Bug Summary

File:clang/lib/Sema/SemaExpr.cpp
Warning:line 10043, column 26
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name SemaExpr.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -relaxed-aliasing -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-15~++20220213111129+446e7c64c7aa/build-llvm -resource-dir /usr/lib/llvm-15/lib/clang/15.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-15~++20220213111129+446e7c64c7aa/clang/lib/Sema -I /build/llvm-toolchain-snapshot-15~++20220213111129+446e7c64c7aa/clang/include -I tools/clang/include -I include -I /build/llvm-toolchain-snapshot-15~++20220213111129+446e7c64c7aa/llvm/include -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-15/lib/clang/15.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/llvm-toolchain-snapshot-15~++20220213111129+446e7c64c7aa/build-llvm=build-llvm -fmacro-prefix-map=/build/llvm-toolchain-snapshot-15~++20220213111129+446e7c64c7aa/= -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-15~++20220213111129+446e7c64c7aa/build-llvm=build-llvm -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-15~++20220213111129+446e7c64c7aa/= -O3 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-15~++20220213111129+446e7c64c7aa/build-llvm -fdebug-prefix-map=/build/llvm-toolchain-snapshot-15~++20220213111129+446e7c64c7aa/build-llvm=build-llvm -fdebug-prefix-map=/build/llvm-toolchain-snapshot-15~++20220213111129+446e7c64c7aa/= -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2022-02-13-124423-144807-1 -x c++ /build/llvm-toolchain-snapshot-15~++20220213111129+446e7c64c7aa/clang/lib/Sema/SemaExpr.cpp
1//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements semantic analysis for expressions.
10//
11//===----------------------------------------------------------------------===//
12
13#include "TreeTransform.h"
14#include "UsedDeclVisitor.h"
15#include "clang/AST/ASTConsumer.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/ASTLambda.h"
18#include "clang/AST/ASTMutationListener.h"
19#include "clang/AST/CXXInheritance.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/EvaluatedExprVisitor.h"
23#include "clang/AST/Expr.h"
24#include "clang/AST/ExprCXX.h"
25#include "clang/AST/ExprObjC.h"
26#include "clang/AST/ExprOpenMP.h"
27#include "clang/AST/OperationKinds.h"
28#include "clang/AST/ParentMapContext.h"
29#include "clang/AST/RecursiveASTVisitor.h"
30#include "clang/AST/TypeLoc.h"
31#include "clang/Basic/Builtins.h"
32#include "clang/Basic/DiagnosticSema.h"
33#include "clang/Basic/PartialDiagnostic.h"
34#include "clang/Basic/SourceManager.h"
35#include "clang/Basic/TargetInfo.h"
36#include "clang/Lex/LiteralSupport.h"
37#include "clang/Lex/Preprocessor.h"
38#include "clang/Sema/AnalysisBasedWarnings.h"
39#include "clang/Sema/DeclSpec.h"
40#include "clang/Sema/DelayedDiagnostic.h"
41#include "clang/Sema/Designator.h"
42#include "clang/Sema/Initialization.h"
43#include "clang/Sema/Lookup.h"
44#include "clang/Sema/Overload.h"
45#include "clang/Sema/ParsedTemplate.h"
46#include "clang/Sema/Scope.h"
47#include "clang/Sema/ScopeInfo.h"
48#include "clang/Sema/SemaFixItUtils.h"
49#include "clang/Sema/SemaInternal.h"
50#include "clang/Sema/Template.h"
51#include "llvm/ADT/STLExtras.h"
52#include "llvm/ADT/StringExtras.h"
53#include "llvm/Support/ConvertUTF.h"
54#include "llvm/Support/SaveAndRestore.h"
55
56using namespace clang;
57using namespace sema;
58
59/// Determine whether the use of this declaration is valid, without
60/// emitting diagnostics.
61bool Sema::CanUseDecl(NamedDecl *D, bool TreatUnavailableAsInvalid) {
62 // See if this is an auto-typed variable whose initializer we are parsing.
63 if (ParsingInitForAutoVars.count(D))
64 return false;
65
66 // See if this is a deleted function.
67 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
68 if (FD->isDeleted())
69 return false;
70
71 // If the function has a deduced return type, and we can't deduce it,
72 // then we can't use it either.
73 if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
74 DeduceReturnType(FD, SourceLocation(), /*Diagnose*/ false))
75 return false;
76
77 // See if this is an aligned allocation/deallocation function that is
78 // unavailable.
79 if (TreatUnavailableAsInvalid &&
80 isUnavailableAlignedAllocationFunction(*FD))
81 return false;
82 }
83
84 // See if this function is unavailable.
85 if (TreatUnavailableAsInvalid && D->getAvailability() == AR_Unavailable &&
86 cast<Decl>(CurContext)->getAvailability() != AR_Unavailable)
87 return false;
88
89 if (isa<UnresolvedUsingIfExistsDecl>(D))
90 return false;
91
92 return true;
93}
94
95static void DiagnoseUnusedOfDecl(Sema &S, NamedDecl *D, SourceLocation Loc) {
96 // Warn if this is used but marked unused.
97 if (const auto *A = D->getAttr<UnusedAttr>()) {
98 // [[maybe_unused]] should not diagnose uses, but __attribute__((unused))
99 // should diagnose them.
100 if (A->getSemanticSpelling() != UnusedAttr::CXX11_maybe_unused &&
101 A->getSemanticSpelling() != UnusedAttr::C2x_maybe_unused) {
102 const Decl *DC = cast_or_null<Decl>(S.getCurObjCLexicalContext());
103 if (DC && !DC->hasAttr<UnusedAttr>())
104 S.Diag(Loc, diag::warn_used_but_marked_unused) << D;
105 }
106 }
107}
108
109/// Emit a note explaining that this function is deleted.
110void Sema::NoteDeletedFunction(FunctionDecl *Decl) {
111 assert(Decl && Decl->isDeleted())(static_cast <bool> (Decl && Decl->isDeleted
()) ? void (0) : __assert_fail ("Decl && Decl->isDeleted()"
, "clang/lib/Sema/SemaExpr.cpp", 111, __extension__ __PRETTY_FUNCTION__
))
;
112
113 if (Decl->isDefaulted()) {
114 // If the method was explicitly defaulted, point at that declaration.
115 if (!Decl->isImplicit())
116 Diag(Decl->getLocation(), diag::note_implicitly_deleted);
117
118 // Try to diagnose why this special member function was implicitly
119 // deleted. This might fail, if that reason no longer applies.
120 DiagnoseDeletedDefaultedFunction(Decl);
121 return;
122 }
123
124 auto *Ctor = dyn_cast<CXXConstructorDecl>(Decl);
125 if (Ctor && Ctor->isInheritingConstructor())
126 return NoteDeletedInheritingConstructor(Ctor);
127
128 Diag(Decl->getLocation(), diag::note_availability_specified_here)
129 << Decl << 1;
130}
131
132/// Determine whether a FunctionDecl was ever declared with an
133/// explicit storage class.
134static bool hasAnyExplicitStorageClass(const FunctionDecl *D) {
135 for (auto I : D->redecls()) {
136 if (I->getStorageClass() != SC_None)
137 return true;
138 }
139 return false;
140}
141
142/// Check whether we're in an extern inline function and referring to a
143/// variable or function with internal linkage (C11 6.7.4p3).
144///
145/// This is only a warning because we used to silently accept this code, but
146/// in many cases it will not behave correctly. This is not enabled in C++ mode
147/// because the restriction language is a bit weaker (C++11 [basic.def.odr]p6)
148/// and so while there may still be user mistakes, most of the time we can't
149/// prove that there are errors.
150static void diagnoseUseOfInternalDeclInInlineFunction(Sema &S,
151 const NamedDecl *D,
152 SourceLocation Loc) {
153 // This is disabled under C++; there are too many ways for this to fire in
154 // contexts where the warning is a false positive, or where it is technically
155 // correct but benign.
156 if (S.getLangOpts().CPlusPlus)
157 return;
158
159 // Check if this is an inlined function or method.
160 FunctionDecl *Current = S.getCurFunctionDecl();
161 if (!Current)
162 return;
163 if (!Current->isInlined())
164 return;
165 if (!Current->isExternallyVisible())
166 return;
167
168 // Check if the decl has internal linkage.
169 if (D->getFormalLinkage() != InternalLinkage)
170 return;
171
172 // Downgrade from ExtWarn to Extension if
173 // (1) the supposedly external inline function is in the main file,
174 // and probably won't be included anywhere else.
175 // (2) the thing we're referencing is a pure function.
176 // (3) the thing we're referencing is another inline function.
177 // This last can give us false negatives, but it's better than warning on
178 // wrappers for simple C library functions.
179 const FunctionDecl *UsedFn = dyn_cast<FunctionDecl>(D);
180 bool DowngradeWarning = S.getSourceManager().isInMainFile(Loc);
181 if (!DowngradeWarning && UsedFn)
182 DowngradeWarning = UsedFn->isInlined() || UsedFn->hasAttr<ConstAttr>();
183
184 S.Diag(Loc, DowngradeWarning ? diag::ext_internal_in_extern_inline_quiet
185 : diag::ext_internal_in_extern_inline)
186 << /*IsVar=*/!UsedFn << D;
187
188 S.MaybeSuggestAddingStaticToDecl(Current);
189
190 S.Diag(D->getCanonicalDecl()->getLocation(), diag::note_entity_declared_at)
191 << D;
192}
193
194void Sema::MaybeSuggestAddingStaticToDecl(const FunctionDecl *Cur) {
195 const FunctionDecl *First = Cur->getFirstDecl();
196
197 // Suggest "static" on the function, if possible.
198 if (!hasAnyExplicitStorageClass(First)) {
199 SourceLocation DeclBegin = First->getSourceRange().getBegin();
200 Diag(DeclBegin, diag::note_convert_inline_to_static)
201 << Cur << FixItHint::CreateInsertion(DeclBegin, "static ");
202 }
203}
204
205/// Determine whether the use of this declaration is valid, and
206/// emit any corresponding diagnostics.
207///
208/// This routine diagnoses various problems with referencing
209/// declarations that can occur when using a declaration. For example,
210/// it might warn if a deprecated or unavailable declaration is being
211/// used, or produce an error (and return true) if a C++0x deleted
212/// function is being used.
213///
214/// \returns true if there was an error (this declaration cannot be
215/// referenced), false otherwise.
216///
217bool Sema::DiagnoseUseOfDecl(NamedDecl *D, ArrayRef<SourceLocation> Locs,
218 const ObjCInterfaceDecl *UnknownObjCClass,
219 bool ObjCPropertyAccess,
220 bool AvoidPartialAvailabilityChecks,
221 ObjCInterfaceDecl *ClassReceiver) {
222 SourceLocation Loc = Locs.front();
223 if (getLangOpts().CPlusPlus && isa<FunctionDecl>(D)) {
224 // If there were any diagnostics suppressed by template argument deduction,
225 // emit them now.
226 auto Pos = SuppressedDiagnostics.find(D->getCanonicalDecl());
227 if (Pos != SuppressedDiagnostics.end()) {
228 for (const PartialDiagnosticAt &Suppressed : Pos->second)
229 Diag(Suppressed.first, Suppressed.second);
230
231 // Clear out the list of suppressed diagnostics, so that we don't emit
232 // them again for this specialization. However, we don't obsolete this
233 // entry from the table, because we want to avoid ever emitting these
234 // diagnostics again.
235 Pos->second.clear();
236 }
237
238 // C++ [basic.start.main]p3:
239 // The function 'main' shall not be used within a program.
240 if (cast<FunctionDecl>(D)->isMain())
241 Diag(Loc, diag::ext_main_used);
242
243 diagnoseUnavailableAlignedAllocation(*cast<FunctionDecl>(D), Loc);
244 }
245
246 // See if this is an auto-typed variable whose initializer we are parsing.
247 if (ParsingInitForAutoVars.count(D)) {
248 if (isa<BindingDecl>(D)) {
249 Diag(Loc, diag::err_binding_cannot_appear_in_own_initializer)
250 << D->getDeclName();
251 } else {
252 Diag(Loc, diag::err_auto_variable_cannot_appear_in_own_initializer)
253 << D->getDeclName() << cast<VarDecl>(D)->getType();
254 }
255 return true;
256 }
257
258 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
259 // See if this is a deleted function.
260 if (FD->isDeleted()) {
261 auto *Ctor = dyn_cast<CXXConstructorDecl>(FD);
262 if (Ctor && Ctor->isInheritingConstructor())
263 Diag(Loc, diag::err_deleted_inherited_ctor_use)
264 << Ctor->getParent()
265 << Ctor->getInheritedConstructor().getConstructor()->getParent();
266 else
267 Diag(Loc, diag::err_deleted_function_use);
268 NoteDeletedFunction(FD);
269 return true;
270 }
271
272 // [expr.prim.id]p4
273 // A program that refers explicitly or implicitly to a function with a
274 // trailing requires-clause whose constraint-expression is not satisfied,
275 // other than to declare it, is ill-formed. [...]
276 //
277 // See if this is a function with constraints that need to be satisfied.
278 // Check this before deducing the return type, as it might instantiate the
279 // definition.
280 if (FD->getTrailingRequiresClause()) {
281 ConstraintSatisfaction Satisfaction;
282 if (CheckFunctionConstraints(FD, Satisfaction, Loc))
283 // A diagnostic will have already been generated (non-constant
284 // constraint expression, for example)
285 return true;
286 if (!Satisfaction.IsSatisfied) {
287 Diag(Loc,
288 diag::err_reference_to_function_with_unsatisfied_constraints)
289 << D;
290 DiagnoseUnsatisfiedConstraint(Satisfaction);
291 return true;
292 }
293 }
294
295 // If the function has a deduced return type, and we can't deduce it,
296 // then we can't use it either.
297 if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
298 DeduceReturnType(FD, Loc))
299 return true;
300
301 if (getLangOpts().CUDA && !CheckCUDACall(Loc, FD))
302 return true;
303
304 if (getLangOpts().SYCLIsDevice && !checkSYCLDeviceFunction(Loc, FD))
305 return true;
306 }
307
308 if (auto *MD = dyn_cast<CXXMethodDecl>(D)) {
309 // Lambdas are only default-constructible or assignable in C++2a onwards.
310 if (MD->getParent()->isLambda() &&
311 ((isa<CXXConstructorDecl>(MD) &&
312 cast<CXXConstructorDecl>(MD)->isDefaultConstructor()) ||
313 MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator())) {
314 Diag(Loc, diag::warn_cxx17_compat_lambda_def_ctor_assign)
315 << !isa<CXXConstructorDecl>(MD);
316 }
317 }
318
319 auto getReferencedObjCProp = [](const NamedDecl *D) ->
320 const ObjCPropertyDecl * {
321 if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
322 return MD->findPropertyDecl();
323 return nullptr;
324 };
325 if (const ObjCPropertyDecl *ObjCPDecl = getReferencedObjCProp(D)) {
326 if (diagnoseArgIndependentDiagnoseIfAttrs(ObjCPDecl, Loc))
327 return true;
328 } else if (diagnoseArgIndependentDiagnoseIfAttrs(D, Loc)) {
329 return true;
330 }
331
332 // [OpenMP 4.0], 2.15 declare reduction Directive, Restrictions
333 // Only the variables omp_in and omp_out are allowed in the combiner.
334 // Only the variables omp_priv and omp_orig are allowed in the
335 // initializer-clause.
336 auto *DRD = dyn_cast<OMPDeclareReductionDecl>(CurContext);
337 if (LangOpts.OpenMP && DRD && !CurContext->containsDecl(D) &&
338 isa<VarDecl>(D)) {
339 Diag(Loc, diag::err_omp_wrong_var_in_declare_reduction)
340 << getCurFunction()->HasOMPDeclareReductionCombiner;
341 Diag(D->getLocation(), diag::note_entity_declared_at) << D;
342 return true;
343 }
344
345 // [OpenMP 5.0], 2.19.7.3. declare mapper Directive, Restrictions
346 // List-items in map clauses on this construct may only refer to the declared
347 // variable var and entities that could be referenced by a procedure defined
348 // at the same location
349 if (LangOpts.OpenMP && isa<VarDecl>(D) &&
350 !isOpenMPDeclareMapperVarDeclAllowed(cast<VarDecl>(D))) {
351 Diag(Loc, diag::err_omp_declare_mapper_wrong_var)
352 << getOpenMPDeclareMapperVarName();
353 Diag(D->getLocation(), diag::note_entity_declared_at) << D;
354 return true;
355 }
356
357 if (const auto *EmptyD = dyn_cast<UnresolvedUsingIfExistsDecl>(D)) {
358 Diag(Loc, diag::err_use_of_empty_using_if_exists);
359 Diag(EmptyD->getLocation(), diag::note_empty_using_if_exists_here);
360 return true;
361 }
362
363 DiagnoseAvailabilityOfDecl(D, Locs, UnknownObjCClass, ObjCPropertyAccess,
364 AvoidPartialAvailabilityChecks, ClassReceiver);
365
366 DiagnoseUnusedOfDecl(*this, D, Loc);
367
368 diagnoseUseOfInternalDeclInInlineFunction(*this, D, Loc);
369
370 if (auto *VD = dyn_cast<ValueDecl>(D))
371 checkTypeSupport(VD->getType(), Loc, VD);
372
373 if (LangOpts.SYCLIsDevice || (LangOpts.OpenMP && LangOpts.OpenMPIsDevice)) {
374 if (!Context.getTargetInfo().isTLSSupported())
375 if (const auto *VD = dyn_cast<VarDecl>(D))
376 if (VD->getTLSKind() != VarDecl::TLS_None)
377 targetDiag(*Locs.begin(), diag::err_thread_unsupported);
378 }
379
380 if (isa<ParmVarDecl>(D) && isa<RequiresExprBodyDecl>(D->getDeclContext()) &&
381 !isUnevaluatedContext()) {
382 // C++ [expr.prim.req.nested] p3
383 // A local parameter shall only appear as an unevaluated operand
384 // (Clause 8) within the constraint-expression.
385 Diag(Loc, diag::err_requires_expr_parameter_referenced_in_evaluated_context)
386 << D;
387 Diag(D->getLocation(), diag::note_entity_declared_at) << D;
388 return true;
389 }
390
391 return false;
392}
393
394/// DiagnoseSentinelCalls - This routine checks whether a call or
395/// message-send is to a declaration with the sentinel attribute, and
396/// if so, it checks that the requirements of the sentinel are
397/// satisfied.
398void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
399 ArrayRef<Expr *> Args) {
400 const SentinelAttr *attr = D->getAttr<SentinelAttr>();
401 if (!attr)
402 return;
403
404 // The number of formal parameters of the declaration.
405 unsigned numFormalParams;
406
407 // The kind of declaration. This is also an index into a %select in
408 // the diagnostic.
409 enum CalleeType { CT_Function, CT_Method, CT_Block } calleeType;
410
411 if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
412 numFormalParams = MD->param_size();
413 calleeType = CT_Method;
414 } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
415 numFormalParams = FD->param_size();
416 calleeType = CT_Function;
417 } else if (isa<VarDecl>(D)) {
418 QualType type = cast<ValueDecl>(D)->getType();
419 const FunctionType *fn = nullptr;
420 if (const PointerType *ptr = type->getAs<PointerType>()) {
421 fn = ptr->getPointeeType()->getAs<FunctionType>();
422 if (!fn) return;
423 calleeType = CT_Function;
424 } else if (const BlockPointerType *ptr = type->getAs<BlockPointerType>()) {
425 fn = ptr->getPointeeType()->castAs<FunctionType>();
426 calleeType = CT_Block;
427 } else {
428 return;
429 }
430
431 if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fn)) {
432 numFormalParams = proto->getNumParams();
433 } else {
434 numFormalParams = 0;
435 }
436 } else {
437 return;
438 }
439
440 // "nullPos" is the number of formal parameters at the end which
441 // effectively count as part of the variadic arguments. This is
442 // useful if you would prefer to not have *any* formal parameters,
443 // but the language forces you to have at least one.
444 unsigned nullPos = attr->getNullPos();
445 assert((nullPos == 0 || nullPos == 1) && "invalid null position on sentinel")(static_cast <bool> ((nullPos == 0 || nullPos == 1) &&
"invalid null position on sentinel") ? void (0) : __assert_fail
("(nullPos == 0 || nullPos == 1) && \"invalid null position on sentinel\""
, "clang/lib/Sema/SemaExpr.cpp", 445, __extension__ __PRETTY_FUNCTION__
))
;
446 numFormalParams = (nullPos > numFormalParams ? 0 : numFormalParams - nullPos);
447
448 // The number of arguments which should follow the sentinel.
449 unsigned numArgsAfterSentinel = attr->getSentinel();
450
451 // If there aren't enough arguments for all the formal parameters,
452 // the sentinel, and the args after the sentinel, complain.
453 if (Args.size() < numFormalParams + numArgsAfterSentinel + 1) {
454 Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
455 Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType);
456 return;
457 }
458
459 // Otherwise, find the sentinel expression.
460 Expr *sentinelExpr = Args[Args.size() - numArgsAfterSentinel - 1];
461 if (!sentinelExpr) return;
462 if (sentinelExpr->isValueDependent()) return;
463 if (Context.isSentinelNullExpr(sentinelExpr)) return;
464
465 // Pick a reasonable string to insert. Optimistically use 'nil', 'nullptr',
466 // or 'NULL' if those are actually defined in the context. Only use
467 // 'nil' for ObjC methods, where it's much more likely that the
468 // variadic arguments form a list of object pointers.
469 SourceLocation MissingNilLoc = getLocForEndOfToken(sentinelExpr->getEndLoc());
470 std::string NullValue;
471 if (calleeType == CT_Method && PP.isMacroDefined("nil"))
472 NullValue = "nil";
473 else if (getLangOpts().CPlusPlus11)
474 NullValue = "nullptr";
475 else if (PP.isMacroDefined("NULL"))
476 NullValue = "NULL";
477 else
478 NullValue = "(void*) 0";
479
480 if (MissingNilLoc.isInvalid())
481 Diag(Loc, diag::warn_missing_sentinel) << int(calleeType);
482 else
483 Diag(MissingNilLoc, diag::warn_missing_sentinel)
484 << int(calleeType)
485 << FixItHint::CreateInsertion(MissingNilLoc, ", " + NullValue);
486 Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType);
487}
488
489SourceRange Sema::getExprRange(Expr *E) const {
490 return E ? E->getSourceRange() : SourceRange();
491}
492
493//===----------------------------------------------------------------------===//
494// Standard Promotions and Conversions
495//===----------------------------------------------------------------------===//
496
497/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
498ExprResult Sema::DefaultFunctionArrayConversion(Expr *E, bool Diagnose) {
499 // Handle any placeholder expressions which made it here.
500 if (E->hasPlaceholderType()) {
501 ExprResult result = CheckPlaceholderExpr(E);
502 if (result.isInvalid()) return ExprError();
503 E = result.get();
504 }
505
506 QualType Ty = E->getType();
507 assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type")(static_cast <bool> (!Ty.isNull() && "DefaultFunctionArrayConversion - missing type"
) ? void (0) : __assert_fail ("!Ty.isNull() && \"DefaultFunctionArrayConversion - missing type\""
, "clang/lib/Sema/SemaExpr.cpp", 507, __extension__ __PRETTY_FUNCTION__
))
;
508
509 if (Ty->isFunctionType()) {
510 if (auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts()))
511 if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl()))
512 if (!checkAddressOfFunctionIsAvailable(FD, Diagnose, E->getExprLoc()))
513 return ExprError();
514
515 E = ImpCastExprToType(E, Context.getPointerType(Ty),
516 CK_FunctionToPointerDecay).get();
517 } else if (Ty->isArrayType()) {
518 // In C90 mode, arrays only promote to pointers if the array expression is
519 // an lvalue. The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
520 // type 'array of type' is converted to an expression that has type 'pointer
521 // to type'...". In C99 this was changed to: C99 6.3.2.1p3: "an expression
522 // that has type 'array of type' ...". The relevant change is "an lvalue"
523 // (C90) to "an expression" (C99).
524 //
525 // C++ 4.2p1:
526 // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
527 // T" can be converted to an rvalue of type "pointer to T".
528 //
529 if (getLangOpts().C99 || getLangOpts().CPlusPlus || E->isLValue()) {
530 ExprResult Res = ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
531 CK_ArrayToPointerDecay);
532 if (Res.isInvalid())
533 return ExprError();
534 E = Res.get();
535 }
536 }
537 return E;
538}
539
540static void CheckForNullPointerDereference(Sema &S, Expr *E) {
541 // Check to see if we are dereferencing a null pointer. If so,
542 // and if not volatile-qualified, this is undefined behavior that the
543 // optimizer will delete, so warn about it. People sometimes try to use this
544 // to get a deterministic trap and are surprised by clang's behavior. This
545 // only handles the pattern "*null", which is a very syntactic check.
546 const auto *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts());
547 if (UO && UO->getOpcode() == UO_Deref &&
548 UO->getSubExpr()->getType()->isPointerType()) {
549 const LangAS AS =
550 UO->getSubExpr()->getType()->getPointeeType().getAddressSpace();
551 if ((!isTargetAddressSpace(AS) ||
552 (isTargetAddressSpace(AS) && toTargetAddressSpace(AS) == 0)) &&
553 UO->getSubExpr()->IgnoreParenCasts()->isNullPointerConstant(
554 S.Context, Expr::NPC_ValueDependentIsNotNull) &&
555 !UO->getType().isVolatileQualified()) {
556 S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
557 S.PDiag(diag::warn_indirection_through_null)
558 << UO->getSubExpr()->getSourceRange());
559 S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
560 S.PDiag(diag::note_indirection_through_null));
561 }
562 }
563}
564
565static void DiagnoseDirectIsaAccess(Sema &S, const ObjCIvarRefExpr *OIRE,
566 SourceLocation AssignLoc,
567 const Expr* RHS) {
568 const ObjCIvarDecl *IV = OIRE->getDecl();
569 if (!IV)
570 return;
571
572 DeclarationName MemberName = IV->getDeclName();
573 IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
574 if (!Member || !Member->isStr("isa"))
575 return;
576
577 const Expr *Base = OIRE->getBase();
578 QualType BaseType = Base->getType();
579 if (OIRE->isArrow())
580 BaseType = BaseType->getPointeeType();
581 if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>())
582 if (ObjCInterfaceDecl *IDecl = OTy->getInterface()) {
583 ObjCInterfaceDecl *ClassDeclared = nullptr;
584 ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
585 if (!ClassDeclared->getSuperClass()
586 && (*ClassDeclared->ivar_begin()) == IV) {
587 if (RHS) {
588 NamedDecl *ObjectSetClass =
589 S.LookupSingleName(S.TUScope,
590 &S.Context.Idents.get("object_setClass"),
591 SourceLocation(), S.LookupOrdinaryName);
592 if (ObjectSetClass) {
593 SourceLocation RHSLocEnd = S.getLocForEndOfToken(RHS->getEndLoc());
594 S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_assign)
595 << FixItHint::CreateInsertion(OIRE->getBeginLoc(),
596 "object_setClass(")
597 << FixItHint::CreateReplacement(
598 SourceRange(OIRE->getOpLoc(), AssignLoc), ",")
599 << FixItHint::CreateInsertion(RHSLocEnd, ")");
600 }
601 else
602 S.Diag(OIRE->getLocation(), diag::warn_objc_isa_assign);
603 } else {
604 NamedDecl *ObjectGetClass =
605 S.LookupSingleName(S.TUScope,
606 &S.Context.Idents.get("object_getClass"),
607 SourceLocation(), S.LookupOrdinaryName);
608 if (ObjectGetClass)
609 S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_use)
610 << FixItHint::CreateInsertion(OIRE->getBeginLoc(),
611 "object_getClass(")
612 << FixItHint::CreateReplacement(
613 SourceRange(OIRE->getOpLoc(), OIRE->getEndLoc()), ")");
614 else
615 S.Diag(OIRE->getLocation(), diag::warn_objc_isa_use);
616 }
617 S.Diag(IV->getLocation(), diag::note_ivar_decl);
618 }
619 }
620}
621
622ExprResult Sema::DefaultLvalueConversion(Expr *E) {
623 // Handle any placeholder expressions which made it here.
624 if (E->hasPlaceholderType()) {
625 ExprResult result = CheckPlaceholderExpr(E);
626 if (result.isInvalid()) return ExprError();
627 E = result.get();
628 }
629
630 // C++ [conv.lval]p1:
631 // A glvalue of a non-function, non-array type T can be
632 // converted to a prvalue.
633 if (!E->isGLValue()) return E;
634
635 QualType T = E->getType();
636 assert(!T.isNull() && "r-value conversion on typeless expression?")(static_cast <bool> (!T.isNull() && "r-value conversion on typeless expression?"
) ? void (0) : __assert_fail ("!T.isNull() && \"r-value conversion on typeless expression?\""
, "clang/lib/Sema/SemaExpr.cpp", 636, __extension__ __PRETTY_FUNCTION__
))
;
637
638 // lvalue-to-rvalue conversion cannot be applied to function or array types.
639 if (T->isFunctionType() || T->isArrayType())
640 return E;
641
642 // We don't want to throw lvalue-to-rvalue casts on top of
643 // expressions of certain types in C++.
644 if (getLangOpts().CPlusPlus &&
645 (E->getType() == Context.OverloadTy ||
646 T->isDependentType() ||
647 T->isRecordType()))
648 return E;
649
650 // The C standard is actually really unclear on this point, and
651 // DR106 tells us what the result should be but not why. It's
652 // generally best to say that void types just doesn't undergo
653 // lvalue-to-rvalue at all. Note that expressions of unqualified
654 // 'void' type are never l-values, but qualified void can be.
655 if (T->isVoidType())
656 return E;
657
658 // OpenCL usually rejects direct accesses to values of 'half' type.
659 if (getLangOpts().OpenCL &&
660 !getOpenCLOptions().isAvailableOption("cl_khr_fp16", getLangOpts()) &&
661 T->isHalfType()) {
662 Diag(E->getExprLoc(), diag::err_opencl_half_load_store)
663 << 0 << T;
664 return ExprError();
665 }
666
667 CheckForNullPointerDereference(*this, E);
668 if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(E->IgnoreParenCasts())) {
669 NamedDecl *ObjectGetClass = LookupSingleName(TUScope,
670 &Context.Idents.get("object_getClass"),
671 SourceLocation(), LookupOrdinaryName);
672 if (ObjectGetClass)
673 Diag(E->getExprLoc(), diag::warn_objc_isa_use)
674 << FixItHint::CreateInsertion(OISA->getBeginLoc(), "object_getClass(")
675 << FixItHint::CreateReplacement(
676 SourceRange(OISA->getOpLoc(), OISA->getIsaMemberLoc()), ")");
677 else
678 Diag(E->getExprLoc(), diag::warn_objc_isa_use);
679 }
680 else if (const ObjCIvarRefExpr *OIRE =
681 dyn_cast<ObjCIvarRefExpr>(E->IgnoreParenCasts()))
682 DiagnoseDirectIsaAccess(*this, OIRE, SourceLocation(), /* Expr*/nullptr);
683
684 // C++ [conv.lval]p1:
685 // [...] If T is a non-class type, the type of the prvalue is the
686 // cv-unqualified version of T. Otherwise, the type of the
687 // rvalue is T.
688 //
689 // C99 6.3.2.1p2:
690 // If the lvalue has qualified type, the value has the unqualified
691 // version of the type of the lvalue; otherwise, the value has the
692 // type of the lvalue.
693 if (T.hasQualifiers())
694 T = T.getUnqualifiedType();
695
696 // Under the MS ABI, lock down the inheritance model now.
697 if (T->isMemberPointerType() &&
698 Context.getTargetInfo().getCXXABI().isMicrosoft())
699 (void)isCompleteType(E->getExprLoc(), T);
700
701 ExprResult Res = CheckLValueToRValueConversionOperand(E);
702 if (Res.isInvalid())
703 return Res;
704 E = Res.get();
705
706 // Loading a __weak object implicitly retains the value, so we need a cleanup to
707 // balance that.
708 if (E->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
709 Cleanup.setExprNeedsCleanups(true);
710
711 if (E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct)
712 Cleanup.setExprNeedsCleanups(true);
713
714 // C++ [conv.lval]p3:
715 // If T is cv std::nullptr_t, the result is a null pointer constant.
716 CastKind CK = T->isNullPtrType() ? CK_NullToPointer : CK_LValueToRValue;
717 Res = ImplicitCastExpr::Create(Context, T, CK, E, nullptr, VK_PRValue,
718 CurFPFeatureOverrides());
719
720 // C11 6.3.2.1p2:
721 // ... if the lvalue has atomic type, the value has the non-atomic version
722 // of the type of the lvalue ...
723 if (const AtomicType *Atomic = T->getAs<AtomicType>()) {
724 T = Atomic->getValueType().getUnqualifiedType();
725 Res = ImplicitCastExpr::Create(Context, T, CK_AtomicToNonAtomic, Res.get(),
726 nullptr, VK_PRValue, FPOptionsOverride());
727 }
728
729 return Res;
730}
731
732ExprResult Sema::DefaultFunctionArrayLvalueConversion(Expr *E, bool Diagnose) {
733 ExprResult Res = DefaultFunctionArrayConversion(E, Diagnose);
734 if (Res.isInvalid())
735 return ExprError();
736 Res = DefaultLvalueConversion(Res.get());
737 if (Res.isInvalid())
738 return ExprError();
739 return Res;
740}
741
742/// CallExprUnaryConversions - a special case of an unary conversion
743/// performed on a function designator of a call expression.
744ExprResult Sema::CallExprUnaryConversions(Expr *E) {
745 QualType Ty = E->getType();
746 ExprResult Res = E;
747 // Only do implicit cast for a function type, but not for a pointer
748 // to function type.
749 if (Ty->isFunctionType()) {
750 Res = ImpCastExprToType(E, Context.getPointerType(Ty),
751 CK_FunctionToPointerDecay);
752 if (Res.isInvalid())
753 return ExprError();
754 }
755 Res = DefaultLvalueConversion(Res.get());
756 if (Res.isInvalid())
757 return ExprError();
758 return Res.get();
759}
760
761/// UsualUnaryConversions - Performs various conversions that are common to most
762/// operators (C99 6.3). The conversions of array and function types are
763/// sometimes suppressed. For example, the array->pointer conversion doesn't
764/// apply if the array is an argument to the sizeof or address (&) operators.
765/// In these instances, this routine should *not* be called.
766ExprResult Sema::UsualUnaryConversions(Expr *E) {
767 // First, convert to an r-value.
768 ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
769 if (Res.isInvalid())
770 return ExprError();
771 E = Res.get();
772
773 QualType Ty = E->getType();
774 assert(!Ty.isNull() && "UsualUnaryConversions - missing type")(static_cast <bool> (!Ty.isNull() && "UsualUnaryConversions - missing type"
) ? void (0) : __assert_fail ("!Ty.isNull() && \"UsualUnaryConversions - missing type\""
, "clang/lib/Sema/SemaExpr.cpp", 774, __extension__ __PRETTY_FUNCTION__
))
;
775
776 // Half FP have to be promoted to float unless it is natively supported
777 if (Ty->isHalfType() && !getLangOpts().NativeHalfType)
778 return ImpCastExprToType(Res.get(), Context.FloatTy, CK_FloatingCast);
779
780 // Try to perform integral promotions if the object has a theoretically
781 // promotable type.
782 if (Ty->isIntegralOrUnscopedEnumerationType()) {
783 // C99 6.3.1.1p2:
784 //
785 // The following may be used in an expression wherever an int or
786 // unsigned int may be used:
787 // - an object or expression with an integer type whose integer
788 // conversion rank is less than or equal to the rank of int
789 // and unsigned int.
790 // - A bit-field of type _Bool, int, signed int, or unsigned int.
791 //
792 // If an int can represent all values of the original type, the
793 // value is converted to an int; otherwise, it is converted to an
794 // unsigned int. These are called the integer promotions. All
795 // other types are unchanged by the integer promotions.
796
797 QualType PTy = Context.isPromotableBitField(E);
798 if (!PTy.isNull()) {
799 E = ImpCastExprToType(E, PTy, CK_IntegralCast).get();
800 return E;
801 }
802 if (Ty->isPromotableIntegerType()) {
803 QualType PT = Context.getPromotedIntegerType(Ty);
804 E = ImpCastExprToType(E, PT, CK_IntegralCast).get();
805 return E;
806 }
807 }
808 return E;
809}
810
811/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
812/// do not have a prototype. Arguments that have type float or __fp16
813/// are promoted to double. All other argument types are converted by
814/// UsualUnaryConversions().
815ExprResult Sema::DefaultArgumentPromotion(Expr *E) {
816 QualType Ty = E->getType();
817 assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type")(static_cast <bool> (!Ty.isNull() && "DefaultArgumentPromotion - missing type"
) ? void (0) : __assert_fail ("!Ty.isNull() && \"DefaultArgumentPromotion - missing type\""
, "clang/lib/Sema/SemaExpr.cpp", 817, __extension__ __PRETTY_FUNCTION__
))
;
818
819 ExprResult Res = UsualUnaryConversions(E);
820 if (Res.isInvalid())
821 return ExprError();
822 E = Res.get();
823
824 // If this is a 'float' or '__fp16' (CVR qualified or typedef)
825 // promote to double.
826 // Note that default argument promotion applies only to float (and
827 // half/fp16); it does not apply to _Float16.
828 const BuiltinType *BTy = Ty->getAs<BuiltinType>();
829 if (BTy && (BTy->getKind() == BuiltinType::Half ||
830 BTy->getKind() == BuiltinType::Float)) {
831 if (getLangOpts().OpenCL &&
832 !getOpenCLOptions().isAvailableOption("cl_khr_fp64", getLangOpts())) {
833 if (BTy->getKind() == BuiltinType::Half) {
834 E = ImpCastExprToType(E, Context.FloatTy, CK_FloatingCast).get();
835 }
836 } else {
837 E = ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast).get();
838 }
839 }
840 if (BTy &&
841 getLangOpts().getExtendIntArgs() ==
842 LangOptions::ExtendArgsKind::ExtendTo64 &&
843 Context.getTargetInfo().supportsExtendIntArgs() && Ty->isIntegerType() &&
844 Context.getTypeSizeInChars(BTy) <
845 Context.getTypeSizeInChars(Context.LongLongTy)) {
846 E = (Ty->isUnsignedIntegerType())
847 ? ImpCastExprToType(E, Context.UnsignedLongLongTy, CK_IntegralCast)
848 .get()
849 : ImpCastExprToType(E, Context.LongLongTy, CK_IntegralCast).get();
850 assert(8 == Context.getTypeSizeInChars(Context.LongLongTy).getQuantity() &&(static_cast <bool> (8 == Context.getTypeSizeInChars(Context
.LongLongTy).getQuantity() && "Unexpected typesize for LongLongTy"
) ? void (0) : __assert_fail ("8 == Context.getTypeSizeInChars(Context.LongLongTy).getQuantity() && \"Unexpected typesize for LongLongTy\""
, "clang/lib/Sema/SemaExpr.cpp", 851, __extension__ __PRETTY_FUNCTION__
))
851 "Unexpected typesize for LongLongTy")(static_cast <bool> (8 == Context.getTypeSizeInChars(Context
.LongLongTy).getQuantity() && "Unexpected typesize for LongLongTy"
) ? void (0) : __assert_fail ("8 == Context.getTypeSizeInChars(Context.LongLongTy).getQuantity() && \"Unexpected typesize for LongLongTy\""
, "clang/lib/Sema/SemaExpr.cpp", 851, __extension__ __PRETTY_FUNCTION__
))
;
852 }
853
854 // C++ performs lvalue-to-rvalue conversion as a default argument
855 // promotion, even on class types, but note:
856 // C++11 [conv.lval]p2:
857 // When an lvalue-to-rvalue conversion occurs in an unevaluated
858 // operand or a subexpression thereof the value contained in the
859 // referenced object is not accessed. Otherwise, if the glvalue
860 // has a class type, the conversion copy-initializes a temporary
861 // of type T from the glvalue and the result of the conversion
862 // is a prvalue for the temporary.
863 // FIXME: add some way to gate this entire thing for correctness in
864 // potentially potentially evaluated contexts.
865 if (getLangOpts().CPlusPlus && E->isGLValue() && !isUnevaluatedContext()) {
866 ExprResult Temp = PerformCopyInitialization(
867 InitializedEntity::InitializeTemporary(E->getType()),
868 E->getExprLoc(), E);
869 if (Temp.isInvalid())
870 return ExprError();
871 E = Temp.get();
872 }
873
874 return E;
875}
876
877/// Determine the degree of POD-ness for an expression.
878/// Incomplete types are considered POD, since this check can be performed
879/// when we're in an unevaluated context.
880Sema::VarArgKind Sema::isValidVarArgType(const QualType &Ty) {
881 if (Ty->isIncompleteType()) {
882 // C++11 [expr.call]p7:
883 // After these conversions, if the argument does not have arithmetic,
884 // enumeration, pointer, pointer to member, or class type, the program
885 // is ill-formed.
886 //
887 // Since we've already performed array-to-pointer and function-to-pointer
888 // decay, the only such type in C++ is cv void. This also handles
889 // initializer lists as variadic arguments.
890 if (Ty->isVoidType())
891 return VAK_Invalid;
892
893 if (Ty->isObjCObjectType())
894 return VAK_Invalid;
895 return VAK_Valid;
896 }
897
898 if (Ty.isDestructedType() == QualType::DK_nontrivial_c_struct)
899 return VAK_Invalid;
900
901 if (Ty.isCXX98PODType(Context))
902 return VAK_Valid;
903
904 // C++11 [expr.call]p7:
905 // Passing a potentially-evaluated argument of class type (Clause 9)
906 // having a non-trivial copy constructor, a non-trivial move constructor,
907 // or a non-trivial destructor, with no corresponding parameter,
908 // is conditionally-supported with implementation-defined semantics.
909 if (getLangOpts().CPlusPlus11 && !Ty->isDependentType())
910 if (CXXRecordDecl *Record = Ty->getAsCXXRecordDecl())
911 if (!Record->hasNonTrivialCopyConstructor() &&
912 !Record->hasNonTrivialMoveConstructor() &&
913 !Record->hasNonTrivialDestructor())
914 return VAK_ValidInCXX11;
915
916 if (getLangOpts().ObjCAutoRefCount && Ty->isObjCLifetimeType())
917 return VAK_Valid;
918
919 if (Ty->isObjCObjectType())
920 return VAK_Invalid;
921
922 if (getLangOpts().MSVCCompat)
923 return VAK_MSVCUndefined;
924
925 // FIXME: In C++11, these cases are conditionally-supported, meaning we're
926 // permitted to reject them. We should consider doing so.
927 return VAK_Undefined;
928}
929
930void Sema::checkVariadicArgument(const Expr *E, VariadicCallType CT) {
931 // Don't allow one to pass an Objective-C interface to a vararg.
932 const QualType &Ty = E->getType();
933 VarArgKind VAK = isValidVarArgType(Ty);
934
935 // Complain about passing non-POD types through varargs.
936 switch (VAK) {
937 case VAK_ValidInCXX11:
938 DiagRuntimeBehavior(
939 E->getBeginLoc(), nullptr,
940 PDiag(diag::warn_cxx98_compat_pass_non_pod_arg_to_vararg) << Ty << CT);
941 LLVM_FALLTHROUGH[[gnu::fallthrough]];
942 case VAK_Valid:
943 if (Ty->isRecordType()) {
944 // This is unlikely to be what the user intended. If the class has a
945 // 'c_str' member function, the user probably meant to call that.
946 DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
947 PDiag(diag::warn_pass_class_arg_to_vararg)
948 << Ty << CT << hasCStrMethod(E) << ".c_str()");
949 }
950 break;
951
952 case VAK_Undefined:
953 case VAK_MSVCUndefined:
954 DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
955 PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
956 << getLangOpts().CPlusPlus11 << Ty << CT);
957 break;
958
959 case VAK_Invalid:
960 if (Ty.isDestructedType() == QualType::DK_nontrivial_c_struct)
961 Diag(E->getBeginLoc(),
962 diag::err_cannot_pass_non_trivial_c_struct_to_vararg)
963 << Ty << CT;
964 else if (Ty->isObjCObjectType())
965 DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
966 PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
967 << Ty << CT);
968 else
969 Diag(E->getBeginLoc(), diag::err_cannot_pass_to_vararg)
970 << isa<InitListExpr>(E) << Ty << CT;
971 break;
972 }
973}
974
975/// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
976/// will create a trap if the resulting type is not a POD type.
977ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
978 FunctionDecl *FDecl) {
979 if (const BuiltinType *PlaceholderTy = E->getType()->getAsPlaceholderType()) {
980 // Strip the unbridged-cast placeholder expression off, if applicable.
981 if (PlaceholderTy->getKind() == BuiltinType::ARCUnbridgedCast &&
982 (CT == VariadicMethod ||
983 (FDecl && FDecl->hasAttr<CFAuditedTransferAttr>()))) {
984 E = stripARCUnbridgedCast(E);
985
986 // Otherwise, do normal placeholder checking.
987 } else {
988 ExprResult ExprRes = CheckPlaceholderExpr(E);
989 if (ExprRes.isInvalid())
990 return ExprError();
991 E = ExprRes.get();
992 }
993 }
994
995 ExprResult ExprRes = DefaultArgumentPromotion(E);
996 if (ExprRes.isInvalid())
997 return ExprError();
998
999 // Copy blocks to the heap.
1000 if (ExprRes.get()->getType()->isBlockPointerType())
1001 maybeExtendBlockObject(ExprRes);
1002
1003 E = ExprRes.get();
1004
1005 // Diagnostics regarding non-POD argument types are
1006 // emitted along with format string checking in Sema::CheckFunctionCall().
1007 if (isValidVarArgType(E->getType()) == VAK_Undefined) {
1008 // Turn this into a trap.
1009 CXXScopeSpec SS;
1010 SourceLocation TemplateKWLoc;
1011 UnqualifiedId Name;
1012 Name.setIdentifier(PP.getIdentifierInfo("__builtin_trap"),
1013 E->getBeginLoc());
1014 ExprResult TrapFn = ActOnIdExpression(TUScope, SS, TemplateKWLoc, Name,
1015 /*HasTrailingLParen=*/true,
1016 /*IsAddressOfOperand=*/false);
1017 if (TrapFn.isInvalid())
1018 return ExprError();
1019
1020 ExprResult Call = BuildCallExpr(TUScope, TrapFn.get(), E->getBeginLoc(),
1021 None, E->getEndLoc());
1022 if (Call.isInvalid())
1023 return ExprError();
1024
1025 ExprResult Comma =
1026 ActOnBinOp(TUScope, E->getBeginLoc(), tok::comma, Call.get(), E);
1027 if (Comma.isInvalid())
1028 return ExprError();
1029 return Comma.get();
1030 }
1031
1032 if (!getLangOpts().CPlusPlus &&
1033 RequireCompleteType(E->getExprLoc(), E->getType(),
1034 diag::err_call_incomplete_argument))
1035 return ExprError();
1036
1037 return E;
1038}
1039
1040/// Converts an integer to complex float type. Helper function of
1041/// UsualArithmeticConversions()
1042///
1043/// \return false if the integer expression is an integer type and is
1044/// successfully converted to the complex type.
1045static bool handleIntegerToComplexFloatConversion(Sema &S, ExprResult &IntExpr,
1046 ExprResult &ComplexExpr,
1047 QualType IntTy,
1048 QualType ComplexTy,
1049 bool SkipCast) {
1050 if (IntTy->isComplexType() || IntTy->isRealFloatingType()) return true;
1051 if (SkipCast) return false;
1052 if (IntTy->isIntegerType()) {
1053 QualType fpTy = cast<ComplexType>(ComplexTy)->getElementType();
1054 IntExpr = S.ImpCastExprToType(IntExpr.get(), fpTy, CK_IntegralToFloating);
1055 IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy,
1056 CK_FloatingRealToComplex);
1057 } else {
1058 assert(IntTy->isComplexIntegerType())(static_cast <bool> (IntTy->isComplexIntegerType()) ?
void (0) : __assert_fail ("IntTy->isComplexIntegerType()"
, "clang/lib/Sema/SemaExpr.cpp", 1058, __extension__ __PRETTY_FUNCTION__
))
;
1059 IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy,
1060 CK_IntegralComplexToFloatingComplex);
1061 }
1062 return false;
1063}
1064
1065/// Handle arithmetic conversion with complex types. Helper function of
1066/// UsualArithmeticConversions()
1067static QualType handleComplexFloatConversion(Sema &S, ExprResult &LHS,
1068 ExprResult &RHS, QualType LHSType,
1069 QualType RHSType,
1070 bool IsCompAssign) {
1071 // if we have an integer operand, the result is the complex type.
1072 if (!handleIntegerToComplexFloatConversion(S, RHS, LHS, RHSType, LHSType,
1073 /*skipCast*/false))
1074 return LHSType;
1075 if (!handleIntegerToComplexFloatConversion(S, LHS, RHS, LHSType, RHSType,
1076 /*skipCast*/IsCompAssign))
1077 return RHSType;
1078
1079 // This handles complex/complex, complex/float, or float/complex.
1080 // When both operands are complex, the shorter operand is converted to the
1081 // type of the longer, and that is the type of the result. This corresponds
1082 // to what is done when combining two real floating-point operands.
1083 // The fun begins when size promotion occur across type domains.
1084 // From H&S 6.3.4: When one operand is complex and the other is a real
1085 // floating-point type, the less precise type is converted, within it's
1086 // real or complex domain, to the precision of the other type. For example,
1087 // when combining a "long double" with a "double _Complex", the
1088 // "double _Complex" is promoted to "long double _Complex".
1089
1090 // Compute the rank of the two types, regardless of whether they are complex.
1091 int Order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
1092
1093 auto *LHSComplexType = dyn_cast<ComplexType>(LHSType);
1094 auto *RHSComplexType = dyn_cast<ComplexType>(RHSType);
1095 QualType LHSElementType =
1096 LHSComplexType ? LHSComplexType->getElementType() : LHSType;
1097 QualType RHSElementType =
1098 RHSComplexType ? RHSComplexType->getElementType() : RHSType;
1099
1100 QualType ResultType = S.Context.getComplexType(LHSElementType);
1101 if (Order < 0) {
1102 // Promote the precision of the LHS if not an assignment.
1103 ResultType = S.Context.getComplexType(RHSElementType);
1104 if (!IsCompAssign) {
1105 if (LHSComplexType)
1106 LHS =
1107 S.ImpCastExprToType(LHS.get(), ResultType, CK_FloatingComplexCast);
1108 else
1109 LHS = S.ImpCastExprToType(LHS.get(), RHSElementType, CK_FloatingCast);
1110 }
1111 } else if (Order > 0) {
1112 // Promote the precision of the RHS.
1113 if (RHSComplexType)
1114 RHS = S.ImpCastExprToType(RHS.get(), ResultType, CK_FloatingComplexCast);
1115 else
1116 RHS = S.ImpCastExprToType(RHS.get(), LHSElementType, CK_FloatingCast);
1117 }
1118 return ResultType;
1119}
1120
1121/// Handle arithmetic conversion from integer to float. Helper function
1122/// of UsualArithmeticConversions()
1123static QualType handleIntToFloatConversion(Sema &S, ExprResult &FloatExpr,
1124 ExprResult &IntExpr,
1125 QualType FloatTy, QualType IntTy,
1126 bool ConvertFloat, bool ConvertInt) {
1127 if (IntTy->isIntegerType()) {
1128 if (ConvertInt)
1129 // Convert intExpr to the lhs floating point type.
1130 IntExpr = S.ImpCastExprToType(IntExpr.get(), FloatTy,
1131 CK_IntegralToFloating);
1132 return FloatTy;
1133 }
1134
1135 // Convert both sides to the appropriate complex float.
1136 assert(IntTy->isComplexIntegerType())(static_cast <bool> (IntTy->isComplexIntegerType()) ?
void (0) : __assert_fail ("IntTy->isComplexIntegerType()"
, "clang/lib/Sema/SemaExpr.cpp", 1136, __extension__ __PRETTY_FUNCTION__
))
;
1137 QualType result = S.Context.getComplexType(FloatTy);
1138
1139 // _Complex int -> _Complex float
1140 if (ConvertInt)
1141 IntExpr = S.ImpCastExprToType(IntExpr.get(), result,
1142 CK_IntegralComplexToFloatingComplex);
1143
1144 // float -> _Complex float
1145 if (ConvertFloat)
1146 FloatExpr = S.ImpCastExprToType(FloatExpr.get(), result,
1147 CK_FloatingRealToComplex);
1148
1149 return result;
1150}
1151
1152/// Handle arithmethic conversion with floating point types. Helper
1153/// function of UsualArithmeticConversions()
1154static QualType handleFloatConversion(Sema &S, ExprResult &LHS,
1155 ExprResult &RHS, QualType LHSType,
1156 QualType RHSType, bool IsCompAssign) {
1157 bool LHSFloat = LHSType->isRealFloatingType();
1158 bool RHSFloat = RHSType->isRealFloatingType();
1159
1160 // N1169 4.1.4: If one of the operands has a floating type and the other
1161 // operand has a fixed-point type, the fixed-point operand
1162 // is converted to the floating type [...]
1163 if (LHSType->isFixedPointType() || RHSType->isFixedPointType()) {
1164 if (LHSFloat)
1165 RHS = S.ImpCastExprToType(RHS.get(), LHSType, CK_FixedPointToFloating);
1166 else if (!IsCompAssign)
1167 LHS = S.ImpCastExprToType(LHS.get(), RHSType, CK_FixedPointToFloating);
1168 return LHSFloat ? LHSType : RHSType;
1169 }
1170
1171 // If we have two real floating types, convert the smaller operand
1172 // to the bigger result.
1173 if (LHSFloat && RHSFloat) {
1174 int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
1175 if (order > 0) {
1176 RHS = S.ImpCastExprToType(RHS.get(), LHSType, CK_FloatingCast);
1177 return LHSType;
1178 }
1179
1180 assert(order < 0 && "illegal float comparison")(static_cast <bool> (order < 0 && "illegal float comparison"
) ? void (0) : __assert_fail ("order < 0 && \"illegal float comparison\""
, "clang/lib/Sema/SemaExpr.cpp", 1180, __extension__ __PRETTY_FUNCTION__
))
;
1181 if (!IsCompAssign)
1182 LHS = S.ImpCastExprToType(LHS.get(), RHSType, CK_FloatingCast);
1183 return RHSType;
1184 }
1185
1186 if (LHSFloat) {
1187 // Half FP has to be promoted to float unless it is natively supported
1188 if (LHSType->isHalfType() && !S.getLangOpts().NativeHalfType)
1189 LHSType = S.Context.FloatTy;
1190
1191 return handleIntToFloatConversion(S, LHS, RHS, LHSType, RHSType,
1192 /*ConvertFloat=*/!IsCompAssign,
1193 /*ConvertInt=*/ true);
1194 }
1195 assert(RHSFloat)(static_cast <bool> (RHSFloat) ? void (0) : __assert_fail
("RHSFloat", "clang/lib/Sema/SemaExpr.cpp", 1195, __extension__
__PRETTY_FUNCTION__))
;
1196 return handleIntToFloatConversion(S, RHS, LHS, RHSType, LHSType,
1197 /*ConvertFloat=*/ true,
1198 /*ConvertInt=*/!IsCompAssign);
1199}
1200
1201/// Diagnose attempts to convert between __float128, __ibm128 and
1202/// long double if there is no support for such conversion.
1203/// Helper function of UsualArithmeticConversions().
1204static bool unsupportedTypeConversion(const Sema &S, QualType LHSType,
1205 QualType RHSType) {
1206 // No issue if either is not a floating point type.
1207 if (!LHSType->isFloatingType() || !RHSType->isFloatingType())
1208 return false;
1209
1210 // No issue if both have the same 128-bit float semantics.
1211 auto *LHSComplex = LHSType->getAs<ComplexType>();
1212 auto *RHSComplex = RHSType->getAs<ComplexType>();
1213
1214 QualType LHSElem = LHSComplex ? LHSComplex->getElementType() : LHSType;
1215 QualType RHSElem = RHSComplex ? RHSComplex->getElementType() : RHSType;
1216
1217 const llvm::fltSemantics &LHSSem = S.Context.getFloatTypeSemantics(LHSElem);
1218 const llvm::fltSemantics &RHSSem = S.Context.getFloatTypeSemantics(RHSElem);
1219
1220 if ((&LHSSem != &llvm::APFloat::PPCDoubleDouble() ||
1221 &RHSSem != &llvm::APFloat::IEEEquad()) &&
1222 (&LHSSem != &llvm::APFloat::IEEEquad() ||
1223 &RHSSem != &llvm::APFloat::PPCDoubleDouble()))
1224 return false;
1225
1226 return true;
1227}
1228
1229typedef ExprResult PerformCastFn(Sema &S, Expr *operand, QualType toType);
1230
1231namespace {
1232/// These helper callbacks are placed in an anonymous namespace to
1233/// permit their use as function template parameters.
1234ExprResult doIntegralCast(Sema &S, Expr *op, QualType toType) {
1235 return S.ImpCastExprToType(op, toType, CK_IntegralCast);
1236}
1237
1238ExprResult doComplexIntegralCast(Sema &S, Expr *op, QualType toType) {
1239 return S.ImpCastExprToType(op, S.Context.getComplexType(toType),
1240 CK_IntegralComplexCast);
1241}
1242}
1243
1244/// Handle integer arithmetic conversions. Helper function of
1245/// UsualArithmeticConversions()
1246template <PerformCastFn doLHSCast, PerformCastFn doRHSCast>
1247static QualType handleIntegerConversion(Sema &S, ExprResult &LHS,
1248 ExprResult &RHS, QualType LHSType,
1249 QualType RHSType, bool IsCompAssign) {
1250 // The rules for this case are in C99 6.3.1.8
1251 int order = S.Context.getIntegerTypeOrder(LHSType, RHSType);
1252 bool LHSSigned = LHSType->hasSignedIntegerRepresentation();
1253 bool RHSSigned = RHSType->hasSignedIntegerRepresentation();
1254 if (LHSSigned == RHSSigned) {
1255 // Same signedness; use the higher-ranked type
1256 if (order >= 0) {
1257 RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1258 return LHSType;
1259 } else if (!IsCompAssign)
1260 LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1261 return RHSType;
1262 } else if (order != (LHSSigned ? 1 : -1)) {
1263 // The unsigned type has greater than or equal rank to the
1264 // signed type, so use the unsigned type
1265 if (RHSSigned) {
1266 RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1267 return LHSType;
1268 } else if (!IsCompAssign)
1269 LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1270 return RHSType;
1271 } else if (S.Context.getIntWidth(LHSType) != S.Context.getIntWidth(RHSType)) {
1272 // The two types are different widths; if we are here, that
1273 // means the signed type is larger than the unsigned type, so
1274 // use the signed type.
1275 if (LHSSigned) {
1276 RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1277 return LHSType;
1278 } else if (!IsCompAssign)
1279 LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1280 return RHSType;
1281 } else {
1282 // The signed type is higher-ranked than the unsigned type,
1283 // but isn't actually any bigger (like unsigned int and long
1284 // on most 32-bit systems). Use the unsigned type corresponding
1285 // to the signed type.
1286 QualType result =
1287 S.Context.getCorrespondingUnsignedType(LHSSigned ? LHSType : RHSType);
1288 RHS = (*doRHSCast)(S, RHS.get(), result);
1289 if (!IsCompAssign)
1290 LHS = (*doLHSCast)(S, LHS.get(), result);
1291 return result;
1292 }
1293}
1294
1295/// Handle conversions with GCC complex int extension. Helper function
1296/// of UsualArithmeticConversions()
1297static QualType handleComplexIntConversion(Sema &S, ExprResult &LHS,
1298 ExprResult &RHS, QualType LHSType,
1299 QualType RHSType,
1300 bool IsCompAssign) {
1301 const ComplexType *LHSComplexInt = LHSType->getAsComplexIntegerType();
1302 const ComplexType *RHSComplexInt = RHSType->getAsComplexIntegerType();
1303
1304 if (LHSComplexInt && RHSComplexInt) {
1305 QualType LHSEltType = LHSComplexInt->getElementType();
1306 QualType RHSEltType = RHSComplexInt->getElementType();
1307 QualType ScalarType =
1308 handleIntegerConversion<doComplexIntegralCast, doComplexIntegralCast>
1309 (S, LHS, RHS, LHSEltType, RHSEltType, IsCompAssign);
1310
1311 return S.Context.getComplexType(ScalarType);
1312 }
1313
1314 if (LHSComplexInt) {
1315 QualType LHSEltType = LHSComplexInt->getElementType();
1316 QualType ScalarType =
1317 handleIntegerConversion<doComplexIntegralCast, doIntegralCast>
1318 (S, LHS, RHS, LHSEltType, RHSType, IsCompAssign);
1319 QualType ComplexType = S.Context.getComplexType(ScalarType);
1320 RHS = S.ImpCastExprToType(RHS.get(), ComplexType,
1321 CK_IntegralRealToComplex);
1322
1323 return ComplexType;
1324 }
1325
1326 assert(RHSComplexInt)(static_cast <bool> (RHSComplexInt) ? void (0) : __assert_fail
("RHSComplexInt", "clang/lib/Sema/SemaExpr.cpp", 1326, __extension__
__PRETTY_FUNCTION__))
;
1327
1328 QualType RHSEltType = RHSComplexInt->getElementType();
1329 QualType ScalarType =
1330 handleIntegerConversion<doIntegralCast, doComplexIntegralCast>
1331 (S, LHS, RHS, LHSType, RHSEltType, IsCompAssign);
1332 QualType ComplexType = S.Context.getComplexType(ScalarType);
1333
1334 if (!IsCompAssign)
1335 LHS = S.ImpCastExprToType(LHS.get(), ComplexType,
1336 CK_IntegralRealToComplex);
1337 return ComplexType;
1338}
1339
1340/// Return the rank of a given fixed point or integer type. The value itself
1341/// doesn't matter, but the values must be increasing with proper increasing
1342/// rank as described in N1169 4.1.1.
1343static unsigned GetFixedPointRank(QualType Ty) {
1344 const auto *BTy = Ty->getAs<BuiltinType>();
1345 assert(BTy && "Expected a builtin type.")(static_cast <bool> (BTy && "Expected a builtin type."
) ? void (0) : __assert_fail ("BTy && \"Expected a builtin type.\""
, "clang/lib/Sema/SemaExpr.cpp", 1345, __extension__ __PRETTY_FUNCTION__
))
;
1346
1347 switch (BTy->getKind()) {
1348 case BuiltinType::ShortFract:
1349 case BuiltinType::UShortFract:
1350 case BuiltinType::SatShortFract:
1351 case BuiltinType::SatUShortFract:
1352 return 1;
1353 case BuiltinType::Fract:
1354 case BuiltinType::UFract:
1355 case BuiltinType::SatFract:
1356 case BuiltinType::SatUFract:
1357 return 2;
1358 case BuiltinType::LongFract:
1359 case BuiltinType::ULongFract:
1360 case BuiltinType::SatLongFract:
1361 case BuiltinType::SatULongFract:
1362 return 3;
1363 case BuiltinType::ShortAccum:
1364 case BuiltinType::UShortAccum:
1365 case BuiltinType::SatShortAccum:
1366 case BuiltinType::SatUShortAccum:
1367 return 4;
1368 case BuiltinType::Accum:
1369 case BuiltinType::UAccum:
1370 case BuiltinType::SatAccum:
1371 case BuiltinType::SatUAccum:
1372 return 5;
1373 case BuiltinType::LongAccum:
1374 case BuiltinType::ULongAccum:
1375 case BuiltinType::SatLongAccum:
1376 case BuiltinType::SatULongAccum:
1377 return 6;
1378 default:
1379 if (BTy->isInteger())
1380 return 0;
1381 llvm_unreachable("Unexpected fixed point or integer type")::llvm::llvm_unreachable_internal("Unexpected fixed point or integer type"
, "clang/lib/Sema/SemaExpr.cpp", 1381)
;
1382 }
1383}
1384
1385/// handleFixedPointConversion - Fixed point operations between fixed
1386/// point types and integers or other fixed point types do not fall under
1387/// usual arithmetic conversion since these conversions could result in loss
1388/// of precsision (N1169 4.1.4). These operations should be calculated with
1389/// the full precision of their result type (N1169 4.1.6.2.1).
1390static QualType handleFixedPointConversion(Sema &S, QualType LHSTy,
1391 QualType RHSTy) {
1392 assert((LHSTy->isFixedPointType() || RHSTy->isFixedPointType()) &&(static_cast <bool> ((LHSTy->isFixedPointType() || RHSTy
->isFixedPointType()) && "Expected at least one of the operands to be a fixed point type"
) ? void (0) : __assert_fail ("(LHSTy->isFixedPointType() || RHSTy->isFixedPointType()) && \"Expected at least one of the operands to be a fixed point type\""
, "clang/lib/Sema/SemaExpr.cpp", 1393, __extension__ __PRETTY_FUNCTION__
))
1393 "Expected at least one of the operands to be a fixed point type")(static_cast <bool> ((LHSTy->isFixedPointType() || RHSTy
->isFixedPointType()) && "Expected at least one of the operands to be a fixed point type"
) ? void (0) : __assert_fail ("(LHSTy->isFixedPointType() || RHSTy->isFixedPointType()) && \"Expected at least one of the operands to be a fixed point type\""
, "clang/lib/Sema/SemaExpr.cpp", 1393, __extension__ __PRETTY_FUNCTION__
))
;
1394 assert((LHSTy->isFixedPointOrIntegerType() ||(static_cast <bool> ((LHSTy->isFixedPointOrIntegerType
() || RHSTy->isFixedPointOrIntegerType()) && "Special fixed point arithmetic operation conversions are only "
"applied to ints or other fixed point types") ? void (0) : __assert_fail
("(LHSTy->isFixedPointOrIntegerType() || RHSTy->isFixedPointOrIntegerType()) && \"Special fixed point arithmetic operation conversions are only \" \"applied to ints or other fixed point types\""
, "clang/lib/Sema/SemaExpr.cpp", 1397, __extension__ __PRETTY_FUNCTION__
))
1395 RHSTy->isFixedPointOrIntegerType()) &&(static_cast <bool> ((LHSTy->isFixedPointOrIntegerType
() || RHSTy->isFixedPointOrIntegerType()) && "Special fixed point arithmetic operation conversions are only "
"applied to ints or other fixed point types") ? void (0) : __assert_fail
("(LHSTy->isFixedPointOrIntegerType() || RHSTy->isFixedPointOrIntegerType()) && \"Special fixed point arithmetic operation conversions are only \" \"applied to ints or other fixed point types\""
, "clang/lib/Sema/SemaExpr.cpp", 1397, __extension__ __PRETTY_FUNCTION__
))
1396 "Special fixed point arithmetic operation conversions are only "(static_cast <bool> ((LHSTy->isFixedPointOrIntegerType
() || RHSTy->isFixedPointOrIntegerType()) && "Special fixed point arithmetic operation conversions are only "
"applied to ints or other fixed point types") ? void (0) : __assert_fail
("(LHSTy->isFixedPointOrIntegerType() || RHSTy->isFixedPointOrIntegerType()) && \"Special fixed point arithmetic operation conversions are only \" \"applied to ints or other fixed point types\""
, "clang/lib/Sema/SemaExpr.cpp", 1397, __extension__ __PRETTY_FUNCTION__
))
1397 "applied to ints or other fixed point types")(static_cast <bool> ((LHSTy->isFixedPointOrIntegerType
() || RHSTy->isFixedPointOrIntegerType()) && "Special fixed point arithmetic operation conversions are only "
"applied to ints or other fixed point types") ? void (0) : __assert_fail
("(LHSTy->isFixedPointOrIntegerType() || RHSTy->isFixedPointOrIntegerType()) && \"Special fixed point arithmetic operation conversions are only \" \"applied to ints or other fixed point types\""
, "clang/lib/Sema/SemaExpr.cpp", 1397, __extension__ __PRETTY_FUNCTION__
))
;
1398
1399 // If one operand has signed fixed-point type and the other operand has
1400 // unsigned fixed-point type, then the unsigned fixed-point operand is
1401 // converted to its corresponding signed fixed-point type and the resulting
1402 // type is the type of the converted operand.
1403 if (RHSTy->isSignedFixedPointType() && LHSTy->isUnsignedFixedPointType())
1404 LHSTy = S.Context.getCorrespondingSignedFixedPointType(LHSTy);
1405 else if (RHSTy->isUnsignedFixedPointType() && LHSTy->isSignedFixedPointType())
1406 RHSTy = S.Context.getCorrespondingSignedFixedPointType(RHSTy);
1407
1408 // The result type is the type with the highest rank, whereby a fixed-point
1409 // conversion rank is always greater than an integer conversion rank; if the
1410 // type of either of the operands is a saturating fixedpoint type, the result
1411 // type shall be the saturating fixed-point type corresponding to the type
1412 // with the highest rank; the resulting value is converted (taking into
1413 // account rounding and overflow) to the precision of the resulting type.
1414 // Same ranks between signed and unsigned types are resolved earlier, so both
1415 // types are either signed or both unsigned at this point.
1416 unsigned LHSTyRank = GetFixedPointRank(LHSTy);
1417 unsigned RHSTyRank = GetFixedPointRank(RHSTy);
1418
1419 QualType ResultTy = LHSTyRank > RHSTyRank ? LHSTy : RHSTy;
1420
1421 if (LHSTy->isSaturatedFixedPointType() || RHSTy->isSaturatedFixedPointType())
1422 ResultTy = S.Context.getCorrespondingSaturatedType(ResultTy);
1423
1424 return ResultTy;
1425}
1426
1427/// Check that the usual arithmetic conversions can be performed on this pair of
1428/// expressions that might be of enumeration type.
1429static void checkEnumArithmeticConversions(Sema &S, Expr *LHS, Expr *RHS,
1430 SourceLocation Loc,
1431 Sema::ArithConvKind ACK) {
1432 // C++2a [expr.arith.conv]p1:
1433 // If one operand is of enumeration type and the other operand is of a
1434 // different enumeration type or a floating-point type, this behavior is
1435 // deprecated ([depr.arith.conv.enum]).
1436 //
1437 // Warn on this in all language modes. Produce a deprecation warning in C++20.
1438 // Eventually we will presumably reject these cases (in C++23 onwards?).
1439 QualType L = LHS->getType(), R = RHS->getType();
1440 bool LEnum = L->isUnscopedEnumerationType(),
1441 REnum = R->isUnscopedEnumerationType();
1442 bool IsCompAssign = ACK == Sema::ACK_CompAssign;
1443 if ((!IsCompAssign && LEnum && R->isFloatingType()) ||
1444 (REnum && L->isFloatingType())) {
1445 S.Diag(Loc, S.getLangOpts().CPlusPlus20
1446 ? diag::warn_arith_conv_enum_float_cxx20
1447 : diag::warn_arith_conv_enum_float)
1448 << LHS->getSourceRange() << RHS->getSourceRange()
1449 << (int)ACK << LEnum << L << R;
1450 } else if (!IsCompAssign && LEnum && REnum &&
1451 !S.Context.hasSameUnqualifiedType(L, R)) {
1452 unsigned DiagID;
1453 if (!L->castAs<EnumType>()->getDecl()->hasNameForLinkage() ||
1454 !R->castAs<EnumType>()->getDecl()->hasNameForLinkage()) {
1455 // If either enumeration type is unnamed, it's less likely that the
1456 // user cares about this, but this situation is still deprecated in
1457 // C++2a. Use a different warning group.
1458 DiagID = S.getLangOpts().CPlusPlus20
1459 ? diag::warn_arith_conv_mixed_anon_enum_types_cxx20
1460 : diag::warn_arith_conv_mixed_anon_enum_types;
1461 } else if (ACK == Sema::ACK_Conditional) {
1462 // Conditional expressions are separated out because they have
1463 // historically had a different warning flag.
1464 DiagID = S.getLangOpts().CPlusPlus20
1465 ? diag::warn_conditional_mixed_enum_types_cxx20
1466 : diag::warn_conditional_mixed_enum_types;
1467 } else if (ACK == Sema::ACK_Comparison) {
1468 // Comparison expressions are separated out because they have
1469 // historically had a different warning flag.
1470 DiagID = S.getLangOpts().CPlusPlus20
1471 ? diag::warn_comparison_mixed_enum_types_cxx20
1472 : diag::warn_comparison_mixed_enum_types;
1473 } else {
1474 DiagID = S.getLangOpts().CPlusPlus20
1475 ? diag::warn_arith_conv_mixed_enum_types_cxx20
1476 : diag::warn_arith_conv_mixed_enum_types;
1477 }
1478 S.Diag(Loc, DiagID) << LHS->getSourceRange() << RHS->getSourceRange()
1479 << (int)ACK << L << R;
1480 }
1481}
1482
1483/// UsualArithmeticConversions - Performs various conversions that are common to
1484/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
1485/// routine returns the first non-arithmetic type found. The client is
1486/// responsible for emitting appropriate error diagnostics.
1487QualType Sema::UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS,
1488 SourceLocation Loc,
1489 ArithConvKind ACK) {
1490 checkEnumArithmeticConversions(*this, LHS.get(), RHS.get(), Loc, ACK);
1491
1492 if (ACK != ACK_CompAssign) {
1493 LHS = UsualUnaryConversions(LHS.get());
1494 if (LHS.isInvalid())
1495 return QualType();
1496 }
1497
1498 RHS = UsualUnaryConversions(RHS.get());
1499 if (RHS.isInvalid())
1500 return QualType();
1501
1502 // For conversion purposes, we ignore any qualifiers.
1503 // For example, "const float" and "float" are equivalent.
1504 QualType LHSType =
1505 Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
1506 QualType RHSType =
1507 Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
1508
1509 // For conversion purposes, we ignore any atomic qualifier on the LHS.
1510 if (const AtomicType *AtomicLHS = LHSType->getAs<AtomicType>())
1511 LHSType = AtomicLHS->getValueType();
1512
1513 // If both types are identical, no conversion is needed.
1514 if (LHSType == RHSType)
1515 return LHSType;
1516
1517 // If either side is a non-arithmetic type (e.g. a pointer), we are done.
1518 // The caller can deal with this (e.g. pointer + int).
1519 if (!LHSType->isArithmeticType() || !RHSType->isArithmeticType())
1520 return QualType();
1521
1522 // Apply unary and bitfield promotions to the LHS's type.
1523 QualType LHSUnpromotedType = LHSType;
1524 if (LHSType->isPromotableIntegerType())
1525 LHSType = Context.getPromotedIntegerType(LHSType);
1526 QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(LHS.get());
1527 if (!LHSBitfieldPromoteTy.isNull())
1528 LHSType = LHSBitfieldPromoteTy;
1529 if (LHSType != LHSUnpromotedType && ACK != ACK_CompAssign)
1530 LHS = ImpCastExprToType(LHS.get(), LHSType, CK_IntegralCast);
1531
1532 // If both types are identical, no conversion is needed.
1533 if (LHSType == RHSType)
1534 return LHSType;
1535
1536 // At this point, we have two different arithmetic types.
1537
1538 // Diagnose attempts to convert between __ibm128, __float128 and long double
1539 // where such conversions currently can't be handled.
1540 if (unsupportedTypeConversion(*this, LHSType, RHSType))
1541 return QualType();
1542
1543 // Handle complex types first (C99 6.3.1.8p1).
1544 if (LHSType->isComplexType() || RHSType->isComplexType())
1545 return handleComplexFloatConversion(*this, LHS, RHS, LHSType, RHSType,
1546 ACK == ACK_CompAssign);
1547
1548 // Now handle "real" floating types (i.e. float, double, long double).
1549 if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
1550 return handleFloatConversion(*this, LHS, RHS, LHSType, RHSType,
1551 ACK == ACK_CompAssign);
1552
1553 // Handle GCC complex int extension.
1554 if (LHSType->isComplexIntegerType() || RHSType->isComplexIntegerType())
1555 return handleComplexIntConversion(*this, LHS, RHS, LHSType, RHSType,
1556 ACK == ACK_CompAssign);
1557
1558 if (LHSType->isFixedPointType() || RHSType->isFixedPointType())
1559 return handleFixedPointConversion(*this, LHSType, RHSType);
1560
1561 // Finally, we have two differing integer types.
1562 return handleIntegerConversion<doIntegralCast, doIntegralCast>
1563 (*this, LHS, RHS, LHSType, RHSType, ACK == ACK_CompAssign);
1564}
1565
1566//===----------------------------------------------------------------------===//
1567// Semantic Analysis for various Expression Types
1568//===----------------------------------------------------------------------===//
1569
1570
1571ExprResult
1572Sema::ActOnGenericSelectionExpr(SourceLocation KeyLoc,
1573 SourceLocation DefaultLoc,
1574 SourceLocation RParenLoc,
1575 Expr *ControllingExpr,
1576 ArrayRef<ParsedType> ArgTypes,
1577 ArrayRef<Expr *> ArgExprs) {
1578 unsigned NumAssocs = ArgTypes.size();
1579 assert(NumAssocs == ArgExprs.size())(static_cast <bool> (NumAssocs == ArgExprs.size()) ? void
(0) : __assert_fail ("NumAssocs == ArgExprs.size()", "clang/lib/Sema/SemaExpr.cpp"
, 1579, __extension__ __PRETTY_FUNCTION__))
;
1580
1581 TypeSourceInfo **Types = new TypeSourceInfo*[NumAssocs];
1582 for (unsigned i = 0; i < NumAssocs; ++i) {
1583 if (ArgTypes[i])
1584 (void) GetTypeFromParser(ArgTypes[i], &Types[i]);
1585 else
1586 Types[i] = nullptr;
1587 }
1588
1589 ExprResult ER = CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc,
1590 ControllingExpr,
1591 llvm::makeArrayRef(Types, NumAssocs),
1592 ArgExprs);
1593 delete [] Types;
1594 return ER;
1595}
1596
1597ExprResult
1598Sema::CreateGenericSelectionExpr(SourceLocation KeyLoc,
1599 SourceLocation DefaultLoc,
1600 SourceLocation RParenLoc,
1601 Expr *ControllingExpr,
1602 ArrayRef<TypeSourceInfo *> Types,
1603 ArrayRef<Expr *> Exprs) {
1604 unsigned NumAssocs = Types.size();
1605 assert(NumAssocs == Exprs.size())(static_cast <bool> (NumAssocs == Exprs.size()) ? void (
0) : __assert_fail ("NumAssocs == Exprs.size()", "clang/lib/Sema/SemaExpr.cpp"
, 1605, __extension__ __PRETTY_FUNCTION__))
;
1606
1607 // Decay and strip qualifiers for the controlling expression type, and handle
1608 // placeholder type replacement. See committee discussion from WG14 DR423.
1609 {
1610 EnterExpressionEvaluationContext Unevaluated(
1611 *this, Sema::ExpressionEvaluationContext::Unevaluated);
1612 ExprResult R = DefaultFunctionArrayLvalueConversion(ControllingExpr);
1613 if (R.isInvalid())
1614 return ExprError();
1615 ControllingExpr = R.get();
1616 }
1617
1618 // The controlling expression is an unevaluated operand, so side effects are
1619 // likely unintended.
1620 if (!inTemplateInstantiation() &&
1621 ControllingExpr->HasSideEffects(Context, false))
1622 Diag(ControllingExpr->getExprLoc(),
1623 diag::warn_side_effects_unevaluated_context);
1624
1625 bool TypeErrorFound = false,
1626 IsResultDependent = ControllingExpr->isTypeDependent(),
1627 ContainsUnexpandedParameterPack
1628 = ControllingExpr->containsUnexpandedParameterPack();
1629
1630 for (unsigned i = 0; i < NumAssocs; ++i) {
1631 if (Exprs[i]->containsUnexpandedParameterPack())
1632 ContainsUnexpandedParameterPack = true;
1633
1634 if (Types[i]) {
1635 if (Types[i]->getType()->containsUnexpandedParameterPack())
1636 ContainsUnexpandedParameterPack = true;
1637
1638 if (Types[i]->getType()->isDependentType()) {
1639 IsResultDependent = true;
1640 } else {
1641 // C11 6.5.1.1p2 "The type name in a generic association shall specify a
1642 // complete object type other than a variably modified type."
1643 unsigned D = 0;
1644 if (Types[i]->getType()->isIncompleteType())
1645 D = diag::err_assoc_type_incomplete;
1646 else if (!Types[i]->getType()->isObjectType())
1647 D = diag::err_assoc_type_nonobject;
1648 else if (Types[i]->getType()->isVariablyModifiedType())
1649 D = diag::err_assoc_type_variably_modified;
1650
1651 if (D != 0) {
1652 Diag(Types[i]->getTypeLoc().getBeginLoc(), D)
1653 << Types[i]->getTypeLoc().getSourceRange()
1654 << Types[i]->getType();
1655 TypeErrorFound = true;
1656 }
1657
1658 // C11 6.5.1.1p2 "No two generic associations in the same generic
1659 // selection shall specify compatible types."
1660 for (unsigned j = i+1; j < NumAssocs; ++j)
1661 if (Types[j] && !Types[j]->getType()->isDependentType() &&
1662 Context.typesAreCompatible(Types[i]->getType(),
1663 Types[j]->getType())) {
1664 Diag(Types[j]->getTypeLoc().getBeginLoc(),
1665 diag::err_assoc_compatible_types)
1666 << Types[j]->getTypeLoc().getSourceRange()
1667 << Types[j]->getType()
1668 << Types[i]->getType();
1669 Diag(Types[i]->getTypeLoc().getBeginLoc(),
1670 diag::note_compat_assoc)
1671 << Types[i]->getTypeLoc().getSourceRange()
1672 << Types[i]->getType();
1673 TypeErrorFound = true;
1674 }
1675 }
1676 }
1677 }
1678 if (TypeErrorFound)
1679 return ExprError();
1680
1681 // If we determined that the generic selection is result-dependent, don't
1682 // try to compute the result expression.
1683 if (IsResultDependent)
1684 return GenericSelectionExpr::Create(Context, KeyLoc, ControllingExpr, Types,
1685 Exprs, DefaultLoc, RParenLoc,
1686 ContainsUnexpandedParameterPack);
1687
1688 SmallVector<unsigned, 1> CompatIndices;
1689 unsigned DefaultIndex = -1U;
1690 for (unsigned i = 0; i < NumAssocs; ++i) {
1691 if (!Types[i])
1692 DefaultIndex = i;
1693 else if (Context.typesAreCompatible(ControllingExpr->getType(),
1694 Types[i]->getType()))
1695 CompatIndices.push_back(i);
1696 }
1697
1698 // C11 6.5.1.1p2 "The controlling expression of a generic selection shall have
1699 // type compatible with at most one of the types named in its generic
1700 // association list."
1701 if (CompatIndices.size() > 1) {
1702 // We strip parens here because the controlling expression is typically
1703 // parenthesized in macro definitions.
1704 ControllingExpr = ControllingExpr->IgnoreParens();
1705 Diag(ControllingExpr->getBeginLoc(), diag::err_generic_sel_multi_match)
1706 << ControllingExpr->getSourceRange() << ControllingExpr->getType()
1707 << (unsigned)CompatIndices.size();
1708 for (unsigned I : CompatIndices) {
1709 Diag(Types[I]->getTypeLoc().getBeginLoc(),
1710 diag::note_compat_assoc)
1711 << Types[I]->getTypeLoc().getSourceRange()
1712 << Types[I]->getType();
1713 }
1714 return ExprError();
1715 }
1716
1717 // C11 6.5.1.1p2 "If a generic selection has no default generic association,
1718 // its controlling expression shall have type compatible with exactly one of
1719 // the types named in its generic association list."
1720 if (DefaultIndex == -1U && CompatIndices.size() == 0) {
1721 // We strip parens here because the controlling expression is typically
1722 // parenthesized in macro definitions.
1723 ControllingExpr = ControllingExpr->IgnoreParens();
1724 Diag(ControllingExpr->getBeginLoc(), diag::err_generic_sel_no_match)
1725 << ControllingExpr->getSourceRange() << ControllingExpr->getType();
1726 return ExprError();
1727 }
1728
1729 // C11 6.5.1.1p3 "If a generic selection has a generic association with a
1730 // type name that is compatible with the type of the controlling expression,
1731 // then the result expression of the generic selection is the expression
1732 // in that generic association. Otherwise, the result expression of the
1733 // generic selection is the expression in the default generic association."
1734 unsigned ResultIndex =
1735 CompatIndices.size() ? CompatIndices[0] : DefaultIndex;
1736
1737 return GenericSelectionExpr::Create(
1738 Context, KeyLoc, ControllingExpr, Types, Exprs, DefaultLoc, RParenLoc,
1739 ContainsUnexpandedParameterPack, ResultIndex);
1740}
1741
1742/// getUDSuffixLoc - Create a SourceLocation for a ud-suffix, given the
1743/// location of the token and the offset of the ud-suffix within it.
1744static SourceLocation getUDSuffixLoc(Sema &S, SourceLocation TokLoc,
1745 unsigned Offset) {
1746 return Lexer::AdvanceToTokenCharacter(TokLoc, Offset, S.getSourceManager(),
1747 S.getLangOpts());
1748}
1749
1750/// BuildCookedLiteralOperatorCall - A user-defined literal was found. Look up
1751/// the corresponding cooked (non-raw) literal operator, and build a call to it.
1752static ExprResult BuildCookedLiteralOperatorCall(Sema &S, Scope *Scope,
1753 IdentifierInfo *UDSuffix,
1754 SourceLocation UDSuffixLoc,
1755 ArrayRef<Expr*> Args,
1756 SourceLocation LitEndLoc) {
1757 assert(Args.size() <= 2 && "too many arguments for literal operator")(static_cast <bool> (Args.size() <= 2 && "too many arguments for literal operator"
) ? void (0) : __assert_fail ("Args.size() <= 2 && \"too many arguments for literal operator\""
, "clang/lib/Sema/SemaExpr.cpp", 1757, __extension__ __PRETTY_FUNCTION__
))
;
1758
1759 QualType ArgTy[2];
1760 for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
1761 ArgTy[ArgIdx] = Args[ArgIdx]->getType();
1762 if (ArgTy[ArgIdx]->isArrayType())
1763 ArgTy[ArgIdx] = S.Context.getArrayDecayedType(ArgTy[ArgIdx]);
1764 }
1765
1766 DeclarationName OpName =
1767 S.Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
1768 DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
1769 OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
1770
1771 LookupResult R(S, OpName, UDSuffixLoc, Sema::LookupOrdinaryName);
1772 if (S.LookupLiteralOperator(Scope, R, llvm::makeArrayRef(ArgTy, Args.size()),
1773 /*AllowRaw*/ false, /*AllowTemplate*/ false,
1774 /*AllowStringTemplatePack*/ false,
1775 /*DiagnoseMissing*/ true) == Sema::LOLR_Error)
1776 return ExprError();
1777
1778 return S.BuildLiteralOperatorCall(R, OpNameInfo, Args, LitEndLoc);
1779}
1780
1781/// ActOnStringLiteral - The specified tokens were lexed as pasted string
1782/// fragments (e.g. "foo" "bar" L"baz"). The result string has to handle string
1783/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
1784/// multiple tokens. However, the common case is that StringToks points to one
1785/// string.
1786///
1787ExprResult
1788Sema::ActOnStringLiteral(ArrayRef<Token> StringToks, Scope *UDLScope) {
1789 assert(!StringToks.empty() && "Must have at least one string!")(static_cast <bool> (!StringToks.empty() && "Must have at least one string!"
) ? void (0) : __assert_fail ("!StringToks.empty() && \"Must have at least one string!\""
, "clang/lib/Sema/SemaExpr.cpp", 1789, __extension__ __PRETTY_FUNCTION__
))
;
1790
1791 StringLiteralParser Literal(StringToks, PP);
1792 if (Literal.hadError)
1793 return ExprError();
1794
1795 SmallVector<SourceLocation, 4> StringTokLocs;
1796 for (const Token &Tok : StringToks)
1797 StringTokLocs.push_back(Tok.getLocation());
1798
1799 QualType CharTy = Context.CharTy;
1800 StringLiteral::StringKind Kind = StringLiteral::Ascii;
1801 if (Literal.isWide()) {
1802 CharTy = Context.getWideCharType();
1803 Kind = StringLiteral::Wide;
1804 } else if (Literal.isUTF8()) {
1805 if (getLangOpts().Char8)
1806 CharTy = Context.Char8Ty;
1807 Kind = StringLiteral::UTF8;
1808 } else if (Literal.isUTF16()) {
1809 CharTy = Context.Char16Ty;
1810 Kind = StringLiteral::UTF16;
1811 } else if (Literal.isUTF32()) {
1812 CharTy = Context.Char32Ty;
1813 Kind = StringLiteral::UTF32;
1814 } else if (Literal.isPascal()) {
1815 CharTy = Context.UnsignedCharTy;
1816 }
1817
1818 // Warn on initializing an array of char from a u8 string literal; this
1819 // becomes ill-formed in C++2a.
1820 if (getLangOpts().CPlusPlus && !getLangOpts().CPlusPlus20 &&
1821 !getLangOpts().Char8 && Kind == StringLiteral::UTF8) {
1822 Diag(StringTokLocs.front(), diag::warn_cxx20_compat_utf8_string);
1823
1824 // Create removals for all 'u8' prefixes in the string literal(s). This
1825 // ensures C++2a compatibility (but may change the program behavior when
1826 // built by non-Clang compilers for which the execution character set is
1827 // not always UTF-8).
1828 auto RemovalDiag = PDiag(diag::note_cxx20_compat_utf8_string_remove_u8);
1829 SourceLocation RemovalDiagLoc;
1830 for (const Token &Tok : StringToks) {
1831 if (Tok.getKind() == tok::utf8_string_literal) {
1832 if (RemovalDiagLoc.isInvalid())
1833 RemovalDiagLoc = Tok.getLocation();
1834 RemovalDiag << FixItHint::CreateRemoval(CharSourceRange::getCharRange(
1835 Tok.getLocation(),
1836 Lexer::AdvanceToTokenCharacter(Tok.getLocation(), 2,
1837 getSourceManager(), getLangOpts())));
1838 }
1839 }
1840 Diag(RemovalDiagLoc, RemovalDiag);
1841 }
1842
1843 QualType StrTy =
1844 Context.getStringLiteralArrayType(CharTy, Literal.GetNumStringChars());
1845
1846 // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
1847 StringLiteral *Lit = StringLiteral::Create(Context, Literal.GetString(),
1848 Kind, Literal.Pascal, StrTy,
1849 &StringTokLocs[0],
1850 StringTokLocs.size());
1851 if (Literal.getUDSuffix().empty())
1852 return Lit;
1853
1854 // We're building a user-defined literal.
1855 IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
1856 SourceLocation UDSuffixLoc =
1857 getUDSuffixLoc(*this, StringTokLocs[Literal.getUDSuffixToken()],
1858 Literal.getUDSuffixOffset());
1859
1860 // Make sure we're allowed user-defined literals here.
1861 if (!UDLScope)
1862 return ExprError(Diag(UDSuffixLoc, diag::err_invalid_string_udl));
1863
1864 // C++11 [lex.ext]p5: The literal L is treated as a call of the form
1865 // operator "" X (str, len)
1866 QualType SizeType = Context.getSizeType();
1867
1868 DeclarationName OpName =
1869 Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
1870 DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
1871 OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
1872
1873 QualType ArgTy[] = {
1874 Context.getArrayDecayedType(StrTy), SizeType
1875 };
1876
1877 LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
1878 switch (LookupLiteralOperator(UDLScope, R, ArgTy,
1879 /*AllowRaw*/ false, /*AllowTemplate*/ true,
1880 /*AllowStringTemplatePack*/ true,
1881 /*DiagnoseMissing*/ true, Lit)) {
1882
1883 case LOLR_Cooked: {
1884 llvm::APInt Len(Context.getIntWidth(SizeType), Literal.GetNumStringChars());
1885 IntegerLiteral *LenArg = IntegerLiteral::Create(Context, Len, SizeType,
1886 StringTokLocs[0]);
1887 Expr *Args[] = { Lit, LenArg };
1888
1889 return BuildLiteralOperatorCall(R, OpNameInfo, Args, StringTokLocs.back());
1890 }
1891
1892 case LOLR_Template: {
1893 TemplateArgumentListInfo ExplicitArgs;
1894 TemplateArgument Arg(Lit);
1895 TemplateArgumentLocInfo ArgInfo(Lit);
1896 ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
1897 return BuildLiteralOperatorCall(R, OpNameInfo, None, StringTokLocs.back(),
1898 &ExplicitArgs);
1899 }
1900
1901 case LOLR_StringTemplatePack: {
1902 TemplateArgumentListInfo ExplicitArgs;
1903
1904 unsigned CharBits = Context.getIntWidth(CharTy);
1905 bool CharIsUnsigned = CharTy->isUnsignedIntegerType();
1906 llvm::APSInt Value(CharBits, CharIsUnsigned);
1907
1908 TemplateArgument TypeArg(CharTy);
1909 TemplateArgumentLocInfo TypeArgInfo(Context.getTrivialTypeSourceInfo(CharTy));
1910 ExplicitArgs.addArgument(TemplateArgumentLoc(TypeArg, TypeArgInfo));
1911
1912 for (unsigned I = 0, N = Lit->getLength(); I != N; ++I) {
1913 Value = Lit->getCodeUnit(I);
1914 TemplateArgument Arg(Context, Value, CharTy);
1915 TemplateArgumentLocInfo ArgInfo;
1916 ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
1917 }
1918 return BuildLiteralOperatorCall(R, OpNameInfo, None, StringTokLocs.back(),
1919 &ExplicitArgs);
1920 }
1921 case LOLR_Raw:
1922 case LOLR_ErrorNoDiagnostic:
1923 llvm_unreachable("unexpected literal operator lookup result")::llvm::llvm_unreachable_internal("unexpected literal operator lookup result"
, "clang/lib/Sema/SemaExpr.cpp", 1923)
;
1924 case LOLR_Error:
1925 return ExprError();
1926 }
1927 llvm_unreachable("unexpected literal operator lookup result")::llvm::llvm_unreachable_internal("unexpected literal operator lookup result"
, "clang/lib/Sema/SemaExpr.cpp", 1927)
;
1928}
1929
1930DeclRefExpr *
1931Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
1932 SourceLocation Loc,
1933 const CXXScopeSpec *SS) {
1934 DeclarationNameInfo NameInfo(D->getDeclName(), Loc);
1935 return BuildDeclRefExpr(D, Ty, VK, NameInfo, SS);
1936}
1937
1938DeclRefExpr *
1939Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
1940 const DeclarationNameInfo &NameInfo,
1941 const CXXScopeSpec *SS, NamedDecl *FoundD,
1942 SourceLocation TemplateKWLoc,
1943 const TemplateArgumentListInfo *TemplateArgs) {
1944 NestedNameSpecifierLoc NNS =
1945 SS ? SS->getWithLocInContext(Context) : NestedNameSpecifierLoc();
1946 return BuildDeclRefExpr(D, Ty, VK, NameInfo, NNS, FoundD, TemplateKWLoc,
1947 TemplateArgs);
1948}
1949
1950// CUDA/HIP: Check whether a captured reference variable is referencing a
1951// host variable in a device or host device lambda.
1952static bool isCapturingReferenceToHostVarInCUDADeviceLambda(const Sema &S,
1953 VarDecl *VD) {
1954 if (!S.getLangOpts().CUDA || !VD->hasInit())
1955 return false;
1956 assert(VD->getType()->isReferenceType())(static_cast <bool> (VD->getType()->isReferenceType
()) ? void (0) : __assert_fail ("VD->getType()->isReferenceType()"
, "clang/lib/Sema/SemaExpr.cpp", 1956, __extension__ __PRETTY_FUNCTION__
))
;
1957
1958 // Check whether the reference variable is referencing a host variable.
1959 auto *DRE = dyn_cast<DeclRefExpr>(VD->getInit());
1960 if (!DRE)
1961 return false;
1962 auto *Referee = dyn_cast<VarDecl>(DRE->getDecl());
1963 if (!Referee || !Referee->hasGlobalStorage() ||
1964 Referee->hasAttr<CUDADeviceAttr>())
1965 return false;
1966
1967 // Check whether the current function is a device or host device lambda.
1968 // Check whether the reference variable is a capture by getDeclContext()
1969 // since refersToEnclosingVariableOrCapture() is not ready at this point.
1970 auto *MD = dyn_cast_or_null<CXXMethodDecl>(S.CurContext);
1971 if (MD && MD->getParent()->isLambda() &&
1972 MD->getOverloadedOperator() == OO_Call && MD->hasAttr<CUDADeviceAttr>() &&
1973 VD->getDeclContext() != MD)
1974 return true;
1975
1976 return false;
1977}
1978
1979NonOdrUseReason Sema::getNonOdrUseReasonInCurrentContext(ValueDecl *D) {
1980 // A declaration named in an unevaluated operand never constitutes an odr-use.
1981 if (isUnevaluatedContext())
1982 return NOUR_Unevaluated;
1983
1984 // C++2a [basic.def.odr]p4:
1985 // A variable x whose name appears as a potentially-evaluated expression e
1986 // is odr-used by e unless [...] x is a reference that is usable in
1987 // constant expressions.
1988 // CUDA/HIP:
1989 // If a reference variable referencing a host variable is captured in a
1990 // device or host device lambda, the value of the referee must be copied
1991 // to the capture and the reference variable must be treated as odr-use
1992 // since the value of the referee is not known at compile time and must
1993 // be loaded from the captured.
1994 if (VarDecl *VD = dyn_cast<VarDecl>(D)) {
1995 if (VD->getType()->isReferenceType() &&
1996 !(getLangOpts().OpenMP && isOpenMPCapturedDecl(D)) &&
1997 !isCapturingReferenceToHostVarInCUDADeviceLambda(*this, VD) &&
1998 VD->isUsableInConstantExpressions(Context))
1999 return NOUR_Constant;
2000 }
2001
2002 // All remaining non-variable cases constitute an odr-use. For variables, we
2003 // need to wait and see how the expression is used.
2004 return NOUR_None;
2005}
2006
2007/// BuildDeclRefExpr - Build an expression that references a
2008/// declaration that does not require a closure capture.
2009DeclRefExpr *
2010Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
2011 const DeclarationNameInfo &NameInfo,
2012 NestedNameSpecifierLoc NNS, NamedDecl *FoundD,
2013 SourceLocation TemplateKWLoc,
2014 const TemplateArgumentListInfo *TemplateArgs) {
2015 bool RefersToCapturedVariable =
2016 isa<VarDecl>(D) &&
2017 NeedToCaptureVariable(cast<VarDecl>(D), NameInfo.getLoc());
2018
2019 DeclRefExpr *E = DeclRefExpr::Create(
2020 Context, NNS, TemplateKWLoc, D, RefersToCapturedVariable, NameInfo, Ty,
2021 VK, FoundD, TemplateArgs, getNonOdrUseReasonInCurrentContext(D));
2022 MarkDeclRefReferenced(E);
2023
2024 // C++ [except.spec]p17:
2025 // An exception-specification is considered to be needed when:
2026 // - in an expression, the function is the unique lookup result or
2027 // the selected member of a set of overloaded functions.
2028 //
2029 // We delay doing this until after we've built the function reference and
2030 // marked it as used so that:
2031 // a) if the function is defaulted, we get errors from defining it before /
2032 // instead of errors from computing its exception specification, and
2033 // b) if the function is a defaulted comparison, we can use the body we
2034 // build when defining it as input to the exception specification
2035 // computation rather than computing a new body.
2036 if (auto *FPT = Ty->getAs<FunctionProtoType>()) {
2037 if (isUnresolvedExceptionSpec(FPT->getExceptionSpecType())) {
2038 if (auto *NewFPT = ResolveExceptionSpec(NameInfo.getLoc(), FPT))
2039 E->setType(Context.getQualifiedType(NewFPT, Ty.getQualifiers()));
2040 }
2041 }
2042
2043 if (getLangOpts().ObjCWeak && isa<VarDecl>(D) &&
2044 Ty.getObjCLifetime() == Qualifiers::OCL_Weak && !isUnevaluatedContext() &&
2045 !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, E->getBeginLoc()))
2046 getCurFunction()->recordUseOfWeak(E);
2047
2048 FieldDecl *FD = dyn_cast<FieldDecl>(D);
2049 if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(D))
2050 FD = IFD->getAnonField();
2051 if (FD) {
2052 UnusedPrivateFields.remove(FD);
2053 // Just in case we're building an illegal pointer-to-member.
2054 if (FD->isBitField())
2055 E->setObjectKind(OK_BitField);
2056 }
2057
2058 // C++ [expr.prim]/8: The expression [...] is a bit-field if the identifier
2059 // designates a bit-field.
2060 if (auto *BD = dyn_cast<BindingDecl>(D))
2061 if (auto *BE = BD->getBinding())
2062 E->setObjectKind(BE->getObjectKind());
2063
2064 return E;
2065}
2066
2067/// Decomposes the given name into a DeclarationNameInfo, its location, and
2068/// possibly a list of template arguments.
2069///
2070/// If this produces template arguments, it is permitted to call
2071/// DecomposeTemplateName.
2072///
2073/// This actually loses a lot of source location information for
2074/// non-standard name kinds; we should consider preserving that in
2075/// some way.
2076void
2077Sema::DecomposeUnqualifiedId(const UnqualifiedId &Id,
2078 TemplateArgumentListInfo &Buffer,
2079 DeclarationNameInfo &NameInfo,
2080 const TemplateArgumentListInfo *&TemplateArgs) {
2081 if (Id.getKind() == UnqualifiedIdKind::IK_TemplateId) {
2082 Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
2083 Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
2084
2085 ASTTemplateArgsPtr TemplateArgsPtr(Id.TemplateId->getTemplateArgs(),
2086 Id.TemplateId->NumArgs);
2087 translateTemplateArguments(TemplateArgsPtr, Buffer);
2088
2089 TemplateName TName = Id.TemplateId->Template.get();
2090 SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc;
2091 NameInfo = Context.getNameForTemplate(TName, TNameLoc);
2092 TemplateArgs = &Buffer;
2093 } else {
2094 NameInfo = GetNameFromUnqualifiedId(Id);
2095 TemplateArgs = nullptr;
2096 }
2097}
2098
2099static void emitEmptyLookupTypoDiagnostic(
2100 const TypoCorrection &TC, Sema &SemaRef, const CXXScopeSpec &SS,
2101 DeclarationName Typo, SourceLocation TypoLoc, ArrayRef<Expr *> Args,
2102 unsigned DiagnosticID, unsigned DiagnosticSuggestID) {
2103 DeclContext *Ctx =
2104 SS.isEmpty() ? nullptr : SemaRef.computeDeclContext(SS, false);
2105 if (!TC) {
2106 // Emit a special diagnostic for failed member lookups.
2107 // FIXME: computing the declaration context might fail here (?)
2108 if (Ctx)
2109 SemaRef.Diag(TypoLoc, diag::err_no_member) << Typo << Ctx
2110 << SS.getRange();
2111 else
2112 SemaRef.Diag(TypoLoc, DiagnosticID) << Typo;
2113 return;
2114 }
2115
2116 std::string CorrectedStr = TC.getAsString(SemaRef.getLangOpts());
2117 bool DroppedSpecifier =
2118 TC.WillReplaceSpecifier() && Typo.getAsString() == CorrectedStr;
2119 unsigned NoteID = TC.getCorrectionDeclAs<ImplicitParamDecl>()
2120 ? diag::note_implicit_param_decl
2121 : diag::note_previous_decl;
2122 if (!Ctx)
2123 SemaRef.diagnoseTypo(TC, SemaRef.PDiag(DiagnosticSuggestID) << Typo,
2124 SemaRef.PDiag(NoteID));
2125 else
2126 SemaRef.diagnoseTypo(TC, SemaRef.PDiag(diag::err_no_member_suggest)
2127 << Typo << Ctx << DroppedSpecifier
2128 << SS.getRange(),
2129 SemaRef.PDiag(NoteID));
2130}
2131
2132/// Diagnose a lookup that found results in an enclosing class during error
2133/// recovery. This usually indicates that the results were found in a dependent
2134/// base class that could not be searched as part of a template definition.
2135/// Always issues a diagnostic (though this may be only a warning in MS
2136/// compatibility mode).
2137///
2138/// Return \c true if the error is unrecoverable, or \c false if the caller
2139/// should attempt to recover using these lookup results.
2140bool Sema::DiagnoseDependentMemberLookup(LookupResult &R) {
2141 // During a default argument instantiation the CurContext points
2142 // to a CXXMethodDecl; but we can't apply a this-> fixit inside a
2143 // function parameter list, hence add an explicit check.
2144 bool isDefaultArgument =
2145 !CodeSynthesisContexts.empty() &&
2146 CodeSynthesisContexts.back().Kind ==
2147 CodeSynthesisContext::DefaultFunctionArgumentInstantiation;
2148 CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
2149 bool isInstance = CurMethod && CurMethod->isInstance() &&
2150 R.getNamingClass() == CurMethod->getParent() &&
2151 !isDefaultArgument;
2152
2153 // There are two ways we can find a class-scope declaration during template
2154 // instantiation that we did not find in the template definition: if it is a
2155 // member of a dependent base class, or if it is declared after the point of
2156 // use in the same class. Distinguish these by comparing the class in which
2157 // the member was found to the naming class of the lookup.
2158 unsigned DiagID = diag::err_found_in_dependent_base;
2159 unsigned NoteID = diag::note_member_declared_at;
2160 if (R.getRepresentativeDecl()->getDeclContext()->Equals(R.getNamingClass())) {
2161 DiagID = getLangOpts().MSVCCompat ? diag::ext_found_later_in_class
2162 : diag::err_found_later_in_class;
2163 } else if (getLangOpts().MSVCCompat) {
2164 DiagID = diag::ext_found_in_dependent_base;
2165 NoteID = diag::note_dependent_member_use;
2166 }
2167
2168 if (isInstance) {
2169 // Give a code modification hint to insert 'this->'.
2170 Diag(R.getNameLoc(), DiagID)
2171 << R.getLookupName()
2172 << FixItHint::CreateInsertion(R.getNameLoc(), "this->");
2173 CheckCXXThisCapture(R.getNameLoc());
2174 } else {
2175 // FIXME: Add a FixItHint to insert 'Base::' or 'Derived::' (assuming
2176 // they're not shadowed).
2177 Diag(R.getNameLoc(), DiagID) << R.getLookupName();
2178 }
2179
2180 for (NamedDecl *D : R)
2181 Diag(D->getLocation(), NoteID);
2182
2183 // Return true if we are inside a default argument instantiation
2184 // and the found name refers to an instance member function, otherwise
2185 // the caller will try to create an implicit member call and this is wrong
2186 // for default arguments.
2187 //
2188 // FIXME: Is this special case necessary? We could allow the caller to
2189 // diagnose this.
2190 if (isDefaultArgument && ((*R.begin())->isCXXInstanceMember())) {
2191 Diag(R.getNameLoc(), diag::err_member_call_without_object);
2192 return true;
2193 }
2194
2195 // Tell the callee to try to recover.
2196 return false;
2197}
2198
2199/// Diagnose an empty lookup.
2200///
2201/// \return false if new lookup candidates were found
2202bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
2203 CorrectionCandidateCallback &CCC,
2204 TemplateArgumentListInfo *ExplicitTemplateArgs,
2205 ArrayRef<Expr *> Args, TypoExpr **Out) {
2206 DeclarationName Name = R.getLookupName();
2207
2208 unsigned diagnostic = diag::err_undeclared_var_use;
2209 unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
2210 if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
2211 Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
2212 Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
2213 diagnostic = diag::err_undeclared_use;
2214 diagnostic_suggest = diag::err_undeclared_use_suggest;
2215 }
2216
2217 // If the original lookup was an unqualified lookup, fake an
2218 // unqualified lookup. This is useful when (for example) the
2219 // original lookup would not have found something because it was a
2220 // dependent name.
2221 DeclContext *DC = SS.isEmpty() ? CurContext : nullptr;
2222 while (DC) {
2223 if (isa<CXXRecordDecl>(DC)) {
2224 LookupQualifiedName(R, DC);
2225
2226 if (!R.empty()) {
2227 // Don't give errors about ambiguities in this lookup.
2228 R.suppressDiagnostics();
2229
2230 // If there's a best viable function among the results, only mention
2231 // that one in the notes.
2232 OverloadCandidateSet Candidates(R.getNameLoc(),
2233 OverloadCandidateSet::CSK_Normal);
2234 AddOverloadedCallCandidates(R, ExplicitTemplateArgs, Args, Candidates);
2235 OverloadCandidateSet::iterator Best;
2236 if (Candidates.BestViableFunction(*this, R.getNameLoc(), Best) ==
2237 OR_Success) {
2238 R.clear();
2239 R.addDecl(Best->FoundDecl.getDecl(), Best->FoundDecl.getAccess());
2240 R.resolveKind();
2241 }
2242
2243 return DiagnoseDependentMemberLookup(R);
2244 }
2245
2246 R.clear();
2247 }
2248
2249 DC = DC->getLookupParent();
2250 }
2251
2252 // We didn't find anything, so try to correct for a typo.
2253 TypoCorrection Corrected;
2254 if (S && Out) {
2255 SourceLocation TypoLoc = R.getNameLoc();
2256 assert(!ExplicitTemplateArgs &&(static_cast <bool> (!ExplicitTemplateArgs && "Diagnosing an empty lookup with explicit template args!"
) ? void (0) : __assert_fail ("!ExplicitTemplateArgs && \"Diagnosing an empty lookup with explicit template args!\""
, "clang/lib/Sema/SemaExpr.cpp", 2257, __extension__ __PRETTY_FUNCTION__
))
2257 "Diagnosing an empty lookup with explicit template args!")(static_cast <bool> (!ExplicitTemplateArgs && "Diagnosing an empty lookup with explicit template args!"
) ? void (0) : __assert_fail ("!ExplicitTemplateArgs && \"Diagnosing an empty lookup with explicit template args!\""
, "clang/lib/Sema/SemaExpr.cpp", 2257, __extension__ __PRETTY_FUNCTION__
))
;
2258 *Out = CorrectTypoDelayed(
2259 R.getLookupNameInfo(), R.getLookupKind(), S, &SS, CCC,
2260 [=](const TypoCorrection &TC) {
2261 emitEmptyLookupTypoDiagnostic(TC, *this, SS, Name, TypoLoc, Args,
2262 diagnostic, diagnostic_suggest);
2263 },
2264 nullptr, CTK_ErrorRecovery);
2265 if (*Out)
2266 return true;
2267 } else if (S &&
2268 (Corrected = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(),
2269 S, &SS, CCC, CTK_ErrorRecovery))) {
2270 std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
2271 bool DroppedSpecifier =
2272 Corrected.WillReplaceSpecifier() && Name.getAsString() == CorrectedStr;
2273 R.setLookupName(Corrected.getCorrection());
2274
2275 bool AcceptableWithRecovery = false;
2276 bool AcceptableWithoutRecovery = false;
2277 NamedDecl *ND = Corrected.getFoundDecl();
2278 if (ND) {
2279 if (Corrected.isOverloaded()) {
2280 OverloadCandidateSet OCS(R.getNameLoc(),
2281 OverloadCandidateSet::CSK_Normal);
2282 OverloadCandidateSet::iterator Best;
2283 for (NamedDecl *CD : Corrected) {
2284 if (FunctionTemplateDecl *FTD =
2285 dyn_cast<FunctionTemplateDecl>(CD))
2286 AddTemplateOverloadCandidate(
2287 FTD, DeclAccessPair::make(FTD, AS_none), ExplicitTemplateArgs,
2288 Args, OCS);
2289 else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(CD))
2290 if (!ExplicitTemplateArgs || ExplicitTemplateArgs->size() == 0)
2291 AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none),
2292 Args, OCS);
2293 }
2294 switch (OCS.BestViableFunction(*this, R.getNameLoc(), Best)) {
2295 case OR_Success:
2296 ND = Best->FoundDecl;
2297 Corrected.setCorrectionDecl(ND);
2298 break;
2299 default:
2300 // FIXME: Arbitrarily pick the first declaration for the note.
2301 Corrected.setCorrectionDecl(ND);
2302 break;
2303 }
2304 }
2305 R.addDecl(ND);
2306 if (getLangOpts().CPlusPlus && ND->isCXXClassMember()) {
2307 CXXRecordDecl *Record = nullptr;
2308 if (Corrected.getCorrectionSpecifier()) {
2309 const Type *Ty = Corrected.getCorrectionSpecifier()->getAsType();
2310 Record = Ty->getAsCXXRecordDecl();
2311 }
2312 if (!Record)
2313 Record = cast<CXXRecordDecl>(
2314 ND->getDeclContext()->getRedeclContext());
2315 R.setNamingClass(Record);
2316 }
2317
2318 auto *UnderlyingND = ND->getUnderlyingDecl();
2319 AcceptableWithRecovery = isa<ValueDecl>(UnderlyingND) ||
2320 isa<FunctionTemplateDecl>(UnderlyingND);
2321 // FIXME: If we ended up with a typo for a type name or
2322 // Objective-C class name, we're in trouble because the parser
2323 // is in the wrong place to recover. Suggest the typo
2324 // correction, but don't make it a fix-it since we're not going
2325 // to recover well anyway.
2326 AcceptableWithoutRecovery = isa<TypeDecl>(UnderlyingND) ||
2327 getAsTypeTemplateDecl(UnderlyingND) ||
2328 isa<ObjCInterfaceDecl>(UnderlyingND);
2329 } else {
2330 // FIXME: We found a keyword. Suggest it, but don't provide a fix-it
2331 // because we aren't able to recover.
2332 AcceptableWithoutRecovery = true;
2333 }
2334
2335 if (AcceptableWithRecovery || AcceptableWithoutRecovery) {
2336 unsigned NoteID = Corrected.getCorrectionDeclAs<ImplicitParamDecl>()
2337 ? diag::note_implicit_param_decl
2338 : diag::note_previous_decl;
2339 if (SS.isEmpty())
2340 diagnoseTypo(Corrected, PDiag(diagnostic_suggest) << Name,
2341 PDiag(NoteID), AcceptableWithRecovery);
2342 else
2343 diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
2344 << Name << computeDeclContext(SS, false)
2345 << DroppedSpecifier << SS.getRange(),
2346 PDiag(NoteID), AcceptableWithRecovery);
2347
2348 // Tell the callee whether to try to recover.
2349 return !AcceptableWithRecovery;
2350 }
2351 }
2352 R.clear();
2353
2354 // Emit a special diagnostic for failed member lookups.
2355 // FIXME: computing the declaration context might fail here (?)
2356 if (!SS.isEmpty()) {
2357 Diag(R.getNameLoc(), diag::err_no_member)
2358 << Name << computeDeclContext(SS, false)
2359 << SS.getRange();
2360 return true;
2361 }
2362
2363 // Give up, we can't recover.
2364 Diag(R.getNameLoc(), diagnostic) << Name;
2365 return true;
2366}
2367
2368/// In Microsoft mode, if we are inside a template class whose parent class has
2369/// dependent base classes, and we can't resolve an unqualified identifier, then
2370/// assume the identifier is a member of a dependent base class. We can only
2371/// recover successfully in static methods, instance methods, and other contexts
2372/// where 'this' is available. This doesn't precisely match MSVC's
2373/// instantiation model, but it's close enough.
2374static Expr *
2375recoverFromMSUnqualifiedLookup(Sema &S, ASTContext &Context,
2376 DeclarationNameInfo &NameInfo,
2377 SourceLocation TemplateKWLoc,
2378 const TemplateArgumentListInfo *TemplateArgs) {
2379 // Only try to recover from lookup into dependent bases in static methods or
2380 // contexts where 'this' is available.
2381 QualType ThisType = S.getCurrentThisType();
2382 const CXXRecordDecl *RD = nullptr;
2383 if (!ThisType.isNull())
2384 RD = ThisType->getPointeeType()->getAsCXXRecordDecl();
2385 else if (auto *MD = dyn_cast<CXXMethodDecl>(S.CurContext))
2386 RD = MD->getParent();
2387 if (!RD || !RD->hasAnyDependentBases())
2388 return nullptr;
2389
2390 // Diagnose this as unqualified lookup into a dependent base class. If 'this'
2391 // is available, suggest inserting 'this->' as a fixit.
2392 SourceLocation Loc = NameInfo.getLoc();
2393 auto DB = S.Diag(Loc, diag::ext_undeclared_unqual_id_with_dependent_base);
2394 DB << NameInfo.getName() << RD;
2395
2396 if (!ThisType.isNull()) {
2397 DB << FixItHint::CreateInsertion(Loc, "this->");
2398 return CXXDependentScopeMemberExpr::Create(
2399 Context, /*This=*/nullptr, ThisType, /*IsArrow=*/true,
2400 /*Op=*/SourceLocation(), NestedNameSpecifierLoc(), TemplateKWLoc,
2401 /*FirstQualifierFoundInScope=*/nullptr, NameInfo, TemplateArgs);
2402 }
2403
2404 // Synthesize a fake NNS that points to the derived class. This will
2405 // perform name lookup during template instantiation.
2406 CXXScopeSpec SS;
2407 auto *NNS =
2408 NestedNameSpecifier::Create(Context, nullptr, true, RD->getTypeForDecl());
2409 SS.MakeTrivial(Context, NNS, SourceRange(Loc, Loc));
2410 return DependentScopeDeclRefExpr::Create(
2411 Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
2412 TemplateArgs);
2413}
2414
2415ExprResult
2416Sema::ActOnIdExpression(Scope *S, CXXScopeSpec &SS,
2417 SourceLocation TemplateKWLoc, UnqualifiedId &Id,
2418 bool HasTrailingLParen, bool IsAddressOfOperand,
2419 CorrectionCandidateCallback *CCC,
2420 bool IsInlineAsmIdentifier, Token *KeywordReplacement) {
2421 assert(!(IsAddressOfOperand && HasTrailingLParen) &&(static_cast <bool> (!(IsAddressOfOperand && HasTrailingLParen
) && "cannot be direct & operand and have a trailing lparen"
) ? void (0) : __assert_fail ("!(IsAddressOfOperand && HasTrailingLParen) && \"cannot be direct & operand and have a trailing lparen\""
, "clang/lib/Sema/SemaExpr.cpp", 2422, __extension__ __PRETTY_FUNCTION__
))
2422 "cannot be direct & operand and have a trailing lparen")(static_cast <bool> (!(IsAddressOfOperand && HasTrailingLParen
) && "cannot be direct & operand and have a trailing lparen"
) ? void (0) : __assert_fail ("!(IsAddressOfOperand && HasTrailingLParen) && \"cannot be direct & operand and have a trailing lparen\""
, "clang/lib/Sema/SemaExpr.cpp", 2422, __extension__ __PRETTY_FUNCTION__
))
;
2423 if (SS.isInvalid())
2424 return ExprError();
2425
2426 TemplateArgumentListInfo TemplateArgsBuffer;
2427
2428 // Decompose the UnqualifiedId into the following data.
2429 DeclarationNameInfo NameInfo;
2430 const TemplateArgumentListInfo *TemplateArgs;
2431 DecomposeUnqualifiedId(Id, TemplateArgsBuffer, NameInfo, TemplateArgs);
2432
2433 DeclarationName Name = NameInfo.getName();
2434 IdentifierInfo *II = Name.getAsIdentifierInfo();
2435 SourceLocation NameLoc = NameInfo.getLoc();
2436
2437 if (II && II->isEditorPlaceholder()) {
2438 // FIXME: When typed placeholders are supported we can create a typed
2439 // placeholder expression node.
2440 return ExprError();
2441 }
2442
2443 // C++ [temp.dep.expr]p3:
2444 // An id-expression is type-dependent if it contains:
2445 // -- an identifier that was declared with a dependent type,
2446 // (note: handled after lookup)
2447 // -- a template-id that is dependent,
2448 // (note: handled in BuildTemplateIdExpr)
2449 // -- a conversion-function-id that specifies a dependent type,
2450 // -- a nested-name-specifier that contains a class-name that
2451 // names a dependent type.
2452 // Determine whether this is a member of an unknown specialization;
2453 // we need to handle these differently.
2454 bool DependentID = false;
2455 if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
2456 Name.getCXXNameType()->isDependentType()) {
2457 DependentID = true;
2458 } else if (SS.isSet()) {
2459 if (DeclContext *DC = computeDeclContext(SS, false)) {
2460 if (RequireCompleteDeclContext(SS, DC))
2461 return ExprError();
2462 } else {
2463 DependentID = true;
2464 }
2465 }
2466
2467 if (DependentID)
2468 return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2469 IsAddressOfOperand, TemplateArgs);
2470
2471 // Perform the required lookup.
2472 LookupResult R(*this, NameInfo,
2473 (Id.getKind() == UnqualifiedIdKind::IK_ImplicitSelfParam)
2474 ? LookupObjCImplicitSelfParam
2475 : LookupOrdinaryName);
2476 if (TemplateKWLoc.isValid() || TemplateArgs) {
2477 // Lookup the template name again to correctly establish the context in
2478 // which it was found. This is really unfortunate as we already did the
2479 // lookup to determine that it was a template name in the first place. If
2480 // this becomes a performance hit, we can work harder to preserve those
2481 // results until we get here but it's likely not worth it.
2482 bool MemberOfUnknownSpecialization;
2483 AssumedTemplateKind AssumedTemplate;
2484 if (LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false,
2485 MemberOfUnknownSpecialization, TemplateKWLoc,
2486 &AssumedTemplate))
2487 return ExprError();
2488
2489 if (MemberOfUnknownSpecialization ||
2490 (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation))
2491 return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2492 IsAddressOfOperand, TemplateArgs);
2493 } else {
2494 bool IvarLookupFollowUp = II && !SS.isSet() && getCurMethodDecl();
2495 LookupParsedName(R, S, &SS, !IvarLookupFollowUp);
2496
2497 // If the result might be in a dependent base class, this is a dependent
2498 // id-expression.
