Bug Summary

File:build/llvm-toolchain-snapshot-16~++20221003111214+1fa2019828ca/clang/lib/Sema/SemaExpr.cpp
Warning:line 9709, column 27
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name SemaExpr.cpp -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -relaxed-aliasing -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-16~++20221003111214+1fa2019828ca/build-llvm -resource-dir /usr/lib/llvm-16/lib/clang/16.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-16~++20221003111214+1fa2019828ca/clang/lib/Sema -I /build/llvm-toolchain-snapshot-16~++20221003111214+1fa2019828ca/clang/include -I tools/clang/include -I include -I /build/llvm-toolchain-snapshot-16~++20221003111214+1fa2019828ca/llvm/include -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-16/lib/clang/16.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/llvm-toolchain-snapshot-16~++20221003111214+1fa2019828ca/build-llvm=build-llvm -fmacro-prefix-map=/build/llvm-toolchain-snapshot-16~++20221003111214+1fa2019828ca/= -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-16~++20221003111214+1fa2019828ca/build-llvm=build-llvm -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-16~++20221003111214+1fa2019828ca/= -O3 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -Wno-misleading-indentation -std=c++17 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-16~++20221003111214+1fa2019828ca/build-llvm -fdebug-prefix-map=/build/llvm-toolchain-snapshot-16~++20221003111214+1fa2019828ca/build-llvm=build-llvm -fdebug-prefix-map=/build/llvm-toolchain-snapshot-16~++20221003111214+1fa2019828ca/= -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2022-10-03-140002-15933-1 -x c++ /build/llvm-toolchain-snapshot-16~++20221003111214+1fa2019828ca/clang/lib/Sema/SemaExpr.cpp

/build/llvm-toolchain-snapshot-16~++20221003111214+1fa2019828ca/clang/lib/Sema/SemaExpr.cpp

1//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements semantic analysis for expressions.
10//
11//===----------------------------------------------------------------------===//
12
13#include "TreeTransform.h"
14#include "UsedDeclVisitor.h"
15#include "clang/AST/ASTConsumer.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/ASTLambda.h"
18#include "clang/AST/ASTMutationListener.h"
19#include "clang/AST/CXXInheritance.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/EvaluatedExprVisitor.h"
23#include "clang/AST/Expr.h"
24#include "clang/AST/ExprCXX.h"
25#include "clang/AST/ExprObjC.h"
26#include "clang/AST/ExprOpenMP.h"
27#include "clang/AST/OperationKinds.h"
28#include "clang/AST/ParentMapContext.h"
29#include "clang/AST/RecursiveASTVisitor.h"
30#include "clang/AST/Type.h"
31#include "clang/AST/TypeLoc.h"
32#include "clang/Basic/Builtins.h"
33#include "clang/Basic/DiagnosticSema.h"
34#include "clang/Basic/PartialDiagnostic.h"
35#include "clang/Basic/SourceManager.h"
36#include "clang/Basic/Specifiers.h"
37#include "clang/Basic/TargetInfo.h"
38#include "clang/Lex/LiteralSupport.h"
39#include "clang/Lex/Preprocessor.h"
40#include "clang/Sema/AnalysisBasedWarnings.h"
41#include "clang/Sema/DeclSpec.h"
42#include "clang/Sema/DelayedDiagnostic.h"
43#include "clang/Sema/Designator.h"
44#include "clang/Sema/Initialization.h"
45#include "clang/Sema/Lookup.h"
46#include "clang/Sema/Overload.h"
47#include "clang/Sema/ParsedTemplate.h"
48#include "clang/Sema/Scope.h"
49#include "clang/Sema/ScopeInfo.h"
50#include "clang/Sema/SemaFixItUtils.h"
51#include "clang/Sema/SemaInternal.h"
52#include "clang/Sema/Template.h"
53#include "llvm/ADT/STLExtras.h"
54#include "llvm/ADT/StringExtras.h"
55#include "llvm/Support/Casting.h"
56#include "llvm/Support/ConvertUTF.h"
57#include "llvm/Support/SaveAndRestore.h"
58#include "llvm/Support/TypeSize.h"
59
60using namespace clang;
61using namespace sema;
62
63/// Determine whether the use of this declaration is valid, without
64/// emitting diagnostics.
65bool Sema::CanUseDecl(NamedDecl *D, bool TreatUnavailableAsInvalid) {
66 // See if this is an auto-typed variable whose initializer we are parsing.
67 if (ParsingInitForAutoVars.count(D))
68 return false;
69
70 // See if this is a deleted function.
71 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
72 if (FD->isDeleted())
73 return false;
74
75 // If the function has a deduced return type, and we can't deduce it,
76 // then we can't use it either.
77 if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
78 DeduceReturnType(FD, SourceLocation(), /*Diagnose*/ false))
79 return false;
80
81 // See if this is an aligned allocation/deallocation function that is
82 // unavailable.
83 if (TreatUnavailableAsInvalid &&
84 isUnavailableAlignedAllocationFunction(*FD))
85 return false;
86 }
87
88 // See if this function is unavailable.
89 if (TreatUnavailableAsInvalid && D->getAvailability() == AR_Unavailable &&
90 cast<Decl>(CurContext)->getAvailability() != AR_Unavailable)
91 return false;
92
93 if (isa<UnresolvedUsingIfExistsDecl>(D))
94 return false;
95
96 return true;
97}
98
99static void DiagnoseUnusedOfDecl(Sema &S, NamedDecl *D, SourceLocation Loc) {
100 // Warn if this is used but marked unused.
101 if (const auto *A = D->getAttr<UnusedAttr>()) {
102 // [[maybe_unused]] should not diagnose uses, but __attribute__((unused))
103 // should diagnose them.
104 if (A->getSemanticSpelling() != UnusedAttr::CXX11_maybe_unused &&
105 A->getSemanticSpelling() != UnusedAttr::C2x_maybe_unused) {
106 const Decl *DC = cast_or_null<Decl>(S.getCurObjCLexicalContext());
107 if (DC && !DC->hasAttr<UnusedAttr>())
108 S.Diag(Loc, diag::warn_used_but_marked_unused) << D;
109 }
110 }
111}
112
113/// Emit a note explaining that this function is deleted.
114void Sema::NoteDeletedFunction(FunctionDecl *Decl) {
115 assert(Decl && Decl->isDeleted())(static_cast <bool> (Decl && Decl->isDeleted
()) ? void (0) : __assert_fail ("Decl && Decl->isDeleted()"
, "clang/lib/Sema/SemaExpr.cpp", 115, __extension__ __PRETTY_FUNCTION__
))
;
116
117 if (Decl->isDefaulted()) {
118 // If the method was explicitly defaulted, point at that declaration.
119 if (!Decl->isImplicit())
120 Diag(Decl->getLocation(), diag::note_implicitly_deleted);
121
122 // Try to diagnose why this special member function was implicitly
123 // deleted. This might fail, if that reason no longer applies.
124 DiagnoseDeletedDefaultedFunction(Decl);
125 return;
126 }
127
128 auto *Ctor = dyn_cast<CXXConstructorDecl>(Decl);
129 if (Ctor && Ctor->isInheritingConstructor())
130 return NoteDeletedInheritingConstructor(Ctor);
131
132 Diag(Decl->getLocation(), diag::note_availability_specified_here)
133 << Decl << 1;
134}
135
136/// Determine whether a FunctionDecl was ever declared with an
137/// explicit storage class.
138static bool hasAnyExplicitStorageClass(const FunctionDecl *D) {
139 for (auto *I : D->redecls()) {
140 if (I->getStorageClass() != SC_None)
141 return true;
142 }
143 return false;
144}
145
146/// Check whether we're in an extern inline function and referring to a
147/// variable or function with internal linkage (C11 6.7.4p3).
148///
149/// This is only a warning because we used to silently accept this code, but
150/// in many cases it will not behave correctly. This is not enabled in C++ mode
151/// because the restriction language is a bit weaker (C++11 [basic.def.odr]p6)
152/// and so while there may still be user mistakes, most of the time we can't
153/// prove that there are errors.
154static void diagnoseUseOfInternalDeclInInlineFunction(Sema &S,
155 const NamedDecl *D,
156 SourceLocation Loc) {
157 // This is disabled under C++; there are too many ways for this to fire in
158 // contexts where the warning is a false positive, or where it is technically
159 // correct but benign.
160 if (S.getLangOpts().CPlusPlus)
161 return;
162
163 // Check if this is an inlined function or method.
164 FunctionDecl *Current = S.getCurFunctionDecl();
165 if (!Current)
166 return;
167 if (!Current->isInlined())
168 return;
169 if (!Current->isExternallyVisible())
170 return;
171
172 // Check if the decl has internal linkage.
173 if (D->getFormalLinkage() != InternalLinkage)
174 return;
175
176 // Downgrade from ExtWarn to Extension if
177 // (1) the supposedly external inline function is in the main file,
178 // and probably won't be included anywhere else.
179 // (2) the thing we're referencing is a pure function.
180 // (3) the thing we're referencing is another inline function.
181 // This last can give us false negatives, but it's better than warning on
182 // wrappers for simple C library functions.
183 const FunctionDecl *UsedFn = dyn_cast<FunctionDecl>(D);
184 bool DowngradeWarning = S.getSourceManager().isInMainFile(Loc);
185 if (!DowngradeWarning && UsedFn)
186 DowngradeWarning = UsedFn->isInlined() || UsedFn->hasAttr<ConstAttr>();
187
188 S.Diag(Loc, DowngradeWarning ? diag::ext_internal_in_extern_inline_quiet
189 : diag::ext_internal_in_extern_inline)
190 << /*IsVar=*/!UsedFn << D;
191
192 S.MaybeSuggestAddingStaticToDecl(Current);
193
194 S.Diag(D->getCanonicalDecl()->getLocation(), diag::note_entity_declared_at)
195 << D;
196}
197
198void Sema::MaybeSuggestAddingStaticToDecl(const FunctionDecl *Cur) {
199 const FunctionDecl *First = Cur->getFirstDecl();
200
201 // Suggest "static" on the function, if possible.
202 if (!hasAnyExplicitStorageClass(First)) {
203 SourceLocation DeclBegin = First->getSourceRange().getBegin();
204 Diag(DeclBegin, diag::note_convert_inline_to_static)
205 << Cur << FixItHint::CreateInsertion(DeclBegin, "static ");
206 }
207}
208
209/// Determine whether the use of this declaration is valid, and
210/// emit any corresponding diagnostics.
211///
212/// This routine diagnoses various problems with referencing
213/// declarations that can occur when using a declaration. For example,
214/// it might warn if a deprecated or unavailable declaration is being
215/// used, or produce an error (and return true) if a C++0x deleted
216/// function is being used.
217///
218/// \returns true if there was an error (this declaration cannot be
219/// referenced), false otherwise.
220///
221bool Sema::DiagnoseUseOfDecl(NamedDecl *D, ArrayRef<SourceLocation> Locs,
222 const ObjCInterfaceDecl *UnknownObjCClass,
223 bool ObjCPropertyAccess,
224 bool AvoidPartialAvailabilityChecks,
225 ObjCInterfaceDecl *ClassReceiver) {
226 SourceLocation Loc = Locs.front();
227 if (getLangOpts().CPlusPlus && isa<FunctionDecl>(D)) {
228 // If there were any diagnostics suppressed by template argument deduction,
229 // emit them now.
230 auto Pos = SuppressedDiagnostics.find(D->getCanonicalDecl());
231 if (Pos != SuppressedDiagnostics.end()) {
232 for (const PartialDiagnosticAt &Suppressed : Pos->second)
233 Diag(Suppressed.first, Suppressed.second);
234
235 // Clear out the list of suppressed diagnostics, so that we don't emit
236 // them again for this specialization. However, we don't obsolete this
237 // entry from the table, because we want to avoid ever emitting these
238 // diagnostics again.
239 Pos->second.clear();
240 }
241
242 // C++ [basic.start.main]p3:
243 // The function 'main' shall not be used within a program.
244 if (cast<FunctionDecl>(D)->isMain())
245 Diag(Loc, diag::ext_main_used);
246
247 diagnoseUnavailableAlignedAllocation(*cast<FunctionDecl>(D), Loc);
248 }
249
250 // See if this is an auto-typed variable whose initializer we are parsing.
251 if (ParsingInitForAutoVars.count(D)) {
252 if (isa<BindingDecl>(D)) {
253 Diag(Loc, diag::err_binding_cannot_appear_in_own_initializer)
254 << D->getDeclName();
255 } else {
256 Diag(Loc, diag::err_auto_variable_cannot_appear_in_own_initializer)
257 << D->getDeclName() << cast<VarDecl>(D)->getType();
258 }
259 return true;
260 }
261
262 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
263 // See if this is a deleted function.
264 if (FD->isDeleted()) {
265 auto *Ctor = dyn_cast<CXXConstructorDecl>(FD);
266 if (Ctor && Ctor->isInheritingConstructor())
267 Diag(Loc, diag::err_deleted_inherited_ctor_use)
268 << Ctor->getParent()
269 << Ctor->getInheritedConstructor().getConstructor()->getParent();
270 else
271 Diag(Loc, diag::err_deleted_function_use);
272 NoteDeletedFunction(FD);
273 return true;
274 }
275
276 // [expr.prim.id]p4
277 // A program that refers explicitly or implicitly to a function with a
278 // trailing requires-clause whose constraint-expression is not satisfied,
279 // other than to declare it, is ill-formed. [...]
280 //
281 // See if this is a function with constraints that need to be satisfied.
282 // Check this before deducing the return type, as it might instantiate the
283 // definition.
284 if (FD->getTrailingRequiresClause()) {
285 ConstraintSatisfaction Satisfaction;
286 if (CheckFunctionConstraints(FD, Satisfaction, Loc,
287 /*ForOverloadResolution*/ true))
288 // A diagnostic will have already been generated (non-constant
289 // constraint expression, for example)
290 return true;
291 if (!Satisfaction.IsSatisfied) {
292 Diag(Loc,
293 diag::err_reference_to_function_with_unsatisfied_constraints)
294 << D;
295 DiagnoseUnsatisfiedConstraint(Satisfaction);
296 return true;
297 }
298 }
299
300 // If the function has a deduced return type, and we can't deduce it,
301 // then we can't use it either.
302 if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
303 DeduceReturnType(FD, Loc))
304 return true;
305
306 if (getLangOpts().CUDA && !CheckCUDACall(Loc, FD))
307 return true;
308
309 if (getLangOpts().SYCLIsDevice && !checkSYCLDeviceFunction(Loc, FD))
310 return true;
311 }
312
313 if (auto *MD = dyn_cast<CXXMethodDecl>(D)) {
314 // Lambdas are only default-constructible or assignable in C++2a onwards.
315 if (MD->getParent()->isLambda() &&
316 ((isa<CXXConstructorDecl>(MD) &&
317 cast<CXXConstructorDecl>(MD)->isDefaultConstructor()) ||
318 MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator())) {
319 Diag(Loc, diag::warn_cxx17_compat_lambda_def_ctor_assign)
320 << !isa<CXXConstructorDecl>(MD);
321 }
322 }
323
324 auto getReferencedObjCProp = [](const NamedDecl *D) ->
325 const ObjCPropertyDecl * {
326 if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
327 return MD->findPropertyDecl();
328 return nullptr;
329 };
330 if (const ObjCPropertyDecl *ObjCPDecl = getReferencedObjCProp(D)) {
331 if (diagnoseArgIndependentDiagnoseIfAttrs(ObjCPDecl, Loc))
332 return true;
333 } else if (diagnoseArgIndependentDiagnoseIfAttrs(D, Loc)) {
334 return true;
335 }
336
337 // [OpenMP 4.0], 2.15 declare reduction Directive, Restrictions
338 // Only the variables omp_in and omp_out are allowed in the combiner.
339 // Only the variables omp_priv and omp_orig are allowed in the
340 // initializer-clause.
341 auto *DRD = dyn_cast<OMPDeclareReductionDecl>(CurContext);
342 if (LangOpts.OpenMP && DRD && !CurContext->containsDecl(D) &&
343 isa<VarDecl>(D)) {
344 Diag(Loc, diag::err_omp_wrong_var_in_declare_reduction)
345 << getCurFunction()->HasOMPDeclareReductionCombiner;
346 Diag(D->getLocation(), diag::note_entity_declared_at) << D;
347 return true;
348 }
349
350 // [OpenMP 5.0], 2.19.7.3. declare mapper Directive, Restrictions
351 // List-items in map clauses on this construct may only refer to the declared
352 // variable var and entities that could be referenced by a procedure defined
353 // at the same location
354 if (LangOpts.OpenMP && isa<VarDecl>(D) &&
355 !isOpenMPDeclareMapperVarDeclAllowed(cast<VarDecl>(D))) {
356 Diag(Loc, diag::err_omp_declare_mapper_wrong_var)
357 << getOpenMPDeclareMapperVarName();
358 Diag(D->getLocation(), diag::note_entity_declared_at) << D;
359 return true;
360 }
361
362 if (const auto *EmptyD = dyn_cast<UnresolvedUsingIfExistsDecl>(D)) {
363 Diag(Loc, diag::err_use_of_empty_using_if_exists);
364 Diag(EmptyD->getLocation(), diag::note_empty_using_if_exists_here);
365 return true;
366 }
367
368 DiagnoseAvailabilityOfDecl(D, Locs, UnknownObjCClass, ObjCPropertyAccess,
369 AvoidPartialAvailabilityChecks, ClassReceiver);
370
371 DiagnoseUnusedOfDecl(*this, D, Loc);
372
373 diagnoseUseOfInternalDeclInInlineFunction(*this, D, Loc);
374
375 if (auto *VD = dyn_cast<ValueDecl>(D))
376 checkTypeSupport(VD->getType(), Loc, VD);
377
378 if (LangOpts.SYCLIsDevice || (LangOpts.OpenMP && LangOpts.OpenMPIsDevice)) {
379 if (!Context.getTargetInfo().isTLSSupported())
380 if (const auto *VD = dyn_cast<VarDecl>(D))
381 if (VD->getTLSKind() != VarDecl::TLS_None)
382 targetDiag(*Locs.begin(), diag::err_thread_unsupported);
383 }
384
385 if (isa<ParmVarDecl>(D) && isa<RequiresExprBodyDecl>(D->getDeclContext()) &&
386 !isUnevaluatedContext()) {
387 // C++ [expr.prim.req.nested] p3
388 // A local parameter shall only appear as an unevaluated operand
389 // (Clause 8) within the constraint-expression.
390 Diag(Loc, diag::err_requires_expr_parameter_referenced_in_evaluated_context)
391 << D;
392 Diag(D->getLocation(), diag::note_entity_declared_at) << D;
393 return true;
394 }
395
396 return false;
397}
398
399/// DiagnoseSentinelCalls - This routine checks whether a call or
400/// message-send is to a declaration with the sentinel attribute, and
401/// if so, it checks that the requirements of the sentinel are
402/// satisfied.
403void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
404 ArrayRef<Expr *> Args) {
405 const SentinelAttr *attr = D->getAttr<SentinelAttr>();
406 if (!attr)
407 return;
408
409 // The number of formal parameters of the declaration.
410 unsigned numFormalParams;
411
412 // The kind of declaration. This is also an index into a %select in
413 // the diagnostic.
414 enum CalleeType { CT_Function, CT_Method, CT_Block } calleeType;
415
416 if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
417 numFormalParams = MD->param_size();
418 calleeType = CT_Method;
419 } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
420 numFormalParams = FD->param_size();
421 calleeType = CT_Function;
422 } else if (isa<VarDecl>(D)) {
423 QualType type = cast<ValueDecl>(D)->getType();
424 const FunctionType *fn = nullptr;
425 if (const PointerType *ptr = type->getAs<PointerType>()) {
426 fn = ptr->getPointeeType()->getAs<FunctionType>();
427 if (!fn) return;
428 calleeType = CT_Function;
429 } else if (const BlockPointerType *ptr = type->getAs<BlockPointerType>()) {
430 fn = ptr->getPointeeType()->castAs<FunctionType>();
431 calleeType = CT_Block;
432 } else {
433 return;
434 }
435
436 if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fn)) {
437 numFormalParams = proto->getNumParams();
438 } else {
439 numFormalParams = 0;
440 }
441 } else {
442 return;
443 }
444
445 // "nullPos" is the number of formal parameters at the end which
446 // effectively count as part of the variadic arguments. This is
447 // useful if you would prefer to not have *any* formal parameters,
448 // but the language forces you to have at least one.
449 unsigned nullPos = attr->getNullPos();
450 assert((nullPos == 0 || nullPos == 1) && "invalid null position on sentinel")(static_cast <bool> ((nullPos == 0 || nullPos == 1) &&
"invalid null position on sentinel") ? void (0) : __assert_fail
("(nullPos == 0 || nullPos == 1) && \"invalid null position on sentinel\""
, "clang/lib/Sema/SemaExpr.cpp", 450, __extension__ __PRETTY_FUNCTION__
))
;
451 numFormalParams = (nullPos > numFormalParams ? 0 : numFormalParams - nullPos);
452
453 // The number of arguments which should follow the sentinel.
454 unsigned numArgsAfterSentinel = attr->getSentinel();
455
456 // If there aren't enough arguments for all the formal parameters,
457 // the sentinel, and the args after the sentinel, complain.
458 if (Args.size() < numFormalParams + numArgsAfterSentinel + 1) {
459 Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
460 Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType);
461 return;
462 }
463
464 // Otherwise, find the sentinel expression.
465 Expr *sentinelExpr = Args[Args.size() - numArgsAfterSentinel - 1];
466 if (!sentinelExpr) return;
467 if (sentinelExpr->isValueDependent()) return;
468 if (Context.isSentinelNullExpr(sentinelExpr)) return;
469
470 // Pick a reasonable string to insert. Optimistically use 'nil', 'nullptr',
471 // or 'NULL' if those are actually defined in the context. Only use
472 // 'nil' for ObjC methods, where it's much more likely that the
473 // variadic arguments form a list of object pointers.
474 SourceLocation MissingNilLoc = getLocForEndOfToken(sentinelExpr->getEndLoc());
475 std::string NullValue;
476 if (calleeType == CT_Method && PP.isMacroDefined("nil"))
477 NullValue = "nil";
478 else if (getLangOpts().CPlusPlus11)
479 NullValue = "nullptr";
480 else if (PP.isMacroDefined("NULL"))
481 NullValue = "NULL";
482 else
483 NullValue = "(void*) 0";
484
485 if (MissingNilLoc.isInvalid())
486 Diag(Loc, diag::warn_missing_sentinel) << int(calleeType);
487 else
488 Diag(MissingNilLoc, diag::warn_missing_sentinel)
489 << int(calleeType)
490 << FixItHint::CreateInsertion(MissingNilLoc, ", " + NullValue);
491 Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType);
492}
493
494SourceRange Sema::getExprRange(Expr *E) const {
495 return E ? E->getSourceRange() : SourceRange();
496}
497
498//===----------------------------------------------------------------------===//
499// Standard Promotions and Conversions
500//===----------------------------------------------------------------------===//
501
502/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
503ExprResult Sema::DefaultFunctionArrayConversion(Expr *E, bool Diagnose) {
504 // Handle any placeholder expressions which made it here.
505 if (E->hasPlaceholderType()) {
506 ExprResult result = CheckPlaceholderExpr(E);
507 if (result.isInvalid()) return ExprError();
508 E = result.get();
509 }
510
511 QualType Ty = E->getType();
512 assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type")(static_cast <bool> (!Ty.isNull() && "DefaultFunctionArrayConversion - missing type"
) ? void (0) : __assert_fail ("!Ty.isNull() && \"DefaultFunctionArrayConversion - missing type\""
, "clang/lib/Sema/SemaExpr.cpp", 512, __extension__ __PRETTY_FUNCTION__
))
;
513
514 if (Ty->isFunctionType()) {
515 if (auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts()))
516 if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl()))
517 if (!checkAddressOfFunctionIsAvailable(FD, Diagnose, E->getExprLoc()))
518 return ExprError();
519
520 E = ImpCastExprToType(E, Context.getPointerType(Ty),
521 CK_FunctionToPointerDecay).get();
522 } else if (Ty->isArrayType()) {
523 // In C90 mode, arrays only promote to pointers if the array expression is
524 // an lvalue. The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
525 // type 'array of type' is converted to an expression that has type 'pointer
526 // to type'...". In C99 this was changed to: C99 6.3.2.1p3: "an expression
527 // that has type 'array of type' ...". The relevant change is "an lvalue"
528 // (C90) to "an expression" (C99).
529 //
530 // C++ 4.2p1:
531 // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
532 // T" can be converted to an rvalue of type "pointer to T".
533 //
534 if (getLangOpts().C99 || getLangOpts().CPlusPlus || E->isLValue()) {
535 ExprResult Res = ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
536 CK_ArrayToPointerDecay);
537 if (Res.isInvalid())
538 return ExprError();
539 E = Res.get();
540 }
541 }
542 return E;
543}
544
545static void CheckForNullPointerDereference(Sema &S, Expr *E) {
546 // Check to see if we are dereferencing a null pointer. If so,
547 // and if not volatile-qualified, this is undefined behavior that the
548 // optimizer will delete, so warn about it. People sometimes try to use this
549 // to get a deterministic trap and are surprised by clang's behavior. This
550 // only handles the pattern "*null", which is a very syntactic check.
551 const auto *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts());
552 if (UO && UO->getOpcode() == UO_Deref &&
553 UO->getSubExpr()->getType()->isPointerType()) {
554 const LangAS AS =
555 UO->getSubExpr()->getType()->getPointeeType().getAddressSpace();
556 if ((!isTargetAddressSpace(AS) ||
557 (isTargetAddressSpace(AS) && toTargetAddressSpace(AS) == 0)) &&
558 UO->getSubExpr()->IgnoreParenCasts()->isNullPointerConstant(
559 S.Context, Expr::NPC_ValueDependentIsNotNull) &&
560 !UO->getType().isVolatileQualified()) {
561 S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
562 S.PDiag(diag::warn_indirection_through_null)
563 << UO->getSubExpr()->getSourceRange());
564 S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
565 S.PDiag(diag::note_indirection_through_null));
566 }
567 }
568}
569
570static void DiagnoseDirectIsaAccess(Sema &S, const ObjCIvarRefExpr *OIRE,
571 SourceLocation AssignLoc,
572 const Expr* RHS) {
573 const ObjCIvarDecl *IV = OIRE->getDecl();
574 if (!IV)
575 return;
576
577 DeclarationName MemberName = IV->getDeclName();
578 IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
579 if (!Member || !Member->isStr("isa"))
580 return;
581
582 const Expr *Base = OIRE->getBase();
583 QualType BaseType = Base->getType();
584 if (OIRE->isArrow())
585 BaseType = BaseType->getPointeeType();
586 if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>())
587 if (ObjCInterfaceDecl *IDecl = OTy->getInterface()) {
588 ObjCInterfaceDecl *ClassDeclared = nullptr;
589 ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
590 if (!ClassDeclared->getSuperClass()
591 && (*ClassDeclared->ivar_begin()) == IV) {
592 if (RHS) {
593 NamedDecl *ObjectSetClass =
594 S.LookupSingleName(S.TUScope,
595 &S.Context.Idents.get("object_setClass"),
596 SourceLocation(), S.LookupOrdinaryName);
597 if (ObjectSetClass) {
598 SourceLocation RHSLocEnd = S.getLocForEndOfToken(RHS->getEndLoc());
599 S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_assign)
600 << FixItHint::CreateInsertion(OIRE->getBeginLoc(),
601 "object_setClass(")
602 << FixItHint::CreateReplacement(
603 SourceRange(OIRE->getOpLoc(), AssignLoc), ",")
604 << FixItHint::CreateInsertion(RHSLocEnd, ")");
605 }
606 else
607 S.Diag(OIRE->getLocation(), diag::warn_objc_isa_assign);
608 } else {
609 NamedDecl *ObjectGetClass =
610 S.LookupSingleName(S.TUScope,
611 &S.Context.Idents.get("object_getClass"),
612 SourceLocation(), S.LookupOrdinaryName);
613 if (ObjectGetClass)
614 S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_use)
615 << FixItHint::CreateInsertion(OIRE->getBeginLoc(),
616 "object_getClass(")
617 << FixItHint::CreateReplacement(
618 SourceRange(OIRE->getOpLoc(), OIRE->getEndLoc()), ")");
619 else
620 S.Diag(OIRE->getLocation(), diag::warn_objc_isa_use);
621 }
622 S.Diag(IV->getLocation(), diag::note_ivar_decl);
623 }
624 }
625}
626
627ExprResult Sema::DefaultLvalueConversion(Expr *E) {
628 // Handle any placeholder expressions which made it here.
629 if (E->hasPlaceholderType()) {
630 ExprResult result = CheckPlaceholderExpr(E);
631 if (result.isInvalid()) return ExprError();
632 E = result.get();
633 }
634
635 // C++ [conv.lval]p1:
636 // A glvalue of a non-function, non-array type T can be
637 // converted to a prvalue.
638 if (!E->isGLValue()) return E;
639
640 QualType T = E->getType();
641 assert(!T.isNull() && "r-value conversion on typeless expression?")(static_cast <bool> (!T.isNull() && "r-value conversion on typeless expression?"
) ? void (0) : __assert_fail ("!T.isNull() && \"r-value conversion on typeless expression?\""
, "clang/lib/Sema/SemaExpr.cpp", 641, __extension__ __PRETTY_FUNCTION__
))
;
642
643 // lvalue-to-rvalue conversion cannot be applied to function or array types.
644 if (T->isFunctionType() || T->isArrayType())
645 return E;
646
647 // We don't want to throw lvalue-to-rvalue casts on top of
648 // expressions of certain types in C++.
649 if (getLangOpts().CPlusPlus &&
650 (E->getType() == Context.OverloadTy ||
651 T->isDependentType() ||
652 T->isRecordType()))
653 return E;
654
655 // The C standard is actually really unclear on this point, and
656 // DR106 tells us what the result should be but not why. It's
657 // generally best to say that void types just doesn't undergo
658 // lvalue-to-rvalue at all. Note that expressions of unqualified
659 // 'void' type are never l-values, but qualified void can be.
660 if (T->isVoidType())
661 return E;
662
663 // OpenCL usually rejects direct accesses to values of 'half' type.
664 if (getLangOpts().OpenCL &&
665 !getOpenCLOptions().isAvailableOption("cl_khr_fp16", getLangOpts()) &&
666 T->isHalfType()) {
667 Diag(E->getExprLoc(), diag::err_opencl_half_load_store)
668 << 0 << T;
669 return ExprError();
670 }
671
672 CheckForNullPointerDereference(*this, E);
673 if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(E->IgnoreParenCasts())) {
674 NamedDecl *ObjectGetClass = LookupSingleName(TUScope,
675 &Context.Idents.get("object_getClass"),
676 SourceLocation(), LookupOrdinaryName);
677 if (ObjectGetClass)
678 Diag(E->getExprLoc(), diag::warn_objc_isa_use)
679 << FixItHint::CreateInsertion(OISA->getBeginLoc(), "object_getClass(")
680 << FixItHint::CreateReplacement(
681 SourceRange(OISA->getOpLoc(), OISA->getIsaMemberLoc()), ")");
682 else
683 Diag(E->getExprLoc(), diag::warn_objc_isa_use);
684 }
685 else if (const ObjCIvarRefExpr *OIRE =
686 dyn_cast<ObjCIvarRefExpr>(E->IgnoreParenCasts()))
687 DiagnoseDirectIsaAccess(*this, OIRE, SourceLocation(), /* Expr*/nullptr);
688
689 // C++ [conv.lval]p1:
690 // [...] If T is a non-class type, the type of the prvalue is the
691 // cv-unqualified version of T. Otherwise, the type of the
692 // rvalue is T.
693 //
694 // C99 6.3.2.1p2:
695 // If the lvalue has qualified type, the value has the unqualified
696 // version of the type of the lvalue; otherwise, the value has the
697 // type of the lvalue.
698 if (T.hasQualifiers())
699 T = T.getUnqualifiedType();
700
701 // Under the MS ABI, lock down the inheritance model now.
702 if (T->isMemberPointerType() &&
703 Context.getTargetInfo().getCXXABI().isMicrosoft())
704 (void)isCompleteType(E->getExprLoc(), T);
705
706 ExprResult Res = CheckLValueToRValueConversionOperand(E);
707 if (Res.isInvalid())
708 return Res;
709 E = Res.get();
710
711 // Loading a __weak object implicitly retains the value, so we need a cleanup to
712 // balance that.
713 if (E->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
714 Cleanup.setExprNeedsCleanups(true);
715
716 if (E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct)
717 Cleanup.setExprNeedsCleanups(true);
718
719 // C++ [conv.lval]p3:
720 // If T is cv std::nullptr_t, the result is a null pointer constant.
721 CastKind CK = T->isNullPtrType() ? CK_NullToPointer : CK_LValueToRValue;
722 Res = ImplicitCastExpr::Create(Context, T, CK, E, nullptr, VK_PRValue,
723 CurFPFeatureOverrides());
724
725 // C11 6.3.2.1p2:
726 // ... if the lvalue has atomic type, the value has the non-atomic version
727 // of the type of the lvalue ...
728 if (const AtomicType *Atomic = T->getAs<AtomicType>()) {
729 T = Atomic->getValueType().getUnqualifiedType();
730 Res = ImplicitCastExpr::Create(Context, T, CK_AtomicToNonAtomic, Res.get(),
731 nullptr, VK_PRValue, FPOptionsOverride());
732 }
733
734 return Res;
735}
736
737ExprResult Sema::DefaultFunctionArrayLvalueConversion(Expr *E, bool Diagnose) {
738 ExprResult Res = DefaultFunctionArrayConversion(E, Diagnose);
739 if (Res.isInvalid())
740 return ExprError();
741 Res = DefaultLvalueConversion(Res.get());
742 if (Res.isInvalid())
743 return ExprError();
744 return Res;
745}
746
747/// CallExprUnaryConversions - a special case of an unary conversion
748/// performed on a function designator of a call expression.
749ExprResult Sema::CallExprUnaryConversions(Expr *E) {
750 QualType Ty = E->getType();
751 ExprResult Res = E;
752 // Only do implicit cast for a function type, but not for a pointer
753 // to function type.
754 if (Ty->isFunctionType()) {
755 Res = ImpCastExprToType(E, Context.getPointerType(Ty),
756 CK_FunctionToPointerDecay);
757 if (Res.isInvalid())
758 return ExprError();
759 }
760 Res = DefaultLvalueConversion(Res.get());
761 if (Res.isInvalid())
762 return ExprError();
763 return Res.get();
764}
765
766/// UsualUnaryConversions - Performs various conversions that are common to most
767/// operators (C99 6.3). The conversions of array and function types are
768/// sometimes suppressed. For example, the array->pointer conversion doesn't
769/// apply if the array is an argument to the sizeof or address (&) operators.
770/// In these instances, this routine should *not* be called.
771ExprResult Sema::UsualUnaryConversions(Expr *E) {
772 // First, convert to an r-value.
773 ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
774 if (Res.isInvalid())
775 return ExprError();
776 E = Res.get();
777
778 QualType Ty = E->getType();
779 assert(!Ty.isNull() && "UsualUnaryConversions - missing type")(static_cast <bool> (!Ty.isNull() && "UsualUnaryConversions - missing type"
) ? void (0) : __assert_fail ("!Ty.isNull() && \"UsualUnaryConversions - missing type\""
, "clang/lib/Sema/SemaExpr.cpp", 779, __extension__ __PRETTY_FUNCTION__
))
;
780
781 LangOptions::FPEvalMethodKind EvalMethod = CurFPFeatures.getFPEvalMethod();
782 if (EvalMethod != LangOptions::FEM_Source && Ty->isFloatingType() &&
783 (getLangOpts().getFPEvalMethod() !=
784 LangOptions::FPEvalMethodKind::FEM_UnsetOnCommandLine ||
785 PP.getLastFPEvalPragmaLocation().isValid())) {
786 switch (EvalMethod) {
787 default:
788 llvm_unreachable("Unrecognized float evaluation method")::llvm::llvm_unreachable_internal("Unrecognized float evaluation method"
, "clang/lib/Sema/SemaExpr.cpp", 788)
;
789 break;
790 case LangOptions::FEM_UnsetOnCommandLine:
791 llvm_unreachable("Float evaluation method should be set by now")::llvm::llvm_unreachable_internal("Float evaluation method should be set by now"
, "clang/lib/Sema/SemaExpr.cpp", 791)
;
792 break;
793 case LangOptions::FEM_Double:
794 if (Context.getFloatingTypeOrder(Context.DoubleTy, Ty) > 0)
795 // Widen the expression to double.
796 return Ty->isComplexType()
797 ? ImpCastExprToType(E,
798 Context.getComplexType(Context.DoubleTy),
799 CK_FloatingComplexCast)
800 : ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast);
801 break;
802 case LangOptions::FEM_Extended:
803 if (Context.getFloatingTypeOrder(Context.LongDoubleTy, Ty) > 0)
804 // Widen the expression to long double.
805 return Ty->isComplexType()
806 ? ImpCastExprToType(
807 E, Context.getComplexType(Context.LongDoubleTy),
808 CK_FloatingComplexCast)
809 : ImpCastExprToType(E, Context.LongDoubleTy,
810 CK_FloatingCast);
811 break;
812 }
813 }
814
815 // Half FP have to be promoted to float unless it is natively supported
816 if (Ty->isHalfType() && !getLangOpts().NativeHalfType)
817 return ImpCastExprToType(Res.get(), Context.FloatTy, CK_FloatingCast);
818
819 // Try to perform integral promotions if the object has a theoretically
820 // promotable type.
821 if (Ty->isIntegralOrUnscopedEnumerationType()) {
822 // C99 6.3.1.1p2:
823 //
824 // The following may be used in an expression wherever an int or
825 // unsigned int may be used:
826 // - an object or expression with an integer type whose integer
827 // conversion rank is less than or equal to the rank of int
828 // and unsigned int.
829 // - A bit-field of type _Bool, int, signed int, or unsigned int.
830 //
831 // If an int can represent all values of the original type, the
832 // value is converted to an int; otherwise, it is converted to an
833 // unsigned int. These are called the integer promotions. All
834 // other types are unchanged by the integer promotions.
835
836 QualType PTy = Context.isPromotableBitField(E);
837 if (!PTy.isNull()) {
838 E = ImpCastExprToType(E, PTy, CK_IntegralCast).get();
839 return E;
840 }
841 if (Ty->isPromotableIntegerType()) {
842 QualType PT = Context.getPromotedIntegerType(Ty);
843 E = ImpCastExprToType(E, PT, CK_IntegralCast).get();
844 return E;
845 }
846 }
847 return E;
848}
849
850/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
851/// do not have a prototype. Arguments that have type float or __fp16
852/// are promoted to double. All other argument types are converted by
853/// UsualUnaryConversions().
854ExprResult Sema::DefaultArgumentPromotion(Expr *E) {
855 QualType Ty = E->getType();
856 assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type")(static_cast <bool> (!Ty.isNull() && "DefaultArgumentPromotion - missing type"
) ? void (0) : __assert_fail ("!Ty.isNull() && \"DefaultArgumentPromotion - missing type\""
, "clang/lib/Sema/SemaExpr.cpp", 856, __extension__ __PRETTY_FUNCTION__
))
;
857
858 ExprResult Res = UsualUnaryConversions(E);
859 if (Res.isInvalid())
860 return ExprError();
861 E = Res.get();
862
863 // If this is a 'float' or '__fp16' (CVR qualified or typedef)
864 // promote to double.
865 // Note that default argument promotion applies only to float (and
866 // half/fp16); it does not apply to _Float16.
867 const BuiltinType *BTy = Ty->getAs<BuiltinType>();
868 if (BTy && (BTy->getKind() == BuiltinType::Half ||
869 BTy->getKind() == BuiltinType::Float)) {
870 if (getLangOpts().OpenCL &&
871 !getOpenCLOptions().isAvailableOption("cl_khr_fp64", getLangOpts())) {
872 if (BTy->getKind() == BuiltinType::Half) {
873 E = ImpCastExprToType(E, Context.FloatTy, CK_FloatingCast).get();
874 }
875 } else {
876 E = ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast).get();
877 }
878 }
879 if (BTy &&
880 getLangOpts().getExtendIntArgs() ==
881 LangOptions::ExtendArgsKind::ExtendTo64 &&
882 Context.getTargetInfo().supportsExtendIntArgs() && Ty->isIntegerType() &&
883 Context.getTypeSizeInChars(BTy) <
884 Context.getTypeSizeInChars(Context.LongLongTy)) {
885 E = (Ty->isUnsignedIntegerType())
886 ? ImpCastExprToType(E, Context.UnsignedLongLongTy, CK_IntegralCast)
887 .get()
888 : ImpCastExprToType(E, Context.LongLongTy, CK_IntegralCast).get();
889 assert(8 == Context.getTypeSizeInChars(Context.LongLongTy).getQuantity() &&(static_cast <bool> (8 == Context.getTypeSizeInChars(Context
.LongLongTy).getQuantity() && "Unexpected typesize for LongLongTy"
) ? void (0) : __assert_fail ("8 == Context.getTypeSizeInChars(Context.LongLongTy).getQuantity() && \"Unexpected typesize for LongLongTy\""
, "clang/lib/Sema/SemaExpr.cpp", 890, __extension__ __PRETTY_FUNCTION__
))
890 "Unexpected typesize for LongLongTy")(static_cast <bool> (8 == Context.getTypeSizeInChars(Context
.LongLongTy).getQuantity() && "Unexpected typesize for LongLongTy"
) ? void (0) : __assert_fail ("8 == Context.getTypeSizeInChars(Context.LongLongTy).getQuantity() && \"Unexpected typesize for LongLongTy\""
, "clang/lib/Sema/SemaExpr.cpp", 890, __extension__ __PRETTY_FUNCTION__
))
;
891 }
892
893 // C++ performs lvalue-to-rvalue conversion as a default argument
894 // promotion, even on class types, but note:
895 // C++11 [conv.lval]p2:
896 // When an lvalue-to-rvalue conversion occurs in an unevaluated
897 // operand or a subexpression thereof the value contained in the
898 // referenced object is not accessed. Otherwise, if the glvalue
899 // has a class type, the conversion copy-initializes a temporary
900 // of type T from the glvalue and the result of the conversion
901 // is a prvalue for the temporary.
902 // FIXME: add some way to gate this entire thing for correctness in
903 // potentially potentially evaluated contexts.
904 if (getLangOpts().CPlusPlus && E->isGLValue() && !isUnevaluatedContext()) {
905 ExprResult Temp = PerformCopyInitialization(
906 InitializedEntity::InitializeTemporary(E->getType()),
907 E->getExprLoc(), E);
908 if (Temp.isInvalid())
909 return ExprError();
910 E = Temp.get();
911 }
912
913 return E;
914}
915
916/// Determine the degree of POD-ness for an expression.
917/// Incomplete types are considered POD, since this check can be performed
918/// when we're in an unevaluated context.
919Sema::VarArgKind Sema::isValidVarArgType(const QualType &Ty) {
920 if (Ty->isIncompleteType()) {
921 // C++11 [expr.call]p7:
922 // After these conversions, if the argument does not have arithmetic,
923 // enumeration, pointer, pointer to member, or class type, the program
924 // is ill-formed.
925 //
926 // Since we've already performed array-to-pointer and function-to-pointer
927 // decay, the only such type in C++ is cv void. This also handles
928 // initializer lists as variadic arguments.
929 if (Ty->isVoidType())
930 return VAK_Invalid;
931
932 if (Ty->isObjCObjectType())
933 return VAK_Invalid;
934 return VAK_Valid;
935 }
936
937 if (Ty.isDestructedType() == QualType::DK_nontrivial_c_struct)
938 return VAK_Invalid;
939
940 if (Ty.isCXX98PODType(Context))
941 return VAK_Valid;
942
943 // C++11 [expr.call]p7:
944 // Passing a potentially-evaluated argument of class type (Clause 9)
945 // having a non-trivial copy constructor, a non-trivial move constructor,
946 // or a non-trivial destructor, with no corresponding parameter,
947 // is conditionally-supported with implementation-defined semantics.
948 if (getLangOpts().CPlusPlus11 && !Ty->isDependentType())
949 if (CXXRecordDecl *Record = Ty->getAsCXXRecordDecl())
950 if (!Record->hasNonTrivialCopyConstructor() &&
951 !Record->hasNonTrivialMoveConstructor() &&
952 !Record->hasNonTrivialDestructor())
953 return VAK_ValidInCXX11;
954
955 if (getLangOpts().ObjCAutoRefCount && Ty->isObjCLifetimeType())
956 return VAK_Valid;
957
958 if (Ty->isObjCObjectType())
959 return VAK_Invalid;
960
961 if (getLangOpts().MSVCCompat)
962 return VAK_MSVCUndefined;
963
964 // FIXME: In C++11, these cases are conditionally-supported, meaning we're
965 // permitted to reject them. We should consider doing so.
966 return VAK_Undefined;
967}
968
969void Sema::checkVariadicArgument(const Expr *E, VariadicCallType CT) {
970 // Don't allow one to pass an Objective-C interface to a vararg.
971 const QualType &Ty = E->getType();
972 VarArgKind VAK = isValidVarArgType(Ty);
973
974 // Complain about passing non-POD types through varargs.
975 switch (VAK) {
976 case VAK_ValidInCXX11:
977 DiagRuntimeBehavior(
978 E->getBeginLoc(), nullptr,
979 PDiag(diag::warn_cxx98_compat_pass_non_pod_arg_to_vararg) << Ty << CT);
980 [[fallthrough]];
981 case VAK_Valid:
982 if (Ty->isRecordType()) {
983 // This is unlikely to be what the user intended. If the class has a
984 // 'c_str' member function, the user probably meant to call that.
985 DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
986 PDiag(diag::warn_pass_class_arg_to_vararg)
987 << Ty << CT << hasCStrMethod(E) << ".c_str()");
988 }
989 break;
990
991 case VAK_Undefined:
992 case VAK_MSVCUndefined:
993 DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
994 PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
995 << getLangOpts().CPlusPlus11 << Ty << CT);
996 break;
997
998 case VAK_Invalid:
999 if (Ty.isDestructedType() == QualType::DK_nontrivial_c_struct)
1000 Diag(E->getBeginLoc(),
1001 diag::err_cannot_pass_non_trivial_c_struct_to_vararg)
1002 << Ty << CT;
1003 else if (Ty->isObjCObjectType())
1004 DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
1005 PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
1006 << Ty << CT);
1007 else
1008 Diag(E->getBeginLoc(), diag::err_cannot_pass_to_vararg)
1009 << isa<InitListExpr>(E) << Ty << CT;
1010 break;
1011 }
1012}
1013
1014/// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
1015/// will create a trap if the resulting type is not a POD type.
1016ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
1017 FunctionDecl *FDecl) {
1018 if (const BuiltinType *PlaceholderTy = E->getType()->getAsPlaceholderType()) {
1019 // Strip the unbridged-cast placeholder expression off, if applicable.
1020 if (PlaceholderTy->getKind() == BuiltinType::ARCUnbridgedCast &&
1021 (CT == VariadicMethod ||
1022 (FDecl && FDecl->hasAttr<CFAuditedTransferAttr>()))) {
1023 E = stripARCUnbridgedCast(E);
1024
1025 // Otherwise, do normal placeholder checking.
1026 } else {
1027 ExprResult ExprRes = CheckPlaceholderExpr(E);
1028 if (ExprRes.isInvalid())
1029 return ExprError();
1030 E = ExprRes.get();
1031 }
1032 }
1033
1034 ExprResult ExprRes = DefaultArgumentPromotion(E);
1035 if (ExprRes.isInvalid())
1036 return ExprError();
1037
1038 // Copy blocks to the heap.
1039 if (ExprRes.get()->getType()->isBlockPointerType())
1040 maybeExtendBlockObject(ExprRes);
1041
1042 E = ExprRes.get();
1043
1044 // Diagnostics regarding non-POD argument types are
1045 // emitted along with format string checking in Sema::CheckFunctionCall().
1046 if (isValidVarArgType(E->getType()) == VAK_Undefined) {
1047 // Turn this into a trap.
1048 CXXScopeSpec SS;
1049 SourceLocation TemplateKWLoc;
1050 UnqualifiedId Name;
1051 Name.setIdentifier(PP.getIdentifierInfo("__builtin_trap"),
1052 E->getBeginLoc());
1053 ExprResult TrapFn = ActOnIdExpression(TUScope, SS, TemplateKWLoc, Name,
1054 /*HasTrailingLParen=*/true,
1055 /*IsAddressOfOperand=*/false);
1056 if (TrapFn.isInvalid())
1057 return ExprError();
1058
1059 ExprResult Call = BuildCallExpr(TUScope, TrapFn.get(), E->getBeginLoc(),
1060 None, E->getEndLoc());
1061 if (Call.isInvalid())
1062 return ExprError();
1063
1064 ExprResult Comma =
1065 ActOnBinOp(TUScope, E->getBeginLoc(), tok::comma, Call.get(), E);
1066 if (Comma.isInvalid())
1067 return ExprError();
1068 return Comma.get();
1069 }
1070
1071 if (!getLangOpts().CPlusPlus &&
1072 RequireCompleteType(E->getExprLoc(), E->getType(),
1073 diag::err_call_incomplete_argument))
1074 return ExprError();
1075
1076 return E;
1077}
1078
1079/// Converts an integer to complex float type. Helper function of
1080/// UsualArithmeticConversions()
1081///
1082/// \return false if the integer expression is an integer type and is
1083/// successfully converted to the complex type.
1084static bool handleIntegerToComplexFloatConversion(Sema &S, ExprResult &IntExpr,
1085 ExprResult &ComplexExpr,
1086 QualType IntTy,
1087 QualType ComplexTy,
1088 bool SkipCast) {
1089 if (IntTy->isComplexType() || IntTy->isRealFloatingType()) return true;
1090 if (SkipCast) return false;
1091 if (IntTy->isIntegerType()) {
1092 QualType fpTy = ComplexTy->castAs<ComplexType>()->getElementType();
1093 IntExpr = S.ImpCastExprToType(IntExpr.get(), fpTy, CK_IntegralToFloating);
1094 IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy,
1095 CK_FloatingRealToComplex);
1096 } else {
1097 assert(IntTy->isComplexIntegerType())(static_cast <bool> (IntTy->isComplexIntegerType()) ?
void (0) : __assert_fail ("IntTy->isComplexIntegerType()"
, "clang/lib/Sema/SemaExpr.cpp", 1097, __extension__ __PRETTY_FUNCTION__
))
;
1098 IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy,
1099 CK_IntegralComplexToFloatingComplex);
1100 }
1101 return false;
1102}
1103
1104// This handles complex/complex, complex/float, or float/complex.
1105// When both operands are complex, the shorter operand is converted to the
1106// type of the longer, and that is the type of the result. This corresponds
1107// to what is done when combining two real floating-point operands.
1108// The fun begins when size promotion occur across type domains.
1109// From H&S 6.3.4: When one operand is complex and the other is a real
1110// floating-point type, the less precise type is converted, within it's
1111// real or complex domain, to the precision of the other type. For example,
1112// when combining a "long double" with a "double _Complex", the
1113// "double _Complex" is promoted to "long double _Complex".
1114static QualType handleComplexFloatConversion(Sema &S, ExprResult &Shorter,
1115 QualType ShorterType,
1116 QualType LongerType,
1117 bool PromotePrecision) {
1118 bool LongerIsComplex = isa<ComplexType>(LongerType.getCanonicalType());
1119 QualType Result =
1120 LongerIsComplex ? LongerType : S.Context.getComplexType(LongerType);
1121
1122 if (PromotePrecision) {
1123 if (isa<ComplexType>(ShorterType.getCanonicalType())) {
1124 Shorter =
1125 S.ImpCastExprToType(Shorter.get(), Result, CK_FloatingComplexCast);
1126 } else {
1127 if (LongerIsComplex)
1128 LongerType = LongerType->castAs<ComplexType>()->getElementType();
1129 Shorter = S.ImpCastExprToType(Shorter.get(), LongerType, CK_FloatingCast);
1130 }
1131 }
1132 return Result;
1133}
1134
1135/// Handle arithmetic conversion with complex types. Helper function of
1136/// UsualArithmeticConversions()
1137static QualType handleComplexConversion(Sema &S, ExprResult &LHS,
1138 ExprResult &RHS, QualType LHSType,
1139 QualType RHSType, bool IsCompAssign) {
1140 // if we have an integer operand, the result is the complex type.
1141 if (!handleIntegerToComplexFloatConversion(S, RHS, LHS, RHSType, LHSType,
1142 /*SkipCast=*/false))
1143 return LHSType;
1144 if (!handleIntegerToComplexFloatConversion(S, LHS, RHS, LHSType, RHSType,
1145 /*SkipCast=*/IsCompAssign))
1146 return RHSType;
1147
1148 // Compute the rank of the two types, regardless of whether they are complex.
1149 int Order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
1150 if (Order < 0)
1151 // Promote the precision of the LHS if not an assignment.
1152 return handleComplexFloatConversion(S, LHS, LHSType, RHSType,
1153 /*PromotePrecision=*/!IsCompAssign);
1154 // Promote the precision of the RHS unless it is already the same as the LHS.
1155 return handleComplexFloatConversion(S, RHS, RHSType, LHSType,
1156 /*PromotePrecision=*/Order > 0);
1157}
1158
1159/// Handle arithmetic conversion from integer to float. Helper function
1160/// of UsualArithmeticConversions()
1161static QualType handleIntToFloatConversion(Sema &S, ExprResult &FloatExpr,
1162 ExprResult &IntExpr,
1163 QualType FloatTy, QualType IntTy,
1164 bool ConvertFloat, bool ConvertInt) {
1165 if (IntTy->isIntegerType()) {
1166 if (ConvertInt)
1167 // Convert intExpr to the lhs floating point type.
1168 IntExpr = S.ImpCastExprToType(IntExpr.get(), FloatTy,
1169 CK_IntegralToFloating);
1170 return FloatTy;
1171 }
1172
1173 // Convert both sides to the appropriate complex float.
1174 assert(IntTy->isComplexIntegerType())(static_cast <bool> (IntTy->isComplexIntegerType()) ?
void (0) : __assert_fail ("IntTy->isComplexIntegerType()"
, "clang/lib/Sema/SemaExpr.cpp", 1174, __extension__ __PRETTY_FUNCTION__
))
;
1175 QualType result = S.Context.getComplexType(FloatTy);
1176
1177 // _Complex int -> _Complex float
1178 if (ConvertInt)
1179 IntExpr = S.ImpCastExprToType(IntExpr.get(), result,
1180 CK_IntegralComplexToFloatingComplex);
1181
1182 // float -> _Complex float
1183 if (ConvertFloat)
1184 FloatExpr = S.ImpCastExprToType(FloatExpr.get(), result,
1185 CK_FloatingRealToComplex);
1186
1187 return result;
1188}
1189
1190/// Handle arithmethic conversion with floating point types. Helper
1191/// function of UsualArithmeticConversions()
1192static QualType handleFloatConversion(Sema &S, ExprResult &LHS,
1193 ExprResult &RHS, QualType LHSType,
1194 QualType RHSType, bool IsCompAssign) {
1195 bool LHSFloat = LHSType->isRealFloatingType();
1196 bool RHSFloat = RHSType->isRealFloatingType();
1197
1198 // N1169 4.1.4: If one of the operands has a floating type and the other
1199 // operand has a fixed-point type, the fixed-point operand
1200 // is converted to the floating type [...]
1201 if (LHSType->isFixedPointType() || RHSType->isFixedPointType()) {
1202 if (LHSFloat)
1203 RHS = S.ImpCastExprToType(RHS.get(), LHSType, CK_FixedPointToFloating);
1204 else if (!IsCompAssign)
1205 LHS = S.ImpCastExprToType(LHS.get(), RHSType, CK_FixedPointToFloating);
1206 return LHSFloat ? LHSType : RHSType;
1207 }
1208
1209 // If we have two real floating types, convert the smaller operand
1210 // to the bigger result.
1211 if (LHSFloat && RHSFloat) {
1212 int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
1213 if (order > 0) {
1214 RHS = S.ImpCastExprToType(RHS.get(), LHSType, CK_FloatingCast);
1215 return LHSType;
1216 }
1217
1218 assert(order < 0 && "illegal float comparison")(static_cast <bool> (order < 0 && "illegal float comparison"
) ? void (0) : __assert_fail ("order < 0 && \"illegal float comparison\""
, "clang/lib/Sema/SemaExpr.cpp", 1218, __extension__ __PRETTY_FUNCTION__
))
;
1219 if (!IsCompAssign)
1220 LHS = S.ImpCastExprToType(LHS.get(), RHSType, CK_FloatingCast);
1221 return RHSType;
1222 }
1223
1224 if (LHSFloat) {
1225 // Half FP has to be promoted to float unless it is natively supported
1226 if (LHSType->isHalfType() && !S.getLangOpts().NativeHalfType)
1227 LHSType = S.Context.FloatTy;
1228
1229 return handleIntToFloatConversion(S, LHS, RHS, LHSType, RHSType,
1230 /*ConvertFloat=*/!IsCompAssign,
1231 /*ConvertInt=*/ true);
1232 }
1233 assert(RHSFloat)(static_cast <bool> (RHSFloat) ? void (0) : __assert_fail
("RHSFloat", "clang/lib/Sema/SemaExpr.cpp", 1233, __extension__
__PRETTY_FUNCTION__))
;
1234 return handleIntToFloatConversion(S, RHS, LHS, RHSType, LHSType,
1235 /*ConvertFloat=*/ true,
1236 /*ConvertInt=*/!IsCompAssign);
1237}
1238
1239/// Diagnose attempts to convert between __float128, __ibm128 and
1240/// long double if there is no support for such conversion.
1241/// Helper function of UsualArithmeticConversions().
1242static bool unsupportedTypeConversion(const Sema &S, QualType LHSType,
1243 QualType RHSType) {
1244 // No issue if either is not a floating point type.
1245 if (!LHSType->isFloatingType() || !RHSType->isFloatingType())
1246 return false;
1247
1248 // No issue if both have the same 128-bit float semantics.
1249 auto *LHSComplex = LHSType->getAs<ComplexType>();
1250 auto *RHSComplex = RHSType->getAs<ComplexType>();
1251
1252 QualType LHSElem = LHSComplex ? LHSComplex->getElementType() : LHSType;
1253 QualType RHSElem = RHSComplex ? RHSComplex->getElementType() : RHSType;
1254
1255 const llvm::fltSemantics &LHSSem = S.Context.getFloatTypeSemantics(LHSElem);
1256 const llvm::fltSemantics &RHSSem = S.Context.getFloatTypeSemantics(RHSElem);
1257
1258 if ((&LHSSem != &llvm::APFloat::PPCDoubleDouble() ||
1259 &RHSSem != &llvm::APFloat::IEEEquad()) &&
1260 (&LHSSem != &llvm::APFloat::IEEEquad() ||
1261 &RHSSem != &llvm::APFloat::PPCDoubleDouble()))
1262 return false;
1263
1264 return true;
1265}
1266
1267typedef ExprResult PerformCastFn(Sema &S, Expr *operand, QualType toType);
1268
1269namespace {
1270/// These helper callbacks are placed in an anonymous namespace to
1271/// permit their use as function template parameters.
1272ExprResult doIntegralCast(Sema &S, Expr *op, QualType toType) {
1273 return S.ImpCastExprToType(op, toType, CK_IntegralCast);
1274}
1275
1276ExprResult doComplexIntegralCast(Sema &S, Expr *op, QualType toType) {
1277 return S.ImpCastExprToType(op, S.Context.getComplexType(toType),
1278 CK_IntegralComplexCast);
1279}
1280}
1281
1282/// Handle integer arithmetic conversions. Helper function of
1283/// UsualArithmeticConversions()
1284template <PerformCastFn doLHSCast, PerformCastFn doRHSCast>
1285static QualType handleIntegerConversion(Sema &S, ExprResult &LHS,
1286 ExprResult &RHS, QualType LHSType,
1287 QualType RHSType, bool IsCompAssign) {
1288 // The rules for this case are in C99 6.3.1.8
1289 int order = S.Context.getIntegerTypeOrder(LHSType, RHSType);
1290 bool LHSSigned = LHSType->hasSignedIntegerRepresentation();
1291 bool RHSSigned = RHSType->hasSignedIntegerRepresentation();
1292 if (LHSSigned == RHSSigned) {
1293 // Same signedness; use the higher-ranked type
1294 if (order >= 0) {
1295 RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1296 return LHSType;
1297 } else if (!IsCompAssign)
1298 LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1299 return RHSType;
1300 } else if (order != (LHSSigned ? 1 : -1)) {
1301 // The unsigned type has greater than or equal rank to the
1302 // signed type, so use the unsigned type
1303 if (RHSSigned) {
1304 RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1305 return LHSType;
1306 } else if (!IsCompAssign)
1307 LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1308 return RHSType;
1309 } else if (S.Context.getIntWidth(LHSType) != S.Context.getIntWidth(RHSType)) {
1310 // The two types are different widths; if we are here, that
1311 // means the signed type is larger than the unsigned type, so
1312 // use the signed type.
1313 if (LHSSigned) {
1314 RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1315 return LHSType;
1316 } else if (!IsCompAssign)
1317 LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1318 return RHSType;
1319 } else {
1320 // The signed type is higher-ranked than the unsigned type,
1321 // but isn't actually any bigger (like unsigned int and long
1322 // on most 32-bit systems). Use the unsigned type corresponding
1323 // to the signed type.
1324 QualType result =
1325 S.Context.getCorrespondingUnsignedType(LHSSigned ? LHSType : RHSType);
1326 RHS = (*doRHSCast)(S, RHS.get(), result);
1327 if (!IsCompAssign)
1328 LHS = (*doLHSCast)(S, LHS.get(), result);
1329 return result;
1330 }
1331}
1332
1333/// Handle conversions with GCC complex int extension. Helper function
1334/// of UsualArithmeticConversions()
1335static QualType handleComplexIntConversion(Sema &S, ExprResult &LHS,
1336 ExprResult &RHS, QualType LHSType,
1337 QualType RHSType,
1338 bool IsCompAssign) {
1339 const ComplexType *LHSComplexInt = LHSType->getAsComplexIntegerType();
1340 const ComplexType *RHSComplexInt = RHSType->getAsComplexIntegerType();
1341
1342 if (LHSComplexInt && RHSComplexInt) {
1343 QualType LHSEltType = LHSComplexInt->getElementType();
1344 QualType RHSEltType = RHSComplexInt->getElementType();
1345 QualType ScalarType =
1346 handleIntegerConversion<doComplexIntegralCast, doComplexIntegralCast>
1347 (S, LHS, RHS, LHSEltType, RHSEltType, IsCompAssign);
1348
1349 return S.Context.getComplexType(ScalarType);
1350 }
1351
1352 if (LHSComplexInt) {
1353 QualType LHSEltType = LHSComplexInt->getElementType();
1354 QualType ScalarType =
1355 handleIntegerConversion<doComplexIntegralCast, doIntegralCast>
1356 (S, LHS, RHS, LHSEltType, RHSType, IsCompAssign);
1357 QualType ComplexType = S.Context.getComplexType(ScalarType);
1358 RHS = S.ImpCastExprToType(RHS.get(), ComplexType,
1359 CK_IntegralRealToComplex);
1360
1361 return ComplexType;
1362 }
1363
1364 assert(RHSComplexInt)(static_cast <bool> (RHSComplexInt) ? void (0) : __assert_fail
("RHSComplexInt", "clang/lib/Sema/SemaExpr.cpp", 1364, __extension__
__PRETTY_FUNCTION__))
;
1365
1366 QualType RHSEltType = RHSComplexInt->getElementType();
1367 QualType ScalarType =
1368 handleIntegerConversion<doIntegralCast, doComplexIntegralCast>
1369 (S, LHS, RHS, LHSType, RHSEltType, IsCompAssign);
1370 QualType ComplexType = S.Context.getComplexType(ScalarType);
1371
1372 if (!IsCompAssign)
1373 LHS = S.ImpCastExprToType(LHS.get(), ComplexType,
1374 CK_IntegralRealToComplex);
1375 return ComplexType;
1376}
1377
1378/// Return the rank of a given fixed point or integer type. The value itself
1379/// doesn't matter, but the values must be increasing with proper increasing
1380/// rank as described in N1169 4.1.1.
1381static unsigned GetFixedPointRank(QualType Ty) {
1382 const auto *BTy = Ty->getAs<BuiltinType>();
1383 assert(BTy && "Expected a builtin type.")(static_cast <bool> (BTy && "Expected a builtin type."
) ? void (0) : __assert_fail ("BTy && \"Expected a builtin type.\""
, "clang/lib/Sema/SemaExpr.cpp", 1383, __extension__ __PRETTY_FUNCTION__
))
;
1384
1385 switch (BTy->getKind()) {
1386 case BuiltinType::ShortFract:
1387 case BuiltinType::UShortFract:
1388 case BuiltinType::SatShortFract:
1389 case BuiltinType::SatUShortFract:
1390 return 1;
1391 case BuiltinType::Fract:
1392 case BuiltinType::UFract:
1393 case BuiltinType::SatFract:
1394 case BuiltinType::SatUFract:
1395 return 2;
1396 case BuiltinType::LongFract:
1397 case BuiltinType::ULongFract:
1398 case BuiltinType::SatLongFract:
1399 case BuiltinType::SatULongFract:
1400 return 3;
1401 case BuiltinType::ShortAccum:
1402 case BuiltinType::UShortAccum:
1403 case BuiltinType::SatShortAccum:
1404 case BuiltinType::SatUShortAccum:
1405 return 4;
1406 case BuiltinType::Accum:
1407 case BuiltinType::UAccum:
1408 case BuiltinType::SatAccum:
1409 case BuiltinType::SatUAccum:
1410 return 5;
1411 case BuiltinType::LongAccum:
1412 case BuiltinType::ULongAccum:
1413 case BuiltinType::SatLongAccum:
1414 case BuiltinType::SatULongAccum:
1415 return 6;
1416 default:
1417 if (BTy->isInteger())
1418 return 0;
1419 llvm_unreachable("Unexpected fixed point or integer type")::llvm::llvm_unreachable_internal("Unexpected fixed point or integer type"
, "clang/lib/Sema/SemaExpr.cpp", 1419)
;
1420 }
1421}
1422
1423/// handleFixedPointConversion - Fixed point operations between fixed
1424/// point types and integers or other fixed point types do not fall under
1425/// usual arithmetic conversion since these conversions could result in loss
1426/// of precsision (N1169 4.1.4). These operations should be calculated with
1427/// the full precision of their result type (N1169 4.1.6.2.1).
1428static QualType handleFixedPointConversion(Sema &S, QualType LHSTy,
1429 QualType RHSTy) {
1430 assert((LHSTy->isFixedPointType() || RHSTy->isFixedPointType()) &&(static_cast <bool> ((LHSTy->isFixedPointType() || RHSTy
->isFixedPointType()) && "Expected at least one of the operands to be a fixed point type"
) ? void (0) : __assert_fail ("(LHSTy->isFixedPointType() || RHSTy->isFixedPointType()) && \"Expected at least one of the operands to be a fixed point type\""
, "clang/lib/Sema/SemaExpr.cpp", 1431, __extension__ __PRETTY_FUNCTION__
))
1431 "Expected at least one of the operands to be a fixed point type")(static_cast <bool> ((LHSTy->isFixedPointType() || RHSTy
->isFixedPointType()) && "Expected at least one of the operands to be a fixed point type"
) ? void (0) : __assert_fail ("(LHSTy->isFixedPointType() || RHSTy->isFixedPointType()) && \"Expected at least one of the operands to be a fixed point type\""
, "clang/lib/Sema/SemaExpr.cpp", 1431, __extension__ __PRETTY_FUNCTION__
))
;
1432 assert((LHSTy->isFixedPointOrIntegerType() ||(static_cast <bool> ((LHSTy->isFixedPointOrIntegerType
() || RHSTy->isFixedPointOrIntegerType()) && "Special fixed point arithmetic operation conversions are only "
"applied to ints or other fixed point types") ? void (0) : __assert_fail
("(LHSTy->isFixedPointOrIntegerType() || RHSTy->isFixedPointOrIntegerType()) && \"Special fixed point arithmetic operation conversions are only \" \"applied to ints or other fixed point types\""
, "clang/lib/Sema/SemaExpr.cpp", 1435, __extension__ __PRETTY_FUNCTION__
))
1433 RHSTy->isFixedPointOrIntegerType()) &&(static_cast <bool> ((LHSTy->isFixedPointOrIntegerType
() || RHSTy->isFixedPointOrIntegerType()) && "Special fixed point arithmetic operation conversions are only "
"applied to ints or other fixed point types") ? void (0) : __assert_fail
("(LHSTy->isFixedPointOrIntegerType() || RHSTy->isFixedPointOrIntegerType()) && \"Special fixed point arithmetic operation conversions are only \" \"applied to ints or other fixed point types\""
, "clang/lib/Sema/SemaExpr.cpp", 1435, __extension__ __PRETTY_FUNCTION__
))
1434 "Special fixed point arithmetic operation conversions are only "(static_cast <bool> ((LHSTy->isFixedPointOrIntegerType
() || RHSTy->isFixedPointOrIntegerType()) && "Special fixed point arithmetic operation conversions are only "
"applied to ints or other fixed point types") ? void (0) : __assert_fail
("(LHSTy->isFixedPointOrIntegerType() || RHSTy->isFixedPointOrIntegerType()) && \"Special fixed point arithmetic operation conversions are only \" \"applied to ints or other fixed point types\""
, "clang/lib/Sema/SemaExpr.cpp", 1435, __extension__ __PRETTY_FUNCTION__
))
1435 "applied to ints or other fixed point types")(static_cast <bool> ((LHSTy->isFixedPointOrIntegerType
() || RHSTy->isFixedPointOrIntegerType()) && "Special fixed point arithmetic operation conversions are only "
"applied to ints or other fixed point types") ? void (0) : __assert_fail
("(LHSTy->isFixedPointOrIntegerType() || RHSTy->isFixedPointOrIntegerType()) && \"Special fixed point arithmetic operation conversions are only \" \"applied to ints or other fixed point types\""
, "clang/lib/Sema/SemaExpr.cpp", 1435, __extension__ __PRETTY_FUNCTION__
))
;
1436
1437 // If one operand has signed fixed-point type and the other operand has
1438 // unsigned fixed-point type, then the unsigned fixed-point operand is
1439 // converted to its corresponding signed fixed-point type and the resulting
1440 // type is the type of the converted operand.
1441 if (RHSTy->isSignedFixedPointType() && LHSTy->isUnsignedFixedPointType())
1442 LHSTy = S.Context.getCorrespondingSignedFixedPointType(LHSTy);
1443 else if (RHSTy->isUnsignedFixedPointType() && LHSTy->isSignedFixedPointType())
1444 RHSTy = S.Context.getCorrespondingSignedFixedPointType(RHSTy);
1445
1446 // The result type is the type with the highest rank, whereby a fixed-point
1447 // conversion rank is always greater than an integer conversion rank; if the
1448 // type of either of the operands is a saturating fixedpoint type, the result
1449 // type shall be the saturating fixed-point type corresponding to the type
1450 // with the highest rank; the resulting value is converted (taking into
1451 // account rounding and overflow) to the precision of the resulting type.
1452 // Same ranks between signed and unsigned types are resolved earlier, so both
1453 // types are either signed or both unsigned at this point.
1454 unsigned LHSTyRank = GetFixedPointRank(LHSTy);
1455 unsigned RHSTyRank = GetFixedPointRank(RHSTy);
1456
1457 QualType ResultTy = LHSTyRank > RHSTyRank ? LHSTy : RHSTy;
1458
1459 if (LHSTy->isSaturatedFixedPointType() || RHSTy->isSaturatedFixedPointType())
1460 ResultTy = S.Context.getCorrespondingSaturatedType(ResultTy);
1461
1462 return ResultTy;
1463}
1464
1465/// Check that the usual arithmetic conversions can be performed on this pair of
1466/// expressions that might be of enumeration type.
1467static void checkEnumArithmeticConversions(Sema &S, Expr *LHS, Expr *RHS,
1468 SourceLocation Loc,
1469 Sema::ArithConvKind ACK) {
1470 // C++2a [expr.arith.conv]p1:
1471 // If one operand is of enumeration type and the other operand is of a
1472 // different enumeration type or a floating-point type, this behavior is
1473 // deprecated ([depr.arith.conv.enum]).
1474 //
1475 // Warn on this in all language modes. Produce a deprecation warning in C++20.
1476 // Eventually we will presumably reject these cases (in C++23 onwards?).
1477 QualType L = LHS->getType(), R = RHS->getType();
1478 bool LEnum = L->isUnscopedEnumerationType(),
1479 REnum = R->isUnscopedEnumerationType();
1480 bool IsCompAssign = ACK == Sema::ACK_CompAssign;
1481 if ((!IsCompAssign && LEnum && R->isFloatingType()) ||
1482 (REnum && L->isFloatingType())) {
1483 S.Diag(Loc, S.getLangOpts().CPlusPlus20
1484 ? diag::warn_arith_conv_enum_float_cxx20
1485 : diag::warn_arith_conv_enum_float)
1486 << LHS->getSourceRange() << RHS->getSourceRange()
1487 << (int)ACK << LEnum << L << R;
1488 } else if (!IsCompAssign && LEnum && REnum &&
1489 !S.Context.hasSameUnqualifiedType(L, R)) {
1490 unsigned DiagID;
1491 if (!L->castAs<EnumType>()->getDecl()->hasNameForLinkage() ||
1492 !R->castAs<EnumType>()->getDecl()->hasNameForLinkage()) {
1493 // If either enumeration type is unnamed, it's less likely that the
1494 // user cares about this, but this situation is still deprecated in
1495 // C++2a. Use a different warning group.
1496 DiagID = S.getLangOpts().CPlusPlus20
1497 ? diag::warn_arith_conv_mixed_anon_enum_types_cxx20
1498 : diag::warn_arith_conv_mixed_anon_enum_types;
1499 } else if (ACK == Sema::ACK_Conditional) {
1500 // Conditional expressions are separated out because they have
1501 // historically had a different warning flag.
1502 DiagID = S.getLangOpts().CPlusPlus20
1503 ? diag::warn_conditional_mixed_enum_types_cxx20
1504 : diag::warn_conditional_mixed_enum_types;
1505 } else if (ACK == Sema::ACK_Comparison) {
1506 // Comparison expressions are separated out because they have
1507 // historically had a different warning flag.
1508 DiagID = S.getLangOpts().CPlusPlus20
1509 ? diag::warn_comparison_mixed_enum_types_cxx20
1510 : diag::warn_comparison_mixed_enum_types;
1511 } else {
1512 DiagID = S.getLangOpts().CPlusPlus20
1513 ? diag::warn_arith_conv_mixed_enum_types_cxx20
1514 : diag::warn_arith_conv_mixed_enum_types;
1515 }
1516 S.Diag(Loc, DiagID) << LHS->getSourceRange() << RHS->getSourceRange()
1517 << (int)ACK << L << R;
1518 }
1519}
1520
1521/// UsualArithmeticConversions - Performs various conversions that are common to
1522/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
1523/// routine returns the first non-arithmetic type found. The client is
1524/// responsible for emitting appropriate error diagnostics.
1525QualType Sema::UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS,
1526 SourceLocation Loc,
1527 ArithConvKind ACK) {
1528 checkEnumArithmeticConversions(*this, LHS.get(), RHS.get(), Loc, ACK);
1529
1530 if (ACK != ACK_CompAssign) {
1531 LHS = UsualUnaryConversions(LHS.get());
1532 if (LHS.isInvalid())
1533 return QualType();
1534 }
1535
1536 RHS = UsualUnaryConversions(RHS.get());
1537 if (RHS.isInvalid())
1538 return QualType();
1539
1540 // For conversion purposes, we ignore any qualifiers.
1541 // For example, "const float" and "float" are equivalent.
1542 QualType LHSType = LHS.get()->getType().getUnqualifiedType();
1543 QualType RHSType = RHS.get()->getType().getUnqualifiedType();
1544
1545 // For conversion purposes, we ignore any atomic qualifier on the LHS.
1546 if (const AtomicType *AtomicLHS = LHSType->getAs<AtomicType>())
1547 LHSType = AtomicLHS->getValueType();
1548
1549 // If both types are identical, no conversion is needed.
1550 if (Context.hasSameType(LHSType, RHSType))
1551 return Context.getCommonSugaredType(LHSType, RHSType);
1552
1553 // If either side is a non-arithmetic type (e.g. a pointer), we are done.
1554 // The caller can deal with this (e.g. pointer + int).
1555 if (!LHSType->isArithmeticType() || !RHSType->isArithmeticType())
1556 return QualType();
1557
1558 // Apply unary and bitfield promotions to the LHS's type.
1559 QualType LHSUnpromotedType = LHSType;
1560 if (LHSType->isPromotableIntegerType())
1561 LHSType = Context.getPromotedIntegerType(LHSType);
1562 QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(LHS.get());
1563 if (!LHSBitfieldPromoteTy.isNull())
1564 LHSType = LHSBitfieldPromoteTy;
1565 if (LHSType != LHSUnpromotedType && ACK != ACK_CompAssign)
1566 LHS = ImpCastExprToType(LHS.get(), LHSType, CK_IntegralCast);
1567
1568 // If both types are identical, no conversion is needed.
1569 if (Context.hasSameType(LHSType, RHSType))
1570 return Context.getCommonSugaredType(LHSType, RHSType);
1571
1572 // At this point, we have two different arithmetic types.
1573
1574 // Diagnose attempts to convert between __ibm128, __float128 and long double
1575 // where such conversions currently can't be handled.
1576 if (unsupportedTypeConversion(*this, LHSType, RHSType))
1577 return QualType();
1578
1579 // Handle complex types first (C99 6.3.1.8p1).
1580 if (LHSType->isComplexType() || RHSType->isComplexType())
1581 return handleComplexConversion(*this, LHS, RHS, LHSType, RHSType,
1582 ACK == ACK_CompAssign);
1583
1584 // Now handle "real" floating types (i.e. float, double, long double).
1585 if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
1586 return handleFloatConversion(*this, LHS, RHS, LHSType, RHSType,
1587 ACK == ACK_CompAssign);
1588
1589 // Handle GCC complex int extension.
1590 if (LHSType->isComplexIntegerType() || RHSType->isComplexIntegerType())
1591 return handleComplexIntConversion(*this, LHS, RHS, LHSType, RHSType,
1592 ACK == ACK_CompAssign);
1593
1594 if (LHSType->isFixedPointType() || RHSType->isFixedPointType())
1595 return handleFixedPointConversion(*this, LHSType, RHSType);
1596
1597 // Finally, we have two differing integer types.
1598 return handleIntegerConversion<doIntegralCast, doIntegralCast>
1599 (*this, LHS, RHS, LHSType, RHSType, ACK == ACK_CompAssign);
1600}
1601
1602//===----------------------------------------------------------------------===//
1603// Semantic Analysis for various Expression Types
1604//===----------------------------------------------------------------------===//
1605
1606
1607ExprResult
1608Sema::ActOnGenericSelectionExpr(SourceLocation KeyLoc,
1609 SourceLocation DefaultLoc,
1610 SourceLocation RParenLoc,
1611 Expr *ControllingExpr,
1612 ArrayRef<ParsedType> ArgTypes,
1613 ArrayRef<Expr *> ArgExprs) {
1614 unsigned NumAssocs = ArgTypes.size();
1615 assert(NumAssocs == ArgExprs.size())(static_cast <bool> (NumAssocs == ArgExprs.size()) ? void
(0) : __assert_fail ("NumAssocs == ArgExprs.size()", "clang/lib/Sema/SemaExpr.cpp"
, 1615, __extension__ __PRETTY_FUNCTION__))
;
1616
1617 TypeSourceInfo **Types = new TypeSourceInfo*[NumAssocs];
1618 for (unsigned i = 0; i < NumAssocs; ++i) {
1619 if (ArgTypes[i])
1620 (void) GetTypeFromParser(ArgTypes[i], &Types[i]);
1621 else
1622 Types[i] = nullptr;
1623 }
1624
1625 ExprResult ER = CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc,
1626 ControllingExpr,
1627 llvm::makeArrayRef(Types, NumAssocs),
1628 ArgExprs);
1629 delete [] Types;
1630 return ER;
1631}
1632
1633ExprResult
1634Sema::CreateGenericSelectionExpr(SourceLocation KeyLoc,
1635 SourceLocation DefaultLoc,
1636 SourceLocation RParenLoc,
1637 Expr *ControllingExpr,
1638 ArrayRef<TypeSourceInfo *> Types,
1639 ArrayRef<Expr *> Exprs) {
1640 unsigned NumAssocs = Types.size();
1641 assert(NumAssocs == Exprs.size())(static_cast <bool> (NumAssocs == Exprs.size()) ? void (
0) : __assert_fail ("NumAssocs == Exprs.size()", "clang/lib/Sema/SemaExpr.cpp"
, 1641, __extension__ __PRETTY_FUNCTION__))
;
1642
1643 // Decay and strip qualifiers for the controlling expression type, and handle
1644 // placeholder type replacement. See committee discussion from WG14 DR423.
1645 {
1646 EnterExpressionEvaluationContext Unevaluated(
1647 *this, Sema::ExpressionEvaluationContext::Unevaluated);
1648 ExprResult R = DefaultFunctionArrayLvalueConversion(ControllingExpr);
1649 if (R.isInvalid())
1650 return ExprError();
1651 ControllingExpr = R.get();
1652 }
1653
1654 bool TypeErrorFound = false,
1655 IsResultDependent = ControllingExpr->isTypeDependent(),
1656 ContainsUnexpandedParameterPack
1657 = ControllingExpr->containsUnexpandedParameterPack();
1658
1659 // The controlling expression is an unevaluated operand, so side effects are
1660 // likely unintended.
1661 if (!inTemplateInstantiation() && !IsResultDependent &&
1662 ControllingExpr->HasSideEffects(Context, false))
1663 Diag(ControllingExpr->getExprLoc(),
1664 diag::warn_side_effects_unevaluated_context);
1665
1666 for (unsigned i = 0; i < NumAssocs; ++i) {
1667 if (Exprs[i]->containsUnexpandedParameterPack())
1668 ContainsUnexpandedParameterPack = true;
1669
1670 if (Types[i]) {
1671 if (Types[i]->getType()->containsUnexpandedParameterPack())
1672 ContainsUnexpandedParameterPack = true;
1673
1674 if (Types[i]->getType()->isDependentType()) {
1675 IsResultDependent = true;
1676 } else {
1677 // C11 6.5.1.1p2 "The type name in a generic association shall specify a
1678 // complete object type other than a variably modified type."
1679 unsigned D = 0;
1680 if (Types[i]->getType()->isIncompleteType())
1681 D = diag::err_assoc_type_incomplete;
1682 else if (!Types[i]->getType()->isObjectType())
1683 D = diag::err_assoc_type_nonobject;
1684 else if (Types[i]->getType()->isVariablyModifiedType())
1685 D = diag::err_assoc_type_variably_modified;
1686 else {
1687 // Because the controlling expression undergoes lvalue conversion,
1688 // array conversion, and function conversion, an association which is
1689 // of array type, function type, or is qualified can never be
1690 // reached. We will warn about this so users are less surprised by
1691 // the unreachable association. However, we don't have to handle
1692 // function types; that's not an object type, so it's handled above.
1693 //
1694 // The logic is somewhat different for C++ because C++ has different
1695 // lvalue to rvalue conversion rules than C. [conv.lvalue]p1 says,
1696 // If T is a non-class type, the type of the prvalue is the cv-
1697 // unqualified version of T. Otherwise, the type of the prvalue is T.
1698 // The result of these rules is that all qualified types in an
1699 // association in C are unreachable, and in C++, only qualified non-
1700 // class types are unreachable.
1701 unsigned Reason = 0;
1702 QualType QT = Types[i]->getType();
1703 if (QT->isArrayType())
1704 Reason = 1;
1705 else if (QT.hasQualifiers() &&
1706 (!LangOpts.CPlusPlus || !QT->isRecordType()))
1707 Reason = 2;
1708
1709 if (Reason)
1710 Diag(Types[i]->getTypeLoc().getBeginLoc(),
1711 diag::warn_unreachable_association)
1712 << QT << (Reason - 1);
1713 }
1714
1715 if (D != 0) {
1716 Diag(Types[i]->getTypeLoc().getBeginLoc(), D)
1717 << Types[i]->getTypeLoc().getSourceRange()
1718 << Types[i]->getType();
1719 TypeErrorFound = true;
1720 }
1721
1722 // C11 6.5.1.1p2 "No two generic associations in the same generic
1723 // selection shall specify compatible types."
1724 for (unsigned j = i+1; j < NumAssocs; ++j)
1725 if (Types[j] && !Types[j]->getType()->isDependentType() &&
1726 Context.typesAreCompatible(Types[i]->getType(),
1727 Types[j]->getType())) {
1728 Diag(Types[j]->getTypeLoc().getBeginLoc(),
1729 diag::err_assoc_compatible_types)
1730 << Types[j]->getTypeLoc().getSourceRange()
1731 << Types[j]->getType()
1732 << Types[i]->getType();
1733 Diag(Types[i]->getTypeLoc().getBeginLoc(),
1734 diag::note_compat_assoc)
1735 << Types[i]->getTypeLoc().getSourceRange()
1736 << Types[i]->getType();
1737 TypeErrorFound = true;
1738 }
1739 }
1740 }
1741 }
1742 if (TypeErrorFound)
1743 return ExprError();
1744
1745 // If we determined that the generic selection is result-dependent, don't
1746 // try to compute the result expression.
1747 if (IsResultDependent)
1748 return GenericSelectionExpr::Create(Context, KeyLoc, ControllingExpr, Types,
1749 Exprs, DefaultLoc, RParenLoc,
1750 ContainsUnexpandedParameterPack);
1751
1752 SmallVector<unsigned, 1> CompatIndices;
1753 unsigned DefaultIndex = -1U;
1754 // Look at the canonical type of the controlling expression in case it was a
1755 // deduced type like __auto_type. However, when issuing diagnostics, use the
1756 // type the user wrote in source rather than the canonical one.
1757 for (unsigned i = 0; i < NumAssocs; ++i) {
1758 if (!Types[i])
1759 DefaultIndex = i;
1760 else if (Context.typesAreCompatible(
1761 ControllingExpr->getType().getCanonicalType(),
1762 Types[i]->getType()))
1763 CompatIndices.push_back(i);
1764 }
1765
1766 // C11 6.5.1.1p2 "The controlling expression of a generic selection shall have
1767 // type compatible with at most one of the types named in its generic
1768 // association list."
1769 if (CompatIndices.size() > 1) {
1770 // We strip parens here because the controlling expression is typically
1771 // parenthesized in macro definitions.
1772 ControllingExpr = ControllingExpr->IgnoreParens();
1773 Diag(ControllingExpr->getBeginLoc(), diag::err_generic_sel_multi_match)
1774 << ControllingExpr->getSourceRange() << ControllingExpr->getType()
1775 << (unsigned)CompatIndices.size();
1776 for (unsigned I : CompatIndices) {
1777 Diag(Types[I]->getTypeLoc().getBeginLoc(),
1778 diag::note_compat_assoc)
1779 << Types[I]->getTypeLoc().getSourceRange()
1780 << Types[I]->getType();
1781 }
1782 return ExprError();
1783 }
1784
1785 // C11 6.5.1.1p2 "If a generic selection has no default generic association,
1786 // its controlling expression shall have type compatible with exactly one of
1787 // the types named in its generic association list."
1788 if (DefaultIndex == -1U && CompatIndices.size() == 0) {
1789 // We strip parens here because the controlling expression is typically
1790 // parenthesized in macro definitions.
1791 ControllingExpr = ControllingExpr->IgnoreParens();
1792 Diag(ControllingExpr->getBeginLoc(), diag::err_generic_sel_no_match)
1793 << ControllingExpr->getSourceRange() << ControllingExpr->getType();
1794 return ExprError();
1795 }
1796
1797 // C11 6.5.1.1p3 "If a generic selection has a generic association with a
1798 // type name that is compatible with the type of the controlling expression,
1799 // then the result expression of the generic selection is the expression
1800 // in that generic association. Otherwise, the result expression of the
1801 // generic selection is the expression in the default generic association."
1802 unsigned ResultIndex =
1803 CompatIndices.size() ? CompatIndices[0] : DefaultIndex;
1804
1805 return GenericSelectionExpr::Create(
1806 Context, KeyLoc, ControllingExpr, Types, Exprs, DefaultLoc, RParenLoc,
1807 ContainsUnexpandedParameterPack, ResultIndex);
1808}
1809
1810/// getUDSuffixLoc - Create a SourceLocation for a ud-suffix, given the
1811/// location of the token and the offset of the ud-suffix within it.
1812static SourceLocation getUDSuffixLoc(Sema &S, SourceLocation TokLoc,
1813 unsigned Offset) {
1814 return Lexer::AdvanceToTokenCharacter(TokLoc, Offset, S.getSourceManager(),
1815 S.getLangOpts());
1816}
1817
1818/// BuildCookedLiteralOperatorCall - A user-defined literal was found. Look up
1819/// the corresponding cooked (non-raw) literal operator, and build a call to it.
1820static ExprResult BuildCookedLiteralOperatorCall(Sema &S, Scope *Scope,
1821 IdentifierInfo *UDSuffix,
1822 SourceLocation UDSuffixLoc,
1823 ArrayRef<Expr*> Args,
1824 SourceLocation LitEndLoc) {
1825 assert(Args.size() <= 2 && "too many arguments for literal operator")(static_cast <bool> (Args.size() <= 2 && "too many arguments for literal operator"
) ? void (0) : __assert_fail ("Args.size() <= 2 && \"too many arguments for literal operator\""
, "clang/lib/Sema/SemaExpr.cpp", 1825, __extension__ __PRETTY_FUNCTION__
))
;
1826
1827 QualType ArgTy[2];
1828 for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
1829 ArgTy[ArgIdx] = Args[ArgIdx]->getType();
1830 if (ArgTy[ArgIdx]->isArrayType())
1831 ArgTy[ArgIdx] = S.Context.getArrayDecayedType(ArgTy[ArgIdx]);
1832 }
1833
1834 DeclarationName OpName =
1835 S.Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
1836 DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
1837 OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
1838
1839 LookupResult R(S, OpName, UDSuffixLoc, Sema::LookupOrdinaryName);
1840 if (S.LookupLiteralOperator(Scope, R, llvm::makeArrayRef(ArgTy, Args.size()),
1841 /*AllowRaw*/ false, /*AllowTemplate*/ false,
1842 /*AllowStringTemplatePack*/ false,
1843 /*DiagnoseMissing*/ true) == Sema::LOLR_Error)
1844 return ExprError();
1845
1846 return S.BuildLiteralOperatorCall(R, OpNameInfo, Args, LitEndLoc);
1847}
1848
1849/// ActOnStringLiteral - The specified tokens were lexed as pasted string
1850/// fragments (e.g. "foo" "bar" L"baz"). The result string has to handle string
1851/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
1852/// multiple tokens. However, the common case is that StringToks points to one
1853/// string.
1854///
1855ExprResult
1856Sema::ActOnStringLiteral(ArrayRef<Token> StringToks, Scope *UDLScope) {
1857 assert(!StringToks.empty() && "Must have at least one string!")(static_cast <bool> (!StringToks.empty() && "Must have at least one string!"
) ? void (0) : __assert_fail ("!StringToks.empty() && \"Must have at least one string!\""
, "clang/lib/Sema/SemaExpr.cpp", 1857, __extension__ __PRETTY_FUNCTION__
))
;
1858
1859 StringLiteralParser Literal(StringToks, PP);
1860 if (Literal.hadError)
1861 return ExprError();
1862
1863 SmallVector<SourceLocation, 4> StringTokLocs;
1864 for (const Token &Tok : StringToks)
1865 StringTokLocs.push_back(Tok.getLocation());
1866
1867 QualType CharTy = Context.CharTy;
1868 StringLiteral::StringKind Kind = StringLiteral::Ordinary;
1869 if (Literal.isWide()) {
1870 CharTy = Context.getWideCharType();
1871 Kind = StringLiteral::Wide;
1872 } else if (Literal.isUTF8()) {
1873 if (getLangOpts().Char8)
1874 CharTy = Context.Char8Ty;
1875 Kind = StringLiteral::UTF8;
1876 } else if (Literal.isUTF16()) {
1877 CharTy = Context.Char16Ty;
1878 Kind = StringLiteral::UTF16;
1879 } else if (Literal.isUTF32()) {
1880 CharTy = Context.Char32Ty;
1881 Kind = StringLiteral::UTF32;
1882 } else if (Literal.isPascal()) {
1883 CharTy = Context.UnsignedCharTy;
1884 }
1885
1886 // Warn on initializing an array of char from a u8 string literal; this
1887 // becomes ill-formed in C++2a.
1888 if (getLangOpts().CPlusPlus && !getLangOpts().CPlusPlus20 &&
1889 !getLangOpts().Char8 && Kind == StringLiteral::UTF8) {
1890 Diag(StringTokLocs.front(), diag::warn_cxx20_compat_utf8_string);
1891
1892 // Create removals for all 'u8' prefixes in the string literal(s). This
1893 // ensures C++2a compatibility (but may change the program behavior when
1894 // built by non-Clang compilers for which the execution character set is
1895 // not always UTF-8).
1896 auto RemovalDiag = PDiag(diag::note_cxx20_compat_utf8_string_remove_u8);
1897 SourceLocation RemovalDiagLoc;
1898 for (const Token &Tok : StringToks) {
1899 if (Tok.getKind() == tok::utf8_string_literal) {
1900 if (RemovalDiagLoc.isInvalid())
1901 RemovalDiagLoc = Tok.getLocation();
1902 RemovalDiag << FixItHint::CreateRemoval(CharSourceRange::getCharRange(
1903 Tok.getLocation(),
1904 Lexer::AdvanceToTokenCharacter(Tok.getLocation(), 2,
1905 getSourceManager(), getLangOpts())));
1906 }
1907 }
1908 Diag(RemovalDiagLoc, RemovalDiag);
1909 }
1910
1911 QualType StrTy =
1912 Context.getStringLiteralArrayType(CharTy, Literal.GetNumStringChars());
1913
1914 // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
1915 StringLiteral *Lit = StringLiteral::Create(Context, Literal.GetString(),
1916 Kind, Literal.Pascal, StrTy,
1917 &StringTokLocs[0],
1918 StringTokLocs.size());
1919 if (Literal.getUDSuffix().empty())
1920 return Lit;
1921
1922 // We're building a user-defined literal.
1923 IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
1924 SourceLocation UDSuffixLoc =
1925 getUDSuffixLoc(*this, StringTokLocs[Literal.getUDSuffixToken()],
1926 Literal.getUDSuffixOffset());
1927
1928 // Make sure we're allowed user-defined literals here.
1929 if (!UDLScope)
1930 return ExprError(Diag(UDSuffixLoc, diag::err_invalid_string_udl));
1931
1932 // C++11 [lex.ext]p5: The literal L is treated as a call of the form
1933 // operator "" X (str, len)
1934 QualType SizeType = Context.getSizeType();
1935
1936 DeclarationName OpName =
1937 Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
1938 DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
1939 OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
1940
1941 QualType ArgTy[] = {
1942 Context.getArrayDecayedType(StrTy), SizeType
1943 };
1944
1945 LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
1946 switch (LookupLiteralOperator(UDLScope, R, ArgTy,
1947 /*AllowRaw*/ false, /*AllowTemplate*/ true,
1948 /*AllowStringTemplatePack*/ true,
1949 /*DiagnoseMissing*/ true, Lit)) {
1950
1951 case LOLR_Cooked: {
1952 llvm::APInt Len(Context.getIntWidth(SizeType), Literal.GetNumStringChars());
1953 IntegerLiteral *LenArg = IntegerLiteral::Create(Context, Len, SizeType,
1954 StringTokLocs[0]);
1955 Expr *Args[] = { Lit, LenArg };
1956
1957 return BuildLiteralOperatorCall(R, OpNameInfo, Args, StringTokLocs.back());
1958 }
1959
1960 case LOLR_Template: {
1961 TemplateArgumentListInfo ExplicitArgs;
1962 TemplateArgument Arg(Lit);
1963 TemplateArgumentLocInfo ArgInfo(Lit);
1964 ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
1965 return BuildLiteralOperatorCall(R, OpNameInfo, None, StringTokLocs.back(),
1966 &ExplicitArgs);
1967 }
1968
1969 case LOLR_StringTemplatePack: {
1970 TemplateArgumentListInfo ExplicitArgs;
1971
1972 unsigned CharBits = Context.getIntWidth(CharTy);
1973 bool CharIsUnsigned = CharTy->isUnsignedIntegerType();
1974 llvm::APSInt Value(CharBits, CharIsUnsigned);
1975
1976 TemplateArgument TypeArg(CharTy);
1977 TemplateArgumentLocInfo TypeArgInfo(Context.getTrivialTypeSourceInfo(CharTy));
1978 ExplicitArgs.addArgument(TemplateArgumentLoc(TypeArg, TypeArgInfo));
1979
1980 for (unsigned I = 0, N = Lit->getLength(); I != N; ++I) {
1981 Value = Lit->getCodeUnit(I);
1982 TemplateArgument Arg(Context, Value, CharTy);
1983 TemplateArgumentLocInfo ArgInfo;
1984 ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
1985 }
1986 return BuildLiteralOperatorCall(R, OpNameInfo, None, StringTokLocs.back(),
1987 &ExplicitArgs);
1988 }
1989 case LOLR_Raw:
1990 case LOLR_ErrorNoDiagnostic:
1991 llvm_unreachable("unexpected literal operator lookup result")::llvm::llvm_unreachable_internal("unexpected literal operator lookup result"
, "clang/lib/Sema/SemaExpr.cpp", 1991)
;
1992 case LOLR_Error:
1993 return ExprError();
1994 }
1995 llvm_unreachable("unexpected literal operator lookup result")::llvm::llvm_unreachable_internal("unexpected literal operator lookup result"
, "clang/lib/Sema/SemaExpr.cpp", 1995)
;
1996}
1997
1998DeclRefExpr *
1999Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
2000 SourceLocation Loc,
2001 const CXXScopeSpec *SS) {
2002 DeclarationNameInfo NameInfo(D->getDeclName(), Loc);
2003 return BuildDeclRefExpr(D, Ty, VK, NameInfo, SS);
2004}
2005
2006DeclRefExpr *
2007Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
2008 const DeclarationNameInfo &NameInfo,
2009 const CXXScopeSpec *SS, NamedDecl *FoundD,
2010 SourceLocation TemplateKWLoc,
2011 const TemplateArgumentListInfo *TemplateArgs) {
2012 NestedNameSpecifierLoc NNS =
2013 SS ? SS->getWithLocInContext(Context) : NestedNameSpecifierLoc();
2014 return BuildDeclRefExpr(D, Ty, VK, NameInfo, NNS, FoundD, TemplateKWLoc,
2015 TemplateArgs);
2016}
2017
2018// CUDA/HIP: Check whether a captured reference variable is referencing a
2019// host variable in a device or host device lambda.
2020static bool isCapturingReferenceToHostVarInCUDADeviceLambda(const Sema &S,
2021 VarDecl *VD) {
2022 if (!S.getLangOpts().CUDA || !VD->hasInit())
2023 return false;
2024 assert(VD->getType()->isReferenceType())(static_cast <bool> (VD->getType()->isReferenceType
()) ? void (0) : __assert_fail ("VD->getType()->isReferenceType()"
, "clang/lib/Sema/SemaExpr.cpp", 2024, __extension__ __PRETTY_FUNCTION__
))
;
2025
2026 // Check whether the reference variable is referencing a host variable.
2027 auto *DRE = dyn_cast<DeclRefExpr>(VD->getInit());
2028 if (!DRE)
2029 return false;
2030 auto *Referee = dyn_cast<VarDecl>(DRE->getDecl());
2031 if (!Referee || !Referee->hasGlobalStorage() ||
2032 Referee->hasAttr<CUDADeviceAttr>())
2033 return false;
2034
2035 // Check whether the current function is a device or host device lambda.
2036 // Check whether the reference variable is a capture by getDeclContext()
2037 // since refersToEnclosingVariableOrCapture() is not ready at this point.
2038 auto *MD = dyn_cast_or_null<CXXMethodDecl>(S.CurContext);
2039 if (MD && MD->getParent()->isLambda() &&
2040 MD->getOverloadedOperator() == OO_Call && MD->hasAttr<CUDADeviceAttr>() &&
2041 VD->getDeclContext() != MD)
2042 return true;
2043
2044 return false;
2045}
2046
2047NonOdrUseReason Sema::getNonOdrUseReasonInCurrentContext(ValueDecl *D) {
2048 // A declaration named in an unevaluated operand never constitutes an odr-use.
2049 if (isUnevaluatedContext())
2050 return NOUR_Unevaluated;
2051
2052 // C++2a [basic.def.odr]p4:
2053 // A variable x whose name appears as a potentially-evaluated expression e
2054 // is odr-used by e unless [...] x is a reference that is usable in
2055 // constant expressions.
2056 // CUDA/HIP:
2057 // If a reference variable referencing a host variable is captured in a
2058 // device or host device lambda, the value of the referee must be copied
2059 // to the capture and the reference variable must be treated as odr-use
2060 // since the value of the referee is not known at compile time and must
2061 // be loaded from the captured.
2062 if (VarDecl *VD = dyn_cast<VarDecl>(D)) {
2063 if (VD->getType()->isReferenceType() &&
2064 !(getLangOpts().OpenMP && isOpenMPCapturedDecl(D)) &&
2065 !isCapturingReferenceToHostVarInCUDADeviceLambda(*this, VD) &&
2066 VD->isUsableInConstantExpressions(Context))
2067 return NOUR_Constant;
2068 }
2069
2070 // All remaining non-variable cases constitute an odr-use. For variables, we
2071 // need to wait and see how the expression is used.
2072 return NOUR_None;
2073}
2074
2075/// BuildDeclRefExpr - Build an expression that references a
2076/// declaration that does not require a closure capture.
2077DeclRefExpr *
2078Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
2079 const DeclarationNameInfo &NameInfo,
2080 NestedNameSpecifierLoc NNS, NamedDecl *FoundD,
2081 SourceLocation TemplateKWLoc,
2082 const TemplateArgumentListInfo *TemplateArgs) {
2083 bool RefersToCapturedVariable = isa<VarDecl, BindingDecl>(D) &&
2084 NeedToCaptureVariable(D, NameInfo.getLoc());
2085
2086 DeclRefExpr *E = DeclRefExpr::Create(
2087 Context, NNS, TemplateKWLoc, D, RefersToCapturedVariable, NameInfo, Ty,
2088 VK, FoundD, TemplateArgs, getNonOdrUseReasonInCurrentContext(D));
2089 MarkDeclRefReferenced(E);
2090
2091 // C++ [except.spec]p17:
2092 // An exception-specification is considered to be needed when:
2093 // - in an expression, the function is the unique lookup result or
2094 // the selected member of a set of overloaded functions.
2095 //
2096 // We delay doing this until after we've built the function reference and
2097 // marked it as used so that:
2098 // a) if the function is defaulted, we get errors from defining it before /
2099 // instead of errors from computing its exception specification, and
2100 // b) if the function is a defaulted comparison, we can use the body we
2101 // build when defining it as input to the exception specification
2102 // computation rather than computing a new body.
2103 if (auto *FPT = Ty->getAs<FunctionProtoType>()) {
2104 if (isUnresolvedExceptionSpec(FPT->getExceptionSpecType())) {
2105 if (auto *NewFPT = ResolveExceptionSpec(NameInfo.getLoc(), FPT))
2106 E->setType(Context.getQualifiedType(NewFPT, Ty.getQualifiers()));
2107 }
2108 }
2109
2110 if (getLangOpts().ObjCWeak && isa<VarDecl>(D) &&
2111 Ty.getObjCLifetime() == Qualifiers::OCL_Weak && !isUnevaluatedContext() &&
2112 !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, E->getBeginLoc()))
2113 getCurFunction()->recordUseOfWeak(E);
2114
2115 FieldDecl *FD = dyn_cast<FieldDecl>(D);
2116 if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(D))
2117 FD = IFD->getAnonField();
2118 if (FD) {
2119 UnusedPrivateFields.remove(FD);
2120 // Just in case we're building an illegal pointer-to-member.
2121 if (FD->isBitField())
2122 E->setObjectKind(OK_BitField);
2123 }
2124
2125 // C++ [expr.prim]/8: The expression [...] is a bit-field if the identifier
2126 // designates a bit-field.
2127 if (auto *BD = dyn_cast<BindingDecl>(D))
2128 if (auto *BE = BD->getBinding())
2129 E->setObjectKind(BE->getObjectKind());
2130
2131 return E;
2132}
2133
2134/// Decomposes the given name into a DeclarationNameInfo, its location, and
2135/// possibly a list of template arguments.
2136///
2137/// If this produces template arguments, it is permitted to call
2138/// DecomposeTemplateName.
2139///
2140/// This actually loses a lot of source location information for
2141/// non-standard name kinds; we should consider preserving that in
2142/// some way.
2143void
2144Sema::DecomposeUnqualifiedId(const UnqualifiedId &Id,
2145 TemplateArgumentListInfo &Buffer,
2146 DeclarationNameInfo &NameInfo,
2147 const TemplateArgumentListInfo *&TemplateArgs) {
2148 if (Id.getKind() == UnqualifiedIdKind::IK_TemplateId) {
2149 Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
2150 Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
2151
2152 ASTTemplateArgsPtr TemplateArgsPtr(Id.TemplateId->getTemplateArgs(),
2153 Id.TemplateId->NumArgs);
2154 translateTemplateArguments(TemplateArgsPtr, Buffer);
2155
2156 TemplateName TName = Id.TemplateId->Template.get();
2157 SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc;
2158 NameInfo = Context.getNameForTemplate(TName, TNameLoc);
2159 TemplateArgs = &Buffer;
2160 } else {
2161 NameInfo = GetNameFromUnqualifiedId(Id);
2162 TemplateArgs = nullptr;
2163 }
2164}
2165
2166static void emitEmptyLookupTypoDiagnostic(
2167 const TypoCorrection &TC, Sema &SemaRef, const CXXScopeSpec &SS,
2168 DeclarationName Typo, SourceLocation TypoLoc, ArrayRef<Expr *> Args,
2169 unsigned DiagnosticID, unsigned DiagnosticSuggestID) {
2170 DeclContext *Ctx =
2171 SS.isEmpty() ? nullptr : SemaRef.computeDeclContext(SS, false);
2172 if (!TC) {
2173 // Emit a special diagnostic for failed member lookups.
2174 // FIXME: computing the declaration context might fail here (?)
2175 if (Ctx)
2176 SemaRef.Diag(TypoLoc, diag::err_no_member) << Typo << Ctx
2177 << SS.getRange();
2178 else
2179 SemaRef.Diag(TypoLoc, DiagnosticID) << Typo;
2180 return;
2181 }
2182
2183 std::string CorrectedStr = TC.getAsString(SemaRef.getLangOpts());
2184 bool DroppedSpecifier =
2185 TC.WillReplaceSpecifier() && Typo.getAsString() == CorrectedStr;
2186 unsigned NoteID = TC.getCorrectionDeclAs<ImplicitParamDecl>()
2187 ? diag::note_implicit_param_decl
2188 : diag::note_previous_decl;
2189 if (!Ctx)
2190 SemaRef.diagnoseTypo(TC, SemaRef.PDiag(DiagnosticSuggestID) << Typo,
2191 SemaRef.PDiag(NoteID));
2192 else
2193 SemaRef.diagnoseTypo(TC, SemaRef.PDiag(diag::err_no_member_suggest)
2194 << Typo << Ctx << DroppedSpecifier
2195 << SS.getRange(),
2196 SemaRef.PDiag(NoteID));
2197}
2198
2199/// Diagnose a lookup that found results in an enclosing class during error
2200/// recovery. This usually indicates that the results were found in a dependent
2201/// base class that could not be searched as part of a template definition.
2202/// Always issues a diagnostic (though this may be only a warning in MS
2203/// compatibility mode).
2204///
2205/// Return \c true if the error is unrecoverable, or \c false if the caller
2206/// should attempt to recover using these lookup results.
2207bool Sema::DiagnoseDependentMemberLookup(LookupResult &R) {
2208 // During a default argument instantiation the CurContext points
2209 // to a CXXMethodDecl; but we can't apply a this-> fixit inside a
2210 // function parameter list, hence add an explicit check.
2211 bool isDefaultArgument =
2212 !CodeSynthesisContexts.empty() &&
2213 CodeSynthesisContexts.back().Kind ==
2214 CodeSynthesisContext::DefaultFunctionArgumentInstantiation;
2215 CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
2216 bool isInstance = CurMethod && CurMethod->isInstance() &&
2217 R.getNamingClass() == CurMethod->getParent() &&
2218 !isDefaultArgument;
2219
2220 // There are two ways we can find a class-scope declaration during template
2221 // instantiation that we did not find in the template definition: if it is a
2222 // member of a dependent base class, or if it is declared after the point of
2223 // use in the same class. Distinguish these by comparing the class in which
2224 // the member was found to the naming class of the lookup.
2225 unsigned DiagID = diag::err_found_in_dependent_base;
2226 unsigned NoteID = diag::note_member_declared_at;
2227 if (R.getRepresentativeDecl()->getDeclContext()->Equals(R.getNamingClass())) {
2228 DiagID = getLangOpts().MSVCCompat ? diag::ext_found_later_in_class
2229 : diag::err_found_later_in_class;
2230 } else if (getLangOpts().MSVCCompat) {
2231 DiagID = diag::ext_found_in_dependent_base;
2232 NoteID = diag::note_dependent_member_use;
2233 }
2234
2235 if (isInstance) {
2236 // Give a code modification hint to insert 'this->'.
2237 Diag(R.getNameLoc(), DiagID)
2238 << R.getLookupName()
2239 << FixItHint::CreateInsertion(R.getNameLoc(), "this->");
2240 CheckCXXThisCapture(R.getNameLoc());
2241 } else {
2242 // FIXME: Add a FixItHint to insert 'Base::' or 'Derived::' (assuming
2243 // they're not shadowed).
2244 Diag(R.getNameLoc(), DiagID) << R.getLookupName();
2245 }
2246
2247 for (NamedDecl *D : R)
2248 Diag(D->getLocation(), NoteID);
2249
2250 // Return true if we are inside a default argument instantiation
2251 // and the found name refers to an instance member function, otherwise
2252 // the caller will try to create an implicit member call and this is wrong
2253 // for default arguments.
2254 //
2255 // FIXME: Is this special case necessary? We could allow the caller to
2256 // diagnose this.
2257 if (isDefaultArgument && ((*R.begin())->isCXXInstanceMember())) {
2258 Diag(R.getNameLoc(), diag::err_member_call_without_object);
2259 return true;
2260 }
2261
2262 // Tell the callee to try to recover.
2263 return false;
2264}
2265
2266/// Diagnose an empty lookup.
2267///
2268/// \return false if new lookup candidates were found
2269bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
2270 CorrectionCandidateCallback &CCC,
2271 TemplateArgumentListInfo *ExplicitTemplateArgs,
2272 ArrayRef<Expr *> Args, TypoExpr **Out) {
2273 DeclarationName Name = R.getLookupName();
2274
2275 unsigned diagnostic = diag::err_undeclared_var_use;
2276 unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
2277 if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
2278 Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
2279 Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
2280 diagnostic = diag::err_undeclared_use;
2281 diagnostic_suggest = diag::err_undeclared_use_suggest;
2282 }
2283
2284 // If the original lookup was an unqualified lookup, fake an
2285 // unqualified lookup. This is useful when (for example) the
2286 // original lookup would not have found something because it was a
2287 // dependent name.
2288 DeclContext *DC = SS.isEmpty() ? CurContext : nullptr;
2289 while (DC) {
2290 if (isa<CXXRecordDecl>(DC)) {
2291 LookupQualifiedName(R, DC);
2292
2293 if (!R.empty()) {
2294 // Don't give errors about ambiguities in this lookup.
2295 R.suppressDiagnostics();
2296
2297 // If there's a best viable function among the results, only mention
2298 // that one in the notes.
2299 OverloadCandidateSet Candidates(R.getNameLoc(),
2300 OverloadCandidateSet::CSK_Normal);
2301 AddOverloadedCallCandidates(R, ExplicitTemplateArgs, Args, Candidates);
2302 OverloadCandidateSet::iterator Best;
2303 if (Candidates.BestViableFunction(*this, R.getNameLoc(), Best) ==
2304 OR_Success) {
2305 R.clear();
2306 R.addDecl(Best->FoundDecl.getDecl(), Best->FoundDecl.getAccess());
2307 R.resolveKind();
2308 }
2309
2310 return DiagnoseDependentMemberLookup(R);
2311 }
2312
2313 R.clear();
2314 }
2315
2316 DC = DC->getLookupParent();
2317 }
2318
2319 // We didn't find anything, so try to correct for a typo.
2320 TypoCorrection Corrected;
2321 if (S && Out) {
2322 SourceLocation TypoLoc = R.getNameLoc();
2323 assert(!ExplicitTemplateArgs &&(static_cast <bool> (!ExplicitTemplateArgs && "Diagnosing an empty lookup with explicit template args!"
) ? void (0) : __assert_fail ("!ExplicitTemplateArgs && \"Diagnosing an empty lookup with explicit template args!\""
, "clang/lib/Sema/SemaExpr.cpp", 2324, __extension__ __PRETTY_FUNCTION__
))
2324 "Diagnosing an empty lookup with explicit template args!")(static_cast <bool> (!ExplicitTemplateArgs && "Diagnosing an empty lookup with explicit template args!"
) ? void (0) : __assert_fail ("!ExplicitTemplateArgs && \"Diagnosing an empty lookup with explicit template args!\""
, "clang/lib/Sema/SemaExpr.cpp", 2324, __extension__ __PRETTY_FUNCTION__
))
;
2325 *Out = CorrectTypoDelayed(
2326 R.getLookupNameInfo(), R.getLookupKind(), S, &SS, CCC,
2327 [=](const TypoCorrection &TC) {
2328 emitEmptyLookupTypoDiagnostic(TC, *this, SS, Name, TypoLoc, Args,
2329 diagnostic, diagnostic_suggest);
2330 },
2331 nullptr, CTK_ErrorRecovery);
2332 if (*Out)
2333 return true;
2334 } else if (S &&
2335 (Corrected = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(),
2336 S, &SS, CCC, CTK_ErrorRecovery))) {
2337 std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
2338 bool DroppedSpecifier =
2339 Corrected.WillReplaceSpecifier() && Name.getAsString() == CorrectedStr;
2340 R.setLookupName(Corrected.getCorrection());
2341
2342 bool AcceptableWithRecovery = false;
2343 bool AcceptableWithoutRecovery = false;
2344 NamedDecl *ND = Corrected.getFoundDecl();
2345 if (ND) {
2346 if (Corrected.isOverloaded()) {
2347 OverloadCandidateSet OCS(R.getNameLoc(),
2348 OverloadCandidateSet::CSK_Normal);
2349 OverloadCandidateSet::iterator Best;
2350 for (NamedDecl *CD : Corrected) {
2351 if (FunctionTemplateDecl *FTD =
2352 dyn_cast<FunctionTemplateDecl>(CD))
2353 AddTemplateOverloadCandidate(
2354 FTD, DeclAccessPair::make(FTD, AS_none), ExplicitTemplateArgs,
2355 Args, OCS);
2356 else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(CD))
2357 if (!ExplicitTemplateArgs || ExplicitTemplateArgs->size() == 0)
2358 AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none),
2359 Args, OCS);
2360 }
2361 switch (OCS.BestViableFunction(*this, R.getNameLoc(), Best)) {
2362 case OR_Success:
2363 ND = Best->FoundDecl;
2364 Corrected.setCorrectionDecl(ND);
2365 break;
2366 default:
2367 // FIXME: Arbitrarily pick the first declaration for the note.
2368 Corrected.setCorrectionDecl(ND);
2369 break;
2370 }
2371 }
2372 R.addDecl(ND);
2373 if (getLangOpts().CPlusPlus && ND->isCXXClassMember()) {
2374 CXXRecordDecl *Record = nullptr;
2375 if (Corrected.getCorrectionSpecifier()) {
2376 const Type *Ty = Corrected.getCorrectionSpecifier()->getAsType();
2377 Record = Ty->getAsCXXRecordDecl();
2378 }
2379 if (!Record)
2380 Record = cast<CXXRecordDecl>(
2381 ND->getDeclContext()->getRedeclContext());
2382 R.setNamingClass(Record);
2383 }
2384
2385 auto *UnderlyingND = ND->getUnderlyingDecl();
2386 AcceptableWithRecovery = isa<ValueDecl>(UnderlyingND) ||
2387 isa<FunctionTemplateDecl>(UnderlyingND);
2388 // FIXME: If we ended up with a typo for a type name or
2389 // Objective-C class name, we're in trouble because the parser
2390 // is in the wrong place to recover. Suggest the typo
2391 // correction, but don't make it a fix-it since we're not going
2392 // to recover well anyway.
2393 AcceptableWithoutRecovery = isa<TypeDecl>(UnderlyingND) ||
2394 getAsTypeTemplateDecl(UnderlyingND) ||
2395 isa<ObjCInterfaceDecl>(UnderlyingND);
2396 } else {
2397 // FIXME: We found a keyword. Suggest it, but don't provide a fix-it
2398 // because we aren't able to recover.
2399 AcceptableWithoutRecovery = true;
2400 }
2401
2402 if (AcceptableWithRecovery || AcceptableWithoutRecovery) {
2403 unsigned NoteID = Corrected.getCorrectionDeclAs<ImplicitParamDecl>()
2404 ? diag::note_implicit_param_decl
2405 : diag::note_previous_decl;
2406 if (SS.isEmpty())
2407 diagnoseTypo(Corrected, PDiag(diagnostic_suggest) << Name,
2408 PDiag(NoteID), AcceptableWithRecovery);
2409 else
2410 diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
2411 << Name << computeDeclContext(SS, false)
2412 << DroppedSpecifier << SS.getRange(),
2413 PDiag(NoteID), AcceptableWithRecovery);
2414
2415 // Tell the callee whether to try to recover.
2416 return !AcceptableWithRecovery;
2417 }
2418 }
2419 R.clear();
2420
2421 // Emit a special diagnostic for failed member lookups.
2422 // FIXME: computing the declaration context might fail here (?)
2423 if (!SS.isEmpty()) {
2424 Diag(R.getNameLoc(), diag::err_no_member)
2425 << Name << computeDeclContext(SS, false)
2426 << SS.getRange();
2427 return true;
2428 }
2429
2430 // Give up, we can't recover.
2431 Diag(R.getNameLoc(), diagnostic) << Name;
2432 return true;
2433}
2434
2435/// In Microsoft mode, if we are inside a template class whose parent class has
2436/// dependent base classes, and we can't resolve an unqualified identifier, then
2437/// assume the identifier is a member of a dependent base class. We can only
2438/// recover successfully in static methods, instance methods, and other contexts
2439/// where 'this' is available. This doesn't precisely match MSVC's
2440/// instantiation model, but it's close enough.
2441static Expr *
2442recoverFromMSUnqualifiedLookup(Sema &S, ASTContext &Context,
2443 DeclarationNameInfo &NameInfo,
2444 SourceLocation TemplateKWLoc,
2445 const TemplateArgumentListInfo *TemplateArgs) {
2446 // Only try to recover from lookup into dependent bases in static methods or
2447 // contexts where 'this' is available.
2448 QualType ThisType = S.getCurrentThisType();
2449 const CXXRecordDecl *RD = nullptr;
2450 if (!ThisType.isNull())
2451 RD = ThisType->getPointeeType()->getAsCXXRecordDecl();
2452 else if (auto *MD = dyn_cast<CXXMethodDecl>(S.CurContext))
2453 RD = MD->getParent();
2454 if (!RD || !RD->hasAnyDependentBases())
2455 return nullptr;
2456
2457 // Diagnose this as unqualified lookup into a dependent base class. If 'this'
2458 // is available, suggest inserting 'this->' as a fixit.
2459 SourceLocation Loc = NameInfo.getLoc();
2460 auto DB = S.Diag(Loc, diag::ext_undeclared_unqual_id_with_dependent_base);
2461 DB << NameInfo.getName() << RD;
2462
2463 if (!ThisType.isNull()) {
2464 DB << FixItHint::CreateInsertion(Loc, "this->");
2465 return CXXDependentScopeMemberExpr::Create(
2466 Context, /*This=*/nullptr, ThisType, /*IsArrow=*/true,
2467 /*Op=*/SourceLocation(), NestedNameSpecifierLoc(), TemplateKWLoc,
2468 /*FirstQualifierFoundInScope=*/nullptr, NameInfo, TemplateArgs);
2469 }
2470
2471 // Synthesize a fake NNS that points to the derived class. This will
2472 // perform name lookup during template instantiation.
2473 CXXScopeSpec SS;
2474 auto *NNS =
2475 NestedNameSpecifier::Create(Context, nullptr, true, RD->getTypeForDecl());
2476 SS.MakeTrivial(Context, NNS, SourceRange(Loc, Loc));
2477 return DependentScopeDeclRefExpr::Create(
2478 Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
2479 TemplateArgs);
2480}
2481
2482ExprResult
2483Sema::ActOnIdExpression(Scope *S, CXXScopeSpec &SS,
2484 SourceLocation TemplateKWLoc, UnqualifiedId &Id,
2485 bool HasTrailingLParen, bool IsAddressOfOperand,
2486 CorrectionCandidateCallback *CCC,
2487 bool IsInlineAsmIdentifier, Token *KeywordReplacement) {
2488 assert(!(IsAddressOfOperand && HasTrailingLParen) &&(static_cast <bool> (!(IsAddressOfOperand && HasTrailingLParen
) && "cannot be direct & operand and have a trailing lparen"
) ? void (0) : __assert_fail ("!(IsAddressOfOperand && HasTrailingLParen) && \"cannot be direct & operand and have a trailing lparen\""
, "clang/lib/Sema/SemaExpr.cpp", 2489, __extension__ __PRETTY_FUNCTION__
))
2489 "cannot be direct & operand and have a trailing lparen")(static_cast <bool> (!(IsAddressOfOperand && HasTrailingLParen
) && "cannot be direct & operand and have a trailing lparen"
) ? void (0) : __assert_fail ("!(IsAddressOfOperand && HasTrailingLParen) && \"cannot be direct & operand and have a trailing lparen\""
, "clang/lib/Sema/SemaExpr.cpp", 2489, __extension__ __PRETTY_FUNCTION__
))
;
2490 if (SS.isInvalid())
2491 return ExprError();
2492
2493 TemplateArgumentListInfo TemplateArgsBuffer;
2494
2495 // Decompose the UnqualifiedId into the following data.
2496 DeclarationNameInfo NameInfo;
2497 const TemplateArgumentListInfo *TemplateArgs;
2498 DecomposeUnqualifiedId(Id, TemplateArgsBuffer, NameInfo, TemplateArgs);
2499
2500 DeclarationName Name = NameInfo.getName();
2501 IdentifierInfo *II = Name.getAsIdentifierInfo();
2502 SourceLocation NameLoc = NameInfo.getLoc();
2503
2504 if (II && II->isEditorPlaceholder()) {
2505 // FIXME: When typed placeholders are supported we can create a typed
2506 // placeholder expression node.
2507 return ExprError();
2508 }
2509
2510 // C++ [temp.dep.expr]p3:
2511 // An id-expression is type-dependent if it contains:
2512 // -- an identifier that was declared with a dependent type,
2513 // (note: handled after lookup)
2514 // -- a template-id that is dependent,
2515 // (note: handled in BuildTemplateIdExpr)
2516 // -- a conversion-function-id that specifies a dependent type,
2517 // -- a nested-name-specifier that contains a class-name that
2518 // names a dependent type.
2519 // Determine whether this is a member of an unknown specialization;
2520 // we need to handle these differently.
2521 bool DependentID = false;
2522 if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
2523 Name.getCXXNameType()->isDependentType()) {
2524 DependentID = true;
2525 } else if (SS.isSet()) {
2526 if (DeclContext *DC = computeDeclContext(SS, false)) {
2527 if (RequireCompleteDeclContext(SS, DC))
2528 return ExprError();
2529 } else {
2530 DependentID = true;
2531 }
2532 }
2533
2534 if (DependentID)
2535 return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2536 IsAddressOfOperand, TemplateArgs);
2537
2538 // Perform the required lookup.
2539 LookupResult R(*this, NameInfo,
2540 (Id.getKind() == UnqualifiedIdKind::IK_ImplicitSelfParam)
2541 ? LookupObjCImplicitSelfParam
2542 : LookupOrdinaryName);
2543 if (TemplateKWLoc.isValid() || TemplateArgs) {
2544 // Lookup the template name again to correctly establish the context in
2545 // which it was found. This is really unfortunate as we already did the
2546 // lookup to determine that it was a template name in the first place. If
2547 // this becomes a performance hit, we can work harder to preserve those
2548 // results until we get here but it's likely not worth it.
2549 bool MemberOfUnknownSpecialization;
2550 AssumedTemplateKind AssumedTemplate;
2551 if (LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false,
2552 MemberOfUnknownSpecialization, TemplateKWLoc,
2553 &AssumedTemplate))
2554 return ExprError();
2555
2556 if (MemberOfUnknownSpecialization ||
2557 (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation))
2558 return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2559 IsAddressOfOperand, TemplateArgs);
2560 } else {
2561 bool IvarLookupFollowUp = II && !SS.isSet() && getCurMethodDecl();
2562 LookupParsedName(R, S, &SS, !IvarLookupFollowUp);
2563
2564 // If the result might be in a dependent base class, this is a dependent
2565 // id-expression.
2566 if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
2567 return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2568 IsAddressOfOperand, TemplateArgs);
2569
2570 // If this reference is in an Objective-C method, then we need to do
2571 // some special Objective-C lookup, too.
2572 if (IvarLookupFollowUp) {
2573 ExprResult E(LookupInObjCMethod(R, S, II, true));
2574 if (E.isInvalid())
2575 return ExprError();
2576
2577 if (Expr *Ex = E.getAs<Expr>())
2578 return Ex;
2579 }
2580 }
2581
2582 if (R.isAmbiguous())
2583 return ExprError();
2584
2585 // This could be an implicitly declared function reference if the language
2586 // mode allows it as a feature.
2587 if (R.empty() && HasTrailingLParen && II &&
2588 getLangOpts().implicitFunctionsAllowed()) {
2589 NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
2590 if (D) R.addDecl(D);
2591 }
2592
2593 // Determine whether this name might be a candidate for
2594 // argument-dependent lookup.
2595 bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
2596
2597 if (R.empty() && !ADL) {
2598 if (SS.isEmpty() && getLangOpts().MSVCCompat) {
2599 if (Expr *E = recoverFromMSUnqualifiedLookup(*this, Context, NameInfo,
2600 TemplateKWLoc, TemplateArgs))
2601 return E;
2602 }
2603
2604 // Don't diagnose an empty lookup for inline assembly.
2605 if (IsInlineAsmIdentifier)
2606 return ExprError();
2607
2608 // If this name wasn't predeclared and if this is not a function
2609 // call, diagnose the problem.
2610 TypoExpr *TE = nullptr;
2611 DefaultFilterCCC DefaultValidator(II, SS.isValid() ? SS.getScopeRep()
2612 : nullptr);
2613 DefaultValidator.IsAddressOfOperand = IsAddressOfOperand;
2614 assert((!CCC || CCC->IsAddressOfOperand == IsAddressOfOperand) &&(static_cast <bool> ((!CCC || CCC->IsAddressOfOperand
== IsAddressOfOperand) && "Typo correction callback misconfigured"
) ? void (0) : __assert_fail ("(!CCC || CCC->IsAddressOfOperand == IsAddressOfOperand) && \"Typo correction callback misconfigured\""
, "clang/lib/Sema/SemaExpr.cpp", 2615, __extension__ __PRETTY_FUNCTION__
))
2615 "Typo correction callback misconfigured")(static_cast <bool> ((!CCC || CCC->IsAddressOfOperand
== IsAddressOfOperand) && "Typo correction callback misconfigured"
) ? void (0) : __assert_fail ("(!CCC || CCC->IsAddressOfOperand == IsAddressOfOperand) && \"Typo correction callback misconfigured\""
, "clang/lib/Sema/SemaExpr.cpp", 2615, __extension__ __PRETTY_FUNCTION__
))
;
2616 if (CCC) {
2617 // Make sure the callback knows what the typo being diagnosed is.
2618 CCC->setTypoName(II);
2619 if (SS.isValid())
2620 CCC->setTypoNNS(SS.getScopeRep());
2621 }
2622 // FIXME: DiagnoseEmptyLookup produces bad diagnostics if we're looking for
2623 // a template name, but we happen to have always already looked up the name
2624 // before we get here if it must be a template name.
2625 if (DiagnoseEmptyLookup(S, SS, R, CCC ? *CCC : DefaultValidator, nullptr,
2626 None, &TE)) {
2627 if (TE && KeywordReplacement) {
2628 auto &State = getTypoExprState(TE);
2629 auto BestTC = State.Consumer->getNextCorrection();
2630 if (BestTC.isKeyword()) {
2631 auto *II = BestTC.getCorrectionAsIdentifierInfo();
2632 if (State.DiagHandler)
2633 State.DiagHandler(BestTC);
2634 KeywordReplacement->startToken();
2635 KeywordReplacement->setKind(II->getTokenID());
2636 KeywordReplacement->setIdentifierInfo(II);
2637 KeywordReplacement->setLocation(BestTC.getCorrectionRange().getBegin());
2638 // Clean up the state associated with the TypoExpr, since it has
2639 // now been diagnosed (without a call to CorrectDelayedTyposInExpr).
2640 clearDelayedTypo(TE);
2641 // Signal that a correction to a keyword was performed by returning a
2642 // valid-but-null ExprResult.
2643 return (Expr*)nullptr;
2644 }
2645 State.Consumer->resetCorrectionStream();
2646 }
2647 return TE ? TE : ExprError();
2648 }
2649
2650 assert(!R.empty() &&(static_cast <bool> (!R.empty() && "DiagnoseEmptyLookup returned false but added no results"
) ? void (0) : __assert_fail ("!R.empty() && \"DiagnoseEmptyLookup returned false but added no results\""
, "clang/lib/Sema/SemaExpr.cpp", 2651, __extension__ __PRETTY_FUNCTION__
))
2651 "DiagnoseEmptyLookup returned false but added no results")(static_cast <bool> (!R.empty() && "DiagnoseEmptyLookup returned false but added no results"
) ? void (0) : __assert_fail ("!R.empty() && \"DiagnoseEmptyLookup returned false but added no results\""
, "clang/lib/Sema/SemaExpr.cpp", 2651, __extension__ __PRETTY_FUNCTION__
))
;
2652
2653 // If we found an Objective-C instance variable, let
2654 // LookupInObjCMethod build the appropriate expression to
2655 // reference the ivar.
2656 if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
2657 R.clear();
2658 ExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier()));
2659 // In a hopelessly buggy code, Objective-C instance variable
2660 // lookup fails and no expression will be built to reference it.
2661 if (!E.isInvalid() && !E.get())
2662 return ExprError();
2663 return E;
2664 }
2665 }
2666
2667 // This is guaranteed from this point on.
2668 assert(!R.empty() || ADL)(static_cast <bool> (!R.empty() || ADL) ? void (0) : __assert_fail
("!R.empty() || ADL", "clang/lib/Sema/SemaExpr.cpp", 2668, __extension__
__PRETTY_FUNCTION__))
;
2669
2670 // Check whether this might be a C++ implicit instance member access.
2671 // C++ [class.mfct.non-static]p3:
2672 // When an id-expression that is not part of a class member access
2673 // syntax and not used to form a pointer to member is used in the
2674 // body of a non-static member function of class X, if name lookup
2675 // resolves the name in the id-expression to a non-static non-type
2676 // member of some class C, the id-expression is transformed into a
2677 // class member access expression using (*this) as the
2678 // postfix-expression to the left of the . operator.
2679 //
2680 // But we don't actually need to do this for '&' operands if R
2681 // resolved to a function or overloaded function set, because the
2682 // expression is ill-formed if it actually works out to be a
2683 // non-static member function:
2684 //
2685 // C++ [expr.ref]p4:
2686 // Otherwise, if E1.E2 refers to a non-static member function. . .
