | // | ||||
| 19423 | // If we encounter a node that claims to be an odr-use but shouldn't be, we | ||||
| 19424 | // transform it into the relevant kind of non-odr-use node and rebuild the | ||||
| 19425 | // tree of nodes leading to it. | ||||
| 19426 | // | ||||
| 19427 | // This is a mini-TreeTransform that only transforms a restricted subset of | ||||
| 19428 | // nodes (and only certain operands of them). | ||||
| 19429 | |||||
| 19430 | // Rebuild a subexpression. | ||||
| 19431 | auto Rebuild = [&](Expr *Sub) { | ||||
| 19432 | return rebuildPotentialResultsAsNonOdrUsed(S, Sub, NOUR); | ||||
| 19433 | }; | ||||
| 19434 | |||||
| 19435 | // Check whether a potential result satisfies the requirements of NOUR. | ||||
| 19436 | auto IsPotentialResultOdrUsed = [&](NamedDecl *D) { | ||||
| 19437 | // Any entity other than a VarDecl is always odr-used whenever it's named | ||||
| 19438 | // in a potentially-evaluated expression. | ||||
| 19439 | auto *VD = dyn_cast<VarDecl>(D); | ||||
| 19440 | if (!VD) | ||||
| 19441 | return true; | ||||
| 19442 | |||||
| 19443 | // C++2a [basic.def.odr]p4: | ||||
| 19444 | // A variable x whose name appears as a potentially-evalauted expression | ||||
| 19445 | // e is odr-used by e unless | ||||
| 19446 | // -- x is a reference that is usable in constant expressions, or | ||||
| 19447 | // -- x is a variable of non-reference type that is usable in constant | ||||
| 19448 | // expressions and has no mutable subobjects, and e is an element of | ||||
| 19449 | // the set of potential results of an expression of | ||||
| 19450 | // non-volatile-qualified non-class type to which the lvalue-to-rvalue | ||||
| 19451 | // conversion is applied, or | ||||
| 19452 | // -- x is a variable of non-reference type, and e is an element of the | ||||
| 19453 | // set of potential results of a discarded-value expression to which | ||||
| 19454 | // the lvalue-to-rvalue conversion is not applied | ||||
| 19455 | // | ||||
| 19456 | // We check the first bullet and the "potentially-evaluated" condition in | ||||
| 19457 | // BuildDeclRefExpr. We check the type requirements in the second bullet | ||||
| 19458 | // in CheckLValueToRValueConversionOperand below. | ||||
| 19459 | switch (NOUR) { | ||||
| 19460 | case NOUR_None: | ||||
| 19461 | case NOUR_Unevaluated: | ||||
| 19462 | llvm_unreachable("unexpected non-odr-use-reason")::llvm::llvm_unreachable_internal("unexpected non-odr-use-reason" , "clang/lib/Sema/SemaExpr.cpp", 19462); | ||||
| 19463 | |||||
| 19464 | case NOUR_Constant: | ||||
| 19465 | // Constant references were handled when they were built. | ||||
| 19466 | if (VD->getType()->isReferenceType()) | ||||
| 19467 | return true; | ||||
| 19468 | if (auto *RD = VD->getType()->getAsCXXRecordDecl()) | ||||
| 19469 | if (RD->hasMutableFields()) | ||||
| 19470 | return true; | ||||
| 19471 | if (!VD->isUsableInConstantExpressions(S.Context)) | ||||
| 19472 | return true; | ||||
| 19473 | break; | ||||
| 19474 | |||||
| 19475 | case NOUR_Discarded: | ||||
| 19476 | if (VD->getType()->isReferenceType()) | ||||
| 19477 | return true; | ||||
| 19478 | break; | ||||
| 19479 | } | ||||
| 19480 | return false; | ||||
| 19481 | }; | ||||
| 19482 | |||||
| 19483 | // Mark that this expression does not constitute an odr-use. | ||||
| 19484 | auto MarkNotOdrUsed = [&] { | ||||
| 19485 | S.MaybeODRUseExprs.remove(E); | ||||
| 19486 | if (LambdaScopeInfo *LSI = S.getCurLambda()) | ||||
| 19487 | LSI->markVariableExprAsNonODRUsed(E); | ||||
| 19488 | }; | ||||
| 19489 | |||||
| 19490 | // C++2a [basic.def.odr]p2: | ||||
| 19491 | // The set of potential results of an expression e is defined as follows: | ||||
| 19492 | switch (E->getStmtClass()) { | ||||
| 19493 | // -- If e is an id-expression, ... | ||||
| 19494 | case Expr::DeclRefExprClass: { | ||||
| 19495 | auto *DRE = cast<DeclRefExpr>(E); | ||||
| 19496 | if (DRE->isNonOdrUse() || IsPotentialResultOdrUsed(DRE->getDecl())) | ||||
| 19497 | break; | ||||
| 19498 | |||||
| 19499 | // Rebuild as a non-odr-use DeclRefExpr. | ||||
| 19500 | MarkNotOdrUsed(); | ||||
| 19501 | return DeclRefExpr::Create( | ||||
| 19502 | S.Context, DRE->getQualifierLoc(), DRE->getTemplateKeywordLoc(), | ||||
| 19503 | DRE->getDecl(), DRE->refersToEnclosingVariableOrCapture(), | ||||
| 19504 | DRE->getNameInfo(), DRE->getType(), DRE->getValueKind(), | ||||
| 19505 | DRE->getFoundDecl(), CopiedTemplateArgs(DRE), NOUR); | ||||
| 19506 | } | ||||
| 19507 | |||||
| 19508 | case Expr::FunctionParmPackExprClass: { | ||||
| 19509 | auto *FPPE = cast<FunctionParmPackExpr>(E); | ||||
| 19510 | // If any of the declarations in the pack is odr-used, then the expression | ||||
| 19511 | // as a whole constitutes an odr-use. | ||||
| 19512 | for (VarDecl *D : *FPPE) | ||||
| 19513 | if (IsPotentialResultOdrUsed(D)) | ||||
| 19514 | return ExprEmpty(); | ||||
| 19515 | |||||
| 19516 | // FIXME: Rebuild as a non-odr-use FunctionParmPackExpr? In practice, | ||||
| 19517 | // nothing cares about whether we marked this as an odr-use, but it might | ||||
| 19518 | // be useful for non-compiler tools. | ||||
| 19519 | MarkNotOdrUsed(); | ||||
| 19520 | break; | ||||
| 19521 | } | ||||
| 19522 | |||||
| 19523 | // -- If e is a subscripting operation with an array operand... | ||||
| 19524 | case Expr::ArraySubscriptExprClass: { | ||||
| 19525 | auto *ASE = cast<ArraySubscriptExpr>(E); | ||||
| 19526 | Expr *OldBase = ASE->getBase()->IgnoreImplicit(); | ||||
| 19527 | if (!OldBase->getType()->isArrayType()) | ||||
| 19528 | break; | ||||
| 19529 | ExprResult Base = Rebuild(OldBase); | ||||
| 19530 | if (!Base.isUsable()) | ||||
| 19531 | return Base; | ||||
| 19532 | Expr *LHS = ASE->getBase() == ASE->getLHS() ? Base.get() : ASE->getLHS(); | ||||
| 19533 | Expr *RHS = ASE->getBase() == ASE->getRHS() ? Base.get() : ASE->getRHS(); | ||||
| 19534 | SourceLocation LBracketLoc = ASE->getBeginLoc(); // FIXME: Not stored. | ||||
| 19535 | return S.ActOnArraySubscriptExpr(nullptr, LHS, LBracketLoc, RHS, | ||||
| 19536 | ASE->getRBracketLoc()); | ||||
| 19537 | } | ||||
| 19538 | |||||
| 19539 | case Expr::MemberExprClass: { | ||||
| 19540 | auto *ME = cast<MemberExpr>(E); | ||||
| 19541 | // -- If e is a class member access expression [...] naming a non-static | ||||
| 19542 | // data member... | ||||
| 19543 | if (isa<FieldDecl>(ME->getMemberDecl())) { | ||||
| 19544 | ExprResult Base = Rebuild(ME->getBase()); | ||||
| 19545 | if (!Base.isUsable()) | ||||
| 19546 | return Base; | ||||
| 19547 | return MemberExpr::Create( | ||||
| 19548 | S.Context, Base.get(), ME->isArrow(), ME->getOperatorLoc(), | ||||
| 19549 | ME->getQualifierLoc(), ME->getTemplateKeywordLoc(), | ||||
| 19550 | ME->getMemberDecl(), ME->getFoundDecl(), ME->getMemberNameInfo(), | ||||
| 19551 | CopiedTemplateArgs(ME), ME->getType(), ME->getValueKind(), | ||||
| 19552 | ME->getObjectKind(), ME->isNonOdrUse()); | ||||
| 19553 | } | ||||
| 19554 | |||||
| 19555 | if (ME->getMemberDecl()->isCXXInstanceMember()) | ||||
| 19556 | break; | ||||
| 19557 | |||||
| 19558 | // -- If e is a class member access expression naming a static data member, | ||||
| 19559 | // ... | ||||
| 19560 | if (ME->isNonOdrUse() || IsPotentialResultOdrUsed(ME->getMemberDecl())) | ||||
| 19561 | break; | ||||
| 19562 | |||||
| 19563 | // Rebuild as a non-odr-use MemberExpr. | ||||
| 19564 | MarkNotOdrUsed(); | ||||
| 19565 | return MemberExpr::Create( | ||||
| 19566 | S.Context, ME->getBase(), ME->isArrow(), ME->getOperatorLoc(), | ||||
| 19567 | ME->getQualifierLoc(), ME->getTemplateKeywordLoc(), ME->getMemberDecl(), | ||||
| 19568 | ME->getFoundDecl(), ME->getMemberNameInfo(), CopiedTemplateArgs(ME), | ||||
| 19569 | ME->getType(), ME->getValueKind(), ME->getObjectKind(), NOUR); | ||||
| 19570 | } | ||||
| 19571 | |||||
| 19572 | case Expr::BinaryOperatorClass: { | ||||
| 19573 | auto *BO = cast<BinaryOperator>(E); | ||||
| 19574 | Expr *LHS = BO->getLHS(); | ||||
| 19575 | Expr *RHS = BO->getRHS(); | ||||
| 19576 | // -- If e is a pointer-to-member expression of the form e1 .* e2 ... | ||||
| 19577 | if (BO->getOpcode() == BO_PtrMemD) { | ||||
| 19578 | ExprResult Sub = Rebuild(LHS); | ||||
| 19579 | if (!Sub.isUsable()) | ||||
| 19580 | return Sub; | ||||
| 19581 | LHS = Sub.get(); | ||||
| 19582 | // -- If e is a comma expression, ... | ||||
| 19583 | } else if (BO->getOpcode() == BO_Comma) { | ||||
| 19584 | ExprResult Sub = Rebuild(RHS); | ||||
| 19585 | if (!Sub.isUsable()) | ||||
| 19586 | return Sub; | ||||
| 19587 | RHS = Sub.get(); | ||||
| 19588 | } else { | ||||
| 19589 | break; | ||||
| 19590 | } | ||||
| 19591 | return S.BuildBinOp(nullptr, BO->getOperatorLoc(), BO->getOpcode(), | ||||
| 19592 | LHS, RHS); | ||||
| 19593 | } | ||||
| 19594 | |||||
| 19595 | // -- If e has the form (e1)... | ||||
| 19596 | case Expr::ParenExprClass: { | ||||
| 19597 | auto *PE = cast<ParenExpr>(E); | ||||
| 19598 | ExprResult Sub = Rebuild(PE->getSubExpr()); | ||||
| 19599 | if (!Sub.isUsable()) | ||||
| 19600 | return Sub; | ||||
| 19601 | return S.ActOnParenExpr(PE->getLParen(), PE->getRParen(), Sub.get()); | ||||
| 19602 | } | ||||
| 19603 | |||||
| 19604 | // -- If e is a glvalue conditional expression, ... | ||||
| 19605 | // We don't apply this to a binary conditional operator. FIXME: Should we? | ||||
| 19606 | case Expr::ConditionalOperatorClass: { | ||||
| 19607 | auto *CO = cast<ConditionalOperator>(E); | ||||
| 19608 | ExprResult LHS = Rebuild(CO->getLHS()); | ||||
| 19609 | if (LHS.isInvalid()) | ||||
| 19610 | return ExprError(); | ||||
| 19611 | ExprResult RHS = Rebuild(CO->getRHS()); | ||||
| 19612 | if (RHS.isInvalid()) | ||||
| 19613 | return ExprError(); | ||||
| 19614 | if (!LHS.isUsable() && !RHS.isUsable()) | ||||
| 19615 | return ExprEmpty(); | ||||
| 19616 | if (!LHS.isUsable()) | ||||
| 19617 | LHS = CO->getLHS(); | ||||
| 19618 | if (!RHS.isUsable()) | ||||
| 19619 | RHS = CO->getRHS(); | ||||
| 19620 | return S.ActOnConditionalOp(CO->getQuestionLoc(), CO->getColonLoc(), | ||||
| 19621 | CO->getCond(), LHS.get(), RHS.get()); | ||||
| 19622 | } | ||||
| 19623 | |||||
| 19624 | // [Clang extension] | ||||
| 19625 | // -- If e has the form __extension__ e1... | ||||
| 19626 | case Expr::UnaryOperatorClass: { | ||||
| 19627 | auto *UO = cast<UnaryOperator>(E); | ||||
| 19628 | if (UO->getOpcode() != UO_Extension) | ||||
| 19629 | break; | ||||
| 19630 | ExprResult Sub = Rebuild(UO->getSubExpr()); | ||||
| 19631 | if (!Sub.isUsable()) | ||||
| 19632 | return Sub; | ||||
| 19633 | return S.BuildUnaryOp(nullptr, UO->getOperatorLoc(), UO_Extension, | ||||
| 19634 | Sub.get()); | ||||
| 19635 | } | ||||
| 19636 | |||||
| 19637 | // [Clang extension] | ||||
| 19638 | // -- If e has the form _Generic(...), the set of potential results is the | ||||
| 19639 | // union of the sets of potential results of the associated expressions. | ||||
| 19640 | case Expr::GenericSelectionExprClass: { | ||||
| 19641 | auto *GSE = cast<GenericSelectionExpr>(E); | ||||
| 19642 | |||||
| 19643 | SmallVector<Expr *, 4> AssocExprs; | ||||
| 19644 | bool AnyChanged = false; | ||||
| 19645 | for (Expr *OrigAssocExpr : GSE->getAssocExprs()) { | ||||
| 19646 | ExprResult AssocExpr = Rebuild(OrigAssocExpr); | ||||
| 19647 | if (AssocExpr.isInvalid()) | ||||
| 19648 | return ExprError(); | ||||
| 19649 | if (AssocExpr.isUsable()) { | ||||
| 19650 | AssocExprs.push_back(AssocExpr.get()); | ||||
| 19651 | AnyChanged = true; | ||||
| 19652 | } else { | ||||
| 19653 | AssocExprs.push_back(OrigAssocExpr); | ||||
| 19654 | } | ||||
| 19655 | } | ||||
| 19656 | |||||
| 19657 | return AnyChanged ? S.CreateGenericSelectionExpr( | ||||
| 19658 | GSE->getGenericLoc(), GSE->getDefaultLoc(), | ||||
| 19659 | GSE->getRParenLoc(), GSE->getControllingExpr(), | ||||
| 19660 | GSE->getAssocTypeSourceInfos(), AssocExprs) | ||||
| 19661 | : ExprEmpty(); | ||||
| 19662 | } | ||||
| 19663 | |||||
| 19664 | // [Clang extension] | ||||
| 19665 | // -- If e has the form __builtin_choose_expr(...), the set of potential | ||||
| 19666 | // results is the union of the sets of potential results of the | ||||
| 19667 | // second and third subexpressions. | ||||
| 19668 | case Expr::ChooseExprClass: { | ||||
| 19669 | auto *CE = cast<ChooseExpr>(E); | ||||
| 19670 | |||||
| 19671 | ExprResult LHS = Rebuild(CE->getLHS()); | ||||
| 19672 | if (LHS.isInvalid()) | ||||
| 19673 | return ExprError(); | ||||
| 19674 | |||||
| 19675 | ExprResult RHS = Rebuild(CE->getLHS()); | ||||
| 19676 | if (RHS.isInvalid()) | ||||
| 19677 | return ExprError(); | ||||
| 19678 | |||||
| 19679 | if (!LHS.get() && !RHS.get()) | ||||
| 19680 | return ExprEmpty(); | ||||
| 19681 | if (!LHS.isUsable()) | ||||
| 19682 | LHS = CE->getLHS(); | ||||
| 19683 | if (!RHS.isUsable()) | ||||
| 19684 | RHS = CE->getRHS(); | ||||
| 19685 | |||||
| 19686 | return S.ActOnChooseExpr(CE->getBuiltinLoc(), CE->getCond(), LHS.get(), | ||||
| 19687 | RHS.get(), CE->getRParenLoc()); | ||||
| 19688 | } | ||||
| 19689 | |||||
| 19690 | // Step through non-syntactic nodes. | ||||
| 19691 | case Expr::ConstantExprClass: { | ||||
| 19692 | auto *CE = cast<ConstantExpr>(E); | ||||
| 19693 | ExprResult Sub = Rebuild(CE->getSubExpr()); | ||||
| 19694 | if (!Sub.isUsable()) | ||||
| 19695 | return Sub; | ||||
| 19696 | return ConstantExpr::Create(S.Context, Sub.get()); | ||||
| 19697 | } | ||||
| 19698 | |||||
| 19699 | // We could mostly rely on the recursive rebuilding to rebuild implicit | ||||
| 19700 | // casts, but not at the top level, so rebuild them here. | ||||
| 19701 | case Expr::ImplicitCastExprClass: { | ||||
| 19702 | auto *ICE = cast<ImplicitCastExpr>(E); | ||||
| 19703 | // Only step through the narrow set of cast kinds we expect to encounter. | ||||
| 19704 | // Anything else suggests we've left the region in which potential results | ||||
| 19705 | // can be found. | ||||
| 19706 | switch (ICE->getCastKind()) { | ||||
| 19707 | case CK_NoOp: | ||||
| 19708 | case CK_DerivedToBase: | ||||
| 19709 | case CK_UncheckedDerivedToBase: { | ||||
| 19710 | ExprResult Sub = Rebuild(ICE->getSubExpr()); | ||||
| 19711 | if (!Sub.isUsable()) | ||||
| 19712 | return Sub; | ||||
| 19713 | CXXCastPath Path(ICE->path()); | ||||
| 19714 | return S.ImpCastExprToType(Sub.get(), ICE->getType(), ICE->getCastKind(), | ||||
| 19715 | ICE->getValueKind(), &Path); | ||||
| 19716 | } | ||||
| 19717 | |||||
| 19718 | default: | ||||
| 19719 | break; | ||||
| 19720 | } | ||||
| 19721 | break; | ||||
| 19722 | } | ||||
| 19723 | |||||
| 19724 | default: | ||||
| 19725 | break; | ||||
| 19726 | } | ||||
| 19727 | |||||
| 19728 | // Can't traverse through this node. Nothing to do. | ||||
| 19729 | return ExprEmpty(); | ||||
| 19730 | } | ||||
| 19731 | |||||
| 19732 | ExprResult Sema::CheckLValueToRValueConversionOperand(Expr *E) { | ||||
| 19733 | // Check whether the operand is or contains an object of non-trivial C union | ||||
| 19734 | // type. | ||||
| 19735 | if (E->getType().isVolatileQualified() && | ||||
| 19736 | (E->getType().hasNonTrivialToPrimitiveDestructCUnion() || | ||||
| 19737 | E->getType().hasNonTrivialToPrimitiveCopyCUnion())) | ||||
| 19738 | checkNonTrivialCUnion(E->getType(), E->getExprLoc(), | ||||
| 19739 | Sema::NTCUC_LValueToRValueVolatile, | ||||
| 19740 | NTCUK_Destruct|NTCUK_Copy); | ||||
| 19741 | |||||
| 19742 | // C++2a [basic.def.odr]p4: | ||||
| 19743 | // [...] an expression of non-volatile-qualified non-class type to which | ||||
| 19744 | // the lvalue-to-rvalue conversion is applied [...] | ||||
| 19745 | if (E->getType().isVolatileQualified() || E->getType()->getAs<RecordType>()) | ||||
| 19746 | return E; | ||||
| 19747 | |||||
| 19748 | ExprResult Result = | ||||
| 19749 | rebuildPotentialResultsAsNonOdrUsed(*this, E, NOUR_Constant); | ||||
| 19750 | if (Result.isInvalid()) | ||||
| 19751 | return ExprError(); | ||||
| 19752 | return Result.get() ? Result : E; | ||||
| 19753 | } | ||||
| 19754 | |||||
| 19755 | ExprResult Sema::ActOnConstantExpression(ExprResult Res) { | ||||
| 19756 | Res = CorrectDelayedTyposInExpr(Res); | ||||
| 19757 | |||||
| 19758 | if (!Res.isUsable()) | ||||
| 19759 | return Res; | ||||
| 19760 | |||||
| 19761 | // If a constant-expression is a reference to a variable where we delay | ||||
| 19762 | // deciding whether it is an odr-use, just assume we will apply the | ||||
| 19763 | // lvalue-to-rvalue conversion. In the one case where this doesn't happen | ||||
| 19764 | // (a non-type template argument), we have special handling anyway. | ||||
| 19765 | return CheckLValueToRValueConversionOperand(Res.get()); | ||||
| 19766 | } | ||||
| 19767 | |||||
| 19768 | void Sema::CleanupVarDeclMarking() { | ||||
| 19769 | // Iterate through a local copy in case MarkVarDeclODRUsed makes a recursive | ||||
| 19770 | // call. | ||||
| 19771 | MaybeODRUseExprSet LocalMaybeODRUseExprs; | ||||
| 19772 | std::swap(LocalMaybeODRUseExprs, MaybeODRUseExprs); | ||||
| 19773 | |||||
| 19774 | for (Expr *E : LocalMaybeODRUseExprs) { | ||||
| 19775 | if (auto *DRE = dyn_cast<DeclRefExpr>(E)) { | ||||
| 19776 | MarkVarDeclODRUsed(cast<VarDecl>(DRE->getDecl()), | ||||
| 19777 | DRE->getLocation(), *this); | ||||
| 19778 | } else if (auto *ME = dyn_cast<MemberExpr>(E)) { | ||||
| 19779 | MarkVarDeclODRUsed(cast<VarDecl>(ME->getMemberDecl()), ME->getMemberLoc(), | ||||
| 19780 | *this); | ||||
| 19781 | } else if (auto *FP = dyn_cast<FunctionParmPackExpr>(E)) { | ||||
| 19782 | for (VarDecl *VD : *FP) | ||||
| 19783 | MarkVarDeclODRUsed(VD, FP->getParameterPackLocation(), *this); | ||||
| 19784 | } else { | ||||
