Bug Summary

File:build/llvm-toolchain-snapshot-16~++20220904122748+c444af1c20b3/clang/lib/Sema/SemaExprCXX.cpp
Warning:line 2000, column 47
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name SemaExprCXX.cpp -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -relaxed-aliasing -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-16~++20220904122748+c444af1c20b3/build-llvm -resource-dir /usr/lib/llvm-16/lib/clang/16.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-16~++20220904122748+c444af1c20b3/clang/lib/Sema -I /build/llvm-toolchain-snapshot-16~++20220904122748+c444af1c20b3/clang/include -I tools/clang/include -I include -I /build/llvm-toolchain-snapshot-16~++20220904122748+c444af1c20b3/llvm/include -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-16/lib/clang/16.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/llvm-toolchain-snapshot-16~++20220904122748+c444af1c20b3/build-llvm=build-llvm -fmacro-prefix-map=/build/llvm-toolchain-snapshot-16~++20220904122748+c444af1c20b3/= -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-16~++20220904122748+c444af1c20b3/build-llvm=build-llvm -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-16~++20220904122748+c444af1c20b3/= -O3 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -Wno-misleading-indentation -std=c++17 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-16~++20220904122748+c444af1c20b3/build-llvm -fdebug-prefix-map=/build/llvm-toolchain-snapshot-16~++20220904122748+c444af1c20b3/build-llvm=build-llvm -fdebug-prefix-map=/build/llvm-toolchain-snapshot-16~++20220904122748+c444af1c20b3/= -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2022-09-04-125545-48738-1 -x c++ /build/llvm-toolchain-snapshot-16~++20220904122748+c444af1c20b3/clang/lib/Sema/SemaExprCXX.cpp
1//===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// Implements semantic analysis for C++ expressions.
11///
12//===----------------------------------------------------------------------===//
13
14#include "TreeTransform.h"
15#include "TypeLocBuilder.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/ASTLambda.h"
18#include "clang/AST/CXXInheritance.h"
19#include "clang/AST/CharUnits.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/ExprObjC.h"
23#include "clang/AST/RecursiveASTVisitor.h"
24#include "clang/AST/TypeLoc.h"
25#include "clang/Basic/AlignedAllocation.h"
26#include "clang/Basic/DiagnosticSema.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Basic/TargetInfo.h"
29#include "clang/Basic/TypeTraits.h"
30#include "clang/Lex/Preprocessor.h"
31#include "clang/Sema/DeclSpec.h"
32#include "clang/Sema/Initialization.h"
33#include "clang/Sema/Lookup.h"
34#include "clang/Sema/ParsedTemplate.h"
35#include "clang/Sema/Scope.h"
36#include "clang/Sema/ScopeInfo.h"
37#include "clang/Sema/SemaInternal.h"
38#include "clang/Sema/SemaLambda.h"
39#include "clang/Sema/Template.h"
40#include "clang/Sema/TemplateDeduction.h"
41#include "llvm/ADT/APInt.h"
42#include "llvm/ADT/STLExtras.h"
43#include "llvm/Support/ErrorHandling.h"
44#include "llvm/Support/TypeSize.h"
45using namespace clang;
46using namespace sema;
47
48/// Handle the result of the special case name lookup for inheriting
49/// constructor declarations. 'NS::X::X' and 'NS::X<...>::X' are treated as
50/// constructor names in member using declarations, even if 'X' is not the
51/// name of the corresponding type.
52ParsedType Sema::getInheritingConstructorName(CXXScopeSpec &SS,
53 SourceLocation NameLoc,
54 IdentifierInfo &Name) {
55 NestedNameSpecifier *NNS = SS.getScopeRep();
56
57 // Convert the nested-name-specifier into a type.
58 QualType Type;
59 switch (NNS->getKind()) {
60 case NestedNameSpecifier::TypeSpec:
61 case NestedNameSpecifier::TypeSpecWithTemplate:
62 Type = QualType(NNS->getAsType(), 0);
63 break;
64
65 case NestedNameSpecifier::Identifier:
66 // Strip off the last layer of the nested-name-specifier and build a
67 // typename type for it.
68 assert(NNS->getAsIdentifier() == &Name && "not a constructor name")(static_cast <bool> (NNS->getAsIdentifier() == &
Name && "not a constructor name") ? void (0) : __assert_fail
("NNS->getAsIdentifier() == &Name && \"not a constructor name\""
, "clang/lib/Sema/SemaExprCXX.cpp", 68, __extension__ __PRETTY_FUNCTION__
))
;
69 Type = Context.getDependentNameType(ETK_None, NNS->getPrefix(),
70 NNS->getAsIdentifier());
71 break;
72
73 case NestedNameSpecifier::Global:
74 case NestedNameSpecifier::Super:
75 case NestedNameSpecifier::Namespace:
76 case NestedNameSpecifier::NamespaceAlias:
77 llvm_unreachable("Nested name specifier is not a type for inheriting ctor")::llvm::llvm_unreachable_internal("Nested name specifier is not a type for inheriting ctor"
, "clang/lib/Sema/SemaExprCXX.cpp", 77)
;
78 }
79
80 // This reference to the type is located entirely at the location of the
81 // final identifier in the qualified-id.
82 return CreateParsedType(Type,
83 Context.getTrivialTypeSourceInfo(Type, NameLoc));
84}
85
86ParsedType Sema::getConstructorName(IdentifierInfo &II,
87 SourceLocation NameLoc,
88 Scope *S, CXXScopeSpec &SS,
89 bool EnteringContext) {
90 CXXRecordDecl *CurClass = getCurrentClass(S, &SS);
91 assert(CurClass && &II == CurClass->getIdentifier() &&(static_cast <bool> (CurClass && &II == CurClass
->getIdentifier() && "not a constructor name") ? void
(0) : __assert_fail ("CurClass && &II == CurClass->getIdentifier() && \"not a constructor name\""
, "clang/lib/Sema/SemaExprCXX.cpp", 92, __extension__ __PRETTY_FUNCTION__
))
92 "not a constructor name")(static_cast <bool> (CurClass && &II == CurClass
->getIdentifier() && "not a constructor name") ? void
(0) : __assert_fail ("CurClass && &II == CurClass->getIdentifier() && \"not a constructor name\""
, "clang/lib/Sema/SemaExprCXX.cpp", 92, __extension__ __PRETTY_FUNCTION__
))
;
93
94 // When naming a constructor as a member of a dependent context (eg, in a
95 // friend declaration or an inherited constructor declaration), form an
96 // unresolved "typename" type.
97 if (CurClass->isDependentContext() && !EnteringContext && SS.getScopeRep()) {
98 QualType T = Context.getDependentNameType(ETK_None, SS.getScopeRep(), &II);
99 return ParsedType::make(T);
100 }
101
102 if (SS.isNotEmpty() && RequireCompleteDeclContext(SS, CurClass))
103 return ParsedType();
104
105 // Find the injected-class-name declaration. Note that we make no attempt to
106 // diagnose cases where the injected-class-name is shadowed: the only
107 // declaration that can validly shadow the injected-class-name is a
108 // non-static data member, and if the class contains both a non-static data
109 // member and a constructor then it is ill-formed (we check that in
110 // CheckCompletedCXXClass).
111 CXXRecordDecl *InjectedClassName = nullptr;
112 for (NamedDecl *ND : CurClass->lookup(&II)) {
113 auto *RD = dyn_cast<CXXRecordDecl>(ND);
114 if (RD && RD->isInjectedClassName()) {
115 InjectedClassName = RD;
116 break;
117 }
118 }
119 if (!InjectedClassName) {
120 if (!CurClass->isInvalidDecl()) {
121 // FIXME: RequireCompleteDeclContext doesn't check dependent contexts
122 // properly. Work around it here for now.
123 Diag(SS.getLastQualifierNameLoc(),
124 diag::err_incomplete_nested_name_spec) << CurClass << SS.getRange();
125 }
126 return ParsedType();
127 }
128
129 QualType T = Context.getTypeDeclType(InjectedClassName);
130 DiagnoseUseOfDecl(InjectedClassName, NameLoc);
131 MarkAnyDeclReferenced(NameLoc, InjectedClassName, /*OdrUse=*/false);
132
133 return ParsedType::make(T);
134}
135
136ParsedType Sema::getDestructorName(SourceLocation TildeLoc,
137 IdentifierInfo &II,
138 SourceLocation NameLoc,
139 Scope *S, CXXScopeSpec &SS,
140 ParsedType ObjectTypePtr,
141 bool EnteringContext) {
142 // Determine where to perform name lookup.
143
144 // FIXME: This area of the standard is very messy, and the current
145 // wording is rather unclear about which scopes we search for the
146 // destructor name; see core issues 399 and 555. Issue 399 in
147 // particular shows where the current description of destructor name
148 // lookup is completely out of line with existing practice, e.g.,
149 // this appears to be ill-formed:
150 //
151 // namespace N {
152 // template <typename T> struct S {
153 // ~S();
154 // };
155 // }
156 //
157 // void f(N::S<int>* s) {
158 // s->N::S<int>::~S();
159 // }
160 //
161 // See also PR6358 and PR6359.
162 //
163 // For now, we accept all the cases in which the name given could plausibly
164 // be interpreted as a correct destructor name, issuing off-by-default
165 // extension diagnostics on the cases that don't strictly conform to the
166 // C++20 rules. This basically means we always consider looking in the
167 // nested-name-specifier prefix, the complete nested-name-specifier, and
168 // the scope, and accept if we find the expected type in any of the three
169 // places.
170
171 if (SS.isInvalid())
172 return nullptr;
173
174 // Whether we've failed with a diagnostic already.
175 bool Failed = false;
176
177 llvm::SmallVector<NamedDecl*, 8> FoundDecls;
178 llvm::SmallPtrSet<CanonicalDeclPtr<Decl>, 8> FoundDeclSet;
179
180 // If we have an object type, it's because we are in a
181 // pseudo-destructor-expression or a member access expression, and
182 // we know what type we're looking for.
183 QualType SearchType =
184 ObjectTypePtr ? GetTypeFromParser(ObjectTypePtr) : QualType();
185
186 auto CheckLookupResult = [&](LookupResult &Found) -> ParsedType {
187 auto IsAcceptableResult = [&](NamedDecl *D) -> bool {
188 auto *Type = dyn_cast<TypeDecl>(D->getUnderlyingDecl());
189 if (!Type)
190 return false;
191
192 if (SearchType.isNull() || SearchType->isDependentType())
193 return true;
194
195 QualType T = Context.getTypeDeclType(Type);
196 return Context.hasSameUnqualifiedType(T, SearchType);
197 };
198
199 unsigned NumAcceptableResults = 0;
200 for (NamedDecl *D : Found) {
201 if (IsAcceptableResult(D))
202 ++NumAcceptableResults;
203
204 // Don't list a class twice in the lookup failure diagnostic if it's
205 // found by both its injected-class-name and by the name in the enclosing
206 // scope.
207 if (auto *RD = dyn_cast<CXXRecordDecl>(D))
208 if (RD->isInjectedClassName())
209 D = cast<NamedDecl>(RD->getParent());
210
211 if (FoundDeclSet.insert(D).second)
212 FoundDecls.push_back(D);
213 }
214
215 // As an extension, attempt to "fix" an ambiguity by erasing all non-type
216 // results, and all non-matching results if we have a search type. It's not
217 // clear what the right behavior is if destructor lookup hits an ambiguity,
218 // but other compilers do generally accept at least some kinds of
219 // ambiguity.
220 if (Found.isAmbiguous() && NumAcceptableResults == 1) {
221 Diag(NameLoc, diag::ext_dtor_name_ambiguous);
222 LookupResult::Filter F = Found.makeFilter();
223 while (F.hasNext()) {
224 NamedDecl *D = F.next();
225 if (auto *TD = dyn_cast<TypeDecl>(D->getUnderlyingDecl()))
226 Diag(D->getLocation(), diag::note_destructor_type_here)
227 << Context.getTypeDeclType(TD);
228 else
229 Diag(D->getLocation(), diag::note_destructor_nontype_here);
230
231 if (!IsAcceptableResult(D))
232 F.erase();
233 }
234 F.done();
235 }
236
237 if (Found.isAmbiguous())
238 Failed = true;
239
240 if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
241 if (IsAcceptableResult(Type)) {
242 QualType T = Context.getTypeDeclType(Type);
243 MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
244 return CreateParsedType(Context.getElaboratedType(ETK_None, nullptr, T),
245 Context.getTrivialTypeSourceInfo(T, NameLoc));
246 }
247 }
248
249 return nullptr;
250 };
251
252 bool IsDependent = false;
253
254 auto LookupInObjectType = [&]() -> ParsedType {
255 if (Failed || SearchType.isNull())
256 return nullptr;
257
258 IsDependent |= SearchType->isDependentType();
259
260 LookupResult Found(*this, &II, NameLoc, LookupDestructorName);
261 DeclContext *LookupCtx = computeDeclContext(SearchType);
262 if (!LookupCtx)
263 return nullptr;
264 LookupQualifiedName(Found, LookupCtx);
265 return CheckLookupResult(Found);
266 };
267
268 auto LookupInNestedNameSpec = [&](CXXScopeSpec &LookupSS) -> ParsedType {
269 if (Failed)
270 return nullptr;
271
272 IsDependent |= isDependentScopeSpecifier(LookupSS);
273 DeclContext *LookupCtx = computeDeclContext(LookupSS, EnteringContext);
274 if (!LookupCtx)
275 return nullptr;
276
277 LookupResult Found(*this, &II, NameLoc, LookupDestructorName);
278 if (RequireCompleteDeclContext(LookupSS, LookupCtx)) {
279 Failed = true;
280 return nullptr;
281 }
282 LookupQualifiedName(Found, LookupCtx);
283 return CheckLookupResult(Found);
284 };
285
286 auto LookupInScope = [&]() -> ParsedType {
287 if (Failed || !S)
288 return nullptr;
289
290 LookupResult Found(*this, &II, NameLoc, LookupDestructorName);
291 LookupName(Found, S);
292 return CheckLookupResult(Found);
293 };
294
295 // C++2a [basic.lookup.qual]p6:
296 // In a qualified-id of the form
297 //
298 // nested-name-specifier[opt] type-name :: ~ type-name
299 //
300 // the second type-name is looked up in the same scope as the first.
301 //
302 // We interpret this as meaning that if you do a dual-scope lookup for the
303 // first name, you also do a dual-scope lookup for the second name, per
304 // C++ [basic.lookup.classref]p4:
305 //
306 // If the id-expression in a class member access is a qualified-id of the
307 // form
308 //
309 // class-name-or-namespace-name :: ...
310 //
311 // the class-name-or-namespace-name following the . or -> is first looked
312 // up in the class of the object expression and the name, if found, is used.
313 // Otherwise, it is looked up in the context of the entire
314 // postfix-expression.
315 //
316 // This looks in the same scopes as for an unqualified destructor name:
317 //
318 // C++ [basic.lookup.classref]p3:
319 // If the unqualified-id is ~ type-name, the type-name is looked up
320 // in the context of the entire postfix-expression. If the type T
321 // of the object expression is of a class type C, the type-name is
322 // also looked up in the scope of class C. At least one of the
323 // lookups shall find a name that refers to cv T.
324 //
325 // FIXME: The intent is unclear here. Should type-name::~type-name look in
326 // the scope anyway if it finds a non-matching name declared in the class?
327 // If both lookups succeed and find a dependent result, which result should
328 // we retain? (Same question for p->~type-name().)
329
330 if (NestedNameSpecifier *Prefix =
331 SS.isSet() ? SS.getScopeRep()->getPrefix() : nullptr) {
332 // This is
333 //
334 // nested-name-specifier type-name :: ~ type-name
335 //
336 // Look for the second type-name in the nested-name-specifier.
337 CXXScopeSpec PrefixSS;
338 PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data()));
339 if (ParsedType T = LookupInNestedNameSpec(PrefixSS))
340 return T;
341 } else {
342 // This is one of
343 //
344 // type-name :: ~ type-name
345 // ~ type-name
346 //
347 // Look in the scope and (if any) the object type.
348 if (ParsedType T = LookupInScope())
349 return T;
350 if (ParsedType T = LookupInObjectType())
351 return T;
352 }
353
354 if (Failed)
355 return nullptr;
356
357 if (IsDependent) {
358 // We didn't find our type, but that's OK: it's dependent anyway.
359
360 // FIXME: What if we have no nested-name-specifier?
361 QualType T = CheckTypenameType(ETK_None, SourceLocation(),
362 SS.getWithLocInContext(Context),
363 II, NameLoc);
364 return ParsedType::make(T);
365 }
366
367 // The remaining cases are all non-standard extensions imitating the behavior
368 // of various other compilers.
369 unsigned NumNonExtensionDecls = FoundDecls.size();
370
371 if (SS.isSet()) {
372 // For compatibility with older broken C++ rules and existing code,
373 //
374 // nested-name-specifier :: ~ type-name
375 //
376 // also looks for type-name within the nested-name-specifier.
377 if (ParsedType T = LookupInNestedNameSpec(SS)) {
378 Diag(SS.getEndLoc(), diag::ext_dtor_named_in_wrong_scope)
379 << SS.getRange()
380 << FixItHint::CreateInsertion(SS.getEndLoc(),
381 ("::" + II.getName()).str());
382 return T;
383 }
384
385 // For compatibility with other compilers and older versions of Clang,
386 //
387 // nested-name-specifier type-name :: ~ type-name
388 //
389 // also looks for type-name in the scope. Unfortunately, we can't
390 // reasonably apply this fallback for dependent nested-name-specifiers.
391 if (SS.getScopeRep()->getPrefix()) {
392 if (ParsedType T = LookupInScope()) {
393 Diag(SS.getEndLoc(), diag::ext_qualified_dtor_named_in_lexical_scope)
394 << FixItHint::CreateRemoval(SS.getRange());
395 Diag(FoundDecls.back()->getLocation(), diag::note_destructor_type_here)
396 << GetTypeFromParser(T);
397 return T;
398 }
399 }
400 }
401
402 // We didn't find anything matching; tell the user what we did find (if
403 // anything).
404
405 // Don't tell the user about declarations we shouldn't have found.
406 FoundDecls.resize(NumNonExtensionDecls);
407
408 // List types before non-types.
409 std::stable_sort(FoundDecls.begin(), FoundDecls.end(),
410 [](NamedDecl *A, NamedDecl *B) {
411 return isa<TypeDecl>(A->getUnderlyingDecl()) >
412 isa<TypeDecl>(B->getUnderlyingDecl());
413 });
414
415 // Suggest a fixit to properly name the destroyed type.
416 auto MakeFixItHint = [&]{
417 const CXXRecordDecl *Destroyed = nullptr;
418 // FIXME: If we have a scope specifier, suggest its last component?
419 if (!SearchType.isNull())
420 Destroyed = SearchType->getAsCXXRecordDecl();
421 else if (S)
422 Destroyed = dyn_cast_or_null<CXXRecordDecl>(S->getEntity());
423 if (Destroyed)
424 return FixItHint::CreateReplacement(SourceRange(NameLoc),
425 Destroyed->getNameAsString());
426 return FixItHint();
427 };
428
429 if (FoundDecls.empty()) {
430 // FIXME: Attempt typo-correction?
431 Diag(NameLoc, diag::err_undeclared_destructor_name)
432 << &II << MakeFixItHint();
433 } else if (!SearchType.isNull() && FoundDecls.size() == 1) {
434 if (auto *TD = dyn_cast<TypeDecl>(FoundDecls[0]->getUnderlyingDecl())) {
435 assert(!SearchType.isNull() &&(static_cast <bool> (!SearchType.isNull() && "should only reject a type result if we have a search type"
) ? void (0) : __assert_fail ("!SearchType.isNull() && \"should only reject a type result if we have a search type\""
, "clang/lib/Sema/SemaExprCXX.cpp", 436, __extension__ __PRETTY_FUNCTION__
))
436 "should only reject a type result if we have a search type")(static_cast <bool> (!SearchType.isNull() && "should only reject a type result if we have a search type"
) ? void (0) : __assert_fail ("!SearchType.isNull() && \"should only reject a type result if we have a search type\""
, "clang/lib/Sema/SemaExprCXX.cpp", 436, __extension__ __PRETTY_FUNCTION__
))
;
437 QualType T = Context.getTypeDeclType(TD);
438 Diag(NameLoc, diag::err_destructor_expr_type_mismatch)
439 << T << SearchType << MakeFixItHint();
440 } else {
441 Diag(NameLoc, diag::err_destructor_expr_nontype)
442 << &II << MakeFixItHint();
443 }
444 } else {
445 Diag(NameLoc, SearchType.isNull() ? diag::err_destructor_name_nontype
446 : diag::err_destructor_expr_mismatch)
447 << &II << SearchType << MakeFixItHint();
448 }
449
450 for (NamedDecl *FoundD : FoundDecls) {
451 if (auto *TD = dyn_cast<TypeDecl>(FoundD->getUnderlyingDecl()))
452 Diag(FoundD->getLocation(), diag::note_destructor_type_here)
453 << Context.getTypeDeclType(TD);
454 else
455 Diag(FoundD->getLocation(), diag::note_destructor_nontype_here)
456 << FoundD;
457 }
458
459 return nullptr;
460}
461
462ParsedType Sema::getDestructorTypeForDecltype(const DeclSpec &DS,
463 ParsedType ObjectType) {
464 if (DS.getTypeSpecType() == DeclSpec::TST_error)
465 return nullptr;
466
467 if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto) {
468 Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid);
469 return nullptr;
470 }
471
472 assert(DS.getTypeSpecType() == DeclSpec::TST_decltype &&(static_cast <bool> (DS.getTypeSpecType() == DeclSpec::
TST_decltype && "unexpected type in getDestructorType"
) ? void (0) : __assert_fail ("DS.getTypeSpecType() == DeclSpec::TST_decltype && \"unexpected type in getDestructorType\""
, "clang/lib/Sema/SemaExprCXX.cpp", 473, __extension__ __PRETTY_FUNCTION__
))
473 "unexpected type in getDestructorType")(static_cast <bool> (DS.getTypeSpecType() == DeclSpec::
TST_decltype && "unexpected type in getDestructorType"
) ? void (0) : __assert_fail ("DS.getTypeSpecType() == DeclSpec::TST_decltype && \"unexpected type in getDestructorType\""
, "clang/lib/Sema/SemaExprCXX.cpp", 473, __extension__ __PRETTY_FUNCTION__
))
;
474 QualType T = BuildDecltypeType(DS.getRepAsExpr());
475
476 // If we know the type of the object, check that the correct destructor
477 // type was named now; we can give better diagnostics this way.
478 QualType SearchType = GetTypeFromParser(ObjectType);
479 if (!SearchType.isNull() && !SearchType->isDependentType() &&
480 !Context.hasSameUnqualifiedType(T, SearchType)) {
481 Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch)
482 << T << SearchType;
483 return nullptr;
484 }
485
486 return ParsedType::make(T);
487}
488
489bool Sema::checkLiteralOperatorId(const CXXScopeSpec &SS,
490 const UnqualifiedId &Name, bool IsUDSuffix) {
491 assert(Name.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId)(static_cast <bool> (Name.getKind() == UnqualifiedIdKind
::IK_LiteralOperatorId) ? void (0) : __assert_fail ("Name.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId"
, "clang/lib/Sema/SemaExprCXX.cpp", 491, __extension__ __PRETTY_FUNCTION__
))
;
492 if (!IsUDSuffix) {
493 // [over.literal] p8
494 //
495 // double operator""_Bq(long double); // OK: not a reserved identifier
496 // double operator"" _Bq(long double); // ill-formed, no diagnostic required
497 IdentifierInfo *II = Name.Identifier;
498 ReservedIdentifierStatus Status = II->isReserved(PP.getLangOpts());
499 SourceLocation Loc = Name.getEndLoc();
500 if (isReservedInAllContexts(Status) &&
501 !PP.getSourceManager().isInSystemHeader(Loc)) {
502 Diag(Loc, diag::warn_reserved_extern_symbol)
503 << II << static_cast<int>(Status)
504 << FixItHint::CreateReplacement(
505 Name.getSourceRange(),
506 (StringRef("operator\"\"") + II->getName()).str());
507 }
508 }
509
510 if (!SS.isValid())
511 return false;
512
513 switch (SS.getScopeRep()->getKind()) {
514 case NestedNameSpecifier::Identifier:
515 case NestedNameSpecifier::TypeSpec:
516 case NestedNameSpecifier::TypeSpecWithTemplate:
517 // Per C++11 [over.literal]p2, literal operators can only be declared at
518 // namespace scope. Therefore, this unqualified-id cannot name anything.
519 // Reject it early, because we have no AST representation for this in the
520 // case where the scope is dependent.
521 Diag(Name.getBeginLoc(), diag::err_literal_operator_id_outside_namespace)
522 << SS.getScopeRep();
523 return true;
524
525 case NestedNameSpecifier::Global:
526 case NestedNameSpecifier::Super:
527 case NestedNameSpecifier::Namespace:
528 case NestedNameSpecifier::NamespaceAlias:
529 return false;
530 }
531
532 llvm_unreachable("unknown nested name specifier kind")::llvm::llvm_unreachable_internal("unknown nested name specifier kind"
, "clang/lib/Sema/SemaExprCXX.cpp", 532)
;
533}
534
535/// Build a C++ typeid expression with a type operand.
536ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
537 SourceLocation TypeidLoc,
538 TypeSourceInfo *Operand,
539 SourceLocation RParenLoc) {
540 // C++ [expr.typeid]p4:
541 // The top-level cv-qualifiers of the lvalue expression or the type-id
542 // that is the operand of typeid are always ignored.
543 // If the type of the type-id is a class type or a reference to a class
544 // type, the class shall be completely-defined.
545 Qualifiers Quals;
546 QualType T
547 = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
548 Quals);
549 if (T->getAs<RecordType>() &&
550 RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
551 return ExprError();
552
553 if (T->isVariablyModifiedType())
554 return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid) << T);
555
556 if (CheckQualifiedFunctionForTypeId(T, TypeidLoc))
557 return ExprError();
558
559 return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), Operand,
560 SourceRange(TypeidLoc, RParenLoc));
561}
562
563/// Build a C++ typeid expression with an expression operand.
564ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
565 SourceLocation TypeidLoc,
566 Expr *E,
567 SourceLocation RParenLoc) {
568 bool WasEvaluated = false;
569 if (E && !E->isTypeDependent()) {
570 if (E->hasPlaceholderType()) {
571 ExprResult result = CheckPlaceholderExpr(E);
572 if (result.isInvalid()) return ExprError();
573 E = result.get();
574 }
575
576 QualType T = E->getType();
577 if (const RecordType *RecordT = T->getAs<RecordType>()) {
578 CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
579 // C++ [expr.typeid]p3:
580 // [...] If the type of the expression is a class type, the class
581 // shall be completely-defined.
582 if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
583 return ExprError();
584
585 // C++ [expr.typeid]p3:
586 // When typeid is applied to an expression other than an glvalue of a
587 // polymorphic class type [...] [the] expression is an unevaluated
588 // operand. [...]
589 if (RecordD->isPolymorphic() && E->isGLValue()) {
590 if (isUnevaluatedContext()) {
591 // The operand was processed in unevaluated context, switch the
592 // context and recheck the subexpression.
593 ExprResult Result = TransformToPotentiallyEvaluated(E);
594 if (Result.isInvalid())
595 return ExprError();
596 E = Result.get();
597 }
598
599 // We require a vtable to query the type at run time.
600 MarkVTableUsed(TypeidLoc, RecordD);
601 WasEvaluated = true;
602 }
603 }
604
605 ExprResult Result = CheckUnevaluatedOperand(E);
606 if (Result.isInvalid())
607 return ExprError();
608 E = Result.get();
609
610 // C++ [expr.typeid]p4:
611 // [...] If the type of the type-id is a reference to a possibly
612 // cv-qualified type, the result of the typeid expression refers to a
613 // std::type_info object representing the cv-unqualified referenced
614 // type.
615 Qualifiers Quals;
616 QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
617 if (!Context.hasSameType(T, UnqualT)) {
618 T = UnqualT;
619 E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).get();
620 }
621 }
622
623 if (E->getType()->isVariablyModifiedType())
624 return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid)
625 << E->getType());
626 else if (!inTemplateInstantiation() &&
627 E->HasSideEffects(Context, WasEvaluated)) {
628 // The expression operand for typeid is in an unevaluated expression
629 // context, so side effects could result in unintended consequences.
630 Diag(E->getExprLoc(), WasEvaluated
631 ? diag::warn_side_effects_typeid
632 : diag::warn_side_effects_unevaluated_context);
633 }
634
635 return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), E,
636 SourceRange(TypeidLoc, RParenLoc));
637}
638
639/// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
640ExprResult
641Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
642 bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
643 // typeid is not supported in OpenCL.
644 if (getLangOpts().OpenCLCPlusPlus) {
645 return ExprError(Diag(OpLoc, diag::err_openclcxx_not_supported)
646 << "typeid");
647 }
648
649 // Find the std::type_info type.
650 if (!getStdNamespace())
651 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
652
653 if (!CXXTypeInfoDecl) {
654 IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
655 LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
656 LookupQualifiedName(R, getStdNamespace());
657 CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
658 // Microsoft's typeinfo doesn't have type_info in std but in the global
659 // namespace if _HAS_EXCEPTIONS is defined to 0. See PR13153.
660 if (!CXXTypeInfoDecl && LangOpts.MSVCCompat) {
661 LookupQualifiedName(R, Context.getTranslationUnitDecl());
662 CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
663 }
664 if (!CXXTypeInfoDecl)
665 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
666 }
667
668 if (!getLangOpts().RTTI) {
669 return ExprError(Diag(OpLoc, diag::err_no_typeid_with_fno_rtti));
670 }
671
672 QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
673
674 if (isType) {
675 // The operand is a type; handle it as such.
676 TypeSourceInfo *TInfo = nullptr;
677 QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
678 &TInfo);
679 if (T.isNull())
680 return ExprError();
681
682 if (!TInfo)
683 TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
684
685 return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
686 }
687
688 // The operand is an expression.
689 ExprResult Result =
690 BuildCXXTypeId(TypeInfoType, OpLoc, (Expr *)TyOrExpr, RParenLoc);
691
692 if (!getLangOpts().RTTIData && !Result.isInvalid())
693 if (auto *CTE = dyn_cast<CXXTypeidExpr>(Result.get()))
694 if (CTE->isPotentiallyEvaluated() && !CTE->isMostDerived(Context))
695 Diag(OpLoc, diag::warn_no_typeid_with_rtti_disabled)
696 << (getDiagnostics().getDiagnosticOptions().getFormat() ==
697 DiagnosticOptions::MSVC);
698 return Result;
699}
700
701/// Grabs __declspec(uuid()) off a type, or returns 0 if we cannot resolve to
702/// a single GUID.
703static void
704getUuidAttrOfType(Sema &SemaRef, QualType QT,
705 llvm::SmallSetVector<const UuidAttr *, 1> &UuidAttrs) {
706 // Optionally remove one level of pointer, reference or array indirection.
707 const Type *Ty = QT.getTypePtr();
708 if (QT->isPointerType() || QT->isReferenceType())
709 Ty = QT->getPointeeType().getTypePtr();
710 else if (QT->isArrayType())
711 Ty = Ty->getBaseElementTypeUnsafe();
712
713 const auto *TD = Ty->getAsTagDecl();
714 if (!TD)
715 return;
716
717 if (const auto *Uuid = TD->getMostRecentDecl()->getAttr<UuidAttr>()) {
718 UuidAttrs.insert(Uuid);
719 return;
720 }
721
722 // __uuidof can grab UUIDs from template arguments.
723 if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(TD)) {
724 const TemplateArgumentList &TAL = CTSD->getTemplateArgs();
725 for (const TemplateArgument &TA : TAL.asArray()) {
726 const UuidAttr *UuidForTA = nullptr;
727 if (TA.getKind() == TemplateArgument::Type)
728 getUuidAttrOfType(SemaRef, TA.getAsType(), UuidAttrs);
729 else if (TA.getKind() == TemplateArgument::Declaration)
730 getUuidAttrOfType(SemaRef, TA.getAsDecl()->getType(), UuidAttrs);
731
732 if (UuidForTA)
733 UuidAttrs.insert(UuidForTA);
734 }
735 }
736}
737
738/// Build a Microsoft __uuidof expression with a type operand.
739ExprResult Sema::BuildCXXUuidof(QualType Type,
740 SourceLocation TypeidLoc,
741 TypeSourceInfo *Operand,
742 SourceLocation RParenLoc) {
743 MSGuidDecl *Guid = nullptr;
744 if (!Operand->getType()->isDependentType()) {
745 llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs;
746 getUuidAttrOfType(*this, Operand->getType(), UuidAttrs);
747 if (UuidAttrs.empty())
748 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
749 if (UuidAttrs.size() > 1)
750 return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
751 Guid = UuidAttrs.back()->getGuidDecl();
752 }
753
754 return new (Context)
755 CXXUuidofExpr(Type, Operand, Guid, SourceRange(TypeidLoc, RParenLoc));
756}
757
758/// Build a Microsoft __uuidof expression with an expression operand.
759ExprResult Sema::BuildCXXUuidof(QualType Type, SourceLocation TypeidLoc,
760 Expr *E, SourceLocation RParenLoc) {
761 MSGuidDecl *Guid = nullptr;
762 if (!E->getType()->isDependentType()) {
763 if (E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
764 // A null pointer results in {00000000-0000-0000-0000-000000000000}.
765 Guid = Context.getMSGuidDecl(MSGuidDecl::Parts{});
766 } else {
767 llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs;
768 getUuidAttrOfType(*this, E->getType(), UuidAttrs);
769 if (UuidAttrs.empty())
770 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
771 if (UuidAttrs.size() > 1)
772 return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
773 Guid = UuidAttrs.back()->getGuidDecl();
774 }
775 }
776
777 return new (Context)
778 CXXUuidofExpr(Type, E, Guid, SourceRange(TypeidLoc, RParenLoc));
779}
780
781/// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
782ExprResult
783Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
784 bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
785 QualType GuidType = Context.getMSGuidType();
786 GuidType.addConst();
787
788 if (isType) {
789 // The operand is a type; handle it as such.
790 TypeSourceInfo *TInfo = nullptr;
791 QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
792 &TInfo);
793 if (T.isNull())
794 return ExprError();
795
796 if (!TInfo)
797 TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
798
799 return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
800 }
801
802 // The operand is an expression.