2499 if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
2500 return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2501 IsAddressOfOperand, TemplateArgs);
2502
2503 // If this reference is in an Objective-C method, then we need to do
2504 // some special Objective-C lookup, too.
2505 if (IvarLookupFollowUp) {
2506 ExprResult E(LookupInObjCMethod(R, S, II, true));
2507 if (E.isInvalid())
2508 return ExprError();
2509
2510 if (Expr *Ex = E.getAs<Expr>())
2511 return Ex;
2512 }
2513 }
2514
2515 if (R.isAmbiguous())
2516 return ExprError();
2517
2518 // This could be an implicitly declared function reference (legal in C90,
2519 // extension in C99, forbidden in C++).
2520 if (R.empty() && HasTrailingLParen && II && !getLangOpts().CPlusPlus) {
2521 NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
2522 if (D) R.addDecl(D);
2523 }
2524
2525 // Determine whether this name might be a candidate for
2526 // argument-dependent lookup.
2527 bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
2528
2529 if (R.empty() && !ADL) {
2530 if (SS.isEmpty() && getLangOpts().MSVCCompat) {
2531 if (Expr *E = recoverFromMSUnqualifiedLookup(*this, Context, NameInfo,
2532 TemplateKWLoc, TemplateArgs))
2533 return E;
2534 }
2535
2536 // Don't diagnose an empty lookup for inline assembly.
2537 if (IsInlineAsmIdentifier)
2538 return ExprError();
2539
2540 // If this name wasn't predeclared and if this is not a function
2541 // call, diagnose the problem.
2542 TypoExpr *TE = nullptr;
2543 DefaultFilterCCC DefaultValidator(II, SS.isValid() ? SS.getScopeRep()
2544 : nullptr);
2545 DefaultValidator.IsAddressOfOperand = IsAddressOfOperand;
2546 assert((!CCC || CCC->IsAddressOfOperand == IsAddressOfOperand) &&(static_cast <bool> ((!CCC || CCC->IsAddressOfOperand
== IsAddressOfOperand) && "Typo correction callback misconfigured"
) ? void (0) : __assert_fail ("(!CCC || CCC->IsAddressOfOperand == IsAddressOfOperand) && \"Typo correction callback misconfigured\""
, "clang/lib/Sema/SemaExpr.cpp", 2547, __extension__ __PRETTY_FUNCTION__
))
2547 "Typo correction callback misconfigured")(static_cast <bool> ((!CCC || CCC->IsAddressOfOperand
== IsAddressOfOperand) && "Typo correction callback misconfigured"
) ? void (0) : __assert_fail ("(!CCC || CCC->IsAddressOfOperand == IsAddressOfOperand) && \"Typo correction callback misconfigured\""
, "clang/lib/Sema/SemaExpr.cpp", 2547, __extension__ __PRETTY_FUNCTION__
))
;
2548 if (CCC) {
2549 // Make sure the callback knows what the typo being diagnosed is.
2550 CCC->setTypoName(II);
2551 if (SS.isValid())
2552 CCC->setTypoNNS(SS.getScopeRep());
2553 }
2554 // FIXME: DiagnoseEmptyLookup produces bad diagnostics if we're looking for
2555 // a template name, but we happen to have always already looked up the name
2556 // before we get here if it must be a template name.
2557 if (DiagnoseEmptyLookup(S, SS, R, CCC ? *CCC : DefaultValidator, nullptr,
2558 None, &TE)) {
2559 if (TE && KeywordReplacement) {
2560 auto &State = getTypoExprState(TE);
2561 auto BestTC = State.Consumer->getNextCorrection();
2562 if (BestTC.isKeyword()) {
2563 auto *II = BestTC.getCorrectionAsIdentifierInfo();
2564 if (State.DiagHandler)
2565 State.DiagHandler(BestTC);
2566 KeywordReplacement->startToken();
2567 KeywordReplacement->setKind(II->getTokenID());
2568 KeywordReplacement->setIdentifierInfo(II);
2569 KeywordReplacement->setLocation(BestTC.getCorrectionRange().getBegin());
2570 // Clean up the state associated with the TypoExpr, since it has
2571 // now been diagnosed (without a call to CorrectDelayedTyposInExpr).
2572 clearDelayedTypo(TE);
2573 // Signal that a correction to a keyword was performed by returning a
2574 // valid-but-null ExprResult.
2575 return (Expr*)nullptr;
2576 }
2577 State.Consumer->resetCorrectionStream();
2578 }
2579 return TE ? TE : ExprError();
2580 }
2581
2582 assert(!R.empty() &&(static_cast <bool> (!R.empty() && "DiagnoseEmptyLookup returned false but added no results"
) ? void (0) : __assert_fail ("!R.empty() && \"DiagnoseEmptyLookup returned false but added no results\""
, "clang/lib/Sema/SemaExpr.cpp", 2583, __extension__ __PRETTY_FUNCTION__
))
2583 "DiagnoseEmptyLookup returned false but added no results")(static_cast <bool> (!R.empty() && "DiagnoseEmptyLookup returned false but added no results"
) ? void (0) : __assert_fail ("!R.empty() && \"DiagnoseEmptyLookup returned false but added no results\""
, "clang/lib/Sema/SemaExpr.cpp", 2583, __extension__ __PRETTY_FUNCTION__
))
;
2584
2585 // If we found an Objective-C instance variable, let
2586 // LookupInObjCMethod build the appropriate expression to
2587 // reference the ivar.
2588 if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
2589 R.clear();
2590 ExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier()));
2591 // In a hopelessly buggy code, Objective-C instance variable
2592 // lookup fails and no expression will be built to reference it.
2593 if (!E.isInvalid() && !E.get())
2594 return ExprError();
2595 return E;
2596 }
2597 }
2598
2599 // This is guaranteed from this point on.
2600 assert(!R.empty() || ADL)(static_cast <bool> (!R.empty() || ADL) ? void (0) : __assert_fail
("!R.empty() || ADL", "clang/lib/Sema/SemaExpr.cpp", 2600, __extension__
__PRETTY_FUNCTION__))
;
2601
2602 // Check whether this might be a C++ implicit instance member access.
2603 // C++ [class.mfct.non-static]p3:
2604 // When an id-expression that is not part of a class member access
2605 // syntax and not used to form a pointer to member is used in the
2606 // body of a non-static member function of class X, if name lookup
2607 // resolves the name in the id-expression to a non-static non-type
2608 // member of some class C, the id-expression is transformed into a
2609 // class member access expression using (*this) as the
2610 // postfix-expression to the left of the . operator.
2611 //
2612 // But we don't actually need to do this for '&' operands if R
2613 // resolved to a function or overloaded function set, because the
2614 // expression is ill-formed if it actually works out to be a
2615 // non-static member function:
2616 //
2617 // C++ [expr.ref]p4:
2618 // Otherwise, if E1.E2 refers to a non-static member function. . .
2619 // [t]he expression can be used only as the left-hand operand of a
2620 // member function call.
2621 //
2622 // There are other safeguards against such uses, but it's important
2623 // to get this right here so that we don't end up making a
2624 // spuriously dependent expression if we're inside a dependent
2625 // instance method.
2626 if (!R.empty() && (*R.begin())->isCXXClassMember()) {
2627 bool MightBeImplicitMember;
2628 if (!IsAddressOfOperand)
2629 MightBeImplicitMember = true;
2630 else if (!SS.isEmpty())
2631 MightBeImplicitMember = false;
2632 else if (R.isOverloadedResult())
2633 MightBeImplicitMember = false;
2634 else if (R.isUnresolvableResult())
2635 MightBeImplicitMember = true;
2636 else
2637 MightBeImplicitMember = isa<FieldDecl>(R.getFoundDecl()) ||
2638 isa<IndirectFieldDecl>(R.getFoundDecl()) ||
2639 isa<MSPropertyDecl>(R.getFoundDecl());
2640
2641 if (MightBeImplicitMember)
2642 return BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc,
2643 R, TemplateArgs, S);
2644 }
2645
2646 if (TemplateArgs || TemplateKWLoc.isValid()) {
2647
2648 // In C++1y, if this is a variable template id, then check it
2649 // in BuildTemplateIdExpr().
2650 // The single lookup result must be a variable template declaration.
2651 if (Id.getKind() == UnqualifiedIdKind::IK_TemplateId && Id.TemplateId &&
2652 Id.TemplateId->Kind == TNK_Var_template) {
2653 assert(R.getAsSingle<VarTemplateDecl>() &&(static_cast <bool> (R.getAsSingle<VarTemplateDecl>
() && "There should only be one declaration found.") ?
void (0) : __assert_fail ("R.getAsSingle<VarTemplateDecl>() && \"There should only be one declaration found.\""
, "clang/lib/Sema/SemaExpr.cpp", 2654, __extension__ __PRETTY_FUNCTION__
))
2654 "There should only be one declaration found.")(static_cast <bool> (R.getAsSingle<VarTemplateDecl>
() && "There should only be one declaration found.") ?
void (0) : __assert_fail ("R.getAsSingle<VarTemplateDecl>() && \"There should only be one declaration found.\""
, "clang/lib/Sema/SemaExpr.cpp", 2654, __extension__ __PRETTY_FUNCTION__
))
;
2655 }
2656
2657 return BuildTemplateIdExpr(SS, TemplateKWLoc, R, ADL, TemplateArgs);
2658 }
2659
2660 return BuildDeclarationNameExpr(SS, R, ADL);
2661}
2662
2663/// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
2664/// declaration name, generally during template instantiation.
2665/// There's a large number of things which don't need to be done along
2666/// this path.
2667ExprResult Sema::BuildQualifiedDeclarationNameExpr(
2668 CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo,
2669 bool IsAddressOfOperand, const Scope *S, TypeSourceInfo **RecoveryTSI) {
2670 DeclContext *DC = computeDeclContext(SS, false);
2671 if (!DC)
2672 return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
2673 NameInfo, /*TemplateArgs=*/nullptr);
2674
2675 if (RequireCompleteDeclContext(SS, DC))
2676 return ExprError();
2677
2678 LookupResult R(*this, NameInfo, LookupOrdinaryName);
2679 LookupQualifiedName(R, DC);
2680
2681 if (R.isAmbiguous())
2682 return ExprError();
2683
2684 if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
2685 return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
2686 NameInfo, /*TemplateArgs=*/nullptr);
2687
2688 if (R.empty()) {
2689 // Don't diagnose problems with invalid record decl, the secondary no_member
2690 // diagnostic during template instantiation is likely bogus, e.g. if a class
2691 // is invalid because it's derived from an invalid base class, then missing
2692 // members were likely supposed to be inherited.
2693 if (const auto *CD = dyn_cast<CXXRecordDecl>(DC))
2694 if (CD->isInvalidDecl())
2695 return ExprError();
2696 Diag(NameInfo.getLoc(), diag::err_no_member)
2697 << NameInfo.getName() << DC << SS.getRange();
2698 return ExprError();
2699 }
2700
2701 if (const TypeDecl *TD = R.getAsSingle<TypeDecl>()) {
2702 // Diagnose a missing typename if this resolved unambiguously to a type in
2703 // a dependent context. If we can recover with a type, downgrade this to
2704 // a warning in Microsoft compatibility mode.
2705 unsigned DiagID = diag::err_typename_missing;
2706 if (RecoveryTSI && getLangOpts().MSVCCompat)
2707 DiagID = diag::ext_typename_missing;
2708 SourceLocation Loc = SS.getBeginLoc();
2709 auto D = Diag(Loc, DiagID);
2710 D << SS.getScopeRep() << NameInfo.getName().getAsString()
2711 << SourceRange(Loc, NameInfo.getEndLoc());
2712
2713 // Don't recover if the caller isn't expecting us to or if we're in a SFINAE
2714 // context.
2715 if (!RecoveryTSI)
2716 return ExprError();
2717
2718 // Only issue the fixit if we're prepared to recover.
2719 D << FixItHint::CreateInsertion(Loc, "typename ");
2720
2721 // Recover by pretending this was an elaborated type.
2722 QualType Ty = Context.getTypeDeclType(TD);
2723 TypeLocBuilder TLB;
2724 TLB.pushTypeSpec(Ty).setNameLoc(NameInfo.getLoc());
2725
2726 QualType ET = getElaboratedType(ETK_None, SS, Ty);
2727 ElaboratedTypeLoc QTL = TLB.push<ElaboratedTypeLoc>(ET);
2728 QTL.setElaboratedKeywordLoc(SourceLocation());
2729 QTL.setQualifierLoc(SS.getWithLocInContext(Context));
2730
2731 *RecoveryTSI = TLB.getTypeSourceInfo(Context, ET);
2732
2733 return ExprEmpty();
2734 }
2735
2736 // Defend against this resolving to an implicit member access. We usually
2737 // won't get here if this might be a legitimate a class member (we end up in
2738 // BuildMemberReferenceExpr instead), but this can be valid if we're forming
2739 // a pointer-to-member or in an unevaluated context in C++11.
2740 if (!R.empty() && (*R.begin())->isCXXClassMember() && !IsAddressOfOperand)
2741 return BuildPossibleImplicitMemberExpr(SS,
2742 /*TemplateKWLoc=*/SourceLocation(),
2743 R, /*TemplateArgs=*/nullptr, S);
2744
2745 return BuildDeclarationNameExpr(SS, R, /* ADL */ false);
2746}
2747
2748/// The parser has read a name in, and Sema has detected that we're currently
2749/// inside an ObjC method. Perform some additional checks and determine if we
2750/// should form a reference to an ivar.
2751///
2752/// Ideally, most of this would be done by lookup, but there's
2753/// actually quite a lot of extra work involved.
2754DeclResult Sema::LookupIvarInObjCMethod(LookupResult &Lookup, Scope *S,
2755 IdentifierInfo *II) {
2756 SourceLocation Loc = Lookup.getNameLoc();
2757 ObjCMethodDecl *CurMethod = getCurMethodDecl();
2758
2759 // Check for error condition which is already reported.
2760 if (!CurMethod)
2761 return DeclResult(true);
2762
2763 // There are two cases to handle here. 1) scoped lookup could have failed,
2764 // in which case we should look for an ivar. 2) scoped lookup could have
2765 // found a decl, but that decl is outside the current instance method (i.e.
2766 // a global variable). In these two cases, we do a lookup for an ivar with
2767 // this name, if the lookup sucedes, we replace it our current decl.
2768
2769 // If we're in a class method, we don't normally want to look for
2770 // ivars. But if we don't find anything else, and there's an
2771 // ivar, that's an error.
2772 bool IsClassMethod = CurMethod->isClassMethod();
2773
2774 bool LookForIvars;
2775 if (Lookup.empty())
2776 LookForIvars = true;
2777 else if (IsClassMethod)
2778 LookForIvars = false;
2779 else
2780 LookForIvars = (Lookup.isSingleResult() &&
2781 Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
2782 ObjCInterfaceDecl *IFace = nullptr;
2783 if (LookForIvars) {
2784 IFace = CurMethod->getClassInterface();
2785 ObjCInterfaceDecl *ClassDeclared;
2786 ObjCIvarDecl *IV = nullptr;
2787 if (IFace && (IV = IFace->lookupInstanceVariable(II, ClassDeclared))) {
2788 // Diagnose using an ivar in a class method.
2789 if (IsClassMethod) {
2790 Diag(Loc, diag::err_ivar_use_in_class_method) << IV->getDeclName();
2791 return DeclResult(true);
2792 }
2793
2794 // Diagnose the use of an ivar outside of the declaring class.
2795 if (IV->getAccessControl() == ObjCIvarDecl::Private &&
2796 !declaresSameEntity(ClassDeclared, IFace) &&
2797 !getLangOpts().DebuggerSupport)
2798 Diag(Loc, diag::err_private_ivar_access) << IV->getDeclName();
2799
2800 // Success.
2801 return IV;
2802 }
2803 } else if (CurMethod->isInstanceMethod()) {
2804 // We should warn if a local variable hides an ivar.
2805 if (ObjCInterfaceDecl *IFace = CurMethod->getClassInterface()) {
2806 ObjCInterfaceDecl *ClassDeclared;
2807 if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
2808 if (IV->getAccessControl() != ObjCIvarDecl::Private ||
2809 declaresSameEntity(IFace, ClassDeclared))
2810 Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
2811 }
2812 }
2813 } else if (Lookup.isSingleResult() &&
2814 Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod()) {
2815 // If accessing a stand-alone ivar in a class method, this is an error.
2816 if (const ObjCIvarDecl *IV =
2817 dyn_cast<ObjCIvarDecl>(Lookup.getFoundDecl())) {
2818 Diag(Loc, diag::err_ivar_use_in_class_method) << IV->getDeclName();
2819 return DeclResult(true);
2820 }
2821 }
2822
2823 // Didn't encounter an error, didn't find an ivar.
2824 return DeclResult(false);
2825}
2826
2827ExprResult Sema::BuildIvarRefExpr(Scope *S, SourceLocation Loc,
2828 ObjCIvarDecl *IV) {
2829 ObjCMethodDecl *CurMethod = getCurMethodDecl();
2830 assert(CurMethod && CurMethod->isInstanceMethod() &&(static_cast <bool> (CurMethod && CurMethod->
isInstanceMethod() && "should not reference ivar from this context"
) ? void (0) : __assert_fail ("CurMethod && CurMethod->isInstanceMethod() && \"should not reference ivar from this context\""
, "clang/lib/Sema/SemaExpr.cpp", 2831, __extension__ __PRETTY_FUNCTION__
))
2831 "should not reference ivar from this context")(static_cast <bool> (CurMethod && CurMethod->
isInstanceMethod() && "should not reference ivar from this context"
) ? void (0) : __assert_fail ("CurMethod && CurMethod->isInstanceMethod() && \"should not reference ivar from this context\""
, "clang/lib/Sema/SemaExpr.cpp", 2831, __extension__ __PRETTY_FUNCTION__
))
;
2832
2833 ObjCInterfaceDecl *IFace = CurMethod->getClassInterface();
2834 assert(IFace && "should not reference ivar from this context")(static_cast <bool> (IFace && "should not reference ivar from this context"
) ? void (0) : __assert_fail ("IFace && \"should not reference ivar from this context\""
, "clang/lib/Sema/SemaExpr.cpp", 2834, __extension__ __PRETTY_FUNCTION__
))
;
2835
2836 // If we're referencing an invalid decl, just return this as a silent
2837 // error node. The error diagnostic was already emitted on the decl.
2838 if (IV->isInvalidDecl())
2839 return ExprError();
2840
2841 // Check if referencing a field with __attribute__((deprecated)).
2842 if (DiagnoseUseOfDecl(IV, Loc))
2843 return ExprError();
2844
2845 // FIXME: This should use a new expr for a direct reference, don't
2846 // turn this into Self->ivar, just return a BareIVarExpr or something.
2847 IdentifierInfo &II = Context.Idents.get("self");
2848 UnqualifiedId SelfName;
2849 SelfName.setImplicitSelfParam(&II);
2850 CXXScopeSpec SelfScopeSpec;
2851 SourceLocation TemplateKWLoc;
2852 ExprResult SelfExpr =
2853 ActOnIdExpression(S, SelfScopeSpec, TemplateKWLoc, SelfName,
2854 /*HasTrailingLParen=*/false,
2855 /*IsAddressOfOperand=*/false);
2856 if (SelfExpr.isInvalid())
2857 return ExprError();
2858
2859 SelfExpr = DefaultLvalueConversion(SelfExpr.get());
2860 if (SelfExpr.isInvalid())
2861 return ExprError();
2862
2863 MarkAnyDeclReferenced(Loc, IV, true);
2864
2865 ObjCMethodFamily MF = CurMethod->getMethodFamily();
2866 if (MF != OMF_init && MF != OMF_dealloc && MF != OMF_finalize &&
2867 !IvarBacksCurrentMethodAccessor(IFace, CurMethod, IV))
2868 Diag(Loc, diag::warn_direct_ivar_access) << IV->getDeclName();
2869
2870 ObjCIvarRefExpr *Result = new (Context)
2871 ObjCIvarRefExpr(IV, IV->getUsageType(SelfExpr.get()->getType()), Loc,
2872 IV->getLocation(), SelfExpr.get(), true, true);
2873
2874 if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
2875 if (!isUnevaluatedContext() &&
2876 !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc))
2877 getCurFunction()->recordUseOfWeak(Result);
2878 }
2879 if (getLangOpts().ObjCAutoRefCount)
2880 if (const BlockDecl *BD = CurContext->getInnermostBlockDecl())
2881 ImplicitlyRetainedSelfLocs.push_back({Loc, BD});
2882
2883 return Result;
2884}
2885
2886/// The parser has read a name in, and Sema has detected that we're currently
2887/// inside an ObjC method. Perform some additional checks and determine if we
2888/// should form a reference to an ivar. If so, build an expression referencing
2889/// that ivar.
2890ExprResult
2891Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
2892 IdentifierInfo *II, bool AllowBuiltinCreation) {
2893 // FIXME: Integrate this lookup step into LookupParsedName.
2894 DeclResult Ivar = LookupIvarInObjCMethod(Lookup, S, II);
2895 if (Ivar.isInvalid())
2896 return ExprError();
2897 if (Ivar.isUsable())
2898 return BuildIvarRefExpr(S, Lookup.getNameLoc(),
2899 cast<ObjCIvarDecl>(Ivar.get()));
2900
2901 if (Lookup.empty() && II && AllowBuiltinCreation)
2902 LookupBuiltin(Lookup);
2903
2904 // Sentinel value saying that we didn't do anything special.
2905 return ExprResult(false);
2906}
2907
2908/// Cast a base object to a member's actual type.
2909///
2910/// There are two relevant checks:
2911///
2912/// C++ [class.access.base]p7:
2913///
2914/// If a class member access operator [...] is used to access a non-static
2915/// data member or non-static member function, the reference is ill-formed if
2916/// the left operand [...] cannot be implicitly converted to a pointer to the
2917/// naming class of the right operand.
2918///
2919/// C++ [expr.ref]p7:
2920///
2921/// If E2 is a non-static data member or a non-static member function, the
2922/// program is ill-formed if the class of which E2 is directly a member is an
2923/// ambiguous base (11.8) of the naming class (11.9.3) of E2.
2924///
2925/// Note that the latter check does not consider access; the access of the
2926/// "real" base class is checked as appropriate when checking the access of the
2927/// member name.
2928ExprResult
2929Sema::PerformObjectMemberConversion(Expr *From,
2930 NestedNameSpecifier *Qualifier,
2931 NamedDecl *FoundDecl,
2932 NamedDecl *Member) {
2933 CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext());
2934 if (!RD)
2935 return From;
2936
2937 QualType DestRecordType;
2938 QualType DestType;
2939 QualType FromRecordType;
2940 QualType FromType = From->getType();
2941 bool PointerConversions = false;
2942 if (isa<FieldDecl>(Member)) {
2943 DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD));
2944 auto FromPtrType = FromType->getAs<PointerType>();
2945 DestRecordType = Context.getAddrSpaceQualType(
2946 DestRecordType, FromPtrType
2947 ? FromType->getPointeeType().getAddressSpace()
2948 : FromType.getAddressSpace());
2949
2950 if (FromPtrType) {
2951 DestType = Context.getPointerType(DestRecordType);
2952 FromRecordType = FromPtrType->getPointeeType();
2953 PointerConversions = true;
2954 } else {
2955 DestType = DestRecordType;
2956 FromRecordType = FromType;
2957 }
2958 } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) {
2959 if (Method->isStatic())
2960 return From;
2961
2962 DestType = Method->getThisType();
2963 DestRecordType = DestType->getPointeeType();
2964
2965 if (FromType->getAs<PointerType>()) {
2966 FromRecordType = FromType->getPointeeType();
2967 PointerConversions = true;
2968 } else {
2969 FromRecordType = FromType;
2970 DestType = DestRecordType;
2971 }
2972
2973 LangAS FromAS = FromRecordType.getAddressSpace();
2974 LangAS DestAS = DestRecordType.getAddressSpace();
2975 if (FromAS != DestAS) {
2976 QualType FromRecordTypeWithoutAS =
2977 Context.removeAddrSpaceQualType(FromRecordType);
2978 QualType FromTypeWithDestAS =
2979 Context.getAddrSpaceQualType(FromRecordTypeWithoutAS, DestAS);
2980 if (PointerConversions)
2981 FromTypeWithDestAS = Context.getPointerType(FromTypeWithDestAS);
2982 From = ImpCastExprToType(From, FromTypeWithDestAS,
2983 CK_AddressSpaceConversion, From->getValueKind())
2984 .get();
2985 }
2986 } else {
2987 // No conversion necessary.
2988 return From;
2989 }
2990
2991 if (DestType->isDependentType() || FromType->isDependentType())
2992 return From;
2993
2994 // If the unqualified types are the same, no conversion is necessary.
2995 if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
2996 return From;
2997
2998 SourceRange FromRange = From->getSourceRange();
2999 SourceLocation FromLoc = FromRange.getBegin();
3000
3001 ExprValueKind VK = From->getValueKind();
3002
3003 // C++ [class.member.lookup]p8:
3004 // [...] Ambiguities can often be resolved by qualifying a name with its
3005 // class name.
3006 //
3007 // If the member was a qualified name and the qualified referred to a
3008 // specific base subobject type, we'll cast to that intermediate type
3009 // first and then to the object in which the member is declared. That allows
3010 // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
3011 //
3012 // class Base { public: int x; };
3013 // class Derived1 : public Base { };
3014 // class Derived2 : public Base { };
3015 // class VeryDerived : public Derived1, public Derived2 { void f(); };
3016 //
3017 // void VeryDerived::f() {
3018 // x = 17; // error: ambiguous base subobjects
3019 // Derived1::x = 17; // okay, pick the Base subobject of Derived1
3020 // }
3021 if (Qualifier && Qualifier->getAsType()) {
3022 QualType QType = QualType(Qualifier->getAsType(), 0);
3023 assert(QType->isRecordType() && "lookup done with non-record type")(static_cast <bool> (QType->isRecordType() &&
"lookup done with non-record type") ? void (0) : __assert_fail
("QType->isRecordType() && \"lookup done with non-record type\""
, "clang/lib/Sema/SemaExpr.cpp", 3023, __extension__ __PRETTY_FUNCTION__
))
;
3024
3025 QualType QRecordType = QualType(QType->getAs<RecordType>(), 0);
3026
3027 // In C++98, the qualifier type doesn't actually have to be a base
3028 // type of the object type, in which case we just ignore it.
3029 // Otherwise build the appropriate casts.
3030 if (IsDerivedFrom(FromLoc, FromRecordType, QRecordType)) {
3031 CXXCastPath BasePath;
3032 if (CheckDerivedToBaseConversion(FromRecordType, QRecordType,
3033 FromLoc, FromRange, &BasePath))
3034 return ExprError();
3035
3036 if (PointerConversions)
3037 QType = Context.getPointerType(QType);
3038 From = ImpCastExprToType(From, QType, CK_UncheckedDerivedToBase,
3039 VK, &BasePath).get();
3040
3041 FromType = QType;
3042 FromRecordType = QRecordType;
3043
3044 // If the qualifier type was the same as the destination type,
3045 // we're done.
3046 if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
3047 return From;
3048 }
3049 }
3050
3051 CXXCastPath BasePath;
3052 if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType,
3053 FromLoc, FromRange, &BasePath,
3054 /*IgnoreAccess=*/true))
3055 return ExprError();
3056
3057 return ImpCastExprToType(From, DestType, CK_UncheckedDerivedToBase,
3058 VK, &BasePath);
3059}
3060
3061bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
3062 const LookupResult &R,
3063 bool HasTrailingLParen) {
3064 // Only when used directly as the postfix-expression of a call.
3065 if (!HasTrailingLParen)
3066 return false;
3067
3068 // Never if a scope specifier was provided.
3069 if (SS.isSet())
3070 return false;
3071
3072 // Only in C++ or ObjC++.
3073 if (!getLangOpts().CPlusPlus)
3074 return false;
3075
3076 // Turn off ADL when we find certain kinds of declarations during
3077 // normal lookup:
3078 for (NamedDecl *D : R) {
3079 // C++0x [basic.lookup.argdep]p3:
3080 // -- a declaration of a class member
3081 // Since using decls preserve this property, we check this on the
3082 // original decl.
3083 if (D->isCXXClassMember())
3084 return false;
3085
3086 // C++0x [basic.lookup.argdep]p3:
3087 // -- a block-scope function declaration that is not a
3088 // using-declaration
3089 // NOTE: we also trigger this for function templates (in fact, we
3090 // don't check the decl type at all, since all other decl types
3091 // turn off ADL anyway).
3092 if (isa<UsingShadowDecl>(D))
3093 D = cast<UsingShadowDecl>(D)->getTargetDecl();
3094 else if (D->getLexicalDeclContext()->isFunctionOrMethod())
3095 return false;
3096
3097 // C++0x [basic.lookup.argdep]p3:
3098 // -- a declaration that is neither a function or a function
3099 // template
3100 // And also for builtin functions.
3101 if (isa<FunctionDecl>(D)) {
3102 FunctionDecl *FDecl = cast<FunctionDecl>(D);
3103
3104 // But also builtin functions.
3105 if (FDecl->getBuiltinID() && FDecl->isImplicit())
3106 return false;
3107 } else if (!isa<FunctionTemplateDecl>(D))
3108 return false;
3109 }
3110
3111 return true;
3112}
3113
3114
3115/// Diagnoses obvious problems with the use of the given declaration
3116/// as an expression. This is only actually called for lookups that
3117/// were not overloaded, and it doesn't promise that the declaration
3118/// will in fact be used.
3119static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) {
3120 if (D->isInvalidDecl())
3121 return true;
3122
3123 if (isa<TypedefNameDecl>(D)) {
3124 S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
3125 return true;
3126 }
3127
3128 if (isa<ObjCInterfaceDecl>(D)) {
3129 S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
3130 return true;
3131 }
3132
3133 if (isa<NamespaceDecl>(D)) {
3134 S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
3135 return true;
3136 }
3137
3138 return false;
3139}
3140
3141// Certain multiversion types should be treated as overloaded even when there is
3142// only one result.
3143static bool ShouldLookupResultBeMultiVersionOverload(const LookupResult &R) {
3144 assert(R.isSingleResult() && "Expected only a single result")(static_cast <bool> (R.isSingleResult() && "Expected only a single result"
) ? void (0) : __assert_fail ("R.isSingleResult() && \"Expected only a single result\""
, "clang/lib/Sema/SemaExpr.cpp", 3144, __extension__ __PRETTY_FUNCTION__
))
;
3145 const auto *FD = dyn_cast<FunctionDecl>(R.getFoundDecl());
3146 return FD &&
3147 (FD->isCPUDispatchMultiVersion() || FD->isCPUSpecificMultiVersion());
3148}
3149
3150ExprResult Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
3151 LookupResult &R, bool NeedsADL,
3152 bool AcceptInvalidDecl) {
3153 // If this is a single, fully-resolved result and we don't need ADL,
3154 // just build an ordinary singleton decl ref.
3155 if (!NeedsADL && R.isSingleResult() &&
3156 !R.getAsSingle<FunctionTemplateDecl>() &&
3157 !ShouldLookupResultBeMultiVersionOverload(R))
3158 return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), R.getFoundDecl(),
3159 R.getRepresentativeDecl(), nullptr,
3160 AcceptInvalidDecl);
3161
3162 // We only need to check the declaration if there's exactly one
3163 // result, because in the overloaded case the results can only be
3164 // functions and function templates.
3165 if (R.isSingleResult() && !ShouldLookupResultBeMultiVersionOverload(R) &&
3166 CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl()))
3167 return ExprError();
3168
3169 // Otherwise, just build an unresolved lookup expression. Suppress
3170 // any lookup-related diagnostics; we'll hash these out later, when
3171 // we've picked a target.
3172 R.suppressDiagnostics();
3173
3174 UnresolvedLookupExpr *ULE
3175 = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
3176 SS.getWithLocInContext(Context),
3177 R.getLookupNameInfo(),
3178 NeedsADL, R.isOverloadedResult(),
3179 R.begin(), R.end());
3180
3181 return ULE;
3182}
3183
3184static void diagnoseUncapturableValueReference(Sema &S, SourceLocation loc,
3185 ValueDecl *var);
3186
3187/// Complete semantic analysis for a reference to the given declaration.
3188ExprResult Sema::BuildDeclarationNameExpr(
3189 const CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, NamedDecl *D,
3190 NamedDecl *FoundD, const TemplateArgumentListInfo *TemplateArgs,
3191 bool AcceptInvalidDecl) {
3192 assert(D && "Cannot refer to a NULL declaration")(static_cast <bool> (D && "Cannot refer to a NULL declaration"
) ? void (0) : __assert_fail ("D && \"Cannot refer to a NULL declaration\""
, "clang/lib/Sema/SemaExpr.cpp", 3192, __extension__ __PRETTY_FUNCTION__
))
;
3193 assert(!isa<FunctionTemplateDecl>(D) &&(static_cast <bool> (!isa<FunctionTemplateDecl>(D
) && "Cannot refer unambiguously to a function template"
) ? void (0) : __assert_fail ("!isa<FunctionTemplateDecl>(D) && \"Cannot refer unambiguously to a function template\""
, "clang/lib/Sema/SemaExpr.cpp", 3194, __extension__ __PRETTY_FUNCTION__
))
3194 "Cannot refer unambiguously to a function template")(static_cast <bool> (!isa<FunctionTemplateDecl>(D
) && "Cannot refer unambiguously to a function template"
) ? void (0) : __assert_fail ("!isa<FunctionTemplateDecl>(D) && \"Cannot refer unambiguously to a function template\""
, "clang/lib/Sema/SemaExpr.cpp", 3194, __extension__ __PRETTY_FUNCTION__
))
;
3195
3196 SourceLocation Loc = NameInfo.getLoc();
3197 if (CheckDeclInExpr(*this, Loc, D))
3198 return ExprError();
3199
3200 if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) {
3201 // Specifically diagnose references to class templates that are missing
3202 // a template argument list.
3203 diagnoseMissingTemplateArguments(TemplateName(Template), Loc);
3204 return ExprError();
3205 }
3206
3207 // Make sure that we're referring to a value.
3208 if (!isa<ValueDecl, UnresolvedUsingIfExistsDecl>(D)) {
3209 Diag(Loc, diag::err_ref_non_value) << D << SS.getRange();
3210 Diag(D->getLocation(), diag::note_declared_at);
3211 return ExprError();
3212 }
3213
3214 // Check whether this declaration can be used. Note that we suppress
3215 // this check when we're going to perform argument-dependent lookup
3216 // on this function name, because this might not be the function
3217 // that overload resolution actually selects.
3218 if (DiagnoseUseOfDecl(D, Loc))
3219 return ExprError();
3220
3221 auto *VD = cast<ValueDecl>(D);
3222
3223 // Only create DeclRefExpr's for valid Decl's.
3224 if (VD->isInvalidDecl() && !AcceptInvalidDecl)
3225 return ExprError();
3226
3227 // Handle members of anonymous structs and unions. If we got here,
3228 // and the reference is to a class member indirect field, then this
3229 // must be the subject of a pointer-to-member expression.
3230 if (IndirectFieldDecl *indirectField = dyn_cast<IndirectFieldDecl>(VD))
3231 if (!indirectField->isCXXClassMember())
3232 return BuildAnonymousStructUnionMemberReference(SS, NameInfo.getLoc(),
3233 indirectField);
3234
3235 QualType type = VD->getType();
3236 if (type.isNull())
3237 return ExprError();
3238 ExprValueKind valueKind = VK_PRValue;
3239
3240 // In 'T ...V;', the type of the declaration 'V' is 'T...', but the type of
3241 // a reference to 'V' is simply (unexpanded) 'T'. The type, like the value,
3242 // is expanded by some outer '...' in the context of the use.
3243 type = type.getNonPackExpansionType();
3244
3245 switch (D->getKind()) {
3246 // Ignore all the non-ValueDecl kinds.
3247#define ABSTRACT_DECL(kind)
3248#define VALUE(type, base)
3249#define DECL(type, base) case Decl::type:
3250#include "clang/AST/DeclNodes.inc"
3251 llvm_unreachable("invalid value decl kind")::llvm::llvm_unreachable_internal("invalid value decl kind", "clang/lib/Sema/SemaExpr.cpp"
, 3251)
;
3252
3253 // These shouldn't make it here.
3254 case Decl::ObjCAtDefsField:
3255 llvm_unreachable("forming non-member reference to ivar?")::llvm::llvm_unreachable_internal("forming non-member reference to ivar?"
, "clang/lib/Sema/SemaExpr.cpp", 3255)
;
3256
3257 // Enum constants are always r-values and never references.
3258 // Unresolved using declarations are dependent.
3259 case Decl::EnumConstant:
3260 case Decl::UnresolvedUsingValue:
3261 case Decl::OMPDeclareReduction:
3262 case Decl::OMPDeclareMapper:
3263 valueKind = VK_PRValue;
3264 break;
3265
3266 // Fields and indirect fields that got here must be for
3267 // pointer-to-member expressions; we just call them l-values for
3268 // internal consistency, because this subexpression doesn't really
3269 // exist in the high-level semantics.
3270 case Decl::Field:
3271 case Decl::IndirectField:
3272 case Decl::ObjCIvar:
3273 assert(getLangOpts().CPlusPlus && "building reference to field in C?")(static_cast <bool> (getLangOpts().CPlusPlus &&
"building reference to field in C?") ? void (0) : __assert_fail
("getLangOpts().CPlusPlus && \"building reference to field in C?\""
, "clang/lib/Sema/SemaExpr.cpp", 3273, __extension__ __PRETTY_FUNCTION__
))
;
3274
3275 // These can't have reference type in well-formed programs, but
3276 // for internal consistency we do this anyway.
3277 type = type.getNonReferenceType();
3278 valueKind = VK_LValue;
3279 break;
3280
3281 // Non-type template parameters are either l-values or r-values
3282 // depending on the type.
3283 case Decl::NonTypeTemplateParm: {
3284 if (const ReferenceType *reftype = type->getAs<ReferenceType>()) {
3285 type = reftype->getPointeeType();
3286 valueKind = VK_LValue; // even if the parameter is an r-value reference
3287 break;
3288 }
3289
3290 // [expr.prim.id.unqual]p2:
3291 // If the entity is a template parameter object for a template
3292 // parameter of type T, the type of the expression is const T.
3293 // [...] The expression is an lvalue if the entity is a [...] template
3294 // parameter object.
3295 if (type->isRecordType()) {
3296 type = type.getUnqualifiedType().withConst();
3297 valueKind = VK_LValue;
3298 break;
3299 }
3300
3301 // For non-references, we need to strip qualifiers just in case
3302 // the template parameter was declared as 'const int' or whatever.
3303 valueKind = VK_PRValue;
3304 type = type.getUnqualifiedType();
3305 break;
3306 }
3307
3308 case Decl::Var:
3309 case Decl::VarTemplateSpecialization:
3310 case Decl::VarTemplatePartialSpecialization:
3311 case Decl::Decomposition:
3312 case Decl::OMPCapturedExpr:
3313 // In C, "extern void blah;" is valid and is an r-value.
3314 if (!getLangOpts().CPlusPlus && !type.hasQualifiers() &&
3315 type->isVoidType()) {
3316 valueKind = VK_PRValue;
3317 break;
3318 }
3319 LLVM_FALLTHROUGH[[gnu::fallthrough]];
3320
3321 case Decl::ImplicitParam:
3322 case Decl::ParmVar: {
3323 // These are always l-values.
3324 valueKind = VK_LValue;
3325 type = type.getNonReferenceType();
3326
3327 // FIXME: Does the addition of const really only apply in
3328 // potentially-evaluated contexts? Since the variable isn't actually
3329 // captured in an unevaluated context, it seems that the answer is no.
3330 if (!isUnevaluatedContext()) {
3331 QualType CapturedType = getCapturedDeclRefType(cast<VarDecl>(VD), Loc);
3332 if (!CapturedType.isNull())
3333 type = CapturedType;
3334 }
3335
3336 break;
3337 }
3338
3339 case Decl::Binding: {
3340 // These are always lvalues.
3341 valueKind = VK_LValue;
3342 type = type.getNonReferenceType();
3343 // FIXME: Support lambda-capture of BindingDecls, once CWG actually
3344 // decides how that's supposed to work.
3345 auto *BD = cast<BindingDecl>(VD);
3346 if (BD->getDeclContext() != CurContext) {
3347 auto *DD = dyn_cast_or_null<VarDecl>(BD->getDecomposedDecl());
3348 if (DD && DD->hasLocalStorage())
3349 diagnoseUncapturableValueReference(*this, Loc, BD);
3350 }
3351 break;
3352 }
3353
3354 case Decl::Function: {
3355 if (unsigned BID = cast<FunctionDecl>(VD)->getBuiltinID()) {
3356 if (!Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
3357 type = Context.BuiltinFnTy;
3358 valueKind = VK_PRValue;
3359 break;
3360 }
3361 }
3362
3363 const FunctionType *fty = type->castAs<FunctionType>();
3364
3365 // If we're referring to a function with an __unknown_anytype
3366 // result type, make the entire expression __unknown_anytype.
3367 if (fty->getReturnType() == Context.UnknownAnyTy) {
3368 type = Context.UnknownAnyTy;
3369 valueKind = VK_PRValue;
3370 break;
3371 }
3372
3373 // Functions are l-values in C++.
3374 if (getLangOpts().CPlusPlus) {
3375 valueKind = VK_LValue;
3376 break;
3377 }
3378
3379 // C99 DR 316 says that, if a function type comes from a
3380 // function definition (without a prototype), that type is only
3381 // used for checking compatibility. Therefore, when referencing
3382 // the function, we pretend that we don't have the full function
3383 // type.
3384 if (!cast<FunctionDecl>(VD)->hasPrototype() && isa<FunctionProtoType>(fty))
3385 type = Context.getFunctionNoProtoType(fty->getReturnType(),
3386 fty->getExtInfo());
3387
3388 // Functions are r-values in C.
3389 valueKind = VK_PRValue;
3390 break;
3391 }
3392
3393 case Decl::CXXDeductionGuide:
3394 llvm_unreachable("building reference to deduction guide")::llvm::llvm_unreachable_internal("building reference to deduction guide"
, "clang/lib/Sema/SemaExpr.cpp", 3394)
;
3395
3396 case Decl::MSProperty:
3397 case Decl::MSGuid:
3398 case Decl::TemplateParamObject:
3399 // FIXME: Should MSGuidDecl and template parameter objects be subject to
3400 // capture in OpenMP, or duplicated between host and device?
3401 valueKind = VK_LValue;
3402 break;
3403
3404 case Decl::CXXMethod:
3405 // If we're referring to a method with an __unknown_anytype
3406 // result type, make the entire expression __unknown_anytype.
3407 // This should only be possible with a type written directly.
3408 if (const FunctionProtoType *proto =
3409 dyn_cast<FunctionProtoType>(VD->getType()))
3410 if (proto->getReturnType() == Context.UnknownAnyTy) {
3411 type = Context.UnknownAnyTy;
3412 valueKind = VK_PRValue;
3413 break;
3414 }
3415
3416 // C++ methods are l-values if static, r-values if non-static.
3417 if (cast<CXXMethodDecl>(VD)->isStatic()) {
3418 valueKind = VK_LValue;
3419 break;
3420 }
3421 LLVM_FALLTHROUGH[[gnu::fallthrough]];
3422
3423 case Decl::CXXConversion:
3424 case Decl::CXXDestructor:
3425 case Decl::CXXConstructor:
3426 valueKind = VK_PRValue;
3427 break;
3428 }
3429
3430 return BuildDeclRefExpr(VD, type, valueKind, NameInfo, &SS, FoundD,
3431 /*FIXME: TemplateKWLoc*/ SourceLocation(),
3432 TemplateArgs);
3433}
3434
3435static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source,
3436 SmallString<32> &Target) {
3437 Target.resize(CharByteWidth * (Source.size() + 1));
3438 char *ResultPtr = &Target[0];
3439 const llvm::UTF8 *ErrorPtr;
3440 bool success =
3441 llvm::ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr);
3442 (void)success;
3443 assert(success)(static_cast <bool> (success) ? void (0) : __assert_fail
("success", "clang/lib/Sema/SemaExpr.cpp", 3443, __extension__
__PRETTY_FUNCTION__))
;
3444 Target.resize(ResultPtr - &Target[0]);
3445}
3446
3447ExprResult Sema::BuildPredefinedExpr(SourceLocation Loc,
3448 PredefinedExpr::IdentKind IK) {
3449 // Pick the current block, lambda, captured statement or function.
3450 Decl *currentDecl = nullptr;
3451 if (const BlockScopeInfo *BSI = getCurBlock())
3452 currentDecl = BSI->TheDecl;
3453 else if (const LambdaScopeInfo *LSI = getCurLambda())
3454 currentDecl = LSI->CallOperator;
3455 else if (const CapturedRegionScopeInfo *CSI = getCurCapturedRegion())
3456 currentDecl = CSI->TheCapturedDecl;
3457 else
3458 currentDecl = getCurFunctionOrMethodDecl();
3459
3460 if (!currentDecl) {
3461 Diag(Loc, diag::ext_predef_outside_function);
3462 currentDecl = Context.getTranslationUnitDecl();
3463 }
3464
3465 QualType ResTy;
3466 StringLiteral *SL = nullptr;
3467 if (cast<DeclContext>(currentDecl)->isDependentContext())
3468 ResTy = Context.DependentTy;
3469 else {
3470 // Pre-defined identifiers are of type char[x], where x is the length of
3471 // the string.
3472 auto Str = PredefinedExpr::ComputeName(IK, currentDecl);
3473 unsigned Length = Str.length();
3474
3475 llvm::APInt LengthI(32, Length + 1);
3476 if (IK == PredefinedExpr::LFunction || IK == PredefinedExpr::LFuncSig) {
3477 ResTy =
3478 Context.adjustStringLiteralBaseType(Context.WideCharTy.withConst());
3479 SmallString<32> RawChars;
3480 ConvertUTF8ToWideString(Context.getTypeSizeInChars(ResTy).getQuantity(),
3481 Str, RawChars);
3482 ResTy = Context.getConstantArrayType(ResTy, LengthI, nullptr,
3483 ArrayType::Normal,
3484 /*IndexTypeQuals*/ 0);
3485 SL = StringLiteral::Create(Context, RawChars, StringLiteral::Wide,
3486 /*Pascal*/ false, ResTy, Loc);
3487 } else {
3488 ResTy = Context.adjustStringLiteralBaseType(Context.CharTy.withConst());
3489 ResTy = Context.getConstantArrayType(ResTy, LengthI, nullptr,
3490 ArrayType::Normal,
3491 /*IndexTypeQuals*/ 0);
3492 SL = StringLiteral::Create(Context, Str, StringLiteral::Ascii,
3493 /*Pascal*/ false, ResTy, Loc);
3494 }
3495 }
3496
3497 return PredefinedExpr::Create(Context, Loc, ResTy, IK, SL);
3498}
3499
3500ExprResult Sema::BuildSYCLUniqueStableNameExpr(SourceLocation OpLoc,
3501 SourceLocation LParen,
3502 SourceLocation RParen,
3503 TypeSourceInfo *TSI) {
3504 return SYCLUniqueStableNameExpr::Create(Context, OpLoc, LParen, RParen, TSI);
3505}
3506
3507ExprResult Sema::ActOnSYCLUniqueStableNameExpr(SourceLocation OpLoc,
3508 SourceLocation LParen,
3509 SourceLocation RParen,
3510 ParsedType ParsedTy) {
3511 TypeSourceInfo *TSI = nullptr;
3512 QualType Ty = GetTypeFromParser(ParsedTy, &TSI);
3513
3514 if (Ty.isNull())
3515 return ExprError();
3516 if (!TSI)
3517 TSI = Context.getTrivialTypeSourceInfo(Ty, LParen);
3518
3519 return BuildSYCLUniqueStableNameExpr(OpLoc, LParen, RParen, TSI);
3520}
3521
3522ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind) {
3523 PredefinedExpr::IdentKind IK;
3524
3525 switch (Kind) {
3526 default: llvm_unreachable("Unknown simple primary expr!")::llvm::llvm_unreachable_internal("Unknown simple primary expr!"
, "clang/lib/Sema/SemaExpr.cpp", 3526)
;
3527 case tok::kw___func__: IK = PredefinedExpr::Func; break; // [C99 6.4.2.2]
3528 case tok::kw___FUNCTION__: IK = PredefinedExpr::Function; break;
3529 case tok::kw___FUNCDNAME__: IK = PredefinedExpr::FuncDName; break; // [MS]
3530 case tok::kw___FUNCSIG__: IK = PredefinedExpr::FuncSig; break; // [MS]
3531 case tok::kw_L__FUNCTION__: IK = PredefinedExpr::LFunction; break; // [MS]
3532 case tok::kw_L__FUNCSIG__: IK = PredefinedExpr::LFuncSig; break; // [MS]
3533 case tok::kw___PRETTY_FUNCTION__: IK = PredefinedExpr::PrettyFunction; break;
3534 }
3535
3536 return BuildPredefinedExpr(Loc, IK);
3537}
3538
3539ExprResult Sema::ActOnCharacterConstant(const Token &Tok, Scope *UDLScope) {
3540 SmallString<16> CharBuffer;
3541 bool Invalid = false;
3542 StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid);
3543 if (Invalid)
3544 return ExprError();
3545
3546 CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
3547 PP, Tok.getKind());
3548 if (Literal.hadError())
3549 return ExprError();
3550
3551 QualType Ty;
3552 if (Literal.isWide())
3553 Ty = Context.WideCharTy; // L'x' -> wchar_t in C and C++.
3554 else if (Literal.isUTF8() && getLangOpts().Char8)
3555 Ty = Context.Char8Ty; // u8'x' -> char8_t when it exists.
3556 else if (Literal.isUTF16())
3557 Ty = Context.Char16Ty; // u'x' -> char16_t in C11 and C++11.
3558 else if (Literal.isUTF32())
3559 Ty = Context.Char32Ty; // U'x' -> char32_t in C11 and C++11.
3560 else if (!getLangOpts().CPlusPlus || Literal.isMultiChar())
3561 Ty = Context.IntTy; // 'x' -> int in C, 'wxyz' -> int in C++.
3562 else
3563 Ty = Context.CharTy; // 'x' -> char in C++
3564
3565 CharacterLiteral::CharacterKind Kind = CharacterLiteral::Ascii;
3566 if (Literal.isWide())
3567 Kind = CharacterLiteral::Wide;
3568 else if (Literal.isUTF16())
3569 Kind = CharacterLiteral::UTF16;
3570 else if (Literal.isUTF32())
3571 Kind = CharacterLiteral::UTF32;
3572 else if (Literal.isUTF8())
3573 Kind = CharacterLiteral::UTF8;
3574
3575 Expr *Lit = new (Context) CharacterLiteral(Literal.getValue(), Kind, Ty,
3576 Tok.getLocation());
3577
3578 if (Literal.getUDSuffix().empty())
3579 return Lit;
3580
3581 // We're building a user-defined literal.
3582 IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
3583 SourceLocation UDSuffixLoc =
3584 getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
3585
3586 // Make sure we're allowed user-defined literals here.
3587 if (!UDLScope)
3588 return ExprError(Diag(UDSuffixLoc, diag::err_invalid_character_udl));
3589
3590 // C++11 [lex.ext]p6: The literal L is treated as a call of the form
3591 // operator "" X (ch)
3592 return BuildCookedLiteralOperatorCall(*this, UDLScope, UDSuffix, UDSuffixLoc,
3593 Lit, Tok.getLocation());
3594}
3595
3596ExprResult Sema::ActOnIntegerConstant(SourceLocation Loc, uint64_t Val) {
3597 unsigned IntSize = Context.getTargetInfo().getIntWidth();
3598 return IntegerLiteral::Create(Context, llvm::APInt(IntSize, Val),
3599 Context.IntTy, Loc);
3600}
3601
3602static Expr *BuildFloatingLiteral(Sema &S, NumericLiteralParser &Literal,
3603 QualType Ty, SourceLocation Loc) {
3604 const llvm::fltSemantics &Format = S.Context.getFloatTypeSemantics(Ty);
3605
3606 using llvm::APFloat;
3607 APFloat Val(Format);
3608
3609 APFloat::opStatus result = Literal.GetFloatValue(Val);
3610
3611 // Overflow is always an error, but underflow is only an error if
3612 // we underflowed to zero (APFloat reports denormals as underflow).
3613 if ((result & APFloat::opOverflow) ||
3614 ((result & APFloat::opUnderflow) && Val.isZero())) {
3615 unsigned diagnostic;
3616 SmallString<20> buffer;
3617 if (result & APFloat::opOverflow) {
3618 diagnostic = diag::warn_float_overflow;
3619 APFloat::getLargest(Format).toString(buffer);
3620 } else {
3621 diagnostic = diag::warn_float_underflow;
3622 APFloat::getSmallest(Format).toString(buffer);
3623 }
3624
3625 S.Diag(Loc, diagnostic)
3626 << Ty
3627 << StringRef(buffer.data(), buffer.size());
3628 }
3629
3630 bool isExact = (result == APFloat::opOK);
3631 return FloatingLiteral::Create(S.Context, Val, isExact, Ty, Loc);
3632}
3633
3634bool Sema::CheckLoopHintExpr(Expr *E, SourceLocation Loc) {
3635 assert(E && "Invalid expression")(static_cast <bool> (E && "Invalid expression")
? void (0) : __assert_fail ("E && \"Invalid expression\""
, "clang/lib/Sema/SemaExpr.cpp", 3635, __extension__ __PRETTY_FUNCTION__
))
;
3636
3637 if (E->isValueDependent())
3638 return false;
3639
3640 QualType QT = E->getType();
3641 if (!QT->isIntegerType() || QT->isBooleanType() || QT->isCharType()) {
3642 Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_type) << QT;
3643 return true;
3644 }
3645
3646 llvm::APSInt ValueAPS;
3647 ExprResult R = VerifyIntegerConstantExpression(E, &ValueAPS);
3648
3649 if (R.isInvalid())
3650 return true;
3651
3652 bool ValueIsPositive = ValueAPS.isStrictlyPositive();
3653 if (!ValueIsPositive || ValueAPS.getActiveBits() > 31) {
3654 Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_value)
3655 << toString(ValueAPS, 10) << ValueIsPositive;
3656 return true;
3657 }
3658
3659 return false;
3660}
3661
3662ExprResult Sema::ActOnNumericConstant(const Token &Tok, Scope *UDLScope) {
3663 // Fast path for a single digit (which is quite common). A single digit
3664 // cannot have a trigraph, escaped newline, radix prefix, or suffix.
3665 if (Tok.getLength() == 1) {
3666 const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
3667 return ActOnIntegerConstant(Tok.getLocation(), Val-'0');
3668 }
3669
3670 SmallString<128> SpellingBuffer;
3671 // NumericLiteralParser wants to overread by one character. Add padding to
3672 // the buffer in case the token is copied to the buffer. If getSpelling()
3673 // returns a StringRef to the memory buffer, it should have a null char at
3674 // the EOF, so it is also safe.
3675 SpellingBuffer.resize(Tok.getLength() + 1);
3676
3677 // Get the spelling of the token, which eliminates trigraphs, etc.
3678 bool Invalid = false;
3679 StringRef TokSpelling = PP.getSpelling(Tok, SpellingBuffer, &Invalid);
3680 if (Invalid)
3681 return ExprError();
3682
3683 NumericLiteralParser Literal(TokSpelling, Tok.getLocation(),
3684 PP.getSourceManager(), PP.getLangOpts(),
3685 PP.getTargetInfo(), PP.getDiagnostics());
3686 if (Literal.hadError)
3687 return ExprError();
3688
3689 if (Literal.hasUDSuffix()) {
3690 // We're building a user-defined literal.
3691 IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
3692 SourceLocation UDSuffixLoc =
3693 getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
3694
3695 // Make sure we're allowed user-defined literals here.
3696 if (!UDLScope)
3697 return ExprError(Diag(UDSuffixLoc, diag::err_invalid_numeric_udl));
3698
3699 QualType CookedTy;
3700 if (Literal.isFloatingLiteral()) {
3701 // C++11 [lex.ext]p4: If S contains a literal operator with parameter type
3702 // long double, the literal is treated as a call of the form
3703 // operator "" X (f L)
3704 CookedTy = Context.LongDoubleTy;
3705 } else {
3706 // C++11 [lex.ext]p3: If S contains a literal operator with parameter type
3707 // unsigned long long, the literal is treated as a call of the form
3708 // operator "" X (n ULL)
3709 CookedTy = Context.UnsignedLongLongTy;
3710 }
3711
3712 DeclarationName OpName =
3713 Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
3714 DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
3715 OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
3716
3717 SourceLocation TokLoc = Tok.getLocation();
3718
3719 // Perform literal operator lookup to determine if we're building a raw
3720 // literal or a cooked one.
3721 LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
3722 switch (LookupLiteralOperator(UDLScope, R, CookedTy,
3723 /*AllowRaw*/ true, /*AllowTemplate*/ true,
3724 /*AllowStringTemplatePack*/ false,
3725 /*DiagnoseMissing*/ !Literal.isImaginary)) {
3726 case LOLR_ErrorNoDiagnostic:
3727 // Lookup failure for imaginary constants isn't fatal, there's still the
3728 // GNU extension producing _Complex types.
3729 break;
3730 case LOLR_Error:
3731 return ExprError();
3732 case LOLR_Cooked: {
3733 Expr *Lit;
3734 if (Literal.isFloatingLiteral()) {
3735 Lit = BuildFloatingLiteral(*this, Literal, CookedTy, Tok.getLocation());
3736 } else {
3737 llvm::APInt ResultVal(Context.getTargetInfo().getLongLongWidth(), 0);
3738 if (Literal.GetIntegerValue(ResultVal))
3739 Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
3740 << /* Unsigned */ 1;
3741 Lit = IntegerLiteral::Create(Context, ResultVal, CookedTy,
3742 Tok.getLocation());
3743 }
3744 return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
3745 }
3746
3747 case LOLR_Raw: {
3748 // C++11 [lit.ext]p3, p4: If S contains a raw literal operator, the
3749 // literal is treated as a call of the form
3750 // operator "" X ("n")
3751 unsigned Length = Literal.getUDSuffixOffset();
3752 QualType StrTy = Context.getConstantArrayType(
3753 Context.adjustStringLiteralBaseType(Context.CharTy.withConst()),
3754 llvm::APInt(32, Length + 1), nullptr, ArrayType::Normal, 0);
3755 Expr *Lit = StringLiteral::Create(
3756 Context, StringRef(TokSpelling.data(), Length), StringLiteral::Ascii,
3757 /*Pascal*/false, StrTy, &TokLoc, 1);
3758 return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
3759 }
3760
3761 case LOLR_Template: {
3762 // C++11 [lit.ext]p3, p4: Otherwise (S contains a literal operator
3763 // template), L is treated as a call fo the form
3764 // operator "" X <'c1', 'c2', ... 'ck'>()
3765 // where n is the source character sequence c1 c2 ... ck.
3766 TemplateArgumentListInfo ExplicitArgs;
3767 unsigned CharBits = Context.getIntWidth(Context.CharTy);
3768 bool CharIsUnsigned = Context.CharTy->isUnsignedIntegerType();
3769 llvm::APSInt Value(CharBits, CharIsUnsigned);
3770 for (unsigned I = 0, N = Literal.getUDSuffixOffset(); I != N; ++I) {
3771 Value = TokSpelling[I];
3772 TemplateArgument Arg(Context, Value, Context.CharTy);
3773 TemplateArgumentLocInfo ArgInfo;
3774 ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
3775 }
3776 return BuildLiteralOperatorCall(R, OpNameInfo, None, TokLoc,
3777 &ExplicitArgs);
3778 }
3779 case LOLR_StringTemplatePack:
3780 llvm_unreachable("unexpected literal operator lookup result")::llvm::llvm_unreachable_internal("unexpected literal operator lookup result"
, "clang/lib/Sema/SemaExpr.cpp", 3780)
;
3781 }
3782 }
3783
3784 Expr *Res;
3785
3786 if (Literal.isFixedPointLiteral()) {
3787 QualType Ty;
3788
3789 if (Literal.isAccum) {
3790 if (Literal.isHalf) {
3791 Ty = Context.ShortAccumTy;
3792 } else if (Literal.isLong) {
3793 Ty = Context.LongAccumTy;
3794 } else {
3795 Ty = Context.AccumTy;
3796 }
3797 } else if (Literal.isFract) {
3798 if (Literal.isHalf) {
3799 Ty = Context.ShortFractTy;
3800 } else if (Literal.isLong) {
3801 Ty = Context.LongFractTy;
3802 } else {
3803 Ty = Context.FractTy;
3804 }
3805 }
3806
3807 if (Literal.isUnsigned) Ty = Context.getCorrespondingUnsignedType(Ty);
3808
3809 bool isSigned = !Literal.isUnsigned;
3810 unsigned scale = Context.getFixedPointScale(Ty);
3811 unsigned bit_width = Context.getTypeInfo(Ty).Width;
3812
3813 llvm::APInt Val(bit_width, 0, isSigned);
3814 bool Overflowed = Literal.GetFixedPointValue(Val, scale);
3815 bool ValIsZero = Val.isZero() && !Overflowed;
3816
3817 auto MaxVal = Context.getFixedPointMax(Ty).getValue();
3818 if (Literal.isFract && Val == MaxVal + 1 && !ValIsZero)
3819 // Clause 6.4.4 - The value of a constant shall be in the range of
3820 // representable values for its type, with exception for constants of a
3821 // fract type with a value of exactly 1; such a constant shall denote
3822 // the maximal value for the type.
3823 --Val;
3824 else if (Val.ugt(MaxVal) || Overflowed)
3825 Diag(Tok.getLocation(), diag::err_too_large_for_fixed_point);
3826
3827 Res = FixedPointLiteral::CreateFromRawInt(Context, Val, Ty,
3828 Tok.getLocation(), scale);
3829 } else if (Literal.isFloatingLiteral()) {
3830 QualType Ty;
3831 if (Literal.isHalf){
3832 if (getOpenCLOptions().isAvailableOption("cl_khr_fp16", getLangOpts()))
3833 Ty = Context.HalfTy;
3834 else {
3835 Diag(Tok.getLocation(), diag::err_half_const_requires_fp16);
3836 return ExprError();
3837 }
3838 } else if (Literal.isFloat)
3839 Ty = Context.FloatTy;
3840 else if (Literal.isLong)
3841 Ty = Context.LongDoubleTy;
3842 else if (Literal.isFloat16)
3843 Ty = Context.Float16Ty;
3844 else if (Literal.isFloat128)
3845 Ty = Context.Float128Ty;
3846 else
3847 Ty = Context.DoubleTy;
3848
3849 Res = BuildFloatingLiteral(*this, Literal, Ty, Tok.getLocation());
3850
3851 if (Ty == Context.DoubleTy) {
3852 if (getLangOpts().SinglePrecisionConstants) {
3853 if (Ty->castAs<BuiltinType>()->getKind() != BuiltinType::Float) {
3854 Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get();
3855 }
3856 } else if (getLangOpts().OpenCL && !getOpenCLOptions().isAvailableOption(
3857 "cl_khr_fp64", getLangOpts())) {
3858 // Impose single-precision float type when cl_khr_fp64 is not enabled.
3859 Diag(Tok.getLocation(), diag::warn_double_const_requires_fp64)
3860 << (getLangOpts().getOpenCLCompatibleVersion() >= 300);
3861 Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get();
3862 }
3863 }
3864 } else if (!Literal.isIntegerLiteral()) {
3865 return ExprError();
3866 } else {
3867 QualType Ty;
3868
3869 // 'long long' is a C99 or C++11 feature.
3870 if (!getLangOpts().C99 && Literal.isLongLong) {
3871 if (getLangOpts().CPlusPlus)
3872 Diag(Tok.getLocation(),
3873 getLangOpts().CPlusPlus11 ?
3874 diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
3875 else
3876 Diag(Tok.getLocation(), diag::ext_c99_longlong);
3877 }
3878
3879 // 'z/uz' literals are a C++2b feature.
3880 if (Literal.isSizeT)
3881 Diag(Tok.getLocation(), getLangOpts().CPlusPlus
3882 ? getLangOpts().CPlusPlus2b
3883 ? diag::warn_cxx20_compat_size_t_suffix
3884 : diag::ext_cxx2b_size_t_suffix
3885 : diag::err_cxx2b_size_t_suffix);
3886
3887 // Get the value in the widest-possible width.
3888 unsigned MaxWidth = Context.getTargetInfo().getIntMaxTWidth();
3889 llvm::APInt ResultVal(MaxWidth, 0);
3890
3891 if (Literal.GetIntegerValue(ResultVal)) {
3892 // If this value didn't fit into uintmax_t, error and force to ull.
3893 Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
3894 << /* Unsigned */ 1;
3895 Ty = Context.UnsignedLongLongTy;
3896 assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&(static_cast <bool> (Context.getTypeSize(Ty) == ResultVal
.getBitWidth() && "long long is not intmax_t?") ? void
(0) : __assert_fail ("Context.getTypeSize(Ty) == ResultVal.getBitWidth() && \"long long is not intmax_t?\""
, "clang/lib/Sema/SemaExpr.cpp", 3897, __extension__ __PRETTY_FUNCTION__
))
3897 "long long is not intmax_t?")(static_cast <bool> (Context.getTypeSize(Ty) == ResultVal
.getBitWidth() && "long long is not intmax_t?") ? void
(0) : __assert_fail ("Context.getTypeSize(Ty) == ResultVal.getBitWidth() && \"long long is not intmax_t?\""
, "clang/lib/Sema/SemaExpr.cpp", 3897, __extension__ __PRETTY_FUNCTION__
))
;
3898 } else {
3899 // If this value fits into a ULL, try to figure out what else it fits into
3900 // according to the rules of C99 6.4.4.1p5.
3901
3902 // Octal, Hexadecimal, and integers with a U suffix are allowed to
3903 // be an unsigned int.
3904 bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
3905
3906 // Check from smallest to largest, picking the smallest type we can.
3907 unsigned Width = 0;
3908
3909 // Microsoft specific integer suffixes are explicitly sized.
3910 if (Literal.MicrosoftInteger) {
3911 if (Literal.MicrosoftInteger == 8 && !Literal.isUnsigned) {
3912 Width = 8;
3913 Ty = Context.CharTy;
3914 } else {
3915 Width = Literal.MicrosoftInteger;
3916 Ty = Context.getIntTypeForBitwidth(Width,
3917 /*Signed=*/!Literal.isUnsigned);
3918 }
3919 }
3920
3921 // Check C++2b size_t literals.
3922 if (Literal.isSizeT) {
3923 assert(!Literal.MicrosoftInteger &&(static_cast <bool> (!Literal.MicrosoftInteger &&
"size_t literals can't be Microsoft literals") ? void (0) : __assert_fail
("!Literal.MicrosoftInteger && \"size_t literals can't be Microsoft literals\""
, "clang/lib/Sema/SemaExpr.cpp", 3924, __extension__ __PRETTY_FUNCTION__
))
3924 "size_t literals can't be Microsoft literals")(static_cast <bool> (!Literal.MicrosoftInteger &&
"size_t literals can't be Microsoft literals") ? void (0) : __assert_fail
("!Literal.MicrosoftInteger && \"size_t literals can't be Microsoft literals\""
, "clang/lib/Sema/SemaExpr.cpp", 3924, __extension__ __PRETTY_FUNCTION__
))
;
3925 unsigned SizeTSize = Context.getTargetInfo().getTypeWidth(
3926 Context.getTargetInfo().getSizeType());
3927
3928 // Does it fit in size_t?
3929 if (ResultVal.isIntN(SizeTSize)) {
3930 // Does it fit in ssize_t?
3931 if (!Literal.isUnsigned && ResultVal[SizeTSize - 1] == 0)
3932 Ty = Context.getSignedSizeType();
3933 else if (AllowUnsigned)
3934 Ty = Context.getSizeType();
3935 Width = SizeTSize;
3936 }
3937 }
3938
3939 if (Ty.isNull() && !Literal.isLong && !Literal.isLongLong &&
3940 !Literal.isSizeT) {
3941 // Are int/unsigned possibilities?
3942 unsigned IntSize = Context.getTargetInfo().getIntWidth();
3943
3944 // Does it fit in a unsigned int?
3945 if (ResultVal.isIntN(IntSize)) {
3946 // Does it fit in a signed int?
3947 if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
3948 Ty = Context.IntTy;
3949 else if (AllowUnsigned)
3950 Ty = Context.UnsignedIntTy;
3951 Width = IntSize;
3952 }
3953 }
3954
3955 // Are long/unsigned long possibilities?
3956 if (Ty.isNull() && !Literal.isLongLong && !Literal.isSizeT) {
3957 unsigned LongSize = Context.getTargetInfo().getLongWidth();
3958
3959 // Does it fit in a unsigned long?
3960 if (ResultVal.isIntN(LongSize)) {
3961 // Does it fit in a signed long?
3962 if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
3963 Ty = Context.LongTy;
3964 else if (AllowUnsigned)
3965 Ty = Context.UnsignedLongTy;
3966 // Check according to the rules of C90 6.1.3.2p5. C++03 [lex.icon]p2
3967 // is compatible.
3968 else if (!getLangOpts().C99 && !getLangOpts().CPlusPlus11) {
3969 const unsigned LongLongSize =
3970 Context.getTargetInfo().getLongLongWidth();
3971 Diag(Tok.getLocation(),
3972 getLangOpts().CPlusPlus
3973 ? Literal.isLong
3974 ? diag::warn_old_implicitly_unsigned_long_cxx
3975 : /*C++98 UB*/ diag::
3976 ext_old_implicitly_unsigned_long_cxx
3977 : diag::warn_old_implicitly_unsigned_long)
3978 << (LongLongSize > LongSize ? /*will have type 'long long'*/ 0
3979 : /*will be ill-formed*/ 1);
3980 Ty = Context.UnsignedLongTy;
3981 }
3982 Width = LongSize;
3983 }
3984 }
3985
3986 // Check long long if needed.
3987 if (Ty.isNull() && !Literal.isSizeT) {
3988 unsigned LongLongSize = Context.getTargetInfo().getLongLongWidth();
3989
3990 // Does it fit in a unsigned long long?
3991 if (ResultVal.isIntN(LongLongSize)) {
3992 // Does it fit in a signed long long?
3993 // To be compatible with MSVC, hex integer literals ending with the
3994 // LL or i64 suffix are always signed in Microsoft mode.
3995 if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 ||
3996 (getLangOpts().MSVCCompat && Literal.isLongLong)))
3997 Ty = Context.LongLongTy;
3998 else if (AllowUnsigned)
3999 Ty = Context.UnsignedLongLongTy;
4000 Width = LongLongSize;
4001 }
4002 }
4003
4004 // If we still couldn't decide a type, we either have 'size_t' literal
4005 // that is out of range, or a decimal literal that does not fit in a
4006 // signed long long and has no U suffix.
4007 if (Ty.isNull()) {
4008 if (Literal.isSizeT)
4009 Diag(Tok.getLocation(), diag::err_size_t_literal_too_large)
4010 << Literal.isUnsigned;
4011 else
4012 Diag(Tok.getLocation(),
4013 diag::ext_integer_literal_too_large_for_signed);
4014 Ty = Context.UnsignedLongLongTy;
4015 Width = Context.getTargetInfo().getLongLongWidth();
4016 }
4017
4018 if (ResultVal.getBitWidth() != Width)
4019 ResultVal = ResultVal.trunc(Width);
4020 }
4021 Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation());
4022 }
4023
4024 // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
4025 if (Literal.isImaginary) {
4026 Res = new (Context) ImaginaryLiteral(Res,
4027 Context.getComplexType(Res->getType()));
4028
4029 Diag(Tok.getLocation(), diag::ext_imaginary_constant);
4030 }
4031 return Res;
4032}
4033
4034ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E) {
4035 assert(E && "ActOnParenExpr() missing expr")(static_cast <bool> (E && "ActOnParenExpr() missing expr"
) ? void (0) : __assert_fail ("E && \"ActOnParenExpr() missing expr\""
, "clang/lib/Sema/SemaExpr.cpp", 4035, __extension__ __PRETTY_FUNCTION__
))
;
4036 QualType ExprTy = E->getType();
4037 if (getLangOpts().ProtectParens && CurFPFeatures.getAllowFPReassociate() &&
4038 !E->isLValue() && ExprTy->hasFloatingRepresentation())
4039 return BuildBuiltinCallExpr(R, Builtin::BI__arithmetic_fence, E);
4040 return new (Context) ParenExpr(L, R, E);
4041}
4042
4043static bool CheckVecStepTraitOperandType(Sema &S, QualType T,
4044 SourceLocation Loc,
4045 SourceRange ArgRange) {
4046 // [OpenCL 1.1 6.11.12] "The vec_step built-in function takes a built-in
4047 // scalar or vector data type argument..."
4048 // Every built-in scalar type (OpenCL 1.1 6.1.1) is either an arithmetic
4049 // type (C99 6.2.5p18) or void.
4050 if (!(T->isArithmeticType() || T->isVoidType() || T->isVectorType())) {
4051 S.Diag(Loc, diag::err_vecstep_non_scalar_vector_type)
4052 << T << ArgRange;
4053 return true;
4054 }
4055
4056 assert((T->isVoidType() || !T->isIncompleteType()) &&(static_cast <bool> ((T->isVoidType() || !T->isIncompleteType
()) && "Scalar types should always be complete") ? void
(0) : __assert_fail ("(T->isVoidType() || !T->isIncompleteType()) && \"Scalar types should always be complete\""
, "clang/lib/Sema/SemaExpr.cpp", 4057, __extension__ __PRETTY_FUNCTION__
))
4057 "Scalar types should always be complete")(static_cast <bool> ((T->isVoidType() || !T->isIncompleteType
()) && "Scalar types should always be complete") ? void
(0) : __assert_fail ("(T->isVoidType() || !T->isIncompleteType()) && \"Scalar types should always be complete\""
, "clang/lib/Sema/SemaExpr.cpp", 4057, __extension__ __PRETTY_FUNCTION__
))
;
4058 return false;
4059}
4060
4061static bool CheckExtensionTraitOperandType(Sema &S, QualType T,
4062 SourceLocation Loc,
4063 SourceRange ArgRange,
4064 UnaryExprOrTypeTrait TraitKind) {
4065 // Invalid types must be hard errors for SFINAE in C++.
4066 if (S.LangOpts.CPlusPlus)
4067 return true;
4068
4069 // C99 6.5.3.4p1:
4070 if (T->isFunctionType() &&
4071 (TraitKind == UETT_SizeOf || TraitKind == UETT_AlignOf ||
4072 TraitKind == UETT_PreferredAlignOf)) {
4073 // sizeof(function)/alignof(function) is allowed as an extension.
4074 S.Diag(Loc, diag::ext_sizeof_alignof_function_type)
4075 << getTraitSpelling(TraitKind) << ArgRange;
4076 return false;
4077 }
4078
4079 // Allow sizeof(void)/alignof(void) as an extension, unless in OpenCL where
4080 // this is an error (OpenCL v1.1 s6.3.k)
4081 if (T->isVoidType()) {
4082 unsigned DiagID = S.LangOpts.OpenCL ? diag::err_opencl_sizeof_alignof_type
4083 : diag::ext_sizeof_alignof_void_type;
4084 S.Diag(Loc, DiagID) << getTraitSpelling(TraitKind) << ArgRange;
4085 return false;
4086 }
4087
4088 return true;
4089}
4090
4091static bool CheckObjCTraitOperandConstraints(Sema &S, QualType T,
4092 SourceLocation Loc,
4093 SourceRange ArgRange,
4094 UnaryExprOrTypeTrait TraitKind) {
4095 // Reject sizeof(interface) and sizeof(interface<proto>) if the
4096 // runtime doesn't allow it.
4097 if (!S.LangOpts.ObjCRuntime.allowsSizeofAlignof() && T->isObjCObjectType()) {
4098 S.Diag(Loc, diag::err_sizeof_nonfragile_interface)
4099 << T << (TraitKind == UETT_SizeOf)
4100 << ArgRange;
4101 return true;
4102 }
4103
4104 return false;
4105}
4106
4107/// Check whether E is a pointer from a decayed array type (the decayed
4108/// pointer type is equal to T) and emit a warning if it is.
4109static void warnOnSizeofOnArrayDecay(Sema &S, SourceLocation Loc, QualType T,
4110 Expr *E) {
4111 // Don't warn if the operation changed the type.
4112 if (T != E->getType())
4113 return;
4114
4115 // Now look for array decays.
4116 ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E);
4117 if (!ICE || ICE->getCastKind() != CK_ArrayToPointerDecay)
4118 return;
4119
4120 S.Diag(Loc, diag::warn_sizeof_array_decay) << ICE->getSourceRange()
4121 << ICE->getType()
4122 << ICE->getSubExpr()->getType();
4123}
4124
4125/// Check the constraints on expression operands to unary type expression
4126/// and type traits.
4127///
4128/// Completes any types necessary and validates the constraints on the operand
4129/// expression. The logic mostly mirrors the type-based overload, but may modify
4130/// the expression as it completes the type for that expression through template
4131/// instantiation, etc.
4132bool Sema::CheckUnaryExprOrTypeTraitOperand(Expr *E,
4133 UnaryExprOrTypeTrait ExprKind) {
4134 QualType ExprTy = E->getType();
4135 assert(!ExprTy->isReferenceType())(static_cast <bool> (!ExprTy->isReferenceType()) ? void
(0) : __assert_fail ("!ExprTy->isReferenceType()", "clang/lib/Sema/SemaExpr.cpp"
, 4135, __extension__ __PRETTY_FUNCTION__))
;
4136
4137 bool IsUnevaluatedOperand =
4138 (ExprKind == UETT_SizeOf || ExprKind == UETT_AlignOf ||
4139 ExprKind == UETT_PreferredAlignOf || ExprKind == UETT_VecStep);
4140 if (IsUnevaluatedOperand) {
4141 ExprResult Result = CheckUnevaluatedOperand(E);
4142 if (Result.isInvalid())
4143 return true;
4144 E = Result.get();
4145 }
4146
4147 // The operand for sizeof and alignof is in an unevaluated expression context,
4148 // so side effects could result in unintended consequences.
4149 // Exclude instantiation-dependent expressions, because 'sizeof' is sometimes
4150 // used to build SFINAE gadgets.
4151 // FIXME: Should we consider instantiation-dependent operands to 'alignof'?
4152 if (IsUnevaluatedOperand && !inTemplateInstantiation() &&
4153 !E->isInstantiationDependent() &&
4154 E->HasSideEffects(Context, false))
4155 Diag(E->getExprLoc(), diag::warn_side_effects_unevaluated_context);
4156
4157 if (ExprKind == UETT_VecStep)
4158 return CheckVecStepTraitOperandType(*this, ExprTy, E->getExprLoc(),
4159 E->getSourceRange());
4160
4161 // Explicitly list some types as extensions.
4162 if (!CheckExtensionTraitOperandType(*this, ExprTy, E->getExprLoc(),
4163 E->getSourceRange(), ExprKind))
4164 return false;
4165
4166 // 'alignof' applied to an expression only requires the base element type of
4167 // the expression to be complete. 'sizeof' requires the expression's type to
4168 // be complete (and will attempt to complete it if it's an array of unknown
4169 // bound).
4170 if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) {
4171 if (RequireCompleteSizedType(
4172 E->getExprLoc(), Context.getBaseElementType(E->getType()),
4173 diag::err_sizeof_alignof_incomplete_or_sizeless_type,
4174 getTraitSpelling(ExprKind), E->getSourceRange()))
4175 return true;
4176 } else {
4177 if (RequireCompleteSizedExprType(
4178 E, diag::err_sizeof_alignof_incomplete_or_sizeless_type,
4179 getTraitSpelling(ExprKind), E->getSourceRange()))
4180 return true;
4181 }
4182
4183 // Completing the expression's type may have changed it.
4184 ExprTy = E->getType();
4185 assert(!ExprTy->isReferenceType())(static_cast <bool> (!ExprTy->isReferenceType()) ? void
(0) : __assert_fail ("!ExprTy->isReferenceType()", "clang/lib/Sema/SemaExpr.cpp"
, 4185, __extension__ __PRETTY_FUNCTION__))
;
4186
4187 if (ExprTy->isFunctionType()) {
4188 Diag(E->getExprLoc(), diag::err_sizeof_alignof_function_type)
4189 << getTraitSpelling(ExprKind) << E->getSourceRange();
4190 return true;
4191 }
4192
4193 if (CheckObjCTraitOperandConstraints(*this, ExprTy, E->getExprLoc(),
4194 E->getSourceRange(), ExprKind))
4195 return true;
4196
4197 if (ExprKind == UETT_SizeOf) {
4198 if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
4199 if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DeclRef->getFoundDecl())) {
4200 QualType OType = PVD->getOriginalType();
4201 QualType Type = PVD->getType();
4202 if (Type->isPointerType() && OType->isArrayType()) {
4203 Diag(E->getExprLoc(), diag::warn_sizeof_array_param)
4204 << Type << OType;
4205 Diag(PVD->getLocation(), diag::note_declared_at);
4206 }
4207 }
4208 }
4209
4210 // Warn on "sizeof(array op x)" and "sizeof(x op array)", where the array
4211 // decays into a pointer and returns an unintended result. This is most
4212 // likely a typo for "sizeof(array) op x".
4213 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E->IgnoreParens())) {
4214 warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
4215 BO->getLHS());
4216 warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
4217 BO->getRHS());
4218 }
4219 }
4220
4221 return false;
4222}
4223
4224/// Check the constraints on operands to unary expression and type
4225/// traits.
4226///
4227/// This will complete any types necessary, and validate the various constraints
4228/// on those operands.
4229///
4230/// The UsualUnaryConversions() function is *not* called by this routine.
4231/// C99 6.3.2.1p[2-4] all state:
4232/// Except when it is the operand of the sizeof operator ...
4233///
4234/// C++ [expr.sizeof]p4
4235/// The lvalue-to-rvalue, array-to-pointer, and function-to-pointer
4236/// standard conversions are not applied to the operand of sizeof.
4237///
4238/// This policy is followed for all of the unary trait expressions.
4239bool Sema::CheckUnaryExprOrTypeTraitOperand(QualType ExprType,
4240 SourceLocation OpLoc,
4241 SourceRange ExprRange,
4242 UnaryExprOrTypeTrait ExprKind) {
4243 if (ExprType->isDependentType())
4244 return false;
4245
4246 // C++ [expr.sizeof]p2:
4247 // When applied to a reference or a reference type, the result
4248 // is the size of the referenced type.
4249 // C++11 [expr.alignof]p3:
4250 // When alignof is applied to a reference type, the result
4251 // shall be the alignment of the referenced type.
4252 if (const ReferenceType *Ref = ExprType->getAs<ReferenceType>())
4253 ExprType = Ref->getPointeeType();
4254
4255 // C11 6.5.3.4/3, C++11 [expr.alignof]p3:
4256 // When alignof or _Alignof is applied to an array type, the result
4257 // is the alignment of the element type.
4258 if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf ||
4259 ExprKind == UETT_OpenMPRequiredSimdAlign)
4260 ExprType = Context.getBaseElementType(ExprType);
4261
4262 if (ExprKind == UETT_VecStep)
4263 return CheckVecStepTraitOperandType(*this, ExprType, OpLoc, ExprRange);
4264
4265 // Explicitly list some types as extensions.
4266 if (!CheckExtensionTraitOperandType(*this, ExprType, OpLoc, ExprRange,
4267 ExprKind))
4268 return false;
4269
4270 if (RequireCompleteSizedType(
4271 OpLoc, ExprType, diag::err_sizeof_alignof_incomplete_or_sizeless_type,
4272 getTraitSpelling(ExprKind), ExprRange))
4273 return true;
4274
4275 if (ExprType->isFunctionType()) {
4276 Diag(OpLoc, diag::err_sizeof_alignof_function_type)
4277 << getTraitSpelling(ExprKind) << ExprRange;
4278 return true;
4279 }
4280
4281 if (CheckObjCTraitOperandConstraints(*this, ExprType, OpLoc, ExprRange,
4282 ExprKind))
4283 return true;
4284
4285 return false;
4286}
4287
4288static bool CheckAlignOfExpr(Sema &S, Expr *E, UnaryExprOrTypeTrait ExprKind) {
4289 // Cannot know anything else if the expression is dependent.
4290 if (E->isTypeDependent())
4291 return false;
4292
4293 if (E->getObjectKind() == OK_BitField) {
4294 S.Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield)
4295 << 1 << E->getSourceRange();
4296 return true;
4297 }
4298
4299 ValueDecl *D = nullptr;
4300 Expr *Inner = E->IgnoreParens();
4301 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Inner)) {
4302 D = DRE->getDecl();
4303 } else if (MemberExpr *ME = dyn_cast<MemberExpr>(Inner)) {
4304 D = ME->getMemberDecl();
4305 }
4306
4307 // If it's a field, require the containing struct to have a
4308 // complete definition so that we can compute the layout.
4309 //
4310 // This can happen in C++11 onwards, either by naming the member
4311 // in a way that is not transformed into a member access expression
4312 // (in an unevaluated operand, for instance), or by naming the member
4313 // in a trailing-return-type.
4314 //
4315 // For the record, since __alignof__ on expressions is a GCC
4316 // extension, GCC seems to permit this but always gives the
4317 // nonsensical answer 0.
4318 //
4319 // We don't really need the layout here --- we could instead just
4320 // directly check for all the appropriate alignment-lowing
4321 // attributes --- but that would require duplicating a lot of
4322 // logic that just isn't worth duplicating for such a marginal
4323 // use-case.
4324 if (FieldDecl *FD = dyn_cast_or_null<FieldDecl>(D)) {
4325 // Fast path this check, since we at least know the record has a
4326 // definition if we can find a member of it.
4327 if (!FD->getParent()->isCompleteDefinition()) {
4328 S.Diag(E->getExprLoc(), diag::err_alignof_member_of_incomplete_type)
4329 << E->getSourceRange();
4330 return true;
4331 }
4332
4333 // Otherwise, if it's a field, and the field doesn't have
4334 // reference type, then it must have a complete type (or be a
4335 // flexible array member, which we explicitly want to
4336 // white-list anyway), which makes the following checks trivial.
4337 if (!FD->getType()->isReferenceType())
4338 return false;
4339 }
4340
4341 return S.CheckUnaryExprOrTypeTraitOperand(E, ExprKind);
4342}
4343
4344bool Sema::CheckVecStepExpr(Expr *E) {
4345 E = E->IgnoreParens();
4346
4347 // Cannot know anything else if the expression is dependent.
4348 if (E->isTypeDependent())
4349 return false;
4350
4351 return CheckUnaryExprOrTypeTraitOperand(E, UETT_VecStep);
4352}
4353
4354static void captureVariablyModifiedType(ASTContext &Context, QualType T,
4355 CapturingScopeInfo *CSI) {
4356 assert(T->isVariablyModifiedType())(static_cast <bool> (T->isVariablyModifiedType()) ? void
(0) : __assert_fail ("T->isVariablyModifiedType()", "clang/lib/Sema/SemaExpr.cpp"
, 4356, __extension__ __PRETTY_FUNCTION__))
;
4357 assert(CSI != nullptr)(static_cast <bool> (CSI != nullptr) ? void (0) : __assert_fail
("CSI != nullptr", "clang/lib/Sema/SemaExpr.cpp", 4357, __extension__
__PRETTY_FUNCTION__))
;
4358
4359 // We're going to walk down into the type and look for VLA expressions.
4360 do {
4361 const Type *Ty = T.getTypePtr();
4362 switch (Ty->getTypeClass()) {
4363#define TYPE(Class, Base)
4364#define ABSTRACT_TYPE(Class, Base)
4365#define NON_CANONICAL_TYPE(Class, Base)
4366#define DEPENDENT_TYPE(Class, Base) case Type::Class:
4367#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
4368#include "clang/AST/TypeNodes.inc"
4369 T = QualType();
4370 break;
4371 // These types are never variably-modified.
4372 case Type::Builtin:
4373 case Type::Complex:
4374 case Type::Vector:
4375 case Type::ExtVector:
4376 case Type::ConstantMatrix:
4377 case Type::Record:
4378 case Type::Enum:
4379 case Type::Elaborated:
4380 case Type::TemplateSpecialization:
4381 case Type::ObjCObject:
4382 case Type::ObjCInterface:
4383 case Type::ObjCObjectPointer:
4384 case Type::ObjCTypeParam:
4385 case Type::Pipe:
4386 case Type::BitInt:
4387 llvm_unreachable("type class is never variably-modified!")::llvm::llvm_unreachable_internal("type class is never variably-modified!"
, "clang/lib/Sema/SemaExpr.cpp", 4387)
;
4388 case Type::Adjusted:
4389 T = cast<AdjustedType>(Ty)->getOriginalType();
4390 break;
4391 case Type::Decayed:
4392 T = cast<DecayedType>(Ty)->getPointeeType();
4393 break;
4394 case Type::Pointer:
4395 T = cast<PointerType>(Ty)->getPointeeType();
4396 break;
4397 case Type::BlockPointer:
4398 T = cast<BlockPointerType>(Ty)->getPointeeType();
4399 break;
4400 case Type::LValueReference:
4401 case Type::RValueReference:
4402 T = cast<ReferenceType>(Ty)->getPointeeType();
4403 break;
4404 case Type::MemberPointer:
4405 T = cast<MemberPointerType>(Ty)->getPointeeType();
4406 break;
4407 case Type::ConstantArray:
4408 case Type::IncompleteArray:
4409 // Losing element qualification here is fine.
4410 T = cast<ArrayType>(Ty)->getElementType();
4411 break;
4412 case Type::VariableArray: {
4413 // Losing element qualification here is fine.
4414 const VariableArrayType *VAT = cast<VariableArrayType>(Ty);
4415
4416 // Unknown size indication requires no size computation.
4417 // Otherwise, evaluate and record it.
4418 auto Size = VAT->getSizeExpr();
4419 if (Size && !CSI->isVLATypeCaptured(VAT) &&
4420 (isa<CapturedRegionScopeInfo>(CSI) || isa<LambdaScopeInfo>(CSI)))
4421 CSI->addVLATypeCapture(Size->getExprLoc(), VAT, Context.getSizeType());
4422
4423 T = VAT->getElementType();
4424 break;
4425 }
4426 case Type::FunctionProto:
4427 case Type::FunctionNoProto:
4428 T = cast<FunctionType>(Ty)->getReturnType();
4429 break;
4430 case Type::Paren:
4431 case Type::TypeOf:
4432 case Type::UnaryTransform:
4433 case Type::Attributed:
4434 case Type::SubstTemplateTypeParm:
4435 case Type::MacroQualified:
4436 // Keep walking after single level desugaring.
4437 T = T.getSingleStepDesugaredType(Context);
4438 break;
4439 case Type::Typedef:
4440 T = cast<TypedefType>(Ty)->desugar();
4441 break;
4442 case Type::Decltype:
4443 T = cast<DecltypeType>(Ty)->desugar();
4444 break;
4445 case Type::Using:
4446 T = cast<UsingType>(Ty)->desugar();
4447 break;
4448 case Type::Auto:
4449 case Type::DeducedTemplateSpecialization:
4450 T = cast<DeducedType>(Ty)->getDeducedType();
4451 break;
4452 case Type::TypeOfExpr:
4453 T = cast<TypeOfExprType>(Ty)->getUnderlyingExpr()->getType();
4454 break;
4455 case Type::Atomic:
4456 T = cast<AtomicType>(Ty)->getValueType();
4457 break;
4458 }
4459 } while (!T.isNull() && T->isVariablyModifiedType());
4460}
4461
4462/// Build a sizeof or alignof expression given a type operand.
4463ExprResult
4464Sema::CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo,
4465 SourceLocation OpLoc,
4466 UnaryExprOrTypeTrait ExprKind,
4467 SourceRange R) {
4468 if (!TInfo)
4469 return ExprError();
4470
4471 QualType T = TInfo->getType();
4472
4473 if (!T->isDependentType() &&
4474 CheckUnaryExprOrTypeTraitOperand(T, OpLoc, R, ExprKind))
4475 return ExprError();
4476
4477 if (T->isVariablyModifiedType() && FunctionScopes.size() > 1) {
4478 if (auto *TT = T->getAs<TypedefType>()) {
4479 for (auto I = FunctionScopes.rbegin(),
4480 E = std::prev(FunctionScopes.rend());
4481 I != E; ++I) {
4482 auto *CSI = dyn_cast<CapturingScopeInfo>(*I);
4483 if (CSI == nullptr)
4484 break;
4485 DeclContext *DC = nullptr;
4486 if (auto *LSI = dyn_cast<LambdaScopeInfo>(CSI))
4487 DC = LSI->CallOperator;
4488 else if (auto *CRSI = dyn_cast<CapturedRegionScopeInfo>(CSI))
4489 DC = CRSI->TheCapturedDecl;
4490 else if (auto *BSI = dyn_cast<BlockScopeInfo>(CSI))
4491 DC = BSI->TheDecl;
4492 if (DC) {
4493 if (DC->containsDecl(TT->getDecl()))
4494 break;
4495 captureVariablyModifiedType(Context, T, CSI);
4496 }
4497 }
4498 }
4499 }
4500
4501 // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
4502 if (isUnevaluatedContext() && ExprKind == UETT_SizeOf &&
4503 TInfo->getType()->isVariablyModifiedType())
4504 TInfo = TransformToPotentiallyEvaluated(TInfo);
4505
4506 return new (Context) UnaryExprOrTypeTraitExpr(
4507 ExprKind, TInfo, Context.getSizeType(), OpLoc, R.getEnd());
4508}
4509
4510/// Build a sizeof or alignof expression given an expression
4511/// operand.
4512ExprResult
4513Sema::CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc,
4514 UnaryExprOrTypeTrait ExprKind) {
4515 ExprResult PE = CheckPlaceholderExpr(E);
4516 if (PE.isInvalid())
4517 return ExprError();
4518
4519 E = PE.get();
4520
4521 // Verify that the operand is valid.
4522 bool isInvalid = false;
4523 if (E->isTypeDependent()) {
4524 // Delay type-checking for type-dependent expressions.
4525 } else if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) {
4526 isInvalid = CheckAlignOfExpr(*this, E, ExprKind);
4527 } else if (ExprKind == UETT_VecStep) {
4528 isInvalid = CheckVecStepExpr(E);
4529 } else if (ExprKind == UETT_OpenMPRequiredSimdAlign) {
4530 Diag(E->getExprLoc(), diag::err_openmp_default_simd_align_expr);
4531 isInvalid = true;
4532 } else if (E->refersToBitField()) { // C99 6.5.3.4p1.
4533 Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield) << 0;
4534 isInvalid = true;
4535 } else {
4536 isInvalid = CheckUnaryExprOrTypeTraitOperand(E, UETT_SizeOf);
4537 }
4538
4539 if (isInvalid)
4540 return ExprError();
4541
4542 if (ExprKind == UETT_SizeOf && E->getType()->isVariableArrayType()) {
4543 PE = TransformToPotentiallyEvaluated(E);
4544 if (PE.isInvalid()) return ExprError();
4545 E = PE.get();
4546 }
4547
4548 // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
4549 return new (Context) UnaryExprOrTypeTraitExpr(
4550 ExprKind, E, Context.getSizeType(), OpLoc, E->getSourceRange().getEnd());
4551}
4552
4553/// ActOnUnaryExprOrTypeTraitExpr - Handle @c sizeof(type) and @c sizeof @c
4554/// expr and the same for @c alignof and @c __alignof
4555/// Note that the ArgRange is invalid if isType is false.
4556ExprResult
4557Sema::ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,
4558 UnaryExprOrTypeTrait ExprKind, bool IsType,
4559 void *TyOrEx, SourceRange ArgRange) {
4560 // If error parsing type, ignore.
4561 if (!TyOrEx) return ExprError();
4562
4563 if (IsType) {
4564 TypeSourceInfo *TInfo;
4565 (void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo);
4566 return CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, ArgRange);
4567 }
4568
4569 Expr *ArgEx = (Expr *)TyOrEx;
4570 ExprResult Result = CreateUnaryExprOrTypeTraitExpr(ArgEx, OpLoc, ExprKind);
4571 return Result;
4572}
4573
4574static QualType CheckRealImagOperand(Sema &S, ExprResult &V, SourceLocation Loc,
4575 bool IsReal) {
4576 if (V.get()->isTypeDependent())
4577 return S.Context.DependentTy;
4578
4579 // _Real and _Imag are only l-values for normal l-values.
4580 if (V.get()->getObjectKind() != OK_Ordinary) {
4581 V = S.DefaultLvalueConversion(V.get());
4582 if (V.isInvalid())
4583 return QualType();
4584 }
4585
4586 // These operators return the element type of a complex type.
4587 if (const ComplexType *CT = V.get()->getType()->getAs<ComplexType>())
4588 return CT->getElementType();
4589
4590 // Otherwise they pass through real integer and floating point types here.
4591 if (V.get()->getType()->isArithmeticType())
4592 return V.get()->getType();
4593
4594 // Test for placeholders.
4595 ExprResult PR = S.CheckPlaceholderExpr(V.get());
4596 if (PR.isInvalid()) return QualType();
4597 if (PR.get() != V.get()) {
4598 V = PR;
4599 return CheckRealImagOperand(S, V, Loc, IsReal);
4600 }
4601
4602 // Reject anything else.
4603 S.Diag(Loc, diag::err_realimag_invalid_type) << V.get()->getType()
4604 << (IsReal ? "__real" : "__imag");
4605 return QualType();
4606}
4607
4608
4609
4610ExprResult
4611Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
4612 tok::TokenKind Kind, Expr *Input) {
4613 UnaryOperatorKind Opc;
4614 switch (Kind) {
4615 default: llvm_unreachable("Unknown unary op!")::llvm::llvm_unreachable_internal("Unknown unary op!", "clang/lib/Sema/SemaExpr.cpp"
, 4615)
;
4616 case tok::plusplus: Opc = UO_PostInc; break;
4617 case tok::minusminus: Opc = UO_PostDec; break;
4618 }
4619
4620 // Since this might is a postfix expression, get rid of ParenListExprs.
4621 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Input);
4622 if (Result.isInvalid()) return ExprError();
4623 Input = Result.get();
4624
4625 return BuildUnaryOp(S, OpLoc, Opc, Input);
4626}
4627
4628/// Diagnose if arithmetic on the given ObjC pointer is illegal.
4629///
4630/// \return true on error
4631static bool checkArithmeticOnObjCPointer(Sema &S,
4632 SourceLocation opLoc,
4633 Expr *op) {
4634 assert(op->getType()->isObjCObjectPointerType())(static_cast <bool> (op->getType()->isObjCObjectPointerType
()) ? void (0) : __assert_fail ("op->getType()->isObjCObjectPointerType()"
, "clang/lib/Sema/SemaExpr.cpp", 4634, __extension__ __PRETTY_FUNCTION__
))
;
4635 if (S.LangOpts.ObjCRuntime.allowsPointerArithmetic() &&
4636 !S.LangOpts.ObjCSubscriptingLegacyRuntime)
4637 return false;
4638
4639 S.Diag(opLoc, diag::err_arithmetic_nonfragile_interface)
4640 << op->getType()->castAs<ObjCObjectPointerType>()->getPointeeType()
4641 << op->getSourceRange();
4642 return true;
4643}
4644
4645static bool isMSPropertySubscriptExpr(Sema &S, Expr *Base) {
4646 auto *BaseNoParens = Base->IgnoreParens();
4647 if (auto *MSProp = dyn_cast<MSPropertyRefExpr>(BaseNoParens))
4648 return MSProp->getPropertyDecl()->getType()->isArrayType();
4649 return isa<MSPropertySubscriptExpr>(BaseNoParens);
4650}
4651
4652// Returns the type used for LHS[RHS], given one of LHS, RHS is type-dependent.
4653// Typically this is DependentTy, but can sometimes be more precise.
4654//
4655// There are cases when we could determine a non-dependent type:
4656// - LHS and RHS may have non-dependent types despite being type-dependent
4657// (e.g. unbounded array static members of the current instantiation)
4658// - one may be a dependent-sized array with known element type
4659// - one may be a dependent-typed valid index (enum in current instantiation)
4660//
4661// We *always* return a dependent type, in such cases it is DependentTy.
4662// This avoids creating type-dependent expressions with non-dependent types.
4663// FIXME: is this important to avoid? See https://reviews.llvm.org/D107275
4664static QualType getDependentArraySubscriptType(Expr *LHS, Expr *RHS,
4665 const ASTContext &Ctx) {
4666 assert(LHS->isTypeDependent() || RHS->isTypeDependent())(static_cast <bool> (LHS->isTypeDependent() || RHS->
isTypeDependent()) ? void (0) : __assert_fail ("LHS->isTypeDependent() || RHS->isTypeDependent()"
, "clang/lib/Sema/SemaExpr.cpp", 4666, __extension__ __PRETTY_FUNCTION__
))
;
4667 QualType LTy = LHS->getType(), RTy = RHS->getType();
4668 QualType Result = Ctx.DependentTy;
4669 if (RTy->isIntegralOrUnscopedEnumerationType()) {
4670 if (const PointerType *PT = LTy->getAs<PointerType>())
4671 Result = PT->getPointeeType();
4672 else if (const ArrayType *AT = LTy->getAsArrayTypeUnsafe())
4673 Result = AT->getElementType();
4674 } else if (LTy->isIntegralOrUnscopedEnumerationType()) {
4675 if (const PointerType *PT = RTy->getAs<PointerType>())
4676 Result = PT->getPointeeType();
4677 else if (const ArrayType *AT = RTy->getAsArrayTypeUnsafe())
4678 Result = AT->getElementType();
4679 }
4680 // Ensure we return a dependent type.
4681 return Result->isDependentType() ? Result : Ctx.DependentTy;
4682}
4683
4684static bool checkArgsForPlaceholders(Sema &S, MultiExprArg args);
4685
4686ExprResult Sema::ActOnArraySubscriptExpr(Scope *S, Expr *base,
4687 SourceLocation lbLoc,
4688 MultiExprArg ArgExprs,
4689 SourceLocation rbLoc) {
4690
4691 if (base && !base->getType().isNull() &&
4692 base->hasPlaceholderType(BuiltinType::OMPArraySection))
4693 return ActOnOMPArraySectionExpr(base, lbLoc, ArgExprs.front(), SourceLocation(),
4694 SourceLocation(), /*Length*/ nullptr,
4695 /*Stride=*/nullptr, rbLoc);
4696
4697 // Since this might be a postfix expression, get rid of ParenListExprs.
4698 if (isa<ParenListExpr>(base)) {
4699 ExprResult result = MaybeConvertParenListExprToParenExpr(S, base);
4700 if (result.isInvalid())
4701 return ExprError();
4702 base = result.get();
4703 }
4704
4705 // Check if base and idx form a MatrixSubscriptExpr.
4706 //
4707 // Helper to check for comma expressions, which are not allowed as indices for
4708 // matrix subscript expressions.
4709 auto CheckAndReportCommaError = [this, base, rbLoc](Expr *E) {
4710 if (isa<BinaryOperator>(E) && cast<BinaryOperator>(E)->isCommaOp()) {
4711 Diag(E->getExprLoc(), diag::err_matrix_subscript_comma)
4712 << SourceRange(base->getBeginLoc(), rbLoc);
4713 return true;
4714 }
4715 return false;
4716 };
4717 // The matrix subscript operator ([][])is considered a single operator.
4718 // Separating the index expressions by parenthesis is not allowed.
4719 if (base->hasPlaceholderType(BuiltinType::IncompleteMatrixIdx) &&
4720 !isa<MatrixSubscriptExpr>(base)) {
4721 Diag(base->getExprLoc(), diag::err_matrix_separate_incomplete_index)
4722 << SourceRange(base->getBeginLoc(), rbLoc);
4723 return ExprError();
4724 }
4725 // If the base is a MatrixSubscriptExpr, try to create a new
4726 // MatrixSubscriptExpr.
4727 auto *matSubscriptE = dyn_cast<MatrixSubscriptExpr>(base);
4728 if (matSubscriptE) {
4729 assert(ArgExprs.size() == 1)(static_cast <bool> (ArgExprs.size() == 1) ? void (0) :
__assert_fail ("ArgExprs.size() == 1", "clang/lib/Sema/SemaExpr.cpp"
, 4729, __extension__ __PRETTY_FUNCTION__))
;
4730 if (CheckAndReportCommaError(ArgExprs.front()))
4731 return ExprError();
4732
4733 assert(matSubscriptE->isIncomplete() &&(static_cast <bool> (matSubscriptE->isIncomplete() &&
"base has to be an incomplete matrix subscript") ? void (0) :
__assert_fail ("matSubscriptE->isIncomplete() && \"base has to be an incomplete matrix subscript\""
, "clang/lib/Sema/SemaExpr.cpp", 4734, __extension__ __PRETTY_FUNCTION__
))
4734 "base has to be an incomplete matrix subscript")(static_cast <bool> (matSubscriptE->isIncomplete() &&
"base has to be an incomplete matrix subscript") ? void (0) :
__assert_fail ("matSubscriptE->isIncomplete() && \"base has to be an incomplete matrix subscript\""
, "clang/lib/Sema/SemaExpr.cpp", 4734, __extension__ __PRETTY_FUNCTION__
))
;
4735 return CreateBuiltinMatrixSubscriptExpr(matSubscriptE->getBase(),
4736 matSubscriptE->getRowIdx(),
4737 ArgExprs.front(), rbLoc);
4738 }
4739
4740 // Handle any non-overload placeholder types in the base and index
4741 // expressions. We can't handle overloads here because the other
4742 // operand might be an overloadable type, in which case the overload
4743 // resolution for the operator overload should get the first crack
4744 // at the overload.
4745 bool IsMSPropertySubscript = false;
4746 if (base->getType()->isNonOverloadPlaceholderType()) {
4747 IsMSPropertySubscript = isMSPropertySubscriptExpr(*this, base);
4748 if (!IsMSPropertySubscript) {
4749 ExprResult result = CheckPlaceholderExpr(base);
4750 if (result.isInvalid())
4751 return ExprError();
4752 base = result.get();
4753 }
4754 }
4755
4756 // If the base is a matrix type, try to create a new MatrixSubscriptExpr.
4757 if (base->getType()->isMatrixType()) {
4758 assert(ArgExprs.size() == 1)(static_cast <bool> (ArgExprs.size() == 1) ? void (0) :
__assert_fail ("ArgExprs.size() == 1", "clang/lib/Sema/SemaExpr.cpp"
, 4758, __extension__ __PRETTY_FUNCTION__))
;
4759 if (CheckAndReportCommaError(ArgExprs.front()))
4760 return ExprError();
4761
4762 return CreateBuiltinMatrixSubscriptExpr(base, ArgExprs.front(), nullptr,
4763 rbLoc);
4764 }
4765
4766 if (ArgExprs.size() == 1 && getLangOpts().CPlusPlus20) {
4767 Expr *idx = ArgExprs[0];
4768 if ((isa<BinaryOperator>(idx) && cast<BinaryOperator>(idx)->isCommaOp()) ||
4769 (isa<CXXOperatorCallExpr>(idx) &&
4770 cast<CXXOperatorCallExpr>(idx)->getOperator() == OO_Comma)) {
4771 Diag(idx->getExprLoc(), diag::warn_deprecated_comma_subscript)
4772 << SourceRange(base->getBeginLoc(), rbLoc);
4773 }
4774 }
4775
4776 if (ArgExprs.size() == 1 &&
4777 ArgExprs[0]->getType()->isNonOverloadPlaceholderType()) {
4778 ExprResult result = CheckPlaceholderExpr(ArgExprs[0]);
4779 if (result.isInvalid())
4780 return ExprError();
4781 ArgExprs[0] = result.get();
4782 } else {
4783 if (checkArgsForPlaceholders(*this, ArgExprs))
4784 return ExprError();
4785 }
4786
4787 // Build an unanalyzed expression if either operand is type-dependent.
4788 if (getLangOpts().CPlusPlus && ArgExprs.size() == 1 &&
4789 (base->isTypeDependent() ||
4790 Expr::hasAnyTypeDependentArguments(ArgExprs))) {
4791 return new (Context) ArraySubscriptExpr(
4792 base, ArgExprs.front(),
4793 getDependentArraySubscriptType(base, ArgExprs.front(), getASTContext()),
4794 VK_LValue, OK_Ordinary, rbLoc);
4795 }
4796
4797 // MSDN, property (C++)
4798 // https://msdn.microsoft.com/en-us/library/yhfk0thd(v=vs.120).aspx
4799 // This attribute can also be used in the declaration of an empty array in a
4800 // class or structure definition. For example:
4801 // __declspec(property(get=GetX, put=PutX)) int x[];
4802 // The above statement indicates that x[] can be used with one or more array
4803 // indices. In this case, i=p->x[a][b] will be turned into i=p->GetX(a, b),
4804 // and p->x[a][b] = i will be turned into p->PutX(a, b, i);
4805 if (IsMSPropertySubscript) {
4806 assert(ArgExprs.size() == 1)(static_cast <bool> (ArgExprs.size() == 1) ? void (0) :
__assert_fail ("ArgExprs.size() == 1", "clang/lib/Sema/SemaExpr.cpp"
, 4806, __extension__ __PRETTY_FUNCTION__))
;
4807 // Build MS property subscript expression if base is MS property reference
4808 // or MS property subscript.
4809 return new (Context)
4810 MSPropertySubscriptExpr(base, ArgExprs.front(), Context.PseudoObjectTy,
4811 VK_LValue, OK_Ordinary, rbLoc);
4812 }
4813
4814 // Use C++ overloaded-operator rules if either operand has record
4815 // type. The spec says to do this if either type is *overloadable*,
4816 // but enum types can't declare subscript operators or conversion
4817 // operators, so there's nothing interesting for overload resolution
4818 // to do if there aren't any record types involved.
4819 //
4820 // ObjC pointers have their own subscripting logic that is not tied
4821 // to overload resolution and so should not take this path.
4822 if (getLangOpts().CPlusPlus && !base->getType()->isObjCObjectPointerType() &&
4823 ((base->getType()->isRecordType() ||
4824 (ArgExprs.size() != 1 || ArgExprs[0]->getType()->isRecordType())))) {
4825 return CreateOverloadedArraySubscriptExpr(lbLoc, rbLoc, base, ArgExprs);
4826 }
4827
4828 ExprResult Res =
4829 CreateBuiltinArraySubscriptExpr(base, lbLoc, ArgExprs.front(), rbLoc);
4830
4831 if (!Res.isInvalid() && isa<ArraySubscriptExpr>(Res.get()))
4832 CheckSubscriptAccessOfNoDeref(cast<ArraySubscriptExpr>(Res.get()));
4833
4834 return Res;
4835}
4836
4837ExprResult Sema::tryConvertExprToType(Expr *E, QualType Ty) {
4838 InitializedEntity Entity = InitializedEntity::InitializeTemporary(Ty);
4839 InitializationKind Kind =
4840 InitializationKind::CreateCopy(E->getBeginLoc(), SourceLocation());
4841 InitializationSequence InitSeq(*this, Entity, Kind, E);
4842 return InitSeq.Perform(*this, Entity, Kind, E);
4843}
4844
4845ExprResult Sema::CreateBuiltinMatrixSubscriptExpr(Expr *Base, Expr *RowIdx,
4846 Expr *ColumnIdx,
4847 SourceLocation RBLoc) {
4848 ExprResult BaseR = CheckPlaceholderExpr(Base);
4849 if (BaseR.isInvalid())
4850 return BaseR;
4851 Base = BaseR.get();
4852
4853 ExprResult RowR = CheckPlaceholderExpr(RowIdx);
4854 if (RowR.isInvalid())
4855 return RowR;
4856 RowIdx = RowR.get();
4857
4858 if (!ColumnIdx)
4859 return new (Context) MatrixSubscriptExpr(
4860 Base, RowIdx, ColumnIdx, Context.IncompleteMatrixIdxTy, RBLoc);
4861
4862 // Build an unanalyzed expression if any of the operands is type-dependent.
4863 if (Base->isTypeDependent() || RowIdx->isTypeDependent() ||
4864 ColumnIdx->isTypeDependent())
4865 return new (Context) MatrixSubscriptExpr(Base, RowIdx, ColumnIdx,
4866 Context.DependentTy, RBLoc);
4867
4868 ExprResult ColumnR = CheckPlaceholderExpr(ColumnIdx);
4869 if (ColumnR.isInvalid())
4870 return ColumnR;
4871 ColumnIdx = ColumnR.get();
4872
4873 // Check that IndexExpr is an integer expression. If it is a constant
4874 // expression, check that it is less than Dim (= the number of elements in the
4875 // corresponding dimension).
4876 auto IsIndexValid = [&](Expr *IndexExpr, unsigned Dim,
4877 bool IsColumnIdx) -> Expr * {
4878 if (!IndexExpr->getType()->isIntegerType() &&
4879 !IndexExpr->isTypeDependent()) {
4880 Diag(IndexExpr->getBeginLoc(), diag::err_matrix_index_not_integer)
4881 << IsColumnIdx;
4882 return nullptr;
4883 }
4884
4885 if (Optional<llvm::APSInt> Idx =
4886 IndexExpr->getIntegerConstantExpr(Context)) {
4887 if ((*Idx < 0 || *Idx >= Dim)) {
4888 Diag(IndexExpr->getBeginLoc(), diag::err_matrix_index_outside_range)
4889 << IsColumnIdx << Dim;
4890 return nullptr;
4891 }
4892 }
4893
4894 ExprResult ConvExpr =
4895 tryConvertExprToType(IndexExpr, Context.getSizeType());
4896 assert(!ConvExpr.isInvalid() &&(static_cast <bool> (!ConvExpr.isInvalid() && "should be able to convert any integer type to size type"
) ? void (0) : __assert_fail ("!ConvExpr.isInvalid() && \"should be able to convert any integer type to size type\""
, "clang/lib/Sema/SemaExpr.cpp", 4897, __extension__ __PRETTY_FUNCTION__
))
4897 "should be able to convert any integer type to size type")(static_cast <bool> (!ConvExpr.isInvalid() && "should be able to convert any integer type to size type"
) ? void (0) : __assert_fail ("!ConvExpr.isInvalid() && \"should be able to convert any integer type to size type\""
, "clang/lib/Sema/SemaExpr.cpp", 4897, __extension__ __PRETTY_FUNCTION__
))
;
4898 return ConvExpr.get();
4899 };
4900
4901 auto *MTy = Base->getType()->getAs<ConstantMatrixType>();
4902 RowIdx = IsIndexValid(RowIdx, MTy->getNumRows(), false);
4903 ColumnIdx = IsIndexValid(ColumnIdx, MTy->getNumColumns(), true);
4904 if (!RowIdx || !ColumnIdx)
4905 return ExprError();
4906
4907 return new (Context) MatrixSubscriptExpr(Base, RowIdx, ColumnIdx,
4908 MTy->getElementType(), RBLoc);
4909}
4910
4911void Sema::CheckAddressOfNoDeref(const Expr *E) {
4912 ExpressionEvaluationContextRecord &LastRecord = ExprEvalContexts.back();
4913 const Expr *StrippedExpr = E->IgnoreParenImpCasts();
4914
4915 // For expressions like `&(*s).b`, the base is recorded and what should be
4916 // checked.
4917 const MemberExpr *Member = nullptr;
4918 while ((Member = dyn_cast<MemberExpr>(StrippedExpr)) && !Member->isArrow())
4919 StrippedExpr = Member->getBase()->IgnoreParenImpCasts();
4920
4921 LastRecord.PossibleDerefs.erase(StrippedExpr);
4922}
4923
4924void Sema::CheckSubscriptAccessOfNoDeref(const ArraySubscriptExpr *E) {
4925 if (isUnevaluatedContext())
4926 return;
4927
4928 QualType ResultTy = E->getType();
4929 ExpressionEvaluationContextRecord &LastRecord = ExprEvalContexts.back();
4930
4931 // Bail if the element is an array since it is not memory access.
4932 if (isa<ArrayType>(ResultTy))
4933 return;
4934
4935 if (ResultTy->hasAttr(attr::NoDeref)) {
4936 LastRecord.PossibleDerefs.insert(E);
4937 return;
4938 }
4939
4940 // Check if the base type is a pointer to a member access of a struct
4941 // marked with noderef.
4942 const Expr *Base = E->getBase();
4943 QualType BaseTy = Base->getType();
4944 if (!(isa<ArrayType>(BaseTy) || isa<PointerType>(BaseTy)))
4945 // Not a pointer access
4946 return;
4947
4948 const MemberExpr *Member = nullptr;
4949 while ((Member = dyn_cast<MemberExpr>(Base->IgnoreParenCasts())) &&
4950 Member->isArrow())
4951 Base = Member->getBase();
4952
4953 if (const auto *Ptr = dyn_cast<PointerType>(Base->getType())) {
4954 if (Ptr->getPointeeType()->hasAttr(attr::NoDeref))
4955 LastRecord.PossibleDerefs.insert(E);
4956 }
4957}
4958
4959ExprResult Sema::ActOnOMPArraySectionExpr(Expr *Base, SourceLocation LBLoc,
4960 Expr *LowerBound,
4961 SourceLocation ColonLocFirst,
4962 SourceLocation ColonLocSecond,
4963 Expr *Length, Expr *Stride,
4964 SourceLocation RBLoc) {
4965 if (Base->hasPlaceholderType() &&
4966 !Base->hasPlaceholderType(BuiltinType::OMPArraySection)) {
4967 ExprResult Result = CheckPlaceholderExpr(Base);
4968 if (Result.isInvalid())
4969 return ExprError();
4970 Base = Result.get();
4971 }
4972 if (LowerBound && LowerBound->getType()->isNonOverloadPlaceholderType()) {
4973 ExprResult Result = CheckPlaceholderExpr(LowerBound);
4974 if (Result.isInvalid())
4975 return ExprError();
4976 Result = DefaultLvalueConversion(Result.get());
4977 if (Result.isInvalid())
4978 return ExprError();
4979 LowerBound = Result.get();
4980 }
4981 if (Length && Length->getType()->isNonOverloadPlaceholderType()) {
4982 ExprResult Result = CheckPlaceholderExpr(Length);
4983 if (Result.isInvalid())
4984 return ExprError();
4985 Result = DefaultLvalueConversion(Result.get());
4986 if (Result.isInvalid())
4987 return ExprError();
4988 Length = Result.get();
4989 }
4990 if (Stride && Stride->getType()->isNonOverloadPlaceholderType()) {
4991 ExprResult Result = CheckPlaceholderExpr(Stride);
4992 if (Result.isInvalid())
4993 return ExprError();
4994 Result = DefaultLvalueConversion(Result.get());
4995 if (Result.isInvalid())
4996 return ExprError();
4997 Stride = Result.get();
4998 }
4999
5000 // Build an unanalyzed expression if either operand is type-dependent.
5001 if (Base->isTypeDependent() ||
5002 (LowerBound &&
5003 (LowerBound->isTypeDependent() || LowerBound->isValueDependent())) ||
5004 (Length && (Length->isTypeDependent() || Length->isValueDependent())) ||
5005 (Stride && (Stride->isTypeDependent() || Stride->isValueDependent()))) {
5006 return new (Context) OMPArraySectionExpr(
5007 Base, LowerBound, Length, Stride, Context.DependentTy, VK_LValue,
5008 OK_Ordinary, ColonLocFirst, ColonLocSecond, RBLoc);
5009 }
5010
5011 // Perform default conversions.
5012 QualType OriginalTy = OMPArraySectionExpr::getBaseOriginalType(Base);
5013 QualType ResultTy;
5014 if (OriginalTy->isAnyPointerType()) {
5015 ResultTy = OriginalTy->getPointeeType();
5016 } else if (OriginalTy->isArrayType()) {
5017 ResultTy = OriginalTy->getAsArrayTypeUnsafe()->getElementType();
5018 } else {
5019 return ExprError(
5020 Diag(Base->getExprLoc(), diag::err_omp_typecheck_section_value)
5021 << Base->getSourceRange());
5022 }
5023 // C99 6.5.2.1p1
5024 if (LowerBound) {
5025 auto Res = PerformOpenMPImplicitIntegerConversion(LowerBound->getExprLoc(),
5026 LowerBound);
5027 if (Res.isInvalid())
5028 return ExprError(Diag(LowerBound->getExprLoc(),
5029 diag::err_omp_typecheck_section_not_integer)
5030 << 0 << LowerBound->getSourceRange());
5031 LowerBound = Res.get();
5032
5033 if (LowerBound->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
5034 LowerBound->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
5035 Diag(LowerBound->getExprLoc(), diag::warn_omp_section_is_char)
5036 << 0 << LowerBound->getSourceRange();
5037 }
5038 if (Length) {
5039 auto Res =
5040 PerformOpenMPImplicitIntegerConversion(Length->getExprLoc(), Length);
5041 if (Res.isInvalid())
5042 return ExprError(Diag(Length->getExprLoc(),
5043 diag::err_omp_typecheck_section_not_integer)
5044 << 1 << Length->getSourceRange());
5045 Length = Res.get();
5046
5047 if (Length->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
5048 Length->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
5049 Diag(Length->getExprLoc(), diag::warn_omp_section_is_char)
5050 << 1 << Length->getSourceRange();
5051 }
5052 if (Stride) {
5053 ExprResult Res =
5054 PerformOpenMPImplicitIntegerConversion(Stride->getExprLoc(), Stride);
5055 if (Res.isInvalid())
5056 return ExprError(Diag(Stride->getExprLoc(),
5057 diag::err_omp_typecheck_section_not_integer)
5058 << 1 << Stride->getSourceRange());
5059 Stride = Res.get();
5060
5061 if (Stride->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
5062 Stride->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
5063 Diag(Stride->getExprLoc(), diag::warn_omp_section_is_char)
5064 << 1 << Stride->getSourceRange();
5065 }
5066
5067 // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
5068 // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
5069 // type. Note that functions are not objects, and that (in C99 parlance)
5070 // incomplete types are not object types.
