Bug Summary

File:tools/clang/lib/Sema/SemaExprCXX.cpp
Warning:line 512, column 7
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SemaExprCXX.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -relaxed-aliasing -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-9/lib/clang/9.0.0 -D CLANG_VENDOR="Debian " -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include -I /build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-9~svn362543/build-llvm/include -I /build/llvm-toolchain-snapshot-9~svn362543/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/include/clang/9.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-9/lib/clang/9.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/lib/Sema -fdebug-prefix-map=/build/llvm-toolchain-snapshot-9~svn362543=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fobjc-runtime=gcc -fno-common -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2019-06-05-060531-1271-1 -x c++ /build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp -faddrsig
1//===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// Implements semantic analysis for C++ expressions.
11///
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "TreeTransform.h"
16#include "TypeLocBuilder.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/ASTLambda.h"
19#include "clang/AST/CXXInheritance.h"
20#include "clang/AST/CharUnits.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/ExprObjC.h"
24#include "clang/AST/RecursiveASTVisitor.h"
25#include "clang/AST/TypeLoc.h"
26#include "clang/Basic/AlignedAllocation.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Basic/TargetInfo.h"
29#include "clang/Lex/Preprocessor.h"
30#include "clang/Sema/DeclSpec.h"
31#include "clang/Sema/Initialization.h"
32#include "clang/Sema/Lookup.h"
33#include "clang/Sema/ParsedTemplate.h"
34#include "clang/Sema/Scope.h"
35#include "clang/Sema/ScopeInfo.h"
36#include "clang/Sema/SemaLambda.h"
37#include "clang/Sema/TemplateDeduction.h"
38#include "llvm/ADT/APInt.h"
39#include "llvm/ADT/STLExtras.h"
40#include "llvm/Support/ErrorHandling.h"
41using namespace clang;
42using namespace sema;
43
44/// Handle the result of the special case name lookup for inheriting
45/// constructor declarations. 'NS::X::X' and 'NS::X<...>::X' are treated as
46/// constructor names in member using declarations, even if 'X' is not the
47/// name of the corresponding type.
48ParsedType Sema::getInheritingConstructorName(CXXScopeSpec &SS,
49 SourceLocation NameLoc,
50 IdentifierInfo &Name) {
51 NestedNameSpecifier *NNS = SS.getScopeRep();
52
53 // Convert the nested-name-specifier into a type.
54 QualType Type;
55 switch (NNS->getKind()) {
56 case NestedNameSpecifier::TypeSpec:
57 case NestedNameSpecifier::TypeSpecWithTemplate:
58 Type = QualType(NNS->getAsType(), 0);
59 break;
60
61 case NestedNameSpecifier::Identifier:
62 // Strip off the last layer of the nested-name-specifier and build a
63 // typename type for it.
64 assert(NNS->getAsIdentifier() == &Name && "not a constructor name")((NNS->getAsIdentifier() == &Name && "not a constructor name"
) ? static_cast<void> (0) : __assert_fail ("NNS->getAsIdentifier() == &Name && \"not a constructor name\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 64, __PRETTY_FUNCTION__))
;
65 Type = Context.getDependentNameType(ETK_None, NNS->getPrefix(),
66 NNS->getAsIdentifier());
67 break;
68
69 case NestedNameSpecifier::Global:
70 case NestedNameSpecifier::Super:
71 case NestedNameSpecifier::Namespace:
72 case NestedNameSpecifier::NamespaceAlias:
73 llvm_unreachable("Nested name specifier is not a type for inheriting ctor")::llvm::llvm_unreachable_internal("Nested name specifier is not a type for inheriting ctor"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 73)
;
74 }
75
76 // This reference to the type is located entirely at the location of the
77 // final identifier in the qualified-id.
78 return CreateParsedType(Type,
79 Context.getTrivialTypeSourceInfo(Type, NameLoc));
80}
81
82ParsedType Sema::getConstructorName(IdentifierInfo &II,
83 SourceLocation NameLoc,
84 Scope *S, CXXScopeSpec &SS,
85 bool EnteringContext) {
86 CXXRecordDecl *CurClass = getCurrentClass(S, &SS);
87 assert(CurClass && &II == CurClass->getIdentifier() &&((CurClass && &II == CurClass->getIdentifier()
&& "not a constructor name") ? static_cast<void>
(0) : __assert_fail ("CurClass && &II == CurClass->getIdentifier() && \"not a constructor name\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 88, __PRETTY_FUNCTION__))
88 "not a constructor name")((CurClass && &II == CurClass->getIdentifier()
&& "not a constructor name") ? static_cast<void>
(0) : __assert_fail ("CurClass && &II == CurClass->getIdentifier() && \"not a constructor name\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 88, __PRETTY_FUNCTION__))
;
89
90 // When naming a constructor as a member of a dependent context (eg, in a
91 // friend declaration or an inherited constructor declaration), form an
92 // unresolved "typename" type.
93 if (CurClass->isDependentContext() && !EnteringContext) {
94 QualType T = Context.getDependentNameType(ETK_None, SS.getScopeRep(), &II);
95 return ParsedType::make(T);
96 }
97
98 if (SS.isNotEmpty() && RequireCompleteDeclContext(SS, CurClass))
99 return ParsedType();
100
101 // Find the injected-class-name declaration. Note that we make no attempt to
102 // diagnose cases where the injected-class-name is shadowed: the only
103 // declaration that can validly shadow the injected-class-name is a
104 // non-static data member, and if the class contains both a non-static data
105 // member and a constructor then it is ill-formed (we check that in
106 // CheckCompletedCXXClass).
107 CXXRecordDecl *InjectedClassName = nullptr;
108 for (NamedDecl *ND : CurClass->lookup(&II)) {
109 auto *RD = dyn_cast<CXXRecordDecl>(ND);
110 if (RD && RD->isInjectedClassName()) {
111 InjectedClassName = RD;
112 break;
113 }
114 }
115 if (!InjectedClassName) {
116 if (!CurClass->isInvalidDecl()) {
117 // FIXME: RequireCompleteDeclContext doesn't check dependent contexts
118 // properly. Work around it here for now.
119 Diag(SS.getLastQualifierNameLoc(),
120 diag::err_incomplete_nested_name_spec) << CurClass << SS.getRange();
121 }
122 return ParsedType();
123 }
124
125 QualType T = Context.getTypeDeclType(InjectedClassName);
126 DiagnoseUseOfDecl(InjectedClassName, NameLoc);
127 MarkAnyDeclReferenced(NameLoc, InjectedClassName, /*OdrUse=*/false);
128
129 return ParsedType::make(T);
130}
131
132ParsedType Sema::getDestructorName(SourceLocation TildeLoc,
133 IdentifierInfo &II,
134 SourceLocation NameLoc,
135 Scope *S, CXXScopeSpec &SS,
136 ParsedType ObjectTypePtr,
137 bool EnteringContext) {
138 // Determine where to perform name lookup.
139
140 // FIXME: This area of the standard is very messy, and the current
141 // wording is rather unclear about which scopes we search for the
142 // destructor name; see core issues 399 and 555. Issue 399 in
143 // particular shows where the current description of destructor name
144 // lookup is completely out of line with existing practice, e.g.,
145 // this appears to be ill-formed:
146 //
147 // namespace N {
148 // template <typename T> struct S {
149 // ~S();
150 // };
151 // }
152 //
153 // void f(N::S<int>* s) {
154 // s->N::S<int>::~S();
155 // }
156 //
157 // See also PR6358 and PR6359.
158 // For this reason, we're currently only doing the C++03 version of this
159 // code; the C++0x version has to wait until we get a proper spec.
160 QualType SearchType;
161 DeclContext *LookupCtx = nullptr;
162 bool isDependent = false;
163 bool LookInScope = false;
164
165 if (SS.isInvalid())
166 return nullptr;
167
168 // If we have an object type, it's because we are in a
169 // pseudo-destructor-expression or a member access expression, and
170 // we know what type we're looking for.
171 if (ObjectTypePtr)
172 SearchType = GetTypeFromParser(ObjectTypePtr);
173
174 if (SS.isSet()) {
175 NestedNameSpecifier *NNS = SS.getScopeRep();
176
177 bool AlreadySearched = false;
178 bool LookAtPrefix = true;
179 // C++11 [basic.lookup.qual]p6:
180 // If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier,
181 // the type-names are looked up as types in the scope designated by the
182 // nested-name-specifier. Similarly, in a qualified-id of the form:
183 //
184 // nested-name-specifier[opt] class-name :: ~ class-name
185 //
186 // the second class-name is looked up in the same scope as the first.
187 //
188 // Here, we determine whether the code below is permitted to look at the
189 // prefix of the nested-name-specifier.
190 DeclContext *DC = computeDeclContext(SS, EnteringContext);
191 if (DC && DC->isFileContext()) {
192 AlreadySearched = true;
193 LookupCtx = DC;
194 isDependent = false;
195 } else if (DC && isa<CXXRecordDecl>(DC)) {
196 LookAtPrefix = false;
197 LookInScope = true;
198 }
199
200 // The second case from the C++03 rules quoted further above.
201 NestedNameSpecifier *Prefix = nullptr;
202 if (AlreadySearched) {
203 // Nothing left to do.
204 } else if (LookAtPrefix && (Prefix = NNS->getPrefix())) {
205 CXXScopeSpec PrefixSS;
206 PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data()));
207 LookupCtx = computeDeclContext(PrefixSS, EnteringContext);
208 isDependent = isDependentScopeSpecifier(PrefixSS);
209 } else if (ObjectTypePtr) {
210 LookupCtx = computeDeclContext(SearchType);
211 isDependent = SearchType->isDependentType();
212 } else {
213 LookupCtx = computeDeclContext(SS, EnteringContext);
214 isDependent = LookupCtx && LookupCtx->isDependentContext();
215 }
216 } else if (ObjectTypePtr) {
217 // C++ [basic.lookup.classref]p3:
218 // If the unqualified-id is ~type-name, the type-name is looked up
219 // in the context of the entire postfix-expression. If the type T
220 // of the object expression is of a class type C, the type-name is
221 // also looked up in the scope of class C. At least one of the
222 // lookups shall find a name that refers to (possibly
223 // cv-qualified) T.
224 LookupCtx = computeDeclContext(SearchType);
225 isDependent = SearchType->isDependentType();
226 assert((isDependent || !SearchType->isIncompleteType()) &&(((isDependent || !SearchType->isIncompleteType()) &&
"Caller should have completed object type") ? static_cast<
void> (0) : __assert_fail ("(isDependent || !SearchType->isIncompleteType()) && \"Caller should have completed object type\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 227, __PRETTY_FUNCTION__))
227 "Caller should have completed object type")(((isDependent || !SearchType->isIncompleteType()) &&
"Caller should have completed object type") ? static_cast<
void> (0) : __assert_fail ("(isDependent || !SearchType->isIncompleteType()) && \"Caller should have completed object type\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 227, __PRETTY_FUNCTION__))
;
228
229 LookInScope = true;
230 } else {
231 // Perform lookup into the current scope (only).
232 LookInScope = true;
233 }
234
235 TypeDecl *NonMatchingTypeDecl = nullptr;
236 LookupResult Found(*this, &II, NameLoc, LookupOrdinaryName);
237 for (unsigned Step = 0; Step != 2; ++Step) {
238 // Look for the name first in the computed lookup context (if we
239 // have one) and, if that fails to find a match, in the scope (if
240 // we're allowed to look there).
241 Found.clear();
242 if (Step == 0 && LookupCtx) {
243 if (RequireCompleteDeclContext(SS, LookupCtx))
244 return nullptr;
245 LookupQualifiedName(Found, LookupCtx);
246 } else if (Step == 1 && LookInScope && S) {
247 LookupName(Found, S);
248 } else {
249 continue;
250 }
251
252 // FIXME: Should we be suppressing ambiguities here?
253 if (Found.isAmbiguous())
254 return nullptr;
255
256 if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
257 QualType T = Context.getTypeDeclType(Type);
258 MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
259
260 if (SearchType.isNull() || SearchType->isDependentType() ||
261 Context.hasSameUnqualifiedType(T, SearchType)) {
262 // We found our type!
263
264 return CreateParsedType(T,
265 Context.getTrivialTypeSourceInfo(T, NameLoc));
266 }
267
268 if (!SearchType.isNull())
269 NonMatchingTypeDecl = Type;
270 }
271
272 // If the name that we found is a class template name, and it is
273 // the same name as the template name in the last part of the
274 // nested-name-specifier (if present) or the object type, then
275 // this is the destructor for that class.
276 // FIXME: This is a workaround until we get real drafting for core
277 // issue 399, for which there isn't even an obvious direction.
278 if (ClassTemplateDecl *Template = Found.getAsSingle<ClassTemplateDecl>()) {
279 QualType MemberOfType;
280 if (SS.isSet()) {
281 if (DeclContext *Ctx = computeDeclContext(SS, EnteringContext)) {
282 // Figure out the type of the context, if it has one.
283 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx))
284 MemberOfType = Context.getTypeDeclType(Record);
285 }
286 }
287 if (MemberOfType.isNull())
288 MemberOfType = SearchType;
289
290 if (MemberOfType.isNull())
291 continue;
292
293 // We're referring into a class template specialization. If the
294 // class template we found is the same as the template being
295 // specialized, we found what we are looking for.
296 if (const RecordType *Record = MemberOfType->getAs<RecordType>()) {
297 if (ClassTemplateSpecializationDecl *Spec
298 = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
299 if (Spec->getSpecializedTemplate()->getCanonicalDecl() ==
300 Template->getCanonicalDecl())
301 return CreateParsedType(
302 MemberOfType,
303 Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc));
304 }
305
306 continue;
307 }
308
309 // We're referring to an unresolved class template
310 // specialization. Determine whether we class template we found
311 // is the same as the template being specialized or, if we don't
312 // know which template is being specialized, that it at least
313 // has the same name.
314 if (const TemplateSpecializationType *SpecType
315 = MemberOfType->getAs<TemplateSpecializationType>()) {
316 TemplateName SpecName = SpecType->getTemplateName();
317
318 // The class template we found is the same template being
319 // specialized.
320 if (TemplateDecl *SpecTemplate = SpecName.getAsTemplateDecl()) {
321 if (SpecTemplate->getCanonicalDecl() == Template->getCanonicalDecl())
322 return CreateParsedType(
323 MemberOfType,
324 Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc));
325
326 continue;
327 }
328
329 // The class template we found has the same name as the
330 // (dependent) template name being specialized.
331 if (DependentTemplateName *DepTemplate
332 = SpecName.getAsDependentTemplateName()) {
333 if (DepTemplate->isIdentifier() &&
334 DepTemplate->getIdentifier() == Template->getIdentifier())
335 return CreateParsedType(
336 MemberOfType,
337 Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc));
338
339 continue;
340 }
341 }
342 }
343 }
344
345 if (isDependent) {
346 // We didn't find our type, but that's okay: it's dependent
347 // anyway.
348
349 // FIXME: What if we have no nested-name-specifier?
350 QualType T = CheckTypenameType(ETK_None, SourceLocation(),
351 SS.getWithLocInContext(Context),
352 II, NameLoc);
353 return ParsedType::make(T);
354 }
355
356 if (NonMatchingTypeDecl) {
357 QualType T = Context.getTypeDeclType(NonMatchingTypeDecl);
358 Diag(NameLoc, diag::err_destructor_expr_type_mismatch)
359 << T << SearchType;
360 Diag(NonMatchingTypeDecl->getLocation(), diag::note_destructor_type_here)
361 << T;
362 } else if (ObjectTypePtr)
363 Diag(NameLoc, diag::err_ident_in_dtor_not_a_type)
364 << &II;
365 else {
366 SemaDiagnosticBuilder DtorDiag = Diag(NameLoc,
367 diag::err_destructor_class_name);
368 if (S) {
369 const DeclContext *Ctx = S->getEntity();
370 if (const CXXRecordDecl *Class = dyn_cast_or_null<CXXRecordDecl>(Ctx))
371 DtorDiag << FixItHint::CreateReplacement(SourceRange(NameLoc),
372 Class->getNameAsString());
373 }
374 }
375
376 return nullptr;
377}
378
379ParsedType Sema::getDestructorTypeForDecltype(const DeclSpec &DS,
380 ParsedType ObjectType) {
381 if (DS.getTypeSpecType() == DeclSpec::TST_error)
382 return nullptr;
383
384 if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto) {
385 Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid);
386 return nullptr;
387 }
388
389 assert(DS.getTypeSpecType() == DeclSpec::TST_decltype &&((DS.getTypeSpecType() == DeclSpec::TST_decltype && "unexpected type in getDestructorType"
) ? static_cast<void> (0) : __assert_fail ("DS.getTypeSpecType() == DeclSpec::TST_decltype && \"unexpected type in getDestructorType\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 390, __PRETTY_FUNCTION__))
390 "unexpected type in getDestructorType")((DS.getTypeSpecType() == DeclSpec::TST_decltype && "unexpected type in getDestructorType"
) ? static_cast<void> (0) : __assert_fail ("DS.getTypeSpecType() == DeclSpec::TST_decltype && \"unexpected type in getDestructorType\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 390, __PRETTY_FUNCTION__))
;
391 QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
392
393 // If we know the type of the object, check that the correct destructor
394 // type was named now; we can give better diagnostics this way.
395 QualType SearchType = GetTypeFromParser(ObjectType);
396 if (!SearchType.isNull() && !SearchType->isDependentType() &&
397 !Context.hasSameUnqualifiedType(T, SearchType)) {
398 Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch)
399 << T << SearchType;
400 return nullptr;
401 }
402
403 return ParsedType::make(T);
404}
405
406bool Sema::checkLiteralOperatorId(const CXXScopeSpec &SS,
407 const UnqualifiedId &Name) {
408 assert(Name.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId)((Name.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId) ?
static_cast<void> (0) : __assert_fail ("Name.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 408, __PRETTY_FUNCTION__))
;
409
410 if (!SS.isValid())
411 return false;
412
413 switch (SS.getScopeRep()->getKind()) {
414 case NestedNameSpecifier::Identifier:
415 case NestedNameSpecifier::TypeSpec:
416 case NestedNameSpecifier::TypeSpecWithTemplate:
417 // Per C++11 [over.literal]p2, literal operators can only be declared at
418 // namespace scope. Therefore, this unqualified-id cannot name anything.
419 // Reject it early, because we have no AST representation for this in the
420 // case where the scope is dependent.
421 Diag(Name.getBeginLoc(), diag::err_literal_operator_id_outside_namespace)
422 << SS.getScopeRep();
423 return true;
424
425 case NestedNameSpecifier::Global:
426 case NestedNameSpecifier::Super:
427 case NestedNameSpecifier::Namespace:
428 case NestedNameSpecifier::NamespaceAlias:
429 return false;
430 }
431
432 llvm_unreachable("unknown nested name specifier kind")::llvm::llvm_unreachable_internal("unknown nested name specifier kind"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 432)
;
433}
434
435/// Build a C++ typeid expression with a type operand.
436ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
437 SourceLocation TypeidLoc,
438 TypeSourceInfo *Operand,
439 SourceLocation RParenLoc) {
440 // C++ [expr.typeid]p4:
441 // The top-level cv-qualifiers of the lvalue expression or the type-id
442 // that is the operand of typeid are always ignored.
443 // If the type of the type-id is a class type or a reference to a class
444 // type, the class shall be completely-defined.
445 Qualifiers Quals;
446 QualType T
447 = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
448 Quals);
449 if (T->getAs<RecordType>() &&
450 RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
451 return ExprError();
452
453 if (T->isVariablyModifiedType())
454 return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid) << T);
455
456 return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), Operand,
457 SourceRange(TypeidLoc, RParenLoc));
458}
459
460/// Build a C++ typeid expression with an expression operand.
461ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
462 SourceLocation TypeidLoc,
463 Expr *E,
464 SourceLocation RParenLoc) {
465 bool WasEvaluated = false;
466 if (E && !E->isTypeDependent()) {
13
Assuming 'E' is null
467 if (E->getType()->isPlaceholderType()) {
468 ExprResult result = CheckPlaceholderExpr(E);
469 if (result.isInvalid()) return ExprError();
470 E = result.get();
471 }
472
473 QualType T = E->getType();
474 if (const RecordType *RecordT = T->getAs<RecordType>()) {
475 CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
476 // C++ [expr.typeid]p3:
477 // [...] If the type of the expression is a class type, the class
478 // shall be completely-defined.
479 if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
480 return ExprError();
481
482 // C++ [expr.typeid]p3:
483 // When typeid is applied to an expression other than an glvalue of a
484 // polymorphic class type [...] [the] expression is an unevaluated
485 // operand. [...]
486 if (RecordD->isPolymorphic() && E->isGLValue()) {
487 // The subexpression is potentially evaluated; switch the context
488 // and recheck the subexpression.
489 ExprResult Result = TransformToPotentiallyEvaluated(E);
490 if (Result.isInvalid()) return ExprError();
491 E = Result.get();
492
493 // We require a vtable to query the type at run time.
494 MarkVTableUsed(TypeidLoc, RecordD);
495 WasEvaluated = true;
496 }
497 }
498
499 // C++ [expr.typeid]p4:
500 // [...] If the type of the type-id is a reference to a possibly
501 // cv-qualified type, the result of the typeid expression refers to a
502 // std::type_info object representing the cv-unqualified referenced
503 // type.
504 Qualifiers Quals;
505 QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
506 if (!Context.hasSameType(T, UnqualT)) {
507 T = UnqualT;
508 E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).get();
509 }
510 }
511
512 if (E->getType()->isVariablyModifiedType())
14
Called C++ object pointer is null
513 return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid)
514 << E->getType());
515 else if (!inTemplateInstantiation() &&
516 E->HasSideEffects(Context, WasEvaluated)) {
517 // The expression operand for typeid is in an unevaluated expression
518 // context, so side effects could result in unintended consequences.
519 Diag(E->getExprLoc(), WasEvaluated
520 ? diag::warn_side_effects_typeid
521 : diag::warn_side_effects_unevaluated_context);
522 }
523
524 return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), E,
525 SourceRange(TypeidLoc, RParenLoc));
526}
527
528/// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
529ExprResult
530Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
531 bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
532 // OpenCL C++ 1.0 s2.9: typeid is not supported.
533 if (getLangOpts().OpenCLCPlusPlus) {
1
Assuming the condition is false
2
Taking false branch
534 return ExprError(Diag(OpLoc, diag::err_openclcxx_not_supported)
535 << "typeid");
536 }
537
538 // Find the std::type_info type.
539 if (!getStdNamespace())
3
Assuming the condition is false
4
Taking false branch
540 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
541
542 if (!CXXTypeInfoDecl) {
5
Assuming the condition is false
6
Taking false branch
543 IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
544 LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
545 LookupQualifiedName(R, getStdNamespace());
546 CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
547 // Microsoft's typeinfo doesn't have type_info in std but in the global
548 // namespace if _HAS_EXCEPTIONS is defined to 0. See PR13153.
549 if (!CXXTypeInfoDecl && LangOpts.MSVCCompat) {
550 LookupQualifiedName(R, Context.getTranslationUnitDecl());
551 CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
552 }
553 if (!CXXTypeInfoDecl)
554 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
555 }
556
557 if (!getLangOpts().RTTI) {
7
Assuming the condition is false
8
Taking false branch
558 return ExprError(Diag(OpLoc, diag::err_no_typeid_with_fno_rtti));
559 }
560
561 QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
562
563 if (isType) {
9
Assuming 'isType' is 0
10
Taking false branch
564 // The operand is a type; handle it as such.
565 TypeSourceInfo *TInfo = nullptr;
566 QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
567 &TInfo);
568 if (T.isNull())
569 return ExprError();
570
571 if (!TInfo)
572 TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
573
574 return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
575 }
576
577 // The operand is an expression.
578 return BuildCXXTypeId(TypeInfoType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
11
Passing value via 3rd parameter 'E'
12
Calling 'Sema::BuildCXXTypeId'
579}
580
581/// Grabs __declspec(uuid()) off a type, or returns 0 if we cannot resolve to
582/// a single GUID.
583static void
584getUuidAttrOfType(Sema &SemaRef, QualType QT,
585 llvm::SmallSetVector<const UuidAttr *, 1> &UuidAttrs) {
586 // Optionally remove one level of pointer, reference or array indirection.
587 const Type *Ty = QT.getTypePtr();
588 if (QT->isPointerType() || QT->isReferenceType())
589 Ty = QT->getPointeeType().getTypePtr();
590 else if (QT->isArrayType())
591 Ty = Ty->getBaseElementTypeUnsafe();
592
593 const auto *TD = Ty->getAsTagDecl();
594 if (!TD)
595 return;
596
597 if (const auto *Uuid = TD->getMostRecentDecl()->getAttr<UuidAttr>()) {
598 UuidAttrs.insert(Uuid);
599 return;
600 }
601
602 // __uuidof can grab UUIDs from template arguments.
603 if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(TD)) {
604 const TemplateArgumentList &TAL = CTSD->getTemplateArgs();
605 for (const TemplateArgument &TA : TAL.asArray()) {
606 const UuidAttr *UuidForTA = nullptr;
607 if (TA.getKind() == TemplateArgument::Type)
608 getUuidAttrOfType(SemaRef, TA.getAsType(), UuidAttrs);
609 else if (TA.getKind() == TemplateArgument::Declaration)
610 getUuidAttrOfType(SemaRef, TA.getAsDecl()->getType(), UuidAttrs);
611
612 if (UuidForTA)
613 UuidAttrs.insert(UuidForTA);
614 }
615 }
616}
617
618/// Build a Microsoft __uuidof expression with a type operand.
619ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
620 SourceLocation TypeidLoc,
621 TypeSourceInfo *Operand,
622 SourceLocation RParenLoc) {
623 StringRef UuidStr;
624 if (!Operand->getType()->isDependentType()) {
625 llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs;
626 getUuidAttrOfType(*this, Operand->getType(), UuidAttrs);
627 if (UuidAttrs.empty())
628 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
629 if (UuidAttrs.size() > 1)
630 return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
631 UuidStr = UuidAttrs.back()->getGuid();
632 }
633
634 return new (Context) CXXUuidofExpr(TypeInfoType.withConst(), Operand, UuidStr,
635 SourceRange(TypeidLoc, RParenLoc));
636}
637
638/// Build a Microsoft __uuidof expression with an expression operand.
639ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
640 SourceLocation TypeidLoc,
641 Expr *E,
642 SourceLocation RParenLoc) {
643 StringRef UuidStr;
644 if (!E->getType()->isDependentType()) {
645 if (E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
646 UuidStr = "00000000-0000-0000-0000-000000000000";
647 } else {
648 llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs;
649 getUuidAttrOfType(*this, E->getType(), UuidAttrs);
650 if (UuidAttrs.empty())
651 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
652 if (UuidAttrs.size() > 1)
653 return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
654 UuidStr = UuidAttrs.back()->getGuid();
655 }
656 }
657
658 return new (Context) CXXUuidofExpr(TypeInfoType.withConst(), E, UuidStr,
659 SourceRange(TypeidLoc, RParenLoc));
660}
661
662/// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
663ExprResult
664Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
665 bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
666 // If MSVCGuidDecl has not been cached, do the lookup.
667 if (!MSVCGuidDecl) {
668 IdentifierInfo *GuidII = &PP.getIdentifierTable().get("_GUID");
669 LookupResult R(*this, GuidII, SourceLocation(), LookupTagName);
670 LookupQualifiedName(R, Context.getTranslationUnitDecl());
671 MSVCGuidDecl = R.getAsSingle<RecordDecl>();
672 if (!MSVCGuidDecl)
673 return ExprError(Diag(OpLoc, diag::err_need_header_before_ms_uuidof));
674 }
675
676 QualType GuidType = Context.getTypeDeclType(MSVCGuidDecl);
677
678 if (isType) {
679 // The operand is a type; handle it as such.
680 TypeSourceInfo *TInfo = nullptr;
681 QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
682 &TInfo);
683 if (T.isNull())
684 return ExprError();
685
686 if (!TInfo)
687 TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
688
689 return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
690 }
691
692 // The operand is an expression.
693 return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
694}
695
696/// ActOnCXXBoolLiteral - Parse {true,false} literals.
697ExprResult
698Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
699 assert((Kind == tok::kw_true || Kind == tok::kw_false) &&(((Kind == tok::kw_true || Kind == tok::kw_false) && "Unknown C++ Boolean value!"
) ? static_cast<void> (0) : __assert_fail ("(Kind == tok::kw_true || Kind == tok::kw_false) && \"Unknown C++ Boolean value!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 700, __PRETTY_FUNCTION__))
700 "Unknown C++ Boolean value!")(((Kind == tok::kw_true || Kind == tok::kw_false) && "Unknown C++ Boolean value!"
) ? static_cast<void> (0) : __assert_fail ("(Kind == tok::kw_true || Kind == tok::kw_false) && \"Unknown C++ Boolean value!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 700, __PRETTY_FUNCTION__))
;
701 return new (Context)
702 CXXBoolLiteralExpr(Kind == tok::kw_true, Context.BoolTy, OpLoc);
703}
704
705/// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
706ExprResult
707Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
708 return new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
709}
710
711/// ActOnCXXThrow - Parse throw expressions.
712ExprResult
713Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) {
714 bool IsThrownVarInScope = false;
715 if (Ex) {
716 // C++0x [class.copymove]p31:
717 // When certain criteria are met, an implementation is allowed to omit the
718 // copy/move construction of a class object [...]
719 //
720 // - in a throw-expression, when the operand is the name of a
721 // non-volatile automatic object (other than a function or catch-
722 // clause parameter) whose scope does not extend beyond the end of the
723 // innermost enclosing try-block (if there is one), the copy/move
724 // operation from the operand to the exception object (15.1) can be
725 // omitted by constructing the automatic object directly into the
726 // exception object
727 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens()))
728 if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
729 if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) {
730 for( ; S; S = S->getParent()) {
731 if (S->isDeclScope(Var)) {
732 IsThrownVarInScope = true;
733 break;
734 }
735
736 if (S->getFlags() &
737 (Scope::FnScope | Scope::ClassScope | Scope::BlockScope |
738 Scope::FunctionPrototypeScope | Scope::ObjCMethodScope |
739 Scope::TryScope))
740 break;
741 }
742 }
743 }
744 }
745
746 return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope);
747}
748
749ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex,
750 bool IsThrownVarInScope) {
751 // Don't report an error if 'throw' is used in system headers.
752 if (!getLangOpts().CXXExceptions &&
753 !getSourceManager().isInSystemHeader(OpLoc) && !getLangOpts().CUDA) {
754 // Delay error emission for the OpenMP device code.
755 targetDiag(OpLoc, diag::err_exceptions_disabled) << "throw";
756 }
757
758 // Exceptions aren't allowed in CUDA device code.
759 if (getLangOpts().CUDA)
760 CUDADiagIfDeviceCode(OpLoc, diag::err_cuda_device_exceptions)
761 << "throw" << CurrentCUDATarget();
762
763 if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope())
764 Diag(OpLoc, diag::err_omp_simd_region_cannot_use_stmt) << "throw";
765
766 if (Ex && !Ex->isTypeDependent()) {
767 QualType ExceptionObjectTy = Context.getExceptionObjectType(Ex->getType());
768 if (CheckCXXThrowOperand(OpLoc, ExceptionObjectTy, Ex))
769 return ExprError();
770
771 // Initialize the exception result. This implicitly weeds out
772 // abstract types or types with inaccessible copy constructors.
773
774 // C++0x [class.copymove]p31:
775 // When certain criteria are met, an implementation is allowed to omit the
776 // copy/move construction of a class object [...]
777 //
778 // - in a throw-expression, when the operand is the name of a
779 // non-volatile automatic object (other than a function or
780 // catch-clause
781 // parameter) whose scope does not extend beyond the end of the
782 // innermost enclosing try-block (if there is one), the copy/move
783 // operation from the operand to the exception object (15.1) can be
784 // omitted by constructing the automatic object directly into the
785 // exception object
786 const VarDecl *NRVOVariable = nullptr;
787 if (IsThrownVarInScope)
788 NRVOVariable = getCopyElisionCandidate(QualType(), Ex, CES_Strict);
789
790 InitializedEntity Entity = InitializedEntity::InitializeException(
791 OpLoc, ExceptionObjectTy,
792 /*NRVO=*/NRVOVariable != nullptr);
793 ExprResult Res = PerformMoveOrCopyInitialization(
794 Entity, NRVOVariable, QualType(), Ex, IsThrownVarInScope);
795 if (Res.isInvalid())
796 return ExprError();
797 Ex = Res.get();
798 }
799
800 return new (Context)
801 CXXThrowExpr(Ex, Context.VoidTy, OpLoc, IsThrownVarInScope);
802}
803
804static void
805collectPublicBases(CXXRecordDecl *RD,
806 llvm::DenseMap<CXXRecordDecl *, unsigned> &SubobjectsSeen,
807 llvm::SmallPtrSetImpl<CXXRecordDecl *> &VBases,
808 llvm::SetVector<CXXRecordDecl *> &PublicSubobjectsSeen,
809 bool ParentIsPublic) {
810 for (const CXXBaseSpecifier &BS : RD->bases()) {
811 CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
812 bool NewSubobject;
813 // Virtual bases constitute the same subobject. Non-virtual bases are
814 // always distinct subobjects.
815 if (BS.isVirtual())
816 NewSubobject = VBases.insert(BaseDecl).second;
817 else
818 NewSubobject = true;
819
820 if (NewSubobject)
821 ++SubobjectsSeen[BaseDecl];
822
823 // Only add subobjects which have public access throughout the entire chain.