803 return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
804}
805
806/// ActOnCXXBoolLiteral - Parse {true,false} literals.
807ExprResult
808Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
809 assert((Kind == tok::kw_true || Kind == tok::kw_false) &&(static_cast <bool> ((Kind == tok::kw_true || Kind == tok
::kw_false) && "Unknown C++ Boolean value!") ? void (
0) : __assert_fail ("(Kind == tok::kw_true || Kind == tok::kw_false) && \"Unknown C++ Boolean value!\""
, "clang/lib/Sema/SemaExprCXX.cpp", 810, __extension__ __PRETTY_FUNCTION__
))
810 "Unknown C++ Boolean value!")(static_cast <bool> ((Kind == tok::kw_true || Kind == tok
::kw_false) && "Unknown C++ Boolean value!") ? void (
0) : __assert_fail ("(Kind == tok::kw_true || Kind == tok::kw_false) && \"Unknown C++ Boolean value!\""
, "clang/lib/Sema/SemaExprCXX.cpp", 810, __extension__ __PRETTY_FUNCTION__
))
;
811 return new (Context)
812 CXXBoolLiteralExpr(Kind == tok::kw_true, Context.BoolTy, OpLoc);
813}
814
815/// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
816ExprResult
817Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
818 return new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
819}
820
821/// ActOnCXXThrow - Parse throw expressions.
822ExprResult
823Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) {
824 bool IsThrownVarInScope = false;
825 if (Ex) {
826 // C++0x [class.copymove]p31:
827 // When certain criteria are met, an implementation is allowed to omit the
828 // copy/move construction of a class object [...]
829 //
830 // - in a throw-expression, when the operand is the name of a
831 // non-volatile automatic object (other than a function or catch-
832 // clause parameter) whose scope does not extend beyond the end of the
833 // innermost enclosing try-block (if there is one), the copy/move
834 // operation from the operand to the exception object (15.1) can be
835 // omitted by constructing the automatic object directly into the
836 // exception object
837 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens()))
838 if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
839 if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) {
840 for( ; S; S = S->getParent()) {
841 if (S->isDeclScope(Var)) {
842 IsThrownVarInScope = true;
843 break;
844 }
845
846 // FIXME: Many of the scope checks here seem incorrect.
847 if (S->getFlags() &
848 (Scope::FnScope | Scope::ClassScope | Scope::BlockScope |
849 Scope::ObjCMethodScope | Scope::TryScope))
850 break;
851 }
852 }
853 }
854 }
855
856 return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope);
857}
858
859ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex,
860 bool IsThrownVarInScope) {
861 // Don't report an error if 'throw' is used in system headers.
862 if (!getLangOpts().CXXExceptions &&
863 !getSourceManager().isInSystemHeader(OpLoc) && !getLangOpts().CUDA) {
864 // Delay error emission for the OpenMP device code.
865 targetDiag(OpLoc, diag::err_exceptions_disabled) << "throw";
866 }
867
868 // Exceptions aren't allowed in CUDA device code.
869 if (getLangOpts().CUDA)
870 CUDADiagIfDeviceCode(OpLoc, diag::err_cuda_device_exceptions)
871 << "throw" << CurrentCUDATarget();
872
873 if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope())
874 Diag(OpLoc, diag::err_omp_simd_region_cannot_use_stmt) << "throw";
875
876 if (Ex && !Ex->isTypeDependent()) {
877 // Initialize the exception result. This implicitly weeds out
878 // abstract types or types with inaccessible copy constructors.
879
880 // C++0x [class.copymove]p31:
881 // When certain criteria are met, an implementation is allowed to omit the
882 // copy/move construction of a class object [...]
883 //
884 // - in a throw-expression, when the operand is the name of a
885 // non-volatile automatic object (other than a function or
886 // catch-clause
887 // parameter) whose scope does not extend beyond the end of the
888 // innermost enclosing try-block (if there is one), the copy/move
889 // operation from the operand to the exception object (15.1) can be
890 // omitted by constructing the automatic object directly into the
891 // exception object
892 NamedReturnInfo NRInfo =
893 IsThrownVarInScope ? getNamedReturnInfo(Ex) : NamedReturnInfo();
894
895 QualType ExceptionObjectTy = Context.getExceptionObjectType(Ex->getType());
896 if (CheckCXXThrowOperand(OpLoc, ExceptionObjectTy, Ex))
897 return ExprError();
898
899 InitializedEntity Entity =
900 InitializedEntity::InitializeException(OpLoc, ExceptionObjectTy);
901 ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRInfo, Ex);
902 if (Res.isInvalid())
903 return ExprError();
904 Ex = Res.get();
905 }
906
907 // PPC MMA non-pointer types are not allowed as throw expr types.
908 if (Ex && Context.getTargetInfo().getTriple().isPPC64())
909 CheckPPCMMAType(Ex->getType(), Ex->getBeginLoc());
910
911 return new (Context)
912 CXXThrowExpr(Ex, Context.VoidTy, OpLoc, IsThrownVarInScope);
913}
914
915static void
916collectPublicBases(CXXRecordDecl *RD,
917 llvm::DenseMap<CXXRecordDecl *, unsigned> &SubobjectsSeen,
918 llvm::SmallPtrSetImpl<CXXRecordDecl *> &VBases,
919 llvm::SetVector<CXXRecordDecl *> &PublicSubobjectsSeen,
920 bool ParentIsPublic) {
921 for (const CXXBaseSpecifier &BS : RD->bases()) {
922 CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
923 bool NewSubobject;
924 // Virtual bases constitute the same subobject. Non-virtual bases are
925 // always distinct subobjects.
926 if (BS.isVirtual())
927 NewSubobject = VBases.insert(BaseDecl).second;
928 else
929 NewSubobject = true;
930
931 if (NewSubobject)
932 ++SubobjectsSeen[BaseDecl];
933
934 // Only add subobjects which have public access throughout the entire chain.
935 bool PublicPath = ParentIsPublic && BS.getAccessSpecifier() == AS_public;
936 if (PublicPath)
937 PublicSubobjectsSeen.insert(BaseDecl);
938
939 // Recurse on to each base subobject.
940 collectPublicBases(BaseDecl, SubobjectsSeen, VBases, PublicSubobjectsSeen,
941 PublicPath);
942 }
943}
944
945static void getUnambiguousPublicSubobjects(
946 CXXRecordDecl *RD, llvm::SmallVectorImpl<CXXRecordDecl *> &Objects) {
947 llvm::DenseMap<CXXRecordDecl *, unsigned> SubobjectsSeen;
948 llvm::SmallSet<CXXRecordDecl *, 2> VBases;
949 llvm::SetVector<CXXRecordDecl *> PublicSubobjectsSeen;
950 SubobjectsSeen[RD] = 1;
951 PublicSubobjectsSeen.insert(RD);
952 collectPublicBases(RD, SubobjectsSeen, VBases, PublicSubobjectsSeen,
953 /*ParentIsPublic=*/true);
954
955 for (CXXRecordDecl *PublicSubobject : PublicSubobjectsSeen) {
956 // Skip ambiguous objects.
957 if (SubobjectsSeen[PublicSubobject] > 1)
958 continue;
959
960 Objects.push_back(PublicSubobject);
961 }
962}
963
964/// CheckCXXThrowOperand - Validate the operand of a throw.
965bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc,
966 QualType ExceptionObjectTy, Expr *E) {
967 // If the type of the exception would be an incomplete type or a pointer
968 // to an incomplete type other than (cv) void the program is ill-formed.
969 QualType Ty = ExceptionObjectTy;
970 bool isPointer = false;
971 if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
972 Ty = Ptr->getPointeeType();
973 isPointer = true;
974 }
975 if (!isPointer || !Ty->isVoidType()) {
976 if (RequireCompleteType(ThrowLoc, Ty,
977 isPointer ? diag::err_throw_incomplete_ptr
978 : diag::err_throw_incomplete,
979 E->getSourceRange()))
980 return true;
981
982 if (!isPointer && Ty->isSizelessType()) {
983 Diag(ThrowLoc, diag::err_throw_sizeless) << Ty << E->getSourceRange();
984 return true;
985 }
986
987 if (RequireNonAbstractType(ThrowLoc, ExceptionObjectTy,
988 diag::err_throw_abstract_type, E))
989 return true;
990 }
991
992 // If the exception has class type, we need additional handling.
993 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
994 if (!RD)
995 return false;
996
997 // If we are throwing a polymorphic class type or pointer thereof,
998 // exception handling will make use of the vtable.
999 MarkVTableUsed(ThrowLoc, RD);
1000
1001 // If a pointer is thrown, the referenced object will not be destroyed.
1002 if (isPointer)
1003 return false;
1004
1005 // If the class has a destructor, we must be able to call it.
1006 if (!RD->hasIrrelevantDestructor()) {
1007 if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
1008 MarkFunctionReferenced(E->getExprLoc(), Destructor);
1009 CheckDestructorAccess(E->getExprLoc(), Destructor,
1010 PDiag(diag::err_access_dtor_exception) << Ty);
1011 if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
1012 return true;
1013 }
1014 }
1015
1016 // The MSVC ABI creates a list of all types which can catch the exception
1017 // object. This list also references the appropriate copy constructor to call
1018 // if the object is caught by value and has a non-trivial copy constructor.
1019 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1020 // We are only interested in the public, unambiguous bases contained within
1021 // the exception object. Bases which are ambiguous or otherwise
1022 // inaccessible are not catchable types.
1023 llvm::SmallVector<CXXRecordDecl *, 2> UnambiguousPublicSubobjects;
1024 getUnambiguousPublicSubobjects(RD, UnambiguousPublicSubobjects);
1025
1026 for (CXXRecordDecl *Subobject : UnambiguousPublicSubobjects) {
1027 // Attempt to lookup the copy constructor. Various pieces of machinery
1028 // will spring into action, like template instantiation, which means this
1029 // cannot be a simple walk of the class's decls. Instead, we must perform
1030 // lookup and overload resolution.
1031 CXXConstructorDecl *CD = LookupCopyingConstructor(Subobject, 0);
1032 if (!CD || CD->isDeleted())
1033 continue;
1034
1035 // Mark the constructor referenced as it is used by this throw expression.
1036 MarkFunctionReferenced(E->getExprLoc(), CD);
1037
1038 // Skip this copy constructor if it is trivial, we don't need to record it
1039 // in the catchable type data.
1040 if (CD->isTrivial())
1041 continue;
1042
1043 // The copy constructor is non-trivial, create a mapping from this class
1044 // type to this constructor.
1045 // N.B. The selection of copy constructor is not sensitive to this
1046 // particular throw-site. Lookup will be performed at the catch-site to
1047 // ensure that the copy constructor is, in fact, accessible (via
1048 // friendship or any other means).
1049 Context.addCopyConstructorForExceptionObject(Subobject, CD);
1050
1051 // We don't keep the instantiated default argument expressions around so
1052 // we must rebuild them here.
1053 for (unsigned I = 1, E = CD->getNumParams(); I != E; ++I) {
1054 if (CheckCXXDefaultArgExpr(ThrowLoc, CD, CD->getParamDecl(I)))
1055 return true;
1056 }
1057 }
1058 }
1059
1060 // Under the Itanium C++ ABI, memory for the exception object is allocated by
1061 // the runtime with no ability for the compiler to request additional
1062 // alignment. Warn if the exception type requires alignment beyond the minimum
1063 // guaranteed by the target C++ runtime.
1064 if (Context.getTargetInfo().getCXXABI().isItaniumFamily()) {
1065 CharUnits TypeAlign = Context.getTypeAlignInChars(Ty);
1066 CharUnits ExnObjAlign = Context.getExnObjectAlignment();
1067 if (ExnObjAlign < TypeAlign) {
1068 Diag(ThrowLoc, diag::warn_throw_underaligned_obj);
1069 Diag(ThrowLoc, diag::note_throw_underaligned_obj)
1070 << Ty << (unsigned)TypeAlign.getQuantity()
1071 << (unsigned)ExnObjAlign.getQuantity();
1072 }
1073 }
1074
1075 return false;
1076}
1077
1078static QualType adjustCVQualifiersForCXXThisWithinLambda(
1079 ArrayRef<FunctionScopeInfo *> FunctionScopes, QualType ThisTy,
1080 DeclContext *CurSemaContext, ASTContext &ASTCtx) {
1081
1082 QualType ClassType = ThisTy->getPointeeType();
1083 LambdaScopeInfo *CurLSI = nullptr;
1084 DeclContext *CurDC = CurSemaContext;
1085
1086 // Iterate through the stack of lambdas starting from the innermost lambda to
1087 // the outermost lambda, checking if '*this' is ever captured by copy - since
1088 // that could change the cv-qualifiers of the '*this' object.
1089 // The object referred to by '*this' starts out with the cv-qualifiers of its
1090 // member function. We then start with the innermost lambda and iterate
1091 // outward checking to see if any lambda performs a by-copy capture of '*this'
1092 // - and if so, any nested lambda must respect the 'constness' of that
1093 // capturing lamdbda's call operator.
1094 //
1095
1096 // Since the FunctionScopeInfo stack is representative of the lexical
1097 // nesting of the lambda expressions during initial parsing (and is the best
1098 // place for querying information about captures about lambdas that are
1099 // partially processed) and perhaps during instantiation of function templates
1100 // that contain lambda expressions that need to be transformed BUT not
1101 // necessarily during instantiation of a nested generic lambda's function call
1102 // operator (which might even be instantiated at the end of the TU) - at which
1103 // time the DeclContext tree is mature enough to query capture information
1104 // reliably - we use a two pronged approach to walk through all the lexically
1105 // enclosing lambda expressions:
1106 //
1107 // 1) Climb down the FunctionScopeInfo stack as long as each item represents
1108 // a Lambda (i.e. LambdaScopeInfo) AND each LSI's 'closure-type' is lexically
1109 // enclosed by the call-operator of the LSI below it on the stack (while
1110 // tracking the enclosing DC for step 2 if needed). Note the topmost LSI on
1111 // the stack represents the innermost lambda.
1112 //
1113 // 2) If we run out of enclosing LSI's, check if the enclosing DeclContext
1114 // represents a lambda's call operator. If it does, we must be instantiating
1115 // a generic lambda's call operator (represented by the Current LSI, and
1116 // should be the only scenario where an inconsistency between the LSI and the
1117 // DeclContext should occur), so climb out the DeclContexts if they
1118 // represent lambdas, while querying the corresponding closure types
1119 // regarding capture information.
1120
1121 // 1) Climb down the function scope info stack.
1122 for (int I = FunctionScopes.size();
1123 I-- && isa<LambdaScopeInfo>(FunctionScopes[I]) &&
1124 (!CurLSI || !CurLSI->Lambda || CurLSI->Lambda->getDeclContext() ==
1125 cast<LambdaScopeInfo>(FunctionScopes[I])->CallOperator);
1126 CurDC = getLambdaAwareParentOfDeclContext(CurDC)) {
1127 CurLSI = cast<LambdaScopeInfo>(FunctionScopes[I]);
1128
1129 if (!CurLSI->isCXXThisCaptured())
1130 continue;
1131
1132 auto C = CurLSI->getCXXThisCapture();
1133
1134 if (C.isCopyCapture()) {
1135 ClassType.removeLocalCVRQualifiers(Qualifiers::CVRMask);
1136 if (CurLSI->CallOperator->isConst())
1137 ClassType.addConst();
1138 return ASTCtx.getPointerType(ClassType);
1139 }
1140 }
1141
1142 // 2) We've run out of ScopeInfos but check 1. if CurDC is a lambda (which
1143 // can happen during instantiation of its nested generic lambda call
1144 // operator); 2. if we're in a lambda scope (lambda body).
1145 if (CurLSI && isLambdaCallOperator(CurDC)) {
1146 assert(isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) &&(static_cast <bool> (isGenericLambdaCallOperatorSpecialization
(CurLSI->CallOperator) && "While computing 'this' capture-type for a generic lambda, when we "
"run out of enclosing LSI's, yet the enclosing DC is a " "lambda-call-operator we must be (i.e. Current LSI) in a generic "
"lambda call oeprator") ? void (0) : __assert_fail ("isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) && \"While computing 'this' capture-type for a generic lambda, when we \" \"run out of enclosing LSI's, yet the enclosing DC is a \" \"lambda-call-operator we must be (i.e. Current LSI) in a generic \" \"lambda call oeprator\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1150, __extension__ __PRETTY_FUNCTION__
))
1147 "While computing 'this' capture-type for a generic lambda, when we "(static_cast <bool> (isGenericLambdaCallOperatorSpecialization
(CurLSI->CallOperator) && "While computing 'this' capture-type for a generic lambda, when we "
"run out of enclosing LSI's, yet the enclosing DC is a " "lambda-call-operator we must be (i.e. Current LSI) in a generic "
"lambda call oeprator") ? void (0) : __assert_fail ("isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) && \"While computing 'this' capture-type for a generic lambda, when we \" \"run out of enclosing LSI's, yet the enclosing DC is a \" \"lambda-call-operator we must be (i.e. Current LSI) in a generic \" \"lambda call oeprator\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1150, __extension__ __PRETTY_FUNCTION__
))
1148 "run out of enclosing LSI's, yet the enclosing DC is a "(static_cast <bool> (isGenericLambdaCallOperatorSpecialization
(CurLSI->CallOperator) && "While computing 'this' capture-type for a generic lambda, when we "
"run out of enclosing LSI's, yet the enclosing DC is a " "lambda-call-operator we must be (i.e. Current LSI) in a generic "
"lambda call oeprator") ? void (0) : __assert_fail ("isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) && \"While computing 'this' capture-type for a generic lambda, when we \" \"run out of enclosing LSI's, yet the enclosing DC is a \" \"lambda-call-operator we must be (i.e. Current LSI) in a generic \" \"lambda call oeprator\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1150, __extension__ __PRETTY_FUNCTION__
))
1149 "lambda-call-operator we must be (i.e. Current LSI) in a generic "(static_cast <bool> (isGenericLambdaCallOperatorSpecialization
(CurLSI->CallOperator) && "While computing 'this' capture-type for a generic lambda, when we "
"run out of enclosing LSI's, yet the enclosing DC is a " "lambda-call-operator we must be (i.e. Current LSI) in a generic "
"lambda call oeprator") ? void (0) : __assert_fail ("isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) && \"While computing 'this' capture-type for a generic lambda, when we \" \"run out of enclosing LSI's, yet the enclosing DC is a \" \"lambda-call-operator we must be (i.e. Current LSI) in a generic \" \"lambda call oeprator\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1150, __extension__ __PRETTY_FUNCTION__
))
1150 "lambda call oeprator")(static_cast <bool> (isGenericLambdaCallOperatorSpecialization
(CurLSI->CallOperator) && "While computing 'this' capture-type for a generic lambda, when we "
"run out of enclosing LSI's, yet the enclosing DC is a " "lambda-call-operator we must be (i.e. Current LSI) in a generic "
"lambda call oeprator") ? void (0) : __assert_fail ("isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) && \"While computing 'this' capture-type for a generic lambda, when we \" \"run out of enclosing LSI's, yet the enclosing DC is a \" \"lambda-call-operator we must be (i.e. Current LSI) in a generic \" \"lambda call oeprator\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1150, __extension__ __PRETTY_FUNCTION__
))
;
1151 assert(CurDC == getLambdaAwareParentOfDeclContext(CurLSI->CallOperator))(static_cast <bool> (CurDC == getLambdaAwareParentOfDeclContext
(CurLSI->CallOperator)) ? void (0) : __assert_fail ("CurDC == getLambdaAwareParentOfDeclContext(CurLSI->CallOperator)"
, "clang/lib/Sema/SemaExprCXX.cpp", 1151, __extension__ __PRETTY_FUNCTION__
))
;
1152
1153 auto IsThisCaptured =
1154 [](CXXRecordDecl *Closure, bool &IsByCopy, bool &IsConst) {
1155 IsConst = false;
1156 IsByCopy = false;
1157 for (auto &&C : Closure->captures()) {
1158 if (C.capturesThis()) {
1159 if (C.getCaptureKind() == LCK_StarThis)
1160 IsByCopy = true;
1161 if (Closure->getLambdaCallOperator()->isConst())
1162 IsConst = true;
1163 return true;
1164 }
1165 }
1166 return false;
1167 };
1168
1169 bool IsByCopyCapture = false;
1170 bool IsConstCapture = false;
1171 CXXRecordDecl *Closure = cast<CXXRecordDecl>(CurDC->getParent());
1172 while (Closure &&
1173 IsThisCaptured(Closure, IsByCopyCapture, IsConstCapture)) {
1174 if (IsByCopyCapture) {
1175 ClassType.removeLocalCVRQualifiers(Qualifiers::CVRMask);
1176 if (IsConstCapture)
1177 ClassType.addConst();
1178 return ASTCtx.getPointerType(ClassType);
1179 }
1180 Closure = isLambdaCallOperator(Closure->getParent())
1181 ? cast<CXXRecordDecl>(Closure->getParent()->getParent())
1182 : nullptr;
1183 }
1184 }
1185 return ASTCtx.getPointerType(ClassType);
1186}
1187
1188QualType Sema::getCurrentThisType() {
1189 DeclContext *DC = getFunctionLevelDeclContext();
1190 QualType ThisTy = CXXThisTypeOverride;
1191
1192 if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) {
1193 if (method && method->isInstance())
1194 ThisTy = method->getThisType();
1195 }
1196
1197 if (ThisTy.isNull() && isLambdaCallOperator(CurContext) &&
1198 inTemplateInstantiation() && isa<CXXRecordDecl>(DC)) {
1199
1200 // This is a lambda call operator that is being instantiated as a default
1201 // initializer. DC must point to the enclosing class type, so we can recover
1202 // the 'this' type from it.
1203 QualType ClassTy = Context.getTypeDeclType(cast<CXXRecordDecl>(DC));
1204 // There are no cv-qualifiers for 'this' within default initializers,
1205 // per [expr.prim.general]p4.
1206 ThisTy = Context.getPointerType(ClassTy);
1207 }
1208
1209 // If we are within a lambda's call operator, the cv-qualifiers of 'this'
1210 // might need to be adjusted if the lambda or any of its enclosing lambda's
1211 // captures '*this' by copy.
1212 if (!ThisTy.isNull() && isLambdaCallOperator(CurContext))
1213 return adjustCVQualifiersForCXXThisWithinLambda(FunctionScopes, ThisTy,
1214 CurContext, Context);
1215 return ThisTy;
1216}
1217
1218Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S,
1219 Decl *ContextDecl,
1220 Qualifiers CXXThisTypeQuals,
1221 bool Enabled)
1222 : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false)
1223{
1224 if (!Enabled || !ContextDecl)
1225 return;
1226
1227 CXXRecordDecl *Record = nullptr;
1228 if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl))
1229 Record = Template->getTemplatedDecl();
1230 else
1231 Record = cast<CXXRecordDecl>(ContextDecl);
1232
1233 QualType T = S.Context.getRecordType(Record);
1234 T = S.getASTContext().getQualifiedType(T, CXXThisTypeQuals);
1235
1236 S.CXXThisTypeOverride = S.Context.getPointerType(T);
1237
1238 this->Enabled = true;
1239}
1240
1241
1242Sema::CXXThisScopeRAII::~CXXThisScopeRAII() {
1243 if (Enabled) {
1244 S.CXXThisTypeOverride = OldCXXThisTypeOverride;
1245 }
1246}
1247
1248static void buildLambdaThisCaptureFixit(Sema &Sema, LambdaScopeInfo *LSI) {
1249 SourceLocation DiagLoc = LSI->IntroducerRange.getEnd();
1250 assert(!LSI->isCXXThisCaptured())(static_cast <bool> (!LSI->isCXXThisCaptured()) ? void
(0) : __assert_fail ("!LSI->isCXXThisCaptured()", "clang/lib/Sema/SemaExprCXX.cpp"
, 1250, __extension__ __PRETTY_FUNCTION__))
;
1251 // [=, this] {}; // until C++20: Error: this when = is the default
1252 if (LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval &&
1253 !Sema.getLangOpts().CPlusPlus20)
1254 return;
1255 Sema.Diag(DiagLoc, diag::note_lambda_this_capture_fixit)
1256 << FixItHint::CreateInsertion(
1257 DiagLoc, LSI->NumExplicitCaptures > 0 ? ", this" : "this");
1258}
1259
1260bool Sema::CheckCXXThisCapture(SourceLocation Loc, const bool Explicit,
1261 bool BuildAndDiagnose, const unsigned *const FunctionScopeIndexToStopAt,
1262 const bool ByCopy) {
1263 // We don't need to capture this in an unevaluated context.
1264 if (isUnevaluatedContext() && !Explicit)
1265 return true;
1266
1267 assert((!ByCopy || Explicit) && "cannot implicitly capture *this by value")(static_cast <bool> ((!ByCopy || Explicit) && "cannot implicitly capture *this by value"
) ? void (0) : __assert_fail ("(!ByCopy || Explicit) && \"cannot implicitly capture *this by value\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1267, __extension__ __PRETTY_FUNCTION__
))
;
1268
1269 const int MaxFunctionScopesIndex = FunctionScopeIndexToStopAt
1270 ? *FunctionScopeIndexToStopAt
1271 : FunctionScopes.size() - 1;
1272
1273 // Check that we can capture the *enclosing object* (referred to by '*this')
1274 // by the capturing-entity/closure (lambda/block/etc) at
1275 // MaxFunctionScopesIndex-deep on the FunctionScopes stack.
1276
1277 // Note: The *enclosing object* can only be captured by-value by a
1278 // closure that is a lambda, using the explicit notation:
1279 // [*this] { ... }.
1280 // Every other capture of the *enclosing object* results in its by-reference
1281 // capture.
1282
1283 // For a closure 'L' (at MaxFunctionScopesIndex in the FunctionScopes
1284 // stack), we can capture the *enclosing object* only if:
1285 // - 'L' has an explicit byref or byval capture of the *enclosing object*
1286 // - or, 'L' has an implicit capture.
1287 // AND
1288 // -- there is no enclosing closure
1289 // -- or, there is some enclosing closure 'E' that has already captured the
1290 // *enclosing object*, and every intervening closure (if any) between 'E'
1291 // and 'L' can implicitly capture the *enclosing object*.
1292 // -- or, every enclosing closure can implicitly capture the
1293 // *enclosing object*
1294
1295
1296 unsigned NumCapturingClosures = 0;
1297 for (int idx = MaxFunctionScopesIndex; idx >= 0; idx--) {
1298 if (CapturingScopeInfo *CSI =
1299 dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) {
1300 if (CSI->CXXThisCaptureIndex != 0) {
1301 // 'this' is already being captured; there isn't anything more to do.
1302 CSI->Captures[CSI->CXXThisCaptureIndex - 1].markUsed(BuildAndDiagnose);
1303 break;
1304 }
1305 LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI);
1306 if (LSI && isGenericLambdaCallOperatorSpecialization(LSI->CallOperator)) {
1307 // This context can't implicitly capture 'this'; fail out.
1308 if (BuildAndDiagnose) {
1309 Diag(Loc, diag::err_this_capture)
1310 << (Explicit && idx == MaxFunctionScopesIndex);
1311 if (!Explicit)
1312 buildLambdaThisCaptureFixit(*this, LSI);
1313 }
1314 return true;
1315 }
1316 if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref ||
1317 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval ||
1318 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block ||
1319 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_CapturedRegion ||
1320 (Explicit && idx == MaxFunctionScopesIndex)) {
1321 // Regarding (Explicit && idx == MaxFunctionScopesIndex): only the first
1322 // iteration through can be an explicit capture, all enclosing closures,
1323 // if any, must perform implicit captures.
1324
1325 // This closure can capture 'this'; continue looking upwards.
1326 NumCapturingClosures++;
1327 continue;
1328 }
1329 // This context can't implicitly capture 'this'; fail out.
1330 if (BuildAndDiagnose)
1331 Diag(Loc, diag::err_this_capture)
1332 << (Explicit && idx == MaxFunctionScopesIndex);
1333
1334 if (!Explicit)
1335 buildLambdaThisCaptureFixit(*this, LSI);
1336 return true;
1337 }
1338 break;
1339 }
1340 if (!BuildAndDiagnose) return false;
1341
1342 // If we got here, then the closure at MaxFunctionScopesIndex on the
1343 // FunctionScopes stack, can capture the *enclosing object*, so capture it
1344 // (including implicit by-reference captures in any enclosing closures).
1345
1346 // In the loop below, respect the ByCopy flag only for the closure requesting
1347 // the capture (i.e. first iteration through the loop below). Ignore it for
1348 // all enclosing closure's up to NumCapturingClosures (since they must be
1349 // implicitly capturing the *enclosing object* by reference (see loop
1350 // above)).
1351 assert((!ByCopy ||(static_cast <bool> ((!ByCopy || isa<LambdaScopeInfo
>(FunctionScopes[MaxFunctionScopesIndex])) && "Only a lambda can capture the enclosing object (referred to by "
"*this) by copy") ? void (0) : __assert_fail ("(!ByCopy || isa<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) && \"Only a lambda can capture the enclosing object (referred to by \" \"*this) by copy\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1354, __extension__ __PRETTY_FUNCTION__
))
1352 isa<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) &&(static_cast <bool> ((!ByCopy || isa<LambdaScopeInfo
>(FunctionScopes[MaxFunctionScopesIndex])) && "Only a lambda can capture the enclosing object (referred to by "
"*this) by copy") ? void (0) : __assert_fail ("(!ByCopy || isa<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) && \"Only a lambda can capture the enclosing object (referred to by \" \"*this) by copy\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1354, __extension__ __PRETTY_FUNCTION__
))
1353 "Only a lambda can capture the enclosing object (referred to by "(static_cast <bool> ((!ByCopy || isa<LambdaScopeInfo
>(FunctionScopes[MaxFunctionScopesIndex])) && "Only a lambda can capture the enclosing object (referred to by "
"*this) by copy") ? void (0) : __assert_fail ("(!ByCopy || isa<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) && \"Only a lambda can capture the enclosing object (referred to by \" \"*this) by copy\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1354, __extension__ __PRETTY_FUNCTION__
))
1354 "*this) by copy")(static_cast <bool> ((!ByCopy || isa<LambdaScopeInfo
>(FunctionScopes[MaxFunctionScopesIndex])) && "Only a lambda can capture the enclosing object (referred to by "
"*this) by copy") ? void (0) : __assert_fail ("(!ByCopy || isa<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) && \"Only a lambda can capture the enclosing object (referred to by \" \"*this) by copy\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1354, __extension__ __PRETTY_FUNCTION__
))
;
1355 QualType ThisTy = getCurrentThisType();
1356 for (int idx = MaxFunctionScopesIndex; NumCapturingClosures;
1357 --idx, --NumCapturingClosures) {
1358 CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]);
1359
1360 // The type of the corresponding data member (not a 'this' pointer if 'by
1361 // copy').
1362 QualType CaptureType = ThisTy;
1363 if (ByCopy) {
1364 // If we are capturing the object referred to by '*this' by copy, ignore
1365 // any cv qualifiers inherited from the type of the member function for
1366 // the type of the closure-type's corresponding data member and any use
1367 // of 'this'.
1368 CaptureType = ThisTy->getPointeeType();
1369 CaptureType.removeLocalCVRQualifiers(Qualifiers::CVRMask);
1370 }
1371
1372 bool isNested = NumCapturingClosures > 1;
1373 CSI->addThisCapture(isNested, Loc, CaptureType, ByCopy);
1374 }
1375 return false;
1376}
1377
1378ExprResult Sema::ActOnCXXThis(SourceLocation Loc) {
1379 /// C++ 9.3.2: In the body of a non-static member function, the keyword this
1380 /// is a non-lvalue expression whose value is the address of the object for
1381 /// which the function is called.
1382
1383 QualType ThisTy = getCurrentThisType();
1384 if (ThisTy.isNull())
1385 return Diag(Loc, diag::err_invalid_this_use);
1386 return BuildCXXThisExpr(Loc, ThisTy, /*IsImplicit=*/false);
1387}
1388
1389Expr *Sema::BuildCXXThisExpr(SourceLocation Loc, QualType Type,
1390 bool IsImplicit) {
1391 auto *This = new (Context) CXXThisExpr(Loc, Type, IsImplicit);
1392 MarkThisReferenced(This);
1393 return This;
1394}
1395
1396void Sema::MarkThisReferenced(CXXThisExpr *This) {
1397 CheckCXXThisCapture(This->getExprLoc());
1398}
1399
1400bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) {
1401 // If we're outside the body of a member function, then we'll have a specified
1402 // type for 'this'.
1403 if (CXXThisTypeOverride.isNull())
1404 return false;
1405
1406 // Determine whether we're looking into a class that's currently being
1407 // defined.
1408 CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl();
1409 return Class && Class->isBeingDefined();
1410}
1411
1412/// Parse construction of a specified type.
1413/// Can be interpreted either as function-style casting ("int(x)")
1414/// or class type construction ("ClassType(x,y,z)")
1415/// or creation of a value-initialized type ("int()").
1416ExprResult
1417Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep,
1418 SourceLocation LParenOrBraceLoc,
1419 MultiExprArg exprs,
1420 SourceLocation RParenOrBraceLoc,
1421 bool ListInitialization) {
1422 if (!TypeRep)
1423 return ExprError();
1424
1425 TypeSourceInfo *TInfo;
1426 QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
1427 if (!TInfo)
1428 TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
1429
1430 auto Result = BuildCXXTypeConstructExpr(TInfo, LParenOrBraceLoc, exprs,
1431 RParenOrBraceLoc, ListInitialization);
1432 // Avoid creating a non-type-dependent expression that contains typos.
1433 // Non-type-dependent expressions are liable to be discarded without
1434 // checking for embedded typos.
1435 if (!Result.isInvalid() && Result.get()->isInstantiationDependent() &&
1436 !Result.get()->isTypeDependent())
1437 Result = CorrectDelayedTyposInExpr(Result.get());
1438 else if (Result.isInvalid())
1439 Result = CreateRecoveryExpr(TInfo->getTypeLoc().getBeginLoc(),
1440 RParenOrBraceLoc, exprs, Ty);
1441 return Result;
1442}
1443
1444ExprResult
1445Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
1446 SourceLocation LParenOrBraceLoc,
1447 MultiExprArg Exprs,
1448 SourceLocation RParenOrBraceLoc,
1449 bool ListInitialization) {
1450 QualType Ty = TInfo->getType();
1451 SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
1452
1453 assert((!ListInitialization ||(static_cast <bool> ((!ListInitialization || (Exprs.size
() == 1 && isa<InitListExpr>(Exprs[0]))) &&
"List initialization must have initializer list as expression."