2687 // [t]he expression can be used only as the left-hand operand of a
2688 // member function call.
2689 //
2690 // There are other safeguards against such uses, but it's important
2691 // to get this right here so that we don't end up making a
2692 // spuriously dependent expression if we're inside a dependent
2693 // instance method.
2694 if (!R.empty() && (*R.begin())->isCXXClassMember()) {
2695 bool MightBeImplicitMember;
2696 if (!IsAddressOfOperand)
2697 MightBeImplicitMember = true;
2698 else if (!SS.isEmpty())
2699 MightBeImplicitMember = false;
2700 else if (R.isOverloadedResult())
2701 MightBeImplicitMember = false;
2702 else if (R.isUnresolvableResult())
2703 MightBeImplicitMember = true;
2704 else
2705 MightBeImplicitMember = isa<FieldDecl>(R.getFoundDecl()) ||
2706 isa<IndirectFieldDecl>(R.getFoundDecl()) ||
2707 isa<MSPropertyDecl>(R.getFoundDecl());
2708
2709 if (MightBeImplicitMember)
2710 return BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc,
2711 R, TemplateArgs, S);
2712 }
2713
2714 if (TemplateArgs || TemplateKWLoc.isValid()) {
2715
2716 // In C++1y, if this is a variable template id, then check it
2717 // in BuildTemplateIdExpr().
2718 // The single lookup result must be a variable template declaration.
2719 if (Id.getKind() == UnqualifiedIdKind::IK_TemplateId && Id.TemplateId &&
2720 Id.TemplateId->Kind == TNK_Var_template) {
2721 assert(R.getAsSingle<VarTemplateDecl>() &&(static_cast <bool> (R.getAsSingle<VarTemplateDecl>
() && "There should only be one declaration found.") ?
void (0) : __assert_fail ("R.getAsSingle<VarTemplateDecl>() && \"There should only be one declaration found.\""
, "clang/lib/Sema/SemaExpr.cpp", 2722, __extension__ __PRETTY_FUNCTION__
))
2722 "There should only be one declaration found.")(static_cast <bool> (R.getAsSingle<VarTemplateDecl>
() && "There should only be one declaration found.") ?
void (0) : __assert_fail ("R.getAsSingle<VarTemplateDecl>() && \"There should only be one declaration found.\""
, "clang/lib/Sema/SemaExpr.cpp", 2722, __extension__ __PRETTY_FUNCTION__
))
;
2723 }
2724
2725 return BuildTemplateIdExpr(SS, TemplateKWLoc, R, ADL, TemplateArgs);
2726 }
2727
2728 return BuildDeclarationNameExpr(SS, R, ADL);
2729}
2730
2731/// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
2732/// declaration name, generally during template instantiation.
2733/// There's a large number of things which don't need to be done along
2734/// this path.
2735ExprResult Sema::BuildQualifiedDeclarationNameExpr(
2736 CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo,
2737 bool IsAddressOfOperand, const Scope *S, TypeSourceInfo **RecoveryTSI) {
2738 DeclContext *DC = computeDeclContext(SS, false);
2739 if (!DC)
2740 return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
2741 NameInfo, /*TemplateArgs=*/nullptr);
2742
2743 if (RequireCompleteDeclContext(SS, DC))
2744 return ExprError();
2745
2746 LookupResult R(*this, NameInfo, LookupOrdinaryName);
2747 LookupQualifiedName(R, DC);
2748
2749 if (R.isAmbiguous())
2750 return ExprError();
2751
2752 if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
2753 return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
2754 NameInfo, /*TemplateArgs=*/nullptr);
2755
2756 if (R.empty()) {
2757 // Don't diagnose problems with invalid record decl, the secondary no_member
2758 // diagnostic during template instantiation is likely bogus, e.g. if a class
2759 // is invalid because it's derived from an invalid base class, then missing
2760 // members were likely supposed to be inherited.
2761 if (const auto *CD = dyn_cast<CXXRecordDecl>(DC))
2762 if (CD->isInvalidDecl())
2763 return ExprError();
2764 Diag(NameInfo.getLoc(), diag::err_no_member)
2765 << NameInfo.getName() << DC << SS.getRange();
2766 return ExprError();
2767 }
2768
2769 if (const TypeDecl *TD = R.getAsSingle<TypeDecl>()) {
2770 // Diagnose a missing typename if this resolved unambiguously to a type in
2771 // a dependent context. If we can recover with a type, downgrade this to
2772 // a warning in Microsoft compatibility mode.
2773 unsigned DiagID = diag::err_typename_missing;
2774 if (RecoveryTSI && getLangOpts().MSVCCompat)
2775 DiagID = diag::ext_typename_missing;
2776 SourceLocation Loc = SS.getBeginLoc();
2777 auto D = Diag(Loc, DiagID);
2778 D << SS.getScopeRep() << NameInfo.getName().getAsString()
2779 << SourceRange(Loc, NameInfo.getEndLoc());
2780
2781 // Don't recover if the caller isn't expecting us to or if we're in a SFINAE
2782 // context.
2783 if (!RecoveryTSI)
2784 return ExprError();
2785
2786 // Only issue the fixit if we're prepared to recover.
2787 D << FixItHint::CreateInsertion(Loc, "typename ");
2788
2789 // Recover by pretending this was an elaborated type.
2790 QualType Ty = Context.getTypeDeclType(TD);
2791 TypeLocBuilder TLB;
2792 TLB.pushTypeSpec(Ty).setNameLoc(NameInfo.getLoc());
2793
2794 QualType ET = getElaboratedType(ETK_None, SS, Ty);
2795 ElaboratedTypeLoc QTL = TLB.push<ElaboratedTypeLoc>(ET);
2796 QTL.setElaboratedKeywordLoc(SourceLocation());
2797 QTL.setQualifierLoc(SS.getWithLocInContext(Context));
2798
2799 *RecoveryTSI = TLB.getTypeSourceInfo(Context, ET);
2800
2801 return ExprEmpty();
2802 }
2803
2804 // Defend against this resolving to an implicit member access. We usually
2805 // won't get here if this might be a legitimate a class member (we end up in
2806 // BuildMemberReferenceExpr instead), but this can be valid if we're forming
2807 // a pointer-to-member or in an unevaluated context in C++11.
2808 if (!R.empty() && (*R.begin())->isCXXClassMember() && !IsAddressOfOperand)
2809 return BuildPossibleImplicitMemberExpr(SS,
2810 /*TemplateKWLoc=*/SourceLocation(),
2811 R, /*TemplateArgs=*/nullptr, S);
2812
2813 return BuildDeclarationNameExpr(SS, R, /* ADL */ false);
2814}
2815
2816/// The parser has read a name in, and Sema has detected that we're currently
2817/// inside an ObjC method. Perform some additional checks and determine if we
2818/// should form a reference to an ivar.
2819///
2820/// Ideally, most of this would be done by lookup, but there's
2821/// actually quite a lot of extra work involved.
2822DeclResult Sema::LookupIvarInObjCMethod(LookupResult &Lookup, Scope *S,
2823 IdentifierInfo *II) {
2824 SourceLocation Loc = Lookup.getNameLoc();
2825 ObjCMethodDecl *CurMethod = getCurMethodDecl();
2826
2827 // Check for error condition which is already reported.
2828 if (!CurMethod)
2829 return DeclResult(true);
2830
2831 // There are two cases to handle here. 1) scoped lookup could have failed,
2832 // in which case we should look for an ivar. 2) scoped lookup could have
2833 // found a decl, but that decl is outside the current instance method (i.e.
2834 // a global variable). In these two cases, we do a lookup for an ivar with
2835 // this name, if the lookup sucedes, we replace it our current decl.
2836
2837 // If we're in a class method, we don't normally want to look for
2838 // ivars. But if we don't find anything else, and there's an
2839 // ivar, that's an error.
2840 bool IsClassMethod = CurMethod->isClassMethod();
2841
2842 bool LookForIvars;
2843 if (Lookup.empty())
2844 LookForIvars = true;
2845 else if (IsClassMethod)
2846 LookForIvars = false;
2847 else
2848 LookForIvars = (Lookup.isSingleResult() &&
2849 Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
2850 ObjCInterfaceDecl *IFace = nullptr;
2851 if (LookForIvars) {
2852 IFace = CurMethod->getClassInterface();
2853 ObjCInterfaceDecl *ClassDeclared;
2854 ObjCIvarDecl *IV = nullptr;
2855 if (IFace && (IV = IFace->lookupInstanceVariable(II, ClassDeclared))) {
2856 // Diagnose using an ivar in a class method.
2857 if (IsClassMethod) {
2858 Diag(Loc, diag::err_ivar_use_in_class_method) << IV->getDeclName();
2859 return DeclResult(true);
2860 }
2861
2862 // Diagnose the use of an ivar outside of the declaring class.
2863 if (IV->getAccessControl() == ObjCIvarDecl::Private &&
2864 !declaresSameEntity(ClassDeclared, IFace) &&
2865 !getLangOpts().DebuggerSupport)
2866 Diag(Loc, diag::err_private_ivar_access) << IV->getDeclName();
2867
2868 // Success.
2869 return IV;
2870 }
2871 } else if (CurMethod->isInstanceMethod()) {
2872 // We should warn if a local variable hides an ivar.
2873 if (ObjCInterfaceDecl *IFace = CurMethod->getClassInterface()) {
2874 ObjCInterfaceDecl *ClassDeclared;
2875 if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
2876 if (IV->getAccessControl() != ObjCIvarDecl::Private ||
2877 declaresSameEntity(IFace, ClassDeclared))
2878 Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
2879 }
2880 }
2881 } else if (Lookup.isSingleResult() &&
2882 Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod()) {
2883 // If accessing a stand-alone ivar in a class method, this is an error.
2884 if (const ObjCIvarDecl *IV =
2885 dyn_cast<ObjCIvarDecl>(Lookup.getFoundDecl())) {
2886 Diag(Loc, diag::err_ivar_use_in_class_method) << IV->getDeclName();
2887 return DeclResult(true);
2888 }
2889 }
2890
2891 // Didn't encounter an error, didn't find an ivar.
2892 return DeclResult(false);
2893}
2894
2895ExprResult Sema::BuildIvarRefExpr(Scope *S, SourceLocation Loc,
2896 ObjCIvarDecl *IV) {
2897 ObjCMethodDecl *CurMethod = getCurMethodDecl();
2898 assert(CurMethod && CurMethod->isInstanceMethod() &&(static_cast <bool> (CurMethod && CurMethod->
isInstanceMethod() && "should not reference ivar from this context"
) ? void (0) : __assert_fail ("CurMethod && CurMethod->isInstanceMethod() && \"should not reference ivar from this context\""
, "clang/lib/Sema/SemaExpr.cpp", 2899, __extension__ __PRETTY_FUNCTION__
))
2899 "should not reference ivar from this context")(static_cast <bool> (CurMethod && CurMethod->
isInstanceMethod() && "should not reference ivar from this context"
) ? void (0) : __assert_fail ("CurMethod && CurMethod->isInstanceMethod() && \"should not reference ivar from this context\""
, "clang/lib/Sema/SemaExpr.cpp", 2899, __extension__ __PRETTY_FUNCTION__
))
;
2900
2901 ObjCInterfaceDecl *IFace = CurMethod->getClassInterface();
2902 assert(IFace && "should not reference ivar from this context")(static_cast <bool> (IFace && "should not reference ivar from this context"
) ? void (0) : __assert_fail ("IFace && \"should not reference ivar from this context\""
, "clang/lib/Sema/SemaExpr.cpp", 2902, __extension__ __PRETTY_FUNCTION__
))
;
2903
2904 // If we're referencing an invalid decl, just return this as a silent
2905 // error node. The error diagnostic was already emitted on the decl.
2906 if (IV->isInvalidDecl())
2907 return ExprError();
2908
2909 // Check if referencing a field with __attribute__((deprecated)).
2910 if (DiagnoseUseOfDecl(IV, Loc))
2911 return ExprError();
2912
2913 // FIXME: This should use a new expr for a direct reference, don't
2914 // turn this into Self->ivar, just return a BareIVarExpr or something.
2915 IdentifierInfo &II = Context.Idents.get("self");
2916 UnqualifiedId SelfName;
2917 SelfName.setImplicitSelfParam(&II);
2918 CXXScopeSpec SelfScopeSpec;
2919 SourceLocation TemplateKWLoc;
2920 ExprResult SelfExpr =
2921 ActOnIdExpression(S, SelfScopeSpec, TemplateKWLoc, SelfName,
2922 /*HasTrailingLParen=*/false,
2923 /*IsAddressOfOperand=*/false);
2924 if (SelfExpr.isInvalid())
2925 return ExprError();
2926
2927 SelfExpr = DefaultLvalueConversion(SelfExpr.get());
2928 if (SelfExpr.isInvalid())
2929 return ExprError();
2930
2931 MarkAnyDeclReferenced(Loc, IV, true);
2932
2933 ObjCMethodFamily MF = CurMethod->getMethodFamily();
2934 if (MF != OMF_init && MF != OMF_dealloc && MF != OMF_finalize &&
2935 !IvarBacksCurrentMethodAccessor(IFace, CurMethod, IV))
2936 Diag(Loc, diag::warn_direct_ivar_access) << IV->getDeclName();
2937
2938 ObjCIvarRefExpr *Result = new (Context)
2939 ObjCIvarRefExpr(IV, IV->getUsageType(SelfExpr.get()->getType()), Loc,
2940 IV->getLocation(), SelfExpr.get(), true, true);
2941
2942 if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
2943 if (!isUnevaluatedContext() &&
2944 !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc))
2945 getCurFunction()->recordUseOfWeak(Result);
2946 }
2947 if (getLangOpts().ObjCAutoRefCount && !isUnevaluatedContext())
2948 if (const BlockDecl *BD = CurContext->getInnermostBlockDecl())
2949 ImplicitlyRetainedSelfLocs.push_back({Loc, BD});
2950
2951 return Result;
2952}
2953
2954/// The parser has read a name in, and Sema has detected that we're currently
2955/// inside an ObjC method. Perform some additional checks and determine if we
2956/// should form a reference to an ivar. If so, build an expression referencing
2957/// that ivar.
2958ExprResult
2959Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
2960 IdentifierInfo *II, bool AllowBuiltinCreation) {
2961 // FIXME: Integrate this lookup step into LookupParsedName.
2962 DeclResult Ivar = LookupIvarInObjCMethod(Lookup, S, II);
2963 if (Ivar.isInvalid())
2964 return ExprError();
2965 if (Ivar.isUsable())
2966 return BuildIvarRefExpr(S, Lookup.getNameLoc(),
2967 cast<ObjCIvarDecl>(Ivar.get()));
2968
2969 if (Lookup.empty() && II && AllowBuiltinCreation)
2970 LookupBuiltin(Lookup);
2971
2972 // Sentinel value saying that we didn't do anything special.
2973 return ExprResult(false);
2974}
2975
2976/// Cast a base object to a member's actual type.
2977///
2978/// There are two relevant checks:
2979///
2980/// C++ [class.access.base]p7:
2981///
2982/// If a class member access operator [...] is used to access a non-static
2983/// data member or non-static member function, the reference is ill-formed if
2984/// the left operand [...] cannot be implicitly converted to a pointer to the
2985/// naming class of the right operand.
2986///
2987/// C++ [expr.ref]p7:
2988///
2989/// If E2 is a non-static data member or a non-static member function, the
2990/// program is ill-formed if the class of which E2 is directly a member is an
2991/// ambiguous base (11.8) of the naming class (11.9.3) of E2.
2992///
2993/// Note that the latter check does not consider access; the access of the
2994/// "real" base class is checked as appropriate when checking the access of the
2995/// member name.
2996ExprResult
2997Sema::PerformObjectMemberConversion(Expr *From,
2998 NestedNameSpecifier *Qualifier,
2999 NamedDecl *FoundDecl,
3000 NamedDecl *Member) {
3001 CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext());
3002 if (!RD)
3003 return From;
3004
3005 QualType DestRecordType;
3006 QualType DestType;
3007 QualType FromRecordType;
3008 QualType FromType = From->getType();
3009 bool PointerConversions = false;
3010 if (isa<FieldDecl>(Member)) {
3011 DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD));
3012 auto FromPtrType = FromType->getAs<PointerType>();
3013 DestRecordType = Context.getAddrSpaceQualType(
3014 DestRecordType, FromPtrType
3015 ? FromType->getPointeeType().getAddressSpace()
3016 : FromType.getAddressSpace());
3017
3018 if (FromPtrType) {
3019 DestType = Context.getPointerType(DestRecordType);
3020 FromRecordType = FromPtrType->getPointeeType();
3021 PointerConversions = true;
3022 } else {
3023 DestType = DestRecordType;
3024 FromRecordType = FromType;
3025 }
3026 } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) {
3027 if (Method->isStatic())
3028 return From;
3029
3030 DestType = Method->getThisType();
3031 DestRecordType = DestType->getPointeeType();
3032
3033 if (FromType->getAs<PointerType>()) {
3034 FromRecordType = FromType->getPointeeType();
3035 PointerConversions = true;
3036 } else {
3037 FromRecordType = FromType;
3038 DestType = DestRecordType;
3039 }
3040
3041 LangAS FromAS = FromRecordType.getAddressSpace();
3042 LangAS DestAS = DestRecordType.getAddressSpace();
3043 if (FromAS != DestAS) {
3044 QualType FromRecordTypeWithoutAS =
3045 Context.removeAddrSpaceQualType(FromRecordType);
3046 QualType FromTypeWithDestAS =
3047 Context.getAddrSpaceQualType(FromRecordTypeWithoutAS, DestAS);
3048 if (PointerConversions)
3049 FromTypeWithDestAS = Context.getPointerType(FromTypeWithDestAS);
3050 From = ImpCastExprToType(From, FromTypeWithDestAS,
3051 CK_AddressSpaceConversion, From->getValueKind())
3052 .get();
3053 }
3054 } else {
3055 // No conversion necessary.
3056 return From;
3057 }
3058
3059 if (DestType->isDependentType() || FromType->isDependentType())
3060 return From;
3061
3062 // If the unqualified types are the same, no conversion is necessary.
3063 if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
3064 return From;
3065
3066 SourceRange FromRange = From->getSourceRange();
3067 SourceLocation FromLoc = FromRange.getBegin();
3068
3069 ExprValueKind VK = From->getValueKind();
3070
3071 // C++ [class.member.lookup]p8:
3072 // [...] Ambiguities can often be resolved by qualifying a name with its
3073 // class name.
3074 //
3075 // If the member was a qualified name and the qualified referred to a
3076 // specific base subobject type, we'll cast to that intermediate type
3077 // first and then to the object in which the member is declared. That allows
3078 // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
3079 //
3080 // class Base { public: int x; };
3081 // class Derived1 : public Base { };
3082 // class Derived2 : public Base { };
3083 // class VeryDerived : public Derived1, public Derived2 { void f(); };
3084 //
3085 // void VeryDerived::f() {
3086 // x = 17; // error: ambiguous base subobjects
3087 // Derived1::x = 17; // okay, pick the Base subobject of Derived1
3088 // }
3089 if (Qualifier && Qualifier->getAsType()) {
3090 QualType QType = QualType(Qualifier->getAsType(), 0);
3091 assert(QType->isRecordType() && "lookup done with non-record type")(static_cast <bool> (QType->isRecordType() &&
"lookup done with non-record type") ? void (0) : __assert_fail
("QType->isRecordType() && \"lookup done with non-record type\""
, "clang/lib/Sema/SemaExpr.cpp", 3091, __extension__ __PRETTY_FUNCTION__
))
;
3092
3093 QualType QRecordType = QualType(QType->castAs<RecordType>(), 0);
3094
3095 // In C++98, the qualifier type doesn't actually have to be a base
3096 // type of the object type, in which case we just ignore it.
3097 // Otherwise build the appropriate casts.
3098 if (IsDerivedFrom(FromLoc, FromRecordType, QRecordType)) {
3099 CXXCastPath BasePath;
3100 if (CheckDerivedToBaseConversion(FromRecordType, QRecordType,
3101 FromLoc, FromRange, &BasePath))
3102 return ExprError();
3103
3104 if (PointerConversions)
3105 QType = Context.getPointerType(QType);
3106 From = ImpCastExprToType(From, QType, CK_UncheckedDerivedToBase,
3107 VK, &BasePath).get();
3108
3109 FromType = QType;
3110 FromRecordType = QRecordType;
3111
3112 // If the qualifier type was the same as the destination type,
3113 // we're done.
3114 if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
3115 return From;
3116 }
3117 }
3118
3119 CXXCastPath BasePath;
3120 if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType,
3121 FromLoc, FromRange, &BasePath,
3122 /*IgnoreAccess=*/true))
3123 return ExprError();
3124
3125 return ImpCastExprToType(From, DestType, CK_UncheckedDerivedToBase,
3126 VK, &BasePath);
3127}
3128
3129bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
3130 const LookupResult &R,
3131 bool HasTrailingLParen) {
3132 // Only when used directly as the postfix-expression of a call.
3133 if (!HasTrailingLParen)
3134 return false;
3135
3136 // Never if a scope specifier was provided.
3137 if (SS.isSet())
3138 return false;
3139
3140 // Only in C++ or ObjC++.
3141 if (!getLangOpts().CPlusPlus)
3142 return false;
3143
3144 // Turn off ADL when we find certain kinds of declarations during
3145 // normal lookup:
3146 for (NamedDecl *D : R) {
3147 // C++0x [basic.lookup.argdep]p3:
3148 // -- a declaration of a class member
3149 // Since using decls preserve this property, we check this on the
3150 // original decl.
3151 if (D->isCXXClassMember())
3152 return false;
3153
3154 // C++0x [basic.lookup.argdep]p3:
3155 // -- a block-scope function declaration that is not a
3156 // using-declaration
3157 // NOTE: we also trigger this for function templates (in fact, we
3158 // don't check the decl type at all, since all other decl types
3159 // turn off ADL anyway).
3160 if (isa<UsingShadowDecl>(D))
3161 D = cast<UsingShadowDecl>(D)->getTargetDecl();
3162 else if (D->getLexicalDeclContext()->isFunctionOrMethod())
3163 return false;
3164
3165 // C++0x [basic.lookup.argdep]p3:
3166 // -- a declaration that is neither a function or a function
3167 // template
3168 // And also for builtin functions.
3169 if (isa<FunctionDecl>(D)) {
3170 FunctionDecl *FDecl = cast<FunctionDecl>(D);
3171
3172 // But also builtin functions.
3173 if (FDecl->getBuiltinID() && FDecl->isImplicit())
3174 return false;
3175 } else if (!isa<FunctionTemplateDecl>(D))
3176 return false;
3177 }
3178
3179 return true;
3180}
3181
3182
3183/// Diagnoses obvious problems with the use of the given declaration
3184/// as an expression. This is only actually called for lookups that
3185/// were not overloaded, and it doesn't promise that the declaration
3186/// will in fact be used.
3187static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D,
3188 bool AcceptInvalid) {
3189 if (D->isInvalidDecl() && !AcceptInvalid)
3190 return true;
3191
3192 if (isa<TypedefNameDecl>(D)) {
3193 S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
3194 return true;
3195 }
3196
3197 if (isa<ObjCInterfaceDecl>(D)) {
3198 S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
3199 return true;
3200 }
3201
3202 if (isa<NamespaceDecl>(D)) {
3203 S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
3204 return true;
3205 }
3206
3207 return false;
3208}
3209
3210// Certain multiversion types should be treated as overloaded even when there is
3211// only one result.
3212static bool ShouldLookupResultBeMultiVersionOverload(const LookupResult &R) {
3213 assert(R.isSingleResult() && "Expected only a single result")(static_cast <bool> (R.isSingleResult() && "Expected only a single result"
) ? void (0) : __assert_fail ("R.isSingleResult() && \"Expected only a single result\""
, "clang/lib/Sema/SemaExpr.cpp", 3213, __extension__ __PRETTY_FUNCTION__
))
;
3214 const auto *FD = dyn_cast<FunctionDecl>(R.getFoundDecl());
3215 return FD &&
3216 (FD->isCPUDispatchMultiVersion() || FD->isCPUSpecificMultiVersion());
3217}
3218
3219ExprResult Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
3220 LookupResult &R, bool NeedsADL,
3221 bool AcceptInvalidDecl) {
3222 // If this is a single, fully-resolved result and we don't need ADL,
3223 // just build an ordinary singleton decl ref.
3224 if (!NeedsADL && R.isSingleResult() &&
3225 !R.getAsSingle<FunctionTemplateDecl>() &&
3226 !ShouldLookupResultBeMultiVersionOverload(R))
3227 return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), R.getFoundDecl(),
3228 R.getRepresentativeDecl(), nullptr,
3229 AcceptInvalidDecl);
3230
3231 // We only need to check the declaration if there's exactly one
3232 // result, because in the overloaded case the results can only be
3233 // functions and function templates.
3234 if (R.isSingleResult() && !ShouldLookupResultBeMultiVersionOverload(R) &&
3235 CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl(),
3236 AcceptInvalidDecl))
3237 return ExprError();
3238
3239 // Otherwise, just build an unresolved lookup expression. Suppress
3240 // any lookup-related diagnostics; we'll hash these out later, when
3241 // we've picked a target.
3242 R.suppressDiagnostics();
3243
3244 UnresolvedLookupExpr *ULE
3245 = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
3246 SS.getWithLocInContext(Context),
3247 R.getLookupNameInfo(),
3248 NeedsADL, R.isOverloadedResult(),
3249 R.begin(), R.end());
3250
3251 return ULE;
3252}
3253
3254static void diagnoseUncapturableValueReferenceOrBinding(Sema &S,
3255 SourceLocation loc,
3256 ValueDecl *var);
3257
3258/// Complete semantic analysis for a reference to the given declaration.
3259ExprResult Sema::BuildDeclarationNameExpr(
3260 const CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, NamedDecl *D,
3261 NamedDecl *FoundD, const TemplateArgumentListInfo *TemplateArgs,
3262 bool AcceptInvalidDecl) {
3263 assert(D && "Cannot refer to a NULL declaration")(static_cast <bool> (D && "Cannot refer to a NULL declaration"
) ? void (0) : __assert_fail ("D && \"Cannot refer to a NULL declaration\""
, "clang/lib/Sema/SemaExpr.cpp", 3263, __extension__ __PRETTY_FUNCTION__
))
;
3264 assert(!isa<FunctionTemplateDecl>(D) &&(static_cast <bool> (!isa<FunctionTemplateDecl>(D
) && "Cannot refer unambiguously to a function template"
) ? void (0) : __assert_fail ("!isa<FunctionTemplateDecl>(D) && \"Cannot refer unambiguously to a function template\""
, "clang/lib/Sema/SemaExpr.cpp", 3265, __extension__ __PRETTY_FUNCTION__
))
3265 "Cannot refer unambiguously to a function template")(static_cast <bool> (!isa<FunctionTemplateDecl>(D
) && "Cannot refer unambiguously to a function template"
) ? void (0) : __assert_fail ("!isa<FunctionTemplateDecl>(D) && \"Cannot refer unambiguously to a function template\""
, "clang/lib/Sema/SemaExpr.cpp", 3265, __extension__ __PRETTY_FUNCTION__
))
;
3266
3267 SourceLocation Loc = NameInfo.getLoc();
3268 if (CheckDeclInExpr(*this, Loc, D, AcceptInvalidDecl)) {
3269 // Recovery from invalid cases (e.g. D is an invalid Decl).
3270 // We use the dependent type for the RecoveryExpr to prevent bogus follow-up
3271 // diagnostics, as invalid decls use int as a fallback type.
3272 return CreateRecoveryExpr(NameInfo.getBeginLoc(), NameInfo.getEndLoc(), {});
3273 }
3274
3275 if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) {
3276 // Specifically diagnose references to class templates that are missing
3277 // a template argument list.
3278 diagnoseMissingTemplateArguments(TemplateName(Template), Loc);
3279 return ExprError();
3280 }
3281
3282 // Make sure that we're referring to a value.
3283 if (!isa<ValueDecl, UnresolvedUsingIfExistsDecl>(D)) {
3284 Diag(Loc, diag::err_ref_non_value) << D << SS.getRange();
3285 Diag(D->getLocation(), diag::note_declared_at);
3286 return ExprError();
3287 }
3288
3289 // Check whether this declaration can be used. Note that we suppress
3290 // this check when we're going to perform argument-dependent lookup
3291 // on this function name, because this might not be the function
3292 // that overload resolution actually selects.
3293 if (DiagnoseUseOfDecl(D, Loc))
3294 return ExprError();
3295
3296 auto *VD = cast<ValueDecl>(D);
3297
3298 // Only create DeclRefExpr's for valid Decl's.
3299 if (VD->isInvalidDecl() && !AcceptInvalidDecl)
3300 return ExprError();
3301
3302 // Handle members of anonymous structs and unions. If we got here,
3303 // and the reference is to a class member indirect field, then this
3304 // must be the subject of a pointer-to-member expression.
3305 if (IndirectFieldDecl *indirectField = dyn_cast<IndirectFieldDecl>(VD))
3306 if (!indirectField->isCXXClassMember())
3307 return BuildAnonymousStructUnionMemberReference(SS, NameInfo.getLoc(),
3308 indirectField);
3309
3310 QualType type = VD->getType();
3311 if (type.isNull())
3312 return ExprError();
3313 ExprValueKind valueKind = VK_PRValue;
3314
3315 // In 'T ...V;', the type of the declaration 'V' is 'T...', but the type of
3316 // a reference to 'V' is simply (unexpanded) 'T'. The type, like the value,
3317 // is expanded by some outer '...' in the context of the use.
3318 type = type.getNonPackExpansionType();
3319
3320 switch (D->getKind()) {
3321 // Ignore all the non-ValueDecl kinds.
3322#define ABSTRACT_DECL(kind)
3323#define VALUE(type, base)
3324#define DECL(type, base) case Decl::type:
3325#include "clang/AST/DeclNodes.inc"
3326 llvm_unreachable("invalid value decl kind")::llvm::llvm_unreachable_internal("invalid value decl kind", "clang/lib/Sema/SemaExpr.cpp"
, 3326)
;
3327
3328 // These shouldn't make it here.
3329 case Decl::ObjCAtDefsField:
3330 llvm_unreachable("forming non-member reference to ivar?")::llvm::llvm_unreachable_internal("forming non-member reference to ivar?"
, "clang/lib/Sema/SemaExpr.cpp", 3330)
;
3331
3332 // Enum constants are always r-values and never references.
3333 // Unresolved using declarations are dependent.
3334 case Decl::EnumConstant:
3335 case Decl::UnresolvedUsingValue:
3336 case Decl::OMPDeclareReduction:
3337 case Decl::OMPDeclareMapper:
3338 valueKind = VK_PRValue;
3339 break;
3340
3341 // Fields and indirect fields that got here must be for
3342 // pointer-to-member expressions; we just call them l-values for
3343 // internal consistency, because this subexpression doesn't really
3344 // exist in the high-level semantics.
3345 case Decl::Field:
3346 case Decl::IndirectField:
3347 case Decl::ObjCIvar:
3348 assert(getLangOpts().CPlusPlus && "building reference to field in C?")(static_cast <bool> (getLangOpts().CPlusPlus &&
"building reference to field in C?") ? void (0) : __assert_fail
("getLangOpts().CPlusPlus && \"building reference to field in C?\""
, "clang/lib/Sema/SemaExpr.cpp", 3348, __extension__ __PRETTY_FUNCTION__
))
;
3349
3350 // These can't have reference type in well-formed programs, but
3351 // for internal consistency we do this anyway.
3352 type = type.getNonReferenceType();
3353 valueKind = VK_LValue;
3354 break;
3355
3356 // Non-type template parameters are either l-values or r-values
3357 // depending on the type.
3358 case Decl::NonTypeTemplateParm: {
3359 if (const ReferenceType *reftype = type->getAs<ReferenceType>()) {
3360 type = reftype->getPointeeType();
3361 valueKind = VK_LValue; // even if the parameter is an r-value reference
3362 break;
3363 }
3364
3365 // [expr.prim.id.unqual]p2:
3366 // If the entity is a template parameter object for a template
3367 // parameter of type T, the type of the expression is const T.
3368 // [...] The expression is an lvalue if the entity is a [...] template
3369 // parameter object.
3370 if (type->isRecordType()) {
3371 type = type.getUnqualifiedType().withConst();
3372 valueKind = VK_LValue;
3373 break;
3374 }
3375
3376 // For non-references, we need to strip qualifiers just in case
3377 // the template parameter was declared as 'const int' or whatever.
3378 valueKind = VK_PRValue;
3379 type = type.getUnqualifiedType();
3380 break;
3381 }
3382
3383 case Decl::Var:
3384 case Decl::VarTemplateSpecialization:
3385 case Decl::VarTemplatePartialSpecialization:
3386 case Decl::Decomposition:
3387 case Decl::OMPCapturedExpr:
3388 // In C, "extern void blah;" is valid and is an r-value.
3389 if (!getLangOpts().CPlusPlus && !type.hasQualifiers() &&
3390 type->isVoidType()) {
3391 valueKind = VK_PRValue;
3392 break;
3393 }
3394 [[fallthrough]];
3395
3396 case Decl::ImplicitParam:
3397 case Decl::ParmVar: {
3398 // These are always l-values.
3399 valueKind = VK_LValue;
3400 type = type.getNonReferenceType();
3401
3402 // FIXME: Does the addition of const really only apply in
3403 // potentially-evaluated contexts? Since the variable isn't actually
3404 // captured in an unevaluated context, it seems that the answer is no.
3405 if (!isUnevaluatedContext()) {
3406 QualType CapturedType = getCapturedDeclRefType(cast<VarDecl>(VD), Loc);
3407 if (!CapturedType.isNull())
3408 type = CapturedType;
3409 }
3410
3411 break;
3412 }
3413
3414 case Decl::Binding:
3415 // These are always lvalues.
3416 valueKind = VK_LValue;
3417 type = type.getNonReferenceType();
3418 break;
3419
3420 case Decl::Function: {
3421 if (unsigned BID = cast<FunctionDecl>(VD)->getBuiltinID()) {
3422 if (!Context.BuiltinInfo.isDirectlyAddressable(BID)) {
3423 type = Context.BuiltinFnTy;
3424 valueKind = VK_PRValue;
3425 break;
3426 }
3427 }
3428
3429 const FunctionType *fty = type->castAs<FunctionType>();
3430
3431 // If we're referring to a function with an __unknown_anytype
3432 // result type, make the entire expression __unknown_anytype.
3433 if (fty->getReturnType() == Context.UnknownAnyTy) {
3434 type = Context.UnknownAnyTy;
3435 valueKind = VK_PRValue;
3436 break;
3437 }
3438
3439 // Functions are l-values in C++.
3440 if (getLangOpts().CPlusPlus) {
3441 valueKind = VK_LValue;
3442 break;
3443 }
3444
3445 // C99 DR 316 says that, if a function type comes from a
3446 // function definition (without a prototype), that type is only
3447 // used for checking compatibility. Therefore, when referencing
3448 // the function, we pretend that we don't have the full function
3449 // type.
3450 if (!cast<FunctionDecl>(VD)->hasPrototype() && isa<FunctionProtoType>(fty))
3451 type = Context.getFunctionNoProtoType(fty->getReturnType(),
3452 fty->getExtInfo());
3453
3454 // Functions are r-values in C.
3455 valueKind = VK_PRValue;
3456 break;
3457 }
3458
3459 case Decl::CXXDeductionGuide:
3460 llvm_unreachable("building reference to deduction guide")::llvm::llvm_unreachable_internal("building reference to deduction guide"
, "clang/lib/Sema/SemaExpr.cpp", 3460)
;
3461
3462 case Decl::MSProperty:
3463 case Decl::MSGuid:
3464 case Decl::TemplateParamObject:
3465 // FIXME: Should MSGuidDecl and template parameter objects be subject to
3466 // capture in OpenMP, or duplicated between host and device?
3467 valueKind = VK_LValue;
3468 break;
3469
3470 case Decl::UnnamedGlobalConstant:
3471 valueKind = VK_LValue;
3472 break;
3473
3474 case Decl::CXXMethod:
3475 // If we're referring to a method with an __unknown_anytype
3476 // result type, make the entire expression __unknown_anytype.
3477 // This should only be possible with a type written directly.
3478 if (const FunctionProtoType *proto =
3479 dyn_cast<FunctionProtoType>(VD->getType()))
3480 if (proto->getReturnType() == Context.UnknownAnyTy) {
3481 type = Context.UnknownAnyTy;
3482 valueKind = VK_PRValue;
3483 break;
3484 }
3485
3486 // C++ methods are l-values if static, r-values if non-static.
3487 if (cast<CXXMethodDecl>(VD)->isStatic()) {
3488 valueKind = VK_LValue;
3489 break;
3490 }
3491 [[fallthrough]];
3492
3493 case Decl::CXXConversion:
3494 case Decl::CXXDestructor:
3495 case Decl::CXXConstructor:
3496 valueKind = VK_PRValue;
3497 break;
3498 }
3499
3500 auto *E =
3501 BuildDeclRefExpr(VD, type, valueKind, NameInfo, &SS, FoundD,
3502 /*FIXME: TemplateKWLoc*/ SourceLocation(), TemplateArgs);
3503 // Clang AST consumers assume a DeclRefExpr refers to a valid decl. We
3504 // wrap a DeclRefExpr referring to an invalid decl with a dependent-type
3505 // RecoveryExpr to avoid follow-up semantic analysis (thus prevent bogus
3506 // diagnostics).
3507 if (VD->isInvalidDecl() && E)
3508 return CreateRecoveryExpr(E->getBeginLoc(), E->getEndLoc(), {E});
3509 return E;
3510}
3511
3512static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source,
3513 SmallString<32> &Target) {
3514 Target.resize(CharByteWidth * (Source.size() + 1));
3515 char *ResultPtr = &Target[0];
3516 const llvm::UTF8 *ErrorPtr;
3517 bool success =
3518 llvm::ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr);
3519 (void)success;
3520 assert(success)(static_cast <bool> (success) ? void (0) : __assert_fail
("success", "clang/lib/Sema/SemaExpr.cpp", 3520, __extension__
__PRETTY_FUNCTION__))
;
3521 Target.resize(ResultPtr - &Target[0]);
3522}
3523
3524ExprResult Sema::BuildPredefinedExpr(SourceLocation Loc,
3525 PredefinedExpr::IdentKind IK) {
3526 // Pick the current block, lambda, captured statement or function.
3527 Decl *currentDecl = nullptr;
3528 if (const BlockScopeInfo *BSI = getCurBlock())
3529 currentDecl = BSI->TheDecl;
3530 else if (const LambdaScopeInfo *LSI = getCurLambda())
3531 currentDecl = LSI->CallOperator;
3532 else if (const CapturedRegionScopeInfo *CSI = getCurCapturedRegion())
3533 currentDecl = CSI->TheCapturedDecl;
3534 else
3535 currentDecl = getCurFunctionOrMethodDecl();
3536
3537 if (!currentDecl) {
3538 Diag(Loc, diag::ext_predef_outside_function);
3539 currentDecl = Context.getTranslationUnitDecl();
3540 }
3541
3542 QualType ResTy;
3543 StringLiteral *SL = nullptr;
3544 if (cast<DeclContext>(currentDecl)->isDependentContext())
3545 ResTy = Context.DependentTy;
3546 else {
3547 // Pre-defined identifiers are of type char[x], where x is the length of
3548 // the string.
3549 auto Str = PredefinedExpr::ComputeName(IK, currentDecl);
3550 unsigned Length = Str.length();
3551
3552 llvm::APInt LengthI(32, Length + 1);
3553 if (IK == PredefinedExpr::LFunction || IK == PredefinedExpr::LFuncSig) {
3554 ResTy =
3555 Context.adjustStringLiteralBaseType(Context.WideCharTy.withConst());
3556 SmallString<32> RawChars;
3557 ConvertUTF8ToWideString(Context.getTypeSizeInChars(ResTy).getQuantity(),
3558 Str, RawChars);
3559 ResTy = Context.getConstantArrayType(ResTy, LengthI, nullptr,
3560 ArrayType::Normal,
3561 /*IndexTypeQuals*/ 0);
3562 SL = StringLiteral::Create(Context, RawChars, StringLiteral::Wide,
3563 /*Pascal*/ false, ResTy, Loc);
3564 } else {
3565 ResTy = Context.adjustStringLiteralBaseType(Context.CharTy.withConst());
3566 ResTy = Context.getConstantArrayType(ResTy, LengthI, nullptr,
3567 ArrayType::Normal,
3568 /*IndexTypeQuals*/ 0);
3569 SL = StringLiteral::Create(Context, Str, StringLiteral::Ordinary,
3570 /*Pascal*/ false, ResTy, Loc);
3571 }
3572 }
3573
3574 return PredefinedExpr::Create(Context, Loc, ResTy, IK, SL);
3575}
3576
3577ExprResult Sema::BuildSYCLUniqueStableNameExpr(SourceLocation OpLoc,
3578 SourceLocation LParen,
3579 SourceLocation RParen,
3580 TypeSourceInfo *TSI) {
3581 return SYCLUniqueStableNameExpr::Create(Context, OpLoc, LParen, RParen, TSI);
3582}
3583
3584ExprResult Sema::ActOnSYCLUniqueStableNameExpr(SourceLocation OpLoc,
3585 SourceLocation LParen,
3586 SourceLocation RParen,
3587 ParsedType ParsedTy) {
3588 TypeSourceInfo *TSI = nullptr;
3589 QualType Ty = GetTypeFromParser(ParsedTy, &TSI);
3590
3591 if (Ty.isNull())
3592 return ExprError();
3593 if (!TSI)
3594 TSI = Context.getTrivialTypeSourceInfo(Ty, LParen);
3595
3596 return BuildSYCLUniqueStableNameExpr(OpLoc, LParen, RParen, TSI);
3597}
3598
3599ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind) {
3600 PredefinedExpr::IdentKind IK;
3601
3602 switch (Kind) {
3603 default: llvm_unreachable("Unknown simple primary expr!")::llvm::llvm_unreachable_internal("Unknown simple primary expr!"
, "clang/lib/Sema/SemaExpr.cpp", 3603)
;
3604 case tok::kw___func__: IK = PredefinedExpr::Func; break; // [C99 6.4.2.2]
3605 case tok::kw___FUNCTION__: IK = PredefinedExpr::Function; break;
3606 case tok::kw___FUNCDNAME__: IK = PredefinedExpr::FuncDName; break; // [MS]
3607 case tok::kw___FUNCSIG__: IK = PredefinedExpr::FuncSig; break; // [MS]
3608 case tok::kw_L__FUNCTION__: IK = PredefinedExpr::LFunction; break; // [MS]
3609 case tok::kw_L__FUNCSIG__: IK = PredefinedExpr::LFuncSig; break; // [MS]
3610 case tok::kw___PRETTY_FUNCTION__: IK = PredefinedExpr::PrettyFunction; break;
3611 }
3612
3613 return BuildPredefinedExpr(Loc, IK);
3614}
3615
3616ExprResult Sema::ActOnCharacterConstant(const Token &Tok, Scope *UDLScope) {
3617 SmallString<16> CharBuffer;
3618 bool Invalid = false;
3619 StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid);
3620 if (Invalid)
3621 return ExprError();
3622
3623 CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
3624 PP, Tok.getKind());
3625 if (Literal.hadError())
3626 return ExprError();
3627
3628 QualType Ty;
3629 if (Literal.isWide())
3630 Ty = Context.WideCharTy; // L'x' -> wchar_t in C and C++.
3631 else if (Literal.isUTF8() && getLangOpts().C2x)
3632 Ty = Context.UnsignedCharTy; // u8'x' -> unsigned char in C2x
3633 else if (Literal.isUTF8() && getLangOpts().Char8)
3634 Ty = Context.Char8Ty; // u8'x' -> char8_t when it exists.
3635 else if (Literal.isUTF16())
3636 Ty = Context.Char16Ty; // u'x' -> char16_t in C11 and C++11.
3637 else if (Literal.isUTF32())
3638 Ty = Context.Char32Ty; // U'x' -> char32_t in C11 and C++11.
3639 else if (!getLangOpts().CPlusPlus || Literal.isMultiChar())
3640 Ty = Context.IntTy; // 'x' -> int in C, 'wxyz' -> int in C++.
3641 else
3642 Ty = Context.CharTy; // 'x' -> char in C++;
3643 // u8'x' -> char in C11-C17 and in C++ without char8_t.
3644
3645 CharacterLiteral::CharacterKind Kind = CharacterLiteral::Ascii;
3646 if (Literal.isWide())
3647 Kind = CharacterLiteral::Wide;
3648 else if (Literal.isUTF16())
3649 Kind = CharacterLiteral::UTF16;
3650 else if (Literal.isUTF32())
3651 Kind = CharacterLiteral::UTF32;
3652 else if (Literal.isUTF8())
3653 Kind = CharacterLiteral::UTF8;
3654
3655 Expr *Lit = new (Context) CharacterLiteral(Literal.getValue(), Kind, Ty,
3656 Tok.getLocation());
3657
3658 if (Literal.getUDSuffix().empty())
3659 return Lit;
3660
3661 // We're building a user-defined literal.
3662 IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
3663 SourceLocation UDSuffixLoc =
3664 getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
3665
3666 // Make sure we're allowed user-defined literals here.
3667 if (!UDLScope)
3668 return ExprError(Diag(UDSuffixLoc, diag::err_invalid_character_udl));
3669
3670 // C++11 [lex.ext]p6: The literal L is treated as a call of the form
3671 // operator "" X (ch)
3672 return BuildCookedLiteralOperatorCall(*this, UDLScope, UDSuffix, UDSuffixLoc,
3673 Lit, Tok.getLocation());
3674}
3675
3676ExprResult Sema::ActOnIntegerConstant(SourceLocation Loc, uint64_t Val) {
3677 unsigned IntSize = Context.getTargetInfo().getIntWidth();
3678 return IntegerLiteral::Create(Context, llvm::APInt(IntSize, Val),
3679 Context.IntTy, Loc);
3680}
3681
3682static Expr *BuildFloatingLiteral(Sema &S, NumericLiteralParser &Literal,
3683 QualType Ty, SourceLocation Loc) {
3684 const llvm::fltSemantics &Format = S.Context.getFloatTypeSemantics(Ty);
3685
3686 using llvm::APFloat;
3687 APFloat Val(Format);
3688
3689 APFloat::opStatus result = Literal.GetFloatValue(Val);
3690
3691 // Overflow is always an error, but underflow is only an error if
3692 // we underflowed to zero (APFloat reports denormals as underflow).
3693 if ((result & APFloat::opOverflow) ||
3694 ((result & APFloat::opUnderflow) && Val.isZero())) {
3695 unsigned diagnostic;
3696 SmallString<20> buffer;
3697 if (result & APFloat::opOverflow) {
3698 diagnostic = diag::warn_float_overflow;
3699 APFloat::getLargest(Format).toString(buffer);
3700 } else {
3701 diagnostic = diag::warn_float_underflow;
3702 APFloat::getSmallest(Format).toString(buffer);
3703 }
3704
3705 S.Diag(Loc, diagnostic)
3706 << Ty
3707 << StringRef(buffer.data(), buffer.size());
3708 }
3709
3710 bool isExact = (result == APFloat::opOK);
3711 return FloatingLiteral::Create(S.Context, Val, isExact, Ty, Loc);
3712}
3713
3714bool Sema::CheckLoopHintExpr(Expr *E, SourceLocation Loc) {
3715 assert(E && "Invalid expression")(static_cast <bool> (E && "Invalid expression")
? void (0) : __assert_fail ("E && \"Invalid expression\""
, "clang/lib/Sema/SemaExpr.cpp", 3715, __extension__ __PRETTY_FUNCTION__
))
;
3716
3717 if (E->isValueDependent())
3718 return false;
3719
3720 QualType QT = E->getType();
3721 if (!QT->isIntegerType() || QT->isBooleanType() || QT->isCharType()) {
3722 Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_type) << QT;
3723 return true;
3724 }
3725
3726 llvm::APSInt ValueAPS;
3727 ExprResult R = VerifyIntegerConstantExpression(E, &ValueAPS);
3728
3729 if (R.isInvalid())
3730 return true;
3731
3732 bool ValueIsPositive = ValueAPS.isStrictlyPositive();
3733 if (!ValueIsPositive || ValueAPS.getActiveBits() > 31) {
3734 Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_value)
3735 << toString(ValueAPS, 10) << ValueIsPositive;
3736 return true;
3737 }
3738
3739 return false;
3740}
3741
3742ExprResult Sema::ActOnNumericConstant(const Token &Tok, Scope *UDLScope) {
3743 // Fast path for a single digit (which is quite common). A single digit
3744 // cannot have a trigraph, escaped newline, radix prefix, or suffix.
3745 if (Tok.getLength() == 1) {
3746 const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
3747 return ActOnIntegerConstant(Tok.getLocation(), Val-'0');
3748 }
3749
3750 SmallString<128> SpellingBuffer;
3751 // NumericLiteralParser wants to overread by one character. Add padding to
3752 // the buffer in case the token is copied to the buffer. If getSpelling()
3753 // returns a StringRef to the memory buffer, it should have a null char at
3754 // the EOF, so it is also safe.
3755 SpellingBuffer.resize(Tok.getLength() + 1);
3756
3757 // Get the spelling of the token, which eliminates trigraphs, etc.
3758 bool Invalid = false;
3759 StringRef TokSpelling = PP.getSpelling(Tok, SpellingBuffer, &Invalid);
3760 if (Invalid)
3761 return ExprError();
3762
3763 NumericLiteralParser Literal(TokSpelling, Tok.getLocation(),
3764 PP.getSourceManager(), PP.getLangOpts(),
3765 PP.getTargetInfo(), PP.getDiagnostics());
3766 if (Literal.hadError)
3767 return ExprError();
3768
3769 if (Literal.hasUDSuffix()) {
3770 // We're building a user-defined literal.
3771 IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
3772 SourceLocation UDSuffixLoc =
3773 getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
3774
3775 // Make sure we're allowed user-defined literals here.
3776 if (!UDLScope)
3777 return ExprError(Diag(UDSuffixLoc, diag::err_invalid_numeric_udl));
3778
3779 QualType CookedTy;
3780 if (Literal.isFloatingLiteral()) {
3781 // C++11 [lex.ext]p4: If S contains a literal operator with parameter type
3782 // long double, the literal is treated as a call of the form
3783 // operator "" X (f L)
3784 CookedTy = Context.LongDoubleTy;
3785 } else {
3786 // C++11 [lex.ext]p3: If S contains a literal operator with parameter type
3787 // unsigned long long, the literal is treated as a call of the form
3788 // operator "" X (n ULL)
3789 CookedTy = Context.UnsignedLongLongTy;
3790 }
3791
3792 DeclarationName OpName =
3793 Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
3794 DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
3795 OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
3796
3797 SourceLocation TokLoc = Tok.getLocation();
3798
3799 // Perform literal operator lookup to determine if we're building a raw
3800 // literal or a cooked one.
3801 LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
3802 switch (LookupLiteralOperator(UDLScope, R, CookedTy,
3803 /*AllowRaw*/ true, /*AllowTemplate*/ true,
3804 /*AllowStringTemplatePack*/ false,
3805 /*DiagnoseMissing*/ !Literal.isImaginary)) {
3806 case LOLR_ErrorNoDiagnostic:
3807 // Lookup failure for imaginary constants isn't fatal, there's still the
3808 // GNU extension producing _Complex types.
3809 break;
3810 case LOLR_Error:
3811 return ExprError();
3812 case LOLR_Cooked: {
3813 Expr *Lit;
3814 if (Literal.isFloatingLiteral()) {
3815 Lit = BuildFloatingLiteral(*this, Literal, CookedTy, Tok.getLocation());
3816 } else {
3817 llvm::APInt ResultVal(Context.getTargetInfo().getLongLongWidth(), 0);
3818 if (Literal.GetIntegerValue(ResultVal))
3819 Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
3820 << /* Unsigned */ 1;
3821 Lit = IntegerLiteral::Create(Context, ResultVal, CookedTy,
3822 Tok.getLocation());
3823 }
3824 return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
3825 }
3826
3827 case LOLR_Raw: {
3828 // C++11 [lit.ext]p3, p4: If S contains a raw literal operator, the
3829 // literal is treated as a call of the form
3830 // operator "" X ("n")
3831 unsigned Length = Literal.getUDSuffixOffset();
3832 QualType StrTy = Context.getConstantArrayType(
3833 Context.adjustStringLiteralBaseType(Context.CharTy.withConst()),
3834 llvm::APInt(32, Length + 1), nullptr, ArrayType::Normal, 0);
3835 Expr *Lit =
3836 StringLiteral::Create(Context, StringRef(TokSpelling.data(), Length),
3837 StringLiteral::Ordinary,
3838 /*Pascal*/ false, StrTy, &TokLoc, 1);
3839 return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
3840 }
3841
3842 case LOLR_Template: {
3843 // C++11 [lit.ext]p3, p4: Otherwise (S contains a literal operator
3844 // template), L is treated as a call fo the form
3845 // operator "" X <'c1', 'c2', ... 'ck'>()
3846 // where n is the source character sequence c1 c2 ... ck.
3847 TemplateArgumentListInfo ExplicitArgs;
3848 unsigned CharBits = Context.getIntWidth(Context.CharTy);
3849 bool CharIsUnsigned = Context.CharTy->isUnsignedIntegerType();
3850 llvm::APSInt Value(CharBits, CharIsUnsigned);
3851 for (unsigned I = 0, N = Literal.getUDSuffixOffset(); I != N; ++I) {
3852 Value = TokSpelling[I];
3853 TemplateArgument Arg(Context, Value, Context.CharTy);
3854 TemplateArgumentLocInfo ArgInfo;
3855 ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
3856 }
3857 return BuildLiteralOperatorCall(R, OpNameInfo, None, TokLoc,
3858 &ExplicitArgs);
3859 }
3860 case LOLR_StringTemplatePack:
3861 llvm_unreachable("unexpected literal operator lookup result")::llvm::llvm_unreachable_internal("unexpected literal operator lookup result"
, "clang/lib/Sema/SemaExpr.cpp", 3861)
;
3862 }
3863 }
3864
3865 Expr *Res;
3866
3867 if (Literal.isFixedPointLiteral()) {
3868 QualType Ty;
3869
3870 if (Literal.isAccum) {
3871 if (Literal.isHalf) {
3872 Ty = Context.ShortAccumTy;
3873 } else if (Literal.isLong) {
3874 Ty = Context.LongAccumTy;
3875 } else {
3876 Ty = Context.AccumTy;
3877 }
3878 } else if (Literal.isFract) {
3879 if (Literal.isHalf) {
3880 Ty = Context.ShortFractTy;
3881 } else if (Literal.isLong) {
3882 Ty = Context.LongFractTy;
3883 } else {
3884 Ty = Context.FractTy;
3885 }
3886 }
3887
3888 if (Literal.isUnsigned) Ty = Context.getCorrespondingUnsignedType(Ty);
3889
3890 bool isSigned = !Literal.isUnsigned;
3891 unsigned scale = Context.getFixedPointScale(Ty);
3892 unsigned bit_width = Context.getTypeInfo(Ty).Width;
3893
3894 llvm::APInt Val(bit_width, 0, isSigned);
3895 bool Overflowed = Literal.GetFixedPointValue(Val, scale);
3896 bool ValIsZero = Val.isZero() && !Overflowed;
3897
3898 auto MaxVal = Context.getFixedPointMax(Ty).getValue();
3899 if (Literal.isFract && Val == MaxVal + 1 && !ValIsZero)
3900 // Clause 6.4.4 - The value of a constant shall be in the range of
3901 // representable values for its type, with exception for constants of a
3902 // fract type with a value of exactly 1; such a constant shall denote
3903 // the maximal value for the type.
3904 --Val;
3905 else if (Val.ugt(MaxVal) || Overflowed)
3906 Diag(Tok.getLocation(), diag::err_too_large_for_fixed_point);
3907
3908 Res = FixedPointLiteral::CreateFromRawInt(Context, Val, Ty,
3909 Tok.getLocation(), scale);
3910 } else if (Literal.isFloatingLiteral()) {
3911 QualType Ty;
3912 if (Literal.isHalf){
3913 if (getOpenCLOptions().isAvailableOption("cl_khr_fp16", getLangOpts()))
3914 Ty = Context.HalfTy;
3915 else {
3916 Diag(Tok.getLocation(), diag::err_half_const_requires_fp16);
3917 return ExprError();
3918 }
3919 } else if (Literal.isFloat)
3920 Ty = Context.FloatTy;
3921 else if (Literal.isLong)
3922 Ty = Context.LongDoubleTy;
3923 else if (Literal.isFloat16)
3924 Ty = Context.Float16Ty;
3925 else if (Literal.isFloat128)
3926 Ty = Context.Float128Ty;
3927 else
3928 Ty = Context.DoubleTy;
3929
3930 Res = BuildFloatingLiteral(*this, Literal, Ty, Tok.getLocation());
3931
3932 if (Ty == Context.DoubleTy) {
3933 if (getLangOpts().SinglePrecisionConstants) {
3934 if (Ty->castAs<BuiltinType>()->getKind() != BuiltinType::Float) {
3935 Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get();
3936 }
3937 } else if (getLangOpts().OpenCL && !getOpenCLOptions().isAvailableOption(
3938 "cl_khr_fp64", getLangOpts())) {
3939 // Impose single-precision float type when cl_khr_fp64 is not enabled.
3940 Diag(Tok.getLocation(), diag::warn_double_const_requires_fp64)
3941 << (getLangOpts().getOpenCLCompatibleVersion() >= 300);
3942 Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get();
3943 }
3944 }
3945 } else if (!Literal.isIntegerLiteral()) {
3946 return ExprError();
3947 } else {
3948 QualType Ty;
3949
3950 // 'z/uz' literals are a C++2b feature.
3951 if (Literal.isSizeT)
3952 Diag(Tok.getLocation(), getLangOpts().CPlusPlus
3953 ? getLangOpts().CPlusPlus2b
3954 ? diag::warn_cxx20_compat_size_t_suffix
3955 : diag::ext_cxx2b_size_t_suffix
3956 : diag::err_cxx2b_size_t_suffix);
3957
3958 // 'wb/uwb' literals are a C2x feature. We support _BitInt as a type in C++,
3959 // but we do not currently support the suffix in C++ mode because it's not
3960 // entirely clear whether WG21 will prefer this suffix to return a library
3961 // type such as std::bit_int instead of returning a _BitInt.
3962 if (Literal.isBitInt && !getLangOpts().CPlusPlus)
3963 PP.Diag(Tok.getLocation(), getLangOpts().C2x
3964 ? diag::warn_c2x_compat_bitint_suffix
3965 : diag::ext_c2x_bitint_suffix);
3966
3967 // Get the value in the widest-possible width. What is "widest" depends on
3968 // whether the literal is a bit-precise integer or not. For a bit-precise
3969 // integer type, try to scan the source to determine how many bits are
3970 // needed to represent the value. This may seem a bit expensive, but trying
3971 // to get the integer value from an overly-wide APInt is *extremely*
3972 // expensive, so the naive approach of assuming
3973 // llvm::IntegerType::MAX_INT_BITS is a big performance hit.
3974 unsigned BitsNeeded =
3975 Literal.isBitInt ? llvm::APInt::getSufficientBitsNeeded(
3976 Literal.getLiteralDigits(), Literal.getRadix())
3977 : Context.getTargetInfo().getIntMaxTWidth();
3978 llvm::APInt ResultVal(BitsNeeded, 0);
3979
3980 if (Literal.GetIntegerValue(ResultVal)) {
3981 // If this value didn't fit into uintmax_t, error and force to ull.
3982 Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
3983 << /* Unsigned */ 1;
3984 Ty = Context.UnsignedLongLongTy;
3985 assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&(static_cast <bool> (Context.getTypeSize(Ty) == ResultVal
.getBitWidth() && "long long is not intmax_t?") ? void
(0) : __assert_fail ("Context.getTypeSize(Ty) == ResultVal.getBitWidth() && \"long long is not intmax_t?\""
, "clang/lib/Sema/SemaExpr.cpp", 3986, __extension__ __PRETTY_FUNCTION__
))
3986 "long long is not intmax_t?")(static_cast <bool> (Context.getTypeSize(Ty) == ResultVal
.getBitWidth() && "long long is not intmax_t?") ? void
(0) : __assert_fail ("Context.getTypeSize(Ty) == ResultVal.getBitWidth() && \"long long is not intmax_t?\""
, "clang/lib/Sema/SemaExpr.cpp", 3986, __extension__ __PRETTY_FUNCTION__
))
;
3987 } else {
3988 // If this value fits into a ULL, try to figure out what else it fits into
3989 // according to the rules of C99 6.4.4.1p5.
3990
3991 // Octal, Hexadecimal, and integers with a U suffix are allowed to
3992 // be an unsigned int.
3993 bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
3994
3995 // Check from smallest to largest, picking the smallest type we can.
3996 unsigned Width = 0;
3997
3998 // Microsoft specific integer suffixes are explicitly sized.
3999 if (Literal.MicrosoftInteger) {
4000 if (Literal.MicrosoftInteger == 8 && !Literal.isUnsigned) {
4001 Width = 8;
4002 Ty = Context.CharTy;
4003 } else {
4004 Width = Literal.MicrosoftInteger;
4005 Ty = Context.getIntTypeForBitwidth(Width,
4006 /*Signed=*/!Literal.isUnsigned);
4007 }
4008 }
4009
4010 // Bit-precise integer literals are automagically-sized based on the
4011 // width required by the literal.
4012 if (Literal.isBitInt) {
4013 // The signed version has one more bit for the sign value. There are no
4014 // zero-width bit-precise integers, even if the literal value is 0.
4015 Width = std::max(ResultVal.getActiveBits(), 1u) +
4016 (Literal.isUnsigned ? 0u : 1u);
4017
4018 // Diagnose if the width of the constant is larger than BITINT_MAXWIDTH,
4019 // and reset the type to the largest supported width.
4020 unsigned int MaxBitIntWidth =
4021 Context.getTargetInfo().getMaxBitIntWidth();
4022 if (Width > MaxBitIntWidth) {
4023 Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
4024 << Literal.isUnsigned;
4025 Width = MaxBitIntWidth;
4026 }
4027
4028 // Reset the result value to the smaller APInt and select the correct
4029 // type to be used. Note, we zext even for signed values because the
4030 // literal itself is always an unsigned value (a preceeding - is a
4031 // unary operator, not part of the literal).
4032 ResultVal = ResultVal.zextOrTrunc(Width);
4033 Ty = Context.getBitIntType(Literal.isUnsigned, Width);
4034 }
4035
4036 // Check C++2b size_t literals.
4037 if (Literal.isSizeT) {
4038 assert(!Literal.MicrosoftInteger &&(static_cast <bool> (!Literal.MicrosoftInteger &&
"size_t literals can't be Microsoft literals") ? void (0) : __assert_fail
("!Literal.MicrosoftInteger && \"size_t literals can't be Microsoft literals\""
, "clang/lib/Sema/SemaExpr.cpp", 4039, __extension__ __PRETTY_FUNCTION__
))
4039 "size_t literals can't be Microsoft literals")(static_cast <bool> (!Literal.MicrosoftInteger &&
"size_t literals can't be Microsoft literals") ? void (0) : __assert_fail
("!Literal.MicrosoftInteger && \"size_t literals can't be Microsoft literals\""
, "clang/lib/Sema/SemaExpr.cpp", 4039, __extension__ __PRETTY_FUNCTION__
))
;
4040 unsigned SizeTSize = Context.getTargetInfo().getTypeWidth(
4041 Context.getTargetInfo().getSizeType());
4042
4043 // Does it fit in size_t?
4044 if (ResultVal.isIntN(SizeTSize)) {
4045 // Does it fit in ssize_t?
4046 if (!Literal.isUnsigned && ResultVal[SizeTSize - 1] == 0)
4047 Ty = Context.getSignedSizeType();
4048 else if (AllowUnsigned)
4049 Ty = Context.getSizeType();
4050 Width = SizeTSize;
4051 }
4052 }
4053
4054 if (Ty.isNull() && !Literal.isLong && !Literal.isLongLong &&
4055 !Literal.isSizeT) {
4056 // Are int/unsigned possibilities?
4057 unsigned IntSize = Context.getTargetInfo().getIntWidth();
4058
4059 // Does it fit in a unsigned int?
4060 if (ResultVal.isIntN(IntSize)) {
4061 // Does it fit in a signed int?
4062 if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
4063 Ty = Context.IntTy;
4064 else if (AllowUnsigned)
4065 Ty = Context.UnsignedIntTy;
4066 Width = IntSize;
4067 }
4068 }
4069
4070 // Are long/unsigned long possibilities?
4071 if (Ty.isNull() && !Literal.isLongLong && !Literal.isSizeT) {
4072 unsigned LongSize = Context.getTargetInfo().getLongWidth();
4073
4074 // Does it fit in a unsigned long?
4075 if (ResultVal.isIntN(LongSize)) {
4076 // Does it fit in a signed long?
4077 if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
4078 Ty = Context.LongTy;
4079 else if (AllowUnsigned)
4080 Ty = Context.UnsignedLongTy;
4081 // Check according to the rules of C90 6.1.3.2p5. C++03 [lex.icon]p2
4082 // is compatible.
4083 else if (!getLangOpts().C99 && !getLangOpts().CPlusPlus11) {
4084 const unsigned LongLongSize =
4085 Context.getTargetInfo().getLongLongWidth();
4086 Diag(Tok.getLocation(),
4087 getLangOpts().CPlusPlus
4088 ? Literal.isLong
4089 ? diag::warn_old_implicitly_unsigned_long_cxx
4090 : /*C++98 UB*/ diag::
4091 ext_old_implicitly_unsigned_long_cxx
4092 : diag::warn_old_implicitly_unsigned_long)
4093 << (LongLongSize > LongSize ? /*will have type 'long long'*/ 0
4094 : /*will be ill-formed*/ 1);
4095 Ty = Context.UnsignedLongTy;
4096 }
4097 Width = LongSize;
4098 }
4099 }
4100
4101 // Check long long if needed.
4102 if (Ty.isNull() && !Literal.isSizeT) {
4103 unsigned LongLongSize = Context.getTargetInfo().getLongLongWidth();
4104
4105 // Does it fit in a unsigned long long?
4106 if (ResultVal.isIntN(LongLongSize)) {
4107 // Does it fit in a signed long long?
4108 // To be compatible with MSVC, hex integer literals ending with the
4109 // LL or i64 suffix are always signed in Microsoft mode.
4110 if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 ||
4111 (getLangOpts().MSVCCompat && Literal.isLongLong)))
4112 Ty = Context.LongLongTy;
4113 else if (AllowUnsigned)
4114 Ty = Context.UnsignedLongLongTy;
4115 Width = LongLongSize;
4116
4117 // 'long long' is a C99 or C++11 feature, whether the literal
4118 // explicitly specified 'long long' or we needed the extra width.
4119 if (getLangOpts().CPlusPlus)
4120 Diag(Tok.getLocation(), getLangOpts().CPlusPlus11
4121 ? diag::warn_cxx98_compat_longlong
4122 : diag::ext_cxx11_longlong);
4123 else if (!getLangOpts().C99)
4124 Diag(Tok.getLocation(), diag::ext_c99_longlong);
4125 }
4126 }
4127
4128 // If we still couldn't decide a type, we either have 'size_t' literal
4129 // that is out of range, or a decimal literal that does not fit in a
4130 // signed long long and has no U suffix.
4131 if (Ty.isNull()) {
4132 if (Literal.isSizeT)
4133 Diag(Tok.getLocation(), diag::err_size_t_literal_too_large)
4134 << Literal.isUnsigned;
4135 else
4136 Diag(Tok.getLocation(),
4137 diag::ext_integer_literal_too_large_for_signed);
4138 Ty = Context.UnsignedLongLongTy;
4139 Width = Context.getTargetInfo().getLongLongWidth();
4140 }
4141
4142 if (ResultVal.getBitWidth() != Width)
4143 ResultVal = ResultVal.trunc(Width);
4144 }
4145 Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation());
4146 }
4147
4148 // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
4149 if (Literal.isImaginary) {
4150 Res = new (Context) ImaginaryLiteral(Res,
4151 Context.getComplexType(Res->getType()));
4152
4153 Diag(Tok.getLocation(), diag::ext_imaginary_constant);
4154 }
4155 return Res;
4156}
4157
4158ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E) {
4159 assert(E && "ActOnParenExpr() missing expr")(static_cast <bool> (E && "ActOnParenExpr() missing expr"
) ? void (0) : __assert_fail ("E && \"ActOnParenExpr() missing expr\""
, "clang/lib/Sema/SemaExpr.cpp", 4159, __extension__ __PRETTY_FUNCTION__
))
;
4160 QualType ExprTy = E->getType();
4161 if (getLangOpts().ProtectParens && CurFPFeatures.getAllowFPReassociate() &&
4162 !E->isLValue() && ExprTy->hasFloatingRepresentation())
4163 return BuildBuiltinCallExpr(R, Builtin::BI__arithmetic_fence, E);
4164 return new (Context) ParenExpr(L, R, E);
4165}
4166
4167static bool CheckVecStepTraitOperandType(Sema &S, QualType T,
4168 SourceLocation Loc,
4169 SourceRange ArgRange) {
4170 // [OpenCL 1.1 6.11.12] "The vec_step built-in function takes a built-in
4171 // scalar or vector data type argument..."
4172 // Every built-in scalar type (OpenCL 1.1 6.1.1) is either an arithmetic
4173 // type (C99 6.2.5p18) or void.
4174 if (!(T->isArithmeticType() || T->isVoidType() || T->isVectorType())) {
4175 S.Diag(Loc, diag::err_vecstep_non_scalar_vector_type)
4176 << T << ArgRange;
4177 return true;
4178 }
4179
4180 assert((T->isVoidType() || !T->isIncompleteType()) &&(static_cast <bool> ((T->isVoidType() || !T->isIncompleteType
()) && "Scalar types should always be complete") ? void
(0) : __assert_fail ("(T->isVoidType() || !T->isIncompleteType()) && \"Scalar types should always be complete\""
, "clang/lib/Sema/SemaExpr.cpp", 4181, __extension__ __PRETTY_FUNCTION__
))
4181 "Scalar types should always be complete")(static_cast <bool> ((T->isVoidType() || !T->isIncompleteType
()) && "Scalar types should always be complete") ? void
(0) : __assert_fail ("(T->isVoidType() || !T->isIncompleteType()) && \"Scalar types should always be complete\""
, "clang/lib/Sema/SemaExpr.cpp", 4181, __extension__ __PRETTY_FUNCTION__
))
;
4182 return false;
4183}
4184
4185static bool CheckExtensionTraitOperandType(Sema &S, QualType T,
4186 SourceLocation Loc,
4187 SourceRange ArgRange,
4188 UnaryExprOrTypeTrait TraitKind) {
4189 // Invalid types must be hard errors for SFINAE in C++.
4190 if (S.LangOpts.CPlusPlus)
4191 return true;
4192
4193 // C99 6.5.3.4p1:
4194 if (T->isFunctionType() &&
4195 (TraitKind == UETT_SizeOf || TraitKind == UETT_AlignOf ||
4196 TraitKind == UETT_PreferredAlignOf)) {
4197 // sizeof(function)/alignof(function) is allowed as an extension.
4198 S.Diag(Loc, diag::ext_sizeof_alignof_function_type)
4199 << getTraitSpelling(TraitKind) << ArgRange;
4200 return false;
4201 }
4202
4203 // Allow sizeof(void)/alignof(void) as an extension, unless in OpenCL where
4204 // this is an error (OpenCL v1.1 s6.3.k)
4205 if (T->isVoidType()) {
4206 unsigned DiagID = S.LangOpts.OpenCL ? diag::err_opencl_sizeof_alignof_type
4207 : diag::ext_sizeof_alignof_void_type;
4208 S.Diag(Loc, DiagID) << getTraitSpelling(TraitKind) << ArgRange;
4209 return false;
4210 }
4211
4212 return true;
4213}
4214
4215static bool CheckObjCTraitOperandConstraints(Sema &S, QualType T,
4216 SourceLocation Loc,
4217 SourceRange ArgRange,
4218 UnaryExprOrTypeTrait TraitKind) {
4219 // Reject sizeof(interface) and sizeof(interface<proto>) if the
4220 // runtime doesn't allow it.
4221 if (!S.LangOpts.ObjCRuntime.allowsSizeofAlignof() && T->isObjCObjectType()) {
4222 S.Diag(Loc, diag::err_sizeof_nonfragile_interface)
4223 << T << (TraitKind == UETT_SizeOf)
4224 << ArgRange;
4225 return true;
4226 }
4227
4228 return false;
4229}
4230
4231/// Check whether E is a pointer from a decayed array type (the decayed
4232/// pointer type is equal to T) and emit a warning if it is.
4233static void warnOnSizeofOnArrayDecay(Sema &S, SourceLocation Loc, QualType T,
4234 Expr *E) {
4235 // Don't warn if the operation changed the type.
4236 if (T != E->getType())
4237 return;
4238
4239 // Now look for array decays.
4240 ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E);
4241 if (!ICE || ICE->getCastKind() != CK_ArrayToPointerDecay)
4242 return;
4243
4244 S.Diag(Loc, diag::warn_sizeof_array_decay) << ICE->getSourceRange()
4245 << ICE->getType()
4246 << ICE->getSubExpr()->getType();
4247}
4248
4249/// Check the constraints on expression operands to unary type expression
4250/// and type traits.
4251///
4252/// Completes any types necessary and validates the constraints on the operand
4253/// expression. The logic mostly mirrors the type-based overload, but may modify
4254/// the expression as it completes the type for that expression through template
4255/// instantiation, etc.
4256bool Sema::CheckUnaryExprOrTypeTraitOperand(Expr *E,
4257 UnaryExprOrTypeTrait ExprKind) {
4258 QualType ExprTy = E->getType();
4259 assert(!ExprTy->isReferenceType())(static_cast <bool> (!ExprTy->isReferenceType()) ? void
(0) : __assert_fail ("!ExprTy->isReferenceType()", "clang/lib/Sema/SemaExpr.cpp"
, 4259, __extension__ __PRETTY_FUNCTION__))
;
4260
4261 bool IsUnevaluatedOperand =
4262 (ExprKind == UETT_SizeOf || ExprKind == UETT_AlignOf ||
4263 ExprKind == UETT_PreferredAlignOf || ExprKind == UETT_VecStep);
4264 if (IsUnevaluatedOperand) {
4265 ExprResult Result = CheckUnevaluatedOperand(E);
4266 if (Result.isInvalid())
4267 return true;
4268 E = Result.get();
4269 }
4270
4271 // The operand for sizeof and alignof is in an unevaluated expression context,
4272 // so side effects could result in unintended consequences.
4273 // Exclude instantiation-dependent expressions, because 'sizeof' is sometimes
4274 // used to build SFINAE gadgets.
4275 // FIXME: Should we consider instantiation-dependent operands to 'alignof'?
4276 if (IsUnevaluatedOperand && !inTemplateInstantiation() &&
4277 !E->isInstantiationDependent() &&
4278 !E->getType()->isVariableArrayType() &&
4279 E->HasSideEffects(Context, false))
4280 Diag(E->getExprLoc(), diag::warn_side_effects_unevaluated_context);
4281
4282 if (ExprKind == UETT_VecStep)
4283 return CheckVecStepTraitOperandType(*this, ExprTy, E->getExprLoc(),
4284 E->getSourceRange());
4285
4286 // Explicitly list some types as extensions.
4287 if (!CheckExtensionTraitOperandType(*this, ExprTy, E->getExprLoc(),
4288 E->getSourceRange(), ExprKind))
4289 return false;
4290
4291 // 'alignof' applied to an expression only requires the base element type of
4292 // the expression to be complete. 'sizeof' requires the expression's type to
4293 // be complete (and will attempt to complete it if it's an array of unknown
4294 // bound).
4295 if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) {
4296 if (RequireCompleteSizedType(
4297 E->getExprLoc(), Context.getBaseElementType(E->getType()),
4298 diag::err_sizeof_alignof_incomplete_or_sizeless_type,
4299 getTraitSpelling(ExprKind), E->getSourceRange()))
4300 return true;
4301 } else {
4302 if (RequireCompleteSizedExprType(
4303 E, diag::err_sizeof_alignof_incomplete_or_sizeless_type,
4304 getTraitSpelling(ExprKind), E->getSourceRange()))
4305 return true;
4306 }
4307
4308 // Completing the expression's type may have changed it.
4309 ExprTy = E->getType();
4310 assert(!ExprTy->isReferenceType())(static_cast <bool> (!ExprTy->isReferenceType()) ? void
(0) : __assert_fail ("!ExprTy->isReferenceType()", "clang/lib/Sema/SemaExpr.cpp"
, 4310, __extension__ __PRETTY_FUNCTION__))
;
4311
4312 if (ExprTy->isFunctionType()) {
4313 Diag(E->getExprLoc(), diag::err_sizeof_alignof_function_type)
4314 << getTraitSpelling(ExprKind) << E->getSourceRange();
4315 return true;
4316 }
4317
4318 if (CheckObjCTraitOperandConstraints(*this, ExprTy, E->getExprLoc(),
4319 E->getSourceRange(), ExprKind))
4320 return true;
4321
4322 if (ExprKind == UETT_SizeOf) {
4323 if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
4324 if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DeclRef->getFoundDecl())) {
4325 QualType OType = PVD->getOriginalType();
4326 QualType Type = PVD->getType();
4327 if (Type->isPointerType() && OType->isArrayType()) {
4328 Diag(E->getExprLoc(), diag::warn_sizeof_array_param)
4329 << Type << OType;
4330 Diag(PVD->getLocation(), diag::note_declared_at);
4331 }
4332 }
4333 }
4334
4335 // Warn on "sizeof(array op x)" and "sizeof(x op array)", where the array
4336 // decays into a pointer and returns an unintended result. This is most
4337 // likely a typo for "sizeof(array) op x".
4338 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E->IgnoreParens())) {
4339 warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
4340 BO->getLHS());
4341 warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
4342 BO->getRHS());
4343 }
4344 }
4345
4346 return false;
4347}
4348
4349/// Check the constraints on operands to unary expression and type
4350/// traits.
4351///
4352/// This will complete any types necessary, and validate the various constraints
4353/// on those operands.
4354///
4355/// The UsualUnaryConversions() function is *not* called by this routine.
4356/// C99 6.3.2.1p[2-4] all state:
4357/// Except when it is the operand of the sizeof operator ...
4358///
4359/// C++ [expr.sizeof]p4
4360/// The lvalue-to-rvalue, array-to-pointer, and function-to-pointer
4361/// standard conversions are not applied to the operand of sizeof.
4362///
4363/// This policy is followed for all of the unary trait expressions.
4364bool Sema::CheckUnaryExprOrTypeTraitOperand(QualType ExprType,
4365 SourceLocation OpLoc,
4366 SourceRange ExprRange,
4367 UnaryExprOrTypeTrait ExprKind) {
4368 if (ExprType->isDependentType())
4369 return false;
4370
4371 // C++ [expr.sizeof]p2:
4372 // When applied to a reference or a reference type, the result
4373 // is the size of the referenced type.
4374 // C++11 [expr.alignof]p3:
4375 // When alignof is applied to a reference type, the result
4376 // shall be the alignment of the referenced type.
4377 if (const ReferenceType *Ref = ExprType->getAs<ReferenceType>())
4378 ExprType = Ref->getPointeeType();
4379
4380 // C11 6.5.3.4/3, C++11 [expr.alignof]p3:
4381 // When alignof or _Alignof is applied to an array type, the result
4382 // is the alignment of the element type.
4383 if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf ||
4384 ExprKind == UETT_OpenMPRequiredSimdAlign)
4385 ExprType = Context.getBaseElementType(ExprType);
4386
4387 if (ExprKind == UETT_VecStep)
4388 return CheckVecStepTraitOperandType(*this, ExprType, OpLoc, ExprRange);
4389
4390 // Explicitly list some types as extensions.
4391 if (!CheckExtensionTraitOperandType(*this, ExprType, OpLoc, ExprRange,
4392 ExprKind))
4393 return false;
4394
4395 if (RequireCompleteSizedType(
4396 OpLoc, ExprType, diag::err_sizeof_alignof_incomplete_or_sizeless_type,
4397 getTraitSpelling(ExprKind), ExprRange))
4398 return true;
4399
4400 if (ExprType->isFunctionType()) {
4401 Diag(OpLoc, diag::err_sizeof_alignof_function_type)
4402 << getTraitSpelling(ExprKind) << ExprRange;
4403 return true;
4404 }
4405
4406 if (CheckObjCTraitOperandConstraints(*this, ExprType, OpLoc, ExprRange,
4407 ExprKind))
4408 return true;
4409
4410 return false;
4411}
4412
4413static bool CheckAlignOfExpr(Sema &S, Expr *E, UnaryExprOrTypeTrait ExprKind) {
4414 // Cannot know anything else if the expression is dependent.
4415 if (E->isTypeDependent())
4416 return false;
4417
4418 if (E->getObjectKind() == OK_BitField) {
4419 S.Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield)
4420 << 1 << E->getSourceRange();
4421 return true;
4422 }
4423
4424 ValueDecl *D = nullptr;
4425 Expr *Inner = E->IgnoreParens();
4426 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Inner)) {
4427 D = DRE->getDecl();
4428 } else if (MemberExpr *ME = dyn_cast<MemberExpr>(Inner)) {
4429 D = ME->getMemberDecl();
4430 }
4431
4432 // If it's a field, require the containing struct to have a
4433 // complete definition so that we can compute the layout.
4434 //
4435 // This can happen in C++11 onwards, either by naming the member
4436 // in a way that is not transformed into a member access expression
4437 // (in an unevaluated operand, for instance), or by naming the member
4438 // in a trailing-return-type.
4439 //
4440 // For the record, since __alignof__ on expressions is a GCC
4441 // extension, GCC seems to permit this but always gives the
4442 // nonsensical answer 0.
4443 //
4444 // We don't really need the layout here --- we could instead just
4445 // directly check for all the appropriate alignment-lowing
4446 // attributes --- but that would require duplicating a lot of
4447 // logic that just isn't worth duplicating for such a marginal
4448 // use-case.
4449 if (FieldDecl *FD = dyn_cast_or_null<FieldDecl>(D)) {
4450 // Fast path this check, since we at least know the record has a
4451 // definition if we can find a member of it.
4452 if (!FD->getParent()->isCompleteDefinition()) {
4453 S.Diag(E->getExprLoc(), diag::err_alignof_member_of_incomplete_type)
4454 << E->getSourceRange();
4455 return true;
4456 }
4457
4458 // Otherwise, if it's a field, and the field doesn't have
4459 // reference type, then it must have a complete type (or be a
4460 // flexible array member, which we explicitly want to
4461 // white-list anyway), which makes the following checks trivial.
4462 if (!FD->getType()->isReferenceType())
4463 return false;
4464 }
4465
4466 return S.CheckUnaryExprOrTypeTraitOperand(E, ExprKind);
4467}
4468
4469bool Sema::CheckVecStepExpr(Expr *E) {
4470 E = E->IgnoreParens();
4471
4472 // Cannot know anything else if the expression is dependent.
4473 if (E->isTypeDependent())
4474 return false;
4475
4476 return CheckUnaryExprOrTypeTraitOperand(E, UETT_VecStep);
4477}
4478
4479static void captureVariablyModifiedType(ASTContext &Context, QualType T,
4480 CapturingScopeInfo *CSI) {
4481 assert(T->isVariablyModifiedType())(static_cast <bool> (T->isVariablyModifiedType()) ? void
(0) : __assert_fail ("T->isVariablyModifiedType()", "clang/lib/Sema/SemaExpr.cpp"
, 4481, __extension__ __PRETTY_FUNCTION__))
;
4482 assert(CSI != nullptr)(static_cast <bool> (CSI != nullptr) ? void (0) : __assert_fail
("CSI != nullptr", "clang/lib/Sema/SemaExpr.cpp", 4482, __extension__
__PRETTY_FUNCTION__))
;
4483
4484 // We're going to walk down into the type and look for VLA expressions.
4485 do {
4486 const Type *Ty = T.getTypePtr();
4487 switch (Ty->getTypeClass()) {
4488#define TYPE(Class, Base)
4489#define ABSTRACT_TYPE(Class, Base)
4490#define NON_CANONICAL_TYPE(Class, Base)
4491#define DEPENDENT_TYPE(Class, Base) case Type::Class:
4492#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
4493#include "clang/AST/TypeNodes.inc"
4494 T = QualType();
4495 break;
4496 // These types are never variably-modified.
4497 case Type::Builtin:
4498 case Type::Complex:
4499 case Type::Vector:
4500 case Type::ExtVector:
4501 case Type::ConstantMatrix:
4502 case Type::Record:
4503 case Type::Enum:
4504 case Type::TemplateSpecialization:
4505 case Type::ObjCObject:
4506 case Type::ObjCInterface:
4507 case Type::ObjCObjectPointer:
4508 case Type::ObjCTypeParam:
4509 case Type::Pipe:
4510 case Type::BitInt:
4511 llvm_unreachable("type class is never variably-modified!")::llvm::llvm_unreachable_internal("type class is never variably-modified!"
, "clang/lib/Sema/SemaExpr.cpp", 4511)
;
4512 case Type::Elaborated:
4513 T = cast<ElaboratedType>(Ty)->getNamedType();
4514 break;
4515 case Type::Adjusted:
4516 T = cast<AdjustedType>(Ty)->getOriginalType();
4517 break;
4518 case Type::Decayed:
4519 T = cast<DecayedType>(Ty)->getPointeeType();
4520 break;
4521 case Type::Pointer:
4522 T = cast<PointerType>(Ty)->getPointeeType();
4523 break;
4524 case Type::BlockPointer:
4525 T = cast<BlockPointerType>(Ty)->getPointeeType();
4526 break;
4527 case Type::LValueReference:
4528 case Type::RValueReference:
4529 T = cast<ReferenceType>(Ty)->getPointeeType();
4530 break;
4531 case Type::MemberPointer:
4532 T = cast<MemberPointerType>(Ty)->getPointeeType();
4533 break;
4534 case Type::ConstantArray:
4535 case Type::IncompleteArray:
4536 // Losing element qualification here is fine.
4537 T = cast<ArrayType>(Ty)->getElementType();
4538 break;
4539 case Type::VariableArray: {
4540 // Losing element qualification here is fine.
4541 const VariableArrayType *VAT = cast<VariableArrayType>(Ty);
4542
4543 // Unknown size indication requires no size computation.
4544 // Otherwise, evaluate and record it.
4545 auto Size = VAT->getSizeExpr();
4546 if (Size && !CSI->isVLATypeCaptured(VAT) &&
4547 (isa<CapturedRegionScopeInfo>(CSI) || isa<LambdaScopeInfo>(CSI)))
4548 CSI->addVLATypeCapture(Size->getExprLoc(), VAT, Context.getSizeType());
4549
4550 T = VAT->getElementType();
4551 break;
4552 }
4553 case Type::FunctionProto:
4554 case Type::FunctionNoProto:
4555 T = cast<FunctionType>(Ty)->getReturnType();
4556 break;
4557 case Type::Paren:
4558 case Type::TypeOf:
4559 case Type::UnaryTransform:
4560 case Type::Attributed:
4561 case Type::BTFTagAttributed:
4562 case Type::SubstTemplateTypeParm:
4563 case Type::MacroQualified:
4564 // Keep walking after single level desugaring.
4565 T = T.getSingleStepDesugaredType(Context);
4566 break;
4567 case Type::Typedef:
4568 T = cast<TypedefType>(Ty)->desugar();
4569 break;
4570 case Type::Decltype:
4571 T = cast<DecltypeType>(Ty)->desugar();
4572 break;
4573 case Type::Using:
4574 T = cast<UsingType>(Ty)->desugar();
4575 break;
4576 case Type::Auto:
4577 case Type::DeducedTemplateSpecialization:
4578 T = cast<DeducedType>(Ty)->getDeducedType();
4579 break;
4580 case Type::TypeOfExpr:
4581 T = cast<TypeOfExprType>(Ty)->getUnderlyingExpr()->getType();
4582 break;
4583 case Type::Atomic:
4584 T = cast<AtomicType>(Ty)->getValueType();
4585 break;
4586 }
4587 } while (!T.isNull() && T->isVariablyModifiedType());
4588}
4589
4590/// Build a sizeof or alignof expression given a type operand.
4591ExprResult
4592Sema::CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo,
4593 SourceLocation OpLoc,
4594 UnaryExprOrTypeTrait ExprKind,
4595 SourceRange R) {
4596 if (!TInfo)
4597 return ExprError();
4598
4599 QualType T = TInfo->getType();
4600
4601 if (!T->isDependentType() &&
4602 CheckUnaryExprOrTypeTraitOperand(T, OpLoc, R, ExprKind))
4603 return ExprError();
4604
4605 if (T->isVariablyModifiedType() && FunctionScopes.size() > 1) {
4606 if (auto *TT = T->getAs<TypedefType>()) {
4607 for (auto I = FunctionScopes.rbegin(),
4608 E = std::prev(FunctionScopes.rend());
4609 I != E; ++I) {
4610 auto *CSI = dyn_cast<CapturingScopeInfo>(*I);
4611 if (CSI == nullptr)
4612 break;
4613 DeclContext *DC = nullptr;
4614 if (auto *LSI = dyn_cast<LambdaScopeInfo>(CSI))
4615 DC = LSI->CallOperator;
4616 else if (auto *CRSI = dyn_cast<CapturedRegionScopeInfo>(CSI))
4617 DC = CRSI->TheCapturedDecl;
4618 else if (auto *BSI = dyn_cast<BlockScopeInfo>(CSI))
4619 DC = BSI->TheDecl;
4620 if (DC) {
4621 if (DC->containsDecl(TT->getDecl()))
4622 break;
4623 captureVariablyModifiedType(Context, T, CSI);
4624 }
4625 }
4626 }
4627 }
4628
4629 // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
4630 if (isUnevaluatedContext() && ExprKind == UETT_SizeOf &&
4631 TInfo->getType()->isVariablyModifiedType())
4632 TInfo = TransformToPotentiallyEvaluated(TInfo);
4633
4634 return new (Context) UnaryExprOrTypeTraitExpr(
4635 ExprKind, TInfo, Context.getSizeType(), OpLoc, R.getEnd());
4636}
4637
4638/// Build a sizeof or alignof expression given an expression
4639/// operand.
4640ExprResult
4641Sema::CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc,
4642 UnaryExprOrTypeTrait ExprKind) {
4643 ExprResult PE = CheckPlaceholderExpr(E);
4644 if (PE.isInvalid())
4645 return ExprError();
4646
4647 E = PE.get();
4648
4649 // Verify that the operand is valid.
4650 bool isInvalid = false;
4651 if (E->isTypeDependent()) {
4652 // Delay type-checking for type-dependent expressions.
4653 } else if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) {
4654 isInvalid = CheckAlignOfExpr(*this, E, ExprKind);
4655 } else if (ExprKind == UETT_VecStep) {
4656 isInvalid = CheckVecStepExpr(E);
4657 } else if (ExprKind == UETT_OpenMPRequiredSimdAlign) {
4658 Diag(E->getExprLoc(), diag::err_openmp_default_simd_align_expr);
4659 isInvalid = true;
4660 } else if (E->refersToBitField()) { // C99 6.5.3.4p1.
4661 Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield) << 0;
4662 isInvalid = true;
4663 } else {
4664 isInvalid = CheckUnaryExprOrTypeTraitOperand(E, UETT_SizeOf);
4665 }
4666
4667 if (isInvalid)
4668 return ExprError();
4669
4670 if (ExprKind == UETT_SizeOf && E->getType()->isVariableArrayType()) {
4671 PE = TransformToPotentiallyEvaluated(E);
4672 if (PE.isInvalid()) return ExprError();
4673 E = PE.get();
4674 }
4675
4676 // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
4677 return new (Context) UnaryExprOrTypeTraitExpr(
4678 ExprKind, E, Context.getSizeType(), OpLoc, E->getSourceRange().getEnd());
4679}
4680
4681/// ActOnUnaryExprOrTypeTraitExpr - Handle @c sizeof(type) and @c sizeof @c
4682/// expr and the same for @c alignof and @c __alignof
4683/// Note that the ArgRange is invalid if isType is false.
4684ExprResult
4685Sema::ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,
4686 UnaryExprOrTypeTrait ExprKind, bool IsType,
4687 void *TyOrEx, SourceRange ArgRange) {
4688 // If error parsing type, ignore.
4689 if (!TyOrEx) return ExprError();
4690
4691 if (IsType) {
4692 TypeSourceInfo *TInfo;
4693 (void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo);
4694 return CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, ArgRange);
4695 }
4696
4697 Expr *ArgEx = (Expr *)TyOrEx;
4698 ExprResult Result = CreateUnaryExprOrTypeTraitExpr(ArgEx, OpLoc, ExprKind);
4699 return Result;
4700}
4701
4702static QualType CheckRealImagOperand(Sema &S, ExprResult &V, SourceLocation Loc,
4703 bool IsReal) {
4704 if (V.get()->isTypeDependent())
4705 return S.Context.DependentTy;
4706
4707 // _Real and _Imag are only l-values for normal l-values.
4708 if (V.get()->getObjectKind() != OK_Ordinary) {
4709 V = S.DefaultLvalueConversion(V.get());
4710 if (V.isInvalid())
4711 return QualType();
4712 }
4713
4714 // These operators return the element type of a complex type.
4715 if (const ComplexType *CT = V.get()->getType()->getAs<ComplexType>())
4716 return CT->getElementType();
4717
4718 // Otherwise they pass through real integer and floating point types here.
4719 if (V.get()->getType()->isArithmeticType())
4720 return V.get()->getType();
4721
4722 // Test for placeholders.
4723 ExprResult PR = S.CheckPlaceholderExpr(V.get());
4724 if (PR.isInvalid()) return QualType();
4725 if (PR.get() != V.get()) {
4726 V = PR;
4727 return CheckRealImagOperand(S, V, Loc, IsReal);
4728 }
4729
4730 // Reject anything else.
4731 S.Diag(Loc, diag::err_realimag_invalid_type) << V.get()->getType()
4732 << (IsReal ? "__real" : "__imag");
4733 return QualType();
4734}
4735
4736
4737
4738ExprResult
4739Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
4740 tok::TokenKind Kind, Expr *Input) {
4741 UnaryOperatorKind Opc;
4742 switch (Kind) {
4743 default: llvm_unreachable("Unknown unary op!")::llvm::llvm_unreachable_internal("Unknown unary op!", "clang/lib/Sema/SemaExpr.cpp"
, 4743)
;
4744 case tok::plusplus: Opc = UO_PostInc; break;
4745 case tok::minusminus: Opc = UO_PostDec; break;
4746 }
4747
4748 // Since this might is a postfix expression, get rid of ParenListExprs.
4749 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Input);
4750 if (Result.isInvalid()) return ExprError();
4751 Input = Result.get();
4752
4753 return BuildUnaryOp(S, OpLoc, Opc, Input);
4754}
4755
4756/// Diagnose if arithmetic on the given ObjC pointer is illegal.
4757///
4758/// \return true on error
4759static bool checkArithmeticOnObjCPointer(Sema &S,
4760 SourceLocation opLoc,
4761 Expr *op) {
4762 assert(op->getType()->isObjCObjectPointerType())(static_cast <bool> (op->getType()->isObjCObjectPointerType
()) ? void (0) : __assert_fail ("op->getType()->isObjCObjectPointerType()"
, "clang/lib/Sema/SemaExpr.cpp", 4762, __extension__ __PRETTY_FUNCTION__
))
;
4763 if (S.LangOpts.ObjCRuntime.allowsPointerArithmetic() &&
4764 !S.LangOpts.ObjCSubscriptingLegacyRuntime)
4765 return false;
4766
4767 S.Diag(opLoc, diag::err_arithmetic_nonfragile_interface)
4768 << op->getType()->castAs<ObjCObjectPointerType>()->getPointeeType()
4769 << op->getSourceRange();
4770 return true;
4771}
4772
4773static bool isMSPropertySubscriptExpr(Sema &S, Expr *Base) {
4774 auto *BaseNoParens = Base->IgnoreParens();
4775 if (auto *MSProp = dyn_cast<MSPropertyRefExpr>(BaseNoParens))
4776 return MSProp->getPropertyDecl()->getType()->isArrayType();
4777 return isa<MSPropertySubscriptExpr>(BaseNoParens);
4778}
4779
4780// Returns the type used for LHS[RHS], given one of LHS, RHS is type-dependent.
4781// Typically this is DependentTy, but can sometimes be more precise.
4782//
4783// There are cases when we could determine a non-dependent type:
4784// - LHS and RHS may have non-dependent types despite being type-dependent
4785// (e.g. unbounded array static members of the current instantiation)
4786// - one may be a dependent-sized array with known element type
4787// - one may be a dependent-typed valid index (enum in current instantiation)
4788//
4789// We *always* return a dependent type, in such cases it is DependentTy.
4790// This avoids creating type-dependent expressions with non-dependent types.
4791// FIXME: is this important to avoid? See https://reviews.llvm.org/D107275
4792static QualType getDependentArraySubscriptType(Expr *LHS, Expr *RHS,
4793 const ASTContext &Ctx) {
4794 assert(LHS->isTypeDependent() || RHS->isTypeDependent())(static_cast <bool> (LHS->isTypeDependent() || RHS->
isTypeDependent()) ? void (0) : __assert_fail ("LHS->isTypeDependent() || RHS->isTypeDependent()"
, "clang/lib/Sema/SemaExpr.cpp", 4794, __extension__ __PRETTY_FUNCTION__
))
;
4795 QualType LTy = LHS->getType(), RTy = RHS->getType();
4796 QualType Result = Ctx.DependentTy;
4797 if (RTy->isIntegralOrUnscopedEnumerationType()) {
4798 if (const PointerType *PT = LTy->getAs<PointerType>())
4799 Result = PT->getPointeeType();
4800 else if (const ArrayType *AT = LTy->getAsArrayTypeUnsafe())
4801 Result = AT->getElementType();
4802 } else if (LTy->isIntegralOrUnscopedEnumerationType()) {
4803 if (const PointerType *PT = RTy->getAs<PointerType>())
4804 Result = PT->getPointeeType();
4805 else if (const ArrayType *AT = RTy->getAsArrayTypeUnsafe())
4806 Result = AT->getElementType();
4807 }
4808 // Ensure we return a dependent type.
4809 return Result->isDependentType() ? Result : Ctx.DependentTy;
4810}
4811
4812static bool checkArgsForPlaceholders(Sema &S, MultiExprArg args);
4813
4814ExprResult Sema::ActOnArraySubscriptExpr(Scope *S, Expr *base,
4815 SourceLocation lbLoc,
4816 MultiExprArg ArgExprs,
4817 SourceLocation rbLoc) {
4818
4819 if (base && !base->getType().isNull() &&
4820 base->hasPlaceholderType(BuiltinType::OMPArraySection))
4821 return ActOnOMPArraySectionExpr(base, lbLoc, ArgExprs.front(), SourceLocation(),
4822 SourceLocation(), /*Length*/ nullptr,
4823 /*Stride=*/nullptr, rbLoc);
4824
4825 // Since this might be a postfix expression, get rid of ParenListExprs.
4826 if (isa<ParenListExpr>(base)) {
4827 ExprResult result = MaybeConvertParenListExprToParenExpr(S, base);
4828 if (result.isInvalid())
4829 return ExprError();
4830 base = result.get();
4831 }
4832
4833 // Check if base and idx form a MatrixSubscriptExpr.
4834 //
4835 // Helper to check for comma expressions, which are not allowed as indices for
4836 // matrix subscript expressions.
4837 auto CheckAndReportCommaError = [this, base, rbLoc](Expr *E) {
4838 if (isa<BinaryOperator>(E) && cast<BinaryOperator>(E)->isCommaOp()) {
4839 Diag(E->getExprLoc(), diag::err_matrix_subscript_comma)
4840 << SourceRange(base->getBeginLoc(), rbLoc);
4841 return true;
4842 }
4843 return false;
4844 };
4845 // The matrix subscript operator ([][])is considered a single operator.
4846 // Separating the index expressions by parenthesis is not allowed.
4847 if (base->hasPlaceholderType(BuiltinType::IncompleteMatrixIdx) &&
4848 !isa<MatrixSubscriptExpr>(base)) {
4849 Diag(base->getExprLoc(), diag::err_matrix_separate_incomplete_index)
4850 << SourceRange(base->getBeginLoc(), rbLoc);
4851 return ExprError();
4852 }
4853 // If the base is a MatrixSubscriptExpr, try to create a new
4854 // MatrixSubscriptExpr.
4855 auto *matSubscriptE = dyn_cast<MatrixSubscriptExpr>(base);
4856 if (matSubscriptE) {
4857 assert(ArgExprs.size() == 1)(static_cast <bool> (ArgExprs.size() == 1) ? void (0) :
__assert_fail ("ArgExprs.size() == 1", "clang/lib/Sema/SemaExpr.cpp"
, 4857, __extension__ __PRETTY_FUNCTION__))
;
4858 if (CheckAndReportCommaError(ArgExprs.front()))
4859 return ExprError();
4860
4861 assert(matSubscriptE->isIncomplete() &&(static_cast <bool> (matSubscriptE->isIncomplete() &&
"base has to be an incomplete matrix subscript") ? void (0) :
__assert_fail ("matSubscriptE->isIncomplete() && \"base has to be an incomplete matrix subscript\""
, "clang/lib/Sema/SemaExpr.cpp", 4862, __extension__ __PRETTY_FUNCTION__
))
4862 "base has to be an incomplete matrix subscript")(static_cast <bool> (matSubscriptE->isIncomplete() &&
"base has to be an incomplete matrix subscript") ? void (0) :
__assert_fail ("matSubscriptE->isIncomplete() && \"base has to be an incomplete matrix subscript\""
, "clang/lib/Sema/SemaExpr.cpp", 4862, __extension__ __PRETTY_FUNCTION__
))
;
4863 return CreateBuiltinMatrixSubscriptExpr(matSubscriptE->getBase(),
4864 matSubscriptE->getRowIdx(),
4865 ArgExprs.front(), rbLoc);
4866 }
4867
4868 // Handle any non-overload placeholder types in the base and index
4869 // expressions. We can't handle overloads here because the other
4870 // operand might be an overloadable type, in which case the overload
4871 // resolution for the operator overload should get the first crack
4872 // at the overload.
4873 bool IsMSPropertySubscript = false;
4874 if (base->getType()->isNonOverloadPlaceholderType()) {
4875 IsMSPropertySubscript = isMSPropertySubscriptExpr(*this, base);
4876 if (!IsMSPropertySubscript) {
4877 ExprResult result = CheckPlaceholderExpr(base);
4878 if (result.isInvalid())
4879 return ExprError();
4880 base = result.get();
4881 }
4882 }
4883
4884 // If the base is a matrix type, try to create a new MatrixSubscriptExpr.
4885 if (base->getType()->isMatrixType()) {
4886 assert(ArgExprs.size() == 1)(static_cast <bool> (ArgExprs.size() == 1) ? void (0) :
__assert_fail ("ArgExprs.size() == 1", "clang/lib/Sema/SemaExpr.cpp"
, 4886, __extension__ __PRETTY_FUNCTION__))
;
4887 if (CheckAndReportCommaError(ArgExprs.front()))
4888 return ExprError();
4889
4890 return CreateBuiltinMatrixSubscriptExpr(base, ArgExprs.front(), nullptr,
4891 rbLoc);
4892 }
4893
4894 if (ArgExprs.size() == 1 && getLangOpts().CPlusPlus20) {
4895 Expr *idx = ArgExprs[0];
4896 if ((isa<BinaryOperator>(idx) && cast<BinaryOperator>(idx)->isCommaOp()) ||
4897 (isa<CXXOperatorCallExpr>(idx) &&
4898 cast<CXXOperatorCallExpr>(idx)->getOperator() == OO_Comma)) {
4899 Diag(idx->getExprLoc(), diag::warn_deprecated_comma_subscript)
4900 << SourceRange(base->getBeginLoc(), rbLoc);
4901 }
4902 }
4903
4904 if (ArgExprs.size() == 1 &&
4905 ArgExprs[0]->getType()->isNonOverloadPlaceholderType()) {
4906 ExprResult result = CheckPlaceholderExpr(ArgExprs[0]);
4907 if (result.isInvalid())
4908 return ExprError();
4909 ArgExprs[0] = result.get();
4910 } else {
4911 if (checkArgsForPlaceholders(*this, ArgExprs))
4912 return ExprError();
4913 }
4914
4915 // Build an unanalyzed expression if either operand is type-dependent.
4916 if (getLangOpts().CPlusPlus && ArgExprs.size() == 1 &&
4917 (base->isTypeDependent() ||
4918 Expr::hasAnyTypeDependentArguments(ArgExprs))) {
4919 return new (Context) ArraySubscriptExpr(
4920 base, ArgExprs.front(),
4921 getDependentArraySubscriptType(base, ArgExprs.front(), getASTContext()),
4922 VK_LValue, OK_Ordinary, rbLoc);
4923 }
4924
4925 // MSDN, property (C++)
4926 // https://msdn.microsoft.com/en-us/library/yhfk0thd(v=vs.120).aspx
4927 // This attribute can also be used in the declaration of an empty array in a
4928 // class or structure definition. For example:
4929 // __declspec(property(get=GetX, put=PutX)) int x[];
4930 // The above statement indicates that x[] can be used with one or more array
4931 // indices. In this case, i=p->x[a][b] will be turned into i=p->GetX(a, b),
4932 // and p->x[a][b] = i will be turned into p->PutX(a, b, i);
4933 if (IsMSPropertySubscript) {
4934 assert(ArgExprs.size() == 1)(static_cast <bool> (ArgExprs.size() == 1) ? void (0) :
__assert_fail ("ArgExprs.size() == 1", "clang/lib/Sema/SemaExpr.cpp"
, 4934, __extension__ __PRETTY_FUNCTION__))
;
4935 // Build MS property subscript expression if base is MS property reference
4936 // or MS property subscript.
4937 return new (Context)
4938 MSPropertySubscriptExpr(base, ArgExprs.front(), Context.PseudoObjectTy,
4939 VK_LValue, OK_Ordinary, rbLoc);
4940 }
4941
4942 // Use C++ overloaded-operator rules if either operand has record
4943 // type. The spec says to do this if either type is *overloadable*,
4944 // but enum types can't declare subscript operators or conversion
4945 // operators, so there's nothing interesting for overload resolution
4946 // to do if there aren't any record types involved.
4947 //
4948 // ObjC pointers have their own subscripting logic that is not tied
4949 // to overload resolution and so should not take this path.
4950 if (getLangOpts().CPlusPlus && !base->getType()->isObjCObjectPointerType() &&
4951 ((base->getType()->isRecordType() ||
4952 (ArgExprs.size() != 1 || ArgExprs[0]->getType()->isRecordType())))) {
4953 return CreateOverloadedArraySubscriptExpr(lbLoc, rbLoc, base, ArgExprs);
4954 }
4955
4956 ExprResult Res =
4957 CreateBuiltinArraySubscriptExpr(base, lbLoc, ArgExprs.front(), rbLoc);
4958
4959 if (!Res.isInvalid() && isa<ArraySubscriptExpr>(Res.get()))
4960 CheckSubscriptAccessOfNoDeref(cast<ArraySubscriptExpr>(Res.get()));
4961
4962 return Res;
4963}
4964
4965ExprResult Sema::tryConvertExprToType(Expr *E, QualType Ty) {
4966 InitializedEntity Entity = InitializedEntity::InitializeTemporary(Ty);
4967 InitializationKind Kind =
4968 InitializationKind::CreateCopy(E->getBeginLoc(), SourceLocation());
4969 InitializationSequence InitSeq(*this, Entity, Kind, E);
4970 return InitSeq.Perform(*this, Entity, Kind, E);
4971}
4972
4973ExprResult Sema::CreateBuiltinMatrixSubscriptExpr(Expr *Base, Expr *RowIdx,
4974 Expr *ColumnIdx,
4975 SourceLocation RBLoc) {
4976 ExprResult BaseR = CheckPlaceholderExpr(Base);
4977 if (BaseR.isInvalid())
4978 return BaseR;
4979 Base = BaseR.get();
4980
4981 ExprResult RowR = CheckPlaceholderExpr(RowIdx);
4982 if (RowR.isInvalid())
4983 return RowR;
4984 RowIdx = RowR.get();
4985
4986 if (!ColumnIdx)
4987 return new (Context) MatrixSubscriptExpr(
4988 Base, RowIdx, ColumnIdx, Context.IncompleteMatrixIdxTy, RBLoc);
4989
4990 // Build an unanalyzed expression if any of the operands is type-dependent.
4991 if (Base->isTypeDependent() || RowIdx->isTypeDependent() ||
4992 ColumnIdx->isTypeDependent())
4993 return new (Context) MatrixSubscriptExpr(Base, RowIdx, ColumnIdx,
4994 Context.DependentTy, RBLoc);
4995
4996 ExprResult ColumnR = CheckPlaceholderExpr(ColumnIdx);
4997 if (ColumnR.isInvalid())
4998 return ColumnR;
4999 ColumnIdx = ColumnR.get();
5000
5001 // Check that IndexExpr is an integer expression. If it is a constant
5002 // expression, check that it is less than Dim (= the number of elements in the
5003 // corresponding dimension).
5004 auto IsIndexValid = [&](Expr *IndexExpr, unsigned Dim,
5005 bool IsColumnIdx) -> Expr * {
5006 if (!IndexExpr->getType()->isIntegerType() &&
5007 !IndexExpr->isTypeDependent()) {
5008 Diag(IndexExpr->getBeginLoc(), diag::err_matrix_index_not_integer)
5009 << IsColumnIdx;
5010 return nullptr;
5011 }
5012
5013 if (Optional<llvm::APSInt> Idx =
5014 IndexExpr->getIntegerConstantExpr(Context)) {
5015 if ((*Idx < 0 || *Idx >= Dim)) {
5016 Diag(IndexExpr->getBeginLoc(), diag::err_matrix_index_outside_range)
5017 << IsColumnIdx << Dim;
5018 return nullptr;
5019 }
5020 }
5021
5022 ExprResult ConvExpr =
5023 tryConvertExprToType(IndexExpr, Context.getSizeType());
5024 assert(!ConvExpr.isInvalid() &&(static_cast <bool> (!ConvExpr.isInvalid() && "should be able to convert any integer type to size type"
) ? void (0) : __assert_fail ("!ConvExpr.isInvalid() && \"should be able to convert any integer type to size type\""
, "clang/lib/Sema/SemaExpr.cpp", 5025, __extension__ __PRETTY_FUNCTION__
))
5025 "should be able to convert any integer type to size type")(static_cast <bool> (!ConvExpr.isInvalid() && "should be able to convert any integer type to size type"
) ? void (0) : __assert_fail ("!ConvExpr.isInvalid() && \"should be able to convert any integer type to size type\""
, "clang/lib/Sema/SemaExpr.cpp", 5025, __extension__ __PRETTY_FUNCTION__
))
;
5026 return ConvExpr.get();
5027 };
5028
5029 auto *MTy = Base->getType()->getAs<ConstantMatrixType>();
5030 RowIdx = IsIndexValid(RowIdx, MTy->getNumRows(), false);
5031 ColumnIdx = IsIndexValid(ColumnIdx, MTy->getNumColumns(), true);
5032 if (!RowIdx || !ColumnIdx)
5033 return ExprError();
5034
5035 return new (Context) MatrixSubscriptExpr(Base, RowIdx, ColumnIdx,
5036 MTy->getElementType(), RBLoc);
5037}
5038
5039void Sema::CheckAddressOfNoDeref(const Expr *E) {
5040 ExpressionEvaluationContextRecord &LastRecord = ExprEvalContexts.back();
5041 const Expr *StrippedExpr = E->IgnoreParenImpCasts();
5042
5043 // For expressions like `&(*s).b`, the base is recorded and what should be
5044 // checked.
5045 const MemberExpr *Member = nullptr;
5046 while ((Member = dyn_cast<MemberExpr>(StrippedExpr)) && !Member->isArrow())
5047 StrippedExpr = Member->getBase()->IgnoreParenImpCasts();
5048
5049 LastRecord.PossibleDerefs.erase(StrippedExpr);
5050}
5051
5052void Sema::CheckSubscriptAccessOfNoDeref(const ArraySubscriptExpr *E) {
5053 if (isUnevaluatedContext())
5054 return;
5055
5056 QualType ResultTy = E->getType();
5057 ExpressionEvaluationContextRecord &LastRecord = ExprEvalContexts.back();
5058
5059 // Bail if the element is an array since it is not memory access.
5060 if (isa<ArrayType>(ResultTy))
5061 return;
5062
5063 if (ResultTy->hasAttr(attr::NoDeref)) {
5064 LastRecord.PossibleDerefs.insert(E);
5065 return;
5066 }
5067
5068 // Check if the base type is a pointer to a member access of a struct
5069 // marked with noderef.
5070 const Expr *Base = E->getBase();
5071 QualType BaseTy = Base->getType();
5072 if (!(isa<ArrayType>(BaseTy) || isa<PointerType>(BaseTy)))
5073 // Not a pointer access
5074 return;
5075
5076 const MemberExpr *Member = nullptr;
5077 while ((Member = dyn_cast<MemberExpr>(Base->IgnoreParenCasts())) &&
5078 Member->isArrow())
5079 Base = Member->getBase();
5080
5081 if (const auto *Ptr = dyn_cast<PointerType>(Base->getType())) {
5082 if (Ptr->getPointeeType()->hasAttr(attr::NoDeref))
5083 LastRecord.PossibleDerefs.insert(E);
5084 }
5085}
5086
5087ExprResult Sema::ActOnOMPArraySectionExpr(Expr *Base, SourceLocation LBLoc,
5088 Expr *LowerBound,
5089 SourceLocation ColonLocFirst,
5090 SourceLocation ColonLocSecond,
5091 Expr *Length, Expr *Stride,
5092 SourceLocation RBLoc) {
5093 if (Base->hasPlaceholderType() &&
5094 !Base->hasPlaceholderType(BuiltinType::OMPArraySection)) {
5095 ExprResult Result = CheckPlaceholderExpr(Base);
5096 if (Result.isInvalid())
5097 return ExprError();
5098 Base = Result.get();
5099 }
5100 if (LowerBound && LowerBound->getType()->isNonOverloadPlaceholderType()) {
5101 ExprResult Result = CheckPlaceholderExpr(LowerBound);
5102 if (Result.isInvalid())
5103 return ExprError();
5104 Result = DefaultLvalueConversion(Result.get());
5105 if (Result.isInvalid())
5106 return ExprError();
5107 LowerBound = Result.get();
5108 }
5109 if (Length && Length->getType()->isNonOverloadPlaceholderType()) {
5110 ExprResult Result = CheckPlaceholderExpr(Length);
5111 if (Result.isInvalid())
5112 return ExprError();
5113 Result = DefaultLvalueConversion(Result.get());
5114 if (Result.isInvalid())
5115 return ExprError();
5116 Length = Result.get();
5117 }
5118 if (Stride && Stride->getType()->isNonOverloadPlaceholderType()) {
5119 ExprResult Result = CheckPlaceholderExpr(Stride);
5120 if (Result.isInvalid())
5121 return ExprError();
5122 Result = DefaultLvalueConversion(Result.get());
5123 if (Result.isInvalid())
5124 return ExprError();
5125 Stride = Result.get();
5126 }
5127
5128 // Build an unanalyzed expression if either operand is type-dependent.
5129 if (Base->isTypeDependent() ||
5130 (LowerBound &&
5131 (LowerBound->isTypeDependent() || LowerBound->isValueDependent())) ||
5132 (Length && (Length->isTypeDependent() || Length->isValueDependent())) ||
5133 (Stride && (Stride->isTypeDependent() || Stride->isValueDependent()))) {
5134 return new (Context) OMPArraySectionExpr(
5135 Base, LowerBound, Length, Stride, Context.DependentTy, VK_LValue,
5136 OK_Ordinary, ColonLocFirst, ColonLocSecond, RBLoc);
5137 }
5138
5139 // Perform default conversions.
5140 QualType OriginalTy = OMPArraySectionExpr::getBaseOriginalType(Base);
5141 QualType ResultTy;
5142 if (OriginalTy->isAnyPointerType()) {
5143 ResultTy = OriginalTy->getPointeeType();
5144 } else if (OriginalTy->isArrayType()) {
5145 ResultTy = OriginalTy->getAsArrayTypeUnsafe()->getElementType();
5146 } else {
5147 return ExprError(
5148 Diag(Base->getExprLoc(), diag::err_omp_typecheck_section_value)
5149 << Base->getSourceRange());
5150 }
5151 // C99 6.5.2.1p1
5152 if (LowerBound) {
5153 auto Res = PerformOpenMPImplicitIntegerConversion(LowerBound->getExprLoc(),
5154 LowerBound);
5155 if (Res.isInvalid())
5156 return ExprError(Diag(LowerBound->getExprLoc(),
5157 diag::err_omp_typecheck_section_not_integer)
5158 << 0 << LowerBound->getSourceRange());
5159 LowerBound = Res.get();
5160
5161 if (LowerBound->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
5162 LowerBound->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
5163 Diag(LowerBound->getExprLoc(), diag::warn_omp_section_is_char)
5164 << 0 << LowerBound->getSourceRange();
5165 }
5166 if (Length) {
5167 auto Res =
5168 PerformOpenMPImplicitIntegerConversion(Length->getExprLoc(), Length);
5169 if (Res.isInvalid())
5170 return ExprError(Diag(Length->getExprLoc(),
5171 diag::err_omp_typecheck_section_not_integer)
5172 << 1 << Length->getSourceRange());
5173 Length = Res.get();
5174
5175 if (Length->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
5176 Length->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
5177 Diag(Length->getExprLoc(), diag::warn_omp_section_is_char)
5178 << 1 << Length->getSourceRange();
5179 }
5180 if (Stride) {
5181 ExprResult Res =
5182 PerformOpenMPImplicitIntegerConversion(Stride->getExprLoc(), Stride);
5183 if (Res.isInvalid())
5184 return ExprError(Diag(Stride->getExprLoc(),
5185 diag::err_omp_typecheck_section_not_integer)
5186 << 1 << Stride->getSourceRange());
5187 Stride = Res.get();
5188
5189 if (Stride->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
5190 Stride->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
5191 Diag(Stride->getExprLoc(), diag::warn_omp_section_is_char)
5192 << 1 << Stride->getSourceRange();
5193 }
5194
5195 // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
5196 // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
5197 // type. Note that functions are not objects, and that (in C99 parlance)
5198 // incomplete types are not object types.
5199 if (ResultTy->isFunctionType()) {
5200 Diag(Base->getExprLoc(), diag::err_omp_section_function_type)
5201 << ResultTy << Base->getSourceRange();
5202 return ExprError();
5203 }
5204
5205 if (RequireCompleteType(Base->getExprLoc(), ResultTy,
5206 diag::err_omp_section_incomplete_type, Base))
5207 return ExprError();
5208
5209 if (LowerBound && !OriginalTy->isAnyPointerType()) {
5210 Expr::EvalResult Result;
5211 if (LowerBound->EvaluateAsInt(Result, Context)) {
5212 // OpenMP 5.0, [2.1.5 Array Sections]
5213 // The array section must be a subset of the original array.
5214 llvm::APSInt LowerBoundValue = Result.Val.getInt();
5215 if (LowerBoundValue.isNegative()) {
5216 Diag(LowerBound->getExprLoc(), diag::err_omp_section_not_subset_of_array)
5217 << LowerBound->getSourceRange();
5218 return ExprError();
5219 }
5220 }
5221 }
5222
5223 if (Length) {
5224 Expr::EvalResult Result;
5225 if (Length->EvaluateAsInt(Result, Context)) {
5226 // OpenMP 5.0, [2.1.5 Array Sections]
5227 // The length must evaluate to non-negative integers.
5228 llvm::APSInt LengthValue = Result.Val.getInt();
5229 if (LengthValue.isNegative()) {
5230 Diag(Length->getExprLoc(), diag::err_omp_section_length_negative)
5231 << toString(LengthValue, /*Radix=*/10, /*Signed=*/true)
5232 << Length->getSourceRange();
5233 return ExprError();
5234 }
5235 }
5236 } else if (ColonLocFirst.isValid() &&
5237 (OriginalTy.isNull() || (!OriginalTy->isConstantArrayType() &&
5238 !OriginalTy->isVariableArrayType()))) {
5239 // OpenMP 5.0, [2.1.5 Array Sections]
5240 // When the size of the array dimension is not known, the length must be
5241 // specified explicitly.
5242 Diag(ColonLocFirst, diag::err_omp_section_length_undefined)
5243 << (!OriginalTy.isNull() && OriginalTy->isArrayType());
5244 return ExprError();
5245 }
5246
5247 if (Stride) {
5248 Expr::EvalResult Result;
5249 if (Stride->EvaluateAsInt(Result, Context)) {
5250 // OpenMP 5.0, [2.1.5 Array Sections]
5251 // The stride must evaluate to a positive integer.
5252 llvm::APSInt StrideValue = Result.Val.getInt();
5253 if (!StrideValue.isStrictlyPositive()) {
5254 Diag(Stride->getExprLoc(), diag::err_omp_section_stride_non_positive)
5255 << toString(StrideValue, /*Radix=*/10, /*Signed=*/true)
5256 << Stride->getSourceRange();
5257 return ExprError();
5258 }
5259 }
5260 }
5261
5262 if (!Base->hasPlaceholderType(BuiltinType::OMPArraySection)) {
5263 ExprResult Result = DefaultFunctionArrayLvalueConversion(Base);
5264 if (Result.isInvalid())
5265 return ExprError();
5266 Base = Result.get();
5267 }
5268 return new (Context) OMPArraySectionExpr(
5269 Base, LowerBound, Length, Stride, Context.OMPArraySectionTy, VK_LValue,
5270 OK_Ordinary, ColonLocFirst, ColonLocSecond, RBLoc);
5271}
5272
5273ExprResult Sema::ActOnOMPArrayShapingExpr(Expr *Base, SourceLocation LParenLoc,
5274 SourceLocation RParenLoc,
5275 ArrayRef<Expr *> Dims,
5276 ArrayRef<SourceRange> Brackets) {
5277 if (Base->hasPlaceholderType()) {
5278 ExprResult Result = CheckPlaceholderExpr(Base);
5279 if (Result.isInvalid())
5280 return ExprError();
5281 Result = DefaultLvalueConversion(Result.get());
5282 if (Result.isInvalid())
5283 return ExprError();
5284 Base = Result.get();
5285 }
5286 QualType BaseTy = Base->getType();
5287 // Delay analysis of the types/expressions if instantiation/specialization is
5288 // required.
5289 if (!BaseTy->isPointerType() && Base->isTypeDependent())
5290 return OMPArrayShapingExpr::Create(Context, Context.DependentTy, Base,
5291 LParenLoc, RParenLoc, Dims, Brackets);
5292 if (!BaseTy->isPointerType() ||
5293 (!Base->isTypeDependent() &&
5294 BaseTy->getPointeeType()->isIncompleteType()))
5295 return ExprError(Diag(Base->getExprLoc(),
5296 diag::err_omp_non_pointer_type_array_shaping_base)
5297 << Base->getSourceRange());
5298
5299 SmallVector<Expr *, 4> NewDims;
5300 bool ErrorFound = false;
5301 for (Expr *Dim : Dims) {
5302 if (Dim->hasPlaceholderType()) {
5303 ExprResult Result = CheckPlaceholderExpr(Dim);
5304 if (Result.isInvalid()) {
5305 ErrorFound = true;
5306 continue;
5307 }
5308 Result = DefaultLvalueConversion(Result.get());
5309 if (Result.isInvalid()) {
5310 ErrorFound = true;
5311 continue;
5312 }
5313 Dim = Result.get();
5314 }
5315 if (!Dim->isTypeDependent()) {
5316 ExprResult Result =
5317 PerformOpenMPImplicitIntegerConversion(Dim->getExprLoc(), Dim);
5318 if (Result.isInvalid()) {
5319 ErrorFound = true;
5320 Diag(Dim->getExprLoc(), diag::err_omp_typecheck_shaping_not_integer)
5321 << Dim->getSourceRange();
5322 continue;
5323 }
5324 Dim = Result.get();
5325 Expr::EvalResult EvResult;
5326 if (!Dim->isValueDependent() && Dim->EvaluateAsInt(EvResult, Context)) {
5327 // OpenMP 5.0, [2.1.4 Array Shaping]
5328 // Each si is an integral type expression that must evaluate to a
5329 // positive integer.
5330 llvm::APSInt Value = EvResult.Val.getInt();
5331 if (!Value.isStrictlyPositive()) {
5332 Diag(Dim->getExprLoc(), diag::err_omp_shaping_dimension_not_positive)
5333 << toString(Value, /*Radix=*/10, /*Signed=*/true)
5334 << Dim->getSourceRange();
5335 ErrorFound = true;
5336 continue;
5337 }
5338 }
5339 }
5340 NewDims.push_back(Dim);
5341 }
5342 if (ErrorFound)
5343 return ExprError();
5344 return OMPArrayShapingExpr::Create(Context, Context.OMPArrayShapingTy, Base,
5345 LParenLoc, RParenLoc, NewDims, Brackets);
5346}
5347
5348ExprResult Sema::ActOnOMPIteratorExpr(Scope *S, SourceLocation IteratorKwLoc,
5349 SourceLocation LLoc, SourceLocation RLoc,
5350 ArrayRef<OMPIteratorData> Data) {
5351 SmallVector<OMPIteratorExpr::IteratorDefinition, 4> ID;
5352 bool IsCorrect = true;
5353 for (const OMPIteratorData &D : Data) {
5354 TypeSourceInfo *TInfo = nullptr;
5355 SourceLocation StartLoc;
5356 QualType DeclTy;
5357 if (!D.Type.getAsOpaquePtr()) {
5358 // OpenMP 5.0, 2.1.6 Iterators
5359 // In an iterator-specifier, if the iterator-type is not specified then
5360 // the type of that iterator is of int type.
5361 DeclTy = Context.IntTy;
5362 StartLoc = D.DeclIdentLoc;
5363 } else {
5364 DeclTy = GetTypeFromParser(D.Type, &TInfo);
5365 StartLoc = TInfo->getTypeLoc().getBeginLoc();
5366 }
5367
5368 bool IsDeclTyDependent = DeclTy->isDependentType() ||
5369 DeclTy->containsUnexpandedParameterPack() ||
5370 DeclTy->isInstantiationDependentType();
5371 if (!IsDeclTyDependent) {
5372 if (!DeclTy->isIntegralType(Context) && !DeclTy->isAnyPointerType()) {
5373 // OpenMP 5.0, 2.1.6 Iterators, Restrictions, C/C++
5374 // The iterator-type must be an integral or pointer type.
5375 Diag(StartLoc, diag::err_omp_iterator_not_integral_or_pointer)
5376 << DeclTy;
5377 IsCorrect = false;
5378 continue;
5379 }
5380 if (DeclTy.isConstant(Context)) {
5381 // OpenMP 5.0, 2.1.6 Iterators, Restrictions, C/C++
5382 // The iterator-type must not be const qualified.
5383 Diag(StartLoc, diag::err_omp_iterator_not_integral_or_pointer)
5384 << DeclTy;
5385 IsCorrect = false;
5386 continue;
5387 }
5388 }
5389
5390 // Iterator declaration.
5391 assert(D.DeclIdent && "Identifier expected.")(static_cast <bool> (D.DeclIdent && "Identifier expected."
) ? void (0) : __assert_fail ("D.DeclIdent && \"Identifier expected.\""
, "clang/lib/Sema/SemaExpr.cpp", 5391, __extension__ __PRETTY_FUNCTION__
))
;
5392 // Always try to create iterator declarator to avoid extra error messages
5393 // about unknown declarations use.
5394 auto *VD = VarDecl::Create(Context, CurContext, StartLoc, D.DeclIdentLoc,
5395 D.DeclIdent, DeclTy, TInfo, SC_None);
5396 VD->setImplicit();
5397 if (S) {
5398 // Check for conflicting previous declaration.
5399 DeclarationNameInfo NameInfo(VD->getDeclName(), D.DeclIdentLoc);
5400 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
5401 ForVisibleRedeclaration);
5402 Previous.suppressDiagnostics();
5403 LookupName(Previous, S);
5404
5405 FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage=*/false,
5406 /*AllowInlineNamespace=*/false);
5407 if (!Previous.empty()) {
5408 NamedDecl *Old = Previous.getRepresentativeDecl();
5409 Diag(D.DeclIdentLoc, diag::err_redefinition) << VD->getDeclName();
5410 Diag(Old->getLocation(), diag::note_previous_definition);
5411 } else {
5412 PushOnScopeChains(VD, S);
5413 }
5414 } else {
5415 CurContext->addDecl(VD);
5416 }
5417 Expr *Begin = D.Range.Begin;
5418 if (!IsDeclTyDependent && Begin && !Begin->isTypeDependent()) {
5419 ExprResult BeginRes =
5420 PerformImplicitConversion(Begin, DeclTy, AA_Converting);
5421 Begin = BeginRes.get();
5422 }
5423 Expr *End = D.Range.End;
5424 if (!IsDeclTyDependent && End && !End->isTypeDependent()) {
5425 ExprResult EndRes = PerformImplicitConversion(End, DeclTy, AA_Converting);
5426 End = EndRes.get();
5427 }
5428 Expr *Step = D.Range.Step;
5429 if (!IsDeclTyDependent && Step && !Step->isTypeDependent()) {
5430 if (!Step->getType()->isIntegralType(Context)) {
5431 Diag(Step->getExprLoc(), diag::err_omp_iterator_step_not_integral)
5432 << Step << Step->getSourceRange();
5433 IsCorrect = false;
5434 continue;
5435 }
5436 Optional<llvm::APSInt> Result = Step->getIntegerConstantExpr(Context);
5437 // OpenMP 5.0, 2.1.6 Iterators, Restrictions
5438 // If the step expression of a range-specification equals zero, the
5439 // behavior is unspecified.
5440 if (Result && Result->isZero()) {
5441 Diag(Step->getExprLoc(), diag::err_omp_iterator_step_constant_zero)
5442 << Step << Step->getSourceRange();
5443 IsCorrect = false;
5444 continue;
5445 }
5446 }
5447 if (!Begin || !End || !IsCorrect) {
5448 IsCorrect = false;
5449 continue;
5450 }
5451 OMPIteratorExpr::IteratorDefinition &IDElem = ID.emplace_back();
5452 IDElem.IteratorDecl = VD;
5453 IDElem.AssignmentLoc = D.AssignLoc;
5454 IDElem.Range.Begin = Begin;
5455 IDElem.Range.End = End;
5456 IDElem.Range.Step = Step;
5457 IDElem.ColonLoc = D.ColonLoc;
5458 IDElem.SecondColonLoc = D.SecColonLoc;
5459 }
5460 if (!IsCorrect) {
5461 // Invalidate all created iterator declarations if error is found.
5462 for (const OMPIteratorExpr::IteratorDefinition &D : ID) {
5463 if (Decl *ID = D.IteratorDecl)
5464 ID->setInvalidDecl();
5465 }
5466 return ExprError();
5467 }
5468 SmallVector<OMPIteratorHelperData, 4> Helpers;
5469 if (!CurContext->isDependentContext()) {
5470 // Build number of ityeration for each iteration range.
