Bug Summary

File:clang/lib/Sema/SemaExprCXX.cpp
Warning:line 603, column 7
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SemaExprCXX.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -relaxed-aliasing -fmath-errno -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/build-llvm/tools/clang/lib/Sema -resource-dir /usr/lib/llvm-13/lib/clang/13.0.0 -D CLANG_ROUND_TRIP_CC1_ARGS=ON -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/build-llvm/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema -I /build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/include -I /build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/build-llvm/include -I /build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/llvm/include -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-13/lib/clang/13.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/build-llvm/tools/clang/lib/Sema -fdebug-prefix-map=/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7=. -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2021-06-13-111025-38230-1 -x c++ /build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp
1//===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// Implements semantic analysis for C++ expressions.
11///
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/Template.h"
15#include "clang/Sema/SemaInternal.h"
16#include "TreeTransform.h"
17#include "TypeLocBuilder.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/ASTLambda.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/CharUnits.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/AST/ExprObjC.h"
25#include "clang/AST/RecursiveASTVisitor.h"
26#include "clang/AST/TypeLoc.h"
27#include "clang/Basic/AlignedAllocation.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "clang/Basic/TargetInfo.h"
30#include "clang/Lex/Preprocessor.h"
31#include "clang/Sema/DeclSpec.h"
32#include "clang/Sema/Initialization.h"
33#include "clang/Sema/Lookup.h"
34#include "clang/Sema/ParsedTemplate.h"
35#include "clang/Sema/Scope.h"
36#include "clang/Sema/ScopeInfo.h"
37#include "clang/Sema/SemaLambda.h"
38#include "clang/Sema/TemplateDeduction.h"
39#include "llvm/ADT/APInt.h"
40#include "llvm/ADT/STLExtras.h"
41#include "llvm/Support/ErrorHandling.h"
42using namespace clang;
43using namespace sema;
44
45/// Handle the result of the special case name lookup for inheriting
46/// constructor declarations. 'NS::X::X' and 'NS::X<...>::X' are treated as
47/// constructor names in member using declarations, even if 'X' is not the
48/// name of the corresponding type.
49ParsedType Sema::getInheritingConstructorName(CXXScopeSpec &SS,
50 SourceLocation NameLoc,
51 IdentifierInfo &Name) {
52 NestedNameSpecifier *NNS = SS.getScopeRep();
53
54 // Convert the nested-name-specifier into a type.
55 QualType Type;
56 switch (NNS->getKind()) {
57 case NestedNameSpecifier::TypeSpec:
58 case NestedNameSpecifier::TypeSpecWithTemplate:
59 Type = QualType(NNS->getAsType(), 0);
60 break;
61
62 case NestedNameSpecifier::Identifier:
63 // Strip off the last layer of the nested-name-specifier and build a
64 // typename type for it.
65 assert(NNS->getAsIdentifier() == &Name && "not a constructor name")(static_cast <bool> (NNS->getAsIdentifier() == &
Name && "not a constructor name") ? void (0) : __assert_fail
("NNS->getAsIdentifier() == &Name && \"not a constructor name\""
, "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 65, __extension__ __PRETTY_FUNCTION__))
;
66 Type = Context.getDependentNameType(ETK_None, NNS->getPrefix(),
67 NNS->getAsIdentifier());
68 break;
69
70 case NestedNameSpecifier::Global:
71 case NestedNameSpecifier::Super:
72 case NestedNameSpecifier::Namespace:
73 case NestedNameSpecifier::NamespaceAlias:
74 llvm_unreachable("Nested name specifier is not a type for inheriting ctor")::llvm::llvm_unreachable_internal("Nested name specifier is not a type for inheriting ctor"
, "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 74)
;
75 }
76
77 // This reference to the type is located entirely at the location of the
78 // final identifier in the qualified-id.
79 return CreateParsedType(Type,
80 Context.getTrivialTypeSourceInfo(Type, NameLoc));
81}
82
83ParsedType Sema::getConstructorName(IdentifierInfo &II,
84 SourceLocation NameLoc,
85 Scope *S, CXXScopeSpec &SS,
86 bool EnteringContext) {
87 CXXRecordDecl *CurClass = getCurrentClass(S, &SS);
88 assert(CurClass && &II == CurClass->getIdentifier() &&(static_cast <bool> (CurClass && &II == CurClass
->getIdentifier() && "not a constructor name") ? void
(0) : __assert_fail ("CurClass && &II == CurClass->getIdentifier() && \"not a constructor name\""
, "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 89, __extension__ __PRETTY_FUNCTION__))
89 "not a constructor name")(static_cast <bool> (CurClass && &II == CurClass
->getIdentifier() && "not a constructor name") ? void
(0) : __assert_fail ("CurClass && &II == CurClass->getIdentifier() && \"not a constructor name\""
, "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 89, __extension__ __PRETTY_FUNCTION__))
;
90
91 // When naming a constructor as a member of a dependent context (eg, in a
92 // friend declaration or an inherited constructor declaration), form an
93 // unresolved "typename" type.
94 if (CurClass->isDependentContext() && !EnteringContext && SS.getScopeRep()) {
95 QualType T = Context.getDependentNameType(ETK_None, SS.getScopeRep(), &II);
96 return ParsedType::make(T);
97 }
98
99 if (SS.isNotEmpty() && RequireCompleteDeclContext(SS, CurClass))
100 return ParsedType();
101
102 // Find the injected-class-name declaration. Note that we make no attempt to
103 // diagnose cases where the injected-class-name is shadowed: the only
104 // declaration that can validly shadow the injected-class-name is a
105 // non-static data member, and if the class contains both a non-static data
106 // member and a constructor then it is ill-formed (we check that in
107 // CheckCompletedCXXClass).
108 CXXRecordDecl *InjectedClassName = nullptr;
109 for (NamedDecl *ND : CurClass->lookup(&II)) {
110 auto *RD = dyn_cast<CXXRecordDecl>(ND);
111 if (RD && RD->isInjectedClassName()) {
112 InjectedClassName = RD;
113 break;
114 }
115 }
116 if (!InjectedClassName) {
117 if (!CurClass->isInvalidDecl()) {
118 // FIXME: RequireCompleteDeclContext doesn't check dependent contexts
119 // properly. Work around it here for now.
120 Diag(SS.getLastQualifierNameLoc(),
121 diag::err_incomplete_nested_name_spec) << CurClass << SS.getRange();
122 }
123 return ParsedType();
124 }
125
126 QualType T = Context.getTypeDeclType(InjectedClassName);
127 DiagnoseUseOfDecl(InjectedClassName, NameLoc);
128 MarkAnyDeclReferenced(NameLoc, InjectedClassName, /*OdrUse=*/false);
129
130 return ParsedType::make(T);
131}
132
133ParsedType Sema::getDestructorName(SourceLocation TildeLoc,
134 IdentifierInfo &II,
135 SourceLocation NameLoc,
136 Scope *S, CXXScopeSpec &SS,
137 ParsedType ObjectTypePtr,
138 bool EnteringContext) {
139 // Determine where to perform name lookup.
140
141 // FIXME: This area of the standard is very messy, and the current
142 // wording is rather unclear about which scopes we search for the
143 // destructor name; see core issues 399 and 555. Issue 399 in
144 // particular shows where the current description of destructor name
145 // lookup is completely out of line with existing practice, e.g.,
146 // this appears to be ill-formed:
147 //
148 // namespace N {
149 // template <typename T> struct S {
150 // ~S();
151 // };
152 // }
153 //
154 // void f(N::S<int>* s) {
155 // s->N::S<int>::~S();
156 // }
157 //
158 // See also PR6358 and PR6359.
159 //
160 // For now, we accept all the cases in which the name given could plausibly
161 // be interpreted as a correct destructor name, issuing off-by-default
162 // extension diagnostics on the cases that don't strictly conform to the
163 // C++20 rules. This basically means we always consider looking in the
164 // nested-name-specifier prefix, the complete nested-name-specifier, and
165 // the scope, and accept if we find the expected type in any of the three
166 // places.
167
168 if (SS.isInvalid())
169 return nullptr;
170
171 // Whether we've failed with a diagnostic already.
172 bool Failed = false;
173
174 llvm::SmallVector<NamedDecl*, 8> FoundDecls;
175 llvm::SmallPtrSet<CanonicalDeclPtr<Decl>, 8> FoundDeclSet;
176
177 // If we have an object type, it's because we are in a
178 // pseudo-destructor-expression or a member access expression, and
179 // we know what type we're looking for.
180 QualType SearchType =
181 ObjectTypePtr ? GetTypeFromParser(ObjectTypePtr) : QualType();
182
183 auto CheckLookupResult = [&](LookupResult &Found) -> ParsedType {
184 auto IsAcceptableResult = [&](NamedDecl *D) -> bool {
185 auto *Type = dyn_cast<TypeDecl>(D->getUnderlyingDecl());
186 if (!Type)
187 return false;
188
189 if (SearchType.isNull() || SearchType->isDependentType())
190 return true;
191
192 QualType T = Context.getTypeDeclType(Type);
193 return Context.hasSameUnqualifiedType(T, SearchType);
194 };
195
196 unsigned NumAcceptableResults = 0;
197 for (NamedDecl *D : Found) {
198 if (IsAcceptableResult(D))
199 ++NumAcceptableResults;
200
201 // Don't list a class twice in the lookup failure diagnostic if it's
202 // found by both its injected-class-name and by the name in the enclosing
203 // scope.
204 if (auto *RD = dyn_cast<CXXRecordDecl>(D))
205 if (RD->isInjectedClassName())
206 D = cast<NamedDecl>(RD->getParent());
207
208 if (FoundDeclSet.insert(D).second)
209 FoundDecls.push_back(D);
210 }
211
212 // As an extension, attempt to "fix" an ambiguity by erasing all non-type
213 // results, and all non-matching results if we have a search type. It's not
214 // clear what the right behavior is if destructor lookup hits an ambiguity,
215 // but other compilers do generally accept at least some kinds of
216 // ambiguity.
217 if (Found.isAmbiguous() && NumAcceptableResults == 1) {
218 Diag(NameLoc, diag::ext_dtor_name_ambiguous);
219 LookupResult::Filter F = Found.makeFilter();
220 while (F.hasNext()) {
221 NamedDecl *D = F.next();
222 if (auto *TD = dyn_cast<TypeDecl>(D->getUnderlyingDecl()))
223 Diag(D->getLocation(), diag::note_destructor_type_here)
224 << Context.getTypeDeclType(TD);
225 else
226 Diag(D->getLocation(), diag::note_destructor_nontype_here);
227
228 if (!IsAcceptableResult(D))
229 F.erase();
230 }
231 F.done();
232 }
233
234 if (Found.isAmbiguous())
235 Failed = true;
236
237 if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
238 if (IsAcceptableResult(Type)) {
239 QualType T = Context.getTypeDeclType(Type);
240 MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
241 return CreateParsedType(T,
242 Context.getTrivialTypeSourceInfo(T, NameLoc));
243 }
244 }
245
246 return nullptr;
247 };
248
249 bool IsDependent = false;
250
251 auto LookupInObjectType = [&]() -> ParsedType {
252 if (Failed || SearchType.isNull())
253 return nullptr;
254
255 IsDependent |= SearchType->isDependentType();
256
257 LookupResult Found(*this, &II, NameLoc, LookupDestructorName);
258 DeclContext *LookupCtx = computeDeclContext(SearchType);
259 if (!LookupCtx)
260 return nullptr;
261 LookupQualifiedName(Found, LookupCtx);
262 return CheckLookupResult(Found);
263 };
264
265 auto LookupInNestedNameSpec = [&](CXXScopeSpec &LookupSS) -> ParsedType {
266 if (Failed)
267 return nullptr;
268
269 IsDependent |= isDependentScopeSpecifier(LookupSS);
270 DeclContext *LookupCtx = computeDeclContext(LookupSS, EnteringContext);
271 if (!LookupCtx)
272 return nullptr;
273
274 LookupResult Found(*this, &II, NameLoc, LookupDestructorName);
275 if (RequireCompleteDeclContext(LookupSS, LookupCtx)) {
276 Failed = true;
277 return nullptr;
278 }
279 LookupQualifiedName(Found, LookupCtx);
280 return CheckLookupResult(Found);
281 };
282
283 auto LookupInScope = [&]() -> ParsedType {
284 if (Failed || !S)
285 return nullptr;
286
287 LookupResult Found(*this, &II, NameLoc, LookupDestructorName);
288 LookupName(Found, S);
289 return CheckLookupResult(Found);
290 };
291
292 // C++2a [basic.lookup.qual]p6:
293 // In a qualified-id of the form
294 //
295 // nested-name-specifier[opt] type-name :: ~ type-name
296 //
297 // the second type-name is looked up in the same scope as the first.
298 //
299 // We interpret this as meaning that if you do a dual-scope lookup for the
300 // first name, you also do a dual-scope lookup for the second name, per
301 // C++ [basic.lookup.classref]p4:
302 //
303 // If the id-expression in a class member access is a qualified-id of the
304 // form
305 //
306 // class-name-or-namespace-name :: ...
307 //
308 // the class-name-or-namespace-name following the . or -> is first looked
309 // up in the class of the object expression and the name, if found, is used.
310 // Otherwise, it is looked up in the context of the entire
311 // postfix-expression.
312 //
313 // This looks in the same scopes as for an unqualified destructor name:
314 //
315 // C++ [basic.lookup.classref]p3:
316 // If the unqualified-id is ~ type-name, the type-name is looked up
317 // in the context of the entire postfix-expression. If the type T
318 // of the object expression is of a class type C, the type-name is
319 // also looked up in the scope of class C. At least one of the
320 // lookups shall find a name that refers to cv T.
321 //
322 // FIXME: The intent is unclear here. Should type-name::~type-name look in
323 // the scope anyway if it finds a non-matching name declared in the class?
324 // If both lookups succeed and find a dependent result, which result should
325 // we retain? (Same question for p->~type-name().)
326
327 if (NestedNameSpecifier *Prefix =
328 SS.isSet() ? SS.getScopeRep()->getPrefix() : nullptr) {
329 // This is
330 //
331 // nested-name-specifier type-name :: ~ type-name
332 //
333 // Look for the second type-name in the nested-name-specifier.
334 CXXScopeSpec PrefixSS;
335 PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data()));
336 if (ParsedType T = LookupInNestedNameSpec(PrefixSS))
337 return T;
338 } else {
339 // This is one of
340 //
341 // type-name :: ~ type-name
342 // ~ type-name
343 //
344 // Look in the scope and (if any) the object type.
345 if (ParsedType T = LookupInScope())
346 return T;
347 if (ParsedType T = LookupInObjectType())
348 return T;
349 }
350
351 if (Failed)
352 return nullptr;
353
354 if (IsDependent) {
355 // We didn't find our type, but that's OK: it's dependent anyway.
356
357 // FIXME: What if we have no nested-name-specifier?
358 QualType T = CheckTypenameType(ETK_None, SourceLocation(),
359 SS.getWithLocInContext(Context),
360 II, NameLoc);
361 return ParsedType::make(T);
362 }
363
364 // The remaining cases are all non-standard extensions imitating the behavior
365 // of various other compilers.
366 unsigned NumNonExtensionDecls = FoundDecls.size();
367
368 if (SS.isSet()) {
369 // For compatibility with older broken C++ rules and existing code,
370 //
371 // nested-name-specifier :: ~ type-name
372 //
373 // also looks for type-name within the nested-name-specifier.
374 if (ParsedType T = LookupInNestedNameSpec(SS)) {
375 Diag(SS.getEndLoc(), diag::ext_dtor_named_in_wrong_scope)
376 << SS.getRange()
377 << FixItHint::CreateInsertion(SS.getEndLoc(),
378 ("::" + II.getName()).str());
379 return T;
380 }
381
382 // For compatibility with other compilers and older versions of Clang,
383 //
384 // nested-name-specifier type-name :: ~ type-name
385 //
386 // also looks for type-name in the scope. Unfortunately, we can't
387 // reasonably apply this fallback for dependent nested-name-specifiers.
388 if (SS.getScopeRep()->getPrefix()) {
389 if (ParsedType T = LookupInScope()) {
390 Diag(SS.getEndLoc(), diag::ext_qualified_dtor_named_in_lexical_scope)
391 << FixItHint::CreateRemoval(SS.getRange());
392 Diag(FoundDecls.back()->getLocation(), diag::note_destructor_type_here)
393 << GetTypeFromParser(T);
394 return T;
395 }
396 }
397 }
398
399 // We didn't find anything matching; tell the user what we did find (if
400 // anything).
401
402 // Don't tell the user about declarations we shouldn't have found.
403 FoundDecls.resize(NumNonExtensionDecls);
404
405 // List types before non-types.
406 std::stable_sort(FoundDecls.begin(), FoundDecls.end(),
407 [](NamedDecl *A, NamedDecl *B) {
408 return isa<TypeDecl>(A->getUnderlyingDecl()) >
409 isa<TypeDecl>(B->getUnderlyingDecl());
410 });
411
412 // Suggest a fixit to properly name the destroyed type.
413 auto MakeFixItHint = [&]{
414 const CXXRecordDecl *Destroyed = nullptr;
415 // FIXME: If we have a scope specifier, suggest its last component?
416 if (!SearchType.isNull())
417 Destroyed = SearchType->getAsCXXRecordDecl();
418 else if (S)
419 Destroyed = dyn_cast_or_null<CXXRecordDecl>(S->getEntity());
420 if (Destroyed)
421 return FixItHint::CreateReplacement(SourceRange(NameLoc),
422 Destroyed->getNameAsString());
423 return FixItHint();
424 };
425
426 if (FoundDecls.empty()) {
427 // FIXME: Attempt typo-correction?
428 Diag(NameLoc, diag::err_undeclared_destructor_name)
429 << &II << MakeFixItHint();
430 } else if (!SearchType.isNull() && FoundDecls.size() == 1) {
431 if (auto *TD = dyn_cast<TypeDecl>(FoundDecls[0]->getUnderlyingDecl())) {
432 assert(!SearchType.isNull() &&(static_cast <bool> (!SearchType.isNull() && "should only reject a type result if we have a search type"
) ? void (0) : __assert_fail ("!SearchType.isNull() && \"should only reject a type result if we have a search type\""
, "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 433, __extension__ __PRETTY_FUNCTION__))
433 "should only reject a type result if we have a search type")(static_cast <bool> (!SearchType.isNull() && "should only reject a type result if we have a search type"
) ? void (0) : __assert_fail ("!SearchType.isNull() && \"should only reject a type result if we have a search type\""
, "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 433, __extension__ __PRETTY_FUNCTION__))
;
434 QualType T = Context.getTypeDeclType(TD);
435 Diag(NameLoc, diag::err_destructor_expr_type_mismatch)
436 << T << SearchType << MakeFixItHint();
437 } else {
438 Diag(NameLoc, diag::err_destructor_expr_nontype)
439 << &II << MakeFixItHint();
440 }
441 } else {
442 Diag(NameLoc, SearchType.isNull() ? diag::err_destructor_name_nontype
443 : diag::err_destructor_expr_mismatch)
444 << &II << SearchType << MakeFixItHint();
445 }
446
447 for (NamedDecl *FoundD : FoundDecls) {
448 if (auto *TD = dyn_cast<TypeDecl>(FoundD->getUnderlyingDecl()))
449 Diag(FoundD->getLocation(), diag::note_destructor_type_here)
450 << Context.getTypeDeclType(TD);
451 else
452 Diag(FoundD->getLocation(), diag::note_destructor_nontype_here)
453 << FoundD;
454 }
455
456 return nullptr;
457}
458
459ParsedType Sema::getDestructorTypeForDecltype(const DeclSpec &DS,
460 ParsedType ObjectType) {
461 if (DS.getTypeSpecType() == DeclSpec::TST_error)
462 return nullptr;
463
464 if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto) {
465 Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid);
466 return nullptr;
467 }
468
469 assert(DS.getTypeSpecType() == DeclSpec::TST_decltype &&(static_cast <bool> (DS.getTypeSpecType() == DeclSpec::
TST_decltype && "unexpected type in getDestructorType"
) ? void (0) : __assert_fail ("DS.getTypeSpecType() == DeclSpec::TST_decltype && \"unexpected type in getDestructorType\""
, "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 470, __extension__ __PRETTY_FUNCTION__))
470 "unexpected type in getDestructorType")(static_cast <bool> (DS.getTypeSpecType() == DeclSpec::
TST_decltype && "unexpected type in getDestructorType"
) ? void (0) : __assert_fail ("DS.getTypeSpecType() == DeclSpec::TST_decltype && \"unexpected type in getDestructorType\""
, "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 470, __extension__ __PRETTY_FUNCTION__))
;
471 QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
472
473 // If we know the type of the object, check that the correct destructor
474 // type was named now; we can give better diagnostics this way.
475 QualType SearchType = GetTypeFromParser(ObjectType);
476 if (!SearchType.isNull() && !SearchType->isDependentType() &&
477 !Context.hasSameUnqualifiedType(T, SearchType)) {
478 Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch)
479 << T << SearchType;
480 return nullptr;
481 }
482
483 return ParsedType::make(T);
484}
485
486bool Sema::checkLiteralOperatorId(const CXXScopeSpec &SS,
487 const UnqualifiedId &Name) {
488 assert(Name.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId)(static_cast <bool> (Name.getKind() == UnqualifiedIdKind
::IK_LiteralOperatorId) ? void (0) : __assert_fail ("Name.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId"
, "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 488, __extension__ __PRETTY_FUNCTION__))
;
489
490 if (!SS.isValid())
491 return false;
492
493 switch (SS.getScopeRep()->getKind()) {
494 case NestedNameSpecifier::Identifier:
495 case NestedNameSpecifier::TypeSpec:
496 case NestedNameSpecifier::TypeSpecWithTemplate:
497 // Per C++11 [over.literal]p2, literal operators can only be declared at
498 // namespace scope. Therefore, this unqualified-id cannot name anything.
499 // Reject it early, because we have no AST representation for this in the
500 // case where the scope is dependent.
501 Diag(Name.getBeginLoc(), diag::err_literal_operator_id_outside_namespace)
502 << SS.getScopeRep();
503 return true;
504
505 case NestedNameSpecifier::Global:
506 case NestedNameSpecifier::Super:
507 case NestedNameSpecifier::Namespace:
508 case NestedNameSpecifier::NamespaceAlias:
509 return false;
510 }
511
512 llvm_unreachable("unknown nested name specifier kind")::llvm::llvm_unreachable_internal("unknown nested name specifier kind"
, "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 512)
;
513}
514
515/// Build a C++ typeid expression with a type operand.
516ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
517 SourceLocation TypeidLoc,
518 TypeSourceInfo *Operand,
519 SourceLocation RParenLoc) {
520 // C++ [expr.typeid]p4:
521 // The top-level cv-qualifiers of the lvalue expression or the type-id
522 // that is the operand of typeid are always ignored.
523 // If the type of the type-id is a class type or a reference to a class
524 // type, the class shall be completely-defined.
525 Qualifiers Quals;
526 QualType T
527 = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
528 Quals);
529 if (T->getAs<RecordType>() &&
530 RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
531 return ExprError();
532
533 if (T->isVariablyModifiedType())
534 return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid) << T);
535
536 if (CheckQualifiedFunctionForTypeId(T, TypeidLoc))
537 return ExprError();
538
539 return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), Operand,
540 SourceRange(TypeidLoc, RParenLoc));
541}
542
543/// Build a C++ typeid expression with an expression operand.
544ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
545 SourceLocation TypeidLoc,
546 Expr *E,
547 SourceLocation RParenLoc) {
548 bool WasEvaluated = false;
549 if (E && !E->isTypeDependent()) {
13
Assuming 'E' is null
550 if (E->getType()->isPlaceholderType()) {
551 ExprResult result = CheckPlaceholderExpr(E);
552 if (result.isInvalid()) return ExprError();
553 E = result.get();
554 }
555
556 QualType T = E->getType();
557 if (const RecordType *RecordT = T->getAs<RecordType>()) {
558 CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
559 // C++ [expr.typeid]p3:
560 // [...] If the type of the expression is a class type, the class
561 // shall be completely-defined.
562 if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
563 return ExprError();
564
565 // C++ [expr.typeid]p3:
566 // When typeid is applied to an expression other than an glvalue of a
567 // polymorphic class type [...] [the] expression is an unevaluated
568 // operand. [...]
569 if (RecordD->isPolymorphic() && E->isGLValue()) {
570 if (isUnevaluatedContext()) {
571 // The operand was processed in unevaluated context, switch the
572 // context and recheck the subexpression.
573 ExprResult Result = TransformToPotentiallyEvaluated(E);
574 if (Result.isInvalid())
575 return ExprError();
576 E = Result.get();
577 }
578
579 // We require a vtable to query the type at run time.
580 MarkVTableUsed(TypeidLoc, RecordD);
581 WasEvaluated = true;
582 }
583 }
584
585 ExprResult Result = CheckUnevaluatedOperand(E);
586 if (Result.isInvalid())
587 return ExprError();
588 E = Result.get();
589
590 // C++ [expr.typeid]p4:
591 // [...] If the type of the type-id is a reference to a possibly
592 // cv-qualified type, the result of the typeid expression refers to a
593 // std::type_info object representing the cv-unqualified referenced
594 // type.
595 Qualifiers Quals;
596 QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
597 if (!Context.hasSameType(T, UnqualT)) {
598 T = UnqualT;
599 E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).get();
600 }
601 }
602
603 if (E->getType()->isVariablyModifiedType())
14
Called C++ object pointer is null
604 return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid)
605 << E->getType());
606 else if (!inTemplateInstantiation() &&
607 E->HasSideEffects(Context, WasEvaluated)) {
608 // The expression operand for typeid is in an unevaluated expression
609 // context, so side effects could result in unintended consequences.
610 Diag(E->getExprLoc(), WasEvaluated
611 ? diag::warn_side_effects_typeid
612 : diag::warn_side_effects_unevaluated_context);
613 }
614
615 return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), E,
616 SourceRange(TypeidLoc, RParenLoc));
617}
618
619/// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
620ExprResult
621Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
622 bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
623 // typeid is not supported in OpenCL.
624 if (getLangOpts().OpenCLCPlusPlus) {
1
Assuming field 'OpenCLCPlusPlus' is 0
2
Taking false branch
625 return ExprError(Diag(OpLoc, diag::err_openclcxx_not_supported)
626 << "typeid");
627 }
628
629 // Find the std::type_info type.
630 if (!getStdNamespace())
3
Assuming the condition is false
4
Taking false branch
631 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
632
633 if (!CXXTypeInfoDecl) {
5
Assuming field 'CXXTypeInfoDecl' is non-null
6
Taking false branch
634 IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
635 LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
636 LookupQualifiedName(R, getStdNamespace());
637 CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
638 // Microsoft's typeinfo doesn't have type_info in std but in the global
639 // namespace if _HAS_EXCEPTIONS is defined to 0. See PR13153.
640 if (!CXXTypeInfoDecl && LangOpts.MSVCCompat) {
641 LookupQualifiedName(R, Context.getTranslationUnitDecl());
642 CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
643 }
644 if (!CXXTypeInfoDecl)
645 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
646 }
647
648 if (!getLangOpts().RTTI) {
7
Assuming field 'RTTI' is not equal to 0
8
Taking false branch
649 return ExprError(Diag(OpLoc, diag::err_no_typeid_with_fno_rtti));
650 }
651
652 QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
653
654 if (isType) {
9
Assuming 'isType' is false
10
Taking false branch
655 // The operand is a type; handle it as such.
656 TypeSourceInfo *TInfo = nullptr;
657 QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
658 &TInfo);
659 if (T.isNull())
660 return ExprError();
661
662 if (!TInfo)
663 TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
664
665 return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
666 }
667
668 // The operand is an expression.
669 ExprResult Result =
670 BuildCXXTypeId(TypeInfoType, OpLoc, (Expr *)TyOrExpr, RParenLoc);
11
Passing value via 3rd parameter 'E'
12
Calling 'Sema::BuildCXXTypeId'
671
672 if (!getLangOpts().RTTIData && !Result.isInvalid())
673 if (auto *CTE = dyn_cast<CXXTypeidExpr>(Result.get()))
674 if (CTE->isPotentiallyEvaluated() && !CTE->isMostDerived(Context))
675 Diag(OpLoc, diag::warn_no_typeid_with_rtti_disabled)
676 << (getDiagnostics().getDiagnosticOptions().getFormat() ==
677 DiagnosticOptions::MSVC);
678 return Result;
679}
680
681/// Grabs __declspec(uuid()) off a type, or returns 0 if we cannot resolve to
682/// a single GUID.
683static void
684getUuidAttrOfType(Sema &SemaRef, QualType QT,
685 llvm::SmallSetVector<const UuidAttr *, 1> &UuidAttrs) {
686 // Optionally remove one level of pointer, reference or array indirection.
687 const Type *Ty = QT.getTypePtr();
688 if (QT->isPointerType() || QT->isReferenceType())
689 Ty = QT->getPointeeType().getTypePtr();
690 else if (QT->isArrayType())
691 Ty = Ty->getBaseElementTypeUnsafe();
692
693 const auto *TD = Ty->getAsTagDecl();
694 if (!TD)
695 return;
696
697 if (const auto *Uuid = TD->getMostRecentDecl()->getAttr<UuidAttr>()) {
698 UuidAttrs.insert(Uuid);
699 return;
700 }
701
702 // __uuidof can grab UUIDs from template arguments.
703 if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(TD)) {
704 const TemplateArgumentList &TAL = CTSD->getTemplateArgs();
705 for (const TemplateArgument &TA : TAL.asArray()) {
706 const UuidAttr *UuidForTA = nullptr;
707 if (TA.getKind() == TemplateArgument::Type)
708 getUuidAttrOfType(SemaRef, TA.getAsType(), UuidAttrs);
709 else if (TA.getKind() == TemplateArgument::Declaration)
710 getUuidAttrOfType(SemaRef, TA.getAsDecl()->getType(), UuidAttrs);
711
712 if (UuidForTA)
713 UuidAttrs.insert(UuidForTA);
714 }
715 }
716}
717
718/// Build a Microsoft __uuidof expression with a type operand.
719ExprResult Sema::BuildCXXUuidof(QualType Type,
720 SourceLocation TypeidLoc,
721 TypeSourceInfo *Operand,
722 SourceLocation RParenLoc) {
723 MSGuidDecl *Guid = nullptr;
724 if (!Operand->getType()->isDependentType()) {
725 llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs;
726 getUuidAttrOfType(*this, Operand->getType(), UuidAttrs);
727 if (UuidAttrs.empty())
728 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
729 if (UuidAttrs.size() > 1)
730 return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
731 Guid = UuidAttrs.back()->getGuidDecl();
732 }
733
734 return new (Context)
735 CXXUuidofExpr(Type, Operand, Guid, SourceRange(TypeidLoc, RParenLoc));
736}
737
738/// Build a Microsoft __uuidof expression with an expression operand.
739ExprResult Sema::BuildCXXUuidof(QualType Type, SourceLocation TypeidLoc,
740 Expr *E, SourceLocation RParenLoc) {
741 MSGuidDecl *Guid = nullptr;
742 if (!E->getType()->isDependentType()) {
743 if (E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
744 // A null pointer results in {00000000-0000-0000-0000-000000000000}.
745 Guid = Context.getMSGuidDecl(MSGuidDecl::Parts{});
746 } else {
747 llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs;
748 getUuidAttrOfType(*this, E->getType(), UuidAttrs);
749 if (UuidAttrs.empty())
750 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
751 if (UuidAttrs.size() > 1)
752 return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
753 Guid = UuidAttrs.back()->getGuidDecl();
754 }
755 }
756
757 return new (Context)
758 CXXUuidofExpr(Type, E, Guid, SourceRange(TypeidLoc, RParenLoc));
759}
760
761/// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
762ExprResult
763Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
764 bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
765 QualType GuidType = Context.getMSGuidType();
766 GuidType.addConst();
767
768 if (isType) {
769 // The operand is a type; handle it as such.
770 TypeSourceInfo *TInfo = nullptr;
771 QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
772 &TInfo);
773 if (T.isNull())
774 return ExprError();
775
776 if (!TInfo)
777 TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
778
779 return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
780 }
781
782 // The operand is an expression.
783 return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
784}
785
786/// ActOnCXXBoolLiteral - Parse {true,false} literals.
787ExprResult
788Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
789 assert((Kind == tok::kw_true || Kind == tok::kw_false) &&(static_cast <bool> ((Kind == tok::kw_true || Kind == tok
::kw_false) && "Unknown C++ Boolean value!") ? void (
0) : __assert_fail ("(Kind == tok::kw_true || Kind == tok::kw_false) && \"Unknown C++ Boolean value!\""
, "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 790, __extension__ __PRETTY_FUNCTION__))
790 "Unknown C++ Boolean value!")(static_cast <bool> ((Kind == tok::kw_true || Kind == tok
::kw_false) && "Unknown C++ Boolean value!") ? void (
0) : __assert_fail ("(Kind == tok::kw_true || Kind == tok::kw_false) && \"Unknown C++ Boolean value!\""
, "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 790, __extension__ __PRETTY_FUNCTION__))
;
791 return new (Context)
792 CXXBoolLiteralExpr(Kind == tok::kw_true, Context.BoolTy, OpLoc);
793}
794
795/// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
796ExprResult
797Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
798 return new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
799}
800
801/// ActOnCXXThrow - Parse throw expressions.
802ExprResult
803Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) {
804 bool IsThrownVarInScope = false;
805 if (Ex) {
806 // C++0x [class.copymove]p31:
807 // When certain criteria are met, an implementation is allowed to omit the
808 // copy/move construction of a class object [...]
809 //
810 // - in a throw-expression, when the operand is the name of a
811 // non-volatile automatic object (other than a function or catch-
812 // clause parameter) whose scope does not extend beyond the end of the
813 // innermost enclosing try-block (if there is one), the copy/move
814 // operation from the operand to the exception object (15.1) can be
815 // omitted by constructing the automatic object directly into the
816 // exception object
817 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens()))
818 if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
819 if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) {
820 for( ; S; S = S->getParent()) {
821 if (S->isDeclScope(Var)) {
822 IsThrownVarInScope = true;
823 break;
824 }
825
826 if (S->getFlags() &
827 (Scope::FnScope | Scope::ClassScope | Scope::BlockScope |
828 Scope::FunctionPrototypeScope | Scope::ObjCMethodScope |
829 Scope::TryScope))
830 break;
831 }
832 }
833 }
834 }
835
836 return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope);
837}
838
839ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex,
840 bool IsThrownVarInScope) {
841 // Don't report an error if 'throw' is used in system headers.