| 19785 | llvm_unreachable("Unexpected expression")::llvm::llvm_unreachable_internal("Unexpected expression", "clang/lib/Sema/SemaExpr.cpp" , 19785); | ||||
| 19786 | } | ||||
| 19787 | } | ||||
| 19788 | |||||
| 19789 | assert(MaybeODRUseExprs.empty() &&(static_cast <bool> (MaybeODRUseExprs.empty() && "MarkVarDeclODRUsed failed to cleanup MaybeODRUseExprs?") ? void (0) : __assert_fail ("MaybeODRUseExprs.empty() && \"MarkVarDeclODRUsed failed to cleanup MaybeODRUseExprs?\"" , "clang/lib/Sema/SemaExpr.cpp", 19790, __extension__ __PRETTY_FUNCTION__ )) | ||||
| 19790 | "MarkVarDeclODRUsed failed to cleanup MaybeODRUseExprs?")(static_cast <bool> (MaybeODRUseExprs.empty() && "MarkVarDeclODRUsed failed to cleanup MaybeODRUseExprs?") ? void (0) : __assert_fail ("MaybeODRUseExprs.empty() && \"MarkVarDeclODRUsed failed to cleanup MaybeODRUseExprs?\"" , "clang/lib/Sema/SemaExpr.cpp", 19790, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 19791 | } | ||||
| 19792 | |||||
| 19793 | static void DoMarkPotentialCapture(Sema &SemaRef, SourceLocation Loc, | ||||
| 19794 | ValueDecl *Var, Expr *E) { | ||||
| 19795 | VarDecl *VD = Var->getPotentiallyDecomposedVarDecl(); | ||||
| 19796 | if (!VD) | ||||
| 19797 | return; | ||||
| 19798 | |||||
| 19799 | const bool RefersToEnclosingScope = | ||||
| 19800 | (SemaRef.CurContext != VD->getDeclContext() && | ||||
| 19801 | VD->getDeclContext()->isFunctionOrMethod() && VD->hasLocalStorage()); | ||||
| 19802 | if (RefersToEnclosingScope) { | ||||
| 19803 | LambdaScopeInfo *const LSI = | ||||
| 19804 | SemaRef.getCurLambda(/*IgnoreNonLambdaCapturingScope=*/true); | ||||
| 19805 | if (LSI && (!LSI->CallOperator || | ||||
| 19806 | !LSI->CallOperator->Encloses(Var->getDeclContext()))) { | ||||
| 19807 | // If a variable could potentially be odr-used, defer marking it so | ||||
| 19808 | // until we finish analyzing the full expression for any | ||||
| 19809 | // lvalue-to-rvalue | ||||
| 19810 | // or discarded value conversions that would obviate odr-use. | ||||
| 19811 | // Add it to the list of potential captures that will be analyzed | ||||
| 19812 | // later (ActOnFinishFullExpr) for eventual capture and odr-use marking | ||||
| 19813 | // unless the variable is a reference that was initialized by a constant | ||||
| 19814 | // expression (this will never need to be captured or odr-used). | ||||
| 19815 | // | ||||
| 19816 | // FIXME: We can simplify this a lot after implementing P0588R1. | ||||
| 19817 | assert(E && "Capture variable should be used in an expression.")(static_cast <bool> (E && "Capture variable should be used in an expression." ) ? void (0) : __assert_fail ("E && \"Capture variable should be used in an expression.\"" , "clang/lib/Sema/SemaExpr.cpp", 19817, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 19818 | if (!Var->getType()->isReferenceType() || | ||||
| 19819 | !VD->isUsableInConstantExpressions(SemaRef.Context)) | ||||
| 19820 | LSI->addPotentialCapture(E->IgnoreParens()); | ||||
| 19821 | } | ||||
| 19822 | } | ||||
| 19823 | } | ||||
| 19824 | |||||
| 19825 | static void DoMarkVarDeclReferenced( | ||||
| 19826 | Sema &SemaRef, SourceLocation Loc, VarDecl *Var, Expr *E, | ||||
| 19827 | llvm::DenseMap<const VarDecl *, int> &RefsMinusAssignments) { | ||||
| 19828 | assert((!E || isa<DeclRefExpr>(E) || isa<MemberExpr>(E) ||(static_cast <bool> ((!E || isa<DeclRefExpr>(E) || isa<MemberExpr>(E) || isa<FunctionParmPackExpr>( E)) && "Invalid Expr argument to DoMarkVarDeclReferenced" ) ? void (0) : __assert_fail ("(!E || isa<DeclRefExpr>(E) || isa<MemberExpr>(E) || isa<FunctionParmPackExpr>(E)) && \"Invalid Expr argument to DoMarkVarDeclReferenced\"" , "clang/lib/Sema/SemaExpr.cpp", 19830, __extension__ __PRETTY_FUNCTION__ )) | ||||
| 19829 | isa<FunctionParmPackExpr>(E)) &&(static_cast <bool> ((!E || isa<DeclRefExpr>(E) || isa<MemberExpr>(E) || isa<FunctionParmPackExpr>( E)) && "Invalid Expr argument to DoMarkVarDeclReferenced" ) ? void (0) : __assert_fail ("(!E || isa<DeclRefExpr>(E) || isa<MemberExpr>(E) || isa<FunctionParmPackExpr>(E)) && \"Invalid Expr argument to DoMarkVarDeclReferenced\"" , "clang/lib/Sema/SemaExpr.cpp", 19830, __extension__ __PRETTY_FUNCTION__ )) | ||||
| 19830 | "Invalid Expr argument to DoMarkVarDeclReferenced")(static_cast <bool> ((!E || isa<DeclRefExpr>(E) || isa<MemberExpr>(E) || isa<FunctionParmPackExpr>( E)) && "Invalid Expr argument to DoMarkVarDeclReferenced" ) ? void (0) : __assert_fail ("(!E || isa<DeclRefExpr>(E) || isa<MemberExpr>(E) || isa<FunctionParmPackExpr>(E)) && \"Invalid Expr argument to DoMarkVarDeclReferenced\"" , "clang/lib/Sema/SemaExpr.cpp", 19830, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 19831 | Var->setReferenced(); | ||||
| 19832 | |||||
| 19833 | if (Var->isInvalidDecl()) | ||||
| 19834 | return; | ||||
| 19835 | |||||
| 19836 | auto *MSI = Var->getMemberSpecializationInfo(); | ||||
| 19837 | TemplateSpecializationKind TSK = MSI ? MSI->getTemplateSpecializationKind() | ||||
| 19838 | : Var->getTemplateSpecializationKind(); | ||||
| 19839 | |||||
| 19840 | OdrUseContext OdrUse = isOdrUseContext(SemaRef); | ||||
| 19841 | bool UsableInConstantExpr = | ||||
| 19842 | Var->mightBeUsableInConstantExpressions(SemaRef.Context); | ||||
| 19843 | |||||
| 19844 | if (Var->isLocalVarDeclOrParm() && !Var->hasExternalStorage()) { | ||||
| 19845 | RefsMinusAssignments.insert({Var, 0}).first->getSecond()++; | ||||
| 19846 | } | ||||
| 19847 | |||||
| 19848 | // C++20 [expr.const]p12: | ||||
| 19849 | // A variable [...] is needed for constant evaluation if it is [...] a | ||||
| 19850 | // variable whose name appears as a potentially constant evaluated | ||||
| 19851 | // expression that is either a contexpr variable or is of non-volatile | ||||
| 19852 | // const-qualified integral type or of reference type | ||||
| 19853 | bool NeededForConstantEvaluation = | ||||
| 19854 | isPotentiallyConstantEvaluatedContext(SemaRef) && UsableInConstantExpr; | ||||
| 19855 | |||||
| 19856 | bool NeedDefinition = | ||||
| 19857 | OdrUse == OdrUseContext::Used || NeededForConstantEvaluation; | ||||
| 19858 | |||||
| 19859 | assert(!isa<VarTemplatePartialSpecializationDecl>(Var) &&(static_cast <bool> (!isa<VarTemplatePartialSpecializationDecl >(Var) && "Can't instantiate a partial template specialization." ) ? void (0) : __assert_fail ("!isa<VarTemplatePartialSpecializationDecl>(Var) && \"Can't instantiate a partial template specialization.\"" , "clang/lib/Sema/SemaExpr.cpp", 19860, __extension__ __PRETTY_FUNCTION__ )) | ||||
| 19860 | "Can't instantiate a partial template specialization.")(static_cast <bool> (!isa<VarTemplatePartialSpecializationDecl >(Var) && "Can't instantiate a partial template specialization." ) ? void (0) : __assert_fail ("!isa<VarTemplatePartialSpecializationDecl>(Var) && \"Can't instantiate a partial template specialization.\"" , "clang/lib/Sema/SemaExpr.cpp", 19860, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 19861 | |||||
| 19862 | // If this might be a member specialization of a static data member, check | ||||
| 19863 | // the specialization is visible. We already did the checks for variable | ||||
| 19864 | // template specializations when we created them. | ||||
| 19865 | if (NeedDefinition && TSK != TSK_Undeclared && | ||||
| 19866 | !isa<VarTemplateSpecializationDecl>(Var)) | ||||
| 19867 | SemaRef.checkSpecializationVisibility(Loc, Var); | ||||
| 19868 | |||||
| 19869 | // Perform implicit instantiation of static data members, static data member | ||||
| 19870 | // templates of class templates, and variable template specializations. Delay | ||||
| 19871 | // instantiations of variable templates, except for those that could be used | ||||
| 19872 | // in a constant expression. | ||||
| 19873 | if (NeedDefinition && isTemplateInstantiation(TSK)) { | ||||
| 19874 | // Per C++17 [temp.explicit]p10, we may instantiate despite an explicit | ||||
| 19875 | // instantiation declaration if a variable is usable in a constant | ||||
| 19876 | // expression (among other cases). | ||||
| 19877 | bool TryInstantiating = | ||||
| 19878 | TSK == TSK_ImplicitInstantiation || | ||||
| 19879 | (TSK == TSK_ExplicitInstantiationDeclaration && UsableInConstantExpr); | ||||
| 19880 | |||||
| 19881 | if (TryInstantiating) { | ||||
| 19882 | SourceLocation PointOfInstantiation = | ||||
| 19883 | MSI ? MSI->getPointOfInstantiation() : Var->getPointOfInstantiation(); | ||||
| 19884 | bool FirstInstantiation = PointOfInstantiation.isInvalid(); | ||||
| 19885 | if (FirstInstantiation) { | ||||
| 19886 | PointOfInstantiation = Loc; | ||||
| 19887 | if (MSI) | ||||
| 19888 | MSI->setPointOfInstantiation(PointOfInstantiation); | ||||
| 19889 | // FIXME: Notify listener. | ||||
| 19890 | else | ||||
| 19891 | Var->setTemplateSpecializationKind(TSK, PointOfInstantiation); | ||||
| 19892 | } | ||||
| 19893 | |||||
| 19894 | if (UsableInConstantExpr) { | ||||
| 19895 | // Do not defer instantiations of variables that could be used in a | ||||
| 19896 | // constant expression. | ||||
| 19897 | SemaRef.runWithSufficientStackSpace(PointOfInstantiation, [&] { | ||||
| 19898 | SemaRef.InstantiateVariableDefinition(PointOfInstantiation, Var); | ||||
| 19899 | }); | ||||
| 19900 | |||||
| 19901 | // Re-set the member to trigger a recomputation of the dependence bits | ||||
| 19902 | // for the expression. | ||||
| 19903 | if (auto *DRE = dyn_cast_or_null<DeclRefExpr>(E)) | ||||
| 19904 | DRE->setDecl(DRE->getDecl()); | ||||
| 19905 | else if (auto *ME = dyn_cast_or_null<MemberExpr>(E)) | ||||
| 19906 | ME->setMemberDecl(ME->getMemberDecl()); | ||||
| 19907 | } else if (FirstInstantiation) { | ||||
| 19908 | SemaRef.PendingInstantiations | ||||
| 19909 | .push_back(std::make_pair(Var, PointOfInstantiation)); | ||||
| 19910 | } else { | ||||
| 19911 | bool Inserted = false; | ||||
| 19912 | for (auto &I : SemaRef.SavedPendingInstantiations) { | ||||
| 19913 | auto Iter = llvm::find_if( | ||||
| 19914 | I, [Var](const Sema::PendingImplicitInstantiation &P) { | ||||
| 19915 | return P.first == Var; | ||||
| 19916 | }); | ||||
| 19917 | if (Iter != I.end()) { | ||||
| 19918 | SemaRef.PendingInstantiations.push_back(*Iter); | ||||
| 19919 | I.erase(Iter); | ||||
| 19920 | Inserted = true; | ||||
| 19921 | break; | ||||
| 19922 | } | ||||
| 19923 | } | ||||
| 19924 | |||||
| 19925 | // FIXME: For a specialization of a variable template, we don't | ||||
| 19926 | // distinguish between "declaration and type implicitly instantiated" | ||||
| 19927 | // and "implicit instantiation of definition requested", so we have | ||||
| 19928 | // no direct way to avoid enqueueing the pending instantiation | ||||
| 19929 | // multiple times. | ||||
| 19930 | if (isa<VarTemplateSpecializationDecl>(Var) && !Inserted) | ||||
| 19931 | SemaRef.PendingInstantiations | ||||
| 19932 | .push_back(std::make_pair(Var, PointOfInstantiation)); | ||||
| 19933 | } | ||||
| 19934 | } | ||||
| 19935 | } | ||||
| 19936 | |||||
| 19937 | // C++2a [basic.def.odr]p4: | ||||
| 19938 | // A variable x whose name appears as a potentially-evaluated expression e | ||||
| 19939 | // is odr-used by e unless | ||||
| 19940 | // -- x is a reference that is usable in constant expressions | ||||
| 19941 | // -- x is a variable of non-reference type that is usable in constant | ||||
| 19942 | // expressions and has no mutable subobjects [FIXME], and e is an | ||||
| 19943 | // element of the set of potential results of an expression of | ||||
| 19944 | // non-volatile-qualified non-class type to which the lvalue-to-rvalue | ||||
| 19945 | // conversion is applied | ||||
| 19946 | // -- x is a variable of non-reference type, and e is an element of the set | ||||
| 19947 | // of potential results of a discarded-value expression to which the | ||||
| 19948 | // lvalue-to-rvalue conversion is not applied [FIXME] | ||||
| 19949 | // | ||||
| 19950 | // We check the first part of the second bullet here, and | ||||
| 19951 | // Sema::CheckLValueToRValueConversionOperand deals with the second part. | ||||
| 19952 | // FIXME: To get the third bullet right, we need to delay this even for | ||||
| 19953 | // variables that are not usable in constant expressions. | ||||
| 19954 | |||||
| 19955 | // If we already know this isn't an odr-use, there's nothing more to do. | ||||
| 19956 | if (DeclRefExpr *DRE = dyn_cast_or_null<DeclRefExpr>(E)) | ||||
| 19957 | if (DRE->isNonOdrUse()) | ||||
| 19958 | return; | ||||
| 19959 | if (MemberExpr *ME = dyn_cast_or_null<MemberExpr>(E)) | ||||
| 19960 | if (ME->isNonOdrUse()) | ||||
| 19961 | return; | ||||
| 19962 | |||||
| 19963 | switch (OdrUse) { | ||||
| 19964 | case OdrUseContext::None: | ||||
| 19965 | // In some cases, a variable may not have been marked unevaluated, if it | ||||
| 19966 | // appears in a defaukt initializer. | ||||
| 19967 | assert((!E || isa<FunctionParmPackExpr>(E) ||(static_cast <bool> ((!E || isa<FunctionParmPackExpr >(E) || SemaRef.isUnevaluatedContext()) && "missing non-odr-use marking for unevaluated decl ref" ) ? void (0) : __assert_fail ("(!E || isa<FunctionParmPackExpr>(E) || SemaRef.isUnevaluatedContext()) && \"missing non-odr-use marking for unevaluated decl ref\"" , "clang/lib/Sema/SemaExpr.cpp", 19969, __extension__ __PRETTY_FUNCTION__ )) | ||||
| 19968 | SemaRef.isUnevaluatedContext()) &&(static_cast <bool> ((!E || isa<FunctionParmPackExpr >(E) || SemaRef.isUnevaluatedContext()) && "missing non-odr-use marking for unevaluated decl ref" ) ? void (0) : __assert_fail ("(!E || isa<FunctionParmPackExpr>(E) || SemaRef.isUnevaluatedContext()) && \"missing non-odr-use marking for unevaluated decl ref\"" , "clang/lib/Sema/SemaExpr.cpp", 19969, __extension__ __PRETTY_FUNCTION__ )) | ||||
| 19969 | "missing non-odr-use marking for unevaluated decl ref")(static_cast <bool> ((!E || isa<FunctionParmPackExpr >(E) || SemaRef.isUnevaluatedContext()) && "missing non-odr-use marking for unevaluated decl ref" ) ? void (0) : __assert_fail ("(!E || isa<FunctionParmPackExpr>(E) || SemaRef.isUnevaluatedContext()) && \"missing non-odr-use marking for unevaluated decl ref\"" , "clang/lib/Sema/SemaExpr.cpp", 19969, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 19970 | break; | ||||
| 19971 | |||||
| 19972 | case OdrUseContext::FormallyOdrUsed: | ||||
| 19973 | // FIXME: Ignoring formal odr-uses results in incorrect lambda capture | ||||
| 19974 | // behavior. | ||||
| 19975 | break; | ||||
| 19976 | |||||
| 19977 | case OdrUseContext::Used: | ||||
| 19978 | // If we might later find that this expression isn't actually an odr-use, | ||||
| 19979 | // delay the marking. | ||||
| 19980 | if (E && Var->isUsableInConstantExpressions(SemaRef.Context)) | ||||
| 19981 | SemaRef.MaybeODRUseExprs.insert(E); | ||||
| 19982 | else | ||||
| 19983 | MarkVarDeclODRUsed(Var, Loc, SemaRef); | ||||
| 19984 | break; | ||||
| 19985 | |||||
| 19986 | case OdrUseContext::Dependent: | ||||
| 19987 | // If this is a dependent context, we don't need to mark variables as | ||||
| 19988 | // odr-used, but we may still need to track them for lambda capture. | ||||
| 19989 | // FIXME: Do we also need to do this inside dependent typeid expressions | ||||
| 19990 | // (which are modeled as unevaluated at this point)? | ||||
| 19991 | DoMarkPotentialCapture(SemaRef, Loc, Var, E); | ||||
| 19992 | break; | ||||
| 19993 | } | ||||
| 19994 | } | ||||
| 19995 | |||||
| 19996 | static void DoMarkBindingDeclReferenced(Sema &SemaRef, SourceLocation Loc, | ||||
| 19997 | BindingDecl *BD, Expr *E) { | ||||
| 19998 | BD->setReferenced(); | ||||
| 19999 | |||||
| 20000 | if (BD->isInvalidDecl()) | ||||
| 20001 | return; | ||||
| 20002 | |||||
| 20003 | OdrUseContext OdrUse = isOdrUseContext(SemaRef); | ||||
| 20004 | if (OdrUse == OdrUseContext::Used) { | ||||
| 20005 | QualType CaptureType, DeclRefType; | ||||
| 20006 | SemaRef.tryCaptureVariable(BD, Loc, Sema::TryCapture_Implicit, | ||||
| 20007 | /*EllipsisLoc*/ SourceLocation(), | ||||
| 20008 | /*BuildAndDiagnose*/ true, CaptureType, | ||||
| 20009 | DeclRefType, | ||||
| 20010 | /*FunctionScopeIndexToStopAt*/ nullptr); | ||||
| 20011 | } else if (OdrUse == OdrUseContext::Dependent) { | ||||
| 20012 | DoMarkPotentialCapture(SemaRef, Loc, BD, E); | ||||
| 20013 | } | ||||
| 20014 | } | ||||
| 20015 | |||||
| 20016 | /// Mark a variable referenced, and check whether it is odr-used | ||||
| 20017 | /// (C++ [basic.def.odr]p2, C99 6.9p3). Note that this should not be | ||||
| 20018 | /// used directly for normal expressions referring to VarDecl. | ||||
| 20019 | void Sema::MarkVariableReferenced(SourceLocation Loc, VarDecl *Var) { | ||||
| 20020 | DoMarkVarDeclReferenced(*this, Loc, Var, nullptr, RefsMinusAssignments); | ||||
| 20021 | } | ||||
| 20022 | |||||
| 20023 | static void | ||||
| 20024 | MarkExprReferenced(Sema &SemaRef, SourceLocation Loc, Decl *D, Expr *E, | ||||
| 20025 | bool MightBeOdrUse, | ||||
| 20026 | llvm::DenseMap<const VarDecl *, int> &RefsMinusAssignments) { | ||||
| 20027 | if (SemaRef.isInOpenMPDeclareTargetContext()) | ||||
| 20028 | SemaRef.checkDeclIsAllowedInOpenMPTarget(E, D); | ||||
| 20029 | |||||
| 20030 | if (VarDecl *Var = dyn_cast<VarDecl>(D)) { | ||||
| 20031 | DoMarkVarDeclReferenced(SemaRef, Loc, Var, E, RefsMinusAssignments); | ||||
| 20032 | return; | ||||
| 20033 | } | ||||
| 20034 | |||||
| 20035 | if (BindingDecl *Decl = dyn_cast<BindingDecl>(D)) { | ||||
| 20036 | DoMarkBindingDeclReferenced(SemaRef, Loc, Decl, E); | ||||
| 20037 | return; | ||||
| 20038 | } | ||||
| 20039 | |||||
| 20040 | SemaRef.MarkAnyDeclReferenced(Loc, D, MightBeOdrUse); | ||||
| 20041 | |||||
| 20042 | // If this is a call to a method via a cast, also mark the method in the | ||||