5471 // Ni = ((Stepi > 0) ? ((Endi + Stepi -1 - Begini)/Stepi) :
5472 // ((Begini-Stepi-1-Endi) / -Stepi);
5473 for (OMPIteratorExpr::IteratorDefinition &D : ID) {
5474 // (Endi - Begini)
5475 ExprResult Res = CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub, D.Range.End,
5476 D.Range.Begin);
5477 if(!Res.isUsable()) {
5478 IsCorrect = false;
5479 continue;
5480 }
5481 ExprResult St, St1;
5482 if (D.Range.Step) {
5483 St = D.Range.Step;
5484 // (Endi - Begini) + Stepi
5485 Res = CreateBuiltinBinOp(D.AssignmentLoc, BO_Add, Res.get(), St.get());
5486 if (!Res.isUsable()) {
5487 IsCorrect = false;
5488 continue;
5489 }
5490 // (Endi - Begini) + Stepi - 1
5491 Res =
5492 CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub, Res.get(),
5493 ActOnIntegerConstant(D.AssignmentLoc, 1).get());
5494 if (!Res.isUsable()) {
5495 IsCorrect = false;
5496 continue;
5497 }
5498 // ((Endi - Begini) + Stepi - 1) / Stepi
5499 Res = CreateBuiltinBinOp(D.AssignmentLoc, BO_Div, Res.get(), St.get());
5500 if (!Res.isUsable()) {
5501 IsCorrect = false;
5502 continue;
5503 }
5504 St1 = CreateBuiltinUnaryOp(D.AssignmentLoc, UO_Minus, D.Range.Step);
5505 // (Begini - Endi)
5506 ExprResult Res1 = CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub,
5507 D.Range.Begin, D.Range.End);
5508 if (!Res1.isUsable()) {
5509 IsCorrect = false;
5510 continue;
5511 }
5512 // (Begini - Endi) - Stepi
5513 Res1 =
5514 CreateBuiltinBinOp(D.AssignmentLoc, BO_Add, Res1.get(), St1.get());
5515 if (!Res1.isUsable()) {
5516 IsCorrect = false;
5517 continue;
5518 }
5519 // (Begini - Endi) - Stepi - 1
5520 Res1 =
5521 CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub, Res1.get(),
5522 ActOnIntegerConstant(D.AssignmentLoc, 1).get());
5523 if (!Res1.isUsable()) {
5524 IsCorrect = false;
5525 continue;
5526 }
5527 // ((Begini - Endi) - Stepi - 1) / (-Stepi)
5528 Res1 =
5529 CreateBuiltinBinOp(D.AssignmentLoc, BO_Div, Res1.get(), St1.get());
5530 if (!Res1.isUsable()) {
5531 IsCorrect = false;
5532 continue;
5533 }
5534 // Stepi > 0.
5535 ExprResult CmpRes =
5536 CreateBuiltinBinOp(D.AssignmentLoc, BO_GT, D.Range.Step,
5537 ActOnIntegerConstant(D.AssignmentLoc, 0).get());
5538 if (!CmpRes.isUsable()) {
5539 IsCorrect = false;
5540 continue;
5541 }
5542 Res = ActOnConditionalOp(D.AssignmentLoc, D.AssignmentLoc, CmpRes.get(),
5543 Res.get(), Res1.get());
5544 if (!Res.isUsable()) {
5545 IsCorrect = false;
5546 continue;
5547 }
5548 }
5549 Res = ActOnFinishFullExpr(Res.get(), /*DiscardedValue=*/false);
5550 if (!Res.isUsable()) {
5551 IsCorrect = false;
5552 continue;
5553 }
5554
5555 // Build counter update.
5556 // Build counter.
5557 auto *CounterVD =
5558 VarDecl::Create(Context, CurContext, D.IteratorDecl->getBeginLoc(),
5559 D.IteratorDecl->getBeginLoc(), nullptr,
5560 Res.get()->getType(), nullptr, SC_None);
5561 CounterVD->setImplicit();
5562 ExprResult RefRes =
5563 BuildDeclRefExpr(CounterVD, CounterVD->getType(), VK_LValue,
5564 D.IteratorDecl->getBeginLoc());
5565 // Build counter update.
5566 // I = Begini + counter * Stepi;
5567 ExprResult UpdateRes;
5568 if (D.Range.Step) {
5569 UpdateRes = CreateBuiltinBinOp(
5570 D.AssignmentLoc, BO_Mul,
5571 DefaultLvalueConversion(RefRes.get()).get(), St.get());
5572 } else {
5573 UpdateRes = DefaultLvalueConversion(RefRes.get());
5574 }
5575 if (!UpdateRes.isUsable()) {
5576 IsCorrect = false;
5577 continue;
5578 }
5579 UpdateRes = CreateBuiltinBinOp(D.AssignmentLoc, BO_Add, D.Range.Begin,
5580 UpdateRes.get());
5581 if (!UpdateRes.isUsable()) {
5582 IsCorrect = false;
5583 continue;
5584 }
5585 ExprResult VDRes =
5586 BuildDeclRefExpr(cast<VarDecl>(D.IteratorDecl),
5587 cast<VarDecl>(D.IteratorDecl)->getType(), VK_LValue,
5588 D.IteratorDecl->getBeginLoc());
5589 UpdateRes = CreateBuiltinBinOp(D.AssignmentLoc, BO_Assign, VDRes.get(),
5590 UpdateRes.get());
5591 if (!UpdateRes.isUsable()) {
5592 IsCorrect = false;
5593 continue;
5594 }
5595 UpdateRes =
5596 ActOnFinishFullExpr(UpdateRes.get(), /*DiscardedValue=*/true);
5597 if (!UpdateRes.isUsable()) {
5598 IsCorrect = false;
5599 continue;
5600 }
5601 ExprResult CounterUpdateRes =
5602 CreateBuiltinUnaryOp(D.AssignmentLoc, UO_PreInc, RefRes.get());
5603 if (!CounterUpdateRes.isUsable()) {
5604 IsCorrect = false;
5605 continue;
5606 }
5607 CounterUpdateRes =
5608 ActOnFinishFullExpr(CounterUpdateRes.get(), /*DiscardedValue=*/true);
5609 if (!CounterUpdateRes.isUsable()) {
5610 IsCorrect = false;
5611 continue;
5612 }
5613 OMPIteratorHelperData &HD = Helpers.emplace_back();
5614 HD.CounterVD = CounterVD;
5615 HD.Upper = Res.get();
5616 HD.Update = UpdateRes.get();
5617 HD.CounterUpdate = CounterUpdateRes.get();
5618 }
5619 } else {
5620 Helpers.assign(ID.size(), {});
5621 }
5622 if (!IsCorrect) {
5623 // Invalidate all created iterator declarations if error is found.
5624 for (const OMPIteratorExpr::IteratorDefinition &D : ID) {
5625 if (Decl *ID = D.IteratorDecl)
5626 ID->setInvalidDecl();
5627 }
5628 return ExprError();
5629 }
5630 return OMPIteratorExpr::Create(Context, Context.OMPIteratorTy, IteratorKwLoc,
5631 LLoc, RLoc, ID, Helpers);
5632}
5633
5634ExprResult
5635Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
5636 Expr *Idx, SourceLocation RLoc) {
5637 Expr *LHSExp = Base;
5638 Expr *RHSExp = Idx;
5639
5640 ExprValueKind VK = VK_LValue;
5641 ExprObjectKind OK = OK_Ordinary;
5642
5643 // Per C++ core issue 1213, the result is an xvalue if either operand is
5644 // a non-lvalue array, and an lvalue otherwise.
5645 if (getLangOpts().CPlusPlus11) {
5646 for (auto *Op : {LHSExp, RHSExp}) {
5647 Op = Op->IgnoreImplicit();
5648 if (Op->getType()->isArrayType() && !Op->isLValue())
5649 VK = VK_XValue;
5650 }
5651 }
5652
5653 // Perform default conversions.
5654 if (!LHSExp->getType()->getAs<VectorType>()) {
5655 ExprResult Result = DefaultFunctionArrayLvalueConversion(LHSExp);
5656 if (Result.isInvalid())
5657 return ExprError();
5658 LHSExp = Result.get();
5659 }
5660 ExprResult Result = DefaultFunctionArrayLvalueConversion(RHSExp);
5661 if (Result.isInvalid())
5662 return ExprError();
5663 RHSExp = Result.get();
5664
5665 QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
5666
5667 // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
5668 // to the expression *((e1)+(e2)). This means the array "Base" may actually be
5669 // in the subscript position. As a result, we need to derive the array base
5670 // and index from the expression types.
5671 Expr *BaseExpr, *IndexExpr;
5672 QualType ResultType;
5673 if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
5674 BaseExpr = LHSExp;
5675 IndexExpr = RHSExp;
5676 ResultType =
5677 getDependentArraySubscriptType(LHSExp, RHSExp, getASTContext());
5678 } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
5679 BaseExpr = LHSExp;
5680 IndexExpr = RHSExp;
5681 ResultType = PTy->getPointeeType();
5682 } else if (const ObjCObjectPointerType *PTy =
5683 LHSTy->getAs<ObjCObjectPointerType>()) {
5684 BaseExpr = LHSExp;
5685 IndexExpr = RHSExp;
5686
5687 // Use custom logic if this should be the pseudo-object subscript
5688 // expression.
5689 if (!LangOpts.isSubscriptPointerArithmetic())
5690 return BuildObjCSubscriptExpression(RLoc, BaseExpr, IndexExpr, nullptr,
5691 nullptr);
5692
5693 ResultType = PTy->getPointeeType();
5694 } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
5695 // Handle the uncommon case of "123[Ptr]".
5696 BaseExpr = RHSExp;
5697 IndexExpr = LHSExp;
5698 ResultType = PTy->getPointeeType();
5699 } else if (const ObjCObjectPointerType *PTy =
5700 RHSTy->getAs<ObjCObjectPointerType>()) {
5701 // Handle the uncommon case of "123[Ptr]".
5702 BaseExpr = RHSExp;
5703 IndexExpr = LHSExp;
5704 ResultType = PTy->getPointeeType();
5705 if (!LangOpts.isSubscriptPointerArithmetic()) {
5706 Diag(LLoc, diag::err_subscript_nonfragile_interface)
5707 << ResultType << BaseExpr->getSourceRange();
5708 return ExprError();
5709 }
5710 } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
5711 BaseExpr = LHSExp; // vectors: V[123]
5712 IndexExpr = RHSExp;
5713 // We apply C++ DR1213 to vector subscripting too.
5714 if (getLangOpts().CPlusPlus11 && LHSExp->isPRValue()) {
5715 ExprResult Materialized = TemporaryMaterializationConversion(LHSExp);
5716 if (Materialized.isInvalid())
5717 return ExprError();
5718 LHSExp = Materialized.get();
5719 }
5720 VK = LHSExp->getValueKind();
5721 if (VK != VK_PRValue)
5722 OK = OK_VectorComponent;
5723
5724 ResultType = VTy->getElementType();
5725 QualType BaseType = BaseExpr->getType();
5726 Qualifiers BaseQuals = BaseType.getQualifiers();
5727 Qualifiers MemberQuals = ResultType.getQualifiers();
5728 Qualifiers Combined = BaseQuals + MemberQuals;
5729 if (Combined != MemberQuals)
5730 ResultType = Context.getQualifiedType(ResultType, Combined);
5731 } else if (LHSTy->isBuiltinType() &&
5732 LHSTy->getAs<BuiltinType>()->isVLSTBuiltinType()) {
5733 const BuiltinType *BTy = LHSTy->getAs<BuiltinType>();
5734 if (BTy->isSVEBool())
5735 return ExprError(Diag(LLoc, diag::err_subscript_svbool_t)
5736 << LHSExp->getSourceRange() << RHSExp->getSourceRange());
5737
5738 BaseExpr = LHSExp;
5739 IndexExpr = RHSExp;
5740 if (getLangOpts().CPlusPlus11 && LHSExp->isPRValue()) {
5741 ExprResult Materialized = TemporaryMaterializationConversion(LHSExp);
5742 if (Materialized.isInvalid())
5743 return ExprError();
5744 LHSExp = Materialized.get();
5745 }
5746 VK = LHSExp->getValueKind();
5747 if (VK != VK_PRValue)
5748 OK = OK_VectorComponent;
5749
5750 ResultType = BTy->getSveEltType(Context);
5751
5752 QualType BaseType = BaseExpr->getType();
5753 Qualifiers BaseQuals = BaseType.getQualifiers();
5754 Qualifiers MemberQuals = ResultType.getQualifiers();
5755 Qualifiers Combined = BaseQuals + MemberQuals;
5756 if (Combined != MemberQuals)
5757 ResultType = Context.getQualifiedType(ResultType, Combined);
5758 } else if (LHSTy->isArrayType()) {
5759 // If we see an array that wasn't promoted by
5760 // DefaultFunctionArrayLvalueConversion, it must be an array that
5761 // wasn't promoted because of the C90 rule that doesn't
5762 // allow promoting non-lvalue arrays. Warn, then
5763 // force the promotion here.
5764 Diag(LHSExp->getBeginLoc(), diag::ext_subscript_non_lvalue)
5765 << LHSExp->getSourceRange();
5766 LHSExp = ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
5767 CK_ArrayToPointerDecay).get();
5768 LHSTy = LHSExp->getType();
5769
5770 BaseExpr = LHSExp;
5771 IndexExpr = RHSExp;
5772 ResultType = LHSTy->castAs<PointerType>()->getPointeeType();
5773 } else if (RHSTy->isArrayType()) {
5774 // Same as previous, except for 123[f().a] case
5775 Diag(RHSExp->getBeginLoc(), diag::ext_subscript_non_lvalue)
5776 << RHSExp->getSourceRange();
5777 RHSExp = ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
5778 CK_ArrayToPointerDecay).get();
5779 RHSTy = RHSExp->getType();
5780
5781 BaseExpr = RHSExp;
5782 IndexExpr = LHSExp;
5783 ResultType = RHSTy->castAs<PointerType>()->getPointeeType();
5784 } else {
5785 return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
5786 << LHSExp->getSourceRange() << RHSExp->getSourceRange());
5787 }
5788 // C99 6.5.2.1p1
5789 if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
5790 return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
5791 << IndexExpr->getSourceRange());
5792
5793 if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
5794 IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
5795 && !IndexExpr->isTypeDependent())
5796 Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
5797
5798 // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
5799 // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
5800 // type. Note that Functions are not objects, and that (in C99 parlance)
5801 // incomplete types are not object types.
5802 if (ResultType->isFunctionType()) {
5803 Diag(BaseExpr->getBeginLoc(), diag::err_subscript_function_type)
5804 << ResultType << BaseExpr->getSourceRange();
5805 return ExprError();
5806 }
5807
5808 if (ResultType->isVoidType() && !getLangOpts().CPlusPlus) {
5809 // GNU extension: subscripting on pointer to void
5810 Diag(LLoc, diag::ext_gnu_subscript_void_type)
5811 << BaseExpr->getSourceRange();
5812
5813 // C forbids expressions of unqualified void type from being l-values.
5814 // See IsCForbiddenLValueType.
5815 if (!ResultType.hasQualifiers())
5816 VK = VK_PRValue;
5817 } else if (!ResultType->isDependentType() &&
5818 RequireCompleteSizedType(
5819 LLoc, ResultType,
5820 diag::err_subscript_incomplete_or_sizeless_type, BaseExpr))
5821 return ExprError();
5822
5823 assert(VK == VK_PRValue || LangOpts.CPlusPlus ||(static_cast <bool> (VK == VK_PRValue || LangOpts.CPlusPlus
|| !ResultType.isCForbiddenLValueType()) ? void (0) : __assert_fail
("VK == VK_PRValue || LangOpts.CPlusPlus || !ResultType.isCForbiddenLValueType()"
, "clang/lib/Sema/SemaExpr.cpp", 5824, __extension__ __PRETTY_FUNCTION__
))
5824 !ResultType.isCForbiddenLValueType())(static_cast <bool> (VK == VK_PRValue || LangOpts.CPlusPlus
|| !ResultType.isCForbiddenLValueType()) ? void (0) : __assert_fail
("VK == VK_PRValue || LangOpts.CPlusPlus || !ResultType.isCForbiddenLValueType()"
, "clang/lib/Sema/SemaExpr.cpp", 5824, __extension__ __PRETTY_FUNCTION__
))
;
5825
5826 if (LHSExp->IgnoreParenImpCasts()->getType()->isVariablyModifiedType() &&
5827 FunctionScopes.size() > 1) {
5828 if (auto *TT =
5829 LHSExp->IgnoreParenImpCasts()->getType()->getAs<TypedefType>()) {
5830 for (auto I = FunctionScopes.rbegin(),
5831 E = std::prev(FunctionScopes.rend());
5832 I != E; ++I) {
5833 auto *CSI = dyn_cast<CapturingScopeInfo>(*I);
5834 if (CSI == nullptr)
5835 break;
5836 DeclContext *DC = nullptr;
5837 if (auto *LSI = dyn_cast<LambdaScopeInfo>(CSI))
5838 DC = LSI->CallOperator;
5839 else if (auto *CRSI = dyn_cast<CapturedRegionScopeInfo>(CSI))
5840 DC = CRSI->TheCapturedDecl;
5841 else if (auto *BSI = dyn_cast<BlockScopeInfo>(CSI))
5842 DC = BSI->TheDecl;
5843 if (DC) {
5844 if (DC->containsDecl(TT->getDecl()))
5845 break;
5846 captureVariablyModifiedType(
5847 Context, LHSExp->IgnoreParenImpCasts()->getType(), CSI);
5848 }
5849 }
5850 }
5851 }
5852
5853 return new (Context)
5854 ArraySubscriptExpr(LHSExp, RHSExp, ResultType, VK, OK, RLoc);
5855}
5856
5857bool Sema::CheckCXXDefaultArgExpr(SourceLocation CallLoc, FunctionDecl *FD,
5858 ParmVarDecl *Param) {
5859 if (Param->hasUnparsedDefaultArg()) {
5860 // If we've already cleared out the location for the default argument,
5861 // that means we're parsing it right now.
5862 if (!UnparsedDefaultArgLocs.count(Param)) {
5863 Diag(Param->getBeginLoc(), diag::err_recursive_default_argument) << FD;
5864 Diag(CallLoc, diag::note_recursive_default_argument_used_here);
5865 Param->setInvalidDecl();
5866 return true;
5867 }
5868
5869 Diag(CallLoc, diag::err_use_of_default_argument_to_function_declared_later)
5870 << FD << cast<CXXRecordDecl>(FD->getDeclContext());
5871 Diag(UnparsedDefaultArgLocs[Param],
5872 diag::note_default_argument_declared_here);
5873 return true;
5874 }
5875
5876 if (Param->hasUninstantiatedDefaultArg() &&
5877 InstantiateDefaultArgument(CallLoc, FD, Param))
5878 return true;
5879
5880 assert(Param->hasInit() && "default argument but no initializer?")(static_cast <bool> (Param->hasInit() && "default argument but no initializer?"
) ? void (0) : __assert_fail ("Param->hasInit() && \"default argument but no initializer?\""
, "clang/lib/Sema/SemaExpr.cpp", 5880, __extension__ __PRETTY_FUNCTION__
))
;
5881
5882 // If the default expression creates temporaries, we need to
5883 // push them to the current stack of expression temporaries so they'll
5884 // be properly destroyed.
5885 // FIXME: We should really be rebuilding the default argument with new
5886 // bound temporaries; see the comment in PR5810.
5887 // We don't need to do that with block decls, though, because
5888 // blocks in default argument expression can never capture anything.
5889 if (auto Init = dyn_cast<ExprWithCleanups>(Param->getInit())) {
5890 // Set the "needs cleanups" bit regardless of whether there are
5891 // any explicit objects.
5892 Cleanup.setExprNeedsCleanups(Init->cleanupsHaveSideEffects());
5893
5894 // Append all the objects to the cleanup list. Right now, this
5895 // should always be a no-op, because blocks in default argument
5896 // expressions should never be able to capture anything.
5897 assert(!Init->getNumObjects() &&(static_cast <bool> (!Init->getNumObjects() &&
"default argument expression has capturing blocks?") ? void (
0) : __assert_fail ("!Init->getNumObjects() && \"default argument expression has capturing blocks?\""
, "clang/lib/Sema/SemaExpr.cpp", 5898, __extension__ __PRETTY_FUNCTION__
))
5898 "default argument expression has capturing blocks?")(static_cast <bool> (!Init->getNumObjects() &&
"default argument expression has capturing blocks?") ? void (
0) : __assert_fail ("!Init->getNumObjects() && \"default argument expression has capturing blocks?\""
, "clang/lib/Sema/SemaExpr.cpp", 5898, __extension__ __PRETTY_FUNCTION__
))
;
5899 }
5900
5901 // We already type-checked the argument, so we know it works.
5902 // Just mark all of the declarations in this potentially-evaluated expression
5903 // as being "referenced".
5904 EnterExpressionEvaluationContext EvalContext(
5905 *this, ExpressionEvaluationContext::PotentiallyEvaluated, Param);
5906 MarkDeclarationsReferencedInExpr(Param->getDefaultArg(),
5907 /*SkipLocalVariables=*/true);
5908 return false;
5909}
5910
5911ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
5912 FunctionDecl *FD, ParmVarDecl *Param) {
5913 assert(Param->hasDefaultArg() && "can't build nonexistent default arg")(static_cast <bool> (Param->hasDefaultArg() &&
"can't build nonexistent default arg") ? void (0) : __assert_fail
("Param->hasDefaultArg() && \"can't build nonexistent default arg\""
, "clang/lib/Sema/SemaExpr.cpp", 5913, __extension__ __PRETTY_FUNCTION__
))
;
5914 if (CheckCXXDefaultArgExpr(CallLoc, FD, Param))
5915 return ExprError();
5916 return CXXDefaultArgExpr::Create(Context, CallLoc, Param, CurContext);
5917}
5918
5919Sema::VariadicCallType
5920Sema::getVariadicCallType(FunctionDecl *FDecl, const FunctionProtoType *Proto,
5921 Expr *Fn) {
5922 if (Proto && Proto->isVariadic()) {
5923 if (isa_and_nonnull<CXXConstructorDecl>(FDecl))
5924 return VariadicConstructor;
5925 else if (Fn && Fn->getType()->isBlockPointerType())
5926 return VariadicBlock;
5927 else if (FDecl) {
5928 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
5929 if (Method->isInstance())
5930 return VariadicMethod;
5931 } else if (Fn && Fn->getType() == Context.BoundMemberTy)
5932 return VariadicMethod;
5933 return VariadicFunction;
5934 }
5935 return VariadicDoesNotApply;
5936}
5937
5938namespace {
5939class FunctionCallCCC final : public FunctionCallFilterCCC {
5940public:
5941 FunctionCallCCC(Sema &SemaRef, const IdentifierInfo *FuncName,
5942 unsigned NumArgs, MemberExpr *ME)
5943 : FunctionCallFilterCCC(SemaRef, NumArgs, false, ME),
5944 FunctionName(FuncName) {}
5945
5946 bool ValidateCandidate(const TypoCorrection &candidate) override {
5947 if (!candidate.getCorrectionSpecifier() ||
5948 candidate.getCorrectionAsIdentifierInfo() != FunctionName) {
5949 return false;
5950 }
5951
5952 return FunctionCallFilterCCC::ValidateCandidate(candidate);
5953 }
5954
5955 std::unique_ptr<CorrectionCandidateCallback> clone() override {
5956 return std::make_unique<FunctionCallCCC>(*this);
5957 }
5958
5959private:
5960 const IdentifierInfo *const FunctionName;
5961};
5962}
5963
5964static TypoCorrection TryTypoCorrectionForCall(Sema &S, Expr *Fn,
5965 FunctionDecl *FDecl,
5966 ArrayRef<Expr *> Args) {
5967 MemberExpr *ME = dyn_cast<MemberExpr>(Fn);
5968 DeclarationName FuncName = FDecl->getDeclName();
5969 SourceLocation NameLoc = ME ? ME->getMemberLoc() : Fn->getBeginLoc();
5970
5971 FunctionCallCCC CCC(S, FuncName.getAsIdentifierInfo(), Args.size(), ME);
5972 if (TypoCorrection Corrected = S.CorrectTypo(
5973 DeclarationNameInfo(FuncName, NameLoc), Sema::LookupOrdinaryName,
5974 S.getScopeForContext(S.CurContext), nullptr, CCC,
5975 Sema::CTK_ErrorRecovery)) {
5976 if (NamedDecl *ND = Corrected.getFoundDecl()) {
5977 if (Corrected.isOverloaded()) {
5978 OverloadCandidateSet OCS(NameLoc, OverloadCandidateSet::CSK_Normal);
5979 OverloadCandidateSet::iterator Best;
5980 for (NamedDecl *CD : Corrected) {
5981 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(CD))
5982 S.AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none), Args,
5983 OCS);
5984 }
5985 switch (OCS.BestViableFunction(S, NameLoc, Best)) {
5986 case OR_Success:
5987 ND = Best->FoundDecl;
5988 Corrected.setCorrectionDecl(ND);
5989 break;
5990 default:
5991 break;
5992 }
5993 }
5994 ND = ND->getUnderlyingDecl();
5995 if (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND))
5996 return Corrected;
5997 }
5998 }
5999 return TypoCorrection();
6000}
6001
6002/// ConvertArgumentsForCall - Converts the arguments specified in
6003/// Args/NumArgs to the parameter types of the function FDecl with
6004/// function prototype Proto. Call is the call expression itself, and
6005/// Fn is the function expression. For a C++ member function, this
6006/// routine does not attempt to convert the object argument. Returns
6007/// true if the call is ill-formed.
6008bool
6009Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
6010 FunctionDecl *FDecl,
6011 const FunctionProtoType *Proto,
6012 ArrayRef<Expr *> Args,
6013 SourceLocation RParenLoc,
6014 bool IsExecConfig) {
6015 // Bail out early if calling a builtin with custom typechecking.
6016 if (FDecl)
6017 if (unsigned ID = FDecl->getBuiltinID())
6018 if (Context.BuiltinInfo.hasCustomTypechecking(ID))
6019 return false;
6020
6021 // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
6022 // assignment, to the types of the corresponding parameter, ...
6023 unsigned NumParams = Proto->getNumParams();
6024 bool Invalid = false;
6025 unsigned MinArgs = FDecl ? FDecl->getMinRequiredArguments() : NumParams;
6026 unsigned FnKind = Fn->getType()->isBlockPointerType()
6027 ? 1 /* block */
6028 : (IsExecConfig ? 3 /* kernel function (exec config) */
6029 : 0 /* function */);
6030
6031 // If too few arguments are available (and we don't have default
6032 // arguments for the remaining parameters), don't make the call.
6033 if (Args.size() < NumParams) {
6034 if (Args.size() < MinArgs) {
6035 TypoCorrection TC;
6036 if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) {
6037 unsigned diag_id =
6038 MinArgs == NumParams && !Proto->isVariadic()
6039 ? diag::err_typecheck_call_too_few_args_suggest
6040 : diag::err_typecheck_call_too_few_args_at_least_suggest;
6041 diagnoseTypo(TC, PDiag(diag_id) << FnKind << MinArgs
6042 << static_cast<unsigned>(Args.size())
6043 << TC.getCorrectionRange());
6044 } else if (MinArgs == 1 && FDecl && FDecl->getParamDecl(0)->getDeclName())
6045 Diag(RParenLoc,
6046 MinArgs == NumParams && !Proto->isVariadic()
6047 ? diag::err_typecheck_call_too_few_args_one
6048 : diag::err_typecheck_call_too_few_args_at_least_one)
6049 << FnKind << FDecl->getParamDecl(0) << Fn->getSourceRange();
6050 else
6051 Diag(RParenLoc, MinArgs == NumParams && !Proto->isVariadic()
6052 ? diag::err_typecheck_call_too_few_args
6053 : diag::err_typecheck_call_too_few_args_at_least)
6054 << FnKind << MinArgs << static_cast<unsigned>(Args.size())
6055 << Fn->getSourceRange();
6056
6057 // Emit the location of the prototype.
6058 if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
6059 Diag(FDecl->getLocation(), diag::note_callee_decl) << FDecl;
6060
6061 return true;
6062 }
6063 // We reserve space for the default arguments when we create
6064 // the call expression, before calling ConvertArgumentsForCall.
6065 assert((Call->getNumArgs() == NumParams) &&(static_cast <bool> ((Call->getNumArgs() == NumParams
) && "We should have reserved space for the default arguments before!"
) ? void (0) : __assert_fail ("(Call->getNumArgs() == NumParams) && \"We should have reserved space for the default arguments before!\""
, "clang/lib/Sema/SemaExpr.cpp", 6066, __extension__ __PRETTY_FUNCTION__
))
6066 "We should have reserved space for the default arguments before!")(static_cast <bool> ((Call->getNumArgs() == NumParams
) && "We should have reserved space for the default arguments before!"
) ? void (0) : __assert_fail ("(Call->getNumArgs() == NumParams) && \"We should have reserved space for the default arguments before!\""
, "clang/lib/Sema/SemaExpr.cpp", 6066, __extension__ __PRETTY_FUNCTION__
))
;
6067 }
6068
6069 // If too many are passed and not variadic, error on the extras and drop
6070 // them.
6071 if (Args.size() > NumParams) {
6072 if (!Proto->isVariadic()) {
6073 TypoCorrection TC;
6074 if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) {
6075 unsigned diag_id =
6076 MinArgs == NumParams && !Proto->isVariadic()
6077 ? diag::err_typecheck_call_too_many_args_suggest
6078 : diag::err_typecheck_call_too_many_args_at_most_suggest;
6079 diagnoseTypo(TC, PDiag(diag_id) << FnKind << NumParams
6080 << static_cast<unsigned>(Args.size())
6081 << TC.getCorrectionRange());
6082 } else if (NumParams == 1 && FDecl &&
6083 FDecl->getParamDecl(0)->getDeclName())
6084 Diag(Args[NumParams]->getBeginLoc(),
6085 MinArgs == NumParams
6086 ? diag::err_typecheck_call_too_many_args_one
6087 : diag::err_typecheck_call_too_many_args_at_most_one)
6088 << FnKind << FDecl->getParamDecl(0)
6089 << static_cast<unsigned>(Args.size()) << Fn->getSourceRange()
6090 << SourceRange(Args[NumParams]->getBeginLoc(),
6091 Args.back()->getEndLoc());
6092 else
6093 Diag(Args[NumParams]->getBeginLoc(),
6094 MinArgs == NumParams
6095 ? diag::err_typecheck_call_too_many_args
6096 : diag::err_typecheck_call_too_many_args_at_most)
6097 << FnKind << NumParams << static_cast<unsigned>(Args.size())
6098 << Fn->getSourceRange()
6099 << SourceRange(Args[NumParams]->getBeginLoc(),
6100 Args.back()->getEndLoc());
6101
6102 // Emit the location of the prototype.
6103 if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
6104 Diag(FDecl->getLocation(), diag::note_callee_decl) << FDecl;
6105
6106 // This deletes the extra arguments.
6107 Call->shrinkNumArgs(NumParams);
6108 return true;
6109 }
6110 }
6111 SmallVector<Expr *, 8> AllArgs;
6112 VariadicCallType CallType = getVariadicCallType(FDecl, Proto, Fn);
6113
6114 Invalid = GatherArgumentsForCall(Call->getBeginLoc(), FDecl, Proto, 0, Args,
6115 AllArgs, CallType);
6116 if (Invalid)
6117 return true;
6118 unsigned TotalNumArgs = AllArgs.size();
6119 for (unsigned i = 0; i < TotalNumArgs; ++i)
6120 Call->setArg(i, AllArgs[i]);
6121
6122 Call->computeDependence();
6123 return false;
6124}
6125
6126bool Sema::GatherArgumentsForCall(SourceLocation CallLoc, FunctionDecl *FDecl,
6127 const FunctionProtoType *Proto,
6128 unsigned FirstParam, ArrayRef<Expr *> Args,
6129 SmallVectorImpl<Expr *> &AllArgs,
6130 VariadicCallType CallType, bool AllowExplicit,
6131 bool IsListInitialization) {
6132 unsigned NumParams = Proto->getNumParams();
6133 bool Invalid = false;
6134 size_t ArgIx = 0;
6135 // Continue to check argument types (even if we have too few/many args).
6136 for (unsigned i = FirstParam; i < NumParams; i++) {
6137 QualType ProtoArgType = Proto->getParamType(i);
6138
6139 Expr *Arg;
6140 ParmVarDecl *Param = FDecl ? FDecl->getParamDecl(i) : nullptr;
6141 if (ArgIx < Args.size()) {
6142 Arg = Args[ArgIx++];
6143
6144 if (RequireCompleteType(Arg->getBeginLoc(), ProtoArgType,
6145 diag::err_call_incomplete_argument, Arg))
6146 return true;
6147
6148 // Strip the unbridged-cast placeholder expression off, if applicable.
6149 bool CFAudited = false;
6150 if (Arg->getType() == Context.ARCUnbridgedCastTy &&
6151 FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
6152 (!Param || !Param->hasAttr<CFConsumedAttr>()))
6153 Arg = stripARCUnbridgedCast(Arg);
6154 else if (getLangOpts().ObjCAutoRefCount &&
6155 FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
6156 (!Param || !Param->hasAttr<CFConsumedAttr>()))
6157 CFAudited = true;
6158
6159 if (Proto->getExtParameterInfo(i).isNoEscape() &&
6160 ProtoArgType->isBlockPointerType())
6161 if (auto *BE = dyn_cast<BlockExpr>(Arg->IgnoreParenNoopCasts(Context)))
6162 BE->getBlockDecl()->setDoesNotEscape();
6163
6164 InitializedEntity Entity =
6165 Param ? InitializedEntity::InitializeParameter(Context, Param,
6166 ProtoArgType)
6167 : InitializedEntity::InitializeParameter(
6168 Context, ProtoArgType, Proto->isParamConsumed(i));
6169
6170 // Remember that parameter belongs to a CF audited API.
6171 if (CFAudited)
6172 Entity.setParameterCFAudited();
6173
6174 ExprResult ArgE = PerformCopyInitialization(
6175 Entity, SourceLocation(), Arg, IsListInitialization, AllowExplicit);
6176 if (ArgE.isInvalid())
6177 return true;
6178
6179 Arg = ArgE.getAs<Expr>();
6180 } else {
6181 assert(Param && "can't use default arguments without a known callee")(static_cast <bool> (Param && "can't use default arguments without a known callee"
) ? void (0) : __assert_fail ("Param && \"can't use default arguments without a known callee\""
, "clang/lib/Sema/SemaExpr.cpp", 6181, __extension__ __PRETTY_FUNCTION__
))
;
6182
6183 ExprResult ArgExpr = BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
6184 if (ArgExpr.isInvalid())
6185 return true;
6186
6187 Arg = ArgExpr.getAs<Expr>();
6188 }
6189
6190 // Check for array bounds violations for each argument to the call. This
6191 // check only triggers warnings when the argument isn't a more complex Expr
6192 // with its own checking, such as a BinaryOperator.
6193 CheckArrayAccess(Arg);
6194
6195 // Check for violations of C99 static array rules (C99 6.7.5.3p7).
6196 CheckStaticArrayArgument(CallLoc, Param, Arg);
6197
6198 AllArgs.push_back(Arg);
6199 }
6200
6201 // If this is a variadic call, handle args passed through "...".
6202 if (CallType != VariadicDoesNotApply) {
6203 // Assume that extern "C" functions with variadic arguments that
6204 // return __unknown_anytype aren't *really* variadic.
6205 if (Proto->getReturnType() == Context.UnknownAnyTy && FDecl &&
6206 FDecl->isExternC()) {
6207 for (Expr *A : Args.slice(ArgIx)) {
6208 QualType paramType; // ignored
6209 ExprResult arg = checkUnknownAnyArg(CallLoc, A, paramType);
6210 Invalid |= arg.isInvalid();
6211 AllArgs.push_back(arg.get());
6212 }
6213
6214 // Otherwise do argument promotion, (C99 6.5.2.2p7).
6215 } else {
6216 for (Expr *A : Args.slice(ArgIx)) {
6217 ExprResult Arg = DefaultVariadicArgumentPromotion(A, CallType, FDecl);
6218 Invalid |= Arg.isInvalid();
6219 AllArgs.push_back(Arg.get());
6220 }
6221 }
6222
6223 // Check for array bounds violations.
6224 for (Expr *A : Args.slice(ArgIx))
6225 CheckArrayAccess(A);
6226 }
6227 return Invalid;
6228}
6229
6230static void DiagnoseCalleeStaticArrayParam(Sema &S, ParmVarDecl *PVD) {
6231 TypeLoc TL = PVD->getTypeSourceInfo()->getTypeLoc();
6232 if (DecayedTypeLoc DTL = TL.getAs<DecayedTypeLoc>())
6233 TL = DTL.getOriginalLoc();
6234 if (ArrayTypeLoc ATL = TL.getAs<ArrayTypeLoc>())
6235 S.Diag(PVD->getLocation(), diag::note_callee_static_array)
6236 << ATL.getLocalSourceRange();
6237}
6238
6239/// CheckStaticArrayArgument - If the given argument corresponds to a static
6240/// array parameter, check that it is non-null, and that if it is formed by
6241/// array-to-pointer decay, the underlying array is sufficiently large.
6242///
6243/// C99 6.7.5.3p7: If the keyword static also appears within the [ and ] of the
6244/// array type derivation, then for each call to the function, the value of the
6245/// corresponding actual argument shall provide access to the first element of
6246/// an array with at least as many elements as specified by the size expression.
6247void
6248Sema::CheckStaticArrayArgument(SourceLocation CallLoc,
6249 ParmVarDecl *Param,
6250 const Expr *ArgExpr) {
6251 // Static array parameters are not supported in C++.
6252 if (!Param || getLangOpts().CPlusPlus)
6253 return;
6254
6255 QualType OrigTy = Param->getOriginalType();
6256
6257 const ArrayType *AT = Context.getAsArrayType(OrigTy);
6258 if (!AT || AT->getSizeModifier() != ArrayType::Static)
6259 return;
6260
6261 if (ArgExpr->isNullPointerConstant(Context,
6262 Expr::NPC_NeverValueDependent)) {
6263 Diag(CallLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
6264 DiagnoseCalleeStaticArrayParam(*this, Param);
6265 return;
6266 }
6267
6268 const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT);
6269 if (!CAT)
6270 return;
6271
6272 const ConstantArrayType *ArgCAT =
6273 Context.getAsConstantArrayType(ArgExpr->IgnoreParenCasts()->getType());
6274 if (!ArgCAT)
6275 return;
6276
6277 if (getASTContext().hasSameUnqualifiedType(CAT->getElementType(),
6278 ArgCAT->getElementType())) {
6279 if (ArgCAT->getSize().ult(CAT->getSize())) {
6280 Diag(CallLoc, diag::warn_static_array_too_small)
6281 << ArgExpr->getSourceRange()
6282 << (unsigned)ArgCAT->getSize().getZExtValue()
6283 << (unsigned)CAT->getSize().getZExtValue() << 0;
6284 DiagnoseCalleeStaticArrayParam(*this, Param);
6285 }
6286 return;
6287 }
6288
6289 Optional<CharUnits> ArgSize =
6290 getASTContext().getTypeSizeInCharsIfKnown(ArgCAT);
6291 Optional<CharUnits> ParmSize = getASTContext().getTypeSizeInCharsIfKnown(CAT);
6292 if (ArgSize && ParmSize && *ArgSize < *ParmSize) {
6293 Diag(CallLoc, diag::warn_static_array_too_small)
6294 << ArgExpr->getSourceRange() << (unsigned)ArgSize->getQuantity()
6295 << (unsigned)ParmSize->getQuantity() << 1;
6296 DiagnoseCalleeStaticArrayParam(*this, Param);
6297 }
6298}
6299
6300/// Given a function expression of unknown-any type, try to rebuild it
6301/// to have a function type.
6302static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn);
6303
6304/// Is the given type a placeholder that we need to lower out
6305/// immediately during argument processing?
6306static bool isPlaceholderToRemoveAsArg(QualType type) {
6307 // Placeholders are never sugared.
6308 const BuiltinType *placeholder = dyn_cast<BuiltinType>(type);
6309 if (!placeholder) return false;
6310
6311 switch (placeholder->getKind()) {
6312 // Ignore all the non-placeholder types.
6313#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
6314 case BuiltinType::Id:
6315#include "clang/Basic/OpenCLImageTypes.def"
6316#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
6317 case BuiltinType::Id:
6318#include "clang/Basic/OpenCLExtensionTypes.def"
6319 // In practice we'll never use this, since all SVE types are sugared
6320 // via TypedefTypes rather than exposed directly as BuiltinTypes.
6321#define SVE_TYPE(Name, Id, SingletonId) \
6322 case BuiltinType::Id:
6323#include "clang/Basic/AArch64SVEACLETypes.def"
6324#define PPC_VECTOR_TYPE(Name, Id, Size) \
6325 case BuiltinType::Id:
6326#include "clang/Basic/PPCTypes.def"
6327#define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
6328#include "clang/Basic/RISCVVTypes.def"
6329#define PLACEHOLDER_TYPE(ID, SINGLETON_ID)
6330#define BUILTIN_TYPE(ID, SINGLETON_ID) case BuiltinType::ID:
6331#include "clang/AST/BuiltinTypes.def"
6332 return false;
6333
6334 // We cannot lower out overload sets; they might validly be resolved
6335 // by the call machinery.
6336 case BuiltinType::Overload:
6337 return false;
6338
6339 // Unbridged casts in ARC can be handled in some call positions and
6340 // should be left in place.
6341 case BuiltinType::ARCUnbridgedCast:
6342 return false;
6343
6344 // Pseudo-objects should be converted as soon as possible.
6345 case BuiltinType::PseudoObject:
6346 return true;
6347
6348 // The debugger mode could theoretically but currently does not try
6349 // to resolve unknown-typed arguments based on known parameter types.
6350 case BuiltinType::UnknownAny:
6351 return true;
6352
6353 // These are always invalid as call arguments and should be reported.
6354 case BuiltinType::BoundMember:
6355 case BuiltinType::BuiltinFn:
6356 case BuiltinType::IncompleteMatrixIdx:
6357 case BuiltinType::OMPArraySection:
6358 case BuiltinType::OMPArrayShaping:
6359 case BuiltinType::OMPIterator:
6360 return true;
6361
6362 }
6363 llvm_unreachable("bad builtin type kind")::llvm::llvm_unreachable_internal("bad builtin type kind", "clang/lib/Sema/SemaExpr.cpp"
, 6363)
;
6364}
6365
6366/// Check an argument list for placeholders that we won't try to
6367/// handle later.
6368static bool checkArgsForPlaceholders(Sema &S, MultiExprArg args) {
6369 // Apply this processing to all the arguments at once instead of
6370 // dying at the first failure.
6371 bool hasInvalid = false;
6372 for (size_t i = 0, e = args.size(); i != e; i++) {
6373 if (isPlaceholderToRemoveAsArg(args[i]->getType())) {
6374 ExprResult result = S.CheckPlaceholderExpr(args[i]);
6375 if (result.isInvalid()) hasInvalid = true;
6376 else args[i] = result.get();
6377 }
6378 }
6379 return hasInvalid;
6380}
6381
6382/// If a builtin function has a pointer argument with no explicit address
6383/// space, then it should be able to accept a pointer to any address
6384/// space as input. In order to do this, we need to replace the
6385/// standard builtin declaration with one that uses the same address space
6386/// as the call.
6387///
6388/// \returns nullptr If this builtin is not a candidate for a rewrite i.e.
6389/// it does not contain any pointer arguments without
6390/// an address space qualifer. Otherwise the rewritten
6391/// FunctionDecl is returned.
6392/// TODO: Handle pointer return types.
6393static FunctionDecl *rewriteBuiltinFunctionDecl(Sema *Sema, ASTContext &Context,
6394 FunctionDecl *FDecl,
6395 MultiExprArg ArgExprs) {
6396
6397 QualType DeclType = FDecl->getType();
6398 const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(DeclType);
6399
6400 if (!Context.BuiltinInfo.hasPtrArgsOrResult(FDecl->getBuiltinID()) || !FT ||
6401 ArgExprs.size() < FT->getNumParams())
6402 return nullptr;
6403
6404 bool NeedsNewDecl = false;
6405 unsigned i = 0;
6406 SmallVector<QualType, 8> OverloadParams;
6407
6408 for (QualType ParamType : FT->param_types()) {
6409
6410 // Convert array arguments to pointer to simplify type lookup.
6411 ExprResult ArgRes =
6412 Sema->DefaultFunctionArrayLvalueConversion(ArgExprs[i++]);
6413 if (ArgRes.isInvalid())
6414 return nullptr;
6415 Expr *Arg = ArgRes.get();
6416 QualType ArgType = Arg->getType();
6417 if (!ParamType->isPointerType() ||
6418 ParamType.hasAddressSpace() ||
6419 !ArgType->isPointerType() ||
6420 !ArgType->getPointeeType().hasAddressSpace()) {
6421 OverloadParams.push_back(ParamType);
6422 continue;
6423 }
6424
6425 QualType PointeeType = ParamType->getPointeeType();
6426 if (PointeeType.hasAddressSpace())
6427 continue;
6428
6429 NeedsNewDecl = true;
6430 LangAS AS = ArgType->getPointeeType().getAddressSpace();
6431
6432 PointeeType = Context.getAddrSpaceQualType(PointeeType, AS);
6433 OverloadParams.push_back(Context.getPointerType(PointeeType));
6434 }
6435
6436 if (!NeedsNewDecl)
6437 return nullptr;
6438
6439 FunctionProtoType::ExtProtoInfo EPI;
6440 EPI.Variadic = FT->isVariadic();
6441 QualType OverloadTy = Context.getFunctionType(FT->getReturnType(),
6442 OverloadParams, EPI);
6443 DeclContext *Parent = FDecl->getParent();
6444 FunctionDecl *OverloadDecl = FunctionDecl::Create(
6445 Context, Parent, FDecl->getLocation(), FDecl->getLocation(),
6446 FDecl->getIdentifier(), OverloadTy,
6447 /*TInfo=*/nullptr, SC_Extern, Sema->getCurFPFeatures().isFPConstrained(),
6448 false,
6449 /*hasPrototype=*/true);
6450 SmallVector<ParmVarDecl*, 16> Params;
6451 FT = cast<FunctionProtoType>(OverloadTy);
6452 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
6453 QualType ParamType = FT->getParamType(i);
6454 ParmVarDecl *Parm =
6455 ParmVarDecl::Create(Context, OverloadDecl, SourceLocation(),
6456 SourceLocation(), nullptr, ParamType,
6457 /*TInfo=*/nullptr, SC_None, nullptr);
6458 Parm->setScopeInfo(0, i);
6459 Params.push_back(Parm);
6460 }
6461 OverloadDecl->setParams(Params);
6462 Sema->mergeDeclAttributes(OverloadDecl, FDecl);
6463 return OverloadDecl;
6464}
6465
6466static void checkDirectCallValidity(Sema &S, const Expr *Fn,
6467 FunctionDecl *Callee,
6468 MultiExprArg ArgExprs) {
6469 // `Callee` (when called with ArgExprs) may be ill-formed. enable_if (and
6470 // similar attributes) really don't like it when functions are called with an
6471 // invalid number of args.
6472 if (S.TooManyArguments(Callee->getNumParams(), ArgExprs.size(),
6473 /*PartialOverloading=*/false) &&
6474 !Callee->isVariadic())
6475 return;
6476 if (Callee->getMinRequiredArguments() > ArgExprs.size())
6477 return;
6478
6479 if (const EnableIfAttr *Attr =
6480 S.CheckEnableIf(Callee, Fn->getBeginLoc(), ArgExprs, true)) {
6481 S.Diag(Fn->getBeginLoc(),
6482 isa<CXXMethodDecl>(Callee)
6483 ? diag::err_ovl_no_viable_member_function_in_call
6484 : diag::err_ovl_no_viable_function_in_call)
6485 << Callee << Callee->getSourceRange();
6486 S.Diag(Callee->getLocation(),
6487 diag::note_ovl_candidate_disabled_by_function_cond_attr)
6488 << Attr->getCond()->getSourceRange() << Attr->getMessage();
6489 return;
6490 }
6491}
6492
6493static bool enclosingClassIsRelatedToClassInWhichMembersWereFound(
6494 const UnresolvedMemberExpr *const UME, Sema &S) {
6495
6496 const auto GetFunctionLevelDCIfCXXClass =
6497 [](Sema &S) -> const CXXRecordDecl * {
6498 const DeclContext *const DC = S.getFunctionLevelDeclContext();
6499 if (!DC || !DC->getParent())
6500 return nullptr;
6501
6502 // If the call to some member function was made from within a member
6503 // function body 'M' return return 'M's parent.
6504 if (const auto *MD = dyn_cast<CXXMethodDecl>(DC))
6505 return MD->getParent()->getCanonicalDecl();
6506 // else the call was made from within a default member initializer of a
6507 // class, so return the class.
6508 if (const auto *RD = dyn_cast<CXXRecordDecl>(DC))
6509 return RD->getCanonicalDecl();
6510 return nullptr;
6511 };
6512 // If our DeclContext is neither a member function nor a class (in the
6513 // case of a lambda in a default member initializer), we can't have an
6514 // enclosing 'this'.
6515
6516 const CXXRecordDecl *const CurParentClass = GetFunctionLevelDCIfCXXClass(S);
6517 if (!CurParentClass)
6518 return false;
6519
6520 // The naming class for implicit member functions call is the class in which
6521 // name lookup starts.
6522 const CXXRecordDecl *const NamingClass =
6523 UME->getNamingClass()->getCanonicalDecl();
6524 assert(NamingClass && "Must have naming class even for implicit access")(static_cast <bool> (NamingClass && "Must have naming class even for implicit access"
) ? void (0) : __assert_fail ("NamingClass && \"Must have naming class even for implicit access\""
, "clang/lib/Sema/SemaExpr.cpp", 6524, __extension__ __PRETTY_FUNCTION__
))
;
6525
6526 // If the unresolved member functions were found in a 'naming class' that is
6527 // related (either the same or derived from) to the class that contains the
6528 // member function that itself contained the implicit member access.
6529
6530 return CurParentClass == NamingClass ||
6531 CurParentClass->isDerivedFrom(NamingClass);
6532}
6533
6534static void
6535tryImplicitlyCaptureThisIfImplicitMemberFunctionAccessWithDependentArgs(
6536 Sema &S, const UnresolvedMemberExpr *const UME, SourceLocation CallLoc) {
6537
6538 if (!UME)
6539 return;
6540
6541 LambdaScopeInfo *const CurLSI = S.getCurLambda();
6542 // Only try and implicitly capture 'this' within a C++ Lambda if it hasn't
6543 // already been captured, or if this is an implicit member function call (if
6544 // it isn't, an attempt to capture 'this' should already have been made).
6545 if (!CurLSI || CurLSI->ImpCaptureStyle == CurLSI->ImpCap_None ||
6546 !UME->isImplicitAccess() || CurLSI->isCXXThisCaptured())
6547 return;
6548
6549 // Check if the naming class in which the unresolved members were found is
6550 // related (same as or is a base of) to the enclosing class.
6551
6552 if (!enclosingClassIsRelatedToClassInWhichMembersWereFound(UME, S))
6553 return;
6554
6555
6556 DeclContext *EnclosingFunctionCtx = S.CurContext->getParent()->getParent();
6557 // If the enclosing function is not dependent, then this lambda is
6558 // capture ready, so if we can capture this, do so.
6559 if (!EnclosingFunctionCtx->isDependentContext()) {
6560 // If the current lambda and all enclosing lambdas can capture 'this' -
6561 // then go ahead and capture 'this' (since our unresolved overload set
6562 // contains at least one non-static member function).
6563 if (!S.CheckCXXThisCapture(CallLoc, /*Explcit*/ false, /*Diagnose*/ false))
6564 S.CheckCXXThisCapture(CallLoc);
6565 } else if (S.CurContext->isDependentContext()) {
6566 // ... since this is an implicit member reference, that might potentially
6567 // involve a 'this' capture, mark 'this' for potential capture in
6568 // enclosing lambdas.
6569 if (CurLSI->ImpCaptureStyle != CurLSI->ImpCap_None)
6570 CurLSI->addPotentialThisCapture(CallLoc);
6571 }
6572}
6573
6574// Once a call is fully resolved, warn for unqualified calls to specific
6575// C++ standard functions, like move and forward.
6576static void DiagnosedUnqualifiedCallsToStdFunctions(Sema &S, CallExpr *Call) {
6577 // We are only checking unary move and forward so exit early here.
6578 if (Call->getNumArgs() != 1)
6579 return;
6580
6581 Expr *E = Call->getCallee()->IgnoreParenImpCasts();
6582 if (!E || isa<UnresolvedLookupExpr>(E))
6583 return;
6584 DeclRefExpr *DRE = dyn_cast_or_null<DeclRefExpr>(E);
6585 if (!DRE || !DRE->getLocation().isValid())
6586 return;
6587
6588 if (DRE->getQualifier())
6589 return;
6590
6591 const FunctionDecl *FD = Call->getDirectCallee();
6592 if (!FD)
6593 return;
6594
6595 // Only warn for some functions deemed more frequent or problematic.
6596 unsigned BuiltinID = FD->getBuiltinID();
6597 if (BuiltinID != Builtin::BImove && BuiltinID != Builtin::BIforward)
6598 return;
6599
6600 S.Diag(DRE->getLocation(), diag::warn_unqualified_call_to_std_cast_function)
6601 << FD->getQualifiedNameAsString()
6602 << FixItHint::CreateInsertion(DRE->getLocation(), "std::");
6603}
6604
6605ExprResult Sema::ActOnCallExpr(Scope *Scope, Expr *Fn, SourceLocation LParenLoc,
6606 MultiExprArg ArgExprs, SourceLocation RParenLoc,
6607 Expr *ExecConfig) {
6608 ExprResult Call =
6609 BuildCallExpr(Scope, Fn, LParenLoc, ArgExprs, RParenLoc, ExecConfig,
6610 /*IsExecConfig=*/false, /*AllowRecovery=*/true);
6611 if (Call.isInvalid())
6612 return Call;
6613
6614 // Diagnose uses of the C++20 "ADL-only template-id call" feature in earlier
6615 // language modes.
6616 if (auto *ULE = dyn_cast<UnresolvedLookupExpr>(Fn)) {
6617 if (ULE->hasExplicitTemplateArgs() &&
6618 ULE->decls_begin() == ULE->decls_end()) {
6619 Diag(Fn->getExprLoc(), getLangOpts().CPlusPlus20
6620 ? diag::warn_cxx17_compat_adl_only_template_id
6621 : diag::ext_adl_only_template_id)
6622 << ULE->getName();
6623 }
6624 }
6625
6626 if (LangOpts.OpenMP)
6627 Call = ActOnOpenMPCall(Call, Scope, LParenLoc, ArgExprs, RParenLoc,
6628 ExecConfig);
6629 if (LangOpts.CPlusPlus) {
6630 CallExpr *CE = dyn_cast<CallExpr>(Call.get());
6631 if (CE)
6632 DiagnosedUnqualifiedCallsToStdFunctions(*this, CE);
6633 }
6634 return Call;
6635}
6636
6637/// BuildCallExpr - Handle a call to Fn with the specified array of arguments.
6638/// This provides the location of the left/right parens and a list of comma
6639/// locations.
6640ExprResult Sema::BuildCallExpr(Scope *Scope, Expr *Fn, SourceLocation LParenLoc,
6641 MultiExprArg ArgExprs, SourceLocation RParenLoc,
6642 Expr *ExecConfig, bool IsExecConfig,
6643 bool AllowRecovery) {
6644 // Since this might be a postfix expression, get rid of ParenListExprs.
6645 ExprResult Result = MaybeConvertParenListExprToParenExpr(Scope, Fn);
6646 if (Result.isInvalid()) return ExprError();
6647 Fn = Result.get();
6648
6649 if (checkArgsForPlaceholders(*this, ArgExprs))
6650 return ExprError();
6651
6652 if (getLangOpts().CPlusPlus) {
6653 // If this is a pseudo-destructor expression, build the call immediately.
6654 if (isa<CXXPseudoDestructorExpr>(Fn)) {
6655 if (!ArgExprs.empty()) {
6656 // Pseudo-destructor calls should not have any arguments.
6657 Diag(Fn->getBeginLoc(), diag::err_pseudo_dtor_call_with_args)
6658 << FixItHint::CreateRemoval(
6659 SourceRange(ArgExprs.front()->getBeginLoc(),
6660 ArgExprs.back()->getEndLoc()));
6661 }
6662
6663 return CallExpr::Create(Context, Fn, /*Args=*/{}, Context.VoidTy,
6664 VK_PRValue, RParenLoc, CurFPFeatureOverrides());
6665 }
6666 if (Fn->getType() == Context.PseudoObjectTy) {
6667 ExprResult result = CheckPlaceholderExpr(Fn);
6668 if (result.isInvalid()) return ExprError();
6669 Fn = result.get();
6670 }
6671
6672 // Determine whether this is a dependent call inside a C++ template,
6673 // in which case we won't do any semantic analysis now.
6674 if (Fn->isTypeDependent() || Expr::hasAnyTypeDependentArguments(ArgExprs)) {
6675 if (ExecConfig) {
6676 return CUDAKernelCallExpr::Create(Context, Fn,
6677 cast<CallExpr>(ExecConfig), ArgExprs,
6678 Context.DependentTy, VK_PRValue,
6679 RParenLoc, CurFPFeatureOverrides());
6680 } else {
6681
6682 tryImplicitlyCaptureThisIfImplicitMemberFunctionAccessWithDependentArgs(
6683 *this, dyn_cast<UnresolvedMemberExpr>(Fn->IgnoreParens()),
6684 Fn->getBeginLoc());
6685
6686 return CallExpr::Create(Context, Fn, ArgExprs, Context.DependentTy,
6687 VK_PRValue, RParenLoc, CurFPFeatureOverrides());
6688 }
6689 }
6690
6691 // Determine whether this is a call to an object (C++ [over.call.object]).
6692 if (Fn->getType()->isRecordType())
6693 return BuildCallToObjectOfClassType(Scope, Fn, LParenLoc, ArgExprs,
6694 RParenLoc);
6695
6696 if (Fn->getType() == Context.UnknownAnyTy) {
6697 ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
6698 if (result.isInvalid()) return ExprError();
6699 Fn = result.get();
6700 }
6701
6702 if (Fn->getType() == Context.BoundMemberTy) {
6703 return BuildCallToMemberFunction(Scope, Fn, LParenLoc, ArgExprs,
6704 RParenLoc, ExecConfig, IsExecConfig,
6705 AllowRecovery);
6706 }
6707 }
6708
6709 // Check for overloaded calls. This can happen even in C due to extensions.
6710 if (Fn->getType() == Context.OverloadTy) {
6711 OverloadExpr::FindResult find = OverloadExpr::find(Fn);
6712
6713 // We aren't supposed to apply this logic if there's an '&' involved.
6714 if (!find.HasFormOfMemberPointer) {
6715 if (Expr::hasAnyTypeDependentArguments(ArgExprs))
6716 return CallExpr::Create(Context, Fn, ArgExprs, Context.DependentTy,
6717 VK_PRValue, RParenLoc, CurFPFeatureOverrides());
6718 OverloadExpr *ovl = find.Expression;
6719 if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(ovl))
6720 return BuildOverloadedCallExpr(
6721 Scope, Fn, ULE, LParenLoc, ArgExprs, RParenLoc, ExecConfig,
6722 /*AllowTypoCorrection=*/true, find.IsAddressOfOperand);
6723 return BuildCallToMemberFunction(Scope, Fn, LParenLoc, ArgExprs,
6724 RParenLoc, ExecConfig, IsExecConfig,
6725 AllowRecovery);
6726 }
6727 }
6728
6729 // If we're directly calling a function, get the appropriate declaration.
6730 if (Fn->getType() == Context.UnknownAnyTy) {
6731 ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
6732 if (result.isInvalid()) return ExprError();
6733 Fn = result.get();
6734 }
6735
6736 Expr *NakedFn = Fn->IgnoreParens();
6737
6738 bool CallingNDeclIndirectly = false;
6739 NamedDecl *NDecl = nullptr;
6740 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(NakedFn)) {
6741 if (UnOp->getOpcode() == UO_AddrOf) {
6742 CallingNDeclIndirectly = true;
6743 NakedFn = UnOp->getSubExpr()->IgnoreParens();
6744 }
6745 }
6746
6747 if (auto *DRE = dyn_cast<DeclRefExpr>(NakedFn)) {
6748 NDecl = DRE->getDecl();
6749
6750 FunctionDecl *FDecl = dyn_cast<FunctionDecl>(NDecl);
6751 if (FDecl && FDecl->getBuiltinID()) {
6752 // Rewrite the function decl for this builtin by replacing parameters
6753 // with no explicit address space with the address space of the arguments
6754 // in ArgExprs.
6755 if ((FDecl =
6756 rewriteBuiltinFunctionDecl(this, Context, FDecl, ArgExprs))) {
6757 NDecl = FDecl;
6758 Fn = DeclRefExpr::Create(
6759 Context, FDecl->getQualifierLoc(), SourceLocation(), FDecl, false,
6760 SourceLocation(), FDecl->getType(), Fn->getValueKind(), FDecl,
6761 nullptr, DRE->isNonOdrUse());
6762 }
6763 }
6764 } else if (isa<MemberExpr>(NakedFn))
6765 NDecl = cast<MemberExpr>(NakedFn)->getMemberDecl();
6766
6767 if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(NDecl)) {
6768 if (CallingNDeclIndirectly && !checkAddressOfFunctionIsAvailable(
6769 FD, /*Complain=*/true, Fn->getBeginLoc()))
6770 return ExprError();
6771
6772 checkDirectCallValidity(*this, Fn, FD, ArgExprs);
6773
6774 // If this expression is a call to a builtin function in HIP device
6775 // compilation, allow a pointer-type argument to default address space to be
6776 // passed as a pointer-type parameter to a non-default address space.
6777 // If Arg is declared in the default address space and Param is declared
6778 // in a non-default address space, perform an implicit address space cast to
6779 // the parameter type.
6780 if (getLangOpts().HIP && getLangOpts().CUDAIsDevice && FD &&
6781 FD->getBuiltinID()) {
6782 for (unsigned Idx = 0; Idx < FD->param_size(); ++Idx) {
6783 ParmVarDecl *Param = FD->getParamDecl(Idx);
6784 if (!ArgExprs[Idx] || !Param || !Param->getType()->isPointerType() ||
6785 !ArgExprs[Idx]->getType()->isPointerType())
6786 continue;
6787
6788 auto ParamAS = Param->getType()->getPointeeType().getAddressSpace();
6789 auto ArgTy = ArgExprs[Idx]->getType();
6790 auto ArgPtTy = ArgTy->getPointeeType();
6791 auto ArgAS = ArgPtTy.getAddressSpace();
6792
6793 // Add address space cast if target address spaces are different
6794 bool NeedImplicitASC =
6795 ParamAS != LangAS::Default && // Pointer params in generic AS don't need special handling.
6796 ( ArgAS == LangAS::Default || // We do allow implicit conversion from generic AS
6797 // or from specific AS which has target AS matching that of Param.
6798 getASTContext().getTargetAddressSpace(ArgAS) == getASTContext().getTargetAddressSpace(ParamAS));
6799 if (!NeedImplicitASC)
6800 continue;
6801
6802 // First, ensure that the Arg is an RValue.
6803 if (ArgExprs[Idx]->isGLValue()) {
6804 ArgExprs[Idx] = ImplicitCastExpr::Create(
6805 Context, ArgExprs[Idx]->getType(), CK_NoOp, ArgExprs[Idx],
6806 nullptr, VK_PRValue, FPOptionsOverride());
6807 }
6808
6809 // Construct a new arg type with address space of Param
6810 Qualifiers ArgPtQuals = ArgPtTy.getQualifiers();
6811 ArgPtQuals.setAddressSpace(ParamAS);
6812 auto NewArgPtTy =
6813 Context.getQualifiedType(ArgPtTy.getUnqualifiedType(), ArgPtQuals);
6814 auto NewArgTy =
6815 Context.getQualifiedType(Context.getPointerType(NewArgPtTy),
6816 ArgTy.getQualifiers());
6817
6818 // Finally perform an implicit address space cast
6819 ArgExprs[Idx] = ImpCastExprToType(ArgExprs[Idx], NewArgTy,
6820 CK_AddressSpaceConversion)
6821 .get();
6822 }
6823 }
6824 }
6825
6826 if (Context.isDependenceAllowed() &&
6827 (Fn->isTypeDependent() || Expr::hasAnyTypeDependentArguments(ArgExprs))) {
6828 assert(!getLangOpts().CPlusPlus)(static_cast <bool> (!getLangOpts().CPlusPlus) ? void (
0) : __assert_fail ("!getLangOpts().CPlusPlus", "clang/lib/Sema/SemaExpr.cpp"
, 6828, __extension__ __PRETTY_FUNCTION__))
;
6829 assert((Fn->containsErrors() ||(static_cast <bool> ((Fn->containsErrors() || llvm::
any_of(ArgExprs, [](clang::Expr *E) { return E->containsErrors
(); })) && "should only occur in error-recovery path."
) ? void (0) : __assert_fail ("(Fn->containsErrors() || llvm::any_of(ArgExprs, [](clang::Expr *E) { return E->containsErrors(); })) && \"should only occur in error-recovery path.\""
, "clang/lib/Sema/SemaExpr.cpp", 6832, __extension__ __PRETTY_FUNCTION__
))
6830 llvm::any_of(ArgExprs,(static_cast <bool> ((Fn->containsErrors() || llvm::
any_of(ArgExprs, [](clang::Expr *E) { return E->containsErrors
(); })) && "should only occur in error-recovery path."
) ? void (0) : __assert_fail ("(Fn->containsErrors() || llvm::any_of(ArgExprs, [](clang::Expr *E) { return E->containsErrors(); })) && \"should only occur in error-recovery path.\""
, "clang/lib/Sema/SemaExpr.cpp", 6832, __extension__ __PRETTY_FUNCTION__
))
6831 [](clang::Expr *E) { return E->containsErrors(); })) &&(static_cast <bool> ((Fn->containsErrors() || llvm::
any_of(ArgExprs, [](clang::Expr *E) { return E->containsErrors
(); })) && "should only occur in error-recovery path."
) ? void (0) : __assert_fail ("(Fn->containsErrors() || llvm::any_of(ArgExprs, [](clang::Expr *E) { return E->containsErrors(); })) && \"should only occur in error-recovery path.\""
, "clang/lib/Sema/SemaExpr.cpp", 6832, __extension__ __PRETTY_FUNCTION__
))
6832 "should only occur in error-recovery path.")(static_cast <bool> ((Fn->containsErrors() || llvm::
any_of(ArgExprs, [](clang::Expr *E) { return E->containsErrors
(); })) && "should only occur in error-recovery path."
) ? void (0) : __assert_fail ("(Fn->containsErrors() || llvm::any_of(ArgExprs, [](clang::Expr *E) { return E->containsErrors(); })) && \"should only occur in error-recovery path.\""
, "clang/lib/Sema/SemaExpr.cpp", 6832, __extension__ __PRETTY_FUNCTION__
))
;
6833 QualType ReturnType =
6834 llvm::isa_and_nonnull<FunctionDecl>(NDecl)
6835 ? cast<FunctionDecl>(NDecl)->getCallResultType()
6836 : Context.DependentTy;
6837 return CallExpr::Create(Context, Fn, ArgExprs, ReturnType,
6838 Expr::getValueKindForType(ReturnType), RParenLoc,
6839 CurFPFeatureOverrides());
6840 }
6841 return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, ArgExprs, RParenLoc,
6842 ExecConfig, IsExecConfig);
6843}
6844
6845/// BuildBuiltinCallExpr - Create a call to a builtin function specified by Id
6846// with the specified CallArgs
6847Expr *Sema::BuildBuiltinCallExpr(SourceLocation Loc, Builtin::ID Id,
6848 MultiExprArg CallArgs) {
6849 StringRef Name = Context.BuiltinInfo.getName(Id);
6850 LookupResult R(*this, &Context.Idents.get(Name), Loc,
6851 Sema::LookupOrdinaryName);
6852 LookupName(R, TUScope, /*AllowBuiltinCreation=*/true);
6853
6854 auto *BuiltInDecl = R.getAsSingle<FunctionDecl>();
6855 assert(BuiltInDecl && "failed to find builtin declaration")(static_cast <bool> (BuiltInDecl && "failed to find builtin declaration"
) ? void (0) : __assert_fail ("BuiltInDecl && \"failed to find builtin declaration\""
, "clang/lib/Sema/SemaExpr.cpp", 6855, __extension__ __PRETTY_FUNCTION__
))
;
6856
6857 ExprResult DeclRef =
6858 BuildDeclRefExpr(BuiltInDecl, BuiltInDecl->getType(), VK_LValue, Loc);
6859 assert(DeclRef.isUsable() && "Builtin reference cannot fail")(static_cast <bool> (DeclRef.isUsable() && "Builtin reference cannot fail"
) ? void (0) : __assert_fail ("DeclRef.isUsable() && \"Builtin reference cannot fail\""
, "clang/lib/Sema/SemaExpr.cpp", 6859, __extension__ __PRETTY_FUNCTION__
))
;
6860
6861 ExprResult Call =
6862 BuildCallExpr(/*Scope=*/nullptr, DeclRef.get(), Loc, CallArgs, Loc);
6863
6864 assert(!Call.isInvalid() && "Call to builtin cannot fail!")(static_cast <bool> (!Call.isInvalid() && "Call to builtin cannot fail!"
) ? void (0) : __assert_fail ("!Call.isInvalid() && \"Call to builtin cannot fail!\""
, "clang/lib/Sema/SemaExpr.cpp", 6864, __extension__ __PRETTY_FUNCTION__
))
;
6865 return Call.get();
6866}
6867
6868/// Parse a __builtin_astype expression.
6869///
6870/// __builtin_astype( value, dst type )
6871///
6872ExprResult Sema::ActOnAsTypeExpr(Expr *E, ParsedType ParsedDestTy,
6873 SourceLocation BuiltinLoc,
6874 SourceLocation RParenLoc) {
6875 QualType DstTy = GetTypeFromParser(ParsedDestTy);
6876 return BuildAsTypeExpr(E, DstTy, BuiltinLoc, RParenLoc);
6877}
6878
6879/// Create a new AsTypeExpr node (bitcast) from the arguments.
6880ExprResult Sema::BuildAsTypeExpr(Expr *E, QualType DestTy,
6881 SourceLocation BuiltinLoc,
6882 SourceLocation RParenLoc) {
6883 ExprValueKind VK = VK_PRValue;
6884 ExprObjectKind OK = OK_Ordinary;
6885 QualType SrcTy = E->getType();
6886 if (!SrcTy->isDependentType() &&
6887 Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy))
6888 return ExprError(
6889 Diag(BuiltinLoc, diag::err_invalid_astype_of_different_size)
6890 << DestTy << SrcTy << E->getSourceRange());
6891 return new (Context) AsTypeExpr(E, DestTy, VK, OK, BuiltinLoc, RParenLoc);
6892}
6893
6894/// ActOnConvertVectorExpr - create a new convert-vector expression from the
6895/// provided arguments.
6896///
6897/// __builtin_convertvector( value, dst type )
6898///
6899ExprResult Sema::ActOnConvertVectorExpr(Expr *E, ParsedType ParsedDestTy,
6900 SourceLocation BuiltinLoc,
6901 SourceLocation RParenLoc) {
6902 TypeSourceInfo *TInfo;
6903 GetTypeFromParser(ParsedDestTy, &TInfo);
6904 return SemaConvertVectorExpr(E, TInfo, BuiltinLoc, RParenLoc);
6905}
6906
6907/// BuildResolvedCallExpr - Build a call to a resolved expression,
6908/// i.e. an expression not of \p OverloadTy. The expression should
6909/// unary-convert to an expression of function-pointer or
6910/// block-pointer type.
6911///
6912/// \param NDecl the declaration being called, if available
6913ExprResult Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
6914 SourceLocation LParenLoc,
6915 ArrayRef<Expr *> Args,
6916 SourceLocation RParenLoc, Expr *Config,
6917 bool IsExecConfig, ADLCallKind UsesADL) {
6918 FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);
6919 unsigned BuiltinID = (FDecl ? FDecl->getBuiltinID() : 0);
6920
6921 // Functions with 'interrupt' attribute cannot be called directly.
6922 if (FDecl && FDecl->hasAttr<AnyX86InterruptAttr>()) {
6923 Diag(Fn->getExprLoc(), diag::err_anyx86_interrupt_called);
6924 return ExprError();
6925 }
6926
6927 // Interrupt handlers don't save off the VFP regs automatically on ARM,
6928 // so there's some risk when calling out to non-interrupt handler functions
6929 // that the callee might not preserve them. This is easy to diagnose here,
6930 // but can be very challenging to debug.
6931 // Likewise, X86 interrupt handlers may only call routines with attribute
6932 // no_caller_saved_registers since there is no efficient way to
6933 // save and restore the non-GPR state.
6934 if (auto *Caller = getCurFunctionDecl()) {
6935 if (Caller->hasAttr<ARMInterruptAttr>()) {
6936 bool VFP = Context.getTargetInfo().hasFeature("vfp");
6937 if (VFP && (!FDecl || !FDecl->hasAttr<ARMInterruptAttr>())) {
6938 Diag(Fn->getExprLoc(), diag::warn_arm_interrupt_calling_convention);
6939 if (FDecl)
6940 Diag(FDecl->getLocation(), diag::note_callee_decl) << FDecl;
6941 }
6942 }
6943 if (Caller->hasAttr<AnyX86InterruptAttr>() &&
6944 ((!FDecl || !FDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>()))) {
6945 Diag(Fn->getExprLoc(), diag::warn_anyx86_interrupt_regsave);
6946 if (FDecl)
6947 Diag(FDecl->getLocation(), diag::note_callee_decl) << FDecl;
6948 }
6949 }
6950
6951 // Promote the function operand.
6952 // We special-case function promotion here because we only allow promoting
6953 // builtin functions to function pointers in the callee of a call.
6954 ExprResult Result;
6955 QualType ResultTy;
6956 if (BuiltinID &&
6957 Fn->getType()->isSpecificBuiltinType(BuiltinType::BuiltinFn)) {
6958 // Extract the return type from the (builtin) function pointer type.
6959 // FIXME Several builtins still have setType in
6960 // Sema::CheckBuiltinFunctionCall. One should review their definitions in
6961 // Builtins.def to ensure they are correct before removing setType calls.
6962 QualType FnPtrTy = Context.getPointerType(FDecl->getType());
6963 Result = ImpCastExprToType(Fn, FnPtrTy, CK_BuiltinFnToFnPtr).get();
6964 ResultTy = FDecl->getCallResultType();
6965 } else {
6966 Result = CallExprUnaryConversions(Fn);
6967 ResultTy = Context.BoolTy;
6968 }
6969 if (Result.isInvalid())
6970 return ExprError();
6971 Fn = Result.get();
6972
6973 // Check for a valid function type, but only if it is not a builtin which
6974 // requires custom type checking. These will be handled by
6975 // CheckBuiltinFunctionCall below just after creation of the call expression.
6976 const FunctionType *FuncT = nullptr;
6977 if (!BuiltinID || !Context.BuiltinInfo.hasCustomTypechecking(BuiltinID)) {
6978 retry:
6979 if (const PointerType *PT = Fn->getType()->getAs<PointerType>()) {
6980 // C99 6.5.2.2p1 - "The expression that denotes the called function shall
6981 // have type pointer to function".
6982 FuncT = PT->getPointeeType()->getAs<FunctionType>();
6983 if (!FuncT)
6984 return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
6985 << Fn->getType() << Fn->getSourceRange());
6986 } else if (const BlockPointerType *BPT =
6987 Fn->getType()->getAs<BlockPointerType>()) {
6988 FuncT = BPT->getPointeeType()->castAs<FunctionType>();
6989 } else {
6990 // Handle calls to expressions of unknown-any type.
6991 if (Fn->getType() == Context.UnknownAnyTy) {
6992 ExprResult rewrite = rebuildUnknownAnyFunction(*this, Fn);
6993 if (rewrite.isInvalid())
6994 return ExprError();
6995 Fn = rewrite.get();
6996 goto retry;
6997 }
6998
6999 return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
7000 << Fn->getType() << Fn->getSourceRange());
7001 }
7002 }
7003
7004 // Get the number of parameters in the function prototype, if any.
7005 // We will allocate space for max(Args.size(), NumParams) arguments
7006 // in the call expression.
7007 const auto *Proto = dyn_cast_or_null<FunctionProtoType>(FuncT);
7008 unsigned NumParams = Proto ? Proto->getNumParams() : 0;
7009
7010 CallExpr *TheCall;
7011 if (Config) {
7012 assert(UsesADL == ADLCallKind::NotADL &&(static_cast <bool> (UsesADL == ADLCallKind::NotADL &&
"CUDAKernelCallExpr should not use ADL") ? void (0) : __assert_fail
("UsesADL == ADLCallKind::NotADL && \"CUDAKernelCallExpr should not use ADL\""
, "clang/lib/Sema/SemaExpr.cpp", 7013, __extension__ __PRETTY_FUNCTION__
))
7013 "CUDAKernelCallExpr should not use ADL")(static_cast <bool> (UsesADL == ADLCallKind::NotADL &&
"CUDAKernelCallExpr should not use ADL") ? void (0) : __assert_fail
("UsesADL == ADLCallKind::NotADL && \"CUDAKernelCallExpr should not use ADL\""
, "clang/lib/Sema/SemaExpr.cpp", 7013, __extension__ __PRETTY_FUNCTION__
))
;
7014 TheCall = CUDAKernelCallExpr::Create(Context, Fn, cast<CallExpr>(Config),
7015 Args, ResultTy, VK_PRValue, RParenLoc,
7016 CurFPFeatureOverrides(), NumParams);
7017 } else {
7018 TheCall =
7019 CallExpr::Create(Context, Fn, Args, ResultTy, VK_PRValue, RParenLoc,
7020 CurFPFeatureOverrides(), NumParams, UsesADL);
7021 }
7022
7023 if (!Context.isDependenceAllowed()) {
7024 // Forget about the nulled arguments since typo correction
7025 // do not handle them well.
7026 TheCall->shrinkNumArgs(Args.size());
7027 // C cannot always handle TypoExpr nodes in builtin calls and direct
7028 // function calls as their argument checking don't necessarily handle
7029 // dependent types properly, so make sure any TypoExprs have been
7030 // dealt with.
7031 ExprResult Result = CorrectDelayedTyposInExpr(TheCall);
7032 if (!Result.isUsable()) return ExprError();
7033 CallExpr *TheOldCall = TheCall;
7034 TheCall = dyn_cast<CallExpr>(Result.get());
7035 bool CorrectedTypos = TheCall != TheOldCall;
7036 if (!TheCall) return Result;
7037 Args = llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs());
7038
7039 // A new call expression node was created if some typos were corrected.
7040 // However it may not have been constructed with enough storage. In this
7041 // case, rebuild the node with enough storage. The waste of space is
7042 // immaterial since this only happens when some typos were corrected.
7043 if (CorrectedTypos && Args.size() < NumParams) {
7044 if (Config)
7045 TheCall = CUDAKernelCallExpr::Create(
7046 Context, Fn, cast<CallExpr>(Config), Args, ResultTy, VK_PRValue,
7047 RParenLoc, CurFPFeatureOverrides(), NumParams);
7048 else
7049 TheCall =
7050 CallExpr::Create(Context, Fn, Args, ResultTy, VK_PRValue, RParenLoc,
7051 CurFPFeatureOverrides(), NumParams, UsesADL);
7052 }
7053 // We can now handle the nulled arguments for the default arguments.
7054 TheCall->setNumArgsUnsafe(std::max<unsigned>(Args.size(), NumParams));
7055 }
7056
7057 // Bail out early if calling a builtin with custom type checking.
7058 if (BuiltinID && Context.BuiltinInfo.hasCustomTypechecking(BuiltinID))
7059 return CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall);
7060
7061 if (getLangOpts().CUDA) {
7062 if (Config) {
7063 // CUDA: Kernel calls must be to global functions
7064 if (FDecl && !FDecl->hasAttr<CUDAGlobalAttr>())
7065 return ExprError(Diag(LParenLoc,diag::err_kern_call_not_global_function)
7066 << FDecl << Fn->getSourceRange());
7067
7068 // CUDA: Kernel function must have 'void' return type
7069 if (!FuncT->getReturnType()->isVoidType() &&
7070 !FuncT->getReturnType()->getAs<AutoType>() &&
7071 !FuncT->getReturnType()->isInstantiationDependentType())
7072 return ExprError(Diag(LParenLoc, diag::err_kern_type_not_void_return)
7073 << Fn->getType() << Fn->getSourceRange());
7074 } else {
7075 // CUDA: Calls to global functions must be configured
7076 if (FDecl && FDecl->hasAttr<CUDAGlobalAttr>())
7077 return ExprError(Diag(LParenLoc, diag::err_global_call_not_config)
7078 << FDecl << Fn->getSourceRange());
7079 }
7080 }
7081
7082 // Check for a valid return type
7083 if (CheckCallReturnType(FuncT->getReturnType(), Fn->getBeginLoc(), TheCall,
7084 FDecl))
7085 return ExprError();
7086
7087 // We know the result type of the call, set it.
7088 TheCall->setType(FuncT->getCallResultType(Context));
7089 TheCall->setValueKind(Expr::getValueKindForType(FuncT->getReturnType()));
7090
7091 if (Proto) {
7092 if (ConvertArgumentsForCall(TheCall, Fn, FDecl, Proto, Args, RParenLoc,
7093 IsExecConfig))
7094 return ExprError();
7095 } else {
7096 assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!")(static_cast <bool> (isa<FunctionNoProtoType>(FuncT
) && "Unknown FunctionType!") ? void (0) : __assert_fail
("isa<FunctionNoProtoType>(FuncT) && \"Unknown FunctionType!\""
, "clang/lib/Sema/SemaExpr.cpp", 7096, __extension__ __PRETTY_FUNCTION__
))
;
7097
7098 if (FDecl) {
7099 // Check if we have too few/too many template arguments, based
7100 // on our knowledge of the function definition.
7101 const FunctionDecl *Def = nullptr;
7102 if (FDecl->hasBody(Def) && Args.size() != Def->param_size()) {
7103 Proto = Def->getType()->getAs<FunctionProtoType>();
7104 if (!Proto || !(Proto->isVariadic() && Args.size() >= Def->param_size()))
7105 Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
7106 << (Args.size() > Def->param_size()) << FDecl << Fn->getSourceRange();
7107 }
7108
7109 // If the function we're calling isn't a function prototype, but we have
7110 // a function prototype from a prior declaratiom, use that prototype.
7111 if (!FDecl->hasPrototype())
7112 Proto = FDecl->getType()->getAs<FunctionProtoType>();
7113 }
7114
7115 // If we still haven't found a prototype to use but there are arguments to
7116 // the call, diagnose this as calling a function without a prototype.
7117 // However, if we found a function declaration, check to see if
7118 // -Wdeprecated-non-prototype was disabled where the function was declared.
7119 // If so, we will silence the diagnostic here on the assumption that this
7120 // interface is intentional and the user knows what they're doing. We will
7121 // also silence the diagnostic if there is a function declaration but it
7122 // was implicitly defined (the user already gets diagnostics about the
7123 // creation of the implicit function declaration, so the additional warning
7124 // is not helpful).
7125 if (!Proto && !Args.empty() &&
7126 (!FDecl || (!FDecl->isImplicit() &&
7127 !Diags.isIgnored(diag::warn_strict_uses_without_prototype,
7128 FDecl->getLocation()))))
7129 Diag(LParenLoc, diag::warn_strict_uses_without_prototype)
7130 << (FDecl != nullptr) << FDecl;
7131
7132 // Promote the arguments (C99 6.5.2.2p6).
7133 for (unsigned i = 0, e = Args.size(); i != e; i++) {
7134 Expr *Arg = Args[i];
7135
7136 if (Proto && i < Proto->getNumParams()) {
7137 InitializedEntity Entity = InitializedEntity::InitializeParameter(
7138 Context, Proto->getParamType(i), Proto->isParamConsumed(i));
7139 ExprResult ArgE =
7140 PerformCopyInitialization(Entity, SourceLocation(), Arg);
7141 if (ArgE.isInvalid())
7142 return true;
7143
7144 Arg = ArgE.getAs<Expr>();
7145
7146 } else {
7147 ExprResult ArgE = DefaultArgumentPromotion(Arg);
7148
7149 if (ArgE.isInvalid())
7150 return true;
7151
7152 Arg = ArgE.getAs<Expr>();
7153 }
7154
7155 if (RequireCompleteType(Arg->getBeginLoc(), Arg->getType(),
7156 diag::err_call_incomplete_argument, Arg))
7157 return ExprError();
7158
7159 TheCall->setArg(i, Arg);
7160 }
7161 TheCall->computeDependence();
7162 }
7163
7164 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
7165 if (!Method->isStatic())
7166 return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
7167 << Fn->getSourceRange());
7168
7169 // Check for sentinels
7170 if (NDecl)
7171 DiagnoseSentinelCalls(NDecl, LParenLoc, Args);
7172
7173 // Warn for unions passing across security boundary (CMSE).
7174 if (FuncT != nullptr && FuncT->getCmseNSCallAttr()) {
7175 for (unsigned i = 0, e = Args.size(); i != e; i++) {
7176 if (const auto *RT =
7177 dyn_cast<RecordType>(Args[i]->getType().getCanonicalType())) {
7178 if (RT->getDecl()->isOrContainsUnion())
7179 Diag(Args[i]->getBeginLoc(), diag::warn_cmse_nonsecure_union)
7180 << 0 << i;
7181 }
7182 }
7183 }
7184
7185 // Do special checking on direct calls to functions.
7186 if (FDecl) {
7187 if (CheckFunctionCall(FDecl, TheCall, Proto))
7188 return ExprError();
7189
7190 checkFortifiedBuiltinMemoryFunction(FDecl, TheCall);
7191
7192 if (BuiltinID)
7193 return CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall);
7194 } else if (NDecl) {
7195 if (CheckPointerCall(NDecl, TheCall, Proto))
7196 return ExprError();
7197 } else {
7198 if (CheckOtherCall(TheCall, Proto))
7199 return ExprError();
7200 }
7201
7202 return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall), FDecl);
7203}
7204
7205ExprResult
7206Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty,
7207 SourceLocation RParenLoc, Expr *InitExpr) {
7208 assert(Ty && "ActOnCompoundLiteral(): missing type")(static_cast <bool> (Ty && "ActOnCompoundLiteral(): missing type"
) ? void (0) : __assert_fail ("Ty && \"ActOnCompoundLiteral(): missing type\""
, "clang/lib/Sema/SemaExpr.cpp", 7208, __extension__ __PRETTY_FUNCTION__
))
;
7209 assert(InitExpr && "ActOnCompoundLiteral(): missing expression")(static_cast <bool> (InitExpr && "ActOnCompoundLiteral(): missing expression"
) ? void (0) : __assert_fail ("InitExpr && \"ActOnCompoundLiteral(): missing expression\""
, "clang/lib/Sema/SemaExpr.cpp", 7209, __extension__ __PRETTY_FUNCTION__
))
;
7210
7211 TypeSourceInfo *TInfo;
7212 QualType literalType = GetTypeFromParser(Ty, &TInfo);
7213 if (!TInfo)
7214 TInfo = Context.getTrivialTypeSourceInfo(literalType);
7215
7216 return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, InitExpr);
7217}
7218
7219ExprResult
7220Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
7221 SourceLocation RParenLoc, Expr *LiteralExpr) {
7222 QualType literalType = TInfo->getType();
7223
7224 if (literalType->isArrayType()) {
7225 if (RequireCompleteSizedType(
7226 LParenLoc, Context.getBaseElementType(literalType),
7227 diag::err_array_incomplete_or_sizeless_type,
7228 SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd())))
7229 return ExprError();
7230 if (literalType->isVariableArrayType()) {
7231 if (!tryToFixVariablyModifiedVarType(TInfo, literalType, LParenLoc,
7232 diag::err_variable_object_no_init)) {
7233 return ExprError();
7234 }
7235 }
7236 } else if (!literalType->isDependentType() &&
7237 RequireCompleteType(LParenLoc, literalType,
7238 diag::err_typecheck_decl_incomplete_type,
7239 SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd())))
7240 return ExprError();
7241
7242 InitializedEntity Entity
7243 = InitializedEntity::InitializeCompoundLiteralInit(TInfo);
7244 InitializationKind Kind
7245 = InitializationKind::CreateCStyleCast(LParenLoc,
7246 SourceRange(LParenLoc, RParenLoc),
7247 /*InitList=*/true);
7248 InitializationSequence InitSeq(*this, Entity, Kind, LiteralExpr);
7249 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, LiteralExpr,
7250 &literalType);
7251 if (Result.isInvalid())
7252 return ExprError();
7253 LiteralExpr = Result.get();
7254
7255 bool isFileScope = !CurContext->isFunctionOrMethod();
7256
7257 // In C, compound literals are l-values for some reason.
7258 // For GCC compatibility, in C++, file-scope array compound literals with
7259 // constant initializers are also l-values, and compound literals are
7260 // otherwise prvalues.
7261 //
7262 // (GCC also treats C++ list-initialized file-scope array prvalues with
7263 // constant initializers as l-values, but that's non-conforming, so we don't
7264 // follow it there.)
7265 //
7266 // FIXME: It would be better to handle the lvalue cases as materializing and
7267 // lifetime-extending a temporary object, but our materialized temporaries
7268 // representation only supports lifetime extension from a variable, not "out
7269 // of thin air".
7270 // FIXME: For C++, we might want to instead lifetime-extend only if a pointer
7271 // is bound to the result of applying array-to-pointer decay to the compound
7272 // literal.
7273 // FIXME: GCC supports compound literals of reference type, which should
7274 // obviously have a value kind derived from the kind of reference involved.
7275 ExprValueKind VK =
7276 (getLangOpts().CPlusPlus && !(isFileScope && literalType->isArrayType()))
7277 ? VK_PRValue
7278 : VK_LValue;
7279
7280 if (isFileScope)
7281 if (auto ILE = dyn_cast<InitListExpr>(LiteralExpr))
7282 for (unsigned i = 0, j = ILE->getNumInits(); i != j; i++) {
7283 Expr *Init = ILE->getInit(i);
7284 ILE->setInit(i, ConstantExpr::Create(Context, Init));
7285 }
7286
7287 auto *E = new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
7288 VK, LiteralExpr, isFileScope);
7289 if (isFileScope) {
7290 if (!LiteralExpr->isTypeDependent() &&
7291 !LiteralExpr->isValueDependent() &&
7292 !literalType->isDependentType()) // C99 6.5.2.5p3
7293 if (CheckForConstantInitializer(LiteralExpr, literalType))
7294 return ExprError();
7295 } else if (literalType.getAddressSpace() != LangAS::opencl_private &&
7296 literalType.getAddressSpace() != LangAS::Default) {
7297 // Embedded-C extensions to C99 6.5.2.5:
7298 // "If the compound literal occurs inside the body of a function, the
7299 // type name shall not be qualified by an address-space qualifier."
7300 Diag(LParenLoc, diag::err_compound_literal_with_address_space)
7301 << SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd());
7302 return ExprError();
7303 }
7304
7305 if (!isFileScope && !getLangOpts().CPlusPlus) {
7306 // Compound literals that have automatic storage duration are destroyed at
7307 // the end of the scope in C; in C++, they're just temporaries.
7308
7309 // Emit diagnostics if it is or contains a C union type that is non-trivial
7310 // to destruct.
7311 if (E->getType().hasNonTrivialToPrimitiveDestructCUnion())
7312 checkNonTrivialCUnion(E->getType(), E->getExprLoc(),
7313 NTCUC_CompoundLiteral, NTCUK_Destruct);
7314
7315 // Diagnose jumps that enter or exit the lifetime of the compound literal.
7316 if (literalType.isDestructedType()) {
7317 Cleanup.setExprNeedsCleanups(true);
7318 ExprCleanupObjects.push_back(E);
7319 getCurFunction()->setHasBranchProtectedScope();
7320 }
7321 }
7322
7323 if (E->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
7324 E->getType().hasNonTrivialToPrimitiveCopyCUnion())
7325 checkNonTrivialCUnionInInitializer(E->getInitializer(),
7326 E->getInitializer()->getExprLoc());
7327
7328 return MaybeBindToTemporary(E);
7329}
7330
7331ExprResult
7332Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
7333 SourceLocation RBraceLoc) {
7334 // Only produce each kind of designated initialization diagnostic once.
7335 SourceLocation FirstDesignator;
7336 bool DiagnosedArrayDesignator = false;
7337 bool DiagnosedNestedDesignator = false;
7338 bool DiagnosedMixedDesignator = false;
7339
7340 // Check that any designated initializers are syntactically valid in the
7341 // current language mode.
7342 for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) {
7343 if (auto *DIE = dyn_cast<DesignatedInitExpr>(InitArgList[I])) {
7344 if (FirstDesignator.isInvalid())
7345 FirstDesignator = DIE->getBeginLoc();
7346
7347 if (!getLangOpts().CPlusPlus)
7348 break;
7349
7350 if (!DiagnosedNestedDesignator && DIE->size() > 1) {
7351 DiagnosedNestedDesignator = true;
7352 Diag(DIE->getBeginLoc(), diag::ext_designated_init_nested)
7353 << DIE->getDesignatorsSourceRange();
7354 }
7355
7356 for (auto &Desig : DIE->designators()) {
7357 if (!Desig.isFieldDesignator() && !DiagnosedArrayDesignator) {
7358 DiagnosedArrayDesignator = true;
7359 Diag(Desig.getBeginLoc(), diag::ext_designated_init_array)
7360 << Desig.getSourceRange();
7361 }
7362 }
7363
7364 if (!DiagnosedMixedDesignator &&
7365 !isa<DesignatedInitExpr>(InitArgList[0])) {
7366 DiagnosedMixedDesignator = true;
7367 Diag(DIE->getBeginLoc(), diag::ext_designated_init_mixed)
7368 << DIE->getSourceRange();
7369 Diag(InitArgList[0]->getBeginLoc(), diag::note_designated_init_mixed)
7370 << InitArgList[0]->getSourceRange();
7371 }
7372 } else if (getLangOpts().CPlusPlus && !DiagnosedMixedDesignator &&
7373 isa<DesignatedInitExpr>(InitArgList[0])) {
7374 DiagnosedMixedDesignator = true;
7375 auto *DIE = cast<DesignatedInitExpr>(InitArgList[0]);
7376 Diag(DIE->getBeginLoc(), diag::ext_designated_init_mixed)
7377 << DIE->getSourceRange();
7378 Diag(InitArgList[I]->getBeginLoc(), diag::note_designated_init_mixed)
7379 << InitArgList[I]->getSourceRange();
7380 }
7381 }
7382
7383 if (FirstDesignator.isValid()) {
7384 // Only diagnose designated initiaization as a C++20 extension if we didn't
7385 // already diagnose use of (non-C++20) C99 designator syntax.
7386 if (getLangOpts().CPlusPlus && !DiagnosedArrayDesignator &&
7387 !DiagnosedNestedDesignator && !DiagnosedMixedDesignator) {
7388 Diag(FirstDesignator, getLangOpts().CPlusPlus20
7389 ? diag::warn_cxx17_compat_designated_init
7390 : diag::ext_cxx_designated_init);
7391 } else if (!getLangOpts().CPlusPlus && !getLangOpts().C99) {
7392 Diag(FirstDesignator, diag::ext_designated_init);
7393 }
7394 }
7395
7396 return BuildInitList(LBraceLoc, InitArgList, RBraceLoc);
7397}
7398
7399ExprResult
7400Sema::BuildInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
7401 SourceLocation RBraceLoc) {
7402 // Semantic analysis for initializers is done by ActOnDeclarator() and
7403 // CheckInitializer() - it requires knowledge of the object being initialized.
7404
7405 // Immediately handle non-overload placeholders. Overloads can be
7406 // resolved contextually, but everything else here can't.
7407 for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) {
7408 if (InitArgList[I]->getType()->isNonOverloadPlaceholderType()) {
7409 ExprResult result = CheckPlaceholderExpr(InitArgList[I]);
7410
7411 // Ignore failures; dropping the entire initializer list because
7412 // of one failure would be terrible for indexing/etc.
7413 if (result.isInvalid()) continue;
7414
7415 InitArgList[I] = result.get();
7416 }
7417 }
7418
7419 InitListExpr *E = new (Context) InitListExpr(Context, LBraceLoc, InitArgList,
7420 RBraceLoc);
7421 E->setType(Context.VoidTy); // FIXME: just a place holder for now.
7422 return E;
7423}
7424
7425/// Do an explicit extend of the given block pointer if we're in ARC.
7426void Sema::maybeExtendBlockObject(ExprResult &E) {
7427 assert(E.get()->getType()->isBlockPointerType())(static_cast <bool> (E.get()->getType()->isBlockPointerType
()) ? void (0) : __assert_fail ("E.get()->getType()->isBlockPointerType()"
, "clang/lib/Sema/SemaExpr.cpp", 7427, __extension__ __PRETTY_FUNCTION__
))
;
7428 assert(E.get()->isPRValue())(static_cast <bool> (E.get()->isPRValue()) ? void (0
) : __assert_fail ("E.get()->isPRValue()", "clang/lib/Sema/SemaExpr.cpp"
, 7428, __extension__ __PRETTY_FUNCTION__))
;
7429
7430 // Only do this in an r-value context.
7431 if (!getLangOpts().ObjCAutoRefCount) return;
7432
7433 E = ImplicitCastExpr::Create(
7434 Context, E.get()->getType(), CK_ARCExtendBlockObject, E.get(),
7435 /*base path*/ nullptr, VK_PRValue, FPOptionsOverride());
7436 Cleanup.setExprNeedsCleanups(true);
7437}
7438
7439/// Prepare a conversion of the given expression to an ObjC object
7440/// pointer type.
7441CastKind Sema::PrepareCastToObjCObjectPointer(ExprResult &E) {
7442 QualType type = E.get()->getType();
7443 if (type->isObjCObjectPointerType()) {
7444 return CK_BitCast;
7445 } else if (type->isBlockPointerType()) {
7446 maybeExtendBlockObject(E);
7447 return CK_BlockPointerToObjCPointerCast;
7448 } else {
7449 assert(type->isPointerType())(static_cast <bool> (type->isPointerType()) ? void (
0) : __assert_fail ("type->isPointerType()", "clang/lib/Sema/SemaExpr.cpp"
, 7449, __extension__ __PRETTY_FUNCTION__))
;
7450 return CK_CPointerToObjCPointerCast;
7451 }
7452}
7453
7454/// Prepares for a scalar cast, performing all the necessary stages
7455/// except the final cast and returning the kind required.
7456CastKind Sema::PrepareScalarCast(ExprResult &Src, QualType DestTy) {
7457 // Both Src and Dest are scalar types, i.e. arithmetic or pointer.
7458 // Also, callers should have filtered out the invalid cases with
7459 // pointers. Everything else should be possible.
7460
7461 QualType SrcTy = Src.get()->getType();
7462 if (Context.hasSameUnqualifiedType(SrcTy, DestTy))
7463 return CK_NoOp;
7464
7465 switch (Type::ScalarTypeKind SrcKind = SrcTy->getScalarTypeKind()) {
7466 case Type::STK_MemberPointer:
7467 llvm_unreachable("member pointer type in C")::llvm::llvm_unreachable_internal("member pointer type in C",
"clang/lib/Sema/SemaExpr.cpp", 7467)
;
7468
7469 case Type::STK_CPointer:
7470 case Type::STK_BlockPointer:
7471 case Type::STK_ObjCObjectPointer:
7472 switch (DestTy->getScalarTypeKind()) {
7473 case Type::STK_CPointer: {
7474 LangAS SrcAS = SrcTy->getPointeeType().getAddressSpace();
7475 LangAS DestAS = DestTy->getPointeeType().getAddressSpace();
7476 if (SrcAS != DestAS)
7477 return CK_AddressSpaceConversion;
7478 if (Context.hasCvrSimilarType(SrcTy, DestTy))
7479 return CK_NoOp;
7480 return CK_BitCast;
7481 }
7482 case Type::STK_BlockPointer:
7483 return (SrcKind == Type::STK_BlockPointer
7484 ? CK_BitCast : CK_AnyPointerToBlockPointerCast);
7485 case Type::STK_ObjCObjectPointer:
7486 if (SrcKind == Type::STK_ObjCObjectPointer)
7487 return CK_BitCast;
7488 if (SrcKind == Type::STK_CPointer)
7489 return CK_CPointerToObjCPointerCast;
7490 maybeExtendBlockObject(Src);
7491 return CK_BlockPointerToObjCPointerCast;
7492 case Type::STK_Bool:
7493 return CK_PointerToBoolean;
7494 case Type::STK_Integral:
7495 return CK_PointerToIntegral;
7496 case Type::STK_Floating:
7497 case Type::STK_FloatingComplex:
7498 case Type::STK_IntegralComplex:
7499 case Type::STK_MemberPointer:
7500 case Type::STK_FixedPoint:
7501 llvm_unreachable("illegal cast from pointer")::llvm::llvm_unreachable_internal("illegal cast from pointer"
, "clang/lib/Sema/SemaExpr.cpp", 7501)
;
7502 }
7503 llvm_unreachable("Should have returned before this")::llvm::llvm_unreachable_internal("Should have returned before this"
, "clang/lib/Sema/SemaExpr.cpp", 7503)
;
7504
7505 case Type::STK_FixedPoint:
7506 switch (DestTy->getScalarTypeKind()) {
7507 case Type::STK_FixedPoint:
7508 return CK_FixedPointCast;
7509 case Type::STK_Bool:
7510 return CK_FixedPointToBoolean;
7511 case Type::STK_Integral:
7512 return CK_FixedPointToIntegral;
7513 case Type::STK_Floating:
7514 return CK_FixedPointToFloating;
7515 case Type::STK_IntegralComplex:
7516 case Type::STK_FloatingComplex:
7517 Diag(Src.get()->getExprLoc(),
7518 diag::err_unimplemented_conversion_with_fixed_point_type)
7519 << DestTy;
7520 return CK_IntegralCast;
7521 case Type::STK_CPointer:
7522 case Type::STK_ObjCObjectPointer:
7523 case Type::STK_BlockPointer:
7524 case Type::STK_MemberPointer:
7525 llvm_unreachable("illegal cast to pointer type")::llvm::llvm_unreachable_internal("illegal cast to pointer type"
, "clang/lib/Sema/SemaExpr.cpp", 7525)
;
7526 }
7527 llvm_unreachable("Should have returned before this")::llvm::llvm_unreachable_internal("Should have returned before this"
, "clang/lib/Sema/SemaExpr.cpp", 7527)
;
7528
7529 case Type::STK_Bool: // casting from bool is like casting from an integer
7530 case Type::STK_Integral:
7531 switch (DestTy->getScalarTypeKind()) {
7532 case Type::STK_CPointer:
7533 case Type::STK_ObjCObjectPointer:
7534 case Type::STK_BlockPointer:
7535 if (Src.get()->isNullPointerConstant(Context,
7536 Expr::NPC_ValueDependentIsNull))
7537 return CK_NullToPointer;
7538 return CK_IntegralToPointer;
7539 case Type::STK_Bool:
7540 return CK_IntegralToBoolean;
7541 case Type::STK_Integral:
7542 return CK_IntegralCast;
7543 case Type::STK_Floating:
7544 return CK_IntegralToFloating;
7545 case Type::STK_IntegralComplex:
7546 Src = ImpCastExprToType(Src.get(),
7547 DestTy->castAs<ComplexType>()->getElementType(),
7548 CK_IntegralCast);
7549 return CK_IntegralRealToComplex;
7550 case Type::STK_FloatingComplex:
7551 Src = ImpCastExprToType(Src.get(),
7552 DestTy->castAs<ComplexType>()->getElementType(),
7553 CK_IntegralToFloating);
7554 return CK_FloatingRealToComplex;
7555 case Type::STK_MemberPointer:
7556 llvm_unreachable("member pointer type in C")::llvm::llvm_unreachable_internal("member pointer type in C",
"clang/lib/Sema/SemaExpr.cpp", 7556)
;
7557 case Type::STK_FixedPoint:
7558 return CK_IntegralToFixedPoint;
7559 }
7560 llvm_unreachable("Should have returned before this")::llvm::llvm_unreachable_internal("Should have returned before this"
, "clang/lib/Sema/SemaExpr.cpp", 7560)
;
7561
7562 case Type::STK_Floating:
7563 switch (DestTy->getScalarTypeKind()) {
7564 case Type::STK_Floating:
7565 return CK_FloatingCast;
7566 case Type::STK_Bool:
7567 return CK_FloatingToBoolean;
7568 case Type::STK_Integral:
7569 return CK_FloatingToIntegral;
7570 case Type::STK_FloatingComplex:
7571 Src = ImpCastExprToType(Src.get(),
7572 DestTy->castAs<ComplexType>()->getElementType(),
7573 CK_FloatingCast);
7574 return CK_FloatingRealToComplex;
7575 case Type::STK_IntegralComplex:
7576 Src = ImpCastExprToType(Src.get(),
7577 DestTy->castAs<ComplexType>()->getElementType(),
7578 CK_FloatingToIntegral);
7579 return CK_IntegralRealToComplex;
7580 case Type::STK_CPointer:
7581 case Type::STK_ObjCObjectPointer:
7582 case Type::STK_BlockPointer:
7583 llvm_unreachable("valid float->pointer cast?")::llvm::llvm_unreachable_internal("valid float->pointer cast?"
, "clang/lib/Sema/SemaExpr.cpp", 7583)
;
7584 case Type::STK_MemberPointer:
7585 llvm_unreachable("member pointer type in C")::llvm::llvm_unreachable_internal("member pointer type in C",
"clang/lib/Sema/SemaExpr.cpp", 7585)
;
7586 case Type::STK_FixedPoint:
7587 return CK_FloatingToFixedPoint;
7588 }
7589 llvm_unreachable("Should have returned before this")::llvm::llvm_unreachable_internal("Should have returned before this"
, "clang/lib/Sema/SemaExpr.cpp", 7589)
;
7590
7591 case Type::STK_FloatingComplex:
7592 switch (DestTy->getScalarTypeKind()) {
7593 case Type::STK_FloatingComplex:
7594 return CK_FloatingComplexCast;
7595 case Type::STK_IntegralComplex:
7596 return CK_FloatingComplexToIntegralComplex;
7597 case Type::STK_Floating: {
7598 QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
7599 if (Context.hasSameType(ET, DestTy))
7600 return CK_FloatingComplexToReal;
7601 Src = ImpCastExprToType(Src.get(), ET, CK_FloatingComplexToReal);
7602 return CK_FloatingCast;
7603 }
7604 case Type::STK_Bool:
7605 return CK_FloatingComplexToBoolean;
7606 case Type::STK_Integral:
7607 Src = ImpCastExprToType(Src.get(),
7608 SrcTy->castAs<ComplexType>()->getElementType(),
7609 CK_FloatingComplexToReal);
7610 return CK_FloatingToIntegral;
7611 case Type::STK_CPointer:
7612 case Type::STK_ObjCObjectPointer:
7613 case Type::STK_BlockPointer:
7614 llvm_unreachable("valid complex float->pointer cast?")::llvm::llvm_unreachable_internal("valid complex float->pointer cast?"
, "clang/lib/Sema/SemaExpr.cpp", 7614)
;
7615 case Type::STK_MemberPointer:
7616 llvm_unreachable("member pointer type in C")::llvm::llvm_unreachable_internal("member pointer type in C",
"clang/lib/Sema/SemaExpr.cpp", 7616)
;
7617 case Type::STK_FixedPoint:
7618 Diag(Src.get()->getExprLoc(),
7619 diag::err_unimplemented_conversion_with_fixed_point_type)
7620 << SrcTy;
7621 return CK_IntegralCast;
7622 }
7623 llvm_unreachable("Should have returned before this")::llvm::llvm_unreachable_internal("Should have returned before this"
, "clang/lib/Sema/SemaExpr.cpp", 7623)
;
7624
7625 case Type::STK_IntegralComplex:
7626 switch (DestTy->getScalarTypeKind()) {
7627 case Type::STK_FloatingComplex:
7628 return CK_IntegralComplexToFloatingComplex;
7629 case Type::STK_IntegralComplex:
7630 return CK_IntegralComplexCast;
7631 case Type::STK_Integral: {
7632 QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
7633 if (Context.hasSameType(ET, DestTy))
7634 return CK_IntegralComplexToReal;
7635 Src = ImpCastExprToType(Src.get(), ET, CK_IntegralComplexToReal);
7636 return CK_IntegralCast;
7637 }
7638 case Type::STK_Bool:
7639 return CK_IntegralComplexToBoolean;
7640 case Type::STK_Floating:
7641 Src = ImpCastExprToType(Src.get(),
7642 SrcTy->castAs<ComplexType>()->getElementType(),
7643 CK_IntegralComplexToReal);
7644 return CK_IntegralToFloating;
7645 case Type::STK_CPointer:
7646 case Type::STK_ObjCObjectPointer:
7647 case Type::STK_BlockPointer:
7648 llvm_unreachable("valid complex int->pointer cast?")::llvm::llvm_unreachable_internal("valid complex int->pointer cast?"
, "clang/lib/Sema/SemaExpr.cpp", 7648)
;
7649 case Type::STK_MemberPointer:
7650 llvm_unreachable("member pointer type in C")::llvm::llvm_unreachable_internal("member pointer type in C",
"clang/lib/Sema/SemaExpr.cpp", 7650)
;
7651 case Type::STK_FixedPoint:
7652 Diag(Src.get()->getExprLoc(),
7653 diag::err_unimplemented_conversion_with_fixed_point_type)
7654 << SrcTy;
7655 return CK_IntegralCast;
7656 }
7657 llvm_unreachable("Should have returned before this")::llvm::llvm_unreachable_internal("Should have returned before this"
, "clang/lib/Sema/SemaExpr.cpp", 7657)
;
7658 }
7659
7660 llvm_unreachable("Unhandled scalar cast")::llvm::llvm_unreachable_internal("Unhandled scalar cast", "clang/lib/Sema/SemaExpr.cpp"
, 7660)
;
7661}
7662
7663static bool breakDownVectorType(QualType type, uint64_t &len,
7664 QualType &eltType) {
7665 // Vectors are simple.
7666 if (const VectorType *vecType = type->getAs<VectorType>()) {
7667 len = vecType->getNumElements();
7668 eltType = vecType->getElementType();
7669 assert(eltType->isScalarType())(static_cast <bool> (eltType->isScalarType()) ? void
(0) : __assert_fail ("eltType->isScalarType()", "clang/lib/Sema/SemaExpr.cpp"
, 7669, __extension__ __PRETTY_FUNCTION__))
;
7670 return true;
7671 }
7672
7673 // We allow lax conversion to and from non-vector types, but only if
7674 // they're real types (i.e. non-complex, non-pointer scalar types).
7675 if (!type->isRealType()) return false;
7676
7677 len = 1;
7678 eltType = type;
7679 return true;
7680}
7681
7682/// Are the two types SVE-bitcast-compatible types? I.e. is bitcasting from the
7683/// first SVE type (e.g. an SVE VLAT) to the second type (e.g. an SVE VLST)
7684/// allowed?
7685///
7686/// This will also return false if the two given types do not make sense from
7687/// the perspective of SVE bitcasts.
7688bool Sema::isValidSveBitcast(QualType srcTy, QualType destTy) {
7689 assert(srcTy->isVectorType() || destTy->isVectorType())(static_cast <bool> (srcTy->isVectorType() || destTy
->isVectorType()) ? void (0) : __assert_fail ("srcTy->isVectorType() || destTy->isVectorType()"
, "clang/lib/Sema/SemaExpr.cpp", 7689, __extension__ __PRETTY_FUNCTION__
))
;
7690
7691 auto ValidScalableConversion = [](QualType FirstType, QualType SecondType) {
7692 if (!FirstType->isSizelessBuiltinType())
7693 return false;
7694
7695 const auto *VecTy = SecondType->getAs<VectorType>();
7696 return VecTy &&
7697 VecTy->getVectorKind() == VectorType::SveFixedLengthDataVector;
7698 };
7699
7700 return ValidScalableConversion(srcTy, destTy) ||
7701 ValidScalableConversion(destTy, srcTy);
7702}
7703
7704/// Are the two types matrix types and do they have the same dimensions i.e.
7705/// do they have the same number of rows and the same number of columns?
7706bool Sema::areMatrixTypesOfTheSameDimension(QualType srcTy, QualType destTy) {
7707 if (!destTy->isMatrixType() || !srcTy->isMatrixType())
7708 return false;
7709
7710 const ConstantMatrixType *matSrcType = srcTy->getAs<ConstantMatrixType>();
7711 const ConstantMatrixType *matDestType = destTy->getAs<ConstantMatrixType>();
7712
7713 return matSrcType->getNumRows() == matDestType->getNumRows() &&
7714 matSrcType->getNumColumns() == matDestType->getNumColumns();
7715}
7716
7717bool Sema::areVectorTypesSameSize(QualType SrcTy, QualType DestTy) {
7718 assert(DestTy->isVectorType() || SrcTy->isVectorType())(static_cast <bool> (DestTy->isVectorType() || SrcTy
->isVectorType()) ? void (0) : __assert_fail ("DestTy->isVectorType() || SrcTy->isVectorType()"
, "clang/lib/Sema/SemaExpr.cpp", 7718, __extension__ __PRETTY_FUNCTION__
))
;
7719
7720 uint64_t SrcLen, DestLen;
7721 QualType SrcEltTy, DestEltTy;
7722 if (!breakDownVectorType(SrcTy, SrcLen, SrcEltTy))
7723 return false;
7724 if (!breakDownVectorType(DestTy, DestLen, DestEltTy))
7725 return false;
7726
7727 // ASTContext::getTypeSize will return the size rounded up to a
7728 // power of 2, so instead of using that, we need to use the raw
7729 // element size multiplied by the element count.
7730 uint64_t SrcEltSize = Context.getTypeSize(SrcEltTy);
7731 uint64_t DestEltSize = Context.getTypeSize(DestEltTy);
7732
7733 return (SrcLen * SrcEltSize == DestLen * DestEltSize);
7734}
7735
7736// This returns true if at least one of the types is an altivec vector.
7737bool Sema::anyAltivecTypes(QualType SrcTy, QualType DestTy) {
7738 assert((DestTy->isVectorType() || SrcTy->isVectorType()) &&(static_cast <bool> ((DestTy->isVectorType() || SrcTy
->isVectorType()) && "expected at least one type to be a vector here"
) ? void (0) : __assert_fail ("(DestTy->isVectorType() || SrcTy->isVectorType()) && \"expected at least one type to be a vector here\""
, "clang/lib/Sema/SemaExpr.cpp", 7739, __extension__ __PRETTY_FUNCTION__
))
7739 "expected at least one type to be a vector here")(static_cast <bool> ((DestTy->isVectorType() || SrcTy
->isVectorType()) && "expected at least one type to be a vector here"
) ? void (0) : __assert_fail ("(DestTy->isVectorType() || SrcTy->isVectorType()) && \"expected at least one type to be a vector here\""
, "clang/lib/Sema/SemaExpr.cpp", 7739, __extension__ __PRETTY_FUNCTION__
))
;
7740
7741 bool IsSrcTyAltivec =
7742 SrcTy->isVectorType() && (SrcTy->castAs<VectorType>()->getVectorKind() ==
7743 VectorType::AltiVecVector);
7744 bool IsDestTyAltivec = DestTy->isVectorType() &&
7745 (DestTy->castAs<VectorType>()->getVectorKind() ==
7746 VectorType::AltiVecVector);
7747
7748 return (IsSrcTyAltivec || IsDestTyAltivec);
7749}
7750
7751// This returns true if both vectors have the same element type.
7752bool Sema::areSameVectorElemTypes(QualType SrcTy, QualType DestTy) {
7753 assert((DestTy->isVectorType() || SrcTy->isVectorType()) &&(static_cast <bool> ((DestTy->isVectorType() || SrcTy
->isVectorType()) && "expected at least one type to be a vector here"
) ? void (0) : __assert_fail ("(DestTy->isVectorType() || SrcTy->isVectorType()) && \"expected at least one type to be a vector here\""
, "clang/lib/Sema/SemaExpr.cpp", 7754, __extension__ __PRETTY_FUNCTION__
))
7754 "expected at least one type to be a vector here")(static_cast <bool> ((DestTy->isVectorType() || SrcTy
->isVectorType()) && "expected at least one type to be a vector here"
) ? void (0) : __assert_fail ("(DestTy->isVectorType() || SrcTy->isVectorType()) && \"expected at least one type to be a vector here\""
, "clang/lib/Sema/SemaExpr.cpp", 7754, __extension__ __PRETTY_FUNCTION__
))
;
7755
7756 uint64_t SrcLen, DestLen;
7757 QualType SrcEltTy, DestEltTy;
7758 if (!breakDownVectorType(SrcTy, SrcLen, SrcEltTy))
7759 return false;
7760 if (!breakDownVectorType(DestTy, DestLen, DestEltTy))
7761 return false;
7762
7763 return (SrcEltTy == DestEltTy);
7764}
7765
7766/// Are the two types lax-compatible vector types? That is, given
7767/// that one of them is a vector, do they have equal storage sizes,
7768/// where the storage size is the number of elements times the element
7769/// size?
7770///
7771/// This will also return false if either of the types is neither a
7772/// vector nor a real type.
7773bool Sema::areLaxCompatibleVectorTypes(QualType srcTy, QualType destTy) {
7774 assert(destTy->isVectorType() || srcTy->isVectorType())(static_cast <bool> (destTy->isVectorType() || srcTy
->isVectorType()) ? void (0) : __assert_fail ("destTy->isVectorType() || srcTy->isVectorType()"
, "clang/lib/Sema/SemaExpr.cpp", 7774, __extension__ __PRETTY_FUNCTION__
))
;
7775
7776 // Disallow lax conversions between scalars and ExtVectors (these
7777 // conversions are allowed for other vector types because common headers
7778 // depend on them). Most scalar OP ExtVector cases are handled by the
7779 // splat path anyway, which does what we want (convert, not bitcast).
7780 // What this rules out for ExtVectors is crazy things like char4*float.
7781 if (srcTy->isScalarType() && destTy->isExtVectorType()) return false;
7782 if (destTy->isScalarType() && srcTy->isExtVectorType()) return false;
7783
7784 return areVectorTypesSameSize(srcTy, destTy);
7785}
7786
7787/// Is this a legal conversion between two types, one of which is
7788/// known to be a vector type?
7789bool Sema::isLaxVectorConversion(QualType srcTy, QualType destTy) {
7790 assert(destTy->isVectorType() || srcTy->isVectorType())(static_cast <bool> (destTy->isVectorType() || srcTy
->isVectorType()) ? void (0) : __assert_fail ("destTy->isVectorType() || srcTy->isVectorType()"
, "clang/lib/Sema/SemaExpr.cpp", 7790, __extension__ __PRETTY_FUNCTION__
))
;
7791
7792 switch (Context.getLangOpts().getLaxVectorConversions()) {
7793 case LangOptions::LaxVectorConversionKind::None:
7794 return false;
7795
7796 case LangOptions::LaxVectorConversionKind::Integer:
7797 if (!srcTy->isIntegralOrEnumerationType()) {
7798 auto *Vec = srcTy->getAs<VectorType>();
7799 if (!Vec || !Vec->getElementType()->isIntegralOrEnumerationType())
7800 return false;
7801 }
7802 if (!destTy->isIntegralOrEnumerationType()) {
7803 auto *Vec = destTy->getAs<VectorType>();
7804 if (!Vec || !Vec->getElementType()->isIntegralOrEnumerationType())
7805 return false;
7806 }
7807 // OK, integer (vector) -> integer (vector) bitcast.
7808 break;
7809
7810 case LangOptions::LaxVectorConversionKind::All:
7811 break;
7812 }
7813
7814 return areLaxCompatibleVectorTypes(srcTy, destTy);
7815}
7816
7817bool Sema::CheckMatrixCast(SourceRange R, QualType DestTy, QualType SrcTy,
7818 CastKind &Kind) {
7819 if (SrcTy->isMatrixType() && DestTy->isMatrixType()) {
7820 if (!areMatrixTypesOfTheSameDimension(SrcTy, DestTy)) {
7821 return Diag(R.getBegin(), diag::err_invalid_conversion_between_matrixes)
7822 << DestTy << SrcTy << R;
7823 }
7824 } else if (SrcTy->isMatrixType()) {
7825 return Diag(R.getBegin(),
7826 diag::err_invalid_conversion_between_matrix_and_type)
7827 << SrcTy << DestTy << R;
7828 } else if (DestTy->isMatrixType()) {
7829 return Diag(R.getBegin(),
7830 diag::err_invalid_conversion_between_matrix_and_type)
7831 << DestTy << SrcTy << R;
7832 }
7833
7834 Kind = CK_MatrixCast;
7835 return false;
7836}
7837
7838bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
7839 CastKind &Kind) {
7840 assert(VectorTy->isVectorType() && "Not a vector type!")(static_cast <bool> (VectorTy->isVectorType() &&
"Not a vector type!") ? void (0) : __assert_fail ("VectorTy->isVectorType() && \"Not a vector type!\""
, "clang/lib/Sema/SemaExpr.cpp", 7840, __extension__ __PRETTY_FUNCTION__
))
;
7841
7842 if (Ty->isVectorType() || Ty->isIntegralType(Context)) {
7843 if (!areLaxCompatibleVectorTypes(Ty, VectorTy))
7844 return Diag(R.getBegin(),
7845 Ty->isVectorType() ?
7846 diag::err_invalid_conversion_between_vectors :
7847 diag::err_invalid_conversion_between_vector_and_integer)
7848 << VectorTy << Ty << R;
7849 } else
7850 return Diag(R.getBegin(),
7851 diag::err_invalid_conversion_between_vector_and_scalar)
7852 << VectorTy << Ty << R;
7853
7854 Kind = CK_BitCast;
7855 return false;
7856}
7857
7858ExprResult Sema::prepareVectorSplat(QualType VectorTy, Expr *SplattedExpr) {
7859 QualType DestElemTy = VectorTy->castAs<VectorType>()->getElementType();
7860
7861 if (DestElemTy == SplattedExpr->getType())
7862 return SplattedExpr;
7863
7864 assert(DestElemTy->isFloatingType() ||(static_cast <bool> (DestElemTy->isFloatingType() ||
DestElemTy->isIntegralOrEnumerationType()) ? void (0) : __assert_fail
("DestElemTy->isFloatingType() || DestElemTy->isIntegralOrEnumerationType()"
, "clang/lib/Sema/SemaExpr.cpp", 7865, __extension__ __PRETTY_FUNCTION__
))
7865 DestElemTy->isIntegralOrEnumerationType())(static_cast <bool> (DestElemTy->isFloatingType() ||
DestElemTy->isIntegralOrEnumerationType()) ? void (0) : __assert_fail
("DestElemTy->isFloatingType() || DestElemTy->isIntegralOrEnumerationType()"
, "clang/lib/Sema/SemaExpr.cpp", 7865, __extension__ __PRETTY_FUNCTION__
))
;
7866
7867 CastKind CK;
7868 if (VectorTy->isExtVectorType() && SplattedExpr->getType()->isBooleanType()) {
7869 // OpenCL requires that we convert `true` boolean expressions to -1, but
7870 // only when splatting vectors.
7871 if (DestElemTy->isFloatingType()) {
7872 // To avoid having to have a CK_BooleanToSignedFloating cast kind, we cast
7873 // in two steps: boolean to signed integral, then to floating.
7874 ExprResult CastExprRes = ImpCastExprToType(SplattedExpr, Context.IntTy,
7875 CK_BooleanToSignedIntegral);
7876 SplattedExpr = CastExprRes.get();
7877 CK = CK_IntegralToFloating;
7878 } else {
7879 CK = CK_BooleanToSignedIntegral;
7880 }
7881 } else {
7882 ExprResult CastExprRes = SplattedExpr;
7883 CK = PrepareScalarCast(CastExprRes, DestElemTy);
7884 if (CastExprRes.isInvalid())
7885 return ExprError();
7886 SplattedExpr = CastExprRes.get();
7887 }
7888 return ImpCastExprToType(SplattedExpr, DestElemTy, CK);
7889}
7890
7891ExprResult Sema::CheckExtVectorCast(SourceRange R, QualType DestTy,
7892 Expr *CastExpr, CastKind &Kind) {
7893 assert(DestTy->isExtVectorType() && "Not an extended vector type!")(static_cast <bool> (DestTy->isExtVectorType() &&
"Not an extended vector type!") ? void (0) : __assert_fail (
"DestTy->isExtVectorType() && \"Not an extended vector type!\""
, "clang/lib/Sema/SemaExpr.cpp", 7893, __extension__ __PRETTY_FUNCTION__
))
;
7894
7895 QualType SrcTy = CastExpr->getType();
7896
7897 // If SrcTy is a VectorType, the total size must match to explicitly cast to
7898 // an ExtVectorType.
7899 // In OpenCL, casts between vectors of different types are not allowed.
7900 // (See OpenCL 6.2).
7901 if (SrcTy->isVectorType()) {
7902 if (!areLaxCompatibleVectorTypes(SrcTy, DestTy) ||
7903 (getLangOpts().OpenCL &&
7904 !Context.hasSameUnqualifiedType(DestTy, SrcTy))) {
7905 Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
7906 << DestTy << SrcTy << R;
7907 return ExprError();
7908 }
7909 Kind = CK_BitCast;
7910 return CastExpr;
7911 }
7912
7913 // All non-pointer scalars can be cast to ExtVector type. The appropriate
7914 // conversion will take place first from scalar to elt type, and then
7915 // splat from elt type to vector.
7916 if (SrcTy->isPointerType())
7917 return Diag(R.getBegin(),
7918 diag::err_invalid_conversion_between_vector_and_scalar)
7919 << DestTy << SrcTy << R;
7920
7921 Kind = CK_VectorSplat;
7922 return prepareVectorSplat(DestTy, CastExpr);
7923}
7924
7925ExprResult
7926Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc,
7927 Declarator &D, ParsedType &Ty,
7928 SourceLocation RParenLoc, Expr *CastExpr) {
7929 assert(!D.isInvalidType() && (CastExpr != nullptr) &&(static_cast <bool> (!D.isInvalidType() && (CastExpr
!= nullptr) && "ActOnCastExpr(): missing type or expr"
) ? void (0) : __assert_fail ("!D.isInvalidType() && (CastExpr != nullptr) && \"ActOnCastExpr(): missing type or expr\""
, "clang/lib/Sema/SemaExpr.cpp", 7930, __extension__ __PRETTY_FUNCTION__
))
7930 "ActOnCastExpr(): missing type or expr")(static_cast <bool> (!D.isInvalidType() && (CastExpr
!= nullptr) && "ActOnCastExpr(): missing type or expr"
) ? void (0) : __assert_fail ("!D.isInvalidType() && (CastExpr != nullptr) && \"ActOnCastExpr(): missing type or expr\""
, "clang/lib/Sema/SemaExpr.cpp", 7930, __extension__ __PRETTY_FUNCTION__
))
;
7931
7932 TypeSourceInfo *castTInfo = GetTypeForDeclaratorCast(D, CastExpr->getType());
7933 if (D.isInvalidType())
7934 return ExprError();
7935
7936 if (getLangOpts().CPlusPlus) {
7937 // Check that there are no default arguments (C++ only).
7938 CheckExtraCXXDefaultArguments(D);
7939 } else {
7940 // Make sure any TypoExprs have been dealt with.
7941 ExprResult Res = CorrectDelayedTyposInExpr(CastExpr);
7942 if (!Res.isUsable())
7943 return ExprError();
7944 CastExpr = Res.get();
7945 }
7946
7947 checkUnusedDeclAttributes(D);
7948
7949 QualType castType = castTInfo->getType();
7950 Ty = CreateParsedType(castType, castTInfo);
7951
7952 bool isVectorLiteral = false;
7953
7954 // Check for an altivec or OpenCL literal,
7955 // i.e. all the elements are integer constants.
7956 ParenExpr *PE = dyn_cast<ParenExpr>(CastExpr);
7957 ParenListExpr *PLE = dyn_cast<ParenListExpr>(CastExpr);
7958 if ((getLangOpts().AltiVec || getLangOpts().ZVector || getLangOpts().OpenCL)
7959 && castType->isVectorType() && (PE || PLE)) {
7960 if (PLE && PLE->getNumExprs() == 0) {
7961 Diag(PLE->getExprLoc(), diag::err_altivec_empty_initializer);
7962 return ExprError();
7963 }
7964 if (PE || PLE->getNumExprs() == 1) {
7965 Expr *E = (PE ? PE->getSubExpr() : PLE->getExpr(0));
7966 if (!E->isTypeDependent() && !E->getType()->isVectorType())
7967 isVectorLiteral = true;
7968 }
7969 else
7970 isVectorLiteral = true;
7971 }
7972
7973 // If this is a vector initializer, '(' type ')' '(' init, ..., init ')'
7974 // then handle it as such.
7975 if (isVectorLiteral)
7976 return BuildVectorLiteral(LParenLoc, RParenLoc, CastExpr, castTInfo);
7977
7978 // If the Expr being casted is a ParenListExpr, handle it specially.
7979 // This is not an AltiVec-style cast, so turn the ParenListExpr into a
7980 // sequence of BinOp comma operators.
7981 if (isa<ParenListExpr>(CastExpr)) {
7982 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, CastExpr);
7983 if (Result.isInvalid()) return ExprError();
7984 CastExpr = Result.get();
7985 }
7986
7987 if (getLangOpts().CPlusPlus && !castType->isVoidType())
7988 Diag(LParenLoc, diag::warn_old_style_cast) << CastExpr->getSourceRange();
7989
7990 CheckTollFreeBridgeCast(castType, CastExpr);
7991
7992 CheckObjCBridgeRelatedCast(castType, CastExpr);
7993
7994 DiscardMisalignedMemberAddress(castType.getTypePtr(), CastExpr);
7995
7996 return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, CastExpr);
7997}
7998
7999ExprResult Sema::BuildVectorLiteral(SourceLocation LParenLoc,
8000 SourceLocation RParenLoc, Expr *E,
8001 TypeSourceInfo *TInfo) {
8002 assert((isa<ParenListExpr>(E) || isa<ParenExpr>(E)) &&(static_cast <bool> ((isa<ParenListExpr>(E) || isa
<ParenExpr>(E)) && "Expected paren or paren list expression"
) ? void (0) : __assert_fail ("(isa<ParenListExpr>(E) || isa<ParenExpr>(E)) && \"Expected paren or paren list expression\""
, "clang/lib/Sema/SemaExpr.cpp", 8003, __extension__ __PRETTY_FUNCTION__
))
8003 "Expected paren or paren list expression")(static_cast <bool> ((isa<ParenListExpr>(E) || isa
<ParenExpr>(E)) && "Expected paren or paren list expression"
) ? void (0) : __assert_fail ("(isa<ParenListExpr>(E) || isa<ParenExpr>(E)) && \"Expected paren or paren list expression\""
, "clang/lib/Sema/SemaExpr.cpp", 8003, __extension__ __PRETTY_FUNCTION__
))
;
8004
8005 Expr **exprs;
8006 unsigned numExprs;
8007 Expr *subExpr;
8008 SourceLocation LiteralLParenLoc, LiteralRParenLoc;
8009 if (ParenListExpr *PE = dyn_cast<ParenListExpr>(E)) {
8010 LiteralLParenLoc = PE->getLParenLoc();
8011 LiteralRParenLoc = PE->getRParenLoc();
8012 exprs = PE->getExprs();
8013 numExprs = PE->getNumExprs();
8014 } else { // isa<ParenExpr> by assertion at function entrance
8015 LiteralLParenLoc = cast<ParenExpr>(E)->getLParen();
8016 LiteralRParenLoc = cast<ParenExpr>(E)->getRParen();
8017 subExpr = cast<ParenExpr>(E)->getSubExpr();
8018 exprs = &subExpr;
8019 numExprs = 1;
8020 }
8021
8022 QualType Ty = TInfo->getType();
8023 assert(Ty->isVectorType() && "Expected vector type")(static_cast <bool> (Ty->isVectorType() && "Expected vector type"
) ? void (0) : __assert_fail ("Ty->isVectorType() && \"Expected vector type\""
, "clang/lib/Sema/SemaExpr.cpp", 8023, __extension__ __PRETTY_FUNCTION__
))
;
8024
8025 SmallVector<Expr *, 8> initExprs;
8026 const VectorType *VTy = Ty->castAs<VectorType>();
8027 unsigned numElems = VTy->getNumElements();
8028
8029 // '(...)' form of vector initialization in AltiVec: the number of
8030 // initializers must be one or must match the size of the vector.