842 if (!getLangOpts().CXXExceptions &&
843 !getSourceManager().isInSystemHeader(OpLoc) && !getLangOpts().CUDA) {
844 // Delay error emission for the OpenMP device code.
845 targetDiag(OpLoc, diag::err_exceptions_disabled) << "throw";
846 }
847
848 // Exceptions aren't allowed in CUDA device code.
849 if (getLangOpts().CUDA)
850 CUDADiagIfDeviceCode(OpLoc, diag::err_cuda_device_exceptions)
851 << "throw" << CurrentCUDATarget();
852
853 if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope())
854 Diag(OpLoc, diag::err_omp_simd_region_cannot_use_stmt) << "throw";
855
856 if (Ex && !Ex->isTypeDependent()) {
857 QualType ExceptionObjectTy = Context.getExceptionObjectType(Ex->getType());
858 if (CheckCXXThrowOperand(OpLoc, ExceptionObjectTy, Ex))
859 return ExprError();
860
861 // Initialize the exception result. This implicitly weeds out
862 // abstract types or types with inaccessible copy constructors.
863
864 // C++0x [class.copymove]p31:
865 // When certain criteria are met, an implementation is allowed to omit the
866 // copy/move construction of a class object [...]
867 //
868 // - in a throw-expression, when the operand is the name of a
869 // non-volatile automatic object (other than a function or
870 // catch-clause
871 // parameter) whose scope does not extend beyond the end of the
872 // innermost enclosing try-block (if there is one), the copy/move
873 // operation from the operand to the exception object (15.1) can be
874 // omitted by constructing the automatic object directly into the
875 // exception object
876 NamedReturnInfo NRInfo =
877 IsThrownVarInScope ? getNamedReturnInfo(Ex) : NamedReturnInfo();
878
879 InitializedEntity Entity = InitializedEntity::InitializeException(
880 OpLoc, ExceptionObjectTy,
881 /*NRVO=*/NRInfo.isCopyElidable());
882 ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRInfo, Ex);
883 if (Res.isInvalid())
884 return ExprError();
885 Ex = Res.get();
886 }
887
888 // PPC MMA non-pointer types are not allowed as throw expr types.
889 if (Ex && Context.getTargetInfo().getTriple().isPPC64())
890 CheckPPCMMAType(Ex->getType(), Ex->getBeginLoc());
891
892 return new (Context)
893 CXXThrowExpr(Ex, Context.VoidTy, OpLoc, IsThrownVarInScope);
894}
895
896static void
897collectPublicBases(CXXRecordDecl *RD,
898 llvm::DenseMap<CXXRecordDecl *, unsigned> &SubobjectsSeen,
899 llvm::SmallPtrSetImpl<CXXRecordDecl *> &VBases,
900 llvm::SetVector<CXXRecordDecl *> &PublicSubobjectsSeen,
901 bool ParentIsPublic) {
902 for (const CXXBaseSpecifier &BS : RD->bases()) {
903 CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
904 bool NewSubobject;
905 // Virtual bases constitute the same subobject. Non-virtual bases are
906 // always distinct subobjects.
907 if (BS.isVirtual())
908 NewSubobject = VBases.insert(BaseDecl).second;
909 else
910 NewSubobject = true;
911
912 if (NewSubobject)
913 ++SubobjectsSeen[BaseDecl];
914
915 // Only add subobjects which have public access throughout the entire chain.
916 bool PublicPath = ParentIsPublic && BS.getAccessSpecifier() == AS_public;
917 if (PublicPath)
918 PublicSubobjectsSeen.insert(BaseDecl);
919
920 // Recurse on to each base subobject.
921 collectPublicBases(BaseDecl, SubobjectsSeen, VBases, PublicSubobjectsSeen,
922 PublicPath);
923 }
924}
925
926static void getUnambiguousPublicSubobjects(
927 CXXRecordDecl *RD, llvm::SmallVectorImpl<CXXRecordDecl *> &Objects) {
928 llvm::DenseMap<CXXRecordDecl *, unsigned> SubobjectsSeen;
929 llvm::SmallSet<CXXRecordDecl *, 2> VBases;
930 llvm::SetVector<CXXRecordDecl *> PublicSubobjectsSeen;
931 SubobjectsSeen[RD] = 1;
932 PublicSubobjectsSeen.insert(RD);
933 collectPublicBases(RD, SubobjectsSeen, VBases, PublicSubobjectsSeen,
934 /*ParentIsPublic=*/true);
935
936 for (CXXRecordDecl *PublicSubobject : PublicSubobjectsSeen) {
937 // Skip ambiguous objects.
938 if (SubobjectsSeen[PublicSubobject] > 1)
939 continue;
940
941 Objects.push_back(PublicSubobject);
942 }
943}
944
945/// CheckCXXThrowOperand - Validate the operand of a throw.
946bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc,
947 QualType ExceptionObjectTy, Expr *E) {
948 // If the type of the exception would be an incomplete type or a pointer
949 // to an incomplete type other than (cv) void the program is ill-formed.
950 QualType Ty = ExceptionObjectTy;
951 bool isPointer = false;
952 if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
953 Ty = Ptr->getPointeeType();
954 isPointer = true;
955 }
956 if (!isPointer || !Ty->isVoidType()) {
957 if (RequireCompleteType(ThrowLoc, Ty,
958 isPointer ? diag::err_throw_incomplete_ptr
959 : diag::err_throw_incomplete,
960 E->getSourceRange()))
961 return true;
962
963 if (!isPointer && Ty->isSizelessType()) {
964 Diag(ThrowLoc, diag::err_throw_sizeless) << Ty << E->getSourceRange();
965 return true;
966 }
967
968 if (RequireNonAbstractType(ThrowLoc, ExceptionObjectTy,
969 diag::err_throw_abstract_type, E))
970 return true;
971 }
972
973 // If the exception has class type, we need additional handling.
974 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
975 if (!RD)
976 return false;
977
978 // If we are throwing a polymorphic class type or pointer thereof,
979 // exception handling will make use of the vtable.
980 MarkVTableUsed(ThrowLoc, RD);
981
982 // If a pointer is thrown, the referenced object will not be destroyed.
983 if (isPointer)
984 return false;
985
986 // If the class has a destructor, we must be able to call it.
987 if (!RD->hasIrrelevantDestructor()) {
988 if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
989 MarkFunctionReferenced(E->getExprLoc(), Destructor);
990 CheckDestructorAccess(E->getExprLoc(), Destructor,
991 PDiag(diag::err_access_dtor_exception) << Ty);
992 if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
993 return true;
994 }
995 }
996
997 // The MSVC ABI creates a list of all types which can catch the exception
998 // object. This list also references the appropriate copy constructor to call
999 // if the object is caught by value and has a non-trivial copy constructor.
1000 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1001 // We are only interested in the public, unambiguous bases contained within
1002 // the exception object. Bases which are ambiguous or otherwise
1003 // inaccessible are not catchable types.
1004 llvm::SmallVector<CXXRecordDecl *, 2> UnambiguousPublicSubobjects;
1005 getUnambiguousPublicSubobjects(RD, UnambiguousPublicSubobjects);
1006
1007 for (CXXRecordDecl *Subobject : UnambiguousPublicSubobjects) {
1008 // Attempt to lookup the copy constructor. Various pieces of machinery
1009 // will spring into action, like template instantiation, which means this
1010 // cannot be a simple walk of the class's decls. Instead, we must perform
1011 // lookup and overload resolution.
1012 CXXConstructorDecl *CD = LookupCopyingConstructor(Subobject, 0);
1013 if (!CD || CD->isDeleted())
1014 continue;
1015
1016 // Mark the constructor referenced as it is used by this throw expression.
1017 MarkFunctionReferenced(E->getExprLoc(), CD);
1018
1019 // Skip this copy constructor if it is trivial, we don't need to record it
1020 // in the catchable type data.
1021 if (CD->isTrivial())
1022 continue;
1023
1024 // The copy constructor is non-trivial, create a mapping from this class
1025 // type to this constructor.
1026 // N.B. The selection of copy constructor is not sensitive to this
1027 // particular throw-site. Lookup will be performed at the catch-site to
1028 // ensure that the copy constructor is, in fact, accessible (via
1029 // friendship or any other means).
1030 Context.addCopyConstructorForExceptionObject(Subobject, CD);
1031
1032 // We don't keep the instantiated default argument expressions around so
1033 // we must rebuild them here.
1034 for (unsigned I = 1, E = CD->getNumParams(); I != E; ++I) {
1035 if (CheckCXXDefaultArgExpr(ThrowLoc, CD, CD->getParamDecl(I)))
1036 return true;
1037 }
1038 }
1039 }
1040
1041 // Under the Itanium C++ ABI, memory for the exception object is allocated by
1042 // the runtime with no ability for the compiler to request additional
1043 // alignment. Warn if the exception type requires alignment beyond the minimum
1044 // guaranteed by the target C++ runtime.
1045 if (Context.getTargetInfo().getCXXABI().isItaniumFamily()) {
1046 CharUnits TypeAlign = Context.getTypeAlignInChars(Ty);
1047 CharUnits ExnObjAlign = Context.getExnObjectAlignment();
1048 if (ExnObjAlign < TypeAlign) {
1049 Diag(ThrowLoc, diag::warn_throw_underaligned_obj);
1050 Diag(ThrowLoc, diag::note_throw_underaligned_obj)
1051 << Ty << (unsigned)TypeAlign.getQuantity()
1052 << (unsigned)ExnObjAlign.getQuantity();
1053 }
1054 }
1055
1056 return false;
1057}
1058
1059static QualType adjustCVQualifiersForCXXThisWithinLambda(
1060 ArrayRef<FunctionScopeInfo *> FunctionScopes, QualType ThisTy,
1061 DeclContext *CurSemaContext, ASTContext &ASTCtx) {
1062
1063 QualType ClassType = ThisTy->getPointeeType();
1064 LambdaScopeInfo *CurLSI = nullptr;
1065 DeclContext *CurDC = CurSemaContext;
1066
1067 // Iterate through the stack of lambdas starting from the innermost lambda to
1068 // the outermost lambda, checking if '*this' is ever captured by copy - since
1069 // that could change the cv-qualifiers of the '*this' object.
1070 // The object referred to by '*this' starts out with the cv-qualifiers of its
1071 // member function. We then start with the innermost lambda and iterate
1072 // outward checking to see if any lambda performs a by-copy capture of '*this'
1073 // - and if so, any nested lambda must respect the 'constness' of that
1074 // capturing lamdbda's call operator.
1075 //
1076
1077 // Since the FunctionScopeInfo stack is representative of the lexical
1078 // nesting of the lambda expressions during initial parsing (and is the best
1079 // place for querying information about captures about lambdas that are
1080 // partially processed) and perhaps during instantiation of function templates
1081 // that contain lambda expressions that need to be transformed BUT not
1082 // necessarily during instantiation of a nested generic lambda's function call
1083 // operator (which might even be instantiated at the end of the TU) - at which
1084 // time the DeclContext tree is mature enough to query capture information
1085 // reliably - we use a two pronged approach to walk through all the lexically
1086 // enclosing lambda expressions:
1087 //
1088 // 1) Climb down the FunctionScopeInfo stack as long as each item represents
1089 // a Lambda (i.e. LambdaScopeInfo) AND each LSI's 'closure-type' is lexically
1090 // enclosed by the call-operator of the LSI below it on the stack (while
1091 // tracking the enclosing DC for step 2 if needed). Note the topmost LSI on
1092 // the stack represents the innermost lambda.
1093 //
1094 // 2) If we run out of enclosing LSI's, check if the enclosing DeclContext
1095 // represents a lambda's call operator. If it does, we must be instantiating
1096 // a generic lambda's call operator (represented by the Current LSI, and
1097 // should be the only scenario where an inconsistency between the LSI and the
1098 // DeclContext should occur), so climb out the DeclContexts if they
1099 // represent lambdas, while querying the corresponding closure types
1100 // regarding capture information.
1101
1102 // 1) Climb down the function scope info stack.
1103 for (int I = FunctionScopes.size();
1104 I-- && isa<LambdaScopeInfo>(FunctionScopes[I]) &&
1105 (!CurLSI || !CurLSI->Lambda || CurLSI->Lambda->getDeclContext() ==
1106 cast<LambdaScopeInfo>(FunctionScopes[I])->CallOperator);
1107 CurDC = getLambdaAwareParentOfDeclContext(CurDC)) {
1108 CurLSI = cast<LambdaScopeInfo>(FunctionScopes[I]);
1109
1110 if (!CurLSI->isCXXThisCaptured())
1111 continue;
1112
1113 auto C = CurLSI->getCXXThisCapture();
1114
1115 if (C.isCopyCapture()) {
1116 ClassType.removeLocalCVRQualifiers(Qualifiers::CVRMask);
1117 if (CurLSI->CallOperator->isConst())
1118 ClassType.addConst();
1119 return ASTCtx.getPointerType(ClassType);
1120 }
1121 }
1122
1123 // 2) We've run out of ScopeInfos but check if CurDC is a lambda (which can
1124 // happen during instantiation of its nested generic lambda call operator)
1125 if (isLambdaCallOperator(CurDC)) {
1126 assert(CurLSI && "While computing 'this' capture-type for a generic "(static_cast <bool> (CurLSI && "While computing 'this' capture-type for a generic "
"lambda, we must have a corresponding LambdaScopeInfo") ? void
(0) : __assert_fail ("CurLSI && \"While computing 'this' capture-type for a generic \" \"lambda, we must have a corresponding LambdaScopeInfo\""
, "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 1127, __extension__ __PRETTY_FUNCTION__))
1127 "lambda, we must have a corresponding LambdaScopeInfo")(static_cast <bool> (CurLSI && "While computing 'this' capture-type for a generic "
"lambda, we must have a corresponding LambdaScopeInfo") ? void
(0) : __assert_fail ("CurLSI && \"While computing 'this' capture-type for a generic \" \"lambda, we must have a corresponding LambdaScopeInfo\""
, "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 1127, __extension__ __PRETTY_FUNCTION__))
;
1128 assert(isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) &&(static_cast <bool> (isGenericLambdaCallOperatorSpecialization
(CurLSI->CallOperator) && "While computing 'this' capture-type for a generic lambda, when we "
"run out of enclosing LSI's, yet the enclosing DC is a " "lambda-call-operator we must be (i.e. Current LSI) in a generic "
"lambda call oeprator") ? void (0) : __assert_fail ("isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) && \"While computing 'this' capture-type for a generic lambda, when we \" \"run out of enclosing LSI's, yet the enclosing DC is a \" \"lambda-call-operator we must be (i.e. Current LSI) in a generic \" \"lambda call oeprator\""
, "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 1132, __extension__ __PRETTY_FUNCTION__))
1129 "While computing 'this' capture-type for a generic lambda, when we "(static_cast <bool> (isGenericLambdaCallOperatorSpecialization
(CurLSI->CallOperator) && "While computing 'this' capture-type for a generic lambda, when we "
"run out of enclosing LSI's, yet the enclosing DC is a " "lambda-call-operator we must be (i.e. Current LSI) in a generic "
"lambda call oeprator") ? void (0) : __assert_fail ("isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) && \"While computing 'this' capture-type for a generic lambda, when we \" \"run out of enclosing LSI's, yet the enclosing DC is a \" \"lambda-call-operator we must be (i.e. Current LSI) in a generic \" \"lambda call oeprator\""
, "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 1132, __extension__ __PRETTY_FUNCTION__))
1130 "run out of enclosing LSI's, yet the enclosing DC is a "(static_cast <bool> (isGenericLambdaCallOperatorSpecialization
(CurLSI->CallOperator) && "While computing 'this' capture-type for a generic lambda, when we "
"run out of enclosing LSI's, yet the enclosing DC is a " "lambda-call-operator we must be (i.e. Current LSI) in a generic "
"lambda call oeprator") ? void (0) : __assert_fail ("isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) && \"While computing 'this' capture-type for a generic lambda, when we \" \"run out of enclosing LSI's, yet the enclosing DC is a \" \"lambda-call-operator we must be (i.e. Current LSI) in a generic \" \"lambda call oeprator\""
, "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 1132, __extension__ __PRETTY_FUNCTION__))
1131 "lambda-call-operator we must be (i.e. Current LSI) in a generic "(static_cast <bool> (isGenericLambdaCallOperatorSpecialization
(CurLSI->CallOperator) && "While computing 'this' capture-type for a generic lambda, when we "
"run out of enclosing LSI's, yet the enclosing DC is a " "lambda-call-operator we must be (i.e. Current LSI) in a generic "
"lambda call oeprator") ? void (0) : __assert_fail ("isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) && \"While computing 'this' capture-type for a generic lambda, when we \" \"run out of enclosing LSI's, yet the enclosing DC is a \" \"lambda-call-operator we must be (i.e. Current LSI) in a generic \" \"lambda call oeprator\""
, "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 1132, __extension__ __PRETTY_FUNCTION__))
1132 "lambda call oeprator")(static_cast <bool> (isGenericLambdaCallOperatorSpecialization
(CurLSI->CallOperator) && "While computing 'this' capture-type for a generic lambda, when we "
"run out of enclosing LSI's, yet the enclosing DC is a " "lambda-call-operator we must be (i.e. Current LSI) in a generic "
"lambda call oeprator") ? void (0) : __assert_fail ("isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) && \"While computing 'this' capture-type for a generic lambda, when we \" \"run out of enclosing LSI's, yet the enclosing DC is a \" \"lambda-call-operator we must be (i.e. Current LSI) in a generic \" \"lambda call oeprator\""
, "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 1132, __extension__ __PRETTY_FUNCTION__))
;
1133 assert(CurDC == getLambdaAwareParentOfDeclContext(CurLSI->CallOperator))(static_cast <bool> (CurDC == getLambdaAwareParentOfDeclContext
(CurLSI->CallOperator)) ? void (0) : __assert_fail ("CurDC == getLambdaAwareParentOfDeclContext(CurLSI->CallOperator)"
, "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 1133, __extension__ __PRETTY_FUNCTION__))
;
1134
1135 auto IsThisCaptured =
1136 [](CXXRecordDecl *Closure, bool &IsByCopy, bool &IsConst) {
1137 IsConst = false;
1138 IsByCopy = false;
1139 for (auto &&C : Closure->captures()) {
1140 if (C.capturesThis()) {
1141 if (C.getCaptureKind() == LCK_StarThis)
1142 IsByCopy = true;
1143 if (Closure->getLambdaCallOperator()->isConst())
1144 IsConst = true;
1145 return true;
1146 }
1147 }
1148 return false;
1149 };
1150
1151 bool IsByCopyCapture = false;
1152 bool IsConstCapture = false;
1153 CXXRecordDecl *Closure = cast<CXXRecordDecl>(CurDC->getParent());
1154 while (Closure &&
1155 IsThisCaptured(Closure, IsByCopyCapture, IsConstCapture)) {
1156 if (IsByCopyCapture) {
1157 ClassType.removeLocalCVRQualifiers(Qualifiers::CVRMask);
1158 if (IsConstCapture)
1159 ClassType.addConst();
1160 return ASTCtx.getPointerType(ClassType);
1161 }
1162 Closure = isLambdaCallOperator(Closure->getParent())
1163 ? cast<CXXRecordDecl>(Closure->getParent()->getParent())
1164 : nullptr;
1165 }
1166 }
1167 return ASTCtx.getPointerType(ClassType);
1168}
1169
1170QualType Sema::getCurrentThisType() {
1171 DeclContext *DC = getFunctionLevelDeclContext();
1172 QualType ThisTy = CXXThisTypeOverride;
1173
1174 if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) {
1175 if (method && method->isInstance())
1176 ThisTy = method->getThisType();
1177 }
1178
1179 if (ThisTy.isNull() && isLambdaCallOperator(CurContext) &&
1180 inTemplateInstantiation() && isa<CXXRecordDecl>(DC)) {
1181
1182 // This is a lambda call operator that is being instantiated as a default
1183 // initializer. DC must point to the enclosing class type, so we can recover
1184 // the 'this' type from it.
1185 QualType ClassTy = Context.getTypeDeclType(cast<CXXRecordDecl>(DC));
1186 // There are no cv-qualifiers for 'this' within default initializers,
1187 // per [expr.prim.general]p4.
1188 ThisTy = Context.getPointerType(ClassTy);
1189 }
1190
1191 // If we are within a lambda's call operator, the cv-qualifiers of 'this'
1192 // might need to be adjusted if the lambda or any of its enclosing lambda's
1193 // captures '*this' by copy.
1194 if (!ThisTy.isNull() && isLambdaCallOperator(CurContext))
1195 return adjustCVQualifiersForCXXThisWithinLambda(FunctionScopes, ThisTy,
1196 CurContext, Context);
1197 return ThisTy;
1198}
1199
1200Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S,
1201 Decl *ContextDecl,
1202 Qualifiers CXXThisTypeQuals,
1203 bool Enabled)
1204 : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false)
1205{
1206 if (!Enabled || !ContextDecl)
1207 return;
1208
1209 CXXRecordDecl *Record = nullptr;
1210 if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl))
1211 Record = Template->getTemplatedDecl();
1212 else
1213 Record = cast<CXXRecordDecl>(ContextDecl);
1214
1215 QualType T = S.Context.getRecordType(Record);
1216 T = S.getASTContext().getQualifiedType(T, CXXThisTypeQuals);
1217
1218 S.CXXThisTypeOverride = S.Context.getPointerType(T);
1219
1220 this->Enabled = true;
1221}
1222
1223
1224Sema::CXXThisScopeRAII::~CXXThisScopeRAII() {
1225 if (Enabled) {
1226 S.CXXThisTypeOverride = OldCXXThisTypeOverride;
1227 }
1228}
1229
1230static void buildLambdaThisCaptureFixit(Sema &Sema, LambdaScopeInfo *LSI) {
1231 SourceLocation DiagLoc = LSI->IntroducerRange.getEnd();
1232 assert(!LSI->isCXXThisCaptured())(static_cast <bool> (!LSI->isCXXThisCaptured()) ? void
(0) : __assert_fail ("!LSI->isCXXThisCaptured()", "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 1232, __extension__ __PRETTY_FUNCTION__))
;
1233 // [=, this] {}; // until C++20: Error: this when = is the default
1234 if (LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval &&
1235 !Sema.getLangOpts().CPlusPlus20)
1236 return;
1237 Sema.Diag(DiagLoc, diag::note_lambda_this_capture_fixit)
1238 << FixItHint::CreateInsertion(
1239 DiagLoc, LSI->NumExplicitCaptures > 0 ? ", this" : "this");
1240}
1241
1242bool Sema::CheckCXXThisCapture(SourceLocation Loc, const bool Explicit,
1243 bool BuildAndDiagnose, const unsigned *const FunctionScopeIndexToStopAt,
1244 const bool ByCopy) {
1245 // We don't need to capture this in an unevaluated context.
1246 if (isUnevaluatedContext() && !Explicit)
1247 return true;
1248
1249 assert((!ByCopy || Explicit) && "cannot implicitly capture *this by value")(static_cast <bool> ((!ByCopy || Explicit) && "cannot implicitly capture *this by value"
) ? void (0) : __assert_fail ("(!ByCopy || Explicit) && \"cannot implicitly capture *this by value\""
, "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 1249, __extension__ __PRETTY_FUNCTION__))
;
1250
1251 const int MaxFunctionScopesIndex = FunctionScopeIndexToStopAt
1252 ? *FunctionScopeIndexToStopAt
1253 : FunctionScopes.size() - 1;
1254
1255 // Check that we can capture the *enclosing object* (referred to by '*this')
1256 // by the capturing-entity/closure (lambda/block/etc) at
1257 // MaxFunctionScopesIndex-deep on the FunctionScopes stack.
1258
1259 // Note: The *enclosing object* can only be captured by-value by a
1260 // closure that is a lambda, using the explicit notation:
1261 // [*this] { ... }.
1262 // Every other capture of the *enclosing object* results in its by-reference
1263 // capture.
1264
1265 // For a closure 'L' (at MaxFunctionScopesIndex in the FunctionScopes
1266 // stack), we can capture the *enclosing object* only if:
1267 // - 'L' has an explicit byref or byval capture of the *enclosing object*
1268 // - or, 'L' has an implicit capture.
1269 // AND
1270 // -- there is no enclosing closure
1271 // -- or, there is some enclosing closure 'E' that has already captured the
1272 // *enclosing object*, and every intervening closure (if any) between 'E'
1273 // and 'L' can implicitly capture the *enclosing object*.
1274 // -- or, every enclosing closure can implicitly capture the
1275 // *enclosing object*
1276
1277
1278 unsigned NumCapturingClosures = 0;
1279 for (int idx = MaxFunctionScopesIndex; idx >= 0; idx--) {
1280 if (CapturingScopeInfo *CSI =
1281 dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) {
1282 if (CSI->CXXThisCaptureIndex != 0) {
1283 // 'this' is already being captured; there isn't anything more to do.
1284 CSI->Captures[CSI->CXXThisCaptureIndex - 1].markUsed(BuildAndDiagnose);
1285 break;
1286 }
1287 LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI);
1288 if (LSI && isGenericLambdaCallOperatorSpecialization(LSI->CallOperator)) {
1289 // This context can't implicitly capture 'this'; fail out.
1290 if (BuildAndDiagnose) {
1291 Diag(Loc, diag::err_this_capture)
1292 << (Explicit && idx == MaxFunctionScopesIndex);
1293 if (!Explicit)
1294 buildLambdaThisCaptureFixit(*this, LSI);
1295 }
1296 return true;
1297 }
1298 if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref ||
1299 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval ||
1300 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block ||
1301 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_CapturedRegion ||
1302 (Explicit && idx == MaxFunctionScopesIndex)) {
1303 // Regarding (Explicit && idx == MaxFunctionScopesIndex): only the first
1304 // iteration through can be an explicit capture, all enclosing closures,
1305 // if any, must perform implicit captures.
1306
1307 // This closure can capture 'this'; continue looking upwards.
1308 NumCapturingClosures++;
1309 continue;
1310 }
1311 // This context can't implicitly capture 'this'; fail out.
1312 if (BuildAndDiagnose)
1313 Diag(Loc, diag::err_this_capture)
1314 << (Explicit && idx == MaxFunctionScopesIndex);
1315
1316 if (!Explicit)
1317 buildLambdaThisCaptureFixit(*this, LSI);
1318 return true;
1319 }
1320 break;
1321 }
1322 if (!BuildAndDiagnose) return false;
1323
1324 // If we got here, then the closure at MaxFunctionScopesIndex on the
1325 // FunctionScopes stack, can capture the *enclosing object*, so capture it
1326 // (including implicit by-reference captures in any enclosing closures).
1327
1328 // In the loop below, respect the ByCopy flag only for the closure requesting
1329 // the capture (i.e. first iteration through the loop below). Ignore it for
1330 // all enclosing closure's up to NumCapturingClosures (since they must be
1331 // implicitly capturing the *enclosing object* by reference (see loop
1332 // above)).
1333 assert((!ByCopy ||(static_cast <bool> ((!ByCopy || dyn_cast<LambdaScopeInfo
>(FunctionScopes[MaxFunctionScopesIndex])) && "Only a lambda can capture the enclosing object (referred to by "
"*this) by copy") ? void (0) : __assert_fail ("(!ByCopy || dyn_cast<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) && \"Only a lambda can capture the enclosing object (referred to by \" \"*this) by copy\""
, "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 1336, __extension__ __PRETTY_FUNCTION__))
1334 dyn_cast<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) &&(static_cast <bool> ((!ByCopy || dyn_cast<LambdaScopeInfo
>(FunctionScopes[MaxFunctionScopesIndex])) && "Only a lambda can capture the enclosing object (referred to by "
"*this) by copy") ? void (0) : __assert_fail ("(!ByCopy || dyn_cast<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) && \"Only a lambda can capture the enclosing object (referred to by \" \"*this) by copy\""
, "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 1336, __extension__ __PRETTY_FUNCTION__))
1335 "Only a lambda can capture the enclosing object (referred to by "(static_cast <bool> ((!ByCopy || dyn_cast<LambdaScopeInfo
>(FunctionScopes[MaxFunctionScopesIndex])) && "Only a lambda can capture the enclosing object (referred to by "
"*this) by copy") ? void (0) : __assert_fail ("(!ByCopy || dyn_cast<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) && \"Only a lambda can capture the enclosing object (referred to by \" \"*this) by copy\""
, "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 1336, __extension__ __PRETTY_FUNCTION__))
1336 "*this) by copy")(static_cast <bool> ((!ByCopy || dyn_cast<LambdaScopeInfo
>(FunctionScopes[MaxFunctionScopesIndex])) && "Only a lambda can capture the enclosing object (referred to by "
"*this) by copy") ? void (0) : __assert_fail ("(!ByCopy || dyn_cast<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) && \"Only a lambda can capture the enclosing object (referred to by \" \"*this) by copy\""
, "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 1336, __extension__ __PRETTY_FUNCTION__))
;
1337 QualType ThisTy = getCurrentThisType();
1338 for (int idx = MaxFunctionScopesIndex; NumCapturingClosures;
1339 --idx, --NumCapturingClosures) {
1340 CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]);
1341
1342 // The type of the corresponding data member (not a 'this' pointer if 'by
1343 // copy').
1344 QualType CaptureType = ThisTy;
1345 if (ByCopy) {
1346 // If we are capturing the object referred to by '*this' by copy, ignore
1347 // any cv qualifiers inherited from the type of the member function for
1348 // the type of the closure-type's corresponding data member and any use
1349 // of 'this'.
1350 CaptureType = ThisTy->getPointeeType();
1351 CaptureType.removeLocalCVRQualifiers(Qualifiers::CVRMask);
1352 }
1353
1354 bool isNested = NumCapturingClosures > 1;
1355 CSI->addThisCapture(isNested, Loc, CaptureType, ByCopy);
1356 }
1357 return false;
1358}
1359
1360ExprResult Sema::ActOnCXXThis(SourceLocation Loc) {
1361 /// C++ 9.3.2: In the body of a non-static member function, the keyword this
1362 /// is a non-lvalue expression whose value is the address of the object for
1363 /// which the function is called.
1364
1365 QualType ThisTy = getCurrentThisType();
1366 if (ThisTy.isNull())
1367 return Diag(Loc, diag::err_invalid_this_use);
1368 return BuildCXXThisExpr(Loc, ThisTy, /*IsImplicit=*/false);
1369}
1370
1371Expr *Sema::BuildCXXThisExpr(SourceLocation Loc, QualType Type,
1372 bool IsImplicit) {
1373 auto *This = new (Context) CXXThisExpr(Loc, Type, IsImplicit);
1374 MarkThisReferenced(This);
1375 return This;
1376}
1377
1378void Sema::MarkThisReferenced(CXXThisExpr *This) {
1379 CheckCXXThisCapture(This->getExprLoc());
1380}
1381
1382bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) {
1383 // If we're outside the body of a member function, then we'll have a specified
1384 // type for 'this'.
1385 if (CXXThisTypeOverride.isNull())
1386 return false;
1387
1388 // Determine whether we're looking into a class that's currently being
1389 // defined.
1390 CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl();
1391 return Class && Class->isBeingDefined();
1392}
1393
1394/// Parse construction of a specified type.
1395/// Can be interpreted either as function-style casting ("int(x)")
1396/// or class type construction ("ClassType(x,y,z)")
1397/// or creation of a value-initialized type ("int()").
1398ExprResult
1399Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep,
1400 SourceLocation LParenOrBraceLoc,
1401 MultiExprArg exprs,
1402 SourceLocation RParenOrBraceLoc,
1403 bool ListInitialization) {
1404 if (!TypeRep)
1405 return ExprError();
1406
1407 TypeSourceInfo *TInfo;
1408 QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
1409 if (!TInfo)
1410 TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
1411
1412 auto Result = BuildCXXTypeConstructExpr(TInfo, LParenOrBraceLoc, exprs,
1413 RParenOrBraceLoc, ListInitialization);
1414 // Avoid creating a non-type-dependent expression that contains typos.
1415 // Non-type-dependent expressions are liable to be discarded without
1416 // checking for embedded typos.
1417 if (!Result.isInvalid() && Result.get()->isInstantiationDependent() &&
1418 !Result.get()->isTypeDependent())
1419 Result = CorrectDelayedTyposInExpr(Result.get());
1420 else if (Result.isInvalid())
1421 Result = CreateRecoveryExpr(TInfo->getTypeLoc().getBeginLoc(),
1422 RParenOrBraceLoc, exprs, Ty);
1423 return Result;
1424}
1425
1426ExprResult
1427Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
1428 SourceLocation LParenOrBraceLoc,
1429 MultiExprArg Exprs,
1430 SourceLocation RParenOrBraceLoc,
1431 bool ListInitialization) {
1432 QualType Ty = TInfo->getType();
1433 SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
1434
1435 assert((!ListInitialization ||(static_cast <bool> ((!ListInitialization || (Exprs.size
() == 1 && isa<InitListExpr>(Exprs[0]))) &&
"List initialization must have initializer list as expression."
) ? void (0) : __assert_fail ("(!ListInitialization || (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0]))) && \"List initialization must have initializer list as expression.\""
, "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 1437, __extension__ __PRETTY_FUNCTION__))
1436 (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0]))) &&(static_cast <bool> ((!ListInitialization || (Exprs.size
() == 1 && isa<InitListExpr>(Exprs[0]))) &&
"List initialization must have initializer list as expression."
) ? void (0) : __assert_fail ("(!ListInitialization || (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0]))) && \"List initialization must have initializer list as expression.\""
, "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 1437, __extension__ __PRETTY_FUNCTION__))
1437 "List initialization must have initializer list as expression.")(static_cast <bool> ((!ListInitialization || (Exprs.size
() == 1 && isa<InitListExpr>(Exprs[0]))) &&
"List initialization must have initializer list as expression."