) ? void (0) : __assert_fail ("(!ListInitialization || (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0]))) && \"List initialization must have initializer list as expression.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1455, __extension__ __PRETTY_FUNCTION__
))
1454 (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0]))) &&(static_cast <bool> ((!ListInitialization || (Exprs.size
() == 1 && isa<InitListExpr>(Exprs[0]))) &&
"List initialization must have initializer list as expression."
) ? void (0) : __assert_fail ("(!ListInitialization || (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0]))) && \"List initialization must have initializer list as expression.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1455, __extension__ __PRETTY_FUNCTION__
))
1455 "List initialization must have initializer list as expression.")(static_cast <bool> ((!ListInitialization || (Exprs.size
() == 1 && isa<InitListExpr>(Exprs[0]))) &&
"List initialization must have initializer list as expression."
) ? void (0) : __assert_fail ("(!ListInitialization || (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0]))) && \"List initialization must have initializer list as expression.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1455, __extension__ __PRETTY_FUNCTION__
))
;
1456 SourceRange FullRange = SourceRange(TyBeginLoc, RParenOrBraceLoc);
1457
1458 InitializedEntity Entity =
1459 InitializedEntity::InitializeTemporary(Context, TInfo);
1460 InitializationKind Kind =
1461 Exprs.size()
1462 ? ListInitialization
1463 ? InitializationKind::CreateDirectList(
1464 TyBeginLoc, LParenOrBraceLoc, RParenOrBraceLoc)
1465 : InitializationKind::CreateDirect(TyBeginLoc, LParenOrBraceLoc,
1466 RParenOrBraceLoc)
1467 : InitializationKind::CreateValue(TyBeginLoc, LParenOrBraceLoc,
1468 RParenOrBraceLoc);
1469
1470 // C++1z [expr.type.conv]p1:
1471 // If the type is a placeholder for a deduced class type, [...perform class
1472 // template argument deduction...]
1473 // C++2b:
1474 // Otherwise, if the type contains a placeholder type, it is replaced by the
1475 // type determined by placeholder type deduction.
1476 DeducedType *Deduced = Ty->getContainedDeducedType();
1477 if (Deduced && isa<DeducedTemplateSpecializationType>(Deduced)) {
1478 Ty = DeduceTemplateSpecializationFromInitializer(TInfo, Entity,
1479 Kind, Exprs);
1480 if (Ty.isNull())
1481 return ExprError();
1482 Entity = InitializedEntity::InitializeTemporary(TInfo, Ty);
1483 } else if (Deduced) {
1484 MultiExprArg Inits = Exprs;
1485 if (ListInitialization) {
1486 auto *ILE = cast<InitListExpr>(Exprs[0]);
1487 Inits = MultiExprArg(ILE->getInits(), ILE->getNumInits());
1488 }
1489
1490 if (Inits.empty())
1491 return ExprError(Diag(TyBeginLoc, diag::err_auto_expr_init_no_expression)
1492 << Ty << FullRange);
1493 if (Inits.size() > 1) {
1494 Expr *FirstBad = Inits[1];
1495 return ExprError(Diag(FirstBad->getBeginLoc(),
1496 diag::err_auto_expr_init_multiple_expressions)
1497 << Ty << FullRange);
1498 }
1499 if (getLangOpts().CPlusPlus2b) {
1500 if (Ty->getAs<AutoType>())
1501 Diag(TyBeginLoc, diag::warn_cxx20_compat_auto_expr) << FullRange;
1502 }
1503 Expr *Deduce = Inits[0];
1504 if (isa<InitListExpr>(Deduce))
1505 return ExprError(
1506 Diag(Deduce->getBeginLoc(), diag::err_auto_expr_init_paren_braces)
1507 << ListInitialization << Ty << FullRange);
1508 QualType DeducedType;
1509 if (DeduceAutoType(TInfo, Deduce, DeducedType) == DAR_Failed)
1510 return ExprError(Diag(TyBeginLoc, diag::err_auto_expr_deduction_failure)
1511 << Ty << Deduce->getType() << FullRange
1512 << Deduce->getSourceRange());
1513 if (DeducedType.isNull())
1514 return ExprError();
1515
1516 Ty = DeducedType;
1517 Entity = InitializedEntity::InitializeTemporary(TInfo, Ty);
1518 }
1519
1520 if (Ty->isDependentType() || CallExpr::hasAnyTypeDependentArguments(Exprs)) {
1521 // FIXME: CXXUnresolvedConstructExpr does not model list-initialization
1522 // directly. We work around this by dropping the locations of the braces.
1523 SourceRange Locs = ListInitialization
1524 ? SourceRange()
1525 : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc);
1526 return CXXUnresolvedConstructExpr::Create(Context, Ty.getNonReferenceType(),
1527 TInfo, Locs.getBegin(), Exprs,
1528 Locs.getEnd());
1529 }
1530
1531 // C++ [expr.type.conv]p1:
1532 // If the expression list is a parenthesized single expression, the type
1533 // conversion expression is equivalent (in definedness, and if defined in
1534 // meaning) to the corresponding cast expression.
1535 if (Exprs.size() == 1 && !ListInitialization &&
1536 !isa<InitListExpr>(Exprs[0])) {
1537 Expr *Arg = Exprs[0];
1538 return BuildCXXFunctionalCastExpr(TInfo, Ty, LParenOrBraceLoc, Arg,
1539 RParenOrBraceLoc);
1540 }
1541
1542 // For an expression of the form T(), T shall not be an array type.
1543 QualType ElemTy = Ty;
1544 if (Ty->isArrayType()) {
1545 if (!ListInitialization)
1546 return ExprError(Diag(TyBeginLoc, diag::err_value_init_for_array_type)
1547 << FullRange);
1548 ElemTy = Context.getBaseElementType(Ty);
1549 }
1550
1551 // Only construct objects with object types.
1552 // The standard doesn't explicitly forbid function types here, but that's an
1553 // obvious oversight, as there's no way to dynamically construct a function
1554 // in general.
1555 if (Ty->isFunctionType())
1556 return ExprError(Diag(TyBeginLoc, diag::err_init_for_function_type)
1557 << Ty << FullRange);
1558
1559 // C++17 [expr.type.conv]p2:
1560 // If the type is cv void and the initializer is (), the expression is a
1561 // prvalue of the specified type that performs no initialization.
1562 if (!Ty->isVoidType() &&
1563 RequireCompleteType(TyBeginLoc, ElemTy,
1564 diag::err_invalid_incomplete_type_use, FullRange))
1565 return ExprError();
1566
1567 // Otherwise, the expression is a prvalue of the specified type whose
1568 // result object is direct-initialized (11.6) with the initializer.
1569 InitializationSequence InitSeq(*this, Entity, Kind, Exprs);
1570 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Exprs);
1571
1572 if (Result.isInvalid())
1573 return Result;
1574
1575 Expr *Inner = Result.get();
1576 if (CXXBindTemporaryExpr *BTE = dyn_cast_or_null<CXXBindTemporaryExpr>(Inner))
1577 Inner = BTE->getSubExpr();
1578 if (!isa<CXXTemporaryObjectExpr>(Inner) &&
1579 !isa<CXXScalarValueInitExpr>(Inner)) {
1580 // If we created a CXXTemporaryObjectExpr, that node also represents the
1581 // functional cast. Otherwise, create an explicit cast to represent
1582 // the syntactic form of a functional-style cast that was used here.
1583 //
1584 // FIXME: Creating a CXXFunctionalCastExpr around a CXXConstructExpr
1585 // would give a more consistent AST representation than using a
1586 // CXXTemporaryObjectExpr. It's also weird that the functional cast
1587 // is sometimes handled by initialization and sometimes not.
1588 QualType ResultType = Result.get()->getType();
1589 SourceRange Locs = ListInitialization
1590 ? SourceRange()
1591 : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc);
1592 Result = CXXFunctionalCastExpr::Create(
1593 Context, ResultType, Expr::getValueKindForType(Ty), TInfo, CK_NoOp,
1594 Result.get(), /*Path=*/nullptr, CurFPFeatureOverrides(),
1595 Locs.getBegin(), Locs.getEnd());
1596 }
1597
1598 return Result;
1599}
1600
1601bool Sema::isUsualDeallocationFunction(const CXXMethodDecl *Method) {
1602 // [CUDA] Ignore this function, if we can't call it.
1603 const FunctionDecl *Caller = getCurFunctionDecl(/*AllowLambda=*/true);
1604 if (getLangOpts().CUDA) {
1605 auto CallPreference = IdentifyCUDAPreference(Caller, Method);
1606 // If it's not callable at all, it's not the right function.
1607 if (CallPreference < CFP_WrongSide)
1608 return false;
1609 if (CallPreference == CFP_WrongSide) {
1610 // Maybe. We have to check if there are better alternatives.
1611 DeclContext::lookup_result R =
1612 Method->getDeclContext()->lookup(Method->getDeclName());
1613 for (const auto *D : R) {
1614 if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
1615 if (IdentifyCUDAPreference(Caller, FD) > CFP_WrongSide)
1616 return false;
1617 }
1618 }
1619 // We've found no better variants.
1620 }
1621 }
1622
1623 SmallVector<const FunctionDecl*, 4> PreventedBy;
1624 bool Result = Method->isUsualDeallocationFunction(PreventedBy);
1625
1626 if (Result || !getLangOpts().CUDA || PreventedBy.empty())
1627 return Result;
1628
1629 // In case of CUDA, return true if none of the 1-argument deallocator
1630 // functions are actually callable.
1631 return llvm::none_of(PreventedBy, [&](const FunctionDecl *FD) {
1632 assert(FD->getNumParams() == 1 &&(static_cast <bool> (FD->getNumParams() == 1 &&
"Only single-operand functions should be in PreventedBy") ? void
(0) : __assert_fail ("FD->getNumParams() == 1 && \"Only single-operand functions should be in PreventedBy\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1633, __extension__ __PRETTY_FUNCTION__
))
1633 "Only single-operand functions should be in PreventedBy")(static_cast <bool> (FD->getNumParams() == 1 &&
"Only single-operand functions should be in PreventedBy") ? void
(0) : __assert_fail ("FD->getNumParams() == 1 && \"Only single-operand functions should be in PreventedBy\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1633, __extension__ __PRETTY_FUNCTION__
))
;
1634 return IdentifyCUDAPreference(Caller, FD) >= CFP_HostDevice;
1635 });
1636}
1637
1638/// Determine whether the given function is a non-placement
1639/// deallocation function.
1640static bool isNonPlacementDeallocationFunction(Sema &S, FunctionDecl *FD) {
1641 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
1642 return S.isUsualDeallocationFunction(Method);
1643
1644 if (FD->getOverloadedOperator() != OO_Delete &&
1645 FD->getOverloadedOperator() != OO_Array_Delete)
1646 return false;
1647
1648 unsigned UsualParams = 1;
1649
1650 if (S.getLangOpts().SizedDeallocation && UsualParams < FD->getNumParams() &&
1651 S.Context.hasSameUnqualifiedType(
1652 FD->getParamDecl(UsualParams)->getType(),
1653 S.Context.getSizeType()))
1654 ++UsualParams;
1655
1656 if (S.getLangOpts().AlignedAllocation && UsualParams < FD->getNumParams() &&
1657 S.Context.hasSameUnqualifiedType(
1658 FD->getParamDecl(UsualParams)->getType(),
1659 S.Context.getTypeDeclType(S.getStdAlignValT())))
1660 ++UsualParams;
1661
1662 return UsualParams == FD->getNumParams();
1663}
1664
1665namespace {
1666 struct UsualDeallocFnInfo {
1667 UsualDeallocFnInfo() : Found(), FD(nullptr) {}
1668 UsualDeallocFnInfo(Sema &S, DeclAccessPair Found)
1669 : Found(Found), FD(dyn_cast<FunctionDecl>(Found->getUnderlyingDecl())),
1670 Destroying(false), HasSizeT(false), HasAlignValT(false),
1671 CUDAPref(Sema::CFP_Native) {
1672 // A function template declaration is never a usual deallocation function.
1673 if (!FD)
1674 return;
1675 unsigned NumBaseParams = 1;
1676 if (FD->isDestroyingOperatorDelete()) {
1677 Destroying = true;
1678 ++NumBaseParams;
1679 }
1680
1681 if (NumBaseParams < FD->getNumParams() &&
1682 S.Context.hasSameUnqualifiedType(
1683 FD->getParamDecl(NumBaseParams)->getType(),
1684 S.Context.getSizeType())) {
1685 ++NumBaseParams;
1686 HasSizeT = true;
1687 }
1688
1689 if (NumBaseParams < FD->getNumParams() &&
1690 FD->getParamDecl(NumBaseParams)->getType()->isAlignValT()) {
1691 ++NumBaseParams;
1692 HasAlignValT = true;
1693 }
1694
1695 // In CUDA, determine how much we'd like / dislike to call this.
1696 if (S.getLangOpts().CUDA)
1697 if (auto *Caller = S.getCurFunctionDecl(/*AllowLambda=*/true))
1698 CUDAPref = S.IdentifyCUDAPreference(Caller, FD);
1699 }
1700
1701 explicit operator bool() const { return FD; }
1702
1703 bool isBetterThan(const UsualDeallocFnInfo &Other, bool WantSize,
1704 bool WantAlign) const {
1705 // C++ P0722:
1706 // A destroying operator delete is preferred over a non-destroying
1707 // operator delete.
1708 if (Destroying != Other.Destroying)
1709 return Destroying;
1710
1711 // C++17 [expr.delete]p10:
1712 // If the type has new-extended alignment, a function with a parameter
1713 // of type std::align_val_t is preferred; otherwise a function without
1714 // such a parameter is preferred
1715 if (HasAlignValT != Other.HasAlignValT)
1716 return HasAlignValT == WantAlign;
1717
1718 if (HasSizeT != Other.HasSizeT)
1719 return HasSizeT == WantSize;
1720
1721 // Use CUDA call preference as a tiebreaker.
1722 return CUDAPref > Other.CUDAPref;
1723 }
1724
1725 DeclAccessPair Found;
1726 FunctionDecl *FD;
1727 bool Destroying, HasSizeT, HasAlignValT;
1728 Sema::CUDAFunctionPreference CUDAPref;
1729 };
1730}
1731
1732/// Determine whether a type has new-extended alignment. This may be called when
1733/// the type is incomplete (for a delete-expression with an incomplete pointee
1734/// type), in which case it will conservatively return false if the alignment is
1735/// not known.
1736static bool hasNewExtendedAlignment(Sema &S, QualType AllocType) {
1737 return S.getLangOpts().AlignedAllocation &&
1738 S.getASTContext().getTypeAlignIfKnown(AllocType) >
1739 S.getASTContext().getTargetInfo().getNewAlign();
1740}
1741
1742/// Select the correct "usual" deallocation function to use from a selection of
1743/// deallocation functions (either global or class-scope).
1744static UsualDeallocFnInfo resolveDeallocationOverload(
1745 Sema &S, LookupResult &R, bool WantSize, bool WantAlign,
1746 llvm::SmallVectorImpl<UsualDeallocFnInfo> *BestFns = nullptr) {
1747 UsualDeallocFnInfo Best;
1748
1749 for (auto I = R.begin(), E = R.end(); I != E; ++I) {
1750 UsualDeallocFnInfo Info(S, I.getPair());
1751 if (!Info || !isNonPlacementDeallocationFunction(S, Info.FD) ||
1752 Info.CUDAPref == Sema::CFP_Never)
1753 continue;
1754
1755 if (!Best) {
1756 Best = Info;
1757 if (BestFns)
1758 BestFns->push_back(Info);
1759 continue;
1760 }
1761
1762 if (Best.isBetterThan(Info, WantSize, WantAlign))
1763 continue;
1764
1765 // If more than one preferred function is found, all non-preferred
1766 // functions are eliminated from further consideration.
1767 if (BestFns && Info.isBetterThan(Best, WantSize, WantAlign))
1768 BestFns->clear();
1769
1770 Best = Info;
1771 if (BestFns)
1772 BestFns->push_back(Info);
1773 }
1774
1775 return Best;
1776}
1777
1778/// Determine whether a given type is a class for which 'delete[]' would call
1779/// a member 'operator delete[]' with a 'size_t' parameter. This implies that
1780/// we need to store the array size (even if the type is
1781/// trivially-destructible).
1782static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc,
1783 QualType allocType) {
1784 const RecordType *record =
1785 allocType->getBaseElementTypeUnsafe()->getAs<RecordType>();
1786 if (!record) return false;
1787
1788 // Try to find an operator delete[] in class scope.
1789
1790 DeclarationName deleteName =
1791 S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete);
1792 LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName);
1793 S.LookupQualifiedName(ops, record->getDecl());
1794
1795 // We're just doing this for information.
1796 ops.suppressDiagnostics();
1797
1798 // Very likely: there's no operator delete[].
1799 if (ops.empty()) return false;
1800
1801 // If it's ambiguous, it should be illegal to call operator delete[]
1802 // on this thing, so it doesn't matter if we allocate extra space or not.
1803 if (ops.isAmbiguous()) return false;
1804
1805 // C++17 [expr.delete]p10:
1806 // If the deallocation functions have class scope, the one without a
1807 // parameter of type std::size_t is selected.
1808 auto Best = resolveDeallocationOverload(
1809 S, ops, /*WantSize*/false,
1810 /*WantAlign*/hasNewExtendedAlignment(S, allocType));
1811 return Best && Best.HasSizeT;
1812}
1813
1814/// Parsed a C++ 'new' expression (C++ 5.3.4).
1815///
1816/// E.g.:
1817/// @code new (memory) int[size][4] @endcode
1818/// or
1819/// @code ::new Foo(23, "hello") @endcode
1820///
1821/// \param StartLoc The first location of the expression.
1822/// \param UseGlobal True if 'new' was prefixed with '::'.
1823/// \param PlacementLParen Opening paren of the placement arguments.
1824/// \param PlacementArgs Placement new arguments.
1825/// \param PlacementRParen Closing paren of the placement arguments.
1826/// \param TypeIdParens If the type is in parens, the source range.
1827/// \param D The type to be allocated, as well as array dimensions.
1828/// \param Initializer The initializing expression or initializer-list, or null
1829/// if there is none.
1830ExprResult
1831Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
1832 SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
1833 SourceLocation PlacementRParen, SourceRange TypeIdParens,
1834 Declarator &D, Expr *Initializer) {
1835 Optional<Expr *> ArraySize;
1836 // If the specified type is an array, unwrap it and save the expression.
1837 if (D.getNumTypeObjects() > 0 &&
1838 D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
1839 DeclaratorChunk &Chunk = D.getTypeObject(0);
1840 if (D.getDeclSpec().hasAutoTypeSpec())
1841 return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto)
1842 << D.getSourceRange());
1843 if (Chunk.Arr.hasStatic)
1844 return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
1845 << D.getSourceRange());
1846 if (!Chunk.Arr.NumElts && !Initializer)
1847 return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
1848 << D.getSourceRange());
1849
1850 ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
1851 D.DropFirstTypeObject();
1852 }
1853
1854 // Every dimension shall be of constant size.
1855 if (ArraySize) {
1856 for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
1857 if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
1858 break;
1859
1860 DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
1861 if (Expr *NumElts = (Expr *)Array.NumElts) {
1862 if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) {
1863 // FIXME: GCC permits constant folding here. We should either do so consistently
1864 // or not do so at all, rather than changing behavior in C++14 onwards.
1865 if (getLangOpts().CPlusPlus14) {
1866 // C++1y [expr.new]p6: Every constant-expression in a noptr-new-declarator
1867 // shall be a converted constant expression (5.19) of type std::size_t
1868 // and shall evaluate to a strictly positive value.
1869 llvm::APSInt Value(Context.getIntWidth(Context.getSizeType()));
1870 Array.NumElts
1871 = CheckConvertedConstantExpression(NumElts, Context.getSizeType(), Value,
1872 CCEK_ArrayBound)
1873 .get();
1874 } else {
1875 Array.NumElts =
1876 VerifyIntegerConstantExpression(
1877 NumElts, nullptr, diag::err_new_array_nonconst, AllowFold)
1878 .get();
1879 }
1880 if (!Array.NumElts)
1881 return ExprError();
1882 }
1883 }
1884 }
1885 }
1886
1887 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/nullptr);
1888 QualType AllocType = TInfo->getType();
1889 if (D.isInvalidType())
1890 return ExprError();
1891
1892 SourceRange DirectInitRange;
1893 if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer))
1894 DirectInitRange = List->getSourceRange();
1895
1896 return BuildCXXNew(SourceRange(StartLoc, D.getEndLoc()), UseGlobal,
1897 PlacementLParen, PlacementArgs, PlacementRParen,
1898 TypeIdParens, AllocType, TInfo, ArraySize, DirectInitRange,
1899 Initializer);
1900}
1901
1902static bool isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style,
1903 Expr *Init) {
1904 if (!Init)
1905 return true;
1906 if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init))
1907 return PLE->getNumExprs() == 0;
1908 if (isa<ImplicitValueInitExpr>(Init))
1909 return true;
1910 else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init))
1911 return !CCE->isListInitialization() &&
1912 CCE->getConstructor()->isDefaultConstructor();
1913 else if (Style == CXXNewExpr::ListInit) {
1914 assert(isa<InitListExpr>(Init) &&(static_cast <bool> (isa<InitListExpr>(Init) &&
"Shouldn't create list CXXConstructExprs for arrays.") ? void
(0) : __assert_fail ("isa<InitListExpr>(Init) && \"Shouldn't create list CXXConstructExprs for arrays.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1915, __extension__ __PRETTY_FUNCTION__
))
1915 "Shouldn't create list CXXConstructExprs for arrays.")(static_cast <bool> (isa<InitListExpr>(Init) &&
"Shouldn't create list CXXConstructExprs for arrays.") ? void
(0) : __assert_fail ("isa<InitListExpr>(Init) && \"Shouldn't create list CXXConstructExprs for arrays.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1915, __extension__ __PRETTY_FUNCTION__
))
;
1916 return true;
1917 }
1918 return false;
1919}
1920
1921bool
1922Sema::isUnavailableAlignedAllocationFunction(const FunctionDecl &FD) const {
1923 if (!getLangOpts().AlignedAllocationUnavailable)
1924 return false;
1925 if (FD.isDefined())
1926 return false;
1927 Optional<unsigned> AlignmentParam;
1928 if (FD.isReplaceableGlobalAllocationFunction(&AlignmentParam) &&
1929 AlignmentParam)
1930 return true;
1931 return false;
1932}
1933
1934// Emit a diagnostic if an aligned allocation/deallocation function that is not
1935// implemented in the standard library is selected.
1936void Sema::diagnoseUnavailableAlignedAllocation(const FunctionDecl &FD,
1937 SourceLocation Loc) {
1938 if (isUnavailableAlignedAllocationFunction(FD)) {
1939 const llvm::Triple &T = getASTContext().getTargetInfo().getTriple();
1940 StringRef OSName = AvailabilityAttr::getPlatformNameSourceSpelling(
1941 getASTContext().getTargetInfo().getPlatformName());
1942 VersionTuple OSVersion = alignedAllocMinVersion(T.getOS());
1943
1944 OverloadedOperatorKind Kind = FD.getDeclName().getCXXOverloadedOperator();
1945 bool IsDelete = Kind == OO_Delete || Kind == OO_Array_Delete;
1946 Diag(Loc, diag::err_aligned_allocation_unavailable)
1947 << IsDelete << FD.getType().getAsString() << OSName
1948 << OSVersion.getAsString() << OSVersion.empty();
1949 Diag(Loc, diag::note_silence_aligned_allocation_unavailable);
1950 }
1951}
1952
1953ExprResult
1954Sema::BuildCXXNew(SourceRange Range, bool UseGlobal,
1955 SourceLocation PlacementLParen,
1956 MultiExprArg PlacementArgs,
1957 SourceLocation PlacementRParen,
1958 SourceRange TypeIdParens,
1959 QualType AllocType,
1960 TypeSourceInfo *AllocTypeInfo,
1961 Optional<Expr *> ArraySize,
1962 SourceRange DirectInitRange,
1963 Expr *Initializer) {
1964 SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
1965 SourceLocation StartLoc = Range.getBegin();
1966
1967 CXXNewExpr::InitializationStyle initStyle;
1968 if (DirectInitRange.isValid()) {
1969 assert(Initializer && "Have parens but no initializer.")(static_cast <bool> (Initializer && "Have parens but no initializer."
) ? void (0) : __assert_fail ("Initializer && \"Have parens but no initializer.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1969, __extension__ __PRETTY_FUNCTION__
))
;
1970 initStyle = CXXNewExpr::CallInit;
1971 } else if (Initializer && isa<InitListExpr>(Initializer))
1
Assuming 'Initializer' is non-null
2
Assuming 'Initializer' is a 'class clang::InitListExpr &'
3
Taking true branch
1972 initStyle = CXXNewExpr::ListInit;
1973 else {
1974 assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) ||(static_cast <bool> ((!Initializer || isa<ImplicitValueInitExpr
>(Initializer) || isa<CXXConstructExpr>(Initializer)
) && "Initializer expression that cannot have been implicitly created."
) ? void (0) : __assert_fail ("(!Initializer || isa<ImplicitValueInitExpr>(Initializer) || isa<CXXConstructExpr>(Initializer)) && \"Initializer expression that cannot have been implicitly created.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1976, __extension__ __PRETTY_FUNCTION__
))
1975 isa<CXXConstructExpr>(Initializer)) &&(static_cast <bool> ((!Initializer || isa<ImplicitValueInitExpr
>(Initializer) || isa<CXXConstructExpr>(Initializer)
) && "Initializer expression that cannot have been implicitly created."
) ? void (0) : __assert_fail ("(!Initializer || isa<ImplicitValueInitExpr>(Initializer) || isa<CXXConstructExpr>(Initializer)) && \"Initializer expression that cannot have been implicitly created.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1976, __extension__ __PRETTY_FUNCTION__
))
1976 "Initializer expression that cannot have been implicitly created.")(static_cast <bool> ((!Initializer || isa<ImplicitValueInitExpr
>(Initializer) || isa<CXXConstructExpr>(Initializer)
) && "Initializer expression that cannot have been implicitly created."
) ? void (0) : __assert_fail ("(!Initializer || isa<ImplicitValueInitExpr>(Initializer) || isa<CXXConstructExpr>(Initializer)) && \"Initializer expression that cannot have been implicitly created.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1976, __extension__ __PRETTY_FUNCTION__
))
;
1977 initStyle = CXXNewExpr::NoInit;
1978 }
1979
1980 MultiExprArg Exprs(&Initializer, Initializer
3.1
'Initializer' is non-null
? 1 : 0)
;
4
'?' condition is true
5
Value assigned to 'Initializer'
1981 if (ParenListExpr *List
6.1
'List' is null
= dyn_cast_or_null<ParenListExpr>(Initializer)) {
6
Assuming null pointer is passed into cast
1982 assert(initStyle == CXXNewExpr::CallInit && "paren init for non-call init")(static_cast <bool> (initStyle == CXXNewExpr::CallInit &&
"paren init for non-call init") ? void (0) : __assert_fail (
"initStyle == CXXNewExpr::CallInit && \"paren init for non-call init\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1982, __extension__ __PRETTY_FUNCTION__
))
;
1983 Exprs = MultiExprArg(List->getExprs(), List->getNumExprs());
1984 }
1985
1986 // C++11 [expr.new]p15:
1987 // A new-expression that creates an object of type T initializes that
1988 // object as follows:
1989 InitializationKind Kind
7
Taking false branch
1990 // - If the new-initializer is omitted, the object is default-
1991 // initialized (8.5); if no initialization is performed,
1992 // the object has indeterminate value
1993 = initStyle
7.1
'initStyle' is not equal to NoInit
== CXXNewExpr::NoInit
8
'?' condition is false
1994 ? InitializationKind::CreateDefault(TypeRange.getBegin())
1995 // - Otherwise, the new-initializer is interpreted according to
1996 // the
1997 // initialization rules of 8.5 for direct-initialization.
1998 : initStyle
8.1
'initStyle' is equal to ListInit
== CXXNewExpr::ListInit
9
'?' condition is true
1999 ? InitializationKind::CreateDirectList(
2000 TypeRange.getBegin(), Initializer->getBeginLoc(),
10
Called C++ object pointer is null
2001 Initializer->getEndLoc())
2002 : InitializationKind::CreateDirect(TypeRange.getBegin(),
2003 DirectInitRange.getBegin(),
2004 DirectInitRange.getEnd());
2005
2006 // C++11 [dcl.spec.auto]p6. Deduce the type which 'auto' stands in for.
2007 auto *Deduced = AllocType->getContainedDeducedType();
2008 if (Deduced && isa<DeducedTemplateSpecializationType>(Deduced)) {
2009 if (ArraySize)
2010 return ExprError(
2011 Diag(*ArraySize ? (*ArraySize)->getExprLoc() : TypeRange.getBegin(),
2012 diag::err_deduced_class_template_compound_type)
2013 << /*array*/ 2
2014 << (*ArraySize ? (*ArraySize)->getSourceRange() : TypeRange));
2015
2016 InitializedEntity Entity
2017 = InitializedEntity::InitializeNew(StartLoc, AllocType);
2018 AllocType = DeduceTemplateSpecializationFromInitializer(
2019 AllocTypeInfo, Entity, Kind, Exprs);
2020 if (AllocType.isNull())
2021 return ExprError();
2022 } else if (Deduced) {
2023 MultiExprArg Inits = Exprs;
2024 bool Braced = (initStyle == CXXNewExpr::ListInit);
2025 if (Braced) {
2026 auto *ILE = cast<InitListExpr>(Exprs[0]);
2027 Inits = MultiExprArg(ILE->getInits(), ILE->getNumInits());
2028 }
2029
2030 if (initStyle == CXXNewExpr::NoInit || Inits.empty())
2031 return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg)
2032 << AllocType << TypeRange);
2033 if (Inits.size() > 1) {
2034 Expr *FirstBad = Inits[1];
2035 return ExprError(Diag(FirstBad->getBeginLoc(),
2036 diag::err_auto_new_ctor_multiple_expressions)
2037 << AllocType << TypeRange);
2038 }
2039 if (Braced && !getLangOpts().CPlusPlus17)
2040 Diag(Initializer->getBeginLoc(), diag::ext_auto_new_list_init)
2041 << AllocType << TypeRange;
2042 Expr *Deduce = Inits[0];
2043 if (isa<InitListExpr>(Deduce))
2044 return ExprError(
2045 Diag(Deduce->getBeginLoc(), diag::err_auto_expr_init_paren_braces)
2046 << Braced << AllocType << TypeRange);
2047 QualType DeducedType;
2048 if (DeduceAutoType(AllocTypeInfo, Deduce, DeducedType) == DAR_Failed)
2049 return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure)
2050 << AllocType << Deduce->getType()
2051 << TypeRange << Deduce->getSourceRange());
2052 if (DeducedType.isNull())
2053 return ExprError();
2054 AllocType = DeducedType;
2055 }
2056
2057 // Per C++0x [expr.new]p5, the type being constructed may be a
2058 // typedef of an array type.
2059 if (!ArraySize) {
2060 if (const ConstantArrayType *Array
2061 = Context.getAsConstantArrayType(AllocType)) {
2062 ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
2063 Context.getSizeType(),
2064 TypeRange.getEnd());
2065 AllocType = Array->getElementType();
2066 }
2067 }
2068
2069 if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
2070 return ExprError();
2071
2072 // In ARC, infer 'retaining' for the allocated
2073 if (getLangOpts().ObjCAutoRefCount &&
2074 AllocType.getObjCLifetime() == Qualifiers::OCL_None &&
2075 AllocType->isObjCLifetimeType()) {
2076 AllocType = Context.getLifetimeQualifiedType(AllocType,
2077 AllocType->getObjCARCImplicitLifetime());
2078 }
2079
2080 QualType ResultType = Context.getPointerType(AllocType);
2081
2082 if (ArraySize && *ArraySize &&
2083 (*ArraySize)->getType()->isNonOverloadPlaceholderType()) {
2084 ExprResult result = CheckPlaceholderExpr(*ArraySize);
2085 if (result.isInvalid()) return ExprError();
2086 ArraySize = result.get();
2087 }
2088 // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have
2089 // integral or enumeration type with a non-negative value."
2090 // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped
2091 // enumeration type, or a class type for which a single non-explicit
2092 // conversion function to integral or unscoped enumeration type exists.
2093 // C++1y [expr.new]p6: The expression [...] is implicitly converted to
2094 // std::size_t.
2095 llvm::Optional<uint64_t> KnownArraySize;
2096 if (ArraySize && *ArraySize && !(*ArraySize)->isTypeDependent()) {
2097 ExprResult ConvertedSize;
2098 if (getLangOpts().CPlusPlus14) {
2099 assert(Context.getTargetInfo().getIntWidth() && "Builtin type of size 0?")(static_cast <bool> (Context.getTargetInfo().getIntWidth
() && "Builtin type of size 0?") ? void (0) : __assert_fail
("Context.getTargetInfo().getIntWidth() && \"Builtin type of size 0?\""
, "clang/lib/Sema/SemaExprCXX.cpp", 2099, __extension__ __PRETTY_FUNCTION__
))
;
2100
2101 ConvertedSize = PerformImplicitConversion(*ArraySize, Context.getSizeType(),
2102 AA_Converting);
2103
2104 if (!ConvertedSize.isInvalid() &&
2105 (*ArraySize)->getType()->getAs<RecordType>())
2106 // Diagnose the compatibility of this conversion.
