Bug Summary

File:build/source/clang/lib/Sema/SemaExprCXX.cpp
Warning:line 2017, column 47
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name SemaExprCXX.cpp -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -relaxed-aliasing -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/source/build-llvm -resource-dir /usr/lib/llvm-16/lib/clang/16 -I tools/clang/lib/Sema -I /build/source/clang/lib/Sema -I /build/source/clang/include -I tools/clang/include -I include -I /build/source/llvm/include -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-16/lib/clang/16/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/source/build-llvm=build-llvm -fmacro-prefix-map=/build/source/= -fcoverage-prefix-map=/build/source/build-llvm=build-llvm -fcoverage-prefix-map=/build/source/= -source-date-epoch 1673561342 -O3 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -Wno-misleading-indentation -std=c++17 -fdeprecated-macro -fdebug-compilation-dir=/build/source/build-llvm -fdebug-prefix-map=/build/source/build-llvm=build-llvm -fdebug-prefix-map=/build/source/= -fdebug-prefix-map=/build/source/build-llvm=build-llvm -fdebug-prefix-map=/build/source/= -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2023-01-13-042150-16221-1 -x c++ /build/source/clang/lib/Sema/SemaExprCXX.cpp
1//===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// Implements semantic analysis for C++ expressions.
11///
12//===----------------------------------------------------------------------===//
13
14#include "TreeTransform.h"
15#include "TypeLocBuilder.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/ASTLambda.h"
18#include "clang/AST/CXXInheritance.h"
19#include "clang/AST/CharUnits.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/ExprObjC.h"
23#include "clang/AST/RecursiveASTVisitor.h"
24#include "clang/AST/Type.h"
25#include "clang/AST/TypeLoc.h"
26#include "clang/Basic/AlignedAllocation.h"
27#include "clang/Basic/DiagnosticSema.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "clang/Basic/TargetInfo.h"
30#include "clang/Basic/TokenKinds.h"
31#include "clang/Basic/TypeTraits.h"
32#include "clang/Lex/Preprocessor.h"
33#include "clang/Sema/DeclSpec.h"
34#include "clang/Sema/Initialization.h"
35#include "clang/Sema/Lookup.h"
36#include "clang/Sema/ParsedTemplate.h"
37#include "clang/Sema/Scope.h"
38#include "clang/Sema/ScopeInfo.h"
39#include "clang/Sema/SemaInternal.h"
40#include "clang/Sema/SemaLambda.h"
41#include "clang/Sema/Template.h"
42#include "clang/Sema/TemplateDeduction.h"
43#include "llvm/ADT/APInt.h"
44#include "llvm/ADT/STLExtras.h"
45#include "llvm/Support/ErrorHandling.h"
46#include "llvm/Support/TypeSize.h"
47using namespace clang;
48using namespace sema;
49
50/// Handle the result of the special case name lookup for inheriting
51/// constructor declarations. 'NS::X::X' and 'NS::X<...>::X' are treated as
52/// constructor names in member using declarations, even if 'X' is not the
53/// name of the corresponding type.
54ParsedType Sema::getInheritingConstructorName(CXXScopeSpec &SS,
55 SourceLocation NameLoc,
56 IdentifierInfo &Name) {
57 NestedNameSpecifier *NNS = SS.getScopeRep();
58
59 // Convert the nested-name-specifier into a type.
60 QualType Type;
61 switch (NNS->getKind()) {
62 case NestedNameSpecifier::TypeSpec:
63 case NestedNameSpecifier::TypeSpecWithTemplate:
64 Type = QualType(NNS->getAsType(), 0);
65 break;
66
67 case NestedNameSpecifier::Identifier:
68 // Strip off the last layer of the nested-name-specifier and build a
69 // typename type for it.
70 assert(NNS->getAsIdentifier() == &Name && "not a constructor name")(static_cast <bool> (NNS->getAsIdentifier() == &
Name && "not a constructor name") ? void (0) : __assert_fail
("NNS->getAsIdentifier() == &Name && \"not a constructor name\""
, "clang/lib/Sema/SemaExprCXX.cpp", 70, __extension__ __PRETTY_FUNCTION__
))
;
71 Type = Context.getDependentNameType(ETK_None, NNS->getPrefix(),
72 NNS->getAsIdentifier());
73 break;
74
75 case NestedNameSpecifier::Global:
76 case NestedNameSpecifier::Super:
77 case NestedNameSpecifier::Namespace:
78 case NestedNameSpecifier::NamespaceAlias:
79 llvm_unreachable("Nested name specifier is not a type for inheriting ctor")::llvm::llvm_unreachable_internal("Nested name specifier is not a type for inheriting ctor"
, "clang/lib/Sema/SemaExprCXX.cpp", 79)
;
80 }
81
82 // This reference to the type is located entirely at the location of the
83 // final identifier in the qualified-id.
84 return CreateParsedType(Type,
85 Context.getTrivialTypeSourceInfo(Type, NameLoc));
86}
87
88ParsedType Sema::getConstructorName(IdentifierInfo &II,
89 SourceLocation NameLoc,
90 Scope *S, CXXScopeSpec &SS,
91 bool EnteringContext) {
92 CXXRecordDecl *CurClass = getCurrentClass(S, &SS);
93 assert(CurClass && &II == CurClass->getIdentifier() &&(static_cast <bool> (CurClass && &II == CurClass
->getIdentifier() && "not a constructor name") ? void
(0) : __assert_fail ("CurClass && &II == CurClass->getIdentifier() && \"not a constructor name\""
, "clang/lib/Sema/SemaExprCXX.cpp", 94, __extension__ __PRETTY_FUNCTION__
))
94 "not a constructor name")(static_cast <bool> (CurClass && &II == CurClass
->getIdentifier() && "not a constructor name") ? void
(0) : __assert_fail ("CurClass && &II == CurClass->getIdentifier() && \"not a constructor name\""
, "clang/lib/Sema/SemaExprCXX.cpp", 94, __extension__ __PRETTY_FUNCTION__
))
;
95
96 // When naming a constructor as a member of a dependent context (eg, in a
97 // friend declaration or an inherited constructor declaration), form an
98 // unresolved "typename" type.
99 if (CurClass->isDependentContext() && !EnteringContext && SS.getScopeRep()) {
100 QualType T = Context.getDependentNameType(ETK_None, SS.getScopeRep(), &II);
101 return ParsedType::make(T);
102 }
103
104 if (SS.isNotEmpty() && RequireCompleteDeclContext(SS, CurClass))
105 return ParsedType();
106
107 // Find the injected-class-name declaration. Note that we make no attempt to
108 // diagnose cases where the injected-class-name is shadowed: the only
109 // declaration that can validly shadow the injected-class-name is a
110 // non-static data member, and if the class contains both a non-static data
111 // member and a constructor then it is ill-formed (we check that in
112 // CheckCompletedCXXClass).
113 CXXRecordDecl *InjectedClassName = nullptr;
114 for (NamedDecl *ND : CurClass->lookup(&II)) {
115 auto *RD = dyn_cast<CXXRecordDecl>(ND);
116 if (RD && RD->isInjectedClassName()) {
117 InjectedClassName = RD;
118 break;
119 }
120 }
121 if (!InjectedClassName) {
122 if (!CurClass->isInvalidDecl()) {
123 // FIXME: RequireCompleteDeclContext doesn't check dependent contexts
124 // properly. Work around it here for now.
125 Diag(SS.getLastQualifierNameLoc(),
126 diag::err_incomplete_nested_name_spec) << CurClass << SS.getRange();
127 }
128 return ParsedType();
129 }
130
131 QualType T = Context.getTypeDeclType(InjectedClassName);
132 DiagnoseUseOfDecl(InjectedClassName, NameLoc);
133 MarkAnyDeclReferenced(NameLoc, InjectedClassName, /*OdrUse=*/false);
134
135 return ParsedType::make(T);
136}
137
138ParsedType Sema::getDestructorName(SourceLocation TildeLoc,
139 IdentifierInfo &II,
140 SourceLocation NameLoc,
141 Scope *S, CXXScopeSpec &SS,
142 ParsedType ObjectTypePtr,
143 bool EnteringContext) {
144 // Determine where to perform name lookup.
145
146 // FIXME: This area of the standard is very messy, and the current
147 // wording is rather unclear about which scopes we search for the
148 // destructor name; see core issues 399 and 555. Issue 399 in
149 // particular shows where the current description of destructor name
150 // lookup is completely out of line with existing practice, e.g.,
151 // this appears to be ill-formed:
152 //
153 // namespace N {
154 // template <typename T> struct S {
155 // ~S();
156 // };
157 // }
158 //
159 // void f(N::S<int>* s) {
160 // s->N::S<int>::~S();
161 // }
162 //
163 // See also PR6358 and PR6359.
164 //
165 // For now, we accept all the cases in which the name given could plausibly
166 // be interpreted as a correct destructor name, issuing off-by-default
167 // extension diagnostics on the cases that don't strictly conform to the
168 // C++20 rules. This basically means we always consider looking in the
169 // nested-name-specifier prefix, the complete nested-name-specifier, and
170 // the scope, and accept if we find the expected type in any of the three
171 // places.
172
173 if (SS.isInvalid())
174 return nullptr;
175
176 // Whether we've failed with a diagnostic already.
177 bool Failed = false;
178
179 llvm::SmallVector<NamedDecl*, 8> FoundDecls;
180 llvm::SmallPtrSet<CanonicalDeclPtr<Decl>, 8> FoundDeclSet;
181
182 // If we have an object type, it's because we are in a
183 // pseudo-destructor-expression or a member access expression, and
184 // we know what type we're looking for.
185 QualType SearchType =
186 ObjectTypePtr ? GetTypeFromParser(ObjectTypePtr) : QualType();
187
188 auto CheckLookupResult = [&](LookupResult &Found) -> ParsedType {
189 auto IsAcceptableResult = [&](NamedDecl *D) -> bool {
190 auto *Type = dyn_cast<TypeDecl>(D->getUnderlyingDecl());
191 if (!Type)
192 return false;
193
194 if (SearchType.isNull() || SearchType->isDependentType())
195 return true;
196
197 QualType T = Context.getTypeDeclType(Type);
198 return Context.hasSameUnqualifiedType(T, SearchType);
199 };
200
201 unsigned NumAcceptableResults = 0;
202 for (NamedDecl *D : Found) {
203 if (IsAcceptableResult(D))
204 ++NumAcceptableResults;
205
206 // Don't list a class twice in the lookup failure diagnostic if it's
207 // found by both its injected-class-name and by the name in the enclosing
208 // scope.
209 if (auto *RD = dyn_cast<CXXRecordDecl>(D))
210 if (RD->isInjectedClassName())
211 D = cast<NamedDecl>(RD->getParent());
212
213 if (FoundDeclSet.insert(D).second)
214 FoundDecls.push_back(D);
215 }
216
217 // As an extension, attempt to "fix" an ambiguity by erasing all non-type
218 // results, and all non-matching results if we have a search type. It's not
219 // clear what the right behavior is if destructor lookup hits an ambiguity,
220 // but other compilers do generally accept at least some kinds of
221 // ambiguity.
222 if (Found.isAmbiguous() && NumAcceptableResults == 1) {
223 Diag(NameLoc, diag::ext_dtor_name_ambiguous);
224 LookupResult::Filter F = Found.makeFilter();
225 while (F.hasNext()) {
226 NamedDecl *D = F.next();
227 if (auto *TD = dyn_cast<TypeDecl>(D->getUnderlyingDecl()))
228 Diag(D->getLocation(), diag::note_destructor_type_here)
229 << Context.getTypeDeclType(TD);
230 else
231 Diag(D->getLocation(), diag::note_destructor_nontype_here);
232
233 if (!IsAcceptableResult(D))
234 F.erase();
235 }
236 F.done();
237 }
238
239 if (Found.isAmbiguous())
240 Failed = true;
241
242 if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
243 if (IsAcceptableResult(Type)) {
244 QualType T = Context.getTypeDeclType(Type);
245 MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
246 return CreateParsedType(Context.getElaboratedType(ETK_None, nullptr, T),
247 Context.getTrivialTypeSourceInfo(T, NameLoc));
248 }
249 }
250
251 return nullptr;
252 };
253
254 bool IsDependent = false;
255
256 auto LookupInObjectType = [&]() -> ParsedType {
257 if (Failed || SearchType.isNull())
258 return nullptr;
259
260 IsDependent |= SearchType->isDependentType();
261
262 LookupResult Found(*this, &II, NameLoc, LookupDestructorName);
263 DeclContext *LookupCtx = computeDeclContext(SearchType);
264 if (!LookupCtx)
265 return nullptr;
266 LookupQualifiedName(Found, LookupCtx);
267 return CheckLookupResult(Found);
268 };
269
270 auto LookupInNestedNameSpec = [&](CXXScopeSpec &LookupSS) -> ParsedType {
271 if (Failed)
272 return nullptr;
273
274 IsDependent |= isDependentScopeSpecifier(LookupSS);
275 DeclContext *LookupCtx = computeDeclContext(LookupSS, EnteringContext);
276 if (!LookupCtx)
277 return nullptr;
278
279 LookupResult Found(*this, &II, NameLoc, LookupDestructorName);
280 if (RequireCompleteDeclContext(LookupSS, LookupCtx)) {
281 Failed = true;
282 return nullptr;
283 }
284 LookupQualifiedName(Found, LookupCtx);
285 return CheckLookupResult(Found);
286 };
287
288 auto LookupInScope = [&]() -> ParsedType {
289 if (Failed || !S)
290 return nullptr;
291
292 LookupResult Found(*this, &II, NameLoc, LookupDestructorName);
293 LookupName(Found, S);
294 return CheckLookupResult(Found);
295 };
296
297 // C++2a [basic.lookup.qual]p6:
298 // In a qualified-id of the form
299 //
300 // nested-name-specifier[opt] type-name :: ~ type-name
301 //
302 // the second type-name is looked up in the same scope as the first.
303 //
304 // We interpret this as meaning that if you do a dual-scope lookup for the
305 // first name, you also do a dual-scope lookup for the second name, per
306 // C++ [basic.lookup.classref]p4:
307 //
308 // If the id-expression in a class member access is a qualified-id of the
309 // form
310 //
311 // class-name-or-namespace-name :: ...
312 //
313 // the class-name-or-namespace-name following the . or -> is first looked
314 // up in the class of the object expression and the name, if found, is used.
315 // Otherwise, it is looked up in the context of the entire
316 // postfix-expression.
317 //
318 // This looks in the same scopes as for an unqualified destructor name:
319 //
320 // C++ [basic.lookup.classref]p3:
321 // If the unqualified-id is ~ type-name, the type-name is looked up
322 // in the context of the entire postfix-expression. If the type T
323 // of the object expression is of a class type C, the type-name is
324 // also looked up in the scope of class C. At least one of the
325 // lookups shall find a name that refers to cv T.
326 //
327 // FIXME: The intent is unclear here. Should type-name::~type-name look in
328 // the scope anyway if it finds a non-matching name declared in the class?
329 // If both lookups succeed and find a dependent result, which result should
330 // we retain? (Same question for p->~type-name().)
331
332 if (NestedNameSpecifier *Prefix =
333 SS.isSet() ? SS.getScopeRep()->getPrefix() : nullptr) {
334 // This is
335 //
336 // nested-name-specifier type-name :: ~ type-name
337 //
338 // Look for the second type-name in the nested-name-specifier.
339 CXXScopeSpec PrefixSS;
340 PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data()));
341 if (ParsedType T = LookupInNestedNameSpec(PrefixSS))
342 return T;
343 } else {
344 // This is one of
345 //
346 // type-name :: ~ type-name
347 // ~ type-name
348 //
349 // Look in the scope and (if any) the object type.
350 if (ParsedType T = LookupInScope())
351 return T;
352 if (ParsedType T = LookupInObjectType())
353 return T;
354 }
355
356 if (Failed)
357 return nullptr;
358
359 if (IsDependent) {
360 // We didn't find our type, but that's OK: it's dependent anyway.
361
362 // FIXME: What if we have no nested-name-specifier?
363 QualType T = CheckTypenameType(ETK_None, SourceLocation(),
364 SS.getWithLocInContext(Context),
365 II, NameLoc);
366 return ParsedType::make(T);
367 }
368
369 // The remaining cases are all non-standard extensions imitating the behavior
370 // of various other compilers.
371 unsigned NumNonExtensionDecls = FoundDecls.size();
372
373 if (SS.isSet()) {
374 // For compatibility with older broken C++ rules and existing code,
375 //
376 // nested-name-specifier :: ~ type-name
377 //
378 // also looks for type-name within the nested-name-specifier.
379 if (ParsedType T = LookupInNestedNameSpec(SS)) {
380 Diag(SS.getEndLoc(), diag::ext_dtor_named_in_wrong_scope)
381 << SS.getRange()
382 << FixItHint::CreateInsertion(SS.getEndLoc(),
383 ("::" + II.getName()).str());
384 return T;
385 }
386
387 // For compatibility with other compilers and older versions of Clang,
388 //
389 // nested-name-specifier type-name :: ~ type-name
390 //
391 // also looks for type-name in the scope. Unfortunately, we can't
392 // reasonably apply this fallback for dependent nested-name-specifiers.
393 if (SS.getScopeRep()->getPrefix()) {
394 if (ParsedType T = LookupInScope()) {
395 Diag(SS.getEndLoc(), diag::ext_qualified_dtor_named_in_lexical_scope)
396 << FixItHint::CreateRemoval(SS.getRange());
397 Diag(FoundDecls.back()->getLocation(), diag::note_destructor_type_here)
398 << GetTypeFromParser(T);
399 return T;
400 }
401 }
402 }
403
404 // We didn't find anything matching; tell the user what we did find (if
405 // anything).
406
407 // Don't tell the user about declarations we shouldn't have found.
408 FoundDecls.resize(NumNonExtensionDecls);
409
410 // List types before non-types.
411 std::stable_sort(FoundDecls.begin(), FoundDecls.end(),
412 [](NamedDecl *A, NamedDecl *B) {
413 return isa<TypeDecl>(A->getUnderlyingDecl()) >
414 isa<TypeDecl>(B->getUnderlyingDecl());
415 });
416
417 // Suggest a fixit to properly name the destroyed type.
418 auto MakeFixItHint = [&]{
419 const CXXRecordDecl *Destroyed = nullptr;
420 // FIXME: If we have a scope specifier, suggest its last component?
421 if (!SearchType.isNull())
422 Destroyed = SearchType->getAsCXXRecordDecl();
423 else if (S)
424 Destroyed = dyn_cast_or_null<CXXRecordDecl>(S->getEntity());
425 if (Destroyed)
426 return FixItHint::CreateReplacement(SourceRange(NameLoc),
427 Destroyed->getNameAsString());
428 return FixItHint();
429 };
430
431 if (FoundDecls.empty()) {
432 // FIXME: Attempt typo-correction?
433 Diag(NameLoc, diag::err_undeclared_destructor_name)
434 << &II << MakeFixItHint();
435 } else if (!SearchType.isNull() && FoundDecls.size() == 1) {
436 if (auto *TD = dyn_cast<TypeDecl>(FoundDecls[0]->getUnderlyingDecl())) {
437 assert(!SearchType.isNull() &&(static_cast <bool> (!SearchType.isNull() && "should only reject a type result if we have a search type"
) ? void (0) : __assert_fail ("!SearchType.isNull() && \"should only reject a type result if we have a search type\""
, "clang/lib/Sema/SemaExprCXX.cpp", 438, __extension__ __PRETTY_FUNCTION__
))
438 "should only reject a type result if we have a search type")(static_cast <bool> (!SearchType.isNull() && "should only reject a type result if we have a search type"
) ? void (0) : __assert_fail ("!SearchType.isNull() && \"should only reject a type result if we have a search type\""
, "clang/lib/Sema/SemaExprCXX.cpp", 438, __extension__ __PRETTY_FUNCTION__
))
;
439 QualType T = Context.getTypeDeclType(TD);
440 Diag(NameLoc, diag::err_destructor_expr_type_mismatch)
441 << T << SearchType << MakeFixItHint();
442 } else {
443 Diag(NameLoc, diag::err_destructor_expr_nontype)
444 << &II << MakeFixItHint();
445 }
446 } else {
447 Diag(NameLoc, SearchType.isNull() ? diag::err_destructor_name_nontype
448 : diag::err_destructor_expr_mismatch)
449 << &II << SearchType << MakeFixItHint();
450 }
451
452 for (NamedDecl *FoundD : FoundDecls) {
453 if (auto *TD = dyn_cast<TypeDecl>(FoundD->getUnderlyingDecl()))
454 Diag(FoundD->getLocation(), diag::note_destructor_type_here)
455 << Context.getTypeDeclType(TD);
456 else
457 Diag(FoundD->getLocation(), diag::note_destructor_nontype_here)
458 << FoundD;
459 }
460
461 return nullptr;
462}
463
464ParsedType Sema::getDestructorTypeForDecltype(const DeclSpec &DS,
465 ParsedType ObjectType) {
466 if (DS.getTypeSpecType() == DeclSpec::TST_error)
467 return nullptr;
468
469 if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto) {
470 Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid);
471 return nullptr;
472 }
473
474 assert(DS.getTypeSpecType() == DeclSpec::TST_decltype &&(static_cast <bool> (DS.getTypeSpecType() == DeclSpec::
TST_decltype && "unexpected type in getDestructorType"
) ? void (0) : __assert_fail ("DS.getTypeSpecType() == DeclSpec::TST_decltype && \"unexpected type in getDestructorType\""
, "clang/lib/Sema/SemaExprCXX.cpp", 475, __extension__ __PRETTY_FUNCTION__
))
475 "unexpected type in getDestructorType")(static_cast <bool> (DS.getTypeSpecType() == DeclSpec::
TST_decltype && "unexpected type in getDestructorType"
) ? void (0) : __assert_fail ("DS.getTypeSpecType() == DeclSpec::TST_decltype && \"unexpected type in getDestructorType\""
, "clang/lib/Sema/SemaExprCXX.cpp", 475, __extension__ __PRETTY_FUNCTION__
))
;
476 QualType T = BuildDecltypeType(DS.getRepAsExpr());
477
478 // If we know the type of the object, check that the correct destructor
479 // type was named now; we can give better diagnostics this way.
480 QualType SearchType = GetTypeFromParser(ObjectType);
481 if (!SearchType.isNull() && !SearchType->isDependentType() &&
482 !Context.hasSameUnqualifiedType(T, SearchType)) {
483 Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch)
484 << T << SearchType;
485 return nullptr;
486 }
487
488 return ParsedType::make(T);
489}
490
491bool Sema::checkLiteralOperatorId(const CXXScopeSpec &SS,
492 const UnqualifiedId &Name, bool IsUDSuffix) {
493 assert(Name.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId)(static_cast <bool> (Name.getKind() == UnqualifiedIdKind
::IK_LiteralOperatorId) ? void (0) : __assert_fail ("Name.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId"
, "clang/lib/Sema/SemaExprCXX.cpp", 493, __extension__ __PRETTY_FUNCTION__
))
;
494 if (!IsUDSuffix) {
495 // [over.literal] p8
496 //
497 // double operator""_Bq(long double); // OK: not a reserved identifier
498 // double operator"" _Bq(long double); // ill-formed, no diagnostic required
499 IdentifierInfo *II = Name.Identifier;
500 ReservedIdentifierStatus Status = II->isReserved(PP.getLangOpts());
501 SourceLocation Loc = Name.getEndLoc();
502 if (isReservedInAllContexts(Status) &&
503 !PP.getSourceManager().isInSystemHeader(Loc)) {
504 Diag(Loc, diag::warn_reserved_extern_symbol)
505 << II << static_cast<int>(Status)
506 << FixItHint::CreateReplacement(
507 Name.getSourceRange(),
508 (StringRef("operator\"\"") + II->getName()).str());
509 }
510 }
511
512 if (!SS.isValid())
513 return false;
514
515 switch (SS.getScopeRep()->getKind()) {
516 case NestedNameSpecifier::Identifier:
517 case NestedNameSpecifier::TypeSpec:
518 case NestedNameSpecifier::TypeSpecWithTemplate:
519 // Per C++11 [over.literal]p2, literal operators can only be declared at
520 // namespace scope. Therefore, this unqualified-id cannot name anything.
521 // Reject it early, because we have no AST representation for this in the
522 // case where the scope is dependent.
523 Diag(Name.getBeginLoc(), diag::err_literal_operator_id_outside_namespace)
524 << SS.getScopeRep();
525 return true;
526
527 case NestedNameSpecifier::Global:
528 case NestedNameSpecifier::Super:
529 case NestedNameSpecifier::Namespace:
530 case NestedNameSpecifier::NamespaceAlias:
531 return false;
532 }
533
534 llvm_unreachable("unknown nested name specifier kind")::llvm::llvm_unreachable_internal("unknown nested name specifier kind"
, "clang/lib/Sema/SemaExprCXX.cpp", 534)
;
535}
536
537/// Build a C++ typeid expression with a type operand.
538ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
539 SourceLocation TypeidLoc,
540 TypeSourceInfo *Operand,
541 SourceLocation RParenLoc) {
542 // C++ [expr.typeid]p4:
543 // The top-level cv-qualifiers of the lvalue expression or the type-id
544 // that is the operand of typeid are always ignored.
545 // If the type of the type-id is a class type or a reference to a class
546 // type, the class shall be completely-defined.
547 Qualifiers Quals;
548 QualType T
549 = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
550 Quals);
551 if (T->getAs<RecordType>() &&
552 RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
553 return ExprError();
554
555 if (T->isVariablyModifiedType())
556 return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid) << T);
557
558 if (CheckQualifiedFunctionForTypeId(T, TypeidLoc))
559 return ExprError();
560
561 return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), Operand,
562 SourceRange(TypeidLoc, RParenLoc));
563}
564
565/// Build a C++ typeid expression with an expression operand.
566ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
567 SourceLocation TypeidLoc,
568 Expr *E,
569 SourceLocation RParenLoc) {
570 bool WasEvaluated = false;
571 if (E && !E->isTypeDependent()) {
572 if (E->hasPlaceholderType()) {
573 ExprResult result = CheckPlaceholderExpr(E);
574 if (result.isInvalid()) return ExprError();
575 E = result.get();
576 }
577
578 QualType T = E->getType();
579 if (const RecordType *RecordT = T->getAs<RecordType>()) {
580 CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
581 // C++ [expr.typeid]p3:
582 // [...] If the type of the expression is a class type, the class
583 // shall be completely-defined.
584 if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
585 return ExprError();
586
587 // C++ [expr.typeid]p3:
588 // When typeid is applied to an expression other than an glvalue of a
589 // polymorphic class type [...] [the] expression is an unevaluated
590 // operand. [...]
591 if (RecordD->isPolymorphic() && E->isGLValue()) {
592 if (isUnevaluatedContext()) {
593 // The operand was processed in unevaluated context, switch the
594 // context and recheck the subexpression.
595 ExprResult Result = TransformToPotentiallyEvaluated(E);
596 if (Result.isInvalid())
597 return ExprError();
598 E = Result.get();
599 }
600
601 // We require a vtable to query the type at run time.
602 MarkVTableUsed(TypeidLoc, RecordD);
603 WasEvaluated = true;
604 }
605 }
606
607 ExprResult Result = CheckUnevaluatedOperand(E);
608 if (Result.isInvalid())
609 return ExprError();
610 E = Result.get();
611
612 // C++ [expr.typeid]p4:
613 // [...] If the type of the type-id is a reference to a possibly
614 // cv-qualified type, the result of the typeid expression refers to a
615 // std::type_info object representing the cv-unqualified referenced
616 // type.
617 Qualifiers Quals;
618 QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
619 if (!Context.hasSameType(T, UnqualT)) {
620 T = UnqualT;
621 E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).get();
622 }
623 }
624
625 if (E->getType()->isVariablyModifiedType())
626 return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid)
627 << E->getType());
628 else if (!inTemplateInstantiation() &&
629 E->HasSideEffects(Context, WasEvaluated)) {
630 // The expression operand for typeid is in an unevaluated expression
631 // context, so side effects could result in unintended consequences.
632 Diag(E->getExprLoc(), WasEvaluated
633 ? diag::warn_side_effects_typeid
634 : diag::warn_side_effects_unevaluated_context);
635 }
636
637 return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), E,
638 SourceRange(TypeidLoc, RParenLoc));
639}
640
641/// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
642ExprResult
643Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
644 bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
645 // typeid is not supported in OpenCL.
646 if (getLangOpts().OpenCLCPlusPlus) {
647 return ExprError(Diag(OpLoc, diag::err_openclcxx_not_supported)
648 << "typeid");
649 }
650
651 // Find the std::type_info type.
652 if (!getStdNamespace())
653 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
654
655 if (!CXXTypeInfoDecl) {
656 IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
657 LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
658 LookupQualifiedName(R, getStdNamespace());
659 CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
660 // Microsoft's typeinfo doesn't have type_info in std but in the global
661 // namespace if _HAS_EXCEPTIONS is defined to 0. See PR13153.
662 if (!CXXTypeInfoDecl && LangOpts.MSVCCompat) {
663 LookupQualifiedName(R, Context.getTranslationUnitDecl());
664 CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
665 }
666 if (!CXXTypeInfoDecl)
667 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
668 }
669
670 if (!getLangOpts().RTTI) {
671 return ExprError(Diag(OpLoc, diag::err_no_typeid_with_fno_rtti));
672 }
673
674 QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
675
676 if (isType) {
677 // The operand is a type; handle it as such.
678 TypeSourceInfo *TInfo = nullptr;
679 QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
680 &TInfo);
681 if (T.isNull())
682 return ExprError();
683
684 if (!TInfo)
685 TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
686
687 return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
688 }
689
690 // The operand is an expression.
691 ExprResult Result =
692 BuildCXXTypeId(TypeInfoType, OpLoc, (Expr *)TyOrExpr, RParenLoc);
693
694 if (!getLangOpts().RTTIData && !Result.isInvalid())
695 if (auto *CTE = dyn_cast<CXXTypeidExpr>(Result.get()))
696 if (CTE->isPotentiallyEvaluated() && !CTE->isMostDerived(Context))
697 Diag(OpLoc, diag::warn_no_typeid_with_rtti_disabled)
698 << (getDiagnostics().getDiagnosticOptions().getFormat() ==
699 DiagnosticOptions::MSVC);
700 return Result;
701}
702
703/// Grabs __declspec(uuid()) off a type, or returns 0 if we cannot resolve to
704/// a single GUID.
705static void
706getUuidAttrOfType(Sema &SemaRef, QualType QT,
707 llvm::SmallSetVector<const UuidAttr *, 1> &UuidAttrs) {
708 // Optionally remove one level of pointer, reference or array indirection.
709 const Type *Ty = QT.getTypePtr();
710 if (QT->isPointerType() || QT->isReferenceType())
711 Ty = QT->getPointeeType().getTypePtr();
712 else if (QT->isArrayType())
713 Ty = Ty->getBaseElementTypeUnsafe();
714
715 const auto *TD = Ty->getAsTagDecl();
716 if (!TD)
717 return;
718
719 if (const auto *Uuid = TD->getMostRecentDecl()->getAttr<UuidAttr>()) {
720 UuidAttrs.insert(Uuid);
721 return;
722 }
723
724 // __uuidof can grab UUIDs from template arguments.
725 if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(TD)) {
726 const TemplateArgumentList &TAL = CTSD->getTemplateArgs();
727 for (const TemplateArgument &TA : TAL.asArray()) {
728 const UuidAttr *UuidForTA = nullptr;
729 if (TA.getKind() == TemplateArgument::Type)
730 getUuidAttrOfType(SemaRef, TA.getAsType(), UuidAttrs);
731 else if (TA.getKind() == TemplateArgument::Declaration)
732 getUuidAttrOfType(SemaRef, TA.getAsDecl()->getType(), UuidAttrs);
733
734 if (UuidForTA)
735 UuidAttrs.insert(UuidForTA);
736 }
737 }
738}
739
740/// Build a Microsoft __uuidof expression with a type operand.
741ExprResult Sema::BuildCXXUuidof(QualType Type,
742 SourceLocation TypeidLoc,
743 TypeSourceInfo *Operand,
744 SourceLocation RParenLoc) {
745 MSGuidDecl *Guid = nullptr;
746 if (!Operand->getType()->isDependentType()) {
747 llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs;
748 getUuidAttrOfType(*this, Operand->getType(), UuidAttrs);
749 if (UuidAttrs.empty())
750 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
751 if (UuidAttrs.size() > 1)
752 return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
753 Guid = UuidAttrs.back()->getGuidDecl();
754 }
755
756 return new (Context)
757 CXXUuidofExpr(Type, Operand, Guid, SourceRange(TypeidLoc, RParenLoc));
758}
759
760/// Build a Microsoft __uuidof expression with an expression operand.
761ExprResult Sema::BuildCXXUuidof(QualType Type, SourceLocation TypeidLoc,
762 Expr *E, SourceLocation RParenLoc) {
763 MSGuidDecl *Guid = nullptr;
764 if (!E->getType()->isDependentType()) {
765 if (E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
766 // A null pointer results in {00000000-0000-0000-0000-000000000000}.
767 Guid = Context.getMSGuidDecl(MSGuidDecl::Parts{});
768 } else {
769 llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs;
770 getUuidAttrOfType(*this, E->getType(), UuidAttrs);
771 if (UuidAttrs.empty())
772 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
773 if (UuidAttrs.size() > 1)
774 return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
775 Guid = UuidAttrs.back()->getGuidDecl();
776 }
777 }
778
779 return new (Context)
780 CXXUuidofExpr(Type, E, Guid, SourceRange(TypeidLoc, RParenLoc));
781}
782
783/// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
784ExprResult
785Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
786 bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
787 QualType GuidType = Context.getMSGuidType();
788 GuidType.addConst();
789
790 if (isType) {
791 // The operand is a type; handle it as such.
792 TypeSourceInfo *TInfo = nullptr;
793 QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
794 &TInfo);
795 if (T.isNull())
796 return ExprError();
797
798 if (!TInfo)
799 TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
800
801 return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
802 }
803
804 // The operand is an expression.
805 return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
806}
807
808/// ActOnCXXBoolLiteral - Parse {true,false} literals.
809ExprResult
810Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
811 assert((Kind == tok::kw_true || Kind == tok::kw_false) &&(static_cast <bool> ((Kind == tok::kw_true || Kind == tok
::kw_false) && "Unknown C++ Boolean value!") ? void (
0) : __assert_fail ("(Kind == tok::kw_true || Kind == tok::kw_false) && \"Unknown C++ Boolean value!\""
, "clang/lib/Sema/SemaExprCXX.cpp", 812, __extension__ __PRETTY_FUNCTION__
))
812 "Unknown C++ Boolean value!")(static_cast <bool> ((Kind == tok::kw_true || Kind == tok
::kw_false) && "Unknown C++ Boolean value!") ? void (
0) : __assert_fail ("(Kind == tok::kw_true || Kind == tok::kw_false) && \"Unknown C++ Boolean value!\""
, "clang/lib/Sema/SemaExprCXX.cpp", 812, __extension__ __PRETTY_FUNCTION__
))
;
813 return new (Context)
814 CXXBoolLiteralExpr(Kind == tok::kw_true, Context.BoolTy, OpLoc);
815}
816
817/// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
818ExprResult
819Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
820 return new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
821}
822
823/// ActOnCXXThrow - Parse throw expressions.
824ExprResult
825Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) {
826 bool IsThrownVarInScope = false;
827 if (Ex) {
828 // C++0x [class.copymove]p31:
829 // When certain criteria are met, an implementation is allowed to omit the
830 // copy/move construction of a class object [...]
831 //
832 // - in a throw-expression, when the operand is the name of a
833 // non-volatile automatic object (other than a function or catch-
834 // clause parameter) whose scope does not extend beyond the end of the
835 // innermost enclosing try-block (if there is one), the copy/move
836 // operation from the operand to the exception object (15.1) can be
837 // omitted by constructing the automatic object directly into the
838 // exception object
839 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens()))
840 if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
841 if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) {
842 for( ; S; S = S->getParent()) {
843 if (S->isDeclScope(Var)) {
844 IsThrownVarInScope = true;
845 break;
846 }
847
848 // FIXME: Many of the scope checks here seem incorrect.
849 if (S->getFlags() &
850 (Scope::FnScope | Scope::ClassScope | Scope::BlockScope |
851 Scope::ObjCMethodScope | Scope::TryScope))
852 break;
853 }
854 }
855 }
856 }
857
858 return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope);
859}
860
861ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex,
862 bool IsThrownVarInScope) {
863 // Don't report an error if 'throw' is used in system headers.
864 if (!getLangOpts().CXXExceptions &&
865 !getSourceManager().isInSystemHeader(OpLoc) && !getLangOpts().CUDA) {
866 // Delay error emission for the OpenMP device code.
867 targetDiag(OpLoc, diag::err_exceptions_disabled) << "throw";
868 }
869
870 // Exceptions aren't allowed in CUDA device code.
871 if (getLangOpts().CUDA)
872 CUDADiagIfDeviceCode(OpLoc, diag::err_cuda_device_exceptions)
873 << "throw" << CurrentCUDATarget();
874
875 if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope())
876 Diag(OpLoc, diag::err_omp_simd_region_cannot_use_stmt) << "throw";
877
878 if (Ex && !Ex->isTypeDependent()) {
879 // Initialize the exception result. This implicitly weeds out
880 // abstract types or types with inaccessible copy constructors.
881
882 // C++0x [class.copymove]p31:
883 // When certain criteria are met, an implementation is allowed to omit the
884 // copy/move construction of a class object [...]
885 //
886 // - in a throw-expression, when the operand is the name of a
887 // non-volatile automatic object (other than a function or
888 // catch-clause
889 // parameter) whose scope does not extend beyond the end of the
890 // innermost enclosing try-block (if there is one), the copy/move
891 // operation from the operand to the exception object (15.1) can be
892 // omitted by constructing the automatic object directly into the
893 // exception object
894 NamedReturnInfo NRInfo =
895 IsThrownVarInScope ? getNamedReturnInfo(Ex) : NamedReturnInfo();
896
897 QualType ExceptionObjectTy = Context.getExceptionObjectType(Ex->getType());
898 if (CheckCXXThrowOperand(OpLoc, ExceptionObjectTy, Ex))
899 return ExprError();
900
901 InitializedEntity Entity =
902 InitializedEntity::InitializeException(OpLoc, ExceptionObjectTy);
903 ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRInfo, Ex);
904 if (Res.isInvalid())
905 return ExprError();
906 Ex = Res.get();
907 }
908
909 // PPC MMA non-pointer types are not allowed as throw expr types.
910 if (Ex && Context.getTargetInfo().getTriple().isPPC64())
911 CheckPPCMMAType(Ex->getType(), Ex->getBeginLoc());
912
913 return new (Context)
914 CXXThrowExpr(Ex, Context.VoidTy, OpLoc, IsThrownVarInScope);
915}
916
917static void
918collectPublicBases(CXXRecordDecl *RD,
919 llvm::DenseMap<CXXRecordDecl *, unsigned> &SubobjectsSeen,
920 llvm::SmallPtrSetImpl<CXXRecordDecl *> &VBases,
921 llvm::SetVector<CXXRecordDecl *> &PublicSubobjectsSeen,
922 bool ParentIsPublic) {
923 for (const CXXBaseSpecifier &BS : RD->bases()) {
924 CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
925 bool NewSubobject;
926 // Virtual bases constitute the same subobject. Non-virtual bases are
927 // always distinct subobjects.
928 if (BS.isVirtual())
929 NewSubobject = VBases.insert(BaseDecl).second;
930 else
931 NewSubobject = true;
932
933 if (NewSubobject)
934 ++SubobjectsSeen[BaseDecl];
935
936 // Only add subobjects which have public access throughout the entire chain.
937 bool PublicPath = ParentIsPublic && BS.getAccessSpecifier() == AS_public;
938 if (PublicPath)
939 PublicSubobjectsSeen.insert(BaseDecl);
940
941 // Recurse on to each base subobject.
942 collectPublicBases(BaseDecl, SubobjectsSeen, VBases, PublicSubobjectsSeen,
943 PublicPath);
944 }
945}
946
947static void getUnambiguousPublicSubobjects(
948 CXXRecordDecl *RD, llvm::SmallVectorImpl<CXXRecordDecl *> &Objects) {
949 llvm::DenseMap<CXXRecordDecl *, unsigned> SubobjectsSeen;
950 llvm::SmallSet<CXXRecordDecl *, 2> VBases;
951 llvm::SetVector<CXXRecordDecl *> PublicSubobjectsSeen;
952 SubobjectsSeen[RD] = 1;
953 PublicSubobjectsSeen.insert(RD);
954 collectPublicBases(RD, SubobjectsSeen, VBases, PublicSubobjectsSeen,
955 /*ParentIsPublic=*/true);
956
957 for (CXXRecordDecl *PublicSubobject : PublicSubobjectsSeen) {
958 // Skip ambiguous objects.
959 if (SubobjectsSeen[PublicSubobject] > 1)
960 continue;
961
962 Objects.push_back(PublicSubobject);
963 }
964}
965
966/// CheckCXXThrowOperand - Validate the operand of a throw.
967bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc,
968 QualType ExceptionObjectTy, Expr *E) {
969 // If the type of the exception would be an incomplete type or a pointer
970 // to an incomplete type other than (cv) void the program is ill-formed.
971 QualType Ty = ExceptionObjectTy;
972 bool isPointer = false;
973 if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
974 Ty = Ptr->getPointeeType();
975 isPointer = true;
976 }
977 if (!isPointer || !Ty->isVoidType()) {
978 if (RequireCompleteType(ThrowLoc, Ty,
979 isPointer ? diag::err_throw_incomplete_ptr
980 : diag::err_throw_incomplete,
981 E->getSourceRange()))
982 return true;
983
984 if (!isPointer && Ty->isSizelessType()) {
985 Diag(ThrowLoc, diag::err_throw_sizeless) << Ty << E->getSourceRange();
986 return true;
987 }
988
989 if (RequireNonAbstractType(ThrowLoc, ExceptionObjectTy,
990 diag::err_throw_abstract_type, E))
991 return true;
992 }
993
994 // If the exception has class type, we need additional handling.
995 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
996 if (!RD)
997 return false;
998
999 // If we are throwing a polymorphic class type or pointer thereof,
1000 // exception handling will make use of the vtable.
1001 MarkVTableUsed(ThrowLoc, RD);
1002
1003 // If a pointer is thrown, the referenced object will not be destroyed.
1004 if (isPointer)
1005 return false;
1006
1007 // If the class has a destructor, we must be able to call it.
1008 if (!RD->hasIrrelevantDestructor()) {
1009 if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
1010 MarkFunctionReferenced(E->getExprLoc(), Destructor);
1011 CheckDestructorAccess(E->getExprLoc(), Destructor,
1012 PDiag(diag::err_access_dtor_exception) << Ty);
1013 if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
1014 return true;
1015 }
1016 }
1017
1018 // The MSVC ABI creates a list of all types which can catch the exception
1019 // object. This list also references the appropriate copy constructor to call
1020 // if the object is caught by value and has a non-trivial copy constructor.
1021 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1022 // We are only interested in the public, unambiguous bases contained within
1023 // the exception object. Bases which are ambiguous or otherwise
1024 // inaccessible are not catchable types.
1025 llvm::SmallVector<CXXRecordDecl *, 2> UnambiguousPublicSubobjects;
1026 getUnambiguousPublicSubobjects(RD, UnambiguousPublicSubobjects);
1027
1028 for (CXXRecordDecl *Subobject : UnambiguousPublicSubobjects) {
1029 // Attempt to lookup the copy constructor. Various pieces of machinery
1030 // will spring into action, like template instantiation, which means this
1031 // cannot be a simple walk of the class's decls. Instead, we must perform
1032 // lookup and overload resolution.
1033 CXXConstructorDecl *CD = LookupCopyingConstructor(Subobject, 0);
1034 if (!CD || CD->isDeleted())
1035 continue;
1036
1037 // Mark the constructor referenced as it is used by this throw expression.
1038 MarkFunctionReferenced(E->getExprLoc(), CD);
1039
1040 // Skip this copy constructor if it is trivial, we don't need to record it
1041 // in the catchable type data.
1042 if (CD->isTrivial())
1043 continue;
1044
1045 // The copy constructor is non-trivial, create a mapping from this class
1046 // type to this constructor.
1047 // N.B. The selection of copy constructor is not sensitive to this
1048 // particular throw-site. Lookup will be performed at the catch-site to
1049 // ensure that the copy constructor is, in fact, accessible (via
1050 // friendship or any other means).
1051 Context.addCopyConstructorForExceptionObject(Subobject, CD);
1052
1053 // We don't keep the instantiated default argument expressions around so
1054 // we must rebuild them here.
1055 for (unsigned I = 1, E = CD->getNumParams(); I != E; ++I) {
1056 if (CheckCXXDefaultArgExpr(ThrowLoc, CD, CD->getParamDecl(I)))
1057 return true;
1058 }
1059 }
1060 }
1061
1062 // Under the Itanium C++ ABI, memory for the exception object is allocated by
1063 // the runtime with no ability for the compiler to request additional
1064 // alignment. Warn if the exception type requires alignment beyond the minimum
1065 // guaranteed by the target C++ runtime.
1066 if (Context.getTargetInfo().getCXXABI().isItaniumFamily()) {
1067 CharUnits TypeAlign = Context.getTypeAlignInChars(Ty);
1068 CharUnits ExnObjAlign = Context.getExnObjectAlignment();
1069 if (ExnObjAlign < TypeAlign) {
1070 Diag(ThrowLoc, diag::warn_throw_underaligned_obj);
1071 Diag(ThrowLoc, diag::note_throw_underaligned_obj)
1072 << Ty << (unsigned)TypeAlign.getQuantity()
1073 << (unsigned)ExnObjAlign.getQuantity();
1074 }
1075 }
1076
1077 return false;
1078}
1079
1080static QualType adjustCVQualifiersForCXXThisWithinLambda(
1081 ArrayRef<FunctionScopeInfo *> FunctionScopes, QualType ThisTy,
1082 DeclContext *CurSemaContext, ASTContext &ASTCtx) {
1083
1084 QualType ClassType = ThisTy->getPointeeType();
1085 LambdaScopeInfo *CurLSI = nullptr;
1086 DeclContext *CurDC = CurSemaContext;
1087
1088 // Iterate through the stack of lambdas starting from the innermost lambda to
1089 // the outermost lambda, checking if '*this' is ever captured by copy - since
1090 // that could change the cv-qualifiers of the '*this' object.
1091 // The object referred to by '*this' starts out with the cv-qualifiers of its
1092 // member function. We then start with the innermost lambda and iterate
1093 // outward checking to see if any lambda performs a by-copy capture of '*this'
1094 // - and if so, any nested lambda must respect the 'constness' of that
1095 // capturing lamdbda's call operator.
1096 //
1097
1098 // Since the FunctionScopeInfo stack is representative of the lexical
1099 // nesting of the lambda expressions during initial parsing (and is the best
1100 // place for querying information about captures about lambdas that are
1101 // partially processed) and perhaps during instantiation of function templates
1102 // that contain lambda expressions that need to be transformed BUT not
1103 // necessarily during instantiation of a nested generic lambda's function call
1104 // operator (which might even be instantiated at the end of the TU) - at which
1105 // time the DeclContext tree is mature enough to query capture information
1106 // reliably - we use a two pronged approach to walk through all the lexically
1107 // enclosing lambda expressions:
1108 //
1109 // 1) Climb down the FunctionScopeInfo stack as long as each item represents
1110 // a Lambda (i.e. LambdaScopeInfo) AND each LSI's 'closure-type' is lexically
1111 // enclosed by the call-operator of the LSI below it on the stack (while
1112 // tracking the enclosing DC for step 2 if needed). Note the topmost LSI on
1113 // the stack represents the innermost lambda.
1114 //
1115 // 2) If we run out of enclosing LSI's, check if the enclosing DeclContext
1116 // represents a lambda's call operator. If it does, we must be instantiating
1117 // a generic lambda's call operator (represented by the Current LSI, and
1118 // should be the only scenario where an inconsistency between the LSI and the
1119 // DeclContext should occur), so climb out the DeclContexts if they
1120 // represent lambdas, while querying the corresponding closure types
1121 // regarding capture information.
1122
1123 // 1) Climb down the function scope info stack.
1124 for (int I = FunctionScopes.size();
1125 I-- && isa<LambdaScopeInfo>(FunctionScopes[I]) &&
1126 (!CurLSI || !CurLSI->Lambda || CurLSI->Lambda->getDeclContext() ==
1127 cast<LambdaScopeInfo>(FunctionScopes[I])->CallOperator);
1128 CurDC = getLambdaAwareParentOfDeclContext(CurDC)) {
1129 CurLSI = cast<LambdaScopeInfo>(FunctionScopes[I]);
1130
1131 if (!CurLSI->isCXXThisCaptured())
1132 continue;
1133
1134 auto C = CurLSI->getCXXThisCapture();
1135
1136 if (C.isCopyCapture()) {
1137 ClassType.removeLocalCVRQualifiers(Qualifiers::CVRMask);
1138 if (CurLSI->CallOperator->isConst())
1139 ClassType.addConst();
1140 return ASTCtx.getPointerType(ClassType);
1141 }
1142 }
1143
1144 // 2) We've run out of ScopeInfos but check 1. if CurDC is a lambda (which
1145 // can happen during instantiation of its nested generic lambda call
1146 // operator); 2. if we're in a lambda scope (lambda body).
1147 if (CurLSI && isLambdaCallOperator(CurDC)) {
1148 assert(isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) &&(static_cast <bool> (isGenericLambdaCallOperatorSpecialization
(CurLSI->CallOperator) && "While computing 'this' capture-type for a generic lambda, when we "
"run out of enclosing LSI's, yet the enclosing DC is a " "lambda-call-operator we must be (i.e. Current LSI) in a generic "
"lambda call oeprator") ? void (0) : __assert_fail ("isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) && \"While computing 'this' capture-type for a generic lambda, when we \" \"run out of enclosing LSI's, yet the enclosing DC is a \" \"lambda-call-operator we must be (i.e. Current LSI) in a generic \" \"lambda call oeprator\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1152, __extension__ __PRETTY_FUNCTION__
))
1149 "While computing 'this' capture-type for a generic lambda, when we "(static_cast <bool> (isGenericLambdaCallOperatorSpecialization
(CurLSI->CallOperator) && "While computing 'this' capture-type for a generic lambda, when we "
"run out of enclosing LSI's, yet the enclosing DC is a " "lambda-call-operator we must be (i.e. Current LSI) in a generic "
"lambda call oeprator") ? void (0) : __assert_fail ("isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) && \"While computing 'this' capture-type for a generic lambda, when we \" \"run out of enclosing LSI's, yet the enclosing DC is a \" \"lambda-call-operator we must be (i.e. Current LSI) in a generic \" \"lambda call oeprator\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1152, __extension__ __PRETTY_FUNCTION__
))
1150 "run out of enclosing LSI's, yet the enclosing DC is a "(static_cast <bool> (isGenericLambdaCallOperatorSpecialization
(CurLSI->CallOperator) && "While computing 'this' capture-type for a generic lambda, when we "
"run out of enclosing LSI's, yet the enclosing DC is a " "lambda-call-operator we must be (i.e. Current LSI) in a generic "
"lambda call oeprator") ? void (0) : __assert_fail ("isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) && \"While computing 'this' capture-type for a generic lambda, when we \" \"run out of enclosing LSI's, yet the enclosing DC is a \" \"lambda-call-operator we must be (i.e. Current LSI) in a generic \" \"lambda call oeprator\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1152, __extension__ __PRETTY_FUNCTION__
))
1151 "lambda-call-operator we must be (i.e. Current LSI) in a generic "(static_cast <bool> (isGenericLambdaCallOperatorSpecialization
(CurLSI->CallOperator) && "While computing 'this' capture-type for a generic lambda, when we "
"run out of enclosing LSI's, yet the enclosing DC is a " "lambda-call-operator we must be (i.e. Current LSI) in a generic "
"lambda call oeprator") ? void (0) : __assert_fail ("isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) && \"While computing 'this' capture-type for a generic lambda, when we \" \"run out of enclosing LSI's, yet the enclosing DC is a \" \"lambda-call-operator we must be (i.e. Current LSI) in a generic \" \"lambda call oeprator\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1152, __extension__ __PRETTY_FUNCTION__
))
1152 "lambda call oeprator")(static_cast <bool> (isGenericLambdaCallOperatorSpecialization
(CurLSI->CallOperator) && "While computing 'this' capture-type for a generic lambda, when we "
"run out of enclosing LSI's, yet the enclosing DC is a " "lambda-call-operator we must be (i.e. Current LSI) in a generic "
"lambda call oeprator") ? void (0) : __assert_fail ("isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) && \"While computing 'this' capture-type for a generic lambda, when we \" \"run out of enclosing LSI's, yet the enclosing DC is a \" \"lambda-call-operator we must be (i.e. Current LSI) in a generic \" \"lambda call oeprator\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1152, __extension__ __PRETTY_FUNCTION__
))
;
1153 assert(CurDC == getLambdaAwareParentOfDeclContext(CurLSI->CallOperator))(static_cast <bool> (CurDC == getLambdaAwareParentOfDeclContext
(CurLSI->CallOperator)) ? void (0) : __assert_fail ("CurDC == getLambdaAwareParentOfDeclContext(CurLSI->CallOperator)"
, "clang/lib/Sema/SemaExprCXX.cpp", 1153, __extension__ __PRETTY_FUNCTION__
))
;
1154
1155 auto IsThisCaptured =
1156 [](CXXRecordDecl *Closure, bool &IsByCopy, bool &IsConst) {
1157 IsConst = false;
1158 IsByCopy = false;
1159 for (auto &&C : Closure->captures()) {
1160 if (C.capturesThis()) {
1161 if (C.getCaptureKind() == LCK_StarThis)
1162 IsByCopy = true;
1163 if (Closure->getLambdaCallOperator()->isConst())
1164 IsConst = true;
1165 return true;
1166 }
1167 }
1168 return false;
1169 };
1170
1171 bool IsByCopyCapture = false;
1172 bool IsConstCapture = false;
1173 CXXRecordDecl *Closure = cast<CXXRecordDecl>(CurDC->getParent());
1174 while (Closure &&
1175 IsThisCaptured(Closure, IsByCopyCapture, IsConstCapture)) {
1176 if (IsByCopyCapture) {
1177 ClassType.removeLocalCVRQualifiers(Qualifiers::CVRMask);
1178 if (IsConstCapture)
1179 ClassType.addConst();
1180 return ASTCtx.getPointerType(ClassType);
1181 }
1182 Closure = isLambdaCallOperator(Closure->getParent())
1183 ? cast<CXXRecordDecl>(Closure->getParent()->getParent())
1184 : nullptr;
1185 }
1186 }
1187 return ASTCtx.getPointerType(ClassType);
1188}
1189
1190QualType Sema::getCurrentThisType() {
1191 DeclContext *DC = getFunctionLevelDeclContext();
1192 QualType ThisTy = CXXThisTypeOverride;
1193
1194 if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) {
1195 if (method && method->isInstance())
1196 ThisTy = method->getThisType();
1197 }
1198
1199 if (ThisTy.isNull() && isLambdaCallOperator(CurContext) &&
1200 inTemplateInstantiation() && isa<CXXRecordDecl>(DC)) {
1201
1202 // This is a lambda call operator that is being instantiated as a default
1203 // initializer. DC must point to the enclosing class type, so we can recover
1204 // the 'this' type from it.