8031 // If a single value is specified in the initializer then it will be
8032 // replicated to all the components of the vector
8033 if (CheckAltivecInitFromScalar(E->getSourceRange(), Ty,
8034 VTy->getElementType()))
8035 return ExprError();
8036 if (ShouldSplatAltivecScalarInCast(VTy)) {
8037 // The number of initializers must be one or must match the size of the
8038 // vector. If a single value is specified in the initializer then it will
8039 // be replicated to all the components of the vector
8040 if (numExprs == 1) {
8041 QualType ElemTy = VTy->getElementType();
8042 ExprResult Literal = DefaultLvalueConversion(exprs[0]);
8043 if (Literal.isInvalid())
8044 return ExprError();
8045 Literal = ImpCastExprToType(Literal.get(), ElemTy,
8046 PrepareScalarCast(Literal, ElemTy));
8047 return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get());
8048 }
8049 else if (numExprs < numElems) {
8050 Diag(E->getExprLoc(),
8051 diag::err_incorrect_number_of_vector_initializers);
8052 return ExprError();
8053 }
8054 else
8055 initExprs.append(exprs, exprs + numExprs);
8056 }
8057 else {
8058 // For OpenCL, when the number of initializers is a single value,
8059 // it will be replicated to all components of the vector.
8060 if (getLangOpts().OpenCL &&
8061 VTy->getVectorKind() == VectorType::GenericVector &&
8062 numExprs == 1) {
8063 QualType ElemTy = VTy->getElementType();
8064 ExprResult Literal = DefaultLvalueConversion(exprs[0]);
8065 if (Literal.isInvalid())
8066 return ExprError();
8067 Literal = ImpCastExprToType(Literal.get(), ElemTy,
8068 PrepareScalarCast(Literal, ElemTy));
8069 return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get());
8070 }
8071
8072 initExprs.append(exprs, exprs + numExprs);
8073 }
8074 // FIXME: This means that pretty-printing the final AST will produce curly
8075 // braces instead of the original commas.
8076 InitListExpr *initE = new (Context) InitListExpr(Context, LiteralLParenLoc,
8077 initExprs, LiteralRParenLoc);
8078 initE->setType(Ty);
8079 return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, initE);
8080}
8081
8082/// This is not an AltiVec-style cast or or C++ direct-initialization, so turn
8083/// the ParenListExpr into a sequence of comma binary operators.
8084ExprResult
8085Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *OrigExpr) {
8086 ParenListExpr *E = dyn_cast<ParenListExpr>(OrigExpr);
8087 if (!E)
8088 return OrigExpr;
8089
8090 ExprResult Result(E->getExpr(0));
8091
8092 for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
8093 Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, Result.get(),
8094 E->getExpr(i));
8095
8096 if (Result.isInvalid()) return ExprError();
8097
8098 return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), Result.get());
8099}
8100
8101ExprResult Sema::ActOnParenListExpr(SourceLocation L,
8102 SourceLocation R,
8103 MultiExprArg Val) {
8104 return ParenListExpr::Create(Context, L, Val, R);
8105}
8106
8107/// Emit a specialized diagnostic when one expression is a null pointer
8108/// constant and the other is not a pointer. Returns true if a diagnostic is
8109/// emitted.
8110bool Sema::DiagnoseConditionalForNull(Expr *LHSExpr, Expr *RHSExpr,
8111 SourceLocation QuestionLoc) {
8112 Expr *NullExpr = LHSExpr;
8113 Expr *NonPointerExpr = RHSExpr;
8114 Expr::NullPointerConstantKind NullKind =
8115 NullExpr->isNullPointerConstant(Context,
8116 Expr::NPC_ValueDependentIsNotNull);
8117
8118 if (NullKind == Expr::NPCK_NotNull) {
8119 NullExpr = RHSExpr;
8120 NonPointerExpr = LHSExpr;
8121 NullKind =
8122 NullExpr->isNullPointerConstant(Context,
8123 Expr::NPC_ValueDependentIsNotNull);
8124 }
8125
8126 if (NullKind == Expr::NPCK_NotNull)
8127 return false;
8128
8129 if (NullKind == Expr::NPCK_ZeroExpression)
8130 return false;
8131
8132 if (NullKind == Expr::NPCK_ZeroLiteral) {
8133 // In this case, check to make sure that we got here from a "NULL"
8134 // string in the source code.
8135 NullExpr = NullExpr->IgnoreParenImpCasts();
8136 SourceLocation loc = NullExpr->getExprLoc();
8137 if (!findMacroSpelling(loc, "NULL"))
8138 return false;
8139 }
8140
8141 int DiagType = (NullKind == Expr::NPCK_CXX11_nullptr);
8142 Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands_null)
8143 << NonPointerExpr->getType() << DiagType
8144 << NonPointerExpr->getSourceRange();
8145 return true;
8146}
8147
8148/// Return false if the condition expression is valid, true otherwise.
8149static bool checkCondition(Sema &S, Expr *Cond, SourceLocation QuestionLoc) {
8150 QualType CondTy = Cond->getType();
8151
8152 // OpenCL v1.1 s6.3.i says the condition cannot be a floating point type.
8153 if (S.getLangOpts().OpenCL && CondTy->isFloatingType()) {
8154 S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_nonfloat)
8155 << CondTy << Cond->getSourceRange();
8156 return true;
8157 }
8158
8159 // C99 6.5.15p2
8160 if (CondTy->isScalarType()) return false;
8161
8162 S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_scalar)
8163 << CondTy << Cond->getSourceRange();
8164 return true;
8165}
8166
8167/// Return false if the NullExpr can be promoted to PointerTy,
8168/// true otherwise.
8169static bool checkConditionalNullPointer(Sema &S, ExprResult &NullExpr,
8170 QualType PointerTy) {
8171 if ((!PointerTy->isAnyPointerType() && !PointerTy->isBlockPointerType()) ||
8172 !NullExpr.get()->isNullPointerConstant(S.Context,
8173 Expr::NPC_ValueDependentIsNull))
8174 return true;
8175
8176 NullExpr = S.ImpCastExprToType(NullExpr.get(), PointerTy, CK_NullToPointer);
8177 return false;
8178}
8179
8180/// Checks compatibility between two pointers and return the resulting
8181/// type.
8182static QualType checkConditionalPointerCompatibility(Sema &S, ExprResult &LHS,
8183 ExprResult &RHS,
8184 SourceLocation Loc) {
8185 QualType LHSTy = LHS.get()->getType();
8186 QualType RHSTy = RHS.get()->getType();
8187
8188 if (S.Context.hasSameType(LHSTy, RHSTy)) {
8189 // Two identical pointers types are always compatible.
8190 return S.Context.getCommonSugaredType(LHSTy, RHSTy);
8191 }
8192
8193 QualType lhptee, rhptee;
8194
8195 // Get the pointee types.
8196 bool IsBlockPointer = false;
8197 if (const BlockPointerType *LHSBTy = LHSTy->getAs<BlockPointerType>()) {
8198 lhptee = LHSBTy->getPointeeType();
8199 rhptee = RHSTy->castAs<BlockPointerType>()->getPointeeType();
8200 IsBlockPointer = true;
8201 } else {
8202 lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
8203 rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
8204 }
8205
8206 // C99 6.5.15p6: If both operands are pointers to compatible types or to
8207 // differently qualified versions of compatible types, the result type is
8208 // a pointer to an appropriately qualified version of the composite
8209 // type.
8210
8211 // Only CVR-qualifiers exist in the standard, and the differently-qualified
8212 // clause doesn't make sense for our extensions. E.g. address space 2 should
8213 // be incompatible with address space 3: they may live on different devices or
8214 // anything.
8215 Qualifiers lhQual = lhptee.getQualifiers();
8216 Qualifiers rhQual = rhptee.getQualifiers();
8217
8218 LangAS ResultAddrSpace = LangAS::Default;
8219 LangAS LAddrSpace = lhQual.getAddressSpace();
8220 LangAS RAddrSpace = rhQual.getAddressSpace();
8221
8222 // OpenCL v1.1 s6.5 - Conversion between pointers to distinct address
8223 // spaces is disallowed.
8224 if (lhQual.isAddressSpaceSupersetOf(rhQual))
8225 ResultAddrSpace = LAddrSpace;
8226 else if (rhQual.isAddressSpaceSupersetOf(lhQual))
8227 ResultAddrSpace = RAddrSpace;
8228 else {
8229 S.Diag(Loc, diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
8230 << LHSTy << RHSTy << 2 << LHS.get()->getSourceRange()
8231 << RHS.get()->getSourceRange();
8232 return QualType();
8233 }
8234
8235 unsigned MergedCVRQual = lhQual.getCVRQualifiers() | rhQual.getCVRQualifiers();
8236 auto LHSCastKind = CK_BitCast, RHSCastKind = CK_BitCast;
8237 lhQual.removeCVRQualifiers();
8238 rhQual.removeCVRQualifiers();
8239
8240 // OpenCL v2.0 specification doesn't extend compatibility of type qualifiers
8241 // (C99 6.7.3) for address spaces. We assume that the check should behave in
8242 // the same manner as it's defined for CVR qualifiers, so for OpenCL two
8243 // qual types are compatible iff
8244 // * corresponded types are compatible
8245 // * CVR qualifiers are equal
8246 // * address spaces are equal
8247 // Thus for conditional operator we merge CVR and address space unqualified
8248 // pointees and if there is a composite type we return a pointer to it with
8249 // merged qualifiers.
8250 LHSCastKind =
8251 LAddrSpace == ResultAddrSpace ? CK_BitCast : CK_AddressSpaceConversion;
8252 RHSCastKind =
8253 RAddrSpace == ResultAddrSpace ? CK_BitCast : CK_AddressSpaceConversion;
8254 lhQual.removeAddressSpace();
8255 rhQual.removeAddressSpace();
8256
8257 lhptee = S.Context.getQualifiedType(lhptee.getUnqualifiedType(), lhQual);
8258 rhptee = S.Context.getQualifiedType(rhptee.getUnqualifiedType(), rhQual);
8259
8260 QualType CompositeTy = S.Context.mergeTypes(lhptee, rhptee);
8261
8262 if (CompositeTy.isNull()) {
8263 // In this situation, we assume void* type. No especially good
8264 // reason, but this is what gcc does, and we do have to pick
8265 // to get a consistent AST.
8266 QualType incompatTy;
8267 incompatTy = S.Context.getPointerType(
8268 S.Context.getAddrSpaceQualType(S.Context.VoidTy, ResultAddrSpace));
8269 LHS = S.ImpCastExprToType(LHS.get(), incompatTy, LHSCastKind);
8270 RHS = S.ImpCastExprToType(RHS.get(), incompatTy, RHSCastKind);
8271
8272 // FIXME: For OpenCL the warning emission and cast to void* leaves a room
8273 // for casts between types with incompatible address space qualifiers.
8274 // For the following code the compiler produces casts between global and
8275 // local address spaces of the corresponded innermost pointees:
8276 // local int *global *a;
8277 // global int *global *b;
8278 // a = (0 ? a : b); // see C99 6.5.16.1.p1.
8279 S.Diag(Loc, diag::ext_typecheck_cond_incompatible_pointers)
8280 << LHSTy << RHSTy << LHS.get()->getSourceRange()
8281 << RHS.get()->getSourceRange();
8282
8283 return incompatTy;
8284 }
8285
8286 // The pointer types are compatible.
8287 // In case of OpenCL ResultTy should have the address space qualifier
8288 // which is a superset of address spaces of both the 2nd and the 3rd
8289 // operands of the conditional operator.
8290 QualType ResultTy = [&, ResultAddrSpace]() {
8291 if (S.getLangOpts().OpenCL) {
8292 Qualifiers CompositeQuals = CompositeTy.getQualifiers();
8293 CompositeQuals.setAddressSpace(ResultAddrSpace);
8294 return S.Context
8295 .getQualifiedType(CompositeTy.getUnqualifiedType(), CompositeQuals)
8296 .withCVRQualifiers(MergedCVRQual);
8297 }
8298 return CompositeTy.withCVRQualifiers(MergedCVRQual);
8299 }();
8300 if (IsBlockPointer)
8301 ResultTy = S.Context.getBlockPointerType(ResultTy);
8302 else
8303 ResultTy = S.Context.getPointerType(ResultTy);
8304
8305 LHS = S.ImpCastExprToType(LHS.get(), ResultTy, LHSCastKind);
8306 RHS = S.ImpCastExprToType(RHS.get(), ResultTy, RHSCastKind);
8307 return ResultTy;
8308}
8309
8310/// Return the resulting type when the operands are both block pointers.
8311static QualType checkConditionalBlockPointerCompatibility(Sema &S,
8312 ExprResult &LHS,
8313 ExprResult &RHS,
8314 SourceLocation Loc) {
8315 QualType LHSTy = LHS.get()->getType();
8316 QualType RHSTy = RHS.get()->getType();
8317
8318 if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
8319 if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
8320 QualType destType = S.Context.getPointerType(S.Context.VoidTy);
8321 LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast);
8322 RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast);
8323 return destType;
8324 }
8325 S.Diag(Loc, diag::err_typecheck_cond_incompatible_operands)
8326 << LHSTy << RHSTy << LHS.get()->getSourceRange()
8327 << RHS.get()->getSourceRange();
8328 return QualType();
8329 }
8330
8331 // We have 2 block pointer types.
8332 return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
8333}
8334
8335/// Return the resulting type when the operands are both pointers.
8336static QualType
8337checkConditionalObjectPointersCompatibility(Sema &S, ExprResult &LHS,
8338 ExprResult &RHS,
8339 SourceLocation Loc) {
8340 // get the pointer types
8341 QualType LHSTy = LHS.get()->getType();
8342 QualType RHSTy = RHS.get()->getType();
8343
8344 // get the "pointed to" types
8345 QualType lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
8346 QualType rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
8347
8348 // ignore qualifiers on void (C99 6.5.15p3, clause 6)
8349 if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
8350 // Figure out necessary qualifiers (C99 6.5.15p6)
8351 QualType destPointee
8352 = S.Context.getQualifiedType(lhptee, rhptee.getQualifiers());
8353 QualType destType = S.Context.getPointerType(destPointee);
8354 // Add qualifiers if necessary.
8355 LHS = S.ImpCastExprToType(LHS.get(), destType, CK_NoOp);
8356 // Promote to void*.
8357 RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast);
8358 return destType;
8359 }
8360 if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
8361 QualType destPointee
8362 = S.Context.getQualifiedType(rhptee, lhptee.getQualifiers());
8363 QualType destType = S.Context.getPointerType(destPointee);
8364 // Add qualifiers if necessary.
8365 RHS = S.ImpCastExprToType(RHS.get(), destType, CK_NoOp);
8366 // Promote to void*.
8367 LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast);
8368 return destType;
8369 }
8370
8371 return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
8372}
8373
8374/// Return false if the first expression is not an integer and the second
8375/// expression is not a pointer, true otherwise.
8376static bool checkPointerIntegerMismatch(Sema &S, ExprResult &Int,
8377 Expr* PointerExpr, SourceLocation Loc,
8378 bool IsIntFirstExpr) {
8379 if (!PointerExpr->getType()->isPointerType() ||
8380 !Int.get()->getType()->isIntegerType())
8381 return false;
8382
8383 Expr *Expr1 = IsIntFirstExpr ? Int.get() : PointerExpr;
8384 Expr *Expr2 = IsIntFirstExpr ? PointerExpr : Int.get();
8385
8386 S.Diag(Loc, diag::ext_typecheck_cond_pointer_integer_mismatch)
8387 << Expr1->getType() << Expr2->getType()
8388 << Expr1->getSourceRange() << Expr2->getSourceRange();
8389 Int = S.ImpCastExprToType(Int.get(), PointerExpr->getType(),
8390 CK_IntegralToPointer);
8391 return true;
8392}
8393
8394/// Simple conversion between integer and floating point types.
8395///
8396/// Used when handling the OpenCL conditional operator where the
8397/// condition is a vector while the other operands are scalar.
8398///
8399/// OpenCL v1.1 s6.3.i and s6.11.6 together require that the scalar
8400/// types are either integer or floating type. Between the two
8401/// operands, the type with the higher rank is defined as the "result
8402/// type". The other operand needs to be promoted to the same type. No
8403/// other type promotion is allowed. We cannot use
8404/// UsualArithmeticConversions() for this purpose, since it always
8405/// promotes promotable types.
8406static QualType OpenCLArithmeticConversions(Sema &S, ExprResult &LHS,
8407 ExprResult &RHS,
8408 SourceLocation QuestionLoc) {
8409 LHS = S.DefaultFunctionArrayLvalueConversion(LHS.get());
8410 if (LHS.isInvalid())
8411 return QualType();
8412 RHS = S.DefaultFunctionArrayLvalueConversion(RHS.get());
8413 if (RHS.isInvalid())
8414 return QualType();
8415
8416 // For conversion purposes, we ignore any qualifiers.
8417 // For example, "const float" and "float" are equivalent.
8418 QualType LHSType =
8419 S.Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
8420 QualType RHSType =
8421 S.Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
8422
8423 if (!LHSType->isIntegerType() && !LHSType->isRealFloatingType()) {
8424 S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_int_float)
8425 << LHSType << LHS.get()->getSourceRange();
8426 return QualType();
8427 }
8428
8429 if (!RHSType->isIntegerType() && !RHSType->isRealFloatingType()) {
8430 S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_int_float)
8431 << RHSType << RHS.get()->getSourceRange();
8432 return QualType();
8433 }
8434
8435 // If both types are identical, no conversion is needed.
8436 if (LHSType == RHSType)
8437 return LHSType;
8438
8439 // Now handle "real" floating types (i.e. float, double, long double).
8440 if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
8441 return handleFloatConversion(S, LHS, RHS, LHSType, RHSType,
8442 /*IsCompAssign = */ false);
8443
8444 // Finally, we have two differing integer types.
8445 return handleIntegerConversion<doIntegralCast, doIntegralCast>
8446 (S, LHS, RHS, LHSType, RHSType, /*IsCompAssign = */ false);
8447}
8448
8449/// Convert scalar operands to a vector that matches the
8450/// condition in length.
8451///
8452/// Used when handling the OpenCL conditional operator where the
8453/// condition is a vector while the other operands are scalar.
8454///
8455/// We first compute the "result type" for the scalar operands
8456/// according to OpenCL v1.1 s6.3.i. Both operands are then converted
8457/// into a vector of that type where the length matches the condition
8458/// vector type. s6.11.6 requires that the element types of the result
8459/// and the condition must have the same number of bits.
8460static QualType
8461OpenCLConvertScalarsToVectors(Sema &S, ExprResult &LHS, ExprResult &RHS,
8462 QualType CondTy, SourceLocation QuestionLoc) {
8463 QualType ResTy = OpenCLArithmeticConversions(S, LHS, RHS, QuestionLoc);
8464 if (ResTy.isNull()) return QualType();
8465
8466 const VectorType *CV = CondTy->getAs<VectorType>();
8467 assert(CV)(static_cast <bool> (CV) ? void (0) : __assert_fail ("CV"
, "clang/lib/Sema/SemaExpr.cpp", 8467, __extension__ __PRETTY_FUNCTION__
))
;
8468
8469 // Determine the vector result type
8470 unsigned NumElements = CV->getNumElements();
8471 QualType VectorTy = S.Context.getExtVectorType(ResTy, NumElements);
8472
8473 // Ensure that all types have the same number of bits
8474 if (S.Context.getTypeSize(CV->getElementType())
8475 != S.Context.getTypeSize(ResTy)) {
8476 // Since VectorTy is created internally, it does not pretty print
8477 // with an OpenCL name. Instead, we just print a description.
8478 std::string EleTyName = ResTy.getUnqualifiedType().getAsString();
8479 SmallString<64> Str;
8480 llvm::raw_svector_ostream OS(Str);
8481 OS << "(vector of " << NumElements << " '" << EleTyName << "' values)";
8482 S.Diag(QuestionLoc, diag::err_conditional_vector_element_size)
8483 << CondTy << OS.str();
8484 return QualType();
8485 }
8486
8487 // Convert operands to the vector result type
8488 LHS = S.ImpCastExprToType(LHS.get(), VectorTy, CK_VectorSplat);
8489 RHS = S.ImpCastExprToType(RHS.get(), VectorTy, CK_VectorSplat);
8490
8491 return VectorTy;
8492}
8493
8494/// Return false if this is a valid OpenCL condition vector
8495static bool checkOpenCLConditionVector(Sema &S, Expr *Cond,
8496 SourceLocation QuestionLoc) {
8497 // OpenCL v1.1 s6.11.6 says the elements of the vector must be of
8498 // integral type.
8499 const VectorType *CondTy = Cond->getType()->getAs<VectorType>();
8500 assert(CondTy)(static_cast <bool> (CondTy) ? void (0) : __assert_fail
("CondTy", "clang/lib/Sema/SemaExpr.cpp", 8500, __extension__
__PRETTY_FUNCTION__))
;
8501 QualType EleTy = CondTy->getElementType();
8502 if (EleTy->isIntegerType()) return false;
8503
8504 S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_nonfloat)
8505 << Cond->getType() << Cond->getSourceRange();
8506 return true;
8507}
8508
8509/// Return false if the vector condition type and the vector
8510/// result type are compatible.
8511///
8512/// OpenCL v1.1 s6.11.6 requires that both vector types have the same
8513/// number of elements, and their element types have the same number
8514/// of bits.
8515static bool checkVectorResult(Sema &S, QualType CondTy, QualType VecResTy,
8516 SourceLocation QuestionLoc) {
8517 const VectorType *CV = CondTy->getAs<VectorType>();
8518 const VectorType *RV = VecResTy->getAs<VectorType>();
8519 assert(CV && RV)(static_cast <bool> (CV && RV) ? void (0) : __assert_fail
("CV && RV", "clang/lib/Sema/SemaExpr.cpp", 8519, __extension__
__PRETTY_FUNCTION__))
;
8520
8521 if (CV->getNumElements() != RV->getNumElements()) {
8522 S.Diag(QuestionLoc, diag::err_conditional_vector_size)
8523 << CondTy << VecResTy;
8524 return true;
8525 }
8526
8527 QualType CVE = CV->getElementType();
8528 QualType RVE = RV->getElementType();
8529
8530 if (S.Context.getTypeSize(CVE) != S.Context.getTypeSize(RVE)) {
8531 S.Diag(QuestionLoc, diag::err_conditional_vector_element_size)
8532 << CondTy << VecResTy;
8533 return true;
8534 }
8535
8536 return false;
8537}
8538
8539/// Return the resulting type for the conditional operator in
8540/// OpenCL (aka "ternary selection operator", OpenCL v1.1
8541/// s6.3.i) when the condition is a vector type.
8542static QualType
8543OpenCLCheckVectorConditional(Sema &S, ExprResult &Cond,
8544 ExprResult &LHS, ExprResult &RHS,
8545 SourceLocation QuestionLoc) {
8546 Cond = S.DefaultFunctionArrayLvalueConversion(Cond.get());
8547 if (Cond.isInvalid())
8548 return QualType();
8549 QualType CondTy = Cond.get()->getType();
8550
8551 if (checkOpenCLConditionVector(S, Cond.get(), QuestionLoc))
8552 return QualType();
8553
8554 // If either operand is a vector then find the vector type of the
8555 // result as specified in OpenCL v1.1 s6.3.i.
8556 if (LHS.get()->getType()->isVectorType() ||
8557 RHS.get()->getType()->isVectorType()) {
8558 bool IsBoolVecLang =
8559 !S.getLangOpts().OpenCL && !S.getLangOpts().OpenCLCPlusPlus;
8560 QualType VecResTy =
8561 S.CheckVectorOperands(LHS, RHS, QuestionLoc,
8562 /*isCompAssign*/ false,
8563 /*AllowBothBool*/ true,
8564 /*AllowBoolConversions*/ false,
8565 /*AllowBooleanOperation*/ IsBoolVecLang,
8566 /*ReportInvalid*/ true);
8567 if (VecResTy.isNull())
8568 return QualType();
8569 // The result type must match the condition type as specified in
8570 // OpenCL v1.1 s6.11.6.
8571 if (checkVectorResult(S, CondTy, VecResTy, QuestionLoc))
8572 return QualType();
8573 return VecResTy;
8574 }
8575
8576 // Both operands are scalar.
8577 return OpenCLConvertScalarsToVectors(S, LHS, RHS, CondTy, QuestionLoc);
8578}
8579
8580/// Return true if the Expr is block type
8581static bool checkBlockType(Sema &S, const Expr *E) {
8582 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
8583 QualType Ty = CE->getCallee()->getType();
8584 if (Ty->isBlockPointerType()) {
8585 S.Diag(E->getExprLoc(), diag::err_opencl_ternary_with_block);
8586 return true;
8587 }
8588 }
8589 return false;
8590}
8591
8592/// Note that LHS is not null here, even if this is the gnu "x ?: y" extension.
8593/// In that case, LHS = cond.
8594/// C99 6.5.15
8595QualType Sema::CheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
8596 ExprResult &RHS, ExprValueKind &VK,
8597 ExprObjectKind &OK,
8598 SourceLocation QuestionLoc) {
8599
8600 ExprResult LHSResult = CheckPlaceholderExpr(LHS.get());
8601 if (!LHSResult.isUsable()) return QualType();
8602 LHS = LHSResult;
8603
8604 ExprResult RHSResult = CheckPlaceholderExpr(RHS.get());
8605 if (!RHSResult.isUsable()) return QualType();
8606 RHS = RHSResult;
8607
8608 // C++ is sufficiently different to merit its own checker.
8609 if (getLangOpts().CPlusPlus)
8610 return CXXCheckConditionalOperands(Cond, LHS, RHS, VK, OK, QuestionLoc);
8611
8612 VK = VK_PRValue;
8613 OK = OK_Ordinary;
8614
8615 if (Context.isDependenceAllowed() &&
8616 (Cond.get()->isTypeDependent() || LHS.get()->isTypeDependent() ||
8617 RHS.get()->isTypeDependent())) {
8618 assert(!getLangOpts().CPlusPlus)(static_cast <bool> (!getLangOpts().CPlusPlus) ? void (
0) : __assert_fail ("!getLangOpts().CPlusPlus", "clang/lib/Sema/SemaExpr.cpp"
, 8618, __extension__ __PRETTY_FUNCTION__))
;
8619 assert((Cond.get()->containsErrors() || LHS.get()->containsErrors() ||(static_cast <bool> ((Cond.get()->containsErrors() ||
LHS.get()->containsErrors() || RHS.get()->containsErrors
()) && "should only occur in error-recovery path.") ?
void (0) : __assert_fail ("(Cond.get()->containsErrors() || LHS.get()->containsErrors() || RHS.get()->containsErrors()) && \"should only occur in error-recovery path.\""
, "clang/lib/Sema/SemaExpr.cpp", 8621, __extension__ __PRETTY_FUNCTION__
))
8620 RHS.get()->containsErrors()) &&(static_cast <bool> ((Cond.get()->containsErrors() ||
LHS.get()->containsErrors() || RHS.get()->containsErrors
()) && "should only occur in error-recovery path.") ?
void (0) : __assert_fail ("(Cond.get()->containsErrors() || LHS.get()->containsErrors() || RHS.get()->containsErrors()) && \"should only occur in error-recovery path.\""
, "clang/lib/Sema/SemaExpr.cpp", 8621, __extension__ __PRETTY_FUNCTION__
))
8621 "should only occur in error-recovery path.")(static_cast <bool> ((Cond.get()->containsErrors() ||
LHS.get()->containsErrors() || RHS.get()->containsErrors
()) && "should only occur in error-recovery path.") ?
void (0) : __assert_fail ("(Cond.get()->containsErrors() || LHS.get()->containsErrors() || RHS.get()->containsErrors()) && \"should only occur in error-recovery path.\""
, "clang/lib/Sema/SemaExpr.cpp", 8621, __extension__ __PRETTY_FUNCTION__
))
;
8622 return Context.DependentTy;
8623 }
8624
8625 // The OpenCL operator with a vector condition is sufficiently
8626 // different to merit its own checker.
8627 if ((getLangOpts().OpenCL && Cond.get()->getType()->isVectorType()) ||
8628 Cond.get()->getType()->isExtVectorType())
8629 return OpenCLCheckVectorConditional(*this, Cond, LHS, RHS, QuestionLoc);
8630
8631 // First, check the condition.
8632 Cond = UsualUnaryConversions(Cond.get());
8633 if (Cond.isInvalid())
8634 return QualType();
8635 if (checkCondition(*this, Cond.get(), QuestionLoc))
8636 return QualType();
8637
8638 // Now check the two expressions.
8639 if (LHS.get()->getType()->isVectorType() ||
8640 RHS.get()->getType()->isVectorType())
8641 return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/ false,
8642 /*AllowBothBool*/ true,
8643 /*AllowBoolConversions*/ false,
8644 /*AllowBooleanOperation*/ false,
8645 /*ReportInvalid*/ true);
8646
8647 QualType ResTy =
8648 UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional);
8649 if (LHS.isInvalid() || RHS.isInvalid())
8650 return QualType();
8651
8652 QualType LHSTy = LHS.get()->getType();
8653 QualType RHSTy = RHS.get()->getType();
8654
8655 // Diagnose attempts to convert between __ibm128, __float128 and long double
8656 // where such conversions currently can't be handled.
8657 if (unsupportedTypeConversion(*this, LHSTy, RHSTy)) {
8658 Diag(QuestionLoc,
8659 diag::err_typecheck_cond_incompatible_operands) << LHSTy << RHSTy
8660 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
8661 return QualType();
8662 }
8663
8664 // OpenCL v2.0 s6.12.5 - Blocks cannot be used as expressions of the ternary
8665 // selection operator (?:).
8666 if (getLangOpts().OpenCL &&
8667 ((int)checkBlockType(*this, LHS.get()) | (int)checkBlockType(*this, RHS.get()))) {
8668 return QualType();
8669 }
8670
8671 // If both operands have arithmetic type, do the usual arithmetic conversions
8672 // to find a common type: C99 6.5.15p3,5.
8673 if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
8674 // Disallow invalid arithmetic conversions, such as those between bit-
8675 // precise integers types of different sizes, or between a bit-precise
8676 // integer and another type.
8677 if (ResTy.isNull() && (LHSTy->isBitIntType() || RHSTy->isBitIntType())) {
8678 Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
8679 << LHSTy << RHSTy << LHS.get()->getSourceRange()
8680 << RHS.get()->getSourceRange();
8681 return QualType();
8682 }
8683
8684 LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy));
8685 RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy));
8686
8687 return ResTy;
8688 }
8689
8690 // And if they're both bfloat (which isn't arithmetic), that's fine too.
8691 if (LHSTy->isBFloat16Type() && RHSTy->isBFloat16Type()) {
8692 return Context.getCommonSugaredType(LHSTy, RHSTy);
8693 }
8694
8695 // If both operands are the same structure or union type, the result is that
8696 // type.
8697 if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) { // C99 6.5.15p3
8698 if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
8699 if (LHSRT->getDecl() == RHSRT->getDecl())
8700 // "If both the operands have structure or union type, the result has
8701 // that type." This implies that CV qualifiers are dropped.
8702 return Context.getCommonSugaredType(LHSTy.getUnqualifiedType(),
8703 RHSTy.getUnqualifiedType());
8704 // FIXME: Type of conditional expression must be complete in C mode.
8705 }
8706
8707 // C99 6.5.15p5: "If both operands have void type, the result has void type."
8708 // The following || allows only one side to be void (a GCC-ism).
8709 if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
8710 QualType ResTy;
8711 if (LHSTy->isVoidType() && RHSTy->isVoidType()) {
8712 ResTy = Context.getCommonSugaredType(LHSTy, RHSTy);
8713 } else if (RHSTy->isVoidType()) {
8714 ResTy = RHSTy;
8715 Diag(RHS.get()->getBeginLoc(), diag::ext_typecheck_cond_one_void)
8716 << RHS.get()->getSourceRange();
8717 } else {
8718 ResTy = LHSTy;
8719 Diag(LHS.get()->getBeginLoc(), diag::ext_typecheck_cond_one_void)
8720 << LHS.get()->getSourceRange();
8721 }
8722 LHS = ImpCastExprToType(LHS.get(), ResTy, CK_ToVoid);
8723 RHS = ImpCastExprToType(RHS.get(), ResTy, CK_ToVoid);
8724 return ResTy;
8725 }
8726
8727 // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
8728 // the type of the other operand."
8729 if (!checkConditionalNullPointer(*this, RHS, LHSTy)) return LHSTy;
8730 if (!checkConditionalNullPointer(*this, LHS, RHSTy)) return RHSTy;
8731
8732 // All objective-c pointer type analysis is done here.
8733 QualType compositeType = FindCompositeObjCPointerType(LHS, RHS,
8734 QuestionLoc);
8735 if (LHS.isInvalid() || RHS.isInvalid())
8736 return QualType();
8737 if (!compositeType.isNull())
8738 return compositeType;
8739
8740
8741 // Handle block pointer types.
8742 if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType())
8743 return checkConditionalBlockPointerCompatibility(*this, LHS, RHS,
8744 QuestionLoc);
8745
8746 // Check constraints for C object pointers types (C99 6.5.15p3,6).
8747 if (LHSTy->isPointerType() && RHSTy->isPointerType())
8748 return checkConditionalObjectPointersCompatibility(*this, LHS, RHS,
8749 QuestionLoc);
8750
8751 // GCC compatibility: soften pointer/integer mismatch. Note that
8752 // null pointers have been filtered out by this point.
8753 if (checkPointerIntegerMismatch(*this, LHS, RHS.get(), QuestionLoc,
8754 /*IsIntFirstExpr=*/true))
8755 return RHSTy;
8756 if (checkPointerIntegerMismatch(*this, RHS, LHS.get(), QuestionLoc,
8757 /*IsIntFirstExpr=*/false))
8758 return LHSTy;
8759
8760 // Allow ?: operations in which both operands have the same
8761 // built-in sizeless type.
8762 if (LHSTy->isSizelessBuiltinType() && Context.hasSameType(LHSTy, RHSTy))
8763 return Context.getCommonSugaredType(LHSTy, RHSTy);
8764
8765 // Emit a better diagnostic if one of the expressions is a null pointer
8766 // constant and the other is not a pointer type. In this case, the user most
8767 // likely forgot to take the address of the other expression.
8768 if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
8769 return QualType();
8770
8771 // Otherwise, the operands are not compatible.
8772 Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
8773 << LHSTy << RHSTy << LHS.get()->getSourceRange()
8774 << RHS.get()->getSourceRange();
8775 return QualType();
8776}
8777
8778/// FindCompositeObjCPointerType - Helper method to find composite type of
8779/// two objective-c pointer types of the two input expressions.
8780QualType Sema::FindCompositeObjCPointerType(ExprResult &LHS, ExprResult &RHS,
8781 SourceLocation QuestionLoc) {
8782 QualType LHSTy = LHS.get()->getType();
8783 QualType RHSTy = RHS.get()->getType();
8784
8785 // Handle things like Class and struct objc_class*. Here we case the result
8786 // to the pseudo-builtin, because that will be implicitly cast back to the
8787 // redefinition type if an attempt is made to access its fields.
8788 if (LHSTy->isObjCClassType() &&
8789 (Context.hasSameType(RHSTy, Context.getObjCClassRedefinitionType()))) {
8790 RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_CPointerToObjCPointerCast);
8791 return LHSTy;
8792 }
8793 if (RHSTy->isObjCClassType() &&
8794 (Context.hasSameType(LHSTy, Context.getObjCClassRedefinitionType()))) {
8795 LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_CPointerToObjCPointerCast);
8796 return RHSTy;
8797 }
8798 // And the same for struct objc_object* / id
8799 if (LHSTy->isObjCIdType() &&
8800 (Context.hasSameType(RHSTy, Context.getObjCIdRedefinitionType()))) {
8801 RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_CPointerToObjCPointerCast);
8802 return LHSTy;
8803 }
8804 if (RHSTy->isObjCIdType() &&
8805 (Context.hasSameType(LHSTy, Context.getObjCIdRedefinitionType()))) {
8806 LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_CPointerToObjCPointerCast);
8807 return RHSTy;
8808 }
8809 // And the same for struct objc_selector* / SEL
8810 if (Context.isObjCSelType(LHSTy) &&
8811 (Context.hasSameType(RHSTy, Context.getObjCSelRedefinitionType()))) {
8812 RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_BitCast);
8813 return LHSTy;
8814 }
8815 if (Context.isObjCSelType(RHSTy) &&
8816 (Context.hasSameType(LHSTy, Context.getObjCSelRedefinitionType()))) {
8817 LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_BitCast);
8818 return RHSTy;
8819 }
8820 // Check constraints for Objective-C object pointers types.
8821 if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
8822
8823 if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
8824 // Two identical object pointer types are always compatible.
8825 return LHSTy;
8826 }
8827 const ObjCObjectPointerType *LHSOPT = LHSTy->castAs<ObjCObjectPointerType>();
8828 const ObjCObjectPointerType *RHSOPT = RHSTy->castAs<ObjCObjectPointerType>();
8829 QualType compositeType = LHSTy;
8830
8831 // If both operands are interfaces and either operand can be
8832 // assigned to the other, use that type as the composite
8833 // type. This allows
8834 // xxx ? (A*) a : (B*) b
8835 // where B is a subclass of A.
8836 //
8837 // Additionally, as for assignment, if either type is 'id'
8838 // allow silent coercion. Finally, if the types are
8839 // incompatible then make sure to use 'id' as the composite
8840 // type so the result is acceptable for sending messages to.
8841
8842 // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
8843 // It could return the composite type.
8844 if (!(compositeType =
8845 Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull()) {
8846 // Nothing more to do.
8847 } else if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
8848 compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy;
8849 } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
8850 compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy;
8851 } else if ((LHSOPT->isObjCQualifiedIdType() ||
8852 RHSOPT->isObjCQualifiedIdType()) &&
8853 Context.ObjCQualifiedIdTypesAreCompatible(LHSOPT, RHSOPT,
8854 true)) {
8855 // Need to handle "id<xx>" explicitly.
8856 // GCC allows qualified id and any Objective-C type to devolve to
8857 // id. Currently localizing to here until clear this should be
8858 // part of ObjCQualifiedIdTypesAreCompatible.
8859 compositeType = Context.getObjCIdType();
8860 } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
8861 compositeType = Context.getObjCIdType();
8862 } else {
8863 Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
8864 << LHSTy << RHSTy
8865 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
8866 QualType incompatTy = Context.getObjCIdType();
8867 LHS = ImpCastExprToType(LHS.get(), incompatTy, CK_BitCast);
8868 RHS = ImpCastExprToType(RHS.get(), incompatTy, CK_BitCast);
8869 return incompatTy;
8870 }
8871 // The object pointer types are compatible.
8872 LHS = ImpCastExprToType(LHS.get(), compositeType, CK_BitCast);
8873 RHS = ImpCastExprToType(RHS.get(), compositeType, CK_BitCast);
8874 return compositeType;
8875 }
8876 // Check Objective-C object pointer types and 'void *'
8877 if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
8878 if (getLangOpts().ObjCAutoRefCount) {
8879 // ARC forbids the implicit conversion of object pointers to 'void *',
8880 // so these types are not compatible.
8881 Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
8882 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
8883 LHS = RHS = true;
8884 return QualType();
8885 }
8886 QualType lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
8887 QualType rhptee = RHSTy->castAs<ObjCObjectPointerType>()->getPointeeType();
8888 QualType destPointee
8889 = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
8890 QualType destType = Context.getPointerType(destPointee);
8891 // Add qualifiers if necessary.
8892 LHS = ImpCastExprToType(LHS.get(), destType, CK_NoOp);
8893 // Promote to void*.
8894 RHS = ImpCastExprToType(RHS.get(), destType, CK_BitCast);
8895 return destType;
8896 }
8897 if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
8898 if (getLangOpts().ObjCAutoRefCount) {
8899 // ARC forbids the implicit conversion of object pointers to 'void *',
8900 // so these types are not compatible.
8901 Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
8902 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
8903 LHS = RHS = true;
8904 return QualType();
8905 }
8906 QualType lhptee = LHSTy->castAs<ObjCObjectPointerType>()->getPointeeType();
8907 QualType rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
8908 QualType destPointee
8909 = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
8910 QualType destType = Context.getPointerType(destPointee);
8911 // Add qualifiers if necessary.
8912 RHS = ImpCastExprToType(RHS.get(), destType, CK_NoOp);
8913 // Promote to void*.
8914 LHS = ImpCastExprToType(LHS.get(), destType, CK_BitCast);
8915 return destType;
8916 }
8917 return QualType();
8918}
8919
8920/// SuggestParentheses - Emit a note with a fixit hint that wraps
8921/// ParenRange in parentheses.
8922static void SuggestParentheses(Sema &Self, SourceLocation Loc,
8923 const PartialDiagnostic &Note,
8924 SourceRange ParenRange) {
8925 SourceLocation EndLoc = Self.getLocForEndOfToken(ParenRange.getEnd());
8926 if (ParenRange.getBegin().isFileID() && ParenRange.getEnd().isFileID() &&
8927 EndLoc.isValid()) {
8928 Self.Diag(Loc, Note)
8929 << FixItHint::CreateInsertion(ParenRange.getBegin(), "(")
8930 << FixItHint::CreateInsertion(EndLoc, ")");
8931 } else {
8932 // We can't display the parentheses, so just show the bare note.
8933 Self.Diag(Loc, Note) << ParenRange;
8934 }
8935}
8936
8937static bool IsArithmeticOp(BinaryOperatorKind Opc) {
8938 return BinaryOperator::isAdditiveOp(Opc) ||
8939 BinaryOperator::isMultiplicativeOp(Opc) ||
8940 BinaryOperator::isShiftOp(Opc) || Opc == BO_And || Opc == BO_Or;
8941 // This only checks for bitwise-or and bitwise-and, but not bitwise-xor and
8942 // not any of the logical operators. Bitwise-xor is commonly used as a
8943 // logical-xor because there is no logical-xor operator. The logical
8944 // operators, including uses of xor, have a high false positive rate for
8945 // precedence warnings.
8946}
8947
8948/// IsArithmeticBinaryExpr - Returns true if E is an arithmetic binary
8949/// expression, either using a built-in or overloaded operator,
8950/// and sets *OpCode to the opcode and *RHSExprs to the right-hand side
8951/// expression.
8952static bool IsArithmeticBinaryExpr(Expr *E, BinaryOperatorKind *Opcode,
8953 Expr **RHSExprs) {
8954 // Don't strip parenthesis: we should not warn if E is in parenthesis.
8955 E = E->IgnoreImpCasts();
8956 E = E->IgnoreConversionOperatorSingleStep();
8957 E = E->IgnoreImpCasts();
8958 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) {
8959 E = MTE->getSubExpr();
8960 E = E->IgnoreImpCasts();
8961 }
8962
8963 // Built-in binary operator.
8964 if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E)) {
8965 if (IsArithmeticOp(OP->getOpcode())) {
8966 *Opcode = OP->getOpcode();
8967 *RHSExprs = OP->getRHS();
8968 return true;
8969 }
8970 }
8971
8972 // Overloaded operator.
8973 if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(E)) {
8974 if (Call->getNumArgs() != 2)
8975 return false;
8976
8977 // Make sure this is really a binary operator that is safe to pass into
8978 // BinaryOperator::getOverloadedOpcode(), e.g. it's not a subscript op.
8979 OverloadedOperatorKind OO = Call->getOperator();
8980 if (OO < OO_Plus || OO > OO_Arrow ||
8981 OO == OO_PlusPlus || OO == OO_MinusMinus)
8982 return false;
8983
8984 BinaryOperatorKind OpKind = BinaryOperator::getOverloadedOpcode(OO);
8985 if (IsArithmeticOp(OpKind)) {
8986 *Opcode = OpKind;
8987 *RHSExprs = Call->getArg(1);
8988 return true;
8989 }
8990 }
8991
8992 return false;
8993}
8994
8995/// ExprLooksBoolean - Returns true if E looks boolean, i.e. it has boolean type
8996/// or is a logical expression such as (x==y) which has int type, but is
8997/// commonly interpreted as boolean.
8998static bool ExprLooksBoolean(Expr *E) {
8999 E = E->IgnoreParenImpCasts();
9000
9001 if (E->getType()->isBooleanType())
9002 return true;
9003 if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E))
9004 return OP->isComparisonOp() || OP->isLogicalOp();
9005 if (UnaryOperator *OP = dyn_cast<UnaryOperator>(E))
9006 return OP->getOpcode() == UO_LNot;
9007 if (E->getType()->isPointerType())
9008 return true;
9009 // FIXME: What about overloaded operator calls returning "unspecified boolean
9010 // type"s (commonly pointer-to-members)?
9011
9012 return false;
9013}
9014
9015/// DiagnoseConditionalPrecedence - Emit a warning when a conditional operator
9016/// and binary operator are mixed in a way that suggests the programmer assumed
9017/// the conditional operator has higher precedence, for example:
9018/// "int x = a + someBinaryCondition ? 1 : 2".
9019static void DiagnoseConditionalPrecedence(Sema &Self,
9020 SourceLocation OpLoc,
9021 Expr *Condition,
9022 Expr *LHSExpr,
9023 Expr *RHSExpr) {
9024 BinaryOperatorKind CondOpcode;
9025 Expr *CondRHS;
9026
9027 if (!IsArithmeticBinaryExpr(Condition, &CondOpcode, &CondRHS))
9028 return;
9029 if (!ExprLooksBoolean(CondRHS))
9030 return;
9031
9032 // The condition is an arithmetic binary expression, with a right-
9033 // hand side that looks boolean, so warn.
9034
9035 unsigned DiagID = BinaryOperator::isBitwiseOp(CondOpcode)
9036 ? diag::warn_precedence_bitwise_conditional
9037 : diag::warn_precedence_conditional;
9038
9039 Self.Diag(OpLoc, DiagID)
9040 << Condition->getSourceRange()
9041 << BinaryOperator::getOpcodeStr(CondOpcode);
9042
9043 SuggestParentheses(
9044 Self, OpLoc,
9045 Self.PDiag(diag::note_precedence_silence)
9046 << BinaryOperator::getOpcodeStr(CondOpcode),
9047 SourceRange(Condition->getBeginLoc(), Condition->getEndLoc()));
9048
9049 SuggestParentheses(Self, OpLoc,
9050 Self.PDiag(diag::note_precedence_conditional_first),
9051 SourceRange(CondRHS->getBeginLoc(), RHSExpr->getEndLoc()));
9052}
9053
9054/// Compute the nullability of a conditional expression.
9055static QualType computeConditionalNullability(QualType ResTy, bool IsBin,
9056 QualType LHSTy, QualType RHSTy,
9057 ASTContext &Ctx) {
9058 if (!ResTy->isAnyPointerType())
9059 return ResTy;
9060
9061 auto GetNullability = [&Ctx](QualType Ty) {
9062 Optional<NullabilityKind> Kind = Ty->getNullability(Ctx);
9063 if (Kind) {
9064 // For our purposes, treat _Nullable_result as _Nullable.
9065 if (*Kind == NullabilityKind::NullableResult)
9066 return NullabilityKind::Nullable;
9067 return *Kind;
9068 }
9069 return NullabilityKind::Unspecified;
9070 };
9071
9072 auto LHSKind = GetNullability(LHSTy), RHSKind = GetNullability(RHSTy);
9073 NullabilityKind MergedKind;
9074
9075 // Compute nullability of a binary conditional expression.
9076 if (IsBin) {
9077 if (LHSKind == NullabilityKind::NonNull)
9078 MergedKind = NullabilityKind::NonNull;
9079 else
9080 MergedKind = RHSKind;
9081 // Compute nullability of a normal conditional expression.
9082 } else {
9083 if (LHSKind == NullabilityKind::Nullable ||
9084 RHSKind == NullabilityKind::Nullable)
9085 MergedKind = NullabilityKind::Nullable;
9086 else if (LHSKind == NullabilityKind::NonNull)
9087 MergedKind = RHSKind;
9088 else if (RHSKind == NullabilityKind::NonNull)
9089 MergedKind = LHSKind;
9090 else
9091 MergedKind = NullabilityKind::Unspecified;
9092 }
9093
9094 // Return if ResTy already has the correct nullability.
9095 if (GetNullability(ResTy) == MergedKind)
9096 return ResTy;
9097
9098 // Strip all nullability from ResTy.
9099 while (ResTy->getNullability(Ctx))
9100 ResTy = ResTy.getSingleStepDesugaredType(Ctx);
9101
9102 // Create a new AttributedType with the new nullability kind.
9103 auto NewAttr = AttributedType::getNullabilityAttrKind(MergedKind);
9104 return Ctx.getAttributedType(NewAttr, ResTy, ResTy);
9105}
9106
9107/// ActOnConditionalOp - Parse a ?: operation. Note that 'LHS' may be null
9108/// in the case of a the GNU conditional expr extension.
9109ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
9110 SourceLocation ColonLoc,
9111 Expr *CondExpr, Expr *LHSExpr,
9112 Expr *RHSExpr) {
9113 if (!Context.isDependenceAllowed()) {
9114 // C cannot handle TypoExpr nodes in the condition because it
9115 // doesn't handle dependent types properly, so make sure any TypoExprs have
9116 // been dealt with before checking the operands.
9117 ExprResult CondResult = CorrectDelayedTyposInExpr(CondExpr);
9118 ExprResult LHSResult = CorrectDelayedTyposInExpr(LHSExpr);
9119 ExprResult RHSResult = CorrectDelayedTyposInExpr(RHSExpr);
9120
9121 if (!CondResult.isUsable())
9122 return ExprError();
9123
9124 if (LHSExpr) {
9125 if (!LHSResult.isUsable())
9126 return ExprError();
9127 }
9128
9129 if (!RHSResult.isUsable())
9130 return ExprError();
9131
9132 CondExpr = CondResult.get();
9133 LHSExpr = LHSResult.get();
9134 RHSExpr = RHSResult.get();
9135 }
9136
9137 // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
9138 // was the condition.
9139 OpaqueValueExpr *opaqueValue = nullptr;
9140 Expr *commonExpr = nullptr;
9141 if (!LHSExpr) {
9142 commonExpr = CondExpr;
9143 // Lower out placeholder types first. This is important so that we don't
9144 // try to capture a placeholder. This happens in few cases in C++; such
9145 // as Objective-C++'s dictionary subscripting syntax.
9146 if (commonExpr->hasPlaceholderType()) {
9147 ExprResult result = CheckPlaceholderExpr(commonExpr);
9148 if (!result.isUsable()) return ExprError();
9149 commonExpr = result.get();
9150 }
9151 // We usually want to apply unary conversions *before* saving, except
9152 // in the special case of a C++ l-value conditional.
9153 if (!(getLangOpts().CPlusPlus
9154 && !commonExpr->isTypeDependent()
9155 && commonExpr->getValueKind() == RHSExpr->getValueKind()
9156 && commonExpr->isGLValue()
9157 && commonExpr->isOrdinaryOrBitFieldObject()
9158 && RHSExpr->isOrdinaryOrBitFieldObject()
9159 && Context.hasSameType(commonExpr->getType(), RHSExpr->getType()))) {
9160 ExprResult commonRes = UsualUnaryConversions(commonExpr);
9161 if (commonRes.isInvalid())
9162 return ExprError();
9163 commonExpr = commonRes.get();
9164 }
9165
9166 // If the common expression is a class or array prvalue, materialize it
9167 // so that we can safely refer to it multiple times.
9168 if (commonExpr->isPRValue() && (commonExpr->getType()->isRecordType() ||
9169 commonExpr->getType()->isArrayType())) {
9170 ExprResult MatExpr = TemporaryMaterializationConversion(commonExpr);
9171 if (MatExpr.isInvalid())
9172 return ExprError();
9173 commonExpr = MatExpr.get();
9174 }
9175
9176 opaqueValue = new (Context) OpaqueValueExpr(commonExpr->getExprLoc(),
9177 commonExpr->getType(),
9178 commonExpr->getValueKind(),
9179 commonExpr->getObjectKind(),
9180 commonExpr);
9181 LHSExpr = CondExpr = opaqueValue;
9182 }
9183
9184 QualType LHSTy = LHSExpr->getType(), RHSTy = RHSExpr->getType();
9185 ExprValueKind VK = VK_PRValue;
9186 ExprObjectKind OK = OK_Ordinary;
9187 ExprResult Cond = CondExpr, LHS = LHSExpr, RHS = RHSExpr;
9188 QualType result = CheckConditionalOperands(Cond, LHS, RHS,
9189 VK, OK, QuestionLoc);
9190 if (result.isNull() || Cond.isInvalid() || LHS.isInvalid() ||
9191 RHS.isInvalid())
9192 return ExprError();
9193
9194 DiagnoseConditionalPrecedence(*this, QuestionLoc, Cond.get(), LHS.get(),
9195 RHS.get());
9196
9197 CheckBoolLikeConversion(Cond.get(), QuestionLoc);
9198
9199 result = computeConditionalNullability(result, commonExpr, LHSTy, RHSTy,
9200 Context);
9201
9202 if (!commonExpr)
9203 return new (Context)
9204 ConditionalOperator(Cond.get(), QuestionLoc, LHS.get(), ColonLoc,
9205 RHS.get(), result, VK, OK);
9206
9207 return new (Context) BinaryConditionalOperator(
9208 commonExpr, opaqueValue, Cond.get(), LHS.get(), RHS.get(), QuestionLoc,
9209 ColonLoc, result, VK, OK);
9210}
9211
9212// Check if we have a conversion between incompatible cmse function pointer
9213// types, that is, a conversion between a function pointer with the
9214// cmse_nonsecure_call attribute and one without.
9215static bool IsInvalidCmseNSCallConversion(Sema &S, QualType FromType,
9216 QualType ToType) {
9217 if (const auto *ToFn =
9218 dyn_cast<FunctionType>(S.Context.getCanonicalType(ToType))) {
9219 if (const auto *FromFn =
9220 dyn_cast<FunctionType>(S.Context.getCanonicalType(FromType))) {
9221 FunctionType::ExtInfo ToEInfo = ToFn->getExtInfo();
9222 FunctionType::ExtInfo FromEInfo = FromFn->getExtInfo();
9223
9224 return ToEInfo.getCmseNSCall() != FromEInfo.getCmseNSCall();
9225 }
9226 }
9227 return false;
9228}
9229
9230// checkPointerTypesForAssignment - This is a very tricky routine (despite
9231// being closely modeled after the C99 spec:-). The odd characteristic of this
9232// routine is it effectively iqnores the qualifiers on the top level pointee.
9233// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
9234// FIXME: add a couple examples in this comment.
9235static Sema::AssignConvertType
9236checkPointerTypesForAssignment(Sema &S, QualType LHSType, QualType RHSType) {
9237 assert(LHSType.isCanonical() && "LHS not canonicalized!")(static_cast <bool> (LHSType.isCanonical() && "LHS not canonicalized!"
) ? void (0) : __assert_fail ("LHSType.isCanonical() && \"LHS not canonicalized!\""
, "clang/lib/Sema/SemaExpr.cpp", 9237, __extension__ __PRETTY_FUNCTION__
))
;
9238 assert(RHSType.isCanonical() && "RHS not canonicalized!")(static_cast <bool> (RHSType.isCanonical() && "RHS not canonicalized!"
) ? void (0) : __assert_fail ("RHSType.isCanonical() && \"RHS not canonicalized!\""
, "clang/lib/Sema/SemaExpr.cpp", 9238, __extension__ __PRETTY_FUNCTION__
))
;
9239
9240 // get the "pointed to" type (ignoring qualifiers at the top level)
9241 const Type *lhptee, *rhptee;
9242 Qualifiers lhq, rhq;
9243 std::tie(lhptee, lhq) =
9244 cast<PointerType>(LHSType)->getPointeeType().split().asPair();
9245 std::tie(rhptee, rhq) =
9246 cast<PointerType>(RHSType)->getPointeeType().split().asPair();
9247
9248 Sema::AssignConvertType ConvTy = Sema::Compatible;
9249
9250 // C99 6.5.16.1p1: This following citation is common to constraints
9251 // 3 & 4 (below). ...and the type *pointed to* by the left has all the
9252 // qualifiers of the type *pointed to* by the right;
9253
9254 // As a special case, 'non-__weak A *' -> 'non-__weak const *' is okay.
9255 if (lhq.getObjCLifetime() != rhq.getObjCLifetime() &&
9256 lhq.compatiblyIncludesObjCLifetime(rhq)) {
9257 // Ignore lifetime for further calculation.
9258 lhq.removeObjCLifetime();
9259 rhq.removeObjCLifetime();
9260 }
9261
9262 if (!lhq.compatiblyIncludes(rhq)) {
9263 // Treat address-space mismatches as fatal.
9264 if (!lhq.isAddressSpaceSupersetOf(rhq))
9265 return Sema::IncompatiblePointerDiscardsQualifiers;
9266
9267 // It's okay to add or remove GC or lifetime qualifiers when converting to
9268 // and from void*.
9269 else if (lhq.withoutObjCGCAttr().withoutObjCLifetime()
9270 .compatiblyIncludes(
9271 rhq.withoutObjCGCAttr().withoutObjCLifetime())
9272 && (lhptee->isVoidType() || rhptee->isVoidType()))
9273 ; // keep old
9274
9275 // Treat lifetime mismatches as fatal.
9276 else if (lhq.getObjCLifetime() != rhq.getObjCLifetime())
9277 ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
9278
9279 // For GCC/MS compatibility, other qualifier mismatches are treated
9280 // as still compatible in C.
9281 else ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
9282 }
9283
9284 // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
9285 // incomplete type and the other is a pointer to a qualified or unqualified
9286 // version of void...
9287 if (lhptee->isVoidType()) {
9288 if (rhptee->isIncompleteOrObjectType())
9289 return ConvTy;
9290
9291 // As an extension, we allow cast to/from void* to function pointer.
9292 assert(rhptee->isFunctionType())(static_cast <bool> (rhptee->isFunctionType()) ? void
(0) : __assert_fail ("rhptee->isFunctionType()", "clang/lib/Sema/SemaExpr.cpp"
, 9292, __extension__ __PRETTY_FUNCTION__))
;
9293 return Sema::FunctionVoidPointer;
9294 }
9295
9296 if (rhptee->isVoidType()) {
9297 if (lhptee->isIncompleteOrObjectType())
9298 return ConvTy;
9299
9300 // As an extension, we allow cast to/from void* to function pointer.
9301 assert(lhptee->isFunctionType())(static_cast <bool> (lhptee->isFunctionType()) ? void
(0) : __assert_fail ("lhptee->isFunctionType()", "clang/lib/Sema/SemaExpr.cpp"
, 9301, __extension__ __PRETTY_FUNCTION__))
;
9302 return Sema::FunctionVoidPointer;
9303 }
9304
9305 // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
9306 // unqualified versions of compatible types, ...
9307 QualType ltrans = QualType(lhptee, 0), rtrans = QualType(rhptee, 0);
9308 if (!S.Context.typesAreCompatible(ltrans, rtrans)) {
9309 // Check if the pointee types are compatible ignoring the sign.
9310 // We explicitly check for char so that we catch "char" vs
9311 // "unsigned char" on systems where "char" is unsigned.
9312 if (lhptee->isCharType())
9313 ltrans = S.Context.UnsignedCharTy;
9314 else if (lhptee->hasSignedIntegerRepresentation())
9315 ltrans = S.Context.getCorrespondingUnsignedType(ltrans);
9316
9317 if (rhptee->isCharType())
9318 rtrans = S.Context.UnsignedCharTy;
9319 else if (rhptee->hasSignedIntegerRepresentation())
9320 rtrans = S.Context.getCorrespondingUnsignedType(rtrans);
9321
9322 if (ltrans == rtrans) {
9323 // Types are compatible ignoring the sign. Qualifier incompatibility
9324 // takes priority over sign incompatibility because the sign
9325 // warning can be disabled.
9326 if (ConvTy != Sema::Compatible)
9327 return ConvTy;
9328
9329 return Sema::IncompatiblePointerSign;
9330 }
9331
9332 // If we are a multi-level pointer, it's possible that our issue is simply
9333 // one of qualification - e.g. char ** -> const char ** is not allowed. If
9334 // the eventual target type is the same and the pointers have the same
9335 // level of indirection, this must be the issue.
9336 if (isa<PointerType>(lhptee) && isa<PointerType>(rhptee)) {
9337 do {
9338 std::tie(lhptee, lhq) =
9339 cast<PointerType>(lhptee)->getPointeeType().split().asPair();
9340 std::tie(rhptee, rhq) =
9341 cast<PointerType>(rhptee)->getPointeeType().split().asPair();
9342
9343 // Inconsistent address spaces at this point is invalid, even if the
9344 // address spaces would be compatible.
9345 // FIXME: This doesn't catch address space mismatches for pointers of
9346 // different nesting levels, like:
9347 // __local int *** a;
9348 // int ** b = a;
9349 // It's not clear how to actually determine when such pointers are
9350 // invalidly incompatible.
9351 if (lhq.getAddressSpace() != rhq.getAddressSpace())
9352 return Sema::IncompatibleNestedPointerAddressSpaceMismatch;
9353
9354 } while (isa<PointerType>(lhptee) && isa<PointerType>(rhptee));
9355
9356 if (lhptee == rhptee)
9357 return Sema::IncompatibleNestedPointerQualifiers;
9358 }
9359
9360 // General pointer incompatibility takes priority over qualifiers.
9361 if (RHSType->isFunctionPointerType() && LHSType->isFunctionPointerType())
9362 return Sema::IncompatibleFunctionPointer;
9363 return Sema::IncompatiblePointer;
9364 }
9365 if (!S.getLangOpts().CPlusPlus &&
9366 S.IsFunctionConversion(ltrans, rtrans, ltrans))
9367 return Sema::IncompatibleFunctionPointer;
9368 if (IsInvalidCmseNSCallConversion(S, ltrans, rtrans))
9369 return Sema::IncompatibleFunctionPointer;
9370 return ConvTy;
9371}
9372
9373/// checkBlockPointerTypesForAssignment - This routine determines whether two
9374/// block pointer types are compatible or whether a block and normal pointer
9375/// are compatible. It is more restrict than comparing two function pointer
9376// types.
9377static Sema::AssignConvertType
9378checkBlockPointerTypesForAssignment(Sema &S, QualType LHSType,
9379 QualType RHSType) {
9380 assert(LHSType.isCanonical() && "LHS not canonicalized!")(static_cast <bool> (LHSType.isCanonical() && "LHS not canonicalized!"
) ? void (0) : __assert_fail ("LHSType.isCanonical() && \"LHS not canonicalized!\""
, "clang/lib/Sema/SemaExpr.cpp", 9380, __extension__ __PRETTY_FUNCTION__
))
;
9381 assert(RHSType.isCanonical() && "RHS not canonicalized!")(static_cast <bool> (RHSType.isCanonical() && "RHS not canonicalized!"
) ? void (0) : __assert_fail ("RHSType.isCanonical() && \"RHS not canonicalized!\""
, "clang/lib/Sema/SemaExpr.cpp", 9381, __extension__ __PRETTY_FUNCTION__
))
;
9382
9383 QualType lhptee, rhptee;
9384
9385 // get the "pointed to" type (ignoring qualifiers at the top level)
9386 lhptee = cast<BlockPointerType>(LHSType)->getPointeeType();
9387 rhptee = cast<BlockPointerType>(RHSType)->getPointeeType();
9388
9389 // In C++, the types have to match exactly.
9390 if (S.getLangOpts().CPlusPlus)
9391 return Sema::IncompatibleBlockPointer;
9392
9393 Sema::AssignConvertType ConvTy = Sema::Compatible;
9394
9395 // For blocks we enforce that qualifiers are identical.
9396 Qualifiers LQuals = lhptee.getLocalQualifiers();
9397 Qualifiers RQuals = rhptee.getLocalQualifiers();
9398 if (S.getLangOpts().OpenCL) {
9399 LQuals.removeAddressSpace();
9400 RQuals.removeAddressSpace();
9401 }
9402 if (LQuals != RQuals)
9403 ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
9404
9405 // FIXME: OpenCL doesn't define the exact compile time semantics for a block
9406 // assignment.
9407 // The current behavior is similar to C++ lambdas. A block might be
9408 // assigned to a variable iff its return type and parameters are compatible
9409 // (C99 6.2.7) with the corresponding return type and parameters of the LHS of
9410 // an assignment. Presumably it should behave in way that a function pointer
9411 // assignment does in C, so for each parameter and return type:
9412 // * CVR and address space of LHS should be a superset of CVR and address
9413 // space of RHS.
9414 // * unqualified types should be compatible.
9415 if (S.getLangOpts().OpenCL) {
9416 if (!S.Context.typesAreBlockPointerCompatible(
9417 S.Context.getQualifiedType(LHSType.getUnqualifiedType(), LQuals),
9418 S.Context.getQualifiedType(RHSType.getUnqualifiedType(), RQuals)))
9419 return Sema::IncompatibleBlockPointer;
9420 } else if (!S.Context.typesAreBlockPointerCompatible(LHSType, RHSType))
9421 return Sema::IncompatibleBlockPointer;
9422
9423 return ConvTy;
9424}
9425
9426/// checkObjCPointerTypesForAssignment - Compares two objective-c pointer types
9427/// for assignment compatibility.
9428static Sema::AssignConvertType
9429checkObjCPointerTypesForAssignment(Sema &S, QualType LHSType,
9430 QualType RHSType) {
9431 assert(LHSType.isCanonical() && "LHS was not canonicalized!")(static_cast <bool> (LHSType.isCanonical() && "LHS was not canonicalized!"
) ? void (0) : __assert_fail ("LHSType.isCanonical() && \"LHS was not canonicalized!\""
, "clang/lib/Sema/SemaExpr.cpp", 9431, __extension__ __PRETTY_FUNCTION__
))
;
9432 assert(RHSType.isCanonical() && "RHS was not canonicalized!")(static_cast <bool> (RHSType.isCanonical() && "RHS was not canonicalized!"
) ? void (0) : __assert_fail ("RHSType.isCanonical() && \"RHS was not canonicalized!\""
, "clang/lib/Sema/SemaExpr.cpp", 9432, __extension__ __PRETTY_FUNCTION__
))
;
9433
9434 if (LHSType->isObjCBuiltinType()) {
9435 // Class is not compatible with ObjC object pointers.
9436 if (LHSType->isObjCClassType() && !RHSType->isObjCBuiltinType() &&
9437 !RHSType->isObjCQualifiedClassType())
9438 return Sema::IncompatiblePointer;
9439 return Sema::Compatible;
9440 }
9441 if (RHSType->isObjCBuiltinType()) {
9442 if (RHSType->isObjCClassType() && !LHSType->isObjCBuiltinType() &&
9443 !LHSType->isObjCQualifiedClassType())
9444 return Sema::IncompatiblePointer;
9445 return Sema::Compatible;
9446 }
9447 QualType lhptee = LHSType->castAs<ObjCObjectPointerType>()->getPointeeType();
9448 QualType rhptee = RHSType->castAs<ObjCObjectPointerType>()->getPointeeType();
9449
9450 if (!lhptee.isAtLeastAsQualifiedAs(rhptee) &&
9451 // make an exception for id<P>
9452 !LHSType->isObjCQualifiedIdType())
9453 return Sema::CompatiblePointerDiscardsQualifiers;
9454
9455 if (S.Context.typesAreCompatible(LHSType, RHSType))
9456 return Sema::Compatible;
9457 if (LHSType->isObjCQualifiedIdType() || RHSType->isObjCQualifiedIdType())
9458 return Sema::IncompatibleObjCQualifiedId;
9459 return Sema::IncompatiblePointer;
9460}
9461
9462Sema::AssignConvertType
9463Sema::CheckAssignmentConstraints(SourceLocation Loc,
9464 QualType LHSType, QualType RHSType) {
9465 // Fake up an opaque expression. We don't actually care about what
9466 // cast operations are required, so if CheckAssignmentConstraints
9467 // adds casts to this they'll be wasted, but fortunately that doesn't
9468 // usually happen on valid code.
9469 OpaqueValueExpr RHSExpr(Loc, RHSType, VK_PRValue);
9470 ExprResult RHSPtr = &RHSExpr;
9471 CastKind K;
9472
9473 return CheckAssignmentConstraints(LHSType, RHSPtr, K, /*ConvertRHS=*/false);
9474}
9475
9476/// This helper function returns true if QT is a vector type that has element
9477/// type ElementType.
9478static bool isVector(QualType QT, QualType ElementType) {
9479 if (const VectorType *VT = QT->getAs<VectorType>())
9480 return VT->getElementType().getCanonicalType() == ElementType;
9481 return false;
9482}
9483
9484/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
9485/// has code to accommodate several GCC extensions when type checking
9486/// pointers. Here are some objectionable examples that GCC considers warnings:
9487///
9488/// int a, *pint;
9489/// short *pshort;
9490/// struct foo *pfoo;
9491///
9492/// pint = pshort; // warning: assignment from incompatible pointer type
9493/// a = pint; // warning: assignment makes integer from pointer without a cast
9494/// pint = a; // warning: assignment makes pointer from integer without a cast
9495/// pint = pfoo; // warning: assignment from incompatible pointer type
9496///
9497/// As a result, the code for dealing with pointers is more complex than the
9498/// C99 spec dictates.
9499///
9500/// Sets 'Kind' for any result kind except Incompatible.
9501Sema::AssignConvertType
9502Sema::CheckAssignmentConstraints(QualType LHSType, ExprResult &RHS,
9503 CastKind &Kind, bool ConvertRHS) {
9504 QualType RHSType = RHS.get()->getType();
9505 QualType OrigLHSType = LHSType;
9506
9507 // Get canonical types. We're not formatting these types, just comparing
9508 // them.
9509 LHSType = Context.getCanonicalType(LHSType).getUnqualifiedType();
9510 RHSType = Context.getCanonicalType(RHSType).getUnqualifiedType();
9511
9512 // Common case: no conversion required.
9513 if (LHSType == RHSType) {
1
Taking false branch
9514 Kind = CK_NoOp;
9515 return Compatible;
9516 }
9517
9518 // If the LHS has an __auto_type, there are no additional type constraints
9519 // to be worried about.
9520 if (const auto *AT
15.1
'AT' is null
15.1
'AT' is null
= dyn_cast<AutoType>(LHSType)) {
2
Calling 'dyn_cast<clang::AutoType, clang::QualType>'
15
Returning from 'dyn_cast<clang::AutoType, clang::QualType>'
16
Taking false branch
9521 if (AT->isGNUAutoType()) {
9522 Kind = CK_NoOp;
9523 return Compatible;
9524 }
9525 }
9526
9527 // If we have an atomic type, try a non-atomic assignment, then just add an
9528 // atomic qualification step.
9529 if (const AtomicType *AtomicTy
30.1
'AtomicTy' is null
30.1
'AtomicTy' is null
= dyn_cast<AtomicType>(LHSType)) {
17
Calling 'dyn_cast<clang::AtomicType, clang::QualType>'
30
Returning from 'dyn_cast<clang::AtomicType, clang::QualType>'
31
Taking false branch
9530 Sema::AssignConvertType result =
9531 CheckAssignmentConstraints(AtomicTy->getValueType(), RHS, Kind);
9532 if (result != Compatible)
9533 return result;
9534 if (Kind != CK_NoOp && ConvertRHS)
9535 RHS = ImpCastExprToType(RHS.get(), AtomicTy->getValueType(), Kind);
9536 Kind = CK_NonAtomicToAtomic;
9537 return Compatible;
9538 }
9539
9540 // If the left-hand side is a reference type, then we are in a
9541 // (rare!) case where we've allowed the use of references in C,
9542 // e.g., as a parameter type in a built-in function. In this case,
9543 // just make sure that the type referenced is compatible with the
9544 // right-hand side type. The caller is responsible for adjusting
9545 // LHSType so that the resulting expression does not have reference
9546 // type.
9547 if (const ReferenceType *LHSTypeRef
32.1
'LHSTypeRef' is null
32.1
'LHSTypeRef' is null
= LHSType->getAs<ReferenceType>()) {
32
Assuming the object is not a 'const class clang::ReferenceType *'
33
Taking false branch
9548 if (Context.typesAreCompatible(LHSTypeRef->getPointeeType(), RHSType)) {
9549 Kind = CK_LValueBitCast;
9550 return Compatible;
9551 }
9552 return Incompatible;
9553 }
9554
9555 // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
9556 // to the same ExtVector type.
9557 if (LHSType->isExtVectorType()) {
9558 if (RHSType->isExtVectorType())
9559 return Incompatible;
9560 if (RHSType->isArithmeticType()) {
9561 // CK_VectorSplat does T -> vector T, so first cast to the element type.
9562 if (ConvertRHS)
9563 RHS = prepareVectorSplat(LHSType, RHS.get());
9564 Kind = CK_VectorSplat;
9565 return Compatible;
9566 }
9567 }
9568
9569 // Conversions to or from vector type.
9570 if (LHSType->isVectorType() || RHSType->isVectorType()) {
34
Taking false branch
9571 if (LHSType->isVectorType() && RHSType->isVectorType()) {
9572 // Allow assignments of an AltiVec vector type to an equivalent GCC
9573 // vector type and vice versa
9574 if (Context.areCompatibleVectorTypes(LHSType, RHSType)) {
9575 Kind = CK_BitCast;
9576 return Compatible;
9577 }
9578
9579 // If we are allowing lax vector conversions, and LHS and RHS are both
9580 // vectors, the total size only needs to be the same. This is a bitcast;
9581 // no bits are changed but the result type is different.
9582 if (isLaxVectorConversion(RHSType, LHSType)) {
9583 // The default for lax vector conversions with Altivec vectors will
9584 // change, so if we are converting between vector types where
9585 // at least one is an Altivec vector, emit a warning.
9586 if (anyAltivecTypes(RHSType, LHSType) &&
9587 !areSameVectorElemTypes(RHSType, LHSType))
9588 Diag(RHS.get()->getExprLoc(), diag::warn_deprecated_lax_vec_conv_all)
9589 << RHSType << LHSType;
9590 Kind = CK_BitCast;
9591 return IncompatibleVectors;
9592 }
9593 }
9594
9595 // When the RHS comes from another lax conversion (e.g. binops between
9596 // scalars and vectors) the result is canonicalized as a vector. When the
9597 // LHS is also a vector, the lax is allowed by the condition above. Handle
9598 // the case where LHS is a scalar.
9599 if (LHSType->isScalarType()) {
9600 const VectorType *VecType = RHSType->getAs<VectorType>();
9601 if (VecType && VecType->getNumElements() == 1 &&
9602 isLaxVectorConversion(RHSType, LHSType)) {
9603 if (VecType->getVectorKind() == VectorType::AltiVecVector)
9604 Diag(RHS.get()->getExprLoc(), diag::warn_deprecated_lax_vec_conv_all)
9605 << RHSType << LHSType;
9606 ExprResult *VecExpr = &RHS;
9607 *VecExpr = ImpCastExprToType(VecExpr->get(), LHSType, CK_BitCast);
9608 Kind = CK_BitCast;
9609 return Compatible;
9610 }
9611 }
9612
9613 // Allow assignments between fixed-length and sizeless SVE vectors.
9614 if ((LHSType->isSizelessBuiltinType() && RHSType->isVectorType()) ||
9615 (LHSType->isVectorType() && RHSType->isSizelessBuiltinType()))
9616 if (Context.areCompatibleSveTypes(LHSType, RHSType) ||
9617 Context.areLaxCompatibleSveTypes(LHSType, RHSType)) {
9618 Kind = CK_BitCast;
9619 return Compatible;
9620 }
9621
9622 return Incompatible;
9623 }
9624
9625 // Diagnose attempts to convert between __ibm128, __float128 and long double
9626 // where such conversions currently can't be handled.
9627 if (unsupportedTypeConversion(*this, LHSType, RHSType))
9628 return Incompatible;
9629
9630 // Disallow assigning a _Complex to a real type in C++ mode since it simply
9631 // discards the imaginary part.
9632 if (getLangOpts().CPlusPlus && RHSType->getAs<ComplexType>() &&
35
Assuming field 'CPlusPlus' is 0
9633 !LHSType->getAs<ComplexType>())
9634 return Incompatible;
9635
9636 // Arithmetic conversions.
9637 if (LHSType->isArithmeticType() && RHSType->isArithmeticType() &&
36
Assuming the condition is false
9638 !(getLangOpts().CPlusPlus && LHSType->isEnumeralType())) {
9639 if (ConvertRHS)
9640 Kind = PrepareScalarCast(RHS, LHSType);
9641 return Compatible;
9642 }
9643
9644 // Conversions to normal pointers.
9645 if (const PointerType *LHSPointer
50.1
'LHSPointer' is null
50.1
'LHSPointer' is null
= dyn_cast<PointerType>(LHSType)) {
37
Calling 'dyn_cast<clang::PointerType, clang::QualType>'
50
Returning from 'dyn_cast<clang::PointerType, clang::QualType>'
51
Taking false branch
9646 // U* -> T*
9647 if (isa<PointerType>(RHSType)) {
9648 LangAS AddrSpaceL = LHSPointer->getPointeeType().getAddressSpace();
9649 LangAS AddrSpaceR = RHSType->getPointeeType().getAddressSpace();
9650 if (AddrSpaceL != AddrSpaceR)
9651 Kind = CK_AddressSpaceConversion;
9652 else if (Context.hasCvrSimilarType(RHSType, LHSType))
9653 Kind = CK_NoOp;
9654 else
9655 Kind = CK_BitCast;
9656 return checkPointerTypesForAssignment(*this, LHSType, RHSType);
9657 }
9658
9659 // int -> T*
9660 if (RHSType->isIntegerType()) {
9661 Kind = CK_IntegralToPointer; // FIXME: null?
9662 return IntToPointer;
9663 }
9664
9665 // C pointers are not compatible with ObjC object pointers,
9666 // with two exceptions:
9667 if (isa<ObjCObjectPointerType>(RHSType)) {
9668 // - conversions to void*
9669 if (LHSPointer->getPointeeType()->isVoidType()) {
9670 Kind = CK_BitCast;
9671 return Compatible;
9672 }
9673
9674 // - conversions from 'Class' to the redefinition type
9675 if (RHSType->isObjCClassType() &&
9676 Context.hasSameType(LHSType,
9677 Context.getObjCClassRedefinitionType())) {
9678 Kind = CK_BitCast;
9679 return Compatible;
9680 }
9681
9682 Kind = CK_BitCast;
9683 return IncompatiblePointer;
9684 }
9685
9686 // U^ -> void*
9687 if (RHSType->getAs<BlockPointerType>()) {
9688 if (LHSPointer->getPointeeType()->isVoidType()) {
9689 LangAS AddrSpaceL = LHSPointer->getPointeeType().getAddressSpace();
9690 LangAS AddrSpaceR = RHSType->getAs<BlockPointerType>()
9691 ->getPointeeType()
9692 .getAddressSpace();
9693 Kind =
9694 AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
9695 return Compatible;
9696 }
9697 }
9698
9699 return Incompatible;
9700 }
9701
9702 // Conversions to block pointers.
9703 if (isa<BlockPointerType>(LHSType)) {
52
Assuming 'LHSType' is a 'class clang::BlockPointerType &'
53
Taking true branch
9704 // U^ -> T^
9705 if (RHSType->isBlockPointerType()) {
54
Taking true branch
9706 LangAS AddrSpaceL = LHSType->getAs<BlockPointerType>()
55
Assuming the object is a 'const class clang::BlockPointerType *'
9707 ->getPointeeType()
9708 .getAddressSpace();
9709 LangAS AddrSpaceR = RHSType->getAs<BlockPointerType>()
56
Assuming the object is not a 'const class clang::BlockPointerType *'
57
Called C++ object pointer is null
9710 ->getPointeeType()
9711 .getAddressSpace();
9712 Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
9713 return checkBlockPointerTypesForAssignment(*this, LHSType, RHSType);
9714 }
9715
9716 // int or null -> T^
9717 if (RHSType->isIntegerType()) {
9718 Kind = CK_IntegralToPointer; // FIXME: null
9719 return IntToBlockPointer;
9720 }
9721
9722 // id -> T^
9723 if (getLangOpts().ObjC && RHSType->isObjCIdType()) {
9724 Kind = CK_AnyPointerToBlockPointerCast;
9725 return Compatible;
9726 }
9727
9728 // void* -> T^
9729 if (const PointerType *RHSPT = RHSType->getAs<PointerType>())
9730 if (RHSPT->getPointeeType()->isVoidType()) {
9731 Kind = CK_AnyPointerToBlockPointerCast;
9732 return Compatible;
9733 }
9734
9735 return Incompatible;
9736 }
9737
9738 // Conversions to Objective-C pointers.
9739 if (isa<ObjCObjectPointerType>(LHSType)) {
9740 // A* -> B*
9741 if (RHSType->isObjCObjectPointerType()) {
9742 Kind = CK_BitCast;
9743 Sema::AssignConvertType result =
9744 checkObjCPointerTypesForAssignment(*this, LHSType, RHSType);
9745 if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
9746 result == Compatible &&
9747 !CheckObjCARCUnavailableWeakConversion(OrigLHSType, RHSType))
9748 result = IncompatibleObjCWeakRef;
9749 return result;
9750 }
9751
9752 // int or null -> A*
9753 if (RHSType->isIntegerType()) {
9754 Kind = CK_IntegralToPointer; // FIXME: null
9755 return IntToPointer;
9756 }
9757
9758 // In general, C pointers are not compatible with ObjC object pointers,
9759 // with two exceptions:
9760 if (isa<PointerType>(RHSType)) {
9761 Kind = CK_CPointerToObjCPointerCast;
9762
9763 // - conversions from 'void*'
9764 if (RHSType->isVoidPointerType()) {
9765 return Compatible;
9766 }
9767
9768 // - conversions to 'Class' from its redefinition type
9769 if (LHSType->isObjCClassType() &&
9770 Context.hasSameType(RHSType,
9771 Context.getObjCClassRedefinitionType())) {
9772 return Compatible;
9773 }
9774
9775 return IncompatiblePointer;
9776 }
9777
9778 // Only under strict condition T^ is compatible with an Objective-C pointer.
9779 if (RHSType->isBlockPointerType() &&
9780 LHSType->isBlockCompatibleObjCPointerType(Context)) {
9781 if (ConvertRHS)
9782 maybeExtendBlockObject(RHS);
9783 Kind = CK_BlockPointerToObjCPointerCast;
9784 return Compatible;
9785 }
9786
9787 return Incompatible;
9788 }
9789
9790 // Conversions from pointers that are not covered by the above.
9791 if (isa<PointerType>(RHSType)) {
9792 // T* -> _Bool
9793 if (LHSType == Context.BoolTy) {
9794 Kind = CK_PointerToBoolean;
9795 return Compatible;
9796 }
9797
9798 // T* -> int
9799 if (LHSType->isIntegerType()) {
9800 Kind = CK_PointerToIntegral;
9801 return PointerToInt;
9802 }
9803
9804 return Incompatible;
9805 }
9806
9807 // Conversions from Objective-C pointers that are not covered by the above.
9808 if (isa<ObjCObjectPointerType>(RHSType)) {
9809 // T* -> _Bool
9810 if (LHSType == Context.BoolTy) {
9811 Kind = CK_PointerToBoolean;
9812 return Compatible;
9813 }
9814
9815 // T* -> int
9816 if (LHSType->isIntegerType()) {
9817 Kind = CK_PointerToIntegral;
9818 return PointerToInt;
9819 }
9820
9821 return Incompatible;
9822 }
9823
9824 // struct A -> struct B
9825 if (isa<TagType>(LHSType) && isa<TagType>(RHSType)) {
9826 if (Context.typesAreCompatible(LHSType, RHSType)) {
9827 Kind = CK_NoOp;
9828 return Compatible;
9829 }
9830 }
9831
9832 if (LHSType->isSamplerT() && RHSType->isIntegerType()) {
9833 Kind = CK_IntToOCLSampler;
9834 return Compatible;
9835 }
9836
9837 return Incompatible;
9838}
9839
9840/// Constructs a transparent union from an expression that is
9841/// used to initialize the transparent union.
9842static void ConstructTransparentUnion(Sema &S, ASTContext &C,
9843 ExprResult &EResult, QualType UnionType,
9844 FieldDecl *Field) {
9845 // Build an initializer list that designates the appropriate member
9846 // of the transparent union.
9847 Expr *E = EResult.get();
9848 InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(),
9849 E, SourceLocation());
9850 Initializer->setType(UnionType);
9851 Initializer->setInitializedFieldInUnion(Field);
9852
9853 // Build a compound literal constructing a value of the transparent
9854 // union type from this initializer list.
9855 TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType);
9856 EResult = new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType,
9857 VK_PRValue, Initializer, false);
9858}
9859
9860Sema::AssignConvertType
9861Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType,
9862 ExprResult &RHS) {
9863 QualType RHSType = RHS.get()->getType();
9864
9865 // If the ArgType is a Union type, we want to handle a potential
9866 // transparent_union GCC extension.
9867 const RecordType *UT = ArgType->getAsUnionType();
9868 if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
9869 return Incompatible;
9870
9871 // The field to initialize within the transparent union.
9872 RecordDecl *UD = UT->getDecl();
9873 FieldDecl *InitField = nullptr;
9874 // It's compatible if the expression matches any of the fields.
9875 for (auto *it : UD->fields()) {
9876 if (it->getType()->isPointerType()) {
9877 // If the transparent union contains a pointer type, we allow:
9878 // 1) void pointer
9879 // 2) null pointer constant
9880 if (RHSType->isPointerType())
9881 if (RHSType->castAs<PointerType>()->getPointeeType()->isVoidType()) {
9882 RHS = ImpCastExprToType(RHS.get(), it->getType(), CK_BitCast);
9883 InitField = it;
9884 break;
9885 }
9886
9887 if (RHS.get()->isNullPointerConstant(Context,
9888 Expr::NPC_ValueDependentIsNull)) {
9889 RHS = ImpCastExprToType(RHS.get(), it->getType(),
9890 CK_NullToPointer);
9891 InitField = it;
9892 break;
9893 }
9894 }
9895
9896 CastKind Kind;
9897 if (CheckAssignmentConstraints(it->getType(), RHS, Kind)
9898 == Compatible) {
9899 RHS = ImpCastExprToType(RHS.get(), it->getType(), Kind);
9900 InitField = it;
9901 break;
9902 }
9903 }
9904
9905 if (!InitField)
9906 return Incompatible;
9907
9908 ConstructTransparentUnion(*this, Context, RHS, ArgType, InitField);
9909 return Compatible;
9910}
9911
9912Sema::AssignConvertType
9913Sema::CheckSingleAssignmentConstraints(QualType LHSType, ExprResult &CallerRHS,
9914 bool Diagnose,
9915 bool DiagnoseCFAudited,
9916 bool ConvertRHS) {
9917 // We need to be able to tell the caller whether we diagnosed a problem, if
9918 // they ask us to issue diagnostics.
9919 assert((ConvertRHS || !Diagnose) && "can't indicate whether we diagnosed")(static_cast <bool> ((ConvertRHS || !Diagnose) &&
"can't indicate whether we diagnosed") ? void (0) : __assert_fail
("(ConvertRHS || !Diagnose) && \"can't indicate whether we diagnosed\""
, "clang/lib/Sema/SemaExpr.cpp", 9919, __extension__ __PRETTY_FUNCTION__
))
;
9920
9921 // If ConvertRHS is false, we want to leave the caller's RHS untouched. Sadly,
9922 // we can't avoid *all* modifications at the moment, so we need some somewhere
9923 // to put the updated value.
9924 ExprResult LocalRHS = CallerRHS;
9925 ExprResult &RHS = ConvertRHS ? CallerRHS : LocalRHS;
9926
9927 if (const auto *LHSPtrType = LHSType->getAs<PointerType>()) {
9928 if (const auto *RHSPtrType = RHS.get()->getType()->getAs<PointerType>()) {
9929 if (RHSPtrType->getPointeeType()->hasAttr(attr::NoDeref) &&
9930 !LHSPtrType->getPointeeType()->hasAttr(attr::NoDeref)) {
9931 Diag(RHS.get()->getExprLoc(),
9932 diag::warn_noderef_to_dereferenceable_pointer)
9933 << RHS.get()->getSourceRange();
9934 }
9935 }
9936 }
9937
9938 if (getLangOpts().CPlusPlus) {
9939 if (!LHSType->isRecordType() && !LHSType->isAtomicType()) {
9940 // C++ 5.17p3: If the left operand is not of class type, the
9941 // expression is implicitly converted (C++ 4) to the
9942 // cv-unqualified type of the left operand.
9943 QualType RHSType = RHS.get()->getType();
9944 if (Diagnose) {
9945 RHS = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
9946 AA_Assigning);
9947 } else {
9948 ImplicitConversionSequence ICS =
9949 TryImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
9950 /*SuppressUserConversions=*/false,
9951 AllowedExplicit::None,
9952 /*InOverloadResolution=*/false,
9953 /*CStyle=*/false,
9954 /*AllowObjCWritebackConversion=*/false);
9955 if (ICS.isFailure())
9956 return Incompatible;
9957 RHS = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
9958 ICS, AA_Assigning);
9959 }
9960 if (RHS.isInvalid())
9961 return Incompatible;
9962 Sema::AssignConvertType result = Compatible;
9963 if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
9964 !CheckObjCARCUnavailableWeakConversion(LHSType, RHSType))
9965 result = IncompatibleObjCWeakRef;
9966 return result;
9967 }
9968
9969 // FIXME: Currently, we fall through and treat C++ classes like C
9970 // structures.
9971 // FIXME: We also fall through for atomics; not sure what should
9972 // happen there, though.
9973 } else if (RHS.get()->getType() == Context.OverloadTy) {
9974 // As a set of extensions to C, we support overloading on functions. These
9975 // functions need to be resolved here.
9976 DeclAccessPair DAP;
9977 if (FunctionDecl *FD = ResolveAddressOfOverloadedFunction(
9978 RHS.get(), LHSType, /*Complain=*/false, DAP))
9979 RHS = FixOverloadedFunctionReference(RHS.get(), DAP, FD);
9980 else
9981 return Incompatible;
9982 }
9983
9984 // C99 6.5.16.1p1: the left operand is a pointer and the right is
9985 // a null pointer constant.
9986 if ((LHSType->isPointerType() || LHSType->isObjCObjectPointerType() ||
9987 LHSType->isBlockPointerType()) &&
9988 RHS.get()->isNullPointerConstant(Context,
9989 Expr::NPC_ValueDependentIsNull)) {
9990 if (Diagnose || ConvertRHS) {
9991 CastKind Kind;
9992 CXXCastPath Path;
9993 CheckPointerConversion(RHS.get(), LHSType, Kind, Path,
9994 /*IgnoreBaseAccess=*/false, Diagnose);
9995 if (ConvertRHS)
9996 RHS = ImpCastExprToType(RHS.get(), LHSType, Kind, VK_PRValue, &Path);
9997 }
9998 return Compatible;
9999 }
10000
10001 // OpenCL queue_t type assignment.
10002 if (LHSType->isQueueT() && RHS.get()->isNullPointerConstant(
10003 Context, Expr::NPC_ValueDependentIsNull)) {
10004 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
10005 return Compatible;
10006 }
10007
10008 // This check seems unnatural, however it is necessary to ensure the proper
10009 // conversion of functions/arrays. If the conversion were done for all
10010 // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
10011 // expressions that suppress this implicit conversion (&, sizeof).
10012 //
10013 // Suppress this for references: C++ 8.5.3p5.
10014 if (!LHSType->isReferenceType()) {
10015 // FIXME: We potentially allocate here even if ConvertRHS is false.
10016 RHS = DefaultFunctionArrayLvalueConversion(RHS.get(), Diagnose);
10017 if (RHS.isInvalid())
10018 return Incompatible;
10019 }
10020 CastKind Kind;
10021 Sema::AssignConvertType result =
10022 CheckAssignmentConstraints(LHSType, RHS, Kind, ConvertRHS);
10023
10024 // C99 6.5.16.1p2: The value of the right operand is converted to the
10025 // type of the assignment expression.
10026 // CheckAssignmentConstraints allows the left-hand side to be a reference,
10027 // so that we can use references in built-in functions even in C.
10028 // The getNonReferenceType() call makes sure that the resulting expression
10029 // does not have reference type.
10030 if (result != Incompatible && RHS.get()->getType() != LHSType) {
10031 QualType Ty = LHSType.getNonLValueExprType(Context);
10032 Expr *E = RHS.get();
10033
10034 // Check for various Objective-C errors. If we are not reporting
10035 // diagnostics and just checking for errors, e.g., during overload
10036 // resolution, return Incompatible to indicate the failure.
10037 if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
10038 CheckObjCConversion(SourceRange(), Ty, E, CCK_ImplicitConversion,
10039 Diagnose, DiagnoseCFAudited) != ACR_okay) {
10040 if (!Diagnose)
10041 return Incompatible;
10042 }
10043 if (getLangOpts().ObjC &&
10044 (CheckObjCBridgeRelatedConversions(E->getBeginLoc(), LHSType,
10045 E->getType(), E, Diagnose) ||
10046 CheckConversionToObjCLiteral(LHSType, E, Diagnose))) {
10047 if (!Diagnose)
10048 return Incompatible;
10049 // Replace the expression with a corrected version and continue so we
10050 // can find further errors.
10051 RHS = E;
10052 return Compatible;
10053 }
10054
10055 if (ConvertRHS)
10056 RHS = ImpCastExprToType(E, Ty, Kind);
10057 }
10058
10059 return result;
10060}
10061
10062namespace {
10063/// The original operand to an operator, prior to the application of the usual
10064/// arithmetic conversions and converting the arguments of a builtin operator
10065/// candidate.
10066struct OriginalOperand {
10067 explicit OriginalOperand(Expr *Op) : Orig(Op), Conversion(nullptr) {
10068 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Op))
10069 Op = MTE->getSubExpr();
10070 if (auto *BTE = dyn_cast<CXXBindTemporaryExpr>(Op))
10071 Op = BTE->getSubExpr();
10072 if (auto *ICE = dyn_cast<ImplicitCastExpr>(Op)) {
10073 Orig = ICE->getSubExprAsWritten();
10074 Conversion = ICE->getConversionFunction();
10075 }
10076 }
10077
10078 QualType getType() const { return Orig->getType(); }
10079
10080 Expr *Orig;
10081 NamedDecl *Conversion;
10082};
10083}
10084
10085QualType Sema::InvalidOperands(SourceLocation Loc, ExprResult &LHS,
10086 ExprResult &RHS) {
10087 OriginalOperand OrigLHS(LHS.get()), OrigRHS(RHS.get());
10088
10089 Diag(Loc, diag::err_typecheck_invalid_operands)
10090 << OrigLHS.getType() << OrigRHS.getType()
10091 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10092
10093 // If a user-defined conversion was applied to either of the operands prior
10094 // to applying the built-in operator rules, tell the user about it.
10095 if (OrigLHS.Conversion) {
10096 Diag(OrigLHS.Conversion->getLocation(),
10097 diag::note_typecheck_invalid_operands_converted)
10098 << 0 << LHS.get()->getType();
10099 }
10100 if (OrigRHS.Conversion) {
10101 Diag(OrigRHS.Conversion->getLocation(),
10102 diag::note_typecheck_invalid_operands_converted)
10103 << 1 << RHS.get()->getType();
10104 }
10105
10106 return QualType();
10107}
10108
10109// Diagnose cases where a scalar was implicitly converted to a vector and
10110// diagnose the underlying types. Otherwise, diagnose the error
10111// as invalid vector logical operands for non-C++ cases.
10112QualType Sema::InvalidLogicalVectorOperands(SourceLocation Loc, ExprResult &LHS,
10113 ExprResult &RHS) {
10114 QualType LHSType = LHS.get()->IgnoreImpCasts()->getType();
10115 QualType RHSType = RHS.get()->IgnoreImpCasts()->getType();
10116
10117 bool LHSNatVec = LHSType->isVectorType();
10118 bool RHSNatVec = RHSType->isVectorType();
10119
10120 if (!(LHSNatVec && RHSNatVec)) {
10121 Expr *Vector = LHSNatVec ? LHS.get() : RHS.get();
10122 Expr *NonVector = !LHSNatVec ? LHS.get() : RHS.get();
10123 Diag(Loc, diag::err_typecheck_logical_vector_expr_gnu_cpp_restrict)
10124 << 0 << Vector->getType() << NonVector->IgnoreImpCasts()->getType()
10125 << Vector->getSourceRange();
10126 return QualType();
10127 }
10128
10129 Diag(Loc, diag::err_typecheck_logical_vector_expr_gnu_cpp_restrict)
10130 << 1 << LHSType << RHSType << LHS.get()->getSourceRange()
10131 << RHS.get()->getSourceRange();
10132
10133 return QualType();
10134}
10135
10136/// Try to convert a value of non-vector type to a vector type by converting
10137/// the type to the element type of the vector and then performing a splat.
10138/// If the language is OpenCL, we only use conversions that promote scalar
10139/// rank; for C, Obj-C, and C++ we allow any real scalar conversion except
10140/// for float->int.
10141///
10142/// OpenCL V2.0 6.2.6.p2:
10143/// An error shall occur if any scalar operand type has greater rank
10144/// than the type of the vector element.
10145///
10146/// \param scalar - if non-null, actually perform the conversions
10147/// \return true if the operation fails (but without diagnosing the failure)
10148static bool tryVectorConvertAndSplat(Sema &S, ExprResult *scalar,
10149 QualType scalarTy,
10150 QualType vectorEltTy,
10151 QualType vectorTy,
10152 unsigned &DiagID) {
10153 // The conversion to apply to the scalar before splatting it,
10154 // if necessary.
10155 CastKind scalarCast = CK_NoOp;
10156
10157 if (vectorEltTy->isIntegralType(S.Context)) {
10158 if (S.getLangOpts().OpenCL && (scalarTy->isRealFloatingType() ||
10159 (scalarTy->isIntegerType() &&
10160 S.Context.getIntegerTypeOrder(vectorEltTy, scalarTy) < 0))) {
10161 DiagID = diag::err_opencl_scalar_type_rank_greater_than_vector_type;
10162 return true;
10163 }
10164 if (!scalarTy->isIntegralType(S.Context))
10165 return true;
10166 scalarCast = CK_IntegralCast;
10167 } else if (vectorEltTy->isRealFloatingType()) {
10168 if (scalarTy->isRealFloatingType()) {
10169 if (S.getLangOpts().OpenCL &&
10170 S.Context.getFloatingTypeOrder(vectorEltTy, scalarTy) < 0) {
10171 DiagID = diag::err_opencl_scalar_type_rank_greater_than_vector_type;
10172 return true;
10173 }
10174 scalarCast = CK_FloatingCast;
10175 }
10176 else if (scalarTy->isIntegralType(S.Context))
10177 scalarCast = CK_IntegralToFloating;
10178 else
10179 return true;
10180 } else {
10181 return true;
10182 }
10183
10184 // Adjust scalar if desired.
10185 if (scalar) {
10186 if (scalarCast != CK_NoOp)
10187 *scalar = S.ImpCastExprToType(scalar->get(), vectorEltTy, scalarCast);
10188 *scalar = S.ImpCastExprToType(scalar->get(), vectorTy, CK_VectorSplat);
10189 }
10190 return false;
10191}
10192
10193/// Convert vector E to a vector with the same number of elements but different
10194/// element type.
10195static ExprResult convertVector(Expr *E, QualType ElementType, Sema &S) {
10196 const auto *VecTy = E->getType()->getAs<VectorType>();
10197 assert(VecTy && "Expression E must be a vector")(static_cast <bool> (VecTy && "Expression E must be a vector"
) ? void (0) : __assert_fail ("VecTy && \"Expression E must be a vector\""
, "clang/lib/Sema/SemaExpr.cpp", 10197, __extension__ __PRETTY_FUNCTION__
))
;
10198 QualType NewVecTy =
10199 VecTy->isExtVectorType()
10200 ? S.Context.getExtVectorType(ElementType, VecTy->getNumElements())
10201 : S.Context.getVectorType(ElementType, VecTy->getNumElements(),
10202 VecTy->getVectorKind());
10203
10204 // Look through the implicit cast. Return the subexpression if its type is
10205 // NewVecTy.
10206 if (auto *ICE = dyn_cast<ImplicitCastExpr>(E))
10207 if (ICE->getSubExpr()->getType() == NewVecTy)
10208 return ICE->getSubExpr();
10209
10210 auto Cast = ElementType->isIntegerType() ? CK_IntegralCast : CK_FloatingCast;
10211 return S.ImpCastExprToType(E, NewVecTy, Cast);
10212}
10213
10214/// Test if a (constant) integer Int can be casted to another integer type
10215/// IntTy without losing precision.
10216static bool canConvertIntToOtherIntTy(Sema &S, ExprResult *Int,
10217 QualType OtherIntTy) {
10218 QualType IntTy = Int->get()->getType().getUnqualifiedType();
10219
10220 // Reject cases where the value of the Int is unknown as that would
10221 // possibly cause truncation, but accept cases where the scalar can be
10222 // demoted without loss of precision.
10223 Expr::EvalResult EVResult;
10224 bool CstInt = Int->get()->EvaluateAsInt(EVResult, S.Context);
10225 int Order = S.Context.getIntegerTypeOrder(OtherIntTy, IntTy);
10226 bool IntSigned = IntTy->hasSignedIntegerRepresentation();
10227 bool OtherIntSigned = OtherIntTy->hasSignedIntegerRepresentation();
10228
10229 if (CstInt) {
10230 // If the scalar is constant and is of a higher order and has more active
10231 // bits that the vector element type, reject it.
10232 llvm::APSInt Result = EVResult.Val.getInt();
10233 unsigned NumBits = IntSigned
10234 ? (Result.isNegative() ? Result.getMinSignedBits()
10235 : Result.getActiveBits())
10236 : Result.getActiveBits();
10237 if (Order < 0 && S.Context.getIntWidth(OtherIntTy) < NumBits)
10238 return true;
10239
10240 // If the signedness of the scalar type and the vector element type
10241 // differs and the number of bits is greater than that of the vector
10242 // element reject it.
10243 return (IntSigned != OtherIntSigned &&
10244 NumBits > S.Context.getIntWidth(OtherIntTy));
10245 }
10246
10247 // Reject cases where the value of the scalar is not constant and it's
10248 // order is greater than that of the vector element type.
10249 return (Order < 0);
10250}
10251
10252/// Test if a (constant) integer Int can be casted to floating point type
10253/// FloatTy without losing precision.
10254static bool canConvertIntTyToFloatTy(Sema &S, ExprResult *Int,
10255 QualType FloatTy) {
10256 QualType IntTy = Int->get()->getType().getUnqualifiedType();
10257
10258 // Determine if the integer constant can be expressed as a floating point
10259 // number of the appropriate type.
10260 Expr::EvalResult EVResult;
10261 bool CstInt = Int->get()->EvaluateAsInt(EVResult, S.Context);
10262
10263 uint64_t Bits = 0;
10264 if (CstInt) {
10265 // Reject constants that would be truncated if they were converted to
10266 // the floating point type. Test by simple to/from conversion.
10267 // FIXME: Ideally the conversion to an APFloat and from an APFloat
10268 // could be avoided if there was a convertFromAPInt method
10269 // which could signal back if implicit truncation occurred.
10270 llvm::APSInt Result = EVResult.Val.getInt();
10271 llvm::APFloat Float(S.Context.getFloatTypeSemantics(FloatTy));
10272 Float.convertFromAPInt(Result, IntTy->hasSignedIntegerRepresentation(),
10273 llvm::APFloat::rmTowardZero);
10274 llvm::APSInt ConvertBack(S.Context.getIntWidth(IntTy),
10275 !IntTy->hasSignedIntegerRepresentation());
10276 bool Ignored = false;
10277 Float.convertToInteger(ConvertBack, llvm::APFloat::rmNearestTiesToEven,
10278 &Ignored);
10279 if (Result != ConvertBack)
10280 return true;
10281 } else {
10282 // Reject types that cannot be fully encoded into the mantissa of
10283 // the float.
10284 Bits = S.Context.getTypeSize(IntTy);
10285 unsigned FloatPrec = llvm::APFloat::semanticsPrecision(
10286 S.Context.getFloatTypeSemantics(FloatTy));
10287 if (Bits > FloatPrec)
10288 return true;
10289 }
10290
10291 return false;
10292}
10293
10294/// Attempt to convert and splat Scalar into a vector whose types matches
10295/// Vector following GCC conversion rules. The rule is that implicit
10296/// conversion can occur when Scalar can be casted to match Vector's element
10297/// type without causing truncation of Scalar.
10298static bool tryGCCVectorConvertAndSplat(Sema &S, ExprResult *Scalar,
10299 ExprResult *Vector) {
10300 QualType ScalarTy = Scalar->get()->getType().getUnqualifiedType();
10301 QualType VectorTy = Vector->get()->getType().getUnqualifiedType();
10302 QualType VectorEltTy;
10303
10304 if (const auto *VT = VectorTy->getAs<VectorType>()) {
10305 assert(!isa<ExtVectorType>(VT) &&(static_cast <bool> (!isa<ExtVectorType>(VT) &&
"ExtVectorTypes should not be handled here!") ? void (0) : __assert_fail
("!isa<ExtVectorType>(VT) && \"ExtVectorTypes should not be handled here!\""
, "clang/lib/Sema/SemaExpr.cpp", 10306, __extension__ __PRETTY_FUNCTION__
))
10306 "ExtVectorTypes should not be handled here!")(static_cast <bool> (!isa<ExtVectorType>(VT) &&
"ExtVectorTypes should not be handled here!") ? void (0) : __assert_fail
("!isa<ExtVectorType>(VT) && \"ExtVectorTypes should not be handled here!\""
, "clang/lib/Sema/SemaExpr.cpp", 10306, __extension__ __PRETTY_FUNCTION__
))
;
10307 VectorEltTy = VT->getElementType();
10308 } else if (VectorTy->isVLSTBuiltinType()) {
10309 VectorEltTy =
10310 VectorTy->castAs<BuiltinType>()->getSveEltType(S.getASTContext());
10311 } else {
10312 llvm_unreachable("Only Fixed-Length and SVE Vector types are handled here")::llvm::llvm_unreachable_internal("Only Fixed-Length and SVE Vector types are handled here"
, "clang/lib/Sema/SemaExpr.cpp", 10312)
;
10313 }
10314
10315 // Reject cases where the vector element type or the scalar element type are
10316 // not integral or floating point types.
10317 if (!VectorEltTy->isArithmeticType() || !ScalarTy->isArithmeticType())
10318 return true;
10319
10320 // The conversion to apply to the scalar before splatting it,
10321 // if necessary.
10322 CastKind ScalarCast = CK_NoOp;
10323
10324 // Accept cases where the vector elements are integers and the scalar is
10325 // an integer.
10326 // FIXME: Notionally if the scalar was a floating point value with a precise
10327 // integral representation, we could cast it to an appropriate integer
10328 // type and then perform the rest of the checks here. GCC will perform
10329 // this conversion in some cases as determined by the input language.
10330 // We should accept it on a language independent basis.
10331 if (VectorEltTy->isIntegralType(S.Context) &&
10332 ScalarTy->isIntegralType(S.Context) &&
10333 S.Context.getIntegerTypeOrder(VectorEltTy, ScalarTy)) {
10334
10335 if (canConvertIntToOtherIntTy(S, Scalar, VectorEltTy))
10336 return true;
10337
10338 ScalarCast = CK_IntegralCast;
10339 } else if (VectorEltTy->isIntegralType(S.Context) &&
10340 ScalarTy->isRealFloatingType()) {
10341 if (S.Context.getTypeSize(VectorEltTy) == S.Context.getTypeSize(ScalarTy))
10342 ScalarCast = CK_FloatingToIntegral;
10343 else
10344 return true;
10345 } else if (VectorEltTy->isRealFloatingType()) {
10346 if (ScalarTy->isRealFloatingType()) {
10347
10348 // Reject cases where the scalar type is not a constant and has a higher
10349 // Order than the vector element type.
10350 llvm::APFloat Result(0.0);
10351
10352 // Determine whether this is a constant scalar. In the event that the
10353 // value is dependent (and thus cannot be evaluated by the constant
10354 // evaluator), skip the evaluation. This will then diagnose once the
10355 // expression is instantiated.
10356 bool CstScalar = Scalar->get()->isValueDependent() ||
10357 Scalar->get()->EvaluateAsFloat(Result, S.Context);
10358 int Order = S.Context.getFloatingTypeOrder(VectorEltTy, ScalarTy);
10359 if (!CstScalar && Order < 0)
10360 return true;
10361
10362 // If the scalar cannot be safely casted to the vector element type,
10363 // reject it.
10364 if (CstScalar) {
10365 bool Truncated = false;
10366 Result.convert(S.Context.getFloatTypeSemantics(VectorEltTy),
10367 llvm::APFloat::rmNearestTiesToEven, &Truncated);
10368 if (Truncated)
10369 return true;
10370 }
10371
10372 ScalarCast = CK_FloatingCast;
10373 } else if (ScalarTy->isIntegralType(S.Context)) {
10374 if (canConvertIntTyToFloatTy(S, Scalar, VectorEltTy))
10375 return true;
10376
10377 ScalarCast = CK_IntegralToFloating;
10378 } else
10379 return true;
10380 } else if (ScalarTy->isEnumeralType())
10381 return true;
10382
10383 // Adjust scalar if desired.
10384 if (Scalar) {
10385 if (ScalarCast != CK_NoOp)
10386 *Scalar = S.ImpCastExprToType(Scalar->get(), VectorEltTy, ScalarCast);
10387 *Scalar = S.ImpCastExprToType(Scalar->get(), VectorTy, CK_VectorSplat);
10388 }
10389 return false;
10390}
10391
10392QualType Sema::CheckVectorOperands(ExprResult &LHS, ExprResult &RHS,
10393 SourceLocation Loc, bool IsCompAssign,
10394 bool AllowBothBool,
10395 bool AllowBoolConversions,
10396 bool AllowBoolOperation,
10397 bool ReportInvalid) {
10398 if (!IsCompAssign) {
10399 LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
10400 if (LHS.isInvalid())
10401 return QualType();
10402 }
10403 RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
10404 if (RHS.isInvalid())
10405 return QualType();
10406
10407 // For conversion purposes, we ignore any qualifiers.
10408 // For example, "const float" and "float" are equivalent.
10409 QualType LHSType = LHS.get()->getType().getUnqualifiedType();
10410 QualType RHSType = RHS.get()->getType().getUnqualifiedType();
10411
10412 const VectorType *LHSVecType = LHSType->getAs<VectorType>();
10413 const VectorType *RHSVecType = RHSType->getAs<VectorType>();
10414 assert(LHSVecType || RHSVecType)(static_cast <bool> (LHSVecType || RHSVecType) ? void (
0) : __assert_fail ("LHSVecType || RHSVecType", "clang/lib/Sema/SemaExpr.cpp"
, 10414, __extension__ __PRETTY_FUNCTION__))
;
10415
10416 if ((LHSVecType && LHSVecType->getElementType()->isBFloat16Type()) ||
10417 (RHSVecType && RHSVecType->getElementType()->isBFloat16Type()))
10418 return ReportInvalid ? InvalidOperands(Loc, LHS, RHS) : QualType();
10419
10420 // AltiVec-style "vector bool op vector bool" combinations are allowed
10421 // for some operators but not others.
10422 if (!AllowBothBool &&
10423 LHSVecType && LHSVecType->getVectorKind() == VectorType::AltiVecBool &&
10424 RHSVecType && RHSVecType->getVectorKind() == VectorType::AltiVecBool)
10425 return ReportInvalid ? InvalidOperands(Loc, LHS, RHS) : QualType();
10426
10427 // This operation may not be performed on boolean vectors.
10428 if (!AllowBoolOperation &&
10429 (LHSType->isExtVectorBoolType() || RHSType->isExtVectorBoolType()))
10430 return ReportInvalid ? InvalidOperands(Loc, LHS, RHS) : QualType();
10431
10432 // If the vector types are identical, return.
10433 if (Context.hasSameType(LHSType, RHSType))
10434 return Context.getCommonSugaredType(LHSType, RHSType);
10435
10436 // If we have compatible AltiVec and GCC vector types, use the AltiVec type.
10437 if (LHSVecType && RHSVecType &&
10438 Context.areCompatibleVectorTypes(LHSType, RHSType)) {
10439 if (isa<ExtVectorType>(LHSVecType)) {
10440 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
10441 return LHSType;
10442 }
10443
10444 if (!IsCompAssign)
10445 LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
10446 return RHSType;
10447 }
10448
10449 // AllowBoolConversions says that bool and non-bool AltiVec vectors
10450 // can be mixed, with the result being the non-bool type. The non-bool
10451 // operand must have integer element type.
10452 if (AllowBoolConversions && LHSVecType && RHSVecType &&
10453 LHSVecType->getNumElements() == RHSVecType->getNumElements() &&
10454 (Context.getTypeSize(LHSVecType->getElementType()) ==
10455 Context.getTypeSize(RHSVecType->getElementType()))) {
10456 if (LHSVecType->getVectorKind() == VectorType::AltiVecVector &&
10457 LHSVecType->getElementType()->isIntegerType() &&
10458 RHSVecType->getVectorKind() == VectorType::AltiVecBool) {
10459 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
10460 return LHSType;
10461 }
10462 if (!IsCompAssign &&
10463 LHSVecType->getVectorKind() == VectorType::AltiVecBool &&
10464 RHSVecType->getVectorKind() == VectorType::AltiVecVector &&
10465 RHSVecType->getElementType()->isIntegerType()) {
10466 LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
10467 return RHSType;
10468 }
10469 }
10470
10471 // Expressions containing fixed-length and sizeless SVE vectors are invalid
10472 // since the ambiguity can affect the ABI.
10473 auto IsSveConversion = [](QualType FirstType, QualType SecondType) {
10474 const VectorType *VecType = SecondType->getAs<VectorType>();
10475 return FirstType->isSizelessBuiltinType() && VecType &&
10476 (VecType->getVectorKind() == VectorType::SveFixedLengthDataVector ||
10477 VecType->getVectorKind() ==
10478 VectorType::SveFixedLengthPredicateVector);
10479 };
10480
10481 if (IsSveConversion(LHSType, RHSType) || IsSveConversion(RHSType, LHSType)) {
10482 Diag(Loc, diag::err_typecheck_sve_ambiguous) << LHSType << RHSType;
10483 return QualType();
10484 }
10485
10486 // Expressions containing GNU and SVE (fixed or sizeless) vectors are invalid
10487 // since the ambiguity can affect the ABI.
10488 auto IsSveGnuConversion = [](QualType FirstType, QualType SecondType) {
10489 const VectorType *FirstVecType = FirstType->getAs<VectorType>();
10490 const VectorType *SecondVecType = SecondType->getAs<VectorType>();
10491
10492 if (FirstVecType && SecondVecType)
10493 return FirstVecType->getVectorKind() == VectorType::GenericVector &&
10494 (SecondVecType->getVectorKind() ==
10495 VectorType::SveFixedLengthDataVector ||
10496 SecondVecType->getVectorKind() ==
10497 VectorType::SveFixedLengthPredicateVector);
10498
10499 return FirstType->isSizelessBuiltinType() && SecondVecType &&
10500 SecondVecType->getVectorKind() == VectorType::GenericVector;
10501 };
10502
10503 if (IsSveGnuConversion(LHSType, RHSType) ||
10504 IsSveGnuConversion(RHSType, LHSType)) {
10505 Diag(Loc, diag::err_typecheck_sve_gnu_ambiguous) << LHSType << RHSType;
10506 return QualType();
10507 }
10508
10509 // If there's a vector type and a scalar, try to convert the scalar to
10510 // the vector element type and splat.
10511 unsigned DiagID = diag::err_typecheck_vector_not_convertable;
10512 if (!RHSVecType) {
10513 if (isa<ExtVectorType>(LHSVecType)) {
10514 if (!tryVectorConvertAndSplat(*this, &RHS, RHSType,
10515 LHSVecType->getElementType(), LHSType,
10516 DiagID))
10517 return LHSType;
10518 } else {
10519 if (!tryGCCVectorConvertAndSplat(*this, &RHS, &LHS))
10520 return LHSType;
10521 }
10522 }
10523 if (!LHSVecType) {
10524 if (isa<ExtVectorType>(RHSVecType)) {
10525 if (!tryVectorConvertAndSplat(*this, (IsCompAssign ? nullptr : &LHS),
10526 LHSType, RHSVecType->getElementType(),
10527 RHSType, DiagID))
10528 return RHSType;
10529 } else {
10530 if (LHS.get()->isLValue() ||
10531 !tryGCCVectorConvertAndSplat(*this, &LHS, &RHS))
10532 return RHSType;
10533 }
10534 }
10535
10536 // FIXME: The code below also handles conversion between vectors and
10537 // non-scalars, we should break this down into fine grained specific checks
10538 // and emit proper diagnostics.
10539 QualType VecType = LHSVecType ? LHSType : RHSType;
10540 const VectorType *VT = LHSVecType ? LHSVecType : RHSVecType;
10541 QualType OtherType = LHSVecType ? RHSType : LHSType;
10542 ExprResult *OtherExpr = LHSVecType ? &RHS : &LHS;
10543 if (isLaxVectorConversion(OtherType, VecType)) {
10544 if (anyAltivecTypes(RHSType, LHSType) &&
10545 !areSameVectorElemTypes(RHSType, LHSType))
10546 Diag(Loc, diag::warn_deprecated_lax_vec_conv_all) << RHSType << LHSType;
10547 // If we're allowing lax vector conversions, only the total (data) size
10548 // needs to be the same. For non compound assignment, if one of the types is
10549 // scalar, the result is always the vector type.
10550 if (!IsCompAssign) {
10551 *OtherExpr = ImpCastExprToType(OtherExpr->get(), VecType, CK_BitCast);
10552 return VecType;
10553 // In a compound assignment, lhs += rhs, 'lhs' is a lvalue src, forbidding
10554 // any implicit cast. Here, the 'rhs' should be implicit casted to 'lhs'
10555 // type. Note that this is already done by non-compound assignments in
10556 // CheckAssignmentConstraints. If it's a scalar type, only bitcast for
10557 // <1 x T> -> T. The result is also a vector type.
10558 } else if (OtherType->isExtVectorType() || OtherType->isVectorType() ||
10559 (OtherType->isScalarType() && VT->getNumElements() == 1)) {
10560 ExprResult *RHSExpr = &RHS;
10561 *RHSExpr = ImpCastExprToType(RHSExpr->get(), LHSType, CK_BitCast);
10562 return VecType;
10563 }
10564 }
10565
10566 // Okay, the expression is invalid.
10567
10568 // If there's a non-vector, non-real operand, diagnose that.
10569 if ((!RHSVecType && !RHSType->isRealType()) ||
10570 (!LHSVecType && !LHSType->isRealType())) {
10571 Diag(Loc, diag::err_typecheck_vector_not_convertable_non_scalar)
10572 << LHSType << RHSType
10573 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10574 return QualType();
10575 }
10576
10577 // OpenCL V1.1 6.2.6.p1:
10578 // If the operands are of more than one vector type, then an error shall
10579 // occur. Implicit conversions between vector types are not permitted, per
10580 // section 6.2.1.
10581 if (getLangOpts().OpenCL &&
10582 RHSVecType && isa<ExtVectorType>(RHSVecType) &&
10583 LHSVecType && isa<ExtVectorType>(LHSVecType)) {
10584 Diag(Loc, diag::err_opencl_implicit_vector_conversion) << LHSType
10585 << RHSType;
10586 return QualType();
10587 }
10588
10589
10590 // If there is a vector type that is not a ExtVector and a scalar, we reach
10591 // this point if scalar could not be converted to the vector's element type
10592 // without truncation.
10593 if ((RHSVecType && !isa<ExtVectorType>(RHSVecType)) ||
10594 (LHSVecType && !isa<ExtVectorType>(LHSVecType))) {
10595 QualType Scalar = LHSVecType ? RHSType : LHSType;
10596 QualType Vector = LHSVecType ? LHSType : RHSType;
10597 unsigned ScalarOrVector = LHSVecType && RHSVecType ? 1 : 0;
10598 Diag(Loc,
10599 diag::err_typecheck_vector_not_convertable_implict_truncation)
10600 << ScalarOrVector << Scalar << Vector;
10601
10602 return QualType();
10603 }
10604
10605 // Otherwise, use the generic diagnostic.
10606 Diag(Loc, DiagID)
10607 << LHSType << RHSType
10608 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10609 return QualType();
10610}
10611
10612QualType Sema::CheckSizelessVectorOperands(ExprResult &LHS, ExprResult &RHS,
10613 SourceLocation Loc,
10614 bool IsCompAssign,
10615 ArithConvKind OperationKind) {
10616 if (!IsCompAssign) {
10617 LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
10618 if (LHS.isInvalid())
10619 return QualType();
10620 }
10621 RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
10622 if (RHS.isInvalid())
10623 return QualType();
10624
10625 QualType LHSType = LHS.get()->getType().getUnqualifiedType();
10626 QualType RHSType = RHS.get()->getType().getUnqualifiedType();
10627
10628 const BuiltinType *LHSBuiltinTy = LHSType->getAs<BuiltinType>();
10629 const BuiltinType *RHSBuiltinTy = RHSType->getAs<BuiltinType>();
10630
10631 unsigned DiagID = diag::err_typecheck_invalid_operands;
10632 if ((OperationKind == ACK_Arithmetic) &&
10633 ((LHSBuiltinTy && LHSBuiltinTy->isSVEBool()) ||
10634 (RHSBuiltinTy && RHSBuiltinTy->isSVEBool()))) {
10635 Diag(Loc, DiagID) << LHSType << RHSType << LHS.get()->getSourceRange()
10636 << RHS.get()->getSourceRange();
10637 return QualType();
10638 }
10639
10640 if (Context.hasSameType(LHSType, RHSType))
10641 return LHSType;
10642
10643 if (LHSType->isVLSTBuiltinType() && !RHSType->isVLSTBuiltinType()) {
10644 if (!tryGCCVectorConvertAndSplat(*this, &RHS, &LHS))
10645 return LHSType;
10646 }
10647 if (RHSType->isVLSTBuiltinType() && !LHSType->isVLSTBuiltinType()) {
10648 if (LHS.get()->isLValue() ||
10649 !tryGCCVectorConvertAndSplat(*this, &LHS, &RHS))
10650 return RHSType;
10651 }
10652
10653 if ((!LHSType->isVLSTBuiltinType() && !LHSType->isRealType()) ||
10654 (!RHSType->isVLSTBuiltinType() && !RHSType->isRealType())) {
10655 Diag(Loc, diag::err_typecheck_vector_not_convertable_non_scalar)
10656 << LHSType << RHSType << LHS.get()->getSourceRange()
10657 << RHS.get()->getSourceRange();
10658 return QualType();
10659 }
10660
10661 if (LHSType->isVLSTBuiltinType() && RHSType->isVLSTBuiltinType() &&
10662 Context.getBuiltinVectorTypeInfo(LHSBuiltinTy).EC !=
10663 Context.getBuiltinVectorTypeInfo(RHSBuiltinTy).EC) {
10664 Diag(Loc, diag::err_typecheck_vector_lengths_not_equal)
10665 << LHSType << RHSType << LHS.get()->getSourceRange()
10666 << RHS.get()->getSourceRange();
10667 return QualType();
10668 }
10669
10670 if (LHSType->isVLSTBuiltinType() || RHSType->isVLSTBuiltinType()) {
10671 QualType Scalar = LHSType->isVLSTBuiltinType() ? RHSType : LHSType;
10672 QualType Vector = LHSType->isVLSTBuiltinType() ? LHSType : RHSType;
10673 bool ScalarOrVector =
10674 LHSType->isVLSTBuiltinType() && RHSType->isVLSTBuiltinType();
10675
10676 Diag(Loc, diag::err_typecheck_vector_not_convertable_implict_truncation)
10677 << ScalarOrVector << Scalar << Vector;
10678
10679 return QualType();
10680 }
10681
10682 Diag(Loc, DiagID) << LHSType << RHSType << LHS.get()->getSourceRange()
10683 << RHS.get()->getSourceRange();
10684 return QualType();
10685}
10686
10687// checkArithmeticNull - Detect when a NULL constant is used improperly in an
10688// expression. These are mainly cases where the null pointer is used as an
10689// integer instead of a pointer.
10690static void checkArithmeticNull(Sema &S, ExprResult &LHS, ExprResult &RHS,
10691 SourceLocation Loc, bool IsCompare) {
10692 // The canonical way to check for a GNU null is with isNullPointerConstant,
10693 // but we use a bit of a hack here for speed; this is a relatively
10694 // hot path, and isNullPointerConstant is slow.
10695 bool LHSNull = isa<GNUNullExpr>(LHS.get()->IgnoreParenImpCasts());
10696 bool RHSNull = isa<GNUNullExpr>(RHS.get()->IgnoreParenImpCasts());
10697
10698 QualType NonNullType = LHSNull ? RHS.get()->getType() : LHS.get()->getType();
10699
10700 // Avoid analyzing cases where the result will either be invalid (and
10701 // diagnosed as such) or entirely valid and not something to warn about.
10702 if ((!LHSNull && !RHSNull) || NonNullType->isBlockPointerType() ||
10703 NonNullType->isMemberPointerType() || NonNullType->isFunctionType())
10704 return;
10705
10706 // Comparison operations would not make sense with a null pointer no matter
10707 // what the other expression is.
10708 if (!IsCompare) {
10709 S.Diag(Loc, diag::warn_null_in_arithmetic_operation)
10710 << (LHSNull ? LHS.get()->getSourceRange() : SourceRange())
10711 << (RHSNull ? RHS.get()->getSourceRange() : SourceRange());
10712 return;
10713 }
10714
10715 // The rest of the operations only make sense with a null pointer
10716 // if the other expression is a pointer.
10717 if (LHSNull == RHSNull || NonNullType->isAnyPointerType() ||
10718 NonNullType->canDecayToPointerType())
10719 return;
10720
10721 S.Diag(Loc, diag::warn_null_in_comparison_operation)
10722 << LHSNull /* LHS is NULL */ << NonNullType
10723 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10724}
10725
10726static void DiagnoseDivisionSizeofPointerOrArray(Sema &S, Expr *LHS, Expr *RHS,
10727 SourceLocation Loc) {
10728 const auto *LUE = dyn_cast<UnaryExprOrTypeTraitExpr>(LHS);
10729 const auto *RUE = dyn_cast<UnaryExprOrTypeTraitExpr>(RHS);
10730 if (!LUE || !RUE)
10731 return;
10732 if (LUE->getKind() != UETT_SizeOf || LUE->isArgumentType() ||
10733 RUE->getKind() != UETT_SizeOf)
10734 return;
10735
10736 const Expr *LHSArg = LUE->getArgumentExpr()->IgnoreParens();
10737 QualType LHSTy = LHSArg->getType();
10738 QualType RHSTy;
10739
10740 if (RUE->isArgumentType())
10741 RHSTy = RUE->getArgumentType().getNonReferenceType();
10742 else
10743 RHSTy = RUE->getArgumentExpr()->IgnoreParens()->getType();
10744
10745 if (LHSTy->isPointerType() && !RHSTy->isPointerType()) {
10746 if (!S.Context.hasSameUnqualifiedType(LHSTy->getPointeeType(), RHSTy))
10747 return;
10748
10749 S.Diag(Loc, diag::warn_division_sizeof_ptr) << LHS << LHS->getSourceRange();
10750 if (const auto *DRE = dyn_cast<DeclRefExpr>(LHSArg)) {
10751 if (const ValueDecl *LHSArgDecl = DRE->getDecl())
10752 S.Diag(LHSArgDecl->getLocation(), diag::note_pointer_declared_here)
10753 << LHSArgDecl;
10754 }
10755 } else if (const auto *ArrayTy = S.Context.getAsArrayType(LHSTy)) {
10756 QualType ArrayElemTy = ArrayTy->getElementType();
10757 if (ArrayElemTy != S.Context.getBaseElementType(ArrayTy) ||
10758 ArrayElemTy->isDependentType() || RHSTy->isDependentType() ||
10759 RHSTy->isReferenceType() || ArrayElemTy->isCharType() ||
10760 S.Context.getTypeSize(ArrayElemTy) == S.Context.getTypeSize(RHSTy))
10761 return;
10762 S.Diag(Loc, diag::warn_division_sizeof_array)
10763 << LHSArg->getSourceRange() << ArrayElemTy << RHSTy;
10764 if (const auto *DRE = dyn_cast<DeclRefExpr>(LHSArg)) {
10765 if (const ValueDecl *LHSArgDecl = DRE->getDecl())
10766 S.Diag(LHSArgDecl->getLocation(), diag::note_array_declared_here)
10767 << LHSArgDecl;
10768 }
10769
10770 S.Diag(Loc, diag::note_precedence_silence) << RHS;
10771 }
10772}
10773
10774static void DiagnoseBadDivideOrRemainderValues(Sema& S, ExprResult &LHS,
10775 ExprResult &RHS,
10776 SourceLocation Loc, bool IsDiv) {
10777 // Check for division/remainder by zero.
10778 Expr::EvalResult RHSValue;
10779 if (!RHS.get()->isValueDependent() &&
10780 RHS.get()->EvaluateAsInt(RHSValue, S.Context) &&
10781 RHSValue.Val.getInt() == 0)
10782 S.DiagRuntimeBehavior(Loc, RHS.get(),
10783 S.PDiag(diag::warn_remainder_division_by_zero)
10784 << IsDiv << RHS.get()->getSourceRange());
10785}
10786
10787QualType Sema::CheckMultiplyDivideOperands(ExprResult &LHS, ExprResult &RHS,
10788 SourceLocation Loc,
10789 bool IsCompAssign, bool IsDiv) {
10790 checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
10791
10792 QualType LHSTy = LHS.get()->getType();
10793 QualType RHSTy = RHS.get()->getType();
10794 if (LHSTy->isVectorType() || RHSTy->isVectorType())
10795 return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
10796 /*AllowBothBool*/ getLangOpts().AltiVec,
10797 /*AllowBoolConversions*/ false,
10798 /*AllowBooleanOperation*/ false,
10799 /*ReportInvalid*/ true);
10800 if (LHSTy->isVLSTBuiltinType() || RHSTy->isVLSTBuiltinType())
10801 return CheckSizelessVectorOperands(LHS, RHS, Loc, IsCompAssign,
10802 ACK_Arithmetic);
10803 if (!IsDiv &&
10804 (LHSTy->isConstantMatrixType() || RHSTy->isConstantMatrixType()))
10805 return CheckMatrixMultiplyOperands(LHS, RHS, Loc, IsCompAssign);
10806 // For division, only matrix-by-scalar is supported. Other combinations with
10807 // matrix types are invalid.
10808 if (IsDiv && LHSTy->isConstantMatrixType() && RHSTy->isArithmeticType())
10809 return CheckMatrixElementwiseOperands(LHS, RHS, Loc, IsCompAssign);
10810
10811 QualType compType = UsualArithmeticConversions(
10812 LHS, RHS, Loc, IsCompAssign ? ACK_CompAssign : ACK_Arithmetic);
10813 if (LHS.isInvalid() || RHS.isInvalid())
10814 return QualType();
10815
10816
10817 if (compType.isNull() || !compType->isArithmeticType())
10818 return InvalidOperands(Loc, LHS, RHS);
10819 if (IsDiv) {
10820 DiagnoseBadDivideOrRemainderValues(*this, LHS, RHS, Loc, IsDiv);
10821 DiagnoseDivisionSizeofPointerOrArray(*this, LHS.get(), RHS.get(), Loc);
10822 }
10823 return compType;
10824}
10825
10826QualType Sema::CheckRemainderOperands(
10827 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
10828 checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
10829
10830 if (LHS.get()->getType()->isVectorType() ||
10831 RHS.get()->getType()->isVectorType()) {
10832 if (LHS.get()->getType()->hasIntegerRepresentation() &&
10833 RHS.get()->getType()->hasIntegerRepresentation())
10834 return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
10835 /*AllowBothBool*/ getLangOpts().AltiVec,
10836 /*AllowBoolConversions*/ false,
10837 /*AllowBooleanOperation*/ false,
10838 /*ReportInvalid*/ true);
10839 return InvalidOperands(Loc, LHS, RHS);
10840 }
10841
10842 if (LHS.get()->getType()->isVLSTBuiltinType() ||
10843 RHS.get()->getType()->isVLSTBuiltinType()) {
10844 if (LHS.get()->getType()->hasIntegerRepresentation() &&
10845 RHS.get()->getType()->hasIntegerRepresentation())
10846 return CheckSizelessVectorOperands(LHS, RHS, Loc, IsCompAssign,
10847 ACK_Arithmetic);
10848
10849 return InvalidOperands(Loc, LHS, RHS);
10850 }
10851
10852 QualType compType = UsualArithmeticConversions(
10853 LHS, RHS, Loc, IsCompAssign ? ACK_CompAssign : ACK_Arithmetic);
10854 if (LHS.isInvalid() || RHS.isInvalid())
10855 return QualType();
10856
10857 if (compType.isNull() || !compType->isIntegerType())
10858 return InvalidOperands(Loc, LHS, RHS);
10859 DiagnoseBadDivideOrRemainderValues(*this, LHS, RHS, Loc, false /* IsDiv */);
10860 return compType;
10861}
10862
10863/// Diagnose invalid arithmetic on two void pointers.