5071 if (ResultTy->isFunctionType()) {
5072 Diag(Base->getExprLoc(), diag::err_omp_section_function_type)
5073 << ResultTy << Base->getSourceRange();
5074 return ExprError();
5075 }
5076
5077 if (RequireCompleteType(Base->getExprLoc(), ResultTy,
5078 diag::err_omp_section_incomplete_type, Base))
5079 return ExprError();
5080
5081 if (LowerBound && !OriginalTy->isAnyPointerType()) {
5082 Expr::EvalResult Result;
5083 if (LowerBound->EvaluateAsInt(Result, Context)) {
5084 // OpenMP 5.0, [2.1.5 Array Sections]
5085 // The array section must be a subset of the original array.
5086 llvm::APSInt LowerBoundValue = Result.Val.getInt();
5087 if (LowerBoundValue.isNegative()) {
5088 Diag(LowerBound->getExprLoc(), diag::err_omp_section_not_subset_of_array)
5089 << LowerBound->getSourceRange();
5090 return ExprError();
5091 }
5092 }
5093 }
5094
5095 if (Length) {
5096 Expr::EvalResult Result;
5097 if (Length->EvaluateAsInt(Result, Context)) {
5098 // OpenMP 5.0, [2.1.5 Array Sections]
5099 // The length must evaluate to non-negative integers.
5100 llvm::APSInt LengthValue = Result.Val.getInt();
5101 if (LengthValue.isNegative()) {
5102 Diag(Length->getExprLoc(), diag::err_omp_section_length_negative)
5103 << toString(LengthValue, /*Radix=*/10, /*Signed=*/true)
5104 << Length->getSourceRange();
5105 return ExprError();
5106 }
5107 }
5108 } else if (ColonLocFirst.isValid() &&
5109 (OriginalTy.isNull() || (!OriginalTy->isConstantArrayType() &&
5110 !OriginalTy->isVariableArrayType()))) {
5111 // OpenMP 5.0, [2.1.5 Array Sections]
5112 // When the size of the array dimension is not known, the length must be
5113 // specified explicitly.
5114 Diag(ColonLocFirst, diag::err_omp_section_length_undefined)
5115 << (!OriginalTy.isNull() && OriginalTy->isArrayType());
5116 return ExprError();
5117 }
5118
5119 if (Stride) {
5120 Expr::EvalResult Result;
5121 if (Stride->EvaluateAsInt(Result, Context)) {
5122 // OpenMP 5.0, [2.1.5 Array Sections]
5123 // The stride must evaluate to a positive integer.
5124 llvm::APSInt StrideValue = Result.Val.getInt();
5125 if (!StrideValue.isStrictlyPositive()) {
5126 Diag(Stride->getExprLoc(), diag::err_omp_section_stride_non_positive)
5127 << toString(StrideValue, /*Radix=*/10, /*Signed=*/true)
5128 << Stride->getSourceRange();
5129 return ExprError();
5130 }
5131 }
5132 }
5133
5134 if (!Base->hasPlaceholderType(BuiltinType::OMPArraySection)) {
5135 ExprResult Result = DefaultFunctionArrayLvalueConversion(Base);
5136 if (Result.isInvalid())
5137 return ExprError();
5138 Base = Result.get();
5139 }
5140 return new (Context) OMPArraySectionExpr(
5141 Base, LowerBound, Length, Stride, Context.OMPArraySectionTy, VK_LValue,
5142 OK_Ordinary, ColonLocFirst, ColonLocSecond, RBLoc);
5143}
5144
5145ExprResult Sema::ActOnOMPArrayShapingExpr(Expr *Base, SourceLocation LParenLoc,
5146 SourceLocation RParenLoc,
5147 ArrayRef<Expr *> Dims,
5148 ArrayRef<SourceRange> Brackets) {
5149 if (Base->hasPlaceholderType()) {
5150 ExprResult Result = CheckPlaceholderExpr(Base);
5151 if (Result.isInvalid())
5152 return ExprError();
5153 Result = DefaultLvalueConversion(Result.get());
5154 if (Result.isInvalid())
5155 return ExprError();
5156 Base = Result.get();
5157 }
5158 QualType BaseTy = Base->getType();
5159 // Delay analysis of the types/expressions if instantiation/specialization is
5160 // required.
5161 if (!BaseTy->isPointerType() && Base->isTypeDependent())
5162 return OMPArrayShapingExpr::Create(Context, Context.DependentTy, Base,
5163 LParenLoc, RParenLoc, Dims, Brackets);
5164 if (!BaseTy->isPointerType() ||
5165 (!Base->isTypeDependent() &&
5166 BaseTy->getPointeeType()->isIncompleteType()))
5167 return ExprError(Diag(Base->getExprLoc(),
5168 diag::err_omp_non_pointer_type_array_shaping_base)
5169 << Base->getSourceRange());
5170
5171 SmallVector<Expr *, 4> NewDims;
5172 bool ErrorFound = false;
5173 for (Expr *Dim : Dims) {
5174 if (Dim->hasPlaceholderType()) {
5175 ExprResult Result = CheckPlaceholderExpr(Dim);
5176 if (Result.isInvalid()) {
5177 ErrorFound = true;
5178 continue;
5179 }
5180 Result = DefaultLvalueConversion(Result.get());
5181 if (Result.isInvalid()) {
5182 ErrorFound = true;
5183 continue;
5184 }
5185 Dim = Result.get();
5186 }
5187 if (!Dim->isTypeDependent()) {
5188 ExprResult Result =
5189 PerformOpenMPImplicitIntegerConversion(Dim->getExprLoc(), Dim);
5190 if (Result.isInvalid()) {
5191 ErrorFound = true;
5192 Diag(Dim->getExprLoc(), diag::err_omp_typecheck_shaping_not_integer)
5193 << Dim->getSourceRange();
5194 continue;
5195 }
5196 Dim = Result.get();
5197 Expr::EvalResult EvResult;
5198 if (!Dim->isValueDependent() && Dim->EvaluateAsInt(EvResult, Context)) {
5199 // OpenMP 5.0, [2.1.4 Array Shaping]
5200 // Each si is an integral type expression that must evaluate to a
5201 // positive integer.
5202 llvm::APSInt Value = EvResult.Val.getInt();
5203 if (!Value.isStrictlyPositive()) {
5204 Diag(Dim->getExprLoc(), diag::err_omp_shaping_dimension_not_positive)
5205 << toString(Value, /*Radix=*/10, /*Signed=*/true)
5206 << Dim->getSourceRange();
5207 ErrorFound = true;
5208 continue;
5209 }
5210 }
5211 }
5212 NewDims.push_back(Dim);
5213 }
5214 if (ErrorFound)
5215 return ExprError();
5216 return OMPArrayShapingExpr::Create(Context, Context.OMPArrayShapingTy, Base,
5217 LParenLoc, RParenLoc, NewDims, Brackets);
5218}
5219
5220ExprResult Sema::ActOnOMPIteratorExpr(Scope *S, SourceLocation IteratorKwLoc,
5221 SourceLocation LLoc, SourceLocation RLoc,
5222 ArrayRef<OMPIteratorData> Data) {
5223 SmallVector<OMPIteratorExpr::IteratorDefinition, 4> ID;
5224 bool IsCorrect = true;
5225 for (const OMPIteratorData &D : Data) {
5226 TypeSourceInfo *TInfo = nullptr;
5227 SourceLocation StartLoc;
5228 QualType DeclTy;
5229 if (!D.Type.getAsOpaquePtr()) {
5230 // OpenMP 5.0, 2.1.6 Iterators
5231 // In an iterator-specifier, if the iterator-type is not specified then
5232 // the type of that iterator is of int type.
5233 DeclTy = Context.IntTy;
5234 StartLoc = D.DeclIdentLoc;
5235 } else {
5236 DeclTy = GetTypeFromParser(D.Type, &TInfo);
5237 StartLoc = TInfo->getTypeLoc().getBeginLoc();
5238 }
5239
5240 bool IsDeclTyDependent = DeclTy->isDependentType() ||
5241 DeclTy->containsUnexpandedParameterPack() ||
5242 DeclTy->isInstantiationDependentType();
5243 if (!IsDeclTyDependent) {
5244 if (!DeclTy->isIntegralType(Context) && !DeclTy->isAnyPointerType()) {
5245 // OpenMP 5.0, 2.1.6 Iterators, Restrictions, C/C++
5246 // The iterator-type must be an integral or pointer type.
5247 Diag(StartLoc, diag::err_omp_iterator_not_integral_or_pointer)
5248 << DeclTy;
5249 IsCorrect = false;
5250 continue;
5251 }
5252 if (DeclTy.isConstant(Context)) {
5253 // OpenMP 5.0, 2.1.6 Iterators, Restrictions, C/C++
5254 // The iterator-type must not be const qualified.
5255 Diag(StartLoc, diag::err_omp_iterator_not_integral_or_pointer)
5256 << DeclTy;
5257 IsCorrect = false;
5258 continue;
5259 }
5260 }
5261
5262 // Iterator declaration.
5263 assert(D.DeclIdent && "Identifier expected.")(static_cast <bool> (D.DeclIdent && "Identifier expected."
) ? void (0) : __assert_fail ("D.DeclIdent && \"Identifier expected.\""
, "clang/lib/Sema/SemaExpr.cpp", 5263, __extension__ __PRETTY_FUNCTION__
))
;
5264 // Always try to create iterator declarator to avoid extra error messages
5265 // about unknown declarations use.
5266 auto *VD = VarDecl::Create(Context, CurContext, StartLoc, D.DeclIdentLoc,
5267 D.DeclIdent, DeclTy, TInfo, SC_None);
5268 VD->setImplicit();
5269 if (S) {
5270 // Check for conflicting previous declaration.
5271 DeclarationNameInfo NameInfo(VD->getDeclName(), D.DeclIdentLoc);
5272 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
5273 ForVisibleRedeclaration);
5274 Previous.suppressDiagnostics();
5275 LookupName(Previous, S);
5276
5277 FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage=*/false,
5278 /*AllowInlineNamespace=*/false);
5279 if (!Previous.empty()) {
5280 NamedDecl *Old = Previous.getRepresentativeDecl();
5281 Diag(D.DeclIdentLoc, diag::err_redefinition) << VD->getDeclName();
5282 Diag(Old->getLocation(), diag::note_previous_definition);
5283 } else {
5284 PushOnScopeChains(VD, S);
5285 }
5286 } else {
5287 CurContext->addDecl(VD);
5288 }
5289 Expr *Begin = D.Range.Begin;
5290 if (!IsDeclTyDependent && Begin && !Begin->isTypeDependent()) {
5291 ExprResult BeginRes =
5292 PerformImplicitConversion(Begin, DeclTy, AA_Converting);
5293 Begin = BeginRes.get();
5294 }
5295 Expr *End = D.Range.End;
5296 if (!IsDeclTyDependent && End && !End->isTypeDependent()) {
5297 ExprResult EndRes = PerformImplicitConversion(End, DeclTy, AA_Converting);
5298 End = EndRes.get();
5299 }
5300 Expr *Step = D.Range.Step;
5301 if (!IsDeclTyDependent && Step && !Step->isTypeDependent()) {
5302 if (!Step->getType()->isIntegralType(Context)) {
5303 Diag(Step->getExprLoc(), diag::err_omp_iterator_step_not_integral)
5304 << Step << Step->getSourceRange();
5305 IsCorrect = false;
5306 continue;
5307 }
5308 Optional<llvm::APSInt> Result = Step->getIntegerConstantExpr(Context);
5309 // OpenMP 5.0, 2.1.6 Iterators, Restrictions
5310 // If the step expression of a range-specification equals zero, the
5311 // behavior is unspecified.
5312 if (Result && Result->isZero()) {
5313 Diag(Step->getExprLoc(), diag::err_omp_iterator_step_constant_zero)
5314 << Step << Step->getSourceRange();
5315 IsCorrect = false;
5316 continue;
5317 }
5318 }
5319 if (!Begin || !End || !IsCorrect) {
5320 IsCorrect = false;
5321 continue;
5322 }
5323 OMPIteratorExpr::IteratorDefinition &IDElem = ID.emplace_back();
5324 IDElem.IteratorDecl = VD;
5325 IDElem.AssignmentLoc = D.AssignLoc;
5326 IDElem.Range.Begin = Begin;
5327 IDElem.Range.End = End;
5328 IDElem.Range.Step = Step;
5329 IDElem.ColonLoc = D.ColonLoc;
5330 IDElem.SecondColonLoc = D.SecColonLoc;
5331 }
5332 if (!IsCorrect) {
5333 // Invalidate all created iterator declarations if error is found.
5334 for (const OMPIteratorExpr::IteratorDefinition &D : ID) {
5335 if (Decl *ID = D.IteratorDecl)
5336 ID->setInvalidDecl();
5337 }
5338 return ExprError();
5339 }
5340 SmallVector<OMPIteratorHelperData, 4> Helpers;
5341 if (!CurContext->isDependentContext()) {
5342 // Build number of ityeration for each iteration range.
5343 // Ni = ((Stepi > 0) ? ((Endi + Stepi -1 - Begini)/Stepi) :
5344 // ((Begini-Stepi-1-Endi) / -Stepi);
5345 for (OMPIteratorExpr::IteratorDefinition &D : ID) {
5346 // (Endi - Begini)
5347 ExprResult Res = CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub, D.Range.End,
5348 D.Range.Begin);
5349 if(!Res.isUsable()) {
5350 IsCorrect = false;
5351 continue;
5352 }
5353 ExprResult St, St1;
5354 if (D.Range.Step) {
5355 St = D.Range.Step;
5356 // (Endi - Begini) + Stepi
5357 Res = CreateBuiltinBinOp(D.AssignmentLoc, BO_Add, Res.get(), St.get());
5358 if (!Res.isUsable()) {
5359 IsCorrect = false;
5360 continue;
5361 }
5362 // (Endi - Begini) + Stepi - 1
5363 Res =
5364 CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub, Res.get(),
5365 ActOnIntegerConstant(D.AssignmentLoc, 1).get());
5366 if (!Res.isUsable()) {
5367 IsCorrect = false;
5368 continue;
5369 }
5370 // ((Endi - Begini) + Stepi - 1) / Stepi
5371 Res = CreateBuiltinBinOp(D.AssignmentLoc, BO_Div, Res.get(), St.get());
5372 if (!Res.isUsable()) {
5373 IsCorrect = false;
5374 continue;
5375 }
5376 St1 = CreateBuiltinUnaryOp(D.AssignmentLoc, UO_Minus, D.Range.Step);
5377 // (Begini - Endi)
5378 ExprResult Res1 = CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub,
5379 D.Range.Begin, D.Range.End);
5380 if (!Res1.isUsable()) {
5381 IsCorrect = false;
5382 continue;
5383 }
5384 // (Begini - Endi) - Stepi
5385 Res1 =
5386 CreateBuiltinBinOp(D.AssignmentLoc, BO_Add, Res1.get(), St1.get());
5387 if (!Res1.isUsable()) {
5388 IsCorrect = false;
5389 continue;
5390 }
5391 // (Begini - Endi) - Stepi - 1
5392 Res1 =
5393 CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub, Res1.get(),
5394 ActOnIntegerConstant(D.AssignmentLoc, 1).get());
5395 if (!Res1.isUsable()) {
5396 IsCorrect = false;
5397 continue;
5398 }
5399 // ((Begini - Endi) - Stepi - 1) / (-Stepi)
5400 Res1 =
5401 CreateBuiltinBinOp(D.AssignmentLoc, BO_Div, Res1.get(), St1.get());
5402 if (!Res1.isUsable()) {
5403 IsCorrect = false;
5404 continue;
5405 }
5406 // Stepi > 0.
5407 ExprResult CmpRes =
5408 CreateBuiltinBinOp(D.AssignmentLoc, BO_GT, D.Range.Step,
5409 ActOnIntegerConstant(D.AssignmentLoc, 0).get());
5410 if (!CmpRes.isUsable()) {
5411 IsCorrect = false;
5412 continue;
5413 }
5414 Res = ActOnConditionalOp(D.AssignmentLoc, D.AssignmentLoc, CmpRes.get(),
5415 Res.get(), Res1.get());
5416 if (!Res.isUsable()) {
5417 IsCorrect = false;
5418 continue;
5419 }
5420 }
5421 Res = ActOnFinishFullExpr(Res.get(), /*DiscardedValue=*/false);
5422 if (!Res.isUsable()) {
5423 IsCorrect = false;
5424 continue;
5425 }
5426
5427 // Build counter update.
5428 // Build counter.
5429 auto *CounterVD =
5430 VarDecl::Create(Context, CurContext, D.IteratorDecl->getBeginLoc(),
5431 D.IteratorDecl->getBeginLoc(), nullptr,
5432 Res.get()->getType(), nullptr, SC_None);
5433 CounterVD->setImplicit();
5434 ExprResult RefRes =
5435 BuildDeclRefExpr(CounterVD, CounterVD->getType(), VK_LValue,
5436 D.IteratorDecl->getBeginLoc());
5437 // Build counter update.
5438 // I = Begini + counter * Stepi;
5439 ExprResult UpdateRes;
5440 if (D.Range.Step) {
5441 UpdateRes = CreateBuiltinBinOp(
5442 D.AssignmentLoc, BO_Mul,
5443 DefaultLvalueConversion(RefRes.get()).get(), St.get());
5444 } else {
5445 UpdateRes = DefaultLvalueConversion(RefRes.get());
5446 }
5447 if (!UpdateRes.isUsable()) {
5448 IsCorrect = false;
5449 continue;
5450 }
5451 UpdateRes = CreateBuiltinBinOp(D.AssignmentLoc, BO_Add, D.Range.Begin,
5452 UpdateRes.get());
5453 if (!UpdateRes.isUsable()) {
5454 IsCorrect = false;
5455 continue;
5456 }
5457 ExprResult VDRes =
5458 BuildDeclRefExpr(cast<VarDecl>(D.IteratorDecl),
5459 cast<VarDecl>(D.IteratorDecl)->getType(), VK_LValue,
5460 D.IteratorDecl->getBeginLoc());
5461 UpdateRes = CreateBuiltinBinOp(D.AssignmentLoc, BO_Assign, VDRes.get(),
5462 UpdateRes.get());
5463 if (!UpdateRes.isUsable()) {
5464 IsCorrect = false;
5465 continue;
5466 }
5467 UpdateRes =
5468 ActOnFinishFullExpr(UpdateRes.get(), /*DiscardedValue=*/true);
5469 if (!UpdateRes.isUsable()) {
5470 IsCorrect = false;
5471 continue;
5472 }
5473 ExprResult CounterUpdateRes =
5474 CreateBuiltinUnaryOp(D.AssignmentLoc, UO_PreInc, RefRes.get());
5475 if (!CounterUpdateRes.isUsable()) {
5476 IsCorrect = false;
5477 continue;
5478 }
5479 CounterUpdateRes =
5480 ActOnFinishFullExpr(CounterUpdateRes.get(), /*DiscardedValue=*/true);
5481 if (!CounterUpdateRes.isUsable()) {
5482 IsCorrect = false;
5483 continue;
5484 }
5485 OMPIteratorHelperData &HD = Helpers.emplace_back();
5486 HD.CounterVD = CounterVD;
5487 HD.Upper = Res.get();
5488 HD.Update = UpdateRes.get();
5489 HD.CounterUpdate = CounterUpdateRes.get();
5490 }
5491 } else {
5492 Helpers.assign(ID.size(), {});
5493 }
5494 if (!IsCorrect) {
5495 // Invalidate all created iterator declarations if error is found.
5496 for (const OMPIteratorExpr::IteratorDefinition &D : ID) {
5497 if (Decl *ID = D.IteratorDecl)
5498 ID->setInvalidDecl();
5499 }
5500 return ExprError();
5501 }
5502 return OMPIteratorExpr::Create(Context, Context.OMPIteratorTy, IteratorKwLoc,
5503 LLoc, RLoc, ID, Helpers);
5504}
5505
5506ExprResult
5507Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
5508 Expr *Idx, SourceLocation RLoc) {
5509 Expr *LHSExp = Base;
5510 Expr *RHSExp = Idx;
5511
5512 ExprValueKind VK = VK_LValue;
5513 ExprObjectKind OK = OK_Ordinary;
5514
5515 // Per C++ core issue 1213, the result is an xvalue if either operand is
5516 // a non-lvalue array, and an lvalue otherwise.
5517 if (getLangOpts().CPlusPlus11) {
5518 for (auto *Op : {LHSExp, RHSExp}) {
5519 Op = Op->IgnoreImplicit();
5520 if (Op->getType()->isArrayType() && !Op->isLValue())
5521 VK = VK_XValue;
5522 }
5523 }
5524
5525 // Perform default conversions.
5526 if (!LHSExp->getType()->getAs<VectorType>()) {
5527 ExprResult Result = DefaultFunctionArrayLvalueConversion(LHSExp);
5528 if (Result.isInvalid())
5529 return ExprError();
5530 LHSExp = Result.get();
5531 }
5532 ExprResult Result = DefaultFunctionArrayLvalueConversion(RHSExp);
5533 if (Result.isInvalid())
5534 return ExprError();
5535 RHSExp = Result.get();
5536
5537 QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
5538
5539 // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
5540 // to the expression *((e1)+(e2)). This means the array "Base" may actually be
5541 // in the subscript position. As a result, we need to derive the array base
5542 // and index from the expression types.
5543 Expr *BaseExpr, *IndexExpr;
5544 QualType ResultType;
5545 if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
5546 BaseExpr = LHSExp;
5547 IndexExpr = RHSExp;
5548 ResultType =
5549 getDependentArraySubscriptType(LHSExp, RHSExp, getASTContext());
5550 } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
5551 BaseExpr = LHSExp;
5552 IndexExpr = RHSExp;
5553 ResultType = PTy->getPointeeType();
5554 } else if (const ObjCObjectPointerType *PTy =
5555 LHSTy->getAs<ObjCObjectPointerType>()) {
5556 BaseExpr = LHSExp;
5557 IndexExpr = RHSExp;
5558
5559 // Use custom logic if this should be the pseudo-object subscript
5560 // expression.
5561 if (!LangOpts.isSubscriptPointerArithmetic())
5562 return BuildObjCSubscriptExpression(RLoc, BaseExpr, IndexExpr, nullptr,
5563 nullptr);
5564
5565 ResultType = PTy->getPointeeType();
5566 } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
5567 // Handle the uncommon case of "123[Ptr]".
5568 BaseExpr = RHSExp;
5569 IndexExpr = LHSExp;
5570 ResultType = PTy->getPointeeType();
5571 } else if (const ObjCObjectPointerType *PTy =
5572 RHSTy->getAs<ObjCObjectPointerType>()) {
5573 // Handle the uncommon case of "123[Ptr]".
5574 BaseExpr = RHSExp;
5575 IndexExpr = LHSExp;
5576 ResultType = PTy->getPointeeType();
5577 if (!LangOpts.isSubscriptPointerArithmetic()) {
5578 Diag(LLoc, diag::err_subscript_nonfragile_interface)
5579 << ResultType << BaseExpr->getSourceRange();
5580 return ExprError();
5581 }
5582 } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
5583 BaseExpr = LHSExp; // vectors: V[123]
5584 IndexExpr = RHSExp;
5585 // We apply C++ DR1213 to vector subscripting too.
5586 if (getLangOpts().CPlusPlus11 && LHSExp->isPRValue()) {
5587 ExprResult Materialized = TemporaryMaterializationConversion(LHSExp);
5588 if (Materialized.isInvalid())
5589 return ExprError();
5590 LHSExp = Materialized.get();
5591 }
5592 VK = LHSExp->getValueKind();
5593 if (VK != VK_PRValue)
5594 OK = OK_VectorComponent;
5595
5596 ResultType = VTy->getElementType();
5597 QualType BaseType = BaseExpr->getType();
5598 Qualifiers BaseQuals = BaseType.getQualifiers();
5599 Qualifiers MemberQuals = ResultType.getQualifiers();
5600 Qualifiers Combined = BaseQuals + MemberQuals;
5601 if (Combined != MemberQuals)
5602 ResultType = Context.getQualifiedType(ResultType, Combined);
5603 } else if (LHSTy->isArrayType()) {
5604 // If we see an array that wasn't promoted by
5605 // DefaultFunctionArrayLvalueConversion, it must be an array that
5606 // wasn't promoted because of the C90 rule that doesn't
5607 // allow promoting non-lvalue arrays. Warn, then
5608 // force the promotion here.
5609 Diag(LHSExp->getBeginLoc(), diag::ext_subscript_non_lvalue)
5610 << LHSExp->getSourceRange();
5611 LHSExp = ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
5612 CK_ArrayToPointerDecay).get();
5613 LHSTy = LHSExp->getType();
5614
5615 BaseExpr = LHSExp;
5616 IndexExpr = RHSExp;
5617 ResultType = LHSTy->castAs<PointerType>()->getPointeeType();
5618 } else if (RHSTy->isArrayType()) {
5619 // Same as previous, except for 123[f().a] case
5620 Diag(RHSExp->getBeginLoc(), diag::ext_subscript_non_lvalue)
5621 << RHSExp->getSourceRange();
5622 RHSExp = ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
5623 CK_ArrayToPointerDecay).get();
5624 RHSTy = RHSExp->getType();
5625
5626 BaseExpr = RHSExp;
5627 IndexExpr = LHSExp;
5628 ResultType = RHSTy->castAs<PointerType>()->getPointeeType();
5629 } else {
5630 return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
5631 << LHSExp->getSourceRange() << RHSExp->getSourceRange());
5632 }
5633 // C99 6.5.2.1p1
5634 if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
5635 return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
5636 << IndexExpr->getSourceRange());
5637
5638 if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
5639 IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
5640 && !IndexExpr->isTypeDependent())
5641 Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
5642
5643 // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
5644 // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
5645 // type. Note that Functions are not objects, and that (in C99 parlance)
5646 // incomplete types are not object types.
5647 if (ResultType->isFunctionType()) {
5648 Diag(BaseExpr->getBeginLoc(), diag::err_subscript_function_type)
5649 << ResultType << BaseExpr->getSourceRange();
5650 return ExprError();
5651 }
5652
5653 if (ResultType->isVoidType() && !getLangOpts().CPlusPlus) {
5654 // GNU extension: subscripting on pointer to void
5655 Diag(LLoc, diag::ext_gnu_subscript_void_type)
5656 << BaseExpr->getSourceRange();
5657
5658 // C forbids expressions of unqualified void type from being l-values.
5659 // See IsCForbiddenLValueType.
5660 if (!ResultType.hasQualifiers())
5661 VK = VK_PRValue;
5662 } else if (!ResultType->isDependentType() &&
5663 RequireCompleteSizedType(
5664 LLoc, ResultType,
5665 diag::err_subscript_incomplete_or_sizeless_type, BaseExpr))
5666 return ExprError();
5667
5668 assert(VK == VK_PRValue || LangOpts.CPlusPlus ||(static_cast <bool> (VK == VK_PRValue || LangOpts.CPlusPlus
|| !ResultType.isCForbiddenLValueType()) ? void (0) : __assert_fail
("VK == VK_PRValue || LangOpts.CPlusPlus || !ResultType.isCForbiddenLValueType()"
, "clang/lib/Sema/SemaExpr.cpp", 5669, __extension__ __PRETTY_FUNCTION__
))
5669 !ResultType.isCForbiddenLValueType())(static_cast <bool> (VK == VK_PRValue || LangOpts.CPlusPlus
|| !ResultType.isCForbiddenLValueType()) ? void (0) : __assert_fail
("VK == VK_PRValue || LangOpts.CPlusPlus || !ResultType.isCForbiddenLValueType()"
, "clang/lib/Sema/SemaExpr.cpp", 5669, __extension__ __PRETTY_FUNCTION__
))
;
5670
5671 if (LHSExp->IgnoreParenImpCasts()->getType()->isVariablyModifiedType() &&
5672 FunctionScopes.size() > 1) {
5673 if (auto *TT =
5674 LHSExp->IgnoreParenImpCasts()->getType()->getAs<TypedefType>()) {
5675 for (auto I = FunctionScopes.rbegin(),
5676 E = std::prev(FunctionScopes.rend());
5677 I != E; ++I) {
5678 auto *CSI = dyn_cast<CapturingScopeInfo>(*I);
5679 if (CSI == nullptr)
5680 break;
5681 DeclContext *DC = nullptr;
5682 if (auto *LSI = dyn_cast<LambdaScopeInfo>(CSI))
5683 DC = LSI->CallOperator;
5684 else if (auto *CRSI = dyn_cast<CapturedRegionScopeInfo>(CSI))
5685 DC = CRSI->TheCapturedDecl;
5686 else if (auto *BSI = dyn_cast<BlockScopeInfo>(CSI))
5687 DC = BSI->TheDecl;
5688 if (DC) {
5689 if (DC->containsDecl(TT->getDecl()))
5690 break;
5691 captureVariablyModifiedType(
5692 Context, LHSExp->IgnoreParenImpCasts()->getType(), CSI);
5693 }
5694 }
5695 }
5696 }
5697
5698 return new (Context)
5699 ArraySubscriptExpr(LHSExp, RHSExp, ResultType, VK, OK, RLoc);
5700}
5701
5702bool Sema::CheckCXXDefaultArgExpr(SourceLocation CallLoc, FunctionDecl *FD,
5703 ParmVarDecl *Param) {
5704 if (Param->hasUnparsedDefaultArg()) {
5705 // If we've already cleared out the location for the default argument,
5706 // that means we're parsing it right now.
5707 if (!UnparsedDefaultArgLocs.count(Param)) {
5708 Diag(Param->getBeginLoc(), diag::err_recursive_default_argument) << FD;
5709 Diag(CallLoc, diag::note_recursive_default_argument_used_here);
5710 Param->setInvalidDecl();
5711 return true;
5712 }
5713
5714 Diag(CallLoc, diag::err_use_of_default_argument_to_function_declared_later)
5715 << FD << cast<CXXRecordDecl>(FD->getDeclContext());
5716 Diag(UnparsedDefaultArgLocs[Param],
5717 diag::note_default_argument_declared_here);
5718 return true;
5719 }
5720
5721 if (Param->hasUninstantiatedDefaultArg() &&
5722 InstantiateDefaultArgument(CallLoc, FD, Param))
5723 return true;
5724
5725 assert(Param->hasInit() && "default argument but no initializer?")(static_cast <bool> (Param->hasInit() && "default argument but no initializer?"
) ? void (0) : __assert_fail ("Param->hasInit() && \"default argument but no initializer?\""
, "clang/lib/Sema/SemaExpr.cpp", 5725, __extension__ __PRETTY_FUNCTION__
))
;
5726
5727 // If the default expression creates temporaries, we need to
5728 // push them to the current stack of expression temporaries so they'll
5729 // be properly destroyed.
5730 // FIXME: We should really be rebuilding the default argument with new
5731 // bound temporaries; see the comment in PR5810.
5732 // We don't need to do that with block decls, though, because
5733 // blocks in default argument expression can never capture anything.
5734 if (auto Init = dyn_cast<ExprWithCleanups>(Param->getInit())) {
5735 // Set the "needs cleanups" bit regardless of whether there are
5736 // any explicit objects.
5737 Cleanup.setExprNeedsCleanups(Init->cleanupsHaveSideEffects());
5738
5739 // Append all the objects to the cleanup list. Right now, this
5740 // should always be a no-op, because blocks in default argument
5741 // expressions should never be able to capture anything.
5742 assert(!Init->getNumObjects() &&(static_cast <bool> (!Init->getNumObjects() &&
"default argument expression has capturing blocks?") ? void (
0) : __assert_fail ("!Init->getNumObjects() && \"default argument expression has capturing blocks?\""
, "clang/lib/Sema/SemaExpr.cpp", 5743, __extension__ __PRETTY_FUNCTION__
))
5743 "default argument expression has capturing blocks?")(static_cast <bool> (!Init->getNumObjects() &&
"default argument expression has capturing blocks?") ? void (
0) : __assert_fail ("!Init->getNumObjects() && \"default argument expression has capturing blocks?\""
, "clang/lib/Sema/SemaExpr.cpp", 5743, __extension__ __PRETTY_FUNCTION__
))
;
5744 }
5745
5746 // We already type-checked the argument, so we know it works.
5747 // Just mark all of the declarations in this potentially-evaluated expression
5748 // as being "referenced".
5749 EnterExpressionEvaluationContext EvalContext(
5750 *this, ExpressionEvaluationContext::PotentiallyEvaluated, Param);
5751 MarkDeclarationsReferencedInExpr(Param->getDefaultArg(),
5752 /*SkipLocalVariables=*/true);
5753 return false;
5754}
5755
5756ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
5757 FunctionDecl *FD, ParmVarDecl *Param) {
5758 assert(Param->hasDefaultArg() && "can't build nonexistent default arg")(static_cast <bool> (Param->hasDefaultArg() &&
"can't build nonexistent default arg") ? void (0) : __assert_fail
("Param->hasDefaultArg() && \"can't build nonexistent default arg\""
, "clang/lib/Sema/SemaExpr.cpp", 5758, __extension__ __PRETTY_FUNCTION__
))
;
5759 if (CheckCXXDefaultArgExpr(CallLoc, FD, Param))
5760 return ExprError();
5761 return CXXDefaultArgExpr::Create(Context, CallLoc, Param, CurContext);
5762}
5763
5764Sema::VariadicCallType
5765Sema::getVariadicCallType(FunctionDecl *FDecl, const FunctionProtoType *Proto,
5766 Expr *Fn) {
5767 if (Proto && Proto->isVariadic()) {
5768 if (isa_and_nonnull<CXXConstructorDecl>(FDecl))
5769 return VariadicConstructor;
5770 else if (Fn && Fn->getType()->isBlockPointerType())
5771 return VariadicBlock;
5772 else if (FDecl) {
5773 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
5774 if (Method->isInstance())
5775 return VariadicMethod;
5776 } else if (Fn && Fn->getType() == Context.BoundMemberTy)
5777 return VariadicMethod;
5778 return VariadicFunction;
5779 }
5780 return VariadicDoesNotApply;
5781}
5782
5783namespace {
5784class FunctionCallCCC final : public FunctionCallFilterCCC {
5785public:
5786 FunctionCallCCC(Sema &SemaRef, const IdentifierInfo *FuncName,
5787 unsigned NumArgs, MemberExpr *ME)
5788 : FunctionCallFilterCCC(SemaRef, NumArgs, false, ME),
5789 FunctionName(FuncName) {}
5790
5791 bool ValidateCandidate(const TypoCorrection &candidate) override {
5792 if (!candidate.getCorrectionSpecifier() ||
5793 candidate.getCorrectionAsIdentifierInfo() != FunctionName) {
5794 return false;
5795 }
5796
5797 return FunctionCallFilterCCC::ValidateCandidate(candidate);
5798 }
5799
5800 std::unique_ptr<CorrectionCandidateCallback> clone() override {
5801 return std::make_unique<FunctionCallCCC>(*this);
5802 }
5803
5804private:
5805 const IdentifierInfo *const FunctionName;
5806};
5807}
5808
5809static TypoCorrection TryTypoCorrectionForCall(Sema &S, Expr *Fn,
5810 FunctionDecl *FDecl,
5811 ArrayRef<Expr *> Args) {
5812 MemberExpr *ME = dyn_cast<MemberExpr>(Fn);
5813 DeclarationName FuncName = FDecl->getDeclName();
5814 SourceLocation NameLoc = ME ? ME->getMemberLoc() : Fn->getBeginLoc();
5815
5816 FunctionCallCCC CCC(S, FuncName.getAsIdentifierInfo(), Args.size(), ME);
5817 if (TypoCorrection Corrected = S.CorrectTypo(
5818 DeclarationNameInfo(FuncName, NameLoc), Sema::LookupOrdinaryName,
5819 S.getScopeForContext(S.CurContext), nullptr, CCC,
5820 Sema::CTK_ErrorRecovery)) {
5821 if (NamedDecl *ND = Corrected.getFoundDecl()) {
5822 if (Corrected.isOverloaded()) {
5823 OverloadCandidateSet OCS(NameLoc, OverloadCandidateSet::CSK_Normal);
5824 OverloadCandidateSet::iterator Best;
5825 for (NamedDecl *CD : Corrected) {
5826 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(CD))
5827 S.AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none), Args,
5828 OCS);
5829 }
5830 switch (OCS.BestViableFunction(S, NameLoc, Best)) {
5831 case OR_Success:
5832 ND = Best->FoundDecl;
5833 Corrected.setCorrectionDecl(ND);
5834 break;
5835 default:
5836 break;
5837 }
5838 }
5839 ND = ND->getUnderlyingDecl();
5840 if (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND))
5841 return Corrected;
5842 }
5843 }
5844 return TypoCorrection();
5845}
5846
5847/// ConvertArgumentsForCall - Converts the arguments specified in
5848/// Args/NumArgs to the parameter types of the function FDecl with
5849/// function prototype Proto. Call is the call expression itself, and
5850/// Fn is the function expression. For a C++ member function, this
5851/// routine does not attempt to convert the object argument. Returns
5852/// true if the call is ill-formed.
5853bool
5854Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
5855 FunctionDecl *FDecl,
5856 const FunctionProtoType *Proto,
5857 ArrayRef<Expr *> Args,
5858 SourceLocation RParenLoc,
5859 bool IsExecConfig) {
5860 // Bail out early if calling a builtin with custom typechecking.
5861 if (FDecl)
5862 if (unsigned ID = FDecl->getBuiltinID())
5863 if (Context.BuiltinInfo.hasCustomTypechecking(ID))
5864 return false;
5865
5866 // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
5867 // assignment, to the types of the corresponding parameter, ...
5868 unsigned NumParams = Proto->getNumParams();
5869 bool Invalid = false;
5870 unsigned MinArgs = FDecl ? FDecl->getMinRequiredArguments() : NumParams;
5871 unsigned FnKind = Fn->getType()->isBlockPointerType()
5872 ? 1 /* block */
5873 : (IsExecConfig ? 3 /* kernel function (exec config) */
5874 : 0 /* function */);
5875
5876 // If too few arguments are available (and we don't have default
5877 // arguments for the remaining parameters), don't make the call.
5878 if (Args.size() < NumParams) {
5879 if (Args.size() < MinArgs) {
5880 TypoCorrection TC;
5881 if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) {
5882 unsigned diag_id =
5883 MinArgs == NumParams && !Proto->isVariadic()
5884 ? diag::err_typecheck_call_too_few_args_suggest
5885 : diag::err_typecheck_call_too_few_args_at_least_suggest;
5886 diagnoseTypo(TC, PDiag(diag_id) << FnKind << MinArgs
5887 << static_cast<unsigned>(Args.size())
5888 << TC.getCorrectionRange());
5889 } else if (MinArgs == 1 && FDecl && FDecl->getParamDecl(0)->getDeclName())
5890 Diag(RParenLoc,
5891 MinArgs == NumParams && !Proto->isVariadic()
5892 ? diag::err_typecheck_call_too_few_args_one
5893 : diag::err_typecheck_call_too_few_args_at_least_one)
5894 << FnKind << FDecl->getParamDecl(0) << Fn->getSourceRange();
5895 else
5896 Diag(RParenLoc, MinArgs == NumParams && !Proto->isVariadic()
5897 ? diag::err_typecheck_call_too_few_args
5898 : diag::err_typecheck_call_too_few_args_at_least)
5899 << FnKind << MinArgs << static_cast<unsigned>(Args.size())
5900 << Fn->getSourceRange();
5901
5902 // Emit the location of the prototype.
5903 if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
5904 Diag(FDecl->getLocation(), diag::note_callee_decl) << FDecl;
5905
5906 return true;
5907 }
5908 // We reserve space for the default arguments when we create
5909 // the call expression, before calling ConvertArgumentsForCall.
5910 assert((Call->getNumArgs() == NumParams) &&(static_cast <bool> ((Call->getNumArgs() == NumParams
) && "We should have reserved space for the default arguments before!"
) ? void (0) : __assert_fail ("(Call->getNumArgs() == NumParams) && \"We should have reserved space for the default arguments before!\""
, "clang/lib/Sema/SemaExpr.cpp", 5911, __extension__ __PRETTY_FUNCTION__
))
5911 "We should have reserved space for the default arguments before!")(static_cast <bool> ((Call->getNumArgs() == NumParams
) && "We should have reserved space for the default arguments before!"
) ? void (0) : __assert_fail ("(Call->getNumArgs() == NumParams) && \"We should have reserved space for the default arguments before!\""
, "clang/lib/Sema/SemaExpr.cpp", 5911, __extension__ __PRETTY_FUNCTION__
))
;
5912 }
5913
5914 // If too many are passed and not variadic, error on the extras and drop
5915 // them.
5916 if (Args.size() > NumParams) {
5917 if (!Proto->isVariadic()) {
5918 TypoCorrection TC;
5919 if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) {
5920 unsigned diag_id =
5921 MinArgs == NumParams && !Proto->isVariadic()
5922 ? diag::err_typecheck_call_too_many_args_suggest
5923 : diag::err_typecheck_call_too_many_args_at_most_suggest;
5924 diagnoseTypo(TC, PDiag(diag_id) << FnKind << NumParams
5925 << static_cast<unsigned>(Args.size())
5926 << TC.getCorrectionRange());
5927 } else if (NumParams == 1 && FDecl &&
5928 FDecl->getParamDecl(0)->getDeclName())
5929 Diag(Args[NumParams]->getBeginLoc(),
5930 MinArgs == NumParams
5931 ? diag::err_typecheck_call_too_many_args_one
5932 : diag::err_typecheck_call_too_many_args_at_most_one)
5933 << FnKind << FDecl->getParamDecl(0)
5934 << static_cast<unsigned>(Args.size()) << Fn->getSourceRange()
5935 << SourceRange(Args[NumParams]->getBeginLoc(),
5936 Args.back()->getEndLoc());
5937 else
5938 Diag(Args[NumParams]->getBeginLoc(),
5939 MinArgs == NumParams
5940 ? diag::err_typecheck_call_too_many_args
5941 : diag::err_typecheck_call_too_many_args_at_most)
5942 << FnKind << NumParams << static_cast<unsigned>(Args.size())
5943 << Fn->getSourceRange()
5944 << SourceRange(Args[NumParams]->getBeginLoc(),
5945 Args.back()->getEndLoc());
5946
5947 // Emit the location of the prototype.
5948 if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
5949 Diag(FDecl->getLocation(), diag::note_callee_decl) << FDecl;
5950
5951 // This deletes the extra arguments.
5952 Call->shrinkNumArgs(NumParams);
5953 return true;
5954 }
5955 }
5956 SmallVector<Expr *, 8> AllArgs;
5957 VariadicCallType CallType = getVariadicCallType(FDecl, Proto, Fn);
5958
5959 Invalid = GatherArgumentsForCall(Call->getBeginLoc(), FDecl, Proto, 0, Args,
5960 AllArgs, CallType);
5961 if (Invalid)
5962 return true;
5963 unsigned TotalNumArgs = AllArgs.size();
5964 for (unsigned i = 0; i < TotalNumArgs; ++i)
5965 Call->setArg(i, AllArgs[i]);
5966
5967 Call->computeDependence();
5968 return false;
5969}
5970
5971bool Sema::GatherArgumentsForCall(SourceLocation CallLoc, FunctionDecl *FDecl,
5972 const FunctionProtoType *Proto,
5973 unsigned FirstParam, ArrayRef<Expr *> Args,
5974 SmallVectorImpl<Expr *> &AllArgs,
5975 VariadicCallType CallType, bool AllowExplicit,
5976 bool IsListInitialization) {
5977 unsigned NumParams = Proto->getNumParams();
5978 bool Invalid = false;
5979 size_t ArgIx = 0;
5980 // Continue to check argument types (even if we have too few/many args).
5981 for (unsigned i = FirstParam; i < NumParams; i++) {
5982 QualType ProtoArgType = Proto->getParamType(i);
5983
5984 Expr *Arg;
5985 ParmVarDecl *Param = FDecl ? FDecl->getParamDecl(i) : nullptr;
5986 if (ArgIx < Args.size()) {
5987 Arg = Args[ArgIx++];
5988
5989 if (RequireCompleteType(Arg->getBeginLoc(), ProtoArgType,
5990 diag::err_call_incomplete_argument, Arg))
5991 return true;
5992
5993 // Strip the unbridged-cast placeholder expression off, if applicable.
5994 bool CFAudited = false;
5995 if (Arg->getType() == Context.ARCUnbridgedCastTy &&
5996 FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
5997 (!Param || !Param->hasAttr<CFConsumedAttr>()))
5998 Arg = stripARCUnbridgedCast(Arg);
5999 else if (getLangOpts().ObjCAutoRefCount &&
6000 FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
6001 (!Param || !Param->hasAttr<CFConsumedAttr>()))
6002 CFAudited = true;
6003
6004 if (Proto->getExtParameterInfo(i).isNoEscape() &&
6005 ProtoArgType->isBlockPointerType())
6006 if (auto *BE = dyn_cast<BlockExpr>(Arg->IgnoreParenNoopCasts(Context)))
6007 BE->getBlockDecl()->setDoesNotEscape();
6008
6009 InitializedEntity Entity =
6010 Param ? InitializedEntity::InitializeParameter(Context, Param,
6011 ProtoArgType)
6012 : InitializedEntity::InitializeParameter(
6013 Context, ProtoArgType, Proto->isParamConsumed(i));
6014
6015 // Remember that parameter belongs to a CF audited API.
6016 if (CFAudited)
6017 Entity.setParameterCFAudited();
6018
6019 ExprResult ArgE = PerformCopyInitialization(
6020 Entity, SourceLocation(), Arg, IsListInitialization, AllowExplicit);
6021 if (ArgE.isInvalid())
6022 return true;
6023
6024 Arg = ArgE.getAs<Expr>();
6025 } else {
6026 assert(Param && "can't use default arguments without a known callee")(static_cast <bool> (Param && "can't use default arguments without a known callee"
) ? void (0) : __assert_fail ("Param && \"can't use default arguments without a known callee\""
, "clang/lib/Sema/SemaExpr.cpp", 6026, __extension__ __PRETTY_FUNCTION__
))
;
6027
6028 ExprResult ArgExpr = BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
6029 if (ArgExpr.isInvalid())
6030 return true;
6031
6032 Arg = ArgExpr.getAs<Expr>();
6033 }
6034
6035 // Check for array bounds violations for each argument to the call. This
6036 // check only triggers warnings when the argument isn't a more complex Expr
6037 // with its own checking, such as a BinaryOperator.
6038 CheckArrayAccess(Arg);
6039
6040 // Check for violations of C99 static array rules (C99 6.7.5.3p7).
6041 CheckStaticArrayArgument(CallLoc, Param, Arg);
6042
6043 AllArgs.push_back(Arg);
6044 }
6045
6046 // If this is a variadic call, handle args passed through "...".
6047 if (CallType != VariadicDoesNotApply) {
6048 // Assume that extern "C" functions with variadic arguments that
6049 // return __unknown_anytype aren't *really* variadic.
6050 if (Proto->getReturnType() == Context.UnknownAnyTy && FDecl &&
6051 FDecl->isExternC()) {
6052 for (Expr *A : Args.slice(ArgIx)) {
6053 QualType paramType; // ignored
6054 ExprResult arg = checkUnknownAnyArg(CallLoc, A, paramType);
6055 Invalid |= arg.isInvalid();
6056 AllArgs.push_back(arg.get());
6057 }
6058
6059 // Otherwise do argument promotion, (C99 6.5.2.2p7).
6060 } else {
6061 for (Expr *A : Args.slice(ArgIx)) {
6062 ExprResult Arg = DefaultVariadicArgumentPromotion(A, CallType, FDecl);
6063 Invalid |= Arg.isInvalid();
6064 AllArgs.push_back(Arg.get());
6065 }
6066 }
6067
6068 // Check for array bounds violations.
6069 for (Expr *A : Args.slice(ArgIx))
6070 CheckArrayAccess(A);
6071 }
6072 return Invalid;
6073}
6074
6075static void DiagnoseCalleeStaticArrayParam(Sema &S, ParmVarDecl *PVD) {
6076 TypeLoc TL = PVD->getTypeSourceInfo()->getTypeLoc();
6077 if (DecayedTypeLoc DTL = TL.getAs<DecayedTypeLoc>())
6078 TL = DTL.getOriginalLoc();
6079 if (ArrayTypeLoc ATL = TL.getAs<ArrayTypeLoc>())
6080 S.Diag(PVD->getLocation(), diag::note_callee_static_array)
6081 << ATL.getLocalSourceRange();
6082}
6083
6084/// CheckStaticArrayArgument - If the given argument corresponds to a static
6085/// array parameter, check that it is non-null, and that if it is formed by
6086/// array-to-pointer decay, the underlying array is sufficiently large.
6087///
6088/// C99 6.7.5.3p7: If the keyword static also appears within the [ and ] of the
6089/// array type derivation, then for each call to the function, the value of the
6090/// corresponding actual argument shall provide access to the first element of
6091/// an array with at least as many elements as specified by the size expression.
6092void
6093Sema::CheckStaticArrayArgument(SourceLocation CallLoc,
6094 ParmVarDecl *Param,
6095 const Expr *ArgExpr) {
6096 // Static array parameters are not supported in C++.
6097 if (!Param || getLangOpts().CPlusPlus)
6098 return;
6099
6100 QualType OrigTy = Param->getOriginalType();
6101
6102 const ArrayType *AT = Context.getAsArrayType(OrigTy);
6103 if (!AT || AT->getSizeModifier() != ArrayType::Static)
6104 return;
6105
6106 if (ArgExpr->isNullPointerConstant(Context,
6107 Expr::NPC_NeverValueDependent)) {
6108 Diag(CallLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
6109 DiagnoseCalleeStaticArrayParam(*this, Param);
6110 return;
6111 }
6112
6113 const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT);
6114 if (!CAT)
6115 return;
6116
6117 const ConstantArrayType *ArgCAT =
6118 Context.getAsConstantArrayType(ArgExpr->IgnoreParenCasts()->getType());
6119 if (!ArgCAT)
6120 return;
6121
6122 if (getASTContext().hasSameUnqualifiedType(CAT->getElementType(),
6123 ArgCAT->getElementType())) {
6124 if (ArgCAT->getSize().ult(CAT->getSize())) {
6125 Diag(CallLoc, diag::warn_static_array_too_small)
6126 << ArgExpr->getSourceRange()
6127 << (unsigned)ArgCAT->getSize().getZExtValue()
6128 << (unsigned)CAT->getSize().getZExtValue() << 0;
6129 DiagnoseCalleeStaticArrayParam(*this, Param);
6130 }
6131 return;
6132 }
6133
6134 Optional<CharUnits> ArgSize =
6135 getASTContext().getTypeSizeInCharsIfKnown(ArgCAT);
6136 Optional<CharUnits> ParmSize = getASTContext().getTypeSizeInCharsIfKnown(CAT);
6137 if (ArgSize && ParmSize && *ArgSize < *ParmSize) {
6138 Diag(CallLoc, diag::warn_static_array_too_small)
6139 << ArgExpr->getSourceRange() << (unsigned)ArgSize->getQuantity()
6140 << (unsigned)ParmSize->getQuantity() << 1;
6141 DiagnoseCalleeStaticArrayParam(*this, Param);
6142 }
6143}
6144
6145/// Given a function expression of unknown-any type, try to rebuild it
6146/// to have a function type.
6147static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn);
6148
6149/// Is the given type a placeholder that we need to lower out
6150/// immediately during argument processing?
6151static bool isPlaceholderToRemoveAsArg(QualType type) {
6152 // Placeholders are never sugared.
6153 const BuiltinType *placeholder = dyn_cast<BuiltinType>(type);
6154 if (!placeholder) return false;
6155
6156 switch (placeholder->getKind()) {
6157 // Ignore all the non-placeholder types.
6158#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
6159 case BuiltinType::Id:
6160#include "clang/Basic/OpenCLImageTypes.def"
6161#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
6162 case BuiltinType::Id:
6163#include "clang/Basic/OpenCLExtensionTypes.def"
6164 // In practice we'll never use this, since all SVE types are sugared
6165 // via TypedefTypes rather than exposed directly as BuiltinTypes.
6166#define SVE_TYPE(Name, Id, SingletonId) \
6167 case BuiltinType::Id:
6168#include "clang/Basic/AArch64SVEACLETypes.def"
6169#define PPC_VECTOR_TYPE(Name, Id, Size) \
6170 case BuiltinType::Id:
6171#include "clang/Basic/PPCTypes.def"
6172#define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
6173#include "clang/Basic/RISCVVTypes.def"
6174#define PLACEHOLDER_TYPE(ID, SINGLETON_ID)
6175#define BUILTIN_TYPE(ID, SINGLETON_ID) case BuiltinType::ID:
6176#include "clang/AST/BuiltinTypes.def"
6177 return false;
6178
6179 // We cannot lower out overload sets; they might validly be resolved
6180 // by the call machinery.
6181 case BuiltinType::Overload:
6182 return false;
6183
6184 // Unbridged casts in ARC can be handled in some call positions and
6185 // should be left in place.
6186 case BuiltinType::ARCUnbridgedCast:
6187 return false;
6188
6189 // Pseudo-objects should be converted as soon as possible.
6190 case BuiltinType::PseudoObject:
6191 return true;
6192
6193 // The debugger mode could theoretically but currently does not try
6194 // to resolve unknown-typed arguments based on known parameter types.
6195 case BuiltinType::UnknownAny:
6196 return true;
6197
6198 // These are always invalid as call arguments and should be reported.
6199 case BuiltinType::BoundMember:
6200 case BuiltinType::BuiltinFn:
6201 case BuiltinType::IncompleteMatrixIdx:
6202 case BuiltinType::OMPArraySection:
6203 case BuiltinType::OMPArrayShaping:
6204 case BuiltinType::OMPIterator:
6205 return true;
6206
6207 }
6208 llvm_unreachable("bad builtin type kind")::llvm::llvm_unreachable_internal("bad builtin type kind", "clang/lib/Sema/SemaExpr.cpp"
, 6208)
;
6209}
6210
6211/// Check an argument list for placeholders that we won't try to
6212/// handle later.
6213static bool checkArgsForPlaceholders(Sema &S, MultiExprArg args) {
6214 // Apply this processing to all the arguments at once instead of
6215 // dying at the first failure.
6216 bool hasInvalid = false;
6217 for (size_t i = 0, e = args.size(); i != e; i++) {
6218 if (isPlaceholderToRemoveAsArg(args[i]->getType())) {
6219 ExprResult result = S.CheckPlaceholderExpr(args[i]);
6220 if (result.isInvalid()) hasInvalid = true;
6221 else args[i] = result.get();
6222 }
6223 }
6224 return hasInvalid;
6225}
6226
6227/// If a builtin function has a pointer argument with no explicit address
6228/// space, then it should be able to accept a pointer to any address
6229/// space as input. In order to do this, we need to replace the
6230/// standard builtin declaration with one that uses the same address space
6231/// as the call.
6232///
6233/// \returns nullptr If this builtin is not a candidate for a rewrite i.e.
6234/// it does not contain any pointer arguments without
6235/// an address space qualifer. Otherwise the rewritten
6236/// FunctionDecl is returned.
6237/// TODO: Handle pointer return types.
6238static FunctionDecl *rewriteBuiltinFunctionDecl(Sema *Sema, ASTContext &Context,
6239 FunctionDecl *FDecl,
6240 MultiExprArg ArgExprs) {
6241
6242 QualType DeclType = FDecl->getType();
6243 const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(DeclType);
6244
6245 if (!Context.BuiltinInfo.hasPtrArgsOrResult(FDecl->getBuiltinID()) || !FT ||
6246 ArgExprs.size() < FT->getNumParams())
6247 return nullptr;
6248
6249 bool NeedsNewDecl = false;
6250 unsigned i = 0;
6251 SmallVector<QualType, 8> OverloadParams;
6252
6253 for (QualType ParamType : FT->param_types()) {
6254
6255 // Convert array arguments to pointer to simplify type lookup.
6256 ExprResult ArgRes =
6257 Sema->DefaultFunctionArrayLvalueConversion(ArgExprs[i++]);
6258 if (ArgRes.isInvalid())
6259 return nullptr;
6260 Expr *Arg = ArgRes.get();
6261 QualType ArgType = Arg->getType();
6262 if (!ParamType->isPointerType() ||
6263 ParamType.hasAddressSpace() ||
6264 !ArgType->isPointerType() ||
6265 !ArgType->getPointeeType().hasAddressSpace()) {
6266 OverloadParams.push_back(ParamType);
6267 continue;
6268 }
6269
6270 QualType PointeeType = ParamType->getPointeeType();
6271 if (PointeeType.hasAddressSpace())
6272 continue;
6273
6274 NeedsNewDecl = true;
6275 LangAS AS = ArgType->getPointeeType().getAddressSpace();
6276
6277 PointeeType = Context.getAddrSpaceQualType(PointeeType, AS);
6278 OverloadParams.push_back(Context.getPointerType(PointeeType));
6279 }
6280
6281 if (!NeedsNewDecl)
6282 return nullptr;
6283
6284 FunctionProtoType::ExtProtoInfo EPI;
6285 EPI.Variadic = FT->isVariadic();
6286 QualType OverloadTy = Context.getFunctionType(FT->getReturnType(),
6287 OverloadParams, EPI);
6288 DeclContext *Parent = FDecl->getParent();
6289 FunctionDecl *OverloadDecl = FunctionDecl::Create(
6290 Context, Parent, FDecl->getLocation(), FDecl->getLocation(),
6291 FDecl->getIdentifier(), OverloadTy,
6292 /*TInfo=*/nullptr, SC_Extern, Sema->getCurFPFeatures().isFPConstrained(),
6293 false,
6294 /*hasPrototype=*/true);
6295 SmallVector<ParmVarDecl*, 16> Params;
6296 FT = cast<FunctionProtoType>(OverloadTy);
6297 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
6298 QualType ParamType = FT->getParamType(i);
6299 ParmVarDecl *Parm =
6300 ParmVarDecl::Create(Context, OverloadDecl, SourceLocation(),
6301 SourceLocation(), nullptr, ParamType,
6302 /*TInfo=*/nullptr, SC_None, nullptr);
6303 Parm->setScopeInfo(0, i);
6304 Params.push_back(Parm);
6305 }
6306 OverloadDecl->setParams(Params);
6307 Sema->mergeDeclAttributes(OverloadDecl, FDecl);
6308 return OverloadDecl;
6309}
6310
6311static void checkDirectCallValidity(Sema &S, const Expr *Fn,
6312 FunctionDecl *Callee,
6313 MultiExprArg ArgExprs) {
6314 // `Callee` (when called with ArgExprs) may be ill-formed. enable_if (and
6315 // similar attributes) really don't like it when functions are called with an
6316 // invalid number of args.
6317 if (S.TooManyArguments(Callee->getNumParams(), ArgExprs.size(),
6318 /*PartialOverloading=*/false) &&
6319 !Callee->isVariadic())
6320 return;
6321 if (Callee->getMinRequiredArguments() > ArgExprs.size())
6322 return;
6323
6324 if (const EnableIfAttr *Attr =
6325 S.CheckEnableIf(Callee, Fn->getBeginLoc(), ArgExprs, true)) {
6326 S.Diag(Fn->getBeginLoc(),
6327 isa<CXXMethodDecl>(Callee)
6328 ? diag::err_ovl_no_viable_member_function_in_call
6329 : diag::err_ovl_no_viable_function_in_call)
6330 << Callee << Callee->getSourceRange();
6331 S.Diag(Callee->getLocation(),
6332 diag::note_ovl_candidate_disabled_by_function_cond_attr)
6333 << Attr->getCond()->getSourceRange() << Attr->getMessage();
6334 return;
6335 }
6336}
6337
6338static bool enclosingClassIsRelatedToClassInWhichMembersWereFound(
6339 const UnresolvedMemberExpr *const UME, Sema &S) {
6340
6341 const auto GetFunctionLevelDCIfCXXClass =
6342 [](Sema &S) -> const CXXRecordDecl * {
6343 const DeclContext *const DC = S.getFunctionLevelDeclContext();
6344 if (!DC || !DC->getParent())
6345 return nullptr;
6346
6347 // If the call to some member function was made from within a member
6348 // function body 'M' return return 'M's parent.
6349 if (const auto *MD = dyn_cast<CXXMethodDecl>(DC))
6350 return MD->getParent()->getCanonicalDecl();
6351 // else the call was made from within a default member initializer of a
6352 // class, so return the class.
6353 if (const auto *RD = dyn_cast<CXXRecordDecl>(DC))
6354 return RD->getCanonicalDecl();
6355 return nullptr;
6356 };
6357 // If our DeclContext is neither a member function nor a class (in the
6358 // case of a lambda in a default member initializer), we can't have an
6359 // enclosing 'this'.
6360
6361 const CXXRecordDecl *const CurParentClass = GetFunctionLevelDCIfCXXClass(S);
6362 if (!CurParentClass)
6363 return false;
6364
6365 // The naming class for implicit member functions call is the class in which
6366 // name lookup starts.
6367 const CXXRecordDecl *const NamingClass =
6368 UME->getNamingClass()->getCanonicalDecl();
6369 assert(NamingClass && "Must have naming class even for implicit access")(static_cast <bool> (NamingClass && "Must have naming class even for implicit access"
) ? void (0) : __assert_fail ("NamingClass && \"Must have naming class even for implicit access\""
, "clang/lib/Sema/SemaExpr.cpp", 6369, __extension__ __PRETTY_FUNCTION__
))
;
6370
6371 // If the unresolved member functions were found in a 'naming class' that is
6372 // related (either the same or derived from) to the class that contains the
6373 // member function that itself contained the implicit member access.
6374
6375 return CurParentClass == NamingClass ||
6376 CurParentClass->isDerivedFrom(NamingClass);
6377}
6378
6379static void
6380tryImplicitlyCaptureThisIfImplicitMemberFunctionAccessWithDependentArgs(
6381 Sema &S, const UnresolvedMemberExpr *const UME, SourceLocation CallLoc) {
6382
6383 if (!UME)
6384 return;
6385
6386 LambdaScopeInfo *const CurLSI = S.getCurLambda();
6387 // Only try and implicitly capture 'this' within a C++ Lambda if it hasn't
6388 // already been captured, or if this is an implicit member function call (if
6389 // it isn't, an attempt to capture 'this' should already have been made).
6390 if (!CurLSI || CurLSI->ImpCaptureStyle == CurLSI->ImpCap_None ||
6391 !UME->isImplicitAccess() || CurLSI->isCXXThisCaptured())
6392 return;
6393
6394 // Check if the naming class in which the unresolved members were found is
6395 // related (same as or is a base of) to the enclosing class.
6396
6397 if (!enclosingClassIsRelatedToClassInWhichMembersWereFound(UME, S))
6398 return;
6399
6400
6401 DeclContext *EnclosingFunctionCtx = S.CurContext->getParent()->getParent();
6402 // If the enclosing function is not dependent, then this lambda is
6403 // capture ready, so if we can capture this, do so.
6404 if (!EnclosingFunctionCtx->isDependentContext()) {
6405 // If the current lambda and all enclosing lambdas can capture 'this' -
6406 // then go ahead and capture 'this' (since our unresolved overload set
6407 // contains at least one non-static member function).
6408 if (!S.CheckCXXThisCapture(CallLoc, /*Explcit*/ false, /*Diagnose*/ false))
6409 S.CheckCXXThisCapture(CallLoc);
6410 } else if (S.CurContext->isDependentContext()) {
6411 // ... since this is an implicit member reference, that might potentially
6412 // involve a 'this' capture, mark 'this' for potential capture in
6413 // enclosing lambdas.
6414 if (CurLSI->ImpCaptureStyle != CurLSI->ImpCap_None)
6415 CurLSI->addPotentialThisCapture(CallLoc);
6416 }
6417}
6418
6419ExprResult Sema::ActOnCallExpr(Scope *Scope, Expr *Fn, SourceLocation LParenLoc,
6420 MultiExprArg ArgExprs, SourceLocation RParenLoc,
6421 Expr *ExecConfig) {
6422 ExprResult Call =
6423 BuildCallExpr(Scope, Fn, LParenLoc, ArgExprs, RParenLoc, ExecConfig,
6424 /*IsExecConfig=*/false, /*AllowRecovery=*/true);
6425 if (Call.isInvalid())
6426 return Call;
6427
6428 // Diagnose uses of the C++20 "ADL-only template-id call" feature in earlier
6429 // language modes.
6430 if (auto *ULE = dyn_cast<UnresolvedLookupExpr>(Fn)) {
6431 if (ULE->hasExplicitTemplateArgs() &&
6432 ULE->decls_begin() == ULE->decls_end()) {
6433 Diag(Fn->getExprLoc(), getLangOpts().CPlusPlus20
6434 ? diag::warn_cxx17_compat_adl_only_template_id
6435 : diag::ext_adl_only_template_id)
6436 << ULE->getName();
6437 }
6438 }
6439
6440 if (LangOpts.OpenMP)
6441 Call = ActOnOpenMPCall(Call, Scope, LParenLoc, ArgExprs, RParenLoc,
6442 ExecConfig);
6443
6444 return Call;
6445}
6446
6447/// BuildCallExpr - Handle a call to Fn with the specified array of arguments.
6448/// This provides the location of the left/right parens and a list of comma
6449/// locations.
6450ExprResult Sema::BuildCallExpr(Scope *Scope, Expr *Fn, SourceLocation LParenLoc,
6451 MultiExprArg ArgExprs, SourceLocation RParenLoc,
6452 Expr *ExecConfig, bool IsExecConfig,
6453 bool AllowRecovery) {
6454 // Since this might be a postfix expression, get rid of ParenListExprs.
6455 ExprResult Result = MaybeConvertParenListExprToParenExpr(Scope, Fn);
6456 if (Result.isInvalid()) return ExprError();
6457 Fn = Result.get();
6458
6459 if (checkArgsForPlaceholders(*this, ArgExprs))
6460 return ExprError();
6461
6462 if (getLangOpts().CPlusPlus) {
6463 // If this is a pseudo-destructor expression, build the call immediately.
6464 if (isa<CXXPseudoDestructorExpr>(Fn)) {
6465 if (!ArgExprs.empty()) {
6466 // Pseudo-destructor calls should not have any arguments.
6467 Diag(Fn->getBeginLoc(), diag::err_pseudo_dtor_call_with_args)
6468 << FixItHint::CreateRemoval(
6469 SourceRange(ArgExprs.front()->getBeginLoc(),
6470 ArgExprs.back()->getEndLoc()));
6471 }
6472
6473 return CallExpr::Create(Context, Fn, /*Args=*/{}, Context.VoidTy,
6474 VK_PRValue, RParenLoc, CurFPFeatureOverrides());
6475 }
6476 if (Fn->getType() == Context.PseudoObjectTy) {
6477 ExprResult result = CheckPlaceholderExpr(Fn);
6478 if (result.isInvalid()) return ExprError();
6479 Fn = result.get();
6480 }
6481
6482 // Determine whether this is a dependent call inside a C++ template,
6483 // in which case we won't do any semantic analysis now.
6484 if (Fn->isTypeDependent() || Expr::hasAnyTypeDependentArguments(ArgExprs)) {
6485 if (ExecConfig) {
6486 return CUDAKernelCallExpr::Create(Context, Fn,
6487 cast<CallExpr>(ExecConfig), ArgExprs,
6488 Context.DependentTy, VK_PRValue,
6489 RParenLoc, CurFPFeatureOverrides());
6490 } else {
6491
6492 tryImplicitlyCaptureThisIfImplicitMemberFunctionAccessWithDependentArgs(
6493 *this, dyn_cast<UnresolvedMemberExpr>(Fn->IgnoreParens()),
6494 Fn->getBeginLoc());
6495
6496 return CallExpr::Create(Context, Fn, ArgExprs, Context.DependentTy,
6497 VK_PRValue, RParenLoc, CurFPFeatureOverrides());
6498 }
6499 }
6500
6501 // Determine whether this is a call to an object (C++ [over.call.object]).
6502 if (Fn->getType()->isRecordType())
6503 return BuildCallToObjectOfClassType(Scope, Fn, LParenLoc, ArgExprs,
6504 RParenLoc);
6505
6506 if (Fn->getType() == Context.UnknownAnyTy) {
6507 ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
6508 if (result.isInvalid()) return ExprError();
6509 Fn = result.get();
6510 }
6511
6512 if (Fn->getType() == Context.BoundMemberTy) {
6513 return BuildCallToMemberFunction(Scope, Fn, LParenLoc, ArgExprs,
6514 RParenLoc, ExecConfig, IsExecConfig,
6515 AllowRecovery);
6516 }
6517 }
6518
6519 // Check for overloaded calls. This can happen even in C due to extensions.
6520 if (Fn->getType() == Context.OverloadTy) {
6521 OverloadExpr::FindResult find = OverloadExpr::find(Fn);
6522
6523 // We aren't supposed to apply this logic if there's an '&' involved.
6524 if (!find.HasFormOfMemberPointer) {
6525 if (Expr::hasAnyTypeDependentArguments(ArgExprs))
6526 return CallExpr::Create(Context, Fn, ArgExprs, Context.DependentTy,
6527 VK_PRValue, RParenLoc, CurFPFeatureOverrides());
6528 OverloadExpr *ovl = find.Expression;
6529 if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(ovl))
6530 return BuildOverloadedCallExpr(
6531 Scope, Fn, ULE, LParenLoc, ArgExprs, RParenLoc, ExecConfig,
6532 /*AllowTypoCorrection=*/true, find.IsAddressOfOperand);
6533 return BuildCallToMemberFunction(Scope, Fn, LParenLoc, ArgExprs,
6534 RParenLoc, ExecConfig, IsExecConfig,
6535 AllowRecovery);
6536 }
6537 }
6538
6539 // If we're directly calling a function, get the appropriate declaration.
6540 if (Fn->getType() == Context.UnknownAnyTy) {
6541 ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
6542 if (result.isInvalid()) return ExprError();
6543 Fn = result.get();
6544 }
6545
6546 Expr *NakedFn = Fn->IgnoreParens();
6547
6548 bool CallingNDeclIndirectly = false;
6549 NamedDecl *NDecl = nullptr;
6550 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(NakedFn)) {
6551 if (UnOp->getOpcode() == UO_AddrOf) {
6552 CallingNDeclIndirectly = true;
6553 NakedFn = UnOp->getSubExpr()->IgnoreParens();
6554 }
6555 }
6556
6557 if (auto *DRE = dyn_cast<DeclRefExpr>(NakedFn)) {
6558 NDecl = DRE->getDecl();
6559
6560 FunctionDecl *FDecl = dyn_cast<FunctionDecl>(NDecl);
6561 if (FDecl && FDecl->getBuiltinID()) {
6562 // Rewrite the function decl for this builtin by replacing parameters
6563 // with no explicit address space with the address space of the arguments
6564 // in ArgExprs.
6565 if ((FDecl =
6566 rewriteBuiltinFunctionDecl(this, Context, FDecl, ArgExprs))) {
6567 NDecl = FDecl;
6568 Fn = DeclRefExpr::Create(
6569 Context, FDecl->getQualifierLoc(), SourceLocation(), FDecl, false,
6570 SourceLocation(), FDecl->getType(), Fn->getValueKind(), FDecl,
6571 nullptr, DRE->isNonOdrUse());
6572 }
6573 }
6574 } else if (isa<MemberExpr>(NakedFn))
6575 NDecl = cast<MemberExpr>(NakedFn)->getMemberDecl();
6576
6577 if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(NDecl)) {
6578 if (CallingNDeclIndirectly && !checkAddressOfFunctionIsAvailable(
6579 FD, /*Complain=*/true, Fn->getBeginLoc()))
6580 return ExprError();
6581
6582 checkDirectCallValidity(*this, Fn, FD, ArgExprs);
6583
6584 // If this expression is a call to a builtin function in HIP device
6585 // compilation, allow a pointer-type argument to default address space to be
6586 // passed as a pointer-type parameter to a non-default address space.
6587 // If Arg is declared in the default address space and Param is declared
6588 // in a non-default address space, perform an implicit address space cast to
6589 // the parameter type.
6590 if (getLangOpts().HIP && getLangOpts().CUDAIsDevice && FD &&
6591 FD->getBuiltinID()) {
6592 for (unsigned Idx = 0; Idx < FD->param_size(); ++Idx) {
6593 ParmVarDecl *Param = FD->getParamDecl(Idx);
6594 if (!ArgExprs[Idx] || !Param || !Param->getType()->isPointerType() ||
6595 !ArgExprs[Idx]->getType()->isPointerType())
6596 continue;
6597
6598 auto ParamAS = Param->getType()->getPointeeType().getAddressSpace();
6599 auto ArgTy = ArgExprs[Idx]->getType();
6600 auto ArgPtTy = ArgTy->getPointeeType();
6601 auto ArgAS = ArgPtTy.getAddressSpace();
6602
6603 // Add address space cast if target address spaces are different
6604 bool NeedImplicitASC =
6605 ParamAS != LangAS::Default && // Pointer params in generic AS don't need special handling.
6606 ( ArgAS == LangAS::Default || // We do allow implicit conversion from generic AS
6607 // or from specific AS which has target AS matching that of Param.
6608 getASTContext().getTargetAddressSpace(ArgAS) == getASTContext().getTargetAddressSpace(ParamAS));
6609 if (!NeedImplicitASC)
6610 continue;
6611
6612 // First, ensure that the Arg is an RValue.
6613 if (ArgExprs[Idx]->isGLValue()) {
6614 ArgExprs[Idx] = ImplicitCastExpr::Create(
6615 Context, ArgExprs[Idx]->getType(), CK_NoOp, ArgExprs[Idx],
6616 nullptr, VK_PRValue, FPOptionsOverride());
6617 }
6618
6619 // Construct a new arg type with address space of Param
6620 Qualifiers ArgPtQuals = ArgPtTy.getQualifiers();
6621 ArgPtQuals.setAddressSpace(ParamAS);
6622 auto NewArgPtTy =
6623 Context.getQualifiedType(ArgPtTy.getUnqualifiedType(), ArgPtQuals);
6624 auto NewArgTy =
6625 Context.getQualifiedType(Context.getPointerType(NewArgPtTy),
6626 ArgTy.getQualifiers());
6627
6628 // Finally perform an implicit address space cast
6629 ArgExprs[Idx] = ImpCastExprToType(ArgExprs[Idx], NewArgTy,
6630 CK_AddressSpaceConversion)
6631 .get();
6632 }
6633 }
6634 }
6635
6636 if (Context.isDependenceAllowed() &&
6637 (Fn->isTypeDependent() || Expr::hasAnyTypeDependentArguments(ArgExprs))) {
6638 assert(!getLangOpts().CPlusPlus)(static_cast <bool> (!getLangOpts().CPlusPlus) ? void (
0) : __assert_fail ("!getLangOpts().CPlusPlus", "clang/lib/Sema/SemaExpr.cpp"
, 6638, __extension__ __PRETTY_FUNCTION__))
;
6639 assert((Fn->containsErrors() ||(static_cast <bool> ((Fn->containsErrors() || llvm::
any_of(ArgExprs, [](clang::Expr *E) { return E->containsErrors
(); })) && "should only occur in error-recovery path."
) ? void (0) : __assert_fail ("(Fn->containsErrors() || llvm::any_of(ArgExprs, [](clang::Expr *E) { return E->containsErrors(); })) && \"should only occur in error-recovery path.\""
, "clang/lib/Sema/SemaExpr.cpp", 6642, __extension__ __PRETTY_FUNCTION__
))
6640 llvm::any_of(ArgExprs,(static_cast <bool> ((Fn->containsErrors() || llvm::
any_of(ArgExprs, [](clang::Expr *E) { return E->containsErrors
(); })) && "should only occur in error-recovery path."
) ? void (0) : __assert_fail ("(Fn->containsErrors() || llvm::any_of(ArgExprs, [](clang::Expr *E) { return E->containsErrors(); })) && \"should only occur in error-recovery path.\""
, "clang/lib/Sema/SemaExpr.cpp", 6642, __extension__ __PRETTY_FUNCTION__
))
6641 [](clang::Expr *E) { return E->containsErrors(); })) &&(static_cast <bool> ((Fn->containsErrors() || llvm::
any_of(ArgExprs, [](clang::Expr *E) { return E->containsErrors
(); })) && "should only occur in error-recovery path."
) ? void (0) : __assert_fail ("(Fn->containsErrors() || llvm::any_of(ArgExprs, [](clang::Expr *E) { return E->containsErrors(); })) && \"should only occur in error-recovery path.\""
, "clang/lib/Sema/SemaExpr.cpp", 6642, __extension__ __PRETTY_FUNCTION__
))
6642 "should only occur in error-recovery path.")(static_cast <bool> ((Fn->containsErrors() || llvm::
any_of(ArgExprs, [](clang::Expr *E) { return E->containsErrors
(); })) && "should only occur in error-recovery path."
) ? void (0) : __assert_fail ("(Fn->containsErrors() || llvm::any_of(ArgExprs, [](clang::Expr *E) { return E->containsErrors(); })) && \"should only occur in error-recovery path.\""
, "clang/lib/Sema/SemaExpr.cpp", 6642, __extension__ __PRETTY_FUNCTION__
))
;
6643 QualType ReturnType =
6644 llvm::isa_and_nonnull<FunctionDecl>(NDecl)
6645 ? cast<FunctionDecl>(NDecl)->getCallResultType()
6646 : Context.DependentTy;
6647 return CallExpr::Create(Context, Fn, ArgExprs, ReturnType,
6648 Expr::getValueKindForType(ReturnType), RParenLoc,
6649 CurFPFeatureOverrides());
6650 }
6651 return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, ArgExprs, RParenLoc,
6652 ExecConfig, IsExecConfig);
6653}
6654
6655/// BuildBuiltinCallExpr - Create a call to a builtin function specified by Id
6656// with the specified CallArgs
6657Expr *Sema::BuildBuiltinCallExpr(SourceLocation Loc, Builtin::ID Id,
6658 MultiExprArg CallArgs) {
6659 StringRef Name = Context.BuiltinInfo.getName(Id);
6660 LookupResult R(*this, &Context.Idents.get(Name), Loc,
6661 Sema::LookupOrdinaryName);
6662 LookupName(R, TUScope, /*AllowBuiltinCreation=*/true);
6663
6664 auto *BuiltInDecl = R.getAsSingle<FunctionDecl>();
6665 assert(BuiltInDecl && "failed to find builtin declaration")(static_cast <bool> (BuiltInDecl && "failed to find builtin declaration"
) ? void (0) : __assert_fail ("BuiltInDecl && \"failed to find builtin declaration\""
, "clang/lib/Sema/SemaExpr.cpp", 6665, __extension__ __PRETTY_FUNCTION__
))
;
6666
6667 ExprResult DeclRef =
6668 BuildDeclRefExpr(BuiltInDecl, BuiltInDecl->getType(), VK_LValue, Loc);
6669 assert(DeclRef.isUsable() && "Builtin reference cannot fail")(static_cast <bool> (DeclRef.isUsable() && "Builtin reference cannot fail"
) ? void (0) : __assert_fail ("DeclRef.isUsable() && \"Builtin reference cannot fail\""
, "clang/lib/Sema/SemaExpr.cpp", 6669, __extension__ __PRETTY_FUNCTION__
))
;
6670
6671 ExprResult Call =
6672 BuildCallExpr(/*Scope=*/nullptr, DeclRef.get(), Loc, CallArgs, Loc);
6673
6674 assert(!Call.isInvalid() && "Call to builtin cannot fail!")(static_cast <bool> (!Call.isInvalid() && "Call to builtin cannot fail!"
) ? void (0) : __assert_fail ("!Call.isInvalid() && \"Call to builtin cannot fail!\""
, "clang/lib/Sema/SemaExpr.cpp", 6674, __extension__ __PRETTY_FUNCTION__
))
;
6675 return Call.get();
6676}
6677
6678/// Parse a __builtin_astype expression.
6679///
6680/// __builtin_astype( value, dst type )
6681///
6682ExprResult Sema::ActOnAsTypeExpr(Expr *E, ParsedType ParsedDestTy,
6683 SourceLocation BuiltinLoc,
6684 SourceLocation RParenLoc) {
6685 QualType DstTy = GetTypeFromParser(ParsedDestTy);
6686 return BuildAsTypeExpr(E, DstTy, BuiltinLoc, RParenLoc);
6687}
6688
6689/// Create a new AsTypeExpr node (bitcast) from the arguments.
6690ExprResult Sema::BuildAsTypeExpr(Expr *E, QualType DestTy,
6691 SourceLocation BuiltinLoc,
6692 SourceLocation RParenLoc) {
6693 ExprValueKind VK = VK_PRValue;
6694 ExprObjectKind OK = OK_Ordinary;
6695 QualType SrcTy = E->getType();
6696 if (!SrcTy->isDependentType() &&
6697 Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy))
6698 return ExprError(
6699 Diag(BuiltinLoc, diag::err_invalid_astype_of_different_size)
6700 << DestTy << SrcTy << E->getSourceRange());
6701 return new (Context) AsTypeExpr(E, DestTy, VK, OK, BuiltinLoc, RParenLoc);
6702}
6703
6704/// ActOnConvertVectorExpr - create a new convert-vector expression from the
6705/// provided arguments.
6706///
6707/// __builtin_convertvector( value, dst type )
6708///
6709ExprResult Sema::ActOnConvertVectorExpr(Expr *E, ParsedType ParsedDestTy,
6710 SourceLocation BuiltinLoc,
6711 SourceLocation RParenLoc) {
6712 TypeSourceInfo *TInfo;
6713 GetTypeFromParser(ParsedDestTy, &TInfo);
6714 return SemaConvertVectorExpr(E, TInfo, BuiltinLoc, RParenLoc);
6715}
6716
6717/// BuildResolvedCallExpr - Build a call to a resolved expression,
6718/// i.e. an expression not of \p OverloadTy. The expression should
6719/// unary-convert to an expression of function-pointer or
6720/// block-pointer type.
6721///
6722/// \param NDecl the declaration being called, if available
6723ExprResult Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
6724 SourceLocation LParenLoc,
6725 ArrayRef<Expr *> Args,
6726 SourceLocation RParenLoc, Expr *Config,
6727 bool IsExecConfig, ADLCallKind UsesADL) {
6728 FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);
6729 unsigned BuiltinID = (FDecl ? FDecl->getBuiltinID() : 0);
6730
6731 // Functions with 'interrupt' attribute cannot be called directly.
6732 if (FDecl && FDecl->hasAttr<AnyX86InterruptAttr>()) {
6733 Diag(Fn->getExprLoc(), diag::err_anyx86_interrupt_called);
6734 return ExprError();
6735 }
6736
6737 // Interrupt handlers don't save off the VFP regs automatically on ARM,
6738 // so there's some risk when calling out to non-interrupt handler functions
6739 // that the callee might not preserve them. This is easy to diagnose here,
6740 // but can be very challenging to debug.
6741 // Likewise, X86 interrupt handlers may only call routines with attribute
6742 // no_caller_saved_registers since there is no efficient way to
6743 // save and restore the non-GPR state.
6744 if (auto *Caller = getCurFunctionDecl()) {
6745 if (Caller->hasAttr<ARMInterruptAttr>()) {
6746 bool VFP = Context.getTargetInfo().hasFeature("vfp");
6747 if (VFP && (!FDecl || !FDecl->hasAttr<ARMInterruptAttr>())) {
6748 Diag(Fn->getExprLoc(), diag::warn_arm_interrupt_calling_convention);
6749 if (FDecl)
6750 Diag(FDecl->getLocation(), diag::note_callee_decl) << FDecl;
6751 }
6752 }
6753 if (Caller->hasAttr<AnyX86InterruptAttr>() &&
6754 ((!FDecl || !FDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>()))) {
6755 Diag(Fn->getExprLoc(), diag::warn_anyx86_interrupt_regsave);
6756 if (FDecl)
6757 Diag(FDecl->getLocation(), diag::note_callee_decl) << FDecl;
6758 }
6759 }
6760
6761 // Promote the function operand.
6762 // We special-case function promotion here because we only allow promoting
6763 // builtin functions to function pointers in the callee of a call.
6764 ExprResult Result;
6765 QualType ResultTy;
6766 if (BuiltinID &&
6767 Fn->getType()->isSpecificBuiltinType(BuiltinType::BuiltinFn)) {
6768 // Extract the return type from the (builtin) function pointer type.
6769 // FIXME Several builtins still have setType in
6770 // Sema::CheckBuiltinFunctionCall. One should review their definitions in
6771 // Builtins.def to ensure they are correct before removing setType calls.
6772 QualType FnPtrTy = Context.getPointerType(FDecl->getType());
6773 Result = ImpCastExprToType(Fn, FnPtrTy, CK_BuiltinFnToFnPtr).get();
6774 ResultTy = FDecl->getCallResultType();
6775 } else {
6776 Result = CallExprUnaryConversions(Fn);
6777 ResultTy = Context.BoolTy;
6778 }
6779 if (Result.isInvalid())
6780 return ExprError();
6781 Fn = Result.get();
6782
6783 // Check for a valid function type, but only if it is not a builtin which
6784 // requires custom type checking. These will be handled by
6785 // CheckBuiltinFunctionCall below just after creation of the call expression.
6786 const FunctionType *FuncT = nullptr;
6787 if (!BuiltinID || !Context.BuiltinInfo.hasCustomTypechecking(BuiltinID)) {
6788 retry:
6789 if (const PointerType *PT = Fn->getType()->getAs<PointerType>()) {
6790 // C99 6.5.2.2p1 - "The expression that denotes the called function shall
6791 // have type pointer to function".
6792 FuncT = PT->getPointeeType()->getAs<FunctionType>();
6793 if (!FuncT)
6794 return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
6795 << Fn->getType() << Fn->getSourceRange());
6796 } else if (const BlockPointerType *BPT =
6797 Fn->getType()->getAs<BlockPointerType>()) {
6798 FuncT = BPT->getPointeeType()->castAs<FunctionType>();
6799 } else {
6800 // Handle calls to expressions of unknown-any type.
6801 if (Fn->getType() == Context.UnknownAnyTy) {
6802 ExprResult rewrite = rebuildUnknownAnyFunction(*this, Fn);
6803 if (rewrite.isInvalid())
6804 return ExprError();
6805 Fn = rewrite.get();
6806 goto retry;
6807 }
6808
6809 return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
6810 << Fn->getType() << Fn->getSourceRange());
6811 }
6812 }
6813
6814 // Get the number of parameters in the function prototype, if any.
6815 // We will allocate space for max(Args.size(), NumParams) arguments
6816 // in the call expression.
6817 const auto *Proto = dyn_cast_or_null<FunctionProtoType>(FuncT);
6818 unsigned NumParams = Proto ? Proto->getNumParams() : 0;
6819
6820 CallExpr *TheCall;
6821 if (Config) {
6822 assert(UsesADL == ADLCallKind::NotADL &&(static_cast <bool> (UsesADL == ADLCallKind::NotADL &&
"CUDAKernelCallExpr should not use ADL") ? void (0) : __assert_fail
("UsesADL == ADLCallKind::NotADL && \"CUDAKernelCallExpr should not use ADL\""
, "clang/lib/Sema/SemaExpr.cpp", 6823, __extension__ __PRETTY_FUNCTION__
))
6823 "CUDAKernelCallExpr should not use ADL")(static_cast <bool> (UsesADL == ADLCallKind::NotADL &&
"CUDAKernelCallExpr should not use ADL") ? void (0) : __assert_fail
("UsesADL == ADLCallKind::NotADL && \"CUDAKernelCallExpr should not use ADL\""
, "clang/lib/Sema/SemaExpr.cpp", 6823, __extension__ __PRETTY_FUNCTION__
))
;
6824 TheCall = CUDAKernelCallExpr::Create(Context, Fn, cast<CallExpr>(Config),
6825 Args, ResultTy, VK_PRValue, RParenLoc,
6826 CurFPFeatureOverrides(), NumParams);
6827 } else {
6828 TheCall =
6829 CallExpr::Create(Context, Fn, Args, ResultTy, VK_PRValue, RParenLoc,
6830 CurFPFeatureOverrides(), NumParams, UsesADL);
6831 }
6832
6833 if (!Context.isDependenceAllowed()) {
6834 // Forget about the nulled arguments since typo correction
6835 // do not handle them well.
6836 TheCall->shrinkNumArgs(Args.size());
6837 // C cannot always handle TypoExpr nodes in builtin calls and direct
6838 // function calls as their argument checking don't necessarily handle
6839 // dependent types properly, so make sure any TypoExprs have been
6840 // dealt with.
6841 ExprResult Result = CorrectDelayedTyposInExpr(TheCall);
6842 if (!Result.isUsable()) return ExprError();
6843 CallExpr *TheOldCall = TheCall;
6844 TheCall = dyn_cast<CallExpr>(Result.get());
6845 bool CorrectedTypos = TheCall != TheOldCall;
6846 if (!TheCall) return Result;
6847 Args = llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs());
6848
6849 // A new call expression node was created if some typos were corrected.
6850 // However it may not have been constructed with enough storage. In this
6851 // case, rebuild the node with enough storage. The waste of space is
6852 // immaterial since this only happens when some typos were corrected.
6853 if (CorrectedTypos && Args.size() < NumParams) {
6854 if (Config)
6855 TheCall = CUDAKernelCallExpr::Create(
6856 Context, Fn, cast<CallExpr>(Config), Args, ResultTy, VK_PRValue,
6857 RParenLoc, CurFPFeatureOverrides(), NumParams);
6858 else
6859 TheCall =
6860 CallExpr::Create(Context, Fn, Args, ResultTy, VK_PRValue, RParenLoc,
6861 CurFPFeatureOverrides(), NumParams, UsesADL);
6862 }
6863 // We can now handle the nulled arguments for the default arguments.
6864 TheCall->setNumArgsUnsafe(std::max<unsigned>(Args.size(), NumParams));
6865 }
6866
6867 // Bail out early if calling a builtin with custom type checking.
6868 if (BuiltinID && Context.BuiltinInfo.hasCustomTypechecking(BuiltinID))
6869 return CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall);
6870
6871 if (getLangOpts().CUDA) {
6872 if (Config) {
6873 // CUDA: Kernel calls must be to global functions
6874 if (FDecl && !FDecl->hasAttr<CUDAGlobalAttr>())
6875 return ExprError(Diag(LParenLoc,diag::err_kern_call_not_global_function)
6876 << FDecl << Fn->getSourceRange());
6877
6878 // CUDA: Kernel function must have 'void' return type
6879 if (!FuncT->getReturnType()->isVoidType() &&
6880 !FuncT->getReturnType()->getAs<AutoType>() &&
6881 !FuncT->getReturnType()->isInstantiationDependentType())
6882 return ExprError(Diag(LParenLoc, diag::err_kern_type_not_void_return)
6883 << Fn->getType() << Fn->getSourceRange());
6884 } else {
6885 // CUDA: Calls to global functions must be configured
6886 if (FDecl && FDecl->hasAttr<CUDAGlobalAttr>())
6887 return ExprError(Diag(LParenLoc, diag::err_global_call_not_config)
6888 << FDecl << Fn->getSourceRange());
6889 }
6890 }
6891
6892 // Check for a valid return type
6893 if (CheckCallReturnType(FuncT->getReturnType(), Fn->getBeginLoc(), TheCall,
6894 FDecl))
6895 return ExprError();
6896
6897 // We know the result type of the call, set it.
6898 TheCall->setType(FuncT->getCallResultType(Context));
6899 TheCall->setValueKind(Expr::getValueKindForType(FuncT->getReturnType()));
6900
6901 if (Proto) {
6902 if (ConvertArgumentsForCall(TheCall, Fn, FDecl, Proto, Args, RParenLoc,
6903 IsExecConfig))
6904 return ExprError();
6905 } else {
6906 assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!")(static_cast <bool> (isa<FunctionNoProtoType>(FuncT
) && "Unknown FunctionType!") ? void (0) : __assert_fail
("isa<FunctionNoProtoType>(FuncT) && \"Unknown FunctionType!\""
, "clang/lib/Sema/SemaExpr.cpp", 6906, __extension__ __PRETTY_FUNCTION__
))
;
6907
6908 if (FDecl) {
6909 // Check if we have too few/too many template arguments, based
6910 // on our knowledge of the function definition.
6911 const FunctionDecl *Def = nullptr;
6912 if (FDecl->hasBody(Def) && Args.size() != Def->param_size()) {
6913 Proto = Def->getType()->getAs<FunctionProtoType>();
6914 if (!Proto || !(Proto->isVariadic() && Args.size() >= Def->param_size()))
6915 Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
6916 << (Args.size() > Def->param_size()) << FDecl << Fn->getSourceRange();
6917 }
6918
6919 // If the function we're calling isn't a function prototype, but we have
6920 // a function prototype from a prior declaratiom, use that prototype.
6921 if (!FDecl->hasPrototype())
6922 Proto = FDecl->getType()->getAs<FunctionProtoType>();
6923 }
6924
6925 // Promote the arguments (C99 6.5.2.2p6).
6926 for (unsigned i = 0, e = Args.size(); i != e; i++) {
6927 Expr *Arg = Args[i];
6928
6929 if (Proto && i < Proto->getNumParams()) {
6930 InitializedEntity Entity = InitializedEntity::InitializeParameter(
6931 Context, Proto->getParamType(i), Proto->isParamConsumed(i));
6932 ExprResult ArgE =
6933 PerformCopyInitialization(Entity, SourceLocation(), Arg);
6934 if (ArgE.isInvalid())
6935 return true;
6936
6937 Arg = ArgE.getAs<Expr>();
6938
6939 } else {
6940 ExprResult ArgE = DefaultArgumentPromotion(Arg);
6941
6942 if (ArgE.isInvalid())
6943 return true;
6944
6945 Arg = ArgE.getAs<Expr>();
6946 }
6947
6948 if (RequireCompleteType(Arg->getBeginLoc(), Arg->getType(),
6949 diag::err_call_incomplete_argument, Arg))
6950 return ExprError();
6951
6952 TheCall->setArg(i, Arg);
6953 }
6954 TheCall->computeDependence();
6955 }
6956
6957 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
6958 if (!Method->isStatic())
6959 return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
6960 << Fn->getSourceRange());
6961
6962 // Check for sentinels
6963 if (NDecl)
6964 DiagnoseSentinelCalls(NDecl, LParenLoc, Args);
6965
6966 // Warn for unions passing across security boundary (CMSE).
6967 if (FuncT != nullptr && FuncT->getCmseNSCallAttr()) {
6968 for (unsigned i = 0, e = Args.size(); i != e; i++) {
6969 if (const auto *RT =
6970 dyn_cast<RecordType>(Args[i]->getType().getCanonicalType())) {
6971 if (RT->getDecl()->isOrContainsUnion())
6972 Diag(Args[i]->getBeginLoc(), diag::warn_cmse_nonsecure_union)
6973 << 0 << i;
6974 }
6975 }
6976 }
6977
6978 // Do special checking on direct calls to functions.
6979 if (FDecl) {
6980 if (CheckFunctionCall(FDecl, TheCall, Proto))
6981 return ExprError();
6982
6983 checkFortifiedBuiltinMemoryFunction(FDecl, TheCall);
6984
6985 if (BuiltinID)
6986 return CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall);
6987 } else if (NDecl) {
6988 if (CheckPointerCall(NDecl, TheCall, Proto))
6989 return ExprError();
6990 } else {
6991 if (CheckOtherCall(TheCall, Proto))
6992 return ExprError();
6993 }
6994
6995 return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall), FDecl);
6996}
6997
6998ExprResult
6999Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty,
7000 SourceLocation RParenLoc, Expr *InitExpr) {
7001 assert(Ty && "ActOnCompoundLiteral(): missing type")(static_cast <bool> (Ty && "ActOnCompoundLiteral(): missing type"
) ? void (0) : __assert_fail ("Ty && \"ActOnCompoundLiteral(): missing type\""
, "clang/lib/Sema/SemaExpr.cpp", 7001, __extension__ __PRETTY_FUNCTION__
))
;
7002 assert(InitExpr && "ActOnCompoundLiteral(): missing expression")(static_cast <bool> (InitExpr && "ActOnCompoundLiteral(): missing expression"
) ? void (0) : __assert_fail ("InitExpr && \"ActOnCompoundLiteral(): missing expression\""
, "clang/lib/Sema/SemaExpr.cpp", 7002, __extension__ __PRETTY_FUNCTION__
))
;
7003
7004 TypeSourceInfo *TInfo;
7005 QualType literalType = GetTypeFromParser(Ty, &TInfo);
7006 if (!TInfo)
7007 TInfo = Context.getTrivialTypeSourceInfo(literalType);
7008
7009 return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, InitExpr);
7010}
7011
7012ExprResult
7013Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
7014 SourceLocation RParenLoc, Expr *LiteralExpr) {
7015 QualType literalType = TInfo->getType();
7016
7017 if (literalType->isArrayType()) {
7018 if (RequireCompleteSizedType(
7019 LParenLoc, Context.getBaseElementType(literalType),
7020 diag::err_array_incomplete_or_sizeless_type,
7021 SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd())))
7022 return ExprError();
7023 if (literalType->isVariableArrayType()) {
7024 if (!tryToFixVariablyModifiedVarType(TInfo, literalType, LParenLoc,
7025 diag::err_variable_object_no_init)) {
7026 return ExprError();
7027 }
7028 }
7029 } else if (!literalType->isDependentType() &&
7030 RequireCompleteType(LParenLoc, literalType,
7031 diag::err_typecheck_decl_incomplete_type,
7032 SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd())))
7033 return ExprError();
7034
7035 InitializedEntity Entity
7036 = InitializedEntity::InitializeCompoundLiteralInit(TInfo);
7037 InitializationKind Kind
7038 = InitializationKind::CreateCStyleCast(LParenLoc,
7039 SourceRange(LParenLoc, RParenLoc),
7040 /*InitList=*/true);
7041 InitializationSequence InitSeq(*this, Entity, Kind, LiteralExpr);
7042 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, LiteralExpr,
7043 &literalType);
7044 if (Result.isInvalid())
7045 return ExprError();
7046 LiteralExpr = Result.get();
7047
7048 bool isFileScope = !CurContext->isFunctionOrMethod();
7049
7050 // In C, compound literals are l-values for some reason.
7051 // For GCC compatibility, in C++, file-scope array compound literals with
7052 // constant initializers are also l-values, and compound literals are
7053 // otherwise prvalues.
7054 //
7055 // (GCC also treats C++ list-initialized file-scope array prvalues with
7056 // constant initializers as l-values, but that's non-conforming, so we don't
7057 // follow it there.)
7058 //
7059 // FIXME: It would be better to handle the lvalue cases as materializing and
7060 // lifetime-extending a temporary object, but our materialized temporaries
7061 // representation only supports lifetime extension from a variable, not "out
7062 // of thin air".
7063 // FIXME: For C++, we might want to instead lifetime-extend only if a pointer
7064 // is bound to the result of applying array-to-pointer decay to the compound
7065 // literal.
7066 // FIXME: GCC supports compound literals of reference type, which should
7067 // obviously have a value kind derived from the kind of reference involved.
7068 ExprValueKind VK =
7069 (getLangOpts().CPlusPlus && !(isFileScope && literalType->isArrayType()))
7070 ? VK_PRValue
7071 : VK_LValue;
7072
7073 if (isFileScope)
7074 if (auto ILE = dyn_cast<InitListExpr>(LiteralExpr))
7075 for (unsigned i = 0, j = ILE->getNumInits(); i != j; i++) {
7076 Expr *Init = ILE->getInit(i);
7077 ILE->setInit(i, ConstantExpr::Create(Context, Init));
7078 }
7079
7080 auto *E = new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
7081 VK, LiteralExpr, isFileScope);
7082 if (isFileScope) {
7083 if (!LiteralExpr->isTypeDependent() &&
7084 !LiteralExpr->isValueDependent() &&
7085 !literalType->isDependentType()) // C99 6.5.2.5p3
7086 if (CheckForConstantInitializer(LiteralExpr, literalType))
7087 return ExprError();
7088 } else if (literalType.getAddressSpace() != LangAS::opencl_private &&
7089 literalType.getAddressSpace() != LangAS::Default) {
7090 // Embedded-C extensions to C99 6.5.2.5:
7091 // "If the compound literal occurs inside the body of a function, the
7092 // type name shall not be qualified by an address-space qualifier."
7093 Diag(LParenLoc, diag::err_compound_literal_with_address_space)
7094 << SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd());
7095 return ExprError();
7096 }
7097
7098 if (!isFileScope && !getLangOpts().CPlusPlus) {
7099 // Compound literals that have automatic storage duration are destroyed at
7100 // the end of the scope in C; in C++, they're just temporaries.
7101
7102 // Emit diagnostics if it is or contains a C union type that is non-trivial
7103 // to destruct.
7104 if (E->getType().hasNonTrivialToPrimitiveDestructCUnion())
7105 checkNonTrivialCUnion(E->getType(), E->getExprLoc(),
7106 NTCUC_CompoundLiteral, NTCUK_Destruct);
7107
7108 // Diagnose jumps that enter or exit the lifetime of the compound literal.
7109 if (literalType.isDestructedType()) {
7110 Cleanup.setExprNeedsCleanups(true);
7111 ExprCleanupObjects.push_back(E);
7112 getCurFunction()->setHasBranchProtectedScope();
7113 }
7114 }
7115
7116 if (E->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
7117 E->getType().hasNonTrivialToPrimitiveCopyCUnion())
7118 checkNonTrivialCUnionInInitializer(E->getInitializer(),
7119 E->getInitializer()->getExprLoc());
7120
7121 return MaybeBindToTemporary(E);
7122}
7123
7124ExprResult
7125Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
7126 SourceLocation RBraceLoc) {
7127 // Only produce each kind of designated initialization diagnostic once.
7128 SourceLocation FirstDesignator;
7129 bool DiagnosedArrayDesignator = false;
7130 bool DiagnosedNestedDesignator = false;
7131 bool DiagnosedMixedDesignator = false;
7132
7133 // Check that any designated initializers are syntactically valid in the
7134 // current language mode.
7135 for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) {
7136 if (auto *DIE = dyn_cast<DesignatedInitExpr>(InitArgList[I])) {
7137 if (FirstDesignator.isInvalid())
7138 FirstDesignator = DIE->getBeginLoc();
7139
7140 if (!getLangOpts().CPlusPlus)
7141 break;
7142
7143 if (!DiagnosedNestedDesignator && DIE->size() > 1) {
7144 DiagnosedNestedDesignator = true;
7145 Diag(DIE->getBeginLoc(), diag::ext_designated_init_nested)
7146 << DIE->getDesignatorsSourceRange();
7147 }
7148
7149 for (auto &Desig : DIE->designators()) {
7150 if (!Desig.isFieldDesignator() && !DiagnosedArrayDesignator) {
7151 DiagnosedArrayDesignator = true;
7152 Diag(Desig.getBeginLoc(), diag::ext_designated_init_array)
7153 << Desig.getSourceRange();
7154 }
7155 }
7156
7157 if (!DiagnosedMixedDesignator &&
7158 !isa<DesignatedInitExpr>(InitArgList[0])) {
7159 DiagnosedMixedDesignator = true;
7160 Diag(DIE->getBeginLoc(), diag::ext_designated_init_mixed)
7161 << DIE->getSourceRange();
7162 Diag(InitArgList[0]->getBeginLoc(), diag::note_designated_init_mixed)
7163 << InitArgList[0]->getSourceRange();
7164 }
7165 } else if (getLangOpts().CPlusPlus && !DiagnosedMixedDesignator &&
7166 isa<DesignatedInitExpr>(InitArgList[0])) {
7167 DiagnosedMixedDesignator = true;
7168 auto *DIE = cast<DesignatedInitExpr>(InitArgList[0]);
7169 Diag(DIE->getBeginLoc(), diag::ext_designated_init_mixed)
7170 << DIE->getSourceRange();
7171 Diag(InitArgList[I]->getBeginLoc(), diag::note_designated_init_mixed)
7172 << InitArgList[I]->getSourceRange();
7173 }
7174 }
7175
7176 if (FirstDesignator.isValid()) {
7177 // Only diagnose designated initiaization as a C++20 extension if we didn't
7178 // already diagnose use of (non-C++20) C99 designator syntax.
7179 if (getLangOpts().CPlusPlus && !DiagnosedArrayDesignator &&
7180 !DiagnosedNestedDesignator && !DiagnosedMixedDesignator) {
7181 Diag(FirstDesignator, getLangOpts().CPlusPlus20
7182 ? diag::warn_cxx17_compat_designated_init
7183 : diag::ext_cxx_designated_init);
7184 } else if (!getLangOpts().CPlusPlus && !getLangOpts().C99) {
7185 Diag(FirstDesignator, diag::ext_designated_init);
7186 }
7187 }
7188
7189 return BuildInitList(LBraceLoc, InitArgList, RBraceLoc);
7190}
7191
7192ExprResult
7193Sema::BuildInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
7194 SourceLocation RBraceLoc) {
7195 // Semantic analysis for initializers is done by ActOnDeclarator() and
7196 // CheckInitializer() - it requires knowledge of the object being initialized.
7197
7198 // Immediately handle non-overload placeholders. Overloads can be
7199 // resolved contextually, but everything else here can't.
7200 for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) {
7201 if (InitArgList[I]->getType()->isNonOverloadPlaceholderType()) {
7202 ExprResult result = CheckPlaceholderExpr(InitArgList[I]);
7203
7204 // Ignore failures; dropping the entire initializer list because
7205 // of one failure would be terrible for indexing/etc.
7206 if (result.isInvalid()) continue;
7207
7208 InitArgList[I] = result.get();
7209 }
7210 }
7211
7212 InitListExpr *E = new (Context) InitListExpr(Context, LBraceLoc, InitArgList,
7213 RBraceLoc);
7214 E->setType(Context.VoidTy); // FIXME: just a place holder for now.
7215 return E;
7216}
7217
7218/// Do an explicit extend of the given block pointer if we're in ARC.
7219void Sema::maybeExtendBlockObject(ExprResult &E) {
7220 assert(E.get()->getType()->isBlockPointerType())(static_cast <bool> (E.get()->getType()->isBlockPointerType
()) ? void (0) : __assert_fail ("E.get()->getType()->isBlockPointerType()"
, "clang/lib/Sema/SemaExpr.cpp", 7220, __extension__ __PRETTY_FUNCTION__
))
;
7221 assert(E.get()->isPRValue())(static_cast <bool> (E.get()->isPRValue()) ? void (0
) : __assert_fail ("E.get()->isPRValue()", "clang/lib/Sema/SemaExpr.cpp"
, 7221, __extension__ __PRETTY_FUNCTION__))
;
7222
7223 // Only do this in an r-value context.
7224 if (!getLangOpts().ObjCAutoRefCount) return;
7225
7226 E = ImplicitCastExpr::Create(
7227 Context, E.get()->getType(), CK_ARCExtendBlockObject, E.get(),
7228 /*base path*/ nullptr, VK_PRValue, FPOptionsOverride());
7229 Cleanup.setExprNeedsCleanups(true);
7230}
7231
7232/// Prepare a conversion of the given expression to an ObjC object
7233/// pointer type.
7234CastKind Sema::PrepareCastToObjCObjectPointer(ExprResult &E) {
7235 QualType type = E.get()->getType();
7236 if (type->isObjCObjectPointerType()) {
7237 return CK_BitCast;
7238 } else if (type->isBlockPointerType()) {
7239 maybeExtendBlockObject(E);
7240 return CK_BlockPointerToObjCPointerCast;
7241 } else {
7242 assert(type->isPointerType())(static_cast <bool> (type->isPointerType()) ? void (
0) : __assert_fail ("type->isPointerType()", "clang/lib/Sema/SemaExpr.cpp"
, 7242, __extension__ __PRETTY_FUNCTION__))
;
7243 return CK_CPointerToObjCPointerCast;
7244 }
7245}
7246
7247/// Prepares for a scalar cast, performing all the necessary stages
7248/// except the final cast and returning the kind required.
7249CastKind Sema::PrepareScalarCast(ExprResult &Src, QualType DestTy) {
7250 // Both Src and Dest are scalar types, i.e. arithmetic or pointer.
7251 // Also, callers should have filtered out the invalid cases with
7252 // pointers. Everything else should be possible.
7253
7254 QualType SrcTy = Src.get()->getType();
7255 if (Context.hasSameUnqualifiedType(SrcTy, DestTy))
7256 return CK_NoOp;
7257
7258 switch (Type::ScalarTypeKind SrcKind = SrcTy->getScalarTypeKind()) {
7259 case Type::STK_MemberPointer:
7260 llvm_unreachable("member pointer type in C")::llvm::llvm_unreachable_internal("member pointer type in C",
"clang/lib/Sema/SemaExpr.cpp", 7260)
;
7261
7262 case Type::STK_CPointer:
7263 case Type::STK_BlockPointer:
7264 case Type::STK_ObjCObjectPointer:
7265 switch (DestTy->getScalarTypeKind()) {
7266 case Type::STK_CPointer: {
7267 LangAS SrcAS = SrcTy->getPointeeType().getAddressSpace();
7268 LangAS DestAS = DestTy->getPointeeType().getAddressSpace();
7269 if (SrcAS != DestAS)
7270 return CK_AddressSpaceConversion;
7271 if (Context.hasCvrSimilarType(SrcTy, DestTy))
7272 return CK_NoOp;
7273 return CK_BitCast;
7274 }
7275 case Type::STK_BlockPointer:
7276 return (SrcKind == Type::STK_BlockPointer
7277 ? CK_BitCast : CK_AnyPointerToBlockPointerCast);
7278 case Type::STK_ObjCObjectPointer:
7279 if (SrcKind == Type::STK_ObjCObjectPointer)
7280 return CK_BitCast;
7281 if (SrcKind == Type::STK_CPointer)
7282 return CK_CPointerToObjCPointerCast;
7283 maybeExtendBlockObject(Src);
7284 return CK_BlockPointerToObjCPointerCast;
7285 case Type::STK_Bool:
7286 return CK_PointerToBoolean;
7287 case Type::STK_Integral:
7288 return CK_PointerToIntegral;
7289 case Type::STK_Floating:
7290 case Type::STK_FloatingComplex:
7291 case Type::STK_IntegralComplex:
7292 case Type::STK_MemberPointer:
7293 case Type::STK_FixedPoint:
7294 llvm_unreachable("illegal cast from pointer")::llvm::llvm_unreachable_internal("illegal cast from pointer"
, "clang/lib/Sema/SemaExpr.cpp", 7294)
;
7295 }
7296 llvm_unreachable("Should have returned before this")::llvm::llvm_unreachable_internal("Should have returned before this"
, "clang/lib/Sema/SemaExpr.cpp", 7296)
;
7297
7298 case Type::STK_FixedPoint:
7299 switch (DestTy->getScalarTypeKind()) {
7300 case Type::STK_FixedPoint:
7301 return CK_FixedPointCast;
7302 case Type::STK_Bool:
7303 return CK_FixedPointToBoolean;
7304 case Type::STK_Integral:
7305 return CK_FixedPointToIntegral;
7306 case Type::STK_Floating:
7307 return CK_FixedPointToFloating;
7308 case Type::STK_IntegralComplex:
7309 case Type::STK_FloatingComplex:
7310 Diag(Src.get()->getExprLoc(),
7311 diag::err_unimplemented_conversion_with_fixed_point_type)
7312 << DestTy;
7313 return CK_IntegralCast;
7314 case Type::STK_CPointer:
7315 case Type::STK_ObjCObjectPointer:
7316 case Type::STK_BlockPointer:
7317 case Type::STK_MemberPointer:
7318 llvm_unreachable("illegal cast to pointer type")::llvm::llvm_unreachable_internal("illegal cast to pointer type"
, "clang/lib/Sema/SemaExpr.cpp", 7318)
;
7319 }
7320 llvm_unreachable("Should have returned before this")::llvm::llvm_unreachable_internal("Should have returned before this"
, "clang/lib/Sema/SemaExpr.cpp", 7320)
;
7321
7322 case Type::STK_Bool: // casting from bool is like casting from an integer
7323 case Type::STK_Integral:
7324 switch (DestTy->getScalarTypeKind()) {
7325 case Type::STK_CPointer:
7326 case Type::STK_ObjCObjectPointer:
7327 case Type::STK_BlockPointer:
7328 if (Src.get()->isNullPointerConstant(Context,
7329 Expr::NPC_ValueDependentIsNull))
7330 return CK_NullToPointer;
7331 return CK_IntegralToPointer;
7332 case Type::STK_Bool:
7333 return CK_IntegralToBoolean;
7334 case Type::STK_Integral:
7335 return CK_IntegralCast;
7336 case Type::STK_Floating:
7337 return CK_IntegralToFloating;
7338 case Type::STK_IntegralComplex:
7339 Src = ImpCastExprToType(Src.get(),
7340 DestTy->castAs<ComplexType>()->getElementType(),
7341 CK_IntegralCast);
7342 return CK_IntegralRealToComplex;
7343 case Type::STK_FloatingComplex:
7344 Src = ImpCastExprToType(Src.get(),
7345 DestTy->castAs<ComplexType>()->getElementType(),
7346 CK_IntegralToFloating);
7347 return CK_FloatingRealToComplex;
7348 case Type::STK_MemberPointer:
7349 llvm_unreachable("member pointer type in C")::llvm::llvm_unreachable_internal("member pointer type in C",
"clang/lib/Sema/SemaExpr.cpp", 7349)
;
7350 case Type::STK_FixedPoint:
7351 return CK_IntegralToFixedPoint;
7352 }
7353 llvm_unreachable("Should have returned before this")::llvm::llvm_unreachable_internal("Should have returned before this"
, "clang/lib/Sema/SemaExpr.cpp", 7353)
;
7354
7355 case Type::STK_Floating:
7356 switch (DestTy->getScalarTypeKind()) {
7357 case Type::STK_Floating:
7358 return CK_FloatingCast;
7359 case Type::STK_Bool:
7360 return CK_FloatingToBoolean;
7361 case Type::STK_Integral:
7362 return CK_FloatingToIntegral;
7363 case Type::STK_FloatingComplex:
7364 Src = ImpCastExprToType(Src.get(),
7365 DestTy->castAs<ComplexType>()->getElementType(),
7366 CK_FloatingCast);
7367 return CK_FloatingRealToComplex;
7368 case Type::STK_IntegralComplex:
7369 Src = ImpCastExprToType(Src.get(),
7370 DestTy->castAs<ComplexType>()->getElementType(),
7371 CK_FloatingToIntegral);
7372 return CK_IntegralRealToComplex;
7373 case Type::STK_CPointer:
7374 case Type::STK_ObjCObjectPointer:
7375 case Type::STK_BlockPointer:
7376 llvm_unreachable("valid float->pointer cast?")::llvm::llvm_unreachable_internal("valid float->pointer cast?"
, "clang/lib/Sema/SemaExpr.cpp", 7376)
;
7377 case Type::STK_MemberPointer:
7378 llvm_unreachable("member pointer type in C")::llvm::llvm_unreachable_internal("member pointer type in C",
"clang/lib/Sema/SemaExpr.cpp", 7378)
;
7379 case Type::STK_FixedPoint:
7380 return CK_FloatingToFixedPoint;
7381 }
7382 llvm_unreachable("Should have returned before this")::llvm::llvm_unreachable_internal("Should have returned before this"
, "clang/lib/Sema/SemaExpr.cpp", 7382)
;
7383
7384 case Type::STK_FloatingComplex:
7385 switch (DestTy->getScalarTypeKind()) {
7386 case Type::STK_FloatingComplex:
7387 return CK_FloatingComplexCast;
7388 case Type::STK_IntegralComplex:
7389 return CK_FloatingComplexToIntegralComplex;
7390 case Type::STK_Floating: {
7391 QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
7392 if (Context.hasSameType(ET, DestTy))
7393 return CK_FloatingComplexToReal;
7394 Src = ImpCastExprToType(Src.get(), ET, CK_FloatingComplexToReal);
7395 return CK_FloatingCast;
7396 }
7397 case Type::STK_Bool:
7398 return CK_FloatingComplexToBoolean;
7399 case Type::STK_Integral:
7400 Src = ImpCastExprToType(Src.get(),
7401 SrcTy->castAs<ComplexType>()->getElementType(),
7402 CK_FloatingComplexToReal);
7403 return CK_FloatingToIntegral;
7404 case Type::STK_CPointer:
7405 case Type::STK_ObjCObjectPointer:
7406 case Type::STK_BlockPointer:
7407 llvm_unreachable("valid complex float->pointer cast?")::llvm::llvm_unreachable_internal("valid complex float->pointer cast?"
, "clang/lib/Sema/SemaExpr.cpp", 7407)
;
7408 case Type::STK_MemberPointer:
7409 llvm_unreachable("member pointer type in C")::llvm::llvm_unreachable_internal("member pointer type in C",
"clang/lib/Sema/SemaExpr.cpp", 7409)
;
7410 case Type::STK_FixedPoint:
7411 Diag(Src.get()->getExprLoc(),
7412 diag::err_unimplemented_conversion_with_fixed_point_type)
7413 << SrcTy;
7414 return CK_IntegralCast;
7415 }
7416 llvm_unreachable("Should have returned before this")::llvm::llvm_unreachable_internal("Should have returned before this"
, "clang/lib/Sema/SemaExpr.cpp", 7416)
;
7417
7418 case Type::STK_IntegralComplex:
7419 switch (DestTy->getScalarTypeKind()) {
7420 case Type::STK_FloatingComplex:
7421 return CK_IntegralComplexToFloatingComplex;
7422 case Type::STK_IntegralComplex:
7423 return CK_IntegralComplexCast;
7424 case Type::STK_Integral: {
7425 QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
7426 if (Context.hasSameType(ET, DestTy))
7427 return CK_IntegralComplexToReal;
7428 Src = ImpCastExprToType(Src.get(), ET, CK_IntegralComplexToReal);
7429 return CK_IntegralCast;
7430 }
7431 case Type::STK_Bool:
7432 return CK_IntegralComplexToBoolean;
7433 case Type::STK_Floating:
7434 Src = ImpCastExprToType(Src.get(),
7435 SrcTy->castAs<ComplexType>()->getElementType(),
7436 CK_IntegralComplexToReal);
7437 return CK_IntegralToFloating;
7438 case Type::STK_CPointer:
7439 case Type::STK_ObjCObjectPointer:
7440 case Type::STK_BlockPointer:
7441 llvm_unreachable("valid complex int->pointer cast?")::llvm::llvm_unreachable_internal("valid complex int->pointer cast?"
, "clang/lib/Sema/SemaExpr.cpp", 7441)
;
7442 case Type::STK_MemberPointer:
7443 llvm_unreachable("member pointer type in C")::llvm::llvm_unreachable_internal("member pointer type in C",
"clang/lib/Sema/SemaExpr.cpp", 7443)
;
7444 case Type::STK_FixedPoint:
7445 Diag(Src.get()->getExprLoc(),
7446 diag::err_unimplemented_conversion_with_fixed_point_type)
7447 << SrcTy;
7448 return CK_IntegralCast;
7449 }
7450 llvm_unreachable("Should have returned before this")::llvm::llvm_unreachable_internal("Should have returned before this"
, "clang/lib/Sema/SemaExpr.cpp", 7450)
;
7451 }
7452
7453 llvm_unreachable("Unhandled scalar cast")::llvm::llvm_unreachable_internal("Unhandled scalar cast", "clang/lib/Sema/SemaExpr.cpp"
, 7453)
;
7454}
7455
7456static bool breakDownVectorType(QualType type, uint64_t &len,
7457 QualType &eltType) {
7458 // Vectors are simple.
7459 if (const VectorType *vecType = type->getAs<VectorType>()) {
7460 len = vecType->getNumElements();
7461 eltType = vecType->getElementType();
7462 assert(eltType->isScalarType())(static_cast <bool> (eltType->isScalarType()) ? void
(0) : __assert_fail ("eltType->isScalarType()", "clang/lib/Sema/SemaExpr.cpp"
, 7462, __extension__ __PRETTY_FUNCTION__))
;
7463 return true;
7464 }
7465
7466 // We allow lax conversion to and from non-vector types, but only if
7467 // they're real types (i.e. non-complex, non-pointer scalar types).
7468 if (!type->isRealType()) return false;
7469
7470 len = 1;
7471 eltType = type;
7472 return true;
7473}
7474
7475/// Are the two types SVE-bitcast-compatible types? I.e. is bitcasting from the
7476/// first SVE type (e.g. an SVE VLAT) to the second type (e.g. an SVE VLST)
7477/// allowed?
7478///
7479/// This will also return false if the two given types do not make sense from
7480/// the perspective of SVE bitcasts.
7481bool Sema::isValidSveBitcast(QualType srcTy, QualType destTy) {
7482 assert(srcTy->isVectorType() || destTy->isVectorType())(static_cast <bool> (srcTy->isVectorType() || destTy
->isVectorType()) ? void (0) : __assert_fail ("srcTy->isVectorType() || destTy->isVectorType()"
, "clang/lib/Sema/SemaExpr.cpp", 7482, __extension__ __PRETTY_FUNCTION__
))
;
7483
7484 auto ValidScalableConversion = [](QualType FirstType, QualType SecondType) {
7485 if (!FirstType->isSizelessBuiltinType())
7486 return false;
7487
7488 const auto *VecTy = SecondType->getAs<VectorType>();
7489 return VecTy &&
7490 VecTy->getVectorKind() == VectorType::SveFixedLengthDataVector;
7491 };
7492
7493 return ValidScalableConversion(srcTy, destTy) ||
7494 ValidScalableConversion(destTy, srcTy);
7495}
7496
7497/// Are the two types matrix types and do they have the same dimensions i.e.
7498/// do they have the same number of rows and the same number of columns?