2107 Diag(StartLoc, diag::warn_cxx98_compat_array_size_conversion)
2108 << (*ArraySize)->getType() << 0 << "'size_t'";
2109 } else {
2110 class SizeConvertDiagnoser : public ICEConvertDiagnoser {
2111 protected:
2112 Expr *ArraySize;
2113
2114 public:
2115 SizeConvertDiagnoser(Expr *ArraySize)
2116 : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false, false, false),
2117 ArraySize(ArraySize) {}
2118
2119 SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
2120 QualType T) override {
2121 return S.Diag(Loc, diag::err_array_size_not_integral)
2122 << S.getLangOpts().CPlusPlus11 << T;
2123 }
2124
2125 SemaDiagnosticBuilder diagnoseIncomplete(
2126 Sema &S, SourceLocation Loc, QualType T) override {
2127 return S.Diag(Loc, diag::err_array_size_incomplete_type)
2128 << T << ArraySize->getSourceRange();
2129 }
2130
2131 SemaDiagnosticBuilder diagnoseExplicitConv(
2132 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
2133 return S.Diag(Loc, diag::err_array_size_explicit_conversion) << T << ConvTy;
2134 }
2135
2136 SemaDiagnosticBuilder noteExplicitConv(
2137 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
2138 return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
2139 << ConvTy->isEnumeralType() << ConvTy;
2140 }
2141
2142 SemaDiagnosticBuilder diagnoseAmbiguous(
2143 Sema &S, SourceLocation Loc, QualType T) override {
2144 return S.Diag(Loc, diag::err_array_size_ambiguous_conversion) << T;
2145 }
2146
2147 SemaDiagnosticBuilder noteAmbiguous(
2148 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
2149 return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
2150 << ConvTy->isEnumeralType() << ConvTy;
2151 }
2152
2153 SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
2154 QualType T,
2155 QualType ConvTy) override {
2156 return S.Diag(Loc,
2157 S.getLangOpts().CPlusPlus11
2158 ? diag::warn_cxx98_compat_array_size_conversion
2159 : diag::ext_array_size_conversion)
2160 << T << ConvTy->isEnumeralType() << ConvTy;
2161 }
2162 } SizeDiagnoser(*ArraySize);
2163
2164 ConvertedSize = PerformContextualImplicitConversion(StartLoc, *ArraySize,
2165 SizeDiagnoser);
2166 }
2167 if (ConvertedSize.isInvalid())
2168 return ExprError();
2169
2170 ArraySize = ConvertedSize.get();
2171 QualType SizeType = (*ArraySize)->getType();
2172
2173 if (!SizeType->isIntegralOrUnscopedEnumerationType())
2174 return ExprError();
2175
2176 // C++98 [expr.new]p7:
2177 // The expression in a direct-new-declarator shall have integral type
2178 // with a non-negative value.
2179 //
2180 // Let's see if this is a constant < 0. If so, we reject it out of hand,
2181 // per CWG1464. Otherwise, if it's not a constant, we must have an
2182 // unparenthesized array type.
2183
2184 // We've already performed any required implicit conversion to integer or
2185 // unscoped enumeration type.
2186 // FIXME: Per CWG1464, we are required to check the value prior to
2187 // converting to size_t. This will never find a negative array size in
2188 // C++14 onwards, because Value is always unsigned here!
2189 if (Optional<llvm::APSInt> Value =
2190 (*ArraySize)->getIntegerConstantExpr(Context)) {
2191 if (Value->isSigned() && Value->isNegative()) {
2192 return ExprError(Diag((*ArraySize)->getBeginLoc(),
2193 diag::err_typecheck_negative_array_size)
2194 << (*ArraySize)->getSourceRange());
2195 }
2196
2197 if (!AllocType->isDependentType()) {
2198 unsigned ActiveSizeBits =
2199 ConstantArrayType::getNumAddressingBits(Context, AllocType, *Value);
2200 if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context))
2201 return ExprError(
2202 Diag((*ArraySize)->getBeginLoc(), diag::err_array_too_large)
2203 << toString(*Value, 10) << (*ArraySize)->getSourceRange());
2204 }
2205
2206 KnownArraySize = Value->getZExtValue();
2207 } else if (TypeIdParens.isValid()) {
2208 // Can't have dynamic array size when the type-id is in parentheses.
2209 Diag((*ArraySize)->getBeginLoc(), diag::ext_new_paren_array_nonconst)
2210 << (*ArraySize)->getSourceRange()
2211 << FixItHint::CreateRemoval(TypeIdParens.getBegin())
2212 << FixItHint::CreateRemoval(TypeIdParens.getEnd());
2213
2214 TypeIdParens = SourceRange();
2215 }
2216
2217 // Note that we do *not* convert the argument in any way. It can
2218 // be signed, larger than size_t, whatever.
2219 }
2220
2221 FunctionDecl *OperatorNew = nullptr;
2222 FunctionDecl *OperatorDelete = nullptr;
2223 unsigned Alignment =
2224 AllocType->isDependentType() ? 0 : Context.getTypeAlign(AllocType);
2225 unsigned NewAlignment = Context.getTargetInfo().getNewAlign();
2226 bool PassAlignment = getLangOpts().AlignedAllocation &&
2227 Alignment > NewAlignment;
2228
2229 AllocationFunctionScope Scope = UseGlobal ? AFS_Global : AFS_Both;
2230 if (!AllocType->isDependentType() &&
2231 !Expr::hasAnyTypeDependentArguments(PlacementArgs) &&
2232 FindAllocationFunctions(
2233 StartLoc, SourceRange(PlacementLParen, PlacementRParen), Scope, Scope,
2234 AllocType, ArraySize.has_value(), PassAlignment, PlacementArgs,
2235 OperatorNew, OperatorDelete))
2236 return ExprError();
2237
2238 // If this is an array allocation, compute whether the usual array
2239 // deallocation function for the type has a size_t parameter.
2240 bool UsualArrayDeleteWantsSize = false;
2241 if (ArraySize && !AllocType->isDependentType())
2242 UsualArrayDeleteWantsSize =
2243 doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType);
2244
2245 SmallVector<Expr *, 8> AllPlaceArgs;
2246 if (OperatorNew) {
2247 auto *Proto = OperatorNew->getType()->castAs<FunctionProtoType>();
2248 VariadicCallType CallType = Proto->isVariadic() ? VariadicFunction
2249 : VariadicDoesNotApply;
2250
2251 // We've already converted the placement args, just fill in any default
2252 // arguments. Skip the first parameter because we don't have a corresponding
2253 // argument. Skip the second parameter too if we're passing in the
2254 // alignment; we've already filled it in.
2255 unsigned NumImplicitArgs = PassAlignment ? 2 : 1;
2256 if (GatherArgumentsForCall(PlacementLParen, OperatorNew, Proto,
2257 NumImplicitArgs, PlacementArgs, AllPlaceArgs,
2258 CallType))
2259 return ExprError();
2260
2261 if (!AllPlaceArgs.empty())
2262 PlacementArgs = AllPlaceArgs;
2263
2264 // We would like to perform some checking on the given `operator new` call,
2265 // but the PlacementArgs does not contain the implicit arguments,
2266 // namely allocation size and maybe allocation alignment,
2267 // so we need to conjure them.
2268
2269 QualType SizeTy = Context.getSizeType();
2270 unsigned SizeTyWidth = Context.getTypeSize(SizeTy);
2271
2272 llvm::APInt SingleEltSize(
2273 SizeTyWidth, Context.getTypeSizeInChars(AllocType).getQuantity());
2274
2275 // How many bytes do we want to allocate here?
2276 llvm::Optional<llvm::APInt> AllocationSize;
2277 if (!ArraySize && !AllocType->isDependentType()) {
2278 // For non-array operator new, we only want to allocate one element.
2279 AllocationSize = SingleEltSize;
2280 } else if (KnownArraySize && !AllocType->isDependentType()) {
2281 // For array operator new, only deal with static array size case.
2282 bool Overflow;
2283 AllocationSize = llvm::APInt(SizeTyWidth, *KnownArraySize)
2284 .umul_ov(SingleEltSize, Overflow);
2285 (void)Overflow;
2286 assert((static_cast <bool> (!Overflow && "Expected that all the overflows would have been handled already."
) ? void (0) : __assert_fail ("!Overflow && \"Expected that all the overflows would have been handled already.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 2288, __extension__ __PRETTY_FUNCTION__
))
2287 !Overflow &&(static_cast <bool> (!Overflow && "Expected that all the overflows would have been handled already."
) ? void (0) : __assert_fail ("!Overflow && \"Expected that all the overflows would have been handled already.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 2288, __extension__ __PRETTY_FUNCTION__
))
2288 "Expected that all the overflows would have been handled already.")(static_cast <bool> (!Overflow && "Expected that all the overflows would have been handled already."
) ? void (0) : __assert_fail ("!Overflow && \"Expected that all the overflows would have been handled already.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 2288, __extension__ __PRETTY_FUNCTION__
))
;
2289 }
2290
2291 IntegerLiteral AllocationSizeLiteral(
2292 Context, AllocationSize.value_or(llvm::APInt::getZero(SizeTyWidth)),
2293 SizeTy, SourceLocation());
2294 // Otherwise, if we failed to constant-fold the allocation size, we'll
2295 // just give up and pass-in something opaque, that isn't a null pointer.
2296 OpaqueValueExpr OpaqueAllocationSize(SourceLocation(), SizeTy, VK_PRValue,
2297 OK_Ordinary, /*SourceExpr=*/nullptr);
2298
2299 // Let's synthesize the alignment argument in case we will need it.
2300 // Since we *really* want to allocate these on stack, this is slightly ugly
2301 // because there might not be a `std::align_val_t` type.
2302 EnumDecl *StdAlignValT = getStdAlignValT();
2303 QualType AlignValT =
2304 StdAlignValT ? Context.getTypeDeclType(StdAlignValT) : SizeTy;
2305 IntegerLiteral AlignmentLiteral(
2306 Context,
2307 llvm::APInt(Context.getTypeSize(SizeTy),
2308 Alignment / Context.getCharWidth()),
2309 SizeTy, SourceLocation());
2310 ImplicitCastExpr DesiredAlignment(ImplicitCastExpr::OnStack, AlignValT,
2311 CK_IntegralCast, &AlignmentLiteral,
2312 VK_PRValue, FPOptionsOverride());
2313
2314 // Adjust placement args by prepending conjured size and alignment exprs.
2315 llvm::SmallVector<Expr *, 8> CallArgs;
2316 CallArgs.reserve(NumImplicitArgs + PlacementArgs.size());
2317 CallArgs.emplace_back(AllocationSize
2318 ? static_cast<Expr *>(&AllocationSizeLiteral)
2319 : &OpaqueAllocationSize);
2320 if (PassAlignment)
2321 CallArgs.emplace_back(&DesiredAlignment);
2322 CallArgs.insert(CallArgs.end(), PlacementArgs.begin(), PlacementArgs.end());
2323
2324 DiagnoseSentinelCalls(OperatorNew, PlacementLParen, CallArgs);
2325
2326 checkCall(OperatorNew, Proto, /*ThisArg=*/nullptr, CallArgs,
2327 /*IsMemberFunction=*/false, StartLoc, Range, CallType);
2328
2329 // Warn if the type is over-aligned and is being allocated by (unaligned)
2330 // global operator new.
2331 if (PlacementArgs.empty() && !PassAlignment &&
2332 (OperatorNew->isImplicit() ||
2333 (OperatorNew->getBeginLoc().isValid() &&
2334 getSourceManager().isInSystemHeader(OperatorNew->getBeginLoc())))) {
2335 if (Alignment > NewAlignment)
2336 Diag(StartLoc, diag::warn_overaligned_type)
2337 << AllocType
2338 << unsigned(Alignment / Context.getCharWidth())
2339 << unsigned(NewAlignment / Context.getCharWidth());
2340 }
2341 }
2342
2343 // Array 'new' can't have any initializers except empty parentheses.
2344 // Initializer lists are also allowed, in C++11. Rely on the parser for the
2345 // dialect distinction.
2346 if (ArraySize && !isLegalArrayNewInitializer(initStyle, Initializer)) {
2347 SourceRange InitRange(Exprs.front()->getBeginLoc(),
2348 Exprs.back()->getEndLoc());
2349 Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
2350 return ExprError();
2351 }
2352
2353 // If we can perform the initialization, and we've not already done so,
2354 // do it now.
2355 if (!AllocType->isDependentType() &&
2356 !Expr::hasAnyTypeDependentArguments(Exprs)) {
2357 // The type we initialize is the complete type, including the array bound.
2358 QualType InitType;
2359 if (KnownArraySize)
2360 InitType = Context.getConstantArrayType(
2361 AllocType,
2362 llvm::APInt(Context.getTypeSize(Context.getSizeType()),
2363 *KnownArraySize),
2364 *ArraySize, ArrayType::Normal, 0);
2365 else if (ArraySize)
2366 InitType =
2367 Context.getIncompleteArrayType(AllocType, ArrayType::Normal, 0);
2368 else
2369 InitType = AllocType;
2370
2371 InitializedEntity Entity
2372 = InitializedEntity::InitializeNew(StartLoc, InitType);
2373 InitializationSequence InitSeq(*this, Entity, Kind, Exprs);
2374 ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind, Exprs);
2375 if (FullInit.isInvalid())
2376 return ExprError();
2377
2378 // FullInit is our initializer; strip off CXXBindTemporaryExprs, because
2379 // we don't want the initialized object to be destructed.
2380 // FIXME: We should not create these in the first place.
2381 if (CXXBindTemporaryExpr *Binder =
2382 dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get()))
2383 FullInit = Binder->getSubExpr();
2384
2385 Initializer = FullInit.get();
2386
2387 // FIXME: If we have a KnownArraySize, check that the array bound of the
2388 // initializer is no greater than that constant value.
2389
2390 if (ArraySize && !*ArraySize) {
2391 auto *CAT = Context.getAsConstantArrayType(Initializer->getType());
2392 if (CAT) {
2393 // FIXME: Track that the array size was inferred rather than explicitly
2394 // specified.
2395 ArraySize = IntegerLiteral::Create(
2396 Context, CAT->getSize(), Context.getSizeType(), TypeRange.getEnd());
2397 } else {
2398 Diag(TypeRange.getEnd(), diag::err_new_array_size_unknown_from_init)
2399 << Initializer->getSourceRange();
2400 }
2401 }
2402 }
2403
2404 // Mark the new and delete operators as referenced.
2405 if (OperatorNew) {
2406 if (DiagnoseUseOfDecl(OperatorNew, StartLoc))
2407 return ExprError();
2408 MarkFunctionReferenced(StartLoc, OperatorNew);
2409 }
2410 if (OperatorDelete) {
2411 if (DiagnoseUseOfDecl(OperatorDelete, StartLoc))
2412 return ExprError();
2413 MarkFunctionReferenced(StartLoc, OperatorDelete);
2414 }
2415
2416 return CXXNewExpr::Create(Context, UseGlobal, OperatorNew, OperatorDelete,
2417 PassAlignment, UsualArrayDeleteWantsSize,
2418 PlacementArgs, TypeIdParens, ArraySize, initStyle,
2419 Initializer, ResultType, AllocTypeInfo, Range,
2420 DirectInitRange);
2421}
2422
2423/// Checks that a type is suitable as the allocated type
2424/// in a new-expression.
2425bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
2426 SourceRange R) {
2427 // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
2428 // abstract class type or array thereof.
2429 if (AllocType->isFunctionType())
2430 return Diag(Loc, diag::err_bad_new_type)
2431 << AllocType << 0 << R;
2432 else if (AllocType->isReferenceType())
2433 return Diag(Loc, diag::err_bad_new_type)
2434 << AllocType << 1 << R;
2435 else if (!AllocType->isDependentType() &&
2436 RequireCompleteSizedType(
2437 Loc, AllocType, diag::err_new_incomplete_or_sizeless_type, R))
2438 return true;
2439 else if (RequireNonAbstractType(Loc, AllocType,
2440 diag::err_allocation_of_abstract_type))
2441 return true;
2442 else if (AllocType->isVariablyModifiedType())
2443 return Diag(Loc, diag::err_variably_modified_new_type)
2444 << AllocType;
2445 else if (AllocType.getAddressSpace() != LangAS::Default &&
2446 !getLangOpts().OpenCLCPlusPlus)
2447 return Diag(Loc, diag::err_address_space_qualified_new)
2448 << AllocType.getUnqualifiedType()
2449 << AllocType.getQualifiers().getAddressSpaceAttributePrintValue();
2450 else if (getLangOpts().ObjCAutoRefCount) {
2451 if (const ArrayType *AT = Context.getAsArrayType(AllocType)) {
2452 QualType BaseAllocType = Context.getBaseElementType(AT);
2453 if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None &&
2454 BaseAllocType->isObjCLifetimeType())
2455 return Diag(Loc, diag::err_arc_new_array_without_ownership)
2456 << BaseAllocType;
2457 }
2458 }
2459
2460 return false;
2461}
2462
2463static bool resolveAllocationOverload(
2464 Sema &S, LookupResult &R, SourceRange Range, SmallVectorImpl<Expr *> &Args,
2465 bool &PassAlignment, FunctionDecl *&Operator,
2466 OverloadCandidateSet *AlignedCandidates, Expr *AlignArg, bool Diagnose) {
2467 OverloadCandidateSet Candidates(R.getNameLoc(),
2468 OverloadCandidateSet::CSK_Normal);
2469 for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
2470 Alloc != AllocEnd; ++Alloc) {
2471 // Even member operator new/delete are implicitly treated as
2472 // static, so don't use AddMemberCandidate.
2473 NamedDecl *D = (*Alloc)->getUnderlyingDecl();
2474
2475 if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
2476 S.AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
2477 /*ExplicitTemplateArgs=*/nullptr, Args,
2478 Candidates,
2479 /*SuppressUserConversions=*/false);
2480 continue;
2481 }
2482
2483 FunctionDecl *Fn = cast<FunctionDecl>(D);
2484 S.AddOverloadCandidate(Fn, Alloc.getPair(), Args, Candidates,
2485 /*SuppressUserConversions=*/false);
2486 }
2487
2488 // Do the resolution.
2489 OverloadCandidateSet::iterator Best;
2490 switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) {
2491 case OR_Success: {
2492 // Got one!
2493 FunctionDecl *FnDecl = Best->Function;
2494 if (S.CheckAllocationAccess(R.getNameLoc(), Range, R.getNamingClass(),
2495 Best->FoundDecl) == Sema::AR_inaccessible)
2496 return true;
2497
2498 Operator = FnDecl;
2499 return false;
2500 }
2501
2502 case OR_No_Viable_Function:
2503 // C++17 [expr.new]p13:
2504 // If no matching function is found and the allocated object type has
2505 // new-extended alignment, the alignment argument is removed from the
2506 // argument list, and overload resolution is performed again.
2507 if (PassAlignment) {
2508 PassAlignment = false;
2509 AlignArg = Args[1];
2510 Args.erase(Args.begin() + 1);
2511 return resolveAllocationOverload(S, R, Range, Args, PassAlignment,
2512 Operator, &Candidates, AlignArg,
2513 Diagnose);
2514 }
2515
2516 // MSVC will fall back on trying to find a matching global operator new
2517 // if operator new[] cannot be found. Also, MSVC will leak by not
2518 // generating a call to operator delete or operator delete[], but we
2519 // will not replicate that bug.
2520 // FIXME: Find out how this interacts with the std::align_val_t fallback
2521 // once MSVC implements it.
2522 if (R.getLookupName().getCXXOverloadedOperator() == OO_Array_New &&
2523 S.Context.getLangOpts().MSVCCompat) {
2524 R.clear();
2525 R.setLookupName(S.Context.DeclarationNames.getCXXOperatorName(OO_New));
2526 S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl());
2527 // FIXME: This will give bad diagnostics pointing at the wrong functions.
2528 return resolveAllocationOverload(S, R, Range, Args, PassAlignment,
2529 Operator, /*Candidates=*/nullptr,
2530 /*AlignArg=*/nullptr, Diagnose);
2531 }
2532
2533 if (Diagnose) {
2534 // If this is an allocation of the form 'new (p) X' for some object
2535 // pointer p (or an expression that will decay to such a pointer),
2536 // diagnose the missing inclusion of <new>.
2537 if (!R.isClassLookup() && Args.size() == 2 &&
2538 (Args[1]->getType()->isObjectPointerType() ||
2539 Args[1]->getType()->isArrayType())) {
2540 S.Diag(R.getNameLoc(), diag::err_need_header_before_placement_new)
2541 << R.getLookupName() << Range;
2542 // Listing the candidates is unlikely to be useful; skip it.
2543 return true;
2544 }
2545
2546 // Finish checking all candidates before we note any. This checking can
2547 // produce additional diagnostics so can't be interleaved with our
2548 // emission of notes.
2549 //
2550 // For an aligned allocation, separately check the aligned and unaligned
2551 // candidates with their respective argument lists.
2552 SmallVector<OverloadCandidate*, 32> Cands;
2553 SmallVector<OverloadCandidate*, 32> AlignedCands;
2554 llvm::SmallVector<Expr*, 4> AlignedArgs;
2555 if (AlignedCandidates) {
2556 auto IsAligned = [](OverloadCandidate &C) {
2557 return C.Function->getNumParams() > 1 &&
2558 C.Function->getParamDecl(1)->getType()->isAlignValT();
2559 };
2560 auto IsUnaligned = [&](OverloadCandidate &C) { return !IsAligned(C); };
2561
2562 AlignedArgs.reserve(Args.size() + 1);
2563 AlignedArgs.push_back(Args[0]);
2564 AlignedArgs.push_back(AlignArg);
2565 AlignedArgs.append(Args.begin() + 1, Args.end());
2566 AlignedCands = AlignedCandidates->CompleteCandidates(
2567 S, OCD_AllCandidates, AlignedArgs, R.getNameLoc(), IsAligned);
2568
2569 Cands = Candidates.CompleteCandidates(S, OCD_AllCandidates, Args,
2570 R.getNameLoc(), IsUnaligned);
2571 } else {
2572 Cands = Candidates.CompleteCandidates(S, OCD_AllCandidates, Args,
2573 R.getNameLoc());
2574 }
2575
2576 S.Diag(R.getNameLoc(), diag::err_ovl_no_viable_function_in_call)
2577 << R.getLookupName() << Range;
2578 if (AlignedCandidates)
2579 AlignedCandidates->NoteCandidates(S, AlignedArgs, AlignedCands, "",
2580 R.getNameLoc());
2581 Candidates.NoteCandidates(S, Args, Cands, "", R.getNameLoc());
2582 }
2583 return true;
2584
2585 case OR_Ambiguous:
2586 if (Diagnose) {
2587 Candidates.NoteCandidates(
2588 PartialDiagnosticAt(R.getNameLoc(),
2589 S.PDiag(diag::err_ovl_ambiguous_call)
2590 << R.getLookupName() << Range),
2591 S, OCD_AmbiguousCandidates, Args);
2592 }
2593 return true;
2594
2595 case OR_Deleted: {
2596 if (Diagnose) {
2597 Candidates.NoteCandidates(
2598 PartialDiagnosticAt(R.getNameLoc(),
2599 S.PDiag(diag::err_ovl_deleted_call)
2600 << R.getLookupName() << Range),
2601 S, OCD_AllCandidates, Args);
2602 }
2603 return true;
2604 }
2605 }
2606 llvm_unreachable("Unreachable, bad result from BestViableFunction")::llvm::llvm_unreachable_internal("Unreachable, bad result from BestViableFunction"
, "clang/lib/Sema/SemaExprCXX.cpp", 2606)
;
2607}
2608
2609bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
2610 AllocationFunctionScope NewScope,
2611 AllocationFunctionScope DeleteScope,
2612 QualType AllocType, bool IsArray,
2613 bool &PassAlignment, MultiExprArg PlaceArgs,
2614 FunctionDecl *&OperatorNew,
2615 FunctionDecl *&OperatorDelete,
2616 bool Diagnose) {
2617 // --- Choosing an allocation function ---
2618 // C++ 5.3.4p8 - 14 & 18
2619 // 1) If looking in AFS_Global scope for allocation functions, only look in
2620 // the global scope. Else, if AFS_Class, only look in the scope of the
2621 // allocated class. If AFS_Both, look in both.
2622 // 2) If an array size is given, look for operator new[], else look for
2623 // operator new.
2624 // 3) The first argument is always size_t. Append the arguments from the
2625 // placement form.
2626
2627 SmallVector<Expr*, 8> AllocArgs;
2628 AllocArgs.reserve((PassAlignment ? 2 : 1) + PlaceArgs.size());
2629
2630 // We don't care about the actual value of these arguments.
2631 // FIXME: Should the Sema create the expression and embed it in the syntax
2632 // tree? Or should the consumer just recalculate the value?
2633 // FIXME: Using a dummy value will interact poorly with attribute enable_if.
2634 IntegerLiteral Size(
2635 Context, llvm::APInt::getZero(Context.getTargetInfo().getPointerWidth(0)),
2636 Context.getSizeType(), SourceLocation());
2637 AllocArgs.push_back(&Size);
2638
2639 QualType AlignValT = Context.VoidTy;
2640 if (PassAlignment) {
2641 DeclareGlobalNewDelete();
2642 AlignValT = Context.getTypeDeclType(getStdAlignValT());
2643 }
2644 CXXScalarValueInitExpr Align(AlignValT, nullptr, SourceLocation());
2645 if (PassAlignment)
2646 AllocArgs.push_back(&Align);
2647
2648 AllocArgs.insert(AllocArgs.end(), PlaceArgs.begin(), PlaceArgs.end());
2649
2650 // C++ [expr.new]p8:
2651 // If the allocated type is a non-array type, the allocation
2652 // function's name is operator new and the deallocation function's
2653 // name is operator delete. If the allocated type is an array
2654 // type, the allocation function's name is operator new[] and the
2655 // deallocation function's name is operator delete[].
2656 DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
2657 IsArray ? OO_Array_New : OO_New);
2658
2659 QualType AllocElemType = Context.getBaseElementType(AllocType);
2660
2661 // Find the allocation function.
2662 {
2663 LookupResult R(*this, NewName, StartLoc, LookupOrdinaryName);
2664
2665 // C++1z [expr.new]p9:
2666 // If the new-expression begins with a unary :: operator, the allocation
2667 // function's name is looked up in the global scope. Otherwise, if the
2668 // allocated type is a class type T or array thereof, the allocation
2669 // function's name is looked up in the scope of T.
2670 if (AllocElemType->isRecordType() && NewScope != AFS_Global)
2671 LookupQualifiedName(R, AllocElemType->getAsCXXRecordDecl());
2672
2673 // We can see ambiguity here if the allocation function is found in
2674 // multiple base classes.
2675 if (R.isAmbiguous())
2676 return true;
2677
2678 // If this lookup fails to find the name, or if the allocated type is not
2679 // a class type, the allocation function's name is looked up in the
2680 // global scope.
2681 if (R.empty()) {
2682 if (NewScope == AFS_Class)
2683 return true;
2684
2685 LookupQualifiedName(R, Context.getTranslationUnitDecl());
2686 }
2687
2688 if (getLangOpts().OpenCLCPlusPlus && R.empty()) {
2689 if (PlaceArgs.empty()) {
2690 Diag(StartLoc, diag::err_openclcxx_not_supported) << "default new";
2691 } else {
2692 Diag(StartLoc, diag::err_openclcxx_placement_new);
2693 }
2694 return true;
2695 }
2696
2697 assert(!R.empty() && "implicitly declared allocation functions not found")(static_cast <bool> (!R.empty() && "implicitly declared allocation functions not found"
) ? void (0) : __assert_fail ("!R.empty() && \"implicitly declared allocation functions not found\""
, "clang/lib/Sema/SemaExprCXX.cpp", 2697, __extension__ __PRETTY_FUNCTION__
))
;
2698 assert(!R.isAmbiguous() && "global allocation functions are ambiguous")(static_cast <bool> (!R.isAmbiguous() && "global allocation functions are ambiguous"
) ? void (0) : __assert_fail ("!R.isAmbiguous() && \"global allocation functions are ambiguous\""
, "clang/lib/Sema/SemaExprCXX.cpp", 2698, __extension__ __PRETTY_FUNCTION__
))
;
2699
2700 // We do our own custom access checks below.
2701 R.suppressDiagnostics();
2702
2703 if (resolveAllocationOverload(*this, R, Range, AllocArgs, PassAlignment,
2704 OperatorNew, /*Candidates=*/nullptr,
2705 /*AlignArg=*/nullptr, Diagnose))
2706 return true;
2707 }
2708
2709 // We don't need an operator delete if we're running under -fno-exceptions.
2710 if (!getLangOpts().Exceptions) {
2711 OperatorDelete = nullptr;
2712 return false;
2713 }
2714
2715 // Note, the name of OperatorNew might have been changed from array to
2716 // non-array by resolveAllocationOverload.
2717 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
2718 OperatorNew->getDeclName().getCXXOverloadedOperator() == OO_Array_New
2719 ? OO_Array_Delete
2720 : OO_Delete);
2721
2722 // C++ [expr.new]p19:
2723 //
2724 // If the new-expression begins with a unary :: operator, the
2725 // deallocation function's name is looked up in the global
2726 // scope. Otherwise, if the allocated type is a class type T or an
2727 // array thereof, the deallocation function's name is looked up in
2728 // the scope of T. If this lookup fails to find the name, or if
2729 // the allocated type is not a class type or array thereof, the
2730 // deallocation function's name is looked up in the global scope.
2731 LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
2732 if (AllocElemType->isRecordType() && DeleteScope != AFS_Global) {
2733 auto *RD =
2734 cast<CXXRecordDecl>(AllocElemType->castAs<RecordType>()->getDecl());
2735 LookupQualifiedName(FoundDelete, RD);
2736 }
2737 if (FoundDelete.isAmbiguous())
2738 return true; // FIXME: clean up expressions?
2739
2740 // Filter out any destroying operator deletes. We can't possibly call such a
2741 // function in this context, because we're handling the case where the object
2742 // was not successfully constructed.
2743 // FIXME: This is not covered by the language rules yet.
2744 {
2745 LookupResult::Filter Filter = FoundDelete.makeFilter();
2746 while (Filter.hasNext()) {
2747 auto *FD = dyn_cast<FunctionDecl>(Filter.next()->getUnderlyingDecl());
2748 if (FD && FD->isDestroyingOperatorDelete())
2749 Filter.erase();
2750 }
2751 Filter.done();
2752 }
2753
2754 bool FoundGlobalDelete = FoundDelete.empty();
2755 if (FoundDelete.empty()) {
2756 FoundDelete.clear(LookupOrdinaryName);
2757
2758 if (DeleteScope == AFS_Class)
2759 return true;
2760
2761 DeclareGlobalNewDelete();
2762 LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
2763 }
2764
2765 FoundDelete.suppressDiagnostics();
2766
2767 SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;
2768
2769 // Whether we're looking for a placement operator delete is dictated
2770 // by whether we selected a placement operator new, not by whether
2771 // we had explicit placement arguments. This matters for things like
2772 // struct A { void *operator new(size_t, int = 0); ... };
2773 // A *a = new A()
2774 //
2775 // We don't have any definition for what a "placement allocation function"
2776 // is, but we assume it's any allocation function whose
2777 // parameter-declaration-clause is anything other than (size_t).
2778 //
2779 // FIXME: Should (size_t, std::align_val_t) also be considered non-placement?
2780 // This affects whether an exception from the constructor of an overaligned
2781 // type uses the sized or non-sized form of aligned operator delete.
2782 bool isPlacementNew = !PlaceArgs.empty() || OperatorNew->param_size() != 1 ||
2783 OperatorNew->isVariadic();
2784
2785 if (isPlacementNew) {
2786 // C++ [expr.new]p20:
2787 // A declaration of a placement deallocation function matches the
2788 // declaration of a placement allocation function if it has the
2789 // same number of parameters and, after parameter transformations
2790 // (8.3.5), all parameter types except the first are
2791 // identical. [...]
2792 //
2793 // To perform this comparison, we compute the function type that
2794 // the deallocation function should have, and use that type both
2795 // for template argument deduction and for comparison purposes.
2796 QualType ExpectedFunctionType;
2797 {
2798 auto *Proto = OperatorNew->getType()->castAs<FunctionProtoType>();
2799
2800 SmallVector<QualType, 4> ArgTypes;
2801 ArgTypes.push_back(Context.VoidPtrTy);
2802 for (unsigned I = 1, N = Proto->getNumParams(); I < N; ++I)
2803 ArgTypes.push_back(Proto->getParamType(I));
2804
2805 FunctionProtoType::ExtProtoInfo EPI;
2806 // FIXME: This is not part of the standard's rule.
2807 EPI.Variadic = Proto->isVariadic();
2808
2809 ExpectedFunctionType
2810 = Context.getFunctionType(Context.VoidTy, ArgTypes, EPI);
2811 }
2812
2813 for (LookupResult::iterator D = FoundDelete.begin(),
2814 DEnd = FoundDelete.end();
2815 D != DEnd; ++D) {
2816 FunctionDecl *Fn = nullptr;
2817 if (FunctionTemplateDecl *FnTmpl =
2818 dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
2819 // Perform template argument deduction to try to match the
2820 // expected function type.
2821 TemplateDeductionInfo Info(StartLoc);
2822 if (DeduceTemplateArguments(FnTmpl, nullptr, ExpectedFunctionType, Fn,
2823 Info))
2824 continue;
2825 } else
2826 Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
2827
2828 if (Context.hasSameType(adjustCCAndNoReturn(Fn->getType(),
2829 ExpectedFunctionType,
2830 /*AdjustExcpetionSpec*/true),
2831 ExpectedFunctionType))
2832 Matches.push_back(std::make_pair(D.getPair(), Fn));
2833 }
2834
2835 if (getLangOpts().CUDA)
2836 EraseUnwantedCUDAMatches(getCurFunctionDecl(/*AllowLambda=*/true),
2837 Matches);
2838 } else {
2839 // C++1y [expr.new]p22:
2840 // For a non-placement allocation function, the normal deallocation
2841 // function lookup is used
2842 //
2843 // Per [expr.delete]p10, this lookup prefers a member operator delete
2844 // without a size_t argument, but prefers a non-member operator delete
2845 // with a size_t where possible (which it always is in this case).
2846 llvm::SmallVector<UsualDeallocFnInfo, 4> BestDeallocFns;
2847 UsualDeallocFnInfo Selected = resolveDeallocationOverload(
2848 *this, FoundDelete, /*WantSize*/ FoundGlobalDelete,
2849 /*WantAlign*/ hasNewExtendedAlignment(*this, AllocElemType),
2850 &BestDeallocFns);
2851 if (Selected)
2852 Matches.push_back(std::make_pair(Selected.Found, Selected.FD));
2853 else {
2854 // If we failed to select an operator, all remaining functions are viable
2855 // but ambiguous.
2856 for (auto Fn : BestDeallocFns)
2857 Matches.push_back(std::make_pair(Fn.Found, Fn.FD));
2858 }
2859 }
2860
2861 // C++ [expr.new]p20:
2862 // [...] If the lookup finds a single matching deallocation
2863 // function, that function will be called; otherwise, no
2864 // deallocation function will be called.
2865 if (Matches.size() == 1) {
2866 OperatorDelete = Matches[0].second;
2867
2868 // C++1z [expr.new]p23:
2869 // If the lookup finds a usual deallocation function (3.7.4.2)
2870 // with a parameter of type std::size_t and that function, considered
2871 // as a placement deallocation function, would have been
2872 // selected as a match for the allocation function, the program
2873 // is ill-formed.
