Bug Summary

File:tools/clang/lib/Sema/SemaExprCXX.cpp
Warning:line 3305, column 24
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SemaExprCXX.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -mframe-pointer=none -relaxed-aliasing -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-10/lib/clang/10.0.0 -D CLANG_VENDOR="Debian " -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-10~svn374877/build-llvm/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include -I /build/llvm-toolchain-snapshot-10~svn374877/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-10~svn374877/build-llvm/include -I /build/llvm-toolchain-snapshot-10~svn374877/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-10/lib/clang/10.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-10~svn374877/build-llvm/tools/clang/lib/Sema -fdebug-prefix-map=/build/llvm-toolchain-snapshot-10~svn374877=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fobjc-runtime=gcc -fno-common -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -o /tmp/scan-build-2019-10-15-233810-7101-1 -x c++ /build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp

/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp

1//===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// Implements semantic analysis for C++ expressions.
11///
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "TreeTransform.h"
16#include "TypeLocBuilder.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/ASTLambda.h"
19#include "clang/AST/CXXInheritance.h"
20#include "clang/AST/CharUnits.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/ExprObjC.h"
24#include "clang/AST/RecursiveASTVisitor.h"
25#include "clang/AST/TypeLoc.h"
26#include "clang/Basic/AlignedAllocation.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Basic/TargetInfo.h"
29#include "clang/Lex/Preprocessor.h"
30#include "clang/Sema/DeclSpec.h"
31#include "clang/Sema/Initialization.h"
32#include "clang/Sema/Lookup.h"
33#include "clang/Sema/ParsedTemplate.h"
34#include "clang/Sema/Scope.h"
35#include "clang/Sema/ScopeInfo.h"
36#include "clang/Sema/SemaLambda.h"
37#include "clang/Sema/TemplateDeduction.h"
38#include "llvm/ADT/APInt.h"
39#include "llvm/ADT/STLExtras.h"
40#include "llvm/Support/ErrorHandling.h"
41using namespace clang;
42using namespace sema;
43
44/// Handle the result of the special case name lookup for inheriting
45/// constructor declarations. 'NS::X::X' and 'NS::X<...>::X' are treated as
46/// constructor names in member using declarations, even if 'X' is not the
47/// name of the corresponding type.
48ParsedType Sema::getInheritingConstructorName(CXXScopeSpec &SS,
49 SourceLocation NameLoc,
50 IdentifierInfo &Name) {
51 NestedNameSpecifier *NNS = SS.getScopeRep();
52
53 // Convert the nested-name-specifier into a type.
54 QualType Type;
55 switch (NNS->getKind()) {
56 case NestedNameSpecifier::TypeSpec:
57 case NestedNameSpecifier::TypeSpecWithTemplate:
58 Type = QualType(NNS->getAsType(), 0);
59 break;
60
61 case NestedNameSpecifier::Identifier:
62 // Strip off the last layer of the nested-name-specifier and build a
63 // typename type for it.
64 assert(NNS->getAsIdentifier() == &Name && "not a constructor name")((NNS->getAsIdentifier() == &Name && "not a constructor name"
) ? static_cast<void> (0) : __assert_fail ("NNS->getAsIdentifier() == &Name && \"not a constructor name\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 64, __PRETTY_FUNCTION__))
;
65 Type = Context.getDependentNameType(ETK_None, NNS->getPrefix(),
66 NNS->getAsIdentifier());
67 break;
68
69 case NestedNameSpecifier::Global:
70 case NestedNameSpecifier::Super:
71 case NestedNameSpecifier::Namespace:
72 case NestedNameSpecifier::NamespaceAlias:
73 llvm_unreachable("Nested name specifier is not a type for inheriting ctor")::llvm::llvm_unreachable_internal("Nested name specifier is not a type for inheriting ctor"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 73)
;
74 }
75
76 // This reference to the type is located entirely at the location of the
77 // final identifier in the qualified-id.
78 return CreateParsedType(Type,
79 Context.getTrivialTypeSourceInfo(Type, NameLoc));
80}
81
82ParsedType Sema::getConstructorName(IdentifierInfo &II,
83 SourceLocation NameLoc,
84 Scope *S, CXXScopeSpec &SS,
85 bool EnteringContext) {
86 CXXRecordDecl *CurClass = getCurrentClass(S, &SS);
87 assert(CurClass && &II == CurClass->getIdentifier() &&((CurClass && &II == CurClass->getIdentifier()
&& "not a constructor name") ? static_cast<void>
(0) : __assert_fail ("CurClass && &II == CurClass->getIdentifier() && \"not a constructor name\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 88, __PRETTY_FUNCTION__))
88 "not a constructor name")((CurClass && &II == CurClass->getIdentifier()
&& "not a constructor name") ? static_cast<void>
(0) : __assert_fail ("CurClass && &II == CurClass->getIdentifier() && \"not a constructor name\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 88, __PRETTY_FUNCTION__))
;
89
90 // When naming a constructor as a member of a dependent context (eg, in a
91 // friend declaration or an inherited constructor declaration), form an
92 // unresolved "typename" type.
93 if (CurClass->isDependentContext() && !EnteringContext && SS.getScopeRep()) {
94 QualType T = Context.getDependentNameType(ETK_None, SS.getScopeRep(), &II);
95 return ParsedType::make(T);
96 }
97
98 if (SS.isNotEmpty() && RequireCompleteDeclContext(SS, CurClass))
99 return ParsedType();
100
101 // Find the injected-class-name declaration. Note that we make no attempt to
102 // diagnose cases where the injected-class-name is shadowed: the only
103 // declaration that can validly shadow the injected-class-name is a
104 // non-static data member, and if the class contains both a non-static data
105 // member and a constructor then it is ill-formed (we check that in
106 // CheckCompletedCXXClass).
107 CXXRecordDecl *InjectedClassName = nullptr;
108 for (NamedDecl *ND : CurClass->lookup(&II)) {
109 auto *RD = dyn_cast<CXXRecordDecl>(ND);
110 if (RD && RD->isInjectedClassName()) {
111 InjectedClassName = RD;
112 break;
113 }
114 }
115 if (!InjectedClassName) {
116 if (!CurClass->isInvalidDecl()) {
117 // FIXME: RequireCompleteDeclContext doesn't check dependent contexts
118 // properly. Work around it here for now.
119 Diag(SS.getLastQualifierNameLoc(),
120 diag::err_incomplete_nested_name_spec) << CurClass << SS.getRange();
121 }
122 return ParsedType();
123 }
124
125 QualType T = Context.getTypeDeclType(InjectedClassName);
126 DiagnoseUseOfDecl(InjectedClassName, NameLoc);
127 MarkAnyDeclReferenced(NameLoc, InjectedClassName, /*OdrUse=*/false);
128
129 return ParsedType::make(T);
130}
131
132ParsedType Sema::getDestructorName(SourceLocation TildeLoc,
133 IdentifierInfo &II,
134 SourceLocation NameLoc,
135 Scope *S, CXXScopeSpec &SS,
136 ParsedType ObjectTypePtr,
137 bool EnteringContext) {
138 // Determine where to perform name lookup.
139
140 // FIXME: This area of the standard is very messy, and the current
141 // wording is rather unclear about which scopes we search for the
142 // destructor name; see core issues 399 and 555. Issue 399 in
143 // particular shows where the current description of destructor name
144 // lookup is completely out of line with existing practice, e.g.,
145 // this appears to be ill-formed:
146 //
147 // namespace N {
148 // template <typename T> struct S {
149 // ~S();
150 // };
151 // }
152 //
153 // void f(N::S<int>* s) {
154 // s->N::S<int>::~S();
155 // }
156 //
157 // See also PR6358 and PR6359.
158 // For this reason, we're currently only doing the C++03 version of this
159 // code; the C++0x version has to wait until we get a proper spec.
160 QualType SearchType;
161 DeclContext *LookupCtx = nullptr;
162 bool isDependent = false;
163 bool LookInScope = false;
164
165 if (SS.isInvalid())
166 return nullptr;
167
168 // If we have an object type, it's because we are in a
169 // pseudo-destructor-expression or a member access expression, and
170 // we know what type we're looking for.
171 if (ObjectTypePtr)
172 SearchType = GetTypeFromParser(ObjectTypePtr);
173
174 if (SS.isSet()) {
175 NestedNameSpecifier *NNS = SS.getScopeRep();
176
177 bool AlreadySearched = false;
178 bool LookAtPrefix = true;
179 // C++11 [basic.lookup.qual]p6:
180 // If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier,
181 // the type-names are looked up as types in the scope designated by the
182 // nested-name-specifier. Similarly, in a qualified-id of the form:
183 //
184 // nested-name-specifier[opt] class-name :: ~ class-name
185 //
186 // the second class-name is looked up in the same scope as the first.
187 //
188 // Here, we determine whether the code below is permitted to look at the
189 // prefix of the nested-name-specifier.
190 DeclContext *DC = computeDeclContext(SS, EnteringContext);
191 if (DC && DC->isFileContext()) {
192 AlreadySearched = true;
193 LookupCtx = DC;
194 isDependent = false;
195 } else if (DC && isa<CXXRecordDecl>(DC)) {
196 LookAtPrefix = false;
197 LookInScope = true;
198 }
199
200 // The second case from the C++03 rules quoted further above.
201 NestedNameSpecifier *Prefix = nullptr;
202 if (AlreadySearched) {
203 // Nothing left to do.
204 } else if (LookAtPrefix && (Prefix = NNS->getPrefix())) {
205 CXXScopeSpec PrefixSS;
206 PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data()));
207 LookupCtx = computeDeclContext(PrefixSS, EnteringContext);
208 isDependent = isDependentScopeSpecifier(PrefixSS);
209 } else if (ObjectTypePtr) {
210 LookupCtx = computeDeclContext(SearchType);
211 isDependent = SearchType->isDependentType();
212 } else {
213 LookupCtx = computeDeclContext(SS, EnteringContext);
214 isDependent = LookupCtx && LookupCtx->isDependentContext();
215 }
216 } else if (ObjectTypePtr) {
217 // C++ [basic.lookup.classref]p3:
218 // If the unqualified-id is ~type-name, the type-name is looked up
219 // in the context of the entire postfix-expression. If the type T
220 // of the object expression is of a class type C, the type-name is
221 // also looked up in the scope of class C. At least one of the
222 // lookups shall find a name that refers to (possibly
223 // cv-qualified) T.
224 LookupCtx = computeDeclContext(SearchType);
225 isDependent = SearchType->isDependentType();
226 assert((isDependent || !SearchType->isIncompleteType()) &&(((isDependent || !SearchType->isIncompleteType()) &&
"Caller should have completed object type") ? static_cast<
void> (0) : __assert_fail ("(isDependent || !SearchType->isIncompleteType()) && \"Caller should have completed object type\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 227, __PRETTY_FUNCTION__))
227 "Caller should have completed object type")(((isDependent || !SearchType->isIncompleteType()) &&
"Caller should have completed object type") ? static_cast<
void> (0) : __assert_fail ("(isDependent || !SearchType->isIncompleteType()) && \"Caller should have completed object type\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 227, __PRETTY_FUNCTION__))
;
228
229 LookInScope = true;
230 } else {
231 // Perform lookup into the current scope (only).
232 LookInScope = true;
233 }
234
235 TypeDecl *NonMatchingTypeDecl = nullptr;
236 LookupResult Found(*this, &II, NameLoc, LookupOrdinaryName);
237 for (unsigned Step = 0; Step != 2; ++Step) {
238 // Look for the name first in the computed lookup context (if we
239 // have one) and, if that fails to find a match, in the scope (if
240 // we're allowed to look there).
241 Found.clear();
242 if (Step == 0 && LookupCtx) {
243 if (RequireCompleteDeclContext(SS, LookupCtx))
244 return nullptr;
245 LookupQualifiedName(Found, LookupCtx);
246 } else if (Step == 1 && LookInScope && S) {
247 LookupName(Found, S);
248 } else {
249 continue;
250 }
251
252 // FIXME: Should we be suppressing ambiguities here?
253 if (Found.isAmbiguous())
254 return nullptr;
255
256 if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
257 QualType T = Context.getTypeDeclType(Type);
258 MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
259
260 if (SearchType.isNull() || SearchType->isDependentType() ||
261 Context.hasSameUnqualifiedType(T, SearchType)) {
262 // We found our type!
263
264 return CreateParsedType(T,
265 Context.getTrivialTypeSourceInfo(T, NameLoc));
266 }
267
268 if (!SearchType.isNull())
269 NonMatchingTypeDecl = Type;
270 }
271
272 // If the name that we found is a class template name, and it is
273 // the same name as the template name in the last part of the
274 // nested-name-specifier (if present) or the object type, then
275 // this is the destructor for that class.
276 // FIXME: This is a workaround until we get real drafting for core
277 // issue 399, for which there isn't even an obvious direction.
278 if (ClassTemplateDecl *Template = Found.getAsSingle<ClassTemplateDecl>()) {
279 QualType MemberOfType;
280 if (SS.isSet()) {
281 if (DeclContext *Ctx = computeDeclContext(SS, EnteringContext)) {
282 // Figure out the type of the context, if it has one.
283 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx))
284 MemberOfType = Context.getTypeDeclType(Record);
285 }
286 }
287 if (MemberOfType.isNull())
288 MemberOfType = SearchType;
289
290 if (MemberOfType.isNull())
291 continue;
292
293 // We're referring into a class template specialization. If the
294 // class template we found is the same as the template being
295 // specialized, we found what we are looking for.
296 if (const RecordType *Record = MemberOfType->getAs<RecordType>()) {
297 if (ClassTemplateSpecializationDecl *Spec
298 = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
299 if (Spec->getSpecializedTemplate()->getCanonicalDecl() ==
300 Template->getCanonicalDecl())
301 return CreateParsedType(
302 MemberOfType,
303 Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc));
304 }
305
306 continue;
307 }
308
309 // We're referring to an unresolved class template
310 // specialization. Determine whether we class template we found
311 // is the same as the template being specialized or, if we don't
312 // know which template is being specialized, that it at least
313 // has the same name.
314 if (const TemplateSpecializationType *SpecType
315 = MemberOfType->getAs<TemplateSpecializationType>()) {
316 TemplateName SpecName = SpecType->getTemplateName();
317
318 // The class template we found is the same template being
319 // specialized.
320 if (TemplateDecl *SpecTemplate = SpecName.getAsTemplateDecl()) {
321 if (SpecTemplate->getCanonicalDecl() == Template->getCanonicalDecl())
322 return CreateParsedType(
323 MemberOfType,
324 Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc));
325
326 continue;
327 }
328
329 // The class template we found has the same name as the
330 // (dependent) template name being specialized.
331 if (DependentTemplateName *DepTemplate
332 = SpecName.getAsDependentTemplateName()) {
333 if (DepTemplate->isIdentifier() &&
334 DepTemplate->getIdentifier() == Template->getIdentifier())
335 return CreateParsedType(
336 MemberOfType,
337 Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc));
338
339 continue;
340 }
341 }
342 }
343 }
344
345 if (isDependent) {
346 // We didn't find our type, but that's okay: it's dependent
347 // anyway.
348
349 // FIXME: What if we have no nested-name-specifier?
350 QualType T = CheckTypenameType(ETK_None, SourceLocation(),
351 SS.getWithLocInContext(Context),
352 II, NameLoc);
353 return ParsedType::make(T);
354 }
355
356 if (NonMatchingTypeDecl) {
357 QualType T = Context.getTypeDeclType(NonMatchingTypeDecl);
358 Diag(NameLoc, diag::err_destructor_expr_type_mismatch)
359 << T << SearchType;
360 Diag(NonMatchingTypeDecl->getLocation(), diag::note_destructor_type_here)
361 << T;
362 } else if (ObjectTypePtr)
363 Diag(NameLoc, diag::err_ident_in_dtor_not_a_type)
364 << &II;
365 else {
366 SemaDiagnosticBuilder DtorDiag = Diag(NameLoc,
367 diag::err_destructor_class_name);
368 if (S) {
369 const DeclContext *Ctx = S->getEntity();
370 if (const CXXRecordDecl *Class = dyn_cast_or_null<CXXRecordDecl>(Ctx))
371 DtorDiag << FixItHint::CreateReplacement(SourceRange(NameLoc),
372 Class->getNameAsString());
373 }
374 }
375
376 return nullptr;
377}
378
379ParsedType Sema::getDestructorTypeForDecltype(const DeclSpec &DS,
380 ParsedType ObjectType) {
381 if (DS.getTypeSpecType() == DeclSpec::TST_error)
382 return nullptr;
383
384 if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto) {
385 Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid);
386 return nullptr;
387 }
388
389 assert(DS.getTypeSpecType() == DeclSpec::TST_decltype &&((DS.getTypeSpecType() == DeclSpec::TST_decltype && "unexpected type in getDestructorType"
) ? static_cast<void> (0) : __assert_fail ("DS.getTypeSpecType() == DeclSpec::TST_decltype && \"unexpected type in getDestructorType\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 390, __PRETTY_FUNCTION__))
390 "unexpected type in getDestructorType")((DS.getTypeSpecType() == DeclSpec::TST_decltype && "unexpected type in getDestructorType"
) ? static_cast<void> (0) : __assert_fail ("DS.getTypeSpecType() == DeclSpec::TST_decltype && \"unexpected type in getDestructorType\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 390, __PRETTY_FUNCTION__))
;
391 QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
392
393 // If we know the type of the object, check that the correct destructor
394 // type was named now; we can give better diagnostics this way.
395 QualType SearchType = GetTypeFromParser(ObjectType);
396 if (!SearchType.isNull() && !SearchType->isDependentType() &&
397 !Context.hasSameUnqualifiedType(T, SearchType)) {
398 Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch)
399 << T << SearchType;
400 return nullptr;
401 }
402
403 return ParsedType::make(T);
404}
405
406bool Sema::checkLiteralOperatorId(const CXXScopeSpec &SS,
407 const UnqualifiedId &Name) {
408 assert(Name.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId)((Name.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId) ?
static_cast<void> (0) : __assert_fail ("Name.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 408, __PRETTY_FUNCTION__))
;
409
410 if (!SS.isValid())
411 return false;
412
413 switch (SS.getScopeRep()->getKind()) {
414 case NestedNameSpecifier::Identifier:
415 case NestedNameSpecifier::TypeSpec:
416 case NestedNameSpecifier::TypeSpecWithTemplate:
417 // Per C++11 [over.literal]p2, literal operators can only be declared at
418 // namespace scope. Therefore, this unqualified-id cannot name anything.
419 // Reject it early, because we have no AST representation for this in the
420 // case where the scope is dependent.
421 Diag(Name.getBeginLoc(), diag::err_literal_operator_id_outside_namespace)
422 << SS.getScopeRep();
423 return true;
424
425 case NestedNameSpecifier::Global:
426 case NestedNameSpecifier::Super:
427 case NestedNameSpecifier::Namespace:
428 case NestedNameSpecifier::NamespaceAlias:
429 return false;
430 }
431
432 llvm_unreachable("unknown nested name specifier kind")::llvm::llvm_unreachable_internal("unknown nested name specifier kind"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 432)
;
433}
434
435/// Build a C++ typeid expression with a type operand.
436ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
437 SourceLocation TypeidLoc,
438 TypeSourceInfo *Operand,
439 SourceLocation RParenLoc) {
440 // C++ [expr.typeid]p4:
441 // The top-level cv-qualifiers of the lvalue expression or the type-id
442 // that is the operand of typeid are always ignored.
443 // If the type of the type-id is a class type or a reference to a class
444 // type, the class shall be completely-defined.
445 Qualifiers Quals;
446 QualType T
447 = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
448 Quals);
449 if (T->getAs<RecordType>() &&
450 RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
451 return ExprError();
452
453 if (T->isVariablyModifiedType())
454 return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid) << T);
455
456 if (CheckQualifiedFunctionForTypeId(T, TypeidLoc))
457 return ExprError();
458
459 return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), Operand,
460 SourceRange(TypeidLoc, RParenLoc));
461}
462
463/// Build a C++ typeid expression with an expression operand.
464ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
465 SourceLocation TypeidLoc,
466 Expr *E,
467 SourceLocation RParenLoc) {
468 bool WasEvaluated = false;
469 if (E && !E->isTypeDependent()) {
470 if (E->getType()->isPlaceholderType()) {
471 ExprResult result = CheckPlaceholderExpr(E);
472 if (result.isInvalid()) return ExprError();
473 E = result.get();
474 }
475
476 QualType T = E->getType();
477 if (const RecordType *RecordT = T->getAs<RecordType>()) {
478 CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
479 // C++ [expr.typeid]p3:
480 // [...] If the type of the expression is a class type, the class
481 // shall be completely-defined.
482 if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
483 return ExprError();
484
485 // C++ [expr.typeid]p3:
486 // When typeid is applied to an expression other than an glvalue of a
487 // polymorphic class type [...] [the] expression is an unevaluated
488 // operand. [...]
489 if (RecordD->isPolymorphic() && E->isGLValue()) {
490 // The subexpression is potentially evaluated; switch the context
491 // and recheck the subexpression.
492 ExprResult Result = TransformToPotentiallyEvaluated(E);
493 if (Result.isInvalid()) return ExprError();
494 E = Result.get();
495
496 // We require a vtable to query the type at run time.
497 MarkVTableUsed(TypeidLoc, RecordD);
498 WasEvaluated = true;
499 }
500 }
501
502 ExprResult Result = CheckUnevaluatedOperand(E);
503 if (Result.isInvalid())
504 return ExprError();
505 E = Result.get();
506
507 // C++ [expr.typeid]p4:
508 // [...] If the type of the type-id is a reference to a possibly
509 // cv-qualified type, the result of the typeid expression refers to a
510 // std::type_info object representing the cv-unqualified referenced
511 // type.
512 Qualifiers Quals;
513 QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
514 if (!Context.hasSameType(T, UnqualT)) {
515 T = UnqualT;
516 E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).get();
517 }
518 }
519
520 if (E->getType()->isVariablyModifiedType())
521 return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid)
522 << E->getType());
523 else if (!inTemplateInstantiation() &&
524 E->HasSideEffects(Context, WasEvaluated)) {
525 // The expression operand for typeid is in an unevaluated expression
526 // context, so side effects could result in unintended consequences.
527 Diag(E->getExprLoc(), WasEvaluated
528 ? diag::warn_side_effects_typeid
529 : diag::warn_side_effects_unevaluated_context);
530 }
531
532 return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), E,
533 SourceRange(TypeidLoc, RParenLoc));
534}
535
536/// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
537ExprResult
538Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
539 bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
540 // typeid is not supported in OpenCL.
541 if (getLangOpts().OpenCLCPlusPlus) {
542 return ExprError(Diag(OpLoc, diag::err_openclcxx_not_supported)
543 << "typeid");
544 }
545
546 // Find the std::type_info type.
547 if (!getStdNamespace())
548 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
549
550 if (!CXXTypeInfoDecl) {
551 IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
552 LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
553 LookupQualifiedName(R, getStdNamespace());
554 CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
555 // Microsoft's typeinfo doesn't have type_info in std but in the global
556 // namespace if _HAS_EXCEPTIONS is defined to 0. See PR13153.
557 if (!CXXTypeInfoDecl && LangOpts.MSVCCompat) {
558 LookupQualifiedName(R, Context.getTranslationUnitDecl());
559 CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
560 }
561 if (!CXXTypeInfoDecl)
562 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
563 }
564
565 if (!getLangOpts().RTTI) {
566 return ExprError(Diag(OpLoc, diag::err_no_typeid_with_fno_rtti));
567 }
568
569 QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
570
571 if (isType) {
572 // The operand is a type; handle it as such.
573 TypeSourceInfo *TInfo = nullptr;
574 QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
575 &TInfo);
576 if (T.isNull())
577 return ExprError();
578
579 if (!TInfo)
580 TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
581
582 return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
583 }
584
585 // The operand is an expression.
586 return BuildCXXTypeId(TypeInfoType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
587}
588
589/// Grabs __declspec(uuid()) off a type, or returns 0 if we cannot resolve to
590/// a single GUID.
591static void
592getUuidAttrOfType(Sema &SemaRef, QualType QT,
593 llvm::SmallSetVector<const UuidAttr *, 1> &UuidAttrs) {
594 // Optionally remove one level of pointer, reference or array indirection.
595 const Type *Ty = QT.getTypePtr();
596 if (QT->isPointerType() || QT->isReferenceType())
597 Ty = QT->getPointeeType().getTypePtr();
598 else if (QT->isArrayType())
599 Ty = Ty->getBaseElementTypeUnsafe();
600
601 const auto *TD = Ty->getAsTagDecl();
602 if (!TD)
603 return;
604
605 if (const auto *Uuid = TD->getMostRecentDecl()->getAttr<UuidAttr>()) {
606 UuidAttrs.insert(Uuid);
607 return;
608 }
609
610 // __uuidof can grab UUIDs from template arguments.
611 if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(TD)) {
612 const TemplateArgumentList &TAL = CTSD->getTemplateArgs();
613 for (const TemplateArgument &TA : TAL.asArray()) {
614 const UuidAttr *UuidForTA = nullptr;
615 if (TA.getKind() == TemplateArgument::Type)
616 getUuidAttrOfType(SemaRef, TA.getAsType(), UuidAttrs);
617 else if (TA.getKind() == TemplateArgument::Declaration)
618 getUuidAttrOfType(SemaRef, TA.getAsDecl()->getType(), UuidAttrs);
619
620 if (UuidForTA)
621 UuidAttrs.insert(UuidForTA);
622 }
623 }
624}
625
626/// Build a Microsoft __uuidof expression with a type operand.
627ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
628 SourceLocation TypeidLoc,
629 TypeSourceInfo *Operand,
630 SourceLocation RParenLoc) {
631 StringRef UuidStr;
632 if (!Operand->getType()->isDependentType()) {
633 llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs;
634 getUuidAttrOfType(*this, Operand->getType(), UuidAttrs);
635 if (UuidAttrs.empty())
636 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
637 if (UuidAttrs.size() > 1)
638 return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
639 UuidStr = UuidAttrs.back()->getGuid();
640 }
641
642 return new (Context) CXXUuidofExpr(TypeInfoType.withConst(), Operand, UuidStr,
643 SourceRange(TypeidLoc, RParenLoc));
644}
645
646/// Build a Microsoft __uuidof expression with an expression operand.
647ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
648 SourceLocation TypeidLoc,
649 Expr *E,
650 SourceLocation RParenLoc) {
651 StringRef UuidStr;
652 if (!E->getType()->isDependentType()) {
653 if (E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
654 UuidStr = "00000000-0000-0000-0000-000000000000";
655 } else {
656 llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs;
657 getUuidAttrOfType(*this, E->getType(), UuidAttrs);
658 if (UuidAttrs.empty())
659 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
660 if (UuidAttrs.size() > 1)
661 return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
662 UuidStr = UuidAttrs.back()->getGuid();
663 }
664 }
665
666 return new (Context) CXXUuidofExpr(TypeInfoType.withConst(), E, UuidStr,
667 SourceRange(TypeidLoc, RParenLoc));
668}
669
670/// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
671ExprResult
672Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
673 bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
674 // If MSVCGuidDecl has not been cached, do the lookup.
675 if (!MSVCGuidDecl) {
676 IdentifierInfo *GuidII = &PP.getIdentifierTable().get("_GUID");
677 LookupResult R(*this, GuidII, SourceLocation(), LookupTagName);
678 LookupQualifiedName(R, Context.getTranslationUnitDecl());
679 MSVCGuidDecl = R.getAsSingle<RecordDecl>();
680 if (!MSVCGuidDecl)
681 return ExprError(Diag(OpLoc, diag::err_need_header_before_ms_uuidof));
682 }
683
684 QualType GuidType = Context.getTypeDeclType(MSVCGuidDecl);
685
686 if (isType) {
687 // The operand is a type; handle it as such.
688 TypeSourceInfo *TInfo = nullptr;
689 QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
690 &TInfo);
691 if (T.isNull())
692 return ExprError();
693
694 if (!TInfo)
695 TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
696
697 return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
698 }
699
700 // The operand is an expression.
701 return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
702}
703
704/// ActOnCXXBoolLiteral - Parse {true,false} literals.
705ExprResult
706Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
707 assert((Kind == tok::kw_true || Kind == tok::kw_false) &&(((Kind == tok::kw_true || Kind == tok::kw_false) && "Unknown C++ Boolean value!"
) ? static_cast<void> (0) : __assert_fail ("(Kind == tok::kw_true || Kind == tok::kw_false) && \"Unknown C++ Boolean value!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 708, __PRETTY_FUNCTION__))
708 "Unknown C++ Boolean value!")(((Kind == tok::kw_true || Kind == tok::kw_false) && "Unknown C++ Boolean value!"
) ? static_cast<void> (0) : __assert_fail ("(Kind == tok::kw_true || Kind == tok::kw_false) && \"Unknown C++ Boolean value!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 708, __PRETTY_FUNCTION__))
;
709 return new (Context)
710 CXXBoolLiteralExpr(Kind == tok::kw_true, Context.BoolTy, OpLoc);
711}
712
713/// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
714ExprResult
715Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
716 return new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
717}
718
719/// ActOnCXXThrow - Parse throw expressions.
720ExprResult
721Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) {
722 bool IsThrownVarInScope = false;
723 if (Ex) {
724 // C++0x [class.copymove]p31:
725 // When certain criteria are met, an implementation is allowed to omit the
726 // copy/move construction of a class object [...]
727 //
728 // - in a throw-expression, when the operand is the name of a
729 // non-volatile automatic object (other than a function or catch-
730 // clause parameter) whose scope does not extend beyond the end of the
731 // innermost enclosing try-block (if there is one), the copy/move
732 // operation from the operand to the exception object (15.1) can be
733 // omitted by constructing the automatic object directly into the
734 // exception object
735 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens()))
736 if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
737 if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) {
738 for( ; S; S = S->getParent()) {
739 if (S->isDeclScope(Var)) {
740 IsThrownVarInScope = true;
741 break;
742 }
743
744 if (S->getFlags() &
745 (Scope::FnScope | Scope::ClassScope | Scope::BlockScope |
746 Scope::FunctionPrototypeScope | Scope::ObjCMethodScope |
747 Scope::TryScope))
748 break;
749 }
750 }
751 }
752 }
753
754 return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope);
755}
756
757ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex,
758 bool IsThrownVarInScope) {
759 // Don't report an error if 'throw' is used in system headers.
760 if (!getLangOpts().CXXExceptions &&
761 !getSourceManager().isInSystemHeader(OpLoc) && !getLangOpts().CUDA) {
762 // Delay error emission for the OpenMP device code.
763 targetDiag(OpLoc, diag::err_exceptions_disabled) << "throw";
764 }
765
766 // Exceptions aren't allowed in CUDA device code.
767 if (getLangOpts().CUDA)
768 CUDADiagIfDeviceCode(OpLoc, diag::err_cuda_device_exceptions)
769 << "throw" << CurrentCUDATarget();
770
771 if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope())
772 Diag(OpLoc, diag::err_omp_simd_region_cannot_use_stmt) << "throw";
773
774 if (Ex && !Ex->isTypeDependent()) {
775 QualType ExceptionObjectTy = Context.getExceptionObjectType(Ex->getType());
776 if (CheckCXXThrowOperand(OpLoc, ExceptionObjectTy, Ex))
777 return ExprError();
778
779 // Initialize the exception result. This implicitly weeds out
780 // abstract types or types with inaccessible copy constructors.
781
782 // C++0x [class.copymove]p31:
783 // When certain criteria are met, an implementation is allowed to omit the
784 // copy/move construction of a class object [...]
785 //
786 // - in a throw-expression, when the operand is the name of a
787 // non-volatile automatic object (other than a function or
788 // catch-clause
789 // parameter) whose scope does not extend beyond the end of the
790 // innermost enclosing try-block (if there is one), the copy/move
791 // operation from the operand to the exception object (15.1) can be
792 // omitted by constructing the automatic object directly into the
793 // exception object
794 const VarDecl *NRVOVariable = nullptr;
795 if (IsThrownVarInScope)
796 NRVOVariable = getCopyElisionCandidate(QualType(), Ex, CES_Strict);
797
798 InitializedEntity Entity = InitializedEntity::InitializeException(
799 OpLoc, ExceptionObjectTy,
800 /*NRVO=*/NRVOVariable != nullptr);
801 ExprResult Res = PerformMoveOrCopyInitialization(
802 Entity, NRVOVariable, QualType(), Ex, IsThrownVarInScope);
803 if (Res.isInvalid())
804 return ExprError();
805 Ex = Res.get();
806 }
807
808 return new (Context)
809 CXXThrowExpr(Ex, Context.VoidTy, OpLoc, IsThrownVarInScope);
810}
811
812static void
813collectPublicBases(CXXRecordDecl *RD,
814 llvm::DenseMap<CXXRecordDecl *, unsigned> &SubobjectsSeen,
815 llvm::SmallPtrSetImpl<CXXRecordDecl *> &VBases,
816 llvm::SetVector<CXXRecordDecl *> &PublicSubobjectsSeen,
817 bool ParentIsPublic) {
818 for (const CXXBaseSpecifier &BS : RD->bases()) {
819 CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
820 bool NewSubobject;
821 // Virtual bases constitute the same subobject. Non-virtual bases are
822 // always distinct subobjects.
823 if (BS.isVirtual())
824 NewSubobject = VBases.insert(BaseDecl).second;
825 else
826 NewSubobject = true;
827
828 if (NewSubobject)
829 ++SubobjectsSeen[BaseDecl];
830
831 // Only add subobjects which have public access throughout the entire chain.
832 bool PublicPath = ParentIsPublic && BS.getAccessSpecifier() == AS_public;
833 if (PublicPath)
834 PublicSubobjectsSeen.insert(BaseDecl);
835
836 // Recurse on to each base subobject.
837 collectPublicBases(BaseDecl, SubobjectsSeen, VBases, PublicSubobjectsSeen,
838 PublicPath);
839 }
840}
841
842static void getUnambiguousPublicSubobjects(
843 CXXRecordDecl *RD, llvm::SmallVectorImpl<CXXRecordDecl *> &Objects) {
844 llvm::DenseMap<CXXRecordDecl *, unsigned> SubobjectsSeen;
845 llvm::SmallSet<CXXRecordDecl *, 2> VBases;
846 llvm::SetVector<CXXRecordDecl *> PublicSubobjectsSeen;
847 SubobjectsSeen[RD] = 1;
848 PublicSubobjectsSeen.insert(RD);
849 collectPublicBases(RD, SubobjectsSeen, VBases, PublicSubobjectsSeen,
850 /*ParentIsPublic=*/true);
851
852 for (CXXRecordDecl *PublicSubobject : PublicSubobjectsSeen) {
853 // Skip ambiguous objects.
854 if (SubobjectsSeen[PublicSubobject] > 1)
855 continue;
856
857 Objects.push_back(PublicSubobject);
858 }
859}
860
861/// CheckCXXThrowOperand - Validate the operand of a throw.
862bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc,
863 QualType ExceptionObjectTy, Expr *E) {
864 // If the type of the exception would be an incomplete type or a pointer
865 // to an incomplete type other than (cv) void the program is ill-formed.
866 QualType Ty = ExceptionObjectTy;
867 bool isPointer = false;
868 if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
869 Ty = Ptr->getPointeeType();
870 isPointer = true;
871 }
872 if (!isPointer || !Ty->isVoidType()) {
873 if (RequireCompleteType(ThrowLoc, Ty,
874 isPointer ? diag::err_throw_incomplete_ptr
875 : diag::err_throw_incomplete,
876 E->getSourceRange()))
877 return true;
878
879 if (RequireNonAbstractType(ThrowLoc, ExceptionObjectTy,
880 diag::err_throw_abstract_type, E))
881 return true;
882 }
883
884 // If the exception has class type, we need additional handling.
885 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
886 if (!RD)
887 return false;
888
889 // If we are throwing a polymorphic class type or pointer thereof,
890 // exception handling will make use of the vtable.
891 MarkVTableUsed(ThrowLoc, RD);
892
893 // If a pointer is thrown, the referenced object will not be destroyed.
894 if (isPointer)
895 return false;
896
897 // If the class has a destructor, we must be able to call it.
898 if (!RD->hasIrrelevantDestructor()) {
899 if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
900 MarkFunctionReferenced(E->getExprLoc(), Destructor);
901 CheckDestructorAccess(E->getExprLoc(), Destructor,
902 PDiag(diag::err_access_dtor_exception) << Ty);
903 if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
904 return true;
905 }
906 }
907
908 // The MSVC ABI creates a list of all types which can catch the exception
909 // object. This list also references the appropriate copy constructor to call
910 // if the object is caught by value and has a non-trivial copy constructor.
911 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
912 // We are only interested in the public, unambiguous bases contained within
913 // the exception object. Bases which are ambiguous or otherwise
914 // inaccessible are not catchable types.
915 llvm::SmallVector<CXXRecordDecl *, 2> UnambiguousPublicSubobjects;
916 getUnambiguousPublicSubobjects(RD, UnambiguousPublicSubobjects);
917
918 for (CXXRecordDecl *Subobject : UnambiguousPublicSubobjects) {
919 // Attempt to lookup the copy constructor. Various pieces of machinery
920 // will spring into action, like template instantiation, which means this
921 // cannot be a simple walk of the class's decls. Instead, we must perform
922 // lookup and overload resolution.
923 CXXConstructorDecl *CD = LookupCopyingConstructor(Subobject, 0);
924 if (!CD)
925 continue;
926
927 // Mark the constructor referenced as it is used by this throw expression.
928 MarkFunctionReferenced(E->getExprLoc(), CD);
929
930 // Skip this copy constructor if it is trivial, we don't need to record it
931 // in the catchable type data.
932 if (CD->isTrivial())
933 continue;
934
935 // The copy constructor is non-trivial, create a mapping from this class
936 // type to this constructor.
937 // N.B. The selection of copy constructor is not sensitive to this
938 // particular throw-site. Lookup will be performed at the catch-site to
939 // ensure that the copy constructor is, in fact, accessible (via
940 // friendship or any other means).
941 Context.addCopyConstructorForExceptionObject(Subobject, CD);
942
943 // We don't keep the instantiated default argument expressions around so
944 // we must rebuild them here.
945 for (unsigned I = 1, E = CD->getNumParams(); I != E; ++I) {
946 if (CheckCXXDefaultArgExpr(ThrowLoc, CD, CD->getParamDecl(I)))
947 return true;
948 }
949 }
950 }
951
952 // Under the Itanium C++ ABI, memory for the exception object is allocated by
953 // the runtime with no ability for the compiler to request additional
954 // alignment. Warn if the exception type requires alignment beyond the minimum
955 // guaranteed by the target C++ runtime.
956 if (Context.getTargetInfo().getCXXABI().isItaniumFamily()) {
957 CharUnits TypeAlign = Context.getTypeAlignInChars(Ty);
958 CharUnits ExnObjAlign = Context.getExnObjectAlignment();
959 if (ExnObjAlign < TypeAlign) {
960 Diag(ThrowLoc, diag::warn_throw_underaligned_obj);
961 Diag(ThrowLoc, diag::note_throw_underaligned_obj)
962 << Ty << (unsigned)TypeAlign.getQuantity()
963 << (unsigned)ExnObjAlign.getQuantity();
964 }
965 }
966
967 return false;
968}
969
970static QualType adjustCVQualifiersForCXXThisWithinLambda(
971 ArrayRef<FunctionScopeInfo *> FunctionScopes, QualType ThisTy,
972 DeclContext *CurSemaContext, ASTContext &ASTCtx) {
973
974 QualType ClassType = ThisTy->getPointeeType();
975 LambdaScopeInfo *CurLSI = nullptr;
976 DeclContext *CurDC = CurSemaContext;
977
978 // Iterate through the stack of lambdas starting from the innermost lambda to
979 // the outermost lambda, checking if '*this' is ever captured by copy - since
980 // that could change the cv-qualifiers of the '*this' object.
981 // The object referred to by '*this' starts out with the cv-qualifiers of its
982 // member function. We then start with the innermost lambda and iterate
983 // outward checking to see if any lambda performs a by-copy capture of '*this'
984 // - and if so, any nested lambda must respect the 'constness' of that
985 // capturing lamdbda's call operator.
986 //
987
988 // Since the FunctionScopeInfo stack is representative of the lexical
989 // nesting of the lambda expressions during initial parsing (and is the best
990 // place for querying information about captures about lambdas that are
991 // partially processed) and perhaps during instantiation of function templates
992 // that contain lambda expressions that need to be transformed BUT not
993 // necessarily during instantiation of a nested generic lambda's function call
994 // operator (which might even be instantiated at the end of the TU) - at which
995 // time the DeclContext tree is mature enough to query capture information
996 // reliably - we use a two pronged approach to walk through all the lexically
997 // enclosing lambda expressions:
998 //
999 // 1) Climb down the FunctionScopeInfo stack as long as each item represents
1000 // a Lambda (i.e. LambdaScopeInfo) AND each LSI's 'closure-type' is lexically
1001 // enclosed by the call-operator of the LSI below it on the stack (while
1002 // tracking the enclosing DC for step 2 if needed). Note the topmost LSI on
1003 // the stack represents the innermost lambda.
1004 //
1005 // 2) If we run out of enclosing LSI's, check if the enclosing DeclContext
1006 // represents a lambda's call operator. If it does, we must be instantiating
1007 // a generic lambda's call operator (represented by the Current LSI, and
1008 // should be the only scenario where an inconsistency between the LSI and the
1009 // DeclContext should occur), so climb out the DeclContexts if they
1010 // represent lambdas, while querying the corresponding closure types
1011 // regarding capture information.
1012
1013 // 1) Climb down the function scope info stack.
1014 for (int I = FunctionScopes.size();
1015 I-- && isa<LambdaScopeInfo>(FunctionScopes[I]) &&
1016 (!CurLSI || !CurLSI->Lambda || CurLSI->Lambda->getDeclContext() ==
1017 cast<LambdaScopeInfo>(FunctionScopes[I])->CallOperator);
1018 CurDC = getLambdaAwareParentOfDeclContext(CurDC)) {
1019 CurLSI = cast<LambdaScopeInfo>(FunctionScopes[I]);
1020
1021 if (!CurLSI->isCXXThisCaptured())
1022 continue;
1023
1024 auto C = CurLSI->getCXXThisCapture();
1025
1026 if (C.isCopyCapture()) {
1027 ClassType.removeLocalCVRQualifiers(Qualifiers::CVRMask);
1028 if (CurLSI->CallOperator->isConst())
1029 ClassType.addConst();
1030 return ASTCtx.getPointerType(ClassType);
1031 }
1032 }
1033
1034 // 2) We've run out of ScopeInfos but check if CurDC is a lambda (which can
1035 // happen during instantiation of its nested generic lambda call operator)
1036 if (isLambdaCallOperator(CurDC)) {
1037 assert(CurLSI && "While computing 'this' capture-type for a generic "((CurLSI && "While computing 'this' capture-type for a generic "
"lambda, we must have a corresponding LambdaScopeInfo") ? static_cast
<void> (0) : __assert_fail ("CurLSI && \"While computing 'this' capture-type for a generic \" \"lambda, we must have a corresponding LambdaScopeInfo\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1038, __PRETTY_FUNCTION__))
1038 "lambda, we must have a corresponding LambdaScopeInfo")((CurLSI && "While computing 'this' capture-type for a generic "
"lambda, we must have a corresponding LambdaScopeInfo") ? static_cast
<void> (0) : __assert_fail ("CurLSI && \"While computing 'this' capture-type for a generic \" \"lambda, we must have a corresponding LambdaScopeInfo\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1038, __PRETTY_FUNCTION__))
;
1039 assert(isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) &&((isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator
) && "While computing 'this' capture-type for a generic lambda, when we "
"run out of enclosing LSI's, yet the enclosing DC is a " "lambda-call-operator we must be (i.e. Current LSI) in a generic "
"lambda call oeprator") ? static_cast<void> (0) : __assert_fail
("isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) && \"While computing 'this' capture-type for a generic lambda, when we \" \"run out of enclosing LSI's, yet the enclosing DC is a \" \"lambda-call-operator we must be (i.e. Current LSI) in a generic \" \"lambda call oeprator\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1043, __PRETTY_FUNCTION__))
1040 "While computing 'this' capture-type for a generic lambda, when we "((isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator
) && "While computing 'this' capture-type for a generic lambda, when we "
"run out of enclosing LSI's, yet the enclosing DC is a " "lambda-call-operator we must be (i.e. Current LSI) in a generic "
"lambda call oeprator") ? static_cast<void> (0) : __assert_fail
("isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) && \"While computing 'this' capture-type for a generic lambda, when we \" \"run out of enclosing LSI's, yet the enclosing DC is a \" \"lambda-call-operator we must be (i.e. Current LSI) in a generic \" \"lambda call oeprator\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1043, __PRETTY_FUNCTION__))
1041 "run out of enclosing LSI's, yet the enclosing DC is a "((isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator
) && "While computing 'this' capture-type for a generic lambda, when we "
"run out of enclosing LSI's, yet the enclosing DC is a " "lambda-call-operator we must be (i.e. Current LSI) in a generic "
"lambda call oeprator") ? static_cast<void> (0) : __assert_fail
("isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) && \"While computing 'this' capture-type for a generic lambda, when we \" \"run out of enclosing LSI's, yet the enclosing DC is a \" \"lambda-call-operator we must be (i.e. Current LSI) in a generic \" \"lambda call oeprator\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1043, __PRETTY_FUNCTION__))
1042 "lambda-call-operator we must be (i.e. Current LSI) in a generic "((isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator
) && "While computing 'this' capture-type for a generic lambda, when we "
"run out of enclosing LSI's, yet the enclosing DC is a " "lambda-call-operator we must be (i.e. Current LSI) in a generic "
"lambda call oeprator") ? static_cast<void> (0) : __assert_fail
("isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) && \"While computing 'this' capture-type for a generic lambda, when we \" \"run out of enclosing LSI's, yet the enclosing DC is a \" \"lambda-call-operator we must be (i.e. Current LSI) in a generic \" \"lambda call oeprator\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1043, __PRETTY_FUNCTION__))
1043 "lambda call oeprator")((isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator
) && "While computing 'this' capture-type for a generic lambda, when we "
"run out of enclosing LSI's, yet the enclosing DC is a " "lambda-call-operator we must be (i.e. Current LSI) in a generic "
"lambda call oeprator") ? static_cast<void> (0) : __assert_fail
("isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) && \"While computing 'this' capture-type for a generic lambda, when we \" \"run out of enclosing LSI's, yet the enclosing DC is a \" \"lambda-call-operator we must be (i.e. Current LSI) in a generic \" \"lambda call oeprator\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1043, __PRETTY_FUNCTION__))
;
1044 assert(CurDC == getLambdaAwareParentOfDeclContext(CurLSI->CallOperator))((CurDC == getLambdaAwareParentOfDeclContext(CurLSI->CallOperator
)) ? static_cast<void> (0) : __assert_fail ("CurDC == getLambdaAwareParentOfDeclContext(CurLSI->CallOperator)"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1044, __PRETTY_FUNCTION__))
;
1045
1046 auto IsThisCaptured =
1047 [](CXXRecordDecl *Closure, bool &IsByCopy, bool &IsConst) {
1048 IsConst = false;
1049 IsByCopy = false;
1050 for (auto &&C : Closure->captures()) {
1051 if (C.capturesThis()) {
1052 if (C.getCaptureKind() == LCK_StarThis)
1053 IsByCopy = true;
1054 if (Closure->getLambdaCallOperator()->isConst())
1055 IsConst = true;
1056 return true;
1057 }
1058 }
1059 return false;
1060 };
1061
1062 bool IsByCopyCapture = false;
1063 bool IsConstCapture = false;
1064 CXXRecordDecl *Closure = cast<CXXRecordDecl>(CurDC->getParent());
1065 while (Closure &&
1066 IsThisCaptured(Closure, IsByCopyCapture, IsConstCapture)) {
1067 if (IsByCopyCapture) {
1068 ClassType.removeLocalCVRQualifiers(Qualifiers::CVRMask);
1069 if (IsConstCapture)
1070 ClassType.addConst();
1071 return ASTCtx.getPointerType(ClassType);
1072 }
1073 Closure = isLambdaCallOperator(Closure->getParent())
1074 ? cast<CXXRecordDecl>(Closure->getParent()->getParent())
1075 : nullptr;
1076 }
1077 }
1078 return ASTCtx.getPointerType(ClassType);
1079}
1080
1081QualType Sema::getCurrentThisType() {
1082 DeclContext *DC = getFunctionLevelDeclContext();
1083 QualType ThisTy = CXXThisTypeOverride;
1084
1085 if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) {
1086 if (method && method->isInstance())
1087 ThisTy = method->getThisType();
1088 }
1089
1090 if (ThisTy.isNull() && isLambdaCallOperator(CurContext) &&
1091 inTemplateInstantiation()) {
1092
1093 assert(isa<CXXRecordDecl>(DC) &&((isa<CXXRecordDecl>(DC) && "Trying to get 'this' type from static method?"
) ? static_cast<void> (0) : __assert_fail ("isa<CXXRecordDecl>(DC) && \"Trying to get 'this' type from static method?\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1094, __PRETTY_FUNCTION__))
1094 "Trying to get 'this' type from static method?")((isa<CXXRecordDecl>(DC) && "Trying to get 'this' type from static method?"
) ? static_cast<void> (0) : __assert_fail ("isa<CXXRecordDecl>(DC) && \"Trying to get 'this' type from static method?\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1094, __PRETTY_FUNCTION__))
;
1095
1096 // This is a lambda call operator that is being instantiated as a default
1097 // initializer. DC must point to the enclosing class type, so we can recover
1098 // the 'this' type from it.
1099
1100 QualType ClassTy = Context.getTypeDeclType(cast<CXXRecordDecl>(DC));
1101 // There are no cv-qualifiers for 'this' within default initializers,
1102 // per [expr.prim.general]p4.
1103 ThisTy = Context.getPointerType(ClassTy);
1104 }
1105
1106 // If we are within a lambda's call operator, the cv-qualifiers of 'this'
1107 // might need to be adjusted if the lambda or any of its enclosing lambda's
1108 // captures '*this' by copy.
1109 if (!ThisTy.isNull() && isLambdaCallOperator(CurContext))
1110 return adjustCVQualifiersForCXXThisWithinLambda(FunctionScopes, ThisTy,
1111 CurContext, Context);
1112 return ThisTy;
1113}
1114
1115Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S,
1116 Decl *ContextDecl,
1117 Qualifiers CXXThisTypeQuals,
1118 bool Enabled)
1119 : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false)
1120{
1121 if (!Enabled || !ContextDecl)
1122 return;
1123
1124 CXXRecordDecl *Record = nullptr;
1125 if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl))
1126 Record = Template->getTemplatedDecl();
1127 else
1128 Record = cast<CXXRecordDecl>(ContextDecl);
1129
1130 QualType T = S.Context.getRecordType(Record);
1131 T = S.getASTContext().getQualifiedType(T, CXXThisTypeQuals);
1132
1133 S.CXXThisTypeOverride = S.Context.getPointerType(T);
1134
1135 this->Enabled = true;
1136}
1137
1138
1139Sema::CXXThisScopeRAII::~CXXThisScopeRAII() {
1140 if (Enabled) {
1141 S.CXXThisTypeOverride = OldCXXThisTypeOverride;
1142 }
1143}
1144
1145bool Sema::CheckCXXThisCapture(SourceLocation Loc, const bool Explicit,
1146 bool BuildAndDiagnose, const unsigned *const FunctionScopeIndexToStopAt,
1147 const bool ByCopy) {
1148 // We don't need to capture this in an unevaluated context.
1149 if (isUnevaluatedContext() && !Explicit)
1150 return true;
1151
1152 assert((!ByCopy || Explicit) && "cannot implicitly capture *this by value")(((!ByCopy || Explicit) && "cannot implicitly capture *this by value"
) ? static_cast<void> (0) : __assert_fail ("(!ByCopy || Explicit) && \"cannot implicitly capture *this by value\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1152, __PRETTY_FUNCTION__))
;
1153
1154 const int MaxFunctionScopesIndex = FunctionScopeIndexToStopAt
1155 ? *FunctionScopeIndexToStopAt
1156 : FunctionScopes.size() - 1;
1157
1158 // Check that we can capture the *enclosing object* (referred to by '*this')
1159 // by the capturing-entity/closure (lambda/block/etc) at
1160 // MaxFunctionScopesIndex-deep on the FunctionScopes stack.
1161
1162 // Note: The *enclosing object* can only be captured by-value by a
1163 // closure that is a lambda, using the explicit notation:
1164 // [*this] { ... }.
1165 // Every other capture of the *enclosing object* results in its by-reference
1166 // capture.
1167
1168 // For a closure 'L' (at MaxFunctionScopesIndex in the FunctionScopes
1169 // stack), we can capture the *enclosing object* only if:
1170 // - 'L' has an explicit byref or byval capture of the *enclosing object*
1171 // - or, 'L' has an implicit capture.
1172 // AND
1173 // -- there is no enclosing closure
1174 // -- or, there is some enclosing closure 'E' that has already captured the
1175 // *enclosing object*, and every intervening closure (if any) between 'E'
1176 // and 'L' can implicitly capture the *enclosing object*.
1177 // -- or, every enclosing closure can implicitly capture the
1178 // *enclosing object*
1179
1180
1181 unsigned NumCapturingClosures = 0;
1182 for (int idx = MaxFunctionScopesIndex; idx >= 0; idx--) {
1183 if (CapturingScopeInfo *CSI =
1184 dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) {
1185 if (CSI->CXXThisCaptureIndex != 0) {
1186 // 'this' is already being captured; there isn't anything more to do.
1187 CSI->Captures[CSI->CXXThisCaptureIndex - 1].markUsed(BuildAndDiagnose);
1188 break;
1189 }
1190 LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI);
1191 if (LSI && isGenericLambdaCallOperatorSpecialization(LSI->CallOperator)) {
1192 // This context can't implicitly capture 'this'; fail out.
1193 if (BuildAndDiagnose)
1194 Diag(Loc, diag::err_this_capture)
1195 << (Explicit && idx == MaxFunctionScopesIndex);
1196 return true;
1197 }
1198 if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref ||
1199 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval ||
1200 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block ||
1201 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_CapturedRegion ||
1202 (Explicit && idx == MaxFunctionScopesIndex)) {
1203 // Regarding (Explicit && idx == MaxFunctionScopesIndex): only the first
1204 // iteration through can be an explicit capture, all enclosing closures,
1205 // if any, must perform implicit captures.
1206
1207 // This closure can capture 'this'; continue looking upwards.
1208 NumCapturingClosures++;
1209 continue;
1210 }
1211 // This context can't implicitly capture 'this'; fail out.
1212 if (BuildAndDiagnose)
1213 Diag(Loc, diag::err_this_capture)
1214 << (Explicit && idx == MaxFunctionScopesIndex);
1215 return true;
1216 }
1217 break;
1218 }
1219 if (!BuildAndDiagnose) return false;
1220
1221 // If we got here, then the closure at MaxFunctionScopesIndex on the
1222 // FunctionScopes stack, can capture the *enclosing object*, so capture it
1223 // (including implicit by-reference captures in any enclosing closures).
1224
1225 // In the loop below, respect the ByCopy flag only for the closure requesting
1226 // the capture (i.e. first iteration through the loop below). Ignore it for
1227 // all enclosing closure's up to NumCapturingClosures (since they must be
1228 // implicitly capturing the *enclosing object* by reference (see loop
1229 // above)).
1230 assert((!ByCopy ||(((!ByCopy || dyn_cast<LambdaScopeInfo>(FunctionScopes[
MaxFunctionScopesIndex])) && "Only a lambda can capture the enclosing object (referred to by "
"*this) by copy") ? static_cast<void> (0) : __assert_fail
("(!ByCopy || dyn_cast<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) && \"Only a lambda can capture the enclosing object (referred to by \" \"*this) by copy\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1233, __PRETTY_FUNCTION__))
1231 dyn_cast<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) &&(((!ByCopy || dyn_cast<LambdaScopeInfo>(FunctionScopes[
MaxFunctionScopesIndex])) && "Only a lambda can capture the enclosing object (referred to by "
"*this) by copy") ? static_cast<void> (0) : __assert_fail
("(!ByCopy || dyn_cast<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) && \"Only a lambda can capture the enclosing object (referred to by \" \"*this) by copy\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1233, __PRETTY_FUNCTION__))
1232 "Only a lambda can capture the enclosing object (referred to by "(((!ByCopy || dyn_cast<LambdaScopeInfo>(FunctionScopes[
MaxFunctionScopesIndex])) && "Only a lambda can capture the enclosing object (referred to by "
"*this) by copy") ? static_cast<void> (0) : __assert_fail
("(!ByCopy || dyn_cast<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) && \"Only a lambda can capture the enclosing object (referred to by \" \"*this) by copy\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1233, __PRETTY_FUNCTION__))
1233 "*this) by copy")(((!ByCopy || dyn_cast<LambdaScopeInfo>(FunctionScopes[
MaxFunctionScopesIndex])) && "Only a lambda can capture the enclosing object (referred to by "
"*this) by copy") ? static_cast<void> (0) : __assert_fail
("(!ByCopy || dyn_cast<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) && \"Only a lambda can capture the enclosing object (referred to by \" \"*this) by copy\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1233, __PRETTY_FUNCTION__))
;
1234 QualType ThisTy = getCurrentThisType();
1235 for (int idx = MaxFunctionScopesIndex; NumCapturingClosures;
1236 --idx, --NumCapturingClosures) {
1237 CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]);
1238
1239 // The type of the corresponding data member (not a 'this' pointer if 'by
1240 // copy').
1241 QualType CaptureType = ThisTy;
1242 if (ByCopy) {
1243 // If we are capturing the object referred to by '*this' by copy, ignore
1244 // any cv qualifiers inherited from the type of the member function for
1245 // the type of the closure-type's corresponding data member and any use
1246 // of 'this'.
1247 CaptureType = ThisTy->getPointeeType();
1248 CaptureType.removeLocalCVRQualifiers(Qualifiers::CVRMask);
1249 }
1250
1251 bool isNested = NumCapturingClosures > 1;
1252 CSI->addThisCapture(isNested, Loc, CaptureType, ByCopy);
1253 }
1254 return false;
1255}
1256
1257ExprResult Sema::ActOnCXXThis(SourceLocation Loc) {
1258 /// C++ 9.3.2: In the body of a non-static member function, the keyword this
1259 /// is a non-lvalue expression whose value is the address of the object for
1260 /// which the function is called.
1261
1262 QualType ThisTy = getCurrentThisType();
1263 if (ThisTy.isNull())
1264 return Diag(Loc, diag::err_invalid_this_use);
1265 return BuildCXXThisExpr(Loc, ThisTy, /*IsImplicit=*/false);
1266}
1267
1268Expr *Sema::BuildCXXThisExpr(SourceLocation Loc, QualType Type,
1269 bool IsImplicit) {
1270 auto *This = new (Context) CXXThisExpr(Loc, Type, IsImplicit);
1271 MarkThisReferenced(This);
1272 return This;
1273}
1274
1275void Sema::MarkThisReferenced(CXXThisExpr *This) {
1276 CheckCXXThisCapture(This->getExprLoc());
1277}
1278
1279bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) {
1280 // If we're outside the body of a member function, then we'll have a specified
1281 // type for 'this'.
1282 if (CXXThisTypeOverride.isNull())
1283 return false;
1284
1285 // Determine whether we're looking into a class that's currently being
1286 // defined.
1287 CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl();
1288 return Class && Class->isBeingDefined();
1289}
1290
1291/// Parse construction of a specified type.
1292/// Can be interpreted either as function-style casting ("int(x)")
1293/// or class type construction ("ClassType(x,y,z)")
1294/// or creation of a value-initialized type ("int()").
1295ExprResult
1296Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep,
1297 SourceLocation LParenOrBraceLoc,
1298 MultiExprArg exprs,
1299 SourceLocation RParenOrBraceLoc,
1300 bool ListInitialization) {
1301 if (!TypeRep)
1302 return ExprError();
1303
1304 TypeSourceInfo *TInfo;
1305 QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
1306 if (!TInfo)
1307 TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
1308
1309 auto Result = BuildCXXTypeConstructExpr(TInfo, LParenOrBraceLoc, exprs,
1310 RParenOrBraceLoc, ListInitialization);
1311 // Avoid creating a non-type-dependent expression that contains typos.
1312 // Non-type-dependent expressions are liable to be discarded without
1313 // checking for embedded typos.
1314 if (!Result.isInvalid() && Result.get()->isInstantiationDependent() &&
1315 !Result.get()->isTypeDependent())
1316 Result = CorrectDelayedTyposInExpr(Result.get());
1317 return Result;
1318}
1319
1320ExprResult
1321Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
1322 SourceLocation LParenOrBraceLoc,
1323 MultiExprArg Exprs,
1324 SourceLocation RParenOrBraceLoc,
1325 bool ListInitialization) {
1326 QualType Ty = TInfo->getType();
1327 SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
1328
1329 if (Ty->isDependentType() || CallExpr::hasAnyTypeDependentArguments(Exprs)) {
1330 // FIXME: CXXUnresolvedConstructExpr does not model list-initialization
1331 // directly. We work around this by dropping the locations of the braces.
1332 SourceRange Locs = ListInitialization
1333 ? SourceRange()
1334 : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc);
1335 return CXXUnresolvedConstructExpr::Create(Context, TInfo, Locs.getBegin(),
1336 Exprs, Locs.getEnd());
1337 }
1338
1339 assert((!ListInitialization ||(((!ListInitialization || (Exprs.size() == 1 && isa<
InitListExpr>(Exprs[0]))) && "List initialization must have initializer list as expression."
) ? static_cast<void> (0) : __assert_fail ("(!ListInitialization || (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0]))) && \"List initialization must have initializer list as expression.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1341, __PRETTY_FUNCTION__))
1340 (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0]))) &&(((!ListInitialization || (Exprs.size() == 1 && isa<
InitListExpr>(Exprs[0]))) && "List initialization must have initializer list as expression."
) ? static_cast<void> (0) : __assert_fail ("(!ListInitialization || (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0]))) && \"List initialization must have initializer list as expression.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1341, __PRETTY_FUNCTION__))
1341 "List initialization must have initializer list as expression.")(((!ListInitialization || (Exprs.size() == 1 && isa<
InitListExpr>(Exprs[0]))) && "List initialization must have initializer list as expression."
) ? static_cast<void> (0) : __assert_fail ("(!ListInitialization || (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0]))) && \"List initialization must have initializer list as expression.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1341, __PRETTY_FUNCTION__))
;
1342 SourceRange FullRange = SourceRange(TyBeginLoc, RParenOrBraceLoc);
1343
1344 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TInfo);
1345 InitializationKind Kind =
1346 Exprs.size()
1347 ? ListInitialization
1348 ? InitializationKind::CreateDirectList(
1349 TyBeginLoc, LParenOrBraceLoc, RParenOrBraceLoc)
1350 : InitializationKind::CreateDirect(TyBeginLoc, LParenOrBraceLoc,
1351 RParenOrBraceLoc)
1352 : InitializationKind::CreateValue(TyBeginLoc, LParenOrBraceLoc,
1353 RParenOrBraceLoc);
1354
1355 // C++1z [expr.type.conv]p1:
1356 // If the type is a placeholder for a deduced class type, [...perform class
1357 // template argument deduction...]
1358 DeducedType *Deduced = Ty->getContainedDeducedType();
1359 if (Deduced && isa<DeducedTemplateSpecializationType>(Deduced)) {
1360 Ty = DeduceTemplateSpecializationFromInitializer(TInfo, Entity,
1361 Kind, Exprs);
1362 if (Ty.isNull())
1363 return ExprError();
1364 Entity = InitializedEntity::InitializeTemporary(TInfo, Ty);
1365 }
1366
1367 // C++ [expr.type.conv]p1:
1368 // If the expression list is a parenthesized single expression, the type
1369 // conversion expression is equivalent (in definedness, and if defined in
1370 // meaning) to the corresponding cast expression.
1371 if (Exprs.size() == 1 && !ListInitialization &&
1372 !isa<InitListExpr>(Exprs[0])) {
1373 Expr *Arg = Exprs[0];
1374 return BuildCXXFunctionalCastExpr(TInfo, Ty, LParenOrBraceLoc, Arg,
1375 RParenOrBraceLoc);
1376 }
1377
1378 // For an expression of the form T(), T shall not be an array type.
1379 QualType ElemTy = Ty;
1380 if (Ty->isArrayType()) {
1381 if (!ListInitialization)
1382 return ExprError(Diag(TyBeginLoc, diag::err_value_init_for_array_type)
1383 << FullRange);
1384 ElemTy = Context.getBaseElementType(Ty);
1385 }
1386
1387 // There doesn't seem to be an explicit rule against this but sanity demands
1388 // we only construct objects with object types.
1389 if (Ty->isFunctionType())
1390 return ExprError(Diag(TyBeginLoc, diag::err_init_for_function_type)
1391 << Ty << FullRange);
1392
1393 // C++17 [expr.type.conv]p2:
1394 // If the type is cv void and the initializer is (), the expression is a
1395 // prvalue of the specified type that performs no initialization.
1396 if (!Ty->isVoidType() &&
1397 RequireCompleteType(TyBeginLoc, ElemTy,
1398 diag::err_invalid_incomplete_type_use, FullRange))
1399 return ExprError();
1400
1401 // Otherwise, the expression is a prvalue of the specified type whose
1402 // result object is direct-initialized (11.6) with the initializer.
1403 InitializationSequence InitSeq(*this, Entity, Kind, Exprs);
1404 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Exprs);
1405
1406 if (Result.isInvalid())
1407 return Result;
1408
1409 Expr *Inner = Result.get();
1410 if (CXXBindTemporaryExpr *BTE = dyn_cast_or_null<CXXBindTemporaryExpr>(Inner))
1411 Inner = BTE->getSubExpr();
1412 if (!isa<CXXTemporaryObjectExpr>(Inner) &&
1413 !isa<CXXScalarValueInitExpr>(Inner)) {
1414 // If we created a CXXTemporaryObjectExpr, that node also represents the
1415 // functional cast. Otherwise, create an explicit cast to represent
1416 // the syntactic form of a functional-style cast that was used here.
1417 //
1418 // FIXME: Creating a CXXFunctionalCastExpr around a CXXConstructExpr
1419 // would give a more consistent AST representation than using a
1420 // CXXTemporaryObjectExpr. It's also weird that the functional cast
1421 // is sometimes handled by initialization and sometimes not.
1422 QualType ResultType = Result.get()->getType();
1423 SourceRange Locs = ListInitialization
1424 ? SourceRange()
1425 : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc);
1426 Result = CXXFunctionalCastExpr::Create(
1427 Context, ResultType, Expr::getValueKindForType(Ty), TInfo, CK_NoOp,
1428 Result.get(), /*Path=*/nullptr, Locs.getBegin(), Locs.getEnd());
1429 }
1430
1431 return Result;
1432}
1433
1434bool Sema::isUsualDeallocationFunction(const CXXMethodDecl *Method) {
1435 // [CUDA] Ignore this function, if we can't call it.
1436 const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext);
1437 if (getLangOpts().CUDA &&
1438 IdentifyCUDAPreference(Caller, Method) <= CFP_WrongSide)
1439 return false;
1440
1441 SmallVector<const FunctionDecl*, 4> PreventedBy;
1442 bool Result = Method->isUsualDeallocationFunction(PreventedBy);
1443
1444 if (Result || !getLangOpts().CUDA || PreventedBy.empty())
1445 return Result;
1446
1447 // In case of CUDA, return true if none of the 1-argument deallocator
1448 // functions are actually callable.
1449 return llvm::none_of(PreventedBy, [&](const FunctionDecl *FD) {
1450 assert(FD->getNumParams() == 1 &&((FD->getNumParams() == 1 && "Only single-operand functions should be in PreventedBy"
) ? static_cast<void> (0) : __assert_fail ("FD->getNumParams() == 1 && \"Only single-operand functions should be in PreventedBy\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1451, __PRETTY_FUNCTION__))
1451 "Only single-operand functions should be in PreventedBy")((FD->getNumParams() == 1 && "Only single-operand functions should be in PreventedBy"
) ? static_cast<void> (0) : __assert_fail ("FD->getNumParams() == 1 && \"Only single-operand functions should be in PreventedBy\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1451, __PRETTY_FUNCTION__))
;
1452 return IdentifyCUDAPreference(Caller, FD) >= CFP_HostDevice;
1453 });
1454}
1455
1456/// Determine whether the given function is a non-placement
1457/// deallocation function.
1458static bool isNonPlacementDeallocationFunction(Sema &S, FunctionDecl *FD) {
1459 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
1460 return S.isUsualDeallocationFunction(Method);
1461
1462 if (FD->getOverloadedOperator() != OO_Delete &&
1463 FD->getOverloadedOperator() != OO_Array_Delete)
1464 return false;
1465
1466 unsigned UsualParams = 1;
1467
1468 if (S.getLangOpts().SizedDeallocation && UsualParams < FD->getNumParams() &&
1469 S.Context.hasSameUnqualifiedType(
1470 FD->getParamDecl(UsualParams)->getType(),
1471 S.Context.getSizeType()))
1472 ++UsualParams;
1473
1474 if (S.getLangOpts().AlignedAllocation && UsualParams < FD->getNumParams() &&
1475 S.Context.hasSameUnqualifiedType(
1476 FD->getParamDecl(UsualParams)->getType(),
1477 S.Context.getTypeDeclType(S.getStdAlignValT())))
1478 ++UsualParams;
1479
1480 return UsualParams == FD->getNumParams();
1481}
1482
1483namespace {
1484 struct UsualDeallocFnInfo {
1485 UsualDeallocFnInfo() : Found(), FD(nullptr) {}
1486 UsualDeallocFnInfo(Sema &S, DeclAccessPair Found)
1487 : Found(Found), FD(dyn_cast<FunctionDecl>(Found->getUnderlyingDecl())),
1488 Destroying(false), HasSizeT(false), HasAlignValT(false),
1489 CUDAPref(Sema::CFP_Native) {
1490 // A function template declaration is never a usual deallocation function.
1491 if (!FD)
1492 return;
1493 unsigned NumBaseParams = 1;
1494 if (FD->isDestroyingOperatorDelete()) {
1495 Destroying = true;
1496 ++NumBaseParams;
1497 }
1498
1499 if (NumBaseParams < FD->getNumParams() &&
1500 S.Context.hasSameUnqualifiedType(
1501 FD->getParamDecl(NumBaseParams)->getType(),
1502 S.Context.getSizeType())) {
1503 ++NumBaseParams;
1504 HasSizeT = true;
1505 }
1506
1507 if (NumBaseParams < FD->getNumParams() &&
1508 FD->getParamDecl(NumBaseParams)->getType()->isAlignValT()) {
1509 ++NumBaseParams;
1510 HasAlignValT = true;
1511 }
1512
1513 // In CUDA, determine how much we'd like / dislike to call this.
1514 if (S.getLangOpts().CUDA)
1515 if (auto *Caller = dyn_cast<FunctionDecl>(S.CurContext))
1516 CUDAPref = S.IdentifyCUDAPreference(Caller, FD);
1517 }
1518
1519 explicit operator bool() const { return FD; }
1520
1521 bool isBetterThan(const UsualDeallocFnInfo &Other, bool WantSize,
1522 bool WantAlign) const {
1523 // C++ P0722:
1524 // A destroying operator delete is preferred over a non-destroying
1525 // operator delete.
1526 if (Destroying != Other.Destroying)
1527 return Destroying;
1528
1529 // C++17 [expr.delete]p10:
1530 // If the type has new-extended alignment, a function with a parameter
1531 // of type std::align_val_t is preferred; otherwise a function without
1532 // such a parameter is preferred
1533 if (HasAlignValT != Other.HasAlignValT)
1534 return HasAlignValT == WantAlign;
1535
1536 if (HasSizeT != Other.HasSizeT)
1537 return HasSizeT == WantSize;
1538
1539 // Use CUDA call preference as a tiebreaker.
1540 return CUDAPref > Other.CUDAPref;
1541 }
1542
1543 DeclAccessPair Found;
1544 FunctionDecl *FD;
1545 bool Destroying, HasSizeT, HasAlignValT;
1546 Sema::CUDAFunctionPreference CUDAPref;
1547 };
1548}
1549
1550/// Determine whether a type has new-extended alignment. This may be called when
1551/// the type is incomplete (for a delete-expression with an incomplete pointee
1552/// type), in which case it will conservatively return false if the alignment is
1553/// not known.
1554static bool hasNewExtendedAlignment(Sema &S, QualType AllocType) {
1555 return S.getLangOpts().AlignedAllocation &&
1556 S.getASTContext().getTypeAlignIfKnown(AllocType) >
1557 S.getASTContext().getTargetInfo().getNewAlign();
1558}
1559
1560/// Select the correct "usual" deallocation function to use from a selection of
1561/// deallocation functions (either global or class-scope).
1562static UsualDeallocFnInfo resolveDeallocationOverload(
1563 Sema &S, LookupResult &R, bool WantSize, bool WantAlign,
1564 llvm::SmallVectorImpl<UsualDeallocFnInfo> *BestFns = nullptr) {
1565 UsualDeallocFnInfo Best;
1566
1567 for (auto I = R.begin(), E = R.end(); I != E; ++I) {
1568 UsualDeallocFnInfo Info(S, I.getPair());
1569 if (!Info || !isNonPlacementDeallocationFunction(S, Info.FD) ||
1570 Info.CUDAPref == Sema::CFP_Never)
1571 continue;
1572
1573 if (!Best) {
1574 Best = Info;
1575 if (BestFns)
1576 BestFns->push_back(Info);
1577 continue;
1578 }
1579
1580 if (Best.isBetterThan(Info, WantSize, WantAlign))
1581 continue;
1582
1583 // If more than one preferred function is found, all non-preferred
1584 // functions are eliminated from further consideration.
1585 if (BestFns && Info.isBetterThan(Best, WantSize, WantAlign))
1586 BestFns->clear();
1587
1588 Best = Info;
1589 if (BestFns)
1590 BestFns->push_back(Info);
1591 }
1592
1593 return Best;
1594}
1595
1596/// Determine whether a given type is a class for which 'delete[]' would call
1597/// a member 'operator delete[]' with a 'size_t' parameter. This implies that
1598/// we need to store the array size (even if the type is
1599/// trivially-destructible).
1600static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc,
1601 QualType allocType) {
1602 const RecordType *record =
1603 allocType->getBaseElementTypeUnsafe()->getAs<RecordType>();
1604 if (!record) return false;
1605
1606 // Try to find an operator delete[] in class scope.
1607
1608 DeclarationName deleteName =
1609 S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete);
1610 LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName);
1611 S.LookupQualifiedName(ops, record->getDecl());
1612
1613 // We're just doing this for information.
1614 ops.suppressDiagnostics();
1615
1616 // Very likely: there's no operator delete[].
1617 if (ops.empty()) return false;
1618
1619 // If it's ambiguous, it should be illegal to call operator delete[]
1620 // on this thing, so it doesn't matter if we allocate extra space or not.
1621 if (ops.isAmbiguous()) return false;
1622
1623 // C++17 [expr.delete]p10:
1624 // If the deallocation functions have class scope, the one without a
1625 // parameter of type std::size_t is selected.
1626 auto Best = resolveDeallocationOverload(
1627 S, ops, /*WantSize*/false,
1628 /*WantAlign*/hasNewExtendedAlignment(S, allocType));
1629 return Best && Best.HasSizeT;
1630}
1631
1632/// Parsed a C++ 'new' expression (C++ 5.3.4).
1633///
1634/// E.g.:
1635/// @code new (memory) int[size][4] @endcode
1636/// or
1637/// @code ::new Foo(23, "hello") @endcode
1638///
1639/// \param StartLoc The first location of the expression.
1640/// \param UseGlobal True if 'new' was prefixed with '::'.
1641/// \param PlacementLParen Opening paren of the placement arguments.
1642/// \param PlacementArgs Placement new arguments.
1643/// \param PlacementRParen Closing paren of the placement arguments.
1644/// \param TypeIdParens If the type is in parens, the source range.
1645/// \param D The type to be allocated, as well as array dimensions.
1646/// \param Initializer The initializing expression or initializer-list, or null
1647/// if there is none.
1648ExprResult
1649Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
1650 SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
1651 SourceLocation PlacementRParen, SourceRange TypeIdParens,
1652 Declarator &D, Expr *Initializer) {
1653 Optional<Expr *> ArraySize;
1654 // If the specified type is an array, unwrap it and save the expression.
1655 if (D.getNumTypeObjects() > 0 &&
1656 D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
1657 DeclaratorChunk &Chunk = D.getTypeObject(0);
1658 if (D.getDeclSpec().hasAutoTypeSpec())
1659 return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto)
1660 << D.getSourceRange());
1661 if (Chunk.Arr.hasStatic)
1662 return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
1663 << D.getSourceRange());
1664 if (!Chunk.Arr.NumElts && !Initializer)
1665 return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
1666 << D.getSourceRange());
1667
1668 ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
1669 D.DropFirstTypeObject();
1670 }
1671
1672 // Every dimension shall be of constant size.
1673 if (ArraySize) {
1674 for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
1675 if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
1676 break;
1677
1678 DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
1679 if (Expr *NumElts = (Expr *)Array.NumElts) {
1680 if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) {
1681 if (getLangOpts().CPlusPlus14) {
1682 // C++1y [expr.new]p6: Every constant-expression in a noptr-new-declarator
1683 // shall be a converted constant expression (5.19) of type std::size_t
1684 // and shall evaluate to a strictly positive value.
1685 unsigned IntWidth = Context.getTargetInfo().getIntWidth();
1686 assert(IntWidth && "Builtin type of size 0?")((IntWidth && "Builtin type of size 0?") ? static_cast
<void> (0) : __assert_fail ("IntWidth && \"Builtin type of size 0?\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1686, __PRETTY_FUNCTION__))
;
1687 llvm::APSInt Value(IntWidth);
1688 Array.NumElts
1689 = CheckConvertedConstantExpression(NumElts, Context.getSizeType(), Value,
1690 CCEK_NewExpr)
1691 .get();
1692 } else {
1693 Array.NumElts
1694 = VerifyIntegerConstantExpression(NumElts, nullptr,
1695 diag::err_new_array_nonconst)
1696 .get();
1697 }
1698 if (!Array.NumElts)
1699 return ExprError();
1700 }
1701 }
1702 }
1703 }
1704
1705 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/nullptr);
1706 QualType AllocType = TInfo->getType();
1707 if (D.isInvalidType())
1708 return ExprError();
1709
1710 SourceRange DirectInitRange;
1711 if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer))
1712 DirectInitRange = List->getSourceRange();
1713
1714 return BuildCXXNew(SourceRange(StartLoc, D.getEndLoc()), UseGlobal,
1715 PlacementLParen, PlacementArgs, PlacementRParen,
1716 TypeIdParens, AllocType, TInfo, ArraySize, DirectInitRange,
1717 Initializer);
1718}
1719
1720static bool isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style,
1721 Expr *Init) {
1722 if (!Init)
1723 return true;
1724 if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init))
1725 return PLE->getNumExprs() == 0;
1726 if (isa<ImplicitValueInitExpr>(Init))
1727 return true;
1728 else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init))
1729 return !CCE->isListInitialization() &&
1730 CCE->getConstructor()->isDefaultConstructor();
1731 else if (Style == CXXNewExpr::ListInit) {
1732 assert(isa<InitListExpr>(Init) &&((isa<InitListExpr>(Init) && "Shouldn't create list CXXConstructExprs for arrays."
) ? static_cast<void> (0) : __assert_fail ("isa<InitListExpr>(Init) && \"Shouldn't create list CXXConstructExprs for arrays.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1733, __PRETTY_FUNCTION__))
1733 "Shouldn't create list CXXConstructExprs for arrays.")((isa<InitListExpr>(Init) && "Shouldn't create list CXXConstructExprs for arrays."
) ? static_cast<void> (0) : __assert_fail ("isa<InitListExpr>(Init) && \"Shouldn't create list CXXConstructExprs for arrays.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1733, __PRETTY_FUNCTION__))
;
1734 return true;
1735 }
1736 return false;
1737}
1738
1739bool
1740Sema::isUnavailableAlignedAllocationFunction(const FunctionDecl &FD) const {
1741 if (!getLangOpts().AlignedAllocationUnavailable)
1742 return false;
1743 if (FD.isDefined())
1744 return false;
1745 bool IsAligned = false;
1746 if (FD.isReplaceableGlobalAllocationFunction(&IsAligned) && IsAligned)
1747 return true;
1748 return false;
1749}
1750
1751// Emit a diagnostic if an aligned allocation/deallocation function that is not
1752// implemented in the standard library is selected.
1753void Sema::diagnoseUnavailableAlignedAllocation(const FunctionDecl &FD,
1754 SourceLocation Loc) {
1755 if (isUnavailableAlignedAllocationFunction(FD)) {
1756 const llvm::Triple &T = getASTContext().getTargetInfo().getTriple();
1757 StringRef OSName = AvailabilityAttr::getPlatformNameSourceSpelling(
1758 getASTContext().getTargetInfo().getPlatformName());
1759
1760 OverloadedOperatorKind Kind = FD.getDeclName().getCXXOverloadedOperator();
1761 bool IsDelete = Kind == OO_Delete || Kind == OO_Array_Delete;
1762 Diag(Loc, diag::err_aligned_allocation_unavailable)
1763 << IsDelete << FD.getType().getAsString() << OSName
1764 << alignedAllocMinVersion(T.getOS()).getAsString();
1765 Diag(Loc, diag::note_silence_aligned_allocation_unavailable);
1766 }
1767}
1768
1769ExprResult
1770Sema::BuildCXXNew(SourceRange Range, bool UseGlobal,
1771 SourceLocation PlacementLParen,
1772 MultiExprArg PlacementArgs,
1773 SourceLocation PlacementRParen,
1774 SourceRange TypeIdParens,
1775 QualType AllocType,
1776 TypeSourceInfo *AllocTypeInfo,
1777 Optional<Expr *> ArraySize,
1778 SourceRange DirectInitRange,
1779 Expr *Initializer) {
1780 SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
1781 SourceLocation StartLoc = Range.getBegin();
1782
1783 CXXNewExpr::InitializationStyle initStyle;
1784 if (DirectInitRange.isValid()) {
1785 assert(Initializer && "Have parens but no initializer.")((Initializer && "Have parens but no initializer.") ?
static_cast<void> (0) : __assert_fail ("Initializer && \"Have parens but no initializer.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1785, __PRETTY_FUNCTION__))
;
1786 initStyle = CXXNewExpr::CallInit;
1787 } else if (Initializer && isa<InitListExpr>(Initializer))
1788 initStyle = CXXNewExpr::ListInit;
1789 else {
1790 assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) ||(((!Initializer || isa<ImplicitValueInitExpr>(Initializer
) || isa<CXXConstructExpr>(Initializer)) && "Initializer expression that cannot have been implicitly created."