| 20043 | // derived class used in case codegen can devirtualize the call. | ||||
| 20044 | const MemberExpr *ME = dyn_cast<MemberExpr>(E); | ||||
| 20045 | if (!ME) | ||||
| 20046 | return; | ||||
| 20047 | CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ME->getMemberDecl()); | ||||
| 20048 | if (!MD) | ||||
| 20049 | return; | ||||
| 20050 | // Only attempt to devirtualize if this is truly a virtual call. | ||||
| 20051 | bool IsVirtualCall = MD->isVirtual() && | ||||
| 20052 | ME->performsVirtualDispatch(SemaRef.getLangOpts()); | ||||
| 20053 | if (!IsVirtualCall) | ||||
| 20054 | return; | ||||
| 20055 | |||||
| 20056 | // If it's possible to devirtualize the call, mark the called function | ||||
| 20057 | // referenced. | ||||
| 20058 | CXXMethodDecl *DM = MD->getDevirtualizedMethod( | ||||
| 20059 | ME->getBase(), SemaRef.getLangOpts().AppleKext); | ||||
| 20060 | if (DM) | ||||
| 20061 | SemaRef.MarkAnyDeclReferenced(Loc, DM, MightBeOdrUse); | ||||
| 20062 | } | ||||
| 20063 | |||||
| 20064 | /// Perform reference-marking and odr-use handling for a DeclRefExpr. | ||||
| 20065 | /// | ||||
| 20066 | /// Note, this may change the dependence of the DeclRefExpr, and so needs to be | ||||
| 20067 | /// handled with care if the DeclRefExpr is not newly-created. | ||||
| 20068 | void Sema::MarkDeclRefReferenced(DeclRefExpr *E, const Expr *Base) { | ||||
| 20069 | // TODO: update this with DR# once a defect report is filed. | ||||
| 20070 | // C++11 defect. The address of a pure member should not be an ODR use, even | ||||
| 20071 | // if it's a qualified reference. | ||||
| 20072 | bool OdrUse = true; | ||||
| 20073 | if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getDecl())) | ||||
| 20074 | if (Method->isVirtual() && | ||||
| 20075 | !Method->getDevirtualizedMethod(Base, getLangOpts().AppleKext)) | ||||
| 20076 | OdrUse = false; | ||||
| 20077 | |||||
| 20078 | if (auto *FD = dyn_cast<FunctionDecl>(E->getDecl())) | ||||
| 20079 | if (!isUnevaluatedContext() && !isConstantEvaluated() && | ||||
| 20080 | !isImmediateFunctionContext() && | ||||
| 20081 | !isCheckingDefaultArgumentOrInitializer() && FD->isConsteval() && | ||||
| 20082 | !RebuildingImmediateInvocation && !FD->isDependentContext()) | ||||
| 20083 | ExprEvalContexts.back().ReferenceToConsteval.insert(E); | ||||
| 20084 | MarkExprReferenced(*this, E->getLocation(), E->getDecl(), E, OdrUse, | ||||
| 20085 | RefsMinusAssignments); | ||||
| 20086 | } | ||||
| 20087 | |||||
| 20088 | /// Perform reference-marking and odr-use handling for a MemberExpr. | ||||
| 20089 | void Sema::MarkMemberReferenced(MemberExpr *E) { | ||||
| 20090 | // C++11 [basic.def.odr]p2: | ||||
| 20091 | // A non-overloaded function whose name appears as a potentially-evaluated | ||||
| 20092 | // expression or a member of a set of candidate functions, if selected by | ||||
| 20093 | // overload resolution when referred to from a potentially-evaluated | ||||
| 20094 | // expression, is odr-used, unless it is a pure virtual function and its | ||||
| 20095 | // name is not explicitly qualified. | ||||
| 20096 | bool MightBeOdrUse = true; | ||||
| 20097 | if (E->performsVirtualDispatch(getLangOpts())) { | ||||
| 20098 | if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getMemberDecl())) | ||||
| 20099 | if (Method->isPure()) | ||||
| 20100 | MightBeOdrUse = false; | ||||
| 20101 | } | ||||
| 20102 | SourceLocation Loc = | ||||
| 20103 | E->getMemberLoc().isValid() ? E->getMemberLoc() : E->getBeginLoc(); | ||||
| 20104 | MarkExprReferenced(*this, Loc, E->getMemberDecl(), E, MightBeOdrUse, | ||||
| 20105 | RefsMinusAssignments); | ||||
| 20106 | } | ||||
| 20107 | |||||
| 20108 | /// Perform reference-marking and odr-use handling for a FunctionParmPackExpr. | ||||
| 20109 | void Sema::MarkFunctionParmPackReferenced(FunctionParmPackExpr *E) { | ||||
| 20110 | for (VarDecl *VD : *E) | ||||
| 20111 | MarkExprReferenced(*this, E->getParameterPackLocation(), VD, E, true, | ||||
| 20112 | RefsMinusAssignments); | ||||
| 20113 | } | ||||
| 20114 | |||||
| 20115 | /// Perform marking for a reference to an arbitrary declaration. It | ||||
| 20116 | /// marks the declaration referenced, and performs odr-use checking for | ||||
| 20117 | /// functions and variables. This method should not be used when building a | ||||
| 20118 | /// normal expression which refers to a variable. | ||||
| 20119 | void Sema::MarkAnyDeclReferenced(SourceLocation Loc, Decl *D, | ||||
| 20120 | bool MightBeOdrUse) { | ||||
| 20121 | if (MightBeOdrUse) { | ||||
| 20122 | if (auto *VD = dyn_cast<VarDecl>(D)) { | ||||
| 20123 | MarkVariableReferenced(Loc, VD); | ||||
| 20124 | return; | ||||
| 20125 | } | ||||
| 20126 | } | ||||
| 20127 | if (auto *FD = dyn_cast<FunctionDecl>(D)) { | ||||
| 20128 | MarkFunctionReferenced(Loc, FD, MightBeOdrUse); | ||||
| 20129 | return; | ||||
| 20130 | } | ||||
| 20131 | D->setReferenced(); | ||||
| 20132 | } | ||||
| 20133 | |||||
| 20134 | namespace { | ||||
| 20135 | // Mark all of the declarations used by a type as referenced. | ||||
| 20136 | // FIXME: Not fully implemented yet! We need to have a better understanding | ||||
| 20137 | // of when we're entering a context we should not recurse into. | ||||
| 20138 | // FIXME: This is and EvaluatedExprMarker are more-or-less equivalent to | ||||
| 20139 | // TreeTransforms rebuilding the type in a new context. Rather than | ||||
| 20140 | // duplicating the TreeTransform logic, we should consider reusing it here. | ||||
| 20141 | // Currently that causes problems when rebuilding LambdaExprs. | ||||
| 20142 | class MarkReferencedDecls : public RecursiveASTVisitor<MarkReferencedDecls> { | ||||
| 20143 | Sema &S; | ||||
| 20144 | SourceLocation Loc; | ||||
| 20145 | |||||
| 20146 | public: | ||||
| 20147 | typedef RecursiveASTVisitor<MarkReferencedDecls> Inherited; | ||||
| 20148 | |||||
| 20149 | MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { } | ||||
| 20150 | |||||
| 20151 | bool TraverseTemplateArgument(const TemplateArgument &Arg); | ||||
| 20152 | }; | ||||
| 20153 | } | ||||
| 20154 | |||||
| 20155 | bool MarkReferencedDecls::TraverseTemplateArgument( | ||||
| 20156 | const TemplateArgument &Arg) { | ||||
| 20157 | { | ||||
| 20158 | // A non-type template argument is a constant-evaluated context. | ||||
| 20159 | EnterExpressionEvaluationContext Evaluated( | ||||
| 20160 | S, Sema::ExpressionEvaluationContext::ConstantEvaluated); | ||||
| 20161 | if (Arg.getKind() == TemplateArgument::Declaration) { | ||||
| 20162 | if (Decl *D = Arg.getAsDecl()) | ||||
| 20163 | S.MarkAnyDeclReferenced(Loc, D, true); | ||||
| 20164 | } else if (Arg.getKind() == TemplateArgument::Expression) { | ||||
| 20165 | S.MarkDeclarationsReferencedInExpr(Arg.getAsExpr(), false); | ||||
| 20166 | } | ||||
| 20167 | } | ||||
| 20168 | |||||
| 20169 | return Inherited::TraverseTemplateArgument(Arg); | ||||
| 20170 | } | ||||
| 20171 | |||||
| 20172 | void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) { | ||||
| 20173 | MarkReferencedDecls Marker(*this, Loc); | ||||
| 20174 | Marker.TraverseType(T); | ||||
| 20175 | } | ||||
| 20176 | |||||
| 20177 | namespace { | ||||
| 20178 | /// Helper class that marks all of the declarations referenced by | ||||
| 20179 | /// potentially-evaluated subexpressions as "referenced". | ||||
| 20180 | class EvaluatedExprMarker : public UsedDeclVisitor<EvaluatedExprMarker> { | ||||
| 20181 | public: | ||||
| 20182 | typedef UsedDeclVisitor<EvaluatedExprMarker> Inherited; | ||||
| 20183 | bool SkipLocalVariables; | ||||
| 20184 | ArrayRef<const Expr *> StopAt; | ||||
| 20185 | |||||
| 20186 | EvaluatedExprMarker(Sema &S, bool SkipLocalVariables, | ||||
| 20187 | ArrayRef<const Expr *> StopAt) | ||||
| 20188 | : Inherited(S), SkipLocalVariables(SkipLocalVariables), StopAt(StopAt) {} | ||||
| 20189 | |||||
| 20190 | void visitUsedDecl(SourceLocation Loc, Decl *D) { | ||||
| 20191 | S.MarkFunctionReferenced(Loc, cast<FunctionDecl>(D)); | ||||
| 20192 | } | ||||
| 20193 | |||||
| 20194 | void Visit(Expr *E) { | ||||
| 20195 | if (llvm::is_contained(StopAt, E)) | ||||
| 20196 | return; | ||||
| 20197 | Inherited::Visit(E); | ||||
| 20198 | } | ||||
| 20199 | |||||
| 20200 | void VisitConstantExpr(ConstantExpr *E) { | ||||
| 20201 | // Don't mark declarations within a ConstantExpression, as this expression | ||||
| 20202 | // will be evaluated and folded to a value. | ||||
| 20203 | } | ||||
| 20204 | |||||
| 20205 | void VisitDeclRefExpr(DeclRefExpr *E) { | ||||
| 20206 | // If we were asked not to visit local variables, don't. | ||||
| 20207 | if (SkipLocalVariables) { | ||||
| 20208 | if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl())) | ||||
| 20209 | if (VD->hasLocalStorage()) | ||||
| 20210 | return; | ||||
| 20211 | } | ||||
| 20212 | |||||
| 20213 | // FIXME: This can trigger the instantiation of the initializer of a | ||||
| 20214 | // variable, which can cause the expression to become value-dependent | ||||
| 20215 | // or error-dependent. Do we need to propagate the new dependence bits? | ||||
| 20216 | S.MarkDeclRefReferenced(E); | ||||
| 20217 | } | ||||
| 20218 | |||||
| 20219 | void VisitMemberExpr(MemberExpr *E) { | ||||
| 20220 | S.MarkMemberReferenced(E); | ||||
| 20221 | Visit(E->getBase()); | ||||
| 20222 | } | ||||
| 20223 | }; | ||||
| 20224 | } // namespace | ||||
| 20225 | |||||
| 20226 | /// Mark any declarations that appear within this expression or any | ||||
| 20227 | /// potentially-evaluated subexpressions as "referenced". | ||||
| 20228 | /// | ||||
| 20229 | /// \param SkipLocalVariables If true, don't mark local variables as | ||||
| 20230 | /// 'referenced'. | ||||
| 20231 | /// \param StopAt Subexpressions that we shouldn't recurse into. | ||||
| 20232 | void Sema::MarkDeclarationsReferencedInExpr(Expr *E, | ||||
| 20233 | bool SkipLocalVariables, | ||||
| 20234 | ArrayRef<const Expr*> StopAt) { | ||||
| 20235 | EvaluatedExprMarker(*this, SkipLocalVariables, StopAt).Visit(E); | ||||
| 20236 | } | ||||
| 20237 | |||||
| 20238 | /// Emit a diagnostic when statements are reachable. | ||||
| 20239 | /// FIXME: check for reachability even in expressions for which we don't build a | ||||
| 20240 | /// CFG (eg, in the initializer of a global or in a constant expression). | ||||
| 20241 | /// For example, | ||||
| 20242 | /// namespace { auto *p = new double[3][false ? (1, 2) : 3]; } | ||||
| 20243 | bool Sema::DiagIfReachable(SourceLocation Loc, ArrayRef<const Stmt *> Stmts, | ||||
| 20244 | const PartialDiagnostic &PD) { | ||||
| 20245 | if (!Stmts.empty() && getCurFunctionOrMethodDecl()) { | ||||
| 20246 | if (!FunctionScopes.empty()) | ||||
| 20247 | FunctionScopes.back()->PossiblyUnreachableDiags.push_back( | ||||
| 20248 | sema::PossiblyUnreachableDiag(PD, Loc, Stmts)); | ||||
| 20249 | return true; | ||||
| 20250 | } | ||||
| 20251 | |||||
| 20252 | // The initializer of a constexpr variable or of the first declaration of a | ||||
| 20253 | // static data member is not syntactically a constant evaluated constant, | ||||
| 20254 | // but nonetheless is always required to be a constant expression, so we | ||||
| 20255 | // can skip diagnosing. | ||||
| 20256 | // FIXME: Using the mangling context here is a hack. | ||||
| 20257 | if (auto *VD = dyn_cast_or_null<VarDecl>( | ||||
| 20258 | ExprEvalContexts.back().ManglingContextDecl)) { | ||||
| 20259 | if (VD->isConstexpr() || | ||||
| 20260 | (VD->isStaticDataMember() && VD->isFirstDecl() && !VD->isInline())) | ||||
| 20261 | return false; | ||||
| 20262 | // FIXME: For any other kind of variable, we should build a CFG for its | ||||
| 20263 | // initializer and check whether the context in question is reachable. | ||||
| 20264 | } | ||||
| 20265 | |||||
| 20266 | Diag(Loc, PD); | ||||
| 20267 | return true; | ||||
| 20268 | } | ||||
| 20269 | |||||
| 20270 | /// Emit a diagnostic that describes an effect on the run-time behavior | ||||
| 20271 | /// of the program being compiled. | ||||
| 20272 | /// | ||||
| 20273 | /// This routine emits the given diagnostic when the code currently being | ||||
| 20274 | /// type-checked is "potentially evaluated", meaning that there is a | ||||
| 20275 | /// possibility that the code will actually be executable. Code in sizeof() | ||||
| 20276 | /// expressions, code used only during overload resolution, etc., are not | ||||
| 20277 | /// potentially evaluated. This routine will suppress such diagnostics or, | ||||
| 20278 | /// in the absolutely nutty case of potentially potentially evaluated | ||||
| 20279 | /// expressions (C++ typeid), queue the diagnostic to potentially emit it | ||||
| 20280 | /// later. | ||||
| 20281 | /// | ||||
| 20282 | /// This routine should be used for all diagnostics that describe the run-time | ||||
| 20283 | /// behavior of a program, such as passing a non-POD value through an ellipsis. | ||||
| 20284 | /// Failure to do so will likely result in spurious diagnostics or failures | ||||
| 20285 | /// during overload resolution or within sizeof/alignof/typeof/typeid. | ||||
| 20286 | bool Sema::DiagRuntimeBehavior(SourceLocation Loc, ArrayRef<const Stmt*> Stmts, | ||||
| 20287 | const PartialDiagnostic &PD) { | ||||
| 20288 | |||||
| 20289 | if (ExprEvalContexts.back().isDiscardedStatementContext()) | ||||
| 20290 | return false; | ||||
| 20291 | |||||
| 20292 | switch (ExprEvalContexts.back().Context) { | ||||
| 20293 | case ExpressionEvaluationContext::Unevaluated: | ||||
| 20294 | case ExpressionEvaluationContext::UnevaluatedList: | ||||
| 20295 | case ExpressionEvaluationContext::UnevaluatedAbstract: | ||||
| 20296 | case ExpressionEvaluationContext::DiscardedStatement: | ||||
| 20297 | // The argument will never be evaluated, so don't complain. | ||||
| 20298 | break; | ||||
| 20299 | |||||
| 20300 | case ExpressionEvaluationContext::ConstantEvaluated: | ||||
| 20301 | case ExpressionEvaluationContext::ImmediateFunctionContext: | ||||
| 20302 | // Relevant diagnostics should be produced by constant evaluation. | ||||
| 20303 | break; | ||||
| 20304 | |||||
| 20305 | case ExpressionEvaluationContext::PotentiallyEvaluated: | ||||
| 20306 | case ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed: | ||||
| 20307 | return DiagIfReachable(Loc, Stmts, PD); | ||||
| 20308 | } | ||||
| 20309 | |||||
| 20310 | return false; | ||||
| 20311 | } | ||||
| 20312 | |||||
| 20313 | bool Sema::DiagRuntimeBehavior(SourceLocation Loc, const Stmt *Statement, | ||||
| 20314 | const PartialDiagnostic &PD) { | ||||
| 20315 | return DiagRuntimeBehavior( | ||||
| 20316 | Loc, Statement ? llvm::ArrayRef(Statement) : std::nullopt, PD); | ||||
| 20317 | } | ||||
| 20318 | |||||
| 20319 | bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc, | ||||
| 20320 | CallExpr *CE, FunctionDecl *FD) { | ||||
| 20321 | if (ReturnType->isVoidType() || !ReturnType->isIncompleteType()) | ||||
| 20322 | return false; | ||||
| 20323 | |||||
| 20324 | // If we're inside a decltype's expression, don't check for a valid return | ||||
| 20325 | // type or construct temporaries until we know whether this is the last call. | ||||
| 20326 | if (ExprEvalContexts.back().ExprContext == | ||||
| 20327 | ExpressionEvaluationContextRecord::EK_Decltype) { | ||||
| 20328 | ExprEvalContexts.back().DelayedDecltypeCalls.push_back(CE); | ||||
| 20329 | return false; | ||||
| 20330 | } | ||||
| 20331 | |||||
| 20332 | class CallReturnIncompleteDiagnoser : public TypeDiagnoser { | ||||
| 20333 | FunctionDecl *FD; | ||||
| 20334 | CallExpr *CE; | ||||
| 20335 | |||||
| 20336 | public: | ||||
| 20337 | CallReturnIncompleteDiagnoser(FunctionDecl *FD, CallExpr *CE) | ||||
| 20338 | : FD(FD), CE(CE) { } | ||||
| 20339 | |||||
| 20340 | void diagnose(Sema &S, SourceLocation Loc, QualType T) override { | ||||
| 20341 | if (!FD) { | ||||
| 20342 | S.Diag(Loc, diag::err_call_incomplete_return) | ||||
| 20343 | << T << CE->getSourceRange(); | ||||
| 20344 | return; | ||||
| 20345 | } | ||||
| 20346 | |||||
| 20347 | S.Diag(Loc, diag::err_call_function_incomplete_return) | ||||
| 20348 | << CE->getSourceRange() << FD << T; | ||||
| 20349 | S.Diag(FD->getLocation(), diag::note_entity_declared_at) | ||||
| 20350 | << FD->getDeclName(); | ||||
| 20351 | } | ||||
| 20352 | } Diagnoser(FD, CE); | ||||
| 20353 | |||||
| 20354 | if (RequireCompleteType(Loc, ReturnType, Diagnoser)) | ||||
| 20355 | return true; | ||||
| 20356 | |||||
| 20357 | return false; | ||||
| 20358 | } | ||||
| 20359 | |||||
| 20360 | // Diagnose the s/=/==/ and s/\|=/!=/ typos. Note that adding parentheses | ||||
| 20361 | // will prevent this condition from triggering, which is what we want. | ||||
| 20362 | void Sema::DiagnoseAssignmentAsCondition(Expr *E) { | ||||
| 20363 | SourceLocation Loc; | ||||
| 20364 | |||||
| 20365 | unsigned diagnostic = diag::warn_condition_is_assignment; | ||||
| 20366 | bool IsOrAssign = false; | ||||
| 20367 | |||||
| 20368 | if (BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) { | ||||
| 20369 | if (Op->getOpcode() != BO_Assign && Op->getOpcode() != BO_OrAssign) | ||||
| 20370 | return; | ||||
| 20371 | |||||
| 20372 | IsOrAssign = Op->getOpcode() == BO_OrAssign; | ||||
| 20373 | |||||
| 20374 | // Greylist some idioms by putting them into a warning subcategory. | ||||
| 20375 | if (ObjCMessageExpr *ME | ||||
| 20376 | = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) { | ||||
| 20377 | Selector Sel = ME->getSelector(); | ||||
| 20378 | |||||
| 20379 | // self = [<foo> init...] | ||||
| 20380 | if (isSelfExpr(Op->getLHS()) && ME->getMethodFamily() == OMF_init) | ||||
| 20381 | diagnostic = diag::warn_condition_is_idiomatic_assignment; | ||||
| 20382 | |||||