) ? void (0) : __assert_fail ("(!ListInitialization || (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0]))) && \"List initialization must have initializer list as expression.\""
, "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 1437, __extension__ __PRETTY_FUNCTION__))
;
1438 SourceRange FullRange = SourceRange(TyBeginLoc, RParenOrBraceLoc);
1439
1440 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TInfo);
1441 InitializationKind Kind =
1442 Exprs.size()
1443 ? ListInitialization
1444 ? InitializationKind::CreateDirectList(
1445 TyBeginLoc, LParenOrBraceLoc, RParenOrBraceLoc)
1446 : InitializationKind::CreateDirect(TyBeginLoc, LParenOrBraceLoc,
1447 RParenOrBraceLoc)
1448 : InitializationKind::CreateValue(TyBeginLoc, LParenOrBraceLoc,
1449 RParenOrBraceLoc);
1450
1451 // C++1z [expr.type.conv]p1:
1452 // If the type is a placeholder for a deduced class type, [...perform class
1453 // template argument deduction...]
1454 DeducedType *Deduced = Ty->getContainedDeducedType();
1455 if (Deduced && isa<DeducedTemplateSpecializationType>(Deduced)) {
1456 Ty = DeduceTemplateSpecializationFromInitializer(TInfo, Entity,
1457 Kind, Exprs);
1458 if (Ty.isNull())
1459 return ExprError();
1460 Entity = InitializedEntity::InitializeTemporary(TInfo, Ty);
1461 }
1462
1463 if (Ty->isDependentType() || CallExpr::hasAnyTypeDependentArguments(Exprs)) {
1464 // FIXME: CXXUnresolvedConstructExpr does not model list-initialization
1465 // directly. We work around this by dropping the locations of the braces.
1466 SourceRange Locs = ListInitialization
1467 ? SourceRange()
1468 : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc);
1469 return CXXUnresolvedConstructExpr::Create(Context, Ty.getNonReferenceType(),
1470 TInfo, Locs.getBegin(), Exprs,
1471 Locs.getEnd());
1472 }
1473
1474 // C++ [expr.type.conv]p1:
1475 // If the expression list is a parenthesized single expression, the type
1476 // conversion expression is equivalent (in definedness, and if defined in
1477 // meaning) to the corresponding cast expression.
1478 if (Exprs.size() == 1 && !ListInitialization &&
1479 !isa<InitListExpr>(Exprs[0])) {
1480 Expr *Arg = Exprs[0];
1481 return BuildCXXFunctionalCastExpr(TInfo, Ty, LParenOrBraceLoc, Arg,
1482 RParenOrBraceLoc);
1483 }
1484
1485 // For an expression of the form T(), T shall not be an array type.
1486 QualType ElemTy = Ty;
1487 if (Ty->isArrayType()) {
1488 if (!ListInitialization)
1489 return ExprError(Diag(TyBeginLoc, diag::err_value_init_for_array_type)
1490 << FullRange);
1491 ElemTy = Context.getBaseElementType(Ty);
1492 }
1493
1494 // There doesn't seem to be an explicit rule against this but sanity demands
1495 // we only construct objects with object types.
1496 if (Ty->isFunctionType())
1497 return ExprError(Diag(TyBeginLoc, diag::err_init_for_function_type)
1498 << Ty << FullRange);
1499
1500 // C++17 [expr.type.conv]p2:
1501 // If the type is cv void and the initializer is (), the expression is a
1502 // prvalue of the specified type that performs no initialization.
1503 if (!Ty->isVoidType() &&
1504 RequireCompleteType(TyBeginLoc, ElemTy,
1505 diag::err_invalid_incomplete_type_use, FullRange))
1506 return ExprError();
1507
1508 // Otherwise, the expression is a prvalue of the specified type whose
1509 // result object is direct-initialized (11.6) with the initializer.
1510 InitializationSequence InitSeq(*this, Entity, Kind, Exprs);
1511 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Exprs);
1512
1513 if (Result.isInvalid())
1514 return Result;
1515
1516 Expr *Inner = Result.get();
1517 if (CXXBindTemporaryExpr *BTE = dyn_cast_or_null<CXXBindTemporaryExpr>(Inner))
1518 Inner = BTE->getSubExpr();
1519 if (!isa<CXXTemporaryObjectExpr>(Inner) &&
1520 !isa<CXXScalarValueInitExpr>(Inner)) {
1521 // If we created a CXXTemporaryObjectExpr, that node also represents the
1522 // functional cast. Otherwise, create an explicit cast to represent
1523 // the syntactic form of a functional-style cast that was used here.
1524 //
1525 // FIXME: Creating a CXXFunctionalCastExpr around a CXXConstructExpr
1526 // would give a more consistent AST representation than using a
1527 // CXXTemporaryObjectExpr. It's also weird that the functional cast
1528 // is sometimes handled by initialization and sometimes not.
1529 QualType ResultType = Result.get()->getType();
1530 SourceRange Locs = ListInitialization
1531 ? SourceRange()
1532 : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc);
1533 Result = CXXFunctionalCastExpr::Create(
1534 Context, ResultType, Expr::getValueKindForType(Ty), TInfo, CK_NoOp,
1535 Result.get(), /*Path=*/nullptr, CurFPFeatureOverrides(),
1536 Locs.getBegin(), Locs.getEnd());
1537 }
1538
1539 return Result;
1540}
1541
1542bool Sema::isUsualDeallocationFunction(const CXXMethodDecl *Method) {
1543 // [CUDA] Ignore this function, if we can't call it.
1544 const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext);
1545 if (getLangOpts().CUDA) {
1546 auto CallPreference = IdentifyCUDAPreference(Caller, Method);
1547 // If it's not callable at all, it's not the right function.
1548 if (CallPreference < CFP_WrongSide)
1549 return false;
1550 if (CallPreference == CFP_WrongSide) {
1551 // Maybe. We have to check if there are better alternatives.
1552 DeclContext::lookup_result R =
1553 Method->getDeclContext()->lookup(Method->getDeclName());
1554 for (const auto *D : R) {
1555 if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
1556 if (IdentifyCUDAPreference(Caller, FD) > CFP_WrongSide)
1557 return false;
1558 }
1559 }
1560 // We've found no better variants.
1561 }
1562 }
1563
1564 SmallVector<const FunctionDecl*, 4> PreventedBy;
1565 bool Result = Method->isUsualDeallocationFunction(PreventedBy);
1566
1567 if (Result || !getLangOpts().CUDA || PreventedBy.empty())
1568 return Result;
1569
1570 // In case of CUDA, return true if none of the 1-argument deallocator
1571 // functions are actually callable.
1572 return llvm::none_of(PreventedBy, [&](const FunctionDecl *FD) {
1573 assert(FD->getNumParams() == 1 &&(static_cast <bool> (FD->getNumParams() == 1 &&
"Only single-operand functions should be in PreventedBy") ? void
(0) : __assert_fail ("FD->getNumParams() == 1 && \"Only single-operand functions should be in PreventedBy\""
, "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 1574, __extension__ __PRETTY_FUNCTION__))
1574 "Only single-operand functions should be in PreventedBy")(static_cast <bool> (FD->getNumParams() == 1 &&
"Only single-operand functions should be in PreventedBy") ? void
(0) : __assert_fail ("FD->getNumParams() == 1 && \"Only single-operand functions should be in PreventedBy\""
, "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 1574, __extension__ __PRETTY_FUNCTION__))
;
1575 return IdentifyCUDAPreference(Caller, FD) >= CFP_HostDevice;
1576 });
1577}
1578
1579/// Determine whether the given function is a non-placement
1580/// deallocation function.
1581static bool isNonPlacementDeallocationFunction(Sema &S, FunctionDecl *FD) {
1582 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
1583 return S.isUsualDeallocationFunction(Method);
1584
1585 if (FD->getOverloadedOperator() != OO_Delete &&
1586 FD->getOverloadedOperator() != OO_Array_Delete)
1587 return false;
1588
1589 unsigned UsualParams = 1;
1590
1591 if (S.getLangOpts().SizedDeallocation && UsualParams < FD->getNumParams() &&
1592 S.Context.hasSameUnqualifiedType(
1593 FD->getParamDecl(UsualParams)->getType(),
1594 S.Context.getSizeType()))
1595 ++UsualParams;
1596
1597 if (S.getLangOpts().AlignedAllocation && UsualParams < FD->getNumParams() &&
1598 S.Context.hasSameUnqualifiedType(
1599 FD->getParamDecl(UsualParams)->getType(),
1600 S.Context.getTypeDeclType(S.getStdAlignValT())))
1601 ++UsualParams;
1602
1603 return UsualParams == FD->getNumParams();
1604}
1605
1606namespace {
1607 struct UsualDeallocFnInfo {
1608 UsualDeallocFnInfo() : Found(), FD(nullptr) {}
1609 UsualDeallocFnInfo(Sema &S, DeclAccessPair Found)
1610 : Found(Found), FD(dyn_cast<FunctionDecl>(Found->getUnderlyingDecl())),
1611 Destroying(false), HasSizeT(false), HasAlignValT(false),
1612 CUDAPref(Sema::CFP_Native) {
1613 // A function template declaration is never a usual deallocation function.
1614 if (!FD)
1615 return;
1616 unsigned NumBaseParams = 1;
1617 if (FD->isDestroyingOperatorDelete()) {
1618 Destroying = true;
1619 ++NumBaseParams;
1620 }
1621
1622 if (NumBaseParams < FD->getNumParams() &&
1623 S.Context.hasSameUnqualifiedType(
1624 FD->getParamDecl(NumBaseParams)->getType(),
1625 S.Context.getSizeType())) {
1626 ++NumBaseParams;
1627 HasSizeT = true;
1628 }
1629
1630 if (NumBaseParams < FD->getNumParams() &&
1631 FD->getParamDecl(NumBaseParams)->getType()->isAlignValT()) {
1632 ++NumBaseParams;
1633 HasAlignValT = true;
1634 }
1635
1636 // In CUDA, determine how much we'd like / dislike to call this.
1637 if (S.getLangOpts().CUDA)
1638 if (auto *Caller = dyn_cast<FunctionDecl>(S.CurContext))
1639 CUDAPref = S.IdentifyCUDAPreference(Caller, FD);
1640 }
1641
1642 explicit operator bool() const { return FD; }
1643
1644 bool isBetterThan(const UsualDeallocFnInfo &Other, bool WantSize,
1645 bool WantAlign) const {
1646 // C++ P0722:
1647 // A destroying operator delete is preferred over a non-destroying
1648 // operator delete.
1649 if (Destroying != Other.Destroying)
1650 return Destroying;
1651
1652 // C++17 [expr.delete]p10:
1653 // If the type has new-extended alignment, a function with a parameter
1654 // of type std::align_val_t is preferred; otherwise a function without
1655 // such a parameter is preferred
1656 if (HasAlignValT != Other.HasAlignValT)
1657 return HasAlignValT == WantAlign;
1658
1659 if (HasSizeT != Other.HasSizeT)
1660 return HasSizeT == WantSize;
1661
1662 // Use CUDA call preference as a tiebreaker.
1663 return CUDAPref > Other.CUDAPref;
1664 }
1665
1666 DeclAccessPair Found;
1667 FunctionDecl *FD;
1668 bool Destroying, HasSizeT, HasAlignValT;
1669 Sema::CUDAFunctionPreference CUDAPref;
1670 };
1671}
1672
1673/// Determine whether a type has new-extended alignment. This may be called when
1674/// the type is incomplete (for a delete-expression with an incomplete pointee
1675/// type), in which case it will conservatively return false if the alignment is
1676/// not known.
1677static bool hasNewExtendedAlignment(Sema &S, QualType AllocType) {
1678 return S.getLangOpts().AlignedAllocation &&
1679 S.getASTContext().getTypeAlignIfKnown(AllocType) >
1680 S.getASTContext().getTargetInfo().getNewAlign();
1681}
1682
1683/// Select the correct "usual" deallocation function to use from a selection of
1684/// deallocation functions (either global or class-scope).
1685static UsualDeallocFnInfo resolveDeallocationOverload(
1686 Sema &S, LookupResult &R, bool WantSize, bool WantAlign,
1687 llvm::SmallVectorImpl<UsualDeallocFnInfo> *BestFns = nullptr) {
1688 UsualDeallocFnInfo Best;
1689
1690 for (auto I = R.begin(), E = R.end(); I != E; ++I) {
1691 UsualDeallocFnInfo Info(S, I.getPair());
1692 if (!Info || !isNonPlacementDeallocationFunction(S, Info.FD) ||
1693 Info.CUDAPref == Sema::CFP_Never)
1694 continue;
1695
1696 if (!Best) {
1697 Best = Info;
1698 if (BestFns)
1699 BestFns->push_back(Info);
1700 continue;
1701 }
1702
1703 if (Best.isBetterThan(Info, WantSize, WantAlign))
1704 continue;
1705
1706 // If more than one preferred function is found, all non-preferred
1707 // functions are eliminated from further consideration.
1708 if (BestFns && Info.isBetterThan(Best, WantSize, WantAlign))
1709 BestFns->clear();
1710
1711 Best = Info;
1712 if (BestFns)
1713 BestFns->push_back(Info);
1714 }
1715
1716 return Best;
1717}
1718
1719/// Determine whether a given type is a class for which 'delete[]' would call
1720/// a member 'operator delete[]' with a 'size_t' parameter. This implies that
1721/// we need to store the array size (even if the type is
1722/// trivially-destructible).
1723static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc,
1724 QualType allocType) {
1725 const RecordType *record =
1726 allocType->getBaseElementTypeUnsafe()->getAs<RecordType>();
1727 if (!record) return false;
1728
1729 // Try to find an operator delete[] in class scope.
1730
1731 DeclarationName deleteName =
1732 S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete);
1733 LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName);
1734 S.LookupQualifiedName(ops, record->getDecl());
1735
1736 // We're just doing this for information.
1737 ops.suppressDiagnostics();
1738
1739 // Very likely: there's no operator delete[].
1740 if (ops.empty()) return false;
1741
1742 // If it's ambiguous, it should be illegal to call operator delete[]
1743 // on this thing, so it doesn't matter if we allocate extra space or not.
1744 if (ops.isAmbiguous()) return false;
1745
1746 // C++17 [expr.delete]p10:
1747 // If the deallocation functions have class scope, the one without a
1748 // parameter of type std::size_t is selected.
1749 auto Best = resolveDeallocationOverload(
1750 S, ops, /*WantSize*/false,
1751 /*WantAlign*/hasNewExtendedAlignment(S, allocType));
1752 return Best && Best.HasSizeT;
1753}
1754
1755/// Parsed a C++ 'new' expression (C++ 5.3.4).
1756///
1757/// E.g.:
1758/// @code new (memory) int[size][4] @endcode
1759/// or
1760/// @code ::new Foo(23, "hello") @endcode
1761///
1762/// \param StartLoc The first location of the expression.
1763/// \param UseGlobal True if 'new' was prefixed with '::'.
1764/// \param PlacementLParen Opening paren of the placement arguments.
1765/// \param PlacementArgs Placement new arguments.
1766/// \param PlacementRParen Closing paren of the placement arguments.
1767/// \param TypeIdParens If the type is in parens, the source range.
1768/// \param D The type to be allocated, as well as array dimensions.
1769/// \param Initializer The initializing expression or initializer-list, or null
1770/// if there is none.
1771ExprResult
1772Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
1773 SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
1774 SourceLocation PlacementRParen, SourceRange TypeIdParens,
1775 Declarator &D, Expr *Initializer) {
1776 Optional<Expr *> ArraySize;
1777 // If the specified type is an array, unwrap it and save the expression.
1778 if (D.getNumTypeObjects() > 0 &&
1779 D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
1780 DeclaratorChunk &Chunk = D.getTypeObject(0);
1781 if (D.getDeclSpec().hasAutoTypeSpec())
1782 return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto)
1783 << D.getSourceRange());
1784 if (Chunk.Arr.hasStatic)
1785 return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
1786 << D.getSourceRange());
1787 if (!Chunk.Arr.NumElts && !Initializer)
1788 return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
1789 << D.getSourceRange());
1790
1791 ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
1792 D.DropFirstTypeObject();
1793 }
1794
1795 // Every dimension shall be of constant size.
1796 if (ArraySize) {
1797 for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
1798 if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
1799 break;
1800
1801 DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
1802 if (Expr *NumElts = (Expr *)Array.NumElts) {
1803 if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) {
1804 // FIXME: GCC permits constant folding here. We should either do so consistently
1805 // or not do so at all, rather than changing behavior in C++14 onwards.
1806 if (getLangOpts().CPlusPlus14) {
1807 // C++1y [expr.new]p6: Every constant-expression in a noptr-new-declarator
1808 // shall be a converted constant expression (5.19) of type std::size_t
1809 // and shall evaluate to a strictly positive value.
1810 llvm::APSInt Value(Context.getIntWidth(Context.getSizeType()));
1811 Array.NumElts
1812 = CheckConvertedConstantExpression(NumElts, Context.getSizeType(), Value,
1813 CCEK_ArrayBound)
1814 .get();
1815 } else {
1816 Array.NumElts =
1817 VerifyIntegerConstantExpression(
1818 NumElts, nullptr, diag::err_new_array_nonconst, AllowFold)
1819 .get();
1820 }
1821 if (!Array.NumElts)
1822 return ExprError();
1823 }
1824 }
1825 }
1826 }
1827
1828 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/nullptr);
1829 QualType AllocType = TInfo->getType();
1830 if (D.isInvalidType())
1831 return ExprError();
1832
1833 SourceRange DirectInitRange;
1834 if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer))
1835 DirectInitRange = List->getSourceRange();
1836
1837 return BuildCXXNew(SourceRange(StartLoc, D.getEndLoc()), UseGlobal,
1838 PlacementLParen, PlacementArgs, PlacementRParen,
1839 TypeIdParens, AllocType, TInfo, ArraySize, DirectInitRange,
1840 Initializer);
1841}
1842
1843static bool isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style,
1844 Expr *Init) {
1845 if (!Init)
1846 return true;
1847 if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init))
1848 return PLE->getNumExprs() == 0;
1849 if (isa<ImplicitValueInitExpr>(Init))
1850 return true;
1851 else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init))
1852 return !CCE->isListInitialization() &&
1853 CCE->getConstructor()->isDefaultConstructor();
1854 else if (Style == CXXNewExpr::ListInit) {
1855 assert(isa<InitListExpr>(Init) &&(static_cast <bool> (isa<InitListExpr>(Init) &&
"Shouldn't create list CXXConstructExprs for arrays.") ? void
(0) : __assert_fail ("isa<InitListExpr>(Init) && \"Shouldn't create list CXXConstructExprs for arrays.\""
, "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 1856, __extension__ __PRETTY_FUNCTION__))
1856 "Shouldn't create list CXXConstructExprs for arrays.")(static_cast <bool> (isa<InitListExpr>(Init) &&
"Shouldn't create list CXXConstructExprs for arrays.") ? void
(0) : __assert_fail ("isa<InitListExpr>(Init) && \"Shouldn't create list CXXConstructExprs for arrays.\""
, "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 1856, __extension__ __PRETTY_FUNCTION__))
;
1857 return true;
1858 }
1859 return false;
1860}
1861
1862bool
1863Sema::isUnavailableAlignedAllocationFunction(const FunctionDecl &FD) const {
1864 if (!getLangOpts().AlignedAllocationUnavailable)
1865 return false;
1866 if (FD.isDefined())
1867 return false;
1868 Optional<unsigned> AlignmentParam;
1869 if (FD.isReplaceableGlobalAllocationFunction(&AlignmentParam) &&
1870 AlignmentParam.hasValue())
1871 return true;
1872 return false;
1873}
1874
1875// Emit a diagnostic if an aligned allocation/deallocation function that is not
1876// implemented in the standard library is selected.
1877void Sema::diagnoseUnavailableAlignedAllocation(const FunctionDecl &FD,
1878 SourceLocation Loc) {
1879 if (isUnavailableAlignedAllocationFunction(FD)) {
1880 const llvm::Triple &T = getASTContext().getTargetInfo().getTriple();
1881 StringRef OSName = AvailabilityAttr::getPlatformNameSourceSpelling(
1882 getASTContext().getTargetInfo().getPlatformName());
1883 VersionTuple OSVersion = alignedAllocMinVersion(T.getOS());
1884
1885 OverloadedOperatorKind Kind = FD.getDeclName().getCXXOverloadedOperator();
1886 bool IsDelete = Kind == OO_Delete || Kind == OO_Array_Delete;
1887 Diag(Loc, diag::err_aligned_allocation_unavailable)
1888 << IsDelete << FD.getType().getAsString() << OSName
1889 << OSVersion.getAsString() << OSVersion.empty();
1890 Diag(Loc, diag::note_silence_aligned_allocation_unavailable);
1891 }
1892}
1893
1894ExprResult
1895Sema::BuildCXXNew(SourceRange Range, bool UseGlobal,
1896 SourceLocation PlacementLParen,
1897 MultiExprArg PlacementArgs,
1898 SourceLocation PlacementRParen,
1899 SourceRange TypeIdParens,
1900 QualType AllocType,
1901 TypeSourceInfo *AllocTypeInfo,
1902 Optional<Expr *> ArraySize,
1903 SourceRange DirectInitRange,
1904 Expr *Initializer) {
1905 SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
1906 SourceLocation StartLoc = Range.getBegin();
1907
1908 CXXNewExpr::InitializationStyle initStyle;
1909 if (DirectInitRange.isValid()) {
1910 assert(Initializer && "Have parens but no initializer.")(static_cast <bool> (Initializer && "Have parens but no initializer."
) ? void (0) : __assert_fail ("Initializer && \"Have parens but no initializer.\""
, "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 1910, __extension__ __PRETTY_FUNCTION__))
;
1911 initStyle = CXXNewExpr::CallInit;
1912 } else if (Initializer && isa<InitListExpr>(Initializer))
1913 initStyle = CXXNewExpr::ListInit;
1914 else {
1915 assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) ||(static_cast <bool> ((!Initializer || isa<ImplicitValueInitExpr
>(Initializer) || isa<CXXConstructExpr>(Initializer)
) && "Initializer expression that cannot have been implicitly created."
) ? void (0) : __assert_fail ("(!Initializer || isa<ImplicitValueInitExpr>(Initializer) || isa<CXXConstructExpr>(Initializer)) && \"Initializer expression that cannot have been implicitly created.\""
, "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 1917, __extension__ __PRETTY_FUNCTION__))
1916 isa<CXXConstructExpr>(Initializer)) &&(static_cast <bool> ((!Initializer || isa<ImplicitValueInitExpr
>(Initializer) || isa<CXXConstructExpr>(Initializer)
) && "Initializer expression that cannot have been implicitly created."
) ? void (0) : __assert_fail ("(!Initializer || isa<ImplicitValueInitExpr>(Initializer) || isa<CXXConstructExpr>(Initializer)) && \"Initializer expression that cannot have been implicitly created.\""
, "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 1917, __extension__ __PRETTY_FUNCTION__))
1917 "Initializer expression that cannot have been implicitly created.")(static_cast <bool> ((!Initializer || isa<ImplicitValueInitExpr
>(Initializer) || isa<CXXConstructExpr>(Initializer)
) && "Initializer expression that cannot have been implicitly created."
) ? void (0) : __assert_fail ("(!Initializer || isa<ImplicitValueInitExpr>(Initializer) || isa<CXXConstructExpr>(Initializer)) && \"Initializer expression that cannot have been implicitly created.\""
, "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 1917, __extension__ __PRETTY_FUNCTION__))
;
1918 initStyle = CXXNewExpr::NoInit;
1919 }
1920
1921 Expr **Inits = &Initializer;
1922 unsigned NumInits = Initializer ? 1 : 0;
1923 if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) {
1924 assert(initStyle == CXXNewExpr::CallInit && "paren init for non-call init")(static_cast <bool> (initStyle == CXXNewExpr::CallInit &&
"paren init for non-call init") ? void (0) : __assert_fail (
"initStyle == CXXNewExpr::CallInit && \"paren init for non-call init\""
, "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 1924, __extension__ __PRETTY_FUNCTION__))
;
1925 Inits = List->getExprs();
1926 NumInits = List->getNumExprs();
1927 }
1928
1929 // C++11 [expr.new]p15:
1930 // A new-expression that creates an object of type T initializes that
1931 // object as follows:
1932 InitializationKind Kind
1933 // - If the new-initializer is omitted, the object is default-
1934 // initialized (8.5); if no initialization is performed,
1935 // the object has indeterminate value
1936 = initStyle == CXXNewExpr::NoInit
1937 ? InitializationKind::CreateDefault(TypeRange.getBegin())
1938 // - Otherwise, the new-initializer is interpreted according to
1939 // the
1940 // initialization rules of 8.5 for direct-initialization.
1941 : initStyle == CXXNewExpr::ListInit
1942 ? InitializationKind::CreateDirectList(
1943 TypeRange.getBegin(), Initializer->getBeginLoc(),
1944 Initializer->getEndLoc())
1945 : InitializationKind::CreateDirect(TypeRange.getBegin(),
1946 DirectInitRange.getBegin(),
1947 DirectInitRange.getEnd());
1948
1949 // C++11 [dcl.spec.auto]p6. Deduce the type which 'auto' stands in for.
1950 auto *Deduced = AllocType->getContainedDeducedType();
1951 if (Deduced && isa<DeducedTemplateSpecializationType>(Deduced)) {
1952 if (ArraySize)
1953 return ExprError(
1954 Diag(ArraySize ? (*ArraySize)->getExprLoc() : TypeRange.getBegin(),
1955 diag::err_deduced_class_template_compound_type)
1956 << /*array*/ 2
1957 << (ArraySize ? (*ArraySize)->getSourceRange() : TypeRange));
1958
1959 InitializedEntity Entity
1960 = InitializedEntity::InitializeNew(StartLoc, AllocType);
1961 AllocType = DeduceTemplateSpecializationFromInitializer(
1962 AllocTypeInfo, Entity, Kind, MultiExprArg(Inits, NumInits));
1963 if (AllocType.isNull())
1964 return ExprError();
1965 } else if (Deduced) {
1966 bool Braced = (initStyle == CXXNewExpr::ListInit);
1967 if (NumInits == 1) {
1968 if (auto p = dyn_cast_or_null<InitListExpr>(Inits[0])) {
1969 Inits = p->getInits();
1970 NumInits = p->getNumInits();
1971 Braced = true;
1972 }
1973 }
1974
1975 if (initStyle == CXXNewExpr::NoInit || NumInits == 0)
1976 return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg)
1977 << AllocType << TypeRange);
1978 if (NumInits > 1) {
1979 Expr *FirstBad = Inits[1];
1980 return ExprError(Diag(FirstBad->getBeginLoc(),
1981 diag::err_auto_new_ctor_multiple_expressions)
1982 << AllocType << TypeRange);
1983 }
1984 if (Braced && !getLangOpts().CPlusPlus17)
1985 Diag(Initializer->getBeginLoc(), diag::ext_auto_new_list_init)
1986 << AllocType << TypeRange;
1987 Expr *Deduce = Inits[0];
1988 QualType DeducedType;
1989 if (DeduceAutoType(AllocTypeInfo, Deduce, DeducedType) == DAR_Failed)
1990 return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure)
1991 << AllocType << Deduce->getType()
1992 << TypeRange << Deduce->getSourceRange());
1993 if (DeducedType.isNull())
1994 return ExprError();
1995 AllocType = DeducedType;
1996 }
1997
1998 // Per C++0x [expr.new]p5, the type being constructed may be a
1999 // typedef of an array type.
2000 if (!ArraySize) {
2001 if (const ConstantArrayType *Array
2002 = Context.getAsConstantArrayType(AllocType)) {
2003 ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
2004 Context.getSizeType(),
2005 TypeRange.getEnd());
2006 AllocType = Array->getElementType();
2007 }
2008 }
2009
2010 if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
2011 return ExprError();
2012
2013 // In ARC, infer 'retaining' for the allocated
2014 if (getLangOpts().ObjCAutoRefCount &&
2015 AllocType.getObjCLifetime() == Qualifiers::OCL_None &&
2016 AllocType->isObjCLifetimeType()) {
2017 AllocType = Context.getLifetimeQualifiedType(AllocType,
2018 AllocType->getObjCARCImplicitLifetime());
2019 }
2020
2021 QualType ResultType = Context.getPointerType(AllocType);
2022
2023 if (ArraySize && *ArraySize &&
2024 (*ArraySize)->getType()->isNonOverloadPlaceholderType()) {
2025 ExprResult result = CheckPlaceholderExpr(*ArraySize);
2026 if (result.isInvalid()) return ExprError();
2027 ArraySize = result.get();
2028 }
2029 // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have
2030 // integral or enumeration type with a non-negative value."
2031 // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped
2032 // enumeration type, or a class type for which a single non-explicit
2033 // conversion function to integral or unscoped enumeration type exists.
2034 // C++1y [expr.new]p6: The expression [...] is implicitly converted to
2035 // std::size_t.
2036 llvm::Optional<uint64_t> KnownArraySize;
2037 if (ArraySize && *ArraySize && !(*ArraySize)->isTypeDependent()) {
2038 ExprResult ConvertedSize;
2039 if (getLangOpts().CPlusPlus14) {
2040 assert(Context.getTargetInfo().getIntWidth() && "Builtin type of size 0?")(static_cast <bool> (Context.getTargetInfo().getIntWidth
() && "Builtin type of size 0?") ? void (0) : __assert_fail
("Context.getTargetInfo().getIntWidth() && \"Builtin type of size 0?\""
, "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 2040, __extension__ __PRETTY_FUNCTION__))
;
2041
2042 ConvertedSize = PerformImplicitConversion(*ArraySize, Context.getSizeType(),
2043 AA_Converting);
2044
2045 if (!ConvertedSize.isInvalid() &&
2046 (*ArraySize)->getType()->getAs<RecordType>())
2047 // Diagnose the compatibility of this conversion.
2048 Diag(StartLoc, diag::warn_cxx98_compat_array_size_conversion)
2049 << (*ArraySize)->getType() << 0 << "'size_t'";
2050 } else {
2051 class SizeConvertDiagnoser : public ICEConvertDiagnoser {
2052 protected:
2053 Expr *ArraySize;
2054
2055 public:
2056 SizeConvertDiagnoser(Expr *ArraySize)
2057 : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false, false, false),
2058 ArraySize(ArraySize) {}
2059
2060 SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
2061 QualType T) override {
2062 return S.Diag(Loc, diag::err_array_size_not_integral)
2063 << S.getLangOpts().CPlusPlus11 << T;
2064 }
2065
2066 SemaDiagnosticBuilder diagnoseIncomplete(
2067 Sema &S, SourceLocation Loc, QualType T) override {
2068 return S.Diag(Loc, diag::err_array_size_incomplete_type)
2069 << T << ArraySize->getSourceRange();
2070 }
2071
2072 SemaDiagnosticBuilder diagnoseExplicitConv(
2073 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
2074 return S.Diag(Loc, diag::err_array_size_explicit_conversion) << T << ConvTy;
2075 }
2076
2077 SemaDiagnosticBuilder noteExplicitConv(
2078 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
2079 return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
2080 << ConvTy->isEnumeralType() << ConvTy;
2081 }
2082
2083 SemaDiagnosticBuilder diagnoseAmbiguous(
2084 Sema &S, SourceLocation Loc, QualType T) override {
2085 return S.Diag(Loc, diag::err_array_size_ambiguous_conversion) << T;
2086 }
2087
2088 SemaDiagnosticBuilder noteAmbiguous(
2089 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
2090 return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
2091 << ConvTy->isEnumeralType() << ConvTy;
2092 }
2093
2094 SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
2095 QualType T,
2096 QualType ConvTy) override {
2097 return S.Diag(Loc,
2098 S.getLangOpts().CPlusPlus11
2099 ? diag::warn_cxx98_compat_array_size_conversion
2100 : diag::ext_array_size_conversion)
2101 << T << ConvTy->isEnumeralType() << ConvTy;
2102 }
2103 } SizeDiagnoser(*ArraySize);
2104
2105 ConvertedSize = PerformContextualImplicitConversion(StartLoc, *ArraySize,
2106 SizeDiagnoser);
2107 }
2108 if (ConvertedSize.isInvalid())
2109 return ExprError();
2110
2111 ArraySize = ConvertedSize.get();
2112 QualType SizeType = (*ArraySize)->getType();
2113
2114 if (!SizeType->isIntegralOrUnscopedEnumerationType())
2115 return ExprError();
2116
2117 // C++98 [expr.new]p7:
2118 // The expression in a direct-new-declarator shall have integral type
2119 // with a non-negative value.
2120 //
2121 // Let's see if this is a constant < 0. If so, we reject it out of hand,
2122 // per CWG1464. Otherwise, if it's not a constant, we must have an
2123 // unparenthesized array type.
2124 if (!(*ArraySize)->isValueDependent()) {
2125 // We've already performed any required implicit conversion to integer or
2126 // unscoped enumeration type.
2127 // FIXME: Per CWG1464, we are required to check the value prior to
2128 // converting to size_t. This will never find a negative array size in
2129 // C++14 onwards, because Value is always unsigned here!
2130 if (Optional<llvm::APSInt> Value =
2131 (*ArraySize)->getIntegerConstantExpr(Context)) {
2132 if (Value->isSigned() && Value->isNegative()) {
2133 return ExprError(Diag((*ArraySize)->getBeginLoc(),
2134 diag::err_typecheck_negative_array_size)
2135 << (*ArraySize)->getSourceRange());
2136 }
2137
2138 if (!AllocType->isDependentType()) {
2139 unsigned ActiveSizeBits = ConstantArrayType::getNumAddressingBits(
2140 Context, AllocType, *Value);
2141 if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context))
2142 return ExprError(
2143 Diag((*ArraySize)->getBeginLoc(), diag::err_array_too_large)
2144 << toString(*Value, 10) << (*ArraySize)->getSourceRange());
2145 }
2146
2147 KnownArraySize = Value->getZExtValue();
2148 } else if (TypeIdParens.isValid()) {
2149 // Can't have dynamic array size when the type-id is in parentheses.