2874 if (getLangOpts().CPlusPlus11 && isPlacementNew &&
2875 isNonPlacementDeallocationFunction(*this, OperatorDelete)) {
2876 UsualDeallocFnInfo Info(*this,
2877 DeclAccessPair::make(OperatorDelete, AS_public));
2878 // Core issue, per mail to core reflector, 2016-10-09:
2879 // If this is a member operator delete, and there is a corresponding
2880 // non-sized member operator delete, this isn't /really/ a sized
2881 // deallocation function, it just happens to have a size_t parameter.
2882 bool IsSizedDelete = Info.HasSizeT;
2883 if (IsSizedDelete && !FoundGlobalDelete) {
2884 auto NonSizedDelete =
2885 resolveDeallocationOverload(*this, FoundDelete, /*WantSize*/false,
2886 /*WantAlign*/Info.HasAlignValT);
2887 if (NonSizedDelete && !NonSizedDelete.HasSizeT &&
2888 NonSizedDelete.HasAlignValT == Info.HasAlignValT)
2889 IsSizedDelete = false;
2890 }
2891
2892 if (IsSizedDelete) {
2893 SourceRange R = PlaceArgs.empty()
2894 ? SourceRange()
2895 : SourceRange(PlaceArgs.front()->getBeginLoc(),
2896 PlaceArgs.back()->getEndLoc());
2897 Diag(StartLoc, diag::err_placement_new_non_placement_delete) << R;
2898 if (!OperatorDelete->isImplicit())
2899 Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
2900 << DeleteName;
2901 }
2902 }
2903
2904 CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
2905 Matches[0].first);
2906 } else if (!Matches.empty()) {
2907 // We found multiple suitable operators. Per [expr.new]p20, that means we
2908 // call no 'operator delete' function, but we should at least warn the user.
2909 // FIXME: Suppress this warning if the construction cannot throw.
2910 Diag(StartLoc, diag::warn_ambiguous_suitable_delete_function_found)
2911 << DeleteName << AllocElemType;
2912
2913 for (auto &Match : Matches)
2914 Diag(Match.second->getLocation(),
2915 diag::note_member_declared_here) << DeleteName;
2916 }
2917
2918 return false;
2919}
2920
2921/// DeclareGlobalNewDelete - Declare the global forms of operator new and
2922/// delete. These are:
2923/// @code
2924/// // C++03:
2925/// void* operator new(std::size_t) throw(std::bad_alloc);
2926/// void* operator new[](std::size_t) throw(std::bad_alloc);
2927/// void operator delete(void *) throw();
2928/// void operator delete[](void *) throw();
2929/// // C++11:
2930/// void* operator new(std::size_t);
2931/// void* operator new[](std::size_t);
2932/// void operator delete(void *) noexcept;
2933/// void operator delete[](void *) noexcept;
2934/// // C++1y:
2935/// void* operator new(std::size_t);
2936/// void* operator new[](std::size_t);
2937/// void operator delete(void *) noexcept;
2938/// void operator delete[](void *) noexcept;
2939/// void operator delete(void *, std::size_t) noexcept;
2940/// void operator delete[](void *, std::size_t) noexcept;
2941/// @endcode
2942/// Note that the placement and nothrow forms of new are *not* implicitly
2943/// declared. Their use requires including \<new\>.
2944void Sema::DeclareGlobalNewDelete() {
2945 if (GlobalNewDeleteDeclared)
2946 return;
2947
2948 // The implicitly declared new and delete operators
2949 // are not supported in OpenCL.
2950 if (getLangOpts().OpenCLCPlusPlus)
2951 return;
2952
2953 // C++ [basic.std.dynamic]p2:
2954 // [...] The following allocation and deallocation functions (18.4) are
2955 // implicitly declared in global scope in each translation unit of a
2956 // program
2957 //
2958 // C++03:
2959 // void* operator new(std::size_t) throw(std::bad_alloc);
2960 // void* operator new[](std::size_t) throw(std::bad_alloc);
2961 // void operator delete(void*) throw();
2962 // void operator delete[](void*) throw();
2963 // C++11:
2964 // void* operator new(std::size_t);
2965 // void* operator new[](std::size_t);
2966 // void operator delete(void*) noexcept;
2967 // void operator delete[](void*) noexcept;
2968 // C++1y:
2969 // void* operator new(std::size_t);
2970 // void* operator new[](std::size_t);
2971 // void operator delete(void*) noexcept;
2972 // void operator delete[](void*) noexcept;
2973 // void operator delete(void*, std::size_t) noexcept;
2974 // void operator delete[](void*, std::size_t) noexcept;
2975 //
2976 // These implicit declarations introduce only the function names operator
2977 // new, operator new[], operator delete, operator delete[].
2978 //
2979 // Here, we need to refer to std::bad_alloc, so we will implicitly declare
2980 // "std" or "bad_alloc" as necessary to form the exception specification.
2981 // However, we do not make these implicit declarations visible to name
2982 // lookup.
2983 if (!StdBadAlloc && !getLangOpts().CPlusPlus11) {
2984 // The "std::bad_alloc" class has not yet been declared, so build it
2985 // implicitly.
2986 StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class,
2987 getOrCreateStdNamespace(),
2988 SourceLocation(), SourceLocation(),
2989 &PP.getIdentifierTable().get("bad_alloc"),
2990 nullptr);
2991 getStdBadAlloc()->setImplicit(true);
2992 }
2993 if (!StdAlignValT && getLangOpts().AlignedAllocation) {
2994 // The "std::align_val_t" enum class has not yet been declared, so build it
2995 // implicitly.
2996 auto *AlignValT = EnumDecl::Create(
2997 Context, getOrCreateStdNamespace(), SourceLocation(), SourceLocation(),
2998 &PP.getIdentifierTable().get("align_val_t"), nullptr, true, true, true);
2999 AlignValT->setIntegerType(Context.getSizeType());
3000 AlignValT->setPromotionType(Context.getSizeType());
3001 AlignValT->setImplicit(true);
3002 StdAlignValT = AlignValT;
3003 }
3004
3005 GlobalNewDeleteDeclared = true;
3006
3007 QualType VoidPtr = Context.getPointerType(Context.VoidTy);
3008 QualType SizeT = Context.getSizeType();
3009
3010 auto DeclareGlobalAllocationFunctions = [&](OverloadedOperatorKind Kind,
3011 QualType Return, QualType Param) {
3012 llvm::SmallVector<QualType, 3> Params;
3013 Params.push_back(Param);
3014
3015 // Create up to four variants of the function (sized/aligned).
3016 bool HasSizedVariant = getLangOpts().SizedDeallocation &&
3017 (Kind == OO_Delete || Kind == OO_Array_Delete);
3018 bool HasAlignedVariant = getLangOpts().AlignedAllocation;
3019
3020 int NumSizeVariants = (HasSizedVariant ? 2 : 1);
3021 int NumAlignVariants = (HasAlignedVariant ? 2 : 1);
3022 for (int Sized = 0; Sized < NumSizeVariants; ++Sized) {
3023 if (Sized)
3024 Params.push_back(SizeT);
3025
3026 for (int Aligned = 0; Aligned < NumAlignVariants; ++Aligned) {
3027 if (Aligned)
3028 Params.push_back(Context.getTypeDeclType(getStdAlignValT()));
3029
3030 DeclareGlobalAllocationFunction(
3031 Context.DeclarationNames.getCXXOperatorName(Kind), Return, Params);
3032
3033 if (Aligned)
3034 Params.pop_back();
3035 }
3036 }
3037 };
3038
3039 DeclareGlobalAllocationFunctions(OO_New, VoidPtr, SizeT);
3040 DeclareGlobalAllocationFunctions(OO_Array_New, VoidPtr, SizeT);
3041 DeclareGlobalAllocationFunctions(OO_Delete, Context.VoidTy, VoidPtr);
3042 DeclareGlobalAllocationFunctions(OO_Array_Delete, Context.VoidTy, VoidPtr);
3043}
3044
3045/// DeclareGlobalAllocationFunction - Declares a single implicit global
3046/// allocation function if it doesn't already exist.
3047void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
3048 QualType Return,
3049 ArrayRef<QualType> Params) {
3050 DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
3051
3052 // Check if this function is already declared.
3053 DeclContext::lookup_result R = GlobalCtx->lookup(Name);
3054 for (DeclContext::lookup_iterator Alloc = R.begin(), AllocEnd = R.end();
3055 Alloc != AllocEnd; ++Alloc) {
3056 // Only look at non-template functions, as it is the predefined,
3057 // non-templated allocation function we are trying to declare here.
3058 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
3059 if (Func->getNumParams() == Params.size()) {
3060 llvm::SmallVector<QualType, 3> FuncParams;
3061 for (auto *P : Func->parameters())
3062 FuncParams.push_back(
3063 Context.getCanonicalType(P->getType().getUnqualifiedType()));
3064 if (llvm::makeArrayRef(FuncParams) == Params) {
3065 // Make the function visible to name lookup, even if we found it in
3066 // an unimported module. It either is an implicitly-declared global
3067 // allocation function, or is suppressing that function.
3068 Func->setVisibleDespiteOwningModule();
3069 return;
3070 }
3071 }
3072 }
3073 }
3074
3075 FunctionProtoType::ExtProtoInfo EPI(Context.getDefaultCallingConvention(
3076 /*IsVariadic=*/false, /*IsCXXMethod=*/false, /*IsBuiltin=*/true));
3077
3078 QualType BadAllocType;
3079 bool HasBadAllocExceptionSpec
3080 = (Name.getCXXOverloadedOperator() == OO_New ||
3081 Name.getCXXOverloadedOperator() == OO_Array_New);
3082 if (HasBadAllocExceptionSpec) {
3083 if (!getLangOpts().CPlusPlus11) {
3084 BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
3085 assert(StdBadAlloc && "Must have std::bad_alloc declared")(static_cast <bool> (StdBadAlloc && "Must have std::bad_alloc declared"
) ? void (0) : __assert_fail ("StdBadAlloc && \"Must have std::bad_alloc declared\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3085, __extension__ __PRETTY_FUNCTION__
))
;
3086 EPI.ExceptionSpec.Type = EST_Dynamic;
3087 EPI.ExceptionSpec.Exceptions = llvm::makeArrayRef(BadAllocType);
3088 }
3089 if (getLangOpts().NewInfallible) {
3090 EPI.ExceptionSpec.Type = EST_DynamicNone;
3091 }
3092 } else {
3093 EPI.ExceptionSpec =
3094 getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone;
3095 }
3096
3097 auto CreateAllocationFunctionDecl = [&](Attr *ExtraAttr) {
3098 QualType FnType = Context.getFunctionType(Return, Params, EPI);
3099 FunctionDecl *Alloc = FunctionDecl::Create(
3100 Context, GlobalCtx, SourceLocation(), SourceLocation(), Name, FnType,
3101 /*TInfo=*/nullptr, SC_None, getCurFPFeatures().isFPConstrained(), false,
3102 true);
3103 Alloc->setImplicit();
3104 // Global allocation functions should always be visible.
3105 Alloc->setVisibleDespiteOwningModule();
3106
3107 if (HasBadAllocExceptionSpec && getLangOpts().NewInfallible)
3108 Alloc->addAttr(
3109 ReturnsNonNullAttr::CreateImplicit(Context, Alloc->getLocation()));
3110
3111 Alloc->addAttr(VisibilityAttr::CreateImplicit(
3112 Context, LangOpts.GlobalAllocationFunctionVisibilityHidden
3113 ? VisibilityAttr::Hidden
3114 : VisibilityAttr::Default));
3115
3116 llvm::SmallVector<ParmVarDecl *, 3> ParamDecls;
3117 for (QualType T : Params) {
3118 ParamDecls.push_back(ParmVarDecl::Create(
3119 Context, Alloc, SourceLocation(), SourceLocation(), nullptr, T,
3120 /*TInfo=*/nullptr, SC_None, nullptr));
3121 ParamDecls.back()->setImplicit();
3122 }
3123 Alloc->setParams(ParamDecls);
3124 if (ExtraAttr)
3125 Alloc->addAttr(ExtraAttr);
3126 AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(Alloc);
3127 Context.getTranslationUnitDecl()->addDecl(Alloc);
3128 IdResolver.tryAddTopLevelDecl(Alloc, Name);
3129 };
3130
3131 if (!LangOpts.CUDA)
3132 CreateAllocationFunctionDecl(nullptr);
3133 else {
3134 // Host and device get their own declaration so each can be
3135 // defined or re-declared independently.
3136 CreateAllocationFunctionDecl(CUDAHostAttr::CreateImplicit(Context));
3137 CreateAllocationFunctionDecl(CUDADeviceAttr::CreateImplicit(Context));
3138 }
3139}
3140
3141FunctionDecl *Sema::FindUsualDeallocationFunction(SourceLocation StartLoc,
3142 bool CanProvideSize,
3143 bool Overaligned,
3144 DeclarationName Name) {
3145 DeclareGlobalNewDelete();
3146
3147 LookupResult FoundDelete(*this, Name, StartLoc, LookupOrdinaryName);
3148 LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
3149
3150 // FIXME: It's possible for this to result in ambiguity, through a
3151 // user-declared variadic operator delete or the enable_if attribute. We
3152 // should probably not consider those cases to be usual deallocation
3153 // functions. But for now we just make an arbitrary choice in that case.
3154 auto Result = resolveDeallocationOverload(*this, FoundDelete, CanProvideSize,
3155 Overaligned);
3156 assert(Result.FD && "operator delete missing from global scope?")(static_cast <bool> (Result.FD && "operator delete missing from global scope?"
) ? void (0) : __assert_fail ("Result.FD && \"operator delete missing from global scope?\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3156, __extension__ __PRETTY_FUNCTION__
))
;
3157 return Result.FD;
3158}
3159
3160FunctionDecl *Sema::FindDeallocationFunctionForDestructor(SourceLocation Loc,
3161 CXXRecordDecl *RD) {
3162 DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Delete);
3163
3164 FunctionDecl *OperatorDelete = nullptr;
3165 if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
3166 return nullptr;
3167 if (OperatorDelete)
3168 return OperatorDelete;
3169
3170 // If there's no class-specific operator delete, look up the global
3171 // non-array delete.
3172 return FindUsualDeallocationFunction(
3173 Loc, true, hasNewExtendedAlignment(*this, Context.getRecordType(RD)),
3174 Name);
3175}
3176
3177bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
3178 DeclarationName Name,
3179 FunctionDecl *&Operator, bool Diagnose) {
3180 LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
3181 // Try to find operator delete/operator delete[] in class scope.
3182 LookupQualifiedName(Found, RD);
3183
3184 if (Found.isAmbiguous())
3185 return true;
3186
3187 Found.suppressDiagnostics();
3188
3189 bool Overaligned = hasNewExtendedAlignment(*this, Context.getRecordType(RD));
3190
3191 // C++17 [expr.delete]p10:
3192 // If the deallocation functions have class scope, the one without a
3193 // parameter of type std::size_t is selected.
3194 llvm::SmallVector<UsualDeallocFnInfo, 4> Matches;
3195 resolveDeallocationOverload(*this, Found, /*WantSize*/ false,
3196 /*WantAlign*/ Overaligned, &Matches);
3197
3198 // If we could find an overload, use it.
3199 if (Matches.size() == 1) {
3200 Operator = cast<CXXMethodDecl>(Matches[0].FD);
3201
3202 // FIXME: DiagnoseUseOfDecl?
3203 if (Operator->isDeleted()) {
3204 if (Diagnose) {
3205 Diag(StartLoc, diag::err_deleted_function_use);
3206 NoteDeletedFunction(Operator);
3207 }
3208 return true;
3209 }
3210
3211 if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
3212 Matches[0].Found, Diagnose) == AR_inaccessible)
3213 return true;
3214
3215 return false;
3216 }
3217
3218 // We found multiple suitable operators; complain about the ambiguity.
3219 // FIXME: The standard doesn't say to do this; it appears that the intent
3220 // is that this should never happen.
3221 if (!Matches.empty()) {
3222 if (Diagnose) {
3223 Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
3224 << Name << RD;
3225 for (auto &Match : Matches)
3226 Diag(Match.FD->getLocation(), diag::note_member_declared_here) << Name;
3227 }
3228 return true;
3229 }
3230
3231 // We did find operator delete/operator delete[] declarations, but
3232 // none of them were suitable.
3233 if (!Found.empty()) {
3234 if (Diagnose) {
3235 Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
3236 << Name << RD;
3237
3238 for (NamedDecl *D : Found)
3239 Diag(D->getUnderlyingDecl()->getLocation(),
3240 diag::note_member_declared_here) << Name;
3241 }
3242 return true;
3243 }
3244
3245 Operator = nullptr;
3246 return false;
3247}
3248
3249namespace {
3250/// Checks whether delete-expression, and new-expression used for
3251/// initializing deletee have the same array form.
3252class MismatchingNewDeleteDetector {
3253public:
3254 enum MismatchResult {
3255 /// Indicates that there is no mismatch or a mismatch cannot be proven.
3256 NoMismatch,
3257 /// Indicates that variable is initialized with mismatching form of \a new.
3258 VarInitMismatches,
3259 /// Indicates that member is initialized with mismatching form of \a new.
3260 MemberInitMismatches,
3261 /// Indicates that 1 or more constructors' definitions could not been
3262 /// analyzed, and they will be checked again at the end of translation unit.
3263 AnalyzeLater
3264 };
3265
3266 /// \param EndOfTU True, if this is the final analysis at the end of
3267 /// translation unit. False, if this is the initial analysis at the point
3268 /// delete-expression was encountered.
3269 explicit MismatchingNewDeleteDetector(bool EndOfTU)
3270 : Field(nullptr), IsArrayForm(false), EndOfTU(EndOfTU),
3271 HasUndefinedConstructors(false) {}
3272
3273 /// Checks whether pointee of a delete-expression is initialized with
3274 /// matching form of new-expression.
3275 ///
3276 /// If return value is \c VarInitMismatches or \c MemberInitMismatches at the
3277 /// point where delete-expression is encountered, then a warning will be
3278 /// issued immediately. If return value is \c AnalyzeLater at the point where
3279 /// delete-expression is seen, then member will be analyzed at the end of
3280 /// translation unit. \c AnalyzeLater is returned iff at least one constructor
3281 /// couldn't be analyzed. If at least one constructor initializes the member
3282 /// with matching type of new, the return value is \c NoMismatch.
3283 MismatchResult analyzeDeleteExpr(const CXXDeleteExpr *DE);
3284 /// Analyzes a class member.
3285 /// \param Field Class member to analyze.
3286 /// \param DeleteWasArrayForm Array form-ness of the delete-expression used
3287 /// for deleting the \p Field.
3288 MismatchResult analyzeField(FieldDecl *Field, bool DeleteWasArrayForm);
3289 FieldDecl *Field;
3290 /// List of mismatching new-expressions used for initialization of the pointee
3291 llvm::SmallVector<const CXXNewExpr *, 4> NewExprs;
3292 /// Indicates whether delete-expression was in array form.
3293 bool IsArrayForm;
3294
3295private:
3296 const bool EndOfTU;
3297 /// Indicates that there is at least one constructor without body.
3298 bool HasUndefinedConstructors;
3299 /// Returns \c CXXNewExpr from given initialization expression.
3300 /// \param E Expression used for initializing pointee in delete-expression.
3301 /// E can be a single-element \c InitListExpr consisting of new-expression.
3302 const CXXNewExpr *getNewExprFromInitListOrExpr(const Expr *E);
3303 /// Returns whether member is initialized with mismatching form of
3304 /// \c new either by the member initializer or in-class initialization.
3305 ///
3306 /// If bodies of all constructors are not visible at the end of translation
3307 /// unit or at least one constructor initializes member with the matching
3308 /// form of \c new, mismatch cannot be proven, and this function will return
3309 /// \c NoMismatch.
3310 MismatchResult analyzeMemberExpr(const MemberExpr *ME);
3311 /// Returns whether variable is initialized with mismatching form of
3312 /// \c new.
3313 ///
3314 /// If variable is initialized with matching form of \c new or variable is not
3315 /// initialized with a \c new expression, this function will return true.
3316 /// If variable is initialized with mismatching form of \c new, returns false.
3317 /// \param D Variable to analyze.
3318 bool hasMatchingVarInit(const DeclRefExpr *D);
3319 /// Checks whether the constructor initializes pointee with mismatching
3320 /// form of \c new.
3321 ///
3322 /// Returns true, if member is initialized with matching form of \c new in
3323 /// member initializer list. Returns false, if member is initialized with the
3324 /// matching form of \c new in this constructor's initializer or given
3325 /// constructor isn't defined at the point where delete-expression is seen, or
3326 /// member isn't initialized by the constructor.
3327 bool hasMatchingNewInCtor(const CXXConstructorDecl *CD);
3328 /// Checks whether member is initialized with matching form of
3329 /// \c new in member initializer list.
3330 bool hasMatchingNewInCtorInit(const CXXCtorInitializer *CI);
3331 /// Checks whether member is initialized with mismatching form of \c new by
3332 /// in-class initializer.
3333 MismatchResult analyzeInClassInitializer();
3334};
3335}
3336
3337MismatchingNewDeleteDetector::MismatchResult
3338MismatchingNewDeleteDetector::analyzeDeleteExpr(const CXXDeleteExpr *DE) {
3339 NewExprs.clear();
3340 assert(DE && "Expected delete-expression")(static_cast <bool> (DE && "Expected delete-expression"
) ? void (0) : __assert_fail ("DE && \"Expected delete-expression\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3340, __extension__ __PRETTY_FUNCTION__
))
;
3341 IsArrayForm = DE->isArrayForm();
3342 const Expr *E = DE->getArgument()->IgnoreParenImpCasts();
3343 if (const MemberExpr *ME = dyn_cast<const MemberExpr>(E)) {
3344 return analyzeMemberExpr(ME);
3345 } else if (const DeclRefExpr *D = dyn_cast<const DeclRefExpr>(E)) {
3346 if (!hasMatchingVarInit(D))
3347 return VarInitMismatches;
3348 }
3349 return NoMismatch;
3350}
3351
3352const CXXNewExpr *
3353MismatchingNewDeleteDetector::getNewExprFromInitListOrExpr(const Expr *E) {
3354 assert(E != nullptr && "Expected a valid initializer expression")(static_cast <bool> (E != nullptr && "Expected a valid initializer expression"
) ? void (0) : __assert_fail ("E != nullptr && \"Expected a valid initializer expression\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3354, __extension__ __PRETTY_FUNCTION__
))
;
3355 E = E->IgnoreParenImpCasts();
3356 if (const InitListExpr *ILE = dyn_cast<const InitListExpr>(E)) {
3357 if (ILE->getNumInits() == 1)
3358 E = dyn_cast<const CXXNewExpr>(ILE->getInit(0)->IgnoreParenImpCasts());
3359 }
3360
3361 return dyn_cast_or_null<const CXXNewExpr>(E);
3362}
3363
3364bool MismatchingNewDeleteDetector::hasMatchingNewInCtorInit(
3365 const CXXCtorInitializer *CI) {
3366 const CXXNewExpr *NE = nullptr;
3367 if (Field == CI->getMember() &&
3368 (NE = getNewExprFromInitListOrExpr(CI->getInit()))) {
3369 if (NE->isArray() == IsArrayForm)
3370 return true;
3371 else
3372 NewExprs.push_back(NE);
3373 }
3374 return false;
3375}
3376
3377bool MismatchingNewDeleteDetector::hasMatchingNewInCtor(
3378 const CXXConstructorDecl *CD) {
3379 if (CD->isImplicit())
3380 return false;
3381 const FunctionDecl *Definition = CD;
3382 if (!CD->isThisDeclarationADefinition() && !CD->isDefined(Definition)) {
3383 HasUndefinedConstructors = true;
3384 return EndOfTU;
3385 }
3386 for (const auto *CI : cast<const CXXConstructorDecl>(Definition)->inits()) {
3387 if (hasMatchingNewInCtorInit(CI))
3388 return true;
3389 }
3390 return false;
3391}
3392
3393MismatchingNewDeleteDetector::MismatchResult
3394MismatchingNewDeleteDetector::analyzeInClassInitializer() {
3395 assert(Field != nullptr && "This should be called only for members")(static_cast <bool> (Field != nullptr && "This should be called only for members"
) ? void (0) : __assert_fail ("Field != nullptr && \"This should be called only for members\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3395, __extension__ __PRETTY_FUNCTION__
))
;
3396 const Expr *InitExpr = Field->getInClassInitializer();
3397 if (!InitExpr)
3398 return EndOfTU ? NoMismatch : AnalyzeLater;
3399 if (const CXXNewExpr *NE = getNewExprFromInitListOrExpr(InitExpr)) {
3400 if (NE->isArray() != IsArrayForm) {
3401 NewExprs.push_back(NE);
3402 return MemberInitMismatches;
3403 }
3404 }
3405 return NoMismatch;
3406}
3407
3408MismatchingNewDeleteDetector::MismatchResult
3409MismatchingNewDeleteDetector::analyzeField(FieldDecl *Field,
3410 bool DeleteWasArrayForm) {
3411 assert(Field != nullptr && "Analysis requires a valid class member.")(static_cast <bool> (Field != nullptr && "Analysis requires a valid class member."
) ? void (0) : __assert_fail ("Field != nullptr && \"Analysis requires a valid class member.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3411, __extension__ __PRETTY_FUNCTION__
))
;
3412 this->Field = Field;
3413 IsArrayForm = DeleteWasArrayForm;
3414 const CXXRecordDecl *RD = cast<const CXXRecordDecl>(Field->getParent());
3415 for (const auto *CD : RD->ctors()) {
3416 if (hasMatchingNewInCtor(CD))
3417 return NoMismatch;
3418 }
3419 if (HasUndefinedConstructors)
3420 return EndOfTU ? NoMismatch : AnalyzeLater;
3421 if (!NewExprs.empty())
3422 return MemberInitMismatches;
3423 return Field->hasInClassInitializer() ? analyzeInClassInitializer()
3424 : NoMismatch;
3425}
3426
3427MismatchingNewDeleteDetector::MismatchResult
3428MismatchingNewDeleteDetector::analyzeMemberExpr(const MemberExpr *ME) {
3429 assert(ME != nullptr && "Expected a member expression")(static_cast <bool> (ME != nullptr && "Expected a member expression"
) ? void (0) : __assert_fail ("ME != nullptr && \"Expected a member expression\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3429, __extension__ __PRETTY_FUNCTION__
))
;
3430 if (FieldDecl *F = dyn_cast<FieldDecl>(ME->getMemberDecl()))
3431 return analyzeField(F, IsArrayForm);
3432 return NoMismatch;
3433}
3434
3435bool MismatchingNewDeleteDetector::hasMatchingVarInit(const DeclRefExpr *D) {
3436 const CXXNewExpr *NE = nullptr;
3437 if (const VarDecl *VD = dyn_cast<const VarDecl>(D->getDecl())) {
3438 if (VD->hasInit() && (NE = getNewExprFromInitListOrExpr(VD->getInit())) &&
3439 NE->isArray() != IsArrayForm) {
3440 NewExprs.push_back(NE);
3441 }
3442 }
3443 return NewExprs.empty();
3444}
3445
3446static void
3447DiagnoseMismatchedNewDelete(Sema &SemaRef, SourceLocation DeleteLoc,
3448 const MismatchingNewDeleteDetector &Detector) {
3449 SourceLocation EndOfDelete = SemaRef.getLocForEndOfToken(DeleteLoc);
3450 FixItHint H;
3451 if (!Detector.IsArrayForm)
3452 H = FixItHint::CreateInsertion(EndOfDelete, "[]");
3453 else {
3454 SourceLocation RSquare = Lexer::findLocationAfterToken(
3455 DeleteLoc, tok::l_square, SemaRef.getSourceManager(),
3456 SemaRef.getLangOpts(), true);
3457 if (RSquare.isValid())
3458 H = FixItHint::CreateRemoval(SourceRange(EndOfDelete, RSquare));
3459 }
3460 SemaRef.Diag(DeleteLoc, diag::warn_mismatched_delete_new)
3461 << Detector.IsArrayForm << H;
3462
3463 for (const auto *NE : Detector.NewExprs)
3464 SemaRef.Diag(NE->getExprLoc(), diag::note_allocated_here)
3465 << Detector.IsArrayForm;
3466}
3467
3468void Sema::AnalyzeDeleteExprMismatch(const CXXDeleteExpr *DE) {
3469 if (Diags.isIgnored(diag::warn_mismatched_delete_new, SourceLocation()))
3470 return;
3471 MismatchingNewDeleteDetector Detector(/*EndOfTU=*/false);
3472 switch (Detector.analyzeDeleteExpr(DE)) {
3473 case MismatchingNewDeleteDetector::VarInitMismatches:
3474 case MismatchingNewDeleteDetector::MemberInitMismatches: {
3475 DiagnoseMismatchedNewDelete(*this, DE->getBeginLoc(), Detector);
3476 break;
3477 }
3478 case MismatchingNewDeleteDetector::AnalyzeLater: {
3479 DeleteExprs[Detector.Field].push_back(
3480 std::make_pair(DE->getBeginLoc(), DE->isArrayForm()));
3481 break;
3482 }
3483 case MismatchingNewDeleteDetector::NoMismatch:
3484 break;
3485 }
3486}
3487
3488void Sema::AnalyzeDeleteExprMismatch(FieldDecl *Field, SourceLocation DeleteLoc,
3489 bool DeleteWasArrayForm) {
3490 MismatchingNewDeleteDetector Detector(/*EndOfTU=*/true);
3491 switch (Detector.analyzeField(Field, DeleteWasArrayForm)) {
3492 case MismatchingNewDeleteDetector::VarInitMismatches:
3493 llvm_unreachable("This analysis should have been done for class members.")::llvm::llvm_unreachable_internal("This analysis should have been done for class members."
, "clang/lib/Sema/SemaExprCXX.cpp", 3493)
;
3494 case MismatchingNewDeleteDetector::AnalyzeLater:
3495 llvm_unreachable("Analysis cannot be postponed any point beyond end of "::llvm::llvm_unreachable_internal("Analysis cannot be postponed any point beyond end of "
"translation unit.", "clang/lib/Sema/SemaExprCXX.cpp", 3496)
3496 "translation unit.")::llvm::llvm_unreachable_internal("Analysis cannot be postponed any point beyond end of "
"translation unit.", "clang/lib/Sema/SemaExprCXX.cpp", 3496)
;
3497 case MismatchingNewDeleteDetector::MemberInitMismatches:
3498 DiagnoseMismatchedNewDelete(*this, DeleteLoc, Detector);
3499 break;
3500 case MismatchingNewDeleteDetector::NoMismatch:
3501 break;
3502 }
3503}
3504
3505/// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
3506/// @code ::delete ptr; @endcode
3507/// or
3508/// @code delete [] ptr; @endcode
3509ExprResult
3510Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
3511 bool ArrayForm, Expr *ExE) {
3512 // C++ [expr.delete]p1:
3513 // The operand shall have a pointer type, or a class type having a single
3514 // non-explicit conversion function to a pointer type. The result has type
3515 // void.
3516 //
3517 // DR599 amends "pointer type" to "pointer to object type" in both cases.
3518
3519 ExprResult Ex = ExE;
3520 FunctionDecl *OperatorDelete = nullptr;
3521 bool ArrayFormAsWritten = ArrayForm;
3522 bool UsualArrayDeleteWantsSize = false;
3523
3524 if (!Ex.get()->isTypeDependent()) {
3525 // Perform lvalue-to-rvalue cast, if needed.
3526 Ex = DefaultLvalueConversion(Ex.get());
3527 if (Ex.isInvalid())
3528 return ExprError();
3529
3530 QualType Type = Ex.get()->getType();
3531
3532 class DeleteConverter : public ContextualImplicitConverter {
3533 public:
3534 DeleteConverter() : ContextualImplicitConverter(false, true) {}
3535
3536 bool match(QualType ConvType) override {
3537 // FIXME: If we have an operator T* and an operator void*, we must pick
3538 // the operator T*.
3539 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
3540 if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
3541 return true;
3542 return false;
3543 }
3544
3545 SemaDiagnosticBuilder diagnoseNoMatch(Sema &S, SourceLocation Loc,
3546 QualType T) override {
3547 return S.Diag(Loc, diag::err_delete_operand) << T;
3548 }
3549
3550 SemaDiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc,
3551 QualType T) override {
3552 return S.Diag(Loc, diag::err_delete_incomplete_class_type) << T;
3553 }
3554
3555 SemaDiagnosticBuilder diagnoseExplicitConv(Sema &S, SourceLocation Loc,
3556 QualType T,
3557 QualType ConvTy) override {
3558 return S.Diag(Loc, diag::err_delete_explicit_conversion) << T << ConvTy;
3559 }
3560
3561 SemaDiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv,
3562 QualType ConvTy) override {
3563 return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
3564 << ConvTy;
3565 }
3566
3567 SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
3568 QualType T) override {
3569 return S.Diag(Loc, diag::err_ambiguous_delete_operand) << T;
3570 }
3571
3572 SemaDiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv,
3573 QualType ConvTy) override {
3574 return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
3575 << ConvTy;
3576 }
3577
3578 SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
3579 QualType T,
3580 QualType ConvTy) override {
3581 llvm_unreachable("conversion functions are permitted")::llvm::llvm_unreachable_internal("conversion functions are permitted"
, "clang/lib/Sema/SemaExprCXX.cpp", 3581)
;
3582 }
3583 } Converter;
3584
3585 Ex = PerformContextualImplicitConversion(StartLoc, Ex.get(), Converter);
3586 if (Ex.isInvalid())
3587 return ExprError();
3588 Type = Ex.get()->getType();
3589 if (!Converter.match(Type))
3590 // FIXME: PerformContextualImplicitConversion should return ExprError
3591 // itself in this case.
3592 return ExprError();
3593
3594 QualType Pointee = Type->castAs<PointerType>()->getPointeeType();
3595 QualType PointeeElem = Context.getBaseElementType(Pointee);
3596
3597 if (Pointee.getAddressSpace() != LangAS::Default &&
3598 !getLangOpts().OpenCLCPlusPlus)
3599 return Diag(Ex.get()->getBeginLoc(),
3600 diag::err_address_space_qualified_delete)
3601 << Pointee.getUnqualifiedType()
3602 << Pointee.getQualifiers().getAddressSpaceAttributePrintValue();
3603
3604 CXXRecordDecl *PointeeRD = nullptr;
3605 if (Pointee->isVoidType() && !isSFINAEContext()) {
3606 // The C++ standard bans deleting a pointer to a non-object type, which
3607 // effectively bans deletion of "void*". However, most compilers support
3608 // this, so we treat it as a warning unless we're in a SFINAE context.