10864static void diagnoseArithmeticOnTwoVoidPointers(Sema &S, SourceLocation Loc,
10865 Expr *LHSExpr, Expr *RHSExpr) {
10866 S.Diag(Loc, S.getLangOpts().CPlusPlus
10867 ? diag::err_typecheck_pointer_arith_void_type
10868 : diag::ext_gnu_void_ptr)
10869 << 1 /* two pointers */ << LHSExpr->getSourceRange()
10870 << RHSExpr->getSourceRange();
10871}
10872
10873/// Diagnose invalid arithmetic on a void pointer.
10874static void diagnoseArithmeticOnVoidPointer(Sema &S, SourceLocation Loc,
10875 Expr *Pointer) {
10876 S.Diag(Loc, S.getLangOpts().CPlusPlus
10877 ? diag::err_typecheck_pointer_arith_void_type
10878 : diag::ext_gnu_void_ptr)
10879 << 0 /* one pointer */ << Pointer->getSourceRange();
10880}
10881
10882/// Diagnose invalid arithmetic on a null pointer.
10883///
10884/// If \p IsGNUIdiom is true, the operation is using the 'p = (i8*)nullptr + n'
10885/// idiom, which we recognize as a GNU extension.
10886///
10887static void diagnoseArithmeticOnNullPointer(Sema &S, SourceLocation Loc,
10888 Expr *Pointer, bool IsGNUIdiom) {
10889 if (IsGNUIdiom)
10890 S.Diag(Loc, diag::warn_gnu_null_ptr_arith)
10891 << Pointer->getSourceRange();
10892 else
10893 S.Diag(Loc, diag::warn_pointer_arith_null_ptr)
10894 << S.getLangOpts().CPlusPlus << Pointer->getSourceRange();
10895}
10896
10897/// Diagnose invalid subraction on a null pointer.
10898///
10899static void diagnoseSubtractionOnNullPointer(Sema &S, SourceLocation Loc,
10900 Expr *Pointer, bool BothNull) {
10901 // Null - null is valid in C++ [expr.add]p7
10902 if (BothNull && S.getLangOpts().CPlusPlus)
10903 return;
10904
10905 // Is this s a macro from a system header?
10906 if (S.Diags.getSuppressSystemWarnings() && S.SourceMgr.isInSystemMacro(Loc))
10907 return;
10908
10909 S.DiagRuntimeBehavior(Loc, Pointer,
10910 S.PDiag(diag::warn_pointer_sub_null_ptr)
10911 << S.getLangOpts().CPlusPlus
10912 << Pointer->getSourceRange());
10913}
10914
10915/// Diagnose invalid arithmetic on two function pointers.
10916static void diagnoseArithmeticOnTwoFunctionPointers(Sema &S, SourceLocation Loc,
10917 Expr *LHS, Expr *RHS) {
10918 assert(LHS->getType()->isAnyPointerType())(static_cast <bool> (LHS->getType()->isAnyPointerType
()) ? void (0) : __assert_fail ("LHS->getType()->isAnyPointerType()"
, "clang/lib/Sema/SemaExpr.cpp", 10918, __extension__ __PRETTY_FUNCTION__
))
;
10919 assert(RHS->getType()->isAnyPointerType())(static_cast <bool> (RHS->getType()->isAnyPointerType
()) ? void (0) : __assert_fail ("RHS->getType()->isAnyPointerType()"
, "clang/lib/Sema/SemaExpr.cpp", 10919, __extension__ __PRETTY_FUNCTION__
))
;
10920 S.Diag(Loc, S.getLangOpts().CPlusPlus
10921 ? diag::err_typecheck_pointer_arith_function_type
10922 : diag::ext_gnu_ptr_func_arith)
10923 << 1 /* two pointers */ << LHS->getType()->getPointeeType()
10924 // We only show the second type if it differs from the first.
10925 << (unsigned)!S.Context.hasSameUnqualifiedType(LHS->getType(),
10926 RHS->getType())
10927 << RHS->getType()->getPointeeType()
10928 << LHS->getSourceRange() << RHS->getSourceRange();
10929}
10930
10931/// Diagnose invalid arithmetic on a function pointer.
10932static void diagnoseArithmeticOnFunctionPointer(Sema &S, SourceLocation Loc,
10933 Expr *Pointer) {
10934 assert(Pointer->getType()->isAnyPointerType())(static_cast <bool> (Pointer->getType()->isAnyPointerType
()) ? void (0) : __assert_fail ("Pointer->getType()->isAnyPointerType()"
, "clang/lib/Sema/SemaExpr.cpp", 10934, __extension__ __PRETTY_FUNCTION__
))
;
10935 S.Diag(Loc, S.getLangOpts().CPlusPlus
10936 ? diag::err_typecheck_pointer_arith_function_type
10937 : diag::ext_gnu_ptr_func_arith)
10938 << 0 /* one pointer */ << Pointer->getType()->getPointeeType()
10939 << 0 /* one pointer, so only one type */
10940 << Pointer->getSourceRange();
10941}
10942
10943/// Emit error if Operand is incomplete pointer type
10944///
10945/// \returns True if pointer has incomplete type
10946static bool checkArithmeticIncompletePointerType(Sema &S, SourceLocation Loc,
10947 Expr *Operand) {
10948 QualType ResType = Operand->getType();
10949 if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
10950 ResType = ResAtomicType->getValueType();
10951
10952 assert(ResType->isAnyPointerType() && !ResType->isDependentType())(static_cast <bool> (ResType->isAnyPointerType() &&
!ResType->isDependentType()) ? void (0) : __assert_fail (
"ResType->isAnyPointerType() && !ResType->isDependentType()"
, "clang/lib/Sema/SemaExpr.cpp", 10952, __extension__ __PRETTY_FUNCTION__
))
;
10953 QualType PointeeTy = ResType->getPointeeType();
10954 return S.RequireCompleteSizedType(
10955 Loc, PointeeTy,
10956 diag::err_typecheck_arithmetic_incomplete_or_sizeless_type,
10957 Operand->getSourceRange());
10958}
10959
10960/// Check the validity of an arithmetic pointer operand.
10961///
10962/// If the operand has pointer type, this code will check for pointer types
10963/// which are invalid in arithmetic operations. These will be diagnosed
10964/// appropriately, including whether or not the use is supported as an
10965/// extension.
10966///
10967/// \returns True when the operand is valid to use (even if as an extension).
10968static bool checkArithmeticOpPointerOperand(Sema &S, SourceLocation Loc,
10969 Expr *Operand) {
10970 QualType ResType = Operand->getType();
10971 if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
10972 ResType = ResAtomicType->getValueType();
10973
10974 if (!ResType->isAnyPointerType()) return true;
10975
10976 QualType PointeeTy = ResType->getPointeeType();
10977 if (PointeeTy->isVoidType()) {
10978 diagnoseArithmeticOnVoidPointer(S, Loc, Operand);
10979 return !S.getLangOpts().CPlusPlus;
10980 }
10981 if (PointeeTy->isFunctionType()) {
10982 diagnoseArithmeticOnFunctionPointer(S, Loc, Operand);
10983 return !S.getLangOpts().CPlusPlus;
10984 }
10985
10986 if (checkArithmeticIncompletePointerType(S, Loc, Operand)) return false;
10987
10988 return true;
10989}
10990
10991/// Check the validity of a binary arithmetic operation w.r.t. pointer
10992/// operands.
10993///
10994/// This routine will diagnose any invalid arithmetic on pointer operands much
10995/// like \see checkArithmeticOpPointerOperand. However, it has special logic
10996/// for emitting a single diagnostic even for operations where both LHS and RHS
10997/// are (potentially problematic) pointers.
10998///
10999/// \returns True when the operand is valid to use (even if as an extension).
11000static bool checkArithmeticBinOpPointerOperands(Sema &S, SourceLocation Loc,
11001 Expr *LHSExpr, Expr *RHSExpr) {
11002 bool isLHSPointer = LHSExpr->getType()->isAnyPointerType();
11003 bool isRHSPointer = RHSExpr->getType()->isAnyPointerType();
11004 if (!isLHSPointer && !isRHSPointer) return true;
11005
11006 QualType LHSPointeeTy, RHSPointeeTy;
11007 if (isLHSPointer) LHSPointeeTy = LHSExpr->getType()->getPointeeType();
11008 if (isRHSPointer) RHSPointeeTy = RHSExpr->getType()->getPointeeType();
11009
11010 // if both are pointers check if operation is valid wrt address spaces
11011 if (isLHSPointer && isRHSPointer) {
11012 if (!LHSPointeeTy.isAddressSpaceOverlapping(RHSPointeeTy)) {
11013 S.Diag(Loc,
11014 diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
11015 << LHSExpr->getType() << RHSExpr->getType() << 1 /*arithmetic op*/
11016 << LHSExpr->getSourceRange() << RHSExpr->getSourceRange();
11017 return false;
11018 }
11019 }
11020
11021 // Check for arithmetic on pointers to incomplete types.
11022 bool isLHSVoidPtr = isLHSPointer && LHSPointeeTy->isVoidType();
11023 bool isRHSVoidPtr = isRHSPointer && RHSPointeeTy->isVoidType();
11024 if (isLHSVoidPtr || isRHSVoidPtr) {
11025 if (!isRHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, LHSExpr);
11026 else if (!isLHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, RHSExpr);
11027 else diagnoseArithmeticOnTwoVoidPointers(S, Loc, LHSExpr, RHSExpr);
11028
11029 return !S.getLangOpts().CPlusPlus;
11030 }
11031
11032 bool isLHSFuncPtr = isLHSPointer && LHSPointeeTy->isFunctionType();
11033 bool isRHSFuncPtr = isRHSPointer && RHSPointeeTy->isFunctionType();
11034 if (isLHSFuncPtr || isRHSFuncPtr) {
11035 if (!isRHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, LHSExpr);
11036 else if (!isLHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc,
11037 RHSExpr);
11038 else diagnoseArithmeticOnTwoFunctionPointers(S, Loc, LHSExpr, RHSExpr);
11039
11040 return !S.getLangOpts().CPlusPlus;
11041 }
11042
11043 if (isLHSPointer && checkArithmeticIncompletePointerType(S, Loc, LHSExpr))
11044 return false;
11045 if (isRHSPointer && checkArithmeticIncompletePointerType(S, Loc, RHSExpr))
11046 return false;
11047
11048 return true;
11049}
11050
11051/// diagnoseStringPlusInt - Emit a warning when adding an integer to a string
11052/// literal.
11053static void diagnoseStringPlusInt(Sema &Self, SourceLocation OpLoc,
11054 Expr *LHSExpr, Expr *RHSExpr) {
11055 StringLiteral* StrExpr = dyn_cast<StringLiteral>(LHSExpr->IgnoreImpCasts());
11056 Expr* IndexExpr = RHSExpr;
11057 if (!StrExpr) {
11058 StrExpr = dyn_cast<StringLiteral>(RHSExpr->IgnoreImpCasts());
11059 IndexExpr = LHSExpr;
11060 }
11061
11062 bool IsStringPlusInt = StrExpr &&
11063 IndexExpr->getType()->isIntegralOrUnscopedEnumerationType();
11064 if (!IsStringPlusInt || IndexExpr->isValueDependent())
11065 return;
11066
11067 SourceRange DiagRange(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
11068 Self.Diag(OpLoc, diag::warn_string_plus_int)
11069 << DiagRange << IndexExpr->IgnoreImpCasts()->getType();
11070
11071 // Only print a fixit for "str" + int, not for int + "str".
11072 if (IndexExpr == RHSExpr) {
11073 SourceLocation EndLoc = Self.getLocForEndOfToken(RHSExpr->getEndLoc());
11074 Self.Diag(OpLoc, diag::note_string_plus_scalar_silence)
11075 << FixItHint::CreateInsertion(LHSExpr->getBeginLoc(), "&")
11076 << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
11077 << FixItHint::CreateInsertion(EndLoc, "]");
11078 } else
11079 Self.Diag(OpLoc, diag::note_string_plus_scalar_silence);
11080}
11081
11082/// Emit a warning when adding a char literal to a string.
11083static void diagnoseStringPlusChar(Sema &Self, SourceLocation OpLoc,
11084 Expr *LHSExpr, Expr *RHSExpr) {
11085 const Expr *StringRefExpr = LHSExpr;
11086 const CharacterLiteral *CharExpr =
11087 dyn_cast<CharacterLiteral>(RHSExpr->IgnoreImpCasts());
11088
11089 if (!CharExpr) {
11090 CharExpr = dyn_cast<CharacterLiteral>(LHSExpr->IgnoreImpCasts());
11091 StringRefExpr = RHSExpr;
11092 }
11093
11094 if (!CharExpr || !StringRefExpr)
11095 return;
11096
11097 const QualType StringType = StringRefExpr->getType();
11098
11099 // Return if not a PointerType.
11100 if (!StringType->isAnyPointerType())
11101 return;
11102
11103 // Return if not a CharacterType.
11104 if (!StringType->getPointeeType()->isAnyCharacterType())
11105 return;
11106
11107 ASTContext &Ctx = Self.getASTContext();
11108 SourceRange DiagRange(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
11109
11110 const QualType CharType = CharExpr->getType();
11111 if (!CharType->isAnyCharacterType() &&
11112 CharType->isIntegerType() &&
11113 llvm::isUIntN(Ctx.getCharWidth(), CharExpr->getValue())) {
11114 Self.Diag(OpLoc, diag::warn_string_plus_char)
11115 << DiagRange << Ctx.CharTy;
11116 } else {
11117 Self.Diag(OpLoc, diag::warn_string_plus_char)
11118 << DiagRange << CharExpr->getType();
11119 }
11120
11121 // Only print a fixit for str + char, not for char + str.
11122 if (isa<CharacterLiteral>(RHSExpr->IgnoreImpCasts())) {
11123 SourceLocation EndLoc = Self.getLocForEndOfToken(RHSExpr->getEndLoc());
11124 Self.Diag(OpLoc, diag::note_string_plus_scalar_silence)
11125 << FixItHint::CreateInsertion(LHSExpr->getBeginLoc(), "&")
11126 << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
11127 << FixItHint::CreateInsertion(EndLoc, "]");
11128 } else {
11129 Self.Diag(OpLoc, diag::note_string_plus_scalar_silence);
11130 }
11131}
11132
11133/// Emit error when two pointers are incompatible.
11134static void diagnosePointerIncompatibility(Sema &S, SourceLocation Loc,
11135 Expr *LHSExpr, Expr *RHSExpr) {
11136 assert(LHSExpr->getType()->isAnyPointerType())(static_cast <bool> (LHSExpr->getType()->isAnyPointerType
()) ? void (0) : __assert_fail ("LHSExpr->getType()->isAnyPointerType()"
, "clang/lib/Sema/SemaExpr.cpp", 11136, __extension__ __PRETTY_FUNCTION__
))
;
11137 assert(RHSExpr->getType()->isAnyPointerType())(static_cast <bool> (RHSExpr->getType()->isAnyPointerType
()) ? void (0) : __assert_fail ("RHSExpr->getType()->isAnyPointerType()"
, "clang/lib/Sema/SemaExpr.cpp", 11137, __extension__ __PRETTY_FUNCTION__
))
;
11138 S.Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
11139 << LHSExpr->getType() << RHSExpr->getType() << LHSExpr->getSourceRange()
11140 << RHSExpr->getSourceRange();
11141}
11142
11143// C99 6.5.6
11144QualType Sema::CheckAdditionOperands(ExprResult &LHS, ExprResult &RHS,
11145 SourceLocation Loc, BinaryOperatorKind Opc,
11146 QualType* CompLHSTy) {
11147 checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
11148
11149 if (LHS.get()->getType()->isVectorType() ||
11150 RHS.get()->getType()->isVectorType()) {
11151 QualType compType =
11152 CheckVectorOperands(LHS, RHS, Loc, CompLHSTy,
11153 /*AllowBothBool*/ getLangOpts().AltiVec,
11154 /*AllowBoolConversions*/ getLangOpts().ZVector,
11155 /*AllowBooleanOperation*/ false,
11156 /*ReportInvalid*/ true);
11157 if (CompLHSTy) *CompLHSTy = compType;
11158 return compType;
11159 }
11160
11161 if (LHS.get()->getType()->isVLSTBuiltinType() ||
11162 RHS.get()->getType()->isVLSTBuiltinType()) {
11163 QualType compType =
11164 CheckSizelessVectorOperands(LHS, RHS, Loc, CompLHSTy, ACK_Arithmetic);
11165 if (CompLHSTy)
11166 *CompLHSTy = compType;
11167 return compType;
11168 }
11169
11170 if (LHS.get()->getType()->isConstantMatrixType() ||
11171 RHS.get()->getType()->isConstantMatrixType()) {
11172 QualType compType =
11173 CheckMatrixElementwiseOperands(LHS, RHS, Loc, CompLHSTy);
11174 if (CompLHSTy)
11175 *CompLHSTy = compType;
11176 return compType;
11177 }
11178
11179 QualType compType = UsualArithmeticConversions(
11180 LHS, RHS, Loc, CompLHSTy ? ACK_CompAssign : ACK_Arithmetic);
11181 if (LHS.isInvalid() || RHS.isInvalid())
11182 return QualType();
11183
11184 // Diagnose "string literal" '+' int and string '+' "char literal".
11185 if (Opc == BO_Add) {
11186 diagnoseStringPlusInt(*this, Loc, LHS.get(), RHS.get());
11187 diagnoseStringPlusChar(*this, Loc, LHS.get(), RHS.get());
11188 }
11189
11190 // handle the common case first (both operands are arithmetic).
11191 if (!compType.isNull() && compType->isArithmeticType()) {
11192 if (CompLHSTy) *CompLHSTy = compType;
11193 return compType;
11194 }
11195
11196 // Type-checking. Ultimately the pointer's going to be in PExp;
11197 // note that we bias towards the LHS being the pointer.
11198 Expr *PExp = LHS.get(), *IExp = RHS.get();
11199
11200 bool isObjCPointer;
11201 if (PExp->getType()->isPointerType()) {
11202 isObjCPointer = false;
11203 } else if (PExp->getType()->isObjCObjectPointerType()) {
11204 isObjCPointer = true;
11205 } else {
11206 std::swap(PExp, IExp);
11207 if (PExp->getType()->isPointerType()) {
11208 isObjCPointer = false;
11209 } else if (PExp->getType()->isObjCObjectPointerType()) {
11210 isObjCPointer = true;
11211 } else {
11212 return InvalidOperands(Loc, LHS, RHS);
11213 }
11214 }
11215 assert(PExp->getType()->isAnyPointerType())(static_cast <bool> (PExp->getType()->isAnyPointerType
()) ? void (0) : __assert_fail ("PExp->getType()->isAnyPointerType()"
, "clang/lib/Sema/SemaExpr.cpp", 11215, __extension__ __PRETTY_FUNCTION__
))
;
11216
11217 if (!IExp->getType()->isIntegerType())
11218 return InvalidOperands(Loc, LHS, RHS);
11219
11220 // Adding to a null pointer results in undefined behavior.
11221 if (PExp->IgnoreParenCasts()->isNullPointerConstant(
11222 Context, Expr::NPC_ValueDependentIsNotNull)) {
11223 // In C++ adding zero to a null pointer is defined.
11224 Expr::EvalResult KnownVal;
11225 if (!getLangOpts().CPlusPlus ||
11226 (!IExp->isValueDependent() &&
11227 (!IExp->EvaluateAsInt(KnownVal, Context) ||
11228 KnownVal.Val.getInt() != 0))) {
11229 // Check the conditions to see if this is the 'p = nullptr + n' idiom.
11230 bool IsGNUIdiom = BinaryOperator::isNullPointerArithmeticExtension(
11231 Context, BO_Add, PExp, IExp);
11232 diagnoseArithmeticOnNullPointer(*this, Loc, PExp, IsGNUIdiom);
11233 }
11234 }
11235
11236 if (!checkArithmeticOpPointerOperand(*this, Loc, PExp))
11237 return QualType();
11238
11239 if (isObjCPointer && checkArithmeticOnObjCPointer(*this, Loc, PExp))
11240 return QualType();
11241
11242 // Check array bounds for pointer arithemtic
11243 CheckArrayAccess(PExp, IExp);
11244
11245 if (CompLHSTy) {
11246 QualType LHSTy = Context.isPromotableBitField(LHS.get());
11247 if (LHSTy.isNull()) {
11248 LHSTy = LHS.get()->getType();
11249 if (LHSTy->isPromotableIntegerType())
11250 LHSTy = Context.getPromotedIntegerType(LHSTy);
11251 }
11252 *CompLHSTy = LHSTy;
11253 }
11254
11255 return PExp->getType();
11256}
11257
11258// C99 6.5.6
11259QualType Sema::CheckSubtractionOperands(ExprResult &LHS, ExprResult &RHS,
11260 SourceLocation Loc,
11261 QualType* CompLHSTy) {
11262 checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
11263
11264 if (LHS.get()->getType()->isVectorType() ||
11265 RHS.get()->getType()->isVectorType()) {
11266 QualType compType =
11267 CheckVectorOperands(LHS, RHS, Loc, CompLHSTy,
11268 /*AllowBothBool*/ getLangOpts().AltiVec,
11269 /*AllowBoolConversions*/ getLangOpts().ZVector,
11270 /*AllowBooleanOperation*/ false,
11271 /*ReportInvalid*/ true);
11272 if (CompLHSTy) *CompLHSTy = compType;
11273 return compType;
11274 }
11275
11276 if (LHS.get()->getType()->isVLSTBuiltinType() ||
11277 RHS.get()->getType()->isVLSTBuiltinType()) {
11278 QualType compType =
11279 CheckSizelessVectorOperands(LHS, RHS, Loc, CompLHSTy, ACK_Arithmetic);
11280 if (CompLHSTy)
11281 *CompLHSTy = compType;
11282 return compType;
11283 }
11284
11285 if (LHS.get()->getType()->isConstantMatrixType() ||
11286 RHS.get()->getType()->isConstantMatrixType()) {
11287 QualType compType =
11288 CheckMatrixElementwiseOperands(LHS, RHS, Loc, CompLHSTy);
11289 if (CompLHSTy)
11290 *CompLHSTy = compType;
11291 return compType;
11292 }
11293
11294 QualType compType = UsualArithmeticConversions(
11295 LHS, RHS, Loc, CompLHSTy ? ACK_CompAssign : ACK_Arithmetic);
11296 if (LHS.isInvalid() || RHS.isInvalid())
11297 return QualType();
11298
11299 // Enforce type constraints: C99 6.5.6p3.
11300
11301 // Handle the common case first (both operands are arithmetic).
11302 if (!compType.isNull() && compType->isArithmeticType()) {
11303 if (CompLHSTy) *CompLHSTy = compType;
11304 return compType;
11305 }
11306
11307 // Either ptr - int or ptr - ptr.
11308 if (LHS.get()->getType()->isAnyPointerType()) {
11309 QualType lpointee = LHS.get()->getType()->getPointeeType();
11310
11311 // Diagnose bad cases where we step over interface counts.
11312 if (LHS.get()->getType()->isObjCObjectPointerType() &&
11313 checkArithmeticOnObjCPointer(*this, Loc, LHS.get()))
11314 return QualType();
11315
11316 // The result type of a pointer-int computation is the pointer type.
11317 if (RHS.get()->getType()->isIntegerType()) {
11318 // Subtracting from a null pointer should produce a warning.
11319 // The last argument to the diagnose call says this doesn't match the
11320 // GNU int-to-pointer idiom.
11321 if (LHS.get()->IgnoreParenCasts()->isNullPointerConstant(Context,
11322 Expr::NPC_ValueDependentIsNotNull)) {
11323 // In C++ adding zero to a null pointer is defined.
11324 Expr::EvalResult KnownVal;
11325 if (!getLangOpts().CPlusPlus ||
11326 (!RHS.get()->isValueDependent() &&
11327 (!RHS.get()->EvaluateAsInt(KnownVal, Context) ||
11328 KnownVal.Val.getInt() != 0))) {
11329 diagnoseArithmeticOnNullPointer(*this, Loc, LHS.get(), false);
11330 }
11331 }
11332
11333 if (!checkArithmeticOpPointerOperand(*this, Loc, LHS.get()))
11334 return QualType();
11335
11336 // Check array bounds for pointer arithemtic
11337 CheckArrayAccess(LHS.get(), RHS.get(), /*ArraySubscriptExpr*/nullptr,
11338 /*AllowOnePastEnd*/true, /*IndexNegated*/true);
11339
11340 if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
11341 return LHS.get()->getType();
11342 }
11343
11344 // Handle pointer-pointer subtractions.
11345 if (const PointerType *RHSPTy
11346 = RHS.get()->getType()->getAs<PointerType>()) {
11347 QualType rpointee = RHSPTy->getPointeeType();
11348
11349 if (getLangOpts().CPlusPlus) {
11350 // Pointee types must be the same: C++ [expr.add]
11351 if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
11352 diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
11353 }
11354 } else {
11355 // Pointee types must be compatible C99 6.5.6p3
11356 if (!Context.typesAreCompatible(
11357 Context.getCanonicalType(lpointee).getUnqualifiedType(),
11358 Context.getCanonicalType(rpointee).getUnqualifiedType())) {
11359 diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
11360 return QualType();
11361 }
11362 }
11363
11364 if (!checkArithmeticBinOpPointerOperands(*this, Loc,
11365 LHS.get(), RHS.get()))
11366 return QualType();
11367
11368 bool LHSIsNullPtr = LHS.get()->IgnoreParenCasts()->isNullPointerConstant(
11369 Context, Expr::NPC_ValueDependentIsNotNull);
11370 bool RHSIsNullPtr = RHS.get()->IgnoreParenCasts()->isNullPointerConstant(
11371 Context, Expr::NPC_ValueDependentIsNotNull);
11372
11373 // Subtracting nullptr or from nullptr is suspect
11374 if (LHSIsNullPtr)
11375 diagnoseSubtractionOnNullPointer(*this, Loc, LHS.get(), RHSIsNullPtr);
11376 if (RHSIsNullPtr)
11377 diagnoseSubtractionOnNullPointer(*this, Loc, RHS.get(), LHSIsNullPtr);
11378
11379 // The pointee type may have zero size. As an extension, a structure or
11380 // union may have zero size or an array may have zero length. In this
11381 // case subtraction does not make sense.
11382 if (!rpointee->isVoidType() && !rpointee->isFunctionType()) {
11383 CharUnits ElementSize = Context.getTypeSizeInChars(rpointee);
11384 if (ElementSize.isZero()) {
11385 Diag(Loc,diag::warn_sub_ptr_zero_size_types)
11386 << rpointee.getUnqualifiedType()
11387 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11388 }
11389 }
11390
11391 if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
11392 return Context.getPointerDiffType();
11393 }
11394 }
11395
11396 return InvalidOperands(Loc, LHS, RHS);
11397}
11398
11399static bool isScopedEnumerationType(QualType T) {
11400 if (const EnumType *ET = T->getAs<EnumType>())
11401 return ET->getDecl()->isScoped();
11402 return false;
11403}
11404
11405static void DiagnoseBadShiftValues(Sema& S, ExprResult &LHS, ExprResult &RHS,
11406 SourceLocation Loc, BinaryOperatorKind Opc,
11407 QualType LHSType) {
11408 // OpenCL 6.3j: shift values are effectively % word size of LHS (more defined),
11409 // so skip remaining warnings as we don't want to modify values within Sema.
11410 if (S.getLangOpts().OpenCL)
11411 return;
11412
11413 // Check right/shifter operand
11414 Expr::EvalResult RHSResult;
11415 if (RHS.get()->isValueDependent() ||
11416 !RHS.get()->EvaluateAsInt(RHSResult, S.Context))
11417 return;
11418 llvm::APSInt Right = RHSResult.Val.getInt();
11419
11420 if (Right.isNegative()) {
11421 S.DiagRuntimeBehavior(Loc, RHS.get(),
11422 S.PDiag(diag::warn_shift_negative)
11423 << RHS.get()->getSourceRange());
11424 return;
11425 }
11426
11427 QualType LHSExprType = LHS.get()->getType();
11428 uint64_t LeftSize = S.Context.getTypeSize(LHSExprType);
11429 if (LHSExprType->isBitIntType())
11430 LeftSize = S.Context.getIntWidth(LHSExprType);
11431 else if (LHSExprType->isFixedPointType()) {
11432 auto FXSema = S.Context.getFixedPointSemantics(LHSExprType);
11433 LeftSize = FXSema.getWidth() - (unsigned)FXSema.hasUnsignedPadding();
11434 }
11435 llvm::APInt LeftBits(Right.getBitWidth(), LeftSize);
11436 if (Right.uge(LeftBits)) {
11437 S.DiagRuntimeBehavior(Loc, RHS.get(),
11438 S.PDiag(diag::warn_shift_gt_typewidth)
11439 << RHS.get()->getSourceRange());
11440 return;
11441 }
11442
11443 // FIXME: We probably need to handle fixed point types specially here.
11444 if (Opc != BO_Shl || LHSExprType->isFixedPointType())
11445 return;
11446
11447 // When left shifting an ICE which is signed, we can check for overflow which
11448 // according to C++ standards prior to C++2a has undefined behavior
11449 // ([expr.shift] 5.8/2). Unsigned integers have defined behavior modulo one
11450 // more than the maximum value representable in the result type, so never
11451 // warn for those. (FIXME: Unsigned left-shift overflow in a constant
11452 // expression is still probably a bug.)
11453 Expr::EvalResult LHSResult;
11454 if (LHS.get()->isValueDependent() ||
11455 LHSType->hasUnsignedIntegerRepresentation() ||
11456 !LHS.get()->EvaluateAsInt(LHSResult, S.Context))
11457 return;
11458 llvm::APSInt Left = LHSResult.Val.getInt();
11459
11460 // Don't warn if signed overflow is defined, then all the rest of the
11461 // diagnostics will not be triggered because the behavior is defined.
11462 // Also don't warn in C++20 mode (and newer), as signed left shifts
11463 // always wrap and never overflow.
11464 if (S.getLangOpts().isSignedOverflowDefined() || S.getLangOpts().CPlusPlus20)
11465 return;
11466
11467 // If LHS does not have a non-negative value then, the
11468 // behavior is undefined before C++2a. Warn about it.
11469 if (Left.isNegative()) {
11470 S.DiagRuntimeBehavior(Loc, LHS.get(),
11471 S.PDiag(diag::warn_shift_lhs_negative)
11472 << LHS.get()->getSourceRange());
11473 return;
11474 }
11475
11476 llvm::APInt ResultBits =
11477 static_cast<llvm::APInt&>(Right) + Left.getMinSignedBits();
11478 if (LeftBits.uge(ResultBits))
11479 return;
11480 llvm::APSInt Result = Left.extend(ResultBits.getLimitedValue());
11481 Result = Result.shl(Right);
11482
11483 // Print the bit representation of the signed integer as an unsigned
11484 // hexadecimal number.
11485 SmallString<40> HexResult;
11486 Result.toString(HexResult, 16, /*Signed =*/false, /*Literal =*/true);
11487
11488 // If we are only missing a sign bit, this is less likely to result in actual
11489 // bugs -- if the result is cast back to an unsigned type, it will have the
11490 // expected value. Thus we place this behind a different warning that can be
11491 // turned off separately if needed.
11492 if (LeftBits == ResultBits - 1) {
11493 S.Diag(Loc, diag::warn_shift_result_sets_sign_bit)
11494 << HexResult << LHSType
11495 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11496 return;
11497 }
11498
11499 S.Diag(Loc, diag::warn_shift_result_gt_typewidth)
11500 << HexResult.str() << Result.getMinSignedBits() << LHSType
11501 << Left.getBitWidth() << LHS.get()->getSourceRange()
11502 << RHS.get()->getSourceRange();
11503}
11504
11505/// Return the resulting type when a vector is shifted
11506/// by a scalar or vector shift amount.
11507static QualType checkVectorShift(Sema &S, ExprResult &LHS, ExprResult &RHS,
11508 SourceLocation Loc, bool IsCompAssign) {
11509 // OpenCL v1.1 s6.3.j says RHS can be a vector only if LHS is a vector.
11510 if ((S.LangOpts.OpenCL || S.LangOpts.ZVector) &&
11511 !LHS.get()->getType()->isVectorType()) {
11512 S.Diag(Loc, diag::err_shift_rhs_only_vector)
11513 << RHS.get()->getType() << LHS.get()->getType()
11514 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11515 return QualType();
11516 }
11517
11518 if (!IsCompAssign) {
11519 LHS = S.UsualUnaryConversions(LHS.get());
11520 if (LHS.isInvalid()) return QualType();
11521 }
11522
11523 RHS = S.UsualUnaryConversions(RHS.get());
11524 if (RHS.isInvalid()) return QualType();
11525
11526 QualType LHSType = LHS.get()->getType();
11527 // Note that LHS might be a scalar because the routine calls not only in
11528 // OpenCL case.
11529 const VectorType *LHSVecTy = LHSType->getAs<VectorType>();
11530 QualType LHSEleType = LHSVecTy ? LHSVecTy->getElementType() : LHSType;
11531
11532 // Note that RHS might not be a vector.
11533 QualType RHSType = RHS.get()->getType();
11534 const VectorType *RHSVecTy = RHSType->getAs<VectorType>();
11535 QualType RHSEleType = RHSVecTy ? RHSVecTy->getElementType() : RHSType;
11536
11537 // Do not allow shifts for boolean vectors.
11538 if ((LHSVecTy && LHSVecTy->isExtVectorBoolType()) ||
11539 (RHSVecTy && RHSVecTy->isExtVectorBoolType())) {
11540 S.Diag(Loc, diag::err_typecheck_invalid_operands)
11541 << LHS.get()->getType() << RHS.get()->getType()
11542 << LHS.get()->getSourceRange();
11543 return QualType();
11544 }
11545
11546 // The operands need to be integers.
11547 if (!LHSEleType->isIntegerType()) {
11548 S.Diag(Loc, diag::err_typecheck_expect_int)
11549 << LHS.get()->getType() << LHS.get()->getSourceRange();
11550 return QualType();
11551 }
11552
11553 if (!RHSEleType->isIntegerType()) {
11554 S.Diag(Loc, diag::err_typecheck_expect_int)
11555 << RHS.get()->getType() << RHS.get()->getSourceRange();
11556 return QualType();
11557 }
11558
11559 if (!LHSVecTy) {
11560 assert(RHSVecTy)(static_cast <bool> (RHSVecTy) ? void (0) : __assert_fail
("RHSVecTy", "clang/lib/Sema/SemaExpr.cpp", 11560, __extension__
__PRETTY_FUNCTION__))
;
11561 if (IsCompAssign)
11562 return RHSType;
11563 if (LHSEleType != RHSEleType) {
11564 LHS = S.ImpCastExprToType(LHS.get(),RHSEleType, CK_IntegralCast);
11565 LHSEleType = RHSEleType;
11566 }
11567 QualType VecTy =
11568 S.Context.getExtVectorType(LHSEleType, RHSVecTy->getNumElements());
11569 LHS = S.ImpCastExprToType(LHS.get(), VecTy, CK_VectorSplat);
11570 LHSType = VecTy;
11571 } else if (RHSVecTy) {
11572 // OpenCL v1.1 s6.3.j says that for vector types, the operators
11573 // are applied component-wise. So if RHS is a vector, then ensure
11574 // that the number of elements is the same as LHS...
11575 if (RHSVecTy->getNumElements() != LHSVecTy->getNumElements()) {
11576 S.Diag(Loc, diag::err_typecheck_vector_lengths_not_equal)
11577 << LHS.get()->getType() << RHS.get()->getType()
11578 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11579 return QualType();
11580 }
11581 if (!S.LangOpts.OpenCL && !S.LangOpts.ZVector) {
11582 const BuiltinType *LHSBT = LHSEleType->getAs<clang::BuiltinType>();
11583 const BuiltinType *RHSBT = RHSEleType->getAs<clang::BuiltinType>();
11584 if (LHSBT != RHSBT &&
11585 S.Context.getTypeSize(LHSBT) != S.Context.getTypeSize(RHSBT)) {
11586 S.Diag(Loc, diag::warn_typecheck_vector_element_sizes_not_equal)
11587 << LHS.get()->getType() << RHS.get()->getType()
11588 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11589 }
11590 }
11591 } else {
11592 // ...else expand RHS to match the number of elements in LHS.
11593 QualType VecTy =
11594 S.Context.getExtVectorType(RHSEleType, LHSVecTy->getNumElements());
11595 RHS = S.ImpCastExprToType(RHS.get(), VecTy, CK_VectorSplat);
11596 }
11597
11598 return LHSType;
11599}
11600
11601static QualType checkSizelessVectorShift(Sema &S, ExprResult &LHS,
11602 ExprResult &RHS, SourceLocation Loc,
11603 bool IsCompAssign) {
11604 if (!IsCompAssign) {
11605 LHS = S.UsualUnaryConversions(LHS.get());
11606 if (LHS.isInvalid())
11607 return QualType();
11608 }
11609
11610 RHS = S.UsualUnaryConversions(RHS.get());
11611 if (RHS.isInvalid())
11612 return QualType();
11613
11614 QualType LHSType = LHS.get()->getType();
11615 const BuiltinType *LHSBuiltinTy = LHSType->getAs<BuiltinType>();
11616 QualType LHSEleType = LHSType->isVLSTBuiltinType()
11617 ? LHSBuiltinTy->getSveEltType(S.getASTContext())
11618 : LHSType;
11619
11620 // Note that RHS might not be a vector
11621 QualType RHSType = RHS.get()->getType();
11622 const BuiltinType *RHSBuiltinTy = RHSType->getAs<BuiltinType>();
11623 QualType RHSEleType = RHSType->isVLSTBuiltinType()
11624 ? RHSBuiltinTy->getSveEltType(S.getASTContext())
11625 : RHSType;
11626
11627 if ((LHSBuiltinTy && LHSBuiltinTy->isSVEBool()) ||
11628 (RHSBuiltinTy && RHSBuiltinTy->isSVEBool())) {
11629 S.Diag(Loc, diag::err_typecheck_invalid_operands)
11630 << LHSType << RHSType << LHS.get()->getSourceRange();
11631 return QualType();
11632 }
11633
11634 if (!LHSEleType->isIntegerType()) {
11635 S.Diag(Loc, diag::err_typecheck_expect_int)
11636 << LHS.get()->getType() << LHS.get()->getSourceRange();
11637 return QualType();
11638 }
11639
11640 if (!RHSEleType->isIntegerType()) {
11641 S.Diag(Loc, diag::err_typecheck_expect_int)
11642 << RHS.get()->getType() << RHS.get()->getSourceRange();
11643 return QualType();
11644 }
11645
11646 if (LHSType->isVLSTBuiltinType() && RHSType->isVLSTBuiltinType() &&
11647 (S.Context.getBuiltinVectorTypeInfo(LHSBuiltinTy).EC !=
11648 S.Context.getBuiltinVectorTypeInfo(RHSBuiltinTy).EC)) {
11649 S.Diag(Loc, diag::err_typecheck_invalid_operands)
11650 << LHSType << RHSType << LHS.get()->getSourceRange()
11651 << RHS.get()->getSourceRange();
11652 return QualType();
11653 }
11654
11655 if (!LHSType->isVLSTBuiltinType()) {
11656 assert(RHSType->isVLSTBuiltinType())(static_cast <bool> (RHSType->isVLSTBuiltinType()) ?
void (0) : __assert_fail ("RHSType->isVLSTBuiltinType()",
"clang/lib/Sema/SemaExpr.cpp", 11656, __extension__ __PRETTY_FUNCTION__
))
;
11657 if (IsCompAssign)
11658 return RHSType;
11659 if (LHSEleType != RHSEleType) {
11660 LHS = S.ImpCastExprToType(LHS.get(), RHSEleType, clang::CK_IntegralCast);
11661 LHSEleType = RHSEleType;
11662 }
11663 const llvm::ElementCount VecSize =
11664 S.Context.getBuiltinVectorTypeInfo(RHSBuiltinTy).EC;
11665 QualType VecTy =
11666 S.Context.getScalableVectorType(LHSEleType, VecSize.getKnownMinValue());
11667 LHS = S.ImpCastExprToType(LHS.get(), VecTy, clang::CK_VectorSplat);
11668 LHSType = VecTy;
11669 } else if (RHSBuiltinTy && RHSBuiltinTy->isVLSTBuiltinType()) {
11670 if (S.Context.getTypeSize(RHSBuiltinTy) !=
11671 S.Context.getTypeSize(LHSBuiltinTy)) {
11672 S.Diag(Loc, diag::err_typecheck_vector_lengths_not_equal)
11673 << LHSType << RHSType << LHS.get()->getSourceRange()
11674 << RHS.get()->getSourceRange();
11675 return QualType();
11676 }
11677 } else {
11678 const llvm::ElementCount VecSize =
11679 S.Context.getBuiltinVectorTypeInfo(LHSBuiltinTy).EC;
11680 if (LHSEleType != RHSEleType) {
11681 RHS = S.ImpCastExprToType(RHS.get(), LHSEleType, clang::CK_IntegralCast);
11682 RHSEleType = LHSEleType;
11683 }
11684 QualType VecTy =
11685 S.Context.getScalableVectorType(RHSEleType, VecSize.getKnownMinValue());
11686 RHS = S.ImpCastExprToType(RHS.get(), VecTy, CK_VectorSplat);
11687 }
11688
11689 return LHSType;
11690}
11691
11692// C99 6.5.7
11693QualType Sema::CheckShiftOperands(ExprResult &LHS, ExprResult &RHS,
11694 SourceLocation Loc, BinaryOperatorKind Opc,
11695 bool IsCompAssign) {
11696 checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
11697
11698 // Vector shifts promote their scalar inputs to vector type.
11699 if (LHS.get()->getType()->isVectorType() ||
11700 RHS.get()->getType()->isVectorType()) {
11701 if (LangOpts.ZVector) {
11702 // The shift operators for the z vector extensions work basically
11703 // like general shifts, except that neither the LHS nor the RHS is
11704 // allowed to be a "vector bool".
11705 if (auto LHSVecType = LHS.get()->getType()->getAs<VectorType>())
11706 if (LHSVecType->getVectorKind() == VectorType::AltiVecBool)
11707 return InvalidOperands(Loc, LHS, RHS);
11708 if (auto RHSVecType = RHS.get()->getType()->getAs<VectorType>())
11709 if (RHSVecType->getVectorKind() == VectorType::AltiVecBool)
11710 return InvalidOperands(Loc, LHS, RHS);
11711 }
11712 return checkVectorShift(*this, LHS, RHS, Loc, IsCompAssign);
11713 }
11714
11715 if (LHS.get()->getType()->isVLSTBuiltinType() ||
11716 RHS.get()->getType()->isVLSTBuiltinType())
11717 return checkSizelessVectorShift(*this, LHS, RHS, Loc, IsCompAssign);
11718
11719 // Shifts don't perform usual arithmetic conversions, they just do integer
11720 // promotions on each operand. C99 6.5.7p3
11721
11722 // For the LHS, do usual unary conversions, but then reset them away
11723 // if this is a compound assignment.
11724 ExprResult OldLHS = LHS;
11725 LHS = UsualUnaryConversions(LHS.get());
11726 if (LHS.isInvalid())
11727 return QualType();
11728 QualType LHSType = LHS.get()->getType();
11729 if (IsCompAssign) LHS = OldLHS;
11730
11731 // The RHS is simpler.
11732 RHS = UsualUnaryConversions(RHS.get());
11733 if (RHS.isInvalid())
11734 return QualType();
11735 QualType RHSType = RHS.get()->getType();
11736
11737 // C99 6.5.7p2: Each of the operands shall have integer type.
11738 // Embedded-C 4.1.6.2.2: The LHS may also be fixed-point.
11739 if ((!LHSType->isFixedPointOrIntegerType() &&
11740 !LHSType->hasIntegerRepresentation()) ||
11741 !RHSType->hasIntegerRepresentation())
11742 return InvalidOperands(Loc, LHS, RHS);
11743
11744 // C++0x: Don't allow scoped enums. FIXME: Use something better than
11745 // hasIntegerRepresentation() above instead of this.
11746 if (isScopedEnumerationType(LHSType) ||
11747 isScopedEnumerationType(RHSType)) {
11748 return InvalidOperands(Loc, LHS, RHS);
11749 }
11750 DiagnoseBadShiftValues(*this, LHS, RHS, Loc, Opc, LHSType);
11751
11752 // "The type of the result is that of the promoted left operand."
11753 return LHSType;
11754}
11755
11756/// Diagnose bad pointer comparisons.
11757static void diagnoseDistinctPointerComparison(Sema &S, SourceLocation Loc,
11758 ExprResult &LHS, ExprResult &RHS,
11759 bool IsError) {
11760 S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_distinct_pointers
11761 : diag::ext_typecheck_comparison_of_distinct_pointers)
11762 << LHS.get()->getType() << RHS.get()->getType()
11763 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11764}
11765
11766/// Returns false if the pointers are converted to a composite type,
11767/// true otherwise.
11768static bool convertPointersToCompositeType(Sema &S, SourceLocation Loc,
11769 ExprResult &LHS, ExprResult &RHS) {
11770 // C++ [expr.rel]p2:
11771 // [...] Pointer conversions (4.10) and qualification
11772 // conversions (4.4) are performed on pointer operands (or on
11773 // a pointer operand and a null pointer constant) to bring
11774 // them to their composite pointer type. [...]
11775 //
11776 // C++ [expr.eq]p1 uses the same notion for (in)equality
11777 // comparisons of pointers.
11778
11779 QualType LHSType = LHS.get()->getType();
11780 QualType RHSType = RHS.get()->getType();
11781 assert(LHSType->isPointerType() || RHSType->isPointerType() ||(static_cast <bool> (LHSType->isPointerType() || RHSType
->isPointerType() || LHSType->isMemberPointerType() || RHSType
->isMemberPointerType()) ? void (0) : __assert_fail ("LHSType->isPointerType() || RHSType->isPointerType() || LHSType->isMemberPointerType() || RHSType->isMemberPointerType()"
, "clang/lib/Sema/SemaExpr.cpp", 11782, __extension__ __PRETTY_FUNCTION__
))
11782 LHSType->isMemberPointerType() || RHSType->isMemberPointerType())(static_cast <bool> (LHSType->isPointerType() || RHSType
->isPointerType() || LHSType->isMemberPointerType() || RHSType
->isMemberPointerType()) ? void (0) : __assert_fail ("LHSType->isPointerType() || RHSType->isPointerType() || LHSType->isMemberPointerType() || RHSType->isMemberPointerType()"
, "clang/lib/Sema/SemaExpr.cpp", 11782, __extension__ __PRETTY_FUNCTION__
))
;
11783
11784 QualType T = S.FindCompositePointerType(Loc, LHS, RHS);
11785 if (T.isNull()) {
11786 if ((LHSType->isAnyPointerType() || LHSType->isMemberPointerType()) &&
11787 (RHSType->isAnyPointerType() || RHSType->isMemberPointerType()))
11788 diagnoseDistinctPointerComparison(S, Loc, LHS, RHS, /*isError*/true);
11789 else
11790 S.InvalidOperands(Loc, LHS, RHS);
11791 return true;
11792 }
11793
11794 return false;
11795}
11796
11797static void diagnoseFunctionPointerToVoidComparison(Sema &S, SourceLocation Loc,
11798 ExprResult &LHS,
11799 ExprResult &RHS,
11800 bool IsError) {
11801 S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_fptr_to_void
11802 : diag::ext_typecheck_comparison_of_fptr_to_void)
11803 << LHS.get()->getType() << RHS.get()->getType()
11804 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11805}
11806
11807static bool isObjCObjectLiteral(ExprResult &E) {
11808 switch (E.get()->IgnoreParenImpCasts()->getStmtClass()) {
11809 case Stmt::ObjCArrayLiteralClass:
11810 case Stmt::ObjCDictionaryLiteralClass:
11811 case Stmt::ObjCStringLiteralClass:
11812 case Stmt::ObjCBoxedExprClass:
11813 return true;
11814 default:
11815 // Note that ObjCBoolLiteral is NOT an object literal!
11816 return false;
11817 }
11818}
11819
11820static bool hasIsEqualMethod(Sema &S, const Expr *LHS, const Expr *RHS) {
11821 const ObjCObjectPointerType *Type =
11822 LHS->getType()->getAs<ObjCObjectPointerType>();
11823
11824 // If this is not actually an Objective-C object, bail out.
11825 if (!Type)
11826 return false;
11827
11828 // Get the LHS object's interface type.
11829 QualType InterfaceType = Type->getPointeeType();
11830
11831 // If the RHS isn't an Objective-C object, bail out.
11832 if (!RHS->getType()->isObjCObjectPointerType())
11833 return false;
11834
11835 // Try to find the -isEqual: method.
11836 Selector IsEqualSel = S.NSAPIObj->getIsEqualSelector();
11837 ObjCMethodDecl *Method = S.LookupMethodInObjectType(IsEqualSel,
11838 InterfaceType,
11839 /*IsInstance=*/true);
11840 if (!Method) {
11841 if (Type->isObjCIdType()) {
11842 // For 'id', just check the global pool.
11843 Method = S.LookupInstanceMethodInGlobalPool(IsEqualSel, SourceRange(),
11844 /*receiverId=*/true);
11845 } else {
11846 // Check protocols.
11847 Method = S.LookupMethodInQualifiedType(IsEqualSel, Type,
11848 /*IsInstance=*/true);
11849 }
11850 }
11851
11852 if (!Method)
11853 return false;
11854
11855 QualType T = Method->parameters()[0]->getType();
11856 if (!T->isObjCObjectPointerType())
11857 return false;
11858
11859 QualType R = Method->getReturnType();
11860 if (!R->isScalarType())
11861 return false;
11862
11863 return true;
11864}
11865
11866Sema::ObjCLiteralKind Sema::CheckLiteralKind(Expr *FromE) {
11867 FromE = FromE->IgnoreParenImpCasts();
11868 switch (FromE->getStmtClass()) {
11869 default:
11870 break;
11871 case Stmt::ObjCStringLiteralClass:
11872 // "string literal"
11873 return LK_String;
11874 case Stmt::ObjCArrayLiteralClass:
11875 // "array literal"
11876 return LK_Array;
11877 case Stmt::ObjCDictionaryLiteralClass:
11878 // "dictionary literal"
11879 return LK_Dictionary;
11880 case Stmt::BlockExprClass:
11881 return LK_Block;
11882 case Stmt::ObjCBoxedExprClass: {
11883 Expr *Inner = cast<ObjCBoxedExpr>(FromE)->getSubExpr()->IgnoreParens();
11884 switch (Inner->getStmtClass()) {
11885 case Stmt::IntegerLiteralClass:
11886 case Stmt::FloatingLiteralClass:
11887 case Stmt::CharacterLiteralClass:
11888 case Stmt::ObjCBoolLiteralExprClass:
11889 case Stmt::CXXBoolLiteralExprClass:
11890 // "numeric literal"
11891 return LK_Numeric;
11892 case Stmt::ImplicitCastExprClass: {
11893 CastKind CK = cast<CastExpr>(Inner)->getCastKind();
11894 // Boolean literals can be represented by implicit casts.
11895 if (CK == CK_IntegralToBoolean || CK == CK_IntegralCast)
11896 return LK_Numeric;
11897 break;
11898 }
11899 default:
11900 break;
11901 }
11902 return LK_Boxed;
11903 }
11904 }
11905 return LK_None;
11906}
11907
11908static void diagnoseObjCLiteralComparison(Sema &S, SourceLocation Loc,
11909 ExprResult &LHS, ExprResult &RHS,
11910 BinaryOperator::Opcode Opc){
11911 Expr *Literal;
11912 Expr *Other;
11913 if (isObjCObjectLiteral(LHS)) {
11914 Literal = LHS.get();
11915 Other = RHS.get();
11916 } else {
11917 Literal = RHS.get();
11918 Other = LHS.get();
11919 }
11920
11921 // Don't warn on comparisons against nil.
11922 Other = Other->IgnoreParenCasts();
11923 if (Other->isNullPointerConstant(S.getASTContext(),
11924 Expr::NPC_ValueDependentIsNotNull))
11925 return;
11926
11927 // This should be kept in sync with warn_objc_literal_comparison.
11928 // LK_String should always be after the other literals, since it has its own
11929 // warning flag.
11930 Sema::ObjCLiteralKind LiteralKind = S.CheckLiteralKind(Literal);
11931 assert(LiteralKind != Sema::LK_Block)(static_cast <bool> (LiteralKind != Sema::LK_Block) ? void
(0) : __assert_fail ("LiteralKind != Sema::LK_Block", "clang/lib/Sema/SemaExpr.cpp"
, 11931, __extension__ __PRETTY_FUNCTION__))
;
11932 if (LiteralKind == Sema::LK_None) {
11933 llvm_unreachable("Unknown Objective-C object literal kind")::llvm::llvm_unreachable_internal("Unknown Objective-C object literal kind"
, "clang/lib/Sema/SemaExpr.cpp", 11933)
;
11934 }
11935
11936 if (LiteralKind == Sema::LK_String)
11937 S.Diag(Loc, diag::warn_objc_string_literal_comparison)
11938 << Literal->getSourceRange();
11939 else
11940 S.Diag(Loc, diag::warn_objc_literal_comparison)
11941 << LiteralKind << Literal->getSourceRange();
11942
11943 if (BinaryOperator::isEqualityOp(Opc) &&
11944 hasIsEqualMethod(S, LHS.get(), RHS.get())) {
11945 SourceLocation Start = LHS.get()->getBeginLoc();
11946 SourceLocation End = S.getLocForEndOfToken(RHS.get()->getEndLoc());
11947 CharSourceRange OpRange =
11948 CharSourceRange::getCharRange(Loc, S.getLocForEndOfToken(Loc));
11949
11950 S.Diag(Loc, diag::note_objc_literal_comparison_isequal)
11951 << FixItHint::CreateInsertion(Start, Opc == BO_EQ ? "[" : "![")
11952 << FixItHint::CreateReplacement(OpRange, " isEqual:")
11953 << FixItHint::CreateInsertion(End, "]");
11954 }
11955}
11956
11957/// Warns on !x < y, !x & y where !(x < y), !(x & y) was probably intended.
11958static void diagnoseLogicalNotOnLHSofCheck(Sema &S, ExprResult &LHS,
11959 ExprResult &RHS, SourceLocation Loc,
11960 BinaryOperatorKind Opc) {
11961 // Check that left hand side is !something.
11962 UnaryOperator *UO = dyn_cast<UnaryOperator>(LHS.get()->IgnoreImpCasts());
11963 if (!UO || UO->getOpcode() != UO_LNot) return;
11964
11965 // Only check if the right hand side is non-bool arithmetic type.
11966 if (RHS.get()->isKnownToHaveBooleanValue()) return;
11967
11968 // Make sure that the something in !something is not bool.
11969 Expr *SubExpr = UO->getSubExpr()->IgnoreImpCasts();
11970 if (SubExpr->isKnownToHaveBooleanValue()) return;
11971
11972 // Emit warning.
11973 bool IsBitwiseOp = Opc == BO_And || Opc == BO_Or || Opc == BO_Xor;
11974 S.Diag(UO->getOperatorLoc(), diag::warn_logical_not_on_lhs_of_check)
11975 << Loc << IsBitwiseOp;
11976
11977 // First note suggest !(x < y)
11978 SourceLocation FirstOpen = SubExpr->getBeginLoc();
11979 SourceLocation FirstClose = RHS.get()->getEndLoc();
11980 FirstClose = S.getLocForEndOfToken(FirstClose);
11981 if (FirstClose.isInvalid())
11982 FirstOpen = SourceLocation();
11983 S.Diag(UO->getOperatorLoc(), diag::note_logical_not_fix)
11984 << IsBitwiseOp
11985 << FixItHint::CreateInsertion(FirstOpen, "(")
11986 << FixItHint::CreateInsertion(FirstClose, ")");
11987
11988 // Second note suggests (!x) < y
11989 SourceLocation SecondOpen = LHS.get()->getBeginLoc();
11990 SourceLocation SecondClose = LHS.get()->getEndLoc();
11991 SecondClose = S.getLocForEndOfToken(SecondClose);
11992 if (SecondClose.isInvalid())
11993 SecondOpen = SourceLocation();
11994 S.Diag(UO->getOperatorLoc(), diag::note_logical_not_silence_with_parens)
11995 << FixItHint::CreateInsertion(SecondOpen, "(")
11996 << FixItHint::CreateInsertion(SecondClose, ")");
11997}
11998
11999// Returns true if E refers to a non-weak array.
12000static bool checkForArray(const Expr *E) {
12001 const ValueDecl *D = nullptr;
12002 if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E)) {
12003 D = DR->getDecl();
12004 } else if (const MemberExpr *Mem = dyn_cast<MemberExpr>(E)) {
12005 if (Mem->isImplicitAccess())
12006 D = Mem->getMemberDecl();
12007 }
12008 if (!D)
12009 return false;
12010 return D->getType()->isArrayType() && !D->isWeak();
12011}
12012
12013/// Diagnose some forms of syntactically-obvious tautological comparison.
12014static void diagnoseTautologicalComparison(Sema &S, SourceLocation Loc,
12015 Expr *LHS, Expr *RHS,
12016 BinaryOperatorKind Opc) {
12017 Expr *LHSStripped = LHS->IgnoreParenImpCasts();
12018 Expr *RHSStripped = RHS->IgnoreParenImpCasts();
12019
12020 QualType LHSType = LHS->getType();
12021 QualType RHSType = RHS->getType();
12022 if (LHSType->hasFloatingRepresentation() ||
12023 (LHSType->isBlockPointerType() && !BinaryOperator::isEqualityOp(Opc)) ||
12024 S.inTemplateInstantiation())
12025 return;
12026
12027 // Comparisons between two array types are ill-formed for operator<=>, so
12028 // we shouldn't emit any additional warnings about it.
12029 if (Opc == BO_Cmp && LHSType->isArrayType() && RHSType->isArrayType())
12030 return;
12031
12032 // For non-floating point types, check for self-comparisons of the form
12033 // x == x, x != x, x < x, etc. These always evaluate to a constant, and
12034 // often indicate logic errors in the program.
12035 //
12036 // NOTE: Don't warn about comparison expressions resulting from macro
12037 // expansion. Also don't warn about comparisons which are only self
12038 // comparisons within a template instantiation. The warnings should catch
12039 // obvious cases in the definition of the template anyways. The idea is to
12040 // warn when the typed comparison operator will always evaluate to the same
12041 // result.
12042
12043 // Used for indexing into %select in warn_comparison_always
12044 enum {
12045 AlwaysConstant,
12046 AlwaysTrue,
12047 AlwaysFalse,
12048 AlwaysEqual, // std::strong_ordering::equal from operator<=>
12049 };
12050
12051 // C++2a [depr.array.comp]:
12052 // Equality and relational comparisons ([expr.eq], [expr.rel]) between two
12053 // operands of array type are deprecated.
12054 if (S.getLangOpts().CPlusPlus20 && LHSStripped->getType()->isArrayType() &&
12055 RHSStripped->getType()->isArrayType()) {
12056 S.Diag(Loc, diag::warn_depr_array_comparison)
12057 << LHS->getSourceRange() << RHS->getSourceRange()
12058 << LHSStripped->getType() << RHSStripped->getType();
12059 // Carry on to produce the tautological comparison warning, if this
12060 // expression is potentially-evaluated, we can resolve the array to a
12061 // non-weak declaration, and so on.
12062 }
12063
12064 if (!LHS->getBeginLoc().isMacroID() && !RHS->getBeginLoc().isMacroID()) {
12065 if (Expr::isSameComparisonOperand(LHS, RHS)) {
12066 unsigned Result;
12067 switch (Opc) {
12068 case BO_EQ:
12069 case BO_LE:
12070 case BO_GE:
12071 Result = AlwaysTrue;
12072 break;
12073 case BO_NE:
12074 case BO_LT:
12075 case BO_GT:
12076 Result = AlwaysFalse;
12077 break;
12078 case BO_Cmp:
12079 Result = AlwaysEqual;
12080 break;
12081 default:
12082 Result = AlwaysConstant;
12083 break;
12084 }
12085 S.DiagRuntimeBehavior(Loc, nullptr,
12086 S.PDiag(diag::warn_comparison_always)
12087 << 0 /*self-comparison*/
12088 << Result);
12089 } else if (checkForArray(LHSStripped) && checkForArray(RHSStripped)) {
12090 // What is it always going to evaluate to?
12091 unsigned Result;
12092 switch (Opc) {
12093 case BO_EQ: // e.g. array1 == array2
12094 Result = AlwaysFalse;
12095 break;
12096 case BO_NE: // e.g. array1 != array2
12097 Result = AlwaysTrue;
12098 break;
12099 default: // e.g. array1 <= array2
12100 // The best we can say is 'a constant'
12101 Result = AlwaysConstant;
12102 break;
12103 }
12104 S.DiagRuntimeBehavior(Loc, nullptr,
12105 S.PDiag(diag::warn_comparison_always)
12106 << 1 /*array comparison*/
12107 << Result);
12108 }
12109 }
12110
12111 if (isa<CastExpr>(LHSStripped))
12112 LHSStripped = LHSStripped->IgnoreParenCasts();
12113 if (isa<CastExpr>(RHSStripped))
12114 RHSStripped = RHSStripped->IgnoreParenCasts();
12115
12116 // Warn about comparisons against a string constant (unless the other
12117 // operand is null); the user probably wants string comparison function.
12118 Expr *LiteralString = nullptr;
12119 Expr *LiteralStringStripped = nullptr;
12120 if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
12121 !RHSStripped->isNullPointerConstant(S.Context,
12122 Expr::NPC_ValueDependentIsNull)) {
12123 LiteralString = LHS;
12124 LiteralStringStripped = LHSStripped;
12125 } else if ((isa<StringLiteral>(RHSStripped) ||
12126 isa<ObjCEncodeExpr>(RHSStripped)) &&
12127 !LHSStripped->isNullPointerConstant(S.Context,
12128 Expr::NPC_ValueDependentIsNull)) {
12129 LiteralString = RHS;
12130 LiteralStringStripped = RHSStripped;
12131 }
12132
12133 if (LiteralString) {
12134 S.DiagRuntimeBehavior(Loc, nullptr,
12135 S.PDiag(diag::warn_stringcompare)
12136 << isa<ObjCEncodeExpr>(LiteralStringStripped)
12137 << LiteralString->getSourceRange());
12138 }
12139}
12140
12141static ImplicitConversionKind castKindToImplicitConversionKind(CastKind CK) {
12142 switch (CK) {
12143 default: {
12144#ifndef NDEBUG
12145 llvm::errs() << "unhandled cast kind: " << CastExpr::getCastKindName(CK)
12146 << "\n";
12147#endif
12148 llvm_unreachable("unhandled cast kind")::llvm::llvm_unreachable_internal("unhandled cast kind", "clang/lib/Sema/SemaExpr.cpp"
, 12148)
;
12149 }
12150 case CK_UserDefinedConversion:
12151 return ICK_Identity;
12152 case CK_LValueToRValue:
12153 return ICK_Lvalue_To_Rvalue;
12154 case CK_ArrayToPointerDecay:
12155 return ICK_Array_To_Pointer;
12156 case CK_FunctionToPointerDecay:
12157 return ICK_Function_To_Pointer;
12158 case CK_IntegralCast:
12159 return ICK_Integral_Conversion;
12160 case CK_FloatingCast:
12161 return ICK_Floating_Conversion;
12162 case CK_IntegralToFloating:
12163 case CK_FloatingToIntegral:
12164 return ICK_Floating_Integral;
12165 case CK_IntegralComplexCast:
12166 case CK_FloatingComplexCast:
12167 case CK_FloatingComplexToIntegralComplex:
12168 case CK_IntegralComplexToFloatingComplex:
12169 return ICK_Complex_Conversion;
12170 case CK_FloatingComplexToReal:
12171 case CK_FloatingRealToComplex:
12172 case CK_IntegralComplexToReal:
12173 case CK_IntegralRealToComplex:
12174 return ICK_Complex_Real;
12175 }
12176}
12177
12178static bool checkThreeWayNarrowingConversion(Sema &S, QualType ToType, Expr *E,
12179 QualType FromType,
12180 SourceLocation Loc) {
12181 // Check for a narrowing implicit conversion.
12182 StandardConversionSequence SCS;
12183 SCS.setAsIdentityConversion();
12184 SCS.setToType(0, FromType);
12185 SCS.setToType(1, ToType);
12186 if (const auto *ICE = dyn_cast<ImplicitCastExpr>(E))
12187 SCS.Second = castKindToImplicitConversionKind(ICE->getCastKind());
12188
12189 APValue PreNarrowingValue;
12190 QualType PreNarrowingType;
12191 switch (SCS.getNarrowingKind(S.Context, E, PreNarrowingValue,
12192 PreNarrowingType,
12193 /*IgnoreFloatToIntegralConversion*/ true)) {
12194 case NK_Dependent_Narrowing:
12195 // Implicit conversion to a narrower type, but the expression is
12196 // value-dependent so we can't tell whether it's actually narrowing.
12197 case NK_Not_Narrowing:
12198 return false;
12199
12200 case NK_Constant_Narrowing:
12201 // Implicit conversion to a narrower type, and the value is not a constant
12202 // expression.
12203 S.Diag(E->getBeginLoc(), diag::err_spaceship_argument_narrowing)
12204 << /*Constant*/ 1
12205 << PreNarrowingValue.getAsString(S.Context, PreNarrowingType) << ToType;
12206 return true;
12207
12208 case NK_Variable_Narrowing:
12209 // Implicit conversion to a narrower type, and the value is not a constant
12210 // expression.
12211 case NK_Type_Narrowing:
12212 S.Diag(E->getBeginLoc(), diag::err_spaceship_argument_narrowing)
12213 << /*Constant*/ 0 << FromType << ToType;
12214 // TODO: It's not a constant expression, but what if the user intended it
12215 // to be? Can we produce notes to help them figure out why it isn't?
12216 return true;
12217 }
12218 llvm_unreachable("unhandled case in switch")::llvm::llvm_unreachable_internal("unhandled case in switch",
"clang/lib/Sema/SemaExpr.cpp", 12218)
;
12219}
12220
12221static QualType checkArithmeticOrEnumeralThreeWayCompare(Sema &S,
12222 ExprResult &LHS,
12223 ExprResult &RHS,
12224 SourceLocation Loc) {
12225 QualType LHSType = LHS.get()->getType();
12226 QualType RHSType = RHS.get()->getType();
12227 // Dig out the original argument type and expression before implicit casts
12228 // were applied. These are the types/expressions we need to check the
12229 // [expr.spaceship] requirements against.
12230 ExprResult LHSStripped = LHS.get()->IgnoreParenImpCasts();
12231 ExprResult RHSStripped = RHS.get()->IgnoreParenImpCasts();
12232 QualType LHSStrippedType = LHSStripped.get()->getType();
12233 QualType RHSStrippedType = RHSStripped.get()->getType();
12234
12235 // C++2a [expr.spaceship]p3: If one of the operands is of type bool and the
12236 // other is not, the program is ill-formed.
12237 if (LHSStrippedType->isBooleanType() != RHSStrippedType->isBooleanType()) {
12238 S.InvalidOperands(Loc, LHSStripped, RHSStripped);
12239 return QualType();
12240 }
12241
12242 // FIXME: Consider combining this with checkEnumArithmeticConversions.
12243 int NumEnumArgs = (int)LHSStrippedType->isEnumeralType() +
12244 RHSStrippedType->isEnumeralType();
12245 if (NumEnumArgs == 1) {
12246 bool LHSIsEnum = LHSStrippedType->isEnumeralType();
12247 QualType OtherTy = LHSIsEnum ? RHSStrippedType : LHSStrippedType;
12248 if (OtherTy->hasFloatingRepresentation()) {
12249 S.InvalidOperands(Loc, LHSStripped, RHSStripped);
12250 return QualType();
12251 }
12252 }
12253 if (NumEnumArgs == 2) {
12254 // C++2a [expr.spaceship]p5: If both operands have the same enumeration
12255 // type E, the operator yields the result of converting the operands
12256 // to the underlying type of E and applying <=> to the converted operands.
12257 if (!S.Context.hasSameUnqualifiedType(LHSStrippedType, RHSStrippedType)) {
12258 S.InvalidOperands(Loc, LHS, RHS);
12259 return QualType();
12260 }
12261 QualType IntType =
12262 LHSStrippedType->castAs<EnumType>()->getDecl()->getIntegerType();
12263 assert(IntType->isArithmeticType())(static_cast <bool> (IntType->isArithmeticType()) ? void
(0) : __assert_fail ("IntType->isArithmeticType()", "clang/lib/Sema/SemaExpr.cpp"
, 12263, __extension__ __PRETTY_FUNCTION__))
;
12264
12265 // We can't use `CK_IntegralCast` when the underlying type is 'bool', so we
12266 // promote the boolean type, and all other promotable integer types, to
12267 // avoid this.
12268 if (IntType->isPromotableIntegerType())
12269 IntType = S.Context.getPromotedIntegerType(IntType);
12270
12271 LHS = S.ImpCastExprToType(LHS.get(), IntType, CK_IntegralCast);
12272 RHS = S.ImpCastExprToType(RHS.get(), IntType, CK_IntegralCast);
12273 LHSType = RHSType = IntType;
12274 }
12275
12276 // C++2a [expr.spaceship]p4: If both operands have arithmetic types, the
12277 // usual arithmetic conversions are applied to the operands.
12278 QualType Type =
12279 S.UsualArithmeticConversions(LHS, RHS, Loc, Sema::ACK_Comparison);
12280 if (LHS.isInvalid() || RHS.isInvalid())
12281 return QualType();
12282 if (Type.isNull())
12283 return S.InvalidOperands(Loc, LHS, RHS);
12284
12285 Optional<ComparisonCategoryType> CCT =
12286 getComparisonCategoryForBuiltinCmp(Type);
12287 if (!CCT)
12288 return S.InvalidOperands(Loc, LHS, RHS);
12289
12290 bool HasNarrowing = checkThreeWayNarrowingConversion(
12291 S, Type, LHS.get(), LHSType, LHS.get()->getBeginLoc());
12292 HasNarrowing |= checkThreeWayNarrowingConversion(S, Type, RHS.get(), RHSType,
12293 RHS.get()->getBeginLoc());
12294 if (HasNarrowing)
12295 return QualType();
12296
12297 assert(!Type.isNull() && "composite type for <=> has not been set")(static_cast <bool> (!Type.isNull() && "composite type for <=> has not been set"
) ? void (0) : __assert_fail ("!Type.isNull() && \"composite type for <=> has not been set\""
, "clang/lib/Sema/SemaExpr.cpp", 12297, __extension__ __PRETTY_FUNCTION__
))
;
12298
12299 return S.CheckComparisonCategoryType(
12300 *CCT, Loc, Sema::ComparisonCategoryUsage::OperatorInExpression);
12301}
12302
12303static QualType checkArithmeticOrEnumeralCompare(Sema &S, ExprResult &LHS,
12304 ExprResult &RHS,
12305 SourceLocation Loc,
12306 BinaryOperatorKind Opc) {
12307 if (Opc == BO_Cmp)
12308 return checkArithmeticOrEnumeralThreeWayCompare(S, LHS, RHS, Loc);
12309
12310 // C99 6.5.8p3 / C99 6.5.9p4
12311 QualType Type =
12312 S.UsualArithmeticConversions(LHS, RHS, Loc, Sema::ACK_Comparison);
12313 if (LHS.isInvalid() || RHS.isInvalid())
12314 return QualType();
12315 if (Type.isNull())
12316 return S.InvalidOperands(Loc, LHS, RHS);
12317 assert(Type->isArithmeticType() || Type->isEnumeralType())(static_cast <bool> (Type->isArithmeticType() || Type
->isEnumeralType()) ? void (0) : __assert_fail ("Type->isArithmeticType() || Type->isEnumeralType()"
, "clang/lib/Sema/SemaExpr.cpp", 12317, __extension__ __PRETTY_FUNCTION__
))
;
12318
12319 if (Type->isAnyComplexType() && BinaryOperator::isRelationalOp(Opc))
12320 return S.InvalidOperands(Loc, LHS, RHS);
12321
12322 // Check for comparisons of floating point operands using != and ==.
12323 if (Type->hasFloatingRepresentation())
12324 S.CheckFloatComparison(Loc, LHS.get(), RHS.get(), Opc);
12325
12326 // The result of comparisons is 'bool' in C++, 'int' in C.
12327 return S.Context.getLogicalOperationType();
12328}
12329
12330void Sema::CheckPtrComparisonWithNullChar(ExprResult &E, ExprResult &NullE) {
12331 if (!NullE.get()->getType()->isAnyPointerType())
12332 return;
12333 int NullValue = PP.isMacroDefined("NULL") ? 0 : 1;
12334 if (!E.get()->getType()->isAnyPointerType() &&
12335 E.get()->isNullPointerConstant(Context,
12336 Expr::NPC_ValueDependentIsNotNull) ==
12337 Expr::NPCK_ZeroExpression) {
12338 if (const auto *CL = dyn_cast<CharacterLiteral>(E.get())) {
12339 if (CL->getValue() == 0)
12340 Diag(E.get()->getExprLoc(), diag::warn_pointer_compare)
12341 << NullValue
12342 << FixItHint::CreateReplacement(E.get()->getExprLoc(),
12343 NullValue ? "NULL" : "(void *)0");
12344 } else if (const auto *CE = dyn_cast<CStyleCastExpr>(E.get())) {
12345 TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
12346 QualType T = Context.getCanonicalType(TI->getType()).getUnqualifiedType();
12347 if (T == Context.CharTy)
12348 Diag(E.get()->getExprLoc(), diag::warn_pointer_compare)
12349 << NullValue
12350 << FixItHint::CreateReplacement(E.get()->getExprLoc(),
12351 NullValue ? "NULL" : "(void *)0");
12352 }
12353 }
12354}
12355
12356// C99 6.5.8, C++ [expr.rel]
12357QualType Sema::CheckCompareOperands(ExprResult &LHS, ExprResult &RHS,
12358 SourceLocation Loc,
12359 BinaryOperatorKind Opc) {
12360 bool IsRelational = BinaryOperator::isRelationalOp(Opc);
12361 bool IsThreeWay = Opc == BO_Cmp;
12362 bool IsOrdered = IsRelational || IsThreeWay;
12363 auto IsAnyPointerType = [](ExprResult E) {
12364 QualType Ty = E.get()->getType();
12365 return Ty->isPointerType() || Ty->isMemberPointerType();
12366 };
12367
12368 // C++2a [expr.spaceship]p6: If at least one of the operands is of pointer
12369 // type, array-to-pointer, ..., conversions are performed on both operands to
12370 // bring them to their composite type.
12371 // Otherwise, all comparisons expect an rvalue, so convert to rvalue before
12372 // any type-related checks.
12373 if (!IsThreeWay || IsAnyPointerType(LHS) || IsAnyPointerType(RHS)) {
12374 LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
12375 if (LHS.isInvalid())
12376 return QualType();
12377 RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
12378 if (RHS.isInvalid())
12379 return QualType();
12380 } else {
12381 LHS = DefaultLvalueConversion(LHS.get());
12382 if (LHS.isInvalid())
12383 return QualType();
12384 RHS = DefaultLvalueConversion(RHS.get());
12385 if (RHS.isInvalid())
12386 return QualType();
12387 }
12388
12389 checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/true);
12390 if (!getLangOpts().CPlusPlus && BinaryOperator::isEqualityOp(Opc)) {
12391 CheckPtrComparisonWithNullChar(LHS, RHS);
12392 CheckPtrComparisonWithNullChar(RHS, LHS);
12393 }
12394
12395 // Handle vector comparisons separately.
12396 if (LHS.get()->getType()->isVectorType() ||
12397 RHS.get()->getType()->isVectorType())
12398 return CheckVectorCompareOperands(LHS, RHS, Loc, Opc);
12399
12400 if (LHS.get()->getType()->isVLSTBuiltinType() ||
12401 RHS.get()->getType()->isVLSTBuiltinType())
12402 return CheckSizelessVectorCompareOperands(LHS, RHS, Loc, Opc);
12403
12404 diagnoseLogicalNotOnLHSofCheck(*this, LHS, RHS, Loc, Opc);
12405 diagnoseTautologicalComparison(*this, Loc, LHS.get(), RHS.get(), Opc);
12406
12407 QualType LHSType = LHS.get()->getType();
12408 QualType RHSType = RHS.get()->getType();
12409 if ((LHSType->isArithmeticType() || LHSType->isEnumeralType()) &&
12410 (RHSType->isArithmeticType() || RHSType->isEnumeralType()))
12411 return checkArithmeticOrEnumeralCompare(*this, LHS, RHS, Loc, Opc);
12412
12413 const Expr::NullPointerConstantKind LHSNullKind =
12414 LHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull);
12415 const Expr::NullPointerConstantKind RHSNullKind =
12416 RHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull);
12417 bool LHSIsNull = LHSNullKind != Expr::NPCK_NotNull;
12418 bool RHSIsNull = RHSNullKind != Expr::NPCK_NotNull;
12419
12420 auto computeResultTy = [&]() {
12421 if (Opc != BO_Cmp)
12422 return Context.getLogicalOperationType();
12423 assert(getLangOpts().CPlusPlus)(static_cast <bool> (getLangOpts().CPlusPlus) ? void (0
) : __assert_fail ("getLangOpts().CPlusPlus", "clang/lib/Sema/SemaExpr.cpp"
, 12423, __extension__ __PRETTY_FUNCTION__))
;
12424 assert(Context.hasSameType(LHS.get()->getType(), RHS.get()->getType()))(static_cast <bool> (Context.hasSameType(LHS.get()->
getType(), RHS.get()->getType())) ? void (0) : __assert_fail
("Context.hasSameType(LHS.get()->getType(), RHS.get()->getType())"
, "clang/lib/Sema/SemaExpr.cpp", 12424, __extension__ __PRETTY_FUNCTION__
))
;
12425
12426 QualType CompositeTy = LHS.get()->getType();
12427 assert(!CompositeTy->isReferenceType())(static_cast <bool> (!CompositeTy->isReferenceType()
) ? void (0) : __assert_fail ("!CompositeTy->isReferenceType()"
, "clang/lib/Sema/SemaExpr.cpp", 12427, __extension__ __PRETTY_FUNCTION__
))
;
12428
12429 Optional<ComparisonCategoryType> CCT =
12430 getComparisonCategoryForBuiltinCmp(CompositeTy);
12431 if (!CCT)
12432 return InvalidOperands(Loc, LHS, RHS);
12433
12434 if (CompositeTy->isPointerType() && LHSIsNull != RHSIsNull) {
12435 // P0946R0: Comparisons between a null pointer constant and an object
12436 // pointer result in std::strong_equality, which is ill-formed under
12437 // P1959R0.
12438 Diag(Loc, diag::err_typecheck_three_way_comparison_of_pointer_and_zero)
12439 << (LHSIsNull ? LHS.get()->getSourceRange()
12440 : RHS.get()->getSourceRange());
12441 return QualType();
12442 }
12443
12444 return CheckComparisonCategoryType(
12445 *CCT, Loc, ComparisonCategoryUsage::OperatorInExpression);
12446 };
12447
12448 if (!IsOrdered && LHSIsNull != RHSIsNull) {
12449 bool IsEquality = Opc == BO_EQ;
12450 if (RHSIsNull)
12451 DiagnoseAlwaysNonNullPointer(LHS.get(), RHSNullKind, IsEquality,
12452 RHS.get()->getSourceRange());
12453 else
12454 DiagnoseAlwaysNonNullPointer(RHS.get(), LHSNullKind, IsEquality,
12455 LHS.get()->getSourceRange());
12456 }
12457
12458 if (IsOrdered && LHSType->isFunctionPointerType() &&
12459 RHSType->isFunctionPointerType()) {
12460 // Valid unless a relational comparison of function pointers
12461 bool IsError = Opc == BO_Cmp;
12462 auto DiagID =
12463 IsError ? diag::err_typecheck_ordered_comparison_of_function_pointers
12464 : getLangOpts().CPlusPlus
12465 ? diag::warn_typecheck_ordered_comparison_of_function_pointers
12466 : diag::ext_typecheck_ordered_comparison_of_function_pointers;
12467 Diag(Loc, DiagID) << LHSType << RHSType << LHS.get()->getSourceRange()
12468 << RHS.get()->getSourceRange();
12469 if (IsError)
12470 return QualType();
12471 }
12472
12473 if ((LHSType->isIntegerType() && !LHSIsNull) ||
12474 (RHSType->isIntegerType() && !RHSIsNull)) {
12475 // Skip normal pointer conversion checks in this case; we have better
12476 // diagnostics for this below.
12477 } else if (getLangOpts().CPlusPlus) {
12478 // Equality comparison of a function pointer to a void pointer is invalid,
12479 // but we allow it as an extension.
12480 // FIXME: If we really want to allow this, should it be part of composite
12481 // pointer type computation so it works in conditionals too?
12482 if (!IsOrdered &&
12483 ((LHSType->isFunctionPointerType() && RHSType->isVoidPointerType()) ||
12484 (RHSType->isFunctionPointerType() && LHSType->isVoidPointerType()))) {
12485 // This is a gcc extension compatibility comparison.
12486 // In a SFINAE context, we treat this as a hard error to maintain
12487 // conformance with the C++ standard.
12488 diagnoseFunctionPointerToVoidComparison(
12489 *this, Loc, LHS, RHS, /*isError*/ (bool)isSFINAEContext());
12490
12491 if (isSFINAEContext())
12492 return QualType();
12493
12494 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
12495 return computeResultTy();
12496 }
12497
12498 // C++ [expr.eq]p2:
12499 // If at least one operand is a pointer [...] bring them to their
12500 // composite pointer type.
12501 // C++ [expr.spaceship]p6
12502 // If at least one of the operands is of pointer type, [...] bring them
12503 // to their composite pointer type.
12504 // C++ [expr.rel]p2:
12505 // If both operands are pointers, [...] bring them to their composite
12506 // pointer type.
12507 // For <=>, the only valid non-pointer types are arrays and functions, and
12508 // we already decayed those, so this is really the same as the relational
12509 // comparison rule.
12510 if ((int)LHSType->isPointerType() + (int)RHSType->isPointerType() >=
12511 (IsOrdered ? 2 : 1) &&
12512 (!LangOpts.ObjCAutoRefCount || !(LHSType->isObjCObjectPointerType() ||
12513 RHSType->isObjCObjectPointerType()))) {
12514 if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
12515 return QualType();
12516 return computeResultTy();
12517 }
12518 } else if (LHSType->isPointerType() &&
12519 RHSType->isPointerType()) { // C99 6.5.8p2
12520 // All of the following pointer-related warnings are GCC extensions, except
12521 // when handling null pointer constants.
12522 QualType LCanPointeeTy =
12523 LHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
12524 QualType RCanPointeeTy =
12525 RHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
12526
12527 // C99 6.5.9p2 and C99 6.5.8p2
12528 if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
12529 RCanPointeeTy.getUnqualifiedType())) {
12530 if (IsRelational) {
12531 // Pointers both need to point to complete or incomplete types
12532 if ((LCanPointeeTy->isIncompleteType() !=
12533 RCanPointeeTy->isIncompleteType()) &&
12534 !getLangOpts().C11) {
12535 Diag(Loc, diag::ext_typecheck_compare_complete_incomplete_pointers)
12536 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange()
12537 << LHSType << RHSType << LCanPointeeTy->isIncompleteType()
12538 << RCanPointeeTy->isIncompleteType();
12539 }
12540 }
12541 } else if (!IsRelational &&
12542 (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
12543 // Valid unless comparison between non-null pointer and function pointer
12544 if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
12545 && !LHSIsNull && !RHSIsNull)
12546 diagnoseFunctionPointerToVoidComparison(*this, Loc, LHS, RHS,
12547 /*isError*/false);
12548 } else {
12549 // Invalid
12550 diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS, /*isError*/false);
12551 }
12552 if (LCanPointeeTy != RCanPointeeTy) {
12553 // Treat NULL constant as a special case in OpenCL.
12554 if (getLangOpts().OpenCL && !LHSIsNull && !RHSIsNull) {
12555 if (!LCanPointeeTy.isAddressSpaceOverlapping(RCanPointeeTy)) {
12556 Diag(Loc,
12557 diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
12558 << LHSType << RHSType << 0 /* comparison */
12559 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
12560 }
12561 }
12562 LangAS AddrSpaceL = LCanPointeeTy.getAddressSpace();
12563 LangAS AddrSpaceR = RCanPointeeTy.getAddressSpace();
12564 CastKind Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion
12565 : CK_BitCast;
12566 if (LHSIsNull && !RHSIsNull)
12567 LHS = ImpCastExprToType(LHS.get(), RHSType, Kind);
12568 else
12569 RHS = ImpCastExprToType(RHS.get(), LHSType, Kind);
12570 }
12571 return computeResultTy();
12572 }
12573
12574 if (getLangOpts().CPlusPlus) {
12575 // C++ [expr.eq]p4:
12576 // Two operands of type std::nullptr_t or one operand of type
12577 // std::nullptr_t and the other a null pointer constant compare equal.
12578 if (!IsOrdered && LHSIsNull && RHSIsNull) {
12579 if (LHSType->isNullPtrType()) {
12580 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
12581 return computeResultTy();
12582 }
12583 if (RHSType->isNullPtrType()) {
12584 LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
12585 return computeResultTy();
12586 }
12587 }
12588
12589 // Comparison of Objective-C pointers and block pointers against nullptr_t.
12590 // These aren't covered by the composite pointer type rules.
12591 if (!IsOrdered && RHSType->isNullPtrType() &&
12592 (LHSType->isObjCObjectPointerType() || LHSType->isBlockPointerType())) {
12593 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
12594 return computeResultTy();
12595 }
12596 if (!IsOrdered && LHSType->isNullPtrType() &&
12597 (RHSType->isObjCObjectPointerType() || RHSType->isBlockPointerType())) {
12598 LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
12599 return computeResultTy();
12600 }
12601
12602 if (IsRelational &&
12603 ((LHSType->isNullPtrType() && RHSType->isPointerType()) ||
12604 (RHSType->isNullPtrType() && LHSType->isPointerType()))) {
12605 // HACK: Relational comparison of nullptr_t against a pointer type is
12606 // invalid per DR583, but we allow it within std::less<> and friends,
12607 // since otherwise common uses of it break.
12608 // FIXME: Consider removing this hack once LWG fixes std::less<> and
12609 // friends to have std::nullptr_t overload candidates.
12610 DeclContext *DC = CurContext;
12611 if (isa<FunctionDecl>(DC))
12612 DC = DC->getParent();
12613 if (auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(DC)) {
12614 if (CTSD->isInStdNamespace() &&
12615 llvm::StringSwitch<bool>(CTSD->getName())
12616 .Cases("less", "less_equal", "greater", "greater_equal", true)
12617 .Default(false)) {
12618 if (RHSType->isNullPtrType())
12619 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
12620 else
12621 LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
12622 return computeResultTy();
12623 }
12624 }
12625 }
12626
12627 // C++ [expr.eq]p2:
12628 // If at least one operand is a pointer to member, [...] bring them to
12629 // their composite pointer type.
12630 if (!IsOrdered &&
12631 (LHSType->isMemberPointerType() || RHSType->isMemberPointerType())) {
12632 if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
12633 return QualType();
12634 else
12635 return computeResultTy();
12636 }
12637 }
12638
12639 // Handle block pointer types.
12640 if (!IsOrdered && LHSType->isBlockPointerType() &&
12641 RHSType->isBlockPointerType()) {
12642 QualType lpointee = LHSType->castAs<BlockPointerType>()->getPointeeType();
12643 QualType rpointee = RHSType->castAs<BlockPointerType>()->getPointeeType();
12644
12645 if (!LHSIsNull && !RHSIsNull &&
12646 !Context.typesAreCompatible(lpointee, rpointee)) {
12647 Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
12648 << LHSType << RHSType << LHS.get()->getSourceRange()
12649 << RHS.get()->getSourceRange();
12650 }
12651 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
12652 return computeResultTy();
12653 }
12654
12655 // Allow block pointers to be compared with null pointer constants.
12656 if (!IsOrdered
12657 && ((LHSType->isBlockPointerType() && RHSType->isPointerType())
12658 || (LHSType->isPointerType() && RHSType->isBlockPointerType()))) {
12659 if (!LHSIsNull && !RHSIsNull) {
12660 if (!((RHSType->isPointerType() && RHSType->castAs<PointerType>()
12661 ->getPointeeType()->isVoidType())
12662 || (LHSType->isPointerType() && LHSType->castAs<PointerType>()
12663 ->getPointeeType()->isVoidType())))
12664 Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
12665 << LHSType << RHSType << LHS.get()->getSourceRange()
12666 << RHS.get()->getSourceRange();
12667 }
12668 if (LHSIsNull && !RHSIsNull)
12669 LHS = ImpCastExprToType(LHS.get(), RHSType,
12670 RHSType->isPointerType() ? CK_BitCast
12671 : CK_AnyPointerToBlockPointerCast);
12672 else
12673 RHS = ImpCastExprToType(RHS.get(), LHSType,
12674 LHSType->isPointerType() ? CK_BitCast
12675 : CK_AnyPointerToBlockPointerCast);
12676 return computeResultTy();
12677 }
12678
12679 if (LHSType->isObjCObjectPointerType() ||
12680 RHSType->isObjCObjectPointerType()) {
12681 const PointerType *LPT = LHSType->getAs<PointerType>();
12682 const PointerType *RPT = RHSType->getAs<PointerType>();
12683 if (LPT || RPT) {
12684 bool LPtrToVoid = LPT ? LPT->getPointeeType()->isVoidType() : false;
12685 bool RPtrToVoid = RPT ? RPT->getPointeeType()->isVoidType() : false;
12686
12687 if (!LPtrToVoid && !RPtrToVoid &&
12688 !Context.typesAreCompatible(LHSType, RHSType)) {
12689 diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
12690 /*isError*/false);
12691 }
12692 // FIXME: If LPtrToVoid, we should presumably convert the LHS rather than
12693 // the RHS, but we have test coverage for this behavior.
12694 // FIXME: Consider using convertPointersToCompositeType in C++.
12695 if (LHSIsNull && !RHSIsNull) {
12696 Expr *E = LHS.get();
12697 if (getLangOpts().ObjCAutoRefCount)
12698 CheckObjCConversion(SourceRange(), RHSType, E,
12699 CCK_ImplicitConversion);
12700 LHS = ImpCastExprToType(E, RHSType,
12701 RPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
12702 }
12703 else {
12704 Expr *E = RHS.get();
12705 if (getLangOpts().ObjCAutoRefCount)
12706 CheckObjCConversion(SourceRange(), LHSType, E, CCK_ImplicitConversion,
12707 /*Diagnose=*/true,
12708 /*DiagnoseCFAudited=*/false, Opc);
12709 RHS = ImpCastExprToType(E, LHSType,
12710 LPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
12711 }
12712 return computeResultTy();
12713 }
12714 if (LHSType->isObjCObjectPointerType() &&
12715 RHSType->isObjCObjectPointerType()) {
12716 if (!Context.areComparableObjCPointerTypes(LHSType, RHSType))
12717 diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
12718 /*isError*/false);
12719 if (isObjCObjectLiteral(LHS) || isObjCObjectLiteral(RHS))
12720 diagnoseObjCLiteralComparison(*this, Loc, LHS, RHS, Opc);
12721
12722 if (LHSIsNull && !RHSIsNull)
12723 LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
12724 else
12725 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
12726 return computeResultTy();
12727 }
12728
12729 if (!IsOrdered && LHSType->isBlockPointerType() &&
12730 RHSType->isBlockCompatibleObjCPointerType(Context)) {
12731 LHS = ImpCastExprToType(LHS.get(), RHSType,
12732 CK_BlockPointerToObjCPointerCast);
12733 return computeResultTy();
12734 } else if (!IsOrdered &&
12735 LHSType->isBlockCompatibleObjCPointerType(Context) &&
12736 RHSType->isBlockPointerType()) {
12737 RHS = ImpCastExprToType(RHS.get(), LHSType,
12738 CK_BlockPointerToObjCPointerCast);
12739 return computeResultTy();
12740 }
12741 }
12742 if ((LHSType->isAnyPointerType() && RHSType->isIntegerType()) ||
12743 (LHSType->isIntegerType() && RHSType->isAnyPointerType())) {
12744 unsigned DiagID = 0;
12745 bool isError = false;
12746 if (LangOpts.DebuggerSupport) {
12747 // Under a debugger, allow the comparison of pointers to integers,
12748 // since users tend to want to compare addresses.
12749 } else if ((LHSIsNull && LHSType->isIntegerType()) ||
12750 (RHSIsNull && RHSType->isIntegerType())) {
12751 if (IsOrdered) {
12752 isError = getLangOpts().CPlusPlus;
12753 DiagID =
12754 isError ? diag::err_typecheck_ordered_comparison_of_pointer_and_zero
12755 : diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
12756 }
12757 } else if (getLangOpts().CPlusPlus) {
12758 DiagID = diag::err_typecheck_comparison_of_pointer_integer;
12759 isError = true;
12760 } else if (IsOrdered)
12761 DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
12762 else
12763 DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
12764
12765 if (DiagID) {
12766 Diag(Loc, DiagID)
12767 << LHSType << RHSType << LHS.get()->getSourceRange()
12768 << RHS.get()->getSourceRange();
12769 if (isError)
12770 return QualType();
12771 }
12772
12773 if (LHSType->isIntegerType())
12774 LHS = ImpCastExprToType(LHS.get(), RHSType,
12775 LHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
12776 else
12777 RHS = ImpCastExprToType(RHS.get(), LHSType,
12778 RHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
12779 return computeResultTy();
12780 }
12781
12782 // Handle block pointers.
12783 if (!IsOrdered && RHSIsNull
12784 && LHSType->isBlockPointerType() && RHSType->isIntegerType()) {
12785 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
12786 return computeResultTy();
12787 }
12788 if (!IsOrdered && LHSIsNull
12789 && LHSType->isIntegerType() && RHSType->isBlockPointerType()) {
12790 LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
12791 return computeResultTy();
12792 }
12793
12794 if (getLangOpts().getOpenCLCompatibleVersion() >= 200) {
12795 if (LHSType->isClkEventT() && RHSType->isClkEventT()) {
12796 return computeResultTy();
12797 }
12798
12799 if (LHSType->isQueueT() && RHSType->isQueueT()) {
12800 return computeResultTy();
12801 }
12802
12803 if (LHSIsNull && RHSType->isQueueT()) {
12804 LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
12805 return computeResultTy();
12806 }
12807
12808 if (LHSType->isQueueT() && RHSIsNull) {
12809 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
12810 return computeResultTy();
12811 }
12812 }
12813
12814 return InvalidOperands(Loc, LHS, RHS);
12815}
12816
12817// Return a signed ext_vector_type that is of identical size and number of
12818// elements. For floating point vectors, return an integer type of identical
12819// size and number of elements. In the non ext_vector_type case, search from
12820// the largest type to the smallest type to avoid cases where long long == long,
12821// where long gets picked over long long.
12822QualType Sema::GetSignedVectorType(QualType V) {
12823 const VectorType *VTy = V->castAs<VectorType>();
12824 unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
12825
12826 if (isa<ExtVectorType>(VTy)) {
12827 if (VTy->isExtVectorBoolType())
12828 return Context.getExtVectorType(Context.BoolTy, VTy->getNumElements());
12829 if (TypeSize == Context.getTypeSize(Context.CharTy))
12830 return Context.getExtVectorType(Context.CharTy, VTy->getNumElements());
12831 if (TypeSize == Context.getTypeSize(Context.ShortTy))
12832 return Context.getExtVectorType(Context.ShortTy, VTy->getNumElements());
12833 if (TypeSize == Context.getTypeSize(Context.IntTy))
12834 return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
12835 if (TypeSize == Context.getTypeSize(Context.Int128Ty))
12836 return Context.getExtVectorType(Context.Int128Ty, VTy->getNumElements());
12837 if (TypeSize == Context.getTypeSize(Context.LongTy))
12838 return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
12839 assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&(static_cast <bool> (TypeSize == Context.getTypeSize(Context
.LongLongTy) && "Unhandled vector element size in vector compare"
) ? void (0) : __assert_fail ("TypeSize == Context.getTypeSize(Context.LongLongTy) && \"Unhandled vector element size in vector compare\""
, "clang/lib/Sema/SemaExpr.cpp", 12840, __extension__ __PRETTY_FUNCTION__
))
12840 "Unhandled vector element size in vector compare")(static_cast <bool> (TypeSize == Context.getTypeSize(Context
.LongLongTy) && "Unhandled vector element size in vector compare"
) ? void (0) : __assert_fail ("TypeSize == Context.getTypeSize(Context.LongLongTy) && \"Unhandled vector element size in vector compare\""
, "clang/lib/Sema/SemaExpr.cpp", 12840, __extension__ __PRETTY_FUNCTION__
))
;
12841 return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
12842 }
12843
12844 if (TypeSize == Context.getTypeSize(Context.Int128Ty))
12845 return Context.getVectorType(Context.Int128Ty, VTy->getNumElements(),
12846 VectorType::GenericVector);
12847 if (TypeSize == Context.getTypeSize(Context.LongLongTy))
12848 return Context.getVectorType(Context.LongLongTy, VTy->getNumElements(),
12849 VectorType::GenericVector);
12850 if (TypeSize == Context.getTypeSize(Context.LongTy))
12851 return Context.getVectorType(Context.LongTy, VTy->getNumElements(),
12852 VectorType::GenericVector);
12853 if (TypeSize == Context.getTypeSize(Context.IntTy))
12854 return Context.getVectorType(Context.IntTy, VTy->getNumElements(),
12855 VectorType::GenericVector);
12856 if (TypeSize == Context.getTypeSize(Context.ShortTy))
12857 return Context.getVectorType(Context.ShortTy, VTy->getNumElements(),
12858 VectorType::GenericVector);
12859 assert(TypeSize == Context.getTypeSize(Context.CharTy) &&(static_cast <bool> (TypeSize == Context.getTypeSize(Context
.CharTy) && "Unhandled vector element size in vector compare"
) ? void (0) : __assert_fail ("TypeSize == Context.getTypeSize(Context.CharTy) && \"Unhandled vector element size in vector compare\""
, "clang/lib/Sema/SemaExpr.cpp", 12860, __extension__ __PRETTY_FUNCTION__
))
12860 "Unhandled vector element size in vector compare")(static_cast <bool> (TypeSize == Context.getTypeSize(Context
.CharTy) && "Unhandled vector element size in vector compare"
) ? void (0) : __assert_fail ("TypeSize == Context.getTypeSize(Context.CharTy) && \"Unhandled vector element size in vector compare\""
, "clang/lib/Sema/SemaExpr.cpp", 12860, __extension__ __PRETTY_FUNCTION__
))
;
12861 return Context.getVectorType(Context.CharTy, VTy->getNumElements(),
12862 VectorType::GenericVector);
12863}
12864
12865QualType Sema::GetSignedSizelessVectorType(QualType V) {
12866 const BuiltinType *VTy = V->castAs<BuiltinType>();
12867 assert(VTy->isSizelessBuiltinType() && "expected sizeless type")(static_cast <bool> (VTy->isSizelessBuiltinType() &&
"expected sizeless type") ? void (0) : __assert_fail ("VTy->isSizelessBuiltinType() && \"expected sizeless type\""
, "clang/lib/Sema/SemaExpr.cpp", 12867, __extension__ __PRETTY_FUNCTION__
))
;
12868
12869 const QualType ETy = V->getSveEltType(Context);
12870 const auto TypeSize = Context.getTypeSize(ETy);
12871
12872 const QualType IntTy = Context.getIntTypeForBitwidth(TypeSize, true);
12873 const llvm::ElementCount VecSize = Context.getBuiltinVectorTypeInfo(VTy).EC;
12874 return Context.getScalableVectorType(IntTy, VecSize.getKnownMinValue());
12875}
12876
12877/// CheckVectorCompareOperands - vector comparisons are a clang extension that
12878/// operates on extended vector types. Instead of producing an IntTy result,
12879/// like a scalar comparison, a vector comparison produces a vector of integer
12880/// types.
12881QualType Sema::CheckVectorCompareOperands(ExprResult &LHS, ExprResult &RHS,
12882 SourceLocation Loc,
12883 BinaryOperatorKind Opc) {
12884 if (Opc == BO_Cmp) {
12885 Diag(Loc, diag::err_three_way_vector_comparison);
12886 return QualType();
12887 }
12888
12889 // Check to make sure we're operating on vectors of the same type and width,
12890 // Allowing one side to be a scalar of element type.
12891 QualType vType =
12892 CheckVectorOperands(LHS, RHS, Loc, /*isCompAssign*/ false,
12893 /*AllowBothBool*/ true,
12894 /*AllowBoolConversions*/ getLangOpts().ZVector,
12895 /*AllowBooleanOperation*/ true,
12896 /*ReportInvalid*/ true);
12897 if (vType.isNull())
12898 return vType;
12899
12900 QualType LHSType = LHS.get()->getType();
12901
12902 // Determine the return type of a vector compare. By default clang will return
12903 // a scalar for all vector compares except vector bool and vector pixel.
12904 // With the gcc compiler we will always return a vector type and with the xl
12905 // compiler we will always return a scalar type. This switch allows choosing
12906 // which behavior is prefered.
12907 if (getLangOpts().AltiVec) {
12908 switch (getLangOpts().getAltivecSrcCompat()) {
12909 case LangOptions::AltivecSrcCompatKind::Mixed:
12910 // If AltiVec, the comparison results in a numeric type, i.e.
12911 // bool for C++, int for C
12912 if (vType->castAs<VectorType>()->getVectorKind() ==
12913 VectorType::AltiVecVector)
12914 return Context.getLogicalOperationType();
12915 else
12916 Diag(Loc, diag::warn_deprecated_altivec_src_compat);
12917 break;
12918 case LangOptions::AltivecSrcCompatKind::GCC:
12919 // For GCC we always return the vector type.
12920 break;
12921 case LangOptions::AltivecSrcCompatKind::XL:
12922 return Context.getLogicalOperationType();
12923 break;
12924 }
12925 }
12926
12927 // For non-floating point types, check for self-comparisons of the form
12928 // x == x, x != x, x < x, etc. These always evaluate to a constant, and
12929 // often indicate logic errors in the program.
12930 diagnoseTautologicalComparison(*this, Loc, LHS.get(), RHS.get(), Opc);
12931
12932 // Check for comparisons of floating point operands using != and ==.
12933 if (LHSType->hasFloatingRepresentation()) {
12934 assert(RHS.get()->getType()->hasFloatingRepresentation())(static_cast <bool> (RHS.get()->getType()->hasFloatingRepresentation
()) ? void (0) : __assert_fail ("RHS.get()->getType()->hasFloatingRepresentation()"
, "clang/lib/Sema/SemaExpr.cpp", 12934, __extension__ __PRETTY_FUNCTION__
))
;
12935 CheckFloatComparison(Loc, LHS.get(), RHS.get(), Opc);
12936 }
12937
12938 // Return a signed type for the vector.
12939 return GetSignedVectorType(vType);
12940}
12941
12942QualType Sema::CheckSizelessVectorCompareOperands(ExprResult &LHS,
12943 ExprResult &RHS,
12944 SourceLocation Loc,
12945 BinaryOperatorKind Opc) {
12946 if (Opc == BO_Cmp) {
12947 Diag(Loc, diag::err_three_way_vector_comparison);
12948 return QualType();
12949 }
12950
12951 // Check to make sure we're operating on vectors of the same type and width,
12952 // Allowing one side to be a scalar of element type.
12953 QualType vType = CheckSizelessVectorOperands(
12954 LHS, RHS, Loc, /*isCompAssign*/ false, ACK_Comparison);
12955
12956 if (vType.isNull())
12957 return vType;
12958
12959 QualType LHSType = LHS.get()->getType();
12960
12961 // For non-floating point types, check for self-comparisons of the form
12962 // x == x, x != x, x < x, etc. These always evaluate to a constant, and
12963 // often indicate logic errors in the program.
12964 diagnoseTautologicalComparison(*this, Loc, LHS.get(), RHS.get(), Opc);
12965
12966 // Check for comparisons of floating point operands using != and ==.
12967 if (LHSType->hasFloatingRepresentation()) {
12968 assert(RHS.get()->getType()->hasFloatingRepresentation())(static_cast <bool> (RHS.get()->getType()->hasFloatingRepresentation
()) ? void (0) : __assert_fail ("RHS.get()->getType()->hasFloatingRepresentation()"
, "clang/lib/Sema/SemaExpr.cpp", 12968, __extension__ __PRETTY_FUNCTION__
))
;
12969 CheckFloatComparison(Loc, LHS.get(), RHS.get(), Opc);
12970 }
12971
12972 const BuiltinType *LHSBuiltinTy = LHSType->getAs<BuiltinType>();
12973 const BuiltinType *RHSBuiltinTy = RHS.get()->getType()->getAs<BuiltinType>();
12974
12975 if (LHSBuiltinTy && RHSBuiltinTy && LHSBuiltinTy->isSVEBool() &&
12976 RHSBuiltinTy->isSVEBool())
12977 return LHSType;
12978
12979 // Return a signed type for the vector.
12980 return GetSignedSizelessVectorType(vType);
12981}
12982
12983static void diagnoseXorMisusedAsPow(Sema &S, const ExprResult &XorLHS,
12984 const ExprResult &XorRHS,
12985 const SourceLocation Loc) {
12986 // Do not diagnose macros.
12987 if (Loc.isMacroID())
12988 return;
12989
12990 // Do not diagnose if both LHS and RHS are macros.
12991 if (XorLHS.get()->getExprLoc().isMacroID() &&
12992 XorRHS.get()->getExprLoc().isMacroID())
12993 return;
12994
12995 bool Negative = false;
12996 bool ExplicitPlus = false;
12997 const auto *LHSInt = dyn_cast<IntegerLiteral>(XorLHS.get());
12998 const auto *RHSInt = dyn_cast<IntegerLiteral>(XorRHS.get());
12999
13000 if (!LHSInt)
13001 return;
13002 if (!RHSInt) {
13003 // Check negative literals.
13004 if (const auto *UO = dyn_cast<UnaryOperator>(XorRHS.get())) {
13005 UnaryOperatorKind Opc = UO->getOpcode();
13006 if (Opc != UO_Minus && Opc != UO_Plus)
13007 return;
13008 RHSInt = dyn_cast<IntegerLiteral>(UO->getSubExpr());
13009 if (!RHSInt)
13010 return;
13011 Negative = (Opc == UO_Minus);
13012 ExplicitPlus = !Negative;
13013 } else {
13014 return;
13015 }
13016 }
13017
13018 const llvm::APInt &LeftSideValue = LHSInt->getValue();
13019 llvm::APInt RightSideValue = RHSInt->getValue();
13020 if (LeftSideValue != 2 && LeftSideValue != 10)
13021 return;
13022
13023 if (LeftSideValue.getBitWidth() != RightSideValue.getBitWidth())
13024 return;
13025
13026 CharSourceRange ExprRange = CharSourceRange::getCharRange(
13027 LHSInt->getBeginLoc(), S.getLocForEndOfToken(RHSInt->getLocation()));
13028 llvm::StringRef ExprStr =
13029 Lexer::getSourceText(ExprRange, S.getSourceManager(), S.getLangOpts());
13030
13031 CharSourceRange XorRange =
13032 CharSourceRange::getCharRange(Loc, S.getLocForEndOfToken(Loc));
13033 llvm::StringRef XorStr =
13034 Lexer::getSourceText(XorRange, S.getSourceManager(), S.getLangOpts());
13035 // Do not diagnose if xor keyword/macro is used.
13036 if (XorStr == "xor")
13037 return;
13038
13039 std::string LHSStr = std::string(Lexer::getSourceText(
13040 CharSourceRange::getTokenRange(LHSInt->getSourceRange()),
13041 S.getSourceManager(), S.getLangOpts()));
13042 std::string RHSStr = std::string(Lexer::getSourceText(
13043 CharSourceRange::getTokenRange(RHSInt->getSourceRange()),
13044 S.getSourceManager(), S.getLangOpts()));
13045
13046 if (Negative) {
13047 RightSideValue = -RightSideValue;
13048 RHSStr = "-" + RHSStr;
13049 } else if (ExplicitPlus) {
13050 RHSStr = "+" + RHSStr;
13051 }
13052
13053 StringRef LHSStrRef = LHSStr;
13054 StringRef RHSStrRef = RHSStr;
13055 // Do not diagnose literals with digit separators, binary, hexadecimal, octal
13056 // literals.
13057 if (LHSStrRef.startswith("0b") || LHSStrRef.startswith("0B") ||
13058 RHSStrRef.startswith("0b") || RHSStrRef.startswith("0B") ||
13059 LHSStrRef.startswith("0x") || LHSStrRef.startswith("0X") ||
13060 RHSStrRef.startswith("0x") || RHSStrRef.startswith("0X") ||
13061 (LHSStrRef.size() > 1 && LHSStrRef.startswith("0")) ||
13062 (RHSStrRef.size() > 1 && RHSStrRef.startswith("0")) ||
13063 LHSStrRef.contains('\'') || RHSStrRef.contains('\''))
13064 return;
13065
13066 bool SuggestXor =
13067 S.getLangOpts().CPlusPlus || S.getPreprocessor().isMacroDefined("xor");
13068 const llvm::APInt XorValue = LeftSideValue ^ RightSideValue;
13069 int64_t RightSideIntValue = RightSideValue.getSExtValue();
13070 if (LeftSideValue == 2 && RightSideIntValue >= 0) {
13071 std::string SuggestedExpr = "1 << " + RHSStr;
13072 bool Overflow = false;
13073 llvm::APInt One = (LeftSideValue - 1);
13074 llvm::APInt PowValue = One.sshl_ov(RightSideValue, Overflow);
13075 if (Overflow) {
13076 if (RightSideIntValue < 64)
13077 S.Diag(Loc, diag::warn_xor_used_as_pow_base)
13078 << ExprStr << toString(XorValue, 10, true) << ("1LL << " + RHSStr)
13079 << FixItHint::CreateReplacement(ExprRange, "1LL << " + RHSStr);
13080 else if (RightSideIntValue == 64)
13081 S.Diag(Loc, diag::warn_xor_used_as_pow)
13082 << ExprStr << toString(XorValue, 10, true);
13083 else
13084 return;
13085 } else {
13086 S.Diag(Loc, diag::warn_xor_used_as_pow_base_extra)
13087 << ExprStr << toString(XorValue, 10, true) << SuggestedExpr
13088 << toString(PowValue, 10, true)
13089 << FixItHint::CreateReplacement(
13090 ExprRange, (RightSideIntValue == 0) ? "1" : SuggestedExpr);
13091 }
13092
13093 S.Diag(Loc, diag::note_xor_used_as_pow_silence)
13094 << ("0x2 ^ " + RHSStr) << SuggestXor;
13095 } else if (LeftSideValue == 10) {
13096 std::string SuggestedValue = "1e" + std::to_string(RightSideIntValue);
13097 S.Diag(Loc, diag::warn_xor_used_as_pow_base)
13098 << ExprStr << toString(XorValue, 10, true) << SuggestedValue
13099 << FixItHint::CreateReplacement(ExprRange, SuggestedValue);
13100 S.Diag(Loc, diag::note_xor_used_as_pow_silence)
13101 << ("0xA ^ " + RHSStr) << SuggestXor;
13102 }
13103}
13104
13105QualType Sema::CheckVectorLogicalOperands(ExprResult &LHS, ExprResult &RHS,
13106 SourceLocation Loc) {
13107 // Ensure that either both operands are of the same vector type, or
13108 // one operand is of a vector type and the other is of its element type.
13109 QualType vType = CheckVectorOperands(LHS, RHS, Loc, false,
13110 /*AllowBothBool*/ true,
13111 /*AllowBoolConversions*/ false,
13112 /*AllowBooleanOperation*/ false,
13113 /*ReportInvalid*/ false);
13114 if (vType.isNull())
13115 return InvalidOperands(Loc, LHS, RHS);
13116 if (getLangOpts().OpenCL &&
13117 getLangOpts().getOpenCLCompatibleVersion() < 120 &&
13118 vType->hasFloatingRepresentation())
13119 return InvalidOperands(Loc, LHS, RHS);
13120 // FIXME: The check for C++ here is for GCC compatibility. GCC rejects the
13121 // usage of the logical operators && and || with vectors in C. This
13122 // check could be notionally dropped.
13123 if (!getLangOpts().CPlusPlus &&
13124 !(isa<ExtVectorType>(vType->getAs<VectorType>())))
13125 return InvalidLogicalVectorOperands(Loc, LHS, RHS);
13126
13127 return GetSignedVectorType(LHS.get()->getType());
13128}
13129
13130QualType Sema::CheckMatrixElementwiseOperands(ExprResult &LHS, ExprResult &RHS,
13131 SourceLocation Loc,
13132 bool IsCompAssign) {
13133 if (!IsCompAssign) {
13134 LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
13135 if (LHS.isInvalid())
13136 return QualType();
13137 }
13138 RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
13139 if (RHS.isInvalid())
13140 return QualType();
13141
13142 // For conversion purposes, we ignore any qualifiers.
13143 // For example, "const float" and "float" are equivalent.
13144 QualType LHSType = LHS.get()->getType().getUnqualifiedType();
13145 QualType RHSType = RHS.get()->getType().getUnqualifiedType();
13146
13147 const MatrixType *LHSMatType = LHSType->getAs<MatrixType>();
13148 const MatrixType *RHSMatType = RHSType->getAs<MatrixType>();
13149 assert((LHSMatType || RHSMatType) && "At least one operand must be a matrix")(static_cast <bool> ((LHSMatType || RHSMatType) &&
"At least one operand must be a matrix") ? void (0) : __assert_fail
("(LHSMatType || RHSMatType) && \"At least one operand must be a matrix\""
, "clang/lib/Sema/SemaExpr.cpp", 13149, __extension__ __PRETTY_FUNCTION__
))
;
13150
13151 if (Context.hasSameType(LHSType, RHSType))
13152 return Context.getCommonSugaredType(LHSType, RHSType);
13153
13154 // Type conversion may change LHS/RHS. Keep copies to the original results, in
13155 // case we have to return InvalidOperands.
13156 ExprResult OriginalLHS = LHS;
13157 ExprResult OriginalRHS = RHS;
13158 if (LHSMatType && !RHSMatType) {
13159 RHS = tryConvertExprToType(RHS.get(), LHSMatType->getElementType());
13160 if (!RHS.isInvalid())
13161 return LHSType;
13162
13163 return InvalidOperands(Loc, OriginalLHS, OriginalRHS);
13164 }
13165
13166 if (!LHSMatType && RHSMatType) {
13167 LHS = tryConvertExprToType(LHS.get(), RHSMatType->getElementType());
13168 if (!LHS.isInvalid())
13169 return RHSType;
13170 return InvalidOperands(Loc, OriginalLHS, OriginalRHS);
13171 }
13172
13173 return InvalidOperands(Loc, LHS, RHS);
13174}
13175
13176QualType Sema::CheckMatrixMultiplyOperands(ExprResult &LHS, ExprResult &RHS,
13177 SourceLocation Loc,
13178 bool IsCompAssign) {
13179 if (!IsCompAssign) {
13180 LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
13181 if (LHS.isInvalid())
13182 return QualType();
13183 }
13184 RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
13185 if (RHS.isInvalid())
13186 return QualType();
13187
13188 auto *LHSMatType = LHS.get()->getType()->getAs<ConstantMatrixType>();
13189 auto *RHSMatType = RHS.get()->getType()->getAs<ConstantMatrixType>();
13190 assert((LHSMatType || RHSMatType) && "At least one operand must be a matrix")(static_cast <bool> ((LHSMatType || RHSMatType) &&
"At least one operand must be a matrix") ? void (0) : __assert_fail
("(LHSMatType || RHSMatType) && \"At least one operand must be a matrix\""
, "clang/lib/Sema/SemaExpr.cpp", 13190, __extension__ __PRETTY_FUNCTION__
))
;
13191
13192 if (LHSMatType && RHSMatType) {
13193 if (LHSMatType->getNumColumns() != RHSMatType->getNumRows())
13194 return InvalidOperands(Loc, LHS, RHS);
13195
13196 if (Context.hasSameType(LHSMatType, RHSMatType))
13197 return Context.getCommonSugaredType(
13198 LHS.get()->getType().getUnqualifiedType(),
13199 RHS.get()->getType().getUnqualifiedType());
13200
13201 QualType LHSELTy = LHSMatType->getElementType(),
13202 RHSELTy = RHSMatType->getElementType();
13203 if (!Context.hasSameType(LHSELTy, RHSELTy))
13204 return InvalidOperands(Loc, LHS, RHS);
13205
13206 return Context.getConstantMatrixType(
13207 Context.getCommonSugaredType(LHSELTy, RHSELTy),
13208 LHSMatType->getNumRows(), RHSMatType->getNumColumns());
13209 }
13210 return CheckMatrixElementwiseOperands(LHS, RHS, Loc, IsCompAssign);
13211}
13212
13213static bool isLegalBoolVectorBinaryOp(BinaryOperatorKind Opc) {
13214 switch (Opc) {
13215 default:
13216 return false;
13217 case BO_And:
13218 case BO_AndAssign:
13219 case BO_Or:
13220 case BO_OrAssign:
13221 case BO_Xor:
13222 case BO_XorAssign:
13223 return true;
13224 }
13225}
13226
13227inline QualType Sema::CheckBitwiseOperands(ExprResult &LHS, ExprResult &RHS,
13228 SourceLocation Loc,
13229 BinaryOperatorKind Opc) {
13230 checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
13231
13232 bool IsCompAssign =
13233 Opc == BO_AndAssign || Opc == BO_OrAssign || Opc == BO_XorAssign;
13234
13235 bool LegalBoolVecOperator = isLegalBoolVectorBinaryOp(Opc);
13236
13237 if (LHS.get()->getType()->isVectorType() ||
13238 RHS.get()->getType()->isVectorType()) {
13239 if (LHS.get()->getType()->hasIntegerRepresentation() &&
13240 RHS.get()->getType()->hasIntegerRepresentation())
13241 return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
13242 /*AllowBothBool*/ true,
13243 /*AllowBoolConversions*/ getLangOpts().ZVector,
13244 /*AllowBooleanOperation*/ LegalBoolVecOperator,
13245 /*ReportInvalid*/ true);
13246 return InvalidOperands(Loc, LHS, RHS);
13247 }
13248
13249 if (LHS.get()->getType()->isVLSTBuiltinType() ||
13250 RHS.get()->getType()->isVLSTBuiltinType()) {
13251 if (LHS.get()->getType()->hasIntegerRepresentation() &&
13252 RHS.get()->getType()->hasIntegerRepresentation())
13253 return CheckSizelessVectorOperands(LHS, RHS, Loc, IsCompAssign,
13254 ACK_BitwiseOp);
13255 return InvalidOperands(Loc, LHS, RHS);
13256 }
13257
13258 if (LHS.get()->getType()->isVLSTBuiltinType() ||
13259 RHS.get()->getType()->isVLSTBuiltinType()) {
13260 if (LHS.get()->getType()->hasIntegerRepresentation() &&
13261 RHS.get()->getType()->hasIntegerRepresentation())
13262 return CheckSizelessVectorOperands(LHS, RHS, Loc, IsCompAssign,
13263 ACK_BitwiseOp);
13264 return InvalidOperands(Loc, LHS, RHS);
13265 }
13266
13267 if (Opc == BO_And)
13268 diagnoseLogicalNotOnLHSofCheck(*this, LHS, RHS, Loc, Opc);
13269
13270 if (LHS.get()->getType()->hasFloatingRepresentation() ||
13271 RHS.get()->getType()->hasFloatingRepresentation())
13272 return InvalidOperands(Loc, LHS, RHS);
13273
13274 ExprResult LHSResult = LHS, RHSResult = RHS;
13275 QualType compType = UsualArithmeticConversions(
13276 LHSResult, RHSResult, Loc, IsCompAssign ? ACK_CompAssign : ACK_BitwiseOp);
13277 if (LHSResult.isInvalid() || RHSResult.isInvalid())
13278 return QualType();
13279 LHS = LHSResult.get();
13280 RHS = RHSResult.get();
13281
13282 if (Opc == BO_Xor)
13283 diagnoseXorMisusedAsPow(*this, LHS, RHS, Loc);
13284
13285 if (!compType.isNull() && compType->isIntegralOrUnscopedEnumerationType())
13286 return compType;
13287 return InvalidOperands(Loc, LHS, RHS);
13288}
13289
13290// C99 6.5.[13,14]
13291inline QualType Sema::CheckLogicalOperands(ExprResult &LHS, ExprResult &RHS,
13292 SourceLocation Loc,
13293 BinaryOperatorKind Opc) {
13294 // Check vector operands differently.
13295 if (LHS.get()->getType()->isVectorType() ||
13296 RHS.get()->getType()->isVectorType())
13297 return CheckVectorLogicalOperands(LHS, RHS, Loc);
13298
13299 bool EnumConstantInBoolContext = false;
13300 for (const ExprResult &HS : {LHS, RHS}) {
13301 if (const auto *DREHS = dyn_cast<DeclRefExpr>(HS.get())) {
13302 const auto *ECDHS = dyn_cast<EnumConstantDecl>(DREHS->getDecl());
13303 if (ECDHS && ECDHS->getInitVal() != 0 && ECDHS->getInitVal() != 1)
13304 EnumConstantInBoolContext = true;
13305 }
13306 }
13307
13308 if (EnumConstantInBoolContext)
13309 Diag(Loc, diag::warn_enum_constant_in_bool_context);
13310
13311 // Diagnose cases where the user write a logical and/or but probably meant a
13312 // bitwise one. We do this when the LHS is a non-bool integer and the RHS
13313 // is a constant.
13314 if (!EnumConstantInBoolContext && LHS.get()->getType()->isIntegerType() &&
13315 !LHS.get()->getType()->isBooleanType() &&
13316 RHS.get()->getType()->isIntegerType() && !RHS.get()->isValueDependent() &&
13317 // Don't warn in macros or template instantiations.
13318 !Loc.isMacroID() && !inTemplateInstantiation()) {
13319 // If the RHS can be constant folded, and if it constant folds to something
13320 // that isn't 0 or 1 (which indicate a potential logical operation that
13321 // happened to fold to true/false) then warn.
13322 // Parens on the RHS are ignored.
13323 Expr::EvalResult EVResult;
13324 if (RHS.get()->EvaluateAsInt(EVResult, Context)) {
13325 llvm::APSInt Result = EVResult.Val.getInt();
13326 if ((getLangOpts().Bool && !RHS.get()->getType()->isBooleanType() &&
13327 !RHS.get()->getExprLoc().isMacroID()) ||
13328 (Result != 0 && Result != 1)) {
13329 Diag(Loc, diag::warn_logical_instead_of_bitwise)
13330 << RHS.get()->getSourceRange() << (Opc == BO_LAnd ? "&&" : "||");
13331 // Suggest replacing the logical operator with the bitwise version
13332 Diag(Loc, diag::note_logical_instead_of_bitwise_change_operator)
13333 << (Opc == BO_LAnd ? "&" : "|")
13334 << FixItHint::CreateReplacement(
13335 SourceRange(Loc, getLocForEndOfToken(Loc)),
13336 Opc == BO_LAnd ? "&" : "|");
13337 if (Opc == BO_LAnd)
13338 // Suggest replacing "Foo() && kNonZero" with "Foo()"
13339 Diag(Loc, diag::note_logical_instead_of_bitwise_remove_constant)
13340 << FixItHint::CreateRemoval(
13341 SourceRange(getLocForEndOfToken(LHS.get()->getEndLoc()),
13342 RHS.get()->getEndLoc()));
13343 }
13344 }
13345 }
13346
13347 if (!Context.getLangOpts().CPlusPlus) {
13348 // OpenCL v1.1 s6.3.g: The logical operators and (&&), or (||) do
13349 // not operate on the built-in scalar and vector float types.
13350 if (Context.getLangOpts().OpenCL &&
13351 Context.getLangOpts().OpenCLVersion < 120) {
13352 if (LHS.get()->getType()->isFloatingType() ||
13353 RHS.get()->getType()->isFloatingType())
13354 return InvalidOperands(Loc, LHS, RHS);
13355 }
13356
13357 LHS = UsualUnaryConversions(LHS.get());
13358 if (LHS.isInvalid())
13359 return QualType();
13360
13361 RHS = UsualUnaryConversions(RHS.get());
13362 if (RHS.isInvalid())
13363 return QualType();
13364
13365 if (!LHS.get()->getType()->isScalarType() ||
13366 !RHS.get()->getType()->isScalarType())
13367 return InvalidOperands(Loc, LHS, RHS);
13368
13369 return Context.IntTy;
13370 }
13371
13372 // The following is safe because we only use this method for
13373 // non-overloadable operands.
13374
13375 // C++ [expr.log.and]p1
13376 // C++ [expr.log.or]p1
13377 // The operands are both contextually converted to type bool.
13378 ExprResult LHSRes = PerformContextuallyConvertToBool(LHS.get());
13379 if (LHSRes.isInvalid())
13380 return InvalidOperands(Loc, LHS, RHS);
13381 LHS = LHSRes;
13382
13383 ExprResult RHSRes = PerformContextuallyConvertToBool(RHS.get());
13384 if (RHSRes.isInvalid())
13385 return InvalidOperands(Loc, LHS, RHS);
13386 RHS = RHSRes;
13387
13388 // C++ [expr.log.and]p2
13389 // C++ [expr.log.or]p2
13390 // The result is a bool.
13391 return Context.BoolTy;
13392}
13393
13394static bool IsReadonlyMessage(Expr *E, Sema &S) {
13395 const MemberExpr *ME = dyn_cast<MemberExpr>(E);
13396 if (!ME) return false;
13397 if (!isa<FieldDecl>(ME->getMemberDecl())) return false;
13398 ObjCMessageExpr *Base = dyn_cast<ObjCMessageExpr>(
13399 ME->getBase()->IgnoreImplicit()->IgnoreParenImpCasts());
13400 if (!Base) return false;
13401 return Base->getMethodDecl() != nullptr;
13402}
13403
13404/// Is the given expression (which must be 'const') a reference to a
13405/// variable which was originally non-const, but which has become
13406/// 'const' due to being captured within a block?
13407enum NonConstCaptureKind { NCCK_None, NCCK_Block, NCCK_Lambda };
13408static NonConstCaptureKind isReferenceToNonConstCapture(Sema &S, Expr *E) {
13409 assert(E->isLValue() && E->getType().isConstQualified())(static_cast <bool> (E->isLValue() && E->
getType().isConstQualified()) ? void (0) : __assert_fail ("E->isLValue() && E->getType().isConstQualified()"
, "clang/lib/Sema/SemaExpr.cpp", 13409, __extension__ __PRETTY_FUNCTION__
))
;
13410 E = E->IgnoreParens();
13411
13412 // Must be a reference to a declaration from an enclosing scope.
13413 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
13414 if (!DRE) return NCCK_None;
13415 if (!DRE->refersToEnclosingVariableOrCapture()) return NCCK_None;
13416
13417 // The declaration must be a variable which is not declared 'const'.
13418 VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
13419 if (!var) return NCCK_None;
13420 if (var->getType().isConstQualified()) return NCCK_None;
13421 assert(var->hasLocalStorage() && "capture added 'const' to non-local?")(static_cast <bool> (var->hasLocalStorage() &&
"capture added 'const' to non-local?") ? void (0) : __assert_fail
("var->hasLocalStorage() && \"capture added 'const' to non-local?\""
, "clang/lib/Sema/SemaExpr.cpp", 13421, __extension__ __PRETTY_FUNCTION__
))
;
13422
13423 // Decide whether the first capture was for a block or a lambda.
13424 DeclContext *DC = S.CurContext, *Prev = nullptr;
13425 // Decide whether the first capture was for a block or a lambda.
13426 while (DC) {
13427 // For init-capture, it is possible that the variable belongs to the
13428 // template pattern of the current context.
13429 if (auto *FD = dyn_cast<FunctionDecl>(DC))
13430 if (var->isInitCapture() &&
13431 FD->getTemplateInstantiationPattern() == var->getDeclContext())
13432 break;
13433 if (DC == var->getDeclContext())
13434 break;
13435 Prev = DC;
13436 DC = DC->getParent();
13437 }
13438 // Unless we have an init-capture, we've gone one step too far.
13439 if (!var->isInitCapture())
13440 DC = Prev;
13441 return (isa<BlockDecl>(DC) ? NCCK_Block : NCCK_Lambda);
13442}
13443
13444static bool IsTypeModifiable(QualType Ty, bool IsDereference) {
13445 Ty = Ty.getNonReferenceType();
13446 if (IsDereference && Ty->isPointerType())
13447 Ty = Ty->getPointeeType();
13448 return !Ty.isConstQualified();
13449}
13450
13451// Update err_typecheck_assign_const and note_typecheck_assign_const
13452// when this enum is changed.
13453enum {
13454 ConstFunction,
13455 ConstVariable,
13456 ConstMember,
13457 ConstMethod,
13458 NestedConstMember,
13459 ConstUnknown, // Keep as last element
13460};
13461
13462/// Emit the "read-only variable not assignable" error and print notes to give
13463/// more information about why the variable is not assignable, such as pointing
13464/// to the declaration of a const variable, showing that a method is const, or
13465/// that the function is returning a const reference.
13466static void DiagnoseConstAssignment(Sema &S, const Expr *E,
13467 SourceLocation Loc) {
13468 SourceRange ExprRange = E->getSourceRange();
13469
13470 // Only emit one error on the first const found. All other consts will emit
13471 // a note to the error.
13472 bool DiagnosticEmitted = false;
13473
13474 // Track if the current expression is the result of a dereference, and if the
13475 // next checked expression is the result of a dereference.
13476 bool IsDereference = false;
13477 bool NextIsDereference = false;
13478
13479 // Loop to process MemberExpr chains.
13480 while (true) {
13481 IsDereference = NextIsDereference;
13482
13483 E = E->IgnoreImplicit()->IgnoreParenImpCasts();
13484 if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
13485 NextIsDereference = ME->isArrow();
13486 const ValueDecl *VD = ME->getMemberDecl();
13487 if (const FieldDecl *Field = dyn_cast<FieldDecl>(VD)) {
13488 // Mutable fields can be modified even if the class is const.
13489 if (Field->isMutable()) {
13490 assert(DiagnosticEmitted && "Expected diagnostic not emitted.")(static_cast <bool> (DiagnosticEmitted && "Expected diagnostic not emitted."
) ? void (0) : __assert_fail ("DiagnosticEmitted && \"Expected diagnostic not emitted.\""
, "clang/lib/Sema/SemaExpr.cpp", 13490, __extension__ __PRETTY_FUNCTION__
))
;
13491 break;
13492 }
13493
13494 if (!IsTypeModifiable(Field->getType(), IsDereference)) {
13495 if (!DiagnosticEmitted) {
13496 S.Diag(Loc, diag::err_typecheck_assign_const)
13497 << ExprRange << ConstMember << false /*static*/ << Field
13498 << Field->getType();
13499 DiagnosticEmitted = true;
13500 }
13501 S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
13502 << ConstMember << false /*static*/ << Field << Field->getType()
13503 << Field->getSourceRange();
13504 }
13505 E = ME->getBase();
13506 continue;
13507 } else if (const VarDecl *VDecl = dyn_cast<VarDecl>(VD)) {
13508 if (VDecl->getType().isConstQualified()) {
13509 if (!DiagnosticEmitted) {
13510 S.Diag(Loc, diag::err_typecheck_assign_const)
13511 << ExprRange << ConstMember << true /*static*/ << VDecl
13512 << VDecl->getType();
13513 DiagnosticEmitted = true;
13514 }
13515 S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
13516 << ConstMember << true /*static*/ << VDecl << VDecl->getType()
13517 << VDecl->getSourceRange();
13518 }
13519 // Static fields do not inherit constness from parents.