2150 Diag((*ArraySize)->getBeginLoc(), diag::ext_new_paren_array_nonconst)
2151 << (*ArraySize)->getSourceRange()
2152 << FixItHint::CreateRemoval(TypeIdParens.getBegin())
2153 << FixItHint::CreateRemoval(TypeIdParens.getEnd());
2154
2155 TypeIdParens = SourceRange();
2156 }
2157 }
2158
2159 // Note that we do *not* convert the argument in any way. It can
2160 // be signed, larger than size_t, whatever.
2161 }
2162
2163 FunctionDecl *OperatorNew = nullptr;
2164 FunctionDecl *OperatorDelete = nullptr;
2165 unsigned Alignment =
2166 AllocType->isDependentType() ? 0 : Context.getTypeAlign(AllocType);
2167 unsigned NewAlignment = Context.getTargetInfo().getNewAlign();
2168 bool PassAlignment = getLangOpts().AlignedAllocation &&
2169 Alignment > NewAlignment;
2170
2171 AllocationFunctionScope Scope = UseGlobal ? AFS_Global : AFS_Both;
2172 if (!AllocType->isDependentType() &&
2173 !Expr::hasAnyTypeDependentArguments(PlacementArgs) &&
2174 FindAllocationFunctions(
2175 StartLoc, SourceRange(PlacementLParen, PlacementRParen), Scope, Scope,
2176 AllocType, ArraySize.hasValue(), PassAlignment, PlacementArgs,
2177 OperatorNew, OperatorDelete))
2178 return ExprError();
2179
2180 // If this is an array allocation, compute whether the usual array
2181 // deallocation function for the type has a size_t parameter.
2182 bool UsualArrayDeleteWantsSize = false;
2183 if (ArraySize && !AllocType->isDependentType())
2184 UsualArrayDeleteWantsSize =
2185 doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType);
2186
2187 SmallVector<Expr *, 8> AllPlaceArgs;
2188 if (OperatorNew) {
2189 auto *Proto = OperatorNew->getType()->castAs<FunctionProtoType>();
2190 VariadicCallType CallType = Proto->isVariadic() ? VariadicFunction
2191 : VariadicDoesNotApply;
2192
2193 // We've already converted the placement args, just fill in any default
2194 // arguments. Skip the first parameter because we don't have a corresponding
2195 // argument. Skip the second parameter too if we're passing in the
2196 // alignment; we've already filled it in.
2197 unsigned NumImplicitArgs = PassAlignment ? 2 : 1;
2198 if (GatherArgumentsForCall(PlacementLParen, OperatorNew, Proto,
2199 NumImplicitArgs, PlacementArgs, AllPlaceArgs,
2200 CallType))
2201 return ExprError();
2202
2203 if (!AllPlaceArgs.empty())
2204 PlacementArgs = AllPlaceArgs;
2205
2206 // We would like to perform some checking on the given `operator new` call,
2207 // but the PlacementArgs does not contain the implicit arguments,
2208 // namely allocation size and maybe allocation alignment,
2209 // so we need to conjure them.
2210
2211 QualType SizeTy = Context.getSizeType();
2212 unsigned SizeTyWidth = Context.getTypeSize(SizeTy);
2213
2214 llvm::APInt SingleEltSize(
2215 SizeTyWidth, Context.getTypeSizeInChars(AllocType).getQuantity());
2216
2217 // How many bytes do we want to allocate here?
2218 llvm::Optional<llvm::APInt> AllocationSize;
2219 if (!ArraySize.hasValue() && !AllocType->isDependentType()) {
2220 // For non-array operator new, we only want to allocate one element.
2221 AllocationSize = SingleEltSize;
2222 } else if (KnownArraySize.hasValue() && !AllocType->isDependentType()) {
2223 // For array operator new, only deal with static array size case.
2224 bool Overflow;
2225 AllocationSize = llvm::APInt(SizeTyWidth, *KnownArraySize)
2226 .umul_ov(SingleEltSize, Overflow);
2227 (void)Overflow;
2228 assert((static_cast <bool> (!Overflow && "Expected that all the overflows would have been handled already."
) ? void (0) : __assert_fail ("!Overflow && \"Expected that all the overflows would have been handled already.\""
, "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 2230, __extension__ __PRETTY_FUNCTION__))
2229 !Overflow &&(static_cast <bool> (!Overflow && "Expected that all the overflows would have been handled already."
) ? void (0) : __assert_fail ("!Overflow && \"Expected that all the overflows would have been handled already.\""
, "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 2230, __extension__ __PRETTY_FUNCTION__))
2230 "Expected that all the overflows would have been handled already.")(static_cast <bool> (!Overflow && "Expected that all the overflows would have been handled already."
) ? void (0) : __assert_fail ("!Overflow && \"Expected that all the overflows would have been handled already.\""
, "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 2230, __extension__ __PRETTY_FUNCTION__))
;
2231 }
2232
2233 IntegerLiteral AllocationSizeLiteral(
2234 Context,
2235 AllocationSize.getValueOr(llvm::APInt::getNullValue(SizeTyWidth)),
2236 SizeTy, SourceLocation());
2237 // Otherwise, if we failed to constant-fold the allocation size, we'll
2238 // just give up and pass-in something opaque, that isn't a null pointer.
2239 OpaqueValueExpr OpaqueAllocationSize(SourceLocation(), SizeTy, VK_PRValue,
2240 OK_Ordinary, /*SourceExpr=*/nullptr);
2241
2242 // Let's synthesize the alignment argument in case we will need it.
2243 // Since we *really* want to allocate these on stack, this is slightly ugly
2244 // because there might not be a `std::align_val_t` type.
2245 EnumDecl *StdAlignValT = getStdAlignValT();
2246 QualType AlignValT =
2247 StdAlignValT ? Context.getTypeDeclType(StdAlignValT) : SizeTy;
2248 IntegerLiteral AlignmentLiteral(
2249 Context,
2250 llvm::APInt(Context.getTypeSize(SizeTy),
2251 Alignment / Context.getCharWidth()),
2252 SizeTy, SourceLocation());
2253 ImplicitCastExpr DesiredAlignment(ImplicitCastExpr::OnStack, AlignValT,
2254 CK_IntegralCast, &AlignmentLiteral,
2255 VK_PRValue, FPOptionsOverride());
2256
2257 // Adjust placement args by prepending conjured size and alignment exprs.
2258 llvm::SmallVector<Expr *, 8> CallArgs;
2259 CallArgs.reserve(NumImplicitArgs + PlacementArgs.size());
2260 CallArgs.emplace_back(AllocationSize.hasValue()
2261 ? static_cast<Expr *>(&AllocationSizeLiteral)
2262 : &OpaqueAllocationSize);
2263 if (PassAlignment)
2264 CallArgs.emplace_back(&DesiredAlignment);
2265 CallArgs.insert(CallArgs.end(), PlacementArgs.begin(), PlacementArgs.end());
2266
2267 DiagnoseSentinelCalls(OperatorNew, PlacementLParen, CallArgs);
2268
2269 checkCall(OperatorNew, Proto, /*ThisArg=*/nullptr, CallArgs,
2270 /*IsMemberFunction=*/false, StartLoc, Range, CallType);
2271
2272 // Warn if the type is over-aligned and is being allocated by (unaligned)
2273 // global operator new.
2274 if (PlacementArgs.empty() && !PassAlignment &&
2275 (OperatorNew->isImplicit() ||
2276 (OperatorNew->getBeginLoc().isValid() &&
2277 getSourceManager().isInSystemHeader(OperatorNew->getBeginLoc())))) {
2278 if (Alignment > NewAlignment)
2279 Diag(StartLoc, diag::warn_overaligned_type)
2280 << AllocType
2281 << unsigned(Alignment / Context.getCharWidth())
2282 << unsigned(NewAlignment / Context.getCharWidth());
2283 }
2284 }
2285
2286 // Array 'new' can't have any initializers except empty parentheses.
2287 // Initializer lists are also allowed, in C++11. Rely on the parser for the
2288 // dialect distinction.
2289 if (ArraySize && !isLegalArrayNewInitializer(initStyle, Initializer)) {
2290 SourceRange InitRange(Inits[0]->getBeginLoc(),
2291 Inits[NumInits - 1]->getEndLoc());
2292 Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
2293 return ExprError();
2294 }
2295
2296 // If we can perform the initialization, and we've not already done so,
2297 // do it now.
2298 if (!AllocType->isDependentType() &&
2299 !Expr::hasAnyTypeDependentArguments(
2300 llvm::makeArrayRef(Inits, NumInits))) {
2301 // The type we initialize is the complete type, including the array bound.
2302 QualType InitType;
2303 if (KnownArraySize)
2304 InitType = Context.getConstantArrayType(
2305 AllocType,
2306 llvm::APInt(Context.getTypeSize(Context.getSizeType()),
2307 *KnownArraySize),
2308 *ArraySize, ArrayType::Normal, 0);
2309 else if (ArraySize)
2310 InitType =
2311 Context.getIncompleteArrayType(AllocType, ArrayType::Normal, 0);
2312 else
2313 InitType = AllocType;
2314
2315 InitializedEntity Entity
2316 = InitializedEntity::InitializeNew(StartLoc, InitType);
2317 InitializationSequence InitSeq(*this, Entity, Kind,
2318 MultiExprArg(Inits, NumInits));
2319 ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind,
2320 MultiExprArg(Inits, NumInits));
2321 if (FullInit.isInvalid())
2322 return ExprError();
2323
2324 // FullInit is our initializer; strip off CXXBindTemporaryExprs, because
2325 // we don't want the initialized object to be destructed.
2326 // FIXME: We should not create these in the first place.
2327 if (CXXBindTemporaryExpr *Binder =
2328 dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get()))
2329 FullInit = Binder->getSubExpr();
2330
2331 Initializer = FullInit.get();
2332
2333 // FIXME: If we have a KnownArraySize, check that the array bound of the
2334 // initializer is no greater than that constant value.
2335
2336 if (ArraySize && !*ArraySize) {
2337 auto *CAT = Context.getAsConstantArrayType(Initializer->getType());
2338 if (CAT) {
2339 // FIXME: Track that the array size was inferred rather than explicitly
2340 // specified.
2341 ArraySize = IntegerLiteral::Create(
2342 Context, CAT->getSize(), Context.getSizeType(), TypeRange.getEnd());
2343 } else {
2344 Diag(TypeRange.getEnd(), diag::err_new_array_size_unknown_from_init)
2345 << Initializer->getSourceRange();
2346 }
2347 }
2348 }
2349
2350 // Mark the new and delete operators as referenced.
2351 if (OperatorNew) {
2352 if (DiagnoseUseOfDecl(OperatorNew, StartLoc))
2353 return ExprError();
2354 MarkFunctionReferenced(StartLoc, OperatorNew);
2355 }
2356 if (OperatorDelete) {
2357 if (DiagnoseUseOfDecl(OperatorDelete, StartLoc))
2358 return ExprError();
2359 MarkFunctionReferenced(StartLoc, OperatorDelete);
2360 }
2361
2362 return CXXNewExpr::Create(Context, UseGlobal, OperatorNew, OperatorDelete,
2363 PassAlignment, UsualArrayDeleteWantsSize,
2364 PlacementArgs, TypeIdParens, ArraySize, initStyle,
2365 Initializer, ResultType, AllocTypeInfo, Range,
2366 DirectInitRange);
2367}
2368
2369/// Checks that a type is suitable as the allocated type
2370/// in a new-expression.
2371bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
2372 SourceRange R) {
2373 // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
2374 // abstract class type or array thereof.
2375 if (AllocType->isFunctionType())
2376 return Diag(Loc, diag::err_bad_new_type)
2377 << AllocType << 0 << R;
2378 else if (AllocType->isReferenceType())
2379 return Diag(Loc, diag::err_bad_new_type)
2380 << AllocType << 1 << R;
2381 else if (!AllocType->isDependentType() &&
2382 RequireCompleteSizedType(
2383 Loc, AllocType, diag::err_new_incomplete_or_sizeless_type, R))
2384 return true;
2385 else if (RequireNonAbstractType(Loc, AllocType,
2386 diag::err_allocation_of_abstract_type))
2387 return true;
2388 else if (AllocType->isVariablyModifiedType())
2389 return Diag(Loc, diag::err_variably_modified_new_type)
2390 << AllocType;
2391 else if (AllocType.getAddressSpace() != LangAS::Default &&
2392 !getLangOpts().OpenCLCPlusPlus)
2393 return Diag(Loc, diag::err_address_space_qualified_new)
2394 << AllocType.getUnqualifiedType()
2395 << AllocType.getQualifiers().getAddressSpaceAttributePrintValue();
2396 else if (getLangOpts().ObjCAutoRefCount) {
2397 if (const ArrayType *AT = Context.getAsArrayType(AllocType)) {
2398 QualType BaseAllocType = Context.getBaseElementType(AT);
2399 if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None &&
2400 BaseAllocType->isObjCLifetimeType())
2401 return Diag(Loc, diag::err_arc_new_array_without_ownership)
2402 << BaseAllocType;
2403 }
2404 }
2405
2406 return false;
2407}
2408
2409static bool resolveAllocationOverload(
2410 Sema &S, LookupResult &R, SourceRange Range, SmallVectorImpl<Expr *> &Args,
2411 bool &PassAlignment, FunctionDecl *&Operator,
2412 OverloadCandidateSet *AlignedCandidates, Expr *AlignArg, bool Diagnose) {
2413 OverloadCandidateSet Candidates(R.getNameLoc(),
2414 OverloadCandidateSet::CSK_Normal);
2415 for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
2416 Alloc != AllocEnd; ++Alloc) {
2417 // Even member operator new/delete are implicitly treated as
2418 // static, so don't use AddMemberCandidate.
2419 NamedDecl *D = (*Alloc)->getUnderlyingDecl();
2420
2421 if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
2422 S.AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
2423 /*ExplicitTemplateArgs=*/nullptr, Args,
2424 Candidates,
2425 /*SuppressUserConversions=*/false);
2426 continue;
2427 }
2428
2429 FunctionDecl *Fn = cast<FunctionDecl>(D);
2430 S.AddOverloadCandidate(Fn, Alloc.getPair(), Args, Candidates,
2431 /*SuppressUserConversions=*/false);
2432 }
2433
2434 // Do the resolution.
2435 OverloadCandidateSet::iterator Best;
2436 switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) {
2437 case OR_Success: {
2438 // Got one!
2439 FunctionDecl *FnDecl = Best->Function;
2440 if (S.CheckAllocationAccess(R.getNameLoc(), Range, R.getNamingClass(),
2441 Best->FoundDecl) == Sema::AR_inaccessible)
2442 return true;
2443
2444 Operator = FnDecl;
2445 return false;
2446 }
2447
2448 case OR_No_Viable_Function:
2449 // C++17 [expr.new]p13:
2450 // If no matching function is found and the allocated object type has
2451 // new-extended alignment, the alignment argument is removed from the
2452 // argument list, and overload resolution is performed again.
2453 if (PassAlignment) {
2454 PassAlignment = false;
2455 AlignArg = Args[1];
2456 Args.erase(Args.begin() + 1);
2457 return resolveAllocationOverload(S, R, Range, Args, PassAlignment,
2458 Operator, &Candidates, AlignArg,
2459 Diagnose);
2460 }
2461
2462 // MSVC will fall back on trying to find a matching global operator new
2463 // if operator new[] cannot be found. Also, MSVC will leak by not
2464 // generating a call to operator delete or operator delete[], but we
2465 // will not replicate that bug.
2466 // FIXME: Find out how this interacts with the std::align_val_t fallback
2467 // once MSVC implements it.
2468 if (R.getLookupName().getCXXOverloadedOperator() == OO_Array_New &&
2469 S.Context.getLangOpts().MSVCCompat) {
2470 R.clear();
2471 R.setLookupName(S.Context.DeclarationNames.getCXXOperatorName(OO_New));
2472 S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl());
2473 // FIXME: This will give bad diagnostics pointing at the wrong functions.
2474 return resolveAllocationOverload(S, R, Range, Args, PassAlignment,
2475 Operator, /*Candidates=*/nullptr,
2476 /*AlignArg=*/nullptr, Diagnose);
2477 }
2478
2479 if (Diagnose) {
2480 // If this is an allocation of the form 'new (p) X' for some object
2481 // pointer p (or an expression that will decay to such a pointer),
2482 // diagnose the missing inclusion of <new>.
2483 if (!R.isClassLookup() && Args.size() == 2 &&
2484 (Args[1]->getType()->isObjectPointerType() ||
2485 Args[1]->getType()->isArrayType())) {
2486 S.Diag(R.getNameLoc(), diag::err_need_header_before_placement_new)
2487 << R.getLookupName() << Range;
2488 // Listing the candidates is unlikely to be useful; skip it.
2489 return true;
2490 }
2491
2492 // Finish checking all candidates before we note any. This checking can
2493 // produce additional diagnostics so can't be interleaved with our
2494 // emission of notes.
2495 //
2496 // For an aligned allocation, separately check the aligned and unaligned
2497 // candidates with their respective argument lists.
2498 SmallVector<OverloadCandidate*, 32> Cands;
2499 SmallVector<OverloadCandidate*, 32> AlignedCands;
2500 llvm::SmallVector<Expr*, 4> AlignedArgs;
2501 if (AlignedCandidates) {
2502 auto IsAligned = [](OverloadCandidate &C) {
2503 return C.Function->getNumParams() > 1 &&
2504 C.Function->getParamDecl(1)->getType()->isAlignValT();
2505 };
2506 auto IsUnaligned = [&](OverloadCandidate &C) { return !IsAligned(C); };
2507
2508 AlignedArgs.reserve(Args.size() + 1);
2509 AlignedArgs.push_back(Args[0]);
2510 AlignedArgs.push_back(AlignArg);
2511 AlignedArgs.append(Args.begin() + 1, Args.end());
2512 AlignedCands = AlignedCandidates->CompleteCandidates(
2513 S, OCD_AllCandidates, AlignedArgs, R.getNameLoc(), IsAligned);
2514
2515 Cands = Candidates.CompleteCandidates(S, OCD_AllCandidates, Args,
2516 R.getNameLoc(), IsUnaligned);
2517 } else {
2518 Cands = Candidates.CompleteCandidates(S, OCD_AllCandidates, Args,
2519 R.getNameLoc());
2520 }
2521
2522 S.Diag(R.getNameLoc(), diag::err_ovl_no_viable_function_in_call)
2523 << R.getLookupName() << Range;
2524 if (AlignedCandidates)
2525 AlignedCandidates->NoteCandidates(S, AlignedArgs, AlignedCands, "",
2526 R.getNameLoc());
2527 Candidates.NoteCandidates(S, Args, Cands, "", R.getNameLoc());
2528 }
2529 return true;
2530
2531 case OR_Ambiguous:
2532 if (Diagnose) {
2533 Candidates.NoteCandidates(
2534 PartialDiagnosticAt(R.getNameLoc(),
2535 S.PDiag(diag::err_ovl_ambiguous_call)
2536 << R.getLookupName() << Range),
2537 S, OCD_AmbiguousCandidates, Args);
2538 }
2539 return true;
2540
2541 case OR_Deleted: {
2542 if (Diagnose) {
2543 Candidates.NoteCandidates(
2544 PartialDiagnosticAt(R.getNameLoc(),
2545 S.PDiag(diag::err_ovl_deleted_call)
2546 << R.getLookupName() << Range),
2547 S, OCD_AllCandidates, Args);
2548 }
2549 return true;
2550 }
2551 }
2552 llvm_unreachable("Unreachable, bad result from BestViableFunction")::llvm::llvm_unreachable_internal("Unreachable, bad result from BestViableFunction"
, "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 2552)
;
2553}
2554
2555bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
2556 AllocationFunctionScope NewScope,
2557 AllocationFunctionScope DeleteScope,
2558 QualType AllocType, bool IsArray,
2559 bool &PassAlignment, MultiExprArg PlaceArgs,
2560 FunctionDecl *&OperatorNew,
2561 FunctionDecl *&OperatorDelete,
2562 bool Diagnose) {
2563 // --- Choosing an allocation function ---
2564 // C++ 5.3.4p8 - 14 & 18
2565 // 1) If looking in AFS_Global scope for allocation functions, only look in
2566 // the global scope. Else, if AFS_Class, only look in the scope of the
2567 // allocated class. If AFS_Both, look in both.
2568 // 2) If an array size is given, look for operator new[], else look for
2569 // operator new.
2570 // 3) The first argument is always size_t. Append the arguments from the
2571 // placement form.
2572
2573 SmallVector<Expr*, 8> AllocArgs;
2574 AllocArgs.reserve((PassAlignment ? 2 : 1) + PlaceArgs.size());
2575
2576 // We don't care about the actual value of these arguments.
2577 // FIXME: Should the Sema create the expression and embed it in the syntax
2578 // tree? Or should the consumer just recalculate the value?
2579 // FIXME: Using a dummy value will interact poorly with attribute enable_if.
2580 IntegerLiteral Size(Context, llvm::APInt::getNullValue(
2581 Context.getTargetInfo().getPointerWidth(0)),
2582 Context.getSizeType(),
2583 SourceLocation());
2584 AllocArgs.push_back(&Size);
2585
2586 QualType AlignValT = Context.VoidTy;
2587 if (PassAlignment) {
2588 DeclareGlobalNewDelete();
2589 AlignValT = Context.getTypeDeclType(getStdAlignValT());
2590 }
2591 CXXScalarValueInitExpr Align(AlignValT, nullptr, SourceLocation());
2592 if (PassAlignment)
2593 AllocArgs.push_back(&Align);
2594
2595 AllocArgs.insert(AllocArgs.end(), PlaceArgs.begin(), PlaceArgs.end());
2596
2597 // C++ [expr.new]p8:
2598 // If the allocated type is a non-array type, the allocation
2599 // function's name is operator new and the deallocation function's
2600 // name is operator delete. If the allocated type is an array
2601 // type, the allocation function's name is operator new[] and the
2602 // deallocation function's name is operator delete[].
2603 DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
2604 IsArray ? OO_Array_New : OO_New);
2605
2606 QualType AllocElemType = Context.getBaseElementType(AllocType);
2607
2608 // Find the allocation function.
2609 {
2610 LookupResult R(*this, NewName, StartLoc, LookupOrdinaryName);
2611
2612 // C++1z [expr.new]p9:
2613 // If the new-expression begins with a unary :: operator, the allocation
2614 // function's name is looked up in the global scope. Otherwise, if the
2615 // allocated type is a class type T or array thereof, the allocation
2616 // function's name is looked up in the scope of T.
2617 if (AllocElemType->isRecordType() && NewScope != AFS_Global)
2618 LookupQualifiedName(R, AllocElemType->getAsCXXRecordDecl());
2619
2620 // We can see ambiguity here if the allocation function is found in
2621 // multiple base classes.
2622 if (R.isAmbiguous())
2623 return true;
2624
2625 // If this lookup fails to find the name, or if the allocated type is not
2626 // a class type, the allocation function's name is looked up in the
2627 // global scope.
2628 if (R.empty()) {
2629 if (NewScope == AFS_Class)
2630 return true;
2631
2632 LookupQualifiedName(R, Context.getTranslationUnitDecl());
2633 }
2634
2635 if (getLangOpts().OpenCLCPlusPlus && R.empty()) {
2636 if (PlaceArgs.empty()) {
2637 Diag(StartLoc, diag::err_openclcxx_not_supported) << "default new";
2638 } else {
2639 Diag(StartLoc, diag::err_openclcxx_placement_new);
2640 }
2641 return true;
2642 }
2643
2644 assert(!R.empty() && "implicitly declared allocation functions not found")(static_cast <bool> (!R.empty() && "implicitly declared allocation functions not found"
) ? void (0) : __assert_fail ("!R.empty() && \"implicitly declared allocation functions not found\""
, "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 2644, __extension__ __PRETTY_FUNCTION__))
;
2645 assert(!R.isAmbiguous() && "global allocation functions are ambiguous")(static_cast <bool> (!R.isAmbiguous() && "global allocation functions are ambiguous"
) ? void (0) : __assert_fail ("!R.isAmbiguous() && \"global allocation functions are ambiguous\""
, "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 2645, __extension__ __PRETTY_FUNCTION__))
;
2646
2647 // We do our own custom access checks below.
2648 R.suppressDiagnostics();
2649
2650 if (resolveAllocationOverload(*this, R, Range, AllocArgs, PassAlignment,
2651 OperatorNew, /*Candidates=*/nullptr,
2652 /*AlignArg=*/nullptr, Diagnose))
2653 return true;
2654 }
2655
2656 // We don't need an operator delete if we're running under -fno-exceptions.
2657 if (!getLangOpts().Exceptions) {
2658 OperatorDelete = nullptr;
2659 return false;
2660 }
2661
2662 // Note, the name of OperatorNew might have been changed from array to
2663 // non-array by resolveAllocationOverload.
2664 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
2665 OperatorNew->getDeclName().getCXXOverloadedOperator() == OO_Array_New
2666 ? OO_Array_Delete
2667 : OO_Delete);
2668
2669 // C++ [expr.new]p19:
2670 //
2671 // If the new-expression begins with a unary :: operator, the
2672 // deallocation function's name is looked up in the global
2673 // scope. Otherwise, if the allocated type is a class type T or an
2674 // array thereof, the deallocation function's name is looked up in
2675 // the scope of T. If this lookup fails to find the name, or if
2676 // the allocated type is not a class type or array thereof, the
2677 // deallocation function's name is looked up in the global scope.
2678 LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
2679 if (AllocElemType->isRecordType() && DeleteScope != AFS_Global) {
2680 auto *RD =
2681 cast<CXXRecordDecl>(AllocElemType->castAs<RecordType>()->getDecl());
2682 LookupQualifiedName(FoundDelete, RD);
2683 }
2684 if (FoundDelete.isAmbiguous())
2685 return true; // FIXME: clean up expressions?
2686
2687 // Filter out any destroying operator deletes. We can't possibly call such a
2688 // function in this context, because we're handling the case where the object
2689 // was not successfully constructed.
2690 // FIXME: This is not covered by the language rules yet.
2691 {
2692 LookupResult::Filter Filter = FoundDelete.makeFilter();
2693 while (Filter.hasNext()) {
2694 auto *FD = dyn_cast<FunctionDecl>(Filter.next()->getUnderlyingDecl());
2695 if (FD && FD->isDestroyingOperatorDelete())
2696 Filter.erase();
2697 }
2698 Filter.done();
2699 }
2700
2701 bool FoundGlobalDelete = FoundDelete.empty();
2702 if (FoundDelete.empty()) {
2703 FoundDelete.clear(LookupOrdinaryName);
2704
2705 if (DeleteScope == AFS_Class)
2706 return true;
2707
2708 DeclareGlobalNewDelete();
2709 LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
2710 }
2711
2712 FoundDelete.suppressDiagnostics();
2713
2714 SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;
2715
2716 // Whether we're looking for a placement operator delete is dictated
2717 // by whether we selected a placement operator new, not by whether
2718 // we had explicit placement arguments. This matters for things like
2719 // struct A { void *operator new(size_t, int = 0); ... };
2720 // A *a = new A()
2721 //
2722 // We don't have any definition for what a "placement allocation function"
2723 // is, but we assume it's any allocation function whose
2724 // parameter-declaration-clause is anything other than (size_t).
2725 //
2726 // FIXME: Should (size_t, std::align_val_t) also be considered non-placement?
2727 // This affects whether an exception from the constructor of an overaligned
2728 // type uses the sized or non-sized form of aligned operator delete.
2729 bool isPlacementNew = !PlaceArgs.empty() || OperatorNew->param_size() != 1 ||
2730 OperatorNew->isVariadic();
2731
2732 if (isPlacementNew) {
2733 // C++ [expr.new]p20:
2734 // A declaration of a placement deallocation function matches the
2735 // declaration of a placement allocation function if it has the
2736 // same number of parameters and, after parameter transformations
2737 // (8.3.5), all parameter types except the first are
2738 // identical. [...]
2739 //
2740 // To perform this comparison, we compute the function type that
2741 // the deallocation function should have, and use that type both
2742 // for template argument deduction and for comparison purposes.
2743 QualType ExpectedFunctionType;
2744 {
2745 auto *Proto = OperatorNew->getType()->castAs<FunctionProtoType>();
2746
2747 SmallVector<QualType, 4> ArgTypes;
2748 ArgTypes.push_back(Context.VoidPtrTy);
2749 for (unsigned I = 1, N = Proto->getNumParams(); I < N; ++I)
2750 ArgTypes.push_back(Proto->getParamType(I));
2751
2752 FunctionProtoType::ExtProtoInfo EPI;
2753 // FIXME: This is not part of the standard's rule.
2754 EPI.Variadic = Proto->isVariadic();
2755
2756 ExpectedFunctionType
2757 = Context.getFunctionType(Context.VoidTy, ArgTypes, EPI);
2758 }
2759
2760 for (LookupResult::iterator D = FoundDelete.begin(),
2761 DEnd = FoundDelete.end();
2762 D != DEnd; ++D) {
2763 FunctionDecl *Fn = nullptr;
2764 if (FunctionTemplateDecl *FnTmpl =
2765 dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
2766 // Perform template argument deduction to try to match the
2767 // expected function type.
2768 TemplateDeductionInfo Info(StartLoc);
2769 if (DeduceTemplateArguments(FnTmpl, nullptr, ExpectedFunctionType, Fn,
2770 Info))
2771 continue;
2772 } else
2773 Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
2774
2775 if (Context.hasSameType(adjustCCAndNoReturn(Fn->getType(),
2776 ExpectedFunctionType,
2777 /*AdjustExcpetionSpec*/true),
2778 ExpectedFunctionType))
2779 Matches.push_back(std::make_pair(D.getPair(), Fn));
2780 }
2781
2782 if (getLangOpts().CUDA)
2783 EraseUnwantedCUDAMatches(dyn_cast<FunctionDecl>(CurContext), Matches);
2784 } else {
2785 // C++1y [expr.new]p22:
2786 // For a non-placement allocation function, the normal deallocation
2787 // function lookup is used
2788 //
2789 // Per [expr.delete]p10, this lookup prefers a member operator delete
2790 // without a size_t argument, but prefers a non-member operator delete
2791 // with a size_t where possible (which it always is in this case).
2792 llvm::SmallVector<UsualDeallocFnInfo, 4> BestDeallocFns;
2793 UsualDeallocFnInfo Selected = resolveDeallocationOverload(
2794 *this, FoundDelete, /*WantSize*/ FoundGlobalDelete,
2795 /*WantAlign*/ hasNewExtendedAlignment(*this, AllocElemType),
2796 &BestDeallocFns);
2797 if (Selected)
2798 Matches.push_back(std::make_pair(Selected.Found, Selected.FD));
2799 else {
2800 // If we failed to select an operator, all remaining functions are viable
2801 // but ambiguous.
2802 for (auto Fn : BestDeallocFns)
2803 Matches.push_back(std::make_pair(Fn.Found, Fn.FD));
2804 }
2805 }
2806
2807 // C++ [expr.new]p20:
2808 // [...] If the lookup finds a single matching deallocation
2809 // function, that function will be called; otherwise, no
2810 // deallocation function will be called.
2811 if (Matches.size() == 1) {
2812 OperatorDelete = Matches[0].second;
2813
2814 // C++1z [expr.new]p23:
2815 // If the lookup finds a usual deallocation function (3.7.4.2)
2816 // with a parameter of type std::size_t and that function, considered
2817 // as a placement deallocation function, would have been
2818 // selected as a match for the allocation function, the program
2819 // is ill-formed.
2820 if (getLangOpts().CPlusPlus11 && isPlacementNew &&
2821 isNonPlacementDeallocationFunction(*this, OperatorDelete)) {
2822 UsualDeallocFnInfo Info(*this,
2823 DeclAccessPair::make(OperatorDelete, AS_public));
2824 // Core issue, per mail to core reflector, 2016-10-09:
2825 // If this is a member operator delete, and there is a corresponding
2826 // non-sized member operator delete, this isn't /really/ a sized
2827 // deallocation function, it just happens to have a size_t parameter.
2828 bool IsSizedDelete = Info.HasSizeT;
2829 if (IsSizedDelete && !FoundGlobalDelete) {
2830 auto NonSizedDelete =
2831 resolveDeallocationOverload(*this, FoundDelete, /*WantSize*/false,
2832 /*WantAlign*/Info.HasAlignValT);
2833 if (NonSizedDelete && !NonSizedDelete.HasSizeT &&
2834 NonSizedDelete.HasAlignValT == Info.HasAlignValT)
2835 IsSizedDelete = false;
2836 }
2837
2838 if (IsSizedDelete) {
2839 SourceRange R = PlaceArgs.empty()
2840 ? SourceRange()
2841 : SourceRange(PlaceArgs.front()->getBeginLoc(),
2842 PlaceArgs.back()->getEndLoc());
2843 Diag(StartLoc, diag::err_placement_new_non_placement_delete) << R;
2844 if (!OperatorDelete->isImplicit())
2845 Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
2846 << DeleteName;
2847 }
2848 }
2849
2850 CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
2851 Matches[0].first);
2852 } else if (!Matches.empty()) {
2853 // We found multiple suitable operators. Per [expr.new]p20, that means we
2854 // call no 'operator delete' function, but we should at least warn the user.
2855 // FIXME: Suppress this warning if the construction cannot throw.
2856 Diag(StartLoc, diag::warn_ambiguous_suitable_delete_function_found)
2857 << DeleteName << AllocElemType;
2858
2859 for (auto &Match : Matches)
2860 Diag(Match.second->getLocation(),
2861 diag::note_member_declared_here) << DeleteName;
2862 }
2863
2864 return false;
2865}
2866
2867/// DeclareGlobalNewDelete - Declare the global forms of operator new and
2868/// delete. These are:
2869/// @code
2870/// // C++03:
2871/// void* operator new(std::size_t) throw(std::bad_alloc);
2872/// void* operator new[](std::size_t) throw(std::bad_alloc);
2873/// void operator delete(void *) throw();
2874/// void operator delete[](void *) throw();
2875/// // C++11:
2876/// void* operator new(std::size_t);
2877/// void* operator new[](std::size_t);
2878/// void operator delete(void *) noexcept;
2879/// void operator delete[](void *) noexcept;
2880/// // C++1y:
2881/// void* operator new(std::size_t);
2882/// void* operator new[](std::size_t);
2883/// void operator delete(void *) noexcept;
2884/// void operator delete[](void *) noexcept;
2885/// void operator delete(void *, std::size_t) noexcept;
2886/// void operator delete[](void *, std::size_t) noexcept;
2887/// @endcode
2888/// Note that the placement and nothrow forms of new are *not* implicitly
2889/// declared. Their use requires including \<new\>.