1205 QualType ClassTy = Context.getTypeDeclType(cast<CXXRecordDecl>(DC));
1206 // There are no cv-qualifiers for 'this' within default initializers,
1207 // per [expr.prim.general]p4.
1208 ThisTy = Context.getPointerType(ClassTy);
1209 }
1210
1211 // If we are within a lambda's call operator, the cv-qualifiers of 'this'
1212 // might need to be adjusted if the lambda or any of its enclosing lambda's
1213 // captures '*this' by copy.
1214 if (!ThisTy.isNull() && isLambdaCallOperator(CurContext))
1215 return adjustCVQualifiersForCXXThisWithinLambda(FunctionScopes, ThisTy,
1216 CurContext, Context);
1217 return ThisTy;
1218}
1219
1220Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S,
1221 Decl *ContextDecl,
1222 Qualifiers CXXThisTypeQuals,
1223 bool Enabled)
1224 : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false)
1225{
1226 if (!Enabled || !ContextDecl)
1227 return;
1228
1229 CXXRecordDecl *Record = nullptr;
1230 if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl))
1231 Record = Template->getTemplatedDecl();
1232 else
1233 Record = cast<CXXRecordDecl>(ContextDecl);
1234
1235 QualType T = S.Context.getRecordType(Record);
1236 T = S.getASTContext().getQualifiedType(T, CXXThisTypeQuals);
1237
1238 S.CXXThisTypeOverride = S.Context.getPointerType(T);
1239
1240 this->Enabled = true;
1241}
1242
1243
1244Sema::CXXThisScopeRAII::~CXXThisScopeRAII() {
1245 if (Enabled) {
1246 S.CXXThisTypeOverride = OldCXXThisTypeOverride;
1247 }
1248}
1249
1250static void buildLambdaThisCaptureFixit(Sema &Sema, LambdaScopeInfo *LSI) {
1251 SourceLocation DiagLoc = LSI->IntroducerRange.getEnd();
1252 assert(!LSI->isCXXThisCaptured())(static_cast <bool> (!LSI->isCXXThisCaptured()) ? void
(0) : __assert_fail ("!LSI->isCXXThisCaptured()", "clang/lib/Sema/SemaExprCXX.cpp"
, 1252, __extension__ __PRETTY_FUNCTION__))
;
1253 // [=, this] {}; // until C++20: Error: this when = is the default
1254 if (LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval &&
1255 !Sema.getLangOpts().CPlusPlus20)
1256 return;
1257 Sema.Diag(DiagLoc, diag::note_lambda_this_capture_fixit)
1258 << FixItHint::CreateInsertion(
1259 DiagLoc, LSI->NumExplicitCaptures > 0 ? ", this" : "this");
1260}
1261
1262bool Sema::CheckCXXThisCapture(SourceLocation Loc, const bool Explicit,
1263 bool BuildAndDiagnose, const unsigned *const FunctionScopeIndexToStopAt,
1264 const bool ByCopy) {
1265 // We don't need to capture this in an unevaluated context.
1266 if (isUnevaluatedContext() && !Explicit)
1267 return true;
1268
1269 assert((!ByCopy || Explicit) && "cannot implicitly capture *this by value")(static_cast <bool> ((!ByCopy || Explicit) && "cannot implicitly capture *this by value"
) ? void (0) : __assert_fail ("(!ByCopy || Explicit) && \"cannot implicitly capture *this by value\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1269, __extension__ __PRETTY_FUNCTION__
))
;
1270
1271 const int MaxFunctionScopesIndex = FunctionScopeIndexToStopAt
1272 ? *FunctionScopeIndexToStopAt
1273 : FunctionScopes.size() - 1;
1274
1275 // Check that we can capture the *enclosing object* (referred to by '*this')
1276 // by the capturing-entity/closure (lambda/block/etc) at
1277 // MaxFunctionScopesIndex-deep on the FunctionScopes stack.
1278
1279 // Note: The *enclosing object* can only be captured by-value by a
1280 // closure that is a lambda, using the explicit notation:
1281 // [*this] { ... }.
1282 // Every other capture of the *enclosing object* results in its by-reference
1283 // capture.
1284
1285 // For a closure 'L' (at MaxFunctionScopesIndex in the FunctionScopes
1286 // stack), we can capture the *enclosing object* only if:
1287 // - 'L' has an explicit byref or byval capture of the *enclosing object*
1288 // - or, 'L' has an implicit capture.
1289 // AND
1290 // -- there is no enclosing closure
1291 // -- or, there is some enclosing closure 'E' that has already captured the
1292 // *enclosing object*, and every intervening closure (if any) between 'E'
1293 // and 'L' can implicitly capture the *enclosing object*.
1294 // -- or, every enclosing closure can implicitly capture the
1295 // *enclosing object*
1296
1297
1298 unsigned NumCapturingClosures = 0;
1299 for (int idx = MaxFunctionScopesIndex; idx >= 0; idx--) {
1300 if (CapturingScopeInfo *CSI =
1301 dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) {
1302 if (CSI->CXXThisCaptureIndex != 0) {
1303 // 'this' is already being captured; there isn't anything more to do.
1304 CSI->Captures[CSI->CXXThisCaptureIndex - 1].markUsed(BuildAndDiagnose);
1305 break;
1306 }
1307 LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI);
1308 if (LSI && isGenericLambdaCallOperatorSpecialization(LSI->CallOperator)) {
1309 // This context can't implicitly capture 'this'; fail out.
1310 if (BuildAndDiagnose) {
1311 Diag(Loc, diag::err_this_capture)
1312 << (Explicit && idx == MaxFunctionScopesIndex);
1313 if (!Explicit)
1314 buildLambdaThisCaptureFixit(*this, LSI);
1315 }
1316 return true;
1317 }
1318 if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref ||
1319 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval ||
1320 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block ||
1321 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_CapturedRegion ||
1322 (Explicit && idx == MaxFunctionScopesIndex)) {
1323 // Regarding (Explicit && idx == MaxFunctionScopesIndex): only the first
1324 // iteration through can be an explicit capture, all enclosing closures,
1325 // if any, must perform implicit captures.
1326
1327 // This closure can capture 'this'; continue looking upwards.
1328 NumCapturingClosures++;
1329 continue;
1330 }
1331 // This context can't implicitly capture 'this'; fail out.
1332 if (BuildAndDiagnose)
1333 Diag(Loc, diag::err_this_capture)
1334 << (Explicit && idx == MaxFunctionScopesIndex);
1335
1336 if (!Explicit)
1337 buildLambdaThisCaptureFixit(*this, LSI);
1338 return true;
1339 }
1340 break;
1341 }
1342 if (!BuildAndDiagnose) return false;
1343
1344 // If we got here, then the closure at MaxFunctionScopesIndex on the
1345 // FunctionScopes stack, can capture the *enclosing object*, so capture it
1346 // (including implicit by-reference captures in any enclosing closures).
1347
1348 // In the loop below, respect the ByCopy flag only for the closure requesting
1349 // the capture (i.e. first iteration through the loop below). Ignore it for
1350 // all enclosing closure's up to NumCapturingClosures (since they must be
1351 // implicitly capturing the *enclosing object* by reference (see loop
1352 // above)).
1353 assert((!ByCopy ||(static_cast <bool> ((!ByCopy || isa<LambdaScopeInfo
>(FunctionScopes[MaxFunctionScopesIndex])) && "Only a lambda can capture the enclosing object (referred to by "
"*this) by copy") ? void (0) : __assert_fail ("(!ByCopy || isa<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) && \"Only a lambda can capture the enclosing object (referred to by \" \"*this) by copy\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1356, __extension__ __PRETTY_FUNCTION__
))
1354 isa<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) &&(static_cast <bool> ((!ByCopy || isa<LambdaScopeInfo
>(FunctionScopes[MaxFunctionScopesIndex])) && "Only a lambda can capture the enclosing object (referred to by "
"*this) by copy") ? void (0) : __assert_fail ("(!ByCopy || isa<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) && \"Only a lambda can capture the enclosing object (referred to by \" \"*this) by copy\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1356, __extension__ __PRETTY_FUNCTION__
))
1355 "Only a lambda can capture the enclosing object (referred to by "(static_cast <bool> ((!ByCopy || isa<LambdaScopeInfo
>(FunctionScopes[MaxFunctionScopesIndex])) && "Only a lambda can capture the enclosing object (referred to by "
"*this) by copy") ? void (0) : __assert_fail ("(!ByCopy || isa<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) && \"Only a lambda can capture the enclosing object (referred to by \" \"*this) by copy\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1356, __extension__ __PRETTY_FUNCTION__
))
1356 "*this) by copy")(static_cast <bool> ((!ByCopy || isa<LambdaScopeInfo
>(FunctionScopes[MaxFunctionScopesIndex])) && "Only a lambda can capture the enclosing object (referred to by "
"*this) by copy") ? void (0) : __assert_fail ("(!ByCopy || isa<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) && \"Only a lambda can capture the enclosing object (referred to by \" \"*this) by copy\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1356, __extension__ __PRETTY_FUNCTION__
))
;
1357 QualType ThisTy = getCurrentThisType();
1358 for (int idx = MaxFunctionScopesIndex; NumCapturingClosures;
1359 --idx, --NumCapturingClosures) {
1360 CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]);
1361
1362 // The type of the corresponding data member (not a 'this' pointer if 'by
1363 // copy').
1364 QualType CaptureType = ThisTy;
1365 if (ByCopy) {
1366 // If we are capturing the object referred to by '*this' by copy, ignore
1367 // any cv qualifiers inherited from the type of the member function for
1368 // the type of the closure-type's corresponding data member and any use
1369 // of 'this'.
1370 CaptureType = ThisTy->getPointeeType();
1371 CaptureType.removeLocalCVRQualifiers(Qualifiers::CVRMask);
1372 }
1373
1374 bool isNested = NumCapturingClosures > 1;
1375 CSI->addThisCapture(isNested, Loc, CaptureType, ByCopy);
1376 }
1377 return false;
1378}
1379
1380ExprResult Sema::ActOnCXXThis(SourceLocation Loc) {
1381 /// C++ 9.3.2: In the body of a non-static member function, the keyword this
1382 /// is a non-lvalue expression whose value is the address of the object for
1383 /// which the function is called.
1384
1385 QualType ThisTy = getCurrentThisType();
1386 if (ThisTy.isNull())
1387 return Diag(Loc, diag::err_invalid_this_use);
1388 return BuildCXXThisExpr(Loc, ThisTy, /*IsImplicit=*/false);
1389}
1390
1391Expr *Sema::BuildCXXThisExpr(SourceLocation Loc, QualType Type,
1392 bool IsImplicit) {
1393 if (getLangOpts().HLSL && Type.getTypePtr()->isPointerType()) {
1394 auto *This = new (Context)
1395 CXXThisExpr(Loc, Type.getTypePtr()->getPointeeType(), IsImplicit);
1396 This->setValueKind(ExprValueKind::VK_LValue);
1397 MarkThisReferenced(This);
1398 return This;
1399 }
1400 auto *This = new (Context) CXXThisExpr(Loc, Type, IsImplicit);
1401 MarkThisReferenced(This);
1402 return This;
1403}
1404
1405void Sema::MarkThisReferenced(CXXThisExpr *This) {
1406 CheckCXXThisCapture(This->getExprLoc());
1407}
1408
1409bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) {
1410 // If we're outside the body of a member function, then we'll have a specified
1411 // type for 'this'.
1412 if (CXXThisTypeOverride.isNull())
1413 return false;
1414
1415 // Determine whether we're looking into a class that's currently being
1416 // defined.
1417 CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl();
1418 return Class && Class->isBeingDefined();
1419}
1420
1421/// Parse construction of a specified type.
1422/// Can be interpreted either as function-style casting ("int(x)")
1423/// or class type construction ("ClassType(x,y,z)")
1424/// or creation of a value-initialized type ("int()").
1425ExprResult
1426Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep,
1427 SourceLocation LParenOrBraceLoc,
1428 MultiExprArg exprs,
1429 SourceLocation RParenOrBraceLoc,
1430 bool ListInitialization) {
1431 if (!TypeRep)
1432 return ExprError();
1433
1434 TypeSourceInfo *TInfo;
1435 QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
1436 if (!TInfo)
1437 TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
1438
1439 auto Result = BuildCXXTypeConstructExpr(TInfo, LParenOrBraceLoc, exprs,
1440 RParenOrBraceLoc, ListInitialization);
1441 // Avoid creating a non-type-dependent expression that contains typos.
1442 // Non-type-dependent expressions are liable to be discarded without
1443 // checking for embedded typos.
1444 if (!Result.isInvalid() && Result.get()->isInstantiationDependent() &&
1445 !Result.get()->isTypeDependent())
1446 Result = CorrectDelayedTyposInExpr(Result.get());
1447 else if (Result.isInvalid())
1448 Result = CreateRecoveryExpr(TInfo->getTypeLoc().getBeginLoc(),
1449 RParenOrBraceLoc, exprs, Ty);
1450 return Result;
1451}
1452
1453ExprResult
1454Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
1455 SourceLocation LParenOrBraceLoc,
1456 MultiExprArg Exprs,
1457 SourceLocation RParenOrBraceLoc,
1458 bool ListInitialization) {
1459 QualType Ty = TInfo->getType();
1460 SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
1461
1462 assert((!ListInitialization || Exprs.size() == 1) &&(static_cast <bool> ((!ListInitialization || Exprs.size
() == 1) && "List initialization must have exactly one expression."
) ? void (0) : __assert_fail ("(!ListInitialization || Exprs.size() == 1) && \"List initialization must have exactly one expression.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1463, __extension__ __PRETTY_FUNCTION__
))
1463 "List initialization must have exactly one expression.")(static_cast <bool> ((!ListInitialization || Exprs.size
() == 1) && "List initialization must have exactly one expression."
) ? void (0) : __assert_fail ("(!ListInitialization || Exprs.size() == 1) && \"List initialization must have exactly one expression.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1463, __extension__ __PRETTY_FUNCTION__
))
;
1464 SourceRange FullRange = SourceRange(TyBeginLoc, RParenOrBraceLoc);
1465
1466 InitializedEntity Entity =
1467 InitializedEntity::InitializeTemporary(Context, TInfo);
1468 InitializationKind Kind =
1469 Exprs.size()
1470 ? ListInitialization
1471 ? InitializationKind::CreateDirectList(
1472 TyBeginLoc, LParenOrBraceLoc, RParenOrBraceLoc)
1473 : InitializationKind::CreateDirect(TyBeginLoc, LParenOrBraceLoc,
1474 RParenOrBraceLoc)
1475 : InitializationKind::CreateValue(TyBeginLoc, LParenOrBraceLoc,
1476 RParenOrBraceLoc);
1477
1478 // C++1z [expr.type.conv]p1:
1479 // If the type is a placeholder for a deduced class type, [...perform class
1480 // template argument deduction...]
1481 // C++2b:
1482 // Otherwise, if the type contains a placeholder type, it is replaced by the
1483 // type determined by placeholder type deduction.
1484 if (const DeducedType *Deduced = Ty->getContainedDeducedType();
1485 Deduced && !Deduced->isDeduced()) {
1486 if (isa<DeducedTemplateSpecializationType>(Deduced)) {
1487 Ty = DeduceTemplateSpecializationFromInitializer(TInfo, Entity, Kind,
1488 Exprs);
1489 if (Ty.isNull())
1490 return ExprError();
1491 Entity = InitializedEntity::InitializeTemporary(TInfo, Ty);
1492 } else {
1493 assert(isa<AutoType>(Deduced))(static_cast <bool> (isa<AutoType>(Deduced)) ? void
(0) : __assert_fail ("isa<AutoType>(Deduced)", "clang/lib/Sema/SemaExprCXX.cpp"
, 1493, __extension__ __PRETTY_FUNCTION__))
;
1494 MultiExprArg Inits = Exprs;
1495 if (ListInitialization) {
1496 auto *ILE = cast<InitListExpr>(Exprs[0]);
1497 Inits = MultiExprArg(ILE->getInits(), ILE->getNumInits());
1498 }
1499
1500 if (Inits.empty())
1501 return ExprError(
1502 Diag(TyBeginLoc, diag::err_auto_expr_init_no_expression)
1503 << Ty << FullRange);
1504 if (Inits.size() > 1) {
1505 Expr *FirstBad = Inits[1];
1506 return ExprError(Diag(FirstBad->getBeginLoc(),
1507 diag::err_auto_expr_init_multiple_expressions)
1508 << Ty << FullRange);
1509 }
1510 if (getLangOpts().CPlusPlus2b) {
1511 if (Ty->getAs<AutoType>())
1512 Diag(TyBeginLoc, diag::warn_cxx20_compat_auto_expr) << FullRange;
1513 }
1514 Expr *Deduce = Inits[0];
1515 if (isa<InitListExpr>(Deduce))
1516 return ExprError(
1517 Diag(Deduce->getBeginLoc(), diag::err_auto_expr_init_paren_braces)
1518 << ListInitialization << Ty << FullRange);
1519 QualType DeducedType;
1520 TemplateDeductionInfo Info(Deduce->getExprLoc());
1521 TemplateDeductionResult Result =
1522 DeduceAutoType(TInfo->getTypeLoc(), Deduce, DeducedType, Info);
1523 if (Result != TDK_Success && Result != TDK_AlreadyDiagnosed)
1524 return ExprError(Diag(TyBeginLoc, diag::err_auto_expr_deduction_failure)
1525 << Ty << Deduce->getType() << FullRange
1526 << Deduce->getSourceRange());
1527 if (DeducedType.isNull()) {
1528 assert(Result == TDK_AlreadyDiagnosed)(static_cast <bool> (Result == TDK_AlreadyDiagnosed) ? void
(0) : __assert_fail ("Result == TDK_AlreadyDiagnosed", "clang/lib/Sema/SemaExprCXX.cpp"
, 1528, __extension__ __PRETTY_FUNCTION__))
;
1529 return ExprError();
1530 }
1531
1532 Ty = DeducedType;
1533 Entity = InitializedEntity::InitializeTemporary(TInfo, Ty);
1534 }
1535 }
1536
1537 if (Ty->isDependentType() || CallExpr::hasAnyTypeDependentArguments(Exprs)) {
1538 // FIXME: CXXUnresolvedConstructExpr does not model list-initialization
1539 // directly. We work around this by dropping the locations of the braces.
1540 SourceRange Locs = ListInitialization
1541 ? SourceRange()
1542 : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc);
1543 return CXXUnresolvedConstructExpr::Create(Context, Ty.getNonReferenceType(),
1544 TInfo, Locs.getBegin(), Exprs,
1545 Locs.getEnd());
1546 }
1547
1548 // C++ [expr.type.conv]p1:
1549 // If the expression list is a parenthesized single expression, the type
1550 // conversion expression is equivalent (in definedness, and if defined in
1551 // meaning) to the corresponding cast expression.
1552 if (Exprs.size() == 1 && !ListInitialization &&
1553 !isa<InitListExpr>(Exprs[0])) {
1554 Expr *Arg = Exprs[0];
1555 return BuildCXXFunctionalCastExpr(TInfo, Ty, LParenOrBraceLoc, Arg,
1556 RParenOrBraceLoc);
1557 }
1558
1559 // For an expression of the form T(), T shall not be an array type.
1560 QualType ElemTy = Ty;
1561 if (Ty->isArrayType()) {
1562 if (!ListInitialization)
1563 return ExprError(Diag(TyBeginLoc, diag::err_value_init_for_array_type)
1564 << FullRange);
1565 ElemTy = Context.getBaseElementType(Ty);
1566 }
1567
1568 // Only construct objects with object types.
1569 // The standard doesn't explicitly forbid function types here, but that's an
1570 // obvious oversight, as there's no way to dynamically construct a function
1571 // in general.
1572 if (Ty->isFunctionType())
1573 return ExprError(Diag(TyBeginLoc, diag::err_init_for_function_type)
1574 << Ty << FullRange);
1575
1576 // C++17 [expr.type.conv]p2:
1577 // If the type is cv void and the initializer is (), the expression is a
1578 // prvalue of the specified type that performs no initialization.
1579 if (!Ty->isVoidType() &&
1580 RequireCompleteType(TyBeginLoc, ElemTy,
1581 diag::err_invalid_incomplete_type_use, FullRange))
1582 return ExprError();
1583
1584 // Otherwise, the expression is a prvalue of the specified type whose
1585 // result object is direct-initialized (11.6) with the initializer.
1586 InitializationSequence InitSeq(*this, Entity, Kind, Exprs);
1587 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Exprs);
1588
1589 if (Result.isInvalid())
1590 return Result;
1591
1592 Expr *Inner = Result.get();
1593 if (CXXBindTemporaryExpr *BTE = dyn_cast_or_null<CXXBindTemporaryExpr>(Inner))
1594 Inner = BTE->getSubExpr();
1595 if (!isa<CXXTemporaryObjectExpr>(Inner) &&
1596 !isa<CXXScalarValueInitExpr>(Inner)) {
1597 // If we created a CXXTemporaryObjectExpr, that node also represents the
1598 // functional cast. Otherwise, create an explicit cast to represent
1599 // the syntactic form of a functional-style cast that was used here.
1600 //
1601 // FIXME: Creating a CXXFunctionalCastExpr around a CXXConstructExpr
1602 // would give a more consistent AST representation than using a
1603 // CXXTemporaryObjectExpr. It's also weird that the functional cast
1604 // is sometimes handled by initialization and sometimes not.
1605 QualType ResultType = Result.get()->getType();
1606 SourceRange Locs = ListInitialization
1607 ? SourceRange()
1608 : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc);
1609 Result = CXXFunctionalCastExpr::Create(
1610 Context, ResultType, Expr::getValueKindForType(Ty), TInfo, CK_NoOp,
1611 Result.get(), /*Path=*/nullptr, CurFPFeatureOverrides(),
1612 Locs.getBegin(), Locs.getEnd());
1613 }
1614
1615 return Result;
1616}
1617
1618bool Sema::isUsualDeallocationFunction(const CXXMethodDecl *Method) {
1619 // [CUDA] Ignore this function, if we can't call it.
1620 const FunctionDecl *Caller = getCurFunctionDecl(/*AllowLambda=*/true);
1621 if (getLangOpts().CUDA) {
1622 auto CallPreference = IdentifyCUDAPreference(Caller, Method);
1623 // If it's not callable at all, it's not the right function.
1624 if (CallPreference < CFP_WrongSide)
1625 return false;
1626 if (CallPreference == CFP_WrongSide) {
1627 // Maybe. We have to check if there are better alternatives.
1628 DeclContext::lookup_result R =
1629 Method->getDeclContext()->lookup(Method->getDeclName());
1630 for (const auto *D : R) {
1631 if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
1632 if (IdentifyCUDAPreference(Caller, FD) > CFP_WrongSide)
1633 return false;
1634 }
1635 }
1636 // We've found no better variants.
1637 }
1638 }
1639
1640 SmallVector<const FunctionDecl*, 4> PreventedBy;
1641 bool Result = Method->isUsualDeallocationFunction(PreventedBy);
1642
1643 if (Result || !getLangOpts().CUDA || PreventedBy.empty())
1644 return Result;
1645
1646 // In case of CUDA, return true if none of the 1-argument deallocator
1647 // functions are actually callable.
1648 return llvm::none_of(PreventedBy, [&](const FunctionDecl *FD) {
1649 assert(FD->getNumParams() == 1 &&(static_cast <bool> (FD->getNumParams() == 1 &&
"Only single-operand functions should be in PreventedBy") ? void
(0) : __assert_fail ("FD->getNumParams() == 1 && \"Only single-operand functions should be in PreventedBy\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1650, __extension__ __PRETTY_FUNCTION__
))
1650 "Only single-operand functions should be in PreventedBy")(static_cast <bool> (FD->getNumParams() == 1 &&
"Only single-operand functions should be in PreventedBy") ? void
(0) : __assert_fail ("FD->getNumParams() == 1 && \"Only single-operand functions should be in PreventedBy\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1650, __extension__ __PRETTY_FUNCTION__
))
;
1651 return IdentifyCUDAPreference(Caller, FD) >= CFP_HostDevice;
1652 });
1653}
1654
1655/// Determine whether the given function is a non-placement
1656/// deallocation function.
1657static bool isNonPlacementDeallocationFunction(Sema &S, FunctionDecl *FD) {
1658 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
1659 return S.isUsualDeallocationFunction(Method);
1660
1661 if (FD->getOverloadedOperator() != OO_Delete &&
1662 FD->getOverloadedOperator() != OO_Array_Delete)
1663 return false;
1664
1665 unsigned UsualParams = 1;
1666
1667 if (S.getLangOpts().SizedDeallocation && UsualParams < FD->getNumParams() &&
1668 S.Context.hasSameUnqualifiedType(
1669 FD->getParamDecl(UsualParams)->getType(),
1670 S.Context.getSizeType()))
1671 ++UsualParams;
1672
1673 if (S.getLangOpts().AlignedAllocation && UsualParams < FD->getNumParams() &&
1674 S.Context.hasSameUnqualifiedType(
1675 FD->getParamDecl(UsualParams)->getType(),
1676 S.Context.getTypeDeclType(S.getStdAlignValT())))
1677 ++UsualParams;
1678
1679 return UsualParams == FD->getNumParams();
1680}
1681
1682namespace {
1683 struct UsualDeallocFnInfo {
1684 UsualDeallocFnInfo() : Found(), FD(nullptr) {}
1685 UsualDeallocFnInfo(Sema &S, DeclAccessPair Found)
1686 : Found(Found), FD(dyn_cast<FunctionDecl>(Found->getUnderlyingDecl())),
1687 Destroying(false), HasSizeT(false), HasAlignValT(false),
1688 CUDAPref(Sema::CFP_Native) {
1689 // A function template declaration is never a usual deallocation function.
1690 if (!FD)
1691 return;
1692 unsigned NumBaseParams = 1;
1693 if (FD->isDestroyingOperatorDelete()) {
1694 Destroying = true;
1695 ++NumBaseParams;
1696 }
1697
1698 if (NumBaseParams < FD->getNumParams() &&
1699 S.Context.hasSameUnqualifiedType(
1700 FD->getParamDecl(NumBaseParams)->getType(),
1701 S.Context.getSizeType())) {
1702 ++NumBaseParams;
1703 HasSizeT = true;
1704 }
1705
1706 if (NumBaseParams < FD->getNumParams() &&
1707 FD->getParamDecl(NumBaseParams)->getType()->isAlignValT()) {
1708 ++NumBaseParams;
1709 HasAlignValT = true;
1710 }
1711
1712 // In CUDA, determine how much we'd like / dislike to call this.
1713 if (S.getLangOpts().CUDA)
1714 if (auto *Caller = S.getCurFunctionDecl(/*AllowLambda=*/true))
1715 CUDAPref = S.IdentifyCUDAPreference(Caller, FD);
1716 }
1717
1718 explicit operator bool() const { return FD; }
1719
1720 bool isBetterThan(const UsualDeallocFnInfo &Other, bool WantSize,
1721 bool WantAlign) const {
1722 // C++ P0722:
1723 // A destroying operator delete is preferred over a non-destroying
1724 // operator delete.
1725 if (Destroying != Other.Destroying)
1726 return Destroying;
1727
1728 // C++17 [expr.delete]p10:
1729 // If the type has new-extended alignment, a function with a parameter
1730 // of type std::align_val_t is preferred; otherwise a function without
1731 // such a parameter is preferred
1732 if (HasAlignValT != Other.HasAlignValT)
1733 return HasAlignValT == WantAlign;
1734
1735 if (HasSizeT != Other.HasSizeT)
1736 return HasSizeT == WantSize;
1737
1738 // Use CUDA call preference as a tiebreaker.
1739 return CUDAPref > Other.CUDAPref;
1740 }
1741
1742 DeclAccessPair Found;
1743 FunctionDecl *FD;
1744 bool Destroying, HasSizeT, HasAlignValT;
1745 Sema::CUDAFunctionPreference CUDAPref;
1746 };
1747}
1748
1749/// Determine whether a type has new-extended alignment. This may be called when
1750/// the type is incomplete (for a delete-expression with an incomplete pointee
1751/// type), in which case it will conservatively return false if the alignment is
1752/// not known.
1753static bool hasNewExtendedAlignment(Sema &S, QualType AllocType) {
1754 return S.getLangOpts().AlignedAllocation &&
1755 S.getASTContext().getTypeAlignIfKnown(AllocType) >
1756 S.getASTContext().getTargetInfo().getNewAlign();
1757}
1758
1759/// Select the correct "usual" deallocation function to use from a selection of
1760/// deallocation functions (either global or class-scope).
1761static UsualDeallocFnInfo resolveDeallocationOverload(
1762 Sema &S, LookupResult &R, bool WantSize, bool WantAlign,
1763 llvm::SmallVectorImpl<UsualDeallocFnInfo> *BestFns = nullptr) {
1764 UsualDeallocFnInfo Best;
1765
1766 for (auto I = R.begin(), E = R.end(); I != E; ++I) {
1767 UsualDeallocFnInfo Info(S, I.getPair());
1768 if (!Info || !isNonPlacementDeallocationFunction(S, Info.FD) ||
1769 Info.CUDAPref == Sema::CFP_Never)
1770 continue;
1771
1772 if (!Best) {
1773 Best = Info;
1774 if (BestFns)
1775 BestFns->push_back(Info);
1776 continue;
1777 }
1778
1779 if (Best.isBetterThan(Info, WantSize, WantAlign))
1780 continue;
1781
1782 // If more than one preferred function is found, all non-preferred
1783 // functions are eliminated from further consideration.
1784 if (BestFns && Info.isBetterThan(Best, WantSize, WantAlign))
1785 BestFns->clear();
1786
1787 Best = Info;
1788 if (BestFns)
1789 BestFns->push_back(Info);
1790 }
1791
1792 return Best;
1793}
1794
1795/// Determine whether a given type is a class for which 'delete[]' would call
1796/// a member 'operator delete[]' with a 'size_t' parameter. This implies that
1797/// we need to store the array size (even if the type is
1798/// trivially-destructible).
1799static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc,
1800 QualType allocType) {
1801 const RecordType *record =
1802 allocType->getBaseElementTypeUnsafe()->getAs<RecordType>();
1803 if (!record) return false;
1804
1805 // Try to find an operator delete[] in class scope.
1806
1807 DeclarationName deleteName =
1808 S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete);
1809 LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName);
1810 S.LookupQualifiedName(ops, record->getDecl());
1811
1812 // We're just doing this for information.
1813 ops.suppressDiagnostics();
1814
1815 // Very likely: there's no operator delete[].
1816 if (ops.empty()) return false;
1817
1818 // If it's ambiguous, it should be illegal to call operator delete[]
1819 // on this thing, so it doesn't matter if we allocate extra space or not.
1820 if (ops.isAmbiguous()) return false;
1821
1822 // C++17 [expr.delete]p10:
1823 // If the deallocation functions have class scope, the one without a
1824 // parameter of type std::size_t is selected.
1825 auto Best = resolveDeallocationOverload(
1826 S, ops, /*WantSize*/false,
1827 /*WantAlign*/hasNewExtendedAlignment(S, allocType));
1828 return Best && Best.HasSizeT;
1829}
1830
1831/// Parsed a C++ 'new' expression (C++ 5.3.4).
1832///
1833/// E.g.:
1834/// @code new (memory) int[size][4] @endcode
1835/// or
1836/// @code ::new Foo(23, "hello") @endcode
1837///
1838/// \param StartLoc The first location of the expression.
1839/// \param UseGlobal True if 'new' was prefixed with '::'.
1840/// \param PlacementLParen Opening paren of the placement arguments.
1841/// \param PlacementArgs Placement new arguments.
1842/// \param PlacementRParen Closing paren of the placement arguments.
1843/// \param TypeIdParens If the type is in parens, the source range.
1844/// \param D The type to be allocated, as well as array dimensions.
1845/// \param Initializer The initializing expression or initializer-list, or null
1846/// if there is none.
1847ExprResult
1848Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
1849 SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
1850 SourceLocation PlacementRParen, SourceRange TypeIdParens,
1851 Declarator &D, Expr *Initializer) {
1852 Optional<Expr *> ArraySize;
1853 // If the specified type is an array, unwrap it and save the expression.
1854 if (D.getNumTypeObjects() > 0 &&
1855 D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
1856 DeclaratorChunk &Chunk = D.getTypeObject(0);
1857 if (D.getDeclSpec().hasAutoTypeSpec())
1858 return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto)
1859 << D.getSourceRange());
1860 if (Chunk.Arr.hasStatic)
1861 return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
1862 << D.getSourceRange());
1863 if (!Chunk.Arr.NumElts && !Initializer)
1864 return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
1865 << D.getSourceRange());
1866
1867 ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
1868 D.DropFirstTypeObject();
1869 }
1870
1871 // Every dimension shall be of constant size.
1872 if (ArraySize) {
1873 for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
1874 if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
1875 break;
1876
1877 DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
1878 if (Expr *NumElts = (Expr *)Array.NumElts) {
1879 if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) {
1880 // FIXME: GCC permits constant folding here. We should either do so consistently
1881 // or not do so at all, rather than changing behavior in C++14 onwards.
1882 if (getLangOpts().CPlusPlus14) {
1883 // C++1y [expr.new]p6: Every constant-expression in a noptr-new-declarator
1884 // shall be a converted constant expression (5.19) of type std::size_t
1885 // and shall evaluate to a strictly positive value.
1886 llvm::APSInt Value(Context.getIntWidth(Context.getSizeType()));
1887 Array.NumElts
1888 = CheckConvertedConstantExpression(NumElts, Context.getSizeType(), Value,
1889 CCEK_ArrayBound)
1890 .get();
1891 } else {
1892 Array.NumElts =
1893 VerifyIntegerConstantExpression(
1894 NumElts, nullptr, diag::err_new_array_nonconst, AllowFold)
1895 .get();
1896 }
1897 if (!Array.NumElts)
1898 return ExprError();
1899 }
1900 }
1901 }
1902 }
1903
1904 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/nullptr);
1905 QualType AllocType = TInfo->getType();
1906 if (D.isInvalidType())
1907 return ExprError();
1908
1909 SourceRange DirectInitRange;
1910 if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer))
1911 DirectInitRange = List->getSourceRange();
1912
1913 return BuildCXXNew(SourceRange(StartLoc, D.getEndLoc()), UseGlobal,
1914 PlacementLParen, PlacementArgs, PlacementRParen,
1915 TypeIdParens, AllocType, TInfo, ArraySize, DirectInitRange,
1916 Initializer);
1917}
1918
1919static bool isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style,
1920 Expr *Init) {
1921 if (!Init)
1922 return true;
1923 if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init))
1924 return PLE->getNumExprs() == 0;
1925 if (isa<ImplicitValueInitExpr>(Init))
1926 return true;
1927 else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init))
1928 return !CCE->isListInitialization() &&
1929 CCE->getConstructor()->isDefaultConstructor();
1930 else if (Style == CXXNewExpr::ListInit) {
1931 assert(isa<InitListExpr>(Init) &&(static_cast <bool> (isa<InitListExpr>(Init) &&
"Shouldn't create list CXXConstructExprs for arrays.") ? void
(0) : __assert_fail ("isa<InitListExpr>(Init) && \"Shouldn't create list CXXConstructExprs for arrays.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1932, __extension__ __PRETTY_FUNCTION__
))
1932 "Shouldn't create list CXXConstructExprs for arrays.")(static_cast <bool> (isa<InitListExpr>(Init) &&
"Shouldn't create list CXXConstructExprs for arrays.") ? void
(0) : __assert_fail ("isa<InitListExpr>(Init) && \"Shouldn't create list CXXConstructExprs for arrays.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1932, __extension__ __PRETTY_FUNCTION__
))
;
1933 return true;
1934 }
1935 return false;
1936}
1937
1938bool
1939Sema::isUnavailableAlignedAllocationFunction(const FunctionDecl &FD) const {
1940 if (!getLangOpts().AlignedAllocationUnavailable)
1941 return false;
1942 if (FD.isDefined())
1943 return false;
1944 Optional<unsigned> AlignmentParam;
1945 if (FD.isReplaceableGlobalAllocationFunction(&AlignmentParam) &&
1946 AlignmentParam)
1947 return true;
1948 return false;
1949}
1950
1951// Emit a diagnostic if an aligned allocation/deallocation function that is not
1952// implemented in the standard library is selected.
1953void Sema::diagnoseUnavailableAlignedAllocation(const FunctionDecl &FD,
1954 SourceLocation Loc) {
1955 if (isUnavailableAlignedAllocationFunction(FD)) {
1956 const llvm::Triple &T = getASTContext().getTargetInfo().getTriple();
1957 StringRef OSName = AvailabilityAttr::getPlatformNameSourceSpelling(
1958 getASTContext().getTargetInfo().getPlatformName());
1959 VersionTuple OSVersion = alignedAllocMinVersion(T.getOS());
1960
1961 OverloadedOperatorKind Kind = FD.getDeclName().getCXXOverloadedOperator();
1962 bool IsDelete = Kind == OO_Delete || Kind == OO_Array_Delete;
1963 Diag(Loc, diag::err_aligned_allocation_unavailable)
1964 << IsDelete << FD.getType().getAsString() << OSName
1965 << OSVersion.getAsString() << OSVersion.empty();
1966 Diag(Loc, diag::note_silence_aligned_allocation_unavailable);
1967 }
1968}
1969
1970ExprResult
1971Sema::BuildCXXNew(SourceRange Range, bool UseGlobal,
1972 SourceLocation PlacementLParen,
1973 MultiExprArg PlacementArgs,
1974 SourceLocation PlacementRParen,
1975 SourceRange TypeIdParens,
1976 QualType AllocType,
1977 TypeSourceInfo *AllocTypeInfo,
1978 Optional<Expr *> ArraySize,
1979 SourceRange DirectInitRange,
1980 Expr *Initializer) {
1981 SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
1982 SourceLocation StartLoc = Range.getBegin();
1983
1984 CXXNewExpr::InitializationStyle initStyle;
1985 if (DirectInitRange.isValid()) {
1986 assert(Initializer && "Have parens but no initializer.")(static_cast <bool> (Initializer && "Have parens but no initializer."
) ? void (0) : __assert_fail ("Initializer && \"Have parens but no initializer.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1986, __extension__ __PRETTY_FUNCTION__
))
;
1987 initStyle = CXXNewExpr::CallInit;
1988 } else if (Initializer && isa<InitListExpr>(Initializer))
1
Assuming 'Initializer' is non-null
2
Assuming 'Initializer' is a 'class clang::InitListExpr &'
3
Taking true branch
1989 initStyle = CXXNewExpr::ListInit;
1990 else {
1991 assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) ||(static_cast <bool> ((!Initializer || isa<ImplicitValueInitExpr
>(Initializer) || isa<CXXConstructExpr>(Initializer)
) && "Initializer expression that cannot have been implicitly created."
) ? void (0) : __assert_fail ("(!Initializer || isa<ImplicitValueInitExpr>(Initializer) || isa<CXXConstructExpr>(Initializer)) && \"Initializer expression that cannot have been implicitly created.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1993, __extension__ __PRETTY_FUNCTION__
))
1992 isa<CXXConstructExpr>(Initializer)) &&(static_cast <bool> ((!Initializer || isa<ImplicitValueInitExpr
>(Initializer) || isa<CXXConstructExpr>(Initializer)
) && "Initializer expression that cannot have been implicitly created."
) ? void (0) : __assert_fail ("(!Initializer || isa<ImplicitValueInitExpr>(Initializer) || isa<CXXConstructExpr>(Initializer)) && \"Initializer expression that cannot have been implicitly created.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1993, __extension__ __PRETTY_FUNCTION__
))
1993 "Initializer expression that cannot have been implicitly created.")(static_cast <bool> ((!Initializer || isa<ImplicitValueInitExpr
>(Initializer) || isa<CXXConstructExpr>(Initializer)
) && "Initializer expression that cannot have been implicitly created."
) ? void (0) : __assert_fail ("(!Initializer || isa<ImplicitValueInitExpr>(Initializer) || isa<CXXConstructExpr>(Initializer)) && \"Initializer expression that cannot have been implicitly created.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1993, __extension__ __PRETTY_FUNCTION__
))
;
1994 initStyle = CXXNewExpr::NoInit;
1995 }
1996
1997 MultiExprArg Exprs(&Initializer, Initializer
3.1
'Initializer' is non-null
? 1 : 0)
;
4
'?' condition is true
5
Value assigned to 'Initializer'
1998 if (ParenListExpr *List
6.1
'List' is null
= dyn_cast_or_null<ParenListExpr>(Initializer)) {
6
Assuming null pointer is passed into cast
1999 assert(initStyle == CXXNewExpr::CallInit && "paren init for non-call init")(static_cast <bool> (initStyle == CXXNewExpr::CallInit &&
"paren init for non-call init") ? void (0) : __assert_fail (
"initStyle == CXXNewExpr::CallInit && \"paren init for non-call init\""
, "clang/lib/Sema/SemaExprCXX.cpp", 1999, __extension__ __PRETTY_FUNCTION__
))
;
2000 Exprs = MultiExprArg(List->getExprs(), List->getNumExprs());
2001 }
2002
2003 // C++11 [expr.new]p15:
2004 // A new-expression that creates an object of type T initializes that
2005 // object as follows:
2006 InitializationKind Kind
7
Taking false branch
2007 // - If the new-initializer is omitted, the object is default-
2008 // initialized (8.5); if no initialization is performed,
2009 // the object has indeterminate value
2010 = initStyle
7.1
'initStyle' is not equal to NoInit
== CXXNewExpr::NoInit
8
'?' condition is false
2011 ? InitializationKind::CreateDefault(TypeRange.getBegin())
2012 // - Otherwise, the new-initializer is interpreted according to
2013 // the
2014 // initialization rules of 8.5 for direct-initialization.
2015 : initStyle
8.1
'initStyle' is equal to ListInit
== CXXNewExpr::ListInit
9
'?' condition is true
2016 ? InitializationKind::CreateDirectList(
2017 TypeRange.getBegin(), Initializer->getBeginLoc(),
10
Called C++ object pointer is null
2018 Initializer->getEndLoc())
2019 : InitializationKind::CreateDirect(TypeRange.getBegin(),
2020 DirectInitRange.getBegin(),
2021 DirectInitRange.getEnd());
2022
2023 // C++11 [dcl.spec.auto]p6. Deduce the type which 'auto' stands in for.
2024 if (const DeducedType *Deduced = AllocType->getContainedDeducedType();
2025 Deduced && !Deduced->isDeduced()) {
2026 if (isa<DeducedTemplateSpecializationType>(Deduced)) {
2027 if (ArraySize)
2028 return ExprError(
2029 Diag(*ArraySize ? (*ArraySize)->getExprLoc() : TypeRange.getBegin(),
2030 diag::err_deduced_class_template_compound_type)
2031 << /*array*/ 2
2032 << (*ArraySize ? (*ArraySize)->getSourceRange() : TypeRange));
2033
2034 InitializedEntity Entity =
2035 InitializedEntity::InitializeNew(StartLoc, AllocType);
2036 AllocType = DeduceTemplateSpecializationFromInitializer(
2037 AllocTypeInfo, Entity, Kind, Exprs);
2038 if (AllocType.isNull())
2039 return ExprError();
2040 } else {
2041 assert(isa<AutoType>(Deduced))(static_cast <bool> (isa<AutoType>(Deduced)) ? void
(0) : __assert_fail ("isa<AutoType>(Deduced)", "clang/lib/Sema/SemaExprCXX.cpp"
, 2041, __extension__ __PRETTY_FUNCTION__))
;
2042 MultiExprArg Inits = Exprs;
2043 bool Braced = (initStyle == CXXNewExpr::ListInit);
2044 if (Braced) {
2045 auto *ILE = cast<InitListExpr>(Exprs[0]);
2046 Inits = MultiExprArg(ILE->getInits(), ILE->getNumInits());
2047 }
2048
2049 if (initStyle == CXXNewExpr::NoInit || Inits.empty())
2050 return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg)
2051 << AllocType << TypeRange);
2052 if (Inits.size() > 1) {
2053 Expr *FirstBad = Inits[1];
2054 return ExprError(Diag(FirstBad->getBeginLoc(),
2055 diag::err_auto_new_ctor_multiple_expressions)
2056 << AllocType << TypeRange);
2057 }
2058 if (Braced && !getLangOpts().CPlusPlus17)
2059 Diag(Initializer->getBeginLoc(), diag::ext_auto_new_list_init)
2060 << AllocType << TypeRange;
2061 Expr *Deduce = Inits[0];
2062 if (isa<InitListExpr>(Deduce))
2063 return ExprError(
2064 Diag(Deduce->getBeginLoc(), diag::err_auto_expr_init_paren_braces)
2065 << Braced << AllocType << TypeRange);
2066 QualType DeducedType;
2067 TemplateDeductionInfo Info(Deduce->getExprLoc());
2068 TemplateDeductionResult Result = DeduceAutoType(
2069 AllocTypeInfo->getTypeLoc(), Deduce, DeducedType, Info);
2070 if (Result != TDK_Success && Result != TDK_AlreadyDiagnosed)
2071 return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure)
2072 << AllocType << Deduce->getType() << TypeRange
2073 << Deduce->getSourceRange());
2074 if (DeducedType.isNull()) {
2075 assert(Result == TDK_AlreadyDiagnosed)(static_cast <bool> (Result == TDK_AlreadyDiagnosed) ? void
(0) : __assert_fail ("Result == TDK_AlreadyDiagnosed", "clang/lib/Sema/SemaExprCXX.cpp"
, 2075, __extension__ __PRETTY_FUNCTION__))
;
2076 return ExprError();
2077 }
2078 AllocType = DeducedType;
2079 }
2080 }
2081
2082 // Per C++0x [expr.new]p5, the type being constructed may be a
2083 // typedef of an array type.
2084 if (!ArraySize) {
2085 if (const ConstantArrayType *Array
2086 = Context.getAsConstantArrayType(AllocType)) {
2087 ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
2088 Context.getSizeType(),
2089 TypeRange.getEnd());
2090 AllocType = Array->getElementType();
2091 }
2092 }
2093
2094 if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
2095 return ExprError();
2096
2097 if (ArraySize && !checkArrayElementAlignment(AllocType, TypeRange.getBegin()))
2098 return ExprError();
2099
2100 // In ARC, infer 'retaining' for the allocated
2101 if (getLangOpts().ObjCAutoRefCount &&
2102 AllocType.getObjCLifetime() == Qualifiers::OCL_None &&
2103 AllocType->isObjCLifetimeType()) {
2104 AllocType = Context.getLifetimeQualifiedType(AllocType,
2105 AllocType->getObjCARCImplicitLifetime());
2106 }
2107
2108 QualType ResultType = Context.getPointerType(AllocType);
2109
2110 if (ArraySize && *ArraySize &&
2111 (*ArraySize)->getType()->isNonOverloadPlaceholderType()) {
2112 ExprResult result = CheckPlaceholderExpr(*ArraySize);
2113 if (result.isInvalid()) return ExprError();
2114 ArraySize = result.get();
2115 }
2116 // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have
2117 // integral or enumeration type with a non-negative value."
2118 // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped
2119 // enumeration type, or a class type for which a single non-explicit
2120 // conversion function to integral or unscoped enumeration type exists.
2121 // C++1y [expr.new]p6: The expression [...] is implicitly converted to
2122 // std::size_t.
2123 llvm::Optional<uint64_t> KnownArraySize;
2124 if (ArraySize && *ArraySize && !(*ArraySize)->isTypeDependent()) {
2125 ExprResult ConvertedSize;
2126 if (getLangOpts().CPlusPlus14) {
2127 assert(Context.getTargetInfo().getIntWidth() && "Builtin type of size 0?")(static_cast <bool> (Context.getTargetInfo().getIntWidth
() && "Builtin type of size 0?") ? void (0) : __assert_fail
("Context.getTargetInfo().getIntWidth() && \"Builtin type of size 0?\""
, "clang/lib/Sema/SemaExprCXX.cpp", 2127, __extension__ __PRETTY_FUNCTION__
))
;
2128
2129 ConvertedSize = PerformImplicitConversion(*ArraySize, Context.getSizeType(),
2130 AA_Converting);
2131
2132 if (!ConvertedSize.isInvalid() &&
2133 (*ArraySize)->getType()->getAs<RecordType>())
2134 // Diagnose the compatibility of this conversion.
2135 Diag(StartLoc, diag::warn_cxx98_compat_array_size_conversion)
2136 << (*ArraySize)->getType() << 0 << "'size_t'";
2137 } else {
2138 class SizeConvertDiagnoser : public ICEConvertDiagnoser {
2139 protected:
2140 Expr *ArraySize;
2141
2142 public:
2143 SizeConvertDiagnoser(Expr *ArraySize)
2144 : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false, false, false),
2145 ArraySize(ArraySize) {}
2146
2147 SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
2148 QualType T) override {
2149 return S.Diag(Loc, diag::err_array_size_not_integral)
2150 << S.getLangOpts().CPlusPlus11 << T;
2151 }
2152
2153 SemaDiagnosticBuilder diagnoseIncomplete(
2154 Sema &S, SourceLocation Loc, QualType T) override {
2155 return S.Diag(Loc, diag::err_array_size_incomplete_type)
2156 << T << ArraySize->getSourceRange();
2157 }
2158
2159 SemaDiagnosticBuilder diagnoseExplicitConv(
2160 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
2161 return S.Diag(Loc, diag::err_array_size_explicit_conversion) << T << ConvTy;
2162 }
2163
2164 SemaDiagnosticBuilder noteExplicitConv(
2165 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
2166 return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
2167 << ConvTy->isEnumeralType() << ConvTy;
2168 }
2169
2170 SemaDiagnosticBuilder diagnoseAmbiguous(
2171 Sema &S, SourceLocation Loc, QualType T) override {
2172 return S.Diag(Loc, diag::err_array_size_ambiguous_conversion) << T;
2173 }
2174
2175 SemaDiagnosticBuilder noteAmbiguous(
2176 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
2177 return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
2178 << ConvTy->isEnumeralType() << ConvTy;
2179 }
2180
2181 SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
2182 QualType T,
2183 QualType ConvTy) override {
2184 return S.Diag(Loc,
2185 S.getLangOpts().CPlusPlus11
2186 ? diag::warn_cxx98_compat_array_size_conversion
2187 : diag::ext_array_size_conversion)
2188 << T << ConvTy->isEnumeralType() << ConvTy;
2189 }
2190 } SizeDiagnoser(*ArraySize);
2191
2192 ConvertedSize = PerformContextualImplicitConversion(StartLoc, *ArraySize,
2193 SizeDiagnoser);
2194 }
2195 if (ConvertedSize.isInvalid())
2196 return ExprError();
2197
2198 ArraySize = ConvertedSize.get();
2199 QualType SizeType = (*ArraySize)->getType();
2200
2201 if (!SizeType->isIntegralOrUnscopedEnumerationType())
2202 return ExprError();
2203
2204 // C++98 [expr.new]p7:
2205 // The expression in a direct-new-declarator shall have integral type
2206 // with a non-negative value.
2207 //
2208 // Let's see if this is a constant < 0. If so, we reject it out of hand,
2209 // per CWG1464. Otherwise, if it's not a constant, we must have an
2210 // unparenthesized array type.
2211
2212 // We've already performed any required implicit conversion to integer or
2213 // unscoped enumeration type.
2214 // FIXME: Per CWG1464, we are required to check the value prior to
2215 // converting to size_t. This will never find a negative array size in
2216 // C++14 onwards, because Value is always unsigned here!
2217 if (Optional<llvm::APSInt> Value =
2218 (*ArraySize)->getIntegerConstantExpr(Context)) {
2219 if (Value->isSigned() && Value->isNegative()) {
2220 return ExprError(Diag((*ArraySize)->getBeginLoc(),
2221 diag::err_typecheck_negative_array_size)
2222 << (*ArraySize)->getSourceRange());
2223 }
2224
2225 if (!AllocType->isDependentType()) {
2226 unsigned ActiveSizeBits =
2227 ConstantArrayType::getNumAddressingBits(Context, AllocType, *Value);
2228 if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context))
2229 return ExprError(
2230 Diag((*ArraySize)->getBeginLoc(), diag::err_array_too_large)
2231 << toString(*Value, 10) << (*ArraySize)->getSourceRange());
2232 }
2233
2234 KnownArraySize = Value->getZExtValue();
2235 } else if (TypeIdParens.isValid()) {
2236 // Can't have dynamic array size when the type-id is in parentheses.
2237 Diag((*ArraySize)->getBeginLoc(), diag::ext_new_paren_array_nonconst)
2238 << (*ArraySize)->getSourceRange()
2239 << FixItHint::CreateRemoval(TypeIdParens.getBegin())
2240 << FixItHint::CreateRemoval(TypeIdParens.getEnd());
2241
2242 TypeIdParens = SourceRange();
2243 }
2244
2245 // Note that we do *not* convert the argument in any way. It can
2246 // be signed, larger than size_t, whatever.
2247 }
2248
2249 FunctionDecl *OperatorNew = nullptr;
2250 FunctionDecl *OperatorDelete = nullptr;
2251 unsigned Alignment =
2252 AllocType->isDependentType() ? 0 : Context.getTypeAlign(AllocType);
2253 unsigned NewAlignment = Context.getTargetInfo().getNewAlign();
2254 bool PassAlignment = getLangOpts().AlignedAllocation &&
2255 Alignment > NewAlignment;
2256
2257 AllocationFunctionScope Scope = UseGlobal ? AFS_Global : AFS_Both;
2258 if (!AllocType->isDependentType() &&
2259 !Expr::hasAnyTypeDependentArguments(PlacementArgs) &&
2260 FindAllocationFunctions(
2261 StartLoc, SourceRange(PlacementLParen, PlacementRParen), Scope, Scope,
2262 AllocType, ArraySize.has_value(), PassAlignment, PlacementArgs,
2263 OperatorNew, OperatorDelete))
2264 return ExprError();
2265
2266 // If this is an array allocation, compute whether the usual array
2267 // deallocation function for the type has a size_t parameter.