| 20383 | // <foo> = [<bar> nextObject] | ||||
| 20384 | else if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "nextObject") | ||||
| 20385 | diagnostic = diag::warn_condition_is_idiomatic_assignment; | ||||
| 20386 | } | ||||
| 20387 | |||||
| 20388 | Loc = Op->getOperatorLoc(); | ||||
| 20389 | } else if (CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) { | ||||
| 20390 | if (Op->getOperator() != OO_Equal && Op->getOperator() != OO_PipeEqual) | ||||
| 20391 | return; | ||||
| 20392 | |||||
| 20393 | IsOrAssign = Op->getOperator() == OO_PipeEqual; | ||||
| 20394 | Loc = Op->getOperatorLoc(); | ||||
| 20395 | } else if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) | ||||
| 20396 | return DiagnoseAssignmentAsCondition(POE->getSyntacticForm()); | ||||
| 20397 | else { | ||||
| 20398 | // Not an assignment. | ||||
| 20399 | return; | ||||
| 20400 | } | ||||
| 20401 | |||||
| 20402 | Diag(Loc, diagnostic) << E->getSourceRange(); | ||||
| 20403 | |||||
| 20404 | SourceLocation Open = E->getBeginLoc(); | ||||
| 20405 | SourceLocation Close = getLocForEndOfToken(E->getSourceRange().getEnd()); | ||||
| 20406 | Diag(Loc, diag::note_condition_assign_silence) | ||||
| 20407 | << FixItHint::CreateInsertion(Open, "(") | ||||
| 20408 | << FixItHint::CreateInsertion(Close, ")"); | ||||
| 20409 | |||||
| 20410 | if (IsOrAssign) | ||||
| 20411 | Diag(Loc, diag::note_condition_or_assign_to_comparison) | ||||
| 20412 | << FixItHint::CreateReplacement(Loc, "!="); | ||||
| 20413 | else | ||||
| 20414 | Diag(Loc, diag::note_condition_assign_to_comparison) | ||||
| 20415 | << FixItHint::CreateReplacement(Loc, "=="); | ||||
| 20416 | } | ||||
| 20417 | |||||
| 20418 | /// Redundant parentheses over an equality comparison can indicate | ||||
| 20419 | /// that the user intended an assignment used as condition. | ||||
| 20420 | void Sema::DiagnoseEqualityWithExtraParens(ParenExpr *ParenE) { | ||||
| 20421 | // Don't warn if the parens came from a macro. | ||||
| 20422 | SourceLocation parenLoc = ParenE->getBeginLoc(); | ||||
| 20423 | if (parenLoc.isInvalid() || parenLoc.isMacroID()) | ||||
| 20424 | return; | ||||
| 20425 | // Don't warn for dependent expressions. | ||||
| 20426 | if (ParenE->isTypeDependent()) | ||||
| 20427 | return; | ||||
| 20428 | |||||
| 20429 | Expr *E = ParenE->IgnoreParens(); | ||||
| 20430 | |||||
| 20431 | if (BinaryOperator *opE = dyn_cast<BinaryOperator>(E)) | ||||
| 20432 | if (opE->getOpcode() == BO_EQ && | ||||
| 20433 | opE->getLHS()->IgnoreParenImpCasts()->isModifiableLvalue(Context) | ||||
| 20434 | == Expr::MLV_Valid) { | ||||
| 20435 | SourceLocation Loc = opE->getOperatorLoc(); | ||||
| 20436 | |||||
| 20437 | Diag(Loc, diag::warn_equality_with_extra_parens) << E->getSourceRange(); | ||||
| 20438 | SourceRange ParenERange = ParenE->getSourceRange(); | ||||
| 20439 | Diag(Loc, diag::note_equality_comparison_silence) | ||||
| 20440 | << FixItHint::CreateRemoval(ParenERange.getBegin()) | ||||
| 20441 | << FixItHint::CreateRemoval(ParenERange.getEnd()); | ||||
| 20442 | Diag(Loc, diag::note_equality_comparison_to_assign) | ||||
| 20443 | << FixItHint::CreateReplacement(Loc, "="); | ||||
| 20444 | } | ||||
| 20445 | } | ||||
| 20446 | |||||
| 20447 | ExprResult Sema::CheckBooleanCondition(SourceLocation Loc, Expr *E, | ||||
| 20448 | bool IsConstexpr) { | ||||
| 20449 | DiagnoseAssignmentAsCondition(E); | ||||
| 20450 | if (ParenExpr *parenE = dyn_cast<ParenExpr>(E)) | ||||
| 20451 | DiagnoseEqualityWithExtraParens(parenE); | ||||
| 20452 | |||||
| 20453 | ExprResult result = CheckPlaceholderExpr(E); | ||||
| 20454 | if (result.isInvalid()) return ExprError(); | ||||
| 20455 | E = result.get(); | ||||
| 20456 | |||||
| 20457 | if (!E->isTypeDependent()) { | ||||
| 20458 | if (getLangOpts().CPlusPlus) | ||||
| 20459 | return CheckCXXBooleanCondition(E, IsConstexpr); // C++ 6.4p4 | ||||
| 20460 | |||||
| 20461 | ExprResult ERes = DefaultFunctionArrayLvalueConversion(E); | ||||
| 20462 | if (ERes.isInvalid()) | ||||
| 20463 | return ExprError(); | ||||
| 20464 | E = ERes.get(); | ||||
| 20465 | |||||
| 20466 | QualType T = E->getType(); | ||||
| 20467 | if (!T->isScalarType()) { // C99 6.8.4.1p1 | ||||
| 20468 | Diag(Loc, diag::err_typecheck_statement_requires_scalar) | ||||
| 20469 | << T << E->getSourceRange(); | ||||
| 20470 | return ExprError(); | ||||
| 20471 | } | ||||
| 20472 | CheckBoolLikeConversion(E, Loc); | ||||
| 20473 | } | ||||
| 20474 | |||||
| 20475 | return E; | ||||
| 20476 | } | ||||
| 20477 | |||||
| 20478 | Sema::ConditionResult Sema::ActOnCondition(Scope *S, SourceLocation Loc, | ||||
| 20479 | Expr *SubExpr, ConditionKind CK, | ||||
| 20480 | bool MissingOK) { | ||||
| 20481 | // MissingOK indicates whether having no condition expression is valid | ||||
| 20482 | // (for loop) or invalid (e.g. while loop). | ||||
| 20483 | if (!SubExpr) | ||||
| 20484 | return MissingOK ? ConditionResult() : ConditionError(); | ||||
| 20485 | |||||
| 20486 | ExprResult Cond; | ||||
| 20487 | switch (CK) { | ||||
| 20488 | case ConditionKind::Boolean: | ||||
| 20489 | Cond = CheckBooleanCondition(Loc, SubExpr); | ||||
| 20490 | break; | ||||
| 20491 | |||||
| 20492 | case ConditionKind::ConstexprIf: | ||||
| 20493 | Cond = CheckBooleanCondition(Loc, SubExpr, true); | ||||
| 20494 | break; | ||||
| 20495 | |||||
| 20496 | case ConditionKind::Switch: | ||||
| 20497 | Cond = CheckSwitchCondition(Loc, SubExpr); | ||||
| 20498 | break; | ||||
| 20499 | } | ||||
| 20500 | if (Cond.isInvalid()) { | ||||
| 20501 | Cond = CreateRecoveryExpr(SubExpr->getBeginLoc(), SubExpr->getEndLoc(), | ||||
| 20502 | {SubExpr}, PreferredConditionType(CK)); | ||||
| 20503 | if (!Cond.get()) | ||||
| 20504 | return ConditionError(); | ||||
| 20505 | } | ||||
| 20506 | // FIXME: FullExprArg doesn't have an invalid bit, so check nullness instead. | ||||
| 20507 | FullExprArg FullExpr = MakeFullExpr(Cond.get(), Loc); | ||||
| 20508 | if (!FullExpr.get()) | ||||
| 20509 | return ConditionError(); | ||||
| 20510 | |||||
| 20511 | return ConditionResult(*this, nullptr, FullExpr, | ||||
| 20512 | CK == ConditionKind::ConstexprIf); | ||||
| 20513 | } | ||||
| 20514 | |||||
| 20515 | namespace { | ||||
| 20516 | /// A visitor for rebuilding a call to an __unknown_any expression | ||||
| 20517 | /// to have an appropriate type. | ||||
| 20518 | struct RebuildUnknownAnyFunction | ||||
| 20519 | : StmtVisitor<RebuildUnknownAnyFunction, ExprResult> { | ||||
| 20520 | |||||
| 20521 | Sema &S; | ||||
| 20522 | |||||
| 20523 | RebuildUnknownAnyFunction(Sema &S) : S(S) {} | ||||
| 20524 | |||||
| 20525 | ExprResult VisitStmt(Stmt *S) { | ||||
| 20526 | llvm_unreachable("unexpected statement!")::llvm::llvm_unreachable_internal("unexpected statement!", "clang/lib/Sema/SemaExpr.cpp" , 20526); | ||||
| 20527 | } | ||||
| 20528 | |||||
| 20529 | ExprResult VisitExpr(Expr *E) { | ||||
| 20530 | S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_call) | ||||
| 20531 | << E->getSourceRange(); | ||||
| 20532 | return ExprError(); | ||||
| 20533 | } | ||||
| 20534 | |||||
| 20535 | /// Rebuild an expression which simply semantically wraps another | ||||
| 20536 | /// expression which it shares the type and value kind of. | ||||
| 20537 | template <class T> ExprResult rebuildSugarExpr(T *E) { | ||||
| 20538 | ExprResult SubResult = Visit(E->getSubExpr()); | ||||
| 20539 | if (SubResult.isInvalid()) return ExprError(); | ||||
| 20540 | |||||
| 20541 | Expr *SubExpr = SubResult.get(); | ||||
| 20542 | E->setSubExpr(SubExpr); | ||||
| 20543 | E->setType(SubExpr->getType()); | ||||
| 20544 | E->setValueKind(SubExpr->getValueKind()); | ||||
| 20545 | assert(E->getObjectKind() == OK_Ordinary)(static_cast <bool> (E->getObjectKind() == OK_Ordinary ) ? void (0) : __assert_fail ("E->getObjectKind() == OK_Ordinary" , "clang/lib/Sema/SemaExpr.cpp", 20545, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 20546 | return E; | ||||
| 20547 | } | ||||
| 20548 | |||||
| 20549 | ExprResult VisitParenExpr(ParenExpr *E) { | ||||
| 20550 | return rebuildSugarExpr(E); | ||||
| 20551 | } | ||||
| 20552 | |||||
| 20553 | ExprResult VisitUnaryExtension(UnaryOperator *E) { | ||||
| 20554 | return rebuildSugarExpr(E); | ||||
| 20555 | } | ||||
| 20556 | |||||
| 20557 | ExprResult VisitUnaryAddrOf(UnaryOperator *E) { | ||||
| 20558 | ExprResult SubResult = Visit(E->getSubExpr()); | ||||
| 20559 | if (SubResult.isInvalid()) return ExprError(); | ||||
| 20560 | |||||
| 20561 | Expr *SubExpr = SubResult.get(); | ||||
| 20562 | E->setSubExpr(SubExpr); | ||||
| 20563 | E->setType(S.Context.getPointerType(SubExpr->getType())); | ||||
| 20564 | assert(E->isPRValue())(static_cast <bool> (E->isPRValue()) ? void (0) : __assert_fail ("E->isPRValue()", "clang/lib/Sema/SemaExpr.cpp", 20564, __extension__ __PRETTY_FUNCTION__)); | ||||
| 20565 | assert(E->getObjectKind() == OK_Ordinary)(static_cast <bool> (E->getObjectKind() == OK_Ordinary ) ? void (0) : __assert_fail ("E->getObjectKind() == OK_Ordinary" , "clang/lib/Sema/SemaExpr.cpp", 20565, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 20566 | return E; | ||||
| 20567 | } | ||||
| 20568 | |||||
| 20569 | ExprResult resolveDecl(Expr *E, ValueDecl *VD) { | ||||
| 20570 | if (!isa<FunctionDecl>(VD)) return VisitExpr(E); | ||||
| 20571 | |||||
| 20572 | E->setType(VD->getType()); | ||||
| 20573 | |||||
| 20574 | assert(E->isPRValue())(static_cast <bool> (E->isPRValue()) ? void (0) : __assert_fail ("E->isPRValue()", "clang/lib/Sema/SemaExpr.cpp", 20574, __extension__ __PRETTY_FUNCTION__)); | ||||
| 20575 | if (S.getLangOpts().CPlusPlus && | ||||
| 20576 | !(isa<CXXMethodDecl>(VD) && | ||||
| 20577 | cast<CXXMethodDecl>(VD)->isInstance())) | ||||
| 20578 | E->setValueKind(VK_LValue); | ||||
| 20579 | |||||
| 20580 | return E; | ||||
| 20581 | } | ||||
| 20582 | |||||
| 20583 | ExprResult VisitMemberExpr(MemberExpr *E) { | ||||
| 20584 | return resolveDecl(E, E->getMemberDecl()); | ||||
| 20585 | } | ||||
| 20586 | |||||
| 20587 | ExprResult VisitDeclRefExpr(DeclRefExpr *E) { | ||||
| 20588 | return resolveDecl(E, E->getDecl()); | ||||
| 20589 | } | ||||
| 20590 | }; | ||||
| 20591 | } | ||||
| 20592 | |||||
| 20593 | /// Given a function expression of unknown-any type, try to rebuild it | ||||
| 20594 | /// to have a function type. | ||||
| 20595 | static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *FunctionExpr) { | ||||
| 20596 | ExprResult Result = RebuildUnknownAnyFunction(S).Visit(FunctionExpr); | ||||
| 20597 | if (Result.isInvalid()) return ExprError(); | ||||
| 20598 | return S.DefaultFunctionArrayConversion(Result.get()); | ||||
| 20599 | } | ||||
| 20600 | |||||
| 20601 | namespace { | ||||
| 20602 | /// A visitor for rebuilding an expression of type __unknown_anytype | ||||
| 20603 | /// into one which resolves the type directly on the referring | ||||
| 20604 | /// expression. Strict preservation of the original source | ||||
| 20605 | /// structure is not a goal. | ||||
| 20606 | struct RebuildUnknownAnyExpr | ||||
| 20607 | : StmtVisitor<RebuildUnknownAnyExpr, ExprResult> { | ||||
| 20608 | |||||
| 20609 | Sema &S; | ||||
| 20610 | |||||
| 20611 | /// The current destination type. | ||||
| 20612 | QualType DestType; | ||||
| 20613 | |||||
| 20614 | RebuildUnknownAnyExpr(Sema &S, QualType CastType) | ||||
| 20615 | : S(S), DestType(CastType) {} | ||||
| 20616 | |||||
| 20617 | ExprResult VisitStmt(Stmt *S) { | ||||
| 20618 | llvm_unreachable("unexpected statement!")::llvm::llvm_unreachable_internal("unexpected statement!", "clang/lib/Sema/SemaExpr.cpp" , 20618); | ||||
| 20619 | } | ||||
| 20620 | |||||
| 20621 | ExprResult VisitExpr(Expr *E) { | ||||
| 20622 | S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr) | ||||
| 20623 | << E->getSourceRange(); | ||||
| 20624 | return ExprError(); | ||||
| 20625 | } | ||||
| 20626 | |||||
| 20627 | ExprResult VisitCallExpr(CallExpr *E); | ||||
| 20628 | ExprResult VisitObjCMessageExpr(ObjCMessageExpr *E); | ||||
| 20629 | |||||
| 20630 | /// Rebuild an expression which simply semantically wraps another | ||||
| 20631 | /// expression which it shares the type and value kind of. | ||||
| 20632 | template <class T> ExprResult rebuildSugarExpr(T *E) { | ||||
| 20633 | ExprResult SubResult = Visit(E->getSubExpr()); | ||||
| 20634 | if (SubResult.isInvalid()) return ExprError(); | ||||
| 20635 | Expr *SubExpr = SubResult.get(); | ||||
| 20636 | E->setSubExpr(SubExpr); | ||||
| 20637 | E->setType(SubExpr->getType()); | ||||
| 20638 | E->setValueKind(SubExpr->getValueKind()); | ||||
| 20639 | assert(E->getObjectKind() == OK_Ordinary)(static_cast <bool> (E->getObjectKind() == OK_Ordinary ) ? void (0) : __assert_fail ("E->getObjectKind() == OK_Ordinary" , "clang/lib/Sema/SemaExpr.cpp", 20639, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 20640 | return E; | ||||
| 20641 | } | ||||
| 20642 | |||||
| 20643 | ExprResult VisitParenExpr(ParenExpr *E) { | ||||
| 20644 | return rebuildSugarExpr(E); | ||||
| 20645 | } | ||||
| 20646 | |||||
| 20647 | ExprResult VisitUnaryExtension(UnaryOperator *E) { | ||||
| 20648 | return rebuildSugarExpr(E); | ||||
| 20649 | } | ||||
| 20650 | |||||
| 20651 | ExprResult VisitUnaryAddrOf(UnaryOperator *E) { | ||||
| 20652 | const PointerType *Ptr = DestType->getAs<PointerType>(); | ||||
| 20653 | if (!Ptr) { | ||||
| 20654 | S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof) | ||||
| 20655 | << E->getSourceRange(); | ||||
| 20656 | return ExprError(); | ||||
| 20657 | } | ||||
| 20658 | |||||
| 20659 | if (isa<CallExpr>(E->getSubExpr())) { | ||||
| 20660 | S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof_call) | ||||
| 20661 | << E->getSourceRange(); | ||||
| 20662 | return ExprError(); | ||||
| 20663 | } | ||||
| 20664 | |||||
| 20665 | assert(E->isPRValue())(static_cast <bool> (E->isPRValue()) ? void (0) : __assert_fail ("E->isPRValue()", "clang/lib/Sema/SemaExpr.cpp", 20665, __extension__ __PRETTY_FUNCTION__)); | ||||
| 20666 | assert(E->getObjectKind() == OK_Ordinary)(static_cast <bool> (E->getObjectKind() == OK_Ordinary ) ? void (0) : __assert_fail ("E->getObjectKind() == OK_Ordinary" , "clang/lib/Sema/SemaExpr.cpp", 20666, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 20667 | E->setType(DestType); | ||||
| 20668 | |||||
| 20669 | // Build the sub-expression as if it were an object of the pointee type. | ||||
| 20670 | DestType = Ptr->getPointeeType(); | ||||
| 20671 | ExprResult SubResult = Visit(E->getSubExpr()); | ||||
| 20672 | if (SubResult.isInvalid()) return ExprError(); | ||||
| 20673 | E->setSubExpr(SubResult.get()); | ||||
| 20674 | return E; | ||||
| 20675 | } | ||||
| 20676 | |||||
| 20677 | ExprResult VisitImplicitCastExpr(ImplicitCastExpr *E); | ||||
| 20678 | |||||
| 20679 | ExprResult resolveDecl(Expr *E, ValueDecl *VD); | ||||
| 20680 | |||||
| 20681 | ExprResult VisitMemberExpr(MemberExpr *E) { | ||||
| 20682 | return resolveDecl(E, E->getMemberDecl()); | ||||
| 20683 | } | ||||
| 20684 | |||||
| 20685 | ExprResult VisitDeclRefExpr(DeclRefExpr *E) { | ||||
| 20686 | return resolveDecl(E, E->getDecl()); | ||||
| 20687 | } | ||||
| 20688 | }; | ||||
| 20689 | } | ||||
| 20690 | |||||
| 20691 | /// Rebuilds a call expression which yielded __unknown_anytype. | ||||
| 20692 | ExprResult RebuildUnknownAnyExpr::VisitCallExpr(CallExpr *E) { | ||||
| 20693 | Expr *CalleeExpr = E->getCallee(); | ||||
| 20694 | |||||
| 20695 | enum FnKind { | ||||
| 20696 | FK_MemberFunction, | ||||
| 20697 | FK_FunctionPointer, | ||||
| 20698 | FK_BlockPointer | ||||
| 20699 | }; | ||||
| 20700 | |||||
| 20701 | FnKind Kind; | ||||
| 20702 | QualType CalleeType = CalleeExpr->getType(); | ||||
| 20703 | if (CalleeType == S.Context.BoundMemberTy) { | ||||
| 20704 | assert(isa<CXXMemberCallExpr>(E) || isa<CXXOperatorCallExpr>(E))(static_cast <bool> (isa<CXXMemberCallExpr>(E) || isa<CXXOperatorCallExpr>(E)) ? void (0) : __assert_fail ("isa<CXXMemberCallExpr>(E) || isa<CXXOperatorCallExpr>(E)" , "clang/lib/Sema/SemaExpr.cpp", 20704, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 20705 | Kind = FK_MemberFunction; | ||||
| 20706 | CalleeType = Expr::findBoundMemberType(CalleeExpr); | ||||
| 20707 | } else if (const PointerType *Ptr = CalleeType->getAs<PointerType>()) { | ||||
| 20708 | CalleeType = Ptr->getPointeeType(); | ||||
| 20709 | Kind = FK_FunctionPointer; | ||||
| 20710 | } else { | ||||
| 20711 | CalleeType = CalleeType->castAs<BlockPointerType>()->getPointeeType(); | ||||
| 20712 | Kind = FK_BlockPointer; | ||||
| 20713 | } | ||||
| 20714 | const FunctionType *FnType = CalleeType->castAs<FunctionType>(); | ||||
| 20715 | |||||
| 20716 | // Verify that this is a legal result type of a function. | ||||
| 20717 | if (DestType->isArrayType() || DestType->isFunctionType()) { | ||||
| 20718 | unsigned diagID = diag::err_func_returning_array_function; | ||||
| 20719 | if (Kind == FK_BlockPointer) | ||||
| 20720 | diagID = diag::err_block_returning_array_function; | ||||
| 20721 | |||||
| 20722 | S.Diag(E->getExprLoc(), diagID) | ||||
| 20723 | << DestType->isFunctionType() << DestType; | ||||
| 20724 | return ExprError(); | ||||
| 20725 | } | ||||
| 20726 | |||||
| 20727 | // Otherwise, go ahead and set DestType as the call's result. | ||||
| 20728 | E->setType(DestType.getNonLValueExprType(S.Context)); | ||||
| 20729 | E->setValueKind(Expr::getValueKindForType(DestType)); | ||||
| 20730 | assert(E->getObjectKind() == OK_Ordinary)(static_cast <bool> (E->getObjectKind() == OK_Ordinary ) ? void (0) : __assert_fail ("E->getObjectKind() == OK_Ordinary" , "clang/lib/Sema/SemaExpr.cpp", 20730, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 20731 | |||||