2890void Sema::DeclareGlobalNewDelete() {
2891 if (GlobalNewDeleteDeclared)
2892 return;
2893
2894 // The implicitly declared new and delete operators
2895 // are not supported in OpenCL.
2896 if (getLangOpts().OpenCLCPlusPlus)
2897 return;
2898
2899 // C++ [basic.std.dynamic]p2:
2900 // [...] The following allocation and deallocation functions (18.4) are
2901 // implicitly declared in global scope in each translation unit of a
2902 // program
2903 //
2904 // C++03:
2905 // void* operator new(std::size_t) throw(std::bad_alloc);
2906 // void* operator new[](std::size_t) throw(std::bad_alloc);
2907 // void operator delete(void*) throw();
2908 // void operator delete[](void*) throw();
2909 // C++11:
2910 // void* operator new(std::size_t);
2911 // void* operator new[](std::size_t);
2912 // void operator delete(void*) noexcept;
2913 // void operator delete[](void*) noexcept;
2914 // C++1y:
2915 // void* operator new(std::size_t);
2916 // void* operator new[](std::size_t);
2917 // void operator delete(void*) noexcept;
2918 // void operator delete[](void*) noexcept;
2919 // void operator delete(void*, std::size_t) noexcept;
2920 // void operator delete[](void*, std::size_t) noexcept;
2921 //
2922 // These implicit declarations introduce only the function names operator
2923 // new, operator new[], operator delete, operator delete[].
2924 //
2925 // Here, we need to refer to std::bad_alloc, so we will implicitly declare
2926 // "std" or "bad_alloc" as necessary to form the exception specification.
2927 // However, we do not make these implicit declarations visible to name
2928 // lookup.
2929 if (!StdBadAlloc && !getLangOpts().CPlusPlus11) {
2930 // The "std::bad_alloc" class has not yet been declared, so build it
2931 // implicitly.
2932 StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class,
2933 getOrCreateStdNamespace(),
2934 SourceLocation(), SourceLocation(),
2935 &PP.getIdentifierTable().get("bad_alloc"),
2936 nullptr);
2937 getStdBadAlloc()->setImplicit(true);
2938 }
2939 if (!StdAlignValT && getLangOpts().AlignedAllocation) {
2940 // The "std::align_val_t" enum class has not yet been declared, so build it
2941 // implicitly.
2942 auto *AlignValT = EnumDecl::Create(
2943 Context, getOrCreateStdNamespace(), SourceLocation(), SourceLocation(),
2944 &PP.getIdentifierTable().get("align_val_t"), nullptr, true, true, true);
2945 AlignValT->setIntegerType(Context.getSizeType());
2946 AlignValT->setPromotionType(Context.getSizeType());
2947 AlignValT->setImplicit(true);
2948 StdAlignValT = AlignValT;
2949 }
2950
2951 GlobalNewDeleteDeclared = true;
2952
2953 QualType VoidPtr = Context.getPointerType(Context.VoidTy);
2954 QualType SizeT = Context.getSizeType();
2955
2956 auto DeclareGlobalAllocationFunctions = [&](OverloadedOperatorKind Kind,
2957 QualType Return, QualType Param) {
2958 llvm::SmallVector<QualType, 3> Params;
2959 Params.push_back(Param);
2960
2961 // Create up to four variants of the function (sized/aligned).
2962 bool HasSizedVariant = getLangOpts().SizedDeallocation &&
2963 (Kind == OO_Delete || Kind == OO_Array_Delete);
2964 bool HasAlignedVariant = getLangOpts().AlignedAllocation;
2965
2966 int NumSizeVariants = (HasSizedVariant ? 2 : 1);
2967 int NumAlignVariants = (HasAlignedVariant ? 2 : 1);
2968 for (int Sized = 0; Sized < NumSizeVariants; ++Sized) {
2969 if (Sized)
2970 Params.push_back(SizeT);
2971
2972 for (int Aligned = 0; Aligned < NumAlignVariants; ++Aligned) {
2973 if (Aligned)
2974 Params.push_back(Context.getTypeDeclType(getStdAlignValT()));
2975
2976 DeclareGlobalAllocationFunction(
2977 Context.DeclarationNames.getCXXOperatorName(Kind), Return, Params);
2978
2979 if (Aligned)
2980 Params.pop_back();
2981 }
2982 }
2983 };
2984
2985 DeclareGlobalAllocationFunctions(OO_New, VoidPtr, SizeT);
2986 DeclareGlobalAllocationFunctions(OO_Array_New, VoidPtr, SizeT);
2987 DeclareGlobalAllocationFunctions(OO_Delete, Context.VoidTy, VoidPtr);
2988 DeclareGlobalAllocationFunctions(OO_Array_Delete, Context.VoidTy, VoidPtr);
2989}
2990
2991/// DeclareGlobalAllocationFunction - Declares a single implicit global
2992/// allocation function if it doesn't already exist.
2993void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
2994 QualType Return,
2995 ArrayRef<QualType> Params) {
2996 DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
2997
2998 // Check if this function is already declared.
2999 DeclContext::lookup_result R = GlobalCtx->lookup(Name);
3000 for (DeclContext::lookup_iterator Alloc = R.begin(), AllocEnd = R.end();
3001 Alloc != AllocEnd; ++Alloc) {
3002 // Only look at non-template functions, as it is the predefined,
3003 // non-templated allocation function we are trying to declare here.
3004 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
3005 if (Func->getNumParams() == Params.size()) {
3006 llvm::SmallVector<QualType, 3> FuncParams;
3007 for (auto *P : Func->parameters())
3008 FuncParams.push_back(
3009 Context.getCanonicalType(P->getType().getUnqualifiedType()));
3010 if (llvm::makeArrayRef(FuncParams) == Params) {
3011 // Make the function visible to name lookup, even if we found it in
3012 // an unimported module. It either is an implicitly-declared global
3013 // allocation function, or is suppressing that function.
3014 Func->setVisibleDespiteOwningModule();
3015 return;
3016 }
3017 }
3018 }
3019 }
3020
3021 FunctionProtoType::ExtProtoInfo EPI(Context.getDefaultCallingConvention(
3022 /*IsVariadic=*/false, /*IsCXXMethod=*/false, /*IsBuiltin=*/true));
3023
3024 QualType BadAllocType;
3025 bool HasBadAllocExceptionSpec
3026 = (Name.getCXXOverloadedOperator() == OO_New ||
3027 Name.getCXXOverloadedOperator() == OO_Array_New);
3028 if (HasBadAllocExceptionSpec) {
3029 if (!getLangOpts().CPlusPlus11) {
3030 BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
3031 assert(StdBadAlloc && "Must have std::bad_alloc declared")(static_cast <bool> (StdBadAlloc && "Must have std::bad_alloc declared"
) ? void (0) : __assert_fail ("StdBadAlloc && \"Must have std::bad_alloc declared\""
, "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 3031, __extension__ __PRETTY_FUNCTION__))
;
3032 EPI.ExceptionSpec.Type = EST_Dynamic;
3033 EPI.ExceptionSpec.Exceptions = llvm::makeArrayRef(BadAllocType);
3034 }
3035 } else {
3036 EPI.ExceptionSpec =
3037 getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone;
3038 }
3039
3040 auto CreateAllocationFunctionDecl = [&](Attr *ExtraAttr) {
3041 QualType FnType = Context.getFunctionType(Return, Params, EPI);
3042 FunctionDecl *Alloc = FunctionDecl::Create(
3043 Context, GlobalCtx, SourceLocation(), SourceLocation(), Name,
3044 FnType, /*TInfo=*/nullptr, SC_None, false, true);
3045 Alloc->setImplicit();
3046 // Global allocation functions should always be visible.
3047 Alloc->setVisibleDespiteOwningModule();
3048
3049 Alloc->addAttr(VisibilityAttr::CreateImplicit(
3050 Context, LangOpts.GlobalAllocationFunctionVisibilityHidden
3051 ? VisibilityAttr::Hidden
3052 : VisibilityAttr::Default));
3053
3054 llvm::SmallVector<ParmVarDecl *, 3> ParamDecls;
3055 for (QualType T : Params) {
3056 ParamDecls.push_back(ParmVarDecl::Create(
3057 Context, Alloc, SourceLocation(), SourceLocation(), nullptr, T,
3058 /*TInfo=*/nullptr, SC_None, nullptr));
3059 ParamDecls.back()->setImplicit();
3060 }
3061 Alloc->setParams(ParamDecls);
3062 if (ExtraAttr)
3063 Alloc->addAttr(ExtraAttr);
3064 AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(Alloc);
3065 Context.getTranslationUnitDecl()->addDecl(Alloc);
3066 IdResolver.tryAddTopLevelDecl(Alloc, Name);
3067 };
3068
3069 if (!LangOpts.CUDA)
3070 CreateAllocationFunctionDecl(nullptr);
3071 else {
3072 // Host and device get their own declaration so each can be
3073 // defined or re-declared independently.
3074 CreateAllocationFunctionDecl(CUDAHostAttr::CreateImplicit(Context));
3075 CreateAllocationFunctionDecl(CUDADeviceAttr::CreateImplicit(Context));
3076 }
3077}
3078
3079FunctionDecl *Sema::FindUsualDeallocationFunction(SourceLocation StartLoc,
3080 bool CanProvideSize,
3081 bool Overaligned,
3082 DeclarationName Name) {
3083 DeclareGlobalNewDelete();
3084
3085 LookupResult FoundDelete(*this, Name, StartLoc, LookupOrdinaryName);
3086 LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
3087
3088 // FIXME: It's possible for this to result in ambiguity, through a
3089 // user-declared variadic operator delete or the enable_if attribute. We
3090 // should probably not consider those cases to be usual deallocation
3091 // functions. But for now we just make an arbitrary choice in that case.
3092 auto Result = resolveDeallocationOverload(*this, FoundDelete, CanProvideSize,
3093 Overaligned);
3094 assert(Result.FD && "operator delete missing from global scope?")(static_cast <bool> (Result.FD && "operator delete missing from global scope?"
) ? void (0) : __assert_fail ("Result.FD && \"operator delete missing from global scope?\""
, "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 3094, __extension__ __PRETTY_FUNCTION__))
;
3095 return Result.FD;
3096}
3097
3098FunctionDecl *Sema::FindDeallocationFunctionForDestructor(SourceLocation Loc,
3099 CXXRecordDecl *RD) {
3100 DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Delete);
3101
3102 FunctionDecl *OperatorDelete = nullptr;
3103 if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
3104 return nullptr;
3105 if (OperatorDelete)
3106 return OperatorDelete;
3107
3108 // If there's no class-specific operator delete, look up the global
3109 // non-array delete.
3110 return FindUsualDeallocationFunction(
3111 Loc, true, hasNewExtendedAlignment(*this, Context.getRecordType(RD)),
3112 Name);
3113}
3114
3115bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
3116 DeclarationName Name,
3117 FunctionDecl *&Operator, bool Diagnose) {
3118 LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
3119 // Try to find operator delete/operator delete[] in class scope.
3120 LookupQualifiedName(Found, RD);
3121
3122 if (Found.isAmbiguous())
3123 return true;
3124
3125 Found.suppressDiagnostics();
3126
3127 bool Overaligned = hasNewExtendedAlignment(*this, Context.getRecordType(RD));
3128
3129 // C++17 [expr.delete]p10:
3130 // If the deallocation functions have class scope, the one without a
3131 // parameter of type std::size_t is selected.
3132 llvm::SmallVector<UsualDeallocFnInfo, 4> Matches;
3133 resolveDeallocationOverload(*this, Found, /*WantSize*/ false,
3134 /*WantAlign*/ Overaligned, &Matches);
3135
3136 // If we could find an overload, use it.
3137 if (Matches.size() == 1) {
3138 Operator = cast<CXXMethodDecl>(Matches[0].FD);
3139
3140 // FIXME: DiagnoseUseOfDecl?
3141 if (Operator->isDeleted()) {
3142 if (Diagnose) {
3143 Diag(StartLoc, diag::err_deleted_function_use);
3144 NoteDeletedFunction(Operator);
3145 }
3146 return true;
3147 }
3148
3149 if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
3150 Matches[0].Found, Diagnose) == AR_inaccessible)
3151 return true;
3152
3153 return false;
3154 }
3155
3156 // We found multiple suitable operators; complain about the ambiguity.
3157 // FIXME: The standard doesn't say to do this; it appears that the intent
3158 // is that this should never happen.
3159 if (!Matches.empty()) {
3160 if (Diagnose) {
3161 Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
3162 << Name << RD;
3163 for (auto &Match : Matches)
3164 Diag(Match.FD->getLocation(), diag::note_member_declared_here) << Name;
3165 }
3166 return true;
3167 }
3168
3169 // We did find operator delete/operator delete[] declarations, but
3170 // none of them were suitable.
3171 if (!Found.empty()) {
3172 if (Diagnose) {
3173 Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
3174 << Name << RD;
3175
3176 for (NamedDecl *D : Found)
3177 Diag(D->getUnderlyingDecl()->getLocation(),
3178 diag::note_member_declared_here) << Name;
3179 }
3180 return true;
3181 }
3182
3183 Operator = nullptr;
3184 return false;
3185}
3186
3187namespace {
3188/// Checks whether delete-expression, and new-expression used for
3189/// initializing deletee have the same array form.
3190class MismatchingNewDeleteDetector {
3191public:
3192 enum MismatchResult {
3193 /// Indicates that there is no mismatch or a mismatch cannot be proven.
3194 NoMismatch,
3195 /// Indicates that variable is initialized with mismatching form of \a new.
3196 VarInitMismatches,
3197 /// Indicates that member is initialized with mismatching form of \a new.
3198 MemberInitMismatches,
3199 /// Indicates that 1 or more constructors' definitions could not been
3200 /// analyzed, and they will be checked again at the end of translation unit.
3201 AnalyzeLater
3202 };
3203
3204 /// \param EndOfTU True, if this is the final analysis at the end of
3205 /// translation unit. False, if this is the initial analysis at the point
3206 /// delete-expression was encountered.
3207 explicit MismatchingNewDeleteDetector(bool EndOfTU)
3208 : Field(nullptr), IsArrayForm(false), EndOfTU(EndOfTU),
3209 HasUndefinedConstructors(false) {}
3210
3211 /// Checks whether pointee of a delete-expression is initialized with
3212 /// matching form of new-expression.
3213 ///
3214 /// If return value is \c VarInitMismatches or \c MemberInitMismatches at the
3215 /// point where delete-expression is encountered, then a warning will be
3216 /// issued immediately. If return value is \c AnalyzeLater at the point where
3217 /// delete-expression is seen, then member will be analyzed at the end of
3218 /// translation unit. \c AnalyzeLater is returned iff at least one constructor
3219 /// couldn't be analyzed. If at least one constructor initializes the member
3220 /// with matching type of new, the return value is \c NoMismatch.
3221 MismatchResult analyzeDeleteExpr(const CXXDeleteExpr *DE);
3222 /// Analyzes a class member.
3223 /// \param Field Class member to analyze.
3224 /// \param DeleteWasArrayForm Array form-ness of the delete-expression used
3225 /// for deleting the \p Field.
3226 MismatchResult analyzeField(FieldDecl *Field, bool DeleteWasArrayForm);
3227 FieldDecl *Field;
3228 /// List of mismatching new-expressions used for initialization of the pointee
3229 llvm::SmallVector<const CXXNewExpr *, 4> NewExprs;
3230 /// Indicates whether delete-expression was in array form.
3231 bool IsArrayForm;
3232
3233private:
3234 const bool EndOfTU;
3235 /// Indicates that there is at least one constructor without body.
3236 bool HasUndefinedConstructors;
3237 /// Returns \c CXXNewExpr from given initialization expression.
3238 /// \param E Expression used for initializing pointee in delete-expression.
3239 /// E can be a single-element \c InitListExpr consisting of new-expression.
3240 const CXXNewExpr *getNewExprFromInitListOrExpr(const Expr *E);
3241 /// Returns whether member is initialized with mismatching form of
3242 /// \c new either by the member initializer or in-class initialization.
3243 ///
3244 /// If bodies of all constructors are not visible at the end of translation
3245 /// unit or at least one constructor initializes member with the matching
3246 /// form of \c new, mismatch cannot be proven, and this function will return
3247 /// \c NoMismatch.
3248 MismatchResult analyzeMemberExpr(const MemberExpr *ME);
3249 /// Returns whether variable is initialized with mismatching form of
3250 /// \c new.
3251 ///
3252 /// If variable is initialized with matching form of \c new or variable is not
3253 /// initialized with a \c new expression, this function will return true.
3254 /// If variable is initialized with mismatching form of \c new, returns false.
3255 /// \param D Variable to analyze.
3256 bool hasMatchingVarInit(const DeclRefExpr *D);
3257 /// Checks whether the constructor initializes pointee with mismatching
3258 /// form of \c new.
3259 ///
3260 /// Returns true, if member is initialized with matching form of \c new in
3261 /// member initializer list. Returns false, if member is initialized with the
3262 /// matching form of \c new in this constructor's initializer or given
3263 /// constructor isn't defined at the point where delete-expression is seen, or
3264 /// member isn't initialized by the constructor.
3265 bool hasMatchingNewInCtor(const CXXConstructorDecl *CD);
3266 /// Checks whether member is initialized with matching form of
3267 /// \c new in member initializer list.
3268 bool hasMatchingNewInCtorInit(const CXXCtorInitializer *CI);
3269 /// Checks whether member is initialized with mismatching form of \c new by
3270 /// in-class initializer.
3271 MismatchResult analyzeInClassInitializer();
3272};
3273}
3274
3275MismatchingNewDeleteDetector::MismatchResult
3276MismatchingNewDeleteDetector::analyzeDeleteExpr(const CXXDeleteExpr *DE) {
3277 NewExprs.clear();
3278 assert(DE && "Expected delete-expression")(static_cast <bool> (DE && "Expected delete-expression"
) ? void (0) : __assert_fail ("DE && \"Expected delete-expression\""
, "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 3278, __extension__ __PRETTY_FUNCTION__))
;
3279 IsArrayForm = DE->isArrayForm();
3280 const Expr *E = DE->getArgument()->IgnoreParenImpCasts();
3281 if (const MemberExpr *ME = dyn_cast<const MemberExpr>(E)) {
3282 return analyzeMemberExpr(ME);
3283 } else if (const DeclRefExpr *D = dyn_cast<const DeclRefExpr>(E)) {
3284 if (!hasMatchingVarInit(D))
3285 return VarInitMismatches;
3286 }
3287 return NoMismatch;
3288}
3289
3290const CXXNewExpr *
3291MismatchingNewDeleteDetector::getNewExprFromInitListOrExpr(const Expr *E) {
3292 assert(E != nullptr && "Expected a valid initializer expression")(static_cast <bool> (E != nullptr && "Expected a valid initializer expression"
) ? void (0) : __assert_fail ("E != nullptr && \"Expected a valid initializer expression\""
, "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 3292, __extension__ __PRETTY_FUNCTION__))
;
3293 E = E->IgnoreParenImpCasts();
3294 if (const InitListExpr *ILE = dyn_cast<const InitListExpr>(E)) {
3295 if (ILE->getNumInits() == 1)
3296 E = dyn_cast<const CXXNewExpr>(ILE->getInit(0)->IgnoreParenImpCasts());
3297 }
3298
3299 return dyn_cast_or_null<const CXXNewExpr>(E);
3300}
3301
3302bool MismatchingNewDeleteDetector::hasMatchingNewInCtorInit(
3303 const CXXCtorInitializer *CI) {
3304 const CXXNewExpr *NE = nullptr;
3305 if (Field == CI->getMember() &&
3306 (NE = getNewExprFromInitListOrExpr(CI->getInit()))) {
3307 if (NE->isArray() == IsArrayForm)
3308 return true;
3309 else
3310 NewExprs.push_back(NE);
3311 }
3312 return false;
3313}
3314
3315bool MismatchingNewDeleteDetector::hasMatchingNewInCtor(
3316 const CXXConstructorDecl *CD) {
3317 if (CD->isImplicit())
3318 return false;
3319 const FunctionDecl *Definition = CD;
3320 if (!CD->isThisDeclarationADefinition() && !CD->isDefined(Definition)) {
3321 HasUndefinedConstructors = true;
3322 return EndOfTU;
3323 }
3324 for (const auto *CI : cast<const CXXConstructorDecl>(Definition)->inits()) {
3325 if (hasMatchingNewInCtorInit(CI))
3326 return true;
3327 }
3328 return false;
3329}
3330
3331MismatchingNewDeleteDetector::MismatchResult
3332MismatchingNewDeleteDetector::analyzeInClassInitializer() {
3333 assert(Field != nullptr && "This should be called only for members")(static_cast <bool> (Field != nullptr && "This should be called only for members"
) ? void (0) : __assert_fail ("Field != nullptr && \"This should be called only for members\""
, "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 3333, __extension__ __PRETTY_FUNCTION__))
;
3334 const Expr *InitExpr = Field->getInClassInitializer();
3335 if (!InitExpr)
3336 return EndOfTU ? NoMismatch : AnalyzeLater;
3337 if (const CXXNewExpr *NE = getNewExprFromInitListOrExpr(InitExpr)) {
3338 if (NE->isArray() != IsArrayForm) {
3339 NewExprs.push_back(NE);
3340 return MemberInitMismatches;
3341 }
3342 }
3343 return NoMismatch;
3344}
3345
3346MismatchingNewDeleteDetector::MismatchResult
3347MismatchingNewDeleteDetector::analyzeField(FieldDecl *Field,
3348 bool DeleteWasArrayForm) {
3349 assert(Field != nullptr && "Analysis requires a valid class member.")(static_cast <bool> (Field != nullptr && "Analysis requires a valid class member."
) ? void (0) : __assert_fail ("Field != nullptr && \"Analysis requires a valid class member.\""
, "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 3349, __extension__ __PRETTY_FUNCTION__))
;
3350 this->Field = Field;
3351 IsArrayForm = DeleteWasArrayForm;
3352 const CXXRecordDecl *RD = cast<const CXXRecordDecl>(Field->getParent());
3353 for (const auto *CD : RD->ctors()) {
3354 if (hasMatchingNewInCtor(CD))
3355 return NoMismatch;
3356 }
3357 if (HasUndefinedConstructors)
3358 return EndOfTU ? NoMismatch : AnalyzeLater;
3359 if (!NewExprs.empty())
3360 return MemberInitMismatches;
3361 return Field->hasInClassInitializer() ? analyzeInClassInitializer()
3362 : NoMismatch;
3363}
3364
3365MismatchingNewDeleteDetector::MismatchResult
3366MismatchingNewDeleteDetector::analyzeMemberExpr(const MemberExpr *ME) {
3367 assert(ME != nullptr && "Expected a member expression")(static_cast <bool> (ME != nullptr && "Expected a member expression"
) ? void (0) : __assert_fail ("ME != nullptr && \"Expected a member expression\""
, "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 3367, __extension__ __PRETTY_FUNCTION__))
;
3368 if (FieldDecl *F = dyn_cast<FieldDecl>(ME->getMemberDecl()))
3369 return analyzeField(F, IsArrayForm);
3370 return NoMismatch;
3371}
3372
3373bool MismatchingNewDeleteDetector::hasMatchingVarInit(const DeclRefExpr *D) {
3374 const CXXNewExpr *NE = nullptr;
3375 if (const VarDecl *VD = dyn_cast<const VarDecl>(D->getDecl())) {
3376 if (VD->hasInit() && (NE = getNewExprFromInitListOrExpr(VD->getInit())) &&
3377 NE->isArray() != IsArrayForm) {
3378 NewExprs.push_back(NE);
3379 }
3380 }
3381 return NewExprs.empty();
3382}
3383
3384static void
3385DiagnoseMismatchedNewDelete(Sema &SemaRef, SourceLocation DeleteLoc,
3386 const MismatchingNewDeleteDetector &Detector) {
3387 SourceLocation EndOfDelete = SemaRef.getLocForEndOfToken(DeleteLoc);
3388 FixItHint H;
3389 if (!Detector.IsArrayForm)
3390 H = FixItHint::CreateInsertion(EndOfDelete, "[]");
3391 else {
3392 SourceLocation RSquare = Lexer::findLocationAfterToken(
3393 DeleteLoc, tok::l_square, SemaRef.getSourceManager(),
3394 SemaRef.getLangOpts(), true);
3395 if (RSquare.isValid())
3396 H = FixItHint::CreateRemoval(SourceRange(EndOfDelete, RSquare));
3397 }
3398 SemaRef.Diag(DeleteLoc, diag::warn_mismatched_delete_new)
3399 << Detector.IsArrayForm << H;
3400
3401 for (const auto *NE : Detector.NewExprs)
3402 SemaRef.Diag(NE->getExprLoc(), diag::note_allocated_here)
3403 << Detector.IsArrayForm;
3404}
3405
3406void Sema::AnalyzeDeleteExprMismatch(const CXXDeleteExpr *DE) {
3407 if (Diags.isIgnored(diag::warn_mismatched_delete_new, SourceLocation()))
3408 return;
3409 MismatchingNewDeleteDetector Detector(/*EndOfTU=*/false);
3410 switch (Detector.analyzeDeleteExpr(DE)) {
3411 case MismatchingNewDeleteDetector::VarInitMismatches:
3412 case MismatchingNewDeleteDetector::MemberInitMismatches: {
3413 DiagnoseMismatchedNewDelete(*this, DE->getBeginLoc(), Detector);
3414 break;
3415 }
3416 case MismatchingNewDeleteDetector::AnalyzeLater: {
3417 DeleteExprs[Detector.Field].push_back(
3418 std::make_pair(DE->getBeginLoc(), DE->isArrayForm()));
3419 break;
3420 }
3421 case MismatchingNewDeleteDetector::NoMismatch:
3422 break;
3423 }
3424}
3425
3426void Sema::AnalyzeDeleteExprMismatch(FieldDecl *Field, SourceLocation DeleteLoc,
3427 bool DeleteWasArrayForm) {
3428 MismatchingNewDeleteDetector Detector(/*EndOfTU=*/true);
3429 switch (Detector.analyzeField(Field, DeleteWasArrayForm)) {
3430 case MismatchingNewDeleteDetector::VarInitMismatches:
3431 llvm_unreachable("This analysis should have been done for class members.")::llvm::llvm_unreachable_internal("This analysis should have been done for class members."
, "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 3431)
;
3432 case MismatchingNewDeleteDetector::AnalyzeLater:
3433 llvm_unreachable("Analysis cannot be postponed any point beyond end of "::llvm::llvm_unreachable_internal("Analysis cannot be postponed any point beyond end of "
"translation unit.", "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 3434)
3434 "translation unit.")::llvm::llvm_unreachable_internal("Analysis cannot be postponed any point beyond end of "
"translation unit.", "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 3434)
;
3435 case MismatchingNewDeleteDetector::MemberInitMismatches:
3436 DiagnoseMismatchedNewDelete(*this, DeleteLoc, Detector);
3437 break;
3438 case MismatchingNewDeleteDetector::NoMismatch:
3439 break;
3440 }
3441}
3442
3443/// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
3444/// @code ::delete ptr; @endcode
3445/// or
3446/// @code delete [] ptr; @endcode
3447ExprResult
3448Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
3449 bool ArrayForm, Expr *ExE) {
3450 // C++ [expr.delete]p1:
3451 // The operand shall have a pointer type, or a class type having a single
3452 // non-explicit conversion function to a pointer type. The result has type
3453 // void.
3454 //
3455 // DR599 amends "pointer type" to "pointer to object type" in both cases.
3456
3457 ExprResult Ex = ExE;
3458 FunctionDecl *OperatorDelete = nullptr;
3459 bool ArrayFormAsWritten = ArrayForm;
3460 bool UsualArrayDeleteWantsSize = false;
3461
3462 if (!Ex.get()->isTypeDependent()) {
3463 // Perform lvalue-to-rvalue cast, if needed.
3464 Ex = DefaultLvalueConversion(Ex.get());
3465 if (Ex.isInvalid())
3466 return ExprError();
3467
3468 QualType Type = Ex.get()->getType();
3469
3470 class DeleteConverter : public ContextualImplicitConverter {
3471 public:
3472 DeleteConverter() : ContextualImplicitConverter(false, true) {}
3473
3474 bool match(QualType ConvType) override {
3475 // FIXME: If we have an operator T* and an operator void*, we must pick
3476 // the operator T*.
3477 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
3478 if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
3479 return true;
3480 return false;
3481 }
3482
3483 SemaDiagnosticBuilder diagnoseNoMatch(Sema &S, SourceLocation Loc,
3484 QualType T) override {
3485 return S.Diag(Loc, diag::err_delete_operand) << T;
3486 }
3487
3488 SemaDiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc,
3489 QualType T) override {
3490 return S.Diag(Loc, diag::err_delete_incomplete_class_type) << T;
3491 }
3492
3493 SemaDiagnosticBuilder diagnoseExplicitConv(Sema &S, SourceLocation Loc,
3494 QualType T,
3495 QualType ConvTy) override {
3496 return S.Diag(Loc, diag::err_delete_explicit_conversion) << T << ConvTy;
3497 }
3498
3499 SemaDiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv,
3500 QualType ConvTy) override {
3501 return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
3502 << ConvTy;
3503 }
3504
3505 SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
3506 QualType T) override {
3507 return S.Diag(Loc, diag::err_ambiguous_delete_operand) << T;
3508 }
3509
3510 SemaDiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv,
3511 QualType ConvTy) override {
3512 return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
3513 << ConvTy;
3514 }
3515
3516 SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
3517 QualType T,
3518 QualType ConvTy) override {
3519 llvm_unreachable("conversion functions are permitted")::llvm::llvm_unreachable_internal("conversion functions are permitted"
, "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 3519)
;
3520 }
3521 } Converter;
3522
3523 Ex = PerformContextualImplicitConversion(StartLoc, Ex.get(), Converter);
3524 if (Ex.isInvalid())
3525 return ExprError();
3526 Type = Ex.get()->getType();
3527 if (!Converter.match(Type))
3528 // FIXME: PerformContextualImplicitConversion should return ExprError
3529 // itself in this case.
3530 return ExprError();
3531
3532 QualType Pointee = Type->castAs<PointerType>()->getPointeeType();
3533 QualType PointeeElem = Context.getBaseElementType(Pointee);
3534
3535 if (Pointee.getAddressSpace() != LangAS::Default &&
3536 !getLangOpts().OpenCLCPlusPlus)
3537 return Diag(Ex.get()->getBeginLoc(),
3538 diag::err_address_space_qualified_delete)
3539 << Pointee.getUnqualifiedType()
3540 << Pointee.getQualifiers().getAddressSpaceAttributePrintValue();
3541
3542 CXXRecordDecl *PointeeRD = nullptr;
3543 if (Pointee->isVoidType() && !isSFINAEContext()) {
3544 // The C++ standard bans deleting a pointer to a non-object type, which
3545 // effectively bans deletion of "void*". However, most compilers support
3546 // this, so we treat it as a warning unless we're in a SFINAE context.
3547 Diag(StartLoc, diag::ext_delete_void_ptr_operand)
3548 << Type << Ex.get()->getSourceRange();
3549 } else if (Pointee->isFunctionType() || Pointee->isVoidType() ||
3550 Pointee->isSizelessType()) {
3551 return ExprError(Diag(StartLoc, diag::err_delete_operand)
3552 << Type << Ex.get()->getSourceRange());
3553 } else if (!Pointee->isDependentType()) {
3554 // FIXME: This can result in errors if the definition was imported from a
3555 // module but is hidden.
3556 if (!RequireCompleteType(StartLoc, Pointee,
3557 diag::warn_delete_incomplete, Ex.get())) {
3558 if (const RecordType *RT = PointeeElem->getAs<RecordType>())
3559 PointeeRD = cast<CXXRecordDecl>(RT->getDecl());
3560 }
3561 }
3562
3563 if (Pointee->isArrayType() && !ArrayForm) {
3564 Diag(StartLoc, diag::warn_delete_array_type)
3565 << Type << Ex.get()->getSourceRange()
3566 << FixItHint::CreateInsertion(getLocForEndOfToken(StartLoc), "[]");
3567 ArrayForm = true;
3568 }
3569
3570 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
3571 ArrayForm ? OO_Array_Delete : OO_Delete);
3572
3573 if (PointeeRD) {
3574 if (!UseGlobal &&
3575 FindDeallocationFunction(StartLoc, PointeeRD, DeleteName,
3576 OperatorDelete))
3577 return ExprError();
3578
3579 // If we're allocating an array of records, check whether the
3580 // usual operator delete[] has a size_t parameter.
3581 if (ArrayForm) {
3582 // If the user specifically asked to use the global allocator,
3583 // we'll need to do the lookup into the class.
3584 if (UseGlobal)
3585 UsualArrayDeleteWantsSize =
3586 doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem);
3587
3588 // Otherwise, the usual operator delete[] should be the
3589 // function we just found.