) ? static_cast<void> (0) : __assert_fail ("(!Initializer || isa<ImplicitValueInitExpr>(Initializer) || isa<CXXConstructExpr>(Initializer)) && \"Initializer expression that cannot have been implicitly created.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1792, __PRETTY_FUNCTION__))
1791 isa<CXXConstructExpr>(Initializer)) &&(((!Initializer || isa<ImplicitValueInitExpr>(Initializer
) || isa<CXXConstructExpr>(Initializer)) && "Initializer expression that cannot have been implicitly created."
) ? static_cast<void> (0) : __assert_fail ("(!Initializer || isa<ImplicitValueInitExpr>(Initializer) || isa<CXXConstructExpr>(Initializer)) && \"Initializer expression that cannot have been implicitly created.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1792, __PRETTY_FUNCTION__))
1792 "Initializer expression that cannot have been implicitly created.")(((!Initializer || isa<ImplicitValueInitExpr>(Initializer
) || isa<CXXConstructExpr>(Initializer)) && "Initializer expression that cannot have been implicitly created."
) ? static_cast<void> (0) : __assert_fail ("(!Initializer || isa<ImplicitValueInitExpr>(Initializer) || isa<CXXConstructExpr>(Initializer)) && \"Initializer expression that cannot have been implicitly created.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1792, __PRETTY_FUNCTION__))
;
1793 initStyle = CXXNewExpr::NoInit;
1794 }
1795
1796 Expr **Inits = &Initializer;
1797 unsigned NumInits = Initializer ? 1 : 0;
1798 if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) {
1799 assert(initStyle == CXXNewExpr::CallInit && "paren init for non-call init")((initStyle == CXXNewExpr::CallInit && "paren init for non-call init"
) ? static_cast<void> (0) : __assert_fail ("initStyle == CXXNewExpr::CallInit && \"paren init for non-call init\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1799, __PRETTY_FUNCTION__))
;
1800 Inits = List->getExprs();
1801 NumInits = List->getNumExprs();
1802 }
1803
1804 // C++11 [expr.new]p15:
1805 // A new-expression that creates an object of type T initializes that
1806 // object as follows:
1807 InitializationKind Kind
1808 // - If the new-initializer is omitted, the object is default-
1809 // initialized (8.5); if no initialization is performed,
1810 // the object has indeterminate value
1811 = initStyle == CXXNewExpr::NoInit
1812 ? InitializationKind::CreateDefault(TypeRange.getBegin())
1813 // - Otherwise, the new-initializer is interpreted according to
1814 // the
1815 // initialization rules of 8.5 for direct-initialization.
1816 : initStyle == CXXNewExpr::ListInit
1817 ? InitializationKind::CreateDirectList(
1818 TypeRange.getBegin(), Initializer->getBeginLoc(),
1819 Initializer->getEndLoc())
1820 : InitializationKind::CreateDirect(TypeRange.getBegin(),
1821 DirectInitRange.getBegin(),
1822 DirectInitRange.getEnd());
1823
1824 // C++11 [dcl.spec.auto]p6. Deduce the type which 'auto' stands in for.
1825 auto *Deduced = AllocType->getContainedDeducedType();
1826 if (Deduced && isa<DeducedTemplateSpecializationType>(Deduced)) {
1827 if (ArraySize)
1828 return ExprError(
1829 Diag(ArraySize ? (*ArraySize)->getExprLoc() : TypeRange.getBegin(),
1830 diag::err_deduced_class_template_compound_type)
1831 << /*array*/ 2
1832 << (ArraySize ? (*ArraySize)->getSourceRange() : TypeRange));
1833
1834 InitializedEntity Entity
1835 = InitializedEntity::InitializeNew(StartLoc, AllocType);
1836 AllocType = DeduceTemplateSpecializationFromInitializer(
1837 AllocTypeInfo, Entity, Kind, MultiExprArg(Inits, NumInits));
1838 if (AllocType.isNull())
1839 return ExprError();
1840 } else if (Deduced) {
1841 bool Braced = (initStyle == CXXNewExpr::ListInit);
1842 if (NumInits == 1) {
1843 if (auto p = dyn_cast_or_null<InitListExpr>(Inits[0])) {
1844 Inits = p->getInits();
1845 NumInits = p->getNumInits();
1846 Braced = true;
1847 }
1848 }
1849
1850 if (initStyle == CXXNewExpr::NoInit || NumInits == 0)
1851 return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg)
1852 << AllocType << TypeRange);
1853 if (NumInits > 1) {
1854 Expr *FirstBad = Inits[1];
1855 return ExprError(Diag(FirstBad->getBeginLoc(),
1856 diag::err_auto_new_ctor_multiple_expressions)
1857 << AllocType << TypeRange);
1858 }
1859 if (Braced && !getLangOpts().CPlusPlus17)
1860 Diag(Initializer->getBeginLoc(), diag::ext_auto_new_list_init)
1861 << AllocType << TypeRange;
1862 Expr *Deduce = Inits[0];
1863 QualType DeducedType;
1864 if (DeduceAutoType(AllocTypeInfo, Deduce, DeducedType) == DAR_Failed)
1865 return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure)
1866 << AllocType << Deduce->getType()
1867 << TypeRange << Deduce->getSourceRange());
1868 if (DeducedType.isNull())
1869 return ExprError();
1870 AllocType = DeducedType;
1871 }
1872
1873 // Per C++0x [expr.new]p5, the type being constructed may be a
1874 // typedef of an array type.
1875 if (!ArraySize) {
1876 if (const ConstantArrayType *Array
1877 = Context.getAsConstantArrayType(AllocType)) {
1878 ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
1879 Context.getSizeType(),
1880 TypeRange.getEnd());
1881 AllocType = Array->getElementType();
1882 }
1883 }
1884
1885 if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
1886 return ExprError();
1887
1888 // In ARC, infer 'retaining' for the allocated
1889 if (getLangOpts().ObjCAutoRefCount &&
1890 AllocType.getObjCLifetime() == Qualifiers::OCL_None &&
1891 AllocType->isObjCLifetimeType()) {
1892 AllocType = Context.getLifetimeQualifiedType(AllocType,
1893 AllocType->getObjCARCImplicitLifetime());
1894 }
1895
1896 QualType ResultType = Context.getPointerType(AllocType);
1897
1898 if (ArraySize && *ArraySize &&
1899 (*ArraySize)->getType()->isNonOverloadPlaceholderType()) {
1900 ExprResult result = CheckPlaceholderExpr(*ArraySize);
1901 if (result.isInvalid()) return ExprError();
1902 ArraySize = result.get();
1903 }
1904 // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have
1905 // integral or enumeration type with a non-negative value."
1906 // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped
1907 // enumeration type, or a class type for which a single non-explicit
1908 // conversion function to integral or unscoped enumeration type exists.
1909 // C++1y [expr.new]p6: The expression [...] is implicitly converted to
1910 // std::size_t.
1911 llvm::Optional<uint64_t> KnownArraySize;
1912 if (ArraySize && *ArraySize && !(*ArraySize)->isTypeDependent()) {
1913 ExprResult ConvertedSize;
1914 if (getLangOpts().CPlusPlus14) {
1915 assert(Context.getTargetInfo().getIntWidth() && "Builtin type of size 0?")((Context.getTargetInfo().getIntWidth() && "Builtin type of size 0?"
) ? static_cast<void> (0) : __assert_fail ("Context.getTargetInfo().getIntWidth() && \"Builtin type of size 0?\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1915, __PRETTY_FUNCTION__))
;
1916
1917 ConvertedSize = PerformImplicitConversion(*ArraySize, Context.getSizeType(),
1918 AA_Converting);
1919
1920 if (!ConvertedSize.isInvalid() &&
1921 (*ArraySize)->getType()->getAs<RecordType>())
1922 // Diagnose the compatibility of this conversion.
1923 Diag(StartLoc, diag::warn_cxx98_compat_array_size_conversion)
1924 << (*ArraySize)->getType() << 0 << "'size_t'";
1925 } else {
1926 class SizeConvertDiagnoser : public ICEConvertDiagnoser {
1927 protected:
1928 Expr *ArraySize;
1929
1930 public:
1931 SizeConvertDiagnoser(Expr *ArraySize)
1932 : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false, false, false),
1933 ArraySize(ArraySize) {}
1934
1935 SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
1936 QualType T) override {
1937 return S.Diag(Loc, diag::err_array_size_not_integral)
1938 << S.getLangOpts().CPlusPlus11 << T;
1939 }
1940
1941 SemaDiagnosticBuilder diagnoseIncomplete(
1942 Sema &S, SourceLocation Loc, QualType T) override {
1943 return S.Diag(Loc, diag::err_array_size_incomplete_type)
1944 << T << ArraySize->getSourceRange();
1945 }
1946
1947 SemaDiagnosticBuilder diagnoseExplicitConv(
1948 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
1949 return S.Diag(Loc, diag::err_array_size_explicit_conversion) << T << ConvTy;
1950 }
1951
1952 SemaDiagnosticBuilder noteExplicitConv(
1953 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
1954 return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
1955 << ConvTy->isEnumeralType() << ConvTy;
1956 }
1957
1958 SemaDiagnosticBuilder diagnoseAmbiguous(
1959 Sema &S, SourceLocation Loc, QualType T) override {
1960 return S.Diag(Loc, diag::err_array_size_ambiguous_conversion) << T;
1961 }
1962
1963 SemaDiagnosticBuilder noteAmbiguous(
1964 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
1965 return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
1966 << ConvTy->isEnumeralType() << ConvTy;
1967 }
1968
1969 SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
1970 QualType T,
1971 QualType ConvTy) override {
1972 return S.Diag(Loc,
1973 S.getLangOpts().CPlusPlus11
1974 ? diag::warn_cxx98_compat_array_size_conversion
1975 : diag::ext_array_size_conversion)
1976 << T << ConvTy->isEnumeralType() << ConvTy;
1977 }
1978 } SizeDiagnoser(*ArraySize);
1979
1980 ConvertedSize = PerformContextualImplicitConversion(StartLoc, *ArraySize,
1981 SizeDiagnoser);
1982 }
1983 if (ConvertedSize.isInvalid())
1984 return ExprError();
1985
1986 ArraySize = ConvertedSize.get();
1987 QualType SizeType = (*ArraySize)->getType();
1988
1989 if (!SizeType->isIntegralOrUnscopedEnumerationType())
1990 return ExprError();
1991
1992 // C++98 [expr.new]p7:
1993 // The expression in a direct-new-declarator shall have integral type
1994 // with a non-negative value.
1995 //
1996 // Let's see if this is a constant < 0. If so, we reject it out of hand,
1997 // per CWG1464. Otherwise, if it's not a constant, we must have an
1998 // unparenthesized array type.
1999 if (!(*ArraySize)->isValueDependent()) {
2000 llvm::APSInt Value;
2001 // We've already performed any required implicit conversion to integer or
2002 // unscoped enumeration type.
2003 // FIXME: Per CWG1464, we are required to check the value prior to
2004 // converting to size_t. This will never find a negative array size in
2005 // C++14 onwards, because Value is always unsigned here!
2006 if ((*ArraySize)->isIntegerConstantExpr(Value, Context)) {
2007 if (Value.isSigned() && Value.isNegative()) {
2008 return ExprError(Diag((*ArraySize)->getBeginLoc(),
2009 diag::err_typecheck_negative_array_size)
2010 << (*ArraySize)->getSourceRange());
2011 }
2012
2013 if (!AllocType->isDependentType()) {
2014 unsigned ActiveSizeBits =
2015 ConstantArrayType::getNumAddressingBits(Context, AllocType, Value);
2016 if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context))
2017 return ExprError(
2018 Diag((*ArraySize)->getBeginLoc(), diag::err_array_too_large)
2019 << Value.toString(10) << (*ArraySize)->getSourceRange());
2020 }
2021
2022 KnownArraySize = Value.getZExtValue();
2023 } else if (TypeIdParens.isValid()) {
2024 // Can't have dynamic array size when the type-id is in parentheses.
2025 Diag((*ArraySize)->getBeginLoc(), diag::ext_new_paren_array_nonconst)
2026 << (*ArraySize)->getSourceRange()
2027 << FixItHint::CreateRemoval(TypeIdParens.getBegin())
2028 << FixItHint::CreateRemoval(TypeIdParens.getEnd());
2029
2030 TypeIdParens = SourceRange();
2031 }
2032 }
2033
2034 // Note that we do *not* convert the argument in any way. It can
2035 // be signed, larger than size_t, whatever.
2036 }
2037
2038 FunctionDecl *OperatorNew = nullptr;
2039 FunctionDecl *OperatorDelete = nullptr;
2040 unsigned Alignment =
2041 AllocType->isDependentType() ? 0 : Context.getTypeAlign(AllocType);
2042 unsigned NewAlignment = Context.getTargetInfo().getNewAlign();
2043 bool PassAlignment = getLangOpts().AlignedAllocation &&
2044 Alignment > NewAlignment;
2045
2046 AllocationFunctionScope Scope = UseGlobal ? AFS_Global : AFS_Both;
2047 if (!AllocType->isDependentType() &&
2048 !Expr::hasAnyTypeDependentArguments(PlacementArgs) &&
2049 FindAllocationFunctions(
2050 StartLoc, SourceRange(PlacementLParen, PlacementRParen), Scope, Scope,
2051 AllocType, ArraySize.hasValue(), PassAlignment, PlacementArgs,
2052 OperatorNew, OperatorDelete))
2053 return ExprError();
2054
2055 // If this is an array allocation, compute whether the usual array
2056 // deallocation function for the type has a size_t parameter.
2057 bool UsualArrayDeleteWantsSize = false;
2058 if (ArraySize && !AllocType->isDependentType())
2059 UsualArrayDeleteWantsSize =
2060 doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType);
2061
2062 SmallVector<Expr *, 8> AllPlaceArgs;
2063 if (OperatorNew) {
2064 const FunctionProtoType *Proto =
2065 OperatorNew->getType()->getAs<FunctionProtoType>();
2066 VariadicCallType CallType = Proto->isVariadic() ? VariadicFunction
2067 : VariadicDoesNotApply;
2068
2069 // We've already converted the placement args, just fill in any default
2070 // arguments. Skip the first parameter because we don't have a corresponding
2071 // argument. Skip the second parameter too if we're passing in the
2072 // alignment; we've already filled it in.
2073 if (GatherArgumentsForCall(PlacementLParen, OperatorNew, Proto,
2074 PassAlignment ? 2 : 1, PlacementArgs,
2075 AllPlaceArgs, CallType))
2076 return ExprError();
2077
2078 if (!AllPlaceArgs.empty())
2079 PlacementArgs = AllPlaceArgs;
2080
2081 // FIXME: This is wrong: PlacementArgs misses out the first (size) argument.
2082 DiagnoseSentinelCalls(OperatorNew, PlacementLParen, PlacementArgs);
2083
2084 // FIXME: Missing call to CheckFunctionCall or equivalent
2085
2086 // Warn if the type is over-aligned and is being allocated by (unaligned)
2087 // global operator new.
2088 if (PlacementArgs.empty() && !PassAlignment &&
2089 (OperatorNew->isImplicit() ||
2090 (OperatorNew->getBeginLoc().isValid() &&
2091 getSourceManager().isInSystemHeader(OperatorNew->getBeginLoc())))) {
2092 if (Alignment > NewAlignment)
2093 Diag(StartLoc, diag::warn_overaligned_type)
2094 << AllocType
2095 << unsigned(Alignment / Context.getCharWidth())
2096 << unsigned(NewAlignment / Context.getCharWidth());
2097 }
2098 }
2099
2100 // Array 'new' can't have any initializers except empty parentheses.
2101 // Initializer lists are also allowed, in C++11. Rely on the parser for the
2102 // dialect distinction.
2103 if (ArraySize && !isLegalArrayNewInitializer(initStyle, Initializer)) {
2104 SourceRange InitRange(Inits[0]->getBeginLoc(),
2105 Inits[NumInits - 1]->getEndLoc());
2106 Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
2107 return ExprError();
2108 }
2109
2110 // If we can perform the initialization, and we've not already done so,
2111 // do it now.
2112 if (!AllocType->isDependentType() &&
2113 !Expr::hasAnyTypeDependentArguments(
2114 llvm::makeArrayRef(Inits, NumInits))) {
2115 // The type we initialize is the complete type, including the array bound.
2116 QualType InitType;
2117 if (KnownArraySize)
2118 InitType = Context.getConstantArrayType(
2119 AllocType,
2120 llvm::APInt(Context.getTypeSize(Context.getSizeType()),
2121 *KnownArraySize),
2122 *ArraySize, ArrayType::Normal, 0);
2123 else if (ArraySize)
2124 InitType =
2125 Context.getIncompleteArrayType(AllocType, ArrayType::Normal, 0);
2126 else
2127 InitType = AllocType;
2128
2129 InitializedEntity Entity
2130 = InitializedEntity::InitializeNew(StartLoc, InitType);
2131 InitializationSequence InitSeq(*this, Entity, Kind,
2132 MultiExprArg(Inits, NumInits));
2133 ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind,
2134 MultiExprArg(Inits, NumInits));
2135 if (FullInit.isInvalid())
2136 return ExprError();
2137
2138 // FullInit is our initializer; strip off CXXBindTemporaryExprs, because
2139 // we don't want the initialized object to be destructed.
2140 // FIXME: We should not create these in the first place.
2141 if (CXXBindTemporaryExpr *Binder =
2142 dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get()))
2143 FullInit = Binder->getSubExpr();
2144
2145 Initializer = FullInit.get();
2146
2147 // FIXME: If we have a KnownArraySize, check that the array bound of the
2148 // initializer is no greater than that constant value.
2149
2150 if (ArraySize && !*ArraySize) {
2151 auto *CAT = Context.getAsConstantArrayType(Initializer->getType());
2152 if (CAT) {
2153 // FIXME: Track that the array size was inferred rather than explicitly
2154 // specified.
2155 ArraySize = IntegerLiteral::Create(
2156 Context, CAT->getSize(), Context.getSizeType(), TypeRange.getEnd());
2157 } else {
2158 Diag(TypeRange.getEnd(), diag::err_new_array_size_unknown_from_init)
2159 << Initializer->getSourceRange();
2160 }
2161 }
2162 }
2163
2164 // Mark the new and delete operators as referenced.
2165 if (OperatorNew) {
2166 if (DiagnoseUseOfDecl(OperatorNew, StartLoc))
2167 return ExprError();
2168 MarkFunctionReferenced(StartLoc, OperatorNew);
2169 }
2170 if (OperatorDelete) {
2171 if (DiagnoseUseOfDecl(OperatorDelete, StartLoc))
2172 return ExprError();
2173 MarkFunctionReferenced(StartLoc, OperatorDelete);
2174 }
2175
2176 return CXXNewExpr::Create(Context, UseGlobal, OperatorNew, OperatorDelete,
2177 PassAlignment, UsualArrayDeleteWantsSize,
2178 PlacementArgs, TypeIdParens, ArraySize, initStyle,
2179 Initializer, ResultType, AllocTypeInfo, Range,
2180 DirectInitRange);
2181}
2182
2183/// Checks that a type is suitable as the allocated type
2184/// in a new-expression.
2185bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
2186 SourceRange R) {
2187 // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
2188 // abstract class type or array thereof.
2189 if (AllocType->isFunctionType())
2190 return Diag(Loc, diag::err_bad_new_type)
2191 << AllocType << 0 << R;
2192 else if (AllocType->isReferenceType())
2193 return Diag(Loc, diag::err_bad_new_type)
2194 << AllocType << 1 << R;
2195 else if (!AllocType->isDependentType() &&
2196 RequireCompleteType(Loc, AllocType, diag::err_new_incomplete_type,R))
2197 return true;
2198 else if (RequireNonAbstractType(Loc, AllocType,
2199 diag::err_allocation_of_abstract_type))
2200 return true;
2201 else if (AllocType->isVariablyModifiedType())
2202 return Diag(Loc, diag::err_variably_modified_new_type)
2203 << AllocType;
2204 else if (AllocType.getAddressSpace() != LangAS::Default &&
2205 !getLangOpts().OpenCLCPlusPlus)
2206 return Diag(Loc, diag::err_address_space_qualified_new)
2207 << AllocType.getUnqualifiedType()
2208 << AllocType.getQualifiers().getAddressSpaceAttributePrintValue();
2209 else if (getLangOpts().ObjCAutoRefCount) {
2210 if (const ArrayType *AT = Context.getAsArrayType(AllocType)) {
2211 QualType BaseAllocType = Context.getBaseElementType(AT);
2212 if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None &&
2213 BaseAllocType->isObjCLifetimeType())
2214 return Diag(Loc, diag::err_arc_new_array_without_ownership)
2215 << BaseAllocType;
2216 }
2217 }
2218
2219 return false;
2220}
2221
2222static bool resolveAllocationOverload(
2223 Sema &S, LookupResult &R, SourceRange Range, SmallVectorImpl<Expr *> &Args,
2224 bool &PassAlignment, FunctionDecl *&Operator,
2225 OverloadCandidateSet *AlignedCandidates, Expr *AlignArg, bool Diagnose) {
2226 OverloadCandidateSet Candidates(R.getNameLoc(),
2227 OverloadCandidateSet::CSK_Normal);
2228 for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
2229 Alloc != AllocEnd; ++Alloc) {
2230 // Even member operator new/delete are implicitly treated as
2231 // static, so don't use AddMemberCandidate.
2232 NamedDecl *D = (*Alloc)->getUnderlyingDecl();
2233
2234 if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
2235 S.AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
2236 /*ExplicitTemplateArgs=*/nullptr, Args,
2237 Candidates,
2238 /*SuppressUserConversions=*/false);
2239 continue;
2240 }
2241
2242 FunctionDecl *Fn = cast<FunctionDecl>(D);
2243 S.AddOverloadCandidate(Fn, Alloc.getPair(), Args, Candidates,
2244 /*SuppressUserConversions=*/false);
2245 }
2246
2247 // Do the resolution.
2248 OverloadCandidateSet::iterator Best;
2249 switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) {
2250 case OR_Success: {
2251 // Got one!
2252 FunctionDecl *FnDecl = Best->Function;
2253 if (S.CheckAllocationAccess(R.getNameLoc(), Range, R.getNamingClass(),
2254 Best->FoundDecl) == Sema::AR_inaccessible)
2255 return true;
2256
2257 Operator = FnDecl;
2258 return false;
2259 }
2260
2261 case OR_No_Viable_Function:
2262 // C++17 [expr.new]p13:
2263 // If no matching function is found and the allocated object type has
2264 // new-extended alignment, the alignment argument is removed from the
2265 // argument list, and overload resolution is performed again.
2266 if (PassAlignment) {
2267 PassAlignment = false;
2268 AlignArg = Args[1];
2269 Args.erase(Args.begin() + 1);
2270 return resolveAllocationOverload(S, R, Range, Args, PassAlignment,
2271 Operator, &Candidates, AlignArg,
2272 Diagnose);
2273 }
2274
2275 // MSVC will fall back on trying to find a matching global operator new
2276 // if operator new[] cannot be found. Also, MSVC will leak by not
2277 // generating a call to operator delete or operator delete[], but we
2278 // will not replicate that bug.
2279 // FIXME: Find out how this interacts with the std::align_val_t fallback
2280 // once MSVC implements it.
2281 if (R.getLookupName().getCXXOverloadedOperator() == OO_Array_New &&
2282 S.Context.getLangOpts().MSVCCompat) {
2283 R.clear();
2284 R.setLookupName(S.Context.DeclarationNames.getCXXOperatorName(OO_New));
2285 S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl());
2286 // FIXME: This will give bad diagnostics pointing at the wrong functions.
2287 return resolveAllocationOverload(S, R, Range, Args, PassAlignment,
2288 Operator, /*Candidates=*/nullptr,
2289 /*AlignArg=*/nullptr, Diagnose);
2290 }
2291
2292 if (Diagnose) {
2293 PartialDiagnosticAt PD(R.getNameLoc(), S.PDiag(diag::err_ovl_no_viable_function_in_call)
2294 << R.getLookupName() << Range);
2295
2296 // If we have aligned candidates, only note the align_val_t candidates
2297 // from AlignedCandidates and the non-align_val_t candidates from
2298 // Candidates.
2299 if (AlignedCandidates) {
2300 auto IsAligned = [](OverloadCandidate &C) {
2301 return C.Function->getNumParams() > 1 &&
2302 C.Function->getParamDecl(1)->getType()->isAlignValT();
2303 };
2304 auto IsUnaligned = [&](OverloadCandidate &C) { return !IsAligned(C); };
2305
2306 // This was an overaligned allocation, so list the aligned candidates
2307 // first.
2308 Args.insert(Args.begin() + 1, AlignArg);
2309 AlignedCandidates->NoteCandidates(PD, S, OCD_AllCandidates, Args, "",
2310 R.getNameLoc(), IsAligned);
2311 Args.erase(Args.begin() + 1);
2312 Candidates.NoteCandidates(PD, S, OCD_AllCandidates, Args, "", R.getNameLoc(),
2313 IsUnaligned);
2314 } else {
2315 Candidates.NoteCandidates(PD, S, OCD_AllCandidates, Args);
2316 }
2317 }
2318 return true;
2319
2320 case OR_Ambiguous:
2321 if (Diagnose) {
2322 Candidates.NoteCandidates(
2323 PartialDiagnosticAt(R.getNameLoc(),
2324 S.PDiag(diag::err_ovl_ambiguous_call)
2325 << R.getLookupName() << Range),
2326 S, OCD_ViableCandidates, Args);
2327 }
2328 return true;
2329
2330 case OR_Deleted: {
2331 if (Diagnose) {
2332 Candidates.NoteCandidates(
2333 PartialDiagnosticAt(R.getNameLoc(),
2334 S.PDiag(diag::err_ovl_deleted_call)
2335 << R.getLookupName() << Range),
2336 S, OCD_AllCandidates, Args);
2337 }
2338 return true;
2339 }
2340 }
2341 llvm_unreachable("Unreachable, bad result from BestViableFunction")::llvm::llvm_unreachable_internal("Unreachable, bad result from BestViableFunction"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 2341)
;
2342}
2343
2344bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
2345 AllocationFunctionScope NewScope,
2346 AllocationFunctionScope DeleteScope,
2347 QualType AllocType, bool IsArray,
2348 bool &PassAlignment, MultiExprArg PlaceArgs,
2349 FunctionDecl *&OperatorNew,
2350 FunctionDecl *&OperatorDelete,
2351 bool Diagnose) {
2352 // --- Choosing an allocation function ---
2353 // C++ 5.3.4p8 - 14 & 18
2354 // 1) If looking in AFS_Global scope for allocation functions, only look in
2355 // the global scope. Else, if AFS_Class, only look in the scope of the
2356 // allocated class. If AFS_Both, look in both.
2357 // 2) If an array size is given, look for operator new[], else look for
2358 // operator new.
2359 // 3) The first argument is always size_t. Append the arguments from the
2360 // placement form.
2361
2362 SmallVector<Expr*, 8> AllocArgs;
2363 AllocArgs.reserve((PassAlignment ? 2 : 1) + PlaceArgs.size());
2364
2365 // We don't care about the actual value of these arguments.
2366 // FIXME: Should the Sema create the expression and embed it in the syntax
2367 // tree? Or should the consumer just recalculate the value?
2368 // FIXME: Using a dummy value will interact poorly with attribute enable_if.
2369 IntegerLiteral Size(Context, llvm::APInt::getNullValue(
2370 Context.getTargetInfo().getPointerWidth(0)),
2371 Context.getSizeType(),
2372 SourceLocation());
2373 AllocArgs.push_back(&Size);
2374
2375 QualType AlignValT = Context.VoidTy;
2376 if (PassAlignment) {
2377 DeclareGlobalNewDelete();
2378 AlignValT = Context.getTypeDeclType(getStdAlignValT());
2379 }
2380 CXXScalarValueInitExpr Align(AlignValT, nullptr, SourceLocation());
2381 if (PassAlignment)
2382 AllocArgs.push_back(&Align);
2383
2384 AllocArgs.insert(AllocArgs.end(), PlaceArgs.begin(), PlaceArgs.end());
2385
2386 // C++ [expr.new]p8:
2387 // If the allocated type is a non-array type, the allocation
2388 // function's name is operator new and the deallocation function's
2389 // name is operator delete. If the allocated type is an array
2390 // type, the allocation function's name is operator new[] and the
2391 // deallocation function's name is operator delete[].
2392 DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
2393 IsArray ? OO_Array_New : OO_New);
2394
2395 QualType AllocElemType = Context.getBaseElementType(AllocType);
2396
2397 // Find the allocation function.
2398 {
2399 LookupResult R(*this, NewName, StartLoc, LookupOrdinaryName);
2400
2401 // C++1z [expr.new]p9:
2402 // If the new-expression begins with a unary :: operator, the allocation
2403 // function's name is looked up in the global scope. Otherwise, if the
2404 // allocated type is a class type T or array thereof, the allocation
2405 // function's name is looked up in the scope of T.
2406 if (AllocElemType->isRecordType() && NewScope != AFS_Global)
2407 LookupQualifiedName(R, AllocElemType->getAsCXXRecordDecl());
2408
2409 // We can see ambiguity here if the allocation function is found in
2410 // multiple base classes.
2411 if (R.isAmbiguous())
2412 return true;
2413
2414 // If this lookup fails to find the name, or if the allocated type is not
2415 // a class type, the allocation function's name is looked up in the
2416 // global scope.
2417 if (R.empty()) {
2418 if (NewScope == AFS_Class)
2419 return true;
2420
2421 LookupQualifiedName(R, Context.getTranslationUnitDecl());
2422 }
2423
2424 if (getLangOpts().OpenCLCPlusPlus && R.empty()) {
2425 if (PlaceArgs.empty()) {
2426 Diag(StartLoc, diag::err_openclcxx_not_supported) << "default new";
2427 } else {
2428 Diag(StartLoc, diag::err_openclcxx_placement_new);
2429 }
2430 return true;
2431 }
2432
2433 assert(!R.empty() && "implicitly declared allocation functions not found")((!R.empty() && "implicitly declared allocation functions not found"
) ? static_cast<void> (0) : __assert_fail ("!R.empty() && \"implicitly declared allocation functions not found\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 2433, __PRETTY_FUNCTION__))
;
2434 assert(!R.isAmbiguous() && "global allocation functions are ambiguous")((!R.isAmbiguous() && "global allocation functions are ambiguous"
) ? static_cast<void> (0) : __assert_fail ("!R.isAmbiguous() && \"global allocation functions are ambiguous\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 2434, __PRETTY_FUNCTION__))
;
2435
2436 // We do our own custom access checks below.
2437 R.suppressDiagnostics();
2438
2439 if (resolveAllocationOverload(*this, R, Range, AllocArgs, PassAlignment,
2440 OperatorNew, /*Candidates=*/nullptr,
2441 /*AlignArg=*/nullptr, Diagnose))
2442 return true;
2443 }
2444
2445 // We don't need an operator delete if we're running under -fno-exceptions.
2446 if (!getLangOpts().Exceptions) {
2447 OperatorDelete = nullptr;
2448 return false;
2449 }
2450
2451 // Note, the name of OperatorNew might have been changed from array to
2452 // non-array by resolveAllocationOverload.
2453 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
2454 OperatorNew->getDeclName().getCXXOverloadedOperator() == OO_Array_New
2455 ? OO_Array_Delete
2456 : OO_Delete);
2457
2458 // C++ [expr.new]p19:
2459 //
2460 // If the new-expression begins with a unary :: operator, the
2461 // deallocation function's name is looked up in the global
2462 // scope. Otherwise, if the allocated type is a class type T or an
2463 // array thereof, the deallocation function's name is looked up in
2464 // the scope of T. If this lookup fails to find the name, or if
2465 // the allocated type is not a class type or array thereof, the
2466 // deallocation function's name is looked up in the global scope.
2467 LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
2468 if (AllocElemType->isRecordType() && DeleteScope != AFS_Global) {
2469 auto *RD =
2470 cast<CXXRecordDecl>(AllocElemType->castAs<RecordType>()->getDecl());
2471 LookupQualifiedName(FoundDelete, RD);
2472 }
2473 if (FoundDelete.isAmbiguous())
2474 return true; // FIXME: clean up expressions?
2475
2476 bool FoundGlobalDelete = FoundDelete.empty();
2477 if (FoundDelete.empty()) {
2478 if (DeleteScope == AFS_Class)
2479 return true;
2480
2481 DeclareGlobalNewDelete();
2482 LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
2483 }
2484
2485 FoundDelete.suppressDiagnostics();
2486
2487 SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;
2488
2489 // Whether we're looking for a placement operator delete is dictated
2490 // by whether we selected a placement operator new, not by whether
2491 // we had explicit placement arguments. This matters for things like
2492 // struct A { void *operator new(size_t, int = 0); ... };
2493 // A *a = new A()
2494 //
2495 // We don't have any definition for what a "placement allocation function"
2496 // is, but we assume it's any allocation function whose
2497 // parameter-declaration-clause is anything other than (size_t).
2498 //
2499 // FIXME: Should (size_t, std::align_val_t) also be considered non-placement?
2500 // This affects whether an exception from the constructor of an overaligned
2501 // type uses the sized or non-sized form of aligned operator delete.
2502 bool isPlacementNew = !PlaceArgs.empty() || OperatorNew->param_size() != 1 ||
2503 OperatorNew->isVariadic();
2504
2505 if (isPlacementNew) {
2506 // C++ [expr.new]p20:
2507 // A declaration of a placement deallocation function matches the
2508 // declaration of a placement allocation function if it has the
2509 // same number of parameters and, after parameter transformations
2510 // (8.3.5), all parameter types except the first are
2511 // identical. [...]
2512 //
2513 // To perform this comparison, we compute the function type that
2514 // the deallocation function should have, and use that type both
2515 // for template argument deduction and for comparison purposes.
2516 QualType ExpectedFunctionType;
2517 {
2518 const FunctionProtoType *Proto
2519 = OperatorNew->getType()->getAs<FunctionProtoType>();
2520
2521 SmallVector<QualType, 4> ArgTypes;
2522 ArgTypes.push_back(Context.VoidPtrTy);
2523 for (unsigned I = 1, N = Proto->getNumParams(); I < N; ++I)
2524 ArgTypes.push_back(Proto->getParamType(I));
2525
2526 FunctionProtoType::ExtProtoInfo EPI;
2527 // FIXME: This is not part of the standard's rule.
2528 EPI.Variadic = Proto->isVariadic();
2529
2530 ExpectedFunctionType
2531 = Context.getFunctionType(Context.VoidTy, ArgTypes, EPI);
2532 }
2533
2534 for (LookupResult::iterator D = FoundDelete.begin(),
2535 DEnd = FoundDelete.end();
2536 D != DEnd; ++D) {
2537 FunctionDecl *Fn = nullptr;
2538 if (FunctionTemplateDecl *FnTmpl =
2539 dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
2540 // Perform template argument deduction to try to match the
2541 // expected function type.
2542 TemplateDeductionInfo Info(StartLoc);
2543 if (DeduceTemplateArguments(FnTmpl, nullptr, ExpectedFunctionType, Fn,
2544 Info))
2545 continue;
2546 } else
2547 Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
2548
2549 if (Context.hasSameType(adjustCCAndNoReturn(Fn->getType(),
2550 ExpectedFunctionType,
2551 /*AdjustExcpetionSpec*/true),
2552 ExpectedFunctionType))
2553 Matches.push_back(std::make_pair(D.getPair(), Fn));
2554 }
2555
2556 if (getLangOpts().CUDA)
2557 EraseUnwantedCUDAMatches(dyn_cast<FunctionDecl>(CurContext), Matches);
2558 } else {
2559 // C++1y [expr.new]p22:
2560 // For a non-placement allocation function, the normal deallocation
2561 // function lookup is used
2562 //
2563 // Per [expr.delete]p10, this lookup prefers a member operator delete
2564 // without a size_t argument, but prefers a non-member operator delete
2565 // with a size_t where possible (which it always is in this case).
2566 llvm::SmallVector<UsualDeallocFnInfo, 4> BestDeallocFns;
2567 UsualDeallocFnInfo Selected = resolveDeallocationOverload(
2568 *this, FoundDelete, /*WantSize*/ FoundGlobalDelete,
2569 /*WantAlign*/ hasNewExtendedAlignment(*this, AllocElemType),
2570 &BestDeallocFns);
2571 if (Selected)
2572 Matches.push_back(std::make_pair(Selected.Found, Selected.FD));
2573 else {
2574 // If we failed to select an operator, all remaining functions are viable
2575 // but ambiguous.
2576 for (auto Fn : BestDeallocFns)
2577 Matches.push_back(std::make_pair(Fn.Found, Fn.FD));
2578 }
2579 }
2580
2581 // C++ [expr.new]p20:
2582 // [...] If the lookup finds a single matching deallocation
2583 // function, that function will be called; otherwise, no
2584 // deallocation function will be called.
2585 if (Matches.size() == 1) {
2586 OperatorDelete = Matches[0].second;
2587
2588 // C++1z [expr.new]p23:
2589 // If the lookup finds a usual deallocation function (3.7.4.2)
2590 // with a parameter of type std::size_t and that function, considered
2591 // as a placement deallocation function, would have been
2592 // selected as a match for the allocation function, the program
2593 // is ill-formed.
2594 if (getLangOpts().CPlusPlus11 && isPlacementNew &&
2595 isNonPlacementDeallocationFunction(*this, OperatorDelete)) {
2596 UsualDeallocFnInfo Info(*this,
2597 DeclAccessPair::make(OperatorDelete, AS_public));
2598 // Core issue, per mail to core reflector, 2016-10-09:
2599 // If this is a member operator delete, and there is a corresponding
2600 // non-sized member operator delete, this isn't /really/ a sized
2601 // deallocation function, it just happens to have a size_t parameter.
2602 bool IsSizedDelete = Info.HasSizeT;
2603 if (IsSizedDelete && !FoundGlobalDelete) {
2604 auto NonSizedDelete =
2605 resolveDeallocationOverload(*this, FoundDelete, /*WantSize*/false,
2606 /*WantAlign*/Info.HasAlignValT);
2607 if (NonSizedDelete && !NonSizedDelete.HasSizeT &&
2608 NonSizedDelete.HasAlignValT == Info.HasAlignValT)
2609 IsSizedDelete = false;
2610 }
2611
2612 if (IsSizedDelete) {
2613 SourceRange R = PlaceArgs.empty()
2614 ? SourceRange()
2615 : SourceRange(PlaceArgs.front()->getBeginLoc(),
2616 PlaceArgs.back()->getEndLoc());
2617 Diag(StartLoc, diag::err_placement_new_non_placement_delete) << R;
2618 if (!OperatorDelete->isImplicit())
2619 Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
2620 << DeleteName;
2621 }
2622 }
2623
2624 CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
2625 Matches[0].first);
2626 } else if (!Matches.empty()) {
2627 // We found multiple suitable operators. Per [expr.new]p20, that means we
2628 // call no 'operator delete' function, but we should at least warn the user.
2629 // FIXME: Suppress this warning if the construction cannot throw.
2630 Diag(StartLoc, diag::warn_ambiguous_suitable_delete_function_found)
2631 << DeleteName << AllocElemType;
2632
2633 for (auto &Match : Matches)
2634 Diag(Match.second->getLocation(),
2635 diag::note_member_declared_here) << DeleteName;
2636 }
2637
2638 return false;
2639}
2640
2641/// DeclareGlobalNewDelete - Declare the global forms of operator new and
2642/// delete. These are:
2643/// @code
2644/// // C++03:
2645/// void* operator new(std::size_t) throw(std::bad_alloc);
2646/// void* operator new[](std::size_t) throw(std::bad_alloc);
2647/// void operator delete(void *) throw();
2648/// void operator delete[](void *) throw();
2649/// // C++11:
2650/// void* operator new(std::size_t);
2651/// void* operator new[](std::size_t);
2652/// void operator delete(void *) noexcept;
2653/// void operator delete[](void *) noexcept;
2654/// // C++1y:
2655/// void* operator new(std::size_t);
2656/// void* operator new[](std::size_t);
2657/// void operator delete(void *) noexcept;
2658/// void operator delete[](void *) noexcept;
2659/// void operator delete(void *, std::size_t) noexcept;
2660/// void operator delete[](void *, std::size_t) noexcept;
2661/// @endcode
2662/// Note that the placement and nothrow forms of new are *not* implicitly
2663/// declared. Their use requires including \<new\>.
2664void Sema::DeclareGlobalNewDelete() {
2665 if (GlobalNewDeleteDeclared)
2666 return;
2667
2668 // The implicitly declared new and delete operators
2669 // are not supported in OpenCL.
2670 if (getLangOpts().OpenCLCPlusPlus)
2671 return;
2672
2673 // C++ [basic.std.dynamic]p2:
2674 // [...] The following allocation and deallocation functions (18.4) are
2675 // implicitly declared in global scope in each translation unit of a
2676 // program
2677 //
2678 // C++03:
2679 // void* operator new(std::size_t) throw(std::bad_alloc);
2680 // void* operator new[](std::size_t) throw(std::bad_alloc);
2681 // void operator delete(void*) throw();
2682 // void operator delete[](void*) throw();
2683 // C++11:
2684 // void* operator new(std::size_t);
2685 // void* operator new[](std::size_t);
2686 // void operator delete(void*) noexcept;
2687 // void operator delete[](void*) noexcept;
2688 // C++1y:
2689 // void* operator new(std::size_t);
2690 // void* operator new[](std::size_t);
2691 // void operator delete(void*) noexcept;
2692 // void operator delete[](void*) noexcept;
2693 // void operator delete(void*, std::size_t) noexcept;
2694 // void operator delete[](void*, std::size_t) noexcept;
2695 //
2696 // These implicit declarations introduce only the function names operator
2697 // new, operator new[], operator delete, operator delete[].
2698 //
2699 // Here, we need to refer to std::bad_alloc, so we will implicitly declare
2700 // "std" or "bad_alloc" as necessary to form the exception specification.
2701 // However, we do not make these implicit declarations visible to name
2702 // lookup.
2703 if (!StdBadAlloc && !getLangOpts().CPlusPlus11) {
2704 // The "std::bad_alloc" class has not yet been declared, so build it
2705 // implicitly.
2706 StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class,
2707 getOrCreateStdNamespace(),
2708 SourceLocation(), SourceLocation(),
2709 &PP.getIdentifierTable().get("bad_alloc"),
2710 nullptr);
2711 getStdBadAlloc()->setImplicit(true);
2712 }
2713 if (!StdAlignValT && getLangOpts().AlignedAllocation) {
2714 // The "std::align_val_t" enum class has not yet been declared, so build it
2715 // implicitly.
2716 auto *AlignValT = EnumDecl::Create(
2717 Context, getOrCreateStdNamespace(), SourceLocation(), SourceLocation(),
2718 &PP.getIdentifierTable().get("align_val_t"), nullptr, true, true, true);
2719 AlignValT->setIntegerType(Context.getSizeType());
2720 AlignValT->setPromotionType(Context.getSizeType());
2721 AlignValT->setImplicit(true);
2722 StdAlignValT = AlignValT;
2723 }
2724
2725 GlobalNewDeleteDeclared = true;
2726
2727 QualType VoidPtr = Context.getPointerType(Context.VoidTy);
2728 QualType SizeT = Context.getSizeType();
2729
2730 auto DeclareGlobalAllocationFunctions = [&](OverloadedOperatorKind Kind,
2731 QualType Return, QualType Param) {
2732 llvm::SmallVector<QualType, 3> Params;
2733 Params.push_back(Param);
2734
2735 // Create up to four variants of the function (sized/aligned).
2736 bool HasSizedVariant = getLangOpts().SizedDeallocation &&
2737 (Kind == OO_Delete || Kind == OO_Array_Delete);
2738 bool HasAlignedVariant = getLangOpts().AlignedAllocation;
2739
2740 int NumSizeVariants = (HasSizedVariant ? 2 : 1);
2741 int NumAlignVariants = (HasAlignedVariant ? 2 : 1);
2742 for (int Sized = 0; Sized < NumSizeVariants; ++Sized) {
2743 if (Sized)
2744 Params.push_back(SizeT);
2745
2746 for (int Aligned = 0; Aligned < NumAlignVariants; ++Aligned) {
2747 if (Aligned)
2748 Params.push_back(Context.getTypeDeclType(getStdAlignValT()));
2749
2750 DeclareGlobalAllocationFunction(
2751 Context.DeclarationNames.getCXXOperatorName(Kind), Return, Params);
2752
2753 if (Aligned)
2754 Params.pop_back();
2755 }
2756 }
2757 };
2758
2759 DeclareGlobalAllocationFunctions(OO_New, VoidPtr, SizeT);
2760 DeclareGlobalAllocationFunctions(OO_Array_New, VoidPtr, SizeT);
2761 DeclareGlobalAllocationFunctions(OO_Delete, Context.VoidTy, VoidPtr);
2762 DeclareGlobalAllocationFunctions(OO_Array_Delete, Context.VoidTy, VoidPtr);
2763}
2764
2765/// DeclareGlobalAllocationFunction - Declares a single implicit global
2766/// allocation function if it doesn't already exist.
2767void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
2768 QualType Return,
2769 ArrayRef<QualType> Params) {
2770 DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
2771
2772 // Check if this function is already declared.
2773 DeclContext::lookup_result R = GlobalCtx->lookup(Name);
2774 for (DeclContext::lookup_iterator Alloc = R.begin(), AllocEnd = R.end();
2775 Alloc != AllocEnd; ++Alloc) {
2776 // Only look at non-template functions, as it is the predefined,
2777 // non-templated allocation function we are trying to declare here.
2778 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
2779 if (Func->getNumParams() == Params.size()) {
2780 llvm::SmallVector<QualType, 3> FuncParams;
2781 for (auto *P : Func->parameters())
2782 FuncParams.push_back(
2783 Context.getCanonicalType(P->getType().getUnqualifiedType()));
2784 if (llvm::makeArrayRef(FuncParams) == Params) {
2785 // Make the function visible to name lookup, even if we found it in
2786 // an unimported module. It either is an implicitly-declared global
2787 // allocation function, or is suppressing that function.
2788 Func->setVisibleDespiteOwningModule();
2789 return;
2790 }
2791 }
2792 }
2793 }
2794
2795 FunctionProtoType::ExtProtoInfo EPI(Context.getDefaultCallingConvention(
2796 /*IsVariadic=*/false, /*IsCXXMethod=*/false, /*IsBuiltin=*/true));
2797
2798 QualType BadAllocType;
2799 bool HasBadAllocExceptionSpec
2800 = (Name.getCXXOverloadedOperator() == OO_New ||
2801 Name.getCXXOverloadedOperator() == OO_Array_New);
2802 if (HasBadAllocExceptionSpec) {
2803 if (!getLangOpts().CPlusPlus11) {
2804 BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
2805 assert(StdBadAlloc && "Must have std::bad_alloc declared")((StdBadAlloc && "Must have std::bad_alloc declared")
? static_cast<void> (0) : __assert_fail ("StdBadAlloc && \"Must have std::bad_alloc declared\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 2805, __PRETTY_FUNCTION__))
;
2806 EPI.ExceptionSpec.Type = EST_Dynamic;
2807 EPI.ExceptionSpec.Exceptions = llvm::makeArrayRef(BadAllocType);
2808 }
2809 } else {
2810 EPI.ExceptionSpec =
2811 getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone;
2812 }
2813
2814 auto CreateAllocationFunctionDecl = [&](Attr *ExtraAttr) {
2815 QualType FnType = Context.getFunctionType(Return, Params, EPI);
2816 FunctionDecl *Alloc = FunctionDecl::Create(
2817 Context, GlobalCtx, SourceLocation(), SourceLocation(), Name,
2818 FnType, /*TInfo=*/nullptr, SC_None, false, true);
2819 Alloc->setImplicit();
2820 // Global allocation functions should always be visible.
2821 Alloc->setVisibleDespiteOwningModule();
2822
2823 Alloc->addAttr(VisibilityAttr::CreateImplicit(
2824 Context, LangOpts.GlobalAllocationFunctionVisibilityHidden
2825 ? VisibilityAttr::Hidden
2826 : VisibilityAttr::Default));
2827
2828 llvm::SmallVector<ParmVarDecl *, 3> ParamDecls;
2829 for (QualType T : Params) {
2830 ParamDecls.push_back(ParmVarDecl::Create(
2831 Context, Alloc, SourceLocation(), SourceLocation(), nullptr, T,
2832 /*TInfo=*/nullptr, SC_None, nullptr));
2833 ParamDecls.back()->setImplicit();
2834 }
2835 Alloc->setParams(ParamDecls);
2836 if (ExtraAttr)
2837 Alloc->addAttr(ExtraAttr);
2838 Context.getTranslationUnitDecl()->addDecl(Alloc);
2839 IdResolver.tryAddTopLevelDecl(Alloc, Name);
2840 };
2841
2842 if (!LangOpts.CUDA)
2843 CreateAllocationFunctionDecl(nullptr);
2844 else {
2845 // Host and device get their own declaration so each can be
2846 // defined or re-declared independently.
2847 CreateAllocationFunctionDecl(CUDAHostAttr::CreateImplicit(Context));
2848 CreateAllocationFunctionDecl(CUDADeviceAttr::CreateImplicit(Context));
2849 }
2850}
2851
2852FunctionDecl *Sema::FindUsualDeallocationFunction(SourceLocation StartLoc,
2853 bool CanProvideSize,
2854 bool Overaligned,
2855 DeclarationName Name) {
2856 DeclareGlobalNewDelete();
2857
2858 LookupResult FoundDelete(*this, Name, StartLoc, LookupOrdinaryName);
2859 LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
2860
2861 // FIXME: It's possible for this to result in ambiguity, through a
2862 // user-declared variadic operator delete or the enable_if attribute. We
2863 // should probably not consider those cases to be usual deallocation
2864 // functions. But for now we just make an arbitrary choice in that case.
2865 auto Result = resolveDeallocationOverload(*this, FoundDelete, CanProvideSize,
2866 Overaligned);
2867 assert(Result.FD && "operator delete missing from global scope?")((Result.FD && "operator delete missing from global scope?"
) ? static_cast<void> (0) : __assert_fail ("Result.FD && \"operator delete missing from global scope?\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 2867, __PRETTY_FUNCTION__))
;
2868 return Result.FD;
2869}
2870
2871FunctionDecl *Sema::FindDeallocationFunctionForDestructor(SourceLocation Loc,
2872 CXXRecordDecl *RD) {
2873 DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Delete);
2874
2875 FunctionDecl *OperatorDelete = nullptr;
2876 if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
2877 return nullptr;
2878 if (OperatorDelete)
2879 return OperatorDelete;
2880
2881 // If there's no class-specific operator delete, look up the global
2882 // non-array delete.
2883 return FindUsualDeallocationFunction(
2884 Loc, true, hasNewExtendedAlignment(*this, Context.getRecordType(RD)),
2885 Name);
2886}
2887
2888bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
2889 DeclarationName Name,
2890 FunctionDecl *&Operator, bool Diagnose) {
2891 LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
2892 // Try to find operator delete/operator delete[] in class scope.
2893 LookupQualifiedName(Found, RD);
2894
2895 if (Found.isAmbiguous())
2896 return true;
2897
2898 Found.suppressDiagnostics();
2899
2900 bool Overaligned = hasNewExtendedAlignment(*this, Context.getRecordType(RD));
2901
2902 // C++17 [expr.delete]p10:
2903 // If the deallocation functions have class scope, the one without a
2904 // parameter of type std::size_t is selected.
2905 llvm::SmallVector<UsualDeallocFnInfo, 4> Matches;
2906 resolveDeallocationOverload(*this, Found, /*WantSize*/ false,
2907 /*WantAlign*/ Overaligned, &Matches);
2908
2909 // If we could find an overload, use it.
2910 if (Matches.size() == 1) {
2911 Operator = cast<CXXMethodDecl>(Matches[0].FD);
2912
2913 // FIXME: DiagnoseUseOfDecl?
2914 if (Operator->isDeleted()) {
2915 if (Diagnose) {
2916 Diag(StartLoc, diag::err_deleted_function_use);
2917 NoteDeletedFunction(Operator);
2918 }
2919 return true;
2920 }
2921
2922 if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
2923 Matches[0].Found, Diagnose) == AR_inaccessible)
2924 return true;
2925
2926 return false;
2927 }
2928
2929 // We found multiple suitable operators; complain about the ambiguity.
2930 // FIXME: The standard doesn't say to do this; it appears that the intent
2931 // is that this should never happen.
2932 if (!Matches.empty()) {
2933 if (Diagnose) {
2934 Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
2935 << Name << RD;
2936 for (auto &Match : Matches)
2937 Diag(Match.FD->getLocation(), diag::note_member_declared_here) << Name;
2938 }
2939 return true;
2940 }
2941
2942 // We did find operator delete/operator delete[] declarations, but
2943 // none of them were suitable.
2944 if (!Found.empty()) {
2945 if (Diagnose) {
2946 Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
2947 << Name << RD;
2948
2949 for (NamedDecl *D : Found)
2950 Diag(D->getUnderlyingDecl()->getLocation(),
2951 diag::note_member_declared_here) << Name;
2952 }
2953 return true;
2954 }
2955
2956 Operator = nullptr;
2957 return false;
2958}
2959
2960namespace {
2961/// Checks whether delete-expression, and new-expression used for
2962/// initializing deletee have the same array form.
2963class MismatchingNewDeleteDetector {
2964public:
2965 enum MismatchResult {
2966 /// Indicates that there is no mismatch or a mismatch cannot be proven.
2967 NoMismatch,
2968 /// Indicates that variable is initialized with mismatching form of \a new.
2969 VarInitMismatches,
2970 /// Indicates that member is initialized with mismatching form of \a new.
2971 MemberInitMismatches,
2972 /// Indicates that 1 or more constructors' definitions could not been
2973 /// analyzed, and they will be checked again at the end of translation unit.
2974 AnalyzeLater
2975 };
2976
2977 /// \param EndOfTU True, if this is the final analysis at the end of
2978 /// translation unit. False, if this is the initial analysis at the point
2979 /// delete-expression was encountered.
2980 explicit MismatchingNewDeleteDetector(bool EndOfTU)
2981 : Field(nullptr), IsArrayForm(false), EndOfTU(EndOfTU),
2982 HasUndefinedConstructors(false) {}
2983
2984 /// Checks whether pointee of a delete-expression is initialized with
2985 /// matching form of new-expression.
2986 ///
2987 /// If return value is \c VarInitMismatches or \c MemberInitMismatches at the
2988 /// point where delete-expression is encountered, then a warning will be
2989 /// issued immediately. If return value is \c AnalyzeLater at the point where
2990 /// delete-expression is seen, then member will be analyzed at the end of
2991 /// translation unit. \c AnalyzeLater is returned iff at least one constructor
2992 /// couldn't be analyzed. If at least one constructor initializes the member
2993 /// with matching type of new, the return value is \c NoMismatch.
2994 MismatchResult analyzeDeleteExpr(const CXXDeleteExpr *DE);
2995 /// Analyzes a class member.
2996 /// \param Field Class member to analyze.
2997 /// \param DeleteWasArrayForm Array form-ness of the delete-expression used
2998 /// for deleting the \p Field.
2999 MismatchResult analyzeField(FieldDecl *Field, bool DeleteWasArrayForm);
3000 FieldDecl *Field;
3001 /// List of mismatching new-expressions used for initialization of the pointee
3002 llvm::SmallVector<const CXXNewExpr *, 4> NewExprs;
3003 /// Indicates whether delete-expression was in array form.
3004 bool IsArrayForm;
3005
3006private:
3007 const bool EndOfTU;
3008 /// Indicates that there is at least one constructor without body.
3009 bool HasUndefinedConstructors;
3010 /// Returns \c CXXNewExpr from given initialization expression.
3011 /// \param E Expression used for initializing pointee in delete-expression.
3012 /// E can be a single-element \c InitListExpr consisting of new-expression.
3013 const CXXNewExpr *getNewExprFromInitListOrExpr(const Expr *E);
3014 /// Returns whether member is initialized with mismatching form of
3015 /// \c new either by the member initializer or in-class initialization.
3016 ///
3017 /// If bodies of all constructors are not visible at the end of translation
3018 /// unit or at least one constructor initializes member with the matching
3019 /// form of \c new, mismatch cannot be proven, and this function will return
3020 /// \c NoMismatch.
3021 MismatchResult analyzeMemberExpr(const MemberExpr *ME);
3022 /// Returns whether variable is initialized with mismatching form of
3023 /// \c new.
3024 ///
3025 /// If variable is initialized with matching form of \c new or variable is not
3026 /// initialized with a \c new expression, this function will return true.
3027 /// If variable is initialized with mismatching form of \c new, returns false.
3028 /// \param D Variable to analyze.
3029 bool hasMatchingVarInit(const DeclRefExpr *D);
3030 /// Checks whether the constructor initializes pointee with mismatching
3031 /// form of \c new.
3032 ///
3033 /// Returns true, if member is initialized with matching form of \c new in
3034 /// member initializer list. Returns false, if member is initialized with the
3035 /// matching form of \c new in this constructor's initializer or given
3036 /// constructor isn't defined at the point where delete-expression is seen, or
3037 /// member isn't initialized by the constructor.
3038 bool hasMatchingNewInCtor(const CXXConstructorDecl *CD);
3039 /// Checks whether member is initialized with matching form of
3040 /// \c new in member initializer list.
3041 bool hasMatchingNewInCtorInit(const CXXCtorInitializer *CI);
3042 /// Checks whether member is initialized with mismatching form of \c new by
3043 /// in-class initializer.
3044 MismatchResult analyzeInClassInitializer();
3045};
3046}
3047
3048MismatchingNewDeleteDetector::MismatchResult
3049MismatchingNewDeleteDetector::analyzeDeleteExpr(const CXXDeleteExpr *DE) {
3050 NewExprs.clear();
3051 assert(DE && "Expected delete-expression")((DE && "Expected delete-expression") ? static_cast<
void> (0) : __assert_fail ("DE && \"Expected delete-expression\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3051, __PRETTY_FUNCTION__))
;
3052 IsArrayForm = DE->isArrayForm();
3053 const Expr *E = DE->getArgument()->IgnoreParenImpCasts();
3054 if (const MemberExpr *ME = dyn_cast<const MemberExpr>(E)) {
3055 return analyzeMemberExpr(ME);
3056 } else if (const DeclRefExpr *D = dyn_cast<const DeclRefExpr>(E)) {
3057 if (!hasMatchingVarInit(D))
3058 return VarInitMismatches;
3059 }
3060 return NoMismatch;
3061}
3062
3063const CXXNewExpr *
3064MismatchingNewDeleteDetector::getNewExprFromInitListOrExpr(const Expr *E) {
3065 assert(E != nullptr && "Expected a valid initializer expression")((E != nullptr && "Expected a valid initializer expression"
) ? static_cast<void> (0) : __assert_fail ("E != nullptr && \"Expected a valid initializer expression\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3065, __PRETTY_FUNCTION__))
;
3066 E = E->IgnoreParenImpCasts();
3067 if (const InitListExpr *ILE = dyn_cast<const InitListExpr>(E)) {
3068 if (ILE->getNumInits() == 1)
3069 E = dyn_cast<const CXXNewExpr>(ILE->getInit(0)->IgnoreParenImpCasts());
3070 }
3071
3072 return dyn_cast_or_null<const CXXNewExpr>(E);
3073}
3074
3075bool MismatchingNewDeleteDetector::hasMatchingNewInCtorInit(
3076 const CXXCtorInitializer *CI) {
3077 const CXXNewExpr *NE = nullptr;
3078 if (Field == CI->getMember() &&
3079 (NE = getNewExprFromInitListOrExpr(CI->getInit()))) {
3080 if (NE->isArray() == IsArrayForm)
3081 return true;
3082 else
3083 NewExprs.push_back(NE);
3084 }
3085 return false;
3086}
3087
3088bool MismatchingNewDeleteDetector::hasMatchingNewInCtor(
3089 const CXXConstructorDecl *CD) {
3090 if (CD->isImplicit())
3091 return false;
3092 const FunctionDecl *Definition = CD;
3093 if (!CD->isThisDeclarationADefinition() && !CD->isDefined(Definition)) {
3094 HasUndefinedConstructors = true;
3095 return EndOfTU;
3096 }
3097 for (const auto *CI : cast<const CXXConstructorDecl>(Definition)->inits()) {
3098 if (hasMatchingNewInCtorInit(CI))
3099 return true;
3100 }
3101 return false;
3102}
3103
3104MismatchingNewDeleteDetector::MismatchResult
3105MismatchingNewDeleteDetector::analyzeInClassInitializer() {
3106 assert(Field != nullptr && "This should be called only for members")((Field != nullptr && "This should be called only for members"
) ? static_cast<void> (0) : __assert_fail ("Field != nullptr && \"This should be called only for members\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3106, __PRETTY_FUNCTION__))
;
3107 const Expr *InitExpr = Field->getInClassInitializer();
3108 if (!InitExpr)
3109 return EndOfTU ? NoMismatch : AnalyzeLater;
3110 if (const CXXNewExpr *NE = getNewExprFromInitListOrExpr(InitExpr)) {
3111 if (NE->isArray() != IsArrayForm) {
3112 NewExprs.push_back(NE);
3113 return MemberInitMismatches;
3114 }
3115 }
3116 return NoMismatch;
3117}
3118
3119MismatchingNewDeleteDetector::MismatchResult
3120MismatchingNewDeleteDetector::analyzeField(FieldDecl *Field,
3121 bool DeleteWasArrayForm) {
3122 assert(Field != nullptr && "Analysis requires a valid class member.")((Field != nullptr && "Analysis requires a valid class member."
) ? static_cast<void> (0) : __assert_fail ("Field != nullptr && \"Analysis requires a valid class member.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3122, __PRETTY_FUNCTION__))
;
3123 this->Field = Field;
3124 IsArrayForm = DeleteWasArrayForm;
3125 const CXXRecordDecl *RD = cast<const CXXRecordDecl>(Field->getParent());
3126 for (const auto *CD : RD->ctors()) {
3127 if (hasMatchingNewInCtor(CD))
3128 return NoMismatch;
3129 }
3130 if (HasUndefinedConstructors)
3131 return EndOfTU ? NoMismatch : AnalyzeLater;
3132 if (!NewExprs.empty())
3133 return MemberInitMismatches;
3134 return Field->hasInClassInitializer() ? analyzeInClassInitializer()
3135 : NoMismatch;
3136}
3137
3138MismatchingNewDeleteDetector::MismatchResult
3139MismatchingNewDeleteDetector::analyzeMemberExpr(const MemberExpr *ME) {
3140 assert(ME != nullptr && "Expected a member expression")((ME != nullptr && "Expected a member expression") ? static_cast
<void> (0) : __assert_fail ("ME != nullptr && \"Expected a member expression\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3140, __PRETTY_FUNCTION__))
;
3141 if (FieldDecl *F = dyn_cast<FieldDecl>(ME->getMemberDecl()))
3142 return analyzeField(F, IsArrayForm);
3143 return NoMismatch;
3144}
3145
3146bool MismatchingNewDeleteDetector::hasMatchingVarInit(const DeclRefExpr *D) {
3147 const CXXNewExpr *NE = nullptr;
3148 if (const VarDecl *VD = dyn_cast<const VarDecl>(D->getDecl())) {
3149 if (VD->hasInit() && (NE = getNewExprFromInitListOrExpr(VD->getInit())) &&
3150 NE->isArray() != IsArrayForm) {
3151 NewExprs.push_back(NE);
3152 }
3153 }
3154 return NewExprs.empty();
3155}
3156
3157static void
3158DiagnoseMismatchedNewDelete(Sema &SemaRef, SourceLocation DeleteLoc,
3159 const MismatchingNewDeleteDetector &Detector) {
3160 SourceLocation EndOfDelete = SemaRef.getLocForEndOfToken(DeleteLoc);
3161 FixItHint H;
3162 if (!Detector.IsArrayForm)
3163 H = FixItHint::CreateInsertion(EndOfDelete, "[]");
3164 else {
3165 SourceLocation RSquare = Lexer::findLocationAfterToken(
3166 DeleteLoc, tok::l_square, SemaRef.getSourceManager(),
3167 SemaRef.getLangOpts(), true);
3168 if (RSquare.isValid())
3169 H = FixItHint::CreateRemoval(SourceRange(EndOfDelete, RSquare));
3170 }
3171 SemaRef.Diag(DeleteLoc, diag::warn_mismatched_delete_new)
3172 << Detector.IsArrayForm << H;
3173
3174 for (const auto *NE : Detector.NewExprs)
3175 SemaRef.Diag(NE->getExprLoc(), diag::note_allocated_here)
3176 << Detector.IsArrayForm;
3177}
3178
3179void Sema::AnalyzeDeleteExprMismatch(const CXXDeleteExpr *DE) {
3180 if (Diags.isIgnored(diag::warn_mismatched_delete_new, SourceLocation()))
3181 return;
3182 MismatchingNewDeleteDetector Detector(/*EndOfTU=*/false);
3183 switch (Detector.analyzeDeleteExpr(DE)) {
3184 case MismatchingNewDeleteDetector::VarInitMismatches:
3185 case MismatchingNewDeleteDetector::MemberInitMismatches: {
3186 DiagnoseMismatchedNewDelete(*this, DE->getBeginLoc(), Detector);
3187 break;
3188 }
3189 case MismatchingNewDeleteDetector::AnalyzeLater: {
3190 DeleteExprs[Detector.Field].push_back(
3191 std::make_pair(DE->getBeginLoc(), DE->isArrayForm()));
3192 break;
3193 }
3194 case MismatchingNewDeleteDetector::NoMismatch:
3195 break;
3196 }
3197}
3198
3199void Sema::AnalyzeDeleteExprMismatch(FieldDecl *Field, SourceLocation DeleteLoc,
3200 bool DeleteWasArrayForm) {
3201 MismatchingNewDeleteDetector Detector(/*EndOfTU=*/true);
3202 switch (Detector.analyzeField(Field, DeleteWasArrayForm)) {
3203 case MismatchingNewDeleteDetector::VarInitMismatches:
3204 llvm_unreachable("This analysis should have been done for class members.")::llvm::llvm_unreachable_internal("This analysis should have been done for class members."
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3204)
;
3205 case MismatchingNewDeleteDetector::AnalyzeLater:
3206 llvm_unreachable("Analysis cannot be postponed any point beyond end of "::llvm::llvm_unreachable_internal("Analysis cannot be postponed any point beyond end of "
"translation unit.", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3207)
3207 "translation unit.")::llvm::llvm_unreachable_internal("Analysis cannot be postponed any point beyond end of "
"translation unit.", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3207)
;
3208 case MismatchingNewDeleteDetector::MemberInitMismatches:
3209 DiagnoseMismatchedNewDelete(*this, DeleteLoc, Detector);
3210 break;
3211 case MismatchingNewDeleteDetector::NoMismatch:
3212 break;
3213 }
3214}
3215
3216/// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
3217/// @code ::delete ptr; @endcode
3218/// or
3219/// @code delete [] ptr; @endcode
3220ExprResult
3221Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
3222 bool ArrayForm, Expr *ExE) {
3223 // C++ [expr.delete]p1:
3224 // The operand shall have a pointer type, or a class type having a single
3225 // non-explicit conversion function to a pointer type. The result has type
3226 // void.
3227 //
3228 // DR599 amends "pointer type" to "pointer to object type" in both cases.
3229
3230 ExprResult Ex = ExE;
3231 FunctionDecl *OperatorDelete = nullptr;
3232 bool ArrayFormAsWritten = ArrayForm;
3233 bool UsualArrayDeleteWantsSize = false;
3234
3235 if (!Ex.get()->isTypeDependent()) {
1
Assuming the condition is true
2
Taking true branch
3236 // Perform lvalue-to-rvalue cast, if needed.
3237 Ex = DefaultLvalueConversion(Ex.get());
3238 if (Ex.isInvalid())
3
Assuming the condition is false
4
Taking false branch
3239 return ExprError();
3240
3241 QualType Type = Ex.get()->getType();
3242
3243 class DeleteConverter : public ContextualImplicitConverter {
3244 public:
3245 DeleteConverter() : ContextualImplicitConverter(false, true) {}
3246
3247 bool match(QualType ConvType) override {
3248 // FIXME: If we have an operator T* and an operator void*, we must pick
3249 // the operator T*.
3250 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
8
Assuming the object is a 'PointerType'
9
Assuming 'ConvPtrType' is non-null
10
Taking true branch
3251 if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
11
Calling 'Type::isIncompleteOrObjectType'
17
Returning from 'Type::isIncompleteOrObjectType'
18
Taking true branch
3252 return true;
19
Returning the value 1, which participates in a condition later
3253 return false;
3254 }
3255
3256 SemaDiagnosticBuilder diagnoseNoMatch(Sema &S, SourceLocation Loc,
3257 QualType T) override {
3258 return S.Diag(Loc, diag::err_delete_operand) << T;
3259 }
3260
3261 SemaDiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc,
3262 QualType T) override {
3263 return S.Diag(Loc, diag::err_delete_incomplete_class_type) << T;
3264 }
3265
3266 SemaDiagnosticBuilder diagnoseExplicitConv(Sema &S, SourceLocation Loc,
3267 QualType T,
3268 QualType ConvTy) override {
3269 return S.Diag(Loc, diag::err_delete_explicit_conversion) << T << ConvTy;
3270 }
3271
3272 SemaDiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv,
3273 QualType ConvTy) override {
3274 return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
3275 << ConvTy;
3276 }
3277
3278 SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
3279 QualType T) override {
3280 return S.Diag(Loc, diag::err_ambiguous_delete_operand) << T;
3281 }
3282
3283 SemaDiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv,
3284 QualType ConvTy) override {
3285 return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
3286 << ConvTy;
3287 }
3288
3289 SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
3290 QualType T,
3291 QualType ConvTy) override {
3292 llvm_unreachable("conversion functions are permitted")::llvm::llvm_unreachable_internal("conversion functions are permitted"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3292)
;
3293 }
3294 } Converter;
3295
3296 Ex = PerformContextualImplicitConversion(StartLoc, Ex.get(), Converter);
3297 if (Ex.isInvalid())
5
Assuming the condition is false
6
Taking false branch
3298 return ExprError();
3299 Type = Ex.get()->getType();
3300 if (!Converter.match(Type))
7
Calling 'DeleteConverter::match'
20
Returning from 'DeleteConverter::match'
21
Taking false branch
3301 // FIXME: PerformContextualImplicitConversion should return ExprError
3302 // itself in this case.
3303 return ExprError();
3304
3305 QualType Pointee = Type->getAs<PointerType>()->getPointeeType();
22
Assuming the object is not a 'PointerType'
23
Called C++ object pointer is null
3306 QualType PointeeElem = Context.getBaseElementType(Pointee);
3307
3308 if (Pointee.getAddressSpace() != LangAS::Default &&
3309 !getLangOpts().OpenCLCPlusPlus)
3310 return Diag(Ex.get()->getBeginLoc(),
3311 diag::err_address_space_qualified_delete)
3312 << Pointee.getUnqualifiedType()
3313 << Pointee.getQualifiers().getAddressSpaceAttributePrintValue();
3314
3315 CXXRecordDecl *PointeeRD = nullptr;
3316 if (Pointee->isVoidType() && !isSFINAEContext()) {
3317 // The C++ standard bans deleting a pointer to a non-object type, which
3318 // effectively bans deletion of "void*". However, most compilers support
3319 // this, so we treat it as a warning unless we're in a SFINAE context.
3320 Diag(StartLoc, diag::ext_delete_void_ptr_operand)
3321 << Type << Ex.get()->getSourceRange();
3322 } else if (Pointee->isFunctionType() || Pointee->isVoidType()) {
3323 return ExprError(Diag(StartLoc, diag::err_delete_operand)
3324 << Type << Ex.get()->getSourceRange());
3325 } else if (!Pointee->isDependentType()) {
3326 // FIXME: This can result in errors if the definition was imported from a
3327 // module but is hidden.
3328 if (!RequireCompleteType(StartLoc, Pointee,
3329 diag::warn_delete_incomplete, Ex.get())) {
3330 if (const RecordType *RT = PointeeElem->getAs<RecordType>())
3331 PointeeRD = cast<CXXRecordDecl>(RT->getDecl());
3332 }
3333 }
3334
3335 if (Pointee->isArrayType() && !ArrayForm) {
3336 Diag(StartLoc, diag::warn_delete_array_type)
3337 << Type << Ex.get()->getSourceRange()
3338 << FixItHint::CreateInsertion(getLocForEndOfToken(StartLoc), "[]");
3339 ArrayForm = true;
3340 }
3341
3342 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
3343 ArrayForm ? OO_Array_Delete : OO_Delete);
3344
3345 if (PointeeRD) {
3346 if (!UseGlobal &&
3347 FindDeallocationFunction(StartLoc, PointeeRD, DeleteName,
3348 OperatorDelete))
3349 return ExprError();
3350
3351 // If we're allocating an array of records, check whether the
3352 // usual operator delete[] has a size_t parameter.
3353 if (ArrayForm) {
3354 // If the user specifically asked to use the global allocator,
3355 // we'll need to do the lookup into the class.
3356 if (UseGlobal)
3357 UsualArrayDeleteWantsSize =
3358 doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem);
3359
3360 // Otherwise, the usual operator delete[] should be the
3361 // function we just found.
3362 else if (OperatorDelete && isa<CXXMethodDecl>(OperatorDelete))
3363 UsualArrayDeleteWantsSize =
3364 UsualDeallocFnInfo(*this,
3365 DeclAccessPair::make(OperatorDelete, AS_public))
3366 .HasSizeT;
3367 }
3368
3369 if (!PointeeRD->hasIrrelevantDestructor())
3370 if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
3371 MarkFunctionReferenced(StartLoc,
3372 const_cast<CXXDestructorDecl*>(Dtor));
3373 if (DiagnoseUseOfDecl(Dtor, StartLoc))
3374 return ExprError();
3375 }
3376
3377 CheckVirtualDtorCall(PointeeRD->getDestructor(), StartLoc,
3378 /*IsDelete=*/true, /*CallCanBeVirtual=*/true,
3379 /*WarnOnNonAbstractTypes=*/!ArrayForm,
3380 SourceLocation());
3381 }
3382
3383 if (!OperatorDelete) {
3384 if (getLangOpts().OpenCLCPlusPlus) {
3385 Diag(StartLoc, diag::err_openclcxx_not_supported) << "default delete";
3386 return ExprError();
3387 }
3388
3389 bool IsComplete = isCompleteType(StartLoc, Pointee);
3390 bool CanProvideSize =
3391 IsComplete && (!ArrayForm || UsualArrayDeleteWantsSize ||
3392 Pointee.isDestructedType());
3393 bool Overaligned = hasNewExtendedAlignment(*this, Pointee);
3394
3395 // Look for a global declaration.
3396 OperatorDelete = FindUsualDeallocationFunction(StartLoc, CanProvideSize,
3397 Overaligned, DeleteName);
3398 }
3399
3400 MarkFunctionReferenced(StartLoc, OperatorDelete);
3401
3402 // Check access and ambiguity of destructor if we're going to call it.
3403 // Note that this is required even for a virtual delete.
3404 bool IsVirtualDelete = false;
3405 if (PointeeRD) {
3406 if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
3407 CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor,
3408 PDiag(diag::err_access_dtor) << PointeeElem);
3409 IsVirtualDelete = Dtor->isVirtual();
3410 }
3411 }
3412
3413 DiagnoseUseOfDecl(OperatorDelete, StartLoc);
3414
3415 // Convert the operand to the type of the first parameter of operator
3416 // delete. This is only necessary if we selected a destroying operator
3417 // delete that we are going to call (non-virtually); converting to void*
3418 // is trivial and left to AST consumers to handle.
3419 QualType ParamType = OperatorDelete->getParamDecl(0)->getType();
3420 if (!IsVirtualDelete && !ParamType->getPointeeType()->isVoidType()) {
3421 Qualifiers Qs = Pointee.getQualifiers();
3422 if (Qs.hasCVRQualifiers()) {
3423 // Qualifiers are irrelevant to this conversion; we're only looking
3424 // for access and ambiguity.
3425 Qs.removeCVRQualifiers();
3426 QualType Unqual = Context.getPointerType(
3427 Context.getQualifiedType(Pointee.getUnqualifiedType(), Qs));
3428 Ex = ImpCastExprToType(Ex.get(), Unqual, CK_NoOp);
3429 }
3430 Ex = PerformImplicitConversion(Ex.get(), ParamType, AA_Passing);
3431 if (Ex.isInvalid())
3432 return ExprError();
3433 }
3434 }
3435
3436 CXXDeleteExpr *Result = new (Context) CXXDeleteExpr(
3437 Context.VoidTy, UseGlobal, ArrayForm, ArrayFormAsWritten,
3438 UsualArrayDeleteWantsSize, OperatorDelete, Ex.get(), StartLoc);
3439 AnalyzeDeleteExprMismatch(Result);
3440 return Result;
3441}
3442
3443static bool resolveBuiltinNewDeleteOverload(Sema &S, CallExpr *TheCall,
3444 bool IsDelete,
3445 FunctionDecl *&Operator) {
3446
3447 DeclarationName NewName = S.Context.DeclarationNames.getCXXOperatorName(
3448 IsDelete ? OO_Delete : OO_New);
3449
3450 LookupResult R(S, NewName, TheCall->getBeginLoc(), Sema::LookupOrdinaryName);
3451 S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl());
3452 assert(!R.empty() && "implicitly declared allocation functions not found")((!R.empty() && "implicitly declared allocation functions not found"
) ? static_cast<void> (0) : __assert_fail ("!R.empty() && \"implicitly declared allocation functions not found\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3452, __PRETTY_FUNCTION__))
;
3453 assert(!R.isAmbiguous() && "global allocation functions are ambiguous")((!R.isAmbiguous() && "global allocation functions are ambiguous"
) ? static_cast<void> (0) : __assert_fail ("!R.isAmbiguous() && \"global allocation functions are ambiguous\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3453, __PRETTY_FUNCTION__))
;
3454
3455 // We do our own custom access checks below.
3456 R.suppressDiagnostics();
3457
3458 SmallVector<Expr *, 8> Args(TheCall->arg_begin(), TheCall->arg_end());
3459 OverloadCandidateSet Candidates(R.getNameLoc(),
3460 OverloadCandidateSet::CSK_Normal);
3461 for (LookupResult::iterator FnOvl = R.begin(), FnOvlEnd = R.end();
3462 FnOvl != FnOvlEnd; ++FnOvl) {
3463 // Even member operator new/delete are implicitly treated as
3464 // static, so don't use AddMemberCandidate.
3465 NamedDecl *D = (*FnOvl)->getUnderlyingDecl();
3466
3467 if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
3468 S.AddTemplateOverloadCandidate(FnTemplate, FnOvl.getPair(),
3469 /*ExplicitTemplateArgs=*/nullptr, Args,
3470 Candidates,
3471 /*SuppressUserConversions=*/false);
3472 continue;
3473 }
3474
3475 FunctionDecl *Fn = cast<FunctionDecl>(D);
3476 S.AddOverloadCandidate(Fn, FnOvl.getPair(), Args, Candidates,
3477 /*SuppressUserConversions=*/false);
3478 }
3479
3480 SourceRange Range = TheCall->getSourceRange();
3481
3482 // Do the resolution.
3483 OverloadCandidateSet::iterator Best;
3484 switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) {
3485 case OR_Success: {
3486 // Got one!
3487 FunctionDecl *FnDecl = Best->Function;
3488 assert(R.getNamingClass() == nullptr &&((R.getNamingClass() == nullptr && "class members should not be considered"
) ? static_cast<void> (0) : __assert_fail ("R.getNamingClass() == nullptr && \"class members should not be considered\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3489, __PRETTY_FUNCTION__))
3489 "class members should not be considered")((R.getNamingClass() == nullptr && "class members should not be considered"
) ? static_cast<void> (0) : __assert_fail ("R.getNamingClass() == nullptr && \"class members should not be considered\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3489, __PRETTY_FUNCTION__))
;
3490
3491 if (!FnDecl->isReplaceableGlobalAllocationFunction()) {
3492 S.Diag(R.getNameLoc(), diag::err_builtin_operator_new_delete_not_usual)
3493 << (IsDelete ? 1 : 0) << Range;
3494 S.Diag(FnDecl->getLocation(), diag::note_non_usual_function_declared_here)
3495 << R.getLookupName() << FnDecl->getSourceRange();
3496 return true;
3497 }
3498
3499 Operator = FnDecl;
3500 return false;
3501 }
3502
3503 case OR_No_Viable_Function:
3504 Candidates.NoteCandidates(
3505 PartialDiagnosticAt(R.getNameLoc(),
3506 S.PDiag(diag::err_ovl_no_viable_function_in_call)
3507 << R.getLookupName() << Range),
3508 S, OCD_AllCandidates, Args);
3509 return true;
3510
3511 case OR_Ambiguous:
3512 Candidates.NoteCandidates(
3513 PartialDiagnosticAt(R.getNameLoc(),
3514 S.PDiag(diag::err_ovl_ambiguous_call)
3515 << R.getLookupName() << Range),
3516 S, OCD_ViableCandidates, Args);
3517 return true;
3518
3519 case OR_Deleted: {
3520 Candidates.NoteCandidates(
3521 PartialDiagnosticAt(R.getNameLoc(), S.PDiag(diag::err_ovl_deleted_call)
3522 << R.getLookupName() << Range),
3523 S, OCD_AllCandidates, Args);
3524 return true;
3525 }
3526 }
3527 llvm_unreachable("Unreachable, bad result from BestViableFunction")::llvm::llvm_unreachable_internal("Unreachable, bad result from BestViableFunction"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3527)
;
3528}
3529
3530ExprResult
3531Sema::SemaBuiltinOperatorNewDeleteOverloaded(ExprResult TheCallResult,
3532 bool IsDelete) {
3533 CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
3534 if (!getLangOpts().CPlusPlus) {
3535 Diag(TheCall->getExprLoc(), diag::err_builtin_requires_language)
3536 << (IsDelete ? "__builtin_operator_delete" : "__builtin_operator_new")
3537 << "C++";
3538 return ExprError();
3539 }
3540 // CodeGen assumes it can find the global new and delete to call,
3541 // so ensure that they are declared.