824 bool PublicPath = ParentIsPublic && BS.getAccessSpecifier() == AS_public;
825 if (PublicPath)
826 PublicSubobjectsSeen.insert(BaseDecl);
827
828 // Recurse on to each base subobject.
829 collectPublicBases(BaseDecl, SubobjectsSeen, VBases, PublicSubobjectsSeen,
830 PublicPath);
831 }
832}
833
834static void getUnambiguousPublicSubobjects(
835 CXXRecordDecl *RD, llvm::SmallVectorImpl<CXXRecordDecl *> &Objects) {
836 llvm::DenseMap<CXXRecordDecl *, unsigned> SubobjectsSeen;
837 llvm::SmallSet<CXXRecordDecl *, 2> VBases;
838 llvm::SetVector<CXXRecordDecl *> PublicSubobjectsSeen;
839 SubobjectsSeen[RD] = 1;
840 PublicSubobjectsSeen.insert(RD);
841 collectPublicBases(RD, SubobjectsSeen, VBases, PublicSubobjectsSeen,
842 /*ParentIsPublic=*/true);
843
844 for (CXXRecordDecl *PublicSubobject : PublicSubobjectsSeen) {
845 // Skip ambiguous objects.
846 if (SubobjectsSeen[PublicSubobject] > 1)
847 continue;
848
849 Objects.push_back(PublicSubobject);
850 }
851}
852
853/// CheckCXXThrowOperand - Validate the operand of a throw.
854bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc,
855 QualType ExceptionObjectTy, Expr *E) {
856 // If the type of the exception would be an incomplete type or a pointer
857 // to an incomplete type other than (cv) void the program is ill-formed.
858 QualType Ty = ExceptionObjectTy;
859 bool isPointer = false;
860 if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
861 Ty = Ptr->getPointeeType();
862 isPointer = true;
863 }
864 if (!isPointer || !Ty->isVoidType()) {
865 if (RequireCompleteType(ThrowLoc, Ty,
866 isPointer ? diag::err_throw_incomplete_ptr
867 : diag::err_throw_incomplete,
868 E->getSourceRange()))
869 return true;
870
871 if (RequireNonAbstractType(ThrowLoc, ExceptionObjectTy,
872 diag::err_throw_abstract_type, E))
873 return true;
874 }
875
876 // If the exception has class type, we need additional handling.
877 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
878 if (!RD)
879 return false;
880
881 // If we are throwing a polymorphic class type or pointer thereof,
882 // exception handling will make use of the vtable.
883 MarkVTableUsed(ThrowLoc, RD);
884
885 // If a pointer is thrown, the referenced object will not be destroyed.
886 if (isPointer)
887 return false;
888
889 // If the class has a destructor, we must be able to call it.
890 if (!RD->hasIrrelevantDestructor()) {
891 if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
892 MarkFunctionReferenced(E->getExprLoc(), Destructor);
893 CheckDestructorAccess(E->getExprLoc(), Destructor,
894 PDiag(diag::err_access_dtor_exception) << Ty);
895 if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
896 return true;
897 }
898 }
899
900 // The MSVC ABI creates a list of all types which can catch the exception
901 // object. This list also references the appropriate copy constructor to call
902 // if the object is caught by value and has a non-trivial copy constructor.
903 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
904 // We are only interested in the public, unambiguous bases contained within
905 // the exception object. Bases which are ambiguous or otherwise
906 // inaccessible are not catchable types.
907 llvm::SmallVector<CXXRecordDecl *, 2> UnambiguousPublicSubobjects;
908 getUnambiguousPublicSubobjects(RD, UnambiguousPublicSubobjects);
909
910 for (CXXRecordDecl *Subobject : UnambiguousPublicSubobjects) {
911 // Attempt to lookup the copy constructor. Various pieces of machinery
912 // will spring into action, like template instantiation, which means this
913 // cannot be a simple walk of the class's decls. Instead, we must perform
914 // lookup and overload resolution.
915 CXXConstructorDecl *CD = LookupCopyingConstructor(Subobject, 0);
916 if (!CD)
917 continue;
918
919 // Mark the constructor referenced as it is used by this throw expression.
920 MarkFunctionReferenced(E->getExprLoc(), CD);
921
922 // Skip this copy constructor if it is trivial, we don't need to record it
923 // in the catchable type data.
924 if (CD->isTrivial())
925 continue;
926
927 // The copy constructor is non-trivial, create a mapping from this class
928 // type to this constructor.
929 // N.B. The selection of copy constructor is not sensitive to this
930 // particular throw-site. Lookup will be performed at the catch-site to
931 // ensure that the copy constructor is, in fact, accessible (via
932 // friendship or any other means).
933 Context.addCopyConstructorForExceptionObject(Subobject, CD);
934
935 // We don't keep the instantiated default argument expressions around so
936 // we must rebuild them here.
937 for (unsigned I = 1, E = CD->getNumParams(); I != E; ++I) {
938 if (CheckCXXDefaultArgExpr(ThrowLoc, CD, CD->getParamDecl(I)))
939 return true;
940 }
941 }
942 }
943
944 // Under the Itanium C++ ABI, memory for the exception object is allocated by
945 // the runtime with no ability for the compiler to request additional
946 // alignment. Warn if the exception type requires alignment beyond the minimum
947 // guaranteed by the target C++ runtime.
948 if (Context.getTargetInfo().getCXXABI().isItaniumFamily()) {
949 CharUnits TypeAlign = Context.getTypeAlignInChars(Ty);
950 CharUnits ExnObjAlign = Context.getExnObjectAlignment();
951 if (ExnObjAlign < TypeAlign) {
952 Diag(ThrowLoc, diag::warn_throw_underaligned_obj);
953 Diag(ThrowLoc, diag::note_throw_underaligned_obj)
954 << Ty << (unsigned)TypeAlign.getQuantity()
955 << (unsigned)ExnObjAlign.getQuantity();
956 }
957 }
958
959 return false;
960}
961
962static QualType adjustCVQualifiersForCXXThisWithinLambda(
963 ArrayRef<FunctionScopeInfo *> FunctionScopes, QualType ThisTy,
964 DeclContext *CurSemaContext, ASTContext &ASTCtx) {
965
966 QualType ClassType = ThisTy->getPointeeType();
967 LambdaScopeInfo *CurLSI = nullptr;
968 DeclContext *CurDC = CurSemaContext;
969
970 // Iterate through the stack of lambdas starting from the innermost lambda to
971 // the outermost lambda, checking if '*this' is ever captured by copy - since
972 // that could change the cv-qualifiers of the '*this' object.
973 // The object referred to by '*this' starts out with the cv-qualifiers of its
974 // member function. We then start with the innermost lambda and iterate
975 // outward checking to see if any lambda performs a by-copy capture of '*this'
976 // - and if so, any nested lambda must respect the 'constness' of that
977 // capturing lamdbda's call operator.
978 //
979
980 // Since the FunctionScopeInfo stack is representative of the lexical
981 // nesting of the lambda expressions during initial parsing (and is the best
982 // place for querying information about captures about lambdas that are
983 // partially processed) and perhaps during instantiation of function templates
984 // that contain lambda expressions that need to be transformed BUT not
985 // necessarily during instantiation of a nested generic lambda's function call
986 // operator (which might even be instantiated at the end of the TU) - at which
987 // time the DeclContext tree is mature enough to query capture information
988 // reliably - we use a two pronged approach to walk through all the lexically
989 // enclosing lambda expressions:
990 //
991 // 1) Climb down the FunctionScopeInfo stack as long as each item represents
992 // a Lambda (i.e. LambdaScopeInfo) AND each LSI's 'closure-type' is lexically
993 // enclosed by the call-operator of the LSI below it on the stack (while
994 // tracking the enclosing DC for step 2 if needed). Note the topmost LSI on
995 // the stack represents the innermost lambda.
996 //
997 // 2) If we run out of enclosing LSI's, check if the enclosing DeclContext
998 // represents a lambda's call operator. If it does, we must be instantiating
999 // a generic lambda's call operator (represented by the Current LSI, and
1000 // should be the only scenario where an inconsistency between the LSI and the
1001 // DeclContext should occur), so climb out the DeclContexts if they
1002 // represent lambdas, while querying the corresponding closure types
1003 // regarding capture information.
1004
1005 // 1) Climb down the function scope info stack.
1006 for (int I = FunctionScopes.size();
1007 I-- && isa<LambdaScopeInfo>(FunctionScopes[I]) &&
1008 (!CurLSI || !CurLSI->Lambda || CurLSI->Lambda->getDeclContext() ==
1009 cast<LambdaScopeInfo>(FunctionScopes[I])->CallOperator);
1010 CurDC = getLambdaAwareParentOfDeclContext(CurDC)) {
1011 CurLSI = cast<LambdaScopeInfo>(FunctionScopes[I]);
1012
1013 if (!CurLSI->isCXXThisCaptured())
1014 continue;
1015
1016 auto C = CurLSI->getCXXThisCapture();
1017
1018 if (C.isCopyCapture()) {
1019 ClassType.removeLocalCVRQualifiers(Qualifiers::CVRMask);
1020 if (CurLSI->CallOperator->isConst())
1021 ClassType.addConst();
1022 return ASTCtx.getPointerType(ClassType);
1023 }
1024 }
1025
1026 // 2) We've run out of ScopeInfos but check if CurDC is a lambda (which can
1027 // happen during instantiation of its nested generic lambda call operator)
1028 if (isLambdaCallOperator(CurDC)) {
1029 assert(CurLSI && "While computing 'this' capture-type for a generic "((CurLSI && "While computing 'this' capture-type for a generic "
"lambda, we must have a corresponding LambdaScopeInfo") ? static_cast
<void> (0) : __assert_fail ("CurLSI && \"While computing 'this' capture-type for a generic \" \"lambda, we must have a corresponding LambdaScopeInfo\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1030, __PRETTY_FUNCTION__))
1030 "lambda, we must have a corresponding LambdaScopeInfo")((CurLSI && "While computing 'this' capture-type for a generic "
"lambda, we must have a corresponding LambdaScopeInfo") ? static_cast
<void> (0) : __assert_fail ("CurLSI && \"While computing 'this' capture-type for a generic \" \"lambda, we must have a corresponding LambdaScopeInfo\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1030, __PRETTY_FUNCTION__))
;
1031 assert(isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) &&((isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator
) && "While computing 'this' capture-type for a generic lambda, when we "
"run out of enclosing LSI's, yet the enclosing DC is a " "lambda-call-operator we must be (i.e. Current LSI) in a generic "
"lambda call oeprator") ? static_cast<void> (0) : __assert_fail
("isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) && \"While computing 'this' capture-type for a generic lambda, when we \" \"run out of enclosing LSI's, yet the enclosing DC is a \" \"lambda-call-operator we must be (i.e. Current LSI) in a generic \" \"lambda call oeprator\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1035, __PRETTY_FUNCTION__))
1032 "While computing 'this' capture-type for a generic lambda, when we "((isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator
) && "While computing 'this' capture-type for a generic lambda, when we "
"run out of enclosing LSI's, yet the enclosing DC is a " "lambda-call-operator we must be (i.e. Current LSI) in a generic "
"lambda call oeprator") ? static_cast<void> (0) : __assert_fail
("isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) && \"While computing 'this' capture-type for a generic lambda, when we \" \"run out of enclosing LSI's, yet the enclosing DC is a \" \"lambda-call-operator we must be (i.e. Current LSI) in a generic \" \"lambda call oeprator\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1035, __PRETTY_FUNCTION__))
1033 "run out of enclosing LSI's, yet the enclosing DC is a "((isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator
) && "While computing 'this' capture-type for a generic lambda, when we "
"run out of enclosing LSI's, yet the enclosing DC is a " "lambda-call-operator we must be (i.e. Current LSI) in a generic "
"lambda call oeprator") ? static_cast<void> (0) : __assert_fail
("isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) && \"While computing 'this' capture-type for a generic lambda, when we \" \"run out of enclosing LSI's, yet the enclosing DC is a \" \"lambda-call-operator we must be (i.e. Current LSI) in a generic \" \"lambda call oeprator\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1035, __PRETTY_FUNCTION__))
1034 "lambda-call-operator we must be (i.e. Current LSI) in a generic "((isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator
) && "While computing 'this' capture-type for a generic lambda, when we "
"run out of enclosing LSI's, yet the enclosing DC is a " "lambda-call-operator we must be (i.e. Current LSI) in a generic "
"lambda call oeprator") ? static_cast<void> (0) : __assert_fail
("isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) && \"While computing 'this' capture-type for a generic lambda, when we \" \"run out of enclosing LSI's, yet the enclosing DC is a \" \"lambda-call-operator we must be (i.e. Current LSI) in a generic \" \"lambda call oeprator\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1035, __PRETTY_FUNCTION__))
1035 "lambda call oeprator")((isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator
) && "While computing 'this' capture-type for a generic lambda, when we "
"run out of enclosing LSI's, yet the enclosing DC is a " "lambda-call-operator we must be (i.e. Current LSI) in a generic "
"lambda call oeprator") ? static_cast<void> (0) : __assert_fail
("isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) && \"While computing 'this' capture-type for a generic lambda, when we \" \"run out of enclosing LSI's, yet the enclosing DC is a \" \"lambda-call-operator we must be (i.e. Current LSI) in a generic \" \"lambda call oeprator\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1035, __PRETTY_FUNCTION__))
;
1036 assert(CurDC == getLambdaAwareParentOfDeclContext(CurLSI->CallOperator))((CurDC == getLambdaAwareParentOfDeclContext(CurLSI->CallOperator
)) ? static_cast<void> (0) : __assert_fail ("CurDC == getLambdaAwareParentOfDeclContext(CurLSI->CallOperator)"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1036, __PRETTY_FUNCTION__))
;
1037
1038 auto IsThisCaptured =
1039 [](CXXRecordDecl *Closure, bool &IsByCopy, bool &IsConst) {
1040 IsConst = false;
1041 IsByCopy = false;
1042 for (auto &&C : Closure->captures()) {
1043 if (C.capturesThis()) {
1044 if (C.getCaptureKind() == LCK_StarThis)
1045 IsByCopy = true;
1046 if (Closure->getLambdaCallOperator()->isConst())
1047 IsConst = true;
1048 return true;
1049 }
1050 }
1051 return false;
1052 };
1053
1054 bool IsByCopyCapture = false;
1055 bool IsConstCapture = false;
1056 CXXRecordDecl *Closure = cast<CXXRecordDecl>(CurDC->getParent());
1057 while (Closure &&
1058 IsThisCaptured(Closure, IsByCopyCapture, IsConstCapture)) {
1059 if (IsByCopyCapture) {
1060 ClassType.removeLocalCVRQualifiers(Qualifiers::CVRMask);
1061 if (IsConstCapture)
1062 ClassType.addConst();
1063 return ASTCtx.getPointerType(ClassType);
1064 }
1065 Closure = isLambdaCallOperator(Closure->getParent())
1066 ? cast<CXXRecordDecl>(Closure->getParent()->getParent())
1067 : nullptr;
1068 }
1069 }
1070 return ASTCtx.getPointerType(ClassType);
1071}
1072
1073QualType Sema::getCurrentThisType() {
1074 DeclContext *DC = getFunctionLevelDeclContext();
1075 QualType ThisTy = CXXThisTypeOverride;
1076
1077 if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) {
1078 if (method && method->isInstance())
1079 ThisTy = method->getThisType();
1080 }
1081
1082 if (ThisTy.isNull() && isLambdaCallOperator(CurContext) &&
1083 inTemplateInstantiation()) {
1084
1085 assert(isa<CXXRecordDecl>(DC) &&((isa<CXXRecordDecl>(DC) && "Trying to get 'this' type from static method?"
) ? static_cast<void> (0) : __assert_fail ("isa<CXXRecordDecl>(DC) && \"Trying to get 'this' type from static method?\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1086, __PRETTY_FUNCTION__))
1086 "Trying to get 'this' type from static method?")((isa<CXXRecordDecl>(DC) && "Trying to get 'this' type from static method?"
) ? static_cast<void> (0) : __assert_fail ("isa<CXXRecordDecl>(DC) && \"Trying to get 'this' type from static method?\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1086, __PRETTY_FUNCTION__))
;
1087
1088 // This is a lambda call operator that is being instantiated as a default
1089 // initializer. DC must point to the enclosing class type, so we can recover
1090 // the 'this' type from it.
1091
1092 QualType ClassTy = Context.getTypeDeclType(cast<CXXRecordDecl>(DC));
1093 // There are no cv-qualifiers for 'this' within default initializers,
1094 // per [expr.prim.general]p4.
1095 ThisTy = Context.getPointerType(ClassTy);
1096 }
1097
1098 // If we are within a lambda's call operator, the cv-qualifiers of 'this'
1099 // might need to be adjusted if the lambda or any of its enclosing lambda's
1100 // captures '*this' by copy.
1101 if (!ThisTy.isNull() && isLambdaCallOperator(CurContext))
1102 return adjustCVQualifiersForCXXThisWithinLambda(FunctionScopes, ThisTy,
1103 CurContext, Context);
1104 return ThisTy;
1105}
1106
1107Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S,
1108 Decl *ContextDecl,
1109 Qualifiers CXXThisTypeQuals,
1110 bool Enabled)
1111 : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false)
1112{
1113 if (!Enabled || !ContextDecl)
1114 return;
1115
1116 CXXRecordDecl *Record = nullptr;
1117 if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl))
1118 Record = Template->getTemplatedDecl();
1119 else
1120 Record = cast<CXXRecordDecl>(ContextDecl);
1121
1122 QualType T = S.Context.getRecordType(Record);
1123 T = S.getASTContext().getQualifiedType(T, CXXThisTypeQuals);
1124
1125 S.CXXThisTypeOverride = S.Context.getPointerType(T);
1126
1127 this->Enabled = true;
1128}
1129
1130
1131Sema::CXXThisScopeRAII::~CXXThisScopeRAII() {
1132 if (Enabled) {
1133 S.CXXThisTypeOverride = OldCXXThisTypeOverride;
1134 }
1135}
1136
1137bool Sema::CheckCXXThisCapture(SourceLocation Loc, const bool Explicit,
1138 bool BuildAndDiagnose, const unsigned *const FunctionScopeIndexToStopAt,
1139 const bool ByCopy) {
1140 // We don't need to capture this in an unevaluated context.
1141 if (isUnevaluatedContext() && !Explicit)
1142 return true;
1143
1144 assert((!ByCopy || Explicit) && "cannot implicitly capture *this by value")(((!ByCopy || Explicit) && "cannot implicitly capture *this by value"
) ? static_cast<void> (0) : __assert_fail ("(!ByCopy || Explicit) && \"cannot implicitly capture *this by value\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1144, __PRETTY_FUNCTION__))
;
1145
1146 const int MaxFunctionScopesIndex = FunctionScopeIndexToStopAt
1147 ? *FunctionScopeIndexToStopAt
1148 : FunctionScopes.size() - 1;
1149
1150 // Check that we can capture the *enclosing object* (referred to by '*this')
1151 // by the capturing-entity/closure (lambda/block/etc) at
1152 // MaxFunctionScopesIndex-deep on the FunctionScopes stack.
1153
1154 // Note: The *enclosing object* can only be captured by-value by a
1155 // closure that is a lambda, using the explicit notation:
1156 // [*this] { ... }.
1157 // Every other capture of the *enclosing object* results in its by-reference
1158 // capture.
1159
1160 // For a closure 'L' (at MaxFunctionScopesIndex in the FunctionScopes
1161 // stack), we can capture the *enclosing object* only if:
1162 // - 'L' has an explicit byref or byval capture of the *enclosing object*
1163 // - or, 'L' has an implicit capture.
1164 // AND
1165 // -- there is no enclosing closure
1166 // -- or, there is some enclosing closure 'E' that has already captured the
1167 // *enclosing object*, and every intervening closure (if any) between 'E'
1168 // and 'L' can implicitly capture the *enclosing object*.
1169 // -- or, every enclosing closure can implicitly capture the
1170 // *enclosing object*
1171
1172
1173 unsigned NumCapturingClosures = 0;
1174 for (int idx = MaxFunctionScopesIndex; idx >= 0; idx--) {
1175 if (CapturingScopeInfo *CSI =
1176 dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) {
1177 if (CSI->CXXThisCaptureIndex != 0) {
1178 // 'this' is already being captured; there isn't anything more to do.
1179 CSI->Captures[CSI->CXXThisCaptureIndex - 1].markUsed(BuildAndDiagnose);
1180 break;
1181 }
1182 LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI);
1183 if (LSI && isGenericLambdaCallOperatorSpecialization(LSI->CallOperator)) {
1184 // This context can't implicitly capture 'this'; fail out.
1185 if (BuildAndDiagnose)
1186 Diag(Loc, diag::err_this_capture)
1187 << (Explicit && idx == MaxFunctionScopesIndex);
1188 return true;
1189 }
1190 if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref ||
1191 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval ||
1192 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block ||
1193 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_CapturedRegion ||
1194 (Explicit && idx == MaxFunctionScopesIndex)) {
1195 // Regarding (Explicit && idx == MaxFunctionScopesIndex): only the first
1196 // iteration through can be an explicit capture, all enclosing closures,
1197 // if any, must perform implicit captures.
1198
1199 // This closure can capture 'this'; continue looking upwards.
1200 NumCapturingClosures++;
1201 continue;
1202 }
1203 // This context can't implicitly capture 'this'; fail out.
1204 if (BuildAndDiagnose)
1205 Diag(Loc, diag::err_this_capture)
1206 << (Explicit && idx == MaxFunctionScopesIndex);
1207 return true;
1208 }
1209 break;
1210 }
1211 if (!BuildAndDiagnose) return false;
1212
1213 // If we got here, then the closure at MaxFunctionScopesIndex on the
1214 // FunctionScopes stack, can capture the *enclosing object*, so capture it
1215 // (including implicit by-reference captures in any enclosing closures).
1216
1217 // In the loop below, respect the ByCopy flag only for the closure requesting
1218 // the capture (i.e. first iteration through the loop below). Ignore it for
1219 // all enclosing closure's up to NumCapturingClosures (since they must be
1220 // implicitly capturing the *enclosing object* by reference (see loop
1221 // above)).
1222 assert((!ByCopy ||(((!ByCopy || dyn_cast<LambdaScopeInfo>(FunctionScopes[
MaxFunctionScopesIndex])) && "Only a lambda can capture the enclosing object (referred to by "
"*this) by copy") ? static_cast<void> (0) : __assert_fail
("(!ByCopy || dyn_cast<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) && \"Only a lambda can capture the enclosing object (referred to by \" \"*this) by copy\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1225, __PRETTY_FUNCTION__))
1223 dyn_cast<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) &&(((!ByCopy || dyn_cast<LambdaScopeInfo>(FunctionScopes[
MaxFunctionScopesIndex])) && "Only a lambda can capture the enclosing object (referred to by "
"*this) by copy") ? static_cast<void> (0) : __assert_fail
("(!ByCopy || dyn_cast<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) && \"Only a lambda can capture the enclosing object (referred to by \" \"*this) by copy\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1225, __PRETTY_FUNCTION__))
1224 "Only a lambda can capture the enclosing object (referred to by "(((!ByCopy || dyn_cast<LambdaScopeInfo>(FunctionScopes[
MaxFunctionScopesIndex])) && "Only a lambda can capture the enclosing object (referred to by "
"*this) by copy") ? static_cast<void> (0) : __assert_fail
("(!ByCopy || dyn_cast<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) && \"Only a lambda can capture the enclosing object (referred to by \" \"*this) by copy\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1225, __PRETTY_FUNCTION__))
1225 "*this) by copy")(((!ByCopy || dyn_cast<LambdaScopeInfo>(FunctionScopes[
MaxFunctionScopesIndex])) && "Only a lambda can capture the enclosing object (referred to by "
"*this) by copy") ? static_cast<void> (0) : __assert_fail
("(!ByCopy || dyn_cast<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) && \"Only a lambda can capture the enclosing object (referred to by \" \"*this) by copy\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1225, __PRETTY_FUNCTION__))
;
1226 QualType ThisTy = getCurrentThisType();
1227 for (int idx = MaxFunctionScopesIndex; NumCapturingClosures;
1228 --idx, --NumCapturingClosures) {
1229 CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]);
1230
1231 // The type of the corresponding data member (not a 'this' pointer if 'by
1232 // copy').
1233 QualType CaptureType = ThisTy;
1234 if (ByCopy) {
1235 // If we are capturing the object referred to by '*this' by copy, ignore
1236 // any cv qualifiers inherited from the type of the member function for
1237 // the type of the closure-type's corresponding data member and any use
1238 // of 'this'.
1239 CaptureType = ThisTy->getPointeeType();
1240 CaptureType.removeLocalCVRQualifiers(Qualifiers::CVRMask);
1241 }
1242
1243 bool isNested = NumCapturingClosures > 1;
1244 CSI->addThisCapture(isNested, Loc, CaptureType, ByCopy);
1245 }
1246 return false;
1247}
1248
1249ExprResult Sema::ActOnCXXThis(SourceLocation Loc) {
1250 /// C++ 9.3.2: In the body of a non-static member function, the keyword this
1251 /// is a non-lvalue expression whose value is the address of the object for
1252 /// which the function is called.
1253
1254 QualType ThisTy = getCurrentThisType();
1255 if (ThisTy.isNull())
1256 return Diag(Loc, diag::err_invalid_this_use);
1257 return BuildCXXThisExpr(Loc, ThisTy, /*isImplicit=*/false);
1258}
1259
1260Expr *Sema::BuildCXXThisExpr(SourceLocation Loc, QualType Type,
1261 bool IsImplicit) {
1262 auto *This = new (Context) CXXThisExpr(Loc, Type, IsImplicit);
1263 MarkThisReferenced(This);
1264 return This;
1265}
1266
1267void Sema::MarkThisReferenced(CXXThisExpr *This) {
1268 CheckCXXThisCapture(This->getExprLoc());
1269}
1270
1271bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) {
1272 // If we're outside the body of a member function, then we'll have a specified
1273 // type for 'this'.
1274 if (CXXThisTypeOverride.isNull())
1275 return false;
1276
1277 // Determine whether we're looking into a class that's currently being
1278 // defined.
1279 CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl();
1280 return Class && Class->isBeingDefined();
1281}
1282
1283/// Parse construction of a specified type.
1284/// Can be interpreted either as function-style casting ("int(x)")
1285/// or class type construction ("ClassType(x,y,z)")
1286/// or creation of a value-initialized type ("int()").
1287ExprResult
1288Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep,
1289 SourceLocation LParenOrBraceLoc,
1290 MultiExprArg exprs,
1291 SourceLocation RParenOrBraceLoc,
1292 bool ListInitialization) {
1293 if (!TypeRep)
1294 return ExprError();
1295
1296 TypeSourceInfo *TInfo;
1297 QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
1298 if (!TInfo)
1299 TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
1300
1301 auto Result = BuildCXXTypeConstructExpr(TInfo, LParenOrBraceLoc, exprs,
1302 RParenOrBraceLoc, ListInitialization);
1303 // Avoid creating a non-type-dependent expression that contains typos.
1304 // Non-type-dependent expressions are liable to be discarded without
1305 // checking for embedded typos.
1306 if (!Result.isInvalid() && Result.get()->isInstantiationDependent() &&
1307 !Result.get()->isTypeDependent())
1308 Result = CorrectDelayedTyposInExpr(Result.get());
1309 return Result;
1310}
1311
1312ExprResult
1313Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
1314 SourceLocation LParenOrBraceLoc,
1315 MultiExprArg Exprs,
1316 SourceLocation RParenOrBraceLoc,
1317 bool ListInitialization) {
1318 QualType Ty = TInfo->getType();
1319 SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
1320
1321 if (Ty->isDependentType() || CallExpr::hasAnyTypeDependentArguments(Exprs)) {
1322 // FIXME: CXXUnresolvedConstructExpr does not model list-initialization
1323 // directly. We work around this by dropping the locations of the braces.
1324 SourceRange Locs = ListInitialization
1325 ? SourceRange()
1326 : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc);
1327 return CXXUnresolvedConstructExpr::Create(Context, TInfo, Locs.getBegin(),
1328 Exprs, Locs.getEnd());
1329 }
1330
1331 assert((!ListInitialization ||(((!ListInitialization || (Exprs.size() == 1 && isa<
InitListExpr>(Exprs[0]))) && "List initialization must have initializer list as expression."
) ? static_cast<void> (0) : __assert_fail ("(!ListInitialization || (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0]))) && \"List initialization must have initializer list as expression.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1333, __PRETTY_FUNCTION__))
1332 (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0]))) &&(((!ListInitialization || (Exprs.size() == 1 && isa<
InitListExpr>(Exprs[0]))) && "List initialization must have initializer list as expression."
) ? static_cast<void> (0) : __assert_fail ("(!ListInitialization || (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0]))) && \"List initialization must have initializer list as expression.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1333, __PRETTY_FUNCTION__))
1333 "List initialization must have initializer list as expression.")(((!ListInitialization || (Exprs.size() == 1 && isa<
InitListExpr>(Exprs[0]))) && "List initialization must have initializer list as expression."
) ? static_cast<void> (0) : __assert_fail ("(!ListInitialization || (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0]))) && \"List initialization must have initializer list as expression.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1333, __PRETTY_FUNCTION__))
;
1334 SourceRange FullRange = SourceRange(TyBeginLoc, RParenOrBraceLoc);
1335
1336 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TInfo);
1337 InitializationKind Kind =
1338 Exprs.size()
1339 ? ListInitialization
1340 ? InitializationKind::CreateDirectList(
1341 TyBeginLoc, LParenOrBraceLoc, RParenOrBraceLoc)
1342 : InitializationKind::CreateDirect(TyBeginLoc, LParenOrBraceLoc,
1343 RParenOrBraceLoc)
1344 : InitializationKind::CreateValue(TyBeginLoc, LParenOrBraceLoc,
1345 RParenOrBraceLoc);
1346
1347 // C++1z [expr.type.conv]p1:
1348 // If the type is a placeholder for a deduced class type, [...perform class
1349 // template argument deduction...]
1350 DeducedType *Deduced = Ty->getContainedDeducedType();
1351 if (Deduced && isa<DeducedTemplateSpecializationType>(Deduced)) {
1352 Ty = DeduceTemplateSpecializationFromInitializer(TInfo, Entity,
1353 Kind, Exprs);
1354 if (Ty.isNull())
1355 return ExprError();
1356 Entity = InitializedEntity::InitializeTemporary(TInfo, Ty);
1357 }
1358
1359 // C++ [expr.type.conv]p1:
1360 // If the expression list is a parenthesized single expression, the type
1361 // conversion expression is equivalent (in definedness, and if defined in
1362 // meaning) to the corresponding cast expression.
1363 if (Exprs.size() == 1 && !ListInitialization &&
1364 !isa<InitListExpr>(Exprs[0])) {
1365 Expr *Arg = Exprs[0];
1366 return BuildCXXFunctionalCastExpr(TInfo, Ty, LParenOrBraceLoc, Arg,
1367 RParenOrBraceLoc);
1368 }
1369
1370 // For an expression of the form T(), T shall not be an array type.
1371 QualType ElemTy = Ty;
1372 if (Ty->isArrayType()) {
1373 if (!ListInitialization)
1374 return ExprError(Diag(TyBeginLoc, diag::err_value_init_for_array_type)
1375 << FullRange);
1376 ElemTy = Context.getBaseElementType(Ty);
1377 }
1378
1379 // There doesn't seem to be an explicit rule against this but sanity demands
1380 // we only construct objects with object types.
1381 if (Ty->isFunctionType())
1382 return ExprError(Diag(TyBeginLoc, diag::err_init_for_function_type)
1383 << Ty << FullRange);
1384
1385 // C++17 [expr.type.conv]p2:
1386 // If the type is cv void and the initializer is (), the expression is a
1387 // prvalue of the specified type that performs no initialization.
1388 if (!Ty->isVoidType() &&
1389 RequireCompleteType(TyBeginLoc, ElemTy,
1390 diag::err_invalid_incomplete_type_use, FullRange))
1391 return ExprError();
1392
1393 // Otherwise, the expression is a prvalue of the specified type whose
1394 // result object is direct-initialized (11.6) with the initializer.
1395 InitializationSequence InitSeq(*this, Entity, Kind, Exprs);
1396 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Exprs);
1397
1398 if (Result.isInvalid())
1399 return Result;
1400
1401 Expr *Inner = Result.get();
1402 if (CXXBindTemporaryExpr *BTE = dyn_cast_or_null<CXXBindTemporaryExpr>(Inner))
1403 Inner = BTE->getSubExpr();
1404 if (!isa<CXXTemporaryObjectExpr>(Inner) &&
1405 !isa<CXXScalarValueInitExpr>(Inner)) {
1406 // If we created a CXXTemporaryObjectExpr, that node also represents the
1407 // functional cast. Otherwise, create an explicit cast to represent
1408 // the syntactic form of a functional-style cast that was used here.
1409 //
1410 // FIXME: Creating a CXXFunctionalCastExpr around a CXXConstructExpr
1411 // would give a more consistent AST representation than using a
1412 // CXXTemporaryObjectExpr. It's also weird that the functional cast
1413 // is sometimes handled by initialization and sometimes not.
1414 QualType ResultType = Result.get()->getType();
1415 SourceRange Locs = ListInitialization
1416 ? SourceRange()
1417 : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc);
1418 Result = CXXFunctionalCastExpr::Create(
1419 Context, ResultType, Expr::getValueKindForType(Ty), TInfo, CK_NoOp,
1420 Result.get(), /*Path=*/nullptr, Locs.getBegin(), Locs.getEnd());
1421 }
1422
1423 return Result;
1424}
1425
1426bool Sema::isUsualDeallocationFunction(const CXXMethodDecl *Method) {
1427 // [CUDA] Ignore this function, if we can't call it.