3609 Diag(StartLoc, diag::ext_delete_void_ptr_operand)
3610 << Type << Ex.get()->getSourceRange();
3611 } else if (Pointee->isFunctionType() || Pointee->isVoidType() ||
3612 Pointee->isSizelessType()) {
3613 return ExprError(Diag(StartLoc, diag::err_delete_operand)
3614 << Type << Ex.get()->getSourceRange());
3615 } else if (!Pointee->isDependentType()) {
3616 // FIXME: This can result in errors if the definition was imported from a
3617 // module but is hidden.
3618 if (!RequireCompleteType(StartLoc, Pointee,
3619 diag::warn_delete_incomplete, Ex.get())) {
3620 if (const RecordType *RT = PointeeElem->getAs<RecordType>())
3621 PointeeRD = cast<CXXRecordDecl>(RT->getDecl());
3622 }
3623 }
3624
3625 if (Pointee->isArrayType() && !ArrayForm) {
3626 Diag(StartLoc, diag::warn_delete_array_type)
3627 << Type << Ex.get()->getSourceRange()
3628 << FixItHint::CreateInsertion(getLocForEndOfToken(StartLoc), "[]");
3629 ArrayForm = true;
3630 }
3631
3632 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
3633 ArrayForm ? OO_Array_Delete : OO_Delete);
3634
3635 if (PointeeRD) {
3636 if (!UseGlobal &&
3637 FindDeallocationFunction(StartLoc, PointeeRD, DeleteName,
3638 OperatorDelete))
3639 return ExprError();
3640
3641 // If we're allocating an array of records, check whether the
3642 // usual operator delete[] has a size_t parameter.
3643 if (ArrayForm) {
3644 // If the user specifically asked to use the global allocator,
3645 // we'll need to do the lookup into the class.
3646 if (UseGlobal)
3647 UsualArrayDeleteWantsSize =
3648 doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem);
3649
3650 // Otherwise, the usual operator delete[] should be the
3651 // function we just found.
3652 else if (OperatorDelete && isa<CXXMethodDecl>(OperatorDelete))
3653 UsualArrayDeleteWantsSize =
3654 UsualDeallocFnInfo(*this,
3655 DeclAccessPair::make(OperatorDelete, AS_public))
3656 .HasSizeT;
3657 }
3658
3659 if (!PointeeRD->hasIrrelevantDestructor())
3660 if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
3661 MarkFunctionReferenced(StartLoc,
3662 const_cast<CXXDestructorDecl*>(Dtor));
3663 if (DiagnoseUseOfDecl(Dtor, StartLoc))
3664 return ExprError();
3665 }
3666
3667 CheckVirtualDtorCall(PointeeRD->getDestructor(), StartLoc,
3668 /*IsDelete=*/true, /*CallCanBeVirtual=*/true,
3669 /*WarnOnNonAbstractTypes=*/!ArrayForm,
3670 SourceLocation());
3671 }
3672
3673 if (!OperatorDelete) {
3674 if (getLangOpts().OpenCLCPlusPlus) {
3675 Diag(StartLoc, diag::err_openclcxx_not_supported) << "default delete";
3676 return ExprError();
3677 }
3678
3679 bool IsComplete = isCompleteType(StartLoc, Pointee);
3680 bool CanProvideSize =
3681 IsComplete && (!ArrayForm || UsualArrayDeleteWantsSize ||
3682 Pointee.isDestructedType());
3683 bool Overaligned = hasNewExtendedAlignment(*this, Pointee);
3684
3685 // Look for a global declaration.
3686 OperatorDelete = FindUsualDeallocationFunction(StartLoc, CanProvideSize,
3687 Overaligned, DeleteName);
3688 }
3689
3690 MarkFunctionReferenced(StartLoc, OperatorDelete);
3691
3692 // Check access and ambiguity of destructor if we're going to call it.
3693 // Note that this is required even for a virtual delete.
3694 bool IsVirtualDelete = false;
3695 if (PointeeRD) {
3696 if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
3697 CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor,
3698 PDiag(diag::err_access_dtor) << PointeeElem);
3699 IsVirtualDelete = Dtor->isVirtual();
3700 }
3701 }
3702
3703 DiagnoseUseOfDecl(OperatorDelete, StartLoc);
3704
3705 // Convert the operand to the type of the first parameter of operator
3706 // delete. This is only necessary if we selected a destroying operator
3707 // delete that we are going to call (non-virtually); converting to void*
3708 // is trivial and left to AST consumers to handle.
3709 QualType ParamType = OperatorDelete->getParamDecl(0)->getType();
3710 if (!IsVirtualDelete && !ParamType->getPointeeType()->isVoidType()) {
3711 Qualifiers Qs = Pointee.getQualifiers();
3712 if (Qs.hasCVRQualifiers()) {
3713 // Qualifiers are irrelevant to this conversion; we're only looking
3714 // for access and ambiguity.
3715 Qs.removeCVRQualifiers();
3716 QualType Unqual = Context.getPointerType(
3717 Context.getQualifiedType(Pointee.getUnqualifiedType(), Qs));
3718 Ex = ImpCastExprToType(Ex.get(), Unqual, CK_NoOp);
3719 }
3720 Ex = PerformImplicitConversion(Ex.get(), ParamType, AA_Passing);
3721 if (Ex.isInvalid())
3722 return ExprError();
3723 }
3724 }
3725
3726 CXXDeleteExpr *Result = new (Context) CXXDeleteExpr(
3727 Context.VoidTy, UseGlobal, ArrayForm, ArrayFormAsWritten,
3728 UsualArrayDeleteWantsSize, OperatorDelete, Ex.get(), StartLoc);
3729 AnalyzeDeleteExprMismatch(Result);
3730 return Result;
3731}
3732
3733static bool resolveBuiltinNewDeleteOverload(Sema &S, CallExpr *TheCall,
3734 bool IsDelete,
3735 FunctionDecl *&Operator) {
3736
3737 DeclarationName NewName = S.Context.DeclarationNames.getCXXOperatorName(
3738 IsDelete ? OO_Delete : OO_New);
3739
3740 LookupResult R(S, NewName, TheCall->getBeginLoc(), Sema::LookupOrdinaryName);
3741 S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl());
3742 assert(!R.empty() && "implicitly declared allocation functions not found")(static_cast <bool> (!R.empty() && "implicitly declared allocation functions not found"
) ? void (0) : __assert_fail ("!R.empty() && \"implicitly declared allocation functions not found\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3742, __extension__ __PRETTY_FUNCTION__
))
;
3743 assert(!R.isAmbiguous() && "global allocation functions are ambiguous")(static_cast <bool> (!R.isAmbiguous() && "global allocation functions are ambiguous"
) ? void (0) : __assert_fail ("!R.isAmbiguous() && \"global allocation functions are ambiguous\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3743, __extension__ __PRETTY_FUNCTION__
))
;
3744
3745 // We do our own custom access checks below.
3746 R.suppressDiagnostics();
3747
3748 SmallVector<Expr *, 8> Args(TheCall->arguments());
3749 OverloadCandidateSet Candidates(R.getNameLoc(),
3750 OverloadCandidateSet::CSK_Normal);
3751 for (LookupResult::iterator FnOvl = R.begin(), FnOvlEnd = R.end();
3752 FnOvl != FnOvlEnd; ++FnOvl) {
3753 // Even member operator new/delete are implicitly treated as
3754 // static, so don't use AddMemberCandidate.
3755 NamedDecl *D = (*FnOvl)->getUnderlyingDecl();
3756
3757 if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
3758 S.AddTemplateOverloadCandidate(FnTemplate, FnOvl.getPair(),
3759 /*ExplicitTemplateArgs=*/nullptr, Args,
3760 Candidates,
3761 /*SuppressUserConversions=*/false);
3762 continue;
3763 }
3764
3765 FunctionDecl *Fn = cast<FunctionDecl>(D);
3766 S.AddOverloadCandidate(Fn, FnOvl.getPair(), Args, Candidates,
3767 /*SuppressUserConversions=*/false);
3768 }
3769
3770 SourceRange Range = TheCall->getSourceRange();
3771
3772 // Do the resolution.
3773 OverloadCandidateSet::iterator Best;
3774 switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) {
3775 case OR_Success: {
3776 // Got one!
3777 FunctionDecl *FnDecl = Best->Function;
3778 assert(R.getNamingClass() == nullptr &&(static_cast <bool> (R.getNamingClass() == nullptr &&
"class members should not be considered") ? void (0) : __assert_fail
("R.getNamingClass() == nullptr && \"class members should not be considered\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3779, __extension__ __PRETTY_FUNCTION__
))
3779 "class members should not be considered")(static_cast <bool> (R.getNamingClass() == nullptr &&
"class members should not be considered") ? void (0) : __assert_fail
("R.getNamingClass() == nullptr && \"class members should not be considered\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3779, __extension__ __PRETTY_FUNCTION__
))
;
3780
3781 if (!FnDecl->isReplaceableGlobalAllocationFunction()) {
3782 S.Diag(R.getNameLoc(), diag::err_builtin_operator_new_delete_not_usual)
3783 << (IsDelete ? 1 : 0) << Range;
3784 S.Diag(FnDecl->getLocation(), diag::note_non_usual_function_declared_here)
3785 << R.getLookupName() << FnDecl->getSourceRange();
3786 return true;
3787 }
3788
3789 Operator = FnDecl;
3790 return false;
3791 }
3792
3793 case OR_No_Viable_Function:
3794 Candidates.NoteCandidates(
3795 PartialDiagnosticAt(R.getNameLoc(),
3796 S.PDiag(diag::err_ovl_no_viable_function_in_call)
3797 << R.getLookupName() << Range),
3798 S, OCD_AllCandidates, Args);
3799 return true;
3800
3801 case OR_Ambiguous:
3802 Candidates.NoteCandidates(
3803 PartialDiagnosticAt(R.getNameLoc(),
3804 S.PDiag(diag::err_ovl_ambiguous_call)
3805 << R.getLookupName() << Range),
3806 S, OCD_AmbiguousCandidates, Args);
3807 return true;
3808
3809 case OR_Deleted: {
3810 Candidates.NoteCandidates(
3811 PartialDiagnosticAt(R.getNameLoc(), S.PDiag(diag::err_ovl_deleted_call)
3812 << R.getLookupName() << Range),
3813 S, OCD_AllCandidates, Args);
3814 return true;
3815 }
3816 }
3817 llvm_unreachable("Unreachable, bad result from BestViableFunction")::llvm::llvm_unreachable_internal("Unreachable, bad result from BestViableFunction"
, "clang/lib/Sema/SemaExprCXX.cpp", 3817)
;
3818}
3819
3820ExprResult
3821Sema::SemaBuiltinOperatorNewDeleteOverloaded(ExprResult TheCallResult,
3822 bool IsDelete) {
3823 CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
3824 if (!getLangOpts().CPlusPlus) {
3825 Diag(TheCall->getExprLoc(), diag::err_builtin_requires_language)
3826 << (IsDelete ? "__builtin_operator_delete" : "__builtin_operator_new")
3827 << "C++";
3828 return ExprError();
3829 }
3830 // CodeGen assumes it can find the global new and delete to call,
3831 // so ensure that they are declared.
3832 DeclareGlobalNewDelete();
3833
3834 FunctionDecl *OperatorNewOrDelete = nullptr;
3835 if (resolveBuiltinNewDeleteOverload(*this, TheCall, IsDelete,
3836 OperatorNewOrDelete))
3837 return ExprError();
3838 assert(OperatorNewOrDelete && "should be found")(static_cast <bool> (OperatorNewOrDelete && "should be found"
) ? void (0) : __assert_fail ("OperatorNewOrDelete && \"should be found\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3838, __extension__ __PRETTY_FUNCTION__
))
;
3839
3840 DiagnoseUseOfDecl(OperatorNewOrDelete, TheCall->getExprLoc());
3841 MarkFunctionReferenced(TheCall->getExprLoc(), OperatorNewOrDelete);
3842
3843 TheCall->setType(OperatorNewOrDelete->getReturnType());
3844 for (unsigned i = 0; i != TheCall->getNumArgs(); ++i) {
3845 QualType ParamTy = OperatorNewOrDelete->getParamDecl(i)->getType();
3846 InitializedEntity Entity =
3847 InitializedEntity::InitializeParameter(Context, ParamTy, false);
3848 ExprResult Arg = PerformCopyInitialization(
3849 Entity, TheCall->getArg(i)->getBeginLoc(), TheCall->getArg(i));
3850 if (Arg.isInvalid())
3851 return ExprError();
3852 TheCall->setArg(i, Arg.get());
3853 }
3854 auto Callee = dyn_cast<ImplicitCastExpr>(TheCall->getCallee());
3855 assert(Callee && Callee->getCastKind() == CK_BuiltinFnToFnPtr &&(static_cast <bool> (Callee && Callee->getCastKind
() == CK_BuiltinFnToFnPtr && "Callee expected to be implicit cast to a builtin function pointer"
) ? void (0) : __assert_fail ("Callee && Callee->getCastKind() == CK_BuiltinFnToFnPtr && \"Callee expected to be implicit cast to a builtin function pointer\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3856, __extension__ __PRETTY_FUNCTION__
))
3856 "Callee expected to be implicit cast to a builtin function pointer")(static_cast <bool> (Callee && Callee->getCastKind
() == CK_BuiltinFnToFnPtr && "Callee expected to be implicit cast to a builtin function pointer"
) ? void (0) : __assert_fail ("Callee && Callee->getCastKind() == CK_BuiltinFnToFnPtr && \"Callee expected to be implicit cast to a builtin function pointer\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3856, __extension__ __PRETTY_FUNCTION__
))
;
3857 Callee->setType(OperatorNewOrDelete->getType());
3858
3859 return TheCallResult;
3860}
3861
3862void Sema::CheckVirtualDtorCall(CXXDestructorDecl *dtor, SourceLocation Loc,
3863 bool IsDelete, bool CallCanBeVirtual,
3864 bool WarnOnNonAbstractTypes,
3865 SourceLocation DtorLoc) {
3866 if (!dtor || dtor->isVirtual() || !CallCanBeVirtual || isUnevaluatedContext())
3867 return;
3868
3869 // C++ [expr.delete]p3:
3870 // In the first alternative (delete object), if the static type of the
3871 // object to be deleted is different from its dynamic type, the static
3872 // type shall be a base class of the dynamic type of the object to be
3873 // deleted and the static type shall have a virtual destructor or the
3874 // behavior is undefined.
3875 //
3876 const CXXRecordDecl *PointeeRD = dtor->getParent();
3877 // Note: a final class cannot be derived from, no issue there
3878 if (!PointeeRD->isPolymorphic() || PointeeRD->hasAttr<FinalAttr>())
3879 return;
3880
3881 // If the superclass is in a system header, there's nothing that can be done.
3882 // The `delete` (where we emit the warning) can be in a system header,
3883 // what matters for this warning is where the deleted type is defined.
3884 if (getSourceManager().isInSystemHeader(PointeeRD->getLocation()))
3885 return;
3886
3887 QualType ClassType = dtor->getThisType()->getPointeeType();
3888 if (PointeeRD->isAbstract()) {
3889 // If the class is abstract, we warn by default, because we're
3890 // sure the code has undefined behavior.
3891 Diag(Loc, diag::warn_delete_abstract_non_virtual_dtor) << (IsDelete ? 0 : 1)
3892 << ClassType;
3893 } else if (WarnOnNonAbstractTypes) {
3894 // Otherwise, if this is not an array delete, it's a bit suspect,
3895 // but not necessarily wrong.
3896 Diag(Loc, diag::warn_delete_non_virtual_dtor) << (IsDelete ? 0 : 1)
3897 << ClassType;
3898 }
3899 if (!IsDelete) {
3900 std::string TypeStr;
3901 ClassType.getAsStringInternal(TypeStr, getPrintingPolicy());
3902 Diag(DtorLoc, diag::note_delete_non_virtual)
3903 << FixItHint::CreateInsertion(DtorLoc, TypeStr + "::");
3904 }
3905}
3906
3907Sema::ConditionResult Sema::ActOnConditionVariable(Decl *ConditionVar,
3908 SourceLocation StmtLoc,
3909 ConditionKind CK) {
3910 ExprResult E =
3911 CheckConditionVariable(cast<VarDecl>(ConditionVar), StmtLoc, CK);
3912 if (E.isInvalid())
3913 return ConditionError();
3914 return ConditionResult(*this, ConditionVar, MakeFullExpr(E.get(), StmtLoc),
3915 CK == ConditionKind::ConstexprIf);
3916}
3917
3918/// Check the use of the given variable as a C++ condition in an if,
3919/// while, do-while, or switch statement.
3920ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
3921 SourceLocation StmtLoc,
3922 ConditionKind CK) {
3923 if (ConditionVar->isInvalidDecl())
3924 return ExprError();
3925
3926 QualType T = ConditionVar->getType();
3927
3928 // C++ [stmt.select]p2:
3929 // The declarator shall not specify a function or an array.
3930 if (T->isFunctionType())
3931 return ExprError(Diag(ConditionVar->getLocation(),
3932 diag::err_invalid_use_of_function_type)
3933 << ConditionVar->getSourceRange());
3934 else if (T->isArrayType())
3935 return ExprError(Diag(ConditionVar->getLocation(),
3936 diag::err_invalid_use_of_array_type)
3937 << ConditionVar->getSourceRange());
3938
3939 ExprResult Condition = BuildDeclRefExpr(
3940 ConditionVar, ConditionVar->getType().getNonReferenceType(), VK_LValue,
3941 ConditionVar->getLocation());
3942
3943 switch (CK) {
3944 case ConditionKind::Boolean:
3945 return CheckBooleanCondition(StmtLoc, Condition.get());
3946
3947 case ConditionKind::ConstexprIf:
3948 return CheckBooleanCondition(StmtLoc, Condition.get(), true);
3949
3950 case ConditionKind::Switch:
3951 return CheckSwitchCondition(StmtLoc, Condition.get());
3952 }
3953
3954 llvm_unreachable("unexpected condition kind")::llvm::llvm_unreachable_internal("unexpected condition kind"
, "clang/lib/Sema/SemaExprCXX.cpp", 3954)
;
3955}
3956
3957/// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
3958ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr, bool IsConstexpr) {
3959 // C++11 6.4p4:
3960 // The value of a condition that is an initialized declaration in a statement
3961 // other than a switch statement is the value of the declared variable
3962 // implicitly converted to type bool. If that conversion is ill-formed, the
3963 // program is ill-formed.
3964 // The value of a condition that is an expression is the value of the
3965 // expression, implicitly converted to bool.
3966 //
3967 // C++2b 8.5.2p2
3968 // If the if statement is of the form if constexpr, the value of the condition
3969 // is contextually converted to bool and the converted expression shall be
3970 // a constant expression.
3971 //
3972
3973 ExprResult E = PerformContextuallyConvertToBool(CondExpr);
3974 if (!IsConstexpr || E.isInvalid() || E.get()->isValueDependent())
3975 return E;
3976
3977 // FIXME: Return this value to the caller so they don't need to recompute it.
3978 llvm::APSInt Cond;
3979 E = VerifyIntegerConstantExpression(
3980 E.get(), &Cond,
3981 diag::err_constexpr_if_condition_expression_is_not_constant);
3982 return E;
3983}
3984
3985/// Helper function to determine whether this is the (deprecated) C++
3986/// conversion from a string literal to a pointer to non-const char or
3987/// non-const wchar_t (for narrow and wide string literals,
3988/// respectively).
3989bool
3990Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
3991 // Look inside the implicit cast, if it exists.
3992 if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
3993 From = Cast->getSubExpr();
3994
3995 // A string literal (2.13.4) that is not a wide string literal can
3996 // be converted to an rvalue of type "pointer to char"; a wide
3997 // string literal can be converted to an rvalue of type "pointer
3998 // to wchar_t" (C++ 4.2p2).
3999 if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
4000 if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
4001 if (const BuiltinType *ToPointeeType
4002 = ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
4003 // This conversion is considered only when there is an
4004 // explicit appropriate pointer target type (C++ 4.2p2).
4005 if (!ToPtrType->getPointeeType().hasQualifiers()) {
4006 switch (StrLit->getKind()) {
4007 case StringLiteral::UTF8:
4008 case StringLiteral::UTF16:
4009 case StringLiteral::UTF32:
4010 // We don't allow UTF literals to be implicitly converted
4011 break;
4012 case StringLiteral::Ordinary:
4013 return (ToPointeeType->getKind() == BuiltinType::Char_U ||
4014 ToPointeeType->getKind() == BuiltinType::Char_S);
4015 case StringLiteral::Wide:
4016 return Context.typesAreCompatible(Context.getWideCharType(),
4017 QualType(ToPointeeType, 0));
4018 }
4019 }
4020 }
4021
4022 return false;
4023}
4024
4025static ExprResult BuildCXXCastArgument(Sema &S,
4026 SourceLocation CastLoc,
4027 QualType Ty,
4028 CastKind Kind,
4029 CXXMethodDecl *Method,
4030 DeclAccessPair FoundDecl,
4031 bool HadMultipleCandidates,
4032 Expr *From) {
4033 switch (Kind) {
4034 default: llvm_unreachable("Unhandled cast kind!")::llvm::llvm_unreachable_internal("Unhandled cast kind!", "clang/lib/Sema/SemaExprCXX.cpp"
, 4034)
;
4035 case CK_ConstructorConversion: {
4036 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method);
4037 SmallVector<Expr*, 8> ConstructorArgs;
4038
4039 if (S.RequireNonAbstractType(CastLoc, Ty,
4040 diag::err_allocation_of_abstract_type))
4041 return ExprError();
4042
4043 if (S.CompleteConstructorCall(Constructor, Ty, From, CastLoc,
4044 ConstructorArgs))
4045 return ExprError();
4046
4047 S.CheckConstructorAccess(CastLoc, Constructor, FoundDecl,
4048 InitializedEntity::InitializeTemporary(Ty));
4049 if (S.DiagnoseUseOfDecl(Method, CastLoc))
4050 return ExprError();
4051
4052 ExprResult Result = S.BuildCXXConstructExpr(
4053 CastLoc, Ty, FoundDecl, cast<CXXConstructorDecl>(Method),
4054 ConstructorArgs, HadMultipleCandidates,
4055 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
4056 CXXConstructExpr::CK_Complete, SourceRange());
4057 if (Result.isInvalid())
4058 return ExprError();
4059
4060 return S.MaybeBindToTemporary(Result.getAs<Expr>());
4061 }
4062
4063 case CK_UserDefinedConversion: {
4064 assert(!From->getType()->isPointerType() && "Arg can't have pointer type!")(static_cast <bool> (!From->getType()->isPointerType
() && "Arg can't have pointer type!") ? void (0) : __assert_fail
("!From->getType()->isPointerType() && \"Arg can't have pointer type!\""
, "clang/lib/Sema/SemaExprCXX.cpp", 4064, __extension__ __PRETTY_FUNCTION__
))
;
4065
4066 S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ nullptr, FoundDecl);
4067 if (S.DiagnoseUseOfDecl(Method, CastLoc))
4068 return ExprError();
4069
4070 // Create an implicit call expr that calls it.
4071 CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method);
4072 ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv,
4073 HadMultipleCandidates);
4074 if (Result.isInvalid())
4075 return ExprError();
4076 // Record usage of conversion in an implicit cast.
4077 Result = ImplicitCastExpr::Create(S.Context, Result.get()->getType(),
4078 CK_UserDefinedConversion, Result.get(),
4079 nullptr, Result.get()->getValueKind(),
4080 S.CurFPFeatureOverrides());
4081
4082 return S.MaybeBindToTemporary(Result.get());
4083 }
4084 }
4085}
4086
4087/// PerformImplicitConversion - Perform an implicit conversion of the
4088/// expression From to the type ToType using the pre-computed implicit
4089/// conversion sequence ICS. Returns the converted
4090/// expression. Action is the kind of conversion we're performing,
4091/// used in the error message.
4092ExprResult
4093Sema::PerformImplicitConversion(Expr *From, QualType ToType,
4094 const ImplicitConversionSequence &ICS,
4095 AssignmentAction Action,
4096 CheckedConversionKind CCK) {
4097 // C++ [over.match.oper]p7: [...] operands of class type are converted [...]
4098 if (CCK == CCK_ForBuiltinOverloadedOp && !From->getType()->isRecordType())
4099 return From;
4100
4101 switch (ICS.getKind()) {
4102 case ImplicitConversionSequence::StandardConversion: {
4103 ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard,
4104 Action, CCK);
4105 if (Res.isInvalid())
4106 return ExprError();
4107 From = Res.get();
4108 break;
4109 }
4110
4111 case ImplicitConversionSequence::UserDefinedConversion: {
4112
4113 FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
4114 CastKind CastKind;
4115 QualType BeforeToType;
4116 assert(FD && "no conversion function for user-defined conversion seq")(static_cast <bool> (FD && "no conversion function for user-defined conversion seq"
) ? void (0) : __assert_fail ("FD && \"no conversion function for user-defined conversion seq\""
, "clang/lib/Sema/SemaExprCXX.cpp", 4116, __extension__ __PRETTY_FUNCTION__
))
;
4117 if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
4118 CastKind = CK_UserDefinedConversion;
4119
4120 // If the user-defined conversion is specified by a conversion function,
4121 // the initial standard conversion sequence converts the source type to
4122 // the implicit object parameter of the conversion function.
4123 BeforeToType = Context.getTagDeclType(Conv->getParent());
4124 } else {
4125 const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD);
4126 CastKind = CK_ConstructorConversion;
4127 // Do no conversion if dealing with ... for the first conversion.
4128 if (!ICS.UserDefined.EllipsisConversion) {
4129 // If the user-defined conversion is specified by a constructor, the
4130 // initial standard conversion sequence converts the source type to
4131 // the type required by the argument of the constructor
4132 BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
4133 }
4134 }
4135 // Watch out for ellipsis conversion.
4136 if (!ICS.UserDefined.EllipsisConversion) {
4137 ExprResult Res =
4138 PerformImplicitConversion(From, BeforeToType,
4139 ICS.UserDefined.Before, AA_Converting,
4140 CCK);
4141 if (Res.isInvalid())
4142 return ExprError();
4143 From = Res.get();
4144 }
4145
4146 ExprResult CastArg = BuildCXXCastArgument(
4147 *this, From->getBeginLoc(), ToType.getNonReferenceType(), CastKind,
4148 cast<CXXMethodDecl>(FD), ICS.UserDefined.FoundConversionFunction,
4149 ICS.UserDefined.HadMultipleCandidates, From);
4150
4151 if (CastArg.isInvalid())
4152 return ExprError();
4153
4154 From = CastArg.get();
4155
4156 // C++ [over.match.oper]p7:
4157 // [...] the second standard conversion sequence of a user-defined
4158 // conversion sequence is not applied.
4159 if (CCK == CCK_ForBuiltinOverloadedOp)
4160 return From;
4161
4162 return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
4163 AA_Converting, CCK);
4164 }
4165
4166 case ImplicitConversionSequence::AmbiguousConversion:
4167 ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
4168 PDiag(diag::err_typecheck_ambiguous_condition)
4169 << From->getSourceRange());
4170 return ExprError();
4171
4172 case ImplicitConversionSequence::EllipsisConversion:
4173 llvm_unreachable("Cannot perform an ellipsis conversion")::llvm::llvm_unreachable_internal("Cannot perform an ellipsis conversion"
, "clang/lib/Sema/SemaExprCXX.cpp", 4173)
;
4174
4175 case ImplicitConversionSequence::BadConversion:
4176 Sema::AssignConvertType ConvTy =
4177 CheckAssignmentConstraints(From->getExprLoc(), ToType, From->getType());
4178 bool Diagnosed = DiagnoseAssignmentResult(
4179 ConvTy == Compatible ? Incompatible : ConvTy, From->getExprLoc(),
4180 ToType, From->getType(), From, Action);
4181 assert(Diagnosed && "failed to diagnose bad conversion")(static_cast <bool> (Diagnosed && "failed to diagnose bad conversion"
) ? void (0) : __assert_fail ("Diagnosed && \"failed to diagnose bad conversion\""
, "clang/lib/Sema/SemaExprCXX.cpp", 4181, __extension__ __PRETTY_FUNCTION__
))
; (void)Diagnosed;
4182 return ExprError();
4183 }
4184
4185 // Everything went well.
4186 return From;
4187}
4188
4189/// PerformImplicitConversion - Perform an implicit conversion of the
4190/// expression From to the type ToType by following the standard
4191/// conversion sequence SCS. Returns the converted
4192/// expression. Flavor is the context in which we're performing this
4193/// conversion, for use in error messages.
4194ExprResult
4195Sema::PerformImplicitConversion(Expr *From, QualType ToType,
4196 const StandardConversionSequence& SCS,
4197 AssignmentAction Action,
4198 CheckedConversionKind CCK) {
4199 bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast);
4200
4201 // Overall FIXME: we are recomputing too many types here and doing far too
4202 // much extra work. What this means is that we need to keep track of more
4203 // information that is computed when we try the implicit conversion initially,
4204 // so that we don't need to recompute anything here.
4205 QualType FromType = From->getType();
4206
4207 if (SCS.CopyConstructor) {
4208 // FIXME: When can ToType be a reference type?
4209 assert(!ToType->isReferenceType())(static_cast <bool> (!ToType->isReferenceType()) ? void
(0) : __assert_fail ("!ToType->isReferenceType()", "clang/lib/Sema/SemaExprCXX.cpp"
, 4209, __extension__ __PRETTY_FUNCTION__))
;
4210 if (SCS.Second == ICK_Derived_To_Base) {
4211 SmallVector<Expr*, 8> ConstructorArgs;
4212 if (CompleteConstructorCall(
4213 cast<CXXConstructorDecl>(SCS.CopyConstructor), ToType, From,
4214 /*FIXME:ConstructLoc*/ SourceLocation(), ConstructorArgs))
4215 return ExprError();
4216 return BuildCXXConstructExpr(
4217 /*FIXME:ConstructLoc*/ SourceLocation(), ToType,
4218 SCS.FoundCopyConstructor, SCS.CopyConstructor,
4219 ConstructorArgs, /*HadMultipleCandidates*/ false,
4220 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
4221 CXXConstructExpr::CK_Complete, SourceRange());
4222 }
4223 return BuildCXXConstructExpr(
4224 /*FIXME:ConstructLoc*/ SourceLocation(), ToType,
4225 SCS.FoundCopyConstructor, SCS.CopyConstructor,
4226 From, /*HadMultipleCandidates*/ false,
4227 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
4228 CXXConstructExpr::CK_Complete, SourceRange());
4229 }
4230
4231 // Resolve overloaded function references.
4232 if (Context.hasSameType(FromType, Context.OverloadTy)) {
4233 DeclAccessPair Found;
4234 FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType,
4235 true, Found);
4236 if (!Fn)
4237 return ExprError();
4238
4239 if (DiagnoseUseOfDecl(Fn, From->getBeginLoc()))
4240 return ExprError();
4241
4242 From = FixOverloadedFunctionReference(From, Found, Fn);
4243
4244 // We might get back another placeholder expression if we resolved to a
4245 // builtin.
4246 ExprResult Checked = CheckPlaceholderExpr(From);
4247 if (Checked.isInvalid())
4248 return ExprError();
4249
4250 From = Checked.get();
4251 FromType = From->getType();
4252 }
4253
4254 // If we're converting to an atomic type, first convert to the corresponding
4255 // non-atomic type.
4256 QualType ToAtomicType;
4257 if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>()) {
4258 ToAtomicType = ToType;
4259 ToType = ToAtomic->getValueType();
4260 }
4261
4262 QualType InitialFromType = FromType;
4263 // Perform the first implicit conversion.
4264 switch (SCS.First) {
4265 case ICK_Identity:
4266 if (const AtomicType *FromAtomic = FromType->getAs<AtomicType>()) {
4267 FromType = FromAtomic->getValueType().getUnqualifiedType();
4268 From = ImplicitCastExpr::Create(Context, FromType, CK_AtomicToNonAtomic,
4269 From, /*BasePath=*/nullptr, VK_PRValue,
4270 FPOptionsOverride());
4271 }
4272 break;
4273
4274 case ICK_Lvalue_To_Rvalue: {
4275 assert(From->getObjectKind() != OK_ObjCProperty)(static_cast <bool> (From->getObjectKind() != OK_ObjCProperty
) ? void (0) : __assert_fail ("From->getObjectKind() != OK_ObjCProperty"
, "clang/lib/Sema/SemaExprCXX.cpp", 4275, __extension__ __PRETTY_FUNCTION__
))
;
4276 ExprResult FromRes = DefaultLvalueConversion(From);
4277 if (FromRes.isInvalid())
4278 return ExprError();
4279
4280 From = FromRes.get();
4281 FromType = From->getType();
4282 break;
4283 }
4284
4285 case ICK_Array_To_Pointer:
4286 FromType = Context.getArrayDecayedType(FromType);
4287 From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay, VK_PRValue,
4288 /*BasePath=*/nullptr, CCK)
4289 .get();
4290 break;
4291
4292 case ICK_Function_To_Pointer:
4293 FromType = Context.getPointerType(FromType);
4294 From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay,
4295 VK_PRValue, /*BasePath=*/nullptr, CCK)
4296 .get();
4297 break;
4298
4299 default:
4300 llvm_unreachable("Improper first standard conversion")::llvm::llvm_unreachable_internal("Improper first standard conversion"
, "clang/lib/Sema/SemaExprCXX.cpp", 4300)
;
4301 }
4302
4303 // Perform the second implicit conversion
4304 switch (SCS.Second) {
4305 case ICK_Identity:
4306 // C++ [except.spec]p5:
4307 // [For] assignment to and initialization of pointers to functions,
4308 // pointers to member functions, and references to functions: the
4309 // target entity shall allow at least the exceptions allowed by the
4310 // source value in the assignment or initialization.
4311 switch (Action) {
4312 case AA_Assigning:
4313 case AA_Initializing:
4314 // Note, function argument passing and returning are initialization.