3590 else if (OperatorDelete && isa<CXXMethodDecl>(OperatorDelete))
3591 UsualArrayDeleteWantsSize =
3592 UsualDeallocFnInfo(*this,
3593 DeclAccessPair::make(OperatorDelete, AS_public))
3594 .HasSizeT;
3595 }
3596
3597 if (!PointeeRD->hasIrrelevantDestructor())
3598 if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
3599 MarkFunctionReferenced(StartLoc,
3600 const_cast<CXXDestructorDecl*>(Dtor));
3601 if (DiagnoseUseOfDecl(Dtor, StartLoc))
3602 return ExprError();
3603 }
3604
3605 CheckVirtualDtorCall(PointeeRD->getDestructor(), StartLoc,
3606 /*IsDelete=*/true, /*CallCanBeVirtual=*/true,
3607 /*WarnOnNonAbstractTypes=*/!ArrayForm,
3608 SourceLocation());
3609 }
3610
3611 if (!OperatorDelete) {
3612 if (getLangOpts().OpenCLCPlusPlus) {
3613 Diag(StartLoc, diag::err_openclcxx_not_supported) << "default delete";
3614 return ExprError();
3615 }
3616
3617 bool IsComplete = isCompleteType(StartLoc, Pointee);
3618 bool CanProvideSize =
3619 IsComplete && (!ArrayForm || UsualArrayDeleteWantsSize ||
3620 Pointee.isDestructedType());
3621 bool Overaligned = hasNewExtendedAlignment(*this, Pointee);
3622
3623 // Look for a global declaration.
3624 OperatorDelete = FindUsualDeallocationFunction(StartLoc, CanProvideSize,
3625 Overaligned, DeleteName);
3626 }
3627
3628 MarkFunctionReferenced(StartLoc, OperatorDelete);
3629
3630 // Check access and ambiguity of destructor if we're going to call it.
3631 // Note that this is required even for a virtual delete.
3632 bool IsVirtualDelete = false;
3633 if (PointeeRD) {
3634 if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
3635 CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor,
3636 PDiag(diag::err_access_dtor) << PointeeElem);
3637 IsVirtualDelete = Dtor->isVirtual();
3638 }
3639 }
3640
3641 DiagnoseUseOfDecl(OperatorDelete, StartLoc);
3642
3643 // Convert the operand to the type of the first parameter of operator
3644 // delete. This is only necessary if we selected a destroying operator
3645 // delete that we are going to call (non-virtually); converting to void*
3646 // is trivial and left to AST consumers to handle.
3647 QualType ParamType = OperatorDelete->getParamDecl(0)->getType();
3648 if (!IsVirtualDelete && !ParamType->getPointeeType()->isVoidType()) {
3649 Qualifiers Qs = Pointee.getQualifiers();
3650 if (Qs.hasCVRQualifiers()) {
3651 // Qualifiers are irrelevant to this conversion; we're only looking
3652 // for access and ambiguity.
3653 Qs.removeCVRQualifiers();
3654 QualType Unqual = Context.getPointerType(
3655 Context.getQualifiedType(Pointee.getUnqualifiedType(), Qs));
3656 Ex = ImpCastExprToType(Ex.get(), Unqual, CK_NoOp);
3657 }
3658 Ex = PerformImplicitConversion(Ex.get(), ParamType, AA_Passing);
3659 if (Ex.isInvalid())
3660 return ExprError();
3661 }
3662 }
3663
3664 CXXDeleteExpr *Result = new (Context) CXXDeleteExpr(
3665 Context.VoidTy, UseGlobal, ArrayForm, ArrayFormAsWritten,
3666 UsualArrayDeleteWantsSize, OperatorDelete, Ex.get(), StartLoc);
3667 AnalyzeDeleteExprMismatch(Result);
3668 return Result;
3669}
3670
3671static bool resolveBuiltinNewDeleteOverload(Sema &S, CallExpr *TheCall,
3672 bool IsDelete,
3673 FunctionDecl *&Operator) {
3674
3675 DeclarationName NewName = S.Context.DeclarationNames.getCXXOperatorName(
3676 IsDelete ? OO_Delete : OO_New);
3677
3678 LookupResult R(S, NewName, TheCall->getBeginLoc(), Sema::LookupOrdinaryName);
3679 S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl());
3680 assert(!R.empty() && "implicitly declared allocation functions not found")(static_cast <bool> (!R.empty() && "implicitly declared allocation functions not found"
) ? void (0) : __assert_fail ("!R.empty() && \"implicitly declared allocation functions not found\""
, "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 3680, __extension__ __PRETTY_FUNCTION__))
;
3681 assert(!R.isAmbiguous() && "global allocation functions are ambiguous")(static_cast <bool> (!R.isAmbiguous() && "global allocation functions are ambiguous"
) ? void (0) : __assert_fail ("!R.isAmbiguous() && \"global allocation functions are ambiguous\""
, "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 3681, __extension__ __PRETTY_FUNCTION__))
;
3682
3683 // We do our own custom access checks below.
3684 R.suppressDiagnostics();
3685
3686 SmallVector<Expr *, 8> Args(TheCall->arg_begin(), TheCall->arg_end());
3687 OverloadCandidateSet Candidates(R.getNameLoc(),
3688 OverloadCandidateSet::CSK_Normal);
3689 for (LookupResult::iterator FnOvl = R.begin(), FnOvlEnd = R.end();
3690 FnOvl != FnOvlEnd; ++FnOvl) {
3691 // Even member operator new/delete are implicitly treated as
3692 // static, so don't use AddMemberCandidate.
3693 NamedDecl *D = (*FnOvl)->getUnderlyingDecl();
3694
3695 if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
3696 S.AddTemplateOverloadCandidate(FnTemplate, FnOvl.getPair(),
3697 /*ExplicitTemplateArgs=*/nullptr, Args,
3698 Candidates,
3699 /*SuppressUserConversions=*/false);
3700 continue;
3701 }
3702
3703 FunctionDecl *Fn = cast<FunctionDecl>(D);
3704 S.AddOverloadCandidate(Fn, FnOvl.getPair(), Args, Candidates,
3705 /*SuppressUserConversions=*/false);
3706 }
3707
3708 SourceRange Range = TheCall->getSourceRange();
3709
3710 // Do the resolution.
3711 OverloadCandidateSet::iterator Best;
3712 switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) {
3713 case OR_Success: {
3714 // Got one!
3715 FunctionDecl *FnDecl = Best->Function;
3716 assert(R.getNamingClass() == nullptr &&(static_cast <bool> (R.getNamingClass() == nullptr &&
"class members should not be considered") ? void (0) : __assert_fail
("R.getNamingClass() == nullptr && \"class members should not be considered\""
, "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 3717, __extension__ __PRETTY_FUNCTION__))
3717 "class members should not be considered")(static_cast <bool> (R.getNamingClass() == nullptr &&
"class members should not be considered") ? void (0) : __assert_fail
("R.getNamingClass() == nullptr && \"class members should not be considered\""
, "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 3717, __extension__ __PRETTY_FUNCTION__))
;
3718
3719 if (!FnDecl->isReplaceableGlobalAllocationFunction()) {
3720 S.Diag(R.getNameLoc(), diag::err_builtin_operator_new_delete_not_usual)
3721 << (IsDelete ? 1 : 0) << Range;
3722 S.Diag(FnDecl->getLocation(), diag::note_non_usual_function_declared_here)
3723 << R.getLookupName() << FnDecl->getSourceRange();
3724 return true;
3725 }
3726
3727 Operator = FnDecl;
3728 return false;
3729 }
3730
3731 case OR_No_Viable_Function:
3732 Candidates.NoteCandidates(
3733 PartialDiagnosticAt(R.getNameLoc(),
3734 S.PDiag(diag::err_ovl_no_viable_function_in_call)
3735 << R.getLookupName() << Range),
3736 S, OCD_AllCandidates, Args);
3737 return true;
3738
3739 case OR_Ambiguous:
3740 Candidates.NoteCandidates(
3741 PartialDiagnosticAt(R.getNameLoc(),
3742 S.PDiag(diag::err_ovl_ambiguous_call)
3743 << R.getLookupName() << Range),
3744 S, OCD_AmbiguousCandidates, Args);
3745 return true;
3746
3747 case OR_Deleted: {
3748 Candidates.NoteCandidates(
3749 PartialDiagnosticAt(R.getNameLoc(), S.PDiag(diag::err_ovl_deleted_call)
3750 << R.getLookupName() << Range),
3751 S, OCD_AllCandidates, Args);
3752 return true;
3753 }
3754 }
3755 llvm_unreachable("Unreachable, bad result from BestViableFunction")::llvm::llvm_unreachable_internal("Unreachable, bad result from BestViableFunction"
, "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 3755)
;
3756}
3757
3758ExprResult
3759Sema::SemaBuiltinOperatorNewDeleteOverloaded(ExprResult TheCallResult,
3760 bool IsDelete) {
3761 CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
3762 if (!getLangOpts().CPlusPlus) {
3763 Diag(TheCall->getExprLoc(), diag::err_builtin_requires_language)
3764 << (IsDelete ? "__builtin_operator_delete" : "__builtin_operator_new")
3765 << "C++";
3766 return ExprError();
3767 }
3768 // CodeGen assumes it can find the global new and delete to call,
3769 // so ensure that they are declared.
3770 DeclareGlobalNewDelete();
3771
3772 FunctionDecl *OperatorNewOrDelete = nullptr;
3773 if (resolveBuiltinNewDeleteOverload(*this, TheCall, IsDelete,
3774 OperatorNewOrDelete))
3775 return ExprError();
3776 assert(OperatorNewOrDelete && "should be found")(static_cast <bool> (OperatorNewOrDelete && "should be found"
) ? void (0) : __assert_fail ("OperatorNewOrDelete && \"should be found\""
, "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 3776, __extension__ __PRETTY_FUNCTION__))
;
3777
3778 DiagnoseUseOfDecl(OperatorNewOrDelete, TheCall->getExprLoc());
3779 MarkFunctionReferenced(TheCall->getExprLoc(), OperatorNewOrDelete);
3780
3781 TheCall->setType(OperatorNewOrDelete->getReturnType());
3782 for (unsigned i = 0; i != TheCall->getNumArgs(); ++i) {
3783 QualType ParamTy = OperatorNewOrDelete->getParamDecl(i)->getType();
3784 InitializedEntity Entity =
3785 InitializedEntity::InitializeParameter(Context, ParamTy, false);
3786 ExprResult Arg = PerformCopyInitialization(
3787 Entity, TheCall->getArg(i)->getBeginLoc(), TheCall->getArg(i));
3788 if (Arg.isInvalid())
3789 return ExprError();
3790 TheCall->setArg(i, Arg.get());
3791 }
3792 auto Callee = dyn_cast<ImplicitCastExpr>(TheCall->getCallee());
3793 assert(Callee && Callee->getCastKind() == CK_BuiltinFnToFnPtr &&(static_cast <bool> (Callee && Callee->getCastKind
() == CK_BuiltinFnToFnPtr && "Callee expected to be implicit cast to a builtin function pointer"
) ? void (0) : __assert_fail ("Callee && Callee->getCastKind() == CK_BuiltinFnToFnPtr && \"Callee expected to be implicit cast to a builtin function pointer\""
, "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 3794, __extension__ __PRETTY_FUNCTION__))
3794 "Callee expected to be implicit cast to a builtin function pointer")(static_cast <bool> (Callee && Callee->getCastKind
() == CK_BuiltinFnToFnPtr && "Callee expected to be implicit cast to a builtin function pointer"
) ? void (0) : __assert_fail ("Callee && Callee->getCastKind() == CK_BuiltinFnToFnPtr && \"Callee expected to be implicit cast to a builtin function pointer\""
, "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 3794, __extension__ __PRETTY_FUNCTION__))
;
3795 Callee->setType(OperatorNewOrDelete->getType());
3796
3797 return TheCallResult;
3798}
3799
3800void Sema::CheckVirtualDtorCall(CXXDestructorDecl *dtor, SourceLocation Loc,
3801 bool IsDelete, bool CallCanBeVirtual,
3802 bool WarnOnNonAbstractTypes,
3803 SourceLocation DtorLoc) {
3804 if (!dtor || dtor->isVirtual() || !CallCanBeVirtual || isUnevaluatedContext())
3805 return;
3806
3807 // C++ [expr.delete]p3:
3808 // In the first alternative (delete object), if the static type of the
3809 // object to be deleted is different from its dynamic type, the static
3810 // type shall be a base class of the dynamic type of the object to be
3811 // deleted and the static type shall have a virtual destructor or the
3812 // behavior is undefined.
3813 //
3814 const CXXRecordDecl *PointeeRD = dtor->getParent();
3815 // Note: a final class cannot be derived from, no issue there
3816 if (!PointeeRD->isPolymorphic() || PointeeRD->hasAttr<FinalAttr>())
3817 return;
3818
3819 // If the superclass is in a system header, there's nothing that can be done.
3820 // The `delete` (where we emit the warning) can be in a system header,
3821 // what matters for this warning is where the deleted type is defined.
3822 if (getSourceManager().isInSystemHeader(PointeeRD->getLocation()))
3823 return;
3824
3825 QualType ClassType = dtor->getThisType()->getPointeeType();
3826 if (PointeeRD->isAbstract()) {
3827 // If the class is abstract, we warn by default, because we're
3828 // sure the code has undefined behavior.
3829 Diag(Loc, diag::warn_delete_abstract_non_virtual_dtor) << (IsDelete ? 0 : 1)
3830 << ClassType;
3831 } else if (WarnOnNonAbstractTypes) {
3832 // Otherwise, if this is not an array delete, it's a bit suspect,
3833 // but not necessarily wrong.
3834 Diag(Loc, diag::warn_delete_non_virtual_dtor) << (IsDelete ? 0 : 1)
3835 << ClassType;
3836 }
3837 if (!IsDelete) {
3838 std::string TypeStr;
3839 ClassType.getAsStringInternal(TypeStr, getPrintingPolicy());
3840 Diag(DtorLoc, diag::note_delete_non_virtual)
3841 << FixItHint::CreateInsertion(DtorLoc, TypeStr + "::");
3842 }
3843}
3844
3845Sema::ConditionResult Sema::ActOnConditionVariable(Decl *ConditionVar,
3846 SourceLocation StmtLoc,
3847 ConditionKind CK) {
3848 ExprResult E =
3849 CheckConditionVariable(cast<VarDecl>(ConditionVar), StmtLoc, CK);
3850 if (E.isInvalid())
3851 return ConditionError();
3852 return ConditionResult(*this, ConditionVar, MakeFullExpr(E.get(), StmtLoc),
3853 CK == ConditionKind::ConstexprIf);
3854}
3855
3856/// Check the use of the given variable as a C++ condition in an if,
3857/// while, do-while, or switch statement.
3858ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
3859 SourceLocation StmtLoc,
3860 ConditionKind CK) {
3861 if (ConditionVar->isInvalidDecl())
3862 return ExprError();
3863
3864 QualType T = ConditionVar->getType();
3865
3866 // C++ [stmt.select]p2:
3867 // The declarator shall not specify a function or an array.
3868 if (T->isFunctionType())
3869 return ExprError(Diag(ConditionVar->getLocation(),
3870 diag::err_invalid_use_of_function_type)
3871 << ConditionVar->getSourceRange());
3872 else if (T->isArrayType())
3873 return ExprError(Diag(ConditionVar->getLocation(),
3874 diag::err_invalid_use_of_array_type)
3875 << ConditionVar->getSourceRange());
3876
3877 ExprResult Condition = BuildDeclRefExpr(
3878 ConditionVar, ConditionVar->getType().getNonReferenceType(), VK_LValue,
3879 ConditionVar->getLocation());
3880
3881 switch (CK) {
3882 case ConditionKind::Boolean:
3883 return CheckBooleanCondition(StmtLoc, Condition.get());
3884
3885 case ConditionKind::ConstexprIf:
3886 return CheckBooleanCondition(StmtLoc, Condition.get(), true);
3887
3888 case ConditionKind::Switch:
3889 return CheckSwitchCondition(StmtLoc, Condition.get());
3890 }
3891
3892 llvm_unreachable("unexpected condition kind")::llvm::llvm_unreachable_internal("unexpected condition kind"
, "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 3892)
;
3893}
3894
3895/// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
3896ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr, bool IsConstexpr) {
3897 // C++ 6.4p4:
3898 // The value of a condition that is an initialized declaration in a statement
3899 // other than a switch statement is the value of the declared variable
3900 // implicitly converted to type bool. If that conversion is ill-formed, the
3901 // program is ill-formed.
3902 // The value of a condition that is an expression is the value of the
3903 // expression, implicitly converted to bool.
3904 //
3905 // FIXME: Return this value to the caller so they don't need to recompute it.
3906 llvm::APSInt Value(/*BitWidth*/1);
3907 return (IsConstexpr && !CondExpr->isValueDependent())
3908 ? CheckConvertedConstantExpression(CondExpr, Context.BoolTy, Value,
3909 CCEK_ConstexprIf)
3910 : PerformContextuallyConvertToBool(CondExpr);
3911}
3912
3913/// Helper function to determine whether this is the (deprecated) C++
3914/// conversion from a string literal to a pointer to non-const char or
3915/// non-const wchar_t (for narrow and wide string literals,
3916/// respectively).
3917bool
3918Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
3919 // Look inside the implicit cast, if it exists.
3920 if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
3921 From = Cast->getSubExpr();
3922
3923 // A string literal (2.13.4) that is not a wide string literal can
3924 // be converted to an rvalue of type "pointer to char"; a wide
3925 // string literal can be converted to an rvalue of type "pointer
3926 // to wchar_t" (C++ 4.2p2).
3927 if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
3928 if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
3929 if (const BuiltinType *ToPointeeType
3930 = ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
3931 // This conversion is considered only when there is an
3932 // explicit appropriate pointer target type (C++ 4.2p2).
3933 if (!ToPtrType->getPointeeType().hasQualifiers()) {
3934 switch (StrLit->getKind()) {
3935 case StringLiteral::UTF8:
3936 case StringLiteral::UTF16:
3937 case StringLiteral::UTF32:
3938 // We don't allow UTF literals to be implicitly converted
3939 break;
3940 case StringLiteral::Ascii:
3941 return (ToPointeeType->getKind() == BuiltinType::Char_U ||
3942 ToPointeeType->getKind() == BuiltinType::Char_S);
3943 case StringLiteral::Wide:
3944 return Context.typesAreCompatible(Context.getWideCharType(),
3945 QualType(ToPointeeType, 0));
3946 }
3947 }
3948 }
3949
3950 return false;
3951}
3952
3953static ExprResult BuildCXXCastArgument(Sema &S,
3954 SourceLocation CastLoc,
3955 QualType Ty,
3956 CastKind Kind,
3957 CXXMethodDecl *Method,
3958 DeclAccessPair FoundDecl,
3959 bool HadMultipleCandidates,
3960 Expr *From) {
3961 switch (Kind) {
3962 default: llvm_unreachable("Unhandled cast kind!")::llvm::llvm_unreachable_internal("Unhandled cast kind!", "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 3962)
;
3963 case CK_ConstructorConversion: {
3964 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method);
3965 SmallVector<Expr*, 8> ConstructorArgs;
3966
3967 if (S.RequireNonAbstractType(CastLoc, Ty,
3968 diag::err_allocation_of_abstract_type))
3969 return ExprError();
3970
3971 if (S.CompleteConstructorCall(Constructor, Ty, From, CastLoc,
3972 ConstructorArgs))
3973 return ExprError();
3974
3975 S.CheckConstructorAccess(CastLoc, Constructor, FoundDecl,
3976 InitializedEntity::InitializeTemporary(Ty));
3977 if (S.DiagnoseUseOfDecl(Method, CastLoc))
3978 return ExprError();
3979
3980 ExprResult Result = S.BuildCXXConstructExpr(
3981 CastLoc, Ty, FoundDecl, cast<CXXConstructorDecl>(Method),
3982 ConstructorArgs, HadMultipleCandidates,
3983 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
3984 CXXConstructExpr::CK_Complete, SourceRange());
3985 if (Result.isInvalid())
3986 return ExprError();
3987
3988 return S.MaybeBindToTemporary(Result.getAs<Expr>());
3989 }
3990
3991 case CK_UserDefinedConversion: {
3992 assert(!From->getType()->isPointerType() && "Arg can't have pointer type!")(static_cast <bool> (!From->getType()->isPointerType
() && "Arg can't have pointer type!") ? void (0) : __assert_fail
("!From->getType()->isPointerType() && \"Arg can't have pointer type!\""
, "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 3992, __extension__ __PRETTY_FUNCTION__))
;
3993
3994 S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ nullptr, FoundDecl);
3995 if (S.DiagnoseUseOfDecl(Method, CastLoc))
3996 return ExprError();
3997
3998 // Create an implicit call expr that calls it.
3999 CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method);
4000 ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv,
4001 HadMultipleCandidates);
4002 if (Result.isInvalid())
4003 return ExprError();
4004 // Record usage of conversion in an implicit cast.
4005 Result = ImplicitCastExpr::Create(S.Context, Result.get()->getType(),
4006 CK_UserDefinedConversion, Result.get(),
4007 nullptr, Result.get()->getValueKind(),
4008 S.CurFPFeatureOverrides());
4009
4010 return S.MaybeBindToTemporary(Result.get());
4011 }
4012 }
4013}
4014
4015/// PerformImplicitConversion - Perform an implicit conversion of the
4016/// expression From to the type ToType using the pre-computed implicit
4017/// conversion sequence ICS. Returns the converted
4018/// expression. Action is the kind of conversion we're performing,
4019/// used in the error message.
4020ExprResult
4021Sema::PerformImplicitConversion(Expr *From, QualType ToType,
4022 const ImplicitConversionSequence &ICS,
4023 AssignmentAction Action,
4024 CheckedConversionKind CCK) {
4025 // C++ [over.match.oper]p7: [...] operands of class type are converted [...]
4026 if (CCK == CCK_ForBuiltinOverloadedOp && !From->getType()->isRecordType())
4027 return From;
4028
4029 switch (ICS.getKind()) {
4030 case ImplicitConversionSequence::StandardConversion: {
4031 ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard,
4032 Action, CCK);
4033 if (Res.isInvalid())
4034 return ExprError();
4035 From = Res.get();
4036 break;
4037 }
4038
4039 case ImplicitConversionSequence::UserDefinedConversion: {
4040
4041 FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
4042 CastKind CastKind;
4043 QualType BeforeToType;
4044 assert(FD && "no conversion function for user-defined conversion seq")(static_cast <bool> (FD && "no conversion function for user-defined conversion seq"
) ? void (0) : __assert_fail ("FD && \"no conversion function for user-defined conversion seq\""
, "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 4044, __extension__ __PRETTY_FUNCTION__))
;
4045 if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
4046 CastKind = CK_UserDefinedConversion;
4047
4048 // If the user-defined conversion is specified by a conversion function,
4049 // the initial standard conversion sequence converts the source type to
4050 // the implicit object parameter of the conversion function.
4051 BeforeToType = Context.getTagDeclType(Conv->getParent());
4052 } else {
4053 const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD);
4054 CastKind = CK_ConstructorConversion;
4055 // Do no conversion if dealing with ... for the first conversion.
4056 if (!ICS.UserDefined.EllipsisConversion) {
4057 // If the user-defined conversion is specified by a constructor, the
4058 // initial standard conversion sequence converts the source type to
4059 // the type required by the argument of the constructor
4060 BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
4061 }
4062 }
4063 // Watch out for ellipsis conversion.
4064 if (!ICS.UserDefined.EllipsisConversion) {
4065 ExprResult Res =
4066 PerformImplicitConversion(From, BeforeToType,
4067 ICS.UserDefined.Before, AA_Converting,
4068 CCK);
4069 if (Res.isInvalid())
4070 return ExprError();
4071 From = Res.get();
4072 }
4073
4074 ExprResult CastArg = BuildCXXCastArgument(
4075 *this, From->getBeginLoc(), ToType.getNonReferenceType(), CastKind,
4076 cast<CXXMethodDecl>(FD), ICS.UserDefined.FoundConversionFunction,
4077 ICS.UserDefined.HadMultipleCandidates, From);
4078
4079 if (CastArg.isInvalid())
4080 return ExprError();
4081
4082 From = CastArg.get();
4083
4084 // C++ [over.match.oper]p7:
4085 // [...] the second standard conversion sequence of a user-defined
4086 // conversion sequence is not applied.
4087 if (CCK == CCK_ForBuiltinOverloadedOp)
4088 return From;
4089
4090 return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
4091 AA_Converting, CCK);
4092 }
4093
4094 case ImplicitConversionSequence::AmbiguousConversion:
4095 ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
4096 PDiag(diag::err_typecheck_ambiguous_condition)
4097 << From->getSourceRange());
4098 return ExprError();
4099
4100 case ImplicitConversionSequence::EllipsisConversion:
4101 llvm_unreachable("Cannot perform an ellipsis conversion")::llvm::llvm_unreachable_internal("Cannot perform an ellipsis conversion"
, "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 4101)
;
4102
4103 case ImplicitConversionSequence::BadConversion:
4104 Sema::AssignConvertType ConvTy =
4105 CheckAssignmentConstraints(From->getExprLoc(), ToType, From->getType());
4106 bool Diagnosed = DiagnoseAssignmentResult(
4107 ConvTy == Compatible ? Incompatible : ConvTy, From->getExprLoc(),
4108 ToType, From->getType(), From, Action);
4109 assert(Diagnosed && "failed to diagnose bad conversion")(static_cast <bool> (Diagnosed && "failed to diagnose bad conversion"
) ? void (0) : __assert_fail ("Diagnosed && \"failed to diagnose bad conversion\""
, "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 4109, __extension__ __PRETTY_FUNCTION__))
; (void)Diagnosed;
4110 return ExprError();
4111 }
4112
4113 // Everything went well.
4114 return From;
4115}
4116
4117/// PerformImplicitConversion - Perform an implicit conversion of the
4118/// expression From to the type ToType by following the standard
4119/// conversion sequence SCS. Returns the converted
4120/// expression. Flavor is the context in which we're performing this
4121/// conversion, for use in error messages.
4122ExprResult
4123Sema::PerformImplicitConversion(Expr *From, QualType ToType,
4124 const StandardConversionSequence& SCS,
4125 AssignmentAction Action,
4126 CheckedConversionKind CCK) {
4127 bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast);
4128
4129 // Overall FIXME: we are recomputing too many types here and doing far too
4130 // much extra work. What this means is that we need to keep track of more
4131 // information that is computed when we try the implicit conversion initially,
4132 // so that we don't need to recompute anything here.
4133 QualType FromType = From->getType();
4134
4135 if (SCS.CopyConstructor) {
4136 // FIXME: When can ToType be a reference type?
4137 assert(!ToType->isReferenceType())(static_cast <bool> (!ToType->isReferenceType()) ? void
(0) : __assert_fail ("!ToType->isReferenceType()", "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 4137, __extension__ __PRETTY_FUNCTION__))
;
4138 if (SCS.Second == ICK_Derived_To_Base) {
4139 SmallVector<Expr*, 8> ConstructorArgs;
4140 if (CompleteConstructorCall(
4141 cast<CXXConstructorDecl>(SCS.CopyConstructor), ToType, From,
4142 /*FIXME:ConstructLoc*/ SourceLocation(), ConstructorArgs))
4143 return ExprError();
4144 return BuildCXXConstructExpr(
4145 /*FIXME:ConstructLoc*/ SourceLocation(), ToType,
4146 SCS.FoundCopyConstructor, SCS.CopyConstructor,
4147 ConstructorArgs, /*HadMultipleCandidates*/ false,
4148 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
4149 CXXConstructExpr::CK_Complete, SourceRange());
4150 }
4151 return BuildCXXConstructExpr(
4152 /*FIXME:ConstructLoc*/ SourceLocation(), ToType,
4153 SCS.FoundCopyConstructor, SCS.CopyConstructor,
4154 From, /*HadMultipleCandidates*/ false,
4155 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
4156 CXXConstructExpr::CK_Complete, SourceRange());
4157 }
4158
4159 // Resolve overloaded function references.
4160 if (Context.hasSameType(FromType, Context.OverloadTy)) {
4161 DeclAccessPair Found;
4162 FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType,
4163 true, Found);
4164 if (!Fn)
4165 return ExprError();
4166
4167 if (DiagnoseUseOfDecl(Fn, From->getBeginLoc()))
4168 return ExprError();
4169
4170 From = FixOverloadedFunctionReference(From, Found, Fn);
4171 FromType = From->getType();
4172 }
4173
4174 // If we're converting to an atomic type, first convert to the corresponding
4175 // non-atomic type.
4176 QualType ToAtomicType;
4177 if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>()) {
4178 ToAtomicType = ToType;
4179 ToType = ToAtomic->getValueType();
4180 }
4181
4182 QualType InitialFromType = FromType;
4183 // Perform the first implicit conversion.
4184 switch (SCS.First) {
4185 case ICK_Identity:
4186 if (const AtomicType *FromAtomic = FromType->getAs<AtomicType>()) {
4187 FromType = FromAtomic->getValueType().getUnqualifiedType();
4188 From = ImplicitCastExpr::Create(Context, FromType, CK_AtomicToNonAtomic,
4189 From, /*BasePath=*/nullptr, VK_PRValue,
4190 FPOptionsOverride());
4191 }
4192 break;
4193
4194 case ICK_Lvalue_To_Rvalue: {
4195 assert(From->getObjectKind() != OK_ObjCProperty)(static_cast <bool> (From->getObjectKind() != OK_ObjCProperty
) ? void (0) : __assert_fail ("From->getObjectKind() != OK_ObjCProperty"
, "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 4195, __extension__ __PRETTY_FUNCTION__))
;
4196 ExprResult FromRes = DefaultLvalueConversion(From);
4197 if (FromRes.isInvalid())
4198 return ExprError();
4199
4200 From = FromRes.get();
4201 FromType = From->getType();
4202 break;
4203 }
4204
4205 case ICK_Array_To_Pointer:
4206 FromType = Context.getArrayDecayedType(FromType);
4207 From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay, VK_PRValue,
4208 /*BasePath=*/nullptr, CCK)
4209 .get();
4210 break;
4211
4212 case ICK_Function_To_Pointer:
4213 FromType = Context.getPointerType(FromType);
4214 From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay,
4215 VK_PRValue, /*BasePath=*/nullptr, CCK)
4216 .get();
4217 break;
4218
4219 default:
4220 llvm_unreachable("Improper first standard conversion")::llvm::llvm_unreachable_internal("Improper first standard conversion"
, "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 4220)
;
4221 }
4222
4223 // Perform the second implicit conversion
4224 switch (SCS.Second) {
4225 case ICK_Identity:
4226 // C++ [except.spec]p5:
4227 // [For] assignment to and initialization of pointers to functions,
4228 // pointers to member functions, and references to functions: the
4229 // target entity shall allow at least the exceptions allowed by the
4230 // source value in the assignment or initialization.
4231 switch (Action) {
4232 case AA_Assigning:
4233 case AA_Initializing:
4234 // Note, function argument passing and returning are initialization.
4235 case AA_Passing:
4236 case AA_Returning:
4237 case AA_Sending:
4238 case AA_Passing_CFAudited:
4239 if (CheckExceptionSpecCompatibility(From, ToType))
4240 return ExprError();
4241 break;
4242
4243 case AA_Casting:
4244 case AA_Converting:
4245 // Casts and implicit conversions are not initialization, so are not
4246 // checked for exception specification mismatches.
4247 break;
4248 }
4249 // Nothing else to do.
4250 break;
4251
4252 case ICK_Integral_Promotion:
4253 case ICK_Integral_Conversion:
4254 if (ToType->isBooleanType()) {
4255 assert(FromType->castAs<EnumType>()->getDecl()->isFixed() &&(static_cast <bool> (FromType->castAs<EnumType>
()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion
&& "only enums with fixed underlying type can promote to bool"
) ? void (0) : __assert_fail ("FromType->castAs<EnumType>()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion && \"only enums with fixed underlying type can promote to bool\""
, "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 4257, __extension__ __PRETTY_FUNCTION__))
4256 SCS.Second == ICK_Integral_Promotion &&(static_cast <bool> (FromType->castAs<EnumType>
()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion
&& "only enums with fixed underlying type can promote to bool"
) ? void (0) : __assert_fail ("FromType->castAs<EnumType>()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion && \"only enums with fixed underlying type can promote to bool\""
, "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 4257, __extension__ __PRETTY_FUNCTION__))
4257 "only enums with fixed underlying type can promote to bool")(static_cast <bool> (FromType->castAs<EnumType>
()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion
&& "only enums with fixed underlying type can promote to bool"
) ? void (0) : __assert_fail ("FromType->castAs<EnumType>()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion && \"only enums with fixed underlying type can promote to bool\""
, "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 4257, __extension__ __PRETTY_FUNCTION__))
;
4258 From = ImpCastExprToType(From, ToType, CK_IntegralToBoolean, VK_PRValue,
4259 /*BasePath=*/nullptr, CCK)
4260 .get();
4261 } else {
4262 From = ImpCastExprToType(From, ToType, CK_IntegralCast, VK_PRValue,
4263 /*BasePath=*/nullptr, CCK)
4264 .get();
4265 }
4266 break;
4267
4268 case ICK_Floating_Promotion:
4269 case ICK_Floating_Conversion:
4270 From = ImpCastExprToType(From, ToType, CK_FloatingCast, VK_PRValue,
4271 /*BasePath=*/nullptr, CCK)
4272 .get();
4273 break;
4274
4275 case ICK_Complex_Promotion:
4276 case ICK_Complex_Conversion: {
4277 QualType FromEl = From->getType()->castAs<ComplexType>()->getElementType();
4278 QualType ToEl = ToType->castAs<ComplexType>()->getElementType();
4279 CastKind CK;
4280 if (FromEl->isRealFloatingType()) {
4281 if (ToEl->isRealFloatingType())
4282 CK = CK_FloatingComplexCast;
4283 else
4284 CK = CK_FloatingComplexToIntegralComplex;
4285 } else if (ToEl->isRealFloatingType()) {
4286 CK = CK_IntegralComplexToFloatingComplex;
4287 } else {
4288 CK = CK_IntegralComplexCast;
4289 }
4290 From = ImpCastExprToType(From, ToType, CK, VK_PRValue, /*BasePath=*/nullptr,
4291 CCK)
4292 .get();
4293 break;
4294 }
4295
4296 case ICK_Floating_Integral:
4297 if (ToType->isRealFloatingType())
4298 From = ImpCastExprToType(From, ToType, CK_IntegralToFloating, VK_PRValue,
4299 /*BasePath=*/nullptr, CCK)
4300 .get();
4301 else
4302 From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral, VK_PRValue,
4303 /*BasePath=*/nullptr, CCK)
4304 .get();
4305 break;
4306
4307 case ICK_Compatible_Conversion:
4308 From = ImpCastExprToType(From, ToType, CK_NoOp, From->getValueKind(),
4309 /*BasePath=*/nullptr, CCK).get();
4310 break;
4311
4312 case ICK_Writeback_Conversion:
4313 case ICK_Pointer_Conversion: {
4314 if (SCS.IncompatibleObjC && Action != AA_Casting) {
4315 // Diagnose incompatible Objective-C conversions
4316 if (Action == AA_Initializing || Action == AA_Assigning)
4317 Diag(From->getBeginLoc(),
4318 diag::ext_typecheck_convert_incompatible_pointer)
4319 << ToType << From->getType() << Action << From->getSourceRange()
4320 << 0;
4321 else
4322 Diag(From->getBeginLoc(),
4323 diag::ext_typecheck_convert_incompatible_pointer)
4324 << From->getType() << ToType << Action << From->getSourceRange()
4325 << 0;
4326
4327 if (From->getType()->isObjCObjectPointerType() &&
4328 ToType->isObjCObjectPointerType())
4329 EmitRelatedResultTypeNote(From);
4330 } else if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
4331 !CheckObjCARCUnavailableWeakConversion(ToType,
4332 From->getType())) {
4333 if (Action == AA_Initializing)
4334 Diag(From->getBeginLoc(), diag::err_arc_weak_unavailable_assign);
4335 else
4336 Diag(From->getBeginLoc(), diag::err_arc_convesion_of_weak_unavailable)
4337 << (Action == AA_Casting) << From->getType() << ToType
4338 << From->getSourceRange();
4339 }
4340
4341 // Defer address space conversion to the third conversion.