1428 const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext);
1429 if (getLangOpts().CUDA &&
1430 IdentifyCUDAPreference(Caller, Method) <= CFP_WrongSide)
1431 return false;
1432
1433 SmallVector<const FunctionDecl*, 4> PreventedBy;
1434 bool Result = Method->isUsualDeallocationFunction(PreventedBy);
1435
1436 if (Result || !getLangOpts().CUDA || PreventedBy.empty())
1437 return Result;
1438
1439 // In case of CUDA, return true if none of the 1-argument deallocator
1440 // functions are actually callable.
1441 return llvm::none_of(PreventedBy, [&](const FunctionDecl *FD) {
1442 assert(FD->getNumParams() == 1 &&((FD->getNumParams() == 1 && "Only single-operand functions should be in PreventedBy"
) ? static_cast<void> (0) : __assert_fail ("FD->getNumParams() == 1 && \"Only single-operand functions should be in PreventedBy\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1443, __PRETTY_FUNCTION__))
1443 "Only single-operand functions should be in PreventedBy")((FD->getNumParams() == 1 && "Only single-operand functions should be in PreventedBy"
) ? static_cast<void> (0) : __assert_fail ("FD->getNumParams() == 1 && \"Only single-operand functions should be in PreventedBy\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1443, __PRETTY_FUNCTION__))
;
1444 return IdentifyCUDAPreference(Caller, FD) >= CFP_HostDevice;
1445 });
1446}
1447
1448/// Determine whether the given function is a non-placement
1449/// deallocation function.
1450static bool isNonPlacementDeallocationFunction(Sema &S, FunctionDecl *FD) {
1451 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
1452 return S.isUsualDeallocationFunction(Method);
1453
1454 if (FD->getOverloadedOperator() != OO_Delete &&
1455 FD->getOverloadedOperator() != OO_Array_Delete)
1456 return false;
1457
1458 unsigned UsualParams = 1;
1459
1460 if (S.getLangOpts().SizedDeallocation && UsualParams < FD->getNumParams() &&
1461 S.Context.hasSameUnqualifiedType(
1462 FD->getParamDecl(UsualParams)->getType(),
1463 S.Context.getSizeType()))
1464 ++UsualParams;
1465
1466 if (S.getLangOpts().AlignedAllocation && UsualParams < FD->getNumParams() &&
1467 S.Context.hasSameUnqualifiedType(
1468 FD->getParamDecl(UsualParams)->getType(),
1469 S.Context.getTypeDeclType(S.getStdAlignValT())))
1470 ++UsualParams;
1471
1472 return UsualParams == FD->getNumParams();
1473}
1474
1475namespace {
1476 struct UsualDeallocFnInfo {
1477 UsualDeallocFnInfo() : Found(), FD(nullptr) {}
1478 UsualDeallocFnInfo(Sema &S, DeclAccessPair Found)
1479 : Found(Found), FD(dyn_cast<FunctionDecl>(Found->getUnderlyingDecl())),
1480 Destroying(false), HasSizeT(false), HasAlignValT(false),
1481 CUDAPref(Sema::CFP_Native) {
1482 // A function template declaration is never a usual deallocation function.
1483 if (!FD)
1484 return;
1485 unsigned NumBaseParams = 1;
1486 if (FD->isDestroyingOperatorDelete()) {
1487 Destroying = true;
1488 ++NumBaseParams;
1489 }
1490
1491 if (NumBaseParams < FD->getNumParams() &&
1492 S.Context.hasSameUnqualifiedType(
1493 FD->getParamDecl(NumBaseParams)->getType(),
1494 S.Context.getSizeType())) {
1495 ++NumBaseParams;
1496 HasSizeT = true;
1497 }
1498
1499 if (NumBaseParams < FD->getNumParams() &&
1500 FD->getParamDecl(NumBaseParams)->getType()->isAlignValT()) {
1501 ++NumBaseParams;
1502 HasAlignValT = true;
1503 }
1504
1505 // In CUDA, determine how much we'd like / dislike to call this.
1506 if (S.getLangOpts().CUDA)
1507 if (auto *Caller = dyn_cast<FunctionDecl>(S.CurContext))
1508 CUDAPref = S.IdentifyCUDAPreference(Caller, FD);
1509 }
1510
1511 explicit operator bool() const { return FD; }
1512
1513 bool isBetterThan(const UsualDeallocFnInfo &Other, bool WantSize,
1514 bool WantAlign) const {
1515 // C++ P0722:
1516 // A destroying operator delete is preferred over a non-destroying
1517 // operator delete.
1518 if (Destroying != Other.Destroying)
1519 return Destroying;
1520
1521 // C++17 [expr.delete]p10:
1522 // If the type has new-extended alignment, a function with a parameter
1523 // of type std::align_val_t is preferred; otherwise a function without
1524 // such a parameter is preferred
1525 if (HasAlignValT != Other.HasAlignValT)
1526 return HasAlignValT == WantAlign;
1527
1528 if (HasSizeT != Other.HasSizeT)
1529 return HasSizeT == WantSize;
1530
1531 // Use CUDA call preference as a tiebreaker.
1532 return CUDAPref > Other.CUDAPref;
1533 }
1534
1535 DeclAccessPair Found;
1536 FunctionDecl *FD;
1537 bool Destroying, HasSizeT, HasAlignValT;
1538 Sema::CUDAFunctionPreference CUDAPref;
1539 };
1540}
1541
1542/// Determine whether a type has new-extended alignment. This may be called when
1543/// the type is incomplete (for a delete-expression with an incomplete pointee
1544/// type), in which case it will conservatively return false if the alignment is
1545/// not known.
1546static bool hasNewExtendedAlignment(Sema &S, QualType AllocType) {
1547 return S.getLangOpts().AlignedAllocation &&
1548 S.getASTContext().getTypeAlignIfKnown(AllocType) >
1549 S.getASTContext().getTargetInfo().getNewAlign();
1550}
1551
1552/// Select the correct "usual" deallocation function to use from a selection of
1553/// deallocation functions (either global or class-scope).
1554static UsualDeallocFnInfo resolveDeallocationOverload(
1555 Sema &S, LookupResult &R, bool WantSize, bool WantAlign,
1556 llvm::SmallVectorImpl<UsualDeallocFnInfo> *BestFns = nullptr) {
1557 UsualDeallocFnInfo Best;
1558
1559 for (auto I = R.begin(), E = R.end(); I != E; ++I) {
1560 UsualDeallocFnInfo Info(S, I.getPair());
1561 if (!Info || !isNonPlacementDeallocationFunction(S, Info.FD) ||
1562 Info.CUDAPref == Sema::CFP_Never)
1563 continue;
1564
1565 if (!Best) {
1566 Best = Info;
1567 if (BestFns)
1568 BestFns->push_back(Info);
1569 continue;
1570 }
1571
1572 if (Best.isBetterThan(Info, WantSize, WantAlign))
1573 continue;
1574
1575 // If more than one preferred function is found, all non-preferred
1576 // functions are eliminated from further consideration.
1577 if (BestFns && Info.isBetterThan(Best, WantSize, WantAlign))
1578 BestFns->clear();
1579
1580 Best = Info;
1581 if (BestFns)
1582 BestFns->push_back(Info);
1583 }
1584
1585 return Best;
1586}
1587
1588/// Determine whether a given type is a class for which 'delete[]' would call
1589/// a member 'operator delete[]' with a 'size_t' parameter. This implies that
1590/// we need to store the array size (even if the type is
1591/// trivially-destructible).
1592static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc,
1593 QualType allocType) {
1594 const RecordType *record =
1595 allocType->getBaseElementTypeUnsafe()->getAs<RecordType>();
1596 if (!record) return false;
1597
1598 // Try to find an operator delete[] in class scope.
1599
1600 DeclarationName deleteName =
1601 S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete);
1602 LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName);
1603 S.LookupQualifiedName(ops, record->getDecl());
1604
1605 // We're just doing this for information.
1606 ops.suppressDiagnostics();
1607
1608 // Very likely: there's no operator delete[].
1609 if (ops.empty()) return false;
1610
1611 // If it's ambiguous, it should be illegal to call operator delete[]
1612 // on this thing, so it doesn't matter if we allocate extra space or not.
1613 if (ops.isAmbiguous()) return false;
1614
1615 // C++17 [expr.delete]p10:
1616 // If the deallocation functions have class scope, the one without a
1617 // parameter of type std::size_t is selected.
1618 auto Best = resolveDeallocationOverload(
1619 S, ops, /*WantSize*/false,
1620 /*WantAlign*/hasNewExtendedAlignment(S, allocType));
1621 return Best && Best.HasSizeT;
1622}
1623
1624/// Parsed a C++ 'new' expression (C++ 5.3.4).
1625///
1626/// E.g.:
1627/// @code new (memory) int[size][4] @endcode
1628/// or
1629/// @code ::new Foo(23, "hello") @endcode
1630///
1631/// \param StartLoc The first location of the expression.
1632/// \param UseGlobal True if 'new' was prefixed with '::'.
1633/// \param PlacementLParen Opening paren of the placement arguments.
1634/// \param PlacementArgs Placement new arguments.
1635/// \param PlacementRParen Closing paren of the placement arguments.
1636/// \param TypeIdParens If the type is in parens, the source range.
1637/// \param D The type to be allocated, as well as array dimensions.
1638/// \param Initializer The initializing expression or initializer-list, or null
1639/// if there is none.
1640ExprResult
1641Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
1642 SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
1643 SourceLocation PlacementRParen, SourceRange TypeIdParens,
1644 Declarator &D, Expr *Initializer) {
1645 Optional<Expr *> ArraySize;
1646 // If the specified type is an array, unwrap it and save the expression.
1647 if (D.getNumTypeObjects() > 0 &&
1648 D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
1649 DeclaratorChunk &Chunk = D.getTypeObject(0);
1650 if (D.getDeclSpec().hasAutoTypeSpec())
1651 return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto)
1652 << D.getSourceRange());
1653 if (Chunk.Arr.hasStatic)
1654 return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
1655 << D.getSourceRange());
1656 if (!Chunk.Arr.NumElts && !Initializer)
1657 return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
1658 << D.getSourceRange());
1659
1660 ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
1661 D.DropFirstTypeObject();
1662 }
1663
1664 // Every dimension shall be of constant size.
1665 if (ArraySize) {
1666 for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
1667 if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
1668 break;
1669
1670 DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
1671 if (Expr *NumElts = (Expr *)Array.NumElts) {
1672 if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) {
1673 if (getLangOpts().CPlusPlus14) {
1674 // C++1y [expr.new]p6: Every constant-expression in a noptr-new-declarator
1675 // shall be a converted constant expression (5.19) of type std::size_t
1676 // and shall evaluate to a strictly positive value.
1677 unsigned IntWidth = Context.getTargetInfo().getIntWidth();
1678 assert(IntWidth && "Builtin type of size 0?")((IntWidth && "Builtin type of size 0?") ? static_cast
<void> (0) : __assert_fail ("IntWidth && \"Builtin type of size 0?\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1678, __PRETTY_FUNCTION__))
;
1679 llvm::APSInt Value(IntWidth);
1680 Array.NumElts
1681 = CheckConvertedConstantExpression(NumElts, Context.getSizeType(), Value,
1682 CCEK_NewExpr)
1683 .get();
1684 } else {
1685 Array.NumElts
1686 = VerifyIntegerConstantExpression(NumElts, nullptr,
1687 diag::err_new_array_nonconst)
1688 .get();
1689 }
1690 if (!Array.NumElts)
1691 return ExprError();
1692 }
1693 }
1694 }
1695 }
1696
1697 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/nullptr);
1698 QualType AllocType = TInfo->getType();
1699 if (D.isInvalidType())
1700 return ExprError();
1701
1702 SourceRange DirectInitRange;
1703 if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer))
1704 DirectInitRange = List->getSourceRange();
1705
1706 return BuildCXXNew(SourceRange(StartLoc, D.getEndLoc()), UseGlobal,
1707 PlacementLParen, PlacementArgs, PlacementRParen,
1708 TypeIdParens, AllocType, TInfo, ArraySize, DirectInitRange,
1709 Initializer);
1710}
1711
1712static bool isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style,
1713 Expr *Init) {
1714 if (!Init)
1715 return true;
1716 if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init))
1717 return PLE->getNumExprs() == 0;
1718 if (isa<ImplicitValueInitExpr>(Init))
1719 return true;
1720 else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init))
1721 return !CCE->isListInitialization() &&
1722 CCE->getConstructor()->isDefaultConstructor();
1723 else if (Style == CXXNewExpr::ListInit) {
1724 assert(isa<InitListExpr>(Init) &&((isa<InitListExpr>(Init) && "Shouldn't create list CXXConstructExprs for arrays."
) ? static_cast<void> (0) : __assert_fail ("isa<InitListExpr>(Init) && \"Shouldn't create list CXXConstructExprs for arrays.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1725, __PRETTY_FUNCTION__))
1725 "Shouldn't create list CXXConstructExprs for arrays.")((isa<InitListExpr>(Init) && "Shouldn't create list CXXConstructExprs for arrays."
) ? static_cast<void> (0) : __assert_fail ("isa<InitListExpr>(Init) && \"Shouldn't create list CXXConstructExprs for arrays.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1725, __PRETTY_FUNCTION__))
;
1726 return true;
1727 }
1728 return false;
1729}
1730
1731bool
1732Sema::isUnavailableAlignedAllocationFunction(const FunctionDecl &FD) const {
1733 if (!getLangOpts().AlignedAllocationUnavailable)
1734 return false;
1735 if (FD.isDefined())
1736 return false;
1737 bool IsAligned = false;
1738 if (FD.isReplaceableGlobalAllocationFunction(&IsAligned) && IsAligned)
1739 return true;
1740 return false;
1741}
1742
1743// Emit a diagnostic if an aligned allocation/deallocation function that is not
1744// implemented in the standard library is selected.
1745void Sema::diagnoseUnavailableAlignedAllocation(const FunctionDecl &FD,
1746 SourceLocation Loc) {
1747 if (isUnavailableAlignedAllocationFunction(FD)) {
1748 const llvm::Triple &T = getASTContext().getTargetInfo().getTriple();
1749 StringRef OSName = AvailabilityAttr::getPlatformNameSourceSpelling(
1750 getASTContext().getTargetInfo().getPlatformName());
1751
1752 OverloadedOperatorKind Kind = FD.getDeclName().getCXXOverloadedOperator();
1753 bool IsDelete = Kind == OO_Delete || Kind == OO_Array_Delete;
1754 Diag(Loc, diag::err_aligned_allocation_unavailable)
1755 << IsDelete << FD.getType().getAsString() << OSName
1756 << alignedAllocMinVersion(T.getOS()).getAsString();
1757 Diag(Loc, diag::note_silence_aligned_allocation_unavailable);
1758 }
1759}
1760
1761ExprResult
1762Sema::BuildCXXNew(SourceRange Range, bool UseGlobal,
1763 SourceLocation PlacementLParen,
1764 MultiExprArg PlacementArgs,
1765 SourceLocation PlacementRParen,
1766 SourceRange TypeIdParens,
1767 QualType AllocType,
1768 TypeSourceInfo *AllocTypeInfo,
1769 Optional<Expr *> ArraySize,
1770 SourceRange DirectInitRange,
1771 Expr *Initializer) {
1772 SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
1773 SourceLocation StartLoc = Range.getBegin();
1774
1775 CXXNewExpr::InitializationStyle initStyle;
1776 if (DirectInitRange.isValid()) {
1777 assert(Initializer && "Have parens but no initializer.")((Initializer && "Have parens but no initializer.") ?
static_cast<void> (0) : __assert_fail ("Initializer && \"Have parens but no initializer.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1777, __PRETTY_FUNCTION__))
;
1778 initStyle = CXXNewExpr::CallInit;
1779 } else if (Initializer && isa<InitListExpr>(Initializer))
1780 initStyle = CXXNewExpr::ListInit;
1781 else {
1782 assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) ||(((!Initializer || isa<ImplicitValueInitExpr>(Initializer
) || isa<CXXConstructExpr>(Initializer)) && "Initializer expression that cannot have been implicitly created."
) ? static_cast<void> (0) : __assert_fail ("(!Initializer || isa<ImplicitValueInitExpr>(Initializer) || isa<CXXConstructExpr>(Initializer)) && \"Initializer expression that cannot have been implicitly created.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1784, __PRETTY_FUNCTION__))
1783 isa<CXXConstructExpr>(Initializer)) &&(((!Initializer || isa<ImplicitValueInitExpr>(Initializer
) || isa<CXXConstructExpr>(Initializer)) && "Initializer expression that cannot have been implicitly created."
) ? static_cast<void> (0) : __assert_fail ("(!Initializer || isa<ImplicitValueInitExpr>(Initializer) || isa<CXXConstructExpr>(Initializer)) && \"Initializer expression that cannot have been implicitly created.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1784, __PRETTY_FUNCTION__))
1784 "Initializer expression that cannot have been implicitly created.")(((!Initializer || isa<ImplicitValueInitExpr>(Initializer
) || isa<CXXConstructExpr>(Initializer)) && "Initializer expression that cannot have been implicitly created."
) ? static_cast<void> (0) : __assert_fail ("(!Initializer || isa<ImplicitValueInitExpr>(Initializer) || isa<CXXConstructExpr>(Initializer)) && \"Initializer expression that cannot have been implicitly created.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1784, __PRETTY_FUNCTION__))
;
1785 initStyle = CXXNewExpr::NoInit;
1786 }
1787
1788 Expr **Inits = &Initializer;
1789 unsigned NumInits = Initializer ? 1 : 0;
1790 if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) {
1791 assert(initStyle == CXXNewExpr::CallInit && "paren init for non-call init")((initStyle == CXXNewExpr::CallInit && "paren init for non-call init"
) ? static_cast<void> (0) : __assert_fail ("initStyle == CXXNewExpr::CallInit && \"paren init for non-call init\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1791, __PRETTY_FUNCTION__))
;
1792 Inits = List->getExprs();
1793 NumInits = List->getNumExprs();
1794 }
1795
1796 // C++11 [expr.new]p15:
1797 // A new-expression that creates an object of type T initializes that
1798 // object as follows:
1799 InitializationKind Kind
1800 // - If the new-initializer is omitted, the object is default-
1801 // initialized (8.5); if no initialization is performed,
1802 // the object has indeterminate value
1803 = initStyle == CXXNewExpr::NoInit
1804 ? InitializationKind::CreateDefault(TypeRange.getBegin())
1805 // - Otherwise, the new-initializer is interpreted according to
1806 // the
1807 // initialization rules of 8.5 for direct-initialization.
1808 : initStyle == CXXNewExpr::ListInit
1809 ? InitializationKind::CreateDirectList(
1810 TypeRange.getBegin(), Initializer->getBeginLoc(),
1811 Initializer->getEndLoc())
1812 : InitializationKind::CreateDirect(TypeRange.getBegin(),
1813 DirectInitRange.getBegin(),
1814 DirectInitRange.getEnd());
1815
1816 // C++11 [dcl.spec.auto]p6. Deduce the type which 'auto' stands in for.
1817 auto *Deduced = AllocType->getContainedDeducedType();
1818 if (Deduced && isa<DeducedTemplateSpecializationType>(Deduced)) {
1819 if (ArraySize)
1820 return ExprError(
1821 Diag(ArraySize ? (*ArraySize)->getExprLoc() : TypeRange.getBegin(),
1822 diag::err_deduced_class_template_compound_type)
1823 << /*array*/ 2
1824 << (ArraySize ? (*ArraySize)->getSourceRange() : TypeRange));
1825
1826 InitializedEntity Entity
1827 = InitializedEntity::InitializeNew(StartLoc, AllocType);
1828 AllocType = DeduceTemplateSpecializationFromInitializer(
1829 AllocTypeInfo, Entity, Kind, MultiExprArg(Inits, NumInits));
1830 if (AllocType.isNull())
1831 return ExprError();
1832 } else if (Deduced) {
1833 bool Braced = (initStyle == CXXNewExpr::ListInit);
1834 if (NumInits == 1) {
1835 if (auto p = dyn_cast_or_null<InitListExpr>(Inits[0])) {
1836 Inits = p->getInits();
1837 NumInits = p->getNumInits();
1838 Braced = true;
1839 }
1840 }
1841
1842 if (initStyle == CXXNewExpr::NoInit || NumInits == 0)
1843 return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg)
1844 << AllocType << TypeRange);
1845 if (NumInits > 1) {
1846 Expr *FirstBad = Inits[1];
1847 return ExprError(Diag(FirstBad->getBeginLoc(),
1848 diag::err_auto_new_ctor_multiple_expressions)
1849 << AllocType << TypeRange);
1850 }
1851 if (Braced && !getLangOpts().CPlusPlus17)
1852 Diag(Initializer->getBeginLoc(), diag::ext_auto_new_list_init)
1853 << AllocType << TypeRange;
1854 Expr *Deduce = Inits[0];
1855 QualType DeducedType;
1856 if (DeduceAutoType(AllocTypeInfo, Deduce, DeducedType) == DAR_Failed)
1857 return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure)
1858 << AllocType << Deduce->getType()
1859 << TypeRange << Deduce->getSourceRange());
1860 if (DeducedType.isNull())
1861 return ExprError();
1862 AllocType = DeducedType;
1863 }
1864
1865 // Per C++0x [expr.new]p5, the type being constructed may be a
1866 // typedef of an array type.
1867 if (!ArraySize) {
1868 if (const ConstantArrayType *Array
1869 = Context.getAsConstantArrayType(AllocType)) {
1870 ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
1871 Context.getSizeType(),
1872 TypeRange.getEnd());
1873 AllocType = Array->getElementType();
1874 }
1875 }
1876
1877 if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
1878 return ExprError();
1879
1880 // In ARC, infer 'retaining' for the allocated
1881 if (getLangOpts().ObjCAutoRefCount &&
1882 AllocType.getObjCLifetime() == Qualifiers::OCL_None &&
1883 AllocType->isObjCLifetimeType()) {
1884 AllocType = Context.getLifetimeQualifiedType(AllocType,
1885 AllocType->getObjCARCImplicitLifetime());
1886 }
1887
1888 QualType ResultType = Context.getPointerType(AllocType);
1889
1890 if (ArraySize && *ArraySize &&
1891 (*ArraySize)->getType()->isNonOverloadPlaceholderType()) {
1892 ExprResult result = CheckPlaceholderExpr(*ArraySize);
1893 if (result.isInvalid()) return ExprError();
1894 ArraySize = result.get();
1895 }
1896 // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have
1897 // integral or enumeration type with a non-negative value."
1898 // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped
1899 // enumeration type, or a class type for which a single non-explicit
1900 // conversion function to integral or unscoped enumeration type exists.
1901 // C++1y [expr.new]p6: The expression [...] is implicitly converted to
1902 // std::size_t.
1903 llvm::Optional<uint64_t> KnownArraySize;
1904 if (ArraySize && *ArraySize && !(*ArraySize)->isTypeDependent()) {
1905 ExprResult ConvertedSize;
1906 if (getLangOpts().CPlusPlus14) {
1907 assert(Context.getTargetInfo().getIntWidth() && "Builtin type of size 0?")((Context.getTargetInfo().getIntWidth() && "Builtin type of size 0?"
) ? static_cast<void> (0) : __assert_fail ("Context.getTargetInfo().getIntWidth() && \"Builtin type of size 0?\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1907, __PRETTY_FUNCTION__))
;
1908
1909 ConvertedSize = PerformImplicitConversion(*ArraySize, Context.getSizeType(),
1910 AA_Converting);
1911
1912 if (!ConvertedSize.isInvalid() &&
1913 (*ArraySize)->getType()->getAs<RecordType>())
1914 // Diagnose the compatibility of this conversion.
1915 Diag(StartLoc, diag::warn_cxx98_compat_array_size_conversion)
1916 << (*ArraySize)->getType() << 0 << "'size_t'";
1917 } else {
1918 class SizeConvertDiagnoser : public ICEConvertDiagnoser {
1919 protected:
1920 Expr *ArraySize;
1921
1922 public:
1923 SizeConvertDiagnoser(Expr *ArraySize)
1924 : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false, false, false),
1925 ArraySize(ArraySize) {}
1926
1927 SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
1928 QualType T) override {
1929 return S.Diag(Loc, diag::err_array_size_not_integral)
1930 << S.getLangOpts().CPlusPlus11 << T;
1931 }
1932
1933 SemaDiagnosticBuilder diagnoseIncomplete(
1934 Sema &S, SourceLocation Loc, QualType T) override {
1935 return S.Diag(Loc, diag::err_array_size_incomplete_type)
1936 << T << ArraySize->getSourceRange();
1937 }
1938
1939 SemaDiagnosticBuilder diagnoseExplicitConv(
1940 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
1941 return S.Diag(Loc, diag::err_array_size_explicit_conversion) << T << ConvTy;
1942 }
1943
1944 SemaDiagnosticBuilder noteExplicitConv(
1945 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
1946 return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
1947 << ConvTy->isEnumeralType() << ConvTy;
1948 }
1949
1950 SemaDiagnosticBuilder diagnoseAmbiguous(
1951 Sema &S, SourceLocation Loc, QualType T) override {
1952 return S.Diag(Loc, diag::err_array_size_ambiguous_conversion) << T;
1953 }
1954
1955 SemaDiagnosticBuilder noteAmbiguous(
1956 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
1957 return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
1958 << ConvTy->isEnumeralType() << ConvTy;
1959 }
1960
1961 SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
1962 QualType T,
1963 QualType ConvTy) override {
1964 return S.Diag(Loc,
1965 S.getLangOpts().CPlusPlus11
1966 ? diag::warn_cxx98_compat_array_size_conversion
1967 : diag::ext_array_size_conversion)
1968 << T << ConvTy->isEnumeralType() << ConvTy;
1969 }
1970 } SizeDiagnoser(*ArraySize);
1971
1972 ConvertedSize = PerformContextualImplicitConversion(StartLoc, *ArraySize,
1973 SizeDiagnoser);
1974 }
1975 if (ConvertedSize.isInvalid())
1976 return ExprError();
1977
1978 ArraySize = ConvertedSize.get();
1979 QualType SizeType = (*ArraySize)->getType();
1980
1981 if (!SizeType->isIntegralOrUnscopedEnumerationType())
1982 return ExprError();
1983
1984 // C++98 [expr.new]p7:
1985 // The expression in a direct-new-declarator shall have integral type
1986 // with a non-negative value.
1987 //
1988 // Let's see if this is a constant < 0. If so, we reject it out of hand,
1989 // per CWG1464. Otherwise, if it's not a constant, we must have an
1990 // unparenthesized array type.
1991 if (!(*ArraySize)->isValueDependent()) {
1992 llvm::APSInt Value;
1993 // We've already performed any required implicit conversion to integer or
1994 // unscoped enumeration type.
1995 // FIXME: Per CWG1464, we are required to check the value prior to
1996 // converting to size_t. This will never find a negative array size in
1997 // C++14 onwards, because Value is always unsigned here!
1998 if ((*ArraySize)->isIntegerConstantExpr(Value, Context)) {
1999 if (Value.isSigned() && Value.isNegative()) {
2000 return ExprError(Diag((*ArraySize)->getBeginLoc(),
2001 diag::err_typecheck_negative_array_size)
2002 << (*ArraySize)->getSourceRange());
2003 }
2004
2005 if (!AllocType->isDependentType()) {
2006 unsigned ActiveSizeBits =
2007 ConstantArrayType::getNumAddressingBits(Context, AllocType, Value);
2008 if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context))
2009 return ExprError(
2010 Diag((*ArraySize)->getBeginLoc(), diag::err_array_too_large)
2011 << Value.toString(10) << (*ArraySize)->getSourceRange());
2012 }
2013
2014 KnownArraySize = Value.getZExtValue();
2015 } else if (TypeIdParens.isValid()) {
2016 // Can't have dynamic array size when the type-id is in parentheses.
2017 Diag((*ArraySize)->getBeginLoc(), diag::ext_new_paren_array_nonconst)
2018 << (*ArraySize)->getSourceRange()
2019 << FixItHint::CreateRemoval(TypeIdParens.getBegin())
2020 << FixItHint::CreateRemoval(TypeIdParens.getEnd());
2021
2022 TypeIdParens = SourceRange();
2023 }
2024 }
2025
2026 // Note that we do *not* convert the argument in any way. It can
2027 // be signed, larger than size_t, whatever.
2028 }
2029
2030 FunctionDecl *OperatorNew = nullptr;
2031 FunctionDecl *OperatorDelete = nullptr;
2032 unsigned Alignment =
2033 AllocType->isDependentType() ? 0 : Context.getTypeAlign(AllocType);
2034 unsigned NewAlignment = Context.getTargetInfo().getNewAlign();
2035 bool PassAlignment = getLangOpts().AlignedAllocation &&
2036 Alignment > NewAlignment;
2037
2038 AllocationFunctionScope Scope = UseGlobal ? AFS_Global : AFS_Both;
2039 if (!AllocType->isDependentType() &&
2040 !Expr::hasAnyTypeDependentArguments(PlacementArgs) &&
2041 FindAllocationFunctions(
2042 StartLoc, SourceRange(PlacementLParen, PlacementRParen), Scope, Scope,
2043 AllocType, ArraySize.hasValue(), PassAlignment, PlacementArgs,
2044 OperatorNew, OperatorDelete))
2045 return ExprError();
2046
2047 // If this is an array allocation, compute whether the usual array
2048 // deallocation function for the type has a size_t parameter.
2049 bool UsualArrayDeleteWantsSize = false;
2050 if (ArraySize && !AllocType->isDependentType())
2051 UsualArrayDeleteWantsSize =
2052 doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType);
2053
2054 SmallVector<Expr *, 8> AllPlaceArgs;
2055 if (OperatorNew) {
2056 const FunctionProtoType *Proto =
2057 OperatorNew->getType()->getAs<FunctionProtoType>();
2058 VariadicCallType CallType = Proto->isVariadic() ? VariadicFunction
2059 : VariadicDoesNotApply;
2060
2061 // We've already converted the placement args, just fill in any default
2062 // arguments. Skip the first parameter because we don't have a corresponding
2063 // argument. Skip the second parameter too if we're passing in the
2064 // alignment; we've already filled it in.
2065 if (GatherArgumentsForCall(PlacementLParen, OperatorNew, Proto,
2066 PassAlignment ? 2 : 1, PlacementArgs,
2067 AllPlaceArgs, CallType))
2068 return ExprError();
2069
2070 if (!AllPlaceArgs.empty())
2071 PlacementArgs = AllPlaceArgs;
2072
2073 // FIXME: This is wrong: PlacementArgs misses out the first (size) argument.
2074 DiagnoseSentinelCalls(OperatorNew, PlacementLParen, PlacementArgs);
2075
2076 // FIXME: Missing call to CheckFunctionCall or equivalent
2077
2078 // Warn if the type is over-aligned and is being allocated by (unaligned)
2079 // global operator new.
2080 if (PlacementArgs.empty() && !PassAlignment &&
2081 (OperatorNew->isImplicit() ||
2082 (OperatorNew->getBeginLoc().isValid() &&
2083 getSourceManager().isInSystemHeader(OperatorNew->getBeginLoc())))) {
2084 if (Alignment > NewAlignment)
2085 Diag(StartLoc, diag::warn_overaligned_type)
2086 << AllocType
2087 << unsigned(Alignment / Context.getCharWidth())
2088 << unsigned(NewAlignment / Context.getCharWidth());
2089 }
2090 }
2091
2092 // Array 'new' can't have any initializers except empty parentheses.
2093 // Initializer lists are also allowed, in C++11. Rely on the parser for the
2094 // dialect distinction.
2095 if (ArraySize && !isLegalArrayNewInitializer(initStyle, Initializer)) {
2096 SourceRange InitRange(Inits[0]->getBeginLoc(),
2097 Inits[NumInits - 1]->getEndLoc());
2098 Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
2099 return ExprError();
2100 }
2101
2102 // If we can perform the initialization, and we've not already done so,
2103 // do it now.
2104 if (!AllocType->isDependentType() &&
2105 !Expr::hasAnyTypeDependentArguments(
2106 llvm::makeArrayRef(Inits, NumInits))) {
2107 // The type we initialize is the complete type, including the array bound.
2108 QualType InitType;
2109 if (KnownArraySize)
2110 InitType = Context.getConstantArrayType(
2111 AllocType, llvm::APInt(Context.getTypeSize(Context.getSizeType()),
2112 *KnownArraySize),
2113 ArrayType::Normal, 0);
2114 else if (ArraySize)
2115 InitType =
2116 Context.getIncompleteArrayType(AllocType, ArrayType::Normal, 0);
2117 else
2118 InitType = AllocType;
2119
2120 InitializedEntity Entity
2121 = InitializedEntity::InitializeNew(StartLoc, InitType);
2122 InitializationSequence InitSeq(*this, Entity, Kind,
2123 MultiExprArg(Inits, NumInits));
2124 ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind,
2125 MultiExprArg(Inits, NumInits));
2126 if (FullInit.isInvalid())
2127 return ExprError();
2128
2129 // FullInit is our initializer; strip off CXXBindTemporaryExprs, because
2130 // we don't want the initialized object to be destructed.
2131 // FIXME: We should not create these in the first place.
2132 if (CXXBindTemporaryExpr *Binder =
2133 dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get()))
2134 FullInit = Binder->getSubExpr();
2135
2136 Initializer = FullInit.get();
2137
2138 // FIXME: If we have a KnownArraySize, check that the array bound of the
2139 // initializer is no greater than that constant value.