13520 break;
13521 }
13522 break; // End MemberExpr
13523 } else if (const ArraySubscriptExpr *ASE =
13524 dyn_cast<ArraySubscriptExpr>(E)) {
13525 E = ASE->getBase()->IgnoreParenImpCasts();
13526 continue;
13527 } else if (const ExtVectorElementExpr *EVE =
13528 dyn_cast<ExtVectorElementExpr>(E)) {
13529 E = EVE->getBase()->IgnoreParenImpCasts();
13530 continue;
13531 }
13532 break;
13533 }
13534
13535 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
13536 // Function calls
13537 const FunctionDecl *FD = CE->getDirectCallee();
13538 if (FD && !IsTypeModifiable(FD->getReturnType(), IsDereference)) {
13539 if (!DiagnosticEmitted) {
13540 S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange
13541 << ConstFunction << FD;
13542 DiagnosticEmitted = true;
13543 }
13544 S.Diag(FD->getReturnTypeSourceRange().getBegin(),
13545 diag::note_typecheck_assign_const)
13546 << ConstFunction << FD << FD->getReturnType()
13547 << FD->getReturnTypeSourceRange();
13548 }
13549 } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
13550 // Point to variable declaration.
13551 if (const ValueDecl *VD = DRE->getDecl()) {
13552 if (!IsTypeModifiable(VD->getType(), IsDereference)) {
13553 if (!DiagnosticEmitted) {
13554 S.Diag(Loc, diag::err_typecheck_assign_const)
13555 << ExprRange << ConstVariable << VD << VD->getType();
13556 DiagnosticEmitted = true;
13557 }
13558 S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
13559 << ConstVariable << VD << VD->getType() << VD->getSourceRange();
13560 }
13561 }
13562 } else if (isa<CXXThisExpr>(E)) {
13563 if (const DeclContext *DC = S.getFunctionLevelDeclContext()) {
13564 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
13565 if (MD->isConst()) {
13566 if (!DiagnosticEmitted) {
13567 S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange
13568 << ConstMethod << MD;
13569 DiagnosticEmitted = true;
13570 }
13571 S.Diag(MD->getLocation(), diag::note_typecheck_assign_const)
13572 << ConstMethod << MD << MD->getSourceRange();
13573 }
13574 }
13575 }
13576 }
13577
13578 if (DiagnosticEmitted)
13579 return;
13580
13581 // Can't determine a more specific message, so display the generic error.
13582 S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange << ConstUnknown;
13583}
13584
13585enum OriginalExprKind {
13586 OEK_Variable,
13587 OEK_Member,
13588 OEK_LValue
13589};
13590
13591static void DiagnoseRecursiveConstFields(Sema &S, const ValueDecl *VD,
13592 const RecordType *Ty,
13593 SourceLocation Loc, SourceRange Range,
13594 OriginalExprKind OEK,
13595 bool &DiagnosticEmitted) {
13596 std::vector<const RecordType *> RecordTypeList;
13597 RecordTypeList.push_back(Ty);
13598 unsigned NextToCheckIndex = 0;
13599 // We walk the record hierarchy breadth-first to ensure that we print
13600 // diagnostics in field nesting order.
13601 while (RecordTypeList.size() > NextToCheckIndex) {
13602 bool IsNested = NextToCheckIndex > 0;
13603 for (const FieldDecl *Field :
13604 RecordTypeList[NextToCheckIndex]->getDecl()->fields()) {
13605 // First, check every field for constness.
13606 QualType FieldTy = Field->getType();
13607 if (FieldTy.isConstQualified()) {
13608 if (!DiagnosticEmitted) {
13609 S.Diag(Loc, diag::err_typecheck_assign_const)
13610 << Range << NestedConstMember << OEK << VD
13611 << IsNested << Field;
13612 DiagnosticEmitted = true;
13613 }
13614 S.Diag(Field->getLocation(), diag::note_typecheck_assign_const)
13615 << NestedConstMember << IsNested << Field
13616 << FieldTy << Field->getSourceRange();
13617 }
13618
13619 // Then we append it to the list to check next in order.
13620 FieldTy = FieldTy.getCanonicalType();
13621 if (const auto *FieldRecTy = FieldTy->getAs<RecordType>()) {
13622 if (!llvm::is_contained(RecordTypeList, FieldRecTy))
13623 RecordTypeList.push_back(FieldRecTy);
13624 }
13625 }
13626 ++NextToCheckIndex;
13627 }
13628}
13629
13630/// Emit an error for the case where a record we are trying to assign to has a
13631/// const-qualified field somewhere in its hierarchy.
13632static void DiagnoseRecursiveConstFields(Sema &S, const Expr *E,
13633 SourceLocation Loc) {
13634 QualType Ty = E->getType();
13635 assert(Ty->isRecordType() && "lvalue was not record?")(static_cast <bool> (Ty->isRecordType() && "lvalue was not record?"
) ? void (0) : __assert_fail ("Ty->isRecordType() && \"lvalue was not record?\""
, "clang/lib/Sema/SemaExpr.cpp", 13635, __extension__ __PRETTY_FUNCTION__
))
;
13636 SourceRange Range = E->getSourceRange();
13637 const RecordType *RTy = Ty.getCanonicalType()->getAs<RecordType>();
13638 bool DiagEmitted = false;
13639
13640 if (const MemberExpr *ME = dyn_cast<MemberExpr>(E))
13641 DiagnoseRecursiveConstFields(S, ME->getMemberDecl(), RTy, Loc,
13642 Range, OEK_Member, DiagEmitted);
13643 else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
13644 DiagnoseRecursiveConstFields(S, DRE->getDecl(), RTy, Loc,
13645 Range, OEK_Variable, DiagEmitted);
13646 else
13647 DiagnoseRecursiveConstFields(S, nullptr, RTy, Loc,
13648 Range, OEK_LValue, DiagEmitted);
13649 if (!DiagEmitted)
13650 DiagnoseConstAssignment(S, E, Loc);
13651}
13652
13653/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue. If not,
13654/// emit an error and return true. If so, return false.
13655static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
13656 assert(!E->hasPlaceholderType(BuiltinType::PseudoObject))(static_cast <bool> (!E->hasPlaceholderType(BuiltinType
::PseudoObject)) ? void (0) : __assert_fail ("!E->hasPlaceholderType(BuiltinType::PseudoObject)"
, "clang/lib/Sema/SemaExpr.cpp", 13656, __extension__ __PRETTY_FUNCTION__
))
;
13657
13658 S.CheckShadowingDeclModification(E, Loc);
13659
13660 SourceLocation OrigLoc = Loc;
13661 Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
13662 &Loc);
13663 if (IsLV == Expr::MLV_ClassTemporary && IsReadonlyMessage(E, S))
13664 IsLV = Expr::MLV_InvalidMessageExpression;
13665 if (IsLV == Expr::MLV_Valid)
13666 return false;
13667
13668 unsigned DiagID = 0;
13669 bool NeedType = false;
13670 switch (IsLV) { // C99 6.5.16p2
13671 case Expr::MLV_ConstQualified:
13672 // Use a specialized diagnostic when we're assigning to an object
13673 // from an enclosing function or block.
13674 if (NonConstCaptureKind NCCK = isReferenceToNonConstCapture(S, E)) {
13675 if (NCCK == NCCK_Block)
13676 DiagID = diag::err_block_decl_ref_not_modifiable_lvalue;
13677 else
13678 DiagID = diag::err_lambda_decl_ref_not_modifiable_lvalue;
13679 break;
13680 }
13681
13682 // In ARC, use some specialized diagnostics for occasions where we
13683 // infer 'const'. These are always pseudo-strong variables.
13684 if (S.getLangOpts().ObjCAutoRefCount) {
13685 DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts());
13686 if (declRef && isa<VarDecl>(declRef->getDecl())) {
13687 VarDecl *var = cast<VarDecl>(declRef->getDecl());
13688
13689 // Use the normal diagnostic if it's pseudo-__strong but the
13690 // user actually wrote 'const'.
13691 if (var->isARCPseudoStrong() &&
13692 (!var->getTypeSourceInfo() ||
13693 !var->getTypeSourceInfo()->getType().isConstQualified())) {
13694 // There are three pseudo-strong cases:
13695 // - self
13696 ObjCMethodDecl *method = S.getCurMethodDecl();
13697 if (method && var == method->getSelfDecl()) {
13698 DiagID = method->isClassMethod()
13699 ? diag::err_typecheck_arc_assign_self_class_method
13700 : diag::err_typecheck_arc_assign_self;
13701
13702 // - Objective-C externally_retained attribute.
13703 } else if (var->hasAttr<ObjCExternallyRetainedAttr>() ||
13704 isa<ParmVarDecl>(var)) {
13705 DiagID = diag::err_typecheck_arc_assign_externally_retained;
13706
13707 // - fast enumeration variables
13708 } else {
13709 DiagID = diag::err_typecheck_arr_assign_enumeration;
13710 }
13711
13712 SourceRange Assign;
13713 if (Loc != OrigLoc)
13714 Assign = SourceRange(OrigLoc, OrigLoc);
13715 S.Diag(Loc, DiagID) << E->getSourceRange() << Assign;
13716 // We need to preserve the AST regardless, so migration tool
13717 // can do its job.
13718 return false;
13719 }
13720 }
13721 }
13722
13723 // If none of the special cases above are triggered, then this is a
13724 // simple const assignment.
13725 if (DiagID == 0) {
13726 DiagnoseConstAssignment(S, E, Loc);
13727 return true;
13728 }
13729
13730 break;
13731 case Expr::MLV_ConstAddrSpace:
13732 DiagnoseConstAssignment(S, E, Loc);
13733 return true;
13734 case Expr::MLV_ConstQualifiedField:
13735 DiagnoseRecursiveConstFields(S, E, Loc);
13736 return true;
13737 case Expr::MLV_ArrayType:
13738 case Expr::MLV_ArrayTemporary:
13739 DiagID = diag::err_typecheck_array_not_modifiable_lvalue;
13740 NeedType = true;
13741 break;
13742 case Expr::MLV_NotObjectType:
13743 DiagID = diag::err_typecheck_non_object_not_modifiable_lvalue;
13744 NeedType = true;
13745 break;
13746 case Expr::MLV_LValueCast:
13747 DiagID = diag::err_typecheck_lvalue_casts_not_supported;
13748 break;
13749 case Expr::MLV_Valid:
13750 llvm_unreachable("did not take early return for MLV_Valid")::llvm::llvm_unreachable_internal("did not take early return for MLV_Valid"
, "clang/lib/Sema/SemaExpr.cpp", 13750)
;
13751 case Expr::MLV_InvalidExpression:
13752 case Expr::MLV_MemberFunction:
13753 case Expr::MLV_ClassTemporary:
13754 DiagID = diag::err_typecheck_expression_not_modifiable_lvalue;
13755 break;
13756 case Expr::MLV_IncompleteType:
13757 case Expr::MLV_IncompleteVoidType:
13758 return S.RequireCompleteType(Loc, E->getType(),
13759 diag::err_typecheck_incomplete_type_not_modifiable_lvalue, E);
13760 case Expr::MLV_DuplicateVectorComponents:
13761 DiagID = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
13762 break;
13763 case Expr::MLV_NoSetterProperty:
13764 llvm_unreachable("readonly properties should be processed differently")::llvm::llvm_unreachable_internal("readonly properties should be processed differently"
, "clang/lib/Sema/SemaExpr.cpp", 13764)
;
13765 case Expr::MLV_InvalidMessageExpression:
13766 DiagID = diag::err_readonly_message_assignment;
13767 break;
13768 case Expr::MLV_SubObjCPropertySetting:
13769 DiagID = diag::err_no_subobject_property_setting;
13770 break;
13771 }
13772
13773 SourceRange Assign;
13774 if (Loc != OrigLoc)
13775 Assign = SourceRange(OrigLoc, OrigLoc);
13776 if (NeedType)
13777 S.Diag(Loc, DiagID) << E->getType() << E->getSourceRange() << Assign;
13778 else
13779 S.Diag(Loc, DiagID) << E->getSourceRange() << Assign;
13780 return true;
13781}
13782
13783static void CheckIdentityFieldAssignment(Expr *LHSExpr, Expr *RHSExpr,
13784 SourceLocation Loc,
13785 Sema &Sema) {
13786 if (Sema.inTemplateInstantiation())
13787 return;
13788 if (Sema.isUnevaluatedContext())
13789 return;
13790 if (Loc.isInvalid() || Loc.isMacroID())
13791 return;
13792 if (LHSExpr->getExprLoc().isMacroID() || RHSExpr->getExprLoc().isMacroID())
13793 return;
13794
13795 // C / C++ fields
13796 MemberExpr *ML = dyn_cast<MemberExpr>(LHSExpr);
13797 MemberExpr *MR = dyn_cast<MemberExpr>(RHSExpr);
13798 if (ML && MR) {
13799 if (!(isa<CXXThisExpr>(ML->getBase()) && isa<CXXThisExpr>(MR->getBase())))
13800 return;
13801 const ValueDecl *LHSDecl =
13802 cast<ValueDecl>(ML->getMemberDecl()->getCanonicalDecl());
13803 const ValueDecl *RHSDecl =
13804 cast<ValueDecl>(MR->getMemberDecl()->getCanonicalDecl());
13805 if (LHSDecl != RHSDecl)
13806 return;
13807 if (LHSDecl->getType().isVolatileQualified())
13808 return;
13809 if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
13810 if (RefTy->getPointeeType().isVolatileQualified())
13811 return;
13812
13813 Sema.Diag(Loc, diag::warn_identity_field_assign) << 0;
13814 }
13815
13816 // Objective-C instance variables
13817 ObjCIvarRefExpr *OL = dyn_cast<ObjCIvarRefExpr>(LHSExpr);
13818 ObjCIvarRefExpr *OR = dyn_cast<ObjCIvarRefExpr>(RHSExpr);
13819 if (OL && OR && OL->getDecl() == OR->getDecl()) {
13820 DeclRefExpr *RL = dyn_cast<DeclRefExpr>(OL->getBase()->IgnoreImpCasts());
13821 DeclRefExpr *RR = dyn_cast<DeclRefExpr>(OR->getBase()->IgnoreImpCasts());
13822 if (RL && RR && RL->getDecl() == RR->getDecl())
13823 Sema.Diag(Loc, diag::warn_identity_field_assign) << 1;
13824 }
13825}
13826
13827// C99 6.5.16.1
13828QualType Sema::CheckAssignmentOperands(Expr *LHSExpr, ExprResult &RHS,
13829 SourceLocation Loc,
13830 QualType CompoundType,
13831 BinaryOperatorKind Opc) {
13832 assert(!LHSExpr->hasPlaceholderType(BuiltinType::PseudoObject))(static_cast <bool> (!LHSExpr->hasPlaceholderType(BuiltinType
::PseudoObject)) ? void (0) : __assert_fail ("!LHSExpr->hasPlaceholderType(BuiltinType::PseudoObject)"
, "clang/lib/Sema/SemaExpr.cpp", 13832, __extension__ __PRETTY_FUNCTION__
))
;
13833
13834 // Verify that LHS is a modifiable lvalue, and emit error if not.
13835 if (CheckForModifiableLvalue(LHSExpr, Loc, *this))
13836 return QualType();
13837
13838 QualType LHSType = LHSExpr->getType();
13839 QualType RHSType = CompoundType.isNull() ? RHS.get()->getType() :
13840 CompoundType;
13841 // OpenCL v1.2 s6.1.1.1 p2:
13842 // The half data type can only be used to declare a pointer to a buffer that
13843 // contains half values
13844 if (getLangOpts().OpenCL &&
13845 !getOpenCLOptions().isAvailableOption("cl_khr_fp16", getLangOpts()) &&
13846 LHSType->isHalfType()) {
13847 Diag(Loc, diag::err_opencl_half_load_store) << 1
13848 << LHSType.getUnqualifiedType();
13849 return QualType();
13850 }
13851
13852 AssignConvertType ConvTy;
13853 if (CompoundType.isNull()) {
13854 Expr *RHSCheck = RHS.get();
13855
13856 CheckIdentityFieldAssignment(LHSExpr, RHSCheck, Loc, *this);
13857
13858 QualType LHSTy(LHSType);
13859 ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
13860 if (RHS.isInvalid())
13861 return QualType();
13862 // Special case of NSObject attributes on c-style pointer types.
13863 if (ConvTy == IncompatiblePointer &&
13864 ((Context.isObjCNSObjectType(LHSType) &&
13865 RHSType->isObjCObjectPointerType()) ||
13866 (Context.isObjCNSObjectType(RHSType) &&
13867 LHSType->isObjCObjectPointerType())))
13868 ConvTy = Compatible;
13869
13870 if (ConvTy == Compatible &&
13871 LHSType->isObjCObjectType())
13872 Diag(Loc, diag::err_objc_object_assignment)
13873 << LHSType;
13874
13875 // If the RHS is a unary plus or minus, check to see if they = and + are
13876 // right next to each other. If so, the user may have typo'd "x =+ 4"
13877 // instead of "x += 4".
13878 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
13879 RHSCheck = ICE->getSubExpr();
13880 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
13881 if ((UO->getOpcode() == UO_Plus || UO->getOpcode() == UO_Minus) &&
13882 Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
13883 // Only if the two operators are exactly adjacent.
13884 Loc.getLocWithOffset(1) == UO->getOperatorLoc() &&
13885 // And there is a space or other character before the subexpr of the
13886 // unary +/-. We don't want to warn on "x=-1".
13887 Loc.getLocWithOffset(2) != UO->getSubExpr()->getBeginLoc() &&
13888 UO->getSubExpr()->getBeginLoc().isFileID()) {
13889 Diag(Loc, diag::warn_not_compound_assign)
13890 << (UO->getOpcode() == UO_Plus ? "+" : "-")
13891 << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
13892 }
13893 }
13894
13895 if (ConvTy == Compatible) {
13896 if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong) {
13897 // Warn about retain cycles where a block captures the LHS, but
13898 // not if the LHS is a simple variable into which the block is
13899 // being stored...unless that variable can be captured by reference!
13900 const Expr *InnerLHS = LHSExpr->IgnoreParenCasts();
13901 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InnerLHS);
13902 if (!DRE || DRE->getDecl()->hasAttr<BlocksAttr>())
13903 checkRetainCycles(LHSExpr, RHS.get());
13904 }
13905
13906 if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong ||
13907 LHSType.isNonWeakInMRRWithObjCWeak(Context)) {
13908 // It is safe to assign a weak reference into a strong variable.
13909 // Although this code can still have problems:
13910 // id x = self.weakProp;
13911 // id y = self.weakProp;
13912 // we do not warn to warn spuriously when 'x' and 'y' are on separate
13913 // paths through the function. This should be revisited if
13914 // -Wrepeated-use-of-weak is made flow-sensitive.
13915 // For ObjCWeak only, we do not warn if the assign is to a non-weak
13916 // variable, which will be valid for the current autorelease scope.
13917 if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak,
13918 RHS.get()->getBeginLoc()))
13919 getCurFunction()->markSafeWeakUse(RHS.get());
13920
13921 } else if (getLangOpts().ObjCAutoRefCount || getLangOpts().ObjCWeak) {
13922 checkUnsafeExprAssigns(Loc, LHSExpr, RHS.get());
13923 }
13924 }
13925 } else {
13926 // Compound assignment "x += y"
13927 ConvTy = CheckAssignmentConstraints(Loc, LHSType, RHSType);
13928 }
13929
13930 if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
13931 RHS.get(), AA_Assigning))
13932 return QualType();
13933
13934 CheckForNullPointerDereference(*this, LHSExpr);
13935
13936 if (getLangOpts().CPlusPlus20 && LHSType.isVolatileQualified()) {
13937 if (CompoundType.isNull()) {
13938 // C++2a [expr.ass]p5:
13939 // A simple-assignment whose left operand is of a volatile-qualified
13940 // type is deprecated unless the assignment is either a discarded-value
13941 // expression or an unevaluated operand
13942 ExprEvalContexts.back().VolatileAssignmentLHSs.push_back(LHSExpr);
13943 } else {
13944 // C++20 [expr.ass]p6:
13945 // [Compound-assignment] expressions are deprecated if E1 has
13946 // volatile-qualified type and op is not one of the bitwise
13947 // operators |, &, ˆ.
13948 switch (Opc) {
13949 case BO_OrAssign:
13950 case BO_AndAssign:
13951 case BO_XorAssign:
13952 break;
13953 default:
13954 Diag(Loc, diag::warn_deprecated_compound_assign_volatile) << LHSType;
13955 }
13956 }
13957 }
13958
13959 // C11 6.5.16p3: The type of an assignment expression is the type of the
13960 // left operand would have after lvalue conversion.
13961 // C11 6.3.2.1p2: ...this is called lvalue conversion. If the lvalue has
13962 // qualified type, the value has the unqualified version of the type of the
13963 // lvalue; additionally, if the lvalue has atomic type, the value has the
13964 // non-atomic version of the type of the lvalue.
13965 // C++ 5.17p1: the type of the assignment expression is that of its left
13966 // operand.
13967 return getLangOpts().CPlusPlus ? LHSType : LHSType.getAtomicUnqualifiedType();
13968}
13969
13970// Scenarios to ignore if expression E is:
13971// 1. an explicit cast expression into void
13972// 2. a function call expression that returns void
13973static bool IgnoreCommaOperand(const Expr *E, const ASTContext &Context) {
13974 E = E->IgnoreParens();
13975
13976 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
13977 if (CE->getCastKind() == CK_ToVoid) {
13978 return true;
13979 }
13980
13981 // static_cast<void> on a dependent type will not show up as CK_ToVoid.
13982 if (CE->getCastKind() == CK_Dependent && E->getType()->isVoidType() &&
13983 CE->getSubExpr()->getType()->isDependentType()) {
13984 return true;
13985 }
13986 }
13987
13988 if (const auto *CE = dyn_cast<CallExpr>(E))
13989 return CE->getCallReturnType(Context)->isVoidType();
13990 return false;
13991}
13992
13993// Look for instances where it is likely the comma operator is confused with
13994// another operator. There is an explicit list of acceptable expressions for
13995// the left hand side of the comma operator, otherwise emit a warning.
13996void Sema::DiagnoseCommaOperator(const Expr *LHS, SourceLocation Loc) {
13997 // No warnings in macros
13998 if (Loc.isMacroID())
13999 return;
14000
14001 // Don't warn in template instantiations.
14002 if (inTemplateInstantiation())
14003 return;
14004
14005 // Scope isn't fine-grained enough to explicitly list the specific cases, so
14006 // instead, skip more than needed, then call back into here with the
14007 // CommaVisitor in SemaStmt.cpp.
14008 // The listed locations are the initialization and increment portions
14009 // of a for loop. The additional checks are on the condition of
14010 // if statements, do/while loops, and for loops.
14011 // Differences in scope flags for C89 mode requires the extra logic.
14012 const unsigned ForIncrementFlags =
14013 getLangOpts().C99 || getLangOpts().CPlusPlus
14014 ? Scope::ControlScope | Scope::ContinueScope | Scope::BreakScope
14015 : Scope::ContinueScope | Scope::BreakScope;
14016 const unsigned ForInitFlags = Scope::ControlScope | Scope::DeclScope;
14017 const unsigned ScopeFlags = getCurScope()->getFlags();
14018 if ((ScopeFlags & ForIncrementFlags) == ForIncrementFlags ||
14019 (ScopeFlags & ForInitFlags) == ForInitFlags)
14020 return;
14021
14022 // If there are multiple comma operators used together, get the RHS of the
14023 // of the comma operator as the LHS.
14024 while (const BinaryOperator *BO = dyn_cast<BinaryOperator>(LHS)) {
14025 if (BO->getOpcode() != BO_Comma)
14026 break;
14027 LHS = BO->getRHS();
14028 }
14029
14030 // Only allow some expressions on LHS to not warn.
14031 if (IgnoreCommaOperand(LHS, Context))
14032 return;
14033
14034 Diag(Loc, diag::warn_comma_operator);
14035 Diag(LHS->getBeginLoc(), diag::note_cast_to_void)
14036 << LHS->getSourceRange()
14037 << FixItHint::CreateInsertion(LHS->getBeginLoc(),
14038 LangOpts.CPlusPlus ? "static_cast<void>("
14039 : "(void)(")
14040 << FixItHint::CreateInsertion(PP.getLocForEndOfToken(LHS->getEndLoc()),
14041 ")");
14042}
14043
14044// C99 6.5.17
14045static QualType CheckCommaOperands(Sema &S, ExprResult &LHS, ExprResult &RHS,
14046 SourceLocation Loc) {
14047 LHS = S.CheckPlaceholderExpr(LHS.get());
14048 RHS = S.CheckPlaceholderExpr(RHS.get());
14049 if (LHS.isInvalid() || RHS.isInvalid())
14050 return QualType();
14051
14052 // C's comma performs lvalue conversion (C99 6.3.2.1) on both its
14053 // operands, but not unary promotions.
14054 // C++'s comma does not do any conversions at all (C++ [expr.comma]p1).
14055
14056 // So we treat the LHS as a ignored value, and in C++ we allow the
14057 // containing site to determine what should be done with the RHS.
14058 LHS = S.IgnoredValueConversions(LHS.get());
14059 if (LHS.isInvalid())
14060 return QualType();
14061
14062 S.DiagnoseUnusedExprResult(LHS.get(), diag::warn_unused_comma_left_operand);
14063
14064 if (!S.getLangOpts().CPlusPlus) {
14065 RHS = S.DefaultFunctionArrayLvalueConversion(RHS.get());
14066 if (RHS.isInvalid())
14067 return QualType();
14068 if (!RHS.get()->getType()->isVoidType())
14069 S.RequireCompleteType(Loc, RHS.get()->getType(),
14070 diag::err_incomplete_type);
14071 }
14072
14073 if (!S.getDiagnostics().isIgnored(diag::warn_comma_operator, Loc))
14074 S.DiagnoseCommaOperator(LHS.get(), Loc);
14075
14076 return RHS.get()->getType();
14077}
14078
14079/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
14080/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
14081static QualType CheckIncrementDecrementOperand(Sema &S, Expr *Op,
14082 ExprValueKind &VK,
14083 ExprObjectKind &OK,
14084 SourceLocation OpLoc,
14085 bool IsInc, bool IsPrefix) {
14086 if (Op->isTypeDependent())
14087 return S.Context.DependentTy;
14088
14089 QualType ResType = Op->getType();
14090 // Atomic types can be used for increment / decrement where the non-atomic
14091 // versions can, so ignore the _Atomic() specifier for the purpose of
14092 // checking.
14093 if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
14094 ResType = ResAtomicType->getValueType();
14095
14096 assert(!ResType.isNull() && "no type for increment/decrement expression")(static_cast <bool> (!ResType.isNull() && "no type for increment/decrement expression"
) ? void (0) : __assert_fail ("!ResType.isNull() && \"no type for increment/decrement expression\""
, "clang/lib/Sema/SemaExpr.cpp", 14096, __extension__ __PRETTY_FUNCTION__
))
;
14097
14098 if (S.getLangOpts().CPlusPlus && ResType->isBooleanType()) {
14099 // Decrement of bool is not allowed.
14100 if (!IsInc) {
14101 S.Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
14102 return QualType();
14103 }
14104 // Increment of bool sets it to true, but is deprecated.
14105 S.Diag(OpLoc, S.getLangOpts().CPlusPlus17 ? diag::ext_increment_bool
14106 : diag::warn_increment_bool)
14107 << Op->getSourceRange();
14108 } else if (S.getLangOpts().CPlusPlus && ResType->isEnumeralType()) {
14109 // Error on enum increments and decrements in C++ mode
14110 S.Diag(OpLoc, diag::err_increment_decrement_enum) << IsInc << ResType;
14111 return QualType();
14112 } else if (ResType->isRealType()) {
14113 // OK!
14114 } else if (ResType->isPointerType()) {
14115 // C99 6.5.2.4p2, 6.5.6p2
14116 if (!checkArithmeticOpPointerOperand(S, OpLoc, Op))
14117 return QualType();
14118 } else if (ResType->isObjCObjectPointerType()) {
14119 // On modern runtimes, ObjC pointer arithmetic is forbidden.
14120 // Otherwise, we just need a complete type.
14121 if (checkArithmeticIncompletePointerType(S, OpLoc, Op) ||
14122 checkArithmeticOnObjCPointer(S, OpLoc, Op))
14123 return QualType();
14124 } else if (ResType->isAnyComplexType()) {
14125 // C99 does not support ++/-- on complex types, we allow as an extension.
14126 S.Diag(OpLoc, diag::ext_integer_increment_complex)
14127 << ResType << Op->getSourceRange();
14128 } else if (ResType->isPlaceholderType()) {
14129 ExprResult PR = S.CheckPlaceholderExpr(Op);
14130 if (PR.isInvalid()) return QualType();
14131 return CheckIncrementDecrementOperand(S, PR.get(), VK, OK, OpLoc,
14132 IsInc, IsPrefix);
14133 } else if (S.getLangOpts().AltiVec && ResType->isVectorType()) {
14134 // OK! ( C/C++ Language Extensions for CBEA(Version 2.6) 10.3 )
14135 } else if (S.getLangOpts().ZVector && ResType->isVectorType() &&
14136 (ResType->castAs<VectorType>()->getVectorKind() !=
14137 VectorType::AltiVecBool)) {
14138 // The z vector extensions allow ++ and -- for non-bool vectors.
14139 } else if(S.getLangOpts().OpenCL && ResType->isVectorType() &&
14140 ResType->castAs<VectorType>()->getElementType()->isIntegerType()) {
14141 // OpenCL V1.2 6.3 says dec/inc ops operate on integer vector types.
14142 } else {
14143 S.Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
14144 << ResType << int(IsInc) << Op->getSourceRange();
14145 return QualType();
14146 }
14147 // At this point, we know we have a real, complex or pointer type.
14148 // Now make sure the operand is a modifiable lvalue.
14149 if (CheckForModifiableLvalue(Op, OpLoc, S))
14150 return QualType();
14151 if (S.getLangOpts().CPlusPlus20 && ResType.isVolatileQualified()) {
14152 // C++2a [expr.pre.inc]p1, [expr.post.inc]p1:
14153 // An operand with volatile-qualified type is deprecated
14154 S.Diag(OpLoc, diag::warn_deprecated_increment_decrement_volatile)
14155 << IsInc << ResType;
14156 }
14157 // In C++, a prefix increment is the same type as the operand. Otherwise
14158 // (in C or with postfix), the increment is the unqualified type of the
14159 // operand.
14160 if (IsPrefix && S.getLangOpts().CPlusPlus) {
14161 VK = VK_LValue;
14162 OK = Op->getObjectKind();
14163 return ResType;
14164 } else {
14165 VK = VK_PRValue;
14166 return ResType.getUnqualifiedType();
14167 }
14168}
14169
14170
14171/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
14172/// This routine allows us to typecheck complex/recursive expressions
14173/// where the declaration is needed for type checking. We only need to
14174/// handle cases when the expression references a function designator
14175/// or is an lvalue. Here are some examples:
14176/// - &(x) => x
14177/// - &*****f => f for f a function designator.
14178/// - &s.xx => s
14179/// - &s.zz[1].yy -> s, if zz is an array
14180/// - *(x + 1) -> x, if x is an array
14181/// - &"123"[2] -> 0
14182/// - & __real__ x -> x
14183///
14184/// FIXME: We don't recurse to the RHS of a comma, nor handle pointers to
14185/// members.
14186static ValueDecl *getPrimaryDecl(Expr *E) {
14187 switch (E->getStmtClass()) {
14188 case Stmt::DeclRefExprClass:
14189 return cast<DeclRefExpr>(E)->getDecl();
14190 case Stmt::MemberExprClass:
14191 // If this is an arrow operator, the address is an offset from
14192 // the base's value, so the object the base refers to is
14193 // irrelevant.
14194 if (cast<MemberExpr>(E)->isArrow())
14195 return nullptr;
14196 // Otherwise, the expression refers to a part of the base
14197 return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
14198 case Stmt::ArraySubscriptExprClass: {
14199 // FIXME: This code shouldn't be necessary! We should catch the implicit
14200 // promotion of register arrays earlier.
14201 Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
14202 if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
14203 if (ICE->getSubExpr()->getType()->isArrayType())
14204 return getPrimaryDecl(ICE->getSubExpr());
14205 }
14206 return nullptr;
14207 }
14208 case Stmt::UnaryOperatorClass: {
14209 UnaryOperator *UO = cast<UnaryOperator>(E);
14210
14211 switch(UO->getOpcode()) {
14212 case UO_Real:
14213 case UO_Imag:
14214 case UO_Extension:
14215 return getPrimaryDecl(UO->getSubExpr());
14216 default:
14217 return nullptr;
14218 }
14219 }
14220 case Stmt::ParenExprClass:
14221 return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
14222 case Stmt::ImplicitCastExprClass:
14223 // If the result of an implicit cast is an l-value, we care about
14224 // the sub-expression; otherwise, the result here doesn't matter.
14225 return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
14226 case Stmt::CXXUuidofExprClass:
14227 return cast<CXXUuidofExpr>(E)->getGuidDecl();
14228 default:
14229 return nullptr;
14230 }
14231}
14232
14233namespace {
14234enum {
14235 AO_Bit_Field = 0,
14236 AO_Vector_Element = 1,
14237 AO_Property_Expansion = 2,
14238 AO_Register_Variable = 3,
14239 AO_Matrix_Element = 4,
14240 AO_No_Error = 5
14241};
14242}
14243/// Diagnose invalid operand for address of operations.
14244///
14245/// \param Type The type of operand which cannot have its address taken.
14246static void diagnoseAddressOfInvalidType(Sema &S, SourceLocation Loc,
14247 Expr *E, unsigned Type) {
14248 S.Diag(Loc, diag::err_typecheck_address_of) << Type << E->getSourceRange();
14249}
14250
14251/// CheckAddressOfOperand - The operand of & must be either a function
14252/// designator or an lvalue designating an object. If it is an lvalue, the
14253/// object cannot be declared with storage class register or be a bit field.
14254/// Note: The usual conversions are *not* applied to the operand of the &
14255/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
14256/// In C++, the operand might be an overloaded function name, in which case
14257/// we allow the '&' but retain the overloaded-function type.
14258QualType Sema::CheckAddressOfOperand(ExprResult &OrigOp, SourceLocation OpLoc) {
14259 if (const BuiltinType *PTy = OrigOp.get()->getType()->getAsPlaceholderType()){
14260 if (PTy->getKind() == BuiltinType::Overload) {
14261 Expr *E = OrigOp.get()->IgnoreParens();
14262 if (!isa<OverloadExpr>(E)) {
14263 assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf)(static_cast <bool> (cast<UnaryOperator>(E)->getOpcode
() == UO_AddrOf) ? void (0) : __assert_fail ("cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf"
, "clang/lib/Sema/SemaExpr.cpp", 14263, __extension__ __PRETTY_FUNCTION__
))
;
14264 Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof_addrof_function)
14265 << OrigOp.get()->getSourceRange();
14266 return QualType();
14267 }
14268
14269 OverloadExpr *Ovl = cast<OverloadExpr>(E);
14270 if (isa<UnresolvedMemberExpr>(Ovl))
14271 if (!ResolveSingleFunctionTemplateSpecialization(Ovl)) {
14272 Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
14273 << OrigOp.get()->getSourceRange();
14274 return QualType();
14275 }
14276
14277 return Context.OverloadTy;
14278 }
14279
14280 if (PTy->getKind() == BuiltinType::UnknownAny)
14281 return Context.UnknownAnyTy;
14282
14283 if (PTy->getKind() == BuiltinType::BoundMember) {
14284 Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
14285 << OrigOp.get()->getSourceRange();
14286 return QualType();
14287 }
14288
14289 OrigOp = CheckPlaceholderExpr(OrigOp.get());
14290 if (OrigOp.isInvalid()) return QualType();
14291 }
14292
14293 if (OrigOp.get()->isTypeDependent())
14294 return Context.DependentTy;
14295
14296 assert(!OrigOp.get()->hasPlaceholderType())(static_cast <bool> (!OrigOp.get()->hasPlaceholderType
()) ? void (0) : __assert_fail ("!OrigOp.get()->hasPlaceholderType()"
, "clang/lib/Sema/SemaExpr.cpp", 14296, __extension__ __PRETTY_FUNCTION__
))
;
14297
14298 // Make sure to ignore parentheses in subsequent checks
14299 Expr *op = OrigOp.get()->IgnoreParens();
14300
14301 // In OpenCL captures for blocks called as lambda functions
14302 // are located in the private address space. Blocks used in
14303 // enqueue_kernel can be located in a different address space
14304 // depending on a vendor implementation. Thus preventing
14305 // taking an address of the capture to avoid invalid AS casts.
14306 if (LangOpts.OpenCL) {
14307 auto* VarRef = dyn_cast<DeclRefExpr>(op);
14308 if (VarRef && VarRef->refersToEnclosingVariableOrCapture()) {
14309 Diag(op->getExprLoc(), diag::err_opencl_taking_address_capture);
14310 return QualType();
14311 }
14312 }
14313
14314 if (getLangOpts().C99) {
14315 // Implement C99-only parts of addressof rules.
14316 if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
14317 if (uOp->getOpcode() == UO_Deref)
14318 // Per C99 6.5.3.2, the address of a deref always returns a valid result
14319 // (assuming the deref expression is valid).
14320 return uOp->getSubExpr()->getType();
14321 }
14322 // Technically, there should be a check for array subscript
14323 // expressions here, but the result of one is always an lvalue anyway.
14324 }
14325 ValueDecl *dcl = getPrimaryDecl(op);
14326
14327 if (auto *FD = dyn_cast_or_null<FunctionDecl>(dcl))
14328 if (!checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
14329 op->getBeginLoc()))
14330 return QualType();
14331
14332 Expr::LValueClassification lval = op->ClassifyLValue(Context);
14333 unsigned AddressOfError = AO_No_Error;
14334
14335 if (lval == Expr::LV_ClassTemporary || lval == Expr::LV_ArrayTemporary) {
14336 bool sfinae = (bool)isSFINAEContext();
14337 Diag(OpLoc, isSFINAEContext() ? diag::err_typecheck_addrof_temporary
14338 : diag::ext_typecheck_addrof_temporary)
14339 << op->getType() << op->getSourceRange();
14340 if (sfinae)
14341 return QualType();
14342 // Materialize the temporary as an lvalue so that we can take its address.
14343 OrigOp = op =
14344 CreateMaterializeTemporaryExpr(op->getType(), OrigOp.get(), true);
14345 } else if (isa<ObjCSelectorExpr>(op)) {
14346 return Context.getPointerType(op->getType());
14347 } else if (lval == Expr::LV_MemberFunction) {
14348 // If it's an instance method, make a member pointer.
14349 // The expression must have exactly the form &A::foo.
14350
14351 // If the underlying expression isn't a decl ref, give up.
14352 if (!isa<DeclRefExpr>(op)) {
14353 Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
14354 << OrigOp.get()->getSourceRange();
14355 return QualType();
14356 }
14357 DeclRefExpr *DRE = cast<DeclRefExpr>(op);
14358 CXXMethodDecl *MD = cast<CXXMethodDecl>(DRE->getDecl());
14359
14360 // The id-expression was parenthesized.
14361 if (OrigOp.get() != DRE) {
14362 Diag(OpLoc, diag::err_parens_pointer_member_function)
14363 << OrigOp.get()->getSourceRange();
14364
14365 // The method was named without a qualifier.
14366 } else if (!DRE->getQualifier()) {
14367 if (MD->getParent()->getName().empty())
14368 Diag(OpLoc, diag::err_unqualified_pointer_member_function)
14369 << op->getSourceRange();
14370 else {
14371 SmallString<32> Str;
14372 StringRef Qual = (MD->getParent()->getName() + "::").toStringRef(Str);
14373 Diag(OpLoc, diag::err_unqualified_pointer_member_function)
14374 << op->getSourceRange()
14375 << FixItHint::CreateInsertion(op->getSourceRange().getBegin(), Qual);
14376 }
14377 }
14378
14379 // Taking the address of a dtor is illegal per C++ [class.dtor]p2.
14380 if (isa<CXXDestructorDecl>(MD))
14381 Diag(OpLoc, diag::err_typecheck_addrof_dtor) << op->getSourceRange();
14382
14383 QualType MPTy = Context.getMemberPointerType(
14384 op->getType(), Context.getTypeDeclType(MD->getParent()).getTypePtr());
14385 // Under the MS ABI, lock down the inheritance model now.
14386 if (Context.getTargetInfo().getCXXABI().isMicrosoft())
14387 (void)isCompleteType(OpLoc, MPTy);
14388 return MPTy;
14389 } else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
14390 // C99 6.5.3.2p1
14391 // The operand must be either an l-value or a function designator
14392 if (!op->getType()->isFunctionType()) {
14393 // Use a special diagnostic for loads from property references.
14394 if (isa<PseudoObjectExpr>(op)) {
14395 AddressOfError = AO_Property_Expansion;
14396 } else {
14397 Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
14398 << op->getType() << op->getSourceRange();
14399 return QualType();
14400 }
14401 }
14402 } else if (op->getObjectKind() == OK_BitField) { // C99 6.5.3.2p1
14403 // The operand cannot be a bit-field
14404 AddressOfError = AO_Bit_Field;
14405 } else if (op->getObjectKind() == OK_VectorComponent) {
14406 // The operand cannot be an element of a vector
14407 AddressOfError = AO_Vector_Element;
14408 } else if (op->getObjectKind() == OK_MatrixComponent) {
14409 // The operand cannot be an element of a matrix.
14410 AddressOfError = AO_Matrix_Element;
14411 } else if (dcl) { // C99 6.5.3.2p1
14412 // We have an lvalue with a decl. Make sure the decl is not declared
14413 // with the register storage-class specifier.
14414 if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
14415 // in C++ it is not error to take address of a register
14416 // variable (c++03 7.1.1P3)
14417 if (vd->getStorageClass() == SC_Register &&
14418 !getLangOpts().CPlusPlus) {
14419 AddressOfError = AO_Register_Variable;
14420 }
14421 } else if (isa<MSPropertyDecl>(dcl)) {
14422 AddressOfError = AO_Property_Expansion;
14423 } else if (isa<FunctionTemplateDecl>(dcl)) {
14424 return Context.OverloadTy;
14425 } else if (isa<FieldDecl>(dcl) || isa<IndirectFieldDecl>(dcl)) {
14426 // Okay: we can take the address of a field.
14427 // Could be a pointer to member, though, if there is an explicit
14428 // scope qualifier for the class.
14429 if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) {
14430 DeclContext *Ctx = dcl->getDeclContext();
14431 if (Ctx && Ctx->isRecord()) {
14432 if (dcl->getType()->isReferenceType()) {
14433 Diag(OpLoc,
14434 diag::err_cannot_form_pointer_to_member_of_reference_type)
14435 << dcl->getDeclName() << dcl->getType();
14436 return QualType();
14437 }
14438
14439 while (cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion())
14440 Ctx = Ctx->getParent();
14441
14442 QualType MPTy = Context.getMemberPointerType(
14443 op->getType(),
14444 Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
14445 // Under the MS ABI, lock down the inheritance model now.
14446 if (Context.getTargetInfo().getCXXABI().isMicrosoft())
14447 (void)isCompleteType(OpLoc, MPTy);
14448 return MPTy;
14449 }
14450 }
14451 } else if (!isa<FunctionDecl, NonTypeTemplateParmDecl, BindingDecl,
14452 MSGuidDecl, UnnamedGlobalConstantDecl>(dcl))
14453 llvm_unreachable("Unknown/unexpected decl type")::llvm::llvm_unreachable_internal("Unknown/unexpected decl type"
, "clang/lib/Sema/SemaExpr.cpp", 14453)
;
14454 }
14455
14456 if (AddressOfError != AO_No_Error) {
14457 diagnoseAddressOfInvalidType(*this, OpLoc, op, AddressOfError);
14458 return QualType();
14459 }
14460
14461 if (lval == Expr::LV_IncompleteVoidType) {
14462 // Taking the address of a void variable is technically illegal, but we
14463 // allow it in cases which are otherwise valid.
14464 // Example: "extern void x; void* y = &x;".
14465 Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
14466 }
14467
14468 // If the operand has type "type", the result has type "pointer to type".
14469 if (op->getType()->isObjCObjectType())
14470 return Context.getObjCObjectPointerType(op->getType());
14471
14472 CheckAddressOfPackedMember(op);
14473
14474 return Context.getPointerType(op->getType());
14475}
14476
14477static void RecordModifiableNonNullParam(Sema &S, const Expr *Exp) {
14478 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Exp);
14479 if (!DRE)
14480 return;
14481 const Decl *D = DRE->getDecl();
14482 if (!D)
14483 return;
14484 const ParmVarDecl *Param = dyn_cast<ParmVarDecl>(D);
14485 if (!Param)
14486 return;
14487 if (const FunctionDecl* FD = dyn_cast<FunctionDecl>(Param->getDeclContext()))
14488 if (!FD->hasAttr<NonNullAttr>() && !Param->hasAttr<NonNullAttr>())
14489 return;
14490 if (FunctionScopeInfo *FD = S.getCurFunction())
14491 FD->ModifiedNonNullParams.insert(Param);
14492}
14493
14494/// CheckIndirectionOperand - Type check unary indirection (prefix '*').
14495static QualType CheckIndirectionOperand(Sema &S, Expr *Op, ExprValueKind &VK,
14496 SourceLocation OpLoc,
14497 bool IsAfterAmp = false) {
14498 if (Op->isTypeDependent())
14499 return S.Context.DependentTy;
14500
14501 ExprResult ConvResult = S.UsualUnaryConversions(Op);
14502 if (ConvResult.isInvalid())
14503 return QualType();
14504 Op = ConvResult.get();
14505 QualType OpTy = Op->getType();
14506 QualType Result;
14507
14508 if (isa<CXXReinterpretCastExpr>(Op)) {
14509 QualType OpOrigType = Op->IgnoreParenCasts()->getType();
14510 S.CheckCompatibleReinterpretCast(OpOrigType, OpTy, /*IsDereference*/true,
14511 Op->getSourceRange());
14512 }
14513
14514 if (const PointerType *PT = OpTy->getAs<PointerType>())
14515 {
14516 Result = PT->getPointeeType();
14517 }
14518 else if (const ObjCObjectPointerType *OPT =
14519 OpTy->getAs<ObjCObjectPointerType>())
14520 Result = OPT->getPointeeType();
14521 else {
14522 ExprResult PR = S.CheckPlaceholderExpr(Op);
14523 if (PR.isInvalid()) return QualType();
14524 if (PR.get() != Op)
14525 return CheckIndirectionOperand(S, PR.get(), VK, OpLoc);
14526 }
14527
14528 if (Result.isNull()) {
14529 S.Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
14530 << OpTy << Op->getSourceRange();
14531 return QualType();
14532 }
14533
14534 if (Result->isVoidType()) {
14535 // C++ [expr.unary.op]p1:
14536 // [...] the expression to which [the unary * operator] is applied shall
14537 // be a pointer to an object type, or a pointer to a function type
14538 LangOptions LO = S.getLangOpts();
14539 if (LO.CPlusPlus || !(LO.C99 && (IsAfterAmp || S.isUnevaluatedContext())))
14540 S.Diag(OpLoc, diag::ext_typecheck_indirection_through_void_pointer)
14541 << LO.CPlusPlus << OpTy << Op->getSourceRange();
14542 }
14543
14544 // Dereferences are usually l-values...
14545 VK = VK_LValue;
14546
14547 // ...except that certain expressions are never l-values in C.
14548 if (!S.getLangOpts().CPlusPlus && Result.isCForbiddenLValueType())
14549 VK = VK_PRValue;
14550
14551 return Result;
14552}
14553
14554BinaryOperatorKind Sema::ConvertTokenKindToBinaryOpcode(tok::TokenKind Kind) {
14555 BinaryOperatorKind Opc;
14556 switch (Kind) {
14557 default: llvm_unreachable("Unknown binop!")::llvm::llvm_unreachable_internal("Unknown binop!", "clang/lib/Sema/SemaExpr.cpp"
, 14557)
;
14558 case tok::periodstar: Opc = BO_PtrMemD; break;
14559 case tok::arrowstar: Opc = BO_PtrMemI; break;
14560 case tok::star: Opc = BO_Mul; break;
14561 case tok::slash: Opc = BO_Div; break;
14562 case tok::percent: Opc = BO_Rem; break;
14563 case tok::plus: Opc = BO_Add; break;
14564 case tok::minus: Opc = BO_Sub; break;
14565 case tok::lessless: Opc = BO_Shl; break;
14566 case tok::greatergreater: Opc = BO_Shr; break;
14567 case tok::lessequal: Opc = BO_LE; break;
14568 case tok::less: Opc = BO_LT; break;
14569 case tok::greaterequal: Opc = BO_GE; break;
14570 case tok::greater: Opc = BO_GT; break;
14571 case tok::exclaimequal: Opc = BO_NE; break;
14572 case tok::equalequal: Opc = BO_EQ; break;
14573 case tok::spaceship: Opc = BO_Cmp; break;
14574 case tok::amp: Opc = BO_And; break;
14575 case tok::caret: Opc = BO_Xor; break;
14576 case tok::pipe: Opc = BO_Or; break;
14577 case tok::ampamp: Opc = BO_LAnd; break;
14578 case tok::pipepipe: Opc = BO_LOr; break;
14579 case tok::equal: Opc = BO_Assign; break;
14580 case tok::starequal: Opc = BO_MulAssign; break;
14581 case tok::slashequal: Opc = BO_DivAssign; break;
14582 case tok::percentequal: Opc = BO_RemAssign; break;
14583 case tok::plusequal: Opc = BO_AddAssign; break;
14584 case tok::minusequal: Opc = BO_SubAssign; break;
14585 case tok::lesslessequal: Opc = BO_ShlAssign; break;
14586 case tok::greatergreaterequal: Opc = BO_ShrAssign; break;
14587 case tok::ampequal: Opc = BO_AndAssign; break;
14588 case tok::caretequal: Opc = BO_XorAssign; break;
14589 case tok::pipeequal: Opc = BO_OrAssign; break;
14590 case tok::comma: Opc = BO_Comma; break;
14591 }
14592 return Opc;
14593}
14594
14595static inline UnaryOperatorKind ConvertTokenKindToUnaryOpcode(
14596 tok::TokenKind Kind) {
14597 UnaryOperatorKind Opc;
14598 switch (Kind) {
14599 default: llvm_unreachable("Unknown unary op!")::llvm::llvm_unreachable_internal("Unknown unary op!", "clang/lib/Sema/SemaExpr.cpp"
, 14599)
;
14600 case tok::plusplus: Opc = UO_PreInc; break;
14601 case tok::minusminus: Opc = UO_PreDec; break;
14602 case tok::amp: Opc = UO_AddrOf; break;
14603 case tok::star: Opc = UO_Deref; break;
14604 case tok::plus: Opc = UO_Plus; break;
14605 case tok::minus: Opc = UO_Minus; break;
14606 case tok::tilde: Opc = UO_Not; break;
14607 case tok::exclaim: Opc = UO_LNot; break;
14608 case tok::kw___real: Opc = UO_Real; break;
14609 case tok::kw___imag: Opc = UO_Imag; break;
14610 case tok::kw___extension__: Opc = UO_Extension; break;
14611 }
14612 return Opc;
14613}
14614
14615const FieldDecl *
14616Sema::getSelfAssignmentClassMemberCandidate(const ValueDecl *SelfAssigned) {
14617 // Explore the case for adding 'this->' to the LHS of a self assignment, very
14618 // common for setters.
14619 // struct A {
14620 // int X;
14621 // -void setX(int X) { X = X; }
14622 // +void setX(int X) { this->X = X; }
14623 // };
14624
14625 // Only consider parameters for self assignment fixes.
14626 if (!isa<ParmVarDecl>(SelfAssigned))
14627 return nullptr;
14628 const auto *Method =
14629 dyn_cast_or_null<CXXMethodDecl>(getCurFunctionDecl(true));
14630 if (!Method)
14631 return nullptr;
14632
14633 const CXXRecordDecl *Parent = Method->getParent();
14634 // In theory this is fixable if the lambda explicitly captures this, but
14635 // that's added complexity that's rarely going to be used.
14636 if (Parent->isLambda())
14637 return nullptr;
14638
14639 // FIXME: Use an actual Lookup operation instead of just traversing fields
14640 // in order to get base class fields.
14641 auto Field =
14642 llvm::find_if(Parent->fields(),
14643 [Name(SelfAssigned->getDeclName())](const FieldDecl *F) {
14644 return F->getDeclName() == Name;
14645 });
14646 return (Field != Parent->field_end()) ? *Field : nullptr;
14647}
14648
14649/// DiagnoseSelfAssignment - Emits a warning if a value is assigned to itself.
14650/// This warning suppressed in the event of macro expansions.
14651static void DiagnoseSelfAssignment(Sema &S, Expr *LHSExpr, Expr *RHSExpr,
14652 SourceLocation OpLoc, bool IsBuiltin) {
14653 if (S.inTemplateInstantiation())
14654 return;
14655 if (S.isUnevaluatedContext())
14656 return;
14657 if (OpLoc.isInvalid() || OpLoc.isMacroID())
14658 return;
14659 LHSExpr = LHSExpr->IgnoreParenImpCasts();
14660 RHSExpr = RHSExpr->IgnoreParenImpCasts();
14661 const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
14662 const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
14663 if (!LHSDeclRef || !RHSDeclRef ||
14664 LHSDeclRef->getLocation().isMacroID() ||
14665 RHSDeclRef->getLocation().isMacroID())
14666 return;
14667 const ValueDecl *LHSDecl =
14668 cast<ValueDecl>(LHSDeclRef->getDecl()->getCanonicalDecl());
14669 const ValueDecl *RHSDecl =
14670 cast<ValueDecl>(RHSDeclRef->getDecl()->getCanonicalDecl());
14671 if (LHSDecl != RHSDecl)
14672 return;
14673 if (LHSDecl->getType().isVolatileQualified())
14674 return;
14675 if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
14676 if (RefTy->getPointeeType().isVolatileQualified())
14677 return;
14678
14679 auto Diag = S.Diag(OpLoc, IsBuiltin ? diag::warn_self_assignment_builtin
14680 : diag::warn_self_assignment_overloaded)
14681 << LHSDeclRef->getType() << LHSExpr->getSourceRange()
14682 << RHSExpr->getSourceRange();
14683 if (const FieldDecl *SelfAssignField =
14684 S.getSelfAssignmentClassMemberCandidate(RHSDecl))
14685 Diag << 1 << SelfAssignField
14686 << FixItHint::CreateInsertion(LHSDeclRef->getBeginLoc(), "this->");
14687 else
14688 Diag << 0;
14689}
14690
14691/// Check if a bitwise-& is performed on an Objective-C pointer. This
14692/// is usually indicative of introspection within the Objective-C pointer.
14693static void checkObjCPointerIntrospection(Sema &S, ExprResult &L, ExprResult &R,
14694 SourceLocation OpLoc) {
14695 if (!S.getLangOpts().ObjC)
14696 return;
14697
14698 const Expr *ObjCPointerExpr = nullptr, *OtherExpr = nullptr;
14699 const Expr *LHS = L.get();
14700 const Expr *RHS = R.get();
14701
14702 if (LHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
14703 ObjCPointerExpr = LHS;
14704 OtherExpr = RHS;
14705 }
14706 else if (RHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
14707 ObjCPointerExpr = RHS;
14708 OtherExpr = LHS;
14709 }
14710
14711 // This warning is deliberately made very specific to reduce false
14712 // positives with logic that uses '&' for hashing. This logic mainly
14713 // looks for code trying to introspect into tagged pointers, which
14714 // code should generally never do.
14715 if (ObjCPointerExpr && isa<IntegerLiteral>(OtherExpr->IgnoreParenCasts())) {
14716 unsigned Diag = diag::warn_objc_pointer_masking;
14717 // Determine if we are introspecting the result of performSelectorXXX.
14718 const Expr *Ex = ObjCPointerExpr->IgnoreParenCasts();
14719 // Special case messages to -performSelector and friends, which
14720 // can return non-pointer values boxed in a pointer value.
14721 // Some clients may wish to silence warnings in this subcase.
14722 if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(Ex)) {
14723 Selector S = ME->getSelector();
14724 StringRef SelArg0 = S.getNameForSlot(0);
14725 if (SelArg0.startswith("performSelector"))
14726 Diag = diag::warn_objc_pointer_masking_performSelector;
14727 }
14728
14729 S.Diag(OpLoc, Diag)
14730 << ObjCPointerExpr->getSourceRange();
14731 }
14732}
14733
14734static NamedDecl *getDeclFromExpr(Expr *E) {
14735 if (!E)
14736 return nullptr;
14737 if (auto *DRE = dyn_cast<DeclRefExpr>(E))
14738 return DRE->getDecl();
14739 if (auto *ME = dyn_cast<MemberExpr>(E))
14740 return ME->getMemberDecl();
14741 if (auto *IRE = dyn_cast<ObjCIvarRefExpr>(E))
14742 return IRE->getDecl();
14743 return nullptr;
14744}
14745
14746// This helper function promotes a binary operator's operands (which are of a
14747// half vector type) to a vector of floats and then truncates the result to
14748// a vector of either half or short.
14749static ExprResult convertHalfVecBinOp(Sema &S, ExprResult LHS, ExprResult RHS,
14750 BinaryOperatorKind Opc, QualType ResultTy,
14751 ExprValueKind VK, ExprObjectKind OK,
14752 bool IsCompAssign, SourceLocation OpLoc,
14753 FPOptionsOverride FPFeatures) {
14754 auto &Context = S.getASTContext();
14755 assert((isVector(ResultTy, Context.HalfTy) ||(static_cast <bool> ((isVector(ResultTy, Context.HalfTy
) || isVector(ResultTy, Context.ShortTy)) && "Result must be a vector of half or short"
) ? void (0) : __assert_fail ("(isVector(ResultTy, Context.HalfTy) || isVector(ResultTy, Context.ShortTy)) && \"Result must be a vector of half or short\""
, "clang/lib/Sema/SemaExpr.cpp", 14757, __extension__ __PRETTY_FUNCTION__
))
14756 isVector(ResultTy, Context.ShortTy)) &&(static_cast <bool> ((isVector(ResultTy, Context.HalfTy
) || isVector(ResultTy, Context.ShortTy)) && "Result must be a vector of half or short"
) ? void (0) : __assert_fail ("(isVector(ResultTy, Context.HalfTy) || isVector(ResultTy, Context.ShortTy)) && \"Result must be a vector of half or short\""
, "clang/lib/Sema/SemaExpr.cpp", 14757, __extension__ __PRETTY_FUNCTION__
))
14757 "Result must be a vector of half or short")(static_cast <bool> ((isVector(ResultTy, Context.HalfTy
) || isVector(ResultTy, Context.ShortTy)) && "Result must be a vector of half or short"
) ? void (0) : __assert_fail ("(isVector(ResultTy, Context.HalfTy) || isVector(ResultTy, Context.ShortTy)) && \"Result must be a vector of half or short\""
, "clang/lib/Sema/SemaExpr.cpp", 14757, __extension__ __PRETTY_FUNCTION__
))
;
14758 assert(isVector(LHS.get()->getType(), Context.HalfTy) &&(static_cast <bool> (isVector(LHS.get()->getType(), Context
.HalfTy) && isVector(RHS.get()->getType(), Context
.HalfTy) && "both operands expected to be a half vector"
) ? void (0) : __assert_fail ("isVector(LHS.get()->getType(), Context.HalfTy) && isVector(RHS.get()->getType(), Context.HalfTy) && \"both operands expected to be a half vector\""
, "clang/lib/Sema/SemaExpr.cpp", 14760, __extension__ __PRETTY_FUNCTION__
))
14759 isVector(RHS.get()->getType(), Context.HalfTy) &&(static_cast <bool> (isVector(LHS.get()->getType(), Context
.HalfTy) && isVector(RHS.get()->getType(), Context
.HalfTy) && "both operands expected to be a half vector"
) ? void (0) : __assert_fail ("isVector(LHS.get()->getType(), Context.HalfTy) && isVector(RHS.get()->getType(), Context.HalfTy) && \"both operands expected to be a half vector\""
, "clang/lib/Sema/SemaExpr.cpp", 14760, __extension__ __PRETTY_FUNCTION__
))
14760 "both operands expected to be a half vector")(static_cast <bool> (isVector(LHS.get()->getType(), Context
.HalfTy) && isVector(RHS.get()->getType(), Context
.HalfTy) && "both operands expected to be a half vector"
) ? void (0) : __assert_fail ("isVector(LHS.get()->getType(), Context.HalfTy) && isVector(RHS.get()->getType(), Context.HalfTy) && \"both operands expected to be a half vector\""
, "clang/lib/Sema/SemaExpr.cpp", 14760, __extension__ __PRETTY_FUNCTION__
))
;
14761
14762 RHS = convertVector(RHS.get(), Context.FloatTy, S);
14763 QualType BinOpResTy = RHS.get()->getType();
14764
14765 // If Opc is a comparison, ResultType is a vector of shorts. In that case,
14766 // change BinOpResTy to a vector of ints.
14767 if (isVector(ResultTy, Context.ShortTy))
14768 BinOpResTy = S.GetSignedVectorType(BinOpResTy);
14769
14770 if (IsCompAssign)
14771 return CompoundAssignOperator::Create(Context, LHS.get(), RHS.get(), Opc,
14772 ResultTy, VK, OK, OpLoc, FPFeatures,
14773 BinOpResTy, BinOpResTy);
14774
14775 LHS = convertVector(LHS.get(), Context.FloatTy, S);
14776 auto *BO = BinaryOperator::Create(Context, LHS.get(), RHS.get(), Opc,
14777 BinOpResTy, VK, OK, OpLoc, FPFeatures);
14778 return convertVector(BO, ResultTy->castAs<VectorType>()->getElementType(), S);
14779}
14780
14781static std::pair<ExprResult, ExprResult>
14782CorrectDelayedTyposInBinOp(Sema &S, BinaryOperatorKind Opc, Expr *LHSExpr,
14783 Expr *RHSExpr) {
14784 ExprResult LHS = LHSExpr, RHS = RHSExpr;
14785 if (!S.Context.isDependenceAllowed()) {
14786 // C cannot handle TypoExpr nodes on either side of a binop because it
14787 // doesn't handle dependent types properly, so make sure any TypoExprs have
14788 // been dealt with before checking the operands.
14789 LHS = S.CorrectDelayedTyposInExpr(LHS);
14790 RHS = S.CorrectDelayedTyposInExpr(
14791 RHS, /*InitDecl=*/nullptr, /*RecoverUncorrectedTypos=*/false,
14792 [Opc, LHS](Expr *E) {
14793 if (Opc != BO_Assign)
14794 return ExprResult(E);
14795 // Avoid correcting the RHS to the same Expr as the LHS.
14796 Decl *D = getDeclFromExpr(E);
14797 return (D && D == getDeclFromExpr(LHS.get())) ? ExprError() : E;
14798 });
14799 }
14800 return std::make_pair(LHS, RHS);
14801}
14802
14803/// Returns true if conversion between vectors of halfs and vectors of floats
14804/// is needed.
14805static bool needsConversionOfHalfVec(bool OpRequiresConversion, ASTContext &Ctx,
14806 Expr *E0, Expr *E1 = nullptr) {
14807 if (!OpRequiresConversion || Ctx.getLangOpts().NativeHalfType ||
14808 Ctx.getTargetInfo().useFP16ConversionIntrinsics())
14809 return false;
14810
14811 auto HasVectorOfHalfType = [&Ctx](Expr *E) {
14812 QualType Ty = E->IgnoreImplicit()->getType();
14813
14814 // Don't promote half precision neon vectors like float16x4_t in arm_neon.h
14815 // to vectors of floats. Although the element type of the vectors is __fp16,
14816 // the vectors shouldn't be treated as storage-only types. See the
14817 // discussion here: https://reviews.llvm.org/rG825235c140e7
14818 if (const VectorType *VT = Ty->getAs<VectorType>()) {
14819 if (VT->getVectorKind() == VectorType::NeonVector)
14820 return false;
14821 return VT->getElementType().getCanonicalType() == Ctx.HalfTy;
14822 }
14823 return false;
14824 };
14825
14826 return HasVectorOfHalfType(E0) && (!E1 || HasVectorOfHalfType(E1));
14827}
14828
14829/// CreateBuiltinBinOp - Creates a new built-in binary operation with
14830/// operator @p Opc at location @c TokLoc. This routine only supports
14831/// built-in operations; ActOnBinOp handles overloaded operators.
14832ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
14833 BinaryOperatorKind Opc,
14834 Expr *LHSExpr, Expr *RHSExpr) {
14835 if (getLangOpts().CPlusPlus11 && isa<InitListExpr>(RHSExpr)) {
14836 // The syntax only allows initializer lists on the RHS of assignment,
14837 // so we don't need to worry about accepting invalid code for
14838 // non-assignment operators.
14839 // C++11 5.17p9:
14840 // The meaning of x = {v} [...] is that of x = T(v) [...]. The meaning
14841 // of x = {} is x = T().
14842 InitializationKind Kind = InitializationKind::CreateDirectList(
14843 RHSExpr->getBeginLoc(), RHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
14844 InitializedEntity Entity =
14845 InitializedEntity::InitializeTemporary(LHSExpr->getType());
14846 InitializationSequence InitSeq(*this, Entity, Kind, RHSExpr);
14847 ExprResult Init = InitSeq.Perform(*this, Entity, Kind, RHSExpr);
14848 if (Init.isInvalid())
14849 return Init;
14850 RHSExpr = Init.get();
14851 }
14852
14853 ExprResult LHS = LHSExpr, RHS = RHSExpr;
14854 QualType ResultTy; // Result type of the binary operator.
14855 // The following two variables are used for compound assignment operators
14856 QualType CompLHSTy; // Type of LHS after promotions for computation
14857 QualType CompResultTy; // Type of computation result
14858 ExprValueKind VK = VK_PRValue;
14859 ExprObjectKind OK = OK_Ordinary;
14860 bool ConvertHalfVec = false;
14861
14862 std::tie(LHS, RHS) = CorrectDelayedTyposInBinOp(*this, Opc, LHSExpr, RHSExpr);
14863 if (!LHS.isUsable() || !RHS.isUsable())
14864 return ExprError();
14865
14866 if (getLangOpts().OpenCL) {
14867 QualType LHSTy = LHSExpr->getType();
14868 QualType RHSTy = RHSExpr->getType();
14869 // OpenCLC v2.0 s6.13.11.1 allows atomic variables to be initialized by
14870 // the ATOMIC_VAR_INIT macro.
14871 if (LHSTy->isAtomicType() || RHSTy->isAtomicType()) {
14872 SourceRange SR(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
14873 if (BO_Assign == Opc)
14874 Diag(OpLoc, diag::err_opencl_atomic_init) << 0 << SR;
14875 else
14876 ResultTy = InvalidOperands(OpLoc, LHS, RHS);
14877 return ExprError();
14878 }
14879
14880 // OpenCL special types - image, sampler, pipe, and blocks are to be used
14881 // only with a builtin functions and therefore should be disallowed here.
14882 if (LHSTy->isImageType() || RHSTy->isImageType() ||
14883 LHSTy->isSamplerT() || RHSTy->isSamplerT() ||
14884 LHSTy->isPipeType() || RHSTy->isPipeType() ||
14885 LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) {
14886 ResultTy = InvalidOperands(OpLoc, LHS, RHS);
14887 return ExprError();
14888 }
14889 }
14890
14891 checkTypeSupport(LHSExpr->getType(), OpLoc, /*ValueDecl*/ nullptr);
14892 checkTypeSupport(RHSExpr->getType(), OpLoc, /*ValueDecl*/ nullptr);
14893
14894 switch (Opc) {
14895 case BO_Assign:
14896 ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, QualType(), Opc);
14897 if (getLangOpts().CPlusPlus &&
14898 LHS.get()->getObjectKind() != OK_ObjCProperty) {
14899 VK = LHS.get()->getValueKind();
14900 OK = LHS.get()->getObjectKind();
14901 }
14902 if (!ResultTy.isNull()) {
14903 DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc, true);
14904 DiagnoseSelfMove(LHS.get(), RHS.get(), OpLoc);
14905
14906 // Avoid copying a block to the heap if the block is assigned to a local
14907 // auto variable that is declared in the same scope as the block. This
14908 // optimization is unsafe if the local variable is declared in an outer
14909 // scope. For example:
14910 //
14911 // BlockTy b;
14912 // {
14913 // b = ^{...};
14914 // }
14915 // // It is unsafe to invoke the block here if it wasn't copied to the
14916 // // heap.
14917 // b();
14918
14919 if (auto *BE = dyn_cast<BlockExpr>(RHS.get()->IgnoreParens()))
14920 if (auto *DRE = dyn_cast<DeclRefExpr>(LHS.get()->IgnoreParens()))
14921 if (auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
14922 if (VD->hasLocalStorage() && getCurScope()->isDeclScope(VD))
14923 BE->getBlockDecl()->setCanAvoidCopyToHeap();
14924
14925 if (LHS.get()->getType().hasNonTrivialToPrimitiveCopyCUnion())
14926 checkNonTrivialCUnion(LHS.get()->getType(), LHS.get()->getExprLoc(),
14927 NTCUC_Assignment, NTCUK_Copy);
14928 }
14929 RecordModifiableNonNullParam(*this, LHS.get());
14930 break;
14931 case BO_PtrMemD:
14932 case BO_PtrMemI:
14933 ResultTy = CheckPointerToMemberOperands(LHS, RHS, VK, OpLoc,
14934 Opc == BO_PtrMemI);
14935 break;
14936 case BO_Mul:
14937 case BO_Div:
14938 ConvertHalfVec = true;
14939 ResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, false,
14940 Opc == BO_Div);
14941 break;
14942 case BO_Rem:
14943 ResultTy = CheckRemainderOperands(LHS, RHS, OpLoc);
14944 break;
14945 case BO_Add:
14946 ConvertHalfVec = true;
14947 ResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc);
14948 break;
14949 case BO_Sub:
14950 ConvertHalfVec = true;
14951 ResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc);
14952 break;
14953 case BO_Shl:
14954 case BO_Shr:
14955 ResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc);
14956 break;
14957 case BO_LE:
14958 case BO_LT:
14959 case BO_GE:
14960 case BO_GT:
14961 ConvertHalfVec = true;
14962 ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc);
14963 break;
14964 case BO_EQ:
14965 case BO_NE:
14966 ConvertHalfVec = true;
14967 ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc);
14968 break;
14969 case BO_Cmp:
14970 ConvertHalfVec = true;
14971 ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc);
14972 assert(ResultTy.isNull() || ResultTy->getAsCXXRecordDecl())(static_cast <bool> (ResultTy.isNull() || ResultTy->
getAsCXXRecordDecl()) ? void (0) : __assert_fail ("ResultTy.isNull() || ResultTy->getAsCXXRecordDecl()"
, "clang/lib/Sema/SemaExpr.cpp", 14972, __extension__ __PRETTY_FUNCTION__
))
;
14973 break;
14974 case BO_And:
14975 checkObjCPointerIntrospection(*this, LHS, RHS, OpLoc);
14976 [[fallthrough]];
14977 case BO_Xor:
14978 case BO_Or:
14979 ResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, Opc);
14980 break;
14981 case BO_LAnd:
14982 case BO_LOr:
14983 ConvertHalfVec = true;
14984 ResultTy = CheckLogicalOperands(LHS, RHS, OpLoc, Opc);
14985 break;
14986 case BO_MulAssign:
14987 case BO_DivAssign:
14988 ConvertHalfVec = true;
14989 CompResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, true,
14990 Opc == BO_DivAssign);
14991 CompLHSTy = CompResultTy;
14992 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
14993 ResultTy =
14994 CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc);
14995 break;
14996 case BO_RemAssign:
14997 CompResultTy = CheckRemainderOperands(LHS, RHS, OpLoc, true);
14998 CompLHSTy = CompResultTy;
14999 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
15000 ResultTy =
15001 CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc);
15002 break;
15003 case BO_AddAssign:
15004 ConvertHalfVec = true;
15005 CompResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc, &CompLHSTy);
15006 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
15007 ResultTy =
15008 CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc);
15009 break;
15010 case BO_SubAssign:
15011 ConvertHalfVec = true;
15012 CompResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc, &CompLHSTy);
15013 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
15014 ResultTy =
15015 CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc);
15016 break;
15017 case BO_ShlAssign:
15018 case BO_ShrAssign:
15019 CompResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc, true);
15020 CompLHSTy = CompResultTy;
15021 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
15022 ResultTy =
15023 CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc);
15024 break;
15025 case BO_AndAssign:
15026 case BO_OrAssign: // fallthrough
15027 DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc, true);
15028 [[fallthrough]];
15029 case BO_XorAssign:
15030 CompResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, Opc);
15031 CompLHSTy = CompResultTy;
15032 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
15033 ResultTy =
15034 CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc);
15035 break;
15036 case BO_Comma:
15037 ResultTy = CheckCommaOperands(*this, LHS, RHS, OpLoc);
15038 if (getLangOpts().CPlusPlus && !RHS.isInvalid()) {
15039 VK = RHS.get()->getValueKind();
15040 OK = RHS.get()->getObjectKind();
15041 }
15042 break;
15043 }
15044 if (ResultTy.isNull() || LHS.isInvalid() || RHS.isInvalid())
15045 return ExprError();
15046
15047 // Some of the binary operations require promoting operands of half vector to
15048 // float vectors and truncating the result back to half vector. For now, we do
15049 // this only when HalfArgsAndReturn is set (that is, when the target is arm or
15050 // arm64).
15051 assert((static_cast <bool> ((Opc == BO_Comma || isVector(RHS.get
()->getType(), Context.HalfTy) == isVector(LHS.get()->getType
(), Context.HalfTy)) && "both sides are half vectors or neither sides are"
) ? void (0) : __assert_fail ("(Opc == BO_Comma || isVector(RHS.get()->getType(), Context.HalfTy) == isVector(LHS.get()->getType(), Context.HalfTy)) && \"both sides are half vectors or neither sides are\""
, "clang/lib/Sema/SemaExpr.cpp", 15054, __extension__ __PRETTY_FUNCTION__
))
15052 (Opc == BO_Comma || isVector(RHS.get()->getType(), Context.HalfTy) ==(static_cast <bool> ((Opc == BO_Comma || isVector(RHS.get
()->getType(), Context.HalfTy) == isVector(LHS.get()->getType
(), Context.HalfTy)) && "both sides are half vectors or neither sides are"
) ? void (0) : __assert_fail ("(Opc == BO_Comma || isVector(RHS.get()->getType(), Context.HalfTy) == isVector(LHS.get()->getType(), Context.HalfTy)) && \"both sides are half vectors or neither sides are\""
, "clang/lib/Sema/SemaExpr.cpp", 15054, __extension__ __PRETTY_FUNCTION__
))
15053 isVector(LHS.get()->getType(), Context.HalfTy)) &&(static_cast <bool> ((Opc == BO_Comma || isVector(RHS.get
()->getType(), Context.HalfTy) == isVector(LHS.get()->getType
(), Context.HalfTy)) && "both sides are half vectors or neither sides are"
) ? void (0) : __assert_fail ("(Opc == BO_Comma || isVector(RHS.get()->getType(), Context.HalfTy) == isVector(LHS.get()->getType(), Context.HalfTy)) && \"both sides are half vectors or neither sides are\""
, "clang/lib/Sema/SemaExpr.cpp", 15054, __extension__ __PRETTY_FUNCTION__
))
15054 "both sides are half vectors or neither sides are")(static_cast <bool> ((Opc == BO_Comma || isVector(RHS.get
()->getType(), Context.HalfTy) == isVector(LHS.get()->getType
(), Context.HalfTy)) && "both sides are half vectors or neither sides are"
) ? void (0) : __assert_fail ("(Opc == BO_Comma || isVector(RHS.get()->getType(), Context.HalfTy) == isVector(LHS.get()->getType(), Context.HalfTy)) && \"both sides are half vectors or neither sides are\""
, "clang/lib/Sema/SemaExpr.cpp", 15054, __extension__ __PRETTY_FUNCTION__
))
;
15055 ConvertHalfVec =
15056 needsConversionOfHalfVec(ConvertHalfVec, Context, LHS.get(), RHS.get());
15057
15058 // Check for array bounds violations for both sides of the BinaryOperator
15059 CheckArrayAccess(LHS.get());
15060 CheckArrayAccess(RHS.get());
15061
15062 if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(LHS.get()->IgnoreParenCasts())) {
15063 NamedDecl *ObjectSetClass = LookupSingleName(TUScope,
15064 &Context.Idents.get("object_setClass"),
15065 SourceLocation(), LookupOrdinaryName);
15066 if (ObjectSetClass && isa<ObjCIsaExpr>(LHS.get())) {
15067 SourceLocation RHSLocEnd = getLocForEndOfToken(RHS.get()->getEndLoc());
15068 Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign)
15069 << FixItHint::CreateInsertion(LHS.get()->getBeginLoc(),
15070 "object_setClass(")
15071 << FixItHint::CreateReplacement(SourceRange(OISA->getOpLoc(), OpLoc),
15072 ",")
15073 << FixItHint::CreateInsertion(RHSLocEnd, ")");
15074 }
15075 else
15076 Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign);
15077 }
15078 else if (const ObjCIvarRefExpr *OIRE =
15079 dyn_cast<ObjCIvarRefExpr>(LHS.get()->IgnoreParenCasts()))
15080 DiagnoseDirectIsaAccess(*this, OIRE, OpLoc, RHS.get());
15081
15082 // Opc is not a compound assignment if CompResultTy is null.
15083 if (CompResultTy.isNull()) {
15084 if (ConvertHalfVec)
15085 return convertHalfVecBinOp(*this, LHS, RHS, Opc, ResultTy, VK, OK, false,
15086 OpLoc, CurFPFeatureOverrides());
15087 return BinaryOperator::Create(Context, LHS.get(), RHS.get(), Opc, ResultTy,
15088 VK, OK, OpLoc, CurFPFeatureOverrides());
15089 }
15090
15091 // Handle compound assignments.
15092 if (getLangOpts().CPlusPlus && LHS.get()->getObjectKind() !=
15093 OK_ObjCProperty) {
15094 VK = VK_LValue;
15095 OK = LHS.get()->getObjectKind();
15096 }
15097
15098 // The LHS is not converted to the result type for fixed-point compound
15099 // assignment as the common type is computed on demand. Reset the CompLHSTy
15100 // to the LHS type we would have gotten after unary conversions.
15101 if (CompResultTy->isFixedPointType())
15102 CompLHSTy = UsualUnaryConversions(LHS.get()).get()->getType();
15103
15104 if (ConvertHalfVec)
15105 return convertHalfVecBinOp(*this, LHS, RHS, Opc, ResultTy, VK, OK, true,
15106 OpLoc, CurFPFeatureOverrides());
15107
15108 return CompoundAssignOperator::Create(
15109 Context, LHS.get(), RHS.get(), Opc, ResultTy, VK, OK, OpLoc,
15110 CurFPFeatureOverrides(), CompLHSTy, CompResultTy);
15111}
15112
15113/// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
15114/// operators are mixed in a way that suggests that the programmer forgot that
15115/// comparison operators have higher precedence. The most typical example of
15116/// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
15117static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperatorKind Opc,
15118 SourceLocation OpLoc, Expr *LHSExpr,
15119 Expr *RHSExpr) {
15120 BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHSExpr);
15121 BinaryOperator *RHSBO = dyn_cast<BinaryOperator>(RHSExpr);
15122
15123 // Check that one of the sides is a comparison operator and the other isn't.
15124 bool isLeftComp = LHSBO && LHSBO->isComparisonOp();
15125 bool isRightComp = RHSBO && RHSBO->isComparisonOp();
15126 if (isLeftComp == isRightComp)
15127 return;
15128
15129 // Bitwise operations are sometimes used as eager logical ops.
15130 // Don't diagnose this.
15131 bool isLeftBitwise = LHSBO && LHSBO->isBitwiseOp();
15132 bool isRightBitwise = RHSBO && RHSBO->isBitwiseOp();
15133 if (isLeftBitwise || isRightBitwise)
15134 return;
15135
15136 SourceRange DiagRange = isLeftComp
15137 ? SourceRange(LHSExpr->getBeginLoc(), OpLoc)
15138 : SourceRange(OpLoc, RHSExpr->getEndLoc());
15139 StringRef OpStr = isLeftComp ? LHSBO->getOpcodeStr() : RHSBO->getOpcodeStr();
15140 SourceRange ParensRange =
15141 isLeftComp
15142 ? SourceRange(LHSBO->getRHS()->getBeginLoc(), RHSExpr->getEndLoc())
15143 : SourceRange(LHSExpr->getBeginLoc(), RHSBO->getLHS()->getEndLoc());
15144
15145 Self.Diag(OpLoc, diag::warn_precedence_bitwise_rel)
15146 << DiagRange << BinaryOperator::getOpcodeStr(Opc) << OpStr;
15147 SuggestParentheses(Self, OpLoc,
15148 Self.PDiag(diag::note_precedence_silence) << OpStr,
15149 (isLeftComp ? LHSExpr : RHSExpr)->getSourceRange());
15150 SuggestParentheses(Self, OpLoc,
15151 Self.PDiag(diag::note_precedence_bitwise_first)
15152 << BinaryOperator::getOpcodeStr(Opc),
15153 ParensRange);
15154}
15155
15156/// It accepts a '&&' expr that is inside a '||' one.
15157/// Emit a diagnostic together with a fixit hint that wraps the '&&' expression
15158/// in parentheses.
15159static void
15160EmitDiagnosticForLogicalAndInLogicalOr(Sema &Self, SourceLocation OpLoc,
15161 BinaryOperator *Bop) {
15162 assert(Bop->getOpcode() == BO_LAnd)(static_cast <bool> (Bop->getOpcode() == BO_LAnd) ? void
(0) : __assert_fail ("Bop->getOpcode() == BO_LAnd", "clang/lib/Sema/SemaExpr.cpp"
, 15162, __extension__ __PRETTY_FUNCTION__))
;
15163 Self.Diag(Bop->getOperatorLoc(), diag::warn_logical_and_in_logical_or)
15164 << Bop->getSourceRange() << OpLoc;
15165 SuggestParentheses(Self, Bop->getOperatorLoc(),
15166 Self.PDiag(diag::note_precedence_silence)
15167 << Bop->getOpcodeStr(),
15168 Bop->getSourceRange());
15169}
15170
15171/// Returns true if the given expression can be evaluated as a constant
15172/// 'true'.
15173static bool EvaluatesAsTrue(Sema &S, Expr *E) {
15174 bool Res;
15175 return !E->isValueDependent() &&
15176 E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && Res;
15177}
15178
15179/// Returns true if the given expression can be evaluated as a constant
15180/// 'false'.
15181static bool EvaluatesAsFalse(Sema &S, Expr *E) {
15182 bool Res;
15183 return !E->isValueDependent() &&
15184 E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && !Res;
15185}
15186
15187/// Look for '&&' in the left hand of a '||' expr.
15188static void DiagnoseLogicalAndInLogicalOrLHS(Sema &S, SourceLocation OpLoc,
15189 Expr *LHSExpr, Expr *RHSExpr) {
15190 if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(LHSExpr)) {
15191 if (Bop->getOpcode() == BO_LAnd) {
15192 // If it's "a && b || 0" don't warn since the precedence doesn't matter.
15193 if (EvaluatesAsFalse(S, RHSExpr))
15194 return;
15195 // If it's "1 && a || b" don't warn since the precedence doesn't matter.
15196 if (!EvaluatesAsTrue(S, Bop->getLHS()))
15197 return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
15198 } else if (Bop->getOpcode() == BO_LOr) {
15199 if (BinaryOperator *RBop = dyn_cast<BinaryOperator>(Bop->getRHS())) {
15200 // If it's "a || b && 1 || c" we didn't warn earlier for
15201 // "a || b && 1", but warn now.
15202 if (RBop->getOpcode() == BO_LAnd && EvaluatesAsTrue(S, RBop->getRHS()))
15203 return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, RBop);
15204 }
15205 }
15206 }
15207}
15208
15209/// Look for '&&' in the right hand of a '||' expr.
15210static void DiagnoseLogicalAndInLogicalOrRHS(Sema &S, SourceLocation OpLoc,
15211 Expr *LHSExpr, Expr *RHSExpr) {
15212 if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(RHSExpr)) {
15213 if (Bop->getOpcode() == BO_LAnd) {
15214 // If it's "0 || a && b" don't warn since the precedence doesn't matter.
15215 if (EvaluatesAsFalse(S, LHSExpr))
15216 return;
15217 // If it's "a || b && 1" don't warn since the precedence doesn't matter.
15218 if (!EvaluatesAsTrue(S, Bop->getRHS()))
15219 return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
15220 }
15221 }
15222}
15223
15224/// Look for bitwise op in the left or right hand of a bitwise op with
15225/// lower precedence and emit a diagnostic together with a fixit hint that wraps
15226/// the '&' expression in parentheses.
15227static void DiagnoseBitwiseOpInBitwiseOp(Sema &S, BinaryOperatorKind Opc,
15228 SourceLocation OpLoc, Expr *SubExpr) {
15229 if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(SubExpr)) {
15230 if (Bop->isBitwiseOp() && Bop->getOpcode() < Opc) {
15231 S.Diag(Bop->getOperatorLoc(), diag::warn_bitwise_op_in_bitwise_op)
15232 << Bop->getOpcodeStr() << BinaryOperator::getOpcodeStr(Opc)
15233 << Bop->getSourceRange() << OpLoc;
15234 SuggestParentheses(S, Bop->getOperatorLoc(),
15235 S.PDiag(diag::note_precedence_silence)
15236 << Bop->getOpcodeStr(),
15237 Bop->getSourceRange());
15238 }
15239 }
15240}
15241
15242static void DiagnoseAdditionInShift(Sema &S, SourceLocation OpLoc,
15243 Expr *SubExpr, StringRef Shift) {
15244 if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(SubExpr)) {
15245 if (Bop->getOpcode() == BO_Add || Bop->getOpcode() == BO_Sub) {
15246 StringRef Op = Bop->getOpcodeStr();
15247 S.Diag(Bop->getOperatorLoc(), diag::warn_addition_in_bitshift)
15248 << Bop->getSourceRange() << OpLoc << Shift << Op;
15249 SuggestParentheses(S, Bop->getOperatorLoc(),
15250 S.PDiag(diag::note_precedence_silence) << Op,
15251 Bop->getSourceRange());
15252 }
15253 }
15254}
15255
15256static void DiagnoseShiftCompare(Sema &S, SourceLocation OpLoc,
15257 Expr *LHSExpr, Expr *RHSExpr) {
15258 CXXOperatorCallExpr *OCE = dyn_cast<CXXOperatorCallExpr>(LHSExpr);
15259 if (!OCE)
15260 return;
15261
15262 FunctionDecl *FD = OCE->getDirectCallee();
15263 if (!FD || !FD->isOverloadedOperator())
15264 return;
15265
15266 OverloadedOperatorKind Kind = FD->getOverloadedOperator();
15267 if (Kind != OO_LessLess && Kind != OO_GreaterGreater)
15268 return;
15269
15270 S.Diag(OpLoc, diag::warn_overloaded_shift_in_comparison)
15271 << LHSExpr->getSourceRange() << RHSExpr->getSourceRange()
15272 << (Kind == OO_LessLess);
15273 SuggestParentheses(S, OCE->getOperatorLoc(),
15274 S.PDiag(diag::note_precedence_silence)
15275 << (Kind == OO_LessLess ? "<<" : ">>"),
15276 OCE->getSourceRange());
15277 SuggestParentheses(
15278 S, OpLoc, S.PDiag(diag::note_evaluate_comparison_first),
15279 SourceRange(OCE->getArg(1)->getBeginLoc(), RHSExpr->getEndLoc()));
15280}
15281
15282/// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
15283/// precedence.
15284static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperatorKind Opc,
15285 SourceLocation OpLoc, Expr *LHSExpr,
15286 Expr *RHSExpr){
15287 // Diagnose "arg1 'bitwise' arg2 'eq' arg3".
15288 if (BinaryOperator::isBitwiseOp(Opc))
15289 DiagnoseBitwisePrecedence(Self, Opc, OpLoc, LHSExpr, RHSExpr);
15290
15291 // Diagnose "arg1 & arg2 | arg3"
15292 if ((Opc == BO_Or || Opc == BO_Xor) &&
15293 !OpLoc.isMacroID()/* Don't warn in macros. */) {
15294 DiagnoseBitwiseOpInBitwiseOp(Self, Opc, OpLoc, LHSExpr);
15295 DiagnoseBitwiseOpInBitwiseOp(Self, Opc, OpLoc, RHSExpr);
15296 }
15297
15298 // Warn about arg1 || arg2 && arg3, as GCC 4.3+ does.
15299 // We don't warn for 'assert(a || b && "bad")' since this is safe.
15300 if (Opc == BO_LOr && !OpLoc.isMacroID()/* Don't warn in macros. */) {
15301 DiagnoseLogicalAndInLogicalOrLHS(Self, OpLoc, LHSExpr, RHSExpr);
15302 DiagnoseLogicalAndInLogicalOrRHS(Self, OpLoc, LHSExpr, RHSExpr);
15303 }
15304
15305 if ((Opc == BO_Shl && LHSExpr->getType()->isIntegralType(Self.getASTContext()))
15306 || Opc == BO_Shr) {
15307 StringRef Shift = BinaryOperator::getOpcodeStr(Opc);
15308 DiagnoseAdditionInShift(Self, OpLoc, LHSExpr, Shift);
15309 DiagnoseAdditionInShift(Self, OpLoc, RHSExpr, Shift);
15310 }
15311
15312 // Warn on overloaded shift operators and comparisons, such as:
15313 // cout << 5 == 4;
15314 if (BinaryOperator::isComparisonOp(Opc))
15315 DiagnoseShiftCompare(Self, OpLoc, LHSExpr, RHSExpr);
15316}
15317
15318// Binary Operators. 'Tok' is the token for the operator.
15319ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
15320 tok::TokenKind Kind,
15321 Expr *LHSExpr, Expr *RHSExpr) {
15322 BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Kind);
15323 assert(LHSExpr && "ActOnBinOp(): missing left expression")(static_cast <bool> (LHSExpr && "ActOnBinOp(): missing left expression"
) ? void (0) : __assert_fail ("LHSExpr && \"ActOnBinOp(): missing left expression\""
, "clang/lib/Sema/SemaExpr.cpp", 15323, __extension__ __PRETTY_FUNCTION__
))
;
15324 assert(RHSExpr && "ActOnBinOp(): missing right expression")(static_cast <bool> (RHSExpr && "ActOnBinOp(): missing right expression"
) ? void (0) : __assert_fail ("RHSExpr && \"ActOnBinOp(): missing right expression\""
, "clang/lib/Sema/SemaExpr.cpp", 15324, __extension__ __PRETTY_FUNCTION__
))
;
15325
15326 // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
15327 DiagnoseBinOpPrecedence(*this, Opc, TokLoc, LHSExpr, RHSExpr);
15328
15329 return BuildBinOp(S, TokLoc, Opc, LHSExpr, RHSExpr);
15330}
15331
15332void Sema::LookupBinOp(Scope *S, SourceLocation OpLoc, BinaryOperatorKind Opc,
15333 UnresolvedSetImpl &Functions) {
15334 OverloadedOperatorKind OverOp = BinaryOperator::getOverloadedOperator(Opc);
15335 if (OverOp != OO_None && OverOp != OO_Equal)
15336 LookupOverloadedOperatorName(OverOp, S, Functions);
15337
15338 // In C++20 onwards, we may have a second operator to look up.
15339 if (getLangOpts().CPlusPlus20) {
15340 if (OverloadedOperatorKind ExtraOp = getRewrittenOverloadedOperator(OverOp))
15341 LookupOverloadedOperatorName(ExtraOp, S, Functions);
15342 }
15343}
15344
15345/// Build an overloaded binary operator expression in the given scope.
15346static ExprResult BuildOverloadedBinOp(Sema &S, Scope *Sc, SourceLocation OpLoc,
15347 BinaryOperatorKind Opc,
15348 Expr *LHS, Expr *RHS) {
15349 switch (Opc) {
15350 case BO_Assign:
15351 case BO_DivAssign:
15352 case BO_RemAssign:
15353 case BO_SubAssign:
15354 case BO_AndAssign:
15355 case BO_OrAssign:
15356 case BO_XorAssign:
15357 DiagnoseSelfAssignment(S, LHS, RHS, OpLoc, false);
15358 CheckIdentityFieldAssignment(LHS, RHS, OpLoc, S);
15359 break;
15360 default:
15361 break;
15362 }
15363
15364 // Find all of the overloaded operators visible from this point.
15365 UnresolvedSet<16> Functions;
15366 S.LookupBinOp(Sc, OpLoc, Opc, Functions);
15367
15368 // Build the (potentially-overloaded, potentially-dependent)
15369 // binary operation.
15370 return S.CreateOverloadedBinOp(OpLoc, Opc, Functions, LHS, RHS);
15371}
15372
15373ExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
15374 BinaryOperatorKind Opc,
15375 Expr *LHSExpr, Expr *RHSExpr) {
15376 ExprResult LHS, RHS;
15377 std::tie(LHS, RHS) = CorrectDelayedTyposInBinOp(*this, Opc, LHSExpr, RHSExpr);
15378 if (!LHS.isUsable() || !RHS.isUsable())
15379 return ExprError();
15380 LHSExpr = LHS.get();
15381 RHSExpr = RHS.get();
15382
15383 // We want to end up calling one of checkPseudoObjectAssignment
15384 // (if the LHS is a pseudo-object), BuildOverloadedBinOp (if
15385 // both expressions are overloadable or either is type-dependent),
15386 // or CreateBuiltinBinOp (in any other case). We also want to get
15387 // any placeholder types out of the way.
15388
15389 // Handle pseudo-objects in the LHS.
15390 if (const BuiltinType *pty = LHSExpr->getType()->getAsPlaceholderType()) {
15391 // Assignments with a pseudo-object l-value need special analysis.
15392 if (pty->getKind() == BuiltinType::PseudoObject &&
15393 BinaryOperator::isAssignmentOp(Opc))
15394 return checkPseudoObjectAssignment(S, OpLoc, Opc, LHSExpr, RHSExpr);
15395
15396 // Don't resolve overloads if the other type is overloadable.
15397 if (getLangOpts().CPlusPlus && pty->getKind() == BuiltinType::Overload) {
15398 // We can't actually test that if we still have a placeholder,
15399 // though. Fortunately, none of the exceptions we see in that
15400 // code below are valid when the LHS is an overload set. Note
15401 // that an overload set can be dependently-typed, but it never
15402 // instantiates to having an overloadable type.
15403 ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
15404 if (resolvedRHS.isInvalid()) return ExprError();
15405 RHSExpr = resolvedRHS.get();
15406
15407 if (RHSExpr->isTypeDependent() ||
15408 RHSExpr->getType()->isOverloadableType())
15409 return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
15410 }
15411
15412 // If we're instantiating "a.x < b" or "A::x < b" and 'x' names a function
15413 // template, diagnose the missing 'template' keyword instead of diagnosing
15414 // an invalid use of a bound member function.
15415 //
15416 // Note that "A::x < b" might be valid if 'b' has an overloadable type due
15417 // to C++1z [over.over]/1.4, but we already checked for that case above.
15418 if (Opc == BO_LT && inTemplateInstantiation() &&
15419 (pty->getKind() == BuiltinType::BoundMember ||
15420 pty->getKind() == BuiltinType::Overload)) {
15421 auto *OE = dyn_cast<OverloadExpr>(LHSExpr);
15422 if (OE && !OE->hasTemplateKeyword() && !OE->hasExplicitTemplateArgs() &&
15423 llvm::any_of(OE->decls(), [](NamedDecl *ND) {
15424 return isa<FunctionTemplateDecl>(ND);
15425 })) {
15426 Diag(OE->getQualifier() ? OE->getQualifierLoc().getBeginLoc()
15427 : OE->getNameLoc(),
15428 diag::err_template_kw_missing)
15429 << OE->getName().getAsString() << "";
15430 return ExprError();
15431 }
15432 }
15433
15434 ExprResult LHS = CheckPlaceholderExpr(LHSExpr);
15435 if (LHS.isInvalid()) return ExprError();
15436 LHSExpr = LHS.get();
15437 }
15438
15439 // Handle pseudo-objects in the RHS.
15440 if (const BuiltinType *pty = RHSExpr->getType()->getAsPlaceholderType()) {
15441 // An overload in the RHS can potentially be resolved by the type
15442 // being assigned to.
15443 if (Opc == BO_Assign && pty->getKind() == BuiltinType::Overload) {
15444 if (getLangOpts().CPlusPlus &&
15445 (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent() ||
15446 LHSExpr->getType()->isOverloadableType()))
15447 return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
15448
15449 return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
15450 }
15451
15452 // Don't resolve overloads if the other type is overloadable.
15453 if (getLangOpts().CPlusPlus && pty->getKind() == BuiltinType::Overload &&
15454 LHSExpr->getType()->isOverloadableType())
15455 return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
15456
15457 ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
15458 if (!resolvedRHS.isUsable()) return ExprError();
15459 RHSExpr = resolvedRHS.get();
15460 }
15461
15462 if (getLangOpts().CPlusPlus) {
15463 // If either expression is type-dependent, always build an
15464 // overloaded op.
15465 if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())
15466 return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
15467
15468 // Otherwise, build an overloaded op if either expression has an
15469 // overloadable type.
15470 if (LHSExpr->getType()->isOverloadableType() ||
15471 RHSExpr->getType()->isOverloadableType())
15472 return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
15473 }
15474
15475 if (getLangOpts().RecoveryAST &&
15476 (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())) {
15477 assert(!getLangOpts().CPlusPlus)(static_cast <bool> (!getLangOpts().CPlusPlus) ? void (
0) : __assert_fail ("!getLangOpts().CPlusPlus", "clang/lib/Sema/SemaExpr.cpp"
, 15477, __extension__ __PRETTY_FUNCTION__))
;
15478 assert((LHSExpr->containsErrors() || RHSExpr->containsErrors()) &&(static_cast <bool> ((LHSExpr->containsErrors() || RHSExpr
->containsErrors()) && "Should only occur in error-recovery path."
) ? void (0) : __assert_fail ("(LHSExpr->containsErrors() || RHSExpr->containsErrors()) && \"Should only occur in error-recovery path.\""
, "clang/lib/Sema/SemaExpr.cpp", 15479, __extension__ __PRETTY_FUNCTION__
))
15479 "Should only occur in error-recovery path.")(static_cast <bool> ((LHSExpr->containsErrors() || RHSExpr
->containsErrors()) && "Should only occur in error-recovery path."
) ? void (0) : __assert_fail ("(LHSExpr->containsErrors() || RHSExpr->containsErrors()) && \"Should only occur in error-recovery path.\""
, "clang/lib/Sema/SemaExpr.cpp", 15479, __extension__ __PRETTY_FUNCTION__
))
;
15480 if (BinaryOperator::isCompoundAssignmentOp(Opc))
15481 // C [6.15.16] p3:
15482 // An assignment expression has the value of the left operand after the
15483 // assignment, but is not an lvalue.
15484 return CompoundAssignOperator::Create(
15485 Context, LHSExpr, RHSExpr, Opc,
15486 LHSExpr->getType().getUnqualifiedType(), VK_PRValue, OK_Ordinary,
15487 OpLoc, CurFPFeatureOverrides());
15488 QualType ResultType;
15489 switch (Opc) {
15490 case BO_Assign:
15491 ResultType = LHSExpr->getType().getUnqualifiedType();
15492 break;
15493 case BO_LT:
15494 case BO_GT:
15495 case BO_LE:
15496 case BO_GE:
15497 case BO_EQ:
15498 case BO_NE:
15499 case BO_LAnd:
15500 case BO_LOr:
15501 // These operators have a fixed result type regardless of operands.
15502 ResultType = Context.IntTy;
15503 break;
15504 case BO_Comma:
15505 ResultType = RHSExpr->getType();
15506 break;
15507 default:
15508 ResultType = Context.DependentTy;
15509 break;
15510 }
15511 return BinaryOperator::Create(Context, LHSExpr, RHSExpr, Opc, ResultType,
15512 VK_PRValue, OK_Ordinary, OpLoc,
15513 CurFPFeatureOverrides());
15514 }
15515
15516 // Build a built-in binary operation.
15517 return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
15518}
15519
15520static bool isOverflowingIntegerType(ASTContext &Ctx, QualType T) {
15521 if (T.isNull() || T->isDependentType())
15522 return false;
15523
15524 if (!T->isPromotableIntegerType())
15525 return true;
15526
15527 return Ctx.getIntWidth(T) >= Ctx.getIntWidth(Ctx.IntTy);
15528}
15529
15530ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
15531 UnaryOperatorKind Opc, Expr *InputExpr,
15532 bool IsAfterAmp) {
15533 ExprResult Input = InputExpr;
15534 ExprValueKind VK = VK_PRValue;
15535 ExprObjectKind OK = OK_Ordinary;
15536 QualType resultType;
15537 bool CanOverflow = false;
15538
15539 bool ConvertHalfVec = false;
15540 if (getLangOpts().OpenCL) {
15541 QualType Ty = InputExpr->getType();
15542 // The only legal unary operation for atomics is '&'.
15543 if ((Opc != UO_AddrOf && Ty->isAtomicType()) ||
15544 // OpenCL special types - image, sampler, pipe, and blocks are to be used
15545 // only with a builtin functions and therefore should be disallowed here.
15546 (Ty->isImageType() || Ty->isSamplerT() || Ty->isPipeType()
15547 || Ty->isBlockPointerType())) {
15548 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
15549 << InputExpr->getType()
15550 << Input.get()->getSourceRange());
15551 }
15552 }
15553
15554 if (getLangOpts().HLSL) {
15555 if (Opc == UO_AddrOf)
15556 return ExprError(Diag(OpLoc, diag::err_hlsl_operator_unsupported) << 0);
15557 if (Opc == UO_Deref)
15558 return ExprError(Diag(OpLoc, diag::err_hlsl_operator_unsupported) << 1);
15559 }
15560
15561 switch (Opc) {
15562 case UO_PreInc:
15563 case UO_PreDec:
15564 case UO_PostInc:
15565 case UO_PostDec:
15566 resultType = CheckIncrementDecrementOperand(*this, Input.get(), VK, OK,
15567 OpLoc,
15568 Opc == UO_PreInc ||
15569 Opc == UO_PostInc,
15570 Opc == UO_PreInc ||
15571 Opc == UO_PreDec);
15572 CanOverflow = isOverflowingIntegerType(Context, resultType);
15573 break;
15574 case UO_AddrOf:
15575 resultType = CheckAddressOfOperand(Input, OpLoc);
15576 CheckAddressOfNoDeref(InputExpr);
15577 RecordModifiableNonNullParam(*this, InputExpr);
15578 break;
15579 case UO_Deref: {
15580 Input = DefaultFunctionArrayLvalueConversion(Input.get());
15581 if (Input.isInvalid()) return ExprError();
15582 resultType =
15583 CheckIndirectionOperand(*this, Input.get(), VK, OpLoc, IsAfterAmp);
15584 break;
15585 }
15586 case UO_Plus:
15587 case UO_Minus:
15588 CanOverflow = Opc == UO_Minus &&
15589 isOverflowingIntegerType(Context, Input.get()->getType());
15590 Input = UsualUnaryConversions(Input.get());
15591 if (Input.isInvalid()) return ExprError();
15592 // Unary plus and minus require promoting an operand of half vector to a
15593 // float vector and truncating the result back to a half vector. For now, we
15594 // do this only when HalfArgsAndReturns is set (that is, when the target is
15595 // arm or arm64).
15596 ConvertHalfVec = needsConversionOfHalfVec(true, Context, Input.get());
15597
15598 // If the operand is a half vector, promote it to a float vector.
15599 if (ConvertHalfVec)
15600 Input = convertVector(Input.get(), Context.FloatTy, *this);
15601 resultType = Input.get()->getType();
15602 if (resultType->isDependentType())
15603 break;
15604 if (resultType->isArithmeticType()) // C99 6.5.3.3p1
15605 break;
15606 else if (resultType->isVectorType() &&
15607 // The z vector extensions don't allow + or - with bool vectors.
15608 (!Context.getLangOpts().ZVector ||
15609 resultType->castAs<VectorType>()->getVectorKind() !=
15610 VectorType::AltiVecBool))
15611 break;
15612 else if (resultType->isVLSTBuiltinType()) // SVE vectors allow + and -
15613 break;
15614 else if (getLangOpts().CPlusPlus && // C++ [expr.unary.op]p6
15615 Opc == UO_Plus &&
15616 resultType->isPointerType())
15617 break;
15618
15619 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
15620 << resultType << Input.get()->getSourceRange());
15621
15622 case UO_Not: // bitwise complement
15623 Input = UsualUnaryConversions(Input.get());
15624 if (Input.isInvalid())
15625 return ExprError();
15626 resultType = Input.get()->getType();
15627 if (resultType->isDependentType())
15628 break;
15629 // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
15630 if (resultType->isComplexType() || resultType->isComplexIntegerType())
15631 // C99 does not support '~' for complex conjugation.
15632 Diag(OpLoc, diag::ext_integer_complement_complex)
15633 << resultType << Input.get()->getSourceRange();
15634 else if (resultType->hasIntegerRepresentation())
15635 break;
15636 else if (resultType->isExtVectorType() && Context.getLangOpts().OpenCL) {
15637 // OpenCL v1.1 s6.3.f: The bitwise operator not (~) does not operate
15638 // on vector float types.
15639 QualType T = resultType->castAs<ExtVectorType>()->getElementType();
15640 if (!T->isIntegerType())
15641 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
15642 << resultType << Input.get()->getSourceRange());
15643 } else {
15644 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
15645 << resultType << Input.get()->getSourceRange());
15646 }
15647 break;
15648
15649 case UO_LNot: // logical negation
15650 // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
15651 Input = DefaultFunctionArrayLvalueConversion(Input.get());
15652 if (Input.isInvalid()) return ExprError();
15653 resultType = Input.get()->getType();
15654
15655 // Though we still have to promote half FP to float...
15656 if (resultType->isHalfType() && !Context.getLangOpts().NativeHalfType) {
15657 Input = ImpCastExprToType(Input.get(), Context.FloatTy, CK_FloatingCast).get();
15658 resultType = Context.FloatTy;
15659 }
15660
15661 if (resultType->isDependentType())
15662 break;
15663 if (resultType->isScalarType() && !isScopedEnumerationType(resultType)) {
15664 // C99 6.5.3.3p1: ok, fallthrough;
15665 if (Context.getLangOpts().CPlusPlus) {
15666 // C++03 [expr.unary.op]p8, C++0x [expr.unary.op]p9:
15667 // operand contextually converted to bool.
15668 Input = ImpCastExprToType(Input.get(), Context.BoolTy,
15669 ScalarTypeToBooleanCastKind(resultType));
15670 } else if (Context.getLangOpts().OpenCL &&
15671 Context.getLangOpts().OpenCLVersion < 120) {
15672 // OpenCL v1.1 6.3.h: The logical operator not (!) does not
15673 // operate on scalar float types.
15674 if (!resultType->isIntegerType() && !resultType->isPointerType())
15675 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
15676 << resultType << Input.get()->getSourceRange());
15677 }
15678 } else if (resultType->isExtVectorType()) {
15679 if (Context.getLangOpts().OpenCL &&
15680 Context.getLangOpts().getOpenCLCompatibleVersion() < 120) {
15681 // OpenCL v1.1 6.3.h: The logical operator not (!) does not
15682 // operate on vector float types.
15683 QualType T = resultType->castAs<ExtVectorType>()->getElementType();
15684 if (!T->isIntegerType())
15685 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
15686 << resultType << Input.get()->getSourceRange());
15687 }
15688 // Vector logical not returns the signed variant of the operand type.
15689 resultType = GetSignedVectorType(resultType);
15690 break;
15691 } else if (Context.getLangOpts().CPlusPlus && resultType->isVectorType()) {
15692 const VectorType *VTy = resultType->castAs<VectorType>();
15693 if (VTy->getVectorKind() != VectorType::GenericVector)
15694 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
15695 << resultType << Input.get()->getSourceRange());
15696
15697 // Vector logical not returns the signed variant of the operand type.
15698 resultType = GetSignedVectorType(resultType);
15699 break;
15700 } else {
15701 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
15702 << resultType << Input.get()->getSourceRange());
15703 }
15704
15705 // LNot always has type int. C99 6.5.3.3p5.
15706 // In C++, it's bool. C++ 5.3.1p8
15707 resultType = Context.getLogicalOperationType();
15708 break;
15709 case UO_Real:
15710 case UO_Imag:
15711 resultType = CheckRealImagOperand(*this, Input, OpLoc, Opc == UO_Real);
15712 // _Real maps ordinary l-values into ordinary l-values. _Imag maps ordinary
15713 // complex l-values to ordinary l-values and all other values to r-values.
15714 if (Input.isInvalid()) return ExprError();
15715 if (Opc == UO_Real || Input.get()->getType()->isAnyComplexType()) {
15716 if (Input.get()->isGLValue() &&
15717 Input.get()->getObjectKind() == OK_Ordinary)
15718 VK = Input.get()->getValueKind();
15719 } else if (!getLangOpts().CPlusPlus) {
15720 // In C, a volatile scalar is read by __imag. In C++, it is not.
15721 Input = DefaultLvalueConversion(Input.get());
15722 }
15723 break;
15724 case UO_Extension:
15725 resultType = Input.get()->getType();
15726 VK = Input.get()->getValueKind();
15727 OK = Input.get()->getObjectKind();
15728 break;
15729 case UO_Coawait:
15730 // It's unnecessary to represent the pass-through operator co_await in the
15731 // AST; just return the input expression instead.
15732 assert(!Input.get()->getType()->isDependentType() &&(static_cast <bool> (!Input.get()->getType()->isDependentType
() && "the co_await expression must be non-dependant before "
"building operator co_await") ? void (0) : __assert_fail ("!Input.get()->getType()->isDependentType() && \"the co_await expression must be non-dependant before \" \"building operator co_await\""
, "clang/lib/Sema/SemaExpr.cpp", 15734, __extension__ __PRETTY_FUNCTION__
))
15733 "the co_await expression must be non-dependant before "(static_cast <bool> (!Input.get()->getType()->isDependentType
() && "the co_await expression must be non-dependant before "
"building operator co_await") ? void (0) : __assert_fail ("!Input.get()->getType()->isDependentType() && \"the co_await expression must be non-dependant before \" \"building operator co_await\""
, "clang/lib/Sema/SemaExpr.cpp", 15734, __extension__ __PRETTY_FUNCTION__
))
15734 "building operator co_await")(static_cast <bool> (!Input.get()->getType()->isDependentType
() && "the co_await expression must be non-dependant before "
"building operator co_await") ? void (0) : __assert_fail ("!Input.get()->getType()->isDependentType() && \"the co_await expression must be non-dependant before \" \"building operator co_await\""
, "clang/lib/Sema/SemaExpr.cpp", 15734, __extension__ __PRETTY_FUNCTION__
))
;
15735 return Input;
15736 }
15737 if (resultType.isNull() || Input.isInvalid())
15738 return ExprError();
15739
15740 // Check for array bounds violations in the operand of the UnaryOperator,
15741 // except for the '*' and '&' operators that have to be handled specially
15742 // by CheckArrayAccess (as there are special cases like &array[arraysize]
15743 // that are explicitly defined as valid by the standard).
15744 if (Opc != UO_AddrOf && Opc != UO_Deref)
15745 CheckArrayAccess(Input.get());
15746
15747 auto *UO =
15748 UnaryOperator::Create(Context, Input.get(), Opc, resultType, VK, OK,
15749 OpLoc, CanOverflow, CurFPFeatureOverrides());
15750
15751 if (Opc == UO_Deref && UO->getType()->hasAttr(attr::NoDeref) &&
15752 !isa<ArrayType>(UO->getType().getDesugaredType(Context)) &&
15753 !isUnevaluatedContext())
15754 ExprEvalContexts.back().PossibleDerefs.insert(UO);
15755
15756 // Convert the result back to a half vector.
15757 if (ConvertHalfVec)
15758 return convertVector(UO, Context.HalfTy, *this);
15759 return UO;
15760}
15761
15762/// Determine whether the given expression is a qualified member
15763/// access expression, of a form that could be turned into a pointer to member
15764/// with the address-of operator.
15765bool Sema::isQualifiedMemberAccess(Expr *E) {
15766 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
15767 if (!DRE->getQualifier())
15768 return false;
15769
15770 ValueDecl *VD = DRE->getDecl();
15771 if (!VD->isCXXClassMember())
15772 return false;
15773
15774 if (isa<FieldDecl>(VD) || isa<IndirectFieldDecl>(VD))
15775 return true;
15776 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(VD))
15777 return Method->isInstance();
15778
15779 return false;
15780 }
15781
15782 if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
15783 if (!ULE->getQualifier())
15784 return false;
15785
15786 for (NamedDecl *D : ULE->decls()) {
15787 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
15788 if (Method->isInstance())
15789 return true;
15790 } else {
15791 // Overload set does not contain methods.
15792 break;
15793 }
15794 }
15795
15796 return false;
15797 }
15798
15799 return false;
15800}
15801
15802ExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
15803 UnaryOperatorKind Opc, Expr *Input,
15804 bool IsAfterAmp) {
15805 // First things first: handle placeholders so that the
15806 // overloaded-operator check considers the right type.
15807 if (const BuiltinType *pty = Input->getType()->getAsPlaceholderType()) {
15808 // Increment and decrement of pseudo-object references.
15809 if (pty->getKind() == BuiltinType::PseudoObject &&
15810 UnaryOperator::isIncrementDecrementOp(Opc))
15811 return checkPseudoObjectIncDec(S, OpLoc, Opc, Input);
15812
15813 // extension is always a builtin operator.
15814 if (Opc == UO_Extension)
15815 return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
15816
15817 // & gets special logic for several kinds of placeholder.
15818 // The builtin code knows what to do.
15819 if (Opc == UO_AddrOf &&
15820 (pty->getKind() == BuiltinType::Overload ||
15821 pty->getKind() == BuiltinType::UnknownAny ||
15822 pty->getKind() == BuiltinType::BoundMember))
15823 return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
15824
15825 // Anything else needs to be handled now.
15826 ExprResult Result = CheckPlaceholderExpr(Input);
15827 if (Result.isInvalid()) return ExprError();
15828 Input = Result.get();
15829 }
15830
15831 if (getLangOpts().CPlusPlus && Input->getType()->isOverloadableType() &&
15832 UnaryOperator::getOverloadedOperator(Opc) != OO_None &&
15833 !(Opc == UO_AddrOf && isQualifiedMemberAccess(Input))) {
15834 // Find all of the overloaded operators visible from this point.
15835 UnresolvedSet<16> Functions;
15836 OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
15837 if (S && OverOp != OO_None)
15838 LookupOverloadedOperatorName(OverOp, S, Functions);
15839
15840 return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, Input);
15841 }
15842
15843 return CreateBuiltinUnaryOp(OpLoc, Opc, Input, IsAfterAmp);
15844}
15845
15846// Unary Operators. 'Tok' is the token for the operator.
15847ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc, tok::TokenKind Op,
15848 Expr *Input, bool IsAfterAmp) {
15849 return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), Input,
15850 IsAfterAmp);
15851}
15852
15853/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
15854ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc,
15855 LabelDecl *TheDecl) {
15856 TheDecl->markUsed(Context);
15857 // Create the AST node. The address of a label always has type 'void*'.
15858 return new (Context) AddrLabelExpr(OpLoc, LabLoc, TheDecl,
15859 Context.getPointerType(Context.VoidTy));
15860}
15861
15862void Sema::ActOnStartStmtExpr() {
15863 PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
15864}
15865
15866void Sema::ActOnStmtExprError() {
15867 // Note that function is also called by TreeTransform when leaving a
15868 // StmtExpr scope without rebuilding anything.
15869
15870 DiscardCleanupsInEvaluationContext();
15871 PopExpressionEvaluationContext();
15872}
15873
15874ExprResult Sema::ActOnStmtExpr(Scope *S, SourceLocation LPLoc, Stmt *SubStmt,
15875 SourceLocation RPLoc) {
15876 return BuildStmtExpr(LPLoc, SubStmt, RPLoc, getTemplateDepth(S));
15877}
15878
15879ExprResult Sema::BuildStmtExpr(SourceLocation LPLoc, Stmt *SubStmt,
15880 SourceLocation RPLoc, unsigned TemplateDepth) {
15881 assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!")(static_cast <bool> (SubStmt && isa<CompoundStmt
>(SubStmt) && "Invalid action invocation!") ? void
(0) : __assert_fail ("SubStmt && isa<CompoundStmt>(SubStmt) && \"Invalid action invocation!\""
, "clang/lib/Sema/SemaExpr.cpp", 15881, __extension__ __PRETTY_FUNCTION__
))
;
15882 CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
15883
15884 if (hasAnyUnrecoverableErrorsInThisFunction())
15885 DiscardCleanupsInEvaluationContext();
15886 assert(!Cleanup.exprNeedsCleanups() &&(static_cast <bool> (!Cleanup.exprNeedsCleanups() &&
"cleanups within StmtExpr not correctly bound!") ? void (0) :
__assert_fail ("!Cleanup.exprNeedsCleanups() && \"cleanups within StmtExpr not correctly bound!\""
, "clang/lib/Sema/SemaExpr.cpp", 15887, __extension__ __PRETTY_FUNCTION__
))
15887 "cleanups within StmtExpr not correctly bound!")(static_cast <bool> (!Cleanup.exprNeedsCleanups() &&
"cleanups within StmtExpr not correctly bound!") ? void (0) :
__assert_fail ("!Cleanup.exprNeedsCleanups() && \"cleanups within StmtExpr not correctly bound!\""
, "clang/lib/Sema/SemaExpr.cpp", 15887, __extension__ __PRETTY_FUNCTION__
))
;
15888 PopExpressionEvaluationContext();
15889
15890 // FIXME: there are a variety of strange constraints to enforce here, for
15891 // example, it is not possible to goto into a stmt expression apparently.
15892 // More semantic analysis is needed.
15893
15894 // If there are sub-stmts in the compound stmt, take the type of the last one
15895 // as the type of the stmtexpr.
15896 QualType Ty = Context.VoidTy;
15897 bool StmtExprMayBindToTemp = false;
15898 if (!Compound->body_empty()) {
15899 // For GCC compatibility we get the last Stmt excluding trailing NullStmts.
15900 if (const auto *LastStmt =
15901 dyn_cast<ValueStmt>(Compound->getStmtExprResult())) {
15902 if (const Expr *Value = LastStmt->getExprStmt()) {
15903 StmtExprMayBindToTemp = true;
15904 Ty = Value->getType();
15905 }
15906 }
15907 }
15908
15909 // FIXME: Check that expression type is complete/non-abstract; statement
15910 // expressions are not lvalues.
15911 Expr *ResStmtExpr =
15912 new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc, TemplateDepth);
15913 if (StmtExprMayBindToTemp)
15914 return MaybeBindToTemporary(ResStmtExpr);
15915 return ResStmtExpr;
15916}
15917
15918ExprResult Sema::ActOnStmtExprResult(ExprResult ER) {
15919 if (ER.isInvalid())
15920 return ExprError();
15921
15922 // Do function/array conversion on the last expression, but not
15923 // lvalue-to-rvalue. However, initialize an unqualified type.
15924 ER = DefaultFunctionArrayConversion(ER.get());
15925 if (ER.isInvalid())
15926 return ExprError();
15927 Expr *E = ER.get();
15928
15929 if (E->isTypeDependent())
15930 return E;
15931
15932 // In ARC, if the final expression ends in a consume, splice
15933 // the consume out and bind it later. In the alternate case
15934 // (when dealing with a retainable type), the result
15935 // initialization will create a produce. In both cases the
15936 // result will be +1, and we'll need to balance that out with
15937 // a bind.
15938 auto *Cast = dyn_cast<ImplicitCastExpr>(E);
15939 if (Cast && Cast->getCastKind() == CK_ARCConsumeObject)
15940 return Cast->getSubExpr();
15941
15942 // FIXME: Provide a better location for the initialization.
15943 return PerformCopyInitialization(
15944 InitializedEntity::InitializeStmtExprResult(
15945 E->getBeginLoc(), E->getType().getUnqualifiedType()),
15946 SourceLocation(), E);
15947}
15948
15949ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
15950 TypeSourceInfo *TInfo,
15951 ArrayRef<OffsetOfComponent> Components,
15952 SourceLocation RParenLoc) {
15953 QualType ArgTy = TInfo->getType();
15954 bool Dependent = ArgTy->isDependentType();
15955 SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange();
15956
15957 // We must have at least one component that refers to the type, and the first
15958 // one is known to be a field designator. Verify that the ArgTy represents
15959 // a struct/union/class.
15960 if (!Dependent && !ArgTy->isRecordType())
15961 return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type)
15962 << ArgTy << TypeRange);
15963
15964 // Type must be complete per C99 7.17p3 because a declaring a variable
15965 // with an incomplete type would be ill-formed.
15966 if (!Dependent
15967 && RequireCompleteType(BuiltinLoc, ArgTy,
15968 diag::err_offsetof_incomplete_type, TypeRange))
15969 return ExprError();
15970
15971 bool DidWarnAboutNonPOD = false;
15972 QualType CurrentType = ArgTy;
15973 SmallVector<OffsetOfNode, 4> Comps;
15974 SmallVector<Expr*, 4> Exprs;
15975 for (const OffsetOfComponent &OC : Components) {
15976 if (OC.isBrackets) {
15977 // Offset of an array sub-field. TODO: Should we allow vector elements?
15978 if (!CurrentType->isDependentType()) {
15979 const ArrayType *AT = Context.getAsArrayType(CurrentType);
15980 if(!AT)
15981 return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
15982 << CurrentType);
15983 CurrentType = AT->getElementType();
15984 } else
15985 CurrentType = Context.DependentTy;
15986
15987 ExprResult IdxRval = DefaultLvalueConversion(static_cast<Expr*>(OC.U.E));
15988 if (IdxRval.isInvalid())
15989 return ExprError();
15990 Expr *Idx = IdxRval.get();
15991
15992 // The expression must be an integral expression.
15993 // FIXME: An integral constant expression?
15994 if (!Idx->isTypeDependent() && !Idx->isValueDependent() &&
15995 !Idx->getType()->isIntegerType())
15996 return ExprError(
15997 Diag(Idx->getBeginLoc(), diag::err_typecheck_subscript_not_integer)
15998 << Idx->getSourceRange());
15999
16000 // Record this array index.
16001 Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd));
16002 Exprs.push_back(Idx);
16003 continue;
16004 }
16005
16006 // Offset of a field.
16007 if (CurrentType->isDependentType()) {
16008 // We have the offset of a field, but we can't look into the dependent
16009 // type. Just record the identifier of the field.
16010 Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd));
16011 CurrentType = Context.DependentTy;
16012 continue;
16013 }
16014
16015 // We need to have a complete type to look into.
16016 if (RequireCompleteType(OC.LocStart, CurrentType,
16017 diag::err_offsetof_incomplete_type))
16018 return ExprError();
16019
16020 // Look for the designated field.
16021 const RecordType *RC = CurrentType->getAs<RecordType>();
16022 if (!RC)
16023 return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
16024 << CurrentType);
16025 RecordDecl *RD = RC->getDecl();
16026
16027 // C++ [lib.support.types]p5:
16028 // The macro offsetof accepts a restricted set of type arguments in this
16029 // International Standard. type shall be a POD structure or a POD union
16030 // (clause 9).
16031 // C++11 [support.types]p4:
16032 // If type is not a standard-layout class (Clause 9), the results are
16033 // undefined.
16034 if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
16035 bool IsSafe = LangOpts.CPlusPlus11? CRD->isStandardLayout() : CRD->isPOD();
16036 unsigned DiagID =
16037 LangOpts.CPlusPlus11? diag::ext_offsetof_non_standardlayout_type
16038 : diag::ext_offsetof_non_pod_type;
16039
16040 if (!IsSafe && !DidWarnAboutNonPOD &&
16041 DiagRuntimeBehavior(BuiltinLoc, nullptr,
16042 PDiag(DiagID)
16043 << SourceRange(Components[0].LocStart, OC.LocEnd)
16044 << CurrentType))
16045 DidWarnAboutNonPOD = true;
16046 }
16047
16048 // Look for the field.
16049 LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
16050 LookupQualifiedName(R, RD);
16051 FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
16052 IndirectFieldDecl *IndirectMemberDecl = nullptr;
16053 if (!MemberDecl) {
16054 if ((IndirectMemberDecl = R.getAsSingle<IndirectFieldDecl>()))
16055 MemberDecl = IndirectMemberDecl->getAnonField();
16056 }
16057
16058 if (!MemberDecl)
16059 return ExprError(Diag(BuiltinLoc, diag::err_no_member)
16060 << OC.U.IdentInfo << RD << SourceRange(OC.LocStart,
16061 OC.LocEnd));
16062
16063 // C99 7.17p3:
16064 // (If the specified member is a bit-field, the behavior is undefined.)
16065 //
16066 // We diagnose this as an error.
16067 if (MemberDecl->isBitField()) {
16068 Diag(OC.LocEnd, diag::err_offsetof_bitfield)
16069 << MemberDecl->getDeclName()
16070 << SourceRange(BuiltinLoc, RParenLoc);
16071 Diag(MemberDecl->getLocation(), diag::note_bitfield_decl);
16072 return ExprError();
16073 }
16074
16075 RecordDecl *Parent = MemberDecl->getParent();
16076 if (IndirectMemberDecl)
16077 Parent = cast<RecordDecl>(IndirectMemberDecl->getDeclContext());
16078
16079 // If the member was found in a base class, introduce OffsetOfNodes for
16080 // the base class indirections.
16081 CXXBasePaths Paths;
16082 if (IsDerivedFrom(OC.LocStart, CurrentType, Context.getTypeDeclType(Parent),
16083 Paths)) {
16084 if (Paths.getDetectedVirtual()) {
16085 Diag(OC.LocEnd, diag::err_offsetof_field_of_virtual_base)
16086 << MemberDecl->getDeclName()
16087 << SourceRange(BuiltinLoc, RParenLoc);
16088 return ExprError();
16089 }
16090
16091 CXXBasePath &Path = Paths.front();
16092 for (const CXXBasePathElement &B : Path)
16093 Comps.push_back(OffsetOfNode(B.Base));
16094 }
16095
16096 if (IndirectMemberDecl) {
16097 for (auto *FI : IndirectMemberDecl->chain()) {
16098 assert(isa<FieldDecl>(FI))(static_cast <bool> (isa<FieldDecl>(FI)) ? void (
0) : __assert_fail ("isa<FieldDecl>(FI)", "clang/lib/Sema/SemaExpr.cpp"
, 16098, __extension__ __PRETTY_FUNCTION__))
;
16099 Comps.push_back(OffsetOfNode(OC.LocStart,
16100 cast<FieldDecl>(FI), OC.LocEnd));
16101 }
16102 } else
16103 Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd));
16104
16105 CurrentType = MemberDecl->getType().getNonReferenceType();
16106 }
16107
16108 return OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc, TInfo,
16109 Comps, Exprs, RParenLoc);
16110}
16111
16112ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
16113 SourceLocation BuiltinLoc,
16114 SourceLocation TypeLoc,
16115 ParsedType ParsedArgTy,
16116 ArrayRef<OffsetOfComponent> Components,
16117 SourceLocation RParenLoc) {
16118
16119 TypeSourceInfo *ArgTInfo;
16120 QualType ArgTy = GetTypeFromParser(ParsedArgTy, &ArgTInfo);
16121 if (ArgTy.isNull())
16122 return ExprError();
16123
16124 if (!ArgTInfo)
16125 ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc);
16126
16127 return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, Components, RParenLoc);
16128}
16129
16130
16131ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
16132 Expr *CondExpr,
16133 Expr *LHSExpr, Expr *RHSExpr,
16134 SourceLocation RPLoc) {
16135 assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)")(static_cast <bool> ((CondExpr && LHSExpr &&
RHSExpr) && "Missing type argument(s)") ? void (0) :
__assert_fail ("(CondExpr && LHSExpr && RHSExpr) && \"Missing type argument(s)\""
, "clang/lib/Sema/SemaExpr.cpp", 16135, __extension__ __PRETTY_FUNCTION__
))
;
16136
16137 ExprValueKind VK = VK_PRValue;
16138 ExprObjectKind OK = OK_Ordinary;
16139 QualType resType;
16140 bool CondIsTrue = false;
16141 if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
16142 resType = Context.DependentTy;
16143 } else {
16144 // The conditional expression is required to be a constant expression.
16145 llvm::APSInt condEval(32);
16146 ExprResult CondICE = VerifyIntegerConstantExpression(
16147 CondExpr, &condEval, diag::err_typecheck_choose_expr_requires_constant);
16148 if (CondICE.isInvalid())
16149 return ExprError();
16150 CondExpr = CondICE.get();
16151 CondIsTrue = condEval.getZExtValue();
16152
16153 // If the condition is > zero, then the AST type is the same as the LHSExpr.
16154 Expr *ActiveExpr = CondIsTrue ? LHSExpr : RHSExpr;
16155
16156 resType = ActiveExpr->getType();
16157 VK = ActiveExpr->getValueKind();
16158 OK = ActiveExpr->getObjectKind();
16159 }
16160
16161 return new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
16162 resType, VK, OK, RPLoc, CondIsTrue);
16163}
16164
16165//===----------------------------------------------------------------------===//
16166// Clang Extensions.
16167//===----------------------------------------------------------------------===//
16168
16169/// ActOnBlockStart - This callback is invoked when a block literal is started.
16170void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope) {
16171 BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc);
16172
16173 if (LangOpts.CPlusPlus) {
16174 MangleNumberingContext *MCtx;
16175 Decl *ManglingContextDecl;
16176 std::tie(MCtx, ManglingContextDecl) =
16177 getCurrentMangleNumberContext(Block->getDeclContext());
16178 if (MCtx) {
16179 unsigned ManglingNumber = MCtx->getManglingNumber(Block);
16180 Block->setBlockMangling(ManglingNumber, ManglingContextDecl);
16181 }
16182 }
16183
16184 PushBlockScope(CurScope, Block);
16185 CurContext->addDecl(Block);
16186 if (CurScope)
16187 PushDeclContext(CurScope, Block);
16188 else
16189 CurContext = Block;
16190
16191 getCurBlock()->HasImplicitReturnType = true;
16192
16193 // Enter a new evaluation context to insulate the block from any
16194 // cleanups from the enclosing full-expression.
16195 PushExpressionEvaluationContext(
16196 ExpressionEvaluationContext::PotentiallyEvaluated);
16197}
16198
16199void Sema::ActOnBlockArguments(SourceLocation CaretLoc, Declarator &ParamInfo,
16200 Scope *CurScope) {
16201 assert(ParamInfo.getIdentifier() == nullptr &&(static_cast <bool> (ParamInfo.getIdentifier() == nullptr
&& "block-id should have no identifier!") ? void (0)
: __assert_fail ("ParamInfo.getIdentifier() == nullptr && \"block-id should have no identifier!\""
, "clang/lib/Sema/SemaExpr.cpp", 16202, __extension__ __PRETTY_FUNCTION__
))
16202 "block-id should have no identifier!")(static_cast <bool> (ParamInfo.getIdentifier() == nullptr
&& "block-id should have no identifier!") ? void (0)
: __assert_fail ("ParamInfo.getIdentifier() == nullptr && \"block-id should have no identifier!\""
, "clang/lib/Sema/SemaExpr.cpp", 16202, __extension__ __PRETTY_FUNCTION__
))
;
16203 assert(ParamInfo.getContext() == DeclaratorContext::BlockLiteral)(static_cast <bool> (ParamInfo.getContext() == DeclaratorContext
::BlockLiteral) ? void (0) : __assert_fail ("ParamInfo.getContext() == DeclaratorContext::BlockLiteral"
, "clang/lib/Sema/SemaExpr.cpp", 16203, __extension__ __PRETTY_FUNCTION__
))
;
16204 BlockScopeInfo *CurBlock = getCurBlock();
16205
16206 TypeSourceInfo *Sig = GetTypeForDeclarator(ParamInfo, CurScope);
16207 QualType T = Sig->getType();
16208
16209 // FIXME: We should allow unexpanded parameter packs here, but that would,
16210 // in turn, make the block expression contain unexpanded parameter packs.
16211 if (DiagnoseUnexpandedParameterPack(CaretLoc, Sig, UPPC_Block)) {
16212 // Drop the parameters.