2268 bool UsualArrayDeleteWantsSize = false;
2269 if (ArraySize && !AllocType->isDependentType())
2270 UsualArrayDeleteWantsSize =
2271 doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType);
2272
2273 SmallVector<Expr *, 8> AllPlaceArgs;
2274 if (OperatorNew) {
2275 auto *Proto = OperatorNew->getType()->castAs<FunctionProtoType>();
2276 VariadicCallType CallType = Proto->isVariadic() ? VariadicFunction
2277 : VariadicDoesNotApply;
2278
2279 // We've already converted the placement args, just fill in any default
2280 // arguments. Skip the first parameter because we don't have a corresponding
2281 // argument. Skip the second parameter too if we're passing in the
2282 // alignment; we've already filled it in.
2283 unsigned NumImplicitArgs = PassAlignment ? 2 : 1;
2284 if (GatherArgumentsForCall(PlacementLParen, OperatorNew, Proto,
2285 NumImplicitArgs, PlacementArgs, AllPlaceArgs,
2286 CallType))
2287 return ExprError();
2288
2289 if (!AllPlaceArgs.empty())
2290 PlacementArgs = AllPlaceArgs;
2291
2292 // We would like to perform some checking on the given `operator new` call,
2293 // but the PlacementArgs does not contain the implicit arguments,
2294 // namely allocation size and maybe allocation alignment,
2295 // so we need to conjure them.
2296
2297 QualType SizeTy = Context.getSizeType();
2298 unsigned SizeTyWidth = Context.getTypeSize(SizeTy);
2299
2300 llvm::APInt SingleEltSize(
2301 SizeTyWidth, Context.getTypeSizeInChars(AllocType).getQuantity());
2302
2303 // How many bytes do we want to allocate here?
2304 llvm::Optional<llvm::APInt> AllocationSize;
2305 if (!ArraySize && !AllocType->isDependentType()) {
2306 // For non-array operator new, we only want to allocate one element.
2307 AllocationSize = SingleEltSize;
2308 } else if (KnownArraySize && !AllocType->isDependentType()) {
2309 // For array operator new, only deal with static array size case.
2310 bool Overflow;
2311 AllocationSize = llvm::APInt(SizeTyWidth, *KnownArraySize)
2312 .umul_ov(SingleEltSize, Overflow);
2313 (void)Overflow;
2314 assert((static_cast <bool> (!Overflow && "Expected that all the overflows would have been handled already."
) ? void (0) : __assert_fail ("!Overflow && \"Expected that all the overflows would have been handled already.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 2316, __extension__ __PRETTY_FUNCTION__
))
2315 !Overflow &&(static_cast <bool> (!Overflow && "Expected that all the overflows would have been handled already."
) ? void (0) : __assert_fail ("!Overflow && \"Expected that all the overflows would have been handled already.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 2316, __extension__ __PRETTY_FUNCTION__
))
2316 "Expected that all the overflows would have been handled already.")(static_cast <bool> (!Overflow && "Expected that all the overflows would have been handled already."
) ? void (0) : __assert_fail ("!Overflow && \"Expected that all the overflows would have been handled already.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 2316, __extension__ __PRETTY_FUNCTION__
))
;
2317 }
2318
2319 IntegerLiteral AllocationSizeLiteral(
2320 Context, AllocationSize.value_or(llvm::APInt::getZero(SizeTyWidth)),
2321 SizeTy, SourceLocation());
2322 // Otherwise, if we failed to constant-fold the allocation size, we'll
2323 // just give up and pass-in something opaque, that isn't a null pointer.
2324 OpaqueValueExpr OpaqueAllocationSize(SourceLocation(), SizeTy, VK_PRValue,
2325 OK_Ordinary, /*SourceExpr=*/nullptr);
2326
2327 // Let's synthesize the alignment argument in case we will need it.
2328 // Since we *really* want to allocate these on stack, this is slightly ugly
2329 // because there might not be a `std::align_val_t` type.
2330 EnumDecl *StdAlignValT = getStdAlignValT();
2331 QualType AlignValT =
2332 StdAlignValT ? Context.getTypeDeclType(StdAlignValT) : SizeTy;
2333 IntegerLiteral AlignmentLiteral(
2334 Context,
2335 llvm::APInt(Context.getTypeSize(SizeTy),
2336 Alignment / Context.getCharWidth()),
2337 SizeTy, SourceLocation());
2338 ImplicitCastExpr DesiredAlignment(ImplicitCastExpr::OnStack, AlignValT,
2339 CK_IntegralCast, &AlignmentLiteral,
2340 VK_PRValue, FPOptionsOverride());
2341
2342 // Adjust placement args by prepending conjured size and alignment exprs.
2343 llvm::SmallVector<Expr *, 8> CallArgs;
2344 CallArgs.reserve(NumImplicitArgs + PlacementArgs.size());
2345 CallArgs.emplace_back(AllocationSize
2346 ? static_cast<Expr *>(&AllocationSizeLiteral)
2347 : &OpaqueAllocationSize);
2348 if (PassAlignment)
2349 CallArgs.emplace_back(&DesiredAlignment);
2350 CallArgs.insert(CallArgs.end(), PlacementArgs.begin(), PlacementArgs.end());
2351
2352 DiagnoseSentinelCalls(OperatorNew, PlacementLParen, CallArgs);
2353
2354 checkCall(OperatorNew, Proto, /*ThisArg=*/nullptr, CallArgs,
2355 /*IsMemberFunction=*/false, StartLoc, Range, CallType);
2356
2357 // Warn if the type is over-aligned and is being allocated by (unaligned)
2358 // global operator new.
2359 if (PlacementArgs.empty() && !PassAlignment &&
2360 (OperatorNew->isImplicit() ||
2361 (OperatorNew->getBeginLoc().isValid() &&
2362 getSourceManager().isInSystemHeader(OperatorNew->getBeginLoc())))) {
2363 if (Alignment > NewAlignment)
2364 Diag(StartLoc, diag::warn_overaligned_type)
2365 << AllocType
2366 << unsigned(Alignment / Context.getCharWidth())
2367 << unsigned(NewAlignment / Context.getCharWidth());
2368 }
2369 }
2370
2371 // Array 'new' can't have any initializers except empty parentheses.
2372 // Initializer lists are also allowed, in C++11. Rely on the parser for the
2373 // dialect distinction.
2374 if (ArraySize && !isLegalArrayNewInitializer(initStyle, Initializer)) {
2375 SourceRange InitRange(Exprs.front()->getBeginLoc(),
2376 Exprs.back()->getEndLoc());
2377 Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
2378 return ExprError();
2379 }
2380
2381 // If we can perform the initialization, and we've not already done so,
2382 // do it now.
2383 if (!AllocType->isDependentType() &&
2384 !Expr::hasAnyTypeDependentArguments(Exprs)) {
2385 // The type we initialize is the complete type, including the array bound.
2386 QualType InitType;
2387 if (KnownArraySize)
2388 InitType = Context.getConstantArrayType(
2389 AllocType,
2390 llvm::APInt(Context.getTypeSize(Context.getSizeType()),
2391 *KnownArraySize),
2392 *ArraySize, ArrayType::Normal, 0);
2393 else if (ArraySize)
2394 InitType =
2395 Context.getIncompleteArrayType(AllocType, ArrayType::Normal, 0);
2396 else
2397 InitType = AllocType;
2398
2399 InitializedEntity Entity
2400 = InitializedEntity::InitializeNew(StartLoc, InitType);
2401 InitializationSequence InitSeq(*this, Entity, Kind, Exprs);
2402 ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind, Exprs);
2403 if (FullInit.isInvalid())
2404 return ExprError();
2405
2406 // FullInit is our initializer; strip off CXXBindTemporaryExprs, because
2407 // we don't want the initialized object to be destructed.
2408 // FIXME: We should not create these in the first place.
2409 if (CXXBindTemporaryExpr *Binder =
2410 dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get()))
2411 FullInit = Binder->getSubExpr();
2412
2413 Initializer = FullInit.get();
2414
2415 // FIXME: If we have a KnownArraySize, check that the array bound of the
2416 // initializer is no greater than that constant value.
2417
2418 if (ArraySize && !*ArraySize) {
2419 auto *CAT = Context.getAsConstantArrayType(Initializer->getType());
2420 if (CAT) {
2421 // FIXME: Track that the array size was inferred rather than explicitly
2422 // specified.
2423 ArraySize = IntegerLiteral::Create(
2424 Context, CAT->getSize(), Context.getSizeType(), TypeRange.getEnd());
2425 } else {
2426 Diag(TypeRange.getEnd(), diag::err_new_array_size_unknown_from_init)
2427 << Initializer->getSourceRange();
2428 }
2429 }
2430 }
2431
2432 // Mark the new and delete operators as referenced.
2433 if (OperatorNew) {
2434 if (DiagnoseUseOfDecl(OperatorNew, StartLoc))
2435 return ExprError();
2436 MarkFunctionReferenced(StartLoc, OperatorNew);
2437 }
2438 if (OperatorDelete) {
2439 if (DiagnoseUseOfDecl(OperatorDelete, StartLoc))
2440 return ExprError();
2441 MarkFunctionReferenced(StartLoc, OperatorDelete);
2442 }
2443
2444 return CXXNewExpr::Create(Context, UseGlobal, OperatorNew, OperatorDelete,
2445 PassAlignment, UsualArrayDeleteWantsSize,
2446 PlacementArgs, TypeIdParens, ArraySize, initStyle,
2447 Initializer, ResultType, AllocTypeInfo, Range,
2448 DirectInitRange);
2449}
2450
2451/// Checks that a type is suitable as the allocated type
2452/// in a new-expression.
2453bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
2454 SourceRange R) {
2455 // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
2456 // abstract class type or array thereof.
2457 if (AllocType->isFunctionType())
2458 return Diag(Loc, diag::err_bad_new_type)
2459 << AllocType << 0 << R;
2460 else if (AllocType->isReferenceType())
2461 return Diag(Loc, diag::err_bad_new_type)
2462 << AllocType << 1 << R;
2463 else if (!AllocType->isDependentType() &&
2464 RequireCompleteSizedType(
2465 Loc, AllocType, diag::err_new_incomplete_or_sizeless_type, R))
2466 return true;
2467 else if (RequireNonAbstractType(Loc, AllocType,
2468 diag::err_allocation_of_abstract_type))
2469 return true;
2470 else if (AllocType->isVariablyModifiedType())
2471 return Diag(Loc, diag::err_variably_modified_new_type)
2472 << AllocType;
2473 else if (AllocType.getAddressSpace() != LangAS::Default &&
2474 !getLangOpts().OpenCLCPlusPlus)
2475 return Diag(Loc, diag::err_address_space_qualified_new)
2476 << AllocType.getUnqualifiedType()
2477 << AllocType.getQualifiers().getAddressSpaceAttributePrintValue();
2478 else if (getLangOpts().ObjCAutoRefCount) {
2479 if (const ArrayType *AT = Context.getAsArrayType(AllocType)) {
2480 QualType BaseAllocType = Context.getBaseElementType(AT);
2481 if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None &&
2482 BaseAllocType->isObjCLifetimeType())
2483 return Diag(Loc, diag::err_arc_new_array_without_ownership)
2484 << BaseAllocType;
2485 }
2486 }
2487
2488 return false;
2489}
2490
2491static bool resolveAllocationOverload(
2492 Sema &S, LookupResult &R, SourceRange Range, SmallVectorImpl<Expr *> &Args,
2493 bool &PassAlignment, FunctionDecl *&Operator,
2494 OverloadCandidateSet *AlignedCandidates, Expr *AlignArg, bool Diagnose) {
2495 OverloadCandidateSet Candidates(R.getNameLoc(),
2496 OverloadCandidateSet::CSK_Normal);
2497 for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
2498 Alloc != AllocEnd; ++Alloc) {
2499 // Even member operator new/delete are implicitly treated as
2500 // static, so don't use AddMemberCandidate.
2501 NamedDecl *D = (*Alloc)->getUnderlyingDecl();
2502
2503 if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
2504 S.AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
2505 /*ExplicitTemplateArgs=*/nullptr, Args,
2506 Candidates,
2507 /*SuppressUserConversions=*/false);
2508 continue;
2509 }
2510
2511 FunctionDecl *Fn = cast<FunctionDecl>(D);
2512 S.AddOverloadCandidate(Fn, Alloc.getPair(), Args, Candidates,
2513 /*SuppressUserConversions=*/false);
2514 }
2515
2516 // Do the resolution.
2517 OverloadCandidateSet::iterator Best;
2518 switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) {
2519 case OR_Success: {
2520 // Got one!
2521 FunctionDecl *FnDecl = Best->Function;
2522 if (S.CheckAllocationAccess(R.getNameLoc(), Range, R.getNamingClass(),
2523 Best->FoundDecl) == Sema::AR_inaccessible)
2524 return true;
2525
2526 Operator = FnDecl;
2527 return false;
2528 }
2529
2530 case OR_No_Viable_Function:
2531 // C++17 [expr.new]p13:
2532 // If no matching function is found and the allocated object type has
2533 // new-extended alignment, the alignment argument is removed from the
2534 // argument list, and overload resolution is performed again.
2535 if (PassAlignment) {
2536 PassAlignment = false;
2537 AlignArg = Args[1];
2538 Args.erase(Args.begin() + 1);
2539 return resolveAllocationOverload(S, R, Range, Args, PassAlignment,
2540 Operator, &Candidates, AlignArg,
2541 Diagnose);
2542 }
2543
2544 // MSVC will fall back on trying to find a matching global operator new
2545 // if operator new[] cannot be found. Also, MSVC will leak by not
2546 // generating a call to operator delete or operator delete[], but we
2547 // will not replicate that bug.
2548 // FIXME: Find out how this interacts with the std::align_val_t fallback
2549 // once MSVC implements it.
2550 if (R.getLookupName().getCXXOverloadedOperator() == OO_Array_New &&
2551 S.Context.getLangOpts().MSVCCompat) {
2552 R.clear();
2553 R.setLookupName(S.Context.DeclarationNames.getCXXOperatorName(OO_New));
2554 S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl());
2555 // FIXME: This will give bad diagnostics pointing at the wrong functions.
2556 return resolveAllocationOverload(S, R, Range, Args, PassAlignment,
2557 Operator, /*Candidates=*/nullptr,
2558 /*AlignArg=*/nullptr, Diagnose);
2559 }
2560
2561 if (Diagnose) {
2562 // If this is an allocation of the form 'new (p) X' for some object
2563 // pointer p (or an expression that will decay to such a pointer),
2564 // diagnose the missing inclusion of <new>.
2565 if (!R.isClassLookup() && Args.size() == 2 &&
2566 (Args[1]->getType()->isObjectPointerType() ||
2567 Args[1]->getType()->isArrayType())) {
2568 S.Diag(R.getNameLoc(), diag::err_need_header_before_placement_new)
2569 << R.getLookupName() << Range;
2570 // Listing the candidates is unlikely to be useful; skip it.
2571 return true;
2572 }
2573
2574 // Finish checking all candidates before we note any. This checking can
2575 // produce additional diagnostics so can't be interleaved with our
2576 // emission of notes.
2577 //
2578 // For an aligned allocation, separately check the aligned and unaligned
2579 // candidates with their respective argument lists.
2580 SmallVector<OverloadCandidate*, 32> Cands;
2581 SmallVector<OverloadCandidate*, 32> AlignedCands;
2582 llvm::SmallVector<Expr*, 4> AlignedArgs;
2583 if (AlignedCandidates) {
2584 auto IsAligned = [](OverloadCandidate &C) {
2585 return C.Function->getNumParams() > 1 &&
2586 C.Function->getParamDecl(1)->getType()->isAlignValT();
2587 };
2588 auto IsUnaligned = [&](OverloadCandidate &C) { return !IsAligned(C); };
2589
2590 AlignedArgs.reserve(Args.size() + 1);
2591 AlignedArgs.push_back(Args[0]);
2592 AlignedArgs.push_back(AlignArg);
2593 AlignedArgs.append(Args.begin() + 1, Args.end());
2594 AlignedCands = AlignedCandidates->CompleteCandidates(
2595 S, OCD_AllCandidates, AlignedArgs, R.getNameLoc(), IsAligned);
2596
2597 Cands = Candidates.CompleteCandidates(S, OCD_AllCandidates, Args,
2598 R.getNameLoc(), IsUnaligned);
2599 } else {
2600 Cands = Candidates.CompleteCandidates(S, OCD_AllCandidates, Args,
2601 R.getNameLoc());
2602 }
2603
2604 S.Diag(R.getNameLoc(), diag::err_ovl_no_viable_function_in_call)
2605 << R.getLookupName() << Range;
2606 if (AlignedCandidates)
2607 AlignedCandidates->NoteCandidates(S, AlignedArgs, AlignedCands, "",
2608 R.getNameLoc());
2609 Candidates.NoteCandidates(S, Args, Cands, "", R.getNameLoc());
2610 }
2611 return true;
2612
2613 case OR_Ambiguous:
2614 if (Diagnose) {
2615 Candidates.NoteCandidates(
2616 PartialDiagnosticAt(R.getNameLoc(),
2617 S.PDiag(diag::err_ovl_ambiguous_call)
2618 << R.getLookupName() << Range),
2619 S, OCD_AmbiguousCandidates, Args);
2620 }
2621 return true;
2622
2623 case OR_Deleted: {
2624 if (Diagnose) {
2625 Candidates.NoteCandidates(
2626 PartialDiagnosticAt(R.getNameLoc(),
2627 S.PDiag(diag::err_ovl_deleted_call)
2628 << R.getLookupName() << Range),
2629 S, OCD_AllCandidates, Args);
2630 }
2631 return true;
2632 }
2633 }
2634 llvm_unreachable("Unreachable, bad result from BestViableFunction")::llvm::llvm_unreachable_internal("Unreachable, bad result from BestViableFunction"
, "clang/lib/Sema/SemaExprCXX.cpp", 2634)
;
2635}
2636
2637bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
2638 AllocationFunctionScope NewScope,
2639 AllocationFunctionScope DeleteScope,
2640 QualType AllocType, bool IsArray,
2641 bool &PassAlignment, MultiExprArg PlaceArgs,
2642 FunctionDecl *&OperatorNew,
2643 FunctionDecl *&OperatorDelete,
2644 bool Diagnose) {
2645 // --- Choosing an allocation function ---
2646 // C++ 5.3.4p8 - 14 & 18
2647 // 1) If looking in AFS_Global scope for allocation functions, only look in
2648 // the global scope. Else, if AFS_Class, only look in the scope of the
2649 // allocated class. If AFS_Both, look in both.
2650 // 2) If an array size is given, look for operator new[], else look for
2651 // operator new.
2652 // 3) The first argument is always size_t. Append the arguments from the
2653 // placement form.
2654
2655 SmallVector<Expr*, 8> AllocArgs;
2656 AllocArgs.reserve((PassAlignment ? 2 : 1) + PlaceArgs.size());
2657
2658 // We don't care about the actual value of these arguments.
2659 // FIXME: Should the Sema create the expression and embed it in the syntax
2660 // tree? Or should the consumer just recalculate the value?
2661 // FIXME: Using a dummy value will interact poorly with attribute enable_if.
2662 IntegerLiteral Size(
2663 Context,
2664 llvm::APInt::getZero(
2665 Context.getTargetInfo().getPointerWidth(LangAS::Default)),
2666 Context.getSizeType(), SourceLocation());
2667 AllocArgs.push_back(&Size);
2668
2669 QualType AlignValT = Context.VoidTy;
2670 if (PassAlignment) {
2671 DeclareGlobalNewDelete();
2672 AlignValT = Context.getTypeDeclType(getStdAlignValT());
2673 }
2674 CXXScalarValueInitExpr Align(AlignValT, nullptr, SourceLocation());
2675 if (PassAlignment)
2676 AllocArgs.push_back(&Align);
2677
2678 AllocArgs.insert(AllocArgs.end(), PlaceArgs.begin(), PlaceArgs.end());
2679
2680 // C++ [expr.new]p8:
2681 // If the allocated type is a non-array type, the allocation
2682 // function's name is operator new and the deallocation function's
2683 // name is operator delete. If the allocated type is an array
2684 // type, the allocation function's name is operator new[] and the
2685 // deallocation function's name is operator delete[].
2686 DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
2687 IsArray ? OO_Array_New : OO_New);
2688
2689 QualType AllocElemType = Context.getBaseElementType(AllocType);
2690
2691 // Find the allocation function.
2692 {
2693 LookupResult R(*this, NewName, StartLoc, LookupOrdinaryName);
2694
2695 // C++1z [expr.new]p9:
2696 // If the new-expression begins with a unary :: operator, the allocation
2697 // function's name is looked up in the global scope. Otherwise, if the
2698 // allocated type is a class type T or array thereof, the allocation
2699 // function's name is looked up in the scope of T.
2700 if (AllocElemType->isRecordType() && NewScope != AFS_Global)
2701 LookupQualifiedName(R, AllocElemType->getAsCXXRecordDecl());
2702
2703 // We can see ambiguity here if the allocation function is found in
2704 // multiple base classes.
2705 if (R.isAmbiguous())
2706 return true;
2707
2708 // If this lookup fails to find the name, or if the allocated type is not
2709 // a class type, the allocation function's name is looked up in the
2710 // global scope.
2711 if (R.empty()) {
2712 if (NewScope == AFS_Class)
2713 return true;
2714
2715 LookupQualifiedName(R, Context.getTranslationUnitDecl());
2716 }
2717
2718 if (getLangOpts().OpenCLCPlusPlus && R.empty()) {
2719 if (PlaceArgs.empty()) {
2720 Diag(StartLoc, diag::err_openclcxx_not_supported) << "default new";
2721 } else {
2722 Diag(StartLoc, diag::err_openclcxx_placement_new);
2723 }
2724 return true;
2725 }
2726
2727 assert(!R.empty() && "implicitly declared allocation functions not found")(static_cast <bool> (!R.empty() && "implicitly declared allocation functions not found"
) ? void (0) : __assert_fail ("!R.empty() && \"implicitly declared allocation functions not found\""
, "clang/lib/Sema/SemaExprCXX.cpp", 2727, __extension__ __PRETTY_FUNCTION__
))
;
2728 assert(!R.isAmbiguous() && "global allocation functions are ambiguous")(static_cast <bool> (!R.isAmbiguous() && "global allocation functions are ambiguous"
) ? void (0) : __assert_fail ("!R.isAmbiguous() && \"global allocation functions are ambiguous\""
, "clang/lib/Sema/SemaExprCXX.cpp", 2728, __extension__ __PRETTY_FUNCTION__
))
;
2729
2730 // We do our own custom access checks below.
2731 R.suppressDiagnostics();
2732
2733 if (resolveAllocationOverload(*this, R, Range, AllocArgs, PassAlignment,
2734 OperatorNew, /*Candidates=*/nullptr,
2735 /*AlignArg=*/nullptr, Diagnose))
2736 return true;
2737 }
2738
2739 // We don't need an operator delete if we're running under -fno-exceptions.
2740 if (!getLangOpts().Exceptions) {
2741 OperatorDelete = nullptr;
2742 return false;
2743 }
2744
2745 // Note, the name of OperatorNew might have been changed from array to
2746 // non-array by resolveAllocationOverload.
2747 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
2748 OperatorNew->getDeclName().getCXXOverloadedOperator() == OO_Array_New
2749 ? OO_Array_Delete
2750 : OO_Delete);
2751
2752 // C++ [expr.new]p19:
2753 //
2754 // If the new-expression begins with a unary :: operator, the
2755 // deallocation function's name is looked up in the global
2756 // scope. Otherwise, if the allocated type is a class type T or an
2757 // array thereof, the deallocation function's name is looked up in
2758 // the scope of T. If this lookup fails to find the name, or if
2759 // the allocated type is not a class type or array thereof, the
2760 // deallocation function's name is looked up in the global scope.
2761 LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
2762 if (AllocElemType->isRecordType() && DeleteScope != AFS_Global) {
2763 auto *RD =
2764 cast<CXXRecordDecl>(AllocElemType->castAs<RecordType>()->getDecl());
2765 LookupQualifiedName(FoundDelete, RD);
2766 }
2767 if (FoundDelete.isAmbiguous())
2768 return true; // FIXME: clean up expressions?
2769
2770 // Filter out any destroying operator deletes. We can't possibly call such a
2771 // function in this context, because we're handling the case where the object
2772 // was not successfully constructed.
2773 // FIXME: This is not covered by the language rules yet.
2774 {
2775 LookupResult::Filter Filter = FoundDelete.makeFilter();
2776 while (Filter.hasNext()) {
2777 auto *FD = dyn_cast<FunctionDecl>(Filter.next()->getUnderlyingDecl());
2778 if (FD && FD->isDestroyingOperatorDelete())
2779 Filter.erase();
2780 }
2781 Filter.done();
2782 }
2783
2784 bool FoundGlobalDelete = FoundDelete.empty();
2785 if (FoundDelete.empty()) {
2786 FoundDelete.clear(LookupOrdinaryName);
2787
2788 if (DeleteScope == AFS_Class)
2789 return true;
2790
2791 DeclareGlobalNewDelete();
2792 LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
2793 }
2794
2795 FoundDelete.suppressDiagnostics();
2796
2797 SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;
2798
2799 // Whether we're looking for a placement operator delete is dictated
2800 // by whether we selected a placement operator new, not by whether
2801 // we had explicit placement arguments. This matters for things like
2802 // struct A { void *operator new(size_t, int = 0); ... };
2803 // A *a = new A()
2804 //
2805 // We don't have any definition for what a "placement allocation function"
2806 // is, but we assume it's any allocation function whose
2807 // parameter-declaration-clause is anything other than (size_t).
2808 //
2809 // FIXME: Should (size_t, std::align_val_t) also be considered non-placement?
2810 // This affects whether an exception from the constructor of an overaligned
2811 // type uses the sized or non-sized form of aligned operator delete.
2812 bool isPlacementNew = !PlaceArgs.empty() || OperatorNew->param_size() != 1 ||
2813 OperatorNew->isVariadic();
2814
2815 if (isPlacementNew) {
2816 // C++ [expr.new]p20:
2817 // A declaration of a placement deallocation function matches the
2818 // declaration of a placement allocation function if it has the
2819 // same number of parameters and, after parameter transformations
2820 // (8.3.5), all parameter types except the first are
2821 // identical. [...]
2822 //
2823 // To perform this comparison, we compute the function type that
2824 // the deallocation function should have, and use that type both
2825 // for template argument deduction and for comparison purposes.
2826 QualType ExpectedFunctionType;
2827 {
2828 auto *Proto = OperatorNew->getType()->castAs<FunctionProtoType>();
2829
2830 SmallVector<QualType, 4> ArgTypes;
2831 ArgTypes.push_back(Context.VoidPtrTy);
2832 for (unsigned I = 1, N = Proto->getNumParams(); I < N; ++I)
2833 ArgTypes.push_back(Proto->getParamType(I));
2834
2835 FunctionProtoType::ExtProtoInfo EPI;
2836 // FIXME: This is not part of the standard's rule.
2837 EPI.Variadic = Proto->isVariadic();
2838
2839 ExpectedFunctionType
2840 = Context.getFunctionType(Context.VoidTy, ArgTypes, EPI);
2841 }
2842
2843 for (LookupResult::iterator D = FoundDelete.begin(),
2844 DEnd = FoundDelete.end();
2845 D != DEnd; ++D) {
2846 FunctionDecl *Fn = nullptr;
2847 if (FunctionTemplateDecl *FnTmpl =
2848 dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
2849 // Perform template argument deduction to try to match the
2850 // expected function type.
2851 TemplateDeductionInfo Info(StartLoc);
2852 if (DeduceTemplateArguments(FnTmpl, nullptr, ExpectedFunctionType, Fn,
2853 Info))
2854 continue;
2855 } else
2856 Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
2857
2858 if (Context.hasSameType(adjustCCAndNoReturn(Fn->getType(),
2859 ExpectedFunctionType,
2860 /*AdjustExcpetionSpec*/true),
2861 ExpectedFunctionType))
2862 Matches.push_back(std::make_pair(D.getPair(), Fn));
2863 }
2864
2865 if (getLangOpts().CUDA)
2866 EraseUnwantedCUDAMatches(getCurFunctionDecl(/*AllowLambda=*/true),
2867 Matches);
2868 } else {
2869 // C++1y [expr.new]p22:
2870 // For a non-placement allocation function, the normal deallocation
2871 // function lookup is used
2872 //
2873 // Per [expr.delete]p10, this lookup prefers a member operator delete
2874 // without a size_t argument, but prefers a non-member operator delete
2875 // with a size_t where possible (which it always is in this case).
2876 llvm::SmallVector<UsualDeallocFnInfo, 4> BestDeallocFns;
2877 UsualDeallocFnInfo Selected = resolveDeallocationOverload(
2878 *this, FoundDelete, /*WantSize*/ FoundGlobalDelete,
2879 /*WantAlign*/ hasNewExtendedAlignment(*this, AllocElemType),
2880 &BestDeallocFns);
2881 if (Selected)
2882 Matches.push_back(std::make_pair(Selected.Found, Selected.FD));
2883 else {
2884 // If we failed to select an operator, all remaining functions are viable
2885 // but ambiguous.
2886 for (auto Fn : BestDeallocFns)
2887 Matches.push_back(std::make_pair(Fn.Found, Fn.FD));
2888 }
2889 }
2890
2891 // C++ [expr.new]p20:
2892 // [...] If the lookup finds a single matching deallocation
2893 // function, that function will be called; otherwise, no
2894 // deallocation function will be called.
2895 if (Matches.size() == 1) {
2896 OperatorDelete = Matches[0].second;
2897
2898 // C++1z [expr.new]p23:
2899 // If the lookup finds a usual deallocation function (3.7.4.2)
2900 // with a parameter of type std::size_t and that function, considered
2901 // as a placement deallocation function, would have been
2902 // selected as a match for the allocation function, the program
2903 // is ill-formed.
2904 if (getLangOpts().CPlusPlus11 && isPlacementNew &&
2905 isNonPlacementDeallocationFunction(*this, OperatorDelete)) {
2906 UsualDeallocFnInfo Info(*this,
2907 DeclAccessPair::make(OperatorDelete, AS_public));
2908 // Core issue, per mail to core reflector, 2016-10-09:
2909 // If this is a member operator delete, and there is a corresponding
2910 // non-sized member operator delete, this isn't /really/ a sized
2911 // deallocation function, it just happens to have a size_t parameter.
2912 bool IsSizedDelete = Info.HasSizeT;
2913 if (IsSizedDelete && !FoundGlobalDelete) {
2914 auto NonSizedDelete =
2915 resolveDeallocationOverload(*this, FoundDelete, /*WantSize*/false,
2916 /*WantAlign*/Info.HasAlignValT);
2917 if (NonSizedDelete && !NonSizedDelete.HasSizeT &&
2918 NonSizedDelete.HasAlignValT == Info.HasAlignValT)
2919 IsSizedDelete = false;
2920 }
2921
2922 if (IsSizedDelete) {
2923 SourceRange R = PlaceArgs.empty()
2924 ? SourceRange()
2925 : SourceRange(PlaceArgs.front()->getBeginLoc(),
2926 PlaceArgs.back()->getEndLoc());
2927 Diag(StartLoc, diag::err_placement_new_non_placement_delete) << R;
2928 if (!OperatorDelete->isImplicit())
2929 Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
2930 << DeleteName;
2931 }
2932 }
2933
2934 CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
2935 Matches[0].first);
2936 } else if (!Matches.empty()) {
2937 // We found multiple suitable operators. Per [expr.new]p20, that means we
2938 // call no 'operator delete' function, but we should at least warn the user.
2939 // FIXME: Suppress this warning if the construction cannot throw.
2940 Diag(StartLoc, diag::warn_ambiguous_suitable_delete_function_found)
2941 << DeleteName << AllocElemType;
2942
2943 for (auto &Match : Matches)
2944 Diag(Match.second->getLocation(),
2945 diag::note_member_declared_here) << DeleteName;
2946 }
2947
2948 return false;
2949}
2950
2951/// DeclareGlobalNewDelete - Declare the global forms of operator new and
2952/// delete. These are:
2953/// @code
2954/// // C++03:
2955/// void* operator new(std::size_t) throw(std::bad_alloc);
2956/// void* operator new[](std::size_t) throw(std::bad_alloc);
2957/// void operator delete(void *) throw();
2958/// void operator delete[](void *) throw();
2959/// // C++11:
2960/// void* operator new(std::size_t);
2961/// void* operator new[](std::size_t);
2962/// void operator delete(void *) noexcept;
2963/// void operator delete[](void *) noexcept;
2964/// // C++1y:
2965/// void* operator new(std::size_t);
2966/// void* operator new[](std::size_t);
2967/// void operator delete(void *) noexcept;
2968/// void operator delete[](void *) noexcept;
2969/// void operator delete(void *, std::size_t) noexcept;
2970/// void operator delete[](void *, std::size_t) noexcept;
2971/// @endcode
2972/// Note that the placement and nothrow forms of new are *not* implicitly
2973/// declared. Their use requires including \<new\>.
2974void Sema::DeclareGlobalNewDelete() {
2975 if (GlobalNewDeleteDeclared)
2976 return;
2977
2978 // The implicitly declared new and delete operators
2979 // are not supported in OpenCL.
2980 if (getLangOpts().OpenCLCPlusPlus)
2981 return;
2982
2983 // C++ [basic.stc.dynamic.general]p2:
2984 // The library provides default definitions for the global allocation
2985 // and deallocation functions. Some global allocation and deallocation
2986 // functions are replaceable ([new.delete]); these are attached to the
2987 // global module ([module.unit]).
2988 if (getLangOpts().CPlusPlusModules && getCurrentModule())
2989 PushGlobalModuleFragment(SourceLocation(), /*IsImplicit=*/true);
2990
2991 // C++ [basic.std.dynamic]p2:
2992 // [...] The following allocation and deallocation functions (18.4) are
2993 // implicitly declared in global scope in each translation unit of a
2994 // program
2995 //
2996 // C++03:
2997 // void* operator new(std::size_t) throw(std::bad_alloc);
2998 // void* operator new[](std::size_t) throw(std::bad_alloc);
2999 // void operator delete(void*) throw();
3000 // void operator delete[](void*) throw();
3001 // C++11:
3002 // void* operator new(std::size_t);
3003 // void* operator new[](std::size_t);
3004 // void operator delete(void*) noexcept;
3005 // void operator delete[](void*) noexcept;
3006 // C++1y:
3007 // void* operator new(std::size_t);
3008 // void* operator new[](std::size_t);
3009 // void operator delete(void*) noexcept;
3010 // void operator delete[](void*) noexcept;
3011 // void operator delete(void*, std::size_t) noexcept;
3012 // void operator delete[](void*, std::size_t) noexcept;
3013 //
3014 // These implicit declarations introduce only the function names operator
3015 // new, operator new[], operator delete, operator delete[].
3016 //
3017 // Here, we need to refer to std::bad_alloc, so we will implicitly declare
3018 // "std" or "bad_alloc" as necessary to form the exception specification.
3019 // However, we do not make these implicit declarations visible to name
3020 // lookup.
3021 if (!StdBadAlloc && !getLangOpts().CPlusPlus11) {
3022 // The "std::bad_alloc" class has not yet been declared, so build it
3023 // implicitly.
3024 StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class,
3025 getOrCreateStdNamespace(),
3026 SourceLocation(), SourceLocation(),
3027 &PP.getIdentifierTable().get("bad_alloc"),
3028 nullptr);
3029 getStdBadAlloc()->setImplicit(true);
3030
3031 // The implicitly declared "std::bad_alloc" should live in global module
3032 // fragment.
3033 if (GlobalModuleFragment) {
3034 getStdBadAlloc()->setModuleOwnershipKind(
3035 Decl::ModuleOwnershipKind::ReachableWhenImported);
3036 getStdBadAlloc()->setLocalOwningModule(GlobalModuleFragment);
3037 }
3038 }
3039 if (!StdAlignValT && getLangOpts().AlignedAllocation) {
3040 // The "std::align_val_t" enum class has not yet been declared, so build it
3041 // implicitly.
3042 auto *AlignValT = EnumDecl::Create(
3043 Context, getOrCreateStdNamespace(), SourceLocation(), SourceLocation(),
3044 &PP.getIdentifierTable().get("align_val_t"), nullptr, true, true, true);
3045
3046 // The implicitly declared "std::align_val_t" should live in global module
3047 // fragment.
3048 if (GlobalModuleFragment) {
3049 AlignValT->setModuleOwnershipKind(
3050 Decl::ModuleOwnershipKind::ReachableWhenImported);
3051 AlignValT->setLocalOwningModule(GlobalModuleFragment);
3052 }
3053
3054 AlignValT->setIntegerType(Context.getSizeType());
3055 AlignValT->setPromotionType(Context.getSizeType());
3056 AlignValT->setImplicit(true);
3057
3058 StdAlignValT = AlignValT;
3059 }
3060
3061 GlobalNewDeleteDeclared = true;
3062
3063 QualType VoidPtr = Context.getPointerType(Context.VoidTy);
3064 QualType SizeT = Context.getSizeType();
3065
3066 auto DeclareGlobalAllocationFunctions = [&](OverloadedOperatorKind Kind,
3067 QualType Return, QualType Param) {
3068 llvm::SmallVector<QualType, 3> Params;
3069 Params.push_back(Param);
3070
3071 // Create up to four variants of the function (sized/aligned).
3072 bool HasSizedVariant = getLangOpts().SizedDeallocation &&
3073 (Kind == OO_Delete || Kind == OO_Array_Delete);
3074 bool HasAlignedVariant = getLangOpts().AlignedAllocation;
3075
3076 int NumSizeVariants = (HasSizedVariant ? 2 : 1);
3077 int NumAlignVariants = (HasAlignedVariant ? 2 : 1);
3078 for (int Sized = 0; Sized < NumSizeVariants; ++Sized) {
3079 if (Sized)
3080 Params.push_back(SizeT);
3081
3082 for (int Aligned = 0; Aligned < NumAlignVariants; ++Aligned) {
3083 if (Aligned)
3084 Params.push_back(Context.getTypeDeclType(getStdAlignValT()));
3085
3086 DeclareGlobalAllocationFunction(
3087 Context.DeclarationNames.getCXXOperatorName(Kind), Return, Params);
3088
3089 if (Aligned)
3090 Params.pop_back();
3091 }
3092 }
3093 };
3094
3095 DeclareGlobalAllocationFunctions(OO_New, VoidPtr, SizeT);
3096 DeclareGlobalAllocationFunctions(OO_Array_New, VoidPtr, SizeT);
3097 DeclareGlobalAllocationFunctions(OO_Delete, Context.VoidTy, VoidPtr);
3098 DeclareGlobalAllocationFunctions(OO_Array_Delete, Context.VoidTy, VoidPtr);
3099
3100 if (getLangOpts().CPlusPlusModules && getCurrentModule())
3101 PopGlobalModuleFragment();
3102}
3103
3104/// DeclareGlobalAllocationFunction - Declares a single implicit global
3105/// allocation function if it doesn't already exist.
3106void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
3107 QualType Return,
3108 ArrayRef<QualType> Params) {
3109 DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
3110
3111 // Check if this function is already declared.
3112 DeclContext::lookup_result R = GlobalCtx->lookup(Name);
3113 for (DeclContext::lookup_iterator Alloc = R.begin(), AllocEnd = R.end();
3114 Alloc != AllocEnd; ++Alloc) {
3115 // Only look at non-template functions, as it is the predefined,
3116 // non-templated allocation function we are trying to declare here.
3117 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
3118 if (Func->getNumParams() == Params.size()) {
3119 llvm::SmallVector<QualType, 3> FuncParams;
3120 for (auto *P : Func->parameters())
3121 FuncParams.push_back(
3122 Context.getCanonicalType(P->getType().getUnqualifiedType()));
3123 if (llvm::ArrayRef(FuncParams) == Params) {
3124 // Make the function visible to name lookup, even if we found it in
3125 // an unimported module. It either is an implicitly-declared global
3126 // allocation function, or is suppressing that function.
3127 Func->setVisibleDespiteOwningModule();
3128 return;
3129 }
3130 }
3131 }
3132 }
3133
3134 FunctionProtoType::ExtProtoInfo EPI(Context.getDefaultCallingConvention(
3135 /*IsVariadic=*/false, /*IsCXXMethod=*/false, /*IsBuiltin=*/true));
3136
3137 QualType BadAllocType;
3138 bool HasBadAllocExceptionSpec
3139 = (Name.getCXXOverloadedOperator() == OO_New ||
3140 Name.getCXXOverloadedOperator() == OO_Array_New);
3141 if (HasBadAllocExceptionSpec) {
3142 if (!getLangOpts().CPlusPlus11) {
3143 BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
3144 assert(StdBadAlloc && "Must have std::bad_alloc declared")(static_cast <bool> (StdBadAlloc && "Must have std::bad_alloc declared"
) ? void (0) : __assert_fail ("StdBadAlloc && \"Must have std::bad_alloc declared\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3144, __extension__ __PRETTY_FUNCTION__
))
;
3145 EPI.ExceptionSpec.Type = EST_Dynamic;
3146 EPI.ExceptionSpec.Exceptions = llvm::ArrayRef(BadAllocType);
3147 }
3148 if (getLangOpts().NewInfallible) {
3149 EPI.ExceptionSpec.Type = EST_DynamicNone;
3150 }
3151 } else {
3152 EPI.ExceptionSpec =
3153 getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone;
3154 }
3155
3156 auto CreateAllocationFunctionDecl = [&](Attr *ExtraAttr) {
3157 QualType FnType = Context.getFunctionType(Return, Params, EPI);
3158 FunctionDecl *Alloc = FunctionDecl::Create(
3159 Context, GlobalCtx, SourceLocation(), SourceLocation(), Name, FnType,
3160 /*TInfo=*/nullptr, SC_None, getCurFPFeatures().isFPConstrained(), false,
3161 true);
3162 Alloc->setImplicit();
3163 // Global allocation functions should always be visible.
3164 Alloc->setVisibleDespiteOwningModule();
3165
3166 if (HasBadAllocExceptionSpec && getLangOpts().NewInfallible)
3167 Alloc->addAttr(
3168 ReturnsNonNullAttr::CreateImplicit(Context, Alloc->getLocation()));
3169
3170 // C++ [basic.stc.dynamic.general]p2:
3171 // The library provides default definitions for the global allocation
3172 // and deallocation functions. Some global allocation and deallocation
3173 // functions are replaceable ([new.delete]); these are attached to the
3174 // global module ([module.unit]).
3175 //
3176 // In the language wording, these functions are attched to the global
3177 // module all the time. But in the implementation, the global module
3178 // is only meaningful when we're in a module unit. So here we attach
3179 // these allocation functions to global module conditionally.
3180 if (GlobalModuleFragment) {
3181 Alloc->setModuleOwnershipKind(
3182 Decl::ModuleOwnershipKind::ReachableWhenImported);
3183 Alloc->setLocalOwningModule(GlobalModuleFragment);
3184 }
3185
3186 Alloc->addAttr(VisibilityAttr::CreateImplicit(
3187 Context, LangOpts.GlobalAllocationFunctionVisibilityHidden
3188 ? VisibilityAttr::Hidden
3189 : VisibilityAttr::Default));
3190
3191 llvm::SmallVector<ParmVarDecl *, 3> ParamDecls;
3192 for (QualType T : Params) {
3193 ParamDecls.push_back(ParmVarDecl::Create(
3194 Context, Alloc, SourceLocation(), SourceLocation(), nullptr, T,
3195 /*TInfo=*/nullptr, SC_None, nullptr));
3196 ParamDecls.back()->setImplicit();
3197 }
3198 Alloc->setParams(ParamDecls);
3199 if (ExtraAttr)
3200 Alloc->addAttr(ExtraAttr);
3201 AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(Alloc);
3202 Context.getTranslationUnitDecl()->addDecl(Alloc);
3203 IdResolver.tryAddTopLevelDecl(Alloc, Name);
3204 };
3205
3206 if (!LangOpts.CUDA)
3207 CreateAllocationFunctionDecl(nullptr);
3208 else {
3209 // Host and device get their own declaration so each can be
3210 // defined or re-declared independently.
3211 CreateAllocationFunctionDecl(CUDAHostAttr::CreateImplicit(Context));
3212 CreateAllocationFunctionDecl(CUDADeviceAttr::CreateImplicit(Context));
3213 }
3214}
3215
3216FunctionDecl *Sema::FindUsualDeallocationFunction(SourceLocation StartLoc,
3217 bool CanProvideSize,
3218 bool Overaligned,
3219 DeclarationName Name) {
3220 DeclareGlobalNewDelete();
3221
3222 LookupResult FoundDelete(*this, Name, StartLoc, LookupOrdinaryName);
3223 LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
3224
3225 // FIXME: It's possible for this to result in ambiguity, through a
3226 // user-declared variadic operator delete or the enable_if attribute. We
3227 // should probably not consider those cases to be usual deallocation
3228 // functions. But for now we just make an arbitrary choice in that case.
3229 auto Result = resolveDeallocationOverload(*this, FoundDelete, CanProvideSize,
3230 Overaligned);
3231 assert(Result.FD && "operator delete missing from global scope?")(static_cast <bool> (Result.FD && "operator delete missing from global scope?"
) ? void (0) : __assert_fail ("Result.FD && \"operator delete missing from global scope?\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3231, __extension__ __PRETTY_FUNCTION__
))
;
3232 return Result.FD;
3233}
3234
3235FunctionDecl *Sema::FindDeallocationFunctionForDestructor(SourceLocation Loc,
3236 CXXRecordDecl *RD) {
3237 DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Delete);
3238
3239 FunctionDecl *OperatorDelete = nullptr;
3240 if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
3241 return nullptr;
3242 if (OperatorDelete)
3243 return OperatorDelete;
3244
3245 // If there's no class-specific operator delete, look up the global
3246 // non-array delete.
3247 return FindUsualDeallocationFunction(
3248 Loc, true, hasNewExtendedAlignment(*this, Context.getRecordType(RD)),
3249 Name);
3250}
3251
3252bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
3253 DeclarationName Name,
3254 FunctionDecl *&Operator, bool Diagnose,
3255 bool WantSize, bool WantAligned) {
3256 LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
3257 // Try to find operator delete/operator delete[] in class scope.
3258 LookupQualifiedName(Found, RD);
3259
3260 if (Found.isAmbiguous())
3261 return true;
3262
3263 Found.suppressDiagnostics();
3264
3265 bool Overaligned =
3266 WantAligned || hasNewExtendedAlignment(*this, Context.getRecordType(RD));
3267
3268 // C++17 [expr.delete]p10:
3269 // If the deallocation functions have class scope, the one without a
3270 // parameter of type std::size_t is selected.
3271 llvm::SmallVector<UsualDeallocFnInfo, 4> Matches;
3272 resolveDeallocationOverload(*this, Found, /*WantSize*/ WantSize,
3273 /*WantAlign*/ Overaligned, &Matches);
3274
3275 // If we could find an overload, use it.
3276 if (Matches.size() == 1) {
3277 Operator = cast<CXXMethodDecl>(Matches[0].FD);
3278
3279 // FIXME: DiagnoseUseOfDecl?
3280 if (Operator->isDeleted()) {
3281 if (Diagnose) {
3282 Diag(StartLoc, diag::err_deleted_function_use);
3283 NoteDeletedFunction(Operator);
3284 }
3285 return true;
3286 }
3287
3288 if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
3289 Matches[0].Found, Diagnose) == AR_inaccessible)
3290 return true;
3291
3292 return false;
3293 }
3294
3295 // We found multiple suitable operators; complain about the ambiguity.
3296 // FIXME: The standard doesn't say to do this; it appears that the intent
3297 // is that this should never happen.
3298 if (!Matches.empty()) {
3299 if (Diagnose) {
3300 Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
3301 << Name << RD;
3302 for (auto &Match : Matches)
3303 Diag(Match.FD->getLocation(), diag::note_member_declared_here) << Name;
3304 }
3305 return true;
3306 }
3307
3308 // We did find operator delete/operator delete[] declarations, but
3309 // none of them were suitable.
3310 if (!Found.empty()) {
3311 if (Diagnose) {
3312 Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
3313 << Name << RD;
3314
3315 for (NamedDecl *D : Found)
3316 Diag(D->getUnderlyingDecl()->getLocation(),
3317 diag::note_member_declared_here) << Name;
3318 }
3319 return true;
3320 }
3321
3322 Operator = nullptr;
3323 return false;
3324}
3325
3326namespace {
3327/// Checks whether delete-expression, and new-expression used for
3328/// initializing deletee have the same array form.
3329class MismatchingNewDeleteDetector {
3330public:
3331 enum MismatchResult {
3332 /// Indicates that there is no mismatch or a mismatch cannot be proven.
3333 NoMismatch,
3334 /// Indicates that variable is initialized with mismatching form of \a new.
3335 VarInitMismatches,
3336 /// Indicates that member is initialized with mismatching form of \a new.
3337 MemberInitMismatches,
3338 /// Indicates that 1 or more constructors' definitions could not been
3339 /// analyzed, and they will be checked again at the end of translation unit.
3340 AnalyzeLater
3341 };
3342
3343 /// \param EndOfTU True, if this is the final analysis at the end of
3344 /// translation unit. False, if this is the initial analysis at the point
3345 /// delete-expression was encountered.
3346 explicit MismatchingNewDeleteDetector(bool EndOfTU)
3347 : Field(nullptr), IsArrayForm(false), EndOfTU(EndOfTU),
3348 HasUndefinedConstructors(false) {}
3349
3350 /// Checks whether pointee of a delete-expression is initialized with
3351 /// matching form of new-expression.
3352 ///
3353 /// If return value is \c VarInitMismatches or \c MemberInitMismatches at the
3354 /// point where delete-expression is encountered, then a warning will be
3355 /// issued immediately. If return value is \c AnalyzeLater at the point where
3356 /// delete-expression is seen, then member will be analyzed at the end of
3357 /// translation unit. \c AnalyzeLater is returned iff at least one constructor
3358 /// couldn't be analyzed. If at least one constructor initializes the member
3359 /// with matching type of new, the return value is \c NoMismatch.
3360 MismatchResult analyzeDeleteExpr(const CXXDeleteExpr *DE);
3361 /// Analyzes a class member.
3362 /// \param Field Class member to analyze.
3363 /// \param DeleteWasArrayForm Array form-ness of the delete-expression used
3364 /// for deleting the \p Field.
3365 MismatchResult analyzeField(FieldDecl *Field, bool DeleteWasArrayForm);
3366 FieldDecl *Field;
3367 /// List of mismatching new-expressions used for initialization of the pointee
3368 llvm::SmallVector<const CXXNewExpr *, 4> NewExprs;
3369 /// Indicates whether delete-expression was in array form.
3370 bool IsArrayForm;
3371
3372private:
3373 const bool EndOfTU;
3374 /// Indicates that there is at least one constructor without body.
3375 bool HasUndefinedConstructors;
3376 /// Returns \c CXXNewExpr from given initialization expression.
3377 /// \param E Expression used for initializing pointee in delete-expression.
3378 /// E can be a single-element \c InitListExpr consisting of new-expression.
3379 const CXXNewExpr *getNewExprFromInitListOrExpr(const Expr *E);
3380 /// Returns whether member is initialized with mismatching form of
3381 /// \c new either by the member initializer or in-class initialization.
3382 ///
3383 /// If bodies of all constructors are not visible at the end of translation
3384 /// unit or at least one constructor initializes member with the matching
3385 /// form of \c new, mismatch cannot be proven, and this function will return
3386 /// \c NoMismatch.
3387 MismatchResult analyzeMemberExpr(const MemberExpr *ME);
3388 /// Returns whether variable is initialized with mismatching form of
3389 /// \c new.
3390 ///
3391 /// If variable is initialized with matching form of \c new or variable is not
3392 /// initialized with a \c new expression, this function will return true.
3393 /// If variable is initialized with mismatching form of \c new, returns false.
3394 /// \param D Variable to analyze.
3395 bool hasMatchingVarInit(const DeclRefExpr *D);
3396 /// Checks whether the constructor initializes pointee with mismatching
3397 /// form of \c new.
3398 ///
3399 /// Returns true, if member is initialized with matching form of \c new in
3400 /// member initializer list. Returns false, if member is initialized with the
3401 /// matching form of \c new in this constructor's initializer or given
3402 /// constructor isn't defined at the point where delete-expression is seen, or
3403 /// member isn't initialized by the constructor.
3404 bool hasMatchingNewInCtor(const CXXConstructorDecl *CD);
3405 /// Checks whether member is initialized with matching form of
3406 /// \c new in member initializer list.
3407 bool hasMatchingNewInCtorInit(const CXXCtorInitializer *CI);
3408 /// Checks whether member is initialized with mismatching form of \c new by
3409 /// in-class initializer.