| 20732 | // Rebuild the function type, replacing the result type with DestType. | ||||
| 20733 | const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FnType); | ||||
| 20734 | if (Proto) { | ||||
| 20735 | // __unknown_anytype(...) is a special case used by the debugger when | ||||
| 20736 | // it has no idea what a function's signature is. | ||||
| 20737 | // | ||||
| 20738 | // We want to build this call essentially under the K&R | ||||
| 20739 | // unprototyped rules, but making a FunctionNoProtoType in C++ | ||||
| 20740 | // would foul up all sorts of assumptions. However, we cannot | ||||
| 20741 | // simply pass all arguments as variadic arguments, nor can we | ||||
| 20742 | // portably just call the function under a non-variadic type; see | ||||
| 20743 | // the comment on IR-gen's TargetInfo::isNoProtoCallVariadic. | ||||
| 20744 | // However, it turns out that in practice it is generally safe to | ||||
| 20745 | // call a function declared as "A foo(B,C,D);" under the prototype | ||||
| 20746 | // "A foo(B,C,D,...);". The only known exception is with the | ||||
| 20747 | // Windows ABI, where any variadic function is implicitly cdecl | ||||
| 20748 | // regardless of its normal CC. Therefore we change the parameter | ||||
| 20749 | // types to match the types of the arguments. | ||||
| 20750 | // | ||||
| 20751 | // This is a hack, but it is far superior to moving the | ||||
| 20752 | // corresponding target-specific code from IR-gen to Sema/AST. | ||||
| 20753 | |||||
| 20754 | ArrayRef<QualType> ParamTypes = Proto->getParamTypes(); | ||||
| 20755 | SmallVector<QualType, 8> ArgTypes; | ||||
| 20756 | if (ParamTypes.empty() && Proto->isVariadic()) { // the special case | ||||
| 20757 | ArgTypes.reserve(E->getNumArgs()); | ||||
| 20758 | for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) { | ||||
| 20759 | ArgTypes.push_back(S.Context.getReferenceQualifiedType(E->getArg(i))); | ||||
| 20760 | } | ||||
| 20761 | ParamTypes = ArgTypes; | ||||
| 20762 | } | ||||
| 20763 | DestType = S.Context.getFunctionType(DestType, ParamTypes, | ||||
| 20764 | Proto->getExtProtoInfo()); | ||||
| 20765 | } else { | ||||
| 20766 | DestType = S.Context.getFunctionNoProtoType(DestType, | ||||
| 20767 | FnType->getExtInfo()); | ||||
| 20768 | } | ||||
| 20769 | |||||
| 20770 | // Rebuild the appropriate pointer-to-function type. | ||||
| 20771 | switch (Kind) { | ||||
| 20772 | case FK_MemberFunction: | ||||
| 20773 | // Nothing to do. | ||||
| 20774 | break; | ||||
| 20775 | |||||
| 20776 | case FK_FunctionPointer: | ||||
| 20777 | DestType = S.Context.getPointerType(DestType); | ||||
| 20778 | break; | ||||
| 20779 | |||||
| 20780 | case FK_BlockPointer: | ||||
| 20781 | DestType = S.Context.getBlockPointerType(DestType); | ||||
| 20782 | break; | ||||
| 20783 | } | ||||
| 20784 | |||||
| 20785 | // Finally, we can recurse. | ||||
| 20786 | ExprResult CalleeResult = Visit(CalleeExpr); | ||||
| 20787 | if (!CalleeResult.isUsable()) return ExprError(); | ||||
| 20788 | E->setCallee(CalleeResult.get()); | ||||
| 20789 | |||||
| 20790 | // Bind a temporary if necessary. | ||||
| 20791 | return S.MaybeBindToTemporary(E); | ||||
| 20792 | } | ||||
| 20793 | |||||
| 20794 | ExprResult RebuildUnknownAnyExpr::VisitObjCMessageExpr(ObjCMessageExpr *E) { | ||||
| 20795 | // Verify that this is a legal result type of a call. | ||||
| 20796 | if (DestType->isArrayType() || DestType->isFunctionType()) { | ||||
| 20797 | S.Diag(E->getExprLoc(), diag::err_func_returning_array_function) | ||||
| 20798 | << DestType->isFunctionType() << DestType; | ||||
| 20799 | return ExprError(); | ||||
| 20800 | } | ||||
| 20801 | |||||
| 20802 | // Rewrite the method result type if available. | ||||
| 20803 | if (ObjCMethodDecl *Method = E->getMethodDecl()) { | ||||
| 20804 | assert(Method->getReturnType() == S.Context.UnknownAnyTy)(static_cast <bool> (Method->getReturnType() == S.Context .UnknownAnyTy) ? void (0) : __assert_fail ("Method->getReturnType() == S.Context.UnknownAnyTy" , "clang/lib/Sema/SemaExpr.cpp", 20804, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 20805 | Method->setReturnType(DestType); | ||||
| 20806 | } | ||||
| 20807 | |||||
| 20808 | // Change the type of the message. | ||||
| 20809 | E->setType(DestType.getNonReferenceType()); | ||||
| 20810 | E->setValueKind(Expr::getValueKindForType(DestType)); | ||||
| 20811 | |||||
| 20812 | return S.MaybeBindToTemporary(E); | ||||
| 20813 | } | ||||
| 20814 | |||||
| 20815 | ExprResult RebuildUnknownAnyExpr::VisitImplicitCastExpr(ImplicitCastExpr *E) { | ||||
| 20816 | // The only case we should ever see here is a function-to-pointer decay. | ||||
| 20817 | if (E->getCastKind() == CK_FunctionToPointerDecay) { | ||||
| 20818 | assert(E->isPRValue())(static_cast <bool> (E->isPRValue()) ? void (0) : __assert_fail ("E->isPRValue()", "clang/lib/Sema/SemaExpr.cpp", 20818, __extension__ __PRETTY_FUNCTION__)); | ||||
| 20819 | assert(E->getObjectKind() == OK_Ordinary)(static_cast <bool> (E->getObjectKind() == OK_Ordinary ) ? void (0) : __assert_fail ("E->getObjectKind() == OK_Ordinary" , "clang/lib/Sema/SemaExpr.cpp", 20819, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 20820 | |||||
| 20821 | E->setType(DestType); | ||||
| 20822 | |||||
| 20823 | // Rebuild the sub-expression as the pointee (function) type. | ||||
| 20824 | DestType = DestType->castAs<PointerType>()->getPointeeType(); | ||||
| 20825 | |||||
| 20826 | ExprResult Result = Visit(E->getSubExpr()); | ||||
| 20827 | if (!Result.isUsable()) return ExprError(); | ||||
| 20828 | |||||
| 20829 | E->setSubExpr(Result.get()); | ||||
| 20830 | return E; | ||||
| 20831 | } else if (E->getCastKind() == CK_LValueToRValue) { | ||||
| 20832 | assert(E->isPRValue())(static_cast <bool> (E->isPRValue()) ? void (0) : __assert_fail ("E->isPRValue()", "clang/lib/Sema/SemaExpr.cpp", 20832, __extension__ __PRETTY_FUNCTION__)); | ||||
| 20833 | assert(E->getObjectKind() == OK_Ordinary)(static_cast <bool> (E->getObjectKind() == OK_Ordinary ) ? void (0) : __assert_fail ("E->getObjectKind() == OK_Ordinary" , "clang/lib/Sema/SemaExpr.cpp", 20833, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 20834 | |||||
| 20835 | assert(isa<BlockPointerType>(E->getType()))(static_cast <bool> (isa<BlockPointerType>(E-> getType())) ? void (0) : __assert_fail ("isa<BlockPointerType>(E->getType())" , "clang/lib/Sema/SemaExpr.cpp", 20835, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 20836 | |||||
| 20837 | E->setType(DestType); | ||||
| 20838 | |||||
| 20839 | // The sub-expression has to be a lvalue reference, so rebuild it as such. | ||||
| 20840 | DestType = S.Context.getLValueReferenceType(DestType); | ||||
| 20841 | |||||
| 20842 | ExprResult Result = Visit(E->getSubExpr()); | ||||
| 20843 | if (!Result.isUsable()) return ExprError(); | ||||
| 20844 | |||||
| 20845 | E->setSubExpr(Result.get()); | ||||
| 20846 | return E; | ||||
| 20847 | } else { | ||||
| 20848 | llvm_unreachable("Unhandled cast type!")::llvm::llvm_unreachable_internal("Unhandled cast type!", "clang/lib/Sema/SemaExpr.cpp" , 20848); | ||||
| 20849 | } | ||||
| 20850 | } | ||||
| 20851 | |||||
| 20852 | ExprResult RebuildUnknownAnyExpr::resolveDecl(Expr *E, ValueDecl *VD) { | ||||
| 20853 | ExprValueKind ValueKind = VK_LValue; | ||||
| 20854 | QualType Type = DestType; | ||||
| 20855 | |||||
| 20856 | // We know how to make this work for certain kinds of decls: | ||||
| 20857 | |||||
| 20858 | // - functions | ||||
| 20859 | if (FunctionDecl *FD = dyn_cast<FunctionDecl>(VD)) { | ||||
| 20860 | if (const PointerType *Ptr = Type->getAs<PointerType>()) { | ||||
| 20861 | DestType = Ptr->getPointeeType(); | ||||
| 20862 | ExprResult Result = resolveDecl(E, VD); | ||||
| 20863 | if (Result.isInvalid()) return ExprError(); | ||||
| 20864 | return S.ImpCastExprToType(Result.get(), Type, CK_FunctionToPointerDecay, | ||||
| 20865 | VK_PRValue); | ||||
| 20866 | } | ||||
| 20867 | |||||
| 20868 | if (!Type->isFunctionType()) { | ||||
| 20869 | S.Diag(E->getExprLoc(), diag::err_unknown_any_function) | ||||
| 20870 | << VD << E->getSourceRange(); | ||||
| 20871 | return ExprError(); | ||||
| 20872 | } | ||||
| 20873 | if (const FunctionProtoType *FT = Type->getAs<FunctionProtoType>()) { | ||||
| 20874 | // We must match the FunctionDecl's type to the hack introduced in | ||||
| 20875 | // RebuildUnknownAnyExpr::VisitCallExpr to vararg functions of unknown | ||||
| 20876 | // type. See the lengthy commentary in that routine. | ||||
| 20877 | QualType FDT = FD->getType(); | ||||
| 20878 | const FunctionType *FnType = FDT->castAs<FunctionType>(); | ||||
| 20879 | const FunctionProtoType *Proto = dyn_cast_or_null<FunctionProtoType>(FnType); | ||||
| 20880 | DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E); | ||||
| 20881 | if (DRE && Proto && Proto->getParamTypes().empty() && Proto->isVariadic()) { | ||||
| 20882 | SourceLocation Loc = FD->getLocation(); | ||||
| 20883 | FunctionDecl *NewFD = FunctionDecl::Create( | ||||
| 20884 | S.Context, FD->getDeclContext(), Loc, Loc, | ||||
| 20885 | FD->getNameInfo().getName(), DestType, FD->getTypeSourceInfo(), | ||||
| 20886 | SC_None, S.getCurFPFeatures().isFPConstrained(), | ||||
| 20887 | false /*isInlineSpecified*/, FD->hasPrototype(), | ||||
| 20888 | /*ConstexprKind*/ ConstexprSpecKind::Unspecified); | ||||
| 20889 | |||||
| 20890 | if (FD->getQualifier()) | ||||
| 20891 | NewFD->setQualifierInfo(FD->getQualifierLoc()); | ||||
| 20892 | |||||
| 20893 | SmallVector<ParmVarDecl*, 16> Params; | ||||
| 20894 | for (const auto &AI : FT->param_types()) { | ||||
| 20895 | ParmVarDecl *Param = | ||||
| 20896 | S.BuildParmVarDeclForTypedef(FD, Loc, AI); | ||||
| 20897 | Param->setScopeInfo(0, Params.size()); | ||||
| 20898 | Params.push_back(Param); | ||||
| 20899 | } | ||||
| 20900 | NewFD->setParams(Params); | ||||
| 20901 | DRE->setDecl(NewFD); | ||||
| 20902 | VD = DRE->getDecl(); | ||||
| 20903 | } | ||||
| 20904 | } | ||||
| 20905 | |||||
| 20906 | if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) | ||||
| 20907 | if (MD->isInstance()) { | ||||
| 20908 | ValueKind = VK_PRValue; | ||||
| 20909 | Type = S.Context.BoundMemberTy; | ||||
| 20910 | } | ||||
| 20911 | |||||
| 20912 | // Function references aren't l-values in C. | ||||
| 20913 | if (!S.getLangOpts().CPlusPlus) | ||||
| 20914 | ValueKind = VK_PRValue; | ||||
| 20915 | |||||
| 20916 | // - variables | ||||
| 20917 | } else if (isa<VarDecl>(VD)) { | ||||
| 20918 | if (const ReferenceType *RefTy = Type->getAs<ReferenceType>()) { | ||||
| 20919 | Type = RefTy->getPointeeType(); | ||||
| 20920 | } else if (Type->isFunctionType()) { | ||||
| 20921 | S.Diag(E->getExprLoc(), diag::err_unknown_any_var_function_type) | ||||
| 20922 | << VD << E->getSourceRange(); | ||||
| 20923 | return ExprError(); | ||||
| 20924 | } | ||||
| 20925 | |||||
| 20926 | // - nothing else | ||||
| 20927 | } else { | ||||
| 20928 | S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_decl) | ||||
| 20929 | << VD << E->getSourceRange(); | ||||
| 20930 | return ExprError(); | ||||
| 20931 | } | ||||
| 20932 | |||||
| 20933 | // Modifying the declaration like this is friendly to IR-gen but | ||||
| 20934 | // also really dangerous. | ||||
| 20935 | VD->setType(DestType); | ||||
| 20936 | E->setType(Type); | ||||
| 20937 | E->setValueKind(ValueKind); | ||||
| 20938 | return E; | ||||
| 20939 | } | ||||
| 20940 | |||||
| 20941 | /// Check a cast of an unknown-any type. We intentionally only | ||||
| 20942 | /// trigger this for C-style casts. | ||||
| 20943 | ExprResult Sema::checkUnknownAnyCast(SourceRange TypeRange, QualType CastType, | ||||
| 20944 | Expr *CastExpr, CastKind &CastKind, | ||||
| 20945 | ExprValueKind &VK, CXXCastPath &Path) { | ||||
| 20946 | // The type we're casting to must be either void or complete. | ||||
| 20947 | if (!CastType->isVoidType() && | ||||
| 20948 | RequireCompleteType(TypeRange.getBegin(), CastType, | ||||
| 20949 | diag::err_typecheck_cast_to_incomplete)) | ||||
| 20950 | return ExprError(); | ||||
| 20951 | |||||
| 20952 | // Rewrite the casted expression from scratch. | ||||
| 20953 | ExprResult result = RebuildUnknownAnyExpr(*this, CastType).Visit(CastExpr); | ||||
| 20954 | if (!result.isUsable()) return ExprError(); | ||||
| 20955 | |||||
| 20956 | CastExpr = result.get(); | ||||
| 20957 | VK = CastExpr->getValueKind(); | ||||
| 20958 | CastKind = CK_NoOp; | ||||
| 20959 | |||||
| 20960 | return CastExpr; | ||||
| 20961 | } | ||||
| 20962 | |||||
| 20963 | ExprResult Sema::forceUnknownAnyToType(Expr *E, QualType ToType) { | ||||
| 20964 | return RebuildUnknownAnyExpr(*this, ToType).Visit(E); | ||||
| 20965 | } | ||||
| 20966 | |||||
| 20967 | ExprResult Sema::checkUnknownAnyArg(SourceLocation callLoc, | ||||
| 20968 | Expr *arg, QualType ¶mType) { | ||||
| 20969 | // If the syntactic form of the argument is not an explicit cast of | ||||
| 20970 | // any sort, just do default argument promotion. | ||||
| 20971 | ExplicitCastExpr *castArg = dyn_cast<ExplicitCastExpr>(arg->IgnoreParens()); | ||||
| 20972 | if (!castArg) { | ||||
| 20973 | ExprResult result = DefaultArgumentPromotion(arg); | ||||
| 20974 | if (result.isInvalid()) return ExprError(); | ||||
| 20975 | paramType = result.get()->getType(); | ||||
| 20976 | return result; | ||||
| 20977 | } | ||||
| 20978 | |||||
| 20979 | // Otherwise, use the type that was written in the explicit cast. | ||||
| 20980 | assert(!arg->hasPlaceholderType())(static_cast <bool> (!arg->hasPlaceholderType()) ? void (0) : __assert_fail ("!arg->hasPlaceholderType()", "clang/lib/Sema/SemaExpr.cpp" , 20980, __extension__ __PRETTY_FUNCTION__)); | ||||
| 20981 | paramType = castArg->getTypeAsWritten(); | ||||
| 20982 | |||||
| 20983 | // Copy-initialize a parameter of that type. | ||||
| 20984 | InitializedEntity entity = | ||||
| 20985 | InitializedEntity::InitializeParameter(Context, paramType, | ||||
| 20986 | /*consumed*/ false); | ||||
| 20987 | return PerformCopyInitialization(entity, callLoc, arg); | ||||
| 20988 | } | ||||
| 20989 | |||||
| 20990 | static ExprResult diagnoseUnknownAnyExpr(Sema &S, Expr *E) { | ||||
| 20991 | Expr *orig = E; | ||||
| 20992 | unsigned diagID = diag::err_uncasted_use_of_unknown_any; | ||||
| 20993 | while (true) { | ||||
| 20994 | E = E->IgnoreParenImpCasts(); | ||||
| 20995 | if (CallExpr *call = dyn_cast<CallExpr>(E)) { | ||||
| 20996 | E = call->getCallee(); | ||||
| 20997 | diagID = diag::err_uncasted_call_of_unknown_any; | ||||
| 20998 | } else { | ||||
| 20999 | break; | ||||
| 21000 | } | ||||
| 21001 | } | ||||
| 21002 | |||||
| 21003 | SourceLocation loc; | ||||
| 21004 | NamedDecl *d; | ||||
| 21005 | if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(E)) { | ||||
| 21006 | loc = ref->getLocation(); | ||||
| 21007 | d = ref->getDecl(); | ||||
| 21008 | } else if (MemberExpr *mem = dyn_cast<MemberExpr>(E)) { | ||||
| 21009 | loc = mem->getMemberLoc(); | ||||
| 21010 | d = mem->getMemberDecl(); | ||||
| 21011 | } else if (ObjCMessageExpr *msg = dyn_cast<ObjCMessageExpr>(E)) { | ||||
| 21012 | diagID = diag::err_uncasted_call_of_unknown_any; | ||||
| 21013 | loc = msg->getSelectorStartLoc(); | ||||
| 21014 | d = msg->getMethodDecl(); | ||||
| 21015 | if (!d) { | ||||
| 21016 | S.Diag(loc, diag::err_uncasted_send_to_unknown_any_method) | ||||
| 21017 | << static_cast<unsigned>(msg->isClassMessage()) << msg->getSelector() | ||||
| 21018 | << orig->getSourceRange(); | ||||
| 21019 | return ExprError(); | ||||
| 21020 | } | ||||
| 21021 | } else { | ||||
| 21022 | S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr) | ||||
| 21023 | << E->getSourceRange(); | ||||
| 21024 | return ExprError(); | ||||
| 21025 | } | ||||
| 21026 | |||||
| 21027 | S.Diag(loc, diagID) << d << orig->getSourceRange(); | ||||
| 21028 | |||||
| 21029 | // Never recoverable. | ||||
| 21030 | return ExprError(); | ||||
| 21031 | } | ||||
| 21032 | |||||
| 21033 | /// Check for operands with placeholder types and complain if found. | ||||
| 21034 | /// Returns ExprError() if there was an error and no recovery was possible. | ||||
| 21035 | ExprResult Sema::CheckPlaceholderExpr(Expr *E) { | ||||
| 21036 | if (!Context.isDependenceAllowed()) { | ||||
| 21037 | // C cannot handle TypoExpr nodes on either side of a binop because it | ||||
| 21038 | // doesn't handle dependent types properly, so make sure any TypoExprs have | ||||
| 21039 | // been dealt with before checking the operands. | ||||
| 21040 | ExprResult Result = CorrectDelayedTyposInExpr(E); | ||||
| 21041 | if (!Result.isUsable()) return ExprError(); | ||||
| 21042 | E = Result.get(); | ||||
| 21043 | } | ||||
| 21044 | |||||
| 21045 | const BuiltinType *placeholderType = E->getType()->getAsPlaceholderType(); | ||||
| 21046 | if (!placeholderType) return E; | ||||
| 21047 | |||||
| 21048 | switch (placeholderType->getKind()) { | ||||
| 21049 | |||||
| 21050 | // Overloaded expressions. | ||||
| 21051 | case BuiltinType::Overload: { | ||||
| 21052 | // Try to resolve a single function template specialization. | ||||
| 21053 | // This is obligatory. | ||||
| 21054 | ExprResult Result = E; | ||||
| 21055 | if (ResolveAndFixSingleFunctionTemplateSpecialization(Result, false)) | ||||
| 21056 | return Result; | ||||
| 21057 | |||||
| 21058 | // No guarantees that ResolveAndFixSingleFunctionTemplateSpecialization | ||||
| 21059 | // leaves Result unchanged on failure. | ||||
| 21060 | Result = E; | ||||
| 21061 | if (resolveAndFixAddressOfSingleOverloadCandidate(Result)) | ||||
| 21062 | return Result; | ||||
| 21063 | |||||
| 21064 | // If that failed, try to recover with a call. | ||||