2140
2141 if (ArraySize && !*ArraySize) {
2142 auto *CAT = Context.getAsConstantArrayType(Initializer->getType());
2143 if (CAT) {
2144 // FIXME: Track that the array size was inferred rather than explicitly
2145 // specified.
2146 ArraySize = IntegerLiteral::Create(
2147 Context, CAT->getSize(), Context.getSizeType(), TypeRange.getEnd());
2148 } else {
2149 Diag(TypeRange.getEnd(), diag::err_new_array_size_unknown_from_init)
2150 << Initializer->getSourceRange();
2151 }
2152 }
2153 }
2154
2155 // Mark the new and delete operators as referenced.
2156 if (OperatorNew) {
2157 if (DiagnoseUseOfDecl(OperatorNew, StartLoc))
2158 return ExprError();
2159 MarkFunctionReferenced(StartLoc, OperatorNew);
2160 }
2161 if (OperatorDelete) {
2162 if (DiagnoseUseOfDecl(OperatorDelete, StartLoc))
2163 return ExprError();
2164 MarkFunctionReferenced(StartLoc, OperatorDelete);
2165 }
2166
2167 return CXXNewExpr::Create(Context, UseGlobal, OperatorNew, OperatorDelete,
2168 PassAlignment, UsualArrayDeleteWantsSize,
2169 PlacementArgs, TypeIdParens, ArraySize, initStyle,
2170 Initializer, ResultType, AllocTypeInfo, Range,
2171 DirectInitRange);
2172}
2173
2174/// Checks that a type is suitable as the allocated type
2175/// in a new-expression.
2176bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
2177 SourceRange R) {
2178 // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
2179 // abstract class type or array thereof.
2180 if (AllocType->isFunctionType())
2181 return Diag(Loc, diag::err_bad_new_type)
2182 << AllocType << 0 << R;
2183 else if (AllocType->isReferenceType())
2184 return Diag(Loc, diag::err_bad_new_type)
2185 << AllocType << 1 << R;
2186 else if (!AllocType->isDependentType() &&
2187 RequireCompleteType(Loc, AllocType, diag::err_new_incomplete_type,R))
2188 return true;
2189 else if (RequireNonAbstractType(Loc, AllocType,
2190 diag::err_allocation_of_abstract_type))
2191 return true;
2192 else if (AllocType->isVariablyModifiedType())
2193 return Diag(Loc, diag::err_variably_modified_new_type)
2194 << AllocType;
2195 else if (AllocType.getAddressSpace() != LangAS::Default &&
2196 !getLangOpts().OpenCLCPlusPlus)
2197 return Diag(Loc, diag::err_address_space_qualified_new)
2198 << AllocType.getUnqualifiedType()
2199 << AllocType.getQualifiers().getAddressSpaceAttributePrintValue();
2200 else if (getLangOpts().ObjCAutoRefCount) {
2201 if (const ArrayType *AT = Context.getAsArrayType(AllocType)) {
2202 QualType BaseAllocType = Context.getBaseElementType(AT);
2203 if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None &&
2204 BaseAllocType->isObjCLifetimeType())
2205 return Diag(Loc, diag::err_arc_new_array_without_ownership)
2206 << BaseAllocType;
2207 }
2208 }
2209
2210 return false;
2211}
2212
2213static bool resolveAllocationOverload(
2214 Sema &S, LookupResult &R, SourceRange Range, SmallVectorImpl<Expr *> &Args,
2215 bool &PassAlignment, FunctionDecl *&Operator,
2216 OverloadCandidateSet *AlignedCandidates, Expr *AlignArg, bool Diagnose) {
2217 OverloadCandidateSet Candidates(R.getNameLoc(),
2218 OverloadCandidateSet::CSK_Normal);
2219 for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
2220 Alloc != AllocEnd; ++Alloc) {
2221 // Even member operator new/delete are implicitly treated as
2222 // static, so don't use AddMemberCandidate.
2223 NamedDecl *D = (*Alloc)->getUnderlyingDecl();
2224
2225 if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
2226 S.AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
2227 /*ExplicitTemplateArgs=*/nullptr, Args,
2228 Candidates,
2229 /*SuppressUserConversions=*/false);
2230 continue;
2231 }
2232
2233 FunctionDecl *Fn = cast<FunctionDecl>(D);
2234 S.AddOverloadCandidate(Fn, Alloc.getPair(), Args, Candidates,
2235 /*SuppressUserConversions=*/false);
2236 }
2237
2238 // Do the resolution.
2239 OverloadCandidateSet::iterator Best;
2240 switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) {
2241 case OR_Success: {
2242 // Got one!
2243 FunctionDecl *FnDecl = Best->Function;
2244 if (S.CheckAllocationAccess(R.getNameLoc(), Range, R.getNamingClass(),
2245 Best->FoundDecl) == Sema::AR_inaccessible)
2246 return true;
2247
2248 Operator = FnDecl;
2249 return false;
2250 }
2251
2252 case OR_No_Viable_Function:
2253 // C++17 [expr.new]p13:
2254 // If no matching function is found and the allocated object type has
2255 // new-extended alignment, the alignment argument is removed from the
2256 // argument list, and overload resolution is performed again.
2257 if (PassAlignment) {
2258 PassAlignment = false;
2259 AlignArg = Args[1];
2260 Args.erase(Args.begin() + 1);
2261 return resolveAllocationOverload(S, R, Range, Args, PassAlignment,
2262 Operator, &Candidates, AlignArg,
2263 Diagnose);
2264 }
2265
2266 // MSVC will fall back on trying to find a matching global operator new
2267 // if operator new[] cannot be found. Also, MSVC will leak by not
2268 // generating a call to operator delete or operator delete[], but we
2269 // will not replicate that bug.
2270 // FIXME: Find out how this interacts with the std::align_val_t fallback
2271 // once MSVC implements it.
2272 if (R.getLookupName().getCXXOverloadedOperator() == OO_Array_New &&
2273 S.Context.getLangOpts().MSVCCompat) {
2274 R.clear();
2275 R.setLookupName(S.Context.DeclarationNames.getCXXOperatorName(OO_New));
2276 S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl());
2277 // FIXME: This will give bad diagnostics pointing at the wrong functions.
2278 return resolveAllocationOverload(S, R, Range, Args, PassAlignment,
2279 Operator, /*Candidates=*/nullptr,
2280 /*AlignArg=*/nullptr, Diagnose);
2281 }
2282
2283 if (Diagnose) {
2284 PartialDiagnosticAt PD(R.getNameLoc(), S.PDiag(diag::err_ovl_no_viable_function_in_call)
2285 << R.getLookupName() << Range);
2286
2287 // If we have aligned candidates, only note the align_val_t candidates
2288 // from AlignedCandidates and the non-align_val_t candidates from
2289 // Candidates.
2290 if (AlignedCandidates) {
2291 auto IsAligned = [](OverloadCandidate &C) {
2292 return C.Function->getNumParams() > 1 &&
2293 C.Function->getParamDecl(1)->getType()->isAlignValT();
2294 };
2295 auto IsUnaligned = [&](OverloadCandidate &C) { return !IsAligned(C); };
2296
2297 // This was an overaligned allocation, so list the aligned candidates
2298 // first.
2299 Args.insert(Args.begin() + 1, AlignArg);
2300 AlignedCandidates->NoteCandidates(PD, S, OCD_AllCandidates, Args, "",
2301 R.getNameLoc(), IsAligned);
2302 Args.erase(Args.begin() + 1);
2303 Candidates.NoteCandidates(PD, S, OCD_AllCandidates, Args, "", R.getNameLoc(),
2304 IsUnaligned);
2305 } else {
2306 Candidates.NoteCandidates(PD, S, OCD_AllCandidates, Args);
2307 }
2308 }
2309 return true;
2310
2311 case OR_Ambiguous:
2312 if (Diagnose) {
2313 Candidates.NoteCandidates(
2314 PartialDiagnosticAt(R.getNameLoc(),
2315 S.PDiag(diag::err_ovl_ambiguous_call)
2316 << R.getLookupName() << Range),
2317 S, OCD_ViableCandidates, Args);
2318 }
2319 return true;
2320
2321 case OR_Deleted: {
2322 if (Diagnose) {
2323 Candidates.NoteCandidates(
2324 PartialDiagnosticAt(R.getNameLoc(),
2325 S.PDiag(diag::err_ovl_deleted_call)
2326 << R.getLookupName() << Range),
2327 S, OCD_AllCandidates, Args);
2328 }
2329 return true;
2330 }
2331 }
2332 llvm_unreachable("Unreachable, bad result from BestViableFunction")::llvm::llvm_unreachable_internal("Unreachable, bad result from BestViableFunction"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 2332)
;
2333}
2334
2335bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
2336 AllocationFunctionScope NewScope,
2337 AllocationFunctionScope DeleteScope,
2338 QualType AllocType, bool IsArray,
2339 bool &PassAlignment, MultiExprArg PlaceArgs,
2340 FunctionDecl *&OperatorNew,
2341 FunctionDecl *&OperatorDelete,
2342 bool Diagnose) {
2343 // --- Choosing an allocation function ---
2344 // C++ 5.3.4p8 - 14 & 18
2345 // 1) If looking in AFS_Global scope for allocation functions, only look in
2346 // the global scope. Else, if AFS_Class, only look in the scope of the
2347 // allocated class. If AFS_Both, look in both.
2348 // 2) If an array size is given, look for operator new[], else look for
2349 // operator new.
2350 // 3) The first argument is always size_t. Append the arguments from the
2351 // placement form.
2352
2353 SmallVector<Expr*, 8> AllocArgs;
2354 AllocArgs.reserve((PassAlignment ? 2 : 1) + PlaceArgs.size());
2355
2356 // We don't care about the actual value of these arguments.
2357 // FIXME: Should the Sema create the expression and embed it in the syntax
2358 // tree? Or should the consumer just recalculate the value?
2359 // FIXME: Using a dummy value will interact poorly with attribute enable_if.
2360 IntegerLiteral Size(Context, llvm::APInt::getNullValue(
2361 Context.getTargetInfo().getPointerWidth(0)),
2362 Context.getSizeType(),
2363 SourceLocation());
2364 AllocArgs.push_back(&Size);
2365
2366 QualType AlignValT = Context.VoidTy;
2367 if (PassAlignment) {
2368 DeclareGlobalNewDelete();
2369 AlignValT = Context.getTypeDeclType(getStdAlignValT());
2370 }
2371 CXXScalarValueInitExpr Align(AlignValT, nullptr, SourceLocation());
2372 if (PassAlignment)
2373 AllocArgs.push_back(&Align);
2374
2375 AllocArgs.insert(AllocArgs.end(), PlaceArgs.begin(), PlaceArgs.end());
2376
2377 // C++ [expr.new]p8:
2378 // If the allocated type is a non-array type, the allocation
2379 // function's name is operator new and the deallocation function's
2380 // name is operator delete. If the allocated type is an array
2381 // type, the allocation function's name is operator new[] and the
2382 // deallocation function's name is operator delete[].
2383 DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
2384 IsArray ? OO_Array_New : OO_New);
2385
2386 QualType AllocElemType = Context.getBaseElementType(AllocType);
2387
2388 // Find the allocation function.
2389 {
2390 LookupResult R(*this, NewName, StartLoc, LookupOrdinaryName);
2391
2392 // C++1z [expr.new]p9:
2393 // If the new-expression begins with a unary :: operator, the allocation
2394 // function's name is looked up in the global scope. Otherwise, if the
2395 // allocated type is a class type T or array thereof, the allocation
2396 // function's name is looked up in the scope of T.
2397 if (AllocElemType->isRecordType() && NewScope != AFS_Global)
2398 LookupQualifiedName(R, AllocElemType->getAsCXXRecordDecl());
2399
2400 // We can see ambiguity here if the allocation function is found in
2401 // multiple base classes.
2402 if (R.isAmbiguous())
2403 return true;
2404
2405 // If this lookup fails to find the name, or if the allocated type is not
2406 // a class type, the allocation function's name is looked up in the
2407 // global scope.
2408 if (R.empty()) {
2409 if (NewScope == AFS_Class)
2410 return true;
2411
2412 LookupQualifiedName(R, Context.getTranslationUnitDecl());
2413 }
2414
2415 if (getLangOpts().OpenCLCPlusPlus && R.empty()) {
2416 Diag(StartLoc, diag::err_openclcxx_not_supported) << "default new";
2417 return true;
2418 }
2419
2420 assert(!R.empty() && "implicitly declared allocation functions not found")((!R.empty() && "implicitly declared allocation functions not found"
) ? static_cast<void> (0) : __assert_fail ("!R.empty() && \"implicitly declared allocation functions not found\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 2420, __PRETTY_FUNCTION__))
;
2421 assert(!R.isAmbiguous() && "global allocation functions are ambiguous")((!R.isAmbiguous() && "global allocation functions are ambiguous"
) ? static_cast<void> (0) : __assert_fail ("!R.isAmbiguous() && \"global allocation functions are ambiguous\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 2421, __PRETTY_FUNCTION__))
;
2422
2423 // We do our own custom access checks below.
2424 R.suppressDiagnostics();
2425
2426 if (resolveAllocationOverload(*this, R, Range, AllocArgs, PassAlignment,
2427 OperatorNew, /*Candidates=*/nullptr,
2428 /*AlignArg=*/nullptr, Diagnose))
2429 return true;
2430 }
2431
2432 // We don't need an operator delete if we're running under -fno-exceptions.
2433 if (!getLangOpts().Exceptions) {
2434 OperatorDelete = nullptr;
2435 return false;
2436 }
2437
2438 // Note, the name of OperatorNew might have been changed from array to
2439 // non-array by resolveAllocationOverload.
2440 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
2441 OperatorNew->getDeclName().getCXXOverloadedOperator() == OO_Array_New
2442 ? OO_Array_Delete
2443 : OO_Delete);
2444
2445 // C++ [expr.new]p19:
2446 //
2447 // If the new-expression begins with a unary :: operator, the
2448 // deallocation function's name is looked up in the global
2449 // scope. Otherwise, if the allocated type is a class type T or an
2450 // array thereof, the deallocation function's name is looked up in
2451 // the scope of T. If this lookup fails to find the name, or if
2452 // the allocated type is not a class type or array thereof, the
2453 // deallocation function's name is looked up in the global scope.
2454 LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
2455 if (AllocElemType->isRecordType() && DeleteScope != AFS_Global) {
2456 CXXRecordDecl *RD
2457 = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
2458 LookupQualifiedName(FoundDelete, RD);
2459 }
2460 if (FoundDelete.isAmbiguous())
2461 return true; // FIXME: clean up expressions?
2462
2463 bool FoundGlobalDelete = FoundDelete.empty();
2464 if (FoundDelete.empty()) {
2465 if (DeleteScope == AFS_Class)
2466 return true;
2467
2468 DeclareGlobalNewDelete();
2469 LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
2470 }
2471
2472 FoundDelete.suppressDiagnostics();
2473
2474 SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;
2475
2476 // Whether we're looking for a placement operator delete is dictated
2477 // by whether we selected a placement operator new, not by whether
2478 // we had explicit placement arguments. This matters for things like
2479 // struct A { void *operator new(size_t, int = 0); ... };
2480 // A *a = new A()
2481 //
2482 // We don't have any definition for what a "placement allocation function"
2483 // is, but we assume it's any allocation function whose
2484 // parameter-declaration-clause is anything other than (size_t).
2485 //
2486 // FIXME: Should (size_t, std::align_val_t) also be considered non-placement?
2487 // This affects whether an exception from the constructor of an overaligned
2488 // type uses the sized or non-sized form of aligned operator delete.
2489 bool isPlacementNew = !PlaceArgs.empty() || OperatorNew->param_size() != 1 ||
2490 OperatorNew->isVariadic();
2491
2492 if (isPlacementNew) {
2493 // C++ [expr.new]p20:
2494 // A declaration of a placement deallocation function matches the
2495 // declaration of a placement allocation function if it has the
2496 // same number of parameters and, after parameter transformations
2497 // (8.3.5), all parameter types except the first are
2498 // identical. [...]
2499 //
2500 // To perform this comparison, we compute the function type that
2501 // the deallocation function should have, and use that type both
2502 // for template argument deduction and for comparison purposes.
2503 QualType ExpectedFunctionType;
2504 {
2505 const FunctionProtoType *Proto
2506 = OperatorNew->getType()->getAs<FunctionProtoType>();
2507
2508 SmallVector<QualType, 4> ArgTypes;
2509 ArgTypes.push_back(Context.VoidPtrTy);
2510 for (unsigned I = 1, N = Proto->getNumParams(); I < N; ++I)
2511 ArgTypes.push_back(Proto->getParamType(I));
2512
2513 FunctionProtoType::ExtProtoInfo EPI;
2514 // FIXME: This is not part of the standard's rule.
2515 EPI.Variadic = Proto->isVariadic();
2516
2517 ExpectedFunctionType
2518 = Context.getFunctionType(Context.VoidTy, ArgTypes, EPI);
2519 }
2520
2521 for (LookupResult::iterator D = FoundDelete.begin(),
2522 DEnd = FoundDelete.end();
2523 D != DEnd; ++D) {
2524 FunctionDecl *Fn = nullptr;
2525 if (FunctionTemplateDecl *FnTmpl =
2526 dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
2527 // Perform template argument deduction to try to match the
2528 // expected function type.
2529 TemplateDeductionInfo Info(StartLoc);
2530 if (DeduceTemplateArguments(FnTmpl, nullptr, ExpectedFunctionType, Fn,
2531 Info))
2532 continue;
2533 } else
2534 Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
2535
2536 if (Context.hasSameType(adjustCCAndNoReturn(Fn->getType(),
2537 ExpectedFunctionType,
2538 /*AdjustExcpetionSpec*/true),
2539 ExpectedFunctionType))
2540 Matches.push_back(std::make_pair(D.getPair(), Fn));
2541 }
2542
2543 if (getLangOpts().CUDA)
2544 EraseUnwantedCUDAMatches(dyn_cast<FunctionDecl>(CurContext), Matches);
2545 } else {
2546 // C++1y [expr.new]p22:
2547 // For a non-placement allocation function, the normal deallocation
2548 // function lookup is used
2549 //
2550 // Per [expr.delete]p10, this lookup prefers a member operator delete
2551 // without a size_t argument, but prefers a non-member operator delete
2552 // with a size_t where possible (which it always is in this case).
2553 llvm::SmallVector<UsualDeallocFnInfo, 4> BestDeallocFns;
2554 UsualDeallocFnInfo Selected = resolveDeallocationOverload(
2555 *this, FoundDelete, /*WantSize*/ FoundGlobalDelete,
2556 /*WantAlign*/ hasNewExtendedAlignment(*this, AllocElemType),
2557 &BestDeallocFns);
2558 if (Selected)
2559 Matches.push_back(std::make_pair(Selected.Found, Selected.FD));
2560 else {
2561 // If we failed to select an operator, all remaining functions are viable
2562 // but ambiguous.
2563 for (auto Fn : BestDeallocFns)
2564 Matches.push_back(std::make_pair(Fn.Found, Fn.FD));
2565 }
2566 }
2567
2568 // C++ [expr.new]p20:
2569 // [...] If the lookup finds a single matching deallocation
2570 // function, that function will be called; otherwise, no
2571 // deallocation function will be called.
2572 if (Matches.size() == 1) {
2573 OperatorDelete = Matches[0].second;
2574
2575 // C++1z [expr.new]p23:
2576 // If the lookup finds a usual deallocation function (3.7.4.2)
2577 // with a parameter of type std::size_t and that function, considered
2578 // as a placement deallocation function, would have been
2579 // selected as a match for the allocation function, the program
2580 // is ill-formed.
2581 if (getLangOpts().CPlusPlus11 && isPlacementNew &&
2582 isNonPlacementDeallocationFunction(*this, OperatorDelete)) {
2583 UsualDeallocFnInfo Info(*this,
2584 DeclAccessPair::make(OperatorDelete, AS_public));
2585 // Core issue, per mail to core reflector, 2016-10-09:
2586 // If this is a member operator delete, and there is a corresponding
2587 // non-sized member operator delete, this isn't /really/ a sized
2588 // deallocation function, it just happens to have a size_t parameter.
2589 bool IsSizedDelete = Info.HasSizeT;
2590 if (IsSizedDelete && !FoundGlobalDelete) {
2591 auto NonSizedDelete =
2592 resolveDeallocationOverload(*this, FoundDelete, /*WantSize*/false,
2593 /*WantAlign*/Info.HasAlignValT);
2594 if (NonSizedDelete && !NonSizedDelete.HasSizeT &&
2595 NonSizedDelete.HasAlignValT == Info.HasAlignValT)
2596 IsSizedDelete = false;
2597 }
2598
2599 if (IsSizedDelete) {
2600 SourceRange R = PlaceArgs.empty()
2601 ? SourceRange()
2602 : SourceRange(PlaceArgs.front()->getBeginLoc(),
2603 PlaceArgs.back()->getEndLoc());
2604 Diag(StartLoc, diag::err_placement_new_non_placement_delete) << R;
2605 if (!OperatorDelete->isImplicit())
2606 Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
2607 << DeleteName;
2608 }
2609 }
2610
2611 CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
2612 Matches[0].first);
2613 } else if (!Matches.empty()) {
2614 // We found multiple suitable operators. Per [expr.new]p20, that means we
2615 // call no 'operator delete' function, but we should at least warn the user.
2616 // FIXME: Suppress this warning if the construction cannot throw.
2617 Diag(StartLoc, diag::warn_ambiguous_suitable_delete_function_found)
2618 << DeleteName << AllocElemType;
2619
2620 for (auto &Match : Matches)
2621 Diag(Match.second->getLocation(),
2622 diag::note_member_declared_here) << DeleteName;
2623 }
2624
2625 return false;
2626}
2627
2628/// DeclareGlobalNewDelete - Declare the global forms of operator new and
2629/// delete. These are:
2630/// @code
2631/// // C++03:
2632/// void* operator new(std::size_t) throw(std::bad_alloc);
2633/// void* operator new[](std::size_t) throw(std::bad_alloc);
2634/// void operator delete(void *) throw();
2635/// void operator delete[](void *) throw();
2636/// // C++11:
2637/// void* operator new(std::size_t);
2638/// void* operator new[](std::size_t);
2639/// void operator delete(void *) noexcept;
2640/// void operator delete[](void *) noexcept;
2641/// // C++1y:
2642/// void* operator new(std::size_t);
2643/// void* operator new[](std::size_t);
2644/// void operator delete(void *) noexcept;
2645/// void operator delete[](void *) noexcept;
2646/// void operator delete(void *, std::size_t) noexcept;
2647/// void operator delete[](void *, std::size_t) noexcept;
2648/// @endcode
2649/// Note that the placement and nothrow forms of new are *not* implicitly
2650/// declared. Their use requires including \<new\>.
2651void Sema::DeclareGlobalNewDelete() {
2652 if (GlobalNewDeleteDeclared)
2653 return;
2654
2655 // OpenCL C++ 1.0 s2.9: the implicitly declared new and delete operators
2656 // are not supported.
2657 if (getLangOpts().OpenCLCPlusPlus)
2658 return;
2659
2660 // C++ [basic.std.dynamic]p2:
2661 // [...] The following allocation and deallocation functions (18.4) are
2662 // implicitly declared in global scope in each translation unit of a
2663 // program
2664 //
2665 // C++03:
2666 // void* operator new(std::size_t) throw(std::bad_alloc);
2667 // void* operator new[](std::size_t) throw(std::bad_alloc);
2668 // void operator delete(void*) throw();
2669 // void operator delete[](void*) throw();
2670 // C++11:
2671 // void* operator new(std::size_t);
2672 // void* operator new[](std::size_t);
2673 // void operator delete(void*) noexcept;
2674 // void operator delete[](void*) noexcept;
2675 // C++1y:
2676 // void* operator new(std::size_t);
2677 // void* operator new[](std::size_t);
2678 // void operator delete(void*) noexcept;
2679 // void operator delete[](void*) noexcept;
2680 // void operator delete(void*, std::size_t) noexcept;
2681 // void operator delete[](void*, std::size_t) noexcept;
2682 //
2683 // These implicit declarations introduce only the function names operator
2684 // new, operator new[], operator delete, operator delete[].
2685 //
2686 // Here, we need to refer to std::bad_alloc, so we will implicitly declare
2687 // "std" or "bad_alloc" as necessary to form the exception specification.
2688 // However, we do not make these implicit declarations visible to name
2689 // lookup.
2690 if (!StdBadAlloc && !getLangOpts().CPlusPlus11) {
2691 // The "std::bad_alloc" class has not yet been declared, so build it
2692 // implicitly.
2693 StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class,
2694 getOrCreateStdNamespace(),
2695 SourceLocation(), SourceLocation(),
2696 &PP.getIdentifierTable().get("bad_alloc"),
2697 nullptr);
2698 getStdBadAlloc()->setImplicit(true);
2699 }
2700 if (!StdAlignValT && getLangOpts().AlignedAllocation) {
2701 // The "std::align_val_t" enum class has not yet been declared, so build it
2702 // implicitly.
2703 auto *AlignValT = EnumDecl::Create(
2704 Context, getOrCreateStdNamespace(), SourceLocation(), SourceLocation(),
2705 &PP.getIdentifierTable().get("align_val_t"), nullptr, true, true, true);
2706 AlignValT->setIntegerType(Context.getSizeType());
2707 AlignValT->setPromotionType(Context.getSizeType());
2708 AlignValT->setImplicit(true);
2709 StdAlignValT = AlignValT;
2710 }
2711
2712 GlobalNewDeleteDeclared = true;
2713
2714 QualType VoidPtr = Context.getPointerType(Context.VoidTy);
2715 QualType SizeT = Context.getSizeType();
2716
2717 auto DeclareGlobalAllocationFunctions = [&](OverloadedOperatorKind Kind,
2718 QualType Return, QualType Param) {
2719 llvm::SmallVector<QualType, 3> Params;
2720 Params.push_back(Param);
2721
2722 // Create up to four variants of the function (sized/aligned).
2723 bool HasSizedVariant = getLangOpts().SizedDeallocation &&
2724 (Kind == OO_Delete || Kind == OO_Array_Delete);
2725 bool HasAlignedVariant = getLangOpts().AlignedAllocation;
2726
2727 int NumSizeVariants = (HasSizedVariant ? 2 : 1);
2728 int NumAlignVariants = (HasAlignedVariant ? 2 : 1);
2729 for (int Sized = 0; Sized < NumSizeVariants; ++Sized) {
2730 if (Sized)
2731 Params.push_back(SizeT);
2732
2733 for (int Aligned = 0; Aligned < NumAlignVariants; ++Aligned) {
2734 if (Aligned)
2735 Params.push_back(Context.getTypeDeclType(getStdAlignValT()));
2736
2737 DeclareGlobalAllocationFunction(
2738 Context.DeclarationNames.getCXXOperatorName(Kind), Return, Params);
2739
2740 if (Aligned)
2741 Params.pop_back();
2742 }
2743 }
2744 };
2745
2746 DeclareGlobalAllocationFunctions(OO_New, VoidPtr, SizeT);
2747 DeclareGlobalAllocationFunctions(OO_Array_New, VoidPtr, SizeT);
2748 DeclareGlobalAllocationFunctions(OO_Delete, Context.VoidTy, VoidPtr);
2749 DeclareGlobalAllocationFunctions(OO_Array_Delete, Context.VoidTy, VoidPtr);
2750}
2751
2752/// DeclareGlobalAllocationFunction - Declares a single implicit global
2753/// allocation function if it doesn't already exist.
2754void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
2755 QualType Return,
2756 ArrayRef<QualType> Params) {
2757 DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
2758
2759 // Check if this function is already declared.
2760 DeclContext::lookup_result R = GlobalCtx->lookup(Name);
2761 for (DeclContext::lookup_iterator Alloc = R.begin(), AllocEnd = R.end();
2762 Alloc != AllocEnd; ++Alloc) {
2763 // Only look at non-template functions, as it is the predefined,
2764 // non-templated allocation function we are trying to declare here.
2765 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
2766 if (Func->getNumParams() == Params.size()) {
2767 llvm::SmallVector<QualType, 3> FuncParams;
2768 for (auto *P : Func->parameters())
2769 FuncParams.push_back(
2770 Context.getCanonicalType(P->getType().getUnqualifiedType()));
2771 if (llvm::makeArrayRef(FuncParams) == Params) {
2772 // Make the function visible to name lookup, even if we found it in
2773 // an unimported module. It either is an implicitly-declared global
2774 // allocation function, or is suppressing that function.
2775 Func->setVisibleDespiteOwningModule();
2776 return;
2777 }
2778 }
2779 }
2780 }
2781
2782 FunctionProtoType::ExtProtoInfo EPI(Context.getDefaultCallingConvention(
2783 /*IsVariadic=*/false, /*IsCXXMethod=*/false, /*IsBuiltin=*/true));
2784
2785 QualType BadAllocType;
2786 bool HasBadAllocExceptionSpec
2787 = (Name.getCXXOverloadedOperator() == OO_New ||
2788 Name.getCXXOverloadedOperator() == OO_Array_New);
2789 if (HasBadAllocExceptionSpec) {
2790 if (!getLangOpts().CPlusPlus11) {
2791 BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
2792 assert(StdBadAlloc && "Must have std::bad_alloc declared")((StdBadAlloc && "Must have std::bad_alloc declared")
? static_cast<void> (0) : __assert_fail ("StdBadAlloc && \"Must have std::bad_alloc declared\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 2792, __PRETTY_FUNCTION__))
;
2793 EPI.ExceptionSpec.Type = EST_Dynamic;
2794 EPI.ExceptionSpec.Exceptions = llvm::makeArrayRef(BadAllocType);
2795 }
2796 } else {
2797 EPI.ExceptionSpec =
2798 getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone;
2799 }
2800
2801 auto CreateAllocationFunctionDecl = [&](Attr *ExtraAttr) {
2802 QualType FnType = Context.getFunctionType(Return, Params, EPI);
2803 FunctionDecl *Alloc = FunctionDecl::Create(
2804 Context, GlobalCtx, SourceLocation(), SourceLocation(), Name,
2805 FnType, /*TInfo=*/nullptr, SC_None, false, true);
2806 Alloc->setImplicit();
2807 // Global allocation functions should always be visible.
2808 Alloc->setVisibleDespiteOwningModule();
2809
2810 Alloc->addAttr(VisibilityAttr::CreateImplicit(
2811 Context, LangOpts.GlobalAllocationFunctionVisibilityHidden
2812 ? VisibilityAttr::Hidden
2813 : VisibilityAttr::Default));
2814
2815 llvm::SmallVector<ParmVarDecl *, 3> ParamDecls;
2816 for (QualType T : Params) {
2817 ParamDecls.push_back(ParmVarDecl::Create(
2818 Context, Alloc, SourceLocation(), SourceLocation(), nullptr, T,
2819 /*TInfo=*/nullptr, SC_None, nullptr));
2820 ParamDecls.back()->setImplicit();
2821 }
2822 Alloc->setParams(ParamDecls);
2823 if (ExtraAttr)
2824 Alloc->addAttr(ExtraAttr);
2825 Context.getTranslationUnitDecl()->addDecl(Alloc);
2826 IdResolver.tryAddTopLevelDecl(Alloc, Name);
2827 };
2828
2829 if (!LangOpts.CUDA)
2830 CreateAllocationFunctionDecl(nullptr);
2831 else {
2832 // Host and device get their own declaration so each can be
2833 // defined or re-declared independently.
2834 CreateAllocationFunctionDecl(CUDAHostAttr::CreateImplicit(Context));
2835 CreateAllocationFunctionDecl(CUDADeviceAttr::CreateImplicit(Context));
2836 }
2837}
2838
2839FunctionDecl *Sema::FindUsualDeallocationFunction(SourceLocation StartLoc,
2840 bool CanProvideSize,
2841 bool Overaligned,
2842 DeclarationName Name) {
2843 DeclareGlobalNewDelete();
2844
2845 LookupResult FoundDelete(*this, Name, StartLoc, LookupOrdinaryName);
2846 LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
2847
2848 // FIXME: It's possible for this to result in ambiguity, through a
2849 // user-declared variadic operator delete or the enable_if attribute. We
2850 // should probably not consider those cases to be usual deallocation
2851 // functions. But for now we just make an arbitrary choice in that case.
2852 auto Result = resolveDeallocationOverload(*this, FoundDelete, CanProvideSize,
2853 Overaligned);
2854 assert(Result.FD && "operator delete missing from global scope?")((Result.FD && "operator delete missing from global scope?"
) ? static_cast<void> (0) : __assert_fail ("Result.FD && \"operator delete missing from global scope?\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 2854, __PRETTY_FUNCTION__))
;
2855 return Result.FD;
2856}
2857
2858FunctionDecl *Sema::FindDeallocationFunctionForDestructor(SourceLocation Loc,
2859 CXXRecordDecl *RD) {
2860 DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Delete);
2861
2862 FunctionDecl *OperatorDelete = nullptr;
2863 if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
2864 return nullptr;
2865 if (OperatorDelete)
2866 return OperatorDelete;
2867
2868 // If there's no class-specific operator delete, look up the global
2869 // non-array delete.
2870 return FindUsualDeallocationFunction(
2871 Loc, true, hasNewExtendedAlignment(*this, Context.getRecordType(RD)),
2872 Name);
2873}
2874
2875bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
2876 DeclarationName Name,
2877 FunctionDecl *&Operator, bool Diagnose) {
2878 LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
2879 // Try to find operator delete/operator delete[] in class scope.