3410 MismatchResult analyzeInClassInitializer();
3411};
3412}
3413
3414MismatchingNewDeleteDetector::MismatchResult
3415MismatchingNewDeleteDetector::analyzeDeleteExpr(const CXXDeleteExpr *DE) {
3416 NewExprs.clear();
3417 assert(DE && "Expected delete-expression")(static_cast <bool> (DE && "Expected delete-expression"
) ? void (0) : __assert_fail ("DE && \"Expected delete-expression\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3417, __extension__ __PRETTY_FUNCTION__
))
;
3418 IsArrayForm = DE->isArrayForm();
3419 const Expr *E = DE->getArgument()->IgnoreParenImpCasts();
3420 if (const MemberExpr *ME = dyn_cast<const MemberExpr>(E)) {
3421 return analyzeMemberExpr(ME);
3422 } else if (const DeclRefExpr *D = dyn_cast<const DeclRefExpr>(E)) {
3423 if (!hasMatchingVarInit(D))
3424 return VarInitMismatches;
3425 }
3426 return NoMismatch;
3427}
3428
3429const CXXNewExpr *
3430MismatchingNewDeleteDetector::getNewExprFromInitListOrExpr(const Expr *E) {
3431 assert(E != nullptr && "Expected a valid initializer expression")(static_cast <bool> (E != nullptr && "Expected a valid initializer expression"
) ? void (0) : __assert_fail ("E != nullptr && \"Expected a valid initializer expression\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3431, __extension__ __PRETTY_FUNCTION__
))
;
3432 E = E->IgnoreParenImpCasts();
3433 if (const InitListExpr *ILE = dyn_cast<const InitListExpr>(E)) {
3434 if (ILE->getNumInits() == 1)
3435 E = dyn_cast<const CXXNewExpr>(ILE->getInit(0)->IgnoreParenImpCasts());
3436 }
3437
3438 return dyn_cast_or_null<const CXXNewExpr>(E);
3439}
3440
3441bool MismatchingNewDeleteDetector::hasMatchingNewInCtorInit(
3442 const CXXCtorInitializer *CI) {
3443 const CXXNewExpr *NE = nullptr;
3444 if (Field == CI->getMember() &&
3445 (NE = getNewExprFromInitListOrExpr(CI->getInit()))) {
3446 if (NE->isArray() == IsArrayForm)
3447 return true;
3448 else
3449 NewExprs.push_back(NE);
3450 }
3451 return false;
3452}
3453
3454bool MismatchingNewDeleteDetector::hasMatchingNewInCtor(
3455 const CXXConstructorDecl *CD) {
3456 if (CD->isImplicit())
3457 return false;
3458 const FunctionDecl *Definition = CD;
3459 if (!CD->isThisDeclarationADefinition() && !CD->isDefined(Definition)) {
3460 HasUndefinedConstructors = true;
3461 return EndOfTU;
3462 }
3463 for (const auto *CI : cast<const CXXConstructorDecl>(Definition)->inits()) {
3464 if (hasMatchingNewInCtorInit(CI))
3465 return true;
3466 }
3467 return false;
3468}
3469
3470MismatchingNewDeleteDetector::MismatchResult
3471MismatchingNewDeleteDetector::analyzeInClassInitializer() {
3472 assert(Field != nullptr && "This should be called only for members")(static_cast <bool> (Field != nullptr && "This should be called only for members"
) ? void (0) : __assert_fail ("Field != nullptr && \"This should be called only for members\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3472, __extension__ __PRETTY_FUNCTION__
))
;
3473 const Expr *InitExpr = Field->getInClassInitializer();
3474 if (!InitExpr)
3475 return EndOfTU ? NoMismatch : AnalyzeLater;
3476 if (const CXXNewExpr *NE = getNewExprFromInitListOrExpr(InitExpr)) {
3477 if (NE->isArray() != IsArrayForm) {
3478 NewExprs.push_back(NE);
3479 return MemberInitMismatches;
3480 }
3481 }
3482 return NoMismatch;
3483}
3484
3485MismatchingNewDeleteDetector::MismatchResult
3486MismatchingNewDeleteDetector::analyzeField(FieldDecl *Field,
3487 bool DeleteWasArrayForm) {
3488 assert(Field != nullptr && "Analysis requires a valid class member.")(static_cast <bool> (Field != nullptr && "Analysis requires a valid class member."
) ? void (0) : __assert_fail ("Field != nullptr && \"Analysis requires a valid class member.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3488, __extension__ __PRETTY_FUNCTION__
))
;
3489 this->Field = Field;
3490 IsArrayForm = DeleteWasArrayForm;
3491 const CXXRecordDecl *RD = cast<const CXXRecordDecl>(Field->getParent());
3492 for (const auto *CD : RD->ctors()) {
3493 if (hasMatchingNewInCtor(CD))
3494 return NoMismatch;
3495 }
3496 if (HasUndefinedConstructors)
3497 return EndOfTU ? NoMismatch : AnalyzeLater;
3498 if (!NewExprs.empty())
3499 return MemberInitMismatches;
3500 return Field->hasInClassInitializer() ? analyzeInClassInitializer()
3501 : NoMismatch;
3502}
3503
3504MismatchingNewDeleteDetector::MismatchResult
3505MismatchingNewDeleteDetector::analyzeMemberExpr(const MemberExpr *ME) {
3506 assert(ME != nullptr && "Expected a member expression")(static_cast <bool> (ME != nullptr && "Expected a member expression"
) ? void (0) : __assert_fail ("ME != nullptr && \"Expected a member expression\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3506, __extension__ __PRETTY_FUNCTION__
))
;
3507 if (FieldDecl *F = dyn_cast<FieldDecl>(ME->getMemberDecl()))
3508 return analyzeField(F, IsArrayForm);
3509 return NoMismatch;
3510}
3511
3512bool MismatchingNewDeleteDetector::hasMatchingVarInit(const DeclRefExpr *D) {
3513 const CXXNewExpr *NE = nullptr;
3514 if (const VarDecl *VD = dyn_cast<const VarDecl>(D->getDecl())) {
3515 if (VD->hasInit() && (NE = getNewExprFromInitListOrExpr(VD->getInit())) &&
3516 NE->isArray() != IsArrayForm) {
3517 NewExprs.push_back(NE);
3518 }
3519 }
3520 return NewExprs.empty();
3521}
3522
3523static void
3524DiagnoseMismatchedNewDelete(Sema &SemaRef, SourceLocation DeleteLoc,
3525 const MismatchingNewDeleteDetector &Detector) {
3526 SourceLocation EndOfDelete = SemaRef.getLocForEndOfToken(DeleteLoc);
3527 FixItHint H;
3528 if (!Detector.IsArrayForm)
3529 H = FixItHint::CreateInsertion(EndOfDelete, "[]");
3530 else {
3531 SourceLocation RSquare = Lexer::findLocationAfterToken(
3532 DeleteLoc, tok::l_square, SemaRef.getSourceManager(),
3533 SemaRef.getLangOpts(), true);
3534 if (RSquare.isValid())
3535 H = FixItHint::CreateRemoval(SourceRange(EndOfDelete, RSquare));
3536 }
3537 SemaRef.Diag(DeleteLoc, diag::warn_mismatched_delete_new)
3538 << Detector.IsArrayForm << H;
3539
3540 for (const auto *NE : Detector.NewExprs)
3541 SemaRef.Diag(NE->getExprLoc(), diag::note_allocated_here)
3542 << Detector.IsArrayForm;
3543}
3544
3545void Sema::AnalyzeDeleteExprMismatch(const CXXDeleteExpr *DE) {
3546 if (Diags.isIgnored(diag::warn_mismatched_delete_new, SourceLocation()))
3547 return;
3548 MismatchingNewDeleteDetector Detector(/*EndOfTU=*/false);
3549 switch (Detector.analyzeDeleteExpr(DE)) {
3550 case MismatchingNewDeleteDetector::VarInitMismatches:
3551 case MismatchingNewDeleteDetector::MemberInitMismatches: {
3552 DiagnoseMismatchedNewDelete(*this, DE->getBeginLoc(), Detector);
3553 break;
3554 }
3555 case MismatchingNewDeleteDetector::AnalyzeLater: {
3556 DeleteExprs[Detector.Field].push_back(
3557 std::make_pair(DE->getBeginLoc(), DE->isArrayForm()));
3558 break;
3559 }
3560 case MismatchingNewDeleteDetector::NoMismatch:
3561 break;
3562 }
3563}
3564
3565void Sema::AnalyzeDeleteExprMismatch(FieldDecl *Field, SourceLocation DeleteLoc,
3566 bool DeleteWasArrayForm) {
3567 MismatchingNewDeleteDetector Detector(/*EndOfTU=*/true);
3568 switch (Detector.analyzeField(Field, DeleteWasArrayForm)) {
3569 case MismatchingNewDeleteDetector::VarInitMismatches:
3570 llvm_unreachable("This analysis should have been done for class members.")::llvm::llvm_unreachable_internal("This analysis should have been done for class members."
, "clang/lib/Sema/SemaExprCXX.cpp", 3570)
;
3571 case MismatchingNewDeleteDetector::AnalyzeLater:
3572 llvm_unreachable("Analysis cannot be postponed any point beyond end of "::llvm::llvm_unreachable_internal("Analysis cannot be postponed any point beyond end of "
"translation unit.", "clang/lib/Sema/SemaExprCXX.cpp", 3573)
3573 "translation unit.")::llvm::llvm_unreachable_internal("Analysis cannot be postponed any point beyond end of "
"translation unit.", "clang/lib/Sema/SemaExprCXX.cpp", 3573)
;
3574 case MismatchingNewDeleteDetector::MemberInitMismatches:
3575 DiagnoseMismatchedNewDelete(*this, DeleteLoc, Detector);
3576 break;
3577 case MismatchingNewDeleteDetector::NoMismatch:
3578 break;
3579 }
3580}
3581
3582/// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
3583/// @code ::delete ptr; @endcode
3584/// or
3585/// @code delete [] ptr; @endcode
3586ExprResult
3587Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
3588 bool ArrayForm, Expr *ExE) {
3589 // C++ [expr.delete]p1:
3590 // The operand shall have a pointer type, or a class type having a single
3591 // non-explicit conversion function to a pointer type. The result has type
3592 // void.
3593 //
3594 // DR599 amends "pointer type" to "pointer to object type" in both cases.
3595
3596 ExprResult Ex = ExE;
3597 FunctionDecl *OperatorDelete = nullptr;
3598 bool ArrayFormAsWritten = ArrayForm;
3599 bool UsualArrayDeleteWantsSize = false;
3600
3601 if (!Ex.get()->isTypeDependent()) {
3602 // Perform lvalue-to-rvalue cast, if needed.
3603 Ex = DefaultLvalueConversion(Ex.get());
3604 if (Ex.isInvalid())
3605 return ExprError();
3606
3607 QualType Type = Ex.get()->getType();
3608
3609 class DeleteConverter : public ContextualImplicitConverter {
3610 public:
3611 DeleteConverter() : ContextualImplicitConverter(false, true) {}
3612
3613 bool match(QualType ConvType) override {
3614 // FIXME: If we have an operator T* and an operator void*, we must pick
3615 // the operator T*.
3616 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
3617 if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
3618 return true;
3619 return false;
3620 }
3621
3622 SemaDiagnosticBuilder diagnoseNoMatch(Sema &S, SourceLocation Loc,
3623 QualType T) override {
3624 return S.Diag(Loc, diag::err_delete_operand) << T;
3625 }
3626
3627 SemaDiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc,
3628 QualType T) override {
3629 return S.Diag(Loc, diag::err_delete_incomplete_class_type) << T;
3630 }
3631
3632 SemaDiagnosticBuilder diagnoseExplicitConv(Sema &S, SourceLocation Loc,
3633 QualType T,
3634 QualType ConvTy) override {
3635 return S.Diag(Loc, diag::err_delete_explicit_conversion) << T << ConvTy;
3636 }
3637
3638 SemaDiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv,
3639 QualType ConvTy) override {
3640 return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
3641 << ConvTy;
3642 }
3643
3644 SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
3645 QualType T) override {
3646 return S.Diag(Loc, diag::err_ambiguous_delete_operand) << T;
3647 }
3648
3649 SemaDiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv,
3650 QualType ConvTy) override {
3651 return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
3652 << ConvTy;
3653 }
3654
3655 SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
3656 QualType T,
3657 QualType ConvTy) override {
3658 llvm_unreachable("conversion functions are permitted")::llvm::llvm_unreachable_internal("conversion functions are permitted"
, "clang/lib/Sema/SemaExprCXX.cpp", 3658)
;
3659 }
3660 } Converter;
3661
3662 Ex = PerformContextualImplicitConversion(StartLoc, Ex.get(), Converter);
3663 if (Ex.isInvalid())
3664 return ExprError();
3665 Type = Ex.get()->getType();
3666 if (!Converter.match(Type))
3667 // FIXME: PerformContextualImplicitConversion should return ExprError
3668 // itself in this case.
3669 return ExprError();
3670
3671 QualType Pointee = Type->castAs<PointerType>()->getPointeeType();
3672 QualType PointeeElem = Context.getBaseElementType(Pointee);
3673
3674 if (Pointee.getAddressSpace() != LangAS::Default &&
3675 !getLangOpts().OpenCLCPlusPlus)
3676 return Diag(Ex.get()->getBeginLoc(),
3677 diag::err_address_space_qualified_delete)
3678 << Pointee.getUnqualifiedType()
3679 << Pointee.getQualifiers().getAddressSpaceAttributePrintValue();
3680
3681 CXXRecordDecl *PointeeRD = nullptr;
3682 if (Pointee->isVoidType() && !isSFINAEContext()) {
3683 // The C++ standard bans deleting a pointer to a non-object type, which
3684 // effectively bans deletion of "void*". However, most compilers support
3685 // this, so we treat it as a warning unless we're in a SFINAE context.
3686 Diag(StartLoc, diag::ext_delete_void_ptr_operand)
3687 << Type << Ex.get()->getSourceRange();
3688 } else if (Pointee->isFunctionType() || Pointee->isVoidType() ||
3689 Pointee->isSizelessType()) {
3690 return ExprError(Diag(StartLoc, diag::err_delete_operand)
3691 << Type << Ex.get()->getSourceRange());
3692 } else if (!Pointee->isDependentType()) {
3693 // FIXME: This can result in errors if the definition was imported from a
3694 // module but is hidden.
3695 if (!RequireCompleteType(StartLoc, Pointee,
3696 diag::warn_delete_incomplete, Ex.get())) {
3697 if (const RecordType *RT = PointeeElem->getAs<RecordType>())
3698 PointeeRD = cast<CXXRecordDecl>(RT->getDecl());
3699 }
3700 }
3701
3702 if (Pointee->isArrayType() && !ArrayForm) {
3703 Diag(StartLoc, diag::warn_delete_array_type)
3704 << Type << Ex.get()->getSourceRange()
3705 << FixItHint::CreateInsertion(getLocForEndOfToken(StartLoc), "[]");
3706 ArrayForm = true;
3707 }
3708
3709 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
3710 ArrayForm ? OO_Array_Delete : OO_Delete);
3711
3712 if (PointeeRD) {
3713 if (!UseGlobal &&
3714 FindDeallocationFunction(StartLoc, PointeeRD, DeleteName,
3715 OperatorDelete))
3716 return ExprError();
3717
3718 // If we're allocating an array of records, check whether the
3719 // usual operator delete[] has a size_t parameter.
3720 if (ArrayForm) {
3721 // If the user specifically asked to use the global allocator,
3722 // we'll need to do the lookup into the class.
3723 if (UseGlobal)
3724 UsualArrayDeleteWantsSize =
3725 doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem);
3726
3727 // Otherwise, the usual operator delete[] should be the
3728 // function we just found.
3729 else if (OperatorDelete && isa<CXXMethodDecl>(OperatorDelete))
3730 UsualArrayDeleteWantsSize =
3731 UsualDeallocFnInfo(*this,
3732 DeclAccessPair::make(OperatorDelete, AS_public))
3733 .HasSizeT;
3734 }
3735
3736 if (!PointeeRD->hasIrrelevantDestructor())
3737 if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
3738 MarkFunctionReferenced(StartLoc,
3739 const_cast<CXXDestructorDecl*>(Dtor));
3740 if (DiagnoseUseOfDecl(Dtor, StartLoc))
3741 return ExprError();
3742 }
3743
3744 CheckVirtualDtorCall(PointeeRD->getDestructor(), StartLoc,
3745 /*IsDelete=*/true, /*CallCanBeVirtual=*/true,
3746 /*WarnOnNonAbstractTypes=*/!ArrayForm,
3747 SourceLocation());
3748 }
3749
3750 if (!OperatorDelete) {
3751 if (getLangOpts().OpenCLCPlusPlus) {
3752 Diag(StartLoc, diag::err_openclcxx_not_supported) << "default delete";
3753 return ExprError();
3754 }
3755
3756 bool IsComplete = isCompleteType(StartLoc, Pointee);
3757 bool CanProvideSize =
3758 IsComplete && (!ArrayForm || UsualArrayDeleteWantsSize ||
3759 Pointee.isDestructedType());
3760 bool Overaligned = hasNewExtendedAlignment(*this, Pointee);
3761
3762 // Look for a global declaration.
3763 OperatorDelete = FindUsualDeallocationFunction(StartLoc, CanProvideSize,
3764 Overaligned, DeleteName);
3765 }
3766
3767 MarkFunctionReferenced(StartLoc, OperatorDelete);
3768
3769 // Check access and ambiguity of destructor if we're going to call it.
3770 // Note that this is required even for a virtual delete.
3771 bool IsVirtualDelete = false;
3772 if (PointeeRD) {
3773 if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
3774 CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor,
3775 PDiag(diag::err_access_dtor) << PointeeElem);
3776 IsVirtualDelete = Dtor->isVirtual();
3777 }
3778 }
3779
3780 DiagnoseUseOfDecl(OperatorDelete, StartLoc);
3781
3782 // Convert the operand to the type of the first parameter of operator
3783 // delete. This is only necessary if we selected a destroying operator
3784 // delete that we are going to call (non-virtually); converting to void*
3785 // is trivial and left to AST consumers to handle.
3786 QualType ParamType = OperatorDelete->getParamDecl(0)->getType();
3787 if (!IsVirtualDelete && !ParamType->getPointeeType()->isVoidType()) {
3788 Qualifiers Qs = Pointee.getQualifiers();
3789 if (Qs.hasCVRQualifiers()) {
3790 // Qualifiers are irrelevant to this conversion; we're only looking
3791 // for access and ambiguity.
3792 Qs.removeCVRQualifiers();
3793 QualType Unqual = Context.getPointerType(
3794 Context.getQualifiedType(Pointee.getUnqualifiedType(), Qs));
3795 Ex = ImpCastExprToType(Ex.get(), Unqual, CK_NoOp);
3796 }
3797 Ex = PerformImplicitConversion(Ex.get(), ParamType, AA_Passing);
3798 if (Ex.isInvalid())
3799 return ExprError();
3800 }
3801 }
3802
3803 CXXDeleteExpr *Result = new (Context) CXXDeleteExpr(
3804 Context.VoidTy, UseGlobal, ArrayForm, ArrayFormAsWritten,
3805 UsualArrayDeleteWantsSize, OperatorDelete, Ex.get(), StartLoc);
3806 AnalyzeDeleteExprMismatch(Result);
3807 return Result;
3808}
3809
3810static bool resolveBuiltinNewDeleteOverload(Sema &S, CallExpr *TheCall,
3811 bool IsDelete,
3812 FunctionDecl *&Operator) {
3813
3814 DeclarationName NewName = S.Context.DeclarationNames.getCXXOperatorName(
3815 IsDelete ? OO_Delete : OO_New);
3816
3817 LookupResult R(S, NewName, TheCall->getBeginLoc(), Sema::LookupOrdinaryName);
3818 S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl());
3819 assert(!R.empty() && "implicitly declared allocation functions not found")(static_cast <bool> (!R.empty() && "implicitly declared allocation functions not found"
) ? void (0) : __assert_fail ("!R.empty() && \"implicitly declared allocation functions not found\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3819, __extension__ __PRETTY_FUNCTION__
))
;
3820 assert(!R.isAmbiguous() && "global allocation functions are ambiguous")(static_cast <bool> (!R.isAmbiguous() && "global allocation functions are ambiguous"
) ? void (0) : __assert_fail ("!R.isAmbiguous() && \"global allocation functions are ambiguous\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3820, __extension__ __PRETTY_FUNCTION__
))
;
3821
3822 // We do our own custom access checks below.
3823 R.suppressDiagnostics();
3824
3825 SmallVector<Expr *, 8> Args(TheCall->arguments());
3826 OverloadCandidateSet Candidates(R.getNameLoc(),
3827 OverloadCandidateSet::CSK_Normal);
3828 for (LookupResult::iterator FnOvl = R.begin(), FnOvlEnd = R.end();
3829 FnOvl != FnOvlEnd; ++FnOvl) {
3830 // Even member operator new/delete are implicitly treated as
3831 // static, so don't use AddMemberCandidate.
3832 NamedDecl *D = (*FnOvl)->getUnderlyingDecl();
3833
3834 if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
3835 S.AddTemplateOverloadCandidate(FnTemplate, FnOvl.getPair(),
3836 /*ExplicitTemplateArgs=*/nullptr, Args,
3837 Candidates,
3838 /*SuppressUserConversions=*/false);
3839 continue;
3840 }
3841
3842 FunctionDecl *Fn = cast<FunctionDecl>(D);
3843 S.AddOverloadCandidate(Fn, FnOvl.getPair(), Args, Candidates,
3844 /*SuppressUserConversions=*/false);
3845 }
3846
3847 SourceRange Range = TheCall->getSourceRange();
3848
3849 // Do the resolution.
3850 OverloadCandidateSet::iterator Best;
3851 switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) {
3852 case OR_Success: {
3853 // Got one!
3854 FunctionDecl *FnDecl = Best->Function;
3855 assert(R.getNamingClass() == nullptr &&(static_cast <bool> (R.getNamingClass() == nullptr &&
"class members should not be considered") ? void (0) : __assert_fail
("R.getNamingClass() == nullptr && \"class members should not be considered\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3856, __extension__ __PRETTY_FUNCTION__
))
3856 "class members should not be considered")(static_cast <bool> (R.getNamingClass() == nullptr &&
"class members should not be considered") ? void (0) : __assert_fail
("R.getNamingClass() == nullptr && \"class members should not be considered\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3856, __extension__ __PRETTY_FUNCTION__
))
;
3857
3858 if (!FnDecl->isReplaceableGlobalAllocationFunction()) {
3859 S.Diag(R.getNameLoc(), diag::err_builtin_operator_new_delete_not_usual)
3860 << (IsDelete ? 1 : 0) << Range;
3861 S.Diag(FnDecl->getLocation(), diag::note_non_usual_function_declared_here)
3862 << R.getLookupName() << FnDecl->getSourceRange();
3863 return true;
3864 }
3865
3866 Operator = FnDecl;
3867 return false;
3868 }
3869
3870 case OR_No_Viable_Function:
3871 Candidates.NoteCandidates(
3872 PartialDiagnosticAt(R.getNameLoc(),
3873 S.PDiag(diag::err_ovl_no_viable_function_in_call)
3874 << R.getLookupName() << Range),
3875 S, OCD_AllCandidates, Args);
3876 return true;
3877
3878 case OR_Ambiguous:
3879 Candidates.NoteCandidates(
3880 PartialDiagnosticAt(R.getNameLoc(),
3881 S.PDiag(diag::err_ovl_ambiguous_call)
3882 << R.getLookupName() << Range),
3883 S, OCD_AmbiguousCandidates, Args);
3884 return true;
3885
3886 case OR_Deleted: {
3887 Candidates.NoteCandidates(
3888 PartialDiagnosticAt(R.getNameLoc(), S.PDiag(diag::err_ovl_deleted_call)
3889 << R.getLookupName() << Range),
3890 S, OCD_AllCandidates, Args);
3891 return true;
3892 }
3893 }
3894 llvm_unreachable("Unreachable, bad result from BestViableFunction")::llvm::llvm_unreachable_internal("Unreachable, bad result from BestViableFunction"
, "clang/lib/Sema/SemaExprCXX.cpp", 3894)
;
3895}
3896
3897ExprResult
3898Sema::SemaBuiltinOperatorNewDeleteOverloaded(ExprResult TheCallResult,
3899 bool IsDelete) {
3900 CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
3901 if (!getLangOpts().CPlusPlus) {
3902 Diag(TheCall->getExprLoc(), diag::err_builtin_requires_language)
3903 << (IsDelete ? "__builtin_operator_delete" : "__builtin_operator_new")
3904 << "C++";
3905 return ExprError();
3906 }
3907 // CodeGen assumes it can find the global new and delete to call,
3908 // so ensure that they are declared.
3909 DeclareGlobalNewDelete();
3910
3911 FunctionDecl *OperatorNewOrDelete = nullptr;
3912 if (resolveBuiltinNewDeleteOverload(*this, TheCall, IsDelete,
3913 OperatorNewOrDelete))
3914 return ExprError();
3915 assert(OperatorNewOrDelete && "should be found")(static_cast <bool> (OperatorNewOrDelete && "should be found"
) ? void (0) : __assert_fail ("OperatorNewOrDelete && \"should be found\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3915, __extension__ __PRETTY_FUNCTION__
))
;
3916
3917 DiagnoseUseOfDecl(OperatorNewOrDelete, TheCall->getExprLoc());
3918 MarkFunctionReferenced(TheCall->getExprLoc(), OperatorNewOrDelete);
3919
3920 TheCall->setType(OperatorNewOrDelete->getReturnType());
3921 for (unsigned i = 0; i != TheCall->getNumArgs(); ++i) {
3922 QualType ParamTy = OperatorNewOrDelete->getParamDecl(i)->getType();
3923 InitializedEntity Entity =
3924 InitializedEntity::InitializeParameter(Context, ParamTy, false);
3925 ExprResult Arg = PerformCopyInitialization(
3926 Entity, TheCall->getArg(i)->getBeginLoc(), TheCall->getArg(i));
3927 if (Arg.isInvalid())
3928 return ExprError();
3929 TheCall->setArg(i, Arg.get());
3930 }
3931 auto Callee = dyn_cast<ImplicitCastExpr>(TheCall->getCallee());
3932 assert(Callee && Callee->getCastKind() == CK_BuiltinFnToFnPtr &&(static_cast <bool> (Callee && Callee->getCastKind
() == CK_BuiltinFnToFnPtr && "Callee expected to be implicit cast to a builtin function pointer"
) ? void (0) : __assert_fail ("Callee && Callee->getCastKind() == CK_BuiltinFnToFnPtr && \"Callee expected to be implicit cast to a builtin function pointer\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3933, __extension__ __PRETTY_FUNCTION__
))
3933 "Callee expected to be implicit cast to a builtin function pointer")(static_cast <bool> (Callee && Callee->getCastKind
() == CK_BuiltinFnToFnPtr && "Callee expected to be implicit cast to a builtin function pointer"
) ? void (0) : __assert_fail ("Callee && Callee->getCastKind() == CK_BuiltinFnToFnPtr && \"Callee expected to be implicit cast to a builtin function pointer\""
, "clang/lib/Sema/SemaExprCXX.cpp", 3933, __extension__ __PRETTY_FUNCTION__
))
;
3934 Callee->setType(OperatorNewOrDelete->getType());
3935
3936 return TheCallResult;
3937}
3938
3939void Sema::CheckVirtualDtorCall(CXXDestructorDecl *dtor, SourceLocation Loc,
3940 bool IsDelete, bool CallCanBeVirtual,
3941 bool WarnOnNonAbstractTypes,
3942 SourceLocation DtorLoc) {
3943 if (!dtor || dtor->isVirtual() || !CallCanBeVirtual || isUnevaluatedContext())
3944 return;
3945
3946 // C++ [expr.delete]p3:
3947 // In the first alternative (delete object), if the static type of the
3948 // object to be deleted is different from its dynamic type, the static
3949 // type shall be a base class of the dynamic type of the object to be
3950 // deleted and the static type shall have a virtual destructor or the
3951 // behavior is undefined.
3952 //
3953 const CXXRecordDecl *PointeeRD = dtor->getParent();
3954 // Note: a final class cannot be derived from, no issue there
3955 if (!PointeeRD->isPolymorphic() || PointeeRD->hasAttr<FinalAttr>())
3956 return;
3957
3958 // If the superclass is in a system header, there's nothing that can be done.
3959 // The `delete` (where we emit the warning) can be in a system header,
3960 // what matters for this warning is where the deleted type is defined.
3961 if (getSourceManager().isInSystemHeader(PointeeRD->getLocation()))
3962 return;
3963
3964 QualType ClassType = dtor->getThisType()->getPointeeType();
3965 if (PointeeRD->isAbstract()) {
3966 // If the class is abstract, we warn by default, because we're
3967 // sure the code has undefined behavior.
3968 Diag(Loc, diag::warn_delete_abstract_non_virtual_dtor) << (IsDelete ? 0 : 1)
3969 << ClassType;
3970 } else if (WarnOnNonAbstractTypes) {
3971 // Otherwise, if this is not an array delete, it's a bit suspect,
3972 // but not necessarily wrong.
3973 Diag(Loc, diag::warn_delete_non_virtual_dtor) << (IsDelete ? 0 : 1)
3974 << ClassType;
3975 }
3976 if (!IsDelete) {
3977 std::string TypeStr;
3978 ClassType.getAsStringInternal(TypeStr, getPrintingPolicy());
3979 Diag(DtorLoc, diag::note_delete_non_virtual)
3980 << FixItHint::CreateInsertion(DtorLoc, TypeStr + "::");
3981 }
3982}
3983
3984Sema::ConditionResult Sema::ActOnConditionVariable(Decl *ConditionVar,
3985 SourceLocation StmtLoc,
3986 ConditionKind CK) {
3987 ExprResult E =
3988 CheckConditionVariable(cast<VarDecl>(ConditionVar), StmtLoc, CK);
3989 if (E.isInvalid())
3990 return ConditionError();
3991 return ConditionResult(*this, ConditionVar, MakeFullExpr(E.get(), StmtLoc),
3992 CK == ConditionKind::ConstexprIf);
3993}
3994
3995/// Check the use of the given variable as a C++ condition in an if,
3996/// while, do-while, or switch statement.
3997ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
3998 SourceLocation StmtLoc,
3999 ConditionKind CK) {
4000 if (ConditionVar->isInvalidDecl())
4001 return ExprError();
4002
4003 QualType T = ConditionVar->getType();
4004
4005 // C++ [stmt.select]p2:
4006 // The declarator shall not specify a function or an array.
4007 if (T->isFunctionType())
4008 return ExprError(Diag(ConditionVar->getLocation(),
4009 diag::err_invalid_use_of_function_type)
4010 << ConditionVar->getSourceRange());
4011 else if (T->isArrayType())
4012 return ExprError(Diag(ConditionVar->getLocation(),
4013 diag::err_invalid_use_of_array_type)
4014 << ConditionVar->getSourceRange());
4015
4016 ExprResult Condition = BuildDeclRefExpr(
4017 ConditionVar, ConditionVar->getType().getNonReferenceType(), VK_LValue,
4018 ConditionVar->getLocation());
4019
4020 switch (CK) {
4021 case ConditionKind::Boolean:
4022 return CheckBooleanCondition(StmtLoc, Condition.get());
4023
4024 case ConditionKind::ConstexprIf:
4025 return CheckBooleanCondition(StmtLoc, Condition.get(), true);
4026
4027 case ConditionKind::Switch:
4028 return CheckSwitchCondition(StmtLoc, Condition.get());
4029 }
4030
4031 llvm_unreachable("unexpected condition kind")::llvm::llvm_unreachable_internal("unexpected condition kind"
, "clang/lib/Sema/SemaExprCXX.cpp", 4031)
;
4032}
4033
4034/// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
4035ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr, bool IsConstexpr) {
4036 // C++11 6.4p4:
4037 // The value of a condition that is an initialized declaration in a statement
4038 // other than a switch statement is the value of the declared variable
4039 // implicitly converted to type bool. If that conversion is ill-formed, the
4040 // program is ill-formed.
4041 // The value of a condition that is an expression is the value of the
4042 // expression, implicitly converted to bool.
4043 //
4044 // C++2b 8.5.2p2
4045 // If the if statement is of the form if constexpr, the value of the condition
4046 // is contextually converted to bool and the converted expression shall be
4047 // a constant expression.
4048 //
4049
4050 ExprResult E = PerformContextuallyConvertToBool(CondExpr);
4051 if (!IsConstexpr || E.isInvalid() || E.get()->isValueDependent())
4052 return E;
4053
4054 // FIXME: Return this value to the caller so they don't need to recompute it.
4055 llvm::APSInt Cond;
4056 E = VerifyIntegerConstantExpression(
4057 E.get(), &Cond,
4058 diag::err_constexpr_if_condition_expression_is_not_constant);
4059 return E;
4060}
4061
4062/// Helper function to determine whether this is the (deprecated) C++
4063/// conversion from a string literal to a pointer to non-const char or
4064/// non-const wchar_t (for narrow and wide string literals,
4065/// respectively).
4066bool
4067Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
4068 // Look inside the implicit cast, if it exists.
4069 if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
4070 From = Cast->getSubExpr();
4071
4072 // A string literal (2.13.4) that is not a wide string literal can
4073 // be converted to an rvalue of type "pointer to char"; a wide
4074 // string literal can be converted to an rvalue of type "pointer
4075 // to wchar_t" (C++ 4.2p2).
4076 if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
4077 if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
4078 if (const BuiltinType *ToPointeeType
4079 = ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
4080 // This conversion is considered only when there is an
4081 // explicit appropriate pointer target type (C++ 4.2p2).
4082 if (!ToPtrType->getPointeeType().hasQualifiers()) {
4083 switch (StrLit->getKind()) {
4084 case StringLiteral::UTF8:
4085 case StringLiteral::UTF16:
4086 case StringLiteral::UTF32:
4087 // We don't allow UTF literals to be implicitly converted
4088 break;
4089 case StringLiteral::Ordinary:
4090 return (ToPointeeType->getKind() == BuiltinType::Char_U ||
4091 ToPointeeType->getKind() == BuiltinType::Char_S);
4092 case StringLiteral::Wide:
4093 return Context.typesAreCompatible(Context.getWideCharType(),
4094 QualType(ToPointeeType, 0));
4095 }
4096 }
4097 }
4098
4099 return false;
4100}
4101
4102static ExprResult BuildCXXCastArgument(Sema &S,
4103 SourceLocation CastLoc,
4104 QualType Ty,
4105 CastKind Kind,
4106 CXXMethodDecl *Method,
4107 DeclAccessPair FoundDecl,
4108 bool HadMultipleCandidates,
4109 Expr *From) {
4110 switch (Kind) {
4111 default: llvm_unreachable("Unhandled cast kind!")::llvm::llvm_unreachable_internal("Unhandled cast kind!", "clang/lib/Sema/SemaExprCXX.cpp"
, 4111)
;
4112 case CK_ConstructorConversion: {
4113 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method);
4114 SmallVector<Expr*, 8> ConstructorArgs;
4115
4116 if (S.RequireNonAbstractType(CastLoc, Ty,
4117 diag::err_allocation_of_abstract_type))
4118 return ExprError();
4119
4120 if (S.CompleteConstructorCall(Constructor, Ty, From, CastLoc,
4121 ConstructorArgs))
4122 return ExprError();
4123
4124 S.CheckConstructorAccess(CastLoc, Constructor, FoundDecl,
4125 InitializedEntity::InitializeTemporary(Ty));
4126 if (S.DiagnoseUseOfDecl(Method, CastLoc))
4127 return ExprError();
4128
4129 ExprResult Result = S.BuildCXXConstructExpr(
4130 CastLoc, Ty, FoundDecl, cast<CXXConstructorDecl>(Method),
4131 ConstructorArgs, HadMultipleCandidates,
4132 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
4133 CXXConstructExpr::CK_Complete, SourceRange());
4134 if (Result.isInvalid())
4135 return ExprError();
4136
4137 return S.MaybeBindToTemporary(Result.getAs<Expr>());
4138 }
4139
4140 case CK_UserDefinedConversion: {
4141 assert(!From->getType()->isPointerType() && "Arg can't have pointer type!")(static_cast <bool> (!From->getType()->isPointerType
() && "Arg can't have pointer type!") ? void (0) : __assert_fail
("!From->getType()->isPointerType() && \"Arg can't have pointer type!\""
, "clang/lib/Sema/SemaExprCXX.cpp", 4141, __extension__ __PRETTY_FUNCTION__
))
;
4142
4143 S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ nullptr, FoundDecl);
4144 if (S.DiagnoseUseOfDecl(Method, CastLoc))
4145 return ExprError();
4146
4147 // Create an implicit call expr that calls it.
4148 CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method);
4149 ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv,
4150 HadMultipleCandidates);
4151 if (Result.isInvalid())
4152 return ExprError();
4153 // Record usage of conversion in an implicit cast.
4154 Result = ImplicitCastExpr::Create(S.Context, Result.get()->getType(),
4155 CK_UserDefinedConversion, Result.get(),
4156 nullptr, Result.get()->getValueKind(),
4157 S.CurFPFeatureOverrides());
4158
4159 return S.MaybeBindToTemporary(Result.get());
4160 }
4161 }
4162}
4163
4164/// PerformImplicitConversion - Perform an implicit conversion of the
4165/// expression From to the type ToType using the pre-computed implicit
4166/// conversion sequence ICS. Returns the converted
4167/// expression. Action is the kind of conversion we're performing,
4168/// used in the error message.
4169ExprResult
4170Sema::PerformImplicitConversion(Expr *From, QualType ToType,
4171 const ImplicitConversionSequence &ICS,
4172 AssignmentAction Action,
4173 CheckedConversionKind CCK) {
4174 // C++ [over.match.oper]p7: [...] operands of class type are converted [...]
4175 if (CCK == CCK_ForBuiltinOverloadedOp && !From->getType()->isRecordType())
4176 return From;
4177
4178 switch (ICS.getKind()) {
4179 case ImplicitConversionSequence::StandardConversion: {
4180 ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard,
4181 Action, CCK);
4182 if (Res.isInvalid())
4183 return ExprError();
4184 From = Res.get();
4185 break;
4186 }
4187
4188 case ImplicitConversionSequence::UserDefinedConversion: {
4189
4190 FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
4191 CastKind CastKind;
4192 QualType BeforeToType;
4193 assert(FD && "no conversion function for user-defined conversion seq")(static_cast <bool> (FD && "no conversion function for user-defined conversion seq"
) ? void (0) : __assert_fail ("FD && \"no conversion function for user-defined conversion seq\""
, "clang/lib/Sema/SemaExprCXX.cpp", 4193, __extension__ __PRETTY_FUNCTION__
))
;
4194 if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
4195 CastKind = CK_UserDefinedConversion;
4196
4197 // If the user-defined conversion is specified by a conversion function,
4198 // the initial standard conversion sequence converts the source type to
4199 // the implicit object parameter of the conversion function.
4200 BeforeToType = Context.getTagDeclType(Conv->getParent());
4201 } else {
4202 const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD);
4203 CastKind = CK_ConstructorConversion;
4204 // Do no conversion if dealing with ... for the first conversion.
4205 if (!ICS.UserDefined.EllipsisConversion) {
4206 // If the user-defined conversion is specified by a constructor, the
4207 // initial standard conversion sequence converts the source type to
4208 // the type required by the argument of the constructor
4209 BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
4210 }
4211 }
4212 // Watch out for ellipsis conversion.
4213 if (!ICS.UserDefined.EllipsisConversion) {
4214 ExprResult Res =
4215 PerformImplicitConversion(From, BeforeToType,
4216 ICS.UserDefined.Before, AA_Converting,
4217 CCK);
4218 if (Res.isInvalid())
4219 return ExprError();
4220 From = Res.get();
4221 }
4222
4223 ExprResult CastArg = BuildCXXCastArgument(
4224 *this, From->getBeginLoc(), ToType.getNonReferenceType(), CastKind,
4225 cast<CXXMethodDecl>(FD), ICS.UserDefined.FoundConversionFunction,
4226 ICS.UserDefined.HadMultipleCandidates, From);
4227
4228 if (CastArg.isInvalid())
4229 return ExprError();
4230
4231 From = CastArg.get();
4232
4233 // C++ [over.match.oper]p7:
4234 // [...] the second standard conversion sequence of a user-defined
4235 // conversion sequence is not applied.
4236 if (CCK == CCK_ForBuiltinOverloadedOp)
4237 return From;
4238
4239 return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
4240 AA_Converting, CCK);
4241 }
4242
4243 case ImplicitConversionSequence::AmbiguousConversion:
4244 ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
4245 PDiag(diag::err_typecheck_ambiguous_condition)
4246 << From->getSourceRange());
4247 return ExprError();
4248
4249 case ImplicitConversionSequence::EllipsisConversion:
4250 case ImplicitConversionSequence::StaticObjectArgumentConversion:
4251 llvm_unreachable("bad conversion")::llvm::llvm_unreachable_internal("bad conversion", "clang/lib/Sema/SemaExprCXX.cpp"
, 4251)
;
4252
4253 case ImplicitConversionSequence::BadConversion:
4254 Sema::AssignConvertType ConvTy =
4255 CheckAssignmentConstraints(From->getExprLoc(), ToType, From->getType());
4256 bool Diagnosed = DiagnoseAssignmentResult(
4257 ConvTy == Compatible ? Incompatible : ConvTy, From->getExprLoc(),
4258 ToType, From->getType(), From, Action);
4259 assert(Diagnosed && "failed to diagnose bad conversion")(static_cast <bool> (Diagnosed && "failed to diagnose bad conversion"
) ? void (0) : __assert_fail ("Diagnosed && \"failed to diagnose bad conversion\""
, "clang/lib/Sema/SemaExprCXX.cpp", 4259, __extension__ __PRETTY_FUNCTION__
))
; (void)Diagnosed;
4260 return ExprError();
4261 }
4262
4263 // Everything went well.
4264 return From;
4265}
4266
4267/// PerformImplicitConversion - Perform an implicit conversion of the
4268/// expression From to the type ToType by following the standard
4269/// conversion sequence SCS. Returns the converted
4270/// expression. Flavor is the context in which we're performing this
4271/// conversion, for use in error messages.
4272ExprResult
4273Sema::PerformImplicitConversion(Expr *From, QualType ToType,
4274 const StandardConversionSequence& SCS,
4275 AssignmentAction Action,
4276 CheckedConversionKind CCK) {
4277 bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast);
4278
4279 // Overall FIXME: we are recomputing too many types here and doing far too
4280 // much extra work. What this means is that we need to keep track of more
4281 // information that is computed when we try the implicit conversion initially,
4282 // so that we don't need to recompute anything here.
4283 QualType FromType = From->getType();
4284
4285 if (SCS.CopyConstructor) {
4286 // FIXME: When can ToType be a reference type?
4287 assert(!ToType->isReferenceType())(static_cast <bool> (!ToType->isReferenceType()) ? void
(0) : __assert_fail ("!ToType->isReferenceType()", "clang/lib/Sema/SemaExprCXX.cpp"
, 4287, __extension__ __PRETTY_FUNCTION__))
;
4288 if (SCS.Second == ICK_Derived_To_Base) {
4289 SmallVector<Expr*, 8> ConstructorArgs;
4290 if (CompleteConstructorCall(
4291 cast<CXXConstructorDecl>(SCS.CopyConstructor), ToType, From,
4292 /*FIXME:ConstructLoc*/ SourceLocation(), ConstructorArgs))
4293 return ExprError();
4294 return BuildCXXConstructExpr(
4295 /*FIXME:ConstructLoc*/ SourceLocation(), ToType,
4296 SCS.FoundCopyConstructor, SCS.CopyConstructor,
4297 ConstructorArgs, /*HadMultipleCandidates*/ false,
4298 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
4299 CXXConstructExpr::CK_Complete, SourceRange());
4300 }
4301 return BuildCXXConstructExpr(
4302 /*FIXME:ConstructLoc*/ SourceLocation(), ToType,
4303 SCS.FoundCopyConstructor, SCS.CopyConstructor,
4304 From, /*HadMultipleCandidates*/ false,
4305 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
4306 CXXConstructExpr::CK_Complete, SourceRange());
4307 }
4308
4309 // Resolve overloaded function references.
4310 if (Context.hasSameType(FromType, Context.OverloadTy)) {
4311 DeclAccessPair Found;
4312 FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType,
4313 true, Found);
4314 if (!Fn)
4315 return ExprError();
4316
4317 if (DiagnoseUseOfDecl(Fn, From->getBeginLoc()))
4318 return ExprError();
4319
4320 From = FixOverloadedFunctionReference(From, Found, Fn);
4321
4322 // We might get back another placeholder expression if we resolved to a
4323 // builtin.
4324 ExprResult Checked = CheckPlaceholderExpr(From);
4325 if (Checked.isInvalid())
4326 return ExprError();
4327
4328 From = Checked.get();
4329 FromType = From->getType();
4330 }
4331
4332 // If we're converting to an atomic type, first convert to the corresponding
4333 // non-atomic type.
4334 QualType ToAtomicType;
4335 if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>()) {
4336 ToAtomicType = ToType;
4337 ToType = ToAtomic->getValueType();
4338 }
4339
4340 QualType InitialFromType = FromType;
4341 // Perform the first implicit conversion.
4342 switch (SCS.First) {
4343 case ICK_Identity:
4344 if (const AtomicType *FromAtomic = FromType->getAs<AtomicType>()) {
4345 FromType = FromAtomic->getValueType().getUnqualifiedType();
4346 From = ImplicitCastExpr::Create(Context, FromType, CK_AtomicToNonAtomic,
4347 From, /*BasePath=*/nullptr, VK_PRValue,
4348 FPOptionsOverride());
4349 }
4350 break;
4351
4352 case ICK_Lvalue_To_Rvalue: {
4353 assert(From->getObjectKind() != OK_ObjCProperty)(static_cast <bool> (From->getObjectKind() != OK_ObjCProperty
) ? void (0) : __assert_fail ("From->getObjectKind() != OK_ObjCProperty"
, "clang/lib/Sema/SemaExprCXX.cpp", 4353, __extension__ __PRETTY_FUNCTION__
))
;
4354 ExprResult FromRes = DefaultLvalueConversion(From);
4355 if (FromRes.isInvalid())
4356 return ExprError();
4357
4358 From = FromRes.get();
4359 FromType = From->getType();
4360 break;
4361 }
4362
4363 case ICK_Array_To_Pointer:
4364 FromType = Context.getArrayDecayedType(FromType);
4365 From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay, VK_PRValue,
4366 /*BasePath=*/nullptr, CCK)
4367 .get();
4368 break;
4369
4370 case ICK_Function_To_Pointer:
4371 FromType = Context.getPointerType(FromType);
4372 From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay,
4373 VK_PRValue, /*BasePath=*/nullptr, CCK)
4374 .get();
4375 break;
4376
4377 default:
4378 llvm_unreachable("Improper first standard conversion")::llvm::llvm_unreachable_internal("Improper first standard conversion"
, "clang/lib/Sema/SemaExprCXX.cpp", 4378)
;
4379 }
4380
4381 // Perform the second implicit conversion
4382 switch (SCS.Second) {
4383 case ICK_Identity:
4384 // C++ [except.spec]p5:
4385 // [For] assignment to and initialization of pointers to functions,
4386 // pointers to member functions, and references to functions: the
4387 // target entity shall allow at least the exceptions allowed by the
4388 // source value in the assignment or initialization.
4389 switch (Action) {
4390 case AA_Assigning:
4391 case AA_Initializing:
4392 // Note, function argument passing and returning are initialization.
4393 case AA_Passing:
4394 case AA_Returning:
4395 case AA_Sending:
4396 case AA_Passing_CFAudited:
4397 if (CheckExceptionSpecCompatibility(From, ToType))
4398 return ExprError();
4399 break;
4400
4401 case AA_Casting:
4402 case AA_Converting:
4403 // Casts and implicit conversions are not initialization, so are not
4404 // checked for exception specification mismatches.
4405 break;
4406 }
4407 // Nothing else to do.
4408 break;
4409
4410 case ICK_Integral_Promotion:
4411 case ICK_Integral_Conversion:
4412 if (ToType->isBooleanType()) {
4413 assert(FromType->castAs<EnumType>()->getDecl()->isFixed() &&(static_cast <bool> (FromType->castAs<EnumType>
()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion
&& "only enums with fixed underlying type can promote to bool"
) ? void (0) : __assert_fail ("FromType->castAs<EnumType>()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion && \"only enums with fixed underlying type can promote to bool\""
, "clang/lib/Sema/SemaExprCXX.cpp", 4415, __extension__ __PRETTY_FUNCTION__
))
4414 SCS.Second == ICK_Integral_Promotion &&(static_cast <bool> (FromType->castAs<EnumType>
()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion
&& "only enums with fixed underlying type can promote to bool"
) ? void (0) : __assert_fail ("FromType->castAs<EnumType>()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion && \"only enums with fixed underlying type can promote to bool\""
, "clang/lib/Sema/SemaExprCXX.cpp", 4415, __extension__ __PRETTY_FUNCTION__
))
4415 "only enums with fixed underlying type can promote to bool")(static_cast <bool> (FromType->castAs<EnumType>
()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion
&& "only enums with fixed underlying type can promote to bool"
) ? void (0) : __assert_fail ("FromType->castAs<EnumType>()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion && \"only enums with fixed underlying type can promote to bool\""
, "clang/lib/Sema/SemaExprCXX.cpp", 4415, __extension__ __PRETTY_FUNCTION__
))
;
4416 From = ImpCastExprToType(From, ToType, CK_IntegralToBoolean, VK_PRValue,
4417 /*BasePath=*/nullptr, CCK)
4418 .get();
4419 } else {
4420 From = ImpCastExprToType(From, ToType, CK_IntegralCast, VK_PRValue,
4421 /*BasePath=*/nullptr, CCK)
4422 .get();
4423 }
4424 break;
4425
4426 case ICK_Floating_Promotion:
4427 case ICK_Floating_Conversion:
4428 From = ImpCastExprToType(From, ToType, CK_FloatingCast, VK_PRValue,
4429 /*BasePath=*/nullptr, CCK)
4430 .get();
4431 break;
4432
4433 case ICK_Complex_Promotion:
4434 case ICK_Complex_Conversion: {
4435 QualType FromEl = From->getType()->castAs<ComplexType>()->getElementType();
4436 QualType ToEl = ToType->castAs<ComplexType>()->getElementType();
4437 CastKind CK;
4438 if (FromEl->isRealFloatingType()) {
4439 if (ToEl->isRealFloatingType())
4440 CK = CK_FloatingComplexCast;
4441 else
4442 CK = CK_FloatingComplexToIntegralComplex;
4443 } else if (ToEl->isRealFloatingType()) {
4444 CK = CK_IntegralComplexToFloatingComplex;
4445 } else {
4446 CK = CK_IntegralComplexCast;
4447 }
4448 From = ImpCastExprToType(From, ToType, CK, VK_PRValue, /*BasePath=*/nullptr,
4449 CCK)
4450 .get();
4451 break;
4452 }
4453
4454 case ICK_Floating_Integral:
4455 if (ToType->isRealFloatingType())
4456 From = ImpCastExprToType(From, ToType, CK_IntegralToFloating, VK_PRValue,
4457 /*BasePath=*/nullptr, CCK)
4458 .get();
4459 else
4460 From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral, VK_PRValue,
4461 /*BasePath=*/nullptr, CCK)
4462 .get();
4463 break;
4464
4465 case ICK_Compatible_Conversion:
4466 From = ImpCastExprToType(From, ToType, CK_NoOp, From->getValueKind(),
4467 /*BasePath=*/nullptr, CCK).get();
4468 break;
4469
4470 case ICK_Writeback_Conversion:
4471 case ICK_Pointer_Conversion: {
4472 if (SCS.IncompatibleObjC && Action != AA_Casting) {
4473 // Diagnose incompatible Objective-C conversions
4474 if (Action == AA_Initializing || Action == AA_Assigning)
4475 Diag(From->getBeginLoc(),
4476 diag::ext_typecheck_convert_incompatible_pointer)
4477 << ToType << From->getType() << Action << From->getSourceRange()
4478 << 0;
4479 else
4480 Diag(From->getBeginLoc(),
4481 diag::ext_typecheck_convert_incompatible_pointer)
4482 << From->getType() << ToType << Action << From->getSourceRange()
4483 << 0;
4484
4485 if (From->getType()->isObjCObjectPointerType() &&
4486 ToType->isObjCObjectPointerType())
4487 EmitRelatedResultTypeNote(From);
4488 } else if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
4489 !CheckObjCARCUnavailableWeakConversion(ToType,
4490 From->getType())) {
4491 if (Action == AA_Initializing)
4492 Diag(From->getBeginLoc(), diag::err_arc_weak_unavailable_assign);
4493 else
4494 Diag(From->getBeginLoc(), diag::err_arc_convesion_of_weak_unavailable)
4495 << (Action == AA_Casting) << From->getType() << ToType
4496 << From->getSourceRange();
4497 }
4498
4499 // Defer address space conversion to the third conversion.
4500 QualType FromPteeType = From->getType()->getPointeeType();
4501 QualType ToPteeType = ToType->getPointeeType();
4502 QualType NewToType = ToType;
4503 if (!FromPteeType.isNull() && !ToPteeType.isNull() &&
4504 FromPteeType.getAddressSpace() != ToPteeType.getAddressSpace()) {
4505 NewToType = Context.removeAddrSpaceQualType(ToPteeType);
4506 NewToType = Context.getAddrSpaceQualType(NewToType,
4507 FromPteeType.getAddressSpace());
4508 if (ToType->isObjCObjectPointerType())
4509 NewToType = Context.getObjCObjectPointerType(NewToType);
4510 else if (ToType->isBlockPointerType())
4511 NewToType = Context.getBlockPointerType(NewToType);
4512 else
4513 NewToType = Context.getPointerType(NewToType);
4514 }
4515
4516 CastKind Kind;
4517 CXXCastPath BasePath;
4518 if (CheckPointerConversion(From, NewToType, Kind, BasePath, CStyle))
4519 return ExprError();
4520
4521 // Make sure we extend blocks if necessary.
4522 // FIXME: doing this here is really ugly.
4523 if (Kind == CK_BlockPointerToObjCPointerCast) {
4524 ExprResult E = From;
4525 (void) PrepareCastToObjCObjectPointer(E);
4526 From = E.get();
4527 }
4528 if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers())
4529 CheckObjCConversion(SourceRange(), NewToType, From, CCK);
4530 From = ImpCastExprToType(From, NewToType, Kind, VK_PRValue, &BasePath, CCK)
4531 .get();
4532 break;
4533 }
4534
4535 case ICK_Pointer_Member: {
4536 CastKind Kind;
4537 CXXCastPath BasePath;
4538 if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle))
4539 return ExprError();
4540 if (CheckExceptionSpecCompatibility(From, ToType))
4541 return ExprError();
4542
4543 // We may not have been able to figure out what this member pointer resolved
4544 // to up until this exact point. Attempt to lock-in it's inheritance model.
4545 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4546 (void)isCompleteType(From->getExprLoc(), From->getType());
4547 (void)isCompleteType(From->getExprLoc(), ToType);
4548 }
4549
4550 From =
4551 ImpCastExprToType(From, ToType, Kind, VK_PRValue, &BasePath, CCK).get();
4552 break;
4553 }
4554
4555 case ICK_Boolean_Conversion:
4556 // Perform half-to-boolean conversion via float.