4315 case AA_Passing:
4316 case AA_Returning:
4317 case AA_Sending:
4318 case AA_Passing_CFAudited:
4319 if (CheckExceptionSpecCompatibility(From, ToType))
4320 return ExprError();
4321 break;
4322
4323 case AA_Casting:
4324 case AA_Converting:
4325 // Casts and implicit conversions are not initialization, so are not
4326 // checked for exception specification mismatches.
4327 break;
4328 }
4329 // Nothing else to do.
4330 break;
4331
4332 case ICK_Integral_Promotion:
4333 case ICK_Integral_Conversion:
4334 if (ToType->isBooleanType()) {
4335 assert(FromType->castAs<EnumType>()->getDecl()->isFixed() &&(static_cast <bool> (FromType->castAs<EnumType>
()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion
&& "only enums with fixed underlying type can promote to bool"
) ? void (0) : __assert_fail ("FromType->castAs<EnumType>()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion && \"only enums with fixed underlying type can promote to bool\""
, "clang/lib/Sema/SemaExprCXX.cpp", 4337, __extension__ __PRETTY_FUNCTION__
))
4336 SCS.Second == ICK_Integral_Promotion &&(static_cast <bool> (FromType->castAs<EnumType>
()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion
&& "only enums with fixed underlying type can promote to bool"
) ? void (0) : __assert_fail ("FromType->castAs<EnumType>()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion && \"only enums with fixed underlying type can promote to bool\""
, "clang/lib/Sema/SemaExprCXX.cpp", 4337, __extension__ __PRETTY_FUNCTION__
))
4337 "only enums with fixed underlying type can promote to bool")(static_cast <bool> (FromType->castAs<EnumType>
()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion
&& "only enums with fixed underlying type can promote to bool"
) ? void (0) : __assert_fail ("FromType->castAs<EnumType>()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion && \"only enums with fixed underlying type can promote to bool\""
, "clang/lib/Sema/SemaExprCXX.cpp", 4337, __extension__ __PRETTY_FUNCTION__
))
;
4338 From = ImpCastExprToType(From, ToType, CK_IntegralToBoolean, VK_PRValue,
4339 /*BasePath=*/nullptr, CCK)
4340 .get();
4341 } else {
4342 From = ImpCastExprToType(From, ToType, CK_IntegralCast, VK_PRValue,
4343 /*BasePath=*/nullptr, CCK)
4344 .get();
4345 }
4346 break;
4347
4348 case ICK_Floating_Promotion:
4349 case ICK_Floating_Conversion:
4350 From = ImpCastExprToType(From, ToType, CK_FloatingCast, VK_PRValue,
4351 /*BasePath=*/nullptr, CCK)
4352 .get();
4353 break;
4354
4355 case ICK_Complex_Promotion:
4356 case ICK_Complex_Conversion: {
4357 QualType FromEl = From->getType()->castAs<ComplexType>()->getElementType();
4358 QualType ToEl = ToType->castAs<ComplexType>()->getElementType();
4359 CastKind CK;
4360 if (FromEl->isRealFloatingType()) {
4361 if (ToEl->isRealFloatingType())
4362 CK = CK_FloatingComplexCast;
4363 else
4364 CK = CK_FloatingComplexToIntegralComplex;
4365 } else if (ToEl->isRealFloatingType()) {
4366 CK = CK_IntegralComplexToFloatingComplex;
4367 } else {
4368 CK = CK_IntegralComplexCast;
4369 }
4370 From = ImpCastExprToType(From, ToType, CK, VK_PRValue, /*BasePath=*/nullptr,
4371 CCK)
4372 .get();
4373 break;
4374 }
4375
4376 case ICK_Floating_Integral:
4377 if (ToType->isRealFloatingType())
4378 From = ImpCastExprToType(From, ToType, CK_IntegralToFloating, VK_PRValue,
4379 /*BasePath=*/nullptr, CCK)
4380 .get();
4381 else
4382 From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral, VK_PRValue,
4383 /*BasePath=*/nullptr, CCK)
4384 .get();
4385 break;
4386
4387 case ICK_Compatible_Conversion:
4388 From = ImpCastExprToType(From, ToType, CK_NoOp, From->getValueKind(),
4389 /*BasePath=*/nullptr, CCK).get();
4390 break;
4391
4392 case ICK_Writeback_Conversion:
4393 case ICK_Pointer_Conversion: {
4394 if (SCS.IncompatibleObjC && Action != AA_Casting) {
4395 // Diagnose incompatible Objective-C conversions
4396 if (Action == AA_Initializing || Action == AA_Assigning)
4397 Diag(From->getBeginLoc(),
4398 diag::ext_typecheck_convert_incompatible_pointer)
4399 << ToType << From->getType() << Action << From->getSourceRange()
4400 << 0;
4401 else
4402 Diag(From->getBeginLoc(),
4403 diag::ext_typecheck_convert_incompatible_pointer)
4404 << From->getType() << ToType << Action << From->getSourceRange()
4405 << 0;
4406
4407 if (From->getType()->isObjCObjectPointerType() &&
4408 ToType->isObjCObjectPointerType())
4409 EmitRelatedResultTypeNote(From);
4410 } else if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
4411 !CheckObjCARCUnavailableWeakConversion(ToType,
4412 From->getType())) {
4413 if (Action == AA_Initializing)
4414 Diag(From->getBeginLoc(), diag::err_arc_weak_unavailable_assign);
4415 else
4416 Diag(From->getBeginLoc(), diag::err_arc_convesion_of_weak_unavailable)
4417 << (Action == AA_Casting) << From->getType() << ToType
4418 << From->getSourceRange();
4419 }
4420
4421 // Defer address space conversion to the third conversion.
4422 QualType FromPteeType = From->getType()->getPointeeType();
4423 QualType ToPteeType = ToType->getPointeeType();
4424 QualType NewToType = ToType;
4425 if (!FromPteeType.isNull() && !ToPteeType.isNull() &&
4426 FromPteeType.getAddressSpace() != ToPteeType.getAddressSpace()) {
4427 NewToType = Context.removeAddrSpaceQualType(ToPteeType);
4428 NewToType = Context.getAddrSpaceQualType(NewToType,
4429 FromPteeType.getAddressSpace());
4430 if (ToType->isObjCObjectPointerType())
4431 NewToType = Context.getObjCObjectPointerType(NewToType);
4432 else if (ToType->isBlockPointerType())
4433 NewToType = Context.getBlockPointerType(NewToType);
4434 else
4435 NewToType = Context.getPointerType(NewToType);
4436 }
4437
4438 CastKind Kind;
4439 CXXCastPath BasePath;
4440 if (CheckPointerConversion(From, NewToType, Kind, BasePath, CStyle))
4441 return ExprError();
4442
4443 // Make sure we extend blocks if necessary.
4444 // FIXME: doing this here is really ugly.
4445 if (Kind == CK_BlockPointerToObjCPointerCast) {
4446 ExprResult E = From;
4447 (void) PrepareCastToObjCObjectPointer(E);
4448 From = E.get();
4449 }
4450 if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers())
4451 CheckObjCConversion(SourceRange(), NewToType, From, CCK);
4452 From = ImpCastExprToType(From, NewToType, Kind, VK_PRValue, &BasePath, CCK)
4453 .get();
4454 break;
4455 }
4456
4457 case ICK_Pointer_Member: {
4458 CastKind Kind;
4459 CXXCastPath BasePath;
4460 if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle))
4461 return ExprError();
4462 if (CheckExceptionSpecCompatibility(From, ToType))
4463 return ExprError();
4464
4465 // We may not have been able to figure out what this member pointer resolved
4466 // to up until this exact point. Attempt to lock-in it's inheritance model.
4467 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4468 (void)isCompleteType(From->getExprLoc(), From->getType());
4469 (void)isCompleteType(From->getExprLoc(), ToType);
4470 }
4471
4472 From =
4473 ImpCastExprToType(From, ToType, Kind, VK_PRValue, &BasePath, CCK).get();
4474 break;
4475 }
4476
4477 case ICK_Boolean_Conversion:
4478 // Perform half-to-boolean conversion via float.
4479 if (From->getType()->isHalfType()) {
4480 From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).get();
4481 FromType = Context.FloatTy;
4482 }
4483
4484 From = ImpCastExprToType(From, Context.BoolTy,
4485 ScalarTypeToBooleanCastKind(FromType), VK_PRValue,
4486 /*BasePath=*/nullptr, CCK)
4487 .get();
4488 break;
4489
4490 case ICK_Derived_To_Base: {
4491 CXXCastPath BasePath;
4492 if (CheckDerivedToBaseConversion(
4493 From->getType(), ToType.getNonReferenceType(), From->getBeginLoc(),
4494 From->getSourceRange(), &BasePath, CStyle))
4495 return ExprError();
4496
4497 From = ImpCastExprToType(From, ToType.getNonReferenceType(),
4498 CK_DerivedToBase, From->getValueKind(),
4499 &BasePath, CCK).get();
4500 break;
4501 }
4502
4503 case ICK_Vector_Conversion:
4504 From = ImpCastExprToType(From, ToType, CK_BitCast, VK_PRValue,
4505 /*BasePath=*/nullptr, CCK)
4506 .get();
4507 break;
4508
4509 case ICK_SVE_Vector_Conversion:
4510 From = ImpCastExprToType(From, ToType, CK_BitCast, VK_PRValue,
4511 /*BasePath=*/nullptr, CCK)
4512 .get();
4513 break;
4514
4515 case ICK_Vector_Splat: {
4516 // Vector splat from any arithmetic type to a vector.
4517 Expr *Elem = prepareVectorSplat(ToType, From).get();
4518 From = ImpCastExprToType(Elem, ToType, CK_VectorSplat, VK_PRValue,
4519 /*BasePath=*/nullptr, CCK)
4520 .get();
4521 break;
4522 }
4523
4524 case ICK_Complex_Real:
4525 // Case 1. x -> _Complex y
4526 if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) {
4527 QualType ElType = ToComplex->getElementType();
4528 bool isFloatingComplex = ElType->isRealFloatingType();
4529
4530 // x -> y
4531 if (Context.hasSameUnqualifiedType(ElType, From->getType())) {
4532 // do nothing
4533 } else if (From->getType()->isRealFloatingType()) {
4534 From = ImpCastExprToType(From, ElType,
4535 isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).get();
4536 } else {
4537 assert(From->getType()->isIntegerType())(static_cast <bool> (From->getType()->isIntegerType
()) ? void (0) : __assert_fail ("From->getType()->isIntegerType()"
, "clang/lib/Sema/SemaExprCXX.cpp", 4537, __extension__ __PRETTY_FUNCTION__
))
;
4538 From = ImpCastExprToType(From, ElType,
4539 isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).get();
4540 }
4541 // y -> _Complex y
4542 From = ImpCastExprToType(From, ToType,
4543 isFloatingComplex ? CK_FloatingRealToComplex
4544 : CK_IntegralRealToComplex).get();
4545
4546 // Case 2. _Complex x -> y
4547 } else {
4548 auto *FromComplex = From->getType()->castAs<ComplexType>();
4549 QualType ElType = FromComplex->getElementType();
4550 bool isFloatingComplex = ElType->isRealFloatingType();
4551
4552 // _Complex x -> x
4553 From = ImpCastExprToType(From, ElType,
4554 isFloatingComplex ? CK_FloatingComplexToReal
4555 : CK_IntegralComplexToReal,
4556 VK_PRValue, /*BasePath=*/nullptr, CCK)
4557 .get();
4558
4559 // x -> y
4560 if (Context.hasSameUnqualifiedType(ElType, ToType)) {
4561 // do nothing
4562 } else if (ToType->isRealFloatingType()) {
4563 From = ImpCastExprToType(From, ToType,
4564 isFloatingComplex ? CK_FloatingCast
4565 : CK_IntegralToFloating,
4566 VK_PRValue, /*BasePath=*/nullptr, CCK)
4567 .get();
4568 } else {
4569 assert(ToType->isIntegerType())(static_cast <bool> (ToType->isIntegerType()) ? void
(0) : __assert_fail ("ToType->isIntegerType()", "clang/lib/Sema/SemaExprCXX.cpp"
, 4569, __extension__ __PRETTY_FUNCTION__))
;
4570 From = ImpCastExprToType(From, ToType,
4571 isFloatingComplex ? CK_FloatingToIntegral
4572 : CK_IntegralCast,
4573 VK_PRValue, /*BasePath=*/nullptr, CCK)
4574 .get();
4575 }
4576 }
4577 break;
4578
4579 case ICK_Block_Pointer_Conversion: {
4580 LangAS AddrSpaceL =
4581 ToType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace();
4582 LangAS AddrSpaceR =
4583 FromType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace();
4584 assert(Qualifiers::isAddressSpaceSupersetOf(AddrSpaceL, AddrSpaceR) &&(static_cast <bool> (Qualifiers::isAddressSpaceSupersetOf
(AddrSpaceL, AddrSpaceR) && "Invalid cast") ? void (0
) : __assert_fail ("Qualifiers::isAddressSpaceSupersetOf(AddrSpaceL, AddrSpaceR) && \"Invalid cast\""
, "clang/lib/Sema/SemaExprCXX.cpp", 4585, __extension__ __PRETTY_FUNCTION__
))
4585 "Invalid cast")(static_cast <bool> (Qualifiers::isAddressSpaceSupersetOf
(AddrSpaceL, AddrSpaceR) && "Invalid cast") ? void (0
) : __assert_fail ("Qualifiers::isAddressSpaceSupersetOf(AddrSpaceL, AddrSpaceR) && \"Invalid cast\""
, "clang/lib/Sema/SemaExprCXX.cpp", 4585, __extension__ __PRETTY_FUNCTION__
))
;
4586 CastKind Kind =
4587 AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
4588 From = ImpCastExprToType(From, ToType.getUnqualifiedType(), Kind,
4589 VK_PRValue, /*BasePath=*/nullptr, CCK)
4590 .get();
4591 break;
4592 }
4593
4594 case ICK_TransparentUnionConversion: {
4595 ExprResult FromRes = From;
4596 Sema::AssignConvertType ConvTy =
4597 CheckTransparentUnionArgumentConstraints(ToType, FromRes);
4598 if (FromRes.isInvalid())
4599 return ExprError();
4600 From = FromRes.get();
4601 assert ((ConvTy == Sema::Compatible) &&(static_cast <bool> ((ConvTy == Sema::Compatible) &&
"Improper transparent union conversion") ? void (0) : __assert_fail
("(ConvTy == Sema::Compatible) && \"Improper transparent union conversion\""
, "clang/lib/Sema/SemaExprCXX.cpp", 4602, __extension__ __PRETTY_FUNCTION__
))
4602 "Improper transparent union conversion")(static_cast <bool> ((ConvTy == Sema::Compatible) &&
"Improper transparent union conversion") ? void (0) : __assert_fail
("(ConvTy == Sema::Compatible) && \"Improper transparent union conversion\""
, "clang/lib/Sema/SemaExprCXX.cpp", 4602, __extension__ __PRETTY_FUNCTION__
))
;
4603 (void)ConvTy;
4604 break;
4605 }
4606
4607 case ICK_Zero_Event_Conversion:
4608 case ICK_Zero_Queue_Conversion:
4609 From = ImpCastExprToType(From, ToType,
4610 CK_ZeroToOCLOpaqueType,
4611 From->getValueKind()).get();
4612 break;
4613
4614 case ICK_Lvalue_To_Rvalue:
4615 case ICK_Array_To_Pointer:
4616 case ICK_Function_To_Pointer:
4617 case ICK_Function_Conversion:
4618 case ICK_Qualification:
4619 case ICK_Num_Conversion_Kinds:
4620 case ICK_C_Only_Conversion:
4621 case ICK_Incompatible_Pointer_Conversion:
4622 llvm_unreachable("Improper second standard conversion")::llvm::llvm_unreachable_internal("Improper second standard conversion"
, "clang/lib/Sema/SemaExprCXX.cpp", 4622)
;
4623 }
4624
4625 switch (SCS.Third) {
4626 case ICK_Identity:
4627 // Nothing to do.
4628 break;
4629
4630 case ICK_Function_Conversion:
4631 // If both sides are functions (or pointers/references to them), there could
4632 // be incompatible exception declarations.
4633 if (CheckExceptionSpecCompatibility(From, ToType))
4634 return ExprError();
4635
4636 From = ImpCastExprToType(From, ToType, CK_NoOp, VK_PRValue,
4637 /*BasePath=*/nullptr, CCK)
4638 .get();
4639 break;
4640
4641 case ICK_Qualification: {
4642 ExprValueKind VK = From->getValueKind();
4643 CastKind CK = CK_NoOp;
4644
4645 if (ToType->isReferenceType() &&
4646 ToType->getPointeeType().getAddressSpace() !=
4647 From->getType().getAddressSpace())
4648 CK = CK_AddressSpaceConversion;
4649
4650 if (ToType->isPointerType() &&
4651 ToType->getPointeeType().getAddressSpace() !=
4652 From->getType()->getPointeeType().getAddressSpace())
4653 CK = CK_AddressSpaceConversion;
4654
4655 if (!isCast(CCK) &&
4656 !ToType->getPointeeType().getQualifiers().hasUnaligned() &&
4657 From->getType()->getPointeeType().getQualifiers().hasUnaligned()) {
4658 Diag(From->getBeginLoc(), diag::warn_imp_cast_drops_unaligned)
4659 << InitialFromType << ToType;
4660 }
4661
4662 From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context), CK, VK,
4663 /*BasePath=*/nullptr, CCK)
4664 .get();
4665
4666 if (SCS.DeprecatedStringLiteralToCharPtr &&
4667 !getLangOpts().WritableStrings) {
4668 Diag(From->getBeginLoc(),
4669 getLangOpts().CPlusPlus11
4670 ? diag::ext_deprecated_string_literal_conversion
4671 : diag::warn_deprecated_string_literal_conversion)
4672 << ToType.getNonReferenceType();
4673 }
4674
4675 break;
4676 }
4677
4678 default:
4679 llvm_unreachable("Improper third standard conversion")::llvm::llvm_unreachable_internal("Improper third standard conversion"
, "clang/lib/Sema/SemaExprCXX.cpp", 4679)
;
4680 }
4681
4682 // If this conversion sequence involved a scalar -> atomic conversion, perform
4683 // that conversion now.
4684 if (!ToAtomicType.isNull()) {
4685 assert(Context.hasSameType((static_cast <bool> (Context.hasSameType( ToAtomicType->
castAs<AtomicType>()->getValueType(), From->getType
())) ? void (0) : __assert_fail ("Context.hasSameType( ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType())"
, "clang/lib/Sema/SemaExprCXX.cpp", 4686, __extension__ __PRETTY_FUNCTION__
))
4686 ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType()))(static_cast <bool> (Context.hasSameType( ToAtomicType->
castAs<AtomicType>()->getValueType(), From->getType
())) ? void (0) : __assert_fail ("Context.hasSameType( ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType())"
, "clang/lib/Sema/SemaExprCXX.cpp", 4686, __extension__ __PRETTY_FUNCTION__
))
;
4687 From = ImpCastExprToType(From, ToAtomicType, CK_NonAtomicToAtomic,
4688 VK_PRValue, nullptr, CCK)
4689 .get();
4690 }
4691
4692 // Materialize a temporary if we're implicitly converting to a reference
4693 // type. This is not required by the C++ rules but is necessary to maintain
4694 // AST invariants.
4695 if (ToType->isReferenceType() && From->isPRValue()) {
4696 ExprResult Res = TemporaryMaterializationConversion(From);
4697 if (Res.isInvalid())
4698 return ExprError();
4699 From = Res.get();
4700 }
4701
4702 // If this conversion sequence succeeded and involved implicitly converting a
4703 // _Nullable type to a _Nonnull one, complain.
4704 if (!isCast(CCK))
4705 diagnoseNullableToNonnullConversion(ToType, InitialFromType,
4706 From->getBeginLoc());
4707
4708 return From;
4709}
4710
4711/// Check the completeness of a type in a unary type trait.
4712///
4713/// If the particular type trait requires a complete type, tries to complete
4714/// it. If completing the type fails, a diagnostic is emitted and false
4715/// returned. If completing the type succeeds or no completion was required,
4716/// returns true.
4717static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S, TypeTrait UTT,
4718 SourceLocation Loc,
4719 QualType ArgTy) {
4720 // C++0x [meta.unary.prop]p3:
4721 // For all of the class templates X declared in this Clause, instantiating
4722 // that template with a template argument that is a class template
4723 // specialization may result in the implicit instantiation of the template
4724 // argument if and only if the semantics of X require that the argument
4725 // must be a complete type.
4726 // We apply this rule to all the type trait expressions used to implement
4727 // these class templates. We also try to follow any GCC documented behavior
4728 // in these expressions to ensure portability of standard libraries.
4729 switch (UTT) {
4730 default: llvm_unreachable("not a UTT")::llvm::llvm_unreachable_internal("not a UTT", "clang/lib/Sema/SemaExprCXX.cpp"
, 4730)
;
4731 // is_complete_type somewhat obviously cannot require a complete type.
4732 case UTT_IsCompleteType:
4733 // Fall-through
4734
4735 // These traits are modeled on the type predicates in C++0x
4736 // [meta.unary.cat] and [meta.unary.comp]. They are not specified as
4737 // requiring a complete type, as whether or not they return true cannot be
4738 // impacted by the completeness of the type.
4739 case UTT_IsVoid:
4740 case UTT_IsIntegral:
4741 case UTT_IsFloatingPoint:
4742 case UTT_IsArray:
4743 case UTT_IsPointer:
4744 case UTT_IsLvalueReference:
4745 case UTT_IsRvalueReference:
4746 case UTT_IsMemberFunctionPointer:
4747 case UTT_IsMemberObjectPointer:
4748 case UTT_IsEnum:
4749 case UTT_IsUnion:
4750 case UTT_IsClass:
4751 case UTT_IsFunction:
4752 case UTT_IsReference:
4753 case UTT_IsArithmetic:
4754 case UTT_IsFundamental:
4755 case UTT_IsObject:
4756 case UTT_IsScalar:
4757 case UTT_IsCompound:
4758 case UTT_IsMemberPointer:
4759 // Fall-through
4760
4761 // These traits are modeled on type predicates in C++0x [meta.unary.prop]
4762 // which requires some of its traits to have the complete type. However,
4763 // the completeness of the type cannot impact these traits' semantics, and
4764 // so they don't require it. This matches the comments on these traits in
4765 // Table 49.
4766 case UTT_IsConst:
4767 case UTT_IsVolatile:
4768 case UTT_IsSigned:
4769 case UTT_IsUnsigned:
4770
4771 // This type trait always returns false, checking the type is moot.
4772 case UTT_IsInterfaceClass:
4773 return true;
4774
4775 // C++14 [meta.unary.prop]:
4776 // If T is a non-union class type, T shall be a complete type.
4777 case UTT_IsEmpty:
4778 case UTT_IsPolymorphic:
4779 case UTT_IsAbstract:
4780 if (const auto *RD = ArgTy->getAsCXXRecordDecl())
4781 if (!RD->isUnion())
4782 return !S.RequireCompleteType(
4783 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4784 return true;
4785
4786 // C++14 [meta.unary.prop]:
4787 // If T is a class type, T shall be a complete type.
4788 case UTT_IsFinal:
4789 case UTT_IsSealed:
4790 if (ArgTy->getAsCXXRecordDecl())
4791 return !S.RequireCompleteType(
4792 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4793 return true;
4794
4795 // C++1z [meta.unary.prop]:
4796 // remove_all_extents_t<T> shall be a complete type or cv void.
4797 case UTT_IsAggregate:
4798 case UTT_IsTrivial:
4799 case UTT_IsTriviallyCopyable:
4800 case UTT_IsStandardLayout:
4801 case UTT_IsPOD:
4802 case UTT_IsLiteral:
4803 // By analogy, is_trivially_relocatable imposes the same constraints.
4804 case UTT_IsTriviallyRelocatable:
4805 // Per the GCC type traits documentation, T shall be a complete type, cv void,
4806 // or an array of unknown bound. But GCC actually imposes the same constraints
4807 // as above.
4808 case UTT_HasNothrowAssign:
4809 case UTT_HasNothrowMoveAssign:
4810 case UTT_HasNothrowConstructor:
4811 case UTT_HasNothrowCopy:
4812 case UTT_HasTrivialAssign:
4813 case UTT_HasTrivialMoveAssign:
4814 case UTT_HasTrivialDefaultConstructor:
4815 case UTT_HasTrivialMoveConstructor:
4816 case UTT_HasTrivialCopy:
4817 case UTT_HasTrivialDestructor:
4818 case UTT_HasVirtualDestructor:
4819 ArgTy = QualType(ArgTy->getBaseElementTypeUnsafe(), 0);
4820 [[fallthrough]];
4821
4822 // C++1z [meta.unary.prop]:
4823 // T shall be a complete type, cv void, or an array of unknown bound.
4824 case UTT_IsDestructible:
4825 case UTT_IsNothrowDestructible:
4826 case UTT_IsTriviallyDestructible:
4827 case UTT_HasUniqueObjectRepresentations:
4828 if (ArgTy->isIncompleteArrayType() || ArgTy->isVoidType())
4829 return true;
4830
4831 return !S.RequireCompleteType(
4832 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4833 }
4834}
4835
4836static bool HasNoThrowOperator(const RecordType *RT, OverloadedOperatorKind Op,
4837 Sema &Self, SourceLocation KeyLoc, ASTContext &C,
4838 bool (CXXRecordDecl::*HasTrivial)() const,
4839 bool (CXXRecordDecl::*HasNonTrivial)() const,
4840 bool (CXXMethodDecl::*IsDesiredOp)() const)
4841{
4842 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
4843 if ((RD->*HasTrivial)() && !(RD->*HasNonTrivial)())
4844 return true;
4845
4846 DeclarationName Name = C.DeclarationNames.getCXXOperatorName(Op);
4847 DeclarationNameInfo NameInfo(Name, KeyLoc);
4848 LookupResult Res(Self, NameInfo, Sema::LookupOrdinaryName);
4849 if (Self.LookupQualifiedName(Res, RD)) {
4850 bool FoundOperator = false;
4851 Res.suppressDiagnostics();
4852 for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end();
4853 Op != OpEnd; ++Op) {
4854 if (isa<FunctionTemplateDecl>(*Op))
4855 continue;
4856
4857 CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op);
4858 if((Operator->*IsDesiredOp)()) {
4859 FoundOperator = true;
4860 auto *CPT = Operator->getType()->castAs<FunctionProtoType>();
4861 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
4862 if (!CPT || !CPT->isNothrow())
4863 return false;
4864 }
4865 }
4866 return FoundOperator;
4867 }
4868 return false;
4869}
4870
4871static bool EvaluateUnaryTypeTrait(Sema &Self, TypeTrait UTT,
4872 SourceLocation KeyLoc, QualType T) {
4873 assert(!T->isDependentType() && "Cannot evaluate traits of dependent type")(static_cast <bool> (!T->isDependentType() &&
"Cannot evaluate traits of dependent type") ? void (0) : __assert_fail
("!T->isDependentType() && \"Cannot evaluate traits of dependent type\""
, "clang/lib/Sema/SemaExprCXX.cpp", 4873, __extension__ __PRETTY_FUNCTION__
))
;
4874
4875 ASTContext &C = Self.Context;
4876 switch(UTT) {
4877 default: llvm_unreachable("not a UTT")::llvm::llvm_unreachable_internal("not a UTT", "clang/lib/Sema/SemaExprCXX.cpp"
, 4877)
;
4878 // Type trait expressions corresponding to the primary type category
4879 // predicates in C++0x [meta.unary.cat].
4880 case UTT_IsVoid:
4881 return T->isVoidType();
4882 case UTT_IsIntegral:
4883 return T->isIntegralType(C);
4884 case UTT_IsFloatingPoint:
4885 return T->isFloatingType();
4886 case UTT_IsArray:
4887 return T->isArrayType();
4888 case UTT_IsPointer:
4889 return T->isAnyPointerType();
4890 case UTT_IsLvalueReference:
4891 return T->isLValueReferenceType();
4892 case UTT_IsRvalueReference:
4893 return T->isRValueReferenceType();
4894 case UTT_IsMemberFunctionPointer:
4895 return T->isMemberFunctionPointerType();
4896 case UTT_IsMemberObjectPointer:
4897 return T->isMemberDataPointerType();
4898 case UTT_IsEnum:
4899 return T->isEnumeralType();
4900 case UTT_IsUnion:
4901 return T->isUnionType();
4902 case UTT_IsClass:
4903 return T->isClassType() || T->isStructureType() || T->isInterfaceType();
4904 case UTT_IsFunction:
4905 return T->isFunctionType();
4906
4907 // Type trait expressions which correspond to the convenient composition
4908 // predicates in C++0x [meta.unary.comp].
4909 case UTT_IsReference:
4910 return T->isReferenceType();
4911 case UTT_IsArithmetic:
4912 return T->isArithmeticType() && !T->isEnumeralType();
4913 case UTT_IsFundamental:
4914 return T->isFundamentalType();
4915 case UTT_IsObject:
4916 return T->isObjectType();
4917 case UTT_IsScalar:
4918 // Note: semantic analysis depends on Objective-C lifetime types to be
4919 // considered scalar types. However, such types do not actually behave
4920 // like scalar types at run time (since they may require retain/release
4921 // operations), so we report them as non-scalar.
4922 if (T->isObjCLifetimeType()) {
4923 switch (T.getObjCLifetime()) {
4924 case Qualifiers::OCL_None:
4925 case Qualifiers::OCL_ExplicitNone:
4926 return true;
4927
4928 case Qualifiers::OCL_Strong:
4929 case Qualifiers::OCL_Weak:
4930 case Qualifiers::OCL_Autoreleasing:
4931 return false;
4932 }
4933 }
4934
4935 return T->isScalarType();
4936 case UTT_IsCompound:
4937 return T->isCompoundType();
4938 case UTT_IsMemberPointer:
4939 return T->isMemberPointerType();
4940
4941 // Type trait expressions which correspond to the type property predicates
4942 // in C++0x [meta.unary.prop].
4943 case UTT_IsConst:
4944 return T.isConstQualified();
4945 case UTT_IsVolatile:
4946 return T.isVolatileQualified();
4947 case UTT_IsTrivial:
4948 return T.isTrivialType(C);
4949 case UTT_IsTriviallyCopyable:
4950 return T.isTriviallyCopyableType(C);
4951 case UTT_IsStandardLayout:
4952 return T->isStandardLayoutType();
4953 case UTT_IsPOD:
4954 return T.isPODType(C);
4955 case UTT_IsLiteral:
4956 return T->isLiteralType(C);
4957 case UTT_IsEmpty:
4958 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4959 return !RD->isUnion() && RD->isEmpty();
4960 return false;
4961 case UTT_IsPolymorphic:
4962 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4963 return !RD->isUnion() && RD->isPolymorphic();
4964 return false;
4965 case UTT_IsAbstract:
4966 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4967 return !RD->isUnion() && RD->isAbstract();
4968 return false;
4969 case UTT_IsAggregate:
4970 // Report vector extensions and complex types as aggregates because they
4971 // support aggregate initialization. GCC mirrors this behavior for vectors
4972 // but not _Complex.
4973 return T->isAggregateType() || T->isVectorType() || T->isExtVectorType() ||
4974 T->isAnyComplexType();
4975 // __is_interface_class only returns true when CL is invoked in /CLR mode and
4976 // even then only when it is used with the 'interface struct ...' syntax
4977 // Clang doesn't support /CLR which makes this type trait moot.
4978 case UTT_IsInterfaceClass:
4979 return false;
4980 case UTT_IsFinal:
4981 case UTT_IsSealed:
4982 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4983 return RD->hasAttr<FinalAttr>();
4984 return false;
4985 case UTT_IsSigned:
4986 // Enum types should always return false.
4987 // Floating points should always return true.
4988 return T->isFloatingType() ||
4989 (T->isSignedIntegerType() && !T->isEnumeralType());
4990 case UTT_IsUnsigned:
4991 // Enum types should always return false.
4992 return T->isUnsignedIntegerType() && !T->isEnumeralType();
4993
4994 // Type trait expressions which query classes regarding their construction,
4995 // destruction, and copying. Rather than being based directly on the
4996 // related type predicates in the standard, they are specified by both
4997 // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those
4998 // specifications.
4999 //
5000 // 1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html
5001 // 2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
5002 //
5003 // Note that these builtins do not behave as documented in g++: if a class
5004 // has both a trivial and a non-trivial special member of a particular kind,
5005 // they return false! For now, we emulate this behavior.
5006 // FIXME: This appears to be a g++ bug: more complex cases reveal that it
5007 // does not correctly compute triviality in the presence of multiple special
5008 // members of the same kind. Revisit this once the g++ bug is fixed.
5009 case UTT_HasTrivialDefaultConstructor:
5010 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5011 // If __is_pod (type) is true then the trait is true, else if type is
5012 // a cv class or union type (or array thereof) with a trivial default
5013 // constructor ([class.ctor]) then the trait is true, else it is false.
5014 if (T.isPODType(C))
5015 return true;
5016 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
5017 return RD->hasTrivialDefaultConstructor() &&
5018 !RD->hasNonTrivialDefaultConstructor();
5019 return false;
5020 case UTT_HasTrivialMoveConstructor:
5021 // This trait is implemented by MSVC 2012 and needed to parse the
5022 // standard library headers. Specifically this is used as the logic
5023 // behind std::is_trivially_move_constructible (20.9.4.3).
5024 if (T.isPODType(C))
5025 return true;
5026 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
5027 return RD->hasTrivialMoveConstructor() && !RD->hasNonTrivialMoveConstructor();
5028 return false;
5029 case UTT_HasTrivialCopy:
5030 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5031 // If __is_pod (type) is true or type is a reference type then
5032 // the trait is true, else if type is a cv class or union type
5033 // with a trivial copy constructor ([class.copy]) then the trait
5034 // is true, else it is false.
5035 if (T.isPODType(C) || T->isReferenceType())
5036 return true;
5037 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5038 return RD->hasTrivialCopyConstructor() &&
5039 !RD->hasNonTrivialCopyConstructor();
5040 return false;
5041 case UTT_HasTrivialMoveAssign:
5042 // This trait is implemented by MSVC 2012 and needed to parse the
5043 // standard library headers. Specifically it is used as the logic
5044 // behind std::is_trivially_move_assignable (20.9.4.3)
5045 if (T.isPODType(C))
5046 return true;
5047 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
5048 return RD->hasTrivialMoveAssignment() && !RD->hasNonTrivialMoveAssignment();
5049 return false;
5050 case UTT_HasTrivialAssign:
5051 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5052 // If type is const qualified or is a reference type then the
5053 // trait is false. Otherwise if __is_pod (type) is true then the
5054 // trait is true, else if type is a cv class or union type with
5055 // a trivial copy assignment ([class.copy]) then the trait is
5056 // true, else it is false.