3542 DeclareGlobalNewDelete();
3543
3544 FunctionDecl *OperatorNewOrDelete = nullptr;
3545 if (resolveBuiltinNewDeleteOverload(*this, TheCall, IsDelete,
3546 OperatorNewOrDelete))
3547 return ExprError();
3548 assert(OperatorNewOrDelete && "should be found")((OperatorNewOrDelete && "should be found") ? static_cast
<void> (0) : __assert_fail ("OperatorNewOrDelete && \"should be found\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3548, __PRETTY_FUNCTION__))
;
3549
3550 DiagnoseUseOfDecl(OperatorNewOrDelete, TheCall->getExprLoc());
3551 MarkFunctionReferenced(TheCall->getExprLoc(), OperatorNewOrDelete);
3552
3553 TheCall->setType(OperatorNewOrDelete->getReturnType());
3554 for (unsigned i = 0; i != TheCall->getNumArgs(); ++i) {
3555 QualType ParamTy = OperatorNewOrDelete->getParamDecl(i)->getType();
3556 InitializedEntity Entity =
3557 InitializedEntity::InitializeParameter(Context, ParamTy, false);
3558 ExprResult Arg = PerformCopyInitialization(
3559 Entity, TheCall->getArg(i)->getBeginLoc(), TheCall->getArg(i));
3560 if (Arg.isInvalid())
3561 return ExprError();
3562 TheCall->setArg(i, Arg.get());
3563 }
3564 auto Callee = dyn_cast<ImplicitCastExpr>(TheCall->getCallee());
3565 assert(Callee && Callee->getCastKind() == CK_BuiltinFnToFnPtr &&((Callee && Callee->getCastKind() == CK_BuiltinFnToFnPtr
&& "Callee expected to be implicit cast to a builtin function pointer"
) ? static_cast<void> (0) : __assert_fail ("Callee && Callee->getCastKind() == CK_BuiltinFnToFnPtr && \"Callee expected to be implicit cast to a builtin function pointer\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3566, __PRETTY_FUNCTION__))
3566 "Callee expected to be implicit cast to a builtin function pointer")((Callee && Callee->getCastKind() == CK_BuiltinFnToFnPtr
&& "Callee expected to be implicit cast to a builtin function pointer"
) ? static_cast<void> (0) : __assert_fail ("Callee && Callee->getCastKind() == CK_BuiltinFnToFnPtr && \"Callee expected to be implicit cast to a builtin function pointer\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3566, __PRETTY_FUNCTION__))
;
3567 Callee->setType(OperatorNewOrDelete->getType());
3568
3569 return TheCallResult;
3570}
3571
3572void Sema::CheckVirtualDtorCall(CXXDestructorDecl *dtor, SourceLocation Loc,
3573 bool IsDelete, bool CallCanBeVirtual,
3574 bool WarnOnNonAbstractTypes,
3575 SourceLocation DtorLoc) {
3576 if (!dtor || dtor->isVirtual() || !CallCanBeVirtual || isUnevaluatedContext())
3577 return;
3578
3579 // C++ [expr.delete]p3:
3580 // In the first alternative (delete object), if the static type of the
3581 // object to be deleted is different from its dynamic type, the static
3582 // type shall be a base class of the dynamic type of the object to be
3583 // deleted and the static type shall have a virtual destructor or the
3584 // behavior is undefined.
3585 //
3586 const CXXRecordDecl *PointeeRD = dtor->getParent();
3587 // Note: a final class cannot be derived from, no issue there
3588 if (!PointeeRD->isPolymorphic() || PointeeRD->hasAttr<FinalAttr>())
3589 return;
3590
3591 // If the superclass is in a system header, there's nothing that can be done.
3592 // The `delete` (where we emit the warning) can be in a system header,
3593 // what matters for this warning is where the deleted type is defined.
3594 if (getSourceManager().isInSystemHeader(PointeeRD->getLocation()))
3595 return;
3596
3597 QualType ClassType = dtor->getThisType()->getPointeeType();
3598 if (PointeeRD->isAbstract()) {
3599 // If the class is abstract, we warn by default, because we're
3600 // sure the code has undefined behavior.
3601 Diag(Loc, diag::warn_delete_abstract_non_virtual_dtor) << (IsDelete ? 0 : 1)
3602 << ClassType;
3603 } else if (WarnOnNonAbstractTypes) {
3604 // Otherwise, if this is not an array delete, it's a bit suspect,
3605 // but not necessarily wrong.
3606 Diag(Loc, diag::warn_delete_non_virtual_dtor) << (IsDelete ? 0 : 1)
3607 << ClassType;
3608 }
3609 if (!IsDelete) {
3610 std::string TypeStr;
3611 ClassType.getAsStringInternal(TypeStr, getPrintingPolicy());
3612 Diag(DtorLoc, diag::note_delete_non_virtual)
3613 << FixItHint::CreateInsertion(DtorLoc, TypeStr + "::");
3614 }
3615}
3616
3617Sema::ConditionResult Sema::ActOnConditionVariable(Decl *ConditionVar,
3618 SourceLocation StmtLoc,
3619 ConditionKind CK) {
3620 ExprResult E =
3621 CheckConditionVariable(cast<VarDecl>(ConditionVar), StmtLoc, CK);
3622 if (E.isInvalid())
3623 return ConditionError();
3624 return ConditionResult(*this, ConditionVar, MakeFullExpr(E.get(), StmtLoc),
3625 CK == ConditionKind::ConstexprIf);
3626}
3627
3628/// Check the use of the given variable as a C++ condition in an if,
3629/// while, do-while, or switch statement.
3630ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
3631 SourceLocation StmtLoc,
3632 ConditionKind CK) {
3633 if (ConditionVar->isInvalidDecl())
3634 return ExprError();
3635
3636 QualType T = ConditionVar->getType();
3637
3638 // C++ [stmt.select]p2:
3639 // The declarator shall not specify a function or an array.
3640 if (T->isFunctionType())
3641 return ExprError(Diag(ConditionVar->getLocation(),
3642 diag::err_invalid_use_of_function_type)
3643 << ConditionVar->getSourceRange());
3644 else if (T->isArrayType())
3645 return ExprError(Diag(ConditionVar->getLocation(),
3646 diag::err_invalid_use_of_array_type)
3647 << ConditionVar->getSourceRange());
3648
3649 ExprResult Condition = BuildDeclRefExpr(
3650 ConditionVar, ConditionVar->getType().getNonReferenceType(), VK_LValue,
3651 ConditionVar->getLocation());
3652
3653 switch (CK) {
3654 case ConditionKind::Boolean:
3655 return CheckBooleanCondition(StmtLoc, Condition.get());
3656
3657 case ConditionKind::ConstexprIf:
3658 return CheckBooleanCondition(StmtLoc, Condition.get(), true);
3659
3660 case ConditionKind::Switch:
3661 return CheckSwitchCondition(StmtLoc, Condition.get());
3662 }
3663
3664 llvm_unreachable("unexpected condition kind")::llvm::llvm_unreachable_internal("unexpected condition kind"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3664)
;
3665}
3666
3667/// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
3668ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr, bool IsConstexpr) {
3669 // C++ 6.4p4:
3670 // The value of a condition that is an initialized declaration in a statement
3671 // other than a switch statement is the value of the declared variable
3672 // implicitly converted to type bool. If that conversion is ill-formed, the
3673 // program is ill-formed.
3674 // The value of a condition that is an expression is the value of the
3675 // expression, implicitly converted to bool.
3676 //
3677 // FIXME: Return this value to the caller so they don't need to recompute it.
3678 llvm::APSInt Value(/*BitWidth*/1);
3679 return (IsConstexpr && !CondExpr->isValueDependent())
3680 ? CheckConvertedConstantExpression(CondExpr, Context.BoolTy, Value,
3681 CCEK_ConstexprIf)
3682 : PerformContextuallyConvertToBool(CondExpr);
3683}
3684
3685/// Helper function to determine whether this is the (deprecated) C++
3686/// conversion from a string literal to a pointer to non-const char or
3687/// non-const wchar_t (for narrow and wide string literals,
3688/// respectively).
3689bool
3690Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
3691 // Look inside the implicit cast, if it exists.
3692 if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
3693 From = Cast->getSubExpr();
3694
3695 // A string literal (2.13.4) that is not a wide string literal can
3696 // be converted to an rvalue of type "pointer to char"; a wide
3697 // string literal can be converted to an rvalue of type "pointer
3698 // to wchar_t" (C++ 4.2p2).
3699 if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
3700 if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
3701 if (const BuiltinType *ToPointeeType
3702 = ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
3703 // This conversion is considered only when there is an
3704 // explicit appropriate pointer target type (C++ 4.2p2).
3705 if (!ToPtrType->getPointeeType().hasQualifiers()) {
3706 switch (StrLit->getKind()) {
3707 case StringLiteral::UTF8:
3708 case StringLiteral::UTF16:
3709 case StringLiteral::UTF32:
3710 // We don't allow UTF literals to be implicitly converted
3711 break;
3712 case StringLiteral::Ascii:
3713 return (ToPointeeType->getKind() == BuiltinType::Char_U ||
3714 ToPointeeType->getKind() == BuiltinType::Char_S);
3715 case StringLiteral::Wide:
3716 return Context.typesAreCompatible(Context.getWideCharType(),
3717 QualType(ToPointeeType, 0));
3718 }
3719 }
3720 }
3721
3722 return false;
3723}
3724
3725static ExprResult BuildCXXCastArgument(Sema &S,
3726 SourceLocation CastLoc,
3727 QualType Ty,
3728 CastKind Kind,
3729 CXXMethodDecl *Method,
3730 DeclAccessPair FoundDecl,
3731 bool HadMultipleCandidates,
3732 Expr *From) {
3733 switch (Kind) {
3734 default: llvm_unreachable("Unhandled cast kind!")::llvm::llvm_unreachable_internal("Unhandled cast kind!", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3734)
;
3735 case CK_ConstructorConversion: {
3736 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method);
3737 SmallVector<Expr*, 8> ConstructorArgs;
3738
3739 if (S.RequireNonAbstractType(CastLoc, Ty,
3740 diag::err_allocation_of_abstract_type))
3741 return ExprError();
3742
3743 if (S.CompleteConstructorCall(Constructor, From, CastLoc, ConstructorArgs))
3744 return ExprError();
3745
3746 S.CheckConstructorAccess(CastLoc, Constructor, FoundDecl,
3747 InitializedEntity::InitializeTemporary(Ty));
3748 if (S.DiagnoseUseOfDecl(Method, CastLoc))
3749 return ExprError();
3750
3751 ExprResult Result = S.BuildCXXConstructExpr(
3752 CastLoc, Ty, FoundDecl, cast<CXXConstructorDecl>(Method),
3753 ConstructorArgs, HadMultipleCandidates,
3754 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
3755 CXXConstructExpr::CK_Complete, SourceRange());
3756 if (Result.isInvalid())
3757 return ExprError();
3758
3759 return S.MaybeBindToTemporary(Result.getAs<Expr>());
3760 }
3761
3762 case CK_UserDefinedConversion: {
3763 assert(!From->getType()->isPointerType() && "Arg can't have pointer type!")((!From->getType()->isPointerType() && "Arg can't have pointer type!"
) ? static_cast<void> (0) : __assert_fail ("!From->getType()->isPointerType() && \"Arg can't have pointer type!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3763, __PRETTY_FUNCTION__))
;
3764
3765 S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ nullptr, FoundDecl);
3766 if (S.DiagnoseUseOfDecl(Method, CastLoc))
3767 return ExprError();
3768
3769 // Create an implicit call expr that calls it.
3770 CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method);
3771 ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv,
3772 HadMultipleCandidates);
3773 if (Result.isInvalid())
3774 return ExprError();
3775 // Record usage of conversion in an implicit cast.
3776 Result = ImplicitCastExpr::Create(S.Context, Result.get()->getType(),
3777 CK_UserDefinedConversion, Result.get(),
3778 nullptr, Result.get()->getValueKind());
3779
3780 return S.MaybeBindToTemporary(Result.get());
3781 }
3782 }
3783}
3784
3785/// PerformImplicitConversion - Perform an implicit conversion of the
3786/// expression From to the type ToType using the pre-computed implicit
3787/// conversion sequence ICS. Returns the converted
3788/// expression. Action is the kind of conversion we're performing,
3789/// used in the error message.
3790ExprResult
3791Sema::PerformImplicitConversion(Expr *From, QualType ToType,
3792 const ImplicitConversionSequence &ICS,
3793 AssignmentAction Action,
3794 CheckedConversionKind CCK) {
3795 // C++ [over.match.oper]p7: [...] operands of class type are converted [...]
3796 if (CCK == CCK_ForBuiltinOverloadedOp && !From->getType()->isRecordType())
3797 return From;
3798
3799 switch (ICS.getKind()) {
3800 case ImplicitConversionSequence::StandardConversion: {
3801 ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard,
3802 Action, CCK);
3803 if (Res.isInvalid())
3804 return ExprError();
3805 From = Res.get();
3806 break;
3807 }
3808
3809 case ImplicitConversionSequence::UserDefinedConversion: {
3810
3811 FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
3812 CastKind CastKind;
3813 QualType BeforeToType;
3814 assert(FD && "no conversion function for user-defined conversion seq")((FD && "no conversion function for user-defined conversion seq"
) ? static_cast<void> (0) : __assert_fail ("FD && \"no conversion function for user-defined conversion seq\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3814, __PRETTY_FUNCTION__))
;
3815 if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
3816 CastKind = CK_UserDefinedConversion;
3817
3818 // If the user-defined conversion is specified by a conversion function,
3819 // the initial standard conversion sequence converts the source type to
3820 // the implicit object parameter of the conversion function.
3821 BeforeToType = Context.getTagDeclType(Conv->getParent());
3822 } else {
3823 const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD);
3824 CastKind = CK_ConstructorConversion;
3825 // Do no conversion if dealing with ... for the first conversion.
3826 if (!ICS.UserDefined.EllipsisConversion) {
3827 // If the user-defined conversion is specified by a constructor, the
3828 // initial standard conversion sequence converts the source type to
3829 // the type required by the argument of the constructor
3830 BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
3831 }
3832 }
3833 // Watch out for ellipsis conversion.
3834 if (!ICS.UserDefined.EllipsisConversion) {
3835 ExprResult Res =
3836 PerformImplicitConversion(From, BeforeToType,
3837 ICS.UserDefined.Before, AA_Converting,
3838 CCK);
3839 if (Res.isInvalid())
3840 return ExprError();
3841 From = Res.get();
3842 }
3843
3844 ExprResult CastArg = BuildCXXCastArgument(
3845 *this, From->getBeginLoc(), ToType.getNonReferenceType(), CastKind,
3846 cast<CXXMethodDecl>(FD), ICS.UserDefined.FoundConversionFunction,
3847 ICS.UserDefined.HadMultipleCandidates, From);
3848
3849 if (CastArg.isInvalid())
3850 return ExprError();
3851
3852 From = CastArg.get();
3853
3854 // C++ [over.match.oper]p7:
3855 // [...] the second standard conversion sequence of a user-defined
3856 // conversion sequence is not applied.
3857 if (CCK == CCK_ForBuiltinOverloadedOp)
3858 return From;
3859
3860 return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
3861 AA_Converting, CCK);
3862 }
3863
3864 case ImplicitConversionSequence::AmbiguousConversion:
3865 ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
3866 PDiag(diag::err_typecheck_ambiguous_condition)
3867 << From->getSourceRange());
3868 return ExprError();
3869
3870 case ImplicitConversionSequence::EllipsisConversion:
3871 llvm_unreachable("Cannot perform an ellipsis conversion")::llvm::llvm_unreachable_internal("Cannot perform an ellipsis conversion"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3871)
;
3872
3873 case ImplicitConversionSequence::BadConversion:
3874 bool Diagnosed =
3875 DiagnoseAssignmentResult(Incompatible, From->getExprLoc(), ToType,
3876 From->getType(), From, Action);
3877 assert(Diagnosed && "failed to diagnose bad conversion")((Diagnosed && "failed to diagnose bad conversion") ?
static_cast<void> (0) : __assert_fail ("Diagnosed && \"failed to diagnose bad conversion\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3877, __PRETTY_FUNCTION__))
; (void)Diagnosed;
3878 return ExprError();
3879 }
3880
3881 // Everything went well.
3882 return From;
3883}
3884
3885/// PerformImplicitConversion - Perform an implicit conversion of the
3886/// expression From to the type ToType by following the standard
3887/// conversion sequence SCS. Returns the converted
3888/// expression. Flavor is the context in which we're performing this
3889/// conversion, for use in error messages.
3890ExprResult
3891Sema::PerformImplicitConversion(Expr *From, QualType ToType,
3892 const StandardConversionSequence& SCS,
3893 AssignmentAction Action,
3894 CheckedConversionKind CCK) {
3895 bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast);
3896
3897 // Overall FIXME: we are recomputing too many types here and doing far too
3898 // much extra work. What this means is that we need to keep track of more
3899 // information that is computed when we try the implicit conversion initially,
3900 // so that we don't need to recompute anything here.
3901 QualType FromType = From->getType();
3902
3903 if (SCS.CopyConstructor) {
3904 // FIXME: When can ToType be a reference type?
3905 assert(!ToType->isReferenceType())((!ToType->isReferenceType()) ? static_cast<void> (0
) : __assert_fail ("!ToType->isReferenceType()", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3905, __PRETTY_FUNCTION__))
;
3906 if (SCS.Second == ICK_Derived_To_Base) {
3907 SmallVector<Expr*, 8> ConstructorArgs;
3908 if (CompleteConstructorCall(cast<CXXConstructorDecl>(SCS.CopyConstructor),
3909 From, /*FIXME:ConstructLoc*/SourceLocation(),
3910 ConstructorArgs))
3911 return ExprError();
3912 return BuildCXXConstructExpr(
3913 /*FIXME:ConstructLoc*/ SourceLocation(), ToType,
3914 SCS.FoundCopyConstructor, SCS.CopyConstructor,
3915 ConstructorArgs, /*HadMultipleCandidates*/ false,
3916 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
3917 CXXConstructExpr::CK_Complete, SourceRange());
3918 }
3919 return BuildCXXConstructExpr(
3920 /*FIXME:ConstructLoc*/ SourceLocation(), ToType,
3921 SCS.FoundCopyConstructor, SCS.CopyConstructor,
3922 From, /*HadMultipleCandidates*/ false,
3923 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
3924 CXXConstructExpr::CK_Complete, SourceRange());
3925 }
3926
3927 // Resolve overloaded function references.
3928 if (Context.hasSameType(FromType, Context.OverloadTy)) {
3929 DeclAccessPair Found;
3930 FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType,
3931 true, Found);
3932 if (!Fn)
3933 return ExprError();
3934
3935 if (DiagnoseUseOfDecl(Fn, From->getBeginLoc()))
3936 return ExprError();
3937
3938 From = FixOverloadedFunctionReference(From, Found, Fn);
3939 FromType = From->getType();
3940 }
3941
3942 // If we're converting to an atomic type, first convert to the corresponding
3943 // non-atomic type.
3944 QualType ToAtomicType;
3945 if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>()) {
3946 ToAtomicType = ToType;
3947 ToType = ToAtomic->getValueType();
3948 }
3949
3950 QualType InitialFromType = FromType;
3951 // Perform the first implicit conversion.
3952 switch (SCS.First) {
3953 case ICK_Identity:
3954 if (const AtomicType *FromAtomic = FromType->getAs<AtomicType>()) {
3955 FromType = FromAtomic->getValueType().getUnqualifiedType();
3956 From = ImplicitCastExpr::Create(Context, FromType, CK_AtomicToNonAtomic,
3957 From, /*BasePath=*/nullptr, VK_RValue);
3958 }
3959 break;
3960
3961 case ICK_Lvalue_To_Rvalue: {
3962 assert(From->getObjectKind() != OK_ObjCProperty)((From->getObjectKind() != OK_ObjCProperty) ? static_cast<
void> (0) : __assert_fail ("From->getObjectKind() != OK_ObjCProperty"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3962, __PRETTY_FUNCTION__))
;
3963 ExprResult FromRes = DefaultLvalueConversion(From);
3964 assert(!FromRes.isInvalid() && "Can't perform deduced conversion?!")((!FromRes.isInvalid() && "Can't perform deduced conversion?!"
) ? static_cast<void> (0) : __assert_fail ("!FromRes.isInvalid() && \"Can't perform deduced conversion?!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3964, __PRETTY_FUNCTION__))
;
3965 From = FromRes.get();
3966 FromType = From->getType();
3967 break;
3968 }
3969
3970 case ICK_Array_To_Pointer:
3971 FromType = Context.getArrayDecayedType(FromType);
3972 From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay,
3973 VK_RValue, /*BasePath=*/nullptr, CCK).get();
3974 break;
3975
3976 case ICK_Function_To_Pointer:
3977 FromType = Context.getPointerType(FromType);
3978 From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay,
3979 VK_RValue, /*BasePath=*/nullptr, CCK).get();
3980 break;
3981
3982 default:
3983 llvm_unreachable("Improper first standard conversion")::llvm::llvm_unreachable_internal("Improper first standard conversion"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3983)
;
3984 }
3985
3986 // Perform the second implicit conversion
3987 switch (SCS.Second) {
3988 case ICK_Identity:
3989 // C++ [except.spec]p5:
3990 // [For] assignment to and initialization of pointers to functions,
3991 // pointers to member functions, and references to functions: the
3992 // target entity shall allow at least the exceptions allowed by the
3993 // source value in the assignment or initialization.
3994 switch (Action) {
3995 case AA_Assigning:
3996 case AA_Initializing:
3997 // Note, function argument passing and returning are initialization.
3998 case AA_Passing:
3999 case AA_Returning:
4000 case AA_Sending:
4001 case AA_Passing_CFAudited:
4002 if (CheckExceptionSpecCompatibility(From, ToType))
4003 return ExprError();
4004 break;
4005
4006 case AA_Casting:
4007 case AA_Converting:
4008 // Casts and implicit conversions are not initialization, so are not
4009 // checked for exception specification mismatches.
4010 break;
4011 }
4012 // Nothing else to do.
4013 break;
4014
4015 case ICK_Integral_Promotion:
4016 case ICK_Integral_Conversion:
4017 if (ToType->isBooleanType()) {
4018 assert(FromType->castAs<EnumType>()->getDecl()->isFixed() &&((FromType->castAs<EnumType>()->getDecl()->isFixed
() && SCS.Second == ICK_Integral_Promotion &&
"only enums with fixed underlying type can promote to bool")
? static_cast<void> (0) : __assert_fail ("FromType->castAs<EnumType>()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion && \"only enums with fixed underlying type can promote to bool\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4020, __PRETTY_FUNCTION__))
4019 SCS.Second == ICK_Integral_Promotion &&((FromType->castAs<EnumType>()->getDecl()->isFixed
() && SCS.Second == ICK_Integral_Promotion &&
"only enums with fixed underlying type can promote to bool")
? static_cast<void> (0) : __assert_fail ("FromType->castAs<EnumType>()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion && \"only enums with fixed underlying type can promote to bool\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4020, __PRETTY_FUNCTION__))
4020 "only enums with fixed underlying type can promote to bool")((FromType->castAs<EnumType>()->getDecl()->isFixed
() && SCS.Second == ICK_Integral_Promotion &&
"only enums with fixed underlying type can promote to bool")
? static_cast<void> (0) : __assert_fail ("FromType->castAs<EnumType>()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion && \"only enums with fixed underlying type can promote to bool\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4020, __PRETTY_FUNCTION__))
;
4021 From = ImpCastExprToType(From, ToType, CK_IntegralToBoolean,
4022 VK_RValue, /*BasePath=*/nullptr, CCK).get();
4023 } else {
4024 From = ImpCastExprToType(From, ToType, CK_IntegralCast,
4025 VK_RValue, /*BasePath=*/nullptr, CCK).get();
4026 }
4027 break;
4028
4029 case ICK_Floating_Promotion:
4030 case ICK_Floating_Conversion:
4031 From = ImpCastExprToType(From, ToType, CK_FloatingCast,
4032 VK_RValue, /*BasePath=*/nullptr, CCK).get();
4033 break;
4034
4035 case ICK_Complex_Promotion:
4036 case ICK_Complex_Conversion: {
4037 QualType FromEl = From->getType()->getAs<ComplexType>()->getElementType();
4038 QualType ToEl = ToType->getAs<ComplexType>()->getElementType();
4039 CastKind CK;
4040 if (FromEl->isRealFloatingType()) {
4041 if (ToEl->isRealFloatingType())
4042 CK = CK_FloatingComplexCast;
4043 else
4044 CK = CK_FloatingComplexToIntegralComplex;
4045 } else if (ToEl->isRealFloatingType()) {
4046 CK = CK_IntegralComplexToFloatingComplex;
4047 } else {
4048 CK = CK_IntegralComplexCast;
4049 }
4050 From = ImpCastExprToType(From, ToType, CK,
4051 VK_RValue, /*BasePath=*/nullptr, CCK).get();
4052 break;
4053 }
4054
4055 case ICK_Floating_Integral:
4056 if (ToType->isRealFloatingType())
4057 From = ImpCastExprToType(From, ToType, CK_IntegralToFloating,
4058 VK_RValue, /*BasePath=*/nullptr, CCK).get();
4059 else
4060 From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral,
4061 VK_RValue, /*BasePath=*/nullptr, CCK).get();
4062 break;
4063
4064 case ICK_Compatible_Conversion:
4065 From = ImpCastExprToType(From, ToType, CK_NoOp,
4066 VK_RValue, /*BasePath=*/nullptr, CCK).get();
4067 break;
4068
4069 case ICK_Writeback_Conversion:
4070 case ICK_Pointer_Conversion: {
4071 if (SCS.IncompatibleObjC && Action != AA_Casting) {
4072 // Diagnose incompatible Objective-C conversions
4073 if (Action == AA_Initializing || Action == AA_Assigning)
4074 Diag(From->getBeginLoc(),
4075 diag::ext_typecheck_convert_incompatible_pointer)
4076 << ToType << From->getType() << Action << From->getSourceRange()
4077 << 0;
4078 else
4079 Diag(From->getBeginLoc(),
4080 diag::ext_typecheck_convert_incompatible_pointer)
4081 << From->getType() << ToType << Action << From->getSourceRange()
4082 << 0;
4083
4084 if (From->getType()->isObjCObjectPointerType() &&
4085 ToType->isObjCObjectPointerType())
4086 EmitRelatedResultTypeNote(From);
4087 } else if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
4088 !CheckObjCARCUnavailableWeakConversion(ToType,
4089 From->getType())) {
4090 if (Action == AA_Initializing)
4091 Diag(From->getBeginLoc(), diag::err_arc_weak_unavailable_assign);
4092 else
4093 Diag(From->getBeginLoc(), diag::err_arc_convesion_of_weak_unavailable)
4094 << (Action == AA_Casting) << From->getType() << ToType
4095 << From->getSourceRange();
4096 }
4097
4098 CastKind Kind;
4099 CXXCastPath BasePath;
4100 if (CheckPointerConversion(From, ToType, Kind, BasePath, CStyle))
4101 return ExprError();
4102
4103 // Make sure we extend blocks if necessary.
4104 // FIXME: doing this here is really ugly.
4105 if (Kind == CK_BlockPointerToObjCPointerCast) {
4106 ExprResult E = From;
4107 (void) PrepareCastToObjCObjectPointer(E);
4108 From = E.get();
4109 }
4110 if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers())
4111 CheckObjCConversion(SourceRange(), ToType, From, CCK);
4112 From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
4113 .get();
4114 break;
4115 }
4116
4117 case ICK_Pointer_Member: {
4118 CastKind Kind;
4119 CXXCastPath BasePath;
4120 if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle))
4121 return ExprError();
4122 if (CheckExceptionSpecCompatibility(From, ToType))
4123 return ExprError();
4124
4125 // We may not have been able to figure out what this member pointer resolved
4126 // to up until this exact point. Attempt to lock-in it's inheritance model.
4127 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4128 (void)isCompleteType(From->getExprLoc(), From->getType());
4129 (void)isCompleteType(From->getExprLoc(), ToType);
4130 }
4131
4132 From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
4133 .get();
4134 break;
4135 }
4136
4137 case ICK_Boolean_Conversion:
4138 // Perform half-to-boolean conversion via float.
4139 if (From->getType()->isHalfType()) {
4140 From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).get();
4141 FromType = Context.FloatTy;
4142 }
4143
4144 From = ImpCastExprToType(From, Context.BoolTy,
4145 ScalarTypeToBooleanCastKind(FromType),
4146 VK_RValue, /*BasePath=*/nullptr, CCK).get();
4147 break;
4148
4149 case ICK_Derived_To_Base: {
4150 CXXCastPath BasePath;
4151 if (CheckDerivedToBaseConversion(
4152 From->getType(), ToType.getNonReferenceType(), From->getBeginLoc(),
4153 From->getSourceRange(), &BasePath, CStyle))
4154 return ExprError();
4155
4156 From = ImpCastExprToType(From, ToType.getNonReferenceType(),
4157 CK_DerivedToBase, From->getValueKind(),
4158 &BasePath, CCK).get();
4159 break;
4160 }
4161
4162 case ICK_Vector_Conversion:
4163 From = ImpCastExprToType(From, ToType, CK_BitCast,
4164 VK_RValue, /*BasePath=*/nullptr, CCK).get();
4165 break;
4166
4167 case ICK_Vector_Splat: {
4168 // Vector splat from any arithmetic type to a vector.
4169 Expr *Elem = prepareVectorSplat(ToType, From).get();
4170 From = ImpCastExprToType(Elem, ToType, CK_VectorSplat, VK_RValue,
4171 /*BasePath=*/nullptr, CCK).get();
4172 break;
4173 }
4174
4175 case ICK_Complex_Real:
4176 // Case 1. x -> _Complex y
4177 if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) {
4178 QualType ElType = ToComplex->getElementType();
4179 bool isFloatingComplex = ElType->isRealFloatingType();
4180
4181 // x -> y
4182 if (Context.hasSameUnqualifiedType(ElType, From->getType())) {
4183 // do nothing
4184 } else if (From->getType()->isRealFloatingType()) {
4185 From = ImpCastExprToType(From, ElType,
4186 isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).get();
4187 } else {
4188 assert(From->getType()->isIntegerType())((From->getType()->isIntegerType()) ? static_cast<void
> (0) : __assert_fail ("From->getType()->isIntegerType()"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4188, __PRETTY_FUNCTION__))
;
4189 From = ImpCastExprToType(From, ElType,
4190 isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).get();
4191 }
4192 // y -> _Complex y
4193 From = ImpCastExprToType(From, ToType,
4194 isFloatingComplex ? CK_FloatingRealToComplex
4195 : CK_IntegralRealToComplex).get();
4196
4197 // Case 2. _Complex x -> y
4198 } else {
4199 const ComplexType *FromComplex = From->getType()->getAs<ComplexType>();
4200 assert(FromComplex)((FromComplex) ? static_cast<void> (0) : __assert_fail (
"FromComplex", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4200, __PRETTY_FUNCTION__))
;
4201
4202 QualType ElType = FromComplex->getElementType();
4203 bool isFloatingComplex = ElType->isRealFloatingType();
4204
4205 // _Complex x -> x
4206 From = ImpCastExprToType(From, ElType,
4207 isFloatingComplex ? CK_FloatingComplexToReal
4208 : CK_IntegralComplexToReal,
4209 VK_RValue, /*BasePath=*/nullptr, CCK).get();
4210
4211 // x -> y
4212 if (Context.hasSameUnqualifiedType(ElType, ToType)) {
4213 // do nothing
4214 } else if (ToType->isRealFloatingType()) {
4215 From = ImpCastExprToType(From, ToType,
4216 isFloatingComplex ? CK_FloatingCast : CK_IntegralToFloating,
4217 VK_RValue, /*BasePath=*/nullptr, CCK).get();
4218 } else {
4219 assert(ToType->isIntegerType())((ToType->isIntegerType()) ? static_cast<void> (0) :
__assert_fail ("ToType->isIntegerType()", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4219, __PRETTY_FUNCTION__))
;
4220 From = ImpCastExprToType(From, ToType,
4221 isFloatingComplex ? CK_FloatingToIntegral : CK_IntegralCast,
4222 VK_RValue, /*BasePath=*/nullptr, CCK).get();
4223 }
4224 }
4225 break;
4226
4227 case ICK_Block_Pointer_Conversion: {
4228 LangAS AddrSpaceL =
4229 ToType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace();
4230 LangAS AddrSpaceR =
4231 FromType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace();
4232 assert(Qualifiers::isAddressSpaceSupersetOf(AddrSpaceL, AddrSpaceR) &&((Qualifiers::isAddressSpaceSupersetOf(AddrSpaceL, AddrSpaceR
) && "Invalid cast") ? static_cast<void> (0) : __assert_fail
("Qualifiers::isAddressSpaceSupersetOf(AddrSpaceL, AddrSpaceR) && \"Invalid cast\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4233, __PRETTY_FUNCTION__))
4233 "Invalid cast")((Qualifiers::isAddressSpaceSupersetOf(AddrSpaceL, AddrSpaceR
) && "Invalid cast") ? static_cast<void> (0) : __assert_fail
("Qualifiers::isAddressSpaceSupersetOf(AddrSpaceL, AddrSpaceR) && \"Invalid cast\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4233, __PRETTY_FUNCTION__))
;
4234 CastKind Kind =
4235 AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
4236 From = ImpCastExprToType(From, ToType.getUnqualifiedType(), Kind,
4237 VK_RValue, /*BasePath=*/nullptr, CCK).get();
4238 break;
4239 }
4240
4241 case ICK_TransparentUnionConversion: {
4242 ExprResult FromRes = From;
4243 Sema::AssignConvertType ConvTy =
4244 CheckTransparentUnionArgumentConstraints(ToType, FromRes);
4245 if (FromRes.isInvalid())
4246 return ExprError();
4247 From = FromRes.get();
4248 assert ((ConvTy == Sema::Compatible) &&(((ConvTy == Sema::Compatible) && "Improper transparent union conversion"
) ? static_cast<void> (0) : __assert_fail ("(ConvTy == Sema::Compatible) && \"Improper transparent union conversion\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4249, __PRETTY_FUNCTION__))
4249 "Improper transparent union conversion")(((ConvTy == Sema::Compatible) && "Improper transparent union conversion"
) ? static_cast<void> (0) : __assert_fail ("(ConvTy == Sema::Compatible) && \"Improper transparent union conversion\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4249, __PRETTY_FUNCTION__))
;
4250 (void)ConvTy;
4251 break;
4252 }
4253
4254 case ICK_Zero_Event_Conversion:
4255 case ICK_Zero_Queue_Conversion:
4256 From = ImpCastExprToType(From, ToType,
4257 CK_ZeroToOCLOpaqueType,
4258 From->getValueKind()).get();
4259 break;
4260
4261 case ICK_Lvalue_To_Rvalue:
4262 case ICK_Array_To_Pointer:
4263 case ICK_Function_To_Pointer:
4264 case ICK_Function_Conversion:
4265 case ICK_Qualification:
4266 case ICK_Num_Conversion_Kinds:
4267 case ICK_C_Only_Conversion:
4268 case ICK_Incompatible_Pointer_Conversion:
4269 llvm_unreachable("Improper second standard conversion")::llvm::llvm_unreachable_internal("Improper second standard conversion"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4269)
;
4270 }
4271
4272 switch (SCS.Third) {
4273 case ICK_Identity:
4274 // Nothing to do.
4275 break;
4276
4277 case ICK_Function_Conversion:
4278 // If both sides are functions (or pointers/references to them), there could
4279 // be incompatible exception declarations.
4280 if (CheckExceptionSpecCompatibility(From, ToType))
4281 return ExprError();
4282
4283 From = ImpCastExprToType(From, ToType, CK_NoOp,
4284 VK_RValue, /*BasePath=*/nullptr, CCK).get();
4285 break;
4286
4287 case ICK_Qualification: {
4288 // The qualification keeps the category of the inner expression, unless the
4289 // target type isn't a reference.
4290 ExprValueKind VK =
4291 ToType->isReferenceType() ? From->getValueKind() : VK_RValue;
4292
4293 CastKind CK = CK_NoOp;
4294
4295 if (ToType->isReferenceType() &&
4296 ToType->getPointeeType().getAddressSpace() !=
4297 From->getType().getAddressSpace())
4298 CK = CK_AddressSpaceConversion;
4299
4300 if (ToType->isPointerType() &&
4301 ToType->getPointeeType().getAddressSpace() !=
4302 From->getType()->getPointeeType().getAddressSpace())
4303 CK = CK_AddressSpaceConversion;
4304
4305 From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context), CK, VK,
4306 /*BasePath=*/nullptr, CCK)
4307 .get();
4308
4309 if (SCS.DeprecatedStringLiteralToCharPtr &&
4310 !getLangOpts().WritableStrings) {
4311 Diag(From->getBeginLoc(),
4312 getLangOpts().CPlusPlus11
4313 ? diag::ext_deprecated_string_literal_conversion
4314 : diag::warn_deprecated_string_literal_conversion)
4315 << ToType.getNonReferenceType();
4316 }
4317
4318 break;
4319 }
4320
4321 default:
4322 llvm_unreachable("Improper third standard conversion")::llvm::llvm_unreachable_internal("Improper third standard conversion"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4322)
;
4323 }
4324
4325 // If this conversion sequence involved a scalar -> atomic conversion, perform
4326 // that conversion now.
4327 if (!ToAtomicType.isNull()) {
4328 assert(Context.hasSameType(((Context.hasSameType( ToAtomicType->castAs<AtomicType>
()->getValueType(), From->getType())) ? static_cast<
void> (0) : __assert_fail ("Context.hasSameType( ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType())"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4329, __PRETTY_FUNCTION__))
4329 ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType()))((Context.hasSameType( ToAtomicType->castAs<AtomicType>
()->getValueType(), From->getType())) ? static_cast<
void> (0) : __assert_fail ("Context.hasSameType( ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType())"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4329, __PRETTY_FUNCTION__))
;
4330 From = ImpCastExprToType(From, ToAtomicType, CK_NonAtomicToAtomic,
4331 VK_RValue, nullptr, CCK).get();
4332 }
4333
4334 // If this conversion sequence succeeded and involved implicitly converting a
4335 // _Nullable type to a _Nonnull one, complain.
4336 if (!isCast(CCK))
4337 diagnoseNullableToNonnullConversion(ToType, InitialFromType,
4338 From->getBeginLoc());
4339
4340 return From;
4341}
4342
4343/// Check the completeness of a type in a unary type trait.
4344///
4345/// If the particular type trait requires a complete type, tries to complete
4346/// it. If completing the type fails, a diagnostic is emitted and false
4347/// returned. If completing the type succeeds or no completion was required,
4348/// returns true.
4349static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S, TypeTrait UTT,
4350 SourceLocation Loc,
4351 QualType ArgTy) {
4352 // C++0x [meta.unary.prop]p3:
4353 // For all of the class templates X declared in this Clause, instantiating
4354 // that template with a template argument that is a class template
4355 // specialization may result in the implicit instantiation of the template
4356 // argument if and only if the semantics of X require that the argument
4357 // must be a complete type.
4358 // We apply this rule to all the type trait expressions used to implement
4359 // these class templates. We also try to follow any GCC documented behavior
4360 // in these expressions to ensure portability of standard libraries.
4361 switch (UTT) {
4362 default: llvm_unreachable("not a UTT")::llvm::llvm_unreachable_internal("not a UTT", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4362)
;
4363 // is_complete_type somewhat obviously cannot require a complete type.
4364 case UTT_IsCompleteType:
4365 // Fall-through
4366
4367 // These traits are modeled on the type predicates in C++0x
4368 // [meta.unary.cat] and [meta.unary.comp]. They are not specified as
4369 // requiring a complete type, as whether or not they return true cannot be
4370 // impacted by the completeness of the type.
4371 case UTT_IsVoid:
4372 case UTT_IsIntegral:
4373 case UTT_IsFloatingPoint:
4374 case UTT_IsArray:
4375 case UTT_IsPointer:
4376 case UTT_IsLvalueReference:
4377 case UTT_IsRvalueReference:
4378 case UTT_IsMemberFunctionPointer:
4379 case UTT_IsMemberObjectPointer:
4380 case UTT_IsEnum:
4381 case UTT_IsUnion:
4382 case UTT_IsClass:
4383 case UTT_IsFunction:
4384 case UTT_IsReference:
4385 case UTT_IsArithmetic:
4386 case UTT_IsFundamental:
4387 case UTT_IsObject:
4388 case UTT_IsScalar:
4389 case UTT_IsCompound:
4390 case UTT_IsMemberPointer:
4391 // Fall-through
4392
4393 // These traits are modeled on type predicates in C++0x [meta.unary.prop]
4394 // which requires some of its traits to have the complete type. However,
4395 // the completeness of the type cannot impact these traits' semantics, and
4396 // so they don't require it. This matches the comments on these traits in
4397 // Table 49.
4398 case UTT_IsConst:
4399 case UTT_IsVolatile:
4400 case UTT_IsSigned:
4401 case UTT_IsUnsigned:
4402
4403 // This type trait always returns false, checking the type is moot.
4404 case UTT_IsInterfaceClass:
4405 return true;
4406
4407 // C++14 [meta.unary.prop]:
4408 // If T is a non-union class type, T shall be a complete type.
4409 case UTT_IsEmpty:
4410 case UTT_IsPolymorphic:
4411 case UTT_IsAbstract:
4412 if (const auto *RD = ArgTy->getAsCXXRecordDecl())
4413 if (!RD->isUnion())
4414 return !S.RequireCompleteType(
4415 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4416 return true;
4417
4418 // C++14 [meta.unary.prop]:
4419 // If T is a class type, T shall be a complete type.
4420 case UTT_IsFinal:
4421 case UTT_IsSealed:
4422 if (ArgTy->getAsCXXRecordDecl())
4423 return !S.RequireCompleteType(
4424 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4425 return true;
4426
4427 // C++1z [meta.unary.prop]:
4428 // remove_all_extents_t<T> shall be a complete type or cv void.
4429 case UTT_IsAggregate:
4430 case UTT_IsTrivial:
4431 case UTT_IsTriviallyCopyable:
4432 case UTT_IsStandardLayout:
4433 case UTT_IsPOD:
4434 case UTT_IsLiteral:
4435 // Per the GCC type traits documentation, T shall be a complete type, cv void,
4436 // or an array of unknown bound. But GCC actually imposes the same constraints
4437 // as above.
4438 case UTT_HasNothrowAssign:
4439 case UTT_HasNothrowMoveAssign:
4440 case UTT_HasNothrowConstructor:
4441 case UTT_HasNothrowCopy:
4442 case UTT_HasTrivialAssign:
4443 case UTT_HasTrivialMoveAssign:
4444 case UTT_HasTrivialDefaultConstructor:
4445 case UTT_HasTrivialMoveConstructor:
4446 case UTT_HasTrivialCopy:
4447 case UTT_HasTrivialDestructor:
4448 case UTT_HasVirtualDestructor:
4449 ArgTy = QualType(ArgTy->getBaseElementTypeUnsafe(), 0);
4450 LLVM_FALLTHROUGH[[gnu::fallthrough]];
4451
4452 // C++1z [meta.unary.prop]:
4453 // T shall be a complete type, cv void, or an array of unknown bound.
4454 case UTT_IsDestructible:
4455 case UTT_IsNothrowDestructible:
4456 case UTT_IsTriviallyDestructible:
4457 case UTT_HasUniqueObjectRepresentations:
4458 if (ArgTy->isIncompleteArrayType() || ArgTy->isVoidType())
4459 return true;
4460
4461 return !S.RequireCompleteType(
4462 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4463 }
4464}
4465
4466static bool HasNoThrowOperator(const RecordType *RT, OverloadedOperatorKind Op,
4467 Sema &Self, SourceLocation KeyLoc, ASTContext &C,
4468 bool (CXXRecordDecl::*HasTrivial)() const,
4469 bool (CXXRecordDecl::*HasNonTrivial)() const,
4470 bool (CXXMethodDecl::*IsDesiredOp)() const)
4471{
4472 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
4473 if ((RD->*HasTrivial)() && !(RD->*HasNonTrivial)())
4474 return true;
4475
4476 DeclarationName Name = C.DeclarationNames.getCXXOperatorName(Op);
4477 DeclarationNameInfo NameInfo(Name, KeyLoc);
4478 LookupResult Res(Self, NameInfo, Sema::LookupOrdinaryName);
4479 if (Self.LookupQualifiedName(Res, RD)) {
4480 bool FoundOperator = false;
4481 Res.suppressDiagnostics();
4482 for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end();
4483 Op != OpEnd; ++Op) {
4484 if (isa<FunctionTemplateDecl>(*Op))
4485 continue;
4486
4487 CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op);
4488 if((Operator->*IsDesiredOp)()) {
4489 FoundOperator = true;
4490 const FunctionProtoType *CPT =
4491 Operator->getType()->getAs<FunctionProtoType>();
4492 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
4493 if (!CPT || !CPT->isNothrow())
4494 return false;
4495 }
4496 }
4497 return FoundOperator;
4498 }
4499 return false;
4500}
4501
4502static bool EvaluateUnaryTypeTrait(Sema &Self, TypeTrait UTT,
4503 SourceLocation KeyLoc, QualType T) {
4504 assert(!T->isDependentType() && "Cannot evaluate traits of dependent type")((!T->isDependentType() && "Cannot evaluate traits of dependent type"
) ? static_cast<void> (0) : __assert_fail ("!T->isDependentType() && \"Cannot evaluate traits of dependent type\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4504, __PRETTY_FUNCTION__))
;
4505
4506 ASTContext &C = Self.Context;
4507 switch(UTT) {
4508 default: llvm_unreachable("not a UTT")::llvm::llvm_unreachable_internal("not a UTT", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4508)
;
4509 // Type trait expressions corresponding to the primary type category
4510 // predicates in C++0x [meta.unary.cat].
4511 case UTT_IsVoid:
4512 return T->isVoidType();
4513 case UTT_IsIntegral:
4514 return T->isIntegralType(C);
4515 case UTT_IsFloatingPoint:
4516 return T->isFloatingType();
4517 case UTT_IsArray:
4518 return T->isArrayType();
4519 case UTT_IsPointer:
4520 return T->isPointerType();
4521 case UTT_IsLvalueReference:
4522 return T->isLValueReferenceType();
4523 case UTT_IsRvalueReference:
4524 return T->isRValueReferenceType();
4525 case UTT_IsMemberFunctionPointer:
4526 return T->isMemberFunctionPointerType();
4527 case UTT_IsMemberObjectPointer:
4528 return T->isMemberDataPointerType();
4529 case UTT_IsEnum:
4530 return T->isEnumeralType();
4531 case UTT_IsUnion:
4532 return T->isUnionType();
4533 case UTT_IsClass:
4534 return T->isClassType() || T->isStructureType() || T->isInterfaceType();
4535 case UTT_IsFunction:
4536 return T->isFunctionType();
4537
4538 // Type trait expressions which correspond to the convenient composition
4539 // predicates in C++0x [meta.unary.comp].
4540 case UTT_IsReference:
4541 return T->isReferenceType();
4542 case UTT_IsArithmetic:
4543 return T->isArithmeticType() && !T->isEnumeralType();
4544 case UTT_IsFundamental:
4545 return T->isFundamentalType();
4546 case UTT_IsObject:
4547 return T->isObjectType();
4548 case UTT_IsScalar:
4549 // Note: semantic analysis depends on Objective-C lifetime types to be
4550 // considered scalar types. However, such types do not actually behave
4551 // like scalar types at run time (since they may require retain/release
4552 // operations), so we report them as non-scalar.
4553 if (T->isObjCLifetimeType()) {
4554 switch (T.getObjCLifetime()) {
4555 case Qualifiers::OCL_None:
4556 case Qualifiers::OCL_ExplicitNone:
4557 return true;
4558
4559 case Qualifiers::OCL_Strong:
4560 case Qualifiers::OCL_Weak:
4561 case Qualifiers::OCL_Autoreleasing:
4562 return false;
4563 }
4564 }
4565
4566 return T->isScalarType();
4567 case UTT_IsCompound:
4568 return T->isCompoundType();
4569 case UTT_IsMemberPointer:
4570 return T->isMemberPointerType();
4571
4572 // Type trait expressions which correspond to the type property predicates
4573 // in C++0x [meta.unary.prop].
4574 case UTT_IsConst:
4575 return T.isConstQualified();
4576 case UTT_IsVolatile:
4577 return T.isVolatileQualified();
4578 case UTT_IsTrivial:
4579 return T.isTrivialType(C);
4580 case UTT_IsTriviallyCopyable:
4581 return T.isTriviallyCopyableType(C);
4582 case UTT_IsStandardLayout:
4583 return T->isStandardLayoutType();
4584 case UTT_IsPOD:
4585 return T.isPODType(C);
4586 case UTT_IsLiteral:
4587 return T->isLiteralType(C);
4588 case UTT_IsEmpty:
4589 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4590 return !RD->isUnion() && RD->isEmpty();
4591 return false;
4592 case UTT_IsPolymorphic:
4593 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4594 return !RD->isUnion() && RD->isPolymorphic();
4595 return false;
4596 case UTT_IsAbstract:
4597 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4598 return !RD->isUnion() && RD->isAbstract();
4599 return false;
4600 case UTT_IsAggregate:
4601 // Report vector extensions and complex types as aggregates because they
4602 // support aggregate initialization. GCC mirrors this behavior for vectors
4603 // but not _Complex.
4604 return T->isAggregateType() || T->isVectorType() || T->isExtVectorType() ||
4605 T->isAnyComplexType();
4606 // __is_interface_class only returns true when CL is invoked in /CLR mode and
4607 // even then only when it is used with the 'interface struct ...' syntax
4608 // Clang doesn't support /CLR which makes this type trait moot.
4609 case UTT_IsInterfaceClass:
4610 return false;
4611 case UTT_IsFinal:
4612 case UTT_IsSealed:
4613 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4614 return RD->hasAttr<FinalAttr>();
4615 return false;
4616 case UTT_IsSigned:
4617 // Enum types should always return false.
4618 // Floating points should always return true.
4619 return !T->isEnumeralType() && (T->isFloatingType() || T->isSignedIntegerType());
4620 case UTT_IsUnsigned:
4621 return T->isUnsignedIntegerType();
4622
4623 // Type trait expressions which query classes regarding their construction,
4624 // destruction, and copying. Rather than being based directly on the
4625 // related type predicates in the standard, they are specified by both
4626 // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those
4627 // specifications.
4628 //
4629 // 1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html
4630 // 2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
4631 //
4632 // Note that these builtins do not behave as documented in g++: if a class
4633 // has both a trivial and a non-trivial special member of a particular kind,
4634 // they return false! For now, we emulate this behavior.
4635 // FIXME: This appears to be a g++ bug: more complex cases reveal that it
4636 // does not correctly compute triviality in the presence of multiple special
4637 // members of the same kind. Revisit this once the g++ bug is fixed.
4638 case UTT_HasTrivialDefaultConstructor:
4639 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4640 // If __is_pod (type) is true then the trait is true, else if type is
4641 // a cv class or union type (or array thereof) with a trivial default
4642 // constructor ([class.ctor]) then the trait is true, else it is false.
4643 if (T.isPODType(C))
4644 return true;
4645 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
4646 return RD->hasTrivialDefaultConstructor() &&
4647 !RD->hasNonTrivialDefaultConstructor();
4648 return false;
4649 case UTT_HasTrivialMoveConstructor:
4650 // This trait is implemented by MSVC 2012 and needed to parse the
4651 // standard library headers. Specifically this is used as the logic
4652 // behind std::is_trivially_move_constructible (20.9.4.3).
4653 if (T.isPODType(C))
4654 return true;
4655 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
4656 return RD->hasTrivialMoveConstructor() && !RD->hasNonTrivialMoveConstructor();
4657 return false;
4658 case UTT_HasTrivialCopy:
4659 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4660 // If __is_pod (type) is true or type is a reference type then
4661 // the trait is true, else if type is a cv class or union type
4662 // with a trivial copy constructor ([class.copy]) then the trait
4663 // is true, else it is false.
4664 if (T.isPODType(C) || T->isReferenceType())
4665 return true;
4666 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4667 return RD->hasTrivialCopyConstructor() &&
4668 !RD->hasNonTrivialCopyConstructor();
4669 return false;
4670 case UTT_HasTrivialMoveAssign:
4671 // This trait is implemented by MSVC 2012 and needed to parse the
4672 // standard library headers. Specifically it is used as the logic
4673 // behind std::is_trivially_move_assignable (20.9.4.3)
4674 if (T.isPODType(C))
4675 return true;
4676 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
4677 return RD->hasTrivialMoveAssignment() && !RD->hasNonTrivialMoveAssignment();
4678 return false;
4679 case UTT_HasTrivialAssign:
4680 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4681 // If type is const qualified or is a reference type then the
4682 // trait is false. Otherwise if __is_pod (type) is true then the
4683 // trait is true, else if type is a cv class or union type with
4684 // a trivial copy assignment ([class.copy]) then the trait is
4685 // true, else it is false.
4686 // Note: the const and reference restrictions are interesting,
4687 // given that const and reference members don't prevent a class
4688 // from having a trivial copy assignment operator (but do cause
4689 // errors if the copy assignment operator is actually used, q.v.
4690 // [class.copy]p12).
4691
4692 if (T.isConstQualified())
4693 return false;
4694 if (T.isPODType(C))
4695 return true;
4696 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4697 return RD->hasTrivialCopyAssignment() &&
4698 !RD->hasNonTrivialCopyAssignment();
4699 return false;
4700 case UTT_IsDestructible:
4701 case UTT_IsTriviallyDestructible:
4702 case UTT_IsNothrowDestructible:
4703 // C++14 [meta.unary.prop]:
4704 // For reference types, is_destructible<T>::value is true.
4705 if (T->isReferenceType())
4706 return true;
4707
4708 // Objective-C++ ARC: autorelease types don't require destruction.
4709 if (T->isObjCLifetimeType() &&
4710 T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
4711 return true;
4712
4713 // C++14 [meta.unary.prop]:
4714 // For incomplete types and function types, is_destructible<T>::value is
4715 // false.
4716 if (T->isIncompleteType() || T->isFunctionType())
4717 return false;
4718
4719 // A type that requires destruction (via a non-trivial destructor or ARC
4720 // lifetime semantics) is not trivially-destructible.
4721 if (UTT == UTT_IsTriviallyDestructible && T.isDestructedType())
4722 return false;
4723
4724 // C++14 [meta.unary.prop]:
4725 // For object types and given U equal to remove_all_extents_t<T>, if the
4726 // expression std::declval<U&>().~U() is well-formed when treated as an
4727 // unevaluated operand (Clause 5), then is_destructible<T>::value is true
4728 if (auto *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
4729 CXXDestructorDecl *Destructor = Self.LookupDestructor(RD);
4730 if (!Destructor)
4731 return false;
4732 // C++14 [dcl.fct.def.delete]p2:
4733 // A program that refers to a deleted function implicitly or
4734 // explicitly, other than to declare it, is ill-formed.
4735 if (Destructor->isDeleted())
4736 return false;
4737 if (C.getLangOpts().AccessControl && Destructor->getAccess() != AS_public)
4738 return false;
4739 if (UTT == UTT_IsNothrowDestructible) {
4740 const FunctionProtoType *CPT =
4741 Destructor->getType()->getAs<FunctionProtoType>();
4742 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
4743 if (!CPT || !CPT->isNothrow())
4744 return false;
4745 }
4746 }
4747 return true;
4748
4749 case UTT_HasTrivialDestructor:
4750 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
4751 // If __is_pod (type) is true or type is a reference type
4752 // then the trait is true, else if type is a cv class or union
4753 // type (or array thereof) with a trivial destructor
4754 // ([class.dtor]) then the trait is true, else it is
4755 // false.
4756 if (T.isPODType(C) || T->isReferenceType())
4757 return true;
4758
4759 // Objective-C++ ARC: autorelease types don't require destruction.
4760 if (T->isObjCLifetimeType() &&
4761 T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
4762 return true;
4763
4764 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
4765 return RD->hasTrivialDestructor();
4766 return false;
4767 // TODO: Propagate nothrowness for implicitly declared special members.
4768 case UTT_HasNothrowAssign:
4769 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4770 // If type is const qualified or is a reference type then the
4771 // trait is false. Otherwise if __has_trivial_assign (type)
4772 // is true then the trait is true, else if type is a cv class
4773 // or union type with copy assignment operators that are known
4774 // not to throw an exception then the trait is true, else it is
4775 // false.
4776 if (C.getBaseElementType(T).isConstQualified())
4777 return false;
4778 if (T->isReferenceType())
4779 return false;
4780 if (T.isPODType(C) || T->isObjCLifetimeType())
4781 return true;
4782
4783 if (const RecordType *RT = T->getAs<RecordType>())
4784 return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
4785 &CXXRecordDecl::hasTrivialCopyAssignment,
4786 &CXXRecordDecl::hasNonTrivialCopyAssignment,
4787 &CXXMethodDecl::isCopyAssignmentOperator);
4788 return false;
4789 case UTT_HasNothrowMoveAssign:
4790 // This trait is implemented by MSVC 2012 and needed to parse the
4791 // standard library headers. Specifically this is used as the logic
4792 // behind std::is_nothrow_move_assignable (20.9.4.3).
4793 if (T.isPODType(C))
4794 return true;
4795
4796 if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>())
4797 return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
4798 &CXXRecordDecl::hasTrivialMoveAssignment,
4799 &CXXRecordDecl::hasNonTrivialMoveAssignment,
4800 &CXXMethodDecl::isMoveAssignmentOperator);
4801 return false;
4802 case UTT_HasNothrowCopy:
4803 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4804 // If __has_trivial_copy (type) is true then the trait is true, else
4805 // if type is a cv class or union type with copy constructors that are
4806 // known not to throw an exception then the trait is true, else it is
4807 // false.
4808 if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType())
4809 return true;
4810 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
4811 if (RD->hasTrivialCopyConstructor() &&
4812 !RD->hasNonTrivialCopyConstructor())
4813 return true;
4814
4815 bool FoundConstructor = false;
4816 unsigned FoundTQs;
4817 for (const auto *ND : Self.LookupConstructors(RD)) {
4818 // A template constructor is never a copy constructor.
4819 // FIXME: However, it may actually be selected at the actual overload
4820 // resolution point.
4821 if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl()))
4822 continue;
4823 // UsingDecl itself is not a constructor
4824 if (isa<UsingDecl>(ND))
4825 continue;
4826 auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl());
4827 if (Constructor->isCopyConstructor(FoundTQs)) {
4828 FoundConstructor = true;
4829 const FunctionProtoType *CPT
4830 = Constructor->getType()->getAs<FunctionProtoType>();
4831 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
4832 if (!CPT)
4833 return false;
4834 // TODO: check whether evaluating default arguments can throw.
4835 // For now, we'll be conservative and assume that they can throw.
4836 if (!CPT->isNothrow() || CPT->getNumParams() > 1)
4837 return false;
4838 }
4839 }
4840
4841 return FoundConstructor;
4842 }
4843 return false;
4844 case UTT_HasNothrowConstructor:
4845 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
4846 // If __has_trivial_constructor (type) is true then the trait is
4847 // true, else if type is a cv class or union type (or array
4848 // thereof) with a default constructor that is known not to
4849 // throw an exception then the trait is true, else it is false.
4850 if (T.isPODType(C) || T->isObjCLifetimeType())
4851 return true;
4852 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
4853 if (RD->hasTrivialDefaultConstructor() &&
4854 !RD->hasNonTrivialDefaultConstructor())
4855 return true;
4856
4857 bool FoundConstructor = false;
4858 for (const auto *ND : Self.LookupConstructors(RD)) {
4859 // FIXME: In C++0x, a constructor template can be a default constructor.
4860 if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl()))
4861 continue;
4862 // UsingDecl itself is not a constructor
4863 if (isa<UsingDecl>(ND))
4864 continue;
4865 auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl());
4866 if (Constructor->isDefaultConstructor()) {
4867 FoundConstructor = true;
4868 const FunctionProtoType *CPT
4869 = Constructor->getType()->getAs<FunctionProtoType>();
4870 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
4871 if (!CPT)
4872 return false;
4873 // FIXME: check whether evaluating default arguments can throw.
4874 // For now, we'll be conservative and assume that they can throw.
4875 if (!CPT->isNothrow() || CPT->getNumParams() > 0)
4876 return false;
4877 }
4878 }
4879 return FoundConstructor;
4880 }
4881 return false;
4882 case UTT_HasVirtualDestructor:
4883 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4884 // If type is a class type with a virtual destructor ([class.dtor])
4885 // then the trait is true, else it is false.
4886 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4887 if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD))
4888 return Destructor->isVirtual();
4889 return false;
4890
4891 // These type trait expressions are modeled on the specifications for the
4892 // Embarcadero C++0x type trait functions:
4893 // http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
4894 case UTT_IsCompleteType:
4895 // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_):
4896 // Returns True if and only if T is a complete type at the point of the
4897 // function call.
4898 return !T->isIncompleteType();
4899 case UTT_HasUniqueObjectRepresentations:
4900 return C.hasUniqueObjectRepresentations(T);
4901 }
4902}
4903
4904static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
4905 QualType RhsT, SourceLocation KeyLoc);
4906
4907static bool evaluateTypeTrait(Sema &S, TypeTrait Kind, SourceLocation KWLoc,
4908 ArrayRef<TypeSourceInfo *> Args,
4909 SourceLocation RParenLoc) {
4910 if (Kind <= UTT_Last)
4911 return EvaluateUnaryTypeTrait(S, Kind, KWLoc, Args[0]->getType());
4912
4913 // Evaluate BTT_ReferenceBindsToTemporary alongside the IsConstructible
4914 // traits to avoid duplication.
4915 if (Kind <= BTT_Last && Kind != BTT_ReferenceBindsToTemporary)
4916 return EvaluateBinaryTypeTrait(S, Kind, Args[0]->getType(),
4917 Args[1]->getType(), RParenLoc);
4918
4919 switch (Kind) {
4920 case clang::BTT_ReferenceBindsToTemporary:
4921 case clang::TT_IsConstructible:
4922 case clang::TT_IsNothrowConstructible:
4923 case clang::TT_IsTriviallyConstructible: {
4924 // C++11 [meta.unary.prop]:
4925 // is_trivially_constructible is defined as:
4926 //
4927 // is_constructible<T, Args...>::value is true and the variable
4928 // definition for is_constructible, as defined below, is known to call
4929 // no operation that is not trivial.
4930 //
4931 // The predicate condition for a template specialization
4932 // is_constructible<T, Args...> shall be satisfied if and only if the
4933 // following variable definition would be well-formed for some invented
4934 // variable t:
4935 //
4936 // T t(create<Args>()...);
4937 assert(!Args.empty())((!Args.empty()) ? static_cast<void> (0) : __assert_fail
("!Args.empty()", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4937, __PRETTY_FUNCTION__))
;
4938
4939 // Precondition: T and all types in the parameter pack Args shall be
4940 // complete types, (possibly cv-qualified) void, or arrays of
4941 // unknown bound.
4942 for (const auto *TSI : Args) {
4943 QualType ArgTy = TSI->getType();
4944 if (ArgTy->isVoidType() || ArgTy->isIncompleteArrayType())
4945 continue;
4946
4947 if (S.RequireCompleteType(KWLoc, ArgTy,
4948 diag::err_incomplete_type_used_in_type_trait_expr))
4949 return false;
4950 }
4951
4952 // Make sure the first argument is not incomplete nor a function type.
4953 QualType T = Args[0]->getType();
4954 if (T->isIncompleteType() || T->isFunctionType())
4955 return false;
4956
4957 // Make sure the first argument is not an abstract type.
4958 CXXRecordDecl *RD = T->getAsCXXRecordDecl();
4959 if (RD && RD->isAbstract())
4960 return false;
4961
4962 SmallVector<OpaqueValueExpr, 2> OpaqueArgExprs;
4963 SmallVector<Expr *, 2> ArgExprs;
4964 ArgExprs.reserve(Args.size() - 1);
4965 for (unsigned I = 1, N = Args.size(); I != N; ++I) {
4966 QualType ArgTy = Args[I]->getType();
4967 if (ArgTy->isObjectType() || ArgTy->isFunctionType())
4968 ArgTy = S.Context.getRValueReferenceType(ArgTy);
4969 OpaqueArgExprs.push_back(
4970 OpaqueValueExpr(Args[I]->getTypeLoc().getBeginLoc(),
4971 ArgTy.getNonLValueExprType(S.Context),
4972 Expr::getValueKindForType(ArgTy)));
4973 }
4974 for (Expr &E : OpaqueArgExprs)
4975 ArgExprs.push_back(&E);
4976
4977 // Perform the initialization in an unevaluated context within a SFINAE
4978 // trap at translation unit scope.
4979 EnterExpressionEvaluationContext Unevaluated(
4980 S, Sema::ExpressionEvaluationContext::Unevaluated);
4981 Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true);
4982 Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl());
4983 InitializedEntity To(InitializedEntity::InitializeTemporary(Args[0]));
4984 InitializationKind InitKind(InitializationKind::CreateDirect(KWLoc, KWLoc,
4985 RParenLoc));
4986 InitializationSequence Init(S, To, InitKind, ArgExprs);
4987 if (Init.Failed())
4988 return false;
4989
4990 ExprResult Result = Init.Perform(S, To, InitKind, ArgExprs);
4991 if (Result.isInvalid() || SFINAE.hasErrorOccurred())
4992 return false;
4993
4994 if (Kind == clang::TT_IsConstructible)
4995 return true;
4996
4997 if (Kind == clang::BTT_ReferenceBindsToTemporary) {
4998 if (!T->isReferenceType())
4999 return false;
5000
5001 return !Init.isDirectReferenceBinding();
5002 }
5003
5004 if (Kind == clang::TT_IsNothrowConstructible)
5005 return S.canThrow(Result.get()) == CT_Cannot;
5006
5007 if (Kind == clang::TT_IsTriviallyConstructible) {
5008 // Under Objective-C ARC and Weak, if the destination has non-trivial
5009 // Objective-C lifetime, this is a non-trivial construction.
5010 if (T.getNonReferenceType().hasNonTrivialObjCLifetime())
5011 return false;
5012
5013 // The initialization succeeded; now make sure there are no non-trivial
5014 // calls.
5015 return !Result.get()->hasNonTrivialCall(S.Context);
5016 }
5017
5018 llvm_unreachable("unhandled type trait")::llvm::llvm_unreachable_internal("unhandled type trait", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5018)
;
5019 return false;
5020 }
5021 default: llvm_unreachable("not a TT")::llvm::llvm_unreachable_internal("not a TT", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5021)
;
5022 }
5023
5024 return false;
5025}
5026
5027ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
5028 ArrayRef<TypeSourceInfo *> Args,
5029 SourceLocation RParenLoc) {
5030 QualType ResultType = Context.getLogicalOperationType();
5031
5032 if (Kind <= UTT_Last && !CheckUnaryTypeTraitTypeCompleteness(
5033 *this, Kind, KWLoc, Args[0]->getType()))
5034 return ExprError();
5035
5036 bool Dependent = false;
5037 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
5038 if (Args[I]->getType()->isDependentType()) {
5039 Dependent = true;
5040 break;
5041 }
5042 }
5043
5044 bool Result = false;
5045 if (!Dependent)
5046 Result = evaluateTypeTrait(*this, Kind, KWLoc, Args, RParenLoc);
5047
5048 return TypeTraitExpr::Create(Context, ResultType, KWLoc, Kind, Args,
5049 RParenLoc, Result);
5050}
5051
5052ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
5053 ArrayRef<ParsedType> Args,
5054 SourceLocation RParenLoc) {
5055 SmallVector<TypeSourceInfo *, 4> ConvertedArgs;
5056 ConvertedArgs.reserve(Args.size());
5057
5058 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
5059 TypeSourceInfo *TInfo;
5060 QualType T = GetTypeFromParser(Args[I], &TInfo);
5061 if (!TInfo)
5062 TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc);
5063
5064 ConvertedArgs.push_back(TInfo);
5065 }
5066
5067 return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc);
5068}
5069
5070static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
5071 QualType RhsT, SourceLocation KeyLoc) {
5072 assert(!LhsT->isDependentType() && !RhsT->isDependentType() &&((!LhsT->isDependentType() && !RhsT->isDependentType
() && "Cannot evaluate traits of dependent types") ? static_cast
<void> (0) : __assert_fail ("!LhsT->isDependentType() && !RhsT->isDependentType() && \"Cannot evaluate traits of dependent types\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5073, __PRETTY_FUNCTION__))
5073 "Cannot evaluate traits of dependent types")((!LhsT->isDependentType() && !RhsT->isDependentType
() && "Cannot evaluate traits of dependent types") ? static_cast
<void> (0) : __assert_fail ("!LhsT->isDependentType() && !RhsT->isDependentType() && \"Cannot evaluate traits of dependent types\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5073, __PRETTY_FUNCTION__))
;
5074
5075 switch(BTT) {
5076 case BTT_IsBaseOf: {
5077 // C++0x [meta.rel]p2
5078 // Base is a base class of Derived without regard to cv-qualifiers or
5079 // Base and Derived are not unions and name the same class type without
5080 // regard to cv-qualifiers.
5081
5082 const RecordType *lhsRecord = LhsT->getAs<RecordType>();
5083 const RecordType *rhsRecord = RhsT->getAs<RecordType>();
5084 if (!rhsRecord || !lhsRecord) {
5085 const ObjCObjectType *LHSObjTy = LhsT->getAs<ObjCObjectType>();
5086 const ObjCObjectType *RHSObjTy = RhsT->getAs<ObjCObjectType>();
5087 if (!LHSObjTy || !RHSObjTy)
5088 return false;
5089
5090 ObjCInterfaceDecl *BaseInterface = LHSObjTy->getInterface();
5091 ObjCInterfaceDecl *DerivedInterface = RHSObjTy->getInterface();
5092 if (!BaseInterface || !DerivedInterface)
5093 return false;
5094
5095 if (Self.RequireCompleteType(
5096 KeyLoc, RhsT, diag::err_incomplete_type_used_in_type_trait_expr))
5097 return false;
5098
5099 return BaseInterface->isSuperClassOf(DerivedInterface);
5100 }
5101
5102 assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)((Self.Context.hasSameUnqualifiedType(LhsT, RhsT) == (lhsRecord
== rhsRecord)) ? static_cast<void> (0) : __assert_fail
("Self.Context.hasSameUnqualifiedType(LhsT, RhsT) == (lhsRecord == rhsRecord)"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5103, __PRETTY_FUNCTION__))
5103 == (lhsRecord == rhsRecord))((Self.Context.hasSameUnqualifiedType(LhsT, RhsT) == (lhsRecord
== rhsRecord)) ? static_cast<void> (0) : __assert_fail
("Self.Context.hasSameUnqualifiedType(LhsT, RhsT) == (lhsRecord == rhsRecord)"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5103, __PRETTY_FUNCTION__))
;
5104
5105 // Unions are never base classes, and never have base classes.
5106 // It doesn't matter if they are complete or not. See PR#41843
5107 if (lhsRecord && lhsRecord->getDecl()->isUnion())
5108 return false;
5109 if (rhsRecord && rhsRecord->getDecl()->isUnion())
5110 return false;
5111
5112 if (lhsRecord == rhsRecord)
5113 return true;
5114
5115 // C++0x [meta.rel]p2:
5116 // If Base and Derived are class types and are different types
5117 // (ignoring possible cv-qualifiers) then Derived shall be a
5118 // complete type.
5119 if (Self.RequireCompleteType(KeyLoc, RhsT,
5120 diag::err_incomplete_type_used_in_type_trait_expr))
5121 return false;
5122
5123 return cast<CXXRecordDecl>(rhsRecord->getDecl())
5124 ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl()));
5125 }
5126 case BTT_IsSame:
5127 return Self.Context.hasSameType(LhsT, RhsT);
5128 case BTT_TypeCompatible: {
5129 // GCC ignores cv-qualifiers on arrays for this builtin.
5130 Qualifiers LhsQuals, RhsQuals;
5131 QualType Lhs = Self.getASTContext().getUnqualifiedArrayType(LhsT, LhsQuals);
5132 QualType Rhs = Self.getASTContext().getUnqualifiedArrayType(RhsT, RhsQuals);
5133 return Self.Context.typesAreCompatible(Lhs, Rhs);
5134 }
5135 case BTT_IsConvertible:
5136 case BTT_IsConvertibleTo: {
5137 // C++0x [meta.rel]p4:
5138 // Given the following function prototype:
5139 //
5140 // template <class T>
5141 // typename add_rvalue_reference<T>::type create();
5142 //
5143 // the predicate condition for a template specialization
5144 // is_convertible<From, To> shall be satisfied if and only if
5145 // the return expression in the following code would be
5146 // well-formed, including any implicit conversions to the return
5147 // type of the function:
5148 //
5149 // To test() {
5150 // return create<From>();
5151 // }
5152 //
5153 // Access checking is performed as if in a context unrelated to To and
5154 // From. Only the validity of the immediate context of the expression
5155 // of the return-statement (including conversions to the return type)
5156 // is considered.
5157 //
5158 // We model the initialization as a copy-initialization of a temporary
5159 // of the appropriate type, which for this expression is identical to the
5160 // return statement (since NRVO doesn't apply).
5161
5162 // Functions aren't allowed to return function or array types.
5163 if (RhsT->isFunctionType() || RhsT->isArrayType())
5164 return false;
5165
5166 // A return statement in a void function must have void type.
5167 if (RhsT->isVoidType())
5168 return LhsT->isVoidType();
5169
5170 // A function definition requires a complete, non-abstract return type.
5171 if (!Self.isCompleteType(KeyLoc, RhsT) || Self.isAbstractType(KeyLoc, RhsT))
5172 return false;
5173
5174 // Compute the result of add_rvalue_reference.
5175 if (LhsT->isObjectType() || LhsT->isFunctionType())
5176 LhsT = Self.Context.getRValueReferenceType(LhsT);
5177
5178 // Build a fake source and destination for initialization.
5179 InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT));
5180 OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
5181 Expr::getValueKindForType(LhsT));
5182 Expr *FromPtr = &From;
5183 InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc,
5184 SourceLocation()));
5185
5186 // Perform the initialization in an unevaluated context within a SFINAE
5187 // trap at translation unit scope.
5188 EnterExpressionEvaluationContext Unevaluated(
5189 Self, Sema::ExpressionEvaluationContext::Unevaluated);
5190 Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
5191 Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
5192 InitializationSequence Init(Self, To, Kind, FromPtr);
5193 if (Init.Failed())
5194 return false;
5195
5196 ExprResult Result = Init.Perform(Self, To, Kind, FromPtr);
5197 return !Result.isInvalid() && !SFINAE.hasErrorOccurred();
5198 }
5199
5200 case BTT_IsAssignable:
5201 case BTT_IsNothrowAssignable:
5202 case BTT_IsTriviallyAssignable: {
5203 // C++11 [meta.unary.prop]p3:
5204 // is_trivially_assignable is defined as:
5205 // is_assignable<T, U>::value is true and the assignment, as defined by
5206 // is_assignable, is known to call no operation that is not trivial
5207 //
5208 // is_assignable is defined as:
5209 // The expression declval<T>() = declval<U>() is well-formed when
5210 // treated as an unevaluated operand (Clause 5).
5211 //
5212 // For both, T and U shall be complete types, (possibly cv-qualified)
5213 // void, or arrays of unknown bound.
5214 if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() &&
5215 Self.RequireCompleteType(KeyLoc, LhsT,
5216 diag::err_incomplete_type_used_in_type_trait_expr))
5217 return false;
5218 if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() &&
5219 Self.RequireCompleteType(KeyLoc, RhsT,
5220 diag::err_incomplete_type_used_in_type_trait_expr))
5221 return false;
5222
5223 // cv void is never assignable.
5224 if (LhsT->isVoidType() || RhsT->isVoidType())
5225 return false;
5226
5227 // Build expressions that emulate the effect of declval<T>() and
5228 // declval<U>().
5229 if (LhsT->isObjectType() || LhsT->isFunctionType())
5230 LhsT = Self.Context.getRValueReferenceType(LhsT);
5231 if (RhsT->isObjectType() || RhsT->isFunctionType())
5232 RhsT = Self.Context.getRValueReferenceType(RhsT);
5233 OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
5234 Expr::getValueKindForType(LhsT));
5235 OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context),
5236 Expr::getValueKindForType(RhsT));
5237
5238 // Attempt the assignment in an unevaluated context within a SFINAE
5239 // trap at translation unit scope.
5240 EnterExpressionEvaluationContext Unevaluated(
5241 Self, Sema::ExpressionEvaluationContext::Unevaluated);
5242 Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
5243 Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
5244 ExprResult Result = Self.BuildBinOp(/*S=*/nullptr, KeyLoc, BO_Assign, &Lhs,
5245 &Rhs);
5246 if (Result.isInvalid())
5247 return false;
5248
5249 // Treat the assignment as unused for the purpose of -Wdeprecated-volatile.
5250 Self.CheckUnusedVolatileAssignment(Result.get());
5251
5252 if (SFINAE.hasErrorOccurred())
5253 return false;
5254
5255 if (BTT == BTT_IsAssignable)
5256 return true;
5257
5258 if (BTT == BTT_IsNothrowAssignable)
5259 return Self.canThrow(Result.get()) == CT_Cannot;
5260
5261 if (BTT == BTT_IsTriviallyAssignable) {
5262 // Under Objective-C ARC and Weak, if the destination has non-trivial
5263 // Objective-C lifetime, this is a non-trivial assignment.
5264 if (LhsT.getNonReferenceType().hasNonTrivialObjCLifetime())
5265 return false;
5266
5267 return !Result.get()->hasNonTrivialCall(Self.Context);
5268 }
5269
5270 llvm_unreachable("unhandled type trait")::llvm::llvm_unreachable_internal("unhandled type trait", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5270)
;
5271 return false;
5272 }
5273 default: llvm_unreachable("not a BTT")::llvm::llvm_unreachable_internal("not a BTT", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5273)
;
5274 }
5275 llvm_unreachable("Unknown type trait or not implemented")::llvm::llvm_unreachable_internal("Unknown type trait or not implemented"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5275)
;
5276}
5277
5278ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT,
5279 SourceLocation KWLoc,
5280 ParsedType Ty,
5281 Expr* DimExpr,
5282 SourceLocation RParen) {
5283 TypeSourceInfo *TSInfo;
5284 QualType T = GetTypeFromParser(Ty, &TSInfo);
5285 if (!TSInfo)
5286 TSInfo = Context.getTrivialTypeSourceInfo(T);
5287
5288 return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen);
5289}
5290
5291static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT,
5292 QualType T, Expr *DimExpr,
5293 SourceLocation KeyLoc) {
5294 assert(!T->isDependentType() && "Cannot evaluate traits of dependent type")((!T->isDependentType() && "Cannot evaluate traits of dependent type"
) ? static_cast<void> (0) : __assert_fail ("!T->isDependentType() && \"Cannot evaluate traits of dependent type\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5294, __PRETTY_FUNCTION__))
;
5295
5296 switch(ATT) {
5297 case ATT_ArrayRank:
5298 if (T->isArrayType()) {
5299 unsigned Dim = 0;
5300 while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
5301 ++Dim;
5302 T = AT->getElementType();
5303 }
5304 return Dim;
5305 }
5306 return 0;
5307
5308 case ATT_ArrayExtent: {
5309 llvm::APSInt Value;
5310 uint64_t Dim;
5311 if (Self.VerifyIntegerConstantExpression(DimExpr, &Value,
5312 diag::err_dimension_expr_not_constant_integer,
5313 false).isInvalid())
5314 return 0;
5315 if (Value.isSigned() && Value.isNegative()) {
5316 Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer)
5317 << DimExpr->getSourceRange();
5318 return 0;
5319 }
5320 Dim = Value.getLimitedValue();
5321
5322 if (T->isArrayType()) {
5323 unsigned D = 0;
5324 bool Matched = false;
5325 while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
5326 if (Dim == D) {
5327 Matched = true;
5328 break;
5329 }
5330 ++D;
5331 T = AT->getElementType();
5332 }
5333
5334 if (Matched && T->isArrayType()) {
5335 if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T))
5336 return CAT->getSize().getLimitedValue();
5337 }
5338 }
5339 return 0;
5340 }
5341 }
5342 llvm_unreachable("Unknown type trait or not implemented")::llvm::llvm_unreachable_internal("Unknown type trait or not implemented"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5342)
;
5343}
5344
5345ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT,
5346 SourceLocation KWLoc,
5347 TypeSourceInfo *TSInfo,
5348 Expr* DimExpr,
5349 SourceLocation RParen) {
5350 QualType T = TSInfo->getType();
5351
5352 // FIXME: This should likely be tracked as an APInt to remove any host
5353 // assumptions about the width of size_t on the target.
5354 uint64_t Value = 0;
5355 if (!T->isDependentType())
5356 Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc);
5357
5358 // While the specification for these traits from the Embarcadero C++
5359 // compiler's documentation says the return type is 'unsigned int', Clang
5360 // returns 'size_t'. On Windows, the primary platform for the Embarcadero
5361 // compiler, there is no difference. On several other platforms this is an
5362 // important distinction.
5363 return new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value, DimExpr,
5364 RParen, Context.getSizeType());
5365}
5366
5367ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET,
5368 SourceLocation KWLoc,
5369 Expr *Queried,
5370 SourceLocation RParen) {
5371 // If error parsing the expression, ignore.
5372 if (!Queried)
5373 return ExprError();
5374
5375 ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen);
5376
5377 return Result;
5378}
5379
5380static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) {
5381 switch (ET) {
5382 case ET_IsLValueExpr: return E->isLValue();
5383 case ET_IsRValueExpr: return E->isRValue();
5384 }
5385 llvm_unreachable("Expression trait not covered by switch")::llvm::llvm_unreachable_internal("Expression trait not covered by switch"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5385)
;
5386}
5387
5388ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET,
5389 SourceLocation KWLoc,
5390 Expr *Queried,
5391 SourceLocation RParen) {
5392 if (Queried->isTypeDependent()) {
5393 // Delay type-checking for type-dependent expressions.