7499bool Sema::areMatrixTypesOfTheSameDimension(QualType srcTy, QualType destTy) {
7500 if (!destTy->isMatrixType() || !srcTy->isMatrixType())
7501 return false;
7502
7503 const ConstantMatrixType *matSrcType = srcTy->getAs<ConstantMatrixType>();
7504 const ConstantMatrixType *matDestType = destTy->getAs<ConstantMatrixType>();
7505
7506 return matSrcType->getNumRows() == matDestType->getNumRows() &&
7507 matSrcType->getNumColumns() == matDestType->getNumColumns();
7508}
7509
7510bool Sema::areVectorTypesSameSize(QualType SrcTy, QualType DestTy) {
7511 assert(DestTy->isVectorType() || SrcTy->isVectorType())(static_cast <bool> (DestTy->isVectorType() || SrcTy
->isVectorType()) ? void (0) : __assert_fail ("DestTy->isVectorType() || SrcTy->isVectorType()"
, "clang/lib/Sema/SemaExpr.cpp", 7511, __extension__ __PRETTY_FUNCTION__
))
;
7512
7513 uint64_t SrcLen, DestLen;
7514 QualType SrcEltTy, DestEltTy;
7515 if (!breakDownVectorType(SrcTy, SrcLen, SrcEltTy))
7516 return false;
7517 if (!breakDownVectorType(DestTy, DestLen, DestEltTy))
7518 return false;
7519
7520 // ASTContext::getTypeSize will return the size rounded up to a
7521 // power of 2, so instead of using that, we need to use the raw
7522 // element size multiplied by the element count.
7523 uint64_t SrcEltSize = Context.getTypeSize(SrcEltTy);
7524 uint64_t DestEltSize = Context.getTypeSize(DestEltTy);
7525
7526 return (SrcLen * SrcEltSize == DestLen * DestEltSize);
7527}
7528
7529/// Are the two types lax-compatible vector types? That is, given
7530/// that one of them is a vector, do they have equal storage sizes,
7531/// where the storage size is the number of elements times the element
7532/// size?
7533///
7534/// This will also return false if either of the types is neither a
7535/// vector nor a real type.
7536bool Sema::areLaxCompatibleVectorTypes(QualType srcTy, QualType destTy) {
7537 assert(destTy->isVectorType() || srcTy->isVectorType())(static_cast <bool> (destTy->isVectorType() || srcTy
->isVectorType()) ? void (0) : __assert_fail ("destTy->isVectorType() || srcTy->isVectorType()"
, "clang/lib/Sema/SemaExpr.cpp", 7537, __extension__ __PRETTY_FUNCTION__
))
;
7538
7539 // Disallow lax conversions between scalars and ExtVectors (these
7540 // conversions are allowed for other vector types because common headers
7541 // depend on them). Most scalar OP ExtVector cases are handled by the
7542 // splat path anyway, which does what we want (convert, not bitcast).
7543 // What this rules out for ExtVectors is crazy things like char4*float.
7544 if (srcTy->isScalarType() && destTy->isExtVectorType()) return false;
7545 if (destTy->isScalarType() && srcTy->isExtVectorType()) return false;
7546
7547 return areVectorTypesSameSize(srcTy, destTy);
7548}
7549
7550/// Is this a legal conversion between two types, one of which is
7551/// known to be a vector type?
7552bool Sema::isLaxVectorConversion(QualType srcTy, QualType destTy) {
7553 assert(destTy->isVectorType() || srcTy->isVectorType())(static_cast <bool> (destTy->isVectorType() || srcTy
->isVectorType()) ? void (0) : __assert_fail ("destTy->isVectorType() || srcTy->isVectorType()"
, "clang/lib/Sema/SemaExpr.cpp", 7553, __extension__ __PRETTY_FUNCTION__
))
;
7554
7555 switch (Context.getLangOpts().getLaxVectorConversions()) {
7556 case LangOptions::LaxVectorConversionKind::None:
7557 return false;
7558
7559 case LangOptions::LaxVectorConversionKind::Integer:
7560 if (!srcTy->isIntegralOrEnumerationType()) {
7561 auto *Vec = srcTy->getAs<VectorType>();
7562 if (!Vec || !Vec->getElementType()->isIntegralOrEnumerationType())
7563 return false;
7564 }
7565 if (!destTy->isIntegralOrEnumerationType()) {
7566 auto *Vec = destTy->getAs<VectorType>();
7567 if (!Vec || !Vec->getElementType()->isIntegralOrEnumerationType())
7568 return false;
7569 }
7570 // OK, integer (vector) -> integer (vector) bitcast.
7571 break;
7572
7573 case LangOptions::LaxVectorConversionKind::All:
7574 break;
7575 }
7576
7577 return areLaxCompatibleVectorTypes(srcTy, destTy);
7578}
7579
7580bool Sema::CheckMatrixCast(SourceRange R, QualType DestTy, QualType SrcTy,
7581 CastKind &Kind) {
7582 if (SrcTy->isMatrixType() && DestTy->isMatrixType()) {
7583 if (!areMatrixTypesOfTheSameDimension(SrcTy, DestTy)) {
7584 return Diag(R.getBegin(), diag::err_invalid_conversion_between_matrixes)
7585 << DestTy << SrcTy << R;
7586 }
7587 } else if (SrcTy->isMatrixType()) {
7588 return Diag(R.getBegin(),
7589 diag::err_invalid_conversion_between_matrix_and_type)
7590 << SrcTy << DestTy << R;
7591 } else if (DestTy->isMatrixType()) {
7592 return Diag(R.getBegin(),
7593 diag::err_invalid_conversion_between_matrix_and_type)
7594 << DestTy << SrcTy << R;
7595 }
7596
7597 Kind = CK_MatrixCast;
7598 return false;
7599}
7600
7601bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
7602 CastKind &Kind) {
7603 assert(VectorTy->isVectorType() && "Not a vector type!")(static_cast <bool> (VectorTy->isVectorType() &&
"Not a vector type!") ? void (0) : __assert_fail ("VectorTy->isVectorType() && \"Not a vector type!\""
, "clang/lib/Sema/SemaExpr.cpp", 7603, __extension__ __PRETTY_FUNCTION__
))
;
7604
7605 if (Ty->isVectorType() || Ty->isIntegralType(Context)) {
7606 if (!areLaxCompatibleVectorTypes(Ty, VectorTy))
7607 return Diag(R.getBegin(),
7608 Ty->isVectorType() ?
7609 diag::err_invalid_conversion_between_vectors :
7610 diag::err_invalid_conversion_between_vector_and_integer)
7611 << VectorTy << Ty << R;
7612 } else
7613 return Diag(R.getBegin(),
7614 diag::err_invalid_conversion_between_vector_and_scalar)
7615 << VectorTy << Ty << R;
7616
7617 Kind = CK_BitCast;
7618 return false;
7619}
7620
7621ExprResult Sema::prepareVectorSplat(QualType VectorTy, Expr *SplattedExpr) {
7622 QualType DestElemTy = VectorTy->castAs<VectorType>()->getElementType();
7623
7624 if (DestElemTy == SplattedExpr->getType())
7625 return SplattedExpr;
7626
7627 assert(DestElemTy->isFloatingType() ||(static_cast <bool> (DestElemTy->isFloatingType() ||
DestElemTy->isIntegralOrEnumerationType()) ? void (0) : __assert_fail
("DestElemTy->isFloatingType() || DestElemTy->isIntegralOrEnumerationType()"
, "clang/lib/Sema/SemaExpr.cpp", 7628, __extension__ __PRETTY_FUNCTION__
))
7628 DestElemTy->isIntegralOrEnumerationType())(static_cast <bool> (DestElemTy->isFloatingType() ||
DestElemTy->isIntegralOrEnumerationType()) ? void (0) : __assert_fail
("DestElemTy->isFloatingType() || DestElemTy->isIntegralOrEnumerationType()"
, "clang/lib/Sema/SemaExpr.cpp", 7628, __extension__ __PRETTY_FUNCTION__
))
;
7629
7630 CastKind CK;
7631 if (VectorTy->isExtVectorType() && SplattedExpr->getType()->isBooleanType()) {
7632 // OpenCL requires that we convert `true` boolean expressions to -1, but
7633 // only when splatting vectors.
7634 if (DestElemTy->isFloatingType()) {
7635 // To avoid having to have a CK_BooleanToSignedFloating cast kind, we cast
7636 // in two steps: boolean to signed integral, then to floating.
7637 ExprResult CastExprRes = ImpCastExprToType(SplattedExpr, Context.IntTy,
7638 CK_BooleanToSignedIntegral);
7639 SplattedExpr = CastExprRes.get();
7640 CK = CK_IntegralToFloating;
7641 } else {
7642 CK = CK_BooleanToSignedIntegral;
7643 }
7644 } else {
7645 ExprResult CastExprRes = SplattedExpr;
7646 CK = PrepareScalarCast(CastExprRes, DestElemTy);
7647 if (CastExprRes.isInvalid())
7648 return ExprError();
7649 SplattedExpr = CastExprRes.get();
7650 }
7651 return ImpCastExprToType(SplattedExpr, DestElemTy, CK);
7652}
7653
7654ExprResult Sema::CheckExtVectorCast(SourceRange R, QualType DestTy,
7655 Expr *CastExpr, CastKind &Kind) {
7656 assert(DestTy->isExtVectorType() && "Not an extended vector type!")(static_cast <bool> (DestTy->isExtVectorType() &&
"Not an extended vector type!") ? void (0) : __assert_fail (
"DestTy->isExtVectorType() && \"Not an extended vector type!\""
, "clang/lib/Sema/SemaExpr.cpp", 7656, __extension__ __PRETTY_FUNCTION__
))
;
7657
7658 QualType SrcTy = CastExpr->getType();
7659
7660 // If SrcTy is a VectorType, the total size must match to explicitly cast to
7661 // an ExtVectorType.
7662 // In OpenCL, casts between vectors of different types are not allowed.
7663 // (See OpenCL 6.2).
7664 if (SrcTy->isVectorType()) {
7665 if (!areLaxCompatibleVectorTypes(SrcTy, DestTy) ||
7666 (getLangOpts().OpenCL &&
7667 !Context.hasSameUnqualifiedType(DestTy, SrcTy))) {
7668 Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
7669 << DestTy << SrcTy << R;
7670 return ExprError();
7671 }
7672 Kind = CK_BitCast;
7673 return CastExpr;
7674 }
7675
7676 // All non-pointer scalars can be cast to ExtVector type. The appropriate
7677 // conversion will take place first from scalar to elt type, and then
7678 // splat from elt type to vector.
7679 if (SrcTy->isPointerType())
7680 return Diag(R.getBegin(),
7681 diag::err_invalid_conversion_between_vector_and_scalar)
7682 << DestTy << SrcTy << R;
7683
7684 Kind = CK_VectorSplat;
7685 return prepareVectorSplat(DestTy, CastExpr);
7686}
7687
7688ExprResult
7689Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc,
7690 Declarator &D, ParsedType &Ty,
7691 SourceLocation RParenLoc, Expr *CastExpr) {
7692 assert(!D.isInvalidType() && (CastExpr != nullptr) &&(static_cast <bool> (!D.isInvalidType() && (CastExpr
!= nullptr) && "ActOnCastExpr(): missing type or expr"
) ? void (0) : __assert_fail ("!D.isInvalidType() && (CastExpr != nullptr) && \"ActOnCastExpr(): missing type or expr\""
, "clang/lib/Sema/SemaExpr.cpp", 7693, __extension__ __PRETTY_FUNCTION__
))
7693 "ActOnCastExpr(): missing type or expr")(static_cast <bool> (!D.isInvalidType() && (CastExpr
!= nullptr) && "ActOnCastExpr(): missing type or expr"
) ? void (0) : __assert_fail ("!D.isInvalidType() && (CastExpr != nullptr) && \"ActOnCastExpr(): missing type or expr\""
, "clang/lib/Sema/SemaExpr.cpp", 7693, __extension__ __PRETTY_FUNCTION__
))
;
7694
7695 TypeSourceInfo *castTInfo = GetTypeForDeclaratorCast(D, CastExpr->getType());
7696 if (D.isInvalidType())
7697 return ExprError();
7698
7699 if (getLangOpts().CPlusPlus) {
7700 // Check that there are no default arguments (C++ only).
7701 CheckExtraCXXDefaultArguments(D);
7702 } else {
7703 // Make sure any TypoExprs have been dealt with.
7704 ExprResult Res = CorrectDelayedTyposInExpr(CastExpr);
7705 if (!Res.isUsable())
7706 return ExprError();
7707 CastExpr = Res.get();
7708 }
7709
7710 checkUnusedDeclAttributes(D);
7711
7712 QualType castType = castTInfo->getType();
7713 Ty = CreateParsedType(castType, castTInfo);
7714
7715 bool isVectorLiteral = false;
7716
7717 // Check for an altivec or OpenCL literal,
7718 // i.e. all the elements are integer constants.
7719 ParenExpr *PE = dyn_cast<ParenExpr>(CastExpr);
7720 ParenListExpr *PLE = dyn_cast<ParenListExpr>(CastExpr);
7721 if ((getLangOpts().AltiVec || getLangOpts().ZVector || getLangOpts().OpenCL)
7722 && castType->isVectorType() && (PE || PLE)) {
7723 if (PLE && PLE->getNumExprs() == 0) {
7724 Diag(PLE->getExprLoc(), diag::err_altivec_empty_initializer);
7725 return ExprError();
7726 }
7727 if (PE || PLE->getNumExprs() == 1) {
7728 Expr *E = (PE ? PE->getSubExpr() : PLE->getExpr(0));
7729 if (!E->isTypeDependent() && !E->getType()->isVectorType())
7730 isVectorLiteral = true;
7731 }
7732 else
7733 isVectorLiteral = true;
7734 }
7735
7736 // If this is a vector initializer, '(' type ')' '(' init, ..., init ')'
7737 // then handle it as such.
7738 if (isVectorLiteral)
7739 return BuildVectorLiteral(LParenLoc, RParenLoc, CastExpr, castTInfo);
7740
7741 // If the Expr being casted is a ParenListExpr, handle it specially.
7742 // This is not an AltiVec-style cast, so turn the ParenListExpr into a
7743 // sequence of BinOp comma operators.
7744 if (isa<ParenListExpr>(CastExpr)) {
7745 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, CastExpr);
7746 if (Result.isInvalid()) return ExprError();
7747 CastExpr = Result.get();
7748 }
7749
7750 if (getLangOpts().CPlusPlus && !castType->isVoidType())
7751 Diag(LParenLoc, diag::warn_old_style_cast) << CastExpr->getSourceRange();
7752
7753 CheckTollFreeBridgeCast(castType, CastExpr);
7754
7755 CheckObjCBridgeRelatedCast(castType, CastExpr);
7756
7757 DiscardMisalignedMemberAddress(castType.getTypePtr(), CastExpr);
7758
7759 return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, CastExpr);
7760}
7761
7762ExprResult Sema::BuildVectorLiteral(SourceLocation LParenLoc,
7763 SourceLocation RParenLoc, Expr *E,
7764 TypeSourceInfo *TInfo) {
7765 assert((isa<ParenListExpr>(E) || isa<ParenExpr>(E)) &&(static_cast <bool> ((isa<ParenListExpr>(E) || isa
<ParenExpr>(E)) && "Expected paren or paren list expression"
) ? void (0) : __assert_fail ("(isa<ParenListExpr>(E) || isa<ParenExpr>(E)) && \"Expected paren or paren list expression\""
, "clang/lib/Sema/SemaExpr.cpp", 7766, __extension__ __PRETTY_FUNCTION__
))
7766 "Expected paren or paren list expression")(static_cast <bool> ((isa<ParenListExpr>(E) || isa
<ParenExpr>(E)) && "Expected paren or paren list expression"
) ? void (0) : __assert_fail ("(isa<ParenListExpr>(E) || isa<ParenExpr>(E)) && \"Expected paren or paren list expression\""
, "clang/lib/Sema/SemaExpr.cpp", 7766, __extension__ __PRETTY_FUNCTION__
))
;
7767
7768 Expr **exprs;
7769 unsigned numExprs;
7770 Expr *subExpr;
7771 SourceLocation LiteralLParenLoc, LiteralRParenLoc;
7772 if (ParenListExpr *PE = dyn_cast<ParenListExpr>(E)) {
7773 LiteralLParenLoc = PE->getLParenLoc();
7774 LiteralRParenLoc = PE->getRParenLoc();
7775 exprs = PE->getExprs();
7776 numExprs = PE->getNumExprs();
7777 } else { // isa<ParenExpr> by assertion at function entrance
7778 LiteralLParenLoc = cast<ParenExpr>(E)->getLParen();
7779 LiteralRParenLoc = cast<ParenExpr>(E)->getRParen();
7780 subExpr = cast<ParenExpr>(E)->getSubExpr();
7781 exprs = &subExpr;
7782 numExprs = 1;
7783 }
7784
7785 QualType Ty = TInfo->getType();
7786 assert(Ty->isVectorType() && "Expected vector type")(static_cast <bool> (Ty->isVectorType() && "Expected vector type"
) ? void (0) : __assert_fail ("Ty->isVectorType() && \"Expected vector type\""
, "clang/lib/Sema/SemaExpr.cpp", 7786, __extension__ __PRETTY_FUNCTION__
))
;
7787
7788 SmallVector<Expr *, 8> initExprs;
7789 const VectorType *VTy = Ty->castAs<VectorType>();
7790 unsigned numElems = VTy->getNumElements();
7791
7792 // '(...)' form of vector initialization in AltiVec: the number of
7793 // initializers must be one or must match the size of the vector.
7794 // If a single value is specified in the initializer then it will be
7795 // replicated to all the components of the vector
7796 if (CheckAltivecInitFromScalar(E->getSourceRange(), Ty,
7797 VTy->getElementType()))
7798 return ExprError();
7799 if (ShouldSplatAltivecScalarInCast(VTy)) {
7800 // The number of initializers must be one or must match the size of the
7801 // vector. If a single value is specified in the initializer then it will
7802 // be replicated to all the components of the vector
7803 if (numExprs == 1) {
7804 QualType ElemTy = VTy->getElementType();
7805 ExprResult Literal = DefaultLvalueConversion(exprs[0]);
7806 if (Literal.isInvalid())
7807 return ExprError();
7808 Literal = ImpCastExprToType(Literal.get(), ElemTy,
7809 PrepareScalarCast(Literal, ElemTy));
7810 return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get());
7811 }
7812 else if (numExprs < numElems) {
7813 Diag(E->getExprLoc(),
7814 diag::err_incorrect_number_of_vector_initializers);
7815 return ExprError();
7816 }
7817 else
7818 initExprs.append(exprs, exprs + numExprs);
7819 }
7820 else {
7821 // For OpenCL, when the number of initializers is a single value,
7822 // it will be replicated to all components of the vector.
7823 if (getLangOpts().OpenCL &&
7824 VTy->getVectorKind() == VectorType::GenericVector &&
7825 numExprs == 1) {
7826 QualType ElemTy = VTy->getElementType();
7827 ExprResult Literal = DefaultLvalueConversion(exprs[0]);
7828 if (Literal.isInvalid())
7829 return ExprError();
7830 Literal = ImpCastExprToType(Literal.get(), ElemTy,
7831 PrepareScalarCast(Literal, ElemTy));
7832 return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get());
7833 }
7834
7835 initExprs.append(exprs, exprs + numExprs);
7836 }
7837 // FIXME: This means that pretty-printing the final AST will produce curly
7838 // braces instead of the original commas.
7839 InitListExpr *initE = new (Context) InitListExpr(Context, LiteralLParenLoc,
7840 initExprs, LiteralRParenLoc);
7841 initE->setType(Ty);
7842 return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, initE);
7843}
7844
7845/// This is not an AltiVec-style cast or or C++ direct-initialization, so turn
7846/// the ParenListExpr into a sequence of comma binary operators.
7847ExprResult
7848Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *OrigExpr) {
7849 ParenListExpr *E = dyn_cast<ParenListExpr>(OrigExpr);
7850 if (!E)
7851 return OrigExpr;
7852
7853 ExprResult Result(E->getExpr(0));
7854
7855 for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
7856 Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, Result.get(),
7857 E->getExpr(i));
7858
7859 if (Result.isInvalid()) return ExprError();
7860
7861 return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), Result.get());
7862}
7863
7864ExprResult Sema::ActOnParenListExpr(SourceLocation L,
7865 SourceLocation R,
7866 MultiExprArg Val) {
7867 return ParenListExpr::Create(Context, L, Val, R);
7868}
7869
7870/// Emit a specialized diagnostic when one expression is a null pointer
7871/// constant and the other is not a pointer. Returns true if a diagnostic is
7872/// emitted.
7873bool Sema::DiagnoseConditionalForNull(Expr *LHSExpr, Expr *RHSExpr,
7874 SourceLocation QuestionLoc) {
7875 Expr *NullExpr = LHSExpr;
7876 Expr *NonPointerExpr = RHSExpr;
7877 Expr::NullPointerConstantKind NullKind =
7878 NullExpr->isNullPointerConstant(Context,
7879 Expr::NPC_ValueDependentIsNotNull);
7880
7881 if (NullKind == Expr::NPCK_NotNull) {
7882 NullExpr = RHSExpr;
7883 NonPointerExpr = LHSExpr;
7884 NullKind =
7885 NullExpr->isNullPointerConstant(Context,
7886 Expr::NPC_ValueDependentIsNotNull);
7887 }
7888
7889 if (NullKind == Expr::NPCK_NotNull)
7890 return false;
7891
7892 if (NullKind == Expr::NPCK_ZeroExpression)
7893 return false;
7894
7895 if (NullKind == Expr::NPCK_ZeroLiteral) {
7896 // In this case, check to make sure that we got here from a "NULL"
7897 // string in the source code.
7898 NullExpr = NullExpr->IgnoreParenImpCasts();
7899 SourceLocation loc = NullExpr->getExprLoc();
7900 if (!findMacroSpelling(loc, "NULL"))
7901 return false;
7902 }
7903
7904 int DiagType = (NullKind == Expr::NPCK_CXX11_nullptr);
7905 Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands_null)
7906 << NonPointerExpr->getType() << DiagType
7907 << NonPointerExpr->getSourceRange();
7908 return true;
7909}
7910
7911/// Return false if the condition expression is valid, true otherwise.
7912static bool checkCondition(Sema &S, Expr *Cond, SourceLocation QuestionLoc) {
7913 QualType CondTy = Cond->getType();
7914
7915 // OpenCL v1.1 s6.3.i says the condition cannot be a floating point type.
7916 if (S.getLangOpts().OpenCL && CondTy->isFloatingType()) {
7917 S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_nonfloat)
7918 << CondTy << Cond->getSourceRange();
7919 return true;
7920 }
7921
7922 // C99 6.5.15p2
7923 if (CondTy->isScalarType()) return false;
7924
7925 S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_scalar)
7926 << CondTy << Cond->getSourceRange();
7927 return true;
7928}
7929
7930/// Handle when one or both operands are void type.
7931static QualType checkConditionalVoidType(Sema &S, ExprResult &LHS,
7932 ExprResult &RHS) {
7933 Expr *LHSExpr = LHS.get();
7934 Expr *RHSExpr = RHS.get();
7935
7936 if (!LHSExpr->getType()->isVoidType())
7937 S.Diag(RHSExpr->getBeginLoc(), diag::ext_typecheck_cond_one_void)
7938 << RHSExpr->getSourceRange();
7939 if (!RHSExpr->getType()->isVoidType())
7940 S.Diag(LHSExpr->getBeginLoc(), diag::ext_typecheck_cond_one_void)
7941 << LHSExpr->getSourceRange();
7942 LHS = S.ImpCastExprToType(LHS.get(), S.Context.VoidTy, CK_ToVoid);
7943 RHS = S.ImpCastExprToType(RHS.get(), S.Context.VoidTy, CK_ToVoid);
7944 return S.Context.VoidTy;
7945}
7946
7947/// Return false if the NullExpr can be promoted to PointerTy,
7948/// true otherwise.
7949static bool checkConditionalNullPointer(Sema &S, ExprResult &NullExpr,
7950 QualType PointerTy) {
7951 if ((!PointerTy->isAnyPointerType() && !PointerTy->isBlockPointerType()) ||
7952 !NullExpr.get()->isNullPointerConstant(S.Context,
7953 Expr::NPC_ValueDependentIsNull))
7954 return true;
7955
7956 NullExpr = S.ImpCastExprToType(NullExpr.get(), PointerTy, CK_NullToPointer);
7957 return false;
7958}
7959
7960/// Checks compatibility between two pointers and return the resulting
7961/// type.
7962static QualType checkConditionalPointerCompatibility(Sema &S, ExprResult &LHS,
7963 ExprResult &RHS,
7964 SourceLocation Loc) {
7965 QualType LHSTy = LHS.get()->getType();
7966 QualType RHSTy = RHS.get()->getType();
7967
7968 if (S.Context.hasSameType(LHSTy, RHSTy)) {
7969 // Two identical pointers types are always compatible.
7970 return LHSTy;
7971 }
7972
7973 QualType lhptee, rhptee;
7974
7975 // Get the pointee types.
7976 bool IsBlockPointer = false;
7977 if (const BlockPointerType *LHSBTy = LHSTy->getAs<BlockPointerType>()) {
7978 lhptee = LHSBTy->getPointeeType();
7979 rhptee = RHSTy->castAs<BlockPointerType>()->getPointeeType();
7980 IsBlockPointer = true;
7981 } else {
7982 lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
7983 rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
7984 }
7985
7986 // C99 6.5.15p6: If both operands are pointers to compatible types or to
7987 // differently qualified versions of compatible types, the result type is
7988 // a pointer to an appropriately qualified version of the composite
7989 // type.
7990
7991 // Only CVR-qualifiers exist in the standard, and the differently-qualified
7992 // clause doesn't make sense for our extensions. E.g. address space 2 should
7993 // be incompatible with address space 3: they may live on different devices or
7994 // anything.
7995 Qualifiers lhQual = lhptee.getQualifiers();
7996 Qualifiers rhQual = rhptee.getQualifiers();
7997
7998 LangAS ResultAddrSpace = LangAS::Default;
7999 LangAS LAddrSpace = lhQual.getAddressSpace();
8000 LangAS RAddrSpace = rhQual.getAddressSpace();
8001
8002 // OpenCL v1.1 s6.5 - Conversion between pointers to distinct address
8003 // spaces is disallowed.
8004 if (lhQual.isAddressSpaceSupersetOf(rhQual))
8005 ResultAddrSpace = LAddrSpace;
8006 else if (rhQual.isAddressSpaceSupersetOf(lhQual))
8007 ResultAddrSpace = RAddrSpace;
8008 else {
8009 S.Diag(Loc, diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
8010 << LHSTy << RHSTy << 2 << LHS.get()->getSourceRange()
8011 << RHS.get()->getSourceRange();
8012 return QualType();
8013 }
8014
8015 unsigned MergedCVRQual = lhQual.getCVRQualifiers() | rhQual.getCVRQualifiers();
8016 auto LHSCastKind = CK_BitCast, RHSCastKind = CK_BitCast;
8017 lhQual.removeCVRQualifiers();
8018 rhQual.removeCVRQualifiers();
8019
8020 // OpenCL v2.0 specification doesn't extend compatibility of type qualifiers
8021 // (C99 6.7.3) for address spaces. We assume that the check should behave in
8022 // the same manner as it's defined for CVR qualifiers, so for OpenCL two
8023 // qual types are compatible iff
8024 // * corresponded types are compatible
8025 // * CVR qualifiers are equal
8026 // * address spaces are equal
8027 // Thus for conditional operator we merge CVR and address space unqualified
8028 // pointees and if there is a composite type we return a pointer to it with
8029 // merged qualifiers.
8030 LHSCastKind =
8031 LAddrSpace == ResultAddrSpace ? CK_BitCast : CK_AddressSpaceConversion;
8032 RHSCastKind =
8033 RAddrSpace == ResultAddrSpace ? CK_BitCast : CK_AddressSpaceConversion;
8034 lhQual.removeAddressSpace();
8035 rhQual.removeAddressSpace();
8036
8037 lhptee = S.Context.getQualifiedType(lhptee.getUnqualifiedType(), lhQual);
8038 rhptee = S.Context.getQualifiedType(rhptee.getUnqualifiedType(), rhQual);
8039
8040 QualType CompositeTy = S.Context.mergeTypes(lhptee, rhptee);
8041
8042 if (CompositeTy.isNull()) {
8043 // In this situation, we assume void* type. No especially good
8044 // reason, but this is what gcc does, and we do have to pick
8045 // to get a consistent AST.
8046 QualType incompatTy;
8047 incompatTy = S.Context.getPointerType(
8048 S.Context.getAddrSpaceQualType(S.Context.VoidTy, ResultAddrSpace));
8049 LHS = S.ImpCastExprToType(LHS.get(), incompatTy, LHSCastKind);
8050 RHS = S.ImpCastExprToType(RHS.get(), incompatTy, RHSCastKind);
8051
8052 // FIXME: For OpenCL the warning emission and cast to void* leaves a room
8053 // for casts between types with incompatible address space qualifiers.
8054 // For the following code the compiler produces casts between global and
8055 // local address spaces of the corresponded innermost pointees:
8056 // local int *global *a;
8057 // global int *global *b;
8058 // a = (0 ? a : b); // see C99 6.5.16.1.p1.
8059 S.Diag(Loc, diag::ext_typecheck_cond_incompatible_pointers)
8060 << LHSTy << RHSTy << LHS.get()->getSourceRange()
8061 << RHS.get()->getSourceRange();
8062
8063 return incompatTy;
8064 }
8065
8066 // The pointer types are compatible.
8067 // In case of OpenCL ResultTy should have the address space qualifier
8068 // which is a superset of address spaces of both the 2nd and the 3rd
8069 // operands of the conditional operator.
8070 QualType ResultTy = [&, ResultAddrSpace]() {
8071 if (S.getLangOpts().OpenCL) {
8072 Qualifiers CompositeQuals = CompositeTy.getQualifiers();
8073 CompositeQuals.setAddressSpace(ResultAddrSpace);
8074 return S.Context
8075 .getQualifiedType(CompositeTy.getUnqualifiedType(), CompositeQuals)
8076 .withCVRQualifiers(MergedCVRQual);
8077 }
8078 return CompositeTy.withCVRQualifiers(MergedCVRQual);
8079 }();
8080 if (IsBlockPointer)
8081 ResultTy = S.Context.getBlockPointerType(ResultTy);
8082 else
8083 ResultTy = S.Context.getPointerType(ResultTy);
8084
8085 LHS = S.ImpCastExprToType(LHS.get(), ResultTy, LHSCastKind);
8086 RHS = S.ImpCastExprToType(RHS.get(), ResultTy, RHSCastKind);
8087 return ResultTy;
8088}
8089
8090/// Return the resulting type when the operands are both block pointers.
8091static QualType checkConditionalBlockPointerCompatibility(Sema &S,
8092 ExprResult &LHS,
8093 ExprResult &RHS,
8094 SourceLocation Loc) {
8095 QualType LHSTy = LHS.get()->getType();
8096 QualType RHSTy = RHS.get()->getType();
8097
8098 if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
8099 if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
8100 QualType destType = S.Context.getPointerType(S.Context.VoidTy);
8101 LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast);
8102 RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast);
8103 return destType;
8104 }
8105 S.Diag(Loc, diag::err_typecheck_cond_incompatible_operands)
8106 << LHSTy << RHSTy << LHS.get()->getSourceRange()
8107 << RHS.get()->getSourceRange();
8108 return QualType();
8109 }
8110
8111 // We have 2 block pointer types.
8112 return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
8113}
8114
8115/// Return the resulting type when the operands are both pointers.
8116static QualType
8117checkConditionalObjectPointersCompatibility(Sema &S, ExprResult &LHS,
8118 ExprResult &RHS,
8119 SourceLocation Loc) {
8120 // get the pointer types
8121 QualType LHSTy = LHS.get()->getType();
8122 QualType RHSTy = RHS.get()->getType();
8123
8124 // get the "pointed to" types
8125 QualType lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
8126 QualType rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
8127
8128 // ignore qualifiers on void (C99 6.5.15p3, clause 6)
8129 if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
8130 // Figure out necessary qualifiers (C99 6.5.15p6)
8131 QualType destPointee
8132 = S.Context.getQualifiedType(lhptee, rhptee.getQualifiers());
8133 QualType destType = S.Context.getPointerType(destPointee);
8134 // Add qualifiers if necessary.
8135 LHS = S.ImpCastExprToType(LHS.get(), destType, CK_NoOp);
8136 // Promote to void*.
8137 RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast);
8138 return destType;
8139 }
8140 if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
8141 QualType destPointee
8142 = S.Context.getQualifiedType(rhptee, lhptee.getQualifiers());
8143 QualType destType = S.Context.getPointerType(destPointee);
8144 // Add qualifiers if necessary.
8145 RHS = S.ImpCastExprToType(RHS.get(), destType, CK_NoOp);
8146 // Promote to void*.
8147 LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast);
8148 return destType;
8149 }
8150
8151 return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
8152}
8153
8154/// Return false if the first expression is not an integer and the second
8155/// expression is not a pointer, true otherwise.
8156static bool checkPointerIntegerMismatch(Sema &S, ExprResult &Int,
8157 Expr* PointerExpr, SourceLocation Loc,
8158 bool IsIntFirstExpr) {
8159 if (!PointerExpr->getType()->isPointerType() ||
8160 !Int.get()->getType()->isIntegerType())
8161 return false;
8162
8163 Expr *Expr1 = IsIntFirstExpr ? Int.get() : PointerExpr;
8164 Expr *Expr2 = IsIntFirstExpr ? PointerExpr : Int.get();
8165
8166 S.Diag(Loc, diag::ext_typecheck_cond_pointer_integer_mismatch)
8167 << Expr1->getType() << Expr2->getType()
8168 << Expr1->getSourceRange() << Expr2->getSourceRange();
8169 Int = S.ImpCastExprToType(Int.get(), PointerExpr->getType(),
8170 CK_IntegralToPointer);
8171 return true;
8172}
8173
8174/// Simple conversion between integer and floating point types.
8175///
8176/// Used when handling the OpenCL conditional operator where the
8177/// condition is a vector while the other operands are scalar.
8178///
8179/// OpenCL v1.1 s6.3.i and s6.11.6 together require that the scalar
8180/// types are either integer or floating type. Between the two
8181/// operands, the type with the higher rank is defined as the "result
8182/// type". The other operand needs to be promoted to the same type. No
8183/// other type promotion is allowed. We cannot use
8184/// UsualArithmeticConversions() for this purpose, since it always
8185/// promotes promotable types.
8186static QualType OpenCLArithmeticConversions(Sema &S, ExprResult &LHS,
8187 ExprResult &RHS,
8188 SourceLocation QuestionLoc) {
8189 LHS = S.DefaultFunctionArrayLvalueConversion(LHS.get());
8190 if (LHS.isInvalid())
8191 return QualType();
8192 RHS = S.DefaultFunctionArrayLvalueConversion(RHS.get());
8193 if (RHS.isInvalid())
8194 return QualType();
8195
8196 // For conversion purposes, we ignore any qualifiers.
8197 // For example, "const float" and "float" are equivalent.
8198 QualType LHSType =
8199 S.Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
8200 QualType RHSType =
8201 S.Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
8202
8203 if (!LHSType->isIntegerType() && !LHSType->isRealFloatingType()) {
8204 S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_int_float)
8205 << LHSType << LHS.get()->getSourceRange();
8206 return QualType();
8207 }
8208
8209 if (!RHSType->isIntegerType() && !RHSType->isRealFloatingType()) {
8210 S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_int_float)
8211 << RHSType << RHS.get()->getSourceRange();
8212 return QualType();
8213 }
8214
8215 // If both types are identical, no conversion is needed.
8216 if (LHSType == RHSType)
8217 return LHSType;
8218
8219 // Now handle "real" floating types (i.e. float, double, long double).
8220 if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
8221 return handleFloatConversion(S, LHS, RHS, LHSType, RHSType,
8222 /*IsCompAssign = */ false);
8223
8224 // Finally, we have two differing integer types.
8225 return handleIntegerConversion<doIntegralCast, doIntegralCast>
8226 (S, LHS, RHS, LHSType, RHSType, /*IsCompAssign = */ false);
8227}
8228
8229/// Convert scalar operands to a vector that matches the
8230/// condition in length.
8231///
8232/// Used when handling the OpenCL conditional operator where the
8233/// condition is a vector while the other operands are scalar.
8234///
8235/// We first compute the "result type" for the scalar operands
8236/// according to OpenCL v1.1 s6.3.i. Both operands are then converted
8237/// into a vector of that type where the length matches the condition
8238/// vector type. s6.11.6 requires that the element types of the result
8239/// and the condition must have the same number of bits.
8240static QualType
8241OpenCLConvertScalarsToVectors(Sema &S, ExprResult &LHS, ExprResult &RHS,
8242 QualType CondTy, SourceLocation QuestionLoc) {
8243 QualType ResTy = OpenCLArithmeticConversions(S, LHS, RHS, QuestionLoc);
8244 if (ResTy.isNull()) return QualType();
8245
8246 const VectorType *CV = CondTy->getAs<VectorType>();
8247 assert(CV)(static_cast <bool> (CV) ? void (0) : __assert_fail ("CV"
, "clang/lib/Sema/SemaExpr.cpp", 8247, __extension__ __PRETTY_FUNCTION__
))
;
8248
8249 // Determine the vector result type
8250 unsigned NumElements = CV->getNumElements();
8251 QualType VectorTy = S.Context.getExtVectorType(ResTy, NumElements);
8252
8253 // Ensure that all types have the same number of bits
8254 if (S.Context.getTypeSize(CV->getElementType())
8255 != S.Context.getTypeSize(ResTy)) {
8256 // Since VectorTy is created internally, it does not pretty print
8257 // with an OpenCL name. Instead, we just print a description.
8258 std::string EleTyName = ResTy.getUnqualifiedType().getAsString();
8259 SmallString<64> Str;
8260 llvm::raw_svector_ostream OS(Str);
8261 OS << "(vector of " << NumElements << " '" << EleTyName << "' values)";
8262 S.Diag(QuestionLoc, diag::err_conditional_vector_element_size)
8263 << CondTy << OS.str();
8264 return QualType();
8265 }
8266
8267 // Convert operands to the vector result type
8268 LHS = S.ImpCastExprToType(LHS.get(), VectorTy, CK_VectorSplat);
8269 RHS = S.ImpCastExprToType(RHS.get(), VectorTy, CK_VectorSplat);
8270
8271 return VectorTy;
8272}
8273
8274/// Return false if this is a valid OpenCL condition vector
8275static bool checkOpenCLConditionVector(Sema &S, Expr *Cond,
8276 SourceLocation QuestionLoc) {
8277 // OpenCL v1.1 s6.11.6 says the elements of the vector must be of
8278 // integral type.
8279 const VectorType *CondTy = Cond->getType()->getAs<VectorType>();
8280 assert(CondTy)(static_cast <bool> (CondTy) ? void (0) : __assert_fail
("CondTy", "clang/lib/Sema/SemaExpr.cpp", 8280, __extension__
__PRETTY_FUNCTION__))
;
8281 QualType EleTy = CondTy->getElementType();
8282 if (EleTy->isIntegerType()) return false;
8283
8284 S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_nonfloat)
8285 << Cond->getType() << Cond->getSourceRange();
8286 return true;
8287}
8288
8289/// Return false if the vector condition type and the vector
8290/// result type are compatible.
8291///
8292/// OpenCL v1.1 s6.11.6 requires that both vector types have the same
8293/// number of elements, and their element types have the same number
8294/// of bits.
8295static bool checkVectorResult(Sema &S, QualType CondTy, QualType VecResTy,
8296 SourceLocation QuestionLoc) {
8297 const VectorType *CV = CondTy->getAs<VectorType>();
8298 const VectorType *RV = VecResTy->getAs<VectorType>();
8299 assert(CV && RV)(static_cast <bool> (CV && RV) ? void (0) : __assert_fail
("CV && RV", "clang/lib/Sema/SemaExpr.cpp", 8299, __extension__
__PRETTY_FUNCTION__))
;
8300
8301 if (CV->getNumElements() != RV->getNumElements()) {
8302 S.Diag(QuestionLoc, diag::err_conditional_vector_size)
8303 << CondTy << VecResTy;
8304 return true;
8305 }
8306
8307 QualType CVE = CV->getElementType();
8308 QualType RVE = RV->getElementType();
8309
8310 if (S.Context.getTypeSize(CVE) != S.Context.getTypeSize(RVE)) {
8311 S.Diag(QuestionLoc, diag::err_conditional_vector_element_size)
8312 << CondTy << VecResTy;
8313 return true;
8314 }
8315
8316 return false;
8317}
8318
8319/// Return the resulting type for the conditional operator in
8320/// OpenCL (aka "ternary selection operator", OpenCL v1.1
8321/// s6.3.i) when the condition is a vector type.
8322static QualType
8323OpenCLCheckVectorConditional(Sema &S, ExprResult &Cond,
8324 ExprResult &LHS, ExprResult &RHS,
8325 SourceLocation QuestionLoc) {
8326 Cond = S.DefaultFunctionArrayLvalueConversion(Cond.get());
8327 if (Cond.isInvalid())
8328 return QualType();
8329 QualType CondTy = Cond.get()->getType();
8330
8331 if (checkOpenCLConditionVector(S, Cond.get(), QuestionLoc))
8332 return QualType();
8333
8334 // If either operand is a vector then find the vector type of the
8335 // result as specified in OpenCL v1.1 s6.3.i.
8336 if (LHS.get()->getType()->isVectorType() ||
8337 RHS.get()->getType()->isVectorType()) {
8338 QualType VecResTy = S.CheckVectorOperands(LHS, RHS, QuestionLoc,
8339 /*isCompAssign*/false,
8340 /*AllowBothBool*/true,
8341 /*AllowBoolConversions*/false);
8342 if (VecResTy.isNull()) return QualType();
8343 // The result type must match the condition type as specified in
8344 // OpenCL v1.1 s6.11.6.
8345 if (checkVectorResult(S, CondTy, VecResTy, QuestionLoc))
8346 return QualType();
8347 return VecResTy;
8348 }
8349
8350 // Both operands are scalar.
8351 return OpenCLConvertScalarsToVectors(S, LHS, RHS, CondTy, QuestionLoc);
8352}
8353
8354/// Return true if the Expr is block type
8355static bool checkBlockType(Sema &S, const Expr *E) {
8356 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
8357 QualType Ty = CE->getCallee()->getType();
8358 if (Ty->isBlockPointerType()) {
8359 S.Diag(E->getExprLoc(), diag::err_opencl_ternary_with_block);
8360 return true;
8361 }
8362 }
8363 return false;
8364}
8365
8366/// Note that LHS is not null here, even if this is the gnu "x ?: y" extension.
8367/// In that case, LHS = cond.
8368/// C99 6.5.15
8369QualType Sema::CheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
8370 ExprResult &RHS, ExprValueKind &VK,
8371 ExprObjectKind &OK,
8372 SourceLocation QuestionLoc) {
8373
8374 ExprResult LHSResult = CheckPlaceholderExpr(LHS.get());
8375 if (!LHSResult.isUsable()) return QualType();
8376 LHS = LHSResult;
8377
8378 ExprResult RHSResult = CheckPlaceholderExpr(RHS.get());
8379 if (!RHSResult.isUsable()) return QualType();
8380 RHS = RHSResult;
8381
8382 // C++ is sufficiently different to merit its own checker.
8383 if (getLangOpts().CPlusPlus)
8384 return CXXCheckConditionalOperands(Cond, LHS, RHS, VK, OK, QuestionLoc);
8385
8386 VK = VK_PRValue;
8387 OK = OK_Ordinary;
8388
8389 if (Context.isDependenceAllowed() &&
8390 (Cond.get()->isTypeDependent() || LHS.get()->isTypeDependent() ||
8391 RHS.get()->isTypeDependent())) {
8392 assert(!getLangOpts().CPlusPlus)(static_cast <bool> (!getLangOpts().CPlusPlus) ? void (
0) : __assert_fail ("!getLangOpts().CPlusPlus", "clang/lib/Sema/SemaExpr.cpp"
, 8392, __extension__ __PRETTY_FUNCTION__))
;
8393 assert((Cond.get()->containsErrors() || LHS.get()->containsErrors() ||(static_cast <bool> ((Cond.get()->containsErrors() ||
LHS.get()->containsErrors() || RHS.get()->containsErrors
()) && "should only occur in error-recovery path.") ?
void (0) : __assert_fail ("(Cond.get()->containsErrors() || LHS.get()->containsErrors() || RHS.get()->containsErrors()) && \"should only occur in error-recovery path.\""
, "clang/lib/Sema/SemaExpr.cpp", 8395, __extension__ __PRETTY_FUNCTION__
))
8394 RHS.get()->containsErrors()) &&(static_cast <bool> ((Cond.get()->containsErrors() ||
LHS.get()->containsErrors() || RHS.get()->containsErrors
()) && "should only occur in error-recovery path.") ?
void (0) : __assert_fail ("(Cond.get()->containsErrors() || LHS.get()->containsErrors() || RHS.get()->containsErrors()) && \"should only occur in error-recovery path.\""
, "clang/lib/Sema/SemaExpr.cpp", 8395, __extension__ __PRETTY_FUNCTION__
))
8395 "should only occur in error-recovery path.")(static_cast <bool> ((Cond.get()->containsErrors() ||
LHS.get()->containsErrors() || RHS.get()->containsErrors
()) && "should only occur in error-recovery path.") ?
void (0) : __assert_fail ("(Cond.get()->containsErrors() || LHS.get()->containsErrors() || RHS.get()->containsErrors()) && \"should only occur in error-recovery path.\""
, "clang/lib/Sema/SemaExpr.cpp", 8395, __extension__ __PRETTY_FUNCTION__
))
;
8396 return Context.DependentTy;
8397 }
8398
8399 // The OpenCL operator with a vector condition is sufficiently
8400 // different to merit its own checker.
8401 if ((getLangOpts().OpenCL && Cond.get()->getType()->isVectorType()) ||
8402 Cond.get()->getType()->isExtVectorType())
8403 return OpenCLCheckVectorConditional(*this, Cond, LHS, RHS, QuestionLoc);
8404
8405 // First, check the condition.
8406 Cond = UsualUnaryConversions(Cond.get());
8407 if (Cond.isInvalid())
8408 return QualType();
8409 if (checkCondition(*this, Cond.get(), QuestionLoc))
8410 return QualType();
8411
8412 // Now check the two expressions.
8413 if (LHS.get()->getType()->isVectorType() ||
8414 RHS.get()->getType()->isVectorType())
8415 return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false,
8416 /*AllowBothBool*/true,
8417 /*AllowBoolConversions*/false);
8418
8419 QualType ResTy =
8420 UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional);
8421 if (LHS.isInvalid() || RHS.isInvalid())
8422 return QualType();
8423
8424 QualType LHSTy = LHS.get()->getType();
8425 QualType RHSTy = RHS.get()->getType();
8426
8427 // Diagnose attempts to convert between __ibm128, __float128 and long double
8428 // where such conversions currently can't be handled.
8429 if (unsupportedTypeConversion(*this, LHSTy, RHSTy)) {
8430 Diag(QuestionLoc,
8431 diag::err_typecheck_cond_incompatible_operands) << LHSTy << RHSTy
8432 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
8433 return QualType();
8434 }
8435
8436 // OpenCL v2.0 s6.12.5 - Blocks cannot be used as expressions of the ternary
8437 // selection operator (?:).
8438 if (getLangOpts().OpenCL &&
8439 ((int)checkBlockType(*this, LHS.get()) | (int)checkBlockType(*this, RHS.get()))) {
8440 return QualType();
8441 }
8442
8443 // If both operands have arithmetic type, do the usual arithmetic conversions
8444 // to find a common type: C99 6.5.15p3,5.
8445 if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
8446 // Disallow invalid arithmetic conversions, such as those between bit-
8447 // precise integers types of different sizes, or between a bit-precise
8448 // integer and another type.
8449 if (ResTy.isNull() && (LHSTy->isBitIntType() || RHSTy->isBitIntType())) {
8450 Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
8451 << LHSTy << RHSTy << LHS.get()->getSourceRange()
8452 << RHS.get()->getSourceRange();
8453 return QualType();
8454 }
8455
8456 LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy));
8457 RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy));
8458
8459 return ResTy;
8460 }
8461
8462 // And if they're both bfloat (which isn't arithmetic), that's fine too.
8463 if (LHSTy->isBFloat16Type() && RHSTy->isBFloat16Type()) {
8464 return LHSTy;
8465 }
8466
8467 // If both operands are the same structure or union type, the result is that
8468 // type.
8469 if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) { // C99 6.5.15p3
8470 if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
8471 if (LHSRT->getDecl() == RHSRT->getDecl())
8472 // "If both the operands have structure or union type, the result has
8473 // that type." This implies that CV qualifiers are dropped.
8474 return LHSTy.getUnqualifiedType();
8475 // FIXME: Type of conditional expression must be complete in C mode.
8476 }
8477
8478 // C99 6.5.15p5: "If both operands have void type, the result has void type."
8479 // The following || allows only one side to be void (a GCC-ism).
8480 if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
8481 return checkConditionalVoidType(*this, LHS, RHS);
8482 }
8483
8484 // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
8485 // the type of the other operand."
8486 if (!checkConditionalNullPointer(*this, RHS, LHSTy)) return LHSTy;
8487 if (!checkConditionalNullPointer(*this, LHS, RHSTy)) return RHSTy;
8488
8489 // All objective-c pointer type analysis is done here.
8490 QualType compositeType = FindCompositeObjCPointerType(LHS, RHS,
8491 QuestionLoc);
8492 if (LHS.isInvalid() || RHS.isInvalid())
8493 return QualType();
8494 if (!compositeType.isNull())
8495 return compositeType;
8496
8497
8498 // Handle block pointer types.
8499 if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType())
8500 return checkConditionalBlockPointerCompatibility(*this, LHS, RHS,
8501 QuestionLoc);
8502
8503 // Check constraints for C object pointers types (C99 6.5.15p3,6).
8504 if (LHSTy->isPointerType() && RHSTy->isPointerType())
8505 return checkConditionalObjectPointersCompatibility(*this, LHS, RHS,
8506 QuestionLoc);
8507
8508 // GCC compatibility: soften pointer/integer mismatch. Note that
8509 // null pointers have been filtered out by this point.
8510 if (checkPointerIntegerMismatch(*this, LHS, RHS.get(), QuestionLoc,
8511 /*IsIntFirstExpr=*/true))
8512 return RHSTy;
8513 if (checkPointerIntegerMismatch(*this, RHS, LHS.get(), QuestionLoc,
8514 /*IsIntFirstExpr=*/false))
8515 return LHSTy;
8516
8517 // Allow ?: operations in which both operands have the same
8518 // built-in sizeless type.
8519 if (LHSTy->isSizelessBuiltinType() && Context.hasSameType(LHSTy, RHSTy))
8520 return LHSTy;
8521
8522 // Emit a better diagnostic if one of the expressions is a null pointer
8523 // constant and the other is not a pointer type. In this case, the user most
8524 // likely forgot to take the address of the other expression.
8525 if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
8526 return QualType();
8527
8528 // Otherwise, the operands are not compatible.
8529 Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
8530 << LHSTy << RHSTy << LHS.get()->getSourceRange()
8531 << RHS.get()->getSourceRange();
8532 return QualType();
8533}
8534
8535/// FindCompositeObjCPointerType - Helper method to find composite type of
8536/// two objective-c pointer types of the two input expressions.
8537QualType Sema::FindCompositeObjCPointerType(ExprResult &LHS, ExprResult &RHS,
8538 SourceLocation QuestionLoc) {
8539 QualType LHSTy = LHS.get()->getType();
8540 QualType RHSTy = RHS.get()->getType();
8541
8542 // Handle things like Class and struct objc_class*. Here we case the result
8543 // to the pseudo-builtin, because that will be implicitly cast back to the
8544 // redefinition type if an attempt is made to access its fields.
8545 if (LHSTy->isObjCClassType() &&
8546 (Context.hasSameType(RHSTy, Context.getObjCClassRedefinitionType()))) {
8547 RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_CPointerToObjCPointerCast);
8548 return LHSTy;
8549 }
8550 if (RHSTy->isObjCClassType() &&
8551 (Context.hasSameType(LHSTy, Context.getObjCClassRedefinitionType()))) {
8552 LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_CPointerToObjCPointerCast);
8553 return RHSTy;
8554 }
8555 // And the same for struct objc_object* / id
8556 if (LHSTy->isObjCIdType() &&
8557 (Context.hasSameType(RHSTy, Context.getObjCIdRedefinitionType()))) {
8558 RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_CPointerToObjCPointerCast);
8559 return LHSTy;
8560 }
8561 if (RHSTy->isObjCIdType() &&
8562 (Context.hasSameType(LHSTy, Context.getObjCIdRedefinitionType()))) {
8563 LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_CPointerToObjCPointerCast);
8564 return RHSTy;
8565 }
8566 // And the same for struct objc_selector* / SEL
8567 if (Context.isObjCSelType(LHSTy) &&
8568 (Context.hasSameType(RHSTy, Context.getObjCSelRedefinitionType()))) {
8569 RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_BitCast);
8570 return LHSTy;
8571 }
8572 if (Context.isObjCSelType(RHSTy) &&
8573 (Context.hasSameType(LHSTy, Context.getObjCSelRedefinitionType()))) {
8574 LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_BitCast);
8575 return RHSTy;
8576 }
8577 // Check constraints for Objective-C object pointers types.
8578 if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
8579
8580 if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
8581 // Two identical object pointer types are always compatible.
8582 return LHSTy;
8583 }
8584 const ObjCObjectPointerType *LHSOPT = LHSTy->castAs<ObjCObjectPointerType>();
8585 const ObjCObjectPointerType *RHSOPT = RHSTy->castAs<ObjCObjectPointerType>();
8586 QualType compositeType = LHSTy;
8587
8588 // If both operands are interfaces and either operand can be
8589 // assigned to the other, use that type as the composite
8590 // type. This allows
8591 // xxx ? (A*) a : (B*) b
8592 // where B is a subclass of A.
8593 //
8594 // Additionally, as for assignment, if either type is 'id'
8595 // allow silent coercion. Finally, if the types are
8596 // incompatible then make sure to use 'id' as the composite
8597 // type so the result is acceptable for sending messages to.
8598
8599 // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
8600 // It could return the composite type.
8601 if (!(compositeType =
8602 Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull()) {
8603 // Nothing more to do.
8604 } else if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
8605 compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy;
8606 } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
8607 compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy;
8608 } else if ((LHSOPT->isObjCQualifiedIdType() ||
8609 RHSOPT->isObjCQualifiedIdType()) &&
8610 Context.ObjCQualifiedIdTypesAreCompatible(LHSOPT, RHSOPT,
8611 true)) {
8612 // Need to handle "id<xx>" explicitly.
8613 // GCC allows qualified id and any Objective-C type to devolve to
8614 // id. Currently localizing to here until clear this should be
8615 // part of ObjCQualifiedIdTypesAreCompatible.
8616 compositeType = Context.getObjCIdType();
8617 } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
8618 compositeType = Context.getObjCIdType();
8619 } else {
8620 Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
8621 << LHSTy << RHSTy
8622 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
8623 QualType incompatTy = Context.getObjCIdType();
8624 LHS = ImpCastExprToType(LHS.get(), incompatTy, CK_BitCast);
8625 RHS = ImpCastExprToType(RHS.get(), incompatTy, CK_BitCast);
8626 return incompatTy;
8627 }
8628 // The object pointer types are compatible.
8629 LHS = ImpCastExprToType(LHS.get(), compositeType, CK_BitCast);
8630 RHS = ImpCastExprToType(RHS.get(), compositeType, CK_BitCast);
8631 return compositeType;
8632 }
8633 // Check Objective-C object pointer types and 'void *'
8634 if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
8635 if (getLangOpts().ObjCAutoRefCount) {
8636 // ARC forbids the implicit conversion of object pointers to 'void *',
8637 // so these types are not compatible.
8638 Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
8639 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
8640 LHS = RHS = true;
8641 return QualType();
8642 }
8643 QualType lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
8644 QualType rhptee = RHSTy->castAs<ObjCObjectPointerType>()->getPointeeType();
8645 QualType destPointee
8646 = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
8647 QualType destType = Context.getPointerType(destPointee);
8648 // Add qualifiers if necessary.
8649 LHS = ImpCastExprToType(LHS.get(), destType, CK_NoOp);
8650 // Promote to void*.
8651 RHS = ImpCastExprToType(RHS.get(), destType, CK_BitCast);
8652 return destType;
8653 }
8654 if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
8655 if (getLangOpts().ObjCAutoRefCount) {
8656 // ARC forbids the implicit conversion of object pointers to 'void *',
8657 // so these types are not compatible.
8658 Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
8659 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
8660 LHS = RHS = true;
8661 return QualType();
8662 }
8663 QualType lhptee = LHSTy->castAs<ObjCObjectPointerType>()->getPointeeType();
8664 QualType rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
8665 QualType destPointee
8666 = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
8667 QualType destType = Context.getPointerType(destPointee);
8668 // Add qualifiers if necessary.
8669 RHS = ImpCastExprToType(RHS.get(), destType, CK_NoOp);
8670 // Promote to void*.
8671 LHS = ImpCastExprToType(LHS.get(), destType, CK_BitCast);
8672 return destType;
8673 }
8674 return QualType();
8675}
8676
8677/// SuggestParentheses - Emit a note with a fixit hint that wraps
8678/// ParenRange in parentheses.
8679static void SuggestParentheses(Sema &Self, SourceLocation Loc,
8680 const PartialDiagnostic &Note,
8681 SourceRange ParenRange) {
8682 SourceLocation EndLoc = Self.getLocForEndOfToken(ParenRange.getEnd());
8683 if (ParenRange.getBegin().isFileID() && ParenRange.getEnd().isFileID() &&
8684 EndLoc.isValid()) {
8685 Self.Diag(Loc, Note)
8686 << FixItHint::CreateInsertion(ParenRange.getBegin(), "(")
8687 << FixItHint::CreateInsertion(EndLoc, ")");
8688 } else {
8689 // We can't display the parentheses, so just show the bare note.
8690 Self.Diag(Loc, Note) << ParenRange;
8691 }
8692}
8693
8694static bool IsArithmeticOp(BinaryOperatorKind Opc) {
8695 return BinaryOperator::isAdditiveOp(Opc) ||
8696 BinaryOperator::isMultiplicativeOp(Opc) ||
8697 BinaryOperator::isShiftOp(Opc) || Opc == BO_And || Opc == BO_Or;
8698 // This only checks for bitwise-or and bitwise-and, but not bitwise-xor and
8699 // not any of the logical operators. Bitwise-xor is commonly used as a
8700 // logical-xor because there is no logical-xor operator. The logical
8701 // operators, including uses of xor, have a high false positive rate for
8702 // precedence warnings.
8703}
8704
8705/// IsArithmeticBinaryExpr - Returns true if E is an arithmetic binary
8706/// expression, either using a built-in or overloaded operator,
8707/// and sets *OpCode to the opcode and *RHSExprs to the right-hand side
8708/// expression.
8709static bool IsArithmeticBinaryExpr(Expr *E, BinaryOperatorKind *Opcode,
8710 Expr **RHSExprs) {
8711 // Don't strip parenthesis: we should not warn if E is in parenthesis.
8712 E = E->IgnoreImpCasts();
8713 E = E->IgnoreConversionOperatorSingleStep();
8714 E = E->IgnoreImpCasts();
8715 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) {
8716 E = MTE->getSubExpr();
8717 E = E->IgnoreImpCasts();
8718 }
8719
8720 // Built-in binary operator.
8721 if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E)) {
8722 if (IsArithmeticOp(OP->getOpcode())) {
8723 *Opcode = OP->getOpcode();
8724 *RHSExprs = OP->getRHS();
8725 return true;
8726 }
8727 }
8728
8729 // Overloaded operator.
8730 if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(E)) {
8731 if (Call->getNumArgs() != 2)
8732 return false;
8733
8734 // Make sure this is really a binary operator that is safe to pass into
8735 // BinaryOperator::getOverloadedOpcode(), e.g. it's not a subscript op.
8736 OverloadedOperatorKind OO = Call->getOperator();
8737 if (OO < OO_Plus || OO > OO_Arrow ||
8738 OO == OO_PlusPlus || OO == OO_MinusMinus)
8739 return false;
8740
8741 BinaryOperatorKind OpKind = BinaryOperator::getOverloadedOpcode(OO);
8742 if (IsArithmeticOp(OpKind)) {
8743 *Opcode = OpKind;
8744 *RHSExprs = Call->getArg(1);
8745 return true;
8746 }
8747 }
8748
8749 return false;
8750}
8751
8752/// ExprLooksBoolean - Returns true if E looks boolean, i.e. it has boolean type
8753/// or is a logical expression such as (x==y) which has int type, but is
8754/// commonly interpreted as boolean.
8755static bool ExprLooksBoolean(Expr *E) {
8756 E = E->IgnoreParenImpCasts();
8757
8758 if (E->getType()->isBooleanType())
8759 return true;
8760 if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E))
8761 return OP->isComparisonOp() || OP->isLogicalOp();
8762 if (UnaryOperator *OP = dyn_cast<UnaryOperator>(E))
8763 return OP->getOpcode() == UO_LNot;
8764 if (E->getType()->isPointerType())
8765 return true;
8766 // FIXME: What about overloaded operator calls returning "unspecified boolean
8767 // type"s (commonly pointer-to-members)?
8768
8769 return false;
8770}
8771
8772/// DiagnoseConditionalPrecedence - Emit a warning when a conditional operator
8773/// and binary operator are mixed in a way that suggests the programmer assumed
8774/// the conditional operator has higher precedence, for example:
8775/// "int x = a + someBinaryCondition ? 1 : 2".
8776static void DiagnoseConditionalPrecedence(Sema &Self,
8777 SourceLocation OpLoc,
8778 Expr *Condition,
8779 Expr *LHSExpr,
8780 Expr *RHSExpr) {
8781 BinaryOperatorKind CondOpcode;
8782 Expr *CondRHS;
8783
8784 if (!IsArithmeticBinaryExpr(Condition, &CondOpcode, &CondRHS))
8785 return;
8786 if (!ExprLooksBoolean(CondRHS))
8787 return;
8788
8789 // The condition is an arithmetic binary expression, with a right-
8790 // hand side that looks boolean, so warn.
8791
8792 unsigned DiagID = BinaryOperator::isBitwiseOp(CondOpcode)
8793 ? diag::warn_precedence_bitwise_conditional
8794 : diag::warn_precedence_conditional;
8795
8796 Self.Diag(OpLoc, DiagID)
8797 << Condition->getSourceRange()
8798 << BinaryOperator::getOpcodeStr(CondOpcode);
8799
8800 SuggestParentheses(
8801 Self, OpLoc,
8802 Self.PDiag(diag::note_precedence_silence)
8803 << BinaryOperator::getOpcodeStr(CondOpcode),
8804 SourceRange(Condition->getBeginLoc(), Condition->getEndLoc()));
8805
8806 SuggestParentheses(Self, OpLoc,
8807 Self.PDiag(diag::note_precedence_conditional_first),
8808 SourceRange(CondRHS->getBeginLoc(), RHSExpr->getEndLoc()));
8809}
8810
8811/// Compute the nullability of a conditional expression.
8812static QualType computeConditionalNullability(QualType ResTy, bool IsBin,
8813 QualType LHSTy, QualType RHSTy,
8814 ASTContext &Ctx) {
8815 if (!ResTy->isAnyPointerType())
8816 return ResTy;
8817
8818 auto GetNullability = [&Ctx](QualType Ty) {
8819 Optional<NullabilityKind> Kind = Ty->getNullability(Ctx);
8820 if (Kind) {
8821 // For our purposes, treat _Nullable_result as _Nullable.
8822 if (*Kind == NullabilityKind::NullableResult)
8823 return NullabilityKind::Nullable;
8824 return *Kind;
8825 }
8826 return NullabilityKind::Unspecified;
8827 };
8828
8829 auto LHSKind = GetNullability(LHSTy), RHSKind = GetNullability(RHSTy);
8830 NullabilityKind MergedKind;
8831
8832 // Compute nullability of a binary conditional expression.
8833 if (IsBin) {
8834 if (LHSKind == NullabilityKind::NonNull)
8835 MergedKind = NullabilityKind::NonNull;
8836 else
8837 MergedKind = RHSKind;
8838 // Compute nullability of a normal conditional expression.
8839 } else {
8840 if (LHSKind == NullabilityKind::Nullable ||
8841 RHSKind == NullabilityKind::Nullable)
8842 MergedKind = NullabilityKind::Nullable;
8843 else if (LHSKind == NullabilityKind::NonNull)
8844 MergedKind = RHSKind;
8845 else if (RHSKind == NullabilityKind::NonNull)
8846 MergedKind = LHSKind;
8847 else
8848 MergedKind = NullabilityKind::Unspecified;
8849 }
8850
8851 // Return if ResTy already has the correct nullability.
8852 if (GetNullability(ResTy) == MergedKind)
8853 return ResTy;
8854
8855 // Strip all nullability from ResTy.
8856 while (ResTy->getNullability(Ctx))
8857 ResTy = ResTy.getSingleStepDesugaredType(Ctx);
8858
8859 // Create a new AttributedType with the new nullability kind.
8860 auto NewAttr = AttributedType::getNullabilityAttrKind(MergedKind);
8861 return Ctx.getAttributedType(NewAttr, ResTy, ResTy);
8862}
8863
8864/// ActOnConditionalOp - Parse a ?: operation. Note that 'LHS' may be null
8865/// in the case of a the GNU conditional expr extension.
8866ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
8867 SourceLocation ColonLoc,
8868 Expr *CondExpr, Expr *LHSExpr,
8869 Expr *RHSExpr) {
8870 if (!Context.isDependenceAllowed()) {
8871 // C cannot handle TypoExpr nodes in the condition because it
8872 // doesn't handle dependent types properly, so make sure any TypoExprs have
8873 // been dealt with before checking the operands.
8874 ExprResult CondResult = CorrectDelayedTyposInExpr(CondExpr);
8875 ExprResult LHSResult = CorrectDelayedTyposInExpr(LHSExpr);
8876 ExprResult RHSResult = CorrectDelayedTyposInExpr(RHSExpr);
8877
8878 if (!CondResult.isUsable())
8879 return ExprError();
8880
8881 if (LHSExpr) {
8882 if (!LHSResult.isUsable())
8883 return ExprError();
8884 }
8885
8886 if (!RHSResult.isUsable())
8887 return ExprError();
8888
8889 CondExpr = CondResult.get();
8890 LHSExpr = LHSResult.get();
8891 RHSExpr = RHSResult.get();
8892 }
8893
8894 // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
8895 // was the condition.
8896 OpaqueValueExpr *opaqueValue = nullptr;
8897 Expr *commonExpr = nullptr;
8898 if (!LHSExpr) {
8899 commonExpr = CondExpr;
8900 // Lower out placeholder types first. This is important so that we don't
8901 // try to capture a placeholder. This happens in few cases in C++; such
8902 // as Objective-C++'s dictionary subscripting syntax.
8903 if (commonExpr->hasPlaceholderType()) {
8904 ExprResult result = CheckPlaceholderExpr(commonExpr);
8905 if (!result.isUsable()) return ExprError();
8906 commonExpr = result.get();
8907 }
8908 // We usually want to apply unary conversions *before* saving, except
8909 // in the special case of a C++ l-value conditional.
8910 if (!(getLangOpts().CPlusPlus
8911 && !commonExpr->isTypeDependent()
8912 && commonExpr->getValueKind() == RHSExpr->getValueKind()
8913 && commonExpr->isGLValue()
8914 && commonExpr->isOrdinaryOrBitFieldObject()
8915 && RHSExpr->isOrdinaryOrBitFieldObject()
8916 && Context.hasSameType(commonExpr->getType(), RHSExpr->getType()))) {
8917 ExprResult commonRes = UsualUnaryConversions(commonExpr);
8918 if (commonRes.isInvalid())
8919 return ExprError();
8920 commonExpr = commonRes.get();
8921 }
8922
8923 // If the common expression is a class or array prvalue, materialize it
8924 // so that we can safely refer to it multiple times.
8925 if (commonExpr->isPRValue() && (commonExpr->getType()->isRecordType() ||
8926 commonExpr->getType()->isArrayType())) {
8927 ExprResult MatExpr = TemporaryMaterializationConversion(commonExpr);
8928 if (MatExpr.isInvalid())
8929 return ExprError();
8930 commonExpr = MatExpr.get();
8931 }
8932
8933 opaqueValue = new (Context) OpaqueValueExpr(commonExpr->getExprLoc(),
8934 commonExpr->getType(),
8935 commonExpr->getValueKind(),
8936 commonExpr->getObjectKind(),
8937 commonExpr);
8938 LHSExpr = CondExpr = opaqueValue;
8939 }
8940
8941 QualType LHSTy = LHSExpr->getType(), RHSTy = RHSExpr->getType();
8942 ExprValueKind VK = VK_PRValue;
8943 ExprObjectKind OK = OK_Ordinary;
8944 ExprResult Cond = CondExpr, LHS = LHSExpr, RHS = RHSExpr;
8945 QualType result = CheckConditionalOperands(Cond, LHS, RHS,
8946 VK, OK, QuestionLoc);
8947 if (result.isNull() || Cond.isInvalid() || LHS.isInvalid() ||
8948 RHS.isInvalid())
8949 return ExprError();
8950
8951 DiagnoseConditionalPrecedence(*this, QuestionLoc, Cond.get(), LHS.get(),
8952 RHS.get());
8953
8954 CheckBoolLikeConversion(Cond.get(), QuestionLoc);
8955
8956 result = computeConditionalNullability(result, commonExpr, LHSTy, RHSTy,
8957 Context);
8958
8959 if (!commonExpr)
8960 return new (Context)
8961 ConditionalOperator(Cond.get(), QuestionLoc, LHS.get(), ColonLoc,
8962 RHS.get(), result, VK, OK);
8963
8964 return new (Context) BinaryConditionalOperator(
8965 commonExpr, opaqueValue, Cond.get(), LHS.get(), RHS.get(), QuestionLoc,
8966 ColonLoc, result, VK, OK);
8967}
8968
8969// Check if we have a conversion between incompatible cmse function pointer
8970// types, that is, a conversion between a function pointer with the
8971// cmse_nonsecure_call attribute and one without.
8972static bool IsInvalidCmseNSCallConversion(Sema &S, QualType FromType,
8973 QualType ToType) {
8974 if (const auto *ToFn =
8975 dyn_cast<FunctionType>(S.Context.getCanonicalType(ToType))) {
8976 if (const auto *FromFn =
8977 dyn_cast<FunctionType>(S.Context.getCanonicalType(FromType))) {
8978 FunctionType::ExtInfo ToEInfo = ToFn->getExtInfo();
8979 FunctionType::ExtInfo FromEInfo = FromFn->getExtInfo();
8980
8981 return ToEInfo.getCmseNSCall() != FromEInfo.getCmseNSCall();
8982 }
8983 }
8984 return false;
8985}
8986
8987// checkPointerTypesForAssignment - This is a very tricky routine (despite
8988// being closely modeled after the C99 spec:-). The odd characteristic of this
8989// routine is it effectively iqnores the qualifiers on the top level pointee.
8990// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
8991// FIXME: add a couple examples in this comment.
8992static Sema::AssignConvertType
8993checkPointerTypesForAssignment(Sema &S, QualType LHSType, QualType RHSType) {
8994 assert(LHSType.isCanonical() && "LHS not canonicalized!")(static_cast <bool> (LHSType.isCanonical() && "LHS not canonicalized!"
) ? void (0) : __assert_fail ("LHSType.isCanonical() && \"LHS not canonicalized!\""
, "clang/lib/Sema/SemaExpr.cpp", 8994, __extension__ __PRETTY_FUNCTION__
))
;
8995 assert(RHSType.isCanonical() && "RHS not canonicalized!")(static_cast <bool> (RHSType.isCanonical() && "RHS not canonicalized!"
) ? void (0) : __assert_fail ("RHSType.isCanonical() && \"RHS not canonicalized!\""
, "clang/lib/Sema/SemaExpr.cpp", 8995, __extension__ __PRETTY_FUNCTION__
))
;
8996
8997 // get the "pointed to" type (ignoring qualifiers at the top level)
8998 const Type *lhptee, *rhptee;
8999 Qualifiers lhq, rhq;
9000 std::tie(lhptee, lhq) =
9001 cast<PointerType>(LHSType)->getPointeeType().split().asPair();
9002 std::tie(rhptee, rhq) =
9003 cast<PointerType>(RHSType)->getPointeeType().split().asPair();
9004
9005 Sema::AssignConvertType ConvTy = Sema::Compatible;
9006
9007 // C99 6.5.16.1p1: This following citation is common to constraints
9008 // 3 & 4 (below). ...and the type *pointed to* by the left has all the
9009 // qualifiers of the type *pointed to* by the right;
9010
9011 // As a special case, 'non-__weak A *' -> 'non-__weak const *' is okay.
9012 if (lhq.getObjCLifetime() != rhq.getObjCLifetime() &&
9013 lhq.compatiblyIncludesObjCLifetime(rhq)) {
9014 // Ignore lifetime for further calculation.
9015 lhq.removeObjCLifetime();
9016 rhq.removeObjCLifetime();
9017 }
9018
9019 if (!lhq.compatiblyIncludes(rhq)) {
9020 // Treat address-space mismatches as fatal.
9021 if (!lhq.isAddressSpaceSupersetOf(rhq))
9022 return Sema::IncompatiblePointerDiscardsQualifiers;
9023
9024 // It's okay to add or remove GC or lifetime qualifiers when converting to
9025 // and from void*.
9026 else if (lhq.withoutObjCGCAttr().withoutObjCLifetime()
9027 .compatiblyIncludes(
9028 rhq.withoutObjCGCAttr().withoutObjCLifetime())
9029 && (lhptee->isVoidType() || rhptee->isVoidType()))
9030 ; // keep old
9031
9032 // Treat lifetime mismatches as fatal.
9033 else if (lhq.getObjCLifetime() != rhq.getObjCLifetime())
9034 ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
9035
9036 // For GCC/MS compatibility, other qualifier mismatches are treated
9037 // as still compatible in C.
9038 else ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
9039 }
9040
9041 // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
9042 // incomplete type and the other is a pointer to a qualified or unqualified
9043 // version of void...
9044 if (lhptee->isVoidType()) {
9045 if (rhptee->isIncompleteOrObjectType())
9046 return ConvTy;
9047
9048 // As an extension, we allow cast to/from void* to function pointer.
9049 assert(rhptee->isFunctionType())(static_cast <bool> (rhptee->isFunctionType()) ? void
(0) : __assert_fail ("rhptee->isFunctionType()", "clang/lib/Sema/SemaExpr.cpp"
, 9049, __extension__ __PRETTY_FUNCTION__))
;
9050 return Sema::FunctionVoidPointer;
9051 }
9052
9053 if (rhptee->isVoidType()) {
9054 if (lhptee->isIncompleteOrObjectType())
9055 return ConvTy;
9056
9057 // As an extension, we allow cast to/from void* to function pointer.
9058 assert(lhptee->isFunctionType())(static_cast <bool> (lhptee->isFunctionType()) ? void
(0) : __assert_fail ("lhptee->isFunctionType()", "clang/lib/Sema/SemaExpr.cpp"
, 9058, __extension__ __PRETTY_FUNCTION__))
;
9059 return Sema::FunctionVoidPointer;
9060 }
9061
9062 // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
9063 // unqualified versions of compatible types, ...
9064 QualType ltrans = QualType(lhptee, 0), rtrans = QualType(rhptee, 0);
9065 if (!S.Context.typesAreCompatible(ltrans, rtrans)) {
9066 // Check if the pointee types are compatible ignoring the sign.
9067 // We explicitly check for char so that we catch "char" vs
9068 // "unsigned char" on systems where "char" is unsigned.
9069 if (lhptee->isCharType())
9070 ltrans = S.Context.UnsignedCharTy;
9071 else if (lhptee->hasSignedIntegerRepresentation())
9072 ltrans = S.Context.getCorrespondingUnsignedType(ltrans);
9073
9074 if (rhptee->isCharType())
9075 rtrans = S.Context.UnsignedCharTy;
9076 else if (rhptee->hasSignedIntegerRepresentation())
9077 rtrans = S.Context.getCorrespondingUnsignedType(rtrans);
9078
9079 if (ltrans == rtrans) {
9080 // Types are compatible ignoring the sign. Qualifier incompatibility
9081 // takes priority over sign incompatibility because the sign
9082 // warning can be disabled.
9083 if (ConvTy != Sema::Compatible)
9084 return ConvTy;
9085
9086 return Sema::IncompatiblePointerSign;
9087 }
9088
9089 // If we are a multi-level pointer, it's possible that our issue is simply
9090 // one of qualification - e.g. char ** -> const char ** is not allowed. If
9091 // the eventual target type is the same and the pointers have the same
9092 // level of indirection, this must be the issue.
9093 if (isa<PointerType>(lhptee) && isa<PointerType>(rhptee)) {
9094 do {
9095 std::tie(lhptee, lhq) =
9096 cast<PointerType>(lhptee)->getPointeeType().split().asPair();
9097 std::tie(rhptee, rhq) =
9098 cast<PointerType>(rhptee)->getPointeeType().split().asPair();
9099
9100 // Inconsistent address spaces at this point is invalid, even if the
9101 // address spaces would be compatible.
9102 // FIXME: This doesn't catch address space mismatches for pointers of
9103 // different nesting levels, like:
9104 // __local int *** a;
9105 // int ** b = a;
9106 // It's not clear how to actually determine when such pointers are
9107 // invalidly incompatible.
9108 if (lhq.getAddressSpace() != rhq.getAddressSpace())
9109 return Sema::IncompatibleNestedPointerAddressSpaceMismatch;
9110
9111 } while (isa<PointerType>(lhptee) && isa<PointerType>(rhptee));
9112
9113 if (lhptee == rhptee)
9114 return Sema::IncompatibleNestedPointerQualifiers;
9115 }
9116
9117 // General pointer incompatibility takes priority over qualifiers.
9118 if (RHSType->isFunctionPointerType() && LHSType->isFunctionPointerType())
9119 return Sema::IncompatibleFunctionPointer;
9120 return Sema::IncompatiblePointer;
9121 }
9122 if (!S.getLangOpts().CPlusPlus &&
9123 S.IsFunctionConversion(ltrans, rtrans, ltrans))
9124 return Sema::IncompatibleFunctionPointer;
9125 if (IsInvalidCmseNSCallConversion(S, ltrans, rtrans))
9126 return Sema::IncompatibleFunctionPointer;
9127 return ConvTy;
9128}
9129
9130/// checkBlockPointerTypesForAssignment - This routine determines whether two
9131/// block pointer types are compatible or whether a block and normal pointer
9132/// are compatible. It is more restrict than comparing two function pointer
9133// types.
9134static Sema::AssignConvertType
9135checkBlockPointerTypesForAssignment(Sema &S, QualType LHSType,
9136 QualType RHSType) {
9137 assert(LHSType.isCanonical() && "LHS not canonicalized!")(static_cast <bool> (LHSType.isCanonical() && "LHS not canonicalized!"
) ? void (0) : __assert_fail ("LHSType.isCanonical() && \"LHS not canonicalized!\""
, "clang/lib/Sema/SemaExpr.cpp", 9137, __extension__ __PRETTY_FUNCTION__
))
;
9138 assert(RHSType.isCanonical() && "RHS not canonicalized!")(static_cast <bool> (RHSType.isCanonical() && "RHS not canonicalized!"
) ? void (0) : __assert_fail ("RHSType.isCanonical() && \"RHS not canonicalized!\""
, "clang/lib/Sema/SemaExpr.cpp", 9138, __extension__ __PRETTY_FUNCTION__
))
;
9139
9140 QualType lhptee, rhptee;
9141
9142 // get the "pointed to" type (ignoring qualifiers at the top level)
9143 lhptee = cast<BlockPointerType>(LHSType)->getPointeeType();
9144 rhptee = cast<BlockPointerType>(RHSType)->getPointeeType();
9145
9146 // In C++, the types have to match exactly.
9147 if (S.getLangOpts().CPlusPlus)
9148 return Sema::IncompatibleBlockPointer;
9149
9150 Sema::AssignConvertType ConvTy = Sema::Compatible;
9151
9152 // For blocks we enforce that qualifiers are identical.
9153 Qualifiers LQuals = lhptee.getLocalQualifiers();
9154 Qualifiers RQuals = rhptee.getLocalQualifiers();
9155 if (S.getLangOpts().OpenCL) {
9156 LQuals.removeAddressSpace();
9157 RQuals.removeAddressSpace();
9158 }
9159 if (LQuals != RQuals)
9160 ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
9161
9162 // FIXME: OpenCL doesn't define the exact compile time semantics for a block
9163 // assignment.
9164 // The current behavior is similar to C++ lambdas. A block might be
9165 // assigned to a variable iff its return type and parameters are compatible
9166 // (C99 6.2.7) with the corresponding return type and parameters of the LHS of
9167 // an assignment. Presumably it should behave in way that a function pointer
9168 // assignment does in C, so for each parameter and return type:
9169 // * CVR and address space of LHS should be a superset of CVR and address
9170 // space of RHS.
9171 // * unqualified types should be compatible.
9172 if (S.getLangOpts().OpenCL) {
9173 if (!S.Context.typesAreBlockPointerCompatible(
9174 S.Context.getQualifiedType(LHSType.getUnqualifiedType(), LQuals),
9175 S.Context.getQualifiedType(RHSType.getUnqualifiedType(), RQuals)))
9176 return Sema::IncompatibleBlockPointer;
9177 } else if (!S.Context.typesAreBlockPointerCompatible(LHSType, RHSType))
9178 return Sema::IncompatibleBlockPointer;
9179
9180 return ConvTy;
9181}
9182
9183/// checkObjCPointerTypesForAssignment - Compares two objective-c pointer types
9184/// for assignment compatibility.
9185static Sema::AssignConvertType
9186checkObjCPointerTypesForAssignment(Sema &S, QualType LHSType,
9187 QualType RHSType) {
9188 assert(LHSType.isCanonical() && "LHS was not canonicalized!")(static_cast <bool> (LHSType.isCanonical() && "LHS was not canonicalized!"
) ? void (0) : __assert_fail ("LHSType.isCanonical() && \"LHS was not canonicalized!\""
, "clang/lib/Sema/SemaExpr.cpp", 9188, __extension__ __PRETTY_FUNCTION__
))
;
9189 assert(RHSType.isCanonical() && "RHS was not canonicalized!")(static_cast <bool> (RHSType.isCanonical() && "RHS was not canonicalized!"
) ? void (0) : __assert_fail ("RHSType.isCanonical() && \"RHS was not canonicalized!\""
, "clang/lib/Sema/SemaExpr.cpp", 9189, __extension__ __PRETTY_FUNCTION__
))
;
9190
9191 if (LHSType->isObjCBuiltinType()) {
9192 // Class is not compatible with ObjC object pointers.
9193 if (LHSType->isObjCClassType() && !RHSType->isObjCBuiltinType() &&
9194 !RHSType->isObjCQualifiedClassType())
9195 return Sema::IncompatiblePointer;
9196 return Sema::Compatible;
9197 }
9198 if (RHSType->isObjCBuiltinType()) {
9199 if (RHSType->isObjCClassType() && !LHSType->isObjCBuiltinType() &&
9200 !LHSType->isObjCQualifiedClassType())
9201 return Sema::IncompatiblePointer;
9202 return Sema::Compatible;
9203 }
9204 QualType lhptee = LHSType->castAs<ObjCObjectPointerType>()->getPointeeType();
9205 QualType rhptee = RHSType->castAs<ObjCObjectPointerType>()->getPointeeType();
9206
9207 if (!lhptee.isAtLeastAsQualifiedAs(rhptee) &&
9208 // make an exception for id<P>
9209 !LHSType->isObjCQualifiedIdType())
9210 return Sema::CompatiblePointerDiscardsQualifiers;
9211
9212 if (S.Context.typesAreCompatible(LHSType, RHSType))
9213 return Sema::Compatible;
9214 if (LHSType->isObjCQualifiedIdType() || RHSType->isObjCQualifiedIdType())
9215 return Sema::IncompatibleObjCQualifiedId;
9216 return Sema::IncompatiblePointer;
9217}
9218
9219Sema::AssignConvertType
9220Sema::CheckAssignmentConstraints(SourceLocation Loc,
9221 QualType LHSType, QualType RHSType) {
9222 // Fake up an opaque expression. We don't actually care about what
9223 // cast operations are required, so if CheckAssignmentConstraints
9224 // adds casts to this they'll be wasted, but fortunately that doesn't
9225 // usually happen on valid code.
9226 OpaqueValueExpr RHSExpr(Loc, RHSType, VK_PRValue);
9227 ExprResult RHSPtr = &RHSExpr;
9228 CastKind K;
9229
9230 return CheckAssignmentConstraints(LHSType, RHSPtr, K, /*ConvertRHS=*/false);
9231}
9232
9233/// This helper function returns true if QT is a vector type that has element
9234/// type ElementType.
9235static bool isVector(QualType QT, QualType ElementType) {
9236 if (const VectorType *VT = QT->getAs<VectorType>())
9237 return VT->getElementType().getCanonicalType() == ElementType;
9238 return false;
9239}
9240
9241/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
9242/// has code to accommodate several GCC extensions when type checking
9243/// pointers. Here are some objectionable examples that GCC considers warnings:
9244///
9245/// int a, *pint;
9246/// short *pshort;
9247/// struct foo *pfoo;
9248///
9249/// pint = pshort; // warning: assignment from incompatible pointer type
9250/// a = pint; // warning: assignment makes integer from pointer without a cast
9251/// pint = a; // warning: assignment makes pointer from integer without a cast
9252/// pint = pfoo; // warning: assignment from incompatible pointer type
9253///
9254/// As a result, the code for dealing with pointers is more complex than the
9255/// C99 spec dictates.
9256///
9257/// Sets 'Kind' for any result kind except Incompatible.
9258Sema::AssignConvertType
9259Sema::CheckAssignmentConstraints(QualType LHSType, ExprResult &RHS,
9260 CastKind &Kind, bool ConvertRHS) {
9261 QualType RHSType = RHS.get()->getType();
9262 QualType OrigLHSType = LHSType;
9263
9264 // Get canonical types. We're not formatting these types, just comparing
9265 // them.
9266 LHSType = Context.getCanonicalType(LHSType).getUnqualifiedType();
9267 RHSType = Context.getCanonicalType(RHSType).getUnqualifiedType();
9268
9269 // Common case: no conversion required.
9270 if (LHSType == RHSType) {
9271 Kind = CK_NoOp;
9272 return Compatible;
9273 }
9274
9275 // If we have an atomic type, try a non-atomic assignment, then just add an
9276 // atomic qualification step.
9277 if (const AtomicType *AtomicTy = dyn_cast<AtomicType>(LHSType)) {
9278 Sema::AssignConvertType result =
9279 CheckAssignmentConstraints(AtomicTy->getValueType(), RHS, Kind);
9280 if (result != Compatible)
9281 return result;
9282 if (Kind != CK_NoOp && ConvertRHS)
9283 RHS = ImpCastExprToType(RHS.get(), AtomicTy->getValueType(), Kind);
9284 Kind = CK_NonAtomicToAtomic;
9285 return Compatible;
9286 }
9287
9288 // If the left-hand side is a reference type, then we are in a
9289 // (rare!) case where we've allowed the use of references in C,
9290 // e.g., as a parameter type in a built-in function. In this case,
9291 // just make sure that the type referenced is compatible with the
9292 // right-hand side type. The caller is responsible for adjusting
9293 // LHSType so that the resulting expression does not have reference
9294 // type.
9295 if (const ReferenceType *LHSTypeRef = LHSType->getAs<ReferenceType>()) {
9296 if (Context.typesAreCompatible(LHSTypeRef->getPointeeType(), RHSType)) {
9297 Kind = CK_LValueBitCast;
9298 return Compatible;
9299 }
9300 return Incompatible;
9301 }
9302
9303 // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
9304 // to the same ExtVector type.
9305 if (LHSType->isExtVectorType()) {
9306 if (RHSType->isExtVectorType())
9307 return Incompatible;
9308 if (RHSType->isArithmeticType()) {
9309 // CK_VectorSplat does T -> vector T, so first cast to the element type.
9310 if (ConvertRHS)
9311 RHS = prepareVectorSplat(LHSType, RHS.get());
9312 Kind = CK_VectorSplat;
9313 return Compatible;
9314 }
9315 }
9316
9317 // Conversions to or from vector type.
9318 if (LHSType->isVectorType() || RHSType->isVectorType()) {
9319 if (LHSType->isVectorType() && RHSType->isVectorType()) {
9320 // Allow assignments of an AltiVec vector type to an equivalent GCC
9321 // vector type and vice versa
9322 if (Context.areCompatibleVectorTypes(LHSType, RHSType)) {
9323 Kind = CK_BitCast;
9324 return Compatible;
9325 }
9326
9327 // If we are allowing lax vector conversions, and LHS and RHS are both
9328 // vectors, the total size only needs to be the same. This is a bitcast;
9329 // no bits are changed but the result type is different.
9330 if (isLaxVectorConversion(RHSType, LHSType)) {
9331 Kind = CK_BitCast;
9332 return IncompatibleVectors;
9333 }
9334 }
9335
9336 // When the RHS comes from another lax conversion (e.g. binops between
9337 // scalars and vectors) the result is canonicalized as a vector. When the
9338 // LHS is also a vector, the lax is allowed by the condition above. Handle
9339 // the case where LHS is a scalar.
9340 if (LHSType->isScalarType()) {
9341 const VectorType *VecType = RHSType->getAs<VectorType>();
9342 if (VecType && VecType->getNumElements() == 1 &&
9343 isLaxVectorConversion(RHSType, LHSType)) {
9344 ExprResult *VecExpr = &RHS;
9345 *VecExpr = ImpCastExprToType(VecExpr->get(), LHSType, CK_BitCast);
9346 Kind = CK_BitCast;
9347 return Compatible;
9348 }
9349 }
9350
9351 // Allow assignments between fixed-length and sizeless SVE vectors.
9352 if ((LHSType->isSizelessBuiltinType() && RHSType->isVectorType()) ||
9353 (LHSType->isVectorType() && RHSType->isSizelessBuiltinType()))
9354 if (Context.areCompatibleSveTypes(LHSType, RHSType) ||
9355 Context.areLaxCompatibleSveTypes(LHSType, RHSType)) {
9356 Kind = CK_BitCast;
9357 return Compatible;
9358 }
9359
9360 return Incompatible;
9361 }
9362
9363 // Diagnose attempts to convert between __ibm128, __float128 and long double
9364 // where such conversions currently can't be handled.
9365 if (unsupportedTypeConversion(*this, LHSType, RHSType))
9366 return Incompatible;
9367
9368 // Disallow assigning a _Complex to a real type in C++ mode since it simply
9369 // discards the imaginary part.
9370 if (getLangOpts().CPlusPlus && RHSType->getAs<ComplexType>() &&
9371 !LHSType->getAs<ComplexType>())
9372 return Incompatible;
9373
9374 // Arithmetic conversions.
9375 if (LHSType->isArithmeticType() && RHSType->isArithmeticType() &&
9376 !(getLangOpts().CPlusPlus && LHSType->isEnumeralType())) {
9377 if (ConvertRHS)
9378 Kind = PrepareScalarCast(RHS, LHSType);
9379 return Compatible;
9380 }
9381
9382 // Conversions to normal pointers.
9383 if (const PointerType *LHSPointer = dyn_cast<PointerType>(LHSType)) {
9384 // U* -> T*
9385 if (isa<PointerType>(RHSType)) {
9386 LangAS AddrSpaceL = LHSPointer->getPointeeType().getAddressSpace();
9387 LangAS AddrSpaceR = RHSType->getPointeeType().getAddressSpace();
9388 if (AddrSpaceL != AddrSpaceR)
9389 Kind = CK_AddressSpaceConversion;
9390 else if (Context.hasCvrSimilarType(RHSType, LHSType))
9391 Kind = CK_NoOp;
9392 else
9393 Kind = CK_BitCast;
9394 return checkPointerTypesForAssignment(*this, LHSType, RHSType);
9395 }
9396
9397 // int -> T*
9398 if (RHSType->isIntegerType()) {
9399 Kind = CK_IntegralToPointer; // FIXME: null?
9400 return IntToPointer;
9401 }
9402
9403 // C pointers are not compatible with ObjC object pointers,
9404 // with two exceptions:
9405 if (isa<ObjCObjectPointerType>(RHSType)) {
9406 // - conversions to void*
9407 if (LHSPointer->getPointeeType()->isVoidType()) {
9408 Kind = CK_BitCast;
9409 return Compatible;
9410 }
9411
9412 // - conversions from 'Class' to the redefinition type
9413 if (RHSType->isObjCClassType() &&
9414 Context.hasSameType(LHSType,
9415 Context.getObjCClassRedefinitionType())) {
9416 Kind = CK_BitCast;
9417 return Compatible;
9418 }
9419
9420 Kind = CK_BitCast;
9421 return IncompatiblePointer;
9422 }
9423
9424 // U^ -> void*
9425 if (RHSType->getAs<BlockPointerType>()) {
9426 if (LHSPointer->getPointeeType()->isVoidType()) {
9427 LangAS AddrSpaceL = LHSPointer->getPointeeType().getAddressSpace();
9428 LangAS AddrSpaceR = RHSType->getAs<BlockPointerType>()
9429 ->getPointeeType()
9430 .getAddressSpace();
9431 Kind =
9432 AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
9433 return Compatible;
9434 }
9435 }
9436
9437 return Incompatible;
9438 }
9439
9440 // Conversions to block pointers.
9441 if (isa<BlockPointerType>(LHSType)) {
9442 // U^ -> T^
9443 if (RHSType->isBlockPointerType()) {
9444 LangAS AddrSpaceL = LHSType->getAs<BlockPointerType>()
9445 ->getPointeeType()
9446 .getAddressSpace();
9447 LangAS AddrSpaceR = RHSType->getAs<BlockPointerType>()
9448 ->getPointeeType()
9449 .getAddressSpace();
9450 Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
9451 return checkBlockPointerTypesForAssignment(*this, LHSType, RHSType);
9452 }
9453
9454 // int or null -> T^
9455 if (RHSType->isIntegerType()) {
9456 Kind = CK_IntegralToPointer; // FIXME: null
9457 return IntToBlockPointer;
9458 }
9459
9460 // id -> T^
9461 if (getLangOpts().ObjC && RHSType->isObjCIdType()) {
9462 Kind = CK_AnyPointerToBlockPointerCast;
9463 return Compatible;
9464 }
9465
9466 // void* -> T^
9467 if (const PointerType *RHSPT = RHSType->getAs<PointerType>())
9468 if (RHSPT->getPointeeType()->isVoidType()) {
9469 Kind = CK_AnyPointerToBlockPointerCast;
9470 return Compatible;
9471 }
9472
9473 return Incompatible;
9474 }
9475
9476 // Conversions to Objective-C pointers.
9477 if (isa<ObjCObjectPointerType>(LHSType)) {
9478 // A* -> B*
9479 if (RHSType->isObjCObjectPointerType()) {
9480 Kind = CK_BitCast;
9481 Sema::AssignConvertType result =
9482 checkObjCPointerTypesForAssignment(*this, LHSType, RHSType);
9483 if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
9484 result == Compatible &&
9485 !CheckObjCARCUnavailableWeakConversion(OrigLHSType, RHSType))
9486 result = IncompatibleObjCWeakRef;
9487 return result;
9488 }
9489
9490 // int or null -> A*
9491 if (RHSType->isIntegerType()) {
9492 Kind = CK_IntegralToPointer; // FIXME: null
9493 return IntToPointer;
9494 }
9495
9496 // In general, C pointers are not compatible with ObjC object pointers,
9497 // with two exceptions:
9498 if (isa<PointerType>(RHSType)) {
9499 Kind = CK_CPointerToObjCPointerCast;
9500
9501 // - conversions from 'void*'
9502 if (RHSType->isVoidPointerType()) {
9503 return Compatible;
9504 }
9505
9506 // - conversions to 'Class' from its redefinition type
9507 if (LHSType->isObjCClassType() &&
9508 Context.hasSameType(RHSType,
9509 Context.getObjCClassRedefinitionType())) {
9510 return Compatible;
9511 }
9512
9513 return IncompatiblePointer;
9514 }
9515
9516 // Only under strict condition T^ is compatible with an Objective-C pointer.
9517 if (RHSType->isBlockPointerType() &&
9518 LHSType->isBlockCompatibleObjCPointerType(Context)) {
9519 if (ConvertRHS)
9520 maybeExtendBlockObject(RHS);
9521 Kind = CK_BlockPointerToObjCPointerCast;
9522 return Compatible;
9523 }
9524
9525 return Incompatible;
9526 }
9527
9528 // Conversions from pointers that are not covered by the above.
9529 if (isa<PointerType>(RHSType)) {
9530 // T* -> _Bool
9531 if (LHSType == Context.BoolTy) {
9532 Kind = CK_PointerToBoolean;
9533 return Compatible;
9534 }
9535
9536 // T* -> int
9537 if (LHSType->isIntegerType()) {
9538 Kind = CK_PointerToIntegral;
9539 return PointerToInt;
9540 }
9541
9542 return Incompatible;
9543 }
9544
9545 // Conversions from Objective-C pointers that are not covered by the above.
9546 if (isa<ObjCObjectPointerType>(RHSType)) {
9547 // T* -> _Bool
9548 if (LHSType == Context.BoolTy) {
9549 Kind = CK_PointerToBoolean;
9550 return Compatible;
9551 }
9552
9553 // T* -> int
9554 if (LHSType->isIntegerType()) {
9555 Kind = CK_PointerToIntegral;
9556 return PointerToInt;
9557 }
9558
9559 return Incompatible;
9560 }
9561
9562 // struct A -> struct B
9563 if (isa<TagType>(LHSType) && isa<TagType>(RHSType)) {
9564 if (Context.typesAreCompatible(LHSType, RHSType)) {
9565 Kind = CK_NoOp;
9566 return Compatible;
9567 }
9568 }
9569
9570 if (LHSType->isSamplerT() && RHSType->isIntegerType()) {
9571 Kind = CK_IntToOCLSampler;
9572 return Compatible;
9573 }
9574
9575 return Incompatible;
9576}
9577
9578/// Constructs a transparent union from an expression that is
9579/// used to initialize the transparent union.
9580static void ConstructTransparentUnion(Sema &S, ASTContext &C,
9581 ExprResult &EResult, QualType UnionType,
9582 FieldDecl *Field) {
9583 // Build an initializer list that designates the appropriate member
9584 // of the transparent union.
9585 Expr *E = EResult.get();
9586 InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(),
9587 E, SourceLocation());
9588 Initializer->setType(UnionType);
9589 Initializer->setInitializedFieldInUnion(Field);
9590
9591 // Build a compound literal constructing a value of the transparent
9592 // union type from this initializer list.
9593 TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType);
9594 EResult = new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType,
9595 VK_PRValue, Initializer, false);
9596}
9597
9598Sema::AssignConvertType
9599Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType,
9600 ExprResult &RHS) {
9601 QualType RHSType = RHS.get()->getType();
9602
9603 // If the ArgType is a Union type, we want to handle a potential
9604 // transparent_union GCC extension.
9605 const RecordType *UT = ArgType->getAsUnionType();
9606 if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
9607 return Incompatible;
9608
9609 // The field to initialize within the transparent union.
9610 RecordDecl *UD = UT->getDecl();
9611 FieldDecl *InitField = nullptr;
9612 // It's compatible if the expression matches any of the fields.
9613 for (auto *it : UD->fields()) {
9614 if (it->getType()->isPointerType()) {
9615 // If the transparent union contains a pointer type, we allow:
9616 // 1) void pointer
9617 // 2) null pointer constant
9618 if (RHSType->isPointerType())
9619 if (RHSType->castAs<PointerType>()->getPointeeType()->isVoidType()) {
9620 RHS = ImpCastExprToType(RHS.get(), it->getType(), CK_BitCast);
9621 InitField = it;
9622 break;
9623 }
9624
9625 if (RHS.get()->isNullPointerConstant(Context,
9626 Expr::NPC_ValueDependentIsNull)) {
9627 RHS = ImpCastExprToType(RHS.get(), it->getType(),
9628 CK_NullToPointer);
9629 InitField = it;
9630 break;
9631 }
9632 }
9633
9634 CastKind Kind;
9635 if (CheckAssignmentConstraints(it->getType(), RHS, Kind)
9636 == Compatible) {
9637 RHS = ImpCastExprToType(RHS.get(), it->getType(), Kind);
9638 InitField = it;
9639 break;
9640 }
9641 }
9642
9643 if (!InitField)
9644 return Incompatible;
9645
9646 ConstructTransparentUnion(*this, Context, RHS, ArgType, InitField);
9647 return Compatible;
9648}
9649
9650Sema::AssignConvertType
9651Sema::CheckSingleAssignmentConstraints(QualType LHSType, ExprResult &CallerRHS,
9652 bool Diagnose,
9653 bool DiagnoseCFAudited,
9654 bool ConvertRHS) {
9655 // We need to be able to tell the caller whether we diagnosed a problem, if
9656 // they ask us to issue diagnostics.
9657 assert((ConvertRHS || !Diagnose) && "can't indicate whether we diagnosed")(static_cast <bool> ((ConvertRHS || !Diagnose) &&
"can't indicate whether we diagnosed") ? void (0) : __assert_fail
("(ConvertRHS || !Diagnose) && \"can't indicate whether we diagnosed\""
, "clang/lib/Sema/SemaExpr.cpp", 9657, __extension__ __PRETTY_FUNCTION__
))
;
9658
9659 // If ConvertRHS is false, we want to leave the caller's RHS untouched. Sadly,
9660 // we can't avoid *all* modifications at the moment, so we need some somewhere
9661 // to put the updated value.
9662 ExprResult LocalRHS = CallerRHS;
9663 ExprResult &RHS = ConvertRHS ? CallerRHS : LocalRHS;
9664
9665 if (const auto *LHSPtrType = LHSType->getAs<PointerType>()) {
9666 if (const auto *RHSPtrType = RHS.get()->getType()->getAs<PointerType>()) {
9667 if (RHSPtrType->getPointeeType()->hasAttr(attr::NoDeref) &&
9668 !LHSPtrType->getPointeeType()->hasAttr(attr::NoDeref)) {
9669 Diag(RHS.get()->getExprLoc(),
9670 diag::warn_noderef_to_dereferenceable_pointer)
9671 << RHS.get()->getSourceRange();
9672 }
9673 }
9674 }
9675
9676 if (getLangOpts().CPlusPlus) {
9677 if (!LHSType->isRecordType() && !LHSType->isAtomicType()) {
9678 // C++ 5.17p3: If the left operand is not of class type, the
9679 // expression is implicitly converted (C++ 4) to the
9680 // cv-unqualified type of the left operand.
9681 QualType RHSType = RHS.get()->getType();
9682 if (Diagnose) {
9683 RHS = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
9684 AA_Assigning);
9685 } else {
9686 ImplicitConversionSequence ICS =
9687 TryImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
9688 /*SuppressUserConversions=*/false,
9689 AllowedExplicit::None,
9690 /*InOverloadResolution=*/false,
9691 /*CStyle=*/false,
9692 /*AllowObjCWritebackConversion=*/false);
9693 if (ICS.isFailure())
9694 return Incompatible;
9695 RHS = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
9696 ICS, AA_Assigning);
9697 }
9698 if (RHS.isInvalid())
9699 return Incompatible;
9700 Sema::AssignConvertType result = Compatible;
9701 if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
9702 !CheckObjCARCUnavailableWeakConversion(LHSType, RHSType))
9703 result = IncompatibleObjCWeakRef;
9704 return result;
9705 }
9706
9707 // FIXME: Currently, we fall through and treat C++ classes like C
9708 // structures.
9709 // FIXME: We also fall through for atomics; not sure what should
9710 // happen there, though.
9711 } else if (RHS.get()->getType() == Context.OverloadTy) {
9712 // As a set of extensions to C, we support overloading on functions. These
9713 // functions need to be resolved here.
9714 DeclAccessPair DAP;
9715 if (FunctionDecl *FD = ResolveAddressOfOverloadedFunction(
9716 RHS.get(), LHSType, /*Complain=*/false, DAP))
9717 RHS = FixOverloadedFunctionReference(RHS.get(), DAP, FD);
9718 else
9719 return Incompatible;
9720 }
9721
9722 // C99 6.5.16.1p1: the left operand is a pointer and the right is
9723 // a null pointer constant.
9724 if ((LHSType->isPointerType() || LHSType->isObjCObjectPointerType() ||
9725 LHSType->isBlockPointerType()) &&
9726 RHS.get()->isNullPointerConstant(Context,
9727 Expr::NPC_ValueDependentIsNull)) {
9728 if (Diagnose || ConvertRHS) {
9729 CastKind Kind;
9730 CXXCastPath Path;
9731 CheckPointerConversion(RHS.get(), LHSType, Kind, Path,
9732 /*IgnoreBaseAccess=*/false, Diagnose);
9733 if (ConvertRHS)
9734 RHS = ImpCastExprToType(RHS.get(), LHSType, Kind, VK_PRValue, &Path);
9735 }
9736 return Compatible;
9737 }
9738
9739 // OpenCL queue_t type assignment.
9740 if (LHSType->isQueueT() && RHS.get()->isNullPointerConstant(
9741 Context, Expr::NPC_ValueDependentIsNull)) {
9742 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
9743 return Compatible;
9744 }
9745
9746 // This check seems unnatural, however it is necessary to ensure the proper
9747 // conversion of functions/arrays. If the conversion were done for all
9748 // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
9749 // expressions that suppress this implicit conversion (&, sizeof).
9750 //
9751 // Suppress this for references: C++ 8.5.3p5.
9752 if (!LHSType->isReferenceType()) {
9753 // FIXME: We potentially allocate here even if ConvertRHS is false.
9754 RHS = DefaultFunctionArrayLvalueConversion(RHS.get(), Diagnose);
9755 if (RHS.isInvalid())
9756 return Incompatible;
9757 }
9758 CastKind Kind;
9759 Sema::AssignConvertType result =
9760 CheckAssignmentConstraints(LHSType, RHS, Kind, ConvertRHS);
9761
9762 // C99 6.5.16.1p2: The value of the right operand is converted to the
9763 // type of the assignment expression.
9764 // CheckAssignmentConstraints allows the left-hand side to be a reference,
9765 // so that we can use references in built-in functions even in C.
9766 // The getNonReferenceType() call makes sure that the resulting expression
9767 // does not have reference type.
9768 if (result != Incompatible && RHS.get()->getType() != LHSType) {
9769 QualType Ty = LHSType.getNonLValueExprType(Context);
9770 Expr *E = RHS.get();
9771
9772 // Check for various Objective-C errors. If we are not reporting
9773 // diagnostics and just checking for errors, e.g., during overload
9774 // resolution, return Incompatible to indicate the failure.
9775 if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
9776 CheckObjCConversion(SourceRange(), Ty, E, CCK_ImplicitConversion,
9777 Diagnose, DiagnoseCFAudited) != ACR_okay) {
9778 if (!Diagnose)
9779 return Incompatible;
9780 }
9781 if (getLangOpts().ObjC &&
9782 (CheckObjCBridgeRelatedConversions(E->getBeginLoc(), LHSType,
9783 E->getType(), E, Diagnose) ||
9784 CheckConversionToObjCLiteral(LHSType, E, Diagnose))) {
9785 if (!Diagnose)
9786 return Incompatible;
9787 // Replace the expression with a corrected version and continue so we
9788 // can find further errors.
9789 RHS = E;
9790 return Compatible;
9791 }
9792
9793 if (ConvertRHS)
9794 RHS = ImpCastExprToType(E, Ty, Kind);
9795 }
9796
9797 return result;
9798}
9799
9800namespace {
9801/// The original operand to an operator, prior to the application of the usual
9802/// arithmetic conversions and converting the arguments of a builtin operator
9803/// candidate.
9804struct OriginalOperand {
9805 explicit OriginalOperand(Expr *Op) : Orig(Op), Conversion(nullptr) {
9806 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Op))
9807 Op = MTE->getSubExpr();
9808 if (auto *BTE = dyn_cast<CXXBindTemporaryExpr>(Op))
9809 Op = BTE->getSubExpr();
9810 if (auto *ICE = dyn_cast<ImplicitCastExpr>(Op)) {
9811 Orig = ICE->getSubExprAsWritten();
9812 Conversion = ICE->getConversionFunction();
9813 }
9814 }
9815
9816 QualType getType() const { return Orig->getType(); }
9817
9818 Expr *Orig;
9819 NamedDecl *Conversion;
9820};
9821}
9822
9823QualType Sema::InvalidOperands(SourceLocation Loc, ExprResult &LHS,
9824 ExprResult &RHS) {
9825 OriginalOperand OrigLHS(LHS.get()), OrigRHS(RHS.get());
9826
9827 Diag(Loc, diag::err_typecheck_invalid_operands)
9828 << OrigLHS.getType() << OrigRHS.getType()
9829 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
9830
9831 // If a user-defined conversion was applied to either of the operands prior
9832 // to applying the built-in operator rules, tell the user about it.
9833 if (OrigLHS.Conversion) {
9834 Diag(OrigLHS.Conversion->getLocation(),
9835 diag::note_typecheck_invalid_operands_converted)
9836 << 0 << LHS.get()->getType();
9837 }
9838 if (OrigRHS.Conversion) {
9839 Diag(OrigRHS.Conversion->getLocation(),
9840 diag::note_typecheck_invalid_operands_converted)
9841 << 1 << RHS.get()->getType();
9842 }
9843
9844 return QualType();
9845}
9846
9847// Diagnose cases where a scalar was implicitly converted to a vector and
9848// diagnose the underlying types. Otherwise, diagnose the error
9849// as invalid vector logical operands for non-C++ cases.
9850QualType Sema::InvalidLogicalVectorOperands(SourceLocation Loc, ExprResult &LHS,
9851 ExprResult &RHS) {
9852 QualType LHSType = LHS.get()->IgnoreImpCasts()->getType();
9853 QualType RHSType = RHS.get()->IgnoreImpCasts()->getType();
9854
9855 bool LHSNatVec = LHSType->isVectorType();
9856 bool RHSNatVec = RHSType->isVectorType();
9857
9858 if (!(LHSNatVec && RHSNatVec)) {
9859 Expr *Vector = LHSNatVec ? LHS.get() : RHS.get();
9860 Expr *NonVector = !LHSNatVec ? LHS.get() : RHS.get();
9861 Diag(Loc, diag::err_typecheck_logical_vector_expr_gnu_cpp_restrict)
9862 << 0 << Vector->getType() << NonVector->IgnoreImpCasts()->getType()
9863 << Vector->getSourceRange();
9864 return QualType();
9865 }
9866
9867 Diag(Loc, diag::err_typecheck_logical_vector_expr_gnu_cpp_restrict)
9868 << 1 << LHSType << RHSType << LHS.get()->getSourceRange()
9869 << RHS.get()->getSourceRange();
9870
9871 return QualType();
9872}
9873
9874/// Try to convert a value of non-vector type to a vector type by converting
9875/// the type to the element type of the vector and then performing a splat.
9876/// If the language is OpenCL, we only use conversions that promote scalar
9877/// rank; for C, Obj-C, and C++ we allow any real scalar conversion except
9878/// for float->int.
9879///
9880/// OpenCL V2.0 6.2.6.p2:
9881/// An error shall occur if any scalar operand type has greater rank
9882/// than the type of the vector element.
9883///
9884/// \param scalar - if non-null, actually perform the conversions
9885/// \return true if the operation fails (but without diagnosing the failure)
9886static bool tryVectorConvertAndSplat(Sema &S, ExprResult *scalar,
9887 QualType scalarTy,
9888 QualType vectorEltTy,
9889 QualType vectorTy,
9890 unsigned &DiagID) {
9891 // The conversion to apply to the scalar before splatting it,
9892 // if necessary.
9893 CastKind scalarCast = CK_NoOp;
9894
9895 if (vectorEltTy->isIntegralType(S.Context)) {
9896 if (S.getLangOpts().OpenCL && (scalarTy->isRealFloatingType() ||
9897 (scalarTy->isIntegerType() &&
9898 S.Context.getIntegerTypeOrder(vectorEltTy, scalarTy) < 0))) {
9899 DiagID = diag::err_opencl_scalar_type_rank_greater_than_vector_type;
9900 return true;
9901 }
9902 if (!scalarTy->isIntegralType(S.Context))
9903 return true;
9904 scalarCast = CK_IntegralCast;
9905 } else if (vectorEltTy->isRealFloatingType()) {
9906 if (scalarTy->isRealFloatingType()) {
9907 if (S.getLangOpts().OpenCL &&
9908 S.Context.getFloatingTypeOrder(vectorEltTy, scalarTy) < 0) {
9909 DiagID = diag::err_opencl_scalar_type_rank_greater_than_vector_type;
9910 return true;
9911 }
9912 scalarCast = CK_FloatingCast;
9913 }
9914 else if (scalarTy->isIntegralType(S.Context))
9915 scalarCast = CK_IntegralToFloating;
9916 else
9917 return true;
9918 } else {
9919 return true;
9920 }
9921
9922 // Adjust scalar if desired.
9923 if (scalar) {
9924 if (scalarCast != CK_NoOp)
9925 *scalar = S.ImpCastExprToType(scalar->get(), vectorEltTy, scalarCast);
9926 *scalar = S.ImpCastExprToType(scalar->get(), vectorTy, CK_VectorSplat);
9927 }
9928 return false;
9929}
9930
9931/// Convert vector E to a vector with the same number of elements but different
9932/// element type.
9933static ExprResult convertVector(Expr *E, QualType ElementType, Sema &S) {
9934 const auto *VecTy = E->getType()->getAs<VectorType>();
9935 assert(VecTy && "Expression E must be a vector")(static_cast <bool> (VecTy && "Expression E must be a vector"
) ? void (0) : __assert_fail ("VecTy && \"Expression E must be a vector\""
, "clang/lib/Sema/SemaExpr.cpp", 9935, __extension__ __PRETTY_FUNCTION__
))
;
9936 QualType NewVecTy = S.Context.getVectorType(ElementType,
9937 VecTy->getNumElements(),
9938 VecTy->getVectorKind());
9939
9940 // Look through the implicit cast. Return the subexpression if its type is
9941 // NewVecTy.
9942 if (auto *ICE = dyn_cast<ImplicitCastExpr>(E))
9943 if (ICE->getSubExpr()->getType() == NewVecTy)
9944 return ICE->getSubExpr();
9945
9946 auto Cast = ElementType->isIntegerType() ? CK_IntegralCast : CK_FloatingCast;
9947 return S.ImpCastExprToType(E, NewVecTy, Cast);
9948}
9949
9950/// Test if a (constant) integer Int can be casted to another integer type
9951/// IntTy without losing precision.
9952static bool canConvertIntToOtherIntTy(Sema &S, ExprResult *Int,
9953 QualType OtherIntTy) {
9954 QualType IntTy = Int->get()->getType().getUnqualifiedType();
9955
9956 // Reject cases where the value of the Int is unknown as that would
9957 // possibly cause truncation, but accept cases where the scalar can be
9958 // demoted without loss of precision.
9959 Expr::EvalResult EVResult;
9960 bool CstInt = Int->get()->EvaluateAsInt(EVResult, S.Context);
9961 int Order = S.Context.getIntegerTypeOrder(OtherIntTy, IntTy);
9962 bool IntSigned = IntTy->hasSignedIntegerRepresentation();
9963 bool OtherIntSigned = OtherIntTy->hasSignedIntegerRepresentation();
9964
9965 if (CstInt) {
9966 // If the scalar is constant and is of a higher order and has more active
9967 // bits that the vector element type, reject it.
9968 llvm::APSInt Result = EVResult.Val.getInt();
9969 unsigned NumBits = IntSigned
9970 ? (Result.isNegative() ? Result.getMinSignedBits()
9971 : Result.getActiveBits())
9972 : Result.getActiveBits();
9973 if (Order < 0 && S.Context.getIntWidth(OtherIntTy) < NumBits)
9974 return true;
9975
9976 // If the signedness of the scalar type and the vector element type
9977 // differs and the number of bits is greater than that of the vector
9978 // element reject it.
9979 return (IntSigned != OtherIntSigned &&
9980 NumBits > S.Context.getIntWidth(OtherIntTy));
9981 }
9982
9983 // Reject cases where the value of the scalar is not constant and it's
9984 // order is greater than that of the vector element type.
9985 return (Order < 0);
9986}
9987
9988/// Test if a (constant) integer Int can be casted to floating point type
9989/// FloatTy without losing precision.
9990static bool canConvertIntTyToFloatTy(Sema &S, ExprResult *Int,
9991 QualType FloatTy) {
9992 QualType IntTy = Int->get()->getType().getUnqualifiedType();
9993
9994 // Determine if the integer constant can be expressed as a floating point
9995 // number of the appropriate type.
9996 Expr::EvalResult EVResult;
9997 bool CstInt = Int->get()->EvaluateAsInt(EVResult, S.Context);
9998
9999 uint64_t Bits = 0;
10000 if (CstInt) {
10001 // Reject constants that would be truncated if they were converted to
10002 // the floating point type. Test by simple to/from conversion.
10003 // FIXME: Ideally the conversion to an APFloat and from an APFloat
10004 // could be avoided if there was a convertFromAPInt method
10005 // which could signal back if implicit truncation occurred.
10006 llvm::APSInt Result = EVResult.Val.getInt();
10007 llvm::APFloat Float(S.Context.getFloatTypeSemantics(FloatTy));
10008 Float.convertFromAPInt(Result, IntTy->hasSignedIntegerRepresentation(),
10009 llvm::APFloat::rmTowardZero);
10010 llvm::APSInt ConvertBack(S.Context.getIntWidth(IntTy),
10011 !IntTy->hasSignedIntegerRepresentation());
10012 bool Ignored = false;
10013 Float.convertToInteger(ConvertBack, llvm::APFloat::rmNearestTiesToEven,
10014 &Ignored);
10015 if (Result != ConvertBack)
10016 return true;
10017 } else {
10018 // Reject types that cannot be fully encoded into the mantissa of
10019 // the float.
10020 Bits = S.Context.getTypeSize(IntTy);
10021 unsigned FloatPrec = llvm::APFloat::semanticsPrecision(
10022 S.Context.getFloatTypeSemantics(FloatTy));
10023 if (Bits > FloatPrec)
10024 return true;
10025 }
10026
10027 return false;
10028}
10029
10030/// Attempt to convert and splat Scalar into a vector whose types matches
10031/// Vector following GCC conversion rules. The rule is that implicit
10032/// conversion can occur when Scalar can be casted to match Vector's element
10033/// type without causing truncation of Scalar.
10034static bool tryGCCVectorConvertAndSplat(Sema &S, ExprResult *Scalar,
10035 ExprResult *Vector) {
10036 QualType ScalarTy = Scalar->get()->getType().getUnqualifiedType();
10037 QualType VectorTy = Vector->get()->getType().getUnqualifiedType();
10038 const VectorType *VT = VectorTy->getAs<VectorType>();
19
Assuming the object is not a 'VectorType'
20
'VT' initialized to a null pointer value
10039
10040 assert(!isa<ExtVectorType>(VT) &&(static_cast <bool> (!isa<ExtVectorType>(VT) &&
"ExtVectorTypes should not be handled here!") ? void (0) : __assert_fail
("!isa<ExtVectorType>(VT) && \"ExtVectorTypes should not be handled here!\""
, "clang/lib/Sema/SemaExpr.cpp", 10041, __extension__ __PRETTY_FUNCTION__
))
21
Assuming 'VT' is not a 'ExtVectorType'
22
'?' condition is true
10041 "ExtVectorTypes should not be handled here!")(static_cast <bool> (!isa<ExtVectorType>(VT) &&
"ExtVectorTypes should not be handled here!") ? void (0) : __assert_fail
("!isa<ExtVectorType>(VT) && \"ExtVectorTypes should not be handled here!\""
, "clang/lib/Sema/SemaExpr.cpp", 10041, __extension__ __PRETTY_FUNCTION__
))
;
10042
10043 QualType VectorEltTy = VT->getElementType();
23
Called C++ object pointer is null
10044
10045 // Reject cases where the vector element type or the scalar element type are
10046 // not integral or floating point types.
10047 if (!VectorEltTy->isArithmeticType() || !ScalarTy->isArithmeticType())
10048 return true;
10049
10050 // The conversion to apply to the scalar before splatting it,
10051 // if necessary.
10052 CastKind ScalarCast = CK_NoOp;
10053
10054 // Accept cases where the vector elements are integers and the scalar is
10055 // an integer.
10056 // FIXME: Notionally if the scalar was a floating point value with a precise
10057 // integral representation, we could cast it to an appropriate integer
10058 // type and then perform the rest of the checks here. GCC will perform
10059 // this conversion in some cases as determined by the input language.
10060 // We should accept it on a language independent basis.
10061 if (VectorEltTy->isIntegralType(S.Context) &&
10062 ScalarTy->isIntegralType(S.Context) &&
10063 S.Context.getIntegerTypeOrder(VectorEltTy, ScalarTy)) {
10064
10065 if (canConvertIntToOtherIntTy(S, Scalar, VectorEltTy))
10066 return true;
10067
10068 ScalarCast = CK_IntegralCast;
10069 } else if (VectorEltTy->isIntegralType(S.Context) &&
10070 ScalarTy->isRealFloatingType()) {
10071 if (S.Context.getTypeSize(VectorEltTy) == S.Context.getTypeSize(ScalarTy))
10072 ScalarCast = CK_FloatingToIntegral;
10073 else
10074 return true;
10075 } else if (VectorEltTy->isRealFloatingType()) {
10076 if (ScalarTy->isRealFloatingType()) {
10077
10078 // Reject cases where the scalar type is not a constant and has a higher
10079 // Order than the vector element type.