| 21065 | tryToRecoverWithCall(Result, PDiag(diag::err_ovl_unresolvable), | ||||
| 21066 | /*complain*/ true); | ||||
| 21067 | return Result; | ||||
| 21068 | } | ||||
| 21069 | |||||
| 21070 | // Bound member functions. | ||||
| 21071 | case BuiltinType::BoundMember: { | ||||
| 21072 | ExprResult result = E; | ||||
| 21073 | const Expr *BME = E->IgnoreParens(); | ||||
| 21074 | PartialDiagnostic PD = PDiag(diag::err_bound_member_function); | ||||
| 21075 | // Try to give a nicer diagnostic if it is a bound member that we recognize. | ||||
| 21076 | if (isa<CXXPseudoDestructorExpr>(BME)) { | ||||
| 21077 | PD = PDiag(diag::err_dtor_expr_without_call) << /*pseudo-destructor*/ 1; | ||||
| 21078 | } else if (const auto *ME = dyn_cast<MemberExpr>(BME)) { | ||||
| 21079 | if (ME->getMemberNameInfo().getName().getNameKind() == | ||||
| 21080 | DeclarationName::CXXDestructorName) | ||||
| 21081 | PD = PDiag(diag::err_dtor_expr_without_call) << /*destructor*/ 0; | ||||
| 21082 | } | ||||
| 21083 | tryToRecoverWithCall(result, PD, | ||||
| 21084 | /*complain*/ true); | ||||
| 21085 | return result; | ||||
| 21086 | } | ||||
| 21087 | |||||
| 21088 | // ARC unbridged casts. | ||||
| 21089 | case BuiltinType::ARCUnbridgedCast: { | ||||
| 21090 | Expr *realCast = stripARCUnbridgedCast(E); | ||||
| 21091 | diagnoseARCUnbridgedCast(realCast); | ||||
| 21092 | return realCast; | ||||
| 21093 | } | ||||
| 21094 | |||||
| 21095 | // Expressions of unknown type. | ||||
| 21096 | case BuiltinType::UnknownAny: | ||||
| 21097 | return diagnoseUnknownAnyExpr(*this, E); | ||||
| 21098 | |||||
| 21099 | // Pseudo-objects. | ||||
| 21100 | case BuiltinType::PseudoObject: | ||||
| 21101 | return checkPseudoObjectRValue(E); | ||||
| 21102 | |||||
| 21103 | case BuiltinType::BuiltinFn: { | ||||
| 21104 | // Accept __noop without parens by implicitly converting it to a call expr. | ||||
| 21105 | auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()); | ||||
| 21106 | if (DRE) { | ||||
| 21107 | auto *FD = cast<FunctionDecl>(DRE->getDecl()); | ||||
| 21108 | unsigned BuiltinID = FD->getBuiltinID(); | ||||
| 21109 | if (BuiltinID == Builtin::BI__noop) { | ||||
| 21110 | E = ImpCastExprToType(E, Context.getPointerType(FD->getType()), | ||||
| 21111 | CK_BuiltinFnToFnPtr) | ||||
| 21112 | .get(); | ||||
| 21113 | return CallExpr::Create(Context, E, /*Args=*/{}, Context.IntTy, | ||||
| 21114 | VK_PRValue, SourceLocation(), | ||||
| 21115 | FPOptionsOverride()); | ||||
| 21116 | } | ||||
| 21117 | |||||
| 21118 | if (Context.BuiltinInfo.isInStdNamespace(BuiltinID)) { | ||||
| 21119 | // Any use of these other than a direct call is ill-formed as of C++20, | ||||
| 21120 | // because they are not addressable functions. In earlier language | ||||
| 21121 | // modes, warn and force an instantiation of the real body. | ||||
| 21122 | Diag(E->getBeginLoc(), | ||||
| 21123 | getLangOpts().CPlusPlus20 | ||||
| 21124 | ? diag::err_use_of_unaddressable_function | ||||
| 21125 | : diag::warn_cxx20_compat_use_of_unaddressable_function); | ||||
| 21126 | if (FD->isImplicitlyInstantiable()) { | ||||
| 21127 | // Require a definition here because a normal attempt at | ||||
| 21128 | // instantiation for a builtin will be ignored, and we won't try | ||||
| 21129 | // again later. We assume that the definition of the template | ||||
| 21130 | // precedes this use. | ||||
| 21131 | InstantiateFunctionDefinition(E->getBeginLoc(), FD, | ||||
| 21132 | /*Recursive=*/false, | ||||
| 21133 | /*DefinitionRequired=*/true, | ||||
| 21134 | /*AtEndOfTU=*/false); | ||||
| 21135 | } | ||||
| 21136 | // Produce a properly-typed reference to the function. | ||||
| 21137 | CXXScopeSpec SS; | ||||
| 21138 | SS.Adopt(DRE->getQualifierLoc()); | ||||
| 21139 | TemplateArgumentListInfo TemplateArgs; | ||||
| 21140 | DRE->copyTemplateArgumentsInto(TemplateArgs); | ||||
| 21141 | return BuildDeclRefExpr( | ||||
| 21142 | FD, FD->getType(), VK_LValue, DRE->getNameInfo(), | ||||
| 21143 | DRE->hasQualifier() ? &SS : nullptr, DRE->getFoundDecl(), | ||||
| 21144 | DRE->getTemplateKeywordLoc(), | ||||
| 21145 | DRE->hasExplicitTemplateArgs() ? &TemplateArgs : nullptr); | ||||
| 21146 | } | ||||
| 21147 | } | ||||
| 21148 | |||||
| 21149 | Diag(E->getBeginLoc(), diag::err_builtin_fn_use); | ||||
| 21150 | return ExprError(); | ||||
| 21151 | } | ||||
| 21152 | |||||
| 21153 | case BuiltinType::IncompleteMatrixIdx: | ||||
| 21154 | Diag(cast<MatrixSubscriptExpr>(E->IgnoreParens()) | ||||
| 21155 | ->getRowIdx() | ||||
| 21156 | ->getBeginLoc(), | ||||
| 21157 | diag::err_matrix_incomplete_index); | ||||
| 21158 | return ExprError(); | ||||
| 21159 | |||||
| 21160 | // Expressions of unknown type. | ||||
| 21161 | case BuiltinType::OMPArraySection: | ||||
| 21162 | Diag(E->getBeginLoc(), diag::err_omp_array_section_use); | ||||
| 21163 | return ExprError(); | ||||
| 21164 | |||||
| 21165 | // Expressions of unknown type. | ||||
| 21166 | case BuiltinType::OMPArrayShaping: | ||||
| 21167 | return ExprError(Diag(E->getBeginLoc(), diag::err_omp_array_shaping_use)); | ||||
| 21168 | |||||
| 21169 | case BuiltinType::OMPIterator: | ||||
| 21170 | return ExprError(Diag(E->getBeginLoc(), diag::err_omp_iterator_use)); | ||||
| 21171 | |||||
| 21172 | // Everything else should be impossible. | ||||
| 21173 | #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ | ||||
| 21174 | case BuiltinType::Id: | ||||
| 21175 | #include "clang/Basic/OpenCLImageTypes.def" | ||||
| 21176 | #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ | ||||
| 21177 | case BuiltinType::Id: | ||||
| 21178 | #include "clang/Basic/OpenCLExtensionTypes.def" | ||||
| 21179 | #define SVE_TYPE(Name, Id, SingletonId) \ | ||||
| 21180 | case BuiltinType::Id: | ||||
| 21181 | #include "clang/Basic/AArch64SVEACLETypes.def" | ||||
| 21182 | #define PPC_VECTOR_TYPE(Name, Id, Size) \ | ||||
| 21183 | case BuiltinType::Id: | ||||
| 21184 | #include "clang/Basic/PPCTypes.def" | ||||
| 21185 | #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id: | ||||
| 21186 | #include "clang/Basic/RISCVVTypes.def" | ||||
| 21187 | #define WASM_TYPE(Name, Id, SingletonId) case BuiltinType::Id: | ||||
| 21188 | #include "clang/Basic/WebAssemblyReferenceTypes.def" | ||||
| 21189 | #define BUILTIN_TYPE(Id, SingletonId) case BuiltinType::Id: | ||||
| 21190 | #define PLACEHOLDER_TYPE(Id, SingletonId) | ||||
| 21191 | #include "clang/AST/BuiltinTypes.def" | ||||
| 21192 | break; | ||||
| 21193 | } | ||||
| 21194 | |||||
| 21195 | llvm_unreachable("invalid placeholder type!")::llvm::llvm_unreachable_internal("invalid placeholder type!" , "clang/lib/Sema/SemaExpr.cpp", 21195); | ||||
| 21196 | } | ||||
| 21197 | |||||
| 21198 | bool Sema::CheckCaseExpression(Expr *E) { | ||||
| 21199 | if (E->isTypeDependent()) | ||||
| 21200 | return true; | ||||
| 21201 | if (E->isValueDependent() || E->isIntegerConstantExpr(Context)) | ||||
| 21202 | return E->getType()->isIntegralOrEnumerationType(); | ||||
| 21203 | return false; | ||||
| 21204 | } | ||||
| 21205 | |||||
| 21206 | /// ActOnObjCBoolLiteral - Parse {__objc_yes,__objc_no} literals. | ||||
| 21207 | ExprResult | ||||
| 21208 | Sema::ActOnObjCBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) { | ||||
| 21209 | assert((Kind == tok::kw___objc_yes || Kind == tok::kw___objc_no) &&(static_cast <bool> ((Kind == tok::kw___objc_yes || Kind == tok::kw___objc_no) && "Unknown Objective-C Boolean value!" ) ? void (0) : __assert_fail ("(Kind == tok::kw___objc_yes || Kind == tok::kw___objc_no) && \"Unknown Objective-C Boolean value!\"" , "clang/lib/Sema/SemaExpr.cpp", 21210, __extension__ __PRETTY_FUNCTION__ )) | ||||
| 21210 | "Unknown Objective-C Boolean value!")(static_cast <bool> ((Kind == tok::kw___objc_yes || Kind == tok::kw___objc_no) && "Unknown Objective-C Boolean value!" ) ? void (0) : __assert_fail ("(Kind == tok::kw___objc_yes || Kind == tok::kw___objc_no) && \"Unknown Objective-C Boolean value!\"" , "clang/lib/Sema/SemaExpr.cpp", 21210, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 21211 | QualType BoolT = Context.ObjCBuiltinBoolTy; | ||||
| 21212 | if (!Context.getBOOLDecl()) { | ||||
| 21213 | LookupResult Result(*this, &Context.Idents.get("BOOL"), OpLoc, | ||||
| 21214 | Sema::LookupOrdinaryName); | ||||
| 21215 | if (LookupName(Result, getCurScope()) && Result.isSingleResult()) { | ||||
| 21216 | NamedDecl *ND = Result.getFoundDecl(); | ||||
| 21217 | if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND)) | ||||
| 21218 | Context.setBOOLDecl(TD); | ||||
| 21219 | } | ||||
| 21220 | } | ||||
| 21221 | if (Context.getBOOLDecl()) | ||||
| 21222 | BoolT = Context.getBOOLType(); | ||||
| 21223 | return new (Context) | ||||
| 21224 | ObjCBoolLiteralExpr(Kind == tok::kw___objc_yes, BoolT, OpLoc); | ||||
| 21225 | } | ||||
| 21226 | |||||
| 21227 | ExprResult Sema::ActOnObjCAvailabilityCheckExpr( | ||||
| 21228 | llvm::ArrayRef<AvailabilitySpec> AvailSpecs, SourceLocation AtLoc, | ||||
| 21229 | SourceLocation RParen) { | ||||
| 21230 | auto FindSpecVersion = | ||||
| 21231 | [&](StringRef Platform) -> std::optional<VersionTuple> { | ||||
| 21232 | auto Spec = llvm::find_if(AvailSpecs, [&](const AvailabilitySpec &Spec) { | ||||
| 21233 | return Spec.getPlatform() == Platform; | ||||
| 21234 | }); | ||||
| 21235 | // Transcribe the "ios" availability check to "maccatalyst" when compiling | ||||
| 21236 | // for "maccatalyst" if "maccatalyst" is not specified. | ||||
| 21237 | if (Spec == AvailSpecs.end() && Platform == "maccatalyst") { | ||||
| 21238 | Spec = llvm::find_if(AvailSpecs, [&](const AvailabilitySpec &Spec) { | ||||
| 21239 | return Spec.getPlatform() == "ios"; | ||||
| 21240 | }); | ||||
| 21241 | } | ||||
| 21242 | if (Spec == AvailSpecs.end()) | ||||
| 21243 | return std::nullopt; | ||||
| 21244 | return Spec->getVersion(); | ||||
| 21245 | }; | ||||
| 21246 | |||||
| 21247 | VersionTuple Version; | ||||
| 21248 | if (auto MaybeVersion = | ||||
| 21249 | FindSpecVersion(Context.getTargetInfo().getPlatformName())) | ||||
| 21250 | Version = *MaybeVersion; | ||||
| 21251 | |||||
| 21252 | // The use of `@available` in the enclosing context should be analyzed to | ||||
| 21253 | // warn when it's used inappropriately (i.e. not if(@available)). | ||||
| 21254 | if (FunctionScopeInfo *Context = getCurFunctionAvailabilityContext()) | ||||
| 21255 | Context->HasPotentialAvailabilityViolations = true; | ||||
| 21256 | |||||
| 21257 | return new (Context) | ||||
| 21258 | ObjCAvailabilityCheckExpr(Version, AtLoc, RParen, Context.BoolTy); | ||||
| 21259 | } | ||||
| 21260 | |||||
| 21261 | ExprResult Sema::CreateRecoveryExpr(SourceLocation Begin, SourceLocation End, | ||||
| 21262 | ArrayRef<Expr *> SubExprs, QualType T) { | ||||
| 21263 | if (!Context.getLangOpts().RecoveryAST) | ||||
| 21264 | return ExprError(); | ||||
| 21265 | |||||
| 21266 | if (isSFINAEContext()) | ||||
| 21267 | return ExprError(); | ||||
| 21268 | |||||
| 21269 | if (T.isNull() || T->isUndeducedType() || | ||||
| 21270 | !Context.getLangOpts().RecoveryASTType) | ||||
| 21271 | // We don't know the concrete type, fallback to dependent type. | ||||
| 21272 | T = Context.DependentTy; | ||||
| 21273 | |||||
| 21274 | return RecoveryExpr::Create(Context, T, Begin, End, SubExprs); | ||||
| 21275 | } |
| 1 | //===- llvm/Support/Casting.h - Allow flexible, checked, casts --*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file defines the isa<X>(), cast<X>(), dyn_cast<X>(), |
| 10 | // cast_if_present<X>(), and dyn_cast_if_present<X>() templates. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #ifndef LLVM_SUPPORT_CASTING_H |
| 15 | #define LLVM_SUPPORT_CASTING_H |
| 16 | |
| 17 | #include "llvm/Support/Compiler.h" |
| 18 | #include "llvm/Support/type_traits.h" |
| 19 | #include <cassert> |
| 20 | #include <memory> |
| 21 | #include <optional> |
| 22 | #include <type_traits> |
| 23 | |
| 24 | namespace llvm { |
| 25 | |
| 26 | //===----------------------------------------------------------------------===// |
| 27 | // simplify_type |
| 28 | //===----------------------------------------------------------------------===// |
| 29 | |
| 30 | /// Define a template that can be specialized by smart pointers to reflect the |
| 31 | /// fact that they are automatically dereferenced, and are not involved with the |
| 32 | /// template selection process... the default implementation is a noop. |
| 33 | // TODO: rename this and/or replace it with other cast traits. |
| 34 | template <typename From> struct simplify_type { |
| 35 | using SimpleType = From; // The real type this represents... |
| 36 | |
| 37 | // An accessor to get the real value... |
| 38 | static SimpleType &getSimplifiedValue(From &Val) { return Val; } |
| 39 | }; |
| 40 | |
| 41 | template <typename From> struct simplify_type<const From> { |
| 42 | using NonConstSimpleType = typename simplify_type<From>::SimpleType; |
| 43 | using SimpleType = typename add_const_past_pointer<NonConstSimpleType>::type; |
| 44 | using RetType = |
| 45 | typename add_lvalue_reference_if_not_pointer<SimpleType>::type; |
| 46 | |
| 47 | static RetType getSimplifiedValue(const From &Val) { |
| 48 | return simplify_type<From>::getSimplifiedValue(const_cast<From &>(Val)); |
| 49 | } |
| 50 | }; |
| 51 | |
| 52 | // TODO: add this namespace once everyone is switched to using the new |
| 53 | // interface. |
| 54 | // namespace detail { |
| 55 | |
| 56 | //===----------------------------------------------------------------------===// |
| 57 | // isa_impl |
| 58 | //===----------------------------------------------------------------------===// |
| 59 | |
| 60 | // The core of the implementation of isa<X> is here; To and From should be |
| 61 | // the names of classes. This template can be specialized to customize the |
| 62 | // implementation of isa<> without rewriting it from scratch. |
| 63 | template <typename To, typename From, typename Enabler = void> struct isa_impl { |
| 64 | static inline bool doit(const From &Val) { return To::classof(&Val); } |
| 65 | }; |
| 66 | |
| 67 | // Always allow upcasts, and perform no dynamic check for them. |
| 68 | template <typename To, typename From> |
| 69 | struct isa_impl<To, From, std::enable_if_t<std::is_base_of<To, From>::value>> { |
| 70 | static inline bool doit(const From &) { return true; } |
| 71 | }; |
| 72 | |
| 73 | template <typename To, typename From> struct isa_impl_cl { |
| 74 | static inline bool doit(const From &Val) { |
| 75 | return isa_impl<To, From>::doit(Val); |
| 76 | } |
| 77 | }; |
| 78 | |
| 79 | template <typename To, typename From> struct isa_impl_cl<To, const From> { |
| 80 | static inline bool doit(const From &Val) { |
| 81 | return isa_impl<To, From>::doit(Val); |
| 82 | } |
| 83 | }; |
| 84 | |
| 85 | template <typename To, typename From> |
| 86 | struct isa_impl_cl<To, const std::unique_ptr<From>> { |
| 87 | static inline bool doit(const std::unique_ptr<From> &Val) { |
| 88 | assert(Val && "isa<> used on a null pointer")(static_cast <bool> (Val && "isa<> used on a null pointer" ) ? void (0) : __assert_fail ("Val && \"isa<> used on a null pointer\"" , "llvm/include/llvm/Support/Casting.h", 88, __extension__ __PRETTY_FUNCTION__ )); |
| 89 | return isa_impl_cl<To, From>::doit(*Val); |
| 90 | } |
| 91 | }; |
| 92 | |
| 93 | template <typename To, typename From> struct isa_impl_cl<To, From *> { |
| 94 | static inline bool doit(const From *Val) { |
| 95 | assert(Val && "isa<> used on a null pointer")(static_cast <bool> (Val && "isa<> used on a null pointer" ) ? void (0) : __assert_fail ("Val && \"isa<> used on a null pointer\"" , "llvm/include/llvm/Support/Casting.h", 95, __extension__ __PRETTY_FUNCTION__ )); |
| 96 | return isa_impl<To, From>::doit(*Val); |
| 97 | } |
| 98 | }; |
| 99 | |
| 100 | template <typename To, typename From> struct isa_impl_cl<To, From *const> { |
| 101 | static inline bool doit(const From *Val) { |
| 102 | assert(Val && "isa<> used on a null pointer")(static_cast <bool> (Val && "isa<> used on a null pointer" ) ? void (0) : __assert_fail ("Val && \"isa<> used on a null pointer\"" , "llvm/include/llvm/Support/Casting.h", 102, __extension__ __PRETTY_FUNCTION__ )); |
| 103 | return isa_impl<To, From>::doit(*Val); |
| 104 | } |
| 105 | }; |
| 106 | |
| 107 | template <typename To, typename From> struct isa_impl_cl<To, const From *> { |
| 108 | static inline bool doit(const From *Val) { |
| 109 | assert(Val && "isa<> used on a null pointer")(static_cast <bool> (Val && "isa<> used on a null pointer" ) ? void (0) : __assert_fail ("Val && \"isa<> used on a null pointer\"" , "llvm/include/llvm/Support/Casting.h", 109, __extension__ __PRETTY_FUNCTION__ )); |
| 110 | return isa_impl<To, From>::doit(*Val); |
| 111 | } |
| 112 | }; |
| 113 | |
| 114 | template <typename To, typename From> |
| 115 | struct isa_impl_cl<To, const From *const> { |
| 116 | static inline bool doit(const From *Val) { |
| 117 | assert(Val && "isa<> used on a null pointer")(static_cast <bool> (Val && "isa<> used on a null pointer" ) ? void (0) : __assert_fail ("Val && \"isa<> used on a null pointer\"" , "llvm/include/llvm/Support/Casting.h", 117, __extension__ __PRETTY_FUNCTION__ )); |
| 118 | return isa_impl<To, From>::doit(*Val); |
| 119 | } |
| 120 | }; |
| 121 | |
| 122 | template <typename To, typename From, typename SimpleFrom> |
| 123 | struct isa_impl_wrap { |
| 124 | // When From != SimplifiedType, we can simplify the type some more by using |
| 125 | // the simplify_type template. |
| 126 | static bool doit(const From &Val) { |
| 127 | return isa_impl_wrap<To, SimpleFrom, |
| 128 | typename simplify_type<SimpleFrom>::SimpleType>:: |