5394 } else if (Queried->getType()->isPlaceholderType()) {
5395 ExprResult PE = CheckPlaceholderExpr(Queried);
5396 if (PE.isInvalid()) return ExprError();
5397 return BuildExpressionTrait(ET, KWLoc, PE.get(), RParen);
5398 }
5399
5400 bool Value = EvaluateExpressionTrait(ET, Queried);
5401
5402 return new (Context)
5403 ExpressionTraitExpr(KWLoc, ET, Queried, Value, RParen, Context.BoolTy);
5404}
5405
5406QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS,
5407 ExprValueKind &VK,
5408 SourceLocation Loc,
5409 bool isIndirect) {
5410 assert(!LHS.get()->getType()->isPlaceholderType() &&((!LHS.get()->getType()->isPlaceholderType() &&
!RHS.get()->getType()->isPlaceholderType() && "placeholders should have been weeded out by now"
) ? static_cast<void> (0) : __assert_fail ("!LHS.get()->getType()->isPlaceholderType() && !RHS.get()->getType()->isPlaceholderType() && \"placeholders should have been weeded out by now\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5412, __PRETTY_FUNCTION__))
5411 !RHS.get()->getType()->isPlaceholderType() &&((!LHS.get()->getType()->isPlaceholderType() &&
!RHS.get()->getType()->isPlaceholderType() && "placeholders should have been weeded out by now"
) ? static_cast<void> (0) : __assert_fail ("!LHS.get()->getType()->isPlaceholderType() && !RHS.get()->getType()->isPlaceholderType() && \"placeholders should have been weeded out by now\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5412, __PRETTY_FUNCTION__))
5412 "placeholders should have been weeded out by now")((!LHS.get()->getType()->isPlaceholderType() &&
!RHS.get()->getType()->isPlaceholderType() && "placeholders should have been weeded out by now"
) ? static_cast<void> (0) : __assert_fail ("!LHS.get()->getType()->isPlaceholderType() && !RHS.get()->getType()->isPlaceholderType() && \"placeholders should have been weeded out by now\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5412, __PRETTY_FUNCTION__))
;
5413
5414 // The LHS undergoes lvalue conversions if this is ->*, and undergoes the
5415 // temporary materialization conversion otherwise.
5416 if (isIndirect)
5417 LHS = DefaultLvalueConversion(LHS.get());
5418 else if (LHS.get()->isRValue())
5419 LHS = TemporaryMaterializationConversion(LHS.get());
5420 if (LHS.isInvalid())
5421 return QualType();
5422
5423 // The RHS always undergoes lvalue conversions.
5424 RHS = DefaultLvalueConversion(RHS.get());
5425 if (RHS.isInvalid()) return QualType();
5426
5427 const char *OpSpelling = isIndirect ? "->*" : ".*";
5428 // C++ 5.5p2
5429 // The binary operator .* [p3: ->*] binds its second operand, which shall
5430 // be of type "pointer to member of T" (where T is a completely-defined
5431 // class type) [...]
5432 QualType RHSType = RHS.get()->getType();
5433 const MemberPointerType *MemPtr = RHSType->getAs<MemberPointerType>();
5434 if (!MemPtr) {
5435 Diag(Loc, diag::err_bad_memptr_rhs)
5436 << OpSpelling << RHSType << RHS.get()->getSourceRange();
5437 return QualType();
5438 }
5439
5440 QualType Class(MemPtr->getClass(), 0);
5441
5442 // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the
5443 // member pointer points must be completely-defined. However, there is no
5444 // reason for this semantic distinction, and the rule is not enforced by
5445 // other compilers. Therefore, we do not check this property, as it is
5446 // likely to be considered a defect.
5447
5448 // C++ 5.5p2
5449 // [...] to its first operand, which shall be of class T or of a class of
5450 // which T is an unambiguous and accessible base class. [p3: a pointer to
5451 // such a class]
5452 QualType LHSType = LHS.get()->getType();
5453 if (isIndirect) {
5454 if (const PointerType *Ptr = LHSType->getAs<PointerType>())
5455 LHSType = Ptr->getPointeeType();
5456 else {
5457 Diag(Loc, diag::err_bad_memptr_lhs)
5458 << OpSpelling << 1 << LHSType
5459 << FixItHint::CreateReplacement(SourceRange(Loc), ".*");
5460 return QualType();
5461 }
5462 }
5463
5464 if (!Context.hasSameUnqualifiedType(Class, LHSType)) {
5465 // If we want to check the hierarchy, we need a complete type.
5466 if (RequireCompleteType(Loc, LHSType, diag::err_bad_memptr_lhs,
5467 OpSpelling, (int)isIndirect)) {
5468 return QualType();
5469 }
5470
5471 if (!IsDerivedFrom(Loc, LHSType, Class)) {
5472 Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
5473 << (int)isIndirect << LHS.get()->getType();
5474 return QualType();
5475 }
5476
5477 CXXCastPath BasePath;
5478 if (CheckDerivedToBaseConversion(
5479 LHSType, Class, Loc,
5480 SourceRange(LHS.get()->getBeginLoc(), RHS.get()->getEndLoc()),
5481 &BasePath))
5482 return QualType();
5483
5484 // Cast LHS to type of use.
5485 QualType UseType = Context.getQualifiedType(Class, LHSType.getQualifiers());
5486 if (isIndirect)
5487 UseType = Context.getPointerType(UseType);
5488 ExprValueKind VK = isIndirect ? VK_RValue : LHS.get()->getValueKind();
5489 LHS = ImpCastExprToType(LHS.get(), UseType, CK_DerivedToBase, VK,
5490 &BasePath);
5491 }
5492
5493 if (isa<CXXScalarValueInitExpr>(RHS.get()->IgnoreParens())) {
5494 // Diagnose use of pointer-to-member type which when used as
5495 // the functional cast in a pointer-to-member expression.
5496 Diag(Loc, diag::err_pointer_to_member_type) << isIndirect;
5497 return QualType();
5498 }
5499
5500 // C++ 5.5p2
5501 // The result is an object or a function of the type specified by the
5502 // second operand.
5503 // The cv qualifiers are the union of those in the pointer and the left side,
5504 // in accordance with 5.5p5 and 5.2.5.
5505 QualType Result = MemPtr->getPointeeType();
5506 Result = Context.getCVRQualifiedType(Result, LHSType.getCVRQualifiers());
5507
5508 // C++0x [expr.mptr.oper]p6:
5509 // In a .* expression whose object expression is an rvalue, the program is
5510 // ill-formed if the second operand is a pointer to member function with
5511 // ref-qualifier &. In a ->* expression or in a .* expression whose object
5512 // expression is an lvalue, the program is ill-formed if the second operand
5513 // is a pointer to member function with ref-qualifier &&.
5514 if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) {
5515 switch (Proto->getRefQualifier()) {
5516 case RQ_None:
5517 // Do nothing
5518 break;
5519
5520 case RQ_LValue:
5521 if (!isIndirect && !LHS.get()->Classify(Context).isLValue()) {
5522 // C++2a allows functions with ref-qualifier & if their cv-qualifier-seq
5523 // is (exactly) 'const'.
5524 if (Proto->isConst() && !Proto->isVolatile())
5525 Diag(Loc, getLangOpts().CPlusPlus2a
5526 ? diag::warn_cxx17_compat_pointer_to_const_ref_member_on_rvalue
5527 : diag::ext_pointer_to_const_ref_member_on_rvalue);
5528 else
5529 Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
5530 << RHSType << 1 << LHS.get()->getSourceRange();
5531 }
5532 break;
5533
5534 case RQ_RValue:
5535 if (isIndirect || !LHS.get()->Classify(Context).isRValue())
5536 Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
5537 << RHSType << 0 << LHS.get()->getSourceRange();
5538 break;
5539 }
5540 }
5541
5542 // C++ [expr.mptr.oper]p6:
5543 // The result of a .* expression whose second operand is a pointer
5544 // to a data member is of the same value category as its
5545 // first operand. The result of a .* expression whose second
5546 // operand is a pointer to a member function is a prvalue. The
5547 // result of an ->* expression is an lvalue if its second operand
5548 // is a pointer to data member and a prvalue otherwise.
5549 if (Result->isFunctionType()) {
5550 VK = VK_RValue;
5551 return Context.BoundMemberTy;
5552 } else if (isIndirect) {
5553 VK = VK_LValue;
5554 } else {
5555 VK = LHS.get()->getValueKind();
5556 }
5557
5558 return Result;
5559}
5560
5561/// Try to convert a type to another according to C++11 5.16p3.
5562///
5563/// This is part of the parameter validation for the ? operator. If either
5564/// value operand is a class type, the two operands are attempted to be
5565/// converted to each other. This function does the conversion in one direction.
5566/// It returns true if the program is ill-formed and has already been diagnosed
5567/// as such.
5568static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
5569 SourceLocation QuestionLoc,
5570 bool &HaveConversion,
5571 QualType &ToType) {
5572 HaveConversion = false;
5573 ToType = To->getType();
5574
5575 InitializationKind Kind =
5576 InitializationKind::CreateCopy(To->getBeginLoc(), SourceLocation());
5577 // C++11 5.16p3
5578 // The process for determining whether an operand expression E1 of type T1
5579 // can be converted to match an operand expression E2 of type T2 is defined
5580 // as follows:
5581 // -- If E2 is an lvalue: E1 can be converted to match E2 if E1 can be
5582 // implicitly converted to type "lvalue reference to T2", subject to the
5583 // constraint that in the conversion the reference must bind directly to
5584 // an lvalue.
5585 // -- If E2 is an xvalue: E1 can be converted to match E2 if E1 can be
5586 // implicitly converted to the type "rvalue reference to R2", subject to
5587 // the constraint that the reference must bind directly.
5588 if (To->isLValue() || To->isXValue()) {
5589 QualType T = To->isLValue() ? Self.Context.getLValueReferenceType(ToType)
5590 : Self.Context.getRValueReferenceType(ToType);
5591
5592 InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
5593
5594 InitializationSequence InitSeq(Self, Entity, Kind, From);
5595 if (InitSeq.isDirectReferenceBinding()) {
5596 ToType = T;
5597 HaveConversion = true;
5598 return false;
5599 }
5600
5601 if (InitSeq.isAmbiguous())
5602 return InitSeq.Diagnose(Self, Entity, Kind, From);
5603 }
5604
5605 // -- If E2 is an rvalue, or if the conversion above cannot be done:
5606 // -- if E1 and E2 have class type, and the underlying class types are
5607 // the same or one is a base class of the other:
5608 QualType FTy = From->getType();
5609 QualType TTy = To->getType();
5610 const RecordType *FRec = FTy->getAs<RecordType>();
5611 const RecordType *TRec = TTy->getAs<RecordType>();
5612 bool FDerivedFromT = FRec && TRec && FRec != TRec &&
5613 Self.IsDerivedFrom(QuestionLoc, FTy, TTy);
5614 if (FRec && TRec && (FRec == TRec || FDerivedFromT ||
5615 Self.IsDerivedFrom(QuestionLoc, TTy, FTy))) {
5616 // E1 can be converted to match E2 if the class of T2 is the
5617 // same type as, or a base class of, the class of T1, and
5618 // [cv2 > cv1].
5619 if (FRec == TRec || FDerivedFromT) {
5620 if (TTy.isAtLeastAsQualifiedAs(FTy)) {
5621 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
5622 InitializationSequence InitSeq(Self, Entity, Kind, From);
5623 if (InitSeq) {
5624 HaveConversion = true;
5625 return false;
5626 }
5627
5628 if (InitSeq.isAmbiguous())
5629 return InitSeq.Diagnose(Self, Entity, Kind, From);
5630 }
5631 }
5632
5633 return false;
5634 }
5635
5636 // -- Otherwise: E1 can be converted to match E2 if E1 can be
5637 // implicitly converted to the type that expression E2 would have
5638 // if E2 were converted to an rvalue (or the type it has, if E2 is
5639 // an rvalue).
5640 //
5641 // This actually refers very narrowly to the lvalue-to-rvalue conversion, not
5642 // to the array-to-pointer or function-to-pointer conversions.
5643 TTy = TTy.getNonLValueExprType(Self.Context);
5644
5645 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
5646 InitializationSequence InitSeq(Self, Entity, Kind, From);
5647 HaveConversion = !InitSeq.Failed();
5648 ToType = TTy;
5649 if (InitSeq.isAmbiguous())
5650 return InitSeq.Diagnose(Self, Entity, Kind, From);
5651
5652 return false;
5653}
5654
5655/// Try to find a common type for two according to C++0x 5.16p5.
5656///
5657/// This is part of the parameter validation for the ? operator. If either
5658/// value operand is a class type, overload resolution is used to find a
5659/// conversion to a common type.
5660static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS,
5661 SourceLocation QuestionLoc) {
5662 Expr *Args[2] = { LHS.get(), RHS.get() };
5663 OverloadCandidateSet CandidateSet(QuestionLoc,
5664 OverloadCandidateSet::CSK_Operator);
5665 Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args,
5666 CandidateSet);
5667
5668 OverloadCandidateSet::iterator Best;
5669 switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) {
5670 case OR_Success: {
5671 // We found a match. Perform the conversions on the arguments and move on.
5672 ExprResult LHSRes = Self.PerformImplicitConversion(
5673 LHS.get(), Best->BuiltinParamTypes[0], Best->Conversions[0],
5674 Sema::AA_Converting);
5675 if (LHSRes.isInvalid())
5676 break;
5677 LHS = LHSRes;
5678
5679 ExprResult RHSRes = Self.PerformImplicitConversion(
5680 RHS.get(), Best->BuiltinParamTypes[1], Best->Conversions[1],
5681 Sema::AA_Converting);
5682 if (RHSRes.isInvalid())
5683 break;
5684 RHS = RHSRes;
5685 if (Best->Function)
5686 Self.MarkFunctionReferenced(QuestionLoc, Best->Function);
5687 return false;
5688 }
5689
5690 case OR_No_Viable_Function:
5691
5692 // Emit a better diagnostic if one of the expressions is a null pointer
5693 // constant and the other is a pointer type. In this case, the user most
5694 // likely forgot to take the address of the other expression.
5695 if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
5696 return true;
5697
5698 Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
5699 << LHS.get()->getType() << RHS.get()->getType()
5700 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5701 return true;
5702
5703 case OR_Ambiguous:
5704 Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl)
5705 << LHS.get()->getType() << RHS.get()->getType()
5706 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5707 // FIXME: Print the possible common types by printing the return types of
5708 // the viable candidates.
5709 break;
5710
5711 case OR_Deleted:
5712 llvm_unreachable("Conditional operator has only built-in overloads")::llvm::llvm_unreachable_internal("Conditional operator has only built-in overloads"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5712)
;
5713 }
5714 return true;
5715}
5716
5717/// Perform an "extended" implicit conversion as returned by
5718/// TryClassUnification.
5719static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) {
5720 InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
5721 InitializationKind Kind =
5722 InitializationKind::CreateCopy(E.get()->getBeginLoc(), SourceLocation());
5723 Expr *Arg = E.get();
5724 InitializationSequence InitSeq(Self, Entity, Kind, Arg);
5725 ExprResult Result = InitSeq.Perform(Self, Entity, Kind, Arg);
5726 if (Result.isInvalid())
5727 return true;
5728
5729 E = Result;
5730 return false;
5731}
5732
5733/// Check the operands of ?: under C++ semantics.
5734///
5735/// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
5736/// extension. In this case, LHS == Cond. (But they're not aliases.)
5737QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
5738 ExprResult &RHS, ExprValueKind &VK,
5739 ExprObjectKind &OK,
5740 SourceLocation QuestionLoc) {
5741 // FIXME: Handle C99's complex types, vector types, block pointers and Obj-C++
5742 // interface pointers.
5743
5744 // C++11 [expr.cond]p1
5745 // The first expression is contextually converted to bool.
5746 //
5747 // FIXME; GCC's vector extension permits the use of a?b:c where the type of
5748 // a is that of a integer vector with the same number of elements and
5749 // size as the vectors of b and c. If one of either b or c is a scalar
5750 // it is implicitly converted to match the type of the vector.
5751 // Otherwise the expression is ill-formed. If both b and c are scalars,
5752 // then b and c are checked and converted to the type of a if possible.
5753 // Unlike the OpenCL ?: operator, the expression is evaluated as
5754 // (a[0] != 0 ? b[0] : c[0], .. , a[n] != 0 ? b[n] : c[n]).
5755 if (!Cond.get()->isTypeDependent()) {
5756 ExprResult CondRes = CheckCXXBooleanCondition(Cond.get());
5757 if (CondRes.isInvalid())
5758 return QualType();
5759 Cond = CondRes;
5760 }
5761
5762 // Assume r-value.
5763 VK = VK_RValue;
5764 OK = OK_Ordinary;
5765
5766 // Either of the arguments dependent?
5767 if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent())
5768 return Context.DependentTy;
5769
5770 // C++11 [expr.cond]p2
5771 // If either the second or the third operand has type (cv) void, ...
5772 QualType LTy = LHS.get()->getType();
5773 QualType RTy = RHS.get()->getType();
5774 bool LVoid = LTy->isVoidType();
5775 bool RVoid = RTy->isVoidType();
5776 if (LVoid || RVoid) {
5777 // ... one of the following shall hold:
5778 // -- The second or the third operand (but not both) is a (possibly
5779 // parenthesized) throw-expression; the result is of the type
5780 // and value category of the other.
5781 bool LThrow = isa<CXXThrowExpr>(LHS.get()->IgnoreParenImpCasts());
5782 bool RThrow = isa<CXXThrowExpr>(RHS.get()->IgnoreParenImpCasts());
5783 if (LThrow != RThrow) {
5784 Expr *NonThrow = LThrow ? RHS.get() : LHS.get();
5785 VK = NonThrow->getValueKind();
5786 // DR (no number yet): the result is a bit-field if the
5787 // non-throw-expression operand is a bit-field.
5788 OK = NonThrow->getObjectKind();
5789 return NonThrow->getType();
5790 }
5791
5792 // -- Both the second and third operands have type void; the result is of
5793 // type void and is a prvalue.
5794 if (LVoid && RVoid)
5795 return Context.VoidTy;
5796
5797 // Neither holds, error.
5798 Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
5799 << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
5800 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5801 return QualType();
5802 }
5803
5804 // Neither is void.
5805
5806 // C++11 [expr.cond]p3
5807 // Otherwise, if the second and third operand have different types, and
5808 // either has (cv) class type [...] an attempt is made to convert each of
5809 // those operands to the type of the other.
5810 if (!Context.hasSameType(LTy, RTy) &&
5811 (LTy->isRecordType() || RTy->isRecordType())) {
5812 // These return true if a single direction is already ambiguous.
5813 QualType L2RType, R2LType;
5814 bool HaveL2R, HaveR2L;
5815 if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType))
5816 return QualType();
5817 if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType))
5818 return QualType();
5819
5820 // If both can be converted, [...] the program is ill-formed.
5821 if (HaveL2R && HaveR2L) {
5822 Diag(QuestionLoc, diag::err_conditional_ambiguous)
5823 << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5824 return QualType();
5825 }
5826
5827 // If exactly one conversion is possible, that conversion is applied to
5828 // the chosen operand and the converted operands are used in place of the
5829 // original operands for the remainder of this section.
5830 if (HaveL2R) {
5831 if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid())
5832 return QualType();
5833 LTy = LHS.get()->getType();
5834 } else if (HaveR2L) {
5835 if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid())
5836 return QualType();
5837 RTy = RHS.get()->getType();
5838 }
5839 }
5840
5841 // C++11 [expr.cond]p3
5842 // if both are glvalues of the same value category and the same type except
5843 // for cv-qualification, an attempt is made to convert each of those
5844 // operands to the type of the other.
5845 // FIXME:
5846 // Resolving a defect in P0012R1: we extend this to cover all cases where
5847 // one of the operands is reference-compatible with the other, in order
5848 // to support conditionals between functions differing in noexcept.
5849 ExprValueKind LVK = LHS.get()->getValueKind();
5850 ExprValueKind RVK = RHS.get()->getValueKind();
5851 if (!Context.hasSameType(LTy, RTy) &&
5852 LVK == RVK && LVK != VK_RValue) {
5853 // DerivedToBase was already handled by the class-specific case above.
5854 // FIXME: Should we allow ObjC conversions here?
5855 bool DerivedToBase, ObjCConversion, ObjCLifetimeConversion;
5856 if (CompareReferenceRelationship(
5857 QuestionLoc, LTy, RTy, DerivedToBase,
5858 ObjCConversion, ObjCLifetimeConversion) == Ref_Compatible &&
5859 !DerivedToBase && !ObjCConversion && !ObjCLifetimeConversion &&
5860 // [...] subject to the constraint that the reference must bind
5861 // directly [...]
5862 !RHS.get()->refersToBitField() &&
5863 !RHS.get()->refersToVectorElement()) {
5864 RHS = ImpCastExprToType(RHS.get(), LTy, CK_NoOp, RVK);
5865 RTy = RHS.get()->getType();
5866 } else if (CompareReferenceRelationship(
5867 QuestionLoc, RTy, LTy, DerivedToBase,
5868 ObjCConversion, ObjCLifetimeConversion) == Ref_Compatible &&
5869 !DerivedToBase && !ObjCConversion && !ObjCLifetimeConversion &&
5870 !LHS.get()->refersToBitField() &&
5871 !LHS.get()->refersToVectorElement()) {
5872 LHS = ImpCastExprToType(LHS.get(), RTy, CK_NoOp, LVK);
5873 LTy = LHS.get()->getType();
5874 }
5875 }
5876
5877 // C++11 [expr.cond]p4
5878 // If the second and third operands are glvalues of the same value
5879 // category and have the same type, the result is of that type and
5880 // value category and it is a bit-field if the second or the third
5881 // operand is a bit-field, or if both are bit-fields.
5882 // We only extend this to bitfields, not to the crazy other kinds of
5883 // l-values.
5884 bool Same = Context.hasSameType(LTy, RTy);
5885 if (Same && LVK == RVK && LVK != VK_RValue &&
5886 LHS.get()->isOrdinaryOrBitFieldObject() &&
5887 RHS.get()->isOrdinaryOrBitFieldObject()) {
5888 VK = LHS.get()->getValueKind();
5889 if (LHS.get()->getObjectKind() == OK_BitField ||
5890 RHS.get()->getObjectKind() == OK_BitField)
5891 OK = OK_BitField;
5892
5893 // If we have function pointer types, unify them anyway to unify their
5894 // exception specifications, if any.
5895 if (LTy->isFunctionPointerType() || LTy->isMemberFunctionPointerType()) {
5896 Qualifiers Qs = LTy.getQualifiers();
5897 LTy = FindCompositePointerType(QuestionLoc, LHS, RHS,
5898 /*ConvertArgs*/false);
5899 LTy = Context.getQualifiedType(LTy, Qs);
5900
5901 assert(!LTy.isNull() && "failed to find composite pointer type for "((!LTy.isNull() && "failed to find composite pointer type for "
"canonically equivalent function ptr types") ? static_cast<
void> (0) : __assert_fail ("!LTy.isNull() && \"failed to find composite pointer type for \" \"canonically equivalent function ptr types\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5902, __PRETTY_FUNCTION__))
5902 "canonically equivalent function ptr types")((!LTy.isNull() && "failed to find composite pointer type for "
"canonically equivalent function ptr types") ? static_cast<
void> (0) : __assert_fail ("!LTy.isNull() && \"failed to find composite pointer type for \" \"canonically equivalent function ptr types\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5902, __PRETTY_FUNCTION__))
;
5903 assert(Context.hasSameType(LTy, RTy) && "bad composite pointer type")((Context.hasSameType(LTy, RTy) && "bad composite pointer type"
) ? static_cast<void> (0) : __assert_fail ("Context.hasSameType(LTy, RTy) && \"bad composite pointer type\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5903, __PRETTY_FUNCTION__))
;
5904 }
5905
5906 return LTy;
5907 }
5908
5909 // C++11 [expr.cond]p5
5910 // Otherwise, the result is a prvalue. If the second and third operands
5911 // do not have the same type, and either has (cv) class type, ...
5912 if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
5913 // ... overload resolution is used to determine the conversions (if any)
5914 // to be applied to the operands. If the overload resolution fails, the
5915 // program is ill-formed.
5916 if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc))
5917 return QualType();
5918 }
5919
5920 // C++11 [expr.cond]p6
5921 // Lvalue-to-rvalue, array-to-pointer, and function-to-pointer standard
5922 // conversions are performed on the second and third operands.
5923 LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
5924 RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
5925 if (LHS.isInvalid() || RHS.isInvalid())
5926 return QualType();
5927 LTy = LHS.get()->getType();
5928 RTy = RHS.get()->getType();
5929
5930 // After those conversions, one of the following shall hold:
5931 // -- The second and third operands have the same type; the result
5932 // is of that type. If the operands have class type, the result
5933 // is a prvalue temporary of the result type, which is
5934 // copy-initialized from either the second operand or the third
5935 // operand depending on the value of the first operand.
5936 if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) {
5937 if (LTy->isRecordType()) {
5938 // The operands have class type. Make a temporary copy.
5939 InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy);
5940
5941 ExprResult LHSCopy = PerformCopyInitialization(Entity,
5942 SourceLocation(),
5943 LHS);
5944 if (LHSCopy.isInvalid())
5945 return QualType();
5946
5947 ExprResult RHSCopy = PerformCopyInitialization(Entity,
5948 SourceLocation(),
5949 RHS);
5950 if (RHSCopy.isInvalid())
5951 return QualType();
5952
5953 LHS = LHSCopy;
5954 RHS = RHSCopy;
5955 }
5956
5957 // If we have function pointer types, unify them anyway to unify their
5958 // exception specifications, if any.
5959 if (LTy->isFunctionPointerType() || LTy->isMemberFunctionPointerType()) {
5960 LTy = FindCompositePointerType(QuestionLoc, LHS, RHS);
5961 assert(!LTy.isNull() && "failed to find composite pointer type for "((!LTy.isNull() && "failed to find composite pointer type for "
"canonically equivalent function ptr types") ? static_cast<
void> (0) : __assert_fail ("!LTy.isNull() && \"failed to find composite pointer type for \" \"canonically equivalent function ptr types\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5962, __PRETTY_FUNCTION__))
5962 "canonically equivalent function ptr types")((!LTy.isNull() && "failed to find composite pointer type for "
"canonically equivalent function ptr types") ? static_cast<
void> (0) : __assert_fail ("!LTy.isNull() && \"failed to find composite pointer type for \" \"canonically equivalent function ptr types\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5962, __PRETTY_FUNCTION__))
;
5963 }
5964
5965 return LTy;
5966 }
5967
5968 // Extension: conditional operator involving vector types.
5969 if (LTy->isVectorType() || RTy->isVectorType())
5970 return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false,
5971 /*AllowBothBool*/true,
5972 /*AllowBoolConversions*/false);
5973
5974 // -- The second and third operands have arithmetic or enumeration type;
5975 // the usual arithmetic conversions are performed to bring them to a
5976 // common type, and the result is of that type.
5977 if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
5978 QualType ResTy = UsualArithmeticConversions(LHS, RHS);
5979 if (LHS.isInvalid() || RHS.isInvalid())
5980 return QualType();
5981 if (ResTy.isNull()) {
5982 Diag(QuestionLoc,
5983 diag::err_typecheck_cond_incompatible_operands) << LTy << RTy
5984 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5985 return QualType();
5986 }
5987
5988 LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy));
5989 RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy));
5990
5991 return ResTy;
5992 }
5993
5994 // -- The second and third operands have pointer type, or one has pointer
5995 // type and the other is a null pointer constant, or both are null
5996 // pointer constants, at least one of which is non-integral; pointer
5997 // conversions and qualification conversions are performed to bring them
5998 // to their composite pointer type. The result is of the composite
5999 // pointer type.
6000 // -- The second and third operands have pointer to member type, or one has
6001 // pointer to member type and the other is a null pointer constant;
6002 // pointer to member conversions and qualification conversions are
6003 // performed to bring them to a common type, whose cv-qualification
6004 // shall match the cv-qualification of either the second or the third
6005 // operand. The result is of the common type.
6006 QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS);
6007 if (!Composite.isNull())
6008 return Composite;
6009
6010 // Similarly, attempt to find composite type of two objective-c pointers.
6011 Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
6012 if (!Composite.isNull())
6013 return Composite;
6014
6015 // Check if we are using a null with a non-pointer type.
6016 if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
6017 return QualType();
6018
6019 Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
6020 << LHS.get()->getType() << RHS.get()->getType()
6021 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6022 return QualType();
6023}
6024
6025static FunctionProtoType::ExceptionSpecInfo
6026mergeExceptionSpecs(Sema &S, FunctionProtoType::ExceptionSpecInfo ESI1,
6027 FunctionProtoType::ExceptionSpecInfo ESI2,
6028 SmallVectorImpl<QualType> &ExceptionTypeStorage) {
6029 ExceptionSpecificationType EST1 = ESI1.Type;
6030 ExceptionSpecificationType EST2 = ESI2.Type;
6031
6032 // If either of them can throw anything, that is the result.
6033 if (EST1 == EST_None) return ESI1;
6034 if (EST2 == EST_None) return ESI2;
6035 if (EST1 == EST_MSAny) return ESI1;
6036 if (EST2 == EST_MSAny) return ESI2;
6037 if (EST1 == EST_NoexceptFalse) return ESI1;
6038 if (EST2 == EST_NoexceptFalse) return ESI2;
6039
6040 // If either of them is non-throwing, the result is the other.
6041 if (EST1 == EST_NoThrow) return ESI2;
6042 if (EST2 == EST_NoThrow) return ESI1;
6043 if (EST1 == EST_DynamicNone) return ESI2;
6044 if (EST2 == EST_DynamicNone) return ESI1;
6045 if (EST1 == EST_BasicNoexcept) return ESI2;
6046 if (EST2 == EST_BasicNoexcept) return ESI1;
6047 if (EST1 == EST_NoexceptTrue) return ESI2;
6048 if (EST2 == EST_NoexceptTrue) return ESI1;
6049
6050 // If we're left with value-dependent computed noexcept expressions, we're
6051 // stuck. Before C++17, we can just drop the exception specification entirely,
6052 // since it's not actually part of the canonical type. And this should never
6053 // happen in C++17, because it would mean we were computing the composite
6054 // pointer type of dependent types, which should never happen.
6055 if (EST1 == EST_DependentNoexcept || EST2 == EST_DependentNoexcept) {
6056 assert(!S.getLangOpts().CPlusPlus17 &&((!S.getLangOpts().CPlusPlus17 && "computing composite pointer type of dependent types"
) ? static_cast<void> (0) : __assert_fail ("!S.getLangOpts().CPlusPlus17 && \"computing composite pointer type of dependent types\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 6057, __PRETTY_FUNCTION__))
6057 "computing composite pointer type of dependent types")((!S.getLangOpts().CPlusPlus17 && "computing composite pointer type of dependent types"
) ? static_cast<void> (0) : __assert_fail ("!S.getLangOpts().CPlusPlus17 && \"computing composite pointer type of dependent types\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 6057, __PRETTY_FUNCTION__))
;
6058 return FunctionProtoType::ExceptionSpecInfo();
6059 }
6060
6061 // Switch over the possibilities so that people adding new values know to
6062 // update this function.
6063 switch (EST1) {
6064 case EST_None:
6065 case EST_DynamicNone:
6066 case EST_MSAny:
6067 case EST_BasicNoexcept:
6068 case EST_DependentNoexcept:
6069 case EST_NoexceptFalse:
6070 case EST_NoexceptTrue:
6071 case EST_NoThrow:
6072 llvm_unreachable("handled above")::llvm::llvm_unreachable_internal("handled above", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 6072)
;
6073
6074 case EST_Dynamic: {
6075 // This is the fun case: both exception specifications are dynamic. Form
6076 // the union of the two lists.
6077 assert(EST2 == EST_Dynamic && "other cases should already be handled")((EST2 == EST_Dynamic && "other cases should already be handled"
) ? static_cast<void> (0) : __assert_fail ("EST2 == EST_Dynamic && \"other cases should already be handled\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 6077, __PRETTY_FUNCTION__))
;
6078 llvm::SmallPtrSet<QualType, 8> Found;
6079 for (auto &Exceptions : {ESI1.Exceptions, ESI2.Exceptions})
6080 for (QualType E : Exceptions)
6081 if (Found.insert(S.Context.getCanonicalType(E)).second)
6082 ExceptionTypeStorage.push_back(E);
6083
6084 FunctionProtoType::ExceptionSpecInfo Result(EST_Dynamic);
6085 Result.Exceptions = ExceptionTypeStorage;
6086 return Result;
6087 }
6088
6089 case EST_Unevaluated:
6090 case EST_Uninstantiated:
6091 case EST_Unparsed:
6092 llvm_unreachable("shouldn't see unresolved exception specifications here")::llvm::llvm_unreachable_internal("shouldn't see unresolved exception specifications here"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 6092)
;
6093 }
6094
6095 llvm_unreachable("invalid ExceptionSpecificationType")::llvm::llvm_unreachable_internal("invalid ExceptionSpecificationType"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 6095)
;
6096}
6097
6098/// Find a merged pointer type and convert the two expressions to it.
6099///
6100/// This finds the composite pointer type (or member pointer type) for @p E1
6101/// and @p E2 according to C++1z 5p14. It converts both expressions to this
6102/// type and returns it.
6103/// It does not emit diagnostics.
6104///
6105/// \param Loc The location of the operator requiring these two expressions to
6106/// be converted to the composite pointer type.
6107///
6108/// \param ConvertArgs If \c false, do not convert E1 and E2 to the target type.
6109QualType Sema::FindCompositePointerType(SourceLocation Loc,
6110 Expr *&E1, Expr *&E2,
6111 bool ConvertArgs) {
6112 assert(getLangOpts().CPlusPlus && "This function assumes C++")((getLangOpts().CPlusPlus && "This function assumes C++"
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().CPlusPlus && \"This function assumes C++\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 6112, __PRETTY_FUNCTION__))
;
6113
6114 // C++1z [expr]p14:
6115 // The composite pointer type of two operands p1 and p2 having types T1
6116 // and T2
6117 QualType T1 = E1->getType(), T2 = E2->getType();
6118
6119 // where at least one is a pointer or pointer to member type or
6120 // std::nullptr_t is:
6121 bool T1IsPointerLike = T1->isAnyPointerType() || T1->isMemberPointerType() ||
6122 T1->isNullPtrType();
6123 bool T2IsPointerLike = T2->isAnyPointerType() || T2->isMemberPointerType() ||
6124 T2->isNullPtrType();
6125 if (!T1IsPointerLike && !T2IsPointerLike)
6126 return QualType();
6127
6128 // - if both p1 and p2 are null pointer constants, std::nullptr_t;
6129 // This can't actually happen, following the standard, but we also use this
6130 // to implement the end of [expr.conv], which hits this case.
6131 //
6132 // - if either p1 or p2 is a null pointer constant, T2 or T1, respectively;
6133 if (T1IsPointerLike &&
6134 E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
6135 if (ConvertArgs)
6136 E2 = ImpCastExprToType(E2, T1, T1->isMemberPointerType()
6137 ? CK_NullToMemberPointer
6138 : CK_NullToPointer).get();
6139 return T1;
6140 }
6141 if (T2IsPointerLike &&
6142 E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
6143 if (ConvertArgs)
6144 E1 = ImpCastExprToType(E1, T2, T2->isMemberPointerType()
6145 ? CK_NullToMemberPointer
6146 : CK_NullToPointer).get();
6147 return T2;
6148 }
6149
6150 // Now both have to be pointers or member pointers.
6151 if (!T1IsPointerLike || !T2IsPointerLike)
6152 return QualType();
6153 assert(!T1->isNullPtrType() && !T2->isNullPtrType() &&((!T1->isNullPtrType() && !T2->isNullPtrType() &&
"nullptr_t should be a null pointer constant") ? static_cast
<void> (0) : __assert_fail ("!T1->isNullPtrType() && !T2->isNullPtrType() && \"nullptr_t should be a null pointer constant\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 6154, __PRETTY_FUNCTION__))
6154 "nullptr_t should be a null pointer constant")((!T1->isNullPtrType() && !T2->isNullPtrType() &&
"nullptr_t should be a null pointer constant") ? static_cast
<void> (0) : __assert_fail ("!T1->isNullPtrType() && !T2->isNullPtrType() && \"nullptr_t should be a null pointer constant\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 6154, __PRETTY_FUNCTION__))
;
6155
6156 // - if T1 or T2 is "pointer to cv1 void" and the other type is
6157 // "pointer to cv2 T", "pointer to cv12 void", where cv12 is
6158 // the union of cv1 and cv2;
6159 // - if T1 or T2 is "pointer to noexcept function" and the other type is
6160 // "pointer to function", where the function types are otherwise the same,
6161 // "pointer to function";
6162 // FIXME: This rule is defective: it should also permit removing noexcept
6163 // from a pointer to member function. As a Clang extension, we also
6164 // permit removing 'noreturn', so we generalize this rule to;
6165 // - [Clang] If T1 and T2 are both of type "pointer to function" or
6166 // "pointer to member function" and the pointee types can be unified
6167 // by a function pointer conversion, that conversion is applied
6168 // before checking the following rules.
6169 // - if T1 is "pointer to cv1 C1" and T2 is "pointer to cv2 C2", where C1
6170 // is reference-related to C2 or C2 is reference-related to C1 (8.6.3),
6171 // the cv-combined type of T1 and T2 or the cv-combined type of T2 and T1,
6172 // respectively;
6173 // - if T1 is "pointer to member of C1 of type cv1 U1" and T2 is "pointer
6174 // to member of C2 of type cv2 U2" where C1 is reference-related to C2 or
6175 // C2 is reference-related to C1 (8.6.3), the cv-combined type of T2 and
6176 // T1 or the cv-combined type of T1 and T2, respectively;
6177 // - if T1 and T2 are similar types (4.5), the cv-combined type of T1 and
6178 // T2;
6179 //
6180 // If looked at in the right way, these bullets all do the same thing.
6181 // What we do here is, we build the two possible cv-combined types, and try
6182 // the conversions in both directions. If only one works, or if the two
6183 // composite types are the same, we have succeeded.
6184 // FIXME: extended qualifiers?
6185 //
6186 // Note that this will fail to find a composite pointer type for "pointer
6187 // to void" and "pointer to function". We can't actually perform the final
6188 // conversion in this case, even though a composite pointer type formally
6189 // exists.
6190 SmallVector<unsigned, 4> QualifierUnion;
6191 SmallVector<std::pair<const Type *, const Type *>, 4> MemberOfClass;
6192 QualType Composite1 = T1;
6193 QualType Composite2 = T2;
6194 unsigned NeedConstBefore = 0;
6195 while (true) {
6196 const PointerType *Ptr1, *Ptr2;
6197 if ((Ptr1 = Composite1->getAs<PointerType>()) &&
6198 (Ptr2 = Composite2->getAs<PointerType>())) {
6199 Composite1 = Ptr1->getPointeeType();
6200 Composite2 = Ptr2->getPointeeType();
6201
6202 // If we're allowed to create a non-standard composite type, keep track
6203 // of where we need to fill in additional 'const' qualifiers.
6204 if (Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
6205 NeedConstBefore = QualifierUnion.size();
6206
6207 QualifierUnion.push_back(
6208 Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
6209 MemberOfClass.push_back(std::make_pair(nullptr, nullptr));
6210 continue;
6211 }
6212
6213 const MemberPointerType *MemPtr1, *MemPtr2;
6214 if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) &&
6215 (MemPtr2 = Composite2->getAs<MemberPointerType>())) {
6216 Composite1 = MemPtr1->getPointeeType();
6217 Composite2 = MemPtr2->getPointeeType();
6218
6219 // If we're allowed to create a non-standard composite type, keep track
6220 // of where we need to fill in additional 'const' qualifiers.
6221 if (Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
6222 NeedConstBefore = QualifierUnion.size();
6223
6224 QualifierUnion.push_back(
6225 Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
6226 MemberOfClass.push_back(std::make_pair(MemPtr1->getClass(),
6227 MemPtr2->getClass()));
6228 continue;
6229 }
6230
6231 // FIXME: block pointer types?
6232
6233 // Cannot unwrap any more types.
6234 break;
6235 }
6236
6237 // Apply the function pointer conversion to unify the types. We've already
6238 // unwrapped down to the function types, and we want to merge rather than
6239 // just convert, so do this ourselves rather than calling
6240 // IsFunctionConversion.
6241 //
6242 // FIXME: In order to match the standard wording as closely as possible, we
6243 // currently only do this under a single level of pointers. Ideally, we would
6244 // allow this in general, and set NeedConstBefore to the relevant depth on
6245 // the side(s) where we changed anything.
6246 if (QualifierUnion.size() == 1) {
6247 if (auto *FPT1 = Composite1->getAs<FunctionProtoType>()) {
6248 if (auto *FPT2 = Composite2->getAs<FunctionProtoType>()) {
6249 FunctionProtoType::ExtProtoInfo EPI1 = FPT1->getExtProtoInfo();
6250 FunctionProtoType::ExtProtoInfo EPI2 = FPT2->getExtProtoInfo();
6251
6252 // The result is noreturn if both operands are.
6253 bool Noreturn =
6254 EPI1.ExtInfo.getNoReturn() && EPI2.ExtInfo.getNoReturn();
6255 EPI1.ExtInfo = EPI1.ExtInfo.withNoReturn(Noreturn);
6256 EPI2.ExtInfo = EPI2.ExtInfo.withNoReturn(Noreturn);
6257
6258 // The result is nothrow if both operands are.
6259 SmallVector<QualType, 8> ExceptionTypeStorage;
6260 EPI1.ExceptionSpec = EPI2.ExceptionSpec =
6261 mergeExceptionSpecs(*this, EPI1.ExceptionSpec, EPI2.ExceptionSpec,
6262 ExceptionTypeStorage);
6263
6264 Composite1 = Context.getFunctionType(FPT1->getReturnType(),
6265 FPT1->getParamTypes(), EPI1);
6266 Composite2 = Context.getFunctionType(FPT2->getReturnType(),
6267 FPT2->getParamTypes(), EPI2);
6268 }
6269 }
6270 }
6271
6272 if (NeedConstBefore) {
6273 // Extension: Add 'const' to qualifiers that come before the first qualifier
6274 // mismatch, so that our (non-standard!) composite type meets the
6275 // requirements of C++ [conv.qual]p4 bullet 3.
6276 for (unsigned I = 0; I != NeedConstBefore; ++I)
6277 if ((QualifierUnion[I] & Qualifiers::Const) == 0)
6278 QualifierUnion[I] = QualifierUnion[I] | Qualifiers::Const;
6279 }
6280
6281 // Rewrap the composites as pointers or member pointers with the union CVRs.
6282 auto MOC = MemberOfClass.rbegin();
6283 for (unsigned CVR : llvm::reverse(QualifierUnion)) {
6284 Qualifiers Quals = Qualifiers::fromCVRMask(CVR);
6285 auto Classes = *MOC++;
6286 if (Classes.first && Classes.second) {
6287 // Rebuild member pointer type
6288 Composite1 = Context.getMemberPointerType(
6289 Context.getQualifiedType(Composite1, Quals), Classes.first);
6290 Composite2 = Context.getMemberPointerType(
6291 Context.getQualifiedType(Composite2, Quals), Classes.second);
6292 } else {
6293 // Rebuild pointer type
6294 Composite1 =
6295 Context.getPointerType(Context.getQualifiedType(Composite1, Quals));
6296 Composite2 =
6297 Context.getPointerType(Context.getQualifiedType(Composite2, Quals));
6298 }
6299 }
6300
6301 struct Conversion {
6302 Sema &S;
6303 Expr *&E1, *&E2;
6304 QualType Composite;
6305 InitializedEntity Entity;
6306 InitializationKind Kind;
6307 InitializationSequence E1ToC, E2ToC;
6308 bool Viable;
6309
6310 Conversion(Sema &S, SourceLocation Loc, Expr *&E1, Expr *&E2,
6311 QualType Composite)
6312 : S(S), E1(E1), E2(E2), Composite(Composite),
6313 Entity(InitializedEntity::InitializeTemporary(Composite)),
6314 Kind(InitializationKind::CreateCopy(Loc, SourceLocation())),
6315 E1ToC(S, Entity, Kind, E1), E2ToC(S, Entity, Kind, E2),
6316 Viable(E1ToC && E2ToC) {}
6317
6318 bool perform() {
6319 ExprResult E1Result = E1ToC.Perform(S, Entity, Kind, E1);
6320 if (E1Result.isInvalid())
6321 return true;
6322 E1 = E1Result.getAs<Expr>();
6323
6324 ExprResult E2Result = E2ToC.Perform(S, Entity, Kind, E2);
6325 if (E2Result.isInvalid())
6326 return true;
6327 E2 = E2Result.getAs<Expr>();
6328
6329 return false;
6330 }
6331 };
6332
6333 // Try to convert to each composite pointer type.
6334 Conversion C1(*this, Loc, E1, E2, Composite1);
6335 if (C1.Viable && Context.hasSameType(Composite1, Composite2)) {
6336 if (ConvertArgs && C1.perform())
6337 return QualType();
6338 return C1.Composite;
6339 }
6340 Conversion C2(*this, Loc, E1, E2, Composite2);
6341
6342 if (C1.Viable == C2.Viable) {
6343 // Either Composite1 and Composite2 are viable and are different, or
6344 // neither is viable.
6345 // FIXME: How both be viable and different?
6346 return QualType();
6347 }
6348
6349 // Convert to the chosen type.
6350 if (ConvertArgs && (C1.Viable ? C1 : C2).perform())
6351 return QualType();
6352
6353 return C1.Viable ? C1.Composite : C2.Composite;
6354}
6355
6356ExprResult Sema::MaybeBindToTemporary(Expr *E) {
6357 if (!E)
6358 return ExprError();
6359
6360 assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?")((!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?"
) ? static_cast<void> (0) : __assert_fail ("!isa<CXXBindTemporaryExpr>(E) && \"Double-bound temporary?\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 6360, __PRETTY_FUNCTION__))
;
6361
6362 // If the result is a glvalue, we shouldn't bind it.
6363 if (!E->isRValue())
6364 return E;
6365
6366 // In ARC, calls that return a retainable type can return retained,
6367 // in which case we have to insert a consuming cast.
6368 if (getLangOpts().ObjCAutoRefCount &&
6369 E->getType()->isObjCRetainableType()) {
6370
6371 bool ReturnsRetained;
6372
6373 // For actual calls, we compute this by examining the type of the
6374 // called value.
6375 if (CallExpr *Call = dyn_cast<CallExpr>(E)) {
6376 Expr *Callee = Call->getCallee()->IgnoreParens();
6377 QualType T = Callee->getType();
6378
6379 if (T == Context.BoundMemberTy) {
6380 // Handle pointer-to-members.
6381 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Callee))
6382 T = BinOp->getRHS()->getType();
6383 else if (MemberExpr *Mem = dyn_cast<MemberExpr>(Callee))
6384 T = Mem->getMemberDecl()->getType();
6385 }
6386
6387 if (const PointerType *Ptr = T->getAs<PointerType>())
6388 T = Ptr->getPointeeType();
6389 else if (const BlockPointerType *Ptr = T->getAs<BlockPointerType>())
6390 T = Ptr->getPointeeType();
6391 else if (const MemberPointerType *MemPtr = T->getAs<MemberPointerType>())
6392 T = MemPtr->getPointeeType();
6393
6394 const FunctionType *FTy = T->getAs<FunctionType>();
6395 assert(FTy && "call to value not of function type?")((FTy && "call to value not of function type?") ? static_cast
<void> (0) : __assert_fail ("FTy && \"call to value not of function type?\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 6395, __PRETTY_FUNCTION__))
;
6396 ReturnsRetained = FTy->getExtInfo().getProducesResult();
6397
6398 // ActOnStmtExpr arranges things so that StmtExprs of retainable
6399 // type always produce a +1 object.
6400 } else if (isa<StmtExpr>(E)) {
6401 ReturnsRetained = true;
6402
6403 // We hit this case with the lambda conversion-to-block optimization;
6404 // we don't want any extra casts here.
6405 } else if (isa<CastExpr>(E) &&
6406 isa<BlockExpr>(cast<CastExpr>(E)->getSubExpr())) {
6407 return E;
6408
6409 // For message sends and property references, we try to find an
6410 // actual method. FIXME: we should infer retention by selector in
6411 // cases where we don't have an actual method.
6412 } else {
6413 ObjCMethodDecl *D = nullptr;
6414 if (ObjCMessageExpr *Send = dyn_cast<ObjCMessageExpr>(E)) {
6415 D = Send->getMethodDecl();
6416 } else if (ObjCBoxedExpr *BoxedExpr = dyn_cast<ObjCBoxedExpr>(E)) {
6417 D = BoxedExpr->getBoxingMethod();
6418 } else if (ObjCArrayLiteral *ArrayLit = dyn_cast<ObjCArrayLiteral>(E)) {
6419 // Don't do reclaims if we're using the zero-element array
6420 // constant.
6421 if (ArrayLit->getNumElements() == 0 &&
6422 Context.getLangOpts().ObjCRuntime.hasEmptyCollections())
6423 return E;
6424
6425 D = ArrayLit->getArrayWithObjectsMethod();
6426 } else if (ObjCDictionaryLiteral *DictLit
6427 = dyn_cast<ObjCDictionaryLiteral>(E)) {
6428 // Don't do reclaims if we're using the zero-element dictionary
6429 // constant.
6430 if (DictLit->getNumElements() == 0 &&
6431 Context.getLangOpts().ObjCRuntime.hasEmptyCollections())
6432 return E;
6433
6434 D = DictLit->getDictWithObjectsMethod();
6435 }
6436
6437 ReturnsRetained = (D && D->hasAttr<NSReturnsRetainedAttr>());
6438
6439 // Don't do reclaims on performSelector calls; despite their
6440 // return type, the invoked method doesn't necessarily actually
6441 // return an object.
6442 if (!ReturnsRetained &&
6443 D && D->getMethodFamily() == OMF_performSelector)
6444 return E;
6445 }
6446
6447 // Don't reclaim an object of Class type.
6448 if (!ReturnsRetained && E->getType()->isObjCARCImplicitlyUnretainedType())
6449 return E;
6450
6451 Cleanup.setExprNeedsCleanups(true);
6452
6453 CastKind ck = (ReturnsRetained ? CK_ARCConsumeObject
6454 : CK_ARCReclaimReturnedObject);
6455 return ImplicitCastExpr::Create(Context, E->getType(), ck, E, nullptr,
6456 VK_RValue);
6457 }
6458
6459 if (!getLangOpts().CPlusPlus)
6460 return E;
6461
6462 // Search for the base element type (cf. ASTContext::getBaseElementType) with
6463 // a fast path for the common case that the type is directly a RecordType.
6464 const Type *T = Context.getCanonicalType(E->getType().getTypePtr());
6465 const RecordType *RT = nullptr;
6466 while (!RT) {
6467 switch (T->getTypeClass()) {
6468 case Type::Record:
6469 RT = cast<RecordType>(T);
6470 break;
6471 case Type::ConstantArray:
6472 case Type::IncompleteArray:
6473 case Type::VariableArray:
6474 case Type::DependentSizedArray:
6475 T = cast<ArrayType>(T)->getElementType().getTypePtr();
6476 break;
6477 default:
6478 return E;
6479 }
6480 }
6481
6482 // That should be enough to guarantee that this type is complete, if we're
6483 // not processing a decltype expression.
6484 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
6485 if (RD->isInvalidDecl() || RD->isDependentContext())
6486 return E;
6487
6488 bool IsDecltype = ExprEvalContexts.back().ExprContext ==
6489 ExpressionEvaluationContextRecord::EK_Decltype;
6490 CXXDestructorDecl *Destructor = IsDecltype ? nullptr : LookupDestructor(RD);
6491
6492 if (Destructor) {
6493 MarkFunctionReferenced(E->getExprLoc(), Destructor);
6494 CheckDestructorAccess(E->getExprLoc(), Destructor,
6495 PDiag(diag::err_access_dtor_temp)
6496 << E->getType());
6497 if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
6498 return ExprError();
6499
6500 // If destructor is trivial, we can avoid the extra copy.
6501 if (Destructor->isTrivial())
6502 return E;
6503
6504 // We need a cleanup, but we don't need to remember the temporary.
6505 Cleanup.setExprNeedsCleanups(true);
6506 }
6507
6508 CXXTemporary *Temp = CXXTemporary::Create(Context, Destructor);
6509 CXXBindTemporaryExpr *Bind = CXXBindTemporaryExpr::Create(Context, Temp, E);
6510
6511 if (IsDecltype)
6512 ExprEvalContexts.back().DelayedDecltypeBinds.push_back(Bind);
6513
6514 return Bind;
6515}
6516
6517ExprResult
6518Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) {
6519 if (SubExpr.isInvalid())
6520 return ExprError();
6521
6522 return MaybeCreateExprWithCleanups(SubExpr.get());
6523}
6524
6525Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) {
6526 assert(SubExpr && "subexpression can't be null!")((SubExpr && "subexpression can't be null!") ? static_cast
<void> (0) : __assert_fail ("SubExpr && \"subexpression can't be null!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 6526, __PRETTY_FUNCTION__))
;
6527
6528 CleanupVarDeclMarking();
6529
6530 unsigned FirstCleanup = ExprEvalContexts.back().NumCleanupObjects;
6531 assert(ExprCleanupObjects.size() >= FirstCleanup)((ExprCleanupObjects.size() >= FirstCleanup) ? static_cast
<void> (0) : __assert_fail ("ExprCleanupObjects.size() >= FirstCleanup"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 6531, __PRETTY_FUNCTION__))
;
6532 assert(Cleanup.exprNeedsCleanups() ||((Cleanup.exprNeedsCleanups() || ExprCleanupObjects.size() ==
FirstCleanup) ? static_cast<void> (0) : __assert_fail (
"Cleanup.exprNeedsCleanups() || ExprCleanupObjects.size() == FirstCleanup"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 6533, __PRETTY_FUNCTION__))
6533 ExprCleanupObjects.size() == FirstCleanup)((Cleanup.exprNeedsCleanups() || ExprCleanupObjects.size() ==
FirstCleanup) ? static_cast<void> (0) : __assert_fail (
"Cleanup.exprNeedsCleanups() || ExprCleanupObjects.size() == FirstCleanup"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 6533, __PRETTY_FUNCTION__))
;
6534 if (!Cleanup.exprNeedsCleanups())
6535 return SubExpr;
6536
6537 auto Cleanups = llvm::makeArrayRef(ExprCleanupObjects.begin() + FirstCleanup,
6538 ExprCleanupObjects.size() - FirstCleanup);
6539
6540 auto *E = ExprWithCleanups::Create(
6541 Context, SubExpr, Cleanup.cleanupsHaveSideEffects(), Cleanups);
6542 DiscardCleanupsInEvaluationContext();
6543
6544 return E;
6545}
6546
6547Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) {
6548 assert(SubStmt && "sub-statement can't be null!")((SubStmt && "sub-statement can't be null!") ? static_cast
<void> (0) : __assert_fail ("SubStmt && \"sub-statement can't be null!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 6548, __PRETTY_FUNCTION__))
;
6549
6550 CleanupVarDeclMarking();
6551
6552 if (!Cleanup.exprNeedsCleanups())
6553 return SubStmt;
6554
6555 // FIXME: In order to attach the temporaries, wrap the statement into
6556 // a StmtExpr; currently this is only used for asm statements.
6557 // This is hacky, either create a new CXXStmtWithTemporaries statement or
6558 // a new AsmStmtWithTemporaries.
6559 CompoundStmt *CompStmt = CompoundStmt::Create(
6560 Context, SubStmt, SourceLocation(), SourceLocation());
6561 Expr *E = new (Context) StmtExpr(CompStmt, Context.VoidTy, SourceLocation(),
6562 SourceLocation());
6563 return MaybeCreateExprWithCleanups(E);
6564}
6565
6566/// Process the expression contained within a decltype. For such expressions,
6567/// certain semantic checks on temporaries are delayed until this point, and
6568/// are omitted for the 'topmost' call in the decltype expression. If the
6569/// topmost call bound a temporary, strip that temporary off the expression.
6570ExprResult Sema::ActOnDecltypeExpression(Expr *E) {
6571 assert(ExprEvalContexts.back().ExprContext ==((ExprEvalContexts.back().ExprContext == ExpressionEvaluationContextRecord
::EK_Decltype && "not in a decltype expression") ? static_cast
<void> (0) : __assert_fail ("ExprEvalContexts.back().ExprContext == ExpressionEvaluationContextRecord::EK_Decltype && \"not in a decltype expression\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 6573, __PRETTY_FUNCTION__))
6572 ExpressionEvaluationContextRecord::EK_Decltype &&((ExprEvalContexts.back().ExprContext == ExpressionEvaluationContextRecord
::EK_Decltype && "not in a decltype expression") ? static_cast
<void> (0) : __assert_fail ("ExprEvalContexts.back().ExprContext == ExpressionEvaluationContextRecord::EK_Decltype && \"not in a decltype expression\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 6573, __PRETTY_FUNCTION__))
6573 "not in a decltype expression")((ExprEvalContexts.back().ExprContext == ExpressionEvaluationContextRecord
::EK_Decltype && "not in a decltype expression") ? static_cast
<void> (0) : __assert_fail ("ExprEvalContexts.back().ExprContext == ExpressionEvaluationContextRecord::EK_Decltype && \"not in a decltype expression\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 6573, __PRETTY_FUNCTION__))
;
6574
6575 ExprResult Result = CheckPlaceholderExpr(E);
6576 if (Result.isInvalid())
6577 return ExprError();
6578 E = Result.get();
6579
6580 // C++11 [expr.call]p11:
6581 // If a function call is a prvalue of object type,
6582 // -- if the function call is either
6583 // -- the operand of a decltype-specifier, or
6584 // -- the right operand of a comma operator that is the operand of a
6585 // decltype-specifier,
6586 // a temporary object is not introduced for the prvalue.
6587
6588 // Recursively rebuild ParenExprs and comma expressions to strip out the
6589 // outermost CXXBindTemporaryExpr, if any.
6590 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
6591 ExprResult SubExpr = ActOnDecltypeExpression(PE->getSubExpr());
6592 if (SubExpr.isInvalid())
6593 return ExprError();
6594 if (SubExpr.get() == PE->getSubExpr())
6595 return E;
6596 return ActOnParenExpr(PE->getLParen(), PE->getRParen(), SubExpr.get());
6597 }
6598 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
6599 if (BO->getOpcode() == BO_Comma) {
6600 ExprResult RHS = ActOnDecltypeExpression(BO->getRHS());
6601 if (RHS.isInvalid())
6602 return ExprError();
6603 if (RHS.get() == BO->getRHS())
6604 return E;
6605 return new (Context) BinaryOperator(
6606 BO->getLHS(), RHS.get(), BO_Comma, BO->getType(), BO->getValueKind(),
6607 BO->getObjectKind(), BO->getOperatorLoc(), BO->getFPFeatures());
6608 }
6609 }
6610
6611 CXXBindTemporaryExpr *TopBind = dyn_cast<CXXBindTemporaryExpr>(E);
6612 CallExpr *TopCall = TopBind ? dyn_cast<CallExpr>(TopBind->getSubExpr())
6613 : nullptr;
6614 if (TopCall)
6615 E = TopCall;
6616 else
6617 TopBind = nullptr;
6618
6619 // Disable the special decltype handling now.
6620 ExprEvalContexts.back().ExprContext =
6621 ExpressionEvaluationContextRecord::EK_Other;
6622
6623 Result = CheckUnevaluatedOperand(E);
6624 if (Result.isInvalid())
6625 return ExprError();
6626 E = Result.get();
6627
6628 // In MS mode, don't perform any extra checking of call return types within a
6629 // decltype expression.
6630 if (getLangOpts().MSVCCompat)
6631 return E;
6632
6633 // Perform the semantic checks we delayed until this point.
6634 for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeCalls.size();
6635 I != N; ++I) {
6636 CallExpr *Call = ExprEvalContexts.back().DelayedDecltypeCalls[I];
6637 if (Call == TopCall)
6638 continue;
6639
6640 if (CheckCallReturnType(Call->getCallReturnType(Context),
6641 Call->getBeginLoc(), Call, Call->getDirectCallee()))
6642 return ExprError();
6643 }
6644
6645 // Now all relevant types are complete, check the destructors are accessible
6646 // and non-deleted, and annotate them on the temporaries.
6647 for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeBinds.size();
6648 I != N; ++I) {
6649 CXXBindTemporaryExpr *Bind =
6650 ExprEvalContexts.back().DelayedDecltypeBinds[I];
6651 if (Bind == TopBind)
6652 continue;
6653
6654 CXXTemporary *Temp = Bind->getTemporary();
6655
6656 CXXRecordDecl *RD =
6657 Bind->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
6658 CXXDestructorDecl *Destructor = LookupDestructor(RD);
6659 Temp->setDestructor(Destructor);
6660
6661 MarkFunctionReferenced(Bind->getExprLoc(), Destructor);
6662 CheckDestructorAccess(Bind->getExprLoc(), Destructor,
6663 PDiag(diag::err_access_dtor_temp)
6664 << Bind->getType());
6665 if (DiagnoseUseOfDecl(Destructor, Bind->getExprLoc()))
6666 return ExprError();
6667
6668 // We need a cleanup, but we don't need to remember the temporary.
6669 Cleanup.setExprNeedsCleanups(true);
6670 }
6671
6672 // Possibly strip off the top CXXBindTemporaryExpr.
6673 return E;
6674}
6675
6676/// Note a set of 'operator->' functions that were used for a member access.
6677static void noteOperatorArrows(Sema &S,
6678 ArrayRef<FunctionDecl *> OperatorArrows) {
6679 unsigned SkipStart = OperatorArrows.size(), SkipCount = 0;
6680 // FIXME: Make this configurable?
6681 unsigned Limit = 9;
6682 if (OperatorArrows.size() > Limit) {
6683 // Produce Limit-1 normal notes and one 'skipping' note.
6684 SkipStart = (Limit - 1) / 2 + (Limit - 1) % 2;
6685 SkipCount = OperatorArrows.size() - (Limit - 1);
6686 }
6687
6688 for (unsigned I = 0; I < OperatorArrows.size(); /**/) {
6689 if (I == SkipStart) {
6690 S.Diag(OperatorArrows[I]->getLocation(),
6691 diag::note_operator_arrows_suppressed)
6692 << SkipCount;
6693 I += SkipCount;
6694 } else {
6695 S.Diag(OperatorArrows[I]->getLocation(), diag::note_operator_arrow_here)
6696 << OperatorArrows[I]->getCallResultType();
6697 ++I;
6698 }
6699 }
6700}
6701
6702ExprResult Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base,
6703 SourceLocation OpLoc,
6704 tok::TokenKind OpKind,
6705 ParsedType &ObjectType,
6706 bool &MayBePseudoDestructor) {
6707 // Since this might be a postfix expression, get rid of ParenListExprs.
6708 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
6709 if (Result.isInvalid()) return ExprError();
6710 Base = Result.get();
6711
6712 Result = CheckPlaceholderExpr(Base);
6713 if (Result.isInvalid()) return ExprError();
6714 Base = Result.get();
6715
6716 QualType BaseType = Base->getType();
6717 MayBePseudoDestructor = false;
6718 if (BaseType->isDependentType()) {
6719 // If we have a pointer to a dependent type and are using the -> operator,
6720 // the object type is the type that the pointer points to. We might still
6721 // have enough information about that type to do something useful.
6722 if (OpKind == tok::arrow)
6723 if (const PointerType *Ptr = BaseType->getAs<PointerType>())
6724 BaseType = Ptr->getPointeeType();
6725
6726 ObjectType = ParsedType::make(BaseType);
6727 MayBePseudoDestructor = true;
6728 return Base;
6729 }
6730
6731 // C++ [over.match.oper]p8:
6732 // [...] When operator->returns, the operator-> is applied to the value
6733 // returned, with the original second operand.
6734 if (OpKind == tok::arrow) {
6735 QualType StartingType = BaseType;
6736 bool NoArrowOperatorFound = false;
6737 bool FirstIteration = true;
6738 FunctionDecl *CurFD = dyn_cast<FunctionDecl>(CurContext);
6739 // The set of types we've considered so far.
6740 llvm::SmallPtrSet<CanQualType,8> CTypes;
6741 SmallVector<FunctionDecl*, 8> OperatorArrows;
6742 CTypes.insert(Context.getCanonicalType(BaseType));
6743
6744 while (BaseType->isRecordType()) {
6745 if (OperatorArrows.size() >= getLangOpts().ArrowDepth) {
6746 Diag(OpLoc, diag::err_operator_arrow_depth_exceeded)
6747 << StartingType << getLangOpts().ArrowDepth << Base->getSourceRange();
6748 noteOperatorArrows(*this, OperatorArrows);
6749 Diag(OpLoc, diag::note_operator_arrow_depth)
6750 << getLangOpts().ArrowDepth;
6751 return ExprError();
6752 }
6753
6754 Result = BuildOverloadedArrowExpr(
6755 S, Base, OpLoc,
6756 // When in a template specialization and on the first loop iteration,
6757 // potentially give the default diagnostic (with the fixit in a
6758 // separate note) instead of having the error reported back to here
6759 // and giving a diagnostic with a fixit attached to the error itself.
6760 (FirstIteration && CurFD && CurFD->isFunctionTemplateSpecialization())
6761 ? nullptr
6762 : &NoArrowOperatorFound);
6763 if (Result.isInvalid()) {
6764 if (NoArrowOperatorFound) {
6765 if (FirstIteration) {
6766 Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
6767 << BaseType << 1 << Base->getSourceRange()
6768 << FixItHint::CreateReplacement(OpLoc, ".");
6769 OpKind = tok::period;
6770 break;
6771 }
6772 Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
6773 << BaseType << Base->getSourceRange();
6774 CallExpr *CE = dyn_cast<CallExpr>(Base);
6775 if (Decl *CD = (CE ? CE->getCalleeDecl() : nullptr)) {
6776 Diag(CD->getBeginLoc(),
6777 diag::note_member_reference_arrow_from_operator_arrow);
6778 }
6779 }
6780 return ExprError();
6781 }
6782 Base = Result.get();
6783 if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base))
6784 OperatorArrows.push_back(OpCall->getDirectCallee());
6785 BaseType = Base->getType();
6786 CanQualType CBaseType = Context.getCanonicalType(BaseType);
6787 if (!CTypes.insert(CBaseType).second) {
6788 Diag(OpLoc, diag::err_operator_arrow_circular) << StartingType;
6789 noteOperatorArrows(*this, OperatorArrows);
6790 return ExprError();
6791 }
6792 FirstIteration = false;
6793 }
6794
6795 if (OpKind == tok::arrow) {
6796 if (BaseType->isPointerType())
6797 BaseType = BaseType->getPointeeType();
6798 else if (auto *AT = Context.getAsArrayType(BaseType))
6799 BaseType = AT->getElementType();
6800 }
6801 }
6802
6803 // Objective-C properties allow "." access on Objective-C pointer types,
6804 // so adjust the base type to the object type itself.
6805 if (BaseType->isObjCObjectPointerType())
6806 BaseType = BaseType->getPointeeType();
6807
6808 // C++ [basic.lookup.classref]p2:
6809 // [...] If the type of the object expression is of pointer to scalar
6810 // type, the unqualified-id is looked up in the context of the complete
6811 // postfix-expression.
6812 //
6813 // This also indicates that we could be parsing a pseudo-destructor-name.
6814 // Note that Objective-C class and object types can be pseudo-destructor
6815 // expressions or normal member (ivar or property) access expressions, and
6816 // it's legal for the type to be incomplete if this is a pseudo-destructor
6817 // call. We'll do more incomplete-type checks later in the lookup process,
6818 // so just skip this check for ObjC types.
6819 if (!BaseType->isRecordType()) {
6820 ObjectType = ParsedType::make(BaseType);
6821 MayBePseudoDestructor = true;
6822 return Base;
6823 }
6824
6825 // The object type must be complete (or dependent), or
6826 // C++11 [expr.prim.general]p3:
6827 // Unlike the object expression in other contexts, *this is not required to
6828 // be of complete type for purposes of class member access (5.2.5) outside
6829 // the member function body.
6830 if (!BaseType->isDependentType() &&
6831 !isThisOutsideMemberFunctionBody(BaseType) &&
6832 RequireCompleteType(OpLoc, BaseType, diag::err_incomplete_member_access))
6833 return ExprError();
6834
6835 // C++ [basic.lookup.classref]p2:
6836 // If the id-expression in a class member access (5.2.5) is an
6837 // unqualified-id, and the type of the object expression is of a class
6838 // type C (or of pointer to a class type C), the unqualified-id is looked
6839 // up in the scope of class C. [...]
6840 ObjectType = ParsedType::make(BaseType);
6841 return Base;
6842}
6843
6844static bool CheckArrow(Sema& S, QualType& ObjectType, Expr *&Base,
6845 tok::TokenKind& OpKind, SourceLocation OpLoc) {
6846 if (Base->hasPlaceholderType()) {
6847 ExprResult result = S.CheckPlaceholderExpr(Base);
6848 if (result.isInvalid()) return true;
6849 Base = result.get();
6850 }
6851 ObjectType = Base->getType();
6852
6853 // C++ [expr.pseudo]p2:
6854 // The left-hand side of the dot operator shall be of scalar type. The
6855 // left-hand side of the arrow operator shall be of pointer to scalar type.
6856 // This scalar type is the object type.
6857 // Note that this is rather different from the normal handling for the
6858 // arrow operator.
6859 if (OpKind == tok::arrow) {
6860 if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
6861 ObjectType = Ptr->getPointeeType();
6862 } else if (!Base->isTypeDependent()) {
6863 // The user wrote "p->" when they probably meant "p."; fix it.
6864 S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
6865 << ObjectType << true
6866 << FixItHint::CreateReplacement(OpLoc, ".");
6867 if (S.isSFINAEContext())
6868 return true;
6869
6870 OpKind = tok::period;
6871 }
6872 }
6873
6874 return false;
6875}
6876
6877/// Check if it's ok to try and recover dot pseudo destructor calls on
6878/// pointer objects.
6879static bool
6880canRecoverDotPseudoDestructorCallsOnPointerObjects(Sema &SemaRef,
6881 QualType DestructedType) {
6882 // If this is a record type, check if its destructor is callable.
6883 if (auto *RD = DestructedType->getAsCXXRecordDecl()) {
6884 if (RD->hasDefinition())
6885 if (CXXDestructorDecl *D = SemaRef.LookupDestructor(RD))
6886 return SemaRef.CanUseDecl(D, /*TreatUnavailableAsInvalid=*/false);
6887 return false;
6888 }
6889
6890 // Otherwise, check if it's a type for which it's valid to use a pseudo-dtor.
6891 return DestructedType->isDependentType() || DestructedType->isScalarType() ||
6892 DestructedType->isVectorType();
6893}
6894
6895ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base,
6896 SourceLocation OpLoc,
6897 tok::TokenKind OpKind,
6898 const CXXScopeSpec &SS,
6899 TypeSourceInfo *ScopeTypeInfo,
6900 SourceLocation CCLoc,
6901 SourceLocation TildeLoc,
6902 PseudoDestructorTypeStorage Destructed) {
6903 TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo();
6904
6905 QualType ObjectType;
6906 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
6907 return ExprError();
6908
6909 if (!ObjectType->isDependentType() && !ObjectType->isScalarType() &&
6910 !ObjectType->isVectorType()) {
6911 if (getLangOpts().MSVCCompat && ObjectType->isVoidType())
6912 Diag(OpLoc, diag::ext_pseudo_dtor_on_void) << Base->getSourceRange();
6913 else {
6914 Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
6915 << ObjectType << Base->getSourceRange();
6916 return ExprError();
6917 }
6918 }
6919
6920 // C++ [expr.pseudo]p2:
6921 // [...] The cv-unqualified versions of the object type and of the type
6922 // designated by the pseudo-destructor-name shall be the same type.
6923 if (DestructedTypeInfo) {
6924 QualType DestructedType = DestructedTypeInfo->getType();
6925 SourceLocation DestructedTypeStart
6926 = DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin();
6927 if (!DestructedType->isDependentType() && !ObjectType->isDependentType()) {
6928 if (!Context.hasSameUnqualifiedType(DestructedType, ObjectType)) {
6929 // Detect dot pseudo destructor calls on pointer objects, e.g.:
6930 // Foo *foo;
6931 // foo.~Foo();
6932 if (OpKind == tok::period && ObjectType->isPointerType() &&
6933 Context.hasSameUnqualifiedType(DestructedType,
6934 ObjectType->getPointeeType())) {
6935 auto Diagnostic =
6936 Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
6937 << ObjectType << /*IsArrow=*/0 << Base->getSourceRange();
6938
6939 // Issue a fixit only when the destructor is valid.
6940 if (canRecoverDotPseudoDestructorCallsOnPointerObjects(
6941 *this, DestructedType))
6942 Diagnostic << FixItHint::CreateReplacement(OpLoc, "->");
6943
6944 // Recover by setting the object type to the destructed type and the
6945 // operator to '->'.
6946 ObjectType = DestructedType;
6947 OpKind = tok::arrow;
6948 } else {
6949 Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch)
6950 << ObjectType << DestructedType << Base->getSourceRange()
6951 << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
6952
6953 // Recover by setting the destructed type to the object type.
6954 DestructedType = ObjectType;
6955 DestructedTypeInfo =
6956 Context.getTrivialTypeSourceInfo(ObjectType, DestructedTypeStart);
6957 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
6958 }
6959 } else if (DestructedType.getObjCLifetime() !=
6960 ObjectType.getObjCLifetime()) {
6961
6962 if (DestructedType.getObjCLifetime() == Qualifiers::OCL_None) {
6963 // Okay: just pretend that the user provided the correctly-qualified
6964 // type.
6965 } else {
6966 Diag(DestructedTypeStart, diag::err_arc_pseudo_dtor_inconstant_quals)
6967 << ObjectType << DestructedType << Base->getSourceRange()
6968 << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
6969 }
6970
6971 // Recover by setting the destructed type to the object type.
6972 DestructedType = ObjectType;
6973 DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
6974 DestructedTypeStart);
6975 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
6976 }
6977 }
6978 }
6979
6980 // C++ [expr.pseudo]p2:
6981 // [...] Furthermore, the two type-names in a pseudo-destructor-name of the
6982 // form
6983 //
6984 // ::[opt] nested-name-specifier[opt] type-name :: ~ type-name
6985 //
6986 // shall designate the same scalar type.
6987 if (ScopeTypeInfo) {
6988 QualType ScopeType = ScopeTypeInfo->getType();
6989 if (!ScopeType->isDependentType() && !ObjectType->isDependentType() &&
6990 !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) {
6991
6992 Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(),
6993 diag::err_pseudo_dtor_type_mismatch)
6994 << ObjectType << ScopeType << Base->getSourceRange()
6995 << ScopeTypeInfo->getTypeLoc().getLocalSourceRange();
6996
6997 ScopeType = QualType();
6998 ScopeTypeInfo = nullptr;
6999 }
7000 }
7001
7002 Expr *Result
7003 = new (Context) CXXPseudoDestructorExpr(Context, Base,
7004 OpKind == tok::arrow, OpLoc,
7005 SS.getWithLocInContext(Context),
7006 ScopeTypeInfo,
7007 CCLoc,
7008 TildeLoc,
7009 Destructed);
7010
7011 return Result;
7012}
7013
7014ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
7015 SourceLocation OpLoc,
7016 tok::TokenKind OpKind,
7017 CXXScopeSpec &SS,
7018 UnqualifiedId &FirstTypeName,
7019 SourceLocation CCLoc,
7020 SourceLocation TildeLoc,
7021 UnqualifiedId &SecondTypeName) {
7022 assert((FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId ||(((FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId
|| FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier
) && "Invalid first type name in pseudo-destructor") ?
static_cast<void> (0) : __assert_fail ("(FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId || FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) && \"Invalid first type name in pseudo-destructor\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 7024, __PRETTY_FUNCTION__))
7023 FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) &&(((FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId
|| FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier
) && "Invalid first type name in pseudo-destructor") ?
static_cast<void> (0) : __assert_fail ("(FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId || FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) && \"Invalid first type name in pseudo-destructor\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 7024, __PRETTY_FUNCTION__))
7024 "Invalid first type name in pseudo-destructor")(((FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId
|| FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier
) && "Invalid first type name in pseudo-destructor") ?
static_cast<void> (0) : __assert_fail ("(FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId || FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) && \"Invalid first type name in pseudo-destructor\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 7024, __PRETTY_FUNCTION__))
;
7025 assert((SecondTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId ||(((SecondTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId
|| SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier
) && "Invalid second type name in pseudo-destructor")
? static_cast<void> (0) : __assert_fail ("(SecondTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId || SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) && \"Invalid second type name in pseudo-destructor\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 7027, __PRETTY_FUNCTION__))
7026 SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) &&(((SecondTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId
|| SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier
) && "Invalid second type name in pseudo-destructor")
? static_cast<void> (0) : __assert_fail ("(SecondTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId || SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) && \"Invalid second type name in pseudo-destructor\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 7027, __PRETTY_FUNCTION__))
7027 "Invalid second type name in pseudo-destructor")(((SecondTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId
|| SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier
) && "Invalid second type name in pseudo-destructor")
? static_cast<void> (0) : __assert_fail ("(SecondTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId || SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) && \"Invalid second type name in pseudo-destructor\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 7027, __PRETTY_FUNCTION__))
;
7028
7029 QualType ObjectType;
7030 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
7031 return ExprError();
7032
7033 // Compute the object type that we should use for name lookup purposes. Only
7034 // record types and dependent types matter.
7035 ParsedType ObjectTypePtrForLookup;
7036 if (!SS.isSet()) {
7037 if (ObjectType->isRecordType())
7038 ObjectTypePtrForLookup = ParsedType::make(ObjectType);
7039 else if (ObjectType->isDependentType())
7040 ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy);
7041 }
7042
7043 // Convert the name of the type being destructed (following the ~) into a
7044 // type (with source-location information).
7045 QualType DestructedType;
7046 TypeSourceInfo *DestructedTypeInfo = nullptr;
7047 PseudoDestructorTypeStorage Destructed;
7048 if (SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) {
7049 ParsedType T = getTypeName(*SecondTypeName.Identifier,
7050 SecondTypeName.StartLocation,
7051 S, &SS, true, false, ObjectTypePtrForLookup,
7052 /*IsCtorOrDtorName*/true);
7053 if (!T &&
7054 ((SS.isSet() && !computeDeclContext(SS, false)) ||
7055 (!SS.isSet() && ObjectType->isDependentType()))) {
7056 // The name of the type being destroyed is a dependent name, and we
7057 // couldn't find anything useful in scope. Just store the identifier and
7058 // it's location, and we'll perform (qualified) name lookup again at
7059 // template instantiation time.
7060 Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier,
7061 SecondTypeName.StartLocation);
7062 } else if (!T) {
7063 Diag(SecondTypeName.StartLocation,
7064 diag::err_pseudo_dtor_destructor_non_type)
7065 << SecondTypeName.Identifier << ObjectType;
7066 if (isSFINAEContext())
7067 return ExprError();
7068
7069 // Recover by assuming we had the right type all along.
7070 DestructedType = ObjectType;
7071 } else
7072 DestructedType = GetTypeFromParser(T, &DestructedTypeInfo);
7073 } else {
7074 // Resolve the template-id to a type.
7075 TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId;
7076 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
7077 TemplateId->NumArgs);
7078 TypeResult T = ActOnTemplateIdType(S,
7079 TemplateId->SS,
7080 TemplateId->TemplateKWLoc,
7081 TemplateId->Template,
7082 TemplateId->Name,
7083 TemplateId->TemplateNameLoc,
7084 TemplateId->LAngleLoc,
7085 TemplateArgsPtr,
7086 TemplateId->RAngleLoc,
7087 /*IsCtorOrDtorName*/true);
7088 if (T.isInvalid() || !T.get()) {
7089 // Recover by assuming we had the right type all along.
7090 DestructedType = ObjectType;
7091 } else
7092 DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo);
7093 }
7094
7095 // If we've performed some kind of recovery, (re-)build the type source
7096 // information.
7097 if (!DestructedType.isNull()) {
7098 if (!DestructedTypeInfo)
7099 DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType,
7100 SecondTypeName.StartLocation);
7101 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
7102 }
7103
7104 // Convert the name of the scope type (the type prior to '::') into a type.
7105 TypeSourceInfo *ScopeTypeInfo = nullptr;
7106 QualType ScopeType;
7107 if (FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId ||
7108 FirstTypeName.Identifier) {
7109 if (FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) {
7110 ParsedType T = getTypeName(*FirstTypeName.Identifier,
7111 FirstTypeName.StartLocation,
7112 S, &SS, true, false, ObjectTypePtrForLookup,
7113 /*IsCtorOrDtorName*/true);
7114 if (!T) {
7115 Diag(FirstTypeName.StartLocation,
7116 diag::err_pseudo_dtor_destructor_non_type)
7117 << FirstTypeName.Identifier << ObjectType;
7118
7119 if (isSFINAEContext())
7120 return ExprError();
7121
7122 // Just drop this type. It's unnecessary anyway.
7123 ScopeType = QualType();
7124 } else
7125 ScopeType = GetTypeFromParser(T, &ScopeTypeInfo);
7126 } else {
7127 // Resolve the template-id to a type.
7128 TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId;
7129 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
7130 TemplateId->NumArgs);
7131 TypeResult T = ActOnTemplateIdType(S,
7132 TemplateId->SS,
7133 TemplateId->TemplateKWLoc,
7134 TemplateId->Template,
7135 TemplateId->Name,
7136 TemplateId->TemplateNameLoc,
7137 TemplateId->LAngleLoc,
7138 TemplateArgsPtr,
7139 TemplateId->RAngleLoc,
7140 /*IsCtorOrDtorName*/true);
7141 if (T.isInvalid() || !T.get()) {
7142 // Recover by dropping this type.
7143 ScopeType = QualType();
7144 } else
7145 ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo);
7146 }
7147 }
7148
7149 if (!ScopeType.isNull() && !ScopeTypeInfo)
7150 ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType,
7151 FirstTypeName.StartLocation);
7152
7153
7154 return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS,
7155 ScopeTypeInfo, CCLoc, TildeLoc,
7156 Destructed);
7157}
7158
7159ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
7160 SourceLocation OpLoc,
7161 tok::TokenKind OpKind,
7162 SourceLocation TildeLoc,
7163 const DeclSpec& DS) {
7164 QualType ObjectType;
7165 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
7166 return ExprError();
7167
7168 QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc(),
7169 false);
7170
7171 TypeLocBuilder TLB;
7172 DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
7173 DecltypeTL.setNameLoc(DS.getTypeSpecTypeLoc());
7174 TypeSourceInfo *DestructedTypeInfo = TLB.getTypeSourceInfo(Context, T);
7175 PseudoDestructorTypeStorage Destructed(DestructedTypeInfo);
7176
7177 return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, CXXScopeSpec(),
7178 nullptr, SourceLocation(), TildeLoc,
7179 Destructed);
7180}
7181
7182ExprResult Sema::BuildCXXMemberCallExpr(Expr *E, NamedDecl *FoundDecl,
7183 CXXConversionDecl *Method,
7184 bool HadMultipleCandidates) {
7185 // Convert the expression to match the conversion function's implicit object
7186 // parameter.
7187 ExprResult Exp = PerformObjectArgumentInitialization(E, /*Qualifier=*/nullptr,
7188 FoundDecl, Method);
7189 if (Exp.isInvalid())
7190 return true;
7191
7192 if (Method->getParent()->isLambda() &&
7193 Method->getConversionType()->isBlockPointerType()) {
7194 // This is a lambda conversion to block pointer; check if the argument
7195 // was a LambdaExpr.