2880 LookupQualifiedName(Found, RD);
2881
2882 if (Found.isAmbiguous())
2883 return true;
2884
2885 Found.suppressDiagnostics();
2886
2887 bool Overaligned = hasNewExtendedAlignment(*this, Context.getRecordType(RD));
2888
2889 // C++17 [expr.delete]p10:
2890 // If the deallocation functions have class scope, the one without a
2891 // parameter of type std::size_t is selected.
2892 llvm::SmallVector<UsualDeallocFnInfo, 4> Matches;
2893 resolveDeallocationOverload(*this, Found, /*WantSize*/ false,
2894 /*WantAlign*/ Overaligned, &Matches);
2895
2896 // If we could find an overload, use it.
2897 if (Matches.size() == 1) {
2898 Operator = cast<CXXMethodDecl>(Matches[0].FD);
2899
2900 // FIXME: DiagnoseUseOfDecl?
2901 if (Operator->isDeleted()) {
2902 if (Diagnose) {
2903 Diag(StartLoc, diag::err_deleted_function_use);
2904 NoteDeletedFunction(Operator);
2905 }
2906 return true;
2907 }
2908
2909 if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
2910 Matches[0].Found, Diagnose) == AR_inaccessible)
2911 return true;
2912
2913 return false;
2914 }
2915
2916 // We found multiple suitable operators; complain about the ambiguity.
2917 // FIXME: The standard doesn't say to do this; it appears that the intent
2918 // is that this should never happen.
2919 if (!Matches.empty()) {
2920 if (Diagnose) {
2921 Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
2922 << Name << RD;
2923 for (auto &Match : Matches)
2924 Diag(Match.FD->getLocation(), diag::note_member_declared_here) << Name;
2925 }
2926 return true;
2927 }
2928
2929 // We did find operator delete/operator delete[] declarations, but
2930 // none of them were suitable.
2931 if (!Found.empty()) {
2932 if (Diagnose) {
2933 Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
2934 << Name << RD;
2935
2936 for (NamedDecl *D : Found)
2937 Diag(D->getUnderlyingDecl()->getLocation(),
2938 diag::note_member_declared_here) << Name;
2939 }
2940 return true;
2941 }
2942
2943 Operator = nullptr;
2944 return false;
2945}
2946
2947namespace {
2948/// Checks whether delete-expression, and new-expression used for
2949/// initializing deletee have the same array form.
2950class MismatchingNewDeleteDetector {
2951public:
2952 enum MismatchResult {
2953 /// Indicates that there is no mismatch or a mismatch cannot be proven.
2954 NoMismatch,
2955 /// Indicates that variable is initialized with mismatching form of \a new.
2956 VarInitMismatches,
2957 /// Indicates that member is initialized with mismatching form of \a new.
2958 MemberInitMismatches,
2959 /// Indicates that 1 or more constructors' definitions could not been
2960 /// analyzed, and they will be checked again at the end of translation unit.
2961 AnalyzeLater
2962 };
2963
2964 /// \param EndOfTU True, if this is the final analysis at the end of
2965 /// translation unit. False, if this is the initial analysis at the point
2966 /// delete-expression was encountered.
2967 explicit MismatchingNewDeleteDetector(bool EndOfTU)
2968 : Field(nullptr), IsArrayForm(false), EndOfTU(EndOfTU),
2969 HasUndefinedConstructors(false) {}
2970
2971 /// Checks whether pointee of a delete-expression is initialized with
2972 /// matching form of new-expression.
2973 ///
2974 /// If return value is \c VarInitMismatches or \c MemberInitMismatches at the
2975 /// point where delete-expression is encountered, then a warning will be
2976 /// issued immediately. If return value is \c AnalyzeLater at the point where
2977 /// delete-expression is seen, then member will be analyzed at the end of
2978 /// translation unit. \c AnalyzeLater is returned iff at least one constructor
2979 /// couldn't be analyzed. If at least one constructor initializes the member
2980 /// with matching type of new, the return value is \c NoMismatch.
2981 MismatchResult analyzeDeleteExpr(const CXXDeleteExpr *DE);
2982 /// Analyzes a class member.
2983 /// \param Field Class member to analyze.
2984 /// \param DeleteWasArrayForm Array form-ness of the delete-expression used
2985 /// for deleting the \p Field.
2986 MismatchResult analyzeField(FieldDecl *Field, bool DeleteWasArrayForm);
2987 FieldDecl *Field;
2988 /// List of mismatching new-expressions used for initialization of the pointee
2989 llvm::SmallVector<const CXXNewExpr *, 4> NewExprs;
2990 /// Indicates whether delete-expression was in array form.
2991 bool IsArrayForm;
2992
2993private:
2994 const bool EndOfTU;
2995 /// Indicates that there is at least one constructor without body.
2996 bool HasUndefinedConstructors;
2997 /// Returns \c CXXNewExpr from given initialization expression.
2998 /// \param E Expression used for initializing pointee in delete-expression.
2999 /// E can be a single-element \c InitListExpr consisting of new-expression.
3000 const CXXNewExpr *getNewExprFromInitListOrExpr(const Expr *E);
3001 /// Returns whether member is initialized with mismatching form of
3002 /// \c new either by the member initializer or in-class initialization.
3003 ///
3004 /// If bodies of all constructors are not visible at the end of translation
3005 /// unit or at least one constructor initializes member with the matching
3006 /// form of \c new, mismatch cannot be proven, and this function will return
3007 /// \c NoMismatch.
3008 MismatchResult analyzeMemberExpr(const MemberExpr *ME);
3009 /// Returns whether variable is initialized with mismatching form of
3010 /// \c new.
3011 ///
3012 /// If variable is initialized with matching form of \c new or variable is not
3013 /// initialized with a \c new expression, this function will return true.
3014 /// If variable is initialized with mismatching form of \c new, returns false.
3015 /// \param D Variable to analyze.
3016 bool hasMatchingVarInit(const DeclRefExpr *D);
3017 /// Checks whether the constructor initializes pointee with mismatching
3018 /// form of \c new.
3019 ///
3020 /// Returns true, if member is initialized with matching form of \c new in
3021 /// member initializer list. Returns false, if member is initialized with the
3022 /// matching form of \c new in this constructor's initializer or given
3023 /// constructor isn't defined at the point where delete-expression is seen, or
3024 /// member isn't initialized by the constructor.
3025 bool hasMatchingNewInCtor(const CXXConstructorDecl *CD);
3026 /// Checks whether member is initialized with matching form of
3027 /// \c new in member initializer list.
3028 bool hasMatchingNewInCtorInit(const CXXCtorInitializer *CI);
3029 /// Checks whether member is initialized with mismatching form of \c new by
3030 /// in-class initializer.
3031 MismatchResult analyzeInClassInitializer();
3032};
3033}
3034
3035MismatchingNewDeleteDetector::MismatchResult
3036MismatchingNewDeleteDetector::analyzeDeleteExpr(const CXXDeleteExpr *DE) {
3037 NewExprs.clear();
3038 assert(DE && "Expected delete-expression")((DE && "Expected delete-expression") ? static_cast<
void> (0) : __assert_fail ("DE && \"Expected delete-expression\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3038, __PRETTY_FUNCTION__))
;
3039 IsArrayForm = DE->isArrayForm();
3040 const Expr *E = DE->getArgument()->IgnoreParenImpCasts();
3041 if (const MemberExpr *ME = dyn_cast<const MemberExpr>(E)) {
3042 return analyzeMemberExpr(ME);
3043 } else if (const DeclRefExpr *D = dyn_cast<const DeclRefExpr>(E)) {
3044 if (!hasMatchingVarInit(D))
3045 return VarInitMismatches;
3046 }
3047 return NoMismatch;
3048}
3049
3050const CXXNewExpr *
3051MismatchingNewDeleteDetector::getNewExprFromInitListOrExpr(const Expr *E) {
3052 assert(E != nullptr && "Expected a valid initializer expression")((E != nullptr && "Expected a valid initializer expression"
) ? static_cast<void> (0) : __assert_fail ("E != nullptr && \"Expected a valid initializer expression\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3052, __PRETTY_FUNCTION__))
;
3053 E = E->IgnoreParenImpCasts();
3054 if (const InitListExpr *ILE = dyn_cast<const InitListExpr>(E)) {
3055 if (ILE->getNumInits() == 1)
3056 E = dyn_cast<const CXXNewExpr>(ILE->getInit(0)->IgnoreParenImpCasts());
3057 }
3058
3059 return dyn_cast_or_null<const CXXNewExpr>(E);
3060}
3061
3062bool MismatchingNewDeleteDetector::hasMatchingNewInCtorInit(
3063 const CXXCtorInitializer *CI) {
3064 const CXXNewExpr *NE = nullptr;
3065 if (Field == CI->getMember() &&
3066 (NE = getNewExprFromInitListOrExpr(CI->getInit()))) {
3067 if (NE->isArray() == IsArrayForm)
3068 return true;
3069 else
3070 NewExprs.push_back(NE);
3071 }
3072 return false;
3073}
3074
3075bool MismatchingNewDeleteDetector::hasMatchingNewInCtor(
3076 const CXXConstructorDecl *CD) {
3077 if (CD->isImplicit())
3078 return false;
3079 const FunctionDecl *Definition = CD;
3080 if (!CD->isThisDeclarationADefinition() && !CD->isDefined(Definition)) {
3081 HasUndefinedConstructors = true;
3082 return EndOfTU;
3083 }
3084 for (const auto *CI : cast<const CXXConstructorDecl>(Definition)->inits()) {
3085 if (hasMatchingNewInCtorInit(CI))
3086 return true;
3087 }
3088 return false;
3089}
3090
3091MismatchingNewDeleteDetector::MismatchResult
3092MismatchingNewDeleteDetector::analyzeInClassInitializer() {
3093 assert(Field != nullptr && "This should be called only for members")((Field != nullptr && "This should be called only for members"
) ? static_cast<void> (0) : __assert_fail ("Field != nullptr && \"This should be called only for members\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3093, __PRETTY_FUNCTION__))
;
3094 const Expr *InitExpr = Field->getInClassInitializer();
3095 if (!InitExpr)
3096 return EndOfTU ? NoMismatch : AnalyzeLater;
3097 if (const CXXNewExpr *NE = getNewExprFromInitListOrExpr(InitExpr)) {
3098 if (NE->isArray() != IsArrayForm) {
3099 NewExprs.push_back(NE);
3100 return MemberInitMismatches;
3101 }
3102 }
3103 return NoMismatch;
3104}
3105
3106MismatchingNewDeleteDetector::MismatchResult
3107MismatchingNewDeleteDetector::analyzeField(FieldDecl *Field,
3108 bool DeleteWasArrayForm) {
3109 assert(Field != nullptr && "Analysis requires a valid class member.")((Field != nullptr && "Analysis requires a valid class member."
) ? static_cast<void> (0) : __assert_fail ("Field != nullptr && \"Analysis requires a valid class member.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3109, __PRETTY_FUNCTION__))
;
3110 this->Field = Field;
3111 IsArrayForm = DeleteWasArrayForm;
3112 const CXXRecordDecl *RD = cast<const CXXRecordDecl>(Field->getParent());
3113 for (const auto *CD : RD->ctors()) {
3114 if (hasMatchingNewInCtor(CD))
3115 return NoMismatch;
3116 }
3117 if (HasUndefinedConstructors)
3118 return EndOfTU ? NoMismatch : AnalyzeLater;
3119 if (!NewExprs.empty())
3120 return MemberInitMismatches;
3121 return Field->hasInClassInitializer() ? analyzeInClassInitializer()
3122 : NoMismatch;
3123}
3124
3125MismatchingNewDeleteDetector::MismatchResult
3126MismatchingNewDeleteDetector::analyzeMemberExpr(const MemberExpr *ME) {
3127 assert(ME != nullptr && "Expected a member expression")((ME != nullptr && "Expected a member expression") ? static_cast
<void> (0) : __assert_fail ("ME != nullptr && \"Expected a member expression\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3127, __PRETTY_FUNCTION__))
;
3128 if (FieldDecl *F = dyn_cast<FieldDecl>(ME->getMemberDecl()))
3129 return analyzeField(F, IsArrayForm);
3130 return NoMismatch;
3131}
3132
3133bool MismatchingNewDeleteDetector::hasMatchingVarInit(const DeclRefExpr *D) {
3134 const CXXNewExpr *NE = nullptr;
3135 if (const VarDecl *VD = dyn_cast<const VarDecl>(D->getDecl())) {
3136 if (VD->hasInit() && (NE = getNewExprFromInitListOrExpr(VD->getInit())) &&
3137 NE->isArray() != IsArrayForm) {
3138 NewExprs.push_back(NE);
3139 }
3140 }
3141 return NewExprs.empty();
3142}
3143
3144static void
3145DiagnoseMismatchedNewDelete(Sema &SemaRef, SourceLocation DeleteLoc,
3146 const MismatchingNewDeleteDetector &Detector) {
3147 SourceLocation EndOfDelete = SemaRef.getLocForEndOfToken(DeleteLoc);
3148 FixItHint H;
3149 if (!Detector.IsArrayForm)
3150 H = FixItHint::CreateInsertion(EndOfDelete, "[]");
3151 else {
3152 SourceLocation RSquare = Lexer::findLocationAfterToken(
3153 DeleteLoc, tok::l_square, SemaRef.getSourceManager(),
3154 SemaRef.getLangOpts(), true);
3155 if (RSquare.isValid())
3156 H = FixItHint::CreateRemoval(SourceRange(EndOfDelete, RSquare));
3157 }
3158 SemaRef.Diag(DeleteLoc, diag::warn_mismatched_delete_new)
3159 << Detector.IsArrayForm << H;
3160
3161 for (const auto *NE : Detector.NewExprs)
3162 SemaRef.Diag(NE->getExprLoc(), diag::note_allocated_here)
3163 << Detector.IsArrayForm;
3164}
3165
3166void Sema::AnalyzeDeleteExprMismatch(const CXXDeleteExpr *DE) {
3167 if (Diags.isIgnored(diag::warn_mismatched_delete_new, SourceLocation()))
3168 return;
3169 MismatchingNewDeleteDetector Detector(/*EndOfTU=*/false);
3170 switch (Detector.analyzeDeleteExpr(DE)) {
3171 case MismatchingNewDeleteDetector::VarInitMismatches:
3172 case MismatchingNewDeleteDetector::MemberInitMismatches: {
3173 DiagnoseMismatchedNewDelete(*this, DE->getBeginLoc(), Detector);
3174 break;
3175 }
3176 case MismatchingNewDeleteDetector::AnalyzeLater: {
3177 DeleteExprs[Detector.Field].push_back(
3178 std::make_pair(DE->getBeginLoc(), DE->isArrayForm()));
3179 break;
3180 }
3181 case MismatchingNewDeleteDetector::NoMismatch:
3182 break;
3183 }
3184}
3185
3186void Sema::AnalyzeDeleteExprMismatch(FieldDecl *Field, SourceLocation DeleteLoc,
3187 bool DeleteWasArrayForm) {
3188 MismatchingNewDeleteDetector Detector(/*EndOfTU=*/true);
3189 switch (Detector.analyzeField(Field, DeleteWasArrayForm)) {
3190 case MismatchingNewDeleteDetector::VarInitMismatches:
3191 llvm_unreachable("This analysis should have been done for class members.")::llvm::llvm_unreachable_internal("This analysis should have been done for class members."
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3191)
;
3192 case MismatchingNewDeleteDetector::AnalyzeLater:
3193 llvm_unreachable("Analysis cannot be postponed any point beyond end of "::llvm::llvm_unreachable_internal("Analysis cannot be postponed any point beyond end of "
"translation unit.", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3194)
3194 "translation unit.")::llvm::llvm_unreachable_internal("Analysis cannot be postponed any point beyond end of "
"translation unit.", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3194)
;
3195 case MismatchingNewDeleteDetector::MemberInitMismatches:
3196 DiagnoseMismatchedNewDelete(*this, DeleteLoc, Detector);
3197 break;
3198 case MismatchingNewDeleteDetector::NoMismatch:
3199 break;
3200 }
3201}
3202
3203/// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
3204/// @code ::delete ptr; @endcode
3205/// or
3206/// @code delete [] ptr; @endcode
3207ExprResult
3208Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
3209 bool ArrayForm, Expr *ExE) {
3210 // C++ [expr.delete]p1:
3211 // The operand shall have a pointer type, or a class type having a single
3212 // non-explicit conversion function to a pointer type. The result has type
3213 // void.
3214 //
3215 // DR599 amends "pointer type" to "pointer to object type" in both cases.
3216
3217 ExprResult Ex = ExE;
3218 FunctionDecl *OperatorDelete = nullptr;
3219 bool ArrayFormAsWritten = ArrayForm;
3220 bool UsualArrayDeleteWantsSize = false;
3221
3222 if (!Ex.get()->isTypeDependent()) {
3223 // Perform lvalue-to-rvalue cast, if needed.
3224 Ex = DefaultLvalueConversion(Ex.get());
3225 if (Ex.isInvalid())
3226 return ExprError();
3227
3228 QualType Type = Ex.get()->getType();
3229
3230 class DeleteConverter : public ContextualImplicitConverter {
3231 public:
3232 DeleteConverter() : ContextualImplicitConverter(false, true) {}
3233
3234 bool match(QualType ConvType) override {
3235 // FIXME: If we have an operator T* and an operator void*, we must pick
3236 // the operator T*.
3237 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
3238 if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
3239 return true;
3240 return false;
3241 }
3242
3243 SemaDiagnosticBuilder diagnoseNoMatch(Sema &S, SourceLocation Loc,
3244 QualType T) override {
3245 return S.Diag(Loc, diag::err_delete_operand) << T;
3246 }
3247
3248 SemaDiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc,
3249 QualType T) override {
3250 return S.Diag(Loc, diag::err_delete_incomplete_class_type) << T;
3251 }
3252
3253 SemaDiagnosticBuilder diagnoseExplicitConv(Sema &S, SourceLocation Loc,
3254 QualType T,
3255 QualType ConvTy) override {
3256 return S.Diag(Loc, diag::err_delete_explicit_conversion) << T << ConvTy;
3257 }
3258
3259 SemaDiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv,
3260 QualType ConvTy) override {
3261 return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
3262 << ConvTy;
3263 }
3264
3265 SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
3266 QualType T) override {
3267 return S.Diag(Loc, diag::err_ambiguous_delete_operand) << T;
3268 }
3269
3270 SemaDiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv,
3271 QualType ConvTy) override {
3272 return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
3273 << ConvTy;
3274 }
3275
3276 SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
3277 QualType T,
3278 QualType ConvTy) override {
3279 llvm_unreachable("conversion functions are permitted")::llvm::llvm_unreachable_internal("conversion functions are permitted"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3279)
;
3280 }
3281 } Converter;
3282
3283 Ex = PerformContextualImplicitConversion(StartLoc, Ex.get(), Converter);
3284 if (Ex.isInvalid())
3285 return ExprError();
3286 Type = Ex.get()->getType();
3287 if (!Converter.match(Type))
3288 // FIXME: PerformContextualImplicitConversion should return ExprError
3289 // itself in this case.
3290 return ExprError();
3291
3292 QualType Pointee = Type->getAs<PointerType>()->getPointeeType();
3293 QualType PointeeElem = Context.getBaseElementType(Pointee);
3294
3295 if (Pointee.getAddressSpace() != LangAS::Default &&
3296 !getLangOpts().OpenCLCPlusPlus)
3297 return Diag(Ex.get()->getBeginLoc(),
3298 diag::err_address_space_qualified_delete)
3299 << Pointee.getUnqualifiedType()
3300 << Pointee.getQualifiers().getAddressSpaceAttributePrintValue();
3301
3302 CXXRecordDecl *PointeeRD = nullptr;
3303 if (Pointee->isVoidType() && !isSFINAEContext()) {
3304 // The C++ standard bans deleting a pointer to a non-object type, which
3305 // effectively bans deletion of "void*". However, most compilers support
3306 // this, so we treat it as a warning unless we're in a SFINAE context.
3307 Diag(StartLoc, diag::ext_delete_void_ptr_operand)
3308 << Type << Ex.get()->getSourceRange();
3309 } else if (Pointee->isFunctionType() || Pointee->isVoidType()) {
3310 return ExprError(Diag(StartLoc, diag::err_delete_operand)
3311 << Type << Ex.get()->getSourceRange());
3312 } else if (!Pointee->isDependentType()) {
3313 // FIXME: This can result in errors if the definition was imported from a
3314 // module but is hidden.
3315 if (!RequireCompleteType(StartLoc, Pointee,
3316 diag::warn_delete_incomplete, Ex.get())) {
3317 if (const RecordType *RT = PointeeElem->getAs<RecordType>())
3318 PointeeRD = cast<CXXRecordDecl>(RT->getDecl());
3319 }
3320 }
3321
3322 if (Pointee->isArrayType() && !ArrayForm) {
3323 Diag(StartLoc, diag::warn_delete_array_type)
3324 << Type << Ex.get()->getSourceRange()
3325 << FixItHint::CreateInsertion(getLocForEndOfToken(StartLoc), "[]");
3326 ArrayForm = true;
3327 }
3328
3329 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
3330 ArrayForm ? OO_Array_Delete : OO_Delete);
3331
3332 if (PointeeRD) {
3333 if (!UseGlobal &&
3334 FindDeallocationFunction(StartLoc, PointeeRD, DeleteName,
3335 OperatorDelete))
3336 return ExprError();
3337
3338 // If we're allocating an array of records, check whether the
3339 // usual operator delete[] has a size_t parameter.
3340 if (ArrayForm) {
3341 // If the user specifically asked to use the global allocator,
3342 // we'll need to do the lookup into the class.
3343 if (UseGlobal)
3344 UsualArrayDeleteWantsSize =
3345 doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem);
3346
3347 // Otherwise, the usual operator delete[] should be the
3348 // function we just found.
3349 else if (OperatorDelete && isa<CXXMethodDecl>(OperatorDelete))
3350 UsualArrayDeleteWantsSize =
3351 UsualDeallocFnInfo(*this,
3352 DeclAccessPair::make(OperatorDelete, AS_public))
3353 .HasSizeT;
3354 }
3355
3356 if (!PointeeRD->hasIrrelevantDestructor())
3357 if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
3358 MarkFunctionReferenced(StartLoc,
3359 const_cast<CXXDestructorDecl*>(Dtor));
3360 if (DiagnoseUseOfDecl(Dtor, StartLoc))
3361 return ExprError();
3362 }
3363
3364 CheckVirtualDtorCall(PointeeRD->getDestructor(), StartLoc,
3365 /*IsDelete=*/true, /*CallCanBeVirtual=*/true,
3366 /*WarnOnNonAbstractTypes=*/!ArrayForm,
3367 SourceLocation());
3368 }
3369
3370 if (!OperatorDelete) {
3371 if (getLangOpts().OpenCLCPlusPlus) {
3372 Diag(StartLoc, diag::err_openclcxx_not_supported) << "default delete";
3373 return ExprError();
3374 }
3375
3376 bool IsComplete = isCompleteType(StartLoc, Pointee);
3377 bool CanProvideSize =
3378 IsComplete && (!ArrayForm || UsualArrayDeleteWantsSize ||
3379 Pointee.isDestructedType());
3380 bool Overaligned = hasNewExtendedAlignment(*this, Pointee);
3381
3382 // Look for a global declaration.
3383 OperatorDelete = FindUsualDeallocationFunction(StartLoc, CanProvideSize,
3384 Overaligned, DeleteName);
3385 }
3386
3387 MarkFunctionReferenced(StartLoc, OperatorDelete);
3388
3389 // Check access and ambiguity of destructor if we're going to call it.
3390 // Note that this is required even for a virtual delete.
3391 bool IsVirtualDelete = false;
3392 if (PointeeRD) {
3393 if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
3394 CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor,
3395 PDiag(diag::err_access_dtor) << PointeeElem);
3396 IsVirtualDelete = Dtor->isVirtual();
3397 }
3398 }
3399
3400 DiagnoseUseOfDecl(OperatorDelete, StartLoc);
3401
3402 // Convert the operand to the type of the first parameter of operator
3403 // delete. This is only necessary if we selected a destroying operator
3404 // delete that we are going to call (non-virtually); converting to void*
3405 // is trivial and left to AST consumers to handle.
3406 QualType ParamType = OperatorDelete->getParamDecl(0)->getType();
3407 if (!IsVirtualDelete && !ParamType->getPointeeType()->isVoidType()) {
3408 Qualifiers Qs = Pointee.getQualifiers();
3409 if (Qs.hasCVRQualifiers()) {
3410 // Qualifiers are irrelevant to this conversion; we're only looking
3411 // for access and ambiguity.
3412 Qs.removeCVRQualifiers();
3413 QualType Unqual = Context.getPointerType(
3414 Context.getQualifiedType(Pointee.getUnqualifiedType(), Qs));
3415 Ex = ImpCastExprToType(Ex.get(), Unqual, CK_NoOp);
3416 }
3417 Ex = PerformImplicitConversion(Ex.get(), ParamType, AA_Passing);
3418 if (Ex.isInvalid())
3419 return ExprError();
3420 }
3421 }
3422
3423 CXXDeleteExpr *Result = new (Context) CXXDeleteExpr(
3424 Context.VoidTy, UseGlobal, ArrayForm, ArrayFormAsWritten,
3425 UsualArrayDeleteWantsSize, OperatorDelete, Ex.get(), StartLoc);
3426 AnalyzeDeleteExprMismatch(Result);
3427 return Result;
3428}
3429
3430static bool resolveBuiltinNewDeleteOverload(Sema &S, CallExpr *TheCall,
3431 bool IsDelete,
3432 FunctionDecl *&Operator) {
3433
3434 DeclarationName NewName = S.Context.DeclarationNames.getCXXOperatorName(
3435 IsDelete ? OO_Delete : OO_New);
3436
3437 LookupResult R(S, NewName, TheCall->getBeginLoc(), Sema::LookupOrdinaryName);
3438 S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl());
3439 assert(!R.empty() && "implicitly declared allocation functions not found")((!R.empty() && "implicitly declared allocation functions not found"
) ? static_cast<void> (0) : __assert_fail ("!R.empty() && \"implicitly declared allocation functions not found\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3439, __PRETTY_FUNCTION__))
;
3440 assert(!R.isAmbiguous() && "global allocation functions are ambiguous")((!R.isAmbiguous() && "global allocation functions are ambiguous"
) ? static_cast<void> (0) : __assert_fail ("!R.isAmbiguous() && \"global allocation functions are ambiguous\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3440, __PRETTY_FUNCTION__))
;
3441
3442 // We do our own custom access checks below.
3443 R.suppressDiagnostics();
3444
3445 SmallVector<Expr *, 8> Args(TheCall->arg_begin(), TheCall->arg_end());
3446 OverloadCandidateSet Candidates(R.getNameLoc(),
3447 OverloadCandidateSet::CSK_Normal);
3448 for (LookupResult::iterator FnOvl = R.begin(), FnOvlEnd = R.end();
3449 FnOvl != FnOvlEnd; ++FnOvl) {
3450 // Even member operator new/delete are implicitly treated as
3451 // static, so don't use AddMemberCandidate.
3452 NamedDecl *D = (*FnOvl)->getUnderlyingDecl();
3453
3454 if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
3455 S.AddTemplateOverloadCandidate(FnTemplate, FnOvl.getPair(),
3456 /*ExplicitTemplateArgs=*/nullptr, Args,
3457 Candidates,
3458 /*SuppressUserConversions=*/false);
3459 continue;
3460 }
3461
3462 FunctionDecl *Fn = cast<FunctionDecl>(D);
3463 S.AddOverloadCandidate(Fn, FnOvl.getPair(), Args, Candidates,
3464 /*SuppressUserConversions=*/false);
3465 }
3466
3467 SourceRange Range = TheCall->getSourceRange();
3468
3469 // Do the resolution.
3470 OverloadCandidateSet::iterator Best;
3471 switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) {
3472 case OR_Success: {
3473 // Got one!
3474 FunctionDecl *FnDecl = Best->Function;
3475 assert(R.getNamingClass() == nullptr &&((R.getNamingClass() == nullptr && "class members should not be considered"
) ? static_cast<void> (0) : __assert_fail ("R.getNamingClass() == nullptr && \"class members should not be considered\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3476, __PRETTY_FUNCTION__))
3476 "class members should not be considered")((R.getNamingClass() == nullptr && "class members should not be considered"
) ? static_cast<void> (0) : __assert_fail ("R.getNamingClass() == nullptr && \"class members should not be considered\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3476, __PRETTY_FUNCTION__))
;
3477
3478 if (!FnDecl->isReplaceableGlobalAllocationFunction()) {
3479 S.Diag(R.getNameLoc(), diag::err_builtin_operator_new_delete_not_usual)
3480 << (IsDelete ? 1 : 0) << Range;
3481 S.Diag(FnDecl->getLocation(), diag::note_non_usual_function_declared_here)
3482 << R.getLookupName() << FnDecl->getSourceRange();
3483 return true;
3484 }
3485
3486 Operator = FnDecl;
3487 return false;
3488 }
3489
3490 case OR_No_Viable_Function:
3491 Candidates.NoteCandidates(
3492 PartialDiagnosticAt(R.getNameLoc(),
3493 S.PDiag(diag::err_ovl_no_viable_function_in_call)
3494 << R.getLookupName() << Range),
3495 S, OCD_AllCandidates, Args);
3496 return true;
3497
3498 case OR_Ambiguous:
3499 Candidates.NoteCandidates(
3500 PartialDiagnosticAt(R.getNameLoc(),
3501 S.PDiag(diag::err_ovl_ambiguous_call)
3502 << R.getLookupName() << Range),
3503 S, OCD_ViableCandidates, Args);
3504 return true;
3505
3506 case OR_Deleted: {
3507 Candidates.NoteCandidates(
3508 PartialDiagnosticAt(R.getNameLoc(), S.PDiag(diag::err_ovl_deleted_call)
3509 << R.getLookupName() << Range),
3510 S, OCD_AllCandidates, Args);
3511 return true;
3512 }
3513 }
3514 llvm_unreachable("Unreachable, bad result from BestViableFunction")::llvm::llvm_unreachable_internal("Unreachable, bad result from BestViableFunction"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3514)
;
3515}
3516
3517ExprResult
3518Sema::SemaBuiltinOperatorNewDeleteOverloaded(ExprResult TheCallResult,
3519 bool IsDelete) {
3520 CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
3521 if (!getLangOpts().CPlusPlus) {
3522 Diag(TheCall->getExprLoc(), diag::err_builtin_requires_language)
3523 << (IsDelete ? "__builtin_operator_delete" : "__builtin_operator_new")
3524 << "C++";
3525 return ExprError();
3526 }
3527 // CodeGen assumes it can find the global new and delete to call,
3528 // so ensure that they are declared.
3529 DeclareGlobalNewDelete();
3530
3531 FunctionDecl *OperatorNewOrDelete = nullptr;
3532 if (resolveBuiltinNewDeleteOverload(*this, TheCall, IsDelete,
3533 OperatorNewOrDelete))
3534 return ExprError();
3535 assert(OperatorNewOrDelete && "should be found")((OperatorNewOrDelete && "should be found") ? static_cast
<void> (0) : __assert_fail ("OperatorNewOrDelete && \"should be found\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3535, __PRETTY_FUNCTION__))
;
3536
3537 DiagnoseUseOfDecl(OperatorNewOrDelete, TheCall->getExprLoc());
3538 MarkFunctionReferenced(TheCall->getExprLoc(), OperatorNewOrDelete);
3539
3540 TheCall->setType(OperatorNewOrDelete->getReturnType());
3541 for (unsigned i = 0; i != TheCall->getNumArgs(); ++i) {
3542 QualType ParamTy = OperatorNewOrDelete->getParamDecl(i)->getType();
3543 InitializedEntity Entity =
3544 InitializedEntity::InitializeParameter(Context, ParamTy, false);
3545 ExprResult Arg = PerformCopyInitialization(
3546 Entity, TheCall->getArg(i)->getBeginLoc(), TheCall->getArg(i));
3547 if (Arg.isInvalid())
3548 return ExprError();
3549 TheCall->setArg(i, Arg.get());
3550 }
3551 auto Callee = dyn_cast<ImplicitCastExpr>(TheCall->getCallee());
3552 assert(Callee && Callee->getCastKind() == CK_BuiltinFnToFnPtr &&((Callee && Callee->getCastKind() == CK_BuiltinFnToFnPtr
&& "Callee expected to be implicit cast to a builtin function pointer"
) ? static_cast<void> (0) : __assert_fail ("Callee && Callee->getCastKind() == CK_BuiltinFnToFnPtr && \"Callee expected to be implicit cast to a builtin function pointer\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3553, __PRETTY_FUNCTION__))
3553 "Callee expected to be implicit cast to a builtin function pointer")((Callee && Callee->getCastKind() == CK_BuiltinFnToFnPtr
&& "Callee expected to be implicit cast to a builtin function pointer"
) ? static_cast<void> (0) : __assert_fail ("Callee && Callee->getCastKind() == CK_BuiltinFnToFnPtr && \"Callee expected to be implicit cast to a builtin function pointer\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3553, __PRETTY_FUNCTION__))
;
3554 Callee->setType(OperatorNewOrDelete->getType());
3555
3556 return TheCallResult;
3557}
3558
3559void Sema::CheckVirtualDtorCall(CXXDestructorDecl *dtor, SourceLocation Loc,
3560 bool IsDelete, bool CallCanBeVirtual,
3561 bool WarnOnNonAbstractTypes,
3562 SourceLocation DtorLoc) {
3563 if (!dtor || dtor->isVirtual() || !CallCanBeVirtual || isUnevaluatedContext())
3564 return;
3565
3566 // C++ [expr.delete]p3:
3567 // In the first alternative (delete object), if the static type of the
3568 // object to be deleted is different from its dynamic type, the static
3569 // type shall be a base class of the dynamic type of the object to be
3570 // deleted and the static type shall have a virtual destructor or the
3571 // behavior is undefined.