| 129 | doit(simplify_type<const From>::getSimplifiedValue(Val)); |
| 130 | } |
| 131 | }; |
| 132 | |
| 133 | template <typename To, typename FromTy> |
| 134 | struct isa_impl_wrap<To, FromTy, FromTy> { |
| 135 | // When From == SimpleType, we are as simple as we are going to get. |
| 136 | static bool doit(const FromTy &Val) { |
| 137 | return isa_impl_cl<To, FromTy>::doit(Val); |
| 138 | } |
| 139 | }; |
| 140 | |
| 141 | //===----------------------------------------------------------------------===// |
| 142 | // cast_retty + cast_retty_impl |
| 143 | //===----------------------------------------------------------------------===// |
| 144 | |
| 145 | template <class To, class From> struct cast_retty; |
| 146 | |
| 147 | // Calculate what type the 'cast' function should return, based on a requested |
| 148 | // type of To and a source type of From. |
| 149 | template <class To, class From> struct cast_retty_impl { |
| 150 | using ret_type = To &; // Normal case, return Ty& |
| 151 | }; |
| 152 | template <class To, class From> struct cast_retty_impl<To, const From> { |
| 153 | using ret_type = const To &; // Normal case, return Ty& |
| 154 | }; |
| 155 | |
| 156 | template <class To, class From> struct cast_retty_impl<To, From *> { |
| 157 | using ret_type = To *; // Pointer arg case, return Ty* |
| 158 | }; |
| 159 | |
| 160 | template <class To, class From> struct cast_retty_impl<To, const From *> { |
| 161 | using ret_type = const To *; // Constant pointer arg case, return const Ty* |
| 162 | }; |
| 163 | |
| 164 | template <class To, class From> struct cast_retty_impl<To, const From *const> { |
| 165 | using ret_type = const To *; // Constant pointer arg case, return const Ty* |
| 166 | }; |
| 167 | |
| 168 | template <class To, class From> |
| 169 | struct cast_retty_impl<To, std::unique_ptr<From>> { |
| 170 | private: |
| 171 | using PointerType = typename cast_retty_impl<To, From *>::ret_type; |
| 172 | using ResultType = std::remove_pointer_t<PointerType>; |
| 173 | |
| 174 | public: |
| 175 | using ret_type = std::unique_ptr<ResultType>; |
| 176 | }; |
| 177 | |
| 178 | template <class To, class From, class SimpleFrom> struct cast_retty_wrap { |
| 179 | // When the simplified type and the from type are not the same, use the type |
| 180 | // simplifier to reduce the type, then reuse cast_retty_impl to get the |
| 181 | // resultant type. |
| 182 | using ret_type = typename cast_retty<To, SimpleFrom>::ret_type; |
| 183 | }; |
| 184 | |
| 185 | template <class To, class FromTy> struct cast_retty_wrap<To, FromTy, FromTy> { |
| 186 | // When the simplified type is equal to the from type, use it directly. |
| 187 | using ret_type = typename cast_retty_impl<To, FromTy>::ret_type; |
| 188 | }; |
| 189 | |
| 190 | template <class To, class From> struct cast_retty { |
| 191 | using ret_type = typename cast_retty_wrap< |
| 192 | To, From, typename simplify_type<From>::SimpleType>::ret_type; |
| 193 | }; |
| 194 | |
| 195 | //===----------------------------------------------------------------------===// |
| 196 | // cast_convert_val |
| 197 | //===----------------------------------------------------------------------===// |
| 198 | |
| 199 | // Ensure the non-simple values are converted using the simplify_type template |
| 200 | // that may be specialized by smart pointers... |
| 201 | // |
| 202 | template <class To, class From, class SimpleFrom> struct cast_convert_val { |
| 203 | // This is not a simple type, use the template to simplify it... |
| 204 | static typename cast_retty<To, From>::ret_type doit(const From &Val) { |
| 205 | return cast_convert_val<To, SimpleFrom, |
| 206 | typename simplify_type<SimpleFrom>::SimpleType>:: |
| 207 | doit(simplify_type<From>::getSimplifiedValue(const_cast<From &>(Val))); |
| 208 | } |
| 209 | }; |
| 210 | |
| 211 | template <class To, class FromTy> struct cast_convert_val<To, FromTy, FromTy> { |
| 212 | // If it's a reference, switch to a pointer to do the cast and then deref it. |
| 213 | static typename cast_retty<To, FromTy>::ret_type doit(const FromTy &Val) { |
| 214 | return *(std::remove_reference_t<typename cast_retty<To, FromTy>::ret_type> |
| 215 | *)&const_cast<FromTy &>(Val); |
| 216 | } |
| 217 | }; |
| 218 | |
| 219 | template <class To, class FromTy> |
| 220 | struct cast_convert_val<To, FromTy *, FromTy *> { |
| 221 | // If it's a pointer, we can use c-style casting directly. |
| 222 | static typename cast_retty<To, FromTy *>::ret_type doit(const FromTy *Val) { |
| 223 | return (typename cast_retty<To, FromTy *>::ret_type) const_cast<FromTy *>( |
| 224 | Val); |
| 225 | } |
| 226 | }; |
| 227 | |
| 228 | //===----------------------------------------------------------------------===// |
| 229 | // is_simple_type |
| 230 | //===----------------------------------------------------------------------===// |
| 231 | |
| 232 | template <class X> struct is_simple_type { |
| 233 | static const bool value = |
| 234 | std::is_same<X, typename simplify_type<X>::SimpleType>::value; |
| 235 | }; |
| 236 | |
| 237 | // } // namespace detail |
| 238 | |
| 239 | //===----------------------------------------------------------------------===// |
| 240 | // CastIsPossible |
| 241 | //===----------------------------------------------------------------------===// |
| 242 | |
| 243 | /// This struct provides a way to check if a given cast is possible. It provides |
| 244 | /// a static function called isPossible that is used to check if a cast can be |
| 245 | /// performed. It should be overridden like this: |
| 246 | /// |
| 247 | /// template<> struct CastIsPossible<foo, bar> { |
| 248 | /// static inline bool isPossible(const bar &b) { |
| 249 | /// return bar.isFoo(); |
| 250 | /// } |
| 251 | /// }; |
| 252 | template <typename To, typename From, typename Enable = void> |
| 253 | struct CastIsPossible { |
| 254 | static inline bool isPossible(const From &f) { |
| 255 | return isa_impl_wrap< |
| 256 | To, const From, |
| 257 | typename simplify_type<const From>::SimpleType>::doit(f); |
| 258 | } |
| 259 | }; |
| 260 | |
| 261 | // Needed for optional unwrapping. This could be implemented with isa_impl, but |
| 262 | // we want to implement things in the new method and move old implementations |
| 263 | // over. In fact, some of the isa_impl templates should be moved over to |
| 264 | // CastIsPossible. |
| 265 | template <typename To, typename From> |
| 266 | struct CastIsPossible<To, std::optional<From>> { |
| 267 | static inline bool isPossible(const std::optional<From> &f) { |
| 268 | assert(f && "CastIsPossible::isPossible called on a nullopt!")(static_cast <bool> (f && "CastIsPossible::isPossible called on a nullopt!" ) ? void (0) : __assert_fail ("f && \"CastIsPossible::isPossible called on a nullopt!\"" , "llvm/include/llvm/Support/Casting.h", 268, __extension__ __PRETTY_FUNCTION__ )); |
| 269 | return isa_impl_wrap< |
| 270 | To, const From, |
| 271 | typename simplify_type<const From>::SimpleType>::doit(*f); |
| 272 | } |
| 273 | }; |
| 274 | |
| 275 | /// Upcasting (from derived to base) and casting from a type to itself should |
| 276 | /// always be possible. |
| 277 | template <typename To, typename From> |
| 278 | struct CastIsPossible<To, From, |
| 279 | std::enable_if_t<std::is_base_of<To, From>::value>> { |
| 280 | static inline bool isPossible(const From &f) { return true; } |
| 281 | }; |
| 282 | |
| 283 | //===----------------------------------------------------------------------===// |
| 284 | // Cast traits |
| 285 | //===----------------------------------------------------------------------===// |
| 286 | |
| 287 | /// All of these cast traits are meant to be implementations for useful casts |
| 288 | /// that users may want to use that are outside the standard behavior. An |
| 289 | /// example of how to use a special cast called `CastTrait` is: |
| 290 | /// |
| 291 | /// template<> struct CastInfo<foo, bar> : public CastTrait<foo, bar> {}; |
| 292 | /// |
| 293 | /// Essentially, if your use case falls directly into one of the use cases |
| 294 | /// supported by a given cast trait, simply inherit your special CastInfo |
| 295 | /// directly from one of these to avoid having to reimplement the boilerplate |
| 296 | /// `isPossible/castFailed/doCast/doCastIfPossible`. A cast trait can also |
| 297 | /// provide a subset of those functions. |
| 298 | |
| 299 | /// This cast trait just provides castFailed for the specified `To` type to make |
| 300 | /// CastInfo specializations more declarative. In order to use this, the target |
| 301 | /// result type must be `To` and `To` must be constructible from `nullptr`. |
| 302 | template <typename To> struct NullableValueCastFailed { |
| 303 | static To castFailed() { return To(nullptr); } |
| 304 | }; |
| 305 | |
| 306 | /// This cast trait just provides the default implementation of doCastIfPossible |
| 307 | /// to make CastInfo specializations more declarative. The `Derived` template |
| 308 | /// parameter *must* be provided for forwarding castFailed and doCast. |
| 309 | template <typename To, typename From, typename Derived> |
| 310 | struct DefaultDoCastIfPossible { |
| 311 | static To doCastIfPossible(From f) { |
| 312 | if (!Derived::isPossible(f)) |
| 313 | return Derived::castFailed(); |
| 314 | return Derived::doCast(f); |
| 315 | } |
| 316 | }; |
| 317 | |
| 318 | namespace detail { |
| 319 | /// A helper to derive the type to use with `Self` for cast traits, when the |
| 320 | /// provided CRTP derived type is allowed to be void. |
| 321 | template <typename OptionalDerived, typename Default> |
| 322 | using SelfType = std::conditional_t<std::is_same<OptionalDerived, void>::value, |
| 323 | Default, OptionalDerived>; |
| 324 | } // namespace detail |
| 325 | |
| 326 | /// This cast trait provides casting for the specific case of casting to a |
| 327 | /// value-typed object from a pointer-typed object. Note that `To` must be |
| 328 | /// nullable/constructible from a pointer to `From` to use this cast. |
| 329 | template <typename To, typename From, typename Derived = void> |
| 330 | struct ValueFromPointerCast |
| 331 | : public CastIsPossible<To, From *>, |
| 332 | public NullableValueCastFailed<To>, |
| 333 | public DefaultDoCastIfPossible< |
| 334 | To, From *, |
| 335 | detail::SelfType<Derived, ValueFromPointerCast<To, From>>> { |
| 336 | static inline To doCast(From *f) { return To(f); } |
| 337 | }; |
| 338 | |
| 339 | /// This cast trait provides std::unique_ptr casting. It has the semantics of |
| 340 | /// moving the contents of the input unique_ptr into the output unique_ptr |
| 341 | /// during the cast. It's also a good example of how to implement a move-only |
| 342 | /// cast. |
| 343 | template <typename To, typename From, typename Derived = void> |
| 344 | struct UniquePtrCast : public CastIsPossible<To, From *> { |
| 345 | using Self = detail::SelfType<Derived, UniquePtrCast<To, From>>; |
| 346 | using CastResultType = std::unique_ptr< |
| 347 | std::remove_reference_t<typename cast_retty<To, From>::ret_type>>; |
| 348 | |
| 349 | static inline CastResultType doCast(std::unique_ptr<From> &&f) { |
| 350 | return CastResultType((typename CastResultType::element_type *)f.release()); |
| 351 | } |
| 352 | |
| 353 | static inline CastResultType castFailed() { return CastResultType(nullptr); } |
| 354 | |
| 355 | static inline CastResultType doCastIfPossible(std::unique_ptr<From> &&f) { |
| 356 | if (!Self::isPossible(f)) |
| 357 | return castFailed(); |
| 358 | return doCast(f); |
| 359 | } |
| 360 | }; |
| 361 | |
| 362 | /// This cast trait provides std::optional<T> casting. This means that if you |
| 363 | /// have a value type, you can cast it to another value type and have dyn_cast |
| 364 | /// return an std::optional<T>. |
| 365 | template <typename To, typename From, typename Derived = void> |
| 366 | struct OptionalValueCast |
| 367 | : public CastIsPossible<To, From>, |
| 368 | public DefaultDoCastIfPossible< |
| 369 | std::optional<To>, From, |
| 370 | detail::SelfType<Derived, OptionalValueCast<To, From>>> { |
| 371 | static inline std::optional<To> castFailed() { return std::optional<To>{}; } |
| 372 | |
| 373 | static inline std::optional<To> doCast(const From &f) { return To(f); } |
| 374 | }; |
| 375 | |
| 376 | /// Provides a cast trait that strips `const` from types to make it easier to |
| 377 | /// implement a const-version of a non-const cast. It just removes boilerplate |
| 378 | /// and reduces the amount of code you as the user need to implement. You can |
| 379 | /// use it like this: |
| 380 | /// |
| 381 | /// template<> struct CastInfo<foo, bar> { |
| 382 | /// ...verbose implementation... |
| 383 | /// }; |
| 384 | /// |
| 385 | /// template<> struct CastInfo<foo, const bar> : public |
| 386 | /// ConstStrippingForwardingCast<foo, const bar, CastInfo<foo, bar>> {}; |
| 387 | /// |
| 388 | template <typename To, typename From, typename ForwardTo> |
| 389 | struct ConstStrippingForwardingCast { |
| 390 | // Remove the pointer if it exists, then we can get rid of consts/volatiles. |
| 391 | using DecayedFrom = std::remove_cv_t<std::remove_pointer_t<From>>; |
| 392 | // Now if it's a pointer, add it back. Otherwise, we want a ref. |
| 393 | using NonConstFrom = std::conditional_t<std::is_pointer<From>::value, |
| 394 | DecayedFrom *, DecayedFrom &>; |
| 395 | |
| 396 | static inline bool isPossible(const From &f) { |
| 397 | return ForwardTo::isPossible(const_cast<NonConstFrom>(f)); |
| 398 | } |
| 399 | |
| 400 | static inline decltype(auto) castFailed() { return ForwardTo::castFailed(); } |
| 401 | |
| 402 | static inline decltype(auto) doCast(const From &f) { |
| 403 | return ForwardTo::doCast(const_cast<NonConstFrom>(f)); |
| 404 | } |
| 405 | |
| 406 | static inline decltype(auto) doCastIfPossible(const From &f) { |
| 407 | return ForwardTo::doCastIfPossible(const_cast<NonConstFrom>(f)); |
| 408 | } |
| 409 | }; |
| 410 | |
| 411 | /// Provides a cast trait that uses a defined pointer to pointer cast as a base |
| 412 | /// for reference-to-reference casts. Note that it does not provide castFailed |
| 413 | /// and doCastIfPossible because a pointer-to-pointer cast would likely just |
| 414 | /// return `nullptr` which could cause nullptr dereference. You can use it like |
| 415 | /// this: |
| 416 | /// |
| 417 | /// template <> struct CastInfo<foo, bar *> { ... verbose implementation... }; |
| 418 | /// |
| 419 | /// template <> |
| 420 | /// struct CastInfo<foo, bar> |
| 421 | /// : public ForwardToPointerCast<foo, bar, CastInfo<foo, bar *>> {}; |
| 422 | /// |
| 423 | template <typename To, typename From, typename ForwardTo> |
| 424 | struct ForwardToPointerCast { |
| 425 | static inline bool isPossible(const From &f) { |
| 426 | return ForwardTo::isPossible(&f); |
| 427 | } |
| 428 | |
| 429 | static inline decltype(auto) doCast(const From &f) { |
| 430 | return *ForwardTo::doCast(&f); |
| 431 | } |
| 432 | }; |
| 433 | |
| 434 | //===----------------------------------------------------------------------===// |
| 435 | // CastInfo |
| 436 | //===----------------------------------------------------------------------===// |
| 437 | |
| 438 | /// This struct provides a method for customizing the way a cast is performed. |
| 439 | /// It inherits from CastIsPossible, to support the case of declaring many |
| 440 | /// CastIsPossible specializations without having to specialize the full |
| 441 | /// CastInfo. |
| 442 | /// |
| 443 | /// In order to specialize different behaviors, specify different functions in |
| 444 | /// your CastInfo specialization. |
| 445 | /// For isa<> customization, provide: |
| 446 | /// |
| 447 | /// `static bool isPossible(const From &f)` |
| 448 | /// |
| 449 | /// For cast<> customization, provide: |
| 450 | /// |
| 451 | /// `static To doCast(const From &f)` |
| 452 | /// |
| 453 | /// For dyn_cast<> and the *_if_present<> variants' customization, provide: |
| 454 | /// |
| 455 | /// `static To castFailed()` and `static To doCastIfPossible(const From &f)` |
| 456 | /// |
| 457 | /// Your specialization might look something like this: |
| 458 | /// |
| 459 | /// template<> struct CastInfo<foo, bar> : public CastIsPossible<foo, bar> { |
| 460 | /// static inline foo doCast(const bar &b) { |
| 461 | /// return foo(const_cast<bar &>(b)); |
| 462 | /// } |
| 463 | /// static inline foo castFailed() { return foo(); } |
| 464 | /// static inline foo doCastIfPossible(const bar &b) { |
| 465 | /// if (!CastInfo<foo, bar>::isPossible(b)) |
| 466 | /// return castFailed(); |
| 467 | /// return doCast(b); |
| 468 | /// } |
| 469 | /// }; |
| 470 | |
| 471 | // The default implementations of CastInfo don't use cast traits for now because |
| 472 | // we need to specify types all over the place due to the current expected |
| 473 | // casting behavior and the way cast_retty works. New use cases can and should |
| 474 | // take advantage of the cast traits whenever possible! |
| 475 | |
| 476 | template <typename To, typename From, typename Enable = void> |
| 477 | struct CastInfo : public CastIsPossible<To, From> { |
| 478 | using Self = CastInfo<To, From, Enable>; |
| 479 | |
| 480 | using CastReturnType = typename cast_retty<To, From>::ret_type; |
| 481 | |
| 482 | static inline CastReturnType doCast(const From &f) { |
| 483 | return cast_convert_val< |
| 484 | To, From, |
| 485 | typename simplify_type<From>::SimpleType>::doit(const_cast<From &>(f)); |
| 486 | } |
| 487 | |
| 488 | // This assumes that you can construct the cast return type from `nullptr`. |
| 489 | // This is largely to support legacy use cases - if you don't want this |
| 490 | // behavior you should specialize CastInfo for your use case. |