4557 if (From->getType()->isHalfType()) {
4558 From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).get();
4559 FromType = Context.FloatTy;
4560 }
4561
4562 From = ImpCastExprToType(From, Context.BoolTy,
4563 ScalarTypeToBooleanCastKind(FromType), VK_PRValue,
4564 /*BasePath=*/nullptr, CCK)
4565 .get();
4566 break;
4567
4568 case ICK_Derived_To_Base: {
4569 CXXCastPath BasePath;
4570 if (CheckDerivedToBaseConversion(
4571 From->getType(), ToType.getNonReferenceType(), From->getBeginLoc(),
4572 From->getSourceRange(), &BasePath, CStyle))
4573 return ExprError();
4574
4575 From = ImpCastExprToType(From, ToType.getNonReferenceType(),
4576 CK_DerivedToBase, From->getValueKind(),
4577 &BasePath, CCK).get();
4578 break;
4579 }
4580
4581 case ICK_Vector_Conversion:
4582 From = ImpCastExprToType(From, ToType, CK_BitCast, VK_PRValue,
4583 /*BasePath=*/nullptr, CCK)
4584 .get();
4585 break;
4586
4587 case ICK_SVE_Vector_Conversion:
4588 From = ImpCastExprToType(From, ToType, CK_BitCast, VK_PRValue,
4589 /*BasePath=*/nullptr, CCK)
4590 .get();
4591 break;
4592
4593 case ICK_Vector_Splat: {
4594 // Vector splat from any arithmetic type to a vector.
4595 Expr *Elem = prepareVectorSplat(ToType, From).get();
4596 From = ImpCastExprToType(Elem, ToType, CK_VectorSplat, VK_PRValue,
4597 /*BasePath=*/nullptr, CCK)
4598 .get();
4599 break;
4600 }
4601
4602 case ICK_Complex_Real:
4603 // Case 1. x -> _Complex y
4604 if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) {
4605 QualType ElType = ToComplex->getElementType();
4606 bool isFloatingComplex = ElType->isRealFloatingType();
4607
4608 // x -> y
4609 if (Context.hasSameUnqualifiedType(ElType, From->getType())) {
4610 // do nothing
4611 } else if (From->getType()->isRealFloatingType()) {
4612 From = ImpCastExprToType(From, ElType,
4613 isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).get();
4614 } else {
4615 assert(From->getType()->isIntegerType())(static_cast <bool> (From->getType()->isIntegerType
()) ? void (0) : __assert_fail ("From->getType()->isIntegerType()"
, "clang/lib/Sema/SemaExprCXX.cpp", 4615, __extension__ __PRETTY_FUNCTION__
))
;
4616 From = ImpCastExprToType(From, ElType,
4617 isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).get();
4618 }
4619 // y -> _Complex y
4620 From = ImpCastExprToType(From, ToType,
4621 isFloatingComplex ? CK_FloatingRealToComplex
4622 : CK_IntegralRealToComplex).get();
4623
4624 // Case 2. _Complex x -> y
4625 } else {
4626 auto *FromComplex = From->getType()->castAs<ComplexType>();
4627 QualType ElType = FromComplex->getElementType();
4628 bool isFloatingComplex = ElType->isRealFloatingType();
4629
4630 // _Complex x -> x
4631 From = ImpCastExprToType(From, ElType,
4632 isFloatingComplex ? CK_FloatingComplexToReal
4633 : CK_IntegralComplexToReal,
4634 VK_PRValue, /*BasePath=*/nullptr, CCK)
4635 .get();
4636
4637 // x -> y
4638 if (Context.hasSameUnqualifiedType(ElType, ToType)) {
4639 // do nothing
4640 } else if (ToType->isRealFloatingType()) {
4641 From = ImpCastExprToType(From, ToType,
4642 isFloatingComplex ? CK_FloatingCast
4643 : CK_IntegralToFloating,
4644 VK_PRValue, /*BasePath=*/nullptr, CCK)
4645 .get();
4646 } else {
4647 assert(ToType->isIntegerType())(static_cast <bool> (ToType->isIntegerType()) ? void
(0) : __assert_fail ("ToType->isIntegerType()", "clang/lib/Sema/SemaExprCXX.cpp"
, 4647, __extension__ __PRETTY_FUNCTION__))
;
4648 From = ImpCastExprToType(From, ToType,
4649 isFloatingComplex ? CK_FloatingToIntegral
4650 : CK_IntegralCast,
4651 VK_PRValue, /*BasePath=*/nullptr, CCK)
4652 .get();
4653 }
4654 }
4655 break;
4656
4657 case ICK_Block_Pointer_Conversion: {
4658 LangAS AddrSpaceL =
4659 ToType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace();
4660 LangAS AddrSpaceR =
4661 FromType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace();
4662 assert(Qualifiers::isAddressSpaceSupersetOf(AddrSpaceL, AddrSpaceR) &&(static_cast <bool> (Qualifiers::isAddressSpaceSupersetOf
(AddrSpaceL, AddrSpaceR) && "Invalid cast") ? void (0
) : __assert_fail ("Qualifiers::isAddressSpaceSupersetOf(AddrSpaceL, AddrSpaceR) && \"Invalid cast\""
, "clang/lib/Sema/SemaExprCXX.cpp", 4663, __extension__ __PRETTY_FUNCTION__
))
4663 "Invalid cast")(static_cast <bool> (Qualifiers::isAddressSpaceSupersetOf
(AddrSpaceL, AddrSpaceR) && "Invalid cast") ? void (0
) : __assert_fail ("Qualifiers::isAddressSpaceSupersetOf(AddrSpaceL, AddrSpaceR) && \"Invalid cast\""
, "clang/lib/Sema/SemaExprCXX.cpp", 4663, __extension__ __PRETTY_FUNCTION__
))
;
4664 CastKind Kind =
4665 AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
4666 From = ImpCastExprToType(From, ToType.getUnqualifiedType(), Kind,
4667 VK_PRValue, /*BasePath=*/nullptr, CCK)
4668 .get();
4669 break;
4670 }
4671
4672 case ICK_TransparentUnionConversion: {
4673 ExprResult FromRes = From;
4674 Sema::AssignConvertType ConvTy =
4675 CheckTransparentUnionArgumentConstraints(ToType, FromRes);
4676 if (FromRes.isInvalid())
4677 return ExprError();
4678 From = FromRes.get();
4679 assert ((ConvTy == Sema::Compatible) &&(static_cast <bool> ((ConvTy == Sema::Compatible) &&
"Improper transparent union conversion") ? void (0) : __assert_fail
("(ConvTy == Sema::Compatible) && \"Improper transparent union conversion\""
, "clang/lib/Sema/SemaExprCXX.cpp", 4680, __extension__ __PRETTY_FUNCTION__
))
4680 "Improper transparent union conversion")(static_cast <bool> ((ConvTy == Sema::Compatible) &&
"Improper transparent union conversion") ? void (0) : __assert_fail
("(ConvTy == Sema::Compatible) && \"Improper transparent union conversion\""
, "clang/lib/Sema/SemaExprCXX.cpp", 4680, __extension__ __PRETTY_FUNCTION__
))
;
4681 (void)ConvTy;
4682 break;
4683 }
4684
4685 case ICK_Zero_Event_Conversion:
4686 case ICK_Zero_Queue_Conversion:
4687 From = ImpCastExprToType(From, ToType,
4688 CK_ZeroToOCLOpaqueType,
4689 From->getValueKind()).get();
4690 break;
4691
4692 case ICK_Lvalue_To_Rvalue:
4693 case ICK_Array_To_Pointer:
4694 case ICK_Function_To_Pointer:
4695 case ICK_Function_Conversion:
4696 case ICK_Qualification:
4697 case ICK_Num_Conversion_Kinds:
4698 case ICK_C_Only_Conversion:
4699 case ICK_Incompatible_Pointer_Conversion:
4700 llvm_unreachable("Improper second standard conversion")::llvm::llvm_unreachable_internal("Improper second standard conversion"
, "clang/lib/Sema/SemaExprCXX.cpp", 4700)
;
4701 }
4702
4703 switch (SCS.Third) {
4704 case ICK_Identity:
4705 // Nothing to do.
4706 break;
4707
4708 case ICK_Function_Conversion:
4709 // If both sides are functions (or pointers/references to them), there could
4710 // be incompatible exception declarations.
4711 if (CheckExceptionSpecCompatibility(From, ToType))
4712 return ExprError();
4713
4714 From = ImpCastExprToType(From, ToType, CK_NoOp, VK_PRValue,
4715 /*BasePath=*/nullptr, CCK)
4716 .get();
4717 break;
4718
4719 case ICK_Qualification: {
4720 ExprValueKind VK = From->getValueKind();
4721 CastKind CK = CK_NoOp;
4722
4723 if (ToType->isReferenceType() &&
4724 ToType->getPointeeType().getAddressSpace() !=
4725 From->getType().getAddressSpace())
4726 CK = CK_AddressSpaceConversion;
4727
4728 if (ToType->isPointerType() &&
4729 ToType->getPointeeType().getAddressSpace() !=
4730 From->getType()->getPointeeType().getAddressSpace())
4731 CK = CK_AddressSpaceConversion;
4732
4733 if (!isCast(CCK) &&
4734 !ToType->getPointeeType().getQualifiers().hasUnaligned() &&
4735 From->getType()->getPointeeType().getQualifiers().hasUnaligned()) {
4736 Diag(From->getBeginLoc(), diag::warn_imp_cast_drops_unaligned)
4737 << InitialFromType << ToType;
4738 }
4739
4740 From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context), CK, VK,
4741 /*BasePath=*/nullptr, CCK)
4742 .get();
4743
4744 if (SCS.DeprecatedStringLiteralToCharPtr &&
4745 !getLangOpts().WritableStrings) {
4746 Diag(From->getBeginLoc(),
4747 getLangOpts().CPlusPlus11
4748 ? diag::ext_deprecated_string_literal_conversion
4749 : diag::warn_deprecated_string_literal_conversion)
4750 << ToType.getNonReferenceType();
4751 }
4752
4753 break;
4754 }
4755
4756 default:
4757 llvm_unreachable("Improper third standard conversion")::llvm::llvm_unreachable_internal("Improper third standard conversion"
, "clang/lib/Sema/SemaExprCXX.cpp", 4757)
;
4758 }
4759
4760 // If this conversion sequence involved a scalar -> atomic conversion, perform
4761 // that conversion now.
4762 if (!ToAtomicType.isNull()) {
4763 assert(Context.hasSameType((static_cast <bool> (Context.hasSameType( ToAtomicType->
castAs<AtomicType>()->getValueType(), From->getType
())) ? void (0) : __assert_fail ("Context.hasSameType( ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType())"
, "clang/lib/Sema/SemaExprCXX.cpp", 4764, __extension__ __PRETTY_FUNCTION__
))
4764 ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType()))(static_cast <bool> (Context.hasSameType( ToAtomicType->
castAs<AtomicType>()->getValueType(), From->getType
())) ? void (0) : __assert_fail ("Context.hasSameType( ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType())"
, "clang/lib/Sema/SemaExprCXX.cpp", 4764, __extension__ __PRETTY_FUNCTION__
))
;
4765 From = ImpCastExprToType(From, ToAtomicType, CK_NonAtomicToAtomic,
4766 VK_PRValue, nullptr, CCK)
4767 .get();
4768 }
4769
4770 // Materialize a temporary if we're implicitly converting to a reference
4771 // type. This is not required by the C++ rules but is necessary to maintain
4772 // AST invariants.
4773 if (ToType->isReferenceType() && From->isPRValue()) {
4774 ExprResult Res = TemporaryMaterializationConversion(From);
4775 if (Res.isInvalid())
4776 return ExprError();
4777 From = Res.get();
4778 }
4779
4780 // If this conversion sequence succeeded and involved implicitly converting a
4781 // _Nullable type to a _Nonnull one, complain.
4782 if (!isCast(CCK))
4783 diagnoseNullableToNonnullConversion(ToType, InitialFromType,
4784 From->getBeginLoc());
4785
4786 return From;
4787}
4788
4789/// Check the completeness of a type in a unary type trait.
4790///
4791/// If the particular type trait requires a complete type, tries to complete
4792/// it. If completing the type fails, a diagnostic is emitted and false
4793/// returned. If completing the type succeeds or no completion was required,
4794/// returns true.
4795static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S, TypeTrait UTT,
4796 SourceLocation Loc,
4797 QualType ArgTy) {
4798 // C++0x [meta.unary.prop]p3:
4799 // For all of the class templates X declared in this Clause, instantiating
4800 // that template with a template argument that is a class template
4801 // specialization may result in the implicit instantiation of the template
4802 // argument if and only if the semantics of X require that the argument
4803 // must be a complete type.
4804 // We apply this rule to all the type trait expressions used to implement
4805 // these class templates. We also try to follow any GCC documented behavior
4806 // in these expressions to ensure portability of standard libraries.
4807 switch (UTT) {
4808 default: llvm_unreachable("not a UTT")::llvm::llvm_unreachable_internal("not a UTT", "clang/lib/Sema/SemaExprCXX.cpp"
, 4808)
;
4809 // is_complete_type somewhat obviously cannot require a complete type.
4810 case UTT_IsCompleteType:
4811 // Fall-through
4812
4813 // These traits are modeled on the type predicates in C++0x
4814 // [meta.unary.cat] and [meta.unary.comp]. They are not specified as
4815 // requiring a complete type, as whether or not they return true cannot be
4816 // impacted by the completeness of the type.
4817 case UTT_IsVoid:
4818 case UTT_IsIntegral:
4819 case UTT_IsFloatingPoint:
4820 case UTT_IsArray:
4821 case UTT_IsBoundedArray:
4822 case UTT_IsPointer:
4823 case UTT_IsNullPointer:
4824 case UTT_IsReferenceable:
4825 case UTT_IsLvalueReference:
4826 case UTT_IsRvalueReference:
4827 case UTT_IsMemberFunctionPointer:
4828 case UTT_IsMemberObjectPointer:
4829 case UTT_IsEnum:
4830 case UTT_IsScopedEnum:
4831 case UTT_IsUnion:
4832 case UTT_IsClass:
4833 case UTT_IsFunction:
4834 case UTT_IsReference:
4835 case UTT_IsArithmetic:
4836 case UTT_IsFundamental:
4837 case UTT_IsObject:
4838 case UTT_IsScalar:
4839 case UTT_IsCompound:
4840 case UTT_IsMemberPointer:
4841 // Fall-through
4842
4843 // These traits are modeled on type predicates in C++0x [meta.unary.prop]
4844 // which requires some of its traits to have the complete type. However,
4845 // the completeness of the type cannot impact these traits' semantics, and
4846 // so they don't require it. This matches the comments on these traits in
4847 // Table 49.
4848 case UTT_IsConst:
4849 case UTT_IsVolatile:
4850 case UTT_IsSigned:
4851 case UTT_IsUnboundedArray:
4852 case UTT_IsUnsigned:
4853
4854 // This type trait always returns false, checking the type is moot.
4855 case UTT_IsInterfaceClass:
4856 return true;
4857
4858 // C++14 [meta.unary.prop]:
4859 // If T is a non-union class type, T shall be a complete type.
4860 case UTT_IsEmpty:
4861 case UTT_IsPolymorphic:
4862 case UTT_IsAbstract:
4863 if (const auto *RD = ArgTy->getAsCXXRecordDecl())
4864 if (!RD->isUnion())
4865 return !S.RequireCompleteType(
4866 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4867 return true;
4868
4869 // C++14 [meta.unary.prop]:
4870 // If T is a class type, T shall be a complete type.
4871 case UTT_IsFinal:
4872 case UTT_IsSealed:
4873 if (ArgTy->getAsCXXRecordDecl())
4874 return !S.RequireCompleteType(
4875 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4876 return true;
4877
4878 // LWG3823: T shall be an array type, a complete type, or cv void.
4879 case UTT_IsAggregate:
4880 if (ArgTy->isArrayType() || ArgTy->isVoidType())
4881 return true;
4882
4883 return !S.RequireCompleteType(
4884 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4885
4886 // C++1z [meta.unary.prop]:
4887 // remove_all_extents_t<T> shall be a complete type or cv void.
4888 case UTT_IsTrivial:
4889 case UTT_IsTriviallyCopyable:
4890 case UTT_IsStandardLayout:
4891 case UTT_IsPOD:
4892 case UTT_IsLiteral:
4893 // By analogy, is_trivially_relocatable imposes the same constraints.
4894 case UTT_IsTriviallyRelocatable:
4895 // Per the GCC type traits documentation, T shall be a complete type, cv void,
4896 // or an array of unknown bound. But GCC actually imposes the same constraints
4897 // as above.
4898 case UTT_HasNothrowAssign:
4899 case UTT_HasNothrowMoveAssign:
4900 case UTT_HasNothrowConstructor:
4901 case UTT_HasNothrowCopy:
4902 case UTT_HasTrivialAssign:
4903 case UTT_HasTrivialMoveAssign:
4904 case UTT_HasTrivialDefaultConstructor:
4905 case UTT_HasTrivialMoveConstructor:
4906 case UTT_HasTrivialCopy:
4907 case UTT_HasTrivialDestructor:
4908 case UTT_HasVirtualDestructor:
4909 ArgTy = QualType(ArgTy->getBaseElementTypeUnsafe(), 0);
4910 [[fallthrough]];
4911
4912 // C++1z [meta.unary.prop]:
4913 // T shall be a complete type, cv void, or an array of unknown bound.
4914 case UTT_IsDestructible:
4915 case UTT_IsNothrowDestructible:
4916 case UTT_IsTriviallyDestructible:
4917 case UTT_HasUniqueObjectRepresentations:
4918 if (ArgTy->isIncompleteArrayType() || ArgTy->isVoidType())
4919 return true;
4920
4921 return !S.RequireCompleteType(
4922 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4923 }
4924}
4925
4926static bool HasNoThrowOperator(const RecordType *RT, OverloadedOperatorKind Op,
4927 Sema &Self, SourceLocation KeyLoc, ASTContext &C,
4928 bool (CXXRecordDecl::*HasTrivial)() const,
4929 bool (CXXRecordDecl::*HasNonTrivial)() const,
4930 bool (CXXMethodDecl::*IsDesiredOp)() const)
4931{
4932 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
4933 if ((RD->*HasTrivial)() && !(RD->*HasNonTrivial)())
4934 return true;
4935
4936 DeclarationName Name = C.DeclarationNames.getCXXOperatorName(Op);
4937 DeclarationNameInfo NameInfo(Name, KeyLoc);
4938 LookupResult Res(Self, NameInfo, Sema::LookupOrdinaryName);
4939 if (Self.LookupQualifiedName(Res, RD)) {
4940 bool FoundOperator = false;
4941 Res.suppressDiagnostics();
4942 for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end();
4943 Op != OpEnd; ++Op) {
4944 if (isa<FunctionTemplateDecl>(*Op))
4945 continue;
4946
4947 CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op);
4948 if((Operator->*IsDesiredOp)()) {
4949 FoundOperator = true;
4950 auto *CPT = Operator->getType()->castAs<FunctionProtoType>();
4951 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
4952 if (!CPT || !CPT->isNothrow())
4953 return false;
4954 }
4955 }
4956 return FoundOperator;
4957 }
4958 return false;
4959}
4960
4961static bool EvaluateUnaryTypeTrait(Sema &Self, TypeTrait UTT,
4962 SourceLocation KeyLoc, QualType T) {
4963 assert(!T->isDependentType() && "Cannot evaluate traits of dependent type")(static_cast <bool> (!T->isDependentType() &&
"Cannot evaluate traits of dependent type") ? void (0) : __assert_fail
("!T->isDependentType() && \"Cannot evaluate traits of dependent type\""
, "clang/lib/Sema/SemaExprCXX.cpp", 4963, __extension__ __PRETTY_FUNCTION__
))
;
4964
4965 ASTContext &C = Self.Context;
4966 switch(UTT) {
4967 default: llvm_unreachable("not a UTT")::llvm::llvm_unreachable_internal("not a UTT", "clang/lib/Sema/SemaExprCXX.cpp"
, 4967)
;
4968 // Type trait expressions corresponding to the primary type category
4969 // predicates in C++0x [meta.unary.cat].
4970 case UTT_IsVoid:
4971 return T->isVoidType();
4972 case UTT_IsIntegral:
4973 return T->isIntegralType(C);
4974 case UTT_IsFloatingPoint:
4975 return T->isFloatingType();
4976 case UTT_IsArray:
4977 return T->isArrayType();
4978 case UTT_IsBoundedArray:
4979 if (!T->isVariableArrayType()) {
4980 return T->isArrayType() && !T->isIncompleteArrayType();
4981 }
4982
4983 Self.Diag(KeyLoc, diag::err_vla_unsupported)
4984 << 1 << tok::kw___is_bounded_array;
4985 return false;
4986 case UTT_IsUnboundedArray:
4987 if (!T->isVariableArrayType()) {
4988 return T->isIncompleteArrayType();
4989 }
4990
4991 Self.Diag(KeyLoc, diag::err_vla_unsupported)
4992 << 1 << tok::kw___is_unbounded_array;
4993 return false;
4994 case UTT_IsPointer:
4995 return T->isAnyPointerType();
4996 case UTT_IsNullPointer:
4997 return T->isNullPtrType();
4998 case UTT_IsLvalueReference:
4999 return T->isLValueReferenceType();
5000 case UTT_IsRvalueReference:
5001 return T->isRValueReferenceType();
5002 case UTT_IsMemberFunctionPointer:
5003 return T->isMemberFunctionPointerType();
5004 case UTT_IsMemberObjectPointer:
5005 return T->isMemberDataPointerType();
5006 case UTT_IsEnum:
5007 return T->isEnumeralType();
5008 case UTT_IsScopedEnum:
5009 return T->isScopedEnumeralType();
5010 case UTT_IsUnion:
5011 return T->isUnionType();
5012 case UTT_IsClass:
5013 return T->isClassType() || T->isStructureType() || T->isInterfaceType();
5014 case UTT_IsFunction:
5015 return T->isFunctionType();
5016
5017 // Type trait expressions which correspond to the convenient composition
5018 // predicates in C++0x [meta.unary.comp].
5019 case UTT_IsReference:
5020 return T->isReferenceType();
5021 case UTT_IsArithmetic:
5022 return T->isArithmeticType() && !T->isEnumeralType();
5023 case UTT_IsFundamental:
5024 return T->isFundamentalType();
5025 case UTT_IsObject:
5026 return T->isObjectType();
5027 case UTT_IsScalar:
5028 // Note: semantic analysis depends on Objective-C lifetime types to be
5029 // considered scalar types. However, such types do not actually behave
5030 // like scalar types at run time (since they may require retain/release
5031 // operations), so we report them as non-scalar.
5032 if (T->isObjCLifetimeType()) {
5033 switch (T.getObjCLifetime()) {
5034 case Qualifiers::OCL_None:
5035 case Qualifiers::OCL_ExplicitNone:
5036 return true;
5037
5038 case Qualifiers::OCL_Strong:
5039 case Qualifiers::OCL_Weak:
5040 case Qualifiers::OCL_Autoreleasing:
5041 return false;
5042 }
5043 }
5044
5045 return T->isScalarType();
5046 case UTT_IsCompound:
5047 return T->isCompoundType();
5048 case UTT_IsMemberPointer:
5049 return T->isMemberPointerType();
5050
5051 // Type trait expressions which correspond to the type property predicates
5052 // in C++0x [meta.unary.prop].
5053 case UTT_IsConst:
5054 return T.isConstQualified();
5055 case UTT_IsVolatile:
5056 return T.isVolatileQualified();
5057 case UTT_IsTrivial:
5058 return T.isTrivialType(C);
5059 case UTT_IsTriviallyCopyable:
5060 return T.isTriviallyCopyableType(C);
5061 case UTT_IsStandardLayout:
5062 return T->isStandardLayoutType();
5063 case UTT_IsPOD:
5064 return T.isPODType(C);
5065 case UTT_IsLiteral:
5066 return T->isLiteralType(C);
5067 case UTT_IsEmpty:
5068 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5069 return !RD->isUnion() && RD->isEmpty();
5070 return false;
5071 case UTT_IsPolymorphic:
5072 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5073 return !RD->isUnion() && RD->isPolymorphic();
5074 return false;
5075 case UTT_IsAbstract:
5076 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5077 return !RD->isUnion() && RD->isAbstract();
5078 return false;
5079 case UTT_IsAggregate:
5080 // Report vector extensions and complex types as aggregates because they
5081 // support aggregate initialization. GCC mirrors this behavior for vectors
5082 // but not _Complex.
5083 return T->isAggregateType() || T->isVectorType() || T->isExtVectorType() ||
5084 T->isAnyComplexType();
5085 // __is_interface_class only returns true when CL is invoked in /CLR mode and
5086 // even then only when it is used with the 'interface struct ...' syntax
5087 // Clang doesn't support /CLR which makes this type trait moot.
5088 case UTT_IsInterfaceClass:
5089 return false;
5090 case UTT_IsFinal:
5091 case UTT_IsSealed:
5092 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5093 return RD->hasAttr<FinalAttr>();
5094 return false;
5095 case UTT_IsSigned:
5096 // Enum types should always return false.
5097 // Floating points should always return true.
5098 return T->isFloatingType() ||
5099 (T->isSignedIntegerType() && !T->isEnumeralType());
5100 case UTT_IsUnsigned:
5101 // Enum types should always return false.
5102 return T->isUnsignedIntegerType() && !T->isEnumeralType();
5103
5104 // Type trait expressions which query classes regarding their construction,
5105 // destruction, and copying. Rather than being based directly on the
5106 // related type predicates in the standard, they are specified by both
5107 // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those
5108 // specifications.
5109 //
5110 // 1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html
5111 // 2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
5112 //
5113 // Note that these builtins do not behave as documented in g++: if a class
5114 // has both a trivial and a non-trivial special member of a particular kind,
5115 // they return false! For now, we emulate this behavior.
5116 // FIXME: This appears to be a g++ bug: more complex cases reveal that it
5117 // does not correctly compute triviality in the presence of multiple special
5118 // members of the same kind. Revisit this once the g++ bug is fixed.
5119 case UTT_HasTrivialDefaultConstructor:
5120 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5121 // If __is_pod (type) is true then the trait is true, else if type is
5122 // a cv class or union type (or array thereof) with a trivial default
5123 // constructor ([class.ctor]) then the trait is true, else it is false.
5124 if (T.isPODType(C))
5125 return true;
5126 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
5127 return RD->hasTrivialDefaultConstructor() &&
5128 !RD->hasNonTrivialDefaultConstructor();
5129 return false;
5130 case UTT_HasTrivialMoveConstructor:
5131 // This trait is implemented by MSVC 2012 and needed to parse the
5132 // standard library headers. Specifically this is used as the logic
5133 // behind std::is_trivially_move_constructible (20.9.4.3).
5134 if (T.isPODType(C))
5135 return true;
5136 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
5137 return RD->hasTrivialMoveConstructor() && !RD->hasNonTrivialMoveConstructor();
5138 return false;
5139 case UTT_HasTrivialCopy:
5140 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5141 // If __is_pod (type) is true or type is a reference type then
5142 // the trait is true, else if type is a cv class or union type
5143 // with a trivial copy constructor ([class.copy]) then the trait
5144 // is true, else it is false.
5145 if (T.isPODType(C) || T->isReferenceType())
5146 return true;
5147 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5148 return RD->hasTrivialCopyConstructor() &&
5149 !RD->hasNonTrivialCopyConstructor();
5150 return false;
5151 case UTT_HasTrivialMoveAssign:
5152 // This trait is implemented by MSVC 2012 and needed to parse the
5153 // standard library headers. Specifically it is used as the logic
5154 // behind std::is_trivially_move_assignable (20.9.4.3)
5155 if (T.isPODType(C))
5156 return true;
5157 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
5158 return RD->hasTrivialMoveAssignment() && !RD->hasNonTrivialMoveAssignment();
5159 return false;
5160 case UTT_HasTrivialAssign:
5161 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5162 // If type is const qualified or is a reference type then the
5163 // trait is false. Otherwise if __is_pod (type) is true then the
5164 // trait is true, else if type is a cv class or union type with
5165 // a trivial copy assignment ([class.copy]) then the trait is
5166 // true, else it is false.
5167 // Note: the const and reference restrictions are interesting,
5168 // given that const and reference members don't prevent a class
5169 // from having a trivial copy assignment operator (but do cause
5170 // errors if the copy assignment operator is actually used, q.v.
5171 // [class.copy]p12).
5172
5173 if (T.isConstQualified())
5174 return false;
5175 if (T.isPODType(C))
5176 return true;
5177 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5178 return RD->hasTrivialCopyAssignment() &&
5179 !RD->hasNonTrivialCopyAssignment();
5180 return false;
5181 case UTT_IsDestructible:
5182 case UTT_IsTriviallyDestructible:
5183 case UTT_IsNothrowDestructible:
5184 // C++14 [meta.unary.prop]:
5185 // For reference types, is_destructible<T>::value is true.
5186 if (T->isReferenceType())
5187 return true;
5188
5189 // Objective-C++ ARC: autorelease types don't require destruction.
5190 if (T->isObjCLifetimeType() &&
5191 T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
5192 return true;
5193
5194 // C++14 [meta.unary.prop]:
5195 // For incomplete types and function types, is_destructible<T>::value is
5196 // false.
5197 if (T->isIncompleteType() || T->isFunctionType())
5198 return false;
5199
5200 // A type that requires destruction (via a non-trivial destructor or ARC
5201 // lifetime semantics) is not trivially-destructible.
5202 if (UTT == UTT_IsTriviallyDestructible && T.isDestructedType())
5203 return false;
5204
5205 // C++14 [meta.unary.prop]:
5206 // For object types and given U equal to remove_all_extents_t<T>, if the
5207 // expression std::declval<U&>().~U() is well-formed when treated as an
5208 // unevaluated operand (Clause 5), then is_destructible<T>::value is true
5209 if (auto *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
5210 CXXDestructorDecl *Destructor = Self.LookupDestructor(RD);
5211 if (!Destructor)
5212 return false;
5213 // C++14 [dcl.fct.def.delete]p2:
5214 // A program that refers to a deleted function implicitly or
5215 // explicitly, other than to declare it, is ill-formed.
5216 if (Destructor->isDeleted())
5217 return false;
5218 if (C.getLangOpts().AccessControl && Destructor->getAccess() != AS_public)
5219 return false;
5220 if (UTT == UTT_IsNothrowDestructible) {
5221 auto *CPT = Destructor->getType()->castAs<FunctionProtoType>();
5222 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
5223 if (!CPT || !CPT->isNothrow())
5224 return false;
5225 }
5226 }
5227 return true;
5228
5229 case UTT_HasTrivialDestructor:
5230 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
5231 // If __is_pod (type) is true or type is a reference type
5232 // then the trait is true, else if type is a cv class or union
5233 // type (or array thereof) with a trivial destructor
5234 // ([class.dtor]) then the trait is true, else it is
5235 // false.
5236 if (T.isPODType(C) || T->isReferenceType())
5237 return true;
5238
5239 // Objective-C++ ARC: autorelease types don't require destruction.
5240 if (T->isObjCLifetimeType() &&
5241 T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
5242 return true;
5243
5244 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
5245 return RD->hasTrivialDestructor();
5246 return false;
5247 // TODO: Propagate nothrowness for implicitly declared special members.
5248 case UTT_HasNothrowAssign:
5249 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5250 // If type is const qualified or is a reference type then the
5251 // trait is false. Otherwise if __has_trivial_assign (type)
5252 // is true then the trait is true, else if type is a cv class
5253 // or union type with copy assignment operators that are known
5254 // not to throw an exception then the trait is true, else it is
5255 // false.
5256 if (C.getBaseElementType(T).isConstQualified())
5257 return false;
5258 if (T->isReferenceType())
5259 return false;
5260 if (T.isPODType(C) || T->isObjCLifetimeType())
5261 return true;
5262
5263 if (const RecordType *RT = T->getAs<RecordType>())
5264 return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
5265 &CXXRecordDecl::hasTrivialCopyAssignment,
5266 &CXXRecordDecl::hasNonTrivialCopyAssignment,
5267 &CXXMethodDecl::isCopyAssignmentOperator);
5268 return false;
5269 case UTT_HasNothrowMoveAssign:
5270 // This trait is implemented by MSVC 2012 and needed to parse the
5271 // standard library headers. Specifically this is used as the logic
5272 // behind std::is_nothrow_move_assignable (20.9.4.3).
5273 if (T.isPODType(C))
5274 return true;
5275
5276 if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>())
5277 return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
5278 &CXXRecordDecl::hasTrivialMoveAssignment,
5279 &CXXRecordDecl::hasNonTrivialMoveAssignment,
5280 &CXXMethodDecl::isMoveAssignmentOperator);
5281 return false;
5282 case UTT_HasNothrowCopy:
5283 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5284 // If __has_trivial_copy (type) is true then the trait is true, else
5285 // if type is a cv class or union type with copy constructors that are
5286 // known not to throw an exception then the trait is true, else it is
5287 // false.
5288 if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType())
5289 return true;
5290 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
5291 if (RD->hasTrivialCopyConstructor() &&
5292 !RD->hasNonTrivialCopyConstructor())
5293 return true;
5294
5295 bool FoundConstructor = false;
5296 unsigned FoundTQs;
5297 for (const auto *ND : Self.LookupConstructors(RD)) {
5298 // A template constructor is never a copy constructor.
5299 // FIXME: However, it may actually be selected at the actual overload
5300 // resolution point.
5301 if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl()))
5302 continue;
5303 // UsingDecl itself is not a constructor
5304 if (isa<UsingDecl>(ND))
5305 continue;
5306 auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl());
5307 if (Constructor->isCopyConstructor(FoundTQs)) {
5308 FoundConstructor = true;
5309 auto *CPT = Constructor->getType()->castAs<FunctionProtoType>();
5310 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
5311 if (!CPT)
5312 return false;
5313 // TODO: check whether evaluating default arguments can throw.
5314 // For now, we'll be conservative and assume that they can throw.
5315 if (!CPT->isNothrow() || CPT->getNumParams() > 1)
5316 return false;
5317 }
5318 }
5319
5320 return FoundConstructor;
5321 }
5322 return false;
5323 case UTT_HasNothrowConstructor:
5324 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
5325 // If __has_trivial_constructor (type) is true then the trait is
5326 // true, else if type is a cv class or union type (or array
5327 // thereof) with a default constructor that is known not to
5328 // throw an exception then the trait is true, else it is false.
5329 if (T.isPODType(C) || T->isObjCLifetimeType())
5330 return true;
5331 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
5332 if (RD->hasTrivialDefaultConstructor() &&
5333 !RD->hasNonTrivialDefaultConstructor())
5334 return true;
5335
5336 bool FoundConstructor = false;
5337 for (const auto *ND : Self.LookupConstructors(RD)) {
5338 // FIXME: In C++0x, a constructor template can be a default constructor.
5339 if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl()))
5340 continue;
5341 // UsingDecl itself is not a constructor
5342 if (isa<UsingDecl>(ND))
5343 continue;
5344 auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl());
5345 if (Constructor->isDefaultConstructor()) {
5346 FoundConstructor = true;
5347 auto *CPT = Constructor->getType()->castAs<FunctionProtoType>();
5348 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
5349 if (!CPT)
5350 return false;
5351 // FIXME: check whether evaluating default arguments can throw.
5352 // For now, we'll be conservative and assume that they can throw.
5353 if (!CPT->isNothrow() || CPT->getNumParams() > 0)
5354 return false;
5355 }
5356 }
5357 return FoundConstructor;
5358 }
5359 return false;
5360 case UTT_HasVirtualDestructor:
5361 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5362 // If type is a class type with a virtual destructor ([class.dtor])
5363 // then the trait is true, else it is false.
5364 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5365 if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD))
5366 return Destructor->isVirtual();
5367 return false;
5368
5369 // These type trait expressions are modeled on the specifications for the
5370 // Embarcadero C++0x type trait functions:
5371 // http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
5372 case UTT_IsCompleteType:
5373 // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_):
5374 // Returns True if and only if T is a complete type at the point of the
5375 // function call.
5376 return !T->isIncompleteType();
5377 case UTT_HasUniqueObjectRepresentations:
5378 return C.hasUniqueObjectRepresentations(T);
5379 case UTT_IsTriviallyRelocatable:
5380 return T.isTriviallyRelocatableType(C);
5381 case UTT_IsReferenceable:
5382 return T.isReferenceable();
5383 }
5384}
5385
5386static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
5387 QualType RhsT, SourceLocation KeyLoc);
5388
5389static bool evaluateTypeTrait(Sema &S, TypeTrait Kind, SourceLocation KWLoc,
5390 ArrayRef<TypeSourceInfo *> Args,
5391 SourceLocation RParenLoc) {
5392 if (Kind <= UTT_Last)
5393 return EvaluateUnaryTypeTrait(S, Kind, KWLoc, Args[0]->getType());
5394
5395 // Evaluate BTT_ReferenceBindsToTemporary alongside the IsConstructible
5396 // traits to avoid duplication.
5397 if (Kind <= BTT_Last && Kind != BTT_ReferenceBindsToTemporary)
5398 return EvaluateBinaryTypeTrait(S, Kind, Args[0]->getType(),
5399 Args[1]->getType(), RParenLoc);
5400
5401 switch (Kind) {
5402 case clang::BTT_ReferenceBindsToTemporary:
5403 case clang::TT_IsConstructible:
5404 case clang::TT_IsNothrowConstructible:
5405 case clang::TT_IsTriviallyConstructible: {
5406 // C++11 [meta.unary.prop]:
5407 // is_trivially_constructible is defined as:
5408 //
5409 // is_constructible<T, Args...>::value is true and the variable
5410 // definition for is_constructible, as defined below, is known to call
5411 // no operation that is not trivial.
5412 //
5413 // The predicate condition for a template specialization
5414 // is_constructible<T, Args...> shall be satisfied if and only if the
5415 // following variable definition would be well-formed for some invented
5416 // variable t:
5417 //
5418 // T t(create<Args>()...);
5419 assert(!Args.empty())(static_cast <bool> (!Args.empty()) ? void (0) : __assert_fail
("!Args.empty()", "clang/lib/Sema/SemaExprCXX.cpp", 5419, __extension__
__PRETTY_FUNCTION__))
;
5420
5421 // Precondition: T and all types in the parameter pack Args shall be
5422 // complete types, (possibly cv-qualified) void, or arrays of
5423 // unknown bound.
5424 for (const auto *TSI : Args) {
5425 QualType ArgTy = TSI->getType();
5426 if (ArgTy->isVoidType() || ArgTy->isIncompleteArrayType())
5427 continue;
5428
5429 if (S.RequireCompleteType(KWLoc, ArgTy,
5430 diag::err_incomplete_type_used_in_type_trait_expr))
5431 return false;
5432 }
5433
5434 // Make sure the first argument is not incomplete nor a function type.
5435 QualType T = Args[0]->getType();
5436 if (T->isIncompleteType() || T->isFunctionType())
5437 return false;
5438
5439 // Make sure the first argument is not an abstract type.
5440 CXXRecordDecl *RD = T->getAsCXXRecordDecl();
5441 if (RD && RD->isAbstract())
5442 return false;
5443
5444 llvm::BumpPtrAllocator OpaqueExprAllocator;
5445 SmallVector<Expr *, 2> ArgExprs;
5446 ArgExprs.reserve(Args.size() - 1);
5447 for (unsigned I = 1, N = Args.size(); I != N; ++I) {
5448 QualType ArgTy = Args[I]->getType();
5449 if (ArgTy->isObjectType() || ArgTy->isFunctionType())
5450 ArgTy = S.Context.getRValueReferenceType(ArgTy);
5451 ArgExprs.push_back(
5452 new (OpaqueExprAllocator.Allocate<OpaqueValueExpr>())
5453 OpaqueValueExpr(Args[I]->getTypeLoc().getBeginLoc(),
5454 ArgTy.getNonLValueExprType(S.Context),
5455 Expr::getValueKindForType(ArgTy)));
5456 }
5457
5458 // Perform the initialization in an unevaluated context within a SFINAE
5459 // trap at translation unit scope.
5460 EnterExpressionEvaluationContext Unevaluated(
5461 S, Sema::ExpressionEvaluationContext::Unevaluated);
5462 Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true);
5463 Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl());
5464 InitializedEntity To(
5465 InitializedEntity::InitializeTemporary(S.Context, Args[0]));
5466 InitializationKind InitKind(InitializationKind::CreateDirect(KWLoc, KWLoc,
5467 RParenLoc));
5468 InitializationSequence Init(S, To, InitKind, ArgExprs);
5469 if (Init.Failed())
5470 return false;
5471
5472 ExprResult Result = Init.Perform(S, To, InitKind, ArgExprs);
5473 if (Result.isInvalid() || SFINAE.hasErrorOccurred())
5474 return false;
5475
5476 if (Kind == clang::TT_IsConstructible)
5477 return true;
5478
5479 if (Kind == clang::BTT_ReferenceBindsToTemporary) {
5480 if (!T->isReferenceType())
5481 return false;
5482
5483 return !Init.isDirectReferenceBinding();
5484 }
5485
5486 if (Kind == clang::TT_IsNothrowConstructible)
5487 return S.canThrow(Result.get()) == CT_Cannot;
5488
5489 if (Kind == clang::TT_IsTriviallyConstructible) {
5490 // Under Objective-C ARC and Weak, if the destination has non-trivial
5491 // Objective-C lifetime, this is a non-trivial construction.
5492 if (T.getNonReferenceType().hasNonTrivialObjCLifetime())
5493 return false;
5494
5495 // The initialization succeeded; now make sure there are no non-trivial
5496 // calls.
5497 return !Result.get()->hasNonTrivialCall(S.Context);
5498 }
5499
5500 llvm_unreachable("unhandled type trait")::llvm::llvm_unreachable_internal("unhandled type trait", "clang/lib/Sema/SemaExprCXX.cpp"
, 5500)
;
5501 return false;
5502 }
5503 default: llvm_unreachable("not a TT")::llvm::llvm_unreachable_internal("not a TT", "clang/lib/Sema/SemaExprCXX.cpp"
, 5503)
;
5504 }
5505
5506 return false;
5507}
5508
5509namespace {
5510void DiagnoseBuiltinDeprecation(Sema& S, TypeTrait Kind,
5511 SourceLocation KWLoc) {
5512 TypeTrait Replacement;
5513 switch (Kind) {
5514 case UTT_HasNothrowAssign:
5515 case UTT_HasNothrowMoveAssign:
5516 Replacement = BTT_IsNothrowAssignable;
5517 break;
5518 case UTT_HasNothrowCopy:
5519 case UTT_HasNothrowConstructor:
5520 Replacement = TT_IsNothrowConstructible;
5521 break;
5522 case UTT_HasTrivialAssign:
5523 case UTT_HasTrivialMoveAssign:
5524 Replacement = BTT_IsTriviallyAssignable;
5525 break;
5526 case UTT_HasTrivialCopy:
5527 Replacement = UTT_IsTriviallyCopyable;
5528 break;
5529 case UTT_HasTrivialDefaultConstructor:
5530 case UTT_HasTrivialMoveConstructor:
5531 Replacement = TT_IsTriviallyConstructible;
5532 break;
5533 case UTT_HasTrivialDestructor:
5534 Replacement = UTT_IsTriviallyDestructible;
5535 break;
5536 default:
5537 return;
5538 }
5539 S.Diag(KWLoc, diag::warn_deprecated_builtin)
5540 << getTraitSpelling(Kind) << getTraitSpelling(Replacement);
5541}
5542}
5543
5544bool Sema::CheckTypeTraitArity(unsigned Arity, SourceLocation Loc, size_t N) {
5545 if (Arity && N != Arity) {
5546 Diag(Loc, diag::err_type_trait_arity)
5547 << Arity << 0 << (Arity > 1) << (int)N << SourceRange(Loc);
5548 return false;
5549 }
5550
5551 if (!Arity && N == 0) {
5552 Diag(Loc, diag::err_type_trait_arity)
5553 << 1 << 1 << 1 << (int)N << SourceRange(Loc);
5554 return false;
5555 }
5556 return true;
5557}
5558
5559ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
5560 ArrayRef<TypeSourceInfo *> Args,
5561 SourceLocation RParenLoc) {
5562 if (!CheckTypeTraitArity(getTypeTraitArity(Kind), KWLoc, Args.size()))
5563 return ExprError();
5564 QualType ResultType = Context.getLogicalOperationType();
5565
5566 if (Kind <= UTT_Last && !CheckUnaryTypeTraitTypeCompleteness(
5567 *this, Kind, KWLoc, Args[0]->getType()))
5568 return ExprError();
5569
5570 DiagnoseBuiltinDeprecation(*this, Kind, KWLoc);
5571
5572 bool Dependent = false;
5573 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
5574 if (Args[I]->getType()->isDependentType()) {
5575 Dependent = true;
5576 break;
5577 }
5578 }
5579
5580 bool Result = false;
5581 if (!Dependent)
5582 Result = evaluateTypeTrait(*this, Kind, KWLoc, Args, RParenLoc);
5583
5584 return TypeTraitExpr::Create(Context, ResultType, KWLoc, Kind, Args,
5585 RParenLoc, Result);
5586}
5587
5588ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
5589 ArrayRef<ParsedType> Args,
5590 SourceLocation RParenLoc) {
5591 SmallVector<TypeSourceInfo *, 4> ConvertedArgs;
5592 ConvertedArgs.reserve(Args.size());
5593
5594 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
5595 TypeSourceInfo *TInfo;
5596 QualType T = GetTypeFromParser(Args[I], &TInfo);
5597 if (!TInfo)
5598 TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc);
5599
5600 ConvertedArgs.push_back(TInfo);
5601 }
5602
5603 return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc);
5604}
5605
5606static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
5607 QualType RhsT, SourceLocation KeyLoc) {
5608 assert(!LhsT->isDependentType() && !RhsT->isDependentType() &&(static_cast <bool> (!LhsT->isDependentType() &&
!RhsT->isDependentType() && "Cannot evaluate traits of dependent types"
) ? void (0) : __assert_fail ("!LhsT->isDependentType() && !RhsT->isDependentType() && \"Cannot evaluate traits of dependent types\""
, "clang/lib/Sema/SemaExprCXX.cpp", 5609, __extension__ __PRETTY_FUNCTION__
))
5609 "Cannot evaluate traits of dependent types")(static_cast <bool> (!LhsT->isDependentType() &&
!RhsT->isDependentType() && "Cannot evaluate traits of dependent types"
) ? void (0) : __assert_fail ("!LhsT->isDependentType() && !RhsT->isDependentType() && \"Cannot evaluate traits of dependent types\""
, "clang/lib/Sema/SemaExprCXX.cpp", 5609, __extension__ __PRETTY_FUNCTION__
))
;
5610
5611 switch(BTT) {
5612 case BTT_IsBaseOf: {
5613 // C++0x [meta.rel]p2
5614 // Base is a base class of Derived without regard to cv-qualifiers or
5615 // Base and Derived are not unions and name the same class type without
5616 // regard to cv-qualifiers.
5617
5618 const RecordType *lhsRecord = LhsT->getAs<RecordType>();
5619 const RecordType *rhsRecord = RhsT->getAs<RecordType>();
5620 if (!rhsRecord || !lhsRecord) {
5621 const ObjCObjectType *LHSObjTy = LhsT->getAs<ObjCObjectType>();
5622 const ObjCObjectType *RHSObjTy = RhsT->getAs<ObjCObjectType>();
5623 if (!LHSObjTy || !RHSObjTy)
5624 return false;
5625
5626 ObjCInterfaceDecl *BaseInterface = LHSObjTy->getInterface();
5627 ObjCInterfaceDecl *DerivedInterface = RHSObjTy->getInterface();
5628 if (!BaseInterface || !DerivedInterface)
5629 return false;
5630
5631 if (Self.RequireCompleteType(
5632 KeyLoc, RhsT, diag::err_incomplete_type_used_in_type_trait_expr))
5633 return false;
5634
5635 return BaseInterface->isSuperClassOf(DerivedInterface);
5636 }
5637
5638 assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)(static_cast <bool> (Self.Context.hasSameUnqualifiedType
(LhsT, RhsT) == (lhsRecord == rhsRecord)) ? void (0) : __assert_fail
("Self.Context.hasSameUnqualifiedType(LhsT, RhsT) == (lhsRecord == rhsRecord)"
, "clang/lib/Sema/SemaExprCXX.cpp", 5639, __extension__ __PRETTY_FUNCTION__
))
5639 == (lhsRecord == rhsRecord))(static_cast <bool> (Self.Context.hasSameUnqualifiedType
(LhsT, RhsT) == (lhsRecord == rhsRecord)) ? void (0) : __assert_fail
("Self.Context.hasSameUnqualifiedType(LhsT, RhsT) == (lhsRecord == rhsRecord)"
, "clang/lib/Sema/SemaExprCXX.cpp", 5639, __extension__ __PRETTY_FUNCTION__
))
;
5640
5641 // Unions are never base classes, and never have base classes.
5642 // It doesn't matter if they are complete or not. See PR#41843
5643 if (lhsRecord && lhsRecord->getDecl()->isUnion())
5644 return false;
5645 if (rhsRecord && rhsRecord->getDecl()->isUnion())
5646 return false;
5647
5648 if (lhsRecord == rhsRecord)
5649 return true;
5650
5651 // C++0x [meta.rel]p2:
5652 // If Base and Derived are class types and are different types
5653 // (ignoring possible cv-qualifiers) then Derived shall be a
5654 // complete type.
5655 if (Self.RequireCompleteType(KeyLoc, RhsT,
5656 diag::err_incomplete_type_used_in_type_trait_expr))
5657 return false;
5658
5659 return cast<CXXRecordDecl>(rhsRecord->getDecl())
5660 ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl()));
5661 }
5662 case BTT_IsSame:
5663 return Self.Context.hasSameType(LhsT, RhsT);
5664 case BTT_TypeCompatible: {
5665 // GCC ignores cv-qualifiers on arrays for this builtin.
5666 Qualifiers LhsQuals, RhsQuals;
5667 QualType Lhs = Self.getASTContext().getUnqualifiedArrayType(LhsT, LhsQuals);
5668 QualType Rhs = Self.getASTContext().getUnqualifiedArrayType(RhsT, RhsQuals);
5669 return Self.Context.typesAreCompatible(Lhs, Rhs);
5670 }
5671 case BTT_IsConvertible:
5672 case BTT_IsConvertibleTo: {
5673 // C++0x [meta.rel]p4:
5674 // Given the following function prototype:
5675 //
5676 // template <class T>
5677 // typename add_rvalue_reference<T>::type create();
5678 //
5679 // the predicate condition for a template specialization
5680 // is_convertible<From, To> shall be satisfied if and only if
5681 // the return expression in the following code would be
5682 // well-formed, including any implicit conversions to the return
5683 // type of the function:
5684 //
5685 // To test() {
5686 // return create<From>();
5687 // }
5688 //
5689 // Access checking is performed as if in a context unrelated to To and
5690 // From. Only the validity of the immediate context of the expression
5691 // of the return-statement (including conversions to the return type)
5692 // is considered.
5693 //
5694 // We model the initialization as a copy-initialization of a temporary
5695 // of the appropriate type, which for this expression is identical to the
5696 // return statement (since NRVO doesn't apply).
5697
5698 // Functions aren't allowed to return function or array types.
5699 if (RhsT->isFunctionType() || RhsT->isArrayType())
5700 return false;
5701
5702 // A return statement in a void function must have void type.
5703 if (RhsT->isVoidType())
5704 return LhsT->isVoidType();
5705
5706 // A function definition requires a complete, non-abstract return type.
5707 if (!Self.isCompleteType(KeyLoc, RhsT) || Self.isAbstractType(KeyLoc, RhsT))
5708 return false;
5709
5710 // Compute the result of add_rvalue_reference.
5711 if (LhsT->isObjectType() || LhsT->isFunctionType())
5712 LhsT = Self.Context.getRValueReferenceType(LhsT);
5713
5714 // Build a fake source and destination for initialization.
5715 InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT));
5716 OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
5717 Expr::getValueKindForType(LhsT));
5718 Expr *FromPtr = &From;
5719 InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc,
5720 SourceLocation()));
5721
5722 // Perform the initialization in an unevaluated context within a SFINAE
5723 // trap at translation unit scope.
5724 EnterExpressionEvaluationContext Unevaluated(
5725 Self, Sema::ExpressionEvaluationContext::Unevaluated);
5726 Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
5727 Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
5728 InitializationSequence Init(Self, To, Kind, FromPtr);
5729 if (Init.Failed())
5730 return false;
5731
5732 ExprResult Result = Init.Perform(Self, To, Kind, FromPtr);
5733 return !Result.isInvalid() && !SFINAE.hasErrorOccurred();
5734 }
5735
5736 case BTT_IsAssignable:
5737 case BTT_IsNothrowAssignable:
5738 case BTT_IsTriviallyAssignable: {
5739 // C++11 [meta.unary.prop]p3:
5740 // is_trivially_assignable is defined as:
5741 // is_assignable<T, U>::value is true and the assignment, as defined by
5742 // is_assignable, is known to call no operation that is not trivial
5743 //
5744 // is_assignable is defined as:
5745 // The expression declval<T>() = declval<U>() is well-formed when
5746 // treated as an unevaluated operand (Clause 5).
5747 //
5748 // For both, T and U shall be complete types, (possibly cv-qualified)
5749 // void, or arrays of unknown bound.
5750 if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() &&
5751 Self.RequireCompleteType(KeyLoc, LhsT,
5752 diag::err_incomplete_type_used_in_type_trait_expr))
5753 return false;
5754 if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() &&
5755 Self.RequireCompleteType(KeyLoc, RhsT,
5756 diag::err_incomplete_type_used_in_type_trait_expr))
5757 return false;
5758
5759 // cv void is never assignable.
5760 if (LhsT->isVoidType() || RhsT->isVoidType())
5761 return false;
5762
5763 // Build expressions that emulate the effect of declval<T>() and
5764 // declval<U>().
5765 if (LhsT->isObjectType() || LhsT->isFunctionType())
5766 LhsT = Self.Context.getRValueReferenceType(LhsT);
5767 if (RhsT->isObjectType() || RhsT->isFunctionType())
5768 RhsT = Self.Context.getRValueReferenceType(RhsT);
5769 OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
5770 Expr::getValueKindForType(LhsT));
5771 OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context),
5772 Expr::getValueKindForType(RhsT));
5773
5774 // Attempt the assignment in an unevaluated context within a SFINAE
5775 // trap at translation unit scope.