3572 //
3573 const CXXRecordDecl *PointeeRD = dtor->getParent();
3574 // Note: a final class cannot be derived from, no issue there
3575 if (!PointeeRD->isPolymorphic() || PointeeRD->hasAttr<FinalAttr>())
3576 return;
3577
3578 // If the superclass is in a system header, there's nothing that can be done.
3579 // The `delete` (where we emit the warning) can be in a system header,
3580 // what matters for this warning is where the deleted type is defined.
3581 if (getSourceManager().isInSystemHeader(PointeeRD->getLocation()))
3582 return;
3583
3584 QualType ClassType = dtor->getThisType()->getPointeeType();
3585 if (PointeeRD->isAbstract()) {
3586 // If the class is abstract, we warn by default, because we're
3587 // sure the code has undefined behavior.
3588 Diag(Loc, diag::warn_delete_abstract_non_virtual_dtor) << (IsDelete ? 0 : 1)
3589 << ClassType;
3590 } else if (WarnOnNonAbstractTypes) {
3591 // Otherwise, if this is not an array delete, it's a bit suspect,
3592 // but not necessarily wrong.
3593 Diag(Loc, diag::warn_delete_non_virtual_dtor) << (IsDelete ? 0 : 1)
3594 << ClassType;
3595 }
3596 if (!IsDelete) {
3597 std::string TypeStr;
3598 ClassType.getAsStringInternal(TypeStr, getPrintingPolicy());
3599 Diag(DtorLoc, diag::note_delete_non_virtual)
3600 << FixItHint::CreateInsertion(DtorLoc, TypeStr + "::");
3601 }
3602}
3603
3604Sema::ConditionResult Sema::ActOnConditionVariable(Decl *ConditionVar,
3605 SourceLocation StmtLoc,
3606 ConditionKind CK) {
3607 ExprResult E =
3608 CheckConditionVariable(cast<VarDecl>(ConditionVar), StmtLoc, CK);
3609 if (E.isInvalid())
3610 return ConditionError();
3611 return ConditionResult(*this, ConditionVar, MakeFullExpr(E.get(), StmtLoc),
3612 CK == ConditionKind::ConstexprIf);
3613}
3614
3615/// Check the use of the given variable as a C++ condition in an if,
3616/// while, do-while, or switch statement.
3617ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
3618 SourceLocation StmtLoc,
3619 ConditionKind CK) {
3620 if (ConditionVar->isInvalidDecl())
3621 return ExprError();
3622
3623 QualType T = ConditionVar->getType();
3624
3625 // C++ [stmt.select]p2:
3626 // The declarator shall not specify a function or an array.
3627 if (T->isFunctionType())
3628 return ExprError(Diag(ConditionVar->getLocation(),
3629 diag::err_invalid_use_of_function_type)
3630 << ConditionVar->getSourceRange());
3631 else if (T->isArrayType())
3632 return ExprError(Diag(ConditionVar->getLocation(),
3633 diag::err_invalid_use_of_array_type)
3634 << ConditionVar->getSourceRange());
3635
3636 ExprResult Condition = BuildDeclRefExpr(
3637 ConditionVar, ConditionVar->getType().getNonReferenceType(), VK_LValue,
3638 ConditionVar->getLocation());
3639
3640 switch (CK) {
3641 case ConditionKind::Boolean:
3642 return CheckBooleanCondition(StmtLoc, Condition.get());
3643
3644 case ConditionKind::ConstexprIf:
3645 return CheckBooleanCondition(StmtLoc, Condition.get(), true);
3646
3647 case ConditionKind::Switch:
3648 return CheckSwitchCondition(StmtLoc, Condition.get());
3649 }
3650
3651 llvm_unreachable("unexpected condition kind")::llvm::llvm_unreachable_internal("unexpected condition kind"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3651)
;
3652}
3653
3654/// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
3655ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr, bool IsConstexpr) {
3656 // C++ 6.4p4:
3657 // The value of a condition that is an initialized declaration in a statement
3658 // other than a switch statement is the value of the declared variable
3659 // implicitly converted to type bool. If that conversion is ill-formed, the
3660 // program is ill-formed.
3661 // The value of a condition that is an expression is the value of the
3662 // expression, implicitly converted to bool.
3663 //
3664 // FIXME: Return this value to the caller so they don't need to recompute it.
3665 llvm::APSInt Value(/*BitWidth*/1);
3666 return (IsConstexpr && !CondExpr->isValueDependent())
3667 ? CheckConvertedConstantExpression(CondExpr, Context.BoolTy, Value,
3668 CCEK_ConstexprIf)
3669 : PerformContextuallyConvertToBool(CondExpr);
3670}
3671
3672/// Helper function to determine whether this is the (deprecated) C++
3673/// conversion from a string literal to a pointer to non-const char or
3674/// non-const wchar_t (for narrow and wide string literals,
3675/// respectively).
3676bool
3677Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
3678 // Look inside the implicit cast, if it exists.
3679 if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
3680 From = Cast->getSubExpr();
3681
3682 // A string literal (2.13.4) that is not a wide string literal can
3683 // be converted to an rvalue of type "pointer to char"; a wide
3684 // string literal can be converted to an rvalue of type "pointer
3685 // to wchar_t" (C++ 4.2p2).
3686 if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
3687 if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
3688 if (const BuiltinType *ToPointeeType
3689 = ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
3690 // This conversion is considered only when there is an
3691 // explicit appropriate pointer target type (C++ 4.2p2).
3692 if (!ToPtrType->getPointeeType().hasQualifiers()) {
3693 switch (StrLit->getKind()) {
3694 case StringLiteral::UTF8:
3695 case StringLiteral::UTF16:
3696 case StringLiteral::UTF32:
3697 // We don't allow UTF literals to be implicitly converted
3698 break;
3699 case StringLiteral::Ascii:
3700 return (ToPointeeType->getKind() == BuiltinType::Char_U ||
3701 ToPointeeType->getKind() == BuiltinType::Char_S);
3702 case StringLiteral::Wide:
3703 return Context.typesAreCompatible(Context.getWideCharType(),
3704 QualType(ToPointeeType, 0));
3705 }
3706 }
3707 }
3708
3709 return false;
3710}
3711
3712static ExprResult BuildCXXCastArgument(Sema &S,
3713 SourceLocation CastLoc,
3714 QualType Ty,
3715 CastKind Kind,
3716 CXXMethodDecl *Method,
3717 DeclAccessPair FoundDecl,
3718 bool HadMultipleCandidates,
3719 Expr *From) {
3720 switch (Kind) {
3721 default: llvm_unreachable("Unhandled cast kind!")::llvm::llvm_unreachable_internal("Unhandled cast kind!", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3721)
;
3722 case CK_ConstructorConversion: {
3723 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method);
3724 SmallVector<Expr*, 8> ConstructorArgs;
3725
3726 if (S.RequireNonAbstractType(CastLoc, Ty,
3727 diag::err_allocation_of_abstract_type))
3728 return ExprError();
3729
3730 if (S.CompleteConstructorCall(Constructor, From, CastLoc, ConstructorArgs))
3731 return ExprError();
3732
3733 S.CheckConstructorAccess(CastLoc, Constructor, FoundDecl,
3734 InitializedEntity::InitializeTemporary(Ty));
3735 if (S.DiagnoseUseOfDecl(Method, CastLoc))
3736 return ExprError();
3737
3738 ExprResult Result = S.BuildCXXConstructExpr(
3739 CastLoc, Ty, FoundDecl, cast<CXXConstructorDecl>(Method),
3740 ConstructorArgs, HadMultipleCandidates,
3741 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
3742 CXXConstructExpr::CK_Complete, SourceRange());
3743 if (Result.isInvalid())
3744 return ExprError();
3745
3746 return S.MaybeBindToTemporary(Result.getAs<Expr>());
3747 }
3748
3749 case CK_UserDefinedConversion: {
3750 assert(!From->getType()->isPointerType() && "Arg can't have pointer type!")((!From->getType()->isPointerType() && "Arg can't have pointer type!"
) ? static_cast<void> (0) : __assert_fail ("!From->getType()->isPointerType() && \"Arg can't have pointer type!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3750, __PRETTY_FUNCTION__))
;
3751
3752 S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ nullptr, FoundDecl);
3753 if (S.DiagnoseUseOfDecl(Method, CastLoc))
3754 return ExprError();
3755
3756 // Create an implicit call expr that calls it.
3757 CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method);
3758 ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv,
3759 HadMultipleCandidates);
3760 if (Result.isInvalid())
3761 return ExprError();
3762 // Record usage of conversion in an implicit cast.
3763 Result = ImplicitCastExpr::Create(S.Context, Result.get()->getType(),
3764 CK_UserDefinedConversion, Result.get(),
3765 nullptr, Result.get()->getValueKind());
3766
3767 return S.MaybeBindToTemporary(Result.get());
3768 }
3769 }
3770}
3771
3772/// PerformImplicitConversion - Perform an implicit conversion of the
3773/// expression From to the type ToType using the pre-computed implicit
3774/// conversion sequence ICS. Returns the converted
3775/// expression. Action is the kind of conversion we're performing,
3776/// used in the error message.
3777ExprResult
3778Sema::PerformImplicitConversion(Expr *From, QualType ToType,
3779 const ImplicitConversionSequence &ICS,
3780 AssignmentAction Action,
3781 CheckedConversionKind CCK) {
3782 // C++ [over.match.oper]p7: [...] operands of class type are converted [...]
3783 if (CCK == CCK_ForBuiltinOverloadedOp && !From->getType()->isRecordType())
3784 return From;
3785
3786 switch (ICS.getKind()) {
3787 case ImplicitConversionSequence::StandardConversion: {
3788 ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard,
3789 Action, CCK);
3790 if (Res.isInvalid())
3791 return ExprError();
3792 From = Res.get();
3793 break;
3794 }
3795
3796 case ImplicitConversionSequence::UserDefinedConversion: {
3797
3798 FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
3799 CastKind CastKind;
3800 QualType BeforeToType;
3801 assert(FD && "no conversion function for user-defined conversion seq")((FD && "no conversion function for user-defined conversion seq"
) ? static_cast<void> (0) : __assert_fail ("FD && \"no conversion function for user-defined conversion seq\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3801, __PRETTY_FUNCTION__))
;
3802 if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
3803 CastKind = CK_UserDefinedConversion;
3804
3805 // If the user-defined conversion is specified by a conversion function,
3806 // the initial standard conversion sequence converts the source type to
3807 // the implicit object parameter of the conversion function.
3808 BeforeToType = Context.getTagDeclType(Conv->getParent());
3809 } else {
3810 const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD);
3811 CastKind = CK_ConstructorConversion;
3812 // Do no conversion if dealing with ... for the first conversion.
3813 if (!ICS.UserDefined.EllipsisConversion) {
3814 // If the user-defined conversion is specified by a constructor, the
3815 // initial standard conversion sequence converts the source type to
3816 // the type required by the argument of the constructor
3817 BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
3818 }
3819 }
3820 // Watch out for ellipsis conversion.
3821 if (!ICS.UserDefined.EllipsisConversion) {
3822 ExprResult Res =
3823 PerformImplicitConversion(From, BeforeToType,
3824 ICS.UserDefined.Before, AA_Converting,
3825 CCK);
3826 if (Res.isInvalid())
3827 return ExprError();
3828 From = Res.get();
3829 }
3830
3831 ExprResult CastArg = BuildCXXCastArgument(
3832 *this, From->getBeginLoc(), ToType.getNonReferenceType(), CastKind,
3833 cast<CXXMethodDecl>(FD), ICS.UserDefined.FoundConversionFunction,
3834 ICS.UserDefined.HadMultipleCandidates, From);
3835
3836 if (CastArg.isInvalid())
3837 return ExprError();
3838
3839 From = CastArg.get();
3840
3841 // C++ [over.match.oper]p7:
3842 // [...] the second standard conversion sequence of a user-defined
3843 // conversion sequence is not applied.
3844 if (CCK == CCK_ForBuiltinOverloadedOp)
3845 return From;
3846
3847 return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
3848 AA_Converting, CCK);
3849 }
3850
3851 case ImplicitConversionSequence::AmbiguousConversion:
3852 ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
3853 PDiag(diag::err_typecheck_ambiguous_condition)
3854 << From->getSourceRange());
3855 return ExprError();
3856
3857 case ImplicitConversionSequence::EllipsisConversion:
3858 llvm_unreachable("Cannot perform an ellipsis conversion")::llvm::llvm_unreachable_internal("Cannot perform an ellipsis conversion"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3858)
;
3859
3860 case ImplicitConversionSequence::BadConversion:
3861 bool Diagnosed =
3862 DiagnoseAssignmentResult(Incompatible, From->getExprLoc(), ToType,
3863 From->getType(), From, Action);
3864 assert(Diagnosed && "failed to diagnose bad conversion")((Diagnosed && "failed to diagnose bad conversion") ?
static_cast<void> (0) : __assert_fail ("Diagnosed && \"failed to diagnose bad conversion\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3864, __PRETTY_FUNCTION__))
; (void)Diagnosed;
3865 return ExprError();
3866 }
3867
3868 // Everything went well.
3869 return From;
3870}
3871
3872/// PerformImplicitConversion - Perform an implicit conversion of the
3873/// expression From to the type ToType by following the standard
3874/// conversion sequence SCS. Returns the converted
3875/// expression. Flavor is the context in which we're performing this
3876/// conversion, for use in error messages.
3877ExprResult
3878Sema::PerformImplicitConversion(Expr *From, QualType ToType,
3879 const StandardConversionSequence& SCS,
3880 AssignmentAction Action,
3881 CheckedConversionKind CCK) {
3882 bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast);
3883
3884 // Overall FIXME: we are recomputing too many types here and doing far too
3885 // much extra work. What this means is that we need to keep track of more
3886 // information that is computed when we try the implicit conversion initially,
3887 // so that we don't need to recompute anything here.
3888 QualType FromType = From->getType();
3889
3890 if (SCS.CopyConstructor) {
3891 // FIXME: When can ToType be a reference type?
3892 assert(!ToType->isReferenceType())((!ToType->isReferenceType()) ? static_cast<void> (0
) : __assert_fail ("!ToType->isReferenceType()", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3892, __PRETTY_FUNCTION__))
;
3893 if (SCS.Second == ICK_Derived_To_Base) {
3894 SmallVector<Expr*, 8> ConstructorArgs;
3895 if (CompleteConstructorCall(cast<CXXConstructorDecl>(SCS.CopyConstructor),
3896 From, /*FIXME:ConstructLoc*/SourceLocation(),
3897 ConstructorArgs))
3898 return ExprError();
3899 return BuildCXXConstructExpr(
3900 /*FIXME:ConstructLoc*/ SourceLocation(), ToType,
3901 SCS.FoundCopyConstructor, SCS.CopyConstructor,
3902 ConstructorArgs, /*HadMultipleCandidates*/ false,
3903 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
3904 CXXConstructExpr::CK_Complete, SourceRange());
3905 }
3906 return BuildCXXConstructExpr(
3907 /*FIXME:ConstructLoc*/ SourceLocation(), ToType,
3908 SCS.FoundCopyConstructor, SCS.CopyConstructor,
3909 From, /*HadMultipleCandidates*/ false,
3910 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
3911 CXXConstructExpr::CK_Complete, SourceRange());
3912 }
3913
3914 // Resolve overloaded function references.
3915 if (Context.hasSameType(FromType, Context.OverloadTy)) {
3916 DeclAccessPair Found;
3917 FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType,
3918 true, Found);
3919 if (!Fn)
3920 return ExprError();
3921
3922 if (DiagnoseUseOfDecl(Fn, From->getBeginLoc()))
3923 return ExprError();
3924
3925 From = FixOverloadedFunctionReference(From, Found, Fn);
3926 FromType = From->getType();
3927 }
3928
3929 // If we're converting to an atomic type, first convert to the corresponding
3930 // non-atomic type.
3931 QualType ToAtomicType;
3932 if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>()) {
3933 ToAtomicType = ToType;
3934 ToType = ToAtomic->getValueType();
3935 }
3936
3937 QualType InitialFromType = FromType;
3938 // Perform the first implicit conversion.
3939 switch (SCS.First) {
3940 case ICK_Identity:
3941 if (const AtomicType *FromAtomic = FromType->getAs<AtomicType>()) {
3942 FromType = FromAtomic->getValueType().getUnqualifiedType();
3943 From = ImplicitCastExpr::Create(Context, FromType, CK_AtomicToNonAtomic,
3944 From, /*BasePath=*/nullptr, VK_RValue);
3945 }
3946 break;
3947
3948 case ICK_Lvalue_To_Rvalue: {
3949 assert(From->getObjectKind() != OK_ObjCProperty)((From->getObjectKind() != OK_ObjCProperty) ? static_cast<
void> (0) : __assert_fail ("From->getObjectKind() != OK_ObjCProperty"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3949, __PRETTY_FUNCTION__))
;
3950 ExprResult FromRes = DefaultLvalueConversion(From);
3951 assert(!FromRes.isInvalid() && "Can't perform deduced conversion?!")((!FromRes.isInvalid() && "Can't perform deduced conversion?!"
) ? static_cast<void> (0) : __assert_fail ("!FromRes.isInvalid() && \"Can't perform deduced conversion?!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3951, __PRETTY_FUNCTION__))
;
3952 From = FromRes.get();
3953 FromType = From->getType();
3954 break;
3955 }
3956
3957 case ICK_Array_To_Pointer:
3958 FromType = Context.getArrayDecayedType(FromType);
3959 From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay,
3960 VK_RValue, /*BasePath=*/nullptr, CCK).get();
3961 break;
3962
3963 case ICK_Function_To_Pointer:
3964 FromType = Context.getPointerType(FromType);
3965 From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay,
3966 VK_RValue, /*BasePath=*/nullptr, CCK).get();
3967 break;
3968
3969 default:
3970 llvm_unreachable("Improper first standard conversion")::llvm::llvm_unreachable_internal("Improper first standard conversion"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3970)
;
3971 }
3972
3973 // Perform the second implicit conversion
3974 switch (SCS.Second) {
3975 case ICK_Identity:
3976 // C++ [except.spec]p5:
3977 // [For] assignment to and initialization of pointers to functions,
3978 // pointers to member functions, and references to functions: the
3979 // target entity shall allow at least the exceptions allowed by the
3980 // source value in the assignment or initialization.
3981 switch (Action) {
3982 case AA_Assigning:
3983 case AA_Initializing:
3984 // Note, function argument passing and returning are initialization.
3985 case AA_Passing:
3986 case AA_Returning:
3987 case AA_Sending:
3988 case AA_Passing_CFAudited:
3989 if (CheckExceptionSpecCompatibility(From, ToType))
3990 return ExprError();
3991 break;
3992
3993 case AA_Casting:
3994 case AA_Converting:
3995 // Casts and implicit conversions are not initialization, so are not
3996 // checked for exception specification mismatches.
3997 break;
3998 }
3999 // Nothing else to do.
4000 break;
4001
4002 case ICK_Integral_Promotion:
4003 case ICK_Integral_Conversion:
4004 if (ToType->isBooleanType()) {
4005 assert(FromType->castAs<EnumType>()->getDecl()->isFixed() &&((FromType->castAs<EnumType>()->getDecl()->isFixed
() && SCS.Second == ICK_Integral_Promotion &&
"only enums with fixed underlying type can promote to bool")
? static_cast<void> (0) : __assert_fail ("FromType->castAs<EnumType>()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion && \"only enums with fixed underlying type can promote to bool\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4007, __PRETTY_FUNCTION__))
4006 SCS.Second == ICK_Integral_Promotion &&((FromType->castAs<EnumType>()->getDecl()->isFixed
() && SCS.Second == ICK_Integral_Promotion &&
"only enums with fixed underlying type can promote to bool")
? static_cast<void> (0) : __assert_fail ("FromType->castAs<EnumType>()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion && \"only enums with fixed underlying type can promote to bool\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4007, __PRETTY_FUNCTION__))
4007 "only enums with fixed underlying type can promote to bool")((FromType->castAs<EnumType>()->getDecl()->isFixed
() && SCS.Second == ICK_Integral_Promotion &&
"only enums with fixed underlying type can promote to bool")
? static_cast<void> (0) : __assert_fail ("FromType->castAs<EnumType>()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion && \"only enums with fixed underlying type can promote to bool\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4007, __PRETTY_FUNCTION__))
;
4008 From = ImpCastExprToType(From, ToType, CK_IntegralToBoolean,
4009 VK_RValue, /*BasePath=*/nullptr, CCK).get();
4010 } else {
4011 From = ImpCastExprToType(From, ToType, CK_IntegralCast,
4012 VK_RValue, /*BasePath=*/nullptr, CCK).get();
4013 }
4014 break;
4015
4016 case ICK_Floating_Promotion:
4017 case ICK_Floating_Conversion:
4018 From = ImpCastExprToType(From, ToType, CK_FloatingCast,
4019 VK_RValue, /*BasePath=*/nullptr, CCK).get();
4020 break;
4021
4022 case ICK_Complex_Promotion:
4023 case ICK_Complex_Conversion: {
4024 QualType FromEl = From->getType()->getAs<ComplexType>()->getElementType();
4025 QualType ToEl = ToType->getAs<ComplexType>()->getElementType();
4026 CastKind CK;
4027 if (FromEl->isRealFloatingType()) {
4028 if (ToEl->isRealFloatingType())
4029 CK = CK_FloatingComplexCast;
4030 else
4031 CK = CK_FloatingComplexToIntegralComplex;
4032 } else if (ToEl->isRealFloatingType()) {
4033 CK = CK_IntegralComplexToFloatingComplex;
4034 } else {
4035 CK = CK_IntegralComplexCast;
4036 }
4037 From = ImpCastExprToType(From, ToType, CK,
4038 VK_RValue, /*BasePath=*/nullptr, CCK).get();
4039 break;
4040 }
4041
4042 case ICK_Floating_Integral:
4043 if (ToType->isRealFloatingType())
4044 From = ImpCastExprToType(From, ToType, CK_IntegralToFloating,
4045 VK_RValue, /*BasePath=*/nullptr, CCK).get();
4046 else
4047 From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral,
4048 VK_RValue, /*BasePath=*/nullptr, CCK).get();
4049 break;
4050
4051 case ICK_Compatible_Conversion:
4052 From = ImpCastExprToType(From, ToType, CK_NoOp,
4053 VK_RValue, /*BasePath=*/nullptr, CCK).get();
4054 break;
4055
4056 case ICK_Writeback_Conversion:
4057 case ICK_Pointer_Conversion: {
4058 if (SCS.IncompatibleObjC && Action != AA_Casting) {
4059 // Diagnose incompatible Objective-C conversions
4060 if (Action == AA_Initializing || Action == AA_Assigning)
4061 Diag(From->getBeginLoc(),
4062 diag::ext_typecheck_convert_incompatible_pointer)
4063 << ToType << From->getType() << Action << From->getSourceRange()
4064 << 0;
4065 else
4066 Diag(From->getBeginLoc(),
4067 diag::ext_typecheck_convert_incompatible_pointer)
4068 << From->getType() << ToType << Action << From->getSourceRange()
4069 << 0;
4070
4071 if (From->getType()->isObjCObjectPointerType() &&
4072 ToType->isObjCObjectPointerType())
4073 EmitRelatedResultTypeNote(From);
4074 } else if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
4075 !CheckObjCARCUnavailableWeakConversion(ToType,
4076 From->getType())) {
4077 if (Action == AA_Initializing)
4078 Diag(From->getBeginLoc(), diag::err_arc_weak_unavailable_assign);
4079 else
4080 Diag(From->getBeginLoc(), diag::err_arc_convesion_of_weak_unavailable)
4081 << (Action == AA_Casting) << From->getType() << ToType
4082 << From->getSourceRange();
4083 }
4084
4085 CastKind Kind;
4086 CXXCastPath BasePath;
4087 if (CheckPointerConversion(From, ToType, Kind, BasePath, CStyle))
4088 return ExprError();
4089
4090 // Make sure we extend blocks if necessary.
4091 // FIXME: doing this here is really ugly.
4092 if (Kind == CK_BlockPointerToObjCPointerCast) {
4093 ExprResult E = From;
4094 (void) PrepareCastToObjCObjectPointer(E);
4095 From = E.get();
4096 }
4097 if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers())
4098 CheckObjCConversion(SourceRange(), ToType, From, CCK);
4099 From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
4100 .get();
4101 break;
4102 }
4103
4104 case ICK_Pointer_Member: {
4105 CastKind Kind;
4106 CXXCastPath BasePath;
4107 if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle))
4108 return ExprError();
4109 if (CheckExceptionSpecCompatibility(From, ToType))
4110 return ExprError();
4111
4112 // We may not have been able to figure out what this member pointer resolved
4113 // to up until this exact point. Attempt to lock-in it's inheritance model.
4114 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4115 (void)isCompleteType(From->getExprLoc(), From->getType());
4116 (void)isCompleteType(From->getExprLoc(), ToType);
4117 }
4118
4119 From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
4120 .get();
4121 break;
4122 }
4123
4124 case ICK_Boolean_Conversion:
4125 // Perform half-to-boolean conversion via float.
4126 if (From->getType()->isHalfType()) {
4127 From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).get();
4128 FromType = Context.FloatTy;
4129 }
4130
4131 From = ImpCastExprToType(From, Context.BoolTy,
4132 ScalarTypeToBooleanCastKind(FromType),
4133 VK_RValue, /*BasePath=*/nullptr, CCK).get();
4134 break;
4135
4136 case ICK_Derived_To_Base: {
4137 CXXCastPath BasePath;
4138 if (CheckDerivedToBaseConversion(
4139 From->getType(), ToType.getNonReferenceType(), From->getBeginLoc(),
4140 From->getSourceRange(), &BasePath, CStyle))
4141 return ExprError();
4142
4143 From = ImpCastExprToType(From, ToType.getNonReferenceType(),
4144 CK_DerivedToBase, From->getValueKind(),
4145 &BasePath, CCK).get();
4146 break;
4147 }
4148
4149 case ICK_Vector_Conversion:
4150 From = ImpCastExprToType(From, ToType, CK_BitCast,
4151 VK_RValue, /*BasePath=*/nullptr, CCK).get();
4152 break;
4153
4154 case ICK_Vector_Splat: {
4155 // Vector splat from any arithmetic type to a vector.
4156 Expr *Elem = prepareVectorSplat(ToType, From).get();
4157 From = ImpCastExprToType(Elem, ToType, CK_VectorSplat, VK_RValue,
4158 /*BasePath=*/nullptr, CCK).get();
4159 break;
4160 }
4161
4162 case ICK_Complex_Real:
4163 // Case 1. x -> _Complex y
4164 if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) {
4165 QualType ElType = ToComplex->getElementType();
4166 bool isFloatingComplex = ElType->isRealFloatingType();
4167
4168 // x -> y
4169 if (Context.hasSameUnqualifiedType(ElType, From->getType())) {
4170 // do nothing
4171 } else if (From->getType()->isRealFloatingType()) {
4172 From = ImpCastExprToType(From, ElType,
4173 isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).get();
4174 } else {
4175 assert(From->getType()->isIntegerType())((From->getType()->isIntegerType()) ? static_cast<void
> (0) : __assert_fail ("From->getType()->isIntegerType()"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4175, __PRETTY_FUNCTION__))
;
4176 From = ImpCastExprToType(From, ElType,
4177 isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).get();
4178 }
4179 // y -> _Complex y
4180 From = ImpCastExprToType(From, ToType,
4181 isFloatingComplex ? CK_FloatingRealToComplex
4182 : CK_IntegralRealToComplex).get();
4183
4184 // Case 2. _Complex x -> y
4185 } else {
4186 const ComplexType *FromComplex = From->getType()->getAs<ComplexType>();
4187 assert(FromComplex)((FromComplex) ? static_cast<void> (0) : __assert_fail (
"FromComplex", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4187, __PRETTY_FUNCTION__))
;
4188
4189 QualType ElType = FromComplex->getElementType();
4190 bool isFloatingComplex = ElType->isRealFloatingType();
4191
4192 // _Complex x -> x
4193 From = ImpCastExprToType(From, ElType,
4194 isFloatingComplex ? CK_FloatingComplexToReal
4195 : CK_IntegralComplexToReal,
4196 VK_RValue, /*BasePath=*/nullptr, CCK).get();
4197
4198 // x -> y
4199 if (Context.hasSameUnqualifiedType(ElType, ToType)) {
4200 // do nothing
4201 } else if (ToType->isRealFloatingType()) {
4202 From = ImpCastExprToType(From, ToType,
4203 isFloatingComplex ? CK_FloatingCast : CK_IntegralToFloating,
4204 VK_RValue, /*BasePath=*/nullptr, CCK).get();
4205 } else {
4206 assert(ToType->isIntegerType())((ToType->isIntegerType()) ? static_cast<void> (0) :
__assert_fail ("ToType->isIntegerType()", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4206, __PRETTY_FUNCTION__))
;
4207 From = ImpCastExprToType(From, ToType,
4208 isFloatingComplex ? CK_FloatingToIntegral : CK_IntegralCast,
4209 VK_RValue, /*BasePath=*/nullptr, CCK).get();
4210 }
4211 }
4212 break;
4213
4214 case ICK_Block_Pointer_Conversion: {
4215 From = ImpCastExprToType(From, ToType.getUnqualifiedType(), CK_BitCast,
4216 VK_RValue, /*BasePath=*/nullptr, CCK).get();
4217 break;
4218 }
4219
4220 case ICK_TransparentUnionConversion: {
4221 ExprResult FromRes = From;
4222 Sema::AssignConvertType ConvTy =
4223 CheckTransparentUnionArgumentConstraints(ToType, FromRes);
4224 if (FromRes.isInvalid())
4225 return ExprError();
4226 From = FromRes.get();
4227 assert ((ConvTy == Sema::Compatible) &&(((ConvTy == Sema::Compatible) && "Improper transparent union conversion"
) ? static_cast<void> (0) : __assert_fail ("(ConvTy == Sema::Compatible) && \"Improper transparent union conversion\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4228, __PRETTY_FUNCTION__))
4228 "Improper transparent union conversion")(((ConvTy == Sema::Compatible) && "Improper transparent union conversion"
) ? static_cast<void> (0) : __assert_fail ("(ConvTy == Sema::Compatible) && \"Improper transparent union conversion\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4228, __PRETTY_FUNCTION__))
;
4229 (void)ConvTy;
4230 break;
4231 }
4232
4233 case ICK_Zero_Event_Conversion:
4234 case ICK_Zero_Queue_Conversion:
4235 From = ImpCastExprToType(From, ToType,
4236 CK_ZeroToOCLOpaqueType,
4237 From->getValueKind()).get();
4238 break;
4239
4240 case ICK_Lvalue_To_Rvalue:
4241 case ICK_Array_To_Pointer:
4242 case ICK_Function_To_Pointer:
4243 case ICK_Function_Conversion:
4244 case ICK_Qualification:
4245 case ICK_Num_Conversion_Kinds:
4246 case ICK_C_Only_Conversion:
4247 case ICK_Incompatible_Pointer_Conversion:
4248 llvm_unreachable("Improper second standard conversion")::llvm::llvm_unreachable_internal("Improper second standard conversion"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4248)
;
4249 }
4250
4251 switch (SCS.Third) {
4252 case ICK_Identity:
4253 // Nothing to do.
4254 break;
4255
4256 case ICK_Function_Conversion:
4257 // If both sides are functions (or pointers/references to them), there could
4258 // be incompatible exception declarations.
4259 if (CheckExceptionSpecCompatibility(From, ToType))
4260 return ExprError();
4261
4262 From = ImpCastExprToType(From, ToType, CK_NoOp,
4263 VK_RValue, /*BasePath=*/nullptr, CCK).get();
4264 break;
4265
4266 case ICK_Qualification: {
4267 // The qualification keeps the category of the inner expression, unless the
4268 // target type isn't a reference.
4269 ExprValueKind VK =
4270 ToType->isReferenceType() ? From->getValueKind() : VK_RValue;
4271
4272 CastKind CK = CK_NoOp;
4273
4274 if (ToType->isReferenceType() &&
4275 ToType->getPointeeType().getAddressSpace() !=
4276 From->getType().getAddressSpace())
4277 CK = CK_AddressSpaceConversion;
4278
4279 if (ToType->isPointerType() &&
4280 ToType->getPointeeType().getAddressSpace() !=
4281 From->getType()->getPointeeType().getAddressSpace())
4282 CK = CK_AddressSpaceConversion;
4283
4284 From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context), CK, VK,
4285 /*BasePath=*/nullptr, CCK)
4286 .get();
4287
4288 if (SCS.DeprecatedStringLiteralToCharPtr &&
4289 !getLangOpts().WritableStrings) {
4290 Diag(From->getBeginLoc(),
4291 getLangOpts().CPlusPlus11
4292 ? diag::ext_deprecated_string_literal_conversion
4293 : diag::warn_deprecated_string_literal_conversion)
4294 << ToType.getNonReferenceType();
4295 }
4296
4297 break;
4298 }
4299
4300 default:
4301 llvm_unreachable("Improper third standard conversion")::llvm::llvm_unreachable_internal("Improper third standard conversion"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4301)
;
4302 }
4303
4304 // If this conversion sequence involved a scalar -> atomic conversion, perform
4305 // that conversion now.