7196 Expr *SubE = E;
7197 CastExpr *CE = dyn_cast<CastExpr>(SubE);
7198 if (CE && CE->getCastKind() == CK_NoOp)
7199 SubE = CE->getSubExpr();
7200 SubE = SubE->IgnoreParens();
7201 if (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(SubE))
7202 SubE = BE->getSubExpr();
7203 if (isa<LambdaExpr>(SubE)) {
7204 // For the conversion to block pointer on a lambda expression, we
7205 // construct a special BlockLiteral instead; this doesn't really make
7206 // a difference in ARC, but outside of ARC the resulting block literal
7207 // follows the normal lifetime rules for block literals instead of being
7208 // autoreleased.
7209 DiagnosticErrorTrap Trap(Diags);
7210 PushExpressionEvaluationContext(
7211 ExpressionEvaluationContext::PotentiallyEvaluated);
7212 ExprResult BlockExp = BuildBlockForLambdaConversion(
7213 Exp.get()->getExprLoc(), Exp.get()->getExprLoc(), Method, Exp.get());
7214 PopExpressionEvaluationContext();
7215
7216 if (BlockExp.isInvalid())
7217 Diag(Exp.get()->getExprLoc(), diag::note_lambda_to_block_conv);
7218 return BlockExp;
7219 }
7220 }
7221
7222 MemberExpr *ME =
7223 BuildMemberExpr(Exp.get(), /*IsArrow=*/false, SourceLocation(),
7224 NestedNameSpecifierLoc(), SourceLocation(), Method,
7225 DeclAccessPair::make(FoundDecl, FoundDecl->getAccess()),
7226 HadMultipleCandidates, DeclarationNameInfo(),
7227 Context.BoundMemberTy, VK_RValue, OK_Ordinary);
7228
7229 QualType ResultType = Method->getReturnType();
7230 ExprValueKind VK = Expr::getValueKindForType(ResultType);
7231 ResultType = ResultType.getNonLValueExprType(Context);
7232
7233 CXXMemberCallExpr *CE = CXXMemberCallExpr::Create(
7234 Context, ME, /*Args=*/{}, ResultType, VK, Exp.get()->getEndLoc());
7235
7236 if (CheckFunctionCall(Method, CE,
7237 Method->getType()->castAs<FunctionProtoType>()))
7238 return ExprError();
7239
7240 return CE;
7241}
7242
7243ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
7244 SourceLocation RParen) {
7245 // If the operand is an unresolved lookup expression, the expression is ill-
7246 // formed per [over.over]p1, because overloaded function names cannot be used
7247 // without arguments except in explicit contexts.
7248 ExprResult R = CheckPlaceholderExpr(Operand);
7249 if (R.isInvalid())
7250 return R;
7251
7252 R = CheckUnevaluatedOperand(R.get());
7253 if (R.isInvalid())
7254 return ExprError();
7255
7256 Operand = R.get();
7257
7258 if (!inTemplateInstantiation() && Operand->HasSideEffects(Context, false)) {
7259 // The expression operand for noexcept is in an unevaluated expression
7260 // context, so side effects could result in unintended consequences.
7261 Diag(Operand->getExprLoc(), diag::warn_side_effects_unevaluated_context);
7262 }
7263
7264 CanThrowResult CanThrow = canThrow(Operand);
7265 return new (Context)
7266 CXXNoexceptExpr(Context.BoolTy, Operand, CanThrow, KeyLoc, RParen);
7267}
7268
7269ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation,
7270 Expr *Operand, SourceLocation RParen) {
7271 return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen);
7272}
7273
7274static bool IsSpecialDiscardedValue(Expr *E) {
7275 // In C++11, discarded-value expressions of a certain form are special,
7276 // according to [expr]p10:
7277 // The lvalue-to-rvalue conversion (4.1) is applied only if the
7278 // expression is an lvalue of volatile-qualified type and it has
7279 // one of the following forms:
7280 E = E->IgnoreParens();
7281
7282 // - id-expression (5.1.1),
7283 if (isa<DeclRefExpr>(E))
7284 return true;
7285
7286 // - subscripting (5.2.1),
7287 if (isa<ArraySubscriptExpr>(E))
7288 return true;
7289
7290 // - class member access (5.2.5),
7291 if (isa<MemberExpr>(E))
7292 return true;
7293
7294 // - indirection (5.3.1),
7295 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E))
7296 if (UO->getOpcode() == UO_Deref)
7297 return true;
7298
7299 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
7300 // - pointer-to-member operation (5.5),
7301 if (BO->isPtrMemOp())
7302 return true;
7303
7304 // - comma expression (5.18) where the right operand is one of the above.
7305 if (BO->getOpcode() == BO_Comma)
7306 return IsSpecialDiscardedValue(BO->getRHS());
7307 }
7308
7309 // - conditional expression (5.16) where both the second and the third
7310 // operands are one of the above, or
7311 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
7312 return IsSpecialDiscardedValue(CO->getTrueExpr()) &&
7313 IsSpecialDiscardedValue(CO->getFalseExpr());
7314 // The related edge case of "*x ?: *x".
7315 if (BinaryConditionalOperator *BCO =
7316 dyn_cast<BinaryConditionalOperator>(E)) {
7317 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(BCO->getTrueExpr()))
7318 return IsSpecialDiscardedValue(OVE->getSourceExpr()) &&
7319 IsSpecialDiscardedValue(BCO->getFalseExpr());
7320 }
7321
7322 // Objective-C++ extensions to the rule.
7323 if (isa<PseudoObjectExpr>(E) || isa<ObjCIvarRefExpr>(E))
7324 return true;
7325
7326 return false;
7327}
7328
7329/// Perform the conversions required for an expression used in a
7330/// context that ignores the result.
7331ExprResult Sema::IgnoredValueConversions(Expr *E) {
7332 if (E->hasPlaceholderType()) {
7333 ExprResult result = CheckPlaceholderExpr(E);
7334 if (result.isInvalid()) return E;
7335 E = result.get();
7336 }
7337
7338 // C99 6.3.2.1:
7339 // [Except in specific positions,] an lvalue that does not have
7340 // array type is converted to the value stored in the
7341 // designated object (and is no longer an lvalue).
7342 if (E->isRValue()) {
7343 // In C, function designators (i.e. expressions of function type)
7344 // are r-values, but we still want to do function-to-pointer decay
7345 // on them. This is both technically correct and convenient for
7346 // some clients.
7347 if (!getLangOpts().CPlusPlus && E->getType()->isFunctionType())
7348 return DefaultFunctionArrayConversion(E);
7349
7350 return E;
7351 }
7352
7353 if (getLangOpts().CPlusPlus) {
7354 // The C++11 standard defines the notion of a discarded-value expression;
7355 // normally, we don't need to do anything to handle it, but if it is a
7356 // volatile lvalue with a special form, we perform an lvalue-to-rvalue
7357 // conversion.
7358 if (getLangOpts().CPlusPlus11 && E->isGLValue() &&
7359 E->getType().isVolatileQualified()) {
7360 if (IsSpecialDiscardedValue(E)) {
7361 ExprResult Res = DefaultLvalueConversion(E);
7362 if (Res.isInvalid())
7363 return E;
7364 E = Res.get();
7365 } else {
7366 // Per C++2a [expr.ass]p5, a volatile assignment is not deprecated if
7367 // it occurs as a discarded-value expression.
7368 CheckUnusedVolatileAssignment(E);
7369 }
7370 }
7371
7372 // C++1z:
7373 // If the expression is a prvalue after this optional conversion, the
7374 // temporary materialization conversion is applied.
7375 //
7376 // We skip this step: IR generation is able to synthesize the storage for
7377 // itself in the aggregate case, and adding the extra node to the AST is
7378 // just clutter.
7379 // FIXME: We don't emit lifetime markers for the temporaries due to this.
7380 // FIXME: Do any other AST consumers care about this?
7381 return E;
7382 }
7383
7384 // GCC seems to also exclude expressions of incomplete enum type.
7385 if (const EnumType *T = E->getType()->getAs<EnumType>()) {
7386 if (!T->getDecl()->isComplete()) {
7387 // FIXME: stupid workaround for a codegen bug!
7388 E = ImpCastExprToType(E, Context.VoidTy, CK_ToVoid).get();
7389 return E;
7390 }
7391 }
7392
7393 ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
7394 if (Res.isInvalid())
7395 return E;
7396 E = Res.get();
7397
7398 if (!E->getType()->isVoidType())
7399 RequireCompleteType(E->getExprLoc(), E->getType(),
7400 diag::err_incomplete_type);
7401 return E;
7402}
7403
7404ExprResult Sema::CheckUnevaluatedOperand(Expr *E) {
7405 // Per C++2a [expr.ass]p5, a volatile assignment is not deprecated if
7406 // it occurs as an unevaluated operand.
7407 CheckUnusedVolatileAssignment(E);
7408
7409 return E;
7410}
7411
7412// If we can unambiguously determine whether Var can never be used
7413// in a constant expression, return true.
7414// - if the variable and its initializer are non-dependent, then
7415// we can unambiguously check if the variable is a constant expression.
7416// - if the initializer is not value dependent - we can determine whether
7417// it can be used to initialize a constant expression. If Init can not
7418// be used to initialize a constant expression we conclude that Var can
7419// never be a constant expression.
7420// - FXIME: if the initializer is dependent, we can still do some analysis and
7421// identify certain cases unambiguously as non-const by using a Visitor:
7422// - such as those that involve odr-use of a ParmVarDecl, involve a new
7423// delete, lambda-expr, dynamic-cast, reinterpret-cast etc...
7424static inline bool VariableCanNeverBeAConstantExpression(VarDecl *Var,
7425 ASTContext &Context) {
7426 if (isa<ParmVarDecl>(Var)) return true;
7427 const VarDecl *DefVD = nullptr;
7428
7429 // If there is no initializer - this can not be a constant expression.
7430 if (!Var->getAnyInitializer(DefVD)) return true;
7431 assert(DefVD)((DefVD) ? static_cast<void> (0) : __assert_fail ("DefVD"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 7431, __PRETTY_FUNCTION__))
;
7432 if (DefVD->isWeak()) return false;
7433 EvaluatedStmt *Eval = DefVD->ensureEvaluatedStmt();
7434
7435 Expr *Init = cast<Expr>(Eval->Value);
7436
7437 if (Var->getType()->isDependentType() || Init->isValueDependent()) {
7438 // FIXME: Teach the constant evaluator to deal with the non-dependent parts
7439 // of value-dependent expressions, and use it here to determine whether the
7440 // initializer is a potential constant expression.
7441 return false;
7442 }
7443
7444 return !Var->isUsableInConstantExpressions(Context);
7445}
7446
7447/// Check if the current lambda has any potential captures
7448/// that must be captured by any of its enclosing lambdas that are ready to
7449/// capture. If there is a lambda that can capture a nested
7450/// potential-capture, go ahead and do so. Also, check to see if any
7451/// variables are uncaptureable or do not involve an odr-use so do not
7452/// need to be captured.
7453
7454static void CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(
7455 Expr *const FE, LambdaScopeInfo *const CurrentLSI, Sema &S) {
7456
7457 assert(!S.isUnevaluatedContext())((!S.isUnevaluatedContext()) ? static_cast<void> (0) : __assert_fail
("!S.isUnevaluatedContext()", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 7457, __PRETTY_FUNCTION__))
;
7458 assert(S.CurContext->isDependentContext())((S.CurContext->isDependentContext()) ? static_cast<void
> (0) : __assert_fail ("S.CurContext->isDependentContext()"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 7458, __PRETTY_FUNCTION__))
;
7459#ifndef NDEBUG
7460 DeclContext *DC = S.CurContext;
7461 while (DC && isa<CapturedDecl>(DC))
7462 DC = DC->getParent();
7463 assert(((CurrentLSI->CallOperator == DC && "The current call operator must be synchronized with Sema's CurContext"
) ? static_cast<void> (0) : __assert_fail ("CurrentLSI->CallOperator == DC && \"The current call operator must be synchronized with Sema's CurContext\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 7465, __PRETTY_FUNCTION__))
7464 CurrentLSI->CallOperator == DC &&((CurrentLSI->CallOperator == DC && "The current call operator must be synchronized with Sema's CurContext"
) ? static_cast<void> (0) : __assert_fail ("CurrentLSI->CallOperator == DC && \"The current call operator must be synchronized with Sema's CurContext\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 7465, __PRETTY_FUNCTION__))
7465 "The current call operator must be synchronized with Sema's CurContext")((CurrentLSI->CallOperator == DC && "The current call operator must be synchronized with Sema's CurContext"
) ? static_cast<void> (0) : __assert_fail ("CurrentLSI->CallOperator == DC && \"The current call operator must be synchronized with Sema's CurContext\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 7465, __PRETTY_FUNCTION__))
;
7466#endif // NDEBUG
7467
7468 const bool IsFullExprInstantiationDependent = FE->isInstantiationDependent();
7469
7470 // All the potentially captureable variables in the current nested
7471 // lambda (within a generic outer lambda), must be captured by an
7472 // outer lambda that is enclosed within a non-dependent context.
7473 CurrentLSI->visitPotentialCaptures([&] (VarDecl *Var, Expr *VarExpr) {
7474 // If the variable is clearly identified as non-odr-used and the full
7475 // expression is not instantiation dependent, only then do we not
7476 // need to check enclosing lambda's for speculative captures.
7477 // For e.g.:
7478 // Even though 'x' is not odr-used, it should be captured.
7479 // int test() {
7480 // const int x = 10;
7481 // auto L = [=](auto a) {
7482 // (void) +x + a;
7483 // };
7484 // }
7485 if (CurrentLSI->isVariableExprMarkedAsNonODRUsed(VarExpr) &&
7486 !IsFullExprInstantiationDependent)
7487 return;
7488
7489 // If we have a capture-capable lambda for the variable, go ahead and
7490 // capture the variable in that lambda (and all its enclosing lambdas).
7491 if (const Optional<unsigned> Index =
7492 getStackIndexOfNearestEnclosingCaptureCapableLambda(
7493 S.FunctionScopes, Var, S))
7494 S.MarkCaptureUsedInEnclosingContext(Var, VarExpr->getExprLoc(),
7495 Index.getValue());
7496 const bool IsVarNeverAConstantExpression =
7497 VariableCanNeverBeAConstantExpression(Var, S.Context);
7498 if (!IsFullExprInstantiationDependent || IsVarNeverAConstantExpression) {
7499 // This full expression is not instantiation dependent or the variable
7500 // can not be used in a constant expression - which means
7501 // this variable must be odr-used here, so diagnose a
7502 // capture violation early, if the variable is un-captureable.
7503 // This is purely for diagnosing errors early. Otherwise, this
7504 // error would get diagnosed when the lambda becomes capture ready.
7505 QualType CaptureType, DeclRefType;
7506 SourceLocation ExprLoc = VarExpr->getExprLoc();
7507 if (S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit,
7508 /*EllipsisLoc*/ SourceLocation(),
7509 /*BuildAndDiagnose*/false, CaptureType,
7510 DeclRefType, nullptr)) {
7511 // We will never be able to capture this variable, and we need
7512 // to be able to in any and all instantiations, so diagnose it.
7513 S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit,
7514 /*EllipsisLoc*/ SourceLocation(),
7515 /*BuildAndDiagnose*/true, CaptureType,
7516 DeclRefType, nullptr);
7517 }
7518 }
7519 });
7520
7521 // Check if 'this' needs to be captured.
7522 if (CurrentLSI->hasPotentialThisCapture()) {
7523 // If we have a capture-capable lambda for 'this', go ahead and capture
7524 // 'this' in that lambda (and all its enclosing lambdas).
7525 if (const Optional<unsigned> Index =
7526 getStackIndexOfNearestEnclosingCaptureCapableLambda(
7527 S.FunctionScopes, /*0 is 'this'*/ nullptr, S)) {
7528 const unsigned FunctionScopeIndexOfCapturableLambda = Index.getValue();
7529 S.CheckCXXThisCapture(CurrentLSI->PotentialThisCaptureLocation,
7530 /*Explicit*/ false, /*BuildAndDiagnose*/ true,
7531 &FunctionScopeIndexOfCapturableLambda);
7532 }
7533 }
7534
7535 // Reset all the potential captures at the end of each full-expression.
7536 CurrentLSI->clearPotentialCaptures();
7537}
7538
7539static ExprResult attemptRecovery(Sema &SemaRef,
7540 const TypoCorrectionConsumer &Consumer,
7541 const TypoCorrection &TC) {
7542 LookupResult R(SemaRef, Consumer.getLookupResult().getLookupNameInfo(),
7543 Consumer.getLookupResult().getLookupKind());
7544 const CXXScopeSpec *SS = Consumer.getSS();
7545 CXXScopeSpec NewSS;
7546
7547 // Use an approprate CXXScopeSpec for building the expr.
7548 if (auto *NNS = TC.getCorrectionSpecifier())
7549 NewSS.MakeTrivial(SemaRef.Context, NNS, TC.getCorrectionRange());
7550 else if (SS && !TC.WillReplaceSpecifier())
7551 NewSS = *SS;
7552
7553 if (auto *ND = TC.getFoundDecl()) {
7554 R.setLookupName(ND->getDeclName());
7555 R.addDecl(ND);
7556 if (ND->isCXXClassMember()) {
7557 // Figure out the correct naming class to add to the LookupResult.
7558 CXXRecordDecl *Record = nullptr;
7559 if (auto *NNS = TC.getCorrectionSpecifier())
7560 Record = NNS->getAsType()->getAsCXXRecordDecl();
7561 if (!Record)
7562 Record =
7563 dyn_cast<CXXRecordDecl>(ND->getDeclContext()->getRedeclContext());
7564 if (Record)
7565 R.setNamingClass(Record);
7566
7567 // Detect and handle the case where the decl might be an implicit
7568 // member.
7569 bool MightBeImplicitMember;
7570 if (!Consumer.isAddressOfOperand())
7571 MightBeImplicitMember = true;
7572 else if (!NewSS.isEmpty())
7573 MightBeImplicitMember = false;
7574 else if (R.isOverloadedResult())
7575 MightBeImplicitMember = false;
7576 else if (R.isUnresolvableResult())
7577 MightBeImplicitMember = true;
7578 else
7579 MightBeImplicitMember = isa<FieldDecl>(ND) ||
7580 isa<IndirectFieldDecl>(ND) ||
7581 isa<MSPropertyDecl>(ND);
7582
7583 if (MightBeImplicitMember)
7584 return SemaRef.BuildPossibleImplicitMemberExpr(
7585 NewSS, /*TemplateKWLoc*/ SourceLocation(), R,
7586 /*TemplateArgs*/ nullptr, /*S*/ nullptr);
7587 } else if (auto *Ivar = dyn_cast<ObjCIvarDecl>(ND)) {
7588 return SemaRef.LookupInObjCMethod(R, Consumer.getScope(),
7589 Ivar->getIdentifier());
7590 }
7591 }
7592
7593 return SemaRef.BuildDeclarationNameExpr(NewSS, R, /*NeedsADL*/ false,
7594 /*AcceptInvalidDecl*/ true);
7595}
7596
7597namespace {
7598class FindTypoExprs : public RecursiveASTVisitor<FindTypoExprs> {
7599 llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs;
7600
7601public:
7602 explicit FindTypoExprs(llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs)
7603 : TypoExprs(TypoExprs) {}
7604 bool VisitTypoExpr(TypoExpr *TE) {
7605 TypoExprs.insert(TE);
7606 return true;
7607 }
7608};
7609
7610class TransformTypos : public TreeTransform<TransformTypos> {
7611 typedef TreeTransform<TransformTypos> BaseTransform;
7612
7613 VarDecl *InitDecl; // A decl to avoid as a correction because it is in the
7614 // process of being initialized.
7615 llvm::function_ref<ExprResult(Expr *)> ExprFilter;
7616 llvm::SmallSetVector<TypoExpr *, 2> TypoExprs, AmbiguousTypoExprs;
7617 llvm::SmallDenseMap<TypoExpr *, ExprResult, 2> TransformCache;
7618 llvm::SmallDenseMap<OverloadExpr *, Expr *, 4> OverloadResolution;
7619
7620 /// Emit diagnostics for all of the TypoExprs encountered.
7621 ///
7622 /// If the TypoExprs were successfully corrected, then the diagnostics should
7623 /// suggest the corrections. Otherwise the diagnostics will not suggest
7624 /// anything (having been passed an empty TypoCorrection).
7625 ///
7626 /// If we've failed to correct due to ambiguous corrections, we need to
7627 /// be sure to pass empty corrections and replacements. Otherwise it's
7628 /// possible that the Consumer has a TypoCorrection that failed to ambiguity
7629 /// and we don't want to report those diagnostics.
7630 void EmitAllDiagnostics(bool IsAmbiguous) {
7631 for (TypoExpr *TE : TypoExprs) {
7632 auto &State = SemaRef.getTypoExprState(TE);
7633 if (State.DiagHandler) {
7634 TypoCorrection TC = IsAmbiguous
7635 ? TypoCorrection() : State.Consumer->getCurrentCorrection();
7636 ExprResult Replacement = IsAmbiguous ? ExprError() : TransformCache[TE];
7637
7638 // Extract the NamedDecl from the transformed TypoExpr and add it to the
7639 // TypoCorrection, replacing the existing decls. This ensures the right
7640 // NamedDecl is used in diagnostics e.g. in the case where overload
7641 // resolution was used to select one from several possible decls that
7642 // had been stored in the TypoCorrection.
7643 if (auto *ND = getDeclFromExpr(
7644 Replacement.isInvalid() ? nullptr : Replacement.get()))
7645 TC.setCorrectionDecl(ND);
7646
7647 State.DiagHandler(TC);
7648 }
7649 SemaRef.clearDelayedTypo(TE);
7650 }
7651 }
7652
7653 /// If corrections for the first TypoExpr have been exhausted for a
7654 /// given combination of the other TypoExprs, retry those corrections against
7655 /// the next combination of substitutions for the other TypoExprs by advancing
7656 /// to the next potential correction of the second TypoExpr. For the second
7657 /// and subsequent TypoExprs, if its stream of corrections has been exhausted,
7658 /// the stream is reset and the next TypoExpr's stream is advanced by one (a
7659 /// TypoExpr's correction stream is advanced by removing the TypoExpr from the
7660 /// TransformCache). Returns true if there is still any untried combinations
7661 /// of corrections.
7662 bool CheckAndAdvanceTypoExprCorrectionStreams() {
7663 for (auto TE : TypoExprs) {
7664 auto &State = SemaRef.getTypoExprState(TE);
7665 TransformCache.erase(TE);
7666 if (!State.Consumer->finished())
7667 return true;
7668 State.Consumer->resetCorrectionStream();
7669 }
7670 return false;
7671 }
7672
7673 NamedDecl *getDeclFromExpr(Expr *E) {
7674 if (auto *OE = dyn_cast_or_null<OverloadExpr>(E))
7675 E = OverloadResolution[OE];
7676
7677 if (!E)
7678 return nullptr;
7679 if (auto *DRE = dyn_cast<DeclRefExpr>(E))
7680 return DRE->getFoundDecl();
7681 if (auto *ME = dyn_cast<MemberExpr>(E))
7682 return ME->getFoundDecl();
7683 // FIXME: Add any other expr types that could be be seen by the delayed typo
7684 // correction TreeTransform for which the corresponding TypoCorrection could
7685 // contain multiple decls.
7686 return nullptr;
7687 }
7688
7689 ExprResult TryTransform(Expr *E) {
7690 Sema::SFINAETrap Trap(SemaRef);
7691 ExprResult Res = TransformExpr(E);
7692 if (Trap.hasErrorOccurred() || Res.isInvalid())
7693 return ExprError();
7694
7695 return ExprFilter(Res.get());
7696 }
7697
7698 // Since correcting typos may intoduce new TypoExprs, this function
7699 // checks for new TypoExprs and recurses if it finds any. Note that it will
7700 // only succeed if it is able to correct all typos in the given expression.
7701 ExprResult CheckForRecursiveTypos(ExprResult Res, bool &IsAmbiguous) {
7702 if (Res.isInvalid()) {
7703 return Res;
7704 }
7705 // Check to see if any new TypoExprs were created. If so, we need to recurse
7706 // to check their validity.
7707 Expr *FixedExpr = Res.get();
7708
7709 auto SavedTypoExprs = std::move(TypoExprs);
7710 auto SavedAmbiguousTypoExprs = std::move(AmbiguousTypoExprs);
7711 TypoExprs.clear();
7712 AmbiguousTypoExprs.clear();
7713
7714 FindTypoExprs(TypoExprs).TraverseStmt(FixedExpr);
7715 if (!TypoExprs.empty()) {
7716 // Recurse to handle newly created TypoExprs. If we're not able to
7717 // handle them, discard these TypoExprs.
7718 ExprResult RecurResult =
7719 RecursiveTransformLoop(FixedExpr, IsAmbiguous);
7720 if (RecurResult.isInvalid()) {
7721 Res = ExprError();
7722 // Recursive corrections didn't work, wipe them away and don't add
7723 // them to the TypoExprs set. Remove them from Sema's TypoExpr list
7724 // since we don't want to clear them twice. Note: it's possible the
7725 // TypoExprs were created recursively and thus won't be in our
7726 // Sema's TypoExprs - they were created in our `RecursiveTransformLoop`.
7727 auto &SemaTypoExprs = SemaRef.TypoExprs;
7728 for (auto TE : TypoExprs) {
7729 TransformCache.erase(TE);
7730 SemaRef.clearDelayedTypo(TE);
7731
7732 auto SI = find(SemaTypoExprs, TE);
7733 if (SI != SemaTypoExprs.end()) {
7734 SemaTypoExprs.erase(SI);
7735 }
7736 }
7737 } else {
7738 // TypoExpr is valid: add newly created TypoExprs since we were
7739 // able to correct them.
7740 Res = RecurResult;
7741 SavedTypoExprs.set_union(TypoExprs);
7742 }
7743 }
7744
7745 TypoExprs = std::move(SavedTypoExprs);
7746 AmbiguousTypoExprs = std::move(SavedAmbiguousTypoExprs);
7747
7748 return Res;
7749 }
7750
7751 // Try to transform the given expression, looping through the correction
7752 // candidates with `CheckAndAdvanceTypoExprCorrectionStreams`.
7753 //
7754 // If valid ambiguous typo corrections are seen, `IsAmbiguous` is set to
7755 // true and this method immediately will return an `ExprError`.
7756 ExprResult RecursiveTransformLoop(Expr *E, bool &IsAmbiguous) {
7757 ExprResult Res;
7758 auto SavedTypoExprs = std::move(SemaRef.TypoExprs);
7759 SemaRef.TypoExprs.clear();
7760
7761 while (true) {
7762 Res = CheckForRecursiveTypos(TryTransform(E), IsAmbiguous);
7763
7764 // Recursion encountered an ambiguous correction. This means that our
7765 // correction itself is ambiguous, so stop now.
7766 if (IsAmbiguous)
7767 break;
7768
7769 // If the transform is still valid after checking for any new typos,
7770 // it's good to go.
7771 if (!Res.isInvalid())
7772 break;
7773
7774 // The transform was invalid, see if we have any TypoExprs with untried
7775 // correction candidates.
7776 if (!CheckAndAdvanceTypoExprCorrectionStreams())
7777 break;
7778 }
7779
7780 // If we found a valid result, double check to make sure it's not ambiguous.
7781 if (!IsAmbiguous && !Res.isInvalid() && !AmbiguousTypoExprs.empty()) {
7782 auto SavedTransformCache = std::move(TransformCache);
7783 TransformCache.clear();
7784 // Ensure none of the TypoExprs have multiple typo correction candidates
7785 // with the same edit length that pass all the checks and filters.
7786 while (!AmbiguousTypoExprs.empty()) {
7787 auto TE = AmbiguousTypoExprs.back();
7788
7789 // TryTransform itself can create new Typos, adding them to the TypoExpr map
7790 // and invalidating our TypoExprState, so always fetch it instead of storing.
7791 SemaRef.getTypoExprState(TE).Consumer->saveCurrentPosition();
7792
7793 TypoCorrection TC = SemaRef.getTypoExprState(TE).Consumer->peekNextCorrection();
7794 TypoCorrection Next;
7795 do {
7796 // Fetch the next correction by erasing the typo from the cache and calling
7797 // `TryTransform` which will iterate through corrections in
7798 // `TransformTypoExpr`.
7799 TransformCache.erase(TE);
7800 ExprResult AmbigRes = CheckForRecursiveTypos(TryTransform(E), IsAmbiguous);
7801
7802 if (!AmbigRes.isInvalid() || IsAmbiguous) {
7803 SemaRef.getTypoExprState(TE).Consumer->resetCorrectionStream();
7804 SavedTransformCache.erase(TE);
7805 Res = ExprError();
7806 IsAmbiguous = true;
7807 break;
7808 }
7809 } while ((Next = SemaRef.getTypoExprState(TE).Consumer->peekNextCorrection()) &&
7810 Next.getEditDistance(false) == TC.getEditDistance(false));
7811
7812 if (IsAmbiguous)
7813 break;
7814
7815 AmbiguousTypoExprs.remove(TE);
7816 SemaRef.getTypoExprState(TE).Consumer->restoreSavedPosition();
7817 }
7818 TransformCache = std::move(SavedTransformCache);
7819 }
7820
7821 // Wipe away any newly created TypoExprs that we don't know about. Since we
7822 // clear any invalid TypoExprs in `CheckForRecursiveTypos`, this is only
7823 // possible if a `TypoExpr` is created during a transformation but then
7824 // fails before we can discover it.
7825 auto &SemaTypoExprs = SemaRef.TypoExprs;
7826 for (auto Iterator = SemaTypoExprs.begin(); Iterator != SemaTypoExprs.end();) {
7827 auto TE = *Iterator;
7828 auto FI = find(TypoExprs, TE);
7829 if (FI != TypoExprs.end()) {
7830 Iterator++;
7831 continue;
7832 }
7833 SemaRef.clearDelayedTypo(TE);
7834 Iterator = SemaTypoExprs.erase(Iterator);
7835 }
7836 SemaRef.TypoExprs = std::move(SavedTypoExprs);
7837
7838 return Res;
7839 }
7840
7841public:
7842 TransformTypos(Sema &SemaRef, VarDecl *InitDecl, llvm::function_ref<ExprResult(Expr *)> Filter)
7843 : BaseTransform(SemaRef), InitDecl(InitDecl), ExprFilter(Filter) {}
7844
7845 ExprResult RebuildCallExpr(Expr *Callee, SourceLocation LParenLoc,
7846 MultiExprArg Args,
7847 SourceLocation RParenLoc,
7848 Expr *ExecConfig = nullptr) {
7849 auto Result = BaseTransform::RebuildCallExpr(Callee, LParenLoc, Args,
7850 RParenLoc, ExecConfig);
7851 if (auto *OE = dyn_cast<OverloadExpr>(Callee)) {
7852 if (Result.isUsable()) {
7853 Expr *ResultCall = Result.get();
7854 if (auto *BE = dyn_cast<CXXBindTemporaryExpr>(ResultCall))
7855 ResultCall = BE->getSubExpr();
7856 if (auto *CE = dyn_cast<CallExpr>(ResultCall))
7857 OverloadResolution[OE] = CE->getCallee();
7858 }
7859 }
7860 return Result;
7861 }
7862
7863 ExprResult TransformLambdaExpr(LambdaExpr *E) { return Owned(E); }
7864
7865 ExprResult TransformBlockExpr(BlockExpr *E) { return Owned(E); }
7866
7867 ExprResult Transform(Expr *E) {
7868 bool IsAmbiguous = false;
7869 ExprResult Res = RecursiveTransformLoop(E, IsAmbiguous);
7870
7871 if (!Res.isUsable())
7872 FindTypoExprs(TypoExprs).TraverseStmt(E);
7873
7874 EmitAllDiagnostics(IsAmbiguous);
7875
7876 return Res;
7877 }
7878
7879 ExprResult TransformTypoExpr(TypoExpr *E) {
7880 // If the TypoExpr hasn't been seen before, record it. Otherwise, return the
7881 // cached transformation result if there is one and the TypoExpr isn't the
7882 // first one that was encountered.
7883 auto &CacheEntry = TransformCache[E];
7884 if (!TypoExprs.insert(E) && !CacheEntry.isUnset()) {
7885 return CacheEntry;
7886 }
7887
7888 auto &State = SemaRef.getTypoExprState(E);
7889 assert(State.Consumer && "Cannot transform a cleared TypoExpr")((State.Consumer && "Cannot transform a cleared TypoExpr"
) ? static_cast<void> (0) : __assert_fail ("State.Consumer && \"Cannot transform a cleared TypoExpr\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 7889, __PRETTY_FUNCTION__))
;
7890
7891 // For the first TypoExpr and an uncached TypoExpr, find the next likely
7892 // typo correction and return it.
7893 while (TypoCorrection TC = State.Consumer->getNextCorrection()) {
7894 if (InitDecl && TC.getFoundDecl() == InitDecl)
7895 continue;
7896 // FIXME: If we would typo-correct to an invalid declaration, it's
7897 // probably best to just suppress all errors from this typo correction.
7898 ExprResult NE = State.RecoveryHandler ?
7899 State.RecoveryHandler(SemaRef, E, TC) :
7900 attemptRecovery(SemaRef, *State.Consumer, TC);
7901 if (!NE.isInvalid()) {
7902 // Check whether there may be a second viable correction with the same
7903 // edit distance; if so, remember this TypoExpr may have an ambiguous
7904 // correction so it can be more thoroughly vetted later.
7905 TypoCorrection Next;
7906 if ((Next = State.Consumer->peekNextCorrection()) &&
7907 Next.getEditDistance(false) == TC.getEditDistance(false)) {
7908 AmbiguousTypoExprs.insert(E);
7909 } else {
7910 AmbiguousTypoExprs.remove(E);
7911 }
7912 assert(!NE.isUnset() &&((!NE.isUnset() && "Typo was transformed into a valid-but-null ExprResult"
) ? static_cast<void> (0) : __assert_fail ("!NE.isUnset() && \"Typo was transformed into a valid-but-null ExprResult\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 7913, __PRETTY_FUNCTION__))
7913 "Typo was transformed into a valid-but-null ExprResult")((!NE.isUnset() && "Typo was transformed into a valid-but-null ExprResult"
) ? static_cast<void> (0) : __assert_fail ("!NE.isUnset() && \"Typo was transformed into a valid-but-null ExprResult\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 7913, __PRETTY_FUNCTION__))
;
7914 return CacheEntry = NE;
7915 }
7916 }
7917 return CacheEntry = ExprError();
7918 }
7919};
7920}
7921
7922ExprResult
7923Sema::CorrectDelayedTyposInExpr(Expr *E, VarDecl *InitDecl,
7924 llvm::function_ref<ExprResult(Expr *)> Filter) {
7925 // If the current evaluation context indicates there are uncorrected typos
7926 // and the current expression isn't guaranteed to not have typos, try to
7927 // resolve any TypoExpr nodes that might be in the expression.
7928 if (E && !ExprEvalContexts.empty() && ExprEvalContexts.back().NumTypos &&
7929 (E->isTypeDependent() || E->isValueDependent() ||
7930 E->isInstantiationDependent())) {
7931 auto TyposResolved = DelayedTypos.size();
7932 auto Result = TransformTypos(*this, InitDecl, Filter).Transform(E);
7933 TyposResolved -= DelayedTypos.size();
7934 if (Result.isInvalid() || Result.get() != E) {
7935 ExprEvalContexts.back().NumTypos -= TyposResolved;
7936 return Result;
7937 }
7938 assert(TyposResolved == 0 && "Corrected typo but got same Expr back?")((TyposResolved == 0 && "Corrected typo but got same Expr back?"
) ? static_cast<void> (0) : __assert_fail ("TyposResolved == 0 && \"Corrected typo but got same Expr back?\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 7938, __PRETTY_FUNCTION__))
;
7939 }
7940 return E;
7941}
7942
7943ExprResult Sema::ActOnFinishFullExpr(Expr *FE, SourceLocation CC,
7944 bool DiscardedValue,
7945 bool IsConstexpr) {
7946 ExprResult FullExpr = FE;
7947
7948 if (!FullExpr.get())
7949 return ExprError();
7950
7951 if (DiagnoseUnexpandedParameterPack(FullExpr.get()))
7952 return ExprError();
7953
7954 if (DiscardedValue) {
7955 // Top-level expressions default to 'id' when we're in a debugger.
7956 if (getLangOpts().DebuggerCastResultToId &&
7957 FullExpr.get()->getType() == Context.UnknownAnyTy) {
7958 FullExpr = forceUnknownAnyToType(FullExpr.get(), Context.getObjCIdType());
7959 if (FullExpr.isInvalid())
7960 return ExprError();
7961 }
7962
7963 FullExpr = CheckPlaceholderExpr(FullExpr.get());
7964 if (FullExpr.isInvalid())
7965 return ExprError();
7966
7967 FullExpr = IgnoredValueConversions(FullExpr.get());
7968 if (FullExpr.isInvalid())
7969 return ExprError();
7970
7971 DiagnoseUnusedExprResult(FullExpr.get());
7972 }
7973
7974 FullExpr = CorrectDelayedTyposInExpr(FullExpr.get());
7975 if (FullExpr.isInvalid())
7976 return ExprError();
7977
7978 CheckCompletedExpr(FullExpr.get(), CC, IsConstexpr);
7979
7980 // At the end of this full expression (which could be a deeply nested
7981 // lambda), if there is a potential capture within the nested lambda,
7982 // have the outer capture-able lambda try and capture it.
7983 // Consider the following code:
7984 // void f(int, int);
7985 // void f(const int&, double);
7986 // void foo() {
7987 // const int x = 10, y = 20;
7988 // auto L = [=](auto a) {
7989 // auto M = [=](auto b) {
7990 // f(x, b); <-- requires x to be captured by L and M
7991 // f(y, a); <-- requires y to be captured by L, but not all Ms
7992 // };
7993 // };
7994 // }
7995
7996 // FIXME: Also consider what happens for something like this that involves
7997 // the gnu-extension statement-expressions or even lambda-init-captures:
7998 // void f() {
7999 // const int n = 0;
8000 // auto L = [&](auto a) {
8001 // +n + ({ 0; a; });
8002 // };
8003 // }
8004 //
8005 // Here, we see +n, and then the full-expression 0; ends, so we don't
8006 // capture n (and instead remove it from our list of potential captures),
8007 // and then the full-expression +n + ({ 0; }); ends, but it's too late
8008 // for us to see that we need to capture n after all.
8009
8010 LambdaScopeInfo *const CurrentLSI =
8011 getCurLambda(/*IgnoreCapturedRegions=*/true);
8012 // FIXME: PR 17877 showed that getCurLambda() can return a valid pointer
8013 // even if CurContext is not a lambda call operator. Refer to that Bug Report
8014 // for an example of the code that might cause this asynchrony.
8015 // By ensuring we are in the context of a lambda's call operator
8016 // we can fix the bug (we only need to check whether we need to capture
8017 // if we are within a lambda's body); but per the comments in that
8018 // PR, a proper fix would entail :
8019 // "Alternative suggestion:
8020 // - Add to Sema an integer holding the smallest (outermost) scope
8021 // index that we are *lexically* within, and save/restore/set to
8022 // FunctionScopes.size() in InstantiatingTemplate's
8023 // constructor/destructor.
8024 // - Teach the handful of places that iterate over FunctionScopes to
8025 // stop at the outermost enclosing lexical scope."
8026 DeclContext *DC = CurContext;
8027 while (DC && isa<CapturedDecl>(DC))
8028 DC = DC->getParent();
8029 const bool IsInLambdaDeclContext = isLambdaCallOperator(DC);
8030 if (IsInLambdaDeclContext && CurrentLSI &&
8031 CurrentLSI->hasPotentialCaptures() && !FullExpr.isInvalid())
8032 CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(FE, CurrentLSI,
8033 *this);
8034 return MaybeCreateExprWithCleanups(FullExpr);
8035}
8036
8037StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) {
8038 if (!FullStmt) return StmtError();
8039
8040 return MaybeCreateStmtWithCleanups(FullStmt);
8041}
8042
8043Sema::IfExistsResult
8044Sema::CheckMicrosoftIfExistsSymbol(Scope *S,
8045 CXXScopeSpec &SS,
8046 const DeclarationNameInfo &TargetNameInfo) {
8047 DeclarationName TargetName = TargetNameInfo.getName();
8048 if (!TargetName)
8049 return IER_DoesNotExist;
8050
8051 // If the name itself is dependent, then the result is dependent.
8052 if (TargetName.isDependentName())
8053 return IER_Dependent;
8054
8055 // Do the redeclaration lookup in the current scope.
8056 LookupResult R(*this, TargetNameInfo, Sema::LookupAnyName,
8057 Sema::NotForRedeclaration);
8058 LookupParsedName(R, S, &SS);
8059 R.suppressDiagnostics();
8060
8061 switch (R.getResultKind()) {
8062 case LookupResult::Found:
8063 case LookupResult::FoundOverloaded:
8064 case LookupResult::FoundUnresolvedValue:
8065 case LookupResult::Ambiguous:
8066 return IER_Exists;
8067
8068 case LookupResult::NotFound:
8069 return IER_DoesNotExist;
8070
8071 case LookupResult::NotFoundInCurrentInstantiation:
8072 return IER_Dependent;
8073 }
8074
8075 llvm_unreachable("Invalid LookupResult Kind!")::llvm::llvm_unreachable_internal("Invalid LookupResult Kind!"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 8075)
;
8076}
8077
8078Sema::IfExistsResult
8079Sema::CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc,
8080 bool IsIfExists, CXXScopeSpec &SS,
8081 UnqualifiedId &Name) {
8082 DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
8083
8084 // Check for an unexpanded parameter pack.
8085 auto UPPC = IsIfExists ? UPPC_IfExists : UPPC_IfNotExists;
8086 if (DiagnoseUnexpandedParameterPack(SS, UPPC) ||
8087 DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC))
8088 return IER_Error;
8089
8090 return CheckMicrosoftIfExistsSymbol(S, SS, TargetNameInfo);
8091}

/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Type.h

1//===- Type.h - C Language Family Type Representation -----------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file
10/// C Language Family Type Representation
11///
12/// This file defines the clang::Type interface and subclasses, used to
13/// represent types for languages in the C family.
14//
15//===----------------------------------------------------------------------===//
16
17#ifndef LLVM_CLANG_AST_TYPE_H
18#define LLVM_CLANG_AST_TYPE_H
19
20#include "clang/AST/NestedNameSpecifier.h"
21#include "clang/AST/TemplateName.h"
22#include "clang/Basic/AddressSpaces.h"
23#include "clang/Basic/AttrKinds.h"
24#include "clang/Basic/Diagnostic.h"
25#include "clang/Basic/ExceptionSpecificationType.h"
26#include "clang/Basic/LLVM.h"
27#include "clang/Basic/Linkage.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "clang/Basic/SourceLocation.h"
30#include "clang/Basic/Specifiers.h"
31#include "clang/Basic/Visibility.h"
32#include "llvm/ADT/APInt.h"
33#include "llvm/ADT/APSInt.h"
34#include "llvm/ADT/ArrayRef.h"
35#include "llvm/ADT/FoldingSet.h"
36#include "llvm/ADT/None.h"
37#include "llvm/ADT/Optional.h"
38#include "llvm/ADT/PointerIntPair.h"
39#include "llvm/ADT/PointerUnion.h"
40#include "llvm/ADT/StringRef.h"
41#include "llvm/ADT/Twine.h"
42#include "llvm/ADT/iterator_range.h"
43#include "llvm/Support/Casting.h"
44#include "llvm/Support/Compiler.h"
45#include "llvm/Support/ErrorHandling.h"
46#include "llvm/Support/PointerLikeTypeTraits.h"
47#include "llvm/Support/type_traits.h"
48#include "llvm/Support/TrailingObjects.h"
49#include <cassert>
50#include <cstddef>
51#include <cstdint>
52#include <cstring>
53#include <string>
54#include <type_traits>
55#include <utility>
56
57namespace clang {
58
59class ExtQuals;
60class QualType;
61class TagDecl;
62class Type;
63
64enum {
65 TypeAlignmentInBits = 4,
66 TypeAlignment = 1 << TypeAlignmentInBits
67};
68
69} // namespace clang
70
71namespace llvm {
72
73 template <typename T>
74 struct PointerLikeTypeTraits;
75 template<>
76 struct PointerLikeTypeTraits< ::clang::Type*> {
77 static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
78
79 static inline ::clang::Type *getFromVoidPointer(void *P) {
80 return static_cast< ::clang::Type*>(P);
81 }
82
83 enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
84 };
85
86 template<>
87 struct PointerLikeTypeTraits< ::clang::ExtQuals*> {
88 static inline void *getAsVoidPointer(::clang::ExtQuals *P) { return P; }
89
90 static inline ::clang::ExtQuals *getFromVoidPointer(void *P) {
91 return static_cast< ::clang::ExtQuals*>(P);
92 }
93
94 enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
95 };
96
97} // namespace llvm
98
99namespace clang {
100
101class ASTContext;
102template <typename> class CanQual;
103class CXXRecordDecl;
104class DeclContext;
105class EnumDecl;
106class Expr;
107class ExtQualsTypeCommonBase;
108class FunctionDecl;
109class IdentifierInfo;
110class NamedDecl;
111class ObjCInterfaceDecl;
112class ObjCProtocolDecl;
113class ObjCTypeParamDecl;
114struct PrintingPolicy;
115class RecordDecl;
116class Stmt;
117class TagDecl;
118class TemplateArgument;
119class TemplateArgumentListInfo;
120class TemplateArgumentLoc;
121class TemplateTypeParmDecl;
122class TypedefNameDecl;
123class UnresolvedUsingTypenameDecl;
124
125using CanQualType = CanQual<Type>;
126
127// Provide forward declarations for all of the *Type classes.
128#define TYPE(Class, Base) class Class##Type;
129#include "clang/AST/TypeNodes.inc"
130
131/// The collection of all-type qualifiers we support.
132/// Clang supports five independent qualifiers:
133/// * C99: const, volatile, and restrict
134/// * MS: __unaligned
135/// * Embedded C (TR18037): address spaces
136/// * Objective C: the GC attributes (none, weak, or strong)
137class Qualifiers {
138public:
139 enum TQ { // NOTE: These flags must be kept in sync with DeclSpec::TQ.
140 Const = 0x1,
141 Restrict = 0x2,
142 Volatile = 0x4,
143 CVRMask = Const | Volatile | Restrict
144 };
145
146 enum GC {
147 GCNone = 0,
148 Weak,
149 Strong
150 };
151
152 enum ObjCLifetime {
153 /// There is no lifetime qualification on this type.
154 OCL_None,
155
156 /// This object can be modified without requiring retains or
157 /// releases.
158 OCL_ExplicitNone,
159
160 /// Assigning into this object requires the old value to be
161 /// released and the new value to be retained. The timing of the
162 /// release of the old value is inexact: it may be moved to
163 /// immediately after the last known point where the value is
164 /// live.
165 OCL_Strong,
166
167 /// Reading or writing from this object requires a barrier call.
168 OCL_Weak,
169
170 /// Assigning into this object requires a lifetime extension.
171 OCL_Autoreleasing
172 };
173
174 enum {
175 /// The maximum supported address space number.
176 /// 23 bits should be enough for anyone.
177 MaxAddressSpace = 0x7fffffu,
178
179 /// The width of the "fast" qualifier mask.
180 FastWidth = 3,
181
182 /// The fast qualifier mask.
183 FastMask = (1 << FastWidth) - 1
184 };
185
186 /// Returns the common set of qualifiers while removing them from
187 /// the given sets.
188 static Qualifiers removeCommonQualifiers(Qualifiers &L, Qualifiers &R) {
189 // If both are only CVR-qualified, bit operations are sufficient.
190 if (!(L.Mask & ~CVRMask) && !(R.Mask & ~CVRMask)) {
191 Qualifiers Q;
192 Q.Mask = L.Mask & R.Mask;
193 L.Mask &= ~Q.Mask;
194 R.Mask &= ~Q.Mask;
195 return Q;
196 }
197
198 Qualifiers Q;
199 unsigned CommonCRV = L.getCVRQualifiers() & R.getCVRQualifiers();
200 Q.addCVRQualifiers(CommonCRV);
201 L.removeCVRQualifiers(CommonCRV);
202 R.removeCVRQualifiers(CommonCRV);
203
204 if (L.getObjCGCAttr() == R.getObjCGCAttr()) {
205 Q.setObjCGCAttr(L.getObjCGCAttr());
206 L.removeObjCGCAttr();
207 R.removeObjCGCAttr();
208 }
209
210 if (L.getObjCLifetime() == R.getObjCLifetime()) {
211 Q.setObjCLifetime(L.getObjCLifetime());
212 L.removeObjCLifetime();
213 R.removeObjCLifetime();
214 }
215
216 if (L.getAddressSpace() == R.getAddressSpace()) {
217 Q.setAddressSpace(L.getAddressSpace());
218 L.removeAddressSpace();
219 R.removeAddressSpace();
220 }
221 return Q;
222 }
223
224 static Qualifiers fromFastMask(unsigned Mask) {
225 Qualifiers Qs;
226 Qs.addFastQualifiers(Mask);
227 return Qs;
228 }
229
230 static Qualifiers fromCVRMask(unsigned CVR) {
231 Qualifiers Qs;
232 Qs.addCVRQualifiers(CVR);
233 return Qs;
234 }
235
236 static Qualifiers fromCVRUMask(unsigned CVRU) {
237 Qualifiers Qs;
238 Qs.addCVRUQualifiers(CVRU);
239 return Qs;
240 }
241
242 // Deserialize qualifiers from an opaque representation.
243 static Qualifiers fromOpaqueValue(unsigned opaque) {
244 Qualifiers Qs;
245 Qs.Mask = opaque;
246 return Qs;
247 }
248
249 // Serialize these qualifiers into an opaque representation.
250 unsigned getAsOpaqueValue() const {
251 return Mask;
252 }
253
254 bool hasConst() const { return Mask & Const; }
255 bool hasOnlyConst() const { return Mask == Const; }
256 void removeConst() { Mask &= ~Const; }
257 void addConst() { Mask |= Const; }
258
259 bool hasVolatile() const { return Mask & Volatile; }
260 bool hasOnlyVolatile() const { return Mask == Volatile; }
261 void removeVolatile() { Mask &= ~Volatile; }
262 void addVolatile() { Mask |= Volatile; }
263
264 bool hasRestrict() const { return Mask & Restrict; }
265 bool hasOnlyRestrict() const { return Mask == Restrict; }
266 void removeRestrict() { Mask &= ~Restrict; }
267 void addRestrict() { Mask |= Restrict; }
268
269 bool hasCVRQualifiers() const { return getCVRQualifiers(); }
270 unsigned getCVRQualifiers() const { return Mask & CVRMask; }
271 unsigned getCVRUQualifiers() const { return Mask & (CVRMask | UMask); }
272
273 void setCVRQualifiers(unsigned mask) {
274 assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits")((!(mask & ~CVRMask) && "bitmask contains non-CVR bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~CVRMask) && \"bitmask contains non-CVR bits\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Type.h"
, 274, __PRETTY_FUNCTION__))
;
275 Mask = (Mask & ~CVRMask) | mask;
276 }
277 void removeCVRQualifiers(unsigned mask) {
278 assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits")((!(mask & ~CVRMask) && "bitmask contains non-CVR bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~CVRMask) && \"bitmask contains non-CVR bits\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Type.h"
, 278, __PRETTY_FUNCTION__))
;
279 Mask &= ~mask;
280 }
281 void removeCVRQualifiers() {
282 removeCVRQualifiers(CVRMask);
283 }
284 void addCVRQualifiers(unsigned mask) {
285 assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits")((!(mask & ~CVRMask) && "bitmask contains non-CVR bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~CVRMask) && \"bitmask contains non-CVR bits\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Type.h"
, 285, __PRETTY_FUNCTION__))
;
286 Mask |= mask;
287 }
288 void addCVRUQualifiers(unsigned mask) {
289 assert(!(mask & ~CVRMask & ~UMask) && "bitmask contains non-CVRU bits")((!(mask & ~CVRMask & ~UMask) && "bitmask contains non-CVRU bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~CVRMask & ~UMask) && \"bitmask contains non-CVRU bits\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Type.h"
, 289, __PRETTY_FUNCTION__))
;
290 Mask |= mask;
291 }
292
293 bool hasUnaligned() const { return Mask & UMask; }
294 void setUnaligned(bool flag) {
295 Mask = (Mask & ~UMask) | (flag ? UMask : 0);
296 }
297 void removeUnaligned() { Mask &= ~UMask; }
298 void addUnaligned() { Mask |= UMask; }
299
300 bool hasObjCGCAttr() const { return Mask & GCAttrMask; }
301 GC getObjCGCAttr() const { return GC((Mask & GCAttrMask) >> GCAttrShift); }
302 void setObjCGCAttr(GC type) {
303 Mask = (Mask & ~GCAttrMask) | (type << GCAttrShift);
304 }
305 void removeObjCGCAttr() { setObjCGCAttr(GCNone); }
306 void addObjCGCAttr(GC type) {
307 assert(type)((type) ? static_cast<void> (0) : __assert_fail ("type"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Type.h"
, 307, __PRETTY_FUNCTION__))
;
308 setObjCGCAttr(type);
309 }
310 Qualifiers withoutObjCGCAttr() const {
311 Qualifiers qs = *this;
312 qs.removeObjCGCAttr();
313 return qs;
314 }
315 Qualifiers withoutObjCLifetime() const {
316 Qualifiers qs = *this;
317 qs.removeObjCLifetime();
318 return qs;
319 }
320 Qualifiers withoutAddressSpace() const {
321 Qualifiers qs = *this;
322 qs.removeAddressSpace();
323 return qs;
324 }
325
326 bool hasObjCLifetime() const { return Mask & LifetimeMask; }
327 ObjCLifetime getObjCLifetime() const {
328 return ObjCLifetime((Mask & LifetimeMask) >> LifetimeShift);
329 }
330 void setObjCLifetime(ObjCLifetime type) {
331 Mask = (Mask & ~LifetimeMask) | (type << LifetimeShift);
332 }
333 void removeObjCLifetime() { setObjCLifetime(OCL_None); }
334 void addObjCLifetime(ObjCLifetime type) {
335 assert(type)((type) ? static_cast<void> (0) : __assert_fail ("type"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Type.h"
, 335, __PRETTY_FUNCTION__))
;
336 assert(!hasObjCLifetime())((!hasObjCLifetime()) ? static_cast<void> (0) : __assert_fail
("!hasObjCLifetime()", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Type.h"
, 336, __PRETTY_FUNCTION__))
;
337 Mask |= (type << LifetimeShift);
338 }
339
340 /// True if the lifetime is neither None or ExplicitNone.
341 bool hasNonTrivialObjCLifetime() const {
342 ObjCLifetime lifetime = getObjCLifetime();
343 return (lifetime > OCL_ExplicitNone);
344 }
345
346 /// True if the lifetime is either strong or weak.
347 bool hasStrongOrWeakObjCLifetime() const {
348 ObjCLifetime lifetime = getObjCLifetime();
349 return (lifetime == OCL_Strong || lifetime == OCL_Weak);
350 }
351
352 bool hasAddressSpace() const { return Mask & AddressSpaceMask; }
353 LangAS getAddressSpace() const {
354 return static_cast<LangAS>(Mask >> AddressSpaceShift);
355 }
356 bool hasTargetSpecificAddressSpace() const {
357 return isTargetAddressSpace(getAddressSpace());
358 }
359 /// Get the address space attribute value to be printed by diagnostics.
360 unsigned getAddressSpaceAttributePrintValue() const {
361 auto Addr = getAddressSpace();
362 // This function is not supposed to be used with language specific
363 // address spaces. If that happens, the diagnostic message should consider
364 // printing the QualType instead of the address space value.
365 assert(Addr == LangAS::Default || hasTargetSpecificAddressSpace())((Addr == LangAS::Default || hasTargetSpecificAddressSpace())
? static_cast<void> (0) : __assert_fail ("Addr == LangAS::Default || hasTargetSpecificAddressSpace()"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Type.h"
, 365, __PRETTY_FUNCTION__))
;
366 if (Addr != LangAS::Default)
367 return toTargetAddressSpace(Addr);
368 // TODO: The diagnostic messages where Addr may be 0 should be fixed
369 // since it cannot differentiate the situation where 0 denotes the default
370 // address space or user specified __attribute__((address_space(0))).
371 return 0;
372 }
373 void setAddressSpace(LangAS space) {
374 assert((unsigned)space <= MaxAddressSpace)(((unsigned)space <= MaxAddressSpace) ? static_cast<void
> (0) : __assert_fail ("(unsigned)space <= MaxAddressSpace"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Type.h"
, 374, __PRETTY_FUNCTION__))
;
375 Mask = (Mask & ~AddressSpaceMask)
376 | (((uint32_t) space) << AddressSpaceShift);
377 }
378 void removeAddressSpace() { setAddressSpace(LangAS::Default); }
379 void addAddressSpace(LangAS space) {
380 assert(space != LangAS::Default)((space != LangAS::Default) ? static_cast<void> (0) : __assert_fail
("space != LangAS::Default", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Type.h"
, 380, __PRETTY_FUNCTION__))
;
381 setAddressSpace(space);
382 }
383
384 // Fast qualifiers are those that can be allocated directly
385 // on a QualType object.
386 bool hasFastQualifiers() const { return getFastQualifiers(); }
387 unsigned getFastQualifiers() const { return Mask & FastMask; }
388 void setFastQualifiers(unsigned mask) {
389 assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits")((!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~FastMask) && \"bitmask contains non-fast qualifier bits\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Type.h"
, 389, __PRETTY_FUNCTION__))
;
390 Mask = (Mask & ~FastMask) | mask;
391 }
392 void removeFastQualifiers(unsigned mask) {
393 assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits")((!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~FastMask) && \"bitmask contains non-fast qualifier bits\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Type.h"
, 393, __PRETTY_FUNCTION__))
;
394 Mask &= ~mask;
395 }
396 void removeFastQualifiers() {
397 removeFastQualifiers(FastMask);
398 }
399 void addFastQualifiers(unsigned mask) {
400 assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits")((!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~FastMask) && \"bitmask contains non-fast qualifier bits\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Type.h"
, 400, __PRETTY_FUNCTION__))
;
401 Mask |= mask;
402 }
403
404 /// Return true if the set contains any qualifiers which require an ExtQuals
405 /// node to be allocated.
406 bool hasNonFastQualifiers() const { return Mask & ~FastMask; }
407 Qualifiers getNonFastQualifiers() const {
408 Qualifiers Quals = *this;
409 Quals.setFastQualifiers(0);
410 return Quals;
411 }
412
413 /// Return true if the set contains any qualifiers.
414 bool hasQualifiers() const { return Mask; }
415 bool empty() const { return !Mask; }
416
417 /// Add the qualifiers from the given set to this set.
418 void addQualifiers(Qualifiers Q) {
419 // If the other set doesn't have any non-boolean qualifiers, just
420 // bit-or it in.
421 if (!(Q.Mask & ~CVRMask))
422 Mask |= Q.Mask;
423 else {
424 Mask |= (Q.Mask & CVRMask);
425 if (Q.hasAddressSpace())
426 addAddressSpace(Q.getAddressSpace());
427 if (Q.hasObjCGCAttr())
428 addObjCGCAttr(Q.getObjCGCAttr());
429 if (Q.hasObjCLifetime())
430 addObjCLifetime(Q.getObjCLifetime());
431 }
432 }
433
434 /// Remove the qualifiers from the given set from this set.
435 void removeQualifiers(Qualifiers Q) {
436 // If the other set doesn't have any non-boolean qualifiers, just
437 // bit-and the inverse in.
438 if (!(Q.Mask & ~CVRMask))
439 Mask &= ~Q.Mask;
440 else {
441 Mask &= ~(Q.Mask & CVRMask);
442 if (getObjCGCAttr() == Q.getObjCGCAttr())
443 removeObjCGCAttr();
444 if (getObjCLifetime() == Q.getObjCLifetime())
445 removeObjCLifetime();
446 if (getAddressSpace() == Q.getAddressSpace())
447 removeAddressSpace();
448 }
449 }
450
451 /// Add the qualifiers from the given set to this set, given that
452 /// they don't conflict.
453 void addConsistentQualifiers(Qualifiers qs) {
454 assert(getAddressSpace() == qs.getAddressSpace() ||((getAddressSpace() == qs.getAddressSpace() || !hasAddressSpace
() || !qs.hasAddressSpace()) ? static_cast<void> (0) : __assert_fail
("getAddressSpace() == qs.getAddressSpace() || !hasAddressSpace() || !qs.hasAddressSpace()"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Type.h"
, 455, __PRETTY_FUNCTION__))
455 !hasAddressSpace() || !qs.hasAddressSpace())((getAddressSpace() == qs.getAddressSpace() || !hasAddressSpace
() || !qs.hasAddressSpace()) ? static_cast<void> (0) : __assert_fail
("getAddressSpace() == qs.getAddressSpace() || !hasAddressSpace() || !qs.hasAddressSpace()"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Type.h"
, 455, __PRETTY_FUNCTION__))
;
456 assert(getObjCGCAttr() == qs.getObjCGCAttr() ||((getObjCGCAttr() == qs.getObjCGCAttr() || !hasObjCGCAttr() ||
!qs.hasObjCGCAttr()) ? static_cast<void> (0) : __assert_fail
("getObjCGCAttr() == qs.getObjCGCAttr() || !hasObjCGCAttr() || !qs.hasObjCGCAttr()"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Type.h"
, 457, __PRETTY_FUNCTION__))
457 !hasObjCGCAttr() || !qs.hasObjCGCAttr())((getObjCGCAttr() == qs.getObjCGCAttr() || !hasObjCGCAttr() ||
!qs.hasObjCGCAttr()) ? static_cast<void> (0) : __assert_fail
("getObjCGCAttr() == qs.getObjCGCAttr() || !hasObjCGCAttr() || !qs.hasObjCGCAttr()"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Type.h"
, 457, __PRETTY_FUNCTION__))
;
458 assert(getObjCLifetime() == qs.getObjCLifetime() ||((getObjCLifetime() == qs.getObjCLifetime() || !hasObjCLifetime
() || !qs.hasObjCLifetime()) ? static_cast<void> (0) : __assert_fail
("getObjCLifetime() == qs.getObjCLifetime() || !hasObjCLifetime() || !qs.hasObjCLifetime()"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Type.h"
, 459, __PRETTY_FUNCTION__))
459 !hasObjCLifetime() || !qs.hasObjCLifetime())((getObjCLifetime() == qs.getObjCLifetime() || !hasObjCLifetime
() || !qs.hasObjCLifetime()) ? static_cast<void> (0) : __assert_fail
("getObjCLifetime() == qs.getObjCLifetime() || !hasObjCLifetime() || !qs.hasObjCLifetime()"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Type.h"
, 459, __PRETTY_FUNCTION__))
;
460 Mask |= qs.Mask;
461 }
462
463 /// Returns true if address space A is equal to or a superset of B.
464 /// OpenCL v2.0 defines conversion rules (OpenCLC v2.0 s6.5.5) and notion of
465 /// overlapping address spaces.
466 /// CL1.1 or CL1.2:
467 /// every address space is a superset of itself.
468 /// CL2.0 adds:
469 /// __generic is a superset of any address space except for __constant.
470 static bool isAddressSpaceSupersetOf(LangAS A, LangAS B) {
471 // Address spaces must match exactly.
472 return A == B ||
473 // Otherwise in OpenCLC v2.0 s6.5.5: every address space except
474 // for __constant can be used as __generic.
475 (A == LangAS::opencl_generic && B != LangAS::opencl_constant);
476 }
477
478 /// Returns true if the address space in these qualifiers is equal to or
479 /// a superset of the address space in the argument qualifiers.
480 bool isAddressSpaceSupersetOf(Qualifiers other) const {
481 return isAddressSpaceSupersetOf(getAddressSpace(), other.getAddressSpace());
482 }
483
484 /// Determines if these qualifiers compatibly include another set.
485 /// Generally this answers the question of whether an object with the other
486 /// qualifiers can be safely used as an object with these qualifiers.
487 bool compatiblyIncludes(Qualifiers other) const {
488 return isAddressSpaceSupersetOf(other) &&
489 // ObjC GC qualifiers can match, be added, or be removed, but can't
490 // be changed.
491 (getObjCGCAttr() == other.getObjCGCAttr() || !hasObjCGCAttr() ||
492 !other.hasObjCGCAttr()) &&
493 // ObjC lifetime qualifiers must match exactly.
494 getObjCLifetime() == other.getObjCLifetime() &&
495 // CVR qualifiers may subset.
496 (((Mask & CVRMask) | (other.Mask & CVRMask)) == (Mask & CVRMask)) &&
497 // U qualifier may superset.
498 (!other.hasUnaligned() || hasUnaligned());
499 }
500
501 /// Determines if these qualifiers compatibly include another set of
502 /// qualifiers from the narrow perspective of Objective-C ARC lifetime.
503 ///
504 /// One set of Objective-C lifetime qualifiers compatibly includes the other
505 /// if the lifetime qualifiers match, or if both are non-__weak and the
506 /// including set also contains the 'const' qualifier, or both are non-__weak
507 /// and one is None (which can only happen in non-ARC modes).
508 bool compatiblyIncludesObjCLifetime(Qualifiers other) const {
509 if (getObjCLifetime() == other.getObjCLifetime())
510 return true;
511
512 if (getObjCLifetime() == OCL_Weak || other.getObjCLifetime() == OCL_Weak)
513 return false;
514
515 if (getObjCLifetime() == OCL_None || other.getObjCLifetime() == OCL_None)
516 return true;
517
518 return hasConst();
519 }
520
521 /// Determine whether this set of qualifiers is a strict superset of
522 /// another set of qualifiers, not considering qualifier compatibility.
523 bool isStrictSupersetOf(Qualifiers Other) const;
524
525 bool operator==(Qualifiers Other) const { return Mask == Other.Mask; }
526 bool operator!=(Qualifiers Other) const { return Mask != Other.Mask; }
527
528 explicit operator bool() const { return hasQualifiers(); }
529
530 Qualifiers &operator+=(Qualifiers R) {
531 addQualifiers(R);
532 return *this;
533 }
534
535 // Union two qualifier sets. If an enumerated qualifier appears
536 // in both sets, use the one from the right.
537 friend Qualifiers operator+(Qualifiers L, Qualifiers R) {
538 L += R;
539 return L;
540 }
541
542 Qualifiers &operator-=(Qualifiers R) {
543 removeQualifiers(R);
544 return *this;
545 }
546
547 /// Compute the difference between two qualifier sets.
548 friend Qualifiers operator-(Qualifiers L, Qualifiers R) {
549 L -= R;
550 return L;
551 }
552
553 std::string getAsString() const;
554 std::string getAsString(const PrintingPolicy &Policy) const;
555
556 bool isEmptyWhenPrinted(const PrintingPolicy &Policy) const;
557 void print(raw_ostream &OS, const PrintingPolicy &Policy,
558 bool appendSpaceIfNonEmpty = false) const;
559
560 void Profile(llvm::FoldingSetNodeID &ID) const {
561 ID.AddInteger(Mask);
562 }
563
564private:
565 // bits: |0 1 2|3|4 .. 5|6 .. 8|9 ... 31|
566 // |C R V|U|GCAttr|Lifetime|AddressSpace|
567 uint32_t Mask = 0;
568
569 static const uint32_t UMask = 0x8;
570 static const uint32_t UShift = 3;
571 static const uint32_t GCAttrMask = 0x30;
572 static const uint32_t GCAttrShift = 4;
573 static const uint32_t LifetimeMask = 0x1C0;
574 static const uint32_t LifetimeShift = 6;
575 static const uint32_t AddressSpaceMask =
576 ~(CVRMask | UMask | GCAttrMask | LifetimeMask);
577 static const uint32_t AddressSpaceShift = 9;
578};
579
580/// A std::pair-like structure for storing a qualified type split
581/// into its local qualifiers and its locally-unqualified type.
582struct SplitQualType {
583 /// The locally-unqualified type.
584 const Type *Ty = nullptr;
585
586 /// The local qualifiers.
587 Qualifiers Quals;
588
589 SplitQualType() = default;
590 SplitQualType(const Type *ty, Qualifiers qs) : Ty(ty), Quals(qs) {}
591
592 SplitQualType getSingleStepDesugaredType() const; // end of this file
593
594 // Make std::tie work.
595 std::pair<const Type *,Qualifiers> asPair() const {
596 return std::pair<const Type *, Qualifiers>(Ty, Quals);
597 }
598
599 friend bool operator==(SplitQualType a, SplitQualType b) {
600 return a.Ty == b.Ty && a.Quals == b.Quals;
601 }
602 friend bool operator!=(SplitQualType a, SplitQualType b) {
603 return a.Ty != b.Ty || a.Quals != b.Quals;
604 }
605};
606
607/// The kind of type we are substituting Objective-C type arguments into.
608///
609/// The kind of substitution affects the replacement of type parameters when
610/// no concrete type information is provided, e.g., when dealing with an
611/// unspecialized type.
612enum class ObjCSubstitutionContext {
613 /// An ordinary type.
614 Ordinary,
615
616 /// The result type of a method or function.
617 Result,
618
619 /// The parameter type of a method or function.
620 Parameter,
621
622 /// The type of a property.
623 Property,
624
625 /// The superclass of a type.
626 Superclass,
627};
628
629/// A (possibly-)qualified type.
630///
631/// For efficiency, we don't store CV-qualified types as nodes on their
632/// own: instead each reference to a type stores the qualifiers. This
633/// greatly reduces the number of nodes we need to allocate for types (for
634/// example we only need one for 'int', 'const int', 'volatile int',
635/// 'const volatile int', etc).
636///
637/// As an added efficiency bonus, instead of making this a pair, we
638/// just store the two bits we care about in the low bits of the
639/// pointer. To handle the packing/unpacking, we make QualType be a
640/// simple wrapper class that acts like a smart pointer. A third bit
641/// indicates whether there are extended qualifiers present, in which
642/// case the pointer points to a special structure.
643class QualType {
644 friend class QualifierCollector;
645
646 // Thankfully, these are efficiently composable.
647 llvm::PointerIntPair<llvm::PointerUnion<const Type *, const ExtQuals *>,
648 Qualifiers::FastWidth> Value;
649
650 const ExtQuals *getExtQualsUnsafe() const {
651 return Value.getPointer().get<const ExtQuals*>();
652 }
653
654 const Type *getTypePtrUnsafe() const {
655 return Value.getPointer().get<const Type*>();
656 }
657
658 const ExtQualsTypeCommonBase *getCommonPtr() const {
659 assert(!isNull() && "Cannot retrieve a NULL type pointer")((!isNull() && "Cannot retrieve a NULL type pointer")
? static_cast<void> (0) : __assert_fail ("!isNull() && \"Cannot retrieve a NULL type pointer\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Type.h"
, 659, __PRETTY_FUNCTION__))
;
660 auto CommonPtrVal = reinterpret_cast<uintptr_t>(Value.getOpaqueValue());
661 CommonPtrVal &= ~(uintptr_t)((1 << TypeAlignmentInBits) - 1);
662 return reinterpret_cast<ExtQualsTypeCommonBase*>(CommonPtrVal);
663 }
664
665public:
666 QualType() = default;
667 QualType(const Type *Ptr, unsigned Quals) : Value(Ptr, Quals) {}
668 QualType(const ExtQuals *Ptr, unsigned Quals) : Value(Ptr, Quals) {}
669
670 unsigned getLocalFastQualifiers() const { return Value.getInt(); }
671 void setLocalFastQualifiers(unsigned Quals) { Value.setInt(Quals); }
672
673 /// Retrieves a pointer to the underlying (unqualified) type.
674 ///
675 /// This function requires that the type not be NULL. If the type might be
676 /// NULL, use the (slightly less efficient) \c getTypePtrOrNull().
677 const Type *getTypePtr() const;
678
679 const Type *getTypePtrOrNull() const;
680
681 /// Retrieves a pointer to the name of the base type.
682 const IdentifierInfo *getBaseTypeIdentifier() const;
683
684 /// Divides a QualType into its unqualified type and a set of local
685 /// qualifiers.
686 SplitQualType split() const;
687
688 void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
689
690 static QualType getFromOpaquePtr(const void *Ptr) {
691 QualType T;
692 T.Value.setFromOpaqueValue(const_cast<void*>(Ptr));
693 return T;
694 }
695
696 const Type &operator*() const {
697 return *getTypePtr();
698 }
699
700 const Type *operator->() const {
701 return getTypePtr();
702 }
703
704 bool isCanonical() const;
705 bool isCanonicalAsParam() const;
706
707 /// Return true if this QualType doesn't point to a type yet.
708 bool isNull() const {
709 return Value.getPointer().isNull();
710 }
711
712 /// Determine whether this particular QualType instance has the
713 /// "const" qualifier set, without looking through typedefs that may have
714 /// added "const" at a different level.
715 bool isLocalConstQualified() const {
716 return (getLocalFastQualifiers() & Qualifiers::Const);
717 }
718
719 /// Determine whether this type is const-qualified.
720 bool isConstQualified() const;
721
722 /// Determine whether this particular QualType instance has the
723 /// "restrict" qualifier set, without looking through typedefs that may have
724 /// added "restrict" at a different level.
725 bool isLocalRestrictQualified() const {
726 return (getLocalFastQualifiers() & Qualifiers::Restrict);
727 }
728
729 /// Determine whether this type is restrict-qualified.
730 bool isRestrictQualified() const;
731
732 /// Determine whether this particular QualType instance has the
733 /// "volatile" qualifier set, without looking through typedefs that may have
734 /// added "volatile" at a different level.
735 bool isLocalVolatileQualified() const {
736 return (getLocalFastQualifiers() & Qualifiers::Volatile);
737 }
738
739 /// Determine whether this type is volatile-qualified.
740 bool isVolatileQualified() const;
741
742 /// Determine whether this particular QualType instance has any
743 /// qualifiers, without looking through any typedefs that might add
744 /// qualifiers at a different level.
745 bool hasLocalQualifiers() const {
746 return getLocalFastQualifiers() || hasLocalNonFastQualifiers();
747 }
748
749 /// Determine whether this type has any qualifiers.
750 bool hasQualifiers() const;
751
752 /// Determine whether this particular QualType instance has any
753 /// "non-fast" qualifiers, e.g., those that are stored in an ExtQualType
754 /// instance.
755 bool hasLocalNonFastQualifiers() const {
756 return Value.getPointer().is<const ExtQuals*>();
757 }
758
759 /// Retrieve the set of qualifiers local to this particular QualType
760 /// instance, not including any qualifiers acquired through typedefs or
761 /// other sugar.
762 Qualifiers getLocalQualifiers() const;
763
764 /// Retrieve the set of qualifiers applied to this type.
765 Qualifiers getQualifiers() const;
766
767 /// Retrieve the set of CVR (const-volatile-restrict) qualifiers
768 /// local to this particular QualType instance, not including any qualifiers
769 /// acquired through typedefs or other sugar.
770 unsigned getLocalCVRQualifiers() const {
771 return getLocalFastQualifiers();
772 }
773
774 /// Retrieve the set of CVR (const-volatile-restrict) qualifiers
775 /// applied to this type.
776 unsigned getCVRQualifiers() const;
777
778 bool isConstant(const ASTContext& Ctx) const {
779 return QualType::isConstant(*this, Ctx);
780 }
781
782 /// Determine whether this is a Plain Old Data (POD) type (C++ 3.9p10).
783 bool isPODType(const ASTContext &Context) const;
784
785 /// Return true if this is a POD type according to the rules of the C++98
786 /// standard, regardless of the current compilation's language.
787 bool isCXX98PODType(const ASTContext &Context) const;
788
789 /// Return true if this is a POD type according to the more relaxed rules
790 /// of the C++11 standard, regardless of the current compilation's language.
791 /// (C++0x [basic.types]p9). Note that, unlike
792 /// CXXRecordDecl::isCXX11StandardLayout, this takes DRs into account.
793 bool isCXX11PODType(const ASTContext &Context) const;
794
795 /// Return true if this is a trivial type per (C++0x [basic.types]p9)
796 bool isTrivialType(const ASTContext &Context) const;
797
798 /// Return true if this is a trivially copyable type (C++0x [basic.types]p9)
799 bool isTriviallyCopyableType(const ASTContext &Context) const;
800
801
802 /// Returns true if it is a class and it might be dynamic.
803 bool mayBeDynamicClass() const;
804
805 /// Returns true if it is not a class or if the class might not be dynamic.
806 bool mayBeNotDynamicClass() const;
807
808 // Don't promise in the API that anything besides 'const' can be
809 // easily added.
810
811 /// Add the `const` type qualifier to this QualType.
812 void addConst() {
813 addFastQualifiers(Qualifiers::Const);
814 }
815 QualType withConst() const {
816 return withFastQualifiers(Qualifiers::Const);
817 }
818
819 /// Add the `volatile` type qualifier to this QualType.
820 void addVolatile() {
821 addFastQualifiers(Qualifiers::Volatile);
822 }
823 QualType withVolatile() const {
824 return withFastQualifiers(Qualifiers::Volatile);
825 }
826
827 /// Add the `restrict` qualifier to this QualType.
828 void addRestrict() {
829 addFastQualifiers(Qualifiers::Restrict);
830 }
831 QualType withRestrict() const {
832 return withFastQualifiers(Qualifiers::Restrict);
833 }
834
835 QualType withCVRQualifiers(unsigned CVR) const {
836 return withFastQualifiers(CVR);
837 }
838
839 void addFastQualifiers(unsigned TQs) {
840 assert(!(TQs & ~Qualifiers::FastMask)((!(TQs & ~Qualifiers::FastMask) && "non-fast qualifier bits set in mask!"
) ? static_cast<void> (0) : __assert_fail ("!(TQs & ~Qualifiers::FastMask) && \"non-fast qualifier bits set in mask!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Type.h"
, 841, __PRETTY_FUNCTION__))
841 && "non-fast qualifier bits set in mask!")((!(TQs & ~Qualifiers::FastMask) && "non-fast qualifier bits set in mask!"
) ? static_cast<void> (0) : __assert_fail ("!(TQs & ~Qualifiers::FastMask) && \"non-fast qualifier bits set in mask!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Type.h"
, 841, __PRETTY_FUNCTION__))
;
842 Value.setInt(Value.getInt() | TQs);
843 }
844
845 void removeLocalConst();
846 void removeLocalVolatile();
847 void removeLocalRestrict();
848 void removeLocalCVRQualifiers(unsigned Mask);
849
850 void removeLocalFastQualifiers() { Value.setInt(0); }
851 void removeLocalFastQualifiers(unsigned Mask) {
852 assert(!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers")((!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers"
) ? static_cast<void> (0) : __assert_fail ("!(Mask & ~Qualifiers::FastMask) && \"mask has non-fast qualifiers\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Type.h"
, 852, __PRETTY_FUNCTION__))
;
853 Value.setInt(Value.getInt() & ~Mask);
854 }
855
856 // Creates a type with the given qualifiers in addition to any
857 // qualifiers already on this type.
858 QualType withFastQualifiers(unsigned TQs) const {
859 QualType T = *this;
860 T.addFastQualifiers(TQs);
861 return T;
862 }
863
864 // Creates a type with exactly the given fast qualifiers, removing
865 // any existing fast qualifiers.
866 QualType withExactLocalFastQualifiers(unsigned TQs) const {
867 return withoutLocalFastQualifiers().withFastQualifiers(TQs);
868 }
869
870 // Removes fast qualifiers, but leaves any extended qualifiers in place.
871 QualType withoutLocalFastQualifiers() const {
872 QualType T = *this;
873 T.removeLocalFastQualifiers();
874 return T;
875 }
876
877 QualType getCanonicalType() const;
878
879 /// Return this type with all of the instance-specific qualifiers
880 /// removed, but without removing any qualifiers that may have been applied
881 /// through typedefs.
882 QualType getLocalUnqualifiedType() const { return QualType(getTypePtr(), 0); }
883
884 /// Retrieve the unqualified variant of the given type,
885 /// removing as little sugar as possible.
886 ///
887 /// This routine looks through various kinds of sugar to find the
888 /// least-desugared type that is unqualified. For example, given:
889 ///
890 /// \code
891 /// typedef int Integer;
892 /// typedef const Integer CInteger;
893 /// typedef CInteger DifferenceType;
894 /// \endcode
895 ///
896 /// Executing \c getUnqualifiedType() on the type \c DifferenceType will
897 /// desugar until we hit the type \c Integer, which has no qualifiers on it.
898 ///
899 /// The resulting type might still be qualified if it's sugar for an array
900 /// type. To strip qualifiers even from within a sugared array type, use
901 /// ASTContext::getUnqualifiedArrayType.
902 inline QualType getUnqualifiedType() const;
903
904 /// Retrieve the unqualified variant of the given type, removing as little
905 /// sugar as possible.
906 ///
907 /// Like getUnqualifiedType(), but also returns the set of
908 /// qualifiers that were built up.
909 ///
910 /// The resulting type might still be qualified if it's sugar for an array
911 /// type. To strip qualifiers even from within a sugared array type, use
912 /// ASTContext::getUnqualifiedArrayType.
913 inline SplitQualType getSplitUnqualifiedType() const;
914
915 /// Determine whether this type is more qualified than the other
916 /// given type, requiring exact equality for non-CVR qualifiers.
917 bool isMoreQualifiedThan(QualType Other) const;
918
919 /// Determine whether this type is at least as qualified as the other
920 /// given type, requiring exact equality for non-CVR qualifiers.
921 bool isAtLeastAsQualifiedAs(QualType Other) const;
922
923 QualType getNonReferenceType() const;
924
925 /// Determine the type of a (typically non-lvalue) expression with the
926 /// specified result type.
927 ///
928 /// This routine should be used for expressions for which the return type is
929 /// explicitly specified (e.g., in a cast or call) and isn't necessarily
930 /// an lvalue. It removes a top-level reference (since there are no
931 /// expressions of reference type) and deletes top-level cvr-qualifiers
932 /// from non-class types (in C++) or all types (in C).
933 QualType getNonLValueExprType(const ASTContext &Context) const;
934
935 /// Return the specified type with any "sugar" removed from
936 /// the type. This takes off typedefs, typeof's etc. If the outer level of
937 /// the type is already concrete, it returns it unmodified. This is similar
938 /// to getting the canonical type, but it doesn't remove *all* typedefs. For
939 /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
940 /// concrete.
941 ///
942 /// Qualifiers are left in place.