5776 EnterExpressionEvaluationContext Unevaluated(
5777 Self, Sema::ExpressionEvaluationContext::Unevaluated);
5778 Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
5779 Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
5780 ExprResult Result = Self.BuildBinOp(/*S=*/nullptr, KeyLoc, BO_Assign, &Lhs,
5781 &Rhs);
5782 if (Result.isInvalid())
5783 return false;
5784
5785 // Treat the assignment as unused for the purpose of -Wdeprecated-volatile.
5786 Self.CheckUnusedVolatileAssignment(Result.get());
5787
5788 if (SFINAE.hasErrorOccurred())
5789 return false;
5790
5791 if (BTT == BTT_IsAssignable)
5792 return true;
5793
5794 if (BTT == BTT_IsNothrowAssignable)
5795 return Self.canThrow(Result.get()) == CT_Cannot;
5796
5797 if (BTT == BTT_IsTriviallyAssignable) {
5798 // Under Objective-C ARC and Weak, if the destination has non-trivial
5799 // Objective-C lifetime, this is a non-trivial assignment.
5800 if (LhsT.getNonReferenceType().hasNonTrivialObjCLifetime())
5801 return false;
5802
5803 return !Result.get()->hasNonTrivialCall(Self.Context);
5804 }
5805
5806 llvm_unreachable("unhandled type trait")::llvm::llvm_unreachable_internal("unhandled type trait", "clang/lib/Sema/SemaExprCXX.cpp"
, 5806)
;
5807 return false;
5808 }
5809 default: llvm_unreachable("not a BTT")::llvm::llvm_unreachable_internal("not a BTT", "clang/lib/Sema/SemaExprCXX.cpp"
, 5809)
;
5810 }
5811 llvm_unreachable("Unknown type trait or not implemented")::llvm::llvm_unreachable_internal("Unknown type trait or not implemented"
, "clang/lib/Sema/SemaExprCXX.cpp", 5811)
;
5812}
5813
5814ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT,
5815 SourceLocation KWLoc,
5816 ParsedType Ty,
5817 Expr* DimExpr,
5818 SourceLocation RParen) {
5819 TypeSourceInfo *TSInfo;
5820 QualType T = GetTypeFromParser(Ty, &TSInfo);
5821 if (!TSInfo)
5822 TSInfo = Context.getTrivialTypeSourceInfo(T);
5823
5824 return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen);
5825}
5826
5827static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT,
5828 QualType T, Expr *DimExpr,
5829 SourceLocation KeyLoc) {
5830 assert(!T->isDependentType() && "Cannot evaluate traits of dependent type")(static_cast <bool> (!T->isDependentType() &&
"Cannot evaluate traits of dependent type") ? void (0) : __assert_fail
("!T->isDependentType() && \"Cannot evaluate traits of dependent type\""
, "clang/lib/Sema/SemaExprCXX.cpp", 5830, __extension__ __PRETTY_FUNCTION__
))
;
5831
5832 switch(ATT) {
5833 case ATT_ArrayRank:
5834 if (T->isArrayType()) {
5835 unsigned Dim = 0;
5836 while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
5837 ++Dim;
5838 T = AT->getElementType();
5839 }
5840 return Dim;
5841 }
5842 return 0;
5843
5844 case ATT_ArrayExtent: {
5845 llvm::APSInt Value;
5846 uint64_t Dim;
5847 if (Self.VerifyIntegerConstantExpression(
5848 DimExpr, &Value, diag::err_dimension_expr_not_constant_integer)
5849 .isInvalid())
5850 return 0;
5851 if (Value.isSigned() && Value.isNegative()) {
5852 Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer)
5853 << DimExpr->getSourceRange();
5854 return 0;
5855 }
5856 Dim = Value.getLimitedValue();
5857
5858 if (T->isArrayType()) {
5859 unsigned D = 0;
5860 bool Matched = false;
5861 while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
5862 if (Dim == D) {
5863 Matched = true;
5864 break;
5865 }
5866 ++D;
5867 T = AT->getElementType();
5868 }
5869
5870 if (Matched && T->isArrayType()) {
5871 if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T))
5872 return CAT->getSize().getLimitedValue();
5873 }
5874 }
5875 return 0;
5876 }
5877 }
5878 llvm_unreachable("Unknown type trait or not implemented")::llvm::llvm_unreachable_internal("Unknown type trait or not implemented"
, "clang/lib/Sema/SemaExprCXX.cpp", 5878)
;
5879}
5880
5881ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT,
5882 SourceLocation KWLoc,
5883 TypeSourceInfo *TSInfo,
5884 Expr* DimExpr,
5885 SourceLocation RParen) {
5886 QualType T = TSInfo->getType();
5887
5888 // FIXME: This should likely be tracked as an APInt to remove any host
5889 // assumptions about the width of size_t on the target.
5890 uint64_t Value = 0;
5891 if (!T->isDependentType())
5892 Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc);
5893
5894 // While the specification for these traits from the Embarcadero C++
5895 // compiler's documentation says the return type is 'unsigned int', Clang
5896 // returns 'size_t'. On Windows, the primary platform for the Embarcadero
5897 // compiler, there is no difference. On several other platforms this is an
5898 // important distinction.
5899 return new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value, DimExpr,
5900 RParen, Context.getSizeType());
5901}
5902
5903ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET,
5904 SourceLocation KWLoc,
5905 Expr *Queried,
5906 SourceLocation RParen) {
5907 // If error parsing the expression, ignore.
5908 if (!Queried)
5909 return ExprError();
5910
5911 ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen);
5912
5913 return Result;
5914}
5915
5916static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) {
5917 switch (ET) {
5918 case ET_IsLValueExpr: return E->isLValue();
5919 case ET_IsRValueExpr:
5920 return E->isPRValue();
5921 }
5922 llvm_unreachable("Expression trait not covered by switch")::llvm::llvm_unreachable_internal("Expression trait not covered by switch"
, "clang/lib/Sema/SemaExprCXX.cpp", 5922)
;
5923}
5924
5925ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET,
5926 SourceLocation KWLoc,
5927 Expr *Queried,
5928 SourceLocation RParen) {
5929 if (Queried->isTypeDependent()) {
5930 // Delay type-checking for type-dependent expressions.
5931 } else if (Queried->hasPlaceholderType()) {
5932 ExprResult PE = CheckPlaceholderExpr(Queried);
5933 if (PE.isInvalid()) return ExprError();
5934 return BuildExpressionTrait(ET, KWLoc, PE.get(), RParen);
5935 }
5936
5937 bool Value = EvaluateExpressionTrait(ET, Queried);
5938
5939 return new (Context)
5940 ExpressionTraitExpr(KWLoc, ET, Queried, Value, RParen, Context.BoolTy);
5941}
5942
5943QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS,
5944 ExprValueKind &VK,
5945 SourceLocation Loc,
5946 bool isIndirect) {
5947 assert(!LHS.get()->hasPlaceholderType() && !RHS.get()->hasPlaceholderType() &&(static_cast <bool> (!LHS.get()->hasPlaceholderType(
) && !RHS.get()->hasPlaceholderType() && "placeholders should have been weeded out by now"
) ? void (0) : __assert_fail ("!LHS.get()->hasPlaceholderType() && !RHS.get()->hasPlaceholderType() && \"placeholders should have been weeded out by now\""
, "clang/lib/Sema/SemaExprCXX.cpp", 5948, __extension__ __PRETTY_FUNCTION__
))
5948 "placeholders should have been weeded out by now")(static_cast <bool> (!LHS.get()->hasPlaceholderType(
) && !RHS.get()->hasPlaceholderType() && "placeholders should have been weeded out by now"
) ? void (0) : __assert_fail ("!LHS.get()->hasPlaceholderType() && !RHS.get()->hasPlaceholderType() && \"placeholders should have been weeded out by now\""
, "clang/lib/Sema/SemaExprCXX.cpp", 5948, __extension__ __PRETTY_FUNCTION__
))
;
5949
5950 // The LHS undergoes lvalue conversions if this is ->*, and undergoes the
5951 // temporary materialization conversion otherwise.
5952 if (isIndirect)
5953 LHS = DefaultLvalueConversion(LHS.get());
5954 else if (LHS.get()->isPRValue())
5955 LHS = TemporaryMaterializationConversion(LHS.get());
5956 if (LHS.isInvalid())
5957 return QualType();
5958
5959 // The RHS always undergoes lvalue conversions.
5960 RHS = DefaultLvalueConversion(RHS.get());
5961 if (RHS.isInvalid()) return QualType();
5962
5963 const char *OpSpelling = isIndirect ? "->*" : ".*";
5964 // C++ 5.5p2
5965 // The binary operator .* [p3: ->*] binds its second operand, which shall
5966 // be of type "pointer to member of T" (where T is a completely-defined
5967 // class type) [...]
5968 QualType RHSType = RHS.get()->getType();
5969 const MemberPointerType *MemPtr = RHSType->getAs<MemberPointerType>();
5970 if (!MemPtr) {
5971 Diag(Loc, diag::err_bad_memptr_rhs)
5972 << OpSpelling << RHSType << RHS.get()->getSourceRange();
5973 return QualType();
5974 }
5975
5976 QualType Class(MemPtr->getClass(), 0);
5977
5978 // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the
5979 // member pointer points must be completely-defined. However, there is no
5980 // reason for this semantic distinction, and the rule is not enforced by
5981 // other compilers. Therefore, we do not check this property, as it is
5982 // likely to be considered a defect.
5983
5984 // C++ 5.5p2
5985 // [...] to its first operand, which shall be of class T or of a class of
5986 // which T is an unambiguous and accessible base class. [p3: a pointer to
5987 // such a class]
5988 QualType LHSType = LHS.get()->getType();
5989 if (isIndirect) {
5990 if (const PointerType *Ptr = LHSType->getAs<PointerType>())
5991 LHSType = Ptr->getPointeeType();
5992 else {
5993 Diag(Loc, diag::err_bad_memptr_lhs)
5994 << OpSpelling << 1 << LHSType
5995 << FixItHint::CreateReplacement(SourceRange(Loc), ".*");
5996 return QualType();
5997 }
5998 }
5999
6000 if (!Context.hasSameUnqualifiedType(Class, LHSType)) {
6001 // If we want to check the hierarchy, we need a complete type.
6002 if (RequireCompleteType(Loc, LHSType, diag::err_bad_memptr_lhs,
6003 OpSpelling, (int)isIndirect)) {
6004 return QualType();
6005 }
6006
6007 if (!IsDerivedFrom(Loc, LHSType, Class)) {
6008 Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
6009 << (int)isIndirect << LHS.get()->getType();
6010 return QualType();
6011 }
6012
6013 CXXCastPath BasePath;
6014 if (CheckDerivedToBaseConversion(
6015 LHSType, Class, Loc,
6016 SourceRange(LHS.get()->getBeginLoc(), RHS.get()->getEndLoc()),
6017 &BasePath))
6018 return QualType();
6019
6020 // Cast LHS to type of use.
6021 QualType UseType = Context.getQualifiedType(Class, LHSType.getQualifiers());
6022 if (isIndirect)
6023 UseType = Context.getPointerType(UseType);
6024 ExprValueKind VK = isIndirect ? VK_PRValue : LHS.get()->getValueKind();
6025 LHS = ImpCastExprToType(LHS.get(), UseType, CK_DerivedToBase, VK,
6026 &BasePath);
6027 }
6028
6029 if (isa<CXXScalarValueInitExpr>(RHS.get()->IgnoreParens())) {
6030 // Diagnose use of pointer-to-member type which when used as
6031 // the functional cast in a pointer-to-member expression.
6032 Diag(Loc, diag::err_pointer_to_member_type) << isIndirect;
6033 return QualType();
6034 }
6035
6036 // C++ 5.5p2
6037 // The result is an object or a function of the type specified by the
6038 // second operand.
6039 // The cv qualifiers are the union of those in the pointer and the left side,
6040 // in accordance with 5.5p5 and 5.2.5.
6041 QualType Result = MemPtr->getPointeeType();
6042 Result = Context.getCVRQualifiedType(Result, LHSType.getCVRQualifiers());
6043
6044 // C++0x [expr.mptr.oper]p6:
6045 // In a .* expression whose object expression is an rvalue, the program is
6046 // ill-formed if the second operand is a pointer to member function with
6047 // ref-qualifier &. In a ->* expression or in a .* expression whose object
6048 // expression is an lvalue, the program is ill-formed if the second operand
6049 // is a pointer to member function with ref-qualifier &&.
6050 if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) {
6051 switch (Proto->getRefQualifier()) {
6052 case RQ_None:
6053 // Do nothing
6054 break;
6055
6056 case RQ_LValue:
6057 if (!isIndirect && !LHS.get()->Classify(Context).isLValue()) {
6058 // C++2a allows functions with ref-qualifier & if their cv-qualifier-seq
6059 // is (exactly) 'const'.
6060 if (Proto->isConst() && !Proto->isVolatile())
6061 Diag(Loc, getLangOpts().CPlusPlus20
6062 ? diag::warn_cxx17_compat_pointer_to_const_ref_member_on_rvalue
6063 : diag::ext_pointer_to_const_ref_member_on_rvalue);
6064 else
6065 Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
6066 << RHSType << 1 << LHS.get()->getSourceRange();
6067 }
6068 break;
6069
6070 case RQ_RValue:
6071 if (isIndirect || !LHS.get()->Classify(Context).isRValue())
6072 Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
6073 << RHSType << 0 << LHS.get()->getSourceRange();
6074 break;
6075 }
6076 }
6077
6078 // C++ [expr.mptr.oper]p6:
6079 // The result of a .* expression whose second operand is a pointer
6080 // to a data member is of the same value category as its
6081 // first operand. The result of a .* expression whose second
6082 // operand is a pointer to a member function is a prvalue. The
6083 // result of an ->* expression is an lvalue if its second operand
6084 // is a pointer to data member and a prvalue otherwise.
6085 if (Result->isFunctionType()) {
6086 VK = VK_PRValue;
6087 return Context.BoundMemberTy;
6088 } else if (isIndirect) {
6089 VK = VK_LValue;
6090 } else {
6091 VK = LHS.get()->getValueKind();
6092 }
6093
6094 return Result;
6095}
6096
6097/// Try to convert a type to another according to C++11 5.16p3.
6098///
6099/// This is part of the parameter validation for the ? operator. If either
6100/// value operand is a class type, the two operands are attempted to be
6101/// converted to each other. This function does the conversion in one direction.
6102/// It returns true if the program is ill-formed and has already been diagnosed
6103/// as such.
6104static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
6105 SourceLocation QuestionLoc,
6106 bool &HaveConversion,
6107 QualType &ToType) {
6108 HaveConversion = false;
6109 ToType = To->getType();
6110
6111 InitializationKind Kind =
6112 InitializationKind::CreateCopy(To->getBeginLoc(), SourceLocation());
6113 // C++11 5.16p3
6114 // The process for determining whether an operand expression E1 of type T1
6115 // can be converted to match an operand expression E2 of type T2 is defined
6116 // as follows:
6117 // -- If E2 is an lvalue: E1 can be converted to match E2 if E1 can be
6118 // implicitly converted to type "lvalue reference to T2", subject to the
6119 // constraint that in the conversion the reference must bind directly to
6120 // an lvalue.
6121 // -- If E2 is an xvalue: E1 can be converted to match E2 if E1 can be
6122 // implicitly converted to the type "rvalue reference to R2", subject to
6123 // the constraint that the reference must bind directly.
6124 if (To->isGLValue()) {
6125 QualType T = Self.Context.getReferenceQualifiedType(To);
6126 InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
6127
6128 InitializationSequence InitSeq(Self, Entity, Kind, From);
6129 if (InitSeq.isDirectReferenceBinding()) {
6130 ToType = T;
6131 HaveConversion = true;
6132 return false;
6133 }
6134
6135 if (InitSeq.isAmbiguous())
6136 return InitSeq.Diagnose(Self, Entity, Kind, From);
6137 }
6138
6139 // -- If E2 is an rvalue, or if the conversion above cannot be done:
6140 // -- if E1 and E2 have class type, and the underlying class types are
6141 // the same or one is a base class of the other:
6142 QualType FTy = From->getType();
6143 QualType TTy = To->getType();
6144 const RecordType *FRec = FTy->getAs<RecordType>();
6145 const RecordType *TRec = TTy->getAs<RecordType>();
6146 bool FDerivedFromT = FRec && TRec && FRec != TRec &&
6147 Self.IsDerivedFrom(QuestionLoc, FTy, TTy);
6148 if (FRec && TRec && (FRec == TRec || FDerivedFromT ||
6149 Self.IsDerivedFrom(QuestionLoc, TTy, FTy))) {
6150 // E1 can be converted to match E2 if the class of T2 is the
6151 // same type as, or a base class of, the class of T1, and
6152 // [cv2 > cv1].
6153 if (FRec == TRec || FDerivedFromT) {
6154 if (TTy.isAtLeastAsQualifiedAs(FTy)) {
6155 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
6156 InitializationSequence InitSeq(Self, Entity, Kind, From);
6157 if (InitSeq) {
6158 HaveConversion = true;
6159 return false;
6160 }
6161
6162 if (InitSeq.isAmbiguous())
6163 return InitSeq.Diagnose(Self, Entity, Kind, From);
6164 }
6165 }
6166
6167 return false;
6168 }
6169
6170 // -- Otherwise: E1 can be converted to match E2 if E1 can be
6171 // implicitly converted to the type that expression E2 would have
6172 // if E2 were converted to an rvalue (or the type it has, if E2 is
6173 // an rvalue).
6174 //
6175 // This actually refers very narrowly to the lvalue-to-rvalue conversion, not
6176 // to the array-to-pointer or function-to-pointer conversions.
6177 TTy = TTy.getNonLValueExprType(Self.Context);
6178
6179 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
6180 InitializationSequence InitSeq(Self, Entity, Kind, From);
6181 HaveConversion = !InitSeq.Failed();
6182 ToType = TTy;
6183 if (InitSeq.isAmbiguous())
6184 return InitSeq.Diagnose(Self, Entity, Kind, From);
6185
6186 return false;
6187}
6188
6189/// Try to find a common type for two according to C++0x 5.16p5.
6190///
6191/// This is part of the parameter validation for the ? operator. If either
6192/// value operand is a class type, overload resolution is used to find a
6193/// conversion to a common type.
6194static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS,
6195 SourceLocation QuestionLoc) {
6196 Expr *Args[2] = { LHS.get(), RHS.get() };
6197 OverloadCandidateSet CandidateSet(QuestionLoc,
6198 OverloadCandidateSet::CSK_Operator);
6199 Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args,
6200 CandidateSet);
6201
6202 OverloadCandidateSet::iterator Best;
6203 switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) {
6204 case OR_Success: {
6205 // We found a match. Perform the conversions on the arguments and move on.
6206 ExprResult LHSRes = Self.PerformImplicitConversion(
6207 LHS.get(), Best->BuiltinParamTypes[0], Best->Conversions[0],
6208 Sema::AA_Converting);
6209 if (LHSRes.isInvalid())
6210 break;
6211 LHS = LHSRes;
6212
6213 ExprResult RHSRes = Self.PerformImplicitConversion(
6214 RHS.get(), Best->BuiltinParamTypes[1], Best->Conversions[1],
6215 Sema::AA_Converting);
6216 if (RHSRes.isInvalid())
6217 break;
6218 RHS = RHSRes;
6219 if (Best->Function)
6220 Self.MarkFunctionReferenced(QuestionLoc, Best->Function);
6221 return false;
6222 }
6223
6224 case OR_No_Viable_Function:
6225
6226 // Emit a better diagnostic if one of the expressions is a null pointer
6227 // constant and the other is a pointer type. In this case, the user most
6228 // likely forgot to take the address of the other expression.
6229 if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
6230 return true;
6231
6232 Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
6233 << LHS.get()->getType() << RHS.get()->getType()
6234 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6235 return true;
6236
6237 case OR_Ambiguous:
6238 Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl)
6239 << LHS.get()->getType() << RHS.get()->getType()
6240 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6241 // FIXME: Print the possible common types by printing the return types of
6242 // the viable candidates.
6243 break;
6244
6245 case OR_Deleted:
6246 llvm_unreachable("Conditional operator has only built-in overloads")::llvm::llvm_unreachable_internal("Conditional operator has only built-in overloads"
, "clang/lib/Sema/SemaExprCXX.cpp", 6246)
;
6247 }
6248 return true;
6249}
6250
6251/// Perform an "extended" implicit conversion as returned by
6252/// TryClassUnification.
6253static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) {
6254 InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
6255 InitializationKind Kind =
6256 InitializationKind::CreateCopy(E.get()->getBeginLoc(), SourceLocation());
6257 Expr *Arg = E.get();
6258 InitializationSequence InitSeq(Self, Entity, Kind, Arg);
6259 ExprResult Result = InitSeq.Perform(Self, Entity, Kind, Arg);
6260 if (Result.isInvalid())
6261 return true;
6262
6263 E = Result;
6264 return false;
6265}
6266
6267// Check the condition operand of ?: to see if it is valid for the GCC
6268// extension.
6269static bool isValidVectorForConditionalCondition(ASTContext &Ctx,
6270 QualType CondTy) {
6271 if (!CondTy->isVectorType() && !CondTy->isExtVectorType())
6272 return false;
6273 const QualType EltTy =
6274 cast<VectorType>(CondTy.getCanonicalType())->getElementType();
6275 assert(!EltTy->isEnumeralType() && "Vectors cant be enum types")(static_cast <bool> (!EltTy->isEnumeralType() &&
"Vectors cant be enum types") ? void (0) : __assert_fail ("!EltTy->isEnumeralType() && \"Vectors cant be enum types\""
, "clang/lib/Sema/SemaExprCXX.cpp", 6275, __extension__ __PRETTY_FUNCTION__
))
;
6276 return EltTy->isIntegralType(Ctx);
6277}
6278
6279static bool isValidSizelessVectorForConditionalCondition(ASTContext &Ctx,
6280 QualType CondTy) {
6281 if (!CondTy->isVLSTBuiltinType())
6282 return false;
6283 const QualType EltTy =
6284 cast<BuiltinType>(CondTy.getCanonicalType())->getSveEltType(Ctx);
6285 assert(!EltTy->isEnumeralType() && "Vectors cant be enum types")(static_cast <bool> (!EltTy->isEnumeralType() &&
"Vectors cant be enum types") ? void (0) : __assert_fail ("!EltTy->isEnumeralType() && \"Vectors cant be enum types\""
, "clang/lib/Sema/SemaExprCXX.cpp", 6285, __extension__ __PRETTY_FUNCTION__
))
;
6286 return EltTy->isIntegralType(Ctx);
6287}
6288
6289QualType Sema::CheckVectorConditionalTypes(ExprResult &Cond, ExprResult &LHS,
6290 ExprResult &RHS,
6291 SourceLocation QuestionLoc) {
6292 LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
6293 RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
6294
6295 QualType CondType = Cond.get()->getType();
6296 const auto *CondVT = CondType->castAs<VectorType>();
6297 QualType CondElementTy = CondVT->getElementType();
6298 unsigned CondElementCount = CondVT->getNumElements();
6299 QualType LHSType = LHS.get()->getType();
6300 const auto *LHSVT = LHSType->getAs<VectorType>();
6301 QualType RHSType = RHS.get()->getType();
6302 const auto *RHSVT = RHSType->getAs<VectorType>();
6303
6304 QualType ResultType;
6305
6306
6307 if (LHSVT && RHSVT) {
6308 if (isa<ExtVectorType>(CondVT) != isa<ExtVectorType>(LHSVT)) {
6309 Diag(QuestionLoc, diag::err_conditional_vector_cond_result_mismatch)
6310 << /*isExtVector*/ isa<ExtVectorType>(CondVT);
6311 return {};
6312 }
6313
6314 // If both are vector types, they must be the same type.
6315 if (!Context.hasSameType(LHSType, RHSType)) {
6316 Diag(QuestionLoc, diag::err_conditional_vector_mismatched)
6317 << LHSType << RHSType;
6318 return {};
6319 }
6320 ResultType = Context.getCommonSugaredType(LHSType, RHSType);
6321 } else if (LHSVT || RHSVT) {
6322 ResultType = CheckVectorOperands(
6323 LHS, RHS, QuestionLoc, /*isCompAssign*/ false, /*AllowBothBool*/ true,
6324 /*AllowBoolConversions*/ false,
6325 /*AllowBoolOperation*/ true,
6326 /*ReportInvalid*/ true);
6327 if (ResultType.isNull())
6328 return {};
6329 } else {
6330 // Both are scalar.
6331 LHSType = LHSType.getUnqualifiedType();
6332 RHSType = RHSType.getUnqualifiedType();
6333 QualType ResultElementTy =
6334 Context.hasSameType(LHSType, RHSType)
6335 ? Context.getCommonSugaredType(LHSType, RHSType)
6336 : UsualArithmeticConversions(LHS, RHS, QuestionLoc,
6337 ACK_Conditional);
6338
6339 if (ResultElementTy->isEnumeralType()) {
6340 Diag(QuestionLoc, diag::err_conditional_vector_operand_type)
6341 << ResultElementTy;
6342 return {};
6343 }
6344 if (CondType->isExtVectorType())
6345 ResultType =
6346 Context.getExtVectorType(ResultElementTy, CondVT->getNumElements());
6347 else
6348 ResultType = Context.getVectorType(
6349 ResultElementTy, CondVT->getNumElements(), VectorType::GenericVector);
6350
6351 LHS = ImpCastExprToType(LHS.get(), ResultType, CK_VectorSplat);
6352 RHS = ImpCastExprToType(RHS.get(), ResultType, CK_VectorSplat);
6353 }
6354
6355 assert(!ResultType.isNull() && ResultType->isVectorType() &&(static_cast <bool> (!ResultType.isNull() && ResultType
->isVectorType() && (!CondType->isExtVectorType
() || ResultType->isExtVectorType()) && "Result should have been a vector type"
) ? void (0) : __assert_fail ("!ResultType.isNull() && ResultType->isVectorType() && (!CondType->isExtVectorType() || ResultType->isExtVectorType()) && \"Result should have been a vector type\""
, "clang/lib/Sema/SemaExprCXX.cpp", 6357, __extension__ __PRETTY_FUNCTION__
))
6356 (!CondType->isExtVectorType() || ResultType->isExtVectorType()) &&(static_cast <bool> (!ResultType.isNull() && ResultType
->isVectorType() && (!CondType->isExtVectorType
() || ResultType->isExtVectorType()) && "Result should have been a vector type"
) ? void (0) : __assert_fail ("!ResultType.isNull() && ResultType->isVectorType() && (!CondType->isExtVectorType() || ResultType->isExtVectorType()) && \"Result should have been a vector type\""
, "clang/lib/Sema/SemaExprCXX.cpp", 6357, __extension__ __PRETTY_FUNCTION__
))
6357 "Result should have been a vector type")(static_cast <bool> (!ResultType.isNull() && ResultType
->isVectorType() && (!CondType->isExtVectorType
() || ResultType->isExtVectorType()) && "Result should have been a vector type"
) ? void (0) : __assert_fail ("!ResultType.isNull() && ResultType->isVectorType() && (!CondType->isExtVectorType() || ResultType->isExtVectorType()) && \"Result should have been a vector type\""
, "clang/lib/Sema/SemaExprCXX.cpp", 6357, __extension__ __PRETTY_FUNCTION__
))
;
6358 auto *ResultVectorTy = ResultType->castAs<VectorType>();
6359 QualType ResultElementTy = ResultVectorTy->getElementType();
6360 unsigned ResultElementCount = ResultVectorTy->getNumElements();
6361
6362 if (ResultElementCount != CondElementCount) {
6363 Diag(QuestionLoc, diag::err_conditional_vector_size) << CondType
6364 << ResultType;
6365 return {};
6366 }
6367
6368 if (Context.getTypeSize(ResultElementTy) !=
6369 Context.getTypeSize(CondElementTy)) {
6370 Diag(QuestionLoc, diag::err_conditional_vector_element_size) << CondType
6371 << ResultType;
6372 return {};
6373 }
6374
6375 return ResultType;
6376}
6377
6378QualType Sema::CheckSizelessVectorConditionalTypes(ExprResult &Cond,
6379 ExprResult &LHS,
6380 ExprResult &RHS,
6381 SourceLocation QuestionLoc) {
6382 LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
6383 RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
6384
6385 QualType CondType = Cond.get()->getType();
6386 const auto *CondBT = CondType->castAs<BuiltinType>();
6387 QualType CondElementTy = CondBT->getSveEltType(Context);
6388 llvm::ElementCount CondElementCount =
6389 Context.getBuiltinVectorTypeInfo(CondBT).EC;
6390
6391 QualType LHSType = LHS.get()->getType();
6392 const auto *LHSBT =
6393 LHSType->isVLSTBuiltinType() ? LHSType->getAs<BuiltinType>() : nullptr;
6394 QualType RHSType = RHS.get()->getType();
6395 const auto *RHSBT =
6396 RHSType->isVLSTBuiltinType() ? RHSType->getAs<BuiltinType>() : nullptr;
6397
6398 QualType ResultType;
6399
6400 if (LHSBT && RHSBT) {
6401 // If both are sizeless vector types, they must be the same type.
6402 if (!Context.hasSameType(LHSType, RHSType)) {
6403 Diag(QuestionLoc, diag::err_conditional_vector_mismatched)
6404 << LHSType << RHSType;
6405 return QualType();
6406 }
6407 ResultType = LHSType;
6408 } else if (LHSBT || RHSBT) {
6409 ResultType = CheckSizelessVectorOperands(
6410 LHS, RHS, QuestionLoc, /*IsCompAssign*/ false, ACK_Conditional);
6411 if (ResultType.isNull())
6412 return QualType();
6413 } else {
6414 // Both are scalar so splat
6415 QualType ResultElementTy;
6416 LHSType = LHSType.getCanonicalType().getUnqualifiedType();
6417 RHSType = RHSType.getCanonicalType().getUnqualifiedType();
6418
6419 if (Context.hasSameType(LHSType, RHSType))
6420 ResultElementTy = LHSType;
6421 else
6422 ResultElementTy =
6423 UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional);
6424
6425 if (ResultElementTy->isEnumeralType()) {
6426 Diag(QuestionLoc, diag::err_conditional_vector_operand_type)
6427 << ResultElementTy;
6428 return QualType();
6429 }
6430
6431 ResultType = Context.getScalableVectorType(
6432 ResultElementTy, CondElementCount.getKnownMinValue());
6433
6434 LHS = ImpCastExprToType(LHS.get(), ResultType, CK_VectorSplat);
6435 RHS = ImpCastExprToType(RHS.get(), ResultType, CK_VectorSplat);
6436 }
6437
6438 assert(!ResultType.isNull() && ResultType->isVLSTBuiltinType() &&(static_cast <bool> (!ResultType.isNull() && ResultType
->isVLSTBuiltinType() && "Result should have been a vector type"
) ? void (0) : __assert_fail ("!ResultType.isNull() && ResultType->isVLSTBuiltinType() && \"Result should have been a vector type\""
, "clang/lib/Sema/SemaExprCXX.cpp", 6439, __extension__ __PRETTY_FUNCTION__
))
6439 "Result should have been a vector type")(static_cast <bool> (!ResultType.isNull() && ResultType
->isVLSTBuiltinType() && "Result should have been a vector type"
) ? void (0) : __assert_fail ("!ResultType.isNull() && ResultType->isVLSTBuiltinType() && \"Result should have been a vector type\""
, "clang/lib/Sema/SemaExprCXX.cpp", 6439, __extension__ __PRETTY_FUNCTION__
))
;
6440 auto *ResultBuiltinTy = ResultType->castAs<BuiltinType>();
6441 QualType ResultElementTy = ResultBuiltinTy->getSveEltType(Context);
6442 llvm::ElementCount ResultElementCount =
6443 Context.getBuiltinVectorTypeInfo(ResultBuiltinTy).EC;
6444
6445 if (ResultElementCount != CondElementCount) {
6446 Diag(QuestionLoc, diag::err_conditional_vector_size)
6447 << CondType << ResultType;
6448 return QualType();
6449 }
6450
6451 if (Context.getTypeSize(ResultElementTy) !=
6452 Context.getTypeSize(CondElementTy)) {
6453 Diag(QuestionLoc, diag::err_conditional_vector_element_size)
6454 << CondType << ResultType;
6455 return QualType();
6456 }
6457
6458 return ResultType;
6459}
6460
6461/// Check the operands of ?: under C++ semantics.
6462///
6463/// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
6464/// extension. In this case, LHS == Cond. (But they're not aliases.)
6465///
6466/// This function also implements GCC's vector extension and the
6467/// OpenCL/ext_vector_type extension for conditionals. The vector extensions
6468/// permit the use of a?b:c where the type of a is that of a integer vector with
6469/// the same number of elements and size as the vectors of b and c. If one of
6470/// either b or c is a scalar it is implicitly converted to match the type of
6471/// the vector. Otherwise the expression is ill-formed. If both b and c are
6472/// scalars, then b and c are checked and converted to the type of a if
6473/// possible.
6474///
6475/// The expressions are evaluated differently for GCC's and OpenCL's extensions.
6476/// For the GCC extension, the ?: operator is evaluated as
6477/// (a[0] != 0 ? b[0] : c[0], .. , a[n] != 0 ? b[n] : c[n]).
6478/// For the OpenCL extensions, the ?: operator is evaluated as
6479/// (most-significant-bit-set(a[0]) ? b[0] : c[0], .. ,
6480/// most-significant-bit-set(a[n]) ? b[n] : c[n]).
6481QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
6482 ExprResult &RHS, ExprValueKind &VK,
6483 ExprObjectKind &OK,
6484 SourceLocation QuestionLoc) {
6485 // FIXME: Handle C99's complex types, block pointers and Obj-C++ interface
6486 // pointers.
6487
6488 // Assume r-value.
6489 VK = VK_PRValue;
6490 OK = OK_Ordinary;
6491 bool IsVectorConditional =
6492 isValidVectorForConditionalCondition(Context, Cond.get()->getType());
6493
6494 bool IsSizelessVectorConditional =
6495 isValidSizelessVectorForConditionalCondition(Context,
6496 Cond.get()->getType());
6497
6498 // C++11 [expr.cond]p1
6499 // The first expression is contextually converted to bool.
6500 if (!Cond.get()->isTypeDependent()) {
6501 ExprResult CondRes = IsVectorConditional || IsSizelessVectorConditional
6502 ? DefaultFunctionArrayLvalueConversion(Cond.get())
6503 : CheckCXXBooleanCondition(Cond.get());
6504 if (CondRes.isInvalid())
6505 return QualType();
6506 Cond = CondRes;
6507 } else {
6508 // To implement C++, the first expression typically doesn't alter the result
6509 // type of the conditional, however the GCC compatible vector extension
6510 // changes the result type to be that of the conditional. Since we cannot
6511 // know if this is a vector extension here, delay the conversion of the
6512 // LHS/RHS below until later.
6513 return Context.DependentTy;
6514 }
6515
6516
6517 // Either of the arguments dependent?
6518 if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent())
6519 return Context.DependentTy;
6520
6521 // C++11 [expr.cond]p2
6522 // If either the second or the third operand has type (cv) void, ...
6523 QualType LTy = LHS.get()->getType();
6524 QualType RTy = RHS.get()->getType();
6525 bool LVoid = LTy->isVoidType();
6526 bool RVoid = RTy->isVoidType();
6527 if (LVoid || RVoid) {
6528 // ... one of the following shall hold:
6529 // -- The second or the third operand (but not both) is a (possibly
6530 // parenthesized) throw-expression; the result is of the type
6531 // and value category of the other.
6532 bool LThrow = isa<CXXThrowExpr>(LHS.get()->IgnoreParenImpCasts());
6533 bool RThrow = isa<CXXThrowExpr>(RHS.get()->IgnoreParenImpCasts());
6534
6535 // Void expressions aren't legal in the vector-conditional expressions.
6536 if (IsVectorConditional) {
6537 SourceRange DiagLoc =
6538 LVoid ? LHS.get()->getSourceRange() : RHS.get()->getSourceRange();
6539 bool IsThrow = LVoid ? LThrow : RThrow;
6540 Diag(DiagLoc.getBegin(), diag::err_conditional_vector_has_void)
6541 << DiagLoc << IsThrow;
6542 return QualType();
6543 }
6544
6545 if (LThrow != RThrow) {
6546 Expr *NonThrow = LThrow ? RHS.get() : LHS.get();
6547 VK = NonThrow->getValueKind();
6548 // DR (no number yet): the result is a bit-field if the
6549 // non-throw-expression operand is a bit-field.
6550 OK = NonThrow->getObjectKind();
6551 return NonThrow->getType();
6552 }
6553
6554 // -- Both the second and third operands have type void; the result is of
6555 // type void and is a prvalue.
6556 if (LVoid && RVoid)
6557 return Context.getCommonSugaredType(LTy, RTy);
6558
6559 // Neither holds, error.
6560 Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
6561 << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
6562 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6563 return QualType();
6564 }
6565
6566 // Neither is void.
6567 if (IsVectorConditional)
6568 return CheckVectorConditionalTypes(Cond, LHS, RHS, QuestionLoc);
6569
6570 if (IsSizelessVectorConditional)
6571 return CheckSizelessVectorConditionalTypes(Cond, LHS, RHS, QuestionLoc);
6572
6573 // C++11 [expr.cond]p3
6574 // Otherwise, if the second and third operand have different types, and
6575 // either has (cv) class type [...] an attempt is made to convert each of
6576 // those operands to the type of the other.
6577 if (!Context.hasSameType(LTy, RTy) &&
6578 (LTy->isRecordType() || RTy->isRecordType())) {
6579 // These return true if a single direction is already ambiguous.
6580 QualType L2RType, R2LType;
6581 bool HaveL2R, HaveR2L;
6582 if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType))
6583 return QualType();
6584 if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType))
6585 return QualType();
6586
6587 // If both can be converted, [...] the program is ill-formed.
6588 if (HaveL2R && HaveR2L) {
6589 Diag(QuestionLoc, diag::err_conditional_ambiguous)
6590 << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6591 return QualType();
6592 }
6593
6594 // If exactly one conversion is possible, that conversion is applied to
6595 // the chosen operand and the converted operands are used in place of the
6596 // original operands for the remainder of this section.
6597 if (HaveL2R) {
6598 if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid())
6599 return QualType();
6600 LTy = LHS.get()->getType();
6601 } else if (HaveR2L) {
6602 if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid())
6603 return QualType();
6604 RTy = RHS.get()->getType();
6605 }
6606 }
6607
6608 // C++11 [expr.cond]p3
6609 // if both are glvalues of the same value category and the same type except
6610 // for cv-qualification, an attempt is made to convert each of those
6611 // operands to the type of the other.
6612 // FIXME:
6613 // Resolving a defect in P0012R1: we extend this to cover all cases where
6614 // one of the operands is reference-compatible with the other, in order
6615 // to support conditionals between functions differing in noexcept. This
6616 // will similarly cover difference in array bounds after P0388R4.
6617 // FIXME: If LTy and RTy have a composite pointer type, should we convert to
6618 // that instead?
6619 ExprValueKind LVK = LHS.get()->getValueKind();
6620 ExprValueKind RVK = RHS.get()->getValueKind();
6621 if (!Context.hasSameType(LTy, RTy) && LVK == RVK && LVK != VK_PRValue) {
6622 // DerivedToBase was already handled by the class-specific case above.
6623 // FIXME: Should we allow ObjC conversions here?
6624 const ReferenceConversions AllowedConversions =
6625 ReferenceConversions::Qualification |
6626 ReferenceConversions::NestedQualification |
6627 ReferenceConversions::Function;
6628
6629 ReferenceConversions RefConv;
6630 if (CompareReferenceRelationship(QuestionLoc, LTy, RTy, &RefConv) ==
6631 Ref_Compatible &&
6632 !(RefConv & ~AllowedConversions) &&
6633 // [...] subject to the constraint that the reference must bind
6634 // directly [...]
6635 !RHS.get()->refersToBitField() && !RHS.get()->refersToVectorElement()) {
6636 RHS = ImpCastExprToType(RHS.get(), LTy, CK_NoOp, RVK);
6637 RTy = RHS.get()->getType();
6638 } else if (CompareReferenceRelationship(QuestionLoc, RTy, LTy, &RefConv) ==
6639 Ref_Compatible &&
6640 !(RefConv & ~AllowedConversions) &&
6641 !LHS.get()->refersToBitField() &&
6642 !LHS.get()->refersToVectorElement()) {
6643 LHS = ImpCastExprToType(LHS.get(), RTy, CK_NoOp, LVK);
6644 LTy = LHS.get()->getType();
6645 }
6646 }
6647
6648 // C++11 [expr.cond]p4
6649 // If the second and third operands are glvalues of the same value
6650 // category and have the same type, the result is of that type and
6651 // value category and it is a bit-field if the second or the third
6652 // operand is a bit-field, or if both are bit-fields.
6653 // We only extend this to bitfields, not to the crazy other kinds of
6654 // l-values.
6655 bool Same = Context.hasSameType(LTy, RTy);
6656 if (Same && LVK == RVK && LVK != VK_PRValue &&
6657 LHS.get()->isOrdinaryOrBitFieldObject() &&
6658 RHS.get()->isOrdinaryOrBitFieldObject()) {
6659 VK = LHS.get()->getValueKind();
6660 if (LHS.get()->getObjectKind() == OK_BitField ||
6661 RHS.get()->getObjectKind() == OK_BitField)
6662 OK = OK_BitField;
6663 return Context.getCommonSugaredType(LTy, RTy);
6664 }
6665
6666 // C++11 [expr.cond]p5
6667 // Otherwise, the result is a prvalue. If the second and third operands
6668 // do not have the same type, and either has (cv) class type, ...
6669 if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
6670 // ... overload resolution is used to determine the conversions (if any)
6671 // to be applied to the operands. If the overload resolution fails, the
6672 // program is ill-formed.
6673 if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc))
6674 return QualType();
6675 }
6676
6677 // C++11 [expr.cond]p6
6678 // Lvalue-to-rvalue, array-to-pointer, and function-to-pointer standard
6679 // conversions are performed on the second and third operands.
6680 LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
6681 RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
6682 if (LHS.isInvalid() || RHS.isInvalid())
6683 return QualType();
6684 LTy = LHS.get()->getType();
6685 RTy = RHS.get()->getType();
6686
6687 // After those conversions, one of the following shall hold:
6688 // -- The second and third operands have the same type; the result
6689 // is of that type. If the operands have class type, the result
6690 // is a prvalue temporary of the result type, which is
6691 // copy-initialized from either the second operand or the third
6692 // operand depending on the value of the first operand.
6693 if (Context.hasSameType(LTy, RTy)) {
6694 if (LTy->isRecordType()) {
6695 // The operands have class type. Make a temporary copy.
6696 ExprResult LHSCopy = PerformCopyInitialization(
6697 InitializedEntity::InitializeTemporary(LTy), SourceLocation(), LHS);
6698 if (LHSCopy.isInvalid())
6699 return QualType();
6700
6701 ExprResult RHSCopy = PerformCopyInitialization(
6702 InitializedEntity::InitializeTemporary(RTy), SourceLocation(), RHS);
6703 if (RHSCopy.isInvalid())
6704 return QualType();
6705
6706 LHS = LHSCopy;
6707 RHS = RHSCopy;
6708 }
6709 return Context.getCommonSugaredType(LTy, RTy);
6710 }
6711
6712 // Extension: conditional operator involving vector types.
6713 if (LTy->isVectorType() || RTy->isVectorType())
6714 return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/ false,
6715 /*AllowBothBool*/ true,
6716 /*AllowBoolConversions*/ false,
6717 /*AllowBoolOperation*/ false,
6718 /*ReportInvalid*/ true);
6719
6720 // -- The second and third operands have arithmetic or enumeration type;
6721 // the usual arithmetic conversions are performed to bring them to a
6722 // common type, and the result is of that type.
6723 if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
6724 QualType ResTy =
6725 UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional);
6726 if (LHS.isInvalid() || RHS.isInvalid())
6727 return QualType();
6728 if (ResTy.isNull()) {
6729 Diag(QuestionLoc,
6730 diag::err_typecheck_cond_incompatible_operands) << LTy << RTy
6731 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6732 return QualType();
6733 }
6734
6735 LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy));
6736 RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy));
6737
6738 return ResTy;
6739 }
6740
6741 // -- The second and third operands have pointer type, or one has pointer
6742 // type and the other is a null pointer constant, or both are null
6743 // pointer constants, at least one of which is non-integral; pointer
6744 // conversions and qualification conversions are performed to bring them
6745 // to their composite pointer type. The result is of the composite
6746 // pointer type.
6747 // -- The second and third operands have pointer to member type, or one has
6748 // pointer to member type and the other is a null pointer constant;
6749 // pointer to member conversions and qualification conversions are
6750 // performed to bring them to a common type, whose cv-qualification
6751 // shall match the cv-qualification of either the second or the third
6752 // operand. The result is of the common type.
6753 QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS);
6754 if (!Composite.isNull())
6755 return Composite;
6756
6757 // Similarly, attempt to find composite type of two objective-c pointers.
6758 Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
6759 if (LHS.isInvalid() || RHS.isInvalid())
6760 return QualType();
6761 if (!Composite.isNull())
6762 return Composite;
6763
6764 // Check if we are using a null with a non-pointer type.
6765 if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
6766 return QualType();
6767
6768 Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
6769 << LHS.get()->getType() << RHS.get()->getType()
6770 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6771 return QualType();
6772}
6773
6774/// Find a merged pointer type and convert the two expressions to it.
6775///
6776/// This finds the composite pointer type for \p E1 and \p E2 according to
6777/// C++2a [expr.type]p3. It converts both expressions to this type and returns
6778/// it. It does not emit diagnostics (FIXME: that's not true if \p ConvertArgs
6779/// is \c true).
6780///
6781/// \param Loc The location of the operator requiring these two expressions to
6782/// be converted to the composite pointer type.
6783///
6784/// \param ConvertArgs If \c false, do not convert E1 and E2 to the target type.
6785QualType Sema::FindCompositePointerType(SourceLocation Loc,
6786 Expr *&E1, Expr *&E2,
6787 bool ConvertArgs) {
6788 assert(getLangOpts().CPlusPlus && "This function assumes C++")(static_cast <bool> (getLangOpts().CPlusPlus &&
"This function assumes C++") ? void (0) : __assert_fail ("getLangOpts().CPlusPlus && \"This function assumes C++\""
, "clang/lib/Sema/SemaExprCXX.cpp", 6788, __extension__ __PRETTY_FUNCTION__
))
;
6789
6790 // C++1z [expr]p14:
6791 // The composite pointer type of two operands p1 and p2 having types T1
6792 // and T2
6793 QualType T1 = E1->getType(), T2 = E2->getType();
6794
6795 // where at least one is a pointer or pointer to member type or
6796 // std::nullptr_t is:
6797 bool T1IsPointerLike = T1->isAnyPointerType() || T1->isMemberPointerType() ||
6798 T1->isNullPtrType();
6799 bool T2IsPointerLike = T2->isAnyPointerType() || T2->isMemberPointerType() ||
6800 T2->isNullPtrType();
6801 if (!T1IsPointerLike && !T2IsPointerLike)
6802 return QualType();
6803
6804 // - if both p1 and p2 are null pointer constants, std::nullptr_t;
6805 // This can't actually happen, following the standard, but we also use this
6806 // to implement the end of [expr.conv], which hits this case.
6807 //
6808 // - if either p1 or p2 is a null pointer constant, T2 or T1, respectively;
6809 if (T1IsPointerLike &&
6810 E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
6811 if (ConvertArgs)
6812 E2 = ImpCastExprToType(E2, T1, T1->isMemberPointerType()
6813 ? CK_NullToMemberPointer
6814 : CK_NullToPointer).get();
6815 return T1;
6816 }
6817 if (T2IsPointerLike &&
6818 E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
6819 if (ConvertArgs)
6820 E1 = ImpCastExprToType(E1, T2, T2->isMemberPointerType()
6821 ? CK_NullToMemberPointer
6822 : CK_NullToPointer).get();
6823 return T2;
6824 }
6825
6826 // Now both have to be pointers or member pointers.
6827 if (!T1IsPointerLike || !T2IsPointerLike)
6828 return QualType();
6829 assert(!T1->isNullPtrType() && !T2->isNullPtrType() &&(static_cast <bool> (!T1->isNullPtrType() &&
!T2->isNullPtrType() && "nullptr_t should be a null pointer constant"
) ? void (0) : __assert_fail ("!T1->isNullPtrType() && !T2->isNullPtrType() && \"nullptr_t should be a null pointer constant\""
, "clang/lib/Sema/SemaExprCXX.cpp", 6830, __extension__ __PRETTY_FUNCTION__
))
6830 "nullptr_t should be a null pointer constant")(static_cast <bool> (!T1->isNullPtrType() &&
!T2->isNullPtrType() && "nullptr_t should be a null pointer constant"
) ? void (0) : __assert_fail ("!T1->isNullPtrType() && !T2->isNullPtrType() && \"nullptr_t should be a null pointer constant\""
, "clang/lib/Sema/SemaExprCXX.cpp", 6830, __extension__ __PRETTY_FUNCTION__
))
;
6831
6832 struct Step {
6833 enum Kind { Pointer, ObjCPointer, MemberPointer, Array } K;
6834 // Qualifiers to apply under the step kind.
6835 Qualifiers Quals;
6836 /// The class for a pointer-to-member; a constant array type with a bound
6837 /// (if any) for an array.
6838 const Type *ClassOrBound;
6839
6840 Step(Kind K, const Type *ClassOrBound = nullptr)
6841 : K(K), ClassOrBound(ClassOrBound) {}
6842 QualType rebuild(ASTContext &Ctx, QualType T) const {
6843 T = Ctx.getQualifiedType(T, Quals);
6844 switch (K) {
6845 case Pointer:
6846 return Ctx.getPointerType(T);
6847 case MemberPointer:
6848 return Ctx.getMemberPointerType(T, ClassOrBound);
6849 case ObjCPointer:
6850 return Ctx.getObjCObjectPointerType(T);
6851 case Array:
6852 if (auto *CAT = cast_or_null<ConstantArrayType>(ClassOrBound))
6853 return Ctx.getConstantArrayType(T, CAT->getSize(), nullptr,
6854 ArrayType::Normal, 0);
6855 else
6856 return Ctx.getIncompleteArrayType(T, ArrayType::Normal, 0);
6857 }
6858 llvm_unreachable("unknown step kind")::llvm::llvm_unreachable_internal("unknown step kind", "clang/lib/Sema/SemaExprCXX.cpp"
, 6858)
;
6859 }
6860 };
6861
6862 SmallVector<Step, 8> Steps;
6863
6864 // - if T1 is "pointer to cv1 C1" and T2 is "pointer to cv2 C2", where C1
6865 // is reference-related to C2 or C2 is reference-related to C1 (8.6.3),
6866 // the cv-combined type of T1 and T2 or the cv-combined type of T2 and T1,
6867 // respectively;
6868 // - if T1 is "pointer to member of C1 of type cv1 U1" and T2 is "pointer
6869 // to member of C2 of type cv2 U2" for some non-function type U, where
6870 // C1 is reference-related to C2 or C2 is reference-related to C1, the
6871 // cv-combined type of T2 and T1 or the cv-combined type of T1 and T2,
6872 // respectively;
6873 // - if T1 and T2 are similar types (4.5), the cv-combined type of T1 and
6874 // T2;
6875 //
6876 // Dismantle T1 and T2 to simultaneously determine whether they are similar
6877 // and to prepare to form the cv-combined type if so.
6878 QualType Composite1 = T1;
6879 QualType Composite2 = T2;
6880 unsigned NeedConstBefore = 0;
6881 while (true) {
6882 assert(!Composite1.isNull() && !Composite2.isNull())(static_cast <bool> (!Composite1.isNull() && !Composite2
.isNull()) ? void (0) : __assert_fail ("!Composite1.isNull() && !Composite2.isNull()"
, "clang/lib/Sema/SemaExprCXX.cpp", 6882, __extension__ __PRETTY_FUNCTION__
))
;
6883
6884 Qualifiers Q1, Q2;
6885 Composite1 = Context.getUnqualifiedArrayType(Composite1, Q1);
6886 Composite2 = Context.getUnqualifiedArrayType(Composite2, Q2);
6887
6888 // Top-level qualifiers are ignored. Merge at all lower levels.
6889 if (!Steps.empty()) {
6890 // Find the qualifier union: (approximately) the unique minimal set of
6891 // qualifiers that is compatible with both types.
6892 Qualifiers Quals = Qualifiers::fromCVRUMask(Q1.getCVRUQualifiers() |
6893 Q2.getCVRUQualifiers());
6894
6895 // Under one level of pointer or pointer-to-member, we can change to an
6896 // unambiguous compatible address space.
6897 if (Q1.getAddressSpace() == Q2.getAddressSpace()) {
6898 Quals.setAddressSpace(Q1.getAddressSpace());
6899 } else if (Steps.size() == 1) {
6900 bool MaybeQ1 = Q1.isAddressSpaceSupersetOf(Q2);
6901 bool MaybeQ2 = Q2.isAddressSpaceSupersetOf(Q1);
6902 if (MaybeQ1 == MaybeQ2) {
6903 // Exception for ptr size address spaces. Should be able to choose
6904 // either address space during comparison.
6905 if (isPtrSizeAddressSpace(Q1.getAddressSpace()) ||
6906 isPtrSizeAddressSpace(Q2.getAddressSpace()))
6907 MaybeQ1 = true;
6908 else
6909 return QualType(); // No unique best address space.
6910 }
6911 Quals.setAddressSpace(MaybeQ1 ? Q1.getAddressSpace()
6912 : Q2.getAddressSpace());
6913 } else {
6914 return QualType();
6915 }
6916
6917 // FIXME: In C, we merge __strong and none to __strong at the top level.
6918 if (Q1.getObjCGCAttr() == Q2.getObjCGCAttr())
6919 Quals.setObjCGCAttr(Q1.getObjCGCAttr());
6920 else if (T1->isVoidPointerType() || T2->isVoidPointerType())
6921 assert(Steps.size() == 1)(static_cast <bool> (Steps.size() == 1) ? void (0) : __assert_fail
("Steps.size() == 1", "clang/lib/Sema/SemaExprCXX.cpp", 6921
, __extension__ __PRETTY_FUNCTION__))
;
6922 else
6923 return QualType();
6924
6925 // Mismatched lifetime qualifiers never compatibly include each other.