4306 if (!ToAtomicType.isNull()) {
4307 assert(Context.hasSameType(((Context.hasSameType( ToAtomicType->castAs<AtomicType>
()->getValueType(), From->getType())) ? static_cast<
void> (0) : __assert_fail ("Context.hasSameType( ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType())"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4308, __PRETTY_FUNCTION__))
4308 ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType()))((Context.hasSameType( ToAtomicType->castAs<AtomicType>
()->getValueType(), From->getType())) ? static_cast<
void> (0) : __assert_fail ("Context.hasSameType( ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType())"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4308, __PRETTY_FUNCTION__))
;
4309 From = ImpCastExprToType(From, ToAtomicType, CK_NonAtomicToAtomic,
4310 VK_RValue, nullptr, CCK).get();
4311 }
4312
4313 // If this conversion sequence succeeded and involved implicitly converting a
4314 // _Nullable type to a _Nonnull one, complain.
4315 if (!isCast(CCK))
4316 diagnoseNullableToNonnullConversion(ToType, InitialFromType,
4317 From->getBeginLoc());
4318
4319 return From;
4320}
4321
4322/// Check the completeness of a type in a unary type trait.
4323///
4324/// If the particular type trait requires a complete type, tries to complete
4325/// it. If completing the type fails, a diagnostic is emitted and false
4326/// returned. If completing the type succeeds or no completion was required,
4327/// returns true.
4328static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S, TypeTrait UTT,
4329 SourceLocation Loc,
4330 QualType ArgTy) {
4331 // C++0x [meta.unary.prop]p3:
4332 // For all of the class templates X declared in this Clause, instantiating
4333 // that template with a template argument that is a class template
4334 // specialization may result in the implicit instantiation of the template
4335 // argument if and only if the semantics of X require that the argument
4336 // must be a complete type.
4337 // We apply this rule to all the type trait expressions used to implement
4338 // these class templates. We also try to follow any GCC documented behavior
4339 // in these expressions to ensure portability of standard libraries.
4340 switch (UTT) {
4341 default: llvm_unreachable("not a UTT")::llvm::llvm_unreachable_internal("not a UTT", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4341)
;
4342 // is_complete_type somewhat obviously cannot require a complete type.
4343 case UTT_IsCompleteType:
4344 // Fall-through
4345
4346 // These traits are modeled on the type predicates in C++0x
4347 // [meta.unary.cat] and [meta.unary.comp]. They are not specified as
4348 // requiring a complete type, as whether or not they return true cannot be
4349 // impacted by the completeness of the type.
4350 case UTT_IsVoid:
4351 case UTT_IsIntegral:
4352 case UTT_IsFloatingPoint:
4353 case UTT_IsArray:
4354 case UTT_IsPointer:
4355 case UTT_IsLvalueReference:
4356 case UTT_IsRvalueReference:
4357 case UTT_IsMemberFunctionPointer:
4358 case UTT_IsMemberObjectPointer:
4359 case UTT_IsEnum:
4360 case UTT_IsUnion:
4361 case UTT_IsClass:
4362 case UTT_IsFunction:
4363 case UTT_IsReference:
4364 case UTT_IsArithmetic:
4365 case UTT_IsFundamental:
4366 case UTT_IsObject:
4367 case UTT_IsScalar:
4368 case UTT_IsCompound:
4369 case UTT_IsMemberPointer:
4370 // Fall-through
4371
4372 // These traits are modeled on type predicates in C++0x [meta.unary.prop]
4373 // which requires some of its traits to have the complete type. However,
4374 // the completeness of the type cannot impact these traits' semantics, and
4375 // so they don't require it. This matches the comments on these traits in
4376 // Table 49.
4377 case UTT_IsConst:
4378 case UTT_IsVolatile:
4379 case UTT_IsSigned:
4380 case UTT_IsUnsigned:
4381
4382 // This type trait always returns false, checking the type is moot.
4383 case UTT_IsInterfaceClass:
4384 return true;
4385
4386 // C++14 [meta.unary.prop]:
4387 // If T is a non-union class type, T shall be a complete type.
4388 case UTT_IsEmpty:
4389 case UTT_IsPolymorphic:
4390 case UTT_IsAbstract:
4391 if (const auto *RD = ArgTy->getAsCXXRecordDecl())
4392 if (!RD->isUnion())
4393 return !S.RequireCompleteType(
4394 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4395 return true;
4396
4397 // C++14 [meta.unary.prop]:
4398 // If T is a class type, T shall be a complete type.
4399 case UTT_IsFinal:
4400 case UTT_IsSealed:
4401 if (ArgTy->getAsCXXRecordDecl())
4402 return !S.RequireCompleteType(
4403 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4404 return true;
4405
4406 // C++1z [meta.unary.prop]:
4407 // remove_all_extents_t<T> shall be a complete type or cv void.
4408 case UTT_IsAggregate:
4409 case UTT_IsTrivial:
4410 case UTT_IsTriviallyCopyable:
4411 case UTT_IsStandardLayout:
4412 case UTT_IsPOD:
4413 case UTT_IsLiteral:
4414 // Per the GCC type traits documentation, T shall be a complete type, cv void,
4415 // or an array of unknown bound. But GCC actually imposes the same constraints
4416 // as above.
4417 case UTT_HasNothrowAssign:
4418 case UTT_HasNothrowMoveAssign:
4419 case UTT_HasNothrowConstructor:
4420 case UTT_HasNothrowCopy:
4421 case UTT_HasTrivialAssign:
4422 case UTT_HasTrivialMoveAssign:
4423 case UTT_HasTrivialDefaultConstructor:
4424 case UTT_HasTrivialMoveConstructor:
4425 case UTT_HasTrivialCopy:
4426 case UTT_HasTrivialDestructor:
4427 case UTT_HasVirtualDestructor:
4428 ArgTy = QualType(ArgTy->getBaseElementTypeUnsafe(), 0);
4429 LLVM_FALLTHROUGH[[clang::fallthrough]];
4430
4431 // C++1z [meta.unary.prop]:
4432 // T shall be a complete type, cv void, or an array of unknown bound.
4433 case UTT_IsDestructible:
4434 case UTT_IsNothrowDestructible:
4435 case UTT_IsTriviallyDestructible:
4436 case UTT_HasUniqueObjectRepresentations:
4437 if (ArgTy->isIncompleteArrayType() || ArgTy->isVoidType())
4438 return true;
4439
4440 return !S.RequireCompleteType(
4441 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4442 }
4443}
4444
4445static bool HasNoThrowOperator(const RecordType *RT, OverloadedOperatorKind Op,
4446 Sema &Self, SourceLocation KeyLoc, ASTContext &C,
4447 bool (CXXRecordDecl::*HasTrivial)() const,
4448 bool (CXXRecordDecl::*HasNonTrivial)() const,
4449 bool (CXXMethodDecl::*IsDesiredOp)() const)
4450{
4451 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
4452 if ((RD->*HasTrivial)() && !(RD->*HasNonTrivial)())
4453 return true;
4454
4455 DeclarationName Name = C.DeclarationNames.getCXXOperatorName(Op);
4456 DeclarationNameInfo NameInfo(Name, KeyLoc);
4457 LookupResult Res(Self, NameInfo, Sema::LookupOrdinaryName);
4458 if (Self.LookupQualifiedName(Res, RD)) {
4459 bool FoundOperator = false;
4460 Res.suppressDiagnostics();
4461 for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end();
4462 Op != OpEnd; ++Op) {
4463 if (isa<FunctionTemplateDecl>(*Op))
4464 continue;
4465
4466 CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op);
4467 if((Operator->*IsDesiredOp)()) {
4468 FoundOperator = true;
4469 const FunctionProtoType *CPT =
4470 Operator->getType()->getAs<FunctionProtoType>();
4471 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
4472 if (!CPT || !CPT->isNothrow())
4473 return false;
4474 }
4475 }
4476 return FoundOperator;
4477 }
4478 return false;
4479}
4480
4481static bool EvaluateUnaryTypeTrait(Sema &Self, TypeTrait UTT,
4482 SourceLocation KeyLoc, QualType T) {
4483 assert(!T->isDependentType() && "Cannot evaluate traits of dependent type")((!T->isDependentType() && "Cannot evaluate traits of dependent type"
) ? static_cast<void> (0) : __assert_fail ("!T->isDependentType() && \"Cannot evaluate traits of dependent type\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4483, __PRETTY_FUNCTION__))
;
4484
4485 ASTContext &C = Self.Context;
4486 switch(UTT) {
4487 default: llvm_unreachable("not a UTT")::llvm::llvm_unreachable_internal("not a UTT", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4487)
;
4488 // Type trait expressions corresponding to the primary type category
4489 // predicates in C++0x [meta.unary.cat].
4490 case UTT_IsVoid:
4491 return T->isVoidType();
4492 case UTT_IsIntegral:
4493 return T->isIntegralType(C);
4494 case UTT_IsFloatingPoint:
4495 return T->isFloatingType();
4496 case UTT_IsArray:
4497 return T->isArrayType();
4498 case UTT_IsPointer:
4499 return T->isPointerType();
4500 case UTT_IsLvalueReference:
4501 return T->isLValueReferenceType();
4502 case UTT_IsRvalueReference:
4503 return T->isRValueReferenceType();
4504 case UTT_IsMemberFunctionPointer:
4505 return T->isMemberFunctionPointerType();
4506 case UTT_IsMemberObjectPointer:
4507 return T->isMemberDataPointerType();
4508 case UTT_IsEnum:
4509 return T->isEnumeralType();
4510 case UTT_IsUnion:
4511 return T->isUnionType();
4512 case UTT_IsClass:
4513 return T->isClassType() || T->isStructureType() || T->isInterfaceType();
4514 case UTT_IsFunction:
4515 return T->isFunctionType();
4516
4517 // Type trait expressions which correspond to the convenient composition
4518 // predicates in C++0x [meta.unary.comp].
4519 case UTT_IsReference:
4520 return T->isReferenceType();
4521 case UTT_IsArithmetic:
4522 return T->isArithmeticType() && !T->isEnumeralType();
4523 case UTT_IsFundamental:
4524 return T->isFundamentalType();
4525 case UTT_IsObject:
4526 return T->isObjectType();
4527 case UTT_IsScalar:
4528 // Note: semantic analysis depends on Objective-C lifetime types to be
4529 // considered scalar types. However, such types do not actually behave
4530 // like scalar types at run time (since they may require retain/release
4531 // operations), so we report them as non-scalar.
4532 if (T->isObjCLifetimeType()) {
4533 switch (T.getObjCLifetime()) {
4534 case Qualifiers::OCL_None:
4535 case Qualifiers::OCL_ExplicitNone:
4536 return true;
4537
4538 case Qualifiers::OCL_Strong:
4539 case Qualifiers::OCL_Weak:
4540 case Qualifiers::OCL_Autoreleasing:
4541 return false;
4542 }
4543 }
4544
4545 return T->isScalarType();
4546 case UTT_IsCompound:
4547 return T->isCompoundType();
4548 case UTT_IsMemberPointer:
4549 return T->isMemberPointerType();
4550
4551 // Type trait expressions which correspond to the type property predicates
4552 // in C++0x [meta.unary.prop].
4553 case UTT_IsConst:
4554 return T.isConstQualified();
4555 case UTT_IsVolatile:
4556 return T.isVolatileQualified();
4557 case UTT_IsTrivial:
4558 return T.isTrivialType(C);
4559 case UTT_IsTriviallyCopyable:
4560 return T.isTriviallyCopyableType(C);
4561 case UTT_IsStandardLayout:
4562 return T->isStandardLayoutType();
4563 case UTT_IsPOD:
4564 return T.isPODType(C);
4565 case UTT_IsLiteral:
4566 return T->isLiteralType(C);
4567 case UTT_IsEmpty:
4568 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4569 return !RD->isUnion() && RD->isEmpty();
4570 return false;
4571 case UTT_IsPolymorphic:
4572 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4573 return !RD->isUnion() && RD->isPolymorphic();
4574 return false;
4575 case UTT_IsAbstract:
4576 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4577 return !RD->isUnion() && RD->isAbstract();
4578 return false;
4579 case UTT_IsAggregate:
4580 // Report vector extensions and complex types as aggregates because they
4581 // support aggregate initialization. GCC mirrors this behavior for vectors
4582 // but not _Complex.
4583 return T->isAggregateType() || T->isVectorType() || T->isExtVectorType() ||
4584 T->isAnyComplexType();
4585 // __is_interface_class only returns true when CL is invoked in /CLR mode and
4586 // even then only when it is used with the 'interface struct ...' syntax
4587 // Clang doesn't support /CLR which makes this type trait moot.
4588 case UTT_IsInterfaceClass:
4589 return false;
4590 case UTT_IsFinal:
4591 case UTT_IsSealed:
4592 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4593 return RD->hasAttr<FinalAttr>();
4594 return false;
4595 case UTT_IsSigned:
4596 return T->isSignedIntegerType();
4597 case UTT_IsUnsigned:
4598 return T->isUnsignedIntegerType();
4599
4600 // Type trait expressions which query classes regarding their construction,
4601 // destruction, and copying. Rather than being based directly on the
4602 // related type predicates in the standard, they are specified by both
4603 // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those
4604 // specifications.
4605 //
4606 // 1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html
4607 // 2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
4608 //
4609 // Note that these builtins do not behave as documented in g++: if a class
4610 // has both a trivial and a non-trivial special member of a particular kind,
4611 // they return false! For now, we emulate this behavior.
4612 // FIXME: This appears to be a g++ bug: more complex cases reveal that it
4613 // does not correctly compute triviality in the presence of multiple special
4614 // members of the same kind. Revisit this once the g++ bug is fixed.
4615 case UTT_HasTrivialDefaultConstructor:
4616 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4617 // If __is_pod (type) is true then the trait is true, else if type is
4618 // a cv class or union type (or array thereof) with a trivial default
4619 // constructor ([class.ctor]) then the trait is true, else it is false.
4620 if (T.isPODType(C))
4621 return true;
4622 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
4623 return RD->hasTrivialDefaultConstructor() &&
4624 !RD->hasNonTrivialDefaultConstructor();
4625 return false;
4626 case UTT_HasTrivialMoveConstructor:
4627 // This trait is implemented by MSVC 2012 and needed to parse the
4628 // standard library headers. Specifically this is used as the logic
4629 // behind std::is_trivially_move_constructible (20.9.4.3).
4630 if (T.isPODType(C))
4631 return true;
4632 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
4633 return RD->hasTrivialMoveConstructor() && !RD->hasNonTrivialMoveConstructor();
4634 return false;
4635 case UTT_HasTrivialCopy:
4636 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4637 // If __is_pod (type) is true or type is a reference type then
4638 // the trait is true, else if type is a cv class or union type
4639 // with a trivial copy constructor ([class.copy]) then the trait
4640 // is true, else it is false.
4641 if (T.isPODType(C) || T->isReferenceType())
4642 return true;
4643 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4644 return RD->hasTrivialCopyConstructor() &&
4645 !RD->hasNonTrivialCopyConstructor();
4646 return false;
4647 case UTT_HasTrivialMoveAssign:
4648 // This trait is implemented by MSVC 2012 and needed to parse the
4649 // standard library headers. Specifically it is used as the logic
4650 // behind std::is_trivially_move_assignable (20.9.4.3)
4651 if (T.isPODType(C))
4652 return true;
4653 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
4654 return RD->hasTrivialMoveAssignment() && !RD->hasNonTrivialMoveAssignment();
4655 return false;
4656 case UTT_HasTrivialAssign:
4657 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4658 // If type is const qualified or is a reference type then the
4659 // trait is false. Otherwise if __is_pod (type) is true then the
4660 // trait is true, else if type is a cv class or union type with
4661 // a trivial copy assignment ([class.copy]) then the trait is
4662 // true, else it is false.
4663 // Note: the const and reference restrictions are interesting,
4664 // given that const and reference members don't prevent a class
4665 // from having a trivial copy assignment operator (but do cause
4666 // errors if the copy assignment operator is actually used, q.v.
4667 // [class.copy]p12).
4668
4669 if (T.isConstQualified())
4670 return false;
4671 if (T.isPODType(C))
4672 return true;
4673 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4674 return RD->hasTrivialCopyAssignment() &&
4675 !RD->hasNonTrivialCopyAssignment();
4676 return false;
4677 case UTT_IsDestructible:
4678 case UTT_IsTriviallyDestructible:
4679 case UTT_IsNothrowDestructible:
4680 // C++14 [meta.unary.prop]:
4681 // For reference types, is_destructible<T>::value is true.
4682 if (T->isReferenceType())
4683 return true;
4684
4685 // Objective-C++ ARC: autorelease types don't require destruction.
4686 if (T->isObjCLifetimeType() &&
4687 T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
4688 return true;
4689
4690 // C++14 [meta.unary.prop]:
4691 // For incomplete types and function types, is_destructible<T>::value is
4692 // false.
4693 if (T->isIncompleteType() || T->isFunctionType())
4694 return false;
4695
4696 // A type that requires destruction (via a non-trivial destructor or ARC
4697 // lifetime semantics) is not trivially-destructible.
4698 if (UTT == UTT_IsTriviallyDestructible && T.isDestructedType())
4699 return false;
4700
4701 // C++14 [meta.unary.prop]:
4702 // For object types and given U equal to remove_all_extents_t<T>, if the
4703 // expression std::declval<U&>().~U() is well-formed when treated as an
4704 // unevaluated operand (Clause 5), then is_destructible<T>::value is true
4705 if (auto *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
4706 CXXDestructorDecl *Destructor = Self.LookupDestructor(RD);
4707 if (!Destructor)
4708 return false;
4709 // C++14 [dcl.fct.def.delete]p2:
4710 // A program that refers to a deleted function implicitly or
4711 // explicitly, other than to declare it, is ill-formed.
4712 if (Destructor->isDeleted())
4713 return false;
4714 if (C.getLangOpts().AccessControl && Destructor->getAccess() != AS_public)
4715 return false;
4716 if (UTT == UTT_IsNothrowDestructible) {
4717 const FunctionProtoType *CPT =
4718 Destructor->getType()->getAs<FunctionProtoType>();
4719 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
4720 if (!CPT || !CPT->isNothrow())
4721 return false;
4722 }
4723 }
4724 return true;
4725
4726 case UTT_HasTrivialDestructor:
4727 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
4728 // If __is_pod (type) is true or type is a reference type
4729 // then the trait is true, else if type is a cv class or union
4730 // type (or array thereof) with a trivial destructor
4731 // ([class.dtor]) then the trait is true, else it is
4732 // false.
4733 if (T.isPODType(C) || T->isReferenceType())
4734 return true;
4735
4736 // Objective-C++ ARC: autorelease types don't require destruction.
4737 if (T->isObjCLifetimeType() &&
4738 T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
4739 return true;
4740
4741 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
4742 return RD->hasTrivialDestructor();
4743 return false;
4744 // TODO: Propagate nothrowness for implicitly declared special members.
4745 case UTT_HasNothrowAssign:
4746 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4747 // If type is const qualified or is a reference type then the
4748 // trait is false. Otherwise if __has_trivial_assign (type)
4749 // is true then the trait is true, else if type is a cv class
4750 // or union type with copy assignment operators that are known
4751 // not to throw an exception then the trait is true, else it is
4752 // false.
4753 if (C.getBaseElementType(T).isConstQualified())
4754 return false;
4755 if (T->isReferenceType())
4756 return false;
4757 if (T.isPODType(C) || T->isObjCLifetimeType())
4758 return true;
4759
4760 if (const RecordType *RT = T->getAs<RecordType>())
4761 return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
4762 &CXXRecordDecl::hasTrivialCopyAssignment,
4763 &CXXRecordDecl::hasNonTrivialCopyAssignment,
4764 &CXXMethodDecl::isCopyAssignmentOperator);
4765 return false;
4766 case UTT_HasNothrowMoveAssign:
4767 // This trait is implemented by MSVC 2012 and needed to parse the
4768 // standard library headers. Specifically this is used as the logic
4769 // behind std::is_nothrow_move_assignable (20.9.4.3).
4770 if (T.isPODType(C))
4771 return true;
4772
4773 if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>())
4774 return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
4775 &CXXRecordDecl::hasTrivialMoveAssignment,
4776 &CXXRecordDecl::hasNonTrivialMoveAssignment,
4777 &CXXMethodDecl::isMoveAssignmentOperator);
4778 return false;
4779 case UTT_HasNothrowCopy:
4780 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4781 // If __has_trivial_copy (type) is true then the trait is true, else
4782 // if type is a cv class or union type with copy constructors that are
4783 // known not to throw an exception then the trait is true, else it is
4784 // false.
4785 if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType())
4786 return true;
4787 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
4788 if (RD->hasTrivialCopyConstructor() &&
4789 !RD->hasNonTrivialCopyConstructor())
4790 return true;
4791
4792 bool FoundConstructor = false;
4793 unsigned FoundTQs;
4794 for (const auto *ND : Self.LookupConstructors(RD)) {
4795 // A template constructor is never a copy constructor.
4796 // FIXME: However, it may actually be selected at the actual overload
4797 // resolution point.
4798 if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl()))
4799 continue;
4800 // UsingDecl itself is not a constructor
4801 if (isa<UsingDecl>(ND))
4802 continue;
4803 auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl());
4804 if (Constructor->isCopyConstructor(FoundTQs)) {
4805 FoundConstructor = true;
4806 const FunctionProtoType *CPT
4807 = Constructor->getType()->getAs<FunctionProtoType>();
4808 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
4809 if (!CPT)
4810 return false;
4811 // TODO: check whether evaluating default arguments can throw.
4812 // For now, we'll be conservative and assume that they can throw.
4813 if (!CPT->isNothrow() || CPT->getNumParams() > 1)
4814 return false;
4815 }
4816 }
4817
4818 return FoundConstructor;
4819 }
4820 return false;
4821 case UTT_HasNothrowConstructor:
4822 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
4823 // If __has_trivial_constructor (type) is true then the trait is
4824 // true, else if type is a cv class or union type (or array
4825 // thereof) with a default constructor that is known not to
4826 // throw an exception then the trait is true, else it is false.
4827 if (T.isPODType(C) || T->isObjCLifetimeType())
4828 return true;
4829 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
4830 if (RD->hasTrivialDefaultConstructor() &&
4831 !RD->hasNonTrivialDefaultConstructor())
4832 return true;
4833
4834 bool FoundConstructor = false;
4835 for (const auto *ND : Self.LookupConstructors(RD)) {
4836 // FIXME: In C++0x, a constructor template can be a default constructor.
4837 if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl()))
4838 continue;
4839 // UsingDecl itself is not a constructor
4840 if (isa<UsingDecl>(ND))
4841 continue;
4842 auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl());
4843 if (Constructor->isDefaultConstructor()) {
4844 FoundConstructor = true;
4845 const FunctionProtoType *CPT
4846 = Constructor->getType()->getAs<FunctionProtoType>();
4847 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
4848 if (!CPT)
4849 return false;
4850 // FIXME: check whether evaluating default arguments can throw.
4851 // For now, we'll be conservative and assume that they can throw.
4852 if (!CPT->isNothrow() || CPT->getNumParams() > 0)
4853 return false;
4854 }
4855 }
4856 return FoundConstructor;
4857 }
4858 return false;
4859 case UTT_HasVirtualDestructor:
4860 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4861 // If type is a class type with a virtual destructor ([class.dtor])
4862 // then the trait is true, else it is false.
4863 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4864 if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD))
4865 return Destructor->isVirtual();
4866 return false;
4867
4868 // These type trait expressions are modeled on the specifications for the
4869 // Embarcadero C++0x type trait functions:
4870 // http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
4871 case UTT_IsCompleteType:
4872 // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_):
4873 // Returns True if and only if T is a complete type at the point of the
4874 // function call.
4875 return !T->isIncompleteType();
4876 case UTT_HasUniqueObjectRepresentations:
4877 return C.hasUniqueObjectRepresentations(T);
4878 }
4879}
4880
4881static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
4882 QualType RhsT, SourceLocation KeyLoc);
4883
4884static bool evaluateTypeTrait(Sema &S, TypeTrait Kind, SourceLocation KWLoc,
4885 ArrayRef<TypeSourceInfo *> Args,
4886 SourceLocation RParenLoc) {
4887 if (Kind <= UTT_Last)
4888 return EvaluateUnaryTypeTrait(S, Kind, KWLoc, Args[0]->getType());
4889
4890 // Evaluate BTT_ReferenceBindsToTemporary alongside the IsConstructible
4891 // traits to avoid duplication.
4892 if (Kind <= BTT_Last && Kind != BTT_ReferenceBindsToTemporary)
4893 return EvaluateBinaryTypeTrait(S, Kind, Args[0]->getType(),
4894 Args[1]->getType(), RParenLoc);
4895
4896 switch (Kind) {
4897 case clang::BTT_ReferenceBindsToTemporary:
4898 case clang::TT_IsConstructible:
4899 case clang::TT_IsNothrowConstructible:
4900 case clang::TT_IsTriviallyConstructible: {
4901 // C++11 [meta.unary.prop]:
4902 // is_trivially_constructible is defined as:
4903 //
4904 // is_constructible<T, Args...>::value is true and the variable
4905 // definition for is_constructible, as defined below, is known to call
4906 // no operation that is not trivial.
4907 //
4908 // The predicate condition for a template specialization
4909 // is_constructible<T, Args...> shall be satisfied if and only if the
4910 // following variable definition would be well-formed for some invented
4911 // variable t:
4912 //
4913 // T t(create<Args>()...);
4914 assert(!Args.empty())((!Args.empty()) ? static_cast<void> (0) : __assert_fail
("!Args.empty()", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4914, __PRETTY_FUNCTION__))
;
4915
4916 // Precondition: T and all types in the parameter pack Args shall be
4917 // complete types, (possibly cv-qualified) void, or arrays of
4918 // unknown bound.
4919 for (const auto *TSI : Args) {
4920 QualType ArgTy = TSI->getType();
4921 if (ArgTy->isVoidType() || ArgTy->isIncompleteArrayType())
4922 continue;
4923
4924 if (S.RequireCompleteType(KWLoc, ArgTy,
4925 diag::err_incomplete_type_used_in_type_trait_expr))
4926 return false;
4927 }
4928
4929 // Make sure the first argument is not incomplete nor a function type.
4930 QualType T = Args[0]->getType();
4931 if (T->isIncompleteType() || T->isFunctionType())
4932 return false;
4933
4934 // Make sure the first argument is not an abstract type.
4935 CXXRecordDecl *RD = T->getAsCXXRecordDecl();
4936 if (RD && RD->isAbstract())
4937 return false;
4938
4939 SmallVector<OpaqueValueExpr, 2> OpaqueArgExprs;
4940 SmallVector<Expr *, 2> ArgExprs;
4941 ArgExprs.reserve(Args.size() - 1);
4942 for (unsigned I = 1, N = Args.size(); I != N; ++I) {
4943 QualType ArgTy = Args[I]->getType();
4944 if (ArgTy->isObjectType() || ArgTy->isFunctionType())
4945 ArgTy = S.Context.getRValueReferenceType(ArgTy);
4946 OpaqueArgExprs.push_back(
4947 OpaqueValueExpr(Args[I]->getTypeLoc().getBeginLoc(),
4948 ArgTy.getNonLValueExprType(S.Context),
4949 Expr::getValueKindForType(ArgTy)));
4950 }
4951 for (Expr &E : OpaqueArgExprs)
4952 ArgExprs.push_back(&E);
4953
4954 // Perform the initialization in an unevaluated context within a SFINAE
4955 // trap at translation unit scope.
4956 EnterExpressionEvaluationContext Unevaluated(
4957 S, Sema::ExpressionEvaluationContext::Unevaluated);
4958 Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true);
4959 Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl());
4960 InitializedEntity To(InitializedEntity::InitializeTemporary(Args[0]));
4961 InitializationKind InitKind(InitializationKind::CreateDirect(KWLoc, KWLoc,
4962 RParenLoc));
4963 InitializationSequence Init(S, To, InitKind, ArgExprs);
4964 if (Init.Failed())
4965 return false;
4966
4967 ExprResult Result = Init.Perform(S, To, InitKind, ArgExprs);
4968 if (Result.isInvalid() || SFINAE.hasErrorOccurred())
4969 return false;
4970
4971 if (Kind == clang::TT_IsConstructible)
4972 return true;
4973
4974 if (Kind == clang::BTT_ReferenceBindsToTemporary) {
4975 if (!T->isReferenceType())
4976 return false;
4977
4978 return !Init.isDirectReferenceBinding();
4979 }
4980
4981 if (Kind == clang::TT_IsNothrowConstructible)
4982 return S.canThrow(Result.get()) == CT_Cannot;
4983
4984 if (Kind == clang::TT_IsTriviallyConstructible) {
4985 // Under Objective-C ARC and Weak, if the destination has non-trivial
4986 // Objective-C lifetime, this is a non-trivial construction.
4987 if (T.getNonReferenceType().hasNonTrivialObjCLifetime())
4988 return false;
4989
4990 // The initialization succeeded; now make sure there are no non-trivial
4991 // calls.
4992 return !Result.get()->hasNonTrivialCall(S.Context);
4993 }
4994
4995 llvm_unreachable("unhandled type trait")::llvm::llvm_unreachable_internal("unhandled type trait", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4995)
;
4996 return false;
4997 }
4998 default: llvm_unreachable("not a TT")::llvm::llvm_unreachable_internal("not a TT", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4998)
;
4999 }
5000
5001 return false;
5002}
5003
5004ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
5005 ArrayRef<TypeSourceInfo *> Args,
5006 SourceLocation RParenLoc) {
5007 QualType ResultType = Context.getLogicalOperationType();
5008
5009 if (Kind <= UTT_Last && !CheckUnaryTypeTraitTypeCompleteness(
5010 *this, Kind, KWLoc, Args[0]->getType()))
5011 return ExprError();
5012
5013 bool Dependent = false;
5014 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
5015 if (Args[I]->getType()->isDependentType()) {
5016 Dependent = true;
5017 break;
5018 }
5019 }
5020
5021 bool Result = false;
5022 if (!Dependent)
5023 Result = evaluateTypeTrait(*this, Kind, KWLoc, Args, RParenLoc);
5024
5025 return TypeTraitExpr::Create(Context, ResultType, KWLoc, Kind, Args,
5026 RParenLoc, Result);
5027}
5028
5029ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
5030 ArrayRef<ParsedType> Args,
5031 SourceLocation RParenLoc) {
5032 SmallVector<TypeSourceInfo *, 4> ConvertedArgs;
5033 ConvertedArgs.reserve(Args.size());
5034
5035 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
5036 TypeSourceInfo *TInfo;
5037 QualType T = GetTypeFromParser(Args[I], &TInfo);
5038 if (!TInfo)
5039 TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc);
5040
5041 ConvertedArgs.push_back(TInfo);
5042 }
5043
5044 return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc);
5045}
5046
5047static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
5048 QualType RhsT, SourceLocation KeyLoc) {
5049 assert(!LhsT->isDependentType() && !RhsT->isDependentType() &&((!LhsT->isDependentType() && !RhsT->isDependentType
() && "Cannot evaluate traits of dependent types") ? static_cast
<void> (0) : __assert_fail ("!LhsT->isDependentType() && !RhsT->isDependentType() && \"Cannot evaluate traits of dependent types\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5050, __PRETTY_FUNCTION__))
5050 "Cannot evaluate traits of dependent types")((!LhsT->isDependentType() && !RhsT->isDependentType
() && "Cannot evaluate traits of dependent types") ? static_cast
<void> (0) : __assert_fail ("!LhsT->isDependentType() && !RhsT->isDependentType() && \"Cannot evaluate traits of dependent types\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5050, __PRETTY_FUNCTION__))
;
5051
5052 switch(BTT) {
5053 case BTT_IsBaseOf: {
5054 // C++0x [meta.rel]p2
5055 // Base is a base class of Derived without regard to cv-qualifiers or
5056 // Base and Derived are not unions and name the same class type without
5057 // regard to cv-qualifiers.
5058
5059 const RecordType *lhsRecord = LhsT->getAs<RecordType>();
5060 const RecordType *rhsRecord = RhsT->getAs<RecordType>();
5061 if (!rhsRecord || !lhsRecord) {
5062 const ObjCObjectType *LHSObjTy = LhsT->getAs<ObjCObjectType>();
5063 const ObjCObjectType *RHSObjTy = RhsT->getAs<ObjCObjectType>();
5064 if (!LHSObjTy || !RHSObjTy)
5065 return false;
5066
5067 ObjCInterfaceDecl *BaseInterface = LHSObjTy->getInterface();
5068 ObjCInterfaceDecl *DerivedInterface = RHSObjTy->getInterface();
5069 if (!BaseInterface || !DerivedInterface)
5070 return false;
5071
5072 if (Self.RequireCompleteType(
5073 KeyLoc, RhsT, diag::err_incomplete_type_used_in_type_trait_expr))
5074 return false;
5075
5076 return BaseInterface->isSuperClassOf(DerivedInterface);
5077 }
5078
5079 assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)((Self.Context.hasSameUnqualifiedType(LhsT, RhsT) == (lhsRecord
== rhsRecord)) ? static_cast<void> (0) : __assert_fail
("Self.Context.hasSameUnqualifiedType(LhsT, RhsT) == (lhsRecord == rhsRecord)"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5080, __PRETTY_FUNCTION__))
5080 == (lhsRecord == rhsRecord))((Self.Context.hasSameUnqualifiedType(LhsT, RhsT) == (lhsRecord
== rhsRecord)) ? static_cast<void> (0) : __assert_fail
("Self.Context.hasSameUnqualifiedType(LhsT, RhsT) == (lhsRecord == rhsRecord)"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5080, __PRETTY_FUNCTION__))
;
5081
5082 // Unions are never base classes, and never have base classes.