943 QualType getDesugaredType(const ASTContext &Context) const {
944 return getDesugaredType(*this, Context);
945 }
946
947 SplitQualType getSplitDesugaredType() const {
948 return getSplitDesugaredType(*this);
949 }
950
951 /// Return the specified type with one level of "sugar" removed from
952 /// the type.
953 ///
954 /// This routine takes off the first typedef, typeof, etc. If the outer level
955 /// of the type is already concrete, it returns it unmodified.
956 QualType getSingleStepDesugaredType(const ASTContext &Context) const {
957 return getSingleStepDesugaredTypeImpl(*this, Context);
958 }
959
960 /// Returns the specified type after dropping any
961 /// outer-level parentheses.
962 QualType IgnoreParens() const {
963 if (isa<ParenType>(*this))
964 return QualType::IgnoreParens(*this);
965 return *this;
966 }
967
968 /// Indicate whether the specified types and qualifiers are identical.
969 friend bool operator==(const QualType &LHS, const QualType &RHS) {
970 return LHS.Value == RHS.Value;
971 }
972 friend bool operator!=(const QualType &LHS, const QualType &RHS) {
973 return LHS.Value != RHS.Value;
974 }
975 friend bool operator<(const QualType &LHS, const QualType &RHS) {
976 return LHS.Value < RHS.Value;
977 }
978
979 static std::string getAsString(SplitQualType split,
980 const PrintingPolicy &Policy) {
981 return getAsString(split.Ty, split.Quals, Policy);
982 }
983 static std::string getAsString(const Type *ty, Qualifiers qs,
984 const PrintingPolicy &Policy);
985
986 std::string getAsString() const;
987 std::string getAsString(const PrintingPolicy &Policy) const;
988
989 void print(raw_ostream &OS, const PrintingPolicy &Policy,
990 const Twine &PlaceHolder = Twine(),
991 unsigned Indentation = 0) const;
992
993 static void print(SplitQualType split, raw_ostream &OS,
994 const PrintingPolicy &policy, const Twine &PlaceHolder,
995 unsigned Indentation = 0) {
996 return print(split.Ty, split.Quals, OS, policy, PlaceHolder, Indentation);
997 }
998
999 static void print(const Type *ty, Qualifiers qs,
1000 raw_ostream &OS, const PrintingPolicy &policy,
1001 const Twine &PlaceHolder,
1002 unsigned Indentation = 0);
1003
1004 void getAsStringInternal(std::string &Str,
1005 const PrintingPolicy &Policy) const;
1006
1007 static void getAsStringInternal(SplitQualType split, std::string &out,
1008 const PrintingPolicy &policy) {
1009 return getAsStringInternal(split.Ty, split.Quals, out, policy);
1010 }
1011
1012 static void getAsStringInternal(const Type *ty, Qualifiers qs,
1013 std::string &out,
1014 const PrintingPolicy &policy);
1015
1016 class StreamedQualTypeHelper {
1017 const QualType &T;
1018 const PrintingPolicy &Policy;
1019 const Twine &PlaceHolder;
1020 unsigned Indentation;
1021
1022 public:
1023 StreamedQualTypeHelper(const QualType &T, const PrintingPolicy &Policy,
1024 const Twine &PlaceHolder, unsigned Indentation)
1025 : T(T), Policy(Policy), PlaceHolder(PlaceHolder),
1026 Indentation(Indentation) {}
1027
1028 friend raw_ostream &operator<<(raw_ostream &OS,
1029 const StreamedQualTypeHelper &SQT) {
1030 SQT.T.print(OS, SQT.Policy, SQT.PlaceHolder, SQT.Indentation);
1031 return OS;
1032 }
1033 };
1034
1035 StreamedQualTypeHelper stream(const PrintingPolicy &Policy,
1036 const Twine &PlaceHolder = Twine(),
1037 unsigned Indentation = 0) const {
1038 return StreamedQualTypeHelper(*this, Policy, PlaceHolder, Indentation);
1039 }
1040
1041 void dump(const char *s) const;
1042 void dump() const;
1043 void dump(llvm::raw_ostream &OS) const;
1044
1045 void Profile(llvm::FoldingSetNodeID &ID) const {
1046 ID.AddPointer(getAsOpaquePtr());
1047 }
1048
1049 /// Return the address space of this type.
1050 inline LangAS getAddressSpace() const;
1051
1052 /// Returns gc attribute of this type.
1053 inline Qualifiers::GC getObjCGCAttr() const;
1054
1055 /// true when Type is objc's weak.
1056 bool isObjCGCWeak() const {
1057 return getObjCGCAttr() == Qualifiers::Weak;
1058 }
1059
1060 /// true when Type is objc's strong.
1061 bool isObjCGCStrong() const {
1062 return getObjCGCAttr() == Qualifiers::Strong;
1063 }
1064
1065 /// Returns lifetime attribute of this type.
1066 Qualifiers::ObjCLifetime getObjCLifetime() const {
1067 return getQualifiers().getObjCLifetime();
1068 }
1069
1070 bool hasNonTrivialObjCLifetime() const {
1071 return getQualifiers().hasNonTrivialObjCLifetime();
1072 }
1073
1074 bool hasStrongOrWeakObjCLifetime() const {
1075 return getQualifiers().hasStrongOrWeakObjCLifetime();
1076 }
1077
1078 // true when Type is objc's weak and weak is enabled but ARC isn't.
1079 bool isNonWeakInMRRWithObjCWeak(const ASTContext &Context) const;
1080
1081 enum PrimitiveDefaultInitializeKind {
1082 /// The type does not fall into any of the following categories. Note that
1083 /// this case is zero-valued so that values of this enum can be used as a
1084 /// boolean condition for non-triviality.
1085 PDIK_Trivial,
1086
1087 /// The type is an Objective-C retainable pointer type that is qualified
1088 /// with the ARC __strong qualifier.
1089 PDIK_ARCStrong,
1090
1091 /// The type is an Objective-C retainable pointer type that is qualified
1092 /// with the ARC __weak qualifier.
1093 PDIK_ARCWeak,
1094
1095 /// The type is a struct containing a field whose type is not PCK_Trivial.
1096 PDIK_Struct
1097 };
1098
1099 /// Functions to query basic properties of non-trivial C struct types.
1100
1101 /// Check if this is a non-trivial type that would cause a C struct
1102 /// transitively containing this type to be non-trivial to default initialize
1103 /// and return the kind.
1104 PrimitiveDefaultInitializeKind
1105 isNonTrivialToPrimitiveDefaultInitialize() const;
1106
1107 enum PrimitiveCopyKind {
1108 /// The type does not fall into any of the following categories. Note that
1109 /// this case is zero-valued so that values of this enum can be used as a
1110 /// boolean condition for non-triviality.
1111 PCK_Trivial,
1112
1113 /// The type would be trivial except that it is volatile-qualified. Types
1114 /// that fall into one of the other non-trivial cases may additionally be
1115 /// volatile-qualified.
1116 PCK_VolatileTrivial,
1117
1118 /// The type is an Objective-C retainable pointer type that is qualified
1119 /// with the ARC __strong qualifier.
1120 PCK_ARCStrong,
1121
1122 /// The type is an Objective-C retainable pointer type that is qualified
1123 /// with the ARC __weak qualifier.
1124 PCK_ARCWeak,
1125
1126 /// The type is a struct containing a field whose type is neither
1127 /// PCK_Trivial nor PCK_VolatileTrivial.
1128 /// Note that a C++ struct type does not necessarily match this; C++ copying
1129 /// semantics are too complex to express here, in part because they depend
1130 /// on the exact constructor or assignment operator that is chosen by
1131 /// overload resolution to do the copy.
1132 PCK_Struct
1133 };
1134
1135 /// Check if this is a non-trivial type that would cause a C struct
1136 /// transitively containing this type to be non-trivial to copy and return the
1137 /// kind.
1138 PrimitiveCopyKind isNonTrivialToPrimitiveCopy() const;
1139
1140 /// Check if this is a non-trivial type that would cause a C struct
1141 /// transitively containing this type to be non-trivial to destructively
1142 /// move and return the kind. Destructive move in this context is a C++-style
1143 /// move in which the source object is placed in a valid but unspecified state
1144 /// after it is moved, as opposed to a truly destructive move in which the
1145 /// source object is placed in an uninitialized state.
1146 PrimitiveCopyKind isNonTrivialToPrimitiveDestructiveMove() const;
1147
1148 enum DestructionKind {
1149 DK_none,
1150 DK_cxx_destructor,
1151 DK_objc_strong_lifetime,
1152 DK_objc_weak_lifetime,
1153 DK_nontrivial_c_struct
1154 };
1155
1156 /// Returns a nonzero value if objects of this type require
1157 /// non-trivial work to clean up after. Non-zero because it's
1158 /// conceivable that qualifiers (objc_gc(weak)?) could make
1159 /// something require destruction.
1160 DestructionKind isDestructedType() const {
1161 return isDestructedTypeImpl(*this);
1162 }
1163
1164 /// Check if this is or contains a C union that is non-trivial to
1165 /// default-initialize, which is a union that has a member that is non-trivial
1166 /// to default-initialize. If this returns true,
1167 /// isNonTrivialToPrimitiveDefaultInitialize returns PDIK_Struct.
1168 bool hasNonTrivialToPrimitiveDefaultInitializeCUnion() const;
1169
1170 /// Check if this is or contains a C union that is non-trivial to destruct,
1171 /// which is a union that has a member that is non-trivial to destruct. If
1172 /// this returns true, isDestructedType returns DK_nontrivial_c_struct.
1173 bool hasNonTrivialToPrimitiveDestructCUnion() const;
1174
1175 /// Check if this is or contains a C union that is non-trivial to copy, which
1176 /// is a union that has a member that is non-trivial to copy. If this returns
1177 /// true, isNonTrivialToPrimitiveCopy returns PCK_Struct.
1178 bool hasNonTrivialToPrimitiveCopyCUnion() const;
1179
1180 /// Determine whether expressions of the given type are forbidden
1181 /// from being lvalues in C.
1182 ///
1183 /// The expression types that are forbidden to be lvalues are:
1184 /// - 'void', but not qualified void
1185 /// - function types
1186 ///
1187 /// The exact rule here is C99 6.3.2.1:
1188 /// An lvalue is an expression with an object type or an incomplete
1189 /// type other than void.
1190 bool isCForbiddenLValueType() const;
1191
1192 /// Substitute type arguments for the Objective-C type parameters used in the
1193 /// subject type.
1194 ///
1195 /// \param ctx ASTContext in which the type exists.
1196 ///
1197 /// \param typeArgs The type arguments that will be substituted for the
1198 /// Objective-C type parameters in the subject type, which are generally
1199 /// computed via \c Type::getObjCSubstitutions. If empty, the type
1200 /// parameters will be replaced with their bounds or id/Class, as appropriate
1201 /// for the context.
1202 ///
1203 /// \param context The context in which the subject type was written.
1204 ///
1205 /// \returns the resulting type.
1206 QualType substObjCTypeArgs(ASTContext &ctx,
1207 ArrayRef<QualType> typeArgs,
1208 ObjCSubstitutionContext context) const;
1209
1210 /// Substitute type arguments from an object type for the Objective-C type
1211 /// parameters used in the subject type.
1212 ///
1213 /// This operation combines the computation of type arguments for
1214 /// substitution (\c Type::getObjCSubstitutions) with the actual process of
1215 /// substitution (\c QualType::substObjCTypeArgs) for the convenience of
1216 /// callers that need to perform a single substitution in isolation.
1217 ///
1218 /// \param objectType The type of the object whose member type we're
1219 /// substituting into. For example, this might be the receiver of a message
1220 /// or the base of a property access.
1221 ///
1222 /// \param dc The declaration context from which the subject type was
1223 /// retrieved, which indicates (for example) which type parameters should
1224 /// be substituted.
1225 ///
1226 /// \param context The context in which the subject type was written.
1227 ///
1228 /// \returns the subject type after replacing all of the Objective-C type
1229 /// parameters with their corresponding arguments.
1230 QualType substObjCMemberType(QualType objectType,
1231 const DeclContext *dc,
1232 ObjCSubstitutionContext context) const;
1233
1234 /// Strip Objective-C "__kindof" types from the given type.
1235 QualType stripObjCKindOfType(const ASTContext &ctx) const;
1236
1237 /// Remove all qualifiers including _Atomic.
1238 QualType getAtomicUnqualifiedType() const;
1239
1240private:
1241 // These methods are implemented in a separate translation unit;
1242 // "static"-ize them to avoid creating temporary QualTypes in the
1243 // caller.
1244 static bool isConstant(QualType T, const ASTContext& Ctx);
1245 static QualType getDesugaredType(QualType T, const ASTContext &Context);
1246 static SplitQualType getSplitDesugaredType(QualType T);
1247 static SplitQualType getSplitUnqualifiedTypeImpl(QualType type);
1248 static QualType getSingleStepDesugaredTypeImpl(QualType type,
1249 const ASTContext &C);
1250 static QualType IgnoreParens(QualType T);
1251 static DestructionKind isDestructedTypeImpl(QualType type);
1252
1253 /// Check if \param RD is or contains a non-trivial C union.
1254 static bool hasNonTrivialToPrimitiveDefaultInitializeCUnion(const RecordDecl *RD);
1255 static bool hasNonTrivialToPrimitiveDestructCUnion(const RecordDecl *RD);
1256 static bool hasNonTrivialToPrimitiveCopyCUnion(const RecordDecl *RD);
1257};
1258
1259} // namespace clang
1260
1261namespace llvm {
1262
1263/// Implement simplify_type for QualType, so that we can dyn_cast from QualType
1264/// to a specific Type class.
1265template<> struct simplify_type< ::clang::QualType> {
1266 using SimpleType = const ::clang::Type *;
1267
1268 static SimpleType getSimplifiedValue(::clang::QualType Val) {
1269 return Val.getTypePtr();
1270 }
1271};
1272
1273// Teach SmallPtrSet that QualType is "basically a pointer".
1274template<>
1275struct PointerLikeTypeTraits<clang::QualType> {
1276 static inline void *getAsVoidPointer(clang::QualType P) {
1277 return P.getAsOpaquePtr();
1278 }
1279
1280 static inline clang::QualType getFromVoidPointer(void *P) {
1281 return clang::QualType::getFromOpaquePtr(P);
1282 }
1283
1284 // Various qualifiers go in low bits.
1285 enum { NumLowBitsAvailable = 0 };
1286};
1287
1288} // namespace llvm
1289
1290namespace clang {
1291
1292/// Base class that is common to both the \c ExtQuals and \c Type
1293/// classes, which allows \c QualType to access the common fields between the
1294/// two.
1295class ExtQualsTypeCommonBase {
1296 friend class ExtQuals;
1297 friend class QualType;
1298 friend class Type;
1299
1300 /// The "base" type of an extended qualifiers type (\c ExtQuals) or
1301 /// a self-referential pointer (for \c Type).
1302 ///
1303 /// This pointer allows an efficient mapping from a QualType to its
1304 /// underlying type pointer.
1305 const Type *const BaseType;
1306
1307 /// The canonical type of this type. A QualType.
1308 QualType CanonicalType;
1309
1310 ExtQualsTypeCommonBase(const Type *baseType, QualType canon)
1311 : BaseType(baseType), CanonicalType(canon) {}
1312};
1313
1314/// We can encode up to four bits in the low bits of a
1315/// type pointer, but there are many more type qualifiers that we want
1316/// to be able to apply to an arbitrary type. Therefore we have this
1317/// struct, intended to be heap-allocated and used by QualType to
1318/// store qualifiers.
1319///
1320/// The current design tags the 'const', 'restrict', and 'volatile' qualifiers
1321/// in three low bits on the QualType pointer; a fourth bit records whether
1322/// the pointer is an ExtQuals node. The extended qualifiers (address spaces,
1323/// Objective-C GC attributes) are much more rare.
1324class ExtQuals : public ExtQualsTypeCommonBase, public llvm::FoldingSetNode {
1325 // NOTE: changing the fast qualifiers should be straightforward as
1326 // long as you don't make 'const' non-fast.
1327 // 1. Qualifiers:
1328 // a) Modify the bitmasks (Qualifiers::TQ and DeclSpec::TQ).
1329 // Fast qualifiers must occupy the low-order bits.
1330 // b) Update Qualifiers::FastWidth and FastMask.
1331 // 2. QualType:
1332 // a) Update is{Volatile,Restrict}Qualified(), defined inline.
1333 // b) Update remove{Volatile,Restrict}, defined near the end of
1334 // this header.
1335 // 3. ASTContext:
1336 // a) Update get{Volatile,Restrict}Type.
1337
1338 /// The immutable set of qualifiers applied by this node. Always contains
1339 /// extended qualifiers.
1340 Qualifiers Quals;
1341
1342 ExtQuals *this_() { return this; }
1343
1344public:
1345 ExtQuals(const Type *baseType, QualType canon, Qualifiers quals)
1346 : ExtQualsTypeCommonBase(baseType,
1347 canon.isNull() ? QualType(this_(), 0) : canon),
1348 Quals(quals) {
1349 assert(Quals.hasNonFastQualifiers()((Quals.hasNonFastQualifiers() && "ExtQuals created with no fast qualifiers"
) ? static_cast<void> (0) : __assert_fail ("Quals.hasNonFastQualifiers() && \"ExtQuals created with no fast qualifiers\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Type.h"
, 1350, __PRETTY_FUNCTION__))
1350 && "ExtQuals created with no fast qualifiers")((Quals.hasNonFastQualifiers() && "ExtQuals created with no fast qualifiers"
) ? static_cast<void> (0) : __assert_fail ("Quals.hasNonFastQualifiers() && \"ExtQuals created with no fast qualifiers\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Type.h"
, 1350, __PRETTY_FUNCTION__))
;
1351 assert(!Quals.hasFastQualifiers()((!Quals.hasFastQualifiers() && "ExtQuals created with fast qualifiers"
) ? static_cast<void> (0) : __assert_fail ("!Quals.hasFastQualifiers() && \"ExtQuals created with fast qualifiers\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Type.h"
, 1352, __PRETTY_FUNCTION__))
1352 && "ExtQuals created with fast qualifiers")((!Quals.hasFastQualifiers() && "ExtQuals created with fast qualifiers"
) ? static_cast<void> (0) : __assert_fail ("!Quals.hasFastQualifiers() && \"ExtQuals created with fast qualifiers\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Type.h"
, 1352, __PRETTY_FUNCTION__))
;
1353 }
1354
1355 Qualifiers getQualifiers() const { return Quals; }
1356
1357 bool hasObjCGCAttr() const { return Quals.hasObjCGCAttr(); }
1358 Qualifiers::GC getObjCGCAttr() const { return Quals.getObjCGCAttr(); }
1359
1360 bool hasObjCLifetime() const { return Quals.hasObjCLifetime(); }
1361 Qualifiers::ObjCLifetime getObjCLifetime() const {
1362 return Quals.getObjCLifetime();
1363 }
1364
1365 bool hasAddressSpace() const { return Quals.hasAddressSpace(); }
1366 LangAS getAddressSpace() const { return Quals.getAddressSpace(); }
1367
1368 const Type *getBaseType() const { return BaseType; }
1369
1370public:
1371 void Profile(llvm::FoldingSetNodeID &ID) const {
1372 Profile(ID, getBaseType(), Quals);
1373 }
1374
1375 static void Profile(llvm::FoldingSetNodeID &ID,
1376 const Type *BaseType,
1377 Qualifiers Quals) {
1378 assert(!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!")((!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!"
) ? static_cast<void> (0) : __assert_fail ("!Quals.hasFastQualifiers() && \"fast qualifiers in ExtQuals hash!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Type.h"
, 1378, __PRETTY_FUNCTION__))
;
1379 ID.AddPointer(BaseType);
1380 Quals.Profile(ID);
1381 }
1382};
1383
1384/// The kind of C++11 ref-qualifier associated with a function type.
1385/// This determines whether a member function's "this" object can be an
1386/// lvalue, rvalue, or neither.
1387enum RefQualifierKind {
1388 /// No ref-qualifier was provided.
1389 RQ_None = 0,
1390
1391 /// An lvalue ref-qualifier was provided (\c &).
1392 RQ_LValue,
1393
1394 /// An rvalue ref-qualifier was provided (\c &&).
1395 RQ_RValue
1396};
1397
1398/// Which keyword(s) were used to create an AutoType.
1399enum class AutoTypeKeyword {
1400 /// auto
1401 Auto,
1402
1403 /// decltype(auto)
1404 DecltypeAuto,
1405
1406 /// __auto_type (GNU extension)
1407 GNUAutoType
1408};
1409
1410/// The base class of the type hierarchy.
1411///
1412/// A central concept with types is that each type always has a canonical
1413/// type. A canonical type is the type with any typedef names stripped out
1414/// of it or the types it references. For example, consider:
1415///
1416/// typedef int foo;
1417/// typedef foo* bar;
1418/// 'int *' 'foo *' 'bar'
1419///
1420/// There will be a Type object created for 'int'. Since int is canonical, its
1421/// CanonicalType pointer points to itself. There is also a Type for 'foo' (a
1422/// TypedefType). Its CanonicalType pointer points to the 'int' Type. Next
1423/// there is a PointerType that represents 'int*', which, like 'int', is
1424/// canonical. Finally, there is a PointerType type for 'foo*' whose canonical
1425/// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
1426/// is also 'int*'.
1427///
1428/// Non-canonical types are useful for emitting diagnostics, without losing
1429/// information about typedefs being used. Canonical types are useful for type
1430/// comparisons (they allow by-pointer equality tests) and useful for reasoning
1431/// about whether something has a particular form (e.g. is a function type),
1432/// because they implicitly, recursively, strip all typedefs out of a type.
1433///
1434/// Types, once created, are immutable.
1435///
1436class alignas(8) Type : public ExtQualsTypeCommonBase {
1437public:
1438 enum TypeClass {
1439#define TYPE(Class, Base) Class,
1440#define LAST_TYPE(Class) TypeLast = Class
1441#define ABSTRACT_TYPE(Class, Base)
1442#include "clang/AST/TypeNodes.inc"
1443 };
1444
1445private:
1446 /// Bitfields required by the Type class.
1447 class TypeBitfields {
1448 friend class Type;
1449 template <class T> friend class TypePropertyCache;
1450
1451 /// TypeClass bitfield - Enum that specifies what subclass this belongs to.
1452 unsigned TC : 8;
1453
1454 /// Whether this type is a dependent type (C++ [temp.dep.type]).
1455 unsigned Dependent : 1;
1456
1457 /// Whether this type somehow involves a template parameter, even
1458 /// if the resolution of the type does not depend on a template parameter.
1459 unsigned InstantiationDependent : 1;
1460
1461 /// Whether this type is a variably-modified type (C99 6.7.5).
1462 unsigned VariablyModified : 1;
1463
1464 /// Whether this type contains an unexpanded parameter pack
1465 /// (for C++11 variadic templates).
1466 unsigned ContainsUnexpandedParameterPack : 1;
1467
1468 /// True if the cache (i.e. the bitfields here starting with
1469 /// 'Cache') is valid.
1470 mutable unsigned CacheValid : 1;
1471
1472 /// Linkage of this type.
1473 mutable unsigned CachedLinkage : 3;
1474
1475 /// Whether this type involves and local or unnamed types.
1476 mutable unsigned CachedLocalOrUnnamed : 1;
1477
1478 /// Whether this type comes from an AST file.
1479 mutable unsigned FromAST : 1;
1480
1481 bool isCacheValid() const {
1482 return CacheValid;
1483 }
1484
1485 Linkage getLinkage() const {
1486 assert(isCacheValid() && "getting linkage from invalid cache")((isCacheValid() && "getting linkage from invalid cache"
) ? static_cast<void> (0) : __assert_fail ("isCacheValid() && \"getting linkage from invalid cache\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Type.h"
, 1486, __PRETTY_FUNCTION__))
;
1487 return static_cast<Linkage>(CachedLinkage);
1488 }
1489
1490 bool hasLocalOrUnnamedType() const {
1491 assert(isCacheValid() && "getting linkage from invalid cache")((isCacheValid() && "getting linkage from invalid cache"
) ? static_cast<void> (0) : __assert_fail ("isCacheValid() && \"getting linkage from invalid cache\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Type.h"
, 1491, __PRETTY_FUNCTION__))
;
1492 return CachedLocalOrUnnamed;
1493 }
1494 };
1495 enum { NumTypeBits = 18 };
1496
1497protected:
1498 // These classes allow subclasses to somewhat cleanly pack bitfields
1499 // into Type.
1500
1501 class ArrayTypeBitfields {
1502 friend class ArrayType;
1503
1504 unsigned : NumTypeBits;
1505
1506 /// CVR qualifiers from declarations like
1507 /// 'int X[static restrict 4]'. For function parameters only.
1508 unsigned IndexTypeQuals : 3;
1509
1510 /// Storage class qualifiers from declarations like
1511 /// 'int X[static restrict 4]'. For function parameters only.
1512 /// Actually an ArrayType::ArraySizeModifier.
1513 unsigned SizeModifier : 3;
1514 };
1515
1516 class ConstantArrayTypeBitfields {
1517 friend class ConstantArrayType;
1518
1519 unsigned : NumTypeBits + 3 + 3;
1520
1521 /// Whether we have a stored size expression.
1522 unsigned HasStoredSizeExpr : 1;
1523 };
1524
1525 class BuiltinTypeBitfields {
1526 friend class BuiltinType;
1527
1528 unsigned : NumTypeBits;
1529
1530 /// The kind (BuiltinType::Kind) of builtin type this is.
1531 unsigned Kind : 8;
1532 };
1533
1534 /// FunctionTypeBitfields store various bits belonging to FunctionProtoType.
1535 /// Only common bits are stored here. Additional uncommon bits are stored
1536 /// in a trailing object after FunctionProtoType.
1537 class FunctionTypeBitfields {
1538 friend class FunctionProtoType;
1539 friend class FunctionType;
1540
1541 unsigned : NumTypeBits;
1542
1543 /// Extra information which affects how the function is called, like
1544 /// regparm and the calling convention.
1545 unsigned ExtInfo : 12;
1546
1547 /// The ref-qualifier associated with a \c FunctionProtoType.
1548 ///
1549 /// This is a value of type \c RefQualifierKind.
1550 unsigned RefQualifier : 2;
1551
1552 /// Used only by FunctionProtoType, put here to pack with the
1553 /// other bitfields.
1554 /// The qualifiers are part of FunctionProtoType because...
1555 ///
1556 /// C++ 8.3.5p4: The return type, the parameter type list and the
1557 /// cv-qualifier-seq, [...], are part of the function type.
1558 unsigned FastTypeQuals : Qualifiers::FastWidth;
1559 /// Whether this function has extended Qualifiers.
1560 unsigned HasExtQuals : 1;
1561
1562 /// The number of parameters this function has, not counting '...'.
1563 /// According to [implimits] 8 bits should be enough here but this is
1564 /// somewhat easy to exceed with metaprogramming and so we would like to
1565 /// keep NumParams as wide as reasonably possible.
1566 unsigned NumParams : 16;
1567
1568 /// The type of exception specification this function has.
1569 unsigned ExceptionSpecType : 4;
1570
1571 /// Whether this function has extended parameter information.
1572 unsigned HasExtParameterInfos : 1;
1573
1574 /// Whether the function is variadic.
1575 unsigned Variadic : 1;
1576
1577 /// Whether this function has a trailing return type.
1578 unsigned HasTrailingReturn : 1;
1579 };
1580
1581 class ObjCObjectTypeBitfields {
1582 friend class ObjCObjectType;
1583
1584 unsigned : NumTypeBits;
1585
1586 /// The number of type arguments stored directly on this object type.
1587 unsigned NumTypeArgs : 7;
1588
1589 /// The number of protocols stored directly on this object type.
1590 unsigned NumProtocols : 6;
1591
1592 /// Whether this is a "kindof" type.
1593 unsigned IsKindOf : 1;
1594 };
1595
1596 class ReferenceTypeBitfields {
1597 friend class ReferenceType;
1598
1599 unsigned : NumTypeBits;
1600
1601 /// True if the type was originally spelled with an lvalue sigil.
1602 /// This is never true of rvalue references but can also be false
1603 /// on lvalue references because of C++0x [dcl.typedef]p9,
1604 /// as follows:
1605 ///
1606 /// typedef int &ref; // lvalue, spelled lvalue
1607 /// typedef int &&rvref; // rvalue
1608 /// ref &a; // lvalue, inner ref, spelled lvalue
1609 /// ref &&a; // lvalue, inner ref
1610 /// rvref &a; // lvalue, inner ref, spelled lvalue
1611 /// rvref &&a; // rvalue, inner ref
1612 unsigned SpelledAsLValue : 1;
1613
1614 /// True if the inner type is a reference type. This only happens
1615 /// in non-canonical forms.
1616 unsigned InnerRef : 1;
1617 };
1618
1619 class TypeWithKeywordBitfields {
1620 friend class TypeWithKeyword;
1621
1622 unsigned : NumTypeBits;
1623
1624 /// An ElaboratedTypeKeyword. 8 bits for efficient access.
1625 unsigned Keyword : 8;
1626 };
1627
1628 enum { NumTypeWithKeywordBits = 8 };
1629
1630 class ElaboratedTypeBitfields {
1631 friend class ElaboratedType;
1632
1633 unsigned : NumTypeBits;
1634 unsigned : NumTypeWithKeywordBits;
1635
1636 /// Whether the ElaboratedType has a trailing OwnedTagDecl.
1637 unsigned HasOwnedTagDecl : 1;
1638 };
1639
1640 class VectorTypeBitfields {
1641 friend class VectorType;
1642 friend class DependentVectorType;
1643
1644 unsigned : NumTypeBits;
1645
1646 /// The kind of vector, either a generic vector type or some
1647 /// target-specific vector type such as for AltiVec or Neon.
1648 unsigned VecKind : 3;
1649
1650 /// The number of elements in the vector.
1651 unsigned NumElements : 29 - NumTypeBits;
1652
1653 enum { MaxNumElements = (1 << (29 - NumTypeBits)) - 1 };
1654 };
1655
1656 class AttributedTypeBitfields {
1657 friend class AttributedType;
1658
1659 unsigned : NumTypeBits;
1660
1661 /// An AttributedType::Kind
1662 unsigned AttrKind : 32 - NumTypeBits;
1663 };
1664
1665 class AutoTypeBitfields {
1666 friend class AutoType;
1667
1668 unsigned : NumTypeBits;
1669
1670 /// Was this placeholder type spelled as 'auto', 'decltype(auto)',
1671 /// or '__auto_type'? AutoTypeKeyword value.
1672 unsigned Keyword : 2;
1673 };
1674
1675 class SubstTemplateTypeParmPackTypeBitfields {
1676 friend class SubstTemplateTypeParmPackType;
1677
1678 unsigned : NumTypeBits;
1679
1680 /// The number of template arguments in \c Arguments, which is
1681 /// expected to be able to hold at least 1024 according to [implimits].
1682 /// However as this limit is somewhat easy to hit with template
1683 /// metaprogramming we'd prefer to keep it as large as possible.
1684 /// At the moment it has been left as a non-bitfield since this type
1685 /// safely fits in 64 bits as an unsigned, so there is no reason to
1686 /// introduce the performance impact of a bitfield.
1687 unsigned NumArgs;
1688 };
1689
1690 class TemplateSpecializationTypeBitfields {
1691 friend class TemplateSpecializationType;
1692
1693 unsigned : NumTypeBits;
1694
1695 /// Whether this template specialization type is a substituted type alias.
1696 unsigned TypeAlias : 1;
1697
1698 /// The number of template arguments named in this class template
1699 /// specialization, which is expected to be able to hold at least 1024
1700 /// according to [implimits]. However, as this limit is somewhat easy to
1701 /// hit with template metaprogramming we'd prefer to keep it as large
1702 /// as possible. At the moment it has been left as a non-bitfield since
1703 /// this type safely fits in 64 bits as an unsigned, so there is no reason
1704 /// to introduce the performance impact of a bitfield.
1705 unsigned NumArgs;
1706 };
1707
1708 class DependentTemplateSpecializationTypeBitfields {
1709 friend class DependentTemplateSpecializationType;
1710
1711 unsigned : NumTypeBits;
1712 unsigned : NumTypeWithKeywordBits;
1713
1714 /// The number of template arguments named in this class template
1715 /// specialization, which is expected to be able to hold at least 1024
1716 /// according to [implimits]. However, as this limit is somewhat easy to
1717 /// hit with template metaprogramming we'd prefer to keep it as large
1718 /// as possible. At the moment it has been left as a non-bitfield since
1719 /// this type safely fits in 64 bits as an unsigned, so there is no reason
1720 /// to introduce the performance impact of a bitfield.
1721 unsigned NumArgs;
1722 };
1723
1724 class PackExpansionTypeBitfields {
1725 friend class PackExpansionType;
1726
1727 unsigned : NumTypeBits;
1728
1729 /// The number of expansions that this pack expansion will
1730 /// generate when substituted (+1), which is expected to be able to
1731 /// hold at least 1024 according to [implimits]. However, as this limit
1732 /// is somewhat easy to hit with template metaprogramming we'd prefer to
1733 /// keep it as large as possible. At the moment it has been left as a
1734 /// non-bitfield since this type safely fits in 64 bits as an unsigned, so
1735 /// there is no reason to introduce the performance impact of a bitfield.
1736 ///
1737 /// This field will only have a non-zero value when some of the parameter
1738 /// packs that occur within the pattern have been substituted but others
1739 /// have not.
1740 unsigned NumExpansions;
1741 };
1742
1743 union {
1744 TypeBitfields TypeBits;
1745 ArrayTypeBitfields ArrayTypeBits;
1746 ConstantArrayTypeBitfields ConstantArrayTypeBits;
1747 AttributedTypeBitfields AttributedTypeBits;
1748 AutoTypeBitfields AutoTypeBits;
1749 BuiltinTypeBitfields BuiltinTypeBits;
1750 FunctionTypeBitfields FunctionTypeBits;
1751 ObjCObjectTypeBitfields ObjCObjectTypeBits;
1752 ReferenceTypeBitfields ReferenceTypeBits;
1753 TypeWithKeywordBitfields TypeWithKeywordBits;
1754 ElaboratedTypeBitfields ElaboratedTypeBits;
1755 VectorTypeBitfields VectorTypeBits;
1756 SubstTemplateTypeParmPackTypeBitfields SubstTemplateTypeParmPackTypeBits;
1757 TemplateSpecializationTypeBitfields TemplateSpecializationTypeBits;
1758 DependentTemplateSpecializationTypeBitfields
1759 DependentTemplateSpecializationTypeBits;
1760 PackExpansionTypeBitfields PackExpansionTypeBits;
1761
1762 static_assert(sizeof(TypeBitfields) <= 8,
1763 "TypeBitfields is larger than 8 bytes!");
1764 static_assert(sizeof(ArrayTypeBitfields) <= 8,
1765 "ArrayTypeBitfields is larger than 8 bytes!");
1766 static_assert(sizeof(AttributedTypeBitfields) <= 8,
1767 "AttributedTypeBitfields is larger than 8 bytes!");
1768 static_assert(sizeof(AutoTypeBitfields) <= 8,
1769 "AutoTypeBitfields is larger than 8 bytes!");
1770 static_assert(sizeof(BuiltinTypeBitfields) <= 8,
1771 "BuiltinTypeBitfields is larger than 8 bytes!");
1772 static_assert(sizeof(FunctionTypeBitfields) <= 8,
1773 "FunctionTypeBitfields is larger than 8 bytes!");
1774 static_assert(sizeof(ObjCObjectTypeBitfields) <= 8,
1775 "ObjCObjectTypeBitfields is larger than 8 bytes!");
1776 static_assert(sizeof(ReferenceTypeBitfields) <= 8,
1777 "ReferenceTypeBitfields is larger than 8 bytes!");
1778 static_assert(sizeof(TypeWithKeywordBitfields) <= 8,
1779 "TypeWithKeywordBitfields is larger than 8 bytes!");
1780 static_assert(sizeof(ElaboratedTypeBitfields) <= 8,
1781 "ElaboratedTypeBitfields is larger than 8 bytes!");
1782 static_assert(sizeof(VectorTypeBitfields) <= 8,
1783 "VectorTypeBitfields is larger than 8 bytes!");
1784 static_assert(sizeof(SubstTemplateTypeParmPackTypeBitfields) <= 8,
1785 "SubstTemplateTypeParmPackTypeBitfields is larger"
1786 " than 8 bytes!");
1787 static_assert(sizeof(TemplateSpecializationTypeBitfields) <= 8,
1788 "TemplateSpecializationTypeBitfields is larger"
1789 " than 8 bytes!");
1790 static_assert(sizeof(DependentTemplateSpecializationTypeBitfields) <= 8,
1791 "DependentTemplateSpecializationTypeBitfields is larger"
1792 " than 8 bytes!");
1793 static_assert(sizeof(PackExpansionTypeBitfields) <= 8,
1794 "PackExpansionTypeBitfields is larger than 8 bytes");
1795 };
1796
1797private:
1798 template <class T> friend class TypePropertyCache;
1799
1800 /// Set whether this type comes from an AST file.
1801 void setFromAST(bool V = true) const {
1802 TypeBits.FromAST = V;
1803 }
1804
1805protected:
1806 friend class ASTContext;
1807
1808 Type(TypeClass tc, QualType canon, bool Dependent,
1809 bool InstantiationDependent, bool VariablyModified,
1810 bool ContainsUnexpandedParameterPack)
1811 : ExtQualsTypeCommonBase(this,
1812 canon.isNull() ? QualType(this_(), 0) : canon) {
1813 TypeBits.TC = tc;
1814 TypeBits.Dependent = Dependent;
1815 TypeBits.InstantiationDependent = Dependent || InstantiationDependent;
1816 TypeBits.VariablyModified = VariablyModified;
1817 TypeBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
1818 TypeBits.CacheValid = false;
1819 TypeBits.CachedLocalOrUnnamed = false;
1820 TypeBits.CachedLinkage = NoLinkage;
1821 TypeBits.FromAST = false;
1822 }
1823
1824 // silence VC++ warning C4355: 'this' : used in base member initializer list
1825 Type *this_() { return this; }
1826
1827 void setDependent(bool D = true) {
1828 TypeBits.Dependent = D;
1829 if (D)
1830 TypeBits.InstantiationDependent = true;
1831 }
1832
1833 void setInstantiationDependent(bool D = true) {
1834 TypeBits.InstantiationDependent = D; }
1835
1836 void setVariablyModified(bool VM = true) { TypeBits.VariablyModified = VM; }
1837
1838 void setContainsUnexpandedParameterPack(bool PP = true) {
1839 TypeBits.ContainsUnexpandedParameterPack = PP;
1840 }
1841
1842public:
1843 friend class ASTReader;
1844 friend class ASTWriter;
1845
1846 Type(const Type &) = delete;
1847 Type(Type &&) = delete;
1848 Type &operator=(const Type &) = delete;
1849 Type &operator=(Type &&) = delete;
1850
1851 TypeClass getTypeClass() const { return static_cast<TypeClass>(TypeBits.TC); }
1852
1853 /// Whether this type comes from an AST file.
1854 bool isFromAST() const { return TypeBits.FromAST; }
1855
1856 /// Whether this type is or contains an unexpanded parameter
1857 /// pack, used to support C++0x variadic templates.
1858 ///
1859 /// A type that contains a parameter pack shall be expanded by the
1860 /// ellipsis operator at some point. For example, the typedef in the
1861 /// following example contains an unexpanded parameter pack 'T':
1862 ///
1863 /// \code
1864 /// template<typename ...T>
1865 /// struct X {
1866 /// typedef T* pointer_types; // ill-formed; T is a parameter pack.
1867 /// };
1868 /// \endcode
1869 ///
1870 /// Note that this routine does not specify which
1871 bool containsUnexpandedParameterPack() const {
1872 return TypeBits.ContainsUnexpandedParameterPack;
1873 }
1874
1875 /// Determines if this type would be canonical if it had no further
1876 /// qualification.
1877 bool isCanonicalUnqualified() const {
1878 return CanonicalType == QualType(this, 0);
1879 }
1880
1881 /// Pull a single level of sugar off of this locally-unqualified type.
1882 /// Users should generally prefer SplitQualType::getSingleStepDesugaredType()
1883 /// or QualType::getSingleStepDesugaredType(const ASTContext&).
1884 QualType getLocallyUnqualifiedSingleStepDesugaredType() const;
1885
1886 /// Types are partitioned into 3 broad categories (C99 6.2.5p1):
1887 /// object types, function types, and incomplete types.
1888
1889 /// Return true if this is an incomplete type.
1890 /// A type that can describe objects, but which lacks information needed to
1891 /// determine its size (e.g. void, or a fwd declared struct). Clients of this
1892 /// routine will need to determine if the size is actually required.
1893 ///
1894 /// Def If non-null, and the type refers to some kind of declaration
1895 /// that can be completed (such as a C struct, C++ class, or Objective-C
1896 /// class), will be set to the declaration.
1897 bool isIncompleteType(NamedDecl **Def = nullptr) const;
1898
1899 /// Return true if this is an incomplete or object
1900 /// type, in other words, not a function type.
1901 bool isIncompleteOrObjectType() const {
1902 return !isFunctionType();
12
Calling 'Type::isFunctionType'
15
Returning from 'Type::isFunctionType'
16
Returning the value 1, which participates in a condition later
1903 }
1904
1905 /// Determine whether this type is an object type.
1906 bool isObjectType() const {
1907 // C++ [basic.types]p8:
1908 // An object type is a (possibly cv-qualified) type that is not a
1909 // function type, not a reference type, and not a void type.
1910 return !isReferenceType() && !isFunctionType() && !isVoidType();
1911 }
1912
1913 /// Return true if this is a literal type
1914 /// (C++11 [basic.types]p10)
1915 bool isLiteralType(const ASTContext &Ctx) const;
1916
1917 /// Test if this type is a standard-layout type.
1918 /// (C++0x [basic.type]p9)
1919 bool isStandardLayoutType() const;
1920
1921 /// Helper methods to distinguish type categories. All type predicates
1922 /// operate on the canonical type, ignoring typedefs and qualifiers.
1923
1924 /// Returns true if the type is a builtin type.
1925 bool isBuiltinType() const;
1926
1927 /// Test for a particular builtin type.
1928 bool isSpecificBuiltinType(unsigned K) const;
1929
1930 /// Test for a type which does not represent an actual type-system type but
1931 /// is instead used as a placeholder for various convenient purposes within
1932 /// Clang. All such types are BuiltinTypes.
1933 bool isPlaceholderType() const;
1934 const BuiltinType *getAsPlaceholderType() const;
1935
1936 /// Test for a specific placeholder type.
1937 bool isSpecificPlaceholderType(unsigned K) const;
1938
1939 /// Test for a placeholder type other than Overload; see
1940 /// BuiltinType::isNonOverloadPlaceholderType.
1941 bool isNonOverloadPlaceholderType() const;
1942
1943 /// isIntegerType() does *not* include complex integers (a GCC extension).
1944 /// isComplexIntegerType() can be used to test for complex integers.
1945 bool isIntegerType() const; // C99 6.2.5p17 (int, char, bool, enum)
1946 bool isEnumeralType() const;
1947
1948 /// Determine whether this type is a scoped enumeration type.
1949 bool isScopedEnumeralType() const;
1950 bool isBooleanType() const;
1951 bool isCharType() const;
1952 bool isWideCharType() const;
1953 bool isChar8Type() const;
1954 bool isChar16Type() const;
1955 bool isChar32Type() const;
1956 bool isAnyCharacterType() const;
1957 bool isIntegralType(const ASTContext &Ctx) const;
1958
1959 /// Determine whether this type is an integral or enumeration type.
1960 bool isIntegralOrEnumerationType() const;
1961
1962 /// Determine whether this type is an integral or unscoped enumeration type.
1963 bool isIntegralOrUnscopedEnumerationType() const;
1964
1965 /// Floating point categories.
1966 bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
1967 /// isComplexType() does *not* include complex integers (a GCC extension).
1968 /// isComplexIntegerType() can be used to test for complex integers.
1969 bool isComplexType() const; // C99 6.2.5p11 (complex)
1970 bool isAnyComplexType() const; // C99 6.2.5p11 (complex) + Complex Int.
1971 bool isFloatingType() const; // C99 6.2.5p11 (real floating + complex)
1972 bool isHalfType() const; // OpenCL 6.1.1.1, NEON (IEEE 754-2008 half)
1973 bool isFloat16Type() const; // C11 extension ISO/IEC TS 18661
1974 bool isFloat128Type() const;
1975 bool isRealType() const; // C99 6.2.5p17 (real floating + integer)
1976 bool isArithmeticType() const; // C99 6.2.5p18 (integer + floating)
1977 bool isVoidType() const; // C99 6.2.5p19
1978 bool isScalarType() const; // C99 6.2.5p21 (arithmetic + pointers)
1979 bool isAggregateType() const;
1980 bool isFundamentalType() const;
1981 bool isCompoundType() const;
1982
1983 // Type Predicates: Check to see if this type is structurally the specified
1984 // type, ignoring typedefs and qualifiers.
1985 bool isFunctionType() const;
1986 bool isFunctionNoProtoType() const { return getAs<FunctionNoProtoType>(); }
1987 bool isFunctionProtoType() const { return getAs<FunctionProtoType>(); }
1988 bool isPointerType() const;
1989 bool isAnyPointerType() const; // Any C pointer or ObjC object pointer
1990 bool isBlockPointerType() const;
1991 bool isVoidPointerType() const;
1992 bool isReferenceType() const;
1993 bool isLValueReferenceType() const;
1994 bool isRValueReferenceType() const;
1995 bool isFunctionPointerType() const;
1996 bool isFunctionReferenceType() const;
1997 bool isMemberPointerType() const;
1998 bool isMemberFunctionPointerType() const;
1999 bool isMemberDataPointerType() const;
2000 bool isArrayType() const;
2001 bool isConstantArrayType() const;
2002 bool isIncompleteArrayType() const;
2003 bool isVariableArrayType() const;
2004 bool isDependentSizedArrayType() const;
2005 bool isRecordType() const;
2006 bool isClassType() const;
2007 bool isStructureType() const;
2008 bool isObjCBoxableRecordType() const;
2009 bool isInterfaceType() const;
2010 bool isStructureOrClassType() const;
2011 bool isUnionType() const;
2012 bool isComplexIntegerType() const; // GCC _Complex integer type.
2013 bool isVectorType() const; // GCC vector type.
2014 bool isExtVectorType() const; // Extended vector type.
2015 bool isDependentAddressSpaceType() const; // value-dependent address space qualifier
2016 bool isObjCObjectPointerType() const; // pointer to ObjC object
2017 bool isObjCRetainableType() const; // ObjC object or block pointer
2018 bool isObjCLifetimeType() const; // (array of)* retainable type
2019 bool isObjCIndirectLifetimeType() const; // (pointer to)* lifetime type
2020 bool isObjCNSObjectType() const; // __attribute__((NSObject))
2021 bool isObjCIndependentClassType() const; // __attribute__((objc_independent_class))
2022 // FIXME: change this to 'raw' interface type, so we can used 'interface' type
2023 // for the common case.
2024 bool isObjCObjectType() const; // NSString or typeof(*(id)0)
2025 bool isObjCQualifiedInterfaceType() const; // NSString<foo>
2026 bool isObjCQualifiedIdType() const; // id<foo>
2027 bool isObjCQualifiedClassType() const; // Class<foo>
2028 bool isObjCObjectOrInterfaceType() const;
2029 bool isObjCIdType() const; // id
2030 bool isDecltypeType() const;
2031 /// Was this type written with the special inert-in-ARC __unsafe_unretained
2032 /// qualifier?
2033 ///
2034 /// This approximates the answer to the following question: if this
2035 /// translation unit were compiled in ARC, would this type be qualified
2036 /// with __unsafe_unretained?
2037 bool isObjCInertUnsafeUnretainedType() const {
2038 return hasAttr(attr::ObjCInertUnsafeUnretained);
2039 }
2040
2041 /// Whether the type is Objective-C 'id' or a __kindof type of an
2042 /// object type, e.g., __kindof NSView * or __kindof id
2043 /// <NSCopying>.
2044 ///
2045 /// \param bound Will be set to the bound on non-id subtype types,
2046 /// which will be (possibly specialized) Objective-C class type, or
2047 /// null for 'id.
2048 bool isObjCIdOrObjectKindOfType(const ASTContext &ctx,
2049 const ObjCObjectType *&bound) const;
2050
2051 bool isObjCClassType() const; // Class
2052
2053 /// Whether the type is Objective-C 'Class' or a __kindof type of an
2054 /// Class type, e.g., __kindof Class <NSCopying>.
2055 ///
2056 /// Unlike \c isObjCIdOrObjectKindOfType, there is no relevant bound
2057 /// here because Objective-C's type system cannot express "a class
2058 /// object for a subclass of NSFoo".
2059 bool isObjCClassOrClassKindOfType() const;
2060
2061 bool isBlockCompatibleObjCPointerType(ASTContext &ctx) const;
2062 bool isObjCSelType() const; // Class
2063 bool isObjCBuiltinType() const; // 'id' or 'Class'
2064 bool isObjCARCBridgableType() const;
2065 bool isCARCBridgableType() const;
2066 bool isTemplateTypeParmType() const; // C++ template type parameter
2067 bool isNullPtrType() const; // C++11 std::nullptr_t
2068 bool isNothrowT() const; // C++ std::nothrow_t
2069 bool isAlignValT() const; // C++17 std::align_val_t
2070 bool isStdByteType() const; // C++17 std::byte
2071 bool isAtomicType() const; // C11 _Atomic()
2072
2073#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
2074 bool is##Id##Type() const;
2075#include "clang/Basic/OpenCLImageTypes.def"
2076
2077 bool isImageType() const; // Any OpenCL image type
2078
2079 bool isSamplerT() const; // OpenCL sampler_t
2080 bool isEventT() const; // OpenCL event_t
2081 bool isClkEventT() const; // OpenCL clk_event_t
2082 bool isQueueT() const; // OpenCL queue_t
2083 bool isReserveIDT() const; // OpenCL reserve_id_t
2084
2085#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
2086 bool is##Id##Type() const;
2087#include "clang/Basic/OpenCLExtensionTypes.def"
2088 // Type defined in cl_intel_device_side_avc_motion_estimation OpenCL extension
2089 bool isOCLIntelSubgroupAVCType() const;
2090 bool isOCLExtOpaqueType() const; // Any OpenCL extension type
2091
2092 bool isPipeType() const; // OpenCL pipe type
2093 bool isOpenCLSpecificType() const; // Any OpenCL specific type
2094
2095 /// Determines if this type, which must satisfy
2096 /// isObjCLifetimeType(), is implicitly __unsafe_unretained rather
2097 /// than implicitly __strong.
2098 bool isObjCARCImplicitlyUnretainedType() const;
2099
2100 /// Return the implicit lifetime for this type, which must not be dependent.
2101 Qualifiers::ObjCLifetime getObjCARCImplicitLifetime() const;
2102
2103 enum ScalarTypeKind {
2104 STK_CPointer,
2105 STK_BlockPointer,
2106 STK_ObjCObjectPointer,
2107 STK_MemberPointer,
2108 STK_Bool,
2109 STK_Integral,
2110 STK_Floating,
2111 STK_IntegralComplex,
2112 STK_FloatingComplex,
2113 STK_FixedPoint
2114 };
2115
2116 /// Given that this is a scalar type, classify it.
2117 ScalarTypeKind getScalarTypeKind() const;
2118
2119 /// Whether this type is a dependent type, meaning that its definition
2120 /// somehow depends on a template parameter (C++ [temp.dep.type]).
2121 bool isDependentType() const { return TypeBits.Dependent; }
2122
2123 /// Determine whether this type is an instantiation-dependent type,
2124 /// meaning that the type involves a template parameter (even if the
2125 /// definition does not actually depend on the type substituted for that
2126 /// template parameter).
2127 bool isInstantiationDependentType() const {
2128 return TypeBits.InstantiationDependent;
2129 }
2130
2131 /// Determine whether this type is an undeduced type, meaning that
2132 /// it somehow involves a C++11 'auto' type or similar which has not yet been
2133 /// deduced.
2134 bool isUndeducedType() const;
2135
2136 /// Whether this type is a variably-modified type (C99 6.7.5).
2137 bool isVariablyModifiedType() const { return TypeBits.VariablyModified; }
2138
2139 /// Whether this type involves a variable-length array type
2140 /// with a definite size.
2141 bool hasSizedVLAType() const;
2142
2143 /// Whether this type is or contains a local or unnamed type.
2144 bool hasUnnamedOrLocalType() const;
2145
2146 bool isOverloadableType() const;
2147
2148 /// Determine wither this type is a C++ elaborated-type-specifier.
2149 bool isElaboratedTypeSpecifier() const;
2150
2151 bool canDecayToPointerType() const;
2152
2153 /// Whether this type is represented natively as a pointer. This includes
2154 /// pointers, references, block pointers, and Objective-C interface,
2155 /// qualified id, and qualified interface types, as well as nullptr_t.
2156 bool hasPointerRepresentation() const;
2157
2158 /// Whether this type can represent an objective pointer type for the
2159 /// purpose of GC'ability
2160 bool hasObjCPointerRepresentation() const;
2161
2162 /// Determine whether this type has an integer representation
2163 /// of some sort, e.g., it is an integer type or a vector.
2164 bool hasIntegerRepresentation() const;
2165
2166 /// Determine whether this type has an signed integer representation
2167 /// of some sort, e.g., it is an signed integer type or a vector.
2168 bool hasSignedIntegerRepresentation() const;
2169
2170 /// Determine whether this type has an unsigned integer representation
2171 /// of some sort, e.g., it is an unsigned integer type or a vector.
2172 bool hasUnsignedIntegerRepresentation() const;
2173
2174 /// Determine whether this type has a floating-point representation
2175 /// of some sort, e.g., it is a floating-point type or a vector thereof.
2176 bool hasFloatingRepresentation() const;
2177
2178 // Type Checking Functions: Check to see if this type is structurally the
2179 // specified type, ignoring typedefs and qualifiers, and return a pointer to
2180 // the best type we can.
2181 const RecordType *getAsStructureType() const;
2182 /// NOTE: getAs*ArrayType are methods on ASTContext.
2183 const RecordType *getAsUnionType() const;
2184 const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
2185 const ObjCObjectType *getAsObjCInterfaceType() const;
2186
2187 // The following is a convenience method that returns an ObjCObjectPointerType
2188 // for object declared using an interface.
2189 const ObjCObjectPointerType *getAsObjCInterfacePointerType() const;
2190 const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
2191 const ObjCObjectPointerType *getAsObjCQualifiedClassType() const;
2192 const ObjCObjectType *getAsObjCQualifiedInterfaceType() const;
2193
2194 /// Retrieves the CXXRecordDecl that this type refers to, either
2195 /// because the type is a RecordType or because it is the injected-class-name
2196 /// type of a class template or class template partial specialization.
2197 CXXRecordDecl *getAsCXXRecordDecl() const;
2198
2199 /// Retrieves the RecordDecl this type refers to.
2200 RecordDecl *getAsRecordDecl() const;
2201
2202 /// Retrieves the TagDecl that this type refers to, either
2203 /// because the type is a TagType or because it is the injected-class-name
2204 /// type of a class template or class template partial specialization.
2205 TagDecl *getAsTagDecl() const;
2206
2207 /// If this is a pointer or reference to a RecordType, return the
2208 /// CXXRecordDecl that the type refers to.
2209 ///
2210 /// If this is not a pointer or reference, or the type being pointed to does
2211 /// not refer to a CXXRecordDecl, returns NULL.
2212 const CXXRecordDecl *getPointeeCXXRecordDecl() const;
2213
2214 /// Get the DeducedType whose type will be deduced for a variable with
2215 /// an initializer of this type. This looks through declarators like pointer
2216 /// types, but not through decltype or typedefs.
2217 DeducedType *getContainedDeducedType() const;
2218
2219 /// Get the AutoType whose type will be deduced for a variable with
2220 /// an initializer of this type. This looks through declarators like pointer
2221 /// types, but not through decltype or typedefs.
2222 AutoType *getContainedAutoType() const {
2223 return dyn_cast_or_null<AutoType>(getContainedDeducedType());
2224 }
2225
2226 /// Determine whether this type was written with a leading 'auto'
2227 /// corresponding to a trailing return type (possibly for a nested
2228 /// function type within a pointer to function type or similar).
2229 bool hasAutoForTrailingReturnType() const;
2230
2231 /// Member-template getAs<specific type>'. Look through sugar for
2232 /// an instance of \<specific type>. This scheme will eventually
2233 /// replace the specific getAsXXXX methods above.
2234 ///
2235 /// There are some specializations of this member template listed
2236 /// immediately following this class.
2237 template <typename T> const T *getAs() const;
2238
2239 /// Member-template getAsAdjusted<specific type>. Look through specific kinds
2240 /// of sugar (parens, attributes, etc) for an instance of \<specific type>.
2241 /// This is used when you need to walk over sugar nodes that represent some
2242 /// kind of type adjustment from a type that was written as a \<specific type>
2243 /// to another type that is still canonically a \<specific type>.
2244 template <typename T> const T *getAsAdjusted() const;
2245
2246 /// A variant of getAs<> for array types which silently discards
2247 /// qualifiers from the outermost type.
2248 const ArrayType *getAsArrayTypeUnsafe() const;
2249
2250 /// Member-template castAs<specific type>. Look through sugar for
2251 /// the underlying instance of \<specific type>.
2252 ///
2253 /// This method has the same relationship to getAs<T> as cast<T> has
2254 /// to dyn_cast<T>; which is to say, the underlying type *must*
2255 /// have the intended type, and this method will never return null.
2256 template <typename T> const T *castAs() const;
2257
2258 /// A variant of castAs<> for array type which silently discards
2259 /// qualifiers from the outermost type.
2260 const ArrayType *castAsArrayTypeUnsafe() const;
2261
2262 /// Determine whether this type had the specified attribute applied to it
2263 /// (looking through top-level type sugar).
2264 bool hasAttr(attr::Kind AK) const;
2265
2266 /// Get the base element type of this type, potentially discarding type
2267 /// qualifiers. This should never be used when type qualifiers
2268 /// are meaningful.
2269 const Type *getBaseElementTypeUnsafe() const;
2270
2271 /// If this is an array type, return the element type of the array,
2272 /// potentially with type qualifiers missing.
2273 /// This should never be used when type qualifiers are meaningful.
2274 const Type *getArrayElementTypeNoTypeQual() const;
2275
2276 /// If this is a pointer type, return the pointee type.
2277 /// If this is an array type, return the array element type.
2278 /// This should never be used when type qualifiers are meaningful.
2279 const Type *getPointeeOrArrayElementType() const;
2280
2281 /// If this is a pointer, ObjC object pointer, or block
2282 /// pointer, this returns the respective pointee.
2283 QualType getPointeeType() const;
2284
2285 /// Return the specified type with any "sugar" removed from the type,
2286 /// removing any typedefs, typeofs, etc., as well as any qualifiers.
2287 const Type *getUnqualifiedDesugaredType() const;
2288
2289 /// More type predicates useful for type checking/promotion
2290 bool isPromotableIntegerType() const; // C99 6.3.1.1p2
2291
2292 /// Return true if this is an integer type that is
2293 /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
2294 /// or an enum decl which has a signed representation.
2295 bool isSignedIntegerType() const;
2296
2297 /// Return true if this is an integer type that is
2298 /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool],
2299 /// or an enum decl which has an unsigned representation.
2300 bool isUnsignedIntegerType() const;
2301
2302 /// Determines whether this is an integer type that is signed or an
2303 /// enumeration types whose underlying type is a signed integer type.
2304 bool isSignedIntegerOrEnumerationType() const;
2305
2306 /// Determines whether this is an integer type that is unsigned or an
2307 /// enumeration types whose underlying type is a unsigned integer type.
2308 bool isUnsignedIntegerOrEnumerationType() const;
2309
2310 /// Return true if this is a fixed point type according to
2311 /// ISO/IEC JTC1 SC22 WG14 N1169.
2312 bool isFixedPointType() const;
2313
2314 /// Return true if this is a fixed point or integer type.
2315 bool isFixedPointOrIntegerType() const;
2316
2317 /// Return true if this is a saturated fixed point type according to
2318 /// ISO/IEC JTC1 SC22 WG14 N1169. This type can be signed or unsigned.
2319 bool isSaturatedFixedPointType() const;
2320
2321 /// Return true if this is a saturated fixed point type according to
2322 /// ISO/IEC JTC1 SC22 WG14 N1169. This type can be signed or unsigned.
2323 bool isUnsaturatedFixedPointType() const;
2324
2325 /// Return true if this is a fixed point type that is signed according
2326 /// to ISO/IEC JTC1 SC22 WG14 N1169. This type can also be saturated.
2327 bool isSignedFixedPointType() const;
2328
2329 /// Return true if this is a fixed point type that is unsigned according
2330 /// to ISO/IEC JTC1 SC22 WG14 N1169. This type can also be saturated.
2331 bool isUnsignedFixedPointType() const;
2332
2333 /// Return true if this is not a variable sized type,
2334 /// according to the rules of C99 6.7.5p3. It is not legal to call this on
2335 /// incomplete types.
2336 bool isConstantSizeType() const;
2337
2338 /// Returns true if this type can be represented by some
2339 /// set of type specifiers.
2340 bool isSpecifierType() const;
2341
2342 /// Determine the linkage of this type.
2343 Linkage getLinkage() const;
2344
2345 /// Determine the visibility of this type.
2346 Visibility getVisibility() const {
2347 return getLinkageAndVisibility().getVisibility();
2348 }
2349
2350 /// Return true if the visibility was explicitly set is the code.
2351 bool isVisibilityExplicit() const {
2352 return getLinkageAndVisibility().isVisibilityExplicit();
2353 }
2354
2355 /// Determine the linkage and visibility of this type.
2356 LinkageInfo getLinkageAndVisibility() const;
2357
2358 /// True if the computed linkage is valid. Used for consistency
2359 /// checking. Should always return true.
2360 bool isLinkageValid() const;
2361
2362 /// Determine the nullability of the given type.
2363 ///
2364 /// Note that nullability is only captured as sugar within the type
2365 /// system, not as part of the canonical type, so nullability will
2366 /// be lost by canonicalization and desugaring.
2367 Optional<NullabilityKind> getNullability(const ASTContext &context) const;
2368
2369 /// Determine whether the given type can have a nullability
2370 /// specifier applied to it, i.e., if it is any kind of pointer type.
2371 ///
2372 /// \param ResultIfUnknown The value to return if we don't yet know whether
2373 /// this type can have nullability because it is dependent.
2374 bool canHaveNullability(bool ResultIfUnknown = true) const;
2375
2376 /// Retrieve the set of substitutions required when accessing a member
2377 /// of the Objective-C receiver type that is declared in the given context.
2378 ///
2379 /// \c *this is the type of the object we're operating on, e.g., the
2380 /// receiver for a message send or the base of a property access, and is
2381 /// expected to be of some object or object pointer type.
2382 ///
2383 /// \param dc The declaration context for which we are building up a
2384 /// substitution mapping, which should be an Objective-C class, extension,
2385 /// category, or method within.
2386 ///
2387 /// \returns an array of type arguments that can be substituted for
2388 /// the type parameters of the given declaration context in any type described
2389 /// within that context, or an empty optional to indicate that no
2390 /// substitution is required.
2391 Optional<ArrayRef<QualType>>
2392 getObjCSubstitutions(const DeclContext *dc) const;
2393
2394 /// Determines if this is an ObjC interface type that may accept type
2395 /// parameters.
2396 bool acceptsObjCTypeParams() const;
2397
2398 const char *getTypeClassName() const;
2399
2400 QualType getCanonicalTypeInternal() const {
2401 return CanonicalType;
2402 }
2403
2404 CanQualType getCanonicalTypeUnqualified() const; // in CanonicalType.h
2405 void dump() const;
2406 void dump(llvm::raw_ostream &OS) const;
2407};
2408
2409/// This will check for a TypedefType by removing any existing sugar
2410/// until it reaches a TypedefType or a non-sugared type.
2411template <> const TypedefType *Type::getAs() const;
2412
2413/// This will check for a TemplateSpecializationType by removing any
2414/// existing sugar until it reaches a TemplateSpecializationType or a
2415/// non-sugared type.
2416template <> const TemplateSpecializationType *Type::getAs() const;
2417
2418/// This will check for an AttributedType by removing any existing sugar
2419/// until it reaches an AttributedType or a non-sugared type.
2420template <> const AttributedType *Type::getAs() const;
2421
2422// We can do canonical leaf types faster, because we don't have to
2423// worry about preserving child type decoration.
2424#define TYPE(Class, Base)
2425#define LEAF_TYPE(Class) \
2426template <> inline const Class##Type *Type::getAs() const { \
2427 return dyn_cast<Class##Type>(CanonicalType); \
2428} \
2429template <> inline const Class##Type *Type::castAs() const { \
2430 return cast<Class##Type>(CanonicalType); \
2431}
2432#include "clang/AST/TypeNodes.inc"
2433
2434/// This class is used for builtin types like 'int'. Builtin
2435/// types are always canonical and have a literal name field.
2436class BuiltinType : public Type {
2437public:
2438 enum Kind {
2439// OpenCL image types
2440#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) Id,
2441#include "clang/Basic/OpenCLImageTypes.def"
2442// OpenCL extension types
2443#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) Id,
2444#include "clang/Basic/OpenCLExtensionTypes.def"
2445// SVE Types
2446#define SVE_TYPE(Name, Id, SingletonId) Id,
2447#include "clang/Basic/AArch64SVEACLETypes.def"
2448// All other builtin types
2449#define BUILTIN_TYPE(Id, SingletonId) Id,
2450#define LAST_BUILTIN_TYPE(Id) LastKind = Id
2451#include "clang/AST/BuiltinTypes.def"
2452 };
2453
2454private:
2455 friend class ASTContext; // ASTContext creates these.
2456
2457 BuiltinType(Kind K)
2458 : Type(Builtin, QualType(), /*Dependent=*/(K == Dependent),
2459 /*InstantiationDependent=*/(K == Dependent),
2460 /*VariablyModified=*/false,
2461 /*Unexpanded parameter pack=*/false) {
2462 BuiltinTypeBits.Kind = K;
2463 }
2464
2465public:
2466 Kind getKind() const { return static_cast<Kind>(BuiltinTypeBits.Kind); }
2467 StringRef getName(const PrintingPolicy &Policy) const;
2468
2469 const char *getNameAsCString(const PrintingPolicy &Policy) const {
2470 // The StringRef is null-terminated.
2471 StringRef str = getName(Policy);
2472 assert(!str.empty() && str.data()[str.size()] == '\0')((!str.empty() && str.data()[str.size()] == '\0') ? static_cast
<void> (0) : __assert_fail ("!str.empty() && str.data()[str.size()] == '\\0'"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Type.h"
, 2472, __PRETTY_FUNCTION__))
;
2473 return str.data();
2474 }
2475
2476 bool isSugared() const { return false; }
2477 QualType desugar() const { return QualType(this, 0); }
2478
2479 bool isInteger() const {
2480 return getKind() >= Bool && getKind() <= Int128;
2481 }
2482
2483 bool isSignedInteger() const {
2484 return getKind() >= Char_S && getKind() <= Int128;
2485 }
2486
2487 bool isUnsignedInteger() const {
2488 return getKind() >= Bool && getKind() <= UInt128;
2489 }
2490
2491 bool isFloatingPoint() const {
2492 return getKind() >= Half && getKind() <= Float128;
2493 }
2494
2495 /// Determines whether the given kind corresponds to a placeholder type.
2496 static bool isPlaceholderTypeKind(Kind K) {
2497 return K >= Overload;
2498 }
2499
2500 /// Determines whether this type is a placeholder type, i.e. a type
2501 /// which cannot appear in arbitrary positions in a fully-formed
2502 /// expression.
2503 bool isPlaceholderType() const {
2504 return isPlaceholderTypeKind(getKind());
2505 }
2506
2507 /// Determines whether this type is a placeholder type other than
2508 /// Overload. Most placeholder types require only syntactic
2509 /// information about their context in order to be resolved (e.g.
2510 /// whether it is a call expression), which means they can (and
2511 /// should) be resolved in an earlier "phase" of analysis.
2512 /// Overload expressions sometimes pick up further information
2513 /// from their context, like whether the context expects a
2514 /// specific function-pointer type, and so frequently need
2515 /// special treatment.
2516 bool isNonOverloadPlaceholderType() const {
2517 return getKind() > Overload;
2518 }
2519
2520 static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
2521};
2522
2523/// Complex values, per C99 6.2.5p11. This supports the C99 complex
2524/// types (_Complex float etc) as well as the GCC integer complex extensions.
2525class ComplexType : public Type, public llvm::FoldingSetNode {
2526 friend class ASTContext; // ASTContext creates these.
2527
2528 QualType ElementType;
2529
2530 ComplexType(QualType Element, QualType CanonicalPtr)
2531 : Type(Complex, CanonicalPtr, Element->isDependentType(),
2532 Element->isInstantiationDependentType(),
2533 Element->isVariablyModifiedType(),
2534 Element->containsUnexpandedParameterPack()),
2535 ElementType(Element) {}
2536
2537public:
2538 QualType getElementType() const { return ElementType; }
2539
2540 bool isSugared() const { return false; }
2541 QualType desugar() const { return QualType(this, 0); }
2542
2543 void Profile(llvm::FoldingSetNodeID &ID) {
2544 Profile(ID, getElementType());
2545 }
2546
2547 static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
2548 ID.AddPointer(Element.getAsOpaquePtr());
2549 }
2550
2551 static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
2552};
2553
2554/// Sugar for parentheses used when specifying types.
2555class ParenType : public Type, public llvm::FoldingSetNode {
2556 friend class ASTContext; // ASTContext creates these.
2557
2558 QualType Inner;
2559
2560 ParenType(QualType InnerType, QualType CanonType)
2561 : Type(Paren, CanonType, InnerType->isDependentType(),
2562 InnerType->isInstantiationDependentType(),
2563 InnerType->isVariablyModifiedType(),
2564 InnerType->containsUnexpandedParameterPack()),
2565 Inner(InnerType) {}
2566
2567public:
2568 QualType getInnerType() const { return Inner; }
2569
2570 bool isSugared() const { return true; }
2571 QualType desugar() const { return getInnerType(); }
2572
2573 void Profile(llvm::FoldingSetNodeID &ID) {
2574 Profile(ID, getInnerType());
2575 }
2576
2577 static void Profile(llvm::FoldingSetNodeID &ID, QualType Inner) {
2578 Inner.Profile(ID);
2579 }
2580
2581 static bool classof(const Type *T) { return T->getTypeClass() == Paren; }
2582};
2583
2584/// PointerType - C99 6.7.5.1 - Pointer Declarators.
2585class PointerType : public Type, public llvm::FoldingSetNode {
2586 friend class ASTContext; // ASTContext creates these.
2587
2588 QualType PointeeType;
2589
2590 PointerType(QualType Pointee, QualType CanonicalPtr)
2591 : Type(Pointer, CanonicalPtr, Pointee->isDependentType(),
2592 Pointee->isInstantiationDependentType(),
2593 Pointee->isVariablyModifiedType(),
2594 Pointee->containsUnexpandedParameterPack()),
2595 PointeeType(Pointee) {}
2596
2597public:
2598 QualType getPointeeType() const { return PointeeType; }
2599
2600 /// Returns true if address spaces of pointers overlap.
2601 /// OpenCL v2.0 defines conversion rules for pointers to different
2602 /// address spaces (OpenCLC v2.0 s6.5.5) and notion of overlapping
2603 /// address spaces.
2604 /// CL1.1 or CL1.2:
2605 /// address spaces overlap iff they are they same.
2606 /// CL2.0 adds:
2607 /// __generic overlaps with any address space except for __constant.
2608 bool isAddressSpaceOverlapping(const PointerType &other) const {
2609 Qualifiers thisQuals = PointeeType.getQualifiers();
2610 Qualifiers otherQuals = other.getPointeeType().getQualifiers();
2611 // Address spaces overlap if at least one of them is a superset of another
2612 return thisQuals.isAddressSpaceSupersetOf(otherQuals) ||
2613 otherQuals.isAddressSpaceSupersetOf(thisQuals);
2614 }
2615
2616 bool isSugared() const { return false; }
2617 QualType desugar() const { return QualType(this, 0); }
2618
2619 void Profile(llvm::FoldingSetNodeID &ID) {
2620 Profile(ID, getPointeeType());
2621 }
2622
2623 static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
2624 ID.AddPointer(Pointee.getAsOpaquePtr());
2625 }
2626
2627 static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
2628};
2629
2630/// Represents a type which was implicitly adjusted by the semantic
2631/// engine for arbitrary reasons. For example, array and function types can
2632/// decay, and function types can have their calling conventions adjusted.
2633class AdjustedType : public Type, public llvm::FoldingSetNode {
2634 QualType OriginalTy;
2635 QualType AdjustedTy;
2636
2637protected:
2638 friend class ASTContext; // ASTContext creates these.
2639
2640 AdjustedType(TypeClass TC, QualType OriginalTy, QualType AdjustedTy,
2641 QualType CanonicalPtr)
2642 : Type(TC, CanonicalPtr, OriginalTy->isDependentType(),
2643 OriginalTy->isInstantiationDependentType(),
2644 OriginalTy->isVariablyModifiedType(),
2645 OriginalTy->containsUnexpandedParameterPack()),
2646 OriginalTy(OriginalTy), AdjustedTy(AdjustedTy) {}
2647
2648public:
2649 QualType getOriginalType() const { return OriginalTy; }
2650 QualType getAdjustedType() const { return AdjustedTy; }
2651
2652 bool isSugared() const { return true; }
2653 QualType desugar() const { return AdjustedTy; }
2654
2655 void Profile(llvm::FoldingSetNodeID &ID) {
2656 Profile(ID, OriginalTy, AdjustedTy);
2657 }
2658
2659 static void Profile(llvm::FoldingSetNodeID &ID, QualType Orig, QualType New) {
2660 ID.AddPointer(Orig.getAsOpaquePtr());
2661 ID.AddPointer(New.getAsOpaquePtr());
2662 }
2663
2664 static bool classof(const Type *T) {
2665 return T->getTypeClass() == Adjusted || T->getTypeClass() == Decayed;
2666 }
2667};
2668
2669/// Represents a pointer type decayed from an array or function type.
2670class DecayedType : public AdjustedType {
2671 friend class ASTContext; // ASTContext creates these.
2672
2673 inline
2674 DecayedType(QualType OriginalType, QualType Decayed, QualType Canonical);
2675
2676public:
2677 QualType getDecayedType() const { return getAdjustedType(); }
2678
2679 inline QualType getPointeeType() const;
2680
2681 static bool classof(const Type *T) { return T->getTypeClass() == Decayed; }
2682};
2683
2684/// Pointer to a block type.
2685/// This type is to represent types syntactically represented as
2686/// "void (^)(int)", etc. Pointee is required to always be a function type.
2687class BlockPointerType : public Type, public llvm::FoldingSetNode {
2688 friend class ASTContext; // ASTContext creates these.
2689
2690 // Block is some kind of pointer type
2691 QualType PointeeType;
2692
2693 BlockPointerType(QualType Pointee, QualType CanonicalCls)
2694 : Type(BlockPointer, CanonicalCls, Pointee->isDependentType(),
2695 Pointee->isInstantiationDependentType(),
2696 Pointee->isVariablyModifiedType(),
2697 Pointee->containsUnexpandedParameterPack()),
2698 PointeeType(Pointee) {}
2699
2700public:
2701 // Get the pointee type. Pointee is required to always be a function type.
2702 QualType getPointeeType() const { return PointeeType; }
2703
2704 bool isSugared() const { return false; }
2705 QualType desugar() const { return QualType(this, 0); }
2706
2707 void Profile(llvm::FoldingSetNodeID &ID) {
2708 Profile(ID, getPointeeType());
2709 }
2710
2711 static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
2712 ID.AddPointer(Pointee.getAsOpaquePtr());
2713 }
2714
2715 static bool classof(const Type *T) {
2716 return T->getTypeClass() == BlockPointer;
2717 }
2718};
2719
2720/// Base for LValueReferenceType and RValueReferenceType
2721class ReferenceType : public Type, public llvm::FoldingSetNode {
2722 QualType PointeeType;
2723
2724protected:
2725 ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef,
2726 bool SpelledAsLValue)
2727 : Type(tc, CanonicalRef, Referencee->isDependentType(),
2728 Referencee->isInstantiationDependentType(),
2729 Referencee->isVariablyModifiedType(),
2730 Referencee->containsUnexpandedParameterPack()),
2731 PointeeType(Referencee) {
2732 ReferenceTypeBits.SpelledAsLValue = SpelledAsLValue;
2733 ReferenceTypeBits.InnerRef = Referencee->isReferenceType();
2734 }
2735
2736public:
2737 bool isSpelledAsLValue() const { return ReferenceTypeBits.SpelledAsLValue; }
2738 bool isInnerRef() const { return ReferenceTypeBits.InnerRef; }
2739
2740 QualType getPointeeTypeAsWritten() const { return PointeeType; }
2741
2742 QualType getPointeeType() const {
2743 // FIXME: this might strip inner qualifiers; okay?
2744 const ReferenceType *T = this;
2745 while (T->isInnerRef())
2746 T = T->PointeeType->castAs<ReferenceType>();
2747 return T->PointeeType;
2748 }
2749
2750 void Profile(llvm::FoldingSetNodeID &ID) {
2751 Profile(ID, PointeeType, isSpelledAsLValue());
2752 }
2753
2754 static void Profile(llvm::FoldingSetNodeID &ID,
2755 QualType Referencee,
2756 bool SpelledAsLValue) {
2757 ID.AddPointer(Referencee.getAsOpaquePtr());
2758 ID.AddBoolean(SpelledAsLValue);
2759 }
2760
2761 static bool classof(const Type *T) {
2762 return T->getTypeClass() == LValueReference ||
2763 T->getTypeClass() == RValueReference;
2764 }
2765};
2766
2767/// An lvalue reference type, per C++11 [dcl.ref].
2768class LValueReferenceType : public ReferenceType {
2769 friend class ASTContext; // ASTContext creates these
2770
2771 LValueReferenceType(QualType Referencee, QualType CanonicalRef,
2772 bool SpelledAsLValue)
2773 : ReferenceType(LValueReference, Referencee, CanonicalRef,
2774 SpelledAsLValue) {}
2775
2776public:
2777 bool isSugared() const { return false; }
2778 QualType desugar() const { return QualType(this, 0); }
2779
2780 static bool classof(const Type *T) {
2781 return T->getTypeClass() == LValueReference;
2782 }
2783};
2784
2785/// An rvalue reference type, per C++11 [dcl.ref].
2786class RValueReferenceType : public ReferenceType {
2787 friend class ASTContext; // ASTContext creates these
2788
2789 RValueReferenceType(QualType Referencee, QualType CanonicalRef)
2790 : ReferenceType(RValueReference, Referencee, CanonicalRef, false) {}
2791
2792public:
2793 bool isSugared() const { return false; }
2794 QualType desugar() const { return QualType(this, 0); }
2795
2796 static bool classof(const Type *T) {
2797 return T->getTypeClass() == RValueReference;
2798 }
2799};
2800
2801/// A pointer to member type per C++ 8.3.3 - Pointers to members.
2802///
2803/// This includes both pointers to data members and pointer to member functions.
2804class MemberPointerType : public Type, public llvm::FoldingSetNode {
2805 friend class ASTContext; // ASTContext creates these.
2806
2807 QualType PointeeType;
2808
2809 /// The class of which the pointee is a member. Must ultimately be a
2810 /// RecordType, but could be a typedef or a template parameter too.
2811 const Type *Class;
2812
2813 MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr)
2814 : Type(MemberPointer, CanonicalPtr,
2815 Cls->isDependentType() || Pointee->isDependentType(),
2816 (Cls->isInstantiationDependentType() ||
2817 Pointee->isInstantiationDependentType()),
2818 Pointee->isVariablyModifiedType(),
2819 (Cls->containsUnexpandedParameterPack() ||
2820 Pointee->containsUnexpandedParameterPack())),
2821 PointeeType(Pointee), Class(Cls) {}
2822
2823public:
2824 QualType getPointeeType() const { return PointeeType; }
2825
2826 /// Returns true if the member type (i.e. the pointee type) is a
2827 /// function type rather than a data-member type.
2828 bool isMemberFunctionPointer() const {
2829 return PointeeType->isFunctionProtoType();
2830 }
2831
2832 /// Returns true if the member type (i.e. the pointee type) is a
2833 /// data type rather than a function type.
2834 bool isMemberDataPointer() const {
2835 return !PointeeType->isFunctionProtoType();
2836 }
2837
2838 const Type *getClass() const { return Class; }
2839 CXXRecordDecl *getMostRecentCXXRecordDecl() const;
2840
2841 bool isSugared() const { return false; }
2842 QualType desugar() const { return QualType(this, 0); }
2843
2844 void Profile(llvm::FoldingSetNodeID &ID) {
2845 Profile(ID, getPointeeType(), getClass());
2846 }
2847
2848 static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
2849 const Type *Class) {
2850 ID.AddPointer(Pointee.getAsOpaquePtr());
2851 ID.AddPointer(Class);
2852 }
2853
2854 static bool classof(const Type *T) {
2855 return T->getTypeClass() == MemberPointer;
2856 }
2857};
2858
2859/// Represents an array type, per C99 6.7.5.2 - Array Declarators.
2860class ArrayType : public Type, public llvm::FoldingSetNode {
2861public:
2862 /// Capture whether this is a normal array (e.g. int X[4])
2863 /// an array with a static size (e.g. int X[static 4]), or an array
2864 /// with a star size (e.g. int X[*]).
2865 /// 'static' is only allowed on function parameters.
2866 enum ArraySizeModifier {
2867 Normal, Static, Star
2868 };
2869
2870private:
2871 /// The element type of the array.
2872 QualType ElementType;
2873
2874protected:
2875 friend class ASTContext; // ASTContext creates these.
2876
2877 ArrayType(TypeClass tc, QualType et, QualType can, ArraySizeModifier sm,
2878 unsigned tq, const Expr *sz = nullptr);
2879
2880public:
2881 QualType getElementType() const { return ElementType; }
2882
2883 ArraySizeModifier getSizeModifier() const {
2884 return ArraySizeModifier(ArrayTypeBits.SizeModifier);
2885 }
2886
2887 Qualifiers getIndexTypeQualifiers() const {
2888 return Qualifiers::fromCVRMask(getIndexTypeCVRQualifiers());
2889 }
2890
2891 unsigned getIndexTypeCVRQualifiers() const {
2892 return ArrayTypeBits.IndexTypeQuals;
2893 }
2894
2895 static bool classof(const Type *T) {
2896 return T->getTypeClass() == ConstantArray ||
2897 T->getTypeClass() == VariableArray ||
2898 T->getTypeClass() == IncompleteArray ||
2899 T->getTypeClass() == DependentSizedArray;
2900 }
2901};
2902
2903/// Represents the canonical version of C arrays with a specified constant size.