| 491 | static inline CastReturnType castFailed() { return CastReturnType(nullptr); } |
| 492 | |
| 493 | static inline CastReturnType doCastIfPossible(const From &f) { |
| 494 | if (!Self::isPossible(f)) |
| 495 | return castFailed(); |
| 496 | return doCast(f); |
| 497 | } |
| 498 | }; |
| 499 | |
| 500 | /// This struct provides an overload for CastInfo where From has simplify_type |
| 501 | /// defined. This simply forwards to the appropriate CastInfo with the |
| 502 | /// simplified type/value, so you don't have to implement both. |
| 503 | template <typename To, typename From> |
| 504 | struct CastInfo<To, From, std::enable_if_t<!is_simple_type<From>::value>> { |
| 505 | using Self = CastInfo<To, From>; |
| 506 | using SimpleFrom = typename simplify_type<From>::SimpleType; |
| 507 | using SimplifiedSelf = CastInfo<To, SimpleFrom>; |
| 508 | |
| 509 | static inline bool isPossible(From &f) { |
| 510 | return SimplifiedSelf::isPossible( |
| 511 | simplify_type<From>::getSimplifiedValue(f)); |
| 512 | } |
| 513 | |
| 514 | static inline decltype(auto) doCast(From &f) { |
| 515 | return SimplifiedSelf::doCast(simplify_type<From>::getSimplifiedValue(f)); |
| 516 | } |
| 517 | |
| 518 | static inline decltype(auto) castFailed() { |
| 519 | return SimplifiedSelf::castFailed(); |
| 520 | } |
| 521 | |
| 522 | static inline decltype(auto) doCastIfPossible(From &f) { |
| 523 | return SimplifiedSelf::doCastIfPossible( |
| 524 | simplify_type<From>::getSimplifiedValue(f)); |
| 525 | } |
| 526 | }; |
| 527 | |
| 528 | //===----------------------------------------------------------------------===// |
| 529 | // Pre-specialized CastInfo |
| 530 | //===----------------------------------------------------------------------===// |
| 531 | |
| 532 | /// Provide a CastInfo specialized for std::unique_ptr. |
| 533 | template <typename To, typename From> |
| 534 | struct CastInfo<To, std::unique_ptr<From>> : public UniquePtrCast<To, From> {}; |
| 535 | |
| 536 | /// Provide a CastInfo specialized for std::optional<From>. It's assumed that if |
| 537 | /// the input is std::optional<From> that the output can be std::optional<To>. |
| 538 | /// If that's not the case, specialize CastInfo for your use case. |
| 539 | template <typename To, typename From> |
| 540 | struct CastInfo<To, std::optional<From>> : public OptionalValueCast<To, From> { |
| 541 | }; |
| 542 | |
| 543 | /// isa<X> - Return true if the parameter to the template is an instance of one |
| 544 | /// of the template type arguments. Used like this: |
| 545 | /// |
| 546 | /// if (isa<Type>(myVal)) { ... } |
| 547 | /// if (isa<Type0, Type1, Type2>(myVal)) { ... } |
| 548 | template <typename To, typename From> |
| 549 | [[nodiscard]] inline bool isa(const From &Val) { |
| 550 | return CastInfo<To, const From>::isPossible(Val); |
| 551 | } |
| 552 | |
| 553 | template <typename First, typename Second, typename... Rest, typename From> |
| 554 | [[nodiscard]] inline bool isa(const From &Val) { |
| 555 | return isa<First>(Val) || isa<Second, Rest...>(Val); |
| 556 | } |
| 557 | |
| 558 | /// cast<X> - Return the argument parameter cast to the specified type. This |
| 559 | /// casting operator asserts that the type is correct, so it does not return |
| 560 | /// null on failure. It does not allow a null argument (use cast_if_present for |
| 561 | /// that). It is typically used like this: |
| 562 | /// |
| 563 | /// cast<Instruction>(myVal)->getParent() |
| 564 | |
| 565 | template <typename To, typename From> |
| 566 | [[nodiscard]] inline decltype(auto) cast(const From &Val) { |
| 567 | assert(isa<To>(Val) && "cast<Ty>() argument of incompatible type!")(static_cast <bool> (isa<To>(Val) && "cast<Ty>() argument of incompatible type!" ) ? void (0) : __assert_fail ("isa<To>(Val) && \"cast<Ty>() argument of incompatible type!\"" , "llvm/include/llvm/Support/Casting.h", 567, __extension__ __PRETTY_FUNCTION__ )); |
| 568 | return CastInfo<To, const From>::doCast(Val); |
| 569 | } |
| 570 | |
| 571 | template <typename To, typename From> |
| 572 | [[nodiscard]] inline decltype(auto) cast(From &Val) { |
| 573 | assert(isa<To>(Val) && "cast<Ty>() argument of incompatible type!")(static_cast <bool> (isa<To>(Val) && "cast<Ty>() argument of incompatible type!" ) ? void (0) : __assert_fail ("isa<To>(Val) && \"cast<Ty>() argument of incompatible type!\"" , "llvm/include/llvm/Support/Casting.h", 573, __extension__ __PRETTY_FUNCTION__ )); |
| 574 | return CastInfo<To, From>::doCast(Val); |
| 575 | } |
| 576 | |
| 577 | template <typename To, typename From> |
| 578 | [[nodiscard]] inline decltype(auto) cast(From *Val) { |
| 579 | assert(isa<To>(Val) && "cast<Ty>() argument of incompatible type!")(static_cast <bool> (isa<To>(Val) && "cast<Ty>() argument of incompatible type!" ) ? void (0) : __assert_fail ("isa<To>(Val) && \"cast<Ty>() argument of incompatible type!\"" , "llvm/include/llvm/Support/Casting.h", 579, __extension__ __PRETTY_FUNCTION__ )); |
| 580 | return CastInfo<To, From *>::doCast(Val); |
| 581 | } |
| 582 | |
| 583 | template <typename To, typename From> |
| 584 | [[nodiscard]] inline decltype(auto) cast(std::unique_ptr<From> &&Val) { |
| 585 | assert(isa<To>(Val) && "cast<Ty>() argument of incompatible type!")(static_cast <bool> (isa<To>(Val) && "cast<Ty>() argument of incompatible type!" ) ? void (0) : __assert_fail ("isa<To>(Val) && \"cast<Ty>() argument of incompatible type!\"" , "llvm/include/llvm/Support/Casting.h", 585, __extension__ __PRETTY_FUNCTION__ )); |
| 586 | return CastInfo<To, std::unique_ptr<From>>::doCast(std::move(Val)); |
| 587 | } |
| 588 | |
| 589 | //===----------------------------------------------------------------------===// |
| 590 | // ValueIsPresent |
| 591 | //===----------------------------------------------------------------------===// |
| 592 | |
| 593 | template <typename T> |
| 594 | constexpr bool IsNullable = |
| 595 | std::is_pointer_v<T> || std::is_constructible_v<T, std::nullptr_t>; |
| 596 | |
| 597 | /// ValueIsPresent provides a way to check if a value is, well, present. For |
| 598 | /// pointers, this is the equivalent of checking against nullptr, for Optionals |
| 599 | /// this is the equivalent of checking hasValue(). It also provides a method for |
| 600 | /// unwrapping a value (think calling .value() on an optional). |
| 601 | |
| 602 | // Generic values can't *not* be present. |
| 603 | template <typename T, typename Enable = void> struct ValueIsPresent { |
| 604 | using UnwrappedType = T; |
| 605 | static inline bool isPresent(const T &t) { return true; } |
| 606 | static inline decltype(auto) unwrapValue(T &t) { return t; } |
| 607 | }; |
| 608 | |
| 609 | // Optional provides its own way to check if something is present. |
| 610 | template <typename T> struct ValueIsPresent<std::optional<T>> { |
| 611 | using UnwrappedType = T; |
| 612 | static inline bool isPresent(const std::optional<T> &t) { |
| 613 | return t.has_value(); |
| 614 | } |
| 615 | static inline decltype(auto) unwrapValue(std::optional<T> &t) { return *t; } |
| 616 | }; |
| 617 | |
| 618 | // If something is "nullable" then we just compare it to nullptr to see if it |
| 619 | // exists. |
| 620 | template <typename T> |
| 621 | struct ValueIsPresent<T, std::enable_if_t<IsNullable<T>>> { |
| 622 | using UnwrappedType = T; |
| 623 | static inline bool isPresent(const T &t) { return t != T(nullptr); } |
| 624 | static inline decltype(auto) unwrapValue(T &t) { return t; } |
| 625 | }; |
| 626 | |
| 627 | namespace detail { |
| 628 | // Convenience function we can use to check if a value is present. Because of |
| 629 | // simplify_type, we have to call it on the simplified type for now. |
| 630 | template <typename T> inline bool isPresent(const T &t) { |
| 631 | return ValueIsPresent<typename simplify_type<T>::SimpleType>::isPresent( |
| 632 | simplify_type<T>::getSimplifiedValue(const_cast<T &>(t))); |
| 633 | } |
| 634 | |
| 635 | // Convenience function we can use to unwrap a value. |
| 636 | template <typename T> inline decltype(auto) unwrapValue(T &t) { |
| 637 | return ValueIsPresent<T>::unwrapValue(t); |
| 638 | } |
| 639 | } // namespace detail |
| 640 | |
| 641 | /// dyn_cast<X> - Return the argument parameter cast to the specified type. This |
| 642 | /// casting operator returns null if the argument is of the wrong type, so it |
| 643 | /// can be used to test for a type as well as cast if successful. The value |
| 644 | /// passed in must be present, if not, use dyn_cast_if_present. This should be |
| 645 | /// used in the context of an if statement like this: |
| 646 | /// |
| 647 | /// if (const Instruction *I = dyn_cast<Instruction>(myVal)) { ... } |
| 648 | |
| 649 | template <typename To, typename From> |
| 650 | [[nodiscard]] inline decltype(auto) dyn_cast(const From &Val) { |
| 651 | assert(detail::isPresent(Val) && "dyn_cast on a non-existent value")(static_cast <bool> (detail::isPresent(Val) && "dyn_cast on a non-existent value" ) ? void (0) : __assert_fail ("detail::isPresent(Val) && \"dyn_cast on a non-existent value\"" , "llvm/include/llvm/Support/Casting.h", 651, __extension__ __PRETTY_FUNCTION__ )); |
| 652 | return CastInfo<To, const From>::doCastIfPossible(Val); |
| 653 | } |
| 654 | |
| 655 | template <typename To, typename From> |
| 656 | [[nodiscard]] inline decltype(auto) dyn_cast(From &Val) { |
| 657 | assert(detail::isPresent(Val) && "dyn_cast on a non-existent value")(static_cast <bool> (detail::isPresent(Val) && "dyn_cast on a non-existent value" ) ? void (0) : __assert_fail ("detail::isPresent(Val) && \"dyn_cast on a non-existent value\"" , "llvm/include/llvm/Support/Casting.h", 657, __extension__ __PRETTY_FUNCTION__ )); |
| 658 | return CastInfo<To, From>::doCastIfPossible(Val); |
| 659 | } |
| 660 | |
| 661 | template <typename To, typename From> |
| 662 | [[nodiscard]] inline decltype(auto) dyn_cast(From *Val) { |
| 663 | assert(detail::isPresent(Val) && "dyn_cast on a non-existent value")(static_cast <bool> (detail::isPresent(Val) && "dyn_cast on a non-existent value" ) ? void (0) : __assert_fail ("detail::isPresent(Val) && \"dyn_cast on a non-existent value\"" , "llvm/include/llvm/Support/Casting.h", 663, __extension__ __PRETTY_FUNCTION__ )); |
| 664 | return CastInfo<To, From *>::doCastIfPossible(Val); |
| 665 | } |
| 666 | |
| 667 | template <typename To, typename From> |
| 668 | [[nodiscard]] inline decltype(auto) dyn_cast(std::unique_ptr<From> &&Val) { |
| 669 | assert(detail::isPresent(Val) && "dyn_cast on a non-existent value")(static_cast <bool> (detail::isPresent(Val) && "dyn_cast on a non-existent value" ) ? void (0) : __assert_fail ("detail::isPresent(Val) && \"dyn_cast on a non-existent value\"" , "llvm/include/llvm/Support/Casting.h", 669, __extension__ __PRETTY_FUNCTION__ )); |
| 670 | return CastInfo<To, std::unique_ptr<From>>::doCastIfPossible( |
| 671 | std::forward<std::unique_ptr<From> &&>(Val)); |
| 672 | } |
| 673 | |
| 674 | /// isa_and_present<X> - Functionally identical to isa, except that a null value |
| 675 | /// is accepted. |
| 676 | template <typename... X, class Y> |
| 677 | [[nodiscard]] inline bool isa_and_present(const Y &Val) { |
| 678 | if (!detail::isPresent(Val)) |
| 679 | return false; |
| 680 | return isa<X...>(Val); |
| 681 | } |
| 682 | |
| 683 | template <typename... X, class Y> |
| 684 | [[nodiscard]] inline bool isa_and_nonnull(const Y &Val) { |
| 685 | return isa_and_present<X...>(Val); |
| 686 | } |
| 687 | |
| 688 | /// cast_if_present<X> - Functionally identical to cast, except that a null |
| 689 | /// value is accepted. |
| 690 | template <class X, class Y> |
| 691 | [[nodiscard]] inline auto cast_if_present(const Y &Val) { |
| 692 | if (!detail::isPresent(Val)) |
| 693 | return CastInfo<X, const Y>::castFailed(); |
| 694 | assert(isa<X>(Val) && "cast_if_present<Ty>() argument of incompatible type!")(static_cast <bool> (isa<X>(Val) && "cast_if_present<Ty>() argument of incompatible type!" ) ? void (0) : __assert_fail ("isa<X>(Val) && \"cast_if_present<Ty>() argument of incompatible type!\"" , "llvm/include/llvm/Support/Casting.h", 694, __extension__ __PRETTY_FUNCTION__ )); |
| 695 | return cast<X>(detail::unwrapValue(Val)); |
| 696 | } |
| 697 | |
| 698 | template <class X, class Y> [[nodiscard]] inline auto cast_if_present(Y &Val) { |
| 699 | if (!detail::isPresent(Val)) |
| 700 | return CastInfo<X, Y>::castFailed(); |
| 701 | assert(isa<X>(Val) && "cast_if_present<Ty>() argument of incompatible type!")(static_cast <bool> (isa<X>(Val) && "cast_if_present<Ty>() argument of incompatible type!" ) ? void (0) : __assert_fail ("isa<X>(Val) && \"cast_if_present<Ty>() argument of incompatible type!\"" , "llvm/include/llvm/Support/Casting.h", 701, __extension__ __PRETTY_FUNCTION__ )); |
| 702 | return cast<X>(detail::unwrapValue(Val)); |
| 703 | } |
| 704 | |
| 705 | template <class X, class Y> [[nodiscard]] inline auto cast_if_present(Y *Val) { |
| 706 | if (!detail::isPresent(Val)) |
| 707 | return CastInfo<X, Y *>::castFailed(); |
| 708 | assert(isa<X>(Val) && "cast_if_present<Ty>() argument of incompatible type!")(static_cast <bool> (isa<X>(Val) && "cast_if_present<Ty>() argument of incompatible type!" ) ? void (0) : __assert_fail ("isa<X>(Val) && \"cast_if_present<Ty>() argument of incompatible type!\"" , "llvm/include/llvm/Support/Casting.h", 708, __extension__ __PRETTY_FUNCTION__ )); |
| 709 | return cast<X>(detail::unwrapValue(Val)); |
| 710 | } |
| 711 | |
| 712 | template <class X, class Y> |
| 713 | [[nodiscard]] inline auto cast_if_present(std::unique_ptr<Y> &&Val) { |
| 714 | if (!detail::isPresent(Val)) |
| 715 | return UniquePtrCast<X, Y>::castFailed(); |
| 716 | return UniquePtrCast<X, Y>::doCast(std::move(Val)); |
| 717 | } |
| 718 | |
| 719 | // Provide a forwarding from cast_or_null to cast_if_present for current |
| 720 | // users. This is deprecated and will be removed in a future patch, use |
| 721 | // cast_if_present instead. |
| 722 | template <class X, class Y> auto cast_or_null(const Y &Val) { |
| 723 | return cast_if_present<X>(Val); |
| 724 | } |
| 725 | |
| 726 | template <class X, class Y> auto cast_or_null(Y &Val) { |
| 727 | return cast_if_present<X>(Val); |
| 728 | } |
| 729 | |
| 730 | template <class X, class Y> auto cast_or_null(Y *Val) { |
| 731 | return cast_if_present<X>(Val); |
| 732 | } |
| 733 | |
| 734 | template <class X, class Y> auto cast_or_null(std::unique_ptr<Y> &&Val) { |
| 735 | return cast_if_present<X>(std::move(Val)); |
| 736 | } |
| 737 | |
| 738 | /// dyn_cast_if_present<X> - Functionally identical to dyn_cast, except that a |
| 739 | /// null (or none in the case of optionals) value is accepted. |
| 740 | template <class X, class Y> auto dyn_cast_if_present(const Y &Val) { |
| 741 | if (!detail::isPresent(Val)) |
| 742 | return CastInfo<X, const Y>::castFailed(); |
| 743 | return CastInfo<X, const Y>::doCastIfPossible(detail::unwrapValue(Val)); |
| 744 | } |
| 745 | |
| 746 | template <class X, class Y> auto dyn_cast_if_present(Y &Val) { |
| 747 | if (!detail::isPresent(Val)) |
| 748 | return CastInfo<X, Y>::castFailed(); |
| 749 | return CastInfo<X, Y>::doCastIfPossible(detail::unwrapValue(Val)); |
| 750 | } |
| 751 | |
| 752 | template <class X, class Y> auto dyn_cast_if_present(Y *Val) { |
| 753 | if (!detail::isPresent(Val)) |
| 754 | return CastInfo<X, Y *>::castFailed(); |
| 755 | return CastInfo<X, Y *>::doCastIfPossible(detail::unwrapValue(Val)); |
| 756 | } |
| 757 | |
| 758 | // Forwards to dyn_cast_if_present to avoid breaking current users. This is |
| 759 | // deprecated and will be removed in a future patch, use |
| 760 | // cast_if_present instead. |
| 761 | template <class X, class Y> auto dyn_cast_or_null(const Y &Val) { |
| 762 | return dyn_cast_if_present<X>(Val); |
| 763 | } |
| 764 | |
| 765 | template <class X, class Y> auto dyn_cast_or_null(Y &Val) { |
| 766 | return dyn_cast_if_present<X>(Val); |
| 767 | } |
| 768 | |
| 769 | template <class X, class Y> auto dyn_cast_or_null(Y *Val) { |
| 770 | return dyn_cast_if_present<X>(Val); |
| 771 | } |
| 772 | |
| 773 | /// unique_dyn_cast<X> - Given a unique_ptr<Y>, try to return a unique_ptr<X>, |
| 774 | /// taking ownership of the input pointer iff isa<X>(Val) is true. If the |
| 775 | /// cast is successful, From refers to nullptr on exit and the casted value |
| 776 | /// is returned. If the cast is unsuccessful, the function returns nullptr |
| 777 | /// and From is unchanged. |
| 778 | template <class X, class Y> |
| 779 | [[nodiscard]] inline typename CastInfo<X, std::unique_ptr<Y>>::CastResultType |
| 780 | unique_dyn_cast(std::unique_ptr<Y> &Val) { |
| 781 | if (!isa<X>(Val)) |
| 782 | return nullptr; |
| 783 | return cast<X>(std::move(Val)); |
| 784 | } |
| 785 | |
| 786 | template <class X, class Y> |
| 787 | [[nodiscard]] inline auto unique_dyn_cast(std::unique_ptr<Y> &&Val) { |
| 788 | return unique_dyn_cast<X, Y>(Val); |
| 789 | } |
| 790 | |
| 791 | // unique_dyn_cast_or_null<X> - Functionally identical to unique_dyn_cast, |
| 792 | // except that a null value is accepted. |
| 793 | template <class X, class Y> |
| 794 | [[nodiscard]] inline typename CastInfo<X, std::unique_ptr<Y>>::CastResultType |
| 795 | unique_dyn_cast_or_null(std::unique_ptr<Y> &Val) { |
| 796 | if (!Val) |
| 797 | return nullptr; |
| 798 | return unique_dyn_cast<X, Y>(Val); |
| 799 | } |
| 800 | |
| 801 | template <class X, class Y> |
| 802 | [[nodiscard]] inline auto unique_dyn_cast_or_null(std::unique_ptr<Y> &&Val) { |
| 803 | return unique_dyn_cast_or_null<X, Y>(Val); |
| 804 | } |
| 805 | |
| 806 | } // end namespace llvm |
| 807 | |
| 808 | #endif // LLVM_SUPPORT_CASTING_H |