5083 // It doesn't matter if they are complete or not. See PR#41843
5084 if (lhsRecord && lhsRecord->getDecl()->isUnion())
5085 return false;
5086 if (rhsRecord && rhsRecord->getDecl()->isUnion())
5087 return false;
5088
5089 if (lhsRecord == rhsRecord)
5090 return true;
5091
5092 // C++0x [meta.rel]p2:
5093 // If Base and Derived are class types and are different types
5094 // (ignoring possible cv-qualifiers) then Derived shall be a
5095 // complete type.
5096 if (Self.RequireCompleteType(KeyLoc, RhsT,
5097 diag::err_incomplete_type_used_in_type_trait_expr))
5098 return false;
5099
5100 return cast<CXXRecordDecl>(rhsRecord->getDecl())
5101 ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl()));
5102 }
5103 case BTT_IsSame:
5104 return Self.Context.hasSameType(LhsT, RhsT);
5105 case BTT_TypeCompatible: {
5106 // GCC ignores cv-qualifiers on arrays for this builtin.
5107 Qualifiers LhsQuals, RhsQuals;
5108 QualType Lhs = Self.getASTContext().getUnqualifiedArrayType(LhsT, LhsQuals);
5109 QualType Rhs = Self.getASTContext().getUnqualifiedArrayType(RhsT, RhsQuals);
5110 return Self.Context.typesAreCompatible(Lhs, Rhs);
5111 }
5112 case BTT_IsConvertible:
5113 case BTT_IsConvertibleTo: {
5114 // C++0x [meta.rel]p4:
5115 // Given the following function prototype:
5116 //
5117 // template <class T>
5118 // typename add_rvalue_reference<T>::type create();
5119 //
5120 // the predicate condition for a template specialization
5121 // is_convertible<From, To> shall be satisfied if and only if
5122 // the return expression in the following code would be
5123 // well-formed, including any implicit conversions to the return
5124 // type of the function:
5125 //
5126 // To test() {
5127 // return create<From>();
5128 // }
5129 //
5130 // Access checking is performed as if in a context unrelated to To and
5131 // From. Only the validity of the immediate context of the expression
5132 // of the return-statement (including conversions to the return type)
5133 // is considered.
5134 //
5135 // We model the initialization as a copy-initialization of a temporary
5136 // of the appropriate type, which for this expression is identical to the
5137 // return statement (since NRVO doesn't apply).
5138
5139 // Functions aren't allowed to return function or array types.
5140 if (RhsT->isFunctionType() || RhsT->isArrayType())
5141 return false;
5142
5143 // A return statement in a void function must have void type.
5144 if (RhsT->isVoidType())
5145 return LhsT->isVoidType();
5146
5147 // A function definition requires a complete, non-abstract return type.
5148 if (!Self.isCompleteType(KeyLoc, RhsT) || Self.isAbstractType(KeyLoc, RhsT))
5149 return false;
5150
5151 // Compute the result of add_rvalue_reference.
5152 if (LhsT->isObjectType() || LhsT->isFunctionType())
5153 LhsT = Self.Context.getRValueReferenceType(LhsT);
5154
5155 // Build a fake source and destination for initialization.
5156 InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT));
5157 OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
5158 Expr::getValueKindForType(LhsT));
5159 Expr *FromPtr = &From;
5160 InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc,
5161 SourceLocation()));
5162
5163 // Perform the initialization in an unevaluated context within a SFINAE
5164 // trap at translation unit scope.
5165 EnterExpressionEvaluationContext Unevaluated(
5166 Self, Sema::ExpressionEvaluationContext::Unevaluated);
5167 Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
5168 Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
5169 InitializationSequence Init(Self, To, Kind, FromPtr);
5170 if (Init.Failed())
5171 return false;
5172
5173 ExprResult Result = Init.Perform(Self, To, Kind, FromPtr);
5174 return !Result.isInvalid() && !SFINAE.hasErrorOccurred();
5175 }
5176
5177 case BTT_IsAssignable:
5178 case BTT_IsNothrowAssignable:
5179 case BTT_IsTriviallyAssignable: {
5180 // C++11 [meta.unary.prop]p3:
5181 // is_trivially_assignable is defined as:
5182 // is_assignable<T, U>::value is true and the assignment, as defined by
5183 // is_assignable, is known to call no operation that is not trivial
5184 //
5185 // is_assignable is defined as:
5186 // The expression declval<T>() = declval<U>() is well-formed when
5187 // treated as an unevaluated operand (Clause 5).
5188 //
5189 // For both, T and U shall be complete types, (possibly cv-qualified)
5190 // void, or arrays of unknown bound.
5191 if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() &&
5192 Self.RequireCompleteType(KeyLoc, LhsT,
5193 diag::err_incomplete_type_used_in_type_trait_expr))
5194 return false;
5195 if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() &&
5196 Self.RequireCompleteType(KeyLoc, RhsT,
5197 diag::err_incomplete_type_used_in_type_trait_expr))
5198 return false;
5199
5200 // cv void is never assignable.
5201 if (LhsT->isVoidType() || RhsT->isVoidType())
5202 return false;
5203
5204 // Build expressions that emulate the effect of declval<T>() and
5205 // declval<U>().
5206 if (LhsT->isObjectType() || LhsT->isFunctionType())
5207 LhsT = Self.Context.getRValueReferenceType(LhsT);
5208 if (RhsT->isObjectType() || RhsT->isFunctionType())
5209 RhsT = Self.Context.getRValueReferenceType(RhsT);
5210 OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
5211 Expr::getValueKindForType(LhsT));
5212 OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context),
5213 Expr::getValueKindForType(RhsT));
5214
5215 // Attempt the assignment in an unevaluated context within a SFINAE
5216 // trap at translation unit scope.
5217 EnterExpressionEvaluationContext Unevaluated(
5218 Self, Sema::ExpressionEvaluationContext::Unevaluated);
5219 Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
5220 Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
5221 ExprResult Result = Self.BuildBinOp(/*S=*/nullptr, KeyLoc, BO_Assign, &Lhs,
5222 &Rhs);
5223 if (Result.isInvalid() || SFINAE.hasErrorOccurred())
5224 return false;
5225
5226 if (BTT == BTT_IsAssignable)
5227 return true;
5228
5229 if (BTT == BTT_IsNothrowAssignable)
5230 return Self.canThrow(Result.get()) == CT_Cannot;
5231
5232 if (BTT == BTT_IsTriviallyAssignable) {
5233 // Under Objective-C ARC and Weak, if the destination has non-trivial
5234 // Objective-C lifetime, this is a non-trivial assignment.
5235 if (LhsT.getNonReferenceType().hasNonTrivialObjCLifetime())
5236 return false;
5237
5238 return !Result.get()->hasNonTrivialCall(Self.Context);
5239 }
5240
5241 llvm_unreachable("unhandled type trait")::llvm::llvm_unreachable_internal("unhandled type trait", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5241)
;
5242 return false;
5243 }
5244 default: llvm_unreachable("not a BTT")::llvm::llvm_unreachable_internal("not a BTT", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5244)
;
5245 }
5246 llvm_unreachable("Unknown type trait or not implemented")::llvm::llvm_unreachable_internal("Unknown type trait or not implemented"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5246)
;
5247}
5248
5249ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT,
5250 SourceLocation KWLoc,
5251 ParsedType Ty,
5252 Expr* DimExpr,
5253 SourceLocation RParen) {
5254 TypeSourceInfo *TSInfo;
5255 QualType T = GetTypeFromParser(Ty, &TSInfo);
5256 if (!TSInfo)
5257 TSInfo = Context.getTrivialTypeSourceInfo(T);
5258
5259 return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen);
5260}
5261
5262static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT,
5263 QualType T, Expr *DimExpr,
5264 SourceLocation KeyLoc) {
5265 assert(!T->isDependentType() && "Cannot evaluate traits of dependent type")((!T->isDependentType() && "Cannot evaluate traits of dependent type"
) ? static_cast<void> (0) : __assert_fail ("!T->isDependentType() && \"Cannot evaluate traits of dependent type\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5265, __PRETTY_FUNCTION__))
;
5266
5267 switch(ATT) {
5268 case ATT_ArrayRank:
5269 if (T->isArrayType()) {
5270 unsigned Dim = 0;
5271 while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
5272 ++Dim;
5273 T = AT->getElementType();
5274 }
5275 return Dim;
5276 }
5277 return 0;
5278
5279 case ATT_ArrayExtent: {
5280 llvm::APSInt Value;
5281 uint64_t Dim;
5282 if (Self.VerifyIntegerConstantExpression(DimExpr, &Value,
5283 diag::err_dimension_expr_not_constant_integer,
5284 false).isInvalid())
5285 return 0;
5286 if (Value.isSigned() && Value.isNegative()) {
5287 Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer)
5288 << DimExpr->getSourceRange();
5289 return 0;
5290 }
5291 Dim = Value.getLimitedValue();
5292
5293 if (T->isArrayType()) {
5294 unsigned D = 0;
5295 bool Matched = false;
5296 while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
5297 if (Dim == D) {
5298 Matched = true;
5299 break;
5300 }
5301 ++D;
5302 T = AT->getElementType();
5303 }
5304
5305 if (Matched && T->isArrayType()) {
5306 if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T))
5307 return CAT->getSize().getLimitedValue();
5308 }
5309 }
5310 return 0;
5311 }
5312 }
5313 llvm_unreachable("Unknown type trait or not implemented")::llvm::llvm_unreachable_internal("Unknown type trait or not implemented"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5313)
;
5314}
5315
5316ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT,
5317 SourceLocation KWLoc,
5318 TypeSourceInfo *TSInfo,
5319 Expr* DimExpr,
5320 SourceLocation RParen) {
5321 QualType T = TSInfo->getType();
5322
5323 // FIXME: This should likely be tracked as an APInt to remove any host
5324 // assumptions about the width of size_t on the target.
5325 uint64_t Value = 0;
5326 if (!T->isDependentType())
5327 Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc);
5328
5329 // While the specification for these traits from the Embarcadero C++
5330 // compiler's documentation says the return type is 'unsigned int', Clang
5331 // returns 'size_t'. On Windows, the primary platform for the Embarcadero
5332 // compiler, there is no difference. On several other platforms this is an
5333 // important distinction.
5334 return new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value, DimExpr,
5335 RParen, Context.getSizeType());
5336}
5337
5338ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET,
5339 SourceLocation KWLoc,
5340 Expr *Queried,
5341 SourceLocation RParen) {
5342 // If error parsing the expression, ignore.
5343 if (!Queried)
5344 return ExprError();
5345
5346 ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen);
5347
5348 return Result;
5349}
5350
5351static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) {
5352 switch (ET) {
5353 case ET_IsLValueExpr: return E->isLValue();
5354 case ET_IsRValueExpr: return E->isRValue();
5355 }
5356 llvm_unreachable("Expression trait not covered by switch")::llvm::llvm_unreachable_internal("Expression trait not covered by switch"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5356)
;
5357}
5358
5359ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET,
5360 SourceLocation KWLoc,
5361 Expr *Queried,
5362 SourceLocation RParen) {
5363 if (Queried->isTypeDependent()) {
5364 // Delay type-checking for type-dependent expressions.
5365 } else if (Queried->getType()->isPlaceholderType()) {
5366 ExprResult PE = CheckPlaceholderExpr(Queried);
5367 if (PE.isInvalid()) return ExprError();
5368 return BuildExpressionTrait(ET, KWLoc, PE.get(), RParen);
5369 }
5370
5371 bool Value = EvaluateExpressionTrait(ET, Queried);
5372
5373 return new (Context)
5374 ExpressionTraitExpr(KWLoc, ET, Queried, Value, RParen, Context.BoolTy);
5375}
5376
5377QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS,
5378 ExprValueKind &VK,
5379 SourceLocation Loc,
5380 bool isIndirect) {
5381 assert(!LHS.get()->getType()->isPlaceholderType() &&((!LHS.get()->getType()->isPlaceholderType() &&
!RHS.get()->getType()->isPlaceholderType() && "placeholders should have been weeded out by now"
) ? static_cast<void> (0) : __assert_fail ("!LHS.get()->getType()->isPlaceholderType() && !RHS.get()->getType()->isPlaceholderType() && \"placeholders should have been weeded out by now\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5383, __PRETTY_FUNCTION__))
5382 !RHS.get()->getType()->isPlaceholderType() &&((!LHS.get()->getType()->isPlaceholderType() &&
!RHS.get()->getType()->isPlaceholderType() && "placeholders should have been weeded out by now"
) ? static_cast<void> (0) : __assert_fail ("!LHS.get()->getType()->isPlaceholderType() && !RHS.get()->getType()->isPlaceholderType() && \"placeholders should have been weeded out by now\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5383, __PRETTY_FUNCTION__))
5383 "placeholders should have been weeded out by now")((!LHS.get()->getType()->isPlaceholderType() &&
!RHS.get()->getType()->isPlaceholderType() && "placeholders should have been weeded out by now"
) ? static_cast<void> (0) : __assert_fail ("!LHS.get()->getType()->isPlaceholderType() && !RHS.get()->getType()->isPlaceholderType() && \"placeholders should have been weeded out by now\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5383, __PRETTY_FUNCTION__))
;
5384
5385 // The LHS undergoes lvalue conversions if this is ->*, and undergoes the
5386 // temporary materialization conversion otherwise.
5387 if (isIndirect)
5388 LHS = DefaultLvalueConversion(LHS.get());
5389 else if (LHS.get()->isRValue())
5390 LHS = TemporaryMaterializationConversion(LHS.get());
5391 if (LHS.isInvalid())
5392 return QualType();
5393
5394 // The RHS always undergoes lvalue conversions.
5395 RHS = DefaultLvalueConversion(RHS.get());
5396 if (RHS.isInvalid()) return QualType();
5397
5398 const char *OpSpelling = isIndirect ? "->*" : ".*";
5399 // C++ 5.5p2
5400 // The binary operator .* [p3: ->*] binds its second operand, which shall
5401 // be of type "pointer to member of T" (where T is a completely-defined
5402 // class type) [...]
5403 QualType RHSType = RHS.get()->getType();
5404 const MemberPointerType *MemPtr = RHSType->getAs<MemberPointerType>();
5405 if (!MemPtr) {
5406 Diag(Loc, diag::err_bad_memptr_rhs)
5407 << OpSpelling << RHSType << RHS.get()->getSourceRange();
5408 return QualType();
5409 }
5410
5411 QualType Class(MemPtr->getClass(), 0);
5412
5413 // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the
5414 // member pointer points must be completely-defined. However, there is no
5415 // reason for this semantic distinction, and the rule is not enforced by
5416 // other compilers. Therefore, we do not check this property, as it is
5417 // likely to be considered a defect.
5418
5419 // C++ 5.5p2
5420 // [...] to its first operand, which shall be of class T or of a class of
5421 // which T is an unambiguous and accessible base class. [p3: a pointer to
5422 // such a class]
5423 QualType LHSType = LHS.get()->getType();
5424 if (isIndirect) {
5425 if (const PointerType *Ptr = LHSType->getAs<PointerType>())
5426 LHSType = Ptr->getPointeeType();
5427 else {
5428 Diag(Loc, diag::err_bad_memptr_lhs)
5429 << OpSpelling << 1 << LHSType
5430 << FixItHint::CreateReplacement(SourceRange(Loc), ".*");
5431 return QualType();
5432 }
5433 }
5434
5435 if (!Context.hasSameUnqualifiedType(Class, LHSType)) {
5436 // If we want to check the hierarchy, we need a complete type.
5437 if (RequireCompleteType(Loc, LHSType, diag::err_bad_memptr_lhs,
5438 OpSpelling, (int)isIndirect)) {
5439 return QualType();
5440 }
5441
5442 if (!IsDerivedFrom(Loc, LHSType, Class)) {
5443 Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
5444 << (int)isIndirect << LHS.get()->getType();
5445 return QualType();
5446 }
5447
5448 CXXCastPath BasePath;
5449 if (CheckDerivedToBaseConversion(
5450 LHSType, Class, Loc,
5451 SourceRange(LHS.get()->getBeginLoc(), RHS.get()->getEndLoc()),
5452 &BasePath))
5453 return QualType();
5454
5455 // Cast LHS to type of use.
5456 QualType UseType = Context.getQualifiedType(Class, LHSType.getQualifiers());
5457 if (isIndirect)
5458 UseType = Context.getPointerType(UseType);
5459 ExprValueKind VK = isIndirect ? VK_RValue : LHS.get()->getValueKind();
5460 LHS = ImpCastExprToType(LHS.get(), UseType, CK_DerivedToBase, VK,
5461 &BasePath);
5462 }
5463
5464 if (isa<CXXScalarValueInitExpr>(RHS.get()->IgnoreParens())) {
5465 // Diagnose use of pointer-to-member type which when used as
5466 // the functional cast in a pointer-to-member expression.
5467 Diag(Loc, diag::err_pointer_to_member_type) << isIndirect;
5468 return QualType();
5469 }
5470
5471 // C++ 5.5p2
5472 // The result is an object or a function of the type specified by the
5473 // second operand.
5474 // The cv qualifiers are the union of those in the pointer and the left side,
5475 // in accordance with 5.5p5 and 5.2.5.
5476 QualType Result = MemPtr->getPointeeType();
5477 Result = Context.getCVRQualifiedType(Result, LHSType.getCVRQualifiers());
5478
5479 // C++0x [expr.mptr.oper]p6:
5480 // In a .* expression whose object expression is an rvalue, the program is
5481 // ill-formed if the second operand is a pointer to member function with
5482 // ref-qualifier &. In a ->* expression or in a .* expression whose object
5483 // expression is an lvalue, the program is ill-formed if the second operand
5484 // is a pointer to member function with ref-qualifier &&.
5485 if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) {
5486 switch (Proto->getRefQualifier()) {
5487 case RQ_None:
5488 // Do nothing
5489 break;
5490
5491 case RQ_LValue:
5492 if (!isIndirect && !LHS.get()->Classify(Context).isLValue()) {
5493 // C++2a allows functions with ref-qualifier & if their cv-qualifier-seq
5494 // is (exactly) 'const'.
5495 if (Proto->isConst() && !Proto->isVolatile())
5496 Diag(Loc, getLangOpts().CPlusPlus2a
5497 ? diag::warn_cxx17_compat_pointer_to_const_ref_member_on_rvalue
5498 : diag::ext_pointer_to_const_ref_member_on_rvalue);
5499 else
5500 Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
5501 << RHSType << 1 << LHS.get()->getSourceRange();
5502 }
5503 break;
5504
5505 case RQ_RValue:
5506 if (isIndirect || !LHS.get()->Classify(Context).isRValue())
5507 Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
5508 << RHSType << 0 << LHS.get()->getSourceRange();
5509 break;
5510 }
5511 }
5512
5513 // C++ [expr.mptr.oper]p6:
5514 // The result of a .* expression whose second operand is a pointer
5515 // to a data member is of the same value category as its
5516 // first operand. The result of a .* expression whose second
5517 // operand is a pointer to a member function is a prvalue. The
5518 // result of an ->* expression is an lvalue if its second operand
5519 // is a pointer to data member and a prvalue otherwise.
5520 if (Result->isFunctionType()) {
5521 VK = VK_RValue;
5522 return Context.BoundMemberTy;
5523 } else if (isIndirect) {
5524 VK = VK_LValue;
5525 } else {
5526 VK = LHS.get()->getValueKind();
5527 }
5528
5529 return Result;
5530}
5531
5532/// Try to convert a type to another according to C++11 5.16p3.
5533///
5534/// This is part of the parameter validation for the ? operator. If either
5535/// value operand is a class type, the two operands are attempted to be
5536/// converted to each other. This function does the conversion in one direction.
5537/// It returns true if the program is ill-formed and has already been diagnosed
5538/// as such.
5539static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
5540 SourceLocation QuestionLoc,
5541 bool &HaveConversion,
5542 QualType &ToType) {
5543 HaveConversion = false;
5544 ToType = To->getType();
5545
5546 InitializationKind Kind =
5547 InitializationKind::CreateCopy(To->getBeginLoc(), SourceLocation());
5548 // C++11 5.16p3
5549 // The process for determining whether an operand expression E1 of type T1
5550 // can be converted to match an operand expression E2 of type T2 is defined
5551 // as follows:
5552 // -- If E2 is an lvalue: E1 can be converted to match E2 if E1 can be
5553 // implicitly converted to type "lvalue reference to T2", subject to the
5554 // constraint that in the conversion the reference must bind directly to
5555 // an lvalue.
5556 // -- If E2 is an xvalue: E1 can be converted to match E2 if E1 can be
5557 // implicitly converted to the type "rvalue reference to R2", subject to
5558 // the constraint that the reference must bind directly.
5559 if (To->isLValue() || To->isXValue()) {
5560 QualType T = To->isLValue() ? Self.Context.getLValueReferenceType(ToType)
5561 : Self.Context.getRValueReferenceType(ToType);
5562
5563 InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
5564
5565 InitializationSequence InitSeq(Self, Entity, Kind, From);
5566 if (InitSeq.isDirectReferenceBinding()) {
5567 ToType = T;
5568 HaveConversion = true;
5569 return false;
5570 }
5571
5572 if (InitSeq.isAmbiguous())
5573 return InitSeq.Diagnose(Self, Entity, Kind, From);
5574 }
5575
5576 // -- If E2 is an rvalue, or if the conversion above cannot be done:
5577 // -- if E1 and E2 have class type, and the underlying class types are
5578 // the same or one is a base class of the other:
5579 QualType FTy = From->getType();
5580 QualType TTy = To->getType();
5581 const RecordType *FRec = FTy->getAs<RecordType>();
5582 const RecordType *TRec = TTy->getAs<RecordType>();
5583 bool FDerivedFromT = FRec && TRec && FRec != TRec &&
5584 Self.IsDerivedFrom(QuestionLoc, FTy, TTy);
5585 if (FRec && TRec && (FRec == TRec || FDerivedFromT ||
5586 Self.IsDerivedFrom(QuestionLoc, TTy, FTy))) {
5587 // E1 can be converted to match E2 if the class of T2 is the
5588 // same type as, or a base class of, the class of T1, and
5589 // [cv2 > cv1].
5590 if (FRec == TRec || FDerivedFromT) {
5591 if (TTy.isAtLeastAsQualifiedAs(FTy)) {
5592 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
5593 InitializationSequence InitSeq(Self, Entity, Kind, From);
5594 if (InitSeq) {
5595 HaveConversion = true;
5596 return false;
5597 }
5598
5599 if (InitSeq.isAmbiguous())
5600 return InitSeq.Diagnose(Self, Entity, Kind, From);
5601 }
5602 }
5603
5604 return false;
5605 }
5606
5607 // -- Otherwise: E1 can be converted to match E2 if E1 can be
5608 // implicitly converted to the type that expression E2 would have
5609 // if E2 were converted to an rvalue (or the type it has, if E2 is
5610 // an rvalue).
5611 //
5612 // This actually refers very narrowly to the lvalue-to-rvalue conversion, not
5613 // to the array-to-pointer or function-to-pointer conversions.
5614 TTy = TTy.getNonLValueExprType(Self.Context);
5615
5616 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
5617 InitializationSequence InitSeq(Self, Entity, Kind, From);
5618 HaveConversion = !InitSeq.Failed();
5619 ToType = TTy;
5620 if (InitSeq.isAmbiguous())
5621 return InitSeq.Diagnose(Self, Entity, Kind, From);
5622
5623 return false;
5624}
5625
5626/// Try to find a common type for two according to C++0x 5.16p5.
5627///
5628/// This is part of the parameter validation for the ? operator. If either
5629/// value operand is a class type, overload resolution is used to find a
5630/// conversion to a common type.
5631static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS,
5632 SourceLocation QuestionLoc) {
5633 Expr *Args[2] = { LHS.get(), RHS.get() };
5634 OverloadCandidateSet CandidateSet(QuestionLoc,
5635 OverloadCandidateSet::CSK_Operator);
5636 Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args,
5637 CandidateSet);
5638
5639 OverloadCandidateSet::iterator Best;
5640 switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) {
5641 case OR_Success: {
5642 // We found a match. Perform the conversions on the arguments and move on.
5643 ExprResult LHSRes = Self.PerformImplicitConversion(
5644 LHS.get(), Best->BuiltinParamTypes[0], Best->Conversions[0],
5645 Sema::AA_Converting);
5646 if (LHSRes.isInvalid())
5647 break;
5648 LHS = LHSRes;
5649
5650 ExprResult RHSRes = Self.PerformImplicitConversion(
5651 RHS.get(), Best->BuiltinParamTypes[1], Best->Conversions[1],
5652 Sema::AA_Converting);
5653 if (RHSRes.isInvalid())
5654 break;
5655 RHS = RHSRes;
5656 if (Best->Function)
5657 Self.MarkFunctionReferenced(QuestionLoc, Best->Function);
5658 return false;
5659 }
5660
5661 case OR_No_Viable_Function:
5662
5663 // Emit a better diagnostic if one of the expressions is a null pointer
5664 // constant and the other is a pointer type. In this case, the user most
5665 // likely forgot to take the address of the other expression.
5666 if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
5667 return true;
5668
5669 Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
5670 << LHS.get()->getType() << RHS.get()->getType()
5671 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5672 return true;
5673
5674 case OR_Ambiguous:
5675 Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl)
5676 << LHS.get()->getType() << RHS.get()->getType()
5677 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5678 // FIXME: Print the possible common types by printing the return types of
5679 // the viable candidates.
5680 break;
5681
5682 case OR_Deleted:
5683 llvm_unreachable("Conditional operator has only built-in overloads")::llvm::llvm_unreachable_internal("Conditional operator has only built-in overloads"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5683)
;
5684 }
5685 return true;
5686}
5687
5688/// Perform an "extended" implicit conversion as returned by
5689/// TryClassUnification.
5690static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) {
5691 InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
5692 InitializationKind Kind =
5693 InitializationKind::CreateCopy(E.get()->getBeginLoc(), SourceLocation());
5694 Expr *Arg = E.get();
5695 InitializationSequence InitSeq(Self, Entity, Kind, Arg);
5696 ExprResult Result = InitSeq.Perform(Self, Entity, Kind, Arg);
5697 if (Result.isInvalid())
5698 return true;
5699
5700 E = Result;
5701 return false;
5702}
5703
5704/// Check the operands of ?: under C++ semantics.
5705///
5706/// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
5707/// extension. In this case, LHS == Cond. (But they're not aliases.)
5708QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
5709 ExprResult &RHS, ExprValueKind &VK,
5710 ExprObjectKind &OK,
5711 SourceLocation QuestionLoc) {
5712 // FIXME: Handle C99's complex types, vector types, block pointers and Obj-C++
5713 // interface pointers.
5714
5715 // C++11 [expr.cond]p1
5716 // The first expression is contextually converted to bool.
5717 //
5718 // FIXME; GCC's vector extension permits the use of a?b:c where the type of
5719 // a is that of a integer vector with the same number of elements and
5720 // size as the vectors of b and c. If one of either b or c is a scalar
5721 // it is implicitly converted to match the type of the vector.
5722 // Otherwise the expression is ill-formed. If both b and c are scalars,
5723 // then b and c are checked and converted to the type of a if possible.
5724 // Unlike the OpenCL ?: operator, the expression is evaluated as
5725 // (a[0] != 0 ? b[0] : c[0], .. , a[n] != 0 ? b[n] : c[n]).
5726 if (!Cond.get()->isTypeDependent()) {
5727 ExprResult CondRes = CheckCXXBooleanCondition(Cond.get());
5728 if (CondRes.isInvalid())
5729 return QualType();
5730 Cond = CondRes;
5731 }
5732
5733 // Assume r-value.
5734 VK = VK_RValue;
5735 OK = OK_Ordinary;
5736
5737 // Either of the arguments dependent?
5738 if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent())
5739 return Context.DependentTy;
5740
5741 // C++11 [expr.cond]p2
5742 // If either the second or the third operand has type (cv) void, ...
5743 QualType LTy = LHS.get()->getType();
5744 QualType RTy = RHS.get()->getType();
5745 bool LVoid = LTy->isVoidType();
5746 bool RVoid = RTy->isVoidType();
5747 if (LVoid || RVoid) {
5748 // ... one of the following shall hold:
5749 // -- The second or the third operand (but not both) is a (possibly
5750 // parenthesized) throw-expression; the result is of the type
5751 // and value category of the other.
5752 bool LThrow = isa<CXXThrowExpr>(LHS.get()->IgnoreParenImpCasts());
5753 bool RThrow = isa<CXXThrowExpr>(RHS.get()->IgnoreParenImpCasts());
5754 if (LThrow != RThrow) {
5755 Expr *NonThrow = LThrow ? RHS.get() : LHS.get();
5756 VK = NonThrow->getValueKind();
5757 // DR (no number yet): the result is a bit-field if the
5758 // non-throw-expression operand is a bit-field.
5759 OK = NonThrow->getObjectKind();
5760 return NonThrow->getType();
5761 }
5762
5763 // -- Both the second and third operands have type void; the result is of
5764 // type void and is a prvalue.
5765 if (LVoid && RVoid)
5766 return Context.VoidTy;
5767
5768 // Neither holds, error.
5769 Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
5770 << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
5771 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5772 return QualType();
5773 }
5774
5775 // Neither is void.
5776
5777 // C++11 [expr.cond]p3
5778 // Otherwise, if the second and third operand have different types, and
5779 // either has (cv) class type [...] an attempt is made to convert each of
5780 // those operands to the type of the other.
5781 if (!Context.hasSameType(LTy, RTy) &&
5782 (LTy->isRecordType() || RTy->isRecordType())) {
5783 // These return true if a single direction is already ambiguous.
5784 QualType L2RType, R2LType;
5785 bool HaveL2R, HaveR2L;
5786 if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType))
5787 return QualType();
5788 if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType))
5789 return QualType();
5790
5791 // If both can be converted, [...] the program is ill-formed.
5792 if (HaveL2R && HaveR2L) {
5793 Diag(QuestionLoc, diag::err_conditional_ambiguous)
5794 << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5795 return QualType();
5796 }
5797
5798 // If exactly one conversion is possible, that conversion is applied to
5799 // the chosen operand and the converted operands are used in place of the
5800 // original operands for the remainder of this section.
5801 if (HaveL2R) {
5802 if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid())
5803 return QualType();
5804 LTy = LHS.get()->getType();
5805 } else if (HaveR2L) {
5806 if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid())
5807 return QualType();
5808 RTy = RHS.get()->getType();
5809 }
5810 }
5811
5812 // C++11 [expr.cond]p3
5813 // if both are glvalues of the same value category and the same type except
5814 // for cv-qualification, an attempt is made to convert each of those
5815 // operands to the type of the other.
5816 // FIXME:
5817 // Resolving a defect in P0012R1: we extend this to cover all cases where
5818 // one of the operands is reference-compatible with the other, in order
5819 // to support conditionals between functions differing in noexcept.
5820 ExprValueKind LVK = LHS.get()->getValueKind();
5821 ExprValueKind RVK = RHS.get()->getValueKind();
5822 if (!Context.hasSameType(LTy, RTy) &&
5823 LVK == RVK && LVK != VK_RValue) {
5824 // DerivedToBase was already handled by the class-specific case above.
5825 // FIXME: Should we allow ObjC conversions here?
5826 bool DerivedToBase, ObjCConversion, ObjCLifetimeConversion;
5827 if (CompareReferenceRelationship(
5828 QuestionLoc, LTy, RTy, DerivedToBase,
5829 ObjCConversion, ObjCLifetimeConversion) == Ref_Compatible &&
5830 !DerivedToBase && !ObjCConversion && !ObjCLifetimeConversion &&
5831 // [...] subject to the constraint that the reference must bind
5832 // directly [...]
5833 !RHS.get()->refersToBitField() &&
5834 !RHS.get()->refersToVectorElement()) {
5835 RHS = ImpCastExprToType(RHS.get(), LTy, CK_NoOp, RVK);
5836 RTy = RHS.get()->getType();
5837 } else if (CompareReferenceRelationship(
5838 QuestionLoc, RTy, LTy, DerivedToBase,
5839 ObjCConversion, ObjCLifetimeConversion) == Ref_Compatible &&
5840 !DerivedToBase && !ObjCConversion && !ObjCLifetimeConversion &&
5841 !LHS.get()->refersToBitField() &&
5842 !LHS.get()->refersToVectorElement()) {
5843 LHS = ImpCastExprToType(LHS.get(), RTy, CK_NoOp, LVK);
5844 LTy = LHS.get()->getType();
5845 }
5846 }
5847
5848 // C++11 [expr.cond]p4
5849 // If the second and third operands are glvalues of the same value
5850 // category and have the same type, the result is of that type and
5851 // value category and it is a bit-field if the second or the third
5852 // operand is a bit-field, or if both are bit-fields.
5853 // We only extend this to bitfields, not to the crazy other kinds of
5854 // l-values.
5855 bool Same = Context.hasSameType(LTy, RTy);
5856 if (Same && LVK == RVK && LVK != VK_RValue &&
5857 LHS.get()->isOrdinaryOrBitFieldObject() &&
5858 RHS.get()->isOrdinaryOrBitFieldObject()) {
5859 VK = LHS.get()->getValueKind();
5860 if (LHS.get()->getObjectKind() == OK_BitField ||
5861 RHS.get()->getObjectKind() == OK_BitField)
5862 OK = OK_BitField;
5863
5864 // If we have function pointer types, unify them anyway to unify their
5865 // exception specifications, if any.
5866 if (LTy->isFunctionPointerType() || LTy->isMemberFunctionPointerType()) {
5867 Qualifiers Qs = LTy.getQualifiers();