10080 llvm::APFloat Result(0.0);
10081
10082 // Determine whether this is a constant scalar. In the event that the
10083 // value is dependent (and thus cannot be evaluated by the constant
10084 // evaluator), skip the evaluation. This will then diagnose once the
10085 // expression is instantiated.
10086 bool CstScalar = Scalar->get()->isValueDependent() ||
10087 Scalar->get()->EvaluateAsFloat(Result, S.Context);
10088 int Order = S.Context.getFloatingTypeOrder(VectorEltTy, ScalarTy);
10089 if (!CstScalar && Order < 0)
10090 return true;
10091
10092 // If the scalar cannot be safely casted to the vector element type,
10093 // reject it.
10094 if (CstScalar) {
10095 bool Truncated = false;
10096 Result.convert(S.Context.getFloatTypeSemantics(VectorEltTy),
10097 llvm::APFloat::rmNearestTiesToEven, &Truncated);
10098 if (Truncated)
10099 return true;
10100 }
10101
10102 ScalarCast = CK_FloatingCast;
10103 } else if (ScalarTy->isIntegralType(S.Context)) {
10104 if (canConvertIntTyToFloatTy(S, Scalar, VectorEltTy))
10105 return true;
10106
10107 ScalarCast = CK_IntegralToFloating;
10108 } else
10109 return true;
10110 } else if (ScalarTy->isEnumeralType())
10111 return true;
10112
10113 // Adjust scalar if desired.
10114 if (Scalar) {
10115 if (ScalarCast != CK_NoOp)
10116 *Scalar = S.ImpCastExprToType(Scalar->get(), VectorEltTy, ScalarCast);
10117 *Scalar = S.ImpCastExprToType(Scalar->get(), VectorTy, CK_VectorSplat);
10118 }
10119 return false;
10120}
10121
10122QualType Sema::CheckVectorOperands(ExprResult &LHS, ExprResult &RHS,
10123 SourceLocation Loc, bool IsCompAssign,
10124 bool AllowBothBool,
10125 bool AllowBoolConversions) {
10126 if (!IsCompAssign) {
1
Assuming 'IsCompAssign' is true
2
Taking false branch
10127 LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
10128 if (LHS.isInvalid())
10129 return QualType();
10130 }
10131 RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
10132 if (RHS.isInvalid())
3
Assuming the condition is false
4
Taking false branch
10133 return QualType();
10134
10135 // For conversion purposes, we ignore any qualifiers.
10136 // For example, "const float" and "float" are equivalent.
10137 QualType LHSType = LHS.get()->getType().getUnqualifiedType();
10138 QualType RHSType = RHS.get()->getType().getUnqualifiedType();
10139
10140 const VectorType *LHSVecType = LHSType->getAs<VectorType>();
5
Assuming the object is not a 'VectorType'
10141 const VectorType *RHSVecType = RHSType->getAs<VectorType>();
6
Assuming the object is a 'VectorType'
10142 assert(LHSVecType || RHSVecType)(static_cast <bool> (LHSVecType || RHSVecType) ? void (
0) : __assert_fail ("LHSVecType || RHSVecType", "clang/lib/Sema/SemaExpr.cpp"
, 10142, __extension__ __PRETTY_FUNCTION__))
;
7
Assuming the condition is true
8
'?' condition is true
10143
10144 if ((LHSVecType
8.1
'LHSVecType' is null
&& LHSVecType->getElementType()->isBFloat16Type()) ||
10145 (RHSVecType
8.2
'RHSVecType' is non-null
&& RHSVecType->getElementType()->isBFloat16Type()))
10146 return InvalidOperands(Loc, LHS, RHS);
10147
10148 // AltiVec-style "vector bool op vector bool" combinations are allowed
10149 // for some operators but not others.
10150 if (!AllowBothBool &&
9
Assuming 'AllowBothBool' is true
10151 LHSVecType && LHSVecType->getVectorKind() == VectorType::AltiVecBool &&
10152 RHSVecType && RHSVecType->getVectorKind() == VectorType::AltiVecBool)
10153 return InvalidOperands(Loc, LHS, RHS);
10154
10155 // If the vector types are identical, return.
10156 if (Context.hasSameType(LHSType, RHSType))
10
Assuming the condition is false
10157 return LHSType;
10158
10159 // If we have compatible AltiVec and GCC vector types, use the AltiVec type.
10160 if (LHSVecType
10.1
'LHSVecType' is null
&& RHSVecType &&
10161 Context.areCompatibleVectorTypes(LHSType, RHSType)) {
10162 if (isa<ExtVectorType>(LHSVecType)) {
10163 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
10164 return LHSType;
10165 }
10166
10167 if (!IsCompAssign)
10168 LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
10169 return RHSType;
10170 }
10171
10172 // AllowBoolConversions says that bool and non-bool AltiVec vectors
10173 // can be mixed, with the result being the non-bool type. The non-bool
10174 // operand must have integer element type.
10175 if (AllowBoolConversions && LHSVecType && RHSVecType &&
11
Assuming 'AllowBoolConversions' is false
12
Taking false branch
10176 LHSVecType->getNumElements() == RHSVecType->getNumElements() &&
10177 (Context.getTypeSize(LHSVecType->getElementType()) ==
10178 Context.getTypeSize(RHSVecType->getElementType()))) {
10179 if (LHSVecType->getVectorKind() == VectorType::AltiVecVector &&
10180 LHSVecType->getElementType()->isIntegerType() &&
10181 RHSVecType->getVectorKind() == VectorType::AltiVecBool) {
10182 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
10183 return LHSType;
10184 }
10185 if (!IsCompAssign &&
10186 LHSVecType->getVectorKind() == VectorType::AltiVecBool &&
10187 RHSVecType->getVectorKind() == VectorType::AltiVecVector &&
10188 RHSVecType->getElementType()->isIntegerType()) {
10189 LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
10190 return RHSType;
10191 }
10192 }
10193
10194 // Expressions containing fixed-length and sizeless SVE vectors are invalid
10195 // since the ambiguity can affect the ABI.
10196 auto IsSveConversion = [](QualType FirstType, QualType SecondType) {
10197 const VectorType *VecType = SecondType->getAs<VectorType>();
10198 return FirstType->isSizelessBuiltinType() && VecType &&
10199 (VecType->getVectorKind() == VectorType::SveFixedLengthDataVector ||
10200 VecType->getVectorKind() ==
10201 VectorType::SveFixedLengthPredicateVector);
10202 };
10203
10204 if (IsSveConversion(LHSType, RHSType) || IsSveConversion(RHSType, LHSType)) {
13
Taking false branch
10205 Diag(Loc, diag::err_typecheck_sve_ambiguous) << LHSType << RHSType;
10206 return QualType();
10207 }
10208
10209 // Expressions containing GNU and SVE (fixed or sizeless) vectors are invalid
10210 // since the ambiguity can affect the ABI.
10211 auto IsSveGnuConversion = [](QualType FirstType, QualType SecondType) {
10212 const VectorType *FirstVecType = FirstType->getAs<VectorType>();
10213 const VectorType *SecondVecType = SecondType->getAs<VectorType>();
10214
10215 if (FirstVecType && SecondVecType)
10216 return FirstVecType->getVectorKind() == VectorType::GenericVector &&
10217 (SecondVecType->getVectorKind() ==
10218 VectorType::SveFixedLengthDataVector ||
10219 SecondVecType->getVectorKind() ==
10220 VectorType::SveFixedLengthPredicateVector);
10221
10222 return FirstType->isSizelessBuiltinType() && SecondVecType &&
10223 SecondVecType->getVectorKind() == VectorType::GenericVector;
10224 };
10225
10226 if (IsSveGnuConversion(LHSType, RHSType) ||
14
Taking false branch
10227 IsSveGnuConversion(RHSType, LHSType)) {
10228 Diag(Loc, diag::err_typecheck_sve_gnu_ambiguous) << LHSType << RHSType;
10229 return QualType();
10230 }
10231
10232 // If there's a vector type and a scalar, try to convert the scalar to
10233 // the vector element type and splat.
10234 unsigned DiagID = diag::err_typecheck_vector_not_convertable;
10235 if (!RHSVecType
14.1
'RHSVecType' is non-null
) {
15
Taking false branch
10236 if (isa<ExtVectorType>(LHSVecType)) {
10237 if (!tryVectorConvertAndSplat(*this, &RHS, RHSType,
10238 LHSVecType->getElementType(), LHSType,
10239 DiagID))
10240 return LHSType;
10241 } else {
10242 if (!tryGCCVectorConvertAndSplat(*this, &RHS, &LHS))
10243 return LHSType;
10244 }
10245 }
10246 if (!LHSVecType
15.1
'LHSVecType' is null
) {
16
Taking true branch
10247 if (isa<ExtVectorType>(RHSVecType)) {
17
Assuming 'RHSVecType' is not a 'ExtVectorType'
10248 if (!tryVectorConvertAndSplat(*this, (IsCompAssign ? nullptr : &LHS),
10249 LHSType, RHSVecType->getElementType(),
10250 RHSType, DiagID))
10251 return RHSType;
10252 } else {
10253 if (LHS.get()->isLValue() ||
10254 !tryGCCVectorConvertAndSplat(*this, &LHS, &RHS))
18
Calling 'tryGCCVectorConvertAndSplat'
10255 return RHSType;
10256 }
10257 }
10258
10259 // FIXME: The code below also handles conversion between vectors and
10260 // non-scalars, we should break this down into fine grained specific checks
10261 // and emit proper diagnostics.
10262 QualType VecType = LHSVecType ? LHSType : RHSType;
10263 const VectorType *VT = LHSVecType ? LHSVecType : RHSVecType;
10264 QualType OtherType = LHSVecType ? RHSType : LHSType;
10265 ExprResult *OtherExpr = LHSVecType ? &RHS : &LHS;
10266 if (isLaxVectorConversion(OtherType, VecType)) {
10267 // If we're allowing lax vector conversions, only the total (data) size
10268 // needs to be the same. For non compound assignment, if one of the types is
10269 // scalar, the result is always the vector type.
10270 if (!IsCompAssign) {
10271 *OtherExpr = ImpCastExprToType(OtherExpr->get(), VecType, CK_BitCast);
10272 return VecType;
10273 // In a compound assignment, lhs += rhs, 'lhs' is a lvalue src, forbidding
10274 // any implicit cast. Here, the 'rhs' should be implicit casted to 'lhs'
10275 // type. Note that this is already done by non-compound assignments in
10276 // CheckAssignmentConstraints. If it's a scalar type, only bitcast for
10277 // <1 x T> -> T. The result is also a vector type.
10278 } else if (OtherType->isExtVectorType() || OtherType->isVectorType() ||
10279 (OtherType->isScalarType() && VT->getNumElements() == 1)) {
10280 ExprResult *RHSExpr = &RHS;
10281 *RHSExpr = ImpCastExprToType(RHSExpr->get(), LHSType, CK_BitCast);
10282 return VecType;
10283 }
10284 }
10285
10286 // Okay, the expression is invalid.
10287
10288 // If there's a non-vector, non-real operand, diagnose that.
10289 if ((!RHSVecType && !RHSType->isRealType()) ||
10290 (!LHSVecType && !LHSType->isRealType())) {
10291 Diag(Loc, diag::err_typecheck_vector_not_convertable_non_scalar)
10292 << LHSType << RHSType
10293 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10294 return QualType();
10295 }
10296
10297 // OpenCL V1.1 6.2.6.p1:
10298 // If the operands are of more than one vector type, then an error shall
10299 // occur. Implicit conversions between vector types are not permitted, per
10300 // section 6.2.1.
10301 if (getLangOpts().OpenCL &&
10302 RHSVecType && isa<ExtVectorType>(RHSVecType) &&
10303 LHSVecType && isa<ExtVectorType>(LHSVecType)) {
10304 Diag(Loc, diag::err_opencl_implicit_vector_conversion) << LHSType
10305 << RHSType;
10306 return QualType();
10307 }
10308
10309
10310 // If there is a vector type that is not a ExtVector and a scalar, we reach
10311 // this point if scalar could not be converted to the vector's element type
10312 // without truncation.
10313 if ((RHSVecType && !isa<ExtVectorType>(RHSVecType)) ||
10314 (LHSVecType && !isa<ExtVectorType>(LHSVecType))) {
10315 QualType Scalar = LHSVecType ? RHSType : LHSType;
10316 QualType Vector = LHSVecType ? LHSType : RHSType;
10317 unsigned ScalarOrVector = LHSVecType && RHSVecType ? 1 : 0;
10318 Diag(Loc,
10319 diag::err_typecheck_vector_not_convertable_implict_truncation)
10320 << ScalarOrVector << Scalar << Vector;
10321
10322 return QualType();
10323 }
10324
10325 // Otherwise, use the generic diagnostic.
10326 Diag(Loc, DiagID)
10327 << LHSType << RHSType
10328 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10329 return QualType();
10330}
10331
10332// checkArithmeticNull - Detect when a NULL constant is used improperly in an
10333// expression. These are mainly cases where the null pointer is used as an
10334// integer instead of a pointer.
10335static void checkArithmeticNull(Sema &S, ExprResult &LHS, ExprResult &RHS,
10336 SourceLocation Loc, bool IsCompare) {
10337 // The canonical way to check for a GNU null is with isNullPointerConstant,
10338 // but we use a bit of a hack here for speed; this is a relatively
10339 // hot path, and isNullPointerConstant is slow.
10340 bool LHSNull = isa<GNUNullExpr>(LHS.get()->IgnoreParenImpCasts());
10341 bool RHSNull = isa<GNUNullExpr>(RHS.get()->IgnoreParenImpCasts());
10342
10343 QualType NonNullType = LHSNull ? RHS.get()->getType() : LHS.get()->getType();
10344
10345 // Avoid analyzing cases where the result will either be invalid (and
10346 // diagnosed as such) or entirely valid and not something to warn about.
10347 if ((!LHSNull && !RHSNull) || NonNullType->isBlockPointerType() ||
10348 NonNullType->isMemberPointerType() || NonNullType->isFunctionType())
10349 return;
10350
10351 // Comparison operations would not make sense with a null pointer no matter
10352 // what the other expression is.
10353 if (!IsCompare) {
10354 S.Diag(Loc, diag::warn_null_in_arithmetic_operation)
10355 << (LHSNull ? LHS.get()->getSourceRange() : SourceRange())
10356 << (RHSNull ? RHS.get()->getSourceRange() : SourceRange());
10357 return;
10358 }
10359
10360 // The rest of the operations only make sense with a null pointer
10361 // if the other expression is a pointer.
10362 if (LHSNull == RHSNull || NonNullType->isAnyPointerType() ||
10363 NonNullType->canDecayToPointerType())
10364 return;
10365
10366 S.Diag(Loc, diag::warn_null_in_comparison_operation)
10367 << LHSNull /* LHS is NULL */ << NonNullType
10368 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10369}
10370
10371static void DiagnoseDivisionSizeofPointerOrArray(Sema &S, Expr *LHS, Expr *RHS,
10372 SourceLocation Loc) {
10373 const auto *LUE = dyn_cast<UnaryExprOrTypeTraitExpr>(LHS);
10374 const auto *RUE = dyn_cast<UnaryExprOrTypeTraitExpr>(RHS);
10375 if (!LUE || !RUE)
10376 return;
10377 if (LUE->getKind() != UETT_SizeOf || LUE->isArgumentType() ||
10378 RUE->getKind() != UETT_SizeOf)
10379 return;
10380
10381 const Expr *LHSArg = LUE->getArgumentExpr()->IgnoreParens();
10382 QualType LHSTy = LHSArg->getType();
10383 QualType RHSTy;
10384
10385 if (RUE->isArgumentType())
10386 RHSTy = RUE->getArgumentType().getNonReferenceType();
10387 else
10388 RHSTy = RUE->getArgumentExpr()->IgnoreParens()->getType();
10389
10390 if (LHSTy->isPointerType() && !RHSTy->isPointerType()) {
10391 if (!S.Context.hasSameUnqualifiedType(LHSTy->getPointeeType(), RHSTy))
10392 return;
10393
10394 S.Diag(Loc, diag::warn_division_sizeof_ptr) << LHS << LHS->getSourceRange();
10395 if (const auto *DRE = dyn_cast<DeclRefExpr>(LHSArg)) {
10396 if (const ValueDecl *LHSArgDecl = DRE->getDecl())
10397 S.Diag(LHSArgDecl->getLocation(), diag::note_pointer_declared_here)
10398 << LHSArgDecl;
10399 }
10400 } else if (const auto *ArrayTy = S.Context.getAsArrayType(LHSTy)) {
10401 QualType ArrayElemTy = ArrayTy->getElementType();
10402 if (ArrayElemTy != S.Context.getBaseElementType(ArrayTy) ||
10403 ArrayElemTy->isDependentType() || RHSTy->isDependentType() ||
10404 RHSTy->isReferenceType() || ArrayElemTy->isCharType() ||
10405 S.Context.getTypeSize(ArrayElemTy) == S.Context.getTypeSize(RHSTy))
10406 return;
10407 S.Diag(Loc, diag::warn_division_sizeof_array)
10408 << LHSArg->getSourceRange() << ArrayElemTy << RHSTy;
10409 if (const auto *DRE = dyn_cast<DeclRefExpr>(LHSArg)) {
10410 if (const ValueDecl *LHSArgDecl = DRE->getDecl())
10411 S.Diag(LHSArgDecl->getLocation(), diag::note_array_declared_here)
10412 << LHSArgDecl;
10413 }
10414
10415 S.Diag(Loc, diag::note_precedence_silence) << RHS;
10416 }
10417}
10418
10419static void DiagnoseBadDivideOrRemainderValues(Sema& S, ExprResult &LHS,
10420 ExprResult &RHS,
10421 SourceLocation Loc, bool IsDiv) {
10422 // Check for division/remainder by zero.
10423 Expr::EvalResult RHSValue;
10424 if (!RHS.get()->isValueDependent() &&
10425 RHS.get()->EvaluateAsInt(RHSValue, S.Context) &&
10426 RHSValue.Val.getInt() == 0)
10427 S.DiagRuntimeBehavior(Loc, RHS.get(),
10428 S.PDiag(diag::warn_remainder_division_by_zero)
10429 << IsDiv << RHS.get()->getSourceRange());
10430}
10431
10432QualType Sema::CheckMultiplyDivideOperands(ExprResult &LHS, ExprResult &RHS,
10433 SourceLocation Loc,
10434 bool IsCompAssign, bool IsDiv) {
10435 checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
10436
10437 QualType LHSTy = LHS.get()->getType();
10438 QualType RHSTy = RHS.get()->getType();
10439 if (LHSTy->isVectorType() || RHSTy->isVectorType())
10440 return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
10441 /*AllowBothBool*/getLangOpts().AltiVec,
10442 /*AllowBoolConversions*/false);
10443 if (!IsDiv &&
10444 (LHSTy->isConstantMatrixType() || RHSTy->isConstantMatrixType()))
10445 return CheckMatrixMultiplyOperands(LHS, RHS, Loc, IsCompAssign);
10446 // For division, only matrix-by-scalar is supported. Other combinations with
10447 // matrix types are invalid.
10448 if (IsDiv && LHSTy->isConstantMatrixType() && RHSTy->isArithmeticType())
10449 return CheckMatrixElementwiseOperands(LHS, RHS, Loc, IsCompAssign);
10450
10451 QualType compType = UsualArithmeticConversions(
10452 LHS, RHS, Loc, IsCompAssign ? ACK_CompAssign : ACK_Arithmetic);
10453 if (LHS.isInvalid() || RHS.isInvalid())
10454 return QualType();
10455
10456
10457 if (compType.isNull() || !compType->isArithmeticType())
10458 return InvalidOperands(Loc, LHS, RHS);
10459 if (IsDiv) {
10460 DiagnoseBadDivideOrRemainderValues(*this, LHS, RHS, Loc, IsDiv);
10461 DiagnoseDivisionSizeofPointerOrArray(*this, LHS.get(), RHS.get(), Loc);
10462 }
10463 return compType;
10464}
10465
10466QualType Sema::CheckRemainderOperands(
10467 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
10468 checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
10469
10470 if (LHS.get()->getType()->isVectorType() ||
10471 RHS.get()->getType()->isVectorType()) {
10472 if (LHS.get()->getType()->hasIntegerRepresentation() &&
10473 RHS.get()->getType()->hasIntegerRepresentation())
10474 return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
10475 /*AllowBothBool*/getLangOpts().AltiVec,
10476 /*AllowBoolConversions*/false);
10477 return InvalidOperands(Loc, LHS, RHS);
10478 }
10479
10480 QualType compType = UsualArithmeticConversions(
10481 LHS, RHS, Loc, IsCompAssign ? ACK_CompAssign : ACK_Arithmetic);
10482 if (LHS.isInvalid() || RHS.isInvalid())
10483 return QualType();
10484
10485 if (compType.isNull() || !compType->isIntegerType())
10486 return InvalidOperands(Loc, LHS, RHS);
10487 DiagnoseBadDivideOrRemainderValues(*this, LHS, RHS, Loc, false /* IsDiv */);
10488 return compType;
10489}
10490
10491/// Diagnose invalid arithmetic on two void pointers.
10492static void diagnoseArithmeticOnTwoVoidPointers(Sema &S, SourceLocation Loc,
10493 Expr *LHSExpr, Expr *RHSExpr) {
10494 S.Diag(Loc, S.getLangOpts().CPlusPlus
10495 ? diag::err_typecheck_pointer_arith_void_type
10496 : diag::ext_gnu_void_ptr)
10497 << 1 /* two pointers */ << LHSExpr->getSourceRange()
10498 << RHSExpr->getSourceRange();
10499}
10500
10501/// Diagnose invalid arithmetic on a void pointer.
10502static void diagnoseArithmeticOnVoidPointer(Sema &S, SourceLocation Loc,
10503 Expr *Pointer) {
10504 S.Diag(Loc, S.getLangOpts().CPlusPlus
10505 ? diag::err_typecheck_pointer_arith_void_type
10506 : diag::ext_gnu_void_ptr)
10507 << 0 /* one pointer */ << Pointer->getSourceRange();
10508}
10509
10510/// Diagnose invalid arithmetic on a null pointer.
10511///
10512/// If \p IsGNUIdiom is true, the operation is using the 'p = (i8*)nullptr + n'
10513/// idiom, which we recognize as a GNU extension.
10514///
10515static void diagnoseArithmeticOnNullPointer(Sema &S, SourceLocation Loc,
10516 Expr *Pointer, bool IsGNUIdiom) {
10517 if (IsGNUIdiom)
10518 S.Diag(Loc, diag::warn_gnu_null_ptr_arith)
10519 << Pointer->getSourceRange();
10520 else
10521 S.Diag(Loc, diag::warn_pointer_arith_null_ptr)
10522 << S.getLangOpts().CPlusPlus << Pointer->getSourceRange();
10523}
10524
10525/// Diagnose invalid subraction on a null pointer.
10526///
10527static void diagnoseSubtractionOnNullPointer(Sema &S, SourceLocation Loc,
10528 Expr *Pointer, bool BothNull) {
10529 // Null - null is valid in C++ [expr.add]p7
10530 if (BothNull && S.getLangOpts().CPlusPlus)
10531 return;
10532
10533 // Is this s a macro from a system header?
10534 if (S.Diags.getSuppressSystemWarnings() && S.SourceMgr.isInSystemMacro(Loc))
10535 return;
10536
10537 S.Diag(Loc, diag::warn_pointer_sub_null_ptr)
10538 << S.getLangOpts().CPlusPlus << Pointer->getSourceRange();
10539}
10540
10541/// Diagnose invalid arithmetic on two function pointers.
10542static void diagnoseArithmeticOnTwoFunctionPointers(Sema &S, SourceLocation Loc,
10543 Expr *LHS, Expr *RHS) {
10544 assert(LHS->getType()->isAnyPointerType())(static_cast <bool> (LHS->getType()->isAnyPointerType
()) ? void (0) : __assert_fail ("LHS->getType()->isAnyPointerType()"
, "clang/lib/Sema/SemaExpr.cpp", 10544, __extension__ __PRETTY_FUNCTION__
))
;
10545 assert(RHS->getType()->isAnyPointerType())(static_cast <bool> (RHS->getType()->isAnyPointerType
()) ? void (0) : __assert_fail ("RHS->getType()->isAnyPointerType()"
, "clang/lib/Sema/SemaExpr.cpp", 10545, __extension__ __PRETTY_FUNCTION__
))
;
10546 S.Diag(Loc, S.getLangOpts().CPlusPlus
10547 ? diag::err_typecheck_pointer_arith_function_type
10548 : diag::ext_gnu_ptr_func_arith)
10549 << 1 /* two pointers */ << LHS->getType()->getPointeeType()
10550 // We only show the second type if it differs from the first.
10551 << (unsigned)!S.Context.hasSameUnqualifiedType(LHS->getType(),
10552 RHS->getType())
10553 << RHS->getType()->getPointeeType()
10554 << LHS->getSourceRange() << RHS->getSourceRange();
10555}
10556
10557/// Diagnose invalid arithmetic on a function pointer.
10558static void diagnoseArithmeticOnFunctionPointer(Sema &S, SourceLocation Loc,
10559 Expr *Pointer) {
10560 assert(Pointer->getType()->isAnyPointerType())(static_cast <bool> (Pointer->getType()->isAnyPointerType
()) ? void (0) : __assert_fail ("Pointer->getType()->isAnyPointerType()"
, "clang/lib/Sema/SemaExpr.cpp", 10560, __extension__ __PRETTY_FUNCTION__
))
;
10561 S.Diag(Loc, S.getLangOpts().CPlusPlus
10562 ? diag::err_typecheck_pointer_arith_function_type
10563 : diag::ext_gnu_ptr_func_arith)
10564 << 0 /* one pointer */ << Pointer->getType()->getPointeeType()
10565 << 0 /* one pointer, so only one type */
10566 << Pointer->getSourceRange();
10567}
10568
10569/// Emit error if Operand is incomplete pointer type
10570///
10571/// \returns True if pointer has incomplete type
10572static bool checkArithmeticIncompletePointerType(Sema &S, SourceLocation Loc,
10573 Expr *Operand) {
10574 QualType ResType = Operand->getType();
10575 if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
10576 ResType = ResAtomicType->getValueType();
10577
10578 assert(ResType->isAnyPointerType() && !ResType->isDependentType())(static_cast <bool> (ResType->isAnyPointerType() &&
!ResType->isDependentType()) ? void (0) : __assert_fail (
"ResType->isAnyPointerType() && !ResType->isDependentType()"
, "clang/lib/Sema/SemaExpr.cpp", 10578, __extension__ __PRETTY_FUNCTION__
))
;
10579 QualType PointeeTy = ResType->getPointeeType();
10580 return S.RequireCompleteSizedType(
10581 Loc, PointeeTy,
10582 diag::err_typecheck_arithmetic_incomplete_or_sizeless_type,
10583 Operand->getSourceRange());
10584}
10585
10586/// Check the validity of an arithmetic pointer operand.
10587///
10588/// If the operand has pointer type, this code will check for pointer types
10589/// which are invalid in arithmetic operations. These will be diagnosed
10590/// appropriately, including whether or not the use is supported as an
10591/// extension.
10592///
10593/// \returns True when the operand is valid to use (even if as an extension).
10594static bool checkArithmeticOpPointerOperand(Sema &S, SourceLocation Loc,
10595 Expr *Operand) {
10596 QualType ResType = Operand->getType();
10597 if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
10598 ResType = ResAtomicType->getValueType();
10599
10600 if (!ResType->isAnyPointerType()) return true;
10601
10602 QualType PointeeTy = ResType->getPointeeType();
10603 if (PointeeTy->isVoidType()) {
10604 diagnoseArithmeticOnVoidPointer(S, Loc, Operand);
10605 return !S.getLangOpts().CPlusPlus;
10606 }
10607 if (PointeeTy->isFunctionType()) {
10608 diagnoseArithmeticOnFunctionPointer(S, Loc, Operand);
10609 return !S.getLangOpts().CPlusPlus;
10610 }
10611
10612 if (checkArithmeticIncompletePointerType(S, Loc, Operand)) return false;
10613
10614 return true;
10615}
10616
10617/// Check the validity of a binary arithmetic operation w.r.t. pointer
10618/// operands.
10619///
10620/// This routine will diagnose any invalid arithmetic on pointer operands much
10621/// like \see checkArithmeticOpPointerOperand. However, it has special logic
10622/// for emitting a single diagnostic even for operations where both LHS and RHS
10623/// are (potentially problematic) pointers.
10624///
10625/// \returns True when the operand is valid to use (even if as an extension).
10626static bool checkArithmeticBinOpPointerOperands(Sema &S, SourceLocation Loc,
10627 Expr *LHSExpr, Expr *RHSExpr) {
10628 bool isLHSPointer = LHSExpr->getType()->isAnyPointerType();
10629 bool isRHSPointer = RHSExpr->getType()->isAnyPointerType();
10630 if (!isLHSPointer && !isRHSPointer) return true;
10631
10632 QualType LHSPointeeTy, RHSPointeeTy;
10633 if (isLHSPointer) LHSPointeeTy = LHSExpr->getType()->getPointeeType();
10634 if (isRHSPointer) RHSPointeeTy = RHSExpr->getType()->getPointeeType();
10635
10636 // if both are pointers check if operation is valid wrt address spaces
10637 if (isLHSPointer && isRHSPointer) {
10638 if (!LHSPointeeTy.isAddressSpaceOverlapping(RHSPointeeTy)) {
10639 S.Diag(Loc,
10640 diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
10641 << LHSExpr->getType() << RHSExpr->getType() << 1 /*arithmetic op*/
10642 << LHSExpr->getSourceRange() << RHSExpr->getSourceRange();
10643 return false;
10644 }
10645 }
10646
10647 // Check for arithmetic on pointers to incomplete types.
10648 bool isLHSVoidPtr = isLHSPointer && LHSPointeeTy->isVoidType();
10649 bool isRHSVoidPtr = isRHSPointer && RHSPointeeTy->isVoidType();
10650 if (isLHSVoidPtr || isRHSVoidPtr) {
10651 if (!isRHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, LHSExpr);
10652 else if (!isLHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, RHSExpr);
10653 else diagnoseArithmeticOnTwoVoidPointers(S, Loc, LHSExpr, RHSExpr);
10654
10655 return !S.getLangOpts().CPlusPlus;
10656 }
10657
10658 bool isLHSFuncPtr = isLHSPointer && LHSPointeeTy->isFunctionType();
10659 bool isRHSFuncPtr = isRHSPointer && RHSPointeeTy->isFunctionType();
10660 if (isLHSFuncPtr || isRHSFuncPtr) {
10661 if (!isRHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, LHSExpr);
10662 else if (!isLHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc,
10663 RHSExpr);
10664 else diagnoseArithmeticOnTwoFunctionPointers(S, Loc, LHSExpr, RHSExpr);
10665
10666 return !S.getLangOpts().CPlusPlus;
10667 }
10668
10669 if (isLHSPointer && checkArithmeticIncompletePointerType(S, Loc, LHSExpr))
10670 return false;
10671 if (isRHSPointer && checkArithmeticIncompletePointerType(S, Loc, RHSExpr))
10672 return false;
10673
10674 return true;
10675}
10676
10677/// diagnoseStringPlusInt - Emit a warning when adding an integer to a string
10678/// literal.
10679static void diagnoseStringPlusInt(Sema &Self, SourceLocation OpLoc,
10680 Expr *LHSExpr, Expr *RHSExpr) {
10681 StringLiteral* StrExpr = dyn_cast<StringLiteral>(LHSExpr->IgnoreImpCasts());
10682 Expr* IndexExpr = RHSExpr;
10683 if (!StrExpr) {
10684 StrExpr = dyn_cast<StringLiteral>(RHSExpr->IgnoreImpCasts());
10685 IndexExpr = LHSExpr;
10686 }
10687
10688 bool IsStringPlusInt = StrExpr &&
10689 IndexExpr->getType()->isIntegralOrUnscopedEnumerationType();
10690 if (!IsStringPlusInt || IndexExpr->isValueDependent())
10691 return;
10692
10693 SourceRange DiagRange(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
10694 Self.Diag(OpLoc, diag::warn_string_plus_int)
10695 << DiagRange << IndexExpr->IgnoreImpCasts()->getType();
10696
10697 // Only print a fixit for "str" + int, not for int + "str".
10698 if (IndexExpr == RHSExpr) {
10699 SourceLocation EndLoc = Self.getLocForEndOfToken(RHSExpr->getEndLoc());
10700 Self.Diag(OpLoc, diag::note_string_plus_scalar_silence)
10701 << FixItHint::CreateInsertion(LHSExpr->getBeginLoc(), "&")
10702 << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
10703 << FixItHint::CreateInsertion(EndLoc, "]");
10704 } else
10705 Self.Diag(OpLoc, diag::note_string_plus_scalar_silence);
10706}
10707
10708/// Emit a warning when adding a char literal to a string.
10709static void diagnoseStringPlusChar(Sema &Self, SourceLocation OpLoc,
10710 Expr *LHSExpr, Expr *RHSExpr) {
10711 const Expr *StringRefExpr = LHSExpr;
10712 const CharacterLiteral *CharExpr =
10713 dyn_cast<CharacterLiteral>(RHSExpr->IgnoreImpCasts());
10714
10715 if (!CharExpr) {
10716 CharExpr = dyn_cast<CharacterLiteral>(LHSExpr->IgnoreImpCasts());
10717 StringRefExpr = RHSExpr;
10718 }
10719
10720 if (!CharExpr || !StringRefExpr)
10721 return;
10722
10723 const QualType StringType = StringRefExpr->getType();
10724
10725 // Return if not a PointerType.
10726 if (!StringType->isAnyPointerType())
10727 return;
10728
10729 // Return if not a CharacterType.
10730 if (!StringType->getPointeeType()->isAnyCharacterType())
10731 return;
10732
10733 ASTContext &Ctx = Self.getASTContext();
10734 SourceRange DiagRange(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
10735
10736 const QualType CharType = CharExpr->getType();
10737 if (!CharType->isAnyCharacterType() &&
10738 CharType->isIntegerType() &&
10739 llvm::isUIntN(Ctx.getCharWidth(), CharExpr->getValue())) {
10740 Self.Diag(OpLoc, diag::warn_string_plus_char)
10741 << DiagRange << Ctx.CharTy;
10742 } else {
10743 Self.Diag(OpLoc, diag::warn_string_plus_char)
10744 << DiagRange << CharExpr->getType();
10745 }
10746
10747 // Only print a fixit for str + char, not for char + str.
10748 if (isa<CharacterLiteral>(RHSExpr->IgnoreImpCasts())) {
10749 SourceLocation EndLoc = Self.getLocForEndOfToken(RHSExpr->getEndLoc());
10750 Self.Diag(OpLoc, diag::note_string_plus_scalar_silence)
10751 << FixItHint::CreateInsertion(LHSExpr->getBeginLoc(), "&")
10752 << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
10753 << FixItHint::CreateInsertion(EndLoc, "]");
10754 } else {
10755 Self.Diag(OpLoc, diag::note_string_plus_scalar_silence);
10756 }
10757}
10758
10759/// Emit error when two pointers are incompatible.
10760static void diagnosePointerIncompatibility(Sema &S, SourceLocation Loc,
10761 Expr *LHSExpr, Expr *RHSExpr) {
10762 assert(LHSExpr->getType()->isAnyPointerType())(static_cast <bool> (LHSExpr->getType()->isAnyPointerType
()) ? void (0) : __assert_fail ("LHSExpr->getType()->isAnyPointerType()"
, "clang/lib/Sema/SemaExpr.cpp", 10762, __extension__ __PRETTY_FUNCTION__
))
;
10763 assert(RHSExpr->getType()->isAnyPointerType())(static_cast <bool> (RHSExpr->getType()->isAnyPointerType
()) ? void (0) : __assert_fail ("RHSExpr->getType()->isAnyPointerType()"
, "clang/lib/Sema/SemaExpr.cpp", 10763, __extension__ __PRETTY_FUNCTION__
))
;
10764 S.Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
10765 << LHSExpr->getType() << RHSExpr->getType() << LHSExpr->getSourceRange()
10766 << RHSExpr->getSourceRange();
10767}
10768
10769// C99 6.5.6
10770QualType Sema::CheckAdditionOperands(ExprResult &LHS, ExprResult &RHS,
10771 SourceLocation Loc, BinaryOperatorKind Opc,
10772 QualType* CompLHSTy) {
10773 checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
10774
10775 if (LHS.get()->getType()->isVectorType() ||
10776 RHS.get()->getType()->isVectorType()) {
10777 QualType compType = CheckVectorOperands(
10778 LHS, RHS, Loc, CompLHSTy,
10779 /*AllowBothBool*/getLangOpts().AltiVec,
10780 /*AllowBoolConversions*/getLangOpts().ZVector);
10781 if (CompLHSTy) *CompLHSTy = compType;
10782 return compType;
10783 }
10784
10785 if (LHS.get()->getType()->isConstantMatrixType() ||
10786 RHS.get()->getType()->isConstantMatrixType()) {
10787 QualType compType =
10788 CheckMatrixElementwiseOperands(LHS, RHS, Loc, CompLHSTy);
10789 if (CompLHSTy)
10790 *CompLHSTy = compType;
10791 return compType;
10792 }
10793
10794 QualType compType = UsualArithmeticConversions(
10795 LHS, RHS, Loc, CompLHSTy ? ACK_CompAssign : ACK_Arithmetic);
10796 if (LHS.isInvalid() || RHS.isInvalid())
10797 return QualType();
10798
10799 // Diagnose "string literal" '+' int and string '+' "char literal".
10800 if (Opc == BO_Add) {
10801 diagnoseStringPlusInt(*this, Loc, LHS.get(), RHS.get());
10802 diagnoseStringPlusChar(*this, Loc, LHS.get(), RHS.get());
10803 }
10804
10805 // handle the common case first (both operands are arithmetic).
10806 if (!compType.isNull() && compType->isArithmeticType()) {
10807 if (CompLHSTy) *CompLHSTy = compType;
10808 return compType;
10809 }
10810
10811 // Type-checking. Ultimately the pointer's going to be in PExp;
10812 // note that we bias towards the LHS being the pointer.
10813 Expr *PExp = LHS.get(), *IExp = RHS.get();
10814
10815 bool isObjCPointer;
10816 if (PExp->getType()->isPointerType()) {
10817 isObjCPointer = false;
10818 } else if (PExp->getType()->isObjCObjectPointerType()) {
10819 isObjCPointer = true;
10820 } else {
10821 std::swap(PExp, IExp);
10822 if (PExp->getType()->isPointerType()) {
10823 isObjCPointer = false;
10824 } else if (PExp->getType()->isObjCObjectPointerType()) {
10825 isObjCPointer = true;
10826 } else {
10827 return InvalidOperands(Loc, LHS, RHS);
10828 }
10829 }
10830 assert(PExp->getType()->isAnyPointerType())(static_cast <bool> (PExp->getType()->isAnyPointerType
()) ? void (0) : __assert_fail ("PExp->getType()->isAnyPointerType()"
, "clang/lib/Sema/SemaExpr.cpp", 10830, __extension__ __PRETTY_FUNCTION__
))
;
10831
10832 if (!IExp->getType()->isIntegerType())
10833 return InvalidOperands(Loc, LHS, RHS);
10834
10835 // Adding to a null pointer results in undefined behavior.
10836 if (PExp->IgnoreParenCasts()->isNullPointerConstant(
10837 Context, Expr::NPC_ValueDependentIsNotNull)) {
10838 // In C++ adding zero to a null pointer is defined.
10839 Expr::EvalResult KnownVal;
10840 if (!getLangOpts().CPlusPlus ||
10841 (!IExp->isValueDependent() &&
10842 (!IExp->EvaluateAsInt(KnownVal, Context) ||
10843 KnownVal.Val.getInt() != 0))) {
10844 // Check the conditions to see if this is the 'p = nullptr + n' idiom.
10845 bool IsGNUIdiom = BinaryOperator::isNullPointerArithmeticExtension(
10846 Context, BO_Add, PExp, IExp);
10847 diagnoseArithmeticOnNullPointer(*this, Loc, PExp, IsGNUIdiom);
10848 }
10849 }
10850
10851 if (!checkArithmeticOpPointerOperand(*this, Loc, PExp))
10852 return QualType();
10853
10854 if (isObjCPointer && checkArithmeticOnObjCPointer(*this, Loc, PExp))
10855 return QualType();
10856
10857 // Check array bounds for pointer arithemtic
10858 CheckArrayAccess(PExp, IExp);
10859
10860 if (CompLHSTy) {
10861 QualType LHSTy = Context.isPromotableBitField(LHS.get());
10862 if (LHSTy.isNull()) {
10863 LHSTy = LHS.get()->getType();
10864 if (LHSTy->isPromotableIntegerType())
10865 LHSTy = Context.getPromotedIntegerType(LHSTy);
10866 }
10867 *CompLHSTy = LHSTy;
10868 }
10869
10870 return PExp->getType();
10871}
10872
10873// C99 6.5.6
10874QualType Sema::CheckSubtractionOperands(ExprResult &LHS, ExprResult &RHS,
10875 SourceLocation Loc,
10876 QualType* CompLHSTy) {
10877 checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
10878
10879 if (LHS.get()->getType()->isVectorType() ||
10880 RHS.get()->getType()->isVectorType()) {
10881 QualType compType = CheckVectorOperands(
10882 LHS, RHS, Loc, CompLHSTy,
10883 /*AllowBothBool*/getLangOpts().AltiVec,
10884 /*AllowBoolConversions*/getLangOpts().ZVector);
10885 if (CompLHSTy) *CompLHSTy = compType;
10886 return compType;
10887 }
10888
10889 if (LHS.get()->getType()->isConstantMatrixType() ||
10890 RHS.get()->getType()->isConstantMatrixType()) {
10891 QualType compType =
10892 CheckMatrixElementwiseOperands(LHS, RHS, Loc, CompLHSTy);
10893 if (CompLHSTy)
10894 *CompLHSTy = compType;
10895 return compType;
10896 }
10897
10898 QualType compType = UsualArithmeticConversions(
10899 LHS, RHS, Loc, CompLHSTy ? ACK_CompAssign : ACK_Arithmetic);
10900 if (LHS.isInvalid() || RHS.isInvalid())
10901 return QualType();
10902
10903 // Enforce type constraints: C99 6.5.6p3.
10904
10905 // Handle the common case first (both operands are arithmetic).
10906 if (!compType.isNull() && compType->isArithmeticType()) {
10907 if (CompLHSTy) *CompLHSTy = compType;
10908 return compType;
10909 }
10910
10911 // Either ptr - int or ptr - ptr.
10912 if (LHS.get()->getType()->isAnyPointerType()) {
10913 QualType lpointee = LHS.get()->getType()->getPointeeType();
10914
10915 // Diagnose bad cases where we step over interface counts.
10916 if (LHS.get()->getType()->isObjCObjectPointerType() &&
10917 checkArithmeticOnObjCPointer(*this, Loc, LHS.get()))
10918 return QualType();
10919
10920 // The result type of a pointer-int computation is the pointer type.
10921 if (RHS.get()->getType()->isIntegerType()) {
10922 // Subtracting from a null pointer should produce a warning.
10923 // The last argument to the diagnose call says this doesn't match the
10924 // GNU int-to-pointer idiom.
10925 if (LHS.get()->IgnoreParenCasts()->isNullPointerConstant(Context,
10926 Expr::NPC_ValueDependentIsNotNull)) {
10927 // In C++ adding zero to a null pointer is defined.
10928 Expr::EvalResult KnownVal;
10929 if (!getLangOpts().CPlusPlus ||
10930 (!RHS.get()->isValueDependent() &&
10931 (!RHS.get()->EvaluateAsInt(KnownVal, Context) ||
10932 KnownVal.Val.getInt() != 0))) {
10933 diagnoseArithmeticOnNullPointer(*this, Loc, LHS.get(), false);
10934 }
10935 }
10936
10937 if (!checkArithmeticOpPointerOperand(*this, Loc, LHS.get()))
10938 return QualType();
10939
10940 // Check array bounds for pointer arithemtic
10941 CheckArrayAccess(LHS.get(), RHS.get(), /*ArraySubscriptExpr*/nullptr,
10942 /*AllowOnePastEnd*/true, /*IndexNegated*/true);
10943
10944 if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
10945 return LHS.get()->getType();
10946 }
10947
10948 // Handle pointer-pointer subtractions.
10949 if (const PointerType *RHSPTy
10950 = RHS.get()->getType()->getAs<PointerType>()) {
10951 QualType rpointee = RHSPTy->getPointeeType();
10952
10953 if (getLangOpts().CPlusPlus) {
10954 // Pointee types must be the same: C++ [expr.add]
10955 if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
10956 diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
10957 }
10958 } else {
10959 // Pointee types must be compatible C99 6.5.6p3
10960 if (!Context.typesAreCompatible(
10961 Context.getCanonicalType(lpointee).getUnqualifiedType(),
10962 Context.getCanonicalType(rpointee).getUnqualifiedType())) {
10963 diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
10964 return QualType();
10965 }
10966 }
10967
10968 if (!checkArithmeticBinOpPointerOperands(*this, Loc,
10969 LHS.get(), RHS.get()))
10970 return QualType();
10971
10972 bool LHSIsNullPtr = LHS.get()->IgnoreParenCasts()->isNullPointerConstant(
10973 Context, Expr::NPC_ValueDependentIsNotNull);
10974 bool RHSIsNullPtr = RHS.get()->IgnoreParenCasts()->isNullPointerConstant(
10975 Context, Expr::NPC_ValueDependentIsNotNull);
10976
10977 // Subtracting nullptr or from nullptr is suspect
10978 if (LHSIsNullPtr)
10979 diagnoseSubtractionOnNullPointer(*this, Loc, LHS.get(), RHSIsNullPtr);
10980 if (RHSIsNullPtr)
10981 diagnoseSubtractionOnNullPointer(*this, Loc, RHS.get(), LHSIsNullPtr);
10982
10983 // The pointee type may have zero size. As an extension, a structure or
10984 // union may have zero size or an array may have zero length. In this
10985 // case subtraction does not make sense.
10986 if (!rpointee->isVoidType() && !rpointee->isFunctionType()) {
10987 CharUnits ElementSize = Context.getTypeSizeInChars(rpointee);
10988 if (ElementSize.isZero()) {
10989 Diag(Loc,diag::warn_sub_ptr_zero_size_types)
10990 << rpointee.getUnqualifiedType()
10991 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10992 }
10993 }
10994
10995 if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
10996 return Context.getPointerDiffType();
10997 }
10998 }
10999
11000 return InvalidOperands(Loc, LHS, RHS);
11001}
11002
11003static bool isScopedEnumerationType(QualType T) {
11004 if (const EnumType *ET = T->getAs<EnumType>())
11005 return ET->getDecl()->isScoped();
11006 return false;
11007}
11008
11009static void DiagnoseBadShiftValues(Sema& S, ExprResult &LHS, ExprResult &RHS,
11010 SourceLocation Loc, BinaryOperatorKind Opc,
11011 QualType LHSType) {
11012 // OpenCL 6.3j: shift values are effectively % word size of LHS (more defined),
11013 // so skip remaining warnings as we don't want to modify values within Sema.
11014 if (S.getLangOpts().OpenCL)
11015 return;
11016
11017 // Check right/shifter operand
11018 Expr::EvalResult RHSResult;
11019 if (RHS.get()->isValueDependent() ||
11020 !RHS.get()->EvaluateAsInt(RHSResult, S.Context))
11021 return;
11022 llvm::APSInt Right = RHSResult.Val.getInt();
11023
11024 if (Right.isNegative()) {
11025 S.DiagRuntimeBehavior(Loc, RHS.get(),
11026 S.PDiag(diag::warn_shift_negative)
11027 << RHS.get()->getSourceRange());
11028 return;
11029 }
11030
11031 QualType LHSExprType = LHS.get()->getType();
11032 uint64_t LeftSize = S.Context.getTypeSize(LHSExprType);
11033 if (LHSExprType->isBitIntType())
11034 LeftSize = S.Context.getIntWidth(LHSExprType);
11035 else if (LHSExprType->isFixedPointType()) {
11036 auto FXSema = S.Context.getFixedPointSemantics(LHSExprType);
11037 LeftSize = FXSema.getWidth() - (unsigned)FXSema.hasUnsignedPadding();
11038 }
11039 llvm::APInt LeftBits(Right.getBitWidth(), LeftSize);
11040 if (Right.uge(LeftBits)) {
11041 S.DiagRuntimeBehavior(Loc, RHS.get(),
11042 S.PDiag(diag::warn_shift_gt_typewidth)
11043 << RHS.get()->getSourceRange());
11044 return;
11045 }
11046
11047 // FIXME: We probably need to handle fixed point types specially here.
11048 if (Opc != BO_Shl || LHSExprType->isFixedPointType())
11049 return;
11050
11051 // When left shifting an ICE which is signed, we can check for overflow which
11052 // according to C++ standards prior to C++2a has undefined behavior
11053 // ([expr.shift] 5.8/2). Unsigned integers have defined behavior modulo one
11054 // more than the maximum value representable in the result type, so never
11055 // warn for those. (FIXME: Unsigned left-shift overflow in a constant
11056 // expression is still probably a bug.)
11057 Expr::EvalResult LHSResult;
11058 if (LHS.get()->isValueDependent() ||
11059 LHSType->hasUnsignedIntegerRepresentation() ||
11060 !LHS.get()->EvaluateAsInt(LHSResult, S.Context))
11061 return;
11062 llvm::APSInt Left = LHSResult.Val.getInt();
11063
11064 // If LHS does not have a signed type and non-negative value
11065 // then, the behavior is undefined before C++2a. Warn about it.
11066 if (Left.isNegative() && !S.getLangOpts().isSignedOverflowDefined() &&
11067 !S.getLangOpts().CPlusPlus20) {
11068 S.DiagRuntimeBehavior(Loc, LHS.get(),
11069 S.PDiag(diag::warn_shift_lhs_negative)
11070 << LHS.get()->getSourceRange());
11071 return;
11072 }
11073
11074 llvm::APInt ResultBits =
11075 static_cast<llvm::APInt&>(Right) + Left.getMinSignedBits();
11076 if (LeftBits.uge(ResultBits))
11077 return;
11078 llvm::APSInt Result = Left.extend(ResultBits.getLimitedValue());
11079 Result = Result.shl(Right);
11080
11081 // Print the bit representation of the signed integer as an unsigned
11082 // hexadecimal number.
11083 SmallString<40> HexResult;
11084 Result.toString(HexResult, 16, /*Signed =*/false, /*Literal =*/true);
11085
11086 // If we are only missing a sign bit, this is less likely to result in actual
11087 // bugs -- if the result is cast back to an unsigned type, it will have the
11088 // expected value. Thus we place this behind a different warning that can be
11089 // turned off separately if needed.
11090 if (LeftBits == ResultBits - 1) {
11091 S.Diag(Loc, diag::warn_shift_result_sets_sign_bit)
11092 << HexResult << LHSType
11093 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11094 return;
11095 }
11096
11097 S.Diag(Loc, diag::warn_shift_result_gt_typewidth)
11098 << HexResult.str() << Result.getMinSignedBits() << LHSType
11099 << Left.getBitWidth() << LHS.get()->getSourceRange()
11100 << RHS.get()->getSourceRange();
11101}
11102
11103/// Return the resulting type when a vector is shifted
11104/// by a scalar or vector shift amount.
11105static QualType checkVectorShift(Sema &S, ExprResult &LHS, ExprResult &RHS,
11106 SourceLocation Loc, bool IsCompAssign) {
11107 // OpenCL v1.1 s6.3.j says RHS can be a vector only if LHS is a vector.
11108 if ((S.LangOpts.OpenCL || S.LangOpts.ZVector) &&
11109 !LHS.get()->getType()->isVectorType()) {
11110 S.Diag(Loc, diag::err_shift_rhs_only_vector)
11111 << RHS.get()->getType() << LHS.get()->getType()
11112 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11113 return QualType();
11114 }
11115
11116 if (!IsCompAssign) {
11117 LHS = S.UsualUnaryConversions(LHS.get());
11118 if (LHS.isInvalid()) return QualType();
11119 }
11120
11121 RHS = S.UsualUnaryConversions(RHS.get());
11122 if (RHS.isInvalid()) return QualType();
11123
11124 QualType LHSType = LHS.get()->getType();
11125 // Note that LHS might be a scalar because the routine calls not only in
11126 // OpenCL case.
11127 const VectorType *LHSVecTy = LHSType->getAs<VectorType>();
11128 QualType LHSEleType = LHSVecTy ? LHSVecTy->getElementType() : LHSType;
11129
11130 // Note that RHS might not be a vector.
11131 QualType RHSType = RHS.get()->getType();
11132 const VectorType *RHSVecTy = RHSType->getAs<VectorType>();
11133 QualType RHSEleType = RHSVecTy ? RHSVecTy->getElementType() : RHSType;
11134
11135 // The operands need to be integers.
11136 if (!LHSEleType->isIntegerType()) {
11137 S.Diag(Loc, diag::err_typecheck_expect_int)
11138 << LHS.get()->getType() << LHS.get()->getSourceRange();
11139 return QualType();
11140 }
11141
11142 if (!RHSEleType->isIntegerType()) {
11143 S.Diag(Loc, diag::err_typecheck_expect_int)
11144 << RHS.get()->getType() << RHS.get()->getSourceRange();
11145 return QualType();
11146 }
11147
11148 if (!LHSVecTy) {
11149 assert(RHSVecTy)(static_cast <bool> (RHSVecTy) ? void (0) : __assert_fail
("RHSVecTy", "clang/lib/Sema/SemaExpr.cpp", 11149, __extension__
__PRETTY_FUNCTION__))
;
11150 if (IsCompAssign)
11151 return RHSType;
11152 if (LHSEleType != RHSEleType) {
11153 LHS = S.ImpCastExprToType(LHS.get(),RHSEleType, CK_IntegralCast);
11154 LHSEleType = RHSEleType;
11155 }
11156 QualType VecTy =
11157 S.Context.getExtVectorType(LHSEleType, RHSVecTy->getNumElements());
11158 LHS = S.ImpCastExprToType(LHS.get(), VecTy, CK_VectorSplat);
11159 LHSType = VecTy;
11160 } else if (RHSVecTy) {
11161 // OpenCL v1.1 s6.3.j says that for vector types, the operators
11162 // are applied component-wise. So if RHS is a vector, then ensure
11163 // that the number of elements is the same as LHS...
11164 if (RHSVecTy->getNumElements() != LHSVecTy->getNumElements()) {
11165 S.Diag(Loc, diag::err_typecheck_vector_lengths_not_equal)
11166 << LHS.get()->getType() << RHS.get()->getType()
11167 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11168 return QualType();
11169 }
11170 if (!S.LangOpts.OpenCL && !S.LangOpts.ZVector) {
11171 const BuiltinType *LHSBT = LHSEleType->getAs<clang::BuiltinType>();
11172 const BuiltinType *RHSBT = RHSEleType->getAs<clang::BuiltinType>();
11173 if (LHSBT != RHSBT &&
11174 S.Context.getTypeSize(LHSBT) != S.Context.getTypeSize(RHSBT)) {
11175 S.Diag(Loc, diag::warn_typecheck_vector_element_sizes_not_equal)
11176 << LHS.get()->getType() << RHS.get()->getType()
11177 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11178 }
11179 }
11180 } else {
11181 // ...else expand RHS to match the number of elements in LHS.
11182 QualType VecTy =
11183 S.Context.getExtVectorType(RHSEleType, LHSVecTy->getNumElements());
11184 RHS = S.ImpCastExprToType(RHS.get(), VecTy, CK_VectorSplat);
11185 }
11186
11187 return LHSType;
11188}
11189
11190// C99 6.5.7
11191QualType Sema::CheckShiftOperands(ExprResult &LHS, ExprResult &RHS,
11192 SourceLocation Loc, BinaryOperatorKind Opc,
11193 bool IsCompAssign) {
11194 checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
11195
11196 // Vector shifts promote their scalar inputs to vector type.
11197 if (LHS.get()->getType()->isVectorType() ||
11198 RHS.get()->getType()->isVectorType()) {
11199 if (LangOpts.ZVector) {
11200 // The shift operators for the z vector extensions work basically
11201 // like general shifts, except that neither the LHS nor the RHS is
11202 // allowed to be a "vector bool".
11203 if (auto LHSVecType = LHS.get()->getType()->getAs<VectorType>())
11204 if (LHSVecType->getVectorKind() == VectorType::AltiVecBool)
11205 return InvalidOperands(Loc, LHS, RHS);
11206 if (auto RHSVecType = RHS.get()->getType()->getAs<VectorType>())
11207 if (RHSVecType->getVectorKind() == VectorType::AltiVecBool)
11208 return InvalidOperands(Loc, LHS, RHS);
11209 }
11210 return checkVectorShift(*this, LHS, RHS, Loc, IsCompAssign);
11211 }
11212
11213 // Shifts don't perform usual arithmetic conversions, they just do integer
11214 // promotions on each operand. C99 6.5.7p3
11215
11216 // For the LHS, do usual unary conversions, but then reset them away
11217 // if this is a compound assignment.
11218 ExprResult OldLHS = LHS;
11219 LHS = UsualUnaryConversions(LHS.get());
11220 if (LHS.isInvalid())
11221 return QualType();
11222 QualType LHSType = LHS.get()->getType();
11223 if (IsCompAssign) LHS = OldLHS;
11224
11225 // The RHS is simpler.
11226 RHS = UsualUnaryConversions(RHS.get());
11227 if (RHS.isInvalid())
11228 return QualType();
11229 QualType RHSType = RHS.get()->getType();
11230
11231 // C99 6.5.7p2: Each of the operands shall have integer type.
11232 // Embedded-C 4.1.6.2.2: The LHS may also be fixed-point.
11233 if ((!LHSType->isFixedPointOrIntegerType() &&
11234 !LHSType->hasIntegerRepresentation()) ||
11235 !RHSType->hasIntegerRepresentation())
11236 return InvalidOperands(Loc, LHS, RHS);
11237
11238 // C++0x: Don't allow scoped enums. FIXME: Use something better than
11239 // hasIntegerRepresentation() above instead of this.
11240 if (isScopedEnumerationType(LHSType) ||
11241 isScopedEnumerationType(RHSType)) {
11242 return InvalidOperands(Loc, LHS, RHS);
11243 }
11244 DiagnoseBadShiftValues(*this, LHS, RHS, Loc, Opc, LHSType);
11245
11246 // "The type of the result is that of the promoted left operand."
11247 return LHSType;
11248}
11249
11250/// Diagnose bad pointer comparisons.
11251static void diagnoseDistinctPointerComparison(Sema &S, SourceLocation Loc,
11252 ExprResult &LHS, ExprResult &RHS,
11253 bool IsError) {
11254 S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_distinct_pointers
11255 : diag::ext_typecheck_comparison_of_distinct_pointers)
11256 << LHS.get()->getType() << RHS.get()->getType()
11257 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11258}
11259
11260/// Returns false if the pointers are converted to a composite type,
11261/// true otherwise.
11262static bool convertPointersToCompositeType(Sema &S, SourceLocation Loc,
11263 ExprResult &LHS, ExprResult &RHS) {
11264 // C++ [expr.rel]p2:
11265 // [...] Pointer conversions (4.10) and qualification
11266 // conversions (4.4) are performed on pointer operands (or on
11267 // a pointer operand and a null pointer constant) to bring
11268 // them to their composite pointer type. [...]
11269 //
11270 // C++ [expr.eq]p1 uses the same notion for (in)equality
11271 // comparisons of pointers.
11272
11273 QualType LHSType = LHS.get()->getType();
11274 QualType RHSType = RHS.get()->getType();
11275 assert(LHSType->isPointerType() || RHSType->isPointerType() ||(static_cast <bool> (LHSType->isPointerType() || RHSType
->isPointerType() || LHSType->isMemberPointerType() || RHSType
->isMemberPointerType()) ? void (0) : __assert_fail ("LHSType->isPointerType() || RHSType->isPointerType() || LHSType->isMemberPointerType() || RHSType->isMemberPointerType()"
, "clang/lib/Sema/SemaExpr.cpp", 11276, __extension__ __PRETTY_FUNCTION__
))
11276 LHSType->isMemberPointerType() || RHSType->isMemberPointerType())(static_cast <bool> (LHSType->isPointerType() || RHSType
->isPointerType() || LHSType->isMemberPointerType() || RHSType
->isMemberPointerType()) ? void (0) : __assert_fail ("LHSType->isPointerType() || RHSType->isPointerType() || LHSType->isMemberPointerType() || RHSType->isMemberPointerType()"
, "clang/lib/Sema/SemaExpr.cpp", 11276, __extension__ __PRETTY_FUNCTION__
))
;
11277
11278 QualType T = S.FindCompositePointerType(Loc, LHS, RHS);
11279 if (T.isNull()) {
11280 if ((LHSType->isAnyPointerType() || LHSType->isMemberPointerType()) &&
11281 (RHSType->isAnyPointerType() || RHSType->isMemberPointerType()))
11282 diagnoseDistinctPointerComparison(S, Loc, LHS, RHS, /*isError*/true);
11283 else
11284 S.InvalidOperands(Loc, LHS, RHS);
11285 return true;
11286 }
11287
11288 return false;
11289}
11290
11291static void diagnoseFunctionPointerToVoidComparison(Sema &S, SourceLocation Loc,
11292 ExprResult &LHS,
11293 ExprResult &RHS,
11294 bool IsError) {
11295 S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_fptr_to_void
11296 : diag::ext_typecheck_comparison_of_fptr_to_void)
11297 << LHS.get()->getType() << RHS.get()->getType()
11298 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11299}
11300
11301static bool isObjCObjectLiteral(ExprResult &E) {
11302 switch (E.get()->IgnoreParenImpCasts()->getStmtClass()) {
11303 case Stmt::ObjCArrayLiteralClass:
11304 case Stmt::ObjCDictionaryLiteralClass:
11305 case Stmt::ObjCStringLiteralClass:
11306 case Stmt::ObjCBoxedExprClass:
11307 return true;
11308 default:
11309 // Note that ObjCBoolLiteral is NOT an object literal!
11310 return false;
11311 }
11312}
11313
11314static bool hasIsEqualMethod(Sema &S, const Expr *LHS, const Expr *RHS) {
11315 const ObjCObjectPointerType *Type =
11316 LHS->getType()->getAs<ObjCObjectPointerType>();
11317
11318 // If this is not actually an Objective-C object, bail out.
11319 if (!Type)
11320 return false;
11321
11322 // Get the LHS object's interface type.
11323 QualType InterfaceType = Type->getPointeeType();
11324
11325 // If the RHS isn't an Objective-C object, bail out.
11326 if (!RHS->getType()->isObjCObjectPointerType())
11327 return false;
11328
11329 // Try to find the -isEqual: method.
11330 Selector IsEqualSel = S.NSAPIObj->getIsEqualSelector();
11331 ObjCMethodDecl *Method = S.LookupMethodInObjectType(IsEqualSel,
11332 InterfaceType,
11333 /*IsInstance=*/true);
11334 if (!Method) {
11335 if (Type->isObjCIdType()) {
11336 // For 'id', just check the global pool.
11337 Method = S.LookupInstanceMethodInGlobalPool(IsEqualSel, SourceRange(),
11338 /*receiverId=*/true);
11339 } else {
11340 // Check protocols.
11341 Method = S.LookupMethodInQualifiedType(IsEqualSel, Type,
11342 /*IsInstance=*/true);
11343 }
11344 }
11345
11346 if (!Method)
11347 return false;
11348
11349 QualType T = Method->parameters()[0]->getType();
11350 if (!T->isObjCObjectPointerType())
11351 return false;
11352
11353 QualType R = Method->getReturnType();
11354 if (!R->isScalarType())
11355 return false;
11356
11357 return true;
11358}
11359
11360Sema::ObjCLiteralKind Sema::CheckLiteralKind(Expr *FromE) {
11361 FromE = FromE->IgnoreParenImpCasts();
11362 switch (FromE->getStmtClass()) {
11363 default:
11364 break;
11365 case Stmt::ObjCStringLiteralClass:
11366 // "string literal"
11367 return LK_String;
11368 case Stmt::ObjCArrayLiteralClass:
11369 // "array literal"
11370 return LK_Array;
11371 case Stmt::ObjCDictionaryLiteralClass:
11372 // "dictionary literal"
11373 return LK_Dictionary;
11374 case Stmt::BlockExprClass:
11375 return LK_Block;
11376 case Stmt::ObjCBoxedExprClass: {
11377 Expr *Inner = cast<ObjCBoxedExpr>(FromE)->getSubExpr()->IgnoreParens();
11378 switch (Inner->getStmtClass()) {
11379 case Stmt::IntegerLiteralClass:
11380 case Stmt::FloatingLiteralClass:
11381 case Stmt::CharacterLiteralClass:
11382 case Stmt::ObjCBoolLiteralExprClass:
11383 case Stmt::CXXBoolLiteralExprClass:
11384 // "numeric literal"
11385 return LK_Numeric;
11386 case Stmt::ImplicitCastExprClass: {
11387 CastKind CK = cast<CastExpr>(Inner)->getCastKind();
11388 // Boolean literals can be represented by implicit casts.
11389 if (CK == CK_IntegralToBoolean || CK == CK_IntegralCast)
11390 return LK_Numeric;
11391 break;
11392 }
11393 default:
11394 break;
11395 }
11396 return LK_Boxed;
11397 }
11398 }
11399 return LK_None;
11400}
11401
11402static void diagnoseObjCLiteralComparison(Sema &S, SourceLocation Loc,
11403 ExprResult &LHS, ExprResult &RHS,
11404 BinaryOperator::Opcode Opc){
11405 Expr *Literal;
11406 Expr *Other;
11407 if (isObjCObjectLiteral(LHS)) {
11408 Literal = LHS.get();
11409 Other = RHS.get();
11410 } else {
11411 Literal = RHS.get();
11412 Other = LHS.get();
11413 }
11414
11415 // Don't warn on comparisons against nil.
11416 Other = Other->IgnoreParenCasts();
11417 if (Other->isNullPointerConstant(S.getASTContext(),
11418 Expr::NPC_ValueDependentIsNotNull))
11419 return;
11420
11421 // This should be kept in sync with warn_objc_literal_comparison.
11422 // LK_String should always be after the other literals, since it has its own
11423 // warning flag.
11424 Sema::ObjCLiteralKind LiteralKind = S.CheckLiteralKind(Literal);
11425 assert(LiteralKind != Sema::LK_Block)(static_cast <bool> (LiteralKind != Sema::LK_Block) ? void
(0) : __assert_fail ("LiteralKind != Sema::LK_Block", "clang/lib/Sema/SemaExpr.cpp"
, 11425, __extension__ __PRETTY_FUNCTION__))
;
11426 if (LiteralKind == Sema::LK_None) {
11427 llvm_unreachable("Unknown Objective-C object literal kind")::llvm::llvm_unreachable_internal("Unknown Objective-C object literal kind"
, "clang/lib/Sema/SemaExpr.cpp", 11427)
;
11428 }
11429
11430 if (LiteralKind == Sema::LK_String)
11431 S.Diag(Loc, diag::warn_objc_string_literal_comparison)
11432 << Literal->getSourceRange();
11433 else
11434 S.Diag(Loc, diag::warn_objc_literal_comparison)
11435 << LiteralKind << Literal->getSourceRange();
11436
11437 if (BinaryOperator::isEqualityOp(Opc) &&
11438 hasIsEqualMethod(S, LHS.get(), RHS.get())) {
11439 SourceLocation Start = LHS.get()->getBeginLoc();
11440 SourceLocation End = S.getLocForEndOfToken(RHS.get()->getEndLoc());
11441 CharSourceRange OpRange =
11442 CharSourceRange::getCharRange(Loc, S.getLocForEndOfToken(Loc));
11443
11444 S.Diag(Loc, diag::note_objc_literal_comparison_isequal)
11445 << FixItHint::CreateInsertion(Start, Opc == BO_EQ ? "[" : "![")
11446 << FixItHint::CreateReplacement(OpRange, " isEqual:")
11447 << FixItHint::CreateInsertion(End, "]");
11448 }
11449}
11450
11451/// Warns on !x < y, !x & y where !(x < y), !(x & y) was probably intended.
11452static void diagnoseLogicalNotOnLHSofCheck(Sema &S, ExprResult &LHS,
11453 ExprResult &RHS, SourceLocation Loc,
11454 BinaryOperatorKind Opc) {
11455 // Check that left hand side is !something.
11456 UnaryOperator *UO = dyn_cast<UnaryOperator>(LHS.get()->IgnoreImpCasts());
11457 if (!UO || UO->getOpcode() != UO_LNot) return;
11458
11459 // Only check if the right hand side is non-bool arithmetic type.
11460 if (RHS.get()->isKnownToHaveBooleanValue()) return;
11461
11462 // Make sure that the something in !something is not bool.
11463 Expr *SubExpr = UO->getSubExpr()->IgnoreImpCasts();
11464 if (SubExpr->isKnownToHaveBooleanValue()) return;
11465
11466 // Emit warning.
11467 bool IsBitwiseOp = Opc == BO_And || Opc == BO_Or || Opc == BO_Xor;
11468 S.Diag(UO->getOperatorLoc(), diag::warn_logical_not_on_lhs_of_check)
11469 << Loc << IsBitwiseOp;
11470
11471 // First note suggest !(x < y)
11472 SourceLocation FirstOpen = SubExpr->getBeginLoc();
11473 SourceLocation FirstClose = RHS.get()->getEndLoc();
11474 FirstClose = S.getLocForEndOfToken(FirstClose);
11475 if (FirstClose.isInvalid())
11476 FirstOpen = SourceLocation();
11477 S.Diag(UO->getOperatorLoc(), diag::note_logical_not_fix)
11478 << IsBitwiseOp
11479 << FixItHint::CreateInsertion(FirstOpen, "(")
11480 << FixItHint::CreateInsertion(FirstClose, ")");
11481
11482 // Second note suggests (!x) < y
11483 SourceLocation SecondOpen = LHS.get()->getBeginLoc();
11484 SourceLocation SecondClose = LHS.get()->getEndLoc();
11485 SecondClose = S.getLocForEndOfToken(SecondClose);
11486 if (SecondClose.isInvalid())
11487 SecondOpen = SourceLocation();
11488 S.Diag(UO->getOperatorLoc(), diag::note_logical_not_silence_with_parens)
11489 << FixItHint::CreateInsertion(SecondOpen, "(")
11490 << FixItHint::CreateInsertion(SecondClose, ")");
11491}
11492
11493// Returns true if E refers to a non-weak array.
11494static bool checkForArray(const Expr *E) {
11495 const ValueDecl *D = nullptr;
11496 if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E)) {
11497 D = DR->getDecl();
11498 } else if (const MemberExpr *Mem = dyn_cast<MemberExpr>(E)) {
11499 if (Mem->isImplicitAccess())
11500 D = Mem->getMemberDecl();
11501 }
11502 if (!D)
11503 return false;
11504 return D->getType()->isArrayType() && !D->isWeak();
11505}
11506
11507/// Diagnose some forms of syntactically-obvious tautological comparison.
11508static void diagnoseTautologicalComparison(Sema &S, SourceLocation Loc,
11509 Expr *LHS, Expr *RHS,
11510 BinaryOperatorKind Opc) {
11511 Expr *LHSStripped = LHS->IgnoreParenImpCasts();
11512 Expr *RHSStripped = RHS->IgnoreParenImpCasts();
11513
11514 QualType LHSType = LHS->getType();
11515 QualType RHSType = RHS->getType();
11516 if (LHSType->hasFloatingRepresentation() ||
11517 (LHSType->isBlockPointerType() && !BinaryOperator::isEqualityOp(Opc)) ||
11518 S.inTemplateInstantiation())
11519 return;
11520
11521 // Comparisons between two array types are ill-formed for operator<=>, so
11522 // we shouldn't emit any additional warnings about it.
11523 if (Opc == BO_Cmp && LHSType->isArrayType() && RHSType->isArrayType())
11524 return;
11525
11526 // For non-floating point types, check for self-comparisons of the form
11527 // x == x, x != x, x < x, etc. These always evaluate to a constant, and
11528 // often indicate logic errors in the program.
11529 //
11530 // NOTE: Don't warn about comparison expressions resulting from macro
11531 // expansion. Also don't warn about comparisons which are only self
11532 // comparisons within a template instantiation. The warnings should catch
11533 // obvious cases in the definition of the template anyways. The idea is to
11534 // warn when the typed comparison operator will always evaluate to the same
11535 // result.
11536
11537 // Used for indexing into %select in warn_comparison_always
11538 enum {
11539 AlwaysConstant,
11540 AlwaysTrue,
11541 AlwaysFalse,
11542 AlwaysEqual, // std::strong_ordering::equal from operator<=>
11543 };
11544
11545 // C++2a [depr.array.comp]:
11546 // Equality and relational comparisons ([expr.eq], [expr.rel]) between two
11547 // operands of array type are deprecated.
11548 if (S.getLangOpts().CPlusPlus20 && LHSStripped->getType()->isArrayType() &&
11549 RHSStripped->getType()->isArrayType()) {
11550 S.Diag(Loc, diag::warn_depr_array_comparison)
11551 << LHS->getSourceRange() << RHS->getSourceRange()
11552 << LHSStripped->getType() << RHSStripped->getType();
11553 // Carry on to produce the tautological comparison warning, if this
11554 // expression is potentially-evaluated, we can resolve the array to a
11555 // non-weak declaration, and so on.
11556 }
11557
11558 if (!LHS->getBeginLoc().isMacroID() && !RHS->getBeginLoc().isMacroID()) {
11559 if (Expr::isSameComparisonOperand(LHS, RHS)) {
11560 unsigned Result;
11561 switch (Opc) {
11562 case BO_EQ:
11563 case BO_LE:
11564 case BO_GE:
11565 Result = AlwaysTrue;
11566 break;
11567 case BO_NE:
11568 case BO_LT:
11569 case BO_GT:
11570 Result = AlwaysFalse;
11571 break;
11572 case BO_Cmp:
11573 Result = AlwaysEqual;
11574 break;
11575 default:
11576 Result = AlwaysConstant;
11577 break;
11578 }
11579 S.DiagRuntimeBehavior(Loc, nullptr,
11580 S.PDiag(diag::warn_comparison_always)
11581 << 0 /*self-comparison*/
11582 << Result);
11583 } else if (checkForArray(LHSStripped) && checkForArray(RHSStripped)) {
11584 // What is it always going to evaluate to?
11585 unsigned Result;
11586 switch (Opc) {
11587 case BO_EQ: // e.g. array1 == array2
11588 Result = AlwaysFalse;
11589 break;
11590 case BO_NE: // e.g. array1 != array2
11591 Result = AlwaysTrue;
11592 break;
11593 default: // e.g. array1 <= array2
11594 // The best we can say is 'a constant'
11595 Result = AlwaysConstant;
11596 break;
11597 }
11598 S.DiagRuntimeBehavior(Loc, nullptr,
11599 S.PDiag(diag::warn_comparison_always)
11600 << 1 /*array comparison*/
11601 << Result);
11602 }
11603 }
11604
11605 if (isa<CastExpr>(LHSStripped))
11606 LHSStripped = LHSStripped->IgnoreParenCasts();
11607 if (isa<CastExpr>(RHSStripped))
11608 RHSStripped = RHSStripped->IgnoreParenCasts();
11609
11610 // Warn about comparisons against a string constant (unless the other
11611 // operand is null); the user probably wants string comparison function.
11612 Expr *LiteralString = nullptr;
11613 Expr *LiteralStringStripped = nullptr;
11614 if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
11615 !RHSStripped->isNullPointerConstant(S.Context,
11616 Expr::NPC_ValueDependentIsNull)) {
11617 LiteralString = LHS;
11618 LiteralStringStripped = LHSStripped;
11619 } else if ((isa<StringLiteral>(RHSStripped) ||
11620 isa<ObjCEncodeExpr>(RHSStripped)) &&
11621 !LHSStripped->isNullPointerConstant(S.Context,
11622 Expr::NPC_ValueDependentIsNull)) {
11623 LiteralString = RHS;
11624 LiteralStringStripped = RHSStripped;
11625 }
11626
11627 if (LiteralString) {
11628 S.DiagRuntimeBehavior(Loc, nullptr,
11629 S.PDiag(diag::warn_stringcompare)
11630 << isa<ObjCEncodeExpr>(LiteralStringStripped)
11631 << LiteralString->getSourceRange());
11632 }
11633}
11634
11635static ImplicitConversionKind castKindToImplicitConversionKind(CastKind CK) {
11636 switch (CK) {
11637 default: {
11638#ifndef NDEBUG
11639 llvm::errs() << "unhandled cast kind: " << CastExpr::getCastKindName(CK)
11640 << "\n";
11641#endif
11642 llvm_unreachable("unhandled cast kind")::llvm::llvm_unreachable_internal("unhandled cast kind", "clang/lib/Sema/SemaExpr.cpp"
, 11642)
;
11643 }
11644 case CK_UserDefinedConversion:
11645 return ICK_Identity;
11646 case CK_LValueToRValue:
11647 return ICK_Lvalue_To_Rvalue;
11648 case CK_ArrayToPointerDecay:
11649 return ICK_Array_To_Pointer;
11650 case CK_FunctionToPointerDecay:
11651 return ICK_Function_To_Pointer;
11652 case CK_IntegralCast:
11653 return ICK_Integral_Conversion;
11654 case CK_FloatingCast:
11655 return ICK_Floating_Conversion;
11656 case CK_IntegralToFloating:
11657 case CK_FloatingToIntegral:
11658 return ICK_Floating_Integral;
11659 case CK_IntegralComplexCast:
11660 case CK_FloatingComplexCast:
11661 case CK_FloatingComplexToIntegralComplex:
11662 case CK_IntegralComplexToFloatingComplex:
11663 return ICK_Complex_Conversion;
11664 case CK_FloatingComplexToReal:
11665 case CK_FloatingRealToComplex:
11666 case CK_IntegralComplexToReal:
11667 case CK_IntegralRealToComplex:
11668 return ICK_Complex_Real;
11669 }
11670}
11671
11672static bool checkThreeWayNarrowingConversion(Sema &S, QualType ToType, Expr *E,
11673 QualType FromType,
11674 SourceLocation Loc) {
11675 // Check for a narrowing implicit conversion.
11676 StandardConversionSequence SCS;
11677 SCS.setAsIdentityConversion();
11678 SCS.setToType(0, FromType);
11679 SCS.setToType(1, ToType);
11680 if (const auto *ICE = dyn_cast<ImplicitCastExpr>(E))
11681 SCS.Second = castKindToImplicitConversionKind(ICE->getCastKind());
11682
11683 APValue PreNarrowingValue;
11684 QualType PreNarrowingType;
11685 switch (SCS.getNarrowingKind(S.Context, E, PreNarrowingValue,
11686 PreNarrowingType,
11687 /*IgnoreFloatToIntegralConversion*/ true)) {
11688 case NK_Dependent_Narrowing:
11689 // Implicit conversion to a narrower type, but the expression is
11690 // value-dependent so we can't tell whether it's actually narrowing.
11691 case NK_Not_Narrowing:
11692 return false;
11693
11694 case NK_Constant_Narrowing:
11695 // Implicit conversion to a narrower type, and the value is not a constant
11696 // expression.
11697 S.Diag(E->getBeginLoc(), diag::err_spaceship_argument_narrowing)
11698 << /*Constant*/ 1
11699 << PreNarrowingValue.getAsString(S.Context, PreNarrowingType) << ToType;
11700 return true;
11701
11702 case NK_Variable_Narrowing:
11703 // Implicit conversion to a narrower type, and the value is not a constant
11704 // expression.
11705 case NK_Type_Narrowing:
11706 S.Diag(E->getBeginLoc(), diag::err_spaceship_argument_narrowing)
11707 << /*Constant*/ 0 << FromType << ToType;
11708 // TODO: It's not a constant expression, but what if the user intended it
11709 // to be? Can we produce notes to help them figure out why it isn't?
11710 return true;
11711 }
11712 llvm_unreachable("unhandled case in switch")::llvm::llvm_unreachable_internal("unhandled case in switch",
"clang/lib/Sema/SemaExpr.cpp", 11712)
;
11713}
11714
11715static QualType checkArithmeticOrEnumeralThreeWayCompare(Sema &S,
11716 ExprResult &LHS,
11717 ExprResult &RHS,
11718 SourceLocation Loc) {
11719 QualType LHSType = LHS.get()->getType();
11720 QualType RHSType = RHS.get()->getType();
11721 // Dig out the original argument type and expression before implicit casts
11722 // were applied. These are the types/expressions we need to check the
11723 // [expr.spaceship] requirements against.
11724 ExprResult LHSStripped = LHS.get()->IgnoreParenImpCasts();
11725 ExprResult RHSStripped = RHS.get()->IgnoreParenImpCasts();
11726 QualType LHSStrippedType = LHSStripped.get()->getType();
11727 QualType RHSStrippedType = RHSStripped.get()->getType();
11728
11729 // C++2a [expr.spaceship]p3: If one of the operands is of type bool and the
11730 // other is not, the program is ill-formed.
11731 if (LHSStrippedType->isBooleanType() != RHSStrippedType->isBooleanType()) {
11732 S.InvalidOperands(Loc, LHSStripped, RHSStripped);
11733 return QualType();
11734 }
11735
11736 // FIXME: Consider combining this with checkEnumArithmeticConversions.
11737 int NumEnumArgs = (int)LHSStrippedType->isEnumeralType() +
11738 RHSStrippedType->isEnumeralType();
11739 if (NumEnumArgs == 1) {
11740 bool LHSIsEnum = LHSStrippedType->isEnumeralType();
11741 QualType OtherTy = LHSIsEnum ? RHSStrippedType : LHSStrippedType;
11742 if (OtherTy->hasFloatingRepresentation()) {
11743 S.InvalidOperands(Loc, LHSStripped, RHSStripped);
11744 return QualType();
11745 }
11746 }
11747 if (NumEnumArgs == 2) {
11748 // C++2a [expr.spaceship]p5: If both operands have the same enumeration
11749 // type E, the operator yields the result of converting the operands
11750 // to the underlying type of E and applying <=> to the converted operands.
11751 if (!S.Context.hasSameUnqualifiedType(LHSStrippedType, RHSStrippedType)) {
11752 S.InvalidOperands(Loc, LHS, RHS);
11753 return QualType();
11754 }
11755 QualType IntType =
11756 LHSStrippedType->castAs<EnumType>()->getDecl()->getIntegerType();
11757 assert(IntType->isArithmeticType())(static_cast <bool> (IntType->isArithmeticType()) ? void
(0) : __assert_fail ("IntType->isArithmeticType()", "clang/lib/Sema/SemaExpr.cpp"
, 11757, __extension__ __PRETTY_FUNCTION__))
;
11758
11759 // We can't use `CK_IntegralCast` when the underlying type is 'bool', so we
11760 // promote the boolean type, and all other promotable integer types, to
11761 // avoid this.
11762 if (IntType->isPromotableIntegerType())
11763 IntType = S.Context.getPromotedIntegerType(IntType);
11764
11765 LHS = S.ImpCastExprToType(LHS.get(), IntType, CK_IntegralCast);
11766 RHS = S.ImpCastExprToType(RHS.get(), IntType, CK_IntegralCast);
11767 LHSType = RHSType = IntType;
11768 }
11769
11770 // C++2a [expr.spaceship]p4: If both operands have arithmetic types, the
11771 // usual arithmetic conversions are applied to the operands.
11772 QualType Type =
11773 S.UsualArithmeticConversions(LHS, RHS, Loc, Sema::ACK_Comparison);
11774 if (LHS.isInvalid() || RHS.isInvalid())
11775 return QualType();
11776 if (Type.isNull())
11777 return S.InvalidOperands(Loc, LHS, RHS);
11778
11779 Optional<ComparisonCategoryType> CCT =
11780 getComparisonCategoryForBuiltinCmp(Type);
11781 if (!CCT)
11782 return S.InvalidOperands(Loc, LHS, RHS);
11783
11784 bool HasNarrowing = checkThreeWayNarrowingConversion(
11785 S, Type, LHS.get(), LHSType, LHS.get()->getBeginLoc());
11786 HasNarrowing |= checkThreeWayNarrowingConversion(S, Type, RHS.get(), RHSType,
11787 RHS.get()->getBeginLoc());
11788 if (HasNarrowing)
11789 return QualType();
11790
11791 assert(!Type.isNull() && "composite type for <=> has not been set")(static_cast <bool> (!Type.isNull() && "composite type for <=> has not been set"
) ? void (0) : __assert_fail ("!Type.isNull() && \"composite type for <=> has not been set\""
, "clang/lib/Sema/SemaExpr.cpp", 11791, __extension__ __PRETTY_FUNCTION__
))
;
11792
11793 return S.CheckComparisonCategoryType(
11794 *CCT, Loc, Sema::ComparisonCategoryUsage::OperatorInExpression);
11795}
11796
11797static QualType checkArithmeticOrEnumeralCompare(Sema &S, ExprResult &LHS,
11798 ExprResult &RHS,
11799 SourceLocation Loc,
11800 BinaryOperatorKind Opc) {
11801 if (Opc == BO_Cmp)
11802 return checkArithmeticOrEnumeralThreeWayCompare(S, LHS, RHS, Loc);
11803
11804 // C99 6.5.8p3 / C99 6.5.9p4
11805 QualType Type =
11806 S.UsualArithmeticConversions(LHS, RHS, Loc, Sema::ACK_Comparison);
11807 if (LHS.isInvalid() || RHS.isInvalid())
11808 return QualType();
11809 if (Type.isNull())
11810 return S.InvalidOperands(Loc, LHS, RHS);
11811 assert(Type->isArithmeticType() || Type->isEnumeralType())(static_cast <bool> (Type->isArithmeticType() || Type
->isEnumeralType()) ? void (0) : __assert_fail ("Type->isArithmeticType() || Type->isEnumeralType()"
, "clang/lib/Sema/SemaExpr.cpp", 11811, __extension__ __PRETTY_FUNCTION__
))
;
11812
11813 if (Type->isAnyComplexType() && BinaryOperator::isRelationalOp(Opc))
11814 return S.InvalidOperands(Loc, LHS, RHS);
11815
11816 // Check for comparisons of floating point operands using != and ==.
11817 if (Type->hasFloatingRepresentation() && BinaryOperator::isEqualityOp(Opc))
11818 S.CheckFloatComparison(Loc, LHS.get(), RHS.get());
11819
11820 // The result of comparisons is 'bool' in C++, 'int' in C.
11821 return S.Context.getLogicalOperationType();
11822}
11823
11824void Sema::CheckPtrComparisonWithNullChar(ExprResult &E, ExprResult &NullE) {
11825 if (!NullE.get()->getType()->isAnyPointerType())
11826 return;
11827 int NullValue = PP.isMacroDefined("NULL") ? 0 : 1;
11828 if (!E.get()->getType()->isAnyPointerType() &&
11829 E.get()->isNullPointerConstant(Context,
11830 Expr::NPC_ValueDependentIsNotNull) ==
11831 Expr::NPCK_ZeroExpression) {
11832 if (const auto *CL = dyn_cast<CharacterLiteral>(E.get())) {
11833 if (CL->getValue() == 0)
11834 Diag(E.get()->getExprLoc(), diag::warn_pointer_compare)
11835 << NullValue
11836 << FixItHint::CreateReplacement(E.get()->getExprLoc(),
11837 NullValue ? "NULL" : "(void *)0");
11838 } else if (const auto *CE = dyn_cast<CStyleCastExpr>(E.get())) {
11839 TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
11840 QualType T = Context.getCanonicalType(TI->getType()).getUnqualifiedType();
11841 if (T == Context.CharTy)
11842 Diag(E.get()->getExprLoc(), diag::warn_pointer_compare)
11843 << NullValue
11844 << FixItHint::CreateReplacement(E.get()->getExprLoc(),
11845 NullValue ? "NULL" : "(void *)0");
11846 }
11847 }
11848}
11849
11850// C99 6.5.8, C++ [expr.rel]
11851QualType Sema::CheckCompareOperands(ExprResult &LHS, ExprResult &RHS,
11852 SourceLocation Loc,
11853 BinaryOperatorKind Opc) {
11854 bool IsRelational = BinaryOperator::isRelationalOp(Opc);
11855 bool IsThreeWay = Opc == BO_Cmp;
11856 bool IsOrdered = IsRelational || IsThreeWay;
11857 auto IsAnyPointerType = [](ExprResult E) {
11858 QualType Ty = E.get()->getType();
11859 return Ty->isPointerType() || Ty->isMemberPointerType();
11860 };
11861
11862 // C++2a [expr.spaceship]p6: If at least one of the operands is of pointer
11863 // type, array-to-pointer, ..., conversions are performed on both operands to
11864 // bring them to their composite type.
11865 // Otherwise, all comparisons expect an rvalue, so convert to rvalue before
11866 // any type-related checks.
11867 if (!IsThreeWay || IsAnyPointerType(LHS) || IsAnyPointerType(RHS)) {
11868 LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
11869 if (LHS.isInvalid())
11870 return QualType();
11871 RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
11872 if (RHS.isInvalid())
11873 return QualType();
11874 } else {
11875 LHS = DefaultLvalueConversion(LHS.get());
11876 if (LHS.isInvalid())
11877 return QualType();
11878 RHS = DefaultLvalueConversion(RHS.get());
11879 if (RHS.isInvalid())
11880 return QualType();
11881 }
11882
11883 checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/true);
11884 if (!getLangOpts().CPlusPlus && BinaryOperator::isEqualityOp(Opc)) {
11885 CheckPtrComparisonWithNullChar(LHS, RHS);
11886 CheckPtrComparisonWithNullChar(RHS, LHS);
11887 }
11888
11889 // Handle vector comparisons separately.
11890 if (LHS.get()->getType()->isVectorType() ||
11891 RHS.get()->getType()->isVectorType())
11892 return CheckVectorCompareOperands(LHS, RHS, Loc, Opc);
11893
11894 diagnoseLogicalNotOnLHSofCheck(*this, LHS, RHS, Loc, Opc);
11895 diagnoseTautologicalComparison(*this, Loc, LHS.get(), RHS.get(), Opc);
11896
11897 QualType LHSType = LHS.get()->getType();
11898 QualType RHSType = RHS.get()->getType();
11899 if ((LHSType->isArithmeticType() || LHSType->isEnumeralType()) &&
11900 (RHSType->isArithmeticType() || RHSType->isEnumeralType()))
11901 return checkArithmeticOrEnumeralCompare(*this, LHS, RHS, Loc, Opc);
11902
11903 const Expr::NullPointerConstantKind LHSNullKind =
11904 LHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull);
11905 const Expr::NullPointerConstantKind RHSNullKind =
11906 RHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull);
11907 bool LHSIsNull = LHSNullKind != Expr::NPCK_NotNull;
11908 bool RHSIsNull = RHSNullKind != Expr::NPCK_NotNull;
11909
11910 auto computeResultTy = [&]() {
11911 if (Opc != BO_Cmp)
11912 return Context.getLogicalOperationType();
11913 assert(getLangOpts().CPlusPlus)(static_cast <bool> (getLangOpts().CPlusPlus) ? void (0
) : __assert_fail ("getLangOpts().CPlusPlus", "clang/lib/Sema/SemaExpr.cpp"
, 11913, __extension__ __PRETTY_FUNCTION__))
;
11914 assert(Context.hasSameType(LHS.get()->getType(), RHS.get()->getType()))(static_cast <bool> (Context.hasSameType(LHS.get()->
getType(), RHS.get()->getType())) ? void (0) : __assert_fail
("Context.hasSameType(LHS.get()->getType(), RHS.get()->getType())"
, "clang/lib/Sema/SemaExpr.cpp", 11914, __extension__ __PRETTY_FUNCTION__
))
;
11915
11916 QualType CompositeTy = LHS.get()->getType();
11917 assert(!CompositeTy->isReferenceType())(static_cast <bool> (!CompositeTy->isReferenceType()
) ? void (0) : __assert_fail ("!CompositeTy->isReferenceType()"
, "clang/lib/Sema/SemaExpr.cpp", 11917, __extension__ __PRETTY_FUNCTION__
))
;
11918
11919 Optional<ComparisonCategoryType> CCT =
11920 getComparisonCategoryForBuiltinCmp(CompositeTy);
11921 if (!CCT)
11922 return InvalidOperands(Loc, LHS, RHS);
11923
11924 if (CompositeTy->isPointerType() && LHSIsNull != RHSIsNull) {
11925 // P0946R0: Comparisons between a null pointer constant and an object
11926 // pointer result in std::strong_equality, which is ill-formed under
11927 // P1959R0.
11928 Diag(Loc, diag::err_typecheck_three_way_comparison_of_pointer_and_zero)
11929 << (LHSIsNull ? LHS.get()->getSourceRange()
11930 : RHS.get()->getSourceRange());
11931 return QualType();
11932 }
11933
11934 return CheckComparisonCategoryType(
11935 *CCT, Loc, ComparisonCategoryUsage::OperatorInExpression);
11936 };
11937
11938 if (!IsOrdered && LHSIsNull != RHSIsNull) {
11939 bool IsEquality = Opc == BO_EQ;
11940 if (RHSIsNull)
11941 DiagnoseAlwaysNonNullPointer(LHS.get(), RHSNullKind, IsEquality,
11942 RHS.get()->getSourceRange());
11943 else
11944 DiagnoseAlwaysNonNullPointer(RHS.get(), LHSNullKind, IsEquality,
11945 LHS.get()->getSourceRange());
11946 }
11947
11948 if (IsOrdered && LHSType->isFunctionPointerType() &&
11949 RHSType->isFunctionPointerType()) {
11950 // Valid unless a relational comparison of function pointers
11951 bool IsError = Opc == BO_Cmp;
11952 auto DiagID =
11953 IsError ? diag::err_typecheck_ordered_comparison_of_function_pointers
11954 : getLangOpts().CPlusPlus
11955 ? diag::warn_typecheck_ordered_comparison_of_function_pointers
11956 : diag::ext_typecheck_ordered_comparison_of_function_pointers;
11957 Diag(Loc, DiagID) << LHSType << RHSType << LHS.get()->getSourceRange()
11958 << RHS.get()->getSourceRange();
11959 if (IsError)
11960 return QualType();
11961 }
11962
11963 if ((LHSType->isIntegerType() && !LHSIsNull) ||
11964 (RHSType->isIntegerType() && !RHSIsNull)) {
11965 // Skip normal pointer conversion checks in this case; we have better
11966 // diagnostics for this below.
11967 } else if (getLangOpts().CPlusPlus) {
11968 // Equality comparison of a function pointer to a void pointer is invalid,
11969 // but we allow it as an extension.
11970 // FIXME: If we really want to allow this, should it be part of composite
11971 // pointer type computation so it works in conditionals too?
11972 if (!IsOrdered &&
11973 ((LHSType->isFunctionPointerType() && RHSType->isVoidPointerType()) ||
11974 (RHSType->isFunctionPointerType() && LHSType->isVoidPointerType()))) {
11975 // This is a gcc extension compatibility comparison.
11976 // In a SFINAE context, we treat this as a hard error to maintain
11977 // conformance with the C++ standard.
11978 diagnoseFunctionPointerToVoidComparison(
11979 *this, Loc, LHS, RHS, /*isError*/ (bool)isSFINAEContext());
11980
11981 if (isSFINAEContext())
11982 return QualType();
11983
11984 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
11985 return computeResultTy();
11986 }
11987
11988 // C++ [expr.eq]p2:
11989 // If at least one operand is a pointer [...] bring them to their
11990 // composite pointer type.
11991 // C++ [expr.spaceship]p6
11992 // If at least one of the operands is of pointer type, [...] bring them
11993 // to their composite pointer type.
11994 // C++ [expr.rel]p2:
11995 // If both operands are pointers, [...] bring them to their composite
11996 // pointer type.
11997 // For <=>, the only valid non-pointer types are arrays and functions, and
11998 // we already decayed those, so this is really the same as the relational
11999 // comparison rule.
12000 if ((int)LHSType->isPointerType() + (int)RHSType->isPointerType() >=
12001 (IsOrdered ? 2 : 1) &&
12002 (!LangOpts.ObjCAutoRefCount || !(LHSType->isObjCObjectPointerType() ||
12003 RHSType->isObjCObjectPointerType()))) {
12004 if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
12005 return QualType();
12006 return computeResultTy();
12007 }
12008 } else if (LHSType->isPointerType() &&
12009 RHSType->isPointerType()) { // C99 6.5.8p2
12010 // All of the following pointer-related warnings are GCC extensions, except
12011 // when handling null pointer constants.
12012 QualType LCanPointeeTy =
12013 LHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
12014 QualType RCanPointeeTy =
12015 RHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
12016
12017 // C99 6.5.9p2 and C99 6.5.8p2
12018 if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
12019 RCanPointeeTy.getUnqualifiedType())) {
12020 if (IsRelational) {
12021 // Pointers both need to point to complete or incomplete types
12022 if ((LCanPointeeTy->isIncompleteType() !=
12023 RCanPointeeTy->isIncompleteType()) &&
12024 !getLangOpts().C11) {
12025 Diag(Loc, diag::ext_typecheck_compare_complete_incomplete_pointers)
12026 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange()
12027 << LHSType << RHSType << LCanPointeeTy->isIncompleteType()
12028 << RCanPointeeTy->isIncompleteType();
12029 }
12030 }
12031 } else if (!IsRelational &&
12032 (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
12033 // Valid unless comparison between non-null pointer and function pointer
12034 if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
12035 && !LHSIsNull && !RHSIsNull)
12036 diagnoseFunctionPointerToVoidComparison(*this, Loc, LHS, RHS,
12037 /*isError*/false);
12038 } else {
12039 // Invalid
12040 diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS, /*isError*/false);
12041 }
12042 if (LCanPointeeTy != RCanPointeeTy) {
12043 // Treat NULL constant as a special case in OpenCL.
12044 if (getLangOpts().OpenCL && !LHSIsNull && !RHSIsNull) {
12045 if (!LCanPointeeTy.isAddressSpaceOverlapping(RCanPointeeTy)) {
12046 Diag(Loc,
12047 diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
12048 << LHSType << RHSType << 0 /* comparison */
12049 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
12050 }
12051 }
12052 LangAS AddrSpaceL = LCanPointeeTy.getAddressSpace();
12053 LangAS AddrSpaceR = RCanPointeeTy.getAddressSpace();
12054 CastKind Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion
12055 : CK_BitCast;
12056 if (LHSIsNull && !RHSIsNull)
12057 LHS = ImpCastExprToType(LHS.get(), RHSType, Kind);
12058 else
12059 RHS = ImpCastExprToType(RHS.get(), LHSType, Kind);
12060 }
12061 return computeResultTy();
12062 }
12063
12064 if (getLangOpts().CPlusPlus) {
12065 // C++ [expr.eq]p4:
12066 // Two operands of type std::nullptr_t or one operand of type
12067 // std::nullptr_t and the other a null pointer constant compare equal.
12068 if (!IsOrdered && LHSIsNull && RHSIsNull) {
12069 if (LHSType->isNullPtrType()) {
12070 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
12071 return computeResultTy();
12072 }
12073 if (RHSType->isNullPtrType()) {
12074 LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
12075 return computeResultTy();
12076 }
12077 }
12078
12079 // Comparison of Objective-C pointers and block pointers against nullptr_t.
12080 // These aren't covered by the composite pointer type rules.
12081 if (!IsOrdered && RHSType->isNullPtrType() &&
12082 (LHSType->isObjCObjectPointerType() || LHSType->isBlockPointerType())) {
12083 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
12084 return computeResultTy();
12085 }
12086 if (!IsOrdered && LHSType->isNullPtrType() &&
12087 (RHSType->isObjCObjectPointerType() || RHSType->isBlockPointerType())) {
12088 LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
12089 return computeResultTy();
12090 }
12091
12092 if (IsRelational &&
12093 ((LHSType->isNullPtrType() && RHSType->isPointerType()) ||
12094 (RHSType->isNullPtrType() && LHSType->isPointerType()))) {
12095 // HACK: Relational comparison of nullptr_t against a pointer type is
12096 // invalid per DR583, but we allow it within std::less<> and friends,
12097 // since otherwise common uses of it break.
12098 // FIXME: Consider removing this hack once LWG fixes std::less<> and
12099 // friends to have std::nullptr_t overload candidates.
12100 DeclContext *DC = CurContext;
12101 if (isa<FunctionDecl>(DC))
12102 DC = DC->getParent();
12103 if (auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(DC)) {
12104 if (CTSD->isInStdNamespace() &&
12105 llvm::StringSwitch<bool>(CTSD->getName())
12106 .Cases("less", "less_equal", "greater", "greater_equal", true)
12107 .Default(false)) {
12108 if (RHSType->isNullPtrType())
12109 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
12110 else
12111 LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
12112 return computeResultTy();
12113 }
12114 }
12115 }
12116
12117 // C++ [expr.eq]p2:
12118 // If at least one operand is a pointer to member, [...] bring them to
12119 // their composite pointer type.
12120 if (!IsOrdered &&
12121 (LHSType->isMemberPointerType() || RHSType->isMemberPointerType())) {
12122 if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
12123 return QualType();
12124 else
12125 return computeResultTy();
12126 }
12127 }
12128
12129 // Handle block pointer types.
12130 if (!IsOrdered && LHSType->isBlockPointerType() &&
12131 RHSType->isBlockPointerType()) {
12132 QualType lpointee = LHSType->castAs<BlockPointerType>()->getPointeeType();
12133 QualType rpointee = RHSType->castAs<BlockPointerType>()->getPointeeType();
12134
12135 if (!LHSIsNull && !RHSIsNull &&
12136 !Context.typesAreCompatible(lpointee, rpointee)) {
12137 Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
12138 << LHSType << RHSType << LHS.get()->getSourceRange()
12139 << RHS.get()->getSourceRange();
12140 }
12141 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
12142 return computeResultTy();
12143 }
12144
12145 // Allow block pointers to be compared with null pointer constants.
12146 if (!IsOrdered
12147 && ((LHSType->isBlockPointerType() && RHSType->isPointerType())
12148 || (LHSType->isPointerType() && RHSType->isBlockPointerType()))) {
12149 if (!LHSIsNull && !RHSIsNull) {
12150 if (!((RHSType->isPointerType() && RHSType->castAs<PointerType>()
12151 ->getPointeeType()->isVoidType())
12152 || (LHSType->isPointerType() && LHSType->castAs<PointerType>()
12153 ->getPointeeType()->isVoidType())))
12154 Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
12155 << LHSType << RHSType << LHS.get()->getSourceRange()
12156 << RHS.get()->getSourceRange();
12157 }
12158 if (LHSIsNull && !RHSIsNull)
12159 LHS = ImpCastExprToType(LHS.get(), RHSType,
12160 RHSType->isPointerType() ? CK_BitCast
12161 : CK_AnyPointerToBlockPointerCast);
12162 else
12163 RHS = ImpCastExprToType(RHS.get(), LHSType,
12164 LHSType->isPointerType() ? CK_BitCast
12165 : CK_AnyPointerToBlockPointerCast);
12166 return computeResultTy();
12167 }
12168
12169 if (LHSType->isObjCObjectPointerType() ||
12170 RHSType->isObjCObjectPointerType()) {
12171 const PointerType *LPT = LHSType->getAs<PointerType>();
12172 const PointerType *RPT = RHSType->getAs<PointerType>();
12173 if (LPT || RPT) {
12174 bool LPtrToVoid = LPT ? LPT->getPointeeType()->isVoidType() : false;
12175 bool RPtrToVoid = RPT ? RPT->getPointeeType()->isVoidType() : false;
12176
12177 if (!LPtrToVoid && !RPtrToVoid &&
12178 !Context.typesAreCompatible(LHSType, RHSType)) {
12179 diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
12180 /*isError*/false);
12181 }
12182 // FIXME: If LPtrToVoid, we should presumably convert the LHS rather than
12183 // the RHS, but we have test coverage for this behavior.
12184 // FIXME: Consider using convertPointersToCompositeType in C++.
12185 if (LHSIsNull && !RHSIsNull) {
12186 Expr *E = LHS.get();
12187 if (getLangOpts().ObjCAutoRefCount)
12188 CheckObjCConversion(SourceRange(), RHSType, E,
12189 CCK_ImplicitConversion);
12190 LHS = ImpCastExprToType(E, RHSType,
12191 RPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
12192 }
12193 else {
12194 Expr *E = RHS.get();
12195 if (getLangOpts().ObjCAutoRefCount)
12196 CheckObjCConversion(SourceRange(), LHSType, E, CCK_ImplicitConversion,
12197 /*Diagnose=*/true,
12198 /*DiagnoseCFAudited=*/false, Opc);
12199 RHS = ImpCastExprToType(E, LHSType,
12200 LPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
12201 }
12202 return computeResultTy();
12203 }
12204 if (LHSType->isObjCObjectPointerType() &&
12205 RHSType->isObjCObjectPointerType()) {
12206 if (!Context.areComparableObjCPointerTypes(LHSType, RHSType))
12207 diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
12208 /*isError*/false);
12209 if (isObjCObjectLiteral(LHS) || isObjCObjectLiteral(RHS))
12210 diagnoseObjCLiteralComparison(*this, Loc, LHS, RHS, Opc);
12211
12212 if (LHSIsNull && !RHSIsNull)
12213 LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
12214 else
12215 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
12216 return computeResultTy();
12217 }
12218
12219 if (!IsOrdered && LHSType->isBlockPointerType() &&
12220 RHSType->isBlockCompatibleObjCPointerType(Context)) {
12221 LHS = ImpCastExprToType(LHS.get(), RHSType,
12222 CK_BlockPointerToObjCPointerCast);
12223 return computeResultTy();
12224 } else if (!IsOrdered &&
12225 LHSType->isBlockCompatibleObjCPointerType(Context) &&
12226 RHSType->isBlockPointerType()) {
12227 RHS = ImpCastExprToType(RHS.get(), LHSType,
12228 CK_BlockPointerToObjCPointerCast);
12229 return computeResultTy();
12230 }
12231 }
12232 if ((LHSType->isAnyPointerType() && RHSType->isIntegerType()) ||
12233 (LHSType->isIntegerType() && RHSType->isAnyPointerType())) {
12234 unsigned DiagID = 0;
12235 bool isError = false;
12236 if (LangOpts.DebuggerSupport) {
12237 // Under a debugger, allow the comparison of pointers to integers,
12238 // since users tend to want to compare addresses.
12239 } else if ((LHSIsNull && LHSType->isIntegerType()) ||
12240 (RHSIsNull && RHSType->isIntegerType())) {
12241 if (IsOrdered) {
12242 isError = getLangOpts().CPlusPlus;
12243 DiagID =
12244 isError ? diag::err_typecheck_ordered_comparison_of_pointer_and_zero
12245 : diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
12246 }
12247 } else if (getLangOpts().CPlusPlus) {
12248 DiagID = diag::err_typecheck_comparison_of_pointer_integer;
12249 isError = true;
12250 } else if (IsOrdered)
12251 DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
12252 else
12253 DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
12254
12255 if (DiagID) {
12256 Diag(Loc, DiagID)
12257 << LHSType << RHSType << LHS.get()->getSourceRange()
12258 << RHS.get()->getSourceRange();
12259 if (isError)
12260 return QualType();
12261 }
12262
12263 if (LHSType->isIntegerType())
12264 LHS = ImpCastExprToType(LHS.get(), RHSType,
12265 LHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
12266 else
12267 RHS = ImpCastExprToType(RHS.get(), LHSType,
12268 RHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
12269 return computeResultTy();
12270 }
12271
12272 // Handle block pointers.
12273 if (!IsOrdered && RHSIsNull
12274 && LHSType->isBlockPointerType() && RHSType->isIntegerType()) {
12275 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
12276 return computeResultTy();
12277 }
12278 if (!IsOrdered && LHSIsNull
12279 && LHSType->isIntegerType() && RHSType->isBlockPointerType()) {
12280 LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
12281 return computeResultTy();
12282 }
12283
12284 if (getLangOpts().getOpenCLCompatibleVersion() >= 200) {
12285 if (LHSType->isClkEventT() && RHSType->isClkEventT()) {
12286 return computeResultTy();
12287 }
12288
12289 if (LHSType->isQueueT() && RHSType->isQueueT()) {
12290 return computeResultTy();
12291 }
12292
12293 if (LHSIsNull && RHSType->isQueueT()) {
12294 LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
12295 return computeResultTy();
12296 }
12297
12298 if (LHSType->isQueueT() && RHSIsNull) {
12299 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
12300 return computeResultTy();
12301 }
12302 }
12303
12304 return InvalidOperands(Loc, LHS, RHS);
12305}
12306
12307// Return a signed ext_vector_type that is of identical size and number of
12308// elements. For floating point vectors, return an integer type of identical
12309// size and number of elements. In the non ext_vector_type case, search from
12310// the largest type to the smallest type to avoid cases where long long == long,
12311// where long gets picked over long long.
12312QualType Sema::GetSignedVectorType(QualType V) {
12313 const VectorType *VTy = V->castAs<VectorType>();
12314 unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
12315
12316 if (isa<ExtVectorType>(VTy)) {
12317 if (TypeSize == Context.getTypeSize(Context.CharTy))
12318 return Context.getExtVectorType(Context.CharTy, VTy->getNumElements());
12319 if (TypeSize == Context.getTypeSize(Context.ShortTy))
12320 return Context.getExtVectorType(Context.ShortTy, VTy->getNumElements());
12321 if (TypeSize == Context.getTypeSize(Context.IntTy))
12322 return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
12323 if (TypeSize == Context.getTypeSize(Context.Int128Ty))
12324 return Context.getExtVectorType(Context.Int128Ty, VTy->getNumElements());
12325 if (TypeSize == Context.getTypeSize(Context.LongTy))
12326 return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
12327 assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&(static_cast <bool> (TypeSize == Context.getTypeSize(Context
.LongLongTy) && "Unhandled vector element size in vector compare"
) ? void (0) : __assert_fail ("TypeSize == Context.getTypeSize(Context.LongLongTy) && \"Unhandled vector element size in vector compare\""
, "clang/lib/Sema/SemaExpr.cpp", 12328, __extension__ __PRETTY_FUNCTION__
))
12328 "Unhandled vector element size in vector compare")(static_cast <bool> (TypeSize == Context.getTypeSize(Context
.LongLongTy) && "Unhandled vector element size in vector compare"
) ? void (0) : __assert_fail ("TypeSize == Context.getTypeSize(Context.LongLongTy) && \"Unhandled vector element size in vector compare\""
, "clang/lib/Sema/SemaExpr.cpp", 12328, __extension__ __PRETTY_FUNCTION__
))
;
12329 return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
12330 }
12331
12332 if (TypeSize == Context.getTypeSize(Context.Int128Ty))
12333 return Context.getVectorType(Context.Int128Ty, VTy->getNumElements(),
12334 VectorType::GenericVector);
12335 if (TypeSize == Context.getTypeSize(Context.LongLongTy))
12336 return Context.getVectorType(Context.LongLongTy, VTy->getNumElements(),
12337 VectorType::GenericVector);
12338 if (TypeSize == Context.getTypeSize(Context.LongTy))
12339 return Context.getVectorType(Context.LongTy, VTy->getNumElements(),
12340 VectorType::GenericVector);
12341 if (TypeSize == Context.getTypeSize(Context.IntTy))
12342 return Context.getVectorType(Context.IntTy, VTy->getNumElements(),
12343 VectorType::GenericVector);
12344 if (TypeSize == Context.getTypeSize(Context.ShortTy))
12345 return Context.getVectorType(Context.ShortTy, VTy->getNumElements(),
12346 VectorType::GenericVector);
12347 assert(TypeSize == Context.getTypeSize(Context.CharTy) &&(static_cast <bool> (TypeSize == Context.getTypeSize(Context
.CharTy) && "Unhandled vector element size in vector compare"
) ? void (0) : __assert_fail ("TypeSize == Context.getTypeSize(Context.CharTy) && \"Unhandled vector element size in vector compare\""
, "clang/lib/Sema/SemaExpr.cpp", 12348, __extension__ __PRETTY_FUNCTION__
))
12348 "Unhandled vector element size in vector compare")(static_cast <bool> (TypeSize == Context.getTypeSize(Context
.CharTy) && "Unhandled vector element size in vector compare"
) ? void (0) : __assert_fail ("TypeSize == Context.getTypeSize(Context.CharTy) && \"Unhandled vector element size in vector compare\""
, "clang/lib/Sema/SemaExpr.cpp", 12348, __extension__ __PRETTY_FUNCTION__
))
;
12349 return Context.getVectorType(Context.CharTy, VTy->getNumElements(),
12350 VectorType::GenericVector);
12351}
12352
12353/// CheckVectorCompareOperands - vector comparisons are a clang extension that
12354/// operates on extended vector types. Instead of producing an IntTy result,
12355/// like a scalar comparison, a vector comparison produces a vector of integer
12356/// types.
12357QualType Sema::CheckVectorCompareOperands(ExprResult &LHS, ExprResult &RHS,
12358 SourceLocation Loc,
12359 BinaryOperatorKind Opc) {
12360 if (Opc == BO_Cmp) {
12361 Diag(Loc, diag::err_three_way_vector_comparison);
12362 return QualType();
12363 }
12364
12365 // Check to make sure we're operating on vectors of the same type and width,
12366 // Allowing one side to be a scalar of element type.
12367 QualType vType = CheckVectorOperands(LHS, RHS, Loc, /*isCompAssign*/false,
12368 /*AllowBothBool*/true,
12369 /*AllowBoolConversions*/getLangOpts().ZVector);
12370 if (vType.isNull())
12371 return vType;
12372
12373 QualType LHSType = LHS.get()->getType();
12374
12375 // Determine the return type of a vector compare. By default clang will return
12376 // a scalar for all vector compares except vector bool and vector pixel.
12377 // With the gcc compiler we will always return a vector type and with the xl
12378 // compiler we will always return a scalar type. This switch allows choosing
12379 // which behavior is prefered.
12380 if (getLangOpts().AltiVec) {
12381 switch (getLangOpts().getAltivecSrcCompat()) {
12382 case LangOptions::AltivecSrcCompatKind::Mixed:
12383 // If AltiVec, the comparison results in a numeric type, i.e.
12384 // bool for C++, int for C
12385 if (vType->castAs<VectorType>()->getVectorKind() ==
12386 VectorType::AltiVecVector)
12387 return Context.getLogicalOperationType();
12388 else
12389 Diag(Loc, diag::warn_deprecated_altivec_src_compat);
12390 break;
12391 case LangOptions::AltivecSrcCompatKind::GCC:
12392 // For GCC we always return the vector type.
12393 break;
12394 case LangOptions::AltivecSrcCompatKind::XL:
12395 return Context.getLogicalOperationType();
12396 break;
12397 }
12398 }
12399
12400 // For non-floating point types, check for self-comparisons of the form
12401 // x == x, x != x, x < x, etc. These always evaluate to a constant, and
12402 // often indicate logic errors in the program.
12403 diagnoseTautologicalComparison(*this, Loc, LHS.get(), RHS.get(), Opc);
12404
12405 // Check for comparisons of floating point operands using != and ==.
12406 if (BinaryOperator::isEqualityOp(Opc) &&
12407 LHSType->hasFloatingRepresentation()) {
12408 assert(RHS.get()->getType()->hasFloatingRepresentation())(static_cast <bool> (RHS.get()->getType()->hasFloatingRepresentation
()) ? void (0) : __assert_fail ("RHS.get()->getType()->hasFloatingRepresentation()"
, "clang/lib/Sema/SemaExpr.cpp", 12408, __extension__ __PRETTY_FUNCTION__
))
;
12409 CheckFloatComparison(Loc, LHS.get(), RHS.get());
12410 }
12411
12412 // Return a signed type for the vector.
12413 return GetSignedVectorType(vType);
12414}
12415
12416static void diagnoseXorMisusedAsPow(Sema &S, const ExprResult &XorLHS,
12417 const ExprResult &XorRHS,
12418 const SourceLocation Loc) {
12419 // Do not diagnose macros.
12420 if (Loc.isMacroID())
12421 return;
12422
12423 // Do not diagnose if both LHS and RHS are macros.
12424 if (XorLHS.get()->getExprLoc().isMacroID() &&
12425 XorRHS.get()->getExprLoc().isMacroID())
12426 return;
12427
12428 bool Negative = false;
12429 bool ExplicitPlus = false;
12430 const auto *LHSInt = dyn_cast<IntegerLiteral>(XorLHS.get());
12431 const auto *RHSInt = dyn_cast<IntegerLiteral>(XorRHS.get());
12432
12433 if (!LHSInt)
12434 return;
12435 if (!RHSInt) {
12436 // Check negative literals.
12437 if (const auto *UO = dyn_cast<UnaryOperator>(XorRHS.get())) {
12438 UnaryOperatorKind Opc = UO->getOpcode();
12439 if (Opc != UO_Minus && Opc != UO_Plus)
12440 return;
12441 RHSInt = dyn_cast<IntegerLiteral>(UO->getSubExpr());
12442 if (!RHSInt)
12443 return;
12444 Negative = (Opc == UO_Minus);
12445 ExplicitPlus = !Negative;
12446 } else {
12447 return;
12448 }
12449 }
12450
12451 const llvm::APInt &LeftSideValue = LHSInt->getValue();
12452 llvm::APInt RightSideValue = RHSInt->getValue();
12453 if (LeftSideValue != 2 && LeftSideValue != 10)
12454 return;
12455
12456 if (LeftSideValue.getBitWidth() != RightSideValue.getBitWidth())
12457 return;
12458
12459 CharSourceRange ExprRange = CharSourceRange::getCharRange(
12460 LHSInt->getBeginLoc(), S.getLocForEndOfToken(RHSInt->getLocation()));
12461 llvm::StringRef ExprStr =
12462 Lexer::getSourceText(ExprRange, S.getSourceManager(), S.getLangOpts());
12463
12464 CharSourceRange XorRange =
12465 CharSourceRange::getCharRange(Loc, S.getLocForEndOfToken(Loc));
12466 llvm::StringRef XorStr =
12467 Lexer::getSourceText(XorRange, S.getSourceManager(), S.getLangOpts());
12468 // Do not diagnose if xor keyword/macro is used.
12469 if (XorStr == "xor")
12470 return;
12471
12472 std::string LHSStr = std::string(Lexer::getSourceText(
12473 CharSourceRange::getTokenRange(LHSInt->getSourceRange()),
12474 S.getSourceManager(), S.getLangOpts()));
12475 std::string RHSStr = std::string(Lexer::getSourceText(
12476 CharSourceRange::getTokenRange(RHSInt->getSourceRange()),
12477 S.getSourceManager(), S.getLangOpts()));
12478
12479 if (Negative) {
12480 RightSideValue = -RightSideValue;
12481 RHSStr = "-" + RHSStr;
12482 } else if (ExplicitPlus) {
12483 RHSStr = "+" + RHSStr;
12484 }
12485
12486 StringRef LHSStrRef = LHSStr;
12487 StringRef RHSStrRef = RHSStr;
12488 // Do not diagnose literals with digit separators, binary, hexadecimal, octal
12489 // literals.
12490 if (LHSStrRef.startswith("0b") || LHSStrRef.startswith("0B") ||
12491 RHSStrRef.startswith("0b") || RHSStrRef.startswith("0B") ||
12492 LHSStrRef.startswith("0x") || LHSStrRef.startswith("0X") ||
12493 RHSStrRef.startswith("0x") || RHSStrRef.startswith("0X") ||
12494 (LHSStrRef.size() > 1 && LHSStrRef.startswith("0")) ||
12495 (RHSStrRef.size() > 1 && RHSStrRef.startswith("0")) ||
12496 LHSStrRef.contains('\'') || RHSStrRef.contains('\''))
12497 return;
12498
12499 bool SuggestXor =
12500 S.getLangOpts().CPlusPlus || S.getPreprocessor().isMacroDefined("xor");
12501 const llvm::APInt XorValue = LeftSideValue ^ RightSideValue;
12502 int64_t RightSideIntValue = RightSideValue.getSExtValue();
12503 if (LeftSideValue == 2 && RightSideIntValue >= 0) {
12504 std::string SuggestedExpr = "1 << " + RHSStr;
12505 bool Overflow = false;
12506 llvm::APInt One = (LeftSideValue - 1);
12507 llvm::APInt PowValue = One.sshl_ov(RightSideValue, Overflow);
12508 if (Overflow) {
12509 if (RightSideIntValue < 64)
12510 S.Diag(Loc, diag::warn_xor_used_as_pow_base)
12511 << ExprStr << toString(XorValue, 10, true) << ("1LL << " + RHSStr)
12512 << FixItHint::CreateReplacement(ExprRange, "1LL << " + RHSStr);
12513 else if (RightSideIntValue == 64)
12514 S.Diag(Loc, diag::warn_xor_used_as_pow)
12515 << ExprStr << toString(XorValue, 10, true);
12516 else
12517 return;
12518 } else {
12519 S.Diag(Loc, diag::warn_xor_used_as_pow_base_extra)
12520 << ExprStr << toString(XorValue, 10, true) << SuggestedExpr
12521 << toString(PowValue, 10, true)
12522 << FixItHint::CreateReplacement(
12523 ExprRange, (RightSideIntValue == 0) ? "1" : SuggestedExpr);
12524 }
12525
12526 S.Diag(Loc, diag::note_xor_used_as_pow_silence)
12527 << ("0x2 ^ " + RHSStr) << SuggestXor;
12528 } else if (LeftSideValue == 10) {
12529 std::string SuggestedValue = "1e" + std::to_string(RightSideIntValue);
12530 S.Diag(Loc, diag::warn_xor_used_as_pow_base)
12531 << ExprStr << toString(XorValue, 10, true) << SuggestedValue
12532 << FixItHint::CreateReplacement(ExprRange, SuggestedValue);
12533 S.Diag(Loc, diag::note_xor_used_as_pow_silence)
12534 << ("0xA ^ " + RHSStr) << SuggestXor;
12535 }
12536}
12537
12538QualType Sema::CheckVectorLogicalOperands(ExprResult &LHS, ExprResult &RHS,
12539 SourceLocation Loc) {
12540 // Ensure that either both operands are of the same vector type, or
12541 // one operand is of a vector type and the other is of its element type.