6926 if (Q1.getObjCLifetime() == Q2.getObjCLifetime())
6927 Quals.setObjCLifetime(Q1.getObjCLifetime());
6928 else if (T1->isVoidPointerType() || T2->isVoidPointerType())
6929 assert(Steps.size() == 1)(static_cast <bool> (Steps.size() == 1) ? void (0) : __assert_fail
("Steps.size() == 1", "clang/lib/Sema/SemaExprCXX.cpp", 6929
, __extension__ __PRETTY_FUNCTION__))
;
6930 else
6931 return QualType();
6932
6933 Steps.back().Quals = Quals;
6934 if (Q1 != Quals || Q2 != Quals)
6935 NeedConstBefore = Steps.size() - 1;
6936 }
6937
6938 // FIXME: Can we unify the following with UnwrapSimilarTypes?
6939
6940 const ArrayType *Arr1, *Arr2;
6941 if ((Arr1 = Context.getAsArrayType(Composite1)) &&
6942 (Arr2 = Context.getAsArrayType(Composite2))) {
6943 auto *CAT1 = dyn_cast<ConstantArrayType>(Arr1);
6944 auto *CAT2 = dyn_cast<ConstantArrayType>(Arr2);
6945 if (CAT1 && CAT2 && CAT1->getSize() == CAT2->getSize()) {
6946 Composite1 = Arr1->getElementType();
6947 Composite2 = Arr2->getElementType();
6948 Steps.emplace_back(Step::Array, CAT1);
6949 continue;
6950 }
6951 bool IAT1 = isa<IncompleteArrayType>(Arr1);
6952 bool IAT2 = isa<IncompleteArrayType>(Arr2);
6953 if ((IAT1 && IAT2) ||
6954 (getLangOpts().CPlusPlus20 && (IAT1 != IAT2) &&
6955 ((bool)CAT1 != (bool)CAT2) &&
6956 (Steps.empty() || Steps.back().K != Step::Array))) {
6957 // In C++20 onwards, we can unify an array of N T with an array of
6958 // a different or unknown bound. But we can't form an array whose
6959 // element type is an array of unknown bound by doing so.
6960 Composite1 = Arr1->getElementType();
6961 Composite2 = Arr2->getElementType();
6962 Steps.emplace_back(Step::Array);
6963 if (CAT1 || CAT2)
6964 NeedConstBefore = Steps.size();
6965 continue;
6966 }
6967 }
6968
6969 const PointerType *Ptr1, *Ptr2;
6970 if ((Ptr1 = Composite1->getAs<PointerType>()) &&
6971 (Ptr2 = Composite2->getAs<PointerType>())) {
6972 Composite1 = Ptr1->getPointeeType();
6973 Composite2 = Ptr2->getPointeeType();
6974 Steps.emplace_back(Step::Pointer);
6975 continue;
6976 }
6977
6978 const ObjCObjectPointerType *ObjPtr1, *ObjPtr2;
6979 if ((ObjPtr1 = Composite1->getAs<ObjCObjectPointerType>()) &&
6980 (ObjPtr2 = Composite2->getAs<ObjCObjectPointerType>())) {
6981 Composite1 = ObjPtr1->getPointeeType();
6982 Composite2 = ObjPtr2->getPointeeType();
6983 Steps.emplace_back(Step::ObjCPointer);
6984 continue;
6985 }
6986
6987 const MemberPointerType *MemPtr1, *MemPtr2;
6988 if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) &&
6989 (MemPtr2 = Composite2->getAs<MemberPointerType>())) {
6990 Composite1 = MemPtr1->getPointeeType();
6991 Composite2 = MemPtr2->getPointeeType();
6992
6993 // At the top level, we can perform a base-to-derived pointer-to-member
6994 // conversion:
6995 //
6996 // - [...] where C1 is reference-related to C2 or C2 is
6997 // reference-related to C1
6998 //
6999 // (Note that the only kinds of reference-relatedness in scope here are
7000 // "same type or derived from".) At any other level, the class must
7001 // exactly match.
7002 const Type *Class = nullptr;
7003 QualType Cls1(MemPtr1->getClass(), 0);
7004 QualType Cls2(MemPtr2->getClass(), 0);
7005 if (Context.hasSameType(Cls1, Cls2))
7006 Class = MemPtr1->getClass();
7007 else if (Steps.empty())
7008 Class = IsDerivedFrom(Loc, Cls1, Cls2) ? MemPtr1->getClass() :
7009 IsDerivedFrom(Loc, Cls2, Cls1) ? MemPtr2->getClass() : nullptr;
7010 if (!Class)
7011 return QualType();
7012
7013 Steps.emplace_back(Step::MemberPointer, Class);
7014 continue;
7015 }
7016
7017 // Special case: at the top level, we can decompose an Objective-C pointer
7018 // and a 'cv void *'. Unify the qualifiers.
7019 if (Steps.empty() && ((Composite1->isVoidPointerType() &&
7020 Composite2->isObjCObjectPointerType()) ||
7021 (Composite1->isObjCObjectPointerType() &&
7022 Composite2->isVoidPointerType()))) {
7023 Composite1 = Composite1->getPointeeType();
7024 Composite2 = Composite2->getPointeeType();
7025 Steps.emplace_back(Step::Pointer);
7026 continue;
7027 }
7028
7029 // FIXME: block pointer types?
7030
7031 // Cannot unwrap any more types.
7032 break;
7033 }
7034
7035 // - if T1 or T2 is "pointer to noexcept function" and the other type is
7036 // "pointer to function", where the function types are otherwise the same,
7037 // "pointer to function";
7038 // - if T1 or T2 is "pointer to member of C1 of type function", the other
7039 // type is "pointer to member of C2 of type noexcept function", and C1
7040 // is reference-related to C2 or C2 is reference-related to C1, where
7041 // the function types are otherwise the same, "pointer to member of C2 of
7042 // type function" or "pointer to member of C1 of type function",
7043 // respectively;
7044 //
7045 // We also support 'noreturn' here, so as a Clang extension we generalize the
7046 // above to:
7047 //
7048 // - [Clang] If T1 and T2 are both of type "pointer to function" or
7049 // "pointer to member function" and the pointee types can be unified
7050 // by a function pointer conversion, that conversion is applied
7051 // before checking the following rules.
7052 //
7053 // We've already unwrapped down to the function types, and we want to merge
7054 // rather than just convert, so do this ourselves rather than calling
7055 // IsFunctionConversion.
7056 //
7057 // FIXME: In order to match the standard wording as closely as possible, we
7058 // currently only do this under a single level of pointers. Ideally, we would
7059 // allow this in general, and set NeedConstBefore to the relevant depth on
7060 // the side(s) where we changed anything. If we permit that, we should also
7061 // consider this conversion when determining type similarity and model it as
7062 // a qualification conversion.
7063 if (Steps.size() == 1) {
7064 if (auto *FPT1 = Composite1->getAs<FunctionProtoType>()) {
7065 if (auto *FPT2 = Composite2->getAs<FunctionProtoType>()) {
7066 FunctionProtoType::ExtProtoInfo EPI1 = FPT1->getExtProtoInfo();
7067 FunctionProtoType::ExtProtoInfo EPI2 = FPT2->getExtProtoInfo();
7068
7069 // The result is noreturn if both operands are.
7070 bool Noreturn =
7071 EPI1.ExtInfo.getNoReturn() && EPI2.ExtInfo.getNoReturn();
7072 EPI1.ExtInfo = EPI1.ExtInfo.withNoReturn(Noreturn);
7073 EPI2.ExtInfo = EPI2.ExtInfo.withNoReturn(Noreturn);
7074
7075 // The result is nothrow if both operands are.
7076 SmallVector<QualType, 8> ExceptionTypeStorage;
7077 EPI1.ExceptionSpec = EPI2.ExceptionSpec = Context.mergeExceptionSpecs(
7078 EPI1.ExceptionSpec, EPI2.ExceptionSpec, ExceptionTypeStorage,
7079 getLangOpts().CPlusPlus17);
7080
7081 Composite1 = Context.getFunctionType(FPT1->getReturnType(),
7082 FPT1->getParamTypes(), EPI1);
7083 Composite2 = Context.getFunctionType(FPT2->getReturnType(),
7084 FPT2->getParamTypes(), EPI2);
7085 }
7086 }
7087 }
7088
7089 // There are some more conversions we can perform under exactly one pointer.
7090 if (Steps.size() == 1 && Steps.front().K == Step::Pointer &&
7091 !Context.hasSameType(Composite1, Composite2)) {
7092 // - if T1 or T2 is "pointer to cv1 void" and the other type is
7093 // "pointer to cv2 T", where T is an object type or void,
7094 // "pointer to cv12 void", where cv12 is the union of cv1 and cv2;
7095 if (Composite1->isVoidType() && Composite2->isObjectType())
7096 Composite2 = Composite1;
7097 else if (Composite2->isVoidType() && Composite1->isObjectType())
7098 Composite1 = Composite2;
7099 // - if T1 is "pointer to cv1 C1" and T2 is "pointer to cv2 C2", where C1
7100 // is reference-related to C2 or C2 is reference-related to C1 (8.6.3),
7101 // the cv-combined type of T1 and T2 or the cv-combined type of T2 and
7102 // T1, respectively;
7103 //
7104 // The "similar type" handling covers all of this except for the "T1 is a
7105 // base class of T2" case in the definition of reference-related.
7106 else if (IsDerivedFrom(Loc, Composite1, Composite2))
7107 Composite1 = Composite2;
7108 else if (IsDerivedFrom(Loc, Composite2, Composite1))
7109 Composite2 = Composite1;
7110 }
7111
7112 // At this point, either the inner types are the same or we have failed to
7113 // find a composite pointer type.
7114 if (!Context.hasSameType(Composite1, Composite2))
7115 return QualType();
7116
7117 // Per C++ [conv.qual]p3, add 'const' to every level before the last
7118 // differing qualifier.
7119 for (unsigned I = 0; I != NeedConstBefore; ++I)
7120 Steps[I].Quals.addConst();
7121
7122 // Rebuild the composite type.
7123 QualType Composite = Context.getCommonSugaredType(Composite1, Composite2);
7124 for (auto &S : llvm::reverse(Steps))
7125 Composite = S.rebuild(Context, Composite);
7126
7127 if (ConvertArgs) {
7128 // Convert the expressions to the composite pointer type.
7129 InitializedEntity Entity =
7130 InitializedEntity::InitializeTemporary(Composite);
7131 InitializationKind Kind =
7132 InitializationKind::CreateCopy(Loc, SourceLocation());
7133
7134 InitializationSequence E1ToC(*this, Entity, Kind, E1);
7135 if (!E1ToC)
7136 return QualType();
7137
7138 InitializationSequence E2ToC(*this, Entity, Kind, E2);
7139 if (!E2ToC)
7140 return QualType();
7141
7142 // FIXME: Let the caller know if these fail to avoid duplicate diagnostics.
7143 ExprResult E1Result = E1ToC.Perform(*this, Entity, Kind, E1);
7144 if (E1Result.isInvalid())
7145 return QualType();
7146 E1 = E1Result.get();
7147
7148 ExprResult E2Result = E2ToC.Perform(*this, Entity, Kind, E2);
7149 if (E2Result.isInvalid())
7150 return QualType();
7151 E2 = E2Result.get();
7152 }
7153
7154 return Composite;
7155}
7156
7157ExprResult Sema::MaybeBindToTemporary(Expr *E) {
7158 if (!E)
7159 return ExprError();
7160
7161 assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?")(static_cast <bool> (!isa<CXXBindTemporaryExpr>(E
) && "Double-bound temporary?") ? void (0) : __assert_fail
("!isa<CXXBindTemporaryExpr>(E) && \"Double-bound temporary?\""
, "clang/lib/Sema/SemaExprCXX.cpp", 7161, __extension__ __PRETTY_FUNCTION__
))
;
7162
7163 // If the result is a glvalue, we shouldn't bind it.
7164 if (E->isGLValue())
7165 return E;
7166
7167 // In ARC, calls that return a retainable type can return retained,
7168 // in which case we have to insert a consuming cast.
7169 if (getLangOpts().ObjCAutoRefCount &&
7170 E->getType()->isObjCRetainableType()) {
7171
7172 bool ReturnsRetained;
7173
7174 // For actual calls, we compute this by examining the type of the
7175 // called value.
7176 if (CallExpr *Call = dyn_cast<CallExpr>(E)) {
7177 Expr *Callee = Call->getCallee()->IgnoreParens();
7178 QualType T = Callee->getType();
7179
7180 if (T == Context.BoundMemberTy) {
7181 // Handle pointer-to-members.
7182 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Callee))
7183 T = BinOp->getRHS()->getType();
7184 else if (MemberExpr *Mem = dyn_cast<MemberExpr>(Callee))
7185 T = Mem->getMemberDecl()->getType();
7186 }
7187
7188 if (const PointerType *Ptr = T->getAs<PointerType>())
7189 T = Ptr->getPointeeType();
7190 else if (const BlockPointerType *Ptr = T->getAs<BlockPointerType>())
7191 T = Ptr->getPointeeType();
7192 else if (const MemberPointerType *MemPtr = T->getAs<MemberPointerType>())
7193 T = MemPtr->getPointeeType();
7194
7195 auto *FTy = T->castAs<FunctionType>();
7196 ReturnsRetained = FTy->getExtInfo().getProducesResult();
7197
7198 // ActOnStmtExpr arranges things so that StmtExprs of retainable
7199 // type always produce a +1 object.
7200 } else if (isa<StmtExpr>(E)) {
7201 ReturnsRetained = true;
7202
7203 // We hit this case with the lambda conversion-to-block optimization;
7204 // we don't want any extra casts here.
7205 } else if (isa<CastExpr>(E) &&
7206 isa<BlockExpr>(cast<CastExpr>(E)->getSubExpr())) {
7207 return E;
7208
7209 // For message sends and property references, we try to find an
7210 // actual method. FIXME: we should infer retention by selector in
7211 // cases where we don't have an actual method.
7212 } else {
7213 ObjCMethodDecl *D = nullptr;
7214 if (ObjCMessageExpr *Send = dyn_cast<ObjCMessageExpr>(E)) {
7215 D = Send->getMethodDecl();
7216 } else if (ObjCBoxedExpr *BoxedExpr = dyn_cast<ObjCBoxedExpr>(E)) {
7217 D = BoxedExpr->getBoxingMethod();
7218 } else if (ObjCArrayLiteral *ArrayLit = dyn_cast<ObjCArrayLiteral>(E)) {
7219 // Don't do reclaims if we're using the zero-element array
7220 // constant.
7221 if (ArrayLit->getNumElements() == 0 &&
7222 Context.getLangOpts().ObjCRuntime.hasEmptyCollections())
7223 return E;
7224
7225 D = ArrayLit->getArrayWithObjectsMethod();
7226 } else if (ObjCDictionaryLiteral *DictLit
7227 = dyn_cast<ObjCDictionaryLiteral>(E)) {
7228 // Don't do reclaims if we're using the zero-element dictionary
7229 // constant.
7230 if (DictLit->getNumElements() == 0 &&
7231 Context.getLangOpts().ObjCRuntime.hasEmptyCollections())
7232 return E;
7233
7234 D = DictLit->getDictWithObjectsMethod();
7235 }
7236
7237 ReturnsRetained = (D && D->hasAttr<NSReturnsRetainedAttr>());
7238
7239 // Don't do reclaims on performSelector calls; despite their
7240 // return type, the invoked method doesn't necessarily actually
7241 // return an object.
7242 if (!ReturnsRetained &&
7243 D && D->getMethodFamily() == OMF_performSelector)
7244 return E;
7245 }
7246
7247 // Don't reclaim an object of Class type.
7248 if (!ReturnsRetained && E->getType()->isObjCARCImplicitlyUnretainedType())
7249 return E;
7250
7251 Cleanup.setExprNeedsCleanups(true);
7252
7253 CastKind ck = (ReturnsRetained ? CK_ARCConsumeObject
7254 : CK_ARCReclaimReturnedObject);
7255 return ImplicitCastExpr::Create(Context, E->getType(), ck, E, nullptr,
7256 VK_PRValue, FPOptionsOverride());
7257 }
7258
7259 if (E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct)
7260 Cleanup.setExprNeedsCleanups(true);
7261
7262 if (!getLangOpts().CPlusPlus)
7263 return E;
7264
7265 // Search for the base element type (cf. ASTContext::getBaseElementType) with
7266 // a fast path for the common case that the type is directly a RecordType.
7267 const Type *T = Context.getCanonicalType(E->getType().getTypePtr());
7268 const RecordType *RT = nullptr;
7269 while (!RT) {
7270 switch (T->getTypeClass()) {
7271 case Type::Record:
7272 RT = cast<RecordType>(T);
7273 break;
7274 case Type::ConstantArray:
7275 case Type::IncompleteArray:
7276 case Type::VariableArray:
7277 case Type::DependentSizedArray:
7278 T = cast<ArrayType>(T)->getElementType().getTypePtr();
7279 break;
7280 default:
7281 return E;
7282 }
7283 }
7284
7285 // That should be enough to guarantee that this type is complete, if we're
7286 // not processing a decltype expression.
7287 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
7288 if (RD->isInvalidDecl() || RD->isDependentContext())
7289 return E;
7290
7291 bool IsDecltype = ExprEvalContexts.back().ExprContext ==
7292 ExpressionEvaluationContextRecord::EK_Decltype;
7293 CXXDestructorDecl *Destructor = IsDecltype ? nullptr : LookupDestructor(RD);
7294
7295 if (Destructor) {
7296 MarkFunctionReferenced(E->getExprLoc(), Destructor);
7297 CheckDestructorAccess(E->getExprLoc(), Destructor,
7298 PDiag(diag::err_access_dtor_temp)
7299 << E->getType());
7300 if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
7301 return ExprError();
7302
7303 // If destructor is trivial, we can avoid the extra copy.
7304 if (Destructor->isTrivial())
7305 return E;
7306
7307 // We need a cleanup, but we don't need to remember the temporary.
7308 Cleanup.setExprNeedsCleanups(true);
7309 }
7310
7311 CXXTemporary *Temp = CXXTemporary::Create(Context, Destructor);
7312 CXXBindTemporaryExpr *Bind = CXXBindTemporaryExpr::Create(Context, Temp, E);
7313
7314 if (IsDecltype)
7315 ExprEvalContexts.back().DelayedDecltypeBinds.push_back(Bind);
7316
7317 return Bind;
7318}
7319
7320ExprResult
7321Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) {
7322 if (SubExpr.isInvalid())
7323 return ExprError();
7324
7325 return MaybeCreateExprWithCleanups(SubExpr.get());
7326}
7327
7328Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) {
7329 assert(SubExpr && "subexpression can't be null!")(static_cast <bool> (SubExpr && "subexpression can't be null!"
) ? void (0) : __assert_fail ("SubExpr && \"subexpression can't be null!\""
, "clang/lib/Sema/SemaExprCXX.cpp", 7329, __extension__ __PRETTY_FUNCTION__
))
;
7330
7331 CleanupVarDeclMarking();
7332
7333 unsigned FirstCleanup = ExprEvalContexts.back().NumCleanupObjects;
7334 assert(ExprCleanupObjects.size() >= FirstCleanup)(static_cast <bool> (ExprCleanupObjects.size() >= FirstCleanup
) ? void (0) : __assert_fail ("ExprCleanupObjects.size() >= FirstCleanup"
, "clang/lib/Sema/SemaExprCXX.cpp", 7334, __extension__ __PRETTY_FUNCTION__
))
;
7335 assert(Cleanup.exprNeedsCleanups() ||(static_cast <bool> (Cleanup.exprNeedsCleanups() || ExprCleanupObjects
.size() == FirstCleanup) ? void (0) : __assert_fail ("Cleanup.exprNeedsCleanups() || ExprCleanupObjects.size() == FirstCleanup"
, "clang/lib/Sema/SemaExprCXX.cpp", 7336, __extension__ __PRETTY_FUNCTION__
))
7336 ExprCleanupObjects.size() == FirstCleanup)(static_cast <bool> (Cleanup.exprNeedsCleanups() || ExprCleanupObjects
.size() == FirstCleanup) ? void (0) : __assert_fail ("Cleanup.exprNeedsCleanups() || ExprCleanupObjects.size() == FirstCleanup"
, "clang/lib/Sema/SemaExprCXX.cpp", 7336, __extension__ __PRETTY_FUNCTION__
))
;
7337 if (!Cleanup.exprNeedsCleanups())
7338 return SubExpr;
7339
7340 auto Cleanups = llvm::ArrayRef(ExprCleanupObjects.begin() + FirstCleanup,
7341 ExprCleanupObjects.size() - FirstCleanup);
7342
7343 auto *E = ExprWithCleanups::Create(
7344 Context, SubExpr, Cleanup.cleanupsHaveSideEffects(), Cleanups);
7345 DiscardCleanupsInEvaluationContext();
7346
7347 return E;
7348}
7349
7350Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) {
7351 assert(SubStmt && "sub-statement can't be null!")(static_cast <bool> (SubStmt && "sub-statement can't be null!"
) ? void (0) : __assert_fail ("SubStmt && \"sub-statement can't be null!\""
, "clang/lib/Sema/SemaExprCXX.cpp", 7351, __extension__ __PRETTY_FUNCTION__
))
;
7352
7353 CleanupVarDeclMarking();
7354
7355 if (!Cleanup.exprNeedsCleanups())
7356 return SubStmt;
7357
7358 // FIXME: In order to attach the temporaries, wrap the statement into
7359 // a StmtExpr; currently this is only used for asm statements.
7360 // This is hacky, either create a new CXXStmtWithTemporaries statement or
7361 // a new AsmStmtWithTemporaries.
7362 CompoundStmt *CompStmt =
7363 CompoundStmt::Create(Context, SubStmt, FPOptionsOverride(),
7364 SourceLocation(), SourceLocation());
7365 Expr *E = new (Context)
7366 StmtExpr(CompStmt, Context.VoidTy, SourceLocation(), SourceLocation(),
7367 /*FIXME TemplateDepth=*/0);
7368 return MaybeCreateExprWithCleanups(E);
7369}
7370
7371/// Process the expression contained within a decltype. For such expressions,
7372/// certain semantic checks on temporaries are delayed until this point, and
7373/// are omitted for the 'topmost' call in the decltype expression. If the
7374/// topmost call bound a temporary, strip that temporary off the expression.
7375ExprResult Sema::ActOnDecltypeExpression(Expr *E) {
7376 assert(ExprEvalContexts.back().ExprContext ==(static_cast <bool> (ExprEvalContexts.back().ExprContext
== ExpressionEvaluationContextRecord::EK_Decltype &&
"not in a decltype expression") ? void (0) : __assert_fail (
"ExprEvalContexts.back().ExprContext == ExpressionEvaluationContextRecord::EK_Decltype && \"not in a decltype expression\""
, "clang/lib/Sema/SemaExprCXX.cpp", 7378, __extension__ __PRETTY_FUNCTION__
))
7377 ExpressionEvaluationContextRecord::EK_Decltype &&(static_cast <bool> (ExprEvalContexts.back().ExprContext
== ExpressionEvaluationContextRecord::EK_Decltype &&
"not in a decltype expression") ? void (0) : __assert_fail (
"ExprEvalContexts.back().ExprContext == ExpressionEvaluationContextRecord::EK_Decltype && \"not in a decltype expression\""
, "clang/lib/Sema/SemaExprCXX.cpp", 7378, __extension__ __PRETTY_FUNCTION__
))
7378 "not in a decltype expression")(static_cast <bool> (ExprEvalContexts.back().ExprContext
== ExpressionEvaluationContextRecord::EK_Decltype &&
"not in a decltype expression") ? void (0) : __assert_fail (
"ExprEvalContexts.back().ExprContext == ExpressionEvaluationContextRecord::EK_Decltype && \"not in a decltype expression\""
, "clang/lib/Sema/SemaExprCXX.cpp", 7378, __extension__ __PRETTY_FUNCTION__
))
;
7379
7380 ExprResult Result = CheckPlaceholderExpr(E);
7381 if (Result.isInvalid())
7382 return ExprError();
7383 E = Result.get();
7384
7385 // C++11 [expr.call]p11:
7386 // If a function call is a prvalue of object type,
7387 // -- if the function call is either
7388 // -- the operand of a decltype-specifier, or
7389 // -- the right operand of a comma operator that is the operand of a
7390 // decltype-specifier,
7391 // a temporary object is not introduced for the prvalue.
7392
7393 // Recursively rebuild ParenExprs and comma expressions to strip out the
7394 // outermost CXXBindTemporaryExpr, if any.
7395 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
7396 ExprResult SubExpr = ActOnDecltypeExpression(PE->getSubExpr());
7397 if (SubExpr.isInvalid())
7398 return ExprError();
7399 if (SubExpr.get() == PE->getSubExpr())
7400 return E;
7401 return ActOnParenExpr(PE->getLParen(), PE->getRParen(), SubExpr.get());
7402 }
7403 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
7404 if (BO->getOpcode() == BO_Comma) {
7405 ExprResult RHS = ActOnDecltypeExpression(BO->getRHS());
7406 if (RHS.isInvalid())
7407 return ExprError();
7408 if (RHS.get() == BO->getRHS())
7409 return E;
7410 return BinaryOperator::Create(Context, BO->getLHS(), RHS.get(), BO_Comma,
7411 BO->getType(), BO->getValueKind(),
7412 BO->getObjectKind(), BO->getOperatorLoc(),
7413 BO->getFPFeatures());
7414 }
7415 }
7416
7417 CXXBindTemporaryExpr *TopBind = dyn_cast<CXXBindTemporaryExpr>(E);
7418 CallExpr *TopCall = TopBind ? dyn_cast<CallExpr>(TopBind->getSubExpr())
7419 : nullptr;
7420 if (TopCall)
7421 E = TopCall;
7422 else
7423 TopBind = nullptr;
7424
7425 // Disable the special decltype handling now.
7426 ExprEvalContexts.back().ExprContext =
7427 ExpressionEvaluationContextRecord::EK_Other;
7428
7429 Result = CheckUnevaluatedOperand(E);
7430 if (Result.isInvalid())
7431 return ExprError();
7432 E = Result.get();
7433
7434 // In MS mode, don't perform any extra checking of call return types within a
7435 // decltype expression.
7436 if (getLangOpts().MSVCCompat)
7437 return E;
7438
7439 // Perform the semantic checks we delayed until this point.
7440 for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeCalls.size();
7441 I != N; ++I) {
7442 CallExpr *Call = ExprEvalContexts.back().DelayedDecltypeCalls[I];
7443 if (Call == TopCall)
7444 continue;
7445
7446 if (CheckCallReturnType(Call->getCallReturnType(Context),
7447 Call->getBeginLoc(), Call, Call->getDirectCallee()))
7448 return ExprError();
7449 }
7450
7451 // Now all relevant types are complete, check the destructors are accessible
7452 // and non-deleted, and annotate them on the temporaries.
7453 for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeBinds.size();
7454 I != N; ++I) {
7455 CXXBindTemporaryExpr *Bind =
7456 ExprEvalContexts.back().DelayedDecltypeBinds[I];
7457 if (Bind == TopBind)
7458 continue;
7459
7460 CXXTemporary *Temp = Bind->getTemporary();
7461
7462 CXXRecordDecl *RD =
7463 Bind->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
7464 CXXDestructorDecl *Destructor = LookupDestructor(RD);
7465 Temp->setDestructor(Destructor);
7466
7467 MarkFunctionReferenced(Bind->getExprLoc(), Destructor);
7468 CheckDestructorAccess(Bind->getExprLoc(), Destructor,
7469 PDiag(diag::err_access_dtor_temp)
7470 << Bind->getType());
7471 if (DiagnoseUseOfDecl(Destructor, Bind->getExprLoc()))
7472 return ExprError();
7473
7474 // We need a cleanup, but we don't need to remember the temporary.
7475 Cleanup.setExprNeedsCleanups(true);
7476 }
7477
7478 // Possibly strip off the top CXXBindTemporaryExpr.
7479 return E;
7480}
7481
7482/// Note a set of 'operator->' functions that were used for a member access.
7483static void noteOperatorArrows(Sema &S,
7484 ArrayRef<FunctionDecl *> OperatorArrows) {
7485 unsigned SkipStart = OperatorArrows.size(), SkipCount = 0;
7486 // FIXME: Make this configurable?
7487 unsigned Limit = 9;
7488 if (OperatorArrows.size() > Limit) {
7489 // Produce Limit-1 normal notes and one 'skipping' note.
7490 SkipStart = (Limit - 1) / 2 + (Limit - 1) % 2;
7491 SkipCount = OperatorArrows.size() - (Limit - 1);
7492 }
7493
7494 for (unsigned I = 0; I < OperatorArrows.size(); /**/) {
7495 if (I == SkipStart) {
7496 S.Diag(OperatorArrows[I]->getLocation(),
7497 diag::note_operator_arrows_suppressed)
7498 << SkipCount;
7499 I += SkipCount;
7500 } else {
7501 S.Diag(OperatorArrows[I]->getLocation(), diag::note_operator_arrow_here)
7502 << OperatorArrows[I]->getCallResultType();
7503 ++I;
7504 }
7505 }
7506}
7507
7508ExprResult Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base,
7509 SourceLocation OpLoc,
7510 tok::TokenKind OpKind,
7511 ParsedType &ObjectType,
7512 bool &MayBePseudoDestructor) {
7513 // Since this might be a postfix expression, get rid of ParenListExprs.
7514 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
7515 if (Result.isInvalid()) return ExprError();
7516 Base = Result.get();
7517
7518 Result = CheckPlaceholderExpr(Base);
7519 if (Result.isInvalid()) return ExprError();
7520 Base = Result.get();
7521
7522 QualType BaseType = Base->getType();
7523 MayBePseudoDestructor = false;
7524 if (BaseType->isDependentType()) {
7525 // If we have a pointer to a dependent type and are using the -> operator,
7526 // the object type is the type that the pointer points to. We might still
7527 // have enough information about that type to do something useful.
7528 if (OpKind == tok::arrow)
7529 if (const PointerType *Ptr = BaseType->getAs<PointerType>())
7530 BaseType = Ptr->getPointeeType();
7531
7532 ObjectType = ParsedType::make(BaseType);
7533 MayBePseudoDestructor = true;
7534 return Base;
7535 }
7536
7537 // C++ [over.match.oper]p8:
7538 // [...] When operator->returns, the operator-> is applied to the value
7539 // returned, with the original second operand.
7540 if (OpKind == tok::arrow) {
7541 QualType StartingType = BaseType;
7542 bool NoArrowOperatorFound = false;
7543 bool FirstIteration = true;
7544 FunctionDecl *CurFD = dyn_cast<FunctionDecl>(CurContext);
7545 // The set of types we've considered so far.
7546 llvm::SmallPtrSet<CanQualType,8> CTypes;
7547 SmallVector<FunctionDecl*, 8> OperatorArrows;
7548 CTypes.insert(Context.getCanonicalType(BaseType));
7549
7550 while (BaseType->isRecordType()) {
7551 if (OperatorArrows.size() >= getLangOpts().ArrowDepth) {
7552 Diag(OpLoc, diag::err_operator_arrow_depth_exceeded)
7553 << StartingType << getLangOpts().ArrowDepth << Base->getSourceRange();
7554 noteOperatorArrows(*this, OperatorArrows);
7555 Diag(OpLoc, diag::note_operator_arrow_depth)
7556 << getLangOpts().ArrowDepth;
7557 return ExprError();
7558 }
7559
7560 Result = BuildOverloadedArrowExpr(
7561 S, Base, OpLoc,
7562 // When in a template specialization and on the first loop iteration,
7563 // potentially give the default diagnostic (with the fixit in a
7564 // separate note) instead of having the error reported back to here
7565 // and giving a diagnostic with a fixit attached to the error itself.
7566 (FirstIteration && CurFD && CurFD->isFunctionTemplateSpecialization())
7567 ? nullptr
7568 : &NoArrowOperatorFound);
7569 if (Result.isInvalid()) {
7570 if (NoArrowOperatorFound) {
7571 if (FirstIteration) {
7572 Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
7573 << BaseType << 1 << Base->getSourceRange()
7574 << FixItHint::CreateReplacement(OpLoc, ".");
7575 OpKind = tok::period;
7576 break;
7577 }
7578 Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
7579 << BaseType << Base->getSourceRange();
7580 CallExpr *CE = dyn_cast<CallExpr>(Base);
7581 if (Decl *CD = (CE ? CE->getCalleeDecl() : nullptr)) {
7582 Diag(CD->getBeginLoc(),
7583 diag::note_member_reference_arrow_from_operator_arrow);
7584 }
7585 }
7586 return ExprError();
7587 }
7588 Base = Result.get();
7589 if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base))
7590 OperatorArrows.push_back(OpCall->getDirectCallee());
7591 BaseType = Base->getType();
7592 CanQualType CBaseType = Context.getCanonicalType(BaseType);
7593 if (!CTypes.insert(CBaseType).second) {
7594 Diag(OpLoc, diag::err_operator_arrow_circular) << StartingType;
7595 noteOperatorArrows(*this, OperatorArrows);
7596 return ExprError();
7597 }
7598 FirstIteration = false;
7599 }
7600
7601 if (OpKind == tok::arrow) {
7602 if (BaseType->isPointerType())
7603 BaseType = BaseType->getPointeeType();
7604 else if (auto *AT = Context.getAsArrayType(BaseType))
7605 BaseType = AT->getElementType();
7606 }
7607 }
7608
7609 // Objective-C properties allow "." access on Objective-C pointer types,
7610 // so adjust the base type to the object type itself.
7611 if (BaseType->isObjCObjectPointerType())
7612 BaseType = BaseType->getPointeeType();
7613
7614 // C++ [basic.lookup.classref]p2:
7615 // [...] If the type of the object expression is of pointer to scalar
7616 // type, the unqualified-id is looked up in the context of the complete
7617 // postfix-expression.
7618 //
7619 // This also indicates that we could be parsing a pseudo-destructor-name.
7620 // Note that Objective-C class and object types can be pseudo-destructor
7621 // expressions or normal member (ivar or property) access expressions, and
7622 // it's legal for the type to be incomplete if this is a pseudo-destructor
7623 // call. We'll do more incomplete-type checks later in the lookup process,
7624 // so just skip this check for ObjC types.
7625 if (!BaseType->isRecordType()) {
7626 ObjectType = ParsedType::make(BaseType);
7627 MayBePseudoDestructor = true;
7628 return Base;
7629 }
7630
7631 // The object type must be complete (or dependent), or
7632 // C++11 [expr.prim.general]p3:
7633 // Unlike the object expression in other contexts, *this is not required to
7634 // be of complete type for purposes of class member access (5.2.5) outside
7635 // the member function body.
7636 if (!BaseType->isDependentType() &&
7637 !isThisOutsideMemberFunctionBody(BaseType) &&
7638 RequireCompleteType(OpLoc, BaseType,
7639 diag::err_incomplete_member_access)) {
7640 return CreateRecoveryExpr(Base->getBeginLoc(), Base->getEndLoc(), {Base});
7641 }
7642
7643 // C++ [basic.lookup.classref]p2:
7644 // If the id-expression in a class member access (5.2.5) is an
7645 // unqualified-id, and the type of the object expression is of a class
7646 // type C (or of pointer to a class type C), the unqualified-id is looked
7647 // up in the scope of class C. [...]
7648 ObjectType = ParsedType::make(BaseType);
7649 return Base;
7650}
7651
7652static bool CheckArrow(Sema &S, QualType &ObjectType, Expr *&Base,
7653 tok::TokenKind &OpKind, SourceLocation OpLoc) {
7654 if (Base->hasPlaceholderType()) {
7655 ExprResult result = S.CheckPlaceholderExpr(Base);
7656 if (result.isInvalid()) return true;
7657 Base = result.get();
7658 }
7659 ObjectType = Base->getType();
7660
7661 // C++ [expr.pseudo]p2:
7662 // The left-hand side of the dot operator shall be of scalar type. The
7663 // left-hand side of the arrow operator shall be of pointer to scalar type.
7664 // This scalar type is the object type.
7665 // Note that this is rather different from the normal handling for the
7666 // arrow operator.
7667 if (OpKind == tok::arrow) {
7668 // The operator requires a prvalue, so perform lvalue conversions.
7669 // Only do this if we might plausibly end with a pointer, as otherwise
7670 // this was likely to be intended to be a '.'.
7671 if (ObjectType->isPointerType() || ObjectType->isArrayType() ||
7672 ObjectType->isFunctionType()) {
7673 ExprResult BaseResult = S.DefaultFunctionArrayLvalueConversion(Base);
7674 if (BaseResult.isInvalid())
7675 return true;
7676 Base = BaseResult.get();
7677 ObjectType = Base->getType();
7678 }
7679
7680 if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
7681 ObjectType = Ptr->getPointeeType();
7682 } else if (!Base->isTypeDependent()) {
7683 // The user wrote "p->" when they probably meant "p."; fix it.
7684 S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
7685 << ObjectType << true
7686 << FixItHint::CreateReplacement(OpLoc, ".");
7687 if (S.isSFINAEContext())
7688 return true;
7689
7690 OpKind = tok::period;
7691 }
7692 }
7693
7694 return false;
7695}
7696
7697/// Check if it's ok to try and recover dot pseudo destructor calls on
7698/// pointer objects.
7699static bool
7700canRecoverDotPseudoDestructorCallsOnPointerObjects(Sema &SemaRef,
7701 QualType DestructedType) {
7702 // If this is a record type, check if its destructor is callable.
7703 if (auto *RD = DestructedType->getAsCXXRecordDecl()) {
7704 if (RD->hasDefinition())
7705 if (CXXDestructorDecl *D = SemaRef.LookupDestructor(RD))
7706 return SemaRef.CanUseDecl(D, /*TreatUnavailableAsInvalid=*/false);
7707 return false;
7708 }
7709
7710 // Otherwise, check if it's a type for which it's valid to use a pseudo-dtor.
7711 return DestructedType->isDependentType() || DestructedType->isScalarType() ||
7712 DestructedType->isVectorType();
7713}
7714
7715ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base,
7716 SourceLocation OpLoc,
7717 tok::TokenKind OpKind,
7718 const CXXScopeSpec &SS,
7719 TypeSourceInfo *ScopeTypeInfo,
7720 SourceLocation CCLoc,
7721 SourceLocation TildeLoc,
7722 PseudoDestructorTypeStorage Destructed) {
7723 TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo();
7724
7725 QualType ObjectType;
7726 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
7727 return ExprError();
7728
7729 if (!ObjectType->isDependentType() && !ObjectType->isScalarType() &&
7730 !ObjectType->isVectorType()) {
7731 if (getLangOpts().MSVCCompat && ObjectType->isVoidType())
7732 Diag(OpLoc, diag::ext_pseudo_dtor_on_void) << Base->getSourceRange();
7733 else {
7734 Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
7735 << ObjectType << Base->getSourceRange();
7736 return ExprError();
7737 }
7738 }
7739
7740 // C++ [expr.pseudo]p2:
7741 // [...] The cv-unqualified versions of the object type and of the type
7742 // designated by the pseudo-destructor-name shall be the same type.
7743 if (DestructedTypeInfo) {
7744 QualType DestructedType = DestructedTypeInfo->getType();
7745 SourceLocation DestructedTypeStart =
7746 DestructedTypeInfo->getTypeLoc().getBeginLoc();
7747 if (!DestructedType->isDependentType() && !ObjectType->isDependentType()) {
7748 if (!Context.hasSameUnqualifiedType(DestructedType, ObjectType)) {
7749 // Detect dot pseudo destructor calls on pointer objects, e.g.:
7750 // Foo *foo;
7751 // foo.~Foo();
7752 if (OpKind == tok::period && ObjectType->isPointerType() &&
7753 Context.hasSameUnqualifiedType(DestructedType,
7754 ObjectType->getPointeeType())) {
7755 auto Diagnostic =
7756 Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
7757 << ObjectType << /*IsArrow=*/0 << Base->getSourceRange();
7758
7759 // Issue a fixit only when the destructor is valid.
7760 if (canRecoverDotPseudoDestructorCallsOnPointerObjects(
7761 *this, DestructedType))
7762 Diagnostic << FixItHint::CreateReplacement(OpLoc, "->");
7763
7764 // Recover by setting the object type to the destructed type and the
7765 // operator to '->'.
7766 ObjectType = DestructedType;
7767 OpKind = tok::arrow;
7768 } else {
7769 Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch)
7770 << ObjectType << DestructedType << Base->getSourceRange()
7771 << DestructedTypeInfo->getTypeLoc().getSourceRange();
7772
7773 // Recover by setting the destructed type to the object type.
7774 DestructedType = ObjectType;
7775 DestructedTypeInfo =
7776 Context.getTrivialTypeSourceInfo(ObjectType, DestructedTypeStart);
7777 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
7778 }
7779 } else if (DestructedType.getObjCLifetime() !=
7780 ObjectType.getObjCLifetime()) {
7781
7782 if (DestructedType.getObjCLifetime() == Qualifiers::OCL_None) {
7783 // Okay: just pretend that the user provided the correctly-qualified
7784 // type.
7785 } else {
7786 Diag(DestructedTypeStart, diag::err_arc_pseudo_dtor_inconstant_quals)
7787 << ObjectType << DestructedType << Base->getSourceRange()
7788 << DestructedTypeInfo->getTypeLoc().getSourceRange();
7789 }
7790
7791 // Recover by setting the destructed type to the object type.
7792 DestructedType = ObjectType;
7793 DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
7794 DestructedTypeStart);
7795 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
7796 }
7797 }
7798 }
7799
7800 // C++ [expr.pseudo]p2:
7801 // [...] Furthermore, the two type-names in a pseudo-destructor-name of the
7802 // form
7803 //
7804 // ::[opt] nested-name-specifier[opt] type-name :: ~ type-name
7805 //
7806 // shall designate the same scalar type.
7807 if (ScopeTypeInfo) {
7808 QualType ScopeType = ScopeTypeInfo->getType();
7809 if (!ScopeType->isDependentType() && !ObjectType->isDependentType() &&
7810 !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) {
7811
7812 Diag(ScopeTypeInfo->getTypeLoc().getSourceRange().getBegin(),
7813 diag::err_pseudo_dtor_type_mismatch)
7814 << ObjectType << ScopeType << Base->getSourceRange()
7815 << ScopeTypeInfo->getTypeLoc().getSourceRange();
7816
7817 ScopeType = QualType();
7818 ScopeTypeInfo = nullptr;
7819 }
7820 }
7821
7822 Expr *Result
7823 = new (Context) CXXPseudoDestructorExpr(Context, Base,
7824 OpKind == tok::arrow, OpLoc,
7825 SS.getWithLocInContext(Context),
7826 ScopeTypeInfo,
7827 CCLoc,
7828 TildeLoc,
7829 Destructed);
7830
7831 return Result;
7832}
7833
7834ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
7835 SourceLocation OpLoc,
7836 tok::TokenKind OpKind,
7837 CXXScopeSpec &SS,
7838 UnqualifiedId &FirstTypeName,
7839 SourceLocation CCLoc,
7840 SourceLocation TildeLoc,
7841 UnqualifiedId &SecondTypeName) {
7842 assert((FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId ||(static_cast <bool> ((FirstTypeName.getKind() == UnqualifiedIdKind
::IK_TemplateId || FirstTypeName.getKind() == UnqualifiedIdKind
::IK_Identifier) && "Invalid first type name in pseudo-destructor"
) ? void (0) : __assert_fail ("(FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId || FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) && \"Invalid first type name in pseudo-destructor\""
, "clang/lib/Sema/SemaExprCXX.cpp", 7844, __extension__ __PRETTY_FUNCTION__
))
7843 FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) &&(static_cast <bool> ((FirstTypeName.getKind() == UnqualifiedIdKind
::IK_TemplateId || FirstTypeName.getKind() == UnqualifiedIdKind
::IK_Identifier) && "Invalid first type name in pseudo-destructor"
) ? void (0) : __assert_fail ("(FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId || FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) && \"Invalid first type name in pseudo-destructor\""
, "clang/lib/Sema/SemaExprCXX.cpp", 7844, __extension__ __PRETTY_FUNCTION__
))
7844 "Invalid first type name in pseudo-destructor")(static_cast <bool> ((FirstTypeName.getKind() == UnqualifiedIdKind
::IK_TemplateId || FirstTypeName.getKind() == UnqualifiedIdKind
::IK_Identifier) && "Invalid first type name in pseudo-destructor"
) ? void (0) : __assert_fail ("(FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId || FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) && \"Invalid first type name in pseudo-destructor\""
, "clang/lib/Sema/SemaExprCXX.cpp", 7844, __extension__ __PRETTY_FUNCTION__
))
;
7845 assert((SecondTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId ||(static_cast <bool> ((SecondTypeName.getKind() == UnqualifiedIdKind
::IK_TemplateId || SecondTypeName.getKind() == UnqualifiedIdKind
::IK_Identifier) && "Invalid second type name in pseudo-destructor"
) ? void (0) : __assert_fail ("(SecondTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId || SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) && \"Invalid second type name in pseudo-destructor\""
, "clang/lib/Sema/SemaExprCXX.cpp", 7847, __extension__ __PRETTY_FUNCTION__
))
7846 SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) &&(static_cast <bool> ((SecondTypeName.getKind() == UnqualifiedIdKind
::IK_TemplateId || SecondTypeName.getKind() == UnqualifiedIdKind
::IK_Identifier) && "Invalid second type name in pseudo-destructor"
) ? void (0) : __assert_fail ("(SecondTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId || SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) && \"Invalid second type name in pseudo-destructor\""
, "clang/lib/Sema/SemaExprCXX.cpp", 7847, __extension__ __PRETTY_FUNCTION__
))
7847 "Invalid second type name in pseudo-destructor")(static_cast <bool> ((SecondTypeName.getKind() == UnqualifiedIdKind
::IK_TemplateId || SecondTypeName.getKind() == UnqualifiedIdKind
::IK_Identifier) && "Invalid second type name in pseudo-destructor"
) ? void (0) : __assert_fail ("(SecondTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId || SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) && \"Invalid second type name in pseudo-destructor\""
, "clang/lib/Sema/SemaExprCXX.cpp", 7847, __extension__ __PRETTY_FUNCTION__
))
;
7848
7849 QualType ObjectType;
7850 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
7851 return ExprError();
7852
7853 // Compute the object type that we should use for name lookup purposes. Only
7854 // record types and dependent types matter.
7855 ParsedType ObjectTypePtrForLookup;
7856 if (!SS.isSet()) {
7857 if (ObjectType->isRecordType())
7858 ObjectTypePtrForLookup = ParsedType::make(ObjectType);
7859 else if (ObjectType->isDependentType())
7860 ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy);
7861 }
7862
7863 // Convert the name of the type being destructed (following the ~) into a
7864 // type (with source-location information).
7865 QualType DestructedType;
7866 TypeSourceInfo *DestructedTypeInfo = nullptr;
7867 PseudoDestructorTypeStorage Destructed;
7868 if (SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) {
7869 ParsedType T = getTypeName(*SecondTypeName.Identifier,
7870 SecondTypeName.StartLocation,
7871 S, &SS, true, false, ObjectTypePtrForLookup,
7872 /*IsCtorOrDtorName*/true);
7873 if (!T &&
7874 ((SS.isSet() && !computeDeclContext(SS, false)) ||
7875 (!SS.isSet() && ObjectType->isDependentType()))) {
7876 // The name of the type being destroyed is a dependent name, and we
7877 // couldn't find anything useful in scope. Just store the identifier and
7878 // it's location, and we'll perform (qualified) name lookup again at
7879 // template instantiation time.
7880 Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier,
7881 SecondTypeName.StartLocation);
7882 } else if (!T) {
7883 Diag(SecondTypeName.StartLocation,
7884 diag::err_pseudo_dtor_destructor_non_type)
7885 << SecondTypeName.Identifier << ObjectType;
7886 if (isSFINAEContext())
7887 return ExprError();
7888
7889 // Recover by assuming we had the right type all along.
7890 DestructedType = ObjectType;
7891 } else
7892 DestructedType = GetTypeFromParser(T, &DestructedTypeInfo);
7893 } else {
7894 // Resolve the template-id to a type.
7895 TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId;
7896 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
7897 TemplateId->NumArgs);
7898 TypeResult T = ActOnTemplateIdType(S,
7899 SS,
7900 TemplateId->TemplateKWLoc,
7901 TemplateId->Template,
7902 TemplateId->Name,
7903 TemplateId->TemplateNameLoc,
7904 TemplateId->LAngleLoc,
7905 TemplateArgsPtr,
7906 TemplateId->RAngleLoc,
7907 /*IsCtorOrDtorName*/true);
7908 if (T.isInvalid() || !T.get()) {
7909 // Recover by assuming we had the right type all along.
7910 DestructedType = ObjectType;
7911 } else
7912 DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo);
7913 }
7914
7915 // If we've performed some kind of recovery, (re-)build the type source
7916 // information.
7917 if (!DestructedType.isNull()) {
7918 if (!DestructedTypeInfo)
7919 DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType,
7920 SecondTypeName.StartLocation);
7921 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
7922 }
7923
7924 // Convert the name of the scope type (the type prior to '::') into a type.
7925 TypeSourceInfo *ScopeTypeInfo = nullptr;
7926 QualType ScopeType;
7927 if (FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId ||
7928 FirstTypeName.Identifier) {
7929 if (FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) {
7930 ParsedType T = getTypeName(*FirstTypeName.Identifier,
7931 FirstTypeName.StartLocation,
7932 S, &SS, true, false, ObjectTypePtrForLookup,
7933 /*IsCtorOrDtorName*/true);
7934 if (!T) {
7935 Diag(FirstTypeName.StartLocation,
7936 diag::err_pseudo_dtor_destructor_non_type)
7937 << FirstTypeName.Identifier << ObjectType;
7938
7939 if (isSFINAEContext())
7940 return ExprError();
7941
7942 // Just drop this type. It's unnecessary anyway.
7943 ScopeType = QualType();
7944 } else
7945 ScopeType = GetTypeFromParser(T, &ScopeTypeInfo);
7946 } else {
7947 // Resolve the template-id to a type.
7948 TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId;
7949 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
7950 TemplateId->NumArgs);
7951 TypeResult T = ActOnTemplateIdType(S,
7952 SS,
7953 TemplateId->TemplateKWLoc,
7954 TemplateId->Template,
7955 TemplateId->Name,
7956 TemplateId->TemplateNameLoc,
7957 TemplateId->LAngleLoc,
7958 TemplateArgsPtr,
7959 TemplateId->RAngleLoc,
7960 /*IsCtorOrDtorName*/true);
7961 if (T.isInvalid() || !T.get()) {
7962 // Recover by dropping this type.
7963 ScopeType = QualType();
7964 } else
7965 ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo);
7966 }
7967 }
7968
7969 if (!ScopeType.isNull() && !ScopeTypeInfo)
7970 ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType,
7971 FirstTypeName.StartLocation);
7972
7973
7974 return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS,
7975 ScopeTypeInfo, CCLoc, TildeLoc,
7976 Destructed);
7977}
7978
7979ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
7980 SourceLocation OpLoc,
7981 tok::TokenKind OpKind,
7982 SourceLocation TildeLoc,
7983 const DeclSpec& DS) {
7984 QualType ObjectType;
7985 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
7986 return ExprError();
7987
7988 if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto) {
7989 Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid);
7990 return true;
7991 }
7992
7993 QualType T = BuildDecltypeType(DS.getRepAsExpr(), /*AsUnevaluated=*/false);
7994
7995 TypeLocBuilder TLB;
7996 DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
7997 DecltypeTL.setDecltypeLoc(DS.getTypeSpecTypeLoc());
7998 DecltypeTL.setRParenLoc(DS.getTypeofParensRange().getEnd());
7999 TypeSourceInfo *DestructedTypeInfo = TLB.getTypeSourceInfo(Context, T);
8000 PseudoDestructorTypeStorage Destructed(DestructedTypeInfo);
8001
8002 return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, CXXScopeSpec(),
8003 nullptr, SourceLocation(), TildeLoc,
8004 Destructed);
8005}
8006
8007ExprResult Sema::BuildCXXMemberCallExpr(Expr *E, NamedDecl *FoundDecl,
8008 CXXConversionDecl *Method,
8009 bool HadMultipleCandidates) {
8010 // Convert the expression to match the conversion function's implicit object
8011 // parameter.
8012 ExprResult Exp = PerformObjectArgumentInitialization(E, /*Qualifier=*/nullptr,
8013 FoundDecl, Method);
8014 if (Exp.isInvalid())
8015 return true;
8016
8017 if (Method->getParent()->isLambda() &&
8018 Method->getConversionType()->isBlockPointerType()) {
8019 // This is a lambda conversion to block pointer; check if the argument
8020 // was a LambdaExpr.
8021 Expr *SubE = E;
8022 CastExpr *CE = dyn_cast<CastExpr>(SubE);
8023 if (CE && CE->getCastKind() == CK_NoOp)
8024 SubE = CE->getSubExpr();
8025 SubE = SubE->IgnoreParens();
8026 if (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(SubE))
8027 SubE = BE->getSubExpr();
8028 if (isa<LambdaExpr>(SubE)) {
8029 // For the conversion to block pointer on a lambda expression, we
8030 // construct a special BlockLiteral instead; this doesn't really make
8031 // a difference in ARC, but outside of ARC the resulting block literal
8032 // follows the normal lifetime rules for block literals instead of being
8033 // autoreleased.
8034 PushExpressionEvaluationContext(
8035 ExpressionEvaluationContext::PotentiallyEvaluated);
8036 ExprResult BlockExp = BuildBlockForLambdaConversion(
8037 Exp.get()->getExprLoc(), Exp.get()->getExprLoc(), Method, Exp.get());
8038 PopExpressionEvaluationContext();
8039
8040 // FIXME: This note should be produced by a CodeSynthesisContext.
8041 if (BlockExp.isInvalid())
8042 Diag(Exp.get()->getExprLoc(), diag::note_lambda_to_block_conv);
8043 return BlockExp;
8044 }
8045 }
8046
8047 MemberExpr *ME =
8048 BuildMemberExpr(Exp.get(), /*IsArrow=*/false, SourceLocation(),
8049 NestedNameSpecifierLoc(), SourceLocation(), Method,
8050 DeclAccessPair::make(FoundDecl, FoundDecl->getAccess()),
8051 HadMultipleCandidates, DeclarationNameInfo(),
8052 Context.BoundMemberTy, VK_PRValue, OK_Ordinary);
8053
8054 QualType ResultType = Method->getReturnType();
8055 ExprValueKind VK = Expr::getValueKindForType(ResultType);
8056 ResultType = ResultType.getNonLValueExprType(Context);
8057
8058 CXXMemberCallExpr *CE = CXXMemberCallExpr::Create(
8059 Context, ME, /*Args=*/{}, ResultType, VK, Exp.get()->getEndLoc(),
8060 CurFPFeatureOverrides());
8061
8062 if (CheckFunctionCall(Method, CE,
8063 Method->getType()->castAs<FunctionProtoType>()))
8064 return ExprError();
8065
8066 return CheckForImmediateInvocation(CE, CE->getMethodDecl());
8067}
8068
8069ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
8070 SourceLocation RParen) {
8071 // If the operand is an unresolved lookup expression, the expression is ill-
8072 // formed per [over.over]p1, because overloaded function names cannot be used
8073 // without arguments except in explicit contexts.