2904/// For example, the canonical type for 'int A[4 + 4*100]' is a
2905/// ConstantArrayType where the element type is 'int' and the size is 404.
2906class ConstantArrayType final
2907 : public ArrayType,
2908 private llvm::TrailingObjects<ConstantArrayType, const Expr *> {
2909 friend class ASTContext; // ASTContext creates these.
2910 friend TrailingObjects;
2911
2912 llvm::APInt Size; // Allows us to unique the type.
2913
2914 ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
2915 const Expr *sz, ArraySizeModifier sm, unsigned tq)
2916 : ArrayType(ConstantArray, et, can, sm, tq, sz), Size(size) {
2917 ConstantArrayTypeBits.HasStoredSizeExpr = sz != nullptr;
2918 if (ConstantArrayTypeBits.HasStoredSizeExpr) {
2919 assert(!can.isNull() && "canonical constant array should not have size")((!can.isNull() && "canonical constant array should not have size"
) ? static_cast<void> (0) : __assert_fail ("!can.isNull() && \"canonical constant array should not have size\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Type.h"
, 2919, __PRETTY_FUNCTION__))
;
2920 *getTrailingObjects<const Expr*>() = sz;
2921 }
2922 }
2923
2924 unsigned numTrailingObjects(OverloadToken<const Expr*>) const {
2925 return ConstantArrayTypeBits.HasStoredSizeExpr;
2926 }
2927
2928public:
2929 const llvm::APInt &getSize() const { return Size; }
2930 const Expr *getSizeExpr() const {
2931 return ConstantArrayTypeBits.HasStoredSizeExpr
2932 ? *getTrailingObjects<const Expr *>()
2933 : nullptr;
2934 }
2935 bool isSugared() const { return false; }
2936 QualType desugar() const { return QualType(this, 0); }
2937
2938 /// Determine the number of bits required to address a member of
2939 // an array with the given element type and number of elements.
2940 static unsigned getNumAddressingBits(const ASTContext &Context,
2941 QualType ElementType,
2942 const llvm::APInt &NumElements);
2943
2944 /// Determine the maximum number of active bits that an array's size
2945 /// can require, which limits the maximum size of the array.
2946 static unsigned getMaxSizeBits(const ASTContext &Context);
2947
2948 void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx) {
2949 Profile(ID, Ctx, getElementType(), getSize(), getSizeExpr(),
2950 getSizeModifier(), getIndexTypeCVRQualifiers());
2951 }
2952
2953 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx,
2954 QualType ET, const llvm::APInt &ArraySize,
2955 const Expr *SizeExpr, ArraySizeModifier SizeMod,
2956 unsigned TypeQuals);
2957
2958 static bool classof(const Type *T) {
2959 return T->getTypeClass() == ConstantArray;
2960 }
2961};
2962
2963/// Represents a C array with an unspecified size. For example 'int A[]' has
2964/// an IncompleteArrayType where the element type is 'int' and the size is
2965/// unspecified.
2966class IncompleteArrayType : public ArrayType {
2967 friend class ASTContext; // ASTContext creates these.
2968
2969 IncompleteArrayType(QualType et, QualType can,
2970 ArraySizeModifier sm, unsigned tq)
2971 : ArrayType(IncompleteArray, et, can, sm, tq) {}
2972
2973public:
2974 friend class StmtIteratorBase;
2975
2976 bool isSugared() const { return false; }
2977 QualType desugar() const { return QualType(this, 0); }
2978
2979 static bool classof(const Type *T) {
2980 return T->getTypeClass() == IncompleteArray;
2981 }
2982
2983 void Profile(llvm::FoldingSetNodeID &ID) {
2984 Profile(ID, getElementType(), getSizeModifier(),
2985 getIndexTypeCVRQualifiers());
2986 }
2987
2988 static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
2989 ArraySizeModifier SizeMod, unsigned TypeQuals) {
2990 ID.AddPointer(ET.getAsOpaquePtr());
2991 ID.AddInteger(SizeMod);
2992 ID.AddInteger(TypeQuals);
2993 }
2994};
2995
2996/// Represents a C array with a specified size that is not an
2997/// integer-constant-expression. For example, 'int s[x+foo()]'.
2998/// Since the size expression is an arbitrary expression, we store it as such.
2999///
3000/// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
3001/// should not be: two lexically equivalent variable array types could mean
3002/// different things, for example, these variables do not have the same type
3003/// dynamically:
3004///
3005/// void foo(int x) {
3006/// int Y[x];
3007/// ++x;
3008/// int Z[x];
3009/// }
3010class VariableArrayType : public ArrayType {
3011 friend class ASTContext; // ASTContext creates these.
3012
3013 /// An assignment-expression. VLA's are only permitted within
3014 /// a function block.
3015 Stmt *SizeExpr;
3016
3017 /// The range spanned by the left and right array brackets.
3018 SourceRange Brackets;
3019
3020 VariableArrayType(QualType et, QualType can, Expr *e,
3021 ArraySizeModifier sm, unsigned tq,
3022 SourceRange brackets)
3023 : ArrayType(VariableArray, et, can, sm, tq, e),
3024 SizeExpr((Stmt*) e), Brackets(brackets) {}
3025
3026public:
3027 friend class StmtIteratorBase;
3028
3029 Expr *getSizeExpr() const {
3030 // We use C-style casts instead of cast<> here because we do not wish
3031 // to have a dependency of Type.h on Stmt.h/Expr.h.
3032 return (Expr*) SizeExpr;
3033 }
3034
3035 SourceRange getBracketsRange() const { return Brackets; }
3036 SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
3037 SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
3038
3039 bool isSugared() const { return false; }
3040 QualType desugar() const { return QualType(this, 0); }
3041
3042 static bool classof(const Type *T) {
3043 return T->getTypeClass() == VariableArray;
3044 }
3045
3046 void Profile(llvm::FoldingSetNodeID &ID) {
3047 llvm_unreachable("Cannot unique VariableArrayTypes.")::llvm::llvm_unreachable_internal("Cannot unique VariableArrayTypes."
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Type.h"
, 3047)
;
3048 }
3049};
3050
3051/// Represents an array type in C++ whose size is a value-dependent expression.
3052///
3053/// For example:
3054/// \code
3055/// template<typename T, int Size>
3056/// class array {
3057/// T data[Size];
3058/// };
3059/// \endcode
3060///
3061/// For these types, we won't actually know what the array bound is
3062/// until template instantiation occurs, at which point this will
3063/// become either a ConstantArrayType or a VariableArrayType.
3064class DependentSizedArrayType : public ArrayType {
3065 friend class ASTContext; // ASTContext creates these.
3066
3067 const ASTContext &Context;
3068
3069 /// An assignment expression that will instantiate to the
3070 /// size of the array.
3071 ///
3072 /// The expression itself might be null, in which case the array
3073 /// type will have its size deduced from an initializer.
3074 Stmt *SizeExpr;
3075
3076 /// The range spanned by the left and right array brackets.
3077 SourceRange Brackets;
3078
3079 DependentSizedArrayType(const ASTContext &Context, QualType et, QualType can,
3080 Expr *e, ArraySizeModifier sm, unsigned tq,
3081 SourceRange brackets);
3082
3083public:
3084 friend class StmtIteratorBase;
3085
3086 Expr *getSizeExpr() const {
3087 // We use C-style casts instead of cast<> here because we do not wish
3088 // to have a dependency of Type.h on Stmt.h/Expr.h.
3089 return (Expr*) SizeExpr;
3090 }
3091
3092 SourceRange getBracketsRange() const { return Brackets; }
3093 SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
3094 SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
3095
3096 bool isSugared() const { return false; }
3097 QualType desugar() const { return QualType(this, 0); }
3098
3099 static bool classof(const Type *T) {
3100 return T->getTypeClass() == DependentSizedArray;
3101 }
3102
3103 void Profile(llvm::FoldingSetNodeID &ID) {
3104 Profile(ID, Context, getElementType(),
3105 getSizeModifier(), getIndexTypeCVRQualifiers(), getSizeExpr());
3106 }
3107
3108 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3109 QualType ET, ArraySizeModifier SizeMod,
3110 unsigned TypeQuals, Expr *E);
3111};
3112
3113/// Represents an extended address space qualifier where the input address space
3114/// value is dependent. Non-dependent address spaces are not represented with a
3115/// special Type subclass; they are stored on an ExtQuals node as part of a QualType.
3116///
3117/// For example:
3118/// \code
3119/// template<typename T, int AddrSpace>
3120/// class AddressSpace {
3121/// typedef T __attribute__((address_space(AddrSpace))) type;
3122/// }
3123/// \endcode
3124class DependentAddressSpaceType : public Type, public llvm::FoldingSetNode {
3125 friend class ASTContext;
3126
3127 const ASTContext &Context;
3128 Expr *AddrSpaceExpr;
3129 QualType PointeeType;
3130 SourceLocation loc;
3131
3132 DependentAddressSpaceType(const ASTContext &Context, QualType PointeeType,
3133 QualType can, Expr *AddrSpaceExpr,
3134 SourceLocation loc);
3135
3136public:
3137 Expr *getAddrSpaceExpr() const { return AddrSpaceExpr; }
3138 QualType getPointeeType() const { return PointeeType; }
3139 SourceLocation getAttributeLoc() const { return loc; }
3140
3141 bool isSugared() const { return false; }
3142 QualType desugar() const { return QualType(this, 0); }
3143
3144 static bool classof(const Type *T) {
3145 return T->getTypeClass() == DependentAddressSpace;
3146 }
3147
3148 void Profile(llvm::FoldingSetNodeID &ID) {
3149 Profile(ID, Context, getPointeeType(), getAddrSpaceExpr());
3150 }
3151
3152 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3153 QualType PointeeType, Expr *AddrSpaceExpr);
3154};
3155
3156/// Represents an extended vector type where either the type or size is
3157/// dependent.
3158///
3159/// For example:
3160/// \code
3161/// template<typename T, int Size>
3162/// class vector {
3163/// typedef T __attribute__((ext_vector_type(Size))) type;
3164/// }
3165/// \endcode
3166class DependentSizedExtVectorType : public Type, public llvm::FoldingSetNode {
3167 friend class ASTContext;
3168
3169 const ASTContext &Context;
3170 Expr *SizeExpr;
3171
3172 /// The element type of the array.
3173 QualType ElementType;
3174
3175 SourceLocation loc;
3176
3177 DependentSizedExtVectorType(const ASTContext &Context, QualType ElementType,
3178 QualType can, Expr *SizeExpr, SourceLocation loc);
3179
3180public:
3181 Expr *getSizeExpr() const { return SizeExpr; }
3182 QualType getElementType() const { return ElementType; }
3183 SourceLocation getAttributeLoc() const { return loc; }
3184
3185 bool isSugared() const { return false; }
3186 QualType desugar() const { return QualType(this, 0); }
3187
3188 static bool classof(const Type *T) {
3189 return T->getTypeClass() == DependentSizedExtVector;
3190 }
3191
3192 void Profile(llvm::FoldingSetNodeID &ID) {
3193 Profile(ID, Context, getElementType(), getSizeExpr());
3194 }
3195
3196 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3197 QualType ElementType, Expr *SizeExpr);
3198};
3199
3200
3201/// Represents a GCC generic vector type. This type is created using
3202/// __attribute__((vector_size(n)), where "n" specifies the vector size in
3203/// bytes; or from an Altivec __vector or vector declaration.
3204/// Since the constructor takes the number of vector elements, the
3205/// client is responsible for converting the size into the number of elements.
3206class VectorType : public Type, public llvm::FoldingSetNode {
3207public:
3208 enum VectorKind {
3209 /// not a target-specific vector type
3210 GenericVector,
3211
3212 /// is AltiVec vector
3213 AltiVecVector,
3214
3215 /// is AltiVec 'vector Pixel'
3216 AltiVecPixel,
3217
3218 /// is AltiVec 'vector bool ...'
3219 AltiVecBool,
3220
3221 /// is ARM Neon vector
3222 NeonVector,
3223
3224 /// is ARM Neon polynomial vector
3225 NeonPolyVector
3226 };
3227
3228protected:
3229 friend class ASTContext; // ASTContext creates these.
3230
3231 /// The element type of the vector.
3232 QualType ElementType;
3233
3234 VectorType(QualType vecType, unsigned nElements, QualType canonType,
3235 VectorKind vecKind);
3236
3237 VectorType(TypeClass tc, QualType vecType, unsigned nElements,
3238 QualType canonType, VectorKind vecKind);
3239
3240public:
3241 QualType getElementType() const { return ElementType; }
3242 unsigned getNumElements() const { return VectorTypeBits.NumElements; }
3243
3244 static bool isVectorSizeTooLarge(unsigned NumElements) {
3245 return NumElements > VectorTypeBitfields::MaxNumElements;
3246 }
3247
3248 bool isSugared() const { return false; }
3249 QualType desugar() const { return QualType(this, 0); }
3250
3251 VectorKind getVectorKind() const {
3252 return VectorKind(VectorTypeBits.VecKind);
3253 }
3254
3255 void Profile(llvm::FoldingSetNodeID &ID) {
3256 Profile(ID, getElementType(), getNumElements(),
3257 getTypeClass(), getVectorKind());
3258 }
3259
3260 static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
3261 unsigned NumElements, TypeClass TypeClass,
3262 VectorKind VecKind) {
3263 ID.AddPointer(ElementType.getAsOpaquePtr());
3264 ID.AddInteger(NumElements);
3265 ID.AddInteger(TypeClass);
3266 ID.AddInteger(VecKind);
3267 }
3268
3269 static bool classof(const Type *T) {
3270 return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector;
3271 }
3272};
3273
3274/// Represents a vector type where either the type or size is dependent.
3275////
3276/// For example:
3277/// \code
3278/// template<typename T, int Size>
3279/// class vector {
3280/// typedef T __attribute__((vector_size(Size))) type;
3281/// }
3282/// \endcode
3283class DependentVectorType : public Type, public llvm::FoldingSetNode {
3284 friend class ASTContext;
3285
3286 const ASTContext &Context;
3287 QualType ElementType;
3288 Expr *SizeExpr;
3289 SourceLocation Loc;
3290
3291 DependentVectorType(const ASTContext &Context, QualType ElementType,
3292 QualType CanonType, Expr *SizeExpr,
3293 SourceLocation Loc, VectorType::VectorKind vecKind);
3294
3295public:
3296 Expr *getSizeExpr() const { return SizeExpr; }
3297 QualType getElementType() const { return ElementType; }
3298 SourceLocation getAttributeLoc() const { return Loc; }
3299 VectorType::VectorKind getVectorKind() const {
3300 return VectorType::VectorKind(VectorTypeBits.VecKind);
3301 }
3302
3303 bool isSugared() const { return false; }
3304 QualType desugar() const { return QualType(this, 0); }
3305
3306 static bool classof(const Type *T) {
3307 return T->getTypeClass() == DependentVector;
3308 }
3309
3310 void Profile(llvm::FoldingSetNodeID &ID) {
3311 Profile(ID, Context, getElementType(), getSizeExpr(), getVectorKind());
3312 }
3313
3314 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3315 QualType ElementType, const Expr *SizeExpr,
3316 VectorType::VectorKind VecKind);
3317};
3318
3319/// ExtVectorType - Extended vector type. This type is created using
3320/// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
3321/// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
3322/// class enables syntactic extensions, like Vector Components for accessing
3323/// points (as .xyzw), colors (as .rgba), and textures (modeled after OpenGL
3324/// Shading Language).
3325class ExtVectorType : public VectorType {
3326 friend class ASTContext; // ASTContext creates these.
3327
3328 ExtVectorType(QualType vecType, unsigned nElements, QualType canonType)
3329 : VectorType(ExtVector, vecType, nElements, canonType, GenericVector) {}
3330
3331public:
3332 static int getPointAccessorIdx(char c) {
3333 switch (c) {
3334 default: return -1;
3335 case 'x': case 'r': return 0;
3336 case 'y': case 'g': return 1;
3337 case 'z': case 'b': return 2;
3338 case 'w': case 'a': return 3;
3339 }
3340 }
3341
3342 static int getNumericAccessorIdx(char c) {
3343 switch (c) {
3344 default: return -1;
3345 case '0': return 0;
3346 case '1': return 1;
3347 case '2': return 2;
3348 case '3': return 3;
3349 case '4': return 4;
3350 case '5': return 5;
3351 case '6': return 6;
3352 case '7': return 7;
3353 case '8': return 8;
3354 case '9': return 9;
3355 case 'A':
3356 case 'a': return 10;
3357 case 'B':
3358 case 'b': return 11;
3359 case 'C':
3360 case 'c': return 12;
3361 case 'D':
3362 case 'd': return 13;
3363 case 'E':
3364 case 'e': return 14;
3365 case 'F':
3366 case 'f': return 15;
3367 }
3368 }
3369
3370 static int getAccessorIdx(char c, bool isNumericAccessor) {
3371 if (isNumericAccessor)
3372 return getNumericAccessorIdx(c);
3373 else
3374 return getPointAccessorIdx(c);
3375 }
3376
3377 bool isAccessorWithinNumElements(char c, bool isNumericAccessor) const {
3378 if (int idx = getAccessorIdx(c, isNumericAccessor)+1)
3379 return unsigned(idx-1) < getNumElements();
3380 return false;
3381 }
3382
3383 bool isSugared() const { return false; }
3384 QualType desugar() const { return QualType(this, 0); }
3385
3386 static bool classof(const Type *T) {
3387 return T->getTypeClass() == ExtVector;
3388 }
3389};
3390
3391/// FunctionType - C99 6.7.5.3 - Function Declarators. This is the common base
3392/// class of FunctionNoProtoType and FunctionProtoType.
3393class FunctionType : public Type {
3394 // The type returned by the function.
3395 QualType ResultType;
3396
3397public:
3398 /// Interesting information about a specific parameter that can't simply
3399 /// be reflected in parameter's type. This is only used by FunctionProtoType
3400 /// but is in FunctionType to make this class available during the
3401 /// specification of the bases of FunctionProtoType.
3402 ///
3403 /// It makes sense to model language features this way when there's some
3404 /// sort of parameter-specific override (such as an attribute) that
3405 /// affects how the function is called. For example, the ARC ns_consumed
3406 /// attribute changes whether a parameter is passed at +0 (the default)
3407 /// or +1 (ns_consumed). This must be reflected in the function type,
3408 /// but isn't really a change to the parameter type.
3409 ///
3410 /// One serious disadvantage of modelling language features this way is
3411 /// that they generally do not work with language features that attempt
3412 /// to destructure types. For example, template argument deduction will
3413 /// not be able to match a parameter declared as
3414 /// T (*)(U)
3415 /// against an argument of type
3416 /// void (*)(__attribute__((ns_consumed)) id)
3417 /// because the substitution of T=void, U=id into the former will
3418 /// not produce the latter.
3419 class ExtParameterInfo {
3420 enum {
3421 ABIMask = 0x0F,
3422 IsConsumed = 0x10,
3423 HasPassObjSize = 0x20,
3424 IsNoEscape = 0x40,
3425 };
3426 unsigned char Data = 0;
3427
3428 public:
3429 ExtParameterInfo() = default;
3430
3431 /// Return the ABI treatment of this parameter.
3432 ParameterABI getABI() const { return ParameterABI(Data & ABIMask); }
3433 ExtParameterInfo withABI(ParameterABI kind) const {
3434 ExtParameterInfo copy = *this;
3435 copy.Data = (copy.Data & ~ABIMask) | unsigned(kind);
3436 return copy;
3437 }
3438
3439 /// Is this parameter considered "consumed" by Objective-C ARC?
3440 /// Consumed parameters must have retainable object type.
3441 bool isConsumed() const { return (Data & IsConsumed); }
3442 ExtParameterInfo withIsConsumed(bool consumed) const {
3443 ExtParameterInfo copy = *this;
3444 if (consumed)
3445 copy.Data |= IsConsumed;
3446 else
3447 copy.Data &= ~IsConsumed;
3448 return copy;
3449 }
3450
3451 bool hasPassObjectSize() const { return Data & HasPassObjSize; }
3452 ExtParameterInfo withHasPassObjectSize() const {
3453 ExtParameterInfo Copy = *this;
3454 Copy.Data |= HasPassObjSize;
3455 return Copy;
3456 }
3457
3458 bool isNoEscape() const { return Data & IsNoEscape; }
3459 ExtParameterInfo withIsNoEscape(bool NoEscape) const {
3460 ExtParameterInfo Copy = *this;
3461 if (NoEscape)
3462 Copy.Data |= IsNoEscape;
3463 else
3464 Copy.Data &= ~IsNoEscape;
3465 return Copy;
3466 }
3467
3468 unsigned char getOpaqueValue() const { return Data; }
3469 static ExtParameterInfo getFromOpaqueValue(unsigned char data) {
3470 ExtParameterInfo result;
3471 result.Data = data;
3472 return result;
3473 }
3474
3475 friend bool operator==(ExtParameterInfo lhs, ExtParameterInfo rhs) {
3476 return lhs.Data == rhs.Data;
3477 }
3478
3479 friend bool operator!=(ExtParameterInfo lhs, ExtParameterInfo rhs) {
3480 return lhs.Data != rhs.Data;
3481 }
3482 };
3483
3484 /// A class which abstracts out some details necessary for
3485 /// making a call.
3486 ///
3487 /// It is not actually used directly for storing this information in
3488 /// a FunctionType, although FunctionType does currently use the
3489 /// same bit-pattern.
3490 ///
3491 // If you add a field (say Foo), other than the obvious places (both,
3492 // constructors, compile failures), what you need to update is
3493 // * Operator==
3494 // * getFoo
3495 // * withFoo
3496 // * functionType. Add Foo, getFoo.
3497 // * ASTContext::getFooType
3498 // * ASTContext::mergeFunctionTypes
3499 // * FunctionNoProtoType::Profile
3500 // * FunctionProtoType::Profile
3501 // * TypePrinter::PrintFunctionProto
3502 // * AST read and write
3503 // * Codegen
3504 class ExtInfo {
3505 friend class FunctionType;
3506
3507 // Feel free to rearrange or add bits, but if you go over 12,
3508 // you'll need to adjust both the Bits field below and
3509 // Type::FunctionTypeBitfields.
3510
3511 // | CC |noreturn|produces|nocallersavedregs|regparm|nocfcheck|
3512 // |0 .. 4| 5 | 6 | 7 |8 .. 10| 11 |
3513 //
3514 // regparm is either 0 (no regparm attribute) or the regparm value+1.
3515 enum { CallConvMask = 0x1F };
3516 enum { NoReturnMask = 0x20 };
3517 enum { ProducesResultMask = 0x40 };
3518 enum { NoCallerSavedRegsMask = 0x80 };
3519 enum { NoCfCheckMask = 0x800 };
3520 enum {
3521 RegParmMask = ~(CallConvMask | NoReturnMask | ProducesResultMask |
3522 NoCallerSavedRegsMask | NoCfCheckMask),
3523 RegParmOffset = 8
3524 }; // Assumed to be the last field
3525 uint16_t Bits = CC_C;
3526
3527 ExtInfo(unsigned Bits) : Bits(static_cast<uint16_t>(Bits)) {}
3528
3529 public:
3530 // Constructor with no defaults. Use this when you know that you
3531 // have all the elements (when reading an AST file for example).
3532 ExtInfo(bool noReturn, bool hasRegParm, unsigned regParm, CallingConv cc,
3533 bool producesResult, bool noCallerSavedRegs, bool NoCfCheck) {
3534 assert((!hasRegParm || regParm < 7) && "Invalid regparm value")(((!hasRegParm || regParm < 7) && "Invalid regparm value"
) ? static_cast<void> (0) : __assert_fail ("(!hasRegParm || regParm < 7) && \"Invalid regparm value\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Type.h"
, 3534, __PRETTY_FUNCTION__))
;
3535 Bits = ((unsigned)cc) | (noReturn ? NoReturnMask : 0) |
3536 (producesResult ? ProducesResultMask : 0) |
3537 (noCallerSavedRegs ? NoCallerSavedRegsMask : 0) |
3538 (hasRegParm ? ((regParm + 1) << RegParmOffset) : 0) |
3539 (NoCfCheck ? NoCfCheckMask : 0);
3540 }
3541
3542 // Constructor with all defaults. Use when for example creating a
3543 // function known to use defaults.
3544 ExtInfo() = default;
3545
3546 // Constructor with just the calling convention, which is an important part
3547 // of the canonical type.
3548 ExtInfo(CallingConv CC) : Bits(CC) {}
3549
3550 bool getNoReturn() const { return Bits & NoReturnMask; }
3551 bool getProducesResult() const { return Bits & ProducesResultMask; }
3552 bool getNoCallerSavedRegs() const { return Bits & NoCallerSavedRegsMask; }
3553 bool getNoCfCheck() const { return Bits & NoCfCheckMask; }
3554 bool getHasRegParm() const { return (Bits >> RegParmOffset) != 0; }
3555
3556 unsigned getRegParm() const {
3557 unsigned RegParm = (Bits & RegParmMask) >> RegParmOffset;
3558 if (RegParm > 0)
3559 --RegParm;
3560 return RegParm;
3561 }
3562
3563 CallingConv getCC() const { return CallingConv(Bits & CallConvMask); }
3564
3565 bool operator==(ExtInfo Other) const {
3566 return Bits == Other.Bits;
3567 }
3568 bool operator!=(ExtInfo Other) const {
3569 return Bits != Other.Bits;
3570 }
3571
3572 // Note that we don't have setters. That is by design, use
3573 // the following with methods instead of mutating these objects.
3574
3575 ExtInfo withNoReturn(bool noReturn) const {
3576 if (noReturn)
3577 return ExtInfo(Bits | NoReturnMask);
3578 else
3579 return ExtInfo(Bits & ~NoReturnMask);
3580 }
3581
3582 ExtInfo withProducesResult(bool producesResult) const {
3583 if (producesResult)
3584 return ExtInfo(Bits | ProducesResultMask);
3585 else
3586 return ExtInfo(Bits & ~ProducesResultMask);
3587 }
3588
3589 ExtInfo withNoCallerSavedRegs(bool noCallerSavedRegs) const {
3590 if (noCallerSavedRegs)
3591 return ExtInfo(Bits | NoCallerSavedRegsMask);
3592 else
3593 return ExtInfo(Bits & ~NoCallerSavedRegsMask);
3594 }
3595
3596 ExtInfo withNoCfCheck(bool noCfCheck) const {
3597 if (noCfCheck)
3598 return ExtInfo(Bits | NoCfCheckMask);
3599 else
3600 return ExtInfo(Bits & ~NoCfCheckMask);
3601 }
3602
3603 ExtInfo withRegParm(unsigned RegParm) const {
3604 assert(RegParm < 7 && "Invalid regparm value")((RegParm < 7 && "Invalid regparm value") ? static_cast
<void> (0) : __assert_fail ("RegParm < 7 && \"Invalid regparm value\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Type.h"
, 3604, __PRETTY_FUNCTION__))
;
3605 return ExtInfo((Bits & ~RegParmMask) |
3606 ((RegParm + 1) << RegParmOffset));
3607 }
3608
3609 ExtInfo withCallingConv(CallingConv cc) const {
3610 return ExtInfo((Bits & ~CallConvMask) | (unsigned) cc);
3611 }
3612
3613 void Profile(llvm::FoldingSetNodeID &ID) const {
3614 ID.AddInteger(Bits);
3615 }
3616 };
3617
3618 /// A simple holder for a QualType representing a type in an
3619 /// exception specification. Unfortunately needed by FunctionProtoType
3620 /// because TrailingObjects cannot handle repeated types.
3621 struct ExceptionType { QualType Type; };
3622
3623 /// A simple holder for various uncommon bits which do not fit in
3624 /// FunctionTypeBitfields. Aligned to alignof(void *) to maintain the
3625 /// alignment of subsequent objects in TrailingObjects. You must update
3626 /// hasExtraBitfields in FunctionProtoType after adding extra data here.
3627 struct alignas(void *) FunctionTypeExtraBitfields {
3628 /// The number of types in the exception specification.
3629 /// A whole unsigned is not needed here and according to
3630 /// [implimits] 8 bits would be enough here.
3631 unsigned NumExceptionType;
3632 };
3633
3634protected:
3635 FunctionType(TypeClass tc, QualType res,
3636 QualType Canonical, bool Dependent,
3637 bool InstantiationDependent,
3638 bool VariablyModified, bool ContainsUnexpandedParameterPack,
3639 ExtInfo Info)
3640 : Type(tc, Canonical, Dependent, InstantiationDependent, VariablyModified,
3641 ContainsUnexpandedParameterPack),
3642 ResultType(res) {
3643 FunctionTypeBits.ExtInfo = Info.Bits;
3644 }
3645
3646 Qualifiers getFastTypeQuals() const {
3647 return Qualifiers::fromFastMask(FunctionTypeBits.FastTypeQuals);
3648 }
3649
3650public:
3651 QualType getReturnType() const { return ResultType; }
3652
3653 bool getHasRegParm() const { return getExtInfo().getHasRegParm(); }
3654 unsigned getRegParmType() const { return getExtInfo().getRegParm(); }
3655
3656 /// Determine whether this function type includes the GNU noreturn
3657 /// attribute. The C++11 [[noreturn]] attribute does not affect the function
3658 /// type.
3659 bool getNoReturnAttr() const { return getExtInfo().getNoReturn(); }
3660
3661 CallingConv getCallConv() const { return getExtInfo().getCC(); }
3662 ExtInfo getExtInfo() const { return ExtInfo(FunctionTypeBits.ExtInfo); }
3663
3664 static_assert((~Qualifiers::FastMask & Qualifiers::CVRMask) == 0,
3665 "Const, volatile and restrict are assumed to be a subset of "
3666 "the fast qualifiers.");
3667
3668 bool isConst() const { return getFastTypeQuals().hasConst(); }
3669 bool isVolatile() const { return getFastTypeQuals().hasVolatile(); }
3670 bool isRestrict() const { return getFastTypeQuals().hasRestrict(); }
3671
3672 /// Determine the type of an expression that calls a function of
3673 /// this type.
3674 QualType getCallResultType(const ASTContext &Context) const {
3675 return getReturnType().getNonLValueExprType(Context);
3676 }
3677
3678 static StringRef getNameForCallConv(CallingConv CC);
3679
3680 static bool classof(const Type *T) {
3681 return T->getTypeClass() == FunctionNoProto ||
3682 T->getTypeClass() == FunctionProto;
3683 }
3684};
3685
3686/// Represents a K&R-style 'int foo()' function, which has
3687/// no information available about its arguments.
3688class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode {
3689 friend class ASTContext; // ASTContext creates these.
3690
3691 FunctionNoProtoType(QualType Result, QualType Canonical, ExtInfo Info)
3692 : FunctionType(FunctionNoProto, Result, Canonical,
3693 /*Dependent=*/false, /*InstantiationDependent=*/false,
3694 Result->isVariablyModifiedType(),
3695 /*ContainsUnexpandedParameterPack=*/false, Info) {}
3696
3697public:
3698 // No additional state past what FunctionType provides.
3699
3700 bool isSugared() const { return false; }
3701 QualType desugar() const { return QualType(this, 0); }
3702
3703 void Profile(llvm::FoldingSetNodeID &ID) {
3704 Profile(ID, getReturnType(), getExtInfo());
3705 }
3706
3707 static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType,
3708 ExtInfo Info) {
3709 Info.Profile(ID);
3710 ID.AddPointer(ResultType.getAsOpaquePtr());
3711 }
3712
3713 static bool classof(const Type *T) {
3714 return T->getTypeClass() == FunctionNoProto;
3715 }
3716};
3717
3718/// Represents a prototype with parameter type info, e.g.
3719/// 'int foo(int)' or 'int foo(void)'. 'void' is represented as having no
3720/// parameters, not as having a single void parameter. Such a type can have
3721/// an exception specification, but this specification is not part of the
3722/// canonical type. FunctionProtoType has several trailing objects, some of
3723/// which optional. For more information about the trailing objects see
3724/// the first comment inside FunctionProtoType.
3725class FunctionProtoType final
3726 : public FunctionType,
3727 public llvm::FoldingSetNode,
3728 private llvm::TrailingObjects<
3729 FunctionProtoType, QualType, FunctionType::FunctionTypeExtraBitfields,
3730 FunctionType::ExceptionType, Expr *, FunctionDecl *,
3731 FunctionType::ExtParameterInfo, Qualifiers> {
3732 friend class ASTContext; // ASTContext creates these.
3733 friend TrailingObjects;
3734
3735 // FunctionProtoType is followed by several trailing objects, some of
3736 // which optional. They are in order:
3737 //
3738 // * An array of getNumParams() QualType holding the parameter types.
3739 // Always present. Note that for the vast majority of FunctionProtoType,
3740 // these will be the only trailing objects.
3741 //
3742 // * Optionally if some extra data is stored in FunctionTypeExtraBitfields
3743 // (see FunctionTypeExtraBitfields and FunctionTypeBitfields):
3744 // a single FunctionTypeExtraBitfields. Present if and only if
3745 // hasExtraBitfields() is true.
3746 //
3747 // * Optionally exactly one of:
3748 // * an array of getNumExceptions() ExceptionType,
3749 // * a single Expr *,
3750 // * a pair of FunctionDecl *,
3751 // * a single FunctionDecl *
3752 // used to store information about the various types of exception
3753 // specification. See getExceptionSpecSize for the details.
3754 //
3755 // * Optionally an array of getNumParams() ExtParameterInfo holding
3756 // an ExtParameterInfo for each of the parameters. Present if and
3757 // only if hasExtParameterInfos() is true.
3758 //
3759 // * Optionally a Qualifiers object to represent extra qualifiers that can't
3760 // be represented by FunctionTypeBitfields.FastTypeQuals. Present if and only
3761 // if hasExtQualifiers() is true.
3762 //
3763 // The optional FunctionTypeExtraBitfields has to be before the data
3764 // related to the exception specification since it contains the number
3765 // of exception types.
3766 //
3767 // We put the ExtParameterInfos last. If all were equal, it would make
3768 // more sense to put these before the exception specification, because
3769 // it's much easier to skip past them compared to the elaborate switch
3770 // required to skip the exception specification. However, all is not
3771 // equal; ExtParameterInfos are used to model very uncommon features,
3772 // and it's better not to burden the more common paths.
3773
3774public:
3775 /// Holds information about the various types of exception specification.
3776 /// ExceptionSpecInfo is not stored as such in FunctionProtoType but is
3777 /// used to group together the various bits of information about the
3778 /// exception specification.
3779 struct ExceptionSpecInfo {
3780 /// The kind of exception specification this is.
3781 ExceptionSpecificationType Type = EST_None;
3782
3783 /// Explicitly-specified list of exception types.
3784 ArrayRef<QualType> Exceptions;
3785
3786 /// Noexcept expression, if this is a computed noexcept specification.
3787 Expr *NoexceptExpr = nullptr;
3788
3789 /// The function whose exception specification this is, for
3790 /// EST_Unevaluated and EST_Uninstantiated.
3791 FunctionDecl *SourceDecl = nullptr;
3792
3793 /// The function template whose exception specification this is instantiated
3794 /// from, for EST_Uninstantiated.
3795 FunctionDecl *SourceTemplate = nullptr;
3796
3797 ExceptionSpecInfo() = default;
3798
3799 ExceptionSpecInfo(ExceptionSpecificationType EST) : Type(EST) {}
3800 };
3801
3802 /// Extra information about a function prototype. ExtProtoInfo is not
3803 /// stored as such in FunctionProtoType but is used to group together
3804 /// the various bits of extra information about a function prototype.
3805 struct ExtProtoInfo {
3806 FunctionType::ExtInfo ExtInfo;
3807 bool Variadic : 1;
3808 bool HasTrailingReturn : 1;
3809 Qualifiers TypeQuals;
3810 RefQualifierKind RefQualifier = RQ_None;
3811 ExceptionSpecInfo ExceptionSpec;
3812 const ExtParameterInfo *ExtParameterInfos = nullptr;
3813
3814 ExtProtoInfo() : Variadic(false), HasTrailingReturn(false) {}
3815
3816 ExtProtoInfo(CallingConv CC)
3817 : ExtInfo(CC), Variadic(false), HasTrailingReturn(false) {}
3818
3819 ExtProtoInfo withExceptionSpec(const ExceptionSpecInfo &ESI) {
3820 ExtProtoInfo Result(*this);
3821 Result.ExceptionSpec = ESI;
3822 return Result;
3823 }
3824 };
3825
3826private:
3827 unsigned numTrailingObjects(OverloadToken<QualType>) const {
3828 return getNumParams();
3829 }
3830
3831 unsigned numTrailingObjects(OverloadToken<FunctionTypeExtraBitfields>) const {
3832 return hasExtraBitfields();
3833 }
3834
3835 unsigned numTrailingObjects(OverloadToken<ExceptionType>) const {
3836 return getExceptionSpecSize().NumExceptionType;
3837 }
3838
3839 unsigned numTrailingObjects(OverloadToken<Expr *>) const {
3840 return getExceptionSpecSize().NumExprPtr;
3841 }
3842
3843 unsigned numTrailingObjects(OverloadToken<FunctionDecl *>) const {
3844 return getExceptionSpecSize().NumFunctionDeclPtr;
3845 }
3846
3847 unsigned numTrailingObjects(OverloadToken<ExtParameterInfo>) const {
3848 return hasExtParameterInfos() ? getNumParams() : 0;
3849 }
3850
3851 /// Determine whether there are any argument types that
3852 /// contain an unexpanded parameter pack.
3853 static bool containsAnyUnexpandedParameterPack(const QualType *ArgArray,
3854 unsigned numArgs) {
3855 for (unsigned Idx = 0; Idx < numArgs; ++Idx)
3856 if (ArgArray[Idx]->containsUnexpandedParameterPack())
3857 return true;
3858
3859 return false;
3860 }
3861
3862 FunctionProtoType(QualType result, ArrayRef<QualType> params,
3863 QualType canonical, const ExtProtoInfo &epi);
3864
3865 /// This struct is returned by getExceptionSpecSize and is used to
3866 /// translate an ExceptionSpecificationType to the number and kind
3867 /// of trailing objects related to the exception specification.
3868 struct ExceptionSpecSizeHolder {
3869 unsigned NumExceptionType;
3870 unsigned NumExprPtr;
3871 unsigned NumFunctionDeclPtr;
3872 };
3873
3874 /// Return the number and kind of trailing objects
3875 /// related to the exception specification.
3876 static ExceptionSpecSizeHolder
3877 getExceptionSpecSize(ExceptionSpecificationType EST, unsigned NumExceptions) {
3878 switch (EST) {
3879 case EST_None:
3880 case EST_DynamicNone:
3881 case EST_MSAny:
3882 case EST_BasicNoexcept:
3883 case EST_Unparsed:
3884 case EST_NoThrow:
3885 return {0, 0, 0};
3886
3887 case EST_Dynamic:
3888 return {NumExceptions, 0, 0};
3889
3890 case EST_DependentNoexcept:
3891 case EST_NoexceptFalse:
3892 case EST_NoexceptTrue:
3893 return {0, 1, 0};
3894
3895 case EST_Uninstantiated:
3896 return {0, 0, 2};
3897
3898 case EST_Unevaluated:
3899 return {0, 0, 1};
3900 }
3901 llvm_unreachable("bad exception specification kind")::llvm::llvm_unreachable_internal("bad exception specification kind"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Type.h"
, 3901)
;
3902 }
3903
3904 /// Return the number and kind of trailing objects
3905 /// related to the exception specification.
3906 ExceptionSpecSizeHolder getExceptionSpecSize() const {
3907 return getExceptionSpecSize(getExceptionSpecType(), getNumExceptions());
3908 }
3909
3910 /// Whether the trailing FunctionTypeExtraBitfields is present.
3911 static bool hasExtraBitfields(ExceptionSpecificationType EST) {
3912 // If the exception spec type is EST_Dynamic then we have > 0 exception
3913 // types and the exact number is stored in FunctionTypeExtraBitfields.
3914 return EST == EST_Dynamic;
3915 }
3916
3917 /// Whether the trailing FunctionTypeExtraBitfields is present.
3918 bool hasExtraBitfields() const {
3919 return hasExtraBitfields(getExceptionSpecType());
3920 }
3921
3922 bool hasExtQualifiers() const {
3923 return FunctionTypeBits.HasExtQuals;
3924 }
3925
3926public:
3927 unsigned getNumParams() const { return FunctionTypeBits.NumParams; }
3928
3929 QualType getParamType(unsigned i) const {
3930 assert(i < getNumParams() && "invalid parameter index")((i < getNumParams() && "invalid parameter index")
? static_cast<void> (0) : __assert_fail ("i < getNumParams() && \"invalid parameter index\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Type.h"
, 3930, __PRETTY_FUNCTION__))
;
3931 return param_type_begin()[i];
3932 }
3933
3934 ArrayRef<QualType> getParamTypes() const {
3935 return llvm::makeArrayRef(param_type_begin(), param_type_end());
3936 }
3937
3938 ExtProtoInfo getExtProtoInfo() const {
3939 ExtProtoInfo EPI;
3940 EPI.ExtInfo = getExtInfo();
3941 EPI.Variadic = isVariadic();
3942 EPI.HasTrailingReturn = hasTrailingReturn();
3943 EPI.ExceptionSpec.Type = getExceptionSpecType();
3944 EPI.TypeQuals = getMethodQuals();
3945 EPI.RefQualifier = getRefQualifier();
3946 if (EPI.ExceptionSpec.Type == EST_Dynamic) {
3947 EPI.ExceptionSpec.Exceptions = exceptions();
3948 } else if (isComputedNoexcept(EPI.ExceptionSpec.Type)) {
3949 EPI.ExceptionSpec.NoexceptExpr = getNoexceptExpr();
3950 } else if (EPI.ExceptionSpec.Type == EST_Uninstantiated) {
3951 EPI.ExceptionSpec.SourceDecl = getExceptionSpecDecl();
3952 EPI.ExceptionSpec.SourceTemplate = getExceptionSpecTemplate();
3953 } else if (EPI.ExceptionSpec.Type == EST_Unevaluated) {
3954 EPI.ExceptionSpec.SourceDecl = getExceptionSpecDecl();
3955 }
3956 EPI.ExtParameterInfos = getExtParameterInfosOrNull();
3957 return EPI;
3958 }
3959
3960 /// Get the kind of exception specification on this function.
3961 ExceptionSpecificationType getExceptionSpecType() const {
3962 return static_cast<ExceptionSpecificationType>(
3963 FunctionTypeBits.ExceptionSpecType);
3964 }
3965
3966 /// Return whether this function has any kind of exception spec.
3967 bool hasExceptionSpec() const { return getExceptionSpecType() != EST_None; }
3968
3969 /// Return whether this function has a dynamic (throw) exception spec.
3970 bool hasDynamicExceptionSpec() const {
3971 return isDynamicExceptionSpec(getExceptionSpecType());
3972 }
3973
3974 /// Return whether this function has a noexcept exception spec.
3975 bool hasNoexceptExceptionSpec() const {
3976 return isNoexceptExceptionSpec(getExceptionSpecType());
3977 }
3978
3979 /// Return whether this function has a dependent exception spec.
3980 bool hasDependentExceptionSpec() const;
3981
3982 /// Return whether this function has an instantiation-dependent exception
3983 /// spec.
3984 bool hasInstantiationDependentExceptionSpec() const;
3985
3986 /// Return the number of types in the exception specification.
3987 unsigned getNumExceptions() const {
3988 return getExceptionSpecType() == EST_Dynamic
3989 ? getTrailingObjects<FunctionTypeExtraBitfields>()
3990 ->NumExceptionType
3991 : 0;
3992 }
3993
3994 /// Return the ith exception type, where 0 <= i < getNumExceptions().
3995 QualType getExceptionType(unsigned i) const {
3996 assert(i < getNumExceptions() && "Invalid exception number!")((i < getNumExceptions() && "Invalid exception number!"
) ? static_cast<void> (0) : __assert_fail ("i < getNumExceptions() && \"Invalid exception number!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Type.h"
, 3996, __PRETTY_FUNCTION__))
;
3997 return exception_begin()[i];
3998 }
3999
4000 /// Return the expression inside noexcept(expression), or a null pointer
4001 /// if there is none (because the exception spec is not of this form).
4002 Expr *getNoexceptExpr() const {
4003 if (!isComputedNoexcept(getExceptionSpecType()))
4004 return nullptr;
4005 return *getTrailingObjects<Expr *>();
4006 }
4007
4008 /// If this function type has an exception specification which hasn't
4009 /// been determined yet (either because it has not been evaluated or because
4010 /// it has not been instantiated), this is the function whose exception
4011 /// specification is represented by this type.
4012 FunctionDecl *getExceptionSpecDecl() const {
4013 if (getExceptionSpecType() != EST_Uninstantiated &&
4014 getExceptionSpecType() != EST_Unevaluated)
4015 return nullptr;
4016 return getTrailingObjects<FunctionDecl *>()[0];
4017 }
4018
4019 /// If this function type has an uninstantiated exception
4020 /// specification, this is the function whose exception specification
4021 /// should be instantiated to find the exception specification for
4022 /// this type.
4023 FunctionDecl *getExceptionSpecTemplate() const {
4024 if (getExceptionSpecType() != EST_Uninstantiated)
4025 return nullptr;
4026 return getTrailingObjects<FunctionDecl *>()[1];
4027 }
4028
4029 /// Determine whether this function type has a non-throwing exception
4030 /// specification.
4031 CanThrowResult canThrow() const;
4032
4033 /// Determine whether this function type has a non-throwing exception
4034 /// specification. If this depends on template arguments, returns
4035 /// \c ResultIfDependent.
4036 bool isNothrow(bool ResultIfDependent = false) const {
4037 return ResultIfDependent ? canThrow() != CT_Can : canThrow() == CT_Cannot;
4038 }
4039
4040 /// Whether this function prototype is variadic.
4041 bool isVariadic() const { return FunctionTypeBits.Variadic; }
4042
4043 /// Determines whether this function prototype contains a
4044 /// parameter pack at the end.
4045 ///
4046 /// A function template whose last parameter is a parameter pack can be
4047 /// called with an arbitrary number of arguments, much like a variadic
4048 /// function.
4049 bool isTemplateVariadic() const;
4050
4051 /// Whether this function prototype has a trailing return type.
4052 bool hasTrailingReturn() const { return FunctionTypeBits.HasTrailingReturn; }
4053
4054 Qualifiers getMethodQuals() const {
4055 if (hasExtQualifiers())
4056 return *getTrailingObjects<Qualifiers>();
4057 else
4058 return getFastTypeQuals();
4059 }
4060
4061 /// Retrieve the ref-qualifier associated with this function type.
4062 RefQualifierKind getRefQualifier() const {
4063 return static_cast<RefQualifierKind>(FunctionTypeBits.RefQualifier);
4064 }
4065
4066 using param_type_iterator = const QualType *;
4067 using param_type_range = llvm::iterator_range<param_type_iterator>;
4068
4069 param_type_range param_types() const {
4070 return param_type_range(param_type_begin(), param_type_end());
4071 }
4072
4073 param_type_iterator param_type_begin() const {
4074 return getTrailingObjects<QualType>();
4075 }
4076
4077 param_type_iterator param_type_end() const {
4078 return param_type_begin() + getNumParams();
4079 }
4080
4081 using exception_iterator = const QualType *;
4082
4083 ArrayRef<QualType> exceptions() const {
4084 return llvm::makeArrayRef(exception_begin(), exception_end());
4085 }
4086
4087 exception_iterator exception_begin() const {
4088 return reinterpret_cast<exception_iterator>(
4089 getTrailingObjects<ExceptionType>());
4090 }
4091
4092 exception_iterator exception_end() const {
4093 return exception_begin() + getNumExceptions();
4094 }
4095
4096 /// Is there any interesting extra information for any of the parameters
4097 /// of this function type?
4098 bool hasExtParameterInfos() const {
4099 return FunctionTypeBits.HasExtParameterInfos;
4100 }
4101
4102 ArrayRef<ExtParameterInfo> getExtParameterInfos() const {
4103 assert(hasExtParameterInfos())((hasExtParameterInfos()) ? static_cast<void> (0) : __assert_fail
("hasExtParameterInfos()", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Type.h"
, 4103, __PRETTY_FUNCTION__))
;
4104 return ArrayRef<ExtParameterInfo>(getTrailingObjects<ExtParameterInfo>(),
4105 getNumParams());
4106 }
4107
4108 /// Return a pointer to the beginning of the array of extra parameter
4109 /// information, if present, or else null if none of the parameters
4110 /// carry it. This is equivalent to getExtProtoInfo().ExtParameterInfos.
4111 const ExtParameterInfo *getExtParameterInfosOrNull() const {
4112 if (!hasExtParameterInfos())
4113 return nullptr;
4114 return getTrailingObjects<ExtParameterInfo>();
4115 }
4116
4117 ExtParameterInfo getExtParameterInfo(unsigned I) const {
4118 assert(I < getNumParams() && "parameter index out of range")((I < getNumParams() && "parameter index out of range"
) ? static_cast<void> (0) : __assert_fail ("I < getNumParams() && \"parameter index out of range\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Type.h"
, 4118, __PRETTY_FUNCTION__))
;
4119 if (hasExtParameterInfos())
4120 return getTrailingObjects<ExtParameterInfo>()[I];
4121 return ExtParameterInfo();
4122 }
4123
4124 ParameterABI getParameterABI(unsigned I) const {
4125 assert(I < getNumParams() && "parameter index out of range")((I < getNumParams() && "parameter index out of range"
) ? static_cast<void> (0) : __assert_fail ("I < getNumParams() && \"parameter index out of range\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Type.h"
, 4125, __PRETTY_FUNCTION__))
;
4126 if (hasExtParameterInfos())
4127 return getTrailingObjects<ExtParameterInfo>()[I].getABI();
4128 return ParameterABI::Ordinary;
4129 }
4130
4131 bool isParamConsumed(unsigned I) const {
4132 assert(I < getNumParams() && "parameter index out of range")((I < getNumParams() && "parameter index out of range"
) ? static_cast<void> (0) : __assert_fail ("I < getNumParams() && \"parameter index out of range\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Type.h"
, 4132, __PRETTY_FUNCTION__))
;
4133 if (hasExtParameterInfos())
4134 return getTrailingObjects<ExtParameterInfo>()[I].isConsumed();
4135 return false;
4136 }
4137
4138 bool isSugared() const { return false; }
4139 QualType desugar() const { return QualType(this, 0); }
4140
4141 void printExceptionSpecification(raw_ostream &OS,
4142 const PrintingPolicy &Policy) const;
4143
4144 static bool classof(const Type *T) {
4145 return T->getTypeClass() == FunctionProto;
4146 }
4147
4148 void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx);
4149 static void Profile(llvm::FoldingSetNodeID &ID, QualType Result,
4150 param_type_iterator ArgTys, unsigned NumArgs,
4151 const ExtProtoInfo &EPI, const ASTContext &Context,
4152 bool Canonical);
4153};
4154
4155/// Represents the dependent type named by a dependently-scoped
4156/// typename using declaration, e.g.
4157/// using typename Base<T>::foo;
4158///
4159/// Template instantiation turns these into the underlying type.
4160class UnresolvedUsingType : public Type {
4161 friend class ASTContext; // ASTContext creates these.
4162
4163 UnresolvedUsingTypenameDecl *Decl;
4164
4165 UnresolvedUsingType(const UnresolvedUsingTypenameDecl *D)
4166 : Type(UnresolvedUsing, QualType(), true, true, false,
4167 /*ContainsUnexpandedParameterPack=*/false),
4168 Decl(const_cast<UnresolvedUsingTypenameDecl*>(D)) {}
4169
4170public:
4171 UnresolvedUsingTypenameDecl *getDecl() const { return Decl; }
4172
4173 bool isSugared() const { return false; }
4174 QualType desugar() const { return QualType(this, 0); }
4175
4176 static bool classof(const Type *T) {
4177 return T->getTypeClass() == UnresolvedUsing;
4178 }
4179
4180 void Profile(llvm::FoldingSetNodeID &ID) {
4181 return Profile(ID, Decl);
4182 }
4183
4184 static void Profile(llvm::FoldingSetNodeID &ID,
4185 UnresolvedUsingTypenameDecl *D) {
4186 ID.AddPointer(D);
4187 }
4188};
4189
4190class TypedefType : public Type {
4191 TypedefNameDecl *Decl;
4192
4193protected:
4194 friend class ASTContext; // ASTContext creates these.
4195
4196 TypedefType(TypeClass tc, const TypedefNameDecl *D, QualType can)
4197 : Type(tc, can, can->isDependentType(),
4198 can->isInstantiationDependentType(),
4199 can->isVariablyModifiedType(),
4200 /*ContainsUnexpandedParameterPack=*/false),
4201 Decl(const_cast<TypedefNameDecl*>(D)) {
4202 assert(!isa<TypedefType>(can) && "Invalid canonical type")((!isa<TypedefType>(can) && "Invalid canonical type"
) ? static_cast<void> (0) : __assert_fail ("!isa<TypedefType>(can) && \"Invalid canonical type\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Type.h"
, 4202, __PRETTY_FUNCTION__))
;
4203 }
4204
4205public:
4206 TypedefNameDecl *getDecl() const { return Decl; }
4207
4208 bool isSugared() const { return true; }
4209 QualType desugar() const;
4210
4211 static bool classof(const Type *T) { return T->getTypeClass() == Typedef; }
4212};
4213
4214/// Sugar type that represents a type that was qualified by a qualifier written
4215/// as a macro invocation.
4216class MacroQualifiedType : public Type {
4217 friend class ASTContext; // ASTContext creates these.
4218
4219 QualType UnderlyingTy;
4220 const IdentifierInfo *MacroII;
4221
4222 MacroQualifiedType(QualType UnderlyingTy, QualType CanonTy,
4223 const IdentifierInfo *MacroII)
4224 : Type(MacroQualified, CanonTy, UnderlyingTy->isDependentType(),
4225 UnderlyingTy->isInstantiationDependentType(),
4226 UnderlyingTy->isVariablyModifiedType(),
4227 UnderlyingTy->containsUnexpandedParameterPack()),
4228 UnderlyingTy(UnderlyingTy), MacroII(MacroII) {
4229 assert(isa<AttributedType>(UnderlyingTy) &&((isa<AttributedType>(UnderlyingTy) && "Expected a macro qualified type to only wrap attributed types."
) ? static_cast<void> (0) : __assert_fail ("isa<AttributedType>(UnderlyingTy) && \"Expected a macro qualified type to only wrap attributed types.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Type.h"
, 4230, __PRETTY_FUNCTION__))
4230 "Expected a macro qualified type to only wrap attributed types.")((isa<AttributedType>(UnderlyingTy) && "Expected a macro qualified type to only wrap attributed types."
) ? static_cast<void> (0) : __assert_fail ("isa<AttributedType>(UnderlyingTy) && \"Expected a macro qualified type to only wrap attributed types.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Type.h"
, 4230, __PRETTY_FUNCTION__))
;
4231 }
4232
4233public:
4234 const IdentifierInfo *getMacroIdentifier() const { return MacroII; }
4235 QualType getUnderlyingType() const { return UnderlyingTy; }
4236
4237 /// Return this attributed type's modified type with no qualifiers attached to
4238 /// it.
4239 QualType getModifiedType() const;
4240
4241 bool isSugared() const { return true; }
4242 QualType desugar() const;
4243
4244 static bool classof(const Type *T) {
4245 return T->getTypeClass() == MacroQualified;
4246 }
4247};
4248
4249/// Represents a `typeof` (or __typeof__) expression (a GCC extension).
4250class TypeOfExprType : public Type {
4251 Expr *TOExpr;
4252
4253protected:
4254 friend class ASTContext; // ASTContext creates these.
4255
4256 TypeOfExprType(Expr *E, QualType can = QualType());
4257
4258public:
4259 Expr *getUnderlyingExpr() const { return TOExpr; }
4260
4261 /// Remove a single level of sugar.
4262 QualType desugar() const;
4263
4264 /// Returns whether this type directly provides sugar.
4265 bool isSugared() const;
4266
4267 static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; }
4268};
4269
4270/// Internal representation of canonical, dependent
4271/// `typeof(expr)` types.
4272///
4273/// This class is used internally by the ASTContext to manage
4274/// canonical, dependent types, only. Clients will only see instances
4275/// of this class via TypeOfExprType nodes.
4276class DependentTypeOfExprType
4277 : public TypeOfExprType, public llvm::FoldingSetNode {
4278 const ASTContext &Context;
4279
4280public:
4281 DependentTypeOfExprType(const ASTContext &Context, Expr *E)
4282 : TypeOfExprType(E), Context(Context) {}
4283
4284 void Profile(llvm::FoldingSetNodeID &ID) {
4285 Profile(ID, Context, getUnderlyingExpr());
4286 }
4287
4288 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
4289 Expr *E);
4290};
4291
4292/// Represents `typeof(type)`, a GCC extension.
4293class TypeOfType : public Type {
4294 friend class ASTContext; // ASTContext creates these.
4295
4296 QualType TOType;
4297
4298 TypeOfType(QualType T, QualType can)
4299 : Type(TypeOf, can, T->isDependentType(),
4300 T->isInstantiationDependentType(),
4301 T->isVariablyModifiedType(),
4302 T->containsUnexpandedParameterPack()),
4303 TOType(T) {
4304 assert(!isa<TypedefType>(can) && "Invalid canonical type")((!isa<TypedefType>(can) && "Invalid canonical type"
) ? static_cast<void> (0) : __assert_fail ("!isa<TypedefType>(can) && \"Invalid canonical type\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Type.h"
, 4304, __PRETTY_FUNCTION__))
;
4305 }
4306
4307public:
4308 QualType getUnderlyingType() const { return TOType; }
4309
4310 /// Remove a single level of sugar.
4311 QualType desugar() const { return getUnderlyingType(); }
4312
4313 /// Returns whether this type directly provides sugar.
4314 bool isSugared() const { return true; }
4315
4316 static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; }
4317};
4318
4319/// Represents the type `decltype(expr)` (C++11).
4320class DecltypeType : public Type {
4321 Expr *E;
4322 QualType UnderlyingType;
4323
4324protected:
4325 friend class ASTContext; // ASTContext creates these.
4326
4327 DecltypeType(Expr *E, QualType underlyingType, QualType can = QualType());
4328
4329public:
4330 Expr *getUnderlyingExpr() const { return E; }
4331 QualType getUnderlyingType() const { return UnderlyingType; }
4332
4333 /// Remove a single level of sugar.
4334 QualType desugar() const;
4335
4336 /// Returns whether this type directly provides sugar.
4337 bool isSugared() const;
4338
4339 static bool classof(const Type *T) { return T->getTypeClass() == Decltype; }
4340};
4341
4342/// Internal representation of canonical, dependent
4343/// decltype(expr) types.
4344///
4345/// This class is used internally by the ASTContext to manage
4346/// canonical, dependent types, only. Clients will only see instances
4347/// of this class via DecltypeType nodes.
4348class DependentDecltypeType : public DecltypeType, public llvm::FoldingSetNode {
4349 const ASTContext &Context;
4350
4351public:
4352 DependentDecltypeType(const ASTContext &Context, Expr *E);
4353
4354 void Profile(llvm::FoldingSetNodeID &ID) {
4355 Profile(ID, Context, getUnderlyingExpr());
4356 }
4357
4358 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
4359 Expr *E);
4360};
4361
4362/// A unary type transform, which is a type constructed from another.
4363class UnaryTransformType : public Type {
4364public:
4365 enum UTTKind {
4366 EnumUnderlyingType
4367 };
4368
4369private:
4370 /// The untransformed type.
4371 QualType BaseType;
4372
4373 /// The transformed type if not dependent, otherwise the same as BaseType.
4374 QualType UnderlyingType;
4375
4376 UTTKind UKind;
4377
4378protected:
4379 friend class ASTContext;
4380
4381 UnaryTransformType(QualType BaseTy, QualType UnderlyingTy, UTTKind UKind,
4382 QualType CanonicalTy);
4383
4384public:
4385 bool isSugared() const { return !isDependentType(); }
4386 QualType desugar() const { return UnderlyingType; }
4387
4388 QualType getUnderlyingType() const { return UnderlyingType; }
4389 QualType getBaseType() const { return BaseType; }
4390
4391 UTTKind getUTTKind() const { return UKind; }
4392
4393 static bool classof(const Type *T) {
4394 return T->getTypeClass() == UnaryTransform;
4395 }
4396};
4397
4398/// Internal representation of canonical, dependent
4399/// __underlying_type(type) types.
4400///
4401/// This class is used internally by the ASTContext to manage
4402/// canonical, dependent types, only. Clients will only see instances
4403/// of this class via UnaryTransformType nodes.
4404class DependentUnaryTransformType : public UnaryTransformType,
4405 public llvm::FoldingSetNode {
4406public:
4407 DependentUnaryTransformType(const ASTContext &C, QualType BaseType,
4408 UTTKind UKind);
4409
4410 void Profile(llvm::FoldingSetNodeID &ID) {
4411 Profile(ID, getBaseType(), getUTTKind());
4412 }
4413
4414 static void Profile(llvm::FoldingSetNodeID &ID, QualType BaseType,
4415 UTTKind UKind) {
4416 ID.AddPointer(BaseType.getAsOpaquePtr());
4417 ID.AddInteger((unsigned)UKind);
4418 }
4419};
4420
4421class TagType : public Type {
4422 friend class ASTReader;
4423
4424 /// Stores the TagDecl associated with this type. The decl may point to any
4425 /// TagDecl that declares the entity.
4426 TagDecl *decl;
4427
4428protected:
4429 TagType(TypeClass TC, const TagDecl *D, QualType can);
4430
4431public:
4432 TagDecl *getDecl() const;
4433
4434 /// Determines whether this type is in the process of being defined.
4435 bool isBeingDefined() const;
4436
4437 static bool classof(const Type *T) {
4438 return T->getTypeClass() == Enum || T->getTypeClass() == Record;
4439 }
4440};
4441
4442/// A helper class that allows the use of isa/cast/dyncast
4443/// to detect TagType objects of structs/unions/classes.
4444class RecordType : public TagType {
4445protected:
4446 friend class ASTContext; // ASTContext creates these.
4447
4448 explicit RecordType(const RecordDecl *D)
4449 : TagType(Record, reinterpret_cast<const TagDecl*>(D), QualType()) {}
4450 explicit RecordType(TypeClass TC, RecordDecl *D)
4451 : TagType(TC, reinterpret_cast<const TagDecl*>(D), QualType()) {}
4452
4453public:
4454 RecordDecl *getDecl() const {
4455 return reinterpret_cast<RecordDecl*>(TagType::getDecl());
4456 }
4457
4458 /// Recursively check all fields in the record for const-ness. If any field
4459 /// is declared const, return true. Otherwise, return false.
4460 bool hasConstFields() const;
4461
4462 bool isSugared() const { return false; }
4463 QualType desugar() const { return QualType(this, 0); }
4464
4465 static bool classof(const Type *T) { return T->getTypeClass() == Record; }
4466};
4467
4468/// A helper class that allows the use of isa/cast/dyncast
4469/// to detect TagType objects of enums.
4470class EnumType : public TagType {
4471 friend class ASTContext; // ASTContext creates these.
4472
4473 explicit EnumType(const EnumDecl *D)
4474 : TagType(Enum, reinterpret_cast<const TagDecl*>(D), QualType()) {}
4475
4476public:
4477 EnumDecl *getDecl() const {
4478 return reinterpret_cast<EnumDecl*>(TagType::getDecl());
4479 }
4480
4481 bool isSugared() const { return false; }
4482 QualType desugar() const { return QualType(this, 0); }
4483
4484 static bool classof(const Type *T) { return T->getTypeClass() == Enum; }
4485};
4486
4487/// An attributed type is a type to which a type attribute has been applied.
4488///
4489/// The "modified type" is the fully-sugared type to which the attributed
4490/// type was applied; generally it is not canonically equivalent to the
4491/// attributed type. The "equivalent type" is the minimally-desugared type
4492/// which the type is canonically equivalent to.
4493///
4494/// For example, in the following attributed type:
4495/// int32_t __attribute__((vector_size(16)))
4496/// - the modified type is the TypedefType for int32_t
4497/// - the equivalent type is VectorType(16, int32_t)
4498/// - the canonical type is VectorType(16, int)
4499class AttributedType : public Type, public llvm::FoldingSetNode {
4500public:
4501 using Kind = attr::Kind;
4502
4503private:
4504 friend class ASTContext; // ASTContext creates these
4505
4506 QualType ModifiedType;
4507 QualType EquivalentType;
4508
4509 AttributedType(QualType canon, attr::Kind attrKind, QualType modified,
4510 QualType equivalent)
4511 : Type(Attributed, canon, equivalent->isDependentType(),
4512 equivalent->isInstantiationDependentType(),
4513 equivalent->isVariablyModifiedType(),
4514 equivalent->containsUnexpandedParameterPack()),
4515 ModifiedType(modified), EquivalentType(equivalent) {
4516 AttributedTypeBits.AttrKind = attrKind;
4517 }
4518
4519public:
4520 Kind getAttrKind() const {
4521 return static_cast<Kind>(AttributedTypeBits.AttrKind);
4522 }
4523
4524 QualType getModifiedType() const { return ModifiedType; }
4525 QualType getEquivalentType() const { return EquivalentType; }
4526
4527 bool isSugared() const { return true; }
4528 QualType desugar() const { return getEquivalentType(); }
4529
4530 /// Does this attribute behave like a type qualifier?
4531 ///
4532 /// A type qualifier adjusts a type to provide specialized rules for
4533 /// a specific object, like the standard const and volatile qualifiers.
4534 /// This includes attributes controlling things like nullability,
4535 /// address spaces, and ARC ownership. The value of the object is still
4536 /// largely described by the modified type.
4537 ///
4538 /// In contrast, many type attributes "rewrite" their modified type to
4539 /// produce a fundamentally different type, not necessarily related in any
4540 /// formalizable way to the original type. For example, calling convention
4541 /// and vector attributes are not simple type qualifiers.
4542 ///
4543 /// Type qualifiers are often, but not always, reflected in the canonical
4544 /// type.
4545 bool isQualifier() const;
4546
4547 bool isMSTypeSpec() const;
4548
4549 bool isCallingConv() const;
4550
4551 llvm::Optional<NullabilityKind> getImmediateNullability() const;
4552
4553 /// Retrieve the attribute kind corresponding to the given
4554 /// nullability kind.
4555 static Kind getNullabilityAttrKind(NullabilityKind kind) {
4556 switch (kind) {
4557 case NullabilityKind::NonNull:
4558 return attr::TypeNonNull;
4559
4560 case NullabilityKind::Nullable:
4561 return attr::TypeNullable;
4562
4563 case NullabilityKind::Unspecified:
4564 return attr::TypeNullUnspecified;
4565 }
4566 llvm_unreachable("Unknown nullability kind.")::llvm::llvm_unreachable_internal("Unknown nullability kind."
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Type.h"
, 4566)
;
4567 }
4568
4569 /// Strip off the top-level nullability annotation on the given
4570 /// type, if it's there.
4571 ///
4572 /// \param T The type to strip. If the type is exactly an
4573 /// AttributedType specifying nullability (without looking through
4574 /// type sugar), the nullability is returned and this type changed
4575 /// to the underlying modified type.
4576 ///
4577 /// \returns the top-level nullability, if present.
4578 static Optional<NullabilityKind> stripOuterNullability(QualType &T);
4579
4580 void Profile(llvm::FoldingSetNodeID &ID) {
4581 Profile(ID, getAttrKind(), ModifiedType, EquivalentType);
4582 }
4583
4584 static void Profile(llvm::FoldingSetNodeID &ID, Kind attrKind,
4585 QualType modified, QualType equivalent) {
4586 ID.AddInteger(attrKind);
4587 ID.AddPointer(modified.getAsOpaquePtr());
4588 ID.AddPointer(equivalent.getAsOpaquePtr());
4589 }
4590
4591 static bool classof(const Type *T) {
4592 return T->getTypeClass() == Attributed;
4593 }
4594};
4595
4596class TemplateTypeParmType : public Type, public llvm::FoldingSetNode {
4597 friend class ASTContext; // ASTContext creates these
4598
4599 // Helper data collector for canonical types.
4600 struct CanonicalTTPTInfo {
4601 unsigned Depth : 15;
4602 unsigned ParameterPack : 1;
4603 unsigned Index : 16;
4604 };
4605
4606 union {
4607 // Info for the canonical type.
4608 CanonicalTTPTInfo CanTTPTInfo;
4609
4610 // Info for the non-canonical type.
4611 TemplateTypeParmDecl *TTPDecl;
4612 };
4613
4614 /// Build a non-canonical type.
4615 TemplateTypeParmType(TemplateTypeParmDecl *TTPDecl, QualType Canon)
4616 : Type(TemplateTypeParm, Canon, /*Dependent=*/true,
4617 /*InstantiationDependent=*/true,
4618 /*VariablyModified=*/false,
4619 Canon->containsUnexpandedParameterPack()),
4620 TTPDecl(TTPDecl) {}
4621
4622 /// Build the canonical type.
4623 TemplateTypeParmType(unsigned D, unsigned I, bool PP)
4624 : Type(TemplateTypeParm, QualType(this, 0),
4625 /*Dependent=*/true,
4626 /*InstantiationDependent=*/true,
4627 /*VariablyModified=*/false, PP) {
4628 CanTTPTInfo.Depth = D;
4629 CanTTPTInfo.Index = I;
4630 CanTTPTInfo.ParameterPack = PP;
4631 }
4632
4633 const CanonicalTTPTInfo& getCanTTPTInfo() const {
4634 QualType Can = getCanonicalTypeInternal();
4635 return Can->castAs<TemplateTypeParmType>()->CanTTPTInfo;
4636 }
4637
4638public:
4639 unsigned getDepth() const { return getCanTTPTInfo().Depth; }
4640 unsigned getIndex() const { return getCanTTPTInfo().Index; }
4641 bool isParameterPack() const { return getCanTTPTInfo().ParameterPack; }
4642
4643 TemplateTypeParmDecl *getDecl() const {
4644 return isCanonicalUnqualified() ? nullptr : TTPDecl;
4645 }
4646
4647 IdentifierInfo *getIdentifier() const;
4648
4649 bool isSugared() const { return false; }
4650 QualType desugar() const { return QualType(this, 0); }
4651
4652 void Profile(llvm::FoldingSetNodeID &ID) {
4653 Profile(ID, getDepth(), getIndex(), isParameterPack(), getDecl());
4654 }
4655
4656 static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth,
4657 unsigned Index, bool ParameterPack,
4658 TemplateTypeParmDecl *TTPDecl) {
4659 ID.AddInteger(Depth);
4660 ID.AddInteger(Index);
4661 ID.AddBoolean(ParameterPack);
4662 ID.AddPointer(TTPDecl);
4663 }
4664
4665 static bool classof(const Type *T) {
4666 return T->getTypeClass() == TemplateTypeParm;
4667 }
4668};
4669
4670/// Represents the result of substituting a type for a template
4671/// type parameter.
4672///
4673/// Within an instantiated template, all template type parameters have
4674/// been replaced with these. They are used solely to record that a
4675/// type was originally written as a template type parameter;
4676/// therefore they are never canonical.
4677class SubstTemplateTypeParmType : public Type, public llvm::FoldingSetNode {
4678 friend class ASTContext;
4679
4680 // The original type parameter.
4681 const TemplateTypeParmType *Replaced;
4682
4683 SubstTemplateTypeParmType(const TemplateTypeParmType *Param, QualType Canon)
4684 : Type(SubstTemplateTypeParm, Canon, Canon->isDependentType(),
4685 Canon->isInstantiationDependentType(),
4686 Canon->isVariablyModifiedType(),
4687 Canon->containsUnexpandedParameterPack()),
4688 Replaced(Param) {}
4689
4690public:
4691 /// Gets the template parameter that was substituted for.
4692 const TemplateTypeParmType *getReplacedParameter() const {
4693 return Replaced;
4694 }
4695
4696 /// Gets the type that was substituted for the template
4697 /// parameter.
4698 QualType getReplacementType() const {
4699 return getCanonicalTypeInternal();
4700 }
4701
4702 bool isSugared() const { return true; }
4703 QualType desugar() const { return getReplacementType(); }
4704
4705 void Profile(llvm::FoldingSetNodeID &ID) {
4706 Profile(ID, getReplacedParameter(), getReplacementType());
4707 }
4708
4709 static void Profile(llvm::FoldingSetNodeID &ID,
4710 const TemplateTypeParmType *Replaced,
4711 QualType Replacement) {
4712 ID.AddPointer(Replaced);
4713 ID.AddPointer(Replacement.getAsOpaquePtr());
4714 }
4715
4716 static bool classof(const Type *T) {
4717 return T->getTypeClass() == SubstTemplateTypeParm;
4718 }
4719};
4720
4721/// Represents the result of substituting a set of types for a template
4722/// type parameter pack.
4723///
4724/// When a pack expansion in the source code contains multiple parameter packs
4725/// and those parameter packs correspond to different levels of template
4726/// parameter lists, this type node is used to represent a template type
4727/// parameter pack from an outer level, which has already had its argument pack
4728/// substituted but that still lives within a pack expansion that itself
4729/// could not be instantiated. When actually performing a substitution into
4730/// that pack expansion (e.g., when all template parameters have corresponding
4731/// arguments), this type will be replaced with the \c SubstTemplateTypeParmType
4732/// at the current pack substitution index.
4733class SubstTemplateTypeParmPackType : public Type, public llvm::FoldingSetNode {
4734 friend class ASTContext;
4735
4736 /// The original type parameter.
4737 const TemplateTypeParmType *Replaced;
4738
4739 /// A pointer to the set of template arguments that this
4740 /// parameter pack is instantiated with.
4741 const TemplateArgument *Arguments;
4742
4743 SubstTemplateTypeParmPackType(const TemplateTypeParmType *Param,
4744 QualType Canon,
4745 const TemplateArgument &ArgPack);
4746
4747public:
4748 IdentifierInfo *getIdentifier() const { return Replaced->getIdentifier(); }
4749
4750 /// Gets the template parameter that was substituted for.
4751 const TemplateTypeParmType *getReplacedParameter() const {
4752 return Replaced;
4753 }
4754
4755 unsigned getNumArgs() const {
4756 return SubstTemplateTypeParmPackTypeBits.NumArgs;
4757 }
4758
4759 bool isSugared() const { return false; }
4760 QualType desugar() const { return QualType(this, 0); }
4761
4762 TemplateArgument getArgumentPack() const;
4763
4764 void Profile(llvm::FoldingSetNodeID &ID);
4765 static void Profile(llvm::FoldingSetNodeID &ID,
4766 const TemplateTypeParmType *Replaced,
4767 const TemplateArgument &ArgPack);
4768
4769 static bool classof(const Type *T) {
4770 return T->getTypeClass() == SubstTemplateTypeParmPack;
4771 }
4772};
4773
4774/// Common base class for placeholders for types that get replaced by
4775/// placeholder type deduction: C++11 auto, C++14 decltype(auto), C++17 deduced
4776/// class template types, and (eventually) constrained type names from the C++
4777/// Concepts TS.
4778///
4779/// These types are usually a placeholder for a deduced type. However, before
4780/// the initializer is attached, or (usually) if the initializer is
4781/// type-dependent, there is no deduced type and the type is canonical. In
4782/// the latter case, it is also a dependent type.
4783class DeducedType : public Type {
4784protected:
4785 DeducedType(TypeClass TC, QualType DeducedAsType, bool IsDependent,
4786 bool IsInstantiationDependent, bool ContainsParameterPack)
4787 : Type(TC,
4788 // FIXME: Retain the sugared deduced type?
4789 DeducedAsType.isNull() ? QualType(this, 0)
4790 : DeducedAsType.getCanonicalType(),
4791 IsDependent, IsInstantiationDependent,
4792 /*VariablyModified=*/false, ContainsParameterPack) {
4793 if (!DeducedAsType.isNull()) {
4794 if (DeducedAsType->isDependentType())
4795 setDependent();
4796 if (DeducedAsType->isInstantiationDependentType())
4797 setInstantiationDependent();
4798 if (DeducedAsType->containsUnexpandedParameterPack())
4799 setContainsUnexpandedParameterPack();
4800 }
4801 }
4802
4803public:
4804 bool isSugared() const { return !isCanonicalUnqualified(); }
4805 QualType desugar() const { return getCanonicalTypeInternal(); }
4806
4807 /// Get the type deduced for this placeholder type, or null if it's
4808 /// either not been deduced or was deduced to a dependent type.
4809 QualType getDeducedType() const {
4810 return !isCanonicalUnqualified() ? getCanonicalTypeInternal() : QualType();
4811 }
4812 bool isDeduced() const {
4813 return !isCanonicalUnqualified() || isDependentType();
4814 }
4815
4816 static bool classof(const Type *T) {
4817 return T->getTypeClass() == Auto ||
4818 T->getTypeClass() == DeducedTemplateSpecialization;
4819 }
4820};
4821
4822/// Represents a C++11 auto or C++14 decltype(auto) type.
4823class AutoType : public DeducedType, public llvm::FoldingSetNode {
4824 friend class ASTContext; // ASTContext creates these
4825
4826 AutoType(QualType DeducedAsType, AutoTypeKeyword Keyword,
4827 bool IsDeducedAsDependent, bool IsDeducedAsPack)
4828 : DeducedType(Auto, DeducedAsType, IsDeducedAsDependent,
4829 IsDeducedAsDependent, IsDeducedAsPack) {
4830 AutoTypeBits.Keyword = (unsigned)Keyword;
4831 }
4832
4833public:
4834 bool isDecltypeAuto() const {
4835 return getKeyword() == AutoTypeKeyword::DecltypeAuto;
4836 }
4837
4838 AutoTypeKeyword getKeyword() const {
4839 return (AutoTypeKeyword)AutoTypeBits.Keyword;
4840 }
4841
4842 void Profile(llvm::FoldingSetNodeID &ID) {
4843 Profile(ID, getDeducedType(), getKeyword(), isDependentType(),
4844 containsUnexpandedParameterPack());
4845 }
4846
4847 static void Profile(llvm::FoldingSetNodeID &ID, QualType Deduced,
4848 AutoTypeKeyword Keyword, bool IsDependent, bool IsPack) {
4849 ID.AddPointer(Deduced.getAsOpaquePtr());
4850 ID.AddInteger((unsigned)Keyword);
4851 ID.AddBoolean(IsDependent);
4852 ID.AddBoolean(IsPack);
4853 }
4854
4855 static bool classof(const Type *T) {
4856 return T->getTypeClass() == Auto;
4857 }
4858};
4859
4860/// Represents a C++17 deduced template specialization type.
4861class DeducedTemplateSpecializationType : public DeducedType,
4862 public llvm::FoldingSetNode {
4863 friend class ASTContext; // ASTContext creates these
4864
4865 /// The name of the template whose arguments will be deduced.
4866 TemplateName Template;
4867
4868 DeducedTemplateSpecializationType(TemplateName Template,
4869 QualType DeducedAsType,
4870 bool IsDeducedAsDependent)
4871 : DeducedType(DeducedTemplateSpecialization, DeducedAsType,
4872 IsDeducedAsDependent || Template.isDependent(),
4873 IsDeducedAsDependent || Template.isInstantiationDependent(),
4874 Template.containsUnexpandedParameterPack()),
4875 Template(Template) {}
4876
4877public:
4878 /// Retrieve the name of the template that we are deducing.
4879 TemplateName getTemplateName() const { return Template;}
4880
4881 void Profile(llvm::FoldingSetNodeID &ID) {
4882 Profile(ID, getTemplateName(), getDeducedType(), isDependentType());
4883 }
4884
4885 static void Profile(llvm::FoldingSetNodeID &ID, TemplateName Template,
4886 QualType Deduced, bool IsDependent) {
4887 Template.Profile(ID);
4888 ID.AddPointer(Deduced.getAsOpaquePtr());
4889 ID.AddBoolean(IsDependent);
4890 }
4891
4892 static bool classof(const Type *T) {
4893 return T->getTypeClass() == DeducedTemplateSpecialization;
4894 }
4895};
4896
4897/// Represents a type template specialization; the template
4898/// must be a class template, a type alias template, or a template
4899/// template parameter. A template which cannot be resolved to one of
4900/// these, e.g. because it is written with a dependent scope
4901/// specifier, is instead represented as a
4902/// @c DependentTemplateSpecializationType.
4903///
4904/// A non-dependent template specialization type is always "sugar",
4905/// typically for a \c RecordType. For example, a class template
4906/// specialization type of \c vector<int> will refer to a tag type for
4907/// the instantiation \c std::vector<int, std::allocator<int>>
4908///
4909/// Template specializations are dependent if either the template or
4910/// any of the template arguments are dependent, in which case the
4911/// type may also be canonical.
4912///
4913/// Instances of this type are allocated with a trailing array of
4914/// TemplateArguments, followed by a QualType representing the
4915/// non-canonical aliased type when the template is a type alias
4916/// template.
4917class alignas(8) TemplateSpecializationType
4918 : public Type,
4919 public llvm::FoldingSetNode {
4920 friend class ASTContext; // ASTContext creates these
4921
4922 /// The name of the template being specialized. This is
4923 /// either a TemplateName::Template (in which case it is a
4924 /// ClassTemplateDecl*, a TemplateTemplateParmDecl*, or a
4925 /// TypeAliasTemplateDecl*), a
4926 /// TemplateName::SubstTemplateTemplateParmPack, or a
4927 /// TemplateName::SubstTemplateTemplateParm (in which case the
4928 /// replacement must, recursively, be one of these).
4929 TemplateName Template;
4930
4931 TemplateSpecializationType(TemplateName T,
4932 ArrayRef<TemplateArgument> Args,
4933 QualType Canon,
4934 QualType Aliased);
4935
4936public:
4937 /// Determine whether any of the given template arguments are dependent.
4938 static bool anyDependentTemplateArguments(ArrayRef<TemplateArgumentLoc> Args,
4939 bool &InstantiationDependent);
4940
4941 static bool anyDependentTemplateArguments(const TemplateArgumentListInfo &,
4942 bool &InstantiationDependent);
4943
4944 /// True if this template specialization type matches a current
4945 /// instantiation in the context in which it is found.
4946 bool isCurrentInstantiation() const {
4947 return isa<InjectedClassNameType>(getCanonicalTypeInternal());
4948 }
4949
4950 /// Determine if this template specialization type is for a type alias
4951 /// template that has been substituted.