5057 // Note: the const and reference restrictions are interesting,
5058 // given that const and reference members don't prevent a class
5059 // from having a trivial copy assignment operator (but do cause
5060 // errors if the copy assignment operator is actually used, q.v.
5061 // [class.copy]p12).
5062
5063 if (T.isConstQualified())
5064 return false;
5065 if (T.isPODType(C))
5066 return true;
5067 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5068 return RD->hasTrivialCopyAssignment() &&
5069 !RD->hasNonTrivialCopyAssignment();
5070 return false;
5071 case UTT_IsDestructible:
5072 case UTT_IsTriviallyDestructible:
5073 case UTT_IsNothrowDestructible:
5074 // C++14 [meta.unary.prop]:
5075 // For reference types, is_destructible<T>::value is true.
5076 if (T->isReferenceType())
5077 return true;
5078
5079 // Objective-C++ ARC: autorelease types don't require destruction.
5080 if (T->isObjCLifetimeType() &&
5081 T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
5082 return true;
5083
5084 // C++14 [meta.unary.prop]:
5085 // For incomplete types and function types, is_destructible<T>::value is
5086 // false.
5087 if (T->isIncompleteType() || T->isFunctionType())
5088 return false;
5089
5090 // A type that requires destruction (via a non-trivial destructor or ARC
5091 // lifetime semantics) is not trivially-destructible.
5092 if (UTT == UTT_IsTriviallyDestructible && T.isDestructedType())
5093 return false;
5094
5095 // C++14 [meta.unary.prop]:
5096 // For object types and given U equal to remove_all_extents_t<T>, if the
5097 // expression std::declval<U&>().~U() is well-formed when treated as an
5098 // unevaluated operand (Clause 5), then is_destructible<T>::value is true
5099 if (auto *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
5100 CXXDestructorDecl *Destructor = Self.LookupDestructor(RD);
5101 if (!Destructor)
5102 return false;
5103 // C++14 [dcl.fct.def.delete]p2:
5104 // A program that refers to a deleted function implicitly or
5105 // explicitly, other than to declare it, is ill-formed.
5106 if (Destructor->isDeleted())
5107 return false;
5108 if (C.getLangOpts().AccessControl && Destructor->getAccess() != AS_public)
5109 return false;
5110 if (UTT == UTT_IsNothrowDestructible) {
5111 auto *CPT = Destructor->getType()->castAs<FunctionProtoType>();
5112 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
5113 if (!CPT || !CPT->isNothrow())
5114 return false;
5115 }
5116 }
5117 return true;
5118
5119 case UTT_HasTrivialDestructor:
5120 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
5121 // If __is_pod (type) is true or type is a reference type
5122 // then the trait is true, else if type is a cv class or union
5123 // type (or array thereof) with a trivial destructor
5124 // ([class.dtor]) then the trait is true, else it is
5125 // false.
5126 if (T.isPODType(C) || T->isReferenceType())
5127 return true;
5128
5129 // Objective-C++ ARC: autorelease types don't require destruction.
5130 if (T->isObjCLifetimeType() &&
5131 T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
5132 return true;
5133
5134 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
5135 return RD->hasTrivialDestructor();
5136 return false;
5137 // TODO: Propagate nothrowness for implicitly declared special members.
5138 case UTT_HasNothrowAssign:
5139 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5140 // If type is const qualified or is a reference type then the
5141 // trait is false. Otherwise if __has_trivial_assign (type)
5142 // is true then the trait is true, else if type is a cv class
5143 // or union type with copy assignment operators that are known
5144 // not to throw an exception then the trait is true, else it is
5145 // false.
5146 if (C.getBaseElementType(T).isConstQualified())
5147 return false;
5148 if (T->isReferenceType())
5149 return false;
5150 if (T.isPODType(C) || T->isObjCLifetimeType())
5151 return true;
5152
5153 if (const RecordType *RT = T->getAs<RecordType>())
5154 return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
5155 &CXXRecordDecl::hasTrivialCopyAssignment,
5156 &CXXRecordDecl::hasNonTrivialCopyAssignment,
5157 &CXXMethodDecl::isCopyAssignmentOperator);
5158 return false;
5159 case UTT_HasNothrowMoveAssign:
5160 // This trait is implemented by MSVC 2012 and needed to parse the
5161 // standard library headers. Specifically this is used as the logic
5162 // behind std::is_nothrow_move_assignable (20.9.4.3).
5163 if (T.isPODType(C))
5164 return true;
5165
5166 if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>())
5167 return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
5168 &CXXRecordDecl::hasTrivialMoveAssignment,
5169 &CXXRecordDecl::hasNonTrivialMoveAssignment,
5170 &CXXMethodDecl::isMoveAssignmentOperator);
5171 return false;
5172 case UTT_HasNothrowCopy:
5173 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5174 // If __has_trivial_copy (type) is true then the trait is true, else
5175 // if type is a cv class or union type with copy constructors that are
5176 // known not to throw an exception then the trait is true, else it is
5177 // false.
5178 if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType())
5179 return true;
5180 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
5181 if (RD->hasTrivialCopyConstructor() &&
5182 !RD->hasNonTrivialCopyConstructor())
5183 return true;
5184
5185 bool FoundConstructor = false;
5186 unsigned FoundTQs;
5187 for (const auto *ND : Self.LookupConstructors(RD)) {
5188 // A template constructor is never a copy constructor.
5189 // FIXME: However, it may actually be selected at the actual overload
5190 // resolution point.
5191 if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl()))
5192 continue;
5193 // UsingDecl itself is not a constructor
5194 if (isa<UsingDecl>(ND))
5195 continue;
5196 auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl());
5197 if (Constructor->isCopyConstructor(FoundTQs)) {
5198 FoundConstructor = true;
5199 auto *CPT = Constructor->getType()->castAs<FunctionProtoType>();
5200 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
5201 if (!CPT)
5202 return false;
5203 // TODO: check whether evaluating default arguments can throw.
5204 // For now, we'll be conservative and assume that they can throw.
5205 if (!CPT->isNothrow() || CPT->getNumParams() > 1)
5206 return false;
5207 }
5208 }
5209
5210 return FoundConstructor;
5211 }
5212 return false;
5213 case UTT_HasNothrowConstructor:
5214 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
5215 // If __has_trivial_constructor (type) is true then the trait is
5216 // true, else if type is a cv class or union type (or array
5217 // thereof) with a default constructor that is known not to
5218 // throw an exception then the trait is true, else it is false.
5219 if (T.isPODType(C) || T->isObjCLifetimeType())
5220 return true;
5221 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
5222 if (RD->hasTrivialDefaultConstructor() &&
5223 !RD->hasNonTrivialDefaultConstructor())
5224 return true;
5225
5226 bool FoundConstructor = false;
5227 for (const auto *ND : Self.LookupConstructors(RD)) {
5228 // FIXME: In C++0x, a constructor template can be a default constructor.
5229 if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl()))
5230 continue;
5231 // UsingDecl itself is not a constructor
5232 if (isa<UsingDecl>(ND))
5233 continue;
5234 auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl());
5235 if (Constructor->isDefaultConstructor()) {
5236 FoundConstructor = true;
5237 auto *CPT = Constructor->getType()->castAs<FunctionProtoType>();
5238 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
5239 if (!CPT)
5240 return false;
5241 // FIXME: check whether evaluating default arguments can throw.
5242 // For now, we'll be conservative and assume that they can throw.
5243 if (!CPT->isNothrow() || CPT->getNumParams() > 0)
5244 return false;
5245 }
5246 }
5247 return FoundConstructor;
5248 }
5249 return false;
5250 case UTT_HasVirtualDestructor:
5251 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5252 // If type is a class type with a virtual destructor ([class.dtor])
5253 // then the trait is true, else it is false.
5254 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5255 if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD))
5256 return Destructor->isVirtual();
5257 return false;
5258
5259 // These type trait expressions are modeled on the specifications for the
5260 // Embarcadero C++0x type trait functions:
5261 // http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
5262 case UTT_IsCompleteType:
5263 // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_):
5264 // Returns True if and only if T is a complete type at the point of the
5265 // function call.
5266 return !T->isIncompleteType();
5267 case UTT_HasUniqueObjectRepresentations:
5268 return C.hasUniqueObjectRepresentations(T);
5269 case UTT_IsTriviallyRelocatable:
5270 return T.isTriviallyRelocatableType(C);
5271 }
5272}
5273
5274static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
5275 QualType RhsT, SourceLocation KeyLoc);
5276
5277static bool evaluateTypeTrait(Sema &S, TypeTrait Kind, SourceLocation KWLoc,
5278 ArrayRef<TypeSourceInfo *> Args,
5279 SourceLocation RParenLoc) {
5280 if (Kind <= UTT_Last)
5281 return EvaluateUnaryTypeTrait(S, Kind, KWLoc, Args[0]->getType());
5282
5283 // Evaluate BTT_ReferenceBindsToTemporary alongside the IsConstructible
5284 // traits to avoid duplication.
5285 if (Kind <= BTT_Last && Kind != BTT_ReferenceBindsToTemporary)
5286 return EvaluateBinaryTypeTrait(S, Kind, Args[0]->getType(),
5287 Args[1]->getType(), RParenLoc);
5288
5289 switch (Kind) {
5290 case clang::BTT_ReferenceBindsToTemporary:
5291 case clang::TT_IsConstructible:
5292 case clang::TT_IsNothrowConstructible:
5293 case clang::TT_IsTriviallyConstructible: {
5294 // C++11 [meta.unary.prop]:
5295 // is_trivially_constructible is defined as:
5296 //
5297 // is_constructible<T, Args...>::value is true and the variable
5298 // definition for is_constructible, as defined below, is known to call
5299 // no operation that is not trivial.
5300 //
5301 // The predicate condition for a template specialization
5302 // is_constructible<T, Args...> shall be satisfied if and only if the
5303 // following variable definition would be well-formed for some invented
5304 // variable t:
5305 //
5306 // T t(create<Args>()...);
5307 assert(!Args.empty())(static_cast <bool> (!Args.empty()) ? void (0) : __assert_fail
("!Args.empty()", "clang/lib/Sema/SemaExprCXX.cpp", 5307, __extension__
__PRETTY_FUNCTION__))
;
5308
5309 // Precondition: T and all types in the parameter pack Args shall be
5310 // complete types, (possibly cv-qualified) void, or arrays of
5311 // unknown bound.
5312 for (const auto *TSI : Args) {
5313 QualType ArgTy = TSI->getType();
5314 if (ArgTy->isVoidType() || ArgTy->isIncompleteArrayType())
5315 continue;
5316
5317 if (S.RequireCompleteType(KWLoc, ArgTy,
5318 diag::err_incomplete_type_used_in_type_trait_expr))
5319 return false;
5320 }
5321
5322 // Make sure the first argument is not incomplete nor a function type.
5323 QualType T = Args[0]->getType();
5324 if (T->isIncompleteType() || T->isFunctionType())
5325 return false;
5326
5327 // Make sure the first argument is not an abstract type.
5328 CXXRecordDecl *RD = T->getAsCXXRecordDecl();
5329 if (RD && RD->isAbstract())
5330 return false;
5331
5332 llvm::BumpPtrAllocator OpaqueExprAllocator;
5333 SmallVector<Expr *, 2> ArgExprs;
5334 ArgExprs.reserve(Args.size() - 1);
5335 for (unsigned I = 1, N = Args.size(); I != N; ++I) {
5336 QualType ArgTy = Args[I]->getType();
5337 if (ArgTy->isObjectType() || ArgTy->isFunctionType())
5338 ArgTy = S.Context.getRValueReferenceType(ArgTy);
5339 ArgExprs.push_back(
5340 new (OpaqueExprAllocator.Allocate<OpaqueValueExpr>())
5341 OpaqueValueExpr(Args[I]->getTypeLoc().getBeginLoc(),
5342 ArgTy.getNonLValueExprType(S.Context),
5343 Expr::getValueKindForType(ArgTy)));
5344 }
5345
5346 // Perform the initialization in an unevaluated context within a SFINAE
5347 // trap at translation unit scope.
5348 EnterExpressionEvaluationContext Unevaluated(
5349 S, Sema::ExpressionEvaluationContext::Unevaluated);
5350 Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true);
5351 Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl());
5352 InitializedEntity To(
5353 InitializedEntity::InitializeTemporary(S.Context, Args[0]));
5354 InitializationKind InitKind(InitializationKind::CreateDirect(KWLoc, KWLoc,
5355 RParenLoc));
5356 InitializationSequence Init(S, To, InitKind, ArgExprs);
5357 if (Init.Failed())
5358 return false;
5359
5360 ExprResult Result = Init.Perform(S, To, InitKind, ArgExprs);
5361 if (Result.isInvalid() || SFINAE.hasErrorOccurred())
5362 return false;
5363
5364 if (Kind == clang::TT_IsConstructible)
5365 return true;
5366
5367 if (Kind == clang::BTT_ReferenceBindsToTemporary) {
5368 if (!T->isReferenceType())
5369 return false;
5370
5371 return !Init.isDirectReferenceBinding();
5372 }
5373
5374 if (Kind == clang::TT_IsNothrowConstructible)
5375 return S.canThrow(Result.get()) == CT_Cannot;
5376
5377 if (Kind == clang::TT_IsTriviallyConstructible) {
5378 // Under Objective-C ARC and Weak, if the destination has non-trivial
5379 // Objective-C lifetime, this is a non-trivial construction.
5380 if (T.getNonReferenceType().hasNonTrivialObjCLifetime())
5381 return false;
5382
5383 // The initialization succeeded; now make sure there are no non-trivial
5384 // calls.
5385 return !Result.get()->hasNonTrivialCall(S.Context);
5386 }
5387
5388 llvm_unreachable("unhandled type trait")::llvm::llvm_unreachable_internal("unhandled type trait", "clang/lib/Sema/SemaExprCXX.cpp"
, 5388)
;
5389 return false;
5390 }
5391 default: llvm_unreachable("not a TT")::llvm::llvm_unreachable_internal("not a TT", "clang/lib/Sema/SemaExprCXX.cpp"
, 5391)
;
5392 }
5393
5394 return false;
5395}
5396
5397namespace {
5398void DiagnoseBuiltinDeprecation(Sema& S, TypeTrait Kind,
5399 SourceLocation KWLoc) {
5400 TypeTrait Replacement;
5401 switch (Kind) {
5402 case UTT_HasNothrowAssign:
5403 case UTT_HasNothrowMoveAssign:
5404 Replacement = BTT_IsNothrowAssignable;
5405 break;
5406 case UTT_HasNothrowCopy:
5407 case UTT_HasNothrowConstructor:
5408 Replacement = TT_IsNothrowConstructible;
5409 break;
5410 case UTT_HasTrivialAssign:
5411 case UTT_HasTrivialMoveAssign:
5412 Replacement = BTT_IsTriviallyAssignable;
5413 break;
5414 case UTT_HasTrivialCopy:
5415 Replacement = UTT_IsTriviallyCopyable;
5416 break;
5417 case UTT_HasTrivialDefaultConstructor:
5418 case UTT_HasTrivialMoveConstructor:
5419 Replacement = TT_IsTriviallyConstructible;
5420 break;
5421 case UTT_HasTrivialDestructor:
5422 Replacement = UTT_IsTriviallyDestructible;
5423 break;
5424 default:
5425 return;
5426 }
5427 S.Diag(KWLoc, diag::warn_deprecated_builtin)
5428 << getTraitSpelling(Kind) << getTraitSpelling(Replacement);
5429}
5430}
5431
5432bool Sema::CheckTypeTraitArity(unsigned Arity, SourceLocation Loc, size_t N) {
5433 if (Arity && N != Arity) {
5434 Diag(Loc, diag::err_type_trait_arity)
5435 << Arity << 0 << (Arity > 1) << (int)N << SourceRange(Loc);
5436 return false;
5437 }
5438
5439 if (!Arity && N == 0) {
5440 Diag(Loc, diag::err_type_trait_arity)
5441 << 1 << 1 << 1 << (int)N << SourceRange(Loc);
5442 return false;
5443 }
5444 return true;
5445}
5446
5447ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
5448 ArrayRef<TypeSourceInfo *> Args,
5449 SourceLocation RParenLoc) {
5450 if (!CheckTypeTraitArity(getTypeTraitArity(Kind), KWLoc, Args.size()))
5451 return ExprError();
5452 QualType ResultType = Context.getLogicalOperationType();
5453
5454 if (Kind <= UTT_Last && !CheckUnaryTypeTraitTypeCompleteness(
5455 *this, Kind, KWLoc, Args[0]->getType()))
5456 return ExprError();
5457
5458 DiagnoseBuiltinDeprecation(*this, Kind, KWLoc);
5459
5460 bool Dependent = false;
5461 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
5462 if (Args[I]->getType()->isDependentType()) {
5463 Dependent = true;
5464 break;
5465 }
5466 }
5467
5468 bool Result = false;
5469 if (!Dependent)
5470 Result = evaluateTypeTrait(*this, Kind, KWLoc, Args, RParenLoc);
5471
5472 return TypeTraitExpr::Create(Context, ResultType, KWLoc, Kind, Args,
5473 RParenLoc, Result);
5474}
5475
5476ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
5477 ArrayRef<ParsedType> Args,
5478 SourceLocation RParenLoc) {
5479 SmallVector<TypeSourceInfo *, 4> ConvertedArgs;
5480 ConvertedArgs.reserve(Args.size());
5481
5482 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
5483 TypeSourceInfo *TInfo;
5484 QualType T = GetTypeFromParser(Args[I], &TInfo);
5485 if (!TInfo)
5486 TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc);
5487
5488 ConvertedArgs.push_back(TInfo);
5489 }
5490
5491 return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc);
5492}
5493
5494static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
5495 QualType RhsT, SourceLocation KeyLoc) {
5496 assert(!LhsT->isDependentType() && !RhsT->isDependentType() &&(static_cast <bool> (!LhsT->isDependentType() &&
!RhsT->isDependentType() && "Cannot evaluate traits of dependent types"
) ? void (0) : __assert_fail ("!LhsT->isDependentType() && !RhsT->isDependentType() && \"Cannot evaluate traits of dependent types\""
, "clang/lib/Sema/SemaExprCXX.cpp", 5497, __extension__ __PRETTY_FUNCTION__
))
5497 "Cannot evaluate traits of dependent types")(static_cast <bool> (!LhsT->isDependentType() &&
!RhsT->isDependentType() && "Cannot evaluate traits of dependent types"
) ? void (0) : __assert_fail ("!LhsT->isDependentType() && !RhsT->isDependentType() && \"Cannot evaluate traits of dependent types\""
, "clang/lib/Sema/SemaExprCXX.cpp", 5497, __extension__ __PRETTY_FUNCTION__
))
;
5498
5499 switch(BTT) {
5500 case BTT_IsBaseOf: {
5501 // C++0x [meta.rel]p2
5502 // Base is a base class of Derived without regard to cv-qualifiers or
5503 // Base and Derived are not unions and name the same class type without
5504 // regard to cv-qualifiers.
5505
5506 const RecordType *lhsRecord = LhsT->getAs<RecordType>();
5507 const RecordType *rhsRecord = RhsT->getAs<RecordType>();
5508 if (!rhsRecord || !lhsRecord) {
5509 const ObjCObjectType *LHSObjTy = LhsT->getAs<ObjCObjectType>();
5510 const ObjCObjectType *RHSObjTy = RhsT->getAs<ObjCObjectType>();
5511 if (!LHSObjTy || !RHSObjTy)
5512 return false;
5513
5514 ObjCInterfaceDecl *BaseInterface = LHSObjTy->getInterface();
5515 ObjCInterfaceDecl *DerivedInterface = RHSObjTy->getInterface();
5516 if (!BaseInterface || !DerivedInterface)
5517 return false;
5518
5519 if (Self.RequireCompleteType(
5520 KeyLoc, RhsT, diag::err_incomplete_type_used_in_type_trait_expr))
5521 return false;
5522
5523 return BaseInterface->isSuperClassOf(DerivedInterface);
5524 }
5525
5526 assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)(static_cast <bool> (Self.Context.hasSameUnqualifiedType
(LhsT, RhsT) == (lhsRecord == rhsRecord)) ? void (0) : __assert_fail
("Self.Context.hasSameUnqualifiedType(LhsT, RhsT) == (lhsRecord == rhsRecord)"
, "clang/lib/Sema/SemaExprCXX.cpp", 5527, __extension__ __PRETTY_FUNCTION__
))
5527 == (lhsRecord == rhsRecord))(static_cast <bool> (Self.Context.hasSameUnqualifiedType
(LhsT, RhsT) == (lhsRecord == rhsRecord)) ? void (0) : __assert_fail
("Self.Context.hasSameUnqualifiedType(LhsT, RhsT) == (lhsRecord == rhsRecord)"
, "clang/lib/Sema/SemaExprCXX.cpp", 5527, __extension__ __PRETTY_FUNCTION__
))
;
5528
5529 // Unions are never base classes, and never have base classes.
5530 // It doesn't matter if they are complete or not. See PR#41843
5531 if (lhsRecord && lhsRecord->getDecl()->isUnion())
5532 return false;
5533 if (rhsRecord && rhsRecord->getDecl()->isUnion())
5534 return false;
5535
5536 if (lhsRecord == rhsRecord)
5537 return true;
5538
5539 // C++0x [meta.rel]p2:
5540 // If Base and Derived are class types and are different types
5541 // (ignoring possible cv-qualifiers) then Derived shall be a
5542 // complete type.
5543 if (Self.RequireCompleteType(KeyLoc, RhsT,
5544 diag::err_incomplete_type_used_in_type_trait_expr))
5545 return false;
5546
5547 return cast<CXXRecordDecl>(rhsRecord->getDecl())
5548 ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl()));
5549 }
5550 case BTT_IsSame:
5551 return Self.Context.hasSameType(LhsT, RhsT);
5552 case BTT_TypeCompatible: {
5553 // GCC ignores cv-qualifiers on arrays for this builtin.
5554 Qualifiers LhsQuals, RhsQuals;
5555 QualType Lhs = Self.getASTContext().getUnqualifiedArrayType(LhsT, LhsQuals);
5556 QualType Rhs = Self.getASTContext().getUnqualifiedArrayType(RhsT, RhsQuals);
5557 return Self.Context.typesAreCompatible(Lhs, Rhs);
5558 }
5559 case BTT_IsConvertible:
5560 case BTT_IsConvertibleTo: {
5561 // C++0x [meta.rel]p4:
5562 // Given the following function prototype:
5563 //
5564 // template <class T>
5565 // typename add_rvalue_reference<T>::type create();
5566 //
5567 // the predicate condition for a template specialization
5568 // is_convertible<From, To> shall be satisfied if and only if
5569 // the return expression in the following code would be
5570 // well-formed, including any implicit conversions to the return
5571 // type of the function:
5572 //
5573 // To test() {
5574 // return create<From>();
5575 // }
5576 //
5577 // Access checking is performed as if in a context unrelated to To and
5578 // From. Only the validity of the immediate context of the expression
5579 // of the return-statement (including conversions to the return type)
5580 // is considered.
5581 //
5582 // We model the initialization as a copy-initialization of a temporary
5583 // of the appropriate type, which for this expression is identical to the
5584 // return statement (since NRVO doesn't apply).
5585
5586 // Functions aren't allowed to return function or array types.
5587 if (RhsT->isFunctionType() || RhsT->isArrayType())
5588 return false;
5589
5590 // A return statement in a void function must have void type.
5591 if (RhsT->isVoidType())
5592 return LhsT->isVoidType();
5593
5594 // A function definition requires a complete, non-abstract return type.
5595 if (!Self.isCompleteType(KeyLoc, RhsT) || Self.isAbstractType(KeyLoc, RhsT))
5596 return false;
5597
5598 // Compute the result of add_rvalue_reference.
5599 if (LhsT->isObjectType() || LhsT->isFunctionType())
5600 LhsT = Self.Context.getRValueReferenceType(LhsT);
5601
5602 // Build a fake source and destination for initialization.
5603 InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT));
5604 OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
5605 Expr::getValueKindForType(LhsT));
5606 Expr *FromPtr = &From;
5607 InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc,
5608 SourceLocation()));
5609
5610 // Perform the initialization in an unevaluated context within a SFINAE
5611 // trap at translation unit scope.
5612 EnterExpressionEvaluationContext Unevaluated(
5613 Self, Sema::ExpressionEvaluationContext::Unevaluated);
5614 Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
5615 Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
5616 InitializationSequence Init(Self, To, Kind, FromPtr);
5617 if (Init.Failed())
5618 return false;
5619
5620 ExprResult Result = Init.Perform(Self, To, Kind, FromPtr);
5621 return !Result.isInvalid() && !SFINAE.hasErrorOccurred();
5622 }
5623
5624 case BTT_IsAssignable:
5625 case BTT_IsNothrowAssignable:
5626 case BTT_IsTriviallyAssignable: {
5627 // C++11 [meta.unary.prop]p3:
5628 // is_trivially_assignable is defined as:
5629 // is_assignable<T, U>::value is true and the assignment, as defined by
5630 // is_assignable, is known to call no operation that is not trivial
5631 //
5632 // is_assignable is defined as:
5633 // The expression declval<T>() = declval<U>() is well-formed when
5634 // treated as an unevaluated operand (Clause 5).
5635 //
5636 // For both, T and U shall be complete types, (possibly cv-qualified)
5637 // void, or arrays of unknown bound.
5638 if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() &&
5639 Self.RequireCompleteType(KeyLoc, LhsT,
5640 diag::err_incomplete_type_used_in_type_trait_expr))
5641 return false;
5642 if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() &&
5643 Self.RequireCompleteType(KeyLoc, RhsT,
5644 diag::err_incomplete_type_used_in_type_trait_expr))
5645 return false;
5646
5647 // cv void is never assignable.
5648 if (LhsT->isVoidType() || RhsT->isVoidType())
5649 return false;
5650
5651 // Build expressions that emulate the effect of declval<T>() and
5652 // declval<U>().
5653 if (LhsT->isObjectType() || LhsT->isFunctionType())
5654 LhsT = Self.Context.getRValueReferenceType(LhsT);
5655 if (RhsT->isObjectType() || RhsT->isFunctionType())
5656 RhsT = Self.Context.getRValueReferenceType(RhsT);
5657 OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
5658 Expr::getValueKindForType(LhsT));
5659 OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context),
5660 Expr::getValueKindForType(RhsT));
5661
5662 // Attempt the assignment in an unevaluated context within a SFINAE
5663 // trap at translation unit scope.
5664 EnterExpressionEvaluationContext Unevaluated(
5665 Self, Sema::ExpressionEvaluationContext::Unevaluated);
5666 Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
5667 Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
5668 ExprResult Result = Self.BuildBinOp(/*S=*/nullptr, KeyLoc, BO_Assign, &Lhs,
5669 &Rhs);
5670 if (Result.isInvalid())
5671 return false;
5672
5673 // Treat the assignment as unused for the purpose of -Wdeprecated-volatile.
5674 Self.CheckUnusedVolatileAssignment(Result.get());
5675
5676 if (SFINAE.hasErrorOccurred())
5677 return false;
5678
5679 if (BTT == BTT_IsAssignable)
5680 return true;
5681
5682 if (BTT == BTT_IsNothrowAssignable)
5683 return Self.canThrow(Result.get()) == CT_Cannot;
5684
5685 if (BTT == BTT_IsTriviallyAssignable) {
5686 // Under Objective-C ARC and Weak, if the destination has non-trivial
5687 // Objective-C lifetime, this is a non-trivial assignment.
5688 if (LhsT.getNonReferenceType().hasNonTrivialObjCLifetime())
5689 return false;
5690
5691 return !Result.get()->hasNonTrivialCall(Self.Context);
5692 }
5693
5694 llvm_unreachable("unhandled type trait")::llvm::llvm_unreachable_internal("unhandled type trait", "clang/lib/Sema/SemaExprCXX.cpp"
, 5694)
;
5695 return false;
5696 }
5697 default: llvm_unreachable("not a BTT")::llvm::llvm_unreachable_internal("not a BTT", "clang/lib/Sema/SemaExprCXX.cpp"
, 5697)
;
5698 }
5699 llvm_unreachable("Unknown type trait or not implemented")::llvm::llvm_unreachable_internal("Unknown type trait or not implemented"
, "clang/lib/Sema/SemaExprCXX.cpp", 5699)
;
5700}
5701
5702ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT,
5703 SourceLocation KWLoc,
5704 ParsedType Ty,
5705 Expr* DimExpr,
5706 SourceLocation RParen) {
5707 TypeSourceInfo *TSInfo;
5708 QualType T = GetTypeFromParser(Ty, &TSInfo);
5709 if (!TSInfo)
5710 TSInfo = Context.getTrivialTypeSourceInfo(T);
5711
5712 return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen);
5713}
5714
5715static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT,
5716 QualType T, Expr *DimExpr,
5717 SourceLocation KeyLoc) {
5718 assert(!T->isDependentType() && "Cannot evaluate traits of dependent type")(static_cast <bool> (!T->isDependentType() &&
"Cannot evaluate traits of dependent type") ? void (0) : __assert_fail
("!T->isDependentType() && \"Cannot evaluate traits of dependent type\""
, "clang/lib/Sema/SemaExprCXX.cpp", 5718, __extension__ __PRETTY_FUNCTION__
))
;
5719
5720 switch(ATT) {
5721 case ATT_ArrayRank:
5722 if (T->isArrayType()) {
5723 unsigned Dim = 0;
5724 while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
5725 ++Dim;
5726 T = AT->getElementType();
5727 }
5728 return Dim;
5729 }
5730 return 0;
5731
5732 case ATT_ArrayExtent: {
5733 llvm::APSInt Value;
5734 uint64_t Dim;
5735 if (Self.VerifyIntegerConstantExpression(
5736 DimExpr, &Value, diag::err_dimension_expr_not_constant_integer)
5737 .isInvalid())
5738 return 0;
5739 if (Value.isSigned() && Value.isNegative()) {
5740 Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer)
5741 << DimExpr->getSourceRange();
5742 return 0;
5743 }
5744 Dim = Value.getLimitedValue();
5745
5746 if (T->isArrayType()) {
5747 unsigned D = 0;
5748 bool Matched = false;
5749 while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
5750 if (Dim == D) {
5751 Matched = true;
5752 break;
5753 }
5754 ++D;
5755 T = AT->getElementType();
5756 }
5757
5758 if (Matched && T->isArrayType()) {
5759 if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T))
5760 return CAT->getSize().getLimitedValue();
5761 }
5762 }
5763 return 0;
5764 }
5765 }
5766 llvm_unreachable("Unknown type trait or not implemented")::llvm::llvm_unreachable_internal("Unknown type trait or not implemented"
, "clang/lib/Sema/SemaExprCXX.cpp", 5766)
;
5767}
5768
5769ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT,
5770 SourceLocation KWLoc,
5771 TypeSourceInfo *TSInfo,
5772 Expr* DimExpr,
5773 SourceLocation RParen) {
5774 QualType T = TSInfo->getType();
5775
5776 // FIXME: This should likely be tracked as an APInt to remove any host
5777 // assumptions about the width of size_t on the target.
5778 uint64_t Value = 0;
5779 if (!T->isDependentType())
5780 Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc);
5781
5782 // While the specification for these traits from the Embarcadero C++
5783 // compiler's documentation says the return type is 'unsigned int', Clang
5784 // returns 'size_t'. On Windows, the primary platform for the Embarcadero
5785 // compiler, there is no difference. On several other platforms this is an
5786 // important distinction.
5787 return new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value, DimExpr,
5788 RParen, Context.getSizeType());
5789}
5790
5791ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET,
5792 SourceLocation KWLoc,
5793 Expr *Queried,
5794 SourceLocation RParen) {
5795 // If error parsing the expression, ignore.
5796 if (!Queried)
5797 return ExprError();
5798
5799 ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen);
5800
5801 return Result;
5802}
5803
5804static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) {
5805 switch (ET) {
5806 case ET_IsLValueExpr: return E->isLValue();
5807 case ET_IsRValueExpr:
5808 return E->isPRValue();
5809 }
5810 llvm_unreachable("Expression trait not covered by switch")::llvm::llvm_unreachable_internal("Expression trait not covered by switch"
, "clang/lib/Sema/SemaExprCXX.cpp", 5810)
;
5811}
5812
5813ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET,
5814 SourceLocation KWLoc,
5815 Expr *Queried,
5816 SourceLocation RParen) {
5817 if (Queried->isTypeDependent()) {
5818 // Delay type-checking for type-dependent expressions.
5819 } else if (Queried->hasPlaceholderType()) {
5820 ExprResult PE = CheckPlaceholderExpr(Queried);
5821 if (PE.isInvalid()) return ExprError();
5822 return BuildExpressionTrait(ET, KWLoc, PE.get(), RParen);
5823 }
5824
5825 bool Value = EvaluateExpressionTrait(ET, Queried);
5826
5827 return new (Context)
5828 ExpressionTraitExpr(KWLoc, ET, Queried, Value, RParen, Context.BoolTy);
5829}
5830
5831QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS,
5832 ExprValueKind &VK,
5833 SourceLocation Loc,
5834 bool isIndirect) {
5835 assert(!LHS.get()->hasPlaceholderType() && !RHS.get()->hasPlaceholderType() &&(static_cast <bool> (!LHS.get()->hasPlaceholderType(
) && !RHS.get()->hasPlaceholderType() && "placeholders should have been weeded out by now"
) ? void (0) : __assert_fail ("!LHS.get()->hasPlaceholderType() && !RHS.get()->hasPlaceholderType() && \"placeholders should have been weeded out by now\""
, "clang/lib/Sema/SemaExprCXX.cpp", 5836, __extension__ __PRETTY_FUNCTION__
))
5836 "placeholders should have been weeded out by now")(static_cast <bool> (!LHS.get()->hasPlaceholderType(
) && !RHS.get()->hasPlaceholderType() && "placeholders should have been weeded out by now"
) ? void (0) : __assert_fail ("!LHS.get()->hasPlaceholderType() && !RHS.get()->hasPlaceholderType() && \"placeholders should have been weeded out by now\""
, "clang/lib/Sema/SemaExprCXX.cpp", 5836, __extension__ __PRETTY_FUNCTION__
))
;
5837
5838 // The LHS undergoes lvalue conversions if this is ->*, and undergoes the