12542 QualType vType = CheckVectorOperands(LHS, RHS, Loc, false,
12543 /*AllowBothBool*/true,
12544 /*AllowBoolConversions*/false);
12545 if (vType.isNull())
12546 return InvalidOperands(Loc, LHS, RHS);
12547 if (getLangOpts().OpenCL &&
12548 getLangOpts().getOpenCLCompatibleVersion() < 120 &&
12549 vType->hasFloatingRepresentation())
12550 return InvalidOperands(Loc, LHS, RHS);
12551 // FIXME: The check for C++ here is for GCC compatibility. GCC rejects the
12552 // usage of the logical operators && and || with vectors in C. This
12553 // check could be notionally dropped.
12554 if (!getLangOpts().CPlusPlus &&
12555 !(isa<ExtVectorType>(vType->getAs<VectorType>())))
12556 return InvalidLogicalVectorOperands(Loc, LHS, RHS);
12557
12558 return GetSignedVectorType(LHS.get()->getType());
12559}
12560
12561QualType Sema::CheckMatrixElementwiseOperands(ExprResult &LHS, ExprResult &RHS,
12562 SourceLocation Loc,
12563 bool IsCompAssign) {
12564 if (!IsCompAssign) {
12565 LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
12566 if (LHS.isInvalid())
12567 return QualType();
12568 }
12569 RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
12570 if (RHS.isInvalid())
12571 return QualType();
12572
12573 // For conversion purposes, we ignore any qualifiers.
12574 // For example, "const float" and "float" are equivalent.
12575 QualType LHSType = LHS.get()->getType().getUnqualifiedType();
12576 QualType RHSType = RHS.get()->getType().getUnqualifiedType();
12577
12578 const MatrixType *LHSMatType = LHSType->getAs<MatrixType>();
12579 const MatrixType *RHSMatType = RHSType->getAs<MatrixType>();
12580 assert((LHSMatType || RHSMatType) && "At least one operand must be a matrix")(static_cast <bool> ((LHSMatType || RHSMatType) &&
"At least one operand must be a matrix") ? void (0) : __assert_fail
("(LHSMatType || RHSMatType) && \"At least one operand must be a matrix\""
, "clang/lib/Sema/SemaExpr.cpp", 12580, __extension__ __PRETTY_FUNCTION__
))
;
12581
12582 if (Context.hasSameType(LHSType, RHSType))
12583 return LHSType;
12584
12585 // Type conversion may change LHS/RHS. Keep copies to the original results, in
12586 // case we have to return InvalidOperands.
12587 ExprResult OriginalLHS = LHS;
12588 ExprResult OriginalRHS = RHS;
12589 if (LHSMatType && !RHSMatType) {
12590 RHS = tryConvertExprToType(RHS.get(), LHSMatType->getElementType());
12591 if (!RHS.isInvalid())
12592 return LHSType;
12593
12594 return InvalidOperands(Loc, OriginalLHS, OriginalRHS);
12595 }
12596
12597 if (!LHSMatType && RHSMatType) {
12598 LHS = tryConvertExprToType(LHS.get(), RHSMatType->getElementType());
12599 if (!LHS.isInvalid())
12600 return RHSType;
12601 return InvalidOperands(Loc, OriginalLHS, OriginalRHS);
12602 }
12603
12604 return InvalidOperands(Loc, LHS, RHS);
12605}
12606
12607QualType Sema::CheckMatrixMultiplyOperands(ExprResult &LHS, ExprResult &RHS,
12608 SourceLocation Loc,
12609 bool IsCompAssign) {
12610 if (!IsCompAssign) {
12611 LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
12612 if (LHS.isInvalid())
12613 return QualType();
12614 }
12615 RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
12616 if (RHS.isInvalid())
12617 return QualType();
12618
12619 auto *LHSMatType = LHS.get()->getType()->getAs<ConstantMatrixType>();
12620 auto *RHSMatType = RHS.get()->getType()->getAs<ConstantMatrixType>();
12621 assert((LHSMatType || RHSMatType) && "At least one operand must be a matrix")(static_cast <bool> ((LHSMatType || RHSMatType) &&
"At least one operand must be a matrix") ? void (0) : __assert_fail
("(LHSMatType || RHSMatType) && \"At least one operand must be a matrix\""
, "clang/lib/Sema/SemaExpr.cpp", 12621, __extension__ __PRETTY_FUNCTION__
))
;
12622
12623 if (LHSMatType && RHSMatType) {
12624 if (LHSMatType->getNumColumns() != RHSMatType->getNumRows())
12625 return InvalidOperands(Loc, LHS, RHS);
12626
12627 if (!Context.hasSameType(LHSMatType->getElementType(),
12628 RHSMatType->getElementType()))
12629 return InvalidOperands(Loc, LHS, RHS);
12630
12631 return Context.getConstantMatrixType(LHSMatType->getElementType(),
12632 LHSMatType->getNumRows(),
12633 RHSMatType->getNumColumns());
12634 }
12635 return CheckMatrixElementwiseOperands(LHS, RHS, Loc, IsCompAssign);
12636}
12637
12638inline QualType Sema::CheckBitwiseOperands(ExprResult &LHS, ExprResult &RHS,
12639 SourceLocation Loc,
12640 BinaryOperatorKind Opc) {
12641 checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
12642
12643 bool IsCompAssign =
12644 Opc == BO_AndAssign || Opc == BO_OrAssign || Opc == BO_XorAssign;
12645
12646 if (LHS.get()->getType()->isVectorType() ||
12647 RHS.get()->getType()->isVectorType()) {
12648 if (LHS.get()->getType()->hasIntegerRepresentation() &&
12649 RHS.get()->getType()->hasIntegerRepresentation())
12650 return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
12651 /*AllowBothBool*/true,
12652 /*AllowBoolConversions*/getLangOpts().ZVector);
12653 return InvalidOperands(Loc, LHS, RHS);
12654 }
12655
12656 if (Opc == BO_And)
12657 diagnoseLogicalNotOnLHSofCheck(*this, LHS, RHS, Loc, Opc);
12658
12659 if (LHS.get()->getType()->hasFloatingRepresentation() ||
12660 RHS.get()->getType()->hasFloatingRepresentation())
12661 return InvalidOperands(Loc, LHS, RHS);
12662
12663 ExprResult LHSResult = LHS, RHSResult = RHS;
12664 QualType compType = UsualArithmeticConversions(
12665 LHSResult, RHSResult, Loc, IsCompAssign ? ACK_CompAssign : ACK_BitwiseOp);
12666 if (LHSResult.isInvalid() || RHSResult.isInvalid())
12667 return QualType();
12668 LHS = LHSResult.get();
12669 RHS = RHSResult.get();
12670
12671 if (Opc == BO_Xor)
12672 diagnoseXorMisusedAsPow(*this, LHS, RHS, Loc);
12673
12674 if (!compType.isNull() && compType->isIntegralOrUnscopedEnumerationType())
12675 return compType;
12676 return InvalidOperands(Loc, LHS, RHS);
12677}
12678
12679// C99 6.5.[13,14]
12680inline QualType Sema::CheckLogicalOperands(ExprResult &LHS, ExprResult &RHS,
12681 SourceLocation Loc,
12682 BinaryOperatorKind Opc) {
12683 // Check vector operands differently.
12684 if (LHS.get()->getType()->isVectorType() || RHS.get()->getType()->isVectorType())
12685 return CheckVectorLogicalOperands(LHS, RHS, Loc);
12686
12687 bool EnumConstantInBoolContext = false;
12688 for (const ExprResult &HS : {LHS, RHS}) {
12689 if (const auto *DREHS = dyn_cast<DeclRefExpr>(HS.get())) {
12690 const auto *ECDHS = dyn_cast<EnumConstantDecl>(DREHS->getDecl());
12691 if (ECDHS && ECDHS->getInitVal() != 0 && ECDHS->getInitVal() != 1)
12692 EnumConstantInBoolContext = true;
12693 }
12694 }
12695
12696 if (EnumConstantInBoolContext)
12697 Diag(Loc, diag::warn_enum_constant_in_bool_context);
12698
12699 // Diagnose cases where the user write a logical and/or but probably meant a
12700 // bitwise one. We do this when the LHS is a non-bool integer and the RHS
12701 // is a constant.
12702 if (!EnumConstantInBoolContext && LHS.get()->getType()->isIntegerType() &&
12703 !LHS.get()->getType()->isBooleanType() &&
12704 RHS.get()->getType()->isIntegerType() && !RHS.get()->isValueDependent() &&
12705 // Don't warn in macros or template instantiations.
12706 !Loc.isMacroID() && !inTemplateInstantiation()) {
12707 // If the RHS can be constant folded, and if it constant folds to something
12708 // that isn't 0 or 1 (which indicate a potential logical operation that
12709 // happened to fold to true/false) then warn.
12710 // Parens on the RHS are ignored.
12711 Expr::EvalResult EVResult;
12712 if (RHS.get()->EvaluateAsInt(EVResult, Context)) {
12713 llvm::APSInt Result = EVResult.Val.getInt();
12714 if ((getLangOpts().Bool && !RHS.get()->getType()->isBooleanType() &&
12715 !RHS.get()->getExprLoc().isMacroID()) ||
12716 (Result != 0 && Result != 1)) {
12717 Diag(Loc, diag::warn_logical_instead_of_bitwise)
12718 << RHS.get()->getSourceRange()
12719 << (Opc == BO_LAnd ? "&&" : "||");
12720 // Suggest replacing the logical operator with the bitwise version
12721 Diag(Loc, diag::note_logical_instead_of_bitwise_change_operator)
12722 << (Opc == BO_LAnd ? "&" : "|")
12723 << FixItHint::CreateReplacement(SourceRange(
12724 Loc, getLocForEndOfToken(Loc)),
12725 Opc == BO_LAnd ? "&" : "|");
12726 if (Opc == BO_LAnd)
12727 // Suggest replacing "Foo() && kNonZero" with "Foo()"
12728 Diag(Loc, diag::note_logical_instead_of_bitwise_remove_constant)
12729 << FixItHint::CreateRemoval(
12730 SourceRange(getLocForEndOfToken(LHS.get()->getEndLoc()),
12731 RHS.get()->getEndLoc()));
12732 }
12733 }
12734 }
12735
12736 if (!Context.getLangOpts().CPlusPlus) {
12737 // OpenCL v1.1 s6.3.g: The logical operators and (&&), or (||) do
12738 // not operate on the built-in scalar and vector float types.
12739 if (Context.getLangOpts().OpenCL &&
12740 Context.getLangOpts().OpenCLVersion < 120) {
12741 if (LHS.get()->getType()->isFloatingType() ||
12742 RHS.get()->getType()->isFloatingType())
12743 return InvalidOperands(Loc, LHS, RHS);
12744 }
12745
12746 LHS = UsualUnaryConversions(LHS.get());
12747 if (LHS.isInvalid())
12748 return QualType();
12749
12750 RHS = UsualUnaryConversions(RHS.get());
12751 if (RHS.isInvalid())
12752 return QualType();
12753
12754 if (!LHS.get()->getType()->isScalarType() ||
12755 !RHS.get()->getType()->isScalarType())
12756 return InvalidOperands(Loc, LHS, RHS);
12757
12758 return Context.IntTy;
12759 }
12760
12761 // The following is safe because we only use this method for
12762 // non-overloadable operands.
12763
12764 // C++ [expr.log.and]p1
12765 // C++ [expr.log.or]p1
12766 // The operands are both contextually converted to type bool.
12767 ExprResult LHSRes = PerformContextuallyConvertToBool(LHS.get());
12768 if (LHSRes.isInvalid())
12769 return InvalidOperands(Loc, LHS, RHS);
12770 LHS = LHSRes;
12771
12772 ExprResult RHSRes = PerformContextuallyConvertToBool(RHS.get());
12773 if (RHSRes.isInvalid())
12774 return InvalidOperands(Loc, LHS, RHS);
12775 RHS = RHSRes;
12776
12777 // C++ [expr.log.and]p2
12778 // C++ [expr.log.or]p2
12779 // The result is a bool.
12780 return Context.BoolTy;
12781}
12782
12783static bool IsReadonlyMessage(Expr *E, Sema &S) {
12784 const MemberExpr *ME = dyn_cast<MemberExpr>(E);
12785 if (!ME) return false;
12786 if (!isa<FieldDecl>(ME->getMemberDecl())) return false;
12787 ObjCMessageExpr *Base = dyn_cast<ObjCMessageExpr>(
12788 ME->getBase()->IgnoreImplicit()->IgnoreParenImpCasts());
12789 if (!Base) return false;
12790 return Base->getMethodDecl() != nullptr;
12791}
12792
12793/// Is the given expression (which must be 'const') a reference to a
12794/// variable which was originally non-const, but which has become
12795/// 'const' due to being captured within a block?
12796enum NonConstCaptureKind { NCCK_None, NCCK_Block, NCCK_Lambda };
12797static NonConstCaptureKind isReferenceToNonConstCapture(Sema &S, Expr *E) {
12798 assert(E->isLValue() && E->getType().isConstQualified())(static_cast <bool> (E->isLValue() && E->
getType().isConstQualified()) ? void (0) : __assert_fail ("E->isLValue() && E->getType().isConstQualified()"
, "clang/lib/Sema/SemaExpr.cpp", 12798, __extension__ __PRETTY_FUNCTION__
))
;
12799 E = E->IgnoreParens();
12800
12801 // Must be a reference to a declaration from an enclosing scope.
12802 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
12803 if (!DRE) return NCCK_None;
12804 if (!DRE->refersToEnclosingVariableOrCapture()) return NCCK_None;
12805
12806 // The declaration must be a variable which is not declared 'const'.
12807 VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
12808 if (!var) return NCCK_None;
12809 if (var->getType().isConstQualified()) return NCCK_None;
12810 assert(var->hasLocalStorage() && "capture added 'const' to non-local?")(static_cast <bool> (var->hasLocalStorage() &&
"capture added 'const' to non-local?") ? void (0) : __assert_fail
("var->hasLocalStorage() && \"capture added 'const' to non-local?\""
, "clang/lib/Sema/SemaExpr.cpp", 12810, __extension__ __PRETTY_FUNCTION__
))
;
12811
12812 // Decide whether the first capture was for a block or a lambda.
12813 DeclContext *DC = S.CurContext, *Prev = nullptr;
12814 // Decide whether the first capture was for a block or a lambda.
12815 while (DC) {
12816 // For init-capture, it is possible that the variable belongs to the
12817 // template pattern of the current context.
12818 if (auto *FD = dyn_cast<FunctionDecl>(DC))
12819 if (var->isInitCapture() &&
12820 FD->getTemplateInstantiationPattern() == var->getDeclContext())
12821 break;
12822 if (DC == var->getDeclContext())
12823 break;
12824 Prev = DC;
12825 DC = DC->getParent();
12826 }
12827 // Unless we have an init-capture, we've gone one step too far.
12828 if (!var->isInitCapture())
12829 DC = Prev;
12830 return (isa<BlockDecl>(DC) ? NCCK_Block : NCCK_Lambda);
12831}
12832
12833static bool IsTypeModifiable(QualType Ty, bool IsDereference) {
12834 Ty = Ty.getNonReferenceType();
12835 if (IsDereference && Ty->isPointerType())
12836 Ty = Ty->getPointeeType();
12837 return !Ty.isConstQualified();
12838}
12839
12840// Update err_typecheck_assign_const and note_typecheck_assign_const
12841// when this enum is changed.
12842enum {
12843 ConstFunction,
12844 ConstVariable,
12845 ConstMember,
12846 ConstMethod,
12847 NestedConstMember,
12848 ConstUnknown, // Keep as last element
12849};
12850
12851/// Emit the "read-only variable not assignable" error and print notes to give
12852/// more information about why the variable is not assignable, such as pointing
12853/// to the declaration of a const variable, showing that a method is const, or
12854/// that the function is returning a const reference.
12855static void DiagnoseConstAssignment(Sema &S, const Expr *E,
12856 SourceLocation Loc) {
12857 SourceRange ExprRange = E->getSourceRange();
12858
12859 // Only emit one error on the first const found. All other consts will emit
12860 // a note to the error.
12861 bool DiagnosticEmitted = false;
12862
12863 // Track if the current expression is the result of a dereference, and if the
12864 // next checked expression is the result of a dereference.
12865 bool IsDereference = false;
12866 bool NextIsDereference = false;
12867
12868 // Loop to process MemberExpr chains.
12869 while (true) {
12870 IsDereference = NextIsDereference;
12871
12872 E = E->IgnoreImplicit()->IgnoreParenImpCasts();
12873 if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
12874 NextIsDereference = ME->isArrow();
12875 const ValueDecl *VD = ME->getMemberDecl();
12876 if (const FieldDecl *Field = dyn_cast<FieldDecl>(VD)) {
12877 // Mutable fields can be modified even if the class is const.
12878 if (Field->isMutable()) {
12879 assert(DiagnosticEmitted && "Expected diagnostic not emitted.")(static_cast <bool> (DiagnosticEmitted && "Expected diagnostic not emitted."
) ? void (0) : __assert_fail ("DiagnosticEmitted && \"Expected diagnostic not emitted.\""
, "clang/lib/Sema/SemaExpr.cpp", 12879, __extension__ __PRETTY_FUNCTION__
))
;
12880 break;
12881 }
12882
12883 if (!IsTypeModifiable(Field->getType(), IsDereference)) {
12884 if (!DiagnosticEmitted) {
12885 S.Diag(Loc, diag::err_typecheck_assign_const)
12886 << ExprRange << ConstMember << false /*static*/ << Field
12887 << Field->getType();
12888 DiagnosticEmitted = true;
12889 }
12890 S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
12891 << ConstMember << false /*static*/ << Field << Field->getType()
12892 << Field->getSourceRange();
12893 }
12894 E = ME->getBase();
12895 continue;
12896 } else if (const VarDecl *VDecl = dyn_cast<VarDecl>(VD)) {
12897 if (VDecl->getType().isConstQualified()) {
12898 if (!DiagnosticEmitted) {
12899 S.Diag(Loc, diag::err_typecheck_assign_const)
12900 << ExprRange << ConstMember << true /*static*/ << VDecl
12901 << VDecl->getType();
12902 DiagnosticEmitted = true;
12903 }
12904 S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
12905 << ConstMember << true /*static*/ << VDecl << VDecl->getType()
12906 << VDecl->getSourceRange();
12907 }
12908 // Static fields do not inherit constness from parents.
12909 break;
12910 }
12911 break; // End MemberExpr
12912 } else if (const ArraySubscriptExpr *ASE =
12913 dyn_cast<ArraySubscriptExpr>(E)) {
12914 E = ASE->getBase()->IgnoreParenImpCasts();
12915 continue;
12916 } else if (const ExtVectorElementExpr *EVE =
12917 dyn_cast<ExtVectorElementExpr>(E)) {
12918 E = EVE->getBase()->IgnoreParenImpCasts();
12919 continue;
12920 }
12921 break;
12922 }
12923
12924 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
12925 // Function calls
12926 const FunctionDecl *FD = CE->getDirectCallee();
12927 if (FD && !IsTypeModifiable(FD->getReturnType(), IsDereference)) {
12928 if (!DiagnosticEmitted) {
12929 S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange
12930 << ConstFunction << FD;
12931 DiagnosticEmitted = true;
12932 }
12933 S.Diag(FD->getReturnTypeSourceRange().getBegin(),
12934 diag::note_typecheck_assign_const)
12935 << ConstFunction << FD << FD->getReturnType()
12936 << FD->getReturnTypeSourceRange();
12937 }
12938 } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
12939 // Point to variable declaration.
12940 if (const ValueDecl *VD = DRE->getDecl()) {
12941 if (!IsTypeModifiable(VD->getType(), IsDereference)) {
12942 if (!DiagnosticEmitted) {
12943 S.Diag(Loc, diag::err_typecheck_assign_const)
12944 << ExprRange << ConstVariable << VD << VD->getType();
12945 DiagnosticEmitted = true;
12946 }
12947 S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
12948 << ConstVariable << VD << VD->getType() << VD->getSourceRange();
12949 }
12950 }
12951 } else if (isa<CXXThisExpr>(E)) {
12952 if (const DeclContext *DC = S.getFunctionLevelDeclContext()) {
12953 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
12954 if (MD->isConst()) {
12955 if (!DiagnosticEmitted) {
12956 S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange
12957 << ConstMethod << MD;
12958 DiagnosticEmitted = true;
12959 }
12960 S.Diag(MD->getLocation(), diag::note_typecheck_assign_const)
12961 << ConstMethod << MD << MD->getSourceRange();
12962 }
12963 }
12964 }
12965 }
12966
12967 if (DiagnosticEmitted)
12968 return;
12969
12970 // Can't determine a more specific message, so display the generic error.
12971 S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange << ConstUnknown;
12972}
12973
12974enum OriginalExprKind {
12975 OEK_Variable,
12976 OEK_Member,
12977 OEK_LValue
12978};
12979
12980static void DiagnoseRecursiveConstFields(Sema &S, const ValueDecl *VD,
12981 const RecordType *Ty,
12982 SourceLocation Loc, SourceRange Range,
12983 OriginalExprKind OEK,
12984 bool &DiagnosticEmitted) {
12985 std::vector<const RecordType *> RecordTypeList;
12986 RecordTypeList.push_back(Ty);
12987 unsigned NextToCheckIndex = 0;
12988 // We walk the record hierarchy breadth-first to ensure that we print
12989 // diagnostics in field nesting order.
12990 while (RecordTypeList.size() > NextToCheckIndex) {
12991 bool IsNested = NextToCheckIndex > 0;
12992 for (const FieldDecl *Field :
12993 RecordTypeList[NextToCheckIndex]->getDecl()->fields()) {
12994 // First, check every field for constness.
12995 QualType FieldTy = Field->getType();
12996 if (FieldTy.isConstQualified()) {
12997 if (!DiagnosticEmitted) {
12998 S.Diag(Loc, diag::err_typecheck_assign_const)
12999 << Range << NestedConstMember << OEK << VD
13000 << IsNested << Field;
13001 DiagnosticEmitted = true;
13002 }
13003 S.Diag(Field->getLocation(), diag::note_typecheck_assign_const)
13004 << NestedConstMember << IsNested << Field
13005 << FieldTy << Field->getSourceRange();
13006 }
13007
13008 // Then we append it to the list to check next in order.
13009 FieldTy = FieldTy.getCanonicalType();
13010 if (const auto *FieldRecTy = FieldTy->getAs<RecordType>()) {
13011 if (!llvm::is_contained(RecordTypeList, FieldRecTy))
13012 RecordTypeList.push_back(FieldRecTy);
13013 }
13014 }
13015 ++NextToCheckIndex;
13016 }
13017}
13018
13019/// Emit an error for the case where a record we are trying to assign to has a
13020/// const-qualified field somewhere in its hierarchy.
13021static void DiagnoseRecursiveConstFields(Sema &S, const Expr *E,
13022 SourceLocation Loc) {
13023 QualType Ty = E->getType();
13024 assert(Ty->isRecordType() && "lvalue was not record?")(static_cast <bool> (Ty->isRecordType() && "lvalue was not record?"
) ? void (0) : __assert_fail ("Ty->isRecordType() && \"lvalue was not record?\""
, "clang/lib/Sema/SemaExpr.cpp", 13024, __extension__ __PRETTY_FUNCTION__
))
;
13025 SourceRange Range = E->getSourceRange();
13026 const RecordType *RTy = Ty.getCanonicalType()->getAs<RecordType>();
13027 bool DiagEmitted = false;
13028
13029 if (const MemberExpr *ME = dyn_cast<MemberExpr>(E))
13030 DiagnoseRecursiveConstFields(S, ME->getMemberDecl(), RTy, Loc,
13031 Range, OEK_Member, DiagEmitted);
13032 else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
13033 DiagnoseRecursiveConstFields(S, DRE->getDecl(), RTy, Loc,
13034 Range, OEK_Variable, DiagEmitted);
13035 else
13036 DiagnoseRecursiveConstFields(S, nullptr, RTy, Loc,
13037 Range, OEK_LValue, DiagEmitted);
13038 if (!DiagEmitted)
13039 DiagnoseConstAssignment(S, E, Loc);
13040}
13041
13042/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue. If not,
13043/// emit an error and return true. If so, return false.
13044static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
13045 assert(!E->hasPlaceholderType(BuiltinType::PseudoObject))(static_cast <bool> (!E->hasPlaceholderType(BuiltinType
::PseudoObject)) ? void (0) : __assert_fail ("!E->hasPlaceholderType(BuiltinType::PseudoObject)"
, "clang/lib/Sema/SemaExpr.cpp", 13045, __extension__ __PRETTY_FUNCTION__
))
;
13046
13047 S.CheckShadowingDeclModification(E, Loc);
13048
13049 SourceLocation OrigLoc = Loc;
13050 Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
13051 &Loc);
13052 if (IsLV == Expr::MLV_ClassTemporary && IsReadonlyMessage(E, S))
13053 IsLV = Expr::MLV_InvalidMessageExpression;
13054 if (IsLV == Expr::MLV_Valid)
13055 return false;
13056
13057 unsigned DiagID = 0;
13058 bool NeedType = false;
13059 switch (IsLV) { // C99 6.5.16p2
13060 case Expr::MLV_ConstQualified:
13061 // Use a specialized diagnostic when we're assigning to an object
13062 // from an enclosing function or block.
13063 if (NonConstCaptureKind NCCK = isReferenceToNonConstCapture(S, E)) {
13064 if (NCCK == NCCK_Block)
13065 DiagID = diag::err_block_decl_ref_not_modifiable_lvalue;
13066 else
13067 DiagID = diag::err_lambda_decl_ref_not_modifiable_lvalue;
13068 break;
13069 }
13070
13071 // In ARC, use some specialized diagnostics for occasions where we
13072 // infer 'const'. These are always pseudo-strong variables.
13073 if (S.getLangOpts().ObjCAutoRefCount) {
13074 DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts());
13075 if (declRef && isa<VarDecl>(declRef->getDecl())) {
13076 VarDecl *var = cast<VarDecl>(declRef->getDecl());
13077
13078 // Use the normal diagnostic if it's pseudo-__strong but the
13079 // user actually wrote 'const'.
13080 if (var->isARCPseudoStrong() &&
13081 (!var->getTypeSourceInfo() ||
13082 !var->getTypeSourceInfo()->getType().isConstQualified())) {
13083 // There are three pseudo-strong cases:
13084 // - self
13085 ObjCMethodDecl *method = S.getCurMethodDecl();
13086 if (method && var == method->getSelfDecl()) {
13087 DiagID = method->isClassMethod()
13088 ? diag::err_typecheck_arc_assign_self_class_method
13089 : diag::err_typecheck_arc_assign_self;
13090
13091 // - Objective-C externally_retained attribute.
13092 } else if (var->hasAttr<ObjCExternallyRetainedAttr>() ||
13093 isa<ParmVarDecl>(var)) {
13094 DiagID = diag::err_typecheck_arc_assign_externally_retained;
13095
13096 // - fast enumeration variables
13097 } else {
13098 DiagID = diag::err_typecheck_arr_assign_enumeration;
13099 }
13100
13101 SourceRange Assign;
13102 if (Loc != OrigLoc)
13103 Assign = SourceRange(OrigLoc, OrigLoc);
13104 S.Diag(Loc, DiagID) << E->getSourceRange() << Assign;
13105 // We need to preserve the AST regardless, so migration tool
13106 // can do its job.
13107 return false;
13108 }
13109 }
13110 }
13111
13112 // If none of the special cases above are triggered, then this is a
13113 // simple const assignment.
13114 if (DiagID == 0) {
13115 DiagnoseConstAssignment(S, E, Loc);
13116 return true;
13117 }
13118
13119 break;
13120 case Expr::MLV_ConstAddrSpace:
13121 DiagnoseConstAssignment(S, E, Loc);
13122 return true;
13123 case Expr::MLV_ConstQualifiedField:
13124 DiagnoseRecursiveConstFields(S, E, Loc);
13125 return true;
13126 case Expr::MLV_ArrayType:
13127 case Expr::MLV_ArrayTemporary:
13128 DiagID = diag::err_typecheck_array_not_modifiable_lvalue;
13129 NeedType = true;
13130 break;
13131 case Expr::MLV_NotObjectType:
13132 DiagID = diag::err_typecheck_non_object_not_modifiable_lvalue;
13133 NeedType = true;
13134 break;
13135 case Expr::MLV_LValueCast:
13136 DiagID = diag::err_typecheck_lvalue_casts_not_supported;
13137 break;
13138 case Expr::MLV_Valid:
13139 llvm_unreachable("did not take early return for MLV_Valid")::llvm::llvm_unreachable_internal("did not take early return for MLV_Valid"
, "clang/lib/Sema/SemaExpr.cpp", 13139)
;
13140 case Expr::MLV_InvalidExpression:
13141 case Expr::MLV_MemberFunction:
13142 case Expr::MLV_ClassTemporary:
13143 DiagID = diag::err_typecheck_expression_not_modifiable_lvalue;
13144 break;
13145 case Expr::MLV_IncompleteType:
13146 case Expr::MLV_IncompleteVoidType:
13147 return S.RequireCompleteType(Loc, E->getType(),
13148 diag::err_typecheck_incomplete_type_not_modifiable_lvalue, E);
13149 case Expr::MLV_DuplicateVectorComponents:
13150 DiagID = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
13151 break;
13152 case Expr::MLV_NoSetterProperty:
13153 llvm_unreachable("readonly properties should be processed differently")::llvm::llvm_unreachable_internal("readonly properties should be processed differently"
, "clang/lib/Sema/SemaExpr.cpp", 13153)
;
13154 case Expr::MLV_InvalidMessageExpression:
13155 DiagID = diag::err_readonly_message_assignment;
13156 break;
13157 case Expr::MLV_SubObjCPropertySetting:
13158 DiagID = diag::err_no_subobject_property_setting;
13159 break;
13160 }
13161
13162 SourceRange Assign;
13163 if (Loc != OrigLoc)
13164 Assign = SourceRange(OrigLoc, OrigLoc);
13165 if (NeedType)
13166 S.Diag(Loc, DiagID) << E->getType() << E->getSourceRange() << Assign;
13167 else
13168 S.Diag(Loc, DiagID) << E->getSourceRange() << Assign;
13169 return true;
13170}
13171
13172static void CheckIdentityFieldAssignment(Expr *LHSExpr, Expr *RHSExpr,
13173 SourceLocation Loc,
13174 Sema &Sema) {
13175 if (Sema.inTemplateInstantiation())
13176 return;
13177 if (Sema.isUnevaluatedContext())
13178 return;
13179 if (Loc.isInvalid() || Loc.isMacroID())
13180 return;
13181 if (LHSExpr->getExprLoc().isMacroID() || RHSExpr->getExprLoc().isMacroID())
13182 return;
13183
13184 // C / C++ fields
13185 MemberExpr *ML = dyn_cast<MemberExpr>(LHSExpr);
13186 MemberExpr *MR = dyn_cast<MemberExpr>(RHSExpr);
13187 if (ML && MR) {
13188 if (!(isa<CXXThisExpr>(ML->getBase()) && isa<CXXThisExpr>(MR->getBase())))
13189 return;
13190 const ValueDecl *LHSDecl =
13191 cast<ValueDecl>(ML->getMemberDecl()->getCanonicalDecl());
13192 const ValueDecl *RHSDecl =
13193 cast<ValueDecl>(MR->getMemberDecl()->getCanonicalDecl());
13194 if (LHSDecl != RHSDecl)
13195 return;
13196 if (LHSDecl->getType().isVolatileQualified())
13197 return;
13198 if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
13199 if (RefTy->getPointeeType().isVolatileQualified())
13200 return;
13201
13202 Sema.Diag(Loc, diag::warn_identity_field_assign) << 0;
13203 }
13204
13205 // Objective-C instance variables
13206 ObjCIvarRefExpr *OL = dyn_cast<ObjCIvarRefExpr>(LHSExpr);
13207 ObjCIvarRefExpr *OR = dyn_cast<ObjCIvarRefExpr>(RHSExpr);
13208 if (OL && OR && OL->getDecl() == OR->getDecl()) {
13209 DeclRefExpr *RL = dyn_cast<DeclRefExpr>(OL->getBase()->IgnoreImpCasts());
13210 DeclRefExpr *RR = dyn_cast<DeclRefExpr>(OR->getBase()->IgnoreImpCasts());
13211 if (RL && RR && RL->getDecl() == RR->getDecl())
13212 Sema.Diag(Loc, diag::warn_identity_field_assign) << 1;
13213 }
13214}
13215
13216// C99 6.5.16.1
13217QualType Sema::CheckAssignmentOperands(Expr *LHSExpr, ExprResult &RHS,
13218 SourceLocation Loc,
13219 QualType CompoundType) {
13220 assert(!LHSExpr->hasPlaceholderType(BuiltinType::PseudoObject))(static_cast <bool> (!LHSExpr->hasPlaceholderType(BuiltinType
::PseudoObject)) ? void (0) : __assert_fail ("!LHSExpr->hasPlaceholderType(BuiltinType::PseudoObject)"
, "clang/lib/Sema/SemaExpr.cpp", 13220, __extension__ __PRETTY_FUNCTION__
))
;
13221
13222 // Verify that LHS is a modifiable lvalue, and emit error if not.
13223 if (CheckForModifiableLvalue(LHSExpr, Loc, *this))
13224 return QualType();
13225
13226 QualType LHSType = LHSExpr->getType();
13227 QualType RHSType = CompoundType.isNull() ? RHS.get()->getType() :
13228 CompoundType;
13229 // OpenCL v1.2 s6.1.1.1 p2:
13230 // The half data type can only be used to declare a pointer to a buffer that
13231 // contains half values
13232 if (getLangOpts().OpenCL &&
13233 !getOpenCLOptions().isAvailableOption("cl_khr_fp16", getLangOpts()) &&
13234 LHSType->isHalfType()) {
13235 Diag(Loc, diag::err_opencl_half_load_store) << 1
13236 << LHSType.getUnqualifiedType();
13237 return QualType();
13238 }
13239
13240 AssignConvertType ConvTy;
13241 if (CompoundType.isNull()) {
13242 Expr *RHSCheck = RHS.get();
13243
13244 CheckIdentityFieldAssignment(LHSExpr, RHSCheck, Loc, *this);
13245
13246 QualType LHSTy(LHSType);
13247 ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
13248 if (RHS.isInvalid())
13249 return QualType();
13250 // Special case of NSObject attributes on c-style pointer types.
13251 if (ConvTy == IncompatiblePointer &&
13252 ((Context.isObjCNSObjectType(LHSType) &&
13253 RHSType->isObjCObjectPointerType()) ||
13254 (Context.isObjCNSObjectType(RHSType) &&
13255 LHSType->isObjCObjectPointerType())))
13256 ConvTy = Compatible;
13257
13258 if (ConvTy == Compatible &&
13259 LHSType->isObjCObjectType())
13260 Diag(Loc, diag::err_objc_object_assignment)
13261 << LHSType;
13262
13263 // If the RHS is a unary plus or minus, check to see if they = and + are
13264 // right next to each other. If so, the user may have typo'd "x =+ 4"
13265 // instead of "x += 4".
13266 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
13267 RHSCheck = ICE->getSubExpr();
13268 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
13269 if ((UO->getOpcode() == UO_Plus || UO->getOpcode() == UO_Minus) &&
13270 Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
13271 // Only if the two operators are exactly adjacent.
13272 Loc.getLocWithOffset(1) == UO->getOperatorLoc() &&
13273 // And there is a space or other character before the subexpr of the
13274 // unary +/-. We don't want to warn on "x=-1".
13275 Loc.getLocWithOffset(2) != UO->getSubExpr()->getBeginLoc() &&
13276 UO->getSubExpr()->getBeginLoc().isFileID()) {
13277 Diag(Loc, diag::warn_not_compound_assign)
13278 << (UO->getOpcode() == UO_Plus ? "+" : "-")
13279 << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
13280 }
13281 }
13282
13283 if (ConvTy == Compatible) {
13284 if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong) {
13285 // Warn about retain cycles where a block captures the LHS, but
13286 // not if the LHS is a simple variable into which the block is
13287 // being stored...unless that variable can be captured by reference!
13288 const Expr *InnerLHS = LHSExpr->IgnoreParenCasts();
13289 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InnerLHS);
13290 if (!DRE || DRE->getDecl()->hasAttr<BlocksAttr>())
13291 checkRetainCycles(LHSExpr, RHS.get());
13292 }
13293
13294 if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong ||
13295 LHSType.isNonWeakInMRRWithObjCWeak(Context)) {
13296 // It is safe to assign a weak reference into a strong variable.
13297 // Although this code can still have problems:
13298 // id x = self.weakProp;
13299 // id y = self.weakProp;
13300 // we do not warn to warn spuriously when 'x' and 'y' are on separate
13301 // paths through the function. This should be revisited if
13302 // -Wrepeated-use-of-weak is made flow-sensitive.
13303 // For ObjCWeak only, we do not warn if the assign is to a non-weak
13304 // variable, which will be valid for the current autorelease scope.
13305 if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak,
13306 RHS.get()->getBeginLoc()))
13307 getCurFunction()->markSafeWeakUse(RHS.get());
13308
13309 } else if (getLangOpts().ObjCAutoRefCount || getLangOpts().ObjCWeak) {
13310 checkUnsafeExprAssigns(Loc, LHSExpr, RHS.get());
13311 }
13312 }
13313 } else {
13314 // Compound assignment "x += y"
13315 ConvTy = CheckAssignmentConstraints(Loc, LHSType, RHSType);
13316 }
13317
13318 if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
13319 RHS.get(), AA_Assigning))
13320 return QualType();
13321
13322 CheckForNullPointerDereference(*this, LHSExpr);
13323
13324 if (getLangOpts().CPlusPlus20 && LHSType.isVolatileQualified()) {
13325 if (CompoundType.isNull()) {
13326 // C++2a [expr.ass]p5:
13327 // A simple-assignment whose left operand is of a volatile-qualified
13328 // type is deprecated unless the assignment is either a discarded-value
13329 // expression or an unevaluated operand
13330 ExprEvalContexts.back().VolatileAssignmentLHSs.push_back(LHSExpr);
13331 } else {
13332 // C++2a [expr.ass]p6:
13333 // [Compound-assignment] expressions are deprecated if E1 has
13334 // volatile-qualified type
13335 Diag(Loc, diag::warn_deprecated_compound_assign_volatile) << LHSType;
13336 }
13337 }
13338
13339 // C99 6.5.16p3: The type of an assignment expression is the type of the
13340 // left operand unless the left operand has qualified type, in which case
13341 // it is the unqualified version of the type of the left operand.
13342 // C99 6.5.16.1p2: In simple assignment, the value of the right operand
13343 // is converted to the type of the assignment expression (above).
13344 // C++ 5.17p1: the type of the assignment expression is that of its left
13345 // operand.
13346 return (getLangOpts().CPlusPlus
13347 ? LHSType : LHSType.getUnqualifiedType());
13348}
13349
13350// Only ignore explicit casts to void.
13351static bool IgnoreCommaOperand(const Expr *E) {
13352 E = E->IgnoreParens();
13353
13354 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
13355 if (CE->getCastKind() == CK_ToVoid) {
13356 return true;
13357 }
13358
13359 // static_cast<void> on a dependent type will not show up as CK_ToVoid.
13360 if (CE->getCastKind() == CK_Dependent && E->getType()->isVoidType() &&
13361 CE->getSubExpr()->getType()->isDependentType()) {
13362 return true;
13363 }
13364 }
13365
13366 return false;
13367}
13368
13369// Look for instances where it is likely the comma operator is confused with
13370// another operator. There is an explicit list of acceptable expressions for
13371// the left hand side of the comma operator, otherwise emit a warning.
13372void Sema::DiagnoseCommaOperator(const Expr *LHS, SourceLocation Loc) {
13373 // No warnings in macros
13374 if (Loc.isMacroID())
13375 return;
13376
13377 // Don't warn in template instantiations.
13378 if (inTemplateInstantiation())
13379 return;
13380
13381 // Scope isn't fine-grained enough to explicitly list the specific cases, so
13382 // instead, skip more than needed, then call back into here with the
13383 // CommaVisitor in SemaStmt.cpp.
13384 // The listed locations are the initialization and increment portions
13385 // of a for loop. The additional checks are on the condition of
13386 // if statements, do/while loops, and for loops.
13387 // Differences in scope flags for C89 mode requires the extra logic.
13388 const unsigned ForIncrementFlags =
13389 getLangOpts().C99 || getLangOpts().CPlusPlus
13390 ? Scope::ControlScope | Scope::ContinueScope | Scope::BreakScope
13391 : Scope::ContinueScope | Scope::BreakScope;
13392 const unsigned ForInitFlags = Scope::ControlScope | Scope::DeclScope;
13393 const unsigned ScopeFlags = getCurScope()->getFlags();
13394 if ((ScopeFlags & ForIncrementFlags) == ForIncrementFlags ||
13395 (ScopeFlags & ForInitFlags) == ForInitFlags)
13396 return;
13397
13398 // If there are multiple comma operators used together, get the RHS of the
13399 // of the comma operator as the LHS.
13400 while (const BinaryOperator *BO = dyn_cast<BinaryOperator>(LHS)) {
13401 if (BO->getOpcode() != BO_Comma)
13402 break;
13403 LHS = BO->getRHS();
13404 }
13405
13406 // Only allow some expressions on LHS to not warn.
13407 if (IgnoreCommaOperand(LHS))
13408 return;
13409
13410 Diag(Loc, diag::warn_comma_operator);
13411 Diag(LHS->getBeginLoc(), diag::note_cast_to_void)
13412 << LHS->getSourceRange()
13413 << FixItHint::CreateInsertion(LHS->getBeginLoc(),
13414 LangOpts.CPlusPlus ? "static_cast<void>("
13415 : "(void)(")
13416 << FixItHint::CreateInsertion(PP.getLocForEndOfToken(LHS->getEndLoc()),
13417 ")");
13418}
13419
13420// C99 6.5.17
13421static QualType CheckCommaOperands(Sema &S, ExprResult &LHS, ExprResult &RHS,
13422 SourceLocation Loc) {
13423 LHS = S.CheckPlaceholderExpr(LHS.get());
13424 RHS = S.CheckPlaceholderExpr(RHS.get());
13425 if (LHS.isInvalid() || RHS.isInvalid())
13426 return QualType();
13427
13428 // C's comma performs lvalue conversion (C99 6.3.2.1) on both its
13429 // operands, but not unary promotions.
13430 // C++'s comma does not do any conversions at all (C++ [expr.comma]p1).
13431
13432 // So we treat the LHS as a ignored value, and in C++ we allow the
13433 // containing site to determine what should be done with the RHS.
13434 LHS = S.IgnoredValueConversions(LHS.get());
13435 if (LHS.isInvalid())
13436 return QualType();
13437
13438 S.DiagnoseUnusedExprResult(LHS.get(), diag::warn_unused_comma_left_operand);
13439
13440 if (!S.getLangOpts().CPlusPlus) {
13441 RHS = S.DefaultFunctionArrayLvalueConversion(RHS.get());
13442 if (RHS.isInvalid())
13443 return QualType();
13444 if (!RHS.get()->getType()->isVoidType())
13445 S.RequireCompleteType(Loc, RHS.get()->getType(),
13446 diag::err_incomplete_type);
13447 }
13448
13449 if (!S.getDiagnostics().isIgnored(diag::warn_comma_operator, Loc))
13450 S.DiagnoseCommaOperator(LHS.get(), Loc);
13451
13452 return RHS.get()->getType();
13453}
13454
13455/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
13456/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
13457static QualType CheckIncrementDecrementOperand(Sema &S, Expr *Op,
13458 ExprValueKind &VK,
13459 ExprObjectKind &OK,
13460 SourceLocation OpLoc,
13461 bool IsInc, bool IsPrefix) {
13462 if (Op->isTypeDependent())
13463 return S.Context.DependentTy;
13464
13465 QualType ResType = Op->getType();
13466 // Atomic types can be used for increment / decrement where the non-atomic
13467 // versions can, so ignore the _Atomic() specifier for the purpose of
13468 // checking.
13469 if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
13470 ResType = ResAtomicType->getValueType();
13471
13472 assert(!ResType.isNull() && "no type for increment/decrement expression")(static_cast <bool> (!ResType.isNull() && "no type for increment/decrement expression"
) ? void (0) : __assert_fail ("!ResType.isNull() && \"no type for increment/decrement expression\""
, "clang/lib/Sema/SemaExpr.cpp", 13472, __extension__ __PRETTY_FUNCTION__
))
;
13473
13474 if (S.getLangOpts().CPlusPlus && ResType->isBooleanType()) {
13475 // Decrement of bool is not allowed.
13476 if (!IsInc) {
13477 S.Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
13478 return QualType();
13479 }
13480 // Increment of bool sets it to true, but is deprecated.
13481 S.Diag(OpLoc, S.getLangOpts().CPlusPlus17 ? diag::ext_increment_bool
13482 : diag::warn_increment_bool)
13483 << Op->getSourceRange();
13484 } else if (S.getLangOpts().CPlusPlus && ResType->isEnumeralType()) {
13485 // Error on enum increments and decrements in C++ mode
13486 S.Diag(OpLoc, diag::err_increment_decrement_enum) << IsInc << ResType;
13487 return QualType();
13488 } else if (ResType->isRealType()) {
13489 // OK!
13490 } else if (ResType->isPointerType()) {
13491 // C99 6.5.2.4p2, 6.5.6p2
13492 if (!checkArithmeticOpPointerOperand(S, OpLoc, Op))
13493 return QualType();
13494 } else if (ResType->isObjCObjectPointerType()) {
13495 // On modern runtimes, ObjC pointer arithmetic is forbidden.
13496 // Otherwise, we just need a complete type.
13497 if (checkArithmeticIncompletePointerType(S, OpLoc, Op) ||
13498 checkArithmeticOnObjCPointer(S, OpLoc, Op))
13499 return QualType();
13500 } else if (ResType->isAnyComplexType()) {
13501 // C99 does not support ++/-- on complex types, we allow as an extension.
13502 S.Diag(OpLoc, diag::ext_integer_increment_complex)
13503 << ResType << Op->getSourceRange();
13504 } else if (ResType->isPlaceholderType()) {
13505 ExprResult PR = S.CheckPlaceholderExpr(Op);
13506 if (PR.isInvalid()) return QualType();
13507 return CheckIncrementDecrementOperand(S, PR.get(), VK, OK, OpLoc,
13508 IsInc, IsPrefix);
13509 } else if (S.getLangOpts().AltiVec && ResType->isVectorType()) {
13510 // OK! ( C/C++ Language Extensions for CBEA(Version 2.6) 10.3 )
13511 } else if (S.getLangOpts().ZVector && ResType->isVectorType() &&
13512 (ResType->castAs<VectorType>()->getVectorKind() !=
13513 VectorType::AltiVecBool)) {
13514 // The z vector extensions allow ++ and -- for non-bool vectors.
13515 } else if(S.getLangOpts().OpenCL && ResType->isVectorType() &&
13516 ResType->castAs<VectorType>()->getElementType()->isIntegerType()) {
13517 // OpenCL V1.2 6.3 says dec/inc ops operate on integer vector types.
13518 } else {
13519 S.Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
13520 << ResType << int(IsInc) << Op->getSourceRange();
13521 return QualType();
13522 }
13523 // At this point, we know we have a real, complex or pointer type.
13524 // Now make sure the operand is a modifiable lvalue.
13525 if (CheckForModifiableLvalue(Op, OpLoc, S))
13526 return QualType();
13527 if (S.getLangOpts().CPlusPlus20 && ResType.isVolatileQualified()) {
13528 // C++2a [expr.pre.inc]p1, [expr.post.inc]p1:
13529 // An operand with volatile-qualified type is deprecated
13530 S.Diag(OpLoc, diag::warn_deprecated_increment_decrement_volatile)
13531 << IsInc << ResType;
13532 }
13533 // In C++, a prefix increment is the same type as the operand. Otherwise
13534 // (in C or with postfix), the increment is the unqualified type of the
13535 // operand.
13536 if (IsPrefix && S.getLangOpts().CPlusPlus) {
13537 VK = VK_LValue;
13538 OK = Op->getObjectKind();
13539 return ResType;
13540 } else {
13541 VK = VK_PRValue;
13542 return ResType.getUnqualifiedType();
13543 }
13544}
13545
13546
13547/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
13548/// This routine allows us to typecheck complex/recursive expressions
13549/// where the declaration is needed for type checking. We only need to
13550/// handle cases when the expression references a function designator
13551/// or is an lvalue. Here are some examples:
13552/// - &(x) => x
13553/// - &*****f => f for f a function designator.
13554/// - &s.xx => s
13555/// - &s.zz[1].yy -> s, if zz is an array
13556/// - *(x + 1) -> x, if x is an array
13557/// - &"123"[2] -> 0
13558/// - & __real__ x -> x
13559///
13560/// FIXME: We don't recurse to the RHS of a comma, nor handle pointers to
13561/// members.
13562static ValueDecl *getPrimaryDecl(Expr *E) {
13563 switch (E->getStmtClass()) {
13564 case Stmt::DeclRefExprClass:
13565 return cast<DeclRefExpr>(E)->getDecl();
13566 case Stmt::MemberExprClass:
13567 // If this is an arrow operator, the address is an offset from
13568 // the base's value, so the object the base refers to is
13569 // irrelevant.
13570 if (cast<MemberExpr>(E)->isArrow())
13571 return nullptr;
13572 // Otherwise, the expression refers to a part of the base
13573 return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
13574 case Stmt::ArraySubscriptExprClass: {
13575 // FIXME: This code shouldn't be necessary! We should catch the implicit
13576 // promotion of register arrays earlier.
13577 Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
13578 if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
13579 if (ICE->getSubExpr()->getType()->isArrayType())
13580 return getPrimaryDecl(ICE->getSubExpr());
13581 }
13582 return nullptr;
13583 }
13584 case Stmt::UnaryOperatorClass: {
13585 UnaryOperator *UO = cast<UnaryOperator>(E);
13586
13587 switch(UO->getOpcode()) {
13588 case UO_Real:
13589 case UO_Imag:
13590 case UO_Extension:
13591 return getPrimaryDecl(UO->getSubExpr());
13592 default:
13593 return nullptr;
13594 }
13595 }
13596 case Stmt::ParenExprClass:
13597 return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
13598 case Stmt::ImplicitCastExprClass:
13599 // If the result of an implicit cast is an l-value, we care about
13600 // the sub-expression; otherwise, the result here doesn't matter.
13601 return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
13602 case Stmt::CXXUuidofExprClass:
13603 return cast<CXXUuidofExpr>(E)->getGuidDecl();
13604 default:
13605 return nullptr;
13606 }
13607}
13608
13609namespace {
13610enum {
13611 AO_Bit_Field = 0,
13612 AO_Vector_Element = 1,
13613 AO_Property_Expansion = 2,
13614 AO_Register_Variable = 3,
13615 AO_Matrix_Element = 4,
13616 AO_No_Error = 5
13617};
13618}
13619/// Diagnose invalid operand for address of operations.
13620///
13621/// \param Type The type of operand which cannot have its address taken.
13622static void diagnoseAddressOfInvalidType(Sema &S, SourceLocation Loc,
13623 Expr *E, unsigned Type) {
13624 S.Diag(Loc, diag::err_typecheck_address_of) << Type << E->getSourceRange();
13625}
13626
13627/// CheckAddressOfOperand - The operand of & must be either a function
13628/// designator or an lvalue designating an object. If it is an lvalue, the
13629/// object cannot be declared with storage class register or be a bit field.
13630/// Note: The usual conversions are *not* applied to the operand of the &
13631/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
13632/// In C++, the operand might be an overloaded function name, in which case
13633/// we allow the '&' but retain the overloaded-function type.
13634QualType Sema::CheckAddressOfOperand(ExprResult &OrigOp, SourceLocation OpLoc) {
13635 if (const BuiltinType *PTy = OrigOp.get()->getType()->getAsPlaceholderType()){
13636 if (PTy->getKind() == BuiltinType::Overload) {
13637 Expr *E = OrigOp.get()->IgnoreParens();
13638 if (!isa<OverloadExpr>(E)) {
13639 assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf)(static_cast <bool> (cast<UnaryOperator>(E)->getOpcode
() == UO_AddrOf) ? void (0) : __assert_fail ("cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf"
, "clang/lib/Sema/SemaExpr.cpp", 13639, __extension__ __PRETTY_FUNCTION__
))
;
13640 Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof_addrof_function)
13641 << OrigOp.get()->getSourceRange();
13642 return QualType();
13643 }
13644
13645 OverloadExpr *Ovl = cast<OverloadExpr>(E);
13646 if (isa<UnresolvedMemberExpr>(Ovl))
13647 if (!ResolveSingleFunctionTemplateSpecialization(Ovl)) {
13648 Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
13649 << OrigOp.get()->getSourceRange();
13650 return QualType();
13651 }
13652
13653 return Context.OverloadTy;
13654 }
13655
13656 if (PTy->getKind() == BuiltinType::UnknownAny)
13657 return Context.UnknownAnyTy;
13658
13659 if (PTy->getKind() == BuiltinType::BoundMember) {
13660 Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
13661 << OrigOp.get()->getSourceRange();
13662 return QualType();
13663 }
13664
13665 OrigOp = CheckPlaceholderExpr(OrigOp.get());
13666 if (OrigOp.isInvalid()) return QualType();
13667 }
13668
13669 if (OrigOp.get()->isTypeDependent())
13670 return Context.DependentTy;
13671
13672 assert(!OrigOp.get()->hasPlaceholderType())(static_cast <bool> (!OrigOp.get()->hasPlaceholderType
()) ? void (0) : __assert_fail ("!OrigOp.get()->hasPlaceholderType()"
, "clang/lib/Sema/SemaExpr.cpp", 13672, __extension__ __PRETTY_FUNCTION__
))
;
13673
13674 // Make sure to ignore parentheses in subsequent checks
13675 Expr *op = OrigOp.get()->IgnoreParens();
13676
13677 // In OpenCL captures for blocks called as lambda functions
13678 // are located in the private address space. Blocks used in
13679 // enqueue_kernel can be located in a different address space
13680 // depending on a vendor implementation. Thus preventing
13681 // taking an address of the capture to avoid invalid AS casts.
13682 if (LangOpts.OpenCL) {
13683 auto* VarRef = dyn_cast<DeclRefExpr>(op);
13684 if (VarRef && VarRef->refersToEnclosingVariableOrCapture()) {
13685 Diag(op->getExprLoc(), diag::err_opencl_taking_address_capture);
13686 return QualType();
13687 }
13688 }
13689
13690 if (getLangOpts().C99) {
13691 // Implement C99-only parts of addressof rules.
13692 if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
13693 if (uOp->getOpcode() == UO_Deref)
13694 // Per C99 6.5.3.2, the address of a deref always returns a valid result
13695 // (assuming the deref expression is valid).
13696 return uOp->getSubExpr()->getType();
13697 }
13698 // Technically, there should be a check for array subscript
13699 // expressions here, but the result of one is always an lvalue anyway.
13700 }
13701 ValueDecl *dcl = getPrimaryDecl(op);
13702
13703 if (auto *FD = dyn_cast_or_null<FunctionDecl>(dcl))
13704 if (!checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
13705 op->getBeginLoc()))
13706 return QualType();
13707
13708 Expr::LValueClassification lval = op->ClassifyLValue(Context);
13709 unsigned AddressOfError = AO_No_Error;
13710
13711 if (lval == Expr::LV_ClassTemporary || lval == Expr::LV_ArrayTemporary) {
13712 bool sfinae = (bool)isSFINAEContext();
13713 Diag(OpLoc, isSFINAEContext() ? diag::err_typecheck_addrof_temporary
13714 : diag::ext_typecheck_addrof_temporary)
13715 << op->getType() << op->getSourceRange();
13716 if (sfinae)
13717 return QualType();
13718 // Materialize the temporary as an lvalue so that we can take its address.
13719 OrigOp = op =
13720 CreateMaterializeTemporaryExpr(op->getType(), OrigOp.get(), true);
13721 } else if (isa<ObjCSelectorExpr>(op)) {
13722 return Context.getPointerType(op->getType());
13723 } else if (lval == Expr::LV_MemberFunction) {
13724 // If it's an instance method, make a member pointer.
13725 // The expression must have exactly the form &A::foo.
13726
13727 // If the underlying expression isn't a decl ref, give up.
13728 if (!isa<DeclRefExpr>(op)) {
13729 Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
13730 << OrigOp.get()->getSourceRange();
13731 return QualType();
13732 }
13733 DeclRefExpr *DRE = cast<DeclRefExpr>(op);
13734 CXXMethodDecl *MD = cast<CXXMethodDecl>(DRE->getDecl());
13735
13736 // The id-expression was parenthesized.
13737 if (OrigOp.get() != DRE) {
13738 Diag(OpLoc, diag::err_parens_pointer_member_function)
13739 << OrigOp.get()->getSourceRange();
13740
13741 // The method was named without a qualifier.
13742 } else if (!DRE->getQualifier()) {
13743 if (MD->getParent()->getName().empty())
13744 Diag(OpLoc, diag::err_unqualified_pointer_member_function)
13745 << op->getSourceRange();
13746 else {
13747 SmallString<32> Str;
13748 StringRef Qual = (MD->getParent()->getName() + "::").toStringRef(Str);
13749 Diag(OpLoc, diag::err_unqualified_pointer_member_function)
13750 << op->getSourceRange()
13751 << FixItHint::CreateInsertion(op->getSourceRange().getBegin(), Qual);
13752 }
13753 }
13754
13755 // Taking the address of a dtor is illegal per C++ [class.dtor]p2.
13756 if (isa<CXXDestructorDecl>(MD))
13757 Diag(OpLoc, diag::err_typecheck_addrof_dtor) << op->getSourceRange();
13758
13759 QualType MPTy = Context.getMemberPointerType(
13760 op->getType(), Context.getTypeDeclType(MD->getParent()).getTypePtr());
13761 // Under the MS ABI, lock down the inheritance model now.
13762 if (Context.getTargetInfo().getCXXABI().isMicrosoft())
13763 (void)isCompleteType(OpLoc, MPTy);
13764 return MPTy;
13765 } else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
13766 // C99 6.5.3.2p1
13767 // The operand must be either an l-value or a function designator
13768 if (!op->getType()->isFunctionType()) {
13769 // Use a special diagnostic for loads from property references.
13770 if (isa<PseudoObjectExpr>(op)) {
13771 AddressOfError = AO_Property_Expansion;
13772 } else {
13773 Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
13774 << op->getType() << op->getSourceRange();
13775 return QualType();
13776 }
13777 }
13778 } else if (op->getObjectKind() == OK_BitField) { // C99 6.5.3.2p1
13779 // The operand cannot be a bit-field
13780 AddressOfError = AO_Bit_Field;
13781 } else if (op->getObjectKind() == OK_VectorComponent) {
13782 // The operand cannot be an element of a vector
13783 AddressOfError = AO_Vector_Element;
13784 } else if (op->getObjectKind() == OK_MatrixComponent) {
13785 // The operand cannot be an element of a matrix.
13786 AddressOfError = AO_Matrix_Element;
13787 } else if (dcl) { // C99 6.5.3.2p1
13788 // We have an lvalue with a decl. Make sure the decl is not declared
13789 // with the register storage-class specifier.
13790 if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
13791 // in C++ it is not error to take address of a register
13792 // variable (c++03 7.1.1P3)
13793 if (vd->getStorageClass() == SC_Register &&
13794 !getLangOpts().CPlusPlus) {
13795 AddressOfError = AO_Register_Variable;
13796 }
13797 } else if (isa<MSPropertyDecl>(dcl)) {
13798 AddressOfError = AO_Property_Expansion;
13799 } else if (isa<FunctionTemplateDecl>(dcl)) {
13800 return Context.OverloadTy;
13801 } else if (isa<FieldDecl>(dcl) || isa<IndirectFieldDecl>(dcl)) {
13802 // Okay: we can take the address of a field.
13803 // Could be a pointer to member, though, if there is an explicit
13804 // scope qualifier for the class.
13805 if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) {
13806 DeclContext *Ctx = dcl->getDeclContext();
13807 if (Ctx && Ctx->isRecord()) {
13808 if (dcl->getType()->isReferenceType()) {
13809 Diag(OpLoc,
13810 diag::err_cannot_form_pointer_to_member_of_reference_type)
13811 << dcl->getDeclName() << dcl->getType();
13812 return QualType();
13813 }
13814
13815 while (cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion())
13816 Ctx = Ctx->getParent();
13817
13818 QualType MPTy = Context.getMemberPointerType(
13819 op->getType(),
13820 Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
13821 // Under the MS ABI, lock down the inheritance model now.
13822 if (Context.getTargetInfo().getCXXABI().isMicrosoft())
13823 (void)isCompleteType(OpLoc, MPTy);
13824 return MPTy;
13825 }
13826 }
13827 } else if (!isa<FunctionDecl>(dcl) && !isa<NonTypeTemplateParmDecl>(dcl) &&
13828 !isa<BindingDecl>(dcl) && !isa<MSGuidDecl>(dcl))
13829 llvm_unreachable("Unknown/unexpected decl type")::llvm::llvm_unreachable_internal("Unknown/unexpected decl type"
, "clang/lib/Sema/SemaExpr.cpp", 13829)
;
13830 }
13831
13832 if (AddressOfError != AO_No_Error) {
13833 diagnoseAddressOfInvalidType(*this, OpLoc, op, AddressOfError);
13834 return QualType();
13835 }
13836
13837 if (lval == Expr::LV_IncompleteVoidType) {
13838 // Taking the address of a void variable is technically illegal, but we
13839 // allow it in cases which are otherwise valid.
13840 // Example: "extern void x; void* y = &x;".
13841 Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
13842 }
13843
13844 // If the operand has type "type", the result has type "pointer to type".
13845 if (op->getType()->isObjCObjectType())
13846 return Context.getObjCObjectPointerType(op->getType());
13847
13848 CheckAddressOfPackedMember(op);
13849
13850 return Context.getPointerType(op->getType());
13851}
13852
13853static void RecordModifiableNonNullParam(Sema &S, const Expr *Exp) {
13854 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Exp);
13855 if (!DRE)
13856 return;
13857 const Decl *D = DRE->getDecl();
13858 if (!D)
13859 return;
13860 const ParmVarDecl *Param = dyn_cast<ParmVarDecl>(D);
13861 if (!Param)
13862 return;
13863 if (const FunctionDecl* FD = dyn_cast<FunctionDecl>(Param->getDeclContext()))
13864 if (!FD->hasAttr<NonNullAttr>() && !Param->hasAttr<NonNullAttr>())
13865 return;
13866 if (FunctionScopeInfo *FD = S.getCurFunction())
13867 if (!FD->ModifiedNonNullParams.count(Param))
13868 FD->ModifiedNonNullParams.insert(Param);
13869}
13870
13871/// CheckIndirectionOperand - Type check unary indirection (prefix '*').
13872static QualType CheckIndirectionOperand(Sema &S, Expr *Op, ExprValueKind &VK,
13873 SourceLocation OpLoc) {
13874 if (Op->isTypeDependent())
13875 return S.Context.DependentTy;
13876
13877 ExprResult ConvResult = S.UsualUnaryConversions(Op);
13878 if (ConvResult.isInvalid())
13879 return QualType();
13880 Op = ConvResult.get();
13881 QualType OpTy = Op->getType();
13882 QualType Result;
13883
13884 if (isa<CXXReinterpretCastExpr>(Op)) {
13885 QualType OpOrigType = Op->IgnoreParenCasts()->getType();
13886 S.CheckCompatibleReinterpretCast(OpOrigType, OpTy, /*IsDereference*/true,
13887 Op->getSourceRange());
13888 }
13889
13890 if (const PointerType *PT = OpTy->getAs<PointerType>())
13891 {
13892 Result = PT->getPointeeType();
13893 }
13894 else if (const ObjCObjectPointerType *OPT =
13895 OpTy->getAs<ObjCObjectPointerType>())
13896 Result = OPT->getPointeeType();
13897 else {
13898 ExprResult PR = S.CheckPlaceholderExpr(Op);
13899 if (PR.isInvalid()) return QualType();
13900 if (PR.get() != Op)
13901 return CheckIndirectionOperand(S, PR.get(), VK, OpLoc);
13902 }
13903
13904 if (Result.isNull()) {
13905 S.Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
13906 << OpTy << Op->getSourceRange();
13907 return QualType();
13908 }
13909
13910 // Note that per both C89 and C99, indirection is always legal, even if Result
13911 // is an incomplete type or void. It would be possible to warn about
13912 // dereferencing a void pointer, but it's completely well-defined, and such a
13913 // warning is unlikely to catch any mistakes. In C++, indirection is not valid
13914 // for pointers to 'void' but is fine for any other pointer type:
13915 //
13916 // C++ [expr.unary.op]p1:
13917 // [...] the expression to which [the unary * operator] is applied shall
13918 // be a pointer to an object type, or a pointer to a function type
13919 if (S.getLangOpts().CPlusPlus && Result->isVoidType())
13920 S.Diag(OpLoc, diag::ext_typecheck_indirection_through_void_pointer)
13921 << OpTy << Op->getSourceRange();
13922
13923 // Dereferences are usually l-values...
13924 VK = VK_LValue;
13925
13926 // ...except that certain expressions are never l-values in C.
13927 if (!S.getLangOpts().CPlusPlus && Result.isCForbiddenLValueType())
13928 VK = VK_PRValue;
13929
13930 return Result;
13931}
13932
13933BinaryOperatorKind Sema::ConvertTokenKindToBinaryOpcode(tok::TokenKind Kind) {
13934 BinaryOperatorKind Opc;
13935 switch (Kind) {
13936 default: llvm_unreachable("Unknown binop!")::llvm::llvm_unreachable_internal("Unknown binop!", "clang/lib/Sema/SemaExpr.cpp"
, 13936)
;
13937 case tok::periodstar: Opc = BO_PtrMemD; break;
13938 case tok::arrowstar: Opc = BO_PtrMemI; break;
13939 case tok::star: Opc = BO_Mul; break;
13940 case tok::slash: Opc = BO_Div; break;
13941 case tok::percent: Opc = BO_Rem; break;
13942 case tok::plus: Opc = BO_Add; break;
13943 case tok::minus: Opc = BO_Sub; break;
13944 case tok::lessless: Opc = BO_Shl; break;
13945 case tok::greatergreater: Opc = BO_Shr; break;
13946 case tok::lessequal: Opc = BO_LE; break;
13947 case tok::less: Opc = BO_LT; break;
13948 case tok::greaterequal: Opc = BO_GE; break;
13949 case tok::greater: Opc = BO_GT; break;
13950 case tok::exclaimequal: Opc = BO_NE; break;
13951 case tok::equalequal: Opc = BO_EQ; break;
13952 case tok::spaceship: Opc = BO_Cmp; break;
13953 case tok::amp: Opc = BO_And; break;
13954 case tok::caret: Opc = BO_Xor; break;
13955 case tok::pipe: Opc = BO_Or; break;
13956 case tok::ampamp: Opc = BO_LAnd; break;
13957 case tok::pipepipe: Opc = BO_LOr; break;
13958 case tok::equal: Opc = BO_Assign; break;
13959 case tok::starequal: Opc = BO_MulAssign; break;
13960 case tok::slashequal: Opc = BO_DivAssign; break;
13961 case tok::percentequal: Opc = BO_RemAssign; break;
13962 case tok::plusequal: Opc = BO_AddAssign; break;
13963 case tok::minusequal: Opc = BO_SubAssign; break;
13964 case tok::lesslessequal: Opc = BO_ShlAssign; break;
13965 case tok::greatergreaterequal: Opc = BO_ShrAssign; break;
13966 case tok::ampequal: Opc = BO_AndAssign; break;
13967 case tok::caretequal: Opc = BO_XorAssign; break;
13968 case tok::pipeequal: Opc = BO_OrAssign; break;
13969 case tok::comma: Opc = BO_Comma; break;
13970 }
13971 return Opc;
13972}
13973
13974static inline UnaryOperatorKind ConvertTokenKindToUnaryOpcode(
13975 tok::TokenKind Kind) {
13976 UnaryOperatorKind Opc;
13977 switch (Kind) {
13978 default: llvm_unreachable("Unknown unary op!")::llvm::llvm_unreachable_internal("Unknown unary op!", "clang/lib/Sema/SemaExpr.cpp"
, 13978)
;
13979 case tok::plusplus: Opc = UO_PreInc; break;
13980 case tok::minusminus: Opc = UO_PreDec; break;
13981 case tok::amp: Opc = UO_AddrOf; break;
13982 case tok::star: Opc = UO_Deref; break;
13983 case tok::plus: Opc = UO_Plus; break;
13984 case tok::minus: Opc = UO_Minus; break;
13985 case tok::tilde: Opc = UO_Not; break;
13986 case tok::exclaim: Opc = UO_LNot; break;
13987 case tok::kw___real: Opc = UO_Real; break;
13988 case tok::kw___imag: Opc = UO_Imag; break;
13989 case tok::kw___extension__: Opc = UO_Extension; break;
13990 }
13991 return Opc;
13992}
13993
13994/// DiagnoseSelfAssignment - Emits a warning if a value is assigned to itself.
13995/// This warning suppressed in the event of macro expansions.
13996static void DiagnoseSelfAssignment(Sema &S, Expr *LHSExpr, Expr *RHSExpr,
13997 SourceLocation OpLoc, bool IsBuiltin) {
13998 if (S.inTemplateInstantiation())
13999 return;
14000 if (S.isUnevaluatedContext())
14001 return;
14002 if (OpLoc.isInvalid() || OpLoc.isMacroID())
14003 return;
14004 LHSExpr = LHSExpr->IgnoreParenImpCasts();
14005 RHSExpr = RHSExpr->IgnoreParenImpCasts();
14006 const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
14007 const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
14008 if (!LHSDeclRef || !RHSDeclRef ||
14009 LHSDeclRef->getLocation().isMacroID() ||
14010 RHSDeclRef->getLocation().isMacroID())
14011 return;
14012 const ValueDecl *LHSDecl =
14013 cast<ValueDecl>(LHSDeclRef->getDecl()->getCanonicalDecl());
14014 const ValueDecl *RHSDecl =
14015 cast<ValueDecl>(RHSDeclRef->getDecl()->getCanonicalDecl());
14016 if (LHSDecl != RHSDecl)
14017 return;
14018 if (LHSDecl->getType().isVolatileQualified())
14019 return;
14020 if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
14021 if (RefTy->getPointeeType().isVolatileQualified())
14022 return;
14023
14024 S.Diag(OpLoc, IsBuiltin ? diag::warn_self_assignment_builtin
14025 : diag::warn_self_assignment_overloaded)
14026 << LHSDeclRef->getType() << LHSExpr->getSourceRange()
14027 << RHSExpr->getSourceRange();
14028}
14029
14030/// Check if a bitwise-& is performed on an Objective-C pointer. This
14031/// is usually indicative of introspection within the Objective-C pointer.
14032static void checkObjCPointerIntrospection(Sema &S, ExprResult &L, ExprResult &R,
14033 SourceLocation OpLoc) {
14034 if (!S.getLangOpts().ObjC)
14035 return;
14036
14037 const Expr *ObjCPointerExpr = nullptr, *OtherExpr = nullptr;
14038 const Expr *LHS = L.get();
14039 const Expr *RHS = R.get();
14040
14041 if (LHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
14042 ObjCPointerExpr = LHS;
14043 OtherExpr = RHS;
14044 }
14045 else if (RHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
14046 ObjCPointerExpr = RHS;
14047 OtherExpr = LHS;
14048 }
14049
14050 // This warning is deliberately made very specific to reduce false
14051 // positives with logic that uses '&' for hashing. This logic mainly
14052 // looks for code trying to introspect into tagged pointers, which
14053 // code should generally never do.
14054 if (ObjCPointerExpr && isa<IntegerLiteral>(OtherExpr->IgnoreParenCasts())) {
14055 unsigned Diag = diag::warn_objc_pointer_masking;
14056 // Determine if we are introspecting the result of performSelectorXXX.
14057 const Expr *Ex = ObjCPointerExpr->IgnoreParenCasts();
14058 // Special case messages to -performSelector and friends, which
14059 // can return non-pointer values boxed in a pointer value.
14060 // Some clients may wish to silence warnings in this subcase.
14061 if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(Ex)) {
14062 Selector S = ME->getSelector();
14063 StringRef SelArg0 = S.getNameForSlot(0);
14064 if (SelArg0.startswith("performSelector"))
14065 Diag = diag::warn_objc_pointer_masking_performSelector;
14066 }
14067
14068 S.Diag(OpLoc, Diag)
14069 << ObjCPointerExpr->getSourceRange();
14070 }
14071}
14072
14073static NamedDecl *getDeclFromExpr(Expr *E) {
14074 if (!E)
14075 return nullptr;
14076 if (auto *DRE = dyn_cast<DeclRefExpr>(E))
14077 return DRE->getDecl();
14078 if (auto *ME = dyn_cast<MemberExpr>(E))
14079 return ME->getMemberDecl();
14080 if (auto *IRE = dyn_cast<ObjCIvarRefExpr>(E))
14081 return IRE->getDecl();
14082 return nullptr;
14083}
14084
14085// This helper function promotes a binary operator's operands (which are of a
14086// half vector type) to a vector of floats and then truncates the result to
14087// a vector of either half or short.
14088static ExprResult convertHalfVecBinOp(Sema &S, ExprResult LHS, ExprResult RHS,
14089 BinaryOperatorKind Opc, QualType ResultTy,
14090 ExprValueKind VK, ExprObjectKind OK,
14091 bool IsCompAssign, SourceLocation OpLoc,
14092 FPOptionsOverride FPFeatures) {
14093 auto &Context = S.getASTContext();
14094 assert((isVector(ResultTy, Context.HalfTy) ||(static_cast <bool> ((isVector(ResultTy, Context.HalfTy
) || isVector(ResultTy, Context.ShortTy)) && "Result must be a vector of half or short"
) ? void (0) : __assert_fail ("(isVector(ResultTy, Context.HalfTy) || isVector(ResultTy, Context.ShortTy)) && \"Result must be a vector of half or short\""
, "clang/lib/Sema/SemaExpr.cpp", 14096, __extension__ __PRETTY_FUNCTION__
))
14095 isVector(ResultTy, Context.ShortTy)) &&(static_cast <bool> ((isVector(ResultTy, Context.HalfTy
) || isVector(ResultTy, Context.ShortTy)) && "Result must be a vector of half or short"
) ? void (0) : __assert_fail ("(isVector(ResultTy, Context.HalfTy) || isVector(ResultTy, Context.ShortTy)) && \"Result must be a vector of half or short\""
, "clang/lib/Sema/SemaExpr.cpp", 14096, __extension__ __PRETTY_FUNCTION__
))
14096 "Result must be a vector of half or short")(static_cast <bool> ((isVector(ResultTy, Context.HalfTy
) || isVector(ResultTy, Context.ShortTy)) && "Result must be a vector of half or short"
) ? void (0) : __assert_fail ("(isVector(ResultTy, Context.HalfTy) || isVector(ResultTy, Context.ShortTy)) && \"Result must be a vector of half or short\""
, "clang/lib/Sema/SemaExpr.cpp", 14096, __extension__ __PRETTY_FUNCTION__
))
;
14097 assert(isVector(LHS.get()->getType(), Context.HalfTy) &&(static_cast <bool> (isVector(LHS.get()->getType(), Context
.HalfTy) && isVector(RHS.get()->getType(), Context
.HalfTy) && "both operands expected to be a half vector"
) ? void (0) : __assert_fail ("isVector(LHS.get()->getType(), Context.HalfTy) && isVector(RHS.get()->getType(), Context.HalfTy) && \"both operands expected to be a half vector\""
, "clang/lib/Sema/SemaExpr.cpp", 14099, __extension__ __PRETTY_FUNCTION__
))
14098 isVector(RHS.get()->getType(), Context.HalfTy) &&(static_cast <bool> (isVector(LHS.get()->getType(), Context
.HalfTy) && isVector(RHS.get()->getType(), Context
.HalfTy) && "both operands expected to be a half vector"
) ? void (0) : __assert_fail ("isVector(LHS.get()->getType(), Context.HalfTy) && isVector(RHS.get()->getType(), Context.HalfTy) && \"both operands expected to be a half vector\""
, "clang/lib/Sema/SemaExpr.cpp", 14099, __extension__ __PRETTY_FUNCTION__
))
14099 "both operands expected to be a half vector")(static_cast <bool> (isVector(LHS.get()->getType(), Context
.HalfTy) && isVector(RHS.get()->getType(), Context
.HalfTy) && "both operands expected to be a half vector"
) ? void (0) : __assert_fail ("isVector(LHS.get()->getType(), Context.HalfTy) && isVector(RHS.get()->getType(), Context.HalfTy) && \"both operands expected to be a half vector\""
, "clang/lib/Sema/SemaExpr.cpp", 14099, __extension__ __PRETTY_FUNCTION__
))
;
14100
14101 RHS = convertVector(RHS.get(), Context.FloatTy, S);
14102 QualType BinOpResTy = RHS.get()->getType();
14103
14104 // If Opc is a comparison, ResultType is a vector of shorts. In that case,
14105 // change BinOpResTy to a vector of ints.
14106 if (isVector(ResultTy, Context.ShortTy))
14107 BinOpResTy = S.GetSignedVectorType(BinOpResTy);
14108
14109 if (IsCompAssign)
14110 return CompoundAssignOperator::Create(Context, LHS.get(), RHS.get(), Opc,
14111 ResultTy, VK, OK, OpLoc, FPFeatures,
14112 BinOpResTy, BinOpResTy);
14113
14114 LHS = convertVector(LHS.get(), Context.FloatTy, S);
14115 auto *BO = BinaryOperator::Create(Context, LHS.get(), RHS.get(), Opc,
14116 BinOpResTy, VK, OK, OpLoc, FPFeatures);
14117 return convertVector(BO, ResultTy->castAs<VectorType>()->getElementType(), S);
14118}
14119
14120static std::pair<ExprResult, ExprResult>
14121CorrectDelayedTyposInBinOp(Sema &S, BinaryOperatorKind Opc, Expr *LHSExpr,
14122 Expr *RHSExpr) {
14123 ExprResult LHS = LHSExpr, RHS = RHSExpr;
14124 if (!S.Context.isDependenceAllowed()) {
14125 // C cannot handle TypoExpr nodes on either side of a binop because it
14126 // doesn't handle dependent types properly, so make sure any TypoExprs have
14127 // been dealt with before checking the operands.
14128 LHS = S.CorrectDelayedTyposInExpr(LHS);
14129 RHS = S.CorrectDelayedTyposInExpr(
14130 RHS, /*InitDecl=*/nullptr, /*RecoverUncorrectedTypos=*/false,
14131 [Opc, LHS](Expr *E) {
14132 if (Opc != BO_Assign)
14133 return ExprResult(E);
14134 // Avoid correcting the RHS to the same Expr as the LHS.
14135 Decl *D = getDeclFromExpr(E);
14136 return (D && D == getDeclFromExpr(LHS.get())) ? ExprError() : E;
14137 });
14138 }
14139 return std::make_pair(LHS, RHS);
14140}
14141
14142/// Returns true if conversion between vectors of halfs and vectors of floats
14143/// is needed.
14144static bool needsConversionOfHalfVec(bool OpRequiresConversion, ASTContext &Ctx,
14145 Expr *E0, Expr *E1 = nullptr) {
14146 if (!OpRequiresConversion || Ctx.getLangOpts().NativeHalfType ||
14147 Ctx.getTargetInfo().useFP16ConversionIntrinsics())
14148 return false;
14149
14150 auto HasVectorOfHalfType = [&Ctx](Expr *E) {
14151 QualType Ty = E->IgnoreImplicit()->getType();
14152
14153 // Don't promote half precision neon vectors like float16x4_t in arm_neon.h
14154 // to vectors of floats. Although the element type of the vectors is __fp16,
14155 // the vectors shouldn't be treated as storage-only types. See the
14156 // discussion here: https://reviews.llvm.org/rG825235c140e7
14157 if (const VectorType *VT = Ty->getAs<VectorType>()) {
14158 if (VT->getVectorKind() == VectorType::NeonVector)
14159 return false;
14160 return VT->getElementType().getCanonicalType() == Ctx.HalfTy;
14161 }
14162 return false;
14163 };
14164
14165 return HasVectorOfHalfType(E0) && (!E1 || HasVectorOfHalfType(E1));
14166}
14167
14168/// CreateBuiltinBinOp - Creates a new built-in binary operation with
14169/// operator @p Opc at location @c TokLoc. This routine only supports
14170/// built-in operations; ActOnBinOp handles overloaded operators.
14171ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
14172 BinaryOperatorKind Opc,
14173 Expr *LHSExpr, Expr *RHSExpr) {
14174 if (getLangOpts().CPlusPlus11 && isa<InitListExpr>(RHSExpr)) {
14175 // The syntax only allows initializer lists on the RHS of assignment,
14176 // so we don't need to worry about accepting invalid code for
14177 // non-assignment operators.
14178 // C++11 5.17p9:
14179 // The meaning of x = {v} [...] is that of x = T(v) [...]. The meaning
14180 // of x = {} is x = T().
14181 InitializationKind Kind = InitializationKind::CreateDirectList(
14182 RHSExpr->getBeginLoc(), RHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
14183 InitializedEntity Entity =
14184 InitializedEntity::InitializeTemporary(LHSExpr->getType());
14185 InitializationSequence InitSeq(*this, Entity, Kind, RHSExpr);
14186 ExprResult Init = InitSeq.Perform(*this, Entity, Kind, RHSExpr);
14187 if (Init.isInvalid())
14188 return Init;
14189 RHSExpr = Init.get();
14190 }
14191
14192 ExprResult LHS = LHSExpr, RHS = RHSExpr;
14193 QualType ResultTy; // Result type of the binary operator.
14194 // The following two variables are used for compound assignment operators
14195 QualType CompLHSTy; // Type of LHS after promotions for computation
14196 QualType CompResultTy; // Type of computation result
14197 ExprValueKind VK = VK_PRValue;
14198 ExprObjectKind OK = OK_Ordinary;
14199 bool ConvertHalfVec = false;
14200
14201 std::tie(LHS, RHS) = CorrectDelayedTyposInBinOp(*this, Opc, LHSExpr, RHSExpr);
14202 if (!LHS.isUsable() || !RHS.isUsable())
14203 return ExprError();
14204
14205 if (getLangOpts().OpenCL) {
14206 QualType LHSTy = LHSExpr->getType();
14207 QualType RHSTy = RHSExpr->getType();
14208 // OpenCLC v2.0 s6.13.11.1 allows atomic variables to be initialized by
14209 // the ATOMIC_VAR_INIT macro.
14210 if (LHSTy->isAtomicType() || RHSTy->isAtomicType()) {
14211 SourceRange SR(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
14212 if (BO_Assign == Opc)
14213 Diag(OpLoc, diag::err_opencl_atomic_init) << 0 << SR;
14214 else
14215 ResultTy = InvalidOperands(OpLoc, LHS, RHS);
14216 return ExprError();
14217 }
14218
14219 // OpenCL special types - image, sampler, pipe, and blocks are to be used
14220 // only with a builtin functions and therefore should be disallowed here.
14221 if (LHSTy->isImageType() || RHSTy->isImageType() ||
14222 LHSTy->isSamplerT() || RHSTy->isSamplerT() ||
14223 LHSTy->isPipeType() || RHSTy->isPipeType() ||
14224 LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) {
14225 ResultTy = InvalidOperands(OpLoc, LHS, RHS);
14226 return ExprError();
14227 }
14228 }
14229
14230 checkTypeSupport(LHSExpr->getType(), OpLoc, /*ValueDecl*/ nullptr);
14231 checkTypeSupport(RHSExpr->getType(), OpLoc, /*ValueDecl*/ nullptr);
14232
14233 switch (Opc) {
14234 case BO_Assign:
14235 ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, QualType());
14236 if (getLangOpts().CPlusPlus &&
14237 LHS.get()->getObjectKind() != OK_ObjCProperty) {
14238 VK = LHS.get()->getValueKind();
14239 OK = LHS.get()->getObjectKind();
14240 }
14241 if (!ResultTy.isNull()) {
14242 DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc, true);
14243 DiagnoseSelfMove(LHS.get(), RHS.get(), OpLoc);
14244
14245 // Avoid copying a block to the heap if the block is assigned to a local
14246 // auto variable that is declared in the same scope as the block. This
14247 // optimization is unsafe if the local variable is declared in an outer
14248 // scope. For example:
14249 //
14250 // BlockTy b;
14251 // {
14252 // b = ^{...};
14253 // }
14254 // // It is unsafe to invoke the block here if it wasn't copied to the
14255 // // heap.
14256 // b();
14257
14258 if (auto *BE = dyn_cast<BlockExpr>(RHS.get()->IgnoreParens()))
14259 if (auto *DRE = dyn_cast<DeclRefExpr>(LHS.get()->IgnoreParens()))
14260 if (auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
14261 if (VD->hasLocalStorage() && getCurScope()->isDeclScope(VD))
14262 BE->getBlockDecl()->setCanAvoidCopyToHeap();
14263
14264 if (LHS.get()->getType().hasNonTrivialToPrimitiveCopyCUnion())
14265 checkNonTrivialCUnion(LHS.get()->getType(), LHS.get()->getExprLoc(),
14266 NTCUC_Assignment, NTCUK_Copy);
14267 }
14268 RecordModifiableNonNullParam(*this, LHS.get());
14269 break;
14270 case BO_PtrMemD:
14271 case BO_PtrMemI:
14272 ResultTy = CheckPointerToMemberOperands(LHS, RHS, VK, OpLoc,
14273 Opc == BO_PtrMemI);
14274 break;
14275 case BO_Mul:
14276 case BO_Div:
14277 ConvertHalfVec = true;
14278 ResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, false,
14279 Opc == BO_Div);
14280 break;
14281 case BO_Rem:
14282 ResultTy = CheckRemainderOperands(LHS, RHS, OpLoc);
14283 break;
14284 case BO_Add:
14285 ConvertHalfVec = true;
14286 ResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc);
14287 break;
14288 case BO_Sub:
14289 ConvertHalfVec = true;
14290 ResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc);
14291 break;
14292 case BO_Shl:
14293 case BO_Shr:
14294 ResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc);
14295 break;
14296 case BO_LE:
14297 case BO_LT:
14298 case BO_GE:
14299 case BO_GT:
14300 ConvertHalfVec = true;
14301 ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc);
14302 break;
14303 case BO_EQ:
14304 case BO_NE:
14305 ConvertHalfVec = true;
14306 ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc);
14307 break;
14308 case BO_Cmp:
14309 ConvertHalfVec = true;
14310 ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc);
14311 assert(ResultTy.isNull() || ResultTy->getAsCXXRecordDecl())(static_cast <bool> (ResultTy.isNull() || ResultTy->
getAsCXXRecordDecl()) ? void (0) : __assert_fail ("ResultTy.isNull() || ResultTy->getAsCXXRecordDecl()"
, "clang/lib/Sema/SemaExpr.cpp", 14311, __extension__ __PRETTY_FUNCTION__
))
;
14312 break;
14313 case BO_And:
14314 checkObjCPointerIntrospection(*this, LHS, RHS, OpLoc);
14315 LLVM_FALLTHROUGH[[gnu::fallthrough]];
14316 case BO_Xor:
14317 case BO_Or:
14318 ResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, Opc);
14319 break;
14320 case BO_LAnd:
14321 case BO_LOr:
14322 ConvertHalfVec = true;
14323 ResultTy = CheckLogicalOperands(LHS, RHS, OpLoc, Opc);
14324 break;
14325 case BO_MulAssign:
14326 case BO_DivAssign:
14327 ConvertHalfVec = true;
14328 CompResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, true,
14329 Opc == BO_DivAssign);
14330 CompLHSTy = CompResultTy;
14331 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
14332 ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
14333 break;
14334 case BO_RemAssign:
14335 CompResultTy = CheckRemainderOperands(LHS, RHS, OpLoc, true);
14336 CompLHSTy = CompResultTy;
14337 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
14338 ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
14339 break;
14340 case BO_AddAssign:
14341 ConvertHalfVec = true;
14342 CompResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc, &CompLHSTy);
14343 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
14344 ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
14345 break;
14346 case BO_SubAssign:
14347 ConvertHalfVec = true;
14348 CompResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc, &CompLHSTy);
14349 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
14350 ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
14351 break;
14352 case BO_ShlAssign:
14353 case BO_ShrAssign:
14354 CompResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc, true);
14355 CompLHSTy = CompResultTy;
14356 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
14357 ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
14358 break;
14359 case BO_AndAssign:
14360 case BO_OrAssign: // fallthrough
14361 DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc, true);
14362 LLVM_FALLTHROUGH[[gnu::fallthrough]];
14363 case BO_XorAssign:
14364 CompResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, Opc);
14365 CompLHSTy = CompResultTy;
14366 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
14367 ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
14368 break;
14369 case BO_Comma:
14370 ResultTy = CheckCommaOperands(*this, LHS, RHS, OpLoc);
14371 if (getLangOpts().CPlusPlus && !RHS.isInvalid()) {
14372 VK = RHS.get()->getValueKind();
14373 OK = RHS.get()->getObjectKind();
14374 }
14375 break;
14376 }
14377 if (ResultTy.isNull() || LHS.isInvalid() || RHS.isInvalid())
14378 return ExprError();
14379
14380 // Some of the binary operations require promoting operands of half vector to
14381 // float vectors and truncating the result back to half vector. For now, we do
14382 // this only when HalfArgsAndReturn is set (that is, when the target is arm or
14383 // arm64).
14384 assert((static_cast <bool> ((Opc == BO_Comma || isVector(RHS.get
()->getType(), Context.HalfTy) == isVector(LHS.get()->getType
(), Context.HalfTy)) && "both sides are half vectors or neither sides are"
) ? void (0) : __assert_fail ("(Opc == BO_Comma || isVector(RHS.get()->getType(), Context.HalfTy) == isVector(LHS.get()->getType(), Context.HalfTy)) && \"both sides are half vectors or neither sides are\""
, "clang/lib/Sema/SemaExpr.cpp", 14387, __extension__ __PRETTY_FUNCTION__
))
14385 (Opc == BO_Comma || isVector(RHS.get()->getType(), Context.HalfTy) ==(static_cast <bool> ((Opc == BO_Comma || isVector(RHS.get
()->getType(), Context.HalfTy) == isVector(LHS.get()->getType
(), Context.HalfTy)) && "both sides are half vectors or neither sides are"
) ? void (0) : __assert_fail ("(Opc == BO_Comma || isVector(RHS.get()->getType(), Context.HalfTy) == isVector(LHS.get()->getType(), Context.HalfTy)) && \"both sides are half vectors or neither sides are\""
, "clang/lib/Sema/SemaExpr.cpp", 14387, __extension__ __PRETTY_FUNCTION__
))
14386 isVector(LHS.get()->getType(), Context.HalfTy)) &&(static_cast <bool> ((Opc == BO_Comma || isVector(RHS.get
()->getType(), Context.HalfTy) == isVector(LHS.get()->getType
(), Context.HalfTy)) && "both sides are half vectors or neither sides are"
) ? void (0) : __assert_fail ("(Opc == BO_Comma || isVector(RHS.get()->getType(), Context.HalfTy) == isVector(LHS.get()->getType(), Context.HalfTy)) && \"both sides are half vectors or neither sides are\""
, "clang/lib/Sema/SemaExpr.cpp", 14387, __extension__ __PRETTY_FUNCTION__
))
14387 "both sides are half vectors or neither sides are")(static_cast <bool> ((Opc == BO_Comma || isVector(RHS.get
()->getType(), Context.HalfTy) == isVector(LHS.get()->getType
(), Context.HalfTy)) && "both sides are half vectors or neither sides are"
) ? void (0) : __assert_fail ("(Opc == BO_Comma || isVector(RHS.get()->getType(), Context.HalfTy) == isVector(LHS.get()->getType(), Context.HalfTy)) && \"both sides are half vectors or neither sides are\""
, "clang/lib/Sema/SemaExpr.cpp", 14387, __extension__ __PRETTY_FUNCTION__
))
;
14388 ConvertHalfVec =
14389 needsConversionOfHalfVec(ConvertHalfVec, Context, LHS.get(), RHS.get());
14390
14391 // Check for array bounds violations for both sides of the BinaryOperator
14392 CheckArrayAccess(LHS.get());
14393 CheckArrayAccess(RHS.get());
14394
14395 if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(LHS.get()->IgnoreParenCasts())) {
14396 NamedDecl *ObjectSetClass = LookupSingleName(TUScope,
14397 &Context.Idents.get("object_setClass"),
14398 SourceLocation(), LookupOrdinaryName);
14399 if (ObjectSetClass && isa<ObjCIsaExpr>(LHS.get())) {
14400 SourceLocation RHSLocEnd = getLocForEndOfToken(RHS.get()->getEndLoc());
14401 Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign)
14402 << FixItHint::CreateInsertion(LHS.get()->getBeginLoc(),
14403 "object_setClass(")
14404 << FixItHint::CreateReplacement(SourceRange(OISA->getOpLoc(), OpLoc),
14405 ",")
14406 << FixItHint::CreateInsertion(RHSLocEnd, ")");
14407 }
14408 else
14409 Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign);
14410 }
14411 else if (const ObjCIvarRefExpr *OIRE =
14412 dyn_cast<ObjCIvarRefExpr>(LHS.get()->IgnoreParenCasts()))
14413 DiagnoseDirectIsaAccess(*this, OIRE, OpLoc, RHS.get());
14414
14415 // Opc is not a compound assignment if CompResultTy is null.
14416 if (CompResultTy.isNull()) {
14417 if (ConvertHalfVec)
14418 return convertHalfVecBinOp(*this, LHS, RHS, Opc, ResultTy, VK, OK, false,
14419 OpLoc, CurFPFeatureOverrides());
14420 return BinaryOperator::Create(Context, LHS.get(), RHS.get(), Opc, ResultTy,
14421 VK, OK, OpLoc, CurFPFeatureOverrides());
14422 }
14423
14424 // Handle compound assignments.
14425 if (getLangOpts().CPlusPlus && LHS.get()->getObjectKind() !=
14426 OK_ObjCProperty) {
14427 VK = VK_LValue;
14428 OK = LHS.get()->getObjectKind();
14429 }
14430
14431 // The LHS is not converted to the result type for fixed-point compound
14432 // assignment as the common type is computed on demand. Reset the CompLHSTy
14433 // to the LHS type we would have gotten after unary conversions.
14434 if (CompResultTy->isFixedPointType())
14435 CompLHSTy = UsualUnaryConversions(LHS.get()).get()->getType();
14436
14437 if (ConvertHalfVec)
14438 return convertHalfVecBinOp(*this, LHS, RHS, Opc, ResultTy, VK, OK, true,
14439 OpLoc, CurFPFeatureOverrides());
14440
14441 return CompoundAssignOperator::Create(
14442 Context, LHS.get(), RHS.get(), Opc, ResultTy, VK, OK, OpLoc,
14443 CurFPFeatureOverrides(), CompLHSTy, CompResultTy);
14444}
14445
14446/// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
14447/// operators are mixed in a way that suggests that the programmer forgot that
14448/// comparison operators have higher precedence. The most typical example of
14449/// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
14450static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperatorKind Opc,
14451 SourceLocation OpLoc, Expr *LHSExpr,
14452 Expr *RHSExpr) {
14453 BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHSExpr);
14454 BinaryOperator *RHSBO = dyn_cast<BinaryOperator>(RHSExpr);
14455
14456 // Check that one of the sides is a comparison operator and the other isn't.
14457 bool isLeftComp = LHSBO && LHSBO->isComparisonOp();
14458 bool isRightComp = RHSBO && RHSBO->isComparisonOp();
14459 if (isLeftComp == isRightComp)
14460 return;
14461
14462 // Bitwise operations are sometimes used as eager logical ops.
14463 // Don't diagnose this.
14464 bool isLeftBitwise = LHSBO && LHSBO->isBitwiseOp();
14465 bool isRightBitwise = RHSBO && RHSBO->isBitwiseOp();
14466 if (isLeftBitwise || isRightBitwise)
14467 return;
14468
14469 SourceRange DiagRange = isLeftComp
14470 ? SourceRange(LHSExpr->getBeginLoc(), OpLoc)
14471 : SourceRange(OpLoc, RHSExpr->getEndLoc());
14472 StringRef OpStr = isLeftComp ? LHSBO->getOpcodeStr() : RHSBO->getOpcodeStr();
14473 SourceRange ParensRange =
14474 isLeftComp
14475 ? SourceRange(LHSBO->getRHS()->getBeginLoc(), RHSExpr->getEndLoc())
14476 : SourceRange(LHSExpr->getBeginLoc(), RHSBO->getLHS()->getEndLoc());
14477
14478 Self.Diag(OpLoc, diag::warn_precedence_bitwise_rel)
14479 << DiagRange << BinaryOperator::getOpcodeStr(Opc) << OpStr;
14480 SuggestParentheses(Self, OpLoc,
14481 Self.PDiag(diag::note_precedence_silence) << OpStr,
14482 (isLeftComp ? LHSExpr : RHSExpr)->getSourceRange());
14483 SuggestParentheses(Self, OpLoc,
14484 Self.PDiag(diag::note_precedence_bitwise_first)
14485 << BinaryOperator::getOpcodeStr(Opc),
14486 ParensRange);
14487}
14488
14489/// It accepts a '&&' expr that is inside a '||' one.
14490/// Emit a diagnostic together with a fixit hint that wraps the '&&' expression
14491/// in parentheses.
14492static void
14493EmitDiagnosticForLogicalAndInLogicalOr(Sema &Self, SourceLocation OpLoc,
14494 BinaryOperator *Bop) {
14495 assert(Bop->getOpcode() == BO_LAnd)(static_cast <bool> (Bop->getOpcode() == BO_LAnd) ? void
(0) : __assert_fail ("Bop->getOpcode() == BO_LAnd", "clang/lib/Sema/SemaExpr.cpp"
, 14495, __extension__ __PRETTY_FUNCTION__))
;
14496 Self.Diag(Bop->getOperatorLoc(), diag::warn_logical_and_in_logical_or)
14497 << Bop->getSourceRange() << OpLoc;
14498 SuggestParentheses(Self, Bop->getOperatorLoc(),
14499 Self.PDiag(diag::note_precedence_silence)
14500 << Bop->getOpcodeStr(),
14501 Bop->getSourceRange());
14502}
14503
14504/// Returns true if the given expression can be evaluated as a constant
14505/// 'true'.
14506static bool EvaluatesAsTrue(Sema &S, Expr *E) {
14507 bool Res;
14508 return !E->isValueDependent() &&
14509 E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && Res;
14510}
14511
14512/// Returns true if the given expression can be evaluated as a constant
14513/// 'false'.
14514static bool EvaluatesAsFalse(Sema &S, Expr *E) {
14515 bool Res;
14516 return !E->isValueDependent() &&
14517 E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && !Res;
14518}
14519
14520/// Look for '&&' in the left hand of a '||' expr.
14521static void DiagnoseLogicalAndInLogicalOrLHS(Sema &S, SourceLocation OpLoc,
14522 Expr *LHSExpr, Expr *RHSExpr) {
14523 if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(LHSExpr)) {
14524 if (Bop->getOpcode() == BO_LAnd) {
14525 // If it's "a && b || 0" don't warn since the precedence doesn't matter.
14526 if (EvaluatesAsFalse(S, RHSExpr))
14527 return;
14528 // If it's "1 && a || b" don't warn since the precedence doesn't matter.
14529 if (!EvaluatesAsTrue(S, Bop->getLHS()))
14530 return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
14531 } else if (Bop->getOpcode() == BO_LOr) {
14532 if (BinaryOperator *RBop = dyn_cast<BinaryOperator>(Bop->getRHS())) {
14533 // If it's "a || b && 1 || c" we didn't warn earlier for
14534 // "a || b && 1", but warn now.
14535 if (RBop->getOpcode() == BO_LAnd && EvaluatesAsTrue(S, RBop->getRHS()))
14536 return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, RBop);
14537 }
14538 }
14539 }
14540}
14541
14542/// Look for '&&' in the right hand of a '||' expr.
14543static void DiagnoseLogicalAndInLogicalOrRHS(Sema &S, SourceLocation OpLoc,
14544 Expr *LHSExpr, Expr *RHSExpr) {
14545 if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(RHSExpr)) {
14546 if (Bop->getOpcode() == BO_LAnd) {
14547 // If it's "0 || a && b" don't warn since the precedence doesn't matter.
14548 if (EvaluatesAsFalse(S, LHSExpr))
14549 return;
14550 // If it's "a || b && 1" don't warn since the precedence doesn't matter.
14551 if (!EvaluatesAsTrue(S, Bop->getRHS()))
14552 return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
14553 }
14554 }
14555}
14556
14557/// Look for bitwise op in the left or right hand of a bitwise op with
14558/// lower precedence and emit a diagnostic together with a fixit hint that wraps
14559/// the '&' expression in parentheses.
14560static void DiagnoseBitwiseOpInBitwiseOp(Sema &S, BinaryOperatorKind Opc,
14561 SourceLocation OpLoc, Expr *SubExpr) {
14562 if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(SubExpr)) {
14563 if (Bop->isBitwiseOp() && Bop->getOpcode() < Opc) {
14564 S.Diag(Bop->getOperatorLoc(), diag::warn_bitwise_op_in_bitwise_op)
14565 << Bop->getOpcodeStr() << BinaryOperator::getOpcodeStr(Opc)
14566 << Bop->getSourceRange() << OpLoc;
14567 SuggestParentheses(S, Bop->getOperatorLoc(),
14568 S.PDiag(diag::note_precedence_silence)
14569 << Bop->getOpcodeStr(),
14570 Bop->getSourceRange());
14571 }
14572 }
14573}
14574
14575static void DiagnoseAdditionInShift(Sema &S, SourceLocation OpLoc,
14576 Expr *SubExpr, StringRef Shift) {
14577 if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(SubExpr)) {
14578 if (Bop->getOpcode() == BO_Add || Bop->getOpcode() == BO_Sub) {
14579 StringRef Op = Bop->getOpcodeStr();
14580 S.Diag(Bop->getOperatorLoc(), diag::warn_addition_in_bitshift)
14581 << Bop->getSourceRange() << OpLoc << Shift << Op;
14582 SuggestParentheses(S, Bop->getOperatorLoc(),
14583 S.PDiag(diag::note_precedence_silence) << Op,
14584 Bop->getSourceRange());
14585 }
14586 }
14587}
14588
14589static void DiagnoseShiftCompare(Sema &S, SourceLocation OpLoc,
14590 Expr *LHSExpr, Expr *RHSExpr) {
14591 CXXOperatorCallExpr *OCE = dyn_cast<CXXOperatorCallExpr>(LHSExpr);
14592 if (!OCE)
14593 return;
14594
14595 FunctionDecl *FD = OCE->getDirectCallee();
14596 if (!FD || !FD->isOverloadedOperator())
14597 return;
14598
14599 OverloadedOperatorKind Kind = FD->getOverloadedOperator();
14600 if (Kind != OO_LessLess && Kind != OO_GreaterGreater)
14601 return;
14602
14603 S.Diag(OpLoc, diag::warn_overloaded_shift_in_comparison)
14604 << LHSExpr->getSourceRange() << RHSExpr->getSourceRange()
14605 << (Kind == OO_LessLess);
14606 SuggestParentheses(S, OCE->getOperatorLoc(),
14607 S.PDiag(diag::note_precedence_silence)
14608 << (Kind == OO_LessLess ? "<<" : ">>"),
14609 OCE->getSourceRange());
14610 SuggestParentheses(
14611 S, OpLoc, S.PDiag(diag::note_evaluate_comparison_first),
14612 SourceRange(OCE->getArg(1)->getBeginLoc(), RHSExpr->getEndLoc()));
14613}
14614
14615/// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
14616/// precedence.
14617static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperatorKind Opc,
14618 SourceLocation OpLoc, Expr *LHSExpr,
14619 Expr *RHSExpr){
14620 // Diagnose "arg1 'bitwise' arg2 'eq' arg3".
14621 if (BinaryOperator::isBitwiseOp(Opc))
14622 DiagnoseBitwisePrecedence(Self, Opc, OpLoc, LHSExpr, RHSExpr);
14623
14624 // Diagnose "arg1 & arg2 | arg3"
14625 if ((Opc == BO_Or || Opc == BO_Xor) &&
14626 !OpLoc.isMacroID()/* Don't warn in macros. */) {
14627 DiagnoseBitwiseOpInBitwiseOp(Self, Opc, OpLoc, LHSExpr);
14628 DiagnoseBitwiseOpInBitwiseOp(Self, Opc, OpLoc, RHSExpr);
14629 }
14630
14631 // Warn about arg1 || arg2 && arg3, as GCC 4.3+ does.
14632 // We don't warn for 'assert(a || b && "bad")' since this is safe.
14633 if (Opc == BO_LOr && !OpLoc.isMacroID()/* Don't warn in macros. */) {
14634 DiagnoseLogicalAndInLogicalOrLHS(Self, OpLoc, LHSExpr, RHSExpr);
14635 DiagnoseLogicalAndInLogicalOrRHS(Self, OpLoc, LHSExpr, RHSExpr);
14636 }
14637
14638 if ((Opc == BO_Shl && LHSExpr->getType()->isIntegralType(Self.getASTContext()))
14639 || Opc == BO_Shr) {
14640 StringRef Shift = BinaryOperator::getOpcodeStr(Opc);
14641 DiagnoseAdditionInShift(Self, OpLoc, LHSExpr, Shift);
14642 DiagnoseAdditionInShift(Self, OpLoc, RHSExpr, Shift);
14643 }
14644
14645 // Warn on overloaded shift operators and comparisons, such as:
14646 // cout << 5 == 4;
14647 if (BinaryOperator::isComparisonOp(Opc))
14648 DiagnoseShiftCompare(Self, OpLoc, LHSExpr, RHSExpr);
14649}
14650
14651// Binary Operators. 'Tok' is the token for the operator.
14652ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
14653 tok::TokenKind Kind,
14654 Expr *LHSExpr, Expr *RHSExpr) {
14655 BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Kind);
14656 assert(LHSExpr && "ActOnBinOp(): missing left expression")(static_cast <bool> (LHSExpr && "ActOnBinOp(): missing left expression"
) ? void (0) : __assert_fail ("LHSExpr && \"ActOnBinOp(): missing left expression\""
, "clang/lib/Sema/SemaExpr.cpp", 14656, __extension__ __PRETTY_FUNCTION__
))
;
14657 assert(RHSExpr && "ActOnBinOp(): missing right expression")(static_cast <bool> (RHSExpr && "ActOnBinOp(): missing right expression"
) ? void (0) : __assert_fail ("RHSExpr && \"ActOnBinOp(): missing right expression\""
, "clang/lib/Sema/SemaExpr.cpp", 14657, __extension__ __PRETTY_FUNCTION__
))
;
14658
14659 // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
14660 DiagnoseBinOpPrecedence(*this, Opc, TokLoc, LHSExpr, RHSExpr);
14661
14662 return BuildBinOp(S, TokLoc, Opc, LHSExpr, RHSExpr);
14663}
14664
14665void Sema::LookupBinOp(Scope *S, SourceLocation OpLoc, BinaryOperatorKind Opc,
14666 UnresolvedSetImpl &Functions) {
14667 OverloadedOperatorKind OverOp = BinaryOperator::getOverloadedOperator(Opc);
14668 if (OverOp != OO_None && OverOp != OO_Equal)
14669 LookupOverloadedOperatorName(OverOp, S, Functions);
14670
14671 // In C++20 onwards, we may have a second operator to look up.
14672 if (getLangOpts().CPlusPlus20) {
14673 if (OverloadedOperatorKind ExtraOp = getRewrittenOverloadedOperator(OverOp))
14674 LookupOverloadedOperatorName(ExtraOp, S, Functions);
14675 }
14676}
14677
14678/// Build an overloaded binary operator expression in the given scope.
14679static ExprResult BuildOverloadedBinOp(Sema &S, Scope *Sc, SourceLocation OpLoc,
14680 BinaryOperatorKind Opc,
14681 Expr *LHS, Expr *RHS) {
14682 switch (Opc) {
14683 case BO_Assign:
14684 case BO_DivAssign:
14685 case BO_RemAssign:
14686 case BO_SubAssign:
14687 case BO_AndAssign:
14688 case BO_OrAssign:
14689 case BO_XorAssign:
14690 DiagnoseSelfAssignment(S, LHS, RHS, OpLoc, false);
14691 CheckIdentityFieldAssignment(LHS, RHS, OpLoc, S);
14692 break;
14693 default:
14694 break;
14695 }
14696
14697 // Find all of the overloaded operators visible from this point.
14698 UnresolvedSet<16> Functions;
14699 S.LookupBinOp(Sc, OpLoc, Opc, Functions);
14700
14701 // Build the (potentially-overloaded, potentially-dependent)
14702 // binary operation.
14703 return S.CreateOverloadedBinOp(OpLoc, Opc, Functions, LHS, RHS);
14704}
14705
14706ExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
14707 BinaryOperatorKind Opc,
14708 Expr *LHSExpr, Expr *RHSExpr) {
14709 ExprResult LHS, RHS;
14710 std::tie(LHS, RHS) = CorrectDelayedTyposInBinOp(*this, Opc, LHSExpr, RHSExpr);
14711 if (!LHS.isUsable() || !RHS.isUsable())
14712 return ExprError();
14713 LHSExpr = LHS.get();
14714 RHSExpr = RHS.get();
14715
14716 // We want to end up calling one of checkPseudoObjectAssignment
14717 // (if the LHS is a pseudo-object), BuildOverloadedBinOp (if
14718 // both expressions are overloadable or either is type-dependent),
14719 // or CreateBuiltinBinOp (in any other case). We also want to get
14720 // any placeholder types out of the way.
14721
14722 // Handle pseudo-objects in the LHS.
14723 if (const BuiltinType *pty = LHSExpr->getType()->getAsPlaceholderType()) {
14724 // Assignments with a pseudo-object l-value need special analysis.
14725 if (pty->getKind() == BuiltinType::PseudoObject &&
14726 BinaryOperator::isAssignmentOp(Opc))
14727 return checkPseudoObjectAssignment(S, OpLoc, Opc, LHSExpr, RHSExpr);
14728
14729 // Don't resolve overloads if the other type is overloadable.
14730 if (getLangOpts().CPlusPlus && pty->getKind() == BuiltinType::Overload) {
14731 // We can't actually test that if we still have a placeholder,
14732 // though. Fortunately, none of the exceptions we see in that
14733 // code below are valid when the LHS is an overload set. Note
14734 // that an overload set can be dependently-typed, but it never
14735 // instantiates to having an overloadable type.
14736 ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
14737 if (resolvedRHS.isInvalid()) return ExprError();
14738 RHSExpr = resolvedRHS.get();
14739
14740 if (RHSExpr->isTypeDependent() ||
14741 RHSExpr->getType()->isOverloadableType())
14742 return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
14743 }
14744
14745 // If we're instantiating "a.x < b" or "A::x < b" and 'x' names a function
14746 // template, diagnose the missing 'template' keyword instead of diagnosing
14747 // an invalid use of a bound member function.
14748 //
14749 // Note that "A::x < b" might be valid if 'b' has an overloadable type due
14750 // to C++1z [over.over]/1.4, but we already checked for that case above.
14751 if (Opc == BO_LT && inTemplateInstantiation() &&
14752 (pty->getKind() == BuiltinType::BoundMember ||
14753 pty->getKind() == BuiltinType::Overload)) {
14754 auto *OE = dyn_cast<OverloadExpr>(LHSExpr);
14755 if (OE && !OE->hasTemplateKeyword() && !OE->hasExplicitTemplateArgs() &&
14756 std::any_of(OE->decls_begin(), OE->decls_end(), [](NamedDecl *ND) {
14757 return isa<FunctionTemplateDecl>(ND);
14758 })) {
14759 Diag(OE->getQualifier() ? OE->getQualifierLoc().getBeginLoc()
14760 : OE->getNameLoc(),
14761 diag::err_template_kw_missing)
14762 << OE->getName().getAsString() << "";
14763 return ExprError();
14764 }
14765 }
14766
14767 ExprResult LHS = CheckPlaceholderExpr(LHSExpr);
14768 if (LHS.isInvalid()) return ExprError();
14769 LHSExpr = LHS.get();
14770 }
14771
14772 // Handle pseudo-objects in the RHS.
14773 if (const BuiltinType *pty = RHSExpr->getType()->getAsPlaceholderType()) {
14774 // An overload in the RHS can potentially be resolved by the type
14775 // being assigned to.
14776 if (Opc == BO_Assign && pty->getKind() == BuiltinType::Overload) {
14777 if (getLangOpts().CPlusPlus &&
14778 (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent() ||
14779 LHSExpr->getType()->isOverloadableType()))
14780 return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
14781
14782 return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
14783 }
14784
14785 // Don't resolve overloads if the other type is overloadable.
14786 if (getLangOpts().CPlusPlus && pty->getKind() == BuiltinType::Overload &&
14787 LHSExpr->getType()->isOverloadableType())
14788 return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
14789
14790 ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
14791 if (!resolvedRHS.isUsable()) return ExprError();
14792 RHSExpr = resolvedRHS.get();
14793 }
14794
14795 if (getLangOpts().CPlusPlus) {
14796 // If either expression is type-dependent, always build an
14797 // overloaded op.
14798 if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())
14799 return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
14800
14801 // Otherwise, build an overloaded op if either expression has an
14802 // overloadable type.
14803 if (LHSExpr->getType()->isOverloadableType() ||
14804 RHSExpr->getType()->isOverloadableType())
14805 return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
14806 }
14807
14808 if (getLangOpts().RecoveryAST &&
14809 (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())) {
14810 assert(!getLangOpts().CPlusPlus)(static_cast <bool> (!getLangOpts().CPlusPlus) ? void (
0) : __assert_fail ("!getLangOpts().CPlusPlus", "clang/lib/Sema/SemaExpr.cpp"
, 14810, __extension__ __PRETTY_FUNCTION__))
;
14811 assert((LHSExpr->containsErrors() || RHSExpr->containsErrors()) &&(static_cast <bool> ((LHSExpr->containsErrors() || RHSExpr
->containsErrors()) && "Should only occur in error-recovery path."
) ? void (0) : __assert_fail ("(LHSExpr->containsErrors() || RHSExpr->containsErrors()) && \"Should only occur in error-recovery path.\""
, "clang/lib/Sema/SemaExpr.cpp", 14812, __extension__ __PRETTY_FUNCTION__
))
14812 "Should only occur in error-recovery path.")(static_cast <bool> ((LHSExpr->containsErrors() || RHSExpr
->containsErrors()) && "Should only occur in error-recovery path."
) ? void (0) : __assert_fail ("(LHSExpr->containsErrors() || RHSExpr->containsErrors()) && \"Should only occur in error-recovery path.\""
, "clang/lib/Sema/SemaExpr.cpp", 14812, __extension__ __PRETTY_FUNCTION__
))
;
14813 if (BinaryOperator::isCompoundAssignmentOp(Opc))
14814 // C [6.15.16] p3:
14815 // An assignment expression has the value of the left operand after the
14816 // assignment, but is not an lvalue.
14817 return CompoundAssignOperator::Create(
14818 Context, LHSExpr, RHSExpr, Opc,
14819 LHSExpr->getType().getUnqualifiedType(), VK_PRValue, OK_Ordinary,
14820 OpLoc, CurFPFeatureOverrides());
14821 QualType ResultType;
14822 switch (Opc) {
14823 case BO_Assign:
14824 ResultType = LHSExpr->getType().getUnqualifiedType();
14825 break;
14826 case BO_LT:
14827 case BO_GT:
14828 case BO_LE:
14829 case BO_GE:
14830 case BO_EQ:
14831 case BO_NE:
14832 case BO_LAnd:
14833 case BO_LOr:
14834 // These operators have a fixed result type regardless of operands.
14835 ResultType = Context.IntTy;
14836 break;
14837 case BO_Comma:
14838 ResultType = RHSExpr->getType();
14839 break;
14840 default:
14841 ResultType = Context.DependentTy;
14842 break;
14843 }
14844 return BinaryOperator::Create(Context, LHSExpr, RHSExpr, Opc, ResultType,
14845 VK_PRValue, OK_Ordinary, OpLoc,
14846 CurFPFeatureOverrides());
14847 }
14848
14849 // Build a built-in binary operation.
14850 return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
14851}
14852
14853static bool isOverflowingIntegerType(ASTContext &Ctx, QualType T) {
14854 if (T.isNull() || T->isDependentType())
14855 return false;
14856
14857 if (!T->isPromotableIntegerType())
14858 return true;
14859
14860 return Ctx.getIntWidth(T) >= Ctx.getIntWidth(Ctx.IntTy);
14861}
14862
14863ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
14864 UnaryOperatorKind Opc,
14865 Expr *InputExpr) {
14866 ExprResult Input = InputExpr;
14867 ExprValueKind VK = VK_PRValue;
14868 ExprObjectKind OK = OK_Ordinary;
14869 QualType resultType;
14870 bool CanOverflow = false;
14871
14872 bool ConvertHalfVec = false;
14873 if (getLangOpts().OpenCL) {
14874 QualType Ty = InputExpr->getType();
14875 // The only legal unary operation for atomics is '&'.
14876 if ((Opc != UO_AddrOf && Ty->isAtomicType()) ||
14877 // OpenCL special types - image, sampler, pipe, and blocks are to be used
14878 // only with a builtin functions and therefore should be disallowed here.
14879 (Ty->isImageType() || Ty->isSamplerT() || Ty->isPipeType()
14880 || Ty->isBlockPointerType())) {
14881 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
14882 << InputExpr->getType()
14883 << Input.get()->getSourceRange());
14884 }
14885 }
14886
14887 switch (Opc) {
14888 case UO_PreInc:
14889 case UO_PreDec:
14890 case UO_PostInc:
14891 case UO_PostDec:
14892 resultType = CheckIncrementDecrementOperand(*this, Input.get(), VK, OK,
14893 OpLoc,
14894 Opc == UO_PreInc ||
14895 Opc == UO_PostInc,
14896 Opc == UO_PreInc ||
14897 Opc == UO_PreDec);
14898 CanOverflow = isOverflowingIntegerType(Context, resultType);
14899 break;
14900 case UO_AddrOf:
14901 resultType = CheckAddressOfOperand(Input, OpLoc);
14902 CheckAddressOfNoDeref(InputExpr);
14903 RecordModifiableNonNullParam(*this, InputExpr);
14904 break;
14905 case UO_Deref: {
14906 Input = DefaultFunctionArrayLvalueConversion(Input.get());
14907 if (Input.isInvalid()) return ExprError();
14908 resultType = CheckIndirectionOperand(*this, Input.get(), VK, OpLoc);
14909 break;
14910 }
14911 case UO_Plus:
14912 case UO_Minus:
14913 CanOverflow = Opc == UO_Minus &&
14914 isOverflowingIntegerType(Context, Input.get()->getType());
14915 Input = UsualUnaryConversions(Input.get());
14916 if (Input.isInvalid()) return ExprError();
14917 // Unary plus and minus require promoting an operand of half vector to a
14918 // float vector and truncating the result back to a half vector. For now, we
14919 // do this only when HalfArgsAndReturns is set (that is, when the target is
14920 // arm or arm64).
14921 ConvertHalfVec = needsConversionOfHalfVec(true, Context, Input.get());
14922
14923 // If the operand is a half vector, promote it to a float vector.
14924 if (ConvertHalfVec)
14925 Input = convertVector(Input.get(), Context.FloatTy, *this);
14926 resultType = Input.get()->getType();
14927 if (resultType->isDependentType())
14928 break;
14929 if (resultType->isArithmeticType()) // C99 6.5.3.3p1
14930 break;
14931 else if (resultType->isVectorType() &&
14932 // The z vector extensions don't allow + or - with bool vectors.
14933 (!Context.getLangOpts().ZVector ||
14934 resultType->castAs<VectorType>()->getVectorKind() !=
14935 VectorType::AltiVecBool))
14936 break;
14937 else if (getLangOpts().CPlusPlus && // C++ [expr.unary.op]p6
14938 Opc == UO_Plus &&
14939 resultType->isPointerType())
14940 break;
14941
14942 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
14943 << resultType << Input.get()->getSourceRange());
14944
14945 case UO_Not: // bitwise complement
14946 Input = UsualUnaryConversions(Input.get());
14947 if (Input.isInvalid())
14948 return ExprError();
14949 resultType = Input.get()->getType();
14950 if (resultType->isDependentType())
14951 break;
14952 // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
14953 if (resultType->isComplexType() || resultType->isComplexIntegerType())
14954 // C99 does not support '~' for complex conjugation.
14955 Diag(OpLoc, diag::ext_integer_complement_complex)
14956 << resultType << Input.get()->getSourceRange();
14957 else if (resultType->hasIntegerRepresentation())
14958 break;
14959 else if (resultType->isExtVectorType() && Context.getLangOpts().OpenCL) {
14960 // OpenCL v1.1 s6.3.f: The bitwise operator not (~) does not operate
14961 // on vector float types.