4342 QualType FromPteeType = From->getType()->getPointeeType();
4343 QualType ToPteeType = ToType->getPointeeType();
4344 QualType NewToType = ToType;
4345 if (!FromPteeType.isNull() && !ToPteeType.isNull() &&
4346 FromPteeType.getAddressSpace() != ToPteeType.getAddressSpace()) {
4347 NewToType = Context.removeAddrSpaceQualType(ToPteeType);
4348 NewToType = Context.getAddrSpaceQualType(NewToType,
4349 FromPteeType.getAddressSpace());
4350 if (ToType->isObjCObjectPointerType())
4351 NewToType = Context.getObjCObjectPointerType(NewToType);
4352 else if (ToType->isBlockPointerType())
4353 NewToType = Context.getBlockPointerType(NewToType);
4354 else
4355 NewToType = Context.getPointerType(NewToType);
4356 }
4357
4358 CastKind Kind;
4359 CXXCastPath BasePath;
4360 if (CheckPointerConversion(From, NewToType, Kind, BasePath, CStyle))
4361 return ExprError();
4362
4363 // Make sure we extend blocks if necessary.
4364 // FIXME: doing this here is really ugly.
4365 if (Kind == CK_BlockPointerToObjCPointerCast) {
4366 ExprResult E = From;
4367 (void) PrepareCastToObjCObjectPointer(E);
4368 From = E.get();
4369 }
4370 if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers())
4371 CheckObjCConversion(SourceRange(), NewToType, From, CCK);
4372 From = ImpCastExprToType(From, NewToType, Kind, VK_PRValue, &BasePath, CCK)
4373 .get();
4374 break;
4375 }
4376
4377 case ICK_Pointer_Member: {
4378 CastKind Kind;
4379 CXXCastPath BasePath;
4380 if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle))
4381 return ExprError();
4382 if (CheckExceptionSpecCompatibility(From, ToType))
4383 return ExprError();
4384
4385 // We may not have been able to figure out what this member pointer resolved
4386 // to up until this exact point. Attempt to lock-in it's inheritance model.
4387 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4388 (void)isCompleteType(From->getExprLoc(), From->getType());
4389 (void)isCompleteType(From->getExprLoc(), ToType);
4390 }
4391
4392 From =
4393 ImpCastExprToType(From, ToType, Kind, VK_PRValue, &BasePath, CCK).get();
4394 break;
4395 }
4396
4397 case ICK_Boolean_Conversion:
4398 // Perform half-to-boolean conversion via float.
4399 if (From->getType()->isHalfType()) {
4400 From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).get();
4401 FromType = Context.FloatTy;
4402 }
4403
4404 From = ImpCastExprToType(From, Context.BoolTy,
4405 ScalarTypeToBooleanCastKind(FromType), VK_PRValue,
4406 /*BasePath=*/nullptr, CCK)
4407 .get();
4408 break;
4409
4410 case ICK_Derived_To_Base: {
4411 CXXCastPath BasePath;
4412 if (CheckDerivedToBaseConversion(
4413 From->getType(), ToType.getNonReferenceType(), From->getBeginLoc(),
4414 From->getSourceRange(), &BasePath, CStyle))
4415 return ExprError();
4416
4417 From = ImpCastExprToType(From, ToType.getNonReferenceType(),
4418 CK_DerivedToBase, From->getValueKind(),
4419 &BasePath, CCK).get();
4420 break;
4421 }
4422
4423 case ICK_Vector_Conversion:
4424 From = ImpCastExprToType(From, ToType, CK_BitCast, VK_PRValue,
4425 /*BasePath=*/nullptr, CCK)
4426 .get();
4427 break;
4428
4429 case ICK_SVE_Vector_Conversion:
4430 From = ImpCastExprToType(From, ToType, CK_BitCast, VK_PRValue,
4431 /*BasePath=*/nullptr, CCK)
4432 .get();
4433 break;
4434
4435 case ICK_Vector_Splat: {
4436 // Vector splat from any arithmetic type to a vector.
4437 Expr *Elem = prepareVectorSplat(ToType, From).get();
4438 From = ImpCastExprToType(Elem, ToType, CK_VectorSplat, VK_PRValue,
4439 /*BasePath=*/nullptr, CCK)
4440 .get();
4441 break;
4442 }
4443
4444 case ICK_Complex_Real:
4445 // Case 1. x -> _Complex y
4446 if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) {
4447 QualType ElType = ToComplex->getElementType();
4448 bool isFloatingComplex = ElType->isRealFloatingType();
4449
4450 // x -> y
4451 if (Context.hasSameUnqualifiedType(ElType, From->getType())) {
4452 // do nothing
4453 } else if (From->getType()->isRealFloatingType()) {
4454 From = ImpCastExprToType(From, ElType,
4455 isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).get();
4456 } else {
4457 assert(From->getType()->isIntegerType())(static_cast <bool> (From->getType()->isIntegerType
()) ? void (0) : __assert_fail ("From->getType()->isIntegerType()"
, "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 4457, __extension__ __PRETTY_FUNCTION__))
;
4458 From = ImpCastExprToType(From, ElType,
4459 isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).get();
4460 }
4461 // y -> _Complex y
4462 From = ImpCastExprToType(From, ToType,
4463 isFloatingComplex ? CK_FloatingRealToComplex
4464 : CK_IntegralRealToComplex).get();
4465
4466 // Case 2. _Complex x -> y
4467 } else {
4468 auto *FromComplex = From->getType()->castAs<ComplexType>();
4469 QualType ElType = FromComplex->getElementType();
4470 bool isFloatingComplex = ElType->isRealFloatingType();
4471
4472 // _Complex x -> x
4473 From = ImpCastExprToType(From, ElType,
4474 isFloatingComplex ? CK_FloatingComplexToReal
4475 : CK_IntegralComplexToReal,
4476 VK_PRValue, /*BasePath=*/nullptr, CCK)
4477 .get();
4478
4479 // x -> y
4480 if (Context.hasSameUnqualifiedType(ElType, ToType)) {
4481 // do nothing
4482 } else if (ToType->isRealFloatingType()) {
4483 From = ImpCastExprToType(From, ToType,
4484 isFloatingComplex ? CK_FloatingCast
4485 : CK_IntegralToFloating,
4486 VK_PRValue, /*BasePath=*/nullptr, CCK)
4487 .get();
4488 } else {
4489 assert(ToType->isIntegerType())(static_cast <bool> (ToType->isIntegerType()) ? void
(0) : __assert_fail ("ToType->isIntegerType()", "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 4489, __extension__ __PRETTY_FUNCTION__))
;
4490 From = ImpCastExprToType(From, ToType,
4491 isFloatingComplex ? CK_FloatingToIntegral
4492 : CK_IntegralCast,
4493 VK_PRValue, /*BasePath=*/nullptr, CCK)
4494 .get();
4495 }
4496 }
4497 break;
4498
4499 case ICK_Block_Pointer_Conversion: {
4500 LangAS AddrSpaceL =
4501 ToType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace();
4502 LangAS AddrSpaceR =
4503 FromType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace();
4504 assert(Qualifiers::isAddressSpaceSupersetOf(AddrSpaceL, AddrSpaceR) &&(static_cast <bool> (Qualifiers::isAddressSpaceSupersetOf
(AddrSpaceL, AddrSpaceR) && "Invalid cast") ? void (0
) : __assert_fail ("Qualifiers::isAddressSpaceSupersetOf(AddrSpaceL, AddrSpaceR) && \"Invalid cast\""
, "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 4505, __extension__ __PRETTY_FUNCTION__))
4505 "Invalid cast")(static_cast <bool> (Qualifiers::isAddressSpaceSupersetOf
(AddrSpaceL, AddrSpaceR) && "Invalid cast") ? void (0
) : __assert_fail ("Qualifiers::isAddressSpaceSupersetOf(AddrSpaceL, AddrSpaceR) && \"Invalid cast\""
, "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 4505, __extension__ __PRETTY_FUNCTION__))
;
4506 CastKind Kind =
4507 AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
4508 From = ImpCastExprToType(From, ToType.getUnqualifiedType(), Kind,
4509 VK_PRValue, /*BasePath=*/nullptr, CCK)
4510 .get();
4511 break;
4512 }
4513
4514 case ICK_TransparentUnionConversion: {
4515 ExprResult FromRes = From;
4516 Sema::AssignConvertType ConvTy =
4517 CheckTransparentUnionArgumentConstraints(ToType, FromRes);
4518 if (FromRes.isInvalid())
4519 return ExprError();
4520 From = FromRes.get();
4521 assert ((ConvTy == Sema::Compatible) &&(static_cast <bool> ((ConvTy == Sema::Compatible) &&
"Improper transparent union conversion") ? void (0) : __assert_fail
("(ConvTy == Sema::Compatible) && \"Improper transparent union conversion\""
, "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 4522, __extension__ __PRETTY_FUNCTION__))
4522 "Improper transparent union conversion")(static_cast <bool> ((ConvTy == Sema::Compatible) &&
"Improper transparent union conversion") ? void (0) : __assert_fail
("(ConvTy == Sema::Compatible) && \"Improper transparent union conversion\""
, "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 4522, __extension__ __PRETTY_FUNCTION__))
;
4523 (void)ConvTy;
4524 break;
4525 }
4526
4527 case ICK_Zero_Event_Conversion:
4528 case ICK_Zero_Queue_Conversion:
4529 From = ImpCastExprToType(From, ToType,
4530 CK_ZeroToOCLOpaqueType,
4531 From->getValueKind()).get();
4532 break;
4533
4534 case ICK_Lvalue_To_Rvalue:
4535 case ICK_Array_To_Pointer:
4536 case ICK_Function_To_Pointer:
4537 case ICK_Function_Conversion:
4538 case ICK_Qualification:
4539 case ICK_Num_Conversion_Kinds:
4540 case ICK_C_Only_Conversion:
4541 case ICK_Incompatible_Pointer_Conversion:
4542 llvm_unreachable("Improper second standard conversion")::llvm::llvm_unreachable_internal("Improper second standard conversion"
, "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 4542)
;
4543 }
4544
4545 switch (SCS.Third) {
4546 case ICK_Identity:
4547 // Nothing to do.
4548 break;
4549
4550 case ICK_Function_Conversion:
4551 // If both sides are functions (or pointers/references to them), there could
4552 // be incompatible exception declarations.
4553 if (CheckExceptionSpecCompatibility(From, ToType))
4554 return ExprError();
4555
4556 From = ImpCastExprToType(From, ToType, CK_NoOp, VK_PRValue,
4557 /*BasePath=*/nullptr, CCK)
4558 .get();
4559 break;
4560
4561 case ICK_Qualification: {
4562 ExprValueKind VK = From->getValueKind();
4563 CastKind CK = CK_NoOp;
4564
4565 if (ToType->isReferenceType() &&
4566 ToType->getPointeeType().getAddressSpace() !=
4567 From->getType().getAddressSpace())
4568 CK = CK_AddressSpaceConversion;
4569
4570 if (ToType->isPointerType() &&
4571 ToType->getPointeeType().getAddressSpace() !=
4572 From->getType()->getPointeeType().getAddressSpace())
4573 CK = CK_AddressSpaceConversion;
4574
4575 From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context), CK, VK,
4576 /*BasePath=*/nullptr, CCK)
4577 .get();
4578
4579 if (SCS.DeprecatedStringLiteralToCharPtr &&
4580 !getLangOpts().WritableStrings) {
4581 Diag(From->getBeginLoc(),
4582 getLangOpts().CPlusPlus11
4583 ? diag::ext_deprecated_string_literal_conversion
4584 : diag::warn_deprecated_string_literal_conversion)
4585 << ToType.getNonReferenceType();
4586 }
4587
4588 break;
4589 }
4590
4591 default:
4592 llvm_unreachable("Improper third standard conversion")::llvm::llvm_unreachable_internal("Improper third standard conversion"
, "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 4592)
;
4593 }
4594
4595 // If this conversion sequence involved a scalar -> atomic conversion, perform
4596 // that conversion now.
4597 if (!ToAtomicType.isNull()) {
4598 assert(Context.hasSameType((static_cast <bool> (Context.hasSameType( ToAtomicType->
castAs<AtomicType>()->getValueType(), From->getType
())) ? void (0) : __assert_fail ("Context.hasSameType( ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType())"
, "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 4599, __extension__ __PRETTY_FUNCTION__))
4599 ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType()))(static_cast <bool> (Context.hasSameType( ToAtomicType->
castAs<AtomicType>()->getValueType(), From->getType
())) ? void (0) : __assert_fail ("Context.hasSameType( ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType())"
, "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 4599, __extension__ __PRETTY_FUNCTION__))
;
4600 From = ImpCastExprToType(From, ToAtomicType, CK_NonAtomicToAtomic,
4601 VK_PRValue, nullptr, CCK)
4602 .get();
4603 }
4604
4605 // Materialize a temporary if we're implicitly converting to a reference
4606 // type. This is not required by the C++ rules but is necessary to maintain
4607 // AST invariants.
4608 if (ToType->isReferenceType() && From->isPRValue()) {
4609 ExprResult Res = TemporaryMaterializationConversion(From);
4610 if (Res.isInvalid())
4611 return ExprError();
4612 From = Res.get();
4613 }
4614
4615 // If this conversion sequence succeeded and involved implicitly converting a
4616 // _Nullable type to a _Nonnull one, complain.
4617 if (!isCast(CCK))
4618 diagnoseNullableToNonnullConversion(ToType, InitialFromType,
4619 From->getBeginLoc());
4620
4621 return From;
4622}
4623
4624/// Check the completeness of a type in a unary type trait.
4625///
4626/// If the particular type trait requires a complete type, tries to complete
4627/// it. If completing the type fails, a diagnostic is emitted and false
4628/// returned. If completing the type succeeds or no completion was required,
4629/// returns true.
4630static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S, TypeTrait UTT,
4631 SourceLocation Loc,
4632 QualType ArgTy) {
4633 // C++0x [meta.unary.prop]p3:
4634 // For all of the class templates X declared in this Clause, instantiating
4635 // that template with a template argument that is a class template
4636 // specialization may result in the implicit instantiation of the template
4637 // argument if and only if the semantics of X require that the argument
4638 // must be a complete type.
4639 // We apply this rule to all the type trait expressions used to implement
4640 // these class templates. We also try to follow any GCC documented behavior
4641 // in these expressions to ensure portability of standard libraries.
4642 switch (UTT) {
4643 default: llvm_unreachable("not a UTT")::llvm::llvm_unreachable_internal("not a UTT", "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 4643)
;
4644 // is_complete_type somewhat obviously cannot require a complete type.
4645 case UTT_IsCompleteType:
4646 // Fall-through
4647
4648 // These traits are modeled on the type predicates in C++0x
4649 // [meta.unary.cat] and [meta.unary.comp]. They are not specified as
4650 // requiring a complete type, as whether or not they return true cannot be
4651 // impacted by the completeness of the type.
4652 case UTT_IsVoid:
4653 case UTT_IsIntegral:
4654 case UTT_IsFloatingPoint:
4655 case UTT_IsArray:
4656 case UTT_IsPointer:
4657 case UTT_IsLvalueReference:
4658 case UTT_IsRvalueReference:
4659 case UTT_IsMemberFunctionPointer:
4660 case UTT_IsMemberObjectPointer:
4661 case UTT_IsEnum:
4662 case UTT_IsUnion:
4663 case UTT_IsClass:
4664 case UTT_IsFunction:
4665 case UTT_IsReference:
4666 case UTT_IsArithmetic:
4667 case UTT_IsFundamental:
4668 case UTT_IsObject:
4669 case UTT_IsScalar:
4670 case UTT_IsCompound:
4671 case UTT_IsMemberPointer:
4672 // Fall-through
4673
4674 // These traits are modeled on type predicates in C++0x [meta.unary.prop]
4675 // which requires some of its traits to have the complete type. However,
4676 // the completeness of the type cannot impact these traits' semantics, and
4677 // so they don't require it. This matches the comments on these traits in
4678 // Table 49.
4679 case UTT_IsConst:
4680 case UTT_IsVolatile:
4681 case UTT_IsSigned:
4682 case UTT_IsUnsigned:
4683
4684 // This type trait always returns false, checking the type is moot.
4685 case UTT_IsInterfaceClass:
4686 return true;
4687
4688 // C++14 [meta.unary.prop]:
4689 // If T is a non-union class type, T shall be a complete type.
4690 case UTT_IsEmpty:
4691 case UTT_IsPolymorphic:
4692 case UTT_IsAbstract:
4693 if (const auto *RD = ArgTy->getAsCXXRecordDecl())
4694 if (!RD->isUnion())
4695 return !S.RequireCompleteType(
4696 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4697 return true;
4698
4699 // C++14 [meta.unary.prop]:
4700 // If T is a class type, T shall be a complete type.
4701 case UTT_IsFinal:
4702 case UTT_IsSealed:
4703 if (ArgTy->getAsCXXRecordDecl())
4704 return !S.RequireCompleteType(
4705 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4706 return true;
4707
4708 // C++1z [meta.unary.prop]:
4709 // remove_all_extents_t<T> shall be a complete type or cv void.
4710 case UTT_IsAggregate:
4711 case UTT_IsTrivial:
4712 case UTT_IsTriviallyCopyable:
4713 case UTT_IsStandardLayout:
4714 case UTT_IsPOD:
4715 case UTT_IsLiteral:
4716 // Per the GCC type traits documentation, T shall be a complete type, cv void,
4717 // or an array of unknown bound. But GCC actually imposes the same constraints
4718 // as above.
4719 case UTT_HasNothrowAssign:
4720 case UTT_HasNothrowMoveAssign:
4721 case UTT_HasNothrowConstructor:
4722 case UTT_HasNothrowCopy:
4723 case UTT_HasTrivialAssign:
4724 case UTT_HasTrivialMoveAssign:
4725 case UTT_HasTrivialDefaultConstructor:
4726 case UTT_HasTrivialMoveConstructor:
4727 case UTT_HasTrivialCopy:
4728 case UTT_HasTrivialDestructor:
4729 case UTT_HasVirtualDestructor:
4730 ArgTy = QualType(ArgTy->getBaseElementTypeUnsafe(), 0);
4731 LLVM_FALLTHROUGH[[gnu::fallthrough]];
4732
4733 // C++1z [meta.unary.prop]:
4734 // T shall be a complete type, cv void, or an array of unknown bound.
4735 case UTT_IsDestructible:
4736 case UTT_IsNothrowDestructible:
4737 case UTT_IsTriviallyDestructible:
4738 case UTT_HasUniqueObjectRepresentations:
4739 if (ArgTy->isIncompleteArrayType() || ArgTy->isVoidType())
4740 return true;
4741
4742 return !S.RequireCompleteType(
4743 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4744 }
4745}
4746
4747static bool HasNoThrowOperator(const RecordType *RT, OverloadedOperatorKind Op,
4748 Sema &Self, SourceLocation KeyLoc, ASTContext &C,
4749 bool (CXXRecordDecl::*HasTrivial)() const,
4750 bool (CXXRecordDecl::*HasNonTrivial)() const,
4751 bool (CXXMethodDecl::*IsDesiredOp)() const)
4752{
4753 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
4754 if ((RD->*HasTrivial)() && !(RD->*HasNonTrivial)())
4755 return true;
4756
4757 DeclarationName Name = C.DeclarationNames.getCXXOperatorName(Op);
4758 DeclarationNameInfo NameInfo(Name, KeyLoc);
4759 LookupResult Res(Self, NameInfo, Sema::LookupOrdinaryName);
4760 if (Self.LookupQualifiedName(Res, RD)) {
4761 bool FoundOperator = false;
4762 Res.suppressDiagnostics();
4763 for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end();
4764 Op != OpEnd; ++Op) {
4765 if (isa<FunctionTemplateDecl>(*Op))
4766 continue;
4767
4768 CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op);
4769 if((Operator->*IsDesiredOp)()) {
4770 FoundOperator = true;
4771 auto *CPT = Operator->getType()->castAs<FunctionProtoType>();
4772 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
4773 if (!CPT || !CPT->isNothrow())
4774 return false;
4775 }
4776 }
4777 return FoundOperator;
4778 }
4779 return false;
4780}
4781
4782static bool EvaluateUnaryTypeTrait(Sema &Self, TypeTrait UTT,
4783 SourceLocation KeyLoc, QualType T) {
4784 assert(!T->isDependentType() && "Cannot evaluate traits of dependent type")(static_cast <bool> (!T->isDependentType() &&
"Cannot evaluate traits of dependent type") ? void (0) : __assert_fail
("!T->isDependentType() && \"Cannot evaluate traits of dependent type\""
, "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 4784, __extension__ __PRETTY_FUNCTION__))
;
4785
4786 ASTContext &C = Self.Context;
4787 switch(UTT) {
4788 default: llvm_unreachable("not a UTT")::llvm::llvm_unreachable_internal("not a UTT", "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 4788)
;
4789 // Type trait expressions corresponding to the primary type category
4790 // predicates in C++0x [meta.unary.cat].
4791 case UTT_IsVoid:
4792 return T->isVoidType();
4793 case UTT_IsIntegral:
4794 return T->isIntegralType(C);
4795 case UTT_IsFloatingPoint:
4796 return T->isFloatingType();
4797 case UTT_IsArray:
4798 return T->isArrayType();
4799 case UTT_IsPointer:
4800 return T->isAnyPointerType();
4801 case UTT_IsLvalueReference:
4802 return T->isLValueReferenceType();
4803 case UTT_IsRvalueReference:
4804 return T->isRValueReferenceType();
4805 case UTT_IsMemberFunctionPointer:
4806 return T->isMemberFunctionPointerType();
4807 case UTT_IsMemberObjectPointer:
4808 return T->isMemberDataPointerType();
4809 case UTT_IsEnum:
4810 return T->isEnumeralType();
4811 case UTT_IsUnion:
4812 return T->isUnionType();
4813 case UTT_IsClass:
4814 return T->isClassType() || T->isStructureType() || T->isInterfaceType();
4815 case UTT_IsFunction:
4816 return T->isFunctionType();
4817
4818 // Type trait expressions which correspond to the convenient composition
4819 // predicates in C++0x [meta.unary.comp].
4820 case UTT_IsReference:
4821 return T->isReferenceType();
4822 case UTT_IsArithmetic:
4823 return T->isArithmeticType() && !T->isEnumeralType();
4824 case UTT_IsFundamental:
4825 return T->isFundamentalType();
4826 case UTT_IsObject:
4827 return T->isObjectType();
4828 case UTT_IsScalar:
4829 // Note: semantic analysis depends on Objective-C lifetime types to be
4830 // considered scalar types. However, such types do not actually behave
4831 // like scalar types at run time (since they may require retain/release
4832 // operations), so we report them as non-scalar.
4833 if (T->isObjCLifetimeType()) {
4834 switch (T.getObjCLifetime()) {
4835 case Qualifiers::OCL_None:
4836 case Qualifiers::OCL_ExplicitNone:
4837 return true;
4838
4839 case Qualifiers::OCL_Strong:
4840 case Qualifiers::OCL_Weak:
4841 case Qualifiers::OCL_Autoreleasing:
4842 return false;
4843 }
4844 }
4845
4846 return T->isScalarType();
4847 case UTT_IsCompound:
4848 return T->isCompoundType();
4849 case UTT_IsMemberPointer:
4850 return T->isMemberPointerType();
4851
4852 // Type trait expressions which correspond to the type property predicates
4853 // in C++0x [meta.unary.prop].
4854 case UTT_IsConst:
4855 return T.isConstQualified();
4856 case UTT_IsVolatile:
4857 return T.isVolatileQualified();
4858 case UTT_IsTrivial:
4859 return T.isTrivialType(C);
4860 case UTT_IsTriviallyCopyable:
4861 return T.isTriviallyCopyableType(C);
4862 case UTT_IsStandardLayout:
4863 return T->isStandardLayoutType();
4864 case UTT_IsPOD:
4865 return T.isPODType(C);
4866 case UTT_IsLiteral:
4867 return T->isLiteralType(C);
4868 case UTT_IsEmpty:
4869 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4870 return !RD->isUnion() && RD->isEmpty();
4871 return false;
4872 case UTT_IsPolymorphic:
4873 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4874 return !RD->isUnion() && RD->isPolymorphic();
4875 return false;
4876 case UTT_IsAbstract:
4877 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4878 return !RD->isUnion() && RD->isAbstract();
4879 return false;
4880 case UTT_IsAggregate:
4881 // Report vector extensions and complex types as aggregates because they
4882 // support aggregate initialization. GCC mirrors this behavior for vectors
4883 // but not _Complex.
4884 return T->isAggregateType() || T->isVectorType() || T->isExtVectorType() ||
4885 T->isAnyComplexType();
4886 // __is_interface_class only returns true when CL is invoked in /CLR mode and
4887 // even then only when it is used with the 'interface struct ...' syntax
4888 // Clang doesn't support /CLR which makes this type trait moot.
4889 case UTT_IsInterfaceClass:
4890 return false;
4891 case UTT_IsFinal:
4892 case UTT_IsSealed:
4893 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4894 return RD->hasAttr<FinalAttr>();
4895 return false;
4896 case UTT_IsSigned:
4897 // Enum types should always return false.
4898 // Floating points should always return true.
4899 return T->isFloatingType() ||
4900 (T->isSignedIntegerType() && !T->isEnumeralType());
4901 case UTT_IsUnsigned:
4902 // Enum types should always return false.
4903 return T->isUnsignedIntegerType() && !T->isEnumeralType();
4904
4905 // Type trait expressions which query classes regarding their construction,
4906 // destruction, and copying. Rather than being based directly on the
4907 // related type predicates in the standard, they are specified by both
4908 // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those
4909 // specifications.
4910 //
4911 // 1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html
4912 // 2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
4913 //
4914 // Note that these builtins do not behave as documented in g++: if a class
4915 // has both a trivial and a non-trivial special member of a particular kind,
4916 // they return false! For now, we emulate this behavior.
4917 // FIXME: This appears to be a g++ bug: more complex cases reveal that it
4918 // does not correctly compute triviality in the presence of multiple special
4919 // members of the same kind. Revisit this once the g++ bug is fixed.
4920 case UTT_HasTrivialDefaultConstructor:
4921 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4922 // If __is_pod (type) is true then the trait is true, else if type is
4923 // a cv class or union type (or array thereof) with a trivial default
4924 // constructor ([class.ctor]) then the trait is true, else it is false.
4925 if (T.isPODType(C))
4926 return true;
4927 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
4928 return RD->hasTrivialDefaultConstructor() &&
4929 !RD->hasNonTrivialDefaultConstructor();
4930 return false;
4931 case UTT_HasTrivialMoveConstructor:
4932 // This trait is implemented by MSVC 2012 and needed to parse the
4933 // standard library headers. Specifically this is used as the logic
4934 // behind std::is_trivially_move_constructible (20.9.4.3).
4935 if (T.isPODType(C))
4936 return true;
4937 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
4938 return RD->hasTrivialMoveConstructor() && !RD->hasNonTrivialMoveConstructor();
4939 return false;
4940 case UTT_HasTrivialCopy:
4941 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4942 // If __is_pod (type) is true or type is a reference type then
4943 // the trait is true, else if type is a cv class or union type
4944 // with a trivial copy constructor ([class.copy]) then the trait
4945 // is true, else it is false.
4946 if (T.isPODType(C) || T->isReferenceType())
4947 return true;
4948 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4949 return RD->hasTrivialCopyConstructor() &&
4950 !RD->hasNonTrivialCopyConstructor();
4951 return false;
4952 case UTT_HasTrivialMoveAssign:
4953 // This trait is implemented by MSVC 2012 and needed to parse the
4954 // standard library headers. Specifically it is used as the logic
4955 // behind std::is_trivially_move_assignable (20.9.4.3)
4956 if (T.isPODType(C))
4957 return true;
4958 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
4959 return RD->hasTrivialMoveAssignment() && !RD->hasNonTrivialMoveAssignment();
4960 return false;
4961 case UTT_HasTrivialAssign:
4962 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4963 // If type is const qualified or is a reference type then the
4964 // trait is false. Otherwise if __is_pod (type) is true then the
4965 // trait is true, else if type is a cv class or union type with
4966 // a trivial copy assignment ([class.copy]) then the trait is
4967 // true, else it is false.
4968 // Note: the const and reference restrictions are interesting,
4969 // given that const and reference members don't prevent a class
4970 // from having a trivial copy assignment operator (but do cause
4971 // errors if the copy assignment operator is actually used, q.v.
4972 // [class.copy]p12).
4973
4974 if (T.isConstQualified())
4975 return false;
4976 if (T.isPODType(C))
4977 return true;
4978 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4979 return RD->hasTrivialCopyAssignment() &&
4980 !RD->hasNonTrivialCopyAssignment();
4981 return false;
4982 case UTT_IsDestructible:
4983 case UTT_IsTriviallyDestructible:
4984 case UTT_IsNothrowDestructible:
4985 // C++14 [meta.unary.prop]:
4986 // For reference types, is_destructible<T>::value is true.
4987 if (T->isReferenceType())
4988 return true;
4989
4990 // Objective-C++ ARC: autorelease types don't require destruction.
4991 if (T->isObjCLifetimeType() &&
4992 T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
4993 return true;
4994
4995 // C++14 [meta.unary.prop]:
4996 // For incomplete types and function types, is_destructible<T>::value is
4997 // false.
4998 if (T->isIncompleteType() || T->isFunctionType())
4999 return false;
5000
5001 // A type that requires destruction (via a non-trivial destructor or ARC
5002 // lifetime semantics) is not trivially-destructible.
5003 if (UTT == UTT_IsTriviallyDestructible && T.isDestructedType())
5004 return false;
5005
5006 // C++14 [meta.unary.prop]:
5007 // For object types and given U equal to remove_all_extents_t<T>, if the
5008 // expression std::declval<U&>().~U() is well-formed when treated as an
5009 // unevaluated operand (Clause 5), then is_destructible<T>::value is true
5010 if (auto *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
5011 CXXDestructorDecl *Destructor = Self.LookupDestructor(RD);
5012 if (!Destructor)
5013 return false;
5014 // C++14 [dcl.fct.def.delete]p2:
5015 // A program that refers to a deleted function implicitly or
5016 // explicitly, other than to declare it, is ill-formed.
5017 if (Destructor->isDeleted())
5018 return false;
5019 if (C.getLangOpts().AccessControl && Destructor->getAccess() != AS_public)
5020 return false;
5021 if (UTT == UTT_IsNothrowDestructible) {
5022 auto *CPT = Destructor->getType()->castAs<FunctionProtoType>();
5023 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
5024 if (!CPT || !CPT->isNothrow())
5025 return false;
5026 }
5027 }
5028 return true;
5029
5030 case UTT_HasTrivialDestructor:
5031 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
5032 // If __is_pod (type) is true or type is a reference type
5033 // then the trait is true, else if type is a cv class or union
5034 // type (or array thereof) with a trivial destructor
5035 // ([class.dtor]) then the trait is true, else it is
5036 // false.
5037 if (T.isPODType(C) || T->isReferenceType())
5038 return true;
5039
5040 // Objective-C++ ARC: autorelease types don't require destruction.
5041 if (T->isObjCLifetimeType() &&
5042 T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
5043 return true;
5044
5045 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
5046 return RD->hasTrivialDestructor();
5047 return false;
5048 // TODO: Propagate nothrowness for implicitly declared special members.
5049 case UTT_HasNothrowAssign:
5050 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5051 // If type is const qualified or is a reference type then the
5052 // trait is false. Otherwise if __has_trivial_assign (type)
5053 // is true then the trait is true, else if type is a cv class
5054 // or union type with copy assignment operators that are known
5055 // not to throw an exception then the trait is true, else it is
5056 // false.
5057 if (C.getBaseElementType(T).isConstQualified())
5058 return false;
5059 if (T->isReferenceType())
5060 return false;
5061 if (T.isPODType(C) || T->isObjCLifetimeType())
5062 return true;
5063
5064 if (const RecordType *RT = T->getAs<RecordType>())
5065 return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
5066 &CXXRecordDecl::hasTrivialCopyAssignment,
5067 &CXXRecordDecl::hasNonTrivialCopyAssignment,
5068 &CXXMethodDecl::isCopyAssignmentOperator);
5069 return false;
5070 case UTT_HasNothrowMoveAssign:
5071 // This trait is implemented by MSVC 2012 and needed to parse the
5072 // standard library headers. Specifically this is used as the logic
5073 // behind std::is_nothrow_move_assignable (20.9.4.3).