16213 FunctionProtoType::ExtProtoInfo EPI;
16214 EPI.HasTrailingReturn = false;
16215 EPI.TypeQuals.addConst();
16216 T = Context.getFunctionType(Context.DependentTy, None, EPI);
16217 Sig = Context.getTrivialTypeSourceInfo(T);
16218 }
16219
16220 // GetTypeForDeclarator always produces a function type for a block
16221 // literal signature. Furthermore, it is always a FunctionProtoType
16222 // unless the function was written with a typedef.
16223 assert(T->isFunctionType() &&(static_cast <bool> (T->isFunctionType() && "GetTypeForDeclarator made a non-function block signature"
) ? void (0) : __assert_fail ("T->isFunctionType() && \"GetTypeForDeclarator made a non-function block signature\""
, "clang/lib/Sema/SemaExpr.cpp", 16224, __extension__ __PRETTY_FUNCTION__
))
16224 "GetTypeForDeclarator made a non-function block signature")(static_cast <bool> (T->isFunctionType() && "GetTypeForDeclarator made a non-function block signature"
) ? void (0) : __assert_fail ("T->isFunctionType() && \"GetTypeForDeclarator made a non-function block signature\""
, "clang/lib/Sema/SemaExpr.cpp", 16224, __extension__ __PRETTY_FUNCTION__
))
;
16225
16226 // Look for an explicit signature in that function type.
16227 FunctionProtoTypeLoc ExplicitSignature;
16228
16229 if ((ExplicitSignature = Sig->getTypeLoc()
16230 .getAsAdjusted<FunctionProtoTypeLoc>())) {
16231
16232 // Check whether that explicit signature was synthesized by
16233 // GetTypeForDeclarator. If so, don't save that as part of the
16234 // written signature.
16235 if (ExplicitSignature.getLocalRangeBegin() ==
16236 ExplicitSignature.getLocalRangeEnd()) {
16237 // This would be much cheaper if we stored TypeLocs instead of
16238 // TypeSourceInfos.
16239 TypeLoc Result = ExplicitSignature.getReturnLoc();
16240 unsigned Size = Result.getFullDataSize();
16241 Sig = Context.CreateTypeSourceInfo(Result.getType(), Size);
16242 Sig->getTypeLoc().initializeFullCopy(Result, Size);
16243
16244 ExplicitSignature = FunctionProtoTypeLoc();
16245 }
16246 }
16247
16248 CurBlock->TheDecl->setSignatureAsWritten(Sig);
16249 CurBlock->FunctionType = T;
16250
16251 const auto *Fn = T->castAs<FunctionType>();
16252 QualType RetTy = Fn->getReturnType();
16253 bool isVariadic =
16254 (isa<FunctionProtoType>(Fn) && cast<FunctionProtoType>(Fn)->isVariadic());
16255
16256 CurBlock->TheDecl->setIsVariadic(isVariadic);
16257
16258 // Context.DependentTy is used as a placeholder for a missing block
16259 // return type. TODO: what should we do with declarators like:
16260 // ^ * { ... }
16261 // If the answer is "apply template argument deduction"....
16262 if (RetTy != Context.DependentTy) {
16263 CurBlock->ReturnType = RetTy;
16264 CurBlock->TheDecl->setBlockMissingReturnType(false);
16265 CurBlock->HasImplicitReturnType = false;
16266 }
16267
16268 // Push block parameters from the declarator if we had them.
16269 SmallVector<ParmVarDecl*, 8> Params;
16270 if (ExplicitSignature) {
16271 for (unsigned I = 0, E = ExplicitSignature.getNumParams(); I != E; ++I) {
16272 ParmVarDecl *Param = ExplicitSignature.getParam(I);
16273 if (Param->getIdentifier() == nullptr && !Param->isImplicit() &&
16274 !Param->isInvalidDecl() && !getLangOpts().CPlusPlus) {
16275 // Diagnose this as an extension in C17 and earlier.
16276 if (!getLangOpts().C2x)
16277 Diag(Param->getLocation(), diag::ext_parameter_name_omitted_c2x);
16278 }
16279 Params.push_back(Param);
16280 }
16281
16282 // Fake up parameter variables if we have a typedef, like
16283 // ^ fntype { ... }
16284 } else if (const FunctionProtoType *Fn = T->getAs<FunctionProtoType>()) {
16285 for (const auto &I : Fn->param_types()) {
16286 ParmVarDecl *Param = BuildParmVarDeclForTypedef(
16287 CurBlock->TheDecl, ParamInfo.getBeginLoc(), I);
16288 Params.push_back(Param);
16289 }
16290 }
16291
16292 // Set the parameters on the block decl.
16293 if (!Params.empty()) {
16294 CurBlock->TheDecl->setParams(Params);
16295 CheckParmsForFunctionDef(CurBlock->TheDecl->parameters(),
16296 /*CheckParameterNames=*/false);
16297 }
16298
16299 // Finally we can process decl attributes.
16300 ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
16301
16302 // Put the parameter variables in scope.
16303 for (auto *AI : CurBlock->TheDecl->parameters()) {
16304 AI->setOwningFunction(CurBlock->TheDecl);
16305
16306 // If this has an identifier, add it to the scope stack.
16307 if (AI->getIdentifier()) {
16308 CheckShadow(CurBlock->TheScope, AI);
16309
16310 PushOnScopeChains(AI, CurBlock->TheScope);
16311 }
16312 }
16313}
16314
16315/// ActOnBlockError - If there is an error parsing a block, this callback
16316/// is invoked to pop the information about the block from the action impl.
16317void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
16318 // Leave the expression-evaluation context.
16319 DiscardCleanupsInEvaluationContext();
16320 PopExpressionEvaluationContext();
16321
16322 // Pop off CurBlock, handle nested blocks.
16323 PopDeclContext();
16324 PopFunctionScopeInfo();
16325}
16326
16327/// ActOnBlockStmtExpr - This is called when the body of a block statement
16328/// literal was successfully completed. ^(int x){...}
16329ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
16330 Stmt *Body, Scope *CurScope) {
16331 // If blocks are disabled, emit an error.
16332 if (!LangOpts.Blocks)
16333 Diag(CaretLoc, diag::err_blocks_disable) << LangOpts.OpenCL;
16334
16335 // Leave the expression-evaluation context.
16336 if (hasAnyUnrecoverableErrorsInThisFunction())
16337 DiscardCleanupsInEvaluationContext();
16338 assert(!Cleanup.exprNeedsCleanups() &&(static_cast <bool> (!Cleanup.exprNeedsCleanups() &&
"cleanups within block not correctly bound!") ? void (0) : __assert_fail
("!Cleanup.exprNeedsCleanups() && \"cleanups within block not correctly bound!\""
, "clang/lib/Sema/SemaExpr.cpp", 16339, __extension__ __PRETTY_FUNCTION__
))
16339 "cleanups within block not correctly bound!")(static_cast <bool> (!Cleanup.exprNeedsCleanups() &&
"cleanups within block not correctly bound!") ? void (0) : __assert_fail
("!Cleanup.exprNeedsCleanups() && \"cleanups within block not correctly bound!\""
, "clang/lib/Sema/SemaExpr.cpp", 16339, __extension__ __PRETTY_FUNCTION__
))
;
16340 PopExpressionEvaluationContext();
16341
16342 BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back());
16343 BlockDecl *BD = BSI->TheDecl;
16344
16345 if (BSI->HasImplicitReturnType)
16346 deduceClosureReturnType(*BSI);
16347
16348 QualType RetTy = Context.VoidTy;
16349 if (!BSI->ReturnType.isNull())
16350 RetTy = BSI->ReturnType;
16351
16352 bool NoReturn = BD->hasAttr<NoReturnAttr>();
16353 QualType BlockTy;
16354
16355 // If the user wrote a function type in some form, try to use that.
16356 if (!BSI->FunctionType.isNull()) {
16357 const FunctionType *FTy = BSI->FunctionType->castAs<FunctionType>();
16358
16359 FunctionType::ExtInfo Ext = FTy->getExtInfo();
16360 if (NoReturn && !Ext.getNoReturn()) Ext = Ext.withNoReturn(true);
16361
16362 // Turn protoless block types into nullary block types.
16363 if (isa<FunctionNoProtoType>(FTy)) {
16364 FunctionProtoType::ExtProtoInfo EPI;
16365 EPI.ExtInfo = Ext;
16366 BlockTy = Context.getFunctionType(RetTy, None, EPI);
16367
16368 // Otherwise, if we don't need to change anything about the function type,
16369 // preserve its sugar structure.
16370 } else if (FTy->getReturnType() == RetTy &&
16371 (!NoReturn || FTy->getNoReturnAttr())) {
16372 BlockTy = BSI->FunctionType;
16373
16374 // Otherwise, make the minimal modifications to the function type.
16375 } else {
16376 const FunctionProtoType *FPT = cast<FunctionProtoType>(FTy);
16377 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
16378 EPI.TypeQuals = Qualifiers();
16379 EPI.ExtInfo = Ext;
16380 BlockTy = Context.getFunctionType(RetTy, FPT->getParamTypes(), EPI);
16381 }
16382
16383 // If we don't have a function type, just build one from nothing.
16384 } else {
16385 FunctionProtoType::ExtProtoInfo EPI;
16386 EPI.ExtInfo = FunctionType::ExtInfo().withNoReturn(NoReturn);
16387 BlockTy = Context.getFunctionType(RetTy, None, EPI);
16388 }
16389
16390 DiagnoseUnusedParameters(BD->parameters());
16391 BlockTy = Context.getBlockPointerType(BlockTy);
16392
16393 // If needed, diagnose invalid gotos and switches in the block.
16394 if (getCurFunction()->NeedsScopeChecking() &&
16395 !PP.isCodeCompletionEnabled())
16396 DiagnoseInvalidJumps(cast<CompoundStmt>(Body));
16397
16398 BD->setBody(cast<CompoundStmt>(Body));
16399
16400 if (Body && getCurFunction()->HasPotentialAvailabilityViolations)
16401 DiagnoseUnguardedAvailabilityViolations(BD);
16402
16403 // Try to apply the named return value optimization. We have to check again
16404 // if we can do this, though, because blocks keep return statements around
16405 // to deduce an implicit return type.
16406 if (getLangOpts().CPlusPlus && RetTy->isRecordType() &&
16407 !BD->isDependentContext())
16408 computeNRVO(Body, BSI);
16409
16410 if (RetTy.hasNonTrivialToPrimitiveDestructCUnion() ||
16411 RetTy.hasNonTrivialToPrimitiveCopyCUnion())
16412 checkNonTrivialCUnion(RetTy, BD->getCaretLocation(), NTCUC_FunctionReturn,
16413 NTCUK_Destruct|NTCUK_Copy);
16414
16415 PopDeclContext();
16416
16417 // Set the captured variables on the block.
16418 SmallVector<BlockDecl::Capture, 4> Captures;
16419 for (Capture &Cap : BSI->Captures) {
16420 if (Cap.isInvalid() || Cap.isThisCapture())
16421 continue;
16422 // Cap.getVariable() is always a VarDecl because
16423 // blocks cannot capture structured bindings or other ValueDecl kinds.
16424 auto *Var = cast<VarDecl>(Cap.getVariable());
16425 Expr *CopyExpr = nullptr;
16426 if (getLangOpts().CPlusPlus && Cap.isCopyCapture()) {
16427 if (const RecordType *Record =
16428 Cap.getCaptureType()->getAs<RecordType>()) {
16429 // The capture logic needs the destructor, so make sure we mark it.
16430 // Usually this is unnecessary because most local variables have
16431 // their destructors marked at declaration time, but parameters are
16432 // an exception because it's technically only the call site that
16433 // actually requires the destructor.
16434 if (isa<ParmVarDecl>(Var))
16435 FinalizeVarWithDestructor(Var, Record);
16436
16437 // Enter a separate potentially-evaluated context while building block
16438 // initializers to isolate their cleanups from those of the block
16439 // itself.
16440 // FIXME: Is this appropriate even when the block itself occurs in an
16441 // unevaluated operand?
16442 EnterExpressionEvaluationContext EvalContext(
16443 *this, ExpressionEvaluationContext::PotentiallyEvaluated);
16444
16445 SourceLocation Loc = Cap.getLocation();
16446
16447 ExprResult Result = BuildDeclarationNameExpr(
16448 CXXScopeSpec(), DeclarationNameInfo(Var->getDeclName(), Loc), Var);
16449
16450 // According to the blocks spec, the capture of a variable from
16451 // the stack requires a const copy constructor. This is not true
16452 // of the copy/move done to move a __block variable to the heap.
16453 if (!Result.isInvalid() &&
16454 !Result.get()->getType().isConstQualified()) {
16455 Result = ImpCastExprToType(Result.get(),
16456 Result.get()->getType().withConst(),
16457 CK_NoOp, VK_LValue);
16458 }
16459
16460 if (!Result.isInvalid()) {
16461 Result = PerformCopyInitialization(
16462 InitializedEntity::InitializeBlock(Var->getLocation(),
16463 Cap.getCaptureType()),
16464 Loc, Result.get());
16465 }
16466
16467 // Build a full-expression copy expression if initialization
16468 // succeeded and used a non-trivial constructor. Recover from
16469 // errors by pretending that the copy isn't necessary.
16470 if (!Result.isInvalid() &&
16471 !cast<CXXConstructExpr>(Result.get())->getConstructor()
16472 ->isTrivial()) {
16473 Result = MaybeCreateExprWithCleanups(Result);
16474 CopyExpr = Result.get();
16475 }
16476 }
16477 }
16478
16479 BlockDecl::Capture NewCap(Var, Cap.isBlockCapture(), Cap.isNested(),
16480 CopyExpr);
16481 Captures.push_back(NewCap);
16482 }
16483 BD->setCaptures(Context, Captures, BSI->CXXThisCaptureIndex != 0);
16484
16485 // Pop the block scope now but keep it alive to the end of this function.
16486 AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
16487 PoppedFunctionScopePtr ScopeRAII = PopFunctionScopeInfo(&WP, BD, BlockTy);
16488
16489 BlockExpr *Result = new (Context) BlockExpr(BD, BlockTy);
16490
16491 // If the block isn't obviously global, i.e. it captures anything at
16492 // all, then we need to do a few things in the surrounding context:
16493 if (Result->getBlockDecl()->hasCaptures()) {
16494 // First, this expression has a new cleanup object.
16495 ExprCleanupObjects.push_back(Result->getBlockDecl());
16496 Cleanup.setExprNeedsCleanups(true);
16497
16498 // It also gets a branch-protected scope if any of the captured
16499 // variables needs destruction.
16500 for (const auto &CI : Result->getBlockDecl()->captures()) {
16501 const VarDecl *var = CI.getVariable();
16502 if (var->getType().isDestructedType() != QualType::DK_none) {
16503 setFunctionHasBranchProtectedScope();
16504 break;
16505 }
16506 }
16507 }
16508
16509 if (getCurFunction())
16510 getCurFunction()->addBlock(BD);
16511
16512 return Result;
16513}
16514
16515ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc, Expr *E, ParsedType Ty,
16516 SourceLocation RPLoc) {
16517 TypeSourceInfo *TInfo;
16518 GetTypeFromParser(Ty, &TInfo);
16519 return BuildVAArgExpr(BuiltinLoc, E, TInfo, RPLoc);
16520}
16521
16522ExprResult Sema::BuildVAArgExpr(SourceLocation BuiltinLoc,
16523 Expr *E, TypeSourceInfo *TInfo,
16524 SourceLocation RPLoc) {
16525 Expr *OrigExpr = E;
16526 bool IsMS = false;
16527
16528 // CUDA device code does not support varargs.
16529 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) {
16530 if (const FunctionDecl *F = dyn_cast<FunctionDecl>(CurContext)) {
16531 CUDAFunctionTarget T = IdentifyCUDATarget(F);
16532 if (T == CFT_Global || T == CFT_Device || T == CFT_HostDevice)
16533 return ExprError(Diag(E->getBeginLoc(), diag::err_va_arg_in_device));
16534 }
16535 }
16536
16537 // NVPTX does not support va_arg expression.
16538 if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
16539 Context.getTargetInfo().getTriple().isNVPTX())
16540 targetDiag(E->getBeginLoc(), diag::err_va_arg_in_device);
16541
16542 // It might be a __builtin_ms_va_list. (But don't ever mark a va_arg()
16543 // as Microsoft ABI on an actual Microsoft platform, where
16544 // __builtin_ms_va_list and __builtin_va_list are the same.)
16545 if (!E->isTypeDependent() && Context.getTargetInfo().hasBuiltinMSVaList() &&
16546 Context.getTargetInfo().getBuiltinVaListKind() != TargetInfo::CharPtrBuiltinVaList) {
16547 QualType MSVaListType = Context.getBuiltinMSVaListType();
16548 if (Context.hasSameType(MSVaListType, E->getType())) {
16549 if (CheckForModifiableLvalue(E, BuiltinLoc, *this))
16550 return ExprError();
16551 IsMS = true;
16552 }
16553 }
16554
16555 // Get the va_list type
16556 QualType VaListType = Context.getBuiltinVaListType();
16557 if (!IsMS) {
16558 if (VaListType->isArrayType()) {
16559 // Deal with implicit array decay; for example, on x86-64,
16560 // va_list is an array, but it's supposed to decay to
16561 // a pointer for va_arg.
16562 VaListType = Context.getArrayDecayedType(VaListType);
16563 // Make sure the input expression also decays appropriately.
16564 ExprResult Result = UsualUnaryConversions(E);
16565 if (Result.isInvalid())
16566 return ExprError();
16567 E = Result.get();
16568 } else if (VaListType->isRecordType() && getLangOpts().CPlusPlus) {
16569 // If va_list is a record type and we are compiling in C++ mode,
16570 // check the argument using reference binding.
16571 InitializedEntity Entity = InitializedEntity::InitializeParameter(
16572 Context, Context.getLValueReferenceType(VaListType), false);
16573 ExprResult Init = PerformCopyInitialization(Entity, SourceLocation(), E);
16574 if (Init.isInvalid())
16575 return ExprError();
16576 E = Init.getAs<Expr>();
16577 } else {
16578 // Otherwise, the va_list argument must be an l-value because
16579 // it is modified by va_arg.
16580 if (!E->isTypeDependent() &&
16581 CheckForModifiableLvalue(E, BuiltinLoc, *this))
16582 return ExprError();
16583 }
16584 }
16585
16586 if (!IsMS && !E->isTypeDependent() &&
16587 !Context.hasSameType(VaListType, E->getType()))
16588 return ExprError(
16589 Diag(E->getBeginLoc(),
16590 diag::err_first_argument_to_va_arg_not_of_type_va_list)
16591 << OrigExpr->getType() << E->getSourceRange());
16592
16593 if (!TInfo->getType()->isDependentType()) {
16594 if (RequireCompleteType(TInfo->getTypeLoc().getBeginLoc(), TInfo->getType(),
16595 diag::err_second_parameter_to_va_arg_incomplete,
16596 TInfo->getTypeLoc()))
16597 return ExprError();
16598
16599 if (RequireNonAbstractType(TInfo->getTypeLoc().getBeginLoc(),
16600 TInfo->getType(),
16601 diag::err_second_parameter_to_va_arg_abstract,
16602 TInfo->getTypeLoc()))
16603 return ExprError();
16604
16605 if (!TInfo->getType().isPODType(Context)) {
16606 Diag(TInfo->getTypeLoc().getBeginLoc(),
16607 TInfo->getType()->isObjCLifetimeType()
16608 ? diag::warn_second_parameter_to_va_arg_ownership_qualified
16609 : diag::warn_second_parameter_to_va_arg_not_pod)
16610 << TInfo->getType()
16611 << TInfo->getTypeLoc().getSourceRange();
16612 }
16613
16614 // Check for va_arg where arguments of the given type will be promoted
16615 // (i.e. this va_arg is guaranteed to have undefined behavior).
16616 QualType PromoteType;
16617 if (TInfo->getType()->isPromotableIntegerType()) {
16618 PromoteType = Context.getPromotedIntegerType(TInfo->getType());
16619 // [cstdarg.syn]p1 defers the C++ behavior to what the C standard says,
16620 // and C2x 7.16.1.1p2 says, in part:
16621 // If type is not compatible with the type of the actual next argument
16622 // (as promoted according to the default argument promotions), the
16623 // behavior is undefined, except for the following cases:
16624 // - both types are pointers to qualified or unqualified versions of
16625 // compatible types;
16626 // - one type is a signed integer type, the other type is the
16627 // corresponding unsigned integer type, and the value is
16628 // representable in both types;
16629 // - one type is pointer to qualified or unqualified void and the
16630 // other is a pointer to a qualified or unqualified character type.
16631 // Given that type compatibility is the primary requirement (ignoring
16632 // qualifications), you would think we could call typesAreCompatible()
16633 // directly to test this. However, in C++, that checks for *same type*,
16634 // which causes false positives when passing an enumeration type to
16635 // va_arg. Instead, get the underlying type of the enumeration and pass
16636 // that.
16637 QualType UnderlyingType = TInfo->getType();
16638 if (const auto *ET = UnderlyingType->getAs<EnumType>())
16639 UnderlyingType = ET->getDecl()->getIntegerType();
16640 if (Context.typesAreCompatible(PromoteType, UnderlyingType,
16641 /*CompareUnqualified*/ true))
16642 PromoteType = QualType();
16643
16644 // If the types are still not compatible, we need to test whether the
16645 // promoted type and the underlying type are the same except for
16646 // signedness. Ask the AST for the correctly corresponding type and see
16647 // if that's compatible.
16648 if (!PromoteType.isNull() && !UnderlyingType->isBooleanType() &&
16649 PromoteType->isUnsignedIntegerType() !=
16650 UnderlyingType->isUnsignedIntegerType()) {
16651 UnderlyingType =
16652 UnderlyingType->isUnsignedIntegerType()
16653 ? Context.getCorrespondingSignedType(UnderlyingType)
16654 : Context.getCorrespondingUnsignedType(UnderlyingType);
16655 if (Context.typesAreCompatible(PromoteType, UnderlyingType,
16656 /*CompareUnqualified*/ true))
16657 PromoteType = QualType();
16658 }
16659 }
16660 if (TInfo->getType()->isSpecificBuiltinType(BuiltinType::Float))
16661 PromoteType = Context.DoubleTy;
16662 if (!PromoteType.isNull())
16663 DiagRuntimeBehavior(TInfo->getTypeLoc().getBeginLoc(), E,
16664 PDiag(diag::warn_second_parameter_to_va_arg_never_compatible)
16665 << TInfo->getType()
16666 << PromoteType
16667 << TInfo->getTypeLoc().getSourceRange());
16668 }
16669
16670 QualType T = TInfo->getType().getNonLValueExprType(Context);
16671 return new (Context) VAArgExpr(BuiltinLoc, E, TInfo, RPLoc, T, IsMS);
16672}
16673
16674ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
16675 // The type of __null will be int or long, depending on the size of
16676 // pointers on the target.
16677 QualType Ty;
16678 unsigned pw = Context.getTargetInfo().getPointerWidth(0);
16679 if (pw == Context.getTargetInfo().getIntWidth())
16680 Ty = Context.IntTy;
16681 else if (pw == Context.getTargetInfo().getLongWidth())
16682 Ty = Context.LongTy;
16683 else if (pw == Context.getTargetInfo().getLongLongWidth())
16684 Ty = Context.LongLongTy;
16685 else {
16686 llvm_unreachable("I don't know size of pointer!")::llvm::llvm_unreachable_internal("I don't know size of pointer!"
, "clang/lib/Sema/SemaExpr.cpp", 16686)
;
16687 }
16688
16689 return new (Context) GNUNullExpr(Ty, TokenLoc);
16690}
16691
16692static CXXRecordDecl *LookupStdSourceLocationImpl(Sema &S, SourceLocation Loc) {
16693 CXXRecordDecl *ImplDecl = nullptr;
16694
16695 // Fetch the std::source_location::__impl decl.
16696 if (NamespaceDecl *Std = S.getStdNamespace()) {
16697 LookupResult ResultSL(S, &S.PP.getIdentifierTable().get("source_location"),
16698 Loc, Sema::LookupOrdinaryName);
16699 if (S.LookupQualifiedName(ResultSL, Std)) {
16700 if (auto *SLDecl = ResultSL.getAsSingle<RecordDecl>()) {
16701 LookupResult ResultImpl(S, &S.PP.getIdentifierTable().get("__impl"),
16702 Loc, Sema::LookupOrdinaryName);
16703 if ((SLDecl->isCompleteDefinition() || SLDecl->isBeingDefined()) &&
16704 S.LookupQualifiedName(ResultImpl, SLDecl)) {
16705 ImplDecl = ResultImpl.getAsSingle<CXXRecordDecl>();
16706 }
16707 }
16708 }
16709 }
16710
16711 if (!ImplDecl || !ImplDecl->isCompleteDefinition()) {
16712 S.Diag(Loc, diag::err_std_source_location_impl_not_found);
16713 return nullptr;
16714 }
16715
16716 // Verify that __impl is a trivial struct type, with no base classes, and with
16717 // only the four expected fields.
16718 if (ImplDecl->isUnion() || !ImplDecl->isStandardLayout() ||
16719 ImplDecl->getNumBases() != 0) {
16720 S.Diag(Loc, diag::err_std_source_location_impl_malformed);
16721 return nullptr;
16722 }
16723
16724 unsigned Count = 0;
16725 for (FieldDecl *F : ImplDecl->fields()) {
16726 StringRef Name = F->getName();
16727
16728 if (Name == "_M_file_name") {
16729 if (F->getType() !=
16730 S.Context.getPointerType(S.Context.CharTy.withConst()))
16731 break;
16732 Count++;
16733 } else if (Name == "_M_function_name") {
16734 if (F->getType() !=
16735 S.Context.getPointerType(S.Context.CharTy.withConst()))
16736 break;
16737 Count++;
16738 } else if (Name == "_M_line") {
16739 if (!F->getType()->isIntegerType())
16740 break;
16741 Count++;
16742 } else if (Name == "_M_column") {
16743 if (!F->getType()->isIntegerType())
16744 break;
16745 Count++;
16746 } else {
16747 Count = 100; // invalid
16748 break;
16749 }
16750 }
16751 if (Count != 4) {
16752 S.Diag(Loc, diag::err_std_source_location_impl_malformed);
16753 return nullptr;
16754 }
16755
16756 return ImplDecl;
16757}
16758
16759ExprResult Sema::ActOnSourceLocExpr(SourceLocExpr::IdentKind Kind,
16760 SourceLocation BuiltinLoc,
16761 SourceLocation RPLoc) {
16762 QualType ResultTy;
16763 switch (Kind) {
16764 case SourceLocExpr::File:
16765 case SourceLocExpr::Function: {
16766 QualType ArrTy = Context.getStringLiteralArrayType(Context.CharTy, 0);
16767 ResultTy =
16768 Context.getPointerType(ArrTy->getAsArrayTypeUnsafe()->getElementType());
16769 break;
16770 }
16771 case SourceLocExpr::Line:
16772 case SourceLocExpr::Column:
16773 ResultTy = Context.UnsignedIntTy;
16774 break;
16775 case SourceLocExpr::SourceLocStruct:
16776 if (!StdSourceLocationImplDecl) {
16777 StdSourceLocationImplDecl =
16778 LookupStdSourceLocationImpl(*this, BuiltinLoc);
16779 if (!StdSourceLocationImplDecl)
16780 return ExprError();
16781 }
16782 ResultTy = Context.getPointerType(
16783 Context.getRecordType(StdSourceLocationImplDecl).withConst());
16784 break;
16785 }
16786
16787 return BuildSourceLocExpr(Kind, ResultTy, BuiltinLoc, RPLoc, CurContext);
16788}
16789
16790ExprResult Sema::BuildSourceLocExpr(SourceLocExpr::IdentKind Kind,
16791 QualType ResultTy,
16792 SourceLocation BuiltinLoc,
16793 SourceLocation RPLoc,
16794 DeclContext *ParentContext) {
16795 return new (Context)
16796 SourceLocExpr(Context, Kind, ResultTy, BuiltinLoc, RPLoc, ParentContext);
16797}
16798
16799bool Sema::CheckConversionToObjCLiteral(QualType DstType, Expr *&Exp,
16800 bool Diagnose) {
16801 if (!getLangOpts().ObjC)
16802 return false;
16803
16804 const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>();
16805 if (!PT)
16806 return false;
16807 const ObjCInterfaceDecl *ID = PT->getInterfaceDecl();
16808
16809 // Ignore any parens, implicit casts (should only be
16810 // array-to-pointer decays), and not-so-opaque values. The last is
16811 // important for making this trigger for property assignments.
16812 Expr *SrcExpr = Exp->IgnoreParenImpCasts();
16813 if (OpaqueValueExpr *OV = dyn_cast<OpaqueValueExpr>(SrcExpr))
16814 if (OV->getSourceExpr())
16815 SrcExpr = OV->getSourceExpr()->IgnoreParenImpCasts();
16816
16817 if (auto *SL = dyn_cast<StringLiteral>(SrcExpr)) {
16818 if (!PT->isObjCIdType() &&
16819 !(ID && ID->getIdentifier()->isStr("NSString")))
16820 return false;
16821 if (!SL->isOrdinary())
16822 return false;
16823
16824 if (Diagnose) {
16825 Diag(SL->getBeginLoc(), diag::err_missing_atsign_prefix)
16826 << /*string*/0 << FixItHint::CreateInsertion(SL->getBeginLoc(), "@");
16827 Exp = BuildObjCStringLiteral(SL->getBeginLoc(), SL).get();
16828 }
16829 return true;
16830 }
16831
16832 if ((isa<IntegerLiteral>(SrcExpr) || isa<CharacterLiteral>(SrcExpr) ||
16833 isa<FloatingLiteral>(SrcExpr) || isa<ObjCBoolLiteralExpr>(SrcExpr) ||
16834 isa<CXXBoolLiteralExpr>(SrcExpr)) &&
16835 !SrcExpr->isNullPointerConstant(
16836 getASTContext(), Expr::NPC_NeverValueDependent)) {
16837 if (!ID || !ID->getIdentifier()->isStr("NSNumber"))
16838 return false;
16839 if (Diagnose) {
16840 Diag(SrcExpr->getBeginLoc(), diag::err_missing_atsign_prefix)
16841 << /*number*/1
16842 << FixItHint::CreateInsertion(SrcExpr->getBeginLoc(), "@");
16843 Expr *NumLit =
16844 BuildObjCNumericLiteral(SrcExpr->getBeginLoc(), SrcExpr).get();
16845 if (NumLit)
16846 Exp = NumLit;
16847 }
16848 return true;
16849 }
16850
16851 return false;
16852}
16853
16854static bool maybeDiagnoseAssignmentToFunction(Sema &S, QualType DstType,
16855 const Expr *SrcExpr) {
16856 if (!DstType->isFunctionPointerType() ||
16857 !SrcExpr->getType()->isFunctionType())
16858 return false;
16859
16860 auto *DRE = dyn_cast<DeclRefExpr>(SrcExpr->IgnoreParenImpCasts());
16861 if (!DRE)
16862 return false;
16863
16864 auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl());
16865 if (!FD)
16866 return false;
16867
16868 return !S.checkAddressOfFunctionIsAvailable(FD,
16869 /*Complain=*/true,
16870 SrcExpr->getBeginLoc());
16871}
16872
16873bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
16874 SourceLocation Loc,
16875 QualType DstType, QualType SrcType,
16876 Expr *SrcExpr, AssignmentAction Action,
16877 bool *Complained) {
16878 if (Complained)
16879 *Complained = false;
16880
16881 // Decode the result (notice that AST's are still created for extensions).
16882 bool CheckInferredResultType = false;
16883 bool isInvalid = false;
16884 unsigned DiagKind = 0;
16885 ConversionFixItGenerator ConvHints;
16886 bool MayHaveConvFixit = false;
16887 bool MayHaveFunctionDiff = false;
16888 const ObjCInterfaceDecl *IFace = nullptr;
16889 const ObjCProtocolDecl *PDecl = nullptr;
16890
16891 switch (ConvTy) {
16892 case Compatible:
16893 DiagnoseAssignmentEnum(DstType, SrcType, SrcExpr);
16894 return false;
16895
16896 case PointerToInt:
16897 if (getLangOpts().CPlusPlus) {
16898 DiagKind = diag::err_typecheck_convert_pointer_int;
16899 isInvalid = true;
16900 } else {
16901 DiagKind = diag::ext_typecheck_convert_pointer_int;
16902 }
16903 ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
16904 MayHaveConvFixit = true;
16905 break;
16906 case IntToPointer:
16907 if (getLangOpts().CPlusPlus) {
16908 DiagKind = diag::err_typecheck_convert_int_pointer;
16909 isInvalid = true;
16910 } else {
16911 DiagKind = diag::ext_typecheck_convert_int_pointer;
16912 }
16913 ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
16914 MayHaveConvFixit = true;
16915 break;
16916 case IncompatibleFunctionPointer:
16917 if (getLangOpts().CPlusPlus) {
16918 DiagKind = diag::err_typecheck_convert_incompatible_function_pointer;
16919 isInvalid = true;
16920 } else {
16921 DiagKind = diag::ext_typecheck_convert_incompatible_function_pointer;
16922 }
16923 ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
16924 MayHaveConvFixit = true;
16925 break;
16926 case IncompatiblePointer:
16927 if (Action == AA_Passing_CFAudited) {
16928 DiagKind = diag::err_arc_typecheck_convert_incompatible_pointer;
16929 } else if (getLangOpts().CPlusPlus) {
16930 DiagKind = diag::err_typecheck_convert_incompatible_pointer;
16931 isInvalid = true;
16932 } else {
16933 DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
16934 }
16935 CheckInferredResultType = DstType->isObjCObjectPointerType() &&
16936 SrcType->isObjCObjectPointerType();
16937 if (!CheckInferredResultType) {
16938 ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
16939 } else if (CheckInferredResultType) {
16940 SrcType = SrcType.getUnqualifiedType();
16941 DstType = DstType.getUnqualifiedType();
16942 }
16943 MayHaveConvFixit = true;
16944 break;
16945 case IncompatiblePointerSign:
16946 if (getLangOpts().CPlusPlus) {
16947 DiagKind = diag::err_typecheck_convert_incompatible_pointer_sign;
16948 isInvalid = true;
16949 } else {
16950 DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
16951 }
16952 break;
16953 case FunctionVoidPointer:
16954 if (getLangOpts().CPlusPlus) {
16955 DiagKind = diag::err_typecheck_convert_pointer_void_func;
16956 isInvalid = true;
16957 } else {
16958 DiagKind = diag::ext_typecheck_convert_pointer_void_func;
16959 }
16960 break;
16961 case IncompatiblePointerDiscardsQualifiers: {
16962 // Perform array-to-pointer decay if necessary.
16963 if (SrcType->isArrayType()) SrcType = Context.getArrayDecayedType(SrcType);
16964
16965 isInvalid = true;
16966
16967 Qualifiers lhq = SrcType->getPointeeType().getQualifiers();
16968 Qualifiers rhq = DstType->getPointeeType().getQualifiers();
16969 if (lhq.getAddressSpace() != rhq.getAddressSpace()) {
16970 DiagKind = diag::err_typecheck_incompatible_address_space;
16971 break;
16972
16973 } else if (lhq.getObjCLifetime() != rhq.getObjCLifetime()) {
16974 DiagKind = diag::err_typecheck_incompatible_ownership;
16975 break;
16976 }
16977
16978 llvm_unreachable("unknown error case for discarding qualifiers!")::llvm::llvm_unreachable_internal("unknown error case for discarding qualifiers!"
, "clang/lib/Sema/SemaExpr.cpp", 16978)
;
16979 // fallthrough
16980 }
16981 case CompatiblePointerDiscardsQualifiers:
16982 // If the qualifiers lost were because we were applying the
16983 // (deprecated) C++ conversion from a string literal to a char*
16984 // (or wchar_t*), then there was no error (C++ 4.2p2). FIXME:
16985 // Ideally, this check would be performed in
16986 // checkPointerTypesForAssignment. However, that would require a
16987 // bit of refactoring (so that the second argument is an
16988 // expression, rather than a type), which should be done as part
16989 // of a larger effort to fix checkPointerTypesForAssignment for
16990 // C++ semantics.
16991 if (getLangOpts().CPlusPlus &&
16992 IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
16993 return false;
16994 if (getLangOpts().CPlusPlus) {
16995 DiagKind = diag::err_typecheck_convert_discards_qualifiers;
16996 isInvalid = true;
16997 } else {
16998 DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
16999 }
17000
17001 break;
17002 case IncompatibleNestedPointerQualifiers:
17003 if (getLangOpts().CPlusPlus) {
17004 isInvalid = true;
17005 DiagKind = diag::err_nested_pointer_qualifier_mismatch;
17006 } else {
17007 DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
17008 }
17009 break;
17010 case IncompatibleNestedPointerAddressSpaceMismatch:
17011 DiagKind = diag::err_typecheck_incompatible_nested_address_space;
17012 isInvalid = true;
17013 break;
17014 case IntToBlockPointer:
17015 DiagKind = diag::err_int_to_block_pointer;
17016 isInvalid = true;
17017 break;
17018 case IncompatibleBlockPointer:
17019 DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
17020 isInvalid = true;
17021 break;
17022 case IncompatibleObjCQualifiedId: {
17023 if (SrcType->isObjCQualifiedIdType()) {
17024 const ObjCObjectPointerType *srcOPT =
17025 SrcType->castAs<ObjCObjectPointerType>();
17026 for (auto *srcProto : srcOPT->quals()) {
17027 PDecl = srcProto;
17028 break;
17029 }
17030 if (const ObjCInterfaceType *IFaceT =
17031 DstType->castAs<ObjCObjectPointerType>()->getInterfaceType())
17032 IFace = IFaceT->getDecl();
17033 }
17034 else if (DstType->isObjCQualifiedIdType()) {
17035 const ObjCObjectPointerType *dstOPT =
17036 DstType->castAs<ObjCObjectPointerType>();
17037 for (auto *dstProto : dstOPT->quals()) {
17038 PDecl = dstProto;
17039 break;
17040 }
17041 if (const ObjCInterfaceType *IFaceT =
17042 SrcType->castAs<ObjCObjectPointerType>()->getInterfaceType())
17043 IFace = IFaceT->getDecl();
17044 }
17045 if (getLangOpts().CPlusPlus) {
17046 DiagKind = diag::err_incompatible_qualified_id;
17047 isInvalid = true;
17048 } else {
17049 DiagKind = diag::warn_incompatible_qualified_id;
17050 }
17051 break;
17052 }
17053 case IncompatibleVectors:
17054 if (getLangOpts().CPlusPlus) {
17055 DiagKind = diag::err_incompatible_vectors;
17056 isInvalid = true;
17057 } else {
17058 DiagKind = diag::warn_incompatible_vectors;
17059 }
17060 break;
17061 case IncompatibleObjCWeakRef:
17062 DiagKind = diag::err_arc_weak_unavailable_assign;
17063 isInvalid = true;
17064 break;
17065 case Incompatible:
17066 if (maybeDiagnoseAssignmentToFunction(*this, DstType, SrcExpr)) {
17067 if (Complained)
17068 *Complained = true;
17069 return true;
17070 }
17071
17072 DiagKind = diag::err_typecheck_convert_incompatible;
17073 ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
17074 MayHaveConvFixit = true;
17075 isInvalid = true;
17076 MayHaveFunctionDiff = true;
17077 break;
17078 }
17079
17080 QualType FirstType, SecondType;
17081 switch (Action) {
17082 case AA_Assigning:
17083 case AA_Initializing:
17084 // The destination type comes first.
17085 FirstType = DstType;
17086 SecondType = SrcType;
17087 break;
17088
17089 case AA_Returning:
17090 case AA_Passing:
17091 case AA_Passing_CFAudited:
17092 case AA_Converting:
17093 case AA_Sending:
17094 case AA_Casting:
17095 // The source type comes first.
17096 FirstType = SrcType;
17097 SecondType = DstType;
17098 break;
17099 }
17100
17101 PartialDiagnostic FDiag = PDiag(DiagKind);
17102 AssignmentAction ActionForDiag = Action;
17103 if (Action == AA_Passing_CFAudited)
17104 ActionForDiag = AA_Passing;
17105
17106 FDiag << FirstType << SecondType << ActionForDiag
17107 << SrcExpr->getSourceRange();
17108
17109 if (DiagKind == diag::ext_typecheck_convert_incompatible_pointer_sign ||
17110 DiagKind == diag::err_typecheck_convert_incompatible_pointer_sign) {
17111 auto isPlainChar = [](const clang::Type *Type) {
17112 return Type->isSpecificBuiltinType(BuiltinType::Char_S) ||
17113 Type->isSpecificBuiltinType(BuiltinType::Char_U);
17114 };
17115 FDiag << (isPlainChar(FirstType->getPointeeOrArrayElementType()) ||
17116 isPlainChar(SecondType->getPointeeOrArrayElementType()));
17117 }
17118
17119 // If we can fix the conversion, suggest the FixIts.
17120 if (!ConvHints.isNull()) {
17121 for (FixItHint &H : ConvHints.Hints)
17122 FDiag << H;
17123 }
17124
17125 if (MayHaveConvFixit) { FDiag << (unsigned) (ConvHints.Kind); }
17126
17127 if (MayHaveFunctionDiff)
17128 HandleFunctionTypeMismatch(FDiag, SecondType, FirstType);
17129
17130 Diag(Loc, FDiag);
17131 if ((DiagKind == diag::warn_incompatible_qualified_id ||
17132 DiagKind == diag::err_incompatible_qualified_id) &&
17133 PDecl && IFace && !IFace->hasDefinition())
17134 Diag(IFace->getLocation(), diag::note_incomplete_class_and_qualified_id)
17135 << IFace << PDecl;
17136
17137 if (SecondType == Context.OverloadTy)
17138 NoteAllOverloadCandidates(OverloadExpr::find(SrcExpr).Expression,
17139 FirstType, /*TakingAddress=*/true);
17140
17141 if (CheckInferredResultType)
17142 EmitRelatedResultTypeNote(SrcExpr);
17143
17144 if (Action == AA_Returning && ConvTy == IncompatiblePointer)
17145 EmitRelatedResultTypeNoteForReturn(DstType);
17146
17147 if (Complained)
17148 *Complained = true;
17149 return isInvalid;
17150}
17151
17152ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
17153 llvm::APSInt *Result,
17154 AllowFoldKind CanFold) {
17155 class SimpleICEDiagnoser : public VerifyICEDiagnoser {
17156 public:
17157 SemaDiagnosticBuilder diagnoseNotICEType(Sema &S, SourceLocation Loc,
17158 QualType T) override {
17159 return S.Diag(Loc, diag::err_ice_not_integral)
17160 << T << S.LangOpts.CPlusPlus;
17161 }
17162 SemaDiagnosticBuilder diagnoseNotICE(Sema &S, SourceLocation Loc) override {
17163 return S.Diag(Loc, diag::err_expr_not_ice) << S.LangOpts.CPlusPlus;
17164 }
17165 } Diagnoser;
17166
17167 return VerifyIntegerConstantExpression(E, Result, Diagnoser, CanFold);
17168}
17169
17170ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
17171 llvm::APSInt *Result,
17172 unsigned DiagID,
17173 AllowFoldKind CanFold) {
17174 class IDDiagnoser : public VerifyICEDiagnoser {
17175 unsigned DiagID;
17176
17177 public:
17178 IDDiagnoser(unsigned DiagID)
17179 : VerifyICEDiagnoser(DiagID == 0), DiagID(DiagID) { }
17180
17181 SemaDiagnosticBuilder diagnoseNotICE(Sema &S, SourceLocation Loc) override {
17182 return S.Diag(Loc, DiagID);
17183 }
17184 } Diagnoser(DiagID);
17185
17186 return VerifyIntegerConstantExpression(E, Result, Diagnoser, CanFold);
17187}
17188
17189Sema::SemaDiagnosticBuilder
17190Sema::VerifyICEDiagnoser::diagnoseNotICEType(Sema &S, SourceLocation Loc,
17191 QualType T) {
17192 return diagnoseNotICE(S, Loc);
17193}
17194
17195Sema::SemaDiagnosticBuilder
17196Sema::VerifyICEDiagnoser::diagnoseFold(Sema &S, SourceLocation Loc) {
17197 return S.Diag(Loc, diag::ext_expr_not_ice) << S.LangOpts.CPlusPlus;
17198}
17199
17200ExprResult
17201Sema::VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result,
17202 VerifyICEDiagnoser &Diagnoser,
17203 AllowFoldKind CanFold) {
17204 SourceLocation DiagLoc = E->getBeginLoc();
17205
17206 if (getLangOpts().CPlusPlus11) {
17207 // C++11 [expr.const]p5:
17208 // If an expression of literal class type is used in a context where an
17209 // integral constant expression is required, then that class type shall
17210 // have a single non-explicit conversion function to an integral or
17211 // unscoped enumeration type
17212 ExprResult Converted;
17213 class CXX11ConvertDiagnoser : public ICEConvertDiagnoser {
17214 VerifyICEDiagnoser &BaseDiagnoser;
17215 public:
17216 CXX11ConvertDiagnoser(VerifyICEDiagnoser &BaseDiagnoser)
17217 : ICEConvertDiagnoser(/*AllowScopedEnumerations*/ false,
17218 BaseDiagnoser.Suppress, true),
17219 BaseDiagnoser(BaseDiagnoser) {}
17220
17221 SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
17222 QualType T) override {
17223 return BaseDiagnoser.diagnoseNotICEType(S, Loc, T);
17224 }
17225
17226 SemaDiagnosticBuilder diagnoseIncomplete(
17227 Sema &S, SourceLocation Loc, QualType T) override {
17228 return S.Diag(Loc, diag::err_ice_incomplete_type) << T;
17229 }
17230
17231 SemaDiagnosticBuilder diagnoseExplicitConv(
17232 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
17233 return S.Diag(Loc, diag::err_ice_explicit_conversion) << T << ConvTy;
17234 }
17235
17236 SemaDiagnosticBuilder noteExplicitConv(
17237 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
17238 return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
17239 << ConvTy->isEnumeralType() << ConvTy;
17240 }
17241
17242 SemaDiagnosticBuilder diagnoseAmbiguous(
17243 Sema &S, SourceLocation Loc, QualType T) override {
17244 return S.Diag(Loc, diag::err_ice_ambiguous_conversion) << T;
17245 }
17246
17247 SemaDiagnosticBuilder noteAmbiguous(
17248 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
17249 return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
17250 << ConvTy->isEnumeralType() << ConvTy;
17251 }
17252
17253 SemaDiagnosticBuilder diagnoseConversion(
17254 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
17255 llvm_unreachable("conversion functions are permitted")::llvm::llvm_unreachable_internal("conversion functions are permitted"
, "clang/lib/Sema/SemaExpr.cpp", 17255)
;
17256 }
17257 } ConvertDiagnoser(Diagnoser);
17258
17259 Converted = PerformContextualImplicitConversion(DiagLoc, E,
17260 ConvertDiagnoser);
17261 if (Converted.isInvalid())
17262 return Converted;
17263 E = Converted.get();
17264 if (!E->getType()->isIntegralOrUnscopedEnumerationType())
17265 return ExprError();
17266 } else if (!E->getType()->isIntegralOrUnscopedEnumerationType()) {
17267 // An ICE must be of integral or unscoped enumeration type.
17268 if (!Diagnoser.Suppress)
17269 Diagnoser.diagnoseNotICEType(*this, DiagLoc, E->getType())
17270 << E->getSourceRange();
17271 return ExprError();
17272 }
17273
17274 ExprResult RValueExpr = DefaultLvalueConversion(E);
17275 if (RValueExpr.isInvalid())
17276 return ExprError();
17277
17278 E = RValueExpr.get();
17279
17280 // Circumvent ICE checking in C++11 to avoid evaluating the expression twice
17281 // in the non-ICE case.
17282 if (!getLangOpts().CPlusPlus11 && E->isIntegerConstantExpr(Context)) {
17283 if (Result)
17284 *Result = E->EvaluateKnownConstIntCheckOverflow(Context);
17285 if (!isa<ConstantExpr>(E))
17286 E = Result ? ConstantExpr::Create(Context, E, APValue(*Result))
17287 : ConstantExpr::Create(Context, E);
17288 return E;
17289 }
17290
17291 Expr::EvalResult EvalResult;
17292 SmallVector<PartialDiagnosticAt, 8> Notes;
17293 EvalResult.Diag = &Notes;
17294
17295 // Try to evaluate the expression, and produce diagnostics explaining why it's
17296 // not a constant expression as a side-effect.
17297 bool Folded =
17298 E->EvaluateAsRValue(EvalResult, Context, /*isConstantContext*/ true) &&
17299 EvalResult.Val.isInt() && !EvalResult.HasSideEffects;
17300
17301 if (!isa<ConstantExpr>(E))
17302 E = ConstantExpr::Create(Context, E, EvalResult.Val);
17303
17304 // In C++11, we can rely on diagnostics being produced for any expression
17305 // which is not a constant expression. If no diagnostics were produced, then
17306 // this is a constant expression.
17307 if (Folded && getLangOpts().CPlusPlus11 && Notes.empty()) {
17308 if (Result)
17309 *Result = EvalResult.Val.getInt();
17310 return E;
17311 }
17312
17313 // If our only note is the usual "invalid subexpression" note, just point
17314 // the caret at its location rather than producing an essentially
17315 // redundant note.
17316 if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
17317 diag::note_invalid_subexpr_in_const_expr) {
17318 DiagLoc = Notes[0].first;
17319 Notes.clear();
17320 }
17321
17322 if (!Folded || !CanFold) {
17323 if (!Diagnoser.Suppress) {
17324 Diagnoser.diagnoseNotICE(*this, DiagLoc) << E->getSourceRange();
17325 for (const PartialDiagnosticAt &Note : Notes)
17326 Diag(Note.first, Note.second);
17327 }
17328
17329 return ExprError();
17330 }
17331
17332 Diagnoser.diagnoseFold(*this, DiagLoc) << E->getSourceRange();
17333 for (const PartialDiagnosticAt &Note : Notes)
17334 Diag(Note.first, Note.second);
17335
17336 if (Result)
17337 *Result = EvalResult.Val.getInt();
17338 return E;
17339}
17340
17341namespace {
17342 // Handle the case where we conclude a expression which we speculatively
17343 // considered to be unevaluated is actually evaluated.
17344 class TransformToPE : public TreeTransform<TransformToPE> {
17345 typedef TreeTransform<TransformToPE> BaseTransform;
17346
17347 public:
17348 TransformToPE(Sema &SemaRef) : BaseTransform(SemaRef) { }
17349
17350 // Make sure we redo semantic analysis
17351 bool AlwaysRebuild() { return true; }
17352 bool ReplacingOriginal() { return true; }
17353
17354 // We need to special-case DeclRefExprs referring to FieldDecls which
17355 // are not part of a member pointer formation; normal TreeTransforming
17356 // doesn't catch this case because of the way we represent them in the AST.
17357 // FIXME: This is a bit ugly; is it really the best way to handle this
17358 // case?
17359 //
17360 // Error on DeclRefExprs referring to FieldDecls.
17361 ExprResult TransformDeclRefExpr(DeclRefExpr *E) {
17362 if (isa<FieldDecl>(E->getDecl()) &&
17363 !SemaRef.isUnevaluatedContext())
17364 return SemaRef.Diag(E->getLocation(),
17365 diag::err_invalid_non_static_member_use)
17366 << E->getDecl() << E->getSourceRange();
17367
17368 return BaseTransform::TransformDeclRefExpr(E);
17369 }
17370
17371 // Exception: filter out member pointer formation
17372 ExprResult TransformUnaryOperator(UnaryOperator *E) {
17373 if (E->getOpcode() == UO_AddrOf && E->getType()->isMemberPointerType())
17374 return E;
17375
17376 return BaseTransform::TransformUnaryOperator(E);
17377 }
17378
17379 // The body of a lambda-expression is in a separate expression evaluation
17380 // context so never needs to be transformed.
17381 // FIXME: Ideally we wouldn't transform the closure type either, and would
17382 // just recreate the capture expressions and lambda expression.
17383 StmtResult TransformLambdaBody(LambdaExpr *E, Stmt *Body) {
17384 return SkipLambdaBody(E, Body);
17385 }
17386 };
17387}
17388
17389ExprResult Sema::TransformToPotentiallyEvaluated(Expr *E) {
17390 assert(isUnevaluatedContext() &&(static_cast <bool> (isUnevaluatedContext() && "Should only transform unevaluated expressions"
) ? void (0) : __assert_fail ("isUnevaluatedContext() && \"Should only transform unevaluated expressions\""
, "clang/lib/Sema/SemaExpr.cpp", 17391, __extension__ __PRETTY_FUNCTION__
))
17391 "Should only transform unevaluated expressions")(static_cast <bool> (isUnevaluatedContext() && "Should only transform unevaluated expressions"
) ? void (0) : __assert_fail ("isUnevaluatedContext() && \"Should only transform unevaluated expressions\""
, "clang/lib/Sema/SemaExpr.cpp", 17391, __extension__ __PRETTY_FUNCTION__
))
;
17392 ExprEvalContexts.back().Context =
17393 ExprEvalContexts[ExprEvalContexts.size()-2].Context;
17394 if (isUnevaluatedContext())
17395 return E;
17396 return TransformToPE(*this).TransformExpr(E);
17397}
17398
17399TypeSourceInfo *Sema::TransformToPotentiallyEvaluated(TypeSourceInfo *TInfo) {
17400 assert(isUnevaluatedContext() &&(static_cast <bool> (isUnevaluatedContext() && "Should only transform unevaluated expressions"
) ? void (0) : __assert_fail ("isUnevaluatedContext() && \"Should only transform unevaluated expressions\""
, "clang/lib/Sema/SemaExpr.cpp", 17401, __extension__ __PRETTY_FUNCTION__
))
17401 "Should only transform unevaluated expressions")(static_cast <bool> (isUnevaluatedContext() && "Should only transform unevaluated expressions"
) ? void (0) : __assert_fail ("isUnevaluatedContext() && \"Should only transform unevaluated expressions\""
, "clang/lib/Sema/SemaExpr.cpp", 17401, __extension__ __PRETTY_FUNCTION__
))
;
17402 ExprEvalContexts.back().Context =
17403 ExprEvalContexts[ExprEvalContexts.size() - 2].Context;
17404 if (isUnevaluatedContext())
17405 return TInfo;
17406 return TransformToPE(*this).TransformType(TInfo);
17407}
17408
17409void
17410Sema::PushExpressionEvaluationContext(
17411 ExpressionEvaluationContext NewContext, Decl *LambdaContextDecl,
17412 ExpressionEvaluationContextRecord::ExpressionKind ExprContext) {
17413 ExprEvalContexts.emplace_back(NewContext, ExprCleanupObjects.size(), Cleanup,
17414 LambdaContextDecl, ExprContext);
17415
17416 // Discarded statements and immediate contexts nested in other
17417 // discarded statements or immediate context are themselves
17418 // a discarded statement or an immediate context, respectively.
17419 ExprEvalContexts.back().InDiscardedStatement =
17420 ExprEvalContexts[ExprEvalContexts.size() - 2]
17421 .isDiscardedStatementContext();
17422 ExprEvalContexts.back().InImmediateFunctionContext =
17423 ExprEvalContexts[ExprEvalContexts.size() - 2]
17424 .isImmediateFunctionContext();
17425
17426 Cleanup.reset();
17427 if (!MaybeODRUseExprs.empty())
17428 std::swap(MaybeODRUseExprs, ExprEvalContexts.back().SavedMaybeODRUseExprs);
17429}
17430
17431void
17432Sema::PushExpressionEvaluationContext(
17433 ExpressionEvaluationContext NewContext, ReuseLambdaContextDecl_t,
17434 ExpressionEvaluationContextRecord::ExpressionKind ExprContext) {
17435 Decl *ClosureContextDecl = ExprEvalContexts.back().ManglingContextDecl;
17436 PushExpressionEvaluationContext(NewContext, ClosureContextDecl, ExprContext);
17437}
17438
17439namespace {
17440
17441const DeclRefExpr *CheckPossibleDeref(Sema &S, const Expr *PossibleDeref) {
17442 PossibleDeref = PossibleDeref->IgnoreParenImpCasts();
17443 if (const auto *E = dyn_cast<UnaryOperator>(PossibleDeref)) {
17444 if (E->getOpcode() == UO_Deref)
17445 return CheckPossibleDeref(S, E->getSubExpr());
17446 } else if (const auto *E = dyn_cast<ArraySubscriptExpr>(PossibleDeref)) {
17447 return CheckPossibleDeref(S, E->getBase());
17448 } else if (const auto *E = dyn_cast<MemberExpr>(PossibleDeref)) {
17449 return CheckPossibleDeref(S, E->getBase());
17450 } else if (const auto E = dyn_cast<DeclRefExpr>(PossibleDeref)) {
17451 QualType Inner;
17452 QualType Ty = E->getType();
17453 if (const auto *Ptr = Ty->getAs<PointerType>())
17454 Inner = Ptr->getPointeeType();
17455 else if (const auto *Arr = S.Context.getAsArrayType(Ty))
17456 Inner = Arr->getElementType();
17457 else
17458 return nullptr;
17459
17460 if (Inner->hasAttr(attr::NoDeref))
17461 return E;
17462 }
17463 return nullptr;
17464}
17465
17466} // namespace
17467
17468void Sema::WarnOnPendingNoDerefs(ExpressionEvaluationContextRecord &Rec) {
17469 for (const Expr *E : Rec.PossibleDerefs) {
17470 const DeclRefExpr *DeclRef = CheckPossibleDeref(*this, E);
17471 if (DeclRef) {
17472 const ValueDecl *Decl = DeclRef->getDecl();
17473 Diag(E->getExprLoc(), diag::warn_dereference_of_noderef_type)
17474 << Decl->getName() << E->getSourceRange();
17475 Diag(Decl->getLocation(), diag::note_previous_decl) << Decl->getName();
17476 } else {
17477 Diag(E->getExprLoc(), diag::warn_dereference_of_noderef_type_no_decl)
17478 << E->getSourceRange();
17479 }
17480 }
17481 Rec.PossibleDerefs.clear();
17482}
17483
17484/// Check whether E, which is either a discarded-value expression or an
17485/// unevaluated operand, is a simple-assignment to a volatlie-qualified lvalue,
17486/// and if so, remove it from the list of volatile-qualified assignments that
17487/// we are going to warn are deprecated.
17488void Sema::CheckUnusedVolatileAssignment(Expr *E) {
17489 if (!E->getType().isVolatileQualified() || !getLangOpts().CPlusPlus20)
17490 return;
17491
17492 // Note: ignoring parens here is not justified by the standard rules, but
17493 // ignoring parentheses seems like a more reasonable approach, and this only
17494 // drives a deprecation warning so doesn't affect conformance.
17495 if (auto *BO = dyn_cast<BinaryOperator>(E->IgnoreParenImpCasts())) {
17496 if (BO->getOpcode() == BO_Assign) {
17497 auto &LHSs = ExprEvalContexts.back().VolatileAssignmentLHSs;
17498 llvm::erase_value(LHSs, BO->getLHS());
17499 }
17500 }
17501}
17502
17503ExprResult Sema::CheckForImmediateInvocation(ExprResult E, FunctionDecl *Decl) {
17504 if (isUnevaluatedContext() || !E.isUsable() || !Decl ||
17505 !Decl->isConsteval() || isConstantEvaluated() ||
17506 RebuildingImmediateInvocation || isImmediateFunctionContext())
17507 return E;
17508
17509 /// Opportunistically remove the callee from ReferencesToConsteval if we can.
17510 /// It's OK if this fails; we'll also remove this in
17511 /// HandleImmediateInvocations, but catching it here allows us to avoid
17512 /// walking the AST looking for it in simple cases.
17513 if (auto *Call = dyn_cast<CallExpr>(E.get()->IgnoreImplicit()))
17514 if (auto *DeclRef =
17515 dyn_cast<DeclRefExpr>(Call->getCallee()->IgnoreImplicit()))
17516 ExprEvalContexts.back().ReferenceToConsteval.erase(DeclRef);
17517
17518 E = MaybeCreateExprWithCleanups(E);
17519
17520 ConstantExpr *Res = ConstantExpr::Create(
17521 getASTContext(), E.get(),
17522 ConstantExpr::getStorageKind(Decl->getReturnType().getTypePtr(),
17523 getASTContext()),
17524 /*IsImmediateInvocation*/ true);
17525 /// Value-dependent constant expressions should not be immediately
17526 /// evaluated until they are instantiated.
17527 if (!Res->isValueDependent())
17528 ExprEvalContexts.back().ImmediateInvocationCandidates.emplace_back(Res, 0);
17529 return Res;
17530}
17531
17532static void EvaluateAndDiagnoseImmediateInvocation(
17533 Sema &SemaRef, Sema::ImmediateInvocationCandidate Candidate) {
17534 llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
17535 Expr::EvalResult Eval;
17536 Eval.Diag = &Notes;
17537 ConstantExpr *CE = Candidate.getPointer();
17538 bool Result = CE->EvaluateAsConstantExpr(
17539 Eval, SemaRef.getASTContext(), ConstantExprKind::ImmediateInvocation);
17540 if (!Result || !Notes.empty()) {
17541 Expr *InnerExpr = CE->getSubExpr()->IgnoreImplicit();
17542 if (auto *FunctionalCast = dyn_cast<CXXFunctionalCastExpr>(InnerExpr))
17543 InnerExpr = FunctionalCast->getSubExpr();
17544 FunctionDecl *FD = nullptr;
17545 if (auto *Call = dyn_cast<CallExpr>(InnerExpr))
17546 FD = cast<FunctionDecl>(Call->getCalleeDecl());
17547 else if (auto *Call = dyn_cast<CXXConstructExpr>(InnerExpr))
17548 FD = Call->getConstructor();
17549 else
17550 llvm_unreachable("unhandled decl kind")::llvm::llvm_unreachable_internal("unhandled decl kind", "clang/lib/Sema/SemaExpr.cpp"
, 17550)
;
17551 assert(FD->isConsteval())(static_cast <bool> (FD->isConsteval()) ? void (0) :
__assert_fail ("FD->isConsteval()", "clang/lib/Sema/SemaExpr.cpp"
, 17551, __extension__ __PRETTY_FUNCTION__))
;
17552 SemaRef.Diag(CE->getBeginLoc(), diag::err_invalid_consteval_call) << FD;
17553 for (auto &Note : Notes)
17554 SemaRef.Diag(Note.first, Note.second);
17555 return;
17556 }
17557 CE->MoveIntoResult(Eval.Val, SemaRef.getASTContext());
17558}
17559
17560static void RemoveNestedImmediateInvocation(
17561 Sema &SemaRef, Sema::ExpressionEvaluationContextRecord &Rec,
17562 SmallVector<Sema::ImmediateInvocationCandidate, 4>::reverse_iterator It) {
17563 struct ComplexRemove : TreeTransform<ComplexRemove> {
17564 using Base = TreeTransform<ComplexRemove>;
17565 llvm::SmallPtrSetImpl<DeclRefExpr *> &DRSet;
17566 SmallVector<Sema::ImmediateInvocationCandidate, 4> &IISet;
17567 SmallVector<Sema::ImmediateInvocationCandidate, 4>::reverse_iterator
17568 CurrentII;
17569 ComplexRemove(Sema &SemaRef, llvm::SmallPtrSetImpl<DeclRefExpr *> &DR,
17570 SmallVector<Sema::ImmediateInvocationCandidate, 4> &II,
17571 SmallVector<Sema::ImmediateInvocationCandidate,
17572 4>::reverse_iterator Current)
17573 : Base(SemaRef), DRSet(DR), IISet(II), CurrentII(Current) {}
17574 void RemoveImmediateInvocation(ConstantExpr* E) {
17575 auto It = std::find_if(CurrentII, IISet.rend(),
17576 [E](Sema::ImmediateInvocationCandidate Elem) {
17577 return Elem.getPointer() == E;
17578 });
17579 assert(It != IISet.rend() &&(static_cast <bool> (It != IISet.rend() && "ConstantExpr marked IsImmediateInvocation should "
"be present") ? void (0) : __assert_fail ("It != IISet.rend() && \"ConstantExpr marked IsImmediateInvocation should \" \"be present\""
, "clang/lib/Sema/SemaExpr.cpp", 17581, __extension__ __PRETTY_FUNCTION__
))
17580 "ConstantExpr marked IsImmediateInvocation should "(static_cast <bool> (It != IISet.rend() && "ConstantExpr marked IsImmediateInvocation should "
"be present") ? void (0) : __assert_fail ("It != IISet.rend() && \"ConstantExpr marked IsImmediateInvocation should \" \"be present\""
, "clang/lib/Sema/SemaExpr.cpp", 17581, __extension__ __PRETTY_FUNCTION__
))
17581 "be present")(static_cast <bool> (It != IISet.rend() && "ConstantExpr marked IsImmediateInvocation should "
"be present") ? void (0) : __assert_fail ("It != IISet.rend() && \"ConstantExpr marked IsImmediateInvocation should \" \"be present\""
, "clang/lib/Sema/SemaExpr.cpp", 17581, __extension__ __PRETTY_FUNCTION__
))
;
17582 It->setInt(1); // Mark as deleted
17583 }
17584 ExprResult TransformConstantExpr(ConstantExpr *E) {
17585 if (!E->isImmediateInvocation())
17586 return Base::TransformConstantExpr(E);
17587 RemoveImmediateInvocation(E);
17588 return Base::TransformExpr(E->getSubExpr());
17589 }
17590 /// Base::TransfromCXXOperatorCallExpr doesn't traverse the callee so
17591 /// we need to remove its DeclRefExpr from the DRSet.
17592 ExprResult TransformCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
17593 DRSet.erase(cast<DeclRefExpr>(E->getCallee()->IgnoreImplicit()));
17594 return Base::TransformCXXOperatorCallExpr(E);
17595 }
17596 /// Base::TransformInitializer skip ConstantExpr so we need to visit them
17597 /// here.
17598 ExprResult TransformInitializer(Expr *Init, bool NotCopyInit) {
17599 if (!Init)
17600 return Init;
17601 /// ConstantExpr are the first layer of implicit node to be removed so if
17602 /// Init isn't a ConstantExpr, no ConstantExpr will be skipped.
17603 if (auto *CE = dyn_cast<ConstantExpr>(Init))
17604 if (CE->isImmediateInvocation())
17605 RemoveImmediateInvocation(CE);
17606 return Base::TransformInitializer(Init, NotCopyInit);
17607 }
17608 ExprResult TransformDeclRefExpr(DeclRefExpr *E) {
17609 DRSet.erase(E);
17610 return E;
17611 }
17612 ExprResult TransformLambdaExpr(LambdaExpr *E) {
17613 // Do not rebuild lambdas to avoid creating a new type.
17614 // Lambdas have already been processed inside their eval context.
17615 return E;
17616 }
17617 bool AlwaysRebuild() { return false; }
17618 bool ReplacingOriginal() { return true; }
17619 bool AllowSkippingCXXConstructExpr() {
17620 bool Res = AllowSkippingFirstCXXConstructExpr;
17621 AllowSkippingFirstCXXConstructExpr = true;
17622 return Res;
17623 }
17624 bool AllowSkippingFirstCXXConstructExpr = true;
17625 } Transformer(SemaRef, Rec.ReferenceToConsteval,
17626 Rec.ImmediateInvocationCandidates, It);
17627
17628 /// CXXConstructExpr with a single argument are getting skipped by
17629 /// TreeTransform in some situtation because they could be implicit. This
17630 /// can only occur for the top-level CXXConstructExpr because it is used
17631 /// nowhere in the expression being transformed therefore will not be rebuilt.
17632 /// Setting AllowSkippingFirstCXXConstructExpr to false will prevent from
17633 /// skipping the first CXXConstructExpr.
17634 if (isa<CXXConstructExpr>(It->getPointer()->IgnoreImplicit()))
17635 Transformer.AllowSkippingFirstCXXConstructExpr = false;
17636
17637 ExprResult Res = Transformer.TransformExpr(It->getPointer()->getSubExpr());
17638 // The result may not be usable in case of previous compilation errors.
17639 // In this case evaluation of the expression may result in crash so just
17640 // don't do anything further with the result.
17641 if (Res.isUsable()) {
17642 Res = SemaRef.MaybeCreateExprWithCleanups(Res);
17643 It->getPointer()->setSubExpr(Res.get());
17644 }
17645}
17646
17647static void
17648HandleImmediateInvocations(Sema &SemaRef,
17649 Sema::ExpressionEvaluationContextRecord &Rec) {
17650 if ((Rec.ImmediateInvocationCandidates.size() == 0 &&
17651 Rec.ReferenceToConsteval.size() == 0) ||
17652 SemaRef.RebuildingImmediateInvocation)
17653 return;
17654
17655 /// When we have more then 1 ImmediateInvocationCandidates we need to check
17656 /// for nested ImmediateInvocationCandidates. when we have only 1 we only
17657 /// need to remove ReferenceToConsteval in the immediate invocation.
17658 if (Rec.ImmediateInvocationCandidates.size() > 1) {
17659
17660 /// Prevent sema calls during the tree transform from adding pointers that
17661 /// are already in the sets.
17662 llvm::SaveAndRestore<bool> DisableIITracking(
17663 SemaRef.RebuildingImmediateInvocation, true);
17664
17665 /// Prevent diagnostic during tree transfrom as they are duplicates
17666 Sema::TentativeAnalysisScope DisableDiag(SemaRef);
17667
17668 for (auto It = Rec.ImmediateInvocationCandidates.rbegin();
17669 It != Rec.ImmediateInvocationCandidates.rend(); It++)
17670 if (!It->getInt())
17671 RemoveNestedImmediateInvocation(SemaRef, Rec, It);
17672 } else if (Rec.ImmediateInvocationCandidates.size() == 1 &&
17673 Rec.ReferenceToConsteval.size()) {
17674 struct SimpleRemove : RecursiveASTVisitor<SimpleRemove> {
17675 llvm::SmallPtrSetImpl<DeclRefExpr *> &DRSet;
17676 SimpleRemove(llvm::SmallPtrSetImpl<DeclRefExpr *> &S) : DRSet(S) {}
17677 bool VisitDeclRefExpr(DeclRefExpr *E) {
17678 DRSet.erase(E);
17679 return DRSet.size();
17680 }
17681 } Visitor(Rec.ReferenceToConsteval);
17682 Visitor.TraverseStmt(
17683 Rec.ImmediateInvocationCandidates.front().getPointer()->getSubExpr());
17684 }
17685 for (auto CE : Rec.ImmediateInvocationCandidates)
17686 if (!CE.getInt())
17687 EvaluateAndDiagnoseImmediateInvocation(SemaRef, CE);
17688 for (auto *DR : Rec.ReferenceToConsteval) {
17689 auto *FD = cast<FunctionDecl>(DR->getDecl());
17690 SemaRef.Diag(DR->getBeginLoc(), diag::err_invalid_consteval_take_address)
17691 << FD;
17692 SemaRef.Diag(FD->getLocation(), diag::note_declared_at);
17693 }
17694}
17695
17696void Sema::PopExpressionEvaluationContext() {
17697 ExpressionEvaluationContextRecord& Rec = ExprEvalContexts.back();
17698 unsigned NumTypos = Rec.NumTypos;
17699
17700 if (!Rec.Lambdas.empty()) {
17701 using ExpressionKind = ExpressionEvaluationContextRecord::ExpressionKind;
17702 if (!getLangOpts().CPlusPlus20 &&
17703 (Rec.ExprContext == ExpressionKind::EK_TemplateArgument ||
17704 Rec.isUnevaluated() ||
17705 (Rec.isConstantEvaluated() && !getLangOpts().CPlusPlus17))) {
17706 unsigned D;
17707 if (Rec.isUnevaluated()) {
17708 // C++11 [expr.prim.lambda]p2:
17709 // A lambda-expression shall not appear in an unevaluated operand
17710 // (Clause 5).
17711 D = diag::err_lambda_unevaluated_operand;
17712 } else if (Rec.isConstantEvaluated() && !getLangOpts().CPlusPlus17) {
17713 // C++1y [expr.const]p2:
17714 // A conditional-expression e is a core constant expression unless the
17715 // evaluation of e, following the rules of the abstract machine, would
17716 // evaluate [...] a lambda-expression.
17717 D = diag::err_lambda_in_constant_expression;
17718 } else if (Rec.ExprContext == ExpressionKind::EK_TemplateArgument) {
17719 // C++17 [expr.prim.lamda]p2:
17720 // A lambda-expression shall not appear [...] in a template-argument.
17721 D = diag::err_lambda_in_invalid_context;
17722 } else
17723 llvm_unreachable("Couldn't infer lambda error message.")::llvm::llvm_unreachable_internal("Couldn't infer lambda error message."
, "clang/lib/Sema/SemaExpr.cpp", 17723)
;
17724
17725 for (const auto *L : Rec.Lambdas)
17726 Diag(L->getBeginLoc(), D);
17727 }
17728 }
17729
17730 WarnOnPendingNoDerefs(Rec);
17731 HandleImmediateInvocations(*this, Rec);
17732
17733 // Warn on any volatile-qualified simple-assignments that are not discarded-
17734 // value expressions nor unevaluated operands (those cases get removed from
17735 // this list by CheckUnusedVolatileAssignment).
17736 for (auto *BO : Rec.VolatileAssignmentLHSs)
17737 Diag(BO->getBeginLoc(), diag::warn_deprecated_simple_assign_volatile)
17738 << BO->getType();
17739
17740 // When are coming out of an unevaluated context, clear out any
17741 // temporaries that we may have created as part of the evaluation of
17742 // the expression in that context: they aren't relevant because they
17743 // will never be constructed.
17744 if (Rec.isUnevaluated() || Rec.isConstantEvaluated()) {
17745 ExprCleanupObjects.erase(ExprCleanupObjects.begin() + Rec.NumCleanupObjects,
17746 ExprCleanupObjects.end());
17747 Cleanup = Rec.ParentCleanup;
17748 CleanupVarDeclMarking();
17749 std::swap(MaybeODRUseExprs, Rec.SavedMaybeODRUseExprs);
17750 // Otherwise, merge the contexts together.
17751 } else {
17752 Cleanup.mergeFrom(Rec.ParentCleanup);
17753 MaybeODRUseExprs.insert(Rec.SavedMaybeODRUseExprs.begin(),
17754 Rec.SavedMaybeODRUseExprs.end());
17755 }
17756
17757 // Pop the current expression evaluation context off the stack.
17758 ExprEvalContexts.pop_back();
17759
17760 // The global expression evaluation context record is never popped.
17761 ExprEvalContexts.back().NumTypos += NumTypos;
17762}
17763
17764void Sema::DiscardCleanupsInEvaluationContext() {
17765 ExprCleanupObjects.erase(
17766 ExprCleanupObjects.begin() + ExprEvalContexts.back().NumCleanupObjects,
17767 ExprCleanupObjects.end());
17768 Cleanup.reset();
17769 MaybeODRUseExprs.clear();
17770}
17771
17772ExprResult Sema::HandleExprEvaluationContextForTypeof(Expr *E) {
17773 ExprResult Result = CheckPlaceholderExpr(E);
17774 if (Result.isInvalid())
17775 return ExprError();
17776 E = Result.get();
17777 if (!E->getType()->isVariablyModifiedType())
17778 return E;
17779 return TransformToPotentiallyEvaluated(E);
17780}
17781
17782/// Are we in a context that is potentially constant evaluated per C++20
17783/// [expr.const]p12?
17784static bool isPotentiallyConstantEvaluatedContext(Sema &SemaRef) {
17785 /// C++2a [expr.const]p12:
17786 // An expression or conversion is potentially constant evaluated if it is
17787 switch (SemaRef.ExprEvalContexts.back().Context) {
17788 case Sema::ExpressionEvaluationContext::ConstantEvaluated:
17789 case Sema::ExpressionEvaluationContext::ImmediateFunctionContext:
17790
17791 // -- a manifestly constant-evaluated expression,
17792 case Sema::ExpressionEvaluationContext::PotentiallyEvaluated:
17793 case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
17794 case Sema::ExpressionEvaluationContext::DiscardedStatement:
17795 // -- a potentially-evaluated expression,
17796 case Sema::ExpressionEvaluationContext::UnevaluatedList:
17797 // -- an immediate subexpression of a braced-init-list,
17798
17799 // -- [FIXME] an expression of the form & cast-expression that occurs
17800 // within a templated entity
17801 // -- a subexpression of one of the above that is not a subexpression of
17802 // a nested unevaluated operand.
17803 return true;
17804
17805 case Sema::ExpressionEvaluationContext::Unevaluated:
17806 case Sema::ExpressionEvaluationContext::UnevaluatedAbstract:
17807 // Expressions in this context are never evaluated.
17808 return false;
17809 }
17810 llvm_unreachable("Invalid context")::llvm::llvm_unreachable_internal("Invalid context", "clang/lib/Sema/SemaExpr.cpp"
, 17810)
;
17811}
17812
17813/// Return true if this function has a calling convention that requires mangling
17814/// in the size of the parameter pack.
17815static bool funcHasParameterSizeMangling(Sema &S, FunctionDecl *FD) {
17816 // These manglings don't do anything on non-Windows or non-x86 platforms, so
17817 // we don't need parameter type sizes.
17818 const llvm::Triple &TT = S.Context.getTargetInfo().getTriple();
17819 if (!TT.isOSWindows() || !TT.isX86())
17820 return false;
17821
17822 // If this is C++ and this isn't an extern "C" function, parameters do not
17823 // need to be complete. In this case, C++ mangling will apply, which doesn't
17824 // use the size of the parameters.
17825 if (S.getLangOpts().CPlusPlus && !FD->isExternC())
17826 return false;
17827
17828 // Stdcall, fastcall, and vectorcall need this special treatment.
17829 CallingConv CC = FD->getType()->castAs<FunctionType>()->getCallConv();
17830 switch (CC) {
17831 case CC_X86StdCall:
17832 case CC_X86FastCall:
17833 case CC_X86VectorCall:
17834 return true;
17835 default:
17836 break;
17837 }
17838 return false;
17839}
17840
17841/// Require that all of the parameter types of function be complete. Normally,
17842/// parameter types are only required to be complete when a function is called
17843/// or defined, but to mangle functions with certain calling conventions, the
17844/// mangler needs to know the size of the parameter list. In this situation,
17845/// MSVC doesn't emit an error or instantiate templates. Instead, MSVC mangles
17846/// the function as _foo@0, i.e. zero bytes of parameters, which will usually
17847/// result in a linker error. Clang doesn't implement this behavior, and instead
17848/// attempts to error at compile time.
17849static void CheckCompleteParameterTypesForMangler(Sema &S, FunctionDecl *FD,
17850 SourceLocation Loc) {
17851 class ParamIncompleteTypeDiagnoser : public Sema::TypeDiagnoser {
17852 FunctionDecl *FD;
17853 ParmVarDecl *Param;
17854
17855 public:
17856 ParamIncompleteTypeDiagnoser(FunctionDecl *FD, ParmVarDecl *Param)
17857 : FD(FD), Param(Param) {}
17858
17859 void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
17860 CallingConv CC = FD->getType()->castAs<FunctionType>()->getCallConv();
17861 StringRef CCName;
17862 switch (CC) {
17863 case CC_X86StdCall:
17864 CCName = "stdcall";
17865 break;
17866 case CC_X86FastCall:
17867 CCName = "fastcall";
17868 break;
17869 case CC_X86VectorCall:
17870 CCName = "vectorcall";
17871 break;
17872 default:
17873 llvm_unreachable("CC does not need mangling")::llvm::llvm_unreachable_internal("CC does not need mangling"
, "clang/lib/Sema/SemaExpr.cpp", 17873)
;
17874 }
17875
17876 S.Diag(Loc, diag::err_cconv_incomplete_param_type)
17877 << Param->getDeclName() << FD->getDeclName() << CCName;
17878 }
17879 };
17880
17881 for (ParmVarDecl *Param : FD->parameters()) {
17882 ParamIncompleteTypeDiagnoser Diagnoser(FD, Param);
17883 S.RequireCompleteType(Loc, Param->getType(), Diagnoser);
17884 }
17885}
17886
17887namespace {
17888enum class OdrUseContext {
17889 /// Declarations in this context are not odr-used.
17890 None,
17891 /// Declarations in this context are formally odr-used, but this is a
17892 /// dependent context.
17893 Dependent,
17894 /// Declarations in this context are odr-used but not actually used (yet).
17895 FormallyOdrUsed,
17896 /// Declarations in this context are used.
17897 Used
17898};
17899}
17900
17901/// Are we within a context in which references to resolved functions or to
17902/// variables result in odr-use?
17903static OdrUseContext isOdrUseContext(Sema &SemaRef) {
17904 OdrUseContext Result;
17905
17906 switch (SemaRef.ExprEvalContexts.back().Context) {
17907 case Sema::ExpressionEvaluationContext::Unevaluated:
17908 case Sema::ExpressionEvaluationContext::UnevaluatedList:
17909 case Sema::ExpressionEvaluationContext::UnevaluatedAbstract:
17910 return OdrUseContext::None;
17911
17912 case Sema::ExpressionEvaluationContext::ConstantEvaluated:
17913 case Sema::ExpressionEvaluationContext::ImmediateFunctionContext:
17914 case Sema::ExpressionEvaluationContext::PotentiallyEvaluated:
17915 Result = OdrUseContext::Used;
17916 break;
17917
17918 case Sema::ExpressionEvaluationContext::DiscardedStatement:
17919 Result = OdrUseContext::FormallyOdrUsed;
17920 break;
17921
17922 case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
17923 // A default argument formally results in odr-use, but doesn't actually
17924 // result in a use in any real sense until it itself is used.
17925 Result = OdrUseContext::FormallyOdrUsed;
17926 break;
17927 }
17928
17929 if (SemaRef.CurContext->isDependentContext())
17930 return OdrUseContext::Dependent;
17931
17932 return Result;
17933}
17934
17935static bool isImplicitlyDefinableConstexprFunction(FunctionDecl *Func) {
17936 if (!Func->isConstexpr())
17937 return false;
17938
17939 if (Func->isImplicitlyInstantiable() || !Func->isUserProvided())
17940 return true;
17941 auto *CCD = dyn_cast<CXXConstructorDecl>(Func);
17942 return CCD && CCD->getInheritedConstructor();
17943}
17944
17945/// Mark a function referenced, and check whether it is odr-used
17946/// (C++ [basic.def.odr]p2, C99 6.9p3)
17947void Sema::MarkFunctionReferenced(SourceLocation Loc, FunctionDecl *Func,
17948 bool MightBeOdrUse) {
17949 assert(Func && "No function?")(static_cast <bool> (Func && "No function?") ? void
(0) : __assert_fail ("Func && \"No function?\"", "clang/lib/Sema/SemaExpr.cpp"
, 17949, __extension__ __PRETTY_FUNCTION__))
;
17950
17951 Func->setReferenced();
17952
17953 // Recursive functions aren't really used until they're used from some other
17954 // context.
17955 bool IsRecursiveCall = CurContext == Func;
17956
17957 // C++11 [basic.def.odr]p3:
17958 // A function whose name appears as a potentially-evaluated expression is
17959 // odr-used if it is the unique lookup result or the selected member of a
17960 // set of overloaded functions [...].
17961 //
17962 // We (incorrectly) mark overload resolution as an unevaluated context, so we
17963 // can just check that here.
17964 OdrUseContext OdrUse =
17965 MightBeOdrUse ? isOdrUseContext(*this) : OdrUseContext::None;
17966 if (IsRecursiveCall && OdrUse == OdrUseContext::Used)
17967 OdrUse = OdrUseContext::FormallyOdrUsed;
17968
17969 // Trivial default constructors and destructors are never actually used.
17970 // FIXME: What about other special members?
17971 if (Func->isTrivial() && !Func->hasAttr<DLLExportAttr>() &&
17972 OdrUse == OdrUseContext::Used) {
17973 if (auto *Constructor = dyn_cast<CXXConstructorDecl>(Func))
17974 if (Constructor->isDefaultConstructor())
17975 OdrUse = OdrUseContext::FormallyOdrUsed;
17976 if (isa<CXXDestructorDecl>(Func))
17977 OdrUse = OdrUseContext::FormallyOdrUsed;
17978 }
17979
17980 // C++20 [expr.const]p12:
17981 // A function [...] is needed for constant evaluation if it is [...] a
17982 // constexpr function that is named by an expression that is potentially
17983 // constant evaluated
17984 bool NeededForConstantEvaluation =
17985 isPotentiallyConstantEvaluatedContext(*this) &&
17986 isImplicitlyDefinableConstexprFunction(Func);
17987
17988 // Determine whether we require a function definition to exist, per
17989 // C++11 [temp.inst]p3:
17990 // Unless a function template specialization has been explicitly
17991 // instantiated or explicitly specialized, the function template
17992 // specialization is implicitly instantiated when the specialization is
17993 // referenced in a context that requires a function definition to exist.
17994 // C++20 [temp.inst]p7:
17995 // The existence of a definition of a [...] function is considered to
17996 // affect the semantics of the program if the [...] function is needed for
17997 // constant evaluation by an expression
17998 // C++20 [basic.def.odr]p10:
17999 // Every program shall contain exactly one definition of every non-inline
18000 // function or variable that is odr-used in that program outside of a
18001 // discarded statement
18002 // C++20 [special]p1:
18003 // The implementation will implicitly define [defaulted special members]
18004 // if they are odr-used or needed for constant evaluation.
18005 //
18006 // Note that we skip the implicit instantiation of templates that are only
18007 // used in unused default arguments or by recursive calls to themselves.
18008 // This is formally non-conforming, but seems reasonable in practice.
18009 bool NeedDefinition = !IsRecursiveCall && (OdrUse == OdrUseContext::Used ||
18010 NeededForConstantEvaluation);
18011
18012 // C++14 [temp.expl.spec]p6:
18013 // If a template [...] is explicitly specialized then that specialization
18014 // shall be declared before the first use of that specialization that would
18015 // cause an implicit instantiation to take place, in every translation unit
18016 // in which such a use occurs
18017 if (NeedDefinition &&
18018 (Func->getTemplateSpecializationKind() != TSK_Undeclared ||
18019 Func->getMemberSpecializationInfo()))
18020 checkSpecializationReachability(Loc, Func);
18021
18022 if (getLangOpts().CUDA)
18023 CheckCUDACall(Loc, Func);
18024
18025 if (getLangOpts().SYCLIsDevice)
18026 checkSYCLDeviceFunction(Loc, Func);
18027
18028 // If we need a definition, try to create one.
18029 if (NeedDefinition && !Func->getBody()) {
18030 runWithSufficientStackSpace(Loc, [&] {
18031 if (CXXConstructorDecl *Constructor =
18032 dyn_cast<CXXConstructorDecl>(Func)) {
18033 Constructor = cast<CXXConstructorDecl>(Constructor->getFirstDecl());
18034 if (Constructor->isDefaulted() && !Constructor->isDeleted()) {
18035 if (Constructor->isDefaultConstructor()) {
18036 if (Constructor->isTrivial() &&
18037 !Constructor->hasAttr<DLLExportAttr>())
18038 return;
18039 DefineImplicitDefaultConstructor(Loc, Constructor);
18040 } else if (Constructor->isCopyConstructor()) {
18041 DefineImplicitCopyConstructor(Loc, Constructor);
18042 } else if (Constructor->isMoveConstructor()) {
18043 DefineImplicitMoveConstructor(Loc, Constructor);
18044 }
18045 } else if (Constructor->getInheritedConstructor()) {
18046 DefineInheritingConstructor(Loc, Constructor);
18047 }
18048 } else if (CXXDestructorDecl *Destructor =
18049 dyn_cast<CXXDestructorDecl>(Func)) {
18050 Destructor = cast<CXXDestructorDecl>(Destructor->getFirstDecl());
18051 if (Destructor->isDefaulted() && !Destructor->isDeleted()) {
18052 if (Destructor->isTrivial() && !Destructor->hasAttr<DLLExportAttr>())
18053 return;
18054 DefineImplicitDestructor(Loc, Destructor);
18055 }
18056 if (Destructor->isVirtual() && getLangOpts().AppleKext)
18057 MarkVTableUsed(Loc, Destructor->getParent());
18058 } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(Func)) {
18059 if (MethodDecl->isOverloadedOperator() &&
18060 MethodDecl->getOverloadedOperator() == OO_Equal) {
18061 MethodDecl = cast<CXXMethodDecl>(MethodDecl->getFirstDecl());
18062 if (MethodDecl->isDefaulted() && !MethodDecl->isDeleted()) {
18063 if (MethodDecl->isCopyAssignmentOperator())
18064 DefineImplicitCopyAssignment(Loc, MethodDecl);
18065 else if (MethodDecl->isMoveAssignmentOperator())
18066 DefineImplicitMoveAssignment(Loc, MethodDecl);
18067 }
18068 } else if (isa<CXXConversionDecl>(MethodDecl) &&
18069 MethodDecl->getParent()->isLambda()) {
18070 CXXConversionDecl *Conversion =
18071 cast<CXXConversionDecl>(MethodDecl->getFirstDecl());
18072 if (Conversion->isLambdaToBlockPointerConversion())
18073 DefineImplicitLambdaToBlockPointerConversion(Loc, Conversion);
18074 else
18075 DefineImplicitLambdaToFunctionPointerConversion(Loc, Conversion);
18076 } else if (MethodDecl->isVirtual() && getLangOpts().AppleKext)
18077 MarkVTableUsed(Loc, MethodDecl->getParent());
18078 }
18079
18080 if (Func->isDefaulted() && !Func->isDeleted()) {
18081 DefaultedComparisonKind DCK = getDefaultedComparisonKind(Func);
18082 if (DCK != DefaultedComparisonKind::None)
18083 DefineDefaultedComparison(Loc, Func, DCK);
18084 }
18085
18086 // Implicit instantiation of function templates and member functions of
18087 // class templates.
18088 if (Func->isImplicitlyInstantiable()) {
18089 TemplateSpecializationKind TSK =
18090 Func->getTemplateSpecializationKindForInstantiation();
18091 SourceLocation PointOfInstantiation = Func->getPointOfInstantiation();
18092 bool FirstInstantiation = PointOfInstantiation.isInvalid();
18093 if (FirstInstantiation) {
18094 PointOfInstantiation = Loc;
18095 if (auto *MSI = Func->getMemberSpecializationInfo())
18096 MSI->setPointOfInstantiation(Loc);
18097 // FIXME: Notify listener.
18098 else
18099 Func->setTemplateSpecializationKind(TSK, PointOfInstantiation);
18100 } else if (TSK != TSK_ImplicitInstantiation) {
18101 // Use the point of use as the point of instantiation, instead of the
18102 // point of explicit instantiation (which we track as the actual point
18103 // of instantiation). This gives better backtraces in diagnostics.
18104 PointOfInstantiation = Loc;
18105 }
18106
18107 if (FirstInstantiation || TSK != TSK_ImplicitInstantiation ||
18108 Func->isConstexpr()) {
18109 if (isa<CXXRecordDecl>(Func->getDeclContext()) &&
18110 cast<CXXRecordDecl>(Func->getDeclContext())->isLocalClass() &&
18111 CodeSynthesisContexts.size())
18112 PendingLocalImplicitInstantiations.push_back(
18113 std::make_pair(Func, PointOfInstantiation));
18114 else if (Func->isConstexpr())
18115 // Do not defer instantiations of constexpr functions, to avoid the
18116 // expression evaluator needing to call back into Sema if it sees a
18117 // call to such a function.
18118 InstantiateFunctionDefinition(PointOfInstantiation, Func);
18119 else {
18120 Func->setInstantiationIsPending(true);
18121 PendingInstantiations.push_back(
18122 std::make_pair(Func, PointOfInstantiation));
18123 // Notify the consumer that a function was implicitly instantiated.
18124 Consumer.HandleCXXImplicitFunctionInstantiation(Func);
18125 }
18126 }
18127 } else {
18128 // Walk redefinitions, as some of them may be instantiable.
18129 for (auto *i : Func->redecls()) {
18130 if (!i->isUsed(false) && i->isImplicitlyInstantiable())
18131 MarkFunctionReferenced(Loc, i, MightBeOdrUse);
18132 }
18133 }
18134 });
18135 }
18136
18137 // C++14 [except.spec]p17:
18138 // An exception-specification is considered to be needed when:
18139 // - the function is odr-used or, if it appears in an unevaluated operand,
18140 // would be odr-used if the expression were potentially-evaluated;
18141 //
18142 // Note, we do this even if MightBeOdrUse is false. That indicates that the
18143 // function is a pure virtual function we're calling, and in that case the
18144 // function was selected by overload resolution and we need to resolve its
18145 // exception specification for a different reason.
18146 const FunctionProtoType *FPT = Func->getType()->getAs<FunctionProtoType>();
18147 if (FPT && isUnresolvedExceptionSpec(FPT->getExceptionSpecType()))
18148 ResolveExceptionSpec(Loc, FPT);
18149
18150 // If this is the first "real" use, act on that.
18151 if (OdrUse == OdrUseContext::Used && !Func->isUsed(/*CheckUsedAttr=*/false)) {
18152 // Keep track of used but undefined functions.
18153 if (!Func->isDefined()) {
18154 if (mightHaveNonExternalLinkage(Func))
18155 UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
18156 else if (Func->getMostRecentDecl()->isInlined() &&
18157 !LangOpts.GNUInline &&
18158 !Func->getMostRecentDecl()->hasAttr<GNUInlineAttr>())
18159 UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
18160 else if (isExternalWithNoLinkageType(Func))
18161 UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
18162 }
18163
18164 // Some x86 Windows calling conventions mangle the size of the parameter
18165 // pack into the name. Computing the size of the parameters requires the
18166 // parameter types to be complete. Check that now.
18167 if (funcHasParameterSizeMangling(*this, Func))
18168 CheckCompleteParameterTypesForMangler(*this, Func, Loc);
18169
18170 // In the MS C++ ABI, the compiler emits destructor variants where they are
18171 // used. If the destructor is used here but defined elsewhere, mark the
18172 // virtual base destructors referenced. If those virtual base destructors
18173 // are inline, this will ensure they are defined when emitting the complete
18174 // destructor variant. This checking may be redundant if the destructor is
18175 // provided later in this TU.
18176 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
18177 if (auto *Dtor = dyn_cast<CXXDestructorDecl>(Func)) {
18178 CXXRecordDecl *Parent = Dtor->getParent();
18179 if (Parent->getNumVBases() > 0 && !Dtor->getBody())
18180 CheckCompleteDestructorVariant(Loc, Dtor);
18181 }
18182 }
18183
18184 Func->markUsed(Context);
18185 }
18186}
18187
18188/// Directly mark a variable odr-used. Given a choice, prefer to use
18189/// MarkVariableReferenced since it does additional checks and then
18190/// calls MarkVarDeclODRUsed.
18191/// If the variable must be captured:
18192/// - if FunctionScopeIndexToStopAt is null, capture it in the CurContext
18193/// - else capture it in the DeclContext that maps to the
18194/// *FunctionScopeIndexToStopAt on the FunctionScopeInfo stack.
18195static void
18196MarkVarDeclODRUsed(VarDecl *Var, SourceLocation Loc, Sema &SemaRef,
18197 const unsigned *const FunctionScopeIndexToStopAt = nullptr) {
18198 // Keep track of used but undefined variables.
18199 // FIXME: We shouldn't suppress this warning for static data members.
18200 if (Var->hasDefinition(SemaRef.Context) == VarDecl::DeclarationOnly &&
18201 (!Var->isExternallyVisible() || Var->isInline() ||
18202 SemaRef.isExternalWithNoLinkageType(Var)) &&
18203 !(Var->isStaticDataMember() && Var->hasInit())) {
18204 SourceLocation &old = SemaRef.UndefinedButUsed[Var->getCanonicalDecl()];
18205 if (old.isInvalid())
18206 old = Loc;
18207 }
18208 QualType CaptureType, DeclRefType;
18209 if (SemaRef.LangOpts.OpenMP)
18210 SemaRef.tryCaptureOpenMPLambdas(Var);
18211 SemaRef.tryCaptureVariable(Var, Loc, Sema::TryCapture_Implicit,
18212 /*EllipsisLoc*/ SourceLocation(),
18213 /*BuildAndDiagnose*/ true,
18214 CaptureType, DeclRefType,
18215 FunctionScopeIndexToStopAt);
18216
18217 if (SemaRef.LangOpts.CUDA && Var->hasGlobalStorage()) {
18218 auto *FD = dyn_cast_or_null<FunctionDecl>(SemaRef.CurContext);
18219 auto VarTarget = SemaRef.IdentifyCUDATarget(Var);
18220 auto UserTarget = SemaRef.IdentifyCUDATarget(FD);
18221 if (VarTarget == Sema::CVT_Host &&
18222 (UserTarget == Sema::CFT_Device || UserTarget == Sema::CFT_HostDevice ||
18223 UserTarget == Sema::CFT_Global)) {
18224 // Diagnose ODR-use of host global variables in device functions.
18225 // Reference of device global variables in host functions is allowed
18226 // through shadow variables therefore it is not diagnosed.
18227 if (SemaRef.LangOpts.CUDAIsDevice) {
18228 SemaRef.targetDiag(Loc, diag::err_ref_bad_target)
18229 << /*host*/ 2 << /*variable*/ 1 << Var << UserTarget;
18230 SemaRef.targetDiag(Var->getLocation(),
18231 Var->getType().isConstQualified()
18232 ? diag::note_cuda_const_var_unpromoted
18233 : diag::note_cuda_host_var);
18234 }
18235 } else if (VarTarget == Sema::CVT_Device &&
18236 (UserTarget == Sema::CFT_Host ||
18237 UserTarget == Sema::CFT_HostDevice)) {
18238 // Record a CUDA/HIP device side variable if it is ODR-used
18239 // by host code. This is done conservatively, when the variable is
18240 // referenced in any of the following contexts:
18241 // - a non-function context
18242 // - a host function
18243 // - a host device function
18244 // This makes the ODR-use of the device side variable by host code to
18245 // be visible in the device compilation for the compiler to be able to
18246 // emit template variables instantiated by host code only and to
18247 // externalize the static device side variable ODR-used by host code.
18248 if (!Var->hasExternalStorage())
18249 SemaRef.getASTContext().CUDADeviceVarODRUsedByHost.insert(Var);
18250 else if (SemaRef.LangOpts.GPURelocatableDeviceCode)
18251 SemaRef.getASTContext().CUDAExternalDeviceDeclODRUsedByHost.insert(Var);
18252 }
18253 }
18254
18255 Var->markUsed(SemaRef.Context);
18256}
18257
18258void Sema::MarkCaptureUsedInEnclosingContext(VarDecl *Capture,
18259 SourceLocation Loc,
18260 unsigned CapturingScopeIndex) {
18261 MarkVarDeclODRUsed(Capture, Loc, *this, &CapturingScopeIndex);
18262}
18263
18264void diagnoseUncapturableValueReferenceOrBinding(Sema &S, SourceLocation loc,
18265 ValueDecl *var) {
18266 DeclContext *VarDC = var->getDeclContext();
18267
18268 // If the parameter still belongs to the translation unit, then
18269 // we're actually just using one parameter in the declaration of
18270 // the next.
18271 if (isa<ParmVarDecl>(var) &&
18272 isa<TranslationUnitDecl>(VarDC))
18273 return;
18274
18275 // For C code, don't diagnose about capture if we're not actually in code
18276 // right now; it's impossible to write a non-constant expression outside of
18277 // function context, so we'll get other (more useful) diagnostics later.
18278 //
18279 // For C++, things get a bit more nasty... it would be nice to suppress this
18280 // diagnostic for certain cases like using a local variable in an array bound
18281 // for a member of a local class, but the correct predicate is not obvious.
18282 if (!S.getLangOpts().CPlusPlus && !S.CurContext->isFunctionOrMethod())
18283 return;
18284
18285 unsigned ValueKind = isa<BindingDecl>(var) ? 1 : 0;
18286 unsigned ContextKind = 3; // unknown
18287 if (isa<CXXMethodDecl>(VarDC) &&
18288 cast<CXXRecordDecl>(VarDC->getParent())->isLambda()) {
18289 ContextKind = 2;
18290 } else if (isa<FunctionDecl>(VarDC)) {
18291 ContextKind = 0;
18292 } else if (isa<BlockDecl>(VarDC)) {
18293 ContextKind = 1;
18294 }
18295
18296 S.Diag(loc, diag::err_reference_to_local_in_enclosing_context)
18297 << var << ValueKind << ContextKind << VarDC;
18298 S.Diag(var->getLocation(), diag::note_entity_declared_at)
18299 << var;
18300
18301 // FIXME: Add additional diagnostic info about class etc. which prevents
18302 // capture.
18303}
18304
18305static bool isVariableAlreadyCapturedInScopeInfo(CapturingScopeInfo *CSI,
18306 ValueDecl *Var,
18307 bool &SubCapturesAreNested,
18308 QualType &CaptureType,
18309 QualType &DeclRefType) {
18310 // Check whether we've already captured it.
18311 if (CSI->CaptureMap.count(Var)) {
18312 // If we found a capture, any subcaptures are nested.
18313 SubCapturesAreNested = true;
18314
18315 // Retrieve the capture type for this variable.
18316 CaptureType = CSI->getCapture(Var).getCaptureType();
18317
18318 // Compute the type of an expression that refers to this variable.
18319 DeclRefType = CaptureType.getNonReferenceType();
18320
18321 // Similarly to mutable captures in lambda, all the OpenMP captures by copy
18322 // are mutable in the sense that user can change their value - they are
18323 // private instances of the captured declarations.
18324 const Capture &Cap = CSI->getCapture(Var);
18325 if (Cap.isCopyCapture() &&
18326 !(isa<LambdaScopeInfo>(CSI) && cast<LambdaScopeInfo>(CSI)->Mutable) &&
18327 !(isa<CapturedRegionScopeInfo>(CSI) &&
18328 cast<CapturedRegionScopeInfo>(CSI)->CapRegionKind == CR_OpenMP))
18329 DeclRefType.addConst();
18330 return true;
18331 }
18332 return false;
18333}
18334
18335// Only block literals, captured statements, and lambda expressions can
18336// capture; other scopes don't work.
18337static DeclContext *getParentOfCapturingContextOrNull(DeclContext *DC,
18338 ValueDecl *Var,
18339 SourceLocation Loc,
18340 const bool Diagnose,
18341 Sema &S) {
18342 if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC) || isLambdaCallOperator(DC))
18343 return getLambdaAwareParentOfDeclContext(DC);
18344
18345 ValueDecl *Underlying = Var;
18346 auto *BD = dyn_cast_or_null<BindingDecl>(Var);
18347 if (BD)
18348 Underlying = BD->getDecomposedDecl();
18349
18350 if (auto *VD = dyn_cast<VarDecl>(Underlying)) {
18351 if (VD->hasLocalStorage() && Diagnose)
18352 diagnoseUncapturableValueReferenceOrBinding(S, Loc, Var);
18353 }
18354 return nullptr;
18355}
18356
18357// Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
18358// certain types of variables (unnamed, variably modified types etc.)
18359// so check for eligibility.
18360static bool isVariableCapturable(CapturingScopeInfo *CSI, ValueDecl *Var,
18361 SourceLocation Loc, const bool Diagnose,
18362 Sema &S) {
18363
18364 assert((isa<VarDecl, BindingDecl>(Var)) &&(static_cast <bool> ((isa<VarDecl, BindingDecl>(Var
)) && "Only variables and structured bindings can be captured"
) ? void (0) : __assert_fail ("(isa<VarDecl, BindingDecl>(Var)) && \"Only variables and structured bindings can be captured\""
, "clang/lib/Sema/SemaExpr.cpp", 18365, __extension__ __PRETTY_FUNCTION__
))
18365 "Only variables and structured bindings can be captured")(static_cast <bool> ((isa<VarDecl, BindingDecl>(Var
)) && "Only variables and structured bindings can be captured"
) ? void (0) : __assert_fail ("(isa<VarDecl, BindingDecl>(Var)) && \"Only variables and structured bindings can be captured\""
, "clang/lib/Sema/SemaExpr.cpp", 18365, __extension__ __PRETTY_FUNCTION__
))
;
18366
18367 bool IsBlock = isa<BlockScopeInfo>(CSI);
18368 bool IsLambda = isa<LambdaScopeInfo>(CSI);
18369
18370 // Lambdas are not allowed to capture unnamed variables
18371 // (e.g. anonymous unions).
18372 // FIXME: The C++11 rule don't actually state this explicitly, but I'm
18373 // assuming that's the intent.
18374 if (IsLambda && !Var->getDeclName()) {
18375 if (Diagnose) {
18376 S.Diag(Loc, diag::err_lambda_capture_anonymous_var);
18377 S.Diag(Var->getLocation(), diag::note_declared_at);
18378 }
18379 return false;
18380 }
18381
18382 // Prohibit variably-modified types in blocks; they're difficult to deal with.
18383 if (Var->getType()->isVariablyModifiedType() && IsBlock) {
18384 if (Diagnose) {
18385 S.Diag(Loc, diag::err_ref_vm_type);
18386 S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
18387 }
18388 return false;
18389 }
18390 // Prohibit structs with flexible array members too.
18391 // We cannot capture what is in the tail end of the struct.
18392 if (const RecordType *VTTy = Var->getType()->getAs<RecordType>()) {
18393 if (VTTy->getDecl()->hasFlexibleArrayMember()) {
18394 if (Diagnose) {
18395 if (IsBlock)
18396 S.Diag(Loc, diag::err_ref_flexarray_type);
18397 else
18398 S.Diag(Loc, diag::err_lambda_capture_flexarray_type) << Var;
18399 S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
18400 }
18401 return false;
18402 }
18403 }
18404 const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
18405 // Lambdas and captured statements are not allowed to capture __block
18406 // variables; they don't support the expected semantics.
18407 if (HasBlocksAttr && (IsLambda || isa<CapturedRegionScopeInfo>(CSI))) {
18408 if (Diagnose) {
18409 S.Diag(Loc, diag::err_capture_block_variable) << Var << !IsLambda;
18410 S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
18411 }
18412 return false;
18413 }
18414 // OpenCL v2.0 s6.12.5: Blocks cannot reference/capture other blocks
18415 if (S.getLangOpts().OpenCL && IsBlock &&
18416 Var->getType()->isBlockPointerType()) {
18417 if (Diagnose)
18418 S.Diag(Loc, diag::err_opencl_block_ref_block);
18419 return false;
18420 }
18421
18422 if (isa<BindingDecl>(Var)) {
18423 if (!IsLambda || !S.getLangOpts().CPlusPlus) {
18424 if (Diagnose)
18425 diagnoseUncapturableValueReferenceOrBinding(S, Loc, Var);
18426 return false;
18427 } else if (Diagnose && S.getLangOpts().CPlusPlus) {
18428 S.Diag(Loc, S.LangOpts.CPlusPlus20
18429 ? diag::warn_cxx17_compat_capture_binding
18430 : diag::ext_capture_binding)
18431 << Var;
18432 S.Diag(Var->getLocation(), diag::note_entity_declared_at) << Var;
18433 }
18434 }
18435
18436 return true;
18437}
18438
18439// Returns true if the capture by block was successful.
18440static bool captureInBlock(BlockScopeInfo *BSI, ValueDecl *Var,
18441 SourceLocation Loc, const bool BuildAndDiagnose,
18442 QualType &CaptureType, QualType &DeclRefType,
18443 const bool Nested, Sema &S, bool Invalid) {
18444 bool ByRef = false;
18445
18446 // Blocks are not allowed to capture arrays, excepting OpenCL.
18447 // OpenCL v2.0 s1.12.5 (revision 40): arrays are captured by reference
18448 // (decayed to pointers).
18449 if (!Invalid && !S.getLangOpts().OpenCL && CaptureType->isArrayType()) {
18450 if (BuildAndDiagnose) {
18451 S.Diag(Loc, diag::err_ref_array_type);
18452 S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
18453 Invalid = true;
18454 } else {
18455 return false;
18456 }
18457 }
18458
18459 // Forbid the block-capture of autoreleasing variables.
18460 if (!Invalid &&
18461 CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
18462 if (BuildAndDiagnose) {
18463 S.Diag(Loc, diag::err_arc_autoreleasing_capture)
18464 << /*block*/ 0;
18465 S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
18466 Invalid = true;
18467 } else {
18468 return false;
18469 }
18470 }
18471
18472 // Warn about implicitly autoreleasing indirect parameters captured by blocks.
18473 if (const auto *PT = CaptureType->getAs<PointerType>()) {
18474 QualType PointeeTy = PT->getPointeeType();
18475
18476 if (!Invalid && PointeeTy->getAs<ObjCObjectPointerType>() &&
18477 PointeeTy.getObjCLifetime() == Qualifiers::OCL_Autoreleasing &&
18478 !S.Context.hasDirectOwnershipQualifier(PointeeTy)) {
18479 if (BuildAndDiagnose) {
18480 SourceLocation VarLoc = Var->getLocation();
18481 S.Diag(Loc, diag::warn_block_capture_autoreleasing);
18482 S.Diag(VarLoc, diag::note_declare_parameter_strong);
18483 }
18484 }
18485 }
18486
18487 const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
18488 if (HasBlocksAttr || CaptureType->isReferenceType() ||
18489 (S.getLangOpts().OpenMP && S.isOpenMPCapturedDecl(Var))) {
18490 // Block capture by reference does not change the capture or
18491 // declaration reference types.
18492 ByRef = true;
18493 } else {
18494 // Block capture by copy introduces 'const'.
18495 CaptureType = CaptureType.getNonReferenceType().withConst();
18496 DeclRefType = CaptureType;
18497 }
18498
18499 // Actually capture the variable.
18500 if (BuildAndDiagnose)
18501 BSI->addCapture(Var, HasBlocksAttr, ByRef, Nested, Loc, SourceLocation(),
18502 CaptureType, Invalid);
18503
18504 return !Invalid;
18505}
18506
18507/// Capture the given variable in the captured region.
18508static bool captureInCapturedRegion(
18509 CapturedRegionScopeInfo *RSI, ValueDecl *Var, SourceLocation Loc,
18510 const bool BuildAndDiagnose, QualType &CaptureType, QualType &DeclRefType,
18511 const bool RefersToCapturedVariable, Sema::TryCaptureKind Kind,
18512 bool IsTopScope, Sema &S, bool Invalid) {
18513 // By default, capture variables by reference.
18514 bool ByRef = true;
18515 if (IsTopScope && Kind != Sema::TryCapture_Implicit) {
18516 ByRef = (Kind == Sema::TryCapture_ExplicitByRef);
18517 } else if (S.getLangOpts().OpenMP && RSI->CapRegionKind == CR_OpenMP) {
18518 // Using an LValue reference type is consistent with Lambdas (see below).
18519 if (S.isOpenMPCapturedDecl(Var)) {
18520 bool HasConst = DeclRefType.isConstQualified();
18521 DeclRefType = DeclRefType.getUnqualifiedType();
18522 // Don't lose diagnostics about assignments to const.
18523 if (HasConst)
18524 DeclRefType.addConst();
18525 }
18526 // Do not capture firstprivates in tasks.
18527 if (S.isOpenMPPrivateDecl(Var, RSI->OpenMPLevel, RSI->OpenMPCaptureLevel) !=
18528 OMPC_unknown)
18529 return true;
18530 ByRef = S.isOpenMPCapturedByRef(Var, RSI->OpenMPLevel,
18531 RSI->OpenMPCaptureLevel);
18532 }
18533
18534 if (ByRef)
18535 CaptureType = S.Context.getLValueReferenceType(DeclRefType);
18536 else
18537 CaptureType = DeclRefType;
18538
18539 // Actually capture the variable.
18540 if (BuildAndDiagnose)
18541 RSI->addCapture(Var, /*isBlock*/ false, ByRef, RefersToCapturedVariable,
18542 Loc, SourceLocation(), CaptureType, Invalid);
18543
18544 return !Invalid;
18545}
18546
18547/// Capture the given variable in the lambda.
18548static bool captureInLambda(LambdaScopeInfo *LSI, ValueDecl *Var,
18549 SourceLocation Loc, const bool BuildAndDiagnose,
18550 QualType &CaptureType, QualType &DeclRefType,
18551 const bool RefersToCapturedVariable,
18552 const Sema::TryCaptureKind Kind,
18553 SourceLocation EllipsisLoc, const bool IsTopScope,
18554 Sema &S, bool Invalid) {
18555 // Determine whether we are capturing by reference or by value.
18556 bool ByRef = false;
18557 if (IsTopScope && Kind != Sema::TryCapture_Implicit) {
18558 ByRef = (Kind == Sema::TryCapture_ExplicitByRef);
18559 } else {
18560 ByRef = (LSI->ImpCaptureStyle == LambdaScopeInfo::ImpCap_LambdaByref);
18561 }
18562
18563 BindingDecl *BD = dyn_cast<BindingDecl>(Var);
18564 // FIXME: We should support capturing structured bindings in OpenMP.
18565 if (!Invalid && BD && S.LangOpts.OpenMP) {
18566 if (BuildAndDiagnose) {
18567 S.Diag(Loc, diag::err_capture_binding_openmp) << Var;
18568 S.Diag(Var->getLocation(), diag::note_entity_declared_at) << Var;
18569 }
18570 Invalid = true;
18571 }
18572
18573 // Compute the type of the field that will capture this variable.
18574 if (ByRef) {
18575 // C++11 [expr.prim.lambda]p15:
18576 // An entity is captured by reference if it is implicitly or
18577 // explicitly captured but not captured by copy. It is
18578 // unspecified whether additional unnamed non-static data
18579 // members are declared in the closure type for entities
18580 // captured by reference.
18581 //
18582 // FIXME: It is not clear whether we want to build an lvalue reference
18583 // to the DeclRefType or to CaptureType.getNonReferenceType(). GCC appears
18584 // to do the former, while EDG does the latter. Core issue 1249 will
18585 // clarify, but for now we follow GCC because it's a more permissive and
18586 // easily defensible position.
18587 CaptureType = S.Context.getLValueReferenceType(DeclRefType);
18588 } else {
18589 // C++11 [expr.prim.lambda]p14:
18590 // For each entity captured by copy, an unnamed non-static
18591 // data member is declared in the closure type. The
18592 // declaration order of these members is unspecified. The type
18593 // of such a data member is the type of the corresponding
18594 // captured entity if the entity is not a reference to an
18595 // object, or the referenced type otherwise. [Note: If the
18596 // captured entity is a reference to a function, the
18597 // corresponding data member is also a reference to a
18598 // function. - end note ]
18599 if (const ReferenceType *RefType = CaptureType->getAs<ReferenceType>()){
18600 if (!RefType->getPointeeType()->isFunctionType())
18601 CaptureType = RefType->getPointeeType();
18602 }
18603
18604 // Forbid the lambda copy-capture of autoreleasing variables.
18605 if (!Invalid &&
18606 CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
18607 if (BuildAndDiagnose) {
18608 S.Diag(Loc, diag::err_arc_autoreleasing_capture) << /*lambda*/ 1;
18609 S.Diag(Var->getLocation(), diag::note_previous_decl)
18610 << Var->getDeclName();
18611 Invalid = true;
18612 } else {
18613 return false;
18614 }
18615 }
18616
18617 // Make sure that by-copy captures are of a complete and non-abstract type.
18618 if (!Invalid && BuildAndDiagnose) {
18619 if (!CaptureType->isDependentType() &&
18620 S.RequireCompleteSizedType(
18621 Loc, CaptureType,
18622 diag::err_capture_of_incomplete_or_sizeless_type,
18623 Var->getDeclName()))
18624 Invalid = true;
18625 else if (S.RequireNonAbstractType(Loc, CaptureType,
18626 diag::err_capture_of_abstract_type))
18627 Invalid = true;
18628 }
18629 }
18630
18631 // Compute the type of a reference to this captured variable.
18632 if (ByRef)
18633 DeclRefType = CaptureType.getNonReferenceType();
18634 else {
18635 // C++ [expr.prim.lambda]p5:
18636 // The closure type for a lambda-expression has a public inline
18637 // function call operator [...]. This function call operator is
18638 // declared const (9.3.1) if and only if the lambda-expression's
18639 // parameter-declaration-clause is not followed by mutable.
18640 DeclRefType = CaptureType.getNonReferenceType();
18641 if (!LSI->Mutable && !CaptureType->isReferenceType())
18642 DeclRefType.addConst();
18643 }
18644
18645 // Add the capture.
18646 if (BuildAndDiagnose)
18647 LSI->addCapture(Var, /*isBlock=*/false, ByRef, RefersToCapturedVariable,
18648 Loc, EllipsisLoc, CaptureType, Invalid);
18649
18650 return !Invalid;
18651}
18652
18653static bool canCaptureVariableByCopy(ValueDecl *Var,
18654 const ASTContext &Context) {
18655 // Offer a Copy fix even if the type is dependent.
18656 if (Var->getType()->isDependentType())
18657 return true;
18658 QualType T = Var->getType().getNonReferenceType();
18659 if (T.isTriviallyCopyableType(Context))
18660 return true;
18661 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
18662
18663 if (!(RD = RD->getDefinition()))
18664 return false;
18665 if (RD->hasSimpleCopyConstructor())
18666 return true;
18667 if (RD->hasUserDeclaredCopyConstructor())
18668 for (CXXConstructorDecl *Ctor : RD->ctors())
18669 if (Ctor->isCopyConstructor())
18670 return !Ctor->isDeleted();
18671 }
18672 return false;
18673}
18674
18675/// Create up to 4 fix-its for explicit reference and value capture of \p Var or
18676/// default capture. Fixes may be omitted if they aren't allowed by the
18677/// standard, for example we can't emit a default copy capture fix-it if we
18678/// already explicitly copy capture capture another variable.
18679static void buildLambdaCaptureFixit(Sema &Sema, LambdaScopeInfo *LSI,
18680 ValueDecl *Var) {
18681 assert(LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None)(static_cast <bool> (LSI->ImpCaptureStyle == CapturingScopeInfo
::ImpCap_None) ? void (0) : __assert_fail ("LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None"
, "clang/lib/Sema/SemaExpr.cpp", 18681, __extension__ __PRETTY_FUNCTION__
))
;
18682 // Don't offer Capture by copy of default capture by copy fixes if Var is
18683 // known not to be copy constructible.
18684 bool ShouldOfferCopyFix = canCaptureVariableByCopy(Var, Sema.getASTContext());
18685
18686 SmallString<32> FixBuffer;
18687 StringRef Separator = LSI->NumExplicitCaptures > 0 ? ", " : "";
18688 if (Var->getDeclName().isIdentifier() && !Var->getName().empty()) {
18689 SourceLocation VarInsertLoc = LSI->IntroducerRange.getEnd();
18690 if (ShouldOfferCopyFix) {
18691 // Offer fixes to insert an explicit capture for the variable.
18692 // [] -> [VarName]
18693 // [OtherCapture] -> [OtherCapture, VarName]
18694 FixBuffer.assign({Separator, Var->getName()});
18695 Sema.Diag(VarInsertLoc, diag::note_lambda_variable_capture_fixit)
18696 << Var << /*value*/ 0
18697 << FixItHint::CreateInsertion(VarInsertLoc, FixBuffer);
18698 }
18699 // As above but capture by reference.
18700 FixBuffer.assign({Separator, "&", Var->getName()});
18701 Sema.Diag(VarInsertLoc, diag::note_lambda_variable_capture_fixit)
18702 << Var << /*reference*/ 1
18703 << FixItHint::CreateInsertion(VarInsertLoc, FixBuffer);
18704 }
18705
18706 // Only try to offer default capture if there are no captures excluding this
18707 // and init captures.
18708 // [this]: OK.
18709 // [X = Y]: OK.
18710 // [&A, &B]: Don't offer.
18711 // [A, B]: Don't offer.
18712 if (llvm::any_of(LSI->Captures, [](Capture &C) {
18713 return !C.isThisCapture() && !C.isInitCapture();
18714 }))
18715 return;
18716
18717 // The default capture specifiers, '=' or '&', must appear first in the
18718 // capture body.
18719 SourceLocation DefaultInsertLoc =
18720 LSI->IntroducerRange.getBegin().getLocWithOffset(1);
18721
18722 if (ShouldOfferCopyFix) {
18723 bool CanDefaultCopyCapture = true;
18724 // [=, *this] OK since c++17
18725 // [=, this] OK since c++20
18726 if (LSI->isCXXThisCaptured() && !Sema.getLangOpts().CPlusPlus20)
18727 CanDefaultCopyCapture = Sema.getLangOpts().CPlusPlus17
18728 ? LSI->getCXXThisCapture().isCopyCapture()
18729 : false;
18730 // We can't use default capture by copy if any captures already specified
18731 // capture by copy.
18732 if (CanDefaultCopyCapture && llvm::none_of(LSI->Captures, [](Capture &C) {
18733 return !C.isThisCapture() && !C.isInitCapture() && C.isCopyCapture();
18734 })) {
18735 FixBuffer.assign({"=", Separator});
18736 Sema.Diag(DefaultInsertLoc, diag::note_lambda_default_capture_fixit)
18737 << /*value*/ 0
18738 << FixItHint::CreateInsertion(DefaultInsertLoc, FixBuffer);
18739 }
18740 }
18741
18742 // We can't use default capture by reference if any captures already specified
18743 // capture by reference.
18744 if (llvm::none_of(LSI->Captures, [](Capture &C) {
18745 return !C.isInitCapture() && C.isReferenceCapture() &&
18746 !C.isThisCapture();
18747 })) {
18748 FixBuffer.assign({"&", Separator});
18749 Sema.Diag(DefaultInsertLoc, diag::note_lambda_default_capture_fixit)
18750 << /*reference*/ 1
18751 << FixItHint::CreateInsertion(DefaultInsertLoc, FixBuffer);
18752 }
18753}
18754
18755bool Sema::tryCaptureVariable(
18756 ValueDecl *Var, SourceLocation ExprLoc, TryCaptureKind Kind,
18757 SourceLocation EllipsisLoc, bool BuildAndDiagnose, QualType &CaptureType,
18758 QualType &DeclRefType, const unsigned *const FunctionScopeIndexToStopAt) {
18759 // An init-capture is notionally from the context surrounding its
18760 // declaration, but its parent DC is the lambda class.
18761 DeclContext *VarDC = Var->getDeclContext();
18762 const auto *VD = dyn_cast<VarDecl>(Var);
18763 if (VD) {
18764 if (VD->isInitCapture())
18765 VarDC = VarDC->getParent();
18766 } else {
18767 VD = dyn_cast<DecompositionDecl>(
18768 cast<BindingDecl>(Var)->getDecomposedDecl());
18769 }
18770 assert(VD && "Cannot capture a null variable")(static_cast <bool> (VD && "Cannot capture a null variable"
) ? void (0) : __assert_fail ("VD && \"Cannot capture a null variable\""
, "clang/lib/Sema/SemaExpr.cpp", 18770, __extension__ __PRETTY_FUNCTION__
))
;
18771
18772 DeclContext *DC = CurContext;
18773 const unsigned MaxFunctionScopesIndex = FunctionScopeIndexToStopAt
18774 ? *FunctionScopeIndexToStopAt : FunctionScopes.size() - 1;
18775 // We need to sync up the Declaration Context with the
18776 // FunctionScopeIndexToStopAt
18777 if (FunctionScopeIndexToStopAt) {
18778 unsigned FSIndex = FunctionScopes.size() - 1;
18779 while (FSIndex != MaxFunctionScopesIndex) {
18780 DC = getLambdaAwareParentOfDeclContext(DC);
18781 --FSIndex;
18782 }
18783 }
18784
18785
18786 // If the variable is declared in the current context, there is no need to
18787 // capture it.
18788 if (VarDC == DC) return true;
18789
18790 // Capture global variables if it is required to use private copy of this
18791 // variable.
18792 bool IsGlobal = !VD->hasLocalStorage();
18793 if (IsGlobal &&
18794 !(LangOpts.OpenMP && isOpenMPCapturedDecl(Var, /*CheckScopeInfo=*/true,
18795 MaxFunctionScopesIndex)))
18796 return true;
18797
18798 if (isa<VarDecl>(Var))
18799 Var = cast<VarDecl>(Var->getCanonicalDecl());
18800
18801 // Walk up the stack to determine whether we can capture the variable,
18802 // performing the "simple" checks that don't depend on type. We stop when
18803 // we've either hit the declared scope of the variable or find an existing
18804 // capture of that variable. We start from the innermost capturing-entity
18805 // (the DC) and ensure that all intervening capturing-entities
18806 // (blocks/lambdas etc.) between the innermost capturer and the variable`s
18807 // declcontext can either capture the variable or have already captured
18808 // the variable.
18809 CaptureType = Var->getType();
18810 DeclRefType = CaptureType.getNonReferenceType();
18811 bool Nested = false;
18812 bool Explicit = (Kind != TryCapture_Implicit);
18813 unsigned FunctionScopesIndex = MaxFunctionScopesIndex;
18814 do {
18815 // Only block literals, captured statements, and lambda expressions can
18816 // capture; other scopes don't work.
18817 DeclContext *ParentDC = getParentOfCapturingContextOrNull(DC, Var,
18818 ExprLoc,
18819 BuildAndDiagnose,
18820 *this);
18821 // We need to check for the parent *first* because, if we *have*
18822 // private-captured a global variable, we need to recursively capture it in
18823 // intermediate blocks, lambdas, etc.
18824 if (!ParentDC) {
18825 if (IsGlobal) {
18826 FunctionScopesIndex = MaxFunctionScopesIndex - 1;
18827 break;
18828 }
18829 return true;
18830 }
18831
18832 FunctionScopeInfo *FSI = FunctionScopes[FunctionScopesIndex];
18833 CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FSI);
18834
18835
18836 // Check whether we've already captured it.
18837 if (isVariableAlreadyCapturedInScopeInfo(CSI, Var, Nested, CaptureType,
18838 DeclRefType)) {
18839 CSI->getCapture(Var).markUsed(BuildAndDiagnose);
18840 break;
18841 }
18842 // If we are instantiating a generic lambda call operator body,
18843 // we do not want to capture new variables. What was captured
18844 // during either a lambdas transformation or initial parsing
18845 // should be used.
18846 if (isGenericLambdaCallOperatorSpecialization(DC)) {
18847 if (BuildAndDiagnose) {
18848 LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
18849 if (LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None) {
18850 Diag(ExprLoc, diag::err_lambda_impcap) << Var;
18851 Diag(Var->getLocation(), diag::note_previous_decl) << Var;
18852 Diag(LSI->Lambda->getBeginLoc(), diag::note_lambda_decl);
18853 buildLambdaCaptureFixit(*this, LSI, Var);
18854 } else
18855 diagnoseUncapturableValueReferenceOrBinding(*this, ExprLoc, Var);
18856 }
18857 return true;
18858 }
18859
18860 // Try to capture variable-length arrays types.
18861 if (Var->getType()->isVariablyModifiedType()) {
18862 // We're going to walk down into the type and look for VLA
18863 // expressions.
18864 QualType QTy = Var->getType();
18865 if (ParmVarDecl *PVD = dyn_cast_or_null<ParmVarDecl>(Var))
18866 QTy = PVD->getOriginalType();
18867 captureVariablyModifiedType(Context, QTy, CSI);
18868 }
18869
18870 if (getLangOpts().OpenMP) {
18871 if (auto *RSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) {
18872 // OpenMP private variables should not be captured in outer scope, so
18873 // just break here. Similarly, global variables that are captured in a
18874 // target region should not be captured outside the scope of the region.
18875 if (RSI->CapRegionKind == CR_OpenMP) {
18876 OpenMPClauseKind IsOpenMPPrivateDecl = isOpenMPPrivateDecl(
18877 Var, RSI->OpenMPLevel, RSI->OpenMPCaptureLevel);
18878 // If the variable is private (i.e. not captured) and has variably
18879 // modified type, we still need to capture the type for correct
18880 // codegen in all regions, associated with the construct. Currently,
18881 // it is captured in the innermost captured region only.
18882 if (IsOpenMPPrivateDecl != OMPC_unknown &&
18883 Var->getType()->isVariablyModifiedType()) {
18884 QualType QTy = Var->getType();
18885 if (ParmVarDecl *PVD = dyn_cast_or_null<ParmVarDecl>(Var))
18886 QTy = PVD->getOriginalType();
18887 for (int I = 1, E = getNumberOfConstructScopes(RSI->OpenMPLevel);
18888 I < E; ++I) {
18889 auto *OuterRSI = cast<CapturedRegionScopeInfo>(
18890 FunctionScopes[FunctionScopesIndex - I]);
18891 assert(RSI->OpenMPLevel == OuterRSI->OpenMPLevel &&(static_cast <bool> (RSI->OpenMPLevel == OuterRSI->
OpenMPLevel && "Wrong number of captured regions associated with the "
"OpenMP construct.") ? void (0) : __assert_fail ("RSI->OpenMPLevel == OuterRSI->OpenMPLevel && \"Wrong number of captured regions associated with the \" \"OpenMP construct.\""
, "clang/lib/Sema/SemaExpr.cpp", 18893, __extension__ __PRETTY_FUNCTION__
))
18892 "Wrong number of captured regions associated with the "(static_cast <bool> (RSI->OpenMPLevel == OuterRSI->
OpenMPLevel && "Wrong number of captured regions associated with the "
"OpenMP construct.") ? void (0) : __assert_fail ("RSI->OpenMPLevel == OuterRSI->OpenMPLevel && \"Wrong number of captured regions associated with the \" \"OpenMP construct.\""
, "clang/lib/Sema/SemaExpr.cpp", 18893, __extension__ __PRETTY_FUNCTION__
))
18893 "OpenMP construct.")(static_cast <bool> (RSI->OpenMPLevel == OuterRSI->
OpenMPLevel && "Wrong number of captured regions associated with the "
"OpenMP construct.") ? void (0) : __assert_fail ("RSI->OpenMPLevel == OuterRSI->OpenMPLevel && \"Wrong number of captured regions associated with the \" \"OpenMP construct.\""
, "clang/lib/Sema/SemaExpr.cpp", 18893, __extension__ __PRETTY_FUNCTION__
))
;
18894 captureVariablyModifiedType(Context, QTy, OuterRSI);
18895 }
18896 }
18897 bool IsTargetCap =
18898 IsOpenMPPrivateDecl != OMPC_private &&
18899 isOpenMPTargetCapturedDecl(Var, RSI->OpenMPLevel,
18900 RSI->OpenMPCaptureLevel);
18901 // Do not capture global if it is not privatized in outer regions.
18902 bool IsGlobalCap =
18903 IsGlobal && isOpenMPGlobalCapturedDecl(Var, RSI->OpenMPLevel,
18904 RSI->OpenMPCaptureLevel);
18905
18906 // When we detect target captures we are looking from inside the
18907 // target region, therefore we need to propagate the capture from the
18908 // enclosing region. Therefore, the capture is not initially nested.
18909 if (IsTargetCap)
18910 adjustOpenMPTargetScopeIndex(FunctionScopesIndex, RSI->OpenMPLevel);
18911
18912 if (IsTargetCap || IsOpenMPPrivateDecl == OMPC_private ||
18913 (IsGlobal && !IsGlobalCap)) {
18914 Nested = !IsTargetCap;
18915 bool HasConst = DeclRefType.isConstQualified();
18916 DeclRefType = DeclRefType.getUnqualifiedType();
18917 // Don't lose diagnostics about assignments to const.
18918 if (HasConst)
18919 DeclRefType.addConst();
18920 CaptureType = Context.getLValueReferenceType(DeclRefType);
18921 break;
18922 }
18923 }
18924 }
18925 }
18926 if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None && !Explicit) {
18927 // No capture-default, and this is not an explicit capture
18928 // so cannot capture this variable.
18929 if (BuildAndDiagnose) {
18930 Diag(ExprLoc, diag::err_lambda_impcap) << Var;
18931 Diag(Var->getLocation(), diag::note_previous_decl) << Var;
18932 auto *LSI = cast<LambdaScopeInfo>(CSI);
18933 if (LSI->Lambda) {
18934 Diag(LSI->Lambda->getBeginLoc(), diag::note_lambda_decl);
18935 buildLambdaCaptureFixit(*this, LSI, Var);
18936 }
18937 // FIXME: If we error out because an outer lambda can not implicitly
18938 // capture a variable that an inner lambda explicitly captures, we
18939 // should have the inner lambda do the explicit capture - because
18940 // it makes for cleaner diagnostics later. This would purely be done
18941 // so that the diagnostic does not misleadingly claim that a variable
18942 // can not be captured by a lambda implicitly even though it is captured
18943 // explicitly. Suggestion:
18944 // - create const bool VariableCaptureWasInitiallyExplicit = Explicit
18945 // at the function head
18946 // - cache the StartingDeclContext - this must be a lambda
18947 // - captureInLambda in the innermost lambda the variable.