14962 QualType T = resultType->castAs<ExtVectorType>()->getElementType();
14963 if (!T->isIntegerType())
14964 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
14965 << resultType << Input.get()->getSourceRange());
14966 } else {
14967 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
14968 << resultType << Input.get()->getSourceRange());
14969 }
14970 break;
14971
14972 case UO_LNot: // logical negation
14973 // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
14974 Input = DefaultFunctionArrayLvalueConversion(Input.get());
14975 if (Input.isInvalid()) return ExprError();
14976 resultType = Input.get()->getType();
14977
14978 // Though we still have to promote half FP to float...
14979 if (resultType->isHalfType() && !Context.getLangOpts().NativeHalfType) {
14980 Input = ImpCastExprToType(Input.get(), Context.FloatTy, CK_FloatingCast).get();
14981 resultType = Context.FloatTy;
14982 }
14983
14984 if (resultType->isDependentType())
14985 break;
14986 if (resultType->isScalarType() && !isScopedEnumerationType(resultType)) {
14987 // C99 6.5.3.3p1: ok, fallthrough;
14988 if (Context.getLangOpts().CPlusPlus) {
14989 // C++03 [expr.unary.op]p8, C++0x [expr.unary.op]p9:
14990 // operand contextually converted to bool.
14991 Input = ImpCastExprToType(Input.get(), Context.BoolTy,
14992 ScalarTypeToBooleanCastKind(resultType));
14993 } else if (Context.getLangOpts().OpenCL &&
14994 Context.getLangOpts().OpenCLVersion < 120) {
14995 // OpenCL v1.1 6.3.h: The logical operator not (!) does not
14996 // operate on scalar float types.
14997 if (!resultType->isIntegerType() && !resultType->isPointerType())
14998 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
14999 << resultType << Input.get()->getSourceRange());
15000 }
15001 } else if (resultType->isExtVectorType()) {
15002 if (Context.getLangOpts().OpenCL &&
15003 Context.getLangOpts().getOpenCLCompatibleVersion() < 120) {
15004 // OpenCL v1.1 6.3.h: The logical operator not (!) does not
15005 // operate on vector float types.
15006 QualType T = resultType->castAs<ExtVectorType>()->getElementType();
15007 if (!T->isIntegerType())
15008 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
15009 << resultType << Input.get()->getSourceRange());
15010 }
15011 // Vector logical not returns the signed variant of the operand type.
15012 resultType = GetSignedVectorType(resultType);
15013 break;
15014 } else if (Context.getLangOpts().CPlusPlus && resultType->isVectorType()) {
15015 const VectorType *VTy = resultType->castAs<VectorType>();
15016 if (VTy->getVectorKind() != VectorType::GenericVector)
15017 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
15018 << resultType << Input.get()->getSourceRange());
15019
15020 // Vector logical not returns the signed variant of the operand type.
15021 resultType = GetSignedVectorType(resultType);
15022 break;
15023 } else {
15024 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
15025 << resultType << Input.get()->getSourceRange());
15026 }
15027
15028 // LNot always has type int. C99 6.5.3.3p5.
15029 // In C++, it's bool. C++ 5.3.1p8
15030 resultType = Context.getLogicalOperationType();
15031 break;
15032 case UO_Real:
15033 case UO_Imag:
15034 resultType = CheckRealImagOperand(*this, Input, OpLoc, Opc == UO_Real);
15035 // _Real maps ordinary l-values into ordinary l-values. _Imag maps ordinary
15036 // complex l-values to ordinary l-values and all other values to r-values.
15037 if (Input.isInvalid()) return ExprError();
15038 if (Opc == UO_Real || Input.get()->getType()->isAnyComplexType()) {
15039 if (Input.get()->isGLValue() &&
15040 Input.get()->getObjectKind() == OK_Ordinary)
15041 VK = Input.get()->getValueKind();
15042 } else if (!getLangOpts().CPlusPlus) {
15043 // In C, a volatile scalar is read by __imag. In C++, it is not.
15044 Input = DefaultLvalueConversion(Input.get());
15045 }
15046 break;
15047 case UO_Extension:
15048 resultType = Input.get()->getType();
15049 VK = Input.get()->getValueKind();
15050 OK = Input.get()->getObjectKind();
15051 break;
15052 case UO_Coawait:
15053 // It's unnecessary to represent the pass-through operator co_await in the
15054 // AST; just return the input expression instead.
15055 assert(!Input.get()->getType()->isDependentType() &&(static_cast <bool> (!Input.get()->getType()->isDependentType
() && "the co_await expression must be non-dependant before "
"building operator co_await") ? void (0) : __assert_fail ("!Input.get()->getType()->isDependentType() && \"the co_await expression must be non-dependant before \" \"building operator co_await\""
, "clang/lib/Sema/SemaExpr.cpp", 15057, __extension__ __PRETTY_FUNCTION__
))
15056 "the co_await expression must be non-dependant before "(static_cast <bool> (!Input.get()->getType()->isDependentType
() && "the co_await expression must be non-dependant before "
"building operator co_await") ? void (0) : __assert_fail ("!Input.get()->getType()->isDependentType() && \"the co_await expression must be non-dependant before \" \"building operator co_await\""
, "clang/lib/Sema/SemaExpr.cpp", 15057, __extension__ __PRETTY_FUNCTION__
))
15057 "building operator co_await")(static_cast <bool> (!Input.get()->getType()->isDependentType
() && "the co_await expression must be non-dependant before "
"building operator co_await") ? void (0) : __assert_fail ("!Input.get()->getType()->isDependentType() && \"the co_await expression must be non-dependant before \" \"building operator co_await\""
, "clang/lib/Sema/SemaExpr.cpp", 15057, __extension__ __PRETTY_FUNCTION__
))
;
15058 return Input;
15059 }
15060 if (resultType.isNull() || Input.isInvalid())
15061 return ExprError();
15062
15063 // Check for array bounds violations in the operand of the UnaryOperator,
15064 // except for the '*' and '&' operators that have to be handled specially
15065 // by CheckArrayAccess (as there are special cases like &array[arraysize]
15066 // that are explicitly defined as valid by the standard).
15067 if (Opc != UO_AddrOf && Opc != UO_Deref)
15068 CheckArrayAccess(Input.get());
15069
15070 auto *UO =
15071 UnaryOperator::Create(Context, Input.get(), Opc, resultType, VK, OK,
15072 OpLoc, CanOverflow, CurFPFeatureOverrides());
15073
15074 if (Opc == UO_Deref && UO->getType()->hasAttr(attr::NoDeref) &&
15075 !isa<ArrayType>(UO->getType().getDesugaredType(Context)) &&
15076 !isUnevaluatedContext())
15077 ExprEvalContexts.back().PossibleDerefs.insert(UO);
15078
15079 // Convert the result back to a half vector.
15080 if (ConvertHalfVec)
15081 return convertVector(UO, Context.HalfTy, *this);
15082 return UO;
15083}
15084
15085/// Determine whether the given expression is a qualified member
15086/// access expression, of a form that could be turned into a pointer to member
15087/// with the address-of operator.
15088bool Sema::isQualifiedMemberAccess(Expr *E) {
15089 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
15090 if (!DRE->getQualifier())
15091 return false;
15092
15093 ValueDecl *VD = DRE->getDecl();
15094 if (!VD->isCXXClassMember())
15095 return false;
15096
15097 if (isa<FieldDecl>(VD) || isa<IndirectFieldDecl>(VD))
15098 return true;
15099 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(VD))
15100 return Method->isInstance();
15101
15102 return false;
15103 }
15104
15105 if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
15106 if (!ULE->getQualifier())
15107 return false;
15108
15109 for (NamedDecl *D : ULE->decls()) {
15110 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
15111 if (Method->isInstance())
15112 return true;
15113 } else {
15114 // Overload set does not contain methods.
15115 break;
15116 }
15117 }
15118
15119 return false;
15120 }
15121
15122 return false;
15123}
15124
15125ExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
15126 UnaryOperatorKind Opc, Expr *Input) {
15127 // First things first: handle placeholders so that the
15128 // overloaded-operator check considers the right type.
15129 if (const BuiltinType *pty = Input->getType()->getAsPlaceholderType()) {
15130 // Increment and decrement of pseudo-object references.
15131 if (pty->getKind() == BuiltinType::PseudoObject &&
15132 UnaryOperator::isIncrementDecrementOp(Opc))
15133 return checkPseudoObjectIncDec(S, OpLoc, Opc, Input);
15134
15135 // extension is always a builtin operator.
15136 if (Opc == UO_Extension)
15137 return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
15138
15139 // & gets special logic for several kinds of placeholder.
15140 // The builtin code knows what to do.
15141 if (Opc == UO_AddrOf &&
15142 (pty->getKind() == BuiltinType::Overload ||
15143 pty->getKind() == BuiltinType::UnknownAny ||
15144 pty->getKind() == BuiltinType::BoundMember))
15145 return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
15146
15147 // Anything else needs to be handled now.
15148 ExprResult Result = CheckPlaceholderExpr(Input);
15149 if (Result.isInvalid()) return ExprError();
15150 Input = Result.get();
15151 }
15152
15153 if (getLangOpts().CPlusPlus && Input->getType()->isOverloadableType() &&
15154 UnaryOperator::getOverloadedOperator(Opc) != OO_None &&
15155 !(Opc == UO_AddrOf && isQualifiedMemberAccess(Input))) {
15156 // Find all of the overloaded operators visible from this point.
15157 UnresolvedSet<16> Functions;
15158 OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
15159 if (S && OverOp != OO_None)
15160 LookupOverloadedOperatorName(OverOp, S, Functions);
15161
15162 return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, Input);
15163 }
15164
15165 return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
15166}
15167
15168// Unary Operators. 'Tok' is the token for the operator.
15169ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
15170 tok::TokenKind Op, Expr *Input) {
15171 return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), Input);
15172}
15173
15174/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
15175ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc,
15176 LabelDecl *TheDecl) {
15177 TheDecl->markUsed(Context);
15178 // Create the AST node. The address of a label always has type 'void*'.
15179 return new (Context) AddrLabelExpr(OpLoc, LabLoc, TheDecl,
15180 Context.getPointerType(Context.VoidTy));
15181}
15182
15183void Sema::ActOnStartStmtExpr() {
15184 PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
15185}
15186
15187void Sema::ActOnStmtExprError() {
15188 // Note that function is also called by TreeTransform when leaving a
15189 // StmtExpr scope without rebuilding anything.
15190
15191 DiscardCleanupsInEvaluationContext();
15192 PopExpressionEvaluationContext();
15193}
15194
15195ExprResult Sema::ActOnStmtExpr(Scope *S, SourceLocation LPLoc, Stmt *SubStmt,
15196 SourceLocation RPLoc) {
15197 return BuildStmtExpr(LPLoc, SubStmt, RPLoc, getTemplateDepth(S));
15198}
15199
15200ExprResult Sema::BuildStmtExpr(SourceLocation LPLoc, Stmt *SubStmt,
15201 SourceLocation RPLoc, unsigned TemplateDepth) {
15202 assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!")(static_cast <bool> (SubStmt && isa<CompoundStmt
>(SubStmt) && "Invalid action invocation!") ? void
(0) : __assert_fail ("SubStmt && isa<CompoundStmt>(SubStmt) && \"Invalid action invocation!\""
, "clang/lib/Sema/SemaExpr.cpp", 15202, __extension__ __PRETTY_FUNCTION__
))
;
15203 CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
15204
15205 if (hasAnyUnrecoverableErrorsInThisFunction())
15206 DiscardCleanupsInEvaluationContext();
15207 assert(!Cleanup.exprNeedsCleanups() &&(static_cast <bool> (!Cleanup.exprNeedsCleanups() &&
"cleanups within StmtExpr not correctly bound!") ? void (0) :
__assert_fail ("!Cleanup.exprNeedsCleanups() && \"cleanups within StmtExpr not correctly bound!\""
, "clang/lib/Sema/SemaExpr.cpp", 15208, __extension__ __PRETTY_FUNCTION__
))
15208 "cleanups within StmtExpr not correctly bound!")(static_cast <bool> (!Cleanup.exprNeedsCleanups() &&
"cleanups within StmtExpr not correctly bound!") ? void (0) :
__assert_fail ("!Cleanup.exprNeedsCleanups() && \"cleanups within StmtExpr not correctly bound!\""
, "clang/lib/Sema/SemaExpr.cpp", 15208, __extension__ __PRETTY_FUNCTION__
))
;
15209 PopExpressionEvaluationContext();
15210
15211 // FIXME: there are a variety of strange constraints to enforce here, for
15212 // example, it is not possible to goto into a stmt expression apparently.
15213 // More semantic analysis is needed.
15214
15215 // If there are sub-stmts in the compound stmt, take the type of the last one
15216 // as the type of the stmtexpr.
15217 QualType Ty = Context.VoidTy;
15218 bool StmtExprMayBindToTemp = false;
15219 if (!Compound->body_empty()) {
15220 // For GCC compatibility we get the last Stmt excluding trailing NullStmts.
15221 if (const auto *LastStmt =
15222 dyn_cast<ValueStmt>(Compound->getStmtExprResult())) {
15223 if (const Expr *Value = LastStmt->getExprStmt()) {
15224 StmtExprMayBindToTemp = true;
15225 Ty = Value->getType();
15226 }
15227 }
15228 }
15229
15230 // FIXME: Check that expression type is complete/non-abstract; statement
15231 // expressions are not lvalues.
15232 Expr *ResStmtExpr =
15233 new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc, TemplateDepth);
15234 if (StmtExprMayBindToTemp)
15235 return MaybeBindToTemporary(ResStmtExpr);
15236 return ResStmtExpr;
15237}
15238
15239ExprResult Sema::ActOnStmtExprResult(ExprResult ER) {
15240 if (ER.isInvalid())
15241 return ExprError();
15242
15243 // Do function/array conversion on the last expression, but not
15244 // lvalue-to-rvalue. However, initialize an unqualified type.
15245 ER = DefaultFunctionArrayConversion(ER.get());
15246 if (ER.isInvalid())
15247 return ExprError();
15248 Expr *E = ER.get();
15249
15250 if (E->isTypeDependent())
15251 return E;
15252
15253 // In ARC, if the final expression ends in a consume, splice
15254 // the consume out and bind it later. In the alternate case
15255 // (when dealing with a retainable type), the result
15256 // initialization will create a produce. In both cases the
15257 // result will be +1, and we'll need to balance that out with
15258 // a bind.
15259 auto *Cast = dyn_cast<ImplicitCastExpr>(E);
15260 if (Cast && Cast->getCastKind() == CK_ARCConsumeObject)
15261 return Cast->getSubExpr();
15262
15263 // FIXME: Provide a better location for the initialization.
15264 return PerformCopyInitialization(
15265 InitializedEntity::InitializeStmtExprResult(
15266 E->getBeginLoc(), E->getType().getUnqualifiedType()),
15267 SourceLocation(), E);
15268}
15269
15270ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
15271 TypeSourceInfo *TInfo,
15272 ArrayRef<OffsetOfComponent> Components,
15273 SourceLocation RParenLoc) {
15274 QualType ArgTy = TInfo->getType();
15275 bool Dependent = ArgTy->isDependentType();
15276 SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange();
15277
15278 // We must have at least one component that refers to the type, and the first
15279 // one is known to be a field designator. Verify that the ArgTy represents
15280 // a struct/union/class.
15281 if (!Dependent && !ArgTy->isRecordType())
15282 return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type)
15283 << ArgTy << TypeRange);
15284
15285 // Type must be complete per C99 7.17p3 because a declaring a variable
15286 // with an incomplete type would be ill-formed.
15287 if (!Dependent
15288 && RequireCompleteType(BuiltinLoc, ArgTy,
15289 diag::err_offsetof_incomplete_type, TypeRange))
15290 return ExprError();
15291
15292 bool DidWarnAboutNonPOD = false;
15293 QualType CurrentType = ArgTy;
15294 SmallVector<OffsetOfNode, 4> Comps;
15295 SmallVector<Expr*, 4> Exprs;
15296 for (const OffsetOfComponent &OC : Components) {
15297 if (OC.isBrackets) {
15298 // Offset of an array sub-field. TODO: Should we allow vector elements?
15299 if (!CurrentType->isDependentType()) {
15300 const ArrayType *AT = Context.getAsArrayType(CurrentType);
15301 if(!AT)
15302 return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
15303 << CurrentType);
15304 CurrentType = AT->getElementType();
15305 } else
15306 CurrentType = Context.DependentTy;
15307
15308 ExprResult IdxRval = DefaultLvalueConversion(static_cast<Expr*>(OC.U.E));
15309 if (IdxRval.isInvalid())
15310 return ExprError();
15311 Expr *Idx = IdxRval.get();
15312
15313 // The expression must be an integral expression.
15314 // FIXME: An integral constant expression?
15315 if (!Idx->isTypeDependent() && !Idx->isValueDependent() &&
15316 !Idx->getType()->isIntegerType())
15317 return ExprError(
15318 Diag(Idx->getBeginLoc(), diag::err_typecheck_subscript_not_integer)
15319 << Idx->getSourceRange());
15320
15321 // Record this array index.
15322 Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd));
15323 Exprs.push_back(Idx);
15324 continue;
15325 }
15326
15327 // Offset of a field.
15328 if (CurrentType->isDependentType()) {
15329 // We have the offset of a field, but we can't look into the dependent
15330 // type. Just record the identifier of the field.
15331 Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd));
15332 CurrentType = Context.DependentTy;
15333 continue;
15334 }
15335
15336 // We need to have a complete type to look into.
15337 if (RequireCompleteType(OC.LocStart, CurrentType,
15338 diag::err_offsetof_incomplete_type))
15339 return ExprError();
15340
15341 // Look for the designated field.
15342 const RecordType *RC = CurrentType->getAs<RecordType>();
15343 if (!RC)
15344 return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
15345 << CurrentType);
15346 RecordDecl *RD = RC->getDecl();
15347
15348 // C++ [lib.support.types]p5:
15349 // The macro offsetof accepts a restricted set of type arguments in this
15350 // International Standard. type shall be a POD structure or a POD union
15351 // (clause 9).
15352 // C++11 [support.types]p4:
15353 // If type is not a standard-layout class (Clause 9), the results are
15354 // undefined.
15355 if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
15356 bool IsSafe = LangOpts.CPlusPlus11? CRD->isStandardLayout() : CRD->isPOD();
15357 unsigned DiagID =
15358 LangOpts.CPlusPlus11? diag::ext_offsetof_non_standardlayout_type
15359 : diag::ext_offsetof_non_pod_type;
15360
15361 if (!IsSafe && !DidWarnAboutNonPOD &&
15362 DiagRuntimeBehavior(BuiltinLoc, nullptr,
15363 PDiag(DiagID)
15364 << SourceRange(Components[0].LocStart, OC.LocEnd)
15365 << CurrentType))
15366 DidWarnAboutNonPOD = true;
15367 }
15368
15369 // Look for the field.
15370 LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
15371 LookupQualifiedName(R, RD);
15372 FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
15373 IndirectFieldDecl *IndirectMemberDecl = nullptr;
15374 if (!MemberDecl) {
15375 if ((IndirectMemberDecl = R.getAsSingle<IndirectFieldDecl>()))
15376 MemberDecl = IndirectMemberDecl->getAnonField();
15377 }
15378
15379 if (!MemberDecl)
15380 return ExprError(Diag(BuiltinLoc, diag::err_no_member)
15381 << OC.U.IdentInfo << RD << SourceRange(OC.LocStart,
15382 OC.LocEnd));
15383
15384 // C99 7.17p3:
15385 // (If the specified member is a bit-field, the behavior is undefined.)
15386 //
15387 // We diagnose this as an error.
15388 if (MemberDecl->isBitField()) {
15389 Diag(OC.LocEnd, diag::err_offsetof_bitfield)
15390 << MemberDecl->getDeclName()
15391 << SourceRange(BuiltinLoc, RParenLoc);
15392 Diag(MemberDecl->getLocation(), diag::note_bitfield_decl);
15393 return ExprError();
15394 }
15395
15396 RecordDecl *Parent = MemberDecl->getParent();
15397 if (IndirectMemberDecl)
15398 Parent = cast<RecordDecl>(IndirectMemberDecl->getDeclContext());
15399
15400 // If the member was found in a base class, introduce OffsetOfNodes for
15401 // the base class indirections.
15402 CXXBasePaths Paths;
15403 if (IsDerivedFrom(OC.LocStart, CurrentType, Context.getTypeDeclType(Parent),
15404 Paths)) {
15405 if (Paths.getDetectedVirtual()) {
15406 Diag(OC.LocEnd, diag::err_offsetof_field_of_virtual_base)
15407 << MemberDecl->getDeclName()
15408 << SourceRange(BuiltinLoc, RParenLoc);
15409 return ExprError();
15410 }
15411
15412 CXXBasePath &Path = Paths.front();
15413 for (const CXXBasePathElement &B : Path)
15414 Comps.push_back(OffsetOfNode(B.Base));
15415 }
15416
15417 if (IndirectMemberDecl) {
15418 for (auto *FI : IndirectMemberDecl->chain()) {
15419 assert(isa<FieldDecl>(FI))(static_cast <bool> (isa<FieldDecl>(FI)) ? void (
0) : __assert_fail ("isa<FieldDecl>(FI)", "clang/lib/Sema/SemaExpr.cpp"
, 15419, __extension__ __PRETTY_FUNCTION__))
;
15420 Comps.push_back(OffsetOfNode(OC.LocStart,
15421 cast<FieldDecl>(FI), OC.LocEnd));
15422 }
15423 } else
15424 Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd));
15425
15426 CurrentType = MemberDecl->getType().getNonReferenceType();
15427 }
15428
15429 return OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc, TInfo,
15430 Comps, Exprs, RParenLoc);
15431}
15432
15433ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
15434 SourceLocation BuiltinLoc,
15435 SourceLocation TypeLoc,
15436 ParsedType ParsedArgTy,
15437 ArrayRef<OffsetOfComponent> Components,
15438 SourceLocation RParenLoc) {
15439
15440 TypeSourceInfo *ArgTInfo;
15441 QualType ArgTy = GetTypeFromParser(ParsedArgTy, &ArgTInfo);
15442 if (ArgTy.isNull())
15443 return ExprError();
15444
15445 if (!ArgTInfo)
15446 ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc);
15447
15448 return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, Components, RParenLoc);
15449}
15450
15451
15452ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
15453 Expr *CondExpr,
15454 Expr *LHSExpr, Expr *RHSExpr,
15455 SourceLocation RPLoc) {
15456 assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)")(static_cast <bool> ((CondExpr && LHSExpr &&
RHSExpr) && "Missing type argument(s)") ? void (0) :
__assert_fail ("(CondExpr && LHSExpr && RHSExpr) && \"Missing type argument(s)\""
, "clang/lib/Sema/SemaExpr.cpp", 15456, __extension__ __PRETTY_FUNCTION__
))
;
15457
15458 ExprValueKind VK = VK_PRValue;
15459 ExprObjectKind OK = OK_Ordinary;
15460 QualType resType;
15461 bool CondIsTrue = false;
15462 if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
15463 resType = Context.DependentTy;
15464 } else {
15465 // The conditional expression is required to be a constant expression.
15466 llvm::APSInt condEval(32);
15467 ExprResult CondICE = VerifyIntegerConstantExpression(
15468 CondExpr, &condEval, diag::err_typecheck_choose_expr_requires_constant);
15469 if (CondICE.isInvalid())
15470 return ExprError();
15471 CondExpr = CondICE.get();
15472 CondIsTrue = condEval.getZExtValue();
15473
15474 // If the condition is > zero, then the AST type is the same as the LHSExpr.
15475 Expr *ActiveExpr = CondIsTrue ? LHSExpr : RHSExpr;
15476
15477 resType = ActiveExpr->getType();
15478 VK = ActiveExpr->getValueKind();
15479 OK = ActiveExpr->getObjectKind();
15480 }
15481
15482 return new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
15483 resType, VK, OK, RPLoc, CondIsTrue);
15484}
15485
15486//===----------------------------------------------------------------------===//
15487// Clang Extensions.
15488//===----------------------------------------------------------------------===//
15489
15490/// ActOnBlockStart - This callback is invoked when a block literal is started.
15491void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope) {
15492 BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc);
15493
15494 if (LangOpts.CPlusPlus) {
15495 MangleNumberingContext *MCtx;
15496 Decl *ManglingContextDecl;
15497 std::tie(MCtx, ManglingContextDecl) =
15498 getCurrentMangleNumberContext(Block->getDeclContext());
15499 if (MCtx) {
15500 unsigned ManglingNumber = MCtx->getManglingNumber(Block);
15501 Block->setBlockMangling(ManglingNumber, ManglingContextDecl);
15502 }
15503 }
15504
15505 PushBlockScope(CurScope, Block);
15506 CurContext->addDecl(Block);
15507 if (CurScope)
15508 PushDeclContext(CurScope, Block);
15509 else
15510 CurContext = Block;
15511
15512 getCurBlock()->HasImplicitReturnType = true;
15513
15514 // Enter a new evaluation context to insulate the block from any
15515 // cleanups from the enclosing full-expression.
15516 PushExpressionEvaluationContext(
15517 ExpressionEvaluationContext::PotentiallyEvaluated);
15518}
15519
15520void Sema::ActOnBlockArguments(SourceLocation CaretLoc, Declarator &ParamInfo,
15521 Scope *CurScope) {
15522 assert(ParamInfo.getIdentifier() == nullptr &&(static_cast <bool> (ParamInfo.getIdentifier() == nullptr
&& "block-id should have no identifier!") ? void (0)
: __assert_fail ("ParamInfo.getIdentifier() == nullptr && \"block-id should have no identifier!\""
, "clang/lib/Sema/SemaExpr.cpp", 15523, __extension__ __PRETTY_FUNCTION__
))
15523 "block-id should have no identifier!")(static_cast <bool> (ParamInfo.getIdentifier() == nullptr
&& "block-id should have no identifier!") ? void (0)
: __assert_fail ("ParamInfo.getIdentifier() == nullptr && \"block-id should have no identifier!\""
, "clang/lib/Sema/SemaExpr.cpp", 15523, __extension__ __PRETTY_FUNCTION__
))
;
15524 assert(ParamInfo.getContext() == DeclaratorContext::BlockLiteral)(static_cast <bool> (ParamInfo.getContext() == DeclaratorContext
::BlockLiteral) ? void (0) : __assert_fail ("ParamInfo.getContext() == DeclaratorContext::BlockLiteral"
, "clang/lib/Sema/SemaExpr.cpp", 15524, __extension__ __PRETTY_FUNCTION__
))
;
15525 BlockScopeInfo *CurBlock = getCurBlock();
15526
15527 TypeSourceInfo *Sig = GetTypeForDeclarator(ParamInfo, CurScope);
15528 QualType T = Sig->getType();
15529
15530 // FIXME: We should allow unexpanded parameter packs here, but that would,
15531 // in turn, make the block expression contain unexpanded parameter packs.
15532 if (DiagnoseUnexpandedParameterPack(CaretLoc, Sig, UPPC_Block)) {
15533 // Drop the parameters.
15534 FunctionProtoType::ExtProtoInfo EPI;
15535 EPI.HasTrailingReturn = false;
15536 EPI.TypeQuals.addConst();
15537 T = Context.getFunctionType(Context.DependentTy, None, EPI);
15538 Sig = Context.getTrivialTypeSourceInfo(T);
15539 }
15540
15541 // GetTypeForDeclarator always produces a function type for a block
15542 // literal signature. Furthermore, it is always a FunctionProtoType
15543 // unless the function was written with a typedef.
15544 assert(T->isFunctionType() &&(static_cast <bool> (T->isFunctionType() && "GetTypeForDeclarator made a non-function block signature"
) ? void (0) : __assert_fail ("T->isFunctionType() && \"GetTypeForDeclarator made a non-function block signature\""
, "clang/lib/Sema/SemaExpr.cpp", 15545, __extension__ __PRETTY_FUNCTION__
))
15545 "GetTypeForDeclarator made a non-function block signature")(static_cast <bool> (T->isFunctionType() && "GetTypeForDeclarator made a non-function block signature"
) ? void (0) : __assert_fail ("T->isFunctionType() && \"GetTypeForDeclarator made a non-function block signature\""
, "clang/lib/Sema/SemaExpr.cpp", 15545, __extension__ __PRETTY_FUNCTION__
))
;
15546
15547 // Look for an explicit signature in that function type.
15548 FunctionProtoTypeLoc ExplicitSignature;
15549
15550 if ((ExplicitSignature = Sig->getTypeLoc()
15551 .getAsAdjusted<FunctionProtoTypeLoc>())) {
15552
15553 // Check whether that explicit signature was synthesized by
15554 // GetTypeForDeclarator. If so, don't save that as part of the
15555 // written signature.
15556 if (ExplicitSignature.getLocalRangeBegin() ==
15557 ExplicitSignature.getLocalRangeEnd()) {
15558 // This would be much cheaper if we stored TypeLocs instead of
15559 // TypeSourceInfos.
15560 TypeLoc Result = ExplicitSignature.getReturnLoc();
15561 unsigned Size = Result.getFullDataSize();
15562 Sig = Context.CreateTypeSourceInfo(Result.getType(), Size);
15563 Sig->getTypeLoc().initializeFullCopy(Result, Size);
15564
15565 ExplicitSignature = FunctionProtoTypeLoc();
15566 }
15567 }
15568
15569 CurBlock->TheDecl->setSignatureAsWritten(Sig);
15570 CurBlock->FunctionType = T;
15571
15572 const auto *Fn = T->castAs<FunctionType>();
15573 QualType RetTy = Fn->getReturnType();
15574 bool isVariadic =
15575 (isa<FunctionProtoType>(Fn) && cast<FunctionProtoType>(Fn)->isVariadic());
15576
15577 CurBlock->TheDecl->setIsVariadic(isVariadic);
15578
15579 // Context.DependentTy is used as a placeholder for a missing block
15580 // return type. TODO: what should we do with declarators like:
15581 // ^ * { ... }
15582 // If the answer is "apply template argument deduction"....
15583 if (RetTy != Context.DependentTy) {
15584 CurBlock->ReturnType = RetTy;
15585 CurBlock->TheDecl->setBlockMissingReturnType(false);
15586 CurBlock->HasImplicitReturnType = false;
15587 }
15588
15589 // Push block parameters from the declarator if we had them.
15590 SmallVector<ParmVarDecl*, 8> Params;
15591 if (ExplicitSignature) {
15592 for (unsigned I = 0, E = ExplicitSignature.getNumParams(); I != E; ++I) {
15593 ParmVarDecl *Param = ExplicitSignature.getParam(I);
15594 if (Param->getIdentifier() == nullptr && !Param->isImplicit() &&
15595 !Param->isInvalidDecl() && !getLangOpts().CPlusPlus) {
15596 // Diagnose this as an extension in C17 and earlier.
15597 if (!getLangOpts().C2x)
15598 Diag(Param->getLocation(), diag::ext_parameter_name_omitted_c2x);
15599 }
15600 Params.push_back(Param);
15601 }
15602
15603 // Fake up parameter variables if we have a typedef, like
15604 // ^ fntype { ... }
15605 } else if (const FunctionProtoType *Fn = T->getAs<FunctionProtoType>()) {
15606 for (const auto &I : Fn->param_types()) {
15607 ParmVarDecl *Param = BuildParmVarDeclForTypedef(
15608 CurBlock->TheDecl, ParamInfo.getBeginLoc(), I);
15609 Params.push_back(Param);
15610 }
15611 }
15612
15613 // Set the parameters on the block decl.
15614 if (!Params.empty()) {
15615 CurBlock->TheDecl->setParams(Params);
15616 CheckParmsForFunctionDef(CurBlock->TheDecl->parameters(),
15617 /*CheckParameterNames=*/false);
15618 }
15619
15620 // Finally we can process decl attributes.
15621 ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
15622
15623 // Put the parameter variables in scope.
15624 for (auto AI : CurBlock->TheDecl->parameters()) {
15625 AI->setOwningFunction(CurBlock->TheDecl);
15626
15627 // If this has an identifier, add it to the scope stack.
15628 if (AI->getIdentifier()) {
15629 CheckShadow(CurBlock->TheScope, AI);
15630
15631 PushOnScopeChains(AI, CurBlock->TheScope);
15632 }
15633 }
15634}
15635
15636/// ActOnBlockError - If there is an error parsing a block, this callback
15637/// is invoked to pop the information about the block from the action impl.
15638void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
15639 // Leave the expression-evaluation context.
15640 DiscardCleanupsInEvaluationContext();
15641 PopExpressionEvaluationContext();
15642
15643 // Pop off CurBlock, handle nested blocks.
15644 PopDeclContext();
15645 PopFunctionScopeInfo();
15646}
15647
15648/// ActOnBlockStmtExpr - This is called when the body of a block statement
15649/// literal was successfully completed. ^(int x){...}
15650ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
15651 Stmt *Body, Scope *CurScope) {
15652 // If blocks are disabled, emit an error.
15653 if (!LangOpts.Blocks)
15654 Diag(CaretLoc, diag::err_blocks_disable) << LangOpts.OpenCL;
15655
15656 // Leave the expression-evaluation context.
15657 if (hasAnyUnrecoverableErrorsInThisFunction())
15658 DiscardCleanupsInEvaluationContext();
15659 assert(!Cleanup.exprNeedsCleanups() &&(static_cast <bool> (!Cleanup.exprNeedsCleanups() &&
"cleanups within block not correctly bound!") ? void (0) : __assert_fail
("!Cleanup.exprNeedsCleanups() && \"cleanups within block not correctly bound!\""
, "clang/lib/Sema/SemaExpr.cpp", 15660, __extension__ __PRETTY_FUNCTION__
))
15660 "cleanups within block not correctly bound!")(static_cast <bool> (!Cleanup.exprNeedsCleanups() &&
"cleanups within block not correctly bound!") ? void (0) : __assert_fail
("!Cleanup.exprNeedsCleanups() && \"cleanups within block not correctly bound!\""
, "clang/lib/Sema/SemaExpr.cpp", 15660, __extension__ __PRETTY_FUNCTION__
))
;
15661 PopExpressionEvaluationContext();
15662
15663 BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back());
15664 BlockDecl *BD = BSI->TheDecl;
15665
15666 if (BSI->HasImplicitReturnType)
15667 deduceClosureReturnType(*BSI);
15668
15669 QualType RetTy = Context.VoidTy;
15670 if (!BSI->ReturnType.isNull())
15671 RetTy = BSI->ReturnType;
15672
15673 bool NoReturn = BD->hasAttr<NoReturnAttr>();
15674 QualType BlockTy;
15675
15676 // If the user wrote a function type in some form, try to use that.
15677 if (!BSI->FunctionType.isNull()) {
15678 const FunctionType *FTy = BSI->FunctionType->castAs<FunctionType>();
15679
15680 FunctionType::ExtInfo Ext = FTy->getExtInfo();
15681 if (NoReturn && !Ext.getNoReturn()) Ext = Ext.withNoReturn(true);
15682
15683 // Turn protoless block types into nullary block types.
15684 if (isa<FunctionNoProtoType>(FTy)) {
15685 FunctionProtoType::ExtProtoInfo EPI;
15686 EPI.ExtInfo = Ext;
15687 BlockTy = Context.getFunctionType(RetTy, None, EPI);
15688
15689 // Otherwise, if we don't need to change anything about the function type,
15690 // preserve its sugar structure.
15691 } else if (FTy->getReturnType() == RetTy &&
15692 (!NoReturn || FTy->getNoReturnAttr())) {
15693 BlockTy = BSI->FunctionType;
15694
15695 // Otherwise, make the minimal modifications to the function type.
15696 } else {
15697 const FunctionProtoType *FPT = cast<FunctionProtoType>(FTy);
15698 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
15699 EPI.TypeQuals = Qualifiers();
15700 EPI.ExtInfo = Ext;
15701 BlockTy = Context.getFunctionType(RetTy, FPT->getParamTypes(), EPI);
15702 }
15703
15704 // If we don't have a function type, just build one from nothing.
15705 } else {
15706 FunctionProtoType::ExtProtoInfo EPI;
15707 EPI.ExtInfo = FunctionType::ExtInfo().withNoReturn(NoReturn);
15708 BlockTy = Context.getFunctionType(RetTy, None, EPI);
15709 }
15710
15711 DiagnoseUnusedParameters(BD->parameters());
15712 BlockTy = Context.getBlockPointerType(BlockTy);
15713
15714 // If needed, diagnose invalid gotos and switches in the block.
15715 if (getCurFunction()->NeedsScopeChecking() &&
15716 !PP.isCodeCompletionEnabled())
15717 DiagnoseInvalidJumps(cast<CompoundStmt>(Body));
15718
15719 BD->setBody(cast<CompoundStmt>(Body));
15720
15721 if (Body && getCurFunction()->HasPotentialAvailabilityViolations)
15722 DiagnoseUnguardedAvailabilityViolations(BD);
15723
15724 // Try to apply the named return value optimization. We have to check again
15725 // if we can do this, though, because blocks keep return statements around
15726 // to deduce an implicit return type.
15727 if (getLangOpts().CPlusPlus && RetTy->isRecordType() &&
15728 !BD->isDependentContext())
15729 computeNRVO(Body, BSI);
15730
15731 if (RetTy.hasNonTrivialToPrimitiveDestructCUnion() ||
15732 RetTy.hasNonTrivialToPrimitiveCopyCUnion())
15733 checkNonTrivialCUnion(RetTy, BD->getCaretLocation(), NTCUC_FunctionReturn,
15734 NTCUK_Destruct|NTCUK_Copy);
15735
15736 PopDeclContext();
15737
15738 // Set the captured variables on the block.
15739 SmallVector<BlockDecl::Capture, 4> Captures;
15740 for (Capture &Cap : BSI->Captures) {
15741 if (Cap.isInvalid() || Cap.isThisCapture())
15742 continue;
15743
15744 VarDecl *Var = Cap.getVariable();
15745 Expr *CopyExpr = nullptr;
15746 if (getLangOpts().CPlusPlus && Cap.isCopyCapture()) {
15747 if (const RecordType *Record =
15748 Cap.getCaptureType()->getAs<RecordType>()) {
15749 // The capture logic needs the destructor, so make sure we mark it.
15750 // Usually this is unnecessary because most local variables have
15751 // their destructors marked at declaration time, but parameters are
15752 // an exception because it's technically only the call site that
15753 // actually requires the destructor.
15754 if (isa<ParmVarDecl>(Var))
15755 FinalizeVarWithDestructor(Var, Record);
15756
15757 // Enter a separate potentially-evaluated context while building block
15758 // initializers to isolate their cleanups from those of the block
15759 // itself.
15760 // FIXME: Is this appropriate even when the block itself occurs in an
15761 // unevaluated operand?
15762 EnterExpressionEvaluationContext EvalContext(
15763 *this, ExpressionEvaluationContext::PotentiallyEvaluated);
15764
15765 SourceLocation Loc = Cap.getLocation();
15766
15767 ExprResult Result = BuildDeclarationNameExpr(
15768 CXXScopeSpec(), DeclarationNameInfo(Var->getDeclName(), Loc), Var);
15769
15770 // According to the blocks spec, the capture of a variable from
15771 // the stack requires a const copy constructor. This is not true
15772 // of the copy/move done to move a __block variable to the heap.
15773 if (!Result.isInvalid() &&
15774 !Result.get()->getType().isConstQualified()) {
15775 Result = ImpCastExprToType(Result.get(),
15776 Result.get()->getType().withConst(),
15777 CK_NoOp, VK_LValue);
15778 }
15779
15780 if (!Result.isInvalid()) {
15781 Result = PerformCopyInitialization(
15782 InitializedEntity::InitializeBlock(Var->getLocation(),
15783 Cap.getCaptureType()),
15784 Loc, Result.get());
15785 }
15786
15787 // Build a full-expression copy expression if initialization
15788 // succeeded and used a non-trivial constructor. Recover from
15789 // errors by pretending that the copy isn't necessary.
15790 if (!Result.isInvalid() &&
15791 !cast<CXXConstructExpr>(Result.get())->getConstructor()
15792 ->isTrivial()) {
15793 Result = MaybeCreateExprWithCleanups(Result);
15794 CopyExpr = Result.get();
15795 }
15796 }
15797 }
15798
15799 BlockDecl::Capture NewCap(Var, Cap.isBlockCapture(), Cap.isNested(),
15800 CopyExpr);
15801 Captures.push_back(NewCap);
15802 }
15803 BD->setCaptures(Context, Captures, BSI->CXXThisCaptureIndex != 0);
15804
15805 // Pop the block scope now but keep it alive to the end of this function.
15806 AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
15807 PoppedFunctionScopePtr ScopeRAII = PopFunctionScopeInfo(&WP, BD, BlockTy);
15808
15809 BlockExpr *Result = new (Context) BlockExpr(BD, BlockTy);
15810
15811 // If the block isn't obviously global, i.e. it captures anything at
15812 // all, then we need to do a few things in the surrounding context:
15813 if (Result->getBlockDecl()->hasCaptures()) {
15814 // First, this expression has a new cleanup object.
15815 ExprCleanupObjects.push_back(Result->getBlockDecl());
15816 Cleanup.setExprNeedsCleanups(true);
15817
15818 // It also gets a branch-protected scope if any of the captured
15819 // variables needs destruction.
15820 for (const auto &CI : Result->getBlockDecl()->captures()) {
15821 const VarDecl *var = CI.getVariable();
15822 if (var->getType().isDestructedType() != QualType::DK_none) {
15823 setFunctionHasBranchProtectedScope();
15824 break;
15825 }
15826 }
15827 }
15828
15829 if (getCurFunction())
15830 getCurFunction()->addBlock(BD);
15831
15832 return Result;
15833}
15834
15835ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc, Expr *E, ParsedType Ty,
15836 SourceLocation RPLoc) {
15837 TypeSourceInfo *TInfo;
15838 GetTypeFromParser(Ty, &TInfo);
15839 return BuildVAArgExpr(BuiltinLoc, E, TInfo, RPLoc);
15840}
15841
15842ExprResult Sema::BuildVAArgExpr(SourceLocation BuiltinLoc,
15843 Expr *E, TypeSourceInfo *TInfo,
15844 SourceLocation RPLoc) {
15845 Expr *OrigExpr = E;
15846 bool IsMS = false;
15847
15848 // CUDA device code does not support varargs.
15849 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) {
15850 if (const FunctionDecl *F = dyn_cast<FunctionDecl>(CurContext)) {
15851 CUDAFunctionTarget T = IdentifyCUDATarget(F);
15852 if (T == CFT_Global || T == CFT_Device || T == CFT_HostDevice)
15853 return ExprError(Diag(E->getBeginLoc(), diag::err_va_arg_in_device));
15854 }
15855 }
15856
15857 // NVPTX does not support va_arg expression.
15858 if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
15859 Context.getTargetInfo().getTriple().isNVPTX())
15860 targetDiag(E->getBeginLoc(), diag::err_va_arg_in_device);
15861
15862 // It might be a __builtin_ms_va_list. (But don't ever mark a va_arg()
15863 // as Microsoft ABI on an actual Microsoft platform, where
15864 // __builtin_ms_va_list and __builtin_va_list are the same.)
15865 if (!E->isTypeDependent() && Context.getTargetInfo().hasBuiltinMSVaList() &&
15866 Context.getTargetInfo().getBuiltinVaListKind() != TargetInfo::CharPtrBuiltinVaList) {
15867 QualType MSVaListType = Context.getBuiltinMSVaListType();
15868 if (Context.hasSameType(MSVaListType, E->getType())) {
15869 if (CheckForModifiableLvalue(E, BuiltinLoc, *this))
15870 return ExprError();
15871 IsMS = true;
15872 }
15873 }
15874
15875 // Get the va_list type
15876 QualType VaListType = Context.getBuiltinVaListType();
15877 if (!IsMS) {
15878 if (VaListType->isArrayType()) {
15879 // Deal with implicit array decay; for example, on x86-64,
15880 // va_list is an array, but it's supposed to decay to
15881 // a pointer for va_arg.
15882 VaListType = Context.getArrayDecayedType(VaListType);
15883 // Make sure the input expression also decays appropriately.
15884 ExprResult Result = UsualUnaryConversions(E);
15885 if (Result.isInvalid())
15886 return ExprError();
15887 E = Result.get();
15888 } else if (VaListType->isRecordType() && getLangOpts().CPlusPlus) {
15889 // If va_list is a record type and we are compiling in C++ mode,
15890 // check the argument using reference binding.
15891 InitializedEntity Entity = InitializedEntity::InitializeParameter(
15892 Context, Context.getLValueReferenceType(VaListType), false);
15893 ExprResult Init = PerformCopyInitialization(Entity, SourceLocation(), E);
15894 if (Init.isInvalid())
15895 return ExprError();
15896 E = Init.getAs<Expr>();
15897 } else {
15898 // Otherwise, the va_list argument must be an l-value because
15899 // it is modified by va_arg.
15900 if (!E->isTypeDependent() &&
15901 CheckForModifiableLvalue(E, BuiltinLoc, *this))
15902 return ExprError();
15903 }
15904 }
15905
15906 if (!IsMS && !E->isTypeDependent() &&
15907 !Context.hasSameType(VaListType, E->getType()))
15908 return ExprError(
15909 Diag(E->getBeginLoc(),
15910 diag::err_first_argument_to_va_arg_not_of_type_va_list)
15911 << OrigExpr->getType() << E->getSourceRange());
15912
15913 if (!TInfo->getType()->isDependentType()) {
15914 if (RequireCompleteType(TInfo->getTypeLoc().getBeginLoc(), TInfo->getType(),
15915 diag::err_second_parameter_to_va_arg_incomplete,
15916 TInfo->getTypeLoc()))
15917 return ExprError();
15918
15919 if (RequireNonAbstractType(TInfo->getTypeLoc().getBeginLoc(),
15920 TInfo->getType(),
15921 diag::err_second_parameter_to_va_arg_abstract,
15922 TInfo->getTypeLoc()))
15923 return ExprError();
15924
15925 if (!TInfo->getType().isPODType(Context)) {
15926 Diag(TInfo->getTypeLoc().getBeginLoc(),
15927 TInfo->getType()->isObjCLifetimeType()
15928 ? diag::warn_second_parameter_to_va_arg_ownership_qualified
15929 : diag::warn_second_parameter_to_va_arg_not_pod)
15930 << TInfo->getType()
15931 << TInfo->getTypeLoc().getSourceRange();
15932 }
15933
15934 // Check for va_arg where arguments of the given type will be promoted
15935 // (i.e. this va_arg is guaranteed to have undefined behavior).
15936 QualType PromoteType;
15937 if (TInfo->getType()->isPromotableIntegerType()) {
15938 PromoteType = Context.getPromotedIntegerType(TInfo->getType());
15939 // [cstdarg.syn]p1 defers the C++ behavior to what the C standard says,
15940 // and C2x 7.16.1.1p2 says, in part:
15941 // If type is not compatible with the type of the actual next argument
15942 // (as promoted according to the default argument promotions), the
15943 // behavior is undefined, except for the following cases:
15944 // - both types are pointers to qualified or unqualified versions of
15945 // compatible types;
15946 // - one type is a signed integer type, the other type is the
15947 // corresponding unsigned integer type, and the value is
15948 // representable in both types;
15949 // - one type is pointer to qualified or unqualified void and the
15950 // other is a pointer to a qualified or unqualified character type.
15951 // Given that type compatibility is the primary requirement (ignoring
15952 // qualifications), you would think we could call typesAreCompatible()
15953 // directly to test this. However, in C++, that checks for *same type*,
15954 // which causes false positives when passing an enumeration type to
15955 // va_arg. Instead, get the underlying type of the enumeration and pass
15956 // that.
15957 QualType UnderlyingType = TInfo->getType();
15958 if (const auto *ET = UnderlyingType->getAs<EnumType>())
15959 UnderlyingType = ET->getDecl()->getIntegerType();
15960 if (Context.typesAreCompatible(PromoteType, UnderlyingType,
15961 /*CompareUnqualified*/ true))
15962 PromoteType = QualType();
15963
15964 // If the types are still not compatible, we need to test whether the
15965 // promoted type and the underlying type are the same except for
15966 // signedness. Ask the AST for the correctly corresponding type and see
15967 // if that's compatible.
15968 if (!PromoteType.isNull() && !UnderlyingType->isBooleanType() &&
15969 PromoteType->isUnsignedIntegerType() !=
15970 UnderlyingType->isUnsignedIntegerType()) {
15971 UnderlyingType =
15972 UnderlyingType->isUnsignedIntegerType()
15973 ? Context.getCorrespondingSignedType(UnderlyingType)
15974 : Context.getCorrespondingUnsignedType(UnderlyingType);
15975 if (Context.typesAreCompatible(PromoteType, UnderlyingType,
15976 /*CompareUnqualified*/ true))
15977 PromoteType = QualType();
15978 }
15979 }
15980 if (TInfo->getType()->isSpecificBuiltinType(BuiltinType::Float))
15981 PromoteType = Context.DoubleTy;
15982 if (!PromoteType.isNull())
15983 DiagRuntimeBehavior(TInfo->getTypeLoc().getBeginLoc(), E,
15984 PDiag(diag::warn_second_parameter_to_va_arg_never_compatible)
15985 << TInfo->getType()
15986 << PromoteType
15987 << TInfo->getTypeLoc().getSourceRange());
15988 }
15989
15990 QualType T = TInfo->getType().getNonLValueExprType(Context);
15991 return new (Context) VAArgExpr(BuiltinLoc, E, TInfo, RPLoc, T, IsMS);
15992}
15993
15994ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
15995 // The type of __null will be int or long, depending on the size of
15996 // pointers on the target.
15997 QualType Ty;
15998 unsigned pw = Context.getTargetInfo().getPointerWidth(0);
15999 if (pw == Context.getTargetInfo().getIntWidth())
16000 Ty = Context.IntTy;
16001 else if (pw == Context.getTargetInfo().getLongWidth())
16002 Ty = Context.LongTy;
16003 else if (pw == Context.getTargetInfo().getLongLongWidth())
16004 Ty = Context.LongLongTy;
16005 else {
16006 llvm_unreachable("I don't know size of pointer!")::llvm::llvm_unreachable_internal("I don't know size of pointer!"
, "clang/lib/Sema/SemaExpr.cpp", 16006)
;
16007 }
16008
16009 return new (Context) GNUNullExpr(Ty, TokenLoc);
16010}
16011
16012ExprResult Sema::ActOnSourceLocExpr(SourceLocExpr::IdentKind Kind,
16013 SourceLocation BuiltinLoc,
16014 SourceLocation RPLoc) {
16015 return BuildSourceLocExpr(Kind, BuiltinLoc, RPLoc, CurContext);
16016}
16017
16018ExprResult Sema::BuildSourceLocExpr(SourceLocExpr::IdentKind Kind,
16019 SourceLocation BuiltinLoc,
16020 SourceLocation RPLoc,
16021 DeclContext *ParentContext) {
16022 return new (Context)
16023 SourceLocExpr(Context, Kind, BuiltinLoc, RPLoc, ParentContext);
16024}
16025
16026bool Sema::CheckConversionToObjCLiteral(QualType DstType, Expr *&Exp,
16027 bool Diagnose) {
16028 if (!getLangOpts().ObjC)
16029 return false;
16030
16031 const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>();
16032 if (!PT)
16033 return false;
16034 const ObjCInterfaceDecl *ID = PT->getInterfaceDecl();
16035
16036 // Ignore any parens, implicit casts (should only be
16037 // array-to-pointer decays), and not-so-opaque values. The last is
16038 // important for making this trigger for property assignments.
16039 Expr *SrcExpr = Exp->IgnoreParenImpCasts();
16040 if (OpaqueValueExpr *OV = dyn_cast<OpaqueValueExpr>(SrcExpr))
16041 if (OV->getSourceExpr())
16042 SrcExpr = OV->getSourceExpr()->IgnoreParenImpCasts();
16043
16044 if (auto *SL = dyn_cast<StringLiteral>(SrcExpr)) {
16045 if (!PT->isObjCIdType() &&
16046 !(ID && ID->getIdentifier()->isStr("NSString")))
16047 return false;
16048 if (!SL->isAscii())
16049 return false;
16050
16051 if (Diagnose) {
16052 Diag(SL->getBeginLoc(), diag::err_missing_atsign_prefix)
16053 << /*string*/0 << FixItHint::CreateInsertion(SL->getBeginLoc(), "@");
16054 Exp = BuildObjCStringLiteral(SL->getBeginLoc(), SL).get();
16055 }
16056 return true;
16057 }
16058
16059 if ((isa<IntegerLiteral>(SrcExpr) || isa<CharacterLiteral>(SrcExpr) ||
16060 isa<FloatingLiteral>(SrcExpr) || isa<ObjCBoolLiteralExpr>(SrcExpr) ||
16061 isa<CXXBoolLiteralExpr>(SrcExpr)) &&
16062 !SrcExpr->isNullPointerConstant(
16063 getASTContext(), Expr::NPC_NeverValueDependent)) {
16064 if (!ID || !ID->getIdentifier()->isStr("NSNumber"))
16065 return false;
16066 if (Diagnose) {
16067 Diag(SrcExpr->getBeginLoc(), diag::err_missing_atsign_prefix)
16068 << /*number*/1
16069 << FixItHint::CreateInsertion(SrcExpr->getBeginLoc(), "@");
16070 Expr *NumLit =
16071 BuildObjCNumericLiteral(SrcExpr->getBeginLoc(), SrcExpr).get();
16072 if (NumLit)
16073 Exp = NumLit;
16074 }
16075 return true;
16076 }
16077
16078 return false;
16079}
16080
16081static bool maybeDiagnoseAssignmentToFunction(Sema &S, QualType DstType,
16082 const Expr *SrcExpr) {
16083 if (!DstType->isFunctionPointerType() ||
16084 !SrcExpr->getType()->isFunctionType())
16085 return false;
16086
16087 auto *DRE = dyn_cast<DeclRefExpr>(SrcExpr->IgnoreParenImpCasts());
16088 if (!DRE)
16089 return false;
16090
16091 auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl());
16092 if (!FD)
16093 return false;
16094
16095 return !S.checkAddressOfFunctionIsAvailable(FD,
16096 /*Complain=*/true,
16097 SrcExpr->getBeginLoc());
16098}
16099
16100bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
16101 SourceLocation Loc,
16102 QualType DstType, QualType SrcType,
16103 Expr *SrcExpr, AssignmentAction Action,
16104 bool *Complained) {
16105 if (Complained)
16106 *Complained = false;
16107
16108 // Decode the result (notice that AST's are still created for extensions).
16109 bool CheckInferredResultType = false;
16110 bool isInvalid = false;
16111 unsigned DiagKind = 0;
16112 ConversionFixItGenerator ConvHints;
16113 bool MayHaveConvFixit = false;
16114 bool MayHaveFunctionDiff = false;
16115 const ObjCInterfaceDecl *IFace = nullptr;
16116 const ObjCProtocolDecl *PDecl = nullptr;
16117
16118 switch (ConvTy) {
16119 case Compatible:
16120 DiagnoseAssignmentEnum(DstType, SrcType, SrcExpr);
16121 return false;
16122
16123 case PointerToInt:
16124 if (getLangOpts().CPlusPlus) {
16125 DiagKind = diag::err_typecheck_convert_pointer_int;
16126 isInvalid = true;
16127 } else {
16128 DiagKind = diag::ext_typecheck_convert_pointer_int;
16129 }
16130 ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
16131 MayHaveConvFixit = true;
16132 break;
16133 case IntToPointer:
16134 if (getLangOpts().CPlusPlus) {
16135 DiagKind = diag::err_typecheck_convert_int_pointer;
16136 isInvalid = true;
16137 } else {
16138 DiagKind = diag::ext_typecheck_convert_int_pointer;
16139 }
16140 ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
16141 MayHaveConvFixit = true;
16142 break;
16143 case IncompatibleFunctionPointer:
16144 if (getLangOpts().CPlusPlus) {
16145 DiagKind = diag::err_typecheck_convert_incompatible_function_pointer;
16146 isInvalid = true;
16147 } else {
16148 DiagKind = diag::ext_typecheck_convert_incompatible_function_pointer;
16149 }
16150 ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
16151 MayHaveConvFixit = true;
16152 break;
16153 case IncompatiblePointer:
16154 if (Action == AA_Passing_CFAudited) {
16155 DiagKind = diag::err_arc_typecheck_convert_incompatible_pointer;
16156 } else if (getLangOpts().CPlusPlus) {
16157 DiagKind = diag::err_typecheck_convert_incompatible_pointer;
16158 isInvalid = true;
16159 } else {
16160 DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
16161 }
16162 CheckInferredResultType = DstType->isObjCObjectPointerType() &&
16163 SrcType->isObjCObjectPointerType();
16164 if (!CheckInferredResultType) {
16165 ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
16166 } else if (CheckInferredResultType) {
16167 SrcType = SrcType.getUnqualifiedType();
16168 DstType = DstType.getUnqualifiedType();
16169 }
16170 MayHaveConvFixit = true;
16171 break;
16172 case IncompatiblePointerSign:
16173 if (getLangOpts().CPlusPlus) {
16174 DiagKind = diag::err_typecheck_convert_incompatible_pointer_sign;
16175 isInvalid = true;
16176 } else {
16177 DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
16178 }
16179 break;
16180 case FunctionVoidPointer:
16181 if (getLangOpts().CPlusPlus) {
16182 DiagKind = diag::err_typecheck_convert_pointer_void_func;
16183 isInvalid = true;
16184 } else {
16185 DiagKind = diag::ext_typecheck_convert_pointer_void_func;
16186 }
16187 break;
16188 case IncompatiblePointerDiscardsQualifiers: {
16189 // Perform array-to-pointer decay if necessary.
16190 if (SrcType->isArrayType()) SrcType = Context.getArrayDecayedType(SrcType);
16191
16192 isInvalid = true;
16193
16194 Qualifiers lhq = SrcType->getPointeeType().getQualifiers();
16195 Qualifiers rhq = DstType->getPointeeType().getQualifiers();
16196 if (lhq.getAddressSpace() != rhq.getAddressSpace()) {
16197 DiagKind = diag::err_typecheck_incompatible_address_space;
16198 break;
16199
16200 } else if (lhq.getObjCLifetime() != rhq.getObjCLifetime()) {
16201 DiagKind = diag::err_typecheck_incompatible_ownership;
16202 break;
16203 }
16204
16205 llvm_unreachable("unknown error case for discarding qualifiers!")::llvm::llvm_unreachable_internal("unknown error case for discarding qualifiers!"
, "clang/lib/Sema/SemaExpr.cpp", 16205)
;
16206 // fallthrough
16207 }
16208 case CompatiblePointerDiscardsQualifiers:
16209 // If the qualifiers lost were because we were applying the
16210 // (deprecated) C++ conversion from a string literal to a char*
16211 // (or wchar_t*), then there was no error (C++ 4.2p2). FIXME:
16212 // Ideally, this check would be performed in
16213 // checkPointerTypesForAssignment. However, that would require a
16214 // bit of refactoring (so that the second argument is an
16215 // expression, rather than a type), which should be done as part
16216 // of a larger effort to fix checkPointerTypesForAssignment for
16217 // C++ semantics.
16218 if (getLangOpts().CPlusPlus &&
16219 IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
16220 return false;
16221 if (getLangOpts().CPlusPlus) {
16222 DiagKind = diag::err_typecheck_convert_discards_qualifiers;
16223 isInvalid = true;
16224 } else {
16225 DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
16226 }
16227
16228 break;
16229 case IncompatibleNestedPointerQualifiers:
16230 if (getLangOpts().CPlusPlus) {
16231 isInvalid = true;
16232 DiagKind = diag::err_nested_pointer_qualifier_mismatch;
16233 } else {
16234 DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
16235 }
16236 break;
16237 case IncompatibleNestedPointerAddressSpaceMismatch:
16238 DiagKind = diag::err_typecheck_incompatible_nested_address_space;
16239 isInvalid = true;
16240 break;
16241 case IntToBlockPointer:
16242 DiagKind = diag::err_int_to_block_pointer;
16243 isInvalid = true;
16244 break;
16245 case IncompatibleBlockPointer:
16246 DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
16247 isInvalid = true;
16248 break;
16249 case IncompatibleObjCQualifiedId: {
16250 if (SrcType->isObjCQualifiedIdType()) {
16251 const ObjCObjectPointerType *srcOPT =
16252 SrcType->castAs<ObjCObjectPointerType>();
16253 for (auto *srcProto : srcOPT->quals()) {
16254 PDecl = srcProto;
16255 break;
16256 }
16257 if (const ObjCInterfaceType *IFaceT =
16258 DstType->castAs<ObjCObjectPointerType>()->getInterfaceType())
16259 IFace = IFaceT->getDecl();
16260 }
16261 else if (DstType->isObjCQualifiedIdType()) {
16262 const ObjCObjectPointerType *dstOPT =
16263 DstType->castAs<ObjCObjectPointerType>();
16264 for (auto *dstProto : dstOPT->quals()) {
16265 PDecl = dstProto;
16266 break;
16267 }
16268 if (const ObjCInterfaceType *IFaceT =
16269 SrcType->castAs<ObjCObjectPointerType>()->getInterfaceType())
16270 IFace = IFaceT->getDecl();
16271 }
16272 if (getLangOpts().CPlusPlus) {
16273 DiagKind = diag::err_incompatible_qualified_id;
16274 isInvalid = true;
16275 } else {
16276 DiagKind = diag::warn_incompatible_qualified_id;
16277 }
16278 break;
16279 }
16280 case IncompatibleVectors:
16281 if (getLangOpts().CPlusPlus) {
16282 DiagKind = diag::err_incompatible_vectors;
16283 isInvalid = true;
16284 } else {
16285 DiagKind = diag::warn_incompatible_vectors;
16286 }
16287 break;
16288 case IncompatibleObjCWeakRef:
16289 DiagKind = diag::err_arc_weak_unavailable_assign;
16290 isInvalid = true;
16291 break;
16292 case Incompatible:
16293 if (maybeDiagnoseAssignmentToFunction(*this, DstType, SrcExpr)) {
16294 if (Complained)
16295 *Complained = true;
16296 return true;
16297 }
16298
16299 DiagKind = diag::err_typecheck_convert_incompatible;
16300 ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
16301 MayHaveConvFixit = true;
16302 isInvalid = true;
16303 MayHaveFunctionDiff = true;
16304 break;
16305 }
16306
16307 QualType FirstType, SecondType;
16308 switch (Action) {
16309 case AA_Assigning:
16310 case AA_Initializing:
16311 // The destination type comes first.
16312 FirstType = DstType;
16313 SecondType = SrcType;
16314 break;
16315
16316 case AA_Returning:
16317 case AA_Passing:
16318 case AA_Passing_CFAudited:
16319 case AA_Converting:
16320 case AA_Sending:
16321 case AA_Casting:
16322 // The source type comes first.
16323 FirstType = SrcType;
16324 SecondType = DstType;
16325 break;
16326 }
16327
16328 PartialDiagnostic FDiag = PDiag(DiagKind);
16329 if (Action == AA_Passing_CFAudited)
16330 FDiag << FirstType << SecondType << AA_Passing << SrcExpr->getSourceRange();
16331 else
16332 FDiag << FirstType << SecondType << Action << SrcExpr->getSourceRange();
16333
16334 if (DiagKind == diag::ext_typecheck_convert_incompatible_pointer_sign ||
16335 DiagKind == diag::err_typecheck_convert_incompatible_pointer_sign) {
16336 auto isPlainChar = [](const clang::Type *Type) {
16337 return Type->isSpecificBuiltinType(BuiltinType::Char_S) ||
16338 Type->isSpecificBuiltinType(BuiltinType::Char_U);
16339 };
16340 FDiag << (isPlainChar(FirstType->getPointeeOrArrayElementType()) ||
16341 isPlainChar(SecondType->getPointeeOrArrayElementType()));
16342 }
16343
16344 // If we can fix the conversion, suggest the FixIts.
16345 if (!ConvHints.isNull()) {
16346 for (FixItHint &H : ConvHints.Hints)
16347 FDiag << H;
16348 }
16349
16350 if (MayHaveConvFixit) { FDiag << (unsigned) (ConvHints.Kind); }
16351
16352 if (MayHaveFunctionDiff)
16353 HandleFunctionTypeMismatch(FDiag, SecondType, FirstType);
16354
16355 Diag(Loc, FDiag);
16356 if ((DiagKind == diag::warn_incompatible_qualified_id ||
16357 DiagKind == diag::err_incompatible_qualified_id) &&
16358 PDecl && IFace && !IFace->hasDefinition())
16359 Diag(IFace->getLocation(), diag::note_incomplete_class_and_qualified_id)
16360 << IFace << PDecl;
16361
16362 if (SecondType == Context.OverloadTy)
16363 NoteAllOverloadCandidates(OverloadExpr::find(SrcExpr).Expression,
16364 FirstType, /*TakingAddress=*/true);
16365
16366 if (CheckInferredResultType)
16367 EmitRelatedResultTypeNote(SrcExpr);
16368
16369 if (Action == AA_Returning && ConvTy == IncompatiblePointer)
16370 EmitRelatedResultTypeNoteForReturn(DstType);
16371
16372 if (Complained)
16373 *Complained = true;
16374 return isInvalid;
16375}
16376
16377ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
16378 llvm::APSInt *Result,
16379 AllowFoldKind CanFold) {
16380 class SimpleICEDiagnoser : public VerifyICEDiagnoser {
16381 public:
16382 SemaDiagnosticBuilder diagnoseNotICEType(Sema &S, SourceLocation Loc,
16383 QualType T) override {
16384 return S.Diag(Loc, diag::err_ice_not_integral)
16385 << T << S.LangOpts.CPlusPlus;
16386 }
16387 SemaDiagnosticBuilder diagnoseNotICE(Sema &S, SourceLocation Loc) override {
16388 return S.Diag(Loc, diag::err_expr_not_ice) << S.LangOpts.CPlusPlus;
16389 }
16390 } Diagnoser;
16391
16392 return VerifyIntegerConstantExpression(E, Result, Diagnoser, CanFold);
16393}
16394
16395ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
16396 llvm::APSInt *Result,
16397 unsigned DiagID,
16398 AllowFoldKind CanFold) {
16399 class IDDiagnoser : public VerifyICEDiagnoser {
16400 unsigned DiagID;
16401
16402 public:
16403 IDDiagnoser(unsigned DiagID)
16404 : VerifyICEDiagnoser(DiagID == 0), DiagID(DiagID) { }
16405
16406 SemaDiagnosticBuilder diagnoseNotICE(Sema &S, SourceLocation Loc) override {
16407 return S.Diag(Loc, DiagID);
16408 }
16409 } Diagnoser(DiagID);
16410
16411 return VerifyIntegerConstantExpression(E, Result, Diagnoser, CanFold);
16412}
16413
16414Sema::SemaDiagnosticBuilder
16415Sema::VerifyICEDiagnoser::diagnoseNotICEType(Sema &S, SourceLocation Loc,
16416 QualType T) {
16417 return diagnoseNotICE(S, Loc);
16418}
16419
16420Sema::SemaDiagnosticBuilder
16421Sema::VerifyICEDiagnoser::diagnoseFold(Sema &S, SourceLocation Loc) {
16422 return S.Diag(Loc, diag::ext_expr_not_ice) << S.LangOpts.CPlusPlus;
16423}
16424
16425ExprResult
16426Sema::VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result,
16427 VerifyICEDiagnoser &Diagnoser,
16428 AllowFoldKind CanFold) {
16429 SourceLocation DiagLoc = E->getBeginLoc();
16430
16431 if (getLangOpts().CPlusPlus11) {
16432 // C++11 [expr.const]p5:
16433 // If an expression of literal class type is used in a context where an
16434 // integral constant expression is required, then that class type shall
16435 // have a single non-explicit conversion function to an integral or
16436 // unscoped enumeration type
16437 ExprResult Converted;
16438 class CXX11ConvertDiagnoser : public ICEConvertDiagnoser {
16439 VerifyICEDiagnoser &BaseDiagnoser;
16440 public:
16441 CXX11ConvertDiagnoser(VerifyICEDiagnoser &BaseDiagnoser)
16442 : ICEConvertDiagnoser(/*AllowScopedEnumerations*/ false,
16443 BaseDiagnoser.Suppress, true),
16444 BaseDiagnoser(BaseDiagnoser) {}
16445
16446 SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
16447 QualType T) override {
16448 return BaseDiagnoser.diagnoseNotICEType(S, Loc, T);
16449 }
16450
16451 SemaDiagnosticBuilder diagnoseIncomplete(
16452 Sema &S, SourceLocation Loc, QualType T) override {
16453 return S.Diag(Loc, diag::err_ice_incomplete_type) << T;
16454 }
16455
16456 SemaDiagnosticBuilder diagnoseExplicitConv(
16457 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
16458 return S.Diag(Loc, diag::err_ice_explicit_conversion) << T << ConvTy;
16459 }
16460
16461 SemaDiagnosticBuilder noteExplicitConv(
16462 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
16463 return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
16464 << ConvTy->isEnumeralType() << ConvTy;
16465 }
16466
16467 SemaDiagnosticBuilder diagnoseAmbiguous(
16468 Sema &S, SourceLocation Loc, QualType T) override {
16469 return S.Diag(Loc, diag::err_ice_ambiguous_conversion) << T;
16470 }
16471
16472 SemaDiagnosticBuilder noteAmbiguous(
16473 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
16474 return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
16475 << ConvTy->isEnumeralType() << ConvTy;
16476 }
16477
16478 SemaDiagnosticBuilder diagnoseConversion(
16479 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
16480 llvm_unreachable("conversion functions are permitted")::llvm::llvm_unreachable_internal("conversion functions are permitted"
, "clang/lib/Sema/SemaExpr.cpp", 16480)
;
16481 }
16482 } ConvertDiagnoser(Diagnoser);
16483
16484 Converted = PerformContextualImplicitConversion(DiagLoc, E,
16485 ConvertDiagnoser);
16486 if (Converted.isInvalid())
16487 return Converted;
16488 E = Converted.get();
16489 if (!E->getType()->isIntegralOrUnscopedEnumerationType())
16490 return ExprError();
16491 } else if (!E->getType()->isIntegralOrUnscopedEnumerationType()) {
16492 // An ICE must be of integral or unscoped enumeration type.
16493 if (!Diagnoser.Suppress)
16494 Diagnoser.diagnoseNotICEType(*this, DiagLoc, E->getType())
16495 << E->getSourceRange();
16496 return ExprError();
16497 }
16498
16499 ExprResult RValueExpr = DefaultLvalueConversion(E);
16500 if (RValueExpr.isInvalid())
16501 return ExprError();
16502
16503 E = RValueExpr.get();
16504
16505 // Circumvent ICE checking in C++11 to avoid evaluating the expression twice
16506 // in the non-ICE case.
16507 if (!getLangOpts().CPlusPlus11 && E->isIntegerConstantExpr(Context)) {
16508 if (Result)
16509 *Result = E->EvaluateKnownConstIntCheckOverflow(Context);
16510 if (!isa<ConstantExpr>(E))
16511 E = Result ? ConstantExpr::Create(Context, E, APValue(*Result))
16512 : ConstantExpr::Create(Context, E);
16513 return E;
16514 }
16515
16516 Expr::EvalResult EvalResult;
16517 SmallVector<PartialDiagnosticAt, 8> Notes;
16518 EvalResult.Diag = &Notes;
16519
16520 // Try to evaluate the expression, and produce diagnostics explaining why it's
16521 // not a constant expression as a side-effect.
16522 bool Folded =
16523 E->EvaluateAsRValue(EvalResult, Context, /*isConstantContext*/ true) &&
16524 EvalResult.Val.isInt() && !EvalResult.HasSideEffects;
16525
16526 if (!isa<ConstantExpr>(E))
16527 E = ConstantExpr::Create(Context, E, EvalResult.Val);
16528
16529 // In C++11, we can rely on diagnostics being produced for any expression
16530 // which is not a constant expression. If no diagnostics were produced, then
16531 // this is a constant expression.
16532 if (Folded && getLangOpts().CPlusPlus11 && Notes.empty()) {
16533 if (Result)
16534 *Result = EvalResult.Val.getInt();
16535 return E;
16536 }
16537
16538 // If our only note is the usual "invalid subexpression" note, just point
16539 // the caret at its location rather than producing an essentially
16540 // redundant note.
16541 if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
16542 diag::note_invalid_subexpr_in_const_expr) {
16543 DiagLoc = Notes[0].first;
16544 Notes.clear();
16545 }
16546
16547 if (!Folded || !CanFold) {
16548 if (!Diagnoser.Suppress) {
16549 Diagnoser.diagnoseNotICE(*this, DiagLoc) << E->getSourceRange();
16550 for (const PartialDiagnosticAt &Note : Notes)
16551 Diag(Note.first, Note.second);
16552 }
16553
16554 return ExprError();
16555 }
16556
16557 Diagnoser.diagnoseFold(*this, DiagLoc) << E->getSourceRange();
16558 for (const PartialDiagnosticAt &Note : Notes)
16559 Diag(Note.first, Note.second);
16560
16561 if (Result)
16562 *Result = EvalResult.Val.getInt();
16563 return E;
16564}
16565
16566namespace {
16567 // Handle the case where we conclude a expression which we speculatively
16568 // considered to be unevaluated is actually evaluated.
16569 class TransformToPE : public TreeTransform<TransformToPE> {
16570 typedef TreeTransform<TransformToPE> BaseTransform;
16571
16572 public:
16573 TransformToPE(Sema &SemaRef) : BaseTransform(SemaRef) { }
16574
16575 // Make sure we redo semantic analysis
16576 bool AlwaysRebuild() { return true; }
16577 bool ReplacingOriginal() { return true; }
16578
16579 // We need to special-case DeclRefExprs referring to FieldDecls which
16580 // are not part of a member pointer formation; normal TreeTransforming
16581 // doesn't catch this case because of the way we represent them in the AST.
16582 // FIXME: This is a bit ugly; is it really the best way to handle this
16583 // case?
16584 //
16585 // Error on DeclRefExprs referring to FieldDecls.
16586 ExprResult TransformDeclRefExpr(DeclRefExpr *E) {
16587 if (isa<FieldDecl>(E->getDecl()) &&
16588 !SemaRef.isUnevaluatedContext())
16589 return SemaRef.Diag(E->getLocation(),
16590 diag::err_invalid_non_static_member_use)
16591 << E->getDecl() << E->getSourceRange();
16592
16593 return BaseTransform::TransformDeclRefExpr(E);
16594 }
16595
16596 // Exception: filter out member pointer formation
16597 ExprResult TransformUnaryOperator(UnaryOperator *E) {
16598 if (E->getOpcode() == UO_AddrOf && E->getType()->isMemberPointerType())
16599 return E;
16600
16601 return BaseTransform::TransformUnaryOperator(E);
16602 }
16603
16604 // The body of a lambda-expression is in a separate expression evaluation
16605 // context so never needs to be transformed.
16606 // FIXME: Ideally we wouldn't transform the closure type either, and would
16607 // just recreate the capture expressions and lambda expression.
16608 StmtResult TransformLambdaBody(LambdaExpr *E, Stmt *Body) {
16609 return SkipLambdaBody(E, Body);
16610 }
16611 };
16612}
16613
16614ExprResult Sema::TransformToPotentiallyEvaluated(Expr *E) {
16615 assert(isUnevaluatedContext() &&(static_cast <bool> (isUnevaluatedContext() && "Should only transform unevaluated expressions"
) ? void (0) : __assert_fail ("isUnevaluatedContext() && \"Should only transform unevaluated expressions\""
, "clang/lib/Sema/SemaExpr.cpp", 16616, __extension__ __PRETTY_FUNCTION__
))
16616 "Should only transform unevaluated expressions")(static_cast <bool> (isUnevaluatedContext() && "Should only transform unevaluated expressions"
) ? void (0) : __assert_fail ("isUnevaluatedContext() && \"Should only transform unevaluated expressions\""
, "clang/lib/Sema/SemaExpr.cpp", 16616, __extension__ __PRETTY_FUNCTION__
))
;
16617 ExprEvalContexts.back().Context =
16618 ExprEvalContexts[ExprEvalContexts.size()-2].Context;
16619 if (isUnevaluatedContext())
16620 return E;
16621 return TransformToPE(*this).TransformExpr(E);
16622}
16623
16624TypeSourceInfo *Sema::TransformToPotentiallyEvaluated(TypeSourceInfo *TInfo) {
16625 assert(isUnevaluatedContext() &&(static_cast <bool> (isUnevaluatedContext() && "Should only transform unevaluated expressions"
) ? void (0) : __assert_fail ("isUnevaluatedContext() && \"Should only transform unevaluated expressions\""
, "clang/lib/Sema/SemaExpr.cpp", 16626, __extension__ __PRETTY_FUNCTION__
))
16626 "Should only transform unevaluated expressions")(static_cast <bool> (isUnevaluatedContext() && "Should only transform unevaluated expressions"
) ? void (0) : __assert_fail ("isUnevaluatedContext() && \"Should only transform unevaluated expressions\""
, "clang/lib/Sema/SemaExpr.cpp", 16626, __extension__ __PRETTY_FUNCTION__
))
;
16627 ExprEvalContexts.back().Context =
16628 ExprEvalContexts[ExprEvalContexts.size() - 2].Context;
16629 if (isUnevaluatedContext())
16630 return TInfo;
16631 return TransformToPE(*this).TransformType(TInfo);
16632}
16633
16634void
16635Sema::PushExpressionEvaluationContext(
16636 ExpressionEvaluationContext NewContext, Decl *LambdaContextDecl,
16637 ExpressionEvaluationContextRecord::ExpressionKind ExprContext) {
16638 ExprEvalContexts.emplace_back(NewContext, ExprCleanupObjects.size(), Cleanup,
16639 LambdaContextDecl, ExprContext);
16640
16641 // Discarded statements and immediate contexts nested in other
16642 // discarded statements or immediate context are themselves
16643 // a discarded statement or an immediate context, respectively.
16644 ExprEvalContexts.back().InDiscardedStatement =
16645 ExprEvalContexts[ExprEvalContexts.size() - 2]
16646 .isDiscardedStatementContext();
16647 ExprEvalContexts.back().InImmediateFunctionContext =
16648 ExprEvalContexts[ExprEvalContexts.size() - 2]
16649 .isImmediateFunctionContext();
16650
16651 Cleanup.reset();
16652 if (!MaybeODRUseExprs.empty())
16653 std::swap(MaybeODRUseExprs, ExprEvalContexts.back().SavedMaybeODRUseExprs);
16654}
16655
16656void
16657Sema::PushExpressionEvaluationContext(
16658 ExpressionEvaluationContext NewContext, ReuseLambdaContextDecl_t,
16659 ExpressionEvaluationContextRecord::ExpressionKind ExprContext) {
16660 Decl *ClosureContextDecl = ExprEvalContexts.back().ManglingContextDecl;
16661 PushExpressionEvaluationContext(NewContext, ClosureContextDecl, ExprContext);
16662}
16663
16664namespace {
16665
16666const DeclRefExpr *CheckPossibleDeref(Sema &S, const Expr *PossibleDeref) {
16667 PossibleDeref = PossibleDeref->IgnoreParenImpCasts();
16668 if (const auto *E = dyn_cast<UnaryOperator>(PossibleDeref)) {
16669 if (E->getOpcode() == UO_Deref)
16670 return CheckPossibleDeref(S, E->getSubExpr());
16671 } else if (const auto *E = dyn_cast<ArraySubscriptExpr>(PossibleDeref)) {
16672 return CheckPossibleDeref(S, E->getBase());
16673 } else if (const auto *E = dyn_cast<MemberExpr>(PossibleDeref)) {
16674 return CheckPossibleDeref(S, E->getBase());
16675 } else if (const auto E = dyn_cast<DeclRefExpr>(PossibleDeref)) {
16676 QualType Inner;
16677 QualType Ty = E->getType();
16678 if (const auto *Ptr = Ty->getAs<PointerType>())
16679 Inner = Ptr->getPointeeType();
16680 else if (const auto *Arr = S.Context.getAsArrayType(Ty))
16681 Inner = Arr->getElementType();
16682 else
16683 return nullptr;
16684
16685 if (Inner->hasAttr(attr::NoDeref))
16686 return E;
16687 }
16688 return nullptr;
16689}
16690
16691} // namespace
16692
16693void Sema::WarnOnPendingNoDerefs(ExpressionEvaluationContextRecord &Rec) {
16694 for (const Expr *E : Rec.PossibleDerefs) {
16695 const DeclRefExpr *DeclRef = CheckPossibleDeref(*this, E);
16696 if (DeclRef) {
16697 const ValueDecl *Decl = DeclRef->getDecl();
16698 Diag(E->getExprLoc(), diag::warn_dereference_of_noderef_type)
16699 << Decl->getName() << E->getSourceRange();
16700 Diag(Decl->getLocation(), diag::note_previous_decl) << Decl->getName();
16701 } else {
16702 Diag(E->getExprLoc(), diag::warn_dereference_of_noderef_type_no_decl)
16703 << E->getSourceRange();
16704 }
16705 }
16706 Rec.PossibleDerefs.clear();
16707}
16708
16709/// Check whether E, which is either a discarded-value expression or an
16710/// unevaluated operand, is a simple-assignment to a volatlie-qualified lvalue,
16711/// and if so, remove it from the list of volatile-qualified assignments that
16712/// we are going to warn are deprecated.
16713void Sema::CheckUnusedVolatileAssignment(Expr *E) {
16714 if (!E->getType().isVolatileQualified() || !getLangOpts().CPlusPlus20)
16715 return;
16716
16717 // Note: ignoring parens here is not justified by the standard rules, but
16718 // ignoring parentheses seems like a more reasonable approach, and this only
16719 // drives a deprecation warning so doesn't affect conformance.
16720 if (auto *BO = dyn_cast<BinaryOperator>(E->IgnoreParenImpCasts())) {
16721 if (BO->getOpcode() == BO_Assign) {
16722 auto &LHSs = ExprEvalContexts.back().VolatileAssignmentLHSs;
16723 llvm::erase_value(LHSs, BO->getLHS());
16724 }
16725 }
16726}
16727
16728ExprResult Sema::CheckForImmediateInvocation(ExprResult E, FunctionDecl *Decl) {
16729 if (isUnevaluatedContext() || !E.isUsable() || !Decl ||
16730 !Decl->isConsteval() || isConstantEvaluated() ||
16731 RebuildingImmediateInvocation || isImmediateFunctionContext())
16732 return E;
16733
16734 /// Opportunistically remove the callee from ReferencesToConsteval if we can.
16735 /// It's OK if this fails; we'll also remove this in
16736 /// HandleImmediateInvocations, but catching it here allows us to avoid
16737 /// walking the AST looking for it in simple cases.
16738 if (auto *Call = dyn_cast<CallExpr>(E.get()->IgnoreImplicit()))
16739 if (auto *DeclRef =
16740 dyn_cast<DeclRefExpr>(Call->getCallee()->IgnoreImplicit()))
16741 ExprEvalContexts.back().ReferenceToConsteval.erase(DeclRef);
16742
16743 E = MaybeCreateExprWithCleanups(E);
16744
16745 ConstantExpr *Res = ConstantExpr::Create(
16746 getASTContext(), E.get(),
16747 ConstantExpr::getStorageKind(Decl->getReturnType().getTypePtr(),
16748 getASTContext()),
16749 /*IsImmediateInvocation*/ true);
16750 ExprEvalContexts.back().ImmediateInvocationCandidates.emplace_back(Res, 0);
16751 return Res;
16752}
16753
16754static void EvaluateAndDiagnoseImmediateInvocation(
16755 Sema &SemaRef, Sema::ImmediateInvocationCandidate Candidate) {
16756 llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
16757 Expr::EvalResult Eval;
16758 Eval.Diag = &Notes;
16759 ConstantExpr *CE = Candidate.getPointer();
16760 bool Result = CE->EvaluateAsConstantExpr(
16761 Eval, SemaRef.getASTContext(), ConstantExprKind::ImmediateInvocation);
16762 if (!Result || !Notes.empty()) {
16763 Expr *InnerExpr = CE->getSubExpr()->IgnoreImplicit();
16764 if (auto *FunctionalCast = dyn_cast<CXXFunctionalCastExpr>(InnerExpr))
16765 InnerExpr = FunctionalCast->getSubExpr();
16766 FunctionDecl *FD = nullptr;
16767 if (auto *Call = dyn_cast<CallExpr>(InnerExpr))
16768 FD = cast<FunctionDecl>(Call->getCalleeDecl());
16769 else if (auto *Call = dyn_cast<CXXConstructExpr>(InnerExpr))
16770 FD = Call->getConstructor();
16771 else
16772 llvm_unreachable("unhandled decl kind")::llvm::llvm_unreachable_internal("unhandled decl kind", "clang/lib/Sema/SemaExpr.cpp"
, 16772)
;
16773 assert(FD->isConsteval())(static_cast <bool> (FD->isConsteval()) ? void (0) :
__assert_fail ("FD->isConsteval()", "clang/lib/Sema/SemaExpr.cpp"
, 16773, __extension__ __PRETTY_FUNCTION__))
;
16774 SemaRef.Diag(CE->getBeginLoc(), diag::err_invalid_consteval_call) << FD;
16775 for (auto &Note : Notes)
16776 SemaRef.Diag(Note.first, Note.second);
16777 return;
16778 }
16779 CE->MoveIntoResult(Eval.Val, SemaRef.getASTContext());
16780}
16781
16782static void RemoveNestedImmediateInvocation(
16783 Sema &SemaRef, Sema::ExpressionEvaluationContextRecord &Rec,
16784 SmallVector<Sema::ImmediateInvocationCandidate, 4>::reverse_iterator It) {
16785 struct ComplexRemove : TreeTransform<ComplexRemove> {
16786 using Base = TreeTransform<ComplexRemove>;
16787 llvm::SmallPtrSetImpl<DeclRefExpr *> &DRSet;
16788 SmallVector<Sema::ImmediateInvocationCandidate, 4> &IISet;
16789 SmallVector<Sema::ImmediateInvocationCandidate, 4>::reverse_iterator
16790 CurrentII;
16791 ComplexRemove(Sema &SemaRef, llvm::SmallPtrSetImpl<DeclRefExpr *> &DR,
16792 SmallVector<Sema::ImmediateInvocationCandidate, 4> &II,
16793 SmallVector<Sema::ImmediateInvocationCandidate,
16794 4>::reverse_iterator Current)
16795 : Base(SemaRef), DRSet(DR), IISet(II), CurrentII(Current) {}
16796 void RemoveImmediateInvocation(ConstantExpr* E) {
16797 auto It = std::find_if(CurrentII, IISet.rend(),
16798 [E](Sema::ImmediateInvocationCandidate Elem) {
16799 return Elem.getPointer() == E;
16800 });
16801 assert(It != IISet.rend() &&(static_cast <bool> (It != IISet.rend() && "ConstantExpr marked IsImmediateInvocation should "
"be present") ? void (0) : __assert_fail ("It != IISet.rend() && \"ConstantExpr marked IsImmediateInvocation should \" \"be present\""
, "clang/lib/Sema/SemaExpr.cpp", 16803, __extension__ __PRETTY_FUNCTION__
))
16802 "ConstantExpr marked IsImmediateInvocation should "(static_cast <bool> (It != IISet.rend() && "ConstantExpr marked IsImmediateInvocation should "
"be present") ? void (0) : __assert_fail ("It != IISet.rend() && \"ConstantExpr marked IsImmediateInvocation should \" \"be present\""
, "clang/lib/Sema/SemaExpr.cpp", 16803, __extension__ __PRETTY_FUNCTION__
))
16803 "be present")(static_cast <bool> (It != IISet.rend() && "ConstantExpr marked IsImmediateInvocation should "
"be present") ? void (0) : __assert_fail ("It != IISet.rend() && \"ConstantExpr marked IsImmediateInvocation should \" \"be present\""
, "clang/lib/Sema/SemaExpr.cpp", 16803, __extension__ __PRETTY_FUNCTION__
))
;
16804 It->setInt(1); // Mark as deleted
16805 }
16806 ExprResult TransformConstantExpr(ConstantExpr *E) {
16807 if (!E->isImmediateInvocation())
16808 return Base::TransformConstantExpr(E);
16809 RemoveImmediateInvocation(E);
16810 return Base::TransformExpr(E->getSubExpr());
16811 }
16812 /// Base::TransfromCXXOperatorCallExpr doesn't traverse the callee so
16813 /// we need to remove its DeclRefExpr from the DRSet.
16814 ExprResult TransformCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
16815 DRSet.erase(cast<DeclRefExpr>(E->getCallee()->IgnoreImplicit()));
16816 return Base::TransformCXXOperatorCallExpr(E);
16817 }
16818 /// Base::TransformInitializer skip ConstantExpr so we need to visit them
16819 /// here.
16820 ExprResult TransformInitializer(Expr *Init, bool NotCopyInit) {
16821 if (!Init)
16822 return Init;
16823 /// ConstantExpr are the first layer of implicit node to be removed so if
16824 /// Init isn't a ConstantExpr, no ConstantExpr will be skipped.
16825 if (auto *CE = dyn_cast<ConstantExpr>(Init))
16826 if (CE->isImmediateInvocation())
16827 RemoveImmediateInvocation(CE);
16828 return Base::TransformInitializer(Init, NotCopyInit);
16829 }
16830 ExprResult TransformDeclRefExpr(DeclRefExpr *E) {
16831 DRSet.erase(E);
16832 return E;
16833 }
16834 bool AlwaysRebuild() { return false; }
16835 bool ReplacingOriginal() { return true; }
16836 bool AllowSkippingCXXConstructExpr() {
16837 bool Res = AllowSkippingFirstCXXConstructExpr;
16838 AllowSkippingFirstCXXConstructExpr = true;
16839 return Res;
16840 }
16841 bool AllowSkippingFirstCXXConstructExpr = true;
16842 } Transformer(SemaRef, Rec.ReferenceToConsteval,
16843 Rec.ImmediateInvocationCandidates, It);
16844
16845 /// CXXConstructExpr with a single argument are getting skipped by
16846 /// TreeTransform in some situtation because they could be implicit. This
16847 /// can only occur for the top-level CXXConstructExpr because it is used
16848 /// nowhere in the expression being transformed therefore will not be rebuilt.
16849 /// Setting AllowSkippingFirstCXXConstructExpr to false will prevent from
16850 /// skipping the first CXXConstructExpr.
16851 if (isa<CXXConstructExpr>(It->getPointer()->IgnoreImplicit()))
16852 Transformer.AllowSkippingFirstCXXConstructExpr = false;
16853
16854 ExprResult Res = Transformer.TransformExpr(It->getPointer()->getSubExpr());
16855 assert(Res.isUsable())(static_cast <bool> (Res.isUsable()) ? void (0) : __assert_fail
("Res.isUsable()", "clang/lib/Sema/SemaExpr.cpp", 16855, __extension__
__PRETTY_FUNCTION__))
;
16856 Res = SemaRef.MaybeCreateExprWithCleanups(Res);
16857 It->getPointer()->setSubExpr(Res.get());
16858}
16859
16860static void
16861HandleImmediateInvocations(Sema &SemaRef,
16862 Sema::ExpressionEvaluationContextRecord &Rec) {
16863 if ((Rec.ImmediateInvocationCandidates.size() == 0 &&
16864 Rec.ReferenceToConsteval.size() == 0) ||
16865 SemaRef.RebuildingImmediateInvocation)
16866 return;
16867
16868 /// When we have more then 1 ImmediateInvocationCandidates we need to check
16869 /// for nested ImmediateInvocationCandidates. when we have only 1 we only
16870 /// need to remove ReferenceToConsteval in the immediate invocation.
16871 if (Rec.ImmediateInvocationCandidates.size() > 1) {
16872
16873 /// Prevent sema calls during the tree transform from adding pointers that
16874 /// are already in the sets.
16875 llvm::SaveAndRestore<bool> DisableIITracking(
16876 SemaRef.RebuildingImmediateInvocation, true);
16877
16878 /// Prevent diagnostic during tree transfrom as they are duplicates
16879 Sema::TentativeAnalysisScope DisableDiag(SemaRef);
16880
16881 for (auto It = Rec.ImmediateInvocationCandidates.rbegin();
16882 It != Rec.ImmediateInvocationCandidates.rend(); It++)
16883 if (!It->getInt())
16884 RemoveNestedImmediateInvocation(SemaRef, Rec, It);
16885 } else if (Rec.ImmediateInvocationCandidates.size() == 1 &&
16886 Rec.ReferenceToConsteval.size()) {
16887 struct SimpleRemove : RecursiveASTVisitor<SimpleRemove> {
16888 llvm::SmallPtrSetImpl<DeclRefExpr *> &DRSet;
16889 SimpleRemove(llvm::SmallPtrSetImpl<DeclRefExpr *> &S) : DRSet(S) {}
16890 bool VisitDeclRefExpr(DeclRefExpr *E) {
16891 DRSet.erase(E);
16892 return DRSet.size();
16893 }
16894 } Visitor(Rec.ReferenceToConsteval);
16895 Visitor.TraverseStmt(
16896 Rec.ImmediateInvocationCandidates.front().getPointer()->getSubExpr());
16897 }
16898 for (auto CE : Rec.ImmediateInvocationCandidates)
16899 if (!CE.getInt())
16900 EvaluateAndDiagnoseImmediateInvocation(SemaRef, CE);
16901 for (auto DR : Rec.ReferenceToConsteval) {
16902 auto *FD = cast<FunctionDecl>(DR->getDecl());
16903 SemaRef.Diag(DR->getBeginLoc(), diag::err_invalid_consteval_take_address)
16904 << FD;
16905 SemaRef.Diag(FD->getLocation(), diag::note_declared_at);
16906 }
16907}
16908
16909void Sema::PopExpressionEvaluationContext() {
16910 ExpressionEvaluationContextRecord& Rec = ExprEvalContexts.back();
16911 unsigned NumTypos = Rec.NumTypos;
16912
16913 if (!Rec.Lambdas.empty()) {
16914 using ExpressionKind = ExpressionEvaluationContextRecord::ExpressionKind;
16915 if (!getLangOpts().CPlusPlus20 &&
16916 (Rec.ExprContext == ExpressionKind::EK_TemplateArgument ||
16917 Rec.isUnevaluated() ||
16918 (Rec.isConstantEvaluated() && !getLangOpts().CPlusPlus17))) {
16919 unsigned D;
16920 if (Rec.isUnevaluated()) {
16921 // C++11 [expr.prim.lambda]p2:
16922 // A lambda-expression shall not appear in an unevaluated operand
16923 // (Clause 5).
16924 D = diag::err_lambda_unevaluated_operand;
16925 } else if (Rec.isConstantEvaluated() && !getLangOpts().CPlusPlus17) {
16926 // C++1y [expr.const]p2:
16927 // A conditional-expression e is a core constant expression unless the
16928 // evaluation of e, following the rules of the abstract machine, would
16929 // evaluate [...] a lambda-expression.
16930 D = diag::err_lambda_in_constant_expression;
16931 } else if (Rec.ExprContext == ExpressionKind::EK_TemplateArgument) {
16932 // C++17 [expr.prim.lamda]p2:
16933 // A lambda-expression shall not appear [...] in a template-argument.
16934 D = diag::err_lambda_in_invalid_context;
16935 } else
16936 llvm_unreachable("Couldn't infer lambda error message.")::llvm::llvm_unreachable_internal("Couldn't infer lambda error message."
, "clang/lib/Sema/SemaExpr.cpp", 16936)
;
16937
16938 for (const auto *L : Rec.Lambdas)
16939 Diag(L->getBeginLoc(), D);
16940 }
16941 }
16942
16943 WarnOnPendingNoDerefs(Rec);
16944 HandleImmediateInvocations(*this, Rec);
16945
16946 // Warn on any volatile-qualified simple-assignments that are not discarded-
16947 // value expressions nor unevaluated operands (those cases get removed from
16948 // this list by CheckUnusedVolatileAssignment).
16949 for (auto *BO : Rec.VolatileAssignmentLHSs)
16950 Diag(BO->getBeginLoc(), diag::warn_deprecated_simple_assign_volatile)
16951 << BO->getType();
16952
16953 // When are coming out of an unevaluated context, clear out any
16954 // temporaries that we may have created as part of the evaluation of
16955 // the expression in that context: they aren't relevant because they
16956 // will never be constructed.
16957 if (Rec.isUnevaluated() || Rec.isConstantEvaluated()) {
16958 ExprCleanupObjects.erase(ExprCleanupObjects.begin() + Rec.NumCleanupObjects,
16959 ExprCleanupObjects.end());
16960 Cleanup = Rec.ParentCleanup;
16961 CleanupVarDeclMarking();
16962 std::swap(MaybeODRUseExprs, Rec.SavedMaybeODRUseExprs);
16963 // Otherwise, merge the contexts together.
16964 } else {
16965 Cleanup.mergeFrom(Rec.ParentCleanup);
16966 MaybeODRUseExprs.insert(Rec.SavedMaybeODRUseExprs.begin(),
16967 Rec.SavedMaybeODRUseExprs.end());
16968 }
16969
16970 // Pop the current expression evaluation context off the stack.
16971 ExprEvalContexts.pop_back();
16972
16973 // The global expression evaluation context record is never popped.
16974 ExprEvalContexts.back().NumTypos += NumTypos;
16975}
16976
16977void Sema::DiscardCleanupsInEvaluationContext() {
16978 ExprCleanupObjects.erase(
16979 ExprCleanupObjects.begin() + ExprEvalContexts.back().NumCleanupObjects,
16980 ExprCleanupObjects.end());
16981 Cleanup.reset();
16982 MaybeODRUseExprs.clear();
16983}
16984
16985ExprResult Sema::HandleExprEvaluationContextForTypeof(Expr *E) {
16986 ExprResult Result = CheckPlaceholderExpr(E);
16987 if (Result.isInvalid())
16988 return ExprError();
16989 E = Result.get();
16990 if (!E->getType()->isVariablyModifiedType())
16991 return E;
16992 return TransformToPotentiallyEvaluated(E);
16993}
16994
16995/// Are we in a context that is potentially constant evaluated per C++20
16996/// [expr.const]p12?
16997static bool isPotentiallyConstantEvaluatedContext(Sema &SemaRef) {
16998 /// C++2a [expr.const]p12:
16999 // An expression or conversion is potentially constant evaluated if it is
17000 switch (SemaRef.ExprEvalContexts.back().Context) {
17001 case Sema::ExpressionEvaluationContext::ConstantEvaluated:
17002 case Sema::ExpressionEvaluationContext::ImmediateFunctionContext:
17003
17004 // -- a manifestly constant-evaluated expression,
17005 case Sema::ExpressionEvaluationContext::PotentiallyEvaluated:
17006 case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
17007 case Sema::ExpressionEvaluationContext::DiscardedStatement:
17008 // -- a potentially-evaluated expression,
17009 case Sema::ExpressionEvaluationContext::UnevaluatedList:
17010 // -- an immediate subexpression of a braced-init-list,
17011
17012 // -- [FIXME] an expression of the form & cast-expression that occurs
17013 // within a templated entity
17014 // -- a subexpression of one of the above that is not a subexpression of
17015 // a nested unevaluated operand.
17016 return true;
17017
17018 case Sema::ExpressionEvaluationContext::Unevaluated:
17019 case Sema::ExpressionEvaluationContext::UnevaluatedAbstract:
17020 // Expressions in this context are never evaluated.
17021 return false;
17022 }
17023 llvm_unreachable("Invalid context")::llvm::llvm_unreachable_internal("Invalid context", "clang/lib/Sema/SemaExpr.cpp"
, 17023)
;
17024}
17025
17026/// Return true if this function has a calling convention that requires mangling
17027/// in the size of the parameter pack.
17028static bool funcHasParameterSizeMangling(Sema &S, FunctionDecl *FD) {
17029 // These manglings don't do anything on non-Windows or non-x86 platforms, so
17030 // we don't need parameter type sizes.
17031 const llvm::Triple &TT = S.Context.getTargetInfo().getTriple();
17032 if (!TT.isOSWindows() || !TT.isX86())
17033 return false;
17034
17035 // If this is C++ and this isn't an extern "C" function, parameters do not
17036 // need to be complete. In this case, C++ mangling will apply, which doesn't
17037 // use the size of the parameters.
17038 if (S.getLangOpts().CPlusPlus && !FD->isExternC())
17039 return false;
17040
17041 // Stdcall, fastcall, and vectorcall need this special treatment.
17042 CallingConv CC = FD->getType()->castAs<FunctionType>()->getCallConv();
17043 switch (CC) {
17044 case CC_X86StdCall:
17045 case CC_X86FastCall:
17046 case CC_X86VectorCall:
17047 return true;
17048 default:
17049 break;
17050 }
17051 return false;
17052}
17053
17054/// Require that all of the parameter types of function be complete. Normally,
17055/// parameter types are only required to be complete when a function is called
17056/// or defined, but to mangle functions with certain calling conventions, the
17057/// mangler needs to know the size of the parameter list. In this situation,
17058/// MSVC doesn't emit an error or instantiate templates. Instead, MSVC mangles
17059/// the function as _foo@0, i.e. zero bytes of parameters, which will usually
17060/// result in a linker error. Clang doesn't implement this behavior, and instead
17061/// attempts to error at compile time.
17062static void CheckCompleteParameterTypesForMangler(Sema &S, FunctionDecl *FD,
17063 SourceLocation Loc) {
17064 class ParamIncompleteTypeDiagnoser : public Sema::TypeDiagnoser {
17065 FunctionDecl *FD;
17066 ParmVarDecl *Param;
17067
17068 public:
17069 ParamIncompleteTypeDiagnoser(FunctionDecl *FD, ParmVarDecl *Param)
17070 : FD(FD), Param(Param) {}
17071
17072 void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
17073 CallingConv CC = FD->getType()->castAs<FunctionType>()->getCallConv();
17074 StringRef CCName;
17075 switch (CC) {
17076 case CC_X86StdCall:
17077 CCName = "stdcall";
17078 break;
17079 case CC_X86FastCall:
17080 CCName = "fastcall";
17081 break;
17082 case CC_X86VectorCall:
17083 CCName = "vectorcall";
17084 break;
17085 default:
17086 llvm_unreachable("CC does not need mangling")::llvm::llvm_unreachable_internal("CC does not need mangling"
, "clang/lib/Sema/SemaExpr.cpp", 17086)
;
17087 }
17088
17089 S.Diag(Loc, diag::err_cconv_incomplete_param_type)
17090 << Param->getDeclName() << FD->getDeclName() << CCName;
17091 }
17092 };
17093
17094 for (ParmVarDecl *Param : FD->parameters()) {
17095 ParamIncompleteTypeDiagnoser Diagnoser(FD, Param);
17096 S.RequireCompleteType(Loc, Param->getType(), Diagnoser);
17097 }
17098}
17099
17100namespace {
17101enum class OdrUseContext {
17102 /// Declarations in this context are not odr-used.
17103 None,
17104 /// Declarations in this context are formally odr-used, but this is a
17105 /// dependent context.
17106 Dependent,
17107 /// Declarations in this context are odr-used but not actually used (yet).
17108 FormallyOdrUsed,
17109 /// Declarations in this context are used.
17110 Used
17111};
17112}
17113
17114/// Are we within a context in which references to resolved functions or to
17115/// variables result in odr-use?
17116static OdrUseContext isOdrUseContext(Sema &SemaRef) {
17117 OdrUseContext Result;
17118
17119 switch (SemaRef.ExprEvalContexts.back().Context) {
17120 case Sema::ExpressionEvaluationContext::Unevaluated:
17121 case Sema::ExpressionEvaluationContext::UnevaluatedList:
17122 case Sema::ExpressionEvaluationContext::UnevaluatedAbstract:
17123 return OdrUseContext::None;
17124
17125 case Sema::ExpressionEvaluationContext::ConstantEvaluated:
17126 case Sema::ExpressionEvaluationContext::ImmediateFunctionContext:
17127 case Sema::ExpressionEvaluationContext::PotentiallyEvaluated:
17128 Result = OdrUseContext::Used;
17129 break;
17130
17131 case Sema::ExpressionEvaluationContext::DiscardedStatement:
17132 Result = OdrUseContext::FormallyOdrUsed;
17133 break;
17134
17135 case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
17136 // A default argument formally results in odr-use, but doesn't actually
17137 // result in a use in any real sense until it itself is used.
17138 Result = OdrUseContext::FormallyOdrUsed;
17139 break;
17140 }
17141
17142 if (SemaRef.CurContext->isDependentContext())
17143 return OdrUseContext::Dependent;
17144
17145 return Result;
17146}
17147
17148static bool isImplicitlyDefinableConstexprFunction(FunctionDecl *Func) {
17149 if (!Func->isConstexpr())
17150 return false;
17151
17152 if (Func->isImplicitlyInstantiable() || !Func->isUserProvided())
17153 return true;
17154 auto *CCD = dyn_cast<CXXConstructorDecl>(Func);
17155 return CCD && CCD->getInheritedConstructor();
17156}
17157
17158/// Mark a function referenced, and check whether it is odr-used
17159/// (C++ [basic.def.odr]p2, C99 6.9p3)
17160void Sema::MarkFunctionReferenced(SourceLocation Loc, FunctionDecl *Func,
17161 bool MightBeOdrUse) {
17162 assert(Func && "No function?")(static_cast <bool> (Func && "No function?") ? void
(0) : __assert_fail ("Func && \"No function?\"", "clang/lib/Sema/SemaExpr.cpp"
, 17162, __extension__ __PRETTY_FUNCTION__))
;
17163
17164 Func->setReferenced();
17165
17166 // Recursive functions aren't really used until they're used from some other
17167 // context.
17168 bool IsRecursiveCall = CurContext == Func;
17169
17170 // C++11 [basic.def.odr]p3:
17171 // A function whose name appears as a potentially-evaluated expression is
17172 // odr-used if it is the unique lookup result or the selected member of a
17173 // set of overloaded functions [...].
17174 //
17175 // We (incorrectly) mark overload resolution as an unevaluated context, so we
17176 // can just check that here.
17177 OdrUseContext OdrUse =
17178 MightBeOdrUse ? isOdrUseContext(*this) : OdrUseContext::None;
17179 if (IsRecursiveCall && OdrUse == OdrUseContext::Used)
17180 OdrUse = OdrUseContext::FormallyOdrUsed;
17181
17182 // Trivial default constructors and destructors are never actually used.
17183 // FIXME: What about other special members?
17184 if (Func->isTrivial() && !Func->hasAttr<DLLExportAttr>() &&
17185 OdrUse == OdrUseContext::Used) {
17186 if (auto *Constructor = dyn_cast<CXXConstructorDecl>(Func))
17187 if (Constructor->isDefaultConstructor())
17188 OdrUse = OdrUseContext::FormallyOdrUsed;
17189 if (isa<CXXDestructorDecl>(Func))
17190 OdrUse = OdrUseContext::FormallyOdrUsed;
17191 }
17192
17193 // C++20 [expr.const]p12:
17194 // A function [...] is needed for constant evaluation if it is [...] a
17195 // constexpr function that is named by an expression that is potentially
17196 // constant evaluated
17197 bool NeededForConstantEvaluation =
17198 isPotentiallyConstantEvaluatedContext(*this) &&
17199 isImplicitlyDefinableConstexprFunction(Func);
17200
17201 // Determine whether we require a function definition to exist, per
17202 // C++11 [temp.inst]p3:
17203 // Unless a function template specialization has been explicitly
17204 // instantiated or explicitly specialized, the function template
17205 // specialization is implicitly instantiated when the specialization is
17206 // referenced in a context that requires a function definition to exist.
17207 // C++20 [temp.inst]p7:
17208 // The existence of a definition of a [...] function is considered to
17209 // affect the semantics of the program if the [...] function is needed for
17210 // constant evaluation by an expression
17211 // C++20 [basic.def.odr]p10:
17212 // Every program shall contain exactly one definition of every non-inline
17213 // function or variable that is odr-used in that program outside of a
17214 // discarded statement
17215 // C++20 [special]p1:
17216 // The implementation will implicitly define [defaulted special members]
17217 // if they are odr-used or needed for constant evaluation.
17218 //
17219 // Note that we skip the implicit instantiation of templates that are only
17220 // used in unused default arguments or by recursive calls to themselves.
17221 // This is formally non-conforming, but seems reasonable in practice.
17222 bool NeedDefinition = !IsRecursiveCall && (OdrUse == OdrUseContext::Used ||
17223 NeededForConstantEvaluation);
17224
17225 // C++14 [temp.expl.spec]p6:
17226 // If a template [...] is explicitly specialized then that specialization
17227 // shall be declared before the first use of that specialization that would
17228 // cause an implicit instantiation to take place, in every translation unit
17229 // in which such a use occurs
17230 if (NeedDefinition &&
17231 (Func->getTemplateSpecializationKind() != TSK_Undeclared ||
17232 Func->getMemberSpecializationInfo()))
17233 checkSpecializationVisibility(Loc, Func);
17234
17235 if (getLangOpts().CUDA)
17236 CheckCUDACall(Loc, Func);
17237
17238 if (getLangOpts().SYCLIsDevice)
17239 checkSYCLDeviceFunction(Loc, Func);
17240
17241 // If we need a definition, try to create one.
17242 if (NeedDefinition && !Func->getBody()) {
17243 runWithSufficientStackSpace(Loc, [&] {
17244 if (CXXConstructorDecl *Constructor =
17245 dyn_cast<CXXConstructorDecl>(Func)) {
17246 Constructor = cast<CXXConstructorDecl>(Constructor->getFirstDecl());
17247 if (Constructor->isDefaulted() && !Constructor->isDeleted()) {
17248 if (Constructor->isDefaultConstructor()) {
17249 if (Constructor->isTrivial() &&
17250 !Constructor->hasAttr<DLLExportAttr>())
17251 return;
17252 DefineImplicitDefaultConstructor(Loc, Constructor);
17253 } else if (Constructor->isCopyConstructor()) {
17254 DefineImplicitCopyConstructor(Loc, Constructor);
17255 } else if (Constructor->isMoveConstructor()) {
17256 DefineImplicitMoveConstructor(Loc, Constructor);
17257 }
17258 } else if (Constructor->getInheritedConstructor()) {
17259 DefineInheritingConstructor(Loc, Constructor);
17260 }
17261 } else if (CXXDestructorDecl *Destructor =
17262 dyn_cast<CXXDestructorDecl>(Func)) {
17263 Destructor = cast<CXXDestructorDecl>(Destructor->getFirstDecl());
17264 if (Destructor->isDefaulted() && !Destructor->isDeleted()) {
17265 if (Destructor->isTrivial() && !Destructor->hasAttr<DLLExportAttr>())
17266 return;
17267 DefineImplicitDestructor(Loc, Destructor);
17268 }
17269 if (Destructor->isVirtual() && getLangOpts().AppleKext)
17270 MarkVTableUsed(Loc, Destructor->getParent());
17271 } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(Func)) {
17272 if (MethodDecl->isOverloadedOperator() &&
17273 MethodDecl->getOverloadedOperator() == OO_Equal) {
17274 MethodDecl = cast<CXXMethodDecl>(MethodDecl->getFirstDecl());
17275 if (MethodDecl->isDefaulted() && !MethodDecl->isDeleted()) {
17276 if (MethodDecl->isCopyAssignmentOperator())
17277 DefineImplicitCopyAssignment(Loc, MethodDecl);
17278 else if (MethodDecl->isMoveAssignmentOperator())
17279 DefineImplicitMoveAssignment(Loc, MethodDecl);
17280 }
17281 } else if (isa<CXXConversionDecl>(MethodDecl) &&
17282 MethodDecl->getParent()->isLambda()) {
17283 CXXConversionDecl *Conversion =
17284 cast<CXXConversionDecl>(MethodDecl->getFirstDecl());
17285 if (Conversion->isLambdaToBlockPointerConversion())
17286 DefineImplicitLambdaToBlockPointerConversion(Loc, Conversion);
17287 else
17288 DefineImplicitLambdaToFunctionPointerConversion(Loc, Conversion);
17289 } else if (MethodDecl->isVirtual() && getLangOpts().AppleKext)
17290 MarkVTableUsed(Loc, MethodDecl->getParent());
17291 }
17292
17293 if (Func->isDefaulted() && !Func->isDeleted()) {
17294 DefaultedComparisonKind DCK = getDefaultedComparisonKind(Func);
17295 if (DCK != DefaultedComparisonKind::None)
17296 DefineDefaultedComparison(Loc, Func, DCK);
17297 }
17298
17299 // Implicit instantiation of function templates and member functions of
17300 // class templates.
17301 if (Func->isImplicitlyInstantiable()) {
17302 TemplateSpecializationKind TSK =
17303 Func->getTemplateSpecializationKindForInstantiation();
17304 SourceLocation PointOfInstantiation = Func->getPointOfInstantiation();
17305 bool FirstInstantiation = PointOfInstantiation.isInvalid();
17306 if (FirstInstantiation) {
17307 PointOfInstantiation = Loc;
17308 if (auto *MSI = Func->getMemberSpecializationInfo())
17309 MSI->setPointOfInstantiation(Loc);
17310 // FIXME: Notify listener.
17311 else
17312 Func->setTemplateSpecializationKind(TSK, PointOfInstantiation);
17313 } else if (TSK != TSK_ImplicitInstantiation) {
17314 // Use the point of use as the point of instantiation, instead of the
17315 // point of explicit instantiation (which we track as the actual point
17316 // of instantiation). This gives better backtraces in diagnostics.
17317 PointOfInstantiation = Loc;
17318 }
17319
17320 if (FirstInstantiation || TSK != TSK_ImplicitInstantiation ||
17321 Func->isConstexpr()) {
17322 if (isa<CXXRecordDecl>(Func->getDeclContext()) &&
17323 cast<CXXRecordDecl>(Func->getDeclContext())->isLocalClass() &&
17324 CodeSynthesisContexts.size())
17325 PendingLocalImplicitInstantiations.push_back(
17326 std::make_pair(Func, PointOfInstantiation));
17327 else if (Func->isConstexpr())
17328 // Do not defer instantiations of constexpr functions, to avoid the
17329 // expression evaluator needing to call back into Sema if it sees a
17330 // call to such a function.
17331 InstantiateFunctionDefinition(PointOfInstantiation, Func);
17332 else {
17333 Func->setInstantiationIsPending(true);
17334 PendingInstantiations.push_back(
17335 std::make_pair(Func, PointOfInstantiation));
17336 // Notify the consumer that a function was implicitly instantiated.
17337 Consumer.HandleCXXImplicitFunctionInstantiation(Func);
17338 }
17339 }
17340 } else {
17341 // Walk redefinitions, as some of them may be instantiable.
17342 for (auto i : Func->redecls()) {
17343 if (!i->isUsed(false) && i->isImplicitlyInstantiable())
17344 MarkFunctionReferenced(Loc, i, MightBeOdrUse);
17345 }
17346 }
17347 });
17348 }
17349
17350 // C++14 [except.spec]p17:
17351 // An exception-specification is considered to be needed when:
17352 // - the function is odr-used or, if it appears in an unevaluated operand,
17353 // would be odr-used if the expression were potentially-evaluated;
17354 //
17355 // Note, we do this even if MightBeOdrUse is false. That indicates that the
17356 // function is a pure virtual function we're calling, and in that case the
17357 // function was selected by overload resolution and we need to resolve its
17358 // exception specification for a different reason.
17359 const FunctionProtoType *FPT = Func->getType()->getAs<FunctionProtoType>();
17360 if (FPT && isUnresolvedExceptionSpec(FPT->getExceptionSpecType()))
17361 ResolveExceptionSpec(Loc, FPT);
17362
17363 // If this is the first "real" use, act on that.
17364 if (OdrUse == OdrUseContext::Used && !Func->isUsed(/*CheckUsedAttr=*/false)) {
17365 // Keep track of used but undefined functions.
17366 if (!Func->isDefined()) {
17367 if (mightHaveNonExternalLinkage(Func))
17368 UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
17369 else if (Func->getMostRecentDecl()->isInlined() &&
17370 !LangOpts.GNUInline &&
17371 !Func->getMostRecentDecl()->hasAttr<GNUInlineAttr>())
17372 UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
17373 else if (isExternalWithNoLinkageType(Func))
17374 UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
17375 }
17376
17377 // Some x86 Windows calling conventions mangle the size of the parameter
17378 // pack into the name. Computing the size of the parameters requires the
17379 // parameter types to be complete. Check that now.
17380 if (funcHasParameterSizeMangling(*this, Func))
17381 CheckCompleteParameterTypesForMangler(*this, Func, Loc);
17382
17383 // In the MS C++ ABI, the compiler emits destructor variants where they are
17384 // used. If the destructor is used here but defined elsewhere, mark the
17385 // virtual base destructors referenced. If those virtual base destructors
17386 // are inline, this will ensure they are defined when emitting the complete
17387 // destructor variant. This checking may be redundant if the destructor is
17388 // provided later in this TU.
17389 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
17390 if (auto *Dtor = dyn_cast<CXXDestructorDecl>(Func)) {
17391 CXXRecordDecl *Parent = Dtor->getParent();
17392 if (Parent->getNumVBases() > 0 && !Dtor->getBody())
17393 CheckCompleteDestructorVariant(Loc, Dtor);
17394 }
17395 }
17396
17397 Func->markUsed(Context);
17398 }
17399}
17400
17401/// Directly mark a variable odr-used. Given a choice, prefer to use
17402/// MarkVariableReferenced since it does additional checks and then
17403/// calls MarkVarDeclODRUsed.
17404/// If the variable must be captured:
17405/// - if FunctionScopeIndexToStopAt is null, capture it in the CurContext
17406/// - else capture it in the DeclContext that maps to the
17407/// *FunctionScopeIndexToStopAt on the FunctionScopeInfo stack.
17408static void
17409MarkVarDeclODRUsed(VarDecl *Var, SourceLocation Loc, Sema &SemaRef,
17410 const unsigned *const FunctionScopeIndexToStopAt = nullptr) {
17411 // Keep track of used but undefined variables.
17412 // FIXME: We shouldn't suppress this warning for static data members.
17413 if (Var->hasDefinition(SemaRef.Context) == VarDecl::DeclarationOnly &&
17414 (!Var->isExternallyVisible() || Var->isInline() ||
17415 SemaRef.isExternalWithNoLinkageType(Var)) &&
17416 !(Var->isStaticDataMember() && Var->hasInit())) {
17417 SourceLocation &old = SemaRef.UndefinedButUsed[Var->getCanonicalDecl()];
17418 if (old.isInvalid())
17419 old = Loc;
17420 }
17421 QualType CaptureType, DeclRefType;
17422 if (SemaRef.LangOpts.OpenMP)
17423 SemaRef.tryCaptureOpenMPLambdas(Var);
17424 SemaRef.tryCaptureVariable(Var, Loc, Sema::TryCapture_Implicit,
17425 /*EllipsisLoc*/ SourceLocation(),
17426 /*BuildAndDiagnose*/ true,
17427 CaptureType, DeclRefType,
17428 FunctionScopeIndexToStopAt);
17429
17430 if (SemaRef.LangOpts.CUDA && Var && Var->hasGlobalStorage()) {
17431 auto *FD = dyn_cast_or_null<FunctionDecl>(SemaRef.CurContext);
17432 auto VarTarget = SemaRef.IdentifyCUDATarget(Var);
17433 auto UserTarget = SemaRef.IdentifyCUDATarget(FD);
17434 if (VarTarget == Sema::CVT_Host &&
17435 (UserTarget == Sema::CFT_Device || UserTarget == Sema::CFT_HostDevice ||
17436 UserTarget == Sema::CFT_Global)) {
17437 // Diagnose ODR-use of host global variables in device functions.
17438 // Reference of device global variables in host functions is allowed
17439 // through shadow variables therefore it is not diagnosed.
17440 if (SemaRef.LangOpts.CUDAIsDevice) {
17441 SemaRef.targetDiag(Loc, diag::err_ref_bad_target)
17442 << /*host*/ 2 << /*variable*/ 1 << Var << UserTarget;
17443 SemaRef.targetDiag(Var->getLocation(),
17444 Var->getType().isConstQualified()
17445 ? diag::note_cuda_const_var_unpromoted
17446 : diag::note_cuda_host_var);
17447 }
17448 } else if (VarTarget == Sema::CVT_Device &&
17449 (UserTarget == Sema::CFT_Host ||
17450 UserTarget == Sema::CFT_HostDevice) &&
17451 !Var->hasExternalStorage()) {
17452 // Record a CUDA/HIP device side variable if it is ODR-used
17453 // by host code. This is done conservatively, when the variable is
17454 // referenced in any of the following contexts:
17455 // - a non-function context
17456 // - a host function
17457 // - a host device function
17458 // This makes the ODR-use of the device side variable by host code to
17459 // be visible in the device compilation for the compiler to be able to
17460 // emit template variables instantiated by host code only and to
17461 // externalize the static device side variable ODR-used by host code.
17462 SemaRef.getASTContext().CUDADeviceVarODRUsedByHost.insert(Var);
17463 }
17464 }
17465
17466 Var->markUsed(SemaRef.Context);
17467}
17468
17469void Sema::MarkCaptureUsedInEnclosingContext(VarDecl *Capture,
17470 SourceLocation Loc,
17471 unsigned CapturingScopeIndex) {
17472 MarkVarDeclODRUsed(Capture, Loc, *this, &CapturingScopeIndex);
17473}
17474
17475static void diagnoseUncapturableValueReference(Sema &S, SourceLocation loc,
17476 ValueDecl *var) {
17477 DeclContext *VarDC = var->getDeclContext();
17478
17479 // If the parameter still belongs to the translation unit, then
17480 // we're actually just using one parameter in the declaration of
17481 // the next.
17482 if (isa<ParmVarDecl>(var) &&
17483 isa<TranslationUnitDecl>(VarDC))
17484 return;
17485
17486 // For C code, don't diagnose about capture if we're not actually in code
17487 // right now; it's impossible to write a non-constant expression outside of
17488 // function context, so we'll get other (more useful) diagnostics later.
17489 //
17490 // For C++, things get a bit more nasty... it would be nice to suppress this
17491 // diagnostic for certain cases like using a local variable in an array bound
17492 // for a member of a local class, but the correct predicate is not obvious.
17493 if (!S.getLangOpts().CPlusPlus && !S.CurContext->isFunctionOrMethod())
17494 return;
17495
17496 unsigned ValueKind = isa<BindingDecl>(var) ? 1 : 0;
17497 unsigned ContextKind = 3; // unknown
17498 if (isa<CXXMethodDecl>(VarDC) &&
17499 cast<CXXRecordDecl>(VarDC->getParent())->isLambda()) {
17500 ContextKind = 2;
17501 } else if (isa<FunctionDecl>(VarDC)) {
17502 ContextKind = 0;
17503 } else if (isa<BlockDecl>(VarDC)) {
17504 ContextKind = 1;
17505 }
17506
17507 S.Diag(loc, diag::err_reference_to_local_in_enclosing_context)
17508 << var << ValueKind << ContextKind << VarDC;
17509 S.Diag(var->getLocation(), diag::note_entity_declared_at)
17510 << var;
17511
17512 // FIXME: Add additional diagnostic info about class etc. which prevents
17513 // capture.
17514}
17515
17516
17517static bool isVariableAlreadyCapturedInScopeInfo(CapturingScopeInfo *CSI, VarDecl *Var,
17518 bool &SubCapturesAreNested,
17519 QualType &CaptureType,
17520 QualType &DeclRefType) {
17521 // Check whether we've already captured it.
17522 if (CSI->CaptureMap.count(Var)) {
17523 // If we found a capture, any subcaptures are nested.
17524 SubCapturesAreNested = true;
17525
17526 // Retrieve the capture type for this variable.
17527 CaptureType = CSI->getCapture(Var).getCaptureType();
17528
17529 // Compute the type of an expression that refers to this variable.
17530 DeclRefType = CaptureType.getNonReferenceType();
17531
17532 // Similarly to mutable captures in lambda, all the OpenMP captures by copy
17533 // are mutable in the sense that user can change their value - they are
17534 // private instances of the captured declarations.
17535 const Capture &Cap = CSI->getCapture(Var);
17536 if (Cap.isCopyCapture() &&
17537 !(isa<LambdaScopeInfo>(CSI) && cast<LambdaScopeInfo>(CSI)->Mutable) &&
17538 !(isa<CapturedRegionScopeInfo>(CSI) &&
17539 cast<CapturedRegionScopeInfo>(CSI)->CapRegionKind == CR_OpenMP))
17540 DeclRefType.addConst();
17541 return true;
17542 }
17543 return false;
17544}
17545
17546// Only block literals, captured statements, and lambda expressions can
17547// capture; other scopes don't work.
17548static DeclContext *getParentOfCapturingContextOrNull(DeclContext *DC, VarDecl *Var,
17549 SourceLocation Loc,
17550 const bool Diagnose, Sema &S) {
17551 if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC) || isLambdaCallOperator(DC))
17552 return getLambdaAwareParentOfDeclContext(DC);
17553 else if (Var->hasLocalStorage()) {
17554 if (Diagnose)
17555 diagnoseUncapturableValueReference(S, Loc, Var);
17556 }
17557 return nullptr;
17558}
17559
17560// Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
17561// certain types of variables (unnamed, variably modified types etc.)
17562// so check for eligibility.
17563static bool isVariableCapturable(CapturingScopeInfo *CSI, VarDecl *Var,
17564 SourceLocation Loc,
17565 const bool Diagnose, Sema &S) {
17566
17567 bool IsBlock = isa<BlockScopeInfo>(CSI);
17568 bool IsLambda = isa<LambdaScopeInfo>(CSI);
17569
17570 // Lambdas are not allowed to capture unnamed variables
17571 // (e.g. anonymous unions).
17572 // FIXME: The C++11 rule don't actually state this explicitly, but I'm
17573 // assuming that's the intent.
17574 if (IsLambda && !Var->getDeclName()) {
17575 if (Diagnose) {
17576 S.Diag(Loc, diag::err_lambda_capture_anonymous_var);
17577 S.Diag(Var->getLocation(), diag::note_declared_at);
17578 }
17579 return false;
17580 }
17581
17582 // Prohibit variably-modified types in blocks; they're difficult to deal with.
17583 if (Var->getType()->isVariablyModifiedType() && IsBlock) {
17584 if (Diagnose) {
17585 S.Diag(Loc, diag::err_ref_vm_type);
17586 S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
17587 }
17588 return false;
17589 }
17590 // Prohibit structs with flexible array members too.
17591 // We cannot capture what is in the tail end of the struct.
17592 if (const RecordType *VTTy = Var->getType()->getAs<RecordType>()) {
17593 if (VTTy->getDecl()->hasFlexibleArrayMember()) {
17594 if (Diagnose) {
17595 if (IsBlock)
17596 S.Diag(Loc, diag::err_ref_flexarray_type);
17597 else
17598 S.Diag(Loc, diag::err_lambda_capture_flexarray_type) << Var;
17599 S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
17600 }
17601 return false;
17602 }
17603 }
17604 const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
17605 // Lambdas and captured statements are not allowed to capture __block
17606 // variables; they don't support the expected semantics.
17607 if (HasBlocksAttr && (IsLambda || isa<CapturedRegionScopeInfo>(CSI))) {
17608 if (Diagnose) {
17609 S.Diag(Loc, diag::err_capture_block_variable) << Var << !IsLambda;
17610 S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
17611 }
17612 return false;
17613 }
17614 // OpenCL v2.0 s6.12.5: Blocks cannot reference/capture other blocks
17615 if (S.getLangOpts().OpenCL && IsBlock &&
17616 Var->getType()->isBlockPointerType()) {
17617 if (Diagnose)
17618 S.Diag(Loc, diag::err_opencl_block_ref_block);
17619 return false;
17620 }
17621
17622 return true;
17623}
17624
17625// Returns true if the capture by block was successful.
17626static bool captureInBlock(BlockScopeInfo *BSI, VarDecl *Var,
17627 SourceLocation Loc,
17628 const bool BuildAndDiagnose,
17629 QualType &CaptureType,
17630 QualType &DeclRefType,
17631 const bool Nested,
17632 Sema &S, bool Invalid) {
17633 bool ByRef = false;
17634
17635 // Blocks are not allowed to capture arrays, excepting OpenCL.
17636 // OpenCL v2.0 s1.12.5 (revision 40): arrays are captured by reference
17637 // (decayed to pointers).
17638 if (!Invalid && !S.getLangOpts().OpenCL && CaptureType->isArrayType()) {
17639 if (BuildAndDiagnose) {
17640 S.Diag(Loc, diag::err_ref_array_type);
17641 S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
17642 Invalid = true;
17643 } else {
17644 return false;
17645 }
17646 }
17647
17648 // Forbid the block-capture of autoreleasing variables.
17649 if (!Invalid &&
17650 CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
17651 if (BuildAndDiagnose) {
17652 S.Diag(Loc, diag::err_arc_autoreleasing_capture)
17653 << /*block*/ 0;
17654 S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
17655 Invalid = true;
17656 } else {
17657 return false;
17658 }
17659 }
17660
17661 // Warn about implicitly autoreleasing indirect parameters captured by blocks.
17662 if (const auto *PT = CaptureType->getAs<PointerType>()) {
17663 QualType PointeeTy = PT->getPointeeType();
17664
17665 if (!Invalid && PointeeTy->getAs<ObjCObjectPointerType>() &&
17666 PointeeTy.getObjCLifetime() == Qualifiers::OCL_Autoreleasing &&
17667 !S.Context.hasDirectOwnershipQualifier(PointeeTy)) {
17668 if (BuildAndDiagnose) {
17669 SourceLocation VarLoc = Var->getLocation();
17670 S.Diag(Loc, diag::warn_block_capture_autoreleasing);
17671 S.Diag(VarLoc, diag::note_declare_parameter_strong);
17672 }
17673 }
17674 }
17675
17676 const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
17677 if (HasBlocksAttr || CaptureType->isReferenceType() ||
17678 (S.getLangOpts().OpenMP && S.isOpenMPCapturedDecl(Var))) {
17679 // Block capture by reference does not change the capture or
17680 // declaration reference types.
17681 ByRef = true;
17682 } else {
17683 // Block capture by copy introduces 'const'.
17684 CaptureType = CaptureType.getNonReferenceType().withConst();
17685 DeclRefType = CaptureType;
17686 }
17687
17688 // Actually capture the variable.
17689 if (BuildAndDiagnose)
17690 BSI->addCapture(Var, HasBlocksAttr, ByRef, Nested, Loc, SourceLocation(),
17691 CaptureType, Invalid);
17692
17693 return !Invalid;
17694}
17695
17696
17697/// Capture the given variable in the captured region.
17698static bool captureInCapturedRegion(
17699 CapturedRegionScopeInfo *RSI, VarDecl *Var, SourceLocation Loc,
17700 const bool BuildAndDiagnose, QualType &CaptureType, QualType &DeclRefType,
17701 const bool RefersToCapturedVariable, Sema::TryCaptureKind Kind,
17702 bool IsTopScope, Sema &S, bool Invalid) {
17703 // By default, capture variables by reference.
17704 bool ByRef = true;
17705 if (IsTopScope && Kind != Sema::TryCapture_Implicit) {
17706 ByRef = (Kind == Sema::TryCapture_ExplicitByRef);
17707 } else if (S.getLangOpts().OpenMP && RSI->CapRegionKind == CR_OpenMP) {
17708 // Using an LValue reference type is consistent with Lambdas (see below).
17709 if (S.isOpenMPCapturedDecl(Var)) {
17710 bool HasConst = DeclRefType.isConstQualified();
17711 DeclRefType = DeclRefType.getUnqualifiedType();
17712 // Don't lose diagnostics about assignments to const.
17713 if (HasConst)
17714 DeclRefType.addConst();
17715 }
17716 // Do not capture firstprivates in tasks.
17717 if (S.isOpenMPPrivateDecl(Var, RSI->OpenMPLevel, RSI->OpenMPCaptureLevel) !=
17718 OMPC_unknown)
17719 return true;
17720 ByRef = S.isOpenMPCapturedByRef(Var, RSI->OpenMPLevel,
17721 RSI->OpenMPCaptureLevel);
17722 }
17723
17724 if (ByRef)
17725 CaptureType = S.Context.getLValueReferenceType(DeclRefType);
17726 else
17727 CaptureType = DeclRefType;
17728
17729 // Actually capture the variable.
17730 if (BuildAndDiagnose)
17731 RSI->addCapture(Var, /*isBlock*/ false, ByRef, RefersToCapturedVariable,
17732 Loc, SourceLocation(), CaptureType, Invalid);
17733
17734 return !Invalid;
17735}
17736
17737/// Capture the given variable in the lambda.
17738static bool captureInLambda(LambdaScopeInfo *LSI,
17739 VarDecl *Var,
17740 SourceLocation Loc,
17741 const bool BuildAndDiagnose,
17742 QualType &CaptureType,
17743 QualType &DeclRefType,
17744 const bool RefersToCapturedVariable,
17745 const Sema::TryCaptureKind Kind,
17746 SourceLocation EllipsisLoc,
17747 const bool IsTopScope,
17748 Sema &S, bool Invalid) {
17749 // Determine whether we are capturing by reference or by value.
17750 bool ByRef = false;
17751 if (IsTopScope && Kind != Sema::TryCapture_Implicit) {
17752 ByRef = (Kind == Sema::TryCapture_ExplicitByRef);
17753 } else {
17754 ByRef = (LSI->ImpCaptureStyle == LambdaScopeInfo::ImpCap_LambdaByref);
17755 }
17756
17757 // Compute the type of the field that will capture this variable.
17758 if (ByRef) {
17759 // C++11 [expr.prim.lambda]p15:
17760 // An entity is captured by reference if it is implicitly or
17761 // explicitly captured but not captured by copy. It is
17762 // unspecified whether additional unnamed non-static data
17763 // members are declared in the closure type for entities
17764 // captured by reference.
17765 //
17766 // FIXME: It is not clear whether we want to build an lvalue reference
17767 // to the DeclRefType or to CaptureType.getNonReferenceType(). GCC appears
17768 // to do the former, while EDG does the latter. Core issue 1249 will
17769 // clarify, but for now we follow GCC because it's a more permissive and
17770 // easily defensible position.
17771 CaptureType = S.Context.getLValueReferenceType(DeclRefType);
17772 } else {
17773 // C++11 [expr.prim.lambda]p14:
17774 // For each entity captured by copy, an unnamed non-static
17775 // data member is declared in the closure type. The
17776 // declaration order of these members is unspecified. The type
17777 // of such a data member is the type of the corresponding
17778 // captured entity if the entity is not a reference to an
17779 // object, or the referenced type otherwise. [Note: If the
17780 // captured entity is a reference to a function, the
17781 // corresponding data member is also a reference to a
17782 // function. - end note ]
17783 if (const ReferenceType *RefType = CaptureType->getAs<ReferenceType>()){
17784 if (!RefType->getPointeeType()->isFunctionType())
17785 CaptureType = RefType->getPointeeType();
17786 }
17787
17788 // Forbid the lambda copy-capture of autoreleasing variables.
17789 if (!Invalid &&
17790 CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
17791 if (BuildAndDiagnose) {
17792 S.Diag(Loc, diag::err_arc_autoreleasing_capture) << /*lambda*/ 1;
17793 S.Diag(Var->getLocation(), diag::note_previous_decl)
17794 << Var->getDeclName();
17795 Invalid = true;
17796 } else {
17797 return false;
17798 }
17799 }
17800
17801 // Make sure that by-copy captures are of a complete and non-abstract type.
17802 if (!Invalid && BuildAndDiagnose) {
17803 if (!CaptureType->isDependentType() &&
17804 S.RequireCompleteSizedType(
17805 Loc, CaptureType,
17806 diag::err_capture_of_incomplete_or_sizeless_type,
17807 Var->getDeclName()))
17808 Invalid = true;
17809 else if (S.RequireNonAbstractType(Loc, CaptureType,
17810 diag::err_capture_of_abstract_type))
17811 Invalid = true;
17812 }
17813 }
17814
17815 // Compute the type of a reference to this captured variable.
17816 if (ByRef)
17817 DeclRefType = CaptureType.getNonReferenceType();
17818 else {
17819 // C++ [expr.prim.lambda]p5:
17820 // The closure type for a lambda-expression has a public inline
17821 // function call operator [...]. This function call operator is
17822 // declared const (9.3.1) if and only if the lambda-expression's
17823 // parameter-declaration-clause is not followed by mutable.
17824 DeclRefType = CaptureType.getNonReferenceType();
17825 if (!LSI->Mutable && !CaptureType->isReferenceType())
17826 DeclRefType.addConst();
17827 }
17828
17829 // Add the capture.
17830 if (BuildAndDiagnose)
17831 LSI->addCapture(Var, /*isBlock=*/false, ByRef, RefersToCapturedVariable,
17832 Loc, EllipsisLoc, CaptureType, Invalid);
17833
17834 return !Invalid;
17835}
17836
17837static bool canCaptureVariableByCopy(VarDecl *Var, const ASTContext &Context) {
17838 // Offer a Copy fix even if the type is dependent.
17839 if (Var->getType()->isDependentType())
17840 return true;
17841 QualType T = Var->getType().getNonReferenceType();
17842 if (T.isTriviallyCopyableType(Context))
17843 return true;
17844 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
17845
17846 if (!(RD = RD->getDefinition()))
17847 return false;
17848 if (RD->hasSimpleCopyConstructor())
17849 return true;
17850 if (RD->hasUserDeclaredCopyConstructor())
17851 for (CXXConstructorDecl *Ctor : RD->ctors())
17852 if (Ctor->isCopyConstructor())
17853 return !Ctor->isDeleted();
17854 }
17855 return false;
17856}
17857
17858/// Create up to 4 fix-its for explicit reference and value capture of \p Var or
17859/// default capture. Fixes may be omitted if they aren't allowed by the
17860/// standard, for example we can't emit a default copy capture fix-it if we
17861/// already explicitly copy capture capture another variable.
17862static void buildLambdaCaptureFixit(Sema &Sema, LambdaScopeInfo *LSI,
17863 VarDecl *Var) {
17864 assert(LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None)(static_cast <bool> (LSI->ImpCaptureStyle == CapturingScopeInfo
::ImpCap_None) ? void (0) : __assert_fail ("LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None"
, "clang/lib/Sema/SemaExpr.cpp", 17864, __extension__ __PRETTY_FUNCTION__
))
;
17865 // Don't offer Capture by copy of default capture by copy fixes if Var is
17866 // known not to be copy constructible.
17867 bool ShouldOfferCopyFix = canCaptureVariableByCopy(Var, Sema.getASTContext());
17868
17869 SmallString<32> FixBuffer;
17870 StringRef Separator = LSI->NumExplicitCaptures > 0 ? ", " : "";
17871 if (Var->getDeclName().isIdentifier() && !Var->getName().empty()) {
17872 SourceLocation VarInsertLoc = LSI->IntroducerRange.getEnd();
17873 if (ShouldOfferCopyFix) {
17874 // Offer fixes to insert an explicit capture for the variable.
17875 // [] -> [VarName]
17876 // [OtherCapture] -> [OtherCapture, VarName]
17877 FixBuffer.assign({Separator, Var->getName()});
17878 Sema.Diag(VarInsertLoc, diag::note_lambda_variable_capture_fixit)
17879 << Var << /*value*/ 0
17880 << FixItHint::CreateInsertion(VarInsertLoc, FixBuffer);
17881 }
17882 // As above but capture by reference.
17883 FixBuffer.assign({Separator, "&", Var->getName()});
17884 Sema.Diag(VarInsertLoc, diag::note_lambda_variable_capture_fixit)
17885 << Var << /*reference*/ 1
17886 << FixItHint::CreateInsertion(VarInsertLoc, FixBuffer);
17887 }
17888
17889 // Only try to offer default capture if there are no captures excluding this
17890 // and init captures.
17891 // [this]: OK.
17892 // [X = Y]: OK.
17893 // [&A, &B]: Don't offer.
17894 // [A, B]: Don't offer.
17895 if (llvm::any_of(LSI->Captures, [](Capture &C) {
17896 return !C.isThisCapture() && !C.isInitCapture();
17897 }))
17898 return;
17899
17900 // The default capture specifiers, '=' or '&', must appear first in the
17901 // capture body.
17902 SourceLocation DefaultInsertLoc =
17903 LSI->IntroducerRange.getBegin().getLocWithOffset(1);
17904
17905 if (ShouldOfferCopyFix) {
17906 bool CanDefaultCopyCapture = true;
17907 // [=, *this] OK since c++17
17908 // [=, this] OK since c++20
17909 if (LSI->isCXXThisCaptured() && !Sema.getLangOpts().CPlusPlus20)
17910 CanDefaultCopyCapture = Sema.getLangOpts().CPlusPlus17
17911 ? LSI->getCXXThisCapture().isCopyCapture()
17912 : false;
17913 // We can't use default capture by copy if any captures already specified
17914 // capture by copy.
17915 if (CanDefaultCopyCapture && llvm::none_of(LSI->Captures, [](Capture &C) {
17916 return !C.isThisCapture() && !C.isInitCapture() && C.isCopyCapture();
17917 })) {
17918 FixBuffer.assign({"=", Separator});
17919 Sema.Diag(DefaultInsertLoc, diag::note_lambda_default_capture_fixit)
17920 << /*value*/ 0
17921 << FixItHint::CreateInsertion(DefaultInsertLoc, FixBuffer);
17922 }
17923 }
17924
17925 // We can't use default capture by reference if any captures already specified
17926 // capture by reference.
17927 if (llvm::none_of(LSI->Captures, [](Capture &C) {
17928 return !C.isInitCapture() && C.isReferenceCapture() &&
17929 !C.isThisCapture();
17930 })) {
17931 FixBuffer.assign({"&", Separator});
17932 Sema.Diag(DefaultInsertLoc, diag::note_lambda_default_capture_fixit)
17933 << /*reference*/ 1
17934 << FixItHint::CreateInsertion(DefaultInsertLoc, FixBuffer);
17935 }
17936}
17937
17938bool Sema::tryCaptureVariable(
17939 VarDecl *Var, SourceLocation ExprLoc, TryCaptureKind Kind,
17940 SourceLocation EllipsisLoc, bool BuildAndDiagnose, QualType &CaptureType,
17941 QualType &DeclRefType, const unsigned *const FunctionScopeIndexToStopAt) {
17942 // An init-capture is notionally from the context surrounding its
17943 // declaration, but its parent DC is the lambda class.
17944 DeclContext *VarDC = Var->getDeclContext();
17945 if (Var->isInitCapture())
17946 VarDC = VarDC->getParent();
17947
17948 DeclContext *DC = CurContext;
17949 const unsigned MaxFunctionScopesIndex = FunctionScopeIndexToStopAt
17950 ? *FunctionScopeIndexToStopAt : FunctionScopes.size() - 1;
17951 // We need to sync up the Declaration Context with the
17952 // FunctionScopeIndexToStopAt
17953 if (FunctionScopeIndexToStopAt) {
17954 unsigned FSIndex = FunctionScopes.size() - 1;
17955 while (FSIndex != MaxFunctionScopesIndex) {
17956 DC = getLambdaAwareParentOfDeclContext(DC);
17957 --FSIndex;
17958 }
17959 }
17960
17961
17962 // If the variable is declared in the current context, there is no need to
17963 // capture it.
17964 if (VarDC == DC) return true;
17965
17966 // Capture global variables if it is required to use private copy of this
17967 // variable.
17968 bool IsGlobal = !Var->hasLocalStorage();
17969 if (IsGlobal &&
17970 !(LangOpts.OpenMP && isOpenMPCapturedDecl(Var, /*CheckScopeInfo=*/true,
17971 MaxFunctionScopesIndex)))
17972 return true;
17973 Var = Var->getCanonicalDecl();
17974
17975 // Walk up the stack to determine whether we can capture the variable,
17976 // performing the "simple" checks that don't depend on type. We stop when
17977 // we've either hit the declared scope of the variable or find an existing
17978 // capture of that variable. We start from the innermost capturing-entity
17979 // (the DC) and ensure that all intervening capturing-entities
17980 // (blocks/lambdas etc.) between the innermost capturer and the variable`s
17981 // declcontext can either capture the variable or have already captured
17982 // the variable.
17983 CaptureType = Var->getType();
17984 DeclRefType = CaptureType.getNonReferenceType();
17985 bool Nested = false;
17986 bool Explicit = (Kind != TryCapture_Implicit);
17987 unsigned FunctionScopesIndex = MaxFunctionScopesIndex;
17988 do {
17989 // Only block literals, captured statements, and lambda expressions can
17990 // capture; other scopes don't work.
17991 DeclContext *ParentDC = getParentOfCapturingContextOrNull(DC, Var,
17992 ExprLoc,
17993 BuildAndDiagnose,
17994 *this);
17995 // We need to check for the parent *first* because, if we *have*
17996 // private-captured a global variable, we need to recursively capture it in
17997 // intermediate blocks, lambdas, etc.
17998 if (!ParentDC) {
17999 if (IsGlobal) {
18000 FunctionScopesIndex = MaxFunctionScopesIndex - 1;
18001 break;
18002 }
18003 return true;
18004 }
18005
18006 FunctionScopeInfo *FSI = FunctionScopes[FunctionScopesIndex];
18007 CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FSI);
18008
18009
18010 // Check whether we've already captured it.
18011 if (isVariableAlreadyCapturedInScopeInfo(CSI, Var, Nested, CaptureType,
18012 DeclRefType)) {
18013 CSI->getCapture(Var).markUsed(BuildAndDiagnose);
18014 break;
18015 }
18016 // If we are instantiating a generic lambda call operator body,
18017 // we do not want to capture new variables. What was captured
18018 // during either a lambdas transformation or initial parsing
18019 // should be used.
18020 if (isGenericLambdaCallOperatorSpecialization(DC)) {
18021 if (BuildAndDiagnose) {
18022 LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
18023 if (LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None) {
18024 Diag(ExprLoc, diag::err_lambda_impcap) << Var;
18025 Diag(Var->getLocation(), diag::note_previous_decl) << Var;
18026 Diag(LSI->Lambda->getBeginLoc(), diag::note_lambda_decl);
18027 buildLambdaCaptureFixit(*this, LSI, Var);
18028 } else
18029 diagnoseUncapturableValueReference(*this, ExprLoc, Var);
18030 }
18031 return true;
18032 }
18033
18034 // Try to capture variable-length arrays types.
18035 if (Var->getType()->isVariablyModifiedType()) {
18036 // We're going to walk down into the type and look for VLA
18037 // expressions.
18038 QualType QTy = Var->getType();
18039 if (ParmVarDecl *PVD = dyn_cast_or_null<ParmVarDecl>(Var))
18040 QTy = PVD->getOriginalType();
18041 captureVariablyModifiedType(Context, QTy, CSI);
18042 }
18043
18044 if (getLangOpts().OpenMP) {
18045 if (auto *RSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) {
18046 // OpenMP private variables should not be captured in outer scope, so
18047 // just break here. Similarly, global variables that are captured in a
18048 // target region should not be captured outside the scope of the region.
18049 if (RSI->CapRegionKind == CR_OpenMP) {
18050 OpenMPClauseKind IsOpenMPPrivateDecl = isOpenMPPrivateDecl(
18051 Var, RSI->OpenMPLevel, RSI->OpenMPCaptureLevel);
18052 // If the variable is private (i.e. not captured) and has variably
18053 // modified type, we still need to capture the type for correct
18054 // codegen in all regions, associated with the construct. Currently,
18055 // it is captured in the innermost captured region only.
18056 if (IsOpenMPPrivateDecl != OMPC_unknown &&
18057 Var->getType()->isVariablyModifiedType()) {
18058 QualType QTy = Var->getType();
18059 if (ParmVarDecl *PVD = dyn_cast_or_null<ParmVarDecl>(Var))
18060 QTy = PVD->getOriginalType();
18061 for (int I = 1, E = getNumberOfConstructScopes(RSI->OpenMPLevel);
18062 I < E; ++I) {
18063 auto *OuterRSI = cast<CapturedRegionScopeInfo>(
18064 FunctionScopes[FunctionScopesIndex - I]);
18065 assert(RSI->OpenMPLevel == OuterRSI->OpenMPLevel &&(static_cast <bool> (RSI->OpenMPLevel == OuterRSI->
OpenMPLevel && "Wrong number of captured regions associated with the "
"OpenMP construct.") ? void (0) : __assert_fail ("RSI->OpenMPLevel == OuterRSI->OpenMPLevel && \"Wrong number of captured regions associated with the \" \"OpenMP construct.\""
, "clang/lib/Sema/SemaExpr.cpp", 18067, __extension__ __PRETTY_FUNCTION__
))
18066 "Wrong number of captured regions associated with the "(static_cast <bool> (RSI->OpenMPLevel == OuterRSI->
OpenMPLevel && "Wrong number of captured regions associated with the "
"OpenMP construct.") ? void (0) : __assert_fail ("RSI->OpenMPLevel == OuterRSI->OpenMPLevel && \"Wrong number of captured regions associated with the \" \"OpenMP construct.\""
, "clang/lib/Sema/SemaExpr.cpp", 18067, __extension__ __PRETTY_FUNCTION__
))
18067 "OpenMP construct.")(static_cast <bool> (RSI->OpenMPLevel == OuterRSI->
OpenMPLevel && "Wrong number of captured regions associated with the "
"OpenMP construct.") ? void (0) : __assert_fail ("RSI->OpenMPLevel == OuterRSI->OpenMPLevel && \"Wrong number of captured regions associated with the \" \"OpenMP construct.\""
, "clang/lib/Sema/SemaExpr.cpp", 18067, __extension__ __PRETTY_FUNCTION__
))
;
18068 captureVariablyModifiedType(Context, QTy, OuterRSI);
18069 }
18070 }
18071 bool IsTargetCap =
18072 IsOpenMPPrivateDecl != OMPC_private &&
18073 isOpenMPTargetCapturedDecl(Var, RSI->OpenMPLevel,
18074 RSI->OpenMPCaptureLevel);
18075 // Do not capture global if it is not privatized in outer regions.
18076 bool IsGlobalCap =
18077 IsGlobal && isOpenMPGlobalCapturedDecl(Var, RSI->OpenMPLevel,
18078 RSI->OpenMPCaptureLevel);
18079
18080 // When we detect target captures we are looking from inside the
18081 // target region, therefore we need to propagate the capture from the
18082 // enclosing region. Therefore, the capture is not initially nested.
18083 if (IsTargetCap)
18084 adjustOpenMPTargetScopeIndex(FunctionScopesIndex, RSI->OpenMPLevel);
18085
18086 if (IsTargetCap || IsOpenMPPrivateDecl == OMPC_private ||
18087 (IsGlobal && !IsGlobalCap)) {
18088 Nested = !IsTargetCap;
18089 bool HasConst = DeclRefType.isConstQualified();
18090 DeclRefType = DeclRefType.getUnqualifiedType();
18091 // Don't lose diagnostics about assignments to const.
18092 if (HasConst)
18093 DeclRefType.addConst();
18094 CaptureType = Context.getLValueReferenceType(DeclRefType);
18095 break;
18096 }
18097 }
18098 }
18099 }
18100 if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None && !Explicit) {
18101 // No capture-default, and this is not an explicit capture
18102 // so cannot capture this variable.
18103 if (BuildAndDiagnose) {
18104 Diag(ExprLoc, diag::err_lambda_impcap) << Var;
18105 Diag(Var->getLocation(), diag::note_previous_decl) << Var;
18106 auto *LSI = cast<LambdaScopeInfo>(CSI);
18107 if (LSI->Lambda) {
18108 Diag(LSI->Lambda->getBeginLoc(), diag::note_lambda_decl);
18109 buildLambdaCaptureFixit(*this, LSI, Var);
18110 }
18111 // FIXME: If we error out because an outer lambda can not implicitly
18112 // capture a variable that an inner lambda explicitly captures, we
18113 // should have the inner lambda do the explicit capture - because
18114 // it makes for cleaner diagnostics later. This would purely be done
18115 // so that the diagnostic does not misleadingly claim that a variable
18116 // can not be captured by a lambda implicitly even though it is captured
18117 // explicitly. Suggestion:
18118 // - create const bool VariableCaptureWasInitiallyExplicit = Explicit
18119 // at the function head
18120 // - cache the StartingDeclContext - this must be a lambda
18121 // - captureInLambda in the innermost lambda the variable.
18122 }
18123 return true;
18124 }
18125
18126 FunctionScopesIndex--;
18127 DC = ParentDC;
18128 Explicit = false;
18129 } while (!VarDC->Equals(DC));
18130
18131 // Walk back down the scope stack, (e.g. from outer lambda to inner lambda)
18132 // computing the type of the capture at each step, checking type-specific
18133 // requirements, and adding captures if requested.
18134 // If the variable had already been captured previously, we start capturing
18135 // at the lambda nested within that one.
18136 bool Invalid = false;
18137 for (unsigned I = ++FunctionScopesIndex, N = MaxFunctionScopesIndex + 1; I != N;
18138 ++I) {
18139 CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[I]);
18140
18141 // Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
18142 // certain types of variables (unnamed, variably modified types etc.)
18143 // so check for eligibility.
18144 if (!Invalid)
18145 Invalid =
18146 !isVariableCapturable(CSI, Var, ExprLoc, BuildAndDiagnose, *this);
18147
18148 // After encountering an error, if we're actually supposed to capture, keep
18149 // capturing in nested contexts to suppress any follow-on diagnostics.
18150 if (Invalid && !BuildAndDiagnose)
18151 return true;
18152
18153 if (BlockScopeInfo *BSI = dyn_cast<BlockScopeInfo>(CSI)) {
18154 Invalid = !captureInBlock(BSI, Var, ExprLoc, BuildAndDiagnose, CaptureType,
18155 DeclRefType, Nested, *this, Invalid);
18156 Nested = true;
18157 } else if (CapturedRegionScopeInfo *RSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) {
18158 Invalid = !captureInCapturedRegion(
18159 RSI, Var, ExprLoc, BuildAndDiagnose, CaptureType, DeclRefType, Nested,
18160 Kind, /*IsTopScope*/ I == N - 1, *this, Invalid);
18161 Nested = true;
18162 } else {
18163 LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
18164 Invalid =
18165 !captureInLambda(LSI, Var, ExprLoc, BuildAndDiagnose, CaptureType,
18166 DeclRefType, Nested, Kind, EllipsisLoc,
18167 /*IsTopScope*/ I == N - 1, *this, Invalid);
18168 Nested = true;
18169 }
18170
18171 if (Invalid && !BuildAndDiagnose)
18172 return true;
18173 }
18174 return Invalid;
18175}
18176
18177bool Sema::tryCaptureVariable(VarDecl *Var, SourceLocation Loc,
18178 TryCaptureKind Kind, SourceLocation EllipsisLoc) {
18179 QualType CaptureType;
18180 QualType DeclRefType;
18181 return tryCaptureVariable(Var, Loc, Kind, EllipsisLoc,
18182 /*BuildAndDiagnose=*/true, CaptureType,
18183 DeclRefType, nullptr);
18184}
18185
18186bool Sema::NeedToCaptureVariable(VarDecl *Var, SourceLocation Loc) {
18187 QualType CaptureType;
18188 QualType DeclRefType;
18189 return !tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
18190 /*BuildAndDiagnose=*/false, CaptureType,
18191 DeclRefType, nullptr);
18192}
18193
18194QualType Sema::getCapturedDeclRefType(VarDecl *Var, SourceLocation Loc) {
18195 QualType CaptureType;
18196 QualType DeclRefType;
18197
18198 // Determine whether we can capture this variable.
18199 if (tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
18200 /*BuildAndDiagnose=*/false, CaptureType,
18201 DeclRefType, nullptr))
18202 return QualType();
18203
18204 return DeclRefType;
18205}
18206
18207namespace {
18208// Helper to copy the template arguments from a DeclRefExpr or MemberExpr.
18209// The produced TemplateArgumentListInfo* points to data stored within this
18210// object, so should only be used in contexts where the pointer will not be
18211// used after the CopiedTemplateArgs object is destroyed.
18212class CopiedTemplateArgs {
18213 bool HasArgs;
18214 TemplateArgumentListInfo TemplateArgStorage;
18215public:
18216 template<typename RefExpr>
18217 CopiedTemplateArgs(RefExpr *E) : HasArgs(E->hasExplicitTemplateArgs()) {
18218 if (HasArgs)
18219 E->copyTemplateArgumentsInto(TemplateArgStorage);
18220 }
18221 operator TemplateArgumentListInfo*()
18222#ifdef __has_cpp_attribute
18223#if0 __has_cpp_attribute(clang::lifetimebound)1
18224 [[clang::lifetimebound]]
18225#endif
18226#endif
18227 {
18228 return HasArgs ? &TemplateArgStorage : nullptr;
18229 }
18230};
18231}
18232
18233/// Walk the set of potential results of an expression and mark them all as
18234/// non-odr-uses if they satisfy the side-conditions of the NonOdrUseReason.
18235///
18236/// \return A new expression if we found any potential results, ExprEmpty() if
18237/// not, and ExprError() if we diagnosed an error.
18238static ExprResult rebuildPotentialResultsAsNonOdrUsed(Sema &S, Expr *E,
18239 NonOdrUseReason NOUR) {
18240 // Per C++11 [basic.def.odr], a variable is odr-used "unless it is
18241 // an object that satisfies the requirements for appearing in a
18242 // constant expression (5.19) and the lvalue-to-rvalue conversion (4.1)
18243 // is immediately applied." This function handles the lvalue-to-rvalue
18244 // conversion part.
18245 //
18246 // If we encounter a node that claims to be an odr-use but shouldn't be, we
18247 // transform it into the relevant kind of non-odr-use node and rebuild the
18248 // tree of nodes leading to it.
18249 //
18250 // This is a mini-TreeTransform that only transforms a restricted subset of
18251 // nodes (and only certain operands of them).
18252
18253 // Rebuild a subexpression.
18254 auto Rebuild = [&](Expr *Sub) {
18255 return rebuildPotentialResultsAsNonOdrUsed(S, Sub, NOUR);
18256 };
18257
18258 // Check whether a potential result satisfies the requirements of NOUR.
18259 auto IsPotentialResultOdrUsed = [&](NamedDecl *D) {
18260 // Any entity other than a VarDecl is always odr-used whenever it's named
18261 // in a potentially-evaluated expression.
18262 auto *VD = dyn_cast<VarDecl>(D);
18263 if (!VD)
18264 return true;
18265
18266 // C++2a [basic.def.odr]p4:
18267 // A variable x whose name appears as a potentially-evalauted expression
18268 // e is odr-used by e unless
18269 // -- x is a reference that is usable in constant expressions, or
18270 // -- x is a variable of non-reference type that is usable in constant
18271 // expressions and has no mutable subobjects, and e is an element of
18272 // the set of potential results of an expression of
18273 // non-volatile-qualified non-class type to which the lvalue-to-rvalue
18274 // conversion is applied, or
18275 // -- x is a variable of non-reference type, and e is an element of the
18276 // set of potential results of a discarded-value expression to which
18277 // the lvalue-to-rvalue conversion is not applied
18278 //
18279 // We check the first bullet and the "potentially-evaluated" condition in
18280 // BuildDeclRefExpr. We check the type requirements in the second bullet
18281 // in CheckLValueToRValueConversionOperand below.
18282 switch (NOUR) {
18283 case NOUR_None:
18284 case NOUR_Unevaluated:
18285 llvm_unreachable("unexpected non-odr-use-reason")::llvm::llvm_unreachable_internal("unexpected non-odr-use-reason"
, "clang/lib/Sema/SemaExpr.cpp", 18285)
;
18286
18287 case NOUR_Constant:
18288 // Constant references were handled when they were built.
18289 if (VD->getType()->isReferenceType())
18290 return true;
18291 if (auto *RD = VD->getType()->getAsCXXRecordDecl())
18292 if (RD->hasMutableFields())
18293 return true;
18294 if (!VD->isUsableInConstantExpressions(S.Context))
18295 return true;
18296 break;
18297
18298 case NOUR_Discarded:
18299 if (VD->getType()->isReferenceType())
18300 return true;
18301 break;
18302 }
18303 return false;
18304 };
18305
18306 // Mark that this expression does not constitute an odr-use.
18307 auto MarkNotOdrUsed = [&] {
18308 S.MaybeODRUseExprs.remove(E);
18309 if (LambdaScopeInfo *LSI = S.getCurLambda())
18310 LSI->markVariableExprAsNonODRUsed(E);
18311 };
18312
18313 // C++2a [basic.def.odr]p2:
18314 // The set of potential results of an expression e is defined as follows:
18315 switch (E->getStmtClass()) {
18316 // -- If e is an id-expression, ...
18317 case Expr::DeclRefExprClass: {
18318 auto *DRE = cast<DeclRefExpr>(E);
18319 if (DRE->isNonOdrUse() || IsPotentialResultOdrUsed(DRE->getDecl()))
18320 break;
18321
18322 // Rebuild as a non-odr-use DeclRefExpr.
18323 MarkNotOdrUsed();
18324 return DeclRefExpr::Create(
18325 S.Context, DRE->getQualifierLoc(), DRE->getTemplateKeywordLoc(),
18326 DRE->getDecl(), DRE->refersToEnclosingVariableOrCapture(),
18327 DRE->getNameInfo(), DRE->getType(), DRE->getValueKind(),
18328 DRE->getFoundDecl(), CopiedTemplateArgs(DRE), NOUR);
18329 }
18330
18331 case Expr::FunctionParmPackExprClass: {
18332 auto *FPPE = cast<FunctionParmPackExpr>(E);
18333 // If any of the declarations in the pack is odr-used, then the expression
18334 // as a whole constitutes an odr-use.
18335 for (VarDecl *D : *FPPE)
18336 if (IsPotentialResultOdrUsed(D))
18337 return ExprEmpty();
18338
18339 // FIXME: Rebuild as a non-odr-use FunctionParmPackExpr? In practice,
18340 // nothing cares about whether we marked this as an odr-use, but it might
18341 // be useful for non-compiler tools.
18342 MarkNotOdrUsed();
18343 break;
18344 }
18345
18346 // -- If e is a subscripting operation with an array operand...
18347 case Expr::ArraySubscriptExprClass: {
18348 auto *ASE = cast<ArraySubscriptExpr>(E);
18349 Expr *OldBase = ASE->getBase()->IgnoreImplicit();
18350 if (!OldBase->getType()->isArrayType())
18351 break;
18352 ExprResult Base = Rebuild(OldBase);
18353 if (!Base.isUsable())
18354 return Base;
18355 Expr *LHS = ASE->getBase() == ASE->getLHS() ? Base.get() : ASE->getLHS();
18356 Expr *RHS = ASE->getBase() == ASE->getRHS() ? Base.get() : ASE->getRHS();
18357 SourceLocation LBracketLoc = ASE->getBeginLoc(); // FIXME: Not stored.
18358 return S.ActOnArraySubscriptExpr(nullptr, LHS, LBracketLoc, RHS,
18359 ASE->getRBracketLoc());
18360 }
18361
18362 case Expr::MemberExprClass: {
18363 auto *ME = cast<MemberExpr>(E);
18364 // -- If e is a class member access expression [...] naming a non-static
18365 // data member...
18366 if (isa<FieldDecl>(ME->getMemberDecl())) {
18367 ExprResult Base = Rebuild(ME->getBase());
18368 if (!Base.isUsable())
18369 return Base;
18370 return MemberExpr::Create(
18371 S.Context, Base.get(), ME->isArrow(), ME->getOperatorLoc(),
18372 ME->getQualifierLoc(), ME->getTemplateKeywordLoc(),
18373 ME->getMemberDecl(), ME->getFoundDecl(), ME->getMemberNameInfo(),
18374 CopiedTemplateArgs(ME), ME->getType(), ME->getValueKind(),
18375 ME->getObjectKind(), ME->isNonOdrUse());
18376 }
18377
18378 if (ME->getMemberDecl()->isCXXInstanceMember())
18379 break;
18380
18381 // -- If e is a class member access expression naming a static data member,
18382 // ...
18383 if (ME->isNonOdrUse() || IsPotentialResultOdrUsed(ME->getMemberDecl()))
18384 break;
18385
18386 // Rebuild as a non-odr-use MemberExpr.
18387 MarkNotOdrUsed();
18388 return MemberExpr::Create(
18389 S.Context, ME->getBase(), ME->isArrow(), ME->getOperatorLoc(),
18390 ME->getQualifierLoc(), ME->getTemplateKeywordLoc(), ME->getMemberDecl(),
18391 ME->getFoundDecl(), ME->getMemberNameInfo(), CopiedTemplateArgs(ME),
18392 ME->getType(), ME->getValueKind(), ME->getObjectKind(), NOUR);
18393 }
18394
18395 case Expr::BinaryOperatorClass: {
18396 auto *BO = cast<BinaryOperator>(E);
18397 Expr *LHS = BO->getLHS();
18398 Expr *RHS = BO->getRHS();
18399 // -- If e is a pointer-to-member expression of the form e1 .* e2 ...
18400 if (BO->getOpcode() == BO_PtrMemD) {
18401 ExprResult Sub = Rebuild(LHS);
18402 if (!Sub.isUsable())
18403 return Sub;
18404 LHS = Sub.get();
18405 // -- If e is a comma expression, ...
18406 } else if (BO->getOpcode() == BO_Comma) {
18407 ExprResult Sub = Rebuild(RHS);
18408 if (!Sub.isUsable())
18409 return Sub;
18410 RHS = Sub.get();
18411 } else {
18412 break;
18413 }
18414 return S.BuildBinOp(nullptr, BO->getOperatorLoc(), BO->getOpcode(),
18415 LHS, RHS);
18416 }
18417
18418 // -- If e has the form (e1)...
18419 case Expr::ParenExprClass: {
18420 auto *PE = cast<ParenExpr>(E);
18421 ExprResult Sub = Rebuild(PE->getSubExpr());
18422 if (!Sub.isUsable())
18423 return Sub;
18424 return S.ActOnParenExpr(PE->getLParen(), PE->getRParen(), Sub.get());
18425 }
18426
18427 // -- If e is a glvalue conditional expression, ...
18428 // We don't apply this to a binary conditional operator. FIXME: Should we?
18429 case Expr::ConditionalOperatorClass: {
18430 auto *CO = cast<ConditionalOperator>(E);
18431 ExprResult LHS = Rebuild(CO->getLHS());
18432 if (LHS.isInvalid())
18433 return ExprError();
18434 ExprResult RHS = Rebuild(CO->getRHS());
18435 if (RHS.isInvalid())
18436 return ExprError();
18437 if (!LHS.isUsable() && !RHS.isUsable())
18438 return ExprEmpty();
18439 if (!LHS.isUsable())
18440 LHS = CO->getLHS();
18441 if (!RHS.isUsable())
18442 RHS = CO->getRHS();
18443 return S.ActOnConditionalOp(CO->getQuestionLoc(), CO->getColonLoc(),
18444 CO->getCond(), LHS.get(), RHS.get());
18445 }
18446
18447 // [Clang extension]
18448 // -- If e has the form __extension__ e1...
18449 case Expr::UnaryOperatorClass: {
18450 auto *UO = cast<UnaryOperator>(E);
18451 if (UO->getOpcode() != UO_Extension)
18452 break;
18453 ExprResult Sub = Rebuild(UO->getSubExpr());
18454 if (!Sub.isUsable())
18455 return Sub;
18456 return S.BuildUnaryOp(nullptr, UO->getOperatorLoc(), UO_Extension,
18457 Sub.get());
18458 }
18459
18460 // [Clang extension]
18461 // -- If e has the form _Generic(...), the set of potential results is the
18462 // union of the sets of potential results of the associated expressions.
18463 case Expr::GenericSelectionExprClass: {
18464 auto *GSE = cast<GenericSelectionExpr>(E);
18465
18466 SmallVector<Expr *, 4> AssocExprs;
18467 bool AnyChanged = false;
18468 for (Expr *OrigAssocExpr : GSE->getAssocExprs()) {
18469 ExprResult AssocExpr = Rebuild(OrigAssocExpr);
18470 if (AssocExpr.isInvalid())
18471 return ExprError();
18472 if (AssocExpr.isUsable()) {
18473 AssocExprs.push_back(AssocExpr.get());
18474 AnyChanged = true;
18475 } else {
18476 AssocExprs.push_back(OrigAssocExpr);
18477 }
18478 }
18479
18480 return AnyChanged ? S.CreateGenericSelectionExpr(
18481 GSE->getGenericLoc(), GSE->getDefaultLoc(),
18482 GSE->getRParenLoc(), GSE->getControllingExpr(),
18483 GSE->getAssocTypeSourceInfos(), AssocExprs)
18484 : ExprEmpty();
18485 }
18486
18487 // [Clang extension]
18488 // -- If e has the form __builtin_choose_expr(...), the set of potential
18489 // results is the union of the sets of potential results of the
18490 // second and third subexpressions.
18491 case Expr::ChooseExprClass: {
18492 auto *CE = cast<ChooseExpr>(E);
18493
18494 ExprResult LHS = Rebuild(CE->getLHS());
18495 if (LHS.isInvalid())
18496 return ExprError();
18497
18498 ExprResult RHS = Rebuild(CE->getLHS());
18499 if (RHS.isInvalid())
18500 return ExprError();
18501
18502 if (!LHS.get() && !RHS.get())
18503 return ExprEmpty();
18504 if (!LHS.isUsable())
18505 LHS = CE->getLHS();
18506 if (!RHS.isUsable())
18507 RHS = CE->getRHS();
18508
18509 return S.ActOnChooseExpr(CE->getBuiltinLoc(), CE->getCond(), LHS.get(),
18510 RHS.get(), CE->getRParenLoc());
18511 }
18512
18513 // Step through non-syntactic nodes.
18514 case Expr::ConstantExprClass: {
18515 auto *CE = cast<ConstantExpr>(E);
18516 ExprResult Sub = Rebuild(CE->getSubExpr());
18517 if (!Sub.isUsable())
18518 return Sub;
18519 return ConstantExpr::Create(S.Context, Sub.get());
18520 }
18521
18522 // We could mostly rely on the recursive rebuilding to rebuild implicit
18523 // casts, but not at the top level, so rebuild them here.
18524 case Expr::ImplicitCastExprClass: {
18525 auto *ICE = cast<ImplicitCastExpr>(E);
18526 // Only step through the narrow set of cast kinds we expect to encounter.
18527 // Anything else suggests we've left the region in which potential results
18528 // can be found.
18529 switch (ICE->getCastKind()) {
18530 case CK_NoOp:
18531 case CK_DerivedToBase:
18532 case CK_UncheckedDerivedToBase: {
18533 ExprResult Sub = Rebuild(ICE->getSubExpr());
18534 if (!Sub.isUsable())
18535 return Sub;
18536 CXXCastPath Path(ICE->path());
18537 return S.ImpCastExprToType(Sub.get(), ICE->getType(), ICE->getCastKind(),
18538 ICE->getValueKind(), &Path);
18539 }
18540
18541 default:
18542 break;
18543 }
18544 break;
18545 }
18546
18547 default:
18548 break;
18549 }
18550
18551 // Can't traverse through this node. Nothing to do.
18552 return ExprEmpty();
18553}
18554
18555ExprResult Sema::CheckLValueToRValueConversionOperand(Expr *E) {
18556 // Check whether the operand is or contains an object of non-trivial C union
18557 // type.
18558 if (E->getType().isVolatileQualified() &&
18559 (E->getType().hasNonTrivialToPrimitiveDestructCUnion() ||
18560 E->getType().hasNonTrivialToPrimitiveCopyCUnion()))
18561 checkNonTrivialCUnion(E->getType(), E->getExprLoc(),
18562 Sema::NTCUC_LValueToRValueVolatile,
18563 NTCUK_Destruct|NTCUK_Copy);
18564
18565 // C++2a [basic.def.odr]p4:
18566 // [...] an expression of non-volatile-qualified non-class type to which
18567 // the lvalue-to-rvalue conversion is applied [...]
18568 if (E->getType().isVolatileQualified() || E->getType()->getAs<RecordType>())
18569 return E;
18570
18571 ExprResult Result =
18572 rebuildPotentialResultsAsNonOdrUsed(*this, E, NOUR_Constant);
18573 if (Result.isInvalid())
18574 return ExprError();
18575 return Result.get() ? Result : E;
18576}
18577
18578ExprResult Sema::ActOnConstantExpression(ExprResult Res) {
18579 Res = CorrectDelayedTyposInExpr(Res);
18580
18581 if (!Res.isUsable())
18582 return Res;
18583
18584 // If a constant-expression is a reference to a variable where we delay
18585 // deciding whether it is an odr-use, just assume we will apply the
18586 // lvalue-to-rvalue conversion. In the one case where this doesn't happen
18587 // (a non-type template argument), we have special handling anyway.
18588 return CheckLValueToRValueConversionOperand(Res.get());
18589}
18590
18591void Sema::CleanupVarDeclMarking() {
18592 // Iterate through a local copy in case MarkVarDeclODRUsed makes a recursive
18593 // call.
18594 MaybeODRUseExprSet LocalMaybeODRUseExprs;
18595 std::swap(LocalMaybeODRUseExprs, MaybeODRUseExprs);
18596
18597 for (Expr *E : LocalMaybeODRUseExprs) {
18598 if (auto *DRE = dyn_cast<DeclRefExpr>(E)) {
18599 MarkVarDeclODRUsed(cast<VarDecl>(DRE->getDecl()),
18600 DRE->getLocation(), *this);
18601 } else if (auto *ME = dyn_cast<MemberExpr>(E)) {
18602 MarkVarDeclODRUsed(cast<VarDecl>(ME->getMemberDecl()), ME->getMemberLoc(),
18603 *this);
18604 } else if (auto *FP = dyn_cast<FunctionParmPackExpr>(E)) {
18605 for (VarDecl *VD : *FP)
18606 MarkVarDeclODRUsed(VD, FP->getParameterPackLocation(), *this);
18607 } else {
18608 llvm_unreachable("Unexpected expression")::llvm::llvm_unreachable_internal("Unexpected expression", "clang/lib/Sema/SemaExpr.cpp"
, 18608)
;
18609 }
18610 }
18611
18612 assert(MaybeODRUseExprs.empty() &&(static_cast <bool> (MaybeODRUseExprs.empty() &&
"MarkVarDeclODRUsed failed to cleanup MaybeODRUseExprs?") ? void
(0) : __assert_fail ("MaybeODRUseExprs.empty() && \"MarkVarDeclODRUsed failed to cleanup MaybeODRUseExprs?\""
, "clang/lib/Sema/SemaExpr.cpp", 18613, __extension__ __PRETTY_FUNCTION__
))
18613 "MarkVarDeclODRUsed failed to cleanup MaybeODRUseExprs?")(static_cast <bool> (MaybeODRUseExprs.empty() &&
"MarkVarDeclODRUsed failed to cleanup MaybeODRUseExprs?") ? void
(0) : __assert_fail ("MaybeODRUseExprs.empty() && \"MarkVarDeclODRUsed failed to cleanup MaybeODRUseExprs?\""
, "clang/lib/Sema/SemaExpr.cpp", 18613, __extension__ __PRETTY_FUNCTION__
))
;
18614}
18615
18616static void DoMarkVarDeclReferenced(
18617 Sema &SemaRef, SourceLocation Loc, VarDecl *Var, Expr *E,
18618 llvm::DenseMap<const VarDecl *, int> &RefsMinusAssignments) {
18619 assert((!E || isa<DeclRefExpr>(E) || isa<MemberExpr>(E) ||(static_cast <bool> ((!E || isa<DeclRefExpr>(E) ||
isa<MemberExpr>(E) || isa<FunctionParmPackExpr>(
E)) && "Invalid Expr argument to DoMarkVarDeclReferenced"
) ? void (0) : __assert_fail ("(!E || isa<DeclRefExpr>(E) || isa<MemberExpr>(E) || isa<FunctionParmPackExpr>(E)) && \"Invalid Expr argument to DoMarkVarDeclReferenced\""
, "clang/lib/Sema/SemaExpr.cpp", 18621, __extension__ __PRETTY_FUNCTION__
))
18620 isa<FunctionParmPackExpr>(E)) &&(static_cast <bool> ((!E || isa<DeclRefExpr>(E) ||
isa<MemberExpr>(E) || isa<FunctionParmPackExpr>(
E)) && "Invalid Expr argument to DoMarkVarDeclReferenced"
) ? void (0) : __assert_fail ("(!E || isa<DeclRefExpr>(E) || isa<MemberExpr>(E) || isa<FunctionParmPackExpr>(E)) && \"Invalid Expr argument to DoMarkVarDeclReferenced\""
, "clang/lib/Sema/SemaExpr.cpp", 18621, __extension__ __PRETTY_FUNCTION__
))
18621 "Invalid Expr argument to DoMarkVarDeclReferenced")(static_cast <bool> ((!E || isa<DeclRefExpr>(E) ||
isa<MemberExpr>(E) || isa<FunctionParmPackExpr>(
E)) && "Invalid Expr argument to DoMarkVarDeclReferenced"
) ? void (0) : __assert_fail ("(!E || isa<DeclRefExpr>(E) || isa<MemberExpr>(E) || isa<FunctionParmPackExpr>(E)) && \"Invalid Expr argument to DoMarkVarDeclReferenced\""
, "clang/lib/Sema/SemaExpr.cpp", 18621, __extension__ __PRETTY_FUNCTION__
))
;
18622 Var->setReferenced();
18623
18624 if (Var->isInvalidDecl())
18625 return;
18626
18627 auto *MSI = Var->getMemberSpecializationInfo();
18628 TemplateSpecializationKind TSK = MSI ? MSI->getTemplateSpecializationKind()
18629 : Var->getTemplateSpecializationKind();
18630
18631 OdrUseContext OdrUse = isOdrUseContext(SemaRef);
18632 bool UsableInConstantExpr =
18633 Var->mightBeUsableInConstantExpressions(SemaRef.Context);
18634
18635 if (Var->isLocalVarDeclOrParm() && !Var->hasExternalStorage()) {
18636 RefsMinusAssignments.insert({Var, 0}).first->getSecond()++;
18637 }
18638
18639 // C++20 [expr.const]p12:
18640 // A variable [...] is needed for constant evaluation if it is [...] a
18641 // variable whose name appears as a potentially constant evaluated
18642 // expression that is either a contexpr variable or is of non-volatile
18643 // const-qualified integral type or of reference type
18644 bool NeededForConstantEvaluation =
18645 isPotentiallyConstantEvaluatedContext(SemaRef) && UsableInConstantExpr;
18646
18647 bool NeedDefinition =
18648 OdrUse == OdrUseContext::Used || NeededForConstantEvaluation;
18649
18650 assert(!isa<VarTemplatePartialSpecializationDecl>(Var) &&(static_cast <bool> (!isa<VarTemplatePartialSpecializationDecl
>(Var) && "Can't instantiate a partial template specialization."
) ? void (0) : __assert_fail ("!isa<VarTemplatePartialSpecializationDecl>(Var) && \"Can't instantiate a partial template specialization.\""
, "clang/lib/Sema/SemaExpr.cpp", 18651, __extension__ __PRETTY_FUNCTION__
))
18651 "Can't instantiate a partial template specialization.")(static_cast <bool> (!isa<VarTemplatePartialSpecializationDecl
>(Var) && "Can't instantiate a partial template specialization."
) ? void (0) : __assert_fail ("!isa<VarTemplatePartialSpecializationDecl>(Var) && \"Can't instantiate a partial template specialization.\""
, "clang/lib/Sema/SemaExpr.cpp", 18651, __extension__ __PRETTY_FUNCTION__
))
;
18652
18653 // If this might be a member specialization of a static data member, check
18654 // the specialization is visible. We already did the checks for variable
18655 // template specializations when we created them.
18656 if (NeedDefinition && TSK != TSK_Undeclared &&
18657 !isa<VarTemplateSpecializationDecl>(Var))
18658 SemaRef.checkSpecializationVisibility(Loc, Var);
18659
18660 // Perform implicit instantiation of static data members, static data member
18661 // templates of class templates, and variable template specializations. Delay
18662 // instantiations of variable templates, except for those that could be used
18663 // in a constant expression.
18664 if (NeedDefinition && isTemplateInstantiation(TSK)) {
18665 // Per C++17 [temp.explicit]p10, we may instantiate despite an explicit
18666 // instantiation declaration if a variable is usable in a constant
18667 // expression (among other cases).
18668 bool TryInstantiating =
18669 TSK == TSK_ImplicitInstantiation ||
18670 (TSK == TSK_ExplicitInstantiationDeclaration && UsableInConstantExpr);
18671
18672 if (TryInstantiating) {
18673 SourceLocation PointOfInstantiation =
18674 MSI ? MSI->getPointOfInstantiation() : Var->getPointOfInstantiation();
18675 bool FirstInstantiation = PointOfInstantiation.isInvalid();
18676 if (FirstInstantiation) {
18677 PointOfInstantiation = Loc;
18678 if (MSI)
18679 MSI->setPointOfInstantiation(PointOfInstantiation);
18680 // FIXME: Notify listener.
18681 else
18682 Var->setTemplateSpecializationKind(TSK, PointOfInstantiation);
18683 }
18684
18685 if (UsableInConstantExpr) {
18686 // Do not defer instantiations of variables that could be used in a
18687 // constant expression.
18688 SemaRef.runWithSufficientStackSpace(PointOfInstantiation, [&] {
18689 SemaRef.InstantiateVariableDefinition(PointOfInstantiation, Var);
18690 });
18691
18692 // Re-set the member to trigger a recomputation of the dependence bits
18693 // for the expression.
18694 if (auto *DRE = dyn_cast_or_null<DeclRefExpr>(E))
18695 DRE->setDecl(DRE->getDecl());
18696 else if (auto *ME = dyn_cast_or_null<MemberExpr>(E))
18697 ME->setMemberDecl(ME->getMemberDecl());
18698 } else if (FirstInstantiation ||
18699 isa<VarTemplateSpecializationDecl>(Var)) {
18700 // FIXME: For a specialization of a variable template, we don't
18701 // distinguish between "declaration and type implicitly instantiated"
18702 // and "implicit instantiation of definition requested", so we have
18703 // no direct way to avoid enqueueing the pending instantiation
18704 // multiple times.
18705 SemaRef.PendingInstantiations
18706 .push_back(std::make_pair(Var, PointOfInstantiation));
18707 }
18708 }
18709 }
18710
18711 // C++2a [basic.def.odr]p4:
18712 // A variable x whose name appears as a potentially-evaluated expression e
18713 // is odr-used by e unless
18714 // -- x is a reference that is usable in constant expressions
18715 // -- x is a variable of non-reference type that is usable in constant
18716 // expressions and has no mutable subobjects [FIXME], and e is an
18717 // element of the set of potential results of an expression of
18718 // non-volatile-qualified non-class type to which the lvalue-to-rvalue
18719 // conversion is applied
18720 // -- x is a variable of non-reference type, and e is an element of the set
18721 // of potential results of a discarded-value expression to which the
18722 // lvalue-to-rvalue conversion is not applied [FIXME]
18723 //
18724 // We check the first part of the second bullet here, and
18725 // Sema::CheckLValueToRValueConversionOperand deals with the second part.
18726 // FIXME: To get the third bullet right, we need to delay this even for
18727 // variables that are not usable in constant expressions.
18728
18729 // If we already know this isn't an odr-use, there's nothing more to do.
18730 if (DeclRefExpr *DRE = dyn_cast_or_null<DeclRefExpr>(E))
18731 if (DRE->isNonOdrUse())
18732 return;
18733 if (MemberExpr *ME = dyn_cast_or_null<MemberExpr>(E))
18734 if (ME->isNonOdrUse())
18735 return;
18736
18737 switch (OdrUse) {
18738 case OdrUseContext::None:
18739 assert((!E || isa<FunctionParmPackExpr>(E)) &&(static_cast <bool> ((!E || isa<FunctionParmPackExpr
>(E)) && "missing non-odr-use marking for unevaluated decl ref"
) ? void (0) : __assert_fail ("(!E || isa<FunctionParmPackExpr>(E)) && \"missing non-odr-use marking for unevaluated decl ref\""
, "clang/lib/Sema/SemaExpr.cpp", 18740, __extension__ __PRETTY_FUNCTION__
))
18740 "missing non-odr-use marking for unevaluated decl ref")(static_cast <bool> ((!E || isa<FunctionParmPackExpr
>(E)) && "missing non-odr-use marking for unevaluated decl ref"
) ? void (0) : __assert_fail ("(!E || isa<FunctionParmPackExpr>(E)) && \"missing non-odr-use marking for unevaluated decl ref\""
, "clang/lib/Sema/SemaExpr.cpp", 18740, __extension__ __PRETTY_FUNCTION__
))
;
18741 break;
18742
18743 case OdrUseContext::FormallyOdrUsed:
18744 // FIXME: Ignoring formal odr-uses results in incorrect lambda capture
18745 // behavior.
18746 break;
18747
18748 case OdrUseContext::Used:
18749 // If we might later find that this expression isn't actually an odr-use,
18750 // delay the marking.
18751 if (E && Var->isUsableInConstantExpressions(SemaRef.Context))
18752 SemaRef.MaybeODRUseExprs.insert(E);
18753 else
18754 MarkVarDeclODRUsed(Var, Loc, SemaRef);
18755 break;
18756
18757 case OdrUseContext::Dependent:
18758 // If this is a dependent context, we don't need to mark variables as
18759 // odr-used, but we may still need to track them for lambda capture.
18760 // FIXME: Do we also need to do this inside dependent typeid expressions
18761 // (which are modeled as unevaluated at this point)?
18762 const bool RefersToEnclosingScope =
18763 (SemaRef.CurContext != Var->getDeclContext() &&
18764 Var->getDeclContext()->isFunctionOrMethod() && Var->hasLocalStorage());
18765 if (RefersToEnclosingScope) {
18766 LambdaScopeInfo *const LSI =
18767 SemaRef.getCurLambda(/*IgnoreNonLambdaCapturingScope=*/true);
18768 if (LSI && (!LSI->CallOperator ||
18769 !LSI->CallOperator->Encloses(Var->getDeclContext()))) {
18770 // If a variable could potentially be odr-used, defer marking it so
18771 // until we finish analyzing the full expression for any
18772 // lvalue-to-rvalue
18773 // or discarded value conversions that would obviate odr-use.
18774 // Add it to the list of potential captures that will be analyzed
18775 // later (ActOnFinishFullExpr) for eventual capture and odr-use marking
18776 // unless the variable is a reference that was initialized by a constant
18777 // expression (this will never need to be captured or odr-used).
18778 //
18779 // FIXME: We can simplify this a lot after implementing P0588R1.
18780 assert(E && "Capture variable should be used in an expression.")(static_cast <bool> (E && "Capture variable should be used in an expression."
) ? void (0) : __assert_fail ("E && \"Capture variable should be used in an expression.\""
, "clang/lib/Sema/SemaExpr.cpp", 18780, __extension__ __PRETTY_FUNCTION__
))
;
18781 if (!Var->getType()->isReferenceType() ||
18782 !Var->isUsableInConstantExpressions(SemaRef.Context))
18783 LSI->addPotentialCapture(E->IgnoreParens());
18784 }
18785 }
18786 break;
18787 }
18788}
18789
18790/// Mark a variable referenced, and check whether it is odr-used
18791/// (C++ [basic.def.odr]p2, C99 6.9p3). Note that this should not be
18792/// used directly for normal expressions referring to VarDecl.
18793void Sema::MarkVariableReferenced(SourceLocation Loc, VarDecl *Var) {
18794 DoMarkVarDeclReferenced(*this, Loc, Var, nullptr, RefsMinusAssignments);
18795}
18796
18797static void
18798MarkExprReferenced(Sema &SemaRef, SourceLocation Loc, Decl *D, Expr *E,
18799 bool MightBeOdrUse,
18800 llvm::DenseMap<const VarDecl *, int> &RefsMinusAssignments) {
18801 if (SemaRef.isInOpenMPDeclareTargetContext())
18802 SemaRef.checkDeclIsAllowedInOpenMPTarget(E, D);
18803
18804 if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
18805 DoMarkVarDeclReferenced(SemaRef, Loc, Var, E, RefsMinusAssignments);
18806 return;
18807 }
18808
18809 SemaRef.MarkAnyDeclReferenced(Loc, D, MightBeOdrUse);
18810
18811 // If this is a call to a method via a cast, also mark the method in the
18812 // derived class used in case codegen can devirtualize the call.
18813 const MemberExpr *ME = dyn_cast<MemberExpr>(E);
18814 if (!ME)
18815 return;
18816 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ME->getMemberDecl());
18817 if (!MD)
18818 return;
18819 // Only attempt to devirtualize if this is truly a virtual call.
18820 bool IsVirtualCall = MD->isVirtual() &&
18821 ME->performsVirtualDispatch(SemaRef.getLangOpts());
18822 if (!IsVirtualCall)
18823 return;
18824
18825 // If it's possible to devirtualize the call, mark the called function
18826 // referenced.
18827 CXXMethodDecl *DM = MD->getDevirtualizedMethod(
18828 ME->getBase(), SemaRef.getLangOpts().AppleKext);
18829 if (DM)
18830 SemaRef.MarkAnyDeclReferenced(Loc, DM, MightBeOdrUse);
18831}
18832
18833/// Perform reference-marking and odr-use handling for a DeclRefExpr.
18834///
18835/// Note, this may change the dependence of the DeclRefExpr, and so needs to be
18836/// handled with care if the DeclRefExpr is not newly-created.
18837void Sema::MarkDeclRefReferenced(DeclRefExpr *E, const Expr *Base) {
18838 // TODO: update this with DR# once a defect report is filed.
18839 // C++11 defect. The address of a pure member should not be an ODR use, even
18840 // if it's a qualified reference.
18841 bool OdrUse = true;
18842 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getDecl()))
18843 if (Method->isVirtual() &&
18844 !Method->getDevirtualizedMethod(Base, getLangOpts().AppleKext))
18845 OdrUse = false;
18846
18847 if (auto *FD = dyn_cast<FunctionDecl>(E->getDecl()))
18848 if (!isUnevaluatedContext() && !isConstantEvaluated() &&
18849 FD->isConsteval() && !RebuildingImmediateInvocation)
18850 ExprEvalContexts.back().ReferenceToConsteval.insert(E);
18851 MarkExprReferenced(*this, E->getLocation(), E->getDecl(), E, OdrUse,
18852 RefsMinusAssignments);
18853}
18854
18855/// Perform reference-marking and odr-use handling for a MemberExpr.
18856void Sema::MarkMemberReferenced(MemberExpr *E) {
18857 // C++11 [basic.def.odr]p2:
18858 // A non-overloaded function whose name appears as a potentially-evaluated
18859 // expression or a member of a set of candidate functions, if selected by
18860 // overload resolution when referred to from a potentially-evaluated
18861 // expression, is odr-used, unless it is a pure virtual function and its
18862 // name is not explicitly qualified.
18863 bool MightBeOdrUse = true;
18864 if (E->performsVirtualDispatch(getLangOpts())) {
18865 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getMemberDecl()))
18866 if (Method->isPure())
18867 MightBeOdrUse = false;
18868 }
18869 SourceLocation Loc =
18870 E->getMemberLoc().isValid() ? E->getMemberLoc() : E->getBeginLoc();
18871 MarkExprReferenced(*this, Loc, E->getMemberDecl(), E, MightBeOdrUse,
18872 RefsMinusAssignments);
18873}
18874
18875/// Perform reference-marking and odr-use handling for a FunctionParmPackExpr.
18876void Sema::MarkFunctionParmPackReferenced(FunctionParmPackExpr *E) {
18877 for (VarDecl *VD : *E)
18878 MarkExprReferenced(*this, E->getParameterPackLocation(), VD, E, true,
18879 RefsMinusAssignments);
18880}
18881
18882/// Perform marking for a reference to an arbitrary declaration. It
18883/// marks the declaration referenced, and performs odr-use checking for
18884/// functions and variables. This method should not be used when building a
18885/// normal expression which refers to a variable.
18886void Sema::MarkAnyDeclReferenced(SourceLocation Loc, Decl *D,
18887 bool MightBeOdrUse) {
18888 if (MightBeOdrUse) {
18889 if (auto *VD = dyn_cast<VarDecl>(D)) {
18890 MarkVariableReferenced(Loc, VD);
18891 return;
18892 }
18893 }
18894 if (auto *FD = dyn_cast<FunctionDecl>(D)) {
18895 MarkFunctionReferenced(Loc, FD, MightBeOdrUse);
18896 return;
18897 }
18898 D->setReferenced();
18899}
18900
18901namespace {
18902 // Mark all of the declarations used by a type as referenced.
18903 // FIXME: Not fully implemented yet! We need to have a better understanding
18904 // of when we're entering a context we should not recurse into.
18905 // FIXME: This is and EvaluatedExprMarker are more-or-less equivalent to
18906 // TreeTransforms rebuilding the type in a new context. Rather than
18907 // duplicating the TreeTransform logic, we should consider reusing it here.
18908 // Currently that causes problems when rebuilding LambdaExprs.
18909 class MarkReferencedDecls : public RecursiveASTVisitor<MarkReferencedDecls> {
18910 Sema &S;
18911 SourceLocation Loc;
18912
18913 public:
18914 typedef RecursiveASTVisitor<MarkReferencedDecls> Inherited;
18915
18916 MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { }
18917
18918 bool TraverseTemplateArgument(const TemplateArgument &Arg);
18919 };
18920}
18921
18922bool MarkReferencedDecls::TraverseTemplateArgument(
18923 const TemplateArgument &Arg) {
18924 {
18925 // A non-type template argument is a constant-evaluated context.
18926 EnterExpressionEvaluationContext Evaluated(
18927 S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
18928 if (Arg.getKind() == TemplateArgument::Declaration) {
18929 if (Decl *D = Arg.getAsDecl())
18930 S.MarkAnyDeclReferenced(Loc, D, true);
18931 } else if (Arg.getKind() == TemplateArgument::Expression) {
18932 S.MarkDeclarationsReferencedInExpr(Arg.getAsExpr(), false);
18933 }
18934 }
18935
18936 return Inherited::TraverseTemplateArgument(Arg);
18937}
18938
18939void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) {
18940 MarkReferencedDecls Marker(*this, Loc);
18941 Marker.TraverseType(T);
18942}
18943
18944namespace {
18945/// Helper class that marks all of the declarations referenced by
18946/// potentially-evaluated subexpressions as "referenced".
18947class EvaluatedExprMarker : public UsedDeclVisitor<EvaluatedExprMarker> {
18948public:
18949 typedef UsedDeclVisitor<EvaluatedExprMarker> Inherited;
18950 bool SkipLocalVariables;
18951 ArrayRef<const Expr *> StopAt;
18952
18953 EvaluatedExprMarker(Sema &S, bool SkipLocalVariables,
18954 ArrayRef<const Expr *> StopAt)
18955 : Inherited(S), SkipLocalVariables(SkipLocalVariables), StopAt(StopAt) {}
18956
18957 void visitUsedDecl(SourceLocation Loc, Decl *D) {
18958 S.MarkFunctionReferenced(Loc, cast<FunctionDecl>(D));
18959 }
18960
18961 void Visit(Expr *E) {
18962 if (std::find(StopAt.begin(), StopAt.end(), E) != StopAt.end())
18963 return;
18964 Inherited::Visit(E);
18965 }
18966
18967 void VisitDeclRefExpr(DeclRefExpr *E) {
18968 // If we were asked not to visit local variables, don't.
18969 if (SkipLocalVariables) {
18970 if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
18971 if (VD->hasLocalStorage())
18972 return;
18973 }
18974
18975 // FIXME: This can trigger the instantiation of the initializer of a
18976 // variable, which can cause the expression to become value-dependent
18977 // or error-dependent. Do we need to propagate the new dependence bits?
18978 S.MarkDeclRefReferenced(E);
18979 }
18980
18981 void VisitMemberExpr(MemberExpr *E) {
18982 S.MarkMemberReferenced(E);
18983 Visit(E->getBase());
18984 }
18985};
18986} // namespace
18987
18988/// Mark any declarations that appear within this expression or any
18989/// potentially-evaluated subexpressions as "referenced".
18990///
18991/// \param SkipLocalVariables If true, don't mark local variables as
18992/// 'referenced'.
18993/// \param StopAt Subexpressions that we shouldn't recurse into.
18994void Sema::MarkDeclarationsReferencedInExpr(Expr *E,
18995 bool SkipLocalVariables,
18996 ArrayRef<const Expr*> StopAt) {
18997 EvaluatedExprMarker(*this, SkipLocalVariables, StopAt).Visit(E);
18998}
18999
19000/// Emit a diagnostic when statements are reachable.
19001/// FIXME: check for reachability even in expressions for which we don't build a
19002/// CFG (eg, in the initializer of a global or in a constant expression).
19003/// For example,
19004/// namespace { auto *p = new double[3][false ? (1, 2) : 3]; }
19005bool Sema::DiagIfReachable(SourceLocation Loc, ArrayRef<const Stmt *> Stmts,
19006 const PartialDiagnostic &PD) {
19007 if (!Stmts.empty() && getCurFunctionOrMethodDecl()) {
19008 if (!FunctionScopes.empty())
19009 FunctionScopes.back()->PossiblyUnreachableDiags.push_back(
19010 sema::PossiblyUnreachableDiag(PD, Loc, Stmts));
19011 return true;
19012 }
19013
19014 // The initializer of a constexpr variable or of the first declaration of a
19015 // static data member is not syntactically a constant evaluated constant,
19016 // but nonetheless is always required to be a constant expression, so we
19017 // can skip diagnosing.
19018 // FIXME: Using the mangling context here is a hack.
19019 if (auto *VD = dyn_cast_or_null<VarDecl>(
19020 ExprEvalContexts.back().ManglingContextDecl)) {
19021 if (VD->isConstexpr() ||
19022 (VD->isStaticDataMember() && VD->isFirstDecl() && !VD->isInline()))
19023 return false;
19024 // FIXME: For any other kind of variable, we should build a CFG for its
19025 // initializer and check whether the context in question is reachable.
19026 }
19027
19028 Diag(Loc, PD);
19029 return true;
19030}
19031
19032/// Emit a diagnostic that describes an effect on the run-time behavior
19033/// of the program being compiled.
19034///
19035/// This routine emits the given diagnostic when the code currently being
19036/// type-checked is "potentially evaluated", meaning that there is a
19037/// possibility that the code will actually be executable. Code in sizeof()
19038/// expressions, code used only during overload resolution, etc., are not
19039/// potentially evaluated. This routine will suppress such diagnostics or,
19040/// in the absolutely nutty case of potentially potentially evaluated
19041/// expressions (C++ typeid), queue the diagnostic to potentially emit it
19042/// later.
19043///
19044/// This routine should be used for all diagnostics that describe the run-time
19045/// behavior of a program, such as passing a non-POD value through an ellipsis.
19046/// Failure to do so will likely result in spurious diagnostics or failures
19047/// during overload resolution or within sizeof/alignof/typeof/typeid.
19048bool Sema::DiagRuntimeBehavior(SourceLocation Loc, ArrayRef<const Stmt*> Stmts,
19049 const PartialDiagnostic &PD) {
19050
19051 if (ExprEvalContexts.back().isDiscardedStatementContext())
19052 return false;
19053
19054 switch (ExprEvalContexts.back().Context) {
19055 case ExpressionEvaluationContext::Unevaluated:
19056 case ExpressionEvaluationContext::UnevaluatedList:
19057 case ExpressionEvaluationContext::UnevaluatedAbstract:
19058 case ExpressionEvaluationContext::DiscardedStatement:
19059 // The argument will never be evaluated, so don't complain.
19060 break;
19061
19062 case ExpressionEvaluationContext::ConstantEvaluated:
19063 case ExpressionEvaluationContext::ImmediateFunctionContext:
19064 // Relevant diagnostics should be produced by constant evaluation.
19065 break;
19066
19067 case ExpressionEvaluationContext::PotentiallyEvaluated:
19068 case ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
19069 return DiagIfReachable(Loc, Stmts, PD);
19070 }
19071
19072 return false;
19073}
19074
19075bool Sema::DiagRuntimeBehavior(SourceLocation Loc, const Stmt *Statement,
19076 const PartialDiagnostic &PD) {
19077 return DiagRuntimeBehavior(
19078 Loc, Statement ? llvm::makeArrayRef(Statement) : llvm::None, PD);
19079}
19080
19081bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
19082 CallExpr *CE, FunctionDecl *FD) {
19083 if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
19084 return false;
19085
19086 // If we're inside a decltype's expression, don't check for a valid return
19087 // type or construct temporaries until we know whether this is the last call.
19088 if (ExprEvalContexts.back().ExprContext ==
19089 ExpressionEvaluationContextRecord::EK_Decltype) {
19090 ExprEvalContexts.back().DelayedDecltypeCalls.push_back(CE);
19091 return false;
19092 }
19093
19094 class CallReturnIncompleteDiagnoser : public TypeDiagnoser {
19095 FunctionDecl *FD;
19096 CallExpr *CE;
19097
19098 public:
19099 CallReturnIncompleteDiagnoser(FunctionDecl *FD, CallExpr *CE)
19100 : FD(FD), CE(CE) { }
19101
19102 void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
19103 if (!FD) {
19104 S.Diag(Loc, diag::err_call_incomplete_return)
19105 << T << CE->getSourceRange();
19106 return;
19107 }
19108
19109 S.Diag(Loc, diag::err_call_function_incomplete_return)
19110 << CE->getSourceRange() << FD << T;
19111 S.Diag(FD->getLocation(), diag::note_entity_declared_at)
19112 << FD->getDeclName();
19113 }
19114 } Diagnoser(FD, CE);
19115
19116 if (RequireCompleteType(Loc, ReturnType, Diagnoser))
19117 return true;
19118
19119 return false;
19120}
19121
19122// Diagnose the s/=/==/ and s/\|=/!=/ typos. Note that adding parentheses
19123// will prevent this condition from triggering, which is what we want.
19124void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
19125 SourceLocation Loc;
19126
19127 unsigned diagnostic = diag::warn_condition_is_assignment;
19128 bool IsOrAssign = false;
19129
19130 if (BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
19131 if (Op->getOpcode() != BO_Assign && Op->getOpcode() != BO_OrAssign)
19132 return;
19133
19134 IsOrAssign = Op->getOpcode() == BO_OrAssign;
19135
19136 // Greylist some idioms by putting them into a warning subcategory.
19137 if (ObjCMessageExpr *ME
19138 = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
19139 Selector Sel = ME->getSelector();
19140
19141 // self = [<foo> init...]
19142 if (isSelfExpr(Op->getLHS()) && ME->getMethodFamily() == OMF_init)
19143 diagnostic = diag::warn_condition_is_idiomatic_assignment;
19144
19145 // <foo> = [<bar> nextObject]
19146 else if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "nextObject")
19147 diagnostic = diag::warn_condition_is_idiomatic_assignment;
19148 }
19149
19150 Loc = Op->getOperatorLoc();
19151 } else if (CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
19152 if (Op->getOperator() != OO_Equal && Op->getOperator() != OO_PipeEqual)
19153 return;
19154
19155 IsOrAssign = Op->getOperator() == OO_PipeEqual;
19156 Loc = Op->getOperatorLoc();
19157 } else if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E))
19158 return DiagnoseAssignmentAsCondition(POE->getSyntacticForm());
19159 else {
19160 // Not an assignment.
19161 return;
19162 }
19163
19164 Diag(Loc, diagnostic) << E->getSourceRange();
19165
19166 SourceLocation Open = E->getBeginLoc();
19167 SourceLocation Close = getLocForEndOfToken(E->getSourceRange().getEnd());
19168 Diag(Loc, diag::note_condition_assign_silence)
19169 << FixItHint::CreateInsertion(Open, "(")
19170 << FixItHint::CreateInsertion(Close, ")");
19171
19172 if (IsOrAssign)
19173 Diag(Loc, diag::note_condition_or_assign_to_comparison)
19174 << FixItHint::CreateReplacement(Loc, "!=");
19175 else
19176 Diag(Loc, diag::note_condition_assign_to_comparison)
19177 << FixItHint::CreateReplacement(Loc, "==");
19178}
19179
19180/// Redundant parentheses over an equality comparison can indicate
19181/// that the user intended an assignment used as condition.
19182void Sema::DiagnoseEqualityWithExtraParens(ParenExpr *ParenE) {
19183 // Don't warn if the parens came from a macro.
19184 SourceLocation parenLoc = ParenE->getBeginLoc();
19185 if (parenLoc.isInvalid() || parenLoc.isMacroID())
19186 return;
19187 // Don't warn for dependent expressions.
19188 if (ParenE->isTypeDependent())
19189 return;
19190
19191 Expr *E = ParenE->IgnoreParens();
19192
19193 if (BinaryOperator *opE = dyn_cast<BinaryOperator>(E))
19194 if (opE->getOpcode() == BO_EQ &&
19195 opE->getLHS()->IgnoreParenImpCasts()->isModifiableLvalue(Context)
19196 == Expr::MLV_Valid) {
19197 SourceLocation Loc = opE->getOperatorLoc();
19198
19199 Diag(Loc, diag::warn_equality_with_extra_parens) << E->getSourceRange();
19200 SourceRange ParenERange = ParenE->getSourceRange();
19201 Diag(Loc, diag::note_equality_comparison_silence)
19202 << FixItHint::CreateRemoval(ParenERange.getBegin())
19203 << FixItHint::CreateRemoval(ParenERange.getEnd());
19204 Diag(Loc, diag::note_equality_comparison_to_assign)
19205 << FixItHint::CreateReplacement(Loc, "=");
19206 }
19207}
19208
19209ExprResult Sema::CheckBooleanCondition(SourceLocation Loc, Expr *E,
19210 bool IsConstexpr) {
19211 DiagnoseAssignmentAsCondition(E);
19212 if (ParenExpr *parenE = dyn_cast<ParenExpr>(E))
19213 DiagnoseEqualityWithExtraParens(parenE);
19214
19215 ExprResult result = CheckPlaceholderExpr(E);
19216 if (result.isInvalid()) return ExprError();
19217 E = result.get();
19218
19219 if (!E->isTypeDependent()) {
19220 if (getLangOpts().CPlusPlus)
19221 return CheckCXXBooleanCondition(E, IsConstexpr); // C++ 6.4p4
19222
19223 ExprResult ERes = DefaultFunctionArrayLvalueConversion(E);
19224 if (ERes.isInvalid())
19225 return ExprError();
19226 E = ERes.get();
19227
19228 QualType T = E->getType();
19229 if (!T->isScalarType()) { // C99 6.8.4.1p1
19230 Diag(Loc, diag::err_typecheck_statement_requires_scalar)
19231 << T << E->getSourceRange();
19232 return ExprError();
19233 }
19234 CheckBoolLikeConversion(E, Loc);
19235 }
19236
19237 return E;
19238}
19239
19240Sema::ConditionResult Sema::ActOnCondition(Scope *S, SourceLocation Loc,
19241 Expr *SubExpr, ConditionKind CK,
19242 bool MissingOK) {
19243 // MissingOK indicates whether having no condition expression is valid
19244 // (for loop) or invalid (e.g. while loop).
19245 if (!SubExpr)
19246 return MissingOK ? ConditionResult() : ConditionError();
19247
19248 ExprResult Cond;
19249 switch (CK) {
19250 case ConditionKind::Boolean:
19251 Cond = CheckBooleanCondition(Loc, SubExpr);
19252 break;
19253
19254 case ConditionKind::ConstexprIf:
19255 Cond = CheckBooleanCondition(Loc, SubExpr, true);
19256 break;
19257
19258 case ConditionKind::Switch:
19259 Cond = CheckSwitchCondition(Loc, SubExpr);
19260 break;
19261 }
19262 if (Cond.isInvalid()) {
19263 Cond = CreateRecoveryExpr(SubExpr->getBeginLoc(), SubExpr->getEndLoc(),
19264 {SubExpr}, PreferredConditionType(CK));
19265 if (!Cond.get())
19266 return ConditionError();
19267 }
19268 // FIXME: FullExprArg doesn't have an invalid bit, so check nullness instead.
19269 FullExprArg FullExpr = MakeFullExpr(Cond.get(), Loc);
19270 if (!FullExpr.get())
19271 return ConditionError();
19272
19273 return ConditionResult(*this, nullptr, FullExpr,
19274 CK == ConditionKind::ConstexprIf);
19275}
19276
19277namespace {
19278 /// A visitor for rebuilding a call to an __unknown_any expression
19279 /// to have an appropriate type.
19280 struct RebuildUnknownAnyFunction
19281 : StmtVisitor<RebuildUnknownAnyFunction, ExprResult> {
19282
19283 Sema &S;
19284
19285 RebuildUnknownAnyFunction(Sema &S) : S(S) {}
19286
19287 ExprResult VisitStmt(Stmt *S) {
19288 llvm_unreachable("unexpected statement!")::llvm::llvm_unreachable_internal("unexpected statement!", "clang/lib/Sema/SemaExpr.cpp"
, 19288)
;
19289 }
19290
19291 ExprResult VisitExpr(Expr *E) {
19292 S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_call)
19293 << E->getSourceRange();
19294 return ExprError();
19295 }
19296
19297 /// Rebuild an expression which simply semantically wraps another
19298 /// expression which it shares the type and value kind of.
19299 template <class T> ExprResult rebuildSugarExpr(T *E) {
19300 ExprResult SubResult = Visit(E->getSubExpr());
19301 if (SubResult.isInvalid()) return ExprError();
19302
19303 Expr *SubExpr = SubResult.get();
19304 E->setSubExpr(SubExpr);
19305 E->setType(SubExpr->getType());
19306 E->setValueKind(SubExpr->getValueKind());
19307 assert(E->getObjectKind() == OK_Ordinary)(static_cast <bool> (E->getObjectKind() == OK_Ordinary
) ? void (0) : __assert_fail ("E->getObjectKind() == OK_Ordinary"
, "clang/lib/Sema/SemaExpr.cpp", 19307, __extension__ __PRETTY_FUNCTION__
))
;
19308 return E;
19309 }
19310
19311 ExprResult VisitParenExpr(ParenExpr *E) {
19312 return rebuildSugarExpr(E);
19313 }
19314
19315 ExprResult VisitUnaryExtension(UnaryOperator *E) {
19316 return rebuildSugarExpr(E);
19317 }
19318
19319 ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
19320 ExprResult SubResult = Visit(E->getSubExpr());
19321 if (SubResult.isInvalid()) return ExprError();
19322
19323 Expr *SubExpr = SubResult.get();
19324 E->setSubExpr(SubExpr);
19325 E->setType(S.Context.getPointerType(SubExpr->getType()));
19326 assert(E->isPRValue())(static_cast <bool> (E->isPRValue()) ? void (0) : __assert_fail
("E->isPRValue()", "clang/lib/Sema/SemaExpr.cpp", 19326, __extension__
__PRETTY_FUNCTION__))
;
19327 assert(E->getObjectKind() == OK_Ordinary)(static_cast <bool> (E->getObjectKind() == OK_Ordinary
) ? void (0) : __assert_fail ("E->getObjectKind() == OK_Ordinary"
, "clang/lib/Sema/SemaExpr.cpp", 19327, __extension__ __PRETTY_FUNCTION__
))
;
19328 return E;
19329 }
19330
19331 ExprResult resolveDecl(Expr *E, ValueDecl *VD) {
19332 if (!isa<FunctionDecl>(VD)) return VisitExpr(E);
19333
19334 E->setType(VD->getType());
19335
19336 assert(E->isPRValue())(static_cast <bool> (E->isPRValue()) ? void (0) : __assert_fail
("E->isPRValue()", "clang/lib/Sema/SemaExpr.cpp", 19336, __extension__
__PRETTY_FUNCTION__))
;
19337 if (S.getLangOpts().CPlusPlus &&
19338 !(isa<CXXMethodDecl>(VD) &&
19339 cast<CXXMethodDecl>(VD)->isInstance()))
19340 E->setValueKind(VK_LValue);
19341
19342 return E;
19343 }
19344
19345 ExprResult VisitMemberExpr(MemberExpr *E) {
19346 return resolveDecl(E, E->getMemberDecl());
19347 }
19348
19349 ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
19350 return resolveDecl(E, E->getDecl());
19351 }
19352 };
19353}
19354
19355/// Given a function expression of unknown-any type, try to rebuild it
19356/// to have a function type.
19357static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *FunctionExpr) {
19358 ExprResult Result = RebuildUnknownAnyFunction(S).Visit(FunctionExpr);
19359 if (Result.isInvalid()) return ExprError();
19360 return S.DefaultFunctionArrayConversion(Result.get());
19361}
19362
19363namespace {
19364 /// A visitor for rebuilding an expression of type __unknown_anytype
19365 /// into one which resolves the type directly on the referring
19366 /// expression. Strict preservation of the original source
19367 /// structure is not a goal.
19368 struct RebuildUnknownAnyExpr
19369 : StmtVisitor<RebuildUnknownAnyExpr, ExprResult> {
19370
19371 Sema &S;
19372
19373 /// The current destination type.
19374 QualType DestType;
19375
19376 RebuildUnknownAnyExpr(Sema &S, QualType CastType)
19377 : S(S), DestType(CastType) {}
19378
19379 ExprResult VisitStmt(Stmt *S) {
19380 llvm_unreachable("unexpected statement!")::llvm::llvm_unreachable_internal("unexpected statement!", "clang/lib/Sema/SemaExpr.cpp"
, 19380)
;
19381 }
19382
19383 ExprResult VisitExpr(Expr *E) {
19384 S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
19385 << E->getSourceRange();
19386 return ExprError();
19387 }
19388
19389 ExprResult VisitCallExpr(CallExpr *E);
19390 ExprResult VisitObjCMessageExpr(ObjCMessageExpr *E);
19391
19392 /// Rebuild an expression which simply semantically wraps another
19393 /// expression which it shares the type and value kind of.
19394 template <class T> ExprResult rebuildSugarExpr(T *E) {
19395 ExprResult SubResult = Visit(E->getSubExpr());
19396 if (SubResult.isInvalid()) return ExprError();
19397 Expr *SubExpr = SubResult.get();
19398 E->setSubExpr(SubExpr);
19399 E->setType(SubExpr->getType());
19400 E->setValueKind(SubExpr->getValueKind());
19401 assert(E->getObjectKind() == OK_Ordinary)(static_cast <bool> (E->getObjectKind() == OK_Ordinary
) ? void (0) : __assert_fail ("E->getObjectKind() == OK_Ordinary"
, "clang/lib/Sema/SemaExpr.cpp", 19401, __extension__ __PRETTY_FUNCTION__
))
;
19402 return E;
19403 }
19404
19405 ExprResult VisitParenExpr(ParenExpr *E) {
19406 return rebuildSugarExpr(E);
19407 }
19408
19409 ExprResult VisitUnaryExtension(UnaryOperator *E) {
19410 return rebuildSugarExpr(E);
19411 }
19412
19413 ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
19414 const PointerType *Ptr = DestType->getAs<PointerType>();
19415 if (!Ptr) {
19416 S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof)
19417 << E->getSourceRange();
19418 return ExprError();
19419 }
19420
19421 if (isa<CallExpr>(E->getSubExpr())) {
19422 S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof_call)
19423 << E->getSourceRange();
19424 return ExprError();
19425 }
19426
19427 assert(E->isPRValue())(static_cast <bool> (E->isPRValue()) ? void (0) : __assert_fail
("E->isPRValue()", "clang/lib/Sema/SemaExpr.cpp", 19427, __extension__
__PRETTY_FUNCTION__))
;
19428 assert(E->getObjectKind() == OK_Ordinary)(static_cast <bool> (E->getObjectKind() == OK_Ordinary
) ? void (0) : __assert_fail ("E->getObjectKind() == OK_Ordinary"
, "clang/lib/Sema/SemaExpr.cpp", 19428, __extension__ __PRETTY_FUNCTION__
))
;
19429 E->setType(DestType);
19430
19431 // Build the sub-expression as if it were an object of the pointee type.
19432 DestType = Ptr->getPointeeType();
19433 ExprResult SubResult = Visit(E->getSubExpr());
19434 if (SubResult.isInvalid()) return ExprError();
19435 E->setSubExpr(SubResult.get());
19436 return E;
19437 }
19438
19439 ExprResult VisitImplicitCastExpr(ImplicitCastExpr *E);
19440
19441 ExprResult resolveDecl(Expr *E, ValueDecl *VD);
19442
19443 ExprResult VisitMemberExpr(MemberExpr *E) {
19444 return resolveDecl(E, E->getMemberDecl());
19445 }
19446
19447 ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
19448 return resolveDecl(E, E->getDecl());
19449 }
19450 };
19451}
19452
19453/// Rebuilds a call expression which yielded __unknown_anytype.
19454ExprResult RebuildUnknownAnyExpr::VisitCallExpr(CallExpr *E) {
19455 Expr *CalleeExpr = E->getCallee();
19456
19457 enum FnKind {
19458 FK_MemberFunction,
19459 FK_FunctionPointer,
19460 FK_BlockPointer
19461 };
19462
19463 FnKind Kind;
19464 QualType CalleeType = CalleeExpr->getType();
19465 if (CalleeType == S.Context.BoundMemberTy) {
19466 assert(isa<CXXMemberCallExpr>(E) || isa<CXXOperatorCallExpr>(E))(static_cast <bool> (isa<CXXMemberCallExpr>(E) ||
isa<CXXOperatorCallExpr>(E)) ? void (0) : __assert_fail
("isa<CXXMemberCallExpr>(E) || isa<CXXOperatorCallExpr>(E)"
, "clang/lib/Sema/SemaExpr.cpp", 19466, __extension__ __PRETTY_FUNCTION__
))
;
19467 Kind = FK_MemberFunction;
19468 CalleeType = Expr::findBoundMemberType(CalleeExpr);
19469 } else if (const PointerType *Ptr = CalleeType->getAs<PointerType>()) {
19470 CalleeType = Ptr->getPointeeType();
19471 Kind = FK_FunctionPointer;
19472 } else {
19473 CalleeType = CalleeType->castAs<BlockPointerType>()->getPointeeType();
19474 Kind = FK_BlockPointer;
19475 }
19476 const FunctionType *FnType = CalleeType->castAs<FunctionType>();
19477
19478 // Verify that this is a legal result type of a function.
19479 if (DestType->isArrayType() || DestType->isFunctionType()) {
19480 unsigned diagID = diag::err_func_returning_array_function;
19481 if (Kind == FK_BlockPointer)
19482 diagID = diag::err_block_returning_array_function;
19483
19484 S.Diag(E->getExprLoc(), diagID)
19485 << DestType->isFunctionType() << DestType;
19486 return ExprError();
19487 }
19488
19489 // Otherwise, go ahead and set DestType as the call's result.
19490 E->setType(DestType.getNonLValueExprType(S.Context));
19491 E->setValueKind(Expr::getValueKindForType(DestType));
19492 assert(E->getObjectKind() == OK_Ordinary)(static_cast <bool> (E->getObjectKind() == OK_Ordinary
) ? void (0) : __assert_fail ("E->getObjectKind() == OK_Ordinary"
, "clang/lib/Sema/SemaExpr.cpp", 19492, __extension__ __PRETTY_FUNCTION__
))
;
19493
19494 // Rebuild the function type, replacing the result type with DestType.
19495 const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FnType);
19496 if (Proto) {
19497 // __unknown_anytype(...) is a special case used by the debugger when
19498 // it has no idea what a function's signature is.
19499 //
19500 // We want to build this call essentially under the K&R
19501 // unprototyped rules, but making a FunctionNoProtoType in C++
19502 // would foul up all sorts of assumptions. However, we cannot
19503 // simply pass all arguments as variadic arguments, nor can we
19504 // portably just call the function under a non-variadic type; see
19505 // the comment on IR-gen's TargetInfo::isNoProtoCallVariadic.
19506 // However, it turns out that in practice it is generally safe to
19507 // call a function declared as "A foo(B,C,D);" under the prototype
19508 // "A foo(B,C,D,...);". The only known exception is with the
19509 // Windows ABI, where any variadic function is implicitly cdecl
19510 // regardless of its normal CC. Therefore we change the parameter
19511 // types to match the types of the arguments.
19512 //
19513 // This is a hack, but it is far superior to moving the
19514 // corresponding target-specific code from IR-gen to Sema/AST.
19515
19516 ArrayRef<QualType> ParamTypes = Proto->getParamTypes();
19517 SmallVector<QualType, 8> ArgTypes;
19518 if (ParamTypes.empty() && Proto->isVariadic()) { // the special case
19519 ArgTypes.reserve(E->getNumArgs());
19520 for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
19521 ArgTypes.push_back(S.Context.getReferenceQualifiedType(E->getArg(i)));
19522 }
19523 ParamTypes = ArgTypes;
19524 }
19525 DestType = S.Context.getFunctionType(DestType, ParamTypes,
19526 Proto->getExtProtoInfo());
19527 } else {
19528 DestType = S.Context.getFunctionNoProtoType(DestType,
19529 FnType->getExtInfo());
19530 }
19531
19532 // Rebuild the appropriate pointer-to-function type.
19533 switch (Kind) {
19534 case FK_MemberFunction:
19535 // Nothing to do.
19536 break;
19537
19538 case FK_FunctionPointer:
19539 DestType = S.Context.getPointerType(DestType);
19540 break;
19541
19542 case FK_BlockPointer:
19543 DestType = S.Context.getBlockPointerType(DestType);
19544 break;
19545 }
19546
19547 // Finally, we can recurse.
19548 ExprResult CalleeResult = Visit(CalleeExpr);
19549 if (!CalleeResult.isUsable()) return ExprError();
19550 E->setCallee(CalleeResult.get());
19551
19552 // Bind a temporary if necessary.
19553 return S.MaybeBindToTemporary(E);
19554}
19555
19556ExprResult RebuildUnknownAnyExpr::VisitObjCMessageExpr(ObjCMessageExpr *E) {
19557 // Verify that this is a legal result type of a call.
19558 if (DestType->isArrayType() || DestType->isFunctionType()) {
19559 S.Diag(E->getExprLoc(), diag::err_func_returning_array_function)
19560 << DestType->isFunctionType() << DestType;
19561 return ExprError();
19562 }
19563
19564 // Rewrite the method result type if available.
19565 if (ObjCMethodDecl *Method = E->getMethodDecl()) {
19566 assert(Method->getReturnType() == S.Context.UnknownAnyTy)(static_cast <bool> (Method->getReturnType() == S.Context
.UnknownAnyTy) ? void (0) : __assert_fail ("Method->getReturnType() == S.Context.UnknownAnyTy"
, "clang/lib/Sema/SemaExpr.cpp", 19566, __extension__ __PRETTY_FUNCTION__
))
;
19567 Method->setReturnType(DestType);
19568 }
19569
19570 // Change the type of the message.
19571 E->setType(DestType.getNonReferenceType());
19572 E->setValueKind(Expr::getValueKindForType(DestType));
19573
19574 return S.MaybeBindToTemporary(E);
19575}
19576
19577ExprResult RebuildUnknownAnyExpr::VisitImplicitCastExpr(ImplicitCastExpr *E) {
19578 // The only case we should ever see here is a function-to-pointer decay.
19579 if (E->getCastKind() == CK_FunctionToPointerDecay) {
19580 assert(E->isPRValue())(static_cast <bool> (E->isPRValue()) ? void (0) : __assert_fail
("E->isPRValue()", "clang/lib/Sema/SemaExpr.cpp", 19580, __extension__
__PRETTY_FUNCTION__))
;
19581 assert(E->getObjectKind() == OK_Ordinary)(static_cast <bool> (E->getObjectKind() == OK_Ordinary
) ? void (0) : __assert_fail ("E->getObjectKind() == OK_Ordinary"
, "clang/lib/Sema/SemaExpr.cpp", 19581, __extension__ __PRETTY_FUNCTION__
))
;
19582
19583 E->setType(DestType);
19584
19585 // Rebuild the sub-expression as the pointee (function) type.
19586 DestType = DestType->castAs<PointerType>()->getPointeeType();
19587
19588 ExprResult Result = Visit(E->getSubExpr());
19589 if (!Result.isUsable()) return ExprError();
19590
19591 E->setSubExpr(Result.get());
19592 return E;
19593 } else if (E->getCastKind() == CK_LValueToRValue) {
19594 assert(E->isPRValue())(static_cast <bool> (E->isPRValue()) ? void (0) : __assert_fail
("E->isPRValue()", "clang/lib/Sema/SemaExpr.cpp", 19594, __extension__
__PRETTY_FUNCTION__))
;
19595 assert(E->getObjectKind() == OK_Ordinary)(static_cast <bool> (E->getObjectKind() == OK_Ordinary
) ? void (0) : __assert_fail ("E->getObjectKind() == OK_Ordinary"
, "clang/lib/Sema/SemaExpr.cpp", 19595, __extension__ __PRETTY_FUNCTION__
))
;
19596
19597 assert(isa<BlockPointerType>(E->getType()))(static_cast <bool> (isa<BlockPointerType>(E->
getType())) ? void (0) : __assert_fail ("isa<BlockPointerType>(E->getType())"
, "clang/lib/Sema/SemaExpr.cpp", 19597, __extension__ __PRETTY_FUNCTION__
))
;
19598
19599 E->setType(DestType);
19600
19601 // The sub-expression has to be a lvalue reference, so rebuild it as such.
19602 DestType = S.Context.getLValueReferenceType(DestType);
19603
19604 ExprResult Result = Visit(E->getSubExpr());
19605 if (!Result.isUsable()) return ExprError();
19606
19607 E->setSubExpr(Result.get());
19608 return E;
19609 } else {
19610 llvm_unreachable("Unhandled cast type!")::llvm::llvm_unreachable_internal("Unhandled cast type!", "clang/lib/Sema/SemaExpr.cpp"
, 19610)
;
19611 }
19612}
19613
19614ExprResult RebuildUnknownAnyExpr::resolveDecl(Expr *E, ValueDecl *VD) {
19615 ExprValueKind ValueKind = VK_LValue;
19616 QualType Type = DestType;
19617
19618 // We know how to make this work for certain kinds of decls:
19619
19620 // - functions
19621 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(VD)) {
19622 if (const PointerType *Ptr = Type->getAs<PointerType>()) {
19623 DestType = Ptr->getPointeeType();
19624 ExprResult Result = resolveDecl(E, VD);
19625 if (Result.isInvalid()) return ExprError();
19626 return S.ImpCastExprToType(Result.get(), Type, CK_FunctionToPointerDecay,
19627 VK_PRValue);
19628 }
19629
19630 if (!Type->isFunctionType()) {
19631 S.Diag(E->getExprLoc(), diag::err_unknown_any_function)
19632 << VD << E->getSourceRange();
19633 return ExprError();
19634 }
19635 if (const FunctionProtoType *FT = Type->getAs<FunctionProtoType>()) {
19636 // We must match the FunctionDecl's type to the hack introduced in
19637 // RebuildUnknownAnyExpr::VisitCallExpr to vararg functions of unknown
19638 // type. See the lengthy commentary in that routine.
19639 QualType FDT = FD->getType();
19640 const FunctionType *FnType = FDT->castAs<FunctionType>();
19641 const FunctionProtoType *Proto = dyn_cast_or_null<FunctionProtoType>(FnType);
19642 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
19643 if (DRE && Proto && Proto->getParamTypes().empty() && Proto->isVariadic()) {
19644 SourceLocation Loc = FD->getLocation();
19645 FunctionDecl *NewFD = FunctionDecl::Create(
19646 S.Context, FD->getDeclContext(), Loc, Loc,
19647 FD->getNameInfo().getName(), DestType, FD->getTypeSourceInfo(),
19648 SC_None, S.getCurFPFeatures().isFPConstrained(),
19649 false /*isInlineSpecified*/, FD->hasPrototype(),
19650 /*ConstexprKind*/ ConstexprSpecKind::Unspecified);
19651
19652 if (FD->getQualifier())
19653 NewFD->setQualifierInfo(FD->getQualifierLoc());
19654
19655 SmallVector<ParmVarDecl*, 16> Params;
19656 for (const auto &AI : FT->param_types()) {
19657 ParmVarDecl *Param =
19658 S.BuildParmVarDeclForTypedef(FD, Loc, AI);
19659 Param->setScopeInfo(0, Params.size());
19660 Params.push_back(Param);
19661 }
19662 NewFD->setParams(Params);
19663 DRE->setDecl(NewFD);
19664 VD = DRE->getDecl();
19665 }
19666 }
19667
19668 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
19669 if (MD->isInstance()) {
19670 ValueKind = VK_PRValue;
19671 Type = S.Context.BoundMemberTy;
19672 }
19673
19674 // Function references aren't l-values in C.
19675 if (!S.getLangOpts().CPlusPlus)
19676 ValueKind = VK_PRValue;
19677
19678 // - variables
19679 } else if (isa<VarDecl>(VD)) {
19680 if (const ReferenceType *RefTy = Type->getAs<ReferenceType>()) {
19681 Type = RefTy->getPointeeType();
19682 } else if (Type->isFunctionType()) {
19683 S.Diag(E->getExprLoc(), diag::err_unknown_any_var_function_type)
19684 << VD << E->getSourceRange();
19685 return ExprError();
19686 }
19687
19688 // - nothing else
19689 } else {
19690 S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_decl)
19691 << VD << E->getSourceRange();
19692 return ExprError();
19693 }
19694
19695 // Modifying the declaration like this is friendly to IR-gen but
19696 // also really dangerous.
19697 VD->setType(DestType);
19698 E->setType(Type);
19699 E->setValueKind(ValueKind);
19700 return E;
19701}
19702
19703/// Check a cast of an unknown-any type. We intentionally only
19704/// trigger this for C-style casts.
19705ExprResult Sema::checkUnknownAnyCast(SourceRange TypeRange, QualType CastType,
19706 Expr *CastExpr, CastKind &CastKind,
19707 ExprValueKind &VK, CXXCastPath &Path) {
19708 // The type we're casting to must be either void or complete.
19709 if (!CastType->isVoidType() &&
19710 RequireCompleteType(TypeRange.getBegin(), CastType,
19711 diag::err_typecheck_cast_to_incomplete))
19712 return ExprError();
19713
19714 // Rewrite the casted expression from scratch.
19715 ExprResult result = RebuildUnknownAnyExpr(*this, CastType).Visit(CastExpr);
19716 if (!result.isUsable()) return ExprError();
19717
19718 CastExpr = result.get();
19719 VK = CastExpr->getValueKind();
19720 CastKind = CK_NoOp;
19721
19722 return CastExpr;
19723}
19724
19725ExprResult Sema::forceUnknownAnyToType(Expr *E, QualType ToType) {
19726 return RebuildUnknownAnyExpr(*this, ToType).Visit(E);
19727}
19728
19729ExprResult Sema::checkUnknownAnyArg(SourceLocation callLoc,
19730 Expr *arg, QualType &paramType) {
19731 // If the syntactic form of the argument is not an explicit cast of
19732 // any sort, just do default argument promotion.
19733 ExplicitCastExpr *castArg = dyn_cast<ExplicitCastExpr>(arg->IgnoreParens());
19734 if (!castArg) {
19735 ExprResult result = DefaultArgumentPromotion(arg);
19736 if (result.isInvalid()) return ExprError();
19737 paramType = result.get()->getType();
19738 return result;
19739 }
19740
19741 // Otherwise, use the type that was written in the explicit cast.
19742 assert(!arg->hasPlaceholderType())(static_cast <bool> (!arg->hasPlaceholderType()) ? void
(0) : __assert_fail ("!arg->hasPlaceholderType()", "clang/lib/Sema/SemaExpr.cpp"
, 19742, __extension__ __PRETTY_FUNCTION__))
;
19743 paramType = castArg->getTypeAsWritten();
19744
19745 // Copy-initialize a parameter of that type.
19746 InitializedEntity entity =
19747 InitializedEntity::InitializeParameter(Context, paramType,
19748 /*consumed*/ false);
19749 return PerformCopyInitialization(entity, callLoc, arg);
19750}
19751
19752static ExprResult diagnoseUnknownAnyExpr(Sema &S, Expr *E) {
19753 Expr *orig = E;
19754 unsigned diagID = diag::err_uncasted_use_of_unknown_any;
19755 while (true) {
19756 E = E->IgnoreParenImpCasts();
19757 if (CallExpr *call = dyn_cast<CallExpr>(E)) {
19758 E = call->getCallee();
19759 diagID = diag::err_uncasted_call_of_unknown_any;
19760 } else {
19761 break;
19762 }
19763 }
19764
19765 SourceLocation loc;
19766 NamedDecl *d;
19767 if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(E)) {
19768 loc = ref->getLocation();
19769 d = ref->getDecl();
19770 } else if (MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
19771 loc = mem->getMemberLoc();
19772 d = mem->getMemberDecl();
19773 } else if (ObjCMessageExpr *msg = dyn_cast<ObjCMessageExpr>(E)) {
19774 diagID = diag::err_uncasted_call_of_unknown_any;
19775 loc = msg->getSelectorStartLoc();
19776 d = msg->getMethodDecl();
19777 if (!d) {
19778 S.Diag(loc, diag::err_uncasted_send_to_unknown_any_method)
19779 << static_cast<unsigned>(msg->isClassMessage()) << msg->getSelector()
19780 << orig->getSourceRange();
19781 return ExprError();
19782 }
19783 } else {
19784 S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
19785 << E->getSourceRange();
19786 return ExprError();
19787 }
19788
19789 S.Diag(loc, diagID) << d << orig->getSourceRange();
19790
19791 // Never recoverable.
19792 return ExprError();
19793}
19794
19795/// Check for operands with placeholder types and complain if found.
19796/// Returns ExprError() if there was an error and no recovery was possible.
19797ExprResult Sema::CheckPlaceholderExpr(Expr *E) {
19798 if (!Context.isDependenceAllowed()) {
19799 // C cannot handle TypoExpr nodes on either side of a binop because it
19800 // doesn't handle dependent types properly, so make sure any TypoExprs have
19801 // been dealt with before checking the operands.
19802 ExprResult Result = CorrectDelayedTyposInExpr(E);
19803 if (!Result.isUsable()) return ExprError();
19804 E = Result.get();
19805 }
19806
19807 const BuiltinType *placeholderType = E->getType()->getAsPlaceholderType();
19808 if (!placeholderType) return E;
19809
19810 switch (placeholderType->getKind()) {
19811
19812 // Overloaded expressions.
19813 case BuiltinType::Overload: {
19814 // Try to resolve a single function template specialization.
19815 // This is obligatory.
19816 ExprResult Result = E;
19817 if (ResolveAndFixSingleFunctionTemplateSpecialization(Result, false))
19818 return Result;
19819
19820 // No guarantees that ResolveAndFixSingleFunctionTemplateSpecialization
19821 // leaves Result unchanged on failure.
19822 Result = E;
19823 if (resolveAndFixAddressOfSingleOverloadCandidate(Result))
19824 return Result;
19825
19826 // If that failed, try to recover with a call.
19827 tryToRecoverWithCall(Result, PDiag(diag::err_ovl_unresolvable),
19828 /*complain*/ true);
19829 return Result;
19830 }
19831
19832 // Bound member functions.
19833 case BuiltinType::BoundMember: {
19834 ExprResult result = E;
19835 const Expr *BME = E->IgnoreParens();
19836 PartialDiagnostic PD = PDiag(diag::err_bound_member_function);
19837 // Try to give a nicer diagnostic if it is a bound member that we recognize.
19838 if (isa<CXXPseudoDestructorExpr>(BME)) {
19839 PD = PDiag(diag::err_dtor_expr_without_call) << /*pseudo-destructor*/ 1;
19840 } else if (const auto *ME = dyn_cast<MemberExpr>(BME)) {
19841 if (ME->getMemberNameInfo().getName().getNameKind() ==
19842 DeclarationName::CXXDestructorName)
19843 PD = PDiag(diag::err_dtor_expr_without_call) << /*destructor*/ 0;
19844 }
19845 tryToRecoverWithCall(result, PD,
19846 /*complain*/ true);
19847 return result;
19848 }
19849
19850 // ARC unbridged casts.
19851 case BuiltinType::ARCUnbridgedCast: {
19852 Expr *realCast = stripARCUnbridgedCast(E);
19853 diagnoseARCUnbridgedCast(realCast);
19854 return realCast;
19855 }
19856
19857 // Expressions of unknown type.
19858 case BuiltinType::UnknownAny:
19859 return diagnoseUnknownAnyExpr(*this, E);
19860
19861 // Pseudo-objects.
19862 case BuiltinType::PseudoObject:
19863 return checkPseudoObjectRValue(E);
19864
19865 case BuiltinType::BuiltinFn: {
19866 // Accept __noop without parens by implicitly converting it to a call expr.
19867 auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
19868 if (DRE) {
19869 auto *FD = cast<FunctionDecl>(DRE->getDecl());
19870 if (FD->getBuiltinID() == Builtin::BI__noop) {
19871 E = ImpCastExprToType(E, Context.getPointerType(FD->getType()),
19872 CK_BuiltinFnToFnPtr)
19873 .get();
19874 return CallExpr::Create(Context, E, /*Args=*/{}, Context.IntTy,
19875 VK_PRValue, SourceLocation(),
19876 FPOptionsOverride());
19877 }
19878 }
19879
19880 Diag(E->getBeginLoc(), diag::err_builtin_fn_use);
19881 return ExprError();
19882 }
19883
19884 case BuiltinType::IncompleteMatrixIdx:
19885 Diag(cast<MatrixSubscriptExpr>(E->IgnoreParens())
19886 ->getRowIdx()
19887 ->getBeginLoc(),
19888 diag::err_matrix_incomplete_index);
19889 return ExprError();
19890
19891 // Expressions of unknown type.
19892 case BuiltinType::OMPArraySection:
19893 Diag(E->getBeginLoc(), diag::err_omp_array_section_use);
19894 return ExprError();
19895
19896 // Expressions of unknown type.
19897 case BuiltinType::OMPArrayShaping:
19898 return ExprError(Diag(E->getBeginLoc(), diag::err_omp_array_shaping_use));
19899
19900 case BuiltinType::OMPIterator:
19901 return ExprError(Diag(E->getBeginLoc(), diag::err_omp_iterator_use));
19902
19903 // Everything else should be impossible.
19904#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
19905 case BuiltinType::Id:
19906#include "clang/Basic/OpenCLImageTypes.def"
19907#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
19908 case BuiltinType::Id:
19909#include "clang/Basic/OpenCLExtensionTypes.def"
19910#define SVE_TYPE(Name, Id, SingletonId) \
19911 case BuiltinType::Id:
19912#include "clang/Basic/AArch64SVEACLETypes.def"
19913#define PPC_VECTOR_TYPE(Name, Id, Size) \
19914 case BuiltinType::Id:
19915#include "clang/Basic/PPCTypes.def"
19916#define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
19917#include "clang/Basic/RISCVVTypes.def"
19918#define BUILTIN_TYPE(Id, SingletonId) case BuiltinType::Id:
19919#define PLACEHOLDER_TYPE(Id, SingletonId)
19920#include "clang/AST/BuiltinTypes.def"
19921 break;
19922 }
19923
19924 llvm_unreachable("invalid placeholder type!")::llvm::llvm_unreachable_internal("invalid placeholder type!"
, "clang/lib/Sema/SemaExpr.cpp", 19924)
;
19925}
19926
19927bool Sema::CheckCaseExpression(Expr *E) {
19928 if (E->isTypeDependent())
19929 return true;
19930 if (E->isValueDependent() || E->isIntegerConstantExpr(Context))
19931 return E->getType()->isIntegralOrEnumerationType();
19932 return false;
19933}
19934
19935/// ActOnObjCBoolLiteral - Parse {__objc_yes,__objc_no} literals.
19936ExprResult
19937Sema::ActOnObjCBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
19938 assert((Kind == tok::kw___objc_yes || Kind == tok::kw___objc_no) &&(static_cast <bool> ((Kind == tok::kw___objc_yes || Kind
== tok::kw___objc_no) && "Unknown Objective-C Boolean value!"
) ? void (0) : __assert_fail ("(Kind == tok::kw___objc_yes || Kind == tok::kw___objc_no) && \"Unknown Objective-C Boolean value!\""
, "clang/lib/Sema/SemaExpr.cpp", 19939, __extension__ __PRETTY_FUNCTION__
))
19939 "Unknown Objective-C Boolean value!")(static_cast <bool> ((Kind == tok::kw___objc_yes || Kind
== tok::kw___objc_no) && "Unknown Objective-C Boolean value!"
) ? void (0) : __assert_fail ("(Kind == tok::kw___objc_yes || Kind == tok::kw___objc_no) && \"Unknown Objective-C Boolean value!\""
, "clang/lib/Sema/SemaExpr.cpp", 19939, __extension__ __PRETTY_FUNCTION__
))
;
19940 QualType BoolT = Context.ObjCBuiltinBoolTy;
19941 if (!Context.getBOOLDecl()) {
19942 LookupResult Result(*this, &Context.Idents.get("BOOL"), OpLoc,
19943 Sema::LookupOrdinaryName);
19944 if (LookupName(Result, getCurScope()) && Result.isSingleResult()) {
19945 NamedDecl *ND = Result.getFoundDecl();
19946 if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND))
19947 Context.setBOOLDecl(TD);
19948 }
19949 }
19950 if (Context.getBOOLDecl())
19951 BoolT = Context.getBOOLType();
19952 return new (Context)
19953 ObjCBoolLiteralExpr(Kind == tok::kw___objc_yes, BoolT, OpLoc);
19954}
19955
19956ExprResult Sema::ActOnObjCAvailabilityCheckExpr(
19957 llvm::ArrayRef<AvailabilitySpec> AvailSpecs, SourceLocation AtLoc,
19958 SourceLocation RParen) {
19959 auto FindSpecVersion = [&](StringRef Platform) -> Optional<VersionTuple> {
19960 auto Spec = llvm::find_if(AvailSpecs, [&](const AvailabilitySpec &Spec) {
19961 return Spec.getPlatform() == Platform;
19962 });
19963 // Transcribe the "ios" availability check to "maccatalyst" when compiling
19964 // for "maccatalyst" if "maccatalyst" is not specified.
19965 if (Spec == AvailSpecs.end() && Platform == "maccatalyst") {
19966 Spec = llvm::find_if(AvailSpecs, [&](const AvailabilitySpec &Spec) {
19967 return Spec.getPlatform() == "ios";
19968 });
19969 }
19970 if (Spec == AvailSpecs.end())
19971 return None;
19972 return Spec->getVersion();
19973 };
19974
19975 VersionTuple Version;
19976 if (auto MaybeVersion =
19977 FindSpecVersion(Context.getTargetInfo().getPlatformName()))
19978 Version = *MaybeVersion;
19979
19980 // The use of `@available` in the enclosing context should be analyzed to
19981 // warn when it's used inappropriately (i.e. not if(@available)).
19982 if (FunctionScopeInfo *Context = getCurFunctionAvailabilityContext())
19983 Context->HasPotentialAvailabilityViolations = true;
19984
19985 return new (Context)
19986 ObjCAvailabilityCheckExpr(Version, AtLoc, RParen, Context.BoolTy);
19987}
19988
19989ExprResult Sema::CreateRecoveryExpr(SourceLocation Begin, SourceLocation End,
19990 ArrayRef<Expr *> SubExprs, QualType T) {
19991 if (!Context.getLangOpts().RecoveryAST)
19992 return ExprError();
19993
19994 if (isSFINAEContext())
19995 return ExprError();
19996
19997 if (T.isNull() || T->isUndeducedType() ||
19998 !Context.getLangOpts().RecoveryASTType)
19999 // We don't know the concrete type, fallback to dependent type.
20000 T = Context.DependentTy;
20001
20002 return RecoveryExpr::Create(Context, T, Begin, End, SubExprs);
20003}