5074 if (T.isPODType(C))
5075 return true;
5076
5077 if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>())
5078 return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
5079 &CXXRecordDecl::hasTrivialMoveAssignment,
5080 &CXXRecordDecl::hasNonTrivialMoveAssignment,
5081 &CXXMethodDecl::isMoveAssignmentOperator);
5082 return false;
5083 case UTT_HasNothrowCopy:
5084 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5085 // If __has_trivial_copy (type) is true then the trait is true, else
5086 // if type is a cv class or union type with copy constructors that are
5087 // known not to throw an exception then the trait is true, else it is
5088 // false.
5089 if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType())
5090 return true;
5091 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
5092 if (RD->hasTrivialCopyConstructor() &&
5093 !RD->hasNonTrivialCopyConstructor())
5094 return true;
5095
5096 bool FoundConstructor = false;
5097 unsigned FoundTQs;
5098 for (const auto *ND : Self.LookupConstructors(RD)) {
5099 // A template constructor is never a copy constructor.
5100 // FIXME: However, it may actually be selected at the actual overload
5101 // resolution point.
5102 if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl()))
5103 continue;
5104 // UsingDecl itself is not a constructor
5105 if (isa<UsingDecl>(ND))
5106 continue;
5107 auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl());
5108 if (Constructor->isCopyConstructor(FoundTQs)) {
5109 FoundConstructor = true;
5110 auto *CPT = Constructor->getType()->castAs<FunctionProtoType>();
5111 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
5112 if (!CPT)
5113 return false;
5114 // TODO: check whether evaluating default arguments can throw.
5115 // For now, we'll be conservative and assume that they can throw.
5116 if (!CPT->isNothrow() || CPT->getNumParams() > 1)
5117 return false;
5118 }
5119 }
5120
5121 return FoundConstructor;
5122 }
5123 return false;
5124 case UTT_HasNothrowConstructor:
5125 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
5126 // If __has_trivial_constructor (type) is true then the trait is
5127 // true, else if type is a cv class or union type (or array
5128 // thereof) with a default constructor that is known not to
5129 // throw an exception then the trait is true, else it is false.
5130 if (T.isPODType(C) || T->isObjCLifetimeType())
5131 return true;
5132 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
5133 if (RD->hasTrivialDefaultConstructor() &&
5134 !RD->hasNonTrivialDefaultConstructor())
5135 return true;
5136
5137 bool FoundConstructor = false;
5138 for (const auto *ND : Self.LookupConstructors(RD)) {
5139 // FIXME: In C++0x, a constructor template can be a default constructor.
5140 if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl()))
5141 continue;
5142 // UsingDecl itself is not a constructor
5143 if (isa<UsingDecl>(ND))
5144 continue;
5145 auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl());
5146 if (Constructor->isDefaultConstructor()) {
5147 FoundConstructor = true;
5148 auto *CPT = Constructor->getType()->castAs<FunctionProtoType>();
5149 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
5150 if (!CPT)
5151 return false;
5152 // FIXME: check whether evaluating default arguments can throw.
5153 // For now, we'll be conservative and assume that they can throw.
5154 if (!CPT->isNothrow() || CPT->getNumParams() > 0)
5155 return false;
5156 }
5157 }
5158 return FoundConstructor;
5159 }
5160 return false;
5161 case UTT_HasVirtualDestructor:
5162 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5163 // If type is a class type with a virtual destructor ([class.dtor])
5164 // then the trait is true, else it is false.
5165 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5166 if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD))
5167 return Destructor->isVirtual();
5168 return false;
5169
5170 // These type trait expressions are modeled on the specifications for the
5171 // Embarcadero C++0x type trait functions:
5172 // http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
5173 case UTT_IsCompleteType:
5174 // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_):
5175 // Returns True if and only if T is a complete type at the point of the
5176 // function call.
5177 return !T->isIncompleteType();
5178 case UTT_HasUniqueObjectRepresentations:
5179 return C.hasUniqueObjectRepresentations(T);
5180 }
5181}
5182
5183static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
5184 QualType RhsT, SourceLocation KeyLoc);
5185
5186static bool evaluateTypeTrait(Sema &S, TypeTrait Kind, SourceLocation KWLoc,
5187 ArrayRef<TypeSourceInfo *> Args,
5188 SourceLocation RParenLoc) {
5189 if (Kind <= UTT_Last)
5190 return EvaluateUnaryTypeTrait(S, Kind, KWLoc, Args[0]->getType());
5191
5192 // Evaluate BTT_ReferenceBindsToTemporary alongside the IsConstructible
5193 // traits to avoid duplication.
5194 if (Kind <= BTT_Last && Kind != BTT_ReferenceBindsToTemporary)
5195 return EvaluateBinaryTypeTrait(S, Kind, Args[0]->getType(),
5196 Args[1]->getType(), RParenLoc);
5197
5198 switch (Kind) {
5199 case clang::BTT_ReferenceBindsToTemporary:
5200 case clang::TT_IsConstructible:
5201 case clang::TT_IsNothrowConstructible:
5202 case clang::TT_IsTriviallyConstructible: {
5203 // C++11 [meta.unary.prop]:
5204 // is_trivially_constructible is defined as:
5205 //
5206 // is_constructible<T, Args...>::value is true and the variable
5207 // definition for is_constructible, as defined below, is known to call
5208 // no operation that is not trivial.
5209 //
5210 // The predicate condition for a template specialization
5211 // is_constructible<T, Args...> shall be satisfied if and only if the
5212 // following variable definition would be well-formed for some invented
5213 // variable t:
5214 //
5215 // T t(create<Args>()...);
5216 assert(!Args.empty())(static_cast <bool> (!Args.empty()) ? void (0) : __assert_fail
("!Args.empty()", "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 5216, __extension__ __PRETTY_FUNCTION__))
;
5217
5218 // Precondition: T and all types in the parameter pack Args shall be
5219 // complete types, (possibly cv-qualified) void, or arrays of
5220 // unknown bound.
5221 for (const auto *TSI : Args) {
5222 QualType ArgTy = TSI->getType();
5223 if (ArgTy->isVoidType() || ArgTy->isIncompleteArrayType())
5224 continue;
5225
5226 if (S.RequireCompleteType(KWLoc, ArgTy,
5227 diag::err_incomplete_type_used_in_type_trait_expr))
5228 return false;
5229 }
5230
5231 // Make sure the first argument is not incomplete nor a function type.
5232 QualType T = Args[0]->getType();
5233 if (T->isIncompleteType() || T->isFunctionType())
5234 return false;
5235
5236 // Make sure the first argument is not an abstract type.
5237 CXXRecordDecl *RD = T->getAsCXXRecordDecl();
5238 if (RD && RD->isAbstract())
5239 return false;
5240
5241 llvm::BumpPtrAllocator OpaqueExprAllocator;
5242 SmallVector<Expr *, 2> ArgExprs;
5243 ArgExprs.reserve(Args.size() - 1);
5244 for (unsigned I = 1, N = Args.size(); I != N; ++I) {
5245 QualType ArgTy = Args[I]->getType();
5246 if (ArgTy->isObjectType() || ArgTy->isFunctionType())
5247 ArgTy = S.Context.getRValueReferenceType(ArgTy);
5248 ArgExprs.push_back(
5249 new (OpaqueExprAllocator.Allocate<OpaqueValueExpr>())
5250 OpaqueValueExpr(Args[I]->getTypeLoc().getBeginLoc(),
5251 ArgTy.getNonLValueExprType(S.Context),
5252 Expr::getValueKindForType(ArgTy)));
5253 }
5254
5255 // Perform the initialization in an unevaluated context within a SFINAE
5256 // trap at translation unit scope.
5257 EnterExpressionEvaluationContext Unevaluated(
5258 S, Sema::ExpressionEvaluationContext::Unevaluated);
5259 Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true);
5260 Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl());
5261 InitializedEntity To(InitializedEntity::InitializeTemporary(Args[0]));
5262 InitializationKind InitKind(InitializationKind::CreateDirect(KWLoc, KWLoc,
5263 RParenLoc));
5264 InitializationSequence Init(S, To, InitKind, ArgExprs);
5265 if (Init.Failed())
5266 return false;
5267
5268 ExprResult Result = Init.Perform(S, To, InitKind, ArgExprs);
5269 if (Result.isInvalid() || SFINAE.hasErrorOccurred())
5270 return false;
5271
5272 if (Kind == clang::TT_IsConstructible)
5273 return true;
5274
5275 if (Kind == clang::BTT_ReferenceBindsToTemporary) {
5276 if (!T->isReferenceType())
5277 return false;
5278
5279 return !Init.isDirectReferenceBinding();
5280 }
5281
5282 if (Kind == clang::TT_IsNothrowConstructible)
5283 return S.canThrow(Result.get()) == CT_Cannot;
5284
5285 if (Kind == clang::TT_IsTriviallyConstructible) {
5286 // Under Objective-C ARC and Weak, if the destination has non-trivial
5287 // Objective-C lifetime, this is a non-trivial construction.
5288 if (T.getNonReferenceType().hasNonTrivialObjCLifetime())
5289 return false;
5290
5291 // The initialization succeeded; now make sure there are no non-trivial
5292 // calls.
5293 return !Result.get()->hasNonTrivialCall(S.Context);
5294 }
5295
5296 llvm_unreachable("unhandled type trait")::llvm::llvm_unreachable_internal("unhandled type trait", "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 5296)
;
5297 return false;
5298 }
5299 default: llvm_unreachable("not a TT")::llvm::llvm_unreachable_internal("not a TT", "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 5299)
;
5300 }
5301
5302 return false;
5303}
5304
5305ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
5306 ArrayRef<TypeSourceInfo *> Args,
5307 SourceLocation RParenLoc) {
5308 QualType ResultType = Context.getLogicalOperationType();
5309
5310 if (Kind <= UTT_Last && !CheckUnaryTypeTraitTypeCompleteness(
5311 *this, Kind, KWLoc, Args[0]->getType()))
5312 return ExprError();
5313
5314 bool Dependent = false;
5315 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
5316 if (Args[I]->getType()->isDependentType()) {
5317 Dependent = true;
5318 break;
5319 }
5320 }
5321
5322 bool Result = false;
5323 if (!Dependent)
5324 Result = evaluateTypeTrait(*this, Kind, KWLoc, Args, RParenLoc);
5325
5326 return TypeTraitExpr::Create(Context, ResultType, KWLoc, Kind, Args,
5327 RParenLoc, Result);
5328}
5329
5330ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
5331 ArrayRef<ParsedType> Args,
5332 SourceLocation RParenLoc) {
5333 SmallVector<TypeSourceInfo *, 4> ConvertedArgs;
5334 ConvertedArgs.reserve(Args.size());
5335
5336 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
5337 TypeSourceInfo *TInfo;
5338 QualType T = GetTypeFromParser(Args[I], &TInfo);
5339 if (!TInfo)
5340 TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc);
5341
5342 ConvertedArgs.push_back(TInfo);
5343 }
5344
5345 return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc);
5346}
5347
5348static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
5349 QualType RhsT, SourceLocation KeyLoc) {
5350 assert(!LhsT->isDependentType() && !RhsT->isDependentType() &&(static_cast <bool> (!LhsT->isDependentType() &&
!RhsT->isDependentType() && "Cannot evaluate traits of dependent types"
) ? void (0) : __assert_fail ("!LhsT->isDependentType() && !RhsT->isDependentType() && \"Cannot evaluate traits of dependent types\""
, "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 5351, __extension__ __PRETTY_FUNCTION__))
5351 "Cannot evaluate traits of dependent types")(static_cast <bool> (!LhsT->isDependentType() &&
!RhsT->isDependentType() && "Cannot evaluate traits of dependent types"
) ? void (0) : __assert_fail ("!LhsT->isDependentType() && !RhsT->isDependentType() && \"Cannot evaluate traits of dependent types\""
, "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 5351, __extension__ __PRETTY_FUNCTION__))
;
5352
5353 switch(BTT) {
5354 case BTT_IsBaseOf: {
5355 // C++0x [meta.rel]p2
5356 // Base is a base class of Derived without regard to cv-qualifiers or
5357 // Base and Derived are not unions and name the same class type without
5358 // regard to cv-qualifiers.
5359
5360 const RecordType *lhsRecord = LhsT->getAs<RecordType>();
5361 const RecordType *rhsRecord = RhsT->getAs<RecordType>();
5362 if (!rhsRecord || !lhsRecord) {
5363 const ObjCObjectType *LHSObjTy = LhsT->getAs<ObjCObjectType>();
5364 const ObjCObjectType *RHSObjTy = RhsT->getAs<ObjCObjectType>();
5365 if (!LHSObjTy || !RHSObjTy)
5366 return false;
5367
5368 ObjCInterfaceDecl *BaseInterface = LHSObjTy->getInterface();
5369 ObjCInterfaceDecl *DerivedInterface = RHSObjTy->getInterface();
5370 if (!BaseInterface || !DerivedInterface)
5371 return false;
5372
5373 if (Self.RequireCompleteType(
5374 KeyLoc, RhsT, diag::err_incomplete_type_used_in_type_trait_expr))
5375 return false;
5376
5377 return BaseInterface->isSuperClassOf(DerivedInterface);
5378 }
5379
5380 assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)(static_cast <bool> (Self.Context.hasSameUnqualifiedType
(LhsT, RhsT) == (lhsRecord == rhsRecord)) ? void (0) : __assert_fail
("Self.Context.hasSameUnqualifiedType(LhsT, RhsT) == (lhsRecord == rhsRecord)"
, "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 5381, __extension__ __PRETTY_FUNCTION__))
5381 == (lhsRecord == rhsRecord))(static_cast <bool> (Self.Context.hasSameUnqualifiedType
(LhsT, RhsT) == (lhsRecord == rhsRecord)) ? void (0) : __assert_fail
("Self.Context.hasSameUnqualifiedType(LhsT, RhsT) == (lhsRecord == rhsRecord)"
, "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 5381, __extension__ __PRETTY_FUNCTION__))
;
5382
5383 // Unions are never base classes, and never have base classes.
5384 // It doesn't matter if they are complete or not. See PR#41843
5385 if (lhsRecord && lhsRecord->getDecl()->isUnion())
5386 return false;
5387 if (rhsRecord && rhsRecord->getDecl()->isUnion())
5388 return false;
5389
5390 if (lhsRecord == rhsRecord)
5391 return true;
5392
5393 // C++0x [meta.rel]p2:
5394 // If Base and Derived are class types and are different types
5395 // (ignoring possible cv-qualifiers) then Derived shall be a
5396 // complete type.
5397 if (Self.RequireCompleteType(KeyLoc, RhsT,
5398 diag::err_incomplete_type_used_in_type_trait_expr))
5399 return false;
5400
5401 return cast<CXXRecordDecl>(rhsRecord->getDecl())
5402 ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl()));
5403 }
5404 case BTT_IsSame:
5405 return Self.Context.hasSameType(LhsT, RhsT);
5406 case BTT_TypeCompatible: {
5407 // GCC ignores cv-qualifiers on arrays for this builtin.
5408 Qualifiers LhsQuals, RhsQuals;
5409 QualType Lhs = Self.getASTContext().getUnqualifiedArrayType(LhsT, LhsQuals);
5410 QualType Rhs = Self.getASTContext().getUnqualifiedArrayType(RhsT, RhsQuals);
5411 return Self.Context.typesAreCompatible(Lhs, Rhs);
5412 }
5413 case BTT_IsConvertible:
5414 case BTT_IsConvertibleTo: {
5415 // C++0x [meta.rel]p4:
5416 // Given the following function prototype:
5417 //
5418 // template <class T>
5419 // typename add_rvalue_reference<T>::type create();
5420 //
5421 // the predicate condition for a template specialization
5422 // is_convertible<From, To> shall be satisfied if and only if
5423 // the return expression in the following code would be
5424 // well-formed, including any implicit conversions to the return
5425 // type of the function:
5426 //
5427 // To test() {
5428 // return create<From>();
5429 // }
5430 //
5431 // Access checking is performed as if in a context unrelated to To and
5432 // From. Only the validity of the immediate context of the expression
5433 // of the return-statement (including conversions to the return type)
5434 // is considered.
5435 //
5436 // We model the initialization as a copy-initialization of a temporary
5437 // of the appropriate type, which for this expression is identical to the
5438 // return statement (since NRVO doesn't apply).
5439
5440 // Functions aren't allowed to return function or array types.
5441 if (RhsT->isFunctionType() || RhsT->isArrayType())
5442 return false;
5443
5444 // A return statement in a void function must have void type.
5445 if (RhsT->isVoidType())
5446 return LhsT->isVoidType();
5447
5448 // A function definition requires a complete, non-abstract return type.
5449 if (!Self.isCompleteType(KeyLoc, RhsT) || Self.isAbstractType(KeyLoc, RhsT))
5450 return false;
5451
5452 // Compute the result of add_rvalue_reference.
5453 if (LhsT->isObjectType() || LhsT->isFunctionType())
5454 LhsT = Self.Context.getRValueReferenceType(LhsT);
5455
5456 // Build a fake source and destination for initialization.
5457 InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT));
5458 OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
5459 Expr::getValueKindForType(LhsT));
5460 Expr *FromPtr = &From;
5461 InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc,
5462 SourceLocation()));
5463
5464 // Perform the initialization in an unevaluated context within a SFINAE
5465 // trap at translation unit scope.
5466 EnterExpressionEvaluationContext Unevaluated(
5467 Self, Sema::ExpressionEvaluationContext::Unevaluated);
5468 Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
5469 Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
5470 InitializationSequence Init(Self, To, Kind, FromPtr);
5471 if (Init.Failed())
5472 return false;
5473
5474 ExprResult Result = Init.Perform(Self, To, Kind, FromPtr);
5475 return !Result.isInvalid() && !SFINAE.hasErrorOccurred();
5476 }
5477
5478 case BTT_IsAssignable:
5479 case BTT_IsNothrowAssignable:
5480 case BTT_IsTriviallyAssignable: {
5481 // C++11 [meta.unary.prop]p3:
5482 // is_trivially_assignable is defined as:
5483 // is_assignable<T, U>::value is true and the assignment, as defined by
5484 // is_assignable, is known to call no operation that is not trivial
5485 //
5486 // is_assignable is defined as:
5487 // The expression declval<T>() = declval<U>() is well-formed when
5488 // treated as an unevaluated operand (Clause 5).
5489 //
5490 // For both, T and U shall be complete types, (possibly cv-qualified)
5491 // void, or arrays of unknown bound.
5492 if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() &&
5493 Self.RequireCompleteType(KeyLoc, LhsT,
5494 diag::err_incomplete_type_used_in_type_trait_expr))
5495 return false;
5496 if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() &&
5497 Self.RequireCompleteType(KeyLoc, RhsT,
5498 diag::err_incomplete_type_used_in_type_trait_expr))
5499 return false;
5500
5501 // cv void is never assignable.
5502 if (LhsT->isVoidType() || RhsT->isVoidType())
5503 return false;
5504
5505 // Build expressions that emulate the effect of declval<T>() and
5506 // declval<U>().
5507 if (LhsT->isObjectType() || LhsT->isFunctionType())
5508 LhsT = Self.Context.getRValueReferenceType(LhsT);
5509 if (RhsT->isObjectType() || RhsT->isFunctionType())
5510 RhsT = Self.Context.getRValueReferenceType(RhsT);
5511 OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
5512 Expr::getValueKindForType(LhsT));
5513 OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context),
5514 Expr::getValueKindForType(RhsT));
5515
5516 // Attempt the assignment in an unevaluated context within a SFINAE
5517 // trap at translation unit scope.
5518 EnterExpressionEvaluationContext Unevaluated(
5519 Self, Sema::ExpressionEvaluationContext::Unevaluated);
5520 Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
5521 Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
5522 ExprResult Result = Self.BuildBinOp(/*S=*/nullptr, KeyLoc, BO_Assign, &Lhs,
5523 &Rhs);
5524 if (Result.isInvalid())
5525 return false;
5526
5527 // Treat the assignment as unused for the purpose of -Wdeprecated-volatile.
5528 Self.CheckUnusedVolatileAssignment(Result.get());
5529
5530 if (SFINAE.hasErrorOccurred())
5531 return false;
5532
5533 if (BTT == BTT_IsAssignable)
5534 return true;
5535
5536 if (BTT == BTT_IsNothrowAssignable)
5537 return Self.canThrow(Result.get()) == CT_Cannot;
5538
5539 if (BTT == BTT_IsTriviallyAssignable) {
5540 // Under Objective-C ARC and Weak, if the destination has non-trivial
5541 // Objective-C lifetime, this is a non-trivial assignment.
5542 if (LhsT.getNonReferenceType().hasNonTrivialObjCLifetime())
5543 return false;
5544
5545 return !Result.get()->hasNonTrivialCall(Self.Context);
5546 }
5547
5548 llvm_unreachable("unhandled type trait")::llvm::llvm_unreachable_internal("unhandled type trait", "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 5548)
;
5549 return false;
5550 }
5551 default: llvm_unreachable("not a BTT")::llvm::llvm_unreachable_internal("not a BTT", "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 5551)
;
5552 }
5553 llvm_unreachable("Unknown type trait or not implemented")::llvm::llvm_unreachable_internal("Unknown type trait or not implemented"
, "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 5553)
;
5554}
5555
5556ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT,
5557 SourceLocation KWLoc,
5558 ParsedType Ty,
5559 Expr* DimExpr,
5560 SourceLocation RParen) {
5561 TypeSourceInfo *TSInfo;
5562 QualType T = GetTypeFromParser(Ty, &TSInfo);
5563 if (!TSInfo)
5564 TSInfo = Context.getTrivialTypeSourceInfo(T);
5565
5566 return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen);
5567}
5568
5569static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT,
5570 QualType T, Expr *DimExpr,
5571 SourceLocation KeyLoc) {
5572 assert(!T->isDependentType() && "Cannot evaluate traits of dependent type")(static_cast <bool> (!T->isDependentType() &&
"Cannot evaluate traits of dependent type") ? void (0) : __assert_fail
("!T->isDependentType() && \"Cannot evaluate traits of dependent type\""
, "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 5572, __extension__ __PRETTY_FUNCTION__))
;
5573
5574 switch(ATT) {
5575 case ATT_ArrayRank:
5576 if (T->isArrayType()) {
5577 unsigned Dim = 0;
5578 while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
5579 ++Dim;
5580 T = AT->getElementType();
5581 }
5582 return Dim;
5583 }
5584 return 0;
5585
5586 case ATT_ArrayExtent: {
5587 llvm::APSInt Value;
5588 uint64_t Dim;
5589 if (Self.VerifyIntegerConstantExpression(
5590 DimExpr, &Value, diag::err_dimension_expr_not_constant_integer)
5591 .isInvalid())
5592 return 0;
5593 if (Value.isSigned() && Value.isNegative()) {
5594 Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer)
5595 << DimExpr->getSourceRange();
5596 return 0;
5597 }
5598 Dim = Value.getLimitedValue();
5599
5600 if (T->isArrayType()) {
5601 unsigned D = 0;
5602 bool Matched = false;
5603 while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
5604 if (Dim == D) {
5605 Matched = true;
5606 break;
5607 }
5608 ++D;
5609 T = AT->getElementType();
5610 }
5611
5612 if (Matched && T->isArrayType()) {
5613 if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T))
5614 return CAT->getSize().getLimitedValue();
5615 }
5616 }
5617 return 0;
5618 }
5619 }
5620 llvm_unreachable("Unknown type trait or not implemented")::llvm::llvm_unreachable_internal("Unknown type trait or not implemented"
, "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 5620)
;
5621}
5622
5623ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT,
5624 SourceLocation KWLoc,
5625 TypeSourceInfo *TSInfo,
5626 Expr* DimExpr,
5627 SourceLocation RParen) {
5628 QualType T = TSInfo->getType();
5629
5630 // FIXME: This should likely be tracked as an APInt to remove any host
5631 // assumptions about the width of size_t on the target.
5632 uint64_t Value = 0;
5633 if (!T->isDependentType())
5634 Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc);
5635
5636 // While the specification for these traits from the Embarcadero C++
5637 // compiler's documentation says the return type is 'unsigned int', Clang
5638 // returns 'size_t'. On Windows, the primary platform for the Embarcadero
5639 // compiler, there is no difference. On several other platforms this is an
5640 // important distinction.
5641 return new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value, DimExpr,
5642 RParen, Context.getSizeType());
5643}
5644
5645ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET,
5646 SourceLocation KWLoc,
5647 Expr *Queried,
5648 SourceLocation RParen) {
5649 // If error parsing the expression, ignore.
5650 if (!Queried)
5651 return ExprError();
5652
5653 ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen);
5654
5655 return Result;
5656}
5657
5658static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) {
5659 switch (ET) {
5660 case ET_IsLValueExpr: return E->isLValue();
5661 case ET_IsRValueExpr:
5662 return E->isPRValue();
5663 }
5664 llvm_unreachable("Expression trait not covered by switch")::llvm::llvm_unreachable_internal("Expression trait not covered by switch"
, "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 5664)
;
5665}
5666
5667ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET,
5668 SourceLocation KWLoc,
5669 Expr *Queried,
5670 SourceLocation RParen) {
5671 if (Queried->isTypeDependent()) {
5672 // Delay type-checking for type-dependent expressions.
5673 } else if (Queried->getType()->isPlaceholderType()) {
5674 ExprResult PE = CheckPlaceholderExpr(Queried);
5675 if (PE.isInvalid()) return ExprError();
5676 return BuildExpressionTrait(ET, KWLoc, PE.get(), RParen);
5677 }
5678
5679 bool Value = EvaluateExpressionTrait(ET, Queried);
5680
5681 return new (Context)
5682 ExpressionTraitExpr(KWLoc, ET, Queried, Value, RParen, Context.BoolTy);
5683}
5684
5685QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS,
5686 ExprValueKind &VK,
5687 SourceLocation Loc,
5688 bool isIndirect) {
5689 assert(!LHS.get()->getType()->isPlaceholderType() &&(static_cast <bool> (!LHS.get()->getType()->isPlaceholderType
() && !RHS.get()->getType()->isPlaceholderType(
) && "placeholders should have been weeded out by now"
) ? void (0) : __assert_fail ("!LHS.get()->getType()->isPlaceholderType() && !RHS.get()->getType()->isPlaceholderType() && \"placeholders should have been weeded out by now\""
, "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 5691, __extension__ __PRETTY_FUNCTION__))
5690 !RHS.get()->getType()->isPlaceholderType() &&(static_cast <bool> (!LHS.get()->getType()->isPlaceholderType
() && !RHS.get()->getType()->isPlaceholderType(
) && "placeholders should have been weeded out by now"
) ? void (0) : __assert_fail ("!LHS.get()->getType()->isPlaceholderType() && !RHS.get()->getType()->isPlaceholderType() && \"placeholders should have been weeded out by now\""
, "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 5691, __extension__ __PRETTY_FUNCTION__))
5691 "placeholders should have been weeded out by now")(static_cast <bool> (!LHS.get()->getType()->isPlaceholderType
() && !RHS.get()->getType()->isPlaceholderType(
) && "placeholders should have been weeded out by now"
) ? void (0) : __assert_fail ("!LHS.get()->getType()->isPlaceholderType() && !RHS.get()->getType()->isPlaceholderType() && \"placeholders should have been weeded out by now\""
, "/build/llvm-toolchain-snapshot-13~++20210613111130+5be314f79ba7/clang/lib/Sema/SemaExprCXX.cpp"
, 5691, __extension__ __PRETTY_FUNCTION__))
;
5692
5693 // The LHS undergoes lvalue conversions if this is ->*, and undergoes the
5694 // temporary materialization conversion otherwise.
5695 if (isIndirect)
5696 LHS = DefaultLvalueConversion(LHS.get());
5697 else if (LHS.get()->isPRValue())
5698 LHS = TemporaryMaterializationConversion(LHS.get());
5699 if (LHS.isInvalid())
5700 return QualType();
5701
5702 // The RHS always undergoes lvalue conversions.
5703 RHS = DefaultLvalueConversion(RHS.get());
5704 if (RHS.isInvalid()) return QualType();
5705
5706 const char *OpSpelling = isIndirect ? "->*" : ".*";
5707 // C++ 5.5p2
5708 // The binary operator .* [p3: ->*] binds its second operand, which shall
5709 // be of type "pointer to member of T" (where T is a completely-defined
5710 // class type) [...]
5711 QualType RHSType = RHS.get()->getType();
5712 const MemberPointerType *MemPtr = RHSType->getAs<MemberPointerType>();
5713 if (!MemPtr) {
5714 Diag(Loc, diag::err_bad_memptr_rhs)
5715 << OpSpelling << RHSType << RHS.get()->getSourceRange();
5716 return QualType();
5717 }
5718
5719 QualType Class(MemPtr->getClass(), 0);
5720
5721 // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the
5722 // member pointer points must be completely-defined. However, there is no
5723 // reason for this semantic distinction, and the rule is not enforced by
5724 // other compilers. Therefore, we do not check this property, as it is
5725 // likely to be considered a defect.
5726
5727 // C++ 5.5p2
5728 // [...] to its first operand, which shall be of class T or of a class of
5729 // which T is an unambiguous and accessible base class. [p3: a pointer to
5730 // such a class]
5731 QualType LHSType = LHS.get()->getType();
5732 if (isIndirect) {
5733 if (const PointerType *Ptr = LHSType->getAs<PointerType>())
5734 LHSType = Ptr->getPointeeType();
5735 else {
5736 Diag(Loc, diag::err_bad_memptr_lhs)
5737 << OpSpelling << 1 << LHSType
5738 << FixItHint::CreateReplacement(SourceRange(Loc), ".*");
5739 return QualType();
5740 }
5741 }
5742
5743 if (!Context.hasSameUnqualifiedType(Class, LHSType)) {
5744 // If we want to check the hierarchy, we need a complete type.
5745 if (RequireCompleteType(Loc, LHSType, diag::err_bad_memptr_lhs,
5746 OpSpelling, (int)isIndirect)) {
5747 return QualType();
5748 }
5749
5750 if (!IsDerivedFrom(Loc, LHSType, Class)) {
5751 Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
5752 << (int)isIndirect << LHS.get()->getType();
5753 return QualType();
5754 }
5755
5756 CXXCastPath BasePath;
5757 if (CheckDerivedToBaseConversion(
5758 LHSType, Class, Loc,
5759 SourceRange(LHS.get()->getBeginLoc(), RHS.get()->getEndLoc()),
5760 &BasePath))
5761 return QualType();
5762
5763 // Cast LHS to type of use.
5764 QualType UseType = Context.getQualifiedType(Class, LHSType.getQualifiers());
5765 if (isIndirect)
5766 UseType = Context.getPointerType(UseType);
5767 ExprValueKind VK = isIndirect ? VK_PRValue : LHS.get()->getValueKind();
5768 LHS = ImpCastExprToType(LHS.get(), UseType, CK_DerivedToBase, VK,
5769 &BasePath);
5770 }
5771
5772 if (isa<CXXScalarValueInitExpr>(RHS.get()->IgnoreParens())) {
5773 // Diagnose use of pointer-to-member type which when used as
5774 // the functional cast in a pointer-to-member expression.
5775 Diag(Loc, diag::err_pointer_to_member_type) << isIndirect;
5776 return QualType();
5777 }
5778
5779 // C++ 5.5p2
5780 // The result is an object or a function of the type specified by the
5781 // second operand.
5782 // The cv qualifiers are the union of those in the pointer and the left side,
5783 // in accordance with 5.5p5 and 5.2.5.
5784 QualType Result = MemPtr->getPointeeType();
5785 Result = Context.getCVRQualifiedType(Result, LHSType.getCVRQualifiers());
5786
5787 // C++0x [expr.mptr.oper]p6:
5788 // In a .* expression whose object expression is an rvalue, the program is
5789 // ill-formed if the second operand is a pointer to member function with
5790 // ref-qualifier &. In a ->* expression or in a .* expression whose object
5791 // expression is an lvalue, the program is ill-formed if the second operand
5792 // is a pointer to member function with ref-qualifier &&.
5793 if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) {
5794 switch (Proto->getRefQualifier()) {
5795 case RQ_None:
5796 // Do nothing
5797 break;
5798
5799 case RQ_LValue:
5800 if (!isIndirect && !LHS.get()->Classify(Context).isLValue()) {
5801 // C++2a allows functions with ref-qualifier & if their cv-qualifier-seq
5802 // is (exactly) 'const'.
5803 if (Proto->isConst() && !Proto->isVolatile())
5804 Diag(Loc, getLangOpts().CPlusPlus20
5805 ? diag::warn_cxx17_compat_pointer_to_const_ref_member_on_rvalue
5806 : diag::ext_pointer_to_const_ref_member_on_rvalue);
5807 else
5808 Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
5809 << RHSType << 1 << LHS.get()->getSourceRange();
5810 }
5811 break;
5812
5813 case RQ_RValue:
5814 if (isIndirect || !LHS.get()->Classify(Context).isRValue())
5815 Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
5816 << RHSType << 0 << LHS.get()->getSourceRange();
5817 break;
5818 }
5819 }
5820
5821 // C++ [expr.mptr.oper]p6:
5822 // The result of a .* expression whose second operand is a pointer
5823 // to a data member is of the same value category as its
5824 // first operand. The result of a .* expression whose second
5825 // operand is a pointer to a member function is a prvalue. The
5826 // result of an ->* expression is an lvalue if its second operand
5827 // is a pointer to data member and a prvalue otherwise.
5828 if (Result->isFunctionType()) {
5829 VK = VK_PRValue;
5830 return Context.BoundMemberTy;
5831 } else if (isIndirect) {
5832 VK = VK_LValue;
5833 } else {
5834 VK = LHS.get()->getValueKind();
5835 }
5836
5837 return Result;
5838}
5839
5840/// Try to convert a type to another according to C++11 5.16p3.
5841///
5842/// This is part of the parameter validation for the ? operator. If either
5843/// value operand is a class type, the two operands are attempted to be
5844/// converted to each other. This function does the conversion in one direction.
5845/// It returns true if the program is ill-formed and has already been diagnosed
5846/// as such.
5847static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
5848 SourceLocation QuestionLoc,
5849 bool &HaveConversion,
5850 QualType &ToType) {
5851 HaveConversion = false;
5852 ToType = To->getType();