4952 ///
4953 /// Nearly every template specialization type whose template is an alias
4954 /// template will be substituted. However, this is not the case when
4955 /// the specialization contains a pack expansion but the template alias
4956 /// does not have a corresponding parameter pack, e.g.,
4957 ///
4958 /// \code
4959 /// template<typename T, typename U, typename V> struct S;
4960 /// template<typename T, typename U> using A = S<T, int, U>;
4961 /// template<typename... Ts> struct X {
4962 /// typedef A<Ts...> type; // not a type alias
4963 /// };
4964 /// \endcode
4965 bool isTypeAlias() const { return TemplateSpecializationTypeBits.TypeAlias; }
4966
4967 /// Get the aliased type, if this is a specialization of a type alias
4968 /// template.
4969 QualType getAliasedType() const {
4970 assert(isTypeAlias() && "not a type alias template specialization")((isTypeAlias() && "not a type alias template specialization"
) ? static_cast<void> (0) : __assert_fail ("isTypeAlias() && \"not a type alias template specialization\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Type.h"
, 4970, __PRETTY_FUNCTION__))
;
4971 return *reinterpret_cast<const QualType*>(end());
4972 }
4973
4974 using iterator = const TemplateArgument *;
4975
4976 iterator begin() const { return getArgs(); }
4977 iterator end() const; // defined inline in TemplateBase.h
4978
4979 /// Retrieve the name of the template that we are specializing.
4980 TemplateName getTemplateName() const { return Template; }
4981
4982 /// Retrieve the template arguments.
4983 const TemplateArgument *getArgs() const {
4984 return reinterpret_cast<const TemplateArgument *>(this + 1);
4985 }
4986
4987 /// Retrieve the number of template arguments.
4988 unsigned getNumArgs() const {
4989 return TemplateSpecializationTypeBits.NumArgs;
4990 }
4991
4992 /// Retrieve a specific template argument as a type.
4993 /// \pre \c isArgType(Arg)
4994 const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
4995
4996 ArrayRef<TemplateArgument> template_arguments() const {
4997 return {getArgs(), getNumArgs()};
4998 }
4999
5000 bool isSugared() const {
5001 return !isDependentType() || isCurrentInstantiation() || isTypeAlias();
5002 }
5003
5004 QualType desugar() const {
5005 return isTypeAlias() ? getAliasedType() : getCanonicalTypeInternal();
5006 }
5007
5008 void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx) {
5009 Profile(ID, Template, template_arguments(), Ctx);
5010 if (isTypeAlias())
5011 getAliasedType().Profile(ID);
5012 }
5013
5014 static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T,
5015 ArrayRef<TemplateArgument> Args,
5016 const ASTContext &Context);
5017
5018 static bool classof(const Type *T) {
5019 return T->getTypeClass() == TemplateSpecialization;
5020 }
5021};
5022
5023/// Print a template argument list, including the '<' and '>'
5024/// enclosing the template arguments.
5025void printTemplateArgumentList(raw_ostream &OS,
5026 ArrayRef<TemplateArgument> Args,
5027 const PrintingPolicy &Policy);
5028
5029void printTemplateArgumentList(raw_ostream &OS,
5030 ArrayRef<TemplateArgumentLoc> Args,
5031 const PrintingPolicy &Policy);
5032
5033void printTemplateArgumentList(raw_ostream &OS,
5034 const TemplateArgumentListInfo &Args,
5035 const PrintingPolicy &Policy);
5036
5037/// The injected class name of a C++ class template or class
5038/// template partial specialization. Used to record that a type was
5039/// spelled with a bare identifier rather than as a template-id; the
5040/// equivalent for non-templated classes is just RecordType.
5041///
5042/// Injected class name types are always dependent. Template
5043/// instantiation turns these into RecordTypes.
5044///
5045/// Injected class name types are always canonical. This works
5046/// because it is impossible to compare an injected class name type
5047/// with the corresponding non-injected template type, for the same
5048/// reason that it is impossible to directly compare template
5049/// parameters from different dependent contexts: injected class name
5050/// types can only occur within the scope of a particular templated
5051/// declaration, and within that scope every template specialization
5052/// will canonicalize to the injected class name (when appropriate
5053/// according to the rules of the language).
5054class InjectedClassNameType : public Type {
5055 friend class ASTContext; // ASTContext creates these.
5056 friend class ASTNodeImporter;
5057 friend class ASTReader; // FIXME: ASTContext::getInjectedClassNameType is not
5058 // currently suitable for AST reading, too much
5059 // interdependencies.
5060
5061 CXXRecordDecl *Decl;
5062
5063 /// The template specialization which this type represents.
5064 /// For example, in
5065 /// template <class T> class A { ... };
5066 /// this is A<T>, whereas in
5067 /// template <class X, class Y> class A<B<X,Y> > { ... };
5068 /// this is A<B<X,Y> >.
5069 ///
5070 /// It is always unqualified, always a template specialization type,
5071 /// and always dependent.
5072 QualType InjectedType;
5073
5074 InjectedClassNameType(CXXRecordDecl *D, QualType TST)
5075 : Type(InjectedClassName, QualType(), /*Dependent=*/true,
5076 /*InstantiationDependent=*/true,
5077 /*VariablyModified=*/false,
5078 /*ContainsUnexpandedParameterPack=*/false),
5079 Decl(D), InjectedType(TST) {
5080 assert(isa<TemplateSpecializationType>(TST))((isa<TemplateSpecializationType>(TST)) ? static_cast<
void> (0) : __assert_fail ("isa<TemplateSpecializationType>(TST)"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Type.h"
, 5080, __PRETTY_FUNCTION__))
;
5081 assert(!TST.hasQualifiers())((!TST.hasQualifiers()) ? static_cast<void> (0) : __assert_fail
("!TST.hasQualifiers()", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Type.h"
, 5081, __PRETTY_FUNCTION__))
;
5082 assert(TST->isDependentType())((TST->isDependentType()) ? static_cast<void> (0) : __assert_fail
("TST->isDependentType()", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Type.h"
, 5082, __PRETTY_FUNCTION__))
;
5083 }
5084
5085public:
5086 QualType getInjectedSpecializationType() const { return InjectedType; }
5087
5088 const TemplateSpecializationType *getInjectedTST() const {
5089 return cast<TemplateSpecializationType>(InjectedType.getTypePtr());
5090 }
5091
5092 TemplateName getTemplateName() const {
5093 return getInjectedTST()->getTemplateName();
5094 }
5095
5096 CXXRecordDecl *getDecl() const;
5097
5098 bool isSugared() const { return false; }
5099 QualType desugar() const { return QualType(this, 0); }
5100
5101 static bool classof(const Type *T) {
5102 return T->getTypeClass() == InjectedClassName;
5103 }
5104};
5105
5106/// The kind of a tag type.
5107enum TagTypeKind {
5108 /// The "struct" keyword.
5109 TTK_Struct,
5110
5111 /// The "__interface" keyword.
5112 TTK_Interface,
5113
5114 /// The "union" keyword.
5115 TTK_Union,
5116
5117 /// The "class" keyword.
5118 TTK_Class,
5119
5120 /// The "enum" keyword.
5121 TTK_Enum
5122};
5123
5124/// The elaboration keyword that precedes a qualified type name or
5125/// introduces an elaborated-type-specifier.
5126enum ElaboratedTypeKeyword {
5127 /// The "struct" keyword introduces the elaborated-type-specifier.
5128 ETK_Struct,
5129
5130 /// The "__interface" keyword introduces the elaborated-type-specifier.
5131 ETK_Interface,
5132
5133 /// The "union" keyword introduces the elaborated-type-specifier.
5134 ETK_Union,
5135
5136 /// The "class" keyword introduces the elaborated-type-specifier.
5137 ETK_Class,
5138
5139 /// The "enum" keyword introduces the elaborated-type-specifier.
5140 ETK_Enum,
5141
5142 /// The "typename" keyword precedes the qualified type name, e.g.,
5143 /// \c typename T::type.
5144 ETK_Typename,
5145
5146 /// No keyword precedes the qualified type name.
5147 ETK_None
5148};
5149
5150/// A helper class for Type nodes having an ElaboratedTypeKeyword.
5151/// The keyword in stored in the free bits of the base class.
5152/// Also provides a few static helpers for converting and printing
5153/// elaborated type keyword and tag type kind enumerations.
5154class TypeWithKeyword : public Type {
5155protected:
5156 TypeWithKeyword(ElaboratedTypeKeyword Keyword, TypeClass tc,
5157 QualType Canonical, bool Dependent,
5158 bool InstantiationDependent, bool VariablyModified,
5159 bool ContainsUnexpandedParameterPack)
5160 : Type(tc, Canonical, Dependent, InstantiationDependent, VariablyModified,
5161 ContainsUnexpandedParameterPack) {
5162 TypeWithKeywordBits.Keyword = Keyword;
5163 }
5164
5165public:
5166 ElaboratedTypeKeyword getKeyword() const {
5167 return static_cast<ElaboratedTypeKeyword>(TypeWithKeywordBits.Keyword);
5168 }
5169
5170 /// Converts a type specifier (DeclSpec::TST) into an elaborated type keyword.
5171 static ElaboratedTypeKeyword getKeywordForTypeSpec(unsigned TypeSpec);
5172
5173 /// Converts a type specifier (DeclSpec::TST) into a tag type kind.
5174 /// It is an error to provide a type specifier which *isn't* a tag kind here.
5175 static TagTypeKind getTagTypeKindForTypeSpec(unsigned TypeSpec);
5176
5177 /// Converts a TagTypeKind into an elaborated type keyword.
5178 static ElaboratedTypeKeyword getKeywordForTagTypeKind(TagTypeKind Tag);
5179
5180 /// Converts an elaborated type keyword into a TagTypeKind.
5181 /// It is an error to provide an elaborated type keyword
5182 /// which *isn't* a tag kind here.
5183 static TagTypeKind getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword);
5184
5185 static bool KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword);
5186
5187 static StringRef getKeywordName(ElaboratedTypeKeyword Keyword);
5188
5189 static StringRef getTagTypeKindName(TagTypeKind Kind) {
5190 return getKeywordName(getKeywordForTagTypeKind(Kind));
5191 }
5192
5193 class CannotCastToThisType {};
5194 static CannotCastToThisType classof(const Type *);
5195};
5196
5197/// Represents a type that was referred to using an elaborated type
5198/// keyword, e.g., struct S, or via a qualified name, e.g., N::M::type,
5199/// or both.
5200///
5201/// This type is used to keep track of a type name as written in the
5202/// source code, including tag keywords and any nested-name-specifiers.
5203/// The type itself is always "sugar", used to express what was written
5204/// in the source code but containing no additional semantic information.
5205class ElaboratedType final
5206 : public TypeWithKeyword,
5207 public llvm::FoldingSetNode,
5208 private llvm::TrailingObjects<ElaboratedType, TagDecl *> {
5209 friend class ASTContext; // ASTContext creates these
5210 friend TrailingObjects;
5211
5212 /// The nested name specifier containing the qualifier.
5213 NestedNameSpecifier *NNS;
5214
5215 /// The type that this qualified name refers to.
5216 QualType NamedType;
5217
5218 /// The (re)declaration of this tag type owned by this occurrence is stored
5219 /// as a trailing object if there is one. Use getOwnedTagDecl to obtain
5220 /// it, or obtain a null pointer if there is none.
5221
5222 ElaboratedType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
5223 QualType NamedType, QualType CanonType, TagDecl *OwnedTagDecl)
5224 : TypeWithKeyword(Keyword, Elaborated, CanonType,
5225 NamedType->isDependentType(),
5226 NamedType->isInstantiationDependentType(),
5227 NamedType->isVariablyModifiedType(),
5228 NamedType->containsUnexpandedParameterPack()),
5229 NNS(NNS), NamedType(NamedType) {
5230 ElaboratedTypeBits.HasOwnedTagDecl = false;
5231 if (OwnedTagDecl) {
5232 ElaboratedTypeBits.HasOwnedTagDecl = true;
5233 *getTrailingObjects<TagDecl *>() = OwnedTagDecl;
5234 }
5235 assert(!(Keyword == ETK_None && NNS == nullptr) &&((!(Keyword == ETK_None && NNS == nullptr) &&
"ElaboratedType cannot have elaborated type keyword " "and name qualifier both null."
) ? static_cast<void> (0) : __assert_fail ("!(Keyword == ETK_None && NNS == nullptr) && \"ElaboratedType cannot have elaborated type keyword \" \"and name qualifier both null.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Type.h"
, 5237, __PRETTY_FUNCTION__))
5236 "ElaboratedType cannot have elaborated type keyword "((!(Keyword == ETK_None && NNS == nullptr) &&
"ElaboratedType cannot have elaborated type keyword " "and name qualifier both null."
) ? static_cast<void> (0) : __assert_fail ("!(Keyword == ETK_None && NNS == nullptr) && \"ElaboratedType cannot have elaborated type keyword \" \"and name qualifier both null.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Type.h"
, 5237, __PRETTY_FUNCTION__))
5237 "and name qualifier both null.")((!(Keyword == ETK_None && NNS == nullptr) &&
"ElaboratedType cannot have elaborated type keyword " "and name qualifier both null."
) ? static_cast<void> (0) : __assert_fail ("!(Keyword == ETK_None && NNS == nullptr) && \"ElaboratedType cannot have elaborated type keyword \" \"and name qualifier both null.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Type.h"
, 5237, __PRETTY_FUNCTION__))
;
5238 }
5239
5240public:
5241 /// Retrieve the qualification on this type.
5242 NestedNameSpecifier *getQualifier() const { return NNS; }
5243
5244 /// Retrieve the type named by the qualified-id.
5245 QualType getNamedType() const { return NamedType; }
5246
5247 /// Remove a single level of sugar.
5248 QualType desugar() const { return getNamedType(); }
5249
5250 /// Returns whether this type directly provides sugar.
5251 bool isSugared() const { return true; }
5252
5253 /// Return the (re)declaration of this type owned by this occurrence of this
5254 /// type, or nullptr if there is none.
5255 TagDecl *getOwnedTagDecl() const {
5256 return ElaboratedTypeBits.HasOwnedTagDecl ? *getTrailingObjects<TagDecl *>()
5257 : nullptr;
5258 }
5259
5260 void Profile(llvm::FoldingSetNodeID &ID) {
5261 Profile(ID, getKeyword(), NNS, NamedType, getOwnedTagDecl());
5262 }
5263
5264 static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
5265 NestedNameSpecifier *NNS, QualType NamedType,
5266 TagDecl *OwnedTagDecl) {
5267 ID.AddInteger(Keyword);
5268 ID.AddPointer(NNS);
5269 NamedType.Profile(ID);
5270 ID.AddPointer(OwnedTagDecl);
5271 }
5272
5273 static bool classof(const Type *T) { return T->getTypeClass() == Elaborated; }
5274};
5275
5276/// Represents a qualified type name for which the type name is
5277/// dependent.
5278///
5279/// DependentNameType represents a class of dependent types that involve a
5280/// possibly dependent nested-name-specifier (e.g., "T::") followed by a
5281/// name of a type. The DependentNameType may start with a "typename" (for a
5282/// typename-specifier), "class", "struct", "union", or "enum" (for a
5283/// dependent elaborated-type-specifier), or nothing (in contexts where we
5284/// know that we must be referring to a type, e.g., in a base class specifier).
5285/// Typically the nested-name-specifier is dependent, but in MSVC compatibility
5286/// mode, this type is used with non-dependent names to delay name lookup until
5287/// instantiation.
5288class DependentNameType : public TypeWithKeyword, public llvm::FoldingSetNode {
5289 friend class ASTContext; // ASTContext creates these
5290
5291 /// The nested name specifier containing the qualifier.
5292 NestedNameSpecifier *NNS;
5293
5294 /// The type that this typename specifier refers to.
5295 const IdentifierInfo *Name;
5296
5297 DependentNameType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
5298 const IdentifierInfo *Name, QualType CanonType)
5299 : TypeWithKeyword(Keyword, DependentName, CanonType, /*Dependent=*/true,
5300 /*InstantiationDependent=*/true,
5301 /*VariablyModified=*/false,
5302 NNS->containsUnexpandedParameterPack()),
5303 NNS(NNS), Name(Name) {}
5304
5305public:
5306 /// Retrieve the qualification on this type.
5307 NestedNameSpecifier *getQualifier() const { return NNS; }
5308
5309 /// Retrieve the type named by the typename specifier as an identifier.
5310 ///
5311 /// This routine will return a non-NULL identifier pointer when the
5312 /// form of the original typename was terminated by an identifier,
5313 /// e.g., "typename T::type".
5314 const IdentifierInfo *getIdentifier() const {
5315 return Name;
5316 }
5317
5318 bool isSugared() const { return false; }
5319 QualType desugar() const { return QualType(this, 0); }
5320
5321 void Profile(llvm::FoldingSetNodeID &ID) {
5322 Profile(ID, getKeyword(), NNS, Name);
5323 }
5324
5325 static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
5326 NestedNameSpecifier *NNS, const IdentifierInfo *Name) {
5327 ID.AddInteger(Keyword);
5328 ID.AddPointer(NNS);
5329 ID.AddPointer(Name);
5330 }
5331
5332 static bool classof(const Type *T) {
5333 return T->getTypeClass() == DependentName;
5334 }
5335};
5336
5337/// Represents a template specialization type whose template cannot be
5338/// resolved, e.g.
5339/// A<T>::template B<T>
5340class alignas(8) DependentTemplateSpecializationType
5341 : public TypeWithKeyword,
5342 public llvm::FoldingSetNode {
5343 friend class ASTContext; // ASTContext creates these
5344
5345 /// The nested name specifier containing the qualifier.
5346 NestedNameSpecifier *NNS;
5347
5348 /// The identifier of the template.
5349 const IdentifierInfo *Name;
5350
5351 DependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
5352 NestedNameSpecifier *NNS,
5353 const IdentifierInfo *Name,
5354 ArrayRef<TemplateArgument> Args,
5355 QualType Canon);
5356
5357 const TemplateArgument *getArgBuffer() const {
5358 return reinterpret_cast<const TemplateArgument*>(this+1);
5359 }
5360
5361 TemplateArgument *getArgBuffer() {
5362 return reinterpret_cast<TemplateArgument*>(this+1);
5363 }
5364
5365public:
5366 NestedNameSpecifier *getQualifier() const { return NNS; }
5367 const IdentifierInfo *getIdentifier() const { return Name; }
5368
5369 /// Retrieve the template arguments.
5370 const TemplateArgument *getArgs() const {
5371 return getArgBuffer();
5372 }
5373
5374 /// Retrieve the number of template arguments.
5375 unsigned getNumArgs() const {
5376 return DependentTemplateSpecializationTypeBits.NumArgs;
5377 }
5378
5379 const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
5380
5381 ArrayRef<TemplateArgument> template_arguments() const {
5382 return {getArgs(), getNumArgs()};
5383 }
5384
5385 using iterator = const TemplateArgument *;
5386
5387 iterator begin() const { return getArgs(); }
5388 iterator end() const; // inline in TemplateBase.h
5389
5390 bool isSugared() const { return false; }
5391 QualType desugar() const { return QualType(this, 0); }
5392
5393 void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context) {
5394 Profile(ID, Context, getKeyword(), NNS, Name, {getArgs(), getNumArgs()});
5395 }
5396
5397 static void Profile(llvm::FoldingSetNodeID &ID,
5398 const ASTContext &Context,
5399 ElaboratedTypeKeyword Keyword,
5400 NestedNameSpecifier *Qualifier,
5401 const IdentifierInfo *Name,
5402 ArrayRef<TemplateArgument> Args);
5403
5404 static bool classof(const Type *T) {
5405 return T->getTypeClass() == DependentTemplateSpecialization;
5406 }
5407};
5408
5409/// Represents a pack expansion of types.
5410///
5411/// Pack expansions are part of C++11 variadic templates. A pack
5412/// expansion contains a pattern, which itself contains one or more
5413/// "unexpanded" parameter packs. When instantiated, a pack expansion
5414/// produces a series of types, each instantiated from the pattern of
5415/// the expansion, where the Ith instantiation of the pattern uses the
5416/// Ith arguments bound to each of the unexpanded parameter packs. The
5417/// pack expansion is considered to "expand" these unexpanded
5418/// parameter packs.
5419///
5420/// \code
5421/// template<typename ...Types> struct tuple;
5422///
5423/// template<typename ...Types>
5424/// struct tuple_of_references {
5425/// typedef tuple<Types&...> type;
5426/// };
5427/// \endcode
5428///
5429/// Here, the pack expansion \c Types&... is represented via a
5430/// PackExpansionType whose pattern is Types&.
5431class PackExpansionType : public Type, public llvm::FoldingSetNode {
5432 friend class ASTContext; // ASTContext creates these
5433
5434 /// The pattern of the pack expansion.
5435 QualType Pattern;
5436
5437 PackExpansionType(QualType Pattern, QualType Canon,
5438 Optional<unsigned> NumExpansions)
5439 : Type(PackExpansion, Canon, /*Dependent=*/Pattern->isDependentType(),
5440 /*InstantiationDependent=*/true,
5441 /*VariablyModified=*/Pattern->isVariablyModifiedType(),
5442 /*ContainsUnexpandedParameterPack=*/false),
5443 Pattern(Pattern) {
5444 PackExpansionTypeBits.NumExpansions =
5445 NumExpansions ? *NumExpansions + 1 : 0;
5446 }
5447
5448public:
5449 /// Retrieve the pattern of this pack expansion, which is the
5450 /// type that will be repeatedly instantiated when instantiating the
5451 /// pack expansion itself.
5452 QualType getPattern() const { return Pattern; }
5453
5454 /// Retrieve the number of expansions that this pack expansion will
5455 /// generate, if known.
5456 Optional<unsigned> getNumExpansions() const {
5457 if (PackExpansionTypeBits.NumExpansions)
5458 return PackExpansionTypeBits.NumExpansions - 1;
5459 return None;
5460 }
5461
5462 bool isSugared() const { return !Pattern->isDependentType(); }
5463 QualType desugar() const { return isSugared() ? Pattern : QualType(this, 0); }
5464
5465 void Profile(llvm::FoldingSetNodeID &ID) {
5466 Profile(ID, getPattern(), getNumExpansions());
5467 }
5468
5469 static void Profile(llvm::FoldingSetNodeID &ID, QualType Pattern,
5470 Optional<unsigned> NumExpansions) {
5471 ID.AddPointer(Pattern.getAsOpaquePtr());
5472 ID.AddBoolean(NumExpansions.hasValue());
5473 if (NumExpansions)
5474 ID.AddInteger(*NumExpansions);
5475 }
5476
5477 static bool classof(const Type *T) {
5478 return T->getTypeClass() == PackExpansion;
5479 }
5480};
5481
5482/// This class wraps the list of protocol qualifiers. For types that can
5483/// take ObjC protocol qualifers, they can subclass this class.
5484template <class T>
5485class ObjCProtocolQualifiers {
5486protected:
5487 ObjCProtocolQualifiers() = default;
5488
5489 ObjCProtocolDecl * const *getProtocolStorage() const {
5490 return const_cast<ObjCProtocolQualifiers*>(this)->getProtocolStorage();
5491 }
5492
5493 ObjCProtocolDecl **getProtocolStorage() {
5494 return static_cast<T*>(this)->getProtocolStorageImpl();
5495 }
5496
5497 void setNumProtocols(unsigned N) {
5498 static_cast<T*>(this)->setNumProtocolsImpl(N);
5499 }
5500
5501 void initialize(ArrayRef<ObjCProtocolDecl *> protocols) {
5502 setNumProtocols(protocols.size());
5503 assert(getNumProtocols() == protocols.size() &&((getNumProtocols() == protocols.size() && "bitfield overflow in protocol count"
) ? static_cast<void> (0) : __assert_fail ("getNumProtocols() == protocols.size() && \"bitfield overflow in protocol count\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Type.h"
, 5504, __PRETTY_FUNCTION__))
5504 "bitfield overflow in protocol count")((getNumProtocols() == protocols.size() && "bitfield overflow in protocol count"
) ? static_cast<void> (0) : __assert_fail ("getNumProtocols() == protocols.size() && \"bitfield overflow in protocol count\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Type.h"
, 5504, __PRETTY_FUNCTION__))
;
5505 if (!protocols.empty())
5506 memcpy(getProtocolStorage(), protocols.data(),
5507 protocols.size() * sizeof(ObjCProtocolDecl*));
5508 }
5509
5510public:
5511 using qual_iterator = ObjCProtocolDecl * const *;
5512 using qual_range = llvm::iterator_range<qual_iterator>;
5513
5514 qual_range quals() const { return qual_range(qual_begin(), qual_end()); }
5515 qual_iterator qual_begin() const { return getProtocolStorage(); }
5516 qual_iterator qual_end() const { return qual_begin() + getNumProtocols(); }
5517
5518 bool qual_empty() const { return getNumProtocols() == 0; }
5519
5520 /// Return the number of qualifying protocols in this type, or 0 if
5521 /// there are none.
5522 unsigned getNumProtocols() const {
5523 return static_cast<const T*>(this)->getNumProtocolsImpl();
5524 }
5525
5526 /// Fetch a protocol by index.
5527 ObjCProtocolDecl *getProtocol(unsigned I) const {
5528 assert(I < getNumProtocols() && "Out-of-range protocol access")((I < getNumProtocols() && "Out-of-range protocol access"
) ? static_cast<void> (0) : __assert_fail ("I < getNumProtocols() && \"Out-of-range protocol access\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Type.h"
, 5528, __PRETTY_FUNCTION__))
;
5529 return qual_begin()[I];
5530 }
5531
5532 /// Retrieve all of the protocol qualifiers.
5533 ArrayRef<ObjCProtocolDecl *> getProtocols() const {
5534 return ArrayRef<ObjCProtocolDecl *>(qual_begin(), getNumProtocols());
5535 }
5536};
5537
5538/// Represents a type parameter type in Objective C. It can take
5539/// a list of protocols.
5540class ObjCTypeParamType : public Type,
5541 public ObjCProtocolQualifiers<ObjCTypeParamType>,
5542 public llvm::FoldingSetNode {
5543 friend class ASTContext;
5544 friend class ObjCProtocolQualifiers<ObjCTypeParamType>;
5545
5546 /// The number of protocols stored on this type.
5547 unsigned NumProtocols : 6;
5548
5549 ObjCTypeParamDecl *OTPDecl;
5550
5551 /// The protocols are stored after the ObjCTypeParamType node. In the
5552 /// canonical type, the list of protocols are sorted alphabetically
5553 /// and uniqued.
5554 ObjCProtocolDecl **getProtocolStorageImpl();
5555
5556 /// Return the number of qualifying protocols in this interface type,
5557 /// or 0 if there are none.
5558 unsigned getNumProtocolsImpl() const {
5559 return NumProtocols;
5560 }
5561
5562 void setNumProtocolsImpl(unsigned N) {
5563 NumProtocols = N;
5564 }
5565
5566 ObjCTypeParamType(const ObjCTypeParamDecl *D,
5567 QualType can,
5568 ArrayRef<ObjCProtocolDecl *> protocols);
5569
5570public:
5571 bool isSugared() const { return true; }
5572 QualType desugar() const;
5573
5574 static bool classof(const Type *T) {
5575 return T->getTypeClass() == ObjCTypeParam;
5576 }
5577
5578 void Profile(llvm::FoldingSetNodeID &ID);
5579 static void Profile(llvm::FoldingSetNodeID &ID,
5580 const ObjCTypeParamDecl *OTPDecl,
5581 ArrayRef<ObjCProtocolDecl *> protocols);
5582
5583 ObjCTypeParamDecl *getDecl() const { return OTPDecl; }
5584};
5585
5586/// Represents a class type in Objective C.
5587///
5588/// Every Objective C type is a combination of a base type, a set of
5589/// type arguments (optional, for parameterized classes) and a list of
5590/// protocols.
5591///
5592/// Given the following declarations:
5593/// \code
5594/// \@class C<T>;
5595/// \@protocol P;
5596/// \endcode
5597///
5598/// 'C' is an ObjCInterfaceType C. It is sugar for an ObjCObjectType
5599/// with base C and no protocols.
5600///
5601/// 'C<P>' is an unspecialized ObjCObjectType with base C and protocol list [P].
5602/// 'C<C*>' is a specialized ObjCObjectType with type arguments 'C*' and no
5603/// protocol list.
5604/// 'C<C*><P>' is a specialized ObjCObjectType with base C, type arguments 'C*',
5605/// and protocol list [P].
5606///
5607/// 'id' is a TypedefType which is sugar for an ObjCObjectPointerType whose
5608/// pointee is an ObjCObjectType with base BuiltinType::ObjCIdType
5609/// and no protocols.
5610///
5611/// 'id<P>' is an ObjCObjectPointerType whose pointee is an ObjCObjectType
5612/// with base BuiltinType::ObjCIdType and protocol list [P]. Eventually
5613/// this should get its own sugar class to better represent the source.
5614class ObjCObjectType : public Type,
5615 public ObjCProtocolQualifiers<ObjCObjectType> {
5616 friend class ObjCProtocolQualifiers<ObjCObjectType>;
5617
5618 // ObjCObjectType.NumTypeArgs - the number of type arguments stored
5619 // after the ObjCObjectPointerType node.
5620 // ObjCObjectType.NumProtocols - the number of protocols stored
5621 // after the type arguments of ObjCObjectPointerType node.
5622 //
5623 // These protocols are those written directly on the type. If
5624 // protocol qualifiers ever become additive, the iterators will need
5625 // to get kindof complicated.
5626 //
5627 // In the canonical object type, these are sorted alphabetically
5628 // and uniqued.
5629
5630 /// Either a BuiltinType or an InterfaceType or sugar for either.
5631 QualType BaseType;
5632
5633 /// Cached superclass type.
5634 mutable llvm::PointerIntPair<const ObjCObjectType *, 1, bool>
5635 CachedSuperClassType;
5636
5637 QualType *getTypeArgStorage();
5638 const QualType *getTypeArgStorage() const {
5639 return const_cast<ObjCObjectType *>(this)->getTypeArgStorage();
5640 }
5641
5642 ObjCProtocolDecl **getProtocolStorageImpl();
5643 /// Return the number of qualifying protocols in this interface type,
5644 /// or 0 if there are none.
5645 unsigned getNumProtocolsImpl() const {
5646 return ObjCObjectTypeBits.NumProtocols;
5647 }
5648 void setNumProtocolsImpl(unsigned N) {
5649 ObjCObjectTypeBits.NumProtocols = N;
5650 }
5651
5652protected:
5653 enum Nonce_ObjCInterface { Nonce_ObjCInterface };
5654
5655 ObjCObjectType(QualType Canonical, QualType Base,
5656 ArrayRef<QualType> typeArgs,
5657 ArrayRef<ObjCProtocolDecl *> protocols,
5658 bool isKindOf);
5659
5660 ObjCObjectType(enum Nonce_ObjCInterface)
5661 : Type(ObjCInterface, QualType(), false, false, false, false),
5662 BaseType(QualType(this_(), 0)) {
5663 ObjCObjectTypeBits.NumProtocols = 0;
5664 ObjCObjectTypeBits.NumTypeArgs = 0;
5665 ObjCObjectTypeBits.IsKindOf = 0;
5666 }
5667
5668 void computeSuperClassTypeSlow() const;
5669
5670public:
5671 /// Gets the base type of this object type. This is always (possibly
5672 /// sugar for) one of:
5673 /// - the 'id' builtin type (as opposed to the 'id' type visible to the
5674 /// user, which is a typedef for an ObjCObjectPointerType)
5675 /// - the 'Class' builtin type (same caveat)
5676 /// - an ObjCObjectType (currently always an ObjCInterfaceType)
5677 QualType getBaseType() const { return BaseType; }
5678
5679 bool isObjCId() const {
5680 return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCId);
5681 }
5682
5683 bool isObjCClass() const {
5684 return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCClass);
5685 }
5686
5687 bool isObjCUnqualifiedId() const { return qual_empty() && isObjCId(); }
5688 bool isObjCUnqualifiedClass() const { return qual_empty() && isObjCClass(); }
5689 bool isObjCUnqualifiedIdOrClass() const {
5690 if (!qual_empty()) return false;
5691 if (const BuiltinType *T = getBaseType()->getAs<BuiltinType>())
5692 return T->getKind() == BuiltinType::ObjCId ||
5693 T->getKind() == BuiltinType::ObjCClass;
5694 return false;
5695 }
5696 bool isObjCQualifiedId() const { return !qual_empty() && isObjCId(); }
5697 bool isObjCQualifiedClass() const { return !qual_empty() && isObjCClass(); }
5698
5699 /// Gets the interface declaration for this object type, if the base type
5700 /// really is an interface.
5701 ObjCInterfaceDecl *getInterface() const;
5702
5703 /// Determine whether this object type is "specialized", meaning
5704 /// that it has type arguments.
5705 bool isSpecialized() const;
5706
5707 /// Determine whether this object type was written with type arguments.
5708 bool isSpecializedAsWritten() const {
5709 return ObjCObjectTypeBits.NumTypeArgs > 0;
5710 }
5711
5712 /// Determine whether this object type is "unspecialized", meaning
5713 /// that it has no type arguments.
5714 bool isUnspecialized() const { return !isSpecialized(); }
5715
5716 /// Determine whether this object type is "unspecialized" as
5717 /// written, meaning that it has no type arguments.
5718 bool isUnspecializedAsWritten() const { return !isSpecializedAsWritten(); }
5719
5720 /// Retrieve the type arguments of this object type (semantically).
5721 ArrayRef<QualType> getTypeArgs() const;
5722
5723 /// Retrieve the type arguments of this object type as they were
5724 /// written.
5725 ArrayRef<QualType> getTypeArgsAsWritten() const {
5726 return llvm::makeArrayRef(getTypeArgStorage(),
5727 ObjCObjectTypeBits.NumTypeArgs);
5728 }
5729
5730 /// Whether this is a "__kindof" type as written.
5731 bool isKindOfTypeAsWritten() const { return ObjCObjectTypeBits.IsKindOf; }
5732
5733 /// Whether this ia a "__kindof" type (semantically).
5734 bool isKindOfType() const;
5735
5736 /// Retrieve the type of the superclass of this object type.
5737 ///
5738 /// This operation substitutes any type arguments into the
5739 /// superclass of the current class type, potentially producing a
5740 /// specialization of the superclass type. Produces a null type if
5741 /// there is no superclass.
5742 QualType getSuperClassType() const {
5743 if (!CachedSuperClassType.getInt())
5744 computeSuperClassTypeSlow();
5745
5746 assert(CachedSuperClassType.getInt() && "Superclass not set?")((CachedSuperClassType.getInt() && "Superclass not set?"
) ? static_cast<void> (0) : __assert_fail ("CachedSuperClassType.getInt() && \"Superclass not set?\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Type.h"
, 5746, __PRETTY_FUNCTION__))
;
5747 return QualType(CachedSuperClassType.getPointer(), 0);
5748 }
5749
5750 /// Strip off the Objective-C "kindof" type and (with it) any
5751 /// protocol qualifiers.
5752 QualType stripObjCKindOfTypeAndQuals(const ASTContext &ctx) const;
5753
5754 bool isSugared() const { return false; }
5755 QualType desugar() const { return QualType(this, 0); }
5756
5757 static bool classof(const Type *T) {
5758 return T->getTypeClass() == ObjCObject ||
5759 T->getTypeClass() == ObjCInterface;
5760 }
5761};
5762
5763/// A class providing a concrete implementation
5764/// of ObjCObjectType, so as to not increase the footprint of
5765/// ObjCInterfaceType. Code outside of ASTContext and the core type
5766/// system should not reference this type.
5767class ObjCObjectTypeImpl : public ObjCObjectType, public llvm::FoldingSetNode {
5768 friend class ASTContext;
5769
5770 // If anyone adds fields here, ObjCObjectType::getProtocolStorage()
5771 // will need to be modified.
5772
5773 ObjCObjectTypeImpl(QualType Canonical, QualType Base,
5774 ArrayRef<QualType> typeArgs,
5775 ArrayRef<ObjCProtocolDecl *> protocols,
5776 bool isKindOf)
5777 : ObjCObjectType(Canonical, Base, typeArgs, protocols, isKindOf) {}
5778
5779public:
5780 void Profile(llvm::FoldingSetNodeID &ID);
5781 static void Profile(llvm::FoldingSetNodeID &ID,
5782 QualType Base,
5783 ArrayRef<QualType> typeArgs,
5784 ArrayRef<ObjCProtocolDecl *> protocols,
5785 bool isKindOf);
5786};
5787
5788inline QualType *ObjCObjectType::getTypeArgStorage() {
5789 return reinterpret_cast<QualType *>(static_cast<ObjCObjectTypeImpl*>(this)+1);
5790}
5791
5792inline ObjCProtocolDecl **ObjCObjectType::getProtocolStorageImpl() {
5793 return reinterpret_cast<ObjCProtocolDecl**>(
5794 getTypeArgStorage() + ObjCObjectTypeBits.NumTypeArgs);
5795}
5796
5797inline ObjCProtocolDecl **ObjCTypeParamType::getProtocolStorageImpl() {
5798 return reinterpret_cast<ObjCProtocolDecl**>(
5799 static_cast<ObjCTypeParamType*>(this)+1);
5800}
5801
5802/// Interfaces are the core concept in Objective-C for object oriented design.
5803/// They basically correspond to C++ classes. There are two kinds of interface
5804/// types: normal interfaces like `NSString`, and qualified interfaces, which
5805/// are qualified with a protocol list like `NSString<NSCopyable, NSAmazing>`.
5806///
5807/// ObjCInterfaceType guarantees the following properties when considered
5808/// as a subtype of its superclass, ObjCObjectType:
5809/// - There are no protocol qualifiers. To reinforce this, code which
5810/// tries to invoke the protocol methods via an ObjCInterfaceType will
5811/// fail to compile.
5812/// - It is its own base type. That is, if T is an ObjCInterfaceType*,
5813/// T->getBaseType() == QualType(T, 0).
5814class ObjCInterfaceType : public ObjCObjectType {
5815 friend class ASTContext; // ASTContext creates these.
5816 friend class ASTReader;
5817 friend class ObjCInterfaceDecl;
5818
5819 mutable ObjCInterfaceDecl *Decl;
5820
5821 ObjCInterfaceType(const ObjCInterfaceDecl *D)
5822 : ObjCObjectType(Nonce_ObjCInterface),
5823 Decl(const_cast<ObjCInterfaceDecl*>(D)) {}
5824
5825public:
5826 /// Get the declaration of this interface.
5827 ObjCInterfaceDecl *getDecl() const { return Decl; }
5828
5829 bool isSugared() const { return false; }
5830 QualType desugar() const { return QualType(this, 0); }
5831
5832 static bool classof(const Type *T) {
5833 return T->getTypeClass() == ObjCInterface;
5834 }
5835
5836 // Nonsense to "hide" certain members of ObjCObjectType within this
5837 // class. People asking for protocols on an ObjCInterfaceType are
5838 // not going to get what they want: ObjCInterfaceTypes are
5839 // guaranteed to have no protocols.
5840 enum {
5841 qual_iterator,
5842 qual_begin,
5843 qual_end,
5844 getNumProtocols,
5845 getProtocol
5846 };
5847};
5848
5849inline ObjCInterfaceDecl *ObjCObjectType::getInterface() const {
5850 QualType baseType = getBaseType();
5851 while (const auto *ObjT = baseType->getAs<ObjCObjectType>()) {
5852 if (const auto *T = dyn_cast<ObjCInterfaceType>(ObjT))
5853 return T->getDecl();
5854
5855 baseType = ObjT->getBaseType();
5856 }
5857
5858 return nullptr;
5859}
5860
5861/// Represents a pointer to an Objective C object.
5862///
5863/// These are constructed from pointer declarators when the pointee type is
5864/// an ObjCObjectType (or sugar for one). In addition, the 'id' and 'Class'
5865/// types are typedefs for these, and the protocol-qualified types 'id<P>'
5866/// and 'Class<P>' are translated into these.
5867///
5868/// Pointers to pointers to Objective C objects are still PointerTypes;
5869/// only the first level of pointer gets it own type implementation.
5870class ObjCObjectPointerType : public Type, public llvm::FoldingSetNode {
5871 friend class ASTContext; // ASTContext creates these.
5872
5873 QualType PointeeType;
5874
5875 ObjCObjectPointerType(QualType Canonical, QualType Pointee)
5876 : Type(ObjCObjectPointer, Canonical,
5877 Pointee->isDependentType(),
5878 Pointee->isInstantiationDependentType(),
5879 Pointee->isVariablyModifiedType(),
5880 Pointee->containsUnexpandedParameterPack()),
5881 PointeeType(Pointee) {}
5882
5883public:
5884 /// Gets the type pointed to by this ObjC pointer.
5885 /// The result will always be an ObjCObjectType or sugar thereof.
5886 QualType getPointeeType() const { return PointeeType; }
5887
5888 /// Gets the type pointed to by this ObjC pointer. Always returns non-null.
5889 ///
5890 /// This method is equivalent to getPointeeType() except that
5891 /// it discards any typedefs (or other sugar) between this
5892 /// type and the "outermost" object type. So for:
5893 /// \code
5894 /// \@class A; \@protocol P; \@protocol Q;
5895 /// typedef A<P> AP;
5896 /// typedef A A1;
5897 /// typedef A1<P> A1P;
5898 /// typedef A1P<Q> A1PQ;
5899 /// \endcode
5900 /// For 'A*', getObjectType() will return 'A'.
5901 /// For 'A<P>*', getObjectType() will return 'A<P>'.
5902 /// For 'AP*', getObjectType() will return 'A<P>'.
5903 /// For 'A1*', getObjectType() will return 'A'.
5904 /// For 'A1<P>*', getObjectType() will return 'A1<P>'.
5905 /// For 'A1P*', getObjectType() will return 'A1<P>'.
5906 /// For 'A1PQ*', getObjectType() will return 'A1<Q>', because
5907 /// adding protocols to a protocol-qualified base discards the
5908 /// old qualifiers (for now). But if it didn't, getObjectType()
5909 /// would return 'A1P<Q>' (and we'd have to make iterating over
5910 /// qualifiers more complicated).
5911 const ObjCObjectType *getObjectType() const {
5912 return PointeeType->castAs<ObjCObjectType>();
5913 }
5914
5915 /// If this pointer points to an Objective C
5916 /// \@interface type, gets the type for that interface. Any protocol
5917 /// qualifiers on the interface are ignored.
5918 ///
5919 /// \return null if the base type for this pointer is 'id' or 'Class'
5920 const ObjCInterfaceType *getInterfaceType() const;
5921
5922 /// If this pointer points to an Objective \@interface
5923 /// type, gets the declaration for that interface.
5924 ///
5925 /// \return null if the base type for this pointer is 'id' or 'Class'
5926 ObjCInterfaceDecl *getInterfaceDecl() const {
5927 return getObjectType()->getInterface();
5928 }
5929
5930 /// True if this is equivalent to the 'id' type, i.e. if
5931 /// its object type is the primitive 'id' type with no protocols.
5932 bool isObjCIdType() const {
5933 return getObjectType()->isObjCUnqualifiedId();
5934 }
5935
5936 /// True if this is equivalent to the 'Class' type,
5937 /// i.e. if its object tive is the primitive 'Class' type with no protocols.
5938 bool isObjCClassType() const {
5939 return getObjectType()->isObjCUnqualifiedClass();
5940 }
5941
5942 /// True if this is equivalent to the 'id' or 'Class' type,
5943 bool isObjCIdOrClassType() const {
5944 return getObjectType()->isObjCUnqualifiedIdOrClass();
5945 }
5946
5947 /// True if this is equivalent to 'id<P>' for some non-empty set of
5948 /// protocols.
5949 bool isObjCQualifiedIdType() const {
5950 return getObjectType()->isObjCQualifiedId();
5951 }
5952
5953 /// True if this is equivalent to 'Class<P>' for some non-empty set of
5954 /// protocols.
5955 bool isObjCQualifiedClassType() const {
5956 return getObjectType()->isObjCQualifiedClass();
5957 }
5958
5959 /// Whether this is a "__kindof" type.
5960 bool isKindOfType() const { return getObjectType()->isKindOfType(); }
5961
5962 /// Whether this type is specialized, meaning that it has type arguments.
5963 bool isSpecialized() const { return getObjectType()->isSpecialized(); }
5964
5965 /// Whether this type is specialized, meaning that it has type arguments.
5966 bool isSpecializedAsWritten() const {
5967 return getObjectType()->isSpecializedAsWritten();
5968 }
5969
5970 /// Whether this type is unspecialized, meaning that is has no type arguments.
5971 bool isUnspecialized() const { return getObjectType()->isUnspecialized(); }
5972
5973 /// Determine whether this object type is "unspecialized" as
5974 /// written, meaning that it has no type arguments.
5975 bool isUnspecializedAsWritten() const { return !isSpecializedAsWritten(); }
5976
5977 /// Retrieve the type arguments for this type.
5978 ArrayRef<QualType> getTypeArgs() const {
5979 return getObjectType()->getTypeArgs();
5980 }
5981
5982 /// Retrieve the type arguments for this type.
5983 ArrayRef<QualType> getTypeArgsAsWritten() const {
5984 return getObjectType()->getTypeArgsAsWritten();
5985 }
5986
5987 /// An iterator over the qualifiers on the object type. Provided
5988 /// for convenience. This will always iterate over the full set of
5989 /// protocols on a type, not just those provided directly.
5990 using qual_iterator = ObjCObjectType::qual_iterator;
5991 using qual_range = llvm::iterator_range<qual_iterator>;
5992
5993 qual_range quals() const { return qual_range(qual_begin(), qual_end()); }
5994
5995 qual_iterator qual_begin() const {
5996 return getObjectType()->qual_begin();
5997 }
5998
5999 qual_iterator qual_end() const {
6000 return getObjectType()->qual_end();
6001 }
6002
6003 bool qual_empty() const { return getObjectType()->qual_empty(); }
6004
6005 /// Return the number of qualifying protocols on the object type.
6006 unsigned getNumProtocols() const {
6007 return getObjectType()->getNumProtocols();
6008 }
6009
6010 /// Retrieve a qualifying protocol by index on the object type.
6011 ObjCProtocolDecl *getProtocol(unsigned I) const {
6012 return getObjectType()->getProtocol(I);
6013 }
6014
6015 bool isSugared() const { return false; }
6016 QualType desugar() const { return QualType(this, 0); }
6017
6018 /// Retrieve the type of the superclass of this object pointer type.
6019 ///
6020 /// This operation substitutes any type arguments into the
6021 /// superclass of the current class type, potentially producing a
6022 /// pointer to a specialization of the superclass type. Produces a
6023 /// null type if there is no superclass.
6024 QualType getSuperClassType() const;
6025
6026 /// Strip off the Objective-C "kindof" type and (with it) any
6027 /// protocol qualifiers.
6028 const ObjCObjectPointerType *stripObjCKindOfTypeAndQuals(
6029 const ASTContext &ctx) const;
6030
6031 void Profile(llvm::FoldingSetNodeID &ID) {
6032 Profile(ID, getPointeeType());
6033 }
6034
6035 static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
6036 ID.AddPointer(T.getAsOpaquePtr());
6037 }
6038
6039 static bool classof(const Type *T) {
6040 return T->getTypeClass() == ObjCObjectPointer;
6041 }
6042};
6043
6044class AtomicType : public Type, public llvm::FoldingSetNode {
6045 friend class ASTContext; // ASTContext creates these.
6046
6047 QualType ValueType;
6048
6049 AtomicType(QualType ValTy, QualType Canonical)
6050 : Type(Atomic, Canonical, ValTy->isDependentType(),
6051 ValTy->isInstantiationDependentType(),
6052 ValTy->isVariablyModifiedType(),
6053 ValTy->containsUnexpandedParameterPack()),
6054 ValueType(ValTy) {}
6055
6056public:
6057 /// Gets the type contained by this atomic type, i.e.
6058 /// the type returned by performing an atomic load of this atomic type.
6059 QualType getValueType() const { return ValueType; }
6060
6061 bool isSugared() const { return false; }
6062 QualType desugar() const { return QualType(this, 0); }
6063
6064 void Profile(llvm::FoldingSetNodeID &ID) {
6065 Profile(ID, getValueType());
6066 }
6067
6068 static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
6069 ID.AddPointer(T.getAsOpaquePtr());
6070 }
6071
6072 static bool classof(const Type *T) {
6073 return T->getTypeClass() == Atomic;
6074 }
6075};
6076
6077/// PipeType - OpenCL20.
6078class PipeType : public Type, public llvm::FoldingSetNode {
6079 friend class ASTContext; // ASTContext creates these.
6080
6081 QualType ElementType;
6082 bool isRead;
6083
6084 PipeType(QualType elemType, QualType CanonicalPtr, bool isRead)
6085 : Type(Pipe, CanonicalPtr, elemType->isDependentType(),
6086 elemType->isInstantiationDependentType(),
6087 elemType->isVariablyModifiedType(),
6088 elemType->containsUnexpandedParameterPack()),
6089 ElementType(elemType), isRead(isRead) {}
6090
6091public:
6092 QualType getElementType() const { return ElementType; }
6093
6094 bool isSugared() const { return false; }
6095
6096 QualType desugar() const { return QualType(this, 0); }
6097
6098 void Profile(llvm::FoldingSetNodeID &ID) {
6099 Profile(ID, getElementType(), isReadOnly());
6100 }
6101
6102 static void Profile(llvm::FoldingSetNodeID &ID, QualType T, bool isRead) {
6103 ID.AddPointer(T.getAsOpaquePtr());
6104 ID.AddBoolean(isRead);
6105 }
6106
6107 static bool classof(const Type *T) {
6108 return T->getTypeClass() == Pipe;
6109 }
6110
6111 bool isReadOnly() const { return isRead; }
6112};
6113
6114/// A qualifier set is used to build a set of qualifiers.
6115class QualifierCollector : public Qualifiers {
6116public:
6117 QualifierCollector(Qualifiers Qs = Qualifiers()) : Qualifiers(Qs) {}
6118
6119 /// Collect any qualifiers on the given type and return an
6120 /// unqualified type. The qualifiers are assumed to be consistent
6121 /// with those already in the type.
6122 const Type *strip(QualType type) {
6123 addFastQualifiers(type.getLocalFastQualifiers());
6124 if (!type.hasLocalNonFastQualifiers())
6125 return type.getTypePtrUnsafe();
6126
6127 const ExtQuals *extQuals = type.getExtQualsUnsafe();
6128 addConsistentQualifiers(extQuals->getQualifiers());
6129 return extQuals->getBaseType();
6130 }
6131
6132 /// Apply the collected qualifiers to the given type.
6133 QualType apply(const ASTContext &Context, QualType QT) const;
6134
6135 /// Apply the collected qualifiers to the given type.
6136 QualType apply(const ASTContext &Context, const Type* T) const;
6137};
6138
6139// Inline function definitions.
6140
6141inline SplitQualType SplitQualType::getSingleStepDesugaredType() const {
6142 SplitQualType desugar =
6143 Ty->getLocallyUnqualifiedSingleStepDesugaredType().split();
6144 desugar.Quals.addConsistentQualifiers(Quals);
6145 return desugar;
6146}
6147
6148inline const Type *QualType::getTypePtr() const {
6149 return getCommonPtr()->BaseType;
6150}
6151
6152inline const Type *QualType::getTypePtrOrNull() const {
6153 return (isNull() ? nullptr : getCommonPtr()->BaseType);
6154}
6155
6156inline SplitQualType QualType::split() const {
6157 if (!hasLocalNonFastQualifiers())
6158 return SplitQualType(getTypePtrUnsafe(),
6159 Qualifiers::fromFastMask(getLocalFastQualifiers()));
6160
6161 const ExtQuals *eq = getExtQualsUnsafe();
6162 Qualifiers qs = eq->getQualifiers();
6163 qs.addFastQualifiers(getLocalFastQualifiers());
6164 return SplitQualType(eq->getBaseType(), qs);
6165}
6166
6167inline Qualifiers QualType::getLocalQualifiers() const {
6168 Qualifiers Quals;
6169 if (hasLocalNonFastQualifiers())
6170 Quals = getExtQualsUnsafe()->getQualifiers();
6171 Quals.addFastQualifiers(getLocalFastQualifiers());
6172 return Quals;
6173}
6174
6175inline Qualifiers QualType::getQualifiers() const {
6176 Qualifiers quals = getCommonPtr()->CanonicalType.getLocalQualifiers();
6177 quals.addFastQualifiers(getLocalFastQualifiers());
6178 return quals;
6179}
6180
6181inline unsigned QualType::getCVRQualifiers() const {
6182 unsigned cvr = getCommonPtr()->CanonicalType.getLocalCVRQualifiers();
6183 cvr |= getLocalCVRQualifiers();
6184 return cvr;
6185}
6186
6187inline QualType QualType::getCanonicalType() const {
6188 QualType canon = getCommonPtr()->CanonicalType;
6189 return canon.withFastQualifiers(getLocalFastQualifiers());
6190}
6191
6192inline bool QualType::isCanonical() const {
6193 return getTypePtr()->isCanonicalUnqualified();
6194}
6195
6196inline bool QualType::isCanonicalAsParam() const {
6197 if (!isCanonical()) return false;
6198 if (hasLocalQualifiers()) return false;
6199
6200 const Type *T = getTypePtr();
6201 if (T->isVariablyModifiedType() && T->hasSizedVLAType())
6202 return false;
6203
6204 return !isa<FunctionType>(T) && !isa<ArrayType>(T);
6205}
6206
6207inline bool QualType::isConstQualified() const {
6208 return isLocalConstQualified() ||
6209 getCommonPtr()->CanonicalType.isLocalConstQualified();
6210}
6211
6212inline bool QualType::isRestrictQualified() const {
6213 return isLocalRestrictQualified() ||
6214 getCommonPtr()->CanonicalType.isLocalRestrictQualified();
6215}
6216
6217
6218inline bool QualType::isVolatileQualified() const {
6219 return isLocalVolatileQualified() ||
6220 getCommonPtr()->CanonicalType.isLocalVolatileQualified();
6221}
6222
6223inline bool QualType::hasQualifiers() const {
6224 return hasLocalQualifiers() ||
6225 getCommonPtr()->CanonicalType.hasLocalQualifiers();
6226}
6227
6228inline QualType QualType::getUnqualifiedType() const {
6229 if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
6230 return QualType(getTypePtr(), 0);
6231
6232 return QualType(getSplitUnqualifiedTypeImpl(*this).Ty, 0);
6233}
6234
6235inline SplitQualType QualType::getSplitUnqualifiedType() const {
6236 if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
6237 return split();
6238
6239 return getSplitUnqualifiedTypeImpl(*this);
6240}
6241
6242inline void QualType::removeLocalConst() {
6243 removeLocalFastQualifiers(Qualifiers::Const);
6244}
6245
6246inline void QualType::removeLocalRestrict() {
6247 removeLocalFastQualifiers(Qualifiers::Restrict);
6248}
6249
6250inline void QualType::removeLocalVolatile() {
6251 removeLocalFastQualifiers(Qualifiers::Volatile);
6252}
6253
6254inline void QualType::removeLocalCVRQualifiers(unsigned Mask) {
6255 assert(!(Mask & ~Qualifiers::CVRMask) && "mask has non-CVR bits")((!(Mask & ~Qualifiers::CVRMask) && "mask has non-CVR bits"
) ? static_cast<void> (0) : __assert_fail ("!(Mask & ~Qualifiers::CVRMask) && \"mask has non-CVR bits\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Type.h"
, 6255, __PRETTY_FUNCTION__))
;
6256 static_assert((int)Qualifiers::CVRMask == (int)Qualifiers::FastMask,
6257 "Fast bits differ from CVR bits!");
6258
6259 // Fast path: we don't need to touch the slow qualifiers.
6260 removeLocalFastQualifiers(Mask);
6261}
6262
6263/// Return the address space of this type.
6264inline LangAS QualType::getAddressSpace() const {
6265 return getQualifiers().getAddressSpace();
6266}
6267
6268/// Return the gc attribute of this type.
6269inline Qualifiers::GC QualType::getObjCGCAttr() const {
6270 return getQualifiers().getObjCGCAttr();
6271}
6272
6273inline bool QualType::hasNonTrivialToPrimitiveDefaultInitializeCUnion() const {
6274 if (auto *RD = getTypePtr()->getBaseElementTypeUnsafe()->getAsRecordDecl())
6275 return hasNonTrivialToPrimitiveDefaultInitializeCUnion(RD);
6276 return false;
6277}
6278
6279inline bool QualType::hasNonTrivialToPrimitiveDestructCUnion() const {
6280 if (auto *RD = getTypePtr()->getBaseElementTypeUnsafe()->getAsRecordDecl())
6281 return hasNonTrivialToPrimitiveDestructCUnion(RD);
6282 return false;
6283}
6284
6285inline bool QualType::hasNonTrivialToPrimitiveCopyCUnion() const {
6286 if (auto *RD = getTypePtr()->getBaseElementTypeUnsafe()->getAsRecordDecl())
6287 return hasNonTrivialToPrimitiveCopyCUnion(RD);
6288 return false;
6289}
6290
6291inline FunctionType::ExtInfo getFunctionExtInfo(const Type &t) {
6292 if (const auto *PT = t.getAs<PointerType>()) {
6293 if (const auto *FT = PT->getPointeeType()->getAs<FunctionType>())
6294 return FT->getExtInfo();
6295 } else if (const auto *FT = t.getAs<FunctionType>())
6296 return FT->getExtInfo();
6297
6298 return FunctionType::ExtInfo();
6299}
6300
6301inline FunctionType::ExtInfo getFunctionExtInfo(QualType t) {
6302 return getFunctionExtInfo(*t);
6303}
6304
6305/// Determine whether this type is more
6306/// qualified than the Other type. For example, "const volatile int"
6307/// is more qualified than "const int", "volatile int", and
6308/// "int". However, it is not more qualified than "const volatile
6309/// int".
6310inline bool QualType::isMoreQualifiedThan(QualType other) const {
6311 Qualifiers MyQuals = getQualifiers();
6312 Qualifiers OtherQuals = other.getQualifiers();
6313 return (MyQuals != OtherQuals && MyQuals.compatiblyIncludes(OtherQuals));
6314}
6315
6316/// Determine whether this type is at last
6317/// as qualified as the Other type. For example, "const volatile
6318/// int" is at least as qualified as "const int", "volatile int",
6319/// "int", and "const volatile int".
6320inline bool QualType::isAtLeastAsQualifiedAs(QualType other) const {
6321 Qualifiers OtherQuals = other.getQualifiers();
6322
6323 // Ignore __unaligned qualifier if this type is a void.
6324 if (getUnqualifiedType()->isVoidType())
6325 OtherQuals.removeUnaligned();
6326
6327 return getQualifiers().compatiblyIncludes(OtherQuals);
6328}
6329
6330/// If Type is a reference type (e.g., const
6331/// int&), returns the type that the reference refers to ("const
6332/// int"). Otherwise, returns the type itself. This routine is used
6333/// throughout Sema to implement C++ 5p6:
6334///
6335/// If an expression initially has the type "reference to T" (8.3.2,
6336/// 8.5.3), the type is adjusted to "T" prior to any further
6337/// analysis, the expression designates the object or function
6338/// denoted by the reference, and the expression is an lvalue.
6339inline QualType QualType::getNonReferenceType() const {
6340 if (const auto *RefType = (*this)->getAs<ReferenceType>())
6341 return RefType->getPointeeType();
6342 else
6343 return *this;
6344}
6345
6346inline bool QualType::isCForbiddenLValueType() const {
6347 return ((getTypePtr()->isVoidType() && !hasQualifiers()) ||
6348 getTypePtr()->isFunctionType());
6349}
6350
6351/// Tests whether the type is categorized as a fundamental type.
6352///
6353/// \returns True for types specified in C++0x [basic.fundamental].
6354inline bool Type::isFundamentalType() const {
6355 return isVoidType() ||
6356 isNullPtrType() ||
6357 // FIXME: It's really annoying that we don't have an
6358 // 'isArithmeticType()' which agrees with the standard definition.
6359 (isArithmeticType() && !isEnumeralType());
6360}
6361
6362/// Tests whether the type is categorized as a compound type.
6363///
6364/// \returns True for types specified in C++0x [basic.compound].
6365inline bool Type::isCompoundType() const {
6366 // C++0x [basic.compound]p1:
6367 // Compound types can be constructed in the following ways:
6368 // -- arrays of objects of a given type [...];
6369 return isArrayType() ||
6370 // -- functions, which have parameters of given types [...];
6371 isFunctionType() ||
6372 // -- pointers to void or objects or functions [...];
6373 isPointerType() ||
6374 // -- references to objects or functions of a given type. [...]
6375 isReferenceType() ||
6376 // -- classes containing a sequence of objects of various types, [...];
6377 isRecordType() ||
6378 // -- unions, which are classes capable of containing objects of different
6379 // types at different times;
6380 isUnionType() ||
6381 // -- enumerations, which comprise a set of named constant values. [...];
6382 isEnumeralType() ||
6383 // -- pointers to non-static class members, [...].
6384 isMemberPointerType();
6385}
6386
6387inline bool Type::isFunctionType() const {
6388 return isa<FunctionType>(CanonicalType);
13
Assuming field 'CanonicalType' is not a 'FunctionType'
14
Returning zero, which participates in a condition later
6389}
6390
6391inline bool Type::isPointerType() const {
6392 return isa<PointerType>(CanonicalType);
6393}
6394
6395inline bool Type::isAnyPointerType() const {
6396 return isPointerType() || isObjCObjectPointerType();
6397}
6398
6399inline bool Type::isBlockPointerType() const {
6400 return isa<BlockPointerType>(CanonicalType);
6401}
6402
6403inline bool Type::isReferenceType() const {
6404 return isa<ReferenceType>(CanonicalType);
6405}
6406
6407inline bool Type::isLValueReferenceType() const {
6408 return isa<LValueReferenceType>(CanonicalType);
6409}
6410
6411inline bool Type::isRValueReferenceType() const {
6412 return isa<RValueReferenceType>(CanonicalType);
6413}
6414
6415inline bool Type::isFunctionPointerType() const {
6416 if (const auto *T = getAs<PointerType>())
6417 return T->getPointeeType()->isFunctionType();
6418 else
6419 return false;
6420}
6421
6422inline bool Type::isFunctionReferenceType() const {
6423 if (const auto *T = getAs<ReferenceType>())
6424 return T->getPointeeType()->isFunctionType();
6425 else
6426 return false;
6427}
6428
6429inline bool Type::isMemberPointerType() const {
6430 return isa<MemberPointerType>(CanonicalType);
6431}
6432
6433inline bool Type::isMemberFunctionPointerType() const {
6434 if (const auto *T = getAs<MemberPointerType>())
6435 return T->isMemberFunctionPointer();
6436 else
6437 return false;
6438}
6439
6440inline bool Type::isMemberDataPointerType() const {
6441 if (const auto *T = getAs<MemberPointerType>())
6442 return T->isMemberDataPointer();
6443 else
6444 return false;
6445}
6446
6447inline bool Type::isArrayType() const {
6448 return isa<ArrayType>(CanonicalType);
6449}
6450
6451inline bool Type::isConstantArrayType() const {
6452 return isa<ConstantArrayType>(CanonicalType);
6453}
6454
6455inline bool Type::isIncompleteArrayType() const {
6456 return isa<IncompleteArrayType>(CanonicalType);
6457}
6458
6459inline bool Type::isVariableArrayType() const {
6460 return isa<VariableArrayType>(CanonicalType);
6461}
6462
6463inline bool Type::isDependentSizedArrayType() const {
6464 return isa<DependentSizedArrayType>(CanonicalType);
6465}
6466
6467inline bool Type::isBuiltinType() const {
6468 return isa<BuiltinType>(CanonicalType);
6469}
6470
6471inline bool Type::isRecordType() const {
6472 return isa<RecordType>(CanonicalType);
6473}
6474
6475inline bool Type::isEnumeralType() const {
6476 return isa<EnumType>(CanonicalType);
6477}
6478
6479inline bool Type::isAnyComplexType() const {
6480 return isa<ComplexType>(CanonicalType);
6481}
6482
6483inline bool Type::isVectorType() const {
6484 return isa<VectorType>(CanonicalType);
6485}
6486
6487inline bool Type::isExtVectorType() const {
6488 return isa<ExtVectorType>(CanonicalType);
6489}
6490
6491inline bool Type::isDependentAddressSpaceType() const {
6492 return isa<DependentAddressSpaceType>(CanonicalType);
6493}
6494
6495inline bool Type::isObjCObjectPointerType() const {
6496 return isa<ObjCObjectPointerType>(CanonicalType);
6497}
6498
6499inline bool Type::isObjCObjectType() const {
6500 return isa<ObjCObjectType>(CanonicalType);
6501}
6502
6503inline bool Type::isObjCObjectOrInterfaceType() const {
6504 return isa<ObjCInterfaceType>(CanonicalType) ||
6505 isa<ObjCObjectType>(CanonicalType);
6506}
6507
6508inline bool Type::isAtomicType() const {
6509 return isa<AtomicType>(CanonicalType);
6510}
6511
6512inline bool Type::isObjCQualifiedIdType() const {
6513 if (const auto *OPT = getAs<ObjCObjectPointerType>())
6514 return OPT->isObjCQualifiedIdType();
6515 return false;
6516}
6517
6518inline bool Type::isObjCQualifiedClassType() const {
6519 if (const auto *OPT = getAs<ObjCObjectPointerType>())
6520 return OPT->isObjCQualifiedClassType();
6521 return false;
6522}
6523
6524inline bool Type::isObjCIdType() const {
6525 if (const auto *OPT = getAs<ObjCObjectPointerType>())
6526 return OPT->isObjCIdType();
6527 return false;
6528}
6529
6530inline bool Type::isObjCClassType() const {
6531 if (const auto *OPT = getAs<ObjCObjectPointerType>())
6532 return OPT->isObjCClassType();
6533 return false;
6534}
6535
6536inline bool Type::isObjCSelType() const {
6537 if (const auto *OPT = getAs<PointerType>())
6538 return OPT->getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCSel);
6539 return false;
6540}
6541
6542inline bool Type::isObjCBuiltinType() const {
6543 return isObjCIdType() || isObjCClassType() || isObjCSelType();
6544}
6545
6546inline bool Type::isDecltypeType() const {
6547 return isa<DecltypeType>(this);
6548}
6549
6550#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
6551 inline bool Type::is##Id##Type() const { \
6552 return isSpecificBuiltinType(BuiltinType::Id); \
6553 }
6554#include "clang/Basic/OpenCLImageTypes.def"
6555
6556inline bool Type::isSamplerT() const {
6557 return isSpecificBuiltinType(BuiltinType::OCLSampler);
6558}
6559
6560inline bool Type::isEventT() const {
6561 return isSpecificBuiltinType(BuiltinType::OCLEvent);
6562}
6563
6564inline bool Type::isClkEventT() const {
6565 return isSpecificBuiltinType(BuiltinType::OCLClkEvent);
6566}
6567
6568inline bool Type::isQueueT() const {
6569 return isSpecificBuiltinType(BuiltinType::OCLQueue);
6570}
6571
6572inline bool Type::isReserveIDT() const {
6573 return isSpecificBuiltinType(BuiltinType::OCLReserveID);
6574}
6575
6576inline bool Type::isImageType() const {
6577#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) is##Id##Type() ||
6578 return
6579#include "clang/Basic/OpenCLImageTypes.def"
6580 false; // end boolean or operation
6581}
6582
6583inline bool Type::isPipeType() const {
6584 return isa<PipeType>(CanonicalType);
6585}
6586
6587#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
6588 inline bool Type::is##Id##Type() const { \
6589 return isSpecificBuiltinType(BuiltinType::Id); \
6590 }
6591#include "clang/Basic/OpenCLExtensionTypes.def"
6592
6593inline bool Type::isOCLIntelSubgroupAVCType() const {
6594#define INTEL_SUBGROUP_AVC_TYPE(ExtType, Id) \
6595 isOCLIntelSubgroupAVC##Id##Type() ||
6596 return
6597#include "clang/Basic/OpenCLExtensionTypes.def"
6598 false; // end of boolean or operation
6599}
6600
6601inline bool Type::isOCLExtOpaqueType() const {
6602#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) is##Id##Type() ||
6603 return
6604#include "clang/Basic/OpenCLExtensionTypes.def"
6605 false; // end of boolean or operation
6606}
6607
6608inline bool Type::isOpenCLSpecificType() const {
6609 return isSamplerT() || isEventT() || isImageType() || isClkEventT() ||
6610 isQueueT() || isReserveIDT() || isPipeType() || isOCLExtOpaqueType();
6611}
6612
6613inline bool Type::isTemplateTypeParmType() const {
6614 return isa<TemplateTypeParmType>(CanonicalType);
6615}
6616
6617inline bool Type::isSpecificBuiltinType(unsigned K) const {
6618 if (const BuiltinType *BT = getAs<BuiltinType>())
6619 if (BT->getKind() == (BuiltinType::Kind) K)
6620 return true;
6621 return false;
6622}
6623
6624inline bool Type::isPlaceholderType() const {
6625 if (const auto *BT = dyn_cast<BuiltinType>(this))
6626 return BT->isPlaceholderType();
6627 return false;
6628}
6629
6630inline const BuiltinType *Type::getAsPlaceholderType() const {
6631 if (const auto *BT = dyn_cast<BuiltinType>(this))
6632 if (BT->isPlaceholderType())
6633 return BT;
6634 return nullptr;
6635}
6636
6637inline bool Type::isSpecificPlaceholderType(unsigned K) const {
6638 assert(BuiltinType::isPlaceholderTypeKind((BuiltinType::Kind) K))((BuiltinType::isPlaceholderTypeKind((BuiltinType::Kind) K)) ?
static_cast<void> (0) : __assert_fail ("BuiltinType::isPlaceholderTypeKind((BuiltinType::Kind) K)"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Type.h"
, 6638, __PRETTY_FUNCTION__))
;
6639 if (const auto *BT = dyn_cast<BuiltinType>(this))
6640 return (BT->getKind() == (BuiltinType::Kind) K);
6641 return false;
6642}
6643
6644inline bool Type::isNonOverloadPlaceholderType() const {
6645 if (const auto *BT = dyn_cast<BuiltinType>(this))
6646 return BT->isNonOverloadPlaceholderType();
6647 return false;
6648}
6649
6650inline bool Type::isVoidType() const {
6651 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
6652 return BT->getKind() == BuiltinType::Void;
6653 return false;
6654}
6655
6656inline bool Type::isHalfType() const {
6657 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
6658 return BT->getKind() == BuiltinType::Half;
6659 // FIXME: Should we allow complex __fp16? Probably not.
6660 return false;
6661}
6662
6663inline bool Type::isFloat16Type() const {
6664 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
6665 return BT->getKind() == BuiltinType::Float16;
6666 return false;
6667}
6668
6669inline bool Type::isFloat128Type() const {
6670 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
6671 return BT->getKind() == BuiltinType::Float128;
6672 return false;
6673}
6674
6675inline bool Type::isNullPtrType() const {
6676 if (const auto *BT = getAs<BuiltinType>())
6677 return BT->getKind() == BuiltinType::NullPtr;
6678 return false;
6679}
6680
6681bool IsEnumDeclComplete(EnumDecl *);
6682bool IsEnumDeclScoped(EnumDecl *);
6683
6684inline bool Type::isIntegerType() const {
6685 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
6686 return BT->getKind() >= BuiltinType::Bool &&
6687 BT->getKind() <= BuiltinType::Int128;
6688 if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
6689 // Incomplete enum types are not treated as integer types.
6690 // FIXME: In C++, enum types are never integer types.
6691 return IsEnumDeclComplete(ET->getDecl()) &&
6692 !IsEnumDeclScoped(ET->getDecl());
6693 }
6694 return false;
6695}
6696
6697inline bool Type::isFixedPointType() const {
6698 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) {
6699 return BT->getKind() >= BuiltinType::ShortAccum &&
6700 BT->getKind() <= BuiltinType::SatULongFract;
6701 }
6702 return false;
6703}
6704
6705inline bool Type::isFixedPointOrIntegerType() const {
6706 return isFixedPointType() || isIntegerType();
6707}
6708
6709inline bool Type::isSaturatedFixedPointType() const {
6710 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) {
6711 return BT->getKind() >= BuiltinType::SatShortAccum &&
6712 BT->getKind() <= BuiltinType::SatULongFract;
6713 }
6714 return false;
6715}
6716
6717inline bool Type::isUnsaturatedFixedPointType() const {
6718 return isFixedPointType() && !isSaturatedFixedPointType();
6719}
6720
6721inline bool Type::isSignedFixedPointType() const {
6722 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) {
6723 return ((BT->getKind() >= BuiltinType::ShortAccum &&
6724 BT->getKind() <= BuiltinType::LongAccum) ||
6725 (BT->getKind() >= BuiltinType::ShortFract &&
6726 BT->getKind() <= BuiltinType::LongFract) ||
6727 (BT->getKind() >= BuiltinType::SatShortAccum &&
6728 BT->getKind() <= BuiltinType::SatLongAccum) ||
6729 (BT->getKind() >= BuiltinType::SatShortFract &&
6730 BT->getKind() <= BuiltinType::SatLongFract));
6731 }
6732 return false;
6733}
6734
6735inline bool Type::isUnsignedFixedPointType() const {
6736 return isFixedPointType() && !isSignedFixedPointType();
6737}
6738
6739inline bool Type::isScalarType() const {
6740 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
6741 return BT->getKind() > BuiltinType::Void &&
6742 BT->getKind() <= BuiltinType::NullPtr;
6743 if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
6744 // Enums are scalar types, but only if they are defined. Incomplete enums
6745 // are not treated as scalar types.
6746 return IsEnumDeclComplete(ET->getDecl());
6747 return isa<PointerType>(CanonicalType) ||
6748 isa<BlockPointerType>(CanonicalType) ||
6749 isa<MemberPointerType>(CanonicalType) ||
6750 isa<ComplexType>(CanonicalType) ||
6751 isa<ObjCObjectPointerType>(CanonicalType);
6752}
6753
6754inline bool Type::isIntegralOrEnumerationType() const {
6755 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
6756 return BT->getKind() >= BuiltinType::Bool &&
6757 BT->getKind() <= BuiltinType::Int128;
6758
6759 // Check for a complete enum type; incomplete enum types are not properly an
6760 // enumeration type in the sense required here.
6761 if (const auto *ET = dyn_cast<EnumType>(CanonicalType))
6762 return IsEnumDeclComplete(ET->getDecl());
6763
6764 return false;
6765}
6766
6767inline bool Type::isBooleanType() const {
6768 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
6769 return BT->getKind() == BuiltinType::Bool;
6770 return false;
6771}
6772
6773inline bool Type::isUndeducedType() const {
6774 auto *DT = getContainedDeducedType();
6775 return DT && !DT->isDeduced();
6776}
6777
6778/// Determines whether this is a type for which one can define
6779/// an overloaded operator.
6780inline bool Type::isOverloadableType() const {
6781 return isDependentType() || isRecordType() || isEnumeralType();
6782}
6783
6784/// Determines whether this type can decay to a pointer type.
6785inline bool Type::canDecayToPointerType() const {
6786 return isFunctionType() || isArrayType();
6787}
6788
6789inline bool Type::hasPointerRepresentation() const {
6790 return (isPointerType() || isReferenceType() || isBlockPointerType() ||
6791 isObjCObjectPointerType() || isNullPtrType());
6792}
6793
6794inline bool Type::hasObjCPointerRepresentation() const {
6795 return isObjCObjectPointerType();
6796}
6797
6798inline const Type *Type::getBaseElementTypeUnsafe() const {
6799 const Type *type = this;
6800 while (const ArrayType *arrayType = type->getAsArrayTypeUnsafe())
6801 type = arrayType->getElementType().getTypePtr();
6802 return type;
6803}
6804
6805inline const Type *Type::getPointeeOrArrayElementType() const {
6806 const Type *type = this;
6807 if (type->isAnyPointerType())
6808 return type->getPointeeType().getTypePtr();
6809 else if (type->isArrayType())
6810 return type->getBaseElementTypeUnsafe();
6811 return type;
6812}
6813
6814/// Insertion operator for diagnostics. This allows sending Qualifiers into a
6815/// diagnostic with <<.
6816inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
6817 Qualifiers Q) {
6818 DB.AddTaggedVal(Q.getAsOpaqueValue(),
6819 DiagnosticsEngine::ArgumentKind::ak_qual);
6820 return DB;
6821}
6822
6823/// Insertion operator for partial diagnostics. This allows sending Qualifiers
6824/// into a diagnostic with <<.
6825inline const PartialDiagnostic &operator<<(const PartialDiagnostic &PD,
6826 Qualifiers Q) {
6827 PD.AddTaggedVal(Q.getAsOpaqueValue(),
6828 DiagnosticsEngine::ArgumentKind::ak_qual);
6829 return PD;
6830}
6831
6832/// Insertion operator for diagnostics. This allows sending QualType's into a
6833/// diagnostic with <<.
6834inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
6835 QualType T) {
6836 DB.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
6837 DiagnosticsEngine::ak_qualtype);
6838 return DB;
6839}
6840
6841/// Insertion operator for partial diagnostics. This allows sending QualType's
6842/// into a diagnostic with <<.
6843inline const PartialDiagnostic &operator<<(const PartialDiagnostic &PD,
6844 QualType T) {
6845 PD.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
6846 DiagnosticsEngine::ak_qualtype);
6847 return PD;
6848}
6849
6850// Helper class template that is used by Type::getAs to ensure that one does
6851// not try to look through a qualified type to get to an array type.
6852template <typename T>
6853using TypeIsArrayType =
6854 std::integral_constant<bool, std::is_same<T, ArrayType>::value ||
6855 std::is_base_of<ArrayType, T>::value>;
6856
6857// Member-template getAs<specific type>'.
6858template <typename T> const T *Type::getAs() const {
6859 static_assert(!TypeIsArrayType<T>::value,
6860 "ArrayType cannot be used with getAs!");
6861
6862 // If this is directly a T type, return it.
6863 if (const auto *Ty = dyn_cast<T>(this))
6864 return Ty;
6865
6866 // If the canonical form of this type isn't the right kind, reject it.
6867 if (!isa<T>(CanonicalType))
6868 return nullptr;
6869
6870 // If this is a typedef for the type, strip the typedef off without
6871 // losing all typedef information.
6872 return cast<T>(getUnqualifiedDesugaredType());
6873}
6874
6875template <typename T> const T *Type::getAsAdjusted() const {
6876 static_assert(!TypeIsArrayType<T>::value, "ArrayType cannot be used with getAsAdjusted!");
6877
6878 // If this is directly a T type, return it.
6879 if (const auto *Ty = dyn_cast<T>(this))
6880 return Ty;
6881
6882 // If the canonical form of this type isn't the right kind, reject it.
6883 if (!isa<T>(CanonicalType))
6884 return nullptr;
6885
6886 // Strip off type adjustments that do not modify the underlying nature of the
6887 // type.
6888 const Type *Ty = this;
6889 while (Ty) {
6890 if (const auto *A = dyn_cast<AttributedType>(Ty))
6891 Ty = A->getModifiedType().getTypePtr();
6892 else if (const auto *E = dyn_cast<ElaboratedType>(Ty))
6893 Ty = E->desugar().getTypePtr();
6894 else if (const auto *P = dyn_cast<ParenType>(Ty))
6895 Ty = P->desugar().getTypePtr();
6896 else if (const auto *A = dyn_cast<AdjustedType>(Ty))
6897 Ty = A->desugar().getTypePtr();
6898 else if (const auto *M = dyn_cast<MacroQualifiedType>(Ty))
6899 Ty = M->desugar().getTypePtr();
6900 else
6901 break;
6902 }
6903
6904 // Just because the canonical type is correct does not mean we can use cast<>,
6905 // since we may not have stripped off all the sugar down to the base type.
6906 return dyn_cast<T>(Ty);
6907}
6908
6909inline const ArrayType *Type::getAsArrayTypeUnsafe() const {
6910 // If this is directly an array type, return it.
6911 if (const auto *arr = dyn_cast<ArrayType>(this))
6912 return arr;
6913
6914 // If the canonical form of this type isn't the right kind, reject it.
6915 if (!isa<ArrayType>(CanonicalType))
6916 return nullptr;
6917
6918 // If this is a typedef for the type, strip the typedef off without
6919 // losing all typedef information.
6920 return cast<ArrayType>(getUnqualifiedDesugaredType());
6921}
6922
6923template <typename T> const T *Type::castAs() const {
6924 static_assert(!TypeIsArrayType<T>::value,
6925 "ArrayType cannot be used with castAs!");
6926
6927 if (const auto *ty = dyn_cast<T>(this)) return ty;
6928 assert(isa<T>(CanonicalType))((isa<T>(CanonicalType)) ? static_cast<void> (0) :
__assert_fail ("isa<T>(CanonicalType)", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Type.h"
, 6928, __PRETTY_FUNCTION__))
;
6929 return cast<T>(getUnqualifiedDesugaredType());
6930}
6931
6932inline const ArrayType *Type::castAsArrayTypeUnsafe() const {
6933 assert(isa<ArrayType>(CanonicalType))((isa<ArrayType>(CanonicalType)) ? static_cast<void>
(0) : __assert_fail ("isa<ArrayType>(CanonicalType)", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Type.h"
, 6933, __PRETTY_FUNCTION__))
;
6934 if (const auto *arr = dyn_cast<ArrayType>(this)) return arr;
6935 return cast<ArrayType>(getUnqualifiedDesugaredType());
6936}
6937
6938DecayedType::DecayedType(QualType OriginalType, QualType DecayedPtr,
6939 QualType CanonicalPtr)
6940 : AdjustedType(Decayed, OriginalType, DecayedPtr, CanonicalPtr) {
6941#ifndef NDEBUG
6942 QualType Adjusted = getAdjustedType();
6943 (void)AttributedType::stripOuterNullability(Adjusted);
6944 assert(isa<PointerType>(Adjusted))((isa<PointerType>(Adjusted)) ? static_cast<void>
(0) : __assert_fail ("isa<PointerType>(Adjusted)", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Type.h"
, 6944, __PRETTY_FUNCTION__))
;
6945#endif
6946}
6947
6948QualType DecayedType::getPointeeType() const {
6949 QualType Decayed = getDecayedType();
6950 (void)AttributedType::stripOuterNullability(Decayed);
6951 return cast<PointerType>(Decayed)->getPointeeType();
6952}
6953
6954// Get the decimal string representation of a fixed point type, represented
6955// as a scaled integer.
6956// TODO: At some point, we should change the arguments to instead just accept an
6957// APFixedPoint instead of APSInt and scale.
6958void FixedPointValueToString(SmallVectorImpl<char> &Str, llvm::APSInt Val,
6959 unsigned Scale);
6960
6961} // namespace clang
6962
6963#endif // LLVM_CLANG_AST_TYPE_H