18948 }
18949 return true;
18950 }
18951
18952 FunctionScopesIndex--;
18953 DC = ParentDC;
18954 Explicit = false;
18955 } while (!VarDC->Equals(DC));
18956
18957 // Walk back down the scope stack, (e.g. from outer lambda to inner lambda)
18958 // computing the type of the capture at each step, checking type-specific
18959 // requirements, and adding captures if requested.
18960 // If the variable had already been captured previously, we start capturing
18961 // at the lambda nested within that one.
18962 bool Invalid = false;
18963 for (unsigned I = ++FunctionScopesIndex, N = MaxFunctionScopesIndex + 1; I != N;
18964 ++I) {
18965 CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[I]);
18966
18967 // Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
18968 // certain types of variables (unnamed, variably modified types etc.)
18969 // so check for eligibility.
18970 if (!Invalid)
18971 Invalid =
18972 !isVariableCapturable(CSI, Var, ExprLoc, BuildAndDiagnose, *this);
18973
18974 // After encountering an error, if we're actually supposed to capture, keep
18975 // capturing in nested contexts to suppress any follow-on diagnostics.
18976 if (Invalid && !BuildAndDiagnose)
18977 return true;
18978
18979 if (BlockScopeInfo *BSI = dyn_cast<BlockScopeInfo>(CSI)) {
18980 Invalid = !captureInBlock(BSI, Var, ExprLoc, BuildAndDiagnose, CaptureType,
18981 DeclRefType, Nested, *this, Invalid);
18982 Nested = true;
18983 } else if (CapturedRegionScopeInfo *RSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) {
18984 Invalid = !captureInCapturedRegion(
18985 RSI, Var, ExprLoc, BuildAndDiagnose, CaptureType, DeclRefType, Nested,
18986 Kind, /*IsTopScope*/ I == N - 1, *this, Invalid);
18987 Nested = true;
18988 } else {
18989 LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
18990 Invalid =
18991 !captureInLambda(LSI, Var, ExprLoc, BuildAndDiagnose, CaptureType,
18992 DeclRefType, Nested, Kind, EllipsisLoc,
18993 /*IsTopScope*/ I == N - 1, *this, Invalid);
18994 Nested = true;
18995 }
18996
18997 if (Invalid && !BuildAndDiagnose)
18998 return true;
18999 }
19000 return Invalid;
19001}
19002
19003bool Sema::tryCaptureVariable(ValueDecl *Var, SourceLocation Loc,
19004 TryCaptureKind Kind, SourceLocation EllipsisLoc) {
19005 QualType CaptureType;
19006 QualType DeclRefType;
19007 return tryCaptureVariable(Var, Loc, Kind, EllipsisLoc,
19008 /*BuildAndDiagnose=*/true, CaptureType,
19009 DeclRefType, nullptr);
19010}
19011
19012bool Sema::NeedToCaptureVariable(ValueDecl *Var, SourceLocation Loc) {
19013 QualType CaptureType;
19014 QualType DeclRefType;
19015 return !tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
19016 /*BuildAndDiagnose=*/false, CaptureType,
19017 DeclRefType, nullptr);
19018}
19019
19020QualType Sema::getCapturedDeclRefType(ValueDecl *Var, SourceLocation Loc) {
19021 QualType CaptureType;
19022 QualType DeclRefType;
19023
19024 // Determine whether we can capture this variable.
19025 if (tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
19026 /*BuildAndDiagnose=*/false, CaptureType,
19027 DeclRefType, nullptr))
19028 return QualType();
19029
19030 return DeclRefType;
19031}
19032
19033namespace {
19034// Helper to copy the template arguments from a DeclRefExpr or MemberExpr.
19035// The produced TemplateArgumentListInfo* points to data stored within this
19036// object, so should only be used in contexts where the pointer will not be
19037// used after the CopiedTemplateArgs object is destroyed.
19038class CopiedTemplateArgs {
19039 bool HasArgs;
19040 TemplateArgumentListInfo TemplateArgStorage;
19041public:
19042 template<typename RefExpr>
19043 CopiedTemplateArgs(RefExpr *E) : HasArgs(E->hasExplicitTemplateArgs()) {
19044 if (HasArgs)
19045 E->copyTemplateArgumentsInto(TemplateArgStorage);
19046 }
19047 operator TemplateArgumentListInfo*()
19048#ifdef __has_cpp_attribute
19049#if0 __has_cpp_attribute(clang::lifetimebound)1
19050 [[clang::lifetimebound]]
19051#endif
19052#endif
19053 {
19054 return HasArgs ? &TemplateArgStorage : nullptr;
19055 }
19056};
19057}
19058
19059/// Walk the set of potential results of an expression and mark them all as
19060/// non-odr-uses if they satisfy the side-conditions of the NonOdrUseReason.
19061///
19062/// \return A new expression if we found any potential results, ExprEmpty() if
19063/// not, and ExprError() if we diagnosed an error.
19064static ExprResult rebuildPotentialResultsAsNonOdrUsed(Sema &S, Expr *E,
19065 NonOdrUseReason NOUR) {
19066 // Per C++11 [basic.def.odr], a variable is odr-used "unless it is
19067 // an object that satisfies the requirements for appearing in a
19068 // constant expression (5.19) and the lvalue-to-rvalue conversion (4.1)
19069 // is immediately applied." This function handles the lvalue-to-rvalue
19070 // conversion part.
19071 //
19072 // If we encounter a node that claims to be an odr-use but shouldn't be, we
19073 // transform it into the relevant kind of non-odr-use node and rebuild the
19074 // tree of nodes leading to it.
19075 //
19076 // This is a mini-TreeTransform that only transforms a restricted subset of
19077 // nodes (and only certain operands of them).
19078
19079 // Rebuild a subexpression.
19080 auto Rebuild = [&](Expr *Sub) {
19081 return rebuildPotentialResultsAsNonOdrUsed(S, Sub, NOUR);
19082 };
19083
19084 // Check whether a potential result satisfies the requirements of NOUR.
19085 auto IsPotentialResultOdrUsed = [&](NamedDecl *D) {
19086 // Any entity other than a VarDecl is always odr-used whenever it's named
19087 // in a potentially-evaluated expression.
19088 auto *VD = dyn_cast<VarDecl>(D);
19089 if (!VD)
19090 return true;
19091
19092 // C++2a [basic.def.odr]p4:
19093 // A variable x whose name appears as a potentially-evalauted expression
19094 // e is odr-used by e unless
19095 // -- x is a reference that is usable in constant expressions, or
19096 // -- x is a variable of non-reference type that is usable in constant
19097 // expressions and has no mutable subobjects, and e is an element of
19098 // the set of potential results of an expression of
19099 // non-volatile-qualified non-class type to which the lvalue-to-rvalue
19100 // conversion is applied, or
19101 // -- x is a variable of non-reference type, and e is an element of the
19102 // set of potential results of a discarded-value expression to which
19103 // the lvalue-to-rvalue conversion is not applied
19104 //
19105 // We check the first bullet and the "potentially-evaluated" condition in
19106 // BuildDeclRefExpr. We check the type requirements in the second bullet
19107 // in CheckLValueToRValueConversionOperand below.
19108 switch (NOUR) {
19109 case NOUR_None:
19110 case NOUR_Unevaluated:
19111 llvm_unreachable("unexpected non-odr-use-reason")::llvm::llvm_unreachable_internal("unexpected non-odr-use-reason"
, "clang/lib/Sema/SemaExpr.cpp", 19111)
;
19112
19113 case NOUR_Constant:
19114 // Constant references were handled when they were built.
19115 if (VD->getType()->isReferenceType())
19116 return true;
19117 if (auto *RD = VD->getType()->getAsCXXRecordDecl())
19118 if (RD->hasMutableFields())
19119 return true;
19120 if (!VD->isUsableInConstantExpressions(S.Context))
19121 return true;
19122 break;
19123
19124 case NOUR_Discarded:
19125 if (VD->getType()->isReferenceType())
19126 return true;
19127 break;
19128 }
19129 return false;
19130 };
19131
19132 // Mark that this expression does not constitute an odr-use.
19133 auto MarkNotOdrUsed = [&] {
19134 S.MaybeODRUseExprs.remove(E);
19135 if (LambdaScopeInfo *LSI = S.getCurLambda())
19136 LSI->markVariableExprAsNonODRUsed(E);
19137 };
19138
19139 // C++2a [basic.def.odr]p2:
19140 // The set of potential results of an expression e is defined as follows:
19141 switch (E->getStmtClass()) {
19142 // -- If e is an id-expression, ...
19143 case Expr::DeclRefExprClass: {
19144 auto *DRE = cast<DeclRefExpr>(E);
19145 if (DRE->isNonOdrUse() || IsPotentialResultOdrUsed(DRE->getDecl()))
19146 break;
19147
19148 // Rebuild as a non-odr-use DeclRefExpr.
19149 MarkNotOdrUsed();
19150 return DeclRefExpr::Create(
19151 S.Context, DRE->getQualifierLoc(), DRE->getTemplateKeywordLoc(),
19152 DRE->getDecl(), DRE->refersToEnclosingVariableOrCapture(),
19153 DRE->getNameInfo(), DRE->getType(), DRE->getValueKind(),
19154 DRE->getFoundDecl(), CopiedTemplateArgs(DRE), NOUR);
19155 }
19156
19157 case Expr::FunctionParmPackExprClass: {
19158 auto *FPPE = cast<FunctionParmPackExpr>(E);
19159 // If any of the declarations in the pack is odr-used, then the expression
19160 // as a whole constitutes an odr-use.
19161 for (VarDecl *D : *FPPE)
19162 if (IsPotentialResultOdrUsed(D))
19163 return ExprEmpty();
19164
19165 // FIXME: Rebuild as a non-odr-use FunctionParmPackExpr? In practice,
19166 // nothing cares about whether we marked this as an odr-use, but it might
19167 // be useful for non-compiler tools.
19168 MarkNotOdrUsed();
19169 break;
19170 }
19171
19172 // -- If e is a subscripting operation with an array operand...
19173 case Expr::ArraySubscriptExprClass: {
19174 auto *ASE = cast<ArraySubscriptExpr>(E);
19175 Expr *OldBase = ASE->getBase()->IgnoreImplicit();
19176 if (!OldBase->getType()->isArrayType())
19177 break;
19178 ExprResult Base = Rebuild(OldBase);
19179 if (!Base.isUsable())
19180 return Base;
19181 Expr *LHS = ASE->getBase() == ASE->getLHS() ? Base.get() : ASE->getLHS();
19182 Expr *RHS = ASE->getBase() == ASE->getRHS() ? Base.get() : ASE->getRHS();
19183 SourceLocation LBracketLoc = ASE->getBeginLoc(); // FIXME: Not stored.
19184 return S.ActOnArraySubscriptExpr(nullptr, LHS, LBracketLoc, RHS,
19185 ASE->getRBracketLoc());
19186 }
19187
19188 case Expr::MemberExprClass: {
19189 auto *ME = cast<MemberExpr>(E);
19190 // -- If e is a class member access expression [...] naming a non-static
19191 // data member...
19192 if (isa<FieldDecl>(ME->getMemberDecl())) {
19193 ExprResult Base = Rebuild(ME->getBase());
19194 if (!Base.isUsable())
19195 return Base;
19196 return MemberExpr::Create(
19197 S.Context, Base.get(), ME->isArrow(), ME->getOperatorLoc(),
19198 ME->getQualifierLoc(), ME->getTemplateKeywordLoc(),
19199 ME->getMemberDecl(), ME->getFoundDecl(), ME->getMemberNameInfo(),
19200 CopiedTemplateArgs(ME), ME->getType(), ME->getValueKind(),
19201 ME->getObjectKind(), ME->isNonOdrUse());
19202 }
19203
19204 if (ME->getMemberDecl()->isCXXInstanceMember())
19205 break;
19206
19207 // -- If e is a class member access expression naming a static data member,
19208 // ...
19209 if (ME->isNonOdrUse() || IsPotentialResultOdrUsed(ME->getMemberDecl()))
19210 break;
19211
19212 // Rebuild as a non-odr-use MemberExpr.
19213 MarkNotOdrUsed();
19214 return MemberExpr::Create(
19215 S.Context, ME->getBase(), ME->isArrow(), ME->getOperatorLoc(),
19216 ME->getQualifierLoc(), ME->getTemplateKeywordLoc(), ME->getMemberDecl(),
19217 ME->getFoundDecl(), ME->getMemberNameInfo(), CopiedTemplateArgs(ME),
19218 ME->getType(), ME->getValueKind(), ME->getObjectKind(), NOUR);
19219 }
19220
19221 case Expr::BinaryOperatorClass: {
19222 auto *BO = cast<BinaryOperator>(E);
19223 Expr *LHS = BO->getLHS();
19224 Expr *RHS = BO->getRHS();
19225 // -- If e is a pointer-to-member expression of the form e1 .* e2 ...
19226 if (BO->getOpcode() == BO_PtrMemD) {
19227 ExprResult Sub = Rebuild(LHS);
19228 if (!Sub.isUsable())
19229 return Sub;
19230 LHS = Sub.get();
19231 // -- If e is a comma expression, ...
19232 } else if (BO->getOpcode() == BO_Comma) {
19233 ExprResult Sub = Rebuild(RHS);
19234 if (!Sub.isUsable())
19235 return Sub;
19236 RHS = Sub.get();
19237 } else {
19238 break;
19239 }
19240 return S.BuildBinOp(nullptr, BO->getOperatorLoc(), BO->getOpcode(),
19241 LHS, RHS);
19242 }
19243
19244 // -- If e has the form (e1)...
19245 case Expr::ParenExprClass: {
19246 auto *PE = cast<ParenExpr>(E);
19247 ExprResult Sub = Rebuild(PE->getSubExpr());
19248 if (!Sub.isUsable())
19249 return Sub;
19250 return S.ActOnParenExpr(PE->getLParen(), PE->getRParen(), Sub.get());
19251 }
19252
19253 // -- If e is a glvalue conditional expression, ...
19254 // We don't apply this to a binary conditional operator. FIXME: Should we?
19255 case Expr::ConditionalOperatorClass: {
19256 auto *CO = cast<ConditionalOperator>(E);
19257 ExprResult LHS = Rebuild(CO->getLHS());
19258 if (LHS.isInvalid())
19259 return ExprError();
19260 ExprResult RHS = Rebuild(CO->getRHS());
19261 if (RHS.isInvalid())
19262 return ExprError();
19263 if (!LHS.isUsable() && !RHS.isUsable())
19264 return ExprEmpty();
19265 if (!LHS.isUsable())
19266 LHS = CO->getLHS();
19267 if (!RHS.isUsable())
19268 RHS = CO->getRHS();
19269 return S.ActOnConditionalOp(CO->getQuestionLoc(), CO->getColonLoc(),
19270 CO->getCond(), LHS.get(), RHS.get());
19271 }
19272
19273 // [Clang extension]
19274 // -- If e has the form __extension__ e1...
19275 case Expr::UnaryOperatorClass: {
19276 auto *UO = cast<UnaryOperator>(E);
19277 if (UO->getOpcode() != UO_Extension)
19278 break;
19279 ExprResult Sub = Rebuild(UO->getSubExpr());
19280 if (!Sub.isUsable())
19281 return Sub;
19282 return S.BuildUnaryOp(nullptr, UO->getOperatorLoc(), UO_Extension,
19283 Sub.get());
19284 }
19285
19286 // [Clang extension]
19287 // -- If e has the form _Generic(...), the set of potential results is the
19288 // union of the sets of potential results of the associated expressions.
19289 case Expr::GenericSelectionExprClass: {
19290 auto *GSE = cast<GenericSelectionExpr>(E);
19291
19292 SmallVector<Expr *, 4> AssocExprs;
19293 bool AnyChanged = false;
19294 for (Expr *OrigAssocExpr : GSE->getAssocExprs()) {
19295 ExprResult AssocExpr = Rebuild(OrigAssocExpr);
19296 if (AssocExpr.isInvalid())
19297 return ExprError();
19298 if (AssocExpr.isUsable()) {
19299 AssocExprs.push_back(AssocExpr.get());
19300 AnyChanged = true;
19301 } else {
19302 AssocExprs.push_back(OrigAssocExpr);
19303 }
19304 }
19305
19306 return AnyChanged ? S.CreateGenericSelectionExpr(
19307 GSE->getGenericLoc(), GSE->getDefaultLoc(),
19308 GSE->getRParenLoc(), GSE->getControllingExpr(),
19309 GSE->getAssocTypeSourceInfos(), AssocExprs)
19310 : ExprEmpty();
19311 }
19312
19313 // [Clang extension]
19314 // -- If e has the form __builtin_choose_expr(...), the set of potential
19315 // results is the union of the sets of potential results of the
19316 // second and third subexpressions.
19317 case Expr::ChooseExprClass: {
19318 auto *CE = cast<ChooseExpr>(E);
19319
19320 ExprResult LHS = Rebuild(CE->getLHS());
19321 if (LHS.isInvalid())
19322 return ExprError();
19323
19324 ExprResult RHS = Rebuild(CE->getLHS());
19325 if (RHS.isInvalid())
19326 return ExprError();
19327
19328 if (!LHS.get() && !RHS.get())
19329 return ExprEmpty();
19330 if (!LHS.isUsable())
19331 LHS = CE->getLHS();
19332 if (!RHS.isUsable())
19333 RHS = CE->getRHS();
19334
19335 return S.ActOnChooseExpr(CE->getBuiltinLoc(), CE->getCond(), LHS.get(),
19336 RHS.get(), CE->getRParenLoc());
19337 }
19338
19339 // Step through non-syntactic nodes.
19340 case Expr::ConstantExprClass: {
19341 auto *CE = cast<ConstantExpr>(E);
19342 ExprResult Sub = Rebuild(CE->getSubExpr());
19343 if (!Sub.isUsable())
19344 return Sub;
19345 return ConstantExpr::Create(S.Context, Sub.get());
19346 }
19347
19348 // We could mostly rely on the recursive rebuilding to rebuild implicit
19349 // casts, but not at the top level, so rebuild them here.
19350 case Expr::ImplicitCastExprClass: {
19351 auto *ICE = cast<ImplicitCastExpr>(E);
19352 // Only step through the narrow set of cast kinds we expect to encounter.
19353 // Anything else suggests we've left the region in which potential results
19354 // can be found.
19355 switch (ICE->getCastKind()) {
19356 case CK_NoOp:
19357 case CK_DerivedToBase:
19358 case CK_UncheckedDerivedToBase: {
19359 ExprResult Sub = Rebuild(ICE->getSubExpr());
19360 if (!Sub.isUsable())
19361 return Sub;
19362 CXXCastPath Path(ICE->path());
19363 return S.ImpCastExprToType(Sub.get(), ICE->getType(), ICE->getCastKind(),
19364 ICE->getValueKind(), &Path);
19365 }
19366
19367 default:
19368 break;
19369 }
19370 break;
19371 }
19372
19373 default:
19374 break;
19375 }
19376
19377 // Can't traverse through this node. Nothing to do.
19378 return ExprEmpty();
19379}
19380
19381ExprResult Sema::CheckLValueToRValueConversionOperand(Expr *E) {
19382 // Check whether the operand is or contains an object of non-trivial C union
19383 // type.
19384 if (E->getType().isVolatileQualified() &&
19385 (E->getType().hasNonTrivialToPrimitiveDestructCUnion() ||
19386 E->getType().hasNonTrivialToPrimitiveCopyCUnion()))
19387 checkNonTrivialCUnion(E->getType(), E->getExprLoc(),
19388 Sema::NTCUC_LValueToRValueVolatile,
19389 NTCUK_Destruct|NTCUK_Copy);
19390
19391 // C++2a [basic.def.odr]p4:
19392 // [...] an expression of non-volatile-qualified non-class type to which
19393 // the lvalue-to-rvalue conversion is applied [...]
19394 if (E->getType().isVolatileQualified() || E->getType()->getAs<RecordType>())
19395 return E;
19396
19397 ExprResult Result =
19398 rebuildPotentialResultsAsNonOdrUsed(*this, E, NOUR_Constant);
19399 if (Result.isInvalid())
19400 return ExprError();
19401 return Result.get() ? Result : E;
19402}
19403
19404ExprResult Sema::ActOnConstantExpression(ExprResult Res) {
19405 Res = CorrectDelayedTyposInExpr(Res);
19406
19407 if (!Res.isUsable())
19408 return Res;
19409
19410 // If a constant-expression is a reference to a variable where we delay
19411 // deciding whether it is an odr-use, just assume we will apply the
19412 // lvalue-to-rvalue conversion. In the one case where this doesn't happen
19413 // (a non-type template argument), we have special handling anyway.
19414 return CheckLValueToRValueConversionOperand(Res.get());
19415}
19416
19417void Sema::CleanupVarDeclMarking() {
19418 // Iterate through a local copy in case MarkVarDeclODRUsed makes a recursive
19419 // call.
19420 MaybeODRUseExprSet LocalMaybeODRUseExprs;
19421 std::swap(LocalMaybeODRUseExprs, MaybeODRUseExprs);
19422
19423 for (Expr *E : LocalMaybeODRUseExprs) {
19424 if (auto *DRE = dyn_cast<DeclRefExpr>(E)) {
19425 MarkVarDeclODRUsed(cast<VarDecl>(DRE->getDecl()),
19426 DRE->getLocation(), *this);
19427 } else if (auto *ME = dyn_cast<MemberExpr>(E)) {
19428 MarkVarDeclODRUsed(cast<VarDecl>(ME->getMemberDecl()), ME->getMemberLoc(),
19429 *this);
19430 } else if (auto *FP = dyn_cast<FunctionParmPackExpr>(E)) {
19431 for (VarDecl *VD : *FP)
19432 MarkVarDeclODRUsed(VD, FP->getParameterPackLocation(), *this);
19433 } else {
19434 llvm_unreachable("Unexpected expression")::llvm::llvm_unreachable_internal("Unexpected expression", "clang/lib/Sema/SemaExpr.cpp"
, 19434)
;
19435 }
19436 }
19437
19438 assert(MaybeODRUseExprs.empty() &&(static_cast <bool> (MaybeODRUseExprs.empty() &&
"MarkVarDeclODRUsed failed to cleanup MaybeODRUseExprs?") ? void
(0) : __assert_fail ("MaybeODRUseExprs.empty() && \"MarkVarDeclODRUsed failed to cleanup MaybeODRUseExprs?\""
, "clang/lib/Sema/SemaExpr.cpp", 19439, __extension__ __PRETTY_FUNCTION__
))
19439 "MarkVarDeclODRUsed failed to cleanup MaybeODRUseExprs?")(static_cast <bool> (MaybeODRUseExprs.empty() &&
"MarkVarDeclODRUsed failed to cleanup MaybeODRUseExprs?") ? void
(0) : __assert_fail ("MaybeODRUseExprs.empty() && \"MarkVarDeclODRUsed failed to cleanup MaybeODRUseExprs?\""
, "clang/lib/Sema/SemaExpr.cpp", 19439, __extension__ __PRETTY_FUNCTION__
))
;
19440}
19441
19442static void DoMarkVarDeclReferenced(
19443 Sema &SemaRef, SourceLocation Loc, VarDecl *Var, Expr *E,
19444 llvm::DenseMap<const VarDecl *, int> &RefsMinusAssignments) {
19445 assert((!E || isa<DeclRefExpr>(E) || isa<MemberExpr>(E) ||(static_cast <bool> ((!E || isa<DeclRefExpr>(E) ||
isa<MemberExpr>(E) || isa<FunctionParmPackExpr>(
E)) && "Invalid Expr argument to DoMarkVarDeclReferenced"
) ? void (0) : __assert_fail ("(!E || isa<DeclRefExpr>(E) || isa<MemberExpr>(E) || isa<FunctionParmPackExpr>(E)) && \"Invalid Expr argument to DoMarkVarDeclReferenced\""
, "clang/lib/Sema/SemaExpr.cpp", 19447, __extension__ __PRETTY_FUNCTION__
))
19446 isa<FunctionParmPackExpr>(E)) &&(static_cast <bool> ((!E || isa<DeclRefExpr>(E) ||
isa<MemberExpr>(E) || isa<FunctionParmPackExpr>(
E)) && "Invalid Expr argument to DoMarkVarDeclReferenced"
) ? void (0) : __assert_fail ("(!E || isa<DeclRefExpr>(E) || isa<MemberExpr>(E) || isa<FunctionParmPackExpr>(E)) && \"Invalid Expr argument to DoMarkVarDeclReferenced\""
, "clang/lib/Sema/SemaExpr.cpp", 19447, __extension__ __PRETTY_FUNCTION__
))
19447 "Invalid Expr argument to DoMarkVarDeclReferenced")(static_cast <bool> ((!E || isa<DeclRefExpr>(E) ||
isa<MemberExpr>(E) || isa<FunctionParmPackExpr>(
E)) && "Invalid Expr argument to DoMarkVarDeclReferenced"
) ? void (0) : __assert_fail ("(!E || isa<DeclRefExpr>(E) || isa<MemberExpr>(E) || isa<FunctionParmPackExpr>(E)) && \"Invalid Expr argument to DoMarkVarDeclReferenced\""
, "clang/lib/Sema/SemaExpr.cpp", 19447, __extension__ __PRETTY_FUNCTION__
))
;
19448 Var->setReferenced();
19449
19450 if (Var->isInvalidDecl())
19451 return;
19452
19453 auto *MSI = Var->getMemberSpecializationInfo();
19454 TemplateSpecializationKind TSK = MSI ? MSI->getTemplateSpecializationKind()
19455 : Var->getTemplateSpecializationKind();
19456
19457 OdrUseContext OdrUse = isOdrUseContext(SemaRef);
19458 bool UsableInConstantExpr =
19459 Var->mightBeUsableInConstantExpressions(SemaRef.Context);
19460
19461 if (Var->isLocalVarDeclOrParm() && !Var->hasExternalStorage()) {
19462 RefsMinusAssignments.insert({Var, 0}).first->getSecond()++;
19463 }
19464
19465 // C++20 [expr.const]p12:
19466 // A variable [...] is needed for constant evaluation if it is [...] a
19467 // variable whose name appears as a potentially constant evaluated
19468 // expression that is either a contexpr variable or is of non-volatile
19469 // const-qualified integral type or of reference type
19470 bool NeededForConstantEvaluation =
19471 isPotentiallyConstantEvaluatedContext(SemaRef) && UsableInConstantExpr;
19472
19473 bool NeedDefinition =
19474 OdrUse == OdrUseContext::Used || NeededForConstantEvaluation;
19475
19476 assert(!isa<VarTemplatePartialSpecializationDecl>(Var) &&(static_cast <bool> (!isa<VarTemplatePartialSpecializationDecl
>(Var) && "Can't instantiate a partial template specialization."
) ? void (0) : __assert_fail ("!isa<VarTemplatePartialSpecializationDecl>(Var) && \"Can't instantiate a partial template specialization.\""
, "clang/lib/Sema/SemaExpr.cpp", 19477, __extension__ __PRETTY_FUNCTION__
))
19477 "Can't instantiate a partial template specialization.")(static_cast <bool> (!isa<VarTemplatePartialSpecializationDecl
>(Var) && "Can't instantiate a partial template specialization."
) ? void (0) : __assert_fail ("!isa<VarTemplatePartialSpecializationDecl>(Var) && \"Can't instantiate a partial template specialization.\""
, "clang/lib/Sema/SemaExpr.cpp", 19477, __extension__ __PRETTY_FUNCTION__
))
;
19478
19479 // If this might be a member specialization of a static data member, check
19480 // the specialization is visible. We already did the checks for variable
19481 // template specializations when we created them.
19482 if (NeedDefinition && TSK != TSK_Undeclared &&
19483 !isa<VarTemplateSpecializationDecl>(Var))
19484 SemaRef.checkSpecializationVisibility(Loc, Var);
19485
19486 // Perform implicit instantiation of static data members, static data member
19487 // templates of class templates, and variable template specializations. Delay
19488 // instantiations of variable templates, except for those that could be used
19489 // in a constant expression.
19490 if (NeedDefinition && isTemplateInstantiation(TSK)) {
19491 // Per C++17 [temp.explicit]p10, we may instantiate despite an explicit
19492 // instantiation declaration if a variable is usable in a constant
19493 // expression (among other cases).
19494 bool TryInstantiating =
19495 TSK == TSK_ImplicitInstantiation ||
19496 (TSK == TSK_ExplicitInstantiationDeclaration && UsableInConstantExpr);
19497
19498 if (TryInstantiating) {
19499 SourceLocation PointOfInstantiation =
19500 MSI ? MSI->getPointOfInstantiation() : Var->getPointOfInstantiation();
19501 bool FirstInstantiation = PointOfInstantiation.isInvalid();
19502 if (FirstInstantiation) {
19503 PointOfInstantiation = Loc;
19504 if (MSI)
19505 MSI->setPointOfInstantiation(PointOfInstantiation);
19506 // FIXME: Notify listener.
19507 else
19508 Var->setTemplateSpecializationKind(TSK, PointOfInstantiation);
19509 }
19510
19511 if (UsableInConstantExpr) {
19512 // Do not defer instantiations of variables that could be used in a
19513 // constant expression.
19514 SemaRef.runWithSufficientStackSpace(PointOfInstantiation, [&] {
19515 SemaRef.InstantiateVariableDefinition(PointOfInstantiation, Var);
19516 });
19517
19518 // Re-set the member to trigger a recomputation of the dependence bits
19519 // for the expression.
19520 if (auto *DRE = dyn_cast_or_null<DeclRefExpr>(E))
19521 DRE->setDecl(DRE->getDecl());
19522 else if (auto *ME = dyn_cast_or_null<MemberExpr>(E))
19523 ME->setMemberDecl(ME->getMemberDecl());
19524 } else if (FirstInstantiation ||
19525 isa<VarTemplateSpecializationDecl>(Var)) {
19526 // FIXME: For a specialization of a variable template, we don't
19527 // distinguish between "declaration and type implicitly instantiated"
19528 // and "implicit instantiation of definition requested", so we have
19529 // no direct way to avoid enqueueing the pending instantiation
19530 // multiple times.
19531 SemaRef.PendingInstantiations
19532 .push_back(std::make_pair(Var, PointOfInstantiation));
19533 }
19534 }
19535 }
19536
19537 // C++2a [basic.def.odr]p4:
19538 // A variable x whose name appears as a potentially-evaluated expression e
19539 // is odr-used by e unless
19540 // -- x is a reference that is usable in constant expressions
19541 // -- x is a variable of non-reference type that is usable in constant
19542 // expressions and has no mutable subobjects [FIXME], and e is an
19543 // element of the set of potential results of an expression of
19544 // non-volatile-qualified non-class type to which the lvalue-to-rvalue
19545 // conversion is applied
19546 // -- x is a variable of non-reference type, and e is an element of the set
19547 // of potential results of a discarded-value expression to which the
19548 // lvalue-to-rvalue conversion is not applied [FIXME]
19549 //
19550 // We check the first part of the second bullet here, and
19551 // Sema::CheckLValueToRValueConversionOperand deals with the second part.
19552 // FIXME: To get the third bullet right, we need to delay this even for
19553 // variables that are not usable in constant expressions.
19554
19555 // If we already know this isn't an odr-use, there's nothing more to do.
19556 if (DeclRefExpr *DRE = dyn_cast_or_null<DeclRefExpr>(E))
19557 if (DRE->isNonOdrUse())
19558 return;
19559 if (MemberExpr *ME = dyn_cast_or_null<MemberExpr>(E))
19560 if (ME->isNonOdrUse())
19561 return;
19562
19563 switch (OdrUse) {
19564 case OdrUseContext::None:
19565 assert((!E || isa<FunctionParmPackExpr>(E)) &&(static_cast <bool> ((!E || isa<FunctionParmPackExpr
>(E)) && "missing non-odr-use marking for unevaluated decl ref"
) ? void (0) : __assert_fail ("(!E || isa<FunctionParmPackExpr>(E)) && \"missing non-odr-use marking for unevaluated decl ref\""
, "clang/lib/Sema/SemaExpr.cpp", 19566, __extension__ __PRETTY_FUNCTION__
))
19566 "missing non-odr-use marking for unevaluated decl ref")(static_cast <bool> ((!E || isa<FunctionParmPackExpr
>(E)) && "missing non-odr-use marking for unevaluated decl ref"
) ? void (0) : __assert_fail ("(!E || isa<FunctionParmPackExpr>(E)) && \"missing non-odr-use marking for unevaluated decl ref\""
, "clang/lib/Sema/SemaExpr.cpp", 19566, __extension__ __PRETTY_FUNCTION__
))
;
19567 break;
19568
19569 case OdrUseContext::FormallyOdrUsed:
19570 // FIXME: Ignoring formal odr-uses results in incorrect lambda capture
19571 // behavior.
19572 break;
19573
19574 case OdrUseContext::Used:
19575 // If we might later find that this expression isn't actually an odr-use,
19576 // delay the marking.
19577 if (E && Var->isUsableInConstantExpressions(SemaRef.Context))
19578 SemaRef.MaybeODRUseExprs.insert(E);
19579 else
19580 MarkVarDeclODRUsed(Var, Loc, SemaRef);
19581 break;
19582
19583 case OdrUseContext::Dependent:
19584 // If this is a dependent context, we don't need to mark variables as
19585 // odr-used, but we may still need to track them for lambda capture.
19586 // FIXME: Do we also need to do this inside dependent typeid expressions
19587 // (which are modeled as unevaluated at this point)?
19588 const bool RefersToEnclosingScope =
19589 (SemaRef.CurContext != Var->getDeclContext() &&
19590 Var->getDeclContext()->isFunctionOrMethod() && Var->hasLocalStorage());
19591 if (RefersToEnclosingScope) {
19592 LambdaScopeInfo *const LSI =
19593 SemaRef.getCurLambda(/*IgnoreNonLambdaCapturingScope=*/true);
19594 if (LSI && (!LSI->CallOperator ||
19595 !LSI->CallOperator->Encloses(Var->getDeclContext()))) {
19596 // If a variable could potentially be odr-used, defer marking it so
19597 // until we finish analyzing the full expression for any
19598 // lvalue-to-rvalue
19599 // or discarded value conversions that would obviate odr-use.
19600 // Add it to the list of potential captures that will be analyzed
19601 // later (ActOnFinishFullExpr) for eventual capture and odr-use marking
19602 // unless the variable is a reference that was initialized by a constant
19603 // expression (this will never need to be captured or odr-used).
19604 //
19605 // FIXME: We can simplify this a lot after implementing P0588R1.
19606 assert(E && "Capture variable should be used in an expression.")(static_cast <bool> (E && "Capture variable should be used in an expression."
) ? void (0) : __assert_fail ("E && \"Capture variable should be used in an expression.\""
, "clang/lib/Sema/SemaExpr.cpp", 19606, __extension__ __PRETTY_FUNCTION__
))
;
19607 if (!Var->getType()->isReferenceType() ||
19608 !Var->isUsableInConstantExpressions(SemaRef.Context))
19609 LSI->addPotentialCapture(E->IgnoreParens());
19610 }
19611 }
19612 break;
19613 }
19614}
19615
19616static void DoMarkBindingDeclReferenced(Sema &SemaRef, SourceLocation Loc,
19617 BindingDecl *BD) {
19618 BD->setReferenced();
19619
19620 if (BD->isInvalidDecl())
19621 return;
19622
19623 OdrUseContext OdrUse = isOdrUseContext(SemaRef);
19624 if (OdrUse == OdrUseContext::Used) {
19625 QualType CaptureType, DeclRefType;
19626 SemaRef.tryCaptureVariable(BD, Loc, Sema::TryCapture_Implicit,
19627 /*EllipsisLoc*/ SourceLocation(),
19628 /*BuildAndDiagnose*/ true, CaptureType,
19629 DeclRefType,
19630 /*FunctionScopeIndexToStopAt*/ nullptr);
19631 }
19632}
19633
19634/// Mark a variable referenced, and check whether it is odr-used
19635/// (C++ [basic.def.odr]p2, C99 6.9p3). Note that this should not be
19636/// used directly for normal expressions referring to VarDecl.
19637void Sema::MarkVariableReferenced(SourceLocation Loc, VarDecl *Var) {
19638 DoMarkVarDeclReferenced(*this, Loc, Var, nullptr, RefsMinusAssignments);
19639}
19640
19641static void
19642MarkExprReferenced(Sema &SemaRef, SourceLocation Loc, Decl *D, Expr *E,
19643 bool MightBeOdrUse,
19644 llvm::DenseMap<const VarDecl *, int> &RefsMinusAssignments) {
19645 if (SemaRef.isInOpenMPDeclareTargetContext())
19646 SemaRef.checkDeclIsAllowedInOpenMPTarget(E, D);
19647
19648 if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
19649 DoMarkVarDeclReferenced(SemaRef, Loc, Var, E, RefsMinusAssignments);
19650 return;
19651 }
19652
19653 if (BindingDecl *Decl = dyn_cast<BindingDecl>(D)) {
19654 DoMarkBindingDeclReferenced(SemaRef, Loc, Decl);
19655 return;
19656 }
19657
19658 SemaRef.MarkAnyDeclReferenced(Loc, D, MightBeOdrUse);
19659
19660 // If this is a call to a method via a cast, also mark the method in the
19661 // derived class used in case codegen can devirtualize the call.
19662 const MemberExpr *ME = dyn_cast<MemberExpr>(E);
19663 if (!ME)
19664 return;
19665 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ME->getMemberDecl());
19666 if (!MD)
19667 return;
19668 // Only attempt to devirtualize if this is truly a virtual call.
19669 bool IsVirtualCall = MD->isVirtual() &&
19670 ME->performsVirtualDispatch(SemaRef.getLangOpts());
19671 if (!IsVirtualCall)
19672 return;
19673
19674 // If it's possible to devirtualize the call, mark the called function
19675 // referenced.
19676 CXXMethodDecl *DM = MD->getDevirtualizedMethod(
19677 ME->getBase(), SemaRef.getLangOpts().AppleKext);
19678 if (DM)
19679 SemaRef.MarkAnyDeclReferenced(Loc, DM, MightBeOdrUse);
19680}
19681
19682/// Perform reference-marking and odr-use handling for a DeclRefExpr.
19683///
19684/// Note, this may change the dependence of the DeclRefExpr, and so needs to be
19685/// handled with care if the DeclRefExpr is not newly-created.
19686void Sema::MarkDeclRefReferenced(DeclRefExpr *E, const Expr *Base) {
19687 // TODO: update this with DR# once a defect report is filed.
19688 // C++11 defect. The address of a pure member should not be an ODR use, even
19689 // if it's a qualified reference.
19690 bool OdrUse = true;
19691 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getDecl()))
19692 if (Method->isVirtual() &&
19693 !Method->getDevirtualizedMethod(Base, getLangOpts().AppleKext))
19694 OdrUse = false;
19695
19696 if (auto *FD = dyn_cast<FunctionDecl>(E->getDecl()))
19697 if (!isUnevaluatedContext() && !isConstantEvaluated() &&
19698 !isImmediateFunctionContext() && FD->isConsteval() &&
19699 !RebuildingImmediateInvocation && !FD->isDependentContext())
19700 ExprEvalContexts.back().ReferenceToConsteval.insert(E);
19701 MarkExprReferenced(*this, E->getLocation(), E->getDecl(), E, OdrUse,
19702 RefsMinusAssignments);
19703}
19704
19705/// Perform reference-marking and odr-use handling for a MemberExpr.
19706void Sema::MarkMemberReferenced(MemberExpr *E) {
19707 // C++11 [basic.def.odr]p2:
19708 // A non-overloaded function whose name appears as a potentially-evaluated
19709 // expression or a member of a set of candidate functions, if selected by
19710 // overload resolution when referred to from a potentially-evaluated
19711 // expression, is odr-used, unless it is a pure virtual function and its
19712 // name is not explicitly qualified.
19713 bool MightBeOdrUse = true;
19714 if (E->performsVirtualDispatch(getLangOpts())) {
19715 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getMemberDecl()))
19716 if (Method->isPure())
19717 MightBeOdrUse = false;
19718 }
19719 SourceLocation Loc =
19720 E->getMemberLoc().isValid() ? E->getMemberLoc() : E->getBeginLoc();
19721 MarkExprReferenced(*this, Loc, E->getMemberDecl(), E, MightBeOdrUse,
19722 RefsMinusAssignments);
19723}
19724
19725/// Perform reference-marking and odr-use handling for a FunctionParmPackExpr.
19726void Sema::MarkFunctionParmPackReferenced(FunctionParmPackExpr *E) {
19727 for (VarDecl *VD : *E)
19728 MarkExprReferenced(*this, E->getParameterPackLocation(), VD, E, true,
19729 RefsMinusAssignments);
19730}
19731
19732/// Perform marking for a reference to an arbitrary declaration. It
19733/// marks the declaration referenced, and performs odr-use checking for
19734/// functions and variables. This method should not be used when building a
19735/// normal expression which refers to a variable.
19736void Sema::MarkAnyDeclReferenced(SourceLocation Loc, Decl *D,
19737 bool MightBeOdrUse) {
19738 if (MightBeOdrUse) {
19739 if (auto *VD = dyn_cast<VarDecl>(D)) {
19740 MarkVariableReferenced(Loc, VD);
19741 return;
19742 }
19743 }
19744 if (auto *FD = dyn_cast<FunctionDecl>(D)) {
19745 MarkFunctionReferenced(Loc, FD, MightBeOdrUse);
19746 return;
19747 }
19748 D->setReferenced();
19749}
19750
19751namespace {
19752 // Mark all of the declarations used by a type as referenced.
19753 // FIXME: Not fully implemented yet! We need to have a better understanding
19754 // of when we're entering a context we should not recurse into.
19755 // FIXME: This is and EvaluatedExprMarker are more-or-less equivalent to
19756 // TreeTransforms rebuilding the type in a new context. Rather than
19757 // duplicating the TreeTransform logic, we should consider reusing it here.
19758 // Currently that causes problems when rebuilding LambdaExprs.
19759 class MarkReferencedDecls : public RecursiveASTVisitor<MarkReferencedDecls> {
19760 Sema &S;
19761 SourceLocation Loc;
19762
19763 public:
19764 typedef RecursiveASTVisitor<MarkReferencedDecls> Inherited;
19765
19766 MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { }
19767
19768 bool TraverseTemplateArgument(const TemplateArgument &Arg);
19769 };
19770}
19771
19772bool MarkReferencedDecls::TraverseTemplateArgument(
19773 const TemplateArgument &Arg) {
19774 {
19775 // A non-type template argument is a constant-evaluated context.
19776 EnterExpressionEvaluationContext Evaluated(
19777 S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
19778 if (Arg.getKind() == TemplateArgument::Declaration) {
19779 if (Decl *D = Arg.getAsDecl())
19780 S.MarkAnyDeclReferenced(Loc, D, true);
19781 } else if (Arg.getKind() == TemplateArgument::Expression) {
19782 S.MarkDeclarationsReferencedInExpr(Arg.getAsExpr(), false);
19783 }
19784 }
19785
19786 return Inherited::TraverseTemplateArgument(Arg);
19787}
19788
19789void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) {
19790 MarkReferencedDecls Marker(*this, Loc);
19791 Marker.TraverseType(T);
19792}
19793
19794namespace {
19795/// Helper class that marks all of the declarations referenced by
19796/// potentially-evaluated subexpressions as "referenced".
19797class EvaluatedExprMarker : public UsedDeclVisitor<EvaluatedExprMarker> {
19798public:
19799 typedef UsedDeclVisitor<EvaluatedExprMarker> Inherited;
19800 bool SkipLocalVariables;
19801 ArrayRef<const Expr *> StopAt;
19802
19803 EvaluatedExprMarker(Sema &S, bool SkipLocalVariables,
19804 ArrayRef<const Expr *> StopAt)
19805 : Inherited(S), SkipLocalVariables(SkipLocalVariables), StopAt(StopAt) {}
19806
19807 void visitUsedDecl(SourceLocation Loc, Decl *D) {
19808 S.MarkFunctionReferenced(Loc, cast<FunctionDecl>(D));
19809 }
19810
19811 void Visit(Expr *E) {
19812 if (llvm::is_contained(StopAt, E))
19813 return;
19814 Inherited::Visit(E);
19815 }
19816
19817 void VisitConstantExpr(ConstantExpr *E) {
19818 // Don't mark declarations within a ConstantExpression, as this expression
19819 // will be evaluated and folded to a value.
19820 }
19821
19822 void VisitDeclRefExpr(DeclRefExpr *E) {
19823 // If we were asked not to visit local variables, don't.
19824 if (SkipLocalVariables) {
19825 if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
19826 if (VD->hasLocalStorage())
19827 return;
19828 }
19829
19830 // FIXME: This can trigger the instantiation of the initializer of a
19831 // variable, which can cause the expression to become value-dependent
19832 // or error-dependent. Do we need to propagate the new dependence bits?
19833 S.MarkDeclRefReferenced(E);
19834 }
19835
19836 void VisitMemberExpr(MemberExpr *E) {
19837 S.MarkMemberReferenced(E);
19838 Visit(E->getBase());
19839 }
19840};
19841} // namespace
19842
19843/// Mark any declarations that appear within this expression or any
19844/// potentially-evaluated subexpressions as "referenced".
19845///
19846/// \param SkipLocalVariables If true, don't mark local variables as
19847/// 'referenced'.
19848/// \param StopAt Subexpressions that we shouldn't recurse into.
19849void Sema::MarkDeclarationsReferencedInExpr(Expr *E,
19850 bool SkipLocalVariables,
19851 ArrayRef<const Expr*> StopAt) {
19852 EvaluatedExprMarker(*this, SkipLocalVariables, StopAt).Visit(E);
19853}
19854
19855/// Emit a diagnostic when statements are reachable.
19856/// FIXME: check for reachability even in expressions for which we don't build a
19857/// CFG (eg, in the initializer of a global or in a constant expression).
19858/// For example,
19859/// namespace { auto *p = new double[3][false ? (1, 2) : 3]; }
19860bool Sema::DiagIfReachable(SourceLocation Loc, ArrayRef<const Stmt *> Stmts,
19861 const PartialDiagnostic &PD) {
19862 if (!Stmts.empty() && getCurFunctionOrMethodDecl()) {
19863 if (!FunctionScopes.empty())
19864 FunctionScopes.back()->PossiblyUnreachableDiags.push_back(
19865 sema::PossiblyUnreachableDiag(PD, Loc, Stmts));
19866 return true;
19867 }
19868
19869 // The initializer of a constexpr variable or of the first declaration of a
19870 // static data member is not syntactically a constant evaluated constant,
19871 // but nonetheless is always required to be a constant expression, so we
19872 // can skip diagnosing.
19873 // FIXME: Using the mangling context here is a hack.
19874 if (auto *VD = dyn_cast_or_null<VarDecl>(
19875 ExprEvalContexts.back().ManglingContextDecl)) {
19876 if (VD->isConstexpr() ||
19877 (VD->isStaticDataMember() && VD->isFirstDecl() && !VD->isInline()))
19878 return false;
19879 // FIXME: For any other kind of variable, we should build a CFG for its
19880 // initializer and check whether the context in question is reachable.
19881 }
19882
19883 Diag(Loc, PD);
19884 return true;
19885}
19886
19887/// Emit a diagnostic that describes an effect on the run-time behavior
19888/// of the program being compiled.
19889///
19890/// This routine emits the given diagnostic when the code currently being
19891/// type-checked is "potentially evaluated", meaning that there is a
19892/// possibility that the code will actually be executable. Code in sizeof()
19893/// expressions, code used only during overload resolution, etc., are not
19894/// potentially evaluated. This routine will suppress such diagnostics or,
19895/// in the absolutely nutty case of potentially potentially evaluated
19896/// expressions (C++ typeid), queue the diagnostic to potentially emit it
19897/// later.
19898///
19899/// This routine should be used for all diagnostics that describe the run-time
19900/// behavior of a program, such as passing a non-POD value through an ellipsis.
19901/// Failure to do so will likely result in spurious diagnostics or failures
19902/// during overload resolution or within sizeof/alignof/typeof/typeid.
19903bool Sema::DiagRuntimeBehavior(SourceLocation Loc, ArrayRef<const Stmt*> Stmts,
19904 const PartialDiagnostic &PD) {
19905
19906 if (ExprEvalContexts.back().isDiscardedStatementContext())
19907 return false;
19908
19909 switch (ExprEvalContexts.back().Context) {
19910 case ExpressionEvaluationContext::Unevaluated:
19911 case ExpressionEvaluationContext::UnevaluatedList:
19912 case ExpressionEvaluationContext::UnevaluatedAbstract:
19913 case ExpressionEvaluationContext::DiscardedStatement:
19914 // The argument will never be evaluated, so don't complain.
19915 break;
19916
19917 case ExpressionEvaluationContext::ConstantEvaluated:
19918 case ExpressionEvaluationContext::ImmediateFunctionContext:
19919 // Relevant diagnostics should be produced by constant evaluation.
19920 break;
19921
19922 case ExpressionEvaluationContext::PotentiallyEvaluated:
19923 case ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
19924 return DiagIfReachable(Loc, Stmts, PD);
19925 }
19926
19927 return false;
19928}
19929
19930bool Sema::DiagRuntimeBehavior(SourceLocation Loc, const Stmt *Statement,
19931 const PartialDiagnostic &PD) {
19932 return DiagRuntimeBehavior(
19933 Loc, Statement ? llvm::makeArrayRef(Statement) : llvm::None, PD);
19934}
19935
19936bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
19937 CallExpr *CE, FunctionDecl *FD) {
19938 if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
19939 return false;
19940
19941 // If we're inside a decltype's expression, don't check for a valid return
19942 // type or construct temporaries until we know whether this is the last call.
19943 if (ExprEvalContexts.back().ExprContext ==
19944 ExpressionEvaluationContextRecord::EK_Decltype) {
19945 ExprEvalContexts.back().DelayedDecltypeCalls.push_back(CE);
19946 return false;
19947 }
19948
19949 class CallReturnIncompleteDiagnoser : public TypeDiagnoser {
19950 FunctionDecl *FD;
19951 CallExpr *CE;
19952
19953 public:
19954 CallReturnIncompleteDiagnoser(FunctionDecl *FD, CallExpr *CE)
19955 : FD(FD), CE(CE) { }
19956
19957 void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
19958 if (!FD) {
19959 S.Diag(Loc, diag::err_call_incomplete_return)
19960 << T << CE->getSourceRange();
19961 return;
19962 }
19963
19964 S.Diag(Loc, diag::err_call_function_incomplete_return)
19965 << CE->getSourceRange() << FD << T;
19966 S.Diag(FD->getLocation(), diag::note_entity_declared_at)
19967 << FD->getDeclName();
19968 }
19969 } Diagnoser(FD, CE);
19970
19971 if (RequireCompleteType(Loc, ReturnType, Diagnoser))
19972 return true;
19973
19974 return false;
19975}
19976
19977// Diagnose the s/=/==/ and s/\|=/!=/ typos. Note that adding parentheses
19978// will prevent this condition from triggering, which is what we want.
19979void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
19980 SourceLocation Loc;
19981
19982 unsigned diagnostic = diag::warn_condition_is_assignment;
19983 bool IsOrAssign = false;
19984
19985 if (BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
19986 if (Op->getOpcode() != BO_Assign && Op->getOpcode() != BO_OrAssign)
19987 return;
19988
19989 IsOrAssign = Op->getOpcode() == BO_OrAssign;
19990
19991 // Greylist some idioms by putting them into a warning subcategory.
19992 if (ObjCMessageExpr *ME
19993 = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
19994 Selector Sel = ME->getSelector();
19995
19996 // self = [<foo> init...]
19997 if (isSelfExpr(Op->getLHS()) && ME->getMethodFamily() == OMF_init)
19998 diagnostic = diag::warn_condition_is_idiomatic_assignment;
19999
20000 // <foo> = [<bar> nextObject]
20001 else if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "nextObject")
20002 diagnostic = diag::warn_condition_is_idiomatic_assignment;
20003 }
20004
20005 Loc = Op->getOperatorLoc();
20006 } else if (CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
20007 if (Op->getOperator() != OO_Equal && Op->getOperator() != OO_PipeEqual)
20008 return;
20009
20010 IsOrAssign = Op->getOperator() == OO_PipeEqual;
20011 Loc = Op->getOperatorLoc();
20012 } else if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E))
20013 return DiagnoseAssignmentAsCondition(POE->getSyntacticForm());
20014 else {
20015 // Not an assignment.
20016 return;
20017 }
20018
20019 Diag(Loc, diagnostic) << E->getSourceRange();
20020
20021 SourceLocation Open = E->getBeginLoc();
20022 SourceLocation Close = getLocForEndOfToken(E->getSourceRange().getEnd());
20023 Diag(Loc, diag::note_condition_assign_silence)
20024 << FixItHint::CreateInsertion(Open, "(")
20025 << FixItHint::CreateInsertion(Close, ")");
20026
20027 if (IsOrAssign)
20028 Diag(Loc, diag::note_condition_or_assign_to_comparison)
20029 << FixItHint::CreateReplacement(Loc, "!=");
20030 else
20031 Diag(Loc, diag::note_condition_assign_to_comparison)
20032 << FixItHint::CreateReplacement(Loc, "==");
20033}
20034
20035/// Redundant parentheses over an equality comparison can indicate
20036/// that the user intended an assignment used as condition.
20037void Sema::DiagnoseEqualityWithExtraParens(ParenExpr *ParenE) {
20038 // Don't warn if the parens came from a macro.
20039 SourceLocation parenLoc = ParenE->getBeginLoc();
20040 if (parenLoc.isInvalid() || parenLoc.isMacroID())
20041 return;
20042 // Don't warn for dependent expressions.
20043 if (ParenE->isTypeDependent())
20044 return;
20045
20046 Expr *E = ParenE->IgnoreParens();
20047
20048 if (BinaryOperator *opE = dyn_cast<BinaryOperator>(E))
20049 if (opE->getOpcode() == BO_EQ &&
20050 opE->getLHS()->IgnoreParenImpCasts()->isModifiableLvalue(Context)
20051 == Expr::MLV_Valid) {
20052 SourceLocation Loc = opE->getOperatorLoc();
20053
20054 Diag(Loc, diag::warn_equality_with_extra_parens) << E->getSourceRange();
20055 SourceRange ParenERange = ParenE->getSourceRange();
20056 Diag(Loc, diag::note_equality_comparison_silence)
20057 << FixItHint::CreateRemoval(ParenERange.getBegin())
20058 << FixItHint::CreateRemoval(ParenERange.getEnd());
20059 Diag(Loc, diag::note_equality_comparison_to_assign)
20060 << FixItHint::CreateReplacement(Loc, "=");
20061 }
20062}
20063
20064ExprResult Sema::CheckBooleanCondition(SourceLocation Loc, Expr *E,
20065 bool IsConstexpr) {
20066 DiagnoseAssignmentAsCondition(E);
20067 if (ParenExpr *parenE = dyn_cast<ParenExpr>(E))
20068 DiagnoseEqualityWithExtraParens(parenE);
20069
20070 ExprResult result = CheckPlaceholderExpr(E);
20071 if (result.isInvalid()) return ExprError();
20072 E = result.get();
20073
20074 if (!E->isTypeDependent()) {
20075 if (getLangOpts().CPlusPlus)
20076 return CheckCXXBooleanCondition(E, IsConstexpr); // C++ 6.4p4
20077
20078 ExprResult ERes = DefaultFunctionArrayLvalueConversion(E);
20079 if (ERes.isInvalid())
20080 return ExprError();
20081 E = ERes.get();
20082
20083 QualType T = E->getType();
20084 if (!T->isScalarType()) { // C99 6.8.4.1p1
20085 Diag(Loc, diag::err_typecheck_statement_requires_scalar)
20086 << T << E->getSourceRange();
20087 return ExprError();
20088 }
20089 CheckBoolLikeConversion(E, Loc);
20090 }
20091
20092 return E;
20093}
20094
20095Sema::ConditionResult Sema::ActOnCondition(Scope *S, SourceLocation Loc,
20096 Expr *SubExpr, ConditionKind CK,
20097 bool MissingOK) {
20098 // MissingOK indicates whether having no condition expression is valid
20099 // (for loop) or invalid (e.g. while loop).
20100 if (!SubExpr)
20101 return MissingOK ? ConditionResult() : ConditionError();
20102
20103 ExprResult Cond;
20104 switch (CK) {
20105 case ConditionKind::Boolean:
20106 Cond = CheckBooleanCondition(Loc, SubExpr);
20107 break;
20108
20109 case ConditionKind::ConstexprIf:
20110 Cond = CheckBooleanCondition(Loc, SubExpr, true);
20111 break;
20112
20113 case ConditionKind::Switch:
20114 Cond = CheckSwitchCondition(Loc, SubExpr);
20115 break;
20116 }
20117 if (Cond.isInvalid()) {
20118 Cond = CreateRecoveryExpr(SubExpr->getBeginLoc(), SubExpr->getEndLoc(),
20119 {SubExpr}, PreferredConditionType(CK));
20120 if (!Cond.get())
20121 return ConditionError();
20122 }
20123 // FIXME: FullExprArg doesn't have an invalid bit, so check nullness instead.
20124 FullExprArg FullExpr = MakeFullExpr(Cond.get(), Loc);
20125 if (!FullExpr.get())
20126 return ConditionError();
20127
20128 return ConditionResult(*this, nullptr, FullExpr,
20129 CK == ConditionKind::ConstexprIf);
20130}
20131
20132namespace {
20133 /// A visitor for rebuilding a call to an __unknown_any expression
20134 /// to have an appropriate type.
20135 struct RebuildUnknownAnyFunction
20136 : StmtVisitor<RebuildUnknownAnyFunction, ExprResult> {
20137
20138 Sema &S;
20139
20140 RebuildUnknownAnyFunction(Sema &S) : S(S) {}
20141
20142 ExprResult VisitStmt(Stmt *S) {
20143 llvm_unreachable("unexpected statement!")::llvm::llvm_unreachable_internal("unexpected statement!", "clang/lib/Sema/SemaExpr.cpp"
, 20143)
;
20144 }
20145
20146 ExprResult VisitExpr(Expr *E) {
20147 S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_call)
20148 << E->getSourceRange();
20149 return ExprError();
20150 }
20151
20152 /// Rebuild an expression which simply semantically wraps another
20153 /// expression which it shares the type and value kind of.
20154 template <class T> ExprResult rebuildSugarExpr(T *E) {
20155 ExprResult SubResult = Visit(E->getSubExpr());
20156 if (SubResult.isInvalid()) return ExprError();
20157
20158 Expr *SubExpr = SubResult.get();
20159 E->setSubExpr(SubExpr);
20160 E->setType(SubExpr->getType());
20161 E->setValueKind(SubExpr->getValueKind());
20162 assert(E->getObjectKind() == OK_Ordinary)(static_cast <bool> (E->getObjectKind() == OK_Ordinary
) ? void (0) : __assert_fail ("E->getObjectKind() == OK_Ordinary"
, "clang/lib/Sema/SemaExpr.cpp", 20162, __extension__ __PRETTY_FUNCTION__
))
;
20163 return E;
20164 }
20165
20166 ExprResult VisitParenExpr(ParenExpr *E) {
20167 return rebuildSugarExpr(E);
20168 }
20169
20170 ExprResult VisitUnaryExtension(UnaryOperator *E) {
20171 return rebuildSugarExpr(E);
20172 }
20173
20174 ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
20175 ExprResult SubResult = Visit(E->getSubExpr());
20176 if (SubResult.isInvalid()) return ExprError();
20177
20178 Expr *SubExpr = SubResult.get();
20179 E->setSubExpr(SubExpr);
20180 E->setType(S.Context.getPointerType(SubExpr->getType()));
20181 assert(E->isPRValue())(static_cast <bool> (E->isPRValue()) ? void (0) : __assert_fail
("E->isPRValue()", "clang/lib/Sema/SemaExpr.cpp", 20181, __extension__
__PRETTY_FUNCTION__))
;
20182 assert(E->getObjectKind() == OK_Ordinary)(static_cast <bool> (E->getObjectKind() == OK_Ordinary
) ? void (0) : __assert_fail ("E->getObjectKind() == OK_Ordinary"
, "clang/lib/Sema/SemaExpr.cpp", 20182, __extension__ __PRETTY_FUNCTION__
))
;
20183 return E;
20184 }
20185
20186 ExprResult resolveDecl(Expr *E, ValueDecl *VD) {
20187 if (!isa<FunctionDecl>(VD)) return VisitExpr(E);
20188
20189 E->setType(VD->getType());
20190
20191 assert(E->isPRValue())(static_cast <bool> (E->isPRValue()) ? void (0) : __assert_fail
("E->isPRValue()", "clang/lib/Sema/SemaExpr.cpp", 20191, __extension__
__PRETTY_FUNCTION__))
;
20192 if (S.getLangOpts().CPlusPlus &&
20193 !(isa<CXXMethodDecl>(VD) &&
20194 cast<CXXMethodDecl>(VD)->isInstance()))
20195 E->setValueKind(VK_LValue);
20196
20197 return E;
20198 }
20199
20200 ExprResult VisitMemberExpr(MemberExpr *E) {
20201 return resolveDecl(E, E->getMemberDecl());
20202 }
20203
20204 ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
20205 return resolveDecl(E, E->getDecl());
20206 }
20207 };
20208}
20209
20210/// Given a function expression of unknown-any type, try to rebuild it
20211/// to have a function type.
20212static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *FunctionExpr) {
20213 ExprResult Result = RebuildUnknownAnyFunction(S).Visit(FunctionExpr);
20214 if (Result.isInvalid()) return ExprError();
20215 return S.DefaultFunctionArrayConversion(Result.get());
20216}
20217
20218namespace {
20219 /// A visitor for rebuilding an expression of type __unknown_anytype
20220 /// into one which resolves the type directly on the referring
20221 /// expression. Strict preservation of the original source
20222 /// structure is not a goal.
20223 struct RebuildUnknownAnyExpr
20224 : StmtVisitor<RebuildUnknownAnyExpr, ExprResult> {
20225
20226 Sema &S;
20227
20228 /// The current destination type.
20229 QualType DestType;
20230
20231 RebuildUnknownAnyExpr(Sema &S, QualType CastType)
20232 : S(S), DestType(CastType) {}
20233
20234 ExprResult VisitStmt(Stmt *S) {
20235 llvm_unreachable("unexpected statement!")::llvm::llvm_unreachable_internal("unexpected statement!", "clang/lib/Sema/SemaExpr.cpp"
, 20235)
;
20236 }
20237
20238 ExprResult VisitExpr(Expr *E) {
20239 S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
20240 << E->getSourceRange();
20241 return ExprError();
20242 }
20243
20244 ExprResult VisitCallExpr(CallExpr *E);
20245 ExprResult VisitObjCMessageExpr(ObjCMessageExpr *E);
20246
20247 /// Rebuild an expression which simply semantically wraps another
20248 /// expression which it shares the type and value kind of.
20249 template <class T> ExprResult rebuildSugarExpr(T *E) {
20250 ExprResult SubResult = Visit(E->getSubExpr());
20251 if (SubResult.isInvalid()) return ExprError();
20252 Expr *SubExpr = SubResult.get();
20253 E->setSubExpr(SubExpr);
20254 E->setType(SubExpr->getType());
20255 E->setValueKind(SubExpr->getValueKind());
20256 assert(E->getObjectKind() == OK_Ordinary)(static_cast <bool> (E->getObjectKind() == OK_Ordinary
) ? void (0) : __assert_fail ("E->getObjectKind() == OK_Ordinary"
, "clang/lib/Sema/SemaExpr.cpp", 20256, __extension__ __PRETTY_FUNCTION__
))
;
20257 return E;
20258 }
20259
20260 ExprResult VisitParenExpr(ParenExpr *E) {
20261 return rebuildSugarExpr(E);
20262 }
20263
20264 ExprResult VisitUnaryExtension(UnaryOperator *E) {
20265 return rebuildSugarExpr(E);
20266 }
20267
20268 ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
20269 const PointerType *Ptr = DestType->getAs<PointerType>();
20270 if (!Ptr) {
20271 S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof)
20272 << E->getSourceRange();
20273 return ExprError();
20274 }
20275
20276 if (isa<CallExpr>(E->getSubExpr())) {
20277 S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof_call)
20278 << E->getSourceRange();
20279 return ExprError();
20280 }
20281
20282 assert(E->isPRValue())(static_cast <bool> (E->isPRValue()) ? void (0) : __assert_fail
("E->isPRValue()", "clang/lib/Sema/SemaExpr.cpp", 20282, __extension__
__PRETTY_FUNCTION__))
;
20283 assert(E->getObjectKind() == OK_Ordinary)(static_cast <bool> (E->getObjectKind() == OK_Ordinary
) ? void (0) : __assert_fail ("E->getObjectKind() == OK_Ordinary"
, "clang/lib/Sema/SemaExpr.cpp", 20283, __extension__ __PRETTY_FUNCTION__
))
;
20284 E->setType(DestType);
20285
20286 // Build the sub-expression as if it were an object of the pointee type.
20287 DestType = Ptr->getPointeeType();
20288 ExprResult SubResult = Visit(E->getSubExpr());
20289 if (SubResult.isInvalid()) return ExprError();
20290 E->setSubExpr(SubResult.get());
20291 return E;
20292 }
20293
20294 ExprResult VisitImplicitCastExpr(ImplicitCastExpr *E);
20295
20296 ExprResult resolveDecl(Expr *E, ValueDecl *VD);
20297
20298 ExprResult VisitMemberExpr(MemberExpr *E) {
20299 return resolveDecl(E, E->getMemberDecl());
20300 }
20301
20302 ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
20303 return resolveDecl(E, E->getDecl());
20304 }
20305 };
20306}
20307
20308/// Rebuilds a call expression which yielded __unknown_anytype.
20309ExprResult RebuildUnknownAnyExpr::VisitCallExpr(CallExpr *E) {
20310 Expr *CalleeExpr = E->getCallee();
20311
20312 enum FnKind {
20313 FK_MemberFunction,
20314 FK_FunctionPointer,
20315 FK_BlockPointer
20316 };
20317
20318 FnKind Kind;
20319 QualType CalleeType = CalleeExpr->getType();
20320 if (CalleeType == S.Context.BoundMemberTy) {
20321 assert(isa<CXXMemberCallExpr>(E) || isa<CXXOperatorCallExpr>(E))(static_cast <bool> (isa<CXXMemberCallExpr>(E) ||
isa<CXXOperatorCallExpr>(E)) ? void (0) : __assert_fail
("isa<CXXMemberCallExpr>(E) || isa<CXXOperatorCallExpr>(E)"
, "clang/lib/Sema/SemaExpr.cpp", 20321, __extension__ __PRETTY_FUNCTION__
))
;
20322 Kind = FK_MemberFunction;
20323 CalleeType = Expr::findBoundMemberType(CalleeExpr);
20324 } else if (const PointerType *Ptr = CalleeType->getAs<PointerType>()) {
20325 CalleeType = Ptr->getPointeeType();
20326 Kind = FK_FunctionPointer;
20327 } else {
20328 CalleeType = CalleeType->castAs<BlockPointerType>()->getPointeeType();
20329 Kind = FK_BlockPointer;
20330 }
20331 const FunctionType *FnType = CalleeType->castAs<FunctionType>();
20332
20333 // Verify that this is a legal result type of a function.
20334 if (DestType->isArrayType() || DestType->isFunctionType()) {
20335 unsigned diagID = diag::err_func_returning_array_function;
20336 if (Kind == FK_BlockPointer)
20337 diagID = diag::err_block_returning_array_function;
20338
20339 S.Diag(E->getExprLoc(), diagID)
20340 << DestType->isFunctionType() << DestType;
20341 return ExprError();
20342 }
20343
20344 // Otherwise, go ahead and set DestType as the call's result.
20345 E->setType(DestType.getNonLValueExprType(S.Context));
20346 E->setValueKind(Expr::getValueKindForType(DestType));
20347 assert(E->getObjectKind() == OK_Ordinary)(static_cast <bool> (E->getObjectKind() == OK_Ordinary
) ? void (0) : __assert_fail ("E->getObjectKind() == OK_Ordinary"
, "clang/lib/Sema/SemaExpr.cpp", 20347, __extension__ __PRETTY_FUNCTION__
))
;
20348
20349 // Rebuild the function type, replacing the result type with DestType.
20350 const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FnType);
20351 if (Proto) {
20352 // __unknown_anytype(...) is a special case used by the debugger when
20353 // it has no idea what a function's signature is.
20354 //
20355 // We want to build this call essentially under the K&R
20356 // unprototyped rules, but making a FunctionNoProtoType in C++
20357 // would foul up all sorts of assumptions. However, we cannot
20358 // simply pass all arguments as variadic arguments, nor can we
20359 // portably just call the function under a non-variadic type; see
20360 // the comment on IR-gen's TargetInfo::isNoProtoCallVariadic.
20361 // However, it turns out that in practice it is generally safe to
20362 // call a function declared as "A foo(B,C,D);" under the prototype
20363 // "A foo(B,C,D,...);". The only known exception is with the
20364 // Windows ABI, where any variadic function is implicitly cdecl
20365 // regardless of its normal CC. Therefore we change the parameter
20366 // types to match the types of the arguments.
20367 //
20368 // This is a hack, but it is far superior to moving the
20369 // corresponding target-specific code from IR-gen to Sema/AST.
20370
20371 ArrayRef<QualType> ParamTypes = Proto->getParamTypes();
20372 SmallVector<QualType, 8> ArgTypes;
20373 if (ParamTypes.empty() && Proto->isVariadic()) { // the special case
20374 ArgTypes.reserve(E->getNumArgs());
20375 for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
20376 ArgTypes.push_back(S.Context.getReferenceQualifiedType(E->getArg(i)));
20377 }
20378 ParamTypes = ArgTypes;
20379 }
20380 DestType = S.Context.getFunctionType(DestType, ParamTypes,
20381 Proto->getExtProtoInfo());
20382 } else {
20383 DestType = S.Context.getFunctionNoProtoType(DestType,
20384 FnType->getExtInfo());
20385 }
20386
20387 // Rebuild the appropriate pointer-to-function type.
20388 switch (Kind) {
20389 case FK_MemberFunction:
20390 // Nothing to do.
20391 break;
20392
20393 case FK_FunctionPointer:
20394 DestType = S.Context.getPointerType(DestType);
20395 break;
20396
20397 case FK_BlockPointer:
20398 DestType = S.Context.getBlockPointerType(DestType);
20399 break;
20400 }
20401
20402 // Finally, we can recurse.
20403 ExprResult CalleeResult = Visit(CalleeExpr);
20404 if (!CalleeResult.isUsable()) return ExprError();
20405 E->setCallee(CalleeResult.get());
20406
20407 // Bind a temporary if necessary.
20408 return S.MaybeBindToTemporary(E);
20409}
20410
20411ExprResult RebuildUnknownAnyExpr::VisitObjCMessageExpr(ObjCMessageExpr *E) {
20412 // Verify that this is a legal result type of a call.
20413 if (DestType->isArrayType() || DestType->isFunctionType()) {
20414 S.Diag(E->getExprLoc(), diag::err_func_returning_array_function)
20415 << DestType->isFunctionType() << DestType;
20416 return ExprError();
20417 }
20418
20419 // Rewrite the method result type if available.
20420 if (ObjCMethodDecl *Method = E->getMethodDecl()) {
20421 assert(Method->getReturnType() == S.Context.UnknownAnyTy)(static_cast <bool> (Method->getReturnType() == S.Context
.UnknownAnyTy) ? void (0) : __assert_fail ("Method->getReturnType() == S.Context.UnknownAnyTy"
, "clang/lib/Sema/SemaExpr.cpp", 20421, __extension__ __PRETTY_FUNCTION__
))
;
20422 Method->setReturnType(DestType);
20423 }
20424
20425 // Change the type of the message.
20426 E->setType(DestType.getNonReferenceType());
20427 E->setValueKind(Expr::getValueKindForType(DestType));
20428
20429 return S.MaybeBindToTemporary(E);
20430}
20431
20432ExprResult RebuildUnknownAnyExpr::VisitImplicitCastExpr(ImplicitCastExpr *E) {
20433 // The only case we should ever see here is a function-to-pointer decay.
20434 if (E->getCastKind() == CK_FunctionToPointerDecay) {
20435 assert(E->isPRValue())(static_cast <bool> (E->isPRValue()) ? void (0) : __assert_fail
("E->isPRValue()", "clang/lib/Sema/SemaExpr.cpp", 20435, __extension__
__PRETTY_FUNCTION__))
;
20436 assert(E->getObjectKind() == OK_Ordinary)(static_cast <bool> (E->getObjectKind() == OK_Ordinary
) ? void (0) : __assert_fail ("E->getObjectKind() == OK_Ordinary"
, "clang/lib/Sema/SemaExpr.cpp", 20436, __extension__ __PRETTY_FUNCTION__
))
;
20437
20438 E->setType(DestType);
20439
20440 // Rebuild the sub-expression as the pointee (function) type.
20441 DestType = DestType->castAs<PointerType>()->getPointeeType();
20442
20443 ExprResult Result = Visit(E->getSubExpr());
20444 if (!Result.isUsable()) return ExprError();
20445
20446 E->setSubExpr(Result.get());
20447 return E;
20448 } else if (E->getCastKind() == CK_LValueToRValue) {
20449 assert(E->isPRValue())(static_cast <bool> (E->isPRValue()) ? void (0) : __assert_fail
("E->isPRValue()", "clang/lib/Sema/SemaExpr.cpp", 20449, __extension__
__PRETTY_FUNCTION__))
;
20450 assert(E->getObjectKind() == OK_Ordinary)(static_cast <bool> (E->getObjectKind() == OK_Ordinary
) ? void (0) : __assert_fail ("E->getObjectKind() == OK_Ordinary"
, "clang/lib/Sema/SemaExpr.cpp", 20450, __extension__ __PRETTY_FUNCTION__
))
;
20451
20452 assert(isa<BlockPointerType>(E->getType()))(static_cast <bool> (isa<BlockPointerType>(E->
getType())) ? void (0) : __assert_fail ("isa<BlockPointerType>(E->getType())"
, "clang/lib/Sema/SemaExpr.cpp", 20452, __extension__ __PRETTY_FUNCTION__
))
;
20453
20454 E->setType(DestType);
20455
20456 // The sub-expression has to be a lvalue reference, so rebuild it as such.
20457 DestType = S.Context.getLValueReferenceType(DestType);
20458
20459 ExprResult Result = Visit(E->getSubExpr());
20460 if (!Result.isUsable()) return ExprError();
20461
20462 E->setSubExpr(Result.get());
20463 return E;
20464 } else {
20465 llvm_unreachable("Unhandled cast type!")::llvm::llvm_unreachable_internal("Unhandled cast type!", "clang/lib/Sema/SemaExpr.cpp"
, 20465)
;
20466 }
20467}
20468
20469ExprResult RebuildUnknownAnyExpr::resolveDecl(Expr *E, ValueDecl *VD) {
20470 ExprValueKind ValueKind = VK_LValue;
20471 QualType Type = DestType;
20472
20473 // We know how to make this work for certain kinds of decls:
20474
20475 // - functions
20476 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(VD)) {
20477 if (const PointerType *Ptr = Type->getAs<PointerType>()) {
20478 DestType = Ptr->getPointeeType();
20479 ExprResult Result = resolveDecl(E, VD);
20480 if (Result.isInvalid()) return ExprError();
20481 return S.ImpCastExprToType(Result.get(), Type, CK_FunctionToPointerDecay,
20482 VK_PRValue);
20483 }
20484
20485 if (!Type->isFunctionType()) {
20486 S.Diag(E->getExprLoc(), diag::err_unknown_any_function)
20487 << VD << E->getSourceRange();
20488 return ExprError();
20489 }
20490 if (const FunctionProtoType *FT = Type->getAs<FunctionProtoType>()) {
20491 // We must match the FunctionDecl's type to the hack introduced in
20492 // RebuildUnknownAnyExpr::VisitCallExpr to vararg functions of unknown
20493 // type. See the lengthy commentary in that routine.
20494 QualType FDT = FD->getType();
20495 const FunctionType *FnType = FDT->castAs<FunctionType>();
20496 const FunctionProtoType *Proto = dyn_cast_or_null<FunctionProtoType>(FnType);
20497 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
20498 if (DRE && Proto && Proto->getParamTypes().empty() && Proto->isVariadic()) {
20499 SourceLocation Loc = FD->getLocation();
20500 FunctionDecl *NewFD = FunctionDecl::Create(
20501 S.Context, FD->getDeclContext(), Loc, Loc,
20502 FD->getNameInfo().getName(), DestType, FD->getTypeSourceInfo(),
20503 SC_None, S.getCurFPFeatures().isFPConstrained(),
20504 false /*isInlineSpecified*/, FD->hasPrototype(),
20505 /*ConstexprKind*/ ConstexprSpecKind::Unspecified);
20506
20507 if (FD->getQualifier())
20508 NewFD->setQualifierInfo(FD->getQualifierLoc());
20509
20510 SmallVector<ParmVarDecl*, 16> Params;
20511 for (const auto &AI : FT->param_types()) {
20512 ParmVarDecl *Param =
20513 S.BuildParmVarDeclForTypedef(FD, Loc, AI);
20514 Param->setScopeInfo(0, Params.size());
20515 Params.push_back(Param);
20516 }
20517 NewFD->setParams(Params);
20518 DRE->setDecl(NewFD);
20519 VD = DRE->getDecl();
20520 }
20521 }
20522
20523 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
20524 if (MD->isInstance()) {
20525 ValueKind = VK_PRValue;
20526 Type = S.Context.BoundMemberTy;
20527 }
20528
20529 // Function references aren't l-values in C.
20530 if (!S.getLangOpts().CPlusPlus)
20531 ValueKind = VK_PRValue;
20532
20533 // - variables
20534 } else if (isa<VarDecl>(VD)) {
20535 if (const ReferenceType *RefTy = Type->getAs<ReferenceType>()) {
20536 Type = RefTy->getPointeeType();
20537 } else if (Type->isFunctionType()) {
20538 S.Diag(E->getExprLoc(), diag::err_unknown_any_var_function_type)
20539 << VD << E->getSourceRange();
20540 return ExprError();
20541 }
20542
20543 // - nothing else
20544 } else {
20545 S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_decl)
20546 << VD << E->getSourceRange();
20547 return ExprError();
20548 }
20549
20550 // Modifying the declaration like this is friendly to IR-gen but
20551 // also really dangerous.
20552 VD->setType(DestType);
20553 E->setType(Type);
20554 E->setValueKind(ValueKind);
20555 return E;
20556}
20557
20558/// Check a cast of an unknown-any type. We intentionally only
20559/// trigger this for C-style casts.
20560ExprResult Sema::checkUnknownAnyCast(SourceRange TypeRange, QualType CastType,
20561 Expr *CastExpr, CastKind &CastKind,
20562 ExprValueKind &VK, CXXCastPath &Path) {
20563 // The type we're casting to must be either void or complete.
20564 if (!CastType->isVoidType() &&
20565 RequireCompleteType(TypeRange.getBegin(), CastType,
20566 diag::err_typecheck_cast_to_incomplete))
20567 return ExprError();
20568
20569 // Rewrite the casted expression from scratch.
20570 ExprResult result = RebuildUnknownAnyExpr(*this, CastType).Visit(CastExpr);
20571 if (!result.isUsable()) return ExprError();
20572
20573 CastExpr = result.get();
20574 VK = CastExpr->getValueKind();
20575 CastKind = CK_NoOp;
20576
20577 return CastExpr;
20578}
20579
20580ExprResult Sema::forceUnknownAnyToType(Expr *E, QualType ToType) {
20581 return RebuildUnknownAnyExpr(*this, ToType).Visit(E);
20582}
20583
20584ExprResult Sema::checkUnknownAnyArg(SourceLocation callLoc,
20585 Expr *arg, QualType &paramType) {
20586 // If the syntactic form of the argument is not an explicit cast of
20587 // any sort, just do default argument promotion.
20588 ExplicitCastExpr *castArg = dyn_cast<ExplicitCastExpr>(arg->IgnoreParens());
20589 if (!castArg) {
20590 ExprResult result = DefaultArgumentPromotion(arg);
20591 if (result.isInvalid()) return ExprError();
20592 paramType = result.get()->getType();
20593 return result;
20594 }
20595
20596 // Otherwise, use the type that was written in the explicit cast.
20597 assert(!arg->hasPlaceholderType())(static_cast <bool> (!arg->hasPlaceholderType()) ? void
(0) : __assert_fail ("!arg->hasPlaceholderType()", "clang/lib/Sema/SemaExpr.cpp"
, 20597, __extension__ __PRETTY_FUNCTION__))
;
20598 paramType = castArg->getTypeAsWritten();
20599
20600 // Copy-initialize a parameter of that type.
20601 InitializedEntity entity =
20602 InitializedEntity::InitializeParameter(Context, paramType,
20603 /*consumed*/ false);
20604 return PerformCopyInitialization(entity, callLoc, arg);
20605}
20606
20607static ExprResult diagnoseUnknownAnyExpr(Sema &S, Expr *E) {
20608 Expr *orig = E;
20609 unsigned diagID = diag::err_uncasted_use_of_unknown_any;
20610 while (true) {
20611 E = E->IgnoreParenImpCasts();
20612 if (CallExpr *call = dyn_cast<CallExpr>(E)) {
20613 E = call->getCallee();
20614 diagID = diag::err_uncasted_call_of_unknown_any;
20615 } else {
20616 break;
20617 }
20618 }
20619
20620 SourceLocation loc;
20621 NamedDecl *d;
20622 if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(E)) {
20623 loc = ref->getLocation();
20624 d = ref->getDecl();
20625 } else if (MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
20626 loc = mem->getMemberLoc();
20627 d = mem->getMemberDecl();
20628 } else if (ObjCMessageExpr *msg = dyn_cast<ObjCMessageExpr>(E)) {
20629 diagID = diag::err_uncasted_call_of_unknown_any;
20630 loc = msg->getSelectorStartLoc();
20631 d = msg->getMethodDecl();
20632 if (!d) {
20633 S.Diag(loc, diag::err_uncasted_send_to_unknown_any_method)
20634 << static_cast<unsigned>(msg->isClassMessage()) << msg->getSelector()
20635 << orig->getSourceRange();
20636 return ExprError();
20637 }
20638 } else {
20639 S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
20640 << E->getSourceRange();
20641 return ExprError();
20642 }
20643
20644 S.Diag(loc, diagID) << d << orig->getSourceRange();
20645
20646 // Never recoverable.
20647 return ExprError();
20648}
20649
20650/// Check for operands with placeholder types and complain if found.
20651/// Returns ExprError() if there was an error and no recovery was possible.
20652ExprResult Sema::CheckPlaceholderExpr(Expr *E) {
20653 if (!Context.isDependenceAllowed()) {
20654 // C cannot handle TypoExpr nodes on either side of a binop because it
20655 // doesn't handle dependent types properly, so make sure any TypoExprs have
20656 // been dealt with before checking the operands.
20657 ExprResult Result = CorrectDelayedTyposInExpr(E);
20658 if (!Result.isUsable()) return ExprError();
20659 E = Result.get();
20660 }
20661
20662 const BuiltinType *placeholderType = E->getType()->getAsPlaceholderType();
20663 if (!placeholderType) return E;
20664
20665 switch (placeholderType->getKind()) {
20666
20667 // Overloaded expressions.
20668 case BuiltinType::Overload: {
20669 // Try to resolve a single function template specialization.
20670 // This is obligatory.
20671 ExprResult Result = E;
20672 if (ResolveAndFixSingleFunctionTemplateSpecialization(Result, false))
20673 return Result;
20674
20675 // No guarantees that ResolveAndFixSingleFunctionTemplateSpecialization
20676 // leaves Result unchanged on failure.
20677 Result = E;
20678 if (resolveAndFixAddressOfSingleOverloadCandidate(Result))
20679 return Result;
20680
20681 // If that failed, try to recover with a call.
20682 tryToRecoverWithCall(Result, PDiag(diag::err_ovl_unresolvable),
20683 /*complain*/ true);
20684 return Result;
20685 }
20686
20687 // Bound member functions.
20688 case BuiltinType::BoundMember: {
20689 ExprResult result = E;
20690 const Expr *BME = E->IgnoreParens();
20691 PartialDiagnostic PD = PDiag(diag::err_bound_member_function);
20692 // Try to give a nicer diagnostic if it is a bound member that we recognize.
20693 if (isa<CXXPseudoDestructorExpr>(BME)) {
20694 PD = PDiag(diag::err_dtor_expr_without_call) << /*pseudo-destructor*/ 1;
20695 } else if (const auto *ME = dyn_cast<MemberExpr>(BME)) {
20696 if (ME->getMemberNameInfo().getName().getNameKind() ==
20697 DeclarationName::CXXDestructorName)
20698 PD = PDiag(diag::err_dtor_expr_without_call) << /*destructor*/ 0;
20699 }
20700 tryToRecoverWithCall(result, PD,
20701 /*complain*/ true);
20702 return result;
20703 }
20704
20705 // ARC unbridged casts.
20706 case BuiltinType::ARCUnbridgedCast: {
20707 Expr *realCast = stripARCUnbridgedCast(E);
20708 diagnoseARCUnbridgedCast(realCast);
20709 return realCast;
20710 }
20711
20712 // Expressions of unknown type.
20713 case BuiltinType::UnknownAny:
20714 return diagnoseUnknownAnyExpr(*this, E);
20715
20716 // Pseudo-objects.
20717 case BuiltinType::PseudoObject:
20718 return checkPseudoObjectRValue(E);
20719
20720 case BuiltinType::BuiltinFn: {
20721 // Accept __noop without parens by implicitly converting it to a call expr.
20722 auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
20723 if (DRE) {
20724 auto *FD = cast<FunctionDecl>(DRE->getDecl());
20725 unsigned BuiltinID = FD->getBuiltinID();
20726 if (BuiltinID == Builtin::BI__noop) {
20727 E = ImpCastExprToType(E, Context.getPointerType(FD->getType()),
20728 CK_BuiltinFnToFnPtr)
20729 .get();
20730 return CallExpr::Create(Context, E, /*Args=*/{}, Context.IntTy,
20731 VK_PRValue, SourceLocation(),
20732 FPOptionsOverride());
20733 }
20734
20735 if (Context.BuiltinInfo.isInStdNamespace(BuiltinID)) {
20736 // Any use of these other than a direct call is ill-formed as of C++20,
20737 // because they are not addressable functions. In earlier language
20738 // modes, warn and force an instantiation of the real body.
20739 Diag(E->getBeginLoc(),
20740 getLangOpts().CPlusPlus20
20741 ? diag::err_use_of_unaddressable_function
20742 : diag::warn_cxx20_compat_use_of_unaddressable_function);
20743 if (FD->isImplicitlyInstantiable()) {
20744 // Require a definition here because a normal attempt at
20745 // instantiation for a builtin will be ignored, and we won't try
20746 // again later. We assume that the definition of the template
20747 // precedes this use.
20748 InstantiateFunctionDefinition(E->getBeginLoc(), FD,
20749 /*Recursive=*/false,
20750 /*DefinitionRequired=*/true,
20751 /*AtEndOfTU=*/false);
20752 }
20753 // Produce a properly-typed reference to the function.
20754 CXXScopeSpec SS;
20755 SS.Adopt(DRE->getQualifierLoc());
20756 TemplateArgumentListInfo TemplateArgs;
20757 DRE->copyTemplateArgumentsInto(TemplateArgs);
20758 return BuildDeclRefExpr(
20759 FD, FD->getType(), VK_LValue, DRE->getNameInfo(),
20760 DRE->hasQualifier() ? &SS : nullptr, DRE->getFoundDecl(),
20761 DRE->getTemplateKeywordLoc(),
20762 DRE->hasExplicitTemplateArgs() ? &TemplateArgs : nullptr);
20763 }
20764 }
20765
20766 Diag(E->getBeginLoc(), diag::err_builtin_fn_use);
20767 return ExprError();
20768 }
20769
20770 case BuiltinType::IncompleteMatrixIdx:
20771 Diag(cast<MatrixSubscriptExpr>(E->IgnoreParens())
20772 ->getRowIdx()
20773 ->getBeginLoc(),
20774 diag::err_matrix_incomplete_index);
20775 return ExprError();
20776
20777 // Expressions of unknown type.
20778 case BuiltinType::OMPArraySection:
20779 Diag(E->getBeginLoc(), diag::err_omp_array_section_use);
20780 return ExprError();
20781
20782 // Expressions of unknown type.
20783 case BuiltinType::OMPArrayShaping:
20784 return ExprError(Diag(E->getBeginLoc(), diag::err_omp_array_shaping_use));
20785
20786 case BuiltinType::OMPIterator:
20787 return ExprError(Diag(E->getBeginLoc(), diag::err_omp_iterator_use));
20788
20789 // Everything else should be impossible.
20790#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
20791 case BuiltinType::Id:
20792#include "clang/Basic/OpenCLImageTypes.def"
20793#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
20794 case BuiltinType::Id:
20795#include "clang/Basic/OpenCLExtensionTypes.def"
20796#define SVE_TYPE(Name, Id, SingletonId) \
20797 case BuiltinType::Id:
20798#include "clang/Basic/AArch64SVEACLETypes.def"
20799#define PPC_VECTOR_TYPE(Name, Id, Size) \
20800 case BuiltinType::Id:
20801#include "clang/Basic/PPCTypes.def"
20802#define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
20803#include "clang/Basic/RISCVVTypes.def"
20804#define BUILTIN_TYPE(Id, SingletonId) case BuiltinType::Id:
20805#define PLACEHOLDER_TYPE(Id, SingletonId)
20806#include "clang/AST/BuiltinTypes.def"
20807 break;
20808 }
20809
20810 llvm_unreachable("invalid placeholder type!")::llvm::llvm_unreachable_internal("invalid placeholder type!"
, "clang/lib/Sema/SemaExpr.cpp", 20810)
;
20811}
20812
20813bool Sema::CheckCaseExpression(Expr *E) {
20814 if (E->isTypeDependent())
20815 return true;
20816 if (E->isValueDependent() || E->isIntegerConstantExpr(Context))
20817 return E->getType()->isIntegralOrEnumerationType();
20818 return false;
20819}
20820
20821/// ActOnObjCBoolLiteral - Parse {__objc_yes,__objc_no} literals.
20822ExprResult
20823Sema::ActOnObjCBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
20824 assert((Kind == tok::kw___objc_yes || Kind == tok::kw___objc_no) &&(static_cast <bool> ((Kind == tok::kw___objc_yes || Kind
== tok::kw___objc_no) && "Unknown Objective-C Boolean value!"
) ? void (0) : __assert_fail ("(Kind == tok::kw___objc_yes || Kind == tok::kw___objc_no) && \"Unknown Objective-C Boolean value!\""
, "clang/lib/Sema/SemaExpr.cpp", 20825, __extension__ __PRETTY_FUNCTION__
))
20825 "Unknown Objective-C Boolean value!")(static_cast <bool> ((Kind == tok::kw___objc_yes || Kind
== tok::kw___objc_no) && "Unknown Objective-C Boolean value!"
) ? void (0) : __assert_fail ("(Kind == tok::kw___objc_yes || Kind == tok::kw___objc_no) && \"Unknown Objective-C Boolean value!\""
, "clang/lib/Sema/SemaExpr.cpp", 20825, __extension__ __PRETTY_FUNCTION__
))
;
20826 QualType BoolT = Context.ObjCBuiltinBoolTy;
20827 if (!Context.getBOOLDecl()) {
20828 LookupResult Result(*this, &Context.Idents.get("BOOL"), OpLoc,
20829 Sema::LookupOrdinaryName);
20830 if (LookupName(Result, getCurScope()) && Result.isSingleResult()) {
20831 NamedDecl *ND = Result.getFoundDecl();
20832 if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND))
20833 Context.setBOOLDecl(TD);
20834 }
20835 }
20836 if (Context.getBOOLDecl())
20837 BoolT = Context.getBOOLType();
20838 return new (Context)
20839 ObjCBoolLiteralExpr(Kind == tok::kw___objc_yes, BoolT, OpLoc);
20840}
20841
20842ExprResult Sema::ActOnObjCAvailabilityCheckExpr(
20843 llvm::ArrayRef<AvailabilitySpec> AvailSpecs, SourceLocation AtLoc,
20844 SourceLocation RParen) {
20845 auto FindSpecVersion = [&](StringRef Platform) -> Optional<VersionTuple> {
20846 auto Spec = llvm::find_if(AvailSpecs, [&](const AvailabilitySpec &Spec) {
20847 return Spec.getPlatform() == Platform;
20848 });
20849 // Transcribe the "ios" availability check to "maccatalyst" when compiling
20850 // for "maccatalyst" if "maccatalyst" is not specified.
20851 if (Spec == AvailSpecs.end() && Platform == "maccatalyst") {
20852 Spec = llvm::find_if(AvailSpecs, [&](const AvailabilitySpec &Spec) {
20853 return Spec.getPlatform() == "ios";
20854 });
20855 }
20856 if (Spec == AvailSpecs.end())
20857 return None;
20858 return Spec->getVersion();
20859 };
20860
20861 VersionTuple Version;
20862 if (auto MaybeVersion =
20863 FindSpecVersion(Context.getTargetInfo().getPlatformName()))
20864 Version = *MaybeVersion;
20865
20866 // The use of `@available` in the enclosing context should be analyzed to
20867 // warn when it's used inappropriately (i.e. not if(@available)).
20868 if (FunctionScopeInfo *Context = getCurFunctionAvailabilityContext())
20869 Context->HasPotentialAvailabilityViolations = true;
20870
20871 return new (Context)
20872 ObjCAvailabilityCheckExpr(Version, AtLoc, RParen, Context.BoolTy);
20873}
20874
20875ExprResult Sema::CreateRecoveryExpr(SourceLocation Begin, SourceLocation End,
20876 ArrayRef<Expr *> SubExprs, QualType T) {
20877 if (!Context.getLangOpts().RecoveryAST)
20878 return ExprError();
20879
20880 if (isSFINAEContext())
20881 return ExprError();
20882
20883 if (T.isNull() || T->isUndeducedType() ||
20884 !Context.getLangOpts().RecoveryASTType)
20885 // We don't know the concrete type, fallback to dependent type.
20886 T = Context.DependentTy;
20887
20888 return RecoveryExpr::Create(Context, T, Begin, End, SubExprs);
20889}

/build/llvm-toolchain-snapshot-16~++20221003111214+1fa2019828ca/llvm/include/llvm/Support/Casting.h

1//===- llvm/Support/Casting.h - Allow flexible, checked, casts --*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the isa<X>(), cast<X>(), dyn_cast<X>(),
10// cast_if_present<X>(), and dyn_cast_if_present<X>() templates.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_SUPPORT_CASTING_H
15#define LLVM_SUPPORT_CASTING_H
16
17#include "llvm/ADT/Optional.h"
18#include "llvm/Support/Compiler.h"
19#include "llvm/Support/type_traits.h"
20#include <cassert>
21#include <memory>
22#include <type_traits>
23
24namespace llvm {
25
26//===----------------------------------------------------------------------===//
27// simplify_type
28//===----------------------------------------------------------------------===//
29
30/// Define a template that can be specialized by smart pointers to reflect the
31/// fact that they are automatically dereferenced, and are not involved with the
32/// template selection process... the default implementation is a noop.
33// TODO: rename this and/or replace it with other cast traits.
34template <typename From> struct simplify_type {
35 using SimpleType = From; // The real type this represents...
36
37 // An accessor to get the real value...
38 static SimpleType &getSimplifiedValue(From &Val) { return Val; }
39};
40
41template <typename From> struct simplify_type<const From> {
42 using NonConstSimpleType = typename simplify_type<From>::SimpleType;
43 using SimpleType = typename add_const_past_pointer<NonConstSimpleType>::type;
44 using RetType =
45 typename add_lvalue_reference_if_not_pointer<SimpleType>::type;
46
47 static RetType getSimplifiedValue(const From &Val) {
48 return simplify_type<From>::getSimplifiedValue(const_cast<From &>(Val));
49 }
50};
51
52// TODO: add this namespace once everyone is switched to using the new
53// interface.
54// namespace detail {
55
56//===----------------------------------------------------------------------===//
57// isa_impl
58//===----------------------------------------------------------------------===//
59
60// The core of the implementation of isa<X> is here; To and From should be
61// the names of classes. This template can be specialized to customize the
62// implementation of isa<> without rewriting it from scratch.
63template <typename To, typename From, typename Enabler = void> struct isa_impl {
64 static inline bool doit(const From &Val) { return To::classof(&Val); }
65};
66
67// Always allow upcasts, and perform no dynamic check for them.
68template <typename To, typename From>
69struct isa_impl<To, From, std::enable_if_t<std::is_base_of<To, From>::value>> {
70 static inline bool doit(const From &) { return true; }
71};
72
73template <typename To, typename From> struct isa_impl_cl {
74 static inline bool doit(const From &Val) {
75 return isa_impl<To, From>::doit(Val);
76 }
77};
78
79template <typename To, typename From> struct isa_impl_cl<To, const From> {
80 static inline bool doit(const From &Val) {
81 return isa_impl<To, From>::doit(Val);
82 }
83};
84
85template <typename To, typename From>
86struct isa_impl_cl<To, const std::unique_ptr<From>> {
87 static inline bool doit(const std::unique_ptr<From> &Val) {
88 assert(Val && "isa<> used on a null pointer")(static_cast <bool> (Val && "isa<> used on a null pointer"
) ? void (0) : __assert_fail ("Val && \"isa<> used on a null pointer\""
, "llvm/include/llvm/Support/Casting.h", 88, __extension__ __PRETTY_FUNCTION__
))
;
89 return isa_impl_cl<To, From>::doit(*Val);
90 }
91};
92
93template <typename To, typename From> struct isa_impl_cl<To, From *> {
94 static inline bool doit(const From *Val) {
95 assert(Val && "isa<> used on a null pointer")(static_cast <bool> (Val && "isa<> used on a null pointer"
) ? void (0) : __assert_fail ("Val && \"isa<> used on a null pointer\""
, "llvm/include/llvm/Support/Casting.h", 95, __extension__ __PRETTY_FUNCTION__
))
;
96 return isa_impl<To, From>::doit(*Val);
97 }
98};
99
100template <typename To, typename From> struct isa_impl_cl<To, From *const> {
101 static inline bool doit(const From *Val) {
102 assert(Val && "isa<> used on a null pointer")(static_cast <bool> (Val && "isa<> used on a null pointer"
) ? void (0) : __assert_fail ("Val && \"isa<> used on a null pointer\""
, "llvm/include/llvm/Support/Casting.h", 102, __extension__ __PRETTY_FUNCTION__
))
;
103 return isa_impl<To, From>::doit(*Val);
104 }
105};
106
107template <typename To, typename From> struct isa_impl_cl<To, const From *> {
108 static inline bool doit(const From *Val) {
109 assert(Val && "isa<> used on a null pointer")(static_cast <bool> (Val && "isa<> used on a null pointer"
) ? void (0) : __assert_fail ("Val && \"isa<> used on a null pointer\""
, "llvm/include/llvm/Support/Casting.h", 109, __extension__ __PRETTY_FUNCTION__
))
;
110 return isa_impl<To, From>::doit(*Val);
111 }
112};
113
114template <typename To, typename From>
115struct isa_impl_cl<To, const From *const> {
116 static inline bool doit(const From *Val) {
117 assert(Val && "isa<> used on a null pointer")(static_cast <bool> (Val && "isa<> used on a null pointer"
) ? void (0) : __assert_fail ("Val && \"isa<> used on a null pointer\""
, "llvm/include/llvm/Support/Casting.h", 117, __extension__ __PRETTY_FUNCTION__
))
;
118 return isa_impl<To, From>::doit(*Val);
119 }
120};
121
122template <typename To, typename From, typename SimpleFrom>
123struct isa_impl_wrap {
124 // When From != SimplifiedType, we can simplify the type some more by using
125 // the simplify_type template.
126 static bool doit(const From &Val) {
127 return isa_impl_wrap<To, SimpleFrom,
128 typename simplify_type<SimpleFrom>::SimpleType>::
129 doit(simplify_type<const From>::getSimplifiedValue(Val));
130 }
131};
132
133template <typename To, typename FromTy>
134struct isa_impl_wrap<To, FromTy, FromTy> {
135 // When From == SimpleType, we are as simple as we are going to get.
136 static bool doit(const FromTy &Val) {
137 return isa_impl_cl<To, FromTy>::doit(Val);
138 }
139};
140
141//===----------------------------------------------------------------------===//
142// cast_retty + cast_retty_impl
143//===----------------------------------------------------------------------===//
144
145template <class To, class From> struct cast_retty;
146
147// Calculate what type the 'cast' function should return, based on a requested
148// type of To and a source type of From.
149template <class To, class From> struct cast_retty_impl {
150 using ret_type = To &; // Normal case, return Ty&
151};
152template <class To, class From> struct cast_retty_impl<To, const From> {
153 using ret_type = const To &; // Normal case, return Ty&
154};
155
156template <class To, class From> struct cast_retty_impl<To, From *> {
157 using ret_type = To *; // Pointer arg case, return Ty*
158};
159
160template <class To, class From> struct cast_retty_impl<To, const From *> {
161 using ret_type = const To *; // Constant pointer arg case, return const Ty*
162};
163
164template <class To, class From> struct cast_retty_impl<To, const From *const> {
165 using ret_type = const To *; // Constant pointer arg case, return const Ty*
166};
167
168template <class To, class From>
169struct cast_retty_impl<To, std::unique_ptr<From>> {
170private:
171 using PointerType = typename cast_retty_impl<To, From *>::ret_type;
172 using ResultType = std::remove_pointer_t<PointerType>;
173
174public:
175 using ret_type = std::unique_ptr<ResultType>;
176};
177
178template <class To, class From, class SimpleFrom> struct cast_retty_wrap {
179 // When the simplified type and the from type are not the same, use the type
180 // simplifier to reduce the type, then reuse cast_retty_impl to get the
181 // resultant type.
182 using ret_type = typename cast_retty<To, SimpleFrom>::ret_type;
183};
184
185template <class To, class FromTy> struct cast_retty_wrap<To, FromTy, FromTy> {
186 // When the simplified type is equal to the from type, use it directly.
187 using ret_type = typename cast_retty_impl<To, FromTy>::ret_type;
188};
189
190template <class To, class From> struct cast_retty {
191 using ret_type = typename cast_retty_wrap<
192 To, From, typename simplify_type<From>::SimpleType>::ret_type;
193};
194
195//===----------------------------------------------------------------------===//
196// cast_convert_val
197//===----------------------------------------------------------------------===//
198
199// Ensure the non-simple values are converted using the simplify_type template
200// that may be specialized by smart pointers...
201//
202template <class To, class From, class SimpleFrom> struct cast_convert_val {
203 // This is not a simple type, use the template to simplify it...
204 static typename cast_retty<To, From>::ret_type doit(const From &Val) {
205 return cast_convert_val<To, SimpleFrom,
206 typename simplify_type<SimpleFrom>::SimpleType>::
207 doit(simplify_type<From>::getSimplifiedValue(const_cast<From &>(Val)));
208 }
209};
210
211template <class To, class FromTy> struct cast_convert_val<To, FromTy, FromTy> {
212 // If it's a reference, switch to a pointer to do the cast and then deref it.
213 static typename cast_retty<To, FromTy>::ret_type doit(const FromTy &Val) {
214 return *(std::remove_reference_t<typename cast_retty<To, FromTy>::ret_type>
215 *)&const_cast<FromTy &>(Val);
216 }
217};
218
219template <class To, class FromTy>
220struct cast_convert_val<To, FromTy *, FromTy *> {
221 // If it's a pointer, we can use c-style casting directly.
222 static typename cast_retty<To, FromTy *>::ret_type doit(const FromTy *Val) {
223 return (typename cast_retty<To, FromTy *>::ret_type) const_cast<FromTy *>(
224 Val);
225 }
226};
227
228//===----------------------------------------------------------------------===//
229// is_simple_type
230//===----------------------------------------------------------------------===//
231
232template <class X> struct is_simple_type {
233 static const bool value =
234 std::is_same<X, typename simplify_type<X>::SimpleType>::value;
235};
236
237// } // namespace detail
238
239//===----------------------------------------------------------------------===//
240// CastIsPossible
241//===----------------------------------------------------------------------===//
242
243/// This struct provides a way to check if a given cast is possible. It provides
244/// a static function called isPossible that is used to check if a cast can be
245/// performed. It should be overridden like this:
246///
247/// template<> struct CastIsPossible<foo, bar> {
248/// static inline bool isPossible(const bar &b) {
249/// return bar.isFoo();
250/// }
251/// };
252template <typename To, typename From, typename Enable = void>
253struct CastIsPossible {
254 static inline bool isPossible(const From &f) {
255 return isa_impl_wrap<
256 To, const From,
257 typename simplify_type<const From>::SimpleType>::doit(f);
258 }
259};
260
261// Needed for optional unwrapping. This could be implemented with isa_impl, but
262// we want to implement things in the new method and move old implementations
263// over. In fact, some of the isa_impl templates should be moved over to
264// CastIsPossible.
265template <typename To, typename From>
266struct CastIsPossible<To, Optional<From>> {
267 static inline bool isPossible(const Optional<From> &f) {
268 assert(f && "CastIsPossible::isPossible called on a nullopt!")(static_cast <bool> (f && "CastIsPossible::isPossible called on a nullopt!"
) ? void (0) : __assert_fail ("f && \"CastIsPossible::isPossible called on a nullopt!\""
, "llvm/include/llvm/Support/Casting.h", 268, __extension__ __PRETTY_FUNCTION__
))
;
269 return isa_impl_wrap<
270 To, const From,
271 typename simplify_type<const From>::SimpleType>::doit(*f);
272 }
273};
274
275/// Upcasting (from derived to base) and casting from a type to itself should
276/// always be possible.
277template <typename To, typename From>
278struct CastIsPossible<To, From,
279 std::enable_if_t<std::is_base_of<To, From>::value>> {
280 static inline bool isPossible(const From &f) { return true; }
281};
282
283//===----------------------------------------------------------------------===//
284// Cast traits
285//===----------------------------------------------------------------------===//
286
287/// All of these cast traits are meant to be implementations for useful casts
288/// that users may want to use that are outside the standard behavior. An
289/// example of how to use a special cast called `CastTrait` is:
290///
291/// template<> struct CastInfo<foo, bar> : public CastTrait<foo, bar> {};
292///
293/// Essentially, if your use case falls directly into one of the use cases
294/// supported by a given cast trait, simply inherit your special CastInfo
295/// directly from one of these to avoid having to reimplement the boilerplate
296/// `isPossible/castFailed/doCast/doCastIfPossible`. A cast trait can also
297/// provide a subset of those functions.
298
299/// This cast trait just provides castFailed for the specified `To` type to make
300/// CastInfo specializations more declarative. In order to use this, the target
301/// result type must be `To` and `To` must be constructible from `nullptr`.
302template <typename To> struct NullableValueCastFailed {
303 static To castFailed() { return To(nullptr); }
304};
305
306/// This cast trait just provides the default implementation of doCastIfPossible
307/// to make CastInfo specializations more declarative. The `Derived` template
308/// parameter *must* be provided for forwarding castFailed and doCast.
309template <typename To, typename From, typename Derived>
310struct DefaultDoCastIfPossible {
311 static To doCastIfPossible(From f) {
312 if (!Derived::isPossible(f))
313 return Derived::castFailed();
314 return Derived::doCast(f);
315 }
316};
317
318namespace detail {
319/// A helper to derive the type to use with `Self` for cast traits, when the
320/// provided CRTP derived type is allowed to be void.
321template <typename OptionalDerived, typename Default>
322using SelfType = std::conditional_t<std::is_same<OptionalDerived, void>::value,
323 Default, OptionalDerived>;
324} // namespace detail
325
326/// This cast trait provides casting for the specific case of casting to a
327/// value-typed object from a pointer-typed object. Note that `To` must be
328/// nullable/constructible from a pointer to `From` to use this cast.
329template <typename To, typename From, typename Derived = void>
330struct ValueFromPointerCast
331 : public CastIsPossible<To, From *>,
332 public NullableValueCastFailed<To>,
333 public DefaultDoCastIfPossible<
334 To, From *,
335 detail::SelfType<Derived, ValueFromPointerCast<To, From>>> {
336 static inline To doCast(From *f) { return To(f); }
337};
338
339/// This cast trait provides std::unique_ptr casting. It has the semantics of
340/// moving the contents of the input unique_ptr into the output unique_ptr
341/// during the cast. It's also a good example of how to implement a move-only
342/// cast.
343template <typename To, typename From, typename Derived = void>
344struct UniquePtrCast : public CastIsPossible<To, From *> {
345 using Self = detail::SelfType<Derived, UniquePtrCast<To, From>>;
346 using CastResultType = std::unique_ptr<
347 std::remove_reference_t<typename cast_retty<To, From>::ret_type>>;
348
349 static inline CastResultType doCast(std::unique_ptr<From> &&f) {
350 return CastResultType((typename CastResultType::element_type *)f.release());
351 }
352
353 static inline CastResultType castFailed() { return CastResultType(nullptr); }
354
355 static inline CastResultType doCastIfPossible(std::unique_ptr<From> &&f) {
356 if (!Self::isPossible(f))
357 return castFailed();
358 return doCast(f);
359 }
360};
361
362/// This cast trait provides Optional<T> casting. This means that if you have a
363/// value type, you can cast it to another value type and have dyn_cast return
364/// an Optional<T>.
365template <typename To, typename From, typename Derived = void>
366struct OptionalValueCast
367 : public CastIsPossible<To, From>,
368 public DefaultDoCastIfPossible<
369 Optional<To>, From,
370 detail::SelfType<Derived, OptionalValueCast<To, From>>> {
371 static inline Optional<To> castFailed() { return Optional<To>{}; }
372
373 static inline Optional<To> doCast(const From &f) { return To(f); }
374};
375
376/// Provides a cast trait that strips `const` from types to make it easier to
377/// implement a const-version of a non-const cast. It just removes boilerplate
378/// and reduces the amount of code you as the user need to implement. You can
379/// use it like this:
380///
381/// template<> struct CastInfo<foo, bar> {
382/// ...verbose implementation...
383/// };
384///
385/// template<> struct CastInfo<foo, const bar> : public
386/// ConstStrippingForwardingCast<foo, const bar, CastInfo<foo, bar>> {};
387///
388template <typename To, typename From, typename ForwardTo>
389struct ConstStrippingForwardingCast {
390 // Remove the pointer if it exists, then we can get rid of consts/volatiles.
391 using DecayedFrom = std::remove_cv_t<std::remove_pointer_t<From>>;
392 // Now if it's a pointer, add it back. Otherwise, we want a ref.
393 using NonConstFrom = std::conditional_t<std::is_pointer<From>::value,
394 DecayedFrom *, DecayedFrom &>;
395
396 static inline bool isPossible(const From &f) {
397 return ForwardTo::isPossible(const_cast<NonConstFrom>(f));
398 }
399
400 static inline decltype(auto) castFailed() { return ForwardTo::castFailed(); }
401
402 static inline decltype(auto) doCast(const From &f) {
403 return ForwardTo::doCast(const_cast<NonConstFrom>(f));
404 }
405
406 static inline decltype(auto) doCastIfPossible(const From &f) {
407 return ForwardTo::doCastIfPossible(const_cast<NonConstFrom>(f));
408 }
409};
410
411/// Provides a cast trait that uses a defined pointer to pointer cast as a base
412/// for reference-to-reference casts. Note that it does not provide castFailed
413/// and doCastIfPossible because a pointer-to-pointer cast would likely just
414/// return `nullptr` which could cause nullptr dereference. You can use it like
415/// this:
416///
417/// template <> struct CastInfo<foo, bar *> { ... verbose implementation... };
418///
419/// template <>
420/// struct CastInfo<foo, bar>
421/// : public ForwardToPointerCast<foo, bar, CastInfo<foo, bar *>> {};
422///
423template <typename To, typename From, typename ForwardTo>
424struct ForwardToPointerCast {
425 static inline bool isPossible(const From &f) {
426 return ForwardTo::isPossible(&f);
427 }
428
429 static inline decltype(auto) doCast(const From &f) {
430 return *ForwardTo::doCast(&f);
431 }
432};
433
434//===----------------------------------------------------------------------===//
435// CastInfo
436//===----------------------------------------------------------------------===//
437
438/// This struct provides a method for customizing the way a cast is performed.
439/// It inherits from CastIsPossible, to support the case of declaring many
440/// CastIsPossible specializations without having to specialize the full
441/// CastInfo.
442///
443/// In order to specialize different behaviors, specify different functions in
444/// your CastInfo specialization.
445/// For isa<> customization, provide:
446///
447/// `static bool isPossible(const From &f)`
448///
449/// For cast<> customization, provide:
450///
451/// `static To doCast(const From &f)`
452///
453/// For dyn_cast<> and the *_if_present<> variants' customization, provide:
454///
455/// `static To castFailed()` and `static To doCastIfPossible(const From &f)`
456///
457/// Your specialization might look something like this:
458///
459/// template<> struct CastInfo<foo, bar> : public CastIsPossible<foo, bar> {
460/// static inline foo doCast(const bar &b) {
461/// return foo(const_cast<bar &>(b));
462/// }
463/// static inline foo castFailed() { return foo(); }
464/// static inline foo doCastIfPossible(const bar &b) {
465/// if (!CastInfo<foo, bar>::isPossible(b))
466/// return castFailed();
467/// return doCast(b);
468/// }
469/// };
470
471// The default implementations of CastInfo don't use cast traits for now because
472// we need to specify types all over the place due to the current expected
473// casting behavior and the way cast_retty works. New use cases can and should
474// take advantage of the cast traits whenever possible!
475
476template <typename To, typename From, typename Enable = void>
477struct CastInfo : public CastIsPossible<To, From> {
478 using Self = CastInfo<To, From, Enable>;
479
480 using CastReturnType = typename cast_retty<To, From>::ret_type;
481
482 static inline CastReturnType doCast(const From &f) {
483 return cast_convert_val<
484 To, From,
485 typename simplify_type<From>::SimpleType>::doit(const_cast<From &>(f));
486 }
487
488 // This assumes that you can construct the cast return type from `nullptr`.
489 // This is largely to support legacy use cases - if you don't want this
490 // behavior you should specialize CastInfo for your use case.
491 static inline CastReturnType castFailed() { return CastReturnType(nullptr); }
8
Returning null pointer, which participates in a condition later
23
Returning null pointer, which participates in a condition later
43
Returning null pointer, which participates in a condition later
492
493 static inline CastReturnType doCastIfPossible(const From &f) {
494 if (!Self::isPossible(f))
6
Taking true branch
21
Taking true branch
41
Taking true branch
495 return castFailed();
7
Calling 'CastInfo::castFailed'
9
Returning from 'CastInfo::castFailed'
10
Returning null pointer, which participates in a condition later
22
Calling 'CastInfo::castFailed'
24
Returning from 'CastInfo::castFailed'
25
Returning null pointer, which participates in a condition later
42
Calling 'CastInfo::castFailed'
44
Returning from 'CastInfo::castFailed'
45
Returning null pointer, which participates in a condition later
496 return doCast(f);
497 }
498};
499
500/// This struct provides an overload for CastInfo where From has simplify_type
501/// defined. This simply forwards to the appropriate CastInfo with the
502/// simplified type/value, so you don't have to implement both.
503template <typename To, typename From>
504struct CastInfo<To, From, std::enable_if_t<!is_simple_type<From>::value>> {
505 using Self = CastInfo<To, From>;
506 using SimpleFrom = typename simplify_type<From>::SimpleType;
507 using SimplifiedSelf = CastInfo<To, SimpleFrom>;
508
509 static inline bool isPossible(From &f) {
510 return SimplifiedSelf::isPossible(
511 simplify_type<From>::getSimplifiedValue(f));
512 }
513
514 static inline decltype(auto) doCast(From &f) {
515 return SimplifiedSelf::doCast(simplify_type<From>::getSimplifiedValue(f));
516 }
517
518 static inline decltype(auto) castFailed() {
519 return SimplifiedSelf::castFailed();
520 }
521
522 static inline decltype(auto) doCastIfPossible(From &f) {
523 return SimplifiedSelf::doCastIfPossible(
5
Calling 'CastInfo::doCastIfPossible'
11
Returning from 'CastInfo::doCastIfPossible'
12
Returning null pointer, which participates in a condition later
20
Calling 'CastInfo::doCastIfPossible'
26
Returning from 'CastInfo::doCastIfPossible'
27
Returning null pointer, which participates in a condition later
40
Calling 'CastInfo::doCastIfPossible'
46
Returning from 'CastInfo::doCastIfPossible'
47
Returning null pointer, which participates in a condition later
524 simplify_type<From>::getSimplifiedValue(f));
525 }
526};
527
528//===----------------------------------------------------------------------===//
529// Pre-specialized CastInfo
530//===----------------------------------------------------------------------===//
531
532/// Provide a CastInfo specialized for std::unique_ptr.
533template <typename To, typename From>
534struct CastInfo<To, std::unique_ptr<From>> : public UniquePtrCast<To, From> {};
535
536/// Provide a CastInfo specialized for Optional<From>. It's assumed that if the
537/// input is Optional<From> that the output can be Optional<To>. If that's not
538/// the case, specialize CastInfo for your use case.
539template <typename To, typename From>
540struct CastInfo<To, Optional<From>> : public OptionalValueCast<To, From> {};
541
542/// isa<X> - Return true if the parameter to the template is an instance of one
543/// of the template type arguments. Used like this:
544///
545/// if (isa<Type>(myVal)) { ... }
546/// if (isa<Type0, Type1, Type2>(myVal)) { ... }
547template <typename To, typename From>
548[[nodiscard]] inline bool isa(const From &Val) {
549 return CastInfo<To, const From>::isPossible(Val);
550}
551
552template <typename First, typename Second, typename... Rest, typename From>
553[[nodiscard]] inline bool isa(const From &Val) {
554 return isa<First>(Val) || isa<Second, Rest...>(Val);
555}
556
557/// cast<X> - Return the argument parameter cast to the specified type. This
558/// casting operator asserts that the type is correct, so it does not return
559/// null on failure. It does not allow a null argument (use cast_if_present for
560/// that). It is typically used like this:
561///
562/// cast<Instruction>(myVal)->getParent()
563
564template <typename To, typename From>
565[[nodiscard]] inline decltype(auto) cast(const From &Val) {
566 assert(isa<To>(Val) && "cast<Ty>() argument of incompatible type!")(static_cast <bool> (isa<To>(Val) && "cast<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<To>(Val) && \"cast<Ty>() argument of incompatible type!\""
, "llvm/include/llvm/Support/Casting.h", 566, __extension__ __PRETTY_FUNCTION__
))
;
567 return CastInfo<To, const From>::doCast(Val);
568}
569
570template <typename To, typename From>
571[[nodiscard]] inline decltype(auto) cast(From &Val) {
572 assert(isa<To>(Val) && "cast<Ty>() argument of incompatible type!")(static_cast <bool> (isa<To>(Val) && "cast<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<To>(Val) && \"cast<Ty>() argument of incompatible type!\""
, "llvm/include/llvm/Support/Casting.h", 572, __extension__ __PRETTY_FUNCTION__
))
;
573 return CastInfo<To, From>::doCast(Val);
574}
575
576template <typename To, typename From>
577[[nodiscard]] inline decltype(auto) cast(From *Val) {
578 assert(isa<To>(Val) && "cast<Ty>() argument of incompatible type!")(static_cast <bool> (isa<To>(Val) && "cast<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<To>(Val) && \"cast<Ty>() argument of incompatible type!\""
, "llvm/include/llvm/Support/Casting.h", 578, __extension__ __PRETTY_FUNCTION__
))
;
579 return CastInfo<To, From *>::doCast(Val);
580}
581
582template <typename To, typename From>
583[[nodiscard]] inline decltype(auto) cast(std::unique_ptr<From> &&Val) {
584 assert(isa<To>(Val) && "cast<Ty>() argument of incompatible type!")(static_cast <bool> (isa<To>(Val) && "cast<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<To>(Val) && \"cast<Ty>() argument of incompatible type!\""
, "llvm/include/llvm/Support/Casting.h", 584, __extension__ __PRETTY_FUNCTION__
))
;
585 return CastInfo<To, std::unique_ptr<From>>::doCast(std::move(Val));
586}
587
588//===----------------------------------------------------------------------===//
589// ValueIsPresent
590//===----------------------------------------------------------------------===//
591
592template <typename T>
593constexpr bool IsNullable =
594 std::is_pointer_v<T> || std::is_constructible_v<T, std::nullptr_t>;
595
596/// ValueIsPresent provides a way to check if a value is, well, present. For
597/// pointers, this is the equivalent of checking against nullptr, for Optionals
598/// this is the equivalent of checking hasValue(). It also provides a method for
599/// unwrapping a value (think calling .value() on an optional).
600
601// Generic values can't *not* be present.
602template <typename T, typename Enable = void> struct ValueIsPresent {
603 using UnwrappedType = T;
604 static inline bool isPresent(const T &t) { return true; }
605 static inline decltype(auto) unwrapValue(T &t) { return t; }
606};
607
608// Optional provides its own way to check if something is present.
609template <typename T> struct ValueIsPresent<Optional<T>> {
610 using UnwrappedType = T;
611 static inline bool isPresent(const Optional<T> &t) { return t.has_value(); }
612 static inline decltype(auto) unwrapValue(Optional<T> &t) { return t.value(); }
613};
614
615// If something is "nullable" then we just compare it to nullptr to see if it
616// exists.
617template <typename T>
618struct ValueIsPresent<T, std::enable_if_t<IsNullable<T>>> {
619 using UnwrappedType = T;
620 static inline bool isPresent(const T &t) { return t != T(nullptr); }
621 static inline decltype(auto) unwrapValue(T &t) { return t; }
622};
623
624namespace detail {
625// Convenience function we can use to check if a value is present. Because of
626// simplify_type, we have to call it on the simplified type for now.
627template <typename T> inline bool isPresent(const T &t) {
628 return ValueIsPresent<typename simplify_type<T>::SimpleType>::isPresent(
629 simplify_type<T>::getSimplifiedValue(const_cast<T &>(t)));
630}
631
632// Convenience function we can use to unwrap a value.
633template <typename T> inline decltype(auto) unwrapValue(T &t) {
634 return ValueIsPresent<T>::unwrapValue(t);
635}
636} // namespace detail
637
638/// dyn_cast<X> - Return the argument parameter cast to the specified type. This
639/// casting operator returns null if the argument is of the wrong type, so it
640/// can be used to test for a type as well as cast if successful. The value
641/// passed in must be present, if not, use dyn_cast_if_present. This should be
642/// used in the context of an if statement like this:
643///
644/// if (const Instruction *I = dyn_cast<Instruction>(myVal)) { ... }
645
646template <typename To, typename From>
647[[nodiscard]] inline decltype(auto) dyn_cast(const From &Val) {
648 assert(detail::isPresent(Val) && "dyn_cast on a non-existent value")(static_cast <bool> (detail::isPresent(Val) && "dyn_cast on a non-existent value"
) ? void (0) : __assert_fail ("detail::isPresent(Val) && \"dyn_cast on a non-existent value\""
, "llvm/include/llvm/Support/Casting.h", 648, __extension__ __PRETTY_FUNCTION__
))
;
649 return CastInfo<To, const From>::doCastIfPossible(Val);
650}
651
652template <typename To, typename From>
653[[nodiscard]] inline decltype(auto) dyn_cast(From &Val) {
654 assert(detail::isPresent(Val) && "dyn_cast on a non-existent value")(static_cast <bool> (detail::isPresent(Val) && "dyn_cast on a non-existent value"
) ? void (0) : __assert_fail ("detail::isPresent(Val) && \"dyn_cast on a non-existent value\""
, "llvm/include/llvm/Support/Casting.h", 654, __extension__ __PRETTY_FUNCTION__
))
;
3
'?' condition is true
18
'?' condition is true
38
'?' condition is true
655 return CastInfo<To, From>::doCastIfPossible(Val);
4
Calling 'CastInfo::doCastIfPossible'
13
Returning from 'CastInfo::doCastIfPossible'
14
Returning null pointer, which participates in a condition later
19
Calling 'CastInfo::doCastIfPossible'
28
Returning from 'CastInfo::doCastIfPossible'
29
Returning null pointer, which participates in a condition later
39
Calling 'CastInfo::doCastIfPossible'
48
Returning from 'CastInfo::doCastIfPossible'
49
Returning null pointer, which participates in a condition later
656}
657
658template <typename To, typename From>
659[[nodiscard]] inline decltype(auto) dyn_cast(From *Val) {
660 assert(detail::isPresent(Val) && "dyn_cast on a non-existent value")(static_cast <bool> (detail::isPresent(Val) && "dyn_cast on a non-existent value"
) ? void (0) : __assert_fail ("detail::isPresent(Val) && \"dyn_cast on a non-existent value\""
, "llvm/include/llvm/Support/Casting.h", 660, __extension__ __PRETTY_FUNCTION__
))
;
661 return CastInfo<To, From *>::doCastIfPossible(Val);
662}
663
664template <typename To, typename From>
665[[nodiscard]] inline decltype(auto) dyn_cast(std::unique_ptr<From> &&Val) {
666 assert(detail::isPresent(Val) && "dyn_cast on a non-existent value")(static_cast <bool> (detail::isPresent(Val) && "dyn_cast on a non-existent value"
) ? void (0) : __assert_fail ("detail::isPresent(Val) && \"dyn_cast on a non-existent value\""
, "llvm/include/llvm/Support/Casting.h", 666, __extension__ __PRETTY_FUNCTION__
))
;
667 return CastInfo<To, std::unique_ptr<From>>::doCastIfPossible(
668 std::forward<std::unique_ptr<From> &&>(Val));
669}
670
671/// isa_and_present<X> - Functionally identical to isa, except that a null value
672/// is accepted.
673template <typename... X, class Y>
674[[nodiscard]] inline bool isa_and_present(const Y &Val) {
675 if (!detail::isPresent(Val))
676 return false;
677 return isa<X...>(Val);
678}
679
680template <typename... X, class Y>
681[[nodiscard]] inline bool isa_and_nonnull(const Y &Val) {
682 return isa_and_present<X...>(Val);
683}
684
685/// cast_if_present<X> - Functionally identical to cast, except that a null
686/// value is accepted.
687template <class X, class Y>
688[[nodiscard]] inline auto cast_if_present(const Y &Val) {
689 if (!detail::isPresent(Val))
690 return CastInfo<X, const Y>::castFailed();
691 assert(isa<X>(Val) && "cast_if_present<Ty>() argument of incompatible type!")(static_cast <bool> (isa<X>(Val) && "cast_if_present<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<X>(Val) && \"cast_if_present<Ty>() argument of incompatible type!\""
, "llvm/include/llvm/Support/Casting.h", 691, __extension__ __PRETTY_FUNCTION__
))
;
692 return cast<X>(detail::unwrapValue(Val));
693}
694
695template <class X, class Y> [[nodiscard]] inline auto cast_if_present(Y &Val) {
696 if (!detail::isPresent(Val))
697 return CastInfo<X, Y>::castFailed();
698 assert(isa<X>(Val) && "cast_if_present<Ty>() argument of incompatible type!")(static_cast <bool> (isa<X>(Val) && "cast_if_present<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<X>(Val) && \"cast_if_present<Ty>() argument of incompatible type!\""
, "llvm/include/llvm/Support/Casting.h", 698, __extension__ __PRETTY_FUNCTION__
))
;
699 return cast<X>(detail::unwrapValue(Val));
700}
701
702template <class X, class Y> [[nodiscard]] inline auto cast_if_present(Y *Val) {
703 if (!detail::isPresent(Val))
704 return CastInfo<X, Y *>::castFailed();
705 assert(isa<X>(Val) && "cast_if_present<Ty>() argument of incompatible type!")(static_cast <bool> (isa<X>(Val) && "cast_if_present<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<X>(Val) && \"cast_if_present<Ty>() argument of incompatible type!\""
, "llvm/include/llvm/Support/Casting.h", 705, __extension__ __PRETTY_FUNCTION__
))
;
706 return cast<X>(detail::unwrapValue(Val));
707}
708
709template <class X, class Y>
710[[nodiscard]] inline auto cast_if_present(std::unique_ptr<Y> &&Val) {
711 if (!detail::isPresent(Val))
712 return UniquePtrCast<X, Y>::castFailed();
713 return UniquePtrCast<X, Y>::doCast(std::move(Val));
714}
715
716// Provide a forwarding from cast_or_null to cast_if_present for current
717// users. This is deprecated and will be removed in a future patch, use
718// cast_if_present instead.
719template <class X, class Y> auto cast_or_null(const Y &Val) {
720 return cast_if_present<X>(Val);
721}
722
723template <class X, class Y> auto cast_or_null(Y &Val) {
724 return cast_if_present<X>(Val);
725}
726
727template <class X, class Y> auto cast_or_null(Y *Val) {
728 return cast_if_present<X>(Val);
729}
730
731template <class X, class Y> auto cast_or_null(std::unique_ptr<Y> &&Val) {
732 return cast_if_present<X>(std::move(Val));
733}
734
735/// dyn_cast_if_present<X> - Functionally identical to dyn_cast, except that a
736/// null (or none in the case of optionals) value is accepted.
737template <class X, class Y> auto dyn_cast_if_present(const Y &Val) {
738 if (!detail::isPresent(Val))
739 return CastInfo<X, const Y>::castFailed();
740 return CastInfo<X, const Y>::doCastIfPossible(detail::unwrapValue(Val));
741}
742
743template <class X, class Y> auto dyn_cast_if_present(Y &Val) {
744 if (!detail::isPresent(Val))
745 return CastInfo<X, Y>::castFailed();
746 return CastInfo<X, Y>::doCastIfPossible(detail::unwrapValue(Val));
747}
748
749template <class X, class Y> auto dyn_cast_if_present(Y *Val) {
750 if (!detail::isPresent(Val))
751 return CastInfo<X, Y *>::castFailed();
752 return CastInfo<X, Y *>::doCastIfPossible(detail::unwrapValue(Val));
753}
754
755// Forwards to dyn_cast_if_present to avoid breaking current users. This is
756// deprecated and will be removed in a future patch, use
757// cast_if_present instead.
758template <class X, class Y> auto dyn_cast_or_null(const Y &Val) {
759 return dyn_cast_if_present<X>(Val);
760}
761
762template <class X, class Y> auto dyn_cast_or_null(Y &Val) {
763 return dyn_cast_if_present<X>(Val);
764}
765
766template <class X, class Y> auto dyn_cast_or_null(Y *Val) {
767 return dyn_cast_if_present<X>(Val);
768}
769
770/// unique_dyn_cast<X> - Given a unique_ptr<Y>, try to return a unique_ptr<X>,
771/// taking ownership of the input pointer iff isa<X>(Val) is true. If the
772/// cast is successful, From refers to nullptr on exit and the casted value
773/// is returned. If the cast is unsuccessful, the function returns nullptr
774/// and From is unchanged.
775template <class X, class Y>
776[[nodiscard]] inline typename CastInfo<X, std::unique_ptr<Y>>::CastResultType
777unique_dyn_cast(std::unique_ptr<Y> &Val) {
778 if (!isa<X>(Val))
779 return nullptr;
780 return cast<X>(std::move(Val));
781}
782
783template <class X, class Y>
784[[nodiscard]] inline auto unique_dyn_cast(std::unique_ptr<Y> &&Val) {
785 return unique_dyn_cast<X, Y>(Val);
786}
787
788// unique_dyn_cast_or_null<X> - Functionally identical to unique_dyn_cast,
789// except that a null value is accepted.
790template <class X, class Y>
791[[nodiscard]] inline typename CastInfo<X, std::unique_ptr<Y>>::CastResultType
792unique_dyn_cast_or_null(std::unique_ptr<Y> &Val) {
793 if (!Val)
794 return nullptr;
795 return unique_dyn_cast<X, Y>(Val);
796}
797
798template <class X, class Y>
799[[nodiscard]] inline auto unique_dyn_cast_or_null(std::unique_ptr<Y> &&Val) {
800 return unique_dyn_cast_or_null<X, Y>(Val);
801}
802
803} // end namespace llvm
804
805#endif // LLVM_SUPPORT_CASTING_H