8074 ExprResult R = CheckPlaceholderExpr(Operand);
8075 if (R.isInvalid())
8076 return R;
8077
8078 R = CheckUnevaluatedOperand(R.get());
8079 if (R.isInvalid())
8080 return ExprError();
8081
8082 Operand = R.get();
8083
8084 if (!inTemplateInstantiation() && !Operand->isInstantiationDependent() &&
8085 Operand->HasSideEffects(Context, false)) {
8086 // The expression operand for noexcept is in an unevaluated expression
8087 // context, so side effects could result in unintended consequences.
8088 Diag(Operand->getExprLoc(), diag::warn_side_effects_unevaluated_context);
8089 }
8090
8091 CanThrowResult CanThrow = canThrow(Operand);
8092 return new (Context)
8093 CXXNoexceptExpr(Context.BoolTy, Operand, CanThrow, KeyLoc, RParen);
8094}
8095
8096ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation,
8097 Expr *Operand, SourceLocation RParen) {
8098 return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen);
8099}
8100
8101static void MaybeDecrementCount(
8102 Expr *E, llvm::DenseMap<const VarDecl *, int> &RefsMinusAssignments) {
8103 DeclRefExpr *LHS = nullptr;
8104 bool IsCompoundAssign = false;
8105 bool isIncrementDecrementUnaryOp = false;
8106 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
8107 if (BO->getLHS()->getType()->isDependentType() ||
8108 BO->getRHS()->getType()->isDependentType()) {
8109 if (BO->getOpcode() != BO_Assign)
8110 return;
8111 } else if (!BO->isAssignmentOp())
8112 return;
8113 else
8114 IsCompoundAssign = BO->isCompoundAssignmentOp();
8115 LHS = dyn_cast<DeclRefExpr>(BO->getLHS());
8116 } else if (CXXOperatorCallExpr *COCE = dyn_cast<CXXOperatorCallExpr>(E)) {
8117 if (COCE->getOperator() != OO_Equal)
8118 return;
8119 LHS = dyn_cast<DeclRefExpr>(COCE->getArg(0));
8120 } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
8121 if (!UO->isIncrementDecrementOp())
8122 return;
8123 isIncrementDecrementUnaryOp = true;
8124 LHS = dyn_cast<DeclRefExpr>(UO->getSubExpr());
8125 }
8126 if (!LHS)
8127 return;
8128 VarDecl *VD = dyn_cast<VarDecl>(LHS->getDecl());
8129 if (!VD)
8130 return;
8131 // Don't decrement RefsMinusAssignments if volatile variable with compound
8132 // assignment (+=, ...) or increment/decrement unary operator to avoid
8133 // potential unused-but-set-variable warning.
8134 if ((IsCompoundAssign || isIncrementDecrementUnaryOp) &&
8135 VD->getType().isVolatileQualified())
8136 return;
8137 auto iter = RefsMinusAssignments.find(VD);
8138 if (iter == RefsMinusAssignments.end())
8139 return;
8140 iter->getSecond()--;
8141}
8142
8143/// Perform the conversions required for an expression used in a
8144/// context that ignores the result.
8145ExprResult Sema::IgnoredValueConversions(Expr *E) {
8146 MaybeDecrementCount(E, RefsMinusAssignments);
8147
8148 if (E->hasPlaceholderType()) {
8149 ExprResult result = CheckPlaceholderExpr(E);
8150 if (result.isInvalid()) return E;
8151 E = result.get();
8152 }
8153
8154 // C99 6.3.2.1:
8155 // [Except in specific positions,] an lvalue that does not have
8156 // array type is converted to the value stored in the
8157 // designated object (and is no longer an lvalue).
8158 if (E->isPRValue()) {
8159 // In C, function designators (i.e. expressions of function type)
8160 // are r-values, but we still want to do function-to-pointer decay
8161 // on them. This is both technically correct and convenient for
8162 // some clients.
8163 if (!getLangOpts().CPlusPlus && E->getType()->isFunctionType())
8164 return DefaultFunctionArrayConversion(E);
8165
8166 return E;
8167 }
8168
8169 if (getLangOpts().CPlusPlus) {
8170 // The C++11 standard defines the notion of a discarded-value expression;
8171 // normally, we don't need to do anything to handle it, but if it is a
8172 // volatile lvalue with a special form, we perform an lvalue-to-rvalue
8173 // conversion.
8174 if (getLangOpts().CPlusPlus11 && E->isReadIfDiscardedInCPlusPlus11()) {
8175 ExprResult Res = DefaultLvalueConversion(E);
8176 if (Res.isInvalid())
8177 return E;
8178 E = Res.get();
8179 } else {
8180 // Per C++2a [expr.ass]p5, a volatile assignment is not deprecated if
8181 // it occurs as a discarded-value expression.
8182 CheckUnusedVolatileAssignment(E);
8183 }
8184
8185 // C++1z:
8186 // If the expression is a prvalue after this optional conversion, the
8187 // temporary materialization conversion is applied.
8188 //
8189 // We skip this step: IR generation is able to synthesize the storage for
8190 // itself in the aggregate case, and adding the extra node to the AST is
8191 // just clutter.
8192 // FIXME: We don't emit lifetime markers for the temporaries due to this.
8193 // FIXME: Do any other AST consumers care about this?
8194 return E;
8195 }
8196
8197 // GCC seems to also exclude expressions of incomplete enum type.
8198 if (const EnumType *T = E->getType()->getAs<EnumType>()) {
8199 if (!T->getDecl()->isComplete()) {
8200 // FIXME: stupid workaround for a codegen bug!
8201 E = ImpCastExprToType(E, Context.VoidTy, CK_ToVoid).get();
8202 return E;
8203 }
8204 }
8205
8206 ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
8207 if (Res.isInvalid())
8208 return E;
8209 E = Res.get();
8210
8211 if (!E->getType()->isVoidType())
8212 RequireCompleteType(E->getExprLoc(), E->getType(),
8213 diag::err_incomplete_type);
8214 return E;
8215}
8216
8217ExprResult Sema::CheckUnevaluatedOperand(Expr *E) {
8218 // Per C++2a [expr.ass]p5, a volatile assignment is not deprecated if
8219 // it occurs as an unevaluated operand.
8220 CheckUnusedVolatileAssignment(E);
8221
8222 return E;
8223}
8224
8225// If we can unambiguously determine whether Var can never be used
8226// in a constant expression, return true.
8227// - if the variable and its initializer are non-dependent, then
8228// we can unambiguously check if the variable is a constant expression.
8229// - if the initializer is not value dependent - we can determine whether
8230// it can be used to initialize a constant expression. If Init can not
8231// be used to initialize a constant expression we conclude that Var can
8232// never be a constant expression.
8233// - FXIME: if the initializer is dependent, we can still do some analysis and
8234// identify certain cases unambiguously as non-const by using a Visitor:
8235// - such as those that involve odr-use of a ParmVarDecl, involve a new
8236// delete, lambda-expr, dynamic-cast, reinterpret-cast etc...
8237static inline bool VariableCanNeverBeAConstantExpression(VarDecl *Var,
8238 ASTContext &Context) {
8239 if (isa<ParmVarDecl>(Var)) return true;
8240 const VarDecl *DefVD = nullptr;
8241
8242 // If there is no initializer - this can not be a constant expression.
8243 if (!Var->getAnyInitializer(DefVD)) return true;
8244 assert(DefVD)(static_cast <bool> (DefVD) ? void (0) : __assert_fail (
"DefVD", "clang/lib/Sema/SemaExprCXX.cpp", 8244, __extension__
__PRETTY_FUNCTION__))
;
8245 if (DefVD->isWeak()) return false;
8246 EvaluatedStmt *Eval = DefVD->ensureEvaluatedStmt();
8247
8248 Expr *Init = cast<Expr>(Eval->Value);
8249
8250 if (Var->getType()->isDependentType() || Init->isValueDependent()) {
8251 // FIXME: Teach the constant evaluator to deal with the non-dependent parts
8252 // of value-dependent expressions, and use it here to determine whether the
8253 // initializer is a potential constant expression.
8254 return false;
8255 }
8256
8257 return !Var->isUsableInConstantExpressions(Context);
8258}
8259
8260/// Check if the current lambda has any potential captures
8261/// that must be captured by any of its enclosing lambdas that are ready to
8262/// capture. If there is a lambda that can capture a nested
8263/// potential-capture, go ahead and do so. Also, check to see if any
8264/// variables are uncaptureable or do not involve an odr-use so do not
8265/// need to be captured.
8266
8267static void CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(
8268 Expr *const FE, LambdaScopeInfo *const CurrentLSI, Sema &S) {
8269
8270 assert(!S.isUnevaluatedContext())(static_cast <bool> (!S.isUnevaluatedContext()) ? void (
0) : __assert_fail ("!S.isUnevaluatedContext()", "clang/lib/Sema/SemaExprCXX.cpp"
, 8270, __extension__ __PRETTY_FUNCTION__))
;
8271 assert(S.CurContext->isDependentContext())(static_cast <bool> (S.CurContext->isDependentContext
()) ? void (0) : __assert_fail ("S.CurContext->isDependentContext()"
, "clang/lib/Sema/SemaExprCXX.cpp", 8271, __extension__ __PRETTY_FUNCTION__
))
;
8272#ifndef NDEBUG
8273 DeclContext *DC = S.CurContext;
8274 while (DC && isa<CapturedDecl>(DC))
8275 DC = DC->getParent();
8276 assert((static_cast <bool> (CurrentLSI->CallOperator == DC &&
"The current call operator must be synchronized with Sema's CurContext"
) ? void (0) : __assert_fail ("CurrentLSI->CallOperator == DC && \"The current call operator must be synchronized with Sema's CurContext\""
, "clang/lib/Sema/SemaExprCXX.cpp", 8278, __extension__ __PRETTY_FUNCTION__
))
8277 CurrentLSI->CallOperator == DC &&(static_cast <bool> (CurrentLSI->CallOperator == DC &&
"The current call operator must be synchronized with Sema's CurContext"
) ? void (0) : __assert_fail ("CurrentLSI->CallOperator == DC && \"The current call operator must be synchronized with Sema's CurContext\""
, "clang/lib/Sema/SemaExprCXX.cpp", 8278, __extension__ __PRETTY_FUNCTION__
))
8278 "The current call operator must be synchronized with Sema's CurContext")(static_cast <bool> (CurrentLSI->CallOperator == DC &&
"The current call operator must be synchronized with Sema's CurContext"
) ? void (0) : __assert_fail ("CurrentLSI->CallOperator == DC && \"The current call operator must be synchronized with Sema's CurContext\""
, "clang/lib/Sema/SemaExprCXX.cpp", 8278, __extension__ __PRETTY_FUNCTION__
))
;
8279#endif // NDEBUG
8280
8281 const bool IsFullExprInstantiationDependent = FE->isInstantiationDependent();
8282
8283 // All the potentially captureable variables in the current nested
8284 // lambda (within a generic outer lambda), must be captured by an
8285 // outer lambda that is enclosed within a non-dependent context.
8286 CurrentLSI->visitPotentialCaptures([&](ValueDecl *Var, Expr *VarExpr) {
8287 // If the variable is clearly identified as non-odr-used and the full
8288 // expression is not instantiation dependent, only then do we not
8289 // need to check enclosing lambda's for speculative captures.
8290 // For e.g.:
8291 // Even though 'x' is not odr-used, it should be captured.
8292 // int test() {
8293 // const int x = 10;
8294 // auto L = [=](auto a) {
8295 // (void) +x + a;
8296 // };
8297 // }
8298 if (CurrentLSI->isVariableExprMarkedAsNonODRUsed(VarExpr) &&
8299 !IsFullExprInstantiationDependent)
8300 return;
8301
8302 VarDecl *UnderlyingVar = Var->getPotentiallyDecomposedVarDecl();
8303 if (!UnderlyingVar)
8304 return;
8305
8306 // If we have a capture-capable lambda for the variable, go ahead and
8307 // capture the variable in that lambda (and all its enclosing lambdas).
8308 if (const Optional<unsigned> Index =
8309 getStackIndexOfNearestEnclosingCaptureCapableLambda(
8310 S.FunctionScopes, Var, S))
8311 S.MarkCaptureUsedInEnclosingContext(Var, VarExpr->getExprLoc(), *Index);
8312 const bool IsVarNeverAConstantExpression =
8313 VariableCanNeverBeAConstantExpression(UnderlyingVar, S.Context);
8314 if (!IsFullExprInstantiationDependent || IsVarNeverAConstantExpression) {
8315 // This full expression is not instantiation dependent or the variable
8316 // can not be used in a constant expression - which means
8317 // this variable must be odr-used here, so diagnose a
8318 // capture violation early, if the variable is un-captureable.
8319 // This is purely for diagnosing errors early. Otherwise, this
8320 // error would get diagnosed when the lambda becomes capture ready.
8321 QualType CaptureType, DeclRefType;
8322 SourceLocation ExprLoc = VarExpr->getExprLoc();
8323 if (S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit,
8324 /*EllipsisLoc*/ SourceLocation(),
8325 /*BuildAndDiagnose*/false, CaptureType,
8326 DeclRefType, nullptr)) {
8327 // We will never be able to capture this variable, and we need
8328 // to be able to in any and all instantiations, so diagnose it.
8329 S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit,
8330 /*EllipsisLoc*/ SourceLocation(),
8331 /*BuildAndDiagnose*/true, CaptureType,
8332 DeclRefType, nullptr);
8333 }
8334 }
8335 });
8336
8337 // Check if 'this' needs to be captured.
8338 if (CurrentLSI->hasPotentialThisCapture()) {
8339 // If we have a capture-capable lambda for 'this', go ahead and capture
8340 // 'this' in that lambda (and all its enclosing lambdas).
8341 if (const Optional<unsigned> Index =
8342 getStackIndexOfNearestEnclosingCaptureCapableLambda(
8343 S.FunctionScopes, /*0 is 'this'*/ nullptr, S)) {
8344 const unsigned FunctionScopeIndexOfCapturableLambda = *Index;
8345 S.CheckCXXThisCapture(CurrentLSI->PotentialThisCaptureLocation,
8346 /*Explicit*/ false, /*BuildAndDiagnose*/ true,
8347 &FunctionScopeIndexOfCapturableLambda);
8348 }
8349 }
8350
8351 // Reset all the potential captures at the end of each full-expression.
8352 CurrentLSI->clearPotentialCaptures();
8353}
8354
8355static ExprResult attemptRecovery(Sema &SemaRef,
8356 const TypoCorrectionConsumer &Consumer,
8357 const TypoCorrection &TC) {
8358 LookupResult R(SemaRef, Consumer.getLookupResult().getLookupNameInfo(),
8359 Consumer.getLookupResult().getLookupKind());
8360 const CXXScopeSpec *SS = Consumer.getSS();
8361 CXXScopeSpec NewSS;
8362
8363 // Use an approprate CXXScopeSpec for building the expr.
8364 if (auto *NNS = TC.getCorrectionSpecifier())
8365 NewSS.MakeTrivial(SemaRef.Context, NNS, TC.getCorrectionRange());
8366 else if (SS && !TC.WillReplaceSpecifier())
8367 NewSS = *SS;
8368
8369 if (auto *ND = TC.getFoundDecl()) {
8370 R.setLookupName(ND->getDeclName());
8371 R.addDecl(ND);
8372 if (ND->isCXXClassMember()) {
8373 // Figure out the correct naming class to add to the LookupResult.
8374 CXXRecordDecl *Record = nullptr;
8375 if (auto *NNS = TC.getCorrectionSpecifier())
8376 Record = NNS->getAsType()->getAsCXXRecordDecl();
8377 if (!Record)
8378 Record =
8379 dyn_cast<CXXRecordDecl>(ND->getDeclContext()->getRedeclContext());
8380 if (Record)
8381 R.setNamingClass(Record);
8382
8383 // Detect and handle the case where the decl might be an implicit
8384 // member.
8385 bool MightBeImplicitMember;
8386 if (!Consumer.isAddressOfOperand())
8387 MightBeImplicitMember = true;
8388 else if (!NewSS.isEmpty())
8389 MightBeImplicitMember = false;
8390 else if (R.isOverloadedResult())
8391 MightBeImplicitMember = false;
8392 else if (R.isUnresolvableResult())
8393 MightBeImplicitMember = true;
8394 else
8395 MightBeImplicitMember = isa<FieldDecl>(ND) ||
8396 isa<IndirectFieldDecl>(ND) ||
8397 isa<MSPropertyDecl>(ND);
8398
8399 if (MightBeImplicitMember)
8400 return SemaRef.BuildPossibleImplicitMemberExpr(
8401 NewSS, /*TemplateKWLoc*/ SourceLocation(), R,
8402 /*TemplateArgs*/ nullptr, /*S*/ nullptr);
8403 } else if (auto *Ivar = dyn_cast<ObjCIvarDecl>(ND)) {
8404 return SemaRef.LookupInObjCMethod(R, Consumer.getScope(),
8405 Ivar->getIdentifier());
8406 }
8407 }
8408
8409 return SemaRef.BuildDeclarationNameExpr(NewSS, R, /*NeedsADL*/ false,
8410 /*AcceptInvalidDecl*/ true);
8411}
8412
8413namespace {
8414class FindTypoExprs : public RecursiveASTVisitor<FindTypoExprs> {
8415 llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs;
8416
8417public:
8418 explicit FindTypoExprs(llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs)
8419 : TypoExprs(TypoExprs) {}
8420 bool VisitTypoExpr(TypoExpr *TE) {
8421 TypoExprs.insert(TE);
8422 return true;
8423 }
8424};
8425
8426class TransformTypos : public TreeTransform<TransformTypos> {
8427 typedef TreeTransform<TransformTypos> BaseTransform;
8428
8429 VarDecl *InitDecl; // A decl to avoid as a correction because it is in the
8430 // process of being initialized.
8431 llvm::function_ref<ExprResult(Expr *)> ExprFilter;
8432 llvm::SmallSetVector<TypoExpr *, 2> TypoExprs, AmbiguousTypoExprs;
8433 llvm::SmallDenseMap<TypoExpr *, ExprResult, 2> TransformCache;
8434 llvm::SmallDenseMap<OverloadExpr *, Expr *, 4> OverloadResolution;
8435
8436 /// Emit diagnostics for all of the TypoExprs encountered.
8437 ///
8438 /// If the TypoExprs were successfully corrected, then the diagnostics should
8439 /// suggest the corrections. Otherwise the diagnostics will not suggest
8440 /// anything (having been passed an empty TypoCorrection).
8441 ///
8442 /// If we've failed to correct due to ambiguous corrections, we need to
8443 /// be sure to pass empty corrections and replacements. Otherwise it's
8444 /// possible that the Consumer has a TypoCorrection that failed to ambiguity
8445 /// and we don't want to report those diagnostics.
8446 void EmitAllDiagnostics(bool IsAmbiguous) {
8447 for (TypoExpr *TE : TypoExprs) {
8448 auto &State = SemaRef.getTypoExprState(TE);
8449 if (State.DiagHandler) {
8450 TypoCorrection TC = IsAmbiguous
8451 ? TypoCorrection() : State.Consumer->getCurrentCorrection();
8452 ExprResult Replacement = IsAmbiguous ? ExprError() : TransformCache[TE];
8453
8454 // Extract the NamedDecl from the transformed TypoExpr and add it to the
8455 // TypoCorrection, replacing the existing decls. This ensures the right
8456 // NamedDecl is used in diagnostics e.g. in the case where overload
8457 // resolution was used to select one from several possible decls that
8458 // had been stored in the TypoCorrection.
8459 if (auto *ND = getDeclFromExpr(
8460 Replacement.isInvalid() ? nullptr : Replacement.get()))
8461 TC.setCorrectionDecl(ND);
8462
8463 State.DiagHandler(TC);
8464 }
8465 SemaRef.clearDelayedTypo(TE);
8466 }
8467 }
8468
8469 /// Try to advance the typo correction state of the first unfinished TypoExpr.
8470 /// We allow advancement of the correction stream by removing it from the
8471 /// TransformCache which allows `TransformTypoExpr` to advance during the
8472 /// next transformation attempt.
8473 ///
8474 /// Any substitution attempts for the previous TypoExprs (which must have been
8475 /// finished) will need to be retried since it's possible that they will now
8476 /// be invalid given the latest advancement.
8477 ///
8478 /// We need to be sure that we're making progress - it's possible that the
8479 /// tree is so malformed that the transform never makes it to the
8480 /// `TransformTypoExpr`.
8481 ///
8482 /// Returns true if there are any untried correction combinations.
8483 bool CheckAndAdvanceTypoExprCorrectionStreams() {
8484 for (auto *TE : TypoExprs) {
8485 auto &State = SemaRef.getTypoExprState(TE);
8486 TransformCache.erase(TE);
8487 if (!State.Consumer->hasMadeAnyCorrectionProgress())
8488 return false;
8489 if (!State.Consumer->finished())
8490 return true;
8491 State.Consumer->resetCorrectionStream();
8492 }
8493 return false;
8494 }
8495
8496 NamedDecl *getDeclFromExpr(Expr *E) {
8497 if (auto *OE = dyn_cast_or_null<OverloadExpr>(E))
8498 E = OverloadResolution[OE];
8499
8500 if (!E)
8501 return nullptr;
8502 if (auto *DRE = dyn_cast<DeclRefExpr>(E))
8503 return DRE->getFoundDecl();
8504 if (auto *ME = dyn_cast<MemberExpr>(E))
8505 return ME->getFoundDecl();
8506 // FIXME: Add any other expr types that could be seen by the delayed typo
8507 // correction TreeTransform for which the corresponding TypoCorrection could
8508 // contain multiple decls.
8509 return nullptr;
8510 }
8511
8512 ExprResult TryTransform(Expr *E) {
8513 Sema::SFINAETrap Trap(SemaRef);
8514 ExprResult Res = TransformExpr(E);
8515 if (Trap.hasErrorOccurred() || Res.isInvalid())
8516 return ExprError();
8517
8518 return ExprFilter(Res.get());
8519 }
8520
8521 // Since correcting typos may intoduce new TypoExprs, this function
8522 // checks for new TypoExprs and recurses if it finds any. Note that it will
8523 // only succeed if it is able to correct all typos in the given expression.
8524 ExprResult CheckForRecursiveTypos(ExprResult Res, bool &IsAmbiguous) {
8525 if (Res.isInvalid()) {
8526 return Res;
8527 }
8528 // Check to see if any new TypoExprs were created. If so, we need to recurse
8529 // to check their validity.
8530 Expr *FixedExpr = Res.get();
8531
8532 auto SavedTypoExprs = std::move(TypoExprs);
8533 auto SavedAmbiguousTypoExprs = std::move(AmbiguousTypoExprs);
8534 TypoExprs.clear();
8535 AmbiguousTypoExprs.clear();
8536
8537 FindTypoExprs(TypoExprs).TraverseStmt(FixedExpr);
8538 if (!TypoExprs.empty()) {
8539 // Recurse to handle newly created TypoExprs. If we're not able to
8540 // handle them, discard these TypoExprs.
8541 ExprResult RecurResult =
8542 RecursiveTransformLoop(FixedExpr, IsAmbiguous);
8543 if (RecurResult.isInvalid()) {
8544 Res = ExprError();
8545 // Recursive corrections didn't work, wipe them away and don't add
8546 // them to the TypoExprs set. Remove them from Sema's TypoExpr list
8547 // since we don't want to clear them twice. Note: it's possible the
8548 // TypoExprs were created recursively and thus won't be in our
8549 // Sema's TypoExprs - they were created in our `RecursiveTransformLoop`.
8550 auto &SemaTypoExprs = SemaRef.TypoExprs;
8551 for (auto *TE : TypoExprs) {
8552 TransformCache.erase(TE);
8553 SemaRef.clearDelayedTypo(TE);
8554
8555 auto SI = find(SemaTypoExprs, TE);
8556 if (SI != SemaTypoExprs.end()) {
8557 SemaTypoExprs.erase(SI);
8558 }
8559 }
8560 } else {
8561 // TypoExpr is valid: add newly created TypoExprs since we were
8562 // able to correct them.
8563 Res = RecurResult;
8564 SavedTypoExprs.set_union(TypoExprs);
8565 }
8566 }
8567
8568 TypoExprs = std::move(SavedTypoExprs);
8569 AmbiguousTypoExprs = std::move(SavedAmbiguousTypoExprs);
8570
8571 return Res;
8572 }
8573
8574 // Try to transform the given expression, looping through the correction
8575 // candidates with `CheckAndAdvanceTypoExprCorrectionStreams`.
8576 //
8577 // If valid ambiguous typo corrections are seen, `IsAmbiguous` is set to
8578 // true and this method immediately will return an `ExprError`.
8579 ExprResult RecursiveTransformLoop(Expr *E, bool &IsAmbiguous) {
8580 ExprResult Res;
8581 auto SavedTypoExprs = std::move(SemaRef.TypoExprs);
8582 SemaRef.TypoExprs.clear();
8583
8584 while (true) {
8585 Res = CheckForRecursiveTypos(TryTransform(E), IsAmbiguous);
8586
8587 // Recursion encountered an ambiguous correction. This means that our
8588 // correction itself is ambiguous, so stop now.
8589 if (IsAmbiguous)
8590 break;
8591
8592 // If the transform is still valid after checking for any new typos,
8593 // it's good to go.
8594 if (!Res.isInvalid())
8595 break;
8596
8597 // The transform was invalid, see if we have any TypoExprs with untried
8598 // correction candidates.
8599 if (!CheckAndAdvanceTypoExprCorrectionStreams())
8600 break;
8601 }
8602
8603 // If we found a valid result, double check to make sure it's not ambiguous.
8604 if (!IsAmbiguous && !Res.isInvalid() && !AmbiguousTypoExprs.empty()) {
8605 auto SavedTransformCache =
8606 llvm::SmallDenseMap<TypoExpr *, ExprResult, 2>(TransformCache);
8607
8608 // Ensure none of the TypoExprs have multiple typo correction candidates
8609 // with the same edit length that pass all the checks and filters.
8610 while (!AmbiguousTypoExprs.empty()) {
8611 auto TE = AmbiguousTypoExprs.back();
8612
8613 // TryTransform itself can create new Typos, adding them to the TypoExpr map
8614 // and invalidating our TypoExprState, so always fetch it instead of storing.
8615 SemaRef.getTypoExprState(TE).Consumer->saveCurrentPosition();
8616
8617 TypoCorrection TC = SemaRef.getTypoExprState(TE).Consumer->peekNextCorrection();
8618 TypoCorrection Next;
8619 do {
8620 // Fetch the next correction by erasing the typo from the cache and calling
8621 // `TryTransform` which will iterate through corrections in
8622 // `TransformTypoExpr`.
8623 TransformCache.erase(TE);
8624 ExprResult AmbigRes = CheckForRecursiveTypos(TryTransform(E), IsAmbiguous);
8625
8626 if (!AmbigRes.isInvalid() || IsAmbiguous) {
8627 SemaRef.getTypoExprState(TE).Consumer->resetCorrectionStream();
8628 SavedTransformCache.erase(TE);
8629 Res = ExprError();
8630 IsAmbiguous = true;
8631 break;
8632 }
8633 } while ((Next = SemaRef.getTypoExprState(TE).Consumer->peekNextCorrection()) &&
8634 Next.getEditDistance(false) == TC.getEditDistance(false));
8635
8636 if (IsAmbiguous)
8637 break;
8638
8639 AmbiguousTypoExprs.remove(TE);
8640 SemaRef.getTypoExprState(TE).Consumer->restoreSavedPosition();
8641 TransformCache[TE] = SavedTransformCache[TE];
8642 }
8643 TransformCache = std::move(SavedTransformCache);
8644 }
8645
8646 // Wipe away any newly created TypoExprs that we don't know about. Since we
8647 // clear any invalid TypoExprs in `CheckForRecursiveTypos`, this is only
8648 // possible if a `TypoExpr` is created during a transformation but then
8649 // fails before we can discover it.
8650 auto &SemaTypoExprs = SemaRef.TypoExprs;
8651 for (auto Iterator = SemaTypoExprs.begin(); Iterator != SemaTypoExprs.end();) {
8652 auto TE = *Iterator;
8653 auto FI = find(TypoExprs, TE);
8654 if (FI != TypoExprs.end()) {
8655 Iterator++;
8656 continue;
8657 }
8658 SemaRef.clearDelayedTypo(TE);
8659 Iterator = SemaTypoExprs.erase(Iterator);
8660 }
8661 SemaRef.TypoExprs = std::move(SavedTypoExprs);
8662
8663 return Res;
8664 }
8665
8666public:
8667 TransformTypos(Sema &SemaRef, VarDecl *InitDecl, llvm::function_ref<ExprResult(Expr *)> Filter)
8668 : BaseTransform(SemaRef), InitDecl(InitDecl), ExprFilter(Filter) {}
8669
8670 ExprResult RebuildCallExpr(Expr *Callee, SourceLocation LParenLoc,
8671 MultiExprArg Args,
8672 SourceLocation RParenLoc,
8673 Expr *ExecConfig = nullptr) {
8674 auto Result = BaseTransform::RebuildCallExpr(Callee, LParenLoc, Args,
8675 RParenLoc, ExecConfig);
8676 if (auto *OE = dyn_cast<OverloadExpr>(Callee)) {
8677 if (Result.isUsable()) {
8678 Expr *ResultCall = Result.get();
8679 if (auto *BE = dyn_cast<CXXBindTemporaryExpr>(ResultCall))
8680 ResultCall = BE->getSubExpr();
8681 if (auto *CE = dyn_cast<CallExpr>(ResultCall))
8682 OverloadResolution[OE] = CE->getCallee();
8683 }
8684 }
8685 return Result;
8686 }
8687
8688 ExprResult TransformLambdaExpr(LambdaExpr *E) { return Owned(E); }
8689
8690 ExprResult TransformBlockExpr(BlockExpr *E) { return Owned(E); }
8691
8692 ExprResult Transform(Expr *E) {
8693 bool IsAmbiguous = false;
8694 ExprResult Res = RecursiveTransformLoop(E, IsAmbiguous);
8695
8696 if (!Res.isUsable())
8697 FindTypoExprs(TypoExprs).TraverseStmt(E);
8698
8699 EmitAllDiagnostics(IsAmbiguous);
8700
8701 return Res;
8702 }
8703
8704 ExprResult TransformTypoExpr(TypoExpr *E) {
8705 // If the TypoExpr hasn't been seen before, record it. Otherwise, return the
8706 // cached transformation result if there is one and the TypoExpr isn't the
8707 // first one that was encountered.
8708 auto &CacheEntry = TransformCache[E];
8709 if (!TypoExprs.insert(E) && !CacheEntry.isUnset()) {
8710 return CacheEntry;
8711 }
8712
8713 auto &State = SemaRef.getTypoExprState(E);
8714 assert(State.Consumer && "Cannot transform a cleared TypoExpr")(static_cast <bool> (State.Consumer && "Cannot transform a cleared TypoExpr"
) ? void (0) : __assert_fail ("State.Consumer && \"Cannot transform a cleared TypoExpr\""
, "clang/lib/Sema/SemaExprCXX.cpp", 8714, __extension__ __PRETTY_FUNCTION__
))
;
8715
8716 // For the first TypoExpr and an uncached TypoExpr, find the next likely
8717 // typo correction and return it.
8718 while (TypoCorrection TC = State.Consumer->getNextCorrection()) {
8719 if (InitDecl && TC.getFoundDecl() == InitDecl)
8720 continue;
8721 // FIXME: If we would typo-correct to an invalid declaration, it's
8722 // probably best to just suppress all errors from this typo correction.
8723 ExprResult NE = State.RecoveryHandler ?
8724 State.RecoveryHandler(SemaRef, E, TC) :
8725 attemptRecovery(SemaRef, *State.Consumer, TC);
8726 if (!NE.isInvalid()) {
8727 // Check whether there may be a second viable correction with the same
8728 // edit distance; if so, remember this TypoExpr may have an ambiguous
8729 // correction so it can be more thoroughly vetted later.
8730 TypoCorrection Next;
8731 if ((Next = State.Consumer->peekNextCorrection()) &&
8732 Next.getEditDistance(false) == TC.getEditDistance(false)) {
8733 AmbiguousTypoExprs.insert(E);
8734 } else {
8735 AmbiguousTypoExprs.remove(E);
8736 }
8737 assert(!NE.isUnset() &&(static_cast <bool> (!NE.isUnset() && "Typo was transformed into a valid-but-null ExprResult"
) ? void (0) : __assert_fail ("!NE.isUnset() && \"Typo was transformed into a valid-but-null ExprResult\""
, "clang/lib/Sema/SemaExprCXX.cpp", 8738, __extension__ __PRETTY_FUNCTION__
))
8738 "Typo was transformed into a valid-but-null ExprResult")(static_cast <bool> (!NE.isUnset() && "Typo was transformed into a valid-but-null ExprResult"
) ? void (0) : __assert_fail ("!NE.isUnset() && \"Typo was transformed into a valid-but-null ExprResult\""
, "clang/lib/Sema/SemaExprCXX.cpp", 8738, __extension__ __PRETTY_FUNCTION__
))
;
8739 return CacheEntry = NE;
8740 }
8741 }
8742 return CacheEntry = ExprError();
8743 }
8744};
8745}
8746
8747ExprResult
8748Sema::CorrectDelayedTyposInExpr(Expr *E, VarDecl *InitDecl,
8749 bool RecoverUncorrectedTypos,
8750 llvm::function_ref<ExprResult(Expr *)> Filter) {
8751 // If the current evaluation context indicates there are uncorrected typos
8752 // and the current expression isn't guaranteed to not have typos, try to
8753 // resolve any TypoExpr nodes that might be in the expression.
8754 if (E && !ExprEvalContexts.empty() && ExprEvalContexts.back().NumTypos &&
8755 (E->isTypeDependent() || E->isValueDependent() ||
8756 E->isInstantiationDependent())) {
8757 auto TyposResolved = DelayedTypos.size();
8758 auto Result = TransformTypos(*this, InitDecl, Filter).Transform(E);
8759 TyposResolved -= DelayedTypos.size();
8760 if (Result.isInvalid() || Result.get() != E) {
8761 ExprEvalContexts.back().NumTypos -= TyposResolved;
8762 if (Result.isInvalid() && RecoverUncorrectedTypos) {
8763 struct TyposReplace : TreeTransform<TyposReplace> {
8764 TyposReplace(Sema &SemaRef) : TreeTransform(SemaRef) {}
8765 ExprResult TransformTypoExpr(clang::TypoExpr *E) {
8766 return this->SemaRef.CreateRecoveryExpr(E->getBeginLoc(),
8767 E->getEndLoc(), {});
8768 }
8769 } TT(*this);
8770 return TT.TransformExpr(E);
8771 }
8772 return Result;
8773 }
8774 assert(TyposResolved == 0 && "Corrected typo but got same Expr back?")(static_cast <bool> (TyposResolved == 0 && "Corrected typo but got same Expr back?"
) ? void (0) : __assert_fail ("TyposResolved == 0 && \"Corrected typo but got same Expr back?\""
, "clang/lib/Sema/SemaExprCXX.cpp", 8774, __extension__ __PRETTY_FUNCTION__
))
;
8775 }
8776 return E;
8777}
8778
8779ExprResult Sema::ActOnFinishFullExpr(Expr *FE, SourceLocation CC,
8780 bool DiscardedValue, bool IsConstexpr,
8781 bool IsTemplateArgument) {
8782 ExprResult FullExpr = FE;
8783
8784 if (!FullExpr.get())
8785 return ExprError();
8786
8787 if (!IsTemplateArgument && DiagnoseUnexpandedParameterPack(FullExpr.get()))
8788 return ExprError();
8789
8790 if (DiscardedValue) {
8791 // Top-level expressions default to 'id' when we're in a debugger.
8792 if (getLangOpts().DebuggerCastResultToId &&
8793 FullExpr.get()->getType() == Context.UnknownAnyTy) {
8794 FullExpr = forceUnknownAnyToType(FullExpr.get(), Context.getObjCIdType());
8795 if (FullExpr.isInvalid())
8796 return ExprError();
8797 }
8798
8799 FullExpr = CheckPlaceholderExpr(FullExpr.get());
8800 if (FullExpr.isInvalid())
8801 return ExprError();
8802
8803 FullExpr = IgnoredValueConversions(FullExpr.get());
8804 if (FullExpr.isInvalid())
8805 return ExprError();
8806
8807 DiagnoseUnusedExprResult(FullExpr.get(), diag::warn_unused_expr);
8808 }
8809
8810 FullExpr = CorrectDelayedTyposInExpr(FullExpr.get(), /*InitDecl=*/nullptr,
8811 /*RecoverUncorrectedTypos=*/true);
8812 if (FullExpr.isInvalid())
8813 return ExprError();
8814
8815 CheckCompletedExpr(FullExpr.get(), CC, IsConstexpr);
8816
8817 // At the end of this full expression (which could be a deeply nested
8818 // lambda), if there is a potential capture within the nested lambda,
8819 // have the outer capture-able lambda try and capture it.
8820 // Consider the following code:
8821 // void f(int, int);
8822 // void f(const int&, double);
8823 // void foo() {
8824 // const int x = 10, y = 20;
8825 // auto L = [=](auto a) {
8826 // auto M = [=](auto b) {
8827 // f(x, b); <-- requires x to be captured by L and M
8828 // f(y, a); <-- requires y to be captured by L, but not all Ms
8829 // };
8830 // };
8831 // }
8832
8833 // FIXME: Also consider what happens for something like this that involves
8834 // the gnu-extension statement-expressions or even lambda-init-captures:
8835 // void f() {
8836 // const int n = 0;
8837 // auto L = [&](auto a) {
8838 // +n + ({ 0; a; });
8839 // };
8840 // }
8841 //
8842 // Here, we see +n, and then the full-expression 0; ends, so we don't
8843 // capture n (and instead remove it from our list of potential captures),
8844 // and then the full-expression +n + ({ 0; }); ends, but it's too late
8845 // for us to see that we need to capture n after all.
8846
8847 LambdaScopeInfo *const CurrentLSI =
8848 getCurLambda(/*IgnoreCapturedRegions=*/true);
8849 // FIXME: PR 17877 showed that getCurLambda() can return a valid pointer
8850 // even if CurContext is not a lambda call operator. Refer to that Bug Report
8851 // for an example of the code that might cause this asynchrony.
8852 // By ensuring we are in the context of a lambda's call operator
8853 // we can fix the bug (we only need to check whether we need to capture
8854 // if we are within a lambda's body); but per the comments in that
8855 // PR, a proper fix would entail :
8856 // "Alternative suggestion:
8857 // - Add to Sema an integer holding the smallest (outermost) scope
8858 // index that we are *lexically* within, and save/restore/set to
8859 // FunctionScopes.size() in InstantiatingTemplate's
8860 // constructor/destructor.
8861 // - Teach the handful of places that iterate over FunctionScopes to
8862 // stop at the outermost enclosing lexical scope."
8863 DeclContext *DC = CurContext;
8864 while (DC && isa<CapturedDecl>(DC))
8865 DC = DC->getParent();
8866 const bool IsInLambdaDeclContext = isLambdaCallOperator(DC);
8867 if (IsInLambdaDeclContext && CurrentLSI &&
8868 CurrentLSI->hasPotentialCaptures() && !FullExpr.isInvalid())
8869 CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(FE, CurrentLSI,
8870 *this);
8871 return MaybeCreateExprWithCleanups(FullExpr);
8872}
8873
8874StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) {
8875 if (!FullStmt) return StmtError();
8876
8877 return MaybeCreateStmtWithCleanups(FullStmt);
8878}
8879
8880Sema::IfExistsResult
8881Sema::CheckMicrosoftIfExistsSymbol(Scope *S,
8882 CXXScopeSpec &SS,
8883 const DeclarationNameInfo &TargetNameInfo) {
8884 DeclarationName TargetName = TargetNameInfo.getName();
8885 if (!TargetName)
8886 return IER_DoesNotExist;
8887
8888 // If the name itself is dependent, then the result is dependent.
8889 if (TargetName.isDependentName())
8890 return IER_Dependent;
8891
8892 // Do the redeclaration lookup in the current scope.
8893 LookupResult R(*this, TargetNameInfo, Sema::LookupAnyName,
8894 Sema::NotForRedeclaration);
8895 LookupParsedName(R, S, &SS);
8896 R.suppressDiagnostics();
8897
8898 switch (R.getResultKind()) {
8899 case LookupResult::Found:
8900 case LookupResult::FoundOverloaded:
8901 case LookupResult::FoundUnresolvedValue:
8902 case LookupResult::Ambiguous:
8903 return IER_Exists;
8904
8905 case LookupResult::NotFound:
8906 return IER_DoesNotExist;
8907
8908 case LookupResult::NotFoundInCurrentInstantiation:
8909 return IER_Dependent;
8910 }
8911
8912 llvm_unreachable("Invalid LookupResult Kind!")::llvm::llvm_unreachable_internal("Invalid LookupResult Kind!"
, "clang/lib/Sema/SemaExprCXX.cpp", 8912)
;
8913}
8914
8915Sema::IfExistsResult
8916Sema::CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc,
8917 bool IsIfExists, CXXScopeSpec &SS,
8918 UnqualifiedId &Name) {
8919 DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
8920
8921 // Check for an unexpanded parameter pack.
8922 auto UPPC = IsIfExists ? UPPC_IfExists : UPPC_IfNotExists;
8923 if (DiagnoseUnexpandedParameterPack(SS, UPPC) ||
8924 DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC))
8925 return IER_Error;
8926
8927 return CheckMicrosoftIfExistsSymbol(S, SS, TargetNameInfo);
8928}
8929
8930concepts::Requirement *Sema::ActOnSimpleRequirement(Expr *E) {
8931 return BuildExprRequirement(E, /*IsSimple=*/true,
8932 /*NoexceptLoc=*/SourceLocation(),
8933 /*ReturnTypeRequirement=*/{});
8934}
8935
8936concepts::Requirement *
8937Sema::ActOnTypeRequirement(SourceLocation TypenameKWLoc, CXXScopeSpec &SS,
8938 SourceLocation NameLoc, IdentifierInfo *TypeName,
8939 TemplateIdAnnotation *TemplateId) {
8940 assert(((!TypeName && TemplateId) || (TypeName && !TemplateId)) &&(static_cast <bool> (((!TypeName && TemplateId)
|| (TypeName && !TemplateId)) && "Exactly one of TypeName and TemplateId must be specified."
) ? void (0) : __assert_fail ("((!TypeName && TemplateId) || (TypeName && !TemplateId)) && \"Exactly one of TypeName and TemplateId must be specified.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 8941, __extension__ __PRETTY_FUNCTION__
))
8941 "Exactly one of TypeName and TemplateId must be specified.")(static_cast <bool> (((!TypeName && TemplateId)
|| (TypeName && !TemplateId)) && "Exactly one of TypeName and TemplateId must be specified."
) ? void (0) : __assert_fail ("((!TypeName && TemplateId) || (TypeName && !TemplateId)) && \"Exactly one of TypeName and TemplateId must be specified.\""
, "clang/lib/Sema/SemaExprCXX.cpp", 8941, __extension__ __PRETTY_FUNCTION__
))
;
8942 TypeSourceInfo *TSI = nullptr;
8943 if (TypeName) {
8944 QualType T = CheckTypenameType(ETK_Typename, TypenameKWLoc,
8945 SS.getWithLocInContext(Context), *TypeName,
8946 NameLoc, &TSI, /*DeducedTSTContext=*/false);
8947 if (T.isNull())
8948 return nullptr;
8949 } else {
8950 ASTTemplateArgsPtr ArgsPtr(TemplateId->getTemplateArgs(),
8951 TemplateId->NumArgs);
8952 TypeResult T = ActOnTypenameType(CurScope, TypenameKWLoc, SS,
8953 TemplateId->TemplateKWLoc,
8954 TemplateId->Template, TemplateId->Name,
8955 TemplateId->TemplateNameLoc,
8956 TemplateId->LAngleLoc, ArgsPtr,
8957 TemplateId->RAngleLoc);
8958 if (T.isInvalid())
8959 return nullptr;
8960 if (GetTypeFromParser(T.get(), &TSI).isNull())
8961 return nullptr;
8962 }
8963 return BuildTypeRequirement(TSI);
8964}
8965
8966concepts::Requirement *
8967Sema::ActOnCompoundRequirement(Expr *E, SourceLocation NoexceptLoc) {
8968 return BuildExprRequirement(E, /*IsSimple=*/false, NoexceptLoc,
8969 /*ReturnTypeRequirement=*/{});
8970}
8971
8972concepts::Requirement *
8973Sema::ActOnCompoundRequirement(
8974 Expr *E, SourceLocation NoexceptLoc, CXXScopeSpec &SS,
8975 TemplateIdAnnotation *TypeConstraint, unsigned Depth) {
8976 // C++2a [expr.prim.req.compound] p1.3.3
8977 // [..] the expression is deduced against an invented function template
8978 // F [...] F is a void function template with a single type template
8979 // parameter T declared with the constrained-parameter. Form a new
8980 // cv-qualifier-seq cv by taking the union of const and volatile specifiers
8981 // around the constrained-parameter. F has a single parameter whose
8982 // type-specifier is cv T followed by the abstract-declarator. [...]
8983 //
8984 // The cv part is done in the calling function - we get the concept with
8985 // arguments and the abstract declarator with the correct CV qualification and
8986 // have to synthesize T and the single parameter of F.
8987 auto &II = Context.Idents.get("expr-type");
8988 auto *TParam = TemplateTypeParmDecl::Create(Context, CurContext,
8989 SourceLocation(),
8990 SourceLocation(), Depth,
8991 /*Index=*/0, &II,
8992 /*Typename=*/true,
8993 /*ParameterPack=*/false,
8994 /*HasTypeConstraint=*/true);
8995
8996 if (BuildTypeConstraint(SS, TypeConstraint, TParam,
8997 /*EllipsisLoc=*/SourceLocation(),
8998 /*AllowUnexpandedPack=*/true))
8999 // Just produce a requirement with no type requirements.
9000 return BuildExprRequirement(E, /*IsSimple=*/false, NoexceptLoc, {});
9001
9002 auto *TPL = TemplateParameterList::Create(Context, SourceLocation(),
9003 SourceLocation(),
9004 ArrayRef<NamedDecl *>(TParam),
9005 SourceLocation(),
9006 /*RequiresClause=*/nullptr);
9007 return BuildExprRequirement(
9008 E, /*IsSimple=*/false, NoexceptLoc,
9009 concepts::ExprRequirement::ReturnTypeRequirement(TPL));
9010}
9011
9012concepts::ExprRequirement *
9013Sema::BuildExprRequirement(
9014 Expr *E, bool IsSimple, SourceLocation NoexceptLoc,
9015 concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement) {
9016 auto Status = concepts::ExprRequirement::SS_Satisfied;
9017 ConceptSpecializationExpr *SubstitutedConstraintExpr = nullptr;
9018 if (E->isInstantiationDependent() || ReturnTypeRequirement.isDependent())
9019 Status = concepts::ExprRequirement::SS_Dependent;
9020 else if (NoexceptLoc.isValid() && canThrow(E) == CanThrowResult::CT_Can)
9021 Status = concepts::ExprRequirement::SS_NoexceptNotMet;
9022 else if (ReturnTypeRequirement.isSubstitutionFailure())
9023 Status = concepts::ExprRequirement::SS_TypeRequirementSubstitutionFailure;
9024 else if (ReturnTypeRequirement.isTypeConstraint()) {
9025 // C++2a [expr.prim.req]p1.3.3
9026 // The immediately-declared constraint ([temp]) of decltype((E)) shall
9027 // be satisfied.
9028 TemplateParameterList *TPL =
9029 ReturnTypeRequirement.getTypeConstraintTemplateParameterList();
9030 QualType MatchedType = Context.getReferenceQualifiedType(E);
9031 llvm::SmallVector<TemplateArgument, 1> Args;
9032 Args.push_back(TemplateArgument(MatchedType));
9033
9034 auto *Param = cast<TemplateTypeParmDecl>(TPL->getParam(0));
9035
9036 TemplateArgumentList TAL(TemplateArgumentList::OnStack, Args);
9037 MultiLevelTemplateArgumentList MLTAL(Param, TAL.asArray(),
9038 /*Final=*/true);
9039 MLTAL.addOuterRetainedLevels(TPL->getDepth());
9040 Expr *IDC = Param->getTypeConstraint()->getImmediatelyDeclaredConstraint();
9041 ExprResult Constraint = SubstExpr(IDC, MLTAL);
9042 if (Constraint.isInvalid()) {
9043 Status = concepts::ExprRequirement::SS_ExprSubstitutionFailure;
9044 } else {
9045 SubstitutedConstraintExpr =
9046 cast<ConceptSpecializationExpr>(Constraint.get());
9047 if (!SubstitutedConstraintExpr->isSatisfied())
9048 Status = concepts::ExprRequirement::SS_ConstraintsNotSatisfied;
9049 }
9050 }
9051 return new (Context) concepts::ExprRequirement(E, IsSimple, NoexceptLoc,
9052 ReturnTypeRequirement, Status,
9053 SubstitutedConstraintExpr);
9054}
9055
9056concepts::ExprRequirement *
9057Sema::BuildExprRequirement(
9058 concepts::Requirement::SubstitutionDiagnostic *ExprSubstitutionDiagnostic,
9059 bool IsSimple, SourceLocation NoexceptLoc,
9060 concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement) {
9061 return new (Context) concepts::ExprRequirement(ExprSubstitutionDiagnostic,
9062 IsSimple, NoexceptLoc,
9063 ReturnTypeRequirement);
9064}
9065
9066concepts::TypeRequirement *
9067Sema::BuildTypeRequirement(TypeSourceInfo *Type) {
9068 return new (Context) concepts::TypeRequirement(Type);
9069}
9070
9071concepts::TypeRequirement *
9072Sema::BuildTypeRequirement(
9073 concepts::Requirement::SubstitutionDiagnostic *SubstDiag) {
9074 return new (Context) concepts::TypeRequirement(SubstDiag);
9075}
9076
9077concepts::Requirement *Sema::ActOnNestedRequirement(Expr *Constraint) {
9078 return BuildNestedRequirement(Constraint);
9079}
9080
9081concepts::NestedRequirement *
9082Sema::BuildNestedRequirement(Expr *Constraint) {
9083 ConstraintSatisfaction Satisfaction;
9084 if (!Constraint->isInstantiationDependent() &&
9085 CheckConstraintSatisfaction(nullptr, {Constraint}, /*TemplateArgs=*/{},
9086 Constraint->getSourceRange(), Satisfaction))
9087 return nullptr;
9088 return new (Context) concepts::NestedRequirement(Context, Constraint,
9089 Satisfaction);
9090}
9091
9092concepts::NestedRequirement *
9093Sema::BuildNestedRequirement(StringRef InvalidConstraintEntity,
9094 const ASTConstraintSatisfaction &Satisfaction) {
9095 return new (Context) concepts::NestedRequirement(
9096 InvalidConstraintEntity,
9097 ASTConstraintSatisfaction::Rebuild(Context, Satisfaction));
9098}
9099
9100RequiresExprBodyDecl *
9101Sema::ActOnStartRequiresExpr(SourceLocation RequiresKWLoc,
9102 ArrayRef<ParmVarDecl *> LocalParameters,
9103 Scope *BodyScope) {
9104 assert(BodyScope)(static_cast <bool> (BodyScope) ? void (0) : __assert_fail
("BodyScope", "clang/lib/Sema/SemaExprCXX.cpp", 9104, __extension__
__PRETTY_FUNCTION__))
;
9105
9106 RequiresExprBodyDecl *Body = RequiresExprBodyDecl::Create(Context, CurContext,
9107 RequiresKWLoc);
9108
9109 PushDeclContext(BodyScope, Body);
9110
9111 for (ParmVarDecl *Param : LocalParameters) {
9112 if (Param->hasDefaultArg())
9113 // C++2a [expr.prim.req] p4
9114 // [...] A local parameter of a requires-expression shall not have a
9115 // default argument. [...]
9116 Diag(Param->getDefaultArgRange().getBegin(),
9117 diag::err_requires_expr_local_parameter_default_argument);
9118 // Ignore default argument and move on
9119
9120 Param->setDeclContext(Body);
9121 // If this has an identifier, add it to the scope stack.
9122 if (Param->getIdentifier()) {
9123 CheckShadow(BodyScope, Param);
9124 PushOnScopeChains(Param, BodyScope);
9125 }
9126 }
9127 return Body;
9128}
9129
9130void Sema::ActOnFinishRequiresExpr() {
9131 assert(CurContext && "DeclContext imbalance!")(static_cast <bool> (CurContext && "DeclContext imbalance!"
) ? void (0) : __assert_fail ("CurContext && \"DeclContext imbalance!\""
, "clang/lib/Sema/SemaExprCXX.cpp", 9131, __extension__ __PRETTY_FUNCTION__
))
;
9132 CurContext = CurContext->getLexicalParent();
9133 assert(CurContext && "Popped translation unit!")(static_cast <bool> (CurContext && "Popped translation unit!"
) ? void (0) : __assert_fail ("CurContext && \"Popped translation unit!\""
, "clang/lib/Sema/SemaExprCXX.cpp", 9133, __extension__ __PRETTY_FUNCTION__
))
;
9134}
9135
9136ExprResult
9137Sema::ActOnRequiresExpr(SourceLocation RequiresKWLoc,
9138 RequiresExprBodyDecl *Body,
9139 ArrayRef<ParmVarDecl *> LocalParameters,
9140 ArrayRef<concepts::Requirement *> Requirements,
9141 SourceLocation ClosingBraceLoc) {
9142 auto *RE = RequiresExpr::Create(Context, RequiresKWLoc, Body, LocalParameters,
9143 Requirements, ClosingBraceLoc);
9144 if (DiagnoseUnexpandedParameterPackInRequiresExpr(RE))
9145 return ExprError();
9146 return